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ABSTRACT 

In Central China, high mineral nitrogen (N) application rates lead to low N recovery and high N losses. 
Large amounts of the nitrate-N are leached from agricultural soil and end up in aquatic ecosystems, 
negatively affecting both ecosystem and human health. Such effects are particularly pronounced in the 
Liangzihu Lake basin, Central China, where the application of mineral N to the predominating 
maize-wheat rotation systems on coarse-textured soils can exceed 300 kg ha-1. We hypothesize that 
improved crop management can reduce the current nitrate-N pollution while enhancing system 
performance. The present study initially identified the main drivers of excessive N use by household 
surveys. Subsequent field experiments between 2012 and 2013 evaluated the effects of modified 
fertilizer N management and the use of N-catching cover crops on soil-N dynamics, N-use efficiency, 
yield of maize and wheat, and nitrate-N leaching. Finally, the field trial data were used to parameterize 
the EPIC model to estimate N leaching losses under current and alternative crop and N management. 

Current N application rates average 229 kg N ha-1 season-1, which is higher than the cereal 
crop requirements of 150-180 kg N ha-1. The main reasons for the excessive use of mineral N are related 
to low farmland productivity (r = -0.184, p = 0.003), small farm size (r = -0.168, p = 0.006), a high share 
of off-farm income (coefficient = 25.94, p = 0.003), and a low education level of the household head 
(coefficient = -11.20, p = 0.034). 

The field experiment could show that cultivating a cover crop combined with a reduced 
application rate (290 kg N ha-1 in 3 splits) and multiple splitting of mineral N fertilizer can achieve similar 
yields (6.4-6.9 Mg ha-1) to those obtained with current management (470 kg N ha-1 in 2 splits). In 
addition, this alternative crop and fertilizer management increased the agronomic N-use efficiency by 7 
kg grain kg-1 N applied to both wheat and maize, and enhanced the N fertilizer recovery by 15% in wheat 
and 20% in maize. In addition, nitrate-N leaching was reduced by 15 kg N ha-1 in both the first-year 
maize and wheat crops. 

Once calibrated with the data from the field experiment, the EPIC model was able to predict 
crop biomass and the soil water content under moderate (long-term mean) climate conditions with a 
determination coefficient higher than 0.5 and a model bias of less than 3%. However, the model 
underestimated the soil water content in dry years with a bias of >36%. Moreover, it tended to slightly 
overestimate nitrate-N leaching with 13-181 kg N ha-1 for the entire experimental period and in both 1 
m and 1.8 m soil depths.  

It is concluded that (1) the current N application rate in the study area are excessive because of 
insufficient awareness and the easy and low-cost availability of mineral-N fertilizers, (2) the currently 
high N losses from crop fields can be substantially reduced by reducing application rates and by replacing 
bare fallow periods with legume cover crops without negative trade-offs on crop yields, and (3) the 
calibrated EPIC model can be used to predict the aboveground crop biomass and the soil water content, 
but it tends to overestimate nitrate-N leaching. Consequently, there is a need to inform farmers about 
the negative effects of excessive N use, popularize alternative agronomic management options, and 
adapt the existing EPIC model to improve the prediction of nitrate pollution in Central China. 



KURZFASSUNG 

In  Zentralchina  führen  die  großen  Mengen  an  ausgebrachtem  mineralischem  Stickstoff  (N)  zu 

niedriger  N‐Rückgewinnung  und  hohem  N‐Verlust.  Ein  Großteil  des  aus  den  landwirtschaftlichen 

Flächen ausgewaschenen Nitrat‐Stickstoffes endet  in aquatischen Systemen und wirkt  sich  sowohl 

auf  Ökosysteme  als  auch  auf  die  menschliche  Gesundheit  negativ  aus.  Solche  Effekte  können 

besonders  im  Liangzihu  Becken  in  Zentralchina  beobachtet  werden,  wo  die  Verwendung  von 

mineralischem  Dünger  im  dort  vorherrschenden Mais‐Weizen‐Rotationssystem  auf  grobkörnigen 

Böden  über  300  kg  ha‐1  betragen  kann.  Wir  haben  die  Hypothese,  dass  ein  verbessertes 

Getreidemanagement  die  derzeitige  Nitrat‐Stickstoffbelastung  verringern  und  gleichzeitig  die 

Systemleistung  verbessern  kann.  Diese  Studie  hat  zunächst  die  hauptsächlichen  Faktoren  der 

exzessiven  N‐Verwendung  durch  Haushaltsbefragungen  identifiziert.  In  nachfolgenden 

Feldexperimenten  zwischen  2012  und  2013  wurden  die  Effekte  der  veränderten  N‐

Düngeranwendung und die Verwendung  von  stickstoffbindenden Bodendeckern auf die Boden‐N‐

Dynamik, auf die N‐Nutzungsseffizienz, auf den Ertrag von Mais und Weizen und auf die Nitat‐N‐

Auswaschung untersucht. Abschließend wurden diese Feldexperimentdaten genutzt, um das EPIC‐ 

Modell zu parametrisieren und damit den N‐Verlust durch Auswaschung unter den derzeitigen sowie 

alternativen Anbau‐ und N‐Management abschätzen zu können. 

Gegenwärtige  N‐Ausbringungsmengen  haben  einen  Durchschnittswert  von  229  kg  N  ha‐1 

Saison‐1,  das  über  dem  Bedarf  von  150‐180  kg  N  ha  für  Getreide  liegt.  Der  Hauptgrund  für  die 

exzessive Nutzung von mineralischem Dünger hängt mit der niedrigen Produktivität des Ackerlandes 

(r = ‐0.184, p = 0.003), den kleinen landwirtschaftlichen Betrieben (r = ‐0.168, p = 0.006), dem hohen 

Anteil  an  außerbetrieblichen  Einkommen  (Koeffizient  =  25.94,  p  =  0.003)  und  einem  niedrigen 

Bildungsstand des Haushaltsvorstandes (Koeffizient = ‐11.20, p = 0.034) zusammen. 

Das  Feldexperiment  konnte  aufzeigen,  dass  der  Anbau  von  Bodenbedeckungsfrucht 
kombiniert  mit  verringerter  N‐Verwendung  (290  kg  N  ha‐1  in  3  Anwendungen)  und  mehrfache 
Aufteilung  von   mineralischem N‐Dünger  ähnliche  Erträge  erzielen  kann  (6.4‐6.9 Mg ha‐1) wie  im 
derzeitigen Management  (470 kg N ha‐1  in 2 Anwendungen). Zusätzlich erhöhte dieses alternative 
Feld‐  und Düngemittelmanagement  die  agrarökonomische N‐Nutzungseffizienz  von  7  kg Getreide 
pro  kg  verwendetem N bei Weizen  sowie Mais, und  verbesserte die N‐Düngerrückgewinnung um 
15% bei Weizen und 20% bei Mais. Zudem wurde die Nitrat‐N‐Auswaschung um 15 kg N ha‐1 bei 
beiden, Erstjahresmais und Weizen, verringert. 

Sobald das EPIC‐Modell mit den Daten der Feldexperimente kalibriert war, konnte man die 

Feldbiomasse und den Bodenwassergehalt unter moderaten (langfristiges Mittel) Klimabedingungen 

mit  einem  Bestimmtheitsgrad  größer  als  0.5  und  einem  Modellfehler  von  weniger  als  3% 

vorhersagen. Jedoch unterschätzte das Modell den Bodenwassergehalt in der Trockenzeit mit einem 

Fehler > 36%. Außerdem  tendierte es zur  leichten Überschätzung der Nitrat‐N‐ Auswaschung über 

den gesamten Experimentzeitraum in beiden Bodentiefen, 1m und 1.8 m, mit 13‐181 kg N ha‐1. 

