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Zusammenfassung

Das übergeordnete Ziel dieser Arbeit ist die Präsentation von Methoden, die die Evaluierung
dynamischen Downscalings1 verbessern oder statistische Downscaling Verfahren aufwerten.

Der Informationstransfer von einer grossen Skala zu einer kleinen Skala wird als Downscaling
bezeichnet. Zwei unterschiedliche Ansätze werden in den Klimawissenschaften für Downscaling
Zwecke verwendet: Dynamisches Downscaling und statistisches Downscaling. Um eine bessere
Beschreibung der herunterskalierten Daten zu ermöglichen, werden in dieser Arbeit Methoden für
beide Ansätze vorgestellt, die die Evaluierung und Interpretation der Daten und Ergebnisse fort-
führender Studien verbessern.

Dynamisches Downscaling basiert auf räumlich begrenzten Zirkulationsmodellen für die At-
mosphäre, so genannte regionale Klimamodelle (RCM2). Seitliche Randbedingungen (LBC3) für
das RCM liefert eine Klimasimulation eines globalen Zirkulationsmodells (GCM4). Diese Arbeit
stellt Methoden zur Evaluierung von RCM Simulationen vor: Erstens wird ein eine qualitative
Evaluierungsmethode, die untersucht ob spezifische Dynamiken in der Atmosphäre vom RCM auf-
gelöst werden, vorgestellt. Zweitens wir eine neu entwickelte Methode eingeführt, die mit Hilfe von
Kreuzspektren untersucht auf welchen Zeitskalen ein RCM das Potential hat Variabilität unabhängig
vom GCM, aus dem die LBC stammen, zu generieren. Dabei werden die Kreuzspektren zwischen
dem RCM und einer bilinear interpolierten Version des GCM für jeden Gitterpunkt einzeln geschätzt.
Beide Methoden werden veranschaulicht anhand RCM Simulationen, deren Modellgebiet Ostasien
umfasst. Das RCM COSMO-CLM wurde für diesen Zweck angepasst, und mit Klimasimulationen
des GCM ECHAM5 und der Re-analyse ERA-40 am Rand angetrieben. Die qualitative Evaluierung
zeigt, dass sowohl Dynamiken des Sommermonsoons und des Wintermonsoons vom COSMO-CLM
aufgelöst werden. Die Anaylse mittels Kreuzspektren suggeriert, dass das Potential von COSMO-
CLM, zur Erzeugung von Variabilität unabhängig vom GCM, sowohl von dynamischen Merkmalen,
z.B. Monsoon und Innertropische Konvergenzzone, wie auch von numerischen Modellparametern,
z.B. horizontale Auflösung und Ausdehnung des Modellgebiets, abhängt.

Statistisches Downscaling basiert auf statistischen Transferfunktionen zwischen dem Modellout-
put grob auflösender Klimasimulationen und lokalen Beobachtungen. Da eine Fülle statistischer
Methoden für derartige Zwecke verfügbar ist, ist es von besonderer Bedeutung fallspezifisch Predik-
toren zu finden, die physikalisch sinnvoll sind und so weitere Interpretationen der Ergebnisse erlauben.
Die Herleitung und Anwendung solcher Prediktoren ist erläutert anhand einer statistischen Down-
scaling Studie für Niederschlag im Poyang Einzugsgebiet in Ost-China. Die Ja-Nein Aussage, ob
der über 24 Stunden akkumulierte Regen einen bestimmten Grenzwert überschreitet, wurde von
lokalen Regenmessern für die Sommermonate abgeleitet. Empirische orthogonale Funktionen (EOF)
wurden für relative Vorticity auf 850 hPa und Vertikalgeschwindigkeit auf 500 hPa aus der ERA-40
Re-analyse berechnet. Beide Informationen werden mittels logistischer Regression zusammengeführt.

1Der Begriff des Herrunterskalierens ist im Deutschen nicht gebräuchlich. Das Verb herunterskalieren jedoch schon.
2engl. regional climate model
3engl. lateral boundary conditions
4engl. global general circulation model
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Der dominierende EOF-Prediktor kann mit Störungen auf der Meso-α-skala in Verbindung gebracht
werden, welche Teil der sommerlichen Monsoondynamik in der Region sind.

Es besteht eine hohe Nachfrage an herunterskalierten Daten für weiterführende Studien in Kli-
mawissenschaften, aber auch in anderen Disziplinen. Daher sind die Entwicklung von Evaluation-
smethoden zur Beurteilung der Qualität von RCM Simulationen und die Herleitung physikalisch
interpretierbarer Prediktoren für statistische Downscaling Schemata wichtige Verbesserungen für
Downscaling Prozesse.
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Abstract
The overall aim of this thesis is to present methods, which improve evaluating dynamical down-

scaling approaches or enhance statistical downscaling schemes. These methods are illustrated along
examples of both approaches for the East Asian region.

The transfer of information from a large scale to a smaller scale is referred to as downscaling.
Two different approaches are employed in climate science for downscaling purposes, i.e. dynamical
downscaling and statistical downscaling. In order to give a better description of the downscaled
data, this thesis presents methods, which help evaluating and interpreting the data and results of
further studies in a better way, for both approaches.

Dynamical Downscaling is based on a spatially limited atmospheric general circulation model, a
so-called regional climate model (RCM). At the boundaries of the RCM lateral boundary conditions
(LBC) are provided by a climate simulation performed with a global general circulation model (GCM).
This thesis proposes methods for evaluating RCM simulations. First, a qualitative evaluation, that
investigates whether single atmospheric dynamics are resolved by the RCM, is presented. Second, a
newly developed evaluation method, that investigates by cross-spectral analysis on which temporal
scales a RCM is able to generate variability independently from the GCM defining the LBC, is
introduced. To this end, cross-spectra are estimated point-to-point between the RCM and a bi-
linearly interpolated version of the GCM defining the LBC. Both methods are illustrated along
RCM simulations performed for a domain covering East Asia. The RCM COSMO-CLM has been
adapted for this purpose, and was driven by climate simulations performed with ECHAM5 and the
re-analysis ERA-40 at its boundaries. The qualitative evaluation shows that both summer monsoon
and winter monsoon dynamics are resolved by COSMO-CLM. The cross-spectral analysis suggests
that the potential of COSMO-CLM to generate variability independently from the GCM depends
on both dynamical features, i.e. monsoons and inter-tropical convergence zone, and on numerical
parameters, i.e. horizontal resolution and domain extension.

Statistical downscaling is based on statistical transfer functions between the output of large
scale climate simulations and observations on the local scale. While an abundance of statistical
methods for this kind of purpose are available, it is crucial from case to case to find physically
meaningful predictors, which allow further interpretations of the results. Deriving and applying such
predictors is demonstrated along a statistical downscaling study for precipitation properties in the
Poyang catchment in Eastern China. The dichotomous variable, if 24 h accumulated rainfall exceeds
a certain threshold, is taken from local rain gauges for summer. Empirical orthogonal functions
(EOF) are calculated for relative vorticity at 850 hPa and vertical velocity at 500 hPa taken from
ERA-40 re-analysis data. Both information are linked by logistic regression. The most dominant
EOF-predictor can be associated with meso-α-scale disturbances, which are part of the summer
monsoon dynamics in this region.

Downscaled data is often requested for further studies in climate science, but also in other dis-
ciplines. Thus, developing evaluation methods for assessing the quality of RCM simulations, and
deriving physically interpretable predictors for statistical downscaling schemes are crucial enhance-
ments for the downscaling procedure.
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Chapter 1

Introduction

This study gives an overview about the key points, at which a meteorologist or climate scientist
can contribute to the broad field of downscaling climate data. Downscaling refers to the transfer
of information, i.e. precipitation, representative for relative large areas or volumes to smaller scales.
Scientists from other disciplines have a high interest in high resolution climate data, in order to
apply this data as input for their models. Due to these circumstances the field of downscaling can
be thought of as an interface, where information is transferred from one discipline to another. This is
by nature a critical point. On the one hand the developers of numerical weather models (NWP) and
climate models, i.e. meteorologists together with oceanographers, etc., know about the potential
pitfalls in analyzing climate data or applying climate data to further studies, and they know about the
details, which current research is focused on to further develop weather and climate models. Main
interest of developers is a model system producing realistic simulations. In this light, it is not only
important to increase horizontal resolution, but also generating ensembles to assess uncertainties,
and an improvement of parameterizations of sub-grid processes to improve model physics. On the
other hand there is a demand for climate data from biologists, hydrologists and others dealing with
impact of and adaptation to climate change. Inherent to users is the request for more, which is in
the case of climate data often restricted to spatial resolution.

To close the gap between focuses of developers and demands of scientist from other disciplines
methods are presented in this study that should help to communicate the inherent limitations of
downscaled climate data. In the following chapters both sub-fields of downscaling climate data will
be addressed, i.e. dynamical downscaling and statistical downscaling.

In the field of dynamical downscaling it is crucial to provide methods for evaluating of regional
climate model (RCM) simulations. Two different evaluation approaches are discussed. First, it is
shown how RCM simulations can be checked for processes of atmospheric physics related to the
region of interest. This is an ad-hoc approach, and dependent on the region it might be easier or
harder to employ (cf. section 3.1). Second, an objective evaluation approach is presented, which
is also a contribution to the discussion about defining added value of RCM simulations. A cross-
spectral analysis is employed to investigate the temporal scales, on which a RCM is potentially able
to generate variability on its own and independently from the driving model (cf. section 3.2).
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1 INTRODUCTION

For the field of statistical downscaling it is shown that available statistical schemes should not
be applied as black boxes. Instead, selecting physically meaningful predictors for downscaling can
lead to results, which are interpretable with respect to physics typical for the region (cf. section
4.2).

The research conducted in this study and in the Appendices A, B, and C, was supported by
the project Extreme Events in the Past and Future: a Comparative Assessment for the Haihe River
and Poyang Lake Basins, which was embedded in the DFG/NSFC-joint funding programme Land
Use and Water Resources Management under Changing Environmental Conditions. In the research
proposal the key objectives of the project were defined as follows1:

• To analyze the behavior of extremes in the Haihe and Poyang catchment with the means of
extreme value theory.

• To generate high-resolution future projections of extreme events and their uncertainties by
statistical downscaling of GCM simulations directly.

• To evaluate the spatial structure of extreme events by dynamical downscaling of global climate
runs using a regional climate model.

• To identify the characteristics of extremes in the future by statistical post-processing of regional
climate simulations.

• To provide climate data to other projects of the research program.

The results of the first, the third, and the fourth objective are presented in this study. Objective
number five will not be discussed as this is pure technical work, and not related to scientific results.
The strategy for the second objective was formulated according to the spatial statistics proposed by
Cooley et al. (2007). Eventually, the idea was rejected due to the low spatial density of observational
data. Instead, the strategy was changed in order to assess a couple of additional questions that came
up during the work on the project. These questions, which are related to evaluating regional climate
simulations and generating physically meaningful predictors in statistical downscaling schemes, finally
led to the research conducted in chapters 3 and 4.

A description of state-of-the-art of climate modelling is given in the next chapter. The limitations
of climate models lead directly to the need for downscaling schemes (section 2.1). As the project’s
regions of interest are located in East China, major processes related to the climate system in East
Asia are reviewed (section 2.2). An overview of the statistical methods, that build the basis for the
developed techniques, is given in section 2.3.

In the dynamical downscaling chapter (chapter 3) the setup of the RCM simulations and within
these a first evaluation of the monsoon dynamics is given (section 3.1). Afterwards, a new method
is presented for evaluating the added value of the high resolution RCM simulations with respect

1PIs: Dr. Ohlwein, Prof. Dr. Simmer. The whole amount of work was split in two work packages. One post
dealing with statistical downscaling was filled by Thorsten Simon, who is the author of this manuscript. The second
post dealing with performing the dynamical downscaling was filled by Dr. Dinan Wang.
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to the climate models (section 3.2), that provided boundary conditions for the RCM simulations,
i.e. these are the runs that are downscaled dynamically. At the end of the chapter additional
analyses on the simulated precipitation climate in the high resolution RCM simulations (horizontal
resolution about 7 km) are presented (section 3.3). The considerations on statistical downscaling
begin with preliminary analyses of the observational data in the two catchments of interest (section
4.1). Afterwards, a statistical downscaling study is presented, in which the focus is set on the
selection of physically motivated predictors for local precipitation properties and their interpretation
(section 4.2). At the end of this manuscript, we conclude on how the presented approaches could be
extended, and what this implies for future research on both dynamical and statistical downscaling
(chapter 5).

Outline:

1: Introduction

2: Background
•Background of climate modeling
and motivation for downscaling

•East Asia and its Climate
•Statistical methods

3: Dynamical
downscaling

4: Statistical
downscaling

3.1: RCM simulations
Elements of a RCM set up

3.2: Added value of
RCM simulations

A newly developed tech-
nique for evaluating RCMs

3.3: Additional analysis

4.1: Preliminary analysis

4.2: Pattern-based downscaling
Selecting physically
motivated predictors

5: Conclusions
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Chapter 2

Background

2.1 Downscaling of Climate Data

Climate Modeling

There is a variety of different assessments to climate modeling. This leads to a hierarchy of models,
each of which seeking a trade-off between model simplicity and system complexity depending on its
own purpose. On the one end of the spectrum putting emphasis on model simplicity we find low-
dimensional models designed to gain a conceptual understanding of climate processes (e.g., Lorenz,
1963; Hasselmann, 1976; Saravanan and McWilliams, 1998). In the middle of the spectrum some
models with intermediate complexity can be found (e.g., Fraedrich et al., 1998; Dommenget and
Flöter, 2011). On the other end of the spectrum speaking about system complexity is a class of
coupled general circulation models (GCM) (a summary of current GCMs can be found in Meehl
et al., 2007; Taylor et al., 2012). These models couple the individual components of the climate
system, which are at least atmosphere1 and ocean2 (hydrosphere), but can also include cryosphere,
biosphere and lithosphere. This class of models is based on fundamental physics, i.e., the laws
of hydrodynamics and thermodynamics. Originally general circulation models built the base of
numerical weather forecasting, but also found their way into climate modeling in the end of the
1950s (Lynch, 2008).

Climate and Weather

In this light we would like to review definitions of weather and climate. By the term weather we
understand the complete – in space and variable space – state of the atmosphere. For weather
forecasting purposes the observed weather state at a certain time is used as initial condition for a
GCM simulation. This makes weather forecasting with GCMs, so-called numerical weather prediction
(NWP), an initial value problem. By climate we mean the probability density distribution (pdf) over
all potential states of the atmosphere, which describes the likelihood of a certain weather to occur.

1A stand-alone atmospheric general circulation model is also often called AGCM.
2A coupled atmosphere and ocean general circulation model is called AOGCM.
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2 BACKGROUND

Therefore, weather can be seen as a realization of a particular climate. In contrast to weather,
climate does not depend on the initial state, but on the boundary conditions, which are mainly the
strength of the radiative forcing, and the chemical composition of the atmosphere, and mechanical
properties of the Earth like rotations rate, land sea distribution, and land-use properties. In a climate
projection context a single GCM simulation also computes weather states, but these states have to
be interpreted as a possible realization of the underlying climate. To assess the pdf over all potential
weather states, i.e., the associated climate, an ensemble of GCM simulations has to be performed
(Tebaldi and Knutti, 2007). The GCM simulations are initialized with different conditions and might
use different GCMs (Taylor et al., 2012). An appropriate post-processing of the ensemble leads to
an estimate of the climate state (Min and Hense, 2006; Schölzel and Hense, 2011).

Co-operative climate modeling

Generating climate simulations is associated with high efforts on both the developing side and the
computational side. This is especially true in the light of ensemble generation. Consequentially, a
cooperation of climate scientists involved in climate modeling was formed to bundle different model
approaches and to co-organize experiments. The World Climate Research Programme (WCRP) set
up the Coupled Model Intercomparison Project (CMIP) for this purpose. Experiments in the current
phase 5 (CMIP5)3 are grouped into long-term on the one side and near-term experiments on the
other side (Taylor et al., 2012). Long-term experiments include simulations over a century or longer,
e.g. pre-industrial control run, historical runs (1850–2005) and future projections (2006–2100 or
longer). For the latter group concentration pathways of greenhouse-gases in the atmosphere serve as
boundary conditions for future climates. Near-term experiments concern decadal climate predictions.
Both hindcast and prediction runs are performed. Decadal predictions are no longer an isolated
boundary value problem, but initialization of the ocean state including sea ice by observations, i.e.
data-assimilation, has to be considered in order to gain a benefit over long-term future projections
(Taylor et al., 2012).

Climate change

The major motivation for climate modeling is the detection and attribution of climate change.
Therefore, a definition should be given at this point. The first two terms, Internal variability and
external changes are based on their physical background. Internal variability refers to variability
generated by the inherent chaotic behavior of the climate system (Lorenz, 1963), non-linearities
(Hoerling et al., 1997), or feedbacks between sub-systems (Saravanan and McWilliams, 1998).
External changes of the climate system are changes in the boundary conditions, i.e., changes of the
solar radiation or the chemical composition of the atmosphere. Besides these two terms there are
two other definitions occurring often in the discussions about climate change. These two definitions
indicate a cause of climate change. Natural variability is the opposite to anthropogenic climate

3The downscaling studies in Appendix A and B are based on models from CIMP3 (Meehl et al., 2007), which is
the phase previous to CIMP5.
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2.1. DOWNSCALING OF CLIMATE DATA

change. The first includes internal variability and external changes from natural sources, i.e., changes
of the solar radiation due to variability of sunspots, or a change of the composition of the atmosphere
by volcanic eruptions. The latter refers to man-made change, i.e. in greenhouse-gas concentration
and aerosols, or changes in land-use.

Limitations of GCMs

Technically, a GCM consists of a set of discretized differential equations, which is solved numerically.
As this integration is computationally demanding the resolution of a GCM is limited to approximately
several hundred km (Meehl et al., 2007; Taylor et al., 2012). Furthermore, the GCM output has
to be interpreted as an average over an area associated with the effective resolution of the model,
which is for numerical reasons in the order of 4 or grid boxes (Pielke Sr, 2013). In turn this leads to a
reduction of variance in comparison to local-scale values, that are experienced in nature. This is often
referred to as change of support in geostatistics (Wackernagel, 2010), and is the reason for several
limitations of GCMs. Local forcing, i.e., complex topography and land-surface characteristics, are
weakly represented. Furthermore, there is a lack of accuracy in the description of extreme events.
GCMs provide reliable information about climate at the global to continental-scale. In the fields
of climate impact assessment and development of adaptation strategies local-scale information are
often required. Therefore, it is essential to post-process the GCM output in order to receive a
quantification of climate at the regional to local-scale, which is called downscaling (Giorgi et al.,
2009). The field of downscaling is separated into two categories. On the one hand dynamical
downscaling involves circulation models that are limited to an area of interest. On the other hand in
statistical downscaling transfer functions linking large-scale to local-scale information are employed.
These two approaches are described in the following sections.

2.1.1 Dynamical Downscaling

By dynamical downscaling the integration of a limited area AGCM is meant, which is often referred
to the term regional climate model (RCM). At the lateral boundaries of the limited domain boundary
conditions for atmospheric variables have to be provided. These lateral boundary conditions (LBC)
are taken from a global AOGCM, in order to obtain a high-resolution version for the climate scenario
of the applied global model. This downscaling method is based on physics, that are included in the
dynamical core of the RCM. A RCM simulation is therefore determined by three components, i.e., its
dynamical core (COSMO-CLM (Rockel et al., 2008), WRF (Shamarock et al., 2008), REMO (Jacob
et al., 2012),...), its lateral boundary conditions (provided by a global model, cf. CIMP3 (Meehl
et al., 2007) or CIMP5 (Taylor et al., 2012)) and its numerical setting (resolution, domain, update
frequency of LBC, sponge zone setting). In the framework of estimating climate an assessment of the
associated uncertainties is only realizable by generating an ensemble of RCMs with equal numerical
settings, but either different physics, and/or different LBC, and/or different initial conditions. Of
course, the output of a single RCM simulation depends also on the initial conditions of the simulation,
but these initial conditions are assumed to be chosen randomly. Therefore, the effect of the initial
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2 BACKGROUND

conditions cancels out by the application of an ensemble of RCM simulations, where each member
is assumed to represent an equally likely realization of climate (Taylor et al., 2012).

The output of RCMs is physically consistent, which is the main advantage specific to the dy-
namical downscaling approach. In detail this means that the full multi-variate space of variables and
space is simulated, and therefore a comprehensive picture of co-variability within the model physics
is captured. A specific shortcoming of the dynamical downscaling approach is that is comes with
high computational costs, especially in an ensemble framework.

RCM simulations are often requested from scientist not based in climate sciences, but dealing
with the assessment of climate change impact, developing adaptation strategies, or applying the
RCM output as forcing for hydrological or biological models. The evaluation of the RCM or its
model physics cannot be assigned to the users, but the developing climate sciences are in charge of
this task. That is exactly the area to which sections 3.1, 3.2, and the corresponding Appendices A
and B are contributing to.

In section 3.1 first results of a set of RCM simulations are presented. The dynamical core
COSMO-CLM is adapted to an East Asia domain with a horizontal resolution of 50 km, and forced
with LBC from ECAHM5 20C3M, ECHAM5 A1B and ERA-40 re-analysis (Wang et al., 2013). The
study does not lead to a sufficient ensemble for climate assessment, but additional contributions of
regional modeling in East Asia (Sato and Xue, 2013) would be necessary to build up an ensemble.
The RCM simulations were performed on super-computers of the DKRZ. Mean temperature and
precipitation patterns were compared to gridded observations and strong biases in the precipitation
values were found. Furthermore, the ability of the model to reproduce atmospheric dynamics typical
for East Asia in the RCM output was shown. For the two monsoon systems the East Asian Summer
Monsoon (EASM) and the East Asian Winter Monsoon (EAWM) associated weather events are
illustrated. For the EASM an example for the propagation of a so-called South-West Vortex is shown.
Together with these cyclonic disturbances heavy precipitation events are likely to occur along the
Meiyu-belt, which is the major rain-belt in the EASM system. For the EAWM the development of a
cold surge event was shown. These cold air outbreaks from the stationary Siberian-Mongolian high
pressure system extend up to Southern China and cause very cold and dry weather conditions in the
region. Despite the strong precipitation biases, the instance that the monsoon dynamics are present
in the simulations point out the value of the results and the potential of the simulations for further
analyses.

In the above study it was revealed that EASM variability on the seasonal scale in the RCM output
is significantly correlated to EASM variability of the driving model. That means the variability was
taken over from the driving model through the lateral boundary conditions (LBC). The question
whether there is something like a cut-off frequency beyond which the RCM generates variability on
its own independently from its driving model motivated the research presented in Appendix B (Simon
et al., 2013b). A cross-spectral analysis was employed to evaluate the RCM simulation, i.e., COSMO-
CLM East Asia (cf. above), against a bi-linearly interpolated version of its driving counterpart
ECHAM5 20C3M run no.1 (anthropogenic and natural forcing). The resulting coherence pattern
in space are related to the predominant dynamics, i.e., monsoons and inter-tropical convergence
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2.1. DOWNSCALING OF CLIMATE DATA

zone (ITCZ), in the East Asia region. This study (Appendix B) contributes to the debate about
quantifying added value of RCM simulations, which is further discussed in section 3.2. Furthermore,
COSMO-CLM simulations with 7 km resolution for the two catchments of interest for the research
project were presented in this paper for the first time.

2.1.2 Statistical Downscaling

A transfer of information from larger to smaller scales can also be realized by statistics. Therefore
statistical relationships between large-scale predictors and local-scale predictands are developed and
applied to climate simulations. The climate simulation can either be global or regional. Even RCM
simulations often do not reach sufficient horizontal resolutions for further hydrological and biological
applications, or for impact studies and adaptation purposes. During the past three decades a
multiplicity of methods have been developed by statisticians, climate sciences and hydrologists. A
statistical downscaling always have to contain the following parts: a) Observations of the target
variables at the target locations. b) Climate simulations, in which observed large scale forcing
are employed, over the same period as the observations. This period has to extend sufficiently in
time to provide an adequate database divisible into training and verification period. c) Climate
simulations over a projection period. These simulations has to be based on the same GCM as
the simulations above to prevent errors due to biases between different GCM approaches. d) An
appropriate statistical method for developing the transfer function between large-scale predictors and
local-scale predictands.

On the one hand a specific drawback of statistical downscaling schemes is the requirement for
a strong observational database over at the target locations. This is often not the case in real
world problems, i.e., a remote region located in an arid climate zone. On the other hand given
appropriate data statistical downscaling leads to estimates of climate on the local-scale. Another
specific advantage of this downscaling category, is that it is easy to implement and computationally
feasible.

There is an abundance of statistical methods for downscaling purposes. Therefore a crucial
contribution of researchers with a background in atmospheric science is the development and in-
terpretation of predictors for variables that are poorly simulated by dynamical models. In this light
a study employing statistical downscaling is summarized in section 4.2. Daily precipitation obser-
vations, taken from rain gauges located in the Poyang catchment in China, are transformed to
dichotomous variable indicating the exceedance over a certain threshold. The predictors are ex-
tracted from re-analysis data, i.e., ERA-40, via different kinds of EOF analyses. A forward selection
scheme identifies the predictor suiting the target variable best in a logistic regression framework.
Although the EOF analysis provides an objective technique for a weather type classification, the
preferred predictor pattern could be associated with a weather phenomenon typical for the summer
monsoon season, i.e., South-West vortices. The focus of the study is set on delivering physically
interpretable predictors for local precipitation values (Simon et al., 2013a).
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2.2 East Asia and its Climate

There are two monsoon systems influencing the climate in East Asia. During summer time the East
Asian summer monsoon takes place. Its dynamics are described in the following section. Afterwards,
the most prominent feature of the East Asian winter monsoon is outlined.

2.2.1 East Asian Summer Monsoon

As the project is related to water management and extremes, the main focus was set on the East
Asian Summer Monsoon (EASM), that can be associated with strong and high impact rain events in
the regions of interest. The EASM is a mainly independent of the Indian summer monsoon (ISM),
though there are some interaction taking place between the two monsoon systems. In this section
important features of the EASM system are reviewed.

The phases of the EASM

The onset of the EASM is associated with the development of a cyclone over the Bay of Bengal
in early May. Along with the formation of this pressure system an acceleration of the low level
westerlies is initialized. In turn convective activity in both the spatial extend and its intensity
increases. Afterwards the seasonal march of the EASM can be separated into three quasi-stationary
periods and two abrupt northwards jumps in between these quasi-stationary periods. During the
first quasi-stationary period – in May – the center of the Monsoon system lies above the Indochina
peninsula and the Southern Chinese Sea (SCS). During the second phase – between mid June and
mid July – a rain belt is established over the Yangtze valley and extends further eastward to the
South of Japan. Afterwards the rain belt performs another jump to bring Monsoon weather to the
North of China and Korea in August Ding and Chan (2005).
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Figure 2.1: ERA 40 850 hPa wind field (left – arrows indicate direction, and colors indicate amplitude)
and 24h accumulated precipitation (right – values in mm) averaged from 12th May to 17th May for
the years from 1960 to 1999.

