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Abstract 

The neural cell adhesion molecule (NCAM) plays an important role during brain development 

and in adult brain. NCAM functions through interactions with several proteins leading to 

intracellular signal transduction pathways ultimately causing cellular proliferation, 

differentiation, migration, survival, and neuritogenesis. This thesis aimed for the identification 

of novel, yet unknown intracellular interaction partners of NCAM to further understand the 

mechanisms underlying NCAM’s role in the brain. 

Purified intracellular domains of human NCAM180 or NCAM140 were applied onto a protein 

macroarray containing 24000 expression clones of human fetal brain. Using this approach, 

several novel potential interaction partners were detected, including ubiquitin carboxyl-

terminal hydrolase isozyme L1, ubiquitin-fold modifier-conjugating enzyme 1, and kinesin 

light chain 1 (KLC1). KLC1 is part of kinesin-1, a motor protein that transports cargoes 

towards the plus end of microtubules in axons and dendrites. As the transport mechanism of 

NCAM in neurons is still unknown, the potential role of kinesin-1 in NCAM trafficking was 

specifically interesting and analyzed in detail herein. 

The interaction of NCAM and KLC1 was verified in mouse brain tissue by co-

immunoprecipitation. Co-localization studies in Chinese Hamster Ovary (CHO) cells 

overexpressing NCAM and kinesin-1 and in primary hippocampal neurons revealed an 

overlap of NCAM with subunits of kinesin-1. 

Functional studies showed that significantly more NCAM was delivered to the cell surface in 

NCAM and kinesin-1 overexpressing CHO cells. This effect was inhibited by excess of free 

full-length intracellular domain of NCAM as well as by several shorter peptides thereof. This 

showed that the intracellular domain of NCAM is required for the transport of NCAM to the 

cell surface. Further studies were carried out in primary cortical neurons. Whereas the 

kinesin-1 dependent transport of NCAM seemed to be mediated constitutively in CHO cells, 

the amount of cell surface NCAM significantly increased only after antibody-stimulated 

NCAM endocytosis in primary cortical neurons. In agreement, co-localization of internalized 

NCAM and KLC1 was observed in these neurons.  

Finally, an 8 amino acid sequence within the intracellular domain of NCAM was identified in 

an ELISA to be sufficient to directly interact with KLC1. The KLC1-binding region within 

NCAM overlaps with the domain responsible for binding to p21-activated kinase 1 (PAK1) 

which was shown to compete with KLC1 for binding to NCAM in a pull-down assay. This 

competition may provide a regulatory mechanism for the interaction between NCAM and 



 

KLC1 and could potentially be involved in the detachment of NCAM from KLC1 after delivery 

to the cell surface.  

Knowledge of the exact transport mechanism of NCAM will contribute to an advanced 

understanding of the underlying mechanisms of its functions during brain development and in 

adult brain. 
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Introduction 1 

 

1. Introduction 

1.1. Cell adhesion molecules 

Cell adhesion is crucial for the development and maintenance of tissue structures and 

multicellular organs. In mammals, several families of cell adhesion molecules (CAMs), which 

are typically transmembrane glycoproteins, mediate interactions on the cellular surface or 

between two opposing surfaces (Gumbiner, 1996). They are involved in cell-cell adhesion to 

ensure adequate communication and also the binding between cells and extracellular matrix 

(ECM) proteins. Furthermore, CAMs are known to trigger intracellular events and to be 

involved in cellular processes, such as migration, differentiation, proliferation, and cell death 

(Rojas & Ahmed, 1999). Especially in the nervous system, CAMs play a pivotal role in 

development, maturation, and regeneration. They have been shown to be involved in 

migration and differentiation of neurons, neurite outgrowth, axon fasciculation, regulation of 

synaptogenesis, synapse plasticity, and activation of signaling pathways (Cavallaro & 

Dejana, 2011; Togashi et al., 2009; Hansen et al., 2008; Walsh & Doherty, 1997). Therefore, 

CAMs “not only maintain tissue integrity but also may serve as biosensors that modulate cell 

behavior in response to the surrounding microenvironment” (Cavallaro & Dejana, 2011). Four 

major classes of CAMs have been identified: cadherins, selectins, integrins, and the 

immunoglobulin (Ig)-like superfamily.  

 

Cadherins are single-pass transmembrane proteins that facilitate cell-cell recognition and 

adhesion by mostly homophilic cis- and trans-interactions in a Ca2+-dependent manner. 

Nowadays, at least 80 mammalian members of the cadherin superfamily are known. The 

superfamily includes classic cadherins, which were the first to be identified, and non-classic 

cadherins, such as desmogleins, desmocollins, and protocadherins (Cavallaro & Dejana, 

2011). Classic cadherins are named according to their major expression in specific tissues, 

for example, e-cadherin (epithelial cadherin in epithelial cells), n-cadherin (neural cadherin in 

the nervous system), and ve-cadherin (vascular endothelial cadherin in the endothelia). All 

cadherins contain at least two extracellular domains (ED) for cell-cell interactions and 

moreover, classic cadherins contain a highly conserved intracellular domain (ID). With the ID 

they are able to interact with a group of defined cytoplasmatic proteins, the catenins (Harris & 

Tepass, 2010). Catenins coordinate the cadherin-mediated adherens junction dynamics and 

signaling. Beneath the functions in cell adhesion, morphogenesis, cytoskeletal organization, 

and cell migration, cadherin dysfunctions have been implicated in pathological processes 

such as cancer (Cavallaro & Dejana, 2011; Jeanes et al., 2008; Wheelock & Johnson, 2003; 

Angst et al., 2001). 
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The selectin family includes three closely related cell-surface molecules, which are 

expressed by leukocytes (L-selectin), platelets (P-selectin), and vascular endothelium 

(E- and P-selectin). Selectins are composed of a characteristic ED that contains an amino-

terminal lectin domain, an epidermal growth factor (EGF)-like domain, two to nine short 

consensus repeat units, and further a transmembrane domain, and a short ID (Kansas, 

1996). Interestingly, selectin function is uniquely restricted to the vascular system, in contrast 

to most other CAMs, which function in a broad variety of tissues throughout the body (Tedder 

et al., 1995). The lectin-domain binds partly Ca2+-dependent fucosylated and sialylated 

glycoprotein ligands on other cells and mediates adhesion of leucocytes and platelets to 

vascular surfaces. Thereby, selectins are involved in constitutive lymphocyte homing, and in 

chronic and acute inflammation processes. Lack of selectins or selectin-ligands leads to 

recurrent bacterial infections and persistent diseases (Ley, 2003; McEver, 2002).  

 

Integrins are a superfamily of transmembrane αβ-heterodimers that are expressed in a wide 

range of cells, whereupon most cells express several integrins. In humans, 18 α- and 

8 β-subunits are known, generating so far 24 known heterodimers. This diversity widens the 

variety of extracellular matrix ligands, cell-surface and soluble ligands, which bind to integrins 

(Takada et al. 2007; Hynes, 1992). Through binding to extracellular ligands (fibronectin, 

vitronectin, collagen, and laminin) as well as to cytoskeletal components (actin 

microfilaments) and intracellular signaling molecules, integrins serve as a linker between the 

extracellular and intracellular environments. Ligand binding leads to signal transmission into 

the cell (outside-in signaling) and, conversely, the extracellular ligand binding affinity is 

regulated by intracellular signals (inside-out signaling; Luo et al., 2007; Takada et al., 2007). 

The binding of extracellular ligands triggers a large set of signal transduction pathways that 

modulate cell behaviors such as adhesion, proliferation, survival or apoptosis, morphology, 

polarity, motility, and differentiation, mostly through effects on the cytoskeleton (Luo et al., 

2007; Takada et al., 2007; Hynes, 1992). 

 

The Ig-like cell adhesion molecules constitute the Ig superfamily (IgSF), which is one of the 

largest families of related proteins in vertebrates. In humans, approximately 765 members of 

the IgSF are known (Brümmendorf & Lemmon, 2001). Their common structural and name 

giving attribute are one or more extracellular Ig-like domains, which are characterized by two 

cysteines separated by 55 to 75 amino acids (Springer, 1990; Williams & Barclay, 1988). The 

Ig-like domains are composed of 70-110 amino acids arranged in a sandwich of two sheets 

of anti-parallel β-strands, which are usually stabilized by at least one disulfide bond at its 

centre. Most of the proteins of the IgSF are glycosylated transmembrane proteins with short 

IDs. Additionally, Ig-like cell adhesion molecules (IgCAMs) often contain at least one 
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fibronectin type III domain (FNIII) and may contain other extracellular modules (Walmod et al. 

2007; Springer, 1990). IgCAMs mediate cell-cell and cell-ECM interactions through 

homophilic and heterophilic binding to a variety of ligands in a Ca2+-independent manner 

(Williams & Barclay, 1988). Thus, they are not only responsible for cell adhesion, but can 

also affect intracellular signaling. IgCAMS have a crucial role in immune and inflammatory 

responses, embryonic development, and the development and maintenance of the nervous 

system (Barclay, 2003; Rougon & Hobert, 2003; Springer, 1990). In the brain, IgCAMs have 

been implicated as key players in axonal growth and guidance (Tessier-Lavigne & Goodman, 

1996). The first IgCAM to be characterized in the brain was the neural cell adhesion 

molecule NCAM (Jørgensen & Bock, 1974). 

1.1.1. NCAM isoforms 

NCAM was the first adhesion molecule that was shown to be able to mediate adhesion of 

cells in the retina of chicken embryos (Thiery et al., 1977; Rutishauser et al., 1976). Three 

main isoforms of human NCAM exist, which are named after their apparent molecular weight: 

NCAM180, NCAM140, and NCAM120. NCAM180 and NCAM140 are transmembrane 

isoforms with IDs of different length, whereas NCAM120 is anchored to the membrane by 

glycosylphosphatidylinositol (GPI; Fig. 1).  
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Fig. 1: The three main isoforms of NCAM 

The extracellular domains of the three main isoforms of NCAM consist of five Ig-like domains and two 

FNIII domains. The Ig-like domains contain six N-glycosylation sites; two of them in the IgV domain 

may be modified with polysialic acid (PSA). NCAM120 is anchored to the membrane by 

glycosylphosphatidylinositol (GPI). The transmembrane isoforms NCAM140 and NCAM180 differ in 

261 additional amino acids in the ID of NCAM180 resulting from alternatively splicing of exon 18 

(modified after Kleene & Schachner, 2004). 

 

The isoforms result from alternative splicing of the transcript of a single gene (Owens et al., 

1987), which is located on chromosome 11 in humans and is composed of 26 exons 

distributed over approximately 85 kb (Colwell et al., 1992). Exons 0-14 code for the five 

extracellular Ig-like domains (IgI-V) and for the FNIII-modules. Exon 15 contains a stop 

codon, resulting in the GPI-anchored isoform NCAM120 (Cunningham et al., 1987). Exon 16 

encodes the transmembrane segment, and exons 17-19 encode the cytoplasmic part of the 

molecule. Exon 18 is specific for NCAM180, leading to an insert of 261 amino acids. Apart 

from the main isoforms, many more isoforms exist because of exclusion or inclusion of six 

small exons into the original transcript. The variable alternative-spliced exon (VASE) is 

located between exon 7 and 8 and leads to insertion of ten additional amino acids within the 

fourth Ig-like domain. This short sequence is known to have an inhibitory effect on neurite 

outgrowth (Lahrtz et al., 1997; Liu et al., 1993; Doherty et al., 1992; Walsh et al., 1992) and 

furthermore has been predicted to be related to psychiatric disorders as shown also for the 

secreted exon (SEC; Vawter et al., 2000, 1999). SEC is positioned between exon 12 and 13 

and contains a stop codon, leading to a truncated ED of NCAM, which is secreted into the 

extracellular space (Gower et al., 1988; Bock et al., 1987). The further known exons are the 

three muscle specific domains 1 (MSD1a-c) and the so-called AAG, which are only inserted 
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in cell types other than neurons and are likely to have modulatory effects, for example on the 

interactions with extracellular binding partners of NCAM (Soroka et al., 2010; Kiselyov et at., 

2005; Kasper et al., 1996).  

1.1.2. Posttranslational modifications of NCAM 

The variety of NCAM is not only given by the isoforms, but also by posttranslational 

modifications. In total, NCAM contains six N-glycosylation sites (see Fig. 1; Albach et al., 

2004), whose glycosylation pattern is spatially and temporally regulated (Sasaki & Endo, 

1999; Schwarting et al., 1987). 

NCAM is unique among adhesion molecules in being glycosylated with polysialic acid (PSA; 

Finne et al., 1983; Hoffman et al., 1982). PSA is a large homopolymer of negatively charged 

α-2,8-linked sialic acid molecules that can be attached to two N-glycosylation sites in the 

IgV-domain of NCAM by two polysialyltransferases named sialyltransferase 8 sia IV 

(ST8SiaIV) and sialyltransferase 8 sia II (ST8SiaII; Angata et al., 1998; Kojima et al., 1996; 

Mühlenhoff et al., 1996; Nelson et al., 1995). PSA-NCAM expression is most prominent 

during embryogenesis in growing axons and migrating cells with up to 30 % of the mass of 

NCAM being attributed to PSA. It is progressively reduced as the brain develops (Chuong & 

Edelman, 1984). However, in adult brain, it remains expressed in regions where PSA-NCAM 

is known to be involved in synaptic plasticity and generation of neurons, such as the adult 

dentate gyrus of the hippocampus (Bonfanti et al., 1992), the olfactory bulb (Rousselot et al., 

1995; Bonfanti et al., 1992), and the hypothalamo-neurohypophyseal system (Theodosis et 

al., 1991). The presence of PSA on NCAM has been shown to decrease NCAM-dependent 

cell adhesion. PSA-chains build a large negatively charged hydration shell around NCAM, 

which affects homophilic trans-binding (binding between NCAM molecules expressed on 

neighboring cells) as well as cis-binding, i.e. the binding between NCAM molecules or 

between NCAM and other molecules on the same cell surface leading to the inhibition of 

homophilic clustering within the plane of a membrane, or inhibition of heterophilic interactions 

(Storms & Rutishauser, 1998; Hoffman & Edelman; 1983; Sadoul et al., 1983). On the other 

hand, NCAM without PSA significantly inhibits NCAM-mediated neurite outgrowth (Doherty et 

al., 1990). Thus, PSA seems to be the factor to change NCAM function from a plasticity-

promoting (through signaling pathways) to a stability-promoting protein (through direct 

adhesive interactions; RØnn et al., 2000). Enzymatic removal of PSA confirmed the role of 

PSA-NCAM in cell migration, neurite outgrowth, branching, and pathfinding in vivo and in 

vitro (Muller et al., 1996; Ono et al., 1994; Tang et al., 1994). Interestingly, it was shown that 

ectopic NCAM expression in neural stem cells favors neurogenesis in vivo independently of 

its polysialylation (Boutin et al., 2009). But, importantly, simultaneous genetic ablation of both 

polysialyltransferases in mice leads to a lethal phenotype likely due to uncontrolled homo-

and/or heterophilic interactions. In triple knock-out mice additionally lacking NCAM, this 
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phenotype was rescued showing mild defects as observed in NCAM-knock-out mice 

(see  1.1.4; Weinhold et al., 2005), further demonstrating the role of PSA in controlling NCAM 

functions. 

 

Another functionally important glycan is the human natural killer antigen 1 (HNK-1), which 

was detected at five possible N-glycosylation sites of NCAM (Albach et al., 2004). Beyond 

that, NCAM can express O-linked HNK-1 attached to the MSD1-region (Walsh et al., 1989).  

 

The transmembrane isoforms of NCAM can further be posttranslationally modified by 

palmitoylation of two to four highly conserved intracellular cysteine residues. The 

palmitoylation serves as a second anchor to the plasma membrane and is possibly 

organizing the remaining cytoplasmatic tail for the interactions with other molecules that are 

important in NCAM-mediated signaling (Little et al., 1998). Apart from that, Niethammer and 

coworkers showed palmitoylation of NCAM140 being essential for the association with 

cholesterol- and sphingolipid-rich microdomains, the so-called detergent-resistant 

microdomains or lipid rafts, ultimately enabling NCAM-mediated signal transduction and 

neurite outgrowth (Niethammer et al., 2002; Little et al., 1998). 

 

Moreover, the cytoplasmatic domains of NCAM180 and NCAM140 can be phosphorylated at 

serine and threonine residues (Sorkin et al., 1984). For example, the phosphorylation of at 

least one threonine residue has been described to be important for NCAM-mediated 

activation of the transcription factor nuclear factor-kappaB (NF-κB; Little at al., 2001). NCAM 

has been shown to become phosphorylated on serine or threonine residues upon stimulation 

of differentiation (Matthias & Horstkorte, 2006). Just recently, phosphorylation of serine 774 

of NCAM has been shown to be involved in NCAM-mediated neurite outgrowth (Pollscheit et 

al., 2012). Apart from being phosphorylated at serine and threonine, NCAM180 has been 

shown to be tyrosine phosphorylated on Y734. The tyrosine phosphorylation is predicted to 

have an inhibitory effect on neurite outgrowth (Diestel et al., 2004).  

 

NCAM has also been shown to be mono-ubiquitylated, which is proposed to represent a 

signal for endocytosis (Diestel et al., 2007).  

1.1.3. NCAM expression 

Despite its name, NCAM is not only expressed in the nervous system but also by several cell 

types in many other tissues as, for example, skeletal and heart muscles (Andersson et al., 

1993; Gaardsvoll et al., 1993), the digestive system (Esni et al., 1999; Sakamoto et al., 1994) 

and on natural killer cells (Lanier et al., 1991). Several studies revealed also a deregulation 
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of NCAM expression and/or modification with PSA in several different cancer tissues 

(Campodónico et a., 2010; Zecchini & Cavallaro, 2010; Lehembre et al., 2008; Novotny et 

al., 2006; Trouillas et al., 2003; Tezel et al., 2001; Lantuéjoul et al. 2000, 1998; Kameda et 

al., 1999; Sasaki et al., 1998; Fogar et al., 1997). 

In the brain, NCAM is expressed by neurons and glial cells, and the expression level is 

temporally and spatially regulated as well as isoform specific. NCAM expression starts during 

initial stages of embryogenesis, peaks in early postnatal life, and is continued in adulthood. 

Interestingly, NCAM180 is mainly expressed in neurons and NCAM120 in glial cells, whereas 

NCAM140 is found on both cell types (Noble et al., 1985). NCAM180 is primarily expressed 

on differentiated neurons and postsynaptic membranes and accumulates at sites of neurite 

to neurite contacts to stabilize them by association with the cytoskeleton (Sytnyk et al., 2002; 

Persohn et al., 1989; 1987; Pollerberg et al., 1987, 1986). NCAM140 occurs mainly in growth 

cones of developing neurons at the time of target search and on pre- and postsynaptic 

membranes (Persohn et al., 1989). Thus, initiation of cell-cell contacts leads to 

downregulation of the expression of NCAM140 and upregulation of NCAM180 expression 

(Pollerberg et al., 1987, 1986, 1985).  

NCAM120 is mainly expressed in lipid rafts (Krämer et al., 1999), as typical for GPI-anchored 

proteins and also described for palmitoylated NCAM140 (Niethammer et al., 2002; Little et 

al., 1998).  

1.1.4. NCAM functions  

During embryogenesis and in the adult brain, NCAM is not only involved in cell adhesion, but 

in several signal transduction processes that ultimately lead to cell migration, neurite 

outgrowth, axonal growth, and fasciculation (Hinsby et al., 2004; Chazal et al., 2000; Cremer 

et al., 1997; Doherty et al., 1990). Furthermore, NCAM is involved in synaptic formation and 

plasticity thus being important for learning and memory function of the brain (Panicker et al., 

2003; Cremer et al., 1997). NCAM deficient mice display increased lateral ventricle size 

(Wood et al., 1998), a significant smaller olfactory bulb and deficits in 

hippocampal-/amygdala-dependent learning. Apart from that, the mice are healthy and fertile 

(Cremer et al., 1994). Thus, it is assumable that other CAMs are able to compensate for the 

absent NCAM. In humans, the increase of soluble NCAM in affected brain regions and 

cerebrospinal fluid has been linked to schizophrenia and correlates with the progression of 

the illness (Vawter et al., 2001, 1998; van Kammen et al. 1998; Poltorak et al., 1997, 1995). 

Furthermore, the NCAM encoding gene has been identified to be relevant in schizophrenia 

(Schizophrenia Working Group of Psychiatric Genomics Consortium, 2014; Greenwood et 

al., 2012). NCAM’s functions are regulated by transcriptional and 

posttranscriptional/posttranslational modifications, as described above (see  1.1.1 and  1.1.2). 



Introduction 8 

 

Whereas the degree of NCAM polysialylation is drastically reduced during development 

(Chuong & Edelman, 1984), the expression of the VASE exon increases (Small & Akeson, 

1990). In brain areas retaining PSA-NCAM expression in adulthood (Rousselot et al., 1995; 

Bonfanti et al., 1992; Theodosis et al., 1991), VASE is not expressed (Small & Akeson, 

1990). This inverse expression also accounts for the change from NCAM promoting plasticity 

to a stability-promoting protein (RØnn et al., 2000). 

1.1.5. NCAM interactions 

1.1.5.1. Homophilic interactions 

NCAM is involved in homophilic cis- and trans-interactions (Hoffman & Edelman, 1983; 

Rutishauser et al., 1982). Which Ig-like domains mainly participate in these interactions and 

the exact mechanisms have been highly discussed over years (Atkins et al., 2001, 1999; 

Jensen et al., 1999; Ranheim et al., 1996; Rao et al., 1994, 1993, 1992; Zhou et al., 1993). 

Kiselyov and coworkers concluded a cis-interaction between the first and second Ig-like 

domain of NCAM as described by Kasper et al. being the most likely scenario (Kiselyov et 

al., 2005; Kasper et al., 2000). Apart from that, three trans-interactions were found: binding 

between IgII and IgIII (“flat zipper”), between IgI and IgIII and between IgII and IgII (“compact 

zipper”) of NCAM molecules on opposing cell surfaces. A two-dimensional zipper is given by 

the combination of the compact and flat zippers (“compact flat double zipper”), producing 

homophilic NCAM adhesion complexes involving several NCAM molecules. The 

physiological relevance was shown by the inhibition of NCAM homophilic binding by peptides 

corresponding to the above-mentioned contacts, leading to decreased NCAM-mediated 

neurite outgrowth (Kiselyov et al., 2005; Soroka et al., 2003). Additionally, homophilic 

interactions are influenced by the PSA modification of NCAM (see  1.1.2) and the inclusion of 

the VASE exon. PSA-chains build a voluminous hydration shell around NCAM and inhibit the 

homophilic binding ability (Sadoul et al., 1983). Although located in IgIV, expression of the 

VASE exon within NCAM leads to an enhanced homophilic affinity to cells which also 

express NCAM with VASE compared to cells expressing NCAM without VASE (Chen et al., 

1994).  

1.1.5.2. Heterophilic extracellular interactions 

NCAM is also able to bind heterophilically to other molecules. Extracellular binding partners 

are, for example, other members of the IgSF, such as the transient axonal glycoprotein-1 

(TAG-1) and L1. The interaction with L1 occurs between carbohydrates expressed on L1 and 

a lectin homology motif in the IgIV domain of NCAM. This most probable cis-interaction 

induces phosphorylation of tyrosine and serine residues of L1 and ultimately causes neurite 

outgrowth (Heiland et al., 1998; Horstkorte et al., 1993).  
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Another NCAM binding partner is adenosine triphosphate (ATP), which binds directly to the 

second FNIII domain of NCAM (Kiselyov et al., 2003). Interestingly, NCAM has been shown 

to have ecto-ATPase activity. The binding of ATP to NCAM inhibits cellular aggregation and 

neurite outgrowth induced by homophilic NCAM trans-interaction most likely by structural 

alterations of NCAM’s extracellular part (Skladchikova et al., 1999, Dzhandzhugazyan & 

Bock, 1997) or indirect inhibition of the interaction between NCAM and the fibroblast growth 

factor receptor 1 (FGFR1; Kiselyov et al., 2003), as described below.  

Furthermore, NCAM binds to several components of the ECM such as heparin (Cole & 

Glaser, 1986), collagen (Probstmeier et al., 1989), laminin (Grumet et al., 1993), some 

chondroitin sulfate proteoglycans (CSPGs), and heparin sulfate proteoglycans (HSPGs) 

including agrin, neurocan, and phosphacan (Margolis et al., 1996; Storms et al., 1996). In 

2003, Paratcha and coworkers showed that NCAM can function as a signaling receptor for 

members of the glial cell line-derived neurotrophic factor (GDNF) ligand family and 

associates with the GDNF family receptor α (GFRα; Paratcha et al., 2003). Furthermore, 

PSA-NCAM is involved in regulating the effects of the brain-derived neurotrophic factor 

(BDNF; Vutskits et al., 2001) and the platelet-derived growth factor (PDGF; Zhang et al., 

2004).  

Further known binding partners are P- and L-selectin (Needham & Schnaar, 1993), the 

receptor for rabies virus (RV; Thoulouze et al., 1998), and the cellular prion protein (PrPc) 

that recruits NCAM180 and NCAM140 to lipid rafts ultimately enhancing neurite outgrowth 

according to Santuccione and coworkers (Santuccione et al., 2005). But the probably most 

important heterophilic extracellular interaction partner of NCAM is the FGFR1, an IgSF 

receptor tyrosine kinase. The binding occurs between NCAM’s FNIII domains and the IgII 

and IgIII domains of the FGFR1 and leads to phosphorylation of the receptor ultimately 

causing neurite outgrowth (Kiselyov et al., 2003; Saffell et al., 1997; Williams et al., 1994). 