Schlussfolgerungen  sind,  dass  (1)  die  derzeitige  N‐Anwendungsrate  in  der  Studienregion 

aufgrund eines unzureichenden Bewusstseins und der kostengünstigen und einfachen Verfügbarkeit 

von mineralischem Dünger so exzessiv ist, (2) die gegenwärtigen hohen N‐Verluste auf Ackerflächen 

wesentlich  durch  verringerte  Ausbringungsmengen  sowie  die  Bepflanzung  von  unbedeckten 

Brachflächen mit  Hülsenfrüchten  als  Bodenbedeckung  ohne  negative  Kompromisse  von  Erträgen 

reduziert  werden  können,  und  (3)  das  kalibrierte  EPIC‐Modell  genutzt  werden  kann,  um  die 

oberflächliche  Biomasse  und  den  Bodenwassergehalt  vorauszusagen,  auch wenn  das Modell  zur 

Überschätzung  der  Nitrat‐N‐Auswaschung  tendiert.  Daraus  resultiert  die  Notwendigkeit,  Bauern 

über  die  negativen  Auswirkungen  von  exzessiver  N‐Verwendung  zu  informieren,  alternative 

agroökonomische  Managementoptionen  bekannt  zu  machen  und  das  existierende  EPIC‐Modell 

anzupassen, um die Voraussagen über die N‐Belastung in Zentralchina zu verbessern. 
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1. GENERAL INTRODUCTION 

 

1.1 Background 

Agriculture has existed for thousands of years and provides food to meet the 

increasing human demand. To increase yields, synthetic fertilizers have been widely 

applied as an external nutrient source for the past 60 years (Goulding, 2004). While 

these fertilizers have largely contributed to the 1.5-fold increase in global grain yield 

between 1970 and 2010 (Addiscott et al., 1992), they have also negatively impacted 

the natural nutrient cycle and caused severe problems worldwide (Galloway et al., 

2008). The off-site consequences such as surface water eutrophication (Hall et al., 

2001), groundwater pollution (Delgado and Shaffer, 2002), and greenhouse gas 

emissions (Behera and Panda, 2009), have raised concerns about the environmental 

impacts caused by the current fertilizer application practices. Pollution and depletion 

of water resources through agriculture-related activities are severely jeopardizing 

economic development and threatening human health (Schilling and Wolter, 2001). To 

address the conflicts between yield increase and nitrogen (N) pollution, sustainable 

agricultural intensification, which increases yields while reducing nutrient losses, is 

urgently needed (Garnett and Godfary, 2012; Garnett et al., 2013).  

 

1.1.1 Nitrogen fertilizers and their use 

Plant roots take up N in the form of NO3
- or NH4

+ ions. Nitrogen bound in organic forms 

in the soil can only be used by plants after it is mineralized into the NH4
+ form by 

hydrolytic ammonification, and its subsequent chemo-lithotrophic oxidation to NO3
- 

(nitrification). In the soil, NH4
+ is less mobile than NO3

- because the negatively charged 

clay mineral surfaces can electrostatically absorb the NH4
+ irons. The negatively 

charged NO3
- ion, on the other hand, is not absorbed and can be easily moved by 
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water in the soil profile and thus leached. In some developing countries, only 30%-35% 

of the fertilizer N is taken up by plants, and about 20%-50% of the fertilizer N is lost by 

runoff and leaching, depending on soil and climatic conditions (Mapiki et al., 1993; 

Mundus et al., 2008). Most of the N from farmland is lost in the form of NO3
- (Di and 

Cameron, 2002). These losses have caused considerable environmental problems that 

pose serious threats to regional development (Barton and Colmer, 2006).  

 

1.1.2 Problems caused by excessive N fertilizer use in agriculture 

Nitrogen losses and surface water eutrophication 

The excessive N use in agriculture has caused a massive increase in surface water 

eutrophication globally. This has led to health problems; habitat degradation; changing 

food-web structure (Howarth et al., 2000), loss of biodiversity, and increased 

frequency, spatial extent and duration of harmful algal blooms (Boesch, 2002). In 

Denmark, 94% of the N load comes from agricultural activities (Vighi and Chiaudani, 

1987). In 1994, 60% of the N in water bodies in the Netherlands originates from N 

fertilizer application (Lena, 1994), In the USA, non-point source pollution, of which 

agricultural activities account for 75%, contributes to 66% of the N load. Recently, the 

Water Wheel (Water Research Commission, South Africa; issue September/October 

2008) reported that 54% of the lakes/reservoirs in Asia are affected by eutrophication, 

in Europe 53%, in North America 48%, in South America 41%, and in Africa 28%; most 

of the nutrients originate from agricultural activities (Nyenje et al., 2010). In China, It 

has been estimated that 9.75 ×105 tons of dissolved N enter the Yangtze River, Yellow 

River and Pear River every year; the dissolved N stems largely from agricultural 

activities (Duan et al., 2000). 
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Drinking water pollution and related health problems 

Groundwater quality can deteriorate over time because of the cumulative effects of 

agricultural practices (Addiscott et al., 1992). Since 1994, the Chinese Academy of 

Agricultural Science has monitored the water quality of 600 wells used for drinking 

water across China. Results showed that 20% of the surveyed groundwater has nitrate 

concentrations exceeding the threshold defined in China drinking water regulations (10 

mg·L-1) (Zhang and Tian, 1995). Although Hubei Province is rich in water resources, 71% 

of the residents there are drinking nitrate-polluted water (Li and Fan, 2009). 

The consumption of nitrate-contaminated water poses health risks. The 

World Health Organization (WHO) set the threshold of drinking water NO3
- 

concentration at 10.0-11.3 mg·L-1 (World Health Organization, 1984). Consuming water 

contaminated with NO3
- polluted can affect blood oxygen-transport in young children 

and cause the “blue baby” syndrome (Golden and Leifert, 1999). A strong relationship 

between high NO3
- concentration in drinking water and stomach cancer in adults has 

also been established (Mckinney et al., 1999).  

 

Energy waste 

Improving N fertilizer use efficiency in major cropping systems is a central component 

of efforts to not only produce more food, but also to reduce resource consumption 

(Lobell et al., 2004). Although 78% of earth's atmosphere consists of nitrogen, the inert 

N2 gas must first be converted to ammonium by biological (microbial) or industrial 

(Haber-Bosch) fixation processes before becoming available to plants. Industrial N 

fertilizer production requires energy, which is mainly generated from fossil fuels. In 

intensive agricultural systems, N fertilizer application accounts for approximately 40% 

of the total energy input (Küsters and Lammel, 1999). Therefore, N fertilizers need to 

be used more efficiently for both economic and environmental reasons. 
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Because of the problems caused by N losses from agro-ecosystems, strategies 

minimizing such losses need to be developed. Nitrogen losses are difficult to control 

because N movements are often intermittent and associated with numerous factors 

such as land management, rainfall and its temporal distribution, irrigation practices, 

and the amount and timing of fertilizer application (Carpenter et al., 1998). Integrated 

approaches to manage NO3
- concentration in soil solution, and water dynamics in soil 

profiles are necessary for reducing the NO3
- related environmental impacts (Tamini 

and Mermoud, 2002).  

 

1.1.3 Reasons for excessive N fertilizer use and related water pollution in China 

Extensive use of N fertilizers is one of the main factors contributing to increasing global 

yields. Global N fertilizer application rates increased 7-fold from 1965 to 2002; 25% 

were applied in China, on an area amounting to only 7% of the global farmland (Wang 

et al., 2012b). China became the world’s largest chemical fertilizer consumer in the late 

1990’s (Williams, 2005). Three main determinants have been identified: growing food 

demand, reduction of organic fertilizer use, and subsidies for mineral N fertilizer 

industries. 

 

Increasing demand for food 

China’s population grew from 975 million in 1979 to 1,354 million in 2012 (Chinese 

National Bureau of Statistic, 2013) and is expected to reach 1,500 million in 2030 (Liu 

and Diamond, 2005). In addition, by 2003, more than 860,000 ha of arable land were 

occupied by land uses other than agriculture (Larson, 2003). Furthermore, the living 

standard in China improved considerably after the introduction of economic reforms in 

1978. Providing sufficient food to feed the rapidly growing population is an enormous 

challenge. Increased fertilizer use has played a key role in keeping food production in 
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pace with the population growth in China during the past decades. However, because 

of a decrease in nitrogen use efficiency (NUE1) with increasing N application rates, the 

incremental yields diminished. They may even show a negative trend when N inputs 

massively exceed crop demand (Figure 1.1).  
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Figure 1.1 Nitrogen consumption and food production in China from 1979 to 2007. 
Data source: Chinese national agriculture yearbook 1980-2008. 

Reduction in organic fertilizer use 

The amount of organic fertilizer used in China has dropped sharply in the last decades. 

In 1949, 100% of the nutrients applied to Chinese farmland were from organic sources; 

in 1975, 60% of the N input still originated from organic fertilizers and green manures, 

mainly from the floating fern Azolla and the leguminous cover crop Astragalussinicus. 

                                                      
1Nitrogen Use Efficiency (NUE) in this research is defined as the N fertilizer that contributes to the yield 

compared to the control group (N0). 



GERNERAL INTROCUTION 

6 

 

However, it dropped to 20% by 2000 (Zhu et al., 2006). There are several reasons 

behind this reduction.  