These phases are illustrated by the low level (850 hPa) wind fields and precipitation pattern
in ERA-40 (Uppala et al., 2005). Figure 2.1 shows the synoptic situation during the first quasi-
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stationary period occurring generally in early May and persist throughout the month. In the wind
field pattern two subsystems can be distinguish . Between 90◦–115◦E southwesterlies support the
moisture transport from the Bay of Bengal and the Southern Chinese Sea further to the North. East
of 125◦E appears the western bound of the subtropical high located over the western Pacific. The
anticyclonic system supports the transport of moist tropical air to the North. This is the time of
the pre-summer rain season over the Yangtze River basin (Wang, 2006). Consistent pattern are
revealed by the spatial distribution of mean precipitation. Strong monsoon-like rainfalls occur over
the Indochina peninsula and in Bangladesh. The rain system extends further to the southeast of
China, where the pre-summer rain season takes place.
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Figure 2.2: ERA 40 850 hPa wind field (left – arrows indicate direction, and colors indicate amplitude)
and 24h accumulated precipitation (right – values in mm) averaged from 17th June to 22th June for
the years from 1960 to 1999.

After this period the monsoon system performs an abrupt northward shift. This shift goes along
with a rapid northward movement of the ITCZ and the subtropical high over the western North
Pacific (Wang, 2006). Due to this shift the so-called Meiyu rain-belt is established over the Yangtze
valley (figure 2.2). This rain-belt extends to the North east and also covers parts of Korea and Japan,
where this synoptical feature is called Changma and Baiu, respectively. This phase persists from
mid June until mid July. The precipitation associated with the Meiyu follows a different distribution
than the precipitation during the pre-summer rain season. The rain events occur less frequent, but
they are of stronger intensity. These event are usually associated with meso-α scale disturbances,
i.e. South-West vortices, of the frontal system. A closer description of these disturbances is given in
chapter 4, which highlights the potential of EOF pattern to be applied as predictors for precipitation
properties at the local-scale in the Yangtze valley.

The third phase of the EASM takes place between mid July and mid August. The circulation
and the rainfall pattern have changed in a rapid manner (figure 2.3). The sub-tropical high in the
Western Pacific has moved to the North and the dominant Meiyu belt has dissolved. A rainfall
maximum is now located over North China. The strength of this phase is an important factor for the
water management in this region, as it determines the amount of water that reaches the northern
part of China, which is very dry throughout the rest of the year. A strong EASM is associated
with the extension of this wind and precipitation system to Northern China. Thus a strong EASM
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Figure 2.3: ERA 40 850 hPa wind field (left – arrows indicate direction, and colors indicate amplitude)
and 24h accumulated precipitation (right – values in mm) averaged from 29th July to 3rd August
for the years from 1960 to 1999.

transports the moisture to the very North of China causing a summer with a large amount of rain.
In contrast a weak EASM does not develop the wind systems in the same way, but the precipitation
zone remains longer above the Yangtze valley. This leads to years with stronger than normal rainfalls
in this region.

Teleconnections

The El Niño Southern Oscillation is the dominant climate variability of the coupled atmosphere-
ocean system in the Pacific region. The quasi-periodic warming of the central and eastern Pacific
Ocean affects the atmosphere of the western part of the Pacific by its influence on the Walker
circulation (Bjerknes, 1969). There is empirical evidence for a link between strong EASM events
and preceding El-Niño winters. In contrast, a relation between preceding La-Niña events and weaker
than normal EASM seasons is not supported by the data4. Hence, the topic is well discussed by
scientists focusing on the EASM (Wang et al., 2000; Chang et al., 2000; Wang, 2002).

An analysis of the six major El Niño events in the second half of the 20th century suggests a
possible physical explanation for the teleconnection between ENSO and EASM (Wang et al., 2000).
A positive anomaly of the western North Pacific high pressure system (WNPH) is associated with the
warming over the central and eastern Pacific during winter. This link is established by the so-called
Pacific-East Asian teleconnection, which is a wave pattern visible in both the vorticity anomalies and
SST anomalies over the western and central Pacific. At first, this teleconnection leads to a weakening
of the East Asian winter monsoon (cf. below), but it also enhances the likelihood of a stronger than
normal EASM when the anti-cyclonic anomaly of the WNPH persists until the following summer,
i.e. EASM season (Wang et al., 2000).

4Tested with data from 1958 to 2002. The Niño 3.4 index averaged over boreal winter (December to February)
was compared to the seasonal (June to August) EASM index suggested by Wang and Fan (1999) computed from the
ERA-40 dataset. El Niño and La Niña events were identified for the Niño 3.4 index exceeding 0.5 and falling below
−0.5, respectively. A t-test statistic was applied supporting the relationship between preceding El-Niño winters and
strong EASM seasons at a significance level of 1%.
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ENSO is not the only phenomenon influencing the EASM, but snow depth and heating processes
of the Tibetan Plateau are also a key factor (Barnett et al., 1989; Qian et al., 2003; Wu and Qian,
2003). An analysis of observational data of both snow measurements over the Tibetan Plateau and
rain gauges spread over East China reveals the relations between these two regions. If the snow depth
over the eastern Tibetan Plateau is deeper than normal, the spatial precipitation anomaly pattern
over East China is typical for a weak EASM season. The summer precipitation in the Yellow River
basin and in the northern part of China is less than normal. In contrast, the precipitation anomaly
along the Yangtze River basin is positive (Qian et al., 2003). With respect to Barnett et al. (1989)
it is suggested than the positive snow depth anomaly over the Tibetan Plateau is memorized in the
land-atmosphere system by an enhanced amount of soil-moisture that is available throughout the
year. The importance of the Tibetan Plateau for heavy precipitation events over the Yangtze valley
is further discussed in chapter 4, where the generation of meso-α-scale disturbances over the Plateau
and their progression along the Yangtze valley is described. The occurrence of these disturbances
rises the probability for local heavy rainfall events (Simon et al., 2013a).

Climate Change associated with the EASM

Observations for the second half of the 20th century show a clear change pattern of annual mean
precipitation, which is often referred to Flooding of the South and drying of the North. While,
e.g., Southern China, where the Yangtze catchment is located, experienced an increase in annual
mean precipitation of about 5% per decade, the Northeast of China experienced a decrease in mean
annual precipitation of about 5% (Zhai et al., 2005). This change pattern is strongest for the
summer season, i.e. the EASM season, with estimated increases of 10%–15% over the Yangtze
valley (Wang and Zhou, 2005).

There is a well approved reasoning to this phenomenon: In both regions precipitation during the
summer monsoon season contributes the major part of the annual precipitation amount (Zhai et al.,
2005). The dynamics of the EASM weakened abruptly in late 1970s (Wang and Zhou, 2005; Li
et al., 2010). Subsequently the EASM did not extent to the very north of China in late summer as
before, but lingers over the Yangtze valley instead. This leads to the pattern described above: The
stabilized EASM over the Yangtze valley brings more precipitation to the South while the North gets
less rain compared to the period before.

The reason for the shift in EASM dynamics remains an open question. There are indications
that this shift is part of the internal variability of the general circulation. The EASM is characterized
by strong inter annual to decadal variability that might supersede the long-term climate change in
the second half of the 20th century (Li et al., 2010).

2.2.2 East Asian Winter Monsoon

As the East Asian winter monsoon (EAWM), which occurs normally between November and March
(Wang, 2006), only plays a minor role in the following chapters, only a brief overview should be given
here. In general, the EAWM reverses the circulation of the EASM, as prevailing surface winds north
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of the equator are now blowing from the Northeast. These northeasterlies are supported by the trade
wind in the tropics. Over the mid-latitudes these northeasterlies are associated with the anticyclonic
circulation of the quasi-stationary Siberian-Mongolian high (SMH), which is a pronounced cold-core
high pressure system. The most prominent weather phenomenon, which is related to the EAWM, is
an intense outbreak of cold air from the center of the SMH (Zhang et al., 1997). These cold air
outbreaks, called cold surge in literature, extend to the South reaching the tropics within several
days. In chapter 2 an example of a cold surge event, as it was modeled by the RCM COSMO-CLM
with 50 km resolution, is presented. The example illustrates the ability of the RCM to reproduce
the EAWM dynamics (Wang et al., 2013).

14



2.3. STATISTICAL METHODS

2.3 Statistical Methods

This chapter outlines statistical methods, which are applied in the following chapters. The statistics
are assigned to three different categories: Parametric Modeling, Model Verification, and Analytic
tools.

2.3.1 Parametric Modeling

Parametric modeling is based on an assumption of the distribution of the data, that has to be
investigated. Following this assumption a parametric distribution can be selected, and the parameters
can be fitted by numerical optimization. Here, a description of a) linear regression, which assumes
a normal distribution of the residuals, b) generalized linear models, of which logistic regression is
presented as a special case, and c) the generalized extreme value distribution (GEV), for modeling
block maxima is given. For each item a test statistic is presented, allowing decisions whether to
reject a reference model, or null model, in favor of an alternative model.

Linear Regression

The purpose of linear regression is to find a linear relationship between the predictand variable y =
(y1, y2, . . . , ym)T , or dependent variable, and one or more predictor variables x∗,1 =
(x1,1, x2,1, . . . , xm,1)T , or independent variables:

y = Xβ + ε, with X =




x1,0 x1,1 · · · x1,n
x2,0 x2,1 · · · x2,n
... ... . . . ...

xm,0 xm,1 · · · xm,n



. (2.1)

X is called design matrix, which bundles all n predictors, and each predictor fills one column.
β = (β0, β1, . . . , βn)T is the parameter vector. For most problems it is convenient to choose
x∗,0 = (1, 1, . . . , 1)T . In turn the zero parameter β0 works as an intercept. ε = (ε1, ε2, . . . , εm)T

contains the residual information, which are not covered by the linear model ŷ = Xβ. The single
residuals have to be independent and normally distributed with zero mean and constant variance σ2,
εi ∼ N (0, σ2), in order to allow correct inference from the model. The residuals ε correspond only
to uncertainties associated with the deficit of the model to represent the predictand y. Thus, linear
regression is applicable when the predictors x∗,1 can be assumed to be free of errors, e.g. a time of
a measurement.

Estimating the parameter β is straightforward via least-squares fit,

β = arg min
m∑

i=1
(yi − ŷi)2 = arg min

m∑

i=1
ε2i , (2.2)

which minimizes the variance σ2. This estimator is equivalent to the maximum likelihood estimator
(MLE).
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Suppose that there are two models on hand M0 and M1 for representing a time series y =
(y1, y2, . . . , ym)T generated from a random variable Y . M1 is characterized by the parameters β1,
and M0 is characterized by a subset of these parameters β0 ⊂ β1. A decision has to be made,
whether it is worth rejecting M0 in favor of M1. Given the assumption of normally distributed
residuals, which can be described by their variance σ2 only, it is reasonable to base the decision for
rejectingM0 in favor ofM1 on the ability ofM1 to reduce the variance of the residuals σ2

1 < σ2
0.

For a simple linear regression, i.e. β1 = (β1
0 , β

1
1)T and β0 = (β0

0), this decision can be assessed by
the F -ratio.

The F -ratio is the ratio of the mean squared regression

MSR =
m∑

i=1
(ŷi − ȳ)2, (2.3)

where ȳ is the mean of the predictand, and the mean squared error

MSE = 1
m− 2

m∑

i=1
(yi − ŷi)2, (2.4)

F = MSR/MSE. F follows a Fisher-distribution with one, and m− 2 degrees of freedom. Thus,
if F is located in the upper p% of the corresponding Fisher-distribution, M0 can be rejected in
favor of M1 at the significance level p. Significance is the probability of wrongly rejecting a true
null model in favor of an alternative model.

Generalized Linear Model

Linear regression can be grouped into generalized linear models (GLM). After all, assumptions
about the distribution have to be made. Generalized means that there is a common likelihood for
representing different distributions in the exponential family,

f(yi|θ, φ) = exp
(
yiθ − b(θ)
a(φ) + c(yi, θ)

)
. (2.5)

yi is one element of the vector y = (y1, y2, . . . , ym)T , which is assumed to be a realization of
a random variable Y . a(φ), b(θ) and c(yi, θ) are specific functions corresponding to the specific
distribution in the exponential family, and θ and φ are parameters associated with the distribution.
Expectation and variance of Y in this generalized framework are

E(Y ) = µ = ∂b(θ)
∂θ

, and V AR(Y ) = a(φ)∂
2b(θ)
∂θ2 , (2.6)

respectively. The predictors, or co-variates, build the linear predictor

η = Xβ, (2.7)

which is linked to the expectation by the link function g. Every distribution in the exponential family
has a canonical, or natural, link function. Its inverse is called the response function h = g−1:
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ηi = g(µi) = Xiβ, and µi = h(ηi) = h(Xiβ). (2.8)

For instance, the normal distribution Y ∼ N (µ, σ2) can expressed in a generalized version by
substituting,

a(φ) = φ, b(θ) = θ2

2 , and c(yi, φ) = −1
2

(
y2
i

φ
+ log(2πφ)

)
, (2.9)

with θ = µ and φ = σ2 into equation (2.5). In this case the canonical link function is the identity
function, thus µ = Xβ, and the variance σ2 is constant. This leads to the linear regression described
above.

When the predictand variable follows a Bernoulli distribution Y ∼ Be = py(1 − p)1−y, and
Y ∈ {y = 0, y = 1}, substituting the specific functions

a(φ) = 1, b(θ) = log(1 + exp θ), and c(yi, φ) = 0, (2.10)

with θ = log(p/1− p) into equation (2.5) yields

fBernoulli(yi|p) = exp
(
yi log

(
p

1− p

)
+ log(1− p)

)
. (2.11)

In this case the expectation E(Y ) = p, and the logit function is the canonical link function:

g(p) = log
(

p

1− p

)
, and g−1(η) = h(η) = 1

1 + e−η
. (2.12)

Estimating the parameters of the linear predictor (equation 2.7) is solved by maximizing the
log-likelihood

l(y|θ) =
m∑

i=1

yiθi − b(θi)
a(θ) + c(yi, θi). (2.13)

It is possible assessing whether it is worth rejecting a reference model, or null model, M0 in
favor of an alternative model by likelihood-ratio test. For the likelihood-ratio test a test statistic
summarizing the difference of the log-likelihoods corresponding to M0 and M1, and thus the
logarithm of the ratio of the likelihoods,

D = 2 (l(M0)− l(M1)) , (2.14)

is introduced, which is denoted as D as it is often call deviance. l(M0) and l(M1) refer to the
log-likelihood of the null model and alternative model, respectively. Assume that M1 contains n
parameters, and M0 contains n − k parameters. It it worthwhile rejecting M0 in favor of M1 at
significance level p, if D < qp, where qp is the 1− p quantile of the χ2

k distribution (McCullagh and
Nelder, 1989).
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Extreme Value Theory

Not all distributions can be included in the framework of generalized linear models. For instance,
the generalized extreme value distribution (GEV), which is based on extreme value theory (EVT)
(Fisher and Tippett, 1928). Assume y = (y1, y2, . . . , ym) is a sequence of independent realizations
of the random variable Y with the marginal distribution F . The sequence y is now split into blocks
of the length n, and Mn = max(y1, y2, . . . , yn) represents a process of the maxima of the single
blocks. If one element of the sequence undershoots the threshold z with the probability p = F (z).
Under the assumption of independent realizations the probability that all n elements are less than z
is pn, which is equal to the probability that the maximum Mn < z,

P (Mn ≤ z) = (F (z))n . (2.15)

In practice the marginal distribution F is often unknown, or a parametric approach for the
whole distribution lacks precision at the tails. Motivation of EVT is to give a distribution describing
(F (z))n, without further assumptions about F . For the block-maxima approach EVT according to
Fisher and Tippett (1928) leads to

G(z) =





exp
{
−
[
1 + ξ

(
z−µ
σ

)]−1/ξ
}

ξ 6= 0

exp
[
− exp

{
−
(
z−µ
σ

)}]
ξ = 0,

(2.16)

which is the cumulative distribution function (cdf) of the so-called the generalized extreme value
distribution (GEV), and is described by three parameters: the location parameter µ, the scale
parameter σ, and the shape parameter ξ (Coles, 2001). z = (z1, z2, . . . , zl) is a sequence of
realizations of the random variable Z describing the block maxima. The corresponding probability
density function (pdf), is

fGEV (zi|µ, σ, ξ) =





1
σ

[
1 + ξ

(
zi−µ
σ

)]−(1+1/ξ)
exp

{
−
[
1 + ξ

(
zi−µ
σ

)]−1/ξ
}

ξ 6= 0
1
σ exp

{
−
(
zi−µ
σ

)}
exp

[
− exp

{
−
(
zi−µ
σ

)}]
ξ = 0.

(2.17)

The shape parameter ξ plays a special role, as it defines the character of the distribution. For
ξ < 0, ξ = 0, and ξ > 0 correspond to the Weibull, Gumbel, and Fréchet families, respectively. The
Weibull has an upper bound, the Gumbel has an exponentially decreasing tail, and the Fréchet’s tail
decays as a power function. The roles of the three parameters is illustrated in figure (2.4a–c).

In practice when the chosen blocks correspond to a certain time period, e.g. one year, one season
or one day, it is convenient to express the distribution in terms of extreme quantiles obtained by
setting the cdf (equation 2.16) equal to 1− p and inverting the equation,

zp =




µ− σ

ξ

[
1− {− log (1− p)}−ξ

]
ξ 6= 0

µ− σ log {− log (1− p)} ξ = 0.
(2.18)
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Figure 2.4: (a)–(c) The roles of GEV’s parameter, all plots show probability density functions (pdf)
with the parameters θ = (µ, σ, ξ). (a) Changes in the location parameter µ. Black: θ = (0, 1, 0),
Blue: θ = (1, 1, 0), and Yellow: θ = (2, 1, 0). (b) Changes in the scale parameter σ. Black:
θ = (0, 1, 0), Blue: θ = (0, .5, 0), and Yellow: θ = (0, 2, 0). (c) Changes in the shape parameter
ξ. Black: θ = (0, 1, 0), Blue: θ = (0, 1,−.3), and Yellow: θ = (0, 1, .3). (d) Beta(6, 9) as a prior
density for the shape parameter ξ, the maximum is at ξ = 0.1.

zp is called the return level corresponding to the return period p−1. zp is exceeded by the maximum
of each block with probability p (Coles, 2001).

Estimation of the parameters can be solved by maximum likelihood estimation (MLE), with the
likelihood

L(z|µ, σ, ξ) =
l∏

i=1
fGEV (zi|µ, σ, ξ). (2.19)

However, MLE can lead to poor estimates of the parameters, in particular of the shape parameter
ξ, when the sample size is small. In order to provide better estimates for ξ with respect to geophysical
and environmental applications, Martins and Stedinger (2000) suggested a beta distribution as a
prior density,

π(ξ) = Beta(α, β) = (0.5− ξ)α−1(0.5 + ξ)β−1

B(α, β) , with α = 6, β = 9, (2.20)

for the shape parameter ξ (figure 2.4d). α and β are the parameters of the beta distribution, and
B(α, β) = Γ(a)Γ(b)/Γ(a, b) is the Beta function, and Γ is the Gamma function. Multiplying the
GEV’s pdf fGEV (zi|µ, σ, ξ), which is a conditional probability here, with the prior density π(ξ) yields
the generalized likelihood function,

GL(z|µ, σ, ξ) =
l∏

i=1
fGEV (zi|µ, σ, ξ)π(ξ), (2.21)

which can be employed as an estimator for the parameters of the GEV. With the parameter of the
beta distribution set to α = 6 and β = 9 the maximum of the prior is located at ξ = 0.1. Thus, the
generalized likelihood (equation 2.21) slightly favors a Fréchet type of the distribution.
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The likelihood-ratio test, which was introduced for GLM, is also valid for significance tests of
linear models of the GEV parameters, i.e.

M0 : µ = µ0, σ = σ0, ξ = ξ0, vs. M1 : µ = β0 + β1x, σ = σ1, ξ = ξ1, (2.22)

where the null model M0 assumes all three parameters to be constant, and the alternative model
M1 includes a linear component for the location parameter.

In order to assess uncertainties associated with the estimated return levels the profile log-
likelihood technique can be employed. Solving the return level equation (2.18) for µ, and sub-
stituting µ into the log-likelihood (log of equation 2.19) or generalized log-likelihood (log of equa-
tion 2.21) yields re-parameterized versions of the log-likelihoods, now depending on (zp, σ, ξ). This
re-parameterized log-likelihood can be optimized with respect to (σ, ξ) for a range of values for a
certain return level, e.g. 10-year return level, which results in a profile of the log-likelihood at zp.
Now we can adjust the deviance formula (equation 2.14),

D = 2 (l(zp, σ, ξ)− l(zp = const., σ, ξ)) ∼ χ2
1, (2.23)

where l(zp, σ, ξ) is the likelihood optimized with respect to (zp, σ, ξ), and l(zp = const., σ, ξ) is the
likelihood with zp hold fixed and optimized with respect to (σ, ξ). Thus, confα = {zp : D ≤ qα},
where qα is the (1 − α) quantile of the χ2

1 distribution, yields to the (1 − α) × 100% confidence
interval (Coles, 2001).

2.3.2 Model Verification

This section deals with model verification. First, scoring rules, which are functions for assessing a
model’s quality, are described. Afterwards, the principles of cross-validation, which is a method to
split the complete dataset into a subset for model training and a subset for model verification, are
outlined.

Scoring Rules

Assessing the quality of a forecast is the main purpose of scoring rules. Thus, scoring rules are
functions depending on the prediction and on the corresponding observation. In the following we
denote an unspecified scoring rule as S(p,y), where p = {p1, p2, . . . , pn} and y = {y1, y2, . . . , yn}
denote the forecasts and the observations, respectively. With respect to the applications of scoring
rules in further chapters, a restriction of the sample space Ω of p and y is made. As scoring rules are
mainly applied to assess the quality of probabilistic forecasts of dichotomous events (cf. Simon et al.,
2013a), we define the sample space Ω = [0, 1]n, and p,y ∈ Ω. However, the single observations yi
can only take the values 0 and 1, and thus y describes {0, 1}n ⊂ Ω which is a subspace of Ω.

Following the definition given by Gneiting and Raftery (2007) a scoring rule S is attributed
proper, if

S(y,y) ≤ S(p,y), ∀ p,y ∈ Ω. (2.24)
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Furthermore, a scoring rule S is attributed strictly proper, if S(y,y) = S(p,y) holds if and only if
p = y. In practice often averaged scores,

S = 1
n

n∑

k=1
S(pk, yk), (2.25)

are calculated to assess the quality of a forecast. Scores calculated for different forecasts schemes
are comparable is they are based on the same forecast period, and thus on the same forecasts. The
concept of scores can be extended to skill scores,

SS = Sfcst − SrefSperf − Sref
. (2.26)

Here Sfcst refers to the forecaster’s score, which has to be evaluated. Sperf is the score of a perfect
forecast, within the framework of a probabilistic forecast for dichotomous events the perfect forecast
would predict 100% in advance of an event, and 0% when no event takes place. Sref is the score of
a reference forecast, which can be a mean value of the binary variable over a reference period, e.g.
climatological forecast. Another often employed reference forecast is the persistence forecast, e.g.
it assumes that today’s observation will be repeated tomorrow. By design the skill score reaches
its maximum 1, if Sfcst = Sperf , which is valid only for p = y in the framework of strictly proper
scoring rules. If Sfcst = Sref , the numerator of equation (2.26) diminishes, and if Sfcst < Sref it
gets negative, i.e. SS ≤ 0 means no benefit of using the analyzed forecast instead of the reference
forecast.

The Brier Score... Probably the most famous and most often applied scoring rule for proba-
bilistic forecasts of dichotomous events is the averaged Brier score,

BS(p,y) = 1
n

n∑

k=1
(pk − yk)2, (2.27)

which was introduced by Brier (1950), and is strictly proper. Single probabilistic predictions con-
tribute to the averaged Brier score via the score functions,

BS(pk, yk = 1) = (pk − 1)2 and BS(pk, yk = 0) = p2
k, (2.28)

depending on whether the event occurred yk = 1, or not yk = 0. In a perfect forecast system
p equals y, and thus in every single case the corresponding scoring rule diminishes, leading to an
averaged Brier score BS(pperf ,y) = 0, which is the minimum of the Brier Score. This means the
Brier score is negative orientated, where smaller values of the score correspond to better forecasts.
Substituting equation 2.27 into equation 2.26, and without further specifications of the reference
forecast the Brier skill score reduces to

BSS = 1− BS(pfcst,y)
BS(pref ,y) . (2.29)
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...and its decomposition In order to assess different attributes of a forecast’s quality, scores
can be decomposed. For the Brier score the calibration-refinement factorization (CRF) is most
common (Murphy and Winkler, 1992). The CRF is based on factoring the joint distribution P (p, y)
of forecasts and observations,

P (p, y) = P (y|p)P (p), (2.30)

where P (y|p) denotes the conditional probability of observations given the forecast, and P (p) denotes
the marginal probability of the forecasts. Next to the CRF is it also possible to decompose the joint
distribution conditioned on the observation P (p, y) = P (p|y)P (y), which refers to as likelihood-
baserate factorization, and will not be further discussed here.

In order to decompose the BS via CRF, the sample space of a single forecast has to be discretized,
e.g. pi ∈ {0.05, 0.15, . . . , 0.95}, and the number of discrete values will be denoted as I, e.g. I = 10.
Furthermore, the relative frequency of a discrete forecast value is P (pi) = Ni/n, where Ni is the
number of forecasts assigned to a discrete forecast values pi. The sample space of a single observation
yj ∈ {0, 1} is discrete by nature with two levels J = 2. Now, the BS can be rewritten as:

BS =
I∑

i=1

J∑

j=1
P (pi, yj)(pi − yj)2. (2.31)

Here, the values of (pi − yj)2 are pre-defined by the discretization, and thus all information is
now comprised in the joint probability P (pi, yj). Note, that due to the discretization the equality
pi = 1/Ni

∑
k|pi

pk is not necessarily fulfilled. Algebra yields

BS = 1
n

I∑

i=1
Ni(pi − ȳpi)2 − 1

n

I∑

i=1
Ni(ȳpi − ȳ)2 + ȳ(1− ȳ), (2.32)

with the conditional mean ȳpi = ∑J
j=1 P (yj |pi)yj and the unconditioned mean of the observations

ȳ = ∑n
k=1 yk = ∑I

i=1 P (pi)ypi . The first term of equation (2.32) is called reliability, or conditional
bias, it summarizes the forecast performance conditioned on a forecast. Smaller values of the
reliability are associated with better forecasts. The second term is often reffered to as resolution, it
gives a measure of the quadratic deviation between the conditional observation ȳpi and unconditional
observation ȳ. Higher resolution values are associated with better forecasts. The third term, the
uncertainty, summarizes the marginal distribution of the observations, and is independent of the
forecast (Murphy, 1996).

To visualize the CRF the reliability diagram can be used. The x-axis of the reliability diagram
contains the discrete forecast values pi, the y-axis shows the mean conditional observations ȳpi

given a the discrete forecast values. A forecast is perfectly calibrated, if the conditional probability
of events equals the forecast value, i.e. the reliability diagram is a perfect diagonal. However,
the reliability diagram is only presenting the full joint probability distribution, when it also reveals
the relative frequency of the forecasts P (pi) = Ni/n, i.e. the refinement curve. A forecast is
perfectly refined, or confident, when only probability values of 100% and 0% are predicted. Thus
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2.3. STATISTICAL METHODS

the refinement curve shows an attribute of the forecast only. The calibration is a joint attribute of
forecast and observation (Murphy, 1996).