Interestingly, ATP is suspected to have a regulatory role through competing with FGFR1 for 

the binding to NCAM (Kiselyov et al., 2003).  

1.1.5.3. Heterophilic intracellular interactions 

The transmembrane isoforms of NCAM have also been demonstrated to exhibit a number of 

direct and indirect interactions with various intracellular proteins. The first identified 

intracellular binding partner of NCAM was the cytoskeletal linker-protein spectrin. Initially, a 

highly affinity binding between NCAM180 and spectrin was detected (Pollerberg et al., 1987; 

1986). Later, also NCAM140 was shown to bind directly to spectrin, however less efficient 

than NCAM180, and even NCAM120 appeared to interact indirectly with spectrin via lipid 

rafts (Leshchyns’ka et al., 2003). The same study revealed an association of NCAM180 and 

NCAM140 with activated protein kinase C β (PKCβ) via spectrin in dependency of the 

FGFR1 activation. The formation of the PKCβ-spectrin-NCAM complex was shown to be 
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implicated in NCAM-mediated neurite outgrowth (Leshchyns’ka et al., 2003). Additionally, the 

NCAM/spectrin complex plays an important role at nascent synapses (Sytnyk et al., 2002) 

and the maintenance of the structural integrity of postsynaptic densities (Puchkov et al., 

2011). 

Beggs et al. described an interaction between NCAM140 and the src-related nonreceptor 

tyrosine kinase p59fyn (Fyn; Beggs et al., 1997). It has not been clarified yet, if Fyn and 

NCAM interact directly or indirectly, but the activation of Fyn depends on its 

dephosphorylation by the receptor protein tyrosine phosphatase α (RPTPα) which interacts 

directly with the ID of NCAM140 (Bodrikov et al., 2005). Therefore, RPTPα serves as a linker 

between NCAM140 and Fyn. Additionally, the focal adhesion kinase (FAK) has been co-

immunoprecipitated with NCAM140, but is believed to interact indirectly with NCAM by 

binding to Fyn (Beggs et al., 1997). Through Fyn and FAK, NCAM is able to activate the 

mitogen-activated protein (MAP)-kinase pathway stimulating neurite outgrowth (Kolkova et 

al., 2000; Schmid et al., 1999). 

A further molecule shown by immunoprecipitation to bind to NCAM140 is the growth 

associated protein-43 (GAP-43) that serves as a linker between NCAM and actin (He & 

Meiri, 2002; Meiri et al., 1998) and may act as a switch between NCAM140 and NCAM180 

mediated neurite outgrowth (Korshunova et al., 2007).  

More major cytoskeletal proteins have been identified to interact with NCAM180 and 

NCAM140: α- and β-tubulin that form the microtubules, as well as α-actinin. Interestingly, 

β-actinin, tropomyosin, the microtubule associated protein 1A (MAP1A), and the rhoA-

binding kinase-α (ROK-α) preferentially bind to NCAM180 (Büttner et al., 2003). Büttner and 

coworkers were able to identify even more binding partners for NCAM180 and NCAM140 by 

ligand affinity chromatography when focusing on signaling molecules: phospholipase Cγ 

(PLCγ), leucine-rich acidic nuclear protein (LANP, a phosphatase inhibitor), turned on after 

division-64 (TOAD-64, a protein involved in axonal growth, interacts only with NCAM180), 

syndapin (a protein involved in vesicle trafficking), and the serine/threonine-protein 

phosphatase PP1 and PP2A (Büttner et al., 2005).  

Apart from that, Miñana et al. showed the association of both transmembrane NCAM 

isoforms with clathrin and α-adaptin, which is a component of adaptor protein complex-2 

(AP-2), and confirmed NCAM being endocytosed via a clathrin-dependent pathway (Miñana 

et al., 2001). Interestingly, it has also been shown that NCAM co-immunoprecipitates with 

caveolin, the principal component of the caveolae (He & Meiri, 2002). Subsequently, it has 

been shown that NCAM is also endocytosed by the calveolae-dependent pathway (Diestel et 

al., 2007).  

Recently, p21-activated kinase 1 (PAK1) was identified as new intracellular interaction 

partner for NCAM and the interaction is also implicated in neurite outgrowth (Li et al., 2013).  
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Fig. 2: Heterophilic interactions and posttranslational modifications of NCAM 

Shown are most interaction partners described in the text above. Modifications with carbohydrates are 

shown in green. The actual type of glycosylation identified at the individual N-glycosylation sites varies 

between species. Putative threonine phosphorylation sites in the intracellular domain of NCAM are 

shown in red (the most likely site is underlined). “S ?” indicates unknown serine phosphorylation sites. 

Potential palmitoylation sites in the cytoplasmatic part of NCAM are shown in blue. Interactions known 

to affect homophilic NCAM interactions are shown with red arrows. Question marks indicate putative 

interactions. Abbreviations and references are given in the text (modified after Walmod et al., 2004). 

1.1.6. Trafficking of NCAM  

The biosynthesis of NCAM was investigated by Lyles and coworkers three decades ago in 

cultured fetal neuronal cells of the rat (Lyles et al., 1984a, b). They showed that NCAM is as 

expected synthesized in the endoplasmatic reticulum (ER) as two polypeptides with a 

molecular weight of approximately 186 kDa and 136 kDa (Lyles et al., 1984b). Initially four to 

five high mannose cores are attached to NCAM, which are processed approximately 20 to 30 

minutes after synthesis in the trans-Golgi compartment into more complex glycans which are 

also sialylated and polysialylated. Approximately 35 minutes after synthesis, NCAM appears 

at the cell surface where it is phosphorylated (Lyles et al., 1984a). The biosynthesis of NCAM 

decreases drastically during maturation of the mice brain, with a 350-fold turnover decline 

from embryonic day 17 to postnatal day 25 and a steady state expression of 50 % of the 

level of postnatal day 12 beginning at postnatal day 40 (Linnemann et al., 1985; Jacque et 

al., 1976).  

Miñana and coworkers showed NCAM being endocytosed from the plasma membrane in 

astrocytes (Miñana et al., 2001). Recent studies confirmed NCAM’s endocytosis and 



Introduction 12 

 

revealed that NCAM is subsequently recycled to the plasma membrane, whereas only a 

small amount of NCAM becomes lysosomally degraded. Endocytic vesicles were observed in 

somata, neurites, and growth cones of cortical neurons in a developmentally regulated 

manner, potentially implying that endocytosis of NCAM140 may predominantly play a role in 

immature neurons, whereas internalization of NCAM180 may be more important in more 

developed neurons (Diestel et al., 2007). Mono-ubiquitination of NCAM serves as a signal for 

endocytosis, even though further studies revealed that other NCAM endocytosis signals must 

exist additionally (Diestel et al., 2007; Diestel, unpublished data, Institute of Nutrition and 

Food Science, Department of Human Metabolomics, University of Bonn, Germany).  

Only very little evidence existed on the intracellular transport of NCAM. In chick retinal 

ganglion cells, NCAM180 and NCAM140, but not NCAM120, were shown to be transported 

by the fast axonal transport (Garner et al., 1986; Nybroe et al., 1986). Furthermore, in 

organotypic slice cultures from postnatal hypothalami it has been shown that PSA-NCAM 

reaches the surface of neurons and astrocytes via the constitutive pathway, independently of 

Ca2+ entry and increased neuronal activity (Pierre et al., 2001). However, the exact transport 

mechanism of newly synthesized and/or endocytosed NCAM remained still unknown.  

1.2. Motor proteins and the intracellular transport 

Intracellular transport of protein complexes, membranous organelles, and other cargoes is 

essential for cellular function, morphogenesis, and survival. In neurons, proteins expressed 

in the cell body need to be transported and properly distributed to dendrites, axons, and 

nerve terminals to maintain neuronal function and viability (Salinas et al., 2008; Chevalier-

Larsen & Holzbaur, 2006; Hirokawa & Takemura, 2003). Three large superfamilies of motor 

proteins facilitate the intracellular transport using cytoskeletal filaments for the movement: 

myosins, dyneins, and kinesins.  

1.2.1. Myosins, dyneins, and kinesins 

Myosins move along actin filaments and are responsible for the transport of cargoes within 

short distances, as for example within regions of actin filament networks near the plasma 

membrane. Long-distance transport as between the nucleus and the plasma membrane is 

mediated by kinesins and dyneins, which move along microtubules in dependency on ATP 

(Hirokawa & Takemura, 2003; Hirokawa, 1998). Dyneins transport their cargo from the 

periphery to the cell body (retrograde; Schroer et al., 1989; Paschal & Vallee, 1987), 

whereas kinesins act in the opposite direction by moving anterograde from the cell body to 

the synapses (Hirokawa et al., 1991; Vale et al., 1985).  
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1.2.2. Kinesin-1 

Kinesin-1 was the first member of the kinesin superfamily to be identified. Kinesin-1 

transports cargoes fast with an average velocity of 0.6–0.8 μm s−1 from the cell body to the 

synapses along microtubules in neuronal axons and dendrites (Brady, 1985; Vale et al., 

1985). Mammalian kinesin-1 (formerly kinesin family 5, KIF5) is assembled from three 

kinesin heavy chains (KHCs: KIF5A, KIF5B, KIF5C) and four kinesin light chains (KLCs: 

KLC1, KLC2, KLC3, KLC4). The KHCs and KLCs form homodimer, which can associate in 

all possible combinations resulting in a functional kinesin-1 heterotetramer (Rahman et al., 

1998; Xia et al., 1998; Niclas et al., 1994; Cabeza-Arvelaiz et al., 1993). The KHCs build the 

amine (N)-terminal globular motor domain at the head region of kinesin-1 that uses ATP 

hydrolysis to energize the movement along microtubules. The tail domain consists of the 

carboxy (C)-terminus of the KHCs that regulates the ATPase and microtubule binding 

activity, and of two KLCs (Yang et al., 1990). KLCs contain an N-terminal α-helical domain 

that associates with the KHC stalk and six tetratricopeptide repeat (TPR) motifs, which 

mediate cargo attachment (Diefenbach et al., 1998, Hirokawa et al., 1989). Additionally, 

KLCs are involved in the regulation of KHC activity (Hirokawa 1998; Verhey et al., 1998; 

Hirokawa et al., 1989).  

 

Fig. 3: Schematic model of kinesin-1 and kinesin light chain 1 

(A) Kinesin-1 motor domains are shown in blue, heavy chain tail domains in purple and kinesin light 

chains in green (modified after Vale, 2003). (B) Domain structure of kinesin light chain 1 containing six 

tetratricopeptide repeat (TPR) motifs and the KIF5 binding site (modified after Hirokawa & Takemura, 

2005). 

Amongst others, kinesin-1 is known to transport neuronal transmembrane proteins such as 

apolipoprotein E receptor 2 (ApoER2; Verhey et al., 2001), amyloid-ß precursor protein 

(APP; Lazarov et al., 2005; Kamal et al., 2000), Calsyntenin-1/alcadein (Araki et al., 2007; 



Introduction 14 

 

Konecna et al., 2006), the cytosolic Cayman ataxia protein (Caytaxin; Aoyama et al., 2009), 

and Kinase D-interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning 

(Kidins220/ARMS; Bracale et al., 2007). Most of these interaction partners bind directly to the 

TPR domains of KLC1, although partly c-Jun N-terminal kinase (JNK)-interacting proteins 

(JIPs) are involved, which bind to KLCs and connect vesicles containing, for example, 

ApoER2 to kinesin-1 (Verhey et al., 2001). A possible interaction of NCAM’s ID and KLC1 

was especially interesting as although NCAM has already been described decades ago as 

being transported by the fast axonal transport in chicken retinal ganglion neurons (Garner et 

al., 1986; Nybroe et al., 1986), the exact mechanism of its transport remained still unknown.  

1.3. Aim of the thesis 

This thesis aimed for the identification of novel potential interaction partners of NCAM and 

functional analyzes of these interactions to further understand the mechanisms underlying 

NCAM’s functions in the brain. NCAM has been implicated in neural development and 

maintenance of the adult nervous system. NCAM initiates intracellular signal transduction 

pathways ultimately leading to cell migration, differentiation, plasticity, and survival through 

homophilic and heterophilic interactions with several proteins. To broaden knowledge about 

the role of heterophilic interactions on NCAM’s functions, yet unknown intracellular 

interaction partners of human NCAM180 and NCAM140 should be identified using a protein 

macroarray screening. Potential interaction partners should subsequently be verified by 

alternative approaches such as co-immunoprecipitation, immunofluorescence staining for co-

localization studies, and enzyme linked immunosorbent assay. Functions of verified 

interactions should be investigated with various methods adjusted to the respective 

interaction partner to gain further insight into the functions of NCAM interactions underlying 

the role of NCAM in the brain. 
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2. Material 

Experiments were carried out in the laboratory of Prof. Dr. Brigitte Schmitz (emer., Institute of 

Animal Sciences, Department of Biochemistry, University of Bonn, Germany), since 2013 

laboratory of PD Dr. Simone Diestel (Institute of Nutrition and Food Science, Department of 

Human Metabolomics, University of Bonn, Germany), and Dr. Vladimir Sytnyk (School of 

Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 

Australia). Variations in buffer compositions and methods, which were performed in both 

laboratories, are highlighted as exponents (1: laboratory of Prof. Dr. Brigitte Schmitz and PD 

Dr. Simone Diestel; 2: laboratory of Dr. Vladimir Sytnyk) and/or in italic letters in parentheses. 

2.1. Commercial chemicals 

Tab. 1: Commercial chemicals 

Chemical Source 

Acetic acid, 96 % 
Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS)  

Acetone Ajax FineChem, Taren Point, NSW (AUS) 

Agar Difco, Detroit, MI (USA) 

Agarose Roche, Grenzach-Whylen (GER) 

Ammonium persulfate (APS) Merck, Darmstadt (GER) 

Aprotinin Sigma-Aldrich, Steinheim (GER) 

B-27 Life Technologies™, Carlsbad, CA (USA) 

Basic fibroblast growth factor (bFGF)  Life Technologies™, Carlsbad, CA (USA) 

β-mercaptoethanol  
Merck, Darmstadt (GER); Sigma-Aldrich, 
Castle Hill, NSW (AUS) 

Boric acid (H3BO3) Merck, Darmstadt (GER) 

Bovine serum albumin (BSA) 
Solarbio Science & Technology Co., Beijing 
(CHN) 

Bromophenol blue  
Merck, Darmstadt (GER); Sigma-Aldrich, 
Castle Hill, NSW (AUS) 

Calcium chloride (CaCl2) Ajax FineChem, Taren Point, NSW (AUS) 

Citric acid Ajax FineChem, Taren Point, NSW (AUS) 

Developer for X-ray films Kodak, Rochester, NY (USA) 

Dimethylsulfoxide (DMSO) Sigma-Aldrich, Castle Hill, NSW (AUS) 

Disodium hydogen phosphate * 2 H2O 
(Na2HPO4 * 2 H2O) 

Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS) 

Dithiothreitol (DTT) 
Sigma-Aldrich, Taufkirchen (GER); Castle 
Hill, NSW (AUS) 

Donkey serum Sigmal-Aldrich, Castle Hill, NSW (AUS) 

Dulbecco`s modified Eagles`s medium 
(DMEM, with 4.5 g Glucose/L) 

PAA Laboratories, Morningside, QLD (AUS) 

DYOMICS DY-633 Fluorophore Dyomics, Jena (GER) 

EDTA-free protease inhibitor cocktail 
Roche Applied Science, Castle Hill, NSW 
(AUS) 

Ethyleneglycoltetraacetic acid (EGTA) Sigma-Aldrich, Castle Hill, NSW (AUS) 

Ethanol, 96 %  
KMF Laborchemie, Lohmar (GER); Ajax 
FineChem, Taren Point, NSW (AUS) 

Ethidium bromide Sigma-Aldrich, Steinheim (GER) 
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Chemical Source 

Ethylenediaminetetraacetic acid (EDTA) Merck, Darmstadt (GER) 

Fetal bovine serum (FBS)  PAA Laboratories, Morningside, QLD (AUS) 

Fixing solution for X-ray films Kodak, Rochester, NY (USA) 

FluorPreserve™ reagent Calbiochem (Merck), Darmstadt (GER) 

Formaldehyde, 37 % Merck, Darmstadt (GER) 

Gentamicin/Amphotericin B Life Technologies™, Carlsbad, CA (USA) 

GlutaMAX™ Life Technologies™, Carlsbad, CA (USA) 

Glutathione (GSH) superflow Qiagen, Hilden (GER) 

Glycerol Ajax FineChem, Taren Point, NSW (AUS) 

Ham’s F-12 PAA Laboratories, Morningside, QLD (AUS) 

Hydrochloric acid (HCl) 
KMF OptiChem, Lohmar (GER); Ajax 
FineChem, Taren Point, NSW (AUS) 

Hydrogen peroxide (H2O2), 30 % Sigma-Aldrich, Castle Hill, NSW (AUS) 

Imidazole Sigma-Aldrich, Steinheim (GER) 

Isopropanol KMF OptiChem, Lohmar (GER) 

Isopropyl β-D-1-thiogalactopyranoside 
(IPTG) 

Biomol, Hamburg (GER) 

Leupeptin Sigma-Aldrich, Steinheim (GER) 

L-Glutathione, reduced Sigma-Aldrich, Steinheim (GER) 

Lipofectamine™ 2000 Invitrogen, Mount Waverly, VIC (AUS) 

Magnesium chloride (MgCl2) Ajax FineChem, Taren Point, NSW (AUS) 

Methanol 
Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS) 

N,N,N‘,N‘,-Tetramethylethylendiamine 
(TEMED) 

Sigma-Aldrich, Steinheim (GER) 

Neurobasal® A medium Life Technologies™, Carlsbad, CA (USA) 

Nickel sulfate Sigma, Taufkirchen (GER) 

Nickel-nitrilotriacetic acid (Ni-NTA) agarose Qiagen, Hilden (GER) 

NuPAGE® Antioxidant, 200 x Invitrogen, Mount Waverly, VIC (AUS) 

NuPAGE® MOPS SDS running buffer, 20 x Invitrogen, Mount Waverly, VIC (AUS) 

O-phenylenediamine dihydrochloride (OPD) Perbio Science, Parkdale, VIC (AUS) 

Paraformaldehyde (PFA) Sigma-Aldrich, Castle Hill, NSW (AUS) 

Pepstatin A Sigma-Aldrich, Steinheim (GER) 

Phenylmethanesulfonyl fluoride (PMSF) 
Sigma-Aldrich, Steinheim (GER); Castle Hill, 
NSW (AUS) 

Piperazine-1,4-bis(2-ethanesulfonic acid) 
(PIPES) 

Sigma-Aldrich, Castle Hill, NSW (AUS) 

Poly-D-lysine (PDL) Sigma-Aldrich, Castle Hill, NSW (AUS) 

Ponceau-S Sigma-Aldrich, Steinheim (GER) 

Potassium chloride (KCl) 
Merck, Darmstadt; Ajax FineChem, Taren 
Point, NSW (AUS) 

Potassium dihydrogen phosphate (KH2PO4) 
Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS) 

Protein A/G-agarose beads 
Santa Cruz Biotechnology, Inc., Santa Cruz, 
CA (USA) 

Protein A-agarose beads 
Santa Cruz Biotechnology, Inc., Santa Cruz, 
CA (USA) 

Rotiphorese® Gel 40, 40 % Roth, Karlsruhe (GER) 

S.O.C. medium Invitrogen, Mount Waverly, VIC (AUS) 

Silver nitrate (AgNO3) Merck, Darmstadt (GER) 

Skim milk powder Coles, Randwick, NSW (AUS) 

Sodium azide (NaN3) Sigmal-Aldrich, Castle Hill, NSW (AUS) 

Sodium bicarbonate (NaHCO3) Ajax FineChem, Taren Point, NSW (AUS) 
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Chemical Source 

Sodium carbonate (Na2CO3) Ajax FineChem, Taren Point, NSW (AUS) 

Sodium chloride (NaCl) 
Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS) 

Sodium diphosphate (Na4P2O7) Sigma Aldrich, Castle Hill, NSW (AUS) 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe (GER) 

Sodium fluoride (NaF) Sigma Aldrich, Castle Hill, NSW (AUS) 

Sodium hydoxide (NaOH) 
T.J. Baker, Deventer (NL); Ajax FineChem, 
Taren Point, NSW (AUS) 

Sodium orthovanadate (Na3VO4) Sigma-Aldrich, Castle Hill, NSW (AUS) 

Sodium thiosulfate (Na2S2O3) Merck, Darmstadt (GER) 

Sucrose BDH Prolabo, Murarrie, QLD (AUS) 

Tris(hydoxymethyl)aminomethane (Tris) 
Merck, Darmstadt (GER); Ajax FineChem, 
Taren Point, NSW (AUS) 

Tris-Glycine buffer, 10 x 
Bio-Rad Laboratories, Regents Park, NSW 
(AUS) 

Tolyethylene glycol p-(1,1,3,3-
tetramethylbutyl)-phenyl ether (Triton X-100) 

Serva, Heidelberg (GER); Bio-Rad 
Laboratories, Regents Park, NSW (AUS) 

Trypsin-EDTA Life Technologies™, Carlsbad, CA (USA) 

Tryptone Difco, Detroit, MI (USA) 

Polyoxyethylene (20) sorbitan monolaurate 
(Tween® 20) 

BDH Prolabo, Murarrie, QLD (AUS) 

Yeast Difco, Detroit, MI (USA) 

2.2. Equipment  

Tab. 2: Equipment 

Equipment Source 

Agarose gel electrophoresis Mini-Sub® Cell 
GT system 

Bio-Rad, Hercules, CA (USA) 

Aida™ Array Compare software Raytest, Straubenhardt (GER) 

Aida™ Image Analyzer software version 
4.24 

Raytest, Straubenhardt (GER) 

Chemiluminescence-system MicroChemi 4.2 DNR Bio-Imaging Systems (GER) 

Confocal laser scanning microscope 
(LSM510) 

Nikon Corporation, Tokyo (JPN) 

Electrophoresis system Mini-Protean 3 Bio-Rad, Hercules, CA (USA) 

ELISA reader POLARstar Omega BMG Labtech, Mornington, VIC (AUS) 

ELISA reader Titertek PLUS MS2 ICN Biomedicals GmbH, Meckenheim (GER) 

Microsoft Office 2007 Microsoft Corporation, Redmond, WA (USA) 

GraphPad Prism 6 GraphPad, San Diego, CA (USA) 

ImageJ software, version 1.43 
National Institutes of Health, Bethesda, MD 
(USA) 

Licor ODYSSEY Infrared Imaging System 
Scanner 

LI-COR Biosciences GmbH,  
Bad Homburg (GER) 

LSM510 software Nikon Corporation, Tokyo (JPN) 

Mini-Cell Electrophoresis system XCell 
SureLock® 

Invitrogen, Mount Waverly, VIC (AUS) 

Neon® Transfection System Life Technologies™, Carlsbad, CA (USA) 

Oil Plan Apo VC 60x objective (numerical 
aperture 1.4) 

Nikon Corporation, Tokyo (JPN) 

Slot blot apparatus PR 600 Hoefer Inc., Holliston, MA (USA) 

Spectrophotometer SmartSpec™ Plus  Bio-Rad, Hercules, CA (USA) 
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Equipment Source 

Technical data sheet “Scoring Template for 
Macroarrays” 

Source Bioscience ImaGenes, Berlin (GER) 

Trans-Blot® Semi Dry Transfer Cell  Bio-Rad, Hercules, CA (USA) 

Ultraviolet (UV)-transilluminator Uvsolo  Biometra, Göttingen (GER) 

XK-16 column  Pharmacia Biotech, Uppsala (SWE)  

2.3. Working materials 

Tab. 3: Working materials 

Material Source 

24-well plates Greiner bio-one, Frickenhausen (GER) 

30 kDa cut-off columns EMD Millipore, Cork (IRL) 

50 kDa cut-off columns, Vivaspin 6® Sartorius, Göttingen (GER) 

75 cm2 culture flasks  Greiner bio-one, Frickenhausen (GER) 

96-well MICROLON® 600 plates Greiner bio-one, Frickenhausen (GER) 

CL-XPosure™ X-ray film Thermo scientific, Rockford, IL (USA) 

Filter paper for Western blots Bio-Rad, Hercules, CA (USA) 

Nitrocellulose membrane Hybond™-ECL, 
0.2 µm 

GE Healthcare, Freiburg (GER) 

NuPAGE® Bis-Tris precast gels Invitrogen, Mount Waverly, VIC (AUS) 

Polyvinylidene difluoride (PVDF) membrane, 
0.45 µm 

Immobilon; Millipore, Kilsyth, VIC (AUS) 

Protein macroarray Part 8, Id. 367.60.515 Source Bioscience ImaGenes, Berlin (GER) 

Protein macroarray Part 9, Id. 367.56.521 Source Bioscience ImaGenes, Berlin (GER) 

2.4. Kits and standards 

Tab. 4: Kits and standards 

Name Source 

DC-protein assay Bio-Rad, München (GER) 

DNA Clean & Concentrator Kit  
Zymo Research, HISS Diagnostics, 
Freiburg (GER) 

ECL Pro Enhanced Oxidizing reagent Thermo scientific, Rockford, IL (USA) 

ECL Western blotting reagent Merck, Darmstadt (GER) 

Fluoro Spin 681, Protein Labeling & 
Purification Kit 

Emp Biotech, Berlin (GER) 