Firstly, compared to organic fertilizer, farmers can achieve higher profits with 

synthetic fertilizers. It was observed that Chinese farmers used about 30% of their 

farmland to cultivate green manure in the 1940s, while they used the same amount of 

farmland to cultivate cash crops in the 2000s; the money earned from the cash crops 

was used to buy synthetic fertilizers (Giampietro and Pastore, 2001). Although the 

same fraction of land is involved, the farmers who use synthetic fertilizers have more 

free time to do off-farm work and thus can earn more money than organic farmers.  

Secondly, because of accelerated urbanization and development of 

large-scale livestock production systems, attributed to China’s policies, livestock 

systems have been separated from crop production systems. Thus, most of the human 

and animal wastes are no longer used as organic fertilizer in farming. Accordingly, 

modern agricultural systems rely more on synthetic fertilizer rather than on organic 

fertilizers as their nutrient input.  

Thirdly, with emerging labor shortages or increasing agricultural wages, the 

high labor demand for producing legume seeds, maintaining azolla ponds, applying and 

incorporating organic fertilizer sources and for transport increasingly restricts the use 

of organic amendments (Becker et al., 1996). 

 

Subsidies in the fertilizer industries 

From 1949 to 1993, the Chinese government invested a total of US$ 7.28 billion in the 

chemical fertilizer industries (Li et al., 2013). In contrast, recent data showed that 

more than US$ 18 billion were supplied to the Chinese fertilizer market through a 

massive subsidy program in 2010 alone (Li et al., 2013). These subsidies were used to 

fund infrastructure construction, reduction of transportation cost, provision of cheap 



GERNERAL INTROCUTION 

7 

 

energy, tax reductions, etc. They supported thus small and medium-sized fertilizer 

factories, allowing them to provide cheap fertilizers to Chinese farmers. The artificially 

low-priced fertilizers contributed to the nationwide trend of excessive fertilizer 

application (Qiao et al., 2003;Yang and Sun, 2008). 

 

Water pollution through excessive N application  

While N loads into water originate from different sources, synthetic fertilizer losses 

associated with agriculture activities have been the main source of water pollution in 

China since the 1980s (Ju et al., 2004). In the last decades, these N loads have caused 

aquatic ecosystem degradation and eutrophication (Zhu and Chen, 2002). For instance, 

about 50% of the N loads in the Yangtze and Yellow rivers are from synthetic N 

fertilizer losses (Duan et al., 2000). In the latest "Environmental quality standards for 

surface water" (GB3838-2002) published by the Chinese Environmental Protection 

Administration, surface water are classified into five quality levels: the highest quality 

level is Class I, while Class III is regarded as the threshold criterion for drinking water. 

According to data collected from field monitoring of “seven water systems and three 

main lakes2” in 1998, 63.1% of the surface water area was classified as lower than 

Class IV (State Environment Protection Agency, 1998). In 2003, the water quality had 

hardly improved, i.e., 61.9% of the surface water was still lower than Class IV (State 

Environment Protection Agency, 2003). Consequently, nitrate-N, from agricultural 

activities, is one of the main pollutants that contributes to water pollutions.  

 

1.1.4 Strategies to improve N use efficiency 

To increase NUE and reduce adverse impacts on the natural ecosystems, numerous 

studies have been conducted on issues pertaining to N fertilizer since the mid-19th 
                                                      
2Seven water systems and three main lakes in China include: Hai River, Liao River, Yellow River, Huai 

River, Songhua River, Yangtze River, Pear River, Taihu Lake, Dianchi Lake and Chaohu Lake. 
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century. The researches varied in size, ranging from plot to global scale (Ju et al., 2009; 

Mueller et al., 2012).  

 

Plot-scale research 

Plot-scale research, a direct way to quantify the N cycle at small scale, has been 

employed in many studies. The earliest plot-scale research on different forms of N was 

conducted in the world's oldest research station at the Rothamsted Classical 

Experiment Station, UK, in 1842 and 1843 (Leigh and Johnston, 1994). Later, the 

functions of winter cover crops with respect to soil protection were tested at the 

Alabama Agricultural Experiment Station, USA, in 1896 (Mitchell et al., 2008). In the 

1930s and 1940s, the effects of crop management on soil were assessed from the N 

perspective at the Sanborn Field Experiment Station, Missouri, USA (Brown, 1993). 

Since then, researchers worldwide have contributed an enormous amount of data 

from countless field experiments dealing with the N cycle at plot level.  

After isotope methods were introduced, it became possible to demonstrate 

the N distribution in field experiments and its effects on natural agro-ecosystems 

under different field management strategies. Most studies have shown that improved 

soil and crop management combined with appropriate genotypes and slow-release 

fertilizers can reduce N losses, and maintain, or even increase yields (Becker et al., 

2007). The quantity of N losses from agriculture is highly dependent on the scale of 

research, because crops grown at lower toposequence position can use N lost from 

upslope areas. Accordingly, a combination of plot and watershed-scale research is 

necessary to reveal the real impact of agriculture on the water system at a regional 

level (Chen et al., 2013).  
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Research on nitrogen transport simulation using modeling 

The estimation of N loads  and identification of the N source are essential to improve 

NUE and reduce N losses (Chen et al., 2013). With the aim of reducing pollutant load 

released from agricultural activities at the watershed scale, numerous studies have 

focused on N-load estimation (Tian et al., 2012). Since the 1970s, computer-based 

models have been developed to quantify the N emissions from agricultural activities 

under different conditions. Because N dynamics are driven by water flow, most of the 

models were developed by hydrological and chemical associations, e.g., EPIC (Erosion 

Productivity Impact Calculator), SWAT (Soil and water assessment tools), ANSWERS 

(Areal nonpoint source watershed environment response simulation), AGNPS 

(Agricultural nonpoint source pollution model) (D.K.Borah and M.Bera, 2003), NLEAP 

(Nitrate Leaching and Economic Analysis Package) (Delgado et al., 1998) etc. These 

models have been widely used and provide good results for nutrient management at 

watershed scale in many countries. However, these models need large amount of field 

data, and require calibration and evaluation prior to application. Although some export 

coefficient models that require less data have been widely applied to estimate nutrient 

loads to water systems, they cannot provide information on the transport mechanisms. 

This information is, however, essential for deriving strategies to improve field 

management (Lu et al., 2013). Accordingly, sufficient field data and model 

performance evaluation are necessary for predicting N loads and simulating 

N-transport mechanisms at the watershed scale.  

 

Research at larger scales in a socio-political context  

Policies that consider the socioeconomic context are regarded as the most effective 

way to increase NUE at regional level if they are implemented correctly (Yunju et al., 

2012). However, although many innovative cropping systems and policies have been 
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proven to be more sustainable and environmentally friendly by researchers and 

politicians, farmers have been reluctant to adopt them because of financial reasons 

(Caporali and Campiglia, 2000) and risk avoidance (Paudel et al., 2000). Therefore, 

sound policies should be based not on only the considerations of researchers or 

politicians, but also on those of farmers. Only then are farmers likely   to respect such 

policy recommendations. For instance, effective agro-technical extension services (Jia 

et al., 2013), and improved access to input and output markets (Waithaka et al., 2007) 

have been proven to be useful strategies for reducing N fertilizer application by 

small-scale farmers. Hence, information from household surveys is necessary to 

facilitate effective and practical polices planning in order to reduce N pollution (Li et al., 

2006).  

 

1.1.5 Hypothesis and objectives 

Nitrogen pollution is a complex problem requiring interdisciplinary strategies that cut 

across different scales of observation. This research hypothesizes that improved crop 

management can reduce the current nitrate-N pollution while enhancing systems 

performance. The general objectives were to estimate the quantity of N losses from 

farmland at field scale, to evaluate the performance of the EPIC model, and to assess 

possible mitigation strategies for reducing the adverse impacts resulting from 

agricultural activities. The specific objectives were as follows: 

(1) Study farmers’ attitudes with respect to N fertilizer application and 

determine the key factors associated with N overuse at drainage basin scale.  

(2) Evaluate the impacts of transition season and modified mineral fertilizer-N 

management on N use efficiency and yield 

(3) Determine the effect of transition season and modified mineral fertilizer-N 

management on NO3
- and NH4

+ losses through leaching.  
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(4) Calibrate the EPIC model, and evaluate its performance on N losses and 

crop yields estimation. 

1.2 Materials and methods 

1.2.1 Household survey 

For the personal interview survey, 300 households were selected in the Liangzihu Lake 

drainage basin. Stratified randomized sampling methods were used to select the target 

households. The questionnaire covered four aspects: characteristics of the farmers 

(e.g., age, education level of household head), economic situation of surveyed 

households, knowledge background of interviewees, and infrastructure factors 

influencing fertilizer purchase and transportation. 

