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Summary/Abstract 

Alzheimer’s disease is neuropathologically characterized by intracellularly accumulated tau protein 

and by extracellular plaques, mainly composed of the small hydrophobic peptide amyloid β (Aβ). 

Sequential cleavage of the amyloid precursor protein (APP) by the transmembrane enzymes β- and γ-

secretase generates Aβ. In addition to the proteolytic processing, APP can further undergo metabolic 

processing by acidic hydrolases in lysosomal compartments.  

Membrane lipid composition is of great importance for the proper function of secretases, as well as for 

lysosomal activity. Disturbances in the lipid homeostasis can cause severe accumulations of different 

lipids and thereby also impair the metabolism of APP. Several lysosomal lipid storage disorders 

(LSDs) show pathological accumulation of lipids and share similarities to the pathological features of 

AD. 

Here it is shown that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the 

metabolism of APP. Lack of the S1P cleaving enzyme S1P-lyase induces a LSD-like phenotype and 

causes an accumulation of full-length APP and its potentially pathogenic C-terminal fragments (CTFs) 

which was partially rescued by the inhibition of sphingosine phosphorylation. Genetic deletion of S1P-

lyase impairs the β- and γ-secretase dependent processing of APP on one hand, but also decreased the 

lysosomal degradation of APP and its CTFs on the other hand. The increase of lysosomal marker 

proteins like cathepsin D or lamp2 indicated a general impairment of the lysosomal activity. 

Accumulation of APP and CTFs was also partially reversed when Ca2+ was selectively mobilized from 

endoplasmic reticulum or lysosomes. Additional results further indicate an involvement of protein 

kinase C in the altered lysosomal metabolism upon inhibition of S1P lyase. 

Taken together, the data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal 

activity and the processing of APP. S1P and other sphingolipid metabolizing enzymes could therefore 

be further explored to dissect molecular pathways underlying the pathogenesis of AD and represent 

potential targets in disease progression or prevention. 
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1. Introduction 

 

1.1 Alzheimer’s disease and the neuropathological hallmarks. 

When Alois Alzheimer presented his discoveries on “A peculiar disease of the brain cortex.” in 1906, 

the overall interest at the south-west-German conference for psychiatrists was very low (Maurer and 

Maurer, 2010). However, nearly 110 years later Alzheimer’s disease (AD) has become the most 

common cause of dementia. AD is a progressive neurodegenerative disorder characterized by severe 

brain atrophy. Patients suffer from cognitive and functional impairments in their brain activity, and 

show a loss of memory and language skills (Arnaiz & Almkvist, 2003; Forstl & Kurz, 1999). Aging is 

a major risk factor for developing AF and with the continuous increase in life expectancy, the number 

of affected people will rise. Currently more than 24 million people are diagnosed with dementia, from 

which about 60% are affected by AD. According to predictions, the numbers will double every 20 year 

(Ferri et al, 2005). This makes AD the sixth most leading cause of death in the United States of 

America and represents a major liability on medical care (www.alz.org/facts). 

AD is characterized by two distinct neuropathological hallmarks presented as intracellular 

neurofibrillary tangles (NFT) that contain hyper phosphorylated tau protein, and extracellular amyloid 

plaques mainly composed of the Aβ peptide (Fig. 1) (Masters & Beyreuther, 1991; Selkoe, 2001a). 

The relationship of these two independent protein accumulations is poorly understood and under 

extensive investigation.  

 

 

Fig. 1: Aβ positive plaques and tau positive NFTs in human AD brains. (A) Immuno histochemical staining of plaques 

using an anti-Aβ42 specific antibody. Scale bar represents 125 mm. (B) Immuno histochemical staining of neurofibrillary 

tangles using an anti-tau PHF-1 antibody. Scale bar represents 62.5 mm. (LaFerla & Oddo, 2005). 

A B

Figure 1. Plaques and tangles in the AD brain. (a) A representativemicrophotograph
of amyloid plaques in the AD brain. Amyloid plaques were visualized by
immunostaining with an anti-Ab42 specific antibody. Scale bar: 125 mm. (b) A
representative microphotograph of neurofibrillary tangles. Tangles were visualized
by immunostaining with an anti-PHF1 specific antibody. Scale bar: 62.5 mm. Note
the prominent tau immunoreactivity in the somatodendritic compartment,
characteristic of tau mislocalization.

http://www.alz.org/facts
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Tau is a microtubule associated protein that stabilizes polymerized microtubules by binding to the α- 

and β-tubulin subunits via its 3-repeat or 4-repeat binding domains. Hyper-phosphorylation of tau in 

this domains due to increased kinase activity or lowered phosphatase activity, leads to its detachment 

from the microtubule and the formation of so-called paired helical filaments (PHFs) with a diameter of 

~20 nm (Goedert et al, 2006). Continuous formation of PHFs leads to the accumulation of NFTs 

within neurons. The decreased binding of tau results in destabilization of the microtubule network, 

causing an impaired retrograde transport in neuronal cells. As a result, tau accumulates and aggregates 

in somatodentric compartments (Grundke-Iqbal et al, 1986). The formation of PHFs and NFTs could 

induce retrograde degeneration of neurons and cell death. The tau hypothesis assumes that formation 

of NFTs initiates and promotes the pathogenesis of AD. 

The second distinct neuropathological hallmark of AD brains are Aβ plaques that show a 

heterogeneous appearance with a diameter of up to 20 - 50 µm. Plaques are spherical extracellular 

multi-protein aggregates that are mainly composed of the peptides Aβ40 or Aβ42 and surrounded by 

abnormal neuronal processes. Plaques can be classified into diffuse and neuritic (senile) types. The 

involvement of diffuse plaques in early stages of AD is discussed controversially. They lack 

association with altered neurites and glial cells when compared to neuritic plaques (Joachim et al, 

1989). Diffuse plaques are not necessarily indicative for AD patients, since they are also detected in 

cognitively normal individuals as well (Hardy & Selkoe, 2002). They are mainly composed of non-

fibrillar Aβ and can be found in most brain regions (Tagliavini et al, 1988; Yamaguchi et al, 1988). 

Neuritic or senile plaques, on the other hand occur in a brain region specific sequence and increasing 

number during disease progression (Thal et al, 2002). The cortex and the hippocampus are mainly 

affected by neuritic plaques. In later stages, neuritic plaques can also be found to a lesser extend in the 

brainstem and the molecular layer of the cerebellum (Thal et al, 2002). Neuritic plaques are more 

heterogeneous and dense than diffuse plaques, and consist of fibrillar and non-fibrillar Aβ variants as 

well as degenerated neurites (Braak & Braak, 1996). Further components of neuritic plaques are 

complement factors, glucosaminoglycans, ApoE, cholesterol or cytoskeletal proteins (Liao et al, 

2004). 
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The amyloid-hypothesis states that the accumulation of Aβ triggers the pathological development of 

AD, including neuronal dysfunction and neuroinflammation. Aβ induced damage of neuronal cells and 

alterations in phosphatase or kinase activities are suspected to induce hyper-phosphorylation of tau 

and the formation of NFTs (Hardy & Selkoe, 2002). Interestingly, mutations that are associated with 

early onset AD have been identified in three different genes directly involved in Aβ generation, 

strongly supporting the amyloid hypothesis. In contrast no mutations in tau have been identified so far 

to cause AD. However, tau mutations are associated with other neurodegenerative diseases, including 

frontotemporal dementia (Goedert & Spillantini, 2000) or progressive supranuclear palsy (Stanford et 

al, 2000)suggesting an important role of tau in neurodegeneration.   

 

1.1.1 Genetics of AD. 

The majority of AD cases occur sporadically at a higher age (>65 years) without a known causative 

gene mutation. This form is known as late onset AD (LOAD). The genetic factors underlying the 

pathogenesis of LOAD are not fully understood. However, the apolipoprotein allele ε4 (ApoE4) was 

discovered as the major genetic risk factor for developing LOAD (Strittmatter et al, 1993). The chance 

to develop AD is increased by threefold in the presence of one ApoE4 allele and approximately by 12-

fold when two alleles are present, as compared to individuals with no ε4 allele (www.alzgene.org). 

While the exact molecular mechanism remains elusive, several studies indicated a decreased ability of 

ApoE4 for the clearance of Aβ (Bu, 2009) or an impaired endocytosis of Aβ by microglial cells 

(Carter, 2005). A recent study has furthermore identified TREM2 (triggering receptor expressed on 

myeloid cells 2) as an additional risk factor for the pathogenesis of AD (Guerreiro et al, 2013; Jonsson 

et al, 2013). Loss of a single TREM2 copy had no effects on the Aβ deposition, but altered the 

morphology of plaque-associated microglial cells, which highlights its role in microglial response 

(Ulrich et al, 2014). In genome wide association studies a number of further genes like PICALM or 

CLU have been shown to be associated with the AD risk (Harold et al, 2009). However, all of these 

risk factors have much lower impact on the AD development compared to ApoE. 

A minor percentage of all AD cases are linked to mutations in PS1, PS2 and APP, and cause an early 

onset of AD (EOAD). A high number of different mutations in these genes were identified (>25 APP; 

http://www.alzgene.org/
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>10 PS2; >150 PS1) and shown to cause either a misbalance in the processing of APP or to promote 

the aggregation propensity of ACai et al, 1993; Citron et al, 1992; Goate et al, 1991). Commonly, 

these mutations lead to elevated generation of total Aβ or a change in the relative ratio of Aβ40 to 

Aβ42, and thus, could promote plaque formation (Tanzi & Bertram, 2001). The so-called Swedish 

mutations of APP at position 670 and 671 (KMNL) favors processing by the β-secretase and 

increases generation of Aβ40 and Aβ42 (Citron et al, 1992). Further mutations such as the Austrian 

(T714A), German (V715A) or Florida (I716V), lie within the trans-membrane domain and cause an 

increased production of the longer Aβ42 species that are more hydrophobic and more neurotoxic 

(Suzuki et al, 1994). All APP mutations identified so far, are mainly located close or within the Aβ 

domain. 

Mutations in the presenilin genes on the other hand occur in different regions of the encoded proteins, 

but are enriched in hydrophobic trans-membrane or membrane associated domains (Tanzi & Bertram, 

2005). Most mutations in the PS1 and PS2 genes are missense mutations and affect their endo-

proteolytic cleavage (see 1.1.2), the generation of different splice variants and also the overall 

enzymatic activity. A missense mutation in the splice acceptor site of exon 9 causes a deletion of this 

exon (Δexon9) and results in the loss of the endo proteolytic cleavage site of PS1 (De Strooper, 2007). 

A double transgenic mouse model expressing PS1 Δexon9 and the human variant of APPswe, also 

known as APP/PS1, is a commonly used mouse model for AD. These mice show severe plaque load 

with increasing age, as well as cognitive and behavioral deficits (Dewachter et al, 2001). 

Interestingly, even though more than 60 mutations for tau have been identified, none is associated with 

the pathogenesis of AD. Most of the tau mutations are mainly associated with fronto-temperal lobe 

dementia (FTLD). An interactive diagram with all mutations in APP, PS1, PS2 and tau can be found at 

http://www.alzforum.org/mutations. 

 

1.1.2 Metabolism of the Amyloid Precursor Protein. 

Aβ peptides derive from the sequential cleavage of the amyloid precursor protein (APP). APP is a 100 

– 140 kDa, ubiquitously expressed type I transmembrane protein. The molecular weight varies due to 

http://www.alzforum.org/mutations
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differences in maturation states, alternative splicing and post-translational modifications. Alternative 

splicing of the 19 different exons generates three predominant length variants that show tissue specific 

distribution. APP695, also known as the neuronal APP, consists of exons 1 – 6 and 9 – 18, whereas 

APP751 (exon 1 – 7, 9 – 13) and APP770 (exons 1 – 18) are predominately expressed in peripheral 

tissues (Selkoe, 2001b). Heterogeneity in APP is further caused by co- and posttranslational 

modifications (Hung & Selkoe, 1994; Tomita et al, 1998; Walter et al, 1997a; Walter & Haass, 2000). 

First, immature full-length APP (APP-FLim) undergoes co-translational N-glycosylation in the 

endoplasmic reticulum and is then transported to cis-Golgi compartments. During transport in the 

Golgi, APP undergoes further maturation by O-glycosylation, sulfation and phosphorylation. Mature 

APP (APP-FLm) is then transported via secretory vesicles to the plasma membrane for proteolytic 

cleavage or re-internalization into endocytic vesicles (Weidemann et al, 1989). APP can undergo 

sequential cleavage mediated by three distinct intramembranous proteases, called α-, β- and γ-

secretases. Processing of APP can take place in two principal cleavage pathways: the non-

amyloidogenic and the amyloidogenic pathway (Fig. 2).  

 

Fig. 2: Proteolytic processing pathways of APP. Initial cleavage of APP by α-secretase in the non-amyloidogenic pathway 

precludes the generation of Aβ, but liberates sAPPα into extracellular fluids. Membrane associated αCTFs are further 

processed by the γ-secretase complex producing the amyloid-intracellular domain (AICD) and p3. Alzheimer’s associated Aβ 

variants are generated in the amyloidogenic pathway by β-secretase (BACE1) cleavage. Initial β-secretase cleavage leads to 

secretion of sAPPβ into the extracellular milieu. βCTFs are then further processed by the γ-secretase complex, resulting in the 

generation of Aβ and the AICD. Secreted Aβ can undergo dimerization (dAβ) or moreover oligomerization (oAβ), which 

might result in the formation of amyloid plaques. 
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α-Secretase 

The predominant cleavage of APP is initiated by the α-secretase in the non-amyloidogenic pathway 

between Lys16 and Leu17 within the Aβ domain.  α-secretase cleavage precludes the generation of Aβ 

and results in the secretion of soluble APPα (sAPPα) and the generation of the membrane-tethered C-

terminal fragment (αCTF) (Esch et al, 1990; Sisodia et al, 1990; Wang et al, 1991) (Fig. 2). This 

cleavage occurs predominantly at the cell surface and suggests a plasma-membrane localization of the 

α-secretases (Sisodia, 1992b). Studies identified at least four enzymes to have α-secretase cleavage 

properties that belong to the family of “a disintegrin and metallo proteinases”: ADAM9, ADAM10, 

ADAM17 and ADAM19 (Allinson et al, 2003). All ADAM-proteins are type I transmembrane 

proteins and require zinc as a co-factor for their activity (Sisodia, 1992a). The predominant form in 

neuronal cells was recently discovered to be ADAM10 (Kuhn et al, 2010). α-Secretase activity can be 

regulated by protein kinase C (PKC). Phorbol esters stimulate PKC activity and increase the α-

secretory cleavage of APP resulting in both, elevated secretion of sAPPα (Buxbaum et al, 1990) and  

decreased generation of Aβ (Hung et al, 1993). However, ADAM proteins not only cleave APP, but 

also several other proteins like Notch receptors, tumor necrosis factor α (TNFα), cadherins and IL-6 

(Seals & Courtneidge, 2003). This highlights the physiologic relevance of ADAM-proteases also 

documented by the in utero lethality of ADAM10 or ADAM17 knockout mice (Hartmann et al, 2002; 

Peschon et al, 1998).  

 

β-Secretase 

β-secretase or BACE1 (β-site APP cleaving enzyme) (Sinha et al, 1999; Vassar et al, 1999; Yan et al, 

1999) initiates the generation Aβ and is the rate limiting enzyme in the amyloidogenic pathway.  

Cleavage of APP by BACE1 leads to secretion of sAPPβ and the generation of βCTF containing the 

Aβ domain (Fig. 2). BACE1 is a type I transmembrane aspartyl protease, consisting of a cytosolic c-

terminus, a transmembrane domain and a luminal/extracellular domain (Hussain et al, 1999; Vassar et 

al, 1999). The latter contains the proteolytically active site and shows similarities to other members of 

the pepsin family (Hong et al, 2004). Two distinct DTGS and DSGT motifs form the catalytic center 
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of BACE-1. Mutations of either motif lead to complete loss of enzymatic activity (Hussain et al, 1999; 

Vassar et al, 1999). Two distinct cleavage sites for BACE1, Asp1 and Glu11 have been identified in 

APP. In human, the predominant BACE1 cleavage takes place at Glu11 of the Aβ domain and 

precludes the generation of Aβ (Liu et al, 2002). A recent study claimed, that Glu11 cleavage by 

BACE1 is favored, but shifting its activity towards Asp1, may be the pathologically more relevant 

process (Deng et al, 2013). An enzyme with 55% homology to BACE1 was identified and termed 

BACE2. However, BACE2 cleaves APP within the Aβ domain between Phe19 and Phe20 and thus, 

likely does not contribute to amyloid generation (Farzan et al, 2000; Fluhrer et al, 2002). 

BACE1 is ubiquitously expressed, but with the highest expression in pancreatic and neuronal cells 

(Ehehalt et al, 2002). The high expression rate of BACE1 and APP in neuronal cells, explains why 

neurons mainly contribute to the generation of Aβ. BACE1 as well as BACE2, contain a pro-peptide at 

their n-terminal domains, which undergoes furin mediated cleavage in the Golgi compartment. Block 

of the forward transport with brefeldin A or monensin reduces the propeptide cleavage (Bennett et al, 

2000). N-glycosylation at Asp residues in the ectodomain takes place in the ER, while the 

restructuring and trimming of the glycol-moieties occurs  in Golgi compartments, from where BACE1 

is routed to the plasma membrane (Capell et al, 2000). Trafficking of BACE1 is regulated by its 

phosphorylation at Ser468. While phosphorylation facilitates retrograde transport of BACE1 to juxta 

nuclear Golgi compartments, non-phosphorylated BACE1 accumulates in peripheral early endosome 

antigen 1 (EEA1) positive vesicles (Walter et al, 2001). Phosphorylation of BACE1 regulates the 

interaction with adapter proteins of the Golgi associated, γ-adaptin ear containing, ARF binding 

protein (GGA) family that mediate sorting between endosomal/lysosomal compartments and the trans-

Golgi Network (TGN) (Tesco et al, 2007; von Arnim et al, 2006; Wahle et al, 2005; Wahle et al, 

2006). Most BACE1 protein can be found in these particular compartments. Especially its pH 

optimum of 4.5 – 5 indicates a pronounced activity of the enzyme in endosomal and lysosomal 

compartments (Vassar & Citron, 2000). BACE1 was also shown to undergo degradation in acidic 

organelles (Koh et al, 2005). 

Generation of BACE1 knockout mice helped to identify the physiologic role of BACE1. Initial 

findings indicated no deficits in viability or fertility (Cai et al, 2001; Luo et al, 2003; Roberds et al, 
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2001). However, later studies with BACE1 KO mice showed subtle effects on behavior with impaired 

memory function or spontaneous hyperactivity (Dominguez et al, 2005; Harrison et al, 2003). 

Moreover, severely reduced myelination of neurons was present as well, probably caused by a 

precluded cleavage of neuregulin-1 (NRG1), a mediator for Schwann-cell myelination (Willem et al, 

2006). Further substrates of BACE1 are voltage-dependent sodium channels (Kim et al, 2007), the 

type II α-2,6-sialyltransferase (Kitazume et al, 2003), the platelet selectin glycoprotein ligand-1, 

(Lichtenthaler et al, 2003), LRP1 (von Arnim et al, 2005), APLP1/2 (Li & Sudhof, 2004) and the 

interleukin receptor II (Kuhn et al, 2007).  

 

γ-secretase 

Intramembranous cleavage of both APP CTF variants, αCTFs and βCTFs, is mediated by the γ-

secretase. Cleavage of αCTFs by the γ-secretase, results in the generation of the APP intracellular 

domain (AICD) and the secretion of the small peptide p3 (Fig. 2) (Haass et al, 1993). However, γ-

secretase dependent cleavage of the βCTFs induces the generation of the AICD and 37 – 49 amino 

acid long Aβ peptide variants (Fig. 2). The predominant variant is Aβ40 and to a lesser extent Aβ42 

(Citron et al, 1996; Wiltfang et al, 2002). Aβ42 is more hydrophobic and has increased propensity to 

aggregate as compared to A40. The additional γ-secretase product AICD on the other hand is 

released into the cytosol and may have a role in nuclear signaling (Cao & Sudhof, 2001; von Rotz et 

al, 2004). A series of other proteins like ErbB4 (Lee et al, 2002), Notch (Kimberly et al, 2003), CD43 

(Andersson et al, 2005), ephrin B1 (Tomita et al, 2006), LRP1 (Lleo et al, 2005) and TREM2 

(Wunderlich et al, 2013) also undergo cleavage by γ-secretase. In general, γ-secretase has little 

substrate specificity. Because -secretase requires short ectodomains and single transmembrane CTFs 

of the respective protein substrates, the cleavage of the different γ-secretase substrates is mainly 

regulated by ectodomain shedding of type I membrane proteins (Hemming et al, 2008)  

γ-Secretase is a multimeric multi-transmembrane enzyme-complex composed of presenilin 1 or 

presenilin 2 (PS1/PS2), nicastrin (NCT), anterior pharynx defective 1 (Aph1) and the presenilin 

enhancer 2 (PEN2) (Francis et al, 2002; Yu et al, 2000). A minimal stoichiometric ratio of 1:1:1:1 of 
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the components is necessary for its activity. The essential γ-secretase component NCT is required for 

substrate selection and transport of the -secretase complex in the secretory pathway (Dries et al, 2009; 

Shah et al, 2005; Yu et al, 2000). PEN2 facilitates the endo proteolytic cleavage of the presenilins and 

confers their stability (Hasegawa et al, 2004; Hu & Fortini, 2003; Prokop et al, 2004). The role of 

Aph1 is still elusive, but it is suspected to act as a scaffolding protein in the complex (LaVoie et al, 

2003). Interestingly, the molecular weight of the whole γ-secretase complex is higher than the additive 

and predicted size of the single components, suggesting an involvement of more associated proteins or 

protein complexes. Some additional proteins like TMP21 (Chen et al, 2006), CD147 (Zhou et al, 

2005) or the γ-secretase activating protein GSAP (He et al, 2010a) were recently identified. However, 

it could be demonstrated that these proteins are not essential for the γ-secretase activity (Winkler et al, 

2009). The proteolytic activity of the γ-secretase is carried out by PS1 or PS2. The major presenilin 

involved in the APP cleavage is PS1, although PS2 has the ability to cleave APP as well (De Strooper 

et al, 1998; Wolfe et al, 1999). PS1 and PS2 have 9 transmembrane domains. The 50 kDa full-length 

forms of these proteins undergo autocatalytic cleavage to form 30 kDa N-terminal fragment (NTF) and 

a 20 kDa CTF (Thinakaran et al, 1996; Walter et al, 1997b). Both CTF and NTF form a heterodimer 

with one Asp residue in each fragment (Fig. 3A). These neighboring Asp residues in the sixth and 

seventh transmembrane domains form the catalytic center of the γ-secretase complex (Wolfe et al, 

1999). Knock out of PS1 in mice, causes embryonic lethality, due to impaired processing of Notch 

(Herreman et al, 1999; Shen et al, 1997). The knock-out of PS2 does not lead to overt phenotypes. 

