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CHAPTER 1

Introduction

- Pero papá - le dijo Josep llorando - si Dios no existe, ¿Quién hizo el mundo?
- Tonto- dijo el obrero, cabizbajo, casi en secreto -. Tonto. Al mundo lo hicimos nosotros, los

albañiles.

Eduardo Galeano, El libro de los abrazos.

After about fifty years since its proposal, the standard model (SM) continues to amaze us with
its accurate description of the fundamental constituents of matter and their interactions at the
microscopic level. The latest of its experimental triumphs was the discovery of the Higgs boson
at the Large Hadron Collider (LHC) [1, 2]. This particle is the crucial artifact for the breakdown
of the electroweak symmetry, from which all fundamental particles acquire their masses [3, 4].

In the standard model [5–7], the three families of quarks and leptons are interpreted as chiral
fermions transforming as irreducible representations of the gauge symmetry GSM = SU(3)C ×
SU(2)L ×U(1)Y . The strong and electroweak interactions are described by the exchange of vec-
tor bosons: Eight gluons for quantum chromodynamics, the massive Zµ and W±

µ which are the
carriers of the weak force, and the photon Aµ of quantum electrodynamics.

Despite of its remarkable features, there are many reasons to think there must be a more fun-
damental theory beyond the standard model. One of these reasons is that it does not include
gravity. In contrast to all other forces, gravity is mediated by a spin two particle: The graviton.
Theories of this type are very reluctant to a quantum description. This also poses significant
challenges to the understanding of our universe, especially at its early stages, where we expect
quantum gravity to play the main role. From cosmological observations we know that our uni-
verse is expanding in an accelerated way. This behavior can be accounted for by introducing

1



1 Introduction

constant term in Einstein’s equations: The cosmological constant. This cosmological constant
has an extremely small value (10−122M4

Pl), so small that it can not be interpreted as the vacuum
energy of any known quantum field theory. Even more paradoxical is perhaps the contribution of
this very small number to the energy density of the universe, form the results of Planck collabora-
tion we know that dark energy accounts for roughly 70% [8] of it. Furthermore, the measurement
of the CMB spectrum as well as astrophysical observations of the rotation curves of galaxies and
clusters, they all lead to the conclusion that there is a “dark” type of matter which contributes
25% of the universe fuel. This dark matter is not accounted for by the standard model. Similarly
as in the case of dark matter, there are many other arguments for particles beyond the standard
model. For instance, the experimental evidence in favor of neutrino oscillations [9]. In order
for neutrinos to change flavor (i.e. oscillate), at least one of them must be massive. This is in
contradiction to the SM. A possible solution to this problem is to introduce an extra particle: A
right handed neutrino. The neutrino masses will then be generated via the so called seesaw mech-
anism: The bigger the mass of the right handed neutrino, the smaller the mass of the SM neutrino.

Another drawback of the SM is the so-called hierarchy problem. The standard model is a con-
sistent quantum field theory, i.e. all of its quantum corrections can be kept well under control
up to a certain cutoff scale Λ, at which new physics becomes relevant. However, when one ex-
amines loop corrections to the Higgs mass, one observes that it is pushed towards the cutoff by
quadratic divergencies. Now we know that the Higgs mass is roughly 125 GeV, so we have to
ask what is the mechanism which stabilizes the electroweak scale? Another important question
has to do with the following observation: In the standard model, the masses for the fields as well
as the Fermi constant GF are generated by a dynamical mechanism. In the SM we have about
20 constant parameters needed to adjust the fermion masses (Yukawa couplings), mixing angles,
CP violation phases, etc. The question which remains is wether or not these constant parameters
are also dynamically generated. One can take this maieutical approach even further, and ask why
is the symmetry of the standard model precisely SU(3)C × SU(2)L × U(1)Y and not any other?
or why there are only three generations of quarks and leptons? or even beyond, why do we live
in four dimensions? Obviously, a more fundamental theory is needed in order to address these
questions.

Many brilliant proposals have been made to solve the problems just discussed, but all of them
still await for experimental confirmation. One of the most relevant concerns the program of uni-
fication. Perhaps one of the great conceptual achievements of the SM was the unified description
of the strong and electroweak forces in terms of Abelian and non-Abelian gauge symmetries,
each of them with a corresponding coupling constant. It was soon realized that the renormaliz-
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ation group flow of the coupling constants drives them very close to each other at energy scales
of about 1014 − 1015 GeV. If they happen to actually meet at some point, there is the possibility
that at higher energies, all interactions are described in terms of a single Lie group. This is the
underlying idea behind grand unification [10]. The simplest example of a grand unified theory
is perhaps SU(5). In this theory the SM generations can be obtained from the anti-fundamental
and two-index antisymmetric representations

10→ (3,2)︸ ︷︷ ︸
Q

+ (3̄,1)︸ ︷︷ ︸
ū

+ (1,1)︸ ︷︷ ︸
ē

,

5→ (3̄,1)︸ ︷︷ ︸
d̄

+ (1,2)︸ ︷︷ ︸
L

.
(1.1)

One step further, at the level of SO(10) one finds that not only the interactions, but also a full
family gets unified in the 16-plet

16→ Q+ ū+ ē+ L+ d̄+ ν̄R , (1.2)

where the additional singlet ν̄R can be interpreted as a right handed neutrino. Among the pos-
itive features of GUT models, we have a prediction for the weak mixing angle θW as well as
an explanation for the quantization of the electric charge. In particular, one of the problems of
GUTs is the presence of additional particles in the spectrum, such as the lepto-quarks, which can
mediate exceedingly fast proton decay. The is another problem which concerns the Higgs. In
grand unified theories, the Higgs usually comes accompanied of a color triplet, which needs to be
decoupled from the low energy due to the issues with proton decay mentioned above. However,
in standard GUT models it turns very hard to lift the triplets while keeping the Higgs doublets
light. This is the doublet-triplet splitting problem.

Precision measurements of the gauge coupling constants have made it less and less likely that
they unify. However, if one assumes the presence of additional particles with intermediate
massess, this introduces a kink in the running which might restore unification. This is actually
the case in supersymmetric models. Supersymmetry (SUSY) is a symmetry without precedents
in particle physics. It transforms fermions into bosons, and viceversa [11]. This is very ap-
pealing for the SM since the contribution of the supersymmetric particles cancels the quadratic
divergence in the Higgs mass and thus, stabilizes the electroweak scale. Since no supersymmetry
has been observed to date, it then follows that this symmetry needs to be broken at a higher scale.
If we want SUSY to remain a solution for the hierarchy problem, the breaking scale must not be
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1 Introduction

that far from the electroweak one. This keeps hope alive that the first signals for SUSY will be
seen at the second run of the LHC.

In the minimal supersymmetric version of the standard model (MSSM), one simply introduces
the superpartners of the SM model fields. The bosonic counterparts of quarks and leptons are
called squarks and sleptons respectively. Similarly, one has the fermion companions of the gauge
bosons: The gauginos. In the Higgs sector the situation is a bit more subtle as one sees that the
usual Higgs which we denote byHd does not suffice to generate all quark masses, thus we have to
introduce another Higgs fieldHu to give mass to the up-type quarks. The fermion companions of
these fields are called the Higgsinos. Of course, doubling the spectrum can spoil the phenomen-
ology of the models. In particular, some squark couplings can make the proton very unstable.
We would need of additional symmetries in order to control all these dangerous operators. One
of the simplest symmetries one can invoke is a Z2 matter parity [12]. This symmetry has a very
important implication, namely it makes the lightest supersymmetric particle (LSP) stable. This
LSP is one of the most favored candidates for dark matter [13].

Motivated by the possibility for gauge couplings to unify within the MSSM, one can contem-
plate the possibility of supersymmetric GUTs. Among the many challenges for these models,
there are the usual problems with proton decay which in supersymmetric models get more severe
due to the presence of additional fields. Similarly, in SUSY GUTs we would have to address
another puzzle. Note that the Higgses Hu and Hd are vector-like with respect to all quantum
numbers in the standard model, so that one may expect that the bilinear coupling HuHd is in-
duced at a higher scale. However, such a high scale coupling would remove the Higgses from
the low energy. The question of why the coupling in the Higgs bilinear is small, is commonly
referred to as the µ-problem.

Another very appealing proposal is the existence of extra dimensions. In this picture, gravity
propagates over the whole internal space while the gauge symmetry is localized over a certain
region. This could explain why gravity is so weak compared to all forces, as it gets diluted in
comparison to the other interactions. One may assume that the gauge symmetry is that of the
standard model but one can also not exclude that over certain subregions the symmetry enhances
further, say to SU(5) or SO(10). Thus, one can think that the matter of the standard model is
localized at these special subregions, while the Higgs fields are free to propagate over the entire
space. This solves the doublet-triplet splitting problem because the Higgs(es) are not complete
representations of the unified group. Thus they will not be accompanied by the dangerous triplets
mediating proton decay. This picture in which complete and split representations coexist is com-
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monly referred to as local grand unification [14].

So far, we have discussed SUSY as a global symmetry of the theory. By gauging supersym-
metry one obtains a theory which is invariant under local Lorentz transformations. This gauged
supersymmetry is called supergravity and it could be a first step towards a quantum theory of
gravity. However, theories of this type turn out to be non renormalizable. The reason for many
of the divergencies in quantum approaches to a theory of gravity are due to the point-like nature
of particles. This is somehow intuitive as quantum gravity must certainly encode a description of
a quantum spacetime. In string theory, these effects are accounted for by introducing the string
scale as a fundamental scale of the theory, which in turn makes it finite in the ultraviolet. One
of the early observations about string theory is that it exhibits a massless spin two field in the
spectrum. In this sense gravity is automatically included in string theory [15]. Early observa-
tions also lead to the conclusion that in order to avoid vacuum instabilities, the string must be
supersymmetric, i.e. a superstring. Similarly it was shown that string theory is only consistent
in ten dimensions. There are five superstring theories: Two which include both closed and open
oriented strings denoted as type IIA and type IIB, two including only closed strings which are
known as Heterotic and exhibit the gauge symmetry of either E8×E8 (HE) or SO(32) (HO), and
finally there is a theory of unoriented strings known as type I. Over the years, it has been shown
that these theories enjoy of a very rich mathematical structure and that they are not independent
from each other but related by an ever growing network of dualities [16]. This inspired an image
in which all superstrings are nothing but limiting descriptions of an underlying eleven dimen-
sional M-theory [Witten:1995ex].

With this very naïve picture in mind, we can already appreciate the value of superstring the-
ories for particle phenomenology. They encompass all of the imaginable ingredients for physics
beyond the standard model.

• They provide a consistent quantum description of gravity.

• They include supersymmetry by default.

• They allow for a picture of grand unification as

SU(5) ⊂ SO(10) ⊂ E8 , SO(32) . (1.3)

• They are theories with extra dimensions, so that the picture of local GUTs is a possibility
in these setups.
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Nevertheless, considering a string theory as an underlying framework for particle physics makes
face new challenges. We have to engineer a way to make contact with four dimensions and the
gauge symmetry GSM. This is possible if we assume that six spatial dimensions are compac-
tified, i.e. they are rolled up to a very small space. This compactification will have dramatic
implications for the particle content and the interactions that we observe in four dimensions.
There have been many efforts towards finding compactifications which could resemble the phys-
ics within and beyond the standard model. This involves understanding which properties of the
compactification are responsible for given features of the model. For example, it is desirable
to have N = 1 SUSY in the low energy in order to solve the hierarchy problem. In that case,
the compactification space must be a Calabi-Yau manifold. These spaces are difficult to deal
with and in most cases some physical information can be accessed only by means of topological
quantities. Fortunately, there are some special compactifications which also lead to N = 1,
while allowing for a fully-fledged stringy description [17]. These spaces are called orbifolds and
can be regarded as special limits of CY manifolds where the curvature gets concentrated at a
finite amount of points. Orbifolds allow for an exceptional degree of computability. Due to this
Berechenbarkeit, they have been used in almost any superstring theory for the purpose of model
building [18, 19]. From those efforts we should remark that in the context of the HE string, many
orbifold models have been found whose phenomenology reproduces most of the blueprints of
the standard model [20–22]. This class of models is known as the heterotic mini-landscape. Fur-
thermore it has been shown over the years that the orbifold equips the low energy effective field
theory with a handful of discrete symmetries [23, 24]. As discussed already, these are of great
value as they could serve to control the phenomenology of the models.

In this work we study the stringy origin of these discrete symmetries. This is done in the
context of orbifold compactifications of the heterotic string. We devote special attention to
R-symmetries, as they have been appreciated in SUSY GUTs as an alternative to solve the µ
problem.

Another possibility to achieve discrete symmetries in the low energy is from the breaking of
U(1) factors. We explore this possibility in the context of F-theory (the non-perturbative version
of the type IIB string). Taking steps towards model building in a new class of F-theory vacua, we
make use of additional U(1) s which are broken to matter parity and help us to control dangerous
operators.

This work is organized as follows: In chapter 2 we discuss the basic features of ten dimensional
heterotic string and its spectrum. Further we revisit the generalities of compactifications on CY
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manifolds. Then we discuss the orbifolded superstring and its corresponding particle spectrum.
In chapter 3 we discuss the discrete symmetries exhibited by orbifold field theories. We use the
correlators of the conformal field theory (CFT) to infer which Abelian and non-Abelian discrete
symmetries are inherited from the geometry. We also observe that from some unbroken rem-
nants of the Lorentz group in internal space we get discrete R-symmetries. Then we derive the
charges for the fields under theseR-symmetries. Finally we compute the anomalies for these and
show that they are universal over a broad class of orbifolds. Chapter 4 is devoted to discuss the
orbifold phenomenology. We start presenting the Zip-code of the mini-landscape: A preferred
distribution in the orbifold geometry where (MS)SM fields are located. This configuration is
favored by the discrete symmetries and ensures that the models constructed in this way exhibit a
similar phenomenology as the SM. Further we introduce a new orbifold compactification based
on the Z2 × Z4 geometry. From a GUT approach we discuss alternatives for model building in
this orbifold, and show that a similar Zip-code arises.

Having discussed orbifold models and their remarkable features, which are partially due to the
presence of additional discrete symmetries. We turn to another corner of the string landscape,
namely F-theory. We devote chapter 5 to a review of its properties and how it can be addressed
via the perturbative type IIB as well as from dualities to heterotic and M-theory. In chapter 6 we
discuss a class of F-theory models based on SU(5) grand unification, with extra U(1) symmet-
ries. We take first steps towards model building in these class of models and show that the U(1)
factors must be broken in order to generate the Yukawa couplings for the SM fields. We show
that upon a suitable breakdown it is possible to retain the standard matter parity in this model. In
the last chapter we present our conclusions and discuss avenues for future research.
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CHAPTER 2

Heterotic orbifolds

Que integre las ciencias y las artes a la canasta familiar, de acuerdo con los designios de un
gran poeta de nuestro tiempo que pidió no seguir amándolas por separado como a dos

hermanas enemigas.

Gabriel García Márquez, Por un país al alcance de los niños.

We devote this chapter to revisiting the basic features of the heterotic string theory. After that,
we discuss compactifications leading to an effective theory in four dimensions. We also present
general arguments in favor of Calabi-Yau manifolds as promising compactification alternatives.
A simpler version of these are orbifolds, which, despite of their simplicity, have shown to be rich
grounds for particle phenomenology. In the remainder of this chapter we study the geometric
properties of these spaces as well as the particle spectra of heterotic orbifold models.

2.1 The Heterotic String

In a closed string theory, the so-called left- and right-moving sectors decouple [15]. This fact is
exploited to construct the heterotic string, by taking the left-moving sector to be spanned by 26
bosonic degrees of freedom XM,I

L M = 0, . . . , 9, I = 1, . . . , 16, while the right-moving one is
spanned by those of the ten dimensional superstringXM

R , ψM M = 0, . . . , 9. This choice implies
that the resulting theory possesses (NL,NR) = (0, 1) world-sheet supersymmetries.

The first point to take care of in the heterotic theory is the obvious mismatch among the bo-
sonic left- and right-moving degrees of freedom. One recognizes a physical dimension XM to
be composed by its left- and right-moving parts. This implies that the target space of the het-
erotic string is truly ten dimensional [25], and that the extra bosonic components XI must be
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2 Heterotic orbifolds

adequately compactified1.

Before turnings to the world sheet (WS) action, let us briefly comment on some redefinitions.
We start by taking (τ, σ) to be coordinates on the world sheet, then we Wick rotate the τ com-
ponent and write z = e−2πi(iτ+σ), z̄ = e−2πi(iτ−σ). In these terms, the WS action reads;

S =
1

π

∫
d2z
(
2∂XM ∂̄X

M + iψM ∂̄ψ
M + 2∂XI ∂̄X

I
)
, (2.1)

where we have defined ∂ = ∂z and ∂̄ = ∂z̄. Similarly it can be shown that the equations of
motion for Xµ allow us to write it in the following form

XM(z, z̄) = XM
L (z) +XM

R (z̄) . (2.2)

As discussed before, heterotic strings are subjected to closeness constraints:

XM(e2πiz, e−2πiz̄) = XM(z, z̄) , (2.3)

from which follows that XM must obey the following mode expansion

XM(z, z̄) = XM
0 +

pML
2

ln(z) +
pMR
2

ln(z̄) +
∑
n∈Z
n6=0

1

n

[
αMn z

n + α̃Mn z̄e
n
]
. (2.4)

The previous equation, together with the boundary condition (2.3) imply that left and right mov-
ing momenta must match: pL = pR ≡ p/2.

Let us now discuss the fermionic sector. It is well known that on the fermions we can impose
either periodic (Ramond) or anti-periodic (Neveu-Schwarz) boundary conditions: ψM(e2πiz̄) =

±ψM(z̄). The mode expansions in either case are given by

ψM(z̄) =


∑
n∈Z

dMn z̄
n (R)∑

r∈Z

bM
r+ 1

2
z̄r+

1
2 (NS)

. (2.5)

1 In the earliest formulation of the heterotic theory [26], the left movers were described in terms of 10 bosonic and
32 fermionic coordinates. Note that these degrees of freedom made a contribution to the conformal anomaly which
coincides with that of the bosonic string, i.e. 10 + 32/2 = 26. In this fermionic description the dimensionality of
the heterotic theory becomes transparent.

10



2.1 The Heterotic String

The sixteen extra left movers can be compactified on a torus T6 = R16/Λ16, with Λ16 a 16
dimensional lattice. Due to the compactification, strings can close up to windings, i.e.

XI(z) = XI(z) + 2πΛI , I = 1, ..., 16 , (2.6)

with Λ ∈ Λ16. These boundary conditions are consistent with the mode expansion

XI(z) = XI
0 +

pI

2
ln(z) +

∑
n∈Z
n 6=0

1

n
αInz

n . (2.7)

Note that the previous expansion makes the momenta and winding modes coincide, so that the
lattice Λ16 must be self dual. Additionally, it was shown that the vacuum to vacuum amplitude
for this theory is modular invariant only if Λ16 is also even [27]. The only Euclidean lattices with
such properties are the root lattice of E8 × E8 and that of Spin(32)/Z2. As the choice of the
lattice defines the perturbative gauge theory, choosing the first one defines the heterotic E8 × E8

theory (HE). Similarly the choice of Spin(32)/Z2, leads to the heterotic SO(32) string (HO).
The compact coordinates XI are often refered to as the gauge degrees of freedom.

Having discussed the mode expansions, we can now proceed to quantize the theory. In the
canonical approach, we obtain the following (anti-) commutation relations between the modes
present in eqs. (2.4), (2.5) and (2.7)[

α̃Mn , α̃
N
m

]
= nδn+mη

MN ,
[
αMn , α

N
m

]
= nδn+mη

MN ,
[
αIn, α

J
m

]
= nδn+mδ

IJ , (2.8)

{
bMr , b

N
s

}
= δr+sη

MN ,
{
dMn , d

N
m

}
= δn+mη

MN .

The reality conditions imposed on both bosonic and fermionic coordinates together with the pre-
vious equations, make it possible to interpret these modes as creation (n, r < 0) and annihilation
operators (n, r > 0). One construct the states |ϕ〉 as excitations of the vacuum. However, certain
care has to be taken to remove redundant states which arise due to the super-conformal invari-
ance of the theory. In order to do so, we consider the energy momentum tensor Tαβ and the WS

11



2 Heterotic orbifolds

supersymmetry current TF ,

T = Tzz = −∂XM∂XM − ∂XI∂XI ,

T̄ = Tz̄z̄ = −∂̄XM ∂̄XM −
i

2
ψM ∂̄ψM ,

TF = ψM ∂̄XM .

(2.9)

The mode expansions for these operators are

T =
∑
n∈Z

Lnz
n, T̄ =

∑
n∈Z

L̄nz̄
n , (2.10)

and

TF =


∑
n∈Z

Fnz̄
n (R)∑

r∈Z+ 1
2

Gr+ 1
2
z̄(r+ 1

2
) (NS)

. (2.11)

The previous expressions define the generators of the super-Virasoro algebra Ln, L̄n, Fn and Gn.
With the aid of those, we define the string-Hilbert space H to be the vector space of all string
states |ϕ〉 satisfying

Ln |ϕ〉 = L̄n |φ〉 = 0, ∀n > 0 ,

Fn |ϕ〉 = Gr+ 1
2
|ϕ〉 = 0, n, r > 0 ,

(L0 − aL) |ϕ〉 = (L̄0 − aR) |ϕ〉 = 0 .

(2.12)

In the last equation, the coefficients aL/R have been introduced to account for normal ordering
effects. In the left-moving sector one has aL = 1, while in the right-moving sector aR equals 0
(R) or 1

2
(NS).

To construct the physical states, it is more convenient to choose a particular gauge in which
the above super-Virasoro constraints are succinct. In the light cone gauge, one fixes the coordin-
ates X± ∼ (X0 ±X1). In this way, only the contributions from the transverse modes XM , ψM

M = 2, ..., 9 and XI are of physical relevance [25]. Of course, this gauge breaks the Lorentz
group SO(1,9) to the transverse SO(8), corresponding to the little group under which massless
states transform. Upon quantization in the light cone gauge we can compute the spectrum of the
theory. The mass operator is given by

M2 = M2
L +M2

R, M2
L = M2

R . (2.13)

12



2.1 The Heterotic String

The left moving mass operator is given by

M2
L

4
=
pIpI

2
+NL − 1 , (2.14)

where

NL =
∞∑
n=1

(αM−nα
M
n + αI−nα

I
n) , (2.15)

is the oscillator number from the left moving sector. For the right movers one has

M2
R

4
=



∞∑
m=0

mdM−md
M
m +NR (R)

∞∑
r= 1

2

rbM−rb
M
r +NR −

1

2
(NS)

(2.16)

withNR =
∑∞

n=1 ᾱ
i
−nᾱ

i
n. The above equation can be written more compactly after bosonization.

In this approach, the contribution of two WS fermions can be accounted by a (anti-) holomorphic
boson. In the light cone gauge we have four anti-holomorphic bosonic fields H i i = 0, 1, ..., 3.
The anti-commutation relations for the operators allow us to write any contribution of dMn or bMr
in the form eiqiHi , with q being a weight in the vector (R) or spinor lattice (NS) of SO(8). In
terms of the H-momentum q, the mass operator for the left movers reads

M2
R

4
=
q2

2
+NR −

1

2
. (2.17)

Having the mass relations (2.14) and (2.17) we can find the massless spectrum of the theory. To
do so, we first consider families of operators from the left and right moving sector, which have
ML,R = 0. From the side of the left movers we have the following possibilities:

(i) The oscillators αM−1, M = 2, ..., 9 contribute NL = 1. Note that these operators furnish a
vector representation 8v of SO(8).

(ii) The Lorentz scalars αI−1, and eipIX
I with p2 = 2. The former relation is only satisfied by

the 480 roots of SO(32) or E8 × E8 depending on the choice of Λ16. In this way the sixteen
oscillators α̃I−1 are interpreted as the Cartan generators.

For the right moving sector, eq. (2.16) implies that the only operators leading to a massless state
are characterized by NR = 0 and q2 = 1. This condition is only satisfied by the following

13



2 Heterotic orbifolds

H-momenta2

(i) q(1) =
(
±1, 0, 0, 0

)
, i.e. the weights of the vector representation 8v of SO(8).

(ii) q(1/2) =
([
±1

2
,±1

2
,±1

2
,±1

2

])
, which give the weights of the spinor representation 8s of

SO(8).

After tensoring these operators we finally obtain the massless spectrum of the heterotic theory:

(i) The states eiq(1)·HeipIX
I |0〉 and eiq(1/2)·HαI−1 |0〉 are vectors of SO(8), and transform in the

adjoint representation (248,1) ⊕ (1,248) of E8×E8 or 496 of SO(32). Hence, they are
interpreted as the gauge bosons AaM of the theory. The index a runs over the adjoint of the
Lie group. Similarly, using the operator eiq(1/2)·H instead of eiq(1)·H we obtain the gauginos
χa.

(ii) The states eiq(1)·Hαi−1 |0〉 and eiq(1/2)·Hαi−1 |0〉 yield the N = 1 supergravity multiplet. The
states with bosonic H-momentum decompose into the following irreducible representa-
tions:

8v ⊗ 8v = 1 + 28 + 35v, (2.18)

corresponding to the graviton gMN (35v), the dilation φ (1), and the antisymmetric two
form BMN (28). For the remaining 64 fermionic states one has the decomposition3

8s ⊗ 8v = 8c + 56c. (2.19)

These irreducible representations are interpreted as the dilatino λ (8c) and the gravitino ψM
(56c).

2.2 Compactifications to four dimensions

In the low energy regime massive string excitations remain uninteresting since their masses are
of the order of the string scale Ms ∼ 1017 GeV [28, 29]. In this sense, the massless spectrum
suffices to write an effective Lagrangian for N = 1 supergravity4 coupled to Yang Mills theory
(YM) [16]

SHE =
1

2

∫
d10x
√
−g
[
R− |dφ|2 − 3

8φ2
|H3|2 −

g2

4φ
tr(|F |2) + . . .

]
, (2.20)

2 Here
(
±1, 0, 0, 0

)
means all possible permutations and

([
± 1

2 ,±
1
2 ,±

1
2 ,±

1
2

])
describe all the combinations with

an even number of minus signs.
3 The subindex c denotes the cospinor representation of SO(8).
4 For a more detailed discussion of ten dimensional supergravities, specially those of the type II, the reader is

referred to section 5.1.
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2.2 Compactifications to four dimensions

where g is the YM coupling strength and H3 = dB − ω3, with ω3 being the Chern-Simons three
form

ω3 = Aa ∧ F a − 1

3
gfabcA

a ∧ Ab ∧ Ac , (2.21)

From now on we concentrate on the E8 × E8 theory, so that the indices a run over the adjoint
(248,1)⊕ (1,248).

Since our intention is to make contact with particle physics. We are interested in a certain regime
of the heterotic theory in which only four space-time dimensions are manifest. This regime can
be attained if one confines six spatial dimensions to a certain compact space. For that purpose,
let the 10D spaceM10 decompose as a product of Minkowski space-timeM3,1 and a compact
Riemannian manifoldM6

M10 =M3,1 ×M6 . (2.22)

One can then assume that the volume ofM6 is small enough, so that the extra dimensions re-
main unobserved by state-of-the-art experiments. The decomposition ofM10 as a direct product
ensures that the Lorentz symmetry SO(1,3) ⊂ SO(1,9) remains unbroken. The simplest candid-
ate forM6 is a six dimensional torus T6. In this case, the Lorentz group exhibits the minimal
breaking

SO(9,1)→ SO(3,1)× SO(6) ∼= SO(3,1)× SU(4) . (2.23)

For the transverse SO(8) this gets translated into

SO(8)→ SO(2)× SO(6) ∼= U(1)× SU(4), (2.24)

in which the U(1) ⊂ SO(1,3) is associated with the helicity. In four dimensions, the SU(4) factor
is seen can only be seen as an internal symmetry treating bosons and fermions in a different
manner, i.e. an R-symmetry. To compute the spectrum of the heterotic theory on this particular
background, let us first note that the winding numbers in the compact coordinates do not contrib-
ute further massless states. Thus, the massless states can be simply read off from decomposing
the representations found in the previous section according to the breaking (2.24). For instance,
in the case of the gravitino one obtains

56c → 43/2 ⊕ 4−3/2 ⊕ 41/2 ⊕ 4−1/2 ⊕ 201/2 ⊕ 20−1/2 . (2.25)

Note that from the previous decomposition one obtains one fundamental of SU(4) carrying heli-
city 3/2. This observation, in the light of the four dimensional theory implies that we have four
gravitini. In this way we managed to obtain a four dimensional theory with N = 4 SUSY. We
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2 Heterotic orbifolds

have then achieved one of our goals, but we are still far from a realistic description because
theories with more than one supersymmetry do not allow for a chiral spectrum. We ignore the
possibility of having no surviving supersymmetries in the four dimensional theory, and focus
from now (and over the whole of this work) on compactifications with N = 1 SUSY.

The remainder of this section is devoted to work out the properties of the manifold M6 that
are necessary to keep one supersymmetry unbroken. This amounts to find a SUSY transforma-
tion leaving all backgrounds fields invariant. This statement holds true for the bosonic fields (at
least at the classical level), so that one only has to require the variation of the fermionic fields to
be zero. These variations are

δεψM = DMε+
1

32φ

(
ΓNPQM − 9δNMΓPQ

)
HNPQε+ . . . ,

δελ = − 1√
2φ

ΓM∂MΦε+
g

8
√

2φ
ΓMNPHMNP ε+ . . .

δεχ
a = − 1

4g
√
φ
F a
MNΓMNε , M,N = 0, ..., 9 ,

(2.26)

In searching for a solution for this system of equations we have to specify the metric and the
dilaton backgrounds, as well as the three form potential H3. Recall that the former is subject to
a Bianchi identity, which can be derived from the supergravitity action (2.20), and reads dH3 =

−tr(F ∧ F ). Due to anomaly considerations [30], the Bianchi identity gets corrected in string
theory, taking the following form

dH3 = tr(R ∧R)− tr(F ∧ F ) (2.27)

We can write the YM field strength F in terms of a holomorphic vector bundle V = V1 × V2. In
this way, we recognize the terms on the right hand side of the previous equation, as the second
Chern characters of the tangent bundle TM6 and the gauge bundle V . We do not attempt a
comprehensive study of these objects, for which we refer to e.g. [31, 32].

Back to eqs. (2.26), we can study the simplest case in which H3 = 0. This in turn implies

tr(R ∧R) = tr(F ∧ F ) . (2.28)

Thus, we observe that the vanishing of the gravitino variation, impliesDMε = 0. We also observe
that for a constant dilaton profile, the dilatino variation is zero. We can now take advantage of
the fact that M10 is a product manifold. Let µ, ν label coordinates in Minkowski space, and
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2.2 Compactifications to four dimensions

m,n = 4, ..., 9 label coordinates inM6. Taking the spinor ε ∈ 8s to decompose according to the
breaking (2.24), i.e. ε = ε1/2 + ε̄−1/2, with ε1/2 (ε̄−1/2) transforming (anti-) fundamental of SU(4),
and the subindices 1/2, −1/2 denoting the corresponding chiralities. Since ε is covariantly
constant, we obtain the following Bianchi identity for the internal space

[Dm, Dn]ε =
1

4
RmnpqΓ

pqε1/2 = 0 . (2.29)

Since the Γpq are precisely the generators of the Lie algebra SU(4), we find a non trivial solution
for ε1/2 only if the combinations RmnpqΓ

pq are restricted to a subgroup of the full SU(4). In
particular if RmnpqΓ

pq run over the Lie algebra of SU(3), the spinor ε1/2 decomposes according
to the branching rule 4 = 3⊕ 1. This leaves us with a single covariantly constant spinor in 4D.
Furthermore, the condition (2.29) also implies

RmnΓnε = 0 . (2.30)

The previous observations (in the case H3 = 0) imply that a surviving supersymmetry in four
dimensions is achieved by compactification on a Ricci flat manifoldM6, with SU(3) holonomy
(i.e. the structure group of the tangent bundle TM6). Due to that Calabi-Yau manifolds seem to
be the immediate choice forM6, as they allow for a Ricci flat metric with SU(3) holonomy [33].

So far we have not discussed the restrictions on the YM field strength leading to vanishing vari-
ations of the gaugino. Recall that the spin connection needs to be embedded into the background
Yang Mills connection Aa (see eq. (2.21)). The simplest possible choice, known as the standard
embedding takes the gauge connection to have SU(3) as its structure group. This will in turn
break one of the E8 factors to E6 (the commutant of SU(3) in E8), leaving an unbroken E6 × E8

gauge symmetry in the 4D theory. More in general, if we solve eq. (2.28) by considering a
holomorphic vector bundle5 V = V1 × V2, with V1 and V2 having structure groups H1 and H2

inside each of the E8 factors. In this case,M6 will not have a Ricci flat metric, but will still be
Calabi-Yau, as it has a vanishing first Chern class c1(TM6) = 0 [34]. Analogously as in the
standard embedding, the resulting gauge group of the four dimensional theory will be G1 ×G2,
with G1 and G2 being the comutants of H1 and H2 in E8, respectively.

The departure from the standard embedding defines an avenue for heterotic model building.
Depending on the choice of the structure bundle, it is possible to obtain, for instance, an SU(5)
or an SO(10) symmetry, which are well motivated candidates for a grand unified theory. For a

5 Consistency with N = 1 SUSY in 4D, also requires the bundle V to be poly-stable [31].
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2 Heterotic orbifolds

detailed account on model building efforts in this context, the reader is referred to [35–37].

One could naïvely imagine that the Calabi-Yau manifold can be deformed in such a way, that
all the curvature gets confined to a finite number of points. At first one might worry about
these singularities, but it turns out that as strings are extended objects, one can write a consistent
string theory on those backgrounds [17, 38]. These singular limits correspond to a special class
of orbifolds, whose discrete holonomy is a subgroup of SU(3) [17]. Despite of their simpli-
city, heterotic orbifold compactifications are versatile enough as to allow for semi-realistic four
dimensional theories. The features of these compactifications are revisited in the forthcoming
sections.