Before commencing the survey, investigator training and pilot survey were 

conducted to ensure the result accuracy of the result. Details of sample selection and 

result analysis are described in Chapter 2.  

 

1.2.2 Study site 

The research was conducted in the Liangzihu Lake basin, Hubei province, Central China. 

To achieve the abovementioned objectives, research was conducted by 

interdisciplinary methods:  

(1) Field experiment: The 24 experimental plots were established at Tuanjie 

village (28 m asl, 30°14´ latitude and 114°23´ longitude), each 40 m2 (5 m × 8 m) and 

located in the field with randomized block design. 

(2) Model simulations: Based on the measured data, the performance of EPIC 

model on N losses simulation was evaluated. 

(3) Household survey: The household survey was conducted in the Liangzihu 

Lake basin, which covers an area of 2085 km2 and includes four different counties, to 

identify the factors associated with the farmers’ excessive N fertilizer use.  
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1.2.3 Data collection 

Sampling 

Soil solution samples were sampled using a ceramic suction cup at 1.0 m and 1.8 m 

depths. Soil samples were collected from the root zone (0-100 cm) at 20-cm intervals. 

Aboveground plant tissues of maize and wheat were sampled at harvesting. The soil 

and water samples were transported to the laboratory in containers at a constant 

temperature of 2 °C for chemical analysis.  

Metrological data measurement 

The metrological data include maximum, average and minimum air temperature; 

relative humidity; precipitation; solar radiation; dew point; and wind direction and 

speed. The data were measured at 30-min intervals by a weather station (Watchdog 

2700 ET, USA) that is located 0.5 km away from the field.  

 

Soil water content measurements 

The soil volumetric content was measured at bi-weekly interval using soil moisture 

sensors (Spectrum, SM-100, USA), that were installed at 1.0 m and 1.8 m depths. 

 

Chemical analyses 

The soil solution samples and the soil samples were taken at 15-day intervals. The soil 

sampling interval was shortened to 7 -days during the critical time (after N fertilizer 

application). Soil sample collection began on 10 August 2012 and continued until the 

end of the field experiment (25 August 2013). Soil solution and water sampling began 

at the same time as the field experiment. The NO3
- and NH4

+ contents in the soil, soil 

solution and water samples were analyzed in the laboratory. The plant tissues were 

separated into grain and straw, and oven dried at 70 °C until their weight remained 

constant for the purpose of biomass calculation and N-content analysis.  
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The chemical analysis methods for the plant tissues and soil samples are 

described in Chapter 3, and for the soil solution samples in Chapter 4  

 

1.2.4 Data analysis 

The Duncan Multiple Range test at P ≤ 5% level was used the software, Stata 12.2 to 

determine the significance levels. The location was mapped using ArcGIS 10.0. The 

data from the questionnaire were analyzed through Pearson correlation analysis and 

linear regression analysis using Stata 12.2.  

 

1.3 Outline of thesis 

Based on the research objectives, this thesis is organized into six chapters. Following 

the general introduction (chapter 1), each of the four chapters (chapter 2-5) 

specifically addresses one of above-mentioned objectives:  

Chapter 2 defines the factors associated with the overuse of N fertilizer in the 

drainage basin based on the household surveys. 

Chapter 3 describes N fertilizer contribution to agronomic use efficiency 

under different field management treatments. 

Chapter 4 describes the dynamics of soil water and N leaching losses with 

different field management.  

Chapter 5 evaluates the performance of EPIC model on yield and N losses 

simulation.  

Chapter 6 contains the general discussion, conclusions and mitigation 

strategies for N pollution and discusses their implications on policies. 
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2. FACTORS INFLUENCING FARMERS’ DECISIONS ON N FERTILIZER USE  

2.1 Introduction 

To satisfy the rapidly growing demand for food and other agricultural commodities 

during the past 40 years, China’s farmers tend to apply on average 30%-60% more 

than the recommended rate of mineral nitrogen fertilizer (Ju et al., 2009). This is 

causing severe environmental problems at both local and global scales. Typically 

associated with excessive N use at local scale are the eutrophication of the aquatic 

environment (Pedersen et al., 2009) and nitrate pollution of groundwater (Almasri and 

Kaluarachchi, 2007). On a large scale, disturbance of the global N cycle (Galloway et al., 

2008) and the enhanced emission of climate relevant trace gases (Mosier et al., 1998) 

are associated with N overuse. Policy makers in the country are becoming increasingly 

aware of the problems associated with N overuse, and new policies are being 

developed to sustain on the one hand the increasing demand for food, while on the 

other hand minimizing negative environmental impacts of excessive N fertilizer 

consumption. Thus, an “N-testing” project, basing application rates on soil-N values 

and target yield levels was approved in China in 2005 as a strategy proven to be 

beneficial in other countries (Bosch et al., 1995). However, its implementation largely 

failed due to a lack of extension capacity and of other incentives to support an 

up-scaling to the national level. To date, it remains unclear why Chinese farmers 

consistently exceed recommended N application rates despite widely recognized 

environmental problems and a generally low use efficiency of the inputs. A commonly 

mentioned culprit is the relatively low cost of about € 200 per ton of subsidized 

mineral fertilizer N which is below the world market price of about € 300 per ton of N 

(Huang et al., 2011).  

Past research on possible factors influencing N fertilizer use in China is 

contradictory and appears to be location specific. For example, a negative relationship 
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between farm size and N use was reported for the Chaobai watershed in northern 

China (Zhou et al., 2010), while no such link was observed in the Songhuaba watershed 

in Yunnan province (Yunju et al., 2012). Other authors found that, depending on the 

study area, seasonal labour migration tends to affect N fertilizer use both positively 

(Ebenstein, 2011) and negatively (Zhou et al., 2010). This evidence of a high location 

specificity of the factors governing N overuse suggests a more differentiated approach 

that should consider site-specific differences in ecological, economical, and cultural 

factors (Huang et al., 2011). 

The Liangzihu Lake drainage basin in Hubei Province of Central China is 

particularly affected by N pollution, and the quality of the aquifers has been declining 

particularly as a result of high nitrate concentrations in the water (Qiu et al., 2001). 

The water pollution, especially the N pollution problem, is likely to affect regional 

development in the long-run (Kuangfei et al., 1999).  

To reduce agricultural N pollution, it is necessary to determine the factors 

driving farmers’ excessive use of N fertilizer. Accordingly, the objectives of this study 

were to: (1) determine the factors that influence farmers’ behaviour with respect to 

use of N fertilizers in Central China, and (2) provide suggestions to reduce excessive N 

application in the study region. The results of this research are seen to provide 

information required for facilitating policies for better N fertilizer management in 

Central China. 

 

2.2 Materials and methods 

2.2.1 Site description 

A household survey was conducted in the Liangzihu Lake drainage basin, Hubei 

Province, from April to June 2013. The drainage basin is located in the southeast of the 

Jianghan plain in Hubei province and covers an area of 2085 km2, belonging to the 
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counties of Jiangxia, Liangzihu, Daye and Xian’an. The main characteristics of these 

four counties are listed in Table 2.1. Liangzihu Lake has a surface area of 271 km2 and 

an average water depth of 2.54 m; the lake is connected with the Yangtze River in the 

east (Li and Sun, 2009). The drainage basin is very rich in water resources. For instance, 

there are many lakes spread throughout the region, all being inter-connected by rivers 

or creeks. The research area has a subtropical monsoon climate with an annual 

average precipitation of 1,100 mm, and an annual average temperature of 16 ºC. The 

dominant crops are rice, maize, wheat and cotton, with cotton and wheat growing in 

the cold season, and rice and maize in the hot season. Oilseed rape and groundnuts 

are also occasionally cultivated in the region. Most farmers in the study area are 

small-scale farmers (average size of farmland = 0.29 ha/household) who practice a very 

intensive crop production with high yields and 1-2 crops per year.  