However, the double KO of PS1 and PS2 causes a more severe phenotype and earlier embryonic 

lethality as compared to the PS1 single KO, indicating a physiological relevance of PS2 (De Strooper 

et al, 1998).  
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Fig. 3: γ-secretase complex and Aβ producing sequential cleavage lines. (A) The γ-secretase complex with subunits and 

membrane topology. Full length presenilin is autocatalytically cleaved into a CTF and NTF. Aspartyl residues are indicated 

by D. Further γ-secretase complex subunits nicastrin, Aph-1 and Pen-2 have supporting properties and are necessary for 

catalytic activity of the presenilin (De Strooper et al, 2012).  

 

 

Subcellular trafficking of APP and its metabolizing enzymes. 

As mentioned before, maturation of APP involves N- and O-glycosylation, as well as phosphorylation, 

during its transport from the ER to the Golgi compartments and forth the plasma membrane in the 

secretory pathway. Mature full length APP is either rapidly processed in the secretory pathways or at 

the plasma membrane by the α-secretases or internalized into endocytic vesicles. Following the 

endocytosis, APP is either transported back to the plasma membrane, or delivered into endosomal or 

lysosomal compartments for degradation (Fig. 4). The initial internalization from the plasma 

membrane was shown to be dependent on a YENPTY motif at the c-terminus (Lai et al, 1995; 

Marquez-Sterling et al, 1997). Mutations in this motif selectively inhibited the internalization and 

prevented the binding of adaptor proteins like Fe65 (Borg et al, 1996; Perez et al, 1999). Fe65 binding 

also facilitates BACE1 and γ-secretase mediated processing of APP. The phosphorylation at Thr688 

residue of APP introduces a conformational change and precludes interaction with Fe65 (Ando et al, 

2001; Chang et al, 2006).  

In neurons, APP undergoes polarized trafficking. Various proteins and lipids are involved in this 

regulation. After leaving the ER, APP is first transported to Golgi compartments. Interestingly, in a 

model for polarized cells (Madin-Darby canine kidney cells: MDCK), a substantial pool of APP can 

undergo cleavage already in these compartments as it was shown (Haass et al, 1995). However, non-

A B
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processed APP is then transported in post-Golgi cargo vesicles to the axonal and dendritic endings 

(Kins et al, 2006). 

As already mentioned, APP undergoes predominant α-secretase cleavage at the plasma membrane. 

Palmitoylation of APP leads to enrichment in lipid rafts, where immediate interaction with BACE1 

takes place (Bhattacharyya et al, 2013). Palmitoylation also targets BACE1 to lipid rafts and therefore 

facilitates β-cleavage of APP in these membrane microdomains (Cordy et al, 2003; Riddell et al, 

2001). 

After re-internalization of BACE1 from the plasma membrane, the protein is transported to endosomal 

or lysosomal compartments (Pastorino et al, 2002). These acidic compartments provide a pH favorable 

for BACE1 activity. Interestingly, lower levels of fully assembled and active γ-secretase complex can 

be found in acidic vesicles as well (Dries & Yu, 2008; Kaether et al, 2006). The membrane lipid 

composition and the pH of these vesicles may be physiologically relevant for initial γ-secretase 

cleavage site (Fukumori et al, 2006). APP and its CTFs have been shown to undergo lysosomal 

degradation by acidic hydrolases (Haass et al, 1992a; Tamboli et al, 2011b; van Echten-Deckert & 

Walter, 2012a). Upon inhibition of lysosomal degradation, levels of APP βCTFs increase significantly 

thereby providing more substrates for the γ-secretase which results in increased generation of A 

(Tamboli et al, 2011b).  

In general, endosomal and lysosomal vesicles seem to play a critical role in the metabolism of APP 

and likely for the pathogenesis of AD as well.  
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Fig. 4: Intracellular trafficking of APP and subcellular sites for processing. APP is synthesized in the ER and then 

transported to the Golgi compartment for posttranslational modification and subsequently routed to the PM for predominant 

α-secretase cleavage. Non-processed APP is internalized into endosomes for β- and γ-secretase cleavage. Cleavage products 

are either transported back to the PM for further processing or internalized into lysosomal compartments. Lysosomal activity 

is detrimental for the BACE1 cleavage, but also for the final degradation of APP. 

 

1.1.3 Physiological relevance of APP 

The multiplicity of the different APP metabolizing processes and its ubiquitous expression indicates 

an important role in the physiology. However, the exact role of APP still remains elusive. Two 

additional APP homologues (amyloid like proteins: APLP-1 and APLP-2) have been identified and are 

expressed in several tissues of mammals, including the brain (Goldgaber et al, 1987; Zheng & Koo, 

2006). Knock out of APP alone has only slight effects on learning and behavior (Senechal et al, 2008). 

However, double knockout combinations of APP or APLP1 with APLP2, causes in utero or postnatal 

lethality, indicating important physiological functions (Zheng et al, 1996). 

APP has several functional domains like the KPI (Kunitz protease domain) or cation binding domains. 

Soluble APP, but also APLP2, containing the KPI domain has severe influence on the blood 

coagulation, since KPI containing APP variants are highly expressed in platelets where they influence 

blood clotting serine proteases (Van Nostrand et al, 1991; Xu et al, 2009). Binding and association 

studies furthermore revealed a cysteine rich domain in APP which interacts with metal ions like Fe2+, 

Cu2+, Zn2+ or Pb2+ and affects its processing. APP is furthermore suggested to act as a receptor for a 
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ligand (Rossjohn et al, 1999)or to bind to components of the extracellular matrix (Small et al, 1992). 

Additional domains for the interaction with heparin and several proteins have also been described and 

extensively reviewed (Dawkins & Small, 2014; Mattson, 1997). 

Binding of adaptor proteins such as X11, ARH or Fe65 to the NPTY motif at the C-terminus of APP, 

play a critical role in its transport and processing (Mameza et al, 2007; McLoughlin & Miller, 2008; 

Rogelj et al, 2006). Especially Fe65 seems to have an AICD stabilizing activity and is involved in 

several transcriptional or gene regulatory processes (Fiore et al, 1995; Kimberly et al, 2001; Yang et 

al, 2006). However, the role of AICD on gene regulation seems to be controversial, since further 

studies failed to proof these results (Hass & Yankner, 2005; Hebert et al, 2006) to play a general 

important role in    Fe65 was furthermore shown to interact with the lipoprotein receptor LRP1 and 

regulates the metabolism of ApoE and cholesterol (Liu et al, 2007) . 

APP also seems to be tightly linked to the regulation of lipid metabolism (Grimm et al, 2007; Grosgen 

et al, 2010), as it was shown to bind cholesterol in its transmembrane domain and promotes the 

amyloidogenesis (Barrett et al, 2012). The γ-secretase cleavage products AICD and Aβ were also 

shown to regulate the lipid homeostasis. In cell culture experiments, Aβ inhibited the HMG-CoA 

reductase and therefore lowered the generation of cholesterol (Grimm et al, 2005). AICD on the other 

hand was shown to negatively regulate the LDL receptor related protein 1 (LRP1) expression in cells 

lacking PS1 activity and leading to a more efficient uptake of ApoE-cholesterol complexes (Liu et al, 

2007). 

Overall, the exact role of APP and APLPs in the physiology stays elusive. However, both APP and 

APLPs exert multiple, but partially redundant physiological functions. 

 

1.2 Sphingolipids 

Sphingolipids are common components of cellular membranes, and together with phosphoglycerides 

and cholesterol determine their biophysical and biological characteristics. The class of sphingolipids is 

characterized by a C18 long-chain base (sphingoid base), an aliphatic amine with two or three hydroxyl 

groups and often a distinctive trans-double bond (2-amino-1,3-dihydroxy-alkanes). The most abundant 
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sphingoid base in tissues is sphingosine (Sph), followed by ceramide (Cer) and sphingosine-1-

phosphate (S1P) (Merrill, 2011). Sphingoid bases are the precursor for all sphingolipids and are 

generated either de novo (Cer) or in recycling pathways (Sph, S1P). Ceramide can be formed in the 

recycling pathway as well, when sphingosine is linked to a fatty acid (Fig. 5). Sphingolipids are 

classified by their different head groups into glycosphingolipids (GSL) and sphingomyelin (SM) 

(Merrill, 2011). Glycosylation of ceramide initiates the formation of the GSLs. GSLs can be divided 

into two classes. Addition of uncharged carbohydrates to ceramide forms neutral GSLs (cerebrosides), 

whereas acidic GSLs are formed upon sulfation (sulfatides) or addition of N-acetylneuraminic acid to 

ceramide (gangliosides). Modification of ceramide by addition of phosphorylcholine at its C1 position 

forms sphingomyelin (SM). Both GSLs and SM are anchored with their ceramide-backbone into 

membranes, while their head groups predominantly face towards extracellular fluids and the lumen of 

vesicular compartments. Both GSLs and SM tend to accumulate in lipid microdomains or “lipid rafts” 

which are highly detergent resistant (Merrill, 2011).  

 

Fig. 5: Inter-conversion of the sphingoid bases ceramide, sphingosine and sphingosine-1-phosphate. The most common 

sphingoid base sphingosine, is either phosphorylated by the sphingosine-kinases 1 or 2 to form S1P, or catabolized to 

ceramide. Ceramidases can form sphingosine by deacylation. S1P can be dephosphorylated by sphingosine-phosphatases. 

(Modified after http://lipidlibrary.aocs.org/Lipids/lcb/Figure1.png) 

 

The sphingolipid profiles of different brain regions and neuronal subtypes are diverse and can be 

highly dynamic during differentiation and development (Kracun et al, 1992b; Svennerholm et al, 

1989). As components of biological membranes, sphingolipids also affect fluidity and dynamics as 
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well as vesicular trafficking (Goni & Alonso, 2009; Zhang et al, 2009). Ceramide and S1P furthermore 

exert important roles in intracellular signal transduction (Hannun & Obeid, 2008). A variety of 

enzymes is involved in the metabolism of sphingolipids which also can play critical roles in the 

pathogenesis of a wide range of diseases such as cancer (Liu et al, 2013), diabetes mellitus (Galadari et 

al, 2013), neurological disorders/neuro-inflammation (Davies et al, 2013; Gomez-Munoz et al, 2013) 

and other metabolic disorders (Hla & Dannenberg, 2012).  

 

1.2.1 Topology and metabolism of sphingolipids. 

All cells are able to generate sphingolipids via de novo synthesis starting with the condensation of 

serine and palmitoyl-CoA or stearoyl-CoA in the ER (Sonnino & Chigorno, 2000; van Echten-Deckert 

& Herget, 2006). The enzyme serine-palmitoyl-transferase catalyzes the rate-limiting step for the de 

novo synthesis and initiates the formation of 3-ketosphinganine, which subsequently metabolized to 

sphinganine and dihyrdo-ceramide and ceramide. In further steps of the de novo biosynthesis pathway, 

Cer is transported to the cis-Golgi compartments via vesicular trafficking or by the ceramide transfer 

protein (CERT) in a non-vesicular manner (Hanada et al, 2007), and then glycosylated to 

glucosylceramide (GluCer) at the cytoplasmic side/face of the cis-Golgi.  Further metabolic processing 

of GluCer to higher GSLs takes place in the luminal Golgi. In addition, non-glycosylated Cer can be 

modified with phosphorylcholine by the sphingomyelin synthase to form SM. Both GluCer and SM 

are transported to the plasma membrane via secretory vesicles or lipid transfer proteins. A detailed 

description of the de novo synthesis is given in the legend of Fig. 6. 

In the recycling or degradation pathway, SM and GSLs are directly catabolized to Cer at the plasma 

membrane or internalized into endosomal compartments. Ceramide is further catabolized to Sph, 

which can be phosphorylated by the sphingosine kinases (SphK1 or SphK2). S1P can undergo either 

dephosphorylation by S1P-phosphatases (SPP1, SPP2) or the less specific lipid phosphatases. 

Alternatively, S1P can be cleaved by the S1P-lyase (see 1.2.2; Fig. 6). 



   

Introduction 

16 

 

 

Fig. 6: Topological biosynthesis of sphingolipids in the de novo and the recycling pathways. The de novo synthesis (blue 

arrows) of sphingolipids is initiated in the ER by the condensation of serine and palmitoyl CoA through the serine palmitoyl 

transferase. The generated 3-sphinganine (3-ketodihydrosphingosine) is further metabolized to dihydroceramide (DHS) by 

the dihyrdo-(ceramide) synthase. Next DHS is desaturated to ceramide by the dihydroceramide desaturase, which is 

transported by CERT/vesicles to the cytoplasmic site of the Golgi membrane. Ceramide is then either metabolized to 

glucosylceramide (GluCer) and further to the glycosphingolipids (GSLs), or to sphingomyelin (SM) at the luminal site of the 

Golgi compartments. SM and GSLs are then transported to the plasma membrane. Cleavage of SM at the plasma membrane 

to ceramide or internalization of GSLs into endosomal/lysosomal compartments initiates the recycling pathway (red arrows). 

The sphingomyelinase at the PM or in endosomal/lysosomal compartments generates Cer, which can be further cleaved to 

sphingosine by the ceramidases. GSLs are degraded by a subset of various specific catabolic enzymes in the 

endosomal/lysosomal compartments. Sphingosine is subsequently phosphorylated by the sphingosine-kinases 1 or 2, either at 

the PM (SphK1) for direct secretion or in the ER (SphK2). S1P can translocate into the nucleus or can be irreversibly cleaved 

to phosphoethanolamine and hexadecenal by the S1P-lyase. Dephosphorylation of S1P by S1P-phosphatases initiates 

recycling of S1P to sphingosine and ceramide. (Fyrst & Saba, 2010).  
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1.2.2 S1P and metabolizing enzymes. 

For a long time sphingolipids were suspected to be only passive components of biological membranes. 

However, it has been shown that certain GSLs, ceramide, sphingosine and S1P can undergo rapid 

conversion and regulate different intracellular signaling pathways. 

S1P is a highly bioactive metabolite of the sphingolipid metabolism and exerts a wide range of 

intracellular activities. At first, Gosh and colleagues showed that S1P could induce Ca2+ release from 

the ER (Ghosh et al, 1990; Ghosh et al, 1994). It was furthermore demonstrated that S1P acts as a 

second messenger to promote cell proliferation (Olivera & Spiegel, 1993). Interestingly, S1P 

counteracts the pro-apoptotic function of ceramide by preventing intranucleosomal DNA 

fragmentation (Cuvillier et al, 1996). An additional effect of S1P in the nucleus was shown by Hait 

and colleagues. After entering the nucleus, S1P is able to regulate the transcription of genes by histone 

acetylation (Hait et al, 2009). S1P furthermore acts as a co-factor for the TNF receptor-associated 

factor 2 by binding to its RING domain and stimulating its E3 ligase activity (Alvarez et al, 2010).  Of 

great interest for this work, S1P was recently related to the APP cleaving enzyme BACE1. Takasugi 

and colleagues demonstrated a positive modulatory effect of S1P on the BACE1 activity (Takasugi et 

al, 2011). For a detailed description of S1P in the pathogenesis of AD see 1.2.3. 

In addition to the second messenger function, S1P serves as ligand for five distinct cell surface G-

protein coupled receptors (S1PR1 – S1PR5). In most tissues, the basal concentrations of S1P are low. 

Erythrocytes however show high concentrations since they lack S1P degrading enzymes (SPPs or 

S1P-lyase). It is assumed, that this S1P concentration gradient is of great relevance and attracts various 

immune cells like lymphocytes, since the activation of S1PRs can cause egress of several types of 

immune cells (Chi, 2011; Schwab et al, 2005). The particular effect of the S1PRs on immune cell 

recruitment is briefly described in the following paragraph. 

Activation of S1PR5 in natural killer T-cells is important for their recruitment and egress from 

lymphoid organs (Jenne et al, 2009). S1PR4 is involved in neutrophil trafficking since its deletion was 

shown to decrease neutrophilia and inflammation in S1P-lyase deficient mice (Allende et al, 2011). In 

particular, activation of the S1P - S1PR1 axis is of great interest. Phosphorylation of the sphingosine 

analogue FTY720 by SphK2, and binding to S1PR1 causes an internalization and degradation of the 
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S1PR1 in B- and T-lymphocytes. This receptor degradation causes retention of lymphocytes in lymph 

nodes and thus a suppression of the immune response (Schwab & Cyster, 2007). 

 

Sphingosine-Kinases 

Phosphorylation of sphingosine by the sphingosine-kinases (SphK1 and SphK2) generates S1P 

(Kohama et al, 1998; Liu et al, 2000). Several splice variants for both kinases with a high degree of 

polypeptide sequence homology were identified so far (Pitson, 2011). The distinct tissue distribution 

and subcellular localization of SphK1 and SphK2 suggest distinct physiological roles of both enzymes 

(Cuvillier et al, 2010). It was demonstrated that phosphorylation of Sph by SphK1 promotes cell 

survival and proliferation (Hannun & Obeid, 2008; Pyne & Pyne, 2010). S1P generated by the SphK2 

on the other hand appears to suppress cell growth suppression and enhance apoptosis (Maceyka et al, 

2005; Okada et al, 2005). Nevertheless, experiments with specific SphK2 inhibitors also caused 

enhanced apoptosis, suggesting overlapping effects of SphK1 and SphK2 generated S1P (Pitman & 

Pitson, 2010). 

Phosphorylation of SphK1 at Ser225 by ERK1/2 strongly stimulates its activity (Pitson et al, 2003). It 

causes a translocation of SphK1 from the cytosol to the plasma membrane, probably to phosphorylate 

sphingosine at the plasma membrane thereby facilitating the secretion of S1P (Pitson et al, 2003). 

Interaction of SphK1 with phosphatidylserine at the inner leaflet of the plasma membrane is suspected 

to assist in this re-localization of this protein (Stahelin et al, 2005). Rapid secretion of SphK1 

generated S1P and is mediated by the different sphingolipid transporters ABCC1, ABCC2 (ATP 

binding cassette, sub family C) or Spn2 (spinster homolog 2) (Kawahara et al, 2009; Takabe et al, 

2010). 

SphK2 shares a high sequence similarity with SphK1, but lacks the Ser225 phosphorylation site. 

Nevertheless, it shows also contains probable phosphorylation sites for ERK1/2 at Ser351 or Thr578 

(Hait et al, 2007). SphK2 is mainly located in the nucleus and the cytoplasm. However, upon 

activation of PKC or cell starvation, SphK2 levels at the ER increase and lead to enhanced generation 

of S1P (Ding et al, 2007; Maceyka et al, 2005). SphK2 generated S1P can then translocate into the 

nucleus and regulate gene transcription by inhibition of histone deacetylation (Hait et al, 2009). 
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Furthermore, the localization of SphK2 at the ER supports a role in apoptosis, since S1P generated by 

SphK2 is catabolized to ceramide and facilitates the ceramide-mediated pro-apoptotic signaling 

(Igarashi et al, 2003; Maceyka et al, 2005). This is supported by the higher resistance of cells isolated 

from SphK2-/- compared to SphK1-/- mice against staurosporine induced apoptosis (Hofmann et al, 

2008). Interestingly, whereas SphK1 or SphK2 single knockout mice are viable and fertile, double 

knockout mice die in utero (Mizugishi et al, 2005), indicating some functional redundancy of both 

enzymes.  

 

S1P-lyase 

The cleavage of S1P is mediated by the ER localized S1P-lyase. This hydrolysis is irreversible and 

presents the only point for sphingolipid intermediates to leave the sphingolipid degradation pathway. 

Accordingly, the inhibition of S1P-lyase causes strong accumulation of intracellular S1P (Hagen-

Euteneuer et al, 2012; Ikeda et al, 2005). The mammalian S1P-lyase gene encodes a 63.5 kDa type-I 

transmembrane protein of 568 amino acids, with the catalytic domain facing the cytosol (Ikeda et al, 

2004; Van Veldhoven & Mannaerts, 1991). Two cysteine residues at position 218 and 317 form the 

catalytic center. The latter is highly conserved throughout different species. Interestingly, deletion of 

the transmembrane domain does not impair the catalytic activity in vitro (Van Veldhoven, 2000). Two 

additional lysine residues at position 353 and 359 form a binding site for its coenzyme pyridoxal 5’-

phosphate and are also highly conserved throughout all S1P orthologues (Serra & Saba, 2010; Van 

Veldhoven & Mannaerts, 1991; van Veldhoven & Mannaerts, 1993), and mutagenesis of Lys 353 

resulted in total loss of S1P-lyase activity (Reiss et al, 2004).. 

S1P-lyase cleaves S1P between the C2 and C3 carbon bond generating hexadecenal (palmitaldehyde) 

and phosphoethanolamine (van Echten-Deckert & Herget, 2006). In addition to S1P, S1P lyase can 

also degrade D-erythro isomers of sphingoid bases like dihydrosphingosine-1P and phytosphingosine-

1P (Pyne & Pyne, 2000).  