GeneJET™ Plasmid Miniprep Kit Fermentas, St. Leon-Rot (GER) 

GeneRuler™ DNA Ladder Mix Fermentas, St. Leon-Rot (GER) 

Laemmli SDS-PAGE buffer, non-reducing, 5x Invitrogen, Mount Waverly, VIC (AUS) 

Laemmli SDS-PAGE buffer, reducing, 5x Invitrogen, Mount Waverly, VIC (AUS) 

Loading dye, 6x Fermentas, St. Leon-Rot (GER) 

Novex® Sharp Pre-stained protein standard Invitrogen, Mount Waverly, VIC (AUS) 

PageRuler™ Unstained Protein Ladder Fermentas, St. Leon-Rot (GER) 

Plasmid Midi Kit Qiagen, Hilden (GER) 

QIAquick Gel Extraction Kit Qiagen, Hilden (GER) 

SuperSignal®West Dura Thermo Scientific, Rockford, IL (USA) 

SuperSignal®West Pico Thermo Scientific, Rockford, IL (USA) 
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2.5. Antibodies and peptides 

Tab. 5: Antibodies and peptides 

Primary 
antibodies 

Characteristics Source 
Concentration / 
dilution factor / 
application 

5B8 
Mouse monoclonal 
antibody against human 
NCAM-ID  

Own production. 
Hybridoma cells were 
kindly provided by R. 
Horstkorte, University of 
Halle (GER) 

1.1 mg/ml; 
1:4000 (WB) 

Anti-His 
IRDye™ 800-
antibodies 

IRDye™800CW 
conjugated polyclonal 
rabbit antibodies against 
6x Histidine (His)-tags 

Rockland 
Immunochemicals Inc., 
Gilbertsville, PA (USA) 

1 mg/ml; 1:10000 
(macroarray) 

ERIC 1 
Mouse monoclonal 
antibody against human 
NCAM-ED 

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

200 µg/ml;  
1:50 (IF), 1:100 
(NCAM-
triggering) 

GST-tag 
antibody 

Mouse monoclonal 
immunoglobulin subclass 
G (IgG) antibody against 
glutathione-S-transferase 
(GST)-tags 

Novagen (Merck KGaA), 
Darmstadt (GER) 

1 mg/ml;  
1:10000 (WB) 

H28 
Rat monoclonal antibody 
against mouse NCAM-
ED 

Own production. 
Hybridoma cells were 
kindly provided by R. 
Michalides, The 
Netherlands Cancer 
Institute, Amsterdam (NL) 

1:2 (IF);  
1:10 (WB) 

KIF5A 
(clone H-75) 

Rabbit polyclonal 
antibodies against KIF5A 

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

200 µg/ml; 
1:60 and 1:200 
(IF), 1:1000 (WB) 

KLC1 
(clone H-75) 

Rabbit polyclonal 
antibodies against KLC1 

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

200 µg/ml;  
1:200 (WB), 5 µg 
(co-IP), 
0.05 µg/well 
(ELISA) 

KLC1 
(clone L2) 

Mouse monoclonal 
antibody against KLC1  

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

200 µg/ml;  
1:50 (IF) 

Non-specific 
IgGs 

Rabbit IgGs isolated 
from naive sera 

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

100 µg/ml;  
5 µg (co-IP) 

p61 
Rat monoclonal antibody 
against NCAM-ID 

Own production. 
Hybridoma cells were 
kindly provided in the 
laboratory of Dr. V. Sytnyk 

1:2 (IF) 

Poly NCAM1 
Rabbit polyclonal 
antibodies against 
mouse NCAM-ED 

Kindly provided by M. 
Schachner, Center for 
Molecular Neurobiology, 
University of Hamburg 
(GER) 

1:1000 (WB) 
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Primary 
antibodies 

Characteristics Source 
Concentration / 
dilution factor / 
application 

Tetra-His 
antibody 

Mouse monoclonal IgG 
antibody recognizes at 
least 4x His-tagged 
proteins / Epitope HHHH 

Qiagen, Hilden (GER) 
200 µg/ml; 
1:8000 (WB) 

TGN38 (clone 
M-290) 

Rabbit polyclonal 
antibodies against 
mouse TGN38  

Santa Cruz Biotechnology 
Inc., Santa Cruz, CA 
(USA) 

200 µg/ml; 
1:1000 (WB) 

γ-adaptin 
Mouse monoclonal 
antibody against γ-
adaptin (IgG) 

BD Biosciences, San 
Jose, CA (USA) 

250 µg/ml;  
1:50 (IF) 

Secondary 
antibodies / 
NeutrAvidin 

Characteristics Source 
Concentration / 
dilution factor / 
applications 

anti-mouse-CY3 

CyDye (CY)3-conjugated 
goat polyclonal 
antibodies against 
mouse IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:200 (IF) 

anti-mouse-CY5 
CY5-conjugated goat 
polyclonal antibodies 
against mouse IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:200 (IF) 

anti-mouse-
POD 

Peroxidase (POD)-
conjugated AffiniPure 
goat polyclonal 
antibodies against 
mouse IgG + IgM 

Dianova, Hamburg (GER) 
800 µg/ml 
(400 µg/ml); 
1:10000 (WB) 

anti-rabbit-CY3 
CY3-conjugated goat 
polyclonal antibodies 
against rabbit IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:200 (IF) 

anti-rabbit-POD 
POD-conjugated goat 
polyclonal antibodies 
against rabbit IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:50000 (WB) 

anti-rat-DL488 
DL488-conjugated goat 
polyclonal antibodies 
against rat IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:200 (IF) 

anti-rat-POD 
POD-conjugated goat 
polyclonal antibodies 
against rat IgG (H+L) 

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:10000 (WB) 

POD-
conjugated 
NeutrAvidin 

POD-conjugated 
NeutrAvidin, binds to 
biotin  

Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

1:5000 (ELISA), 
1:30000 (Pull-
down assay) 

Peptides Characteristics Source / Reference 
Concentration / 
dilution factor 

NCAM140748-763, 
NCAM140764-777, 
NCAM140756-770 

Biotinylated peptides 
corresponding to 
indicated amino acid 
sequences of mouse 
NCAM140  

Peptide 2.0, Chantilly VA 
(USA; described in Li et 
al., 2013) 

10 mg/ml; 1:2000  

ELISA: enzyme linked immunosorbent assay, IF: immunofluorescence,  
co-IP: co-immunoprecipitation, WB: Western Blot 
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2.6. Bacterial strains, cell lines, and primary neurons 

Tab. 6: Bacterial strains, cell lines, and primary neurons 

Name Description / Specification Source / Reference 

Escherichia coli (E. coli) 
BL21 (DE3) 

F- ompT, hsdSB (rB-mB-) gal dcm 
(DE3)  

Stratagene (Studier & 
Moffatt, 1986) 

E. coli TOP10 One Shot® TOP10 competent cells 
Invitrogen, Mount 
Waverly, VIC (AUS) 

E. coli XL1-blue 
recA1 endA1 gyrA96 thi-1 hsdR17 
supE44 relA1 lac [F´ proAB 
lacIqZΔM15 Tn10 (Tetr)]  

Stratagene (Stratagene, 
2004) 

Chinese Hamster Ovary 
(CHO)-K1 

Chinese hamster ovary 
dehydrofolatreductase deficient 
hamster cell line. ATCC (American 
Type Culture Collection) CCL 61 

Life Technologies™, 
Carlsbad, CA (USA) 

Hippocampal and 
cortical neurons 

Brain tissue from wild-type C57Bl6 
mice (postnatal day 2) was extracted 
with the approval of the Animal Care 
and Ethics Committee of the 
University of New South Wales 
(ACEC Number 09/112A). 

Mice were obtained from 
Biological Resources, 
University of New South 
Wales, Kensington, NSW 
(AUS). 

2.7. Plasmids 

Tab. 7: Plasmids 

Name Characteristics Source / Reference 

pBJG1/hNCAM140ID 

pBJG1 vector was constructed by 
Gross et al., 2005; cDNA of human 
NCAM140ID (hNCAM140ID) was 
generated with the following primers: 
forward 5'- GGA TCC GGA TCC 
ATG GAC ATC ACC TGC TAC TTC 
CTG AAC AAG-3' and reverse 5'- 
CTC GAG CTC GAG TGC TTT GCT 
CTC GTT CTC CTT TG-3', restricted 
with BamHI and XhoI and inserted in 
frame in the pBJG1 vector; contains 
8x His-tag and kanamycin resistance 
gene 

Kindly provided by C. 
Laurini, Institute of 
Nutrition and Food 
Science, Department of 
Human Metabolomics, 
University of Bonn (GER) 

pBJG1/hNCAM180ID 

pBJG1 vector was constructed by 
Gross et al., 2005; cDNA of human 
NCAM180ID (hNCAM180ID)was 
cloned in frame into the pBJG1 
vector by BamHI- and XhoI 
restricition sites; contains 8x His-tag 
and kanamycin resistance gene 

Kindly provided by H. 
Faraidun (Wobst et al., 
2012) 

pcDNA3  
Contains ampicillin and G418-
resistance gene 

Purchased from 
Invitrogen, Carlsbad 
(USA) 

pGFP 
Plasmid encodes wild-type GFP 
from Aequorea Victoria; contains 
kanamycin resistance gene 

Purchased from Clontech, 
Palo Alto, CA (USA) 
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Name Characteristics Source / Reference 

pcDNA3.1-GFP/mKHC1 

Mouse KHC1 cDNA was cloned into 
the pcDNA3.1 vector (Invitrogen) at 
the HindIII/XbaI sites; Green 
fluorescent protein (GFP)-tag was 
inserted at the 5’-terminus of the 
cDNA; contains ampicillin resistance 
gene 

Kindly provided by Prof. 
Dr. T. Suzuki, Graduate 
School of Pharmaceutical 
Sciences, Hokkaido 
University (JPN; Araki et 
al., 2007; Kawano et al., 
2012) 

pcDNA3.1-GFP/mKLC1 

Mouse KLC1 cDNA (GenBank 
accession number 
AY753300/AK031309) was cloned 
into the pcDNA3.1 vector 
(Invitrogen) at the HindIII/XbaI sites; 
the KLC1 used in this study has a 
98% protein sequence identity to 
human KLC1 (Q07866); GFP-tag 
was inserted at the 5’-terminus of the 
cDNA; contains ampicillin resistance 
gene 

pcDNA3.1V5-His/ 
NCAM-ID 

Rat NCAM140ID was used as 
template to produce fragments, 
which were cloned into the 
pcDNA3.1V5-His vector (Invitrogen). 
Peptide sequence of NCAM-ID748-777 
shares 99 % identity (1 amino acid 
diference; FM) and NCAM-ID729-750 
and NCAM-ID777-810 are 100 % 
identical with the respective 
hNCAM180 domains 

Kindly provided in the 
laboratory of Dr. V. Sytnyk 
(Li et al., 2013; 
Chernyshova et al., 2011; 
Leshchyns’ka et al., 2003; 
Sytnyk et al., 2002) 

pcDNA3.1V5-His/ 
NCAM-ID748-777 

pcDNA3.1V5-His/ 
NCAM-ID729-750 

pcDNA3.1V5-His/ 
NCAM-ID777-810 

pcDNA3/hNCAM180wt 

Wild type (wt) human NCAM180 
cDNA was cloned in frame into the 
pcDNA3 vector by BamHI restriction 

sites 

Kindly provided in the 
laboratory of PD Dr. S. 
Diestel (Boutin et al., 
2009; Diestel et al., 2005, 

2004) pCX-MCS2/hNCAM∆CT 

The hNCAM with deleted 
cytoplasmic tail (CT; hNCAM∆CT) 
construct was created by PCR using 
pCX-MCS2/hNCAM140wt construct 
(Diestel et al., 2007) as template, 

introducing a stop codon directly 
after the transmembrane domain; 
the PCR product was then 
introduced in the pCX-MCS2 vector; 
contains ampicillin resistance gene 

pGEX-4T-2 

The plasmid contains the cDNA of 
the 26 kDa GST from Schistosoma 
japonicum, resulting in a GST-tag at 

the N-terminus of expressed proteins 
and an ampicillin resistance gene 

Kindly provided by Prof. 
Dr. R. Horstkorte, Institute 
of Physiological 
Chemistry, Martin-Luther-
University Halle-
Wittenberg (GER) 

pGEX-4T-2/ 
hNCAM140ID 

The cDNA of hNCAM140ID was 
restricted from 
pcDNA3/hNCAM140ID with BamHI 
and EcoRI and inserted in frame in 
the pGEX-4T-2 vector 

Generation described in 
this work, vector map is 
provided in the appendix 
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2.8. Enzymes 

Tab. 8: Enzymes 

Name Source 

BamHI Fermentas, St. Leon-Rot (GER) 

DNase Böhringer, Mannheim (GER) 
EcoRI Fermentas, St. Leon-Rot (GER) 

T4 DNA Ligase Fermentas, St. Leon-Rot (GER) 

2.9. Solutions, media, and buffers 

All solutions, media, and buffers were prepared with ultrapure water, if not indicated 

otherwise. 

2.9.1. General buffers 

Phosphate buffered saline 1 (PBS1) 
137 mM NaCl 
2.7 mM KCl 
8.1 mM Na2HPO4 
1.5 mM KH2PO4 

pH 7.2 
 

Phosphate buffered saline 2 (PBS2) 
137 mM NaCl 
2.7 mM KCl 
10 mM Na2HPO4 
1.76 mM KH2PO4 
pH 7.4 

PBST1 
PBS1 

0.05 % (v/v) Tween® 20 
 

PBST2  
PBS2 
0.5 % (v/v) Tween® 20 

Tris buffered saline 1 (TBS1) 
20 mM Tris 
137 mM NaCl 
pH 7.6 
 

Tris buffered saline 2 (TBS2) 
50 mM Tris 
145 mM NaCl 
pH 7.4 

TBST1 
TBS 
0.5 % (v/v) Tween® 20 

TBST2 
TBS 
0.1 % (v/v) Tween® 20 

2.9.2. Buffers and solutions for bacterial culture 

Medium for bacterial culture was autoclaved for 20 min and antibiotics added afterwards to 

warm medium. 

Luria Bertani medium (LB) medium 
10 g Tryptone 
5 g Yeast extract 
10 g NaCl 
pH 7 
 

LB-agar 
LB media 
1.5 % (w/v) Agar 
 

Ampicillin stock 
50 mg/ml, sterile filtered. 
Final concentration: 50 µg/ml 

Kanamycin stock 
30 mg/ml, sterile filtered. 
Final concentration: 30 µg/ml 
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2.9.3. Buffers and solutions for cell culture 

Medium for CHO cells 
DMEM or Ham’s F-12 
5 % or 10 % (v/v) FBS 
10 µg/ml Gentamicin 
0.25 µg/ml Amphotericin B 

Medium for hippocampal neurons 
Neurobasal® A medium 
2 % (v/v) B-27 
2 mM GlutaMAX™ 
2 ng/ml bFGF 

2.9.4. Buffers for molecular biology (DNA-analysis) 

TBE buffer 
100 mM Tris 
83 mM Boric acid 
1 mM EDTA 

TE buffer 
10 mM Tris 
1.3 mM EDTA 

2.9.5. Buffers and solutions for protein biochemistry 

2.9.5.1. Buffers and solutions for recombinant protein expression and purification 

IPTG stock 
100 mM IPTG, sterile filtered.  
Final concentration: 1 mM 
 

 

Lysis buffer for bacteria expressing 
His-tagged hNCAM180ID  
PBS1 (see  2.9.1) 
1 % (v/v) Triton X-100 
Protease inhibitors (see Tab. 9) 

Lysis buffer for bacteria expressing 
GST-tagged hNCAM140ID 
PBS1 (see  2.9.1) 
1 % (v/v) Triton-X-100 
1 mM DTT 
1 mM EDTA 
Protease inhibitors (see Tab. 9) 
 

Equilibration buffer 
Lysis buffer 
2 mM Imidazole 
pH 8 
 

Imidazole stock 
1 M Imidazole 

Washing buffer 
50 mM NaH2PO4 
20 mM Imidazole 
300 mM NaCl 
pH 8 
 

Elution buffer 
50 mM NaH2PO4 
250 mM Imidazole 
300 mM NaCl 
pH 8 

PBS-EW (equilibration and wash buffer) 
1 x PBS1 (see  2.9.1) 
1 mM DTT 
1 mM EDTA 

TNGT (elution buffer) 
50 M Tris, pH 8.0 
0.1 M NaCl 
50 mM reduced L-Glutathione 
0.1 % (v/v) Triton-X-100 
1 mM DTT 
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Tab. 9: Protease inhibitors for bacterial culture 

Protease inhibitor Stock Dilution factor 

Aprotinin 10 mg/ml in PBS1 (see  2.9.1) 1:1000 

Leupeptin 10 mg/ml in ultrapure water 1:1000 

Peptstatin 
1 mg/ml in 1:10 acedic 
acid:methanol 

1:100 

PMSF 100 mM in isopropanol 1:100 

2.9.5.2. Buffers and solutions for the protein macroarray 

Blocking buffer 
Blocking buffer ODYSSEY 

Blocking buffer/T 
Blocking buffer ODYSSEY 
50 % (v/v) PBST1 (see  2.9.1) 

Stripping buffer 
2 % (v/v) SDS 
65.5 mM Tris/HCl, pH 6.8 
100 mM (v/v) β-Mercaptoethanol 

 

2.9.5.3. Solutions for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

4 x Sample buffer (reducing) 
260 mM Tris (pH 6.8) 
40 % (v/v) Glycerine 
12 % (w/v) SDS 
20 % (v/v) β-mercaptoethanol 
0.25 % (w/v) Bromophenol blue 
 

Acrylamide/Bis-solution (30 %/0.8 %) 
75 % (v/v) Rotiphorese® Gel 40 

Tris-HCl solutions 
1.5 M Tris, pH 6.8 (for stacking gel) 
1.5 M Tris, pH 8.8 (for separation gel) 
 

10 % SDS solution 
10 % (w/v) SDS 

10 % APS solution 
10 % (w/v) APS 
 

1 x MOPS running buffer 
5 % (v/v) NuPAGE® MOPS SDS  
running buffer, 20 x 
0.5 % (v/v) NuPAGE® Antioxidant, 200 x 

10 x SDS running buffer 
248 mM Tris 
1.918 M Glycine 
35 mM SDS 

2.9.5.4. Solutions for silver and Coomassie Blue staining of polyacrylamide gels 

Fixing solution for silver staining 
10 % (v/v) Acetic acid 
30 % (v/v) Ethanol 
 

Washing solution for silver staining 
20 % (v/v) Ethanol 

Sensitizer for silver staining 
0.8 mM Na2S2O3 

Silver solution for silver staining 
11.8 mM AgNO3 

0.75 % (v/v) Formaldehyde (37 %) 
 

Developer for silver staining 
0.02 mM Na2S2O3 

0.5 % (v/v) Formaldehyde (37 %) 
0.58 M Na2CO3 

 

Stopping solution for silver staining 
5 % (v/v) Acetic Acid 

Coomassie Blue fixing & destaining solution 
10 % (v/v) Acetic Acid 
30 % (v/v) Ethanol 

Coomassie Blue staining solution 
Destaining solution 
2 g/l Coomassie Brilliant Blue R-250 
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2.9.5.5. Solutions for Western blotting and immunological detection of proteins 

Milk powder blocking buffer 
1 x TBST1 or PBS2 (see  2.9.1) 
5 % (w/v) skim milk powder 
 

BSA blocking buffer 
1 x PBS2 (see  2.9.1) 
3 % (w/v) BSA 

Transfer buffer1 
48 mM Tris 
39 mM Glycine 
1.3 mM SDS 
20 % (v/v) Methanol 
 

Transfer buffer2 
25 mM Tris 
192 mM Glycine 
20 % (v/v) Methanol 

Ponceau-S staining solution 
0.2 % (w/v) Ponceau-S 
3 % (v/v) Acetic acid (96 %) 

Stripping buffer 
0.5 M NaCl 
0.2 M Glycine 
pH 2.8 

2.9.5.6. Solutions for co-immunoprecipitation (co-IP) 

Homogenisation (HOMO) buffer 
5 mM Tris (pH 7.4) 
1 mM MgCl2 
1 mM CaCl2 

0.1 mM PMSF 
EDTA-free protease inhibitor cocktail 

Lysis buffer 
50 mM Tris (pH 7.5) 
150 mM NaCl 
1 % (v/v) Triton X-100 
1 mM Na4P2O7 
1 mM NaF 
2 mM Na3VO4 
0.1 mM PMSF 
EDTA-free protease inhibitor cocktail 

2.9.5.7. Solutions for preparation of the cytosolic fraction of mouse brain tissue and 

trans-Golgi network (TGN) isolation 

Sucrose-PKM buffer 
100 mM KH2PO4 (pH 6.5) 
5 mM MgCl2 

3 mM KCl 
0.1 mM PMSF 
EDTA-free protease inhibitor cocktail 
0.5 M, 0.7 M, 1.1 M or 1.3 M sucrose 

PEMS buffer 
10 mM PIPES (pH 7.0) 
1 mM EGTA 
2 mM MgCl2 

0.25 M Sucrose 
0.1 M PMSF 
EDTA-free protease inhibitor cocktail 

2.9.5.8. Buffers and solutions for enzyme linked immunosorbent assay (ELISA) 

Sodium carbonate buffer 
8 % (v/v) 0.2 M Na2CO3 
92 % (v/v) 0.2 M NaHCO3 

pH 9.2 
 

Citric buffer 
48.5 % (v/v) 0.1 M Citric acid 
51.5 % (v/v) 0.2 M Na2HPO4 
pH 5.0 

Detection solution 
0.1 M Citric buffer (pH 5.0) 
0.05 % (v/v) H2O2 (30 %), freshly added 
9.2 mM OPD 
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3. Methods 

3.1. Molecular biology 

3.1.1. Heat shock transformation 

Competent E. coli bacteria (XL1 Blue (TOP10) for DNA preparation, BL21 (DE3) for protein 

expression) were thawed on ice and 50 µl bacteria suspension added to 50-100 ng of 

plasmid DNA. In case of ligation, the complete ligation mix was used for transformation. The 

bacteria/DNA mixture was mixed gently and incubated on ice for 30 min. To facilitate the 

introduction of the DNA into the cell, a heat shock was performed at 42°C for 1 min (45 sec) 

in a water bath and samples were placed back on ice immediately for 2 min. 450 µl LB 

medium (250 µl S.O.C. medium) were added to the bacteria and the solution incubated 

under constant shaking (220 rpm) for 30-60 min (1.5 h) at 37°C. Finally, 100 and 400 µl (50 

and 200 µl) cell suspension were spread onto pre-warmed agar plates containing the 

appropriate antibiotic (ampicillin or kanamycin). Plates were incubated for 16 h at 37°C. 

3.1.2. Plasmid isolation from E. coli cultures  

Plasmid isolation from 5 ml cultures (Minipreps)  

5 ml LB medium containing the appropriate antibiotic (LB/antibiotic) were inocculated with a 

single bacteria colony and incubated overnight at 37°C under constant agitation. Plasmids 

were isolated from the bacteria using GeneJET™ Plasmid Miniprep Kit according to 

manufacturer’s instructions (Fermentas). DNA was stored at -20°C. 

Plasmid isolation from 50 ml or 200 ml cultures (Midipreps) 

For preparation of large quantities of DNA (up to 100 μg of plasmid DNA), 50 ml (for high 

copy plasmids) or 200 ml (for low copy plasmids as pBJG1) LB/antibiotic were inocculated 

with a single colony and incubated overnight at 37°C under constant agitation. DNA was 

isolated by means of a Plasmid Midi Kit as described in the manufacturer’s protocol 

(Qiagen). DNA was stored at -20°C. 

3.1.3. Agarose gel electrophoresis 

Gels containing 0.8 % or 1 % (w/v) agarose were prepared by boiling the appropriate amount 

of agarose in 50 ml TBE buffer in a microwave oven. The solution was allowed to cool down 

to approximately 60°C before ethidium bromide was added in a final concentration of 

0.4 µg/ml. The melted agarose was poured into the gel tray containing a well comb and gel 

allowed to solidify. The gel tray was put into the electrophoresis apparatus, which was filled 

with TBE buffer until the gel was covered and subsequently the well comb was removed. 

Samples and molecular weight marker were mixed with loading dye and loaded into the wells 
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of the gel. Gel run was performed at 80 V for approximately 1 h. DNA bands were visualized 

using an UV-transilluminator. 

3.1.4. Restriction analysis and purification of cDNA 

For subcloning or analysis of cDNA-constructs, 5 µg or 200-300 ng cDNA, respectively, were 

mixed with the respective enzyme buffer and the enzyme according to manufacturer’s 

protocol and adjusted with ultrapure water to a total volume of 20 µl. The samples were 

incubated for 1-1.5 h at 37°C.  

Generation of the pGEX-4T-2/hNCAM140ID construct was done by digestion of 

pcDNA3/hNCAM140ID and pGEX-4T-2 with BamH1 and EcoR1. cDNAs were digested with 

BamH1 and subsequently purified to remove enzyme by means of the DNA Clean & 

Concentrator Kit according to manufacturer’s instructions (Zymo Research). The cDNAs 

were digested with EcoR1 and samples subjected to agarose gel electrophoresis. To extract 

the cDNAs from the agarose gels, the gel area containing the respective cDNA fragment was 

cut out and eluted from the gel by using QIAquick Gel Extraction Kit according to 

manufacturer’s protocol (Qiagen). After determination of the cDNA concentration, ligation of 

both cDNA fragments followed.  