 

Table 2.1Characteristics of the surveyed counties within the study region 

Characteristics Liangzihu Jiangxia Xian'an Daye 
Sample size 95 95 47 46 
Area (km2) 500 2010 1502 1566 
Arable farmland (km2) 127 355 355 362 
Population 164,846 351,200 393300 662,500 
Households 44,319 97,000 97,900 169,800 
Income per capita 
(Yuan) 7,010 9,898 6,588 8,079 

 

2.2.2 Sampling methods 

To ensure the confidence level at 95% level, a sample of 300 households was selected 

among the clusters of settlement located in the Liangzihu Lake drainage basin (Levy 

and Lemeshow, 1999). Each settlement cluster consists of several villages. Stratified 

randomized sampling methods considered the following approach: (1) one settlement 

cluster from each group was randomly selected, and the villages in the cluster were 
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stratified into two groups according to per capital income (high income > 6000 Yuan3 

per year and 6000 Yuan per year ≥ low income), (2) several villages from each group 

were selected for the household survey, (3) households were randomly selected from 

the sample frame provided by the village head, and (4) face-to-face interviews using 

structured questionnaires were conducted with the household head or the person who 

was the major decision maker and manager of the farming activities. As farmers tend 

to apply large amounts of different types of organic manure to fruits and vegetables, 

and as their N contribution is difficult to quantify (Ju et al., 2004), such production 

systems were excluded from the analysis. Thus, from the initially selected 300 

households, 17 were excluded because these farmers grew only fruit trees and 

vegetables. Accordingly, the results are based on the information of 283 sample 

households. The number of samples and descriptions of the surveyed households are 

listed in Table 2.1 and Table 2.2, respectively. Investigator training and pilot survey 

were used to ensure the quality of the questionnaire procedure. Investigators received 

three days training to ensure that questions were asked in a standardized way; a pilot 

survey was conducted to make the questionnaires more clearly and easily understood 

by farmers.  

 

                                                      
3Average currency exchange rate in 2012: 1 US $ = 6.3125 Yuan 
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Table 2.2 Variables selected in the questionnaire and household description  

 

 

 

 

 

 

 

 

 
+)    0=without; 1=less than 6 years; 2=between 6 to 9 years; 4= between 9 and 12 years; 5= more than 12 years 
++)           1=very fertile; 2=fertile; 3=normal; 4=poor 
+++)   1=experience; 2= discuss with other farmers; 3= books; 4=TV/Internet; 5=other ways; 6= more than one way 
++++)      1=village level; 2=county level; 3=provincial level; 4=national level 
+++++)    1=truck; 2=labor; 3= motorbike; 4= home delivery service   

Category Variable Unit 
Observ
ations Mean Std.Dev Min Max 

Characteristic 

N fertilizer application rates kg·N·ha-1 283 229.22 106.21 40.91 637.5 
Age  of household head Years 283 55 11.27 15 83 
household size  Number of persons 283 5.19 2.25 1 13 
Labor availability  Number of person/HH 283 2.62 1.39 1 9 
Education level of household 
head +) 283 1.27 1.1 0 5 

Farmland area  Ha 283 0.58 0.71 0.33 6.67 
Disaster 1 = with, 0 = without 283 0.69 0.46 0 1 

Economic 
Total income  10.000 Yuan 283 2.74 2.49 0.15 23 
Off-farm income (10.000Yuan) Continuous variables 283 1.37 2.13 0 22 

Knowledge 
 
 
 

Fertilizer quality evaluation 0=don't know; 1= know 283 0.15 0.36 0 1 
Farmland fertility evaluation ++) 283 2.9 0.57 1 4 
Technical training 1=yes; 0= no 283 0.17 0.37 0 1 
Ways to access knowledge +++)  the statistics are missing à 1 (69%)  

Infrastructure 
 

Distance to farmland  km 283 1.19 3.65 0.1 60 
Distance to fertilizer market  km 283 2.71 4.22 0 60 
Distance with water resources  km 283 0.44 0.74 0 6 
Road conditions ++++) 283 1.75 0.74 1 3 
Fertilizer transportation method +++++)  the statistics are missing à 1 (12%)    



FACTORS INFLUENCING FARMERS’ DECSIONS ON N FERTILIZER USE 

19 

 

2.2.3 Variable selection 

The selected variables were classified into four sections based on previous research 

(Kormawa et al., 2003).  

• Section 1: Farm and household characteristics (age of household’s head, 

household size, yields, occurrence of disasters in the past five years) 

• Section 2: Production factors (farmland area, labor availability, off-farm 

income);  

• Section 3: Knowledge factors (education level, ways to access knowledge, 

ability to evaluate the quality of fertilizer and the fertility of farmland, access 

to and use of training measures);  

• Section 4: Infrastructure factors (distance to the market, distance to water 

bodies, road conditions, and transport facilities).  

In 20 % of the households, two crops per year were cultivated, and the 

multiple cropping index (MCI) was used as follows:  

MCI = Sowing area
100%

Farmland area
´                               (2.1) 

The percentage share of off-farm income was transformed into an index to 

estimate its impact on the amount of fertilizer N applied. To allow comparisons of yield 

between commodities, the farmland productivity was calculated as: 

Agricultural output value (yuan) =
1

i n

i i
i

c p
=

=

´å                            (2.2) 

Farmland productivity (yuan·ha-1) = Agricultural output value
Farmland area

                          (2.3) 

Off-farm income percentage (%) = Off-farm income
100

Total income
´                        (2.4) 

N fertilizer application density (kg·N·ha-1) = N fertilizer applied fertilizer-N content
Farmland area

´        (2.5) 

N fertilizer application rates (kg·N·ha-1) = N -fertilizer application density
MCI

                    (2.6) 
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where, ic  is the yield of crop i, ip  is the suggested price of  crop i given by 

the provincial government.  

2.2.4 Statistical analysis 

Pearson analysis established the correlations between the surveyed variables. A 

multiple linear regression model was used to identify and estimate the drivers of 

mineral fertilizer use. To reduce co-linearity, farmland area and farmland productivity 

were excluded from the model (Belle, 2008).  

Bootstrapping (replication = 500) was introduced to test the stability of the 

results. Calculations were performed using Stata 12.1.  

 

2.3 Results and discussion 

2.3.1 General determinants of nitrogen application 

Various factors appear to determine the mineral N fertilizers application rate. The 

correlation analysis shows a positive relation between the N application rate and the 

percentage share of off-farm income (r = 0.1776, p = 0.004; Table 2.3). Such 

relationships have been reported before by Zhou et al. (2010). However, farmland 

productivity shows a highly significant negative correlation with N application rate (r = 

-0.184, p = 0.003), which is again supported by findings of other researchers in China 

(Jia et al., 2013). Different explanations were given for these findings. Firstly, farmers 

tend to apply more N fertilizer to the fields with unfavorable growing conditions, to 

compensate for reduced productivity that is perceived to be associated with such 

conditions (Ju et al., 2009). Another explanation is that excessive N fertilizer may cause 

mutual shading, high competition and pest damage which can reduce yield (Peng et al., 

2006). Therefore, the results can be interpreted in two ways: More N fertilizer leads to 

lower yields or when yields are lower farmers to apply more N fertilizer. The grain yield 

response to applied mineral N generally follows a quadratic response function 
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(Meyer-Aurich et al., 2010). Thus, yield increments get smaller with increased N 

application rates and may even decline at very high doses (Zhu and Zhang, 2010). Most 

of the surveyed households (82%) apply N fertilizer rates above 150 kg·N·ha-1(Figure 

2.1) which is the rate required to reach the maximum profit for grain crops (Goulding, 

2004). Therefore, we assume that the negative correlation in our result between 

farmland productivity and the amount of mineral N applied was caused by excessive 

use of N fertilizer. 

 

Figure 2.1 Correlation with N fertilizer application rates and farmland production. 

The distance between farmland and water resources shows positive 

correlations with N application rate (r = 0.1031, p = 0.092). Thus, the further away the 

farmland was from water resources the more N was applied. The mean distance 

between farmland and water was less than 500 m and nearly all farmlands were 

located at a distance of less than 2 km from the next open water body (Table 2.2), 
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which indicates that the study region is rich in water resources. Two reasons could 

explain this positive correlation. Firstly, the farmlands that are located further from 

water resources have lower productivity, which is indicated by the negative correlation 

between these two variables (r = -0.019, p = 0.092); therefore, farmers are likely to 

apply more fertilizer to these fields as a compensation. Secondly, as farmers share 

irrigation equipment in the study region, they tend to irrigate with large quantities of 

water and exceed the crop requirements when they have the right to use the 

equipment. The excessive irrigation could cause N fertilizer losses through leaching; 

therefore, over-irrigation could motivate farmers to apply even more N fertilizer 

(Cameron et al., 2013).  

The mineral-N application rate was negatively correlated with farm size (r = 

-0.1682, p = 0.0058), as households with more farmland area tend to rely more on 

agricultural income and less on off-farm revenues. This is similar to the negative 

correlation between off-farm income and farmland area (r = -0.3058, p = 0.000). 

Therefore, farmers with more farmland tend to spend more time on farm work, and 

are more likely to adopt improved N-management techniques, which lead to lower N 

application rates. In research from northern China, a similar correlation between 

farmland size and N fertilizer use was observed. The trend may be explained by an 

increase in N fertilizer efficiency as farms become larger (Zhou et al., 2010).  