The Winkler Score By design the Brier score is symmetric, which means that the forecast p
given the occurrence of an event is rewarded in the same way as the forecast 1−p given no event (cf.
equation 2.28). In addition to the Brier score, the Winkler score is introduced. It’s score functions
are based on the construction rule:

WS(p, 1) = S(p, 1)− S(c, 1)
T (c, p) , WS(p, 0) = S(p, 0)− S(c, 0)

T (c, p) , (2.33)

where S is the score function of a symmetric score. T (c, p) = S(0, 0) − S(c, 0) if p ≤ c, and
T (c, p) = S(1, 1) − S(c, 1) if p > c. c works as reference probability. By construction the Winkler
score reaches a maximum at 1 for a perfect forecast p = y, gets 0 for p = c, and is negative for
forecast worse than the reference. This scaling equals the scaling of skill scores. Thus the Winkler
score offers an alternative to skill scores. If S is a proper scoring rule, it turns out that WS is also a
proper scoring rule (Gneiting and Raftery, 2007). Substituting the score functions of the Brier score
(equation 2.28) into the construction rule for the Winkler score (equation 2.33) yields

WSBS(p, 1) = (p− 1)2 − (c− 1)2

−(c−H(p− c))2 , WSBS(p, 0) = p2 − c2

−(c−H(p− c))2 , (2.34)

with the Heaviside step function H(p − c), which is zero for p ≤ c, and one for p > c. Figure 2.5
illustrates the symmetric and asymmetric rewarding of the Brier and the Winkler score, respectively.
Note, the Brier score is negative orientated, i.e. higher values mean penalty, and the Winkler score
is positive orientated, i.e. higher values mean benefit.
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Figure 2.5: Score functions of the Brier score (left) and the Winkler score with c = 0.25 (right),
solid lines and dashed lines correspond to S(p, 1) and S(p, 0), respectively.

Cross-validation

Cross-validation is a simple way to split the whole data into a dependent and independent subset
of the joint distribution of forecast and observation. Cross-validation is especially applicable when
data availability is limited, i.e. when not enough data is on hand to provide one sufficient subset
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subset1 subset2 subset3 subset4

verification training

Figure 2.6: A 4-fold cross-validation: Yellow indicates verification subsets, blue training subsets.
Each line shows one of four training-and-verification sets, in which three subsets provide training
data and one subset verification data.

for training T and one for verification V. In principle a k-fold cross-validation splits the data into
k equally sized subsets, k − 1 of which is assigned to training and the remaining subset is for
verification. In total a k-fold cross validation offers k training-and-verification sets. For instance
figure (2.6) illustrates a 4-fold cross-validation.

4-fold is a typical choice for cross-validation, but also 5-fold or 10-fold are typical and recom-
mended (Hastie et al., 2008). Given the problem on hand the k might be adjusted. For instance
k can be choosen in a way, that the resulting subsets cover temporal scales with non-diminishing
auto-correlations: Simon et al. (2013a) applied a 4-fold cross-validation resulting in 10 yrs long
subset in order to account for auto-correlations implied by ENSO.

Employing the Brier score (equation 2.27) within a 4-fold cross-validation yields

BSCV =
K=4∑

k=1

∑

l∈Vk

(pl − yl)2. (2.35)

The first sum in equation (2.35) runs over the four different training-and-verification sets, i.e. the
rows in figure 2.6, and the second sum covers the corresponding verification subset Vk. pl is the
forecast, trained on Tk, for the verification subset Vk.

2.3.3 Analytic Tools

This section summarizes further statistical methods, that were applied as analytic tools in the
following chapters. First empirical orthogonal functions (EOF) are described, and second spectral
analysis is explained. However, the broad spectrum of applications of these methods is not restricted
on pure analytics.

Empirical Orthogonal Functions

As mentioned above the EOF analysis is not only a multi-variate analytic tool. As datasets in climate
science reveal strong auto-correlations among the variables, the EOF analysis was applied by Lorenz
(1956) to reduce the dimensionality of a dataset by accounting for these auto-correlations. The EOF
analysis can be thought of as a rotation, or linear transformation, of a dataset onto its principal
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components, thus the EOF analysis is often refer to as principal component analysis (PCA). Within
the new rotated system, a major part of the variability is focused on a few modes. In doing so the
dimensionality of the dataset is reduced to these few modes. The name says it, the single EOF
modes are orthogonal to each other. Though it is common to draw physical meanings out of EOFs,
it is important to be aware of pitfalls, e.g. generating artificial modes, coming along with the EOF
analysis (Dommenget and Latif, 2002).

The mathematical basis of the EOF analysis is as follows: Assume X is a k ×m data matrix,
with spacial dimension k and temporal dimension m. Further assume that k < m. The k × k

co-variance matrix of X will be denoted as Σ. Solving the eigenvalue problem,

ΣE = EΛ, (2.36)

yields the k× k matrix E, where each column represents an EOF Ei. The EOFs are orthonormal to
each other, EET = Ik. Λ is a k × k diagonal matrix containing the corresponding eigenvalues λi
on the main diagonal. The eigenvalues leads directly to the explained variance fi = λi/

∑k
j=1 λj of

the single mode. Finally, the temporal evolution, or amplitudes A, of the modes can be calculated
by

A = Λ−1/2ETD. (2.37)

The ith row of the k×m matrix A correspond to the temporal evolution of the spatial pattern Ei.
This decomposition of the data leads to unit standard deviation of the amplitudes, 1

m−1AAT = Ik.
In general, the mean state and the elements of the co-variance matrix can be estimated via standard
estimators in most applications.

The construction of EOFs leads to k modes. A truncation criterion for the modes sorted by
decreasing explained variances is given by Bretherton et al. (1999),

Neff =

(∑k
i=1 λi

)2

∑k
i=1 λ

2
i

=
(

k∑

i=1
f2
i

)−1

. (2.38)

Neff is an estimate for the effective number of spatial degrees of freedom associated with the
time-varying field X. Thus, it is reasonable to keep the Neff leading modes only.

There are several variation of the EOF decomposition, e.g. the Varimax rotation (Kaiser, 1958)
takes J leading EOFs as a subset the original k EOFs, and seeks a new basis by maximizing the
so-called simplicity of the spatial patterns,

EV ARIMAX = arg max




J∑

j=1




k∑

i=1
e4
i,j −

1
k

(
k∑

i=1
e2
i,j ,

)2


 . (2.39)

where ei,j denotes the element of EV ARIMAX in row i and column j. This maximizes if only a few
space points have large amplitudes. The outcome of this optimization problem is a basis containing
more compact or localized patterns, i.e. high order multi poles are suppressed, than found by EOF
analysis.
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Cross-spectral Analysis

Before introducing cross-spectra, a definition of the uni-variate spectrum Γxx of the random process
X should be given,

Γxx(ω) = F {γxx} (ω) =
∞∑

τ=−∞
γxx(τ)e−2πiτω, ∀ ω ∈ [−0.5, 0.5], (2.40)

where F is the Fourier transform, and γxx is the auto-covariance function of X. The spectrum is
real-valued and symmetric, i.e. Γ(−ω) = Γ(ω). The cross-spectrum of the random processes X
and Y ,

Γxy(ω) = F {γxy} (ω) =
∞∑

τ=−∞
γxy(τ)e−2πiτω, ∀ ω ∈ [−0.5, 0.5], (2.41)

is the Fourier transform of the cross-covariance function γxy of X and Y . The cross-spectrum is
complex-valued,

Γxy(ω) = Λxy(ω) + iΨxy(ω) = Axy(ω)eiΦxy(ω), (2.42)

with the real part Λxy and the imaginary part Ψxy in Cartesian coordinates, and with the amplitude
spectrum Axy and the phase spectrum Φxy in polar coordinates. The latter can also be expressed
in dimensionless units,

κxy =
A2
xy(ω)

Γ(ω)Γyy(ω) , (2.43)

where κxy is denoted as coherency spectrum, or squared coherency spectrum. The coherency can
be thought of as the squared correlation depending on the frequency (von Storch and Zwiers, 2002).

Estimators for the spectrum and cross-spectrum are based on the periodogram and cross pe-
riodogram, respectively. The periodogram of the time series x = {x1, x2, . . . , xT }, and the cross
periodogram of the time series x and y = {y1, y2, . . . , yT } are defined by,

Ixx,j = T

4
(
a2
x,j + b2x,j

)
, and Ixy,j = T

4 ((ax,j + ibx,j)(ay,j − iby,j)) , (2.44)

where ax,j and bx,j denote the coefficients of a discrete Fourier transform of the time series x,

ax,j = 2
T

T∑

t=1
xt cos(2πωjt) and bx,j = 2

T

T∑

t=1
xt sin(2πωjt). (2.45)

Analog the Fourier transform coefficients of the time series y = {y1, y2, . . . , yT } are defined as
ay,j and by,j . However, periodograms are not good estimators for the spectra. In particular, the
periodogram and the cross periodogram lead to unity at all frequencies for the estimated coherency
spectrum,

κ̂xy(ωj) = |Ixy,j |2
Ixx,jIyy,j

. (2.46)
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Thus, smoothing techniques for the periodograms have to be applied. In the following the Daniell
Spectral Estimator and the Chunk Spectral Estimator are introduced (von Storch and Zwiers, 2002).

The Daniell Spectral Estimator is a moving average applied over the values of the cross peri-
odogram,

Γ̂xy(ωj) = 1
n

j+(n+1)/2∑

k=j−(n−1)/2
Ixy,k, (2.47)

or the periodogram, which can be calculated in an analog way. n is an odd integer, and defines the
window, on which smoothing is applied. For the assessment of confidence intervals, it is important
to know the equivalent degrees of freedom r of a spectral estimator. In case of the Daniell estimator
r is determined by r = 2n.

For the Chunk Spectral Estimator the data is split into m equally sized chunks. The cross
periodogram for each chunk is estimated independently. Finally, the cross spectrum is estimated by
averaging the cross periodograms,

Γ̂xy(ωj) = 1
m

m∑

l=1
I lxy,j . (2.48)

The superscript l corresponds to the cross periodogram calculated for chunk l. The spectrum can
be estimated in an analog way replacing cross periodogram with periodogram. The Chunk Spectral
Estimator results in r = 2m equivalent degrees of freedom.

Given the equivalent degrees of freedom r of the spectral coherency estimator κ̂xy, one can
approximate the α× 100% confidence intervals by

confα =
(

tanh
(

tanh−1
(√

κ̂xy(ω)
)
± q(1+α)/2√

r

))2
, (2.49)

where q(1+α)/2 is the (1 + α)/2 quantile of the standard normal distribution N (0, 1) (von Storch
and Zwiers, 2002).
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Chapter 3

Dynamical Downscaling

In this chapter the aspects regarding dynamical downscaling are highlighted. First, the technical
side of the generation of RCM simulations, and a first evaluation of the simulated physical processes
are discussed (section 3.1). Afterwards, the evaluation of the added value of RCM simulations with
respect to their driving GCM is discussed (section 3.2). In particular, a method is presented for
the first time to quantify the temporal scales, on which the RCM simulation has the potential to
generate variability on its own. The method will be applied on the RCM data presented previously.
This example illustrates, how the method helps to understand the dynamical downscaling proce-
dure better. To close the chapter, additional analyses concerning the calibration of precipitation
distribution and the detection of changes in the second nesting step are presented (section 3.3).

3.1 RCM Simulations

The developing phase of a RCM setup is intensive in the amount of work and includes designing,
performing and evaluating the simulations. The simulations or rather the experiment has to be
planned with care, and there are several points within the planning phase where experimental design
and simulation design are overlapping. In the following the general aspects of design, and some
specific examples of the development of the COSMO-CLM setup for the East Asia domain are
presented.

• All available RCMs represent best-effort attempts to simulate dynamics on higher resolutions,
and to allow for a coupling of the limited area model with its LBC. Thus, the choice of
RCM is to a certain degree arbitrary. One possible selection criterion is the experience that
the model performs well in the area of interest, but also the technical experience of the
researcher or the research group in using a certain RCM might influence the selection of the
RCM. For the simulations of the climate in East Asia COSMO-CLM (Rockel et al., 2008) was
selected, because there is a general interest within our research group about the performance
of COSMO-CLM under different conditions.

• The type of lateral boundary conditions (LBC) directly influences the experimental design.
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The LBC come from a global climate model, in which assumptions about boundary conditions
of the whole climate system are already employed. Therefore, the climate scenario employed
is a crucial part of the experimental design. The choice of global model is arbitrary to a
certain degree, as all models developed with in the CMIP framework are best-effort attempts
of modeling the global climate system from different research groups. Non of the models can
be rated better in modeling climate than another model (Taylor et al., 2012). The uncertainty
introduced by the arbitrary choices of both RCM and global model have to be accounted by
employing a variety of RCM and LBC serving global models in an ensemble approach (e.g.,
Mearns et al., 2012; Jacob et al., 2013).

The basic idea of the experimental design for the East Asia simulation was to come up with
one simulation appropriate for evaluating the performance of the model in this specific region
and configuration, one simulation for the past climate, one simulation for the future climate.
The LBC for the evaluation run was served by ERA-40 (Uppala et al., 2005). All other runs
were forced by ECHAM5 (Roeckner et al., 2003) run No. 3. The simulation for the past was
forced by the ECHAM5 20th century simulation including both natural and anthropogenic
forcing. For the simulation of the future period the A1B scenario was selected (Nakicenovic
et al., 2000). Run No. 3 was applied according to prior agreement with a collaborating research
group1, who focused on dynamical downscaling of ECHAM5 run No. 1 with COSMO-CLM
and the same numerics. The ECHAM5 simulation of the climate during the 20th century was
driven by anthropogenic forcing only. The applied ECHAM5 simulations fall into CMIP phase
3 (Meehl et al., 2007).

• Setting the domain includes several decisions influencing each other. The region of inter-
est determines the location and extend of the domain. However, the question of horizontal
resolution is also part of the experimental setup. Nevertheless, these two design parameters
influence each other. On the one hand, computational issues limit the domain extend and
resolution. On the other hand, the applied grid (n×m) has to be sufficiently large to reduce
boundary artifacts and to allow the RCM to develop internal variability in the inner domain on
its own (Simon et al., 2013b). Furthermore, the resolution is limited due to the ratio between
RCM resolution and resolution of the global model, which must not exceed a factor of 6–8
(Rummukainen, 2010). Finally, the width of the lateral relaxation layer (or often called sponge
zone) has to be defined. This zone should help the dynamics to adapt to the finer resolution
and to reduce boundary artifacts.

The domain configuration for the East Asia simulations were chosen in alignment with CORDEX
guidelines2. This led to appropriate downscaling factor between the horizontal resolution of
the driving model and the RCM, and to a sufficient grid size to ensure the generation of
internal variability. Details of the grid specification for the simulations are given in Table 1 of

1Christoph Menz from PIK working on the BMWF funded Guating project.
2However, the simulations do not fully meet CORDEX guidelines. In our simulations a CMIP3 model provides the

LBC, instead of a CMIP5 model, which is one of the CORDEX requirements.
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Appendix A.

• To finalize the simulation design physical parameterizations have to be adapted to the region
of interest and to the numerical setup. A specific configuration might show a different behavior
on different grid resolutions, e.g., the parameterization of convective precipitation on a coarse
grid (50 km) has to include more sub-scale processes, like the horizontal drift of air masses at
the top of the convection column, than on a fine grid (7 km), where these processes should
be partly modeled dynamically (Kuell et al., 2007). A different region can lead to different
behavior of the physical parameterizations (Wang et al., 2013), e.g., the tropopause height
plays an important role in the parameterization of convection and it changes from about 16 km
height in the tropics to about 8 km at the poles. The latter point was of special importance for
the East Asia simulations. Basically, COSMO-CLM was developed for European conditions,
and is mostly applied to those. The East Asia domain extends across the equator, which made
an adaption of the Rayleigh sponge damping layer height to 13 km necessary. This Further
description of adapted numerics and physics for the East Asia downscaling can be found in
section 2.2 Model configuration and Table 2 of Appendix A. These settings were found after
several test runs of two exemplary years.

A first assessment of the performance of the simulations over the whole simulation periods is
undertaken by a comparison with gridded observational data. For 2 m temperature and precipitation
the CRU-TS 3.0 (Harris et al., 2013) and the APHRODITE (Xie et al., 2007) datasets have been
applied, respectively. Both datasets are derived from pointwise observations, that have been post-
processed by a statistical model. This results in a gridded interpretation of the pointwise observations.
By construction these datasets have their own uncertainties, which are not accounted for in the
applied investigation.

Biases of mean temperature and annual precipitation sums between the simulations concerning
the past (ERA-40 driven and ECHAM5 20th century driven) and the gridded observation datasets
are revealed. Strongest biases in all simulations can be found for annual precipitation sums in East
Indonesia, Tarim Basin, and Tibetan Plateau (cf. Table 3–5 in Appendix A). These regions come
with special geographical features. The Tibetan Plateau has a high elevation, and the Tarim Basin
is surrounded by high mountain chains isolating this area. East Indonesia is exposed to tropical
dynamics, where shifts of the ITCZ can make a huge difference in precipitation sums. More details
about the comparison between the simulations and the gridded data is given in Appendix A section
3.

In addition to the investigation of the biases the ECHAM5 20C run No. 3 driven COSMO-CLM
simulation was checked for dynamical processes specific to monsoon dynamics in East Asia. For
each monsoon season (summer and winter) one example of the most important feature for the
particular system is presented. The quasi-stationary frontal system in summer gets disturbed by
cyclonic meso-α-scale vortices. These vortices are well resolved in the COSMO-CLM simulations
(cf. figure 4, Appendix A). In winter cold air extensions originating in the Siberian-Mongolian-High
cover East China. The development of such a cold surge is well presented in COSMO-CLM (cf.
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figure 5, Appendix A).

3.2 Added Value

A quantitative evaluation of the RCM performance is crucial in the whole dynamical downscaling
process, because a quantification can be added to the RCM output as kind of metadata. This would
help end-users of RCM output to handle the data more confidently. Assessing the added value of a
RCM with respect to the global model serving the boundary conditions is of special interest in this
context.

Dynamical downscaling became established within the last two decades (Giorgi et al., 2001;
Rummukainen, 2010), and first co-operative research efforts have been arranged during the last five
years (Giorgi et al., 2009; Mearns et al., 2012; Jacob et al., 2013). Therefore, the toolbox for assessing
added value properly and in comprehensive way is not completely filled yet. There is still demand
for basic research about the evaluation of RCMs, and for studies focusing on the comparison of
RCM output and the driving models (Feser et al., 2011; Laprise et al., 2012). Summarizing research
undertaking in this field three categories of added value can be identified.

1. Added value can be defined as the capability of the RCM to reproduce the truth, i.e. observa-
tions or a virtual reality, better than the simulations performed with the global model. Both
comparisons an day-to-day scale, e.g. reproducing weather, and comparisons of statistics over
longer period as estimates for the climate fall within this category. A comparison with respect
of reproducing weather is often applied to RCMs driven by re-analysis data (Feser, 2006; Win-
terfeldt and Weisse, 2009). Though a RCM driven by global re-analysis data differs from a
regional re-analysis, where data-assimilation is integrated into the regional model (Mesinger
et al., 2006; Bollmeyer et al., 2014). A comparison of climatological values is also possible
when the RCM was driven by climate simulation (Di Luca et al., 2012).

2. In the second category added value is defined according to a gain of spatial small-scale vari-
ability. This kind of added value is assessed by direct comparison between driving model and
downscaled version. Technically, the gain of spatial small-scale variability is often estimated
by spatial spectral analysis (Errico, 1985). Another way to quantify added value according to
this definition is the implementation of the so-called Big-Brother experiment. The reader is
referred to Denis et al. (2002) for more information about this special kind analytic tool.

3. Analog to the assessment of added variability on small spatial scale, added value can also be
defined as a gain of small-scale variability on temporal scales. Direct comparison of RCM and
GCM should give insights on which temporal scales the RCM act independent from the driving
GCM, and therefore adds value.

A comprehensive overview of the literature on added value is given in the introduction of Appendix
B. A contribution to the field of evaluating the added value of a RCM simulation is presented in
Appendix B. The method, newly developed and presented for the first time, can be sorted into the
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(a) Haihe orography
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(b) Poyang orography

Figure 3.1: Orography [m a.m.s.l.] of the Haihe (left) and Poyang (right) domain at 7 km resolution.
The points mark the locations of the rain gauges. The overlying grid indicates the 50 km resolution
of the driving model. The gray frame represents the sponge zone.

third category of added value listed above. A cross-spectral analysis is applied point-to-point between
the RCM output and a bi-linearly interpolated version of the driving model. The cross-spectrum
contains both the coherence and the phase spectrum (von Storch and Zwiers, 2002). In this setup,
the coherence spectrum is richer in content, and further investigations focus on that part.

The method was applied to surface temperature, and to temperature and humidity in the lower
troposphere at 850 hPa. The applied data is described in section 3.1. The spatial coherence pattern
are related to atmospheric dynamics in East Asia, e.g., monsoons and inter-tropical convergence
zone (ITCZ). Furthermore, another application to data from a second nesting step, i.e, from 50 km
to 7 km horizontal resolution, reveals the vast difference in temporal scale, on which the regional
models are starting to uncouple from their driving models. In the 50 km runs internal variability was
generated by COSMO-CLM on temporal frequencies between 1/yr and 1/month. In contrast, for
the second nesting step uncoupling was found not before the daily-scale (Simon et al., 2013b).

After all, as the study (cf. Appendix B) introduces the method for the first time, there is a bunch
of questions raising. On the one hand there is no proper way to apply a hypothesis test whether
self-generated variability is significant (cf. section Conceptual model in Appendix B). On the other
hand more applications, in particular applications to RCM ensembles, are necessary to estimate the
sensitivity of coherence structures on changes in the experimental design of RCM simulations. Such
changes can relate to the choice of domain size, sponge zone, RCM, GCM providing LBC, and so
on.

3.3 Additional Analysis

For the additional analysis of RCM output emphasis is put on the precipitation output of the double-
nesting runs with 7 km resolution, as the results and technical details for the runs with 50 km are
already conducted in Appendix A (Wang et al., 2013). The model output of the simulations with
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7 km resolution was applied in the study, which was described in the previous section about added
value of RCMs (Simon et al., 2013b), and an overview of performed simulations can be found therein
(Appendix B, Table 1). Figure 3.1 shows a detailed picture of the orography at 7 km resolution,
and gives an idea of the difference in resolution from the first nesting step (50 km) to the second
nesting step, as about 50 7 km×7 km grids fit into one 50 km×50 km box.

Calibration of rainfall distributions

Precipitation can take place on small spatial scales, e.g. convective events, and thus cannot be
resolved by coarse GCMs directly, but these processes have to be parameterized. One motivation
of dynamical downscaling approaches or simulation with high resolution GCMs is to resolve more
processes, and be less dependent on parameterizations. The horizontal resolutions of the performed
COSMO-CLM simulations, i.e. 50 km and 7 km, are still too coarse to resolve convective processes
in a proper way. A Tiedtke convection scheme (Tiedtke, 1989) is applied in all simulations (Simon
et al., 2013b; Wang et al., 2013).
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Figure 3.2: QQ-plots for 24 h accumulated precipitation (in mm). The results for two rain gauges
are presented, Beijing rain gauge (left) and Nanchang rain gauge (right), exemplarily for the two
catchments.

QQ-plots are applied to compare local rainfall distributions observed at the rain gauges and the
rainfall distributions simulated by the RCMs in the grid cells, in which the rain gauge is located
(figure 3.2). The locations of the applied rain gauges are presented in figure 3.1. In addition to
the COSMO-CLM output, the corresponding modeled precipitation values of ECHAM5 20C3M run
no.1 (anthropogenic and natural forcing), which delivered the LBC for the dynamical downscaling, is
included in the qq-plots. The precipitation output of the numerical models may only be interpreted as
an average value over the grid cell. Nevertheless, the rainfall distributions taken from COSMO-CLM
are closer to the distributions of the observations, than the ones from ECHAM5. The QQ-plots for
the Beijing rain gauge (figure 3.2a) show close results for COSMO-CLM 50 km and COSMO-CLM
7 km. In contrast, for the Nanchang station (figure 3.2b) the curve of COMSO-CLM 7 km reveals
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Figure 3.3: Point-to-point mean JJA precipitation sums (mm) for the 7 km Haihe domain over the
whole simulated period 1971–2000 and 2021–2050 (left), and differences between the mean state
of each period and the overall mean (right). Positive (negative) values indicate higher sums in
the 2021–2050 (1971–2000) period. Points where the difference is not significant at 1% level are
shaded.

improved calibration3 in comparison to the curve for COSMO-CLM 50 km. These features discussed
for the two station are common to the most QQ-plots of the other stations in the corresponding
catchment.

Detection of future changes

In this subsection the mean states of precipitation sums will be discussed, and whether a change in
precipitation properties, i.e., sums and block maxima, from the 20C to the 21C runs with COSMO-
CLM 7 km can be detected on the available grid-scale. The signal-to-noise ratio decreases when
time series representing smaller spatial scales are investigated. For instance, it is more likely to
detect climate change on the global scale than on the local scale (Taylor et al., 2012).

However, the applied techniques cannot answer the question of climate change in the regions of
interest sufficiently. A comprehensive analysis of detection, and in consequence of attribution, is only
possible with an appropriate ensemble of simulations. Within the climate research community change
is detected if its likelihood of occurrence by chance due to internal variability alone is determined to
be small (Hegerl et al., 2010). An estimate for the spread explainable by internal variability can only
be assessed by an ensemble approach. In this light the term detection as defined here differs from
the definition given by Hegerl et al. (2010). For the sake of completeness, attribution of climate
change, which evaluates the relative contributions of multiple causal factors to a change (Hegerl
et al., 2010), requires a number of ensembles each accounting for a different forcing, i.e. natural
forcing, anthropogenic forcing, natural plus anthropogenic forcing.

3I.e. marginal calibration according to Gneiting et al. (2007). This is the only mode of calibration that can be
discussed for climate simulations. This mode of calibration relies on the assumption of a stationary climate over the
simulation period.
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3 DYNAMICAL DOWNSCALING

The simulated mean precipitation sums during summer period (from June to August), exhibit
values between 50 mm in the very Northwestern part of the domain, and around 600 mm in the
Northeastern part of the Haihe domain above the land (figure 3.3a). On the Northern, Eastern
and Southern boundary of the domain a line of relatively low precipitation values, compared to the
values further inside, are visible. This indicates the influence of adaptation processes of the water
cycle to the finer grid. In the inner domain both very high values (>500 mm) and very low values
(<200 mm) can be found in the mountainous region. A smoother picture with values between
200 mm and 400 mm can be found in the center of the domain and above the sea. Changes in mean
JJA precipitation sums between the two simulated periods, i.e. 1971–2000 (past) and 2021–2050
(future), are most prominent in their spatial extend above the Bohai Gulf, which is the most inner
gulf of the Chinese Sea. Deviations of more than 50 mm from the mean state are revealed, which
equals a difference of about 100 mm between the past and the future, with a dryer climate in future
times.
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Figure 3.4: Point-to-point mean JJA precipitation sums (mm) for the 7 km Poyang domain over
the whole simulated period 1971–1997 and 2021–2050 (left), and differences between the mean
state of each period and the overall mean (right). Positive (negative) values indicate higher sums
in the 2021–2050 (1971–1997) period. Points where the difference is not significant at 1% level are
shaded.