3.1.5. Photometric nucleic acid determination 

The DNA was diluted 1:100 in ultrapure water and concentration was determined by its UV 

absorbance at 260 nm (an absorbance of 1 is equivalent to 50 µg DNA/ml) and the plasmid 

purity by the ratio of A260nm/A280nm using a spectrophotometer. The sample is pure, when 

the value is between 1.8 and 2.0. 

3.1.6. Ligation 

Ligation of a DNA insert and a vector was performed by using T4 DNA ligase according to 

manufacturer’s instructions (Fermentas).  

To generate the pGEX-4T-2/hNCAM140ID construct, pcDNA3/hNCAM140ID and pGEX-4T-2 

were digested with BamH1 and EcoR1 (see  3.1.4) and the products used for ligation with 

insert (hNCAM140ID) : vector (pGEX-4T-2) ratios of 2:1 and 3:1. Samples were incubated 

overnight at 16°C and afterwards heat shock transformation was performed (see  3.1.1). The 

correctness of the ligation product was tested by restriction analysis (see  3.1.4).  

3.2. Protein-biochemical methods 

3.2.1. Expression of recombinant proteins in E. coli  

Competent BL21 (DE3) bacteria were transformed (see  3.1.1) with the expression plasmid 

and spread on agar plates containing the appropriate antibiotic. 5 ml LB/antibiotic were 
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inocculated with a single bacteria colony and incubated overnight at 37°C with constant 

agitation (220 rpm). Bacteria suspension was transferred into fresh LB/antibiotic in the ratio 

of 1:50 and incubated at 37°C under constant agitation until the culture reached the optical 

density (OD)600 of 0.4-0.6. Protein expression was induced by adding IPTG (1 mM final 

concentration) and the culture was further incubated at 37°C for 3.5 h (hNCAM180ID) or at 

20°C for 24 h (hNCAM140ID). Bacteria were collected by centrifugation (4500 x g, 10 min, 

4°C). Bacteria pellets were resuspended in 12 ml PBS1/1 % Triton X-100 per liter bacteria 

culture and samples either stored at -80°C or directly lysed.  

3.2.2. Lysis of bacteria 

Protease inhibitors (Tab. 9) were added to the bacteria pellets resuspended in PBS1/1 % 

Triton X-100. For hNCAM140ID, EDTA and DTT at a final concentration of 1 mM each were 

added additionally. Lysis was done by 7-10 freezing/thawing cycles with liquid nitrogen and a 

warm water bath, followed by treatment with a Potter homogenizer. To reduce the viscosity 

of the lysate, 10 µg/ml DNase were added and incubated on ice for 2.5 h. The lysate was 

centrifuged (27.000 x g, 30 min, 4°C) and the supernatant collected for purification. Pellets 

were resuspended in PBS1/1 % Triton X-100 and stored at -80°. 

3.2.3. Recombinant protein purification 

Just before purification, lysates were centrifuged vigorously (100000 x g, 30 min, 4°C) to spin 

down any cell debris which otherwise could clog the chromatography columns.  

3.2.3.1. Purification of His-tagged hNCAM180ID by Ni-NTA affinity chromatography 

Recombinant proteins containing a poly-His-residue can be purified by Ni-NTA 

chromatography. NTA is linked to agarose and binds Ni2+-ions, which in turn bind the 

His-residues of the proteins via their imidazole ring. Ni-NTA bound proteins are eluted by 

buffers containing high imidazole concentrations (100-250 nm). Imidazole binds also to Ni2+-

ions and will lead to dissociation of the His-tagged proteins.  

For protein purification, a XK-16 column was packed with 15 ml Ni-NTA agarose and 

connected to a peristaltic pump. Purification was performed according to the Qiagen protocol 

(Qiagen, 2003) and all steps were done at 4°C. If the Ni-NTA was used for the first time, it 

was washed with ultrapure water, 0.1 M EDTA, 0.5 M NaOH, and 0.1 M nickel sulfate. 

Between the washing steps, 2 column bed volumes (CV) of ultrapure water were applied. 

Before each purification, the Ni-NTA resin was equilibrated with 4 CV of equilibration buffer. 

Imidazole was added to the hNCAM180ID-lysate in a final concentration of 2 mM, the lysate 

applied to the column and incubated with the Ni-NTA overnight circulating with a flow rate of 

approximately 0.5 ml/min. The next day, the flow rate was increased to 1 ml/min to collect the 

lysate (flow-through fraction) and the column washed with 4 CV washing buffer. Two 
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separate fractions of 2 CV each were collected: washing fraction 1 (W1) and washing 

fraction 2 (W2). Afterwards, 4 CV elution buffer were applied and the eluate also collected in 

fractions: elution fraction 1-3 (E1-3) of 10 ml each and a final elution fraction 4 (E4) of 30 ml. 

The flow-through, washing and elution samples were analyzed by SDS-PAGE and stored at -

80°C. The column was washed with 4 CV each of PBS1, ultrapure water, 0.5 M NaOH, and 

again ultrapure water, and stored in 30 % (v/v) ethanol at 4°C.  

3.2.3.2. Purification of GST-tagged hNCAM140ID by glutathione affinity 

chromatography 

GST or GST-tagged proteins can be purified by GSH, which is stably immobilized on 

agarose or sepharose. The disruption of the binding and elution of GST or GST-tagged 

proteins takes place by competitive excess of reduced GSH. The purification was performed 

with a XK-16 column packed with 6 ml GSH superflow resin, which was connected to a 

peristaltic pump. All steps of purification were done at 4°C and according to the Qiagen 

protocol for purification of GST-tagged proteins using GSH superflow cartridges (Qiagen, 

2009). The resin was equilibrated with 10 CV of buffer PBS-EW. The lysate loaded to the 

resin and incubated overnight circulating with a flow rate of approximately 0.5 ml/min. The 

flow through was collected and the column washed with 10 CV of buffer PBS-EW in two 

washing fractions (W1 and W2) of the same volume at an approximate flow rate of 2 ml/min. 

Afterwards, the flow rate was reduced to 0.5 ml/min again and GST-tagged proteins were 

eluted with 10 CV of TNGT elution buffer, collected in four fractions: E1-3 of 6 ml each and 

E4 with the remaining volume of 42 ml. The flow-through, washing, and elution fractions were 

analyzed by SDS-PAGE followed by staining of the gel or Western blotting and stored 

at -80°C. The resin was cleaned with 0.1 M NaOH (at least 2 CV), and 0.1 M HCl (2 CV), and 

washed with 5 CV of buffer PBS-EW. The resin was reused or prepared for storage at 4°C by 

applying 5 CV of 20 % (v/v) ethanol. 

3.2.4. Concentration and fluorescent labeling of hNCAM180ID and hNCAM140ID 

A concentration of 1-15 mg/ml of pure protein was needed for protein macroarray 

performance. Therefore, the hNCAM180ID and hNCAM140ID eluates were concentrated 

using 30 kDa (EMD Millipore) and 50 kDa cut-off columns (Sartorius), respectively, according 

to manufacturer’s instructions. The volumes of eluates were reduced by centrifugation at 

2500-3000 x g at 4°C and the concentrators refilled with PBS1. The samples were 

concentrated again and the process repeated at least 3 times, until the Triton concentration 

was sufficiently reduced (≤ 0.01 %, according to manufacturer’s protocol) and the eluates 

concentrated to a minimum of 1 mg/ml. For the protein macroarray, approximately 680 µg 

(15 nM) of hNCAM180ID and 1377 µg (14 nM) of hNCAM140ID were fluorescently labeled 

with DYOMICS DY-633 Fluorophore. The labeling and purification was performed according 
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to manufacturer’s instructions using Fluoro Spin 681, Protein Labeling & Purification Kit (Emp 

Biotech). 

3.2.5. Protein macroarray 

The protein macroarray consists of two membranes which together exhibit 24000 His-tagged 

expression clones of human fetal brain proteins. Protein expression was carried out by the 

manufacturer in an E. coli based expression system for recombinant proteins, and proteins 

were immobilized on a 22 cm x 22 cm PVDF membrane surfaces. One membrane contains 

2/3 (Part 8, Id. 367.60.515) and the other 1/3 (Part 9, Id. 367.56.521) of all expression 

clones. By incubation of fluorescently labeled hNCAM180ID (part 8) and hNCAM140ID 

(part 8 and 9), respectively, with the membranes and analysis of positive spots, yet unknown 

interaction partners of NCAM-ID were identified. 

Prior to incubation with the proteins, the membranes were rinsed in 96 % ethanol for 1-2 min 

under constant shaking to lyse bacterial colonies followed by washing 5 times with ultrapure 

water. The solution was changed to PBS1 and excess colony material was carefully wiped-off 

using paper tissue. After washing in PBS1 3 times for 5 min, all bacterial traces were 

removed. The membranes were incubated with 50 ml blocking buffer for 2 h under constant 

agitation. Subsequently, labeled NCAM was diluted in 50 ml blocking buffer/T and incubated 

overnight at 4°C under constant agitation and light protection. The next day, the solution was 

discarded and the membranes washed 4 times for 1 h with PBST1 and 2 times for 15 min 

with PBS1 protected from light. Signals were detected using the Licor ODYSSEY scanner. 

For removal of bound proteins, the membranes were agitated in 70°C hot stripping buffer for 

30 min and washed with PBS1 for 1 h. To determine expression levels of spotted proteins, 

the membranes were blocked with blocking buffer and incubated with Anti-His IRDye™ 

800-antibodies in 50 ml blocking buffer/T overnight, as described above. The membranes 

were washed, scanned, stripped again (see above), and stored at 4°C in PBST1 containing 

0.02 % sodium azide. The resulting images were analyzed with Aida™ Image Analyzer 

software version 4.24 and Aida™ Array Compare software.  

3.2.6. Determination of protein concentrations 

Protein concentrations were determined using the DC-protein assay. First, a BSA serial 

dilution ranging from 0.0195 mg/ml to 5 mg/ml was prepared. 5 µl of the samples and 

standard dilutions were pipetted in triplicates into wells of a 96-well microtiter plate and 

incubated with 25 µl of a mixture of solution S and A (ratio 1:50) and 200 µl of reagent B for 

15 min at room temperature (RT). The extinctions of the samples were determined at 690 nm 

wave length in an ELISA reader (Titertek PLUS MS2, ICN Biomedicals or POLARstar 
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Omega, BMG Labtech) and the protein concentration analyzed by means of the software 

GraphPad Prism 6.  

3.2.7. SDS-PAGE 

Protein samples were separated by SDS-PAGE. According to the size of proteins, separation 

gels contained different percentages of acrylamide (8 % or 10 %). The stacking gels always 

contained 4 % of acrylamide.  

For electrophoresis, either NuPAGE® Bis-Tris precast gels were used with MOPS running 

buffer and the XCell SureLock® Mini-Cell Electrophoresis System or gels were self-prepared. 

For 2x1.5 mm thick gels, the separation and stacking gel ingredients were mixed as 

described in the table below. TEMED was added just before casting of the gels.  

Tab. 10: Composition of self-prepared gels for SDS-PAGE 

Solutions (ml) 
8 % 
separation gel 

10 % 
separation gel 

4 % 
stacking gel 

Ultrapure water 9.3 7.9 4.1 

Acrylamide/Bis-solution (30 %/0.8 %) 5.3 6.7 1.0 

1.5 M Tris-HCl 5.0 (pH 8.8) 5.0 (pH 8.8) 0.75 (pH 6.8) 

10 % SDS-solution 0.2 0.2 0.06 

10 % APS-solution 0.2 0.2 0.06 

TEMED  0.012 0.008 0.006 

20 ml of separation gel and approximately 6 ml of stacking gel solutions were prepared for 2x1.5 mm 

thick gels. 

The separation gel solution was poured into the gel casting form and the top of the gel 

covered with isopropanol. When the gel was polymerized, isopropanol was removed, the 

stacking gel solution poured on top of the separation gel and the well comb inserted. After 

polymerization of the entire SDS-PAGE, the well comb was removed and the chamber was 

assembled as described by the manufacturer’s protocol (Mini-PROTEAN® Electrophoresis 

System, Bio-Rad) using SDS running buffer.  

Samples were diluted with appropriate amount of SDS sample buffer (reducing or non-

reducing, see Tab. 4 and  2.9.5.3) and boiled for 5 min at 95°C (10 min at 70°C) when 

reducing conditions were set up. Samples were mixed, centrifuged and loaded into the wells 

of the gel. A molecular weight marker was also applied. The precast gels were run at 

constant 150 V and the self-prepared gels at 35 mA for approximately 30 min and then at 

40 mA. The run was stopped when the blue bromophenol running front had reached the 

bottom of the gel. Gels were either stained or subjected to Western blotting. 
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3.2.8. Silver staining of polyacrylamide gels 

Silver staining has a detection limit of 10-50 ng of protein and is thereby a very sensitive 

method for staining of proteins separated by SDS-PAGE. Ag+ binds to amino acid residues of 

proteins and is subsequently reduced by formaldehyde to elemental silver that appears 

black. All steps were performed under constant agitation. The gel was fixed with fixing 

solution for silver staining 3 times for 30 min and washed for 10 min in washing buffer and for 

20 min in water. Then, the gel was incubated in sensitizer for 1 min and washed twice with 

water for 30 sec, followed by incubation in silver solution for 30 min and again washing with 

water for 30 sec. The gel was incubated in developer until all protein bands were visible. The 

reaction was stopped by immersing the gel in stopping solution. 

3.2.9. Coomassie staining of polyacrylamide gels 

The Coomassie dye binds with a detection limit of approximately 100 ng to amino groups of 

proteins as well as through van der Waals forces. After SDS-PAGE, the gels were fixed in 

fixing solution for Coomassie staining for 15-30 min and subsequently incubated with 

Coomassie Blue staining solution for 1-2 h under constant agitation. Gels were incubated in 

destaining solution for 1-16 h until the background of the gel appeared clear. 

3.2.10. Western Blot (semi-dry) 

Following electrophoresis, proteins were electroblotted onto nitrocellulose or PVDF 

membranes. Prior to use, PVDF membranes were activated by soaking in methanol for 

45 sec and washed 2 times for 5 min with water. The gel, membrane and filter paper were 

equilibrated in transfer buffer1 (transfer buffer2) for 30 min at constant agitation. The blotting 

sandwich was assembled according to manufacturer’s protocol (Bio-Rad) and proteins 

transferred at 1 mA/cm2 for 1.5 h (5 mA/cm2 for 45 min in a pre-cooled chamber and ice on 

top during the transfer). Blots were washed once with PBS1 (PBS2). The successful protein 

transfer was either monitored by using prestained molecular weight marker or by incubating 

in Ponceau-S staining solution for about 1 min and washing with water until protein bands 

were clearly visible. Staining was removed by briefly incubating the membrane in hot PBS1. 

3.2.11. Immunological detection of proteins on nitrocellulose or PVDF membranes 

Membranes were blocked with milk powder or BSA blocking buffer for 1-2 h at RT. All 

incubation and washing steps were performed under constant agitation. Membranes were 

washed 3 times for 5 min in TBST1 (briefly with PBS2) and incubated with appropriate primary 

antibodies applied in milk powder or BSA blocking buffer overnight at 4°C. The unbound 

primary antibodies were removed by washing the membranes 3 times for 5 min with TBST1 

(3 times for 10 min with PBST2), followed by incubation with corresponding peroxidase 
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(POD)-conjugated secondary antibodies in milk powder or BSA solution for 1-2 h at RT. 

Membranes were washed again 3 times for 5 min with TBST1 (3 times for 10 min with 

PBST2) and 2 times briefly with TBS1 (TBS2). Immunoreactive bands were visualized either 

by means of the chemiluminescence-system MicroChemi 4.2 and ECL Western blotting 

reagent or ECL Pro Enhanced Oxidizing reagent or by exposing the membranes manually to 

X-ray films. Super Signal® West Pico or Dura solutions were used according to 

manufacturer’s protocols and membranes were exposed to the film for different time periods 

depending on the strength of the chemiluminescence signal, then the film incubated in 

developer for 30 sec, washed briefly in water and fixed for approximately 2 min in fixing 

solution. Band intensities were quantified using ImageJ Software. 

3.2.12. Removal of antibodies for re-probing of Western blots (stripping) 

For detection of several proteins on a Western blot, bound antibodies were stripped by 

shaking the membrane in stripping buffer for 2-10 min at RT, then neutralized by incubation 

for several minutes in 20 mM Tris-HCl (pH 8.8) and washed 3 times for 10 min with PBST2. 

Membranes were subjected to immunological detection of proteins as described above.  

3.2.13. Co-IP 

For co-IP experiments, the brain of a 1 day old mouse was homogenized in cold HOMO 

buffer containing 0.32 M sucrose using a pre-cooled Potter homogenizer on ice. Protein 

concentration was determined (see  3.2.6) and 1 mg of total protein was lysed with ice-cold 

lysis buffer for 30 min at 4°C. All following centrifugation and incubation steps were 

performed at 4°C. The lysates were centrifuged at 20000 x g for 15 min. Supernatants were 

collected and pre-cleared with 30 µl protein A/G-agarose beads for 3 h under constant gentle 

rotation. Samples were centrifuged for 2 min at 2000 x g and supernatants transferred into 

new aliquots. Approximately 5 µg of rabbit polyclonal antibodies against KLC1 or nonspecific 

IgG (control) were added to the samples and incubated overnight under constant gentle 

rotation. The next day, complexes were precipitated with 30 µl protein A/G-agarose beads 

applied for 3 h under constant gentle rotation. Samples were centrifuged for 2 min at 

2000 x g and beads were washed 2 times with ice-cold lysis buffer and 1 time with ice-cold 

TBS2. All centrifugation steps in between the washing steps were performed at 2000 x g for 

2 min. Complexes were eluted from beads with 100 µl non-reducing Laemmli buffer to detect 

KLC1 in Western blot. For detection of NCAM, 10 µl of 1 M DTT was added to samples, 

samples were boiled for 10 min at 70°C, and applied to SDS-PAGE followed by Western blot 

analysis.  
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3.2.14. Isolation of TGN organelles 

Isolation of TGN organelles was performed with some modifications as described previously 

(Sytnyk et al., 2002; Fath & Burgess, 1993). All steps were performed on ice or at 4°C. 

Brains from 1 to 3 day old mice were homogenized in ice-cold PKM buffer (3 ml/brain) with 

0.5 M sucrose using a Potter homogenizer. Brain homogenates were centrifuged at 600 x g 

for 10 min. The supernatant was collected and centrifuged on a discontinuous density 

gradient of 0.7/1.3 M sucrose-PKM buffer at 105000 x g for 1 h. The supernatant containing 

the cytosol was collected and stored at -20°C. The concentrated membranes at the 0.7/1.3 M 

sucrose-PKM buffer interface were collected, adjusted to 1.25 M sucrose-PKM buffer, 

overlaid with 1.1 M and 0.5 M sucrose-PKM buffer, and centrifuged at 90000 x g for 1.5 h. 

The Golgi stacks were collected at the 0.5/1.1 M interface, adjusted to 0.7 M sucrose-PKM, 

and then centrifuged at 10000 x g for 15 min to pellet Golgi stacks. The small TGN-

containing membranes remaining in the supernatant were collected by centrifugation at 

259000 x g for 30 min. The membranes were resuspended in PEMS buffer. Samples of 

different fractions (brain homogenate, cytosol, TGN organelles, and Golgi stacks) were 

analyzed by Western blot.  

3.2.15. Preparation of the cytosolic fraction of mouse brain tissue 

Brains from 1 to 3 day old mice were homogenized in ice-cold 0.5 M sucrose-PKM buffer 

(3 ml/brain) using a Potter homogenizer. Brain homogenates were centrifuged at 100000 x g 

for 1 h at 4°C. Supernatant (cytosol) was collected and used as source for KLC1 in ELISA 

and pull-down assay. 

3.2.16. ELISA 

Rabbit polyclonal antibodies against KLC1 (1 µg/ml in sodium carbonate buffer pH 9.6, 

50 µl/well) were adsorbed to the surface of wells of 96-well MICROLON 600 plates overnight 

at 4°C in humid atmosphere. Wells were washed 3 times for 5 min with 200 µl TBS2 and 

blocked with 150 µl of 1 % BSA in TBS2 for 1 h at 37°C. Wells were washed as described 

before and incubated with 50 µl/well of the cytosolic fraction of mouse brain tissue 

(see  3.2.15) diluted 1:10 in TBST2 for 1 h at 37°C. Wells were washed 3 times for 5 min with 

200 µl TBST2. Increasing concentrations of chemically synthesized biotinylated peptides 

corresponding to amino acid sequences 748-763 (NCAM-ID748-763), 764-777 

(NCAM-ID764-777), and 756-770 (NCAM-ID756-770) of mouse NCAM140 diluted in TBST2 

(50 µl/well) were incubated for 1 h at 37°C. Wells were washed with TBST2 as described 

above and incubated for 1 h at 37°C with POD-conjugated NeutrAvidin diluted 1:5000 in 

TBST2 containing 1 % BSA (50 µl/well). After repeated washing with TBST2 as described 

above, color reaction was developed with 150 µl detection solution/well containing OPD and 
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H2O2. The OD was measured at 450 nm with an ELISA reader (POLARstar Omega, BMG 

Labtech). 

3.2.17. Pull-down assay 

All steps were performed on ice or at 4°C and with ice-cold solutions. For immunopurification 

and immobilization of KLC1, the cytosolic fraction of mouse brain tissue (see  3.2.15) was pre-

cleared with 30 µl protein A-agarose beads for 3 h under constant agitation. Samples were 

centrifuged at 2000 x g for 2 min and supernatants transferred into new tubes. Approximately 

14 µg of polyclonal rabbit KLC1 antibodies were added and incubated overnight under 

constant agitation. Complexes were precipitated with 120 µl protein A-agarose beads for 7 h 

under rotation. Beads were washed 5 times with 2 ml TBST2 and centrifuged at 2000 x g for 

2 min in between the washing steps. Beads were aliquoted in four tubes and incubated with 

chemically synthesized biotinylated peptides NCAM-ID748-763, NCAM-ID764-777, and 

NCAM-ID756-770 of mouse NCAM140 diluted 1:2000 in TBST2 in a total volume of 1 ml. 

Purified PAK1 (120 x the amount of peptide, kindly provided by Iryna Leshchyns’ka; 

described in Li et al., 2013) was added where indicated. Samples were incubated overnight 

under constant rotation. Beads were collected by centrifugation at 2000 x g for 2 min and 

washed 4 times with TBST2 as described above. Proteins were eluted with 60 µl 0.2 M 

glycine buffer (pH 2.0) and 12 µl 1 M Tris (pH 8.0) were added immediately for neutralization. 

Samples of bound proteins and input material (peptides diluted 1/2000 in TBST2) were 

applied onto a Slot blot with activated PVDF membrane (see  3.2.10 for PVDF activation) and 

probed for peptides with POD-conjugated NeutrAvidin (1:30000 in 1 % BSA in TBST2) after 

blocking of the membrane (3 % BSA in TBST2). 

3.3. Cell culture and immunofluorescence 

3.3.1. PDL coating of glass coverslips for cell culture 

Coverslips were cleaned thoroughly by treatment  with ultrasound for 30 min in acetone. The 

procedure was repeated with ethanol. Subsequently, coverslips were washed a few times 

with sterile ultrapure water and incubated in sterile PDL (100 μg/ml) solution at 37°C for 2 h 

under constant shaking. After one more washing step with sterile ultrapure water, coverslips 

were spread onto aluminium foil, which was sterilized with 70 % ethanol, and dried overnight 

under UV light in the laminar flow hood. 



Methods 37 

 

3.3.2. CHO cells 

3.3.2.1. Cell culture of CHO cells  

CHO cells were cultured in 75 cm2 culture flasks in DMEM or Ham’s F-12 containing FBS 

and antibiotics at 37°C, a CO2 level of 5 %, and > 95 % relative humidity. If not indicated 

otherwise, the term medium refers to DMEM or Ham’s F-12 supplemented with FBS and 

antibiotics. At a confluency of 80-90 %, cells were washed with FBS- and antibiotic-free 

medium and detached from the flask bottom with Trypsin-EDTA. Trypsinization was either 

stopped by adding medium when cells were plated on coverslips for transfection or Trypsin-

EDTA-cell solution was transferred into a new flask containing medium for further cultivation.  

 

For long time storage, cells were frozen in cryovials. Therefore, the trypsinized cells were 

transferred into a 15 ml tube containing medium. The cells were pelleted by centrifugation for 

7 min at 180 x g. After removal of the supernatant, the cells were resuspended in 1.8 ml 

medium. 10 % DMSO was added, the cell suspension aliquoted into two cryovials and frozen 

immediately at -80°C or liquid nitrogen for long time storage. Cells were thawed by adding 

medium into the cryovial and transferring the cell solution into 9 ml medium in a 15 ml tube. 

After centrifugation (170 x g, 7 min, RT), cells were resuspended in 1 ml medium and 

transferred in a culture flask containing fresh medium.  

3.3.2.2. Transfection of CHO cells 

One day before transfection, cells were plated on PDL coated glass coverslips (see  3.3.1) in 

2 cm2-wells of a 24-well plate in medium containing 10 % FBS. The CHO cells were 90-95 % 

confluent the next day and then transfected with Lipofectamine™ 2000. Solutions were 

prepared in Eppendorf tubes. Per well, 1-1.25 µg cDNA in total (when co-transfected with the 

cDNA of peptides: 2-fold the amount of peptide-cDNA) was diluted in 50 µl DMEM and mixed 

gently. Afterwards, 2 µl Lipofectamine™ 2000 were diluted in 50 µl DMEM for each well, 

mixed gently and incubated for 5 min at RT. The diluted Lipofectamine™ solution was 

combined with the prepared cDNA solution, mixed gently, and incubated for 20 min at RT. 