FACTORS INFLUENCING FARMERS’ DECSIONS ON N FERTILIZER USE 

23 

 

Table 2.3 Correlation between surveyed variables 

 

 

 

 

 

 

 

* Significant at 10% level, ** Significant at 5% level, ***Significant at 1% level 

 

 Age HHS La Edu DFl DFe DW RC %OF FProd Napp FArea 

Age 1.0000            

Household size (HHS) 0.1950*** 1.0000           

Labor availability (La) -0.0586 0.4244*** 1.0000          

Education level (Edu) -0.3978*** -0.1465** 0.0943 1.0000         
Distance to farmland 

(DFl) -0.0419 0.0879 0.1309 0.0134 1.0000        

Distance to fertilizer 
(DFe) 0.0041 -0.0131 0.0677 0.0715 0.0094 1.0000       

Distance to water 
resources (DW) -0.0726 -0.0190 -0.0507 -0.0232 0.0303 0.0243 1.0000      

Road conditions (RC) 0.0017 0.0922 0.0548 -0.0548 -0.0535 -0.0041 0.1246 1.0000     
Off-farm income 

percentage (% OF) -0.3235*** 0.1073* 0.2540*** 0.2297*** -0.0697 -0.0905 0.0044 0.0891 1.0000    

Farmland productivity 
(FProd) 0.0721 -0.0147 0.0456 -0.0095 0.0675 -0.0059 -0.0190 -0.0135 -0.2143*** 1.0000   

N fertilizer application 
rates (Napp) -0.0404 0.0199 -0.0254 -0.1002 -0.0260 -0.0890 0.1031* -0.0078 0.1776*** -0.1842*** 1.0000  

Farmland area (FArea) -0.0171 0.0902 0.0667 -0.0012 0.0250 0.0617 0.0171 0.0989 -0.3058*** 0.0176 -0.1682*** 1.0000 
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2.3.2 Farmer-specific determinants of nitrogen use 

Multivariate linear regression gives a depth analysis of the extent of selected factors 

influencing the rates of mineral N fertilizer application ( 

Table 2.4). The raw bivaritate correlation associations (section 2.3.1) were adjusted for 

the influence of other involved variables. Two variables, i.e., off-farm income 

percentage and education level, were found to be significantly associated with the 

amount of mineral N used with co-efficient of 26 (p = 0.003) and -11 (p = 0.034), 

respectively.  

 

Table 2.4 Factors influencing farmers’ N fertilizer application 
 

Category Factor Coefficient Std.Err p Value 
P Value 
bootstr
ap 

Characteristic 

Education level of 
household head -11.20 5.23 0.034 ** 0.028 

Age of household head -0.77 0.53 0.883  0.878 
Disaster 5.01 11.18 0.654  0.690 
Household size 0.842 2.70 0.761  0.807 
Labor availability -2.01 4.42 0.650  0.671 

Economic Off-farm income (%) 25.94 16.98 0.003 *** 0.002 

Knowledge 

Farmland fertility 
evaluation 

1.69 9.21 0.862  0.697 

Technical training -16.28 15.41 0.293  0.223 
Fertilizer quality 
evaluation 8.12 14.87 0.599  0.639 

 Ways access to 
knowledge   0.522   

Infrastructure 

Distance to fields 0.28 14.87 0.981  0.971 
Distance to fertilizer 
market -1.40 1.23 0.299  0.411 

Distance to water 
resources 12.74 6.98 0.163  0.151 

Transportation method   0.671   
Road conditions -1.19 7.22 0.705  0.713 

** Significant at 5% level, ***Significant at 1% level 
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With the off-farm labour wages increasing in China since the early 2000s, 

farmers pay more attention to their off-farm work rather than to farm work, which has 

caused an increase in fertilizer use (Brauw and Giles, 2008; Wang et al., 2011a). 

Increasing labour wages are reportedly the reason for the Chinese farmers’ preference 

for high N-input management rather than the traditional N management, which 

demands higher labour input (Jia et al., 2013). Accordingly, as skills for improving 

fertilizer management require additional labour input, it is a challenge to persuade 

farmers engaged in off-farm employment to adopt them. Figure 2.2 shows the number 

of farmers employed as off-farm workers and fertilizer consumption in Hubei province 

from 1990-2010. Data indicate that fertilizer consumption increased with the number 

of farmers engaged in off-farm employment in Hubei province. Similarly, the 

regression results in the current study indicate that the share of off-farm income was 

positively associated with the rate of N applied (r = 0.1776, p = 0.004). This can be for 

two reasons. First, farmers engaged in off-farm work have more cash to buy more 

fertilizer (Waithaka, et al. 2007). Second, the households that rely more on off-farm 

income are more busy with their off-farm work, and more N fertilizer is  applied to 

their farmland as a compensation for less farm work (Waithaka et al., 2007; Han and 

Zhao, 2009). The comparison of Chinese farmers’ behaviour with respect to N fertilizer 

application from the 1940s to 2000s by Giampietro and Pastore (2001) provides a clear 

explanation of this issue from an economical perspective. They found that in the 1940s, 

Chinese farmers used about 30% of their farmland to cultivate green manure to 

produce organic fertilizer; however, farmers used the same amount of farm land to 

cultivate cash crops and bought synthetic fertilizer with the income from these crops in 

the 2000s. The farmers then had more free time to do other work and had higher 

profits. Accordingly, the increase in off-farm employment could cause farmers to 

spend less time on farm work and to be reluctant to accept proper N fertilizer 



FACTORS INFLUENCING FARMERS’ DECSIONS ON N FERTILIZER USE 

26 

 

management skills. This could be the main reason for the increase in N fertilizer 

application rates.  

Figure 2.2 Fertilizer consumption and off-farm employment in Hubei province 

1990-2010. Source: Hubei agricultural yearbook (1991-2011) 

Lack of knowledge and information on required amounts of fertilizers and on 

crop response to applied N are the main reasons for the Chinese farmers’ overuse of 

fertilizer (Huang et al., 2008). Although no statistically significant correlation was found 

between knowledge and the amount of N applied, results indicate that the surveyed 

households have a lack of knowledge on N fertilizer. In our study, only 16% of the 

interviewees knew how to judge the quality of fertilizer, while, 72% estimated their 

farmland as having normal fertility, but were not able to give any reasons for this 

assessment. Regarding the impact of technical training on the amount of N fertilizer 

used, other studies show different results. Thus, Huang et al. (2009) observed that 
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technical training can improve N-management strategies and reduce amount of N 

fertilizer applied by 20%-30%, while other researchers argue that technical training has 

only a limited impact, because most of the techniques presented by the training were 

only reluctantly adopted by the farmers (Wang et al., 2011a). The impact of technical 

training on N fertilizer use was not significant in the current study. However, the 

trained and un-trained farmers behaved differently with respect to N fertilizer use 

(Table 2.5). Trained farmers tended to apply less N fertilizer, had more ways to obtain 

knowledge and were more likely to know how to evaluate fertilizer quality. Technology 

adoption in agriculture is a complicated process, which depends on various factors and 

takes time (Jia et al., 2013). In the current study, only a small percentage (16%) of 

interviewees had received technical training in the previous 5 years; all of them 

received training only once, which is not enough to have a significant influence on 

amount of N fertilizer applied. Therefore, the lack of evidence in our analyses 

regarding the link between technical training and amount of N fertilizer used should 

not lead to the conclusion that training is in general of no impact.  
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Table 2.5 Farmers’ N fertilizer behavior based on education level and technical 

training. 

Items 
Ways to access knowledge (%) Knowledge 

on fertilizer 
quality (%) 

N rates 
(kg·N·ha-

1) Experience Discussion Books 
Internet

/TV Others Multiple 

Education level 

Without 81.61 3.45 0.00 0.00 0.00 14.94 13.79 225.02 

≤6 years 70.59 2.94 0.00 1.47 2.94 22.06 10.29 223.98 

6-9 years 56.99 8.60 1.08 3.23 3.23 26.88 19.35 210.81 
9-12 
years 

63.64 0.00 0.00 0.00 9.09 27.27 18.18 206.98 

>12 years 87.50 12.50 0.00 0.00 0.00 0.00 25.00 189.61 

Technical training 
Not 
trained 

75.43 3.88 0.43 1.29 1.29 17.67 14.22 220.96 

Trained 39.13 10.87 0.00 2.17 8.70 39.13 21.74 201.28 

 

On the contrary, the regression shows that education level was negatively 

correlated with amount of N fertilizer applied with a co-efficiency of -11 (p = 0.034). 