High expression levels of S1P-lyase are found in tissues high cell proliferation like the small intestine, 

the liver, the spleen or the olfactory mucosa (Borowsky et al, 2012; Genter et al, 2003). Tissues with 

low cell turnover like the brain, the heart or the skeletal muscles show lower expression of the S1P-
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lyase. This pattern is consistent with the ability of S1P to suppress apoptosis and promote cell survival 

(Serra & Saba, 2010). The interplay of the enzymes involved in S1P metabolism, S1P-lyase and 

SphKs allows a fine-tuned control of intracellular S1P concentrations that are crucial for the cell 

survival. 

 

1.2.3 Pathological Effects of altered Sphingolipid metabolism. 

Altered sphingolipid metabolism is associated with a number of different diseases, mostly affecting 

lipid degrading enzymes in lysosomal compartments. Most sphingolipids enter endosomal or 

lysosomal compartments via endocytosis and are then degraded by acidic hydrolases (Kolter & 

Sandhoff, 2010). Impaired degradation of these sphingolipids causes their pathogenic storage, known 

as sphingolipidoses. As a secondary effect of this accumulation, clearance of additional lipids and also 

proteins can also be affected (Aridor & Hannan, 2000; Walkley & Vanier, 2009). A high number of 

sphingolipidoses were described so far, like Gaucher’s disease as the most frequent one, Niemann Pick 

A or B (NPA, NPB), Sandhoff disease, Tay Sachs disease and many others.  

In Gaucher’s disease, GluCer is the primarily stored lipid and causes malfunction of the liver, skeletal 

disorders, anemia or low blood platelets. However, storage of secondary lipids like ceramide or GM3, 

can also contribute to the diseases phenotype, which is not necessarily associated with the primary 

substance. Ceramide and GM3 storage have been shown cause an insulin resistance in patients 

affected by Gaucher’s disease (Fuller, 2010). Further additional physiological effects are impaired 

inflammatory response (Hollak et al, 1997) or impaired Ca2+ homeostasis (Korkotian et al, 1999). 

Niemann Pick C (NPC) shows a primary accumulation of cholesterol due to mutations in the 

endosomal/lysosomal cholesterol transporter NPC1 or NPC2 (Carstea et al, 1997). However, the 

secondary effect emerging from this cholesterol storage manifests in additional accumulation of 

sphingomyelin and sphingosine (Lloyd-Evans et al, 2008). Due to the storage of sphingomyelin, 

similar as in NPA or NPB, NPC can also be classified as a sphingolipidosis.  

Complex gangliosides can be predominantly found in neuronal membranes. Thus, it is not surprising 

that sphingolipidoses are also often associated with neurological symptoms (Walkley, 2003).  
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The composition of the gangliosides in neuronal membranes changes during the aging process, 

underlining the importance in neuronal activity (Svennerholm et al, 1989; Svennerholm et al, 1994). 

Interestingly, altered sphingolipid metabolism was also shown to be associated with a number of 

neurodegenerative disorders, like Parkinson’s disease (Swan & Saunders-Pullman, 2013), Prion 

disease (Schengrund, 2010) and Huntington’s disease (Desplats et al, 2007). Moreover, these late-

onset neurodegenerative diseases show similar neuropathological and cyto pathological characteristics 

like classical sphingolipidoses (Piccinini et al, 2010). 

 

1.2.4 Sphingolipids in Alzheimer’s disease. 

The subcellular trafficking of APP and its metabolizing enzymes is very similar to that of 

sphingolipids. As described before (see 1.1.2), APP is posttranslationally modified in Golgi 

compartments and transported in secretory vesicles to the PM. Endocytosis delivers unprocessed APP 

to endosomes containing BACE1 and γ-secretase. After processing, the endosomes can recycle and 

fuse with the PM resulting in the secretion of Aβ. Alternatively, endosomes can fuse with lysosomes 

to allow efficient degradation of their content (Fig. 7). The de novo synthesis of sphingolipids (GSLs 

and SM) also occurs in the secretory pathway from the ER via Golgi compartments to the PM. SM can 

be directly degraded at the PM and its metabolites are converted to Cer, Sph or S1P. Further catabolic 

processing of SM as well as of GSLs is mediated by acidic hydrolases in endosomal and lysosomal 

compartments (Fig. 7). Thus, disturbances in the sphingolipid metabolism might affect the 

intracellular trafficking and processing of APP. Lowering the levels of SM or GSLs reduced the 

transport of APP in the secretory pathway and therefore its availability for secretases (Sawamura et al, 

2004; Tamboli et al, 2005). Ceramide on the other hand can stabilize BACE1 and thereby increase the 

secretion of Aβ (Li et al, 2010; Puglielli et al, 2003). In addition, APP can also be stabilized by 

sphingolipids by impairment of APP processing (Tamboli et al, 2005; Tamboli et al, 2011c; Zha et al, 

2004). Modulation of membrane thickness and its composition was shown to affect -secretase activity 

(Osenkowski et al, 2008; Winkler et al, 2012). On the other hand, APP metabolism could also be 

affected independent of secretases as demonstrated in several models of LSDs. Primary fibroblasts 
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from patients with NP - A, - B, Tay-Sachs or Sandhoff disease (Tamboli et al, 2011b; Tamboli et al, 

2005) and in vivo studies of LSD model mice (Boland et al, 2010; Burns et al, 2003; Keilani et al, 

2012) demonstrated accumulation of APP-FL and APP-CTFs. The majority of studies focused on the 

role of complex sphingolipids like SM and GSLs or the sphingoid bases Cer and Sph.  

 

Fig. 7: Similiarities between trafficking and localization of APP and GSLs. Cer is generated in the ER and further 

metabolized to GSLs in the Golgi compartments. Both GSLs and APP are transported in secretory vesicles to the PM and 

tend to accumulate in lipid rafts. GSLs can be internalized into endosomal/lysosomal compartments, similar to non-processed 

APP. The cleavage of APP and and the degradation of GSLs take place in the endosomal/lysosmal compartments. Both CTFs 

or sphingolipids can either be transported back to the PM or undergo hydrolysis. Colocalization of highly concentrated GSLs  

can hamper the processing and the degradation of APP. 

 

Only little information on the role of S1P in the metabolism of APP is currently available. One study 

analyzed the relationship of Aβ and hyper-phosphorylated tau (PHF1) with the sphingoid bases Sph 

and S1P in brain samples from AD patients (He et al, 2010b). The study could not demonstrate any 

relationship of Sph with PHF1, but showed a negative correlation of the S1P content with Aβ or PHF1 

levels (He et al, 2010b). In line with this, a recent study linked the S1P signaling and the activity of 

SphK1 and SphK2 directly to the pathogenesis of AD. The study indicated that levels of S1P decline 

with disease progression and were lowest in brain regions most heavily affected by the AD pathology 
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(Couttas et al, 2014). The authors attributed these findings to the absence of the cytoprotective role of 

S1P, probably by reduced SphK1 and SphK2 activities. Consistently, mRNA expression analysis of 

AD brains showed a marked increase of S1P-lyase levels when compared to healthy brains (Katsel et 

al, 2007). Similar results were found by Ceccom and colleagues. While the expression of S1P-lyase 

was elevated, the expression of SphK1 and S1PR1 was significantly decreased in frontal and 

enthorinal cortices of AD patients (Ceccom et al, 2014). An interesting study furthermore emphasizes 

the role of S1P in the pathogenesis of AD. A novel liposomal vaccine, composed of Aβ42 and S1P 

showed positive effects on the plaque load when administered to APP/PS1 mice (Carrera et al, 2012). 

Vaccination with the Aβ42-S1P liposomes significantly reduced the plaque burden and the 

immunological response in hippocampal areas induced by amyloidosis. 

The role of SphK1 seems to be crucial in the pathological processing of APP. Three independent 

studies analyzed the relationship of SphK1and the APP metabolism. In the first study, application of a 

truncated Aβ peptide (Aβ25-35) reduced the expression of SphK1 significantly and showed a severe 

neurotoxic effect. Notably, this effect was ameliorated when SphK1 was overexpressed (Yang et al, 

2014). In the second study, Zhang and colleagues demonstrated an increased plaque formation and a 

decrease in learning and behavior after knock-down of SphK1. They injected adenoviruses expressing 

siRNA into the hippocampus of APP/PS1 mice. Four weeks after transduction, the learning and 

memory abilities in these mice were severely aggravated (Zhang et al, 2013). The third study by on the 

other hand was contradictory. Jesko and colleagues showed that inhibition of SphK1 as well as SphK2 

reduced the secretion of Aβ in SH-SY5Y neuroblastoma cells (Jesko et al, 2014). 

SphK2 on the other hand, is also of great interest in neurodegeneration. S1P generated by SphK2 was 

shown to induce apoptosis in primary neurons of S1P-lyase deficient mice, also providing a possible 

link between S1P and cell death occurring in AD (Hagen et al, 2009). In accordance, Takasugi and 

colleagues showed an increased level of SphK2 in AD brains and an impact of S1P on the processing 

of APP (Takasugi et al, 2011). S1P generated by SphK2 stimulates BACE1 activity and causes an 

increased secretion of Aβ. The same authors showed that long term treatment with the S1PR1 agonist 

FTY720 decreased the levels of Aβ40, while levels of Aβ42 increased. It was assumed, that this effect 

is independent of known downstream signaling pathways of S1PRs (Takasugi et al, 2013). 
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FTY720 and Memantine®, the only clinically approved NMDA receptor antagonist against AD, were 

also tested in a rat model of AD. Constant application of FTY720 and Memantine ® to rats of an AD 

model showed a similar restoration of the behavioral outcomes. Gene profiling analysis furthermore 

revealed an up regulation in the expression pattern of mitogen activated protein kinases (MAPKs) and 

inflammatory markers (Hemmati et al, 2013). This finding suggests a beneficial effect of FTY720 by 

stimulating neurorestoration and cell survival in AD. 

 

Taken together, the role of S1P in APP processing and pathogenesis of AD is gaining more and more 

interest. Different studies revealed a loss of the S1P cytoprotective effect in brains of AD patients. The 

role of the SphKs seems to be of great relevance. However, the studies are still sketchy and do not 

provide any clear mechanism on the AD pathology. The role of S1P-lyase on the other hand remains 

mainly elusive and has to be further explored. 
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1.3 Rationale 

There are clear parallels between AD and sphingolipidoses. The role of sphingolipids on the 

pathological processing of APP has been extensively described in numerous studies (Li & Sudhof, 

2004; Puglielli et al, 2003; Sawamura et al, 2004; Tamboli et al, 2011a; Tamboli et al, 2011b; Tamboli 

et al, 2005). While these studies focus on sphingolipid intermediates like Cer, SM or GSL, Sph was 

shown to accumulate in lysosomal compartments of NPC cells (Lloyd-Evans et al, 2008). 

Interestingly, all of these LSDs show severe effects on the APP metabolism, either due to altered 

secretase activities or due to hampered lysosomal turnover.  

Recent studies highlighted the role of S1P metabolizing enzymes like SphK1 or SphK2 on the 

pathogenesis of AD. However, the impact of S1P on the cellular APP metabolism remains largely 

elusive. 

The main goal of this study was to understand the role of S1P in the metabolism of APP. Therefore, a 

genetically modified model with a deficiency of the S1P-lyase and significantly elevated 

concentrations of S1P was used. It was analyzed whether elevated level of S1P might affect the 

activity of the APP processing secretases and whether the highly sensitive S1PRs play a role. In 

addition, the possible role of S1P storage on lysosomal compartments and other organelles was 

analyzed.  
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2. Material and Methods  

All chemicals used in the following experiments were purchased in purity grade “per analysi” from 

Sigma-Aldrich (Steinheim, Germany), LifeTechnologies (Frankfurt, Germany) Roche (Basel, 

Switzerland), Roth (Karlsruhe, Germany), Applichem (Darmstadt, Germany), Tocris/R&D Systems 

(Wiesbaden-Nordenstadt, Germany), Cayman Chemicals (Ann Arbor, USA) or SantaCruz 

Biotechnology (SantaCruz, USA). Cell culture media and buffers were purchased from 

LifeTechnologies (Frankfurt, Germany). Exceptions are stated in the respective experiment 

descriptions. For a list of used equipment and materials see  

Table 1. 

 

Table 1: Equipment and Material 

Cell culture equipment Company 

-80°C Freezer Thermo Scientific 

37°C CO2 incubator Binder 

Cell culture clean bench Thermo Scientific 

Centrifuge (5804) Eppendorf 

Water bath Medigen 

 

SDS-PAGE and Blotting equipment Company 

SDS-PAGE chamber Höfer 

Western blotting chamber Höfer 

Cooling system (E100) Lauda 

Chemiluminescence Imager (ChemiDoc XRS) with 

Analysis Software Quantity One 

Bio-Rad 

LiCor Infrared Imager (Odyssey CLx) with Analysis 

Software Image Studio 3.1 

LiCor 

 

PCR Equipment Company 

Cycler Eppendorf 

DNA-electrophoresis chamber Amersham 
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Cell culture clean bench Thermo Scientific 

Trans-UV illuminator (GVM 20) Syngene 

Implen Nano-Spectrophotometer P-class Implen 

 

General labatory equipment Company 

Microcentrifuge (5415R) Eppendorf 

Centrifuge (5804R) Eppendorf 

Centrifuge (5804) Eppendorf 

Autoclave H+P 

Heating Block Stuard Scientific 

Thermomixer (compact) Eppendorf 

Magnetic stirrer Velp Scientifica 

pH Meter (MP 225) Mettler Toledo 

Photometer (Genesis) Thermo Scientific 

Sonifier (Sonopuls, UW 2070) Bandelin 

Overhead rotor Scientific Industries 

Vortex (MS 2 Minishaker) IKA 

Analytical Balance (Labstyle 204) Mettler Toledo 

Microtiterplate Reader (Muliskan RC) Thermo Scientific 

Ultracentrifuge Optima XPN Beckmann Coulter 

Fluorescence Microscope (AxioVert 200) 

with ApoTome and AxioVision Analysis Software 

Zeiss 

 

2.1 Cell biological techniques 

2.1.1 Cell culture 

 

Cell culture medium (DMEM +/+) 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose supplemented with 10 % heat 

inactivated fetal calf serum (FCS) and 1 % PenStrep solution (50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Cell culture medium (EBSS) 

Earle’s Balanced Salt Solution (EBSS) 1 % PenStrep solution (50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Trypsin-EDTA Solution 

0.05 % (w/v) trypsin (Invitrogen), 0.53 mM EDTA, dH2O 

Cryo medium 

90 % FCS supplemented with 10 % dimethylsufoxide (DMSO) 
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Cells (see Table 2) were cultured in DMEM containing 10 % FCS and 1 % Penicillin/Streptomycin at 

37°C and 5 % CO2 atmosphere. Before splitting, medium was discarded and the cells were washed 

once with PBS. Cells were then detached from the cell culture plate by incubation with 1 ml Trypsin-

EDTA at 37°C for 5 minutes, transferred into a 15 ml reaction tube along with culturing medium and 

centrifuged at 500 x g for 3 min. Cells were then resuspended in fresh 5 ml of culture medium and 

splitted in a ratio 1:20 - 1:2 according to initial cell amount onto new 10 cm culturing dish. Exact cell 

numbers were determined by using a Neubauer counting chamber. For cryo stocks, cells were grown 

until 90 – 100 % confluency and detached as described above by trypsinization. After centrifugation, 

cells were resuspended in 1-2 ml of cryo medium and stored in the -80°C freezer or liquid nitrogen. 

 

Table 2: Cell lines 

Cell lines  species/cell type 

MEF-WT Mouse embryonic fibroblasts (MEFs) 

MEF-S1PL-KO MEFs, lacking functional S1P-lyase 

MEF-WT- APP695swe MEFs, stably expressing human APP695swe variant 

MEF-S1PL-KO- APP695swe MEFs and stably expressing human APP695swe variant 

HEK293-WT Human embryonic kidney cell (HEKs) 

HEK293-APP695WT HEKs, stably expressing human APP695WT 

HEK293-APP695swe HEKs, stably expressing human APP695swe 

N9 Murine microglial cells 

 

2.1.2 Pharmacological treatment 

For pharmacological treatments, conditioned media were removed and fresh medium containing the 

indicated compounds was added for the indicated periods. For lipid treatments or induction of 

starvation, cells were washed three times with PBS to remove the remaining serum. The 

pharmacological modulators, chemicals and supplements, and the applied concentrations are listed in 

Table 3. 
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Table 3: List of pharmacological compounds. 

Compound Function Concentrations 

BAPTA-AM Ca2+ chelator 0,1 - 1 µM 

BIM I PKC inhibitor 1 µM 

Rapamycin mTOR inhibitor 10 µM 

Sphingosine cellular sphingolipid and S1P precursor 10 µM 

S1P activates S1PRs 10 µM 

JTE-013 S1PR2 antagonist 150 nM 

W146 S1PR1 antagonist 150 nM 

Chx tranlational elongation inhibitor 20 µg/ml 

GPN lysosomal membrane disrupting peptide 200 µM 

2ABP IP3 channel inhibitor 5 - 25 µM 

SKiII Sphingosine-Kinase inhibitor  5 µM 

Thapsigargin SERCA inhibitor 500 nM 

 

2.1.3 Immunocytochemistry. 

 

For immunocytochemistry, cells were seeded and cultured on glass cover slips. Conditioned media 

was discarded and cells were washed briefly with pre-warmed PBS (37°C). All following steps were 

performed at room temperature. Cells were first fixed with 4 % paraformaldehyde for 10 min, before 

washing three times for 5 min with PBS and permeabilization with 0,25 % triton for 3 min. Next, cells 

were incubated with BSA buffer for 1 h to block unspecific binding epitopes. Cells were then 

incubated for 1 h with the respective primary antibody solutions (see Table 6 for antibody dilutions), 

followed by repetitive washing (three times for 5 min). Incubation with the secondary antibodies was 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Fixation (Paraformaldehyde) Solution 

4 % (w/v) Paraformaldehyde in PBS 

Permeablization Solution 

0,25% (v/v) Triton X-100 in PBS 

Blocking Solution 

10 % (w/v) BSA, 0.25 % (v/v) Triton X-100 in PBS 

Washing Buffer 

0,125 % (v/v) Triton X-100 in PBS 

Antibody Solution 

5 % (w/v) BSA, 0125 % (v/v) Triton X-100 in PBS + Antibody (see Table 6 and Table 7) 

LD540 

Kind gift from Prof. Dr. Christoph Thiele (LIMES Institute, Bonn) 
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performed for 1 h as indicate in Table 7. Unbound antibodies and low affinity bound antibodies were 

removed by additional washing steps (three times for 5 min). Nuclei were stained by incubation of the 

cells for 2 min with PBS containing DAPI, followed by a final washing step with dH2O. Cells were 

embedded in ImmuMount (Thermo Scientific) and stored at 4°C under light exclusion until analysis. 

Lipid droplets were stained using the lipophilic dye LD540 (Spandl et al, 2009) and was kindly 

provided by Prof. Dr. Christoph Thiele from the LIMES Institute in Bonn. Cells were incubated with 

0,05 – 0,1 µg/ml LD540 diluted in and incubated for 10 min on the cells. The dye was discarded and 

cells were washed three times for 5 min with PBS before fixating and mounting. 

 

2.1.4 Transient transfection 

 

Transient transfection of proteins was performed using Lipofectamin2000 (Life-Technologies). Cells 

were grown until 80 % confluency and briefly washed 1 x with PBS and 1 x with DMEM -/-. Volume 

of transfection medium (DMEM-/-), amount of DNA and appropriate volume of transfection reagent 

were chosen and handled according to manufacturer’s instructions. Cells were kept for 6 h at 37°C and 

5 % CO2. Transfection medium was changed to 10 % FCS – DMEM and cells were incubated for at 

least 24 h before further use. 

 

2.1.5 Viral transduction 

 

WT and S1P-lyase deficient cells were transduced with a lentivirus construct encoding the human 

APP695 isoform containing the Swedish mutation. The construct drives furthermore a separate 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Cell culture medium 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose and 1 % PenStrep solution 

(50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Lipofectamin 2000 

Life-Technologies 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Cell culture medium (DMEM +/+) 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose supplemented with 10 % 

heat inactivated fetal calf serum (FCS) and 1 % PenStrep solution (50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Life-Technologies 
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expression of GFP by an internal ribosomal entry site (IRES). One day prior the transduction, cells 

were seeded into 6 well plates and cultured in 10 % FCS-DMEM to a confluency of 50 %. Cells were 

than incubated with lentiviral particles at 2*106 IP/100000 cells for 15 hours and washed four times 

with DMEM and cultured for additional 48 hours. In a final step, transduced and GFP expressing cells 

were separated from non-transduced cells by using FACS (fluorescence-activated cell sorting). 

 

2.1.6 RNAi transfection 

 

For efficient genetic knock-down, murine N9 cells transfected with siRNA using the reverse-

transfection method. First 25 µl of siRNA solution (10 µM in dH2O) was spotted into 24 well plates. 

Next, 100 µl of 1:20 diluted transfection reagent Hiperfect (Qiagen) was added onto the siRNA 

solution and incubated fort 15 min. N9 cells were trypsinized and counted using a Neubauer counting 

chamber. A cell suspension with 150.000 cells/150 µl 10 % FCS-DMEM was prepared and added onto 

the siRNA-transfection reagent spot. Cells were incubated at 37°C and 5 % CO2 for 6 h, before 

replacing the medium. Cells were harvested and prepared for protein analysis after additional 

incubation for 24 h. 