2.2.1 Orbifolds

A toroidal orbifold results from the quotient of a torus by one of its isometries. Of particular
interest for us are those six-dimensional orbifolds which could serve as compactification spaces
for the heterotic theory, leaving one unbroken supersymmetry. To start with, let us complexify
the coordinates of the would-be internal space

Zi = X2i+2 + iX2i+3 , Z̄i = (Zi)∗ , i = 1, 2, 3, (2.31)

Given a six dimensional lattice Γ and a finite isometry group P ⊂ Aut(Γ), one can construct a
six dimensional orbifold

O6 =
C3

Pn Γ
=
T6

P
. (2.32)

The isometry group P is usually referred to as the point group. Additionally, we can define the
space group

S = Pn Γ = {(θ, λ) | θ ∈ P , λ ∈ Γ} . (2.33)

From now on we restrict our discussion to the Abelian point groups, for which P is given as a
direct product of cyclic groups ZN . As all elements of P can be brought into a diagonal form, we
assume, without loss of generality, that this happens precisely for the complex basis given in eq.
(2.31). Under this assumption, the action of a given element θ ∈ P is given by:

θ : Z 7→ diag(e2πiv1

, e2πiv2

, e2πiv3

)Z , (2.34)

with some the coefficients v1, v2 and v3. Note that, generically, θ ∈ U(3). As P coincides with
the discrete holonomy of O6, in order to have N = 1 SUSY we must restrict to Abelian point
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2.2 Compactifications to four dimensions

P vN

Z3
1
3
(1, 1,−2)

Z4
1
4
(1, 1,−2)

Z6−I
1
6
(1, 1,−2)

Z6−II
1
6
(1, 2,−3)

Z7
1
7
(1, 2,−3)

Z8−I
1
8
(1, 2,−3)

Z8−II
1
8
(1, 3,−4)

Z12−I
1
12

(1, 4,−5)

Z12−II
1
12

(1, 4,−5)

(a)

P vN vM

Z2 × Z2
1
2
(1, 0,−1) 1

2
(0, 1,−1)

Z3 × Z3
1
3
(1, 0,−1) 1

3
(0, 1,−1)

Z2 × Z4
1
2
(1, 0,−1) 1

4
(0, 1,−1)

Z4 × Z4
1
4
(1, 0,−1) 1

4
(0, 1,−1)

Z2 × Z6−I
1
2
(1, 0,−1) 1

6
(0, 1,−1)

Z2 × Z6−II
1
2
(1, 0,−1) 1

6
(1, 1,−2)

Z3 × Z6
1
3
(1, 0,−1) 1

3
(0, 1,−1)

Z6 × Z6
1
6
(1, 0,−1) 1

6
(0, 1,−1)

(b)

Table 2.1: Abelian point groups P containing (a) one and (b) two cyclic factors. These are the only
alternatives consistent with N = 1 supersymmetry [28].

groups in the Cartan of SU(3). This implies the condition

v1 + v2 + v3 = 0 mod 1 , (2.35)

so that P is composed of at most two cyclic factors.

In the simplest case P = ZN one has only one generator θ, associated to a twist vector6

vN ≡ (0, v1, v2, v3) . (2.36)

The cyclicity condition (θN = 1) implies that the twists viN are all of order N i.e. NviN =

0 mod 1, for i = 1, 2, 3. In the case of P = ZN ×ZM one has two generators θ and ω related to
the twists vectors vN and vM of order N and M respectively. Each of these twist vectors has to
satisfy eq. (2.35). The requirement of P being an isometry of the lattice, together with eq. (2.35)
restrict the periods N and M to take only few values. The complete classification of Abelian
point groups P ⊂ SU(3) is given in table 2.1.

In the complex basis of C3, where the elements of the point group are diagonal 3× 3 matrices,
the underlying lattice can be aligned in various ways inside C3. An orbifold O6 is called fac-

6 The first entry is introduced to indicate that there is no rotation along the generator of the transverse component
of the Lorentz group SO(1,3).
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2 Heterotic orbifolds

torizable if its compactification lattice Γ6 can be continuously deformed7 to a direct product of
three sublattices, each of which lies completely in one complex plane. If that is not the case,
each vector of the basis has to be specified by three complex coordinates which are in general
non-zero.

2.3 Strings on orbifolds

The orbifold geometry provides two different classes of boundary conditions for closed strings.
The boundary conditions (2.3), provide the conformal blocks needed to construct the physical
vertices of the untwisted sector. Among those which are of relevance for massless states we have
the identity operator, the left moving oscillators αi−1, αi∗−1, the exponents eipIXI with p ∈ Γ16 and
the fermionic fields eiqa·H . The second class of boundary conditions allows the string to close up
to the combined action of point group elements and lattice vectors [39]

Zi(e2πiz, e−2πiz̄) = (gZ)i(z, z̄), i = 1, 2, 3 , (2.37)

for a non-trivial g ∈ S which is called the constructing element of the string. For concreteness
we consider the case of a ZN orbifold8. The twisted boundary conditions associated to a generic
constructing element g = (θk, λ), are more explicitly given by

Zi(e2πiz, e−2πiz̄) = e2πivigZi(z, z̄) + λi , (2.38)

where the we have introduced the local twist vg ≡ kvN . All twisted strings closing up to a point
group element θk, are said to belong to the kth twisted sector9 Tk. Notice that strings closed by g
and hgh−1 (for some h ∈ S) are physically equivalent, that is, twisted states are associated with
conjugacy classes

[g] =
{
hgh−1|h ∈ S

}
(2.39)

and not to individual space group elements.

A mode expansion consistent with equation (2.38) has the center of mass fixed at Z0 = (1 −

7 Note that the only possible deformations permitted for a certain lattice are those which commute with the point
group P.

8 In the case of ZN × ZM the corresponding constructing element will be of the form g = (θk1ωk2 , λ) and the
local twist vg ≡ k1vN + k2vN .

9 Similarly for ZN × ZM orbifolds, the twisted sector T(k,l) is associated to the element θkωl ∈ P

20



2.3 Strings on orbifolds

θk)−1λ, and has the form

Zi(z, z̄) = Zi
0 +

i

2

∑
n∈Z

(
αin−wi

n− wi
z(n−wi) +

αin+wi

n+ wi
z̄(n+wi)

)
, (2.40)

with wi = vig mod 1 (0 ≤ wi < 1). The previous expansion provides a set of twisted bosonic
oscillators α̃in−wi , α

i
n−wi for the right- and left-moving parts of the string. The conjugate version

to (2.40) reads

Z̄i(z, z̄) = Z̄i
0 +

i

2

∑
n∈Z

(
αi∗n+wi

n+ wi
z(n+wi) +

α̃i∗n−wi

n− wi
z̄(n−wi)

)
. (2.41)

The above relations are used to quantize the theory in the light cone gauge. As a result one
obtains that the commutation relations for the oscillators are all trivial except for:[

αin−wi , α
j∗
−m+wi

]
= (n+ wi)δijδnm,

[
α̃in+wi , α̃

j∗
−m−wi

]
= (n− wi)δijδnm. (2.42)

The real fermion fields ψM , M = 4, . . . , 9, can be compactified identically to the bosonic co-
ordinates (see eq. (2.31)). The twisted boundary conditions for these fields are similar to those of
the standard R and NS sectors, but weighted by the phases introduced by the local twist. These
phases shift the weight of the fermionic operators, and as a consequence, the bosonized version
of the twisted fermions is of the form eiq

(a)
sh ·H . The shifted H-momentum is q(a)

sh = q(a) + vg, with
q(a), either in the vector (a = 1) or spinor lattice (a = 1/2) of SO(8).

2.3.1 Gauge embeddings

As observed in section 5.5, there is a Bianchi identity correlating the background geometry and
the YM field strength background. This fact, translated to the orbifold implies that the space
group must act non-trivially on the gauge coordinates. Otherwise, it is not possible for the theory
to have a modular invariant partition function. In this spirit, let us consider the embedding

S ↪→ G ⊂ Aut(E8 × E8) (2.43)

g 7→ Gg . (2.44)

For the constructing element g, the boundary condition on the gauge coordinates reads

XI(z) = (GgX)I(z) + πΛI , (2.45)
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2 Heterotic orbifolds

with Λ as in eq. (2.7). In order to proceed further, we can take G as a subgroup of the inner
automorphisms of E8 × E8. In that case the action of Gg can be realized as a shift [40]

(GgX)I(z) = XI(z) + πV I
g , (2.46)

where Vg is some 16 dimensional vector. Consistency of the embedding implies that Vg respects
the product structure of S up to lattice identifications. Comparing the previous equation with the
untwisted case eq. (2.7), we see that the embedding simply shifts the gauge momentum, i.e. psh =

p + Vg. Analogously to section 5.5, G will break the E8 × E8 symmetry to a smaller subgroup.
Note that the boundary conditions (2.45) simply shift the gauge momentum but do not modify
the mode expansions. Since the oscillators αI−1 also appear in the twisted mode expansions and,
as they are identified with the Cartan generators (see sect. 2), we can anticipate that embeddings
of the form (2.46) lead to a breaking of the E8 × E8 gauge symmetry which preserves its rank10.
For the Abelian orbifolds consistent with N = 1 SUSY in 4D, the translational embeddings can
be described by

ZN : (θk, nαeα) 7→ kVN + nαWα , (2.47)

ZN × ZM : (θk1ωk2 , nαeα) 7→ k1VN + k2VM + nαWα , (2.48)

with the vectors eα, α = 1, ..., 6 spanning a basis for the six dimensional lattice Γ. The simplest
case in which one just embeds the point group (Wα = 0) is in agreement with modular invariance,
provided a suitable choice of the embedding vector(s) VN (and VM ). The further embedding of
the six dimensional lattice as discrete Wilson lines Wα is a freedom one has to further break the
gauge group, or to reduce certain matter representations [42].

Let us now consider the actual conditions on the embedding. Specifically, we discuss these
conditions for ZN ×ZM orbifolds, but they carry straightforwardly over to those of the ZN -type.
First, since θN and ωM equal the identity element one has to guarantee that their action is trivial
on the gauge coordinates. Consistency of the embedding implies that NVN and MVM must be-
long to the E8 × E8 lattice. Similarly for each basis vector eα ∈ Γ one has to find the smallest
Nα which yields

Nα−1∑
k=1

θkeα = 0 , (2.49)

10 The rank reducing breakings can be achieved if one allows G to contain outer automorphisms of E8 × E8, for
orbifold models of this type see e.g. [41].
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2.3 Strings on orbifolds

for any ϑ ∈ P. The number Nα is known as the order of the Wilson line. In analogy with the
VM,N , NαWα must also be a vector of the gauge lattice. Furthermore, if ϑeα = mαβeβ , then Wα

and mαβWβ are equal up to an E8 × E8 lattice vector. This equivalence of the Wilson lines is
denoted as Wα ' mαβWβ .

In addition to the previous requirements, there are additional conditions coming from modular
invariance of the partition function [43]

N(V 2
N − v2

N) = 0 mod 2, (2.50)

M(V 2
M − v2

M) = 0 mod 2, (2.51)

gcd(N,M)(VN · VM − vN · vM) = 0 mod 2, (2.52)

Nα(Wα · Vi) = 0 mod 2, (2.53)

gcd(Nα, Nβ)(Wα ·Wα) = 0 mod 2. (2.54)

The simplest possible embedding one can imagine for the ZN orbifold is one in which the shift
VN takes the form

VN = (v1, v2, v3, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 0, 0, 0) , Wα = 0 . (2.55)

In this case the one of the E8 factors gets broken to E6, times additional U(1) factors. The
embedding (2.55) is the orbifold analogue of the standard embedding we discussed in the context
of smooth CYs.

2.3.2 Twisted vacua and space group invariant states

In analogy with the untwisted sector, we expect that the oscillators αi−wi , α
i∗
−w̄i (w̄i ≡ −wi mod 1,

0 < w̄i ≤ 1), play a crucial role in the construction of twisted states. In the conformal field
theory, these oscillators are analogous to the primaries ∂Zi and ∂Z̄i, respectively. For those, we
note that the twisted boundary condition (2.38) gets translated into

∂Zi(e2πiz, e−2πiz̄) = e2πivig∂Zi(z, z̄) ,

∂Z̄i(e2πiz, e−2πiz̄) = e−2πivig∂Z̄i(z, z̄) ,
(2.56)

implying that in the vicinity of z = 0, the fields ∂Zi and ∂Z̄i have a branch cut. The standard
way to deal with these branch singularities is to introduce twist fields σ(z, z̄) [44, 45] with the
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following operator product expansions (OPEs)

∂Zi(z, z̄)σ(w, w̄) = (z − w)−w
i

τ + . . . ,

∂Z̄i(z, z̄)σ(w, w̄) = (z − w)−w̄
i

τ̃ + . . . ,
(2.57)

with τ, τ̃ being excited twist fields, which are of no relevance for the massless spectrum. One
can think of the twist field σ as the field that creates a twisted vacuum |σ〉 = σ(0, 0) |0〉 from the
untwisted one. In a give twisted sector one has one (or more) twist field per conjugacy classes,
so that the twisted vacua are degenerate. The conformal weights of σ are given by

∆σ = ∆̄σ =
1

2

3∑
i=1

wi(1− wi) , (2.58)

corresponding to the vacuum energy of |σ〉.

Having introduced the twist fields we are to face another problem. Namely the OPEs (2.57)
evidence the fact that ∂Zi, ∂Z̄i and σ are not mutually local. Locality is restored by requiring
the spectrum to be invariant under the full space group S. This requirement is precisely what
leads to an N = 1 supersymmetric spectrum.

In order to describe the transformation of the states under S, we first consider the transform-
ation of the individual conformal blocks. For the untwisted sector one has the oscillators αµ−1

(µ = 2, 3) which generate the vector representation of the transverse Lorentz group in 4D. Sim-
ilarly, one has the Cartan generators αI−1. Both of these operators are invariant under the space
group. The transformation for the remaining oscillators under a generic element h ∈ S, is given
by

αi−wi
h−→ e+2πivih αi−wi ,

αi∗−w̄i
h−→ e−2πivihαi∗−w̄i .

(2.59)

From eq. (2.46) we obtain the transformation for the momentum modes in gauge space

eipIshXI
h−→ eipIsh(GhX)I = e2πipsh·VheipIshXI . (2.60)

The H-momenta exhibit a similar transformation behavior [46]:

eiqsh(a)·H h−→ e−2πiqsh(a)·vheiqsh(a)·H . (2.61)
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In order to see how h acts on the twist fields it is convenient to decompose them into a sum of
auxiliary twists σg, one for each element in the conjugacy class [g]

σ ∼
∑
g′∈[g]

e2πiγ̃(g′)σg′ , (2.62)

where the phases γ̃(g′) are yet to be determined. For the auxiliary twists one has the following
transformation behavior

σg
h−→ e2πiΦ(g,h)σhgh−1 , (2.63)

with the vacuum phase Φ(g, h) = −1
2

(Vg · Vh − vg · vh) [43]. Note that Φ(g′, h) is the same for
all g′ ∈ [g]. The resulting transformation for the twist field σ reads

σ
h−→ e2πi[γh+Φ(g,h)]σ , (2.64)

where we have defined

γh =
[
γ̃(g′)− γ̃(hg′h−1)

]
mod 1, for some g′ ∈ [g] , (2.65)

together with the condition

− γ̃(hg′h−1) + γ̃(g′) = −γ̃(hgh−1) + γ̃(g) mod 1 , (2.66)

for any pair of elements g′, g ∈ [g].

Having discussed the transformation of the operators, we can now consider a generic twisted
state

|ϕ〉 =

(
3∏
i=1

(αi−wi)
N iL(αi−w̄i)

N̄ iL

)
eiq

(a)
sh ·Heipsh·Xσ |0〉 , (2.67)

subject to the masslessness condition [39]

p2
sh

2
+NL − 1 + ∆σ =

(q
(a)
sh )2

2
− 1

2
+ ∆̄σ = 0 , (2.68)

where, for the specific case of |ϕ〉, the left moving oscillator number NL takes the form

NL = wiN i
L + w̄iN̄ i

L . (2.69)
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Combining equations (2.59), (2.60), (2.61) and (2.64), we can finally obtain the transformation
behavior of |ϕ〉 under S,

|ϕ〉 h−→ exp{2πi[psh · Vh − vih(q
(a) i
sh −N i

L + N̄ i
L) + γh + Φ(g, h)]} |ϕ〉 . (2.70)

In order for |ϕ〉 to be part of the physical spectrum the phase it picks when transformed by any h
in S must be trivial. We can distinguish two possibilities:

(i) If there exists an element g ∈ [g] which commutes with a certain h, from eq. (2.65) it
follows that γh = 0 mod 1. In this case eq. (2.70) becomes a projection condition

psh · Vh − vih(q
(a) i
sh −N i

L + N̄ i
L) + Φ(g, h) = 0 mod 1 , (2.71)

which are the so-called orbifold projection conditions and are responsible forN = 1 SUSY.

(ii) In all other cases, the transformation (2.70) is made trivial after fixing the gamma-phases,
i.e.

γh = −psh · Vh + vih(q
(a) i
sh −N i

L + N̄ i
L)− Φ(g, h) = γ̃(g)− γ̃(hgh−1) mod 1 . (2.72)

In this way, space group invariance fixes all γ̃(g′) in (2.62) except for one, which can be reab-
sorbed as an overall phase in σ. Since the phases in (2.72) are fixed differently for each physical
state |ϕ〉, there will be, in general, more than one twist field σ per conjugacy class.

2.3.3 Massless Spectrum

Given the many alternatives for compactification and choices for the gauge embedding, there is a
bestiary of orbifold spectra. In this section we do not aim at explicit constructions, but to sketch
how the spectra are computed, and to describe their general features. The gauge group, particles
and interactions in a given orbifold can be computed with the aid of the C++ orbifolder [47].

To see how N = 1 SUSY is achieved in orbifold models, let us consider the H-momenta q(a)

introduced in section 2. Being weights in the representations 8v and 8s of SO(8), under the
breaking (2.24), they decompose as

8v → 11 ⊕ 60 ⊗ 1−1,

8s → 41/2 ⊕ 4−1/2 .
(2.73)
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From the 4D perspective 11 and 41/2 are interpreted as a vector boson and four fermions with
positive helicity, respectively. The weights 1−1 and 4−1/2 correspond to the CPT conjugates
of the former ones. Similarly, out of 60 one gets three complex scalars plus conjugates. From
the weights of these representations we see that the only q(a) for which eiq(a)·H is space group
invariant are

q
(1)
± = (1, 0, 0, 0) and q

(1)
± = (1

2
, 1

2
, 1

2
, 1

2
) . (2.74)

We associate these weights to an N = 1 vector multiplet in 4D. Regarding the scalars in 60 and
the remaining fermions from 4−1/2, the projection (2.61) induces a natural pairing among them

q(1) = q(1/2) + (1
2
,−1

2
,−1

2
,−1

2
) , (2.75)

from which we identify the SUSY generator with the cospinor weight qSUSY = (1
2
,−1

2
,−1

2
,−1

2
).

As a consequence of the previous arguments it follows that any of the combinations

q
(1)
1 = (0, 1, 0, 0) , q

(1/2)
1 = (−1

2
,−1

2
, 1

2
, 1

2
) ,

q
(1)
2 = (0, 0, 1, 0) , q

(1/2)
2 = (−1

2
, 1

2
,−1

2
, 1

2
) ,

q
(1)
3 = (0, 0, 0, 1) , q

(1/2)
3 = (−1

2
, 1

2
, 1

2
,−1

2
) ,

(2.76)

can be used to form a left chiral superfield. For the case of ZN orbifolds, the shifted H-momenta
leading to massless states are summarized in table 2.2, there we only include the bosonic weights,
the fermionic counterparts can be computed with the aid of eq. (2.75). To conlude let us revisit the

T1 T2 T3 T4 T5 T6

Z3
1
3

(0, 1, 1, 1)

Z4
1
4

(0, 1, 1, 2) 1
2

(0, 1, 1, 0)

Z6−I
1
6

(0, 1, 1, 4) 1
3

(0, 1, 1, 1) 1
2

(0, 1, 1, 0)

Z6−II
1
6

(0, 1, 2, 3) 1
3

(0, 1, 2, 0) 1
2

(0, 1, 0, 1) 1
3

(0, 2, 1, 0)

Z7
1
7

(0, 1, 2, 4) 1
7

(0, 2, 4, 1) 1
7

(0, 4, 1, 2)

Z8−I
1
8

(0, 2, 1, 5) 1
4

(0, 2, 1, 1) 1
2

(0, 0, 1, 1) 1
8

(0, 2, 5, 1)

Z8−II
1
8

(0, 1, 3, 4) 1
4

(0, 1, 3, 0) 1
8

(0, 3, 1, 4) 1
2

(0, 1, 1, 0) 1
4

(0, 3, 1, 0)

Z12−I
1
12

(0, 4, 1, 7) 1
6

(0, 4, 1, 1) 1
4

(0, 0, 1, 3) 1
3

(0, 1, 1, 1) 1
2

(0, 0, 1, 1)

1
4

(0, 0, 3, 1)♣ 1
12

(0, 4, 7, 1)♣

Z12−II
1
12

(0, 1, 5, 6) 1
6

(0, 1, 5, 0) 1
4

(0, 1, 1, 2) 1
3

(0, 1, 2, 0) 1
12

(0, 5, 1, 6) 1
2

(0, 1, 1, 0)

1
6

(0, 5, 1, 0)♣ 1
3

(0, 2, 1, 0)♣

Table 2.2: Shifted H-momenta of negative helicity for ZN orbifold models [39]. The weights marked with
♣ belong to the inverse twisted sector of that where they are shown.

content of the untwisted sector. As we pointed out already, the untwisted spectrum is composed
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of the states from the ten dimensional theory which survive the orbifold projections.

(i) The states of the form eiq
(a)
+ ·Hαµ−1 |0〉, a = 1, 1/2, µ = 2, 3 together with their CPT conjug-

ates, give rise to the supergravity multiplet and a chiral multiplet in four dimensions. The
decomposition of the bosonic part leads to a real spin 2 particle which we identify as the
4D graviton and a complex scalar corresponding to the axion-dilaton field. Similarly, the
fermionic part decomposes into the gravitino and the dilatino.

(ii) We denote the internal components of the 10D SUGRA multiplet which are not projected
out by

Tij̄ = eiq
(a)
i ·Hαi−1 |0〉 Uij = eiq

(a)
i ·Hαi∗−1 |0〉 , (2.77)

with q(a)
i as given in eq. (2.76). These moduli fields are related to geometric variations of the

internal manifold. Uij̄ are the Kähler moduli, whereas Uij account for complex structure
deformations. Note that we always have three Kähler moduli Uīi in the spectrum. The
presence of further moduli depends on the explicit orbifold geometry [48].

(iii) The states eiq
(a)
+ ·HeipIX

I |0〉, satisfying p ∈ Γ16, p2 = 2 and

p · VN = 0 mod 1, p · VM = 0 mod 1, p ·Wα = 0 mod 1 ∀Wα, (2.78)

correspond to the non-Abelian gauge bosons of the four dimensional theory. As the embed-
ding is is rank preserving, the Cartan elements eiq

(a)
+ ·Hα̃I−1 |0〉 are all present in the spectrum.

(iv) One may also find some leftover fields eiq
(a)
i ·HeipIX

I |0〉, which satisfy

p · V1 − vi1 = 0 mod 1, p · V2 − vi2 = 0 mod 1, p ·Wα = 0 mod 1 ∀Wα. (2.79)

Such states are chiral superfields of the four dimensional theory. The gauge momentum
p specifies the charges of the field under the diverse gauge factors. A generic blueprint
of these models is the presence of an anomalous U(1) symmetry [46]. The anomalies
associated to this U(1) will be cancelled by shifts in the imaginary part of the axio-dilaton
field previously discussed, along the lines of the Green-Schwarz mechanism. However, the
large Fayet Iliopoulos term associated to this U(1) factor, will force some chiral fields in
the spectrum to acquire a vacuum expectation value (VEV). This allows for a geometrical
interpretation: the VEV fields can be related to additional Kähler moduli, in a geometry
where some of the fixed points are smoothened out [32].

In the twisted sectors we will only find chiral superfields. In order to construct the full twisted
spectrum, one first has to look at all inequivalent fixed points and their corresponding generators
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(i.e. constructing elements). Having the H-momenta as in table 2.2, one considers combinations
of oscillators αi−wi , α

i∗
−w̄i such that NL − 1 + ∆σ < 0. For each of those, and for each con-

structing element, one searches for shifted momenta psh which make the oscillator combination
to be in agreement with eq. (2.68). The combination of oscillators, and gauge momentum we
found corresponds to a massless state. Next one has to look for the projectors associated to the
constructing element, and if the state under consideration survives, then it is part of the twisted
spectrum.

For the twisted sectors one observes that for each of the orbifold fixed points (conjugacy classes)
there will be a given set of projection conditions. By setting these local projections to act on
the original E8 × E8 generators, we see that at the fixed points, the gauge group is generically
enhanced, with the matter living there forming complete representations of the enhanced gauge
group. Thus, over the orbifold, there is a non trivial topography of gauge groups. The four
dimensional gauge symmetry results from the intersection of all of these gauge factors [49].
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CHAPTER 3

Discrete symmetries in orbifold
models

Tout art, comme toute science, est un moyen de communication entre les hommes. Il est évident
que l’efficacité et l’intensité de la communication diminuent et tendent à s’annuler dès l’instant

qu’un doute s’installe sur la vérité de ce qui est dit, sur la sincérité de ce qui est exprimé
(imagine-t-on, par exemple, une science au second degré?).

Michel Houellebecq, Approches du désarroi.

In order to obtain an effective field theory for orbifold models, we have to construct the inter-
action terms. These can be accessed via the conformal field theory (CFT). Among the many
interaction terms, those belonging to the superpotential are of outmost relevance for particle phe-
nomenology. They are also easier to track in the CFT since they are purely holomorphic. In
this chapter we introduce the techniques required to deal with these operators. Nevertheless, we
will not aim to compute them exactly. Instead, we will discuss the conditions needed for some
couplings to vanish. In many cases, the vanishing of a certain class of operators can be related
to the presence of discrete symmetries in the effective field theory. As we will observe, many of
these symmetries have a clear interpretation as symmetries of the orbifold geometry. Among the
various symmetries considered, we devote special attention to R-symmetries, which are discrete
remnants of the Lorentz group in internal space that happen to survive the orbifolding process.
We provide a prescription to compute the R-charges of the fields, and show that these are anom-
aly universal. The results of this section are used to compute the discrete symmetries exhibited
by the Z2 × Z4 orbifold geometry (see section 4.2.2).
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3.1 Physical Vertices and Correlation Functions

For the purpose of computing amplitudes, it is more convenient to think of the physical state |ϕ〉
(see eq. (2.67)) in terms of the vertex operator which creates it, namely

V−a = e−aφ

(
3∏
i=1

(∂Zi)N
i
L(∂Z̄i)N̄

i
L

)
eiq

(a)
sh ·Heipsh·Xσ . (3.1)

We have already developed an intuition for the conformal fields appearing in the previous equa-
tion. The only new piece is the scalar field ϕ which is part of the superconformal ghost sys-
tem [45]. The subscript −a denotes the conformal ghost charge. Note that a also labels the
H-momentum, so that V−1 is associated with a boson, and V−1/2 with a fermion. Note that un-
twisted fermionic and bosonic vertex operators have the same form as (3.1) but with all momenta
unshifted and with the twist field replaced by the identity operator. Furthermore it is important
to recall that the vertices are expressed in the zero 4D momentum limit which is enough for the
matters we are interested in. Also the cocycle factors [50] arising from consistency with fer-
mionic anti-commutation properties as well as the correct normalization factors [51] have been
omitted for simplicity.

Since the prescription (2.75) helps us to pair up a bosonic weight with its SUSY companion,
we can also pair up vertex operators, which will be interpreted as components (φ, ψ) of a left
chiral superfield Φ. We are interested in a generic L-point coupling ΦL. The presence of this
coupling in the superpotential is related to a non-vanishing correlator of the form ψψφL−2. In
particular, we want to study this correlator at tree level [52]. There are off course loop contribu-
tions, but these will be exponentially suppressed by the dilaton field, and hence they are part of
the Kähler potential. Higher order contributions to the ΦL coupling will only be allowed in the
superpotential after moduli stabilization [53, 54]. The reason for which we ignore these contri-
butions is the following: We are not really interested in the value of the correlators but wether
or not they are zero. If the coupling vanishes, this hints at the possibility that the coupling is
forbidden by a given symmetry. Hence, if a forbidden coupling gets induced at loop level, this
implies that the symmetry of our interest gets broken in the moduli stabilization process.

An L-point correlator at tree level corresponds to the emission of L string states in the back-
ground of the sphere. In the correlator, the emission vertices have to be accommodated in the
correlator in such a way the background charge of two on the sphere is cancelled. This makes it
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necessary to write some bosonic operators in a different ghost picture

V0 = eφTFV−1 , (3.2)

where TF is the world sheet supersymmetry current introduced in section 2.1. In complexified
coordinates this current takes the form

TF = ∂̄Ziψ̄i + ∂̄Z̄iψi , (3.3)

with ψj = exp{−iqj ·H} and (qj)
i = δij . This picture changing operation allows some bosonic

vertices to have zero conformal charge at the price of introducing the right moving oscillators
∂̄Zj and ∂̄Z̄j . The tree level correlation function can then be expressed as

F =
〈
V−1/2(z1, z̄1)V−1/2(z2, z̄2)V−1(z3, z̄3)V0(z4, z̄4) . . . V0(zL, z̄L)

〉
, (3.4)

where each Vα = V (zα, z̄α) (independently of the conformal charge) represents a certain phys-
ical state from the massless spectrum. The correlator F is now the object of our interest. As
already mentioned, we will not compute it explicitly. Instead, we will study the properties of the
conformal blocks in F which make it vanish. In the following we will focus on ZN orbifolds for
concreteness, but the results can be straightforwardly extended to those of the ZN × ZM type.

3.1.1 Gauge invariance

In the correlator F we must integrate over the gauge coordinates. Since the orbifold CFT is non-
interacting, the fields eipsh·X are uncorrelated to any of the other pieces composing the vertex
(3.1). Thus we can factorize them and integrate out the gauge coordinates XI . After integration
one gets [51]

〈
L∏
α=1

eipIsh αXI(zα)〉 = δ16

(
L∑
α=1

psh α

)
L∏

α,β=1
α<β

(zα − zβ)
pα·pβ

2 , (3.5)

from which it follows that F is non-zero only if

L∑
α=1

pIsh α = 0 . (3.6)

Recall that psh gives the charges of the fields under gauge transformations. Hence eq. (3.6)
reproduces the requirement of invariance under gauge transformations for each of the couplings
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present in the superpotential.

3.1.2 Discrete symmetries from the space group

Among the pieces which appear in the correlation function (3.4), there is a product of twist fields.
The expectation value for this product of fields vanishes if it does not preserve the vacuum, i.e.

1 ∈
L∏
α=1

σα . (3.7)

This defines the space group selection rule. From the OPEs for the twists one can observe that the
above relation holds only if it is possible to find a combination g′1 ∈ [g1], g′2 ∈ [g2],...,g′L ∈ [gL]

such that
g′1 · g′2 · ..., ·g′L = (1, 0) . (3.8)

Given the structure of the space group, we are allowed to split the last condition into its twist and
lattice part. It implies that the product of twists must be equal to the identity, i.e.

L∑
α=1

kα = 0 mod N , (3.9)

where we have written gα = (θkα , λα). The previous relation is known as the point group
selection rule, and can be seen as a discrete ZN symmetry from the perspective of the effective
field theory. For ZN × ZM this selection rule provides two discrete symmetries, one per each
factor. Equation (3.7) also implies that there exists a set of lattice vectors τα ∈ Γ6 and some
numbers jα ∈ Z which fulfill

L∑
α=1

(
L∏

β=α+1

θkβ

)
[θjαλα + (1− θkα)τα] = 0 . (3.10)

This expression can be rewritten in terms of the fixed points Zα = (1− θkα)λα as

L∑
α=1

(
L∏

β=α+1

θkβ

)
(1− θkα)[θjαZα + τα] = 0 . (3.11)

This fixed point selectivity determines the configuration of fixed points in which fields can sit
in order to give a non vanishing coupling. In general, the previous relation also induces some
Abelian discrete symmetries. Their explicit form depends highly on the choice for the compac-
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tification lattice Γ.

3.1.3 Non-Abelian family symmetries

In the absence of Wilson lines we could have multiple fixed points nesting identical physical
states. In many cases, these fixed points happen to be indistinguishable in the orbifold geometry,
and thanks to this, the CFT becomes invariant under certain permutation symmetries. Similarly
as with the point group selectivity, permutation symmetries evade a generic description as they
are very dependent on the compactification lattice. In order to get an impression of them, here we
illustrate how they arise in very simple examples, which have been discussed in ref [24]. First,
consider the orbicircle S1/Z2. It contains two identical fixed points, so that the orbifold exhibits
an S2 permutation symmetry. Let us denote by Vα and Vα′ identical vertices creating states at
each of the fixed points. Thus, under the action of the permutation generator S, the vertices
transform according to (

Vα

Vα′

)
S−→

(
0 1

1 0

)(
Vα

Vα′

)
, (3.12)

Furthermore, if one applies the point group selectivity (3.11) in this case, one finds that it contrib-
utes a Z2 symmetry under which V has charge 0 and V ′ has charge 1 (the choice of the invariant
state has no relevance). If we denote by T the generator of this symmetry, we find(

Vα

Vα′

)
T−→

(
1 0

0 −1

)(
Vα

Vα′

)
. (3.13)

From the action of T and S we can readily infer that together they generate aD4 symmetry under
which Vα and Vα′ transform in the doublet representationD. This situation is common in orbifold
compactifications: In the absence of a mechanism which distinguishes among degenerate fixed
points, for example a Wilson line, the contribution of the fixed point selectivity rule will usually
enhance to a non-Abelian discrete symmetry. In particular, the physical states will merge into
irreducible representations of the non-Abelian group. For the case of D4 we have five irreducible
representations, the doublet D and four one dimensional representations A1, A2, A3 and A4. The
action of S and T on them is more or less intuitive: A1 is the invariant singlet, A2 picks a −1

under T , A3 picks a −1 under S and A4 transforms with −1 under both.

One step further one can consider the orbifold T2/Z2, which can be treated as a product of
orbicircles while keeping in mind that the Z2 identifications must act simultaneously on both of
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3 Discrete symmetries in orbifold models

them. This implies that the family symmetry in this orbifold isD4×D4/Z2. A similar procedure
can be used to infer the family symmetries in a given six dimensional orbifold. For a particu-
lar example, the reader is referred to section 4.2.2, where we discuss the non-Abelian discrete
symmetries in the Z2 × Z4 orbifold.

3.1.4 H-momentum conservation

Back to the correlator (3.4), one can further integrate out the bosonized fermions H i. In doing
so, we will find an expression analogous to (3.6). Recall that in the correlator, L − 3 vertices
have been set to the 0 picture (see eq. (3.2)) using the operator TF which, in turn, depends on
the fields H i. More precisely, TF is writen as a sum over the complex coordinates in compact
space. After expanding such terms in the correlation function (3.4) and integrating the H i, one
can observe that for the coupling not to vanish, at least one of the terms in the expansion has to
fulfill

q
(1/2) i
sh 1 + q

(1/2) i
sh 2 + q

(1) i
sh 3 +

L∑
α=4

q
(1) i
sh α + (N i

R − N̄ i
R) = 0, (3.14)

where N i
R and N̄ i

R count how many times the term -either ∂̄Zjψ̄j or its conjugate- is present in
the piece under consideration. As can be seen from the structure of TF , these numbers (N̄ i

R and
N i
R) coincide with the amount of right moving oscillators involved. In contrast to N i

L and N̄ i
L,

the right moving oscillator numbers do not have a counterpart as quantum numbers for the phys-
ical states. Because of that, bothN i

R and N̄ i
R have to be regarded as a property of the correlation

function itself.