In the Poyang domain (figure 3.4a) the absolute mean precipitation sums are partly higher than
in the Haihe domain. Similar to the results for the Haihe domain is a zone with relatively low values
due to boundary effects. Lowest values (200 mm–400 mm) occur in the Northwestern corner of
the domain. Values are increasing in Southeast direction, with summer precipitation sums between
400 mm and 600 mm in the Poyang catchment, which is located in the center of the domain. Highest
values (1000 mm–1800 mm) can be found locally in the coastal area and in the South, where complex
mountainous terrain is dominating the landscape (figure 3.1b). Over the sea precipitation sums lie
around 800 mm, but the spatial structure seems to be strongly influenced by the boundary. Hardly
any changes between the simulation of the past and the simulation of the future detected (figure
3.4b). This absence of detection can be interpreted in two ways. First, the signal-to-noise ratio at
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the 7 km resolution is low, and in turn detection of change is unlikely (Taylor et al., 2012). Second,
the EASM and associated precipitation have a strong year-to-year variability by nature (Li et al.,
2010), which also leads to a low signal-to-noise ratio.
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Figure 3.5: Point-to-point GEV based estimates for 20 year return levels of daily summer precipitation
events (in mm).

Finally, point-to-point estimates for 20 year return levels4 for the two domains are given (figure
3.5). A general extreme value (GEV) distribution was fitted to seasonal block maxima via maximum
likelihood (ML) estimator. The GEV contains three parameters for location, scale, and shape
(Coles, 2001). As the domains covers a large area with complex orography and mixed land surface
characteristics, strong variations in the shape parameter were found. In order to suppress very high
and very low values of the shape parameter a penalty term was integrated into the ML estimator.
The penalty term is a beta distribution prior defined on [−0, 5; 0, 5] and a mode of 0, 1, leading to a
generalized ML estimator favoring values between −0, 1 and 0, 3 for the shape parameter (Martins
and Stedinger, 2000).

In the Haihe domain the 20 year return levels vary from about 50 mm in the Northwestern part
of the domain to about 300 mm over the Chinese Sea (figure 3.5a). Thus, the spatial structure of
the return levels differs form the one of the mean precipitation sums (figure 3.3a). In the Haihe
catchment, which is located in the center of the domain, values are ranging between 100 mm and
150 mm with some spots reaching about 200 mm. These results are consistent with estimates
obtained from local observations (cf. section 4.1).

The return levels in the Poyang domain (figure 3.5b) reveal a less smooth picture than the ones
in the Haihe domain. In the coastal region and in the mountainous region in the South values exceed
500 mm and even reach more than 1000 mm locally. Over the sea return levels ranging between
250 mm and 400 mm can be found. In the center, and in the North and West of the domain values
lies between 150 mm and 250 mm, but can also reach up to 350 mm locally. The values for the
Poyang catchment, located in the center of the domain, are consistent with the 20 year return levels

4A 20 year return level means that the probability of exceeding this value by the seasonal maxima is 5% in each
single year.
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3 DYNAMICAL DOWNSCALING

estimated from local observations (cf. section 4.1).
By likelihood ratio test (Coles, 2001) it was tested whether a GEV containing a linear model for

the location parameter outperforms a GEV constant in all parameters. The employed linear model
allows different values for the location parameter in each simulated period, i.e. past and future, but
constant within each period. Neither for the Haihe domain nor for the Poyang domain large areas
could have been detected, where the GEV with the linear model is significant better than the GEV
constant in all parameters. Therefore, the figures showing the deviations of the return levels for each
simulated period are omitted.
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Chapter 4

Statistical Downscaling

Next to dynamical downscaling the field of statistical downscaling offers a computational feasible
way to change the corresponding support of a time series. Statistical downscaling links large scale
information to local scale information. Therefore a good observational database is required for
producing a practical downscaling scheme. The local observation available for the regions of interest
are preliminary examined (section 4.1) before the statistical downscaling scheme is developed. In
an example study employing statistical downscaling special issues about the generation of physically
meaningful predictors are emphasized (section 4.2).
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Figure 4.1: The map shows the Eastern part of China. The points mark the locations of the rain
gauges in the Hai He Basin in the North and in the Poyang Basin in the South. For orientation
major rivers are displayed – from the North to the South: Huang He (Yellow River), Chang Jiang
(Yangtze), Zhu Jiang (Pearl River) and Mekong
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4 STATISTICAL DOWNSCALING

4.1 Preliminary Analysis

Data availability

The measurements of 42 rain gauges have been made available for the research presented in this
work. 13 and 29 of the stations are located in the Poyang catchment, in the South, and the Haihe
catchment, in the North, respectively (figure 4.1). Temporal coverage is given from 1960 to 1999
with a daily resolution of 24 h accumulated precipitation sums.

Precipitation climatology

For each catchment a representative station was selected to discuss the precipitation climatologies
in each catchment. For the North the rain gauge in Beijing was selected (figure 4.2), and for the
South the one in Nanchang (figure 4.3). The annual numbers give a picture of a wet climate in
the Yangtze valley, with 1588 mm of annual rain on 148 days and a 95. quantile of about 25 mm.
In contrast, Beijing has an annual precipitation sum of 579 mm on 73 days and a 95. quantile of
7.7 mm.

1:12

1 2.5 5.4 8.6 24 30.9 71.4 187.9 170.6 47.6 20.4 7.2 2.4monthly sum [mm] ∑578.9

1 1.8 2.6 3.6 5 5.8 9.7 14.2 12.4 7.4 5.3 4 1.6rainy days ≥ 0.1mm ∑73.3

1 0.1 0.8 1.5 4.4 5 12.7 38.9 33.1 10.4 2.9 0.9 0.195. quantile of daily values [mm] 7.7

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 4.2: Precipitation climatology of Beijing rain gauge, lon: 116.5◦E lat: 39.8◦N, over the
period 1960–1999. The values on the right side of the table indicate average annual sum, average
number of rainy days per year, and the 95. quantile of daily values over the whole period.

The climatologies can be linked directly to the phases of the EASM. The first rain season
occurring in the year is the pre-summer rain season over the Yangtze valley. From March to May
the monthly precipitation sums are high together with many rainy days. In June the Meiyu season
gets visible in the climatology of Nanchang, where the highest monthly precipitation sum can be
observed, be the rain is distributed over less days. Although the Meiyu season often extends until
mid July, the whole July is not that pronounced in the climatology.

1:12

1 67.6 97.7 169 223.8 249.7 301.5 136.7 114.2 72.6 55 58.1 42.1monthly sum [mm] ∑1588.1

1 12.5 13.2 18.2 17.8 17.1 15.3 10.1 9.7 7.6 8.9 8.8 8.8rainy days ≥ 0.1mm ∑148.1

1 12.5 20.1 25.6 36.5 41.2 58 25.7 22.8 14.8 9.4 12.6 9.395. quantile of daily values [mm] 24.8
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Figure 4.3: Precipitation climatology of Nanchang rain gauge, lon: 115.9◦E lat: 28.6◦N, over the
period 1960–1999. The values on the right side of the table indicate average annual sum, average
number of rainy days per year, and the 95. quantile of daily values over the whole period.
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4.1. PRELIMINARY ANALYSIS

In the northern part of East China, i.e. Beijing rain gauge, the rain season related the EASM
occurs during July and August. Throughout the rest of the year this region of China gets almost no
precipitation, which is related to the cold and dry climate due to EAWM dynamics.

Next, a block maxima approach of extreme value theory should give an overview about the
climatological return levels of local summer (June to August) rainfall events in both catchments. As
parametric model for the extreme value distribution the Gumbel distribution was selected. It has
two parameters one for the location and one for the scale, in contrast to the generalized extreme
value distribution (GEV), which consists three parameters for its location, scale and shape. This
selection is based on a likelihood ratio test, that suggested to favor the GEV only for 5 stations in
the Haihe catchment and for none in the Poyang catchment.
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Figure 4.4: Return levels, estimated via Maximum-likelihood fit of Gumbel distribution, at the rain
gauges for the period from 1960 to 1999. Within Haihe catchment (left) 29 station are located.
Within Poyang catchment (right) 13 stations are located.

The return levels in the Poyang catchment, where the bulk of return levels ranges from 150 mm
to 185 mm, are higher as in the Haihe catchment, where only a few outliers reach high return
level values 4.4. Via profile likelihood uncertainties of the return levels are assessed (Coles, 2001).
Exemplarily, the uncertainties for Beijing rain gauge in the North and Nanchang rain gauge in the
South are presented. For Beijing the estimates for the 20 year and 50 year return levels and associated
95% confidence levels are 135,6 mm (117,3 mm; 160,8 mm) and 157,7 mm (135,1 mm; 189,3 mm),
respectively. In the same way, 174,1 mm (152 mm; 204,7 mm) and 201,1 mm (173,7 mm; 239,5 mm)
are the estimates for the Nanchang rain gauge.

Detection of changes in precipitation properties

To get a better feeling for the provided observational data, and get an own picture about climate
change during the second half of the 20th century, precipitation sums are analyzed with respect to
linear trends. Significance in this section was tested according to F-statistics at the 5% level (Wilks,
2011). From 29 stations located in the Haihe catchment 5 show a significant linear trend with
negative sign for annual precipitation sums, and there is no station with a positive trend. Zooming
in to the summer season (June to August) only one station with a significant trend remains. In the
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Poyang catchment 3 out of 13 stations show a significant linear trend with a positive sign, and 8
out of these 13 stations show a positive trend for the summer season.

Thus, the observational data exhibits the drying of the North, flooding of the South pattern, but
it is not as pronounced as found by other studies (Wang and Zhou, 2005; Zhai et al., 2005). The
results for the North suggest that the drying can not be explained by changes in EASM dynamics
only. In contrast, the flooding of the South during EASM season gets very clear in the rain gauge
data.

Analog to the sums a detection test was applied to investigate whether a change in the distri-
bution of extremes occurred in the second half of the 20th century. Here, a modelM1 with linear
trend in the location parameter is compared relative to a modelM0 constant both parameters of the
Gumbel distribution, location and scale. Via likelihood ratio test (Coles, 2001) a decision is made
whether to reject the model M0 in favor of model M1. The drying of the North, flooding of the
South pattern is hardly visible in the observed maxima for the summer season. Only for one stations
in the North a significant (at 5% level) negative trend for the location parameter can be found (no
positive trends were detected), and in the South the observed extremes for only one station show a
significant positive trend (no negative trends were detected).

4.2 Pattern-based Downscaling

The local observations represent the predictand of the statistical model that is supposed to link large
scale and local scale information. On the other side of the transfer function predictors that provide
skillful information with respect to the predictand are required. Additionally to the skillfulness of
the predictors, it is desired to have physically meaningful predictors available, that allow further
interpretation of the outcome of the statistical downscaling procedure. The generation of such
meaningful predictors is presented in an example study (Appendix C).

The predictands in this application were build by transforming local precipitation observations to
dichotomous variables indicating whether a certain threshold is exceeded or not. The predictors were
created by post-processing ERA-40 output. As ERA-40 output contains tens of variables globally
and partly on up to 60 vertical levels (Uppala et al., 2005), a pre-selection and a reduction of dimen-
sions has to be applied. The pre-selected variables were either well known for characterizing EASM
dynamics or variables that already proved their skill in other studies about downscaling precipitation.
Spatially a 16 × 16 grid neighborhood around the region of interest, i.e., Poyang catchment, was
selected. A reduction of dimensions was archived by both empirical orthogonal functions (EOF) and
rotated EOFs (Jolliffe, 2002). Logistic regression was chosen for linking predictand and predictors
(Wilks, 2011). The statistical models are verified by cross-validation (Efron and Tibshirani, 1993;
Hastie et al., 2008) and proper scoring rules, i.e., Brier skill score and Winkler score (Gneiting and
Raftery, 2007). For the four-fold cross-validation the four decades were split into three decades for
training and one decade for verification. The EOFs are derived for the training period, then the
forward selection of predictors for the logistic model is performed. Finally, scoring rules were calcu-
lated for the verification period. It is crucial that the EOFs are derived on the training period only,
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otherwise, if the EOFs would be derived on the full period before splitting training and verification
data, the predictor time series would already know something about the verification data (Hastie
et al., 2008, chap. 7.10.2). The complete method applied in the study is presented in detail in the
method section of Appendix C.

The statistical models fed with predictors derived from relative vorticity at 850 hPa and vertical
velocity at 500 hPa showed the highest skills (cf. figure 3, Appendix C). The investigation of the
selected predictors revealed that for nearly all stations the first and the third EOF mode were selected
(cf Table 1, Appendix C). Similar dominance has the second mode of the rotated EOFs. Though
EOFs or rotated EOFs does not necessarily lead to physically meaningful patterns (Dommenget and
Latif, 2002), in the present study the mentioned modes could be related to typical EASM dynamics.
So-called Southwest vortices acting on the meso-α-scale disturb the quasi-stationary front between
the warm and humid air in the South and the cold and dry air in the North (Ding and Chan, 2005;
Wang, 2006).

Supplementary to the results and discussions presented in Appendix C, an example of the devel-
opment of a Southwest vortex reveals the interaction of relative vorticity and vertical velocity during
such a feature (figure 4.5). The same spatial structure was extracted by EOFs and rotated EOFs,
and is shown in figures 6,7 and 10 of Appendix C. Especially, the pattern of the second rotated EOF
mode (figure 10, Appendix C) highlights this similarity. Rising air over the Yangtze valley comes
along with positive vorticity (cyclonic vortex structure). Even a counter-pole of negative vorticity
located northwest to the positive vorticity band is visible.

This example makes clear, how physically meaningful predictors can be generated. This additional
information can be used for further interpretation of the results of the statistical downscaling scheme.
For instance, the probability of the occurrence of rain, or heavy rain, can be interpreted in association
with the occurrence of Southwest vortices (Simon et al., 2013a).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The left panels (a,c,e) show relative vorticity (s−1) (red-blue shading) and streamlines
of the winds at 850 hPa on three consecutive days in June. The lower panels (b,d,f) show vertical
velocity at 500 hPa in pressure coordinates (Pa s−1) for the same days.
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Chapter 5

Conclusions

The field of downscaling climate data can be seen as an interface at which information is transfered
between the discipline of climate modeling and other disciplines, e.g., biology, hydrology, impact of
climate change, and adaptation to climate change. The key point of this manuscript is to identify
and to suggest solutions for critical parts in this transfer process. The broad field of downscaling
can be separated into two sub-fields, dynamical downscaling and statistical downscaling. For each
of these sub-fields example studies are presented that illustrates how meteorologists can contribute
to the information transfer in order to avoid mis-leading interpretation of the downscaled climate
data by scientists not familiar to the inherent limitations of the specific downscaling procedure.

Dynamical downscaling is based on physical circulation model that have to be adapted for
each experiment, and the computationally expensive experiments have to be performed on super-
computers. Thus, we explained the factors, i.e., RCM selection, LBC selection, numerical settings,
and tuning of physical parameterizations, crucial for the development of RCM simulations in detail.
This RCM design phase, and first evaluation of atmospheric dynamics is demonstrated along the
setup of COSMO-CLM for the East Asia domain (cf. section 3.1).

A RCM simulation must not be seen as a completed dataset. Analog to metadata of observations,
information of quality and limitations of the RCM output are required to ensure proper application
of the data in further studies. An evaluation of the RCM performance, or an assessment of the
added value of the RCM simulation has to be enclosed to the RCM output as metadata. Therefore,
we presented a newly developed method to quantify temporal scales on which the RCM shows the
ability to generate internal variability independent from the model providing LBC (cf. section 3.2).
Our method is a contribution to the toolbox containing methods for assessing added value of RCM
simulations. Future work on this topic can be split into two branches. The first branch is related to
documentation of the available methods for assessing added value. This should be put into practice
by designing a comprehensive software package. The second branch is about further developments,
and further applications of our method. In this light, we suggest three key points:

• Probably the best way to learn more about the potential of the method is the application to
an ensemble of RCM simulations (Mearns et al., 2012; Jacob et al., 2013). This would allow
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to estimate the sensitivity of coherence structure on changes of numerics, physics, RCM, and
LBC.

• The application of coherence spectra is not restricted to the comparison of time series, but it
is also possible to compare spatial fields by this method. This can also be seen as an extension
of the method proposed by Errico (1985) by cross spectra. This would allow to quantify the
effective spatial scales on which an added value is generated by RCMs.

• An interesting study would be the computation of coherence spectra first between a regional
re-analysis (Mesinger et al., 2006; Bollmeyer et al., 2014) and the LBC providing global re-
analysis, and second between the corresponding dynamical downscaling of the global re-analysis
and the global re-analysis, and third between the dynamical downscaling and the regional re-
analysis. Hereby, both coherence spectra of time series, and coherence spectra of spatial fields
would provide insights of the differences between regional re-analysis, where data-assimilation
methods have been employed, and simple dynamical downscaling of global re-analysis.

Beyond the explicit assessment of added value of a single RCM, or an ensemble of RCMs, it is
worth evaluating the RCM approach per se.

After 20 years of testing RCMs, serious approaches of bundling computational resources for the
generation of RCM ensembles came up during the last five years. Within the CORDEX framework
13 domains cover the world’s landmass (Giorgi et al., 2009). For instance, the EURO-CORDEX
ensemble contains by now 40 members1 performed by 29 working groups generated out of 10 different
RCMs and 12 different LBC providing GCMs (Jacob et al., 2013). This enormous organizational,
computational, and data storage effort, i.e., performing coarse resolution GCM ensembles for LBC
plus 13 RCM ensembles of approximately the same order as the EURO-CORDEX or the NARRCAP
ensemble, has to be evaluated against the effort necessary for generating a global ensemble with
comparable horizontal resolution. Latter approach would also have a conceptual advantage over the
RCM approach. Global modeling includes climate feedbacks taking place on continental and ocean
basin wide scales, e.g., precipitation over land surrounding the Pacific might have an influence on
ENSO, which is suppressed in RCMs. However, common sense within the regional climate modeling
community is that there will always be certain issues for what RCMs have to be run.

Furthermore, RCMs have to find their standing in the emerging discipline of decadal climate
prediction. Modeling decadal climate is no longer a sole boundary value problem, but a hybrid
problem (Taylor et al., 2012). For decadal climate prediction it is not only important how the
boundary values of the climate system develop, but it also depends on the initial state of the ocean,
or rather the initial state of the whole hydrosphere, which also includes soil moisture and sea ice.
It is not clear how RCMs fit in the framework of decadal climate prediction, for which simulations
are performed on global scale with coupled AOGCMs. In contrast, most RCMs do not include an
ocean component in their modeling system. At least land models are more and more integrated into
regional model systems (Shrestha et al., 2014).

1Additional 26 simulations are in process.
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In statistical downscaling statistical transfer functions are employed in order to link information
on the large scale to information on the local scale. There is a large variety of statistical methods
on hand for this kind of purpose. The toolbox contains methods to downscale continuous variables,
probabilities, of probability density functions. Latter group includes distributions for extreme values.
Furthermore, multi-variate methods are on hand to account for cross-variabilities between different
variables, or different sites (spatial modeling). After all, there are some gaps in the toolbox related
to spatial modeling of precipitation, which has a special marginal distribution with a point mass at
zero, and extremes, for which multi-variate theory is solved only for two, or three dimensions.

A worthwhile contribution of a meteorologist to this procedure is the derivation of skillful, and
physically interpretable predictors. The derivation of such predictors, and their application is pre-
sented in an downscaling study. Verification ensures the skillfulness of the predictors, while their
physical interpretation is further discussed along examples (cf. section 4.2). The derivation of physi-
cally motivated predictors can not be performed automatically by some algorithm, but it always case
dependent. Thus, it is important that the statistical downscaling is accompanied by a specialist of
the regional atmospheric physics.

A proper observational database is a key requirement for designing a proper statistical downscal-
ing scheme. Nevertheless, in real world problems the observational database is often weak: First,
the observed time series can be too short to cover a sufficient amount of natural climate. Second,
the spatial density of stations is too low to apply spatial statistics within the downscaling scheme.
Third, the metadata of the observations is lacking accuracy, e.g., quality assurance, like gap filling
or data homogenization techniques are not well documented leading to loss of degree of freedom
and/or variability of the provided data.

Summarizing, it is obvious that both fields, dynamical downscaling and statistical downscaling,
are not only at a different developmental stage currently, but also differ from each other conceptually.
On the one hand, statistical downscaling is easy to implement given a solid observational database,
and skillful and meaningful predictors have to be derived from case-to-case. On the other hand,
research and development within the field of dynamical downscaling cost a lot of time, effort and
computational resources. By nature, such a colossus moves slowly. In the end, a finalized RCM
ensemble covers a variety of possible applications, and is as universal as the present GCM ensemble,
e.g., CMIP5.
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ABSTRACT

Inspired by the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the

hindcast (1971-2000) and projection (2021-2050) simulations based on a resolution of 0.44◦ over the East

Asia domain are performed with the regional climate model COSMO-CLM (CCLM). The simulations are

driven by ERA-40 reanalysis data and output of the global climate model ECHAM5. This is the first time

that the CCLM is adapted and evaluated for the East Asia Monsoon region; the setup is considered a starting

point for further improvements in this region by the CCLM community. The evaluation results show that
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the CCLM is able to reasonably capture the climate features in this region, especially the monsoon dynamics

on small scales. However, total precipitation in the northern part of the domain, over the Tibetan Plateau,

and over east Indonesia has a pronounced wet bias. The projected climate change under the A1B scenario

indicates an overall annual surface temperature increase of 1 K to 2 K, but no significant precipitation

changes.

Keywords Regional climate modelling · COSMO-CLM · CORDEX East Asia

1. Introduction

The first successful application of regional climate models (RCM) dates back almost two decades (Giorgi

and Bates 1989). Particularly in the last decade, considerable community efforts have been invested into

improvement of model physics and dynamics for meso-scale processes and into the investigation of internal

model variability and model limitations, while the range of RCM application has steadily increased (Rum-

mukainen 2010). Despite these efforts and the potential of RCMs to reveal climate changes on the scales

required for impact studies the merits of dynamical downscaling (downscaling of global climate simulations

with RCMs) is often debated. Concerns can mostly be related to the isolated regional climate downscaling

studies over specific interested areas and the lack of ensemble projections of sufficient quality (Giorgi et al

2009). Intrigued by these debates, WCRP (World Climate Research Program) recently initiated the Coordi-

nated Regional Climate Downscaling Experiment (CORDEX)1, which will provide a comprehensive picture

of regional climate change projections based on ensembles of dynamical downscaling experiments.

In our regional climate downscaling studies over East Asia we largely follow the rules recommended by

CORDEX. The study region covers the area of interest of the two research programmes co-funded by the

German Research Foundations and the National Natural Science Foundation of China (DFG/NSFC, “Land

Use and Water Resources Management under Changing Environmental Conditions”, 2010-2012) and by the

German Federal Ministry for Research and Education (BMBF, “Sustainable water and agricultural land

use in the Guanting watershed under limited water resources”, 2009-2012). The aim of the DFG/NSFC

1 http://wcrp.ipsl.jussieu.fr/SF RCD CORDEX.html

2



project hosted by the University of Bonn is the combination of dynamical and statistical downscaling of

global climate runs for a better understanding of potential future extreme events in the Haihe and Poyang

Lake watersheds in China. The BMBF project, hosted by Potsdam Institute for Climate Impact Research,

also employs a similar approach to the Guanting watershed. The downscaling results will be used to force

hydrological models employed within the two research programmes. Since the simulation domains of both

programmes are located within the East Asia domain defined by CORDEX, we performed a series of regional

dynamical downscaling runs over this area. Although inspired by CORDEX our simulation setups are not

identical to the prescriptions by CORDEX (e.g. the domain size and the driving data) due to the priorities

of both programmes.

The Asian Summer Monsoon (ASM) is probably the most pronounced regional climate system in the

region. The dynamics of ASM influences droughts and floods over Asia and impacts the global circulation (Ji

and Vernekar 1997), thus its representation in simulations is of particular concern. Multiple general circula-

tion model (GCM) ensemble simulations are usually employed to quantify the uncertainty range of climate

projections (Min et al 2004; Kitoh and Uchiyama 2006). Due to low spatial resolutions and the required

parameterizations, GCMs have difficulties to describe regional precipitation patterns generated by the ASM

regions (Kawase et al 2008; Gao et al 2006). These problems are likely caused at least in part by heavy

rainfall associated with the steep orography (IPCC 2007). The higher spatial resolution of RCMs is expected

to remedy some of these shortcomings (Fu et al 2005; Kumar et al 2006). For example, Gao et al (2006)

found that even the simulated large scale precipitation patterns are heavily influenced by resolution during

the mid- to late-monsoon months, when small scale convective processes dominate precipitation generation.

Mesoscale processes in the RCMs are indeed in some cases beneficial for rendering a more clear picture of

ASM features (Yhang and Hong 2008).

The regional climate model COSMO-CLM (CCLM: COSMO - the COnsortium for Small-scale Modelling,

CLM - Climate Limited-area Modelling or climate version of “Lokalmodell”) has been adopted for regional

climate change projections in our study by employing the so-called time-slice mode. The CCLM has been

already examined for its inter-continent transferability using the standard parameter setup for Europe, in

which particularly the tropical ASM region was investigated within a short period (2001-2004) (Rockel and
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Geyer 2008). Dobler and Ahrens (2008) showed the CCLM capabilities for Indian Summer Monsoon studies.

The CCLM has, however, not been configured for East Asia for the investigation of future climate change,

which is the central topic of this paper.

In section 2, the simulation design including study region, model configuration and reference data is

described. Section 3 presents the results from five experiments. The analysis focuses on the 2m (screen level)

temperature and precipitation. In a sub-section also the capability of the CCLM to model the important

East Asia monsoon dynamics on small scales is demonstrated by examples. Section 4 finally provides a short

summary and some conclusions from our study.

2. Simulation Design

a. Study Region

The CORDEX East Asia domain has a spatial extension of roughly 10500 × 8000 km2. Besides China,

Mongolia and most parts of India it covers Indochina and the islands of Indonesia, the Philippines, and

Japan. Almost one third of the world’s population inhabits this region. The region is characterized by a

large land-sea-contrast stimulating the Monsoon circulation and steep orography modulating the regional

circulation and its effects on precipitation patterns. Figure 1 shows the simulation domain of the CCLM (red

dotted line). For boundary relaxation and mitigation of gravity wave reflection the lateral relaxation zone is

set to 16 grid boxes (≈ 800 km) leaving an area of 9500×7000 km2 (purple line), which we term “CORDEX

East Asia (CORDEX-easia)” for evaluation. The continental area is divided into 17 sub-domains, which were

chosen according to Köppen-Geiger classification and observed mean temperature and precipitation.

b. Model Configuration

The CCLM is a non-hydrostatic regional climate model for meso-β to meso-γ scale resolutions (1-50 km).

The model is based on the primitive thermo-hydrodynamic equations, which are formulated on a rotated

horizontal grid (ARAKAWA-C-lattice type (Arakawa and Lamb 1981) ) and a terrain following height
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coordinate 2. Table 1 shows the grid definitions for our simulations. Various parameters were tested by two

short-term simulations (1959-1964, 1996-1998) excluding the first year, respectively, for spin-up. Both test

simulations were driven by ERA-40 reanalysis data in order to minimise systematic biases introduced from

driving models. The period 1996-1998 includes two extreme events, i.e. the drought in the North China Plain

in 1997 and the flooding in south China in 1998. The tests, based on the standard setup of CCLM for Europe,

focused on the selection of the most appropriate integration scheme and the configuration of the lateral and

upper boundary relaxation zones. The limited computational resources restricted the test simulations to

rather short periods; also potential interdependencies of tested parameters could not be evaluated in detail.