 

2.1.7 Calcium measurement 

 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Cell culture medium (DMEM +/+) 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose supplemented with 10 % 

heat inactivated fetal calf serum (FCS) and 1 % PenStrep solution (50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Life-Technologies 

Hiperfect 

Qiagen 

siRNA-FlexiTube  

Negative-control, Sgpl1 (S1P-lyase), Qiagen 

Cell culture medium (DMEM +/+) 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose supplemented with 10 % 

heat inactivated fetal calf serum (FCS) and 1 % PenStrep solution (50 U/ml Penicillin, 50 Vg/ml Streptomycin) 

Fura-2AM 

Molecular Probes, Life-Technologies 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Artificial Cerebrospinal Fluid (ACSF) 

119mM NaCl, 26,2mM NaHCO3, 2,5mM KCl, 1mM NaH2PO4, 1,3mM MgCl2, 10mM glucose, dH2O 

(+ 200 µM GPN in DMSO) 
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Cells were grown on cover slips until 70 % confluency and loaded with the Ca2+ sensitive dye Fura-

2AM® (Molecular Probes) for 30 min at 37°C. For measurements, cells were placed in a bathing 

chamber and incubated in ACSF under a constant flow. ACSF and GPN were washed in with a 

peristaltic pump (1 ml /min). Binding of Ca2+ to Fura2-AM changes its excitation peak from 340 nm to 

380 nm and emits at a wavelength of 505 nm. Ca2+ concentrations were determined with a Axioskop 

FS2A microscope (Zeiss) and the Tida program (HEKA electronics). Quantitative analysis was carried 

out with IGOR 6.22 (WaveMetrics). 

 

2.2 Protein biochemical techniques 

2.2.1 Protein extraction 

 

Cells were washed briefly with ice-cold PBS, and kept on ice to reduce metabolic activity and 

degradation. Cells were harvested with a rubber policeman in 300 – 400 µl STEN-Lysis buffer 

containing Complete® protease inhibitor. The cell homogenates were kept on ice for 15 minutes and 

subsequently centrifuged at 16000 x g for 10 min. The supernatant was used for further analysis. 

 

2.2.2 Extraction of membrane proteins 

 

Similar to 2.2, cells were kept on ice and washed briefly with PBS. Next, cells were harvested with a 

rubber policeman in 750 µl of hypotonic buffer containing protease inhibitor and incubated on ice for 

15 min. Cells were then disrupted by repetitive suspension through a 0,6 mm cannula. The cell 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

STEN-Lysis Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % (v/v) NP40 (Sigma-Aldrich), 1 % (v/v) Triton X-100 (Sigma-Aldrich), 

dH2O, pH 7.4 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

STEN-Lysis Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % (v/v) NP40 (Sigma-Aldrich), 1 % (v/v) Triton X-100 (Sigma-Aldrich), 

dH2O, pH 7.4 

Hypotonic Buffer 

10 mM Tris, 1 mM EDTA, 1 mM EGTA, dH2O, pH 7.6 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 
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homogenate was centrifuged at 1800 x g and 4°C for 5 min. The remaining supernatant was then 

centrifuged at 16000 x g and 4°C for 60 min to sediment cellular membranes. The cytosolic 

supernatant was discarded and the membranous pellet was lysed in STEN-lysis buffer. After 10 min of 

lysis on ice, particulate material was pelleted by a final centrifugation step at 16000 x g and 4°C for 10 

min and supernatant subjected to further analysis. 

 

2.2.3 Cell fractionation 

 

To separate the cell homogenates into cytosolic, membranous and nuclear fractions, cells were briefly 

washed with PBS and harvested in 300 µl hypotonic-D buffer containing protease inhibitor and 1 mM 

DTT (see 2.2.2). Cells were first incubated on ice and disrupted by resuspension through a 0.6 mm 

cannula and 1 ml syringe, and then centrifuged at 1800 x g and 4°C for 5 min. The nuclei containing 

pellet was stored at -20°C until further handling. The supernatant was subsequently centrifuged at 

16000 x g to separate membrane and cytosolic fractions. The cytosolic supernatant was also stored at -

20°C, whereas the membrane pellet was lysed in STEN-lysis for 15 min on ice. Insoluble particles 

were separated by centrifugation at 16000 x g and 4°C for 10 min, and stored at -20°C. The nuclei 

containing pellet was resuspendend in 75 – 100 µl of buffer C and incubated for 20 min on ice. After a 

final centrifugation step at 16000 x g and 4°C for 10 min, pellet was discarded and supernatant 

containing the nuclear fraction was stored at -20°C for further processing. 

For a more subtle fractionation, subcellular compartments were separated by density centrifugation. 

Confluent cell cultures were briefly washed with PBS and membranes isolated as described in 2.2.2. 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

STEN-Lysis Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % (v/v) NP40 (Sigma-Aldrich), 1 % (v/v) Triton X-100 (Sigma-Aldrich), 

dH2O, pH 7.4 

Hypotonic D Buffer 

10 mM Tris, 10 mM NaCl, 0,1 mM EGTA, 25 mM β-Glycerophosphate, 1 mM DTT, 1xPI, dH2O, pH 7.4 

Hypotonic C Buffer 

25% Glycerol, 20 mM HEPES pH 7,9, 0,4 M NaCl, 1 mM EDTA pH 8,0, 1 mM EGTA, 25 mM β-Glycerophosphate, 1 

mM DTT, 1xPI, dH2O, pH 7.4 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 

Optiprep diluent 

0,25 mM Sucrose, 6 mM EDTA, 60 mM HEPES-NaOH, dH2O, pH 7,4 
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After discarding the nucleus and cytosolic fractions, pelleted membranes were resuspendend in 500 µl 

hypotonic buffer containing protease inhibitor and stirred overnight on a magnetic stirrer at 4°C. 

Samples were then loaded on a discontinuous gradient prepared with OptiPrepTM (Sigma Aldrich) 

according to Table 4. Separation was performed at 100000 x g at 4°C for 8 h with no break 

 

Table 4: Dilution scheme for the Optiprep (iodixanol) gradient. 

% layer Optiprep (ml) Diluent (ml) Total Volume (ml) 

50% 10 0 10  

30% 6 4 10  

20% 4 6 10  

17,50% 3,5 6,5 10  

15% 3 7 10  

12,50% 2,5 7,5 10  

7,50% 1,5 8,5 10  

5% 1 9 10  

2,50% 0,5 9,5 10  

 

2.2.4 Protein extraction from mouse brain 

 

Depending on the experimental setup, mouse brains were either directly lysed in STEN-lysis buffer 

(whole brain lysate) or fractionized. The brains were first weighed and then homogenized in STEN-

lysis buffer for whole brain lysis and homogenized using plastic hand homogenizer. Next, the 

homogenates were sonicated by applying 20 pulses at 70 % intensity, followed by 20 seconds of 

incubation on ice (5 repeats). After sonification, homogenates were kept for 30 min on ice and then 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

STEN-Lysis Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % (v/v) NP40 (Sigma-Aldrich), 1 % (v/v) Triton X-100 (Sigma-Aldrich), 

dH2O, pH 7.4 

Sucrose Buffer 

0,32 M Sucrose 1xPI, dH2O 

SDS Buffer 

2% SDS (w/v) dH2O 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 
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centrifuged at 16000 x g at 4° for 45 min. Pellets were discarded and the supernatants stored at -80°C 

for further analysis. 

For fractionation, first soluble protein were extracted from weight brain in 0.32 M sucrose buffer 

containing protease-/phosphatase-inhibitor in a ratio of 1:5 (mg:µl) using a plastic hand homogenizer. 

Next, homogenates were sonicated and centrifuged as described above. While the soluble proteins 

containing supernatants were stored at -80°, the pellets were further used to extract water insoluble 

proteins. The pellets were first homogenized in 0.5 – 1 ml of 2 % SDS buffer containing protease-

/phosphatase-inhibitor and then sonificated as before. After 30 min of incubation on ice the 

homogenates were then centrifuged for 45 min at 16000 x g at 4°C and the supernatants were stored at 

-80°C for further analysis. 

 

2.2.5 Immunoprecipitation 

 

Particular proteins can be precipitated with specific antibodies coupled to protein A sepharose beads 

from cell lysates. To prevent unspecific protein-bead interaction, first 30 µl of the beads were first pre-

incubated with cell lysates (see 2.2.1) at 4°C on a rotatory shaker for 1 h. Beads were centrifuged after 

pre-clearing at 9300 x g and 4°C for 10 min and the supernatant was transferred to fresh 30 µl beads 

including antibody (see Table 6). The sepharose-antibody-sample solution was incubated overnight at 

4°C on a rotatory shaker. Protein A is coupled to the sepharose beads and binds rabbit IgG, which in 

turn is capable of binding the protein of interest. After sedimentation of the beads at 9300 x g and 4°C 

for 10 min, the supernatants were discarded and the beads washed successively once with STEN-NaCl 

buffer and three times STEN-washing buffer on a rotatory shaker. After each washing step, beads were 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

STEN-Lysis Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % (v/v) NP40 (Sigma-Aldrich), 1 % (v/v) Triton X-100 (Sigma-Aldrich), 

dH2O, pH 7.4 

STEN Washing Buffer 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 0.2 % (v/v) NP40 (Sigma-Aldrich), pH 7.6 

STEN-NaCl 

50 mM Tris, 500 mM NaCl, 2 mM EDTA, 0.2 % (v/v) NP40 (Sigma-Aldrich), dH2O, pH 7.6 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 

Protein G sepharose (Invitrogen) 
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collected by centrifugation. After a final centrifugation, beads were first dried, then supplemented with 

20 µl of 2 x loading buffer and boiled for 10 min at 95°C. 

 

2.2.6 Protein estimation 

 

Samples were analyzed for their protein concentration using the bicinchoninic acid assay (Thermo 

Scientific) in 96 well plates. This colorimetric assay is based on the reduction of Cu2+ to Cu1+ in the 

presence of peptide bonds, which is proportional to the protein amount. For determination of the 

protein concentration, samples were diluted 1:10 – 1:20 and mixed with the reaction reagent according 

to the manufactures protocol. After 30 min of incubation at 37°C, the samples were analyzed at 562 

nm in a plate reader (Thermo Scientific). Protein concentrations were estimated using a standard curve 

obtained with BSA. All protein samples were adjusted to the same protein concentration (1 – 2,5 

µg/µl) adding 5 x loading buffer (final concentration 1 x) and H2O. Samples used for NuPage® were 

prepared with a commercially available 4 x LDS buffer and supplemented with 10 mM DTT. For 

detection of presenilins, the H2O in the loading buffer was substituted by 8 M urea. Samples were 

boiled at 100°C for SDS-PAGE, 80°C for NuPage® and 70°C for presenilins. 

 

2.2.7 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

BCA protein assay kit (Thermo Scientific) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

5 x Loading/Sample Buffer 

50 % (v/v) Glycerin, 7.5 % (w/v) SDS, 0.1 M DTT, 0.025 mg/ml bromphenol blue 

4 x LDS/Sample Buffer 

Life-Technologies 

Acrylamide/Bisacrylamide solution 

30% (v/v) Acrylamide/Bisacrylamide (ratio 37,5:1) 

Separation Buffer 

1.5 M Tris, 0.4 % (w/v) SDS, dH2O, pH 8.8 

Stacking Buffer 

500 mM Tris, 0.4 % (w/v) SDS, dH2O, pH 6.8 

Ammonium persulfate 

10 % (w/v) Ammonium persulfate, dH2O 

Tetramethylethylendiamine (TEMED) 

Carl Roth 

Running Buffer SDS (2x) 

25 mM Tris, 200 mM Glycine, 0.1 % (w/v) SDS, dH2O 

Running Buffer LDS 

Life-Technologies 
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SDS-PAGE was carried out to separate proteins according to their molecular weight. First, a 

separation gel was poured in between a pair of glass plates and polymerized. Next, a stacking gel with 

a lower pH was poured on top of the separation gel. The concentration of the buffers and 

acrylamide/bis-acrylamide and their resolution capacity is displayed in the Table 5. Proteins separate 

in the SDS containing buffer due to a negative charge towards the cathode of an electric field with a 

constant current of 140 – 150V and 400mA. 

In some applications, proteins were separated on NuPage® (LifeTechnologies) gels. This system uses 

a bis-tris buffer, which allows a lower pH during the run and therefore reduces the smile-shape 

running of the samples. The used gels had a continuous acrylamide/bis-acrylamide gradient from 4 – 

12%, which allowed the detection of proteins with very different molecular masses on the same gel. 

The samples were separated under similar current conditions of 140 – 150 V and 400mA. 

 

Table 5: Composition of the SDS gels for protein separation. 

Buffer Separation Stacking 

Percentage 7% 10% 12% 5% 

AA/BA 4,7 ml 6,7 ml 8 ml 1,3 ml 

Tris/SDS Buffer 5 ml (pH 8,8) 5 ml (pH 8,8) 5 ml (pH 8,8) 2,5 ml (pH 6,8) 

H2O 10,3 ml 8,3 ml 7 ml 6,2 ml 

APS 50 µl 50 µl 50 µl 25 µl 

TEMED 50 µl 50 µl 50 µl 25 µl 

MW range 120 – 80 kDa 80 – 40 kDa 40 – 10 kDa -  
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2.2.8 Western immunoblotting 

 

Proteins separated in by gel electrophoresis where subsequently transferred onto a nitrocellulose 

membrane by Westernblotting. The nitrocellulose membrane was put on the gel both packed between 

filter papers soaked and surrounded by transfer buffer. The transfer was carried out for period of 2 h at 

400 mA and 180V.  After transfer, the membranes were briefly checked for protein transfer efficiency 

by staining with ponceaus S, a reversible and unspecific diazo dye, and then blocked in 5% skim milk 

in PBS-T for 45 min. Primary antibody incubation was carried out either at 4°C overnight or at room 

temperature for 2 h on a rotator. The membranes were then subsequently washed with PBS-T three 

times for 10 min, before incubating with the secondary HRP-conjugated antibodies for 60 min at room 

temperature. The primary and secondary antibodies and respective concentrations are listed in Table 6 

and Table 7. Before detection, membranes were washed repetitively five times for 5 min with PBS-T 

and bathed in a 2-competent enhanced chemiluminescence (ECL) solution. The conjugated HRP leads 

to an enzymatic reaction within in the ECL solution emitting photons. These photons then were 

detected and quantified using the BioRad ChemiDocTM imager and the Quantity One 1D-analysis 

software. For the LiCor method, membranes were washed three times for 10 min with PBS-T after 

primary antibody incubation. Secondary IR-fluorescence conjugated antibodies were then incubated 

with the membranes for 60 min at room temperature and washed repetitively five times for 5 min with 

PBS-T and additionally 5 min with PBS. Due to the different emission wavelength of the IR-

conjugates, this technique allows simultaneous detection of two proteins. All secondary antibodies and 

Blotting Buffer 

5 mM Tris, 200mM Glycine, 10% (v/v) methanol, dH2O 

Ponceau Solution 

3 % (w/v) Ponceau S, 3 % (w/v) trichloroacetic acid, dH2O 

Phosphate Buffered Saline +/- Tween 

PBS, 0.05 % (v/v) Tween20, pH 7.4 

Skim Milk Blocking Buffer 

PBS/T, 4 % (w/v) skimmed milk powder (Roth) 

LiCor Blocking Solution 

LiCor 

Antibody Solution  

PBS-T, specific antibody (for dilution see Table 6 for primary and Table 7 for secondary antibodies)  

Enhanced chemiluminescence (1:1) 

Solution 1 0.1 M Tris pH 8.5, 0.4 mM cumaric acid, 0.25 mM luminol, dH2O 

Solution 2 0.1 M Tris pH 8.5, 0.018 % H2O2, dH2O 
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used concentrations are listed in Table 7.  Detection and quantification of signals was carried out using 

the LiCor Odyssey CLxTM imager and the embedded Odyssey CLxTM imaging software. 

 

Table 6: List of the primary antibodies used for western immunoblotting, immunocytochemistry and immunoprecipitation. 

Antibody Target WB 

(dilution) 

ICC 

(dilution) 

IP 

(dilution) 

Species Company 

C1/6.1 APP - c-terminus 1:1000 1:400 - mouse Covance 

m3.2 APP - Aβ domain 1:1000 1:400  mouse Covance 

6E10 APP - Aβ domain (human 

specific) 

1:1000 - - mouse Covance 

Sgpl1 S1P-lyase 1:1000 - - rabbit Abcam 

αGFP GFP 1:5000 - - mouse Roche 

β-Actin Actin 1:4000 - - mouse Sigma-Aldrich 

192sw sAPPβ (Swedish variant specific) 1:1000 - - Rabbit (Knops et al, 

1995) 

140 APP - c-terminus 1:1000 - 3 µg Rabbit Lab AG Walter 

31.09 PS1-c loop - - 3 µg  Lab AG Walter 

Abl93 Lamp2 1:2000 1:500 - rat DSHB 

αcathepsin D cathepsin D 1:1000 1:250 - rabbit Lab AG Hönig 

αGm2a Gm2a 1:1000 - - rabbit Lab AG Sandhoff 

LC3 LC3 1:1000 - - rabbit MBL 

H-70 Calnexin 1:1000 1:250 - rabbit SantaCruz 

Bip/GRP78 Bip/GRP78 - 1:250 -  BD Bioscience 

TGN46 TGN46 - 1:250 -  Sigma-Aldrich 

Giantin Giantin - 1:250 -  Signa-Aldrich 

EEA1 EEA1 - 1:250 - mouse BD Bioscience 

PKC PKC 1:1000 - - rabbit Abcam 
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Table 7: List of secondary antibodies used for western immunoblotting and immunocytochemistry. 

Antibody Target WB 

(dilution) 

ICC 

(dilution) 

Company 

α-mouse-HRP mouse IgG 1:25000 - Sigma-Aldrich 

α-rabbit-HRP rabbit IgG 1:25000 - Sigma-Aldrich 

α-rat-HRP rat IgG 1:5000 -  

α-mouse-

IRDye800CW 

mouse IgG 1:15000 - LiCor 

α-rabbit-

IRDye800CW 

rabbit IgG 1:15000 - LiCor 

α-rat-IRDye800CW rat IgG 1:15000 - LiCor 

α-mouse-

IRDye680CW 

mouse IgG 1:15000 - LiCor 

α-rabbit-

IRDye680CW 

rabbit IgG 1:15000 - LiCor 

α-rat-IRDye680CW rat IgG 1:15000 - LiCor 

ms-Alexa 488 mouse IgG - 1:1000 LifeTechnologies 

ms-Alexa 546 mouse IgG - 1:1000 LifeTechnologies 

ms-Alexa 647 mouse IgG - 1:500 LifeTechnologies 

rb-Alexa 488 rabbit IgG - 1:1000 LifeTechnologies 

rb-Alexa 546 rabbit IgG - 1:1000 LifeTechnologies 

rb-Alexa 647 rabbit IgG - 1:500 LifeTechnologies 

rat-Alexa 488 rat IgG - 1:1000 LifeTechnologies 

 

2.2.9 Measurements of Aβ 

For detection of Aβ, 500 µl of fresh media was added to cells overnight. Conditioned media was 

cleared by centrifugation and then analyzed by electrochemiluminescenc technology (MesoScale 

Discovery) for Aβ40 and Aβ42 according to the manufacturer’s protocol. 
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2.3 Molecular biological techniques 

2.3.1 mRNA extraction and Reverse-Transcription polymerase chain reaction (rt-PCR). 

 

Messenger RNA from WT and S1P-lyase deficient cells was isolated using the RNeasy micro kit 

(Qiagen) according to the manufacturer’s protocol. Prior to the reverse transcription-PCR (rt-PCR), 

the isolated mRNA was incubated with DNaseI and to digest remaining DNA. Reverse transcription 

was then performed using the SuperScriptIII kit (Qiagen) according to manufacturer’s protocol. Next 

transcripts were amplified in a PCR using the primers listed in Table 8. The PCR program for the 

amplification was set to following temperatures and times.  

1. Initial Denaturation  94°C 3 min 

2. Denaturation  94°C 30 sec 

3. Annealing   59°C 30 sec 

4. Elongation   72°C 30 sec 

5. Final Elongation  72°C 5 min 

 

Steps 2 – 4 were repeated for 30 cycles and the final PCR products were prepared with 6 x orange 

loading dye and analyzed in a 1 - 2 % continuous agarose gel with GelRed. 

 

2.3.2 Quantitative real time PCR (q-PCR) 

 

Quantitative analysis of mRNA expression was performed by q-PCR. First mRNA of WT and S1P-

lyase cells were isolated as described in 2.3.1 and mixed with SYBR green (Applied Biosystems, Life-

Micro RNeasy mRNA Isolation Kit 

Qiagen 

DNA Digestion. 

6 µg RNA, 2 µl DNaseI, 4 µl DNase Buffer, add 20 µl dH2O 

SuperScript III Reaction Mix 

10 µl DNA free mRNA, 1 ml Random Hexamers, 1 µl dNTPs, 2 µl 10xRT Buffer, 4 µl MgCl2, 2 µl DTT, 1 µl 

RNaseOUT, 1 µl SuperScript III 

TBE Buffer 

9 mM Tris-Borat, 2 mM EDTA, dH2O, pH 8,0 

6 x Orange Loading Dye 

60 % Glycerin, 0,15 % Orange G, 60 mM EDTA, 10 mM Tris, dH2O, pH 7,6 

Agarose-Gel 

1 – 2 % (w/v) Agarose in TBE Buffer + 1:10000 GelRed (Biotium) 

dH2O 

RNase free 

SYBR green PCR Master Mix 

Applied Biosystems 
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Technologies), RNase free dH2O and primers for analysis. The program for amplification was set to 

following temperatures and times. 

1. Initial Denaturation  95°C 10 min 

2. Denaturation  95° C 15 sec 

3. Annealing & Elongation 60° C 1 min 

4. Dissociation  95° C 15 sec 

 

Steps 2 – 3 were repeated for 40 cycles and the respective PCR products were analyzed in the Applied 

Biosystems 7300 Real-Time PCR System.  