In any orbifold, the three internal weights q(1/2) i
sh (i = 1, 2, 3) for a massless left chiral state

add up to 1/2. Summing over (3.14) one finds

− (L− 3) +
∑
i

(N i
R − N̄ i

R) = 0 . (3.15)

from which we infer that necessarily N̄ i
R = 0, so that the H-momentum conservation rule can be

written as
L∑
α=1

q
(1) i
sh α = −1−N i

R , (3.16)

One can use table 2.2 to see that all entries q(1) i
sh α are negative or zero. By virtue of the space

group selection rule, we also see that in any allowed coupling they add to an integer. From this
it follows that eq. (3.16) is generically satisfied, except for some seldom couplings where the
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3.2 DiscreteR-symmetries from orbifold isometries

q
(1) i
sh α add up to zero. This happens for example in the Z6−II orbifold: A tree point coupling

involving only states from the θ4 sector is allowed by the point group, but the H-momenta in the
third complex plane add up to zero1. Even though we have identified some couplings which are
zero, the condition which set them to vanish is not a property of the states but of the coupling
itself. In contrast to the previous cases, the zeroes of H-momentum are not protected by any
symmetry. Hence we expect them to be generated after moduli stabilization, or away from the
orbifold point. Despite of that, H-momentum conservation remains as a valuable condition since
it encodes, in a certain sense, the Lorentz invariance condition on internal space, or at least its
right moving part.

3.2 Discrete R-symmetries from orbifold isometries

At this point we have integrated out many of the conformal fields present in the correlation
function. Assuming that it is invariant under all selection rules we have discussed so far, F takes
the form

F ∼

〈
L∏
α=1

(
3∏
i=1

(∂Zi)N
i
L α(∂Z̄i)N̄

i
L α(∂̄Zi)N

i
R

)
σα

〉
. (3.17)

Note that we have not integrated out the twisted fields due to the OPEs (2.57). For a thorough
discussion of how to deal with this object see e.g. [45, 51]. For our purposes it suffices the ob-
servation that the oscillators present in eq. as well as the twist fields encode valuable geometrical
information. On the one hand, the fields ∂Zi, ∂̄Zi and, ∂Z̄i must exhibit the symmetries of the
internal space. On the other hand, the twists σα are related to the fixed points in the orbifold.
Thus, we expect the correlator F to be invariant under isometries of the orbifold space2.

We focus on orbifold isometries which are also be isometries of the lattice Γ. Thus, we pro-
ceed to dissect the automorphism group of Γ (Aut(Γ)) into smaller subgroups, depending on
what are their effects on the point and space groups. Any symmetry which could be of relevance
for the orbifold must have a closed action on P. The set of symmetries fulfilling this property
form the following group

A =
{
% ∈ Aut(Γ) | %ϑ%−1 ∈ P, ∀ϑ ∈ P

}
. (3.18)

1 A similar situation occurs in Z8−II. A coupling of the form θ6θ6θ4 is also forbidden by H-momentum.
2 This can be explicitly seen when computing the correlator. There one observes that the orbifold isometries are

symmetries of the instanton solutions for ∂Zi and ∂̄Zi.
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3 Discrete symmetries in orbifold models

Clearly any vector in the compact dimensions will transform under the elements of Aut(Γ6).
Consequently the action of any % ∈ A on a space group element h = (θk, λ) ∈ S is given by

%(h) = (%θk%−1, %λ) . (3.19)

Note that any transformation % ∈ A will preserve the network of identifications, i.e. given two
elements g1, g2 ∈ S which belong to the same conjugacy class, then %(g1) ∼ %(g2). Since the
twists σα span over complete conjugacy classes, we see that the action of % ∈ A can be set to
map among twist fields. We further define the subgroups

B = {% ∈ A | [%, θ] = 0} ,
C = {% ∈ B | %(h) ∈ [h] , ∀h ∈ S} ,
D = {% ∈ C | det(%) = 1} .

(3.20)

In other words B is the subgroup of symmetries which map between conjugacy classes of the
same twisted sector. C is defined as the subgroup of automorphisms which preserve all the
conjugacy classes of the space group and D contains all elements in C which belong to SO(6).
It is easy to show that these subgroups fulfill the following normalcy chain

D � C �B � A , (3.21)

and hence it makes sense to define the corresponding quotient groups E = C/D, F = B/C

and G = A/B. Therefore, the elements in E will be reflections leaving the conjugacy classes
invariant. The elements in F will exchange between conjugacy classes, and the elements in G
trade different twisted sectors.

From the previous discussion we see that in the conformal field theory, the groups F and G
exchange between correlators, whereas elements inDmust leave them invariant. The symmetries
in E are outside of the internal Lorentz group SU(4), these interchange the oscillators ∂Zi and
∂Z̄i, and thus they do not leave the vertices invariant. From now on we will focus on elements in
D as they allow for the simplest interpretation. Consider an element % ∈ D. Since it commutes
with the point group, it can be generally written in a block diagonal form

% = diag(e2πiξ1

, e2πiξ2

, e2πiξ3

) . (3.22)

By definition, given a g ∈ S, %(g) is conjugate to g, and hence there exists a space group element
hg such that

%(g) = hggh
−1
g . (3.23)
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3.2 DiscreteR-symmetries from orbifold isometries

Aut(Γ)

A =
{
% ∈ Aut(Γ) | %ϑ%−1 ∈ P, ∀ϑ ∈ P

}
G = A/B

B = {% ∈ A | [%, θ] = 0}

F = B/C

C = {% ∈ B | %(h) ∈ [h] , ∀h ∈ S}

D = {% ∈ C | det(%) = 1}E = C/D

Figure 3.1: The automorphism group for the six dimensional lattice allows for a decomposition into the
subgroupsA,B, C andD. Provided the normalcy relations between them, one can construct the quotients
E, F and G which allow for a simpler interpretation.

Writing g = (θk, λ) and %(g) = (θk, %λ), hg = (θl, µ) can be determined by finding a solution to
the equation

µ = (1− θk)−1(%− θl)λ . (3.24)

In analogy to (2.63), the most general transformation behavior for the auxiliary twist fields under
% is given by

σg
%−→ e2πiΦ%(g)σ%(g) , (3.25)

which, for the twist fields as written in eq. (2.62), implies

σ
%−→
∑
g′∈[g]

e2πi[−γ̃(%(g′))+γ̃(g′)+Φ%(g′)]e2πiγ̃(%(g′))σ%(g′) . (3.26)
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3 Discrete symmetries in orbifold models

Since % preserves conjugacy classes, the vertex operators have to be invariant up to phases. This
means that we have to require the structure of σ to be preserved, i.e.

γ̃(g)− γ̃(%(g)) + Φ%(g) = γ̃(hgh−1)− γ̃(%(hgh−1)) + Φ%(hgh
−1) mod 1 . (3.27)

Using %(hgh−1) = %(h)%(g)%(h)−1 together with the definition of the gamma phases (see eq.
(2.65)), we obtain

Φ%(hgh
−1) = Φ%(g) + γh − γ%(h) mod 1. (3.28)

Note that this equation implies that once we know the phase Φ%(g) for a given representative
g ∈ [g], the phases for all other elements of the conjugacy class are automatically fixed. Note
also that the phase Φ%(g) is an intrinsic property of the twist σg, whereas the gamma phases
depend, via (2.72), on the quantum numbers of the corresponding state. Therefore, if (3.28) is
to be fulfilled for all physical states, the vacuum-phases and gamma-phases must independently
fulfill

Φ%(hgh
−1)− Φ%(g) = 0 mod 1 ,

γh − γ%(h) = 0 mod 1 ,
(3.29)

for all space group elements g, h ∈ S. Now, plugging (3.23) into (3.27) and using (3.29) we find

γhg = γhg′ mod 1 , (3.30)

for all g′ ∈ [g]. This permits the transformation of the σ twist to be recast to the desired form

σ
%−→ e2πi[γhg+Φ%(g)]σ . (3.31)

Note that we have left the phases Φ%(g) undetermined. In fact, one can show that the space group
selection rule together with the OPEs for the twist fields imply 3

L∑
α=1

Φ%(gα) = 0 mod 1 , (3.32)

so that, the transformation of the twist field σ is fixed by the gamma phase γhg . Having fixed this
transformation we consider now the oscillators. In analogy with eq. (2.59) we write

∂Zi %−→ e2πiξi∂Zi , ∂Z̄i %−→ e2πiξi∂Z̄i , ∂̄Zi %−→ e2πiξi ∂̄Zi . (3.33)

3 Using the space group selection rule, the leading term in the OPE of all auxiliary twist fields involved in the
coupling is proportional to the identity, which transforms trivially under %.
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3.2 DiscreteR-symmetries from orbifold isometries

Finally, the transformation behavior of the correlator (3.2) under % can be obtained. It follows
that F is only invariant in the case

∑
i

ξi

(
L∑
α=1

(
N i
L α − N̄ i

L α

)
+N i

R

)
+

L∑
α=1

γhgα = 0 mod 1 . (3.34)

Note again that the non-physical quantity N i
R appears. We can get rid of this term thanks to the

H-momentum conservation condition (3.16). The final result reads4

L∑
α=1

(
3∑
i=1

ξi
[
q

(1) i
sh α −N

i
L α + N̄ i

L α

]
− γhgα

)
= −

3∑
i=1

ξi mod 1 . (3.35)

In the case
∑

i ξ
i 6= 0 mod 1, this condition looks precisely like the requirement of invariance

under an R-symmetry. In that case, take M to be the smallest integer such that

R ≡ −M
∑
i

ξi (3.36)

is an integer too. Then eq. (3.35) takes the more familiar form

L∑
α=1

rα = R mod M , with rα =
3∑
i=1

Mξi
[
q

(1) i
sh α −N

i
L α + N̄ i

L α

]
−Mγhgα . (3.37)

Thus, from the invariance of the correlator F under the action of any % ∈ D, we have derived
a quantity that can be readily interpreted as a ZRM discrete symmetry. The quantity R in our
notation, denotes the charge of the superpotential5, and rα correspond to the charges of the chiral
superfields. In table 3.1 we provide an account of theR-symmetry generators expected for differ-
ent types of ZN orbifolds. Note that the R-symmetries are very sensitive to the compactification
lattice. Thus, our results only apply for the orbifold models with the specific compactification
lattice given in table 3.1. As a final remark, notice that the R-charges for the axio-dilaton, as
well as the U and T moduli are zero. This implies that the R-symmetries could survive after
moduli stabilization. However, we also discussed in section 2.3.3, that generically some twisted
fields acquire VEVs as needed to cancel the FI term. Since these twisted fields carry non trivial
charges, the R-symmetries are broken by the VEV configurations. However, for phenomeno-
logical reasons R-symmetries are desired in the low energy. Hence, one has to consider very
special vacua where at least one R-symmetry survives. We will elaborate more on these matters

4 This result was derived also in ref. [55] for the specific case of the Z6−II
5 For a comprehensive summary of R-charge conventions we refer to [56].
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orbifold lattice twist % R M

ξ1 ξ2 ξ3

Z4 SO(4)2 × SU(2)2 (0, 1
4
, 1

4
,−2

4
) 1/4 1/4 0 −1 2

1/2 0 0 −1 2

0 0 −1/2 +1 2

Z4 SU(4)2 (0, 1
4
, 1

4
,−2

4
) 1/2 0 0 −1 2

0 1/2 0 −1 2

Z6−I G2 ×G2 × SU(3) (0, 1
6
, 1

6
,−2

6
) 1/6 1/6 0 −1 3

0 0 −1/3 +1 3

Z6−II G2 × SU(3)× SU(2)2 (0, 1
6
, 2

6
,−3

6
) 1/6 0 0 −1 6

0 1/3 0 −1 3

0 0 −1/2 +1 2

Z8−I SO(9)× SO(5) (0, 1
8
,−3

8
, 2

8
) 1/4 −3/4 0 +1 2

0 0 1/2 −1 2

Z8−II SO(8)× SO(4) (0, 1
8
, 3

8
,−4

8
) 1/8 3/8 0 −1 2

0 0 −1/2 +1 2

Z12−I SU(3)× F4 (0, 4
12
, 1

12
,− 5

12
) 1/3 0 0 −1 3

0 1/12 −5/12 +1 3

Z12−II F4 × SO(4) (0, 1
12
, 5

12
,− 6

12
) 1/12 5/12 0 −1 2

0 0 −1/2 +1 2

Table 3.1: Summary of point groups studied with their corresponding lattices and orbifold isometries. The
charge of the superpotential R and the order of the symmetry M are also given.

when discussing the Z2 × Z4 orbifold (see sect. 4.4.1).

3.2.1 Further R-symmetry candidates

The symmetries from the group F andG are more difficult to track in the CFT. While the groupG
is usually trivial, there are some simple examples of F which allow for a simpler interpretation.
An element ζ ∈ F has a well defined action on the CFT, only if the fixed points which get

42



3.2 DiscreteR-symmetries from orbifold isometries

mapped to each other under ζ allocate identical representations. The first observation about the
any ζ ∈ F is that for all cases considered, the elements in F can be written in a block diagonal
form as

ζ = diag(e2πiη1

, e2πiη2

, e2πiη3

). (3.38)

In some sense, the symmetries from F remind us of the permutation symmetries discussed in
section 3.1.3. However, for the cases we are considering, due to eq. (3.38), the group F is always
Abelian. For those vertex operators which are eigenstates of ζ , the charges are identical to those
in (3.37):

rα =
3∑
i=1

Mηi
[
q

(a) i
sh α −N

i
L α + N̄ i

L α

]
−Mγhgα . (3.39)

Now let us contemplate vertices from non-invariant fixed points. For simplicity, let us assume
that the role of ζ is simply to exchange among some conjugacy classes, i.e.

[g]
ζ←→ [g′] , g � g′ . (3.40)

This implies that a vertex V from [g] gets mapped to its counterpart V ′, where V and V ′ share
the same quantum numbers6. Writing the twist fields involved in constructing V and V ′ as

σ ∼
∑
g∈[g]

e2πiγ̃(g)σg ,

σ′ ∼
∑
g′∈[g′]

e2πiγ̃′(g′)σg′ ,

their transformation under ζ is given by7

σ
ζ−→ exp{2πi[γ̃(g)− γ̃′(ζ(g)) + Φζ(g)]}σ′ ,

σ′
ζ−→ exp{2πi[γ̃′(g′)− γ̃(ζ(g′)) + Φζ(g

′)]}σ ,
(3.41)

and and hence, the transformation of V and V ′ reads

V
ζ−→ exp{2πi[−ηi(q(a) i

sh −N i
L + N̄ i

L) + γ̃(g)− γ̃′(ζ(g)) + Φζ(g)]}V ′ ,

V ′
ζ−→ exp{2πi[−ηi(q(a) i

sh −N i
L + N̄ i

L) + γ̃′(g′)− γ̃(ζ(g′)) + Φζ(g
′)]}V ,

(3.42)

6 Note that although V and V ′ are associated with different conjugacy classes, one can show that if a coupling
〈V1 . . . VL−1V 〉 is allowed by all selection rules, then so is 〈V1 . . . VL−1V ′〉.

7 In general one can allow for vacuum phases for the twist fields under this transformation. However they turn out
to be irrelevant for our discussion in the same way as we observed for the group D.
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respectively. Recall that q(a) i
sh ,N i

L and N̄ i
L are the same for both V and V ′. Note that, a priori, the

transformation phases in (3.41), (3.42) cannot be related to physical gamma-phases since g and
ζ(g) belong to different conjugacy classes. Since V and V ′ differ only in their conjugacy classes
and carry identical quantum numbers, one can write them consistently in a basis of eigenstates
of ζ

V (s) = V + e2πi(δ+s)V ′ , s = 0 , 1
2
, (3.43)

in which δ is a phase fixed so that the operators V (s) are invariant under ζ up to a phase. Using
equations (3.42) and (3.43), we can fix δ and write the transformation behavior of V (s) under ζ
as

V (s) ζ−→ exp
{

2πi
[
−ηi(q(a) i

sh −N i
L + N̄ i

L) + 1
2

(
γhg + γ′hg′

)
+ s
]}

V (s) . (3.44)

The space group elements hg and hg′ satisfy

ζ(g′) = hggh
−1
g , ζ(g) = hg′g

′h−1
g′ , (3.45)

for any combination of representatives g and g′. Their corresponding gamma phases are given
by

γhg = γ̃(g)− γ̃(hggh
−1
g ) , γ′hg′ = γ̃′(g′)− γ̃′(hg′g′h−1

g′ ) . (3.46)

From the transformation property of the V (s) we can now read off their corresponding R-charges

r(s) = M
3∑
i=1

ηi(q
(a) i
sh −N i

L + N̄ i
L)− 1

2
M
(
γhg + γ′hg′

)
−Ms , (3.47)

where M is the smallest integer such that

R ≡ −M
3∑
i=1

ηi ∈ Z . (3.48)

From the previous results we see that the low energy effective field theory is more conveniently
described in terms of ζ eigenstates. In this basis the corresponding R-symmetry for the correlat-
ors among those fields is given by

L∑
α=1

rα = R mod M . (3.49)
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The very simple result we just obtained for the elements in F has remarkable implications. It tells
us that not only elements from D are responsible for the R-symmetries in the effective theory.
In contrast to those emerging from D, these novel R-symmetries can be broken by Wilson line
configurations that destroy the state degeneracy at the non-invariant fixed points. Note that in our
derivation we assumed that ζ at most interchanges pairs of conjugacy classes, but in principle
more intricate transformation patterns can emerge, particularly in the case of non-factorizable
orbifolds. We expect that in those cases, the charges can be computed in a similar fashion.

3.3 Universal discrete anomalies

The ten dimensional heterotic theory contains the ingredients necessary for the Green-Schwarz
mechanism to cancel all of its anomalies [30]. We expect the same to hold after compactification.
With regards to the continuous symmetries, it was already pointed out that orbifold models ex-
hibit at most one anomalous U(1) symmetry. This anomaly is cancelled by a shift in the universal
axion we found when considering the massless spectrum of the orbifold.

From the field theory perspective one can see that there are also anomalies related to the dis-
crete symmetries [57, 58]. Those discrete symmetries we have considered along this chapter are
well motivated from the CFT point of view, and hence we expect that if they are anomalous, there
is a shift of the universal axion which fixes the problem. In particular, since we have a single
axion, its shift must be able to cancel all anomalies of a given discrete symmetry. This condition
is known as anomaly universality [23].

Consider the simplest case of a ZM symmetry (like those one gets from the space group se-
lection rule). In the field theory, the fermionic measure in the path integral transforms under the
ZM symmetry according to

DψDψ → DψDψ exp

[
−2πi

1

M

(∑
a

AG2
a−ZM ·

1

16π2

∫
tr{Fa ∧ Fa}

+Agrav.2−ZM ·
1

284π2

∫
tr{R ∧R}

)]
, (3.50)

as can be seen from applying Fujikawa’s method [59], where a runs over all gauge factors. The
Pontryagin indices

`(Na)

16π2

∫
tr{Fa ∧ Fa} and

1

2

1

284π2

∫
tr{R ∧R} (3.51)
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are integer valued [60, 61], with `(Na) being the Dynkin index of the fundamental represent-
ation. In general anomalies will be universal up to Kǎc-moody labels, which for non-Abelian
gauge bosons and gravitons are equal to 1. Since we are interested in the universality of the dis-
crete anomalies, we do not consider those involving U(1) gauge symmetries in the sequel. The
anomaly coefficients of our interest are

AG2
a−ZM =

∑
α

qα`(R
α
a ) , Agrav.2−ZM =

∑
α

qαdim{Rα} , (3.52)

in which we sum over all chiral representations Rα, with qα being their corresponding ZM
charges. It can be shown that the path integral obeys a similar transformation for the case of
R- and non-Abelian discrete symmetries, with certain redefinitions in the anomaly coefficients.
Let us consider non-Abelian symmetries at first. Given a non-Abelian discrete group G, and an
element ρ ∈ G, after transforming the path integral with ρ one gets the following coefficients

AG2
a−ρ =

∑
α

δρ(Dα)`(Rα
a ) , (3.53)

Agrav.2−ρ =
∑
α

δρ(Dα)dim{Rα} , (3.54)

in which Dα is the representation of G under which Rα transforms. In this case the coefficient
M appearing in (3.50) is the smallest integer such that ρM = 1. The “charges” δρ(Dα) are
computed as [62]

δρ(Dα) =
M

2πi
ln det(ρ(Dα)) . (3.55)

Similarly, in the case of a ZRM symmetry, the anomaly coefficients read8 [23, 57, 58]

AG2
a−ZRM

= C2(Ga)
R

2
+
∑
α

(
rα −

R

2

)
`(Rα

a ) , (3.56)

Agrav.2−ZRM
=

(
−21− 1−NT −NU +

∑
a

dim{adj(Ga)}

)
R

2

+
∑
α

(
rα −

R

2

)
· dim{Rα} , (3.57)

8 Recall that gauginos and matter fermions both contribute to the anomaly. The charge of the fermions can be
inferred from the piece θψ ⊂ Φ: if the charge of the multiplet Φ is denoted by r, then the charge of the fermion is
r −R/2. Analogously, the gauginos appear in the vector multiplet in the form θθθλ, so that their charge is R/2.
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3.3 Universal discrete anomalies

with C2(Ga) being the quadratic Casimir of Ga, i.e. the Dynkin index of the adjoint represent-
ation. In eq. (3.57), the contributions of −21 and −1 correspond to the gravitino and dilatino
respectively, NT and NU are the number of T - and U -modulini and a runs over all gauge factors
(including U(1) symmetries).

The discrete non-R symmetries have been previously considered in ref. [23]. There it has been
shown that all of them satisfy universality relations. For theR-symmetries, the story is a bit more
subtle because the gamma phase contribution (3.35) was found only recently. If our definition of
the R-charges is to lead universal anomalies, the following conditions must hold

AG2
a−ZRM

mod M`(Na) = AG2
b−Z

R
M

modM`(Nb) , (3.58)

AG2
a−ZRM

mod M`(Na) =
1

24

(
Agrav.2−ZRM

mod
M

2

)
, (3.59)

for any two gauge factors Ga,b.

To check the universality of the anomalies we focus on the orbifolds presented in table 3.1 with
their corresponding isometries. We used the C++ orbifolder [47] to compute the spectrum and the
corresponding anomalies for all of the embeddings classified in [63, 64] in the absence of Wilson
lines, employing the R-charge assignment given in eq. (3.37). In all models the R-anomalies
satisfy universality conditions. Furthermore we considered models with Wilson lines. For each
of the allowed shift embeddings we randomly generated 10 000 Wilson line configurations and
found that in these cases the R-charges computed from eq. (3.37) show universality relations for
all orbifolds studied. This is an overwhelming result and a strong hint that the R-charges derived
here are correct.

3.3.1 An explicit example

To illustrate our results, we consider an example based on the Z4 orbifold on the lattice of
SO(4)2 × SU(2)2, with the twist as given in table 3.1. One easily sees that a basis of gener-
ators for the group D is given by

%1 = diag(e2πi 1
4 , e2πi 1

4 , 1) , %2 = (θ1)2 = diag(e2πi 1
2 , 1, 1) ,

%3 = diag(1, 1, e−2πi 1
4 ) . (3.60)

In order to compute the charges we need to compute the space group elements hg for all the
conjugacy classes. The computation of these is discussed in appendix A. For the Z4 orbifold
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example, we take the following shift embedding, which is in agreement with eqs. (2.50)-(2.54)

V =
(
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(
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W6 = 0 .

(3.61)

Recall the identifications for the Wilson lines: W1 ∼ W2, W3 ∼ W4 (see fig. 3.2). This
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Figure 3.2: Wilson line configuration for the Z4 orbifold studied in the text.

embedding leaves the following gauge symmetry unbroken

SU(4)1 × SU(2)1 × SU(2)2 × SU(4)2 × SU(2)3 × U(1)7 ⊂ E8 × E8 , (3.62)

where the subindices have been introduced to distinguish between identical gauge factors. The
anomaly coefficients obtained for this specific orbifold model are

Agrav.2−%1
= −76 , Agrav.2−%2

= 94 , Agrav.2−%3
= 84 ,

ASU(4)2
1−%1

= −3 , ASU(4)2
1−%2

= 3 , ASU(4)2
1−%3

= −1 ,

ASU(2)2
1−%1

= −5 , ASU(2)2
1−%2

= 1 , ASU(2)2
1−%3

= 5 ,

ASU(2)2
2−%1

= −11 , ASU(2)2
2−%2

= 6 , ASU(2)2
2−%3

= 5 ,

ASU(4)2
2−%1

= −3 , ASU(4)2
2−%2

= −1 , ASU(4)2
2−%3

= −1 ,

ASU(2)2
3−%1

= −11 , ASU(2)2
3−%2

= 3 , ASU(2)2
3−%3

= 5 .

(3.63)

One can straightforwardly check that all of these values satisfy the universality conditions (3.58)
and (3.59). This model also serves to discuss the effects of the newR-symmetries emerging from
F . Note that

ζ = diag(e2πi 1
4 , 1, 1) ∈ F , (3.64)
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interchanges the fixed points

Zg =
e2 + e3

2

ζ←→ Zg′ =
e2 + e4

2
, (3.65)

which are generated by space group elements g = (θ2, e2 + e3) and g′ = (θ2, e2 + e4) belonging
to different conjugacy classes. This is illustrated in figure 3.3. Note that in our example we have

Figure 3.3: Representation of the θ1 action on the T2 sector fixed points of the Z4 orbifold studied.

chosen W1 = W2, W3 = W4, so that the transformation ζ respects the Wilson line structure. As
an example consider the states specified by the following quantum numbers

psh =
(
−3

4
, 1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
, 0, 0,−1

2
, 1

2
, 0, 0, 0, 0

)
, (3.66)

qsh =
(
0,−1

2
,−1

2
, 0
)
, (3.67)

with no left-moving oscillators. The psh presented is the highest weight of the representation
(1,2,2,1,2) with all U(1) charges equal to zero. Two identical copies of this state live at the
fixed points under consideration. The elements hg and hg′ needed to compute the R-charges are
given by

hg = (θ, e3) and hg′ = (θ, 0) , (3.68)

and the corresponding gamma-phases are γ(g) = γ(g′) = 3/4. With this information we can
compute the R-charges for the eigenstates of ζ to be

r(s) = −7/2− 4s . (3.69)

We also computed the anomaly coefficients for the R-symmetry ζ , with a scan of over 100.000
randomly generated models. In all cases the anomalies turned out to be universal. Note that, in
our example, ζ2 = %2 ∈ D. This implies that the R-charges under %2 are twice those under ζ up
to multiples of 2. This implies that one can safely take ζ and %1 as a basis for all R-symmetries
in the Z4 orbifold.
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CHAPTER 4

An extension of the heterotic
mini-landscape

The cradle rocks above an abyss, and common sense tells us that our existence is but a brief
crack of light between two eternities of darkness.

Vladimir Nabokov, Speak, Memory: A Memoir.

Having discussed some of the formal tools, we are now in shape to discuss the phenomenology
of orbifold models. We are interested in orbifold compactifications which could help us make
contact with particle physics, i.e. we aim to achieve the gauge group of the standard model
GSM (times additional factors), three families of quarks and leptons, a Higgs sector, etc. We
also expect the interactions among these fields to be in a good shape. Here we present the
heterotic mini-landscape: A class of models based on the Z6−II obifold. The low energy version
of these models resemble the properties of the MSSM to a surprising degree. Motivated by these
observations, we construct a new class of orbifold models based on the Z2 × Z4 geometry. We
construct the allowed gauge embeddings and discuss the discrete symmetries in this specific case.
We also take first steps towards model building based on SO(10) (or E6) local grand unification.
There we show that the features of our models are very similar to those from the mini-landscape.

4.1 The particle Zip-code in mini-landscape models

TheZ6−II orbifold of our interest is based on the latticeG2×SU(3)×SU(2)2. This lattice exhibits
the point group group symmetry associated to the following twist vector

v =
1

6
(0, 1, 2,−3) . (4.1)
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4 An extension of the heterotic mini-landscape

In the four dimensional theory we are aiming to achieve the gauge group of the SM (times some
extra factors). From the orbifold point of view, such a gauge group originates as the intersection
of all gauge factors which are characteristic to the various orbifold locations, in particular, there
are some fixed points/tori where the gauge symmetry is enhanced to e.g. SO(10) or even E6.
Since localized fields transform as complete representations of the local gauge group, it then
follows that orbifold compactifications allow for the coexistence of complete and split multiplets
of an underlying GUT.

From the previous arguments it follows that in a local SO(10) (E6) GUT it is possible to have the
three generations of the standard model arising from complete 16-plets (or 27-plets) at points
where the gauge symmetry enhances to SO(10) (or E6). This observation motivates the following
search strategy: One can start with a shift embedding which leaves and SO(10) or an E6 factor
unbroken in the bulk. Then one considers Wilson line configurations which break the GUT factor
down to GSM. One will generically find points on the orbifold where the original SO(10) (E6)
remains unbroken. If these points contain a 16-plet, the complete multiplet will survive. Then
some matter generations in the standard model might very well be complete multiplets of SO(10)
while others might arise as a patchwork of split multiples emerging from different orbifold loca-
tions.

The starting point of the mini-landscape were the following SO(10) shifts [65]

V SO(10)
1 =

(
1

3
,
1

2
,
1

2
, 0, 0, 0, 0, 0

)(
1

3
, 0, 0, 0, 0, 0, 0, 0

)
, (4.2)

V SO(10)
2 =

(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0, 0

)(
1

6
,
1

6
, 0, 0, 0, 0, 0, 0

)
, (4.3)

together with the following

V E6
1 =

(
1

2
,
1

3
,
1

6
, 0, 0, 0, 0, 0

)
(0, 0, 0, 0, 0, 0, 0, 0) , (4.4)

V E6
2 =

(
2

3
,
1

3
,
1

3
, 0, 0, 0, 0, 0

)(
1

6
,
1

6
, , 0, 0, 0, 0, 0, 0

)
, (4.5)

leading to an E6 factor. Now we can consider the Wilson lines. The orbifold under consider-
ation allows for three Wilson lines: One of order three which we denote as W3, related to the
vectors in the second complex plane, and two of order two W4 and W5 in the third. It is ob-
served that if only W4 and W5 are on, there will be three fixed points in the T1 (T5) sector, where
the GUT factor remains unbroken. If these fixed points nest 16-plets, then we have a complete
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4.1 The particle Zip-code in mini-landscape models

family structure. Moreover, this approach turns to be unsuccessful because two Wilson lines of
order two do not suffice to break the SO(10) factor down to the standard model gauge group [20].

Another alternative is to take one Wilson line of order three and one of order two, so that in-
stead of three, one has two fixed points in the first (fifth) twisted sector where the states furnish
complete representations of the unified group. The third family gets completed by pieces coming
from the untwisted and twisted sectors. This strategy was more successful and out of all possible
models about one percent of them were found to have the SM spectrum plus vector like exotics,
in addition to a non-anomalous U(1)Y with the standard SU(5) normalization.

Among the plausible states which will serve to complete the third family, we can distinguish
between three cases

• fields which are free to propagate in the 10-dimensional bulk

• fields sitting at fixed points in the extra dimensions (representing “3-branes”)

• fields which can only propagate along fixed tori in compact space (representing “5-branes”)

This distinction is relevant for our discussion due to the observation that the geography of the
fields in the extra dimensions plays a crucial role in the low energy effective field theory. This
is not entirely surprising as we have seen already that the charges of the fields under the discrete
symmetries are related to their location in internal space. A similar situation occurs with the
supersymmetries: fields in the bulk feel remnants of N = 4 SUSY, in contrast to those sitting
at fixed tori and fixed points which experience remnants of N = 2 and N = 1, respectively.
Arguments of this type motivate the idea that from imposing phenomenological constraints, a
particular distribution of the SM fields in the extra dimensions might emerge, this is what we
call the Zip-code of the mini-landscape. Bearing this in mind, we dedicate the remainder of this
section to analyze the preferred locations for the SM fields observed in the mini-landscape as
well as the physical implications of this peculiar distribution.

4.1.1 The Higgs system

The minimal supersymmetric version of the SM contains one pair of Higgs superfields Hu and
Hd. With regards to this vector-like pair, two important questions which raise from the phe-
nomenological side need to be addressed: The first one is the doublet triplet splitting problem.
As stressed before, local GUTs allow for certain fields to come in incomplete representations
of the gauge symmetry, provided these fields originate from a certain region which does not
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4 An extension of the heterotic mini-landscape

experience the gauge enhancement. We expect the Higgses to live in those regions, so that the
dangerous triplets which could accompany them, are definitely projected out of the spectrum.

The second situation which needs to be addressed here is the so called µ-problem. Generally
in string constructions one gets more than one pair of Higgses, so that one has to face the ques-
tion of why all except one of them become heavy. For a large class of mini–landscape models we
find that this problem is solved in a miraculous way [65, 66]: In these models one pair of Higgs
doublets lives at the untwisted sector. Such Higgses happen to be vector-like under all possible
symmetries, and this is of great interest since any R-symmetry in the model will thus forbid a
coupling of the form µHuHd to be present in the superpotential (W) [65–67]. The µ term can be
generated after SUSY breakdown. In particular, gravity mediation mechanisms relate the µ term
directly to the gravitino mass m3/2, as observed earlier in the context of field theoretic models
[68]. R-symmetries are crucial for this mechanism to work, and as observed in section 3.2, they
arise naturally in orbifold models.

The first lesson from the mini–landscape is then that the Higgs pair Hu and Hd should live
in the bulk (untwisted sector). They correspond to gauge fields in extra dimensions, compatible
with the picture of gauge-Higgs unification and represent continuous Wilson lines as discussed
in ref. [69–71].

4.1.2 The top-quark

The mass of the top quark is of the order of the electroweak scale, one thus expects the gauge and
the top-Yukawa couplings to be of the same order, exhibiting gauge-top unification [72]. From
the stringy point of view, these couplings are given directly by the string coupling and we expect
the top-quark Yukawa coupling at the trilinear level in the superpotential. Given the fact that Hu

is a field in the untwisted sector there remain only few allowed alternatives for the location of the
top quark.

In the mini–landscape we find that, in most of the models, the left- and right-handed top-
multiplets belong to the untwisted sector (bulk) and this is a guarantee for a sufficiently large
Yukawa coupling. The location of the other members of the third family is rather model depend-
ent, they are distributed over various sectors. Very often the top-quark Yukawa coupling is the
only trilinear Yukawa coupling one finds in the model.

This is the second lesson from the mini–landscape: left- and right-handed top-quark multiplets
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4.1 The particle Zip-code in mini-landscape models

should be bulk fields.

4.1.3 The first two families of quarks and leptons

The Mini-Landscape models provide a grand unified picture with families in the 16-dimensional
spinor representation of SO(10) (in the case of E6 enhancements, the families are expected to
descend from the 27-plet). The analysis shows that three family models can only be achieved
with at most two families as complete SO(10) representations [21]. Since the top-family will
originate as a patchwork, the localized 16-plets correspond to the two light families, these live
at fixed points of the orbifold twist. Due to their location, no trilinear coupling is allowed for
these fields and for this reason quark-and lepton masses are suppressed. It is also observed that
these families transform as a doublet under a D4 family symmetry [73, 74] inherited from the
geometry. This symmetry can be used to avoid the problem of flavor changing neutral currents.
Thus we have a third lesson: the first two families are located at fixed points where the gauge
symmetry is enhanced and enjoy of a non trivial transformation under a family symmetry.