The complexes were added to the cells on the plate. The suspensions were mixed by rocking 

the plate gently and cells were finally incubated in the incubator for 40-42 h under conditions 

as described above.  

3.3.2.3. Immunofluorescence labeling of CHO cells 

To label cell surface NCAM, CHO cells were placed and kept on ice until indicated otherwise 

to inhibit endocytosis. All antibodies were applied in DMEM containing 10 % FBS. Primary 

antibody against hNCAM-ED (ERIC 1; for dilution factors of antibodies see Tab. 5) was 

applied to living cells for 20 min. Cells were washed carefully 3 times for 5 min with ice-cold 
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PBS2 and incubated with corresponding anti-mouse-CY5-conjugated secondary antibodies 

for 15 min protected from light. Cells were washed again with ice-cold PBS2 as described 

above and fixed with 4 % PFA in PBS2 for 15 min at RT. After one more washing step with 

PBS2, cells were embedded in FluorPreserve™ reagent, if no other staining was performed. 

Otherwise, cells were washed 3 times for 5 min with PBS2 at RT and permeabilized with 

0.25 % Triton X-100 in PBS2 for 5 min, followed by one washing step with PBS2. Cells were 

blocked with 1 % BSA in PBS2 for 20 min and solution changed to PBS2. To stain intracellular 

NCAM, ERIC 1 antibody was applied overnight at 4°C. Cells were washed 3 times for 10 min 

with PBS2 and anti-mouse-CY3-conjugated secondary antibodies applied for 45 min at RT. 

After another washing step with PBS2 (3 times, 10 min), coverslips were embedded in 

FluorPreserve™ reagent.  

3.3.3. Primary neurons 

3.3.3.1. Cultures of hippocampal and cortical neurons  

Cultures of hippocampal or cortical neurons were prepared from postnatal day 2 C57Bl6 

mice by Dr. V. Sytnyk and maintained in Neurobasal® A medium supplemented with B-27, 

GlutaMAX™ and bFGF on glass coverslips coated with PDL. 

3.3.3.2. Immunofluorescence labeling of endogenous proteins of cultured 

hippocampal neurons 

Cultured hippocampal neurons were fixed with 4 % PFA in PBS2 for 15 min. Neurons were 

washed with PBS2 3 times for 5 min and cell membranes were permeabilized by incubating 

neurons with 0.25 % Triton X-100 in PBS2 for 5 min. After washing once with PBS2, neurons 

were blocked with 1 % BSA in PBS2 for 20 min. All antibodies were applied in 0.1 % BSA in 

PBS2. Primary antibodies were applied overnight at 4°C, neurons were washed again 3 times 

for 5 min, and incubated with corresponding secondary antibodies for 45 min at RT protected 

from light. Neurons were washed as described above and coverslips embedded in 

FluorPreserve™ reagent.  

3.3.3.3. Transfection and immunofluorescence labeling of cultured cortical neurons 

Cortical neurons were prepared from mouse brain tissue and transfected before plating using 

Neon® Transfection System according to the manufacturer’s instructions (Life 

Technologies™). After 1 day in vitro (DIV), neurons were fixed, washed, and blocked as 

described above for hippocampal neurons (see  3.3.3.2), but without permeabilization of the 

neurons. Cell surface hNCAM180 was labeled by incubation of ERIC 1 antibody for 1 h at 

RT, neurons were washed 3 times for 5 min with PBS2, and anti-mouse-CY3-conjugated 
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secondary antibodies applied for 45 min at RT protected from light. Neurons were washed 

again and coverslips embedded as described ( 3.3.3.2). 

When NCAM endocytosis was stimulated (NCAM-triggering), neurons were transfected and 

cultured for 1 day before living cortical neurons were incubated with ERIC 1 antibody 

(2 µg/ml) for 1 h at 37°C and washed 3 times for 5 min with PBS2. All following steps were 

performed at RT. Neurons were fixed with 4 % PFA in PBS2 for 15 min. After washing as 

described above, neurons were blocked with 5 % donkey serum in PBS2 for 15 min and 

labeled with anti-mouse-CY3-conjugated secondary antibodies applied in 1 % donkey serum 

in PBS2 for 30 min to visualize cell surface NCAM. Neurons were washed again 3 times for 

5 min with PBS2 and post-fixed with 2 % PFA in PBS2 for 5 min, washed as described, and 

treated with 0.25 % Triton X-100 in PBS2 for 5 min to permeabilize membranes. Neurons 

were washed once with PBS2, followed by blocking with 5 % donkey serum in PBS2 for 

20 min. Solution was changed to PBS and anti-mouse-CY5-conjugated secondary antibodies 

applied for 45 min to visualize cell surface and during the incubation time internalized NCAM. 

Coverslips were embedded in FluorPreserve™ reagent.  

3.3.4. Immunofluorescence acquisition and quantification 

Images of CHO cells and primary neurons were acquired at RT using confocal laser 

scanning microscope (LSM) 510, LSM510 software, and oil Plan Apo VC 60x objective with 

numerical aperture 1.4. Quantification of immunofluorescence staining and fluorescence 

intensities were performed with ImageJ software by manually outlining of cells and 

measuring mean immunofluorescence intensities within the outlines. Plot profiles were 

conducted with ImageJ by manually drawing a line within areas of co-localization and 

measurement of the intensities of the respective labeling along the line. The contrast and 

brightness of images of exemplary cells were further adjusted in ImageJ. Graphs were made 

by means of Graphpad prism 6 software.  

3.3.5. Statistical analyzes of immunofluorescence experiments 

All statistical analyzes were done by means of Microsoft Office Excel 2007 and GraphPad 

Prism version 6. Datasets with three groups were analyzed by one-way analysis of variance 

(ANOVA), followed by Dunnett’s multiple comparison test. Analyzes of two groups were 

performed by unpaired t-test (two-tailed). The strength of a linear relationship between two 

sets of data was measured by Pearson's correlation coefficient (r). Statistical significance 

was assumed at p < 0.05. 
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4. Results 

4.1. Identification of potential interaction partners of hNCAM180ID and 

hNCAM140ID by protein macroarray 

For the identification of novel interaction partners of human NCAM-ID (hNCAM-ID) a protein 

macroarray containing 24000 expression clones of human fetal brain was performed. 

Therefore hNCAM180ID and hNCAM140ID were recombinantly expressed and purified by 

ligand chromatography. After incubation with the macroarray membrane, expression clones 

which bound the purified hNCAM-ID isoforms were analyzed and the interaction further 

investigated.  

4.1.1. Expression and purification of hNCAM180ID 

The ID of hNCAM180 was cloned by H. Faraidun (Faraidun, 2008) into the prokaryotic 

expression vector pBJG1, which contains an 8x His-tag. After overexpression in E. coli 

BL21 (DE3) bacteria, cells were lysed, centrifuged, and the soluble fraction containing 

hNCAM180ID was used for purification by Ni-NTA chromatography. The pellet (P) was 

resuspended in PBS/Triton. After preparing the column with Ni-NTA sepharose and loading 

the hNCAM180ID sample, the flow-through was collected, followed by multiple washing and 

elution steps. Purification samples were separated by SDS-PAGE followed by Western 

blotting and probing of the membrane with NCAM-ID specific antibody 5B8. As shown in 

Fig. 4 A, no signals appeared in the flow-through (FT) and washing fractions (W1/2), which 

confirmed a strong binding of NCAM to the Ni-NTA. The increased amount of imidazole in 

the elution buffer led to a disruption of the Ni-NTA/His-NCAM interaction and elution of 

NCAM, which was visible as 85 kDa band in the second elution fraction (E2). NCAM antibody 

was removed from the membrane before it was reprobed with tetra-His antibody (Data not 

shown), confirming the presence of the His-tag and translation of the complete construct as 

the tag is located at the C-terminus.  
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Fig. 4: Analysis of the purification fractions and the concentrate of hNCAM180ID 

(A) Pellet (P), flow-through (FT), washing (W1/2), and elution fractions (E1/2) were separated by 

SDS-PAGE followed by Western blotting and probing with 5B8 antibody. (B) The hNCAM180ID 

concentrate was separated by SDS-PAGE followed by Western blotting and probing with 5B8 antibody 

(left) or silver staining of the gel (right).  

For macroarray performance, a concentration of 1-15 mg/ml of pure protein was needed. 

Therefore, the eluted protein was concentrated to a final protein concentration of 2.22 mg/ml 

in PBS. The hNCAM180ID concentrate was separated by SDS-PAGE followed by Western 

blotting (Fig. 4 B, left panel) or silver staining (Fig. 4 B, right panel) of the gel. The Western 

blot confirmed the presence of hNCAM180ID with an apparent molecular weight of 85 kDa. 

The two lower bands may have been degradation products of the ID of hNCAM180. The 

silver staining showed a strong NCAM band at 85 kDa and some other weaker bands with a 

lower molecular weight, which may also have been degradation products of hNCAM180ID or 

contaminations with host bacterial proteins. Even though other proteins or degradation 

products were present in the concentrate, the purity of the sample was sufficient for the 

performance of the macroarray as hNCAM180ID was the most prominent protein and 

possible interactions detected by the macroarray were to be confirmed by other methods. 

Approximately 680 µg (15 nM) of recombinant hNCAM180ID isolated from 2.6 l bacteria 

culture were fluorescently labeled with DYNOMICS DYE-633.  

4.1.2. Expression and purification of hNCAM140ID 

The ID of hNCAM140 was initially cloned into the prokaryotic expression vector pBJG1 by C. 

Laurini (Institute of Nutrition and Food Science, Department of Human Metabolomics, 

University of Bonn, Germany), resulting in an 8x His-tagged construct. The expression of 

hNCAM140ID in E. coli BL21 (DE3) bacteria was successful, but after lysis of the bacteria 

the protein remained insoluble in PBS/Triton under various expression times (0-22 h) and 

temperatures (20°C, 30°C, and 37°C; Data not shown). High expression levels of 

recombinant proteins can lead to formation of insoluble aggregates, the so-called inclusion 

bodies, which can be solved by strong denaturants (QIAGEN, 2003). By using 8 M urea 

buffer, hNCAM140ID was successfully dissolved from the pellet and the supernatant used for 
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purification by Ni-NTA chromatography. The washing and elution fractions were separated by 

SDS-PAGE followed by silver staining. Two prominent protein bands appeared in the elution 

fractions, one with an apparent molecular weight of hNCAM140ID at 34 kDa, another at 

approximately 45 kDa (Data not shown).  

As the relatively great amount of the contaminating protein would have been difficult to 

remove from the concentrate of hNCAM140ID, another approach for expression and 

purification of hNCAM140ID was tested. The cDNA of hNCAM140ID was subcloned in frame 

into the prokaryotic expression vector pGEX-4T-2, using the restriction enzymes BamH1 and 

EcoR1, resulting in a GST-tagged hNCAM140ID construct. The pGEX-4T-2/hNCAM140ID 

plasmid was transformed into E. coli BL21 (DE3) bacteria and different expression times 

(0-24 h) and temperatures tested (20°C, 30°C, and 37°C) to optimize hNCAM140ID protein 

expression and solubility. Bacteria were harvested by centrifugation, resuspended in 

PBS/Triton, and lysed by freezing/thawing cycles with liquid nitrogen and ultrasound. After 

another centrifugation step, supernatants were collected and the were pellets resuspended in 

PBS/Triton by ultrasound. The pellet and supernatant samples were analyzed by SDS-PAGE 

followed by Western blotting and Ponceau-S staining. The stained membranes revealed a 

protein with the apparent molecular weight of GST-tagged hNCAM140ID (approximately 

50 kDa) being expressed after IPTG induction and being soluble in PBS/Triton (Data not 

shown). As optimal conditions for a strong expression and good solubility of hNCAM140ID in 

PBS/Triton, an expression time of 24 h at 20°C was chosen for an expression volume of 3 l.  

After centrifugation, bacteria were resuspended in PBS/Triton and lysed by freezing/thawing 

cycles and usage of a Potter homogenizer. The lysate was centrifuged, the pellet 

resuspended again in PBS/Triton, and the supernatant applied onto a column packed with 

GSH superflow. The flow-through, washing, and elution fractions were collected and applied 

onto an SDS-PAGE gel, which was stained with Coomassie Blue (Fig. 5 A). Whereas several 

protein bands appeared in the pellet (P), flow-through (FT), and washing fraction 1 (W1), 

hardly any band was present in W2, showing an efficient washing of the column in the first 

washing step. In the elution fractions E1, E2, and E3, clear protein bands were visible at the 

apparent molecular weight of GST-tagged hNCAM140ID (50 kDa) and one additional band 

appeared at 38 kDa. The hNCAM140ID in E1 emerged slightly below E2 and E3 due to the 

change from wash to elution buffer and hence a mixed buffer composition in this fraction. 
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Fig. 5: Analysis of the purification fractions and the concentrate of hNCAM140ID 

(A) Pellet (P), flow-through (FT), washing (W1/2) and elution fractions (E1-4) were separated by 

SDS-PAGE and stained by Coomassie Blue. (B) The hNCAM140ID concentrate was separated by 

SDS-PAGE followed by Western blotting and probing with 5B8 antibody (left) or Coomassie Blue 

staining of the gel (right).  

As there was a great amount of hNCAM140ID remaining in the flow-through, purification of 

this fraction was repeated. The elution fractions of both purifications were pooled and 

concentrated to a final protein concentration of 1.7 mg/ml. The concentrate purity and 

presence of NCAM was tested by a Coomassie stained gel (Fig. 5 B, right panel) and a 

Western blot probed with 5B8 antibody (Fig. 5 B, left panel) and a GST-tag antibody (data 

not shown), confirming the prominent presence of GST-tagged hNCAM140ID at 50 kDa. The 

additional band at 38 kDa was detected by 5B8 antibody, but not with an antibody against 

GST (data not shown). Therefore, it was suggested to be a partially degraded hNCAM140ID 

construct devoid of a GST fragment. Additionally, one more light band with an apparent 

molecular weight of approximately 47 kDa was detected by Coomassie staining, which did 

neither react with 5B8 antibody nor with the antibody against GST (data not shown). 

Therefore it was speculated to represent a contamination with bacterial protein. Finally, the 

three protein bands were analyzed by mass spectrometry (data not shown), kindly performed 

by B. Gehrig (Institute of Biochemistry and Molecular Biology, University of Bonn, Germany), 

which confirmed the Western blot results with GST-tagged NCAM at 50 kDa and untagged 

NCAM at 38 kDa. The band at 47 kDa was identified as translation initiation factor IF-2 and 

GST. It was then tried to cleave the GST-tag from hNCAM140ID by an internal thrombin 

cleavage site inherent in the pGEX-4T-2 vector, as GST could influence the binding between 

NCAM and its potential interaction partners or lead otherwise to false positive signals. But 

even by varying the amount of thrombin cleavage units (0.16 - 0.005 U), incubation 

temperatures (4°C, 20°C, and 37°C), and times (2, 4, 8, and 16 h), GST could only be 

removed from a subset of purified hNCAM140ID (data not shown). Finally, GST-tagged 

hNCAM140ID was used for macroarray performance. In total, approximately 1.4 mg (14 nM) 

hNCAM140ID was extracted from 3 l bacterial culture and fluorescently labeled with 

DYNOMICS DYE-633.  
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4.1.3. Detection and identification of potential interaction partners of hNCAM180ID 

and hNCAM140ID by protein macroarray 

The protein macroarray consists of two membranes (named part 8 and 9; Source Bioscience 

ImaGenes, Berlin) which together contain 24000 His-tagged expression clones of human 

fetal brain proteins. For the identification of yet unknown interaction partners of hNCAM-ID, 

the membranes were incubated with fluorescently labeled recombinant hNCAM180ID (part 8) 

or hNCAM140ID (part 8 and 9). Part 9 has previously been analyzed with hNCAM180ID by 

A. Sekulla (Sekulla, 2010). Signals were detected by scanning the membranes at a 

wavelength of 700 nm. Additionally, the expression levels of the spotted His-tagged proteins 

on the membrane part 8 were detected. Therefore, hNCAM180ID was stripped off of the 

membrane and the membrane incubated with anti-His IRDye™ 800-antibodies and scanned 

at a wavelength of 800 nm. The images were analyzed manually by means of the softwares 

Aida™ Image Analyzer and Aida™ Array Compare. First, a raster was layed on top of both 

membrane images to facilitate the assigning of positive signals to their exact position in the 

coordinate matrix and ultimately enable correct identification. Thereafter, in case of 

hNCAM180ID, both membrane images were overlaid, resulting in an image showing green 

(DYNOMIC DYE-633 labeled hNCAM180ID) and red dots (Alexa-Fluor-800 labeled 

His-tagged spotted proteins). Whereas the green dots showed binding of hNCAM180ID to 

relatively weakly expressed proteins, red dots reflected a strong expression of the spotted 

proteins and no or only little hNCAM180ID binding. With this approach, a relation between 

the strength of the binding of hNCAM180ID to the spotted protein and its expression level 

was given. A yellow signal appeared when hNCAM180ID bound strongly to a highly 

expressed protein, alike when hNCAM180ID bound weakly to a faintly expressed protein on 

the membrane. In case of hNCAM140ID, only signals of the bound protein were detected by 

scanning the membranes at a wavelength of 700 nm and the expression strength of the 

spotted proteins not further considered. 

For each protein, the expression clones have been spotted several times on the membranes 

and additionally arranged in duplicates in a characteristic pattern around a guiding point. 

Green and yellow fluorescent signals were only considered as positive binding signals if both 

spots were significantly brighter than the background. The technical data sheet “Scoring 

Template for Macroarrays” indicated the corresponding spotting pattern, and the positions (x, 

y coordinates) of positive signals were related to a particular expression clone using the 

Source Bioscience imaGenes annotation table. 

Several already known interaction partners of NCAM such as spectrin (Pollerberg et al., 

1986), PLCγ, and PP2A (Büttner et al., 2005) were identified by the macroarray. Additionally, 

several other interesting yet unknown interaction partners were found. Our group focused on 

the verification and analysis of NCAM’s interaction with ubiquitin C-terminal hydrolase 



Results 45 

 

isozyme L1 (UCHL1), ubiquitin-fold modifier-conjugating enzyme 1 (Ufc1), and KLC1. The 

Gene bank accession number and the frequency of the binding of the two NCAM isoforms to 

the proteins on the macroarray are shown in Tab. 11. 

Tab. 11: List of selected potential (upper part of the table) and already known (lower part) 

interaction partners of hNCAM180ID and hNCAM140ID identified in the protein macroarray 

Name 
Gene bank 
accession number 

Protein macroarray 

hNCAM180ID hNCAM140ID 

Ubiquitin C-terminal hydrolase 
isozyme L1 (UCHL1) 

P09936 1 (30), 3 % 0 (70), 0 % 

Ubiquitin-fold modifier-conjugating 
enzyme 1 (Ufc1) 

Q9Y3C8 2 (2), 100 % 8 (8), 100% 

Ubiquitin-activating enzyme 5 
(Uba5) 

Q9GZZ9 0 (0) 4 (6), 66 % 

Kinesin light chain 1 (KLC1) Q07866 6 (18), 33 % 8 (22), 36 % 

Serine/threonine-protein 
phosphatase 2 A (PP2A) 

P30153 0 (22), 0 % 24 (46), 52 % 

Spectrin α-chain (α-spectrin), brain Q13813 0 (30), 0 % 6 (36), 16 % 

Spectrin β-chain, (β-spectrin), 
brain 2 

O15020 6 (12), 50 % 2 (12), 16 % 

Phospholipase C (PLCγ) P19174 2 (6), 33 % 0 (6), 0 % 

Given are the name and Gene bank accession number of the detected proteins, and for each protein 

the number of clones bound to the respective isoform of hNCAM-ID, the total number of spotted 

clones (in parentheses), and the percentage of detected clones binding to hNCAM-IDs (binding 

coverage in %). Percentages are rounded down.  

Although only one positive spot of 30 spotted clones of UCHL1 was detected and not both 

spots of a duplicate, a potential interaction between NCAM and the deubiquitinating enzyme 

UCHL1 was of high interest an, as NCAM has been described to become mono-ubiquitinated 

at the plasma membrane (Diestel et al., 2007), and therefore further analyzed. The results of 

this analysis as well as of the analysis of Ufc1 have been published (Mirka Homrich1, Hilke 

Wobst1, Christine Laurini, Julia Sabrowski, Brigitte Schmitz, Simone Diestel: Cytoplasmic 

domain of NCAM140 interacts with ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1). Exp 

Cell Res 324 (2), 192-199, 2014. (1: equal contribution); Hilke Wobst, Sarah Förster, 

Christine Laurini, Agathe Sekulla, Michael Dreiseidler, Jörg Höhfeld, Brigitte Schmitz, 

Simone Diestel: UCHL1 regulates ubiquitination and recycling of the neural cell adhesion 

molecule NCAM. The FEBS Journal 279 (23), 4398-4409, 2012). They are not in the focus of 

this work and, therefore, only shortly summarized here. 

Mono-ubiquitination of plasma membrane proteins results in endocytosis or sorting and 

targeting of proteins in the endosome into the multivesicular body/lysosomal pathway 
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(Hicke & Dunn, 2003; Katzmann et al., 2001). Deubiquitinating enzymes detach ubiquitin and 

thereby rescue proteins from lysosomal degradation and support their recycling to the cell 

surface (Schwarz & Patrick, 2012; Butterworth et al., 2007; Wilkinson, 2000). We showed 

that NCAM180 and NCAM140 partially colocalize with UCHL1 in cell somata and neurites of 

primary cortical neurons and in the B35 neuroblastoma cell line. The co-overexpression of 

UCHL1 and hNCAM180 or hNCAM140, respectively, significantly decreased the constitutive 

ubiquitination of both NCAM isoforms whereas the inhibition of endogenous UCHL1 

increased the ubiquitination of NCAM. Additionally, after co-overexpression with UCHL1, the 

lysosomal localization of NCAM180 and NCAM140 was significantly reduced and 

internalized NCAM was shown to partially colocalize with UCHL1. Therefore, UCHL1 is 

suggested to be a novel interaction partner of both NCAM transmembrane isoforms that 

regulates their ubiquitination and intracellular trafficking (Wobst et al., 2012). 

Furthermore, the protein macroarray revealed Ufc1 as potential interaction partner of both 

NCAM isoforms with 100 % binding coverage. Additionally, hNCAM140ID interacted with 

66 % of all spotted clones of the ubiquitin-like modifier activating enzyme 5 (Uba5). An 

interaction of Uba5 with hNCAM180ID was not detected, as no clones expressing Uba5 were 

spotted on the macroarray membrane part 8, which was incubated with hNCAM180ID. Ufc1 

is a specific enzyme, which conjugates the ubiquitin-fold modifier 1 (Ufm1) to target proteins, 

resulting in a posttranslational modification related to ubiquitination, the so-called ufmylation. 

Before its conjugation, Ufm1 needs to be activated by Uba5 (Komatsu et al., 2004). Further 

investigation by our group revealed a partial co-localization of NCAM140 with Ufc1 and Ufm1 

and an increased endocytosis of NCAM140 in the presence of Ufm1. These observations 

point out a possible ufmylation of NCAM140 and a potential novel function of Ufm1 for cell 

surface proteins (Homrich et al., 2014).  

4.2. Verification of the interaction of NCAM and KLC1 

KLC1 was identified 6 times (18 spotted clones in total; 33 % binding coverage) as potential 

interaction partner for hNCAM180ID and 8 times (22 spotted clones in total; 6 % binding 

coverage) for hNCAM140ID. Due to these observations and the potentially highly interesting 

role of KLC1 for NCAM function(s), the interaction of NCAM and KLC1 was analyzed in detail 

in this thesis. 

For the verification of an interaction between NCAM and KLC1, several approaches were 

pursued. In addition, functional studies were carried out to investigate whether NCAM 

transport to the cell surface might be mediated by kinesin-1, as KLC1 is a component of this 

motor protein. For all transfection studies cDNA of hNCAM180 was used. 
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4.2.1. Investigation of the interaction of NCAM and KLC1 

4.2.1.1. Co-IP of NCAM and KLC1 from mouse brain lysate 

First, the interaction of NCAM with KLC1 was confirmed in brain tissue by co-IP. Therefore, a 

brain of a 1 day old mouse was homogenized and lysed. The lysate was pre-cleared and 

incubated with antibodies against KLC1 or non-specific IgGs (control). Complexes were 

precipitated and eluted from the beads with non-reducing Laemmli buffer to detect KLC1, as 

KLC1 antibodies did not function under reducing conditions. For detection of NCAM, the 

proteins were reduced by adding DTT and boiling of the samples. Proteins were separated 

by SDS-PAGE followed by Western blotting and detection of the proteins with appropriate 

antibodies (Fig. 6). No signals were detected with KLC1 and poly NCAM1 (NCAM) antibodies 

in the control (IgG), whereas KLC1 was successfully precipitated from brain lysate when 

using KLC1 antibodies for co-IP. Analysis with poly NCAM1 antibodies showed that NCAM 

was co-precipitated with KLC1, suggesting an interaction of NCAM and KLC1 in mouse 

brain. In young mouse brain NCAM is heavily polysialylated. Therefore, the NCAM signal in 

Western blot appeared as a broad smear with an apparent molecular weight above 180 kDa 

(Hoffman et al., 1982; Rothbard et al., 1982). The KLC1 band was shifted above its apparent 

molecular weight of approximately 60 kDa to almost 80 kDa when it was analyzed by SDS-

PAGE under non-reducing conditions.  