 

Table 8: List of primers used for rt-PCR and q-PCR.  

target gene primer sequence method 

S1pr1 
For: c t c t c c g c a g c t c a g t c t c t 

Rev: t a a t g c c a t g g t c c t t c t c c 

rt-PCR 

S1pr2 
For: a c t g g c t a t c g t g g c t c t g t 

Rev: c a g c c a g c a g a t g a t g a a a a 

rt-PCR 

S1pr3 
For: g g g a g g g c a g t a t g t t c g t a 

Rev: a g c a c a t c c c a a t c a g a a g g 

rt-PCR 

S1pr4 
For: g g c t a c t g g c a g c t a t c c t g 

Rev: a a g a g c a c a t a g c c c t t g g a 

rt-PCR 

S1pr5 
For: a a c t t g g c t g t g c t c t t g g t 

Rev: c c g g a c a g t a g g a t g t t g g t 

rt-PCR 

   

Gm2a not available (Qiagen: QT00071967) q-PCR 

HexA not available (Qiagen: QT00100247) q-PCR 

HexB not available (Qiagen: QT00113946) q-PCR 

 

 

2.4 Secretase activity measurements 

Secretase measurements were in living cells (2.4.1) and in purified membranes (2.4.2) were performed 

in collaboration with Prof. Dr. Tobias Hartmann and Dr. Marcus Grimm (Department of Experimental 

Neurology, Saarland University). 
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2.4.1 β- and γ-secretase assay in living cells 

Detection of secretase activity was in living cells was performed as described previously with slight 

modifications (Grimm et al, 2013). Shortly after incubation, cells were washed two times with pre-

warmed life cell imaging solution (Hepes buffer, pH 7,4). Next, buffer was removed and 50 µl life cell 

imaging solution containing 30 µM β- and 12 µM γ-secretase fluorogenic substrate (Calbiochem, 

Darmstadt, Germany) was added. Fluorescence was measured continuously at an excitation 

wavelength of 355 ± 10 nm and emission wavelength of 440 ± 10 nm for gamma-secretase or 345 ± 5 

nm/500 ± 2,5 nm for beta-secretase at 37° C under light exclusion using a Safire Infinity Fluorometer 

(Tecan, Crailsheim, Germany). 

 

2.4.2 β- and γ-secretase assay in purified membranes 

Measurements were performed as described previously (Burg et al, 2013). In brief, after incubation 

cells were washed three times with ice-cold PBS, harvested in sucrose buffer and homogenized using a 

PotterS (Braun, Melsungen, Germany) at maximum speed (25 strokes). Protein amount was 

determined according to Smith et al. (Smith et al, 1985). PNFs were ultracentrifuged at 135500 x g for 

75min at 4°C. Purified membranes were reconstituted in sucrose buffer using a Minilys (Bertin 

Technologies, Montigny-le-Bretonneux, France) with Precelly glass beads (Peqlab, Erlangen, 

Germany) at medium speed for 10 s. Protein amount was adjusted to 125 µg for β-secretase activity 

and 250 µg for γ-secretase activity. Fluorogenic β-secretase substrate (20 µM) and γ-secretase 

substrate (10 µM) was added (Calbiochem, Darmstadt, Germany). Fluorescence was measured 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Life Cell Imaging Solution 

40 mM NaCl, 5 mM KCl, 8 mM CaCl2, 1 mM MgCl2, 20 mM HEPES, dH2O, pH 7.4 

(30 µM β- γ-secretase fluorogenic substrate) 

(12 µM γ-secretase fluorogenic substrate) 

Secretase Activity Sucrose Buffer 

10mM Tris/HCl, 1 mM EDTA, 200mM sucrose, dH2O, pH 7,5 

Hypotonic Buffer 

10 mM Tris, 1 mM EDTA, 1 mM EGTA, dH2O, pH 7.6 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 

Citrate Buffer 

150 mM Sodium citrate, dH2O, pH 6,4 (citric acid adjusted) 
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continuously at an excitation wavelength of 355 ± 10 nm and an emission wavelength of 440 ± 10 nm 

for γ-secretase or 345 ± 5 nm/500 ± 2,5 nm for β-secretase at 37° C under light exclusion using a 

Safire Infinity Fluorometer (Tecan, Crailsheim, Germany). 

 

2.4.3 In vitro γ-secretase assay  

 

The in vitro γ-secretase for APP cleavage was previously described by Sastre and colleagues (Sastre et 

al, 2001). First, isolated cell membranes (see 2.2.2) were resuspended in citrate buffer containing 

protease inhibitor. Membrane-citrate buffer solutions were divided into aliquots of same volume and 

incubated under different conditions indicated in the respective experiments. Next, samples were 

centrifuged at 16000 x g for 60 min. The resulting pellets and supernatants were prepared for SDS-

PAGE and western immunoblotting as indicated in 2.2.7 and 2.2.8. 

 

2.5 Lipid analysis 

 

2.5.1 Lipid extraction and thin layer chromatography 

Cells were cultured until 90 % confluency and washed three times with PBS. Cells were harvested in 1 

ml PBS and mixed vigorously with 4 ml of methanol and 3 ml of ExMi for 48 h at 37°C for lipid 

extraction. The supernatant was first filtered through a cotton filter and subsequently vaporized with 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Hypotonic Buffer 

10 mM Tris, 1 mM EDTA, 1 mM EGTA, dH2O, pH 7.6 

25 x Protease inhibitor (PI) cocktail 

1 x Tablets in 2 ml dH2O 

Citrate Buffer 

150 mM Sodium citrate, dH2O, pH 6,4 (citric acid adjusted) 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

ExMi 

Chloroform/Methanol/H2O (2:1:0,2) 

RP-18 

Carl Roth 

Diethylaminoethylcellulose (DEAE) 

Carl Roth 

Running Buffer 

Chloroform / Methanol / 0,22 % CaCl2 (60/35/8) 
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N2. Next, the lipid pellet was resuspended in 1 ml 2:1 chloroform/methanol and mixed with 62,5 µl 4 

M NaOH for alkaline hydrolysis at 37°C for 2 h. Suspension was than neutralized by adding 10 µl 

acetic acid and vaporized. For deionization, first glass-wool columns were filled with 2 ml RP-18 and 

rinsed with a chloroform/methanol/0,1 M KCl (6/96/94) mix. The remaining samples were 

reconstituted in 1 ml methanol and sonicated. After addition of 1 ml 300 mM NH4Ac, samples were 

added to the columns and washed two times with 200 µl of 300 mM NH4Ac and six times with 300 µl 

H2O. Samples were eluted from the column by washing with 8 ml 1:1 chloroform/methanol and 

vaporized with N2. For separation of acidic und neutral lipids, samples were first reconstituted in 1 ml 

chloroform/methanol/H2O (3:7:1) and subsequently filtered through a DEAE-sepharose column. Flow 

through of the filtrated samples represents the neutral lipids, while acidic lipids were eluted from the 

column separately with 1 ml chloroform/methanol mix. Both fractions were vaporized with N2 and 

remaining lipids were reconstituted in 400 µL methanol and stored a -80°C until separation. 

For thin layer chromatographic separation of the lipids, methanol solubilized samples were first 

vaporized with N2, than reconstituted in 25 µM ExMi and applied to silica gel plates. Samples were 

separated in a chloroform/methanol/0,22 % CaCl2 (60/35/8) running buffer and detected after 

immersion in a phosphoric acid-copper sulfate solution and carbonization at 180°C. 

 

2.5.2 Mass spectrometry analysis 

Liquid chromatography coupled to triple-quadruple mass spectrometry (LC/MS/MS) analysis was 

performed in collaboration with Prof. Dr. Markus Gräler (Clinic for Anesthesiology and Intensive 

Care Medicine, University Hospital Jena). Cells were cultured on 60 cm² dishes, washed three times 

with PBS and harvested in 1 ml PBS. For lipid extraction, cell suspensions were mixed with 200µl 6N 

hydrochloric acid, 1 ml of methanol and 2 ml chloroform. Lower chloroform phases were isolated and 

vacuum-dried at 50°C for 50 min. Lipid extracts were dissolved in 100 µl methanol/chloroform (4:1, 

v/v) and used for LC/MS/MS as previously described (Karaca et al, 2014). Level of S1P and 

sphingosine were normalized to the protein concentrations of the individual samples. 
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2.6 Statistical analysis 

All experiments were performed at least two times and the individual values for statistical analysis are 

indicated in the respective figure legends. Statistical analyses were carried out by a two-sided student’s 

t-test and indicated as followed P-values: p<5%, *; p<1%, **; p<0,1%, ***. 
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3. Results 

 

3.1 Modulation of the intracellular S1P concentration affects the metabolism of APP. 

 

3.1.1 Accumulation of S1P in S1P-lyase deficient cells. 

Lysosomal lipid storage could affect the metabolism of APP. Accumulation of the ganglioside GM2 in 

Sandhoff disease or cholesterol and sphingosine in Niemann-Pick C (NPC1) have been shown to 

modulate the generation of Aβ and the proteolytic turnover of APP in endosomal/lysosomal 

compartments (Jin et al, 2004; Keilani et al, 2012; Malnar et al, 2012; Tamboli et al, 2011b; Tamboli 

et al, 2005). There is also evidence for altered processing of APP in other LSDs like Tay-Sachs 

disease or Niemann-Pick A (Keilani et al, 2012; Tamboli et al, 2011b). However, little is known about 

the impact of S1P on the metabolism of APP. To investigate the role of S1P, first mouse embryonic 

fibroblast of WT and S1P-lyase deficient mice were used. As expected, Western immunoblotting 

proved the lack of S1P-lyase in the S1PL-KO cells (Fig. 8A). LC/MS/MS analysis revealed a 

significant elevation of intracellular S1P concentrations in S1P-lyase KO cells as compared to WT 

cells (Fig. 8B). However, the concentrations of S1P in the conditioned media of WT and S1PL-KO 

cells were similar, indicating a predominant effect of S1PL deficiency on the intracellular S1P pool 

(Fig. 8C). 

 

 

Fig. 8: Effect of S1P-lyase knock-out on S1P concentration. (A) Detection of S1P-lyase in isolated membranes of WT and 

S1P-lyase KO cells by Western immunoblotting. (B, C) Mass spectrometry analysis of intracellular and extracellular S1P 

concentrations in WT and MEF-S1PL-KO. Cells were washed and lipids extracted according to protocol (see 2.5.2) and 

subjected to LC/MS/MS (B). Levels of S1P were measured in conditioned media of cells (C) (n=3). 
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3.1.2 Genetic deletion of S1P-lyase results in increased levels of APP-FL and APP-CTFs. 

After demonstration of functional effects of the S1P-lyase KO on the intracellular S1P concentration, 

the expression of APP-FL and APP-CTFs was investigated. First, membranes of WT and S1P-lyase 

deficient MEFs were isolated and analyzed by Western immunoblotting. Cells lacking S1P-lyase 

showed a significant accumulation of APP-FL and its derivatives from proteolytic processing, 

including αCTFs, βCTFs and βCTFs* (Fig. 9A, B). APP-βCTF* is an additional cleavage product of 

APP generated by alternative processing at position Glu11 within the Aβ domain of APP (Fluhrer et 

al, 2002; Haass et al, 1992b; Liu et al, 2002). Consistent with a previously described conversion of 

βCTFs and βCTFs* into αCTFs by the α-secretase (Fluhrer et al, 2002), highest accumulation was 

observed for αCTFs. In addition to cells of WT and S1PL-KO, brain homogenates of respective mice 

were analyzed. Interestingly, level of APP-FL and APP-CTFs in brain lysates of WT and S1PL-KO 

mice showed only little if any differences (Fig. 9C). However, this experiment was performed with 

single individuals of 2 weeks old mice and has to be repeated with a higher number of individuals of 

different age. To rule out potential clonal variations between WT and S1PL-KO cells, a knock down 

by RNAi was performed in an independent cell line. Targeting S1P-lyase mRNA significantly 

decreased the expression of the relevant protein. Interestingly, levels of APP-FL were increased upon 

RNAi-mediated knock-down of S1P lyase (Fig. 9D, E, F). APP-CTFs could not be detected in this 

experiment due to a general low expression of APP in this cell type. Thus, these data point to an 

influence of S1P-lyase deficiency on APP levels, which might be due to increased levels of 

intracellular of S1P. 
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Fig. 9: Genetic deletion of the S1P-lyase gene results in accumulation of APP-FL and APP-CTFs. (A) Detection of APP-

FL, APP-αCTFs, APP-βCTFs and APP-βCTFs* in WT and S1P-lyase KO cells by western immunoblotting. (B) 

Quantification and statistical analysis of APP-FL in WT and S1P-lyase KO cells (n=9). (C) Analysis of brain lysate of 2 

week old WT and S1PL-KO mice by western immunoblotting. A slight increase in APP-FL and APP-CTFs of S1PL-KO 

mice are present. (D) siRNA transfection of murine N9 cells to knock down the S1P-lyase expression. Targeting S1P-lyase 

mRNA decreases S1P-lyase protein level and increases APP-FL and APP-CTFs. (E) Quantification of the S1P-lyase 

expression efficiency of (D) for cells treated with target and control siRNA (n=3). (F) Quantification of the APP-FL levels 

after siRNA transfection in N9 cells of (D) (n=3). 

 

3.1.3 Pharmacological inhibition of sphingosine kinase decreases APP-FL and APP-CTFs. 

To test whether the accumulation of APP-FL and APP-CTFs involves elevated S1P concentration, 

phosphorylation of sphingosine to S1P was inhibited by the specific sphingosine-kinase inhibitor 

SKiII. The effect of SKiII on APP was tested in WT and S1P-lyase KO cells, as well as in HEK293 

cells expressing different human APP variants. First, the levels of intracellular S1P and sphingosine 

were determined using LC/MS/MS to proof inhibition of sphingosine phosphorylation. While 

concentrations of S1P were too low for quantitative analysis (data not shown), the S1P precursor 

sphingosine was significantly elevated in both WT and S1PL-KO cells upon application of SKiII (Fig. 

10A). This data suggests an efficient inhibition of the sphingosine-kinases. Moreover, a 3 – 4 fold 

increased concentration of sphingosine was also observed in S1PL-KO cells (Fig. 10A). To show an 

effect of SKiII on S1P, cells were pretreated with sphingosine. Application of sphingosine enhances 

the sphingosine-kinase dependent phosphorylation of sphingosine to S1P. After 2 h of pre-incubation 
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with sphingosine, the sphingosine-kinase activity was inhibited by using 5 µM of SKiII. The following 

mass spectrometry detection showed a significant reduction of S1P in both WT and S1P-lyase 

deficient cells (Fig. 10B). Notably, the concentration of S1P in WT cells felt below the minimum 

detection level (Fig. 10B). As shown by Takasugi and colleagues, S1P has a positive stimulatory effect 

on BACE1 mediated processing of APP (Takasugi et al, 2011). However, reduction of intracellular 

S1P by applying SKiII on WT and S1P-lyase deficient cells decreased the levels of APP-FL and 

αCTFs. In addition, sAPPα levels in the conditioned medium were also reduced, indicating that the 

observed reduction of APP is not caused by its enhanced secretion (Fig. 10C). A further independent 

experiment with HEK293 and HEK-APP695 cells proved an influence of lowering S1P concentrations 

by SKiII on the levels of endogenous APP-FL and APP-CTFs (Fig. 10D). Notably, levels of 

overexpressed APP695-FL were not significantly affected by treatment with SKiII (Fig. 10D).  

 

 

Fig. 10: Pharmacological inhibition of sphingosine-kinases. (A) Concentrations of sphingosine in WT and S1PL-KO cells 

determined by LC/MS/MS. Sphingosine was measured under basal condition and upon treatment with 5 µM SKiII for 24 h. 

(n=3) (B) LC/MS/MS analysis of WT and S1P-lyase KO cells pretreated with 10 µM sphingosine for 2 h, prior to the 

treatment with 5 µM with SKiII (24 h) (n=3). (C) Western immunoblotting of purified membranes from WT and S1P-lyase 

KO cells treated with 5µM SKiII. (D) Western immunoblotting analysis of HEK293 cells expressing endogenous APP and 

overexpressing APP695. * and ** indicate endogenous immature and mature APP isoforms, respectively. 
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3.1.4 Overexpression of S1P-lyase increases APP-FL and APP-CTFs. 

Having shown that genetic deletion of the S1P-lyase causes a significant elevation of the intracellular 

S1P levels, as well as an accumulation of APP-FL and APP-CTFs, the next step was to reconstitute the 

gene by transfection. Both, WT and S1P-lyase deficient cells were transfected with a functional S1P-

lyase-GFP fusion construct. In addition, an enzymatically inactive K353L mutant of the S1P-lyase-

GFP cDNA was used as a control. Point mutation at position K353L inhibits binding of the co-factor 

pryidoxal-5’-phophate and therefore the catalytic activity of S1P-lyase (Reiss et al, 2004). Both, WT 

and S1P-lyase deficient cells were transfected using different conditions of the transfection reagent 

and the cDNAs. After 30 h of transfection, membranes of WT and S1P-lyase KO cells were isolated 

and subjected to Western immunoblotting. The signal for S1PL-GFP increased consistently with an 

increase in the ratio of lipofectamine to DNA. Surprisingly, expression of both variants led to 

increased levels of APP-FL and APP-CTFs (Fig. 11). This increase of APP-FL and APP-CTFs is 

contradictory to the previously observed S1P-lyase effects. Overexpression of the construct might 

have induced stress and therefore caused an elevation of APP-FL. However, interpretation of this data 

is difficult, since intracellular concentrations of S1P were not measured. Nevertheless, similar effects 

of the catalytically active and inactive S1P-lyase constructs suggest an S1P independent effect of the 

transfection. 
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Fig. 11: Reconstitution of S1P-lyase variants elevates the levels of APP-FL and APP-CTF. Both WT and S1P-lyase 

deficient cells were transfected with an enzymatically active (WT) and inactive form (353L) of the S1P-lyase cDNA fused to 

a green fluorescent protein, as well as an empty pcDNA3.0 vector. Cells were transfected with different ratios of the 

transfection reagent (lipofectamine) and the S1P-lyase constructs. Expression of the S1PL-GFP is elevated with increasing 

lipofectamine to DNA ratio. APP-FL and APP-CTFs in WT and S1P-lyase deficient cells show a slight increasing trend upon 

transfection. Notably, the effects were independent of the enzymatically active or inactive S1P-lyase form. Bands marked 

with * show residual signal from S1PL-GFP detection. 

 

3.2 Modulation of the S1P-receptor activity has no effect on APP. 

Although concentrations of S1P in conditioned media of WT and S1P-lyase deficient cells were not 

significantly different (Fig. 8C), the potential impact of S1P receptor mediated signaling on the APP 

metabolism was analyzed. First, the expression of the five G-protein coupled S1P receptors was 

analyzed. mRNA from WT and S1P-lyase deficient cells was isolated and analyzed as described in the 

section 2.3.1. rt-PCR revealed an expression of the S1PR1 and the S1PR2 in both WT and S1P-lyase 

deficient cells (Fig. 12A). While expression levels of S1PR1was relatively low in both WT and S1P-

lyase KO cells, signals for S1PR2 were stronger as compared to that of S1PR1 (Fig. 12A). To assess 

the potential functional involvement of S1PRs, cells were treated with their natural ligand S1P or 

specific receptor antagonists W146 and JTE-013. However, cell treatment with S1P for 6 h did not 

change levels of APP-FL or APP-CTF (Fig. 12B). Long-term treatment with 10 µM S1P (24 – 48 h) 

also showed no effects on APP-FL and APP-CTFs (data not shown). Subsequently, both WT and S1P-

lyase deficient cells were exposed to the antagonists JTE-013 and W146 that potently inhibit S1PR1 

and S1PR2, respectively (Arikawa et al, 2003; Gonzalez-Cabrera et al, 2008; Osada et al, 2002; Sanna 

et al, 2006). While JTE-013 had no impact on APP-FL or the CTFs, W146 caused a slight decrease of 
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APP-FL in S1P-lyase KO cells (Fig. 12C). However, this effect was highly variable in different 

experiments and did not reach statistical significance (data not shown). Thus, the expression of S1PR1 

and S1PR2 was shown for WT and S1P-lyase deficient cells, but a functional involvement of the 

receptors in APP metabolism remains unclear. 

 

 

Fig. 12: Inhibition of S1PR1 and S1PR2 using potent antagonists. (A) Reverse transcriptase-PCR of S1PR1 – 5 in MEF-

WT, MEF-S1PL-KO and N9 cells. WT and S1PL-KO cells show expression of S1PR1 and S1PR2. No expression detected in 

N9 cells or NTC (negative). (B, C) Western immunoblotting of isolated membranes from WT and S1P-lyase KO cells after 

activation of the S1P receptors with 10µM S1P for 6 h (B) and pharmacological inhibition of the S1PR1 (W146, 150 nM) 

and S1PR2 (JTE-013, 150 nM) for 24 h. 
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3.3 S1P-lyase deficiency affects the proteolytic processing of APP. 

 

3.3.1 Lack of S1P-lyase modulates the generation of Aβ in APP695swe overexpressing cells. 

To investigate whether S1P-lyase deficiency affects the generation of Aβ, both WT and S1P-lyase 

deficient cells were stably transduced with a lentivirus construct encoding the human APP695 isoform 

containing the Swedish mutation. The construct also drives the separate expression of GFP by an 

internal ribosomal entry site (IRES). Western immunoblotting showed comparable expression levels 

of the construct in WT and S1P-lyase deficient cells as indicated by similar levels of GFP (Fig. 13A). 

Importantly, further analysis revealed a strong difference in the levels of APP695 between WT and 

S1P-lyase deficient cells. Cells lacking the S1P-lyase have strongly elevated levels of APP695 (Fig. 

13A). Lack of APP695 signals in non-transduced cells demonstrated the specificity of the 6E10 

antibody for the human APP isoform without cross-reaction for the endogenous mouse APP (Fig. 

13A). Thus, these data confirm the effect of S1P lyase deficiency on APP metabolism even upon 

overexpression (see Fig. 9A, D, F). Conditioned medium of both, WT and S1P-lyase deficient cells 

was collected for 24 h and concentrations of different Aβ variants determined using the highly 

sensitive MesoScale system. When levels of Aβ40 were normalized to GFP expression, S1P-lyase 

deficient cells showed a higher secretion compared to WT cells (Fig. 13B). Detection of Aβ42 levels 

however, revealed no significant differences between WT and S1P-lyase KO cells (Fig. 13C). 