4.1.4 The pattern of supersymmetry breakdown

The field configuration discussed in sects. 4.1.1 to 4.1.3 has many implications for the low energy,
some of which have been already stressed. So far we have not discussed the breakdown of
supersymmetry which is also sensitive to the SM Zip-code. This discussion is more involved
since it has to address the question of moduli stabilization. Supersymmetry can be broken by
gaugino condensation in the hidden sector GHidden [75, 76]. The hidden groups one obtains
in Mini-Landscape models are consistent with a gravitino mass in the (multi) TeV-range [77]
(provided the dilaton is fixed at a realistic grand unified gauge coupling). If moduli stabilization
proceeds along the lines of [53, 54], we would then keep a run-away dilaton and a positive
vacuum energy. It can be shown that by adjusting the vacuum energy with a matter superpotential
(downlifting the vacuum energy) one can fix the dilaton as well. The resulting picture [78] is
reminiscent of a scheme known as mirage mediation [79–81], at least for gaugino masses and
A-parameters: As bulk fields, gauginos experience remnants of N = 4 SUSY and due to that,
their masses are suppressed by a factor of log(MPlanck/m3/2) [82]. Scalar masses are more model
dependent and could be as large as the gravitino mass m3/2 [83]. However, since Higgses and
top quark are also bulk fields, the same suppression factor is expected for the mass of Higgsinos
and the stop. Thus, one expects m3/2 and scalar masses of the first two families in the multi-TeV
range while stops and Higgsinos are in the TeV range. This is a result of the location of fields in
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the extra dimensions and provides the fourth lesson of the Mini–Landscape [84].

4.2 The Z2 × Z4 orbifold

The Z2 × Z4 orbifold of our interest is based on the factorizable lattice spanned by the roots of
SU(2)2 × SO(4) × SO(4). Out of the resulting torus, we mod out the point group generated by
the following twist vectors

v2 = (0, 1
2
,−1

2
, 0) , v4 = (0, 0, 1

4
,−1

4
) , (4.6)

which clearly correspond to isometries of the lattice and comply with the conditions for N = 1

SUSY in 4D. The v2 twist indicates that the Z2 generator acts as a simultaneous reflection on
the first two planes, while leaving the third invariant. Similarly, the twist v4 implies that the Z4

generator rotates the second and third planes by π/2 counter and clockwise, respectively.

Here we start our discussion of the geometry of the orbifold, but many stringy properties of
the fixed point/tori are left to be discussed in the upcoming sections, where the appropriate ma-
chinery is constructed. Lets denote by θ and ω the generators of the Z2 and Z4 factors. The fixed
points/tori of θk1ωk2 are said to belong to the twisted sector T(k1,k2). Each particular sector is
studied separately in tables 4.1 to 4.5. For the sectors T(0,1), T(0,2) and T(0,3) one finds fixed tori
due to the trivial action of ω on the first complex plane. A similar situation will happen for the
case of T(1,0) and T(1,2) where, respectively the third and second planes are invariant. The only
sectors where one finds fixed points are T(1,1) and T(1,3). For each twisted sector, the fixed point-
s/tori on the fundamental domain are a maximal set of representatives for the conjugacy classes
of the space group (which act non freely onC3). For model building purposes it is crucial to find
the generating elements of each inequivalent fixed point, in order to determine the right gauge
shift and its corresponding set of commuting elements. The fixed points have been labeled with
indices a, b and c denoting the location on each complex plane. The twisted sectors T(0,1) and
T(0,3) as well as T(1,1) and T(1,3) are the inverse of each other and have the same fixed points/tori
but the generating elements differ depending on which sector one is considering (see tables 4.1
and 4.4). The remaining sectors are self inverse and are generated by point group elements of
order two, so that in general, one has further identifications induced by the Z4 generator. Similar
as in the Z6−II case, those fixed tori which do not have a unique representative within the fun-
damental domain we call special. One can show that there is no element of the form (θ, λ) ∈ S
which commutes with the generating elements of those special fixed tori. This feature will again
lead to an enhancement of the local gauge symmetry, but in contrast to the Z6−II case, the pres-
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ence of the additional Z2 twist forbids the local enhancement of the supersymmetries.

Note that in the sectors T(1,0) and T(1,2) the identifications under the Z4 generator will lead to
only three inequivalent fixed points in the SO(4) plane. This is the same amount of fixed points
one finds for the SU(3) plane of the Z6−II orbifold.

Figure 4.1: Fixed tori of the T(0,1) and T(0,3) sectors. The tables above help to deduce the generating
element of each fixed torus. Consider a fixed torus located at the position b and c in the last two planes,
such fixed torus is generated by a space group element (ω, λbc) if the fixed torus belongs to the T(1,0)

sector, or (ω3, λ′bc) for T(0,3). The lattice vectors λbc and λ′bc can be found in the bc-th entry of the left and
right tables below the picture.

4.2.1 Gauge embeddings

As a first step towards model building in Z2 × Z4 we are interested in the gauge groups that are
allowed by this geometry. Our intention is to classify all embeddings V2, V4, Wα consistent with
the modular invariance conditions (2.50)-(2.52). There are also constraints due to the consistency
of the embedding with the space group. These fix the order of the shifts V2, V4 to be 2 and 4, i.e.
the vectors 2V2 and 4V4 must belong to the E8 ×E8 lattice. For the Wilson lines Wα one has the
following situation:

(i) In the first complex plane one has two Wilson lines W1 and W2, because the point group
action does not relate the lattice vectors e1 and e2. These lines are of order two, since

θeα + eα = 0 , α = 1, 2 .
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Figure 4.2: Fixed tori of T(0,2). The arrows in the last two planes have to be understood as identifications
acting simultaneously such that they reproduce the effects of theZ4 generator of the point group. Similarly
as in table 4.1, the generating elements can be found below the picture. Those entries which are left blank
do not correspond to additional inequivalences. Shaded cells have been put to denote special fixed tori.

Figure 4.3: Fixed tori of the T(1,0) sector. This sector is associated to the Z2 generator of the point group.
For this reason, the fixed tori are identified only up to rotations by π/2 on the second plane. The special
fixed tori are associated to the shaded cells in the table.

(ii) In the second and third planes we have the identifications:

ωe3 = e4 , ω3e5 = e6 , (4.7)

so that we only have one inequivalent Wilson line per complex plane1. These ones we will

1 This equivalence is up to lattice vectors from the gauge lattice, which we omit for simplicity.
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T(1,1)

❍❍❍❍❍a

bc
11 12 21 22

1 0 e6 e4 e4 + e6

2 e2 e2 + e6 e2 + e4 e2 + e4 + e6

3 e1 + e2 e1 + e2 + e6 e1 + e2 + e4 e1 + e2 + e4 + e6

4 e1 e1 + e6 e1 + e4 e1 + e4 + e6

T(1,3)

❍❍❍❍❍a

bc
11 12 21 22

1 0 e5 e3 e3 + e5

2 e2 e2 + e5 e2 + e3 e2 + e3 + e5

3 e1 + e2 e1 + e2 + e5 e1 + e2 + e3 e1 + e2 + e3 + e5

4 e1 e1 + e5 e1 + e3 e1 + e3 + e5

Figure 4.4: Fixed points of the sectors T(1,1) and T(1,3).

Figure 4.5: Fixed tori of T(1,2). The picture is very similar to that one observes in T(1,0)

denote by W3 and W4. Due to the conditions

ω2e3 + e3 = 0 , and ω2e5 + e5 = 0 , (4.8)
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these Wilson lines are of order two as well.

In contrast to the Wilson line backgrounds, the shift vectors V2 and V4 must be non-trivial. Since
we are interested in obtaining all inequivalent models, the simplest alternative is to assume all
WLs are off and search for consistent pairs (V2, V4). Crucial for our exploration is that if two
embeddings differ by lattice automorphisms or special combinations of lattice vectors, the mod-
els they lead to are identical. This implies that we can zoom in a particular region of the E8× E8

lattice, and from this region we can find all possible models. Since the lattice is the direct sum
of two E8 root lattices, we can consider two eight dimensional vectors and study them independ-
ently. For V4 we took the ten inequivalent shifts found for the Z4 orbifold [63], with these vectors
at hand we explored the corresponding Z2 shifts consistent with each of the V4’s.

It can be shown that the gauge group of a certain embedding does not change if one adds lattice
vectors to the shifts. As for now we are only interested in the diversity of gauge groups allowed
by the Z2×Z4 geometry, we take any given pair of vectors as equivalent if they differ by a lattice
translation. As the V2 shifts must be half of a lattice vector, it suffices to consider all half lattice
vectors of E8 whose norm is smaller than two. After this we are left with 75 combinations for
a single E8. These combinations are then paired together to form sixteen dimensional vectors.
Only those pairings which agree with modular invariance are useful for model building. Allowed
embeddings must satisfy

2

(
V 2

2 −
1

2

)
= 0 mod 2 , (4.9)

4

(
V 2

4 −
1

8

)
= 0 mod 2 , (4.10)

in addition to a mixed constraint2

4

(
V2 · V4 +

1

8

)
= 0 mod 1 . (4.11)

We found 144 combinations which survive these conditions and the gauge groups for these mod-
els were computed. Among the relevant features of the gauge structures we found, it is worth to
highlight the large number of embeddings in contrast to Z6−II where only 61 are possible. In our
model, 35 embeddings contain an SO(10) factor, we also have 26 E6 models and 25 containing a
2 Our construction misses the effects of the lattice vectors, hence the modular invariace condition which mixes

between V2 and V4 [43] gets milder. Embeddings which can be made modular invariant necessarily have to
satisfy eq. 4.11
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4.2 The Z2 × Z4 orbifold

SU(5) factor. Recall that in the Z6−II orbifold one has 14 SO(10) models, 16 with E6 and 4 with
SU(5).

4.2.2 Discrete symmetries

In this section we discuss the discrete symmetries of the Z2 × Z4 orbifold. If we consider a
generic L-point coupling involving fields Φα from the sectors T(mα,nα), the point group selection
rule implies

L∑
α=1

mα = 0 mod 2 , (4.12)

L∑
α=1

nα = 0 mod 4 , (4.13)

such that the superpotential possesses a Z2 and a Z4 discrete symmetry, where the charges of
each state permit to determine which twisted sector it belongs to. One finds that the lattice
part of equation (3.8), introduces additional discrete symmetries. In order to infer the discrete
symmetries arising from the fixed point selectivity (see eq. (3.11)), we consider the problem
planewise: The first plane contributes two Z2 symmetries because the vectors e1 and e2 are not
further identified under the point group. For the remaining planes one finds that each contributes
a Z2 discrete symmetry where the charges of the fields depend on their corresponding location
(see table 4.1).

a = 1 a = 2 a = 3 a = 4 b = 1, 2 b = 3 c = 1, 2 c = 3, 4

Z1
2 0 1 1 0

Z1′

2 0 0 1 1

Z2
2 0 1

Z3
2 0 1

Table 4.1: Symmetries resulting from the lattice parts of the space group selection rule. Z1
2 and Z1′

2 result
from the first complex plane, Z2

2 and Z3
2 from the second and third, respectively. The indices a, b, c label

the fixed points in each complex plane according to the notation adopted in figures 4.1 to 4.5.

The discrete symmetries we have just presented describe a manner to track the location of a
certain field on the orbifold. In the absence of Wilson lines, these discrete symmetries will en-
hance to a non-Abelian factor. To see which are the corresponding non-Abelian symmetries we
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4 An extension of the heterotic mini-landscape

start with the buiding blocks discussed in section 3.1.3. Let us consider the first plane, since only
a Z2 identification acts there, it can be regarded as the direct product of two orbicircles S1/Z2, as
long as one keeps in mind that the Z2 identification should act simultaneously on both of them.
On each orbicircle, one finds that there is a freedom to exchange between the fixed points i.e. a
S2 symmetry, whose multiplicative closure with the Z2×Z2 space group selection rule leads to a
D4 symmetry. The resulting symmetry on that plane, ends up being the direct product of two D4

factors, divided out by the simultaneous Z2 orbifold action we have mentioned previously. Under
this flavor symmetry, untwisted states transform in the trivial representation (A1, A1) where A1

denotes the invariant singlet under D4, while twisted states sitting at the four fixed points furnish
a four dimensional representation (D,D), with D being the D4 doublet3.

For the remaining planes consider a T2/Z4, in the first twisted sector one finds two fixed
points along the diagonal in the fundamental domain (see e.g. the second plane in figure 4.1),
for which one finds again a S2, which combined to the Z4×Z2 space group symmetries, leading
to (D4 × Z4)/Z2. When it comes to the representations one can easily see that states from the
first twisted sector come in doublet representations D and the fixed points of the second twisted
sector allow us to realize all one dimensional representations of the D4. Consider for instance
the fixed points in the third plane of figure 4.2, and take |ϕ1〉 and |ϕ2〉 as identical states sitting
at c = 1 and 2 (Note that these states are invariant under the Z4 lattice automorphism). The
symmetric and antisymmetric combinations of these states will transform as A1 and A2 under
D4. The remaining fixed points c = 3, 4 get identified under the Z4 rotation. One can take then
even and odd combinations under such a rotation, and this gives rise to the representations A3

and A4 ofD4. The third twisted sector is the inverse of the first one, so that states there transform
also as doublets. The charge of a given state under the Z4 is just the order of the twisted sector it
belongs to.

In order to obtain the complete symmetry group for the six dimensional orbifold we have to
take the direct product of the previous factors and mod out the point group identifications. Finally
one obtains

GFlavor =

(
D4×D4

Z2

)
×
(
D4×Z4

Z2

)
×
(
D4×Z4

Z2

)
Z2 × Z4

=
D4

4 × Z4

Z4
2

. (4.14)

This can be used to see how different twisted sectors transform under this flavor symmetry:

• The bulk states are all flavor singlets.

3 The notation we use to denote the D4 representation is the same as in ref. [74].
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4.2 The Z2 × Z4 orbifold

• For T(0,1) and T(1,3), the four fixed points form states transforming as (A1, A1, D,D)1

and (A1, A1, D,D)3, respectively. This notation indicates just that the states transform as
doublets under the latter two D4 factors in eq. (4.14), while the subindices are the charges
under the Z4.

• For T(0,2), the states are of the form (A1, A1, Ai, Aj)2 with i, j = 1, 2, 3, 4. The states
with i, j = 1, 2 correspond to the ordinary fixed tori. For the special ones one has six
alternatives. Depending on how the other pieces in the physical state transform under theZ4

generator of the point group, one has to choose between the invariant (even) combinations

(A1, A1, A1, A3)2, (A1, A1, A2, A3)2, (A1, A1, A3, A3)2,

(A1, A1, A3, A1)2, (A1, A1, A3, A2)2, (A1, A1, A4, A4)2,

or the odd ones

(A1, A1, A1, A4)2, (A1, A1, A2, A4)2, (A1, A1, A3, A4)2,

(A1, A1, A4, A1)2, (A1, A1, A4, A2)2, (A1, A1, A4, A3)2,

in order to build a state which is space group invariant4

• For T(1,0), the states sitting at ordinary tori are of the form (D,D,Ai, A1)0 i = 1, 2. At the
special ones we have either (D,D,A3, A1)0 for even or (D,D,A4, A1)0 for odd states.

• A similar situation occurs in the T(1,2), where ordinary tori transform in the representation
(D,D,A1, Ai)0 i = 1, 2. For the special singularities one has either (D,D,A1, A3)0 for
even or (D,D,A1, A4)0 for odd states.

• States in T(1,1) or T(1,3) transform as (D,D,D,D)1 or (D,D,D,D)3, respectively.

The breakdown of the flavor group induced by the Wilson lines occurs blockwise: note that each
of the Wilson lines W1 or W2 is associated to each of the orbicircles in the first plane. The effect
of such Wilson lines is to break the permutation symmetry. This reduces D4 to its Abelian part,
i.e. the space group selection rule.

For the case of the Wilson lines W3 and W4, the flavor group on the T2/Z4 block gets broken
according to

(D4 × Z4)/Z2 = S2 n (Zp4 × Zl2)→ (Z4 × Z2) . (4.15)
4 Note that it depends on the other quantum numbers (psh, qsh,N i

L, N̄ i
L) which combination, either the symmetric

or the antisymmetric, is taken to construct the physical state
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4 An extension of the heterotic mini-landscape

were Zp4 and Zl2 are discrete factors related to the point group and the lattice, respectively. With
regards to the R-symmetries, we see that a rotation of π/2 in either the second or the third planes
will give us an element in F , thus we take the one in the second plane as the generator, in addition
to that, the rotations of π on the first or the second planes will be elements in the group D. The
R-charges for the fields will be computed accordingly as in the previous chapter.

4.3 Searching for realistic models

To judge the fertility of the shift embeddings discussed in the previous section, we can compute
the spectrum at the GUT level and then analyze the possible effects of the Wilson lines. With
this information one can implement a strategy to retain three families in the low energy.

At the GUT level, the multiplicities for the twisted states from T(0,1), T(0,3) and T(1,3) are equal
to the number of fixed points/tori in each of the sectors. However, the sectors T(1,0), T(0,2) and
T(1,2) contain some special fixed points which get identified to each other by the Z4 generator.
These points enjoy an enhancement of the gauge symmetry, fields at those locations will furnish
complete representations of the enhanced group. In those sectors, the fields sitting at normal
fixed points will also be present at the special ones, but at those special locations some additional
states might appear.

When it comes to the effects of the Wilson lines, there are some differences in the way they
act on matter fields. In the untwisted sector, for instance, the states are sensitive to all the Wilson
lines. As expected for fields which propagate in the bulk, no new states are introduced and out
of those found at the GUT level only those which survive the WL projections will be part of the
physical spectrum.

The Wilson lines act differently on the fixed points and hence split the multiplicities for the
states in a given twisted sector. Thus, the Wilson lines do not only serve for the breakdown of
the GUT factor to GSM, but must also allow for a distribution in which the SM matter comes in
three copies. Depending on the manner the WL configuration acts on the states sitting there, the
singularities fit in the following classification:
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Config. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W1 X X X X X X X X
W2 X X X X X X X X
W3 X X X X X X X X
W5 X X X X X X X X

T(0,1), T(0,3)

bc = 11

12

21

22

T(0,2)

bc = 11

12

21

22

13

31

33

34

32

23

T(1,0)

ab = 11

12

21

22

41

42

31

32

13

23

43

33

T(1,1), T(1,3)

abc = 111

112

121

122

211

212

221

222

411

412

421

422

311

312

321

322

T(1,2)

ac = 11

12

21

22

41

42

31

32

13

23

43

33

Figure 4.6: Protected (green) and split (blue) fixed points under different Wilson line configurations. The
matter representations we found in the absence of Wilson lines will completely survive when sitting at a
protected fixed point/torus. At split singularities they will decompose according to the local gauge group,
some of these pieces will be projected out by the Wilson lines.
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4 An extension of the heterotic mini-landscape

(i) At some fixed points/tori, the Wilson lines act trivially and hence, the matter sitting at those
fixed points is the same as that one had at the GUT level. These singularities are called
protected and they are the only locations in the orbifold where the twisted states furnish
complete representations under the GUT group.

(ii) At the split singularities, the states are the same as those at the GUT level, but in this case
the Wilson lines act as projectors, so that only some pieces of the GUT multiplets will
survive. This is very similar to what occurs in the untwisted sector.

(iii) When the Wilson lines enter the mass equations for the states sitting at a certain singularity,
the spectrum at this location is entirely disconnected from that at the GUT level. Such
singularities we call unshielded because the matter sitting there is extremely sensitive to
the specific choice of the WLs.

It is clear that having a spectrum at the GUT level only helps to make statements about protected
and split singularities. Nevertheless, by insisting on a picture in which (some) families are com-
plete GUT multiplets one can keep track of the splitting of the degeneracies to find out what are
the relevant multiplicities under a given configuration. The results of our analysis are depicted in
fig. 4.6. As pointed out in section 4.2 one can have four Wilson lines of order two. The combin-
atorics leads to sixteen configurations, each corresponding to a column. For each configuration
we computed the embedding of the generators and their centralizers. Then we look at all those
fixed points sharing the same corrections to the mass equation and the same projectors. Each
fixed point/tori corresponds to a box in the table. The color code is the following: The green
boxes represent protected fixed points, blue ones are split and the remainder are unshielded. To
explain how to interpret our results consider for instance the configuration number 2, in which
only W1 is non trivial. Note that the first complex plane is a fixed torus of T(0,1) and T(0,2). This
means that the constructing elements for the fixed tori at those sectors are independent of e1, so
that the mass equation at this sectors does not suffer from any modification. However, the pres-
ence of the twisted torus implies that any constructing element commutes with (1, e1) so that
W1 projects out states. This is the reason why all fixed points from the sectors mentioned above
appear blue in the second column. The remaining sectors contain some fixed points/tori which
are only protected if they are located along the vertical axis of the first plane. For instance, this
can be observed in table 4.3 where the T(1,0) sector has four ordinary and two special fixed points
protected and thus highlighted in green.
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4.4 Promising Candidates

For the untwisted sector, as well as protected and split singularities, we can use the spectrum at
the GUT level to infer what kind of matter is likely to appear at any of these locations. We must
remark that the matter states living at unshielded singularities can only be found after specifying
the Wilson lines. To avoid an exhausting search for suitable Wilson lines we assume that the
relevant fields of the MSSM do not sit at unshielded locations. If we want for the SO(10) models
that the families are complete GUT representations, they must then arise from protected fixed
points. If we consider E6 models both split and protected singularities are favored to allocate
a whole family, provided the existence of a Wilson line configuration which locally breaks the
gauge group to SO(10), while leaving the 16 ⊂ 27 untouched. In all other cases the families
will arise as a patchwork of states originating from various locations in the orbifold.

In addition to the three families of the SM, we have to ensure that the interactions of the standard
model are reproduced in an accurate manner. In particular, the presence of a heavy top in a given
model can be checked before dealing with VEV configurations, particularly, if we assume none
of the pieces involved in the top coupling comes from an unshielded singularity, the trilinear
couplings must also be present at the GUT level. An operator of the form 16 · 16 · 10 (or (27)3)
allowed in an SO(10) (or E6) model, will induce the desired UQHu, if the relevant pieces survive
the Wilson line projections.

One can thus see that, among all possible sectors for the fields to originate from, the point group
symmetry will leave us only with the following alternatives for a trilinear coupling5

1. UUU , 2. T(0,2)T(0,2)U , 3. T(1,0)T(1,0)U ,

4. T(1,2)T(1,2)U , 5. T(0,1)T(0,3)U , 6. T(0,2)T(1,2)T(1,0) ,

7. T(1,3)T(1,3)T(0,2) , 8. T(1,3)T(0,3)T(1,2) , 9. T(1,3)T(0,1)T(1,0) .

Now we use the spectra to determine which of the previous couplings is supported by any of the
models. We consider the spectrum in combination with the schematic action of the Wilson lines
(see figure 4.6), with this information we intend to determine which models support any of the
couplings depicted above. For conciseness, and since both SO(10) and E6 models feature similar
properties, we present our findings for SO(10) and defer the discussion about E6 to the appendix
B. Among all SO(10) embeddings only one was found to allow for three complete 16-plets. In

5 In general, the point group itself gives more possibilities for a trilinear coupling, however all those involving T(1,1)
are not viable since this sector does not contain any left-chiral state. One the other hand, R charge conservation
forbids couplings such as T(0,1)T(0,1)T(0,3) which share a common fixed torus [85].
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4 An extension of the heterotic mini-landscape

that model, all of the 16-pets belong to the T(1,2) sector, so that the top Yukawa must arise of
the from T(1,2)T(1,2)U . The untwisted sector contains two 10-plets; unfortunately, none of them
permit a gauge invariant coupling of the form 16 · 16 · 10. Hence, for the Z2 × Z4 orbifold we
constructed there is no SO(10) model in which the three families arise as complete GUT repres-
entations

Configurations with only two complete families are more commonly found. These families
usually sit at the same twisted sector and transform among each other due to an underlying
D4 flavor symmetry, which, as pointed out previously, is a consequence of a Wilson line being
off. By looking at the spectra of these models one can search for allowed operators of the form
16 ·16 ·10 which could involve twisted fields. Surprisingly, couplings of this kind are not found,
and hence the only alternative which is left for a trilinear coupling at the GUT level is UUU .
Three embeddings were found to contain an SO(10) factor, with two complete families and a
purely untwisted trilinear interaction; the remainder of this section is devoted to discuss them in
detail.

The first promising embedding is realized by the vectors

V SO(10),1
2 = (1

2
, 1

2
, 1, 0, 0, 0, 0, 0)(1, 1, 1, 0, 0, 0, 0, 0) ,

V SO(10)1
4 = (1

2
, 1

4
, 1

4
, 0, 0, 0, 0, 0)(1

2
, 1

2
, 1

2
, 0, 0, 0, 0, 0) , (4.16)

which lead to the gauge group [SO(10)×U(1)3]× [SO(10)×SU(4)] (the squared brackets are set
to distinguish between the original E8 factors). The first SO(10) factor is the relevant one and the
twisted 16-plets appear at T(1,2). In order to achieve only two protected fixed tori in this sector
one must have W3 6= 0, W5 = 0 and either W1 = 0 or W2 = 0 but not both.

The second embedding corresponds to

V SO(10),2
2 = (2, 0, 0, 0, 0,−1, 0, 0)(3

2
, 0,−1

2
,−1

2
,−1

2
,−1

2
, 0, 1

2
) ,

V SO(10),2
4 = (1, 0, 0, 0, 0, 0, 0, 0)(3

4
, 1

4
, 0, 0, 0, 0, 0, 0) , (4.17)

its gauge group is [SO(14) × U(1)] × [SO(10) × U(1)3], while the third one is generated by the
shifts

V SO(10),3
2 = (1,−1

2
, 0, 0, 0,−1

2
, 0, 0)(5

4
,−1

4
, 3

4
, 3

4
, 3

4
, 3

4
,−1

4
, 1

4
) ,

V SO(10),3
4 = (1

2
, 0, 0, 0, 0, 0, 0, 0)(5

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
, 1

2
,−1

2
) , (4.18)
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leading to the gauge symmetry [SO(10) × SU(2)2 × U(1)] × [SU(8) × U(1)]. For the last con-
figurations, three Wilson lines are need in order to achieve two protected 16-plets in the T(1,3)

sector. The Wilson line which remains off can be either W1 or W2.

As already pointed out, the presence of a trilinear Yukawa is somehow a necessary require-
ment. In models with two complete SO(10) families the desired Yukawa can be achieved if
the up-type Higgs and left- and right- handed components of the top quark are untwisted fields.
However, there is a little drawback to overcome: we need to find a Wilson line configuration
which ensures the coupling UQHu (⊂ 16 ·16 ·10) survives the projections. We have developed
a search strategy which favors certain embeddings depending on their potential features, but we
can not forget that these features can be spoiled by the Wilson lines. We have then arrived at a
stage where we need of concrete WLs backgrounds to prove that our search strategy for realistic
models indeed works.

4.4.1 A benchmark model

The embeddings previously discussed fit the Mini-Landscape Zip-code, at least at the GUT level.
If such a picture can be retained after switching on the Wilson lines, one would expect the
phenomenology of these models to develop along the lines of section 4.1. Here we explore one
model and present a WL configuration which partially agrees with our expectations. We took
the model defined by the vectors in eq. (4.18), whose complete spectrum at the GUT level is
presented in table 4.2. At this stage one can see that the untwisted sector provides the following

U

1 (16,2,1,1)0,−1

1 (16,1,2,1)0,1

1 (10,2,2,1)0,0

1 (1,1,1,1)−12,0

1 (1,1,1,1)12,0

1 (1,1,1,28)6,0

1 (1,1,1,28)6,0

T(0,1)
4 (1,1,1,8)6,1

4 (1,1,1,8)0,1

T(0,2)

10 (1,2,2,1)6,0

10 (10,1,1,1)−6,0

6 (1,1,1,1)−6,−2

6 (1,1,1,1)−6,2

T(0,3)
4 (1,1,1,8)6,−1

4 (1,1,1,8)0,−1

T(1,0) 4 (1,1,2,8)−3,0

T(1,1) -
T(1,2) 4 (1,2,1,8)−3,0

T(1,3)

16(16,1,1,1)3,0

16 (1,2,1,1)3,1

16 (1,1,2,1)3,−1

Table 4.2: Matter spectrum corresponding to the shift embedding given in eq. (4.18). For each state, the
bold numbers label its corresponding representation under SO(10)×SU(2)×SU(2)×SU(8) respectively,
whereas the subindices label the charges under the U(1) symmetries.
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Figure 4.7: The fixed points of the T(1,3) sector. Note that for the model under consideration and in the
case W1,3,5 6= 0, the 16-plets living at the fixed points a = 1, 2 (b = 1, c = 1) are not affected by the WL
projections.

coupling

(16,2,1,1)0,−1 · (16,1,2,1)0,1 · (10,2,2,1)0,0 ,

which is actually allowed by all CFT selection rules, this is the kind of coupling we expect to
originate the top-Yukawa. We can also observe that in the T(1,3) sector we get 16 identical copies
of the representation (16,1,1,1)3,0, one sitting at each of the fixed points. Out of these, two
will remain intact after the Wilson line configuration is set on. Aided by the C++ Orbifolder
we searched for alternatives for W1, W3 and W5 (see fig. 4.7). The Wilson line configuration is
expected to break the SO(10) factor down to the desired GSM with a non anomalous hypercharge
generator U(1)Y ⊂ SU(5), while allowing for three net generations plus vector-like exotics. As
an outcome of this exploration, roughly 200 inequivalent choices for the Wilson line configura-
tion were found to comply with our requirements. A similar amount of models is found for the
two other shift embeddings presented before. To illustrate our findings let us study the effects of
the following choice for the Wilson lines

W1 = (−1
2
, 1

2
,−3

2
,−1

2
, 0,−1,−1, 2)(−3

4
,−7

4
,−1

4
,−1

4
,−1

4
, 7

4
, 3

4
, 3

4
) ,

W3 = (−1, 3
2
,−1

2
, 1

2
, 0, 1

2
, 0, 2)(−1

2
, 1,−2, 0, 3

2
,−1,−3

2
,−3

2
) ,

W4 = (−5
4
, 5

4
, 1

4
,−1

4
, 3

4
,−1

4
, 5

4
, 9

4
)(0, 1, 1, 2,−1,−1

2
, 2, 3

2
) .

This breaks the gauge group toGSM×SU(3)×SU(2)×U(1)9, where the additional SU(3)×SU(2)
is a subgroup from the SU(8) in the second E8. As expected one of the U(1) s is anomalous, but
the hypercharge generator is orthogonal to it. The splitting for the relevant untwisted fields at the
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GUT level, in terms of GSM is given by

(10,2,2,1)0,0 →
Hu︷ ︸︸ ︷

(1,2)−1/2,···+

Hd︷ ︸︸ ︷
(1,2)1/2,··· ,

(16,2,1,1)0,−1 → (1,1)−1,··· + (3,1)1/3,···︸ ︷︷ ︸
U

,

(16,1,2,1)0,1 → (3,2)−1/6,···︸ ︷︷ ︸
Q

,

(4.19)

where the dots stand for additional U(1) charges different from the hypercharge. The previous
splitting implies that the trilinear couplings UHQ is retained. The spectrum after the Wilson line
breaking is presented in table 4.3. There one observes that in addition to those we get from the
protected 16-plets in T(1,3), the are additional triplets coming from other locations. Note however
that there are exactly three (3,2) 1

6
, (3,1)− 2

3
and (1,1)−1. The spectrum contains four fields of

the form (1,2)− 1
2

(including the Higgs Hu introduced in eq. (4.19)), hence we have only one
Higgs pair for this model. When it comes to the down-type quarks we find 6 extra (3,1)− 1

3

together with their complex conjugates. Some additional exotics are observed, those states come
in vector-like pairs with respect to the SM and we expect them to decouple after assigning VEVs
to some of the SM singlets ni, si, ṽi and si. We must insist that the choice of Wilson lines
presented here serves merely to illustrate that it is possible to find Wilson lines leading to a three
family model. However, one can see that this model can not follow the pattern depicted in section
4.1.4. To see this note that states like χi or mi lack of a conjugate counterpart, so that they can
only be decoupled from the spectrum in the case the VEV configuration breaks all non-Abelian
factors in the hidden group, leaving no chances for gaugino condensation to occur.

4.4.2 Prospects: VEVs, Light Higgses and Decoupled Exotics

In order to retain a reasonable phenomenology we have to give VEVs to some singlet fields.
This VEV configuration is also necessary to cancel the FI term induced by the anomalous U(1)

as well as to remove dangerous exotics from the low energy spectrum by means of the so called
Froggatt-Nielsen mechanism [158]. Depending on the VEV fields, the U(1)s as well as discrete
R and non-R symmetries will be generically broken in such a way that certain discrete combin-
ations survive. Those combinations are of particular interest for us, since they can be used to
control some dangerous operators and in particular, can be used to set the µ term to vanish in the
supersymmetric vacuum.

In principle, the choice of the VEVs is not entirely arbitrary since one has to ensure F and
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# Rep. label # Rep. label
3 (3,1,1,1) 2

3
u 69 (1,1,1,1)0 n

3 (1,1,1,1)−1 e 32 (1,1,1,1)− 1
2

r

3 (3,2,1,1)− 1
6

q 4 (1,1,1,2)− 1
2

b

4 (1,2,1,1) 1
2

l 30 (1,1,1,1) 1
2

r

1 (1,2,1,1)− 1
2

l 4 (1,1,3,1)0 s

9 (3,1,1,1)− 1
3

d 10 (1,1,1,2)0 ṽ

6 (3,1,1,1) 1
3

d 8 (1,1,3,1)0 s

6 (3,1,1,1)− 1
6

f 2 (1,1,3,1) 1
2

χ

8 (1,2,1,1)0 v 5 (1,1,1,2) 1
2

b

1 (3,1,1,2)− 1
6

m 2 (1,1,3,1)− 1
2

χ̃

8 (3,1,1,1) 1
6

f

Table 4.3: Matter spectrum obtained after switching on the WLs, the numbers in parenthesis label its
corresponding representation under SU(3)C × SU(2)L × SU(3) × SU(2). The subindex labels the
hypercharge.

D flatness of the new vacuum, however, given the large amount of VEVs and their generic size,
it is assumed that such flat directions exist. Our main goal is to ensure the absence of the µ
term in the superpotential, the common consensus is that this happens due to an R-symmetry. In
the context of the Z2 × Z2 orbifold [86], some surviving R-symmetries in the low energy have
been engineered [53]. Here we try the simplest alternatives for an R-symmetry, which turn out
to have significant drawbacks, but we expect that in the more comprehensive exploration such
drawbacks can be avoided.