Benchmark variables were 2 m temperature and precipitation.

The Leapfrog temporal integration scheme is chosen over the Runge-Kutta scheme, because of both

better computational performance and representation of spatial patterns of temperature and precipitation

in particular over China. Different integration time-steps (from 75 s to 150 s) were tested; improvements

when using smaller time-steps than 150 s were insignificant and did not justify the longer computational

time. A modified Robert-Asselin time filter (Williams 2009) (named as “alphaass” in the CCLM) is used

in conjunction with the Leapfrog scheme to reduce the impacts of the filter on the physical mode while

suppressing the spurious computational mode. Our tests indicate that the proper adjustment of this filter

(alphaass = 0.7) can lead to a significant improvement, especially for the simulated temperatures in Haihe

basin.

Steep orography is evident within the CORDEX-easia domain and at the lateral boundaries. Moreover,

the simulation domain incorporates a wide range of climatic zones. Thus it is essential to investigate model

sensitivity to specifications of the lateral and upper boundary relaxation zones. The tests on the width of

the lateral relaxation layer (named as “rlwidth” in the CCLM) reveal that the high mountains within or

close to the lateral relaxation zone result in a significant overestimation of precipitation. The interpolated

fields of the driving model seem to produce additional orographic precipitation. We selected an 800 km wide

lateral relaxation layer containing the Karakorum. This configuration produces better precipitation patterns

within the central area of the model domain and our study regions, despite considerable overestimations of

2 http://www.cosmo-model.org
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precipitation in a small area near the Karakorum. As the model domain includes tropical and sub-tropical

climatic zones as well as the mountainous regions, the Rayleigh sponge damping layer on the top of the

model domain needs to be adjusted. The bottom height (named as “rdheight” in the CCLM) of the layer

is extended from the standard setup of 11 km to 13 km, which improves particularly monthly precipitation

in south China and north east China. The most important CCLM (COSMO 4.8 CLM11) parameters found

for this study are listed in Table 2.

c. Reference Data

As reference datasets for temperature and precipitation we use the CRU-TS3.0 (Climate Research

Unit)3 (Jones and Harris 2008) and APHRODITE-APHRO V1003R1 datasets (Asian Precipitation Highly

Resolved Observational Data Integration towards Evaluation of the Water Resources ) 4 (Xie et al 2007).

CRU-TS3.0 defined on a 0.5◦×0.5◦ grid contains global monthly 2m temperature, while APHRODITE con-

tains daily precipitation over Asia on a 0.25◦ grid or 0.5◦ (the latter is used in this paper). APHRO V1003R1

is based on the network of daily rain gauge data for Asia, which contains up to 4.5 times more observations

than available through the Global Telecommunication System network, and thus should better characterize

precipitation characteristics in mountainous areas, such as the Himalayas (Yatagai et al 2009). For evaluation

the CCLM output is mapped to the CRU-TS3.0 grid (0.5◦) via a bilinear interpolation.

3. Simulation Results and Analysis

Three hindcast simulations for model evaluation and simulation design are performed, driven by ERA-40

reanalysis data (Uppala et al 2005) and ECHAM5-20C-(R1, all-R3) (Roeckner et al 2006a; Roeckner 2005) in

a spectral resolution TL159 with 49 atmospheric and 3 soil layers. ECHAM5 GCM outputs on a T63 grid with

31 atmospheric and 4 soil layers are used for both hindcast and future projections. ECHAM5-20C-all-R3 is

forced by anthropogenic (green house gases, sulphate) plus natural forcing (variable solar constant and effects

3 Data are available online http://www.cru.uea.ac.uk/cru/data/hrg/.

4 Data are available on-line http://www.chikyu.ac.jp/precip/.
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of volcanic aerosols are included), while ECHAM-20C-R1 only includes observed anthropogenic forcing.

Hence we can examine the impact of natural forcing on the model response. The A1B emission scenario is

used in two simulations with the ECHAM5 global climate model (ECHAM5-A1B-(R1,R3) (Roeckner et al

2006b,c), to which we apply dynamical downscaling. Both realizations are initialized with different runs of

ECHAM5-20C using anthropogenic forcing. Our CCLM simulations for the period from 1971 to 2000 driven

either with ERA-40 or ECHAM5-20C are used for validation. For the future projection run, the period from

2021 to 2050 is chosen because of its relevance for near future climate change impact assessments required

by the funding research programmes.

Evaluation focuses on the average annual and seasonal 2 m temperature (Figure 2) and total precipitation

fields (Figure 3). Due to the large spatial variability of annual precipitation over the simulation domain we

compute the relative bias (the difference relative to the respective reference dataset)(Figure 3). The relative

bias is considered significant when the p-value of a t-Test (von Storch and Zwiers 1999) is below 0.1. We

also show the annual values averaged over the sub-regions defined in Figure 1.

a. ERA-40 driven simulation

Our ERA-40 driven simulation with an approximate downscaling factor of 2.5 is first performed as a

control run for evaluating model performance. ERA-40 is observation based and thus contains less systematic

biases compared to GCM outputs. Thus the capability of CCLM to reproduce the present climate can be

evaluated without, or at least with considerably reduced systematic bias in the large-scale forcing. The

resolution difference between driving data and the CCLM, can however, lead to additional biases.

The first column of Figure 2 and Figure 3 shows the temperature and precipitation bias of the ERA-40

driven CCLM run compared to CRU and APHRODITE, respectively. The temperature bias ranges in most

regions from −5 K to +5 K with the exception of the Himalaya and especially the Karakorum where the

bias ranges from −10 K to 10 K. Extreme biases (±10 K) are however only located at a few grid points

and might result from an under-representation of the steep orography in the CCLM. The large observation

uncertainty in this region can, however, also be a reason for the discrepancies (Brohan et al 2006; Lorenz and

Kunstmann 2012). The mountain ridges of the Tibetan Plateau and Indochina exhibit the strongest cold

7



bias while the largest warm bias appears in the Tarim basin and western Mongolia. The cold bias in east

Indonesia might be associated with the overestimation of precipitation, especially at the mountain ridges of

New Guinea.

Figure 3 shows that the CCLM produces a pronounced relative wet bias in the most northern part of the

domain (north of latitude 40◦) and over the Tibetan Plateau during their dry period (Oct to April, mainly

in DJF and MAM). The high relative wet bias corresponds to a considerable absolute wet bias of up to

200 mm. However, the driving data ERA-40 has an even larger annual relative bias in this region (about

220%) than the CCLM (Table 3), which can partially account for the CCLM’s performance in this context.

Similar results hold for east Indonesia and the Philippines, although the precipitation amounts in those

regions are up to 10 times higher than over the Tibetan Plateau. The absolute wet bias in east Indonesia is

about 1500 mm. By contrast, the Philippines and west Indonesia show a surprisingly low bias compared to

the spurious ERA-40 data in this region (Trenberth et al 2001).

According to Table 3 CCLM does not significantly improve the area averaged bias for temperature

compared to the driving data. This might be partially attributed to the rather small downscaling factor,

which leads to similar orographic heights both in the forecast model used for ERA40 and in the CCLM.

The overall warm bias of the ERA-40 driven CCLM run is 0.82 K, which is slightly higher than the bias

of ERA-40. Concerning precipitation (see table 3) the CCLM seems to be able to partly compensate for

the known spurious results of ERA-40 in the tropics (Trenberth et al 2001) despite some significant relative

biases in some subdomains. In summary, CCLM in this simulation setup is able to properly downscale the

parent global fields and even reduces the error of the driving model ERA-40 within certain regions.

b. ECHAM5-20C driven simulation

As mentioned in Section 3a, there will be a systematic bias compared to observations introduced by the

driving GCM output into the CCLM. Further differences might be caused by the higher (compared to the

ERA40-driven CCLM runs) downscaling factor of about 4.5 for the GCM driven CCLM runs, which can

lead to different synoptic scale behaviour (Rummukainen 2010).
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Two ECHAM5-driven CCLM runs are used to assess the influence of natural forcing. However natural

forcing affects only the driving GCM since the CCLM is not yet able to dynamically implement variable

aerosol loads and a variable solar constant. Thus natural forcing affects CCLM only implicitly via the driving

model (mainly temperature).

The second and third column of Figure 2 show that both ECHAM5-20C driven runs basically produce

the same bias patterns as the ERA-40 driven run. The differences between ERA-40 and ECHAM5-20C

driven runs are small and restricted to south India, Indochina and the north east continental areas (NEC

and NE). The ECHAM5-20C driven runs show a cold bias in every season in north-eastern China and other

north-eastern subdomains, while in south India the most pronounced cold bias is mainly associated with

the rainy season (JJA). Over Indochina the ECHAM5-20C driven runs produce a slight warm bias in the

annual mean temperature, in contrast to the cold bias of the ERA-40 driven run. There are no significant

temperature pattern differences between ECHAM5-20C-R1 and ECHAM5-20C-all-R3. The biases averaged

across the whole simulation domain for both runs differ only by about 0.2 K, which is of the same order of

magnitude as the difference between the two driving datasets (shown in Table 4 and Table 5, where a total

bias is 0.59 K for the ECHAM5-20C-R1 driven run and 0.41 K for the ECHAM5-20C-all-R3 driven run).

Concerning precipitation both ECHAM5-20C driven runs produce similar bias patterns as the ERA-40

driven run (Figure 3). Due to the seasonal precipitation cycle the strongest absolute biases occur in MAM

and JJA. The strong relative wet bias of CCLM from SON to MAM for all three driving datasets implies that

the CCLM is not able to reproduce the dry season in the north sufficiently. In east Indonesia the ECHAM5-

20C driven runs produce a less pronounced wet bias in every season compared to the ERA-40 run, while

in west Indonesia a more significant wet bias appears in the dry season (JJA) especially over the island of

Java. Both ECHAM5-20C driven runs show again no significant difference. The overall precipitation biases

across the CORDEX East Asia domain for ECHAM5-20C-R1 and ECHAM5-20C-all-R3 are 183 mm and

164 mm, respectively (Table 4 and 5).

Overall there are no significant differences in the temperature and precipitation patterns for all three

hindcast runs compared to the reference data. The CCLM produces a small warm bias averaged over the

whole CORDEX East Asia domain. The biases of the ECHAM5 driven runs are slightly lower than the
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ERA-40 driven run. The strongest biases generally occur at mountain ridges. CCLM simulates an average

wet bias across the whole domain mainly due to an overestimation in the northern part of the simulation

domain and over east Indonesia. The overestimation is more pronounced when driven by ECHAM5-20C. The

hindcast driving data ECHAM5-20C-R1 and ECHAM5-20C-all-R3 show no significant differences over the

whole domain, but ECHAM5-20C-all-R3 (with a natural forcing) leads to a lower bias for both temperature

and precipitation compared to ECHAM5-20C-R1 (without a natural forcing) data. The same holds true for

the respective CCLM simulations.

c. ECHAM5-A1B driven simulation

Two downscaled future projections based on Run-1 and -3 of ECHAM5 under the A1B emission scenario

are performed for the period 2021 to 2050. Here the CCLM model results are compared to the respective

hindcast simulations driven by ECHAM5-20C-R1 and -all-R3, respectively.

The last two columns of Figure 2 show the projected change of temperature. Both runs produce a similar

annual temperature change with a slight south to north gradient of 1 K to 2 K. The ECHAM5-A1B-R1

driven run has the most significant temperature increase over the Tibetan Plateau in DJF and MAM, while

the ECHAM5-A1B-R3 driven run shows a stronger temperature increase in north-eastern China throughout

the year. Both runs reveal a more than 2 K temperature increase over the Sichuan Basin in JJA and

SON. However, the ECHAM5-A1B-R3 driven run presents a more pronounced increase probably due to the

effect of the natural forcing in the ECHAM5-20C-all-R3 driven run. The highest temperature increase of up

to or above 3 K with the most extended spatial coverage is projected for winter from both runs, which is

remarkable considering the time frame of only 30 years. The similar climate change signals were also detected

in the previous studies of climate projections over east Asia (Xu et al 2005; Zhang et al 2012; Hulme et al

1994).

Precipitation shows less systematic changes (Figure 3) but large differences between both projections.

The relative precipitation anomaly of the ECHAM5-A1B-R1 driven run displays an increase of precipitation

in a band around 20◦N and 50◦N and a decrease elsewhere. The most significant decrease in absolute

precipitation is projected for the North China Plain and central and southern China in autumn (SON). In
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JJA precipitation is projected to increase by more than 15% in west Indonesia, Indochina and south India.

Nevertheless due to the high variability of precipitation these changes are not significant. This also explains

the differences to the ECHAM5-A1B-R3 driven run and some findings of the previous studies (Xu et al 2005;

Zhang et al 2012; Hulme et al 1994), whose statements are however not based on the t-test used in this

paper. The ECHAM5-A1B-R3 driven run suggests that the projected significant temperature increase over

the Sichuan Basin is related to a drastic precipitation decrease in the same region. The projections also hint

at precipitation decreases of more than 20% over south China in autumn.

The temperature and precipitation change patterns derived from the CCLM results are comparable to

the results from ECHAM5-A1B (figure not shown). Additionally CCLM can reasonably simulate climate

change signals on smaller scales, e.g. around the Tibetan Plateau for the ECHAM5-A1B-R1 driven run or

over Sichuan Basin for the ECHAM5-A1B-R3 driven run.

d. Examples for resolved monsoon dynamics

Dynamical downscaling with RCMs is performed in order to better resolve dynamical processes by using

finer spatial and temporal scales. It is expected that the higher resolution leads to a more realistic represen-

tation of e.g. convection and its influence on the regional climate than with the low resolution of the driving

GCM. A dominant meso-α scale feature of east Asian meteorology is the East Asian Summer Monsoon

(EASM), the representation of which by the CCLM we will exemplify in the following.

The quasi-stationary frontal system of the EASM is mostly disturbed by cyclonic vortices, which develop

over the southwestern Tibetan Plateau and travel roughly along the Yangtze river (Wang 2006). These

vortices are well-known and even termed South-West Vortices (SWV). These disturbances are important

ingredients to the generation of heavy rainfall events along the Meiyu band (Ding and Chan 2005). The

SWVs are well resolved by the CCLM: an example is shown in Figure 4, where the CCLM simulations

are compared to the representation of such a situation by ECHAM5 (figure not shown). While the feature

covers 20× 20 grid boxes in the CCLM simulations the same area is represented in ECHAM5 by only 4× 4

grid boxes. Obviously the coarse resolution of ECHAM5 cannot resolve such a vortex structure; thus we

expect that the CCLM better represents the humidity transport associated with the meso-α scale eddies
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and the intrinsic variability of the SWV. A more detailed analysis of the representation of such features

in the CCLM and in ECHAM5 also in a statistical sense is beyond the scope of this paper and will be

addressed in a follow-up study. This example gives, however, already an indication that the precipitation

bias - also in the CCLM - might result at least in part from the parameterisation of precipitation processes

and/or the insufficient resolution of the tropopause height. East Asia is a region with strong fluctuation of

the tropopause height. The bottom height of the upper Rayleigh sponge layer in CCLM is however held

constant. Thus the convection scheme might be unable to adequately represent the strong variability of

tropical to sub-tropical monsoon processes. Furthermore the moisture not condensed to precipitation in the

south might be transported further north where it might lead to a positive precipitation bias.

To examine the internal EASM variability on the seasonal scale the EASM index proposed by Wang and

Fan (1999) and Wang et al (2008) is applied to ECHAM5-20C-all-R3 and the CCLM run driven with the

former. The resulting time series of both models are highly correlated (ρ = 0.90, significant at 1% level) and

shows that internal climate variability on the seasonal scale is transported well from the driving model to

the driven model.

These results illustrate the capability of the CCLM both to represent small-scale monsoon features on

the daily scale like SWVs and to maintain the internal variability on seasonal scale within the East Asia

domain as provided by the driving GCM. A detailed analysis, based on post-processing the model outputs

with a focus on dynamics in order to receive a bias-corrected dataset, will be the focus of a forthcoming

paper.

Similar dependence structures are expected for the East Asian Winter Monsoon (EAWM), i.e. a strong

coherence of the dynamics between the driving model and the driven model and a better resolution of

processes on higher frequencies by the CCLM. The first point could, however, not yet be tested as standard

EAWM indices require dynamics north of 50◦N (Jhun and Lee 2004; Li and Yang 2010)), which coincides with

the northern boundary of the simulation domain. The Siberian-Mongolian high (SMH) is a key component

of the EAWM with high relevance due to its inter-annual variability (Wang 2006). Since the SMH is located

close to the northern boundary of the CCLM domain, its fluctuations will be directly transported into the

RCM. This assumption is supported by the example of a cold surge event shown in Figure 5 (still using
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the ECHAM5-20C-all-R3 driven simulation results), which is the main severe weather phenomenon during

the EAWM season (Wang 2006). On January 4th an extension of the SMH enters the CCLM domain.

Consequently a typical cold surge propagation of high pressure and associated cold air on ground level take

place. It reaches its maximum on January 6th and weakens during an eastward drift afterwards.

4. Conclusions

The regional climate model COSMO-CLM (CCLM) is for the first time evaluated for its performance over

East Asia following roughly the CORDEX recommendations. The paper analyses the annual and seasonal

mean of temperature and precipitation by comparison with observations and between driving datasets and

CCLM simulations. Examples are shown, which elucidate the merit of the higher spatial resolution for

representing meso-α-scale processes connected to monsoon dynamics. A more comprehensive analysis based

on climate indices with focus on extreme climate events is on going and will be the focus of an upcoming

publication.

The evaluation results demonstrate that the CCLM, with a proper parameter tuning for East Asia, can

be used for downscaling parent global fields and partially improve the results of the driving model within

certain regions. Overall the CCLM performs better in simulating 2m temperature than precipitation. The

significant cold bias over high mountain ridges (Himalaya and New Guinea) seems to be related to a wet

bias in the same regions. The CCLM produces a pronounced and spatially extended wet bias in the northern

part of the domain and over the Tibetan Plateau in DJF and MAM. The differences between two ECHAM5-

20C driven runs, one with and one without natural forcing in the forcing data, are not significant despite a

somewhat lower bias of the former run.

Based on the positive evaluation results, the projected future climate change under the A1B scenario was

investigated and suggest increases from from 1 K to 2 K in annual mean temperature across whole East

Asia. The annual mean total precipitation, however, is not projected to change significantly. However, due

to the much higher variability and the wider uncertainty range of precipitation compared to temperature,

this conclusion is preliminary since only multi-ensemble-simulations can provide reliable estimates.
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Finally, a few examples highlight the potential of the CCLM to reproduce and better resolve important

East Asia monsoon dynamics: the internal variability of the driving GCM on the seasonal scales is well

transferred into the CCLM domain and small-scale features of monsoon dynamics such as SWV and cold

surge events which cannot be modelled by ECHAM5 are simulated by CCLM and provide added value to

the downscaled results.

The simulation results will be available on the CERA data base at the World Data Centre for Climate

in Hamburg for future applications and improvements.
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Table 1. Grid specifications of the simulations.

Atmosphere
Horizontal Grid

longitude latitude
Rotated north pole location −64.78 77.61
Rotated grid extension −47.96 to 55.44 −33.88 to 53.68
Rotated grid resolution 0.44 0.44
Number of grid points 235 199

Vertical Grid
Number of vertical layers 32

Soil
Number of soil layers 10
Soil layer depth [m] 0.01, 0.035, 0.08, 0.17, 0.35, 0.71, 1.43, 2.87, 5.75, 11.51

19



Table 2. Basic model configuration parameters of the CCLM.

Model Configuration
Convection scheme Tiedtke
Time integration scheme Leapfrog, time step = 150 s
Robert-Asselin time filter (alphaass) 0.7
Lateral relaxation layer (rlwidth) [km] 800
Rayleigh damping layer (rdheight) [km] 13
Microphysics scheme Kessler-type (1969)
Turbulence scheme Prognostic turbulent kinetic energy (TKE)
Radiation scheme Ritter and Geleyn (1992)

20



Table 3. Annual mean 2m temperature and averaged annual sum total precipitation bias for each subregion over the period
1971-2000. Shown here are the ERA-40 driven CCLM run and the respective ERA-40 biases compared to CRU-TS3.0 and
APHRODITE for temperature and precipitation, respectively.

Subregion
temperature bias precipitation bias
CCLM ERA-40 CCLM ERA-40

[K] [K] [mm] [%] [mm] [%]
Central China 0.39 −0.83 141.05 18.19 110.02 14.19

Central −0.27 −0.49 478.82 31.42 348.99 22.90
East Indonesia −0.88 0.11 1530.18 88.55 3454.35 199.89

Indo China −0.69 0.01 325.64 22.82 653.68 45.80
North China 2.45 0.28 67.33 41.05 45.44 27.70

North East China 1.32 0.70 175.28 30.83 74.63 13.13
North East 0.73 1.48 217.05 30.21 217.53 30.28

North India 1.63 −1.32 291.15 28.44 65.66 6.41
North 2.28 1.30 139.02 44.40 290.48 92.78

North West 2.17 0.06 −39.67 −13.64 127.06 43.69
Philippines −0.37 1.38 12.25 0.58 1495.85 70.25

South China 0.29 0.34 −71.99 −5.18 −128.52 −9.24
South India 1.65 0.06 −227.12 −22.74 −95.90 −9.60

South Japan −0.63 2.43 −231.80 −13.48 −224.97 −13.08
Tarim Basin 1.90 −1.34 103.97 113.06 235.40 255.98

Tibetan Plateau −0.51 0.38 524.89 130.60 887.75 220.89
West Indonesia 0.01 −0.01 4.55 0.24 870.64 45.92
CORDEX-easia 0.82 0.22 239.86 28.02 471.53 55.08
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Table 4. Annual mean 2m temperature and averaged annual sum total precipitation bias for each subregion over the period
1971-2000. Shown here are the ECHAM5-20C-R1 driven CCLM run and the respective ECHAM5-20C-R1 biases compared to
CRU-TS3.0 and APHRODITE for temperature and precipitation, respectively.

Subregion
temperature bias precipitation bias

CCLM ECHAM5-20C-R1 CCLM ECHAM5-20C-R1
[K] [K] [mm] [%] [mm] [%]

Central China 0.37 −2.34 92.62 11.95 692.65 89.34
Central 0.51 −0.37 282.23 18.52 −285.12 −18.71

East Indonesia −0.68 1.81 1255.07 72.63 925.30 53.54
Indo China 0.53 −0.07 −265.16 −18.58 −127.29 −8.92

North China 1.69 0.50 124.86 76.12 121.00 73.77
North East China 0.13 −0.64 218.22 38.39 275.75 48.51

North East −0.34 0.05 392.05 54.57 321.27 44.72
North India 1.93 −0.17 318.06 31.07 −144.08 −14.07

North 1.01 0.22 364.30 116.35 238.54 76.19
North West 2.06 1.23 123.10 42.33 7.64 2.63
Philippines −0.33 2.04 −310.12 −14.57 852.57 40.04

South China 1.20 0.43 −297.92 −21.42 −129.42 −9.31
South India 0.54 −0.40 −104.06 −10.42 28.24 2.83

South Japan 0.10 4.22 −116.73 −6.79 −39.58 −2.30
Tarim Basin 1.71 −0.98 180.76 196.56 136.56 148.50

Tibetan Plateau −1.01 1.03 472.09 117.46 683.47 170.06
West Indonesia 0.21 0.32 −246.59 −13.01 395.62 20.87
CORDEX-easia 0.59 0.28 183.48 21.43 221.59 25.88

22



Table 5. Annual mean 2m temperature and averaged annual sum total precipitation bias for each subregion over the period
1971-2000. Shown here are the ECHAM5-20C-all-R3 driven CCLM run and the respective ECHAM5-20C-all-R3 biases compared
to CRU-TS3.0 and APHRODITE for temperature and precipitation, respectively.

Subregion
temperature bias precipitation bias

CCLM ECHAM5-20C-all CCLM ECHAM5-20C-all-R3
[K] [K] [mm] [%] [mm] [%]

Central China 0.46 −2.39 40.27 5.19 660.73 85.22
Central 0.29 −0.70 291.79 19.15 −243.62 −15.99

East Indonesia −0.74 1.61 1172.01 67.82 935.84 54.15
Indo China 0.40 −0.26 −302.83 −21.22 −145.19 −10.17

North China 1.52 0.39 105.19 64.13 106.51 64.93
North East China −0.19 −0.99 226.70 39.88 262.45 46.17

North East −0.63 −0.48 403.50 56.16 312.59 43.51
North India 1.63 −0.33 263.97 25.79 −150.86 −14.74

North 0.75 0.00 388.45 124.07 249.66 79.74
North West 1.85 1.16 118.25 40.66 −4.16 −1.43
Philippines −0.44 1.85 −356.47 −16.74 786.65 36.95

South China 1.05 0.13 −310.27 −22.31 −108.74 −7.82
South India 0.47 −0.52 −114.43 −11.46 6.39 0.64

South Japan −0.05 3.94 −155.75 −9.05 −86.90 −5.05
Tarim Basin 1.62 −1.02 135.29 147.12 115.38 125.46

Tibetan Plateau −1.16 0.97 464.60 115.60 671.69 167.13
West Indonesia 0.09 0.19 −310.80 −16.39 338.21 17.84
CORDEX-easia 0.41 0.09 164.58 19.23 212.46 24.82
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Table 6. Annual mean 2m temperature and total precipitation driven by ECHAM5-A1B-R1 over the period 2021-2050
compared to the hindcast run (1971-2000) driven by ECHAM5-20C-R1.

Subregion
temperature anomaly precipitation anomaly

CCLM ECHAM5-A1B-R1 CCLM ECHAM5-A1B-R1
[K] [K] [mm] [%] [mm] [%]

Central China 1.57 1.43 −53.64 −6.18 2.55 0.17
Central 1.19 1.11 1.26 0.07 50.17 4.05

East Indonesia 0.98 1.04 −79.46 −2.66 −83.56 −3.15
Indo China 0.96 1.00 50.32 4.33 51.77 3.98

North China 1.48 1.68 −11.57 −4.01 −3.86 −1.35
North East China 1.41 1.46 8.03 1.02 2.94 0.35

North East 1.22 1.25 19.72 1.78 27.44 2.64
North India 1.49 1.56 19.35 1.44 4.60 0.52

North 1.44 1.61 25.43 3.75 33.78 6.12
North West 1.66 1.86 14.48 3.50 14.43 4.83
Philippines 0.97 0.98 109.59 6.02 107.69 3.61

South China 1.40 0.95 −45.66 −4.18 79.60 6.31
South India 1.25 1.36 62.20 6.95 27.55 2.68

South Japan 1.24 1.10 17.16 1.07 13.34 0.79
Tarim Basin 1.70 1.91 −21.29 −7.81 −17.25 −7.55

Tibetan Plateau 1.83 1.73 −32.59 −3.73 −22.01 −2.03
West Indonesia 1.01 1.02 13.46 0.82 92.93 4.06
CORDEX-easia 1.39 1.41 −2.02 −0.19 17.81 1.65
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Table 7. Annual mean 2m temperature and total precipitation driven by ECHAM5-A1B-R3 over the period 2021-2050
compared to the hindcast run (1971-2000) driven by ECHAM5-20C-all-R3.