Interestingly, secretion of both Aβ40 and Aβ42 was significantly decreased in S1P-lyase deficient 

cells, when levels of Aβ were normalized to cellular levels of APP695-FL (Fig. 13D, E). This 

alteration in the product-precursor relationship of Aβ and APP, points to an altered proteolytic 

processing of APP by secretases in the absence of S1P-lyase. Thus, further analysis of both Aβ 

generating secretases, BACE1 and the γ-secretase is of great interest. 
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Fig. 13: Decreased secretion of Aβ in S1P-lyase KO cells. (A) Western immunoblotting of isolated membrane from WT and 

S1PL-KO cells stably transduced with human APP695swe-IRES-GFP. APP-FL was detected using a human specific antibody 

(6E10). The GFP levels show the expression rate of the construct. (B, C) MesoScale measurement of Aβ40 and Aβ42 levels 

in WT and S1P-KO cells normalized to GFP. (D, E) Levels of Aβ40 and Aβ42 normalized to the intracellular levels of 

human APP-FL (n=3).  

 

3.3.2 Elevation of the S1P concentration decreases the activity of γ- and β-secretase. 

 

3.3.2.1 Direct modulation of the β-secretase BACE1 through S1P. 

A recently published study showed a stimulatory effect of S1P on the activity of BACE1 in neuronal 

N2a cells (Takasugi et al, 2011). To test whether secretase activities are altered in S1P-lyase deficient 

cells, a highly specific fluorogenic BACE1 activity assay was performed (Burg et al, 2013). BACE1 

activity was measured either in living cells or in purified cellular membranes. The basal activity of 

BACE1 in S1P-lyase deficient cells was lowered by approximately 80% in comparison to WT cells 

(Fig. 14A). Notably, addition of 10 µM S1P to living WT cells reduced BACE1 activity by 20 % (Fig. 

14B). However, the same concentrations of S1P showed no significant effects on BACE1 activity in 

living S1PL-KO cells (Fig. 14C). The activity of BACE1 in isolated cell membranes of S1P-lyase 
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deficient cells is also significantly lower when compared to that of WT cells. This effect is less 

pronounced as in living cells, but still significant (Fig. 14D). Exogenous application of S1P to purified 

membranes of WT cells resulted in a significant reduction in the enzymatic activity by 15 % (Fig. 

14E). BACE1 activity in purified membranes of S1P-lysase however, was not significantly changed 

by exogenous S1P (Fig. 14F). Taken together, the enzymatic assays demonstrate a role of S1P-lyase 

and S1P on the β-secretase BACE1.  

 

 

Fig. 14: S1P reduces BACE1 activity. Fluorogenic activity assay for BACE1 measured in WT and S1P-lyase deficient cells. 

Assays were performed in living WT and S1P-lyase deficient cells under control condition and after application of 10 µM 

S1P (A – C). Additional BACE1 activity determination was performed in purified membranes of WT and S1P-lyase deficient 

cells (D – E). Measurements were performed under control conditions and after application of 10 µM S1P (n=5). 

 

To further test altered BACE1 activity in WT and S1P-lyase deficient cells, the level of the BACE1 

cleavage product sAPPβ in conditioned media was analyzed. Since basal levels of sAPPβ from 

endogenous APP are very low (not shown), previously described APP695swe overexpressing cells were 

used (see 3.3.1). The familial AD causative KM to NL mutation in the APP residues 595-596 favors 

the processing of APP by BACE1 (Citron et al, 1992). As shown in Fig. 15A and B, the ratio of sAPPβ 

to sAPPα is increased in S1P-lyase deficient cells. Furthermore, when lowering the levels of S1P by 

treatment with SKiII, a strong increase in the secretion of sAPPβ and a simultaneous reduction in 
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sAPPα were observed in both WT and S1P-lyase deficient cells (Fig. 15A, C, D). These results further 

support a role of S1P in the regulation of BACE1 activity. 

 

 

Fig. 15: Determination of the sAPPβ/sAPPα ratio using APP695swe -overexpressing cells. (A) Western immunoblotting of 

sAPPα (6E10) and sAPPβ (192sw). Conditioned media of WT and S1P-lyase deficient cells overexpressing APP695swe was 

loaded onto a 7 % SDS gel. (B - D) Quantification of the sAPPβ and the sAPPα levels, as well as determination of the ratio in 

WT and S1P-lyase KO cells. Ratios were determined under control conditions (B) and after treatment with 5µM SKiII for 24 

h (C, D) (n=3). 

 

Next, the c-terminal cleavage products of BACE1, APP-βCTFs and βCTFs* were analyzed. CTFs 

were immunoprecipitated from cell lysates and then detected by Western immunoblotting. Both, 

βCTFs as well as βCTFs* were significantly decreased upon treatment of WT or S1P-lyase deficient 
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Fig. 16: Immunoprecipitation of APP-FL and APP-CTFs. APP-FL and CTFs were pulled down from full cell lysates with a 

c-terminal specific antibody (140). Levels of βCTFs and βCTF* were detected using the m3.2 antibody. Actin level shows 

equal protein level prior the IP. (B, C) Quantification analysis of βCTF and βCTF* levels in WT and S1P-lyase deficient 

cells. Level in both cell lines were quantified under control condition and upon treatment with 5 µM SKiII for 24 h (n=3). 

 

Overall, the data shown in Fig. 14 - Fig. 16 demonstrate an impact of S1P metabolism on BACE1 

activity. However, data in Fig. 15 and Fig. 16 showed contrary results for βCTFs and sAPPβ levels.  

While application of SKiII to WT and S1P-lyase deficient cells increased the level of sAPPβ (Fig. 15), 

level βCTF and βCTF* were significantly decreased (Fig. 16). This difference could indicate an 

additional effect of S1P on the γ-secretase activity. 

 

3.3.2.2 S1P impairs γ-secretase activity. 

While an effect of S1P on the BACE1 activity was previously shown (Takasugi et al, 2011), a role of 

S1P in the modulation of γ-secretase is unknown so far. Thus, the basal γ-secretase activity was first 

measured in living WT and S1P-lyase deficient cells. Measurements revealed a reduced γ-secretase 

activity by 20 % in S1P-lyase deficient cells as compared to WT cells (Fig. 17A). Interestingly, 

application of exogenous S1P to WT cells also decreased -secretase activity thereby mimicking the 

effect of S1P-lyase deletion (Fig. 17B). S1P-lyase deficient cells also showed a decrease of the γ-
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secretase activity by 20 % upon treatment with 10 µM S1P (Fig. 17C). However, when γ-secretase 

activity was measured in purified membranes of WT and S1P-lyase deficient cells, no differences were 

detected (Fig. 17D). Along with this result, exogenous application of S1P to purified membranes of 

WT and S1P-lyase deficient cells showed no influence on the γ-secretase activity (Fig. 17E, F). 

Overall, the activity of the γ-secretase is selectively decreased by S1P in living cells, but not in 

purified membranes.  

 

Fig. 17: Presence of high S1P concentrations selectively affects the γ-secretase activity in living cells. Fluorogenic activity 

assay of the γ-secretase in living cells and purified membranes of WT and S1P-lyase deficient cells. Living cells were 

measured under control conditions (A) and after treatment with 5 µM of SKiII (B, C). Determination of the γ-secretase 

activity was additionally performed in purified membranes of WT and S1P-lyase deficient cells (D – E). Measurements were 

performed under control conditions (D) and after application of 5 µM SKiII (E, F). (Analysis was performed with n=5) 

 

In addition to the fluorogenic activity assay, γ-secretase dependent cleavage of APP-CTFs was 

analyzed in purified membranes as described previously (Sastre et al, 2001). Western immunoblotting 

revealed a lower turnover of APP-CTFs to the AICD during the first hour of incubation as compared 

to three hours of incubation (Fig. 18A). Determination of the AICD to CTF ratio revealed a 

significantly reduced generation of the AICD by approximately 70 % in S1P-lyase deficient cells as 

compared to WT cells (Fig. 18B). The ratio of AICD to CTFs after 3 h was not quantified. However, 

the levels of AICD after 3h at 37°C are higher, than the levels of APP-CTFs at 4°C. This result was 
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present in WT as well as in S1P-lyase deficient cells (Fig. 18A) and suggests an ongoing cleavage of 

the APP-FL variant by either α- or β-secretase to produce APP-CTFs.  

 

Fig. 18: In vitro γ-secretase assay revealed a reduced generation of AICD in S1P-lyase deficient cells. (A) In vitro γ-

secretase assay of WT and S1PL-KO cells. Purified membranes were reconstituted in citric buffer and incubated for 1 and 3 

h at 37°C or 3 h at 4°C. (B) Quantification of AICD to CTFs ratio after incubation for 1 h at 37°C (n=3). 

 

The presenilins (PS1 or PS2) represent the catalytic center of the γ-secretase complex (Wolfe et al, 

1999). The PS protein is endo proteolytically cleaved between the sixth and seventh transmembrane 

(TM) domain, generating stable NTFs and CTFs. To assess expression of PS1 in WT and S1P-lyase 

deficient cells, PS1-CTFs were detected after immunoprecipitation by Western immunoblotting. Two 

bands representing phosphorylated and non-phosphorylated PS1-CTF variants were detected (Walter 

et al, 1996). However, levels of both PS1-CTF variants were very similar in WT and S1P-lyase 

deficient cells (Fig. 19). Interestingly, treatment with SKiII reduced PS1-CTFs in both WT and S1P-

deficient cells (Fig. 19A, C, D), without changing the ratio of p-PS1-CTFs to non-phosphorylated PS1-

CTFs (Fig. 19A, F, G).  
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Fig. 19: Sphingosine kinase inhibition reduces PS1-CTFs. (A) PS1-CTF immunoprecipitation of WT and S1P-lyase 

deficient cells under control conditions and upon 5 µM SKiII for 24 h. PS1-CTFs were immunoprecipitated with 3109 

antibody and detected by western immunoblotting using protein-A-HRP. (B - D) Quantification of non-phosphorylated PS1-

CTFs in WT and S1P-lyase KO cells under control conditions (B) or after treatment with 5 µM SKiII. (C, D) (n=3). (E) 

Quantification PS1-CTF phosphorylation in WT and S1P-lyase KO cells. (n=3) (F, G) Determination of the ratio in p-PS1-

CTFs to non-phosphorylated PS1-CTFs. Ratio was determined for control condition and after treatment with 5 µM SKiII in 

WT and S1P-lyase KO cells (n=3). 

 

Taken together, deficiency in the S1P-lyase reduces the activity of the γ-secretase. Exogenous 

application of S1P to WT cells partially mimics this effect (Fig. 17). Furthermore, SphK1/2 activity 

seems to be crucial for PS1-CTFs and therefore for the γ-secretase activity (Fig. 19). However, to this 

point it is unclear whether reduction of PS1-CTFs is a result of reduced endo proteolytic cleavage or 

generally lowered PS1-FL level. Changes in PS1 expression or metabolic turnover of PS1-FL could 

affect PS1-CTFs as well. Nevertheless, reduction of PS1-CTFs upon SKiII, would suggest a lowered 

catalytic activity of the γ-secretase. 
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3.4 S1P-lyase deficiency impairs lysosomal function 

 

3.4.1 Accumulation of APP-CTFs in lysosomal compartments. 

The proteolytic turnover of APP-FL and APP-CTF also takes place in lysosomal compartments by 

acidic proteases, including cathepsin D (Agholme et al, 2012; Haass et al, 1992a). LSDs for example, 

show impaired proteolytic turnover of several proteins, including APP-FL and APP-CTFs (Tamboli et 

al, 2011b; Tamboli et al, 2011c). Thus, the localization of APP in lysosomal compartments was 

analyzed by co-staining of cells with antibodies against the APP C-terminus and the lysosomal 

membrane protein 2 (lamp2). The number and the size of lamp2 positive structures in S1P-lyase 

deficient cells were increased, and appear to be more juxtanuclear in S1P-lyase deficient cells as 

compared to WT cells (Fig. 20A). S1P-lyase deficient cells also show a higher intensity of C-

terminally labeled APP that partially co-localizes with lamp2 positive structures (Fig. 20A, white 

arrows). In contrast, the number of vesicles with co-localizing lamp2 and APP is lower in WT cells. 

To further test accumulation of APP-CTFs in lysosomal compartments, a sub-cellular fractionation 

was performed. Fig. 20B demonstrates that APP-CTFs of WT cells accumulate in fractions of higher 

density, whereas in S1P-lyase deficient cells APP-CTFs accumulate strongly in earlier fractions 

positive for cathepsin D (Fig. 20B). These results indicate a selective accumulation of APP-CTFs from 

S1PL-KO cells in lysosomal compartments and are in line with observations for lysosomal lipid 

storage diseases (Jin et al, 2004; Keilani et al, 2012; Tamboli et al, 2011b; Tamboli et al, 2005; 

Tamboli et al, 2011c). 
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data suggest a similar maturation of APP in both cell types, but indicates an increased stability of 

APP-FLm in S1P-lyase deficient cells. This finding is in line with the previously described effect on 

the secretases in cells lacking S1P-lyase activity (Fig. 14). Moreover, reduced lysosomal turnover of 

APP-FL 30 – 60 min after its expression could explain its increased stability.  

 

 

Fig. 21: APP-FL is more stable in S1P-lyase deficient cells than in WT cells. (A) Representative western immunoblotting 

of APP-FL in WT and S1PL-KO cells. Red frames show areas for quantification of mature and immature APP-FL. (B) 

Quantification and determination of the ratio of mature to immature APP-FL. (n=9). (C) Western immunoblotting of WT and 

S1P-lyase deficient cells. Protein synthesis was inhibited by treatment with 20 µg/ml cycloheximid. (D) Quantification and 

determination of the APP-FL mature to immature ratio. 

 

 

3.4.3 Deletion of the S1P-lyase impairs the maturation of cathepsin D. 

Cathepsin D is a well described marker for lysosomal compartments. Upon trans-location from Golgi-

compartments to lysosomes, the acidic milieu allows autocatalytic cleavage of pro- and intermediate 

forms of cathepsin D to the catalytically active form (Gieselmann et al, 1983). Thus, changes in the 

ratio of the active to the precursor forms could indicate altered lysosomal activity. To analyze whether 

S1P-lyase deletion affects the processing of cathepsin D, membranes of WT and S1P-lyase deficient 

cells were isolated and subjected to western immunoblotting. Quantification revealed a significantly 

reduced ratio of active cathepsin D to the pro-/intermediate forms in S1P-lyase deficient cells as 
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compared to that in WT cells (Fig. 22A, B). To further analyze maturation of cathepsin D in an 

independent approach, S1P-lyase expression was down-regulated by RNAi. The RNAi mediated 

suppression of S1P-lyase also reduced the active form and increased the intermediate form of 

cathepsin D in comparison to cells transfected with scrambled siRNA (Fig. 22C, D).  

 

 
Fig. 22: S1P-lyase affects the maturation of cathepsin D. (A, B) Western immunoblotting and quantification of the 

cathepsin D forms in purified membranes of WT and S1PL-KO cells (A). The ratio of the active forms to the pro- and 

intermediate forms of cathepsin D in S1P-lyase deficient cells is higher than in WT cells (B). (n=3). (C) Western 

immunoblotting of cathepsin D in siRNA transfected murine N9 cells. The S1P-lyase knock down was carried out for 30 h 

prior the sample preparation. (D) Quantification and determination of cathepsin D active to pro-/intermediate forms. 

Transfected cells show a significantly lowered ratio of the cathepsin D active form to the pro-/intermediate forms than non-

transfected cells (n=3). 

 

Having shown a deficit in the processing of the lysosomal hydrolase cathepsin D, the next step was to 

check whether S1P-lyase deletion might also affect other lysosomal proteins. Western immunoblotting 

of purified membranes showed a significant increase of lamp2 in S1P-lyase deficient cells when 

compared to WT cells (Fig. 23A, B). This result was consistent with increased lamp2 positive 

structures in immunocytochemical detection (Fig. 20A) and indicates a reduced turnover of lamp2 in 

lysosomes. In addition, the lysosomal GM2 activator protein (Gm2a), which is involved in the 

degradation of glycosphingolipids (Sandhoff & Kolter, 1998), was also increased in S1P-lyase 

deficient cells (Fig. 23C, D). 
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Fig. 23: Accumulation of Lamp2 and Gm2a in S1P-lyase deficient cells. Westernblot analysis (A, C) and quantification (B, 

D) of lamp2 (A,B) and Gm2a (C,D) in purified membranes of WT and S1PL-KO cells. S1P-lyase deficient cells show 

significantly eleavted levels for the lysosomal membrane protein lamp2 (B) and the ganglioside degradation activator 

proteins Gm2a (D) (n=3).  

 

3.4.4 Impaired autophagic turnover in S1P-lyase deficient cells. 

To assess the role of S1P lyase deficiency on global protein turnover, a pulse-chase experiment by 

metabolic labeling was carried out. WT and S1P-lyase deficient cells were labeled with 35S-methionine 

for 15 minutes, followed by chase periods for 0,5 – 16 h. Radiolabeled proteins were separated by 

SDS-PAGE and detected by autoradiography. As indicated in Fig. 24A and B, WT cells showed a 

pronounced decrease in labeled proteins from 0 to 4 h. In contrast, S1P-lyase deficient cells showed 

little if any protein turn-over until 4 h of chasing time. When comparing the level of radiolabeled 

proteins between 4 and 16 h, WT cells show a reduction from 60 % to 40 %, whereas in S1P-lyase 

deficient cells the a reduction from 100 % to 80 % is present (Fig. 24B). While this indicates a similar 

turnover rate for long-lived proteins in both WT and S1P-lyase deficient cells, the latter shows only 

little effect on the turnover of short-lived proteins as compared to WT cells. This finding suggests an 

effect of the S1P-lyase deficiency on the proteasomal degradation machinery. 
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To assess an involvement of autophagy, both WT and S1P-lyase KO cells were starved in EBSS 

medium. Interestingly, starvation for 2 h induced a strong decrease of APP-CTFs in both cell lines. 

Western immunoblotting also revealed an efficient conversion of LC3-I to LC3-II in WT and S1P-

lyase deficient cells when incubated in EBSS, thereby indicating similar induction of autophagy (Fig. 

25A). Prolonged starvation for 6 h leads to the consumption of LC3-II in WT cells (Fig. 25A). 

Interestingly, consumption of LC3-II was strongly reduced in S1P-lyase deficient cells (Fig. 25A). 

This finding indicates an efficient induction of autophagy for both WT and S1P-lyase deficient cells, 

but prolonged starvation shows a less efficient consumption of LC3-II in S1P-lyase deficient cells. 

This could suggest a lowered autophagic activity due to lysosomal impairment. Next, both WT and 

S1P-lyase deficient cells were treated with the mTOR inhibiting and autophagy inducing compound 

rapamycin. Conversion of LC3-I to LC3-II was followed during 0 – 16 h of the treatment.  

Here LC3-II levels in WT cells remained largely unaffected during the first 8h of treatment. S1P-lyase 

deficient cells on the other hand, showed a clear increase of LC3-II during the same period (Fig. 25B). 

Interestingly, while LC3-II in WT cells dramatically decreased between 8 – 16 h, LC3-II levels in 

S1P-lyase deficient cells were still elevated as compared to 0 h (Fig. 25B). This data suggests indeed a 

higher stability of LC3-I and LC3-II in cells lacking the S1P-lyase. 

 

 

Fig. 24: Impaired turnover of radiolabeled proteins during shorter chasing times in S1P-lyase KO cells. (A) Pulse chase 

radiolabeling experiment ells were first pulsed for 15 minutes, and subsequently chased for a period of 0 – 16 h. (B) 

Quantifaction of total radio-labeled proteins (A) in WT and S1PL-KO cells.  
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Fig. 25: Impaired autophagic turnover in S1P-lyase deficient cells. (A) Westernimmoblotting of starvation induced 

autophagy in WT and S1PL-KO cells. (B) Western immunoblotting of WT and S1PL-KO cells. Treated with 10 µM 

rapamycin for the time dependent conversion of LC3 I to LC3 II. (C) Quantification and determination of LC3 II to LC3 I 

ratio from (B). 

 

Taken together, induction of autophagy seems to be unaffected in S1P-lyase deficient cells. The data 

rather suggest a lysosomal impairment.  

 

3.5 Distribution of subcellular compartments is altered in S1PL- KO cells. 

Having shown differences in the subcellular distribution and activity of lysosomes in S1P-lyase 

deficient cells, the next step was to analyze additional compartments which are also involved in the 

metabolism and transport of APP. As previously mentioned, APP-FL is transported from the ER, via 

the Golgi compartments to the PM, from where it is internalized into endosomal/lysosomal 

compartments. WT and S1P-lyase deficient cells were co-immunostained for the ER marker proteins 

calnexin and Bip/GRP78. The latter is an ER localized chaperone and involved in the protein folding, 

as well as in the forward transport of proteins in the secretory pathway (Dudek et al, 2009; Hendershot 

et al, 1994). Immunocytochemistry revealed a more intensive staining of calnexin in the S1P-lyase 

deficient cells (Fig. 26). While the staining intensity of Bip/GRP78 was similar, the distribution was 

slightly different WT cells show a pronounced Bip/GRP78 localization at the nuclear envelope, 

whereas in S1P-lyase deficient the protein showed a rather reticular distribution (Fig. 26).  
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mutations in GM2 degrading hexosaminidases HexA and HexB respectively. Both diseases show 

severe effects on the APP metabolism (Tamboli et al, 2011b; Tamboli et al, 2005). To see whether 

S1P-lyase deficiency might affect the hexosaminidases, a gene expression analysis for HexA, HexB 

and their co-activator Gm2a were performed. Statistical analysis of the mRNA level of both HexA and 

HexB was significantly reduced in S1P-lyase deficient cells (Fig. 29B, C). The enzymatic activity of 

HexA/B depends on its co-factor Gm2a. S1P-lyase deficient cells show a clear reduction in the levels 

of Gm2a mRNA (Fig. 29D). This finding is contradictory to the previously described and significantly 

increased protein level of Gm2a in S1P-lyase deficient cells (Fig. 23C) and indicates to general 

alteration of the lipid homeostasis.  

A high number of lipids, mainly triglycerides and cholesterol ester, but also sphingolipids are stored in 

lipid droplets. Thus, the size, number and intensity of lipid droplet were analyzed by fluorescence 

microscopy using LD540 (Spandl et al, 2009). Interestingly, S1P-lyase KO cells showed a strong 

increase in the size and number of lipid droplets (Fig. 29E), further supporting a more general 

impairment of cellular lipid metabolism upon inhibition of S1P degradation.  