Following the discussion from sections 3.2 and 3.2.1 one can deduce that the Z2 × Z4geometry
provides a Z2 R-symmetry in the first plane and two Z4 R-symmetries in the last two planes.
Given an L point coupling Φ1 · · ·ΦL, it is only allowed if it fulfills the conditions

L∑
α=1

r1
α = −1 mod 2 ,

L∑
α=1

r2,3
α = −1 mod 4 ,

in which riα denotes the R-charge of the α-th field and it is given by

riα = q(1) i
α −N i

N α + N̄ i
N α ,
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where the weight q(1) i encodes the information about the fermionic excitations (see table 4.4)
and N i

L (N̄ i
L) counts the number of (anti-) holomorphic bosonic oscillators used to construct the

physical state. With this information in mind we can reconsider the GUT bilinear (see eq. (4.19))

(10,2,2,1)0,0 · (10,2,2,1)0,0 ⊃ HuHd .

This term is neutral under all selection rules, so that the coupling µHuHd is only absent in the
superpotential if there is a leftover R-symmetry after the VEV configuration is chosen. From
table 4.4 we can see that the R-charges are in close relation with the twisted sector. In particular
note that by taking only VEV fields from T(0,1), T(0,2), T(0,3) and untwisted fields with q =

(0, 0,−1, 0) or q = (0, 0, 0,−1), the Z2 R-symmetry from the first torus survives. However this
does not work out because after we give VEVs to all possible singlets in the mentioned sectors,
two U(1)s remain unbroken, and some SM fields are charged under them.

U

(0,−1, 0, 0)

(0, 0,−1, 0)

(0, 0, 0,−1)

T(0,1) −1
4
(0, 0, 1, 3)

T(0,2) −1
2
(0, 0, 1, 1)

T(0,3) −1
4
(0, 0, 3, 1)

T(1,0) −1
2
(0, 1, 0, 1)

T(1,1) -
T(1,2) −1

2
(0, 1, 1, 0)

T(1,3) −1
4
(0, 2, 1, 1)

Table 4.4: H-momenta q of negative helicity for the various sectors of Z2 × Z4.

In table 4.4 we give the H-momenta for all the twisted sectors. There one can see that, as
expected all H-momentum entries add up to −1. Hence if one takes the sum of the of the three
R-symmetries, one obtains a Z2 R-symmetry of the form

L∑
α=1

(
3∑
i=1

riα

)
= −1 mod 2 (4.20)

under this Z2 symmetry the contribution of the oscillators and gama phases in many states is
such that their R-charge is of the form 0 mod 2. These states suffice to break all U(1) factors.
However, they are not sufficient to lift all exotic fields, some of which are charges under the
standard model gauge group.

We have then argued that the presence of a survivingR-symmetry in the low energy is a desirable
feature which could alleviate the µ problem. However, as pointed out already, this symmetry is
only a suitable alternative if the following two conditions are satisfied
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4 An extension of the heterotic mini-landscape

• There are enough singlet fields with R-charge zero, so that their corresponding VEVs suf-
fice the breaking of all extra U(1)s.

• The R-charge assignment for the fields allows for a mass term for all exotics in the model.
Though this constraint is very hard to satisfy, one can look for situations in which the
surviving R-symmetry is a mixture of any of the original ones with some non-R factors.
There one expects more intricate charge assignments and hence more mass terms to be
allowed, in contrast to the previous example.
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CHAPTER 5

F-Theory Compactifications

Esse gancho que tens no braço não o inventaste tu, foi preciso que alguém tivesse a necessidade
e a idéia, que sem aquela esta não ocorre, juntasse o couro e o ferro, e tamém estes navios que

vês no rio, houve um tempo em que não tiveram velas, e outro tempo foi da invenção dos remos,
outro o do leme, e, assim como o homem, bicho da terra, se faz marinheiro por necessidade, por

necessidade se fará voador.

José Saramago, Memorial do Convento

In this chapter we contemplate another very promising framework for particle model building: F-
theory. It corresponds to the non-perturbative description of the type-IIB superstring theory. As
such, it permits to have localized gauge degrees of freedom, thus allowing for a local approach
to particle model building.

Given the large duality web connecting the many string theories, it is not a surprise that F-theory
is a close cousin of the heterotic theory. In particular, and in contrast to the (perturbative) type II
theories, F-theory allows to realize exceptional gauge groups, which is one of the crucial features
behind the overwhelming success of the heterotic brane world.

Here we account for a short introduction to the topic: We discuss the basic setup by briefly
reviewing some features of the type IIB superstring. Then we review the dualities between F-
theory, M-theory, and the heterotic string, and from these, we discuss how gauge symmetries,
chiral matter and interactions arise. Even though this review is oriented in a phenomenological
direction, for which reason we devote especial attention to fiber degenerations of the SU(5) type,
the discussion of the explicit model building efforts and their outcome are deferred to the forth-
coming chapter.
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5 F-Theory Compactifications

5.1 The type IIB superstring

In order to discuss some of the properties of the type IIB superstring we can use the Green-
Schwarz formulation [87] in which the space time supersymmetry is explicit. For that purpose
we start by reviewing the 10D,N = 1, 2 supercurrents [16]. Firstly recall that the minimal spinor
in ten dimensions is both chiral and Majorana. A Majorana spinor Q satisfies the constraint
Q̄ = QTC, where Q̄ is the Dirac conjugate and C is the charge conjugation operator. In the
Majorana representation all Gamma matrices are real andC = Γ0, so that the Majorana condition
becomes a reality condition on the spinorQ. In ten dimensions a Majorana spinor has 210/2 = 32

real components. One can further halve the dimensionalty by projecting onto eigenstates of Γ11

Γ11Q
± = ±Q± , (5.1)

with Γ11 being the product of all Gamma matrices. We can then show that the following operators

P± =
1± Γ11

2
(5.2)

project into definite chirality spinors.

The N = 1 superalgebra is then defined according to

{Q+
α , Q

+
β } = (CΓMP+)αβPM . (5.3)

With regards to the N = 2 algebras one can choose the two generators to have opposite or
identical chiralities. Depending on that choice one gets the type IIA (unchiral) or the type IIB
(chiral) superalgebras. For the case of our interest, namely type IIB, the superalgebra reads

{Q+A
α , Q+B

β } = δAB(CΓMP+)αβPM , (5.4)

where the spinors Q+A, (A = 1, 2) furnish an SO(2) doublet. The supertranslation group can be
obtained upon exponentiation of a generic algebra element

XMPM + θ̄
A
+Q

+A , (5.5)

where XM are the ten dimensional bosonic coordinates and θ̄A+ are both antichiral Majorana
spinors with Grassmann entries. Having introduced the superspace coordinates, we can take
these fields as maps from the worldsheet, and use them to write down the worlsheet action. To
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5.1 The type IIB superstring

do so, we first need to find super-Poincarè invariant forms. To start with, there is the 1-form
ΠM = ΠM

i dσ
i, with σi (i = 0, 1) being the WS coordinates and ΠM

i given by

ΠM
i = ∂iX

M − iδAB θ̄
A
+ΓM∂iθ

B
+ . (5.6)

One can use these ten dimensional vectors to construct pullbacks of the metric to the world sheet:
gij = ΠM

i ηMNΠN
j . Next, one identifies the following invariant 3-form

h3 = ΠM(dθ̄
1
+ΓMdθ

1
+ − dθ̄

2
+ΓMdθ

2
+) , (5.7)

this form happens to be exact in the Minkowski background under consideration, i.e. h3 = dB2.
The WS action then reads

S = −
∫
dσ
√
− det (g) +

∫
B2 (5.8)

in which we have set the string tension to one. The first term is simply the Nambu-Goto action,
and the second is the Wess-Zumino term, which makes the the action κ-symmetric, hence al-
lowing the world–sheet supersymmetry to be linearly realized. In the above analysis we found
a 2-form potential B2 relevant to a 1-brane (i.e. the string). In that sense, the Wess-Zumino can
be thought of as the minimal coupling of the string to B2. It is also worth remarking that the
previous equation can be extended to any Supergravity background beyond Minkowski space.
In that case, B2 becomes a combination of the superspace two form and the two index antisym-
metric tensor of the corresponding background. In addition to that, the action receives additional
contributions from the dilaton field. The bosonic part of the action in a more general background
then reads

S =

∫
dσ
{√
− det (γ)(γijgij + φR(2)) + εijBij

}
. (5.9)

Note that in the case of φ being constant, the new piece in the action involving the WS Ricci
scalar R(2) becomes φχ, where χ is the world sheet Euler number. From this we see that a per-
turbative expansion in gs = eφ suits the (closed) superstring theory. This is because scattering
amplitudes at higher genus will be suppressed by a factor e−2φ(1−g) (with g being the genus), due
to the term e−S present in the Euclidean path integral.

The massless fields of the theory can be read off from the content of a light-cone superfield
φ(XM , dθA+ ). The expansion of for this field reads

φ(XM , θA+ ) =φ+ iθ̄
A
+λ

A
− + εAB θ̄

A
+ΓMθB+ LM + iθ̄

A
+ΓMNP θB+H

IJ
MNP

+ εAB θ̄
A
+ΓMNPQLθB+MMNPQL + . . . . (5.10)
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5 F-Theory Compactifications

The restrictions on the above fields are such that under supertranslations the algebra closes on-
shell [88–90]. In the first place it is required that the tensor HAB is traceless, i.e.

HAB =

(
H H ′

H ′ −H

)
. (5.11)

In addition to that we have various Bianchi identities for the fields, namely L = dC0 for a
pseudoscalar 0-form. One also gets H = dB2, H ′ = dC2 and M = dC4 for the self dual 5-form
field M . Let us recall that the self duality of M is not enforced by superspace transformations,
but a consequence of the chirality of the theory. So far we have not discussed the sector to which
the above mentioned bosons belong, either RR or NSNS. In the superfield description the are
distinguished depending on whether the field couples to a boson (NSNS) or to a fermion bilinear
(RR). The bosonic NSNS sector is composed of the metric g (the Riemann tensor appears at
θ4 level in φ(Xµ, θ I+)), the two index antisymmetric tensor B2 and the dilaton φ. These fields
contribute the following part of the action

S10 ⊃
∫
d10x
√
−ge−2φ

[
R + |dφ|2 − 1

3
|dB2|2

]
. (5.12)

Note the presence of the factor e−2φ expected from closed string amplitudes in the background
of the sphere. The RR fields of the IIB theory (C0, C2, C4) are Abelian 2p-forms which couple
minimally to the WS via 2p+ 1-form field strengths

S10 ⊃ −
1

2

4∑
p=1

∫
d10x
√
−g 1

(2p+ 1)!
|F2p+1|2 . (5.13)

The term e−2φ is absent because RR couplings to the fermions introduce branch cuts on the
sphere, so that the argument following from the NSNS sector does not apply in this case [91].
Equation (5.13) has been written in the so-called democratic formulation (see e.g. [92]) in which
the action is considered together with a set of duality relations defining the extra fields F7 and
F9. Such duality relations read

F5 = ∗F5 , F7 = − ∗ F3 , F9 = ∗F1 , (5.14)
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where the field strengths are given by

F1 =dC0 ,

F3 =dC2 − C0 ∧B2 ,

F5 =dC4 − dB2 ∧ C2 − dC2 ∧B2 . (5.15)

Note that the previous 2p + 1-forms mix lower order RR fields with the NSNS field B2, but
note that in the limit B2 = 0 one recovers the usual relations F2p+1 = dC2p. This democratic
formulation suits better to deal with D-branes [93, 94]. The reason is that the Dp-branes source
the p-form RR potentials. The Wess-Zumino action for the Dp-brane includes RR forms of all
orders making the approach to D7- and D9-branes more intuitive.

5.2 SL(2,Z) invariance and 7-brane monodromies

A very striking feature of the type IIB supergravity action described before is that it exhibits a
global SL(2,R) symmetry. This can be seen more easily by transforming to the Einstein frame
metric

gEMN = e−φ/2gMN . (5.16)

In this frame the action reads

SE10 ⊃
∫
d10x

√
−gE

[
RE +

|dτ |2

2(Im τ)2
− |G3|2

2Im τ

]
+ . . . , (5.17)

in which we have employed the redefinitions

τ = C0 + ie−φ , G3 = F3 − τdB2 . (5.18)

The complex field τ is known as the axio-dilaton, as it combines the real NSNS scalar φ (the
dilaton) and the RR pseudoscalar C0. Now we can see that under the transformation

τ → aτ + b

cτ + d
, M =

(
a b

c d

)
∈ SL(2,R) , (5.19)
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the second term in eq. (5.17) remains invariant. The same occurs for the third term, provided the
SL(2,R) transformation mixes the NSNS and RR 2-forms given by(

C2

B2

)
→M

(
C2

B2

)
. (5.20)

In fact, it can be shown that this symmetry extends to the full type IIB supergravity theory,
including its fermionic sector. Note in particular that for a constant C0, the transformation

M =

(
0 1

−1 C0

)
(5.21)

maps φ→ −φ, i.e. gs → g−1
s . Even though, we have not discussed whether or not the symmetry

is protected from quantum effects, the previous result is very interesting as it somehow hints
to the fact that the strong coupling limit of the type IIB superstring theory is again a type IIB
superstring [95]. Due to the menagerie of effects which keep the superstring theory finite, the
SL(2,R) symmetry of the supergravity limit has scarce chances to survive at the quantum level.
In particular, it is shown that D(-1) instanton effects break SL(2,R) to its discrete subgroup
SL(2,Z) and that this surviving symmetry is in fact preserved at the quantum level. Note also
that, under a generic transformation (5.19), the string coupling transforms according to

gs →
gs

(cC0 + d)2 + c2g2
s

, (5.22)

such that the SL(2,Z) suffices to exchange between strong and weak coupling limits. The fact
that the SL(2,Z) is a manifest symmetry of the type IIB theory, implies that the two form fields
B2 and C2 are mapped to linear integer combinations. The coefficients are integer and not simply
real is a consequence of the fact that many non pertubative objects of the theory carry topological
charges under B2 and C2. These charges are integer quantized and this is somehow consistent
with the SL(2,Z) transformation for those. To see this in more detail, let us recall the WS action
(5.9) from which we saw that the fundamental superstring carries one unit of charge under the
NSNS B2 field. As SL(2,Z) mixes among B2 and C2, it thus follows that there must exist an
analogous object which is electrically charged under C2. This object is known as a D1 string.
More in general, the SL(2,Z) invariance predicts the existence of arbitrary (p, q) strings, which
in the perturbative type IIB theory can only be reached as solitonic, non-perturbative objects [96].

As a short digression, let us briefly discuss some specific features of the brane zoo in type IIB. As
already suggested the p + 1-form RR potentials can be thought of as generalization of the elec-
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5.2 SL(2,Z) invariance and 7-brane monodromies

tromagnetic potential, sourced by the D-branes. Brane configurations allow for a perturbative
description if their backreaction on the geometry is negligible, at least asymptotically away from
the branes. A Dp-brane can be regarded as a point source in the transverse 9− p directions. For
the case of a single Dp-brane, the p + 1-form potential corresponds to a solution to the Poisson
equation in the transverse direction. For p < 7 the solutions to the supergavity action (5.17), for
the dilaton profile and Cp+1 read [97]

e2φ = e2φ0H(3−p)/2
p , Cp+1 = e−φ(H−1

p + 1)dx0 ∧ dx1 ∧ . . . ∧ dxp , (5.23)

with Hp = 1−Qr(p−7), r =
∑

i>p(x
i)2, and Q being the soliton charge, which can be computed

by integrating the RR flux over an 8− p sphere at transverse infinity, i.e.

Q =

∫
S8−p

d ∗ Fp+2 . (5.24)

Note from eq. (5.23) that the dilaton asymptotes to φ0 away from the brane, so that eφ0 is taken
as the effective value of the string coupling relevant for the large volume limit. Note also that for
a D3-brane, in particular, the dilaton profile is constant over the whole space.

As already pointed out, the previous arguments do not apply to the D7-brane. In the two di-
mensional space transverse to the D7-brane, the solutions to the Poisson equation scale logar-
ithmically with the distance to the source. For a single D7-brane (Q = 1) located at z0 in the
transverse dimension, eq. (5.24) translates into

1 =

∫
S2

d ∗ F9 =

∮
S1

F1 =

∮
S1

dC0 , (5.25)

which implies that when encircling the D7-brane, theC0 form experiences the monodromyC0 →
C0 + 1 [98]. Thus, after compactifying the transverse coordinates z = x9 + ix10, we observe that
the axio-dilaton field admits the expansion1

τ(z) =
1

2πi
ln

(
z − z0

λ0

)
+ ... , (5.26)

with some constant coefficient λ0. The above result implies a very dramatic behavior for gs.
In particular, note that in the limit |z − z0| → |λ0|, the string coupling becomes divergent.
The perturbative description holds in the vicinity of the D7-brane (|z − z0| � |λ0|) where one

1 We are interested in supergravity solutions which preserve half of the supersymmetries. In these situations τ must
be a holomorphic function of z [99].
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z0

τ

τ + 1

x10

x9

Figure 5.1: At the position z0 the axio-dilaton τ diverges, hinting at the presence of a 7-brane. When
carrying τ around z0 it becomes τ + 1. This is consistent with the SL(2,Z) symmetry of the torus.

confirms that the supergravity solutions are approximately flat. In the limit |z − z0| → ∞, space
becomes asymptotically flat, but due to the D7-brane it exhibits a deficit angle. Due to this and
given the dramatic behavior of the string coupling in the presence of the D7-brane, a large volume
approach, analogous to that discussed for the other type of branes, seems inadequate.
To conclude our account of the peculiar features of a D7-brane, let us comment on their interplay

with the SL(2,Z) symmetry of the type IIB theory. Note firstly that upon encircling the D7-
brane, the axio-dilaton undergoes a monodromy

τ(e2πi(z − z0)) = τ(z − z0) + 1 , (5.27)

which can be reproduced by acting on τ with the following SL(2,Z) transformation

A = M1,0 =

(
1 1

0 1

)
. (5.28)

As it was pointed out already, SL(2,Z) can be used to build a (p, q)-string out of a fundamental
one, i.e. (

p

q

)
= gp,q

(
1

0

)
=

(
p r

q s

)(
1

0

)
. (5.29)

In analogy with fundamental strings which end on D-branes, (p, q)-strings should end on [p, q]-
branes. The corresponding monodromy of the axio-dilaton in the presence of such objects can
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be inferred from the previous equations

Mp,q = gp,qM1,0 g
−1
p,q =

(
1− pq p2

−q2 1 + pq

)
, (5.30)

whose only eigenvector is a (p, q)-string itself. The relevant feature of the previous relation is
that any [p, q]-brane can be brought into a D7-brane by means of an SL(2,Z) action, so that,
at least locally, the geometry in the vicinity of a [p, q]-brane can not be distinguished from that
backreacted by an ordinary D7-brane. Instead, when one has different [p, q]-branes sitting on top
of each other, the SL(2,Z) action does not suffice to bring them all into a stack of [1, 0]-branes.
Under these circumstances, we expect new phenomena to appear which, in general, can not be
dealt with using perturbative techniques.

Consistent D-brane configurations must be free of tadpoles. As D7-branes carry one unit of
charge under B2, in a consistent theory, the presence of more exotic objects is unavoidable. A
very handy object which helps to construct consistent models while allowing for a perturbative
description is the orientifold. Note that if we put a [3,−1]- and a [1,−1]-brane [100], the net
monodromy of the resulting object is given by:

MO = BC =

(
−1 4

0 −1

)
, (5.31)

where we have definedB = M3,−1 and C = M1,−1. Note thatMO acts on the fundamental string
by orientation reversal. For this reason we identify this special combination of [p, q]-branes with
a perturbative orientifold plane O7. Note from the above equation that when surrounding the
orientifold, the axio-dilaton experiences the shift

τ → τ − 4 , (5.32)

implying that orientifolds carry minus four units of charge under B2. We can now construct
consistent compactifications combining D7-branes and O7 planes, as four D7-branes together
with an O7 plane account for a null overall charge, cancelling the global tadpole. In order for the
tadpoles to cancel locally the branes and the orientifold must be coincidental. If this is the case,
the net monodromy for the axio-dilaton is zero, so that its profile becomes constant along the
tranverse directions. The resulting gauge symmetry associated to this configuration is SO(8), as
can be confirmed from the usual Chan-Paton counting. Recall that a stack ofN coincident branes
leads to a U(N) gauge symmetry [101]. In general, U(N), SO(N), and Sp(N) groups can be
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realized by combining branes and orientifolds [92]. In contrast to these, exceptional groups only
make sense in a non-perturbative description.

5.3 Evidence for F-theory

The basic observation leading to F-theory has to do with the fact that, in the context of el-
liptic curves, the SL(2,Z) symmetry appears as the modular symmetry of the torus. In two
dimensions, the torus results from dividing the complex plane by a two dimensional lattice, i.e.
T2 = C/(Z+ τZ) such that Im(τ) 6= 0. Note that 1 and τ can be taken as lattice generators, in
which case τ can be directly read as the complex structure of the tours. The lattice (Z + τZ) is
identical to (Z+ τ ′Z), provided τ and τ ′ are related by an SL(2,Z) transformation.

The previous observation permits us to think of the axio-dilaton field as the complex structure
of a genus one curve. The two extra dimensions spanned by the elliptic curve are non-physical
but regarded as a bookkeeping device to track the behavior of the axio-dilaton in the transverse
directions to the D7-brane. As the axio-dilaton takes a particular value at each point in ten-
dimensional space time, the appropriate geometrical description is that of an elliptic fibration.

The elliptic fibration structure is at the core of F-theory. Being the correct description of type
IIB string theory with D7-branes, F-theory epitomizes the geometrization of the physics in type
IIB compactifications (say on an n-fold Bn), by relating it to properties of an (n + 1)-fold Yn+1

which is an elliptic fibration over Bn [99]. At the location of the 7-branes the complex structure
diverges (see eq. (5.26)). In relation to the elliptic curve, the divergence of the complex structure
implies that one of the cycles in the torus becomes shrinkable (i.e. the elliptic curve degenerates).
Hence, 7-branes sit along divisors (codimension one surfaces) in the base manifoldBn where the
elliptic curve pinches off. As observed already, the actual gauge symmetry exhibited by the di-
verse 7-branes in the compactification can be tracked by the τ monodromies in the vicinity of
the divisor. The [p, q] nature of the 7-brane is thus determined by the (p, q) cycle which shrinks
to zero in the fiber.

Of particular interest for us are compactifications to four dimensions, hence we are interested
in F-theory compactification on a four-fold Y4. As it turns out, demandingN = 1 SUSY implies
that Y4 has to be a Calabi-Yau. In the following we aim at a more concrete understanding of
the properties of this theory and its implications for particle physics, specifically, how one can
obtain semi-realistic models in this constructions. However, it is important to recall that so far,
F-theory does not have a description as a fundamental theory. Instead, it should be thought of
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as a non-perturbative description of a class of string vacua which in certain limits can be ac-
cessed via dualities to the heterotic string, type IIB and M-theory [96]. In our quest for model
building within F-theory, these dualities will be reviewed in the spirit of extracting the relevant
information concerning the (massless) particle spectrum and their corresponding interactions.

5.3.1 Elliptic fibers from the Weierstraß form

The torus C/(Z + τZ) can be described as a hypersuface in a weighted projective space, this
allows us to use some complex (algebraic) geometry techniques to study the fiber, and further,
the whole elliptic fibration. Suitable coordinates in the torus must be functions which are doubly
periodic in the complex plane. It was observed by Weierstraß that with the exception of the
constant function over C, a doubly periodic function must at least contain a double pole at
the origin. It follows from the periodicity that the same pole should occur at any lattice point.
After including additional terms needed to ensure convergence, a doubly periodic function with
a double pole takes the form

℘(z, τ) =
1

z2
+
∑
m,n 6=0

[
1

(z +mτ + n)2
− 1

(mτ + n)2

]
. (5.33)

A Laurent expansion for ℘(z, τ) leads to

℘(z, τ) = z−2 +
π

15
E4(τ)z2 +

2π6

189
E6(τ)z4 +O(z6) + . . . , (5.34)

in which E2k(τ) are Eisenstein series (see e.g. [102])

E2k(τ) =
1

2ζ(2k)

∑
m,n 6=0

1

(mτ + n)2k
. (5.35)

After taking the derivative of ℘(z, τ) one can show that the following relation is met

(℘′)2(z, τ)− 4℘3(z, τ) +
8π4

3
E4(τ)℘(z, τ) = −8π6

27
E6(τ) +O(z) + . . . . (5.36)

The crucial point is that the right side of the above equation is a doubly periodic holomorphic
function, hence constant. With the aid of the following redefinitions

x = −℘(z, τ)

π2
, y =

i℘′(z, τ)

2π3
, f = −1

3
E4(τ) , g =

2

27
E6(τ) (5.37)
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one recovers the so called short Weierstraß form, which corresponds to the algebraic description
of the elliptic curve

PW = y2 − x3 − fx− g = 0 . (5.38)

Note that ℘ has been defined up to a complex scaling, i.e. the Weierstraß form is invariant up
to a C∗ action 1 → λ1, x → λ2x, y → λ3y, such that [1 : x : y] are homogeneous coordinates
in the weighted projective space P1,2,3. The fiber degenerations occur whenever the relations
PW = 0 and dPW = 0 hold. It turns out that these conditions are only met if the polynomial
x3 + fx+ g = 0 has a zero of degree higher than one. This property is encoded in the vanishing
of the discriminant

∆ = 4f 3 + 27g2 . (5.39)

Recall from eq. (5.37) that f and g depend on the complex structure τ , however they can not be
used to read off the complex structure directly as they are not modular invariant: Note that by
shifting τ to (aτ + b)/(cτ +d) one gets a rescaling E2k(τ)→ (cτ +d)2kE2k(τ) in the Eisenstein
series. For this reason one has to take a suitable fraction in order to take the inversion. One such
alternative is

j(τ) =
4(24f)3

∆
, (5.40)

known as the SL(2,Z) invariant Jacobi function [96]

j(τ) = e−2πiτ + 744 + 196884e2πiτ + . . . . (5.41)

Having introduced the algebraic form of the elliptic fiber together with some useful tools to track
its behavior, we find it convenient, at this point, to describe a more abstract approach to write
elliptic curves as an algebraic variety, i.e. as the vanishing of a set of homogeneous polynomials
in a projective space. We start with some generalities and then we specialize to the case of our
interest, which is that of genus one curves.

To start with, consider an algebraic variety X with an open cover {Uα}α∈A and a given divisor
D ⊂ X . Locally D can be written as the vanishing of a meromorphic function:

D ∩ Uα = {ϕα = 0} ⊆ Uα . (5.42)
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If ϕα factorizes as ϕα =
∏
ϕmaα, a, then the divisor can be written as D = maDa, in which Da are

defined by the vanishing of the ϕα, a. The divisor can be used to define the line bundle OUα(D)

as the set of rational functions ψ such that ψϕα is regular over the whole of Uα. This means that
any ψ ∈ OUα(D) has its poles completely contained in D. Any element in OUα(D) is called
a (local) section of OUα(D). Further one can see that the patching among open sets Uα, Uβ is
given by rational functions on Uα ∩ Uβ , thus it makes sense to define the module OX(D) as the
set of global sections with poles on D. Note that the zeroes of a global section zi ∈ OX(D)

define additional divisors Di which are said to be linearly equivalent to D, i.e.

Di ∩ Uα = {ziϕα = 0} ∈ Uα , (5.43)

where we have used ϕα to make zi regular on Uα. Similarly a global section zk of OUα(mD)

is made regular on Uα upon multiplication by ϕmα . This motivates the embedding of the global
sections of OUα(mD) as coordinates in a weighted projective space.

Now we specialize to the elliptic curve for which D corresponds to a generic point. In this
particular case, the Riemman-Roch theorem [103] implies that the dimension of OX(mD) is
precisely m. To rephrase this in terms of the early analysis at the beginning of this section, The
divisor D we considered was the point at the origin. Then we search for periodic functions with
poles at these points, i.e. elements ofOX(mD). As we stressed already, there are no doubly peri-
odic functions with a single pole, for which reason OX(D) is spanned by the constant function
over the whole X = T2

OX(D) = 〈1〉 , (5.44)

one step further, we found x ∼ ℘(z, τ),

OX(2D) = 〈12, x〉 , (5.45)

and with regards to poles of order 3 we found y ∼ ℘′(z, τ), hence

OX(3D) = 〈13, 1x, y〉 . (5.46)

It is then observed that 1, x and y can be used to generate all sections of OX(4D) and OX(5D)

OX(4D) = 〈14, 12x, 1y, x2〉 , (5.47)

OX(5D) = 〈15, 13x, 12y, 1x2, xy〉 . (5.48)
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For OX(6D), according to the Riemann-Roch theorem we expect six generators. However by
taking products among 1, x and y we find seven sections

16, 14x, 13y, 12x2, 1xy, x3, y2 , (5.49)

so that there must be a linear relation among them. This relation is known as the Tate form. It
can be brought into the Weierstraß form after some redefinitions of x and y. These redefinitions
are discussed in section 5.5.1.

The algorithm we have just discussed can be used to embed the elliptic curve into different
weighted projective spaces, for example, as the vanishing of a cubic polynomial in P3. Even
though many of these descriptions are equivalent to the Weierstraß form, some special proper-
ties of the fiber can be more transparently seen in a different ambient space. In particular, the
embedding of the elliptic fiber in dP2 will be of great relevance for the discussion of global U(1)
symmetries in F-theory (sect. 6.1.1).

5.3.2 Elliptic Fibrations

In writing the elliptic curve as the vanishing of a degree six polynomial in P1,2,3, we have intro-
duced the coefficients f and g, from which the complex structure τ can be read off. In an elliptic
fibration we then expect f and g to depend on the base coordinates so that τ gets modulated over
the base space Bn. One can straightforwardly see that the elliptic fibration encodes the correct
behavior for the complex structure in the presence of 7-branes: Suppose that along a divisor
S ⊂ Bn given by w = 0, the discriminant ∆ vanishes to order N . Taking the leading term in eq.
(5.41), we see that in the vicinity of S the complex structure exhibits the behavior

τ ∼ N

2πi
ln(w) , (5.50)

which is in accordance with the observations made in the previous sections, and reveals the pres-
ence of N 7-branes wrapping the divisor S.

The elliptic fibrations of our interest are specified by a projection map

π : Yn+1 → Bn , (5.51)

such that for b, a generic point in Bn, π−1(b) is a genus one curve. Note that in the Weierstrasß
form, the point at infinity [0 : 1 : 1] is always a part of the fiber, and it is independent of f
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and g. This fact is related to the fact that elliptic fibrations with the Weierstraß form include a
holomorphic section, i.e. an embedding σ0 : Bn ↪→ Yn+1, such that π ◦ σ0 is the identity map
on Bn. This holomorphic map σ0 is commonly referred to as the zero section. The presence of
a section is what makes the Weierstraß form suitable as a description of a wide class of elliptic
fibrations. This is the case because any elliptic fibration with a section2 can be mapped to the
Weierstraß model (with varying f and g) by means of a birational morphism.

Elliptic fibrations rendering some amount of supersymmetries unbroken are of outmost interest
for phenomenology, for example in the case of Yn+1 being a Calabi-Yau manifold. It can be
shown that the fiber degenerations introduce a curvature term, so that if Yn+1 is a CY manifold,
such a curvature term must be counter accounted by the base. This relation reads3

c1(TYn+1) ∼ π∗
(
c1(TBn)− 1

12
[∆]

)
, (5.52)

in which c1(TYn+1) and c1(TBn) are the first Chern classes of Yn+1, andBn, respectively, and π∗

is the pullback fromBn to Yn+1. The two form [∆] is related to the vanishing of the discriminant,

[∆] = ord(∆)|Si [Si] (5.53)

where [Si] are dual to base divisors where the fiber degenerates, and ord(∆)|Si denotes the van-
ishing order of ∆ on Si (see. table 5.1). With this machinery at hand we see that the Calabi-Yau
condition on the elliptic fibration reads:

[∆] = ord(∆)|Si [Si] = 12c1(TBn) , (5.54)

which corresponds to the F-theory uplift of the D7/O7 tadpole cancelation conditions from the
perturbative setup. Note also that in the perturbative regime, one would naïvely think that, as in
the heterotic theory, in order to achieve N = 1, the “physical” compactification space Bn, must
be Calabi-Yau. From the previous discussion we have learnt that in the presence of 7-branes,
some supersymmetry can be mantained, but the geometry of Bn is deformed away from the CY
regime. This is another exemplification of the notorious backreaction that 7-branes have on the
geometry, and adds to that of the cigar-shaped transverse directions described already in section
5.2. Note that eq. (5.54) also imposes constraints on the degree of f and g, which can be taken as

2 Possible elliptic fibrations with a section arise from the vanishing of a restricted cubic onP3, or a degree four one
in P1,1,2, both with varying coefficients, just to cite some celebrated examples [96, 104].

3 The formula (5.52) is exact for Y2 = K3 [105, 106], for higher dimensional base manifolds, an “error term” must
be included. However, such an error term turns out to be irrelevant in the case Yn+1 is actually a CY.
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sections of line bundles. As c1(TBn) = −c1(KBn), with KBn the canonical bundle of the base,
we then get

[27g2 + 4f 3] = −12c1(KBn) . (5.55)

Hence, it follows that f and g are sections of K−4
Bn

and K−6
Bn

, respectively. Now we turn back to
the short Weierstraß form (5.38), as in order to keep homogeneity 1, x, and y must be adjusted
to include their base dependencies. Homogeneity is restored upon picking x out of L2 ⊗K−2

Bn
, y

as a section of the bundle L3 ⊗K−3
Bn

, and 1 from L1 ⊗ O. Here Li is a degree i line bundle on
the fiber and O is the trivial bundle on the base.

5.4 F-theory as a dual to M-theory

The type IIB string theory is related by T-duality to the type IIA theory, which in turn, can be
viewed as the reduction of 11 dimensional M-theory on a circle [16]. To see how the duality
extends to F-theory, let us consider M-theory on R1,8 × T2, one can then shrink one circle
S1
A of the torus to obtain the perturbative type IIA theory on R1,8 × S1

B, with coupling constant
gIIA
s ∼ RA (the radius of S1

A). As a next step one can perform a T-duality transformation to obtain
the IIB theory on R1,8 × S̃1

B, where S̃1
B is the dual cycle. On the IIB side, the coupling constant

is given by gIIB
s ∼ gIIA

s /RB ∼ RA/RB. Note that, as before, the string coupling is related to the
complex structure of a torus4, which is physical on the M-theory side. In the limit Vol(T2)→ 0

with τ fixed, one reaches the decompactification limit of S̃1
B. The previous argument serves

to further identify M-theory on R1,8−2n × Yn+1 as the dual of F-theory on R1,9−2n × Yn+1, in
the limit of vanishing fiber volume. This duality is of great relevance to discuss fluxes and to
understand the origin of the gauge symmetry, to which we devote the remainder of this section.
Another very important application of this duality is related to the observation that M-theory on
a Calabi-Yau fourfold leads to a three dimensional theory with four supercharges [108]. When
shrinking the fiber, i.e. oxidating the theory to four dimensions, we see that the supercharges
match the ammount needed for N = 1 supersymmetry. This is why F-theory compactifications
on CY fourfolds are so widely studied, as they lead to the ideal setup for particle model building.