This is in line with the findings that N fertilizer application rates decreased from 225 kg 

N ha-1 to 190 kg N ha-1 with increasing education level (Table 2.5). The farmers with 

both the lowest and highest education level clearly rely on their experience with 

respect to the rate of N fertilizer application. We assume this is because most of the 

illiterate farmers had done farm work for a long time and were reluctant to accept new 

information due to lack of basic knowledge. In contrast, the farmers with the highest 

education are very self-confident and therefore hesitate to learn N fertilizer 

management techniques in other ways other than in discussions about their 

experience with others. Regarding the negative association between education level 

and fertilizer application rates, two reasons could explain this. Firstly, although the 

decisions of both groups of farmers on N fertilizer use rely on experience, educated 

farmers can get useful information through reading the information about fertilizer 

application on the fertilizer package and through discussions with other farmers. 
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Furthermore, education can help farmers to know how to evaluate fertilizer quality, 

which can reduce N fertilizer application rates (Yang and Sun, 2008). Our study results 

reveal that farmers with more than 6 years education have better knowledge on how 

to evaluate fertilizer quality. 

The variables referring to fertilizer transportation in our study did not show 

any statistically significant correlation to N fertilizer application rates, which differs 

from the results in other research. Previous results indicate that the distance from 

home to the fertilizer market and fields are factors that have a negative impact on N 

fertilizer application rates (Kormawa et al., 2003; Zhou et al., 2010). The insignificant 

correlation between fertilizer transportation and N fertilizer application rates in our 

study could be explained by the advanced development of transportation 

infrastructure in the study region. Firstly, the impact of fertilizer transportation could 

be weakened with improved road conditions. In the surveyed region, all fertilizer 

transportation roads are concrete roads, which are convenient for the vehicles. 

Secondly, the factors relating to fertilizer transportation did not play an important role 

in changing the amount of N fertilizer applied when cars, trucks or motor bikes were 

used to transport fertilizer. In our study, 88% of the surveyed households transported 

their fertilizer in vehicles. Thirdly, extensive development of fertilizer markets and 

services could compensate the transportation influence. For instance, 99% of the 

households lived less than 10 km from a fertilizer market, which can be easily reached 

in vehicles. Meanwhile, 40% of the surveyed household had a free home delivery 

service. 

 

2.4 Conclusions and policy implications 

An overuse of N fertilizer in the Liangzihu Lake drainage basin was observed, with 

average application rates ranging from 169 kg N ha-1 to 275 kg N ha-1. Farmland 
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productivity shows a negative relation with N fertilizer application rates (r = -0.1842, p 

= 0.003). Most of the surveyed farm households (80%) had N fertilizer application rates 

higher than 150 kg N ha-1, which is the rate needed to reach a maximum profit for 

cereal crops. Furthermore, the correlation analysis results show that N fertilizer 

application rate is negatively correlated with farmland area (r = -0.168, p = 0.006), 

which means that large-scale farmers show lower application rates than small-scale 

farmers. Therefore, it is necessary to provide technical support to small scale farmers. 

Moreover, policies encouraging ‘family farms’ with more farmland and sustainable 

intensified agriculture should be facilitated. 

The results of the regression analysis show that only the share of off-farm 

income and education level are significantly correlated with a reduced and more 

reasonable rate of applied mineral N. Off-farm income percentage is positively 

correlated with application rate, because off-farm employment could restrict farmers’ 

working time. The farmers could thus spend less time on farm work and be reluctant 

to accept the improved N fertilizer management techniques as these are more 

time-consuming. Appropriate policies targeting macro-economic adjustment should be 

implemented to increase farmers’ agricultural income percentage. This could 

encourage farmers to spend more time on farm work and raise their willingness to 

learn advanced N fertilizer management skills. Education level was negatively 

correlated to N fertilizer application rates as education changed ways to access 

knowledge, and the educated farmers were able to evaluate the quality of the N 

fertilizer. Accordingly, policy makers should offer more opportunities to the farmers to 

finish their basic education, which could help them to reduce N use. Furthermore, with 

the development of fertilizer markets and transportation infrastructure in the 

surveyed region, factors relating to fertilizer transportation did not show a significant 

correlation with N fertilizer application rates.  
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Nevertheless, farmers’ N fertilizer practice is a complex system, which cannot 

be explained adequately by a single theory or several factors (Kung and Cai, 2000). 

Although factors significantly related to N fertilizer application rates at household level 

were determined in this study, analysis on other factors such as policy factors on the 

government level and cost-benefit factors at the market level is urgently needed to 

deepen the insight on the complete picture of factors that are associated with 

excessive N use. Moreover, time series data from household surveys would be helpful 

to prove and estimate factors which are driving N fertilizer overuse.  
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3. EFFECT OF CROP AND N FERTILIZER MANAGEMENT ON GRAIN YIELD, N USE 

EFFICIENCY, AND SOIL N DYNAMICS 

3.1 Introduction 

It is estimated that nitrogen (N) losses of around 92-105 million ton per year from 

agricultural activities occur globally through denitrification, leaching and erosion (Smil, 

1999), contributing to 33% of the global reactive N losses (Boyer et al., 2004). The N 

losses from agriculture have caused severe damage to the environment (Galloway et 

al., 2008). China has to feed 22% of the world population with only 7% of the world’s 

arable land (Wang et al., 2012b). To reach and maintain high yield levels, more than 

30% of the global N fertilizers were applied in China during 2006-2007 (Heffer, 2009). 

However, due to overuse of N fertilizer, only 18-35% of the applied N was recovered by 

crops (Ju et al., 2009). This low N recovery has caused severe environmental 

degradation and pollution of water bodies with nitrate (Feng, 2007). Minimizing these 

N losses while maintaining or increasing yields are a prerequisite for the sustainable 

agricultural intensification in China. 

Central China has a subtropical monsoon climate, with abundant rainfall and 

fertile soils. Agricultural land use is very intensive with mineral fertilizer inputs of 

172-291 kg N ha-1 season-1 (Wang et al., 2013a). A considerable share of this applied N 

fertilizer is not used by crops. It may remain temporarily in the soil after crop harvest, 

where it is prone to leaching to deeper soil layers and into the groundwater, 

particularly during the bare fallow transition periods between crops. Cover crop 

plantation during transition period instead of bared fallow is one of the mostly popular 

field managements that  reduce N leaching (Salmerón et al., 2011); while, non-legume 

cover crops were proved to have risk to reduce following crop yield (Salmeron et al., 

2010), thus, leguminous cover crops are primarily chosen as cover crop species. So far, 

replacing bare fallow with a leguminous cover crop during the transition season is 
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currently not practiced in Hubei Province (Tonitto et al., 2006). Legume cover crop has 

been considered as a promising option to trap soil N in biomass, thus reducing N losses 

(Gabriel and Quemada, 2011). Furthermore, recycling the trapped N may additionally 

enhance yields and N use efficiency (NUE) (Becker et al., 2007).  

To improve NUE, N fertilizer application must be synchronized with crop-N 

requirements (Pasuquin et al., 2012). Currently, the N fertilizer application rate 

generally exceeds crop demand in China (Mueller et al., 2012), and a recent study 

suggests that they can be cut by 30 -60% without reducing crop yields (Ju et al., 2009). 

In addition, multiple split applications are required to match N supply with the crop 

demand at different growth stages (Sitthaphanit et al., 2010). The difficulties of 

consistent supply-demand synchronization has been highlighted by Dinnes et al. 

(2002a). However, split application of mineral-N fertilizer alone may not be sufficient 

to enhance NUE or to curb N losses, as results tend to be inconsistent (Pasuquin et al., 

2012). Such inconsistencies are likely to be related to neglecting differential dynamics 

of the soil-N supply, particularly during periods when fields lie fallow. Thus, replacing 

the bare fallow with an N-catching legume cover crop during the transition season 

combined with mineral-N management practices that take into account native soil -N 

supply is hypothesized to reduce input rates while improving NUE and yield. The 

objectives of this chapter comprise evaluation transition season and modified mineral 

fertilizer -N management regarding: (1) soil-N dynamics in the root zone (0-100 cm), (2) 

grain yield, and (3) agronomic and physiological N fertilizer use efficiency as well as 

crop N-recovery. 
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3.2 Materials and methods 

3.2.1 Experimental site 

A field experiment was carried out in 2012-2013 at a farmer’s field in Tuanjie village, 

located in Hubei Province, Central China (28 m asl, 30°14´ latitude and 114°23´ 

longitude). The subtropical monsoon climate in this region is characterized by an 

annual average precipitation of 1,100 mm and temperatures of 15.7 ºC -16.4 ºC, with a  

mean frost-free period of 230-300 days. The soils are ferric Acrisols (FAO classification 

system- WRB; FAO 2003). With an average farm size of only 0.23 ha per household 

(Hubei Provincial Bureau of Statistics, 2008), farmers commonly cultivate two crops 

per year. The main crops are rice and maize during the summer season, and wheat and 

rapeseed during the winter season. Mineral N fertilizers are applied at rates of 170-290 

kg N ha-1 per season, usually as urea or ammonium bicarbonate (Wang et al., 2012a). 