Subregion
temperature anomaly precipitation anomaly

CCLM ECHAM5-A1B-R3 CCLM ECHAM5-A1B-R3
[K] [K] [mm] [%] [mm] [%]

Central China 1.48 1.37 −53.41 −6.55 1.28 0.09
Central 1.28 1.29 −18.72 −1.03 −3.75 −0.29

East Indonesia 1.12 1.17 −107.37 −3.70 −73.63 −2.76
Indo China 1.03 1.06 84.07 7.48 91.73 7.16

North China 1.55 1.68 0.88 0.33 16.41 6.07
North East China 1.78 1.84 −2.75 −0.35 34.99 4.21

North East 1.68 1.93 1.60 0.14 32.86 3.19
North India 1.40 1.30 38.52 2.99 68.44 7.84

North 1.69 1.84 −14.13 −2.01 −0.45 −0.08
North West 1.84 1.97 −4.63 −1.13 2.26 0.79
Philippines 1.08 1.10 111.32 6.28 64.24 2.20

South China 1.41 1.25 −33.72 −3.12 11.53 0.90
South India 1.26 1.37 55.99 6.33 17.72 1.76

South Japan 1.31 1.28 34.14 2.18 29.97 1.84
Tarim Basin 1.58 1.70 7.07 3.11 11.92 5.75

Tibetan Plateau 1.56 1.49 −6.83 −0.79 4.07 0.38
West Indonesia 1.13 1.14 36.00 2.27 119.65 5.36
CORDEX-easia 1.47 1.50 0.81 0.08 23.50 2.20
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Generation and transfer of internal
variability in a regional climate model

The following manuscript has been published in the peer-reviewed journal Tellus A in 2013.

Attribution of roles

Thorsten Simon designed the evaluation method. Dinan Wang, Clemens Simmer and Christian
Ohlwein designed the experimental set-up for the RCM simulations. Dinan Wang performed the
RCM simulations, parts of which are published for the first time. Andreas Hense contributed to the
development of the evaluation method. All authors discussed the results and commented on the
manuscript.

93





Generation and transfer of internal variability

in a regional climate model

By THORSTEN SIMON1*, DINAN WANG2, ANDREAS HENSE1, CLEMENS SIMMER1

and CHRISTIAN OHLWEIN1,3 , 1Meteorological Institute, University Bonn, Bonn, Germany;
2Institute for Energy Systems and Energy Business, Hochschule Ruhr West, Mülheim, Germany;

3Hans-Ertel Centre for Weather Research, Climate Monitoring Branch, Germany

(Manuscript received 29 July 2013; in final form 20 November 2013)

ABSTRACT

There is a strong need for tools allowing the comparison between the performance of a regional climate model

(RCM) and the corresponding model providing lateral boundary conditions (LBC) for the RCM, which is a

global general circulation model (GCM) in most cases. A method is presented to investigate the temporal scales

on which a RCM is able to generate internal variability on its own and on which variability is copied from the

driving model. This is implemented by a cross-spectral analysis between the RCM output and a bi-linearly

interpolated version of the driving model, leading to an estimate of the coherence spectrum. Applying the

aforementioned technique to surface temperature and temperature and specific humidity at 850 hPa from the

RCM COSMO-CLM East Asia with a horizontal resolution of 50 km and its driving model ECHAM5, it was

found that features in the spatial distribution of coherence are related to atmospheric dynamics in East Asia,

e.g. monsoons and inter-tropical convergence zone (ITCZ). A further application to a double-nesting

approach, where COSMO-CLM East Asia is the driving model for two domains � namely the Haihe

catchment and the Poyang catchment � each with a horizontal resolution of 7 km, shows that the frequencies

on which internal variability is generated by the driven model are much higher compared to the first nesting

step. Concluding RCMs can produce a considerable variability on the respective temporal scales. This implies

that a dynamical downscaling with a re-analysis as LBC is conceptually different to a regional re-analysis, i.e.

data assimilation on the regional scale.

Keywords: East Asia, COSMO, cross-spectrum, internal variability, dynamical downscaling, nesting,

double-nesting

1. Introduction

Assessing and projecting climate change is usually based on

global general circulation models (GCMs). Due to high

computational cost, the spatial resolution of GCMs is

limited. This results in grid boxes with areas of the order of

104 km2 (Roeckner et al., 2003; Uppala et al., 2005) and

even lower effective resolutions. Studies investigating the

energy spectra of numerical weather prediction models

(NWPs) (Skamarock, 2004; Bierdel et al., 2012) suggest

effective resolutions about 4�7 times coarser than the

original grid. In addition, the low horizontal resolution of

GCMs leads to a weak representation of local extreme

events (Easterling et al., 2000), which is associated with the

change of support effect (Wackernagel, 2010).1

To add additional regional information to the global

input and to keep computational cost on an acceptable

level, dynamical downscaling via regional climate models

(RCMs) (e.g. Giorgi et al., 2001; Frei et al., 2006; Gao

et al., 2008; Rummukainen, 2009) became an established

method over the past 10�20 yr. The popularity of RCMs is

also caused by the increasing demand for high-resolution

data from other disciplines, e.g. hydrology, biology (e.g.

Kuemmerlen et al., 2012; Schmalz et al., 2012). This led the

*Corresponding author.

email: tsimon@uni-bonn.de

1In geostatistics support is the interval, surface or volume, for

which a value represents the average. The change of support effect

refers to the circumstance that the variance of a variable averaged

over an extended area, e.g. a grid-box, has to be less than the

variance at a local point. (Wackernagel, 2010).
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World Climate Research Programme (WCRP) to establish

the Coordinated Regional Climate Downscaling Experi-

ment (CORDEX) with the goal to coordinate and to keep

record of RCM simulations undertaken by research groups

all over the world (Giorgi et al., 2009). Within CORDEX,

13 RCM domains are defined covering the globe. Examples

of a CORDEX-based effort are the RCM ensemble

simulations performed for Europe (EURO-CORDEX, see

Vautard et al., 2013), Africa (CORDEX-Africa, see Nikulin

et al., 2012) and within the North American Regional

Climate Change Assessment Program (NARCCAP, see

Mearns et al., 2012).

One conceptual shortcoming of RCMs is emphasized

here, as it is closely related to the generation of internal

variability in RCMs. While GCMs integrate the coupling

between multiple components of the climate system � at

least atmosphere and ocean (hydrosphere), but also cryo-

sphere, biosphere and lithosphere � RCMs restrict the

coupling usually to biosphere and lithosphere via so-called

land surface models (Giorgi et al., 2001). Due to the usually

applied one-way nesting technique of RCMs � as it is also

the case in our simulations � one drawback of these

simulations is that teleconnections are not included and

hence large-scale climate feedbacks are suppressed. For

example, in a RCM adapted to East Asia the monsoon

systems do not influence ENSO, while ENSO signals are

transmitted via lateral boundary conditions (LBC) as it

was simulated in the driving GCM (Wang et al., 2005).

Furthermore, air�sea interactions are no part of most

RCM simulations as the SST of the driving GCM is often

used as a lower boundary instead of a dynamical ocean

component (Hagedorn et al., 2000) or at least a slab ocean,

which would model the damping effect of the ocean mixed

layer and hence allow to store heat in the ocean (Lorbacher

et al., 2006; Dommenget, 2010).

The main purpose of RCM simulations is to explicitly

resolve and thus not to parameterize processes at finer

spatial and temporal scale. Therefore, internal variability

is generated on scales, which are not modelled by global

GCMs. This self-generated internal variability is often

referred to as added value of a RCM simulation compared

to a GCM, though added value is often also defined as the

ability of a RCM to modify the externally forced varia-

bility. After all, there is still demand for basic research

about the credibility of RCMs. Therefore, there is a strong

need for studies on the comparison of RCM simulations

and their driving models (Laprise et al., 2008; Feser et al.,

2011). After reviewing literature (see references below),

three categories of different definitions of added value can

be identified. In the first category, added value is defined in

terms of estimating the level of the change of support effect

between global and regional simulations compared to

point-like observations. In the second and third category,

added value is described as the gain of internal variability

at small spatial and temporal scales, respectively.

The definition of added value on the basis of verifica-

tion has been applied in studies dealing with different

models, e.g. regional models driven by re-analysis data,

NWP models and regional models driven by global climate

simulations. Feser (2006) compared two RCM simulations

� with and without spectral nudging (von Storch et al.,

2000) � and the NCEP re-analysis with the analysis

generated by the model run operationally at Germany’s

National Meteorological Service (DWD). Applying a

spatial filter technique to separate spatially large and

regional scale signal, it was found that the spectrally nudged

RCM leads to the best reproduction of the observations.

The investigation of a double-nesting approach for East

Asia showed the ability to reconstruct single events like

typhoons more realistically than in the original re-analysis

data (Feser and von Storch, 2008). A comparison between

near surface wind speed of spectrally nudged RCM simula-

tions driven by re-analysis data and QuikSCAT observa-

tions exhibited added value, especially along coastlines and

for regions with complex terrain (Winterfeldt and Weisse,

2009). Using a verification approach based on Bayesian

statistics, Röpnack et al. (2013) showed the ability of the

COSMO-DE convection permitting ensemble prediction

system (COSMO-DE-EPS, 2.8 km grid) to forecast the

probability of tropospheric temperature profiles in a

superior manner compared to two other COSMO-based

ensembles (each 10 km grid). Another study falling in this

first category is an analysis of the NARCCAP ensemble

(Di Luca et al., 2012). This analysis does not use the original

data of the driving model, but uses an upscaling technique

for the RCM output, which works as a filter for high-

resolution variability. The added value of a RCM is

defined as the improvement of the representation of climate

statistics, e.g. the 95th quantile of precipitation. Thus, this

first category is not restricted to studies dealing with re-

analysis and NWP models, and also includes studies

investigating climate simulations.

There are different approaches to assess added value in

terms of spatial small-scale variability, which refers to the

second category of definitions. Via spatial spectral analysis

(Errico, 1985) of kinetic energy and moisture flux conver-

gence, it was revealed that the RCM increases variability

on smaller scales in comparison to the driving re-analysis

(Rockel et al., 2008a). Using the same spectral technique, it

was found that the sensitivity of a RCM to surface forcing

depends on the implemented convection scheme (Castro

et al., 2005). A special way to evaluate the added value of

a RCM is the so-called ‘Big-Brother Experiment’ (BBE)

(Denis et al., 2002). Here, both a Big-Brother and a Little-

Brother have to be generated by a RCM and compared

afterwards, with the Big-Brother working as a mentor for
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the Little-Brother: First, the high-resolution Big-Brother

data is filtered to remove fine-scale variability. Second, the

filtered Big-Brother is used as a driving dataset for the

Little-Brother. This allows us to evaluate RCM specific

errors. The downside of this method is the high computa-

tional costs. Nevertheless, an important outcome of studies

analysing BBEs is that the merit of a RCM simulation

emerges rather when a large domain is setup than in the

case of a smaller domain. In the first case, more internal

variability on small spatial scales develops compared to the

second case (Laprise et al., 2012).

We follow a third way of defining added value. Added

value is the ability of the regional model to generate

internal variability on temporal frequencies in opposition

to variability that is transferred from the driving model.

The ratio of the univariate spectra of both models �
computed with time series of single grid boxes that have

close to equal locations � shows the increase of variance in

the RCM (Fig. 1). However, we are aiming at investigating

the contribution of the RCM in terms of developing

dynamics on small temporal scales. This kind of approach

is feasible with coherence spectra between both models

(Section 3).

Considering the effective resolution of a circulation

model, which is known from experimental studies on the

mesoscale to be about 4�7 times coarser than the original

grid (e.g. Bierdel et al., 2012), leads to a rough estimate for

the spatial scales. The 50-km horizontal grid spacing of

a RCM runs would result in an effective resolution of

200�350 km. The driving model ECHAM5 has a horizon-

tal resolution of T63, which equals a resolution of 630 km

at the equator in spectral space. Added value would then

be expected at spatial scales from 350 to 600 km. The

corresponding temporal scales with respect to atmospheric

processes lie in a range between 1 h and 1 d (Orlanski,

1975), but this rough estimate for the temporal scales leaves

open the question as to whether the involved regional

model has the ability to develop dynamics on these scales.

In this paper, we address the problem, on which

temporal scales added value can be expected. A method,

based on cross-spectral analysis (Section 3), is proposed to

investigate the potential of a RCM to adapt and self-

generate internal variability. The method is applied to

simulations over East Asia with COSMO-CLM and

ECHAM5. Both a nesting and a double-nesting approach

are analysed (Section 2). The results presented in detail

in Section 4 are discussed in Section 5, with the focus set

on special issues that require further explanations and on

added value of RCM simulations in general. Special

attention is given to a conceptual formulation of the

methodology (Section 6). Section 7 contains concluding

remarks and proposes further applications for the method.

2. Data

The basis for this study is RCM simulations for East Asia

(Fig. 2) performed with the COSMO-CLM (COnsortium

for Small-scale MOdelling�Climate Limited area Model,

Rockel et al., 2008b). The domain covers both tropical and

extra-tropical regions. The centre of the domain is located

above eastern China, where the East Asian Summer

Monsoon dominates the regional climate during summer

(Ding and Chan, 2005; Simon et al., 2013). The model is

integrated on a 0,448grid (about 50 km) and forced by LBC

once every six hours, using a sponge zone with a width of

10 grid points on each side. One run is forced by ECHAM5

20C3M_all run no.32 (hereafter: ECHAM5) (Roeckner,

2005), another one by ECHAM5 A1B run no.3,3 and a

third run by the ECMWF 40 yr Re-analysis (ERA-40)

(Uppala et al., 2005). For further details on the adaption

of COSMO-CLM to the domain and on physical and

numerical parameters, the reader is referred to Wang et al.

(2013). However, an extract of the model parameters is

given in Table 1. Wang et al. (2013) also discussed how

typical summer and winter weather phenomena for East

China are represented in the model. The basic concept of

the analysis is the comparison of the output of the driving

model with the output of the driven model. To this end, the

coarse data (ECHAM5, ERA 40) is bi-linearly interpolated
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Fig. 1. Exemplary ratio of the RCM spectrum and the GCM

spectrum for one grid cell in the Pacific (1408E, 208N) for T850 in

winter taken from the ‘20C’ experiment. The shaded area indicates

the 95% confidence interval.

2The ECHAM5 20C3M_all simulations are driven with anthro-

pogenic forcing (CO2, CH4, N2O, CFCs, O3 and sulphate) and

natural forcing (variable solar forcing and effect of volcanic

aerosols).
3The A1B scenario assumes a balanced mix of energy sources for

the 21st century (Nakicenovic et al., 2000).
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to the grid of COSMO-CLM. For the spectral analysis

(cf. Section 3), only daily mean values were used. The main

focus is set on temperature at 2 m (T_2M), temperature at

850 hPa (T850) and specific humidity at 850 hPa (Q850).

This choice of variables allows us to analyse differences of

the properties at the surface and in the lower atmosphere

(T_2M vs. T850), as well as to account for specific features

for the water cycle (Q850 vs. T850).

In addition to the 0,448 model, a double-nesting

approach has been applied to two smaller regions simulta-

neously. The motivation for the double-nesting approach is

to enter a very fine spatial resolution representing more

details of the topography. The first region is the catchment

of the Haihe river in the Northeast of China, and the

second region is the catchment of the Poyang lake in the

Southeast of China (Fig. 2). The resolution for both of

these domains is 0,06258 (7 km), but the areal extend of

both domains differs. The calculation was run on a

160�160 and a 128�144 grid (excluding the lateral

sponge zone) for the Haihe catchment and the Poyang

catchment, respectively. These simulations were driven by

the output of the 50 km run forced by ECHAM5 20C3M.

Again, the output of the 50 km run is bi-linearly inter-

polated to the grids of the Haihe domain and the Poyang

domain, respectively. As the spatial resolution of the model

is finer � 7 km vs. 50 km � added value is also expected on

shorter time scales. Therefore, the data was taken in a

temporal resolution of one value per hour for this analysis,

which is only available for T_2M. An overview of the

simulations performed for East Asia by COSMO-CLM

and an extract of the model parameters is given in

Table 1.

Fig. 2. Orography [m a.m.s.l.] for the East Asia domain in 0,448resolution. The grey frame indicates the sponge zone. Two subdomains

(North*Haihe, South*Poyang) are highlighted by boxes.

Table 1. Simulations performed with COSMO-CLM for East Asia

Single-nesting Double-nesting Haihe Double-nesting Poyang

Model COSMO_4.8_CLM_11 (and higher)

Horizontal resolution 0,448 (50 km) 0,06258 (7 km)

Horizontal grid size

(excl. sponge zone)

183�147 160�160 128�144

Timestep 150s 60s

Convection scheme Tiedtke

Time interval for

boundary conditions

6 hours

Driving model &

simulated period

ERA40 1971�2000 (CCLM_eval_50km) CCLM_eval_50km 1971�2000 CCLM_eval_50km 1971�1975

ECHAM5_20C3M_all_3 1971�2000
(CCLM_20C_50km)

CCLM_20C_50km 1971�2000 CCLM_20C_50km 1971�1997

ECHAM5_A1B_3 2011�2050
(CCLM_A1B_50km)

CCLM_A1B_50km 2021�2050 CCLM_A1B_50km 2021�2050
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3. Methods

The basis of our methodology is a cross-spectral analysis.

Before the estimation of the spectral parameters can be

applied, the time series should be filtered from obvious

periodic signals, e.g. (semi-) annual cycle and diurnal cycle,

which is done by a standard linear regression model fitted

to the time series at each grid point. For the comparison

between the COSMO-CLM 50 km run and its driving

model, ECHAM5, the purpose of the linear regression is to

detect the annual and semi-annual cycle, as both extra-

tropics and tropics are included in the East Asia domain.

The diurnal cycle is excluded from the time series, as the

data for this comparison is daily mean values.

X ¼ Xm þ Xlt þ Xac þ Xsac þ X 0; X 0�Nð0; r2Þ (1)

The indices m, lt, ac and sac stand for mean, linear trend,

annual cycle and semi-annual cycle, respectively. X? repre-
sents the filtered time series, which will be analysed later.

Both annual cycle and semi-annual cycle are described by

two parameters: amplitude and phase shift of a sine signal

at the annual and semi-annual frequencies. For most

regions, s2 depends on the season, thus X? will be analysed
conditioned on the season. In this analysis (ECHAM5 vs.

COSMO-CLM 50 km), we consider the summer season,

from April to September, and the winter season, from

October to March, which results in about 180 data values

per season and year.

For the comparison between the COSMO-CLM 7 km

runs and its driving model, COSMO-CLM 50 km, hourly

values are available. First, the summer season, from June

to August (JJA), and the winter season, from December to

February (DJF), were selected from the time series. The

selected seasons differ in length compared to the seasons

selected above due to computational aspects. Hourly values

and seasons of three months in length result in about 2160

values per season and year. Second, to detect the diurnal

cycle, a linear regression model has been fitted to each

season individually:

X ¼ Xdc þ X 0; X 0�Nð0; r2Þ (2)

Here, the diurnal cycle term Xdc consists of 24 parameters,

one for each hour of the day. In Section 4, we will see that

the relevant time scale, on which the driven RCM changes

from transfer to generation of variability, is about 1 d. In

order to avoid aliasing effects (Von Storch and Zwiers,

2002) from sampling high frequency signals at low rates,

only temperatures at 2 m, which are available with hourly

resolution, will be analysed for the step from 50 to 7 km

resolution.

To examine this nature of co-variability between the

driving model and the driven model over a continuum of

frequencies, the cross-spectra

CxyðxÞ ¼ F cxy

n o
ðxÞ ¼ AxyðxÞeiUxyðxÞ 8 x 2 �0:5; 0:5½ � (3)

are estimated grid-point wise. Here, F denotes the Fourier

transform, gxy stands for the cross-covariance function of

the time series X and Y. On the right-hand side of eq. (3),

the cross-spectrum is expressed in polar coordinates, where

Axy and Fxy are called amplitude spectrum and phase

spectrum, respectively. However, the amplitude of the

complex cross-spectrum Gxy will be represented as squared

coherency spectrum,

jxyðxÞ ¼
A2

xyðxÞ
CxxðxÞCyyðxÞ

(4)

Gxx and Gyy refer to the univariate spectra of the time series

X and Y, respectively. The coherence is dimensionless

and formally similar to the squared correlation. Thus, the

coherence function can be seen as a linear transfer function

of information from the driving model to the driven model

(Jenkins and Watts, 1968). Due to the experiment setup, a

phase lag of a climate signal occurring in both models is

unexpected and the phase spectrum can be neglected.

Technically, the estimation of the cross-spectrum is based

on bi-variate periodograms. As the pure bi-variate perio-

dogram is not a good estimator for the cross-spectrum,

smoothing techniques have to be applied (Jenkins and

Watts, 1968; Von Storch and Zwiers, 2002). For the

frequency 1/yr, a Daniell spectral estimator was used. For

higher frequencies, the time series was split into blocks of

the same length called chunks. The periodograms computed

individually for each chunk are averaged afterwards in

order to account for different variances s2 of the residual

time series conditioned on the season. To keep the inference

of both the Daniell spectral estimator and the chunk

spectral estimator consistent, it was ensured that both

estimators result in about the same degrees of freedom.

Uncertainty of the estimation is assessed via 95% con-

fidence intervals. For more details on the applied estima-

tors, the reader is referred to Von Storch and Zwiers (2002).

4. Results

The results for the first nesting step, i.e. from ECHAM5 to

COSMO-CLM 50 km, are presented first, followed by the

comparison of COSMO-CLM 50 km and the double-

nesting COSMO-CLM 7 km for the two catchments, Haihe

and Poyang.

Appearing for all examined variables and frequencies

is a red frame along the lateral boundaries (Fig. 3), where

coherence is close to unity. This indicates a strong transfer
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of climate variability at the boundaries, which can be

expected due to the experimental setup. The width of the

red frame varies between the different variables, but is of

the order of the width of the sponge zone, which is 10 grid

boxes at each side in our setup.

For the variables T_2M, T850 and Q850, more varia-

bility in the spatial patterns of coherence at frequency 1/yr

is found in the inner domain (Fig. 3a�c). The field for

T_2M exhibits a pronounced land�sea contrast, with a

strong transfer of variability over the ocean and a weak

transfer over land (Fig. 3a). This is especially apparent for

the tropics with its large islands and the Indochinese

peninsula, but it is also visible in the extra-tropics at the

coastlines of East China, Korea and southern Japan. Here,

one should keep in mind that the sea surface temperature of

ECHAM5 serves as a boundary condition and drives

COSMO-CLM from the ocean. Exceptions to this general

image are found in the higher latitudes of the domain,

where for both land and sea a strong transfer of variability

can be detected, and over the tropical ocean at 58N to 108N
in the eastern part of the domain, where a local minimum

of coherence is located (cf. Section 5).

To investigate the coherence spectrum at this local

minimum over a range of frequencies, we averaged the

2 m temperature, over the box 48N to 98N and 1328E to

1448E, before calculating the spectrum (Fig. 4a). This

procedure also cancels out fine-scale variability. The

coherence is about 0.5 at 1/yr and decreases close to zero

at 1/month. This result matches with the values presented

in the maps. For completeness, the ratio between the

univariate spectra of the two models is also computed

(Fig. 4b). The ratio gives a measure of the absolute

Fig. 3. Grid-point wise coherence between COSMO-CLM (0,448resolution) driven by ECHAM5 20C3M_all run no.3 and ECHAM5

20C3M_all run no.3. The 1st, 2nd and 3rd columns show results for the variables T_2M, T850 and Q850, respectively. The 1st, 2nd and 3rd

rows show results for the frequencies 1/yr, 1/month in summer and 1/month in winter, respectively. The grey frame indicates the sponge

zone. The grey shaded areas within the domain cover mountainous regions, that lie above 850 hPa.
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similarity. Though the variability of T_2M in COSMO-

CLM is higher than in ECHAM5 at the frequency 1/yr, it is

still in the same order.

To give an impression of the uncertainties coming along

with the estimator, a closer look is taken at the 95%

confidence interval for T_2M at the frequency 1/yr (Fig. 5).

The most important feature is the local minimum around

108N in the Pacific, which remains even in the upper bound

of the confidence interval. In the lower bound, the degree

of decoupling is pronounced over East South Asia and the

area South of the equator in the Indic exhibits a local

minimum with values around 0.5.

In the lower troposphere at 850 hPa, the temperature

reveals a slightly different image (Fig. 3b). For most of the

domain, a strong transfer of variability is obviously similar

to T_2M, but the pronounced land�sea contrast over the

tropics has weakened towards higher coherence values over

the land. A possible explanation is the stronger dependence

of T_2M on the parameterisation of land surface processes,

which differs between ECHAM5 and COSMO-CLM and

hence leads to low coherence between the models at 2 m.

Another difference between the spatial pattern of T850 and

T_2M is a shift of the local minimum over the tropical

North Pacific further South closer to the equator. Both

minima are connected vertically, which was checked with a

cross-section at 1358E (figure not shown). Furthermore,

compared to the pattern of T_2M, the transfer of varia-

bility over the Asian landmass is more enhanced. Only very

close to the mountain range, where the temperature at 2 m

coincides with the temperature at 850 hPa, low coherence

values are found.

While variability of temperature at 850 hPa is strongly

dictated by ECHAM5, the variability of specific humidity

at 850 hPa is rather decoupled (Fig. 3c). Even the green

areas (kxy(1/year) �0.5) indicate that still 50% of the

variance in the RCM can be explained by the driving

GCM. However, this finding suggests a decoupling of the

modelled water cycle.

Fig. 5. 95% confidence interval for T_2M at the frequency 1/yr

(Fig. 3a).
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Fig. 4. Analysis of T_2M averaged over the box 48N to 98N
and 1328E to 1448E. (a) Coherence between the time series from

COSMO-CLM driven by ECHAM5 20C3M_all run no.3 and

ECHAM5 20C3M_all run no.3. (b) The ratio between the

corresponding univariate spectra.
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In general, the results for the frequency 1/month (Fig.

3d�i) exhibit that the RCM is decoupled from its driving

model in the inner domain with coherence values B0.25 for

large areas of the domain. The extent of this ‘inner domain’

varies for the different variables and seasons. For summer

(Fig. 3d�f), the areas, for which the driven and the driving

model are decoupled from each other, reach further North

than in winter (Fig. 3g�i); the Asian landmass is covered

with coherence values �0.5 in winter, with the lower

coherence for Q850 over the Indochinese peninsula being

the only exception. Over the Bay of Bengal, both variables

(temperature and humidity) at 850 hPa are influenced by

the driving model stronger in summer (Fig. 3e,f) than

in winter (Fig. 3h,i), which can be associated with the

prevailing southwesterly trade winds in this region.

Similar to the results for the frequency 1/yr, there is a

stronger coupling between ECHAM5 and COSMO-CLM

for a temperature at 850 hPa than for humidity at the

1/month frequency. For Q850, coherence values less than

0.5 extend even to the northeastern part of the domain. In

contrast, the decoupling for T850 is more concentrated

on tropical regions, which is especially true for the winter

(Fig. 3h).

Comparing T_2M and T850 exhibits similar patterns for

the coherence values at the frequency 1/month. However,

the influence of ECHAM5 on the temperature in COSMO-

CLM is slightly stronger at 850 hPa than at the surface.

This is remarkable, as the ECHAM5 SST serves as a

boundary condition for the RCM runs. Parameterized

processes at the surface might cause the strong decoupling

between the surface temperatures in the models.