 

 

Fig. 29: S1P-lysase deficient cells show several alterations in lipid homeostasis in comparison to WT. (A) Thin-layer 

chromatography of neutral lipids for WT and S1P-lyase deficient cells. (B - D) Quantitative real-time-PCR for HexA (B), 

HexB (C) and Gm2a (D) mRNA in WT and S1P-lyase deficient cells. (E) Staining of lipid droplets (green) with LD540 in 

WT and S1P-lyase deficient cell. Merged shows same cells with additional DAPI staining for the nuclei. (Scale bar = 20µm).  
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3.7 Immediate elevation of intracellular Ca2+ reduces APP-FL and APP-CTF levels. 

S1P has been shown to affect Ca2+ mobilization from intracellular stores and Ca2+ related signaling 

pathways (Hinkovska-Galcheva et al, 2008; Tornquist, 2012). S1P-lyase deficient cells also show 

elevated storage of Ca2+ and an augmented release from the ER upon thapsigargin treatment (Claas et 

al, 2010). Thapsigargin selectively inhibits the SERCA-pump and blocks efficiently the reuptake of 

Ca2+ (Treiman et al, 1998). Thus the effect of Ca2+ modulation on APP metabolism in WT and S1P KO 

cells was tested. First, cytosolic Ca2+ was increased by inhibition of the SERCA-pump with 

thapsigargin. Thapsigargin induced an efficient reduction of APP-CTF levels in both cell lines within 

1 h of treatment (Fig. 30). During prolonged treatment for 2 – 4 h the levels of APP-CTFs remained at 

low levels. However, levels of APP-CTFs in S1P-lyase deficient cells were higher than in WT cells at 

each time point (Fig. 30).  

 

 

Fig. 30: Increase of intracellular Ca2+ affects the metabolism of APP-FL and APP-CTFs. Western immunoblotting of 

purified membranes of WT and S1P-lyase deficient cells under control condition and upon treatment with 500 nM 

thapsigargin for indicated time-points. Immediate effects on APP-FL and APP-CTFs after 1 h of treatment are present in both 

WT and S1P-lyase deficient cells. 

 

Two previous studies reported impaired mobilization of Ca2+ from lysosomal stores in NPC models 

(Dong et al, 2010; Lloyd-Evans et al, 2008). Gly-Phe β-naphtylamide (GPN) is reported to induce a 

selective release of Ca2+ from lysosomal stores. When GPN was applied to cells, the ratiometric 

analysis showed an immediate increase of free cytosolic Ca2+ concentrations in both WT and S1P-

lyase deficient cells (Fig. 31A, black arrows). Free Ca2+ concentrations rapidly decreased when GPN 

was washed out (Fig. 31A, blue arrows), demonstrating the rapid and selective effect of GPN. Next, 

the effect of lysosomal Ca2+ mobilization by GPN on APP metabolism was analyzed. Levels of APP-

FL were increased after 2 – 16 h in WT cells. However, GPN had nearly no effect on APP-FL in S1P-
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lyase deficient cells (Fig. 31B). Notably, APP-CTFs showed a biphasic behavior upon treatment with 

200 µM GPN in both cell lines. After a strong decrease within the first hour of treatment, the levels of 

APP-CTFs recover steadily from 8 – 16 h.  

The combined data for thapsigargin and GPN indicate a role of Ca2+ in altered APP metabolism of S1P 

lyase KO cells. Thus, the analysis of Ca2+ dependent signaling pathways might give more detailed 

insights into the S1P-lyase dependent APP metabolism. 

 

 
Fig. 31: Selective release of lysosomal Ca2+affects the APP metabolism. (A) Ratio metric analysis of cytosolic Ca2+. WT 

and S1P-lyase deficient cells loaded with 5 µg of Fura2-AM for 30 min at 37°C and subsequently analyzed. (B) Western 

immunoblotting of APP-FL and APP-CTFs after time-dependent GPN treatment in WT and S1P-lyase deficient cells. 

 

 

3.8 Alterations in protein kinase C signaling in S1P-lyase deficient cells. 

 

3.8.1 Lack of the S1P-lyase affects the localization of activated PKC.  

A critical enzyme in intracellular Ca2+ signaling is the protein kinase C (PKC). To assess a potential 

alteration of PKC in S1P-lyase deficient cells, localization of PKC was studied. Classical PKC 

isoforms contain C2 and C1 domains which bind to Ca2+ and DAG, respectively, thereby leading to a 

translocation to the plasma membrane and enzyme activation. 

At first, the distribution of PKC in cytosolic and membrane fractions of WT and S1P-lyase deficient 

cells were analyzed. When analyzing PKC localization under control conditions, S1P-lyase deficient 

cells showed a significantly higher ratio of cytosolic to membrane localized PKC than WT cells (Fig. 

32A, B), suggesting a reduced activity of PKC. Notably, treatment with SKiII selectively increased the 
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localization of PKC in the cytosol of WT cells (Fig. 32A, C), but not in S1PL-lyase deficient cells 

(Fig. 32A, D). Rather, a trend for increased PKC association with cellular membranes was observed.  

Because reducing intracellular S1P concentration in WT cells with SKiII increased PKC in the cytosol 

(Fig. 33), it is unlikely that increased PKC in the cytosolic fraction of S1P-lyase cells are caused by 

elevated S1P concentrations. This finding rather points to the involvement of sphingosine. Increased 

concentrations for sphingosine were observed upon SKiII treatment as well as in the S1P-lyase 

deficient cells when compared to WT cells (Fig. 10B).  

 

 

Fig. 32: Analysis of PKC localization in WT and S1PL-KO cells. (A) Western immunoblotting of fractionized WT and 

S1PL-KO cells. Cells were non-treated or subjected to 5 µM SKiII (24 h) and checked for localization of PKC. (B) 

Quantification of PKC localization in WT and S1PL-KO cells (normalized to actin). (n=3) * indicates unspecific binding of 

the antibody. (C, D) Ratio of cytosolic and membrane localized PKC in WT and S1PL-KO cells (normalized to actin). Cells 

were treated with 5 µM SKiII for 24h (n=3).  

 

3.8.2 Inhibition of PKC causes its translocation into membrane fractions and increases APP. 

Since the lower association of PKC with cellular membranes observed in S1P-lyase deficient cells 

could indicate decreased PKC activity, it was to test whether inhibition of PKC would mimic the 

effects on APP-FL or APP-CTFs. Thus, cells were treated with the PKC inhibitor bisindolylmaleimide 

I (BIM I) and analyzed for PKC localization as well as for APP levels. In line with the previous 

experiment (Fig. 32A, B), WT cells showed a significantly higher association of PKC with cellular 
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membranes as compared to S1P lyase KO cells (Fig. 33A, B). Notably, levels of PKC in the cytosol 

markedly decreased upon inhibition with BIM I in both WT and S1P-lyase cells (Fig. 33C, D). Cells 

lacking the S1P-lyase furthermore showed a strong increase in membrane associated PKC (Fig. 33A). 

This finding is in line with the PKC localization in S1P-lyase deficient cells when treated with SKiII 

(Fig. 32A). In parallel, PKC inhibition strongly elevated levels of APP-FL and APP-CTFs in both cell 

lines (Fig. 33A). PKC inhibition further increased the pro- and intermediate forms of cathepsin D (Fig. 

33A), suggesting reduced lysosomal turnover upon PKC inhibition in both cell types. Interestingly, 

PKC inhibition also led to detection of the membrane associated cathepsin D intermediate form in the 

cytosolic fractions of both WT and S1PL-KO cells. Thus indicating that maturation or sorting of 

cathepsin D into lysosomal compartments is impaired. 

 

 

Fig. 33: Analysis of PKC localization and APP metabolism in WT and S1P-lyase deficient cells upon PKC inhibition. (A) 

Western immunoblotting of WT and S1P-lyase deficient cells. Cells were fractionized after subjecting to PKC inhibitor and 

vehicle. * indicates unspecific binding of the antibody. (B) Quantification of the PKC localization in WT and S1P-lyase 

deficient cells (normalized to actin). (n=3) (C, D) Ratio of cytosolic to membrane localized PKC in WT and S1PL-KO cells 

(normalized to actin). Cells were treated with 1 µM PKCi for 24 h (n=3). 
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3.8.3 Sphingosine causes PKC translocation and increases APP levels. 

After showing a correlation of S1P-lyase deficiency, PKC and APP-metabolism, next the effect of 

sphingosine was further examined. WT and S1P-lyase deficient cells treated with sphingosine for 24 h 

revealed no significant effects on APP-FL or APP-CTFs (data not shown). In contrast, shorter 

treatment with sphingosine resulted in a time-dependent increase of APP-FL in both, WT and S1P-

lyase deficient cells (Fig. 34A, B). Analysis of PKC revealed a slight increase in the ratio of cytosolic 

vs. membrane localized PKC upon 4 h of treatment in both WT and S1P-lyase deficient cells (Fig. 

34A, C). Prolonged sphingosine treatment tended to increase the ratio of cytosolic vs. membrane 

localized PKC in WT cells, but to decrease this ration in S1P-lyase cells (Fig. 34C). This observation 

on PKC localization is in line with the previously observed data (Fig. 32A, C and Fig. 33A, C). 

However, further quantitative experiments would be necessary to allow a conclusion. Interestingly, 

treatment with sphingosine also triggered an accumulation of the cathepsin D pro/intermediate forms, 

indicating a lower lysosomal activity (Fig. 34A). This finding is also consistent with the elevated 

levels of the cathepsin D pro/intermediate forms upon PKC inhibition (Fig. 33A).  
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Fig. 34: Time-dependent treatment of WT and S1P-lyase deficient cells with 10 µM sphingosine causes APP-FL elevation. 

(A) Western immunoblotting of WT and S1P-lyase deficient cells treated with 10 µM sphingosine for 0 – 8h. (B) 

Quantification of APP-FL after time-dependent treatment with 10 µM sphingosine. (n=1) (C) Quantification of PKC 

localization in cytosolic and membrane fractions of WT and S1P-lyase deficient cells. (n=1) 
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4. Discussion 

 

The aim of this work was to characterize the role of the bioactive sphingolipid S1P in the metabolism 

of the AD associated APP. The results demonstrate an important function of the S1P cleaving enzyme 

S1P-lyase in proteolytic processing of APP by specific secretases and in the regulation of lysosomal 

activity. Cells lacking the S1P-lyase gene showed strong accumulation of APP and its C-terminal 

fragments due to impaired degradation of these proteins in endo-lysosomal compartments. Moreover, 

S1P also impaired the activity of β- and γ-secretase thereby affecting the generation of Aβ. 

Interestingly, mobilization of Ca2+ from ER or lysosomal stores partially rescued the observed effects 

on the accumulation of APP. Further experiments indicated an involvement of PKC in the observed 

effects. 

Together, these findings revealed highly similar phenotypes of the S1P-lyase deficient cell model with 

classical LSD models like Niemann Pick A, -B, Tay-Sachs or Sandhoff Disease (Burns et al, 2003; 

Keilani et al, 2012; Tamboli et al, 2005). 

 

4.1 The role of S1P metabolism in the proteolytic processing of APP. 

Previous studies showed a link between the processing of APP and several lipids (Bhattacharyya et al, 

2013; Grimm et al, 2013; Tamboli et al, 2005; Tamboli et al, 2008). Analytic studies revealed complex 

changes in the lipid composition of human AD brains and during aging in general (Kracun et al, 

1992a; Svennerholm et al, 1989; van Echten-Deckert & Walter, 2012b). However, results of these 

post-mortem studies are controversial. Nevertheless, sphingolipids have been shown to impair the 

proteolytic processing as well as the intracellular trafficking of APP. Two independent studies showed 

that lowering the levels of SM or GSLs impairs the forward transport and availability of APP for 

secretase-mediated cleavage (Sawamura et al, 2004; Tamboli et al, 2005). Ceramide also affects the 

processing of APP by stabilizing the ß-secretase BACE1 and increases the generation of Aβ (Li et al, 

2010; Puglielli et al, 2003).  
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A general metabolite in SL degradation is the bioactive molecule S1P. It plays a key role in the 

recruitment of numerous immune cells by the activation of a subset of G-protein coupled receptor 

(S1PR1 – 5) (Spiegel & Milstien, 2003; Spiegel & Milstien, 2011). S1P was also shown to act as 

second messenger and to modulate a wide range of cellular processes like the gene transcription (Hait 

et al, 2009), counter-acting the pro-apoptotic propensity of ceramide (Olivera & Spiegel, 1993), 

regulation of intracellular Ca2+ signaling (Ghosh et al, 1994) and the BACE1 mediated processing of 

APP (Takasugi et al, 2011). 

Deficiency of the S1P-lyase not only results in elevated intracellular concentrations of S1P and 

sphingosine (Fig. 8B, Fig. 10A), but also in the accumulation of APP-FL and the different APP-CTF 

variants (Fig. 9). Along with this, S1P-lyase deficient cells also showed higher levels of Aβ in the 

conditioned medium (Fig. 13B, C). However, when determining the precursor-product relationship, 

S1P-lyase deficient cells showed lower generation of Aβ as compared to WT cells (Fig. 13D, E). 

These findings indicated a role of S1P-lyase related metabolites on the secretase dependent processing 

of APP. When analyzing the activity of β-secretase BACE1 (Fig. 14) and the γ-secretase (Fig. 17 and 

Fig. 18), a significant reduction for both secretases was observed in S1P-lyase deficient cells. 

Reduction of the γ-secretase activity is in line with the lowered generation of Aβ (Fig. 13). However, 

the mode of action causing the decreased activity remains elusive. Several studies showed that the γ-

secretase activity can be impaired by either the membrane thickness (Winkler et al, 2012), the lipid 

microenvironment (Osenkowski et al, 2008) or the lipid composition (Holmes et al, 2012). Lipid 

analysis either by mass spectrometry (Fig. 10A) or by thin-layer chromatography (Fig. 29A) indeed 

indicated complex changes in the lipid composition. These findings could support the hypothesis of 

lipid mediated effects on the secretase activities and could also be applied on to the S1P-lyase 

deficient cells as well. However, a direct interaction of S1P on the γ-secretase has not been described 

yet. 

A direct effect of S1P on BACE1 on the other hand was recently described. Takasugi and colleagues 

demonstrated a stimulatory effect of S1P on the activity of BACE1. The resulting increase of βCTFs 

led to elevated secretion of both Aβ40 and Aβ42 in primary neurons or neuronal N2a cells (Takasugi 

et al, 2011). However, in the present work a significant reduction in BACE1 activity was observed in 
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S1P-lyase deficient cells. Moreover, direct addition of exogenous S1P to living WT cells or to purified 

membranes of WT cells also decreased the activity of BACE1 (Fig. 14). S1P-lyase deficient cells 

showed an 80 % reduced activity of BACE1 compared to WT cells. Additional application of 

exogenous S1P had no further impact on this decrease (Fig. 14C). However, the reason for the 

conflicting findings in this work and the work of Takasugi and colleagues is unclear. The usage of 

different cellular models (neuronal cells vs. mouse embryonic fibroblasts) and enzymatic assays might 

contribute to the observed differences. Neuronal cells are post-mitotic and show strong differences in 

their membrane composition in comparison to other cells (van Echten-Deckert & Walter, 2012b). As 

mentioned before, membrane thickness (Winkler et al, 2012), local lipid microenvironment 

(Osenkowski et al, 2008) and the lipid composition in general play a crucial role in processing of APP 

(Walter, 2012; Williamson & Sutherland, 2011). Proteolytic activity of BACE1 on the other hand has 

been shown to be stimulated by cerebrosides, GSLs and sterols (Kalvodova et al, 2005). Furthermore, 

palmitoylation of BACE1 causes a stabilization and translocation into lipid rafts causing an elevated 

generation of βCTFs and presumably Aβ (Bhattacharyya et al, 2013). 

Inhibition of the sphingosine-kinases with SKiII decreased intracellular S1P and increased the 

concentration of its precursor sphingosine (Fig. 10A, B). SKiII also decreased levels of APP-FL and 

APP-CTFs (Fig. 10C, D). Interestingly, both WT and S1P-lyase deficient cells showed a decrease in 

APP-FL and APP-CTFs upon inhibition of sphingosine phosphorylation, suggesting a S1P-lyase 

independent effect. Since S1P-lyase deficient cells show constitutively higher levels of sphingosine 

than WT cells. The effect upon SKiII treatment might rather come from reduced levels of S1P instead 

of elevated concentrations of sphingosine. However, while treatment of WT and S1P-lyase deficient 

cells with sphingosine increased APP-FL and APP-CTFs (Fig. 34), S1P had no effects (Fig. 12). 

Sphingosine is more permeable than S1P and might require dephosphorylation prior to cellular 

penetration (Peest et al, 2008). Sphingosine penetrates membranes more easily compared to S1P and 

thus, enters cells more efficiently. After penetration sphingosine can undergo phosphorylation leading 

to higher concentrations of intracellular S1P (Fig. 10B).  

Analysis of sAPPβ level revealed a significantly elevated secretion in S1P-lyase deficient cells 

overexpressing APP695swe compared to cells with functional S1P-lyase activity (Fig. 15). This finding 
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is contradictory to the lowered activity of BACE1 observed in the fluorogenic analysis (Fig. 14). 

However, the comparison between these two experiments is difficult. The activity of BACE1 was 

measured using an artificial synthetic substrate in non-transduced cells (Fig. 14), while the levels of 

soluble APP were derived from cells expressing the APP695swe variant (Fig. 15). The Swedish variant 

of APP favorably undergoes BACE1 cleavage resulting in higher Aβ generation (Citron et al, 1992), 

in both the secretory and the endocytic pathways (Perez et al, 1996). Treatment of APP695swe 

overexpressing cells with SKiII furthermore increased the generation of sAPPβ and reduced the 

generation of sAPPα, suggesting an elevated activity of BACE1 (Fig. 15). This finding, on the one 

hand, is in line with the lowered BACE1 activity under high concentrations of S1P (Fig. 14), but on 

the other hand, does not explain the reduced level of APP-βCTFs (Fig. 16). Immunoprecipitation of 

APP-βCTF variants from WT and S1P-lyase deficient cells revealed a decrease upon treatment with 

SKiII. This finding is in line with the study of Takasugi and colleagues, who postulated a positive 

modulatory effect of S1P on BACE1 activity (Takasugi et al, 2011). Although BACE1 activity in S1P-

lyase deficient cells is significantly lower than in WT cells, an accumulation of APP-βCTFs was 

evident. The molecular mechanism underlying this effect is unclear, but the data strongly indicate an 

impairment of non-secretase dependent proteolysis of APP. 

Interestingly, the γ-secretase subunit PS1-CTFs were also shown to regulate the lysosomal activity by 

maintaining its Ca2+ homeostasis (Neely Kayala et al, 2012). They are further associated with the 

lysosomal membranes and suggested to act as a lysosomal protease participating in the lysosomal 

turnover (Pasternak et al, 2003). Autocatalytic cleavage of PS1-FL generates the PS1-CTFs and PS1-

NTFs, which form the catalytic center for the γ-secretase mediated cleavage of APP and other 

substrates (De Strooper et al, 2012; Thinakaran et al, 1996). Immunoprecipitation of PS1-CTFs was 

used to determine the expression level of PS1. Western immunoblotting analysis showed similar levels 

of PS1-CTF in WT and S1P-lyase deficient cells. However, treatment with SKiII significantly reduced 

the PS1-CTF levels (Fig. 19A, C, D), indicating either a reduced autocatalytic cleavage of the full 

length and therefore a low activity of the γ-secretase in general, or an increased degradation of PS1-

CTFs. Nevertheless, since the effect of SKiII on PS1-FL was not determined in this experiment, a 

general reduction of PS1-FL expression cannot be ruled out at this point. Further expression analysis 
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would help to uncover the effect of SKiII on PS1 metabolism. The role of S1P metabolism on the 

processing of PS2-FL was not analyzed and needs to be addressed in further experiments. 

Taken together, modulation of S1P metabolism by genetic deletion of the S1P-lyase or inhibition of 

sphingosine kinases affects the proteolytic processing of APP by altering the enzymatic activities 

and/or intracellular trafficking of secretases. However, the results also indicate the involvement of 

secretase-independent effects on APP metabolism.  

 

4.2 Deficiency of the S1P-lyase impairs the lysosomal turnover. 

Early studies by Haass and colleagues demonstrated the targeting of APP-βCTFs to lysosomal 

compartments for degradation (Haass et al, 1992a). Moreover, an accumulation of APP-CTFs in 

lysosomal compartments was shown in cellular and animal models of different lipid storage diseases 

(Keilani et al, 2012; Tamboli et al, 2011b; Tamboli et al, 2005; Tamboli et al, 2011c). Using cell 

biological and biochemical methods, this study also demonstrated strong accumulation of APP-FL and 

APP-CTFs in lysosomal compartments and a co-localization to lysosomal marker proteins (Fig. 20). 