The mean yields are 7.5 Mg ha-1 for paddy rice, 6.0 Mg ha-1 for wheat, 2.3 Mg ha-1 for 

rapeseed and 6.5 Mg ha-1 for maize (National Bureau of Statistics of China, 2010). 

Between the summer and winter season crops there is a fallow period of 8-12 weeks 

during which precipitation is high (Figure 3.1). This potentially contributes to large soil 

N losses by nitrate leaching (Kramberger et al., 2009). 
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Figure 3.1 Average monthly precipitation, maximum and minimum monthly 
temperature in Hubei Province, Central China (1951-2008). 

3.2.2 Field preparation and experimental design 

Prior to this study, the experimental field area had been homogenized for 5 years by 

growing a single crop of summer maize followed by an 8-month fallow period. Land 

was prepared manually using a hoe. Selected initial soil properties are listed in the 

Table 3.1 
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Table 3.1 Selected initial soil properties of the experimental field area in Hubei 
Province 

Depth (cm) 0-20 20-60 60-100 100-140 140-180 
Soil texture Silt loam Silt loam Silt loam Silt loam Silt loam 
Clay (%) 16 16 16 14 14 
Silt (%) 74 70 68 68 67 
Sand (%) 10 14 16 18 19 
Bulk density (g mL-1) 1.39 1.46 1.54 1.62 1.64 
Organic matter (g 
kg-1) 6 4 4 3 3 

pH (1:2.5) 5.2 5 5 5 5.1 
Available K  (mg kg-1) 48 45 48 55 58 
Available P  (mg kg-1) 16 15 16 16 16 
Available N  (mg kg-1) 43 32 24 24 26 
CEC (c·mol kg-1) 9 8 8 9 11 
NO3

--N (mg kg-1) 0.8 1.1 1.1 1.1 1.1 
NH4

+-N (mg kg-1) 4.5 3.7 4.6 4.9 4.3 

Available P and K: modified Olsen extraction; CEC: cation exchange capacity. 

The experiment was carried out based on a completely randomized block 

with two factors (field management with and without cover crop and four N fertilizer 

application rates) and three replications (24 plots of 40 m2 each) in an orthogonal 

design. The N fertilizer application rates comprised a control without N fertilizer (N0), a 

reduced N fertilizer rate of 280 kg N ha-1 year-1 (N1), a locally recommended N fertilizer 

rate with 380 kg N ha-1 year-1 (N2) and farmers’ conventional N fertilizer rate of 470 kg 

N ha-1 year-1 (N3). The amounts of N fertilizer applied and the timing of the applications 

are listed in Table 3.2. Individual plots were ridged with plastic sheet to 40 cm below 

ground to prevent water movement between plots. Test crops included maize (Zea 

Mays. L, Denghai No. 9) and winter wheat (Triticumaestivum, E’mai No. 27) grown in 

rotation. Cowpea (VignaunguiculataL.Walp, Zhijiang’aiman No. 1) was cultivated as a 

cover crop during the transition period between the harvests of maize to the seeding 

of wheat.  
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Table 3.2 Mineral N fertilizer application rates on summer and winter crops in the field 
experiment in Hubei province (2012-2013) (kg N ha-1) 

Treatmen
t 

Total 
 

 Crop 
Maize  Wheat 

Sowing Tillering Jointing  Sowing Anthesis Shooting 

CN0/BN0 0 0 0 0  0 0 0 
CN1/BN1 290 48 64 48  39 52 39 
CN2/BN2 380 80 120 0  72 108 0 
CN3/BN3 470 100 150 0  88 132 0 

CN0, CN1, CN2 and CN3 refer to legume cover crop treatment receiving no N fertilizer, 

reduced, recommended and farmers’ N fertilizer rates, respectively; BN0, BN1, BN2 and 

BN3 refer to bare fallow treatment receiving N fertilizer treatments as mentioned 

above. 

Basal fertilizers were applied at 180 kg P ha-1 as calcium superphosphate (95 

kg in the maize season and the rest in the wheat season) and 140 kg K ha-1 as 

potassium chloride (75 kg in the maize season and the rest in the wheat season) 

incorporated prior to sowing at a depth of 5-8 cm. Pre-emergence herbicides and hand 

hoeing were used for weed control during the copping period when necessary. All 

plots were managed by farmers and controlled by the researcher. First-year maize 

(2012) was sown on 17 April 2012 at 50 cm × 50 cm spacing and harvested on 10 

August 2012. The transition period started from 11 August 2012 and ended on 20 

October 2012. In regard to cover crop treatments, cowpea was sown at 40 cm × 50 cm 

spacing while others were left as the weedy fallow treatments. No fertilizer was 

applied in the transition period. Winter wheat was cultivated from 21 October 2012 to 

19 May 2013 at a density of 2.4 million seeds ha-1 with row spacing of 20 cm. 

Second-year maize (2013) was sown in a seed bed, transplanted to the experimental 

field on 20 May 2013, and harvested on 25 August 2013. The adopted practices during 

the second year maize (2013) were same as in the first year (2012). 
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3.2.3 Sampling and chemical analysis 

Aboveground biomass, grain yield and crop-N uptake were based on three randomly 

selected areas of 1 m2 each, inside each plot. Plant samples were oven dried at 70 °C 

until reaching constant weight after an initial heating at 105 °C for 30 minutes. The dry 

matter of the aboveground biomass was separated into grain and straw, and ground to 

pass a 0.25-mm sieve for further N analysis. Samples were digested with H2SO4–H2O2 

and determined in line with the Kjeldahl method (Bremner, 1960).The amount of N 

fixed by the legume cover crops was not determined and was assumed to be 40 kg N 

ha-1 (Jemo et al., 2006). The N fixed by the legume cover crops was regarded as 

additional N input only in the wheat season.  

Prior to the field experiment, soil samples were collected from 180 cm depth 

(0-20 cm, 20-60 cm, 60-100 cm, 100-140 cm and 140-180 cm) for initial soil analyses 

(Table 3.1). The soil texture was analyzed by laser particle analyzer (Mastersizer 2000, 

UK); soil organic matter was oxidized to CO2 by K2Cr2O7 – H2SO4 and using oil-bath 

heating at 180°C to determine organic matter content; soil pH was determined in a 

water and soil solution of 2.5:1; available N was determined by dissolving soil samples 

in 1.0 M NaOH and analyzed with the titrimetric method (Zhang and Gong, 2012); 

available P was analyzed with the Olsen-P method based on extraction of air-dry soil 

with 0.5 M NaHCO3 (pH 8.5) (Olsen et al., 1954); available K was analyzed by extracting 

samples with 1.0 M NH4OAc and determined by a flame photometer (Van Reeuwijk, 

2002); cation exchange capacity (CEC) was determined in 0.025 M (NH4)2C2O4 -0.025 M 

NH4Cl, and 2 drops phenolphthalein indicator added to determine the 0.05 M NaOH 

consumption. 

The soil NO3
--N and NH4

+-N contents in the root zone (0-100 cm) at 20 cm 

depth intervals were sampled at bi-weekly intervals starting from the sowing of the 

cover crop. After N fertilizer application, samples were collected every week for a 
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period of one month. Four soil cores were taken from each plot and mixed by depth to 

provide composite soil samples representing different depths of each plot. All samples 

were placed in a closed plastic bag, immediately frozen and transported to the 

laboratory. Fresh soil samples weighing 10 g were extracted with 100 ml 1 M KCl after 

shaking for 2 hours at 100 r.p.m. The NO3
--N and NH4

+-N concentration in the soil 

extracts were determined colorimetrically. Finally, the concentration values (mg N kg-1 

soil) were translated into amounts (kg N ha-1) considering the soil bulk density. 

All samples were divided for triplicate analysis before digestion. To ensure 

the analytical quality, standard solutions with gradient content were examined at the 

same time with samples for standard curves, where the R2 of standard curves should 

be higher than 0.999.  

 

3.2.4 Data analysis 