For the sake of completeness, the results of the cross-

spectral analysis between COSMO-CLM driven by EC-

HAM5 under the A1B scenario reveal nearly the same

spatial coherence pattern as under the 20C conditions

(Fig. 3). All correlations between the 20C coherence pattern

and the corresponding A1B pattern exceed 0.9. This

circumstance should only be mentioned here as it makes

the results for 20C more robust, but a presentation of the

results for A1B in detail can be omitted.

Figure 6 shows an extract of the results gained from

the comparison of the two 7-km domains (namely Haihe

catchment and Poyang catchment) with their driving

counterpart at the 1/48 h frequency. As discussed in the

Methods section, only a temperature at 2 m is analysed.

Similar to the first nesting step, coherence values for

summer (JJA) are smaller than for winter (DJF). This

finding indicates that convective-scale processes typical for

summer are generated in the driven model independent

from the processes passed by the 50-km driving model,

which leads to a decoupling in the surface temperature. The

reason for the decoupling might be found in the different

applicability of the Tiedtke convection scheme on the

different resolutions (Kuell et al., 2007). In contrast, the

large-scale processes typical for winter lead to the transfer

of variability in the surface temperature.

Comparing the coherence distribution in both domains

with each other, we find smaller values for the Poyang

catchment. We suppose that day-to-day variability in the

Poyang basin is dominated strongly by monsoon dynamics,

which is associated with higher variability in small-scale

features, compared to the weather in the Haihe region

(Wang, 2006; Simon et al., 2013). Although a similar dipole

structure is already visible in the results of the first nesting

step (Fig. 3d), the results in Fig. 3 cannot be directly

compared with the results in Fig. 6. These findings are

absolutely independent from each other, as no ECHAM5

information is integrated in the analysis of the second

nesting steps. Another remarkable feature is the band of

relatively low coherence values along the coastline in the

Haihe domain for the JJA season (Fig. 6a), which is a direct

effect of the change from low to high resolution and the

attended better representation of the land�sea mask. In

winter (DJF), where coherence is high for the whole

domain, the minima lie in the mountainous regions. This

is an effect of orography, which is represented more

realistically in COSMO-CLM at higher resolution.

However, the fact that for the Poyang catchment

coherence values less than 0.5 m at the frequency 1/48h

were found for large parts of the domain is a sufficient

condition for an expected added value of further analyses,

such as the application of extreme value theory on weather

extremes associated with a daily time scale (Katz et al.,

2002; Friederichs, 2010). The strong transfer of variability

for the winter months indicates that there is no potential to

expect added value in terms of additional variability on

high temporal frequencies. For completeness, it is tested for

added value in terms of modification of the amplitude of

the input signal. This is done via the ratio of the univariate

spectra of both models (not shown). For our example, this

aspect of added value could be detected at some isolated

spots. Furthermore, our methods provide no sufficient

condition to reject the potential of the RCM to generate

more variability on high spatial frequencies, which can be

assessed by the method presented by Errico (1985).

5. Discussion

In this section, two key aspects will be addressed. On the

one hand, we suggest an explanation for the local minimum

of coherence in the T_2M field for the frequency 1/yr over

the tropical North Pacific. On the other hand, we discuss

transfer and generation of climate variability in RCMs in

general.

In order to investigate the local minimum in Fig. 3a,

we take a closer look at the precipitation distribution

8 T. SIMON ET AL.



generated by COSMO-CLM and ECHAM5, which is

closely related to the dynamics of the inter-tropical con-

vergence zone (ITCZ) (Fig. 7). In this region, with its

dominant easterly trade winds, ECHAM5 directly feeds

COSMO-CLM. A typical feature of ECHAM5 in the

tropical Pacific is the so-called double ITCZ, which is a

well-known phenomenon in most coupled GCMs (Li

et al., 2004). This leads to a northern ITCZ, broadened

and shifted further North compared to observations that

persist throughout the year (Jungclaus et al., 2006). In the

precipitation field of ECHAM5 (Fig. 7b), the northern

ITCZ is clearly visible as a strong rain belt around 108N in

the Pacific.

When this strong precipitation belt enters the RCM

domain, it has to get adapted to the new grid. The

ECHAM5 ITCZ transports a huge amount of moisture

into the COSMO-CLM domain. The major part of this

humid air accumulates close to the boundary, where mean

annual precipitation up to 7000 mm/year is simulated. This

is a strong positive wet bias compared to the mean annual

Fig. 6. Grid-point wise coherence at frequency 1/48h between COSMO-CLM (0,06258resolution) driven by COSMO-CLM ‘20C’

(0,448resolution) and COSMO-CLM ‘20C’ (0,448resolution). The 1st and 2nd columns show the results for COSMO-CLM (0,06258)
adapted to the Haihe catchment and the Poyang catchment, respectively. The 1st and 2nd rows show the results for summer season (JJA)

and winter season (DJF), respectively. The grey frame indicates the sponge zone.
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precipitation in ECHAM5. About 95% of the simulated

precipitation in COSMO-CLM in this region is related to

convective processes, which depend on the applied para-

meterisations. Following the ITCZ in COSMO-CLM to

the East the mean annual precipitation values decrease.

The sign of the bias changes at about 1408E and close

to the Philippines the bias reaches strong negative values.

This finding indicates a strong dissonance between the

convection schemes of the two models. In turn, this could

cause the decoupling (kxy(1/year)�0.5) of the variability of

the 2 m temperature in COSMO-CLM and the variability

of 2 m temperature in ECHAM5. Further parameter

tuning, e.g. adjustment of the Rayleigh sponge damping

layer (Wang et al., 2013), could help to reduce this

dissonance.

We now enter the discussion about transfer and genera-

tion of climate variability in RCMs in general. To this end,

we review the results of a second experimental setup and

examine the coherence spectra between COSMO-CLM

driven by ERA-40 and ERA-40 itself (Fig. 8). The applied

LBC differ from the ones of the ECHAM5 driven experi-

ment, which helps to gain information about the influence

of the LBC versus the potential of the RCM to develop an

independent inner domain. The spatial resolution of ERA-

40 is higher than the spatial resolution of ECHAM5, which

leads potentially to more fine-scale variability that is

directly passed into the regional model.

The results based on ERA-40 (Fig. 8) are similar to the

ones based on ECHAM5 (Fig. 3) with respect to the high

coherence values near the boundaries and on the landmass

Fig. 7. Comparison of mean annual precipitation from COSMO-CLM and ECHAM5 for the period from 1971 to 2000 in mm.

The field of ECHAM5 is bi-linearly interpolated to the COSMO-CLM grid and the sponge frame is added for better visual orientation.

The right-hand plot shows the relative change between COSMO-CLM values and ECHAM5 values, with the darkest red indicating

a relative change of �100% or less.
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in the North and low values in the inner domain, par-

ticularly in the tropics. Strong similarities prevail for the

frequency 1/month, which leads to the conclusion that the

patterns for transfer and generation of variability on this

frequency are mainly based on the model itself, COSMO-

CLM. Stronger differences can be seen at the frequency

1/yr with a distinct feature related to the ITCZ in the

eastern part of the tropics (Fig. 8a). In contrast to

ECHAM5, there is no persistent double ITCZ in ERA-40

and accordingly the associated LBC differ strongly from

each other. Another remarkable feature is the decoupling

of the water cycle (i.e. Q850, Fig. 8c) between COSMO-

CLM driven by ERA-40 and ERA-40, which is even more

pronounced compared to the ECHAM5 case (Fig. 3).

There are different possible explanations for this finding.

On the one hand, this finding might be related to the fact

that intrinsic model noise is abandoned in ERA-40 and

replaced by observational noise. On the other hand, one

could also expect such a difference if the physical para-

meterisations (e.g. boundary layer, shallow convection, etc.)

that affect Q850 differ more between ERA40 and COSMO-

CLM than between ECHAM5 and COSMO-CLM.

The experiment with LBC from ERA-40 reveals that a

dynamical downscaling driven by re-analysis data is con-

ceptually different to a regional re-analysis, which would

include data assimilation on the regional scale. The results

(Fig. 8) show that COSMO-CLM generated variability in

the inner domain by itself. Within a regional re-analysis

framework, this freely developing variability would be

suppressed by the data assimilation.

Finally, although the significance of the presence of self-

generated climate variability cannot be assessed quantita-

tively due to the lack of appropriate test statistics (cf. Section

3), a qualitative statement can be made. Looking at an

Fig. 8. Grid-point wise coherence between COSMO-CLM (0,44 8resolution) driven by ERA-40 and ERA-40. The 1st, 2nd and 3rd

columns show results for the variables T_2M, T850 and Q850, respectively. The 1st, 2nd and 3rd rows show results for the frequencies 1/yr,

1/month in summer and 1/month in winter, respectively. The grey frame indicates the sponge zone. The grey shaded areas within the

domain cover the mountainous regions that lie above 850 hPa and contain only artificial results for T850 and Q850.
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example of a coherence spectrum for one grid cell (Fig. 9), it

is obvious that a decay of coherence takes place over a broad

band of frequencies rather than a sharp drop.

6. Conceptual model

In this section, we are formulating an approach to assess

the analysed aspect of added value theoretically.

The purpose of this method is to find the frequency band

on which the RCM simulations copy the internal variability

of the driving model and on which the RCM potentially

generates internal variability on its own. The first and the

latter frequency bands refer to slow and fast variations in

the time series, respectively. Conceptually, one can imagine

a decomposition as follows:

X 0driving ¼ X 0sv þ X 0n (5)

Y 0driven ¼ Y 0av þ Y 0sgv þ Y 0n; (6)

with the following indices: the driving model (driving),

slow varying variability (sv), noise (n), the driven model

(driven), adapted variability (av), self-generated variability

(sgv). This conceptual model allows us to interpret the

co-variability between Xdriving and Ydriven,

EðX 0drivingY 0drivenÞ ¼ E X 0svY
0
avð Þ þ EðX 0nY 0sgvÞ

þ E X 0svY
0
nð Þ þ E X 0nY 0avð Þ

þ EðX 0svY 0sgvÞ þ E X 0nY 0nð Þ;
(7)

as a function of the time scale. A high correlation can only

be expected between Xgv and Yav All terms, in which noise

is taken into account, the correlation equals zero by

definition. One should keep in mind that Xgv and Yav are

not necessarily truncated at the same frequency, but there

might also be a band of frequencies, which is populated by

both Xgv and Ysgv Therefore, the correlation between Xgv

and Ysgv is not necessarily zero, but rather is expected to

show a decay for the correlation towards shorter time

scales.

Within this framework, it can be considered how a

proper hypothesis testing for the above analysis could be

designed. Usually a coherence value has to be tested against

H0:kxy�0. Considering our conceptual model [eqs. (5) and

(6)], this type of test is not appropriate for our problem.

The question to be answered would be whether the self-

generated internal variability of the driven model is greater

than zero H1:E(Y?sgv
2)�0. Formally, this means to test

H0:E(Y?sgv
2) �0, which cannot be easily assessed.

7. Conclusions

This study introduces a method defining one aspect of

added value in terms of ability of the regional model to

generate variability on its own. With this technique, it is

possible to analyse the temporal scales on which internal

variability is generated by the RCM itself and on which

variability is dictated by the driving model (a GCM in most

cases). This method does not account for added value in

term of a modification of the amplitude of the input signal,

which can be tested by the ratio of the univariate spectra

of the two models. Though not applied in this study,

coherence spectra might also be used in studies dealing with

added value on spatial scales.

An example � COSMO-CLM East Asia � illustrates the

problems that can be assessed with this method. Self-

generated variability was found in the 50-km RCM already

on temporal frequencies between 1/yr and 1/month. In a

second nesting step, i.e. from 50 to 7 km, variability in the

driven model was dictated by the driving model even up to

a day-to-day scale. That is a vast difference of temporal

scales between the two nesting steps. The method was

also applied to COSMO-CLM driven by the re-analysis

ERA-40. The circumstances that the method reveals self-

generated variability in the RCM output make clear

that this simulation is conceptually different to a regional

re-analysis, in which a data assimilation scheme is im-

plemented (e.g. Mesinger et al., 2006).

A straightforward benefit of this method is that it gives

insights in the usability of RCM output for further studies,

e.g. the representation of extreme events (e.g. Katz et al.,

2002; Friederichs, 2010), statistical downscaling (e.g.

Benestad, 2004; Simon et al., 2013). Questions concerning

the influence of numerical parameters on RCM perfor-

mance arising from this study include:

� the sensitivity of the temporal scale between

adapted and self-generated climate variability to

the choice of domain size
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Fig. 9. A exemplary coherence spectrum for one grid cell in

the Pacific (1408E, 208N) for T850 in winter taken from the ‘20C’

experiment. The grey shaded area indicates the 95% confidence

interval.
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� the role of the chosen RCM, i.e. is there a certain

setup supporting the ability of the RCM to generate

variability by its own

� the effect of differences in the LBC, which inserts

systematic errors from the driving model

� the influence of a dynamical ocean component or a

conceptual model like a slab ocean compared to a

prescribed SST.

All of these questions are beyond the scope of this study,

but can probably be assessed by applying the method or

an extension of the method on multi-RCM ensembles,

which are available, e.g. for Europe (EURO-CORDEX,

see Vautard et al., 2013) and Africa (CORDEX-Africa, see

Nikulin et al., 2012) and North America (NARCCAP, see

Mearns et al., 2012).
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ABSTRACT

This study identifies daily Meiyu-like East Asian Summer Monsoon patterns that are linked to precipitation

observations in the Poyang lake catchment. This analysis provides insight into the dynamics of strong, local

precipitation events and has the potential to improve projections of precipitation from coarse-grid numerical

simulations. Precipitation observations between 1960 and 1999 are taken from 13 rain gauges located in the

Poyang lake catchment, which is a sub-catchment of the Yangtze River. The analysis shows that the

observations are linked to daily patterns of relative vorticity at 850 hPa (Vo850) and vertical velocity at

500 hPa (W500) taken from the ERA-40 re-analysis data set. The patterns are derived by two approaches:

(a) empirical orthogonal function (EOF) analysis and (b) rotated EOF analysis. Vo850 and W500 refer to

geostrophic and ageostrophic processes, respectively. A logistic regression connects the large-scale dynamics to

the local observations, whereby a forward regression selects the patterns best suited as predictors for the

probability of exceeding thresholds of 24 h accumulated rainfall at the gauges. The regression model is verified

by cross-validation.

The spatial structure of the detected patterns can be interpreted in terms of well-known meso-a-scale
disturbances called Southwest vortices. Overall, the proposed EOF and rotated EOF patterns are both related

to physical processes and have the potential to work as predictors for exceedance rates of local precipitation in

the Poyang catchment.

Keywords: Poyang catchment, Meiyu belt, East Asian Summer Monsoon, downscaling, precipitation, logistic

regression, EOF

1. Introduction

In summertime, the East Asian Summer Monsoon (EASM)

dominates climate and weather over the Yangtze Basin,

China. The so-called Meiyu rain belt � typically occurring

between early June and mid-July � stretches across the

Yangtze valley and extends east to the southern parts of

Korea and Japan. The Meiyu over the Yangtze is the same

atmospheric phenomenon as the Baiu in Southern Korea

and the Changma in Southern Japan (Wang, 2006).

The heavy rain events caused by the EASM and their

strong variability have a high impact on water resource

management, agriculture, and land use planning (Piao

et al., 2010; Zhang et al., 2012), play an important role in

the reinsurance industry and emergency management

(Zong and Chen, 2000; Zhai et al., 2005; Kron, 2009),

and even affect air quality over China (Zhao et al., 2010a).

This makes the EASM a key factor influencing economic

development in the region. Therefore, it is crucial to

improve our knowledge about processes behind the

EASM and its relation with heavy precipitation events.

Existing EASM indices can be clustered into 4�5 classes

depending on definition and physical basis (Wang et al.,

2008). The processes reflected by these indices are mainly

the thermal contrast between the landmass and the

adjacent seas (Guo, 1983; Webster and Yang, 1992) and

the strength of the subtropical high-pressure system over

the western North Pacific (Wang and Fan, 1999; Li and

Zeng, 2002). However, all of these indices are defined

on the seasonal scale and are thus less suited to reflect

monsoon dynamics on the daily scale. Zhao et al. (2010b)

present a daily scale index based on the difference between

sea level pressure (SLP) anomalies of two boxes, with one

box located over the East China Sea and one over China.
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The Meiyu rain belt is associated with a quasi-stationary

subtropical front separating the warm and moist air located

over the tropical Southern Chinese Sea (SCS) from the

cold and dry air formed over the mid-latitude landmass

(Ding and Chan, 2005; Wang, 2006). This large-scale

synoptic system is further characterized by low-level

vortices, which are generated locally over the Tibetan

plateau, and mainly visible on the 850 and 700 hPa pressure

levels. Vortices that originate over the southeastern part of

the plateau are called southwest vortices (SWVs) as they

build up in the southwest of China (Ding and Chan, 2005).

SWV genesis can be described conceptually as follows. In

spring and even more so in summer, the plateau receives

strong solar radiation leading to strong convective instabil-

ity given sufficient moisture supply. A mesoscale cyclonic

circulation can develop, which supports convection (Wang,

2006). Additionally, baroclinic instability might instigate the

generation of SWVs. The front between the warm and moist

air from the south � or more precisely from the Indochinese

peninsula and the SCS � and the cold and dry air from

the mid-latitudes preconditions the development of SWVs

(Chen andDell’Osso, 1984). SWVsmay take different tracks

through China and the adjacent seas. Most SWVs move

eastward and can cause heavy rainfall in the Yangtze Basin.

Others might take a more northward path and can cause

severe rainfall in northern China (Ding et al., 2001).

SWVs have been investigated many times over the last

three decades. Comprehensive overviews on SWVs can be

found in Wang (2006) and Chang (2004). Several studies

focus on the analysis of SWVs during strong rainfall

periods. The following model-based analyses of SWV

events are of particular relevance: the formation and

propagation of a SVW in July 1979 (Wang and Orlanski,

1987), the atmospheric processes during the Sichuan flood

in July 1981 (Kuo et al., 1988), and the onset of the EASM

in May 1992 (Chang et al., 2000). The latter study also

investigates the role of orography and highlights its

importance for vortex genesis and pathway (Chang et al.,

2000). Tao and Ding (1981) analysed observed heavy

rainfall events during 1931 and 1980 and the relevance of

the Tibetan plateau for the associated atmospheric pro-

cesses. During the GAME/HUBEX field experiment � an

intensive hydrological and meteorological observation

project taking place over eastern China in 1998 and 1999

� strong rainfall occurred over the Yangtze valley, which

could be directly linked to SWVs (Ding et al., 2001).

In order to quantify the relationship between daily local

precipitation and regional monsoon dynamics in a prob-

abilistic context, a statistical downscaling framework

was developed. To this end, we post-process the GCM

dynamics for the following reasons: A grid box of a global

GCM output represents an area of more than 40 000 km2

(Roeckner, 2003; Uppala et al., 2005). Studies investigating

the energy spectra within numerical weather prediction

(NWP) models found an effective resolution of 4�7 grid

boxes (Skamarock, 2004; Bierdel et al., 2012). It is reason-

able to consider a similar effective resolution for GCMs

used for climate scenarios or re-analyses. Unresolved sub-

grid processes like precipitation have to be parameterised

often leading to systematic biases (Murphy, 1999; Wilby

and Wigley, 2000). The uncertainty of GCM output is

only assessable at high computational costs by ensembles

(Schölzel and Hense, 2011). Furthermore, due to the

horizontal resolution, local extreme events are only weakly

depicted in GCM output.

To overcome some of these problems, many studies

choose a dynamical downscaling approach via regional

climate models (RCMs) (Frei et al., 2006; Gao et al., 2008;

Park et al., 2008). RCMs are able to simulate dynamics on a

finer scale, and come up with many benefits; for example,

RCMs are physically motivated and provide a physically

consistent dataset with cross-correlations between the

different atmospheric variables. Nevertheless, new disad-

vantages come up with this approach. A new error source is

introduced by the different ways boundary conditions are

handled (Ebell et al., 2008; Mesinger and Veljovic, 2013)

and sets of parameterisations are selected (Bachner et al.,

2008). In particular, precipitation can show significant

biases (Lindau and Simmer, 2013). Due to the high

computational costs, RCMs are integrated usually with a

one-way-nesting approach. Therefore, teleconnections are

suppressed (Wang et al., 2005). In the case of the EASM,

relevant processes cannot take place, for example, the

interaction between the Meiyu rainbelt and the SST of the

adjacent seas (Wang et al., 2005) or the coupling with ENSO

(Wang et al., 2000).

Statistical downscaling is an alternative way to overcome

some of the above-mentioned drawbacks of GCMs. The

outcome is unbiased as the statistics are trained on obser-

vations. Depending on the target quantity an exceedance

rate model (Zhai et al., 2005), a model for quantiles

(Bremnes, 2004; Friederichs and Hense, 2007) or a descrip-

tion of the full probability density function (PDF) (Benestad

et al., 2012) can be realised. Downscaling can improve the

representation of extremes, especially when extreme value

theory is applied (Bentzien and Friederichs, 2012). Statis-

tical downscaling circumvents the low resolutions of GCMs,

as the statistics are adapted to local measurements. By using

amplitudes of spatial patterns instead of time series of single

grid boxes as predictors, the downscaling approach can

accommodate non-local influences in space and time. Such

approaches are thus termed dynamical-statistical methods

(Benestad, 2004; Maraun et al., 2010).

Besides regression techniques, other methods can be

applied to estimate local PDFs of precipitation. Orlowsky

et al. (2010) applied an analogue resampling scheme to
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observations from the Yangtze valley. Cooley et al. (2007)

used a Bayesian hierarchical model to assess high pre-

cipitation return levels, which can also be used for down-

scaling. Stochastic weather generator techniques are also

very popular in the field of statistical downscaling (Wilby

et al., 1998; Vrac and Naveau, 2007).

In this paper, a statistical downscaling model is proposed,

which predicts the probability of exceeding local precipita-

tion thresholds. As covariates we test spatial patterns

associated with the monsoon dynamics on a daily scale.

Both observational data from rain gauges in the Poyang

catchment and re-analysis data (cf. Section 2) are used for

the derivation of the predictors and the setup of the

statistical model (cf. Section 3). The results of the down-

scaling approach (cf. Section 4) are discussed in Section 5,

with the main focus set on the physical interpretation of the

predictors. Section 6 contains concluding remarks.

2. Data

The study region in China is the catchment of the Poyang

Lake, a sub-catchment of the Yangtze River, located in the

Jiangxi province. This region roughly extends from 1148E to

1198E longitude and from 268N to 308N latitude. Thirteen

rain gauge stations are available, which are located at

altitudes ranging from 30 to 144 m (Fig. 1). Annual precipi-

tation amounts vary from 1435 to 1850 mm with 22�29%
occurring in the major rain season during June and July,

which is associated with the Meiyu rain belt. Therefore, the

focus of this study is set on this season. Daily precipitation

totals from the 13 stations are available from 1960 to 1999.

To link observed precipitation to different atmospheric

properties, the ERA-40 re-analysis, with the resolution of

1,8758�1,8758, is chosen (Uppala et al., 2005). According to

Skamarock (2004) and Bierdel et al. (2012), covariates of the

statistical model should be related to atmospheric dynamics

on larger scales than the grid resolution of ERA-40. There-

fore, a region of ERA-40 has been selected that envelopes the

Poyang catchment spaciously. The corners of the envelope

are 108N, 1008E, 408N and 1308E. The Poyang catchment is

not at the centre of this region, which is slightly shifted to the

southwest as atmospheric disturbances are anticipated to

develop in the southwest before they propagate parallel to

theYangtze valley. The ERA-40 output is taken for the same

period (1960�1999) as station data is available. The follow-

ing abbreviations will be used for the output variables:

UV850 � horizontal windfield at 850 hPa, W500 � vertical

velocity in pressure coordinates at 500 hPa, TCW � total

column water content, Vo850 � relative vorticity at 850 hPa.

The physical motivation for this pre-selection of the vari-

ables is given in the results section.

3. Methods

One aim of this study is to set up a statistical model for the

probability of rainfall threshold exceedance at rain gauges

depending on large-scale predictors. To this end, the rainfall

observations are transformed to binary time series via

y ¼ 0 R24h � u

1 R24h > u;

�
(1)

where R24h is the locally observed 24 h accumulated rainfall

and u denotes the threshold. For the region of interest � the

Poyang catchment in China � the thresholds u�{1,5,10,

25,50}[mm] lead to reasonable exceedance rates (Fig. 2).

To this end the ERA-40 output for the selected area is

processed by emperical orthogonal function (EOF) analysis

(Hannachi et al., 2007). To account for cross-correlations

between the different variables, the fields of different

variables are combined as input to the EOF analysis, i.e.

our data vectors have the spatial dimension nx�ny�nv,

where nx�ny�16 is the number of grid boxes in the x

and y direction and nv is the number of variables, which

depends on how many variables are combined (cf. Fig. 3).

To take account of different units for different variables,

each variable is scaled by its standard deviation, calculated

simultaneously over space and time. The resulting EOFs

have the same length and contain sub-vectors with spatial

patterns for each variable. As EOF analysis is a purely

statistical construct, it does not necessarily result in

physically meaningful patterns (e.g. Dommenget and Latif,

2002). In addition to EOFs, varimax rotated EOFs

(vEOFs) are used as predictors. Basically, the varimax

100 110 120 130
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20

30

40

Fig. 1. Location of the Poyang catchment (light grey area) and

the 13 rain gauges (dark grey points) in China.
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rotation provides more localised patterns than the EOF

analysis and avoids the generation of high-order multi-

poles. The varimax rotation was performed in such way

that, the spatial patterns are no longer orthogonal, but the

coefficient time series are uncorrelated, which is also the

case for the EOFs. Another characteristic of both methods

is that the principal components or EOF/vEOF amplitudes

tend to be normally distributed. A comprehensive overview

of multivariate statistical techniques can be found in Wilks

(2011) and Von Storch and Zwiers (2002). Deeper insights

into EOFs are given by Jolliffe (2002).

To combine the binary time series of rainfall events

above a given threshold [eq. (1)] with the EOF/vEOF

patterns, a logistic regression is applied, which assumes that

the events are drawn from a Bernoulli-distributed random

variable Y �{y�0, y�1} and Y�Be(p) �py(1 �p)1 �y.

Here, p is the exceedance probability of the rainfall event.

The logistic regression assumes a linear model between the

logit transformed exceedance probability p and the pre-

dictor values,

log
pi

1� pi

 !
¼ b0 þ

Xm

j¼1

xijbj ; (2)

where pi denotes the probability of threshold exceedance,

xi1,. . .,xim the predictor time-series and b0,b1,. . .,bm the

model parameters. The log-likelihood for a Bernoulli-

distributed random variable is expressed by

lðp; yÞ ¼
Xn

i¼1

yi log
pi

1� pi

 !
þ logð1� piÞ

" #
(3)

in combination with eq. (2) (McCullagh and Nelder, 1989,

chap. 4). The estimation of the model parameters

b0,b1,. . .,bm is performed by the R function glm() (R

Development Core Team, 2011), as the logistic regression is

a special case of a generalised linear model (GLM).