 

Fig. 6: Co-IP of KLC1 and NCAM from mouse brain lysate 

KLC1 immunoprecipitates (IP) from brain lysate and input material (Input) were separated by 

SDS-PAGE and analyzed by Western blot (WB) with KLC1 and poly NCAM1 (NCAM) antibodies. 

Control IP with non-specific IgG antibodies served as control. Similar results were obtained in four 

independent experiments. 

4.2.1.2. Co-localization of intracellular NCAM and kinesin-1 in CHO cells 

The co-localization of NCAM and kinesin-1 would further support that the proteins interact. 

To get a first impression of a potential intracellular overlap of both proteins, CHO cells were 

transiently co-transfected with cDNAs of hNCAM180 and equal amounts of both parts of a 

kinesin-1 tetramer, GFP-KLC1 and GFP-KHC1 (GFP-KLC1/KHC1). Approximately 40 hours 

later, cell surface hNCAM180 was labeled with ERIC 1 antibody and 
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anti-mouse-CY5-conjugated secondary antibodies before cells were fixed, permeabilized, 

and stained again with ERIC 1 antibody and anti-mouse-CY3-conjugated secondary 

antibodies to detect total, meaning cell surface and intracellular hNCAM180. In Fig. 7, 

confocal images of the stained total and surface hNCAM180 and the GFP-KLC1/KHC1 

fluorescence are shown separately and merged. The hNCAM180, which was not detected 

with NCAM antibodies applied before permeabilization of the cell is identified as intracellular 

hNCAM180. Yellow dots in the merged image showed strong co-localization of 

GFP-KLC1/KHC1 with intracellular hNCAM180, also confirmed by the graph of the 

immunofluorescence intensity profiles along the line. 

Cells were transiently co-transfected with cDNAs of NCAM and GFP-KLC1/KHC1 and labeled with 

ERIC 1 antibody and anti-mouse-CY5-conjugated secondary antibodies applied before fixation to label 

surface NCAM. Total NCAM was labeled after fixation and permeabilization of the cells with ERIC 1 

antibody and anti-mouse-CY3-conjugated secondary antibodies. The graph shows 

immunofluorescence intensity profiles along the corresponding line in the merged image. Scale bar, 

10 µm. NCAM: hNCAM180. 

4.2.1.3. Co-localization of endogenous NCAM and KLC1 or KIF5A in primary 

hippocampal neurons 

After having detected the overlap of co-overexpressed NCAM and kinesin-1 in CHO cells, 

the co-localization of endogenous NCAM with KLC1 and KIF5A, respectively, was 

investigated in primary hippocampal neurons. As described above, KLC1 binds to a group of 

KIF5 proteins, as for example KIF5A, to compose the functional motor kinesin-1 (Hirokawa, 

1998). In this regard, co-localization of NCAM and KIF5A was also investigated. 

Hippocampal neurons were isolated from postnatal day 2 mice. After 1 DIV, neurons were 

fixed and permeabilized. After blocking, NCAM-ED specific antibody H28 with KLC1 or 

KIF5A antibodies were applied, followed by secondary antibodies. In Fig. 8, confocal images 

of the NCAM and KLC1 (A) or NCAM and KIF5A (B) staining are shown separately and 

merged. Examples of co-localized NCAM and KLC1 or KIF5A are numbered and shown by 

Fig. 7: Immunofluorescence analysis of a CHO cell overexpressing NCAM and 

GFP-KLC1/KHC1 
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arrows on higher magnification images. Graphs show immunofluorescence intensity profiles 

along the corresponding numbered lines, where the concomitant peak of the intensity 

confirms the co-localization of both proteins. Co-localizations appearing as yellow signals of 

NCAM and KLC1 were easily detectable and occurred relatively widespread in the somata 

and in growth cones where both proteins were enriched in accordance with previous records 

(Sytnyk et al., 2002; Morfini et al., 2001). The co-localization of NCAM and KIF5A appeared 

less frequently and was therefore counted. Quantification revealed that 15 neurons out of 33 

exhibited 17 distinct yellow dots in the somata and growth cones being presumably NCAM-

containing vesicles co-localizing with KIF5A.  
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Fig. 8: Immunofluorescence analysis of a hippocampal neuron co-labeled with antibodies 

against NCAM and KLC1 or KIF5A 

Examples of endogenous co-localized NCAM and KLC1 (A) or KIF5A (B) are numbered and shown by 

arrows on high magnification images. Graphs show immunofluorescence intensity profiles along the 

corresponding numbered line in merged images. Scale bar, 5 µm.  

4.2.2. Investigation of the presence of NCAM and kinesin-1 in TGN organelles 

Proteins, which need to be transported from the Golgi to various locations of the cell, e.g. the 

plasma membrane, are mainly packed into TGN organelles (Stephens & Pepperkok, 2001; 

Polishchuk et al., 2000; Nakata et al., 1998). The transport of these carriers to their final 
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destination is facilitated by molecular motors, such as kinesin-1 (Nakata & Hirokawa, 2003; 

Allan et al., 2002; Hirokawa, 1998). To analyze whether kinesin-1 may be involved in the 

transport of NCAM-containing TGN organelles, the presence and co-localization of KIF5A, 

KLC1 and NCAM in TGN organelles was determined. 

4.2.2.1. Detection of NCAM, KLC1, and KIF5A in mouse brain TGN organelles by 

Western blot 

First, the presence of KIF5A, KLC1, and NCAM in TGN organelles was investigated by 

Western blot. Brains from 1 to 3 day old mice were homogenized and centrifuged. The 

supernatant was collected and TGN organelles isolated by sucrose gradient centrifugation. 

The brain homogenate (BH) and fractions of soluble proteins (cytosol), TGN organelles, and 

Golgi stacks were applied onto an SDS-PAGE and analyzed by Western blot with H28 

antibody and KIF5A, KLC1, and TGN38 antibodies (Fig. 9). KIF5A was present in the BH and 

enriched TGN fractions, and less in the cytosolic and Golgi fractions. Interestingly, KIF5A 

antibodies detected a double band with the upper band being more prominent in BH and 

TGN and the lower band in the cytosol. In the Golgi fraction, both bands appeared similarly 

intensive. KLC1 and NCAM were enriched in the TGN organelles, supporting the likelihood of 

kinesin-1 being involved in transporting NCAM-containing TGN organelles. Staining with 

TGN marker TGN38 served as control for a successful TGN isolation. Only very weak 

TGN38 signals appeared in the BH and cytosolic fraction, respectively, whereas TGN38 was 

clearly enriched in the TGN and Golgi fractions, respectively. Therefore, the separation of the 

subcellular fractions and TGN isolation was satisfying.  

 

 

Fig. 9: Western blot analysis of brain homogenate (BH), soluble proteins (cytosol), trans-

Golgi network (TGN) organelles, and Golgi membranes for NCAM, KIF5A, KLC1, and 

TGN38 

Fractions were isolated from 1 to 3 day old mice brains by sucrose gradient centrifugation, separated 

by SDS-PAGE followed by Western blot and probing with H28, KIF5A, KLC1, and TGN38 antibodies. 

 

This experiment indicated that NCAM-containing TGN organelles may be bound to kinesin-1, 

although it did not provide evidence for the presence of NCAM and kinesin-1 at or in exactly 
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the same organelle, as many TGN organelles were investigated simultaneously. To specify 

the concomitant presence of NCAM and kinesin-1, it was tried to immunoisolate TGN 

organelles with an NCAM-ID antibody from the TGN fraction. Subsequent Western blotting 

and immunolabeling for NCAM showed that immunoisolation was not successful under these 

conditions. Using more young mice brains for TGN isolation and KLC1 antibodies for 

immunoisolation, organelles were clearly precipitated, but the staining for NCAM was not 

quite satisfying (data not shown). Ideally, the experiment should have been repeated, but as 

20 mice brains were used for this experiment, the idea was abandoned.  

4.2.2.2. Detection of co-localization of NCAM and KIF5A in TGN organelles in primary 

hippocampal neurons 

The possibility of NCAM-containing vesicles being transported by kinesin-1 was further 

investigated by co-localization studies in neurons. Therefore, a triple immunofluorescence 

staining of cultured 1 day old hippocampal neurons was performed. Neurons were fixed, 

permeabilized, and stained with NCAM-ID specific antibody p61, KIF5A and γ-adaptin 

antibodies, which is a marker protein of TGN organelles. In Fig. 10, images of the staining for 

NCAM, KIF5A, and γ-adaptin are shown. The high magnification image shows an example of 

an NCAM-containing γ-adaptin and KIF5A positive vesicle as white dot (arrow) and the graph 

shows the immunofluorescence intensity profile along the line in the merged image. The 

analysis of the confocal sections of neuronal somata showed that NCAM and KIF5A indeed 

co-localized with γ-adaptin positive organelles albeit out of 34 neurons only 12 showed 

minimal (1 spot) co-localization.  
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Fig. 10: Immunofluorescence analysis of a hippocampal neuron co-labeled with antibodies 

against NCAM, KIF5A, and γ-adaptin 

The high magnification insert shows an example of an NCAM-containing γ-adaptin and KIF5A positive 

vesicle (arrow). The immunofluorescence intensity profile along the line in the merged image is shown 

in the graph. Scale bar, 5 µm.  

4.2.3. Functional studies 

After having gained strong indications for the interaction of NCAM and KLC1 by co-IP and 

co-localization studies, functional analyzes were performed to investigate whether kinesin-1 

could indeed be involved in the transport of NCAM to the cell surface. 

4.2.3.1. Influence of kinesin-1 on the delivery of NCAM to the cell surface in CHO cells 

First, the influence of kinesin-1 on the delivery of NCAM to the cell surface was investigated 

in CHO cells. CHO cells were plated on glass coverslips and transiently co-transfected with 

cDNAs coding for hNCAM180 and either GFP-KLC1 (KLC1) alone, GFP-KLC1/KHC1 

(= motor subunits) or GFP as control. Approximately 40 hours later, cell surface hNCAM180 

in transfected cells was labeled with ERIC 1 antibody applied on ice to living cells followed by 
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anti-mouse-CY5-conjugated secondary antibodies and fixation. After embedding of the 

coverslips in FluorPreserve™, images were taken using a confocal laser scanning 

microscope. The mean intensities of the fluorescent signals were quantified by means of 

ImageJ software. In Fig. 11A, representative fluorescence images of hNCAM180 and GFP 

signals of three cells of each transfection experiment (KLC1 + NCAM, Motor + NCAM, 

GFP + NCAM) are shown. The dotted hNCAM180 labeling is due to the application of 

multivalent antibodies against cell surface antigens to living cells, which typically results in 

clustering of antigens and therefore a dotted staining (Leshchyns’ka et al., 2003). 

Immunofluorescence quantification showed that levels of hNCAM180 at the cell surface of 

KLC1 or motor co-transfected cells were approximately two fold higher when compared to 

hNCAM180 levels at the cell surface of GFP transfected cells. 

At the individual cell level, immunofluorescence intensities of cell surface hNCAM180 

correlated positively with the levels of expression of KLC1 (r = 0.69; p < 0.0001) and the 

motor (r = 0.86; p < 0.0001) as measured by antibody staining and GFP fluorescence, 

respectively. In contrast, cell surface levels of hNCAM180 weakly correlated with GFP levels 

(r = 0.35; p = 0.004) in control GFP transfected cells (Fig. 11 B). As an increased expression 

of kinesin-1 results in increased hNCAM180 levels at the cell surface, these experiments 

provide evidence of NCAM being delivered to the cell surface in dependency on kinesin-1. 
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(A) Images of CHO cells co-transfected with cDNAs of NCAM and either KLC1 (KLC1 + NCAM), 
motor subunits (Motor + NCAM) or GFP (GFP + NCAM), respectively. Cell surface NCAM was labeled 
on ice with ERIC 1 antibody and anti-mouse-CY5-conjugated secondary antibodies applied before 
fixation. Shown are three cells for each transfection mode. Scale bar, 10 µm. Graph shows 
mean + SEM levels of cell surface NCAM. *** p < 0.001 (one-way ANOVA, n ≥ 55). Similar results 
were obtained in five independent experiments. (B) Graphs show the correlation between the 

expression levels of cell surface NCAM and intracellular KLC1, motor, or GFP, respectively, measured 
by antibody staining or GFP fluorescence, for the same transfected cells investigated in (A) of the 
figure. r: Pearson's correlation coefficient. NCAM: hNCAM180. 

4.2.3.2. Influence of kinesin-1 on the delivery of NCAM∆CT to the cell surface in CHO 

cells 

Further investigations were carried out to analyze whether the ID of NCAM is required for 

kinesin-1 dependent delivery of NCAM to the cell surface. CHO cells were transiently co-

Fig. 11: Functional analysis of the influence of kinesin-1 on the delivery of NCAM to the cell 

surface in CHO cells 
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transfected with cDNAs of either full-length hNCAM180 or a truncated construct of 

transfected with cDNAs of either full-length hNCAM180 or a truncated construct of 

hNCAM180 with a deleted ID (hNCAM∆CT) and motor subunits or GFP, respectively. 

hNCAM∆CT has been shown to be able to interact extracellularly with its physiological 

binding partners and to become PSA-modified (Boutin et al., 2009). Cell surface hNCAM180 

was labeled on ice with ERIC 1 and anti-mouse-CY5-conjugated secondary antibodies 

approximately 40 hours after transfection before cells were fixed and images were taken with 

a confocal microscope. Quantification of the mean intensity of cell surface hNCAM180 

showed that the deletion of the ID of NCAM did neither abolish nor increase its transport to 

the cell surface (Fig. 12 A). The level of hNCAM∆CT at the cell surface was rather similar in 

CHO cells co-transfected with motor subuntis (Motor + NCAM∆CT) or GFP 

(GFP + NCAM∆CT). Interestingly, the level of cell surface hNCAM∆CT showed a significant 

weak correlation with the expression level of the motor (r = 0.3; p = 0.0099) in individual cells 

(Fig. 12 B) and was similar to the correlation of the surface levels of full-length hNCAM180 

and GFP expression (r = 0.35, Fig. 11 B). This indicates that the delivery of hNCAM∆CT is 

not dependent on kinesin-1. Nonetheless, the cell surface expression level of hNCAM∆CT 

was similar to that of full-length hNCAM180 co-transfected with motor subunits. Therefore, it 

is conceivable that hNCAM∆CT is transported to the cell surface by a kinesin-1 independent 

mechanism. 

 

Fig. 12: Functional analysis of the influence of kinesin-1 on the delivery of NCAM∆CT to the 

cell surface in CHO cells 

(A) Graph shows mean + SEM levels of cell surface NCAM in CHO cells co-transfected with cDNAs of 

NCAM or NCAMΔCT and either motor subunits (Motor + NCAM, Motor + NCAM∆CT) or GFP 

(GFP + NCAM, GFP + NCAM∆CT), respectively. Cell surface NCAM was labeled with ERIC 1 and 

anti-mouse-CY5-conjugated secondary antibodies applied on ice before fixation of the cells. 

***p < 0.001, ns: not significant (unpaired t-test, n ≥ 68). Similar results were obtained in three 

independent experiments. (B) Graph shows the correlation between expression levels of cell surface 

NCAMΔCT and of the motor, measured by antibody staining and GFP fluorescence, respectively, of 

the same cells investigated in (B) of the figure. r: Pearson's correlation coefficient. NCAM: hNCAM180, 

NCAM∆CT: hNCAM∆CT. 
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4.2.3.3. Influence of peptides derived from NCAM-ID on the kinesin-1 dependent 

delivery of NCAM to the cell surface in CHO cells  

Since deletion of the ID of NCAM did not abolish its delivery to the cell surface, but most 

likely resulted in kinesin-1 independent transport mechanisms for hNCAMΔCT, the influence 

of inhibition of the interaction between NCAM-ID and kinesin-1 was investigated by 

performing a competition assay. Additionally, the KLC1-binding region within NCAM could 

possibly have been narrowed down by using truncated peptides of different length of NCAM-

ID. CHO cells were co-transfected with cDNAs corresponding to hNCAM180 and GFP or 

hNCAM180 and motor subunits together with cDNA constructs coding for NCAM-ID or its 

fragments covering amino acid sequences 729-750 (NCAM-ID729-750), 748-777 

(NCAM-ID748-777), and 777-810 (NCAM-ID777-810) of NCAM140/180 (Fig. 13 A). Cells were 

stained on ice with ERIC 1 and anti-mouse-CY5-conjugated secondary antibodies 

approximately 40 hours after transfection, followed by fixation. In Fig. 13 B, the hNCAM180 

and GFP signals of two cells per group are shown as an example. Immunofluorescence 

analysis revealed that after co-transfection with motor subunits together with peptide 

NCAM-ID, expression level of cell surface hNCAM180 was reduced approximately to the 

level observed in GFP co-transfected cells. This indicates that the NCAM-ID peptide may 

interfere with the delivery of hNCAM180 to the cell surface most likely by competing with 

hNCAM180 for binding to KLC1. Interestingly, CHO cells co-transfected with cDNA of 

hNCAM180 and motor subunits with NCAM-ID729-750, NCAM-ID748-777 or NCAM-ID777-810 , 

respectively, all showed a reduced level of cell surface hNCAM180, most likely also 

interfering at other steps of NCAM’s cell surface delivery. For this reason no additional 

information about the KLC1-binding region within NCAM-ID was gained. The experiment was 

only performed once and afterwards the ELISA technique using synthetic peptides 

(see  4.2.4.1) was chosen as a more suitable approach to narrow down the KLC1-binding 

region within NCAM.  
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Fig. 13: Functional analysis of the influence of peptides derived from NCAM-ID on the 

kinesin-1 dependent delivery of NCAM to the cell surface in CHO cells 

(A) Schematic drawing illustrating full-length rat NCAM140, NCAM-ID, and fragments of NCAM-ID 

corresponding to amino acids 729-750 (NCAM-ID729-750), 748-777 (NCAM-ID748-777), and 777-810 

(NCAM-ID777-810). (B) Images of CHO cells co-transfected with cDNAs of NCAM and either GFP 

(GFP + NCAM) or motor subunits (Motor + NCAM, = #). When indicated, cells were additionally co-

transfected with cDNA expressing NCAM-ID or the peptides NCAM-ID729-750, NCAM-ID748-777, and 

NCAM-ID777-810, respectively. Cell surface NCAM was labeled on ice with ERIC 1 antibody and anti-

mouse-CY5-conjugated secondary antibodies applied before fixation. Shown are two cells per group. 

Scale bar, 10 µm. Graph shows mean + SEM levels of cell surface NCAM. *p < 0.05, ns: not 

significant (one-way ANOVA, n ≥ 50). NCAM: hNCAM180. 

4.2.3.4. Investigation of the functional role of kinesin-1 in the delivery of NCAM to the 

cell surface in primary cortical neurons 

The functional relationship between NCAM and kinesin-1 should have been verified in 

primary cortical neurons as a less artificial system. Neurons were isolated from postnatal 

day 2 mice and directly co-transfected with cDNAs encoding hNCAM180 and KLC1 or GFP, 

respectively. After 1 DIV, neurons were fixed and cell surface hNCAM180 labeled with 

ERIC 1 antibody and anti-mouse-CY3-conjugated secondary antibodies. Analysis of cell 

surface hNCAM180 levels showed no significant differences (Fig. 14 A).  

Therefore, another approach was tested. Incubation of living cells with NCAM-ED antibodies 

(NCAM-triggering) is known to mimic homophilic and heterophilic binding of NCAM which 

leads to NCAM endocytosis and NCAM-dependent signal transduction and neurite outgrowth 

(Diestel et al., 2007; Miñana et al., 2001; Schmid et al., 1999). Keeping the CHO cells on ice 

during the incubation time of the ERIC 1 antibody prevented NCAM endocytosis. In contrast, 

neurons were incubated at 37°C with ERIC 1 antibodies for NCAM-triggering after 1 DIV and 

co-transfection with cDNAs for hNCAM180 and KLC1 or motor subunits. Neurons were fixed 

before labeling with anti-mouse-CY3-conjugated secondary antibodies to stain cell surface 

hNCAM180. After permeabilization, anti-mouse-CY5-conjugated secondary antibodies were 

applied for staining of cell surface hNCAM180 and hNCAM180 internalized over the 

incubation time. After embedding of the coverslips in FluorPreserve™, images were taken 

using a confocal laser scanning microscope and ImageJ software for the quantification of the 

antibody stainings and fluorescent signals. The data in Fig. 14 B show a significantly 

increased mean intensity of surface hNCAM180 when co-transfected with KLC1 

(KLC1 + NCAM) or motor subunits (Motor + NCAM), compared to the control 

(GFP + NCAM). At the individual cell level, expression levels of cell surface hNCAM180 and 

KLC1 or the motor correlated positively (r = 0.53, p = 0.0002 or r = 0.55, p < 0.0001; 

Fig. 14 C), even though differences to correlation levels of the GFP group (r = 0.43, 

p < 0.0001) were less distinct than in CHO cells (Fig. 11 B). Additionally, as in CHO cells, no 

significant differences in the surface level of hNCAMΔCT were observed in neurons 
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overexpressing hNCAMΔCT and KLC1 (KLC1 + NCAMΔCT) or GFP (GFP + NCAMΔCT; 

Fig. 14 B), respectively, and levels of surface hNCAMΔCT and expression levels of KLC1 

correlated very weakly (r = 0.2, ns; data not shown). This indicates that hNCAMΔCT is 

transported kinesin-1 independent also in cortical neurons. Interestingly, in contrast to CHO 

cells, NCAM-triggering seems to be obligatory for the kinesin-1 dependent transport of 

hNCAM180 in neurons. 

  

   

Fig. 14: Functional analysis of the influence of KLC1 or kinesin-1 on the delivery of NCAM and 

NCAM∆CT to the cell surface in primary cortical neurons 

(A) Graph shows mean + SEM levels of cell surface NCAM in primary cortical neurons co-transfected 

with cDNAs for NCAM and KLC1 (KLC1 + NCAM) or GFP (GFP + NCAM), respectively. Cell surface 

NCAM was labeled with ERIC 1 antibody and anti-mouse-CY3-conjugated secondary antibodies 

applied after fixation (no NCAM-triggering). ns: not significant (unpaired t-test, n ≥ 99 from two 

independent experiments). (B) Graph shows mean + SEM levels of cell surface NCAM in primary 

cortical neurons co-transfected with cDNAs corresponding to full-length NCAM or NCAMΔCT and 

either KLC1 (KLC1 + NCAM, KLC1 + NCAMΔCT), motor subunits (Motor + NCAM) or GFP 

(GFP + NCAM, GFP + NCAMΔCT), respectively. Living neurons were incubated for 1 h at 37°C with 

ERIC 1 antibody (NCAM-triggering) and, after fixation, cell surface NCAM was labeled with anti-

mouse-CY3-conjugated secondary antibodies. *p < 0.05 and **p < 0.01 (one-way ANOVA, n ≥ 46 from 

three independent experiments), ns: not significant (unpaired t-test, n ≥ 44 from three independent 

experiments). (C) Graphs show the correlation between the levels of cell surface NCAM and 

expression levels of KLC1, the motor or GFP, respectively, for the same neurons investigated in (B) of 

the figure. r: Pearson's correlation coefficient. NCAM: hNCAM180, NCAM∆CT: hNCAM∆CT. 
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The transfected primary cortical neurons quantified in Fig. 14 B were further analyzed to 

observe if exclusively internalized hNCAM180 co-localizes with KLC1 after NCAM-triggering. 

In Fig. 15 surface hNCAM180 labeling and labeling of internalized hNCAM180 together with 

surface hNCAM180 of two exemplary neurons are shown. In the merged images co-

localization of internalized hNCAM180 and KLC1 appears clearly in the soma (A) and growth 

cone (B).  

Transiently with cDNAs of NCAM and KLC1 co-transfected living neurons were incubated with ERIC 1 

antibody for NCAM-triggering, fixed, and cell surface NCAM was detected with anti-mouse-CY3-

conjugated secondary antibodies. After permeabilization, internalized hNCAM180 and cell surface 

hNCAM180 were stained with anti-mouse-CY5-conjugated secondary antibodies. Images show 

exemplary neurons exhibiting co-localized internalized NCAM and KLC1 in the soma (A) or growth 

cone (B). Graphs show immunofluorescence intensity profiles along the corresponding lines in the 

merged images. Scale bar, 5 µm. NCAM: hNCAM180. 

4.2.4. Localization of the KLC1-binding site within the NCAM-sequence and 

investigation of potential competition partners  

The interaction of NCAM and KLC1 was further investigated in more detail by analyzing the 

KLC1-binding site within the NCAM-sequence that is required for the interaction. 

Furthermore, a first insight into the mechanisms underlying the interaction of NCAM with 

KLC1 was gained  by identifying a competition partner for the KLC1-binding site. 