Interestingly, the reduced autocatalytic cleavage capacity of cathepsin D further suggested a decrease 

in lysosomal activity in S1P-lyase deficient cells (Fig. 22) (Benes et al, 2008; Gieselmann et al, 1985; 

Gieselmann et al, 1983). A potential cause for the decreased maturation rate of cathepsin D might be 

triggered by a general elevation of the lysosomal pH as it was shown by several other studies (Altan et 

al, 1999; Samarel et al, 1989; Toimela et al, 1995). Nevertheless, further determination of the intra-

lysosomal pH in S1P-lyase deficient cells would be necessary. Interestingly, deficiency of cathepsin D 

was shown to resemble a neuronal ceroid lipofuscinosis (NCL) phenotype (Koike et al, 2000). NCL is 

a rare lipid-protein storage disorder affecting mostly endosomal compartments, emphasizing the role 

of cathepsin D for lysosomal turnover of proteins as well as lipids. Moreover, deficiency of the 

lysosomal hydrolase cathepsin E also leads to accumulation of lamp2 and an increased in the 

lysosomal pH (Yanagawa et al, 2007). These findings demonstrate the tight relationship of lysosomal 

hydrolases, regulation of lysosomal pH and the turnover of proteins. Interestingly, the lipid activator 

protein GM2a was also increased in S1P lyase deficient cells. GM2a participates in the degradation of 
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GM2 by forming a soluble complex and delivering the substrate to the degrading enzymes (Sandhoff 

& Kolter, 1998). Interestingly, deficiency of GM2a was shown to induce the storage of GM2 

gangliosides, similar to the Tay-Sachs or Sandhoff diseases, also known as the AB variant of GM2 

gangliosidosis (Liu et al, 1997; Sakuraba et al, 1999). In line with this, gene expression analysis of the 

enzymes involved in the degradation of GM2 gangliosides, GM2a, hexosaminidase A and 

hexosaminidase B, were reduced in S1P-lyase deficient cells (Fig. 29B-C). However, the accumulation 

of GM2a in lysosomes and the reduced mRNA levels are conflicting. Interpretation and correlation of 

mRNA to protein level is difficult as extensively reviewed by Vogel and Marcotte (Vogel & Marcotte, 

2012). Splicing, post-translational modification, long protein half-life and transcriptional regulation 

can cause discrepancies between mRNA and protein levels. Altogether, the intracellular accumulation 

of APP together with lysosomal proteins GM2a, lamp2, and immature Cathepsin D suggests an 

impairment of the lysosomal activity thereby showing characteristic features of lipid storage disorders. 

Macroautophagy, from here on referred to autophagy, is an important cellular mechanism for the 

degradation of long-lived proteins into amino acids and is highly dependent on the action of 

lysosomes. Autophagy furthermore mediates the catabolic processing of lipids, carbohydrates and 

even organelles like mitochondria or lipid droplets to maintain a healthy cellular homeostasis (Singh & 

Cuervo, 2011). Fusion of autophagosomes with lysosomes promotes the degradation of the luminal 

content and provides amino acids as building blocks for new biosynthesis under conditions of 

starvation (Levine & Klionsky, 2004). When analyzing global protein metabolism by metabolic pulse-

chase experiments, a reduced turnover of these proteins in S1P-lyase deficient cells were observed 

(Fig. 24A, B). However, induction of autophagy upon starvation was similar in WT and S1P-lyase 

deficient cells, as indicated by similar conversion of LC3-I to LC3-II. However, while LC3-II in WT 

cells was efficiently consumed, LC3-II was more stable in S1P-lyase deficient cells (Fig. 25A). As 

shown previously, persistent starvation causes an increased and unspecific breakdown of proteins for 

the maintenance of cellular homeostasis (Cuervo et al, 1995; Mizushima et al, 2004). In fact, nutrient 

depletion demonstrated a reduced catabolism of LC3-II in S1P-lyase deficient cells as compared to 

WT cells when starvation was persistent (Fig. 25A). When autophagy was induced using rapamycin, a 

pharmacological inhibitor of mTOR, the proportion of LC3-II in S1P-lyase deficient cells was higher 
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than in WT cells (Fig. 25). The obtained data indeed suggested a different response of WT and S1P-

lyase deficient cells to rapamycin. However, the differences are small and do not allow any definite 

conclusions. Hypothetically, this finding would suggest a generally low conversion rate in both cell 

lines, which could be intensified in S1P-lyase deficient cells due to impaired lysosomal activity and 

less efficient consumption. Nevertheless, further experiments are needed to confirm this hypothesis. 

The involvement of autophagy in the degradation of lipid droplets has only been described very 

recently (Singh et al, 2009). The catabolic processing of free fatty acids and triglycerides promotes the 

generation of ATP via β-oxidation thereby supplying cells with energy. Inhibition of the autophagic or 

lysosomal activity was shown to increase the storage of free fatty acids in lipid droplets (Singh et al, 

2009). As shown in Fig. 29, S1P-lyase deficient cells show a pronounced accumulation of lipid 

droplets, further supporting a lysosomal impairment in these cells. Thus, it would be interesting to 

further analyze the metabolism of lipid droplets and fatty acids and the functional consequences upon 

modulation of the S1P metabolism. 

The combined results indicate impaired lysosomal activity in S1P-lyase deficient cells. This also 

affects the autophagic process by decreasing final clearance of cargo in the lysosome, while induction 

of autophagy appears unaffected.  

 

Determination of the overall APP-FL maturation state revealed a significant difference in the ratio of 

mature to immature APP (Fig. 21A, B). Increased maturation of APP was ruled out by cycloheximid 

treatment (Fig. 21C, D). These results demonstrate a higher stability of APP-FLm, either caused by 

lowered proteolytic activity or by reduced secretase activity, as discussed before (see 4.1). However, 

earlier studies also highlighted the role of the lysosomal activity on the APP processing secretases. 

BACE1 has a pH optimum of ~4.5 – 5 and elevation of the pH lowers its activity (Vassar et al, 1999; 

Vassar & Citron, 2000). On the other hand, BACE1 seems to be critical for the lysosomal activity as 

well. Pharmacological or genetic inhibition of BACE1 was shown to reduce the cathepsin D activity 

by ~40 % and to increase the lysosomal pH, causing an accumulation of lipofuscin in retinal pigment 

epithelium (Cai et al, 2012). It is difficult to link the exact interplay of BACE1 and lysosomal activity 

in the S1P-lyase deficient cell model. According to the previously mentioned literature, impairment of 
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lysosomal activity can hamper BACE1 and vice versa. However, the findings rather suggest an 

impairment of BACE1 caused by the storage of lipids.   

Less is known about the relation of lysosomal and γ-secretase activity. Most studies state a 

predominant localization of the catalytically active γ-secretase complex at the PM, partially in 

endosomal-lysosomal compartments and to a lesser extent in the Golgi (Haass et al, 2012). An 

interesting study by Pasternak and colleagues demonstrated a localization of γ-secretase subunits at the 

lysosomal membrane (Pasternak et al, 2003). In contrast to other studies (Zhang et al, 2001) they were 

able to demonstrate a pH optimum for the γ-secretase activity at 4.5 in this compartment. 

Thus, lowered lysosomal activity induced by changes in the pH, could partially explain the reduced γ-

secretase and β-secretase activities. Nevertheless, further pH dependent γ-secretase or BACE1 assays 

would help to clarify the exact role of the lysosomal pH on the secretases and determine the 

conflicting results for the BACE1 activity measurements (Fig. 14) and the levels of secreted sAPPβ 

(Fig. 15). 

 

4.3 Potential role of S1P-lyase in vesicular trafficking. 

As stated before, S1P-lyase deficient cells show a wide range of similarities with LSDs including 

impaired lysosomal activity. But storage of lipids have been shown to hamper membrane fluidity and 

subcellular trafficking as well (Pagano et al, 2000). Accumulation of GSLs was shown to disrupt the 

intracellular transport in a NPC1-/- mice model, probably by mistargeting annexin 2 and 6 (te Vruchte 

et al, 2004). Deficiency of NPC1 was furthermore shown to increase the affinity of sphingosine to 

endosomal or lysosomal compartments and could display a regulating mechanism for protein and lipid 

transport (Blom et al, 2012). Studies in retinoid cells revealed a crucial role for the dihydro-S1P to 

S1P ratio in the endosomal- and lysosomal trafficking of the receptor potential channels and its 

degradation (TRPC) (Yonamine et al, 2011). These receptors are selective ion gating channels and 

critical for a variety of intracellular signaling cascades (Montell, 2005). Interestingly, the members of 

the subfamily TRPML1 – 3 (TRP-mucolipidosis type IV associated 1 - 3) are localized in endosomal/ 

lysosomal membranes where they mediate the rapid release of Ca2+ from these compartments (Dong et 
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al, 2010). Notably, lipid storage blocks the release of Ca2+ by inhibiting the TRPML1 and the 

lysosomal trafficking in NPC1 cells (Shen et al, 2012). In line with this finding, the study by Lloyd-

Evans and colleagues illustrated a defective Ca2+ signaling in NPC1 cells due to increased sphingosine 

storage (Lloyd-Evans et al, 2008). Fusion of different organelles with the lysosomes and overall 

maturation of lysosomes is a highly Ca2+ dependent process (Luzio et al, 2007; Luzio et al, 2003). 

Moreover, fusion of lysosomal membranes with the plasma membrane during exocytosis also 

dependents on Ca2+ (Bastow et al, 2012). Lysosomes are capable to store Ca2+ at a concentration of 

400 – 600 µM in their lumen (Burdakov et al, 2005; Christensen et al, 2002). Rapid release from these 

stores is crucial for the fusion of the lysosomal membrane with the target membrane (Pryor et al, 

2000).  

Interestingly, increasing cytosolic Ca2+ by inhibition of SERCA with thapsigargin or stimulation of 

lysosomal release with GPN resulted in an efficient reduction of APP-CTFs and partially restored their 

clearance in S1P-lyase deficient cells (Fig. 31). This result strongly indicates that efficient Ca2+ 

signaling and probably its local increase at the lysosome is important for the lysosomal function. A 

study on S1P-lyase deficient cells indeed showed an aberrant Ca2+ storage as well as a general increase 

in the intracellular concentration of cytosolic Ca2+ in S1P lyase deficient cells (Claas et al, 2010). 

However, experiments with pharmacological modulators reducing the intracellular Ca2+ concentration 

in S1P-lyase deficient cells have to be performed. This could help to cover the exact role of Ca2+ in 

intracellular trafficking. 

Interestingly, the analysis of other subcellular compartments by immunocytochemistry revealed 

alterations of early Golgi compartments, the ER and early endosomes in S1P-lyase deficient cells. In 

particular, enlargement of giantin positive structures (Fig. 27) could suggest an impaired docking of 

COPI vesicles to the cytoplasmic site of cis-Golgi compartments. Ca2+ is crucial for the trafficking of 

COPI-coated vesicles since it is necessary for the efficient coating and their recycling (Ahluwalia et al, 

2001). This Ca2+ regulated coating of the vesicles facilitates their fusion with the target golgi-

membranes (Bentley et al, 2010). 

S1P-lyase deficient cells also showed a higher number of tubular EEA1 positive endosomal 

compartments (Fig. 28). During the maturation of early to late endosomes scaffolding proteins are 
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removed from the early endosomes, causing a loss of the tubular appearance and an increase in size 

due to homotypic vesicle fusion (van Weering & Cullen, 2014). This action is probably mediated by a 

replacement of Rab5 by Rab7 (Rink et al, 2005). Interestingly, the COPI protein complex was also 

detected on early endosomes and seems to play an important role in their maturation. Impaired binding 

of COPI-coated vesicles to Golgi membranes was shown to cause tubulation and reorganization of 

early endosomes (Aniento et al, 1996; Lippincott-Schwartz et al, 1991; Tooze & Hollinshead, 1992). 

Hypothetically, the increased number of tubular endosomes in S1P-lyase deficient cells might emerge 

from a generally impaired maturation of the endosomes. This could cause a reduced lysosomal activity 

due to inefficient acidification of lysosomal compartments or a reduced delivery of proteins and 

enzymes. Thus, it would be interesting to further address and functionally analyze this interesting link 

between impaired Ca2+ signaling, and altered vesicular trafficking and maturation of endosomes to 

lysosomes in S1P deficient cells. 

In general, cause for aberrant high levels of Ca2+ in S1P-lyase deficient cells can only be speculated. 

Seol and colleagues postulated that the presence of intracellular S1P induces an influx of Ca2+ from 

extracellular pools (Seol et al, 2005). Pandol and colleagues furthermore reported that high levels of 

sphingosine can directly impair Ca2+ ATPases and hamper the reuptake into intracellular Ca2+ stores, 

causing an increase of the cytosolic Ca2+ concentrations (Pandol et al, 1994). In general, sphingolipid 

metabolism appears to be tightly linked to cellular Ca2+ homeostasis and therefore to subcellular 

trafficking. 

 

4.4 Role of PKC in the processing of APP. 

Ca2+ plays a critical role in intracellular signaling and is involved in a multitude of cellular processes. 

One of the major Ca2+ dependent enzymes involved in cellular regulation is the protein kinase C 

(PKC) (Mellor & Parker, 1998; Nishizuka, 1995). The classical PKC isoforms α, βI, βII or γ require the 

second messenger molecules Ca2+ and also DAG for full activation (Mellor & Parker, 1998). Both 

second messengers are released upon activation of phospholipase C (PLC) that cleaves 

phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane to generate DAG and IP3. The 
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latter activates IP3-dependent Ca2+ channels in the ER leading, to increased cytosolic Ca2+ 

concentration. DAG and Ca2+ bind to the C1 and C2 domains of PKC, respectively (Ono et al, 1989). 

Initial binding of Ca2+ to its C2 domain mediates the RACK (receptor for activated c-kinases)-

dependent translocation of PKC to the plasma membrane (Haberman et al, 2011). Upon translocation 

to the plasma membrane, PKC binds to the membrane-bound DAG and gets activated (Ono et al, 

1989). PKC was shown to promote α-secretase cleavage of APP-FL, when activated by phorbol esters 

or other reagents (Efthimiopoulos et al, 1994). PKC stimulation causes a competition between α- and 

β-secretases resulting in elevated secretion of sAPPα (Skovronsky et al, 2000). Furthermore, activation 

of PKC promoted the α-secretase mediated cleavage of APP and ameliorated AD pathology in 

fibroblasts of AD patients and transgenic AD mice (Etcheberrigaray et al, 2004). Modulation of PKC 

activity might represent an interesting target for AD therapeutics.  

The analysis of WT and S1P-lyase deficient cells demonstrated significant differences in the 

localization of PKC. Cells lacking S1P-lyase have a higher ratio of cytosolic to membrane localized 

PKC as compared to WT cells (Fig. 32A, B and Fig. 33A, B), suggesting a reduced activity of PKC. In 

an early study, sphingosine was shown to compete with DAG for the C1 domain of PKC and thereby 

inhibit its activation (Hannun & Bell, 1989). Moreover, in primary fibroblasts from patients with 

NPC1, increased levels of sphingosine were shown to impair the activation of PKC by blocking the 

binding to its activator PDBU (phorbol 12, 13-dibtyrate) (Rodriguez-Lafrasse et al, 1997). Thus, the 

elevated levels of sphingosine observed in S1P-lyase deficient cells in the present work might underlie 

the lower association of PKC with cellular membranes. Treatment with SKiII reduced the levels of 

S1P and increased the intracellular sphingosine concentration in both WT and S1P-lyase deficient 

cells (Fig. 10A). This increase in the level of sphingosine was associated with a significant increase in 

cytosolic localized PKC in WT cells (Fig. 32B). Notably, the changes in the ratio of cytosolic to 

membrane localized PKC were not significant in S1P-lyase deficient cells (Fig. 32C). Interestingly, 

level of membrane localized PKC were clearly elevated upon SKiII in S1P-lyase deficient cells (Fig. 

32A).  

Inhibition of PKC with the inhibitor bisindolylmaleimide I (BIM I) showed a striking reduction of 

cytosolic localized PKC in WT and S1P-lyase deficient cells (Fig. 33A, C, D). Surprisingly, this result 
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and would rather indicate an activation of PKC, although membrane localized PKC in WT cells 

decreases (Fig. 33A). Level of membrane localized PKC in S1P-lyase deficient cells increase upon 

BIM I (Fig. 33A). This finding indicates that the response of membrane localized PKC to BIM I as 

well as to SKiII (Fig. 32A) in S1P-lyase deficient cells is different as compared to WT cells. 

The effect of BIM I on the cytosolic PKC levels remain elusive. BIM I is a competitive inhibitor for 

the ATP binding site of PKC and efficiently inhibits the isoforms α, βI, βII, γ, δ and ε at low nanomolar 

concentrations (~20 nM) (Toullec et al, 1991). However, the concentration used in these experiments 

was 1 µM. This high concentration might have caused the inhibition of other kinases like GSK3β or 

PKA cells (Hers et al, 1999) and induced offside effect. 

The levels of APP-FL and APP-CTFs were strongly increased upon inhibition of PKC (Fig. 33A), 

similar to the sphingosine treatment (Fig. 34A, B). Both, WT and the S1P-lyase deficient cells, show a 

time dependent increase in APP-FL and APP-CTFs when treated with sphingosine (Fig. 34A, B). This 

increase was accompanied by a simultaneous change in the PKC localization in WT, but not in S1P-

lyase deficient cells (Fig. 34C). 

Both, BIM I and sphingosine treatment caused a decrease in the ratio of the active to the intermediate 

forms of Cathepsin D, indicating impaired lysosomal activity (Fig. 33A and Fig. 34A). These results 

support the hypothesis, that accumulation of sphingosine or other lipids can cause an inhibition of 

PKC, and also an impairment of lysosomal activity. However, the functional relation of PKC, lipids 

and lysosomal activity remains elusive. Accumulation of sphingosine was shown to inhibit PKC 

activity and cause a hyper phosphorylation of vimentin (Walter et al, 2009). Hyper phosphorylated 

vimentin shows less efficient polymerization and was shown to induce dysfunction of endosomal 

compartments in cells in a NPC1 model (Walter et al, 2009). Overexpression of PKCε on the other 

hand partially overcame the phenotype in these cells and even ameliorated the hampered cholesterol 

transport (Tamari et al, 2013). It would therefore be interesting to analyze whether the activation of 

PKC by phorbol esters or the overexpression of PKC reduce the phenotype in the S1P-lyase deficient 

cells. Taken together, the present results lead to the conclusion that sphingosine could also induce 

effects on APP-FL and APP-CTFs via inhibition of PKC. These findings are in line with the 

previously described effects of PKC activation on the APP metabolism (Efthimiopoulos et al, 1994). 
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However, it remains elusive whether the aberrant Ca2+ signaling impairs the PKC activity or vice 

versa. Harper and Poole demonstrated, that inhibition of PKC with BIM I can actually negatively 

regulate Ca2+ release as well as Ca2+ entry (Harper & Poole, 2011). Nevertheless, the effects on the 

PKC localization exerted by SKiII, BIM I and sphingosine are similar, but APP-FL and APP-CTFs 

levels respond differently. While BIM I and sphingosine show an increase of APP-FL and APP-CTFs 

(Fig. 33 and Fig. 34), SKiII causes a striking decrease (Fig. 10C, D and Fig. 32). It is assumed that 

sphingosine indeed alters the PKC localization, as shown for the treatment with SKiII and 

sphingosine. However, the reduced S1P concentration might promote the secretase activity in general. 

It would therefore be interesting to analyze, whether SKiII treatment would cause a reduction of APP-

FL and APP-CTFs under conditions of PKC inhibition. 

In summary, the effects of the S1P-lyase deficiency on the localization and probably the PKC activity 

are evident. Sphingosine, rather than S1P, might cause inhibition of PKC and could also decrease 

lysosomal activity. However, it cannot be explained whether the effects on APP-FL and APP-CTF 

accumulation are due to the lowered PKC activity or not. Sphingosine and S1P might exert dual roles. 

While S1P reduces secretase activities, sphingosine causes a relocation of PKC in the analyzed 

fractions and probably a reduction in its activity. The role of Ca2+ signaling on the PKC activity 

remains unclear. At the current state it is feasible to identify whether aberrant Ca2+ levels are caused 

by S1P (Seol et al, 2005) or caused by PKC itself (Harper & Poole, 2011). 

Thus, S1P-lyase deficiency resembles phenotypes observed in other LSDs. Storage of S1P and 

sphingosine has far-ranging consequences on the proteolytic processing of APP by the secretases or in 

lysosomal compartment (Fig. 35).  
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Fig. 35: Hypothetical scheme of the effects induced by S1P-lyase deficiency. Storage of S1P and sphingosine in S1P-lyase 

deficient cells impairs the proteolytic processing of APP. High levels of S1P cause a reduction of the β- and γ-secretase 

activities and might alter the processing of APP (1). S1P and sphingosine accumulation affect the Ca2+ signaling (2) and 

probably hampering membrane dynamics, trafficking and maturation of vesicles (3). Inefficiently maturated lysosomes could 

cause the elevated levels of APP-FL and APP-CTF in S1P-lyase deficient cells. 
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5. Outlook 

The contribution of lipids like cholesterol and GSLs in pathogenesis of AD has been extensively 

investigated in past decades. However, the role of sphingoid bases like S1P or sphingosine is less 

clear. Deficiency of the S1P-lyase caused increased sphingosine and S1P level and provided 

interesting insights into the proteolytic processing of APP and general cellular mechanisms. 

Nevertheless, further experiments are necessary to specifically determine the pathological relevance of 

these findings. 

Lysosomal activity was found to be reduced in the S1PL-KO model contributing to the elevated levels 

of APP and CTFs. The present study furthermore shows direct decreasing effects of S1P level on the 

β- and γ-secretases activity. The molecular mechanisms causing this impairing effect remain elusive 

and might be triggered by the hampered sub-cellular trafficking. Further experiments are necessary to 

determine whether these effects are directly linked or mediated by altered Ca2+ homeostasis. 

Moreover, lysosomal deficiency plays a crucial role in numerous other neurodegenerative diseases like 

Parkinson’s disease or Huntington’s disease. It would be of great interest to determine the contribution 

of the S1P-lyase deficiency on these pathologies. 

The early mortality of S1P-lyase deficient mice is a major problem for the age dependent investigation 

of APP. However conditional KO mice in a nestin-cre background could be useful to better understand 

the function of the S1P-lyase in neuronal cells. First, the effect of S1P-lyase deficiency on the 

cognitive ability of these mice during aging could be investigated. Later on, conditional KO mice 

could be crossed with transgenic AD mouse models. This could give more experimental opportunities 

to analyze the effect of the neuron specific S1P-lyase knockout. Future experiments could also help to 

determine the role of the S1P-sphingosine axis on the plaque deposition and cognitive abilities. 

Although SphK1 and SphK2 have been partially analyzed in different brain regions of AD patients, 

the results are still conflictive and allow only little conclusions. Expression pattern analysis and 

genome wide association studies could help to determine potential factors contributing to the 

pathogenesis. Correlation studies of sphingolipid mediating enzymes or sphingolipid intermediates 

with the AD associated proteins would increase the probability to develop treatment strategies or 

promote the clinical research. 
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