5.4.1 Non-Abelian gauge symmetries from singular fibers

The M-theory approach to F-theory permits us to understand the emergence of the gauge sym-
metry from fiber degenerations, in terms the M2 brane spectrum, as well as reductions of the

4 If the cycles RA and RB are perpendicular RA/RB = gIIBs is precisely the imaginary part of the complex
structure. In more general cases one has to consider the T-duality transformation for the RR field C0 to show that
the relation gIIBs = Im(τ) still holds [107].
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Figure 5.2: If Yn+1 exhibits a singularity over a certain divisor S. It can be blown up to Ȳn+1, where the
singular fiber acquires the shape of a tree ofP1’s over S. The chain depicted here corresponds to the affine
Dynkin diagram of SU(N). We have also depicted the zero section as the point in the fiber which can be
tracked over the whole of the base, and serves to identify the affine node Γ0 from the singular regime.

three form potential C3 on given cycles. To begin with, let us remark that the elliptic fiber can
degenerate badly enough to make the full fibration Yn+1 become singular. In this case one can
recur to standard methods of algebraic geometry to resolve the singularities. In many of the rel-
evant cases, the smoothing of Yn+1 can be done while preserving its Calabi-Yau property.

Heuristically, the resolution can be seen as the singular fiber being replaced by a tree of P1s,
which we denote by Γi, i = 0, 1, ..., rk(g). Since the fibration has a section, it must intersect one
of the P1s, which we set to be Γ0 and referred to as the affine node. Note that in this sense, Γ0 is
related to the non-singular part of the fiber before it was blown up. The volume of Γ0 is then the
physical volume5, so that Yn+1 is recovered from its smooth version Ȳn+1, in the limit when all
other Γi shrink to zero [106].

The fiber resolutions follow a similar pattern as in the ADE classification, in the sense that the
tree of P1’s intersects like the extended Dynkin diagram of a Lie algebra g. The amount of
nodes (which we anticipatedly denoted by rk(g)) and the appropriate resolution are related to
the vanishing order of f , g and the discriminant ∆. The classification of the singularities was
carried out by Kodaira [105] for the specific case of Y2 = K3 and it is summarized in table
5.1. This classification carries over to arbitrary Yn+1. However, in higher dimensions, the fiber
does not degenerate over points, but over entire surfaces (divisors) in the base. Because of that,
and given the possibility for these surfaces to exhibit some monodromies, G2, F4 as well as some

5 The presence of the zero section helps to track the fiber volume over the whole of the base, and this is relevant to
take the F-theory limit. In general, elliptic fibrations without a section do not allow for a CY resolution [109].
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ord(f) ord(g) ord(∆) Fiber type Singularity type Monodromy

≥ 0 ≥ 0 0 smooth -

(
0 1

−1 0

)

0 0 n In An−1 (SU(n))

(
1 n

0 1

)

≥ 1 1 2 II -

(
1 1

−1 0

)

1 ≥ 2 3 III A1

(
0 1

−1 0

)

≥ 2 2 4 IV A2

(
0 1

−1 −1

)
2 ≥ 3

n+ 6 I∗n Dn+4 (SO(2n+ 8))

(
−1 −n
0 −1

)
≥ 3 2

≥ 3 4 8 IV∗ E6

(
−1 −1

1 0

)

3 ≥ 5 9 III∗ E7

(
0 −1

1 0

)

≥ 4 5 10 II∗ E8

(
1 −1

1 0

)

Table 5.1: The Kodaira classification of singular fibers. In case ord(∆) ≥ 10, the fiber singularities
become terminal in the fibration [106].

non-simply connected examples might occur if n > 1. At higher base codimensions the situation
becomes even more critical, as some fibers appear which do not have a counterpart as a Dynkin
diagram [110, 111].

Let us comment briefly on the compendium of fiber degenerations given in table 5.1. The
simplest fiber singularity one can imagine is one of the I1 type, where f and g are non-vanishing
and ∆ has a zero of order one. This type of singularity is not enough to produce a singularity in
Yn+1, so that the fiber is not blown up in this case. At higher vanishing orders in the discriminant
Yn+1 becomes singular and one sees that in addition to the expected An- and Dn-type fibers, one
also encounters the finite E-chain. Now we see why in type IIB they can not be perturbatively
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realized: Take for instance the E8 singularity, associated to the following monodromy

ME8 =

(
1 −1

1 0

)
= A7BC2 , (5.56)

so that, in terms of [p, q]-branes, the E8 symmetry is achieved by putting seven D7-branes, an
orientifold and a [1,−1]-brane (with no perturbative counterpart. Similarly, one can see that ME8

maps the fundamental string to a (1, 1) string, which implies that this object is crucial for the
enhancement to an exceptional symmetry. In contrast to fundamental strings, these solitonic ob-
jects are multi-pronged so that they overcome the restrictions of two-index Chan-Paton factors
[112, 113].

Lets assume that over a given codimension one surface S ⊂ Bn, the fiber degenerates badly
enough to make Yn+1 become singular. This implies that the fiber in Ȳn+1 over S contains
more than one irreducible node. Assume further that these nodes intersect as the Dynkin dia-
gram of a Lie algebra g. Thus, after reducing the M-theory three form C3 along the nodes Γi

i = 1, . . . , rk(g) we obtain the following massless Abelian vector fields6

Ai =

∫
Γi

C3 , (5.57)

The cycles Γi are dual to two forms in H2(Ȳn+1) which do not belong to H2(Bn). The amount r
of Abelian gauge potentials is counted by [114]

r = h1,1(Ȳn+1)− h1,1(Bn)− 1 , (5.58)

where we have substracted the contribution of the affine node Γ0. As one can already anticipate
from the presence of extra two forms in Ȳn+1, the resolution contains additional divisors Di,
which are fibrations of each of the P1 components over S, i.e. Di : Γi → S. Since the nodes
intersect in the Dynkin diagram of g, the following relation is met

Γi ·Dj = −Cij(g) , (5.59)

with Cij(g) being the Cartan matrix of the Lie algebra g. The enhancement to a non-Abelian
gauge symmetry can be explained as follows: M-theory on Ȳn+1 includes M2 branes wrapping
chains of cycles αk =

∑
kmkΓk. Taking into account all inequivalent combinations, one ends

6 Recall that the affine node Γ0 parameterizes the volume of the fiber. For this reason, the reduction of C3 along Γ0

does not give a gauge potential, but components of the metric in Yn+1.
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Figure 5.3: Additional sections need not to intersect the fiber precisely at the affine node Γ0. In principle
the might wrap entire fiber components at codimension two.

up exhausting the roots of g. These states have masses proportional to the volume of the Γi. In
the limit Ȳn+1 → Yn+1 the U(1)rk(g) gets enhanced to G (the Lie algebra of which is precisely g).

All of the previous considerations were made at finite fiber size. The shrinking of Γ0 along
one cycle leaves us with the type IIA theory with gauge symmetry G. As T-duality does not
affect the gauge symmetry, G is then the gauge symmetry one expects on the F-theory side.

5.4.2 The (not so) singular story of U(1)’s in F-theory

Previously we noted that F-theory on Yn+1 is equipped with r U(1) potentials (see eq. (5.58)).
Out of those, not all need to belong to the Cartan subalgebra of a non-Abelian factor. From the
Kodaira classification we saw that the simplest blow up of Yn+1 leads to an SU(2) symmetry.
This implies that we have to develop further machinery in order to deal with U(1) factors. The
reason for this is that, in contrast to the non-Abelian ones, U(1) symmetries are, in general, not
localized over any base divisor but related to more global properties of the compactification. In
fact, U(1) gauge factors are related to the presence of additional sections of the elliptic fibration
[106, 114]. A pathological symptom of having an extra section is the presence of SU(2) singular
fibers at codimension two. From the resolution of these one obtains an additional divisor associ-
ated with the U(1) potential.

As stressed already, elliptic fibrations governed by the Weierstraß form include a holomorphic
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section (the zero section σ0) that specifies the base of the fibration7, In terms of the Weierstraß
model (5.38), σ0 is related to the rational point O = [0 : λ2 : λ3] on the torus. In [116, 117], ad-
ditional sections were constructed by factorizing the Weierstraß equation. These extra sections
need not be holomorphic. They simply have to be rational, so that in principle they can wrap
entire fiber components at base codimensions greater than one.

The set of sections is known to form the so-called Mordell–Weil (MW) group of the compac-
tification [118]. As rational sections can be thought of as rational points in the fiber, for many
purposes it suffices to study the MW group of rational points. The first thing to fix is the identity
element, which we take as a pointO on the torus (the one related to the zero section). Addition of
two rational points P and Q on the elliptic curve E is defined as follows [119]: A line P1 ⊂ P2

intersects the elliptic curve in three points (counted with multiplicities). In this way, given two
points P and Q, one can define a third point R as the point of collision of the line PQ with E.
Group addition is now defined by taking P+Q as the point where the lineOR intersectsE. If we
consider an elliptic curve to be specified as a cubic in P2 with coefficients from the field Q, we
see that the rational points on the elliptic curve indeed form a group, which is finitely generated.
This can be applied to the previous discussion by mapping the cubic inP2 to the Weierstraß form
(5.38) in P1,2,3. Then one observes that a non trivial MW group implies some restrictions for f
and g in the Weierstraß form [120].

To proceed further, let us first review the kinds of divisors we have dealt with so far. First of
all, we have the exceptional divisors Di, related to the Cartan generators of the non-Abelian
groups, and the zero section σ0. In addition to those we have vertical divisors Bα which corres-
pond to pullbacks of base divisors, and finally we will have the (non-trivial) generators of the
MW group of rational sections σI . In the F-theory limit, the extra nodes Γi glued into the fiber
are shrunk to zero, and this process must not affect the base of the fibration [121], i.e.

Γi · σ0 = Γi ·Bα = 0 . (5.60)

In this way, the irreducible nodes have the correct interpretation as vector multiplets in the F-
theory limit. Thus, in order to find out the correct U(1) charges under the Mordell–Weil gen-
erators, we need a sort of orthogonalization procedure in order to avoid mixtures with the base

7 See [115] for a discussion with rational sections instead of holomorphic ones.
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divisors, and also with the Cartan generators. This can by achieved by means of the Shioda map

s(σI) = σI − σ0 − (σI · σ0 ·Bα)Bα −KBn +
∑
g

(σI · Γi)(C−1(g))ijDj , (5.61)

where the sum is implied over all non-Abelian factors g, with C−1(g) being the inverse Cartan
matrix. Now the s(σI) are in one to one correspondence with the Abelian vector fields [121].
Note that this orthogonalization procedure also gets rid of the zero element of the MW s(σ0) = 0,
which, as mentioned already, contributes metric components but not U(1) potentials. The charges
for the fields can be computed as intersections of the corresponding irreducible nodes with the
Shioda map. Note that, by construction, all irreducible fibers at codimension one have a trivial
intersection. This is so as to guarantee that all vector multiplets are neutral under under the
U(1)’s. Charged matter appears at codimension two. For example, the singlet fields discussed
at the beginning of this section. An specific example with non trivial MW group can be found
in section 6.1.1. There we sketch how the singlet fields appear and compute their corresponding
charges.

5.5 The heterotic F-theory duality

The heterotic E8 × E8 theory (HE) can be obtained by compactifying M-theory on an interval
S1/Z2, with the E8 factors living at the boundaries [122]. From this it follows that the eleven
dimensional version of the HE theory on T2 must look like M-theory on T2 → S1/Z2. The
presence of the torus allows us to relate the previous description to an F-theory background in
which an additional dimension grows. This extra dimension can be envisaged as an S1 fibered
over the interval, so that these two dimensions fold into a P1. Hence, F-theory on an elliptic
K3 : T2 → P1 can be related to the HE theory on the torus. In fact, the matching of the moduli
spaces for these two theories [99] provides more formal evidence for the duality between them.

To begin with, let us consider a K3 (T2 → P1) compactification of F-theory given by the
following fiber:

y2 = x3 + αs4x+ (s5 + βs6 + s7) , (5.62)

where we take [1 : s] as inhomogeneous coordinates in P1, and α, β complex coefficients map-
ping to the torus data on the HE side [114]. From the Kodaira classification we see that the
fiber exhibits an E8 singularity at s = 0. Similarly we see that upon redefinitions ỹ = y/s6,
x̃ = x/s4, and s̃ = 1/s, we find another E8 singularity living at s = ∞. This shows that the
perturbative groups from the HE side localize at the poles of theP1 in the F-theory dual. More in
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Figure 5.4: A schematic picture of the heterotic/F-theory duality. The HE string compactified on Z2 :
T2→ P

1 with gauge group G1 ×G2 is dual to F-theory on Y2 : K3→ P
1 with G1 and G2 localized at

the poles of the intermediate P1.

general, F-theory on K3 fibrations Yn+1 : K3 → Bn−1 will have a heterotic dual compactified
on Zn : T2 → Bn−1. As discussed in section 5.5, the E8 × E8 of the HE theory can be broken
by means of a holomorphic vector bundle V1 ⊗ V2, taking values in H1 × H2 ⊂ E8 × E8, to its
commutant G1 ×G2. The resulting theory is generally chiral, for which reason the duality must
map the bundle data, partially to the geometry, and partially to a flux responsible for the chirality
on the F-theory side. This is one of the advantages of the duality: It helps the construction of
fluxes in the F-theory side. A more concrete account of this is provided in section 6.2. For now,
let us concentrate on the geometric data. Similarly as before, the groups G1 and G2 will localize
again at the poles of the P1 base (in K3). Hence, the geometric part of the bundle data will serve
to deform the E8 singularity into one of the G1 (G2) type.

Before discussing the precise details, let us first sketch how the duality helps us to depart
from the Kodaira classification in the general case of Yn+1 (n > 2). In the heterotic duals dis-
cussed above, the gauge symmetries localize at the poles of the intermediate P1. The degenerate
fiber over one of the poles will be reproduced over the whole of Bn−1. However, when moving
around a point in the base, the fiber might exhibit monodromies [123], which will identify among
irreducible fibers. This situation is analogous to the orbifolding procedure and implies that one
obtains a smaller symmetry compared to that one naively expects from the Kodaira classification.
In this way we get, for example, F4 out of an E6 Kodaira fiber.

Finally let us recall, once again, that our main interest are F-theory compactifications on Calabi-
Yau fourfolds. Then in order to preserve the N = 1 SUSY on the heterotic side, the elliptic
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5 F-Theory Compactifications

fibration Z3 needs to be a Calabi-Yau threefold (HE compactifications with N = 1 SUSY were
already discussed in section ). The previous condition turns out to be very restrictive, leading to
few possibilities for the base B2: It can only be a BlrP

2 (a blow up of P2 at r points), a blow up
of the Hirzebruch surface Fn, or the Enriques surface K3/Z2 [96].

5.5.1 Tate models

The Tate algorithm [124, 125] is a refinement of the Kodaira classification. Its warhorse is the
Tate form found at the end of section 5.3.1 which reads

PT = x3 − y2 + a1xy + a2x
2z2 + a3yz

3 + a4x+ a6 = 0 . (5.63)

The Tate form can be brought to the Weierstraß form by completing the square in y and the cube
in x and subsequently redefining the fields. In this way the parameters f , g and the discriminant
∆ of (5.39) can be recovered from the ai by means of the following relations

f = − 1

48
(β2

2 − 24β4) , g = − 1

864
(−β3

2 + 36β2β4 − 216β6) ,

∆ =
β2

2

4
(β2

4 − β2β6)− 8β3
4 − 27β2

6 + 9β2β4β6 ,

(5.64)

where

β2 = a2
1 + 4a2 , β4 = a1a3 + 2a4 , β6 = a2

3 + 4a6 . (5.65)

First of all, let us remark that in contrast to f and g, the coefficients ai need not to be globally
well defined sections of the base. This means that, generically, the Tate form allows us to handle
the singularities but does not necessarily capture all the global properties of the fibration [96].
With this clarification being made, assume that the fiber degenerates along a divisor S, defined
by the local equation w = 0. Then the ai can be written as ai = biw

ord(ai), where ord(ai) denotes
the corresponding vanishing order. Analogously as in the Kodaira classification, the type of
singularity will be inferred by these vanishing orders. The complete Tate classification can be
found elsewhere [96]. Here we only account for the types of singularities relevant for grand
unified theories (see table 5.2).
With this machinery at hand we contemplate the possibility of an SU(5) singularity described by
the following behavior of the ai in the vicinity of the divisor S

a1 = b5 , a2 = b4w , a3 = b3w
2 , a4 = b2w

3 , a6 = b0w
5 . (5.66)
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Sing. Type Fiber type ord(a1) ord(a2) ord(a3) ord(a4) ord(a5) ord(∆)

Is5 SU(5) 0 1 2 3 5 5
Is6 SU(6) 0 1 3 3 6 6
Is7 SU(7) 0 1 3 4 7 7
I∗s1 SO(10) 1 1 2 3 5 7
I∗s2 SO(12) 1 1 3 3 5 8

VI∗s E6 1 2 2 3 5 8

Table 5.2: The Tate classification of singular fibers relevant for SU(5) GUTs. An exhaustive account of
the classification can be found, e.g. in [124].

Inserting the parametrization (5.66) into (5.64), we find for the discriminant ∆

∆ = −w5
[
P 4

10P5 + wP 2
10(8b4P5 + P10R) +O(w2)

]
, (5.67)

with

P5 = (b2
3b4 − b2b3b5 + b0b

2
5) , P10 = b5 , R = −b3

3 − b2
2b5 + 4b0b4b5 . (5.68)

From (5.66) we see that the vanishing order ofw in ∆ is increased to 6 and 7 on the subloci where
P5 and P10 vanish, respectively. In analogy with intersecting D-brane models, these symmetry
enhancements are related to the presence of chiral states8. According to table 5.2, the singularity
structure at P5 = 0 ∩ S and P10 = 0 ∩ S is consistent with an SU(6), and an SO(10) enhance-
ment, respectively. The type of matter expected for each of these cases can be deduced from the
decomposition of the adjoint representations into irreducible representations of SU(5)× U(1):

P5 : 35 = 240 + 51 + 5−1 + 10 , (5.69)

P10 : 45 = 240 + 102 + 10−2 + 10 , . (5.70)

In fact, the previous observations exceed the range of validity of the Tate algorithm as it strictly
holds for codimension one singularities [126]. It may occur that the symmetry enhancement is
fictitious as described in the beginning of this section. However, the message to take from the
above considerations is that in Y4 matter is found at codimension two loci where the fiber exhibits
further degenerations. Being already in the realms of the uncertain, we can not help ourselves
but to consider the fiber behavior at points in the divisor S where two loci collide. In our SU(5)

8 In the absence of flux, these states come in vector-like pairs
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model we have the following alternatives

pt = {P10 = b4 = 0} , pu = {P10 = b3 = 0} , ph = {P5 = R = 0} . (5.71)

The innocent expectation from table 5.2 is that at these points the singular fibers are of the
E6, SO(12) and SU(7) type, respectively. By looking at the adjoint decomposition into SU(5)
multiplets

pt : 78 = (5 + 5)−3,3 + (10 + 10)−1,−3 + (10 + 10)4,0 + . . . , (5.72)

pu : 66 = (5 + 5)−1,0 + (5 + 5)1,1 + (10 + 10)0,1 + . . . , (5.73)

ph : 48 = (5 + 5)−6,0 + (5 + 5)0,6 + (10 + 10)6,−6 + . . . , (5.74)

we recognize the familiar Yukawa couplings

pt : 10105 , pu : 5510 , ph : 551 . (5.75)

Where in the last term we observe the presence of a singlet. As pointed out in section 5.4.2,
singlets do not live on a locus of S, However, this locus intersects the divisor at the point ph.
The fiber resolutions at codimension three are worth a final remark. Note that we have based
the previous arguments on the assumption that at the points of interest the fiber exhibits an ADE
enhancement. This is not true in general. For instance, when approaching pt along any of the loci,
it is observed that no new P1 appears at pt. Instead, the intersection pattern for the existing P1s
is changed [110]. The 10105 Yukawa coupling at pt without an additional P1 is not in conflict
with our M-theory intuition, since pt corresponds to an interaction and not to the location of
additional matter [126, 127].

5.5.2 The spectral cover

In eq. (5.62) we recognized an E8 singularity from the fiber equation9 y2 = x3 +s5. Even though
that was for the case of an elliptic K3, the same result holds if we think of s as a local coordinate
whose vanishing defines a generic divisor S. We can then deform the E8 fiber in order to recover
an SU(5)-type degeneration over the divisor S [106, 129]

y2 = x3 +
5∏
i=1

(s− ti) , (5.76)

9 The terms βs6 and s7 in (5.62) are subleading near the pole s = 0. Similarly, the term αs4 corresponds to an
irrelevant perturbation of the E8 singularity [128].
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in which the ti are functions on S. They can be interpreted from two complementary perspect-
ives: On the one hand, the SU(5) fiber arises from a partial blow up of the E8 singularity, where
the ti parameterize the volume of theP1’s glued to the E8 fiber. On the other hand, consideration
of the group theoretic breaking E8 → SU(5)×SU(5)⊥, permits to understand the ti as a diagonal
VEV in the adjoint of SU(5)⊥, so that they satisfy b1 =

∑
i ti = 0. Expanding the product in

(5.76) we obtain
y2 − x3 = b0s

5 + b2s
3 + b3s

2 + b4s+ b5 , (5.77)

in which the bi are given by elementary symmetric polynomials of degree i in the ti. Being pull-
backs to S, the bi in (5.77) must be sections of the bundle η − ic1(S) where η = 6c1(S)− t(S),
with c1(S) and −t(S) the first Chern class of the tangent and the normal bundle of S, respect-
ively. It is not a coincidence that the polynomials bi have the same name as those in the expansion
(5.66), as it can be shown [127, 130] that they are the same in the limit w = 0, i.e. they are the
leading order terms of the expansion of the Tate form coefficients ai in powers of w. Due to the
previous arguments, eq. (5.76) corresponds to an even more local description of the SU(5) fiber.

In the ultra-local approach we are considering, the divisor S can be interpreted as hypersur-
face in a projective non-CY threefold KS → S, with KS the canonical bundle of S and s an
affine (inhomogeneous) coordinate on KS [131, 132]. In this space the spectral curve

C(5) : b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = 0 , (5.78)

defines a fivefold cover of S, also known as the spectral cover. This spectral cover construction
captures the information of the various matter curves and gauge enhancements in the ultra-local
zoom-in of S. The correspondence with the matter comes now as follows: If one thinks of the ti
as position dependent VEVs in the Cartan subalgebra of SU(5)⊥, the resulting gauge symmetry
one is left with is SU(5) × U(1)4. The matter curves will be loci on S where some of the ti (or
combinations of them) vanish, thus enhancing the SU(5) symmetry. For example, the 10-plets
of SU(5) are determined by the intersection of S with the spectral curve C(5) i.e.

P10 = b5 = t1t2t3t4t5 = 0 , (5.79)

so that the spectral cover provides at most five 10 curves, given by

Σ10i : ti = 0 . (5.80)

101



5 F-Theory Compactifications

This is in agreement with the decomposition of the adjoint of E8 in terms of SU(5)× SU(5)⊥

248 → (24,1⊥) + (1,24⊥) + (5,10⊥) + (5,10⊥) + (10,5⊥) + (10,5⊥) . (5.81)

The previous equation permits us also to infer the presence of at most ten 5 curves and 24 singlet
curves Σ1ij , which are given in terms of the ti via

Σ5ij : −(ti + tj) = 0 , i 6= j

Σ1ij : ±(ti − tj) .
(5.82)

In the simplest case, the spectral cover will have four U(1) symmetries resulting from the adjoint
breaking of SU(5)⊥. The U(1) generators can be taken as traceless linear combinations of ti,
satisfying the relation titj = δij . Thus, the charges of a field can be read out of a five dimensional
vector, for example, the charge vector of the 5-plet −(ti + tk) is given by −δji − δ

j
k. The trace-

lessness condition implies that the vector (1, 1, 1, 1, 1) is neutral under all U(1)’s.

Albeit concise, compared to the Tate algorithm, the spectral cover misses the information about
possible monodromies for the ti. In other words, some of the matter curves might be identified
away from the E8 point, leading to fewer curves [133–135]. Thus, depending on the mono-
dromies, there can be zero to four extra U(1) symmetries appearing. Each U(1) is related to a
polynomial of smaller degree nj in the affine parameter s, which can be factored out of the spec-
tral cover equation (5.78), such that all nj’s sum up to five and that the term s4 does not occur.
For one U(1), the spectral cover has to split into two polynomials, which leaves us with the two
possibilities of either a linear and a quartic polynomial (4 + 1 factorization) or a quadratic and
a cubic polynomial (3 + 2 factorization). In this case there is only one U(1), since the ti’s are
identified by monodromies (e.g. t1 ↔ t2 ↔ t3 and t4 ↔ t5 in the 3 + 2 factorization). For these
cases, the U(1) generators are given by

4 + 1 : t1 + t2 + t3 + t4 − t5 , (5.83)

3 + 2 : 2(t1 + t2 + t3)− 3(t4 + t5) . (5.84)

Their corresponding matter spectra, including their U(1) charges are summarized in table 5.3. In
the case of two U(1) symmetries one proceeds in a similar way, finding a 2 + 2 + 1 factorization
and a 3 + 1 + 1 factorization. Higher factorizations of the spectral curve will lead to more U(1)
factors. The spectral cover models exhibiting multiple U(1) symmetries can be found elsewhere
[136]. In the ultra-local approach the U(1) symmetries observed in addition to the SU(5) factor
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Curve q
101 1
105 −4
511 2
515 −3

(a) 4+1 factorization

Curve q
101 2
104 −3
511 4
514 −1
544 −6

(b) 3+2 factorization

Table 5.3: U(1) charges of SU(5) representations for the factorizations with a single U(1) factor. The
indices specify the SU(5)⊥ Cartan weights according to (5.82).

appear to be massless. Note that at this stage there is no way to show that these will be massless
in the global description. If the U(1) are not present in the global description, they are analogous
of the so-called geometrically massive U(1) symmetries of type IIB. In F-theory, this type of
U(1) symmetries are associated to reductions of the M-theory three form along non-harmonic
two forms wA, which in turn, are subject to the condition

dwA = Ca
Aαa , (5.85)

in which αA is a basis of tree forms in the manifold. If any spectral cover U(1) happens to
be massive in the global picture, this implies that its associated two form wA is only harmonic
over the 7-brane, but not over the whole fourfold [137]. Even if some (or all) spectral cover U(1)
symmetries are massive, intuition from the type IIB side tells us that they could play an important
role in the low energy. First of all, in type IIB is possible to tune flux along these factors in order
to induce chirality. Secondly it is argued that geometrically massive U(1) symmetries could
survive in the low energy as global symmetries.
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CHAPTER 6

Model Building in F-Theory

A maggior forza e a miglior natura
liberi soggiacete; e quella cria

la mente in voi, che ’l ciel non ha in sua cura.
Però, se ’l mondo presente disvia,

in voi è la cagione, in voi si cheggia.

Dante Alighieri, Divina Commedia.

In this chapter we make efforts towards model building with F-theory GUTs. Particularly, we
focus on a recent construction based on SU(5) tops. In contrast to heterotic orbifolds, in F-
theory so far one does not have a toolbox of discrete symmetries which have a geometric origin.
However, we can make use of additional U(1) symmetries accompanying the SU(5) in order to
control the phenomenology of the models. We start by briefly discussing the geometric setup,
which includes a fiber with multiple rational points. Then we make a brief review of how the
matter spectrum of these theories can be made chiral by virtue of flux. Further we discuss the
issue of anomaly cancelation in these models. With these ingredients at hand we proceed to
analyze the matter spectra under the assumption that the SU(5) symmetry gets broken down to
GSM by means of the so-called hypercharge flux. Finally, we discuss the phenomenology of the
models obtained, and present appealing models resulting from a bottom-up exploration. These
bottom up models might allow for a geometric realization within F-theory.
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6 Model Building in F-Theory

6.1 Multiple U(1) s from a fiber in dP2

In section 5.4.2 we have discussed how U(1) symmetries arise in elliptic fibrations with multiple
sections. Here we discuss an explicit example of a fiber exhibiting a Mordell-Weil group of rank
two, and illustrate how the U(1) charges of the fields are computed. The example we consider
was worked out in refs. [104, 115, 138], which we partially reproduce.

In section 5.3.1 we showed how to obtain the Weierstraß form from a degree one line bundle.
Now we aim to have three rational points which we denote by O, P and Q, then it suits to start
with a degree three line bundle OX(O + P + Q). This bundle contains three sections which we
denote as u, v and w. The degree six line bundleO2

X contains six monomials u2, v2, w2, uv, uw,
and vw. At degree nine, however, we obtain ten monomials u3, v3, w3, uv2, uw2, uvw, u2v, u2w,
vw2 and wv2, so that they are not all independent. One can see that after suitable redefinitions,
the relation among them takes the form

pT := vw(c1w + c2v) + u(b0v
2 + b1vw + b2w

2) + u2(d0v + d1w + d2u) = 0 (6.1)

This equation cuts an elliptic curve in P2. From the above equation we can identify the rational
points

σ0 : [0 : 0 : w] ,

σ1 : [0 : v : 0] ,

σ2 : [0 : −c1 : c2] .

(6.2)

In an would-be elliptic fibration the coefficients bi, ci, and di are promoted to sections of the base.
Similarly the above rational points are expected to give us rational sections. In order to compute
which singlets generically appear at codimension two, PK has to be brought into the Weierstraß
form. After this is done, we observes that the fiber develops SU(2) singularities whenever any of
the following pairs of conditions is met

d0c
2
2 = b0b1c2 + b2

0c1 ,

d1b0c2 = b2
0b2 + c2

2d2 ,
(6.3)

d1c
2
1 = b1b2c1 − b2

2c2 ,

d0b2c1 = b0b
2
2 + c2

1d2 ,
(6.4)

106



6.1 Multiple U(1) s from a fiber in dP2

c3
1(d0c

2
2 − b0b1c2 + b2

0c1) = c3
2(d1c

2
1 − b1b2c1 + b2

2c2) ,

d2c
4
1c

2
2 = (c2(b1c1 − b2c2)− b0c

2
1)

(b0b2c
2
1 + c2(d1c

2
1 − b1b2c1 + b2

2c2)) .

(6.5)

Thus, one finds the following possible singlet solutions

C11 : b0 = c2 = 0 , (6.6)

C12 : (6.3) with (b0, c2) 6= (0, 0) , (6.7)

C13 : b2 = c1 = 0 , (6.8)

C14 : (6.4) with (b2, c1) 6= (0, 0) , (6.9)

C15 : c1 = c2 = 0 , (6.10)

C16 : (6.5) with (c1, c2) 6= (0, 0) ,

(b0, c2) 6= (0, 0) , and (b2, c1) 6= (0, 0) .
(6.11)

Having the singlet curves, one can now look back and eq. (6.1). One see that at the points σ1 and
σ0, the fiber becomes singular over C11 , and C13 , respectively. These can be cured by two blow
ups of the form

u→ s1u , w → s1w ,

u→ s0u , v → s0v .
(6.12)

With this proper transform, equation (6.13) takes the following form

pT :=vw(c1ws1 + c2vs0) + u(b0v
2s2

0 + b1vws0s1 + b2w
2s2

1)

+ u2s0s1(d0vs0 + d1ws1 + d2us0s1) = 0 .
(6.13)

This fiber will live in the toric ambient space of dP2, and the sections will be given by the
vanishing of some of the toric coordinates. Making contact with the rational points given in
(6.2). The section σ0 defined by {s0 = 0}, and can be viewed as the universal zero section. In
addition to it, one has the following

σ1 : {s1 = 0} , σ2 : {u = 0} , (6.14)
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responsible for additional U(1) factors. In order to compute the charges for the singlets, we will
also need their associated Shioda maps. According to (5.61), these maps are given by

s(σ1) =5(σ1 − σ0 + . . .) , (6.15)

s(σ2) =5(σ2 − σ0 + . . .) , (6.16)

where the dots represent contributions from base divisors. We have not included them here, since,
by virtue of eq. (5.60), they do not make contributions to the singlet charges. The scaling by 5 in
the above equations is convenient if we aim at elliptic fibrations with pT which also contain an
SU(5) singularity. To exemplify how the charges are computed, let us consider the fiber (6.13)
over C11 . Over this locus the fiber becomes pT = s1P , with

P =c1vw
2 + b1u

2ws0 + b2w
2us1

+ u2s0(d0vs0 + d1ws1 + d2us0s1) ,
(6.17)

so that the fiber splits into two irreducible components

Γ0 = {P = 0} ,Γ0 = {s1 = 0} . (6.18)

In the M-theory picture, the singlets will arise from M2 branes wrapping the irreducible fibers.
We see that the sections σ0 and σ2 intersect the fiber Γ0 at generic points, so that the intersection
numbers σ0 ·Γ0 and σ2 ·Γ0 are equal to 1. This also implies that σ0 ·Γ1 and σ2 ·Γ1 are both zero.
Furthermore, we see that σ1 wraps the entire fiber Γ1. Thus, σ0 will intersect Γ0 at two points,
precisely those where Γ0 and Γ1 intersect. Since the sections have intersection number 1 with the
whole elliptic fiber, we deduce that σ1 ·Γ1 = −1. The U(1) charges, as well as the corresponding
intersection numbers have been summarized in table 6.1. There we see that the irreducible fibers
over the codimension two loci give us a pair of vector-like states.

6.1.1 SU(5) completion

The sections described above result from embedding the elliptic fiber into a toric ambient space
(that of dP2). Sections of this type are known as toric sections and constitute a tractable subset
of all rational sections. There are 16 possible ways to write the elliptic fiber as a hypersurface
in a toric ambient space [139], each of which is characterized by its toric diagram or polygon.
The toric sections of these polygons give rise to (the toric part of) their corresponding Mordell–
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Curve σ0 σ1 σ2 s(σ1) s(σ2)

C11 Γ0 1 2 0 5 −5
Γ1 0 −1 1 −5 5

C12 Γ0 0 1 0 5 0
Γ1 1 0 1 −5 0

C13 Γ0 2 1 0 −5 −10
Γ1 −1 0 1 5 10

C14 Γ0 1 0 0 −5 −5
Γ1 0 1 1 5 5

C15 Γ0 0 0 2 0 10
Γ1 1 1 −1 0 −10

C16 Γ0 0 0 1 0 5
Γ1 1 1 0 0 −5

Table 6.1: Intersection numbers and U(1) charges for the singlets of a dP2 fiber.

Weil group1 and have been analyzed in [119]. These polygons can lead to up to three toric U(1)
symmetries.

The polygon gives us a description of the elliptic fiber and its sections. Next we have to include
the information about the possible ways for desingularizing the SU(5) degenerations. In order
to do so, we combine two polygons to form a three-dimensional polyhedron known as a top.
We first place the fiber polygon into the plane z = 0. Parallel to it, at z = 1, we then introduce
another polygon whose integer boundary points correspond to the five nodes of the affine Dynkin
diagram of SU(5) (see Figure 6.1 (b) for an example). In this way, the facet at z = 0 encodes the
generic fiber, whereas the one at z = 1 encodes its SU(5) resolution. The top completion is not
unique and for every of the 16 polytopes there can be multiple tops. Note that tops can be related
by symmetries or might not lead to a flat fibration (which means that there will be an infinite
tower of massless fields), thus reducing the amount of viable tops.