Fig. 15: Immunofluorescence analysis of cortical neurons overexpressing NCAM and KLC1 

and detection of internalized and surface NCAM after NCAM-triggering 
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4.2.4.1. Identification of the KLC1-binding site within NCAM by ELISA 

The interaction of KLC1 with chemically synthesized, biotinylated peptides derived from 

NCAM-ID was investigated in an ELISA. The peptides cover the sequence of NCAM-ID748-777 

which was used in the competition assay in CHO cells (Fig. 13 A), and were chosen as this 

region was predicted to contain a potential binding site as described in the discussion 

(see  5.3). KLC1 antibodies were adsorbed onto the surface of ELISA wells which were 

incubated after blocking with the soluble fraction of mouse brain tissue to enrich and 

immobilize KLC1. Subsequently, wells were incubated with increasing concentrations of 

chemically synthesized biotinylated peptides corresponding to amino acid sequences 

748-763 (NCAM-ID748-763), 764-777 (NCAM-ID764-777), and 756-770 (NCAM-ID756-770) of mouse 

NCAM-ID (Fig. 16 A). Bound biotinylated peptides were detected by POD-conjugated 

NeutrAvidin and an induced peroxidase reaction. Peptide NCAM140-ID748-763 bound to KLC1 

in a dose dependent manner, whereas peptides NCAM140-ID764-777 and NCAM140-ID756-770 

did not bind (Fig. 16 B and Tab. 12, Experiment 1). 

 

Fig. 16: Identification of the KLC1-binding site within NCAM by ELISA 

(A) Schematic drawing illustrating full-length mouse NCAM140 and peptides covering amino acid 

sequences 748-763 (NCAM-ID748-763), 764-777 (NCAM-ID764-777), and 756-770 (NCAM-ID756-770). (B) 

Binding of biotinylated NCAM peptides NCAM-ID748-763, NCAM-ID764-777, and NCAM-ID756-770 to KLC1 

analyzed by ELISA. KLC1 from mouse brain lysate was enriched by binding to KLC1 specific 

antibodies coated in ELISA wells. NCAM-peptides bound to KLC1 were detected with peroxidase 

(POD)-conjugated NeutrAvidin followed by a peroxidase-dependent color reaction. Graph shows 

mean + SD levels of absorbencies from a representative experiment (n = 1 or 2 wells).  
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The exact values of two ELISA experiments are given in Tab. 12. As peptide 

NCAM140-ID748-763 and NCAM140-ID756-770 exhibit an overlapping region, the exclusive 

8 amino acid region (CGKAGPGA) within NCAM140-ID748-763 is likely to be required for the 

binding of KLC1.  

Tab. 12: Absorbance values of ELISA experiments investigating the KLC1-binding site within 

NCAM 

Experiment Peptides [µM] 
Absorbance at 450 nm 

NCAM-ID748-763 NCAM-ID764-777 NCAM-ID756-770 

1 

0 0 0 0 

0.725 0.038 0.003 0.002 

1.45 0.047 0.057 0.006 0.001 0.009 0.005 

2.9 0.133 0.138 -0.002 0.012 0.003 0.001 

2 
0 0 0 0 

2.9 0.254 0.235 0 0.011 0 

Biotinylated NCAM peptides NCAM-ID748-763, NCAM-ID764-777, and NCAM-ID756-770 were incubated 

with KLC1 from mouse brain lysate that was immobilized in ELISA wells to coated KLC1 antibodies. 

Bound peptides were detected with a color reaction of peroxidase conjugated to NeutrAvidin. Shown 

are the absorbance values at 450 nm of two independent experiments. Peptides were incubated in 

increasing concentrations once or in duplicates. Blanks (buffer without peptides) were subtracted from 

the data. 

Thereupon, a hNCAM180 construct missing the 8 amino acids CGKAGPGA 

(hNCAM180∆747-754) was created by overlap extension polymerase chain reaction (PCR). 

Primary cortical neurons were co-transfected with cDNAs encoding hNCAM180 and motor 

subunits or hNCAM180∆747-754 and motor subunits, and after 1 DIV the cell surface 

expression of hNCAM180/hNCAM180∆747-754 was investigated after NCAM-triggering with 

ERIC 1 antibody and staining with anti-mouse-CY3-conjugated secondary antibodies. 

Quantification showed that significantly less hNCAM180∆747-754 than full-length 

hNCAM180 was delivered to the cell surface in presence of kinesin-1. This result supports 

the view that these amino acids are required for the binding of NCAM to KLC1 since their 

deletion seems indeed to abolish the kinesin-1 dependent delivery of NCAM to the cell 

surface. However, these data are considered as preliminary results and are in need of further 

verification. 

4.2.4.2. Investigation of a potential competition between KLC1 and PAK1 for binding 

to NCAM by pull-down assay 

The amino acid sequence within NCAM-ID required for its binding to KLC1 overlaps with a 

recently identified binding site for the serine/threonine kinase PAK1 (Li et al., 2013), 

suggesting that PAK1 and KLC1 may compete with each other for binding to NCAM-ID. To 

test this hypothesis, a pull-down assay with KLC1 immunopurified from mouse brain was 
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performed. Beads with immobilized KLC1 were incubated with the chemically synthesized 

biotinylated peptides NCAM-ID748-763, NCAM-ID764-777, and NCAM-ID756-770, respectively, or 

NCAM-ID748-763 together with PAK1 immunopurified from mouse brain. Slot blot analysis of 

the pull-downs with POD-conjugated NeutrAvidin showed that only NCAM-ID748-763 clearly 

bound to KLC1 (23 % of the input; Fig. 17) confirming the ELISA result (Fig. 16). The binding 

of NCAM-ID748-763 to KLC1 was abolished in presence of PAK1, giving evidence that KLC1 

and PAK1 indeed compete for the binding to NCAM-ID748-763.  

 

 

 

 

 

 

 

 

 

 

  

Fig. 17: Investigation of a potential competition between KLC1 and PAK1 for binding to 

NCAM by pull-down assay 

KLC1 was immunopurified from mouse brain, immobilized on agarose beads, and used for a 

pull-down assay. The beads were incubated with peptides covering NCAM-ID amino acids 748-763 

(NCAM-ID748-763), 764-777 (NCAM-ID764-777), and 756-770 (NCAM-ID756-770), respectively, or 

NCAM-ID748-763 together with PAK1. Input material (peptides diluted 1/2000 in buffer) and bound 

peptides were analyzed by Slot blot using POD-conjugated NeutrAvidin. Similar results were 

obtained in three independent experiments.  
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5. Discussion 

5.1. Identification of potential interaction partners by protein macroarray 

For the identification of novel potential interaction partners of NCAM’s intracellular domains a 

protein macroarray screening was applied. Consisting of 24000 expression clones of human 

fetal brain proteins, the macroarray presents a high-throughput approach to get first 

indications of possible protein-protein interactions. 

5.1.1. Evaluation of the reliability of the protein macroarray results based on the 

quality of hNCAM180ID and hNCAM140ID probes 

For protein macroarray screening, hNCAM180ID and hNCAM140ID were recombinantly 

expressed and purified by ligand affinity chromatography. The hNCAM180ID concentrate 

comprised the complete hNCAM180ID and two lower bands in Western blot (Fig. 4 B). These 

lower bands most likely represented degradation products of hNCAM180ID as the bands 

were recognized by 5B8 antibody. The silver staining of the concentrate also revealed some 

additional minor bands with a molecular weight lower than hNCAM180ID. These additional 

proteins may also have been degradation products of hNCAM180ID missing the binding site 

for the NCAM antibody, as the bands were not detected by Western blotting. Generally, it 

could not be excluded that these bands may have been contaminating host bacterial proteins 

containing multiple His-residues which could have bound to the Ni-NTA resin, especially as 

in the E2 fraction some bands beneath the hNCAM180ID signal were detected with tetra-His 

antibody in Western blot (data not shown).  

Although hNCAM140ID concentrate was also not entirely pure (Fig. 5 B), hNCAM180ID and 

hNCAM140ID concentrates were used for protein macroarray screening, as it was performed 

solely to gain a first hint of novel potential interaction partners of NCAM which were in any 

case to be verified by further analyzes. 

For the evaluation of the results of the macroarray obtained with hNCAM180ID and 

hNCAM140ID, it must be considered that both proteins used for the macroarray were tagged. 

The hNCAM180ID tag of 8 His is relatively small compared to the protein itself that is 

composed of 386 amino acids. In contrast, the GST-tag comprising 220 amino acids is even 

bigger than hNCAM140ID (119 amino acids). Therefore, it may have led to false positive 

signals by interacting with spotted proteins or hinder putative interactions of NCAM with 

spotted proteins through blocking binding sites given by its 3D structure and/or modification 

of the structure of hNCAM140ID. Ideally, the GST-tag should have been removed from 

hNCAM140ID before macroarray performance. The construct contained a thrombin cleavage 

site to remove GST, however, under various conditions GST was only removable from a 
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subset of the purified hNCAM140ID, maybe due to folding of the protein which may have 

obscured the thrombin cleavage site. Finally, the GST-tagged hNCAM140ID was used for 

macroarray performance. Another way to exclude false positive signals would have been to 

perform the macroarray with purified free GST as a negative control. Proteins specifically 

interacting with GST could thus have been excluded from the macroarray results of 

GST-tagged hNCAM140ID. Free GST was successfully expressed and purified, but after 

protein macroarray screening with GST-tagged hNCAM140ID, this protein was not 

removable from the membranes even by repeated stringent stripping treatment. It was not 

reasonable and affordable to purchase a second macroarray membrane just to perform the 

negative control Therefore, macroarray results of GST-tagged hNCAM140ID should be 

regarded with care, except for interaction partners of both isoforms which must be NCAM-

specific because the binding occurred with differently tagged isoforms.  

In spite of this limitation, first evidence for interesting potential hNCAM-ID interaction partners 

gained by the macroarray could be verified using other techniques: this applies for UCH-L1 

(Wobst et al., 2012), Ufc1 (Homrich et al., 2014) and KLC1 (manuscript in preparation). 

5.1.2. Interpretation of the protein macroarray results 

Several already known interaction partners of hNCAM-ID were identified by the macroarray, 

such as spectrin (Pollerberg et al., 1986), PLCγ, and PP2A (Büttner et al., 2005; Tab. 11), 

suggesting that it may be a reliable tool for the identification of potential hNCAM-ID 

interaction partners. Functional spectrin exists either as heterodimer composed of two 

different subunits, namely α- and β-spectrin, or of two equal subunits resulting in a 

homodimer (Bloch & Morrow, 1989). Using ELISA-based protein ligand-binding assays with 

NCAM180ID and NCAM140ID, both NCAM isoforms were shown to interact with the α- and 

β-subunit (Leshchyns’ka et al., 2003). The results of the macroarray showed an interaction of 

hNCAM180ID and hNCAM140ID with 50 % and 16 %, respectively, of all β-spectrin spots, 

but only hNCAM140ID interacted with α-spectrin (16 % binding coverage). In addition, 

exclusively hNCAM140ID did interact with 52 % of the PP2A spots and only hNCAM180ID 

with PLCγ (33 % binding coverage), although both proteins were described to interact with 

both transmembrane NCAM isoforms (Büttner et al., 2005). 

Calculation of the binding coverage may give additional information about the specificity and 

affinity of the interaction. Whereas hNCAM180ID only bound to 3 % of all UCH-L1 clones, 

each spotted Ufc1 protein was detected as interaction partner for hNCAM180ID and 

hNCAM140ID, respectively, suggesting a high affinity interaction. Uba5 was exclusively 

spotted on part 9 of the protein macroarray, which was only incubated with hNCAM140ID 

and bound to 66 % of the spotted Uba5. In a previous work, no interaction between 

hNCAM180ID and Uba5 was detected on part 8 of the macroarray (Sekulla, 2010). 
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Approximately 33 % of all KLC1 spots were detected by hNCAM180ID and 36 % by 

hNCAM140ID.  

It should be considered that not all proteins may have been expressed by the spotted 

bacterial clones on the macroarray membranes therefore contributing to negative results 

although being taken into account for the calculation of the binding coverage. Additionally, 

proteins may not have been exposed to NCAM due to incomplete lysis of the bacterial 

colonies or insufficient removal of bacterial traces. The expression strength should have 

been tested by labeling of the spotted His-tagged proteins. This consideration was only taken 

into account for hNCAM180ID as the spotted proteins appeared to be relatively 

homogenously expressed. As proper control for the expression status of a protein, proteins 

not labeled with Anti-His IRDye™ 800-antibodies should have been identified and excluded 

from the total number of spotted proteins. This procedure would have been a 

disproportionate effort considering that the macroarray should only provide a first hint for the 

interaction between two proteins. Additionally, as the His-tag is located at the N-terminus of 

the spotted proteins (Source Bioscience ImaGenes, 2010), no information about the 

completeness of the expression can be obtained. Taken together, these arguments 

demonstrate the limitations of the macroarray on one hand, but on the other, its usefulness to 

get a first impression of potential interactions between proteins which require, however, 

further verification. 

5.2. Investigation of the interaction of NCAM and KLC1 

5.2.1. Confirmation of the interaction of NCAM and KLC1 by co-IP 

The macroarray screenings indicated a direct binding between hNCAM180ID and 

hNCAM140ID with KLC1, which was verified and further studied using different methods. 

First, the interaction was confirmed by co-IP from mice brain tissue (Fig. 6). Using KLC1 

antibodies for precipitation, bound NCAM was successfully detected by Western blotting. The 

appearance of the NCAM signal as a broad smear in Western blot due to polysialylation 

(Hoffman et al., 1982; Rothbard et al., 1982), did not permit a differentiation between NCAM 

isoforms. Due to steric hindrance or an unsuitable NCAM antibody the inverse approach, the 

precipitation of NCAM and subsequent detection of KLC1 in Western blot, was not 

successful.  

5.2.2. Interaction domains of NCAM and KLC1 

Using NCAM-ID peptides of different length in an ELISA and a pull-down assay, an 8 amino 

acid sequence -CGKAGPGA- which is present in NCAM180ID and NCAM140ID was 

identified as being sufficient for the binding of KLC1 (Fig. 16 and Fig. 17). Initially published 
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binding regions for KLC1 showed the aromatic amino acid tryptophan being crucial for the 

interaction of binding partners with KLC1, as shown for Calsyntenin-1/Alcadein (Araki et al., 

2007; Konecna et al. 2006), Caytaxin (Aoyama et al., 2009; Hayakawa et al., 2007), Vaccina 

Virus A36 (Dodding et al., 2011), Gamma-A1-adaptin and kinesin interactor (Gadkin; 

Schmidt et al., 2009), and SifA and kinesin-interacting protein (SKIP; Rosa-Ferreira & Munro, 

2011).  

Additionally, novel binding motifs not sharing any sequence homology with other KLC1-

binding proteins, although also containing an aromatic residue, were discovered 

successively. For example, the binding of Kidins220/ARMS and JIP-1, respectively, is 

dependent on a tyrosine within the diverse identified KLC1-interacting motives of both 

proteins (Bracale et al., 2007; Verhey et al., 2001). As the 8 amino acid sequence of NCAM 

responsible for the binding to KLC1 does not contain any aromatic amino acid, it represents 

a new, yet unknown binding motif for KLC1. The peptides of NCAM-ID used for the 

identification of the KLC1 binding site only covered a region between amino acids 748 and 

777. Therefore, it cannot be excluded that other regions within the full-length ID of NCAM are 

also able to bind to KLC1 by yet unknown sequences. However, the NCAM-ID does not 

contain further sequences similar to the here identified or any other already published KLC1-

binding domain.  

 

KLC1 is composed of N-terminal heptad repeats which are required for the association with 

KHC and 6 TPR motifs within its C-terminus (Diefenbach et al., 1998; Gindhart & Goldstein, 

1996). The ubiquitous TPR motifs mediate protein-protein interactions between the TPR 

motif of one protein and one or more non-TPR protein(s) in many functionally and structurally 

unrelated proteins (Blatch & Lässle, 1999). The consensus sequence of TPRs exhibit 34 

amino acids and although the TPR motifs of KLC1 comprise 42 amino acids, i.e. are longer, 

the consensus sequence is maintained between its 4th and 37th residue (Zhu et al., 2012).  

Many kinesin-1 cargo molecules bind directly to the TPR regions of KLC1, amongst these 

APP (Kamal et al., 2000), Calsyntenin-1/Alcadein (Araki et al., 2007; Konecna et al., 2006), 

Caytaxin (Aoyama 2009), Collapsin response mediator protein-2 (CRMP-2; Kimura et al., 

2005), and Huntingtin-associated protein-1 (McGuire et al., 2006). The close homologue of 

L1 (CHL1) is also a cell adhesion molecule of the Ig superfamily. Analysis of local similarity 

of both sequences revealed that the ID of human CHL1 shares 44 % identity with 

hNCAM180ID (analyzed by Basic Local Alignment Search Tool, BLAST®; Altschul et al., 

1990) and does also not contain a tryptophan, but tyrosines. As the ID of CHL1 is known to 

bind to TPR regions (Andreyeva et al., 2010), it might be conceivable that the binding 

between NCAM and KLC1 is also mediated by the TPR motifs of KLC1. 

http://jcb.rupress.org/content/143/4/1053.long#ref-13
http://jcb.rupress.org/content/143/4/1053.long#ref-13
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Investigation of the crystal structure of the three TPRs of protein phosphatase 5 revealed that 

tandemly arranged TPR motifs are organized into a regular right-handed superhelix that is 

capable of accommodating multiple ligands (Das et al., 1998). Konecna and coworkers 

quantified the interaction between the cytoplasmic domain of Calsyntenin-1/Alcadein and 

KLC1 showing a saturation of KLC1 to Calsyntenin-1/Alcadein binding at a molar ratio of 0.5, 

indicating that indeed one KLC1 binds two cytoplasmic domains of Calsyntenin-1/Alcadein 

(Konecna et al., 2006), which has been confirmed later by Zhu et al. (Zhu et al., 2012). 

Therefore, one kinesin-1 motor with two KLC1 might bind and transport four 

Calsyntenin-1/Alcadein simultaneously.  

A similar mechanism might be considered for NCAM, especially as NCAM interacts 

cis-homophilically with other NCAM molecules (see  1.1.5.1 for details), which may form a 

stabilized binding complex for the interaction with KLC1. Interestingly, increasing evidence 

suggests that motor proteins are not randomly spread over the surface of the cargo, but 

organized in clusters of two or more. Clustering seems to increase the run length of the 

motor proteins and is therefore most likely relevant for the long distance transport along 

microtubule performed by kinesins and dyneins, rather than by myosins, which move along 

short distances of actin filaments (Erickson et al., 2011; Gross et al., 2007). Accumulations of 

cis-homophilically bound NCAM molecules could therefore bind to clusters of kinesin-1, 

exhibiting binding sites for several NCAM molecules at each kinesin-1 motor and thereby 

stabilizing the interaction.  

5.2.3. Co-localization studies in CHO cells and primary neurons 

Co-localization of NCAM with kinesin-1 or parts of the motor (KLC1 or KIF5A) were 

confirmed in CHO cells and primary hippocampal and cortical neurons. Whereas the co-

localization of intracellular hNCAM180 and the motor was widespread and easily detectable 

in CHO cells co-transfected with cDNAs of hNCAM180 and motor subunits (Fig. 7) as well as 

endogenous NCAM and KLC1 in hippocampal neurons (Fig. 8 A), an overlap of endogenous 

NCAM and KIF5A staining appeared less frequently in hippocampal neurons (Fig. 8 B). By 

staining of NCAM and KIF5A, co-localization could only be detected where KIF5A associated 

with KLC1, as KLC2, KLC3, and KLC4 do not bind NCAM according to the macroarray 

results. NCAM may also be bound to KIF5B and KIF5C associated KLC1, which was not 

analyzed in this experimental setup. This might explain the relatively rare occurrence of co-

localized NCAM and KIF5A.  

Interestingly, after stimulation of NCAM endocytosis in cortical neurons overexpressing 

hNCAM180 and KLC1, internalized hNCAM180 co-localized with KLC1 in the soma and 

growth cone (Fig. 15). The staining could have been improved by saturation of all membrane 
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associated antibodies with immunoglobulins for exclusive staining of internalized hNCAM180 

without concomitant staining of cell surface hNCAM180. Additionally, for more detailed 

growth cone analysis higher resolution imaging would be preferable. 

5.2.4. Investigation of the presence of NCAM and kinesin-1 in TGN organelles 

TGN organelles, the main carriers of proteins synthesized in the ER, were enriched from 

mouse brain and the concomitant presence of NCAM, KLC1, and KIF5A in TGN organelles 

confirmed by Western blot (Fig. 9). Interestingly, polyclonal antibodies against KIF5A 

detected two bands in close proximity to each other at approximately 120 kDa, as shown in 

other publications (Sun et al., 2011; Xia et al., 2003). Potentially, one of the bands may have 

represented an unspecific binding of the antibodies, as shown for polyclonal KIF5C 

antibodies, which recognize an unidentified protein with a molecular weight slightly below 

KIF5C (Pierce-antibodies, 2014). Another explanation could have been a mobility shift of 

KIF5A due to posttranslational modifications as for example phosphorylation. 

Phosphorylation can result in a slower migration of the protein in SDS-PAGE and therefore in 

an increased apparent molecular weight. This phenomenon is not explainable by the mass of 

the phosphate of 0.08 kDa, but phosphorylation may alter the SDS coating of the protein in 

dependence on the local charge of neighboring proteins (Peck, 2006). The KHCs have been 

described as being phosphorylated (DeBerg et al., 2013; Morfini et al., 2002; Hollenbeck, 

1993) which contributes to fine tuning of their functions and/or activity levels.  

The co-localization of endogenous NCAM and KIF5A in γ-adaptin positive organelles was 

also investigated in primary hippocampal neurons to further strengthen the hypothesis of 

kinesin-1 transporting NCAM packed in TGN organelles. At most one spot per neuron was 

identified showing co-localization of NCAM, KIF5A, and γ-adaptin (Fig. 10). The rare 

occurrence may be due to the variability in the composition of the heterotetrameric kinesin-1, 

as described above for the co-localization of NCAM and KIF5A (see  5.2.3). Possibly, more 

overlap could have been detected by co-staining KLC1 instead of KIF5A. Interestingly, other 

groups did not use TGN organelle markers to investigate the co-localization of proteins with 

kinesin-1 and the transported organelle, instead, co-localization of proteins with already 

known cargoes of kinesin-1 is often investigated (Aoyama et al., 2009; Bracale et al., 2007), 

maybe providing a better tool. It might also be conceivable that the low amount of NCAM-

containing transport organelles co-localizing with KIF5A could be compensated by a 

transport of multiple NCAM’s by a single kinesin-1 in neurons, as discussed above 

(see  5.2.2). However, this result also raises the question, whether kinesin-1 is only involved in 

the transport of NCAM packed in TGN organelles or is additionally functioning in a different 

trafficking pathway of NCAM in neurons as discussed below (see  5.4.1). 
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5.3. Functional studies in CHO cells and primary cortical neurons 

In the progress of this work, the interaction of NCAM and KLC1 has been verified by co-IP, 

co-localization studies, ELISA and pull-down assay. To analyze the possible involvement of 

kinesin-1 in the transport of NCAM to the cell surface, functional studies were carried out. 

Transfection of CHO cells showed that significantly more hNCAM180 was delivered to the 

cell surface in dependency on the expression level of motor components (KLC1 or both 

motor subunits; Fig. 11). Interestingly, the amount of cell surface hNCAM180 was not 

significantly different in CHO cells co-transfected with cDNAs of hNCAM180 and KLC1 or 

both motor subunits, respectively, suggesting that endogenous KHC1, which is present in 

CHO cells (Hammond et al., 2012: Kif5a, Kif5b, and Kif5c genes present), forms a functional 

motor with exogenous KLC1 as already shown in another publication (Araki et al., 2007), 

being sufficient for NCAM delivery to the cell surface. The results were confirmed in primary 

cortical neurons after stimulation of NCAM endocytosis (Fig. 14 B and C), providing more 

evidence for a kinesin-1 mediated transport of NCAM in neurons. 

The KLC1-binding region lies within the ID of NCAM; therefore the effect of kinesin-1 on 

hNCAM∆CT was tested by co-overexpression of KLC1 or the motor and hNCAM∆CT, 

respectively, in CHO cells and primary cortical neurons. Quantification of cell surface 

hNCAM∆CT and correlation analysis revealed that the delivery of hNCAM∆CT to the cell 

surface occurs most likely independent of kinesin-1 in both cell models (Fig. 12 and 

Fig. 14 B). The structure of hNCAM∆CT is similar to NCAM120, which is anchored to the 

membrane via GPI and does not exhibit an ID (Fig. 1). NCAM120 is mainly localized in lipid 

rafts in oligodendrocytes (Krämer et al., 1999) and has already been shown to be transported 

by a different mechanism than NCAM180 and NCAM140 (Garner et al., 1986; Nybroe et al., 

1986). It would be conceivable that NCAM120 might be transported by a lipid dependent 

mechanism, which might also be speculated for hNCAM∆CT. But as the GPI anchor has 

been shown to be obligatory for the localization of NCAM120 into lipid rafts (Krämer et al., 

1999), this hypothesis must be rejected. Additionally, NCAM120 is mainly expressed in glia 

cells (Krämer et al., 1999; Noble et al., 1985). For these reasons the trafficking of 

hNCAM∆CT is most likely different from NCAM120 as well as neuronal expressed NCAM, as 

discussed below (see  5.4.1). 

Furthermore, NCAM180 and NCAM140 are localized in lipid raft and non-lipid raft fractions in 

neurons. In case of the transmembrane isoforms, palmitoylation of at least two cysteines has 

been shown to be responsible for the lipid raft localization (Little et al., 1998). Niethammer 

and coworkers showed in hippocampal neurons that an NCAM140 construct missing the four 

palmitoylation sides by replacing the cysteines with serines is exluded from lipid rafts 

(Niethammer et al., 2002), again confirming that hNCAM∆CT is not likely to be transported 



Discussion 72 

 

by involvement of lipids. A possible accumulation of hNCAM∆CT within the cell due to altered 

endocytosis of the construct can also be excluded (Diestel, unpublished data, Institute of 

Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, 

Germany). In conclusion, neither a kinesin-1 nor lipid dependent transport mechanism seems 

to be responsible for the trafficking of hNCAM∆CT. 