As the decomposition techniques (EOF and vEOF)

still generate an awkward number of effective modes

(Bretherton et al., 1999, eq. 4), a selection of covariates

has to be performed in order to avoid over-fitting. This

selection is divided into two parts. In the first part a

forward selection is performed. Each pool of potential

predictors includes principal components of one EOF or

vEOF analysis. At each step, the best yet unselected

covariate maximising the log-likelihood is added until no

further covariates remain. As the second part of the

selection, a stopping rule for the predictor chain has to

be found. This is achieved by testing each model on a set of

independent data via cross-validation. The predictor chain

would be truncated at the point where the skill of the model

does not increase with the addition of more predictors

(Wilks, 2011, chap. 7.4). More details of the application of

the stopping rules are given further on.

To avoid conflicts with temporal autocorrelations of

the EASM, a four-fold cross-validation (Michaelsen, 1987;

Efron and Tibshirani, 1993) is performed with four sets

with 30 yr training periods and one decade for verification.

This timescale is chosen as the EASM is strongly linked to

ENSO varying with a period of 3�7 yr (Neelin et al., 1998;

Wang et al., 2000). The cross-validation includes the

following steps: a) EOF analysis of ERA-40 data for the

training period, b) forward regression via log-likelihood to

determine the order of the covariates, c) calculation of skill

scores from the independent part of the data, and d)

averaging the skill scores over the four verification decades.

number of EOF−timeseries as predictors
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Fig. 3. Comparison of different setups for the EOF analysis and

the subsequent forward regression. Each box-whisker-plot shows

the distribution of the Brier skill score over all stations in the

catchment. These results are based on a threshold of u �25 mm.

The letters refer to the different input sets: A � UV850, B � W500,

C � TCW, D � Vo850, E � Vo850 and W500, F � Vo850 and

W500 and TCW. Note: The boxes are grey shaded only for visual

convenience.
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Fig. 2. Climatological exceedance rates conditional on the

different thresholds. Each box contains the expectation values E(y)

for the 13 stations.
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This strategy does not only validate the statistical model

itself but also the derivation of the predictor time-series by

EOF analysis (Von Storch and Zwiers, 2002; Hastie et al.,

2008).

In the following sections, the goodness of the models

is expressed by the Brier skill score (BSS) (Brier, 1950;

Gneiting et al., 2007)

BSS ¼ 1� BS

BSref

; with BS ¼ 1

n

Xn

i¼1

ðpi � yiÞ
2
; (4)

where BSref is the Brier score of the climatology E(y). In

addition, as the probability of exceeding the 90% quantile

(cf. Fig. 2) is modelled, the Winkler score is applied

(Winkler, 1994; Gneiting et al., 2007),

WS ¼ 1

n

Xn

i¼1

ðc� yiÞ
2 � ðpi � yiÞ

2

ðc�Hðpi � cÞÞ2
; (5)

where H is a heavyside function, which is zero for pi5c and

one for pi�c. The value of c � (0,1) works as a reference

probability. The WS is an asymmetric scoring rule and

serves as an additional verification for models, for which

the climatological exceedance rate is far away from

E(y) �0.5 (cf. Fig. 2). Note that eq. (5) shows a special

case of the WS derived from the BS. In general, the WS

could also be derived from any other score. As a reference

for the scoring rules, the mean probability over the training

period (‘‘climate’’) is chosen (Fig. 2). All scoring rules

applied in this study are strictly proper scoring rules, which

means that the scoring rule is maximised if and only if the

forecast equals the observation (Gneiting et al., 2007).

For a more detailed validation of a statistical model the

reliability diagram is calculated, which exhibits the joint

distribution of forecast and observation via calibration-

refinement factorisation. For each pre-defined forecast

probability pk�{0.05,0.15,. . .,0.95}, both the conditional

probability that an event has been observed Pr(y �1jpk)
and the relative frequency of a forecast probability Pr(pk)

are calculated. The conditional probability and the relative

frequency are called calibration curve and refinement

curve, respectively. The calibration curve of a perfectly

calibrated model lies exactly on the diagonal. The model

has a high confidence, if the refinement curve exhibits a
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Fig. 4. Comparison of the symmetric Brier skill score (dark grey

shaded boxes) and the asymmetric Winkler skill score (light grey

shaded boxes) conditioned on the different thresholds. Each

box-whisker-plot shows the distribution of one skill score over all

stations in the catchment. The first and the third EOF mode of the

set Vo850 and W500 were used as predictors.
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Fig. 5. Validation of the probability of threshold exceedance

model with Vo850 and W500 as input variables of the EOF

analysis. The predicted was calculated from the precipitation

observations at Yushan (No. 58634) with the threshold u�25 mm

[cf. eq. (1)].
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U-shape. That means, very low and very high probabilities

are predicted in the majority of cases (Wilks, 2011).

4. Results

Different sets of ERA-40 output variables are compared as

input for the downscaling procedure, i.e. the EOF analysis

and the forward regression. The variables are either well

known for describing monsoon dynamics on the seasonal

timescale [UV850 cf. Wang and Fan (1999)] or typical

variables for downscaling precipitation [W500, TCW,

Vo850 cf. Friederichs and Hense (2007)]. To consider

cross-correlations between variables, they are combined

as input for the EOF analysis. The resulting principal

components are also tested as predictors for the logistic

regression. It was found that a combination of Vo850 and

W500 performs best while no gain in skill is achieved by

adding TCW to the set (Fig. 3). Models with no predictors

lead automatically to the climatological exceedance rates

(Fig. 2) and therefore result in zero skill. Not all tested

combinations are shown in Fig. 3.

To gain more insight into the (skill) scores conditioned

on the chosen threshold, the dependence of both the

symmetric BSS and the asymmetric WS on the threshold

is shown in Fig. 4. Each boxplot exhibits the distribution of

(skill) scores over the 13 stations in the Poyang catchment

after performing the cross-validation. Two predictors of

the common EOF analysis of the variables Vo850 and

W500 are used as covariates (more details on the selection

are given in the next paragraph). Therefore, the BSS

boxplot for u�25 mm in Fig. 4 is equal to the boxplot

with two predictors of group E in Fig. 3. The BSS decreases

for higher thresholds as low-probability events are con-

sidered at high thresholds (Fig. 2). In contrast, the WS

increases for higher thresholds, because it accounts for the

asymmetric character of the response time series with high

thresholds. Note, all models in this figure are significant at

a 1% level with respect to climatology, which was checked

by a likelihood-ratio test.

Two aspects of the cross-validation are analysed in detail:

The effect of adding predictors to a statistical model and the

spread of skill and reliability resulting from the cross-

validation method. The results, shown in Fig. 5, refer to the

station at Yushan (No. 58634) and a threshold of u�25

mm. The skill increases with increasing numbers of pre-

dictors (Fig. 5a). The maximum in the cross-validation

curve, from which a truncation criterion for the predictor

chain would be expected, occurs between 15 and 20

predictors. However, the strong increments of the first

two selected predictors, referring to the 1st and 3rd EOF,

show the major relevance of these patterns in terms of

precipitation exceeding a specified threshold. The ongoing

improvement of skill indicates that not all relevant processes

for rainfall events can be reduced to a small number of

modes. A further and even stronger indication for the major

relevance of these two modes and a truncation of the

predictor chain after these modes is that the 1st and 3rd

EOF are selected first during the forward regression for

nearly all stations in the catchment (Table 1) and thresholds

(not shown). The reliability diagram (Fig. 5b) for the model

with the 1st and 3rd EOFs as predictors is reasonably good.

The calibration curve lies on the diagonal, but exhibits also

some over-estimation of the model conditioned on the

forecast probability 0.6BpkB0.8. The refinement curve

shows that the forecast probability lies between 0 and 0.1 in

the majority of cases, but lacks a peak in the box for the

highest forecast probabilities.

The spatial patterns of the modes with major relevance in

the statistical analysis can be related to EASM dynamics.

Figures 6 and 7 show the 1st and 3rd EOF, respectively.

Table 1. Order of selected EOF-predictors for all 13 stations in the Poyang lake catchment. The threshold is set to u�25 mm for all

stations

Station name (ID) Sequence of selected EOF predictors

Xiushui (57598) 1 3 7 2 14 15 11 �
Yichun (57793) 1 3 10 7 12 13 4 �
Jian (57799) 1 3 20 13 24 12 18 �
Suichuan (57896) 1 3 2 6 11 7 22 �
Ganzhou (57993) 1 6 2 13 3 20 8 �
Poyang (58519) 1 3 7 15 2 5 24 �
Jingdezhen (58527) 1 3 7 15 2 5 10 �
Nanchang (58606) 1 3 7 15 10 9 14 �
Zhangshu (58608) 1 3 15 7 12 17 10 �
Guixi (58626) 1 3 15 4 20 7 22 �
Yushan (58634) 1 3 15 24 14 13 7 �
Nancheng (58715) 1 3 15 12 4 20 24 �
Guangchang (58813) 1 3 13 2 20 12 6 �
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These modes were selected for all stations as first and

second predictor with only one exception (Table 1). For the

station in Ganzhou (No. 57993), the 6th mode was selected

as second predictor. Furthermore, these two predictors led

to the strongest increase of the scores (Fig. 5a). The vertical

velocity field of the 1st EOF exhibits a strong pole over the

Yangtze valley extending to the adjacent sea. The sign

convention is chosen such that a negative spatial amplitude

combined with a positive temporal amplitude indicates

rising motion. Similarly located is a band of positive

relative vorticity that is through the same sign convention

associated to cyclonic disturbances. Rising motion and

cyclonic disturbances are typical synoptic features of SW

vortices as described in the introduction. However, there is

a strong counter-pole in both fields over the SCS. Though

this counter-pole is part of the 1st EOF, neither the relative

vorticity nor the vertical velocity over the SCS can be

associated with any process related to the EASM.

The 3rd EOF (Fig. 7) exhibits a composition of vertical

velocity and relative vorticity over the Yangtze valley

similar to the 1st EOF, but with a slightly different angle

of its main axis. This belt is also located over the Yangtze

valley, but its extension partly covers Southern Korea.

It has more southwest to northeast direction in contrast to

the belt in the 1st EOF, which is almost W�E aligned and

does not cover Southern Korea. Furthermore, the pole in

the 3rd EOF extends to a horseshoe-like pattern further

south into the SCS. The horseshoe appears for both Vo850

(blue) and W500 (red).

Figure 8 shows the model response to the predictors

derived from ERA-40 from the year 1998. This year is

particularly interesting as a great flood occurred along the

Yangtze River (Zong and Chen, 2000). The models for the

different thresholds were trained on the period from 1960

to 1989. The good performance of the model � and with it

the quality of the predictors � is obvious. As the same
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Fig. 6. The first EOF mode of ERA-40 output variables relative

vorticity at 850 hPa and vertical velocity at 500 hPa. Explained

variance 8.3%.
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Fig. 7. The third EOF mode of ERA-40 output variables

relative vorticity at 850 hPa and vertical velocity at 500 hPa.

Explained variance 4.4%.
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predictors were used for the model with different thresh-

olds, no artificial crossing of the predicted probability

curves occurs.

The varimax rotation of the first 25 EOF patterns leads

to another decomposition of the data. The first 25 patterns

were passed to the rotation, because that is the number of

effective modes of the corresponding EOFs (Bretherton

et al., 1999, derived by eq. 4). Again a forward selection is

applied. Fig. 9 exhibits the BSS dependent on the number

of predictors in the order that was determined by the

forward selection. In contrast to the result of the forward

regression with the EOF predictors, only one predictor with

major impact can be found. The second vEOF mode was

selected as first covariate throughout the stations, before

the forward selection starts picking covariates in an

arbitrary order that leads only to small increases in skill.

The reliability curve correspond to the logistic model with

one rotated EOF-predictor (Fig. 9b). The calibration curve

exhibits a slight over-estimation for forecast probabilities

greater than 0.4. Like the refinement curve of the EOF

model (Fig. 5), the refinement curve of the varimax model

lacks a peak for high forecast probabilities. However,

overall the reliability diagram looks reasonable good.

The spatial pattern of the selected varimax mode display

the already described relation between vertical velocity on

500 hPa and relative vorticity at 850 hPa (Fig. 10). The

pattern is similar to the structure of the 1st EOF, but with

the extension to the east less pronounced. However, the

counter-pole over the SCS has vanished. Therefore, the

spatial structure is more interpretable in a synoptic sense

(cf. Discussion).

5. Discussion

With the combination of rising motion (W500) and cyclonic

disturbances (Vo850) on the meso-a-scale, both EOF pre-

dictors (Figs. 6 and 7) and the varimax predictor (Fig. 10)

are consistent with the concept of SWVs discussed above.

As SWVs propagate along different paths through East

China, the orientation of the main axis of the Meiyu rain

belt vary also. However, the main axis of each predictor

pattern coincides with potential paths of the vortices and

therefore with the location of the Meiyu rain belt (Ding and

Chan, 2005; Wang, 2006). The SWVs develop over the

southwestern part of the Tibetan plateau forced by en-

hanced radiative input. Afterwards, the vortices travel

within the Meiyu belt often causing heavy rainfall events.

Relative vorticity and vertical velocity refer to geos-

trophic and ageostrophic processes, respectively. The

statistical link found between both dynamical patterns

and local precipitation comes with a physical meaning.

Locally available precipitable water is not sufficient for the

generation of heavy rainfall events (Trenberth et al., 2003).

Therefore, other processes acting on a specific time scale

have to play a crucial role for their generation. One of these

important processes for heavy precipitation events in the

Poyang catchment are the SW vortices. This relation is

made clear by the performance of statistical models linking

observed precipitation occurrence and predictors that

quantify the strength of SW vortices.

The SWVs can also be found in the horizontal windfield

at 850 hPa (UV850) by analysing single events (cf.

Supplementary Material). However, it was not possible to
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extract a SWV-like pattern from UV850 by an EOF

analysis. The leading EOF mode of UV850 (explained

variance of 23.3%) is related to the suptropical high over

the western North Pacific and therefore similar to the index

of Wang and Fan (1999).

In order to verify the physical meaning of the spatial

pattern introduced above, a simple box correlation analysis

is applied [cf. Dommenget and Latif (2002)]. The vertical

velocity is averaged for the grid boxes covering the Poyang

catchment. This area is highlighted by a box in Fig. 11b. The

gridpoint-wise correlations of relative vorticity on 850 hPa

and vertical velocity on 500 hPa (Fig. 11) exhibit nearly the

same pattern as the varimax predictor with a correlation

of �0.88 between both patterns. (Note: By construction the

sign of the varimax pattern is arbitrary. Therefore, the sign

of the correlation is unimportant.) This finding supports

the hypothesis that varimax pattern can be linked to the

synoptical processes driving (heavy) precipitation events in

the Poyang catchment.

What is the drawback of the varimax predictor model,

despite its higher physical relevance? After all, the skill score

for the one varimax predictor model is slightly less than for

the two EOF predictor model. The EASM is a complex

system. A model including too many simplifications � like

the reduction to one predictor � might not supply enough

degrees of freedom to cope with the high dimensionality of

the system.

In the end, it comes down to a trade-off between

amplitude (rotated EOF) and variability (EOF). A single

predictor can only account for variations in the strength

of the pattern. This works well with the varimax pattern
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(Fig. 10), as it represents an isolated process. However, a

single predictor cannot consider more complex variations

like a tilt in the main axis of the rain belt. This variability of

the Meiyu belt, which can extend over East Asia with a

nearly W�E direction or can be tilted further North in its

eastward extension, is described in detail by Ding and Chan

(2005). The linear combination of the two EOF patterns

(Figs. 6 and 7) can account for such variability as the two

convection belts in the EOFs exhibit different angles.

As a conclusion, each of the predictor set comes with its

own benefits and drawbacks. This conclusion is corrobo-

rated by the correlation between the linear predictor [the

right hand side of eq. (2)] of both sets, which does not exceed

0.55. There is a subset for which one method outperforms

the other and vice versa: The EOF set is able to cope with

the variability of the main axis of the Meiyu belt, but gets

disturbed by structures over the SCS, which cannot be

associated to processes causing precipitation over the

Yangtze valley. Instead, the varimax pattern can be fully

interpreted in terms of Meiyu dynamics, but is unable

to account for the high dimensional variability in the

pattern.

In an application, one would probably neglect the

differences in physical interpretation between EOF and

rotated EOF predictors and truncate the predictor chain

when it reaches its maximum in skill. Note, that if the

leading 25 principal components are used as predictors for

a model, the skill of the model would be equal to the skill of

a model with the 25 modes of the corresponding varimax

set. However, one aspect of this study was to show how the

physical meaning of the leading predictors depends on the

underlying method (EOF vs. rotated EOF). Furthermore,

in some applications one might want to keep the physical

meaning in order make the application interpretable in

terms of EASM dynamics on daily scale.

6. Conclusion

A variety of downscaling techniques have been introduced

over the last two decades (e.g. Wilby et al., 1998; Benestad,

2004; Friederichs and Hense, 2007; Vrac and Naveau,

2007). It is now up to the climate research community to

select physically meaningful predictors (Maraun et al.,

2010; Wilks, 2011). This study presents spatial patterns to

explain the dynamics of the EASM on the daily scale.

Furthermore, a statistical model for the probability of local

precipitation exceeding a certain threshold was set up,

taking advantage of these predictors. A cross-validation

experiment is performed to verify the overall downscaling

scheme � not only the relation between the response and

the predictor, but also the generation of the predictor time

series, which is the identification of atmospheric processes

in the re-analysis output.

It is shown that downscaling procedures should not be

treated like a black box, but still require a sensitive analysis

of the single steps: Quality assurance of observational data,

model selection and predictor selection. This paper dis-

cusses two strategies for the latter step. EOF analysis and

varimax rotation of the EOF patterns were used to extract

predictors from re-analysis output. Though both techni-

ques lead to skilful predictors, the physical meaning of

the patterns with major relevance differs from one to the

other technique. The EOFs can account for variability of

the direction of the Meiyu belt. In contrast, the time series

corresponding to the varimax pattern represents the

amplitude of an isolated process.

The method presented can be extended to any down-

scaling of binary events. This can be either a direct binary

event like specific complex atmospheric phenomena, which

have been observed or not, such as the transition of

tropical depressions into tropical cyclones. Similar as in
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velocity over Poyang (box).

10 T. SIMON ET AL.



our presentation, any continuous variable can be trans-

ferred to a binary time series by applying a threshold.

Hereby, the threshold does not necessarily agree with a

high quantile, but it can be set to any other user relevant

level such as above/below normal, which is important in

seasonal forecasting. Even the forecasting of non-meteor-

ological events like the occurrence of certain phenological

phases, e.g. the flowering of cherry trees on a specific day

in spring, can be treated through logistic regression in

combination with pattern-based covariates to predict the

event.
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Uppala, S., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V.

and co-authors. 2005. The era-40 re-analysis. Q. J. Roy. Meteor.

Soc. 131(612), 2961�3012.
Von Storch, H. and Zwiers, F. 2002. Statistical Analysis in Climate

Research. Cambridge Univ Pr.

Vrac, M. and Naveau, P. 2007. Stochastic downscaling of

precipitation: from dry events to heavy rainfalls. Water Resour.

Res. 43, W07402.

Wang, B. 2006. The Asian Monsoon. Springer Verlag, Berlin.

Wang, B., Ding, Q., Fu, X., Kang, I., Jin, K. and co-authors.

2005. Fundamental challenge in simulation and prediction of

summer monsoon rainfall. Geophys. Res. Lett. 32(15), L15711.

Wang, B. and Fan, Z. 1999. Choice of south Asian summer

monsoon indices. B. Am. Meteorol. Soc. 80, 629�638.
Wang, B. and Orlanski, I. 1987. Study of a heavy rain vortex

formed over the eastern flank of the Tibetan plateau. Mon

Weather Rev. 115(07), 1370�1393.
Wang, B., Wu, R. and Fu, X. 2000. Pacific-East Asian teleconnec-

tion: How does enso affect East Asian climate? J. Climate. 13(9),

1517�1536.
Wang, B., Wu, Z., Li, J., Liu, J., Chang, C. and co-authors. 2008.

How to measure the strength of the East Asian summer

monsoon. J. Climate. 21(17), 4449�4463.
Webster, P. and Yang, S. 1992. Monsoon and ENSO: selectively

interactive systems. Q. J. Roy. Meteor. Soc. 118(507), 877�926.
Wilby, R. and Wigley, T. 2000. Precipitation predictors for

downscaling: observed and general circulation model relation-

ships. Int. J. Climatol. 20(6), 641�661.
Wilby, R., Wigley, T., Conway, D., Jones, P., Hewitson, B. and

co-authors. 1998. Statistical downscaling of general circulation

model output: A comparison of methods. Water Resour. Res.

34(11), 2995�3008.
Wilks, D. 2011. Statistical Methods in the Atmospheric Sciences.

Vol. 100. Academic Press, Boston.

Winkler, R. 1994. Evaluating probabilities: asymmetric scoring

rules. Manage Sci. 40, 1395�1405.
Zhai, P., Zhang, X., Wan, H. and Pan, X. 2005. Trends in total

precipitation and frequency of daily precipitation extremes over

China. J. Climate. 18(7), 1096�1108.
Zhang, Q., Sun, P., Singh, V. and Chen, X. 2012. Spatial-temporal

precipitation changes (1956�2000) and their implications for

agriculture in China. Global Planet Change 82, 86�95.
Zhao, C., Wang, Y., Yang, Q., Fu, R., Cunnold, D. and

co-authors. 2010a. Impact of East Asian summer monsoon on

the air quality over China: view from space. J. Geophys. Res.

115, D09301.

Zhao, P., Zhu, Y. and Zhang, Q. 2010b. A summer weather index

in the East Asian pressure field and associated atmospheric

circulation and rainfall. Int. J. Climatol. 32, 375�386.
Zong, Y. and Chen, X. 2000. The 1998 flood on the Yangtze,

China. Nat. Hazards. 22(2), 165�184.

12 T. SIMON ET AL.







BONNER METEOROLOGISCHE ABHANDLUNGEN
Herausgegeben vom Meteorologischen Institut der Universität Bonn durch Prof. Dr. H. FLOHN (Hefte
1-25), Prof. Dr. M. HANTEL (Hefte 26-35), Prof. Dr. H.-D. SCHILLING (Hefte 36-39), Prof. Dr. H.
KRAUS (Hefte 40-49), ab Heft 50 durch Prof. Dr. A. HENSE.

Heft 1-39: siehe http://www2.meteo.uni-bonn.de/bibliothek/bma.html

Heft 40: Hermann Flohn: Meteorologie im Übergang Erfahrungen und Erinnerungen (1931-1991).
1992, 81 S. + XII. e 23

Heft 41: Adnan Alkhalaf and Helmut Kraus: Energy Balance Equivalents to the Köppen-Geiger
Climatic Regions. 1993, 69 S. + IX. e 19

Heft 42: Axel Gabriel: Analyse stark nichtlinearer Dynamik am Beispiel einer rei- bungsfreien 2D-
Bodenkaltfront. 1993, 127 S. + XIV. e 30

Heft 43: Annette Münzenberg-St.Denis: Quasilineare Instabilitätsanalyse und ihre Anwendung
auf die Strukturaufklärung von Mesozyklonen im östlichen Weddellmeergebiet. 1994, 131 S.
+ XIII. e 33

Heft 44: Hermann Mächel: Variabilität der Aktionszentren der bodennahen Zirkulation über dem
Atlantik im Zeitraum 1881-1989. 1995, 188 S. + XX. e 48

Heft 45: Günther Heinemann: Polare Mesozyklonen. 1995, 157 S. + XVI. e 46

Heft 46: Joachim Klaÿen: Wechselwirkung der Klima-Subsysteme Atmosphäre, Meereis und Ozean
im Bereich einer Weddellmeer-Polynia. 1996, 146 S. + XVI. e 43

Heft 47: Kai Born: Seewindzirkulationen: Numerische Simulationen der Seewind- front. 1996, 170 S.
+ XVI. e 48

Heft 48: Michael Lambrecht: Numerische Untersuchungen zur tropischen 30-60-tägigen Oszillation
mit einem konzeptionellen Modell. 1996, 48 S. + XII. e 15

Heft 49: Cäcilia Ewenz: Seewindfronten in Australien: �ugzeuggestützte Messungen und Model-
lergebnisse. 1999, 93 S. + X. e 30

Heft 50: Petra Friederichs: Interannuelle und dekadische Variabilität der atmosphärischen Zirkula-
tion in gekoppelten und SST-getriebenen GCM-Experimenten. 2000, 133 S. + VIII. e 25

Heft 51: Heiko Paeth: Anthropogene Klimaänderungen auf der Nordhemisphäre und die Rolle der
Nordatlantik-Oszillation. 2000, 168 S.+ XVIII. e 28

Heft 52: Hildegard Steinhorst: Statistisch-dynamische Verbundsanalyse von zeitlich und räumlich
hoch aufgelösten Niederschlagsmustern: eine Untersuchung am Beispiel der Gebiete von Köln
und Bonn. 2000, 146 S. + XIV. e 25

Heft 53: Thomas Klein: Katabatic winds over Greenland and Antartica and their interaction with
mesoscale and synoptic-scale weather systems: three-dimensional numerical models. 2000, 146
S. + XIV. e 25

Heft 54: Clemens Drüe: Experimentelle Untersuchung arktischer Grenzschichtfronten an der Meereis-
grenze in der Davis-Straÿe. 2001, 165 S. + VIII. e

Heft 55: Gisela Seu�ert: Two approaches to improve the simulation of near surface processes in
numerical weather prediction models. 2001, 128 S. + VI. e 25

Heft 56: Jochen Stuck: Die simulierte axiale atmosphärische Drehimpulsbilanz des ECHAM3-T21
GCM. 2002, 202 S. + VII. e 30

Heft 57: Günther Haase: A physical initialization algorithm for non-hydrostatic weather prediction
models using radar derived rain rates. 2002, 106S. + IV. e 25

Heft 58: Judith Berner: Detection and Stochastic Modeling of Nonlinear Signatures in the Geopo-
tential Height Field of an Atmospheric General Circulation Model. 2003, 157 S. + VIII. e 28

Heft 59: BerndMaurer: Messungen in der atmosphärischen Grenzschicht und Validation eines mesoskali-
gen Atmosphärenmodells über heterogenen Landober�ächen. 2003, 182 S. + IX. e 30



Heft 60: Christoph Gebhardt: Variational reconstruction of Quaternary temperature �elds using
mixture models as botanical � climatological transfer functions. 2003, 204 S. + VIII. e 30

Heft 61: Heiko Paeth: The climate of tropical and northern Africa � A statistical-dynamical analysis
of the key factors in climate variability and the role of human activity in future climate change.
2005, 316 S. + XVI. e 15

Heft 62: Christian Schölzel: Palaeoenvironmental transfer functions in a Bayesian framework with
application to Holocene climate variability in the Near East. 2006, 104 S. + VI. e 15

Heft 63: Susanne Bachner: Daily precipitation characteristics simulated by a regional climate model,
including their sensitivity to model physics, 2008, 161 S. e 15

Heft 64: Michael Weniger: Stochastic parameterization: a rigorous approach to stochastic three-
dimensional primitive equations, 2014, 148 S. + XV. open access1

Heft 65: Andreas Röpnack: Bayesian model veri�cation: Predictability of convective conditions
based on EPS forecasts and observations, 2014, 152 S. + IV. open access1

Heft 66: Thorsten Simon: Statistical and Dynamical Downscaling of Numerical Climate Simulations:
Enhancement and Evaluation for East Asia, 2014, 48 S. + LXXVII. open access1

1Available at http://hss.ulb.uni-bonn.de/fakultaet/math-nat/





Meteorologisches Institut

Mathematisch Naturwissenschaftliche Fakultät

Universität Bonn