As already mentioned, in order to compute the U(1) charges for the fields, one needs to find
the intersections of the toric sections with the irreducible fiber components. Using the top, these
intersections can simply be read off from the edges that are shared between a vertex of the fiber
polygon that corresponds to the toric section and a vertex of the other polygon that corresponds to
an irreducible P1. To exemplify this, the reader is referred to Figure 6.1, where details of the top
τ5,2 are given. The red lines correspond to the intersections of the sections with the irreducible
fibers. The upper facet of the top in Figure 6.1 (b) is shown in Figure 6.1 (d), from which one can

1 In addition, there can be non-toric sections (i.e. sections that are not simply given by setting one fiber coordinate
to zero) giving rise to further non-toric U(1) factors.
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s1

u s0

w

v

z = 1

z = 0

(a) (b)

σ1

σ2 σ0

σ1

σ2 σ0

σ1 σ2 σ0

σ1

σ2 σ0

(c) τ5,1 (d) τ5,2 (e) τ5,3 (f) τ5,3

Figure 6.1: (a) Toric diagram for the polygon dP2. It has the sections σ0: s0 = 0 (the zero section), σ1:
s1 = 0 and σ2: u = 0, which are marked as red points in the diagram. (b) The polygon is set as the basis
for the SU(5) top at z = 0. The intersections of the sections with the tree of P1’s at z = 1 (see the red
lines in the diagram) serve to compute the charges of the fields via the Shioda map. From the intersections
one can also deduce the splitting for each of the inequivalent flat SU(5) tops allowed for F5: (c) 2-3, 1-4
(d) 3-2, 1-4 (e) 2-3, 2-3 and (f) 1-4, 5-0.

see that this intersection pattern is consistent with a splitting of the form 3-2. By a 3-2 splitting
we mean that the section σ1 intersects a fiber component Γ2 which is two nodes away from that
which is intersected by the zero section Γ0 (counted clockwise). Similarly, for the second U(1)
we have a 1-4 splitting. As we will see in the following, the split is closely related to the charges
of the matter fields under the corresponding U(1) symmetry. Given the presence of the SU(5)
divisors the Shioda maps (6.15) and (6.16) must include their contributions. These will take the
form

s(σI) = 5(σI − σ0 − bI) +Di


4 3 2 1

3 6 4 2

2 4 6 3

1 2 3 4


ij

(Γi · σI) , (6.19)
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Split 5-0 4-1 3-2 2-3 1-4
Q5 0 1 2 3 4
Q10 0 3 1 4 2

Table 6.2: Charge assignments for 5- and 10-curves for all possible splittings.

with bI are some base divisors [115, 138], and Di are the exceptional divisors of the SU(5). Note
that the intersections Γi · σI can be read out from the top, this is what fixes the given splitting.
To find the charge of a given matter representation, we need to compute the intersection of the
Shioda map with its associated curves. In particular, the intersection of these curves with the
exceptional divisors Di will give the Dynkin labels of the representation. Hence, we can see
from eq. (6.19), that the SU(5) contribution to the U(1) charges of all 10-plets (5-plets) is the
same. This is the reason why, under a given split, the charges of all 10-plets, 5-plets and singlets
are subjected to the following relations:

q5 = Q5 + 5Z , q10 = Q10 + 5Z , q1 = 0 + 5Z , (6.20)

where Q5 and Q10 are given in Table 6.2 for all possible splits. This is a result that does not only
hold in our example but applies to all types of sections. Note the charges for the fields in the dif-
ferent spectral cover factorizations also obey the relations (6.20). For example, the charges in the
4+1 factorization match those of a 3-2 splitting, cf. table 5.3 and 6.2. A very important feature
about toric constructions is that the charges of the 10-plets under toric U(1) symmetries are very
constrained: The 10 matter curves are given in terms of the triangulation of the facet of the poly-
gon at height one. We want to choose this polygon such that it does not contain an interior point
in order to maintain flatness of the fibration. Due to this we are left, up to isomorphisms, with
only one such polygon (see Figure 6.1 (c)-(f)). This polygon admits two different triangulations
corresponding to two possible degenerations of the SU(5) to an SO(10) Kodaira fiber. However,
the choice is fixed by the top to be universal over the whole GUT divisor, such that the U(1)
charges of all 10 matter curves coincide. This is in contrast to the 5 matter curves where the
different degenerations can occur over different codimension two loci. Note that more general
situations where different 10-curves carry different U(1) charges can be obtained by taking com-
plete intersections instead of hypersurfaces. However, these constructions have not been studied
in the literature up to now such that we do not include this possibility in our subsequent analysis.

In [138, 140] five of the 16 possible reflexive polytopes were completed using all inequival-
ent tops that lead to SU(5). Out of these five polygons only the polygon of dP2, exhibits two
U(1) gauge factors while the others exhibit only one or less toric U(1) symmetries. After the
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Curve q1 q2

101 −1 2
51 3 −1
52 −2 4
53 −2 −6
54 3 4
55 −2 −1

(a) Top τ5,1.

Curve q1 q2

101 1 2
51 −3 4
52 −3 −6
53 −3 −1
54 2 4
55 2 −1

(b) Top τ5,2.

Curve q1 q2

101 −1 −1
51 3 −2
52 −2 −7
53 −2 3
54 3 3
55 −2 −2

(c) Top τ5,3.

Curve q1 q2

101 2 0
51 4 5
52 4 0
53 −1 5
54 −1 −5
55 −1 0

(d) Top τ5,4.

Table 6.3: U(1) charges of the four inequivalent tops based on the fiber polygon F5. The singlet charges
are the same for all tops.

completion to SU(5), matter curves and their U(1) charges have been calculated for every of
these tops. As dP2 will be of main phenomenological interest we show the matter content and
U(1) charges for its four possible inequivalent tops that can lead to a flat fibration in Table 6.3.

So far we have not specified the whole CY fourfold or the base space. Thus, as a next step
we would have to complete the top to a polygon which describes the complete CY fourfold. In-
deed, whether or not a given base polytope can be combined with any of the tops in such a way
that the fibration is flat depends on the choice of the base [119, 138, 141]. In particular, in ref.
[138] it is shown that the tops τ5,1-τ5,4 generically exhibit a non-flat Yukawa point. Thus one has
to make a special choice for the base in which either, one of the curves involved in the coupling
is removed, or the curves involved in the Yukawa do not intersect. A detailed study of the bases
that complete the top is beyond the scope of this work. Here we simply assume that there exists
a choice for the base such that the fibration is flat with the maximum amount of matter curves.
Given this assumption, the other properties like the amount of toric U(1) symmetries and non-
Abelian gauge factors or the U(1) charges can be studied from the top alone without specifying
a base. Since it will be our main concern to satisfy the anomaly cancelation constraints, it is
sufficient for us to know the number of U(1) symmetries, how many curves we can expect, and
what their U(1) charge pattern can be. As we will show in the following, anomaly cancelation
places very strong constraints on the fluxes.

6.2 Flux configurations

Flux is a crucial ingredient to achieve chiral spectra in F-theory compactifications. In type IIB,
one has closed string fluxes such asG3 = F3−τH3 (see eq. (5.37)), as well as those correspond-
ing to the background value for the Yang-Mills field strength of a given U(1) factor. In the uplift
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to F-theory, both kinds of fluxes are incorporated into the M-theory four form flux G4 [142].
With regards to U(1) fluxes, these arise from the decomposition

G4 = f i ∧ wi + . . . , (6.21)

where the two forms wi are dual, either to the exceptional divisors Di or to the sections σI dis-
cussed in section 5.4.2. In the first case flux will be turned along the Cartan generators of some
non-Abelian factor G. This means that G will be broken by flux to the commutant of the corres-
ponding Cartan element. This Cartan generator will become Stückelberg massive, because the
flux generically induces couplings to the axionic sector. A similar situation occurs for pure U(1)
symmetries but in this case, all non-Abelian factors remain unbroken.

Of course G4 allows for more exotic types of flux. These are, however, harder to deal with,
because their description needs of non-Abelian gauge bundles [96]. An special case of this is the
universal spectral cover flux, which can be accessed via the heterotic duality [127, 143, 144].

Having appreciated the very basic features of G4 flux, we must discuss now how chirality is
induced in the spectrum. In F-theory G4 integrates naturally over four cycles. These correspond
to matter curves as we will see in the following. Recall that one can fiber the resolution of a
given codimension two singularity over the curve in the base supporting it. This defines a two
complex dimensional surface. Since at codimension two we find the matter representations, the
net chirality of a given matter representation R will then result from integrating the G4 flux over
its corresponding matter curve ΣR.

We can rephrase this statements in terms of the SU(5) models of our interest. In engineering
the standard model we would need of two types of fluxes: One which must act transversely to
the SU(5) symmetry which could help us to achieve three net generations. The second type of
flux would be set along the hypercharge generator2. This would break the SU(5) down to GSM

and could help us to lift the color-triplets accompanying the Higgses. This seems counterintuit-
ive as we have argued that fluxes along the U(1) factors would make them massive. In order for
the hypercharge to remain massless, one has to ensure that it does not have axionic couplings.
Axions come from the closed RR sector and are counted by the cohomology of the fourfold.
Thus, in order to avoid a Stückelberg mass for the hypercharge generator, hypercharge flux must

2 In F-theory it is also possible to break the SU(5) by means of a Higgs mechanism as in field theoretic models.
However, constructions of this type would suffer of the traditional problems of 4D GUTs. Wilson lines are also an
alternative. Some efforts in this direction have been made, but the resulting models remain phenomenologically
unappealing [145].

113



6 Model Building in F-Theory

be tuned along a cycle which is non-trivial in the homology of the GUT surface S, but homo-
logically trivial in the full CY. After switching on the fluxes previously discussed, the amount
of chiral matter in a given representation R originating from a matter curve Σ (the base of the
matter surface ΣR) is counted via the following index theorem

χ(R) =

∫
Σ

c1

(
V ⊗ LYRY

)
=

∫
Σ

[
c1(VΣ) + rk(V )c1(LYR)

]
, (6.22)

where V is the bundle responsible for the SU(5) chirality, LY is a line bundle used to specify
the hypercharge flux, and YR denotes the hypercharge carried by R. We can split the previous
relation as

χ(R) =

∫
Σ

c1(V )︸ ︷︷ ︸
MΣ

+YR

[
rk(V )

∫
Σ

fY

]
︸ ︷︷ ︸

NΣ

, (6.23)

were have introduced the (1, 1) form fY ∼ c1(LY ) together with the quantities MΣ and NΣ,
which are the same for all representations steming from Σ. With this we arrive at the following
chiralities for the SM components originating from a 10- or a 5-curve

Σ10(a) : (3,2)1/6 : Ma Σ
5

(i) : (3,1)1/3 : Mi

(3,1)−2/3 : Ma −Na (1,2)−1/2 : Mi +Ni

(1,1)1 : Ma +Na .

(6.24)

where the indices a and i label 10- and 5-curves, respectively. The non curly M and N are
integer numbers related to the quantities in eq. (6.23) via

Ma =Ma +
1

6
Na , Mi =Mi +

1

3
Ni ,

Ma =
5

6
Na , Ni = −5

6
Ni . (6.25)

Of course, the field multiplicities are not arbitrary, but very dependent on the fourfold geometry
as well as the bundles V andLY , which in turn must obey certain quantization conditions (see e.g.
[127, 146]. However, for the models which can be described in terms of the spectral cover there
is a prescription on how to assign the necessary flux quanta. In this context it was observed that
the flux distribution is subject to certain constraints which are generic to all consistent models,
and are related to the masslessness condition on the hypercharge generator. These are known as
the Dudas-Palti (DP) relations [147, 148]∑

i

Mi −
∑
a

Ma = 0,
∑
i

Ni =
∑
a

Na = 0 , (6.26)
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∑
a

qAaNa +
∑
i

qAi Ni = 0 , (6.27)

with qA being the charges for the fields under any of the additional U(1) symmetries. One
sees from eq. (6.26) that the hypercharge flux induces no net chirality, as a consequence of it
being globally trivial. Furthermore, it was shown that these conditions are nothing but the mere
requirement of anomaly cancelation [149]. The eqs. (6.26) can be obtained from demanding all
SM anomalies to vanish. Similarly eq. (6.27) arises from imposing that hypercharge flux does
not modify the mechanisms canceling anomalies of the type GSM−GSM−U(1)A. This is a very
compelling result. However, it faces us with a puzzle: If anomalies are not lifted by hypercharge
flux, then anomalies of the form U(1)Y − U(1)A − U(1)B must also vanish. This is so because
they descend from the SU(5) − U(1)A − U(1)B anomaly. This, in turn, imposes an additional
constraint on the matter multiplicities [150]

3
∑
a

qAa q
b
aNa +

∑
i

qAi q
B
i Ni = 0 . (6.28)

However, no such a condition has been found from homology relations in the spectral cover.
Even more surprisingly, there are no phenomenologically appealing models which satisfy this
condition. Due to our scarce understanding of G4 fluxes, there remains the naïve possibility of a
mechanism which is yet to be discovered, which allows for a shift in the U(1)Y −U(1)A−U(1)B
anomalies, while leaving the Dudas-Palti relations unaffected. On a more earthy note, observa-
tions from the type IIB side have opened room for an orientifold odd Green-Schwarz mechanism
[151] to cancel the anomaly (6.28). However, it is unknown to date how this mechanism is up-
lifted to F-theory and why is it not captured by the local picture. We come back to these matters
in section 6.4.

6.3 Towards realistic models

In this section we aim at constructing models with the exact MSSM spectrum (plus singlet ex-
tensions) based on SU(5) F-theory GUTs with additional U(1) symmetries emerging from the
constructions with rational sections discussed in section 5.4.2. In this spirit, we review the res-
ults from previous model building attempts in the context of the spectral cover. Next we discuss
phenomenological constraints we implement along our search. After that we present the results
of our exploration. Finally we apply the same criteria in order to find bottom-up models which
share the same overall features regarding the U(1) charges but go beyond the explicit rational
section models considered to date.
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6.3.1 Status of spectral cover model building

As mentioned above the spectral cover constructions yield an explicit framework for realistic
model building attempts within F-theory [136, 145, 152–155]. However, when building GUT
models within F-theory one has to deal with similar problems as those faced in standard SUSY
GUTs. First, one needs to ensure that the triplets accompanying the Higgs multiplets are de-
coupled from the low energy theory. This is achieved by breaking the GUT group via hyper-
charge flux; with this flux it is possible to project out the triplets in the Higgs multiplets. Second,
one needs to guarantee that all couplings are well under control, such that, for example dan-
gerous operators which mediate fast proton decay are sufficiently suppressed. For this purpose
additional U(1) symmetries are used as they appear naturally in this framework.

Let us start the discussion on F-theory model building by introducing the MSSM superpoten-
tial at the level of SU(5)

W = µ5Hu5Hd + βi5i5Hu

+ Y u
ij10i10j5Hu + Y d

ij5i10j5Hd +Wij5i5j5Hu5Hu

+ λijk5i5j10k + δijk10i10j10k5Hd + γi5i5Hd5Hu5Hu

+ ωijkl10i10j10k5l ,

(6.29)

where we have included operators up to dimension five. The representations 5i and 10i corres-
pond to the i-th family and 5Hu , 5Hd are the SU(5) multiplets giving rise to the up- and down-type
Higgs respectively. The operators in the first line of (6.29) are those leading to the µ-term and the
bilinears between Hu and the lepton doublets. In the second line we have the Yukawa couplings
Y u,d
ij and the Weinberg operator Wij . The operators given in the third line violate baryon and

lepton number and are forbidden in models with matter parity. At dimension five one encounters
another proton decay operator which is allowed by matter parity. One also has dangerous proton
decay operators arising from the Kähler potential [136, 156], namely

K ⊃ κijk10i10j5k + κi5Hu5Hd10i . (6.30)

In engineering semi-realistic models from F-theory, one expects the U(1) symmetries to provide
sufficient suppression for the dangerous operators present in (6.29) and (6.30). Similarly, one
expects a small µ-term, so that it is desirable if if is forbidden by the U(1) s and only generated
upon their breaking. As mentioned already the U(1) symmetries from the spectral cover are typ-
ically GS massive, but remain as global symmetries in the effective field theory. These global
factors can be broken for example by singlet VEVs or instanton effects [157].
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Previous searches for models in the spectral cover constructions were based on the idea that
the three families arise from complete SU(5) representations (i.e. from curves on which the hy-
percharge flux acts trivially). In addition to that one has two extra 5-curves on which the hyper-
charge flux acts by projecting out the triplet components so that one ends up with only one pair
of doublets (namely the Higgses). In these models, the breakdown of the U(1) s has been used
generate the flavor structure in the quark and lepton sector [136, 148]. The relevant couplings are
generated by singlet VEVs while keeping the dangerous operators under control. This follows
the spirit of the Froggatt-Nielsen mechanism [158].

After choosing the factorization, the matter representations with their corresponding U(1) charges
are fixed, and the model building is based on tuning the flux quanta carried by the different curves.
This is not arbitrary and one has to ensure that the anomaly cancelation conditions (6.26)-(6.27)
are satisfied. It turns out that these restrictions are far from trivial and severely constrain the
possibilities for promising models. Previous explorations have lead to the following two obser-
vations:

• If one insists on the exact MSSM spectrum, there is only one flavor-blind U(1) symmetry
available. This symmetry corresponds to a linear combination of hypercharge and U(1)B−L.
As it allows for a µ-term as well as dimension five proton decay [148], this construction is
not suitable for phenomenology.

• If one requires the presence of a U(1) symmetry which explicitly forbids the µ-term, i.e. a
so-called Peccei–Quinn (PQ) symmetry, this implies the existence of exotic fields which are
vector-like under the Standard Model gauge group and come as incomplete representations
of the underlying SU(5) [147].

These observations suggest a strong tension between a solution to the µ-problem and the ab-
sence of light exotics in the spectrum. As already mentioned, in these models the matter arise
from SU(5) representations which are not split by hypercharge flux. Here we explore whether in
models with split multiplets these tensions can be avoided and whether, in principle, they permit
us to obtain an exotic free spectrum with appealing operator structure.

As a final remark let us comment that in these models, the anomalies of the type U(1)Y −U(1)A−
U(1)B do not comply with condition (6.28). Thus, given the deep physical meaning of this con-
dition, the models obtained so far are consistent only if there is an F-theoretical mechanism to
cancel the anomalies.
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6.3.2 Search strategy

The first requirement of our search is that the models have the MSSM matter content (i.e. three
families of quarks and leptons and one pair of Higgses) up to possible SM singlets and the
extra U(1) gauge bosons. Thus, from the beginning we impose the absence of extra states
charged under the Standard Model gauge group. We also require the spectrum to satisfy the
four-dimensional anomaly cancelation conditions (6.26)-(6.28) such that the masslessness of the
hypercharge is guaranteed.

After fixing the matter curves and their U(1) charges from a any of the models given in table
(6.3), the only freedom left is to switch on the fluxes such that the desired MSSM content is ob-
tained and the four-dimensional anomaly cancelation conditions are satisfied. Using the notation
of section 6.2, we obtain the following requirements for the flux choices:
Requiring three chiral families imposes that the chirality flux has to satisfy∑

Σ10

Ma =
∑
Σ5

M i = 3 with Ma , M i ≥ 0 . (6.31)

This relation guarantees that the first anomaly constraint from (6.26) is satisfied. We demand
that in addition to the MSSM matter content, no exotics are present in the spectrum (with the
exception of singlet fields neutral under the SM gauge group). This requirement constrains the
quanta of hypercharge flux to obey the following relations∑

Σ10

Na =0 with −Ma ≤ Na ≤Ma , (6.32)∑
Σ5

N i =0 with −M i − 1 ≤ N i ≤ 3 . (6.33)

Note that this flux configuration automatically satisfies the condition (6.26). The additional flux
constraint on the 5-curves ∑

Σ5

|M i +N i| = 5 , (6.34)

guarantees three lepton doublets together with exactly one pair of Higgses. For a configuration
with such a spectrum, one also has to check whether the flux choices satisfy the additional con-
straints (6.27) and (6.28).from anomaly cancelation.

We also have to constrain the operators of the effective field theory in order to obtain a real-
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istic model. As the charges for the fields are given ab initio, we have to ensure that dangerous
operators are not generated at tree level, so that the U(1) charges for these operators have to be
non-zero. Since we are not dealing with complete SU(5) multiplets, it is necessary to decompose
the SU(5) couplings (6.29) and (6.30) in terms of the SM fields. In order to have a heavy top
quark we demand the presence of the top Yukawa coupling at tree level, i.e. we require that at
least one of the up-type Yukawa couplings

10i10j5Hu ⊃ QiūjHu (6.35)

is allowed by all U(1) symmetries. In the case where all Qi and ūj descend from only one 10-
curve the up-quark Yukawa matrix is of rank one. Nevertheless, this matrix can acquire full
rank when appropriate flux or non-commutative deformations [133, 159–164] away from the E6

Yukawa point are included.

In order for low energy SUSY to solve the µ-problem, we require the µ-term

µ5Hu5Hd ⊃ µHdHu (6.36)

to be forbidden by any of the U(1) symmetries. The above coupling will be generated upon
breakdown of these symmetries. Let us also remark that in addition to the expected suppressions
in the couplings due to singlet VEVs (or instantons) some additional suppression is expected
when the couplings arise from the Kähler potential. This is fact is particularly appealing for the
generation of the µ-term as it can be sufficiently small, if induced from the Kähler potential along
the lines of the so-called Giudice-Masiero (GM) mechanism [165].

The µ-term is closely linked to the presence of dimension five B-L invariant operators

ωijkl10i10j10k5l ⊃ ω1
ijklQiQjQkLl + ω2

ijklūiūj ēkd̄l + ω3
ijklQiūj ēkLl . (6.37)

We demand these operators to be forbidden by the U(1) charges, keeping in mind that they can
be generated in a similar fashion as the µ-term.

In order to avoid fast proton decay, the U(1) symmetries must also forbid the following su-
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perpotential and Kähler potential couplings:

βi 5i5Hu ⊃ βiLiHu ,

λijk5i5j10k ⊃ λ0
ijkLiLj ēk + λ1

ijkd̄iLjQk + λ2
ijkd̄id̄jūk ,

δijk 10i10j10k5Hd ⊃ δ1
ijkQiQjQkHd + δ1

ijkQiūj ēkHd ,

γi 5i5Hd5Hu5Hu ⊃ γiLiHdHuHu ,

κijk10i10j5k ⊃ κ1
ijkQiūjL̄k + κ2

ijkēiūjdk + κ3
ijkQiQjdk ,

κi 5Hu5Hd10i ⊃ κ1
iH
∗
uHdēi .

(6.38)

For a consistent model we need to require that upon breakdown of the U(1) symmetries these
operators are not generated. This is for example achieved by demanding the presence of an ef-
fective matter parity symmetry.

We also expect that while the operators in (6.38) remain absent, it is possible to generate full
rank Yukawa matrices3 Y u

ij , Y
d
ij and Y L

ij . This necessarily implies that the charges of the desired
operators must differ in comparison to the undesired ones. As an immediate consequence of this,
the field Hd has to come from a different curve than all the other leptons and triplets to guarantee
that dimension four operators (such as λ0 and λ1 in (6.38)) are not introduced together with the
Yukawa entries.

6.3.3 U(1) Charge pattern

As we observe from the models discussed in section 6.1.1, all 10 matter curves carry the same
U(1) charges4. Hence we cannot put hypercharge flux along those. For that reason, we suppress
the family indices of their corresponding Standard Model representations. This restricted setup
also allows us to find some analytic relations between the U(1) charges of certain operators which
substantially influence the phenomenological properties of the models. First of all, the presence
of a tree level top Yukawa fixes the Hu charge to be

q(Hu) = −2q(10) . (6.39)

3 Recall that, as the matter fields need not to arise from complete SU(5) multiplets, so that the down and lepton
Yukawas do not necessarily coincide.

4 Note that this restriction is true for all models considered here but is not a generic feature of models with extra
section. The reason for which we have a single 10-plet is due to the toric treatment of the fiber and its resolution,
as we already stressed in section 6.1.1.
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For the subsequent discussion, we introduce the following notation for the charges of the operat-
ors:

µ : q(HdHu) = q(Hd) + q(Hu) := qµ ,

Y L : q(ēHdLi) := qY
L
i ,

Y d : q(ūHdd̄i) := qY
d
i ,

βi : q(LiHu) = q(Li) + q(Hu) := qβj .

(6.40)

Among these, all but the βi terms should be induced upon breakdown of the U(1) symmetries.

Now we can express the charges of all unwanted operators in terms of the charges defined above.
The dangerous dimension four proton decay operators are:

λ0
ij : q(Qd̄iLj) = qY

d
i + q(Hd)− q(Lj) = qY

d
i + qµ − qβj

λ1
ij : q(ēLiLj) = qY

L
i + q(Hd)− q(Lj) = qY

L
i + qµ − qβj

λ2
ij : q(ūd̄id̄j) = qY

d
i + q(Hd)− q(d̄j) = qY

d
i + qµ − q(Hu)− q(d̄j) .

(6.41)

Since we want to generate the down-type Yukawa matrices, we see that the previous couplings
are only forbidden due to the charge difference between the Hd - and Lj -curves in the case of
the λ0

ij and λ1
ij couplings, and due to the charge difference between Hd - and d̄j -curves in the

case of the λ2
ij . Thus, as already pointed out, it is necessary that the 5Hd -curve contains only the

down-type Higgs, since any lepton or down-type quark with identical charge will automatically
induce a dangerous operator. As we also want to obtain a µ-term, no d̄i field can arise from the
Hu-curve either.5

Overall, note that the charges can also be written in terms of those of the forbidden operators
βi. Thus, if we find a configuration such that the Yukawa couplings and the µ-term is induced
but the βi-terms stay forbidden, the dimension four operators stay forbidden as well. Further-
more, we observe that the dimension five operators in the superpotential

ω1
i , ω

3
i : q(QQQLi) = q(QūēLi) = −qµ + qY

L
i := q(101010Li) ,

ω2
i : q(QQūd̄i) = q(ūūēd̄i) = −qµ + qY

d
i := q(101010 d̄i) ,

(6.42)

will be unavoidably induced together with the Yukawa couplings and the µ-term. It should be
noted that the µ-term charge enters with a minus sign in the previous equations. This implies that

5 Note that if Hu and d̄j come from the same curve their U(1) charges carry opposite signs.
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the mechanism (such as a singlet VEV) which induces the ωi-terms will not induce the µ-term
directly in the superpotential but can generate it from the Kähler potential. Note also that it is
possible to induce a Weinberg operator

Wij : q(LiLjHuHu) = qβi + qβj (6.43)

without inducing the βi-terms by using, for example, singlet VEVs with charge q(si) = −2qβi .
In a similar fashion, we observe that the operators

δ1 , δ2 : q(QQQHd) = q(QūēHd) = −qβi + qY
L
i ,

γi : q(LiHdHuHu) = qµ + qβi ,
(6.44)

will remain absent as long as the βi-terms are not induced. The same holds for the Kähler
potential terms

κ1
i : q(QūL∗i ) = −qβi ,
κ : q(ēH∗uHd) = qµ + qβi ,

(6.45)

with the exception of

κ2
i , κ

3
i : q(1010 d̄∗i ) = −q(Hu)− q(d̄j) = −qµ + q(Hd)− q(d̄i) , (6.46)

were we have defined q(1010 d̄∗i ) := q(QQd̄∗i ) = q(ūēd̄∗i ). For this kind of couplings one has to
ensure that no triplets emerge from the Higgs curves as a necessary (but not sufficient) condition.

Note that the above observations are independent of the number of 5-curves and U(1) symmet-
ries. However, there remains a crucial interplay between the Higgs charges compared to those of
the down-type quarks and those of the singlet fields, which have to be checked on a case by case
analysis.

6.3.4 Results of the scan

Based on the previous considerations, we have scanned over the models. The result is that there is
no solution which satisfies all anomaly conditions (even in the cases where one allows for exotic
matter). Since this is similar to what occurs in the spectral cover, we could assume that there
is a mechanism which lifts the anomaly (6.28), which is the critical one. From only demanding
eqs. (6.26) and (6.27) we find four models which met all of our criteria. These are based on
tops τ5,1 and τ5,2. They exhibit very similar features, so that a benchmark model suffices for
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the discussion of the phenomenology. In table 6.4 we have summarized the spectrum, there we
have also included the singlet fields needed to generate the desired couplings. We also give the
charges of those dangerous operators which are not automatically absent as long as the βi-terms
are forbidden. For this model we see that a singlet s1 with charge (0, 5) that develops a VEV will
generate a µ-term from the Kähler potential and induce the Yukawa couplings and dimension five
operators in the superpotential, while all dimension four operators stay forbidden. The orders of
magnitude for these couplings are

Y L
i ∼

〈s1〉
Λ

, Y d
i ∼ δ1,i +

〈s1〉
Λ

(δ2,i + δ3,i) ,

ω1
i , ω

3
i ∼
〈s1〉2

Λ3
, ω2

i ∼
〈s1〉
Λ2

δ1,i +
〈s1〉2

Λ3
(δ2,i + δ3,i) ,

(6.47)

where Λ is the appropriate cutoff scale, which depends on the global embedding of the local
model. In the absence of dimension four proton decay operators, the bounds on dimension five
couplings are [166, 167]

ω1 .
10−7

MP

and ω2 .
10−7

MP

. (6.48)

The coupling ω2 is only to be taken seriously if there is a non-diagonal degeneracy of quark and
squark masses. The ω1-operator, however, puts constraints on the size of the VEV singlet s1 that
induces the operator after two singlet insertions, i.e.

〈s1〉2

Λ3
.

10−7

MP

. (6.49)

Such a size of the VEV seems compatible with down-quark and lepton-Yukawa couplings at the
weak scale [168].

As mentioned before, it is possible to generate the Weinberg operator while keeping danger-
ous couplings absent. In the singlet spectrum of the dP2 fiber (see table 6.1) we see that there is
no singlet with charge (±10, 0), whose VEV can introduce that operator. However, one might
envisage a non-perturbative effect (e.g. via instantons) which generates this coupling. Note again
that for our purposes, such an instanton has the same effect of a singlet VEV and we will para-
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6 Model Building in F-Theory

1. Spectrum 2. Singlet VEVs: s1 , a

q(s1) = (0, 5) , q(a) = (10, 0) .Curve q1 q2 M N Matter

10 −1 2 3 0 (Q+ ū+ ē)1,2,3

51 3 −1 1 −1 d̄1 3. µ- and βi-terms

52 −2 4 0 −1 Hu

q(HuL̄i) = (5, 0) , q(HuHd) = (0,−5) .54 3 4 2 1 L1,2,3 + d̄2,3

55 −2 −1 0 1 Hd

4. Yukawa couplings

q(QiūjHu) = (0, 0) , q(Qid̄jHd) =


(0, 0)

(0, 5)

(0, 5)


j

, q(ēiLjHd) = (0, 5) .

5. Allowed dimension five proton decay and Weinberg operators

q(101010Li) = (0, 10) , q(101010 d̄i) =


(0, 5)

(0, 10)

(0, 10)


j

, q(Li Lj HuHu) = (10, 0) .

6. Forbidden operators

q(ūd̄id̄j) =


(5, 0) (5, 0) (5, 0)

(5, 0) (5, 10) (5, 10)

(5, 0) (5, 10) (5, 10)


i,j

, q(1010 d̄∗i ) =


(−5, 5)

(−5, 0)

(−5, 0)

 .

Table 6.4: Details of benchmark model A. We give the charges for the operators λ2
ij and κ3

ij , κ
2
ij discussed

in (6.41) and (6.46).
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6.3 Towards realistic models

(Q+ ū+ ē)1,2,3 d̄1 Hu L1,2,3 + d̄2,3 Hd s1 a

q1 −1 3 2 3 −2 0 −10

q2 2 −1 −4 4 −1 −5 0

q′1 = (q1 − 2q2)/5 −1 1 2 −1 0 2 −2

q′2 = (2q1 + q1)/5 0 1 0 2 −1 −1 −4

Table 6.5: The U(1) charges for the benchmark model in a rotated U(1) basis. Note that after giving VEVs,
the charges q′1 are those of matter parity, whereas the charges q′2 become all trivial since s1 has charge−1.

meterize it by 〈a〉 such that the operator is introduced by6

Wij ∼
〈a〉
Λ2

. (6.50)

Another interesting question is which symmetries remain after the U(1) symmetries are broken.
For this purpose it is more convenient to rotate the U(1) generators as specified in table 6.5. There
we see that after appropriate normalization, the charges of the singlets break the U(1) symmetries
to a Z2 subgroup under which the charges q′1 coincide with those of matter parity. On the other
hand, we see that the second U(1) with charges q′2 gets broken completely by the VEV of s1.

6.3.5 Beyond available constructions

In the previous section we only considered the subclass of SU(5) tops which have been studied
in the literature so far. For example, the polytopes F7, F9 and F12 still remain to be analyzed.
There are many possibilities left to exhaust: On the one hand we can consider top models from
fibers in ambient spaces different than dP2. On the other hand, special choices of the base, may
lead to additional sections with any of the fibers considered already. However, in our exploration
we have found a similar problem as in the spectral cover, namely, no realistic model allows for
anomalies of the type U(1)Y−U(1)A−U(1)B to be cancelled. This problem could be pathological
to a broader class of constructions. Motivated by this problem we want to explore possible
bottom-up models in which all anomalies vanish. The aim is to provide a guideline for future
geometric engineering efforts and it would be very interesting to obtain explicit realizations of the
promising models. Based on the observation that the U(1) charges are all fixed (up to multiples
of five) to a certain value given by the corresponding splitting, we consider the possibility of
having further models with two U(1) symmetries whose splitting gives rise to any of those charge

6 Note that the expected order of magnitude for this operator is the same for all generations as all lepton doublets
in this model are found to arise from the same matter curve.
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6 Model Building in F-Theory

1. Spectrum 2. Singlet VEVs: s1 , s2

q(s1) = (0,±5) , q(s2) = (±10, 0) .Curve q1 q2 M N Matter

10 −3 −1 3 0 (Q+ ū+ ē)1,2,3

51 9 −2 0 1 L1 3. µ- and βi-terms

52 9 −7 1 −1 d̄1

53 −1 8 2 −1 L2 + d̄1,2

q(HuLi) =


(15, 0)

(5, 10)

(5,−5)

 , q(HuHd) = (0, 10) .54 −1 −7 0 1 L3

55 −6 8 0 1 Hd

56 −6 −2 0 −1 Hu

4. Yukawa couplings

q(QūHu) = (0, 0) , q(Qd̄jHd) =


(0, 0)

(−10, 15)

(−10, 15)

 , q(ēLjHd) =


(0, 5)

(−10, 15)

(−10, 0)

 .