To further verify the transport of NCAM by kinesin-1 via binding of its ID to KLC1, a 

competition assay was performed in CHO cells with cDNAs covering NCAM-ID and several 

shorter peptide sequences thereof (Fig. 13), which were used for triple-transfection together 

with the cDNAs of hNCAM180 and the motor subunits. Excess of NCAM-ID is predicted to 

have a dominant-negative effect by binding to KLC1, thereby blocking the interaction of 

KLC1 with full-length hNCAM180 and inhibiting NCAM’s delivery to the cell surface. Indeed, 

significantly less hNCAM180 was delivered to the cell surface when co-transfected with 

cDNA coding for NCAM-ID in hNCAM180 and motor overexpressing cells (p < 0.01, one-way 

ANOVA, not shown in graph). Interestingly, even shorter peptides derived from NCAM-ID 

inhibited the transport of hNCAM180 to the cell surface, showing that a sequence of 

NCAM-ID is required for the delivery to the cell surface by kinesin-1. Chernyshova and 

coworkers showed that the exocyst subunit exo70 binds within the amino acids 729-750 of 

NCAM140ID and sec8 within the amino acids 777-810 (Chernyshova et al., 2011). The 

exocyst is a protein complex essential for exocytosis e.g. in neurite outgrowth, which 

includes secretion of vesicle content into the extracellular space or integration of intracellular 

proteins into the plasma membrane (Hsu et al., 2004). Although the binding of exo70 and 

sec8 did not occur with NCAM180 in that study, NCAM180 is likely to interact with the 

exocyst subunits, as NCAM180 also contains the required binding regions (Chernyshova et 

al., 2011). The transfection of the peptides NCAM-ID729-750 and NCAM-ID777-810 could 

therefore block the binding of the exocyst subunits and inhibit the exocytosis of hNCAM180 

at the plasma membrane. The peptide NCAM-ID748-777 contains the binding region for KLC1, 

which was identified by ELISA (Fig. 16), and was most likely due to that blocking the delivery 

of hNCAM180 to the cell surface.  

5.4. Potential transport mechanisms of NCAM by kinesin-1 

5.4.1. Kinesin-1 may influence the transport of newly synthesized and endocytosed 

NCAM 

Studies in CHO cells and primary cortical neurons showed that co-overexpression of 

hNCAM180 with KLC1 or the motor significantly increases the amount of hNCAM180 at the 

cell surface compared to control (Fig. 11 and Fig. 14 B), suggesting a kinesin-1 dependent 

transport of NCAM. The staining of cell surface hNCAM180 was performed on living CHO 
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cells, which were kept on ice for the incubation time of the antibodies and washing steps (50 

min in total) before cells were fixed. The experiment was repeated with primary cortical 

neurons, which were either fixed before primary antibody incubation (Fig. 14 A) or the 

antibody was applied to living cells for 1 h at 37°C (Fig. 14 B), before the staining procedure 

was performed. Interestingly, only neurons which were stained alive - which stimulates 

NCAM endocytosis - showed an increased delivery of hNCAM180 to the cell surface in 

presence of kinesin-1. Keeping CHO cells on ice during antibody application inhibits NCAM’s 

endocytosis. However, CHO cells show the same effect on kinesin-1 dependent NCAM 

delivery without stimulation of NCAM endocytosis as NCAM-triggered neurons. The 

differences might be explainable by the different cell types used. Sampo et al. and Wisco et 

al. even described different trafficking routes of the same protein within different neuronal cell 

types (Sampo et al. 2003; Wisco et al., 2003). Additionally, also other authors noted the 

possibility that the same protein could use multiple tracks depending on various factors, such 

as cell type, density of the cells, and stage of maturation (Winckler, 2004; Kamiguchi & 

Yoshihara, 2001).  

As a conclusion of the experiments in CHO cells and neurons, two hypotheses on the 

transport of NCAM by kinesin-1 are conceivable: The direct transport of newly synthesized 

NCAM and an indirect transport via the soma plasma membrane and subsequent NCAM 

endocytosis to its final destination on neurites, for example, the axonal plasma membrane 

(Fig. 18).  
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Fig. 18: Schematic model illustrating potential transport mechanisms of NCAM by kinesin-1 

NCAM might be transported on a direct route from the trans-Golgi network (TGN) to neurites by 

binding to kinesin-1, which travels along microtubuli. Alternatively, NCAM might be transported on an 

indirect route, which at least consists of three steps: (1) TGN to soma plasma membrane, (2) soma 

plasma membrane to endocytotic vesicles in dependence on NCAM endocytosis, and (3) endocytotic 

vesicles to plasma membrane of neurites along microtubuli by binding to kinesin-1. 

Already decades ago NCAM180 and NCAM140 have been shown to be transported by the 

fast axonal transport in chick retinal ganglion (Garner et al., 1986; Nybroe et al., 1986). Later 

on, the NCAM related neuron-glia cell adhesion molecule (NgCAM; the chick homologue of 

L1) of the IgCAM superfamily has been described to be packed into specific transport 

organelles and being mainly transported to axonal membranes by motor proteins 

independent of its endocytosis in mature hippocampal neurons (Sampo et al., 2003; Jareb & 

Banker et al., 1998; Vogt et al., 1996). Also Peretti and coworkers provided evidence for the 

involvement of a kinesin-like protein, KIF4, in the direct anterograde transport of L1-

containing vesicles in rat brain tissue (Peretti et al., 2000). KIF4 has been shown to transport 

membranous organelles in juvenile tissues and being expressed in a developmentally 
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regulated manner (Sekine et al., 1994), indicating that other motor proteins may be involved 

in L1 trafficking in mature individuals.  

In contrast, Wisco and coworkers showed that downregulation of endocytosis inhibited 

axonal polarization of NgCAM in hippocampal neurons. They postulated a trafficking pathway 

of NgCAM in neurons similar to transcytosis in epithelia, where some membrane proteins are 

transported from one plasma membrane domain to a different location by the endocytotic 

system (Wisco et al., 2003), and which has also been demonstrated for a limited number of 

membrane proteins in neurons, such as APP (Simons et al., 1995; Yamazaki et al., 1995), 

and the type 1 cannabinoid receptor (Leterrier et al., 2006). Dependent on an intact 

cytoplasmic domain of NgCAM, the protein was initially inserted in the somatodendritic 

domain, subsequently endocytosed, and transported to the axon. Interestingly, even a single 

point mutation (tyrosine to alanine) within the ID of NgCAM changed the trafficking to a direct 

axonal pathway starting from the TGN. Therefore it was postulated that direct and indirect 

transport mechanisms exist in polarized neurons and the somatodendritic delivery is domain-

specific and signal mediated (Wisco et al., 2003).  

The group of Lemmon and coworkers showed in chick dorsal root ganglia that NgCAM is 

being internalized by clathrin-mediated endocytosis at the central domain of growth cones, 

sorted into early endosomes and reinserted into the plasma membrane at the leading edge 

of the growth cones (Kamiguchi & Lemmon, 2000; Kamiguchi et al., 1998). Their studies 

revealed that NgCAM-containing endocytotic vesicles are positioned along microtubules and 

their transport is dependent on dynamic microtubules at the leading edge of growth cones 

(Kamiguchi & Lemmon, 2000), strongly suggesting a transport of these vesicles by the 

microtubule based anterograde motor kinesin. These observations further underline the 

presence of multiple pathways for protein transport in different cell types at different stages of 

maturation.  

Endocytosis of NCAM takes place in somata, neurites, and growth cones of cortical neurons 

in a developmentally regulated way (Diestel et al., 2007). Additionally, NCAM180 and 

NCAM140 have been shown to be present in rat sarcoma (Ras)-related proteins in brain 

(Rab)5-, Rab4- and Rab11-positive organelles (Diestel et al., 2007), illustrating NCAM’s 

trafficking through early and recycling endosomes. Several groups showed kinesin-1 

transporting Rab5- and Rab4-positive vesicles or other markers associated with early 

endosomes using various approaches (Loubéry et al., 2008; Nath et al., 2007; Bananis et al., 

2004), revealing the possibility of NCAM being transported after endocytosis in early and/or 

recycling endosomes by kinesin-1. This might also explain the poor co-localization of NCAM 

and KIF5A in γ-adaptin positive organelles (Fig. 10 and discussed above  5.2.3). Compared to 

that, the co-localization of internalized hNCAM180 and KLC1 in cortical neurons was more 
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striking (Fig. 15), supporting the hypothesis of kinesin-1 transporting endocytosed NCAM. 

Nonetheless, a comparison between transfected and untransfected neurons as well as 

between hippocampal and cortical neurons might be difficult due to the above mentioned 

arguments regarding the transport of proteins in different cell types and even different types 

of neurons. 

Endocytosis and recycling of NCAM have been speculated to be important for relocation of 

the protein at the cell surface and therewith regulating NCAM’s functions in neuronal 

processes such as cell migration, growth cone mobility, and synaptic plasticity. Recently, it 

has been shown in a human cancer cell line that the ratio between PSA-NCAM and 

non-PSA-NCAM is not only dependent on the expression and/or activity of the 

polysialyltransferases ST8SiaIV and ST8SiaII, but also on NCAM’s internalization and 

turnover (Monzo et al., 2013). A small amount of PSA-NCAM was detected to co-localize 

with Rab5 after endocytosis stimulation (Monzo et al., 2013) and Miñana and coworkers 

showed a high degree of PSA-NCAM co-localizing with clathrin (Miñana et al., 2001). Inside 

the endosomes, the PSA is thought to be degraded due to the acidic environment (Monzo et 

al., 2013; Manzi et al., 1994). As kinesin-1 has been shown to transport various types of 

endosomes (see above), it could be involved in the relocation of NCAM, concomitant with the 

change of NCAM from a plasticity-promoting to a stability-promoting protein. 

5.4.2. How could kinesin-1 increase the amount of cell surface NCAM? 

In case of a direct transport of newly synthesized NCAM from the Golgi to the axonal plasma 

membrane mediated by kinesin-1, co-overexpression of both proteins would lead to an 

increased amount of cell surface NCAM compared to the control. However, the question 

arises how this effect is mediated on endocytosed NCAM by kinesin-1, as kinesin-1 is not 

likely to influence NCAM’s endocytosis rate and not more NCAM vesicles to be present. It is 

to be expectable that the excessive kinesin-1 in the motor transfected group accelerates 

NCAM’s transport resulting in an increased amount of cell surface NCAM within the 

investigated time period (Fig. 19 B), while in the control group the NCAM-containing vesicles 

would be transported relatively slowly by a limited number of endogenous kinesin-1 

(Fig. 19 A). In neurons co-transfected with cDNAs encoding hNCAM180 and KLC1, 

endogenous KHC1 would be the limiting factor to form functional kinesin-1, as described 

before (see  5.3). 
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Fig. 19: Schematic model of a hypothesized transport mechanism of NCAM by kinesin-1 after 

NCAM endocytosis  

(1) NCAM is transported from the trans-Golgi network (TGN) to the soma plasma membrane by an 

unknown mechanism, (2) NCAM is endocytosed and packed into vesicles at the plasma membrane, 

and (3) transport of NCAM endocytotic vesicles to the plasma membrane of neurites along microtubuli 

is enabled by endogenous kinesin-1 (A) or accelerated by overexpressed kinesin-1 (B). 

Another explanation might be given by a changed relation of the motor proteins, kinesin, 

dynein, and myosin, which could lead to the differences of cell surface NCAM levels within 
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the control and the motor co-transfected group after NCAM-triggering. Transport vesicles 

have been suggested to be bound not only to one type of motor proteins, but to several 

different (Hendricks et al., 2010, Gross et al., 2002). Depending on the surrounding effectors 

(i.e. phosphorylation, binding partners), one or the other motor protein(s) could be active, 

transporting the cargo either anterograde or retrograde along microtubules, or even changing 

the track from microtubuli to actin filaments driven by myosin, or vice versa (Blasius et al., 

2007; Mesngon et al., 2006; Lindesmith et al., 1997). In contrast to the hypothesis of 

effectors regulating the motor engagement, the number of bound motors of one type to the 

vesicle was postulated to battle in a so called “tug of war” for the direction of the movement 

while the motors are simultaneously active (Fu & Holzbaur, 2014; Gross et al., 2007). Later 

on, the “tug of war” hypothesis gained more evidence and emphasized the importance of the 

ratio of plus- end minus-end directed motors on the trafficking direction unaffected by other 

regulatory factors (Hendricks et al., 2010). 

NCAM endocytosis is hypothesized by Diestel et al. to serve also as pathway for the removal 

of NCAM interacting molecules from the cell surface (Diestel et al., 2007). At least, it is likely 

that NCAM interacting molecules or other proteins would also be present in NCAM-

containing vesicles and could thereby provide more potential binding sites for motor proteins. 

Additionally, potential involvement of other motor proteins in NCAM’s transport is reasonable. 

Recently, an interaction between NCAM180 and dynein has been described (Perlson et al., 

2013). Dynein binds to NCAM isoform 180 specific amino acids near its C-termini. Although 

this paper focused on the ability of NCAM180 bound dynein to tether dynamic microtubules 

at the actin-rich layer of cytoplasm underlying the plasma membrane (cell cortex), the 

interaction may also be relevant for NCAM’s transport within the cell. Interestingly, dynein 

heavy chain 1 was detected on the protein macroarray as potential interaction partner for 

hNCAM140ID (14 % binding coverage). Furthermore, Polo-Parada and coworkers described 

a conserved motif at the very end of NCAM’s C-terminus that may signal via myosin light 

chain kinase to regulate myosin-driven synaptic vesicle trafficking at the presynaptic terminal 

(Polo-Parada et al., 2005). In case of co-overexpressed kinesin-1 the motor could bind to the 

ID of NCAM exposed on the vesicle and fulfill its function in anterogradely transporting the 

increased amount of NCAM to its final destination at the plasma membrane of neurites. If 

exclusively NCAM is overexpressed, other motor proteins could dominate the transport and 

relocate NCAM to other destinations within the cell or remarkably slow-down the kinesin-1 

dependent transport to the plasma membrane within the investigated time period. However, 

only detailed analysis could clarify the exact transport mechanism of NCAM within neurons 

and other cell types. 
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5.4.3. Potential regulatory mechanisms mediating detachment of NCAM from 

kinesin-1 

Recently, PAK1 has been identified as new interaction partner for NCAM that binds to the 

same 8 amino acid sequence within NCAM-ID as KLC1 (Li et al., 2013). Therefore, it was 

suggested that PAK1 and KLC1 may compete with each other for binding to NCAM-ID. This 

hypothesis was confirmed in a pull-down assay, where the binding of the NCAM-peptide 

comprising the 8 amino acids to KLC1 was abolished in presence of PAK1 (Fig. 17). 

Therefore, PAK1 may be involved in the regulation of kinesin-1 dependent transport of 

NCAM.  

PAK1 is a member of the PAK family of serine/threonine kinases, which are key regulators of 

cytoskeleton dynamics in neurons (Kreis & Barnier, 2009; Bokoch, 2003). PAK1 is targeted 

to the plasma membrane, influencing the activity of the protein (Daniels et al., 1998; Lu et al., 

1997). NCAM and PAK1 have been shown to strikingly co-localize in growth cones of 

hippocampal neurons (Li et al., 2013). When kinesin-1 and its cargo reach their destination, 

such as the growth cone plasma membrane, a signal leading to detachment of the cargo 

from kinesin-1 is required. PAK1 may be involved in detachment of NCAM from kinesin-1 by 

competing with KLC1 for the same binding site within NCAM-ID. Other NCAM interactions 

were suspected to be regulated in an analogous way. FGFR and ATP were shown to bind to 

the same FNIII domains within NCAM (Kiselyov et al., 2003). As ATP has been shown to 

inhibit the NCAM-FGFR interaction, ATP seems to have a regulatory role on that interaction 

and thereby indirectly modulates NCAM-mediated cell adhesion and axonal outgrowth (Bork 

et al., 2013; Kiselyov et al., 2003; Skladchikova et al., 1999). A similar mechanism involving 

motor protein mediated transport has been described for Calsyntenin-1/Alcadein, JIP1 and 

APP. Arakit et al. showed that Calsyntenin-1/Alcadein inhibits the JIP1 mediated transport of 

vesicles containing APP, whereas JIP1 disrupts the binding between kinesin-1 and 

Calsyntenin-1/Alcadein-containing vesicles (Araki et al., 2007). Interestingly, the binding and 

trafficking of Calsyntenin-1/Alcadein by kinesin-1 has later been shown to be also regulated 

by phosphorylation of KLC1 (Vagnoni et al., 2011), giving evidence that competition for 

binding and phosphorylation may potentially simultaneously coordinate the binding between 

motor proteins and cargoes. 

Therefore, another possibility how PAK1 could possibly influence the binding between 

NCAM-ID and KLC1 might be given by PAK1’s kinase activity. Interestingly, a regulatory role 

of PAK1 on motor proteins by phosphorylation has already been described. It has been 

shown that PAK1 is able to phosphorylate the light chain 1 of dynein (Vadlamudi et al., 

2004). Furthermore, also myosin light chains have been shown to be phosphorylated by 

PAK1 in HeLa cells and neuronal cells accounting for the stabilization of the localized actin 

network (Zhang et al., 2005; Brzeska et al., 2004). Finally, Pakala and coworkers showed 
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that mitotic centromere-associated kinesin (MCAK), a kinesin-13 (formerly KIF2), is 

phophorylated at two serines in vitro and in vivo by PAK1 (Pakala et al., 2012).  

Phosphorylation has been shown to interrupt the interaction between motor and cargo. For 

example, Glycogen synthase kinase 3 has been shown to phosphorylate KLCs, which seems 

to induce the release of kinesin cargo from specific subcellular domains (Morfini et al., 2002). 

Similarly, the phosphorylation of the dynein light intermediate chain detaches cytoplasmic 

dynein from membranes (Addinall et al., 2001) and phosphorylation of the C-terminal tail 

region of myosin-V resulted in detachment of the motor from organelles (Karcher et al., 

2001). Guillaud and coworkers showed that the interaction between a member of the 

kinesin-2 family (formerly KIF17) and the scaffolding protein Mint1 is disrupted by the 

calcium-calmodulin-dependent protein kinase II (CaMKII) mediated phosphorylation of KIF17 

(Guillaud et al., 2007).  

In conclusion, these data may underline the possibility that not solely the competition for the 

NCAM binding site between KLC1 and PAK1 may regulate the interaction, but also the 

kinase function of PAK1. It is tempting to speculate a connection between the transport of 

NCAM by kinesin-1 and subsequent PAK1 activation, which as important regulator of the 

cytoskeletal dynamics may reorganize the cytoskeleton to enable neurite outgrowth. 

5.5. Conclusion and future studies 

In this thesis, new potential interaction partners of NCAM-ID were identified by a protein 

macroarray screening with the investigation of NCAM’s interaction with KLC1 being in the 

focus of this work After confirmation of the interaction by several approaches and 

identification of the KLC1-binding site within NCAM-ID, functional analyzes showed that 

hNCAM180 is being transported by kinesin-1 to the cell surface in CHO cells and primary 

neurons by a direct transport of newly synthesized hNCAM180 and in dependency on NCAM 

endocytosis prior to transport. First evidence was gained for a potential mechanism 

regulating the detachment of NCAM from KLC1 at the cell surface after kinesin-1 dependent 

transport.  

Preliminary results indicated that deletion of the KLC1-binding site within hNCAM180 

(hNCAM180∆747-754) indeed abrogated the kinesin-1 dependent delivery of hNCAM180 to 

the cell surface in cortical neurons. In this context, the internalization rates of full-length 

hNCAM180 and hNCAM180∆747-754 were also investigated, and revealed no differences. 

However, results need to be verified and studies are repeated at the moment.  

In this thesis, cDNA of hNCAM180ID was used for transfection studies. As the KLC1-binding 

region within NCAM is also present in hNCAM140ID, a hNCAM180-similar transport 
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mechanism of hNCAM140 by kinesin-1 is conceivable. Nonetheless, investigation of 

similarities and differences between the transport mechanisms of hNCAM180 and 

hNCAM140 would be interesting, especially in regard to their isoforms-specific functions. 

Furthermore, it would be interesting to investigate the co-localization of NCAM and kinesin-1 

in Rab-positive vesicles in neurons to strengthen the hypothesis of endocytosed NCAM 

being transported in early and/or recycling endosomes by kinesin-1. Regarding the functional 

role, clarification if the kinesin-1 dependent transport of NCAM is involved in the progressive 

replacement of PSA-NCAM by non-PSA-NCAM at the cell surface could be involved in 

further experiments. 

In motor protein dependent trafficking, life cell imaging is a commonly used tool to monitor 

real-time events in the cells. First experiments to investigate the route of hNCAM180 

throughout CHO cells by using different fluorescent timers that change color over the time in 

the cell (Subach et al., 2009) unfortunately failed. However, fluorescent timers provide a 

valuable tool and could answer the question about the exact trafficking of NCAM in CHO 

cells and neurons in future studies.  

Moreover, the exact mechanism of PAK1 influencing the interaction of NCAM and KLC1 

should be further investigated to identify regulatory parameters for attachment or detachment 

of NCAM to KLC1 and of the kinesin-1 dependent transport of NCAM with the aim to better 

understand the role of this transport for the functioning of neurons.  
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6. Summary 

The aim of the thesis was the identification of novel intracellular interaction partners of the 

neural cell adhesion molecule (NCAM) to gain further knowledge about the molecular 

mechanisms responsible for NCAM functions during brain development and in adult brain. 

The intracellular domains (ID) of human NCAM180 and NCAM140 (hNCAM180ID/140ID), 

respectively, were recombinantly expressed in E. coli BL21 (DE3) and purified by ligand 

affinity chromatography. Fluorescently labeled purified proteins were applied onto a protein 

macroarray comprising 24000 expression clones of human fetal brain. Besides already 

known interaction partners, several yet unknown potential interaction partners for NCAM 

were identified and further verified, namely ubiquitin carboxyl-terminal hydrolase isozyme L1, 

ubiquitin-fold modifier-conjugating enzyme 1, and kinesin light chain 1 (KLC1). 

KLC1 is part of the heterotetrameric motor protein kinesin-1, which is composed of two KLCs 

and two kinesin heavy chains (KHCs, e.g. KIF5A) that transports cargoes towards the plus 

end of microtubules in neurons. 

The interaction of NCAM and KLC1 was verified by co-immunoprecipitation from young 

mouse brain tissue. Subsequently, co-localization of intracellular NCAM and the motor was 

detected in Chinese hamster ovary (CHO) cells overexpressing NCAM and kinesin-1. In 

primary hippocampal neurons, a co-localization of endogenous NCAM with KLC1 or KIF5A 

was observed. As further indication for NCAM-containing vesicles being bound to kinesin-1, 

trans-Golgi network (TGN) organelles were isolated from mice brains and the presence of 

NCAM, KIF5A, and KLC1 confirmed in Western blot. Subsequent co-localization studies in 

primary hippocampal neurons did indicate that only a small amount of NCAM and KIF5A co-

localized in TGN organelles. 

Functional studies in transiently co-transfected CHO cells showed an increased amount of 

cell surface NCAM in dependence on the expression level of KLC1 or kinesin-1, indicating 

that kinesin-1 is involved in the trafficking of NCAM to the cell surface. Excess of free 

intracellular NCAM-ID as well as several shorter peptides thereof reduced the amount of 

delivered NCAM, showing that the ID of NCAM is required for NCAM’s transport to the cell 

surface. Complete deletion of the ID of NCAM resulted in kinesin-1 independent delivery of 

NCAM to the cell surface, suggesting existence of alternative routes. 

Primary cortical neurons overexpressing NCAM and KLC1 or NCAM and kinesin-1 were 

used as another cell model to unravel the role of kinesin-1 in NCAM’s trafficking. 

Interestingly, increased delivery of NCAM to the cell surface was only observed after 

stimulation of NCAM endocytosis. Detection of co-localized NCAM and KLC1 in the soma 

and growth cone further indicated that endocytosed NCAM is being transported by kinesin-1 
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in neurons. These results showed that NCAM may be transported via two distinct routes, 

depending on e.g. the cell type: a direct route from the TGN to the plasma membrane and an 

indirect route including delivery of NCAM to the soma plasma membrane, endocytosis of 

NCAM, and subsequent transport to its ultimate destination, e.g. the axonal plasma 

membrane. 

Using several NCAM-ID peptides in an ELISA, an 8 amino acid sequence within NCAM-ID 

was identified as being sufficient for the interaction with KLC1. Preliminary experiments using 

a construct with deleted KLC1-binding region showed an abrogated delivery of NCAM, and 

will be followed up in future studies. As p21-activated kinase 1 (PAK1) has been described to 

bind to the same domain of NCAM as KLC1, a competition between PAK1 and KLC1 for the 

binding to NCAM was investigated and confirmed in a pull-down assay. This observation 

gives first insights into possible regulatory mechanisms being potentially involved in the 

detachment of NCAM from KLC1 at NCAM’s final destination. Further investigations will have 

to be carried out to support this interesting hypothesis. 
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Appendix 

Vector map of pGEX-4T-2/hNCAM140ID 

 
 

The cDNA of hNCAM140ID was restricted from pcDNA3/hNCAM140ID with BamHI and 

EcoRI and inserted in frame in the pGEX-4T-2 vector. 

  

pGEX-4T-2/ 

hNCAM140ID 

5327 bp 

hNCAM140ID 
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