5. Allowed dimension five proton decay and Weinberg operators

q(101010Li) =


(0,−5)

(−10, 5)

(−10,−10)

 , q(101010 d̄i) =


(0,−10)

(−10, 5)

(−10, 5)

 ,

q(Li Lj HuHu) =


(30, 0) (20, 10) (20,−5)

(20, 10) (10, 20) (10, 5)

(20,−5) (10, 5) (10,−10)

 .

6. Forbidden operators

q(ūd̄id̄j) =


(15,−15) (5, 0) (5, 0)

(5, 0) (−5, 15) (−5, 15)

(5, 0) (−5, 15) (−5, 15)

 , q(1010d̄∗i ) =


(−15, 5)

(−5,−10)

(−5,−10)

 .

Table 6.6: Details of a benchmark model beyond the toric sections. We give the charges for the operators
λ2
ij and κ3

ij , κ
2
ij discussed in (6.41) and (6.46).
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6.4 Anomaly cancelation revisited

assignments in table 6.2. Furthermore, we assume that such models allow for more 5-curves, but
only one 10-curve as before. These additional 5-curves allow for more freedom to satisfy the
anomaly constraints. The 5-curves are chosen to have charges

q1,5 = Q1,5 + 5n1,i , q2,5 = Q2,5 + 5n2,i , (6.51)

where Q1,5 and Q2,5 are fixed by the splitting that is chosen for each U(1). The integer valued
n1,i, n2,i are in the range

−2 ≤ n1,i , n2,i ≤ 2 , (6.52)

as these seem to be realistic intersection numbers for the sections with the irreducible fiber com-
ponents. The charge of the 10-curve is chosen such that it fits the structure of the chosen split,
see Table 6.2. The flux distribution and the search strategy follow as described in Section 6.3.2.

For example, in models where the U(1) generators follow the 4-1, 3-2 splitting, we find O(103)

models which satisfy all anomaly conditions, in particular also (6.28), and have all unwanted
operators forbidden at tree level. Out of those, some are found to allow for suitable U(1) charges
which lead to the desired operator structure. An example is the model given in Table 6.6. Note
that the analysis of the previous section still applies, since all 10-curves have the same charge.
In this model, two singlets (or correspondingly appropriate instanton effects), denoted by s1 and
s2, could generate the µ-term and all Yukawa couplings. The charges for these fields have to be

q(s1) = (0, 5) , q(s2) = (10, 0) , (6.53)

which is similar to charges appearing in the benchmark models of the previous section. One
slight difference is that one expects a higher suppression for the µ-term since it is generated
after two singlet insertions. Note that again we need a singlet with charge 10 in the first U(1) to
generate the desired coupling structure. Similarly as before, we observe that in this model, the
U(1) symmetries are broken in such a way that there is a surviving matter parity.

6.4 Anomaly cancelation revisited

Having observed that the issue of anomaly cancellation is not entirely settled in F-theory model
building. Let us discuss a proposal to cancel the anomaly (6.28), which is inspired by type IIB
setups with orientifolds and D7-branes [151]. The first remark to make is that orientifolds split
the cohomologies of the internal spaceM6 into their orientifold odd and even parts. Thus, the
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6 Model Building in F-Theory

decomposition of the RR potentials C2p is given by

C6 = c2
a ∧ w̃a + ... , (6.54)

C4 = cα2 ∧ wα + c0
αw̃

α + ... , (6.55)

C2 = ca0wa + ... , (6.56)

with w̃a ∈ H4
−(M6), w̃α ∈ H4

+(M6), wa ∈ H2
−(M6) und wα ∈ H2

+(M6), where we have used
the subindices + and − to denote orientifold even and odd cohomologies. Recall that in four
dimensions, the forms c2

α and cα0 are dual to each other (the same holds true for c2
a and ca0). They

are interpreted as the orientifold even (odd) axions of the theory. In the following we assume that
a D7-brane stack wraps a certain cycle S in internal space. We denote by G the gauge symmetry
associated to this stack and consider the presence of an internal flux f . The terms which are
relevant for anomaly cancellation can be found from expanding the D7 brane action, these read

S1 = tr(TI)C
a
S

∫
R3,1

FI ∧ c2
a , (6.57)

S2 =

∫
R3,1

tr(TITJ)FI ∧ cα2
∫
S

fJ ∧ ι∗wα , (6.58)

S3 =

∫
R3,1

tr(TITJTK)c0
aFI ∧ FJ

∫
S

fK ∧ ι∗wa (6.59)

and

S4 = tr(TITJ)Cα
S c

0
αFI ∧ FJ . (6.60)

where the TI are the generators of the Lie algebra associated to G, similarly fI are the com-
ponents of the flux along the generators TI , and ι∗w denotes the pullback of w to the divisor S.
Similarly the coefficients Ca

S and Cα
S can be obtained from the decomposition

[S] = Ca
Swa + Cα

Swα , (6.61)

where [S] is the two form dual to S. Note firstly that conditions (6.57) and (6.58) will induce
a mass for the gauge fields AI (that whose field strength is FI). In the first case, the field is
lifted even without flux, in that sense, the gauge field acquires its mass thanks to a geometrical
mechanism. Furthermore, thanks to the duality between zero- and two-forms, eqs. (6.57) to
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6.4 Anomaly cancelation revisited

(6.60) are the building blocks for the anomaly cancelling terms involved in the Green-Schwarz
mechanism. We want to use these results to investigate how hypercharge flux modifies anomaly
relations. The flux of our interest is of the form fY TY . The first observation comes from eq.
(6.58): In order for U(1)Y to remain massless, the following condition must hold∫

S

fY ∧ ι∗wα = 0 , ∀wα ∈ H2
+(M6) . (6.62)

This is equivalent to the more familiar observation that hypercharge flux must be tuned on a
trivial cycle in M6 which is non-trivial in S. Thus, if hypercharge is to modify any kind of
anomaly this must occur via the orientifold odd sector.

Let us now discuss anomalies of the type U(1)Y − U(1)A − U(1)B, from eqs. (6.57) and (6.59),
we observe that the GS canceling term will be proportional to

ρYAtr(TBT
2
Y ) + ρYBtr(TAT

2
Y ) , (6.63)

where ρYA,B have been defined as

ρYA,B = φaC
a
Str(TA,B)

∫
S

fY ∧ ι∗wa , (6.64)

with φa parameterizing the axion shifts responsible for the cancelation of the anomalies. Note
that the contribution (6.63) is non vanishing only if U(1)A or U(1)B are geometrically massive.
Similar terms can be found for the anomalies U(1)Y − U(1)2

A and U(1)Y − U(1)2
B. Even though

the uplift of the GS mechanism in not known yet, the previous result implies the possibility that
eq. (6.28) does not hold in F-theory. However, let us recall that in order for the mechanism
to work, some of the U(1) symmetries must be geometrically massive. This could occur in the
spectral cover, but not in the more global constructions with rational sections where the U(1) s
are massless by construction.

One step further we can consider anomalies of the type G2
SM − U(1)A, we also see that these

also get modified by the hypercharge flux, i.e.

φaρ
Y
A,Btr(T 2

I TY ) , (6.65)

where TI is a generator in SU(3), SU(2), or U(1)Y .
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6 Model Building in F-Theory

With this observations at hand we can compute the anomaly coefficients in our F-theory models.
This we can do using the multiplicities discussed in section 6.2. As an exercise, we can start with
the pure SM anomalies, these read

SU(3)2 − U(1)Y :
∑
a

[
2 · 1

6
Ma −

2

3
(Ma −Na)

]
+

1

3

∑
i

Mi = 0 , (6.66)

SU(2)2 − U(1)Y : 3 · 1

6

∑
a

Ma −
1

2

∑
i

(Mi +Ni) = 0 , (6.67)

U(1)3
Y :

∑
a

[
6 ·
(

1

6

)3

Ma + 3 ·
(
−2

3

)3

(Ma −Na) + (Ma +Na)

]

+
∑
i

[
3 ·
(

1

3

)3

Mi + 2 ·
(
−1

2

)3

(Mi +Ni)

]
= 0 , (6.68)

where we have omitted some overall normalization factors for simplicity. One can show that
these equations will reduce to the Dudas-Palti relation (6.26).
For anomalies of the type G2

SM − U(1)A we obtain

SU(3)2 − U(1)A :
∑
a

qAa [2Ma + (Ma −Na)] +
∑
i

qAi Mi = ρ+
1

3
ρYA , (6.69)

SU(2)2 − U(1)A : 3
∑
a

qAaMa +
∑
i

qAi (Mi +Ni) = ρ− 1

2
ρYA , (6.70)

U(1)2
Y − U(1)A :

∑
a

qAa

[
6 ·
(

1

6

)2

Ma + 3 ·
(
−2

3

)2

(Ma −Na) + (Ma +Na)

]

+
∑
i

qAi

[
3 ·
(

1

3

)2

Mi + 2 ·
(
−1

2

)2

(Mi +Ni)

]
=

5

6

(
ρ− 1

6
ρYA

)
(6.71)

where we have included the piece ρ to account for flux contributions different from that in the
hypercharge direction. The different scalings in the anomalies are due to the traces over the
various generators. From the previous anomaly relations one obtain

AA :=
∑
a

qAaNa +
∑
i

qAi Ni ∼ ρY = −5

6
ρYA , (6.72)
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6.4 Anomaly cancelation revisited

so that the Dudas Palti relation (6.27) is shifted by hypercharge flux. Finally, let us compute the
anomaly coefficients for U(1)Y − U(1)A − U(1)B∑

a

qAa q
A
a

[
6 ·
(

1

6

)
Ma + 3 ·

(
−2

3

)
(Ma −Na) + (Ma +Na)

]
+
∑
i

qAi q
B
i

[
3 ·
(

1

3

)
Mi + 2 ·

(
−1

2

)
(Mi +Ni)

]
= 0 , (6.73)

from which follows

AAB := 3
∑
a

qAa q
B
a Na +

∑
i

qAi q
B
i Ni = ρYAtr(TBT

2
Y ) + ρYBtr(TAT

2
Y ) . (6.74)

Note that no fluxes outside SU(5) can contribute to this anomaly. Recall that we also have similar
relations for the anomalies U(1)Y − (U(1)A)2 (AAA) and U(1)Y − (U(1)B)2 (ABB), i.e.

AAA,BB = 2ρYA,Btr(TA,BT
2
Y ) . (6.75)

Thus we can combine the relations (6.74) and (6.75) in the following manner,

2AAB = ABB
ρYA
ρYB

+ AAA
ρYB
ρYA

, (6.76)

but from equation (6.72) we see that AA/AB = ρYA/ρ
Y
B . With this we can finally arrive at an

expression which involves only the spectrum of chiral fields

2AAB = ABBA
2
A + AAAA

2
B . (6.77)

Therefore, if the orientifold odd GS mechanism is to cancel all anomalies in the model, this
implies that the Dudas-Palti relation (6.26) together with eq. (6.77) which involves linear and
quadratic anomalies in the U(1) factors, simultaneously. The F-theory origin of this conditions
and its implications for particle model building are yet to be worked out.
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CHAPTER 7

Conclusions

So, naturalists observe, a flea
Hath smaller fleas that on him prey;

And these have smaller still to bite ’em;
And so proceed ad infinitum.
Thus every poet, in his kind,

Is bit by him that comes behind.

Jonathan Swift, On Poetry, A Rhapsody.

In this work we aimed to study discrete symmetries originating from string compactifications,
and we observed that these are in close relation with the geometry of the internal space. We
focussed our analysis on heterotic orbifolds, where an intuitive picture, as well as powerful com-
putational tools are available. We see that in the simplest case we obtain Abelian discrete factors,
which can be enhanced to non-Abelian symmetries due to operator degeneracies in the orbifold
CFT. We also considered surviving remnants of the Lorentz group in internal space. Since these
remnants treat bosons and fermions in a different way, these symmetries can be readily inter-
preted as R-symmetries in the effective theory. In the orbifold, the remnants of the Lorentz
group are lattice automorphisms respecting the point group symmetry. There we identified two
possible sources: In the first place we have transformations leaving all fixed points invariant. In
the second case, we have transformations which do not leave all fixed points invariant, but in-
stead, exchange fixed points which can not be distinguished from the CFT point of view. While
the elements of the first class are present in all orbifolds studied, those from the second class are
more rare (they occur for example in the Z2 and the Z2 × Z4 orbifolds). From invariance of the
correlators under these elements, we were able to infer the corresponding R-symmetries induced
in the low energy, and to compute the R-charges of the physical states.
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7 Conclusions

The anomalies of the resulting R-symmetries were then computed, and a scan over thousands
of randomly generated models showed that they were all universal. Also for the more exotic R-
symmetries of the Z4 orbifold. The universality of these anomalies is a beautiful and compelling
result, hinting at the correctness of our results. Despite of the fact that the orbifolds analyzed
here are the simplest of all, we expect our findings to hold more generally (including the more
sophisticated orbifold constructions discussed in refs. [169, 170])

A very important observation about the R-charges we derived, is that they do not only include
geometrical information about the internal space, but also some information regarding the gauge
symmetries (which is encoded in the gamma phases). This we can understand in terms of the
Bianchi identity (2.28), connecting the tangent and gauge bundles. Owed to this relation, one
would expect that both of these objects contribute when considering a Lorentz transformation
of the physical states. Despite of this observation, we are still far from understanding how R-
symmetries arise in smooth compactifications. A possibility to extend our results is to consider
gauge linear sigma models in the transition from the orbifold to the smooth phase. First steps
towards addressing this problem have been taken in ref. [56].

Next we considered the effects of discrete symmetries in realistic models, specifically how can
they help us keep the phenomenology under control. The charges of the fields under these dis-
crete symmetries serve to track their location in the extra dimensions. Thus, it is not entirely
surprising that as a result from previous model building efforts in the Z6−II mini-landscape, one
finds a preferred configuration for the SM fields to allocate in the internal space. This configura-
tion plays a crucial role in solving field theory issues such as the doublet-triplet splitting, flavor
and µ- problems. The lessons we learned from this SM Zip code can be summarized as follows

1. A scenario in which the three families arise from complete SO(10) multiplets is not con-
sistent with a hierarchy for the mass of the SM fields.

2. A completely untwisted top-Yukawa coupling seems to be the most favored situation, lead-
ing to the familiar gauge-top unification scheme.

3. In most of the cases the down-type Higgs lives in the bulk as well. If the untwisted Higgs
pair remains massless the model will enjoy gauge-Higgs unification.

4. The two light families usually arise from the twisted sectors. They can appear as complete
multiplets of the underlying local GUT.
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In this work we describe general results from model building on the Z2 × Z4 orbifold. From
analysis of the spectrum at the GUT level we observe that there a similar Zip-code arises. Fur-
thermore, we presented an explicit example where the matter content of the MSSM is achieved.
We did not construct a large class of this models but hinted at the possibility that the diversity
of gauge groups in Z2 × Z4 provides many more MSSM-like models in comparison with Z6−II.
This conjecture was confirmed recently [171] in an exhaustive exploration aided by the C++ or-
bifolder. There it is shown that in the Z2 × Z4 there are about 3632 models which resemble the
MSSM, in contrast to the Z6−II where only 348 models are found. This observation turns the
Z2×Z4 into the most promising orbifold alternative for particle phenomenology known to date.

Of course, there is a long way down to a realistic model. In between, the issues of moduli
stabilization and the cancelation of FI terms have to be addressed. In this processes, many dis-
crete symmetries get broken, so that it is not obvious which of them actually survive in the low
energy. Since many symmetries have been proposed to control the phenomenology of models
beyond the SM, we expect that suitable vacuum configurations leave some discrete symmetry
unbroken. If so, these symmetry would be in general, a mixture of R and non-R symmetries as
well as discrete remnants of gauge factors.

Finally, we contemplated the possibility of model building in the context of F-theory. Since
in this framework the discrete symmetries are less understood, we followed a different strategy:
We concentrated on F-theory SU(5) models which have up to two additional U(1) symmetries
and allow for the three generations of quarks and leptons to arise from incomplete SU(5) rep-
resentations. To find these appealing models we analyzed a class of models with toric sections
whose geometric setup has been discussed recently in the literature, and can be embedded into
the spectral cover. A special feature of these models is that all matter from 10-curves stay in
complete multiplets which share the same charges under the additional U(1) symmetries, while
in contrast the 5-plets are usually split. This “half-complete” multiplet structure makes it possible
to relate the charges of all operators to each other and is sufficient for generating phenomenolo-
gically interesting couplings. In particular, both types of models feature the top quark Yukawa
coupling at tree level whereas the µ-term and all baryon and lepton number violating operators
are forbidden. We identified a singlet VEV configuration which promises to induce a realistic
Yukawa structure, while all dimension four proton decay operators stay forbidden. We could
further relate this situation to the presence of a residual matter parity.

Nevertheless, the presence of additional U(1) symmetries in these models forces us to consider
their corresponding anomalies. In particular, it is shown that in the models discussed, anomalies
of the form U(1)Y − U(1)A − U(1)B can not be cancelled. Further consideration of the anomaly
cancellation mechanisms in the type IIB theory show that the critical anomalies could be can-
celled by virtue of an orientifold odd Green-Schwarz mechanism. This, however, induces a shift
in the Dudas-Palti relations. Inspired by the U(1) charge pattern observed in F-theory, we con-
sidered bottom-up models. There we showed that a suitable phenomenology is possible, and that
by adding an additional matter curve, all anomaly cancelation conditions are satisfied. It would
be intriguing to find explicit geometric realizations of the bottom-up models presented here.
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7 Conclusions

There are various interesting future research directions. It would be intriguing to find an ex-
plicit geometric realization of the bottom-up models presented here, and to construct compacti-
fications that realize the above assumptions on hypercharge flux, gauge coupling unification and
Green-Schwarz anomaly-cancelation. Given such a realization one of the next avenues might
be to combine these local models with moduli stabilization. We hope to return to some of these
questions in the near future.
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APPENDIX A

The space group elements hg in the Z4
orbifold

g hρ1g h%2g h%3g hζg
1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 1, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 1, 0, 0, 1) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (1, 0, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 0, 0, 0, 1) 1, (−1, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 1, 0, 0, 0) 1, (−1, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 1, 0, 0, 1) 1, (−1, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 1, 0, 1, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (0, 0, 1, 0, 1, 1) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ, (1, 0, 0, 0, 1, 0) 1, (−1, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 0, 0, 1, 1) 1, (−1, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 1, 0, 1, 0) 1, (−1, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ, (1, 0, 1, 0, 1, 1) 1, (−1, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ2, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ2, (0, 0, 0, 1, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ2, (0, 0, 1, 1, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ2, (0, 1, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0,−1, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0)
θ2, (0, 1, 0, 1, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0,−1, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0)†

θ2, (0, 1, 1, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0,−1, 0, 0, 0, 0) θ, (0, 0, 1, 0, 0, 0)†

θ2, (0, 1, 1, 1, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0,−1, 0, 0, 0, 0) θ, (0, 0, 1, 0, 0, 0)
θ2, (1, 1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
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g hρ1g h%2g h%3g hζg
θ2, (1, 1, 0, 1, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ2, (1, 1, 1, 1, 0, 0) 1, (−1, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1,−1, 0, 0, 0, 0) 1, (−1, 0, 0, 0, 0, 0)
θ3, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 1, 0, 0, 0) 1, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 1, 0, 0, 1) 1, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (1, 0, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 0, 0, 0, 1) 1, (0, 1, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 1, 0, 0, 0) 1, (0, 1, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 1, 0, 0, 1) 1, (0, 1, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0,−1) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 1, 0, 1, 0) 1, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (0, 0, 1, 0, 1, 1) 1, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)
θ3, (1, 0, 0, 0, 1, 0) 1, (0, 1, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 0, 0, 1, 1) 1, (0, 1, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 1, 0, 1, 0) 1, (0, 1, 0, 1, 0, 0) 1, (0, 0, 0, 0,−1, 0) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
θ3, (1, 0, 1, 0, 1, 1) 1, (0, 1, 0, 1, 0, 0) 1, (0, 0, 0, 0,−1,−1) 1, (−1, 1, 0, 0, 0, 0) 1, (0, 1, 0, 0, 0, 0)
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APPENDIX B

Promissing E6 embeddings in the
Z2 × Z4 orbifold

Here we present a selection of E6 models with a Wilson line configuration leading to two com-
plete families (27) and an untwisted trilinear coupling. All of these models work with all Wilson
lines on except W1 or W2.

For the shift embedding

4V4 = (0, 0, 0, 0, 0, 0, 0, 0)(1, 1, 0, 0, 0, 0, 0, 0) ,

2V3 = (−1,−1,−1, 0, 0, 0, 0, 1)(0, 1, 0, 0, 0, 0, 1, 0) ,

if we take W1,2 6= 0 to break E6 to SO(10) the surviving pieces from the split multiplets may lead
to complete families, provided the 16−plets ⊂ 27 are not projected out. In the case of

4V4 = (2, 2, 0, 0, 0, 0, 0, 0)(1, 1, 0, 0, 0, 0, 0, 0) ,

2V2 = (2, 2, 0, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 1, 0)

we have to switch on the WLs in the same manner as before, taking again W1,2 to break to
SO(10), then we have the chance to obtain two 16-plets at the T(1,2) sector. The model given by

4V4 = (1, 1, 0, 0, 0, 0, 0, 0)(1, 1, 1, 1, 1, 1, 1,−1) ,

2V2 = (0, 1, 0, 0, 0, 0, 1, 0)(1, 1, 1, 1, 1, 1, 1,−1) ,

may lead to two families at the T(1,2) sector, provided W3 breaks to SO(10), this picture is similar
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to that one gets from the embedding

4V4 = (1, 1, 0, 0, 0, 0, 0, 0)(1, 1, 1, 1, 1, 1, 1,−1) ,

2V2 = (0, 1, 0, 0, 0, 0, 1, 0)(2, 0, 0, 0, 0,−2, 0, 0) ,

where the only difference is that the families will appear at the T(1,0) sector.
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[140] M. Cvetič et al., “Chiral Four-Dimensional F-Theory Compactifications With SU(5) and
Multiple U(1)-Factors” (2013), arXiv: 1306.3987 [hep-th].

[141] C. Lawrie and S. Schafer-Nameki,
“The Tate Form on Steroids: Resolution and Higher Codimension Fibers”,
JHEP 1304 (2013) 061, DOI: 10.1007/JHEP04(2013)061,
arXiv: 1212.2949 [hep-th].

[142] K. Becker and M. Becker, “M theory on eight manifolds”,
Nucl.Phys. B477 (1996) 155–167, DOI: 10.1016/0550-3213(96)00367-7,
arXiv: hep-th/9605053 [hep-th].

[143] S. Krause, C. Mayrhofer and T. Weigand,
“G4 flux, chiral matter and singularity resolution in F-theory compactifications”,
Nucl.Phys. B858 (2012) 1–47, DOI: 10.1016/j.nuclphysb.2011.12.013,
arXiv: 1109.3454 [hep-th].

[144] T. W. Grimm and H. Hayashi, “F-theory fluxes, Chirality and Chern-Simons theories”,
JHEP 1203 (2012) 027, DOI: 10.1007/JHEP03(2012)027,
arXiv: 1111.1232 [hep-th].

[145] J. Marsano et al., “A Global SU(5) F-theory model with Wilson line breaking”,
JHEP 1301 (2013) 150, DOI: 10.1007/JHEP01(2013)150,
arXiv: 1206.6132 [hep-th].

[146] D. S. Freed and E. Witten, “Anomalies in string theory with D-branes”,
Asian J.Math 3 (1999) 819, arXiv: hep-th/9907189 [hep-th].

[147] E. Dudas and E. Palti, “On hypercharge flux and exotics in F-theory GUTs”,
JHEP 1009 (2010) 013, DOI: 10.1007/JHEP09(2010)013,
arXiv: 1007.1297 [hep-ph].

[148] M. J. Dolan et al., “F-theory GUTs with U(1) Symmetries: Generalities and Survey”,
Phys.Rev. D84 (2011) 066008, DOI: 10.1103/PhysRevD.84.066008,
arXiv: 1102.0290 [hep-th].

[149] J. Marsano, “Hypercharge Flux, Exotics, and Anomaly Cancellation in F-theory GUTs”,
Phys.Rev.Lett. 106 (2011) 081601, DOI: 10.1103/PhysRevLett.106.081601,
arXiv: 1011.2212 [hep-th].

[150] E. Palti, “A Note on Hypercharge Flux, Anomalies, and U(1)s in F-theory GUTs”,
Phys.Rev. D87 (2013) 085036, DOI: 10.1103/PhysRevD.87.085036,
arXiv: 1209.4421 [hep-th].

151

http://dx.doi.org/10.1007/s002200050100
http://arxiv.org/abs/hep-th/9512204
http://arxiv.org/abs/1306.3987
http://dx.doi.org/10.1007/JHEP04(2013)061
http://arxiv.org/abs/1212.2949
http://dx.doi.org/10.1016/0550-3213(96)00367-7
http://arxiv.org/abs/hep-th/9605053
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.013
http://arxiv.org/abs/1109.3454
http://dx.doi.org/10.1007/JHEP03(2012)027
http://arxiv.org/abs/1111.1232
http://dx.doi.org/10.1007/JHEP01(2013)150
http://arxiv.org/abs/1206.6132
http://arxiv.org/abs/hep-th/9907189
http://dx.doi.org/10.1007/JHEP09(2010)013
http://arxiv.org/abs/1007.1297
http://dx.doi.org/10.1103/PhysRevD.84.066008
http://arxiv.org/abs/1102.0290
http://dx.doi.org/10.1103/PhysRevLett.106.081601
http://arxiv.org/abs/1011.2212
http://dx.doi.org/10.1103/PhysRevD.87.085036
http://arxiv.org/abs/1209.4421


Bibliography

[151] C. Mayrhofer, E. Palti and T. Weigand,
“Hypercharge Flux in IIB and F-theory: Anomalies and Gauge Coupling Unification”,
JHEP 1309 (2013) 082, DOI: 10.1007/JHEP09(2013)082,
arXiv: 1303.3589 [hep-th].

[152] C. Ludeling, H. P. Nilles and C. C. Stephan,
“The Potential Fate of Local Model Building”, Phys.Rev. D83 (2011) 086008,
DOI: 10.1103/PhysRevD.83.086008, arXiv: 1101.3346 [hep-th].

[153] S. King, G. Leontaris and G. Ross, “Family symmetries in F-theory GUTs”,
Nucl.Phys. B838 (2010) 119–135, DOI: 10.1016/j.nuclphysb.2010.05.014,
arXiv: 1005.1025 [hep-ph].

[154] J. Marsano, N. Saulina and S. Schafer-Nameki,
“Compact F-theory GUTs with U(1) (PQ)”, JHEP 1004 (2010) 095,
DOI: 10.1007/JHEP04(2010)095, arXiv: 0912.0272 [hep-th].

[155] J. Marsano, N. Saulina and S. Schafer-Nameki,
“Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs”,
JHEP 0908 (2009) 046, DOI: 10.1088/1126-6708/2009/08/046,
arXiv: 0906.4672 [hep-th].

[156] R. Barbier et al., “R-parity violating supersymmetry”, Phys.Rept. 420 (2005) 1–202,
DOI: 10.1016/j.physrep.2005.08.006,
arXiv: hep-ph/0406039 [hep-ph].

[157] J. Marsano, N. Saulina and S. Schafer-Nameki,
“An Instanton Toolbox for F-Theory Model Building”, JHEP 1001 (2010) 128,
DOI: 10.1007/JHEP01(2010)128, arXiv: 0808.2450 [hep-th].

[158] C. Froggatt and H. B. Nielsen,
“Hierarchy of Quark Masses, Cabibbo Angles and CP Violation”,
Nucl.Phys. B147 (1979) 277, DOI: 10.1016/0550-3213(79)90316-X.

[159] J. J. Heckman and C. Vafa, “Flavor Hierarchy From F-theory”,
Nucl.Phys. B837 (2010) 137–151, DOI: 10.1016/j.nuclphysb.2010.05.009,
arXiv: 0811.2417 [hep-th].

[160] S. Cecotti et al., “Yukawa Couplings in F-theory and Non-Commutative Geometry”
(2009), arXiv: 0910.0477 [hep-th].

[161] H. Hayashi et al., “Flavor Structure in F-theory Compactifications”,
JHEP 1008 (2010) 036, DOI: 10.1007/JHEP08(2010)036,
arXiv: 0910.2762 [hep-th].

[162] J. P. Conlon and E. Palti, “Aspects of Flavour and Supersymmetry in F-theory GUTs”,
JHEP 1001 (2010) 029, DOI: 10.1007/JHEP01(2010)029,
arXiv: 0910.2413 [hep-th].

152

http://dx.doi.org/10.1007/JHEP09(2013)082
http://arxiv.org/abs/1303.3589
http://dx.doi.org/10.1103/PhysRevD.83.086008
http://arxiv.org/abs/1101.3346
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.014
http://arxiv.org/abs/1005.1025
http://dx.doi.org/10.1007/JHEP04(2010)095
http://arxiv.org/abs/0912.0272
http://dx.doi.org/10.1088/1126-6708/2009/08/046
http://arxiv.org/abs/0906.4672
http://dx.doi.org/10.1016/j.physrep.2005.08.006
http://arxiv.org/abs/hep-ph/0406039
http://dx.doi.org/10.1007/JHEP01(2010)128
http://arxiv.org/abs/0808.2450
http://dx.doi.org/10.1016/0550-3213(79)90316-X
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.009
http://arxiv.org/abs/0811.2417
http://arxiv.org/abs/0910.0477
http://dx.doi.org/10.1007/JHEP08(2010)036
http://arxiv.org/abs/0910.2762
http://dx.doi.org/10.1007/JHEP01(2010)029
http://arxiv.org/abs/0910.2413


Bibliography

[163] A. Font et al., “Up-type quark masses in SU(5) F-theory models”,
JHEP 1311 (2013) 125, DOI: 10.1007/JHEP11(2013)125,
arXiv: 1307.8089 [hep-th].

[164] A. Font et al.,
“Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) Unification”,
JHEP 1303 (2013) 140,
DOI: 10.1007/JHEP03(2013)140,10.1007/JHEP07(2013)036,
arXiv: 1211.6529 [hep-th].

[165] G. Giudice and A. Masiero,
“A Natural Solution to the mu Problem in Supergravity Theories”,
Phys.Lett. B206 (1988) 480–484, DOI: 10.1016/0370-2693(88)91613-9.

[166] I. Hinchliffe and T. Kaeding,
“B+L violating couplings in the minimal supersymmetric Standard Model”,
Phys.Rev. D47 (1993) 279–284, DOI: 10.1103/PhysRevD.47.279.

[167] V. Ben-Hamo and Y. Nir, “Implications of horizontal symmetries on baryon number
violation in supersymmetric models”, Phys.Lett. B339 (1994) 77–82,
DOI: 10.1016/0370-2693(94)91135-5,
arXiv: hep-ph/9408315 [hep-ph].

[168] H. K. Dreiner and M. Thormeier,
“Supersymmetric Froggatt-Nielsen models with baryon and lepton number violation”,
Phys.Rev. D69 (2004) 053002, DOI: 10.1103/PhysRevD.69.053002,
arXiv: hep-ph/0305270 [hep-ph].

[169] S. J. Konopka, “Non Abelian orbifold compactifications of the heterotic string”,
JHEP 1307 (2013) 023, DOI: 10.1007/JHEP07(2013)023,
arXiv: 1210.5040 [hep-th].

[170] M. Fischer et al., “Classification of symmetric toroidal orbifolds”,
JHEP 1301 (2013) 084, DOI: 10.1007/JHEP01(2013)084,
arXiv: 1209.3906 [hep-th].

[171] H. P. Nilles and P. K. S. Vaudrevange,
“Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics”
(2014), arXiv: 1403.1597 [hep-th].

153

http://dx.doi.org/10.1007/JHEP11(2013)125
http://arxiv.org/abs/1307.8089
http://dx.doi.org/10.1007/JHEP03(2013)140, 10.1007/JHEP07(2013)036
http://arxiv.org/abs/1211.6529
http://dx.doi.org/10.1016/0370-2693(88)91613-9
http://dx.doi.org/10.1103/PhysRevD.47.279
http://dx.doi.org/10.1016/0370-2693(94)91135-5
http://arxiv.org/abs/hep-ph/9408315
http://dx.doi.org/10.1103/PhysRevD.69.053002
http://arxiv.org/abs/hep-ph/0305270
http://dx.doi.org/10.1007/JHEP07(2013)023
http://arxiv.org/abs/1210.5040
http://dx.doi.org/10.1007/JHEP01(2013)084
http://arxiv.org/abs/1209.3906
http://arxiv.org/abs/1403.1597




List of Figures

3.1 The automorphism group for the six dimensional lattice allows for a decomposi-
tion into the subgroupsA, B, C andD. Provided the normalcy relations between
them, one can construct the quotients E, F and G which allow for a simpler in-
terpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Wilson line configuration for the Z4 orbifold studied in the text. . . . . . . . . . 48
3.3 Representation of the θ1 action on the T2 sector fixed points of the Z4 orbifold

studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Fixed tori of the T(0,1) and T(0,3) sectors. The tables above help to deduce the
generating element of each fixed torus. Consider a fixed torus located at the
position b and c in the last two planes, such fixed torus is generated by a space
group element (ω, λbc) if the fixed torus belongs to the T(1,0) sector, or (ω3, λ′bc)
for T(0,3). The lattice vectors λbc and λ′bc can be found in the bc-th entry of the
left and right tables below the picture. . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Fixed tori of T(0,2). The arrows in the last two planes have to be understood
as identifications acting simultaneously such that they reproduce the effects of
the Z4 generator of the point group. Similarly as in table 4.1, the generating
elements can be found below the picture. Those entries which are left blank
do not correspond to additional inequivalences. Shaded cells have been put to
denote special fixed tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Fixed tori of the T(1,0) sector. This sector is associated to the Z2 generator of the
point group. For this reason, the fixed tori are identified only up to rotations by
π/2 on the second plane. The special fixed tori are associated to the shaded cells
in the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Fixed points of the sectors T(1,1) and T(1,3). . . . . . . . . . . . . . . . . . . . . 59
4.5 Fixed tori of T(1,2). The picture is very similar to that one observes in T(1,0) . . . 59
4.6 Protected (green) and split (blue) fixed points under different Wilson line con-

figurations. The matter representations we found in the absence of Wilson lines
will completely survive when sitting at a protected fixed point/torus. At split sin-
gularities they will decompose according to the local gauge group, some of these
pieces will be projected out by the Wilson lines. . . . . . . . . . . . . . . . . . . 65

155



List of Figures

4.7 The fixed points of the T(1,3) sector. Note that for the model under consideration
and in the case W1,3,5 6= 0, the 16-plets living at the fixed points a = 1, 2
(b = 1, c = 1) are not affected by the WL projections. . . . . . . . . . . . . . . . 70

5.1 At the position z0 the axio-dilaton τ diverges, hinting at the presence of a 7-
brane. When carrying τ around z0 it becomes τ + 1. This is consistent with the
SL(2,Z) symmetry of the torus. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 If Yn+1 exhibits a singularity over a certain divisor S. It can be blown up to Ȳn+1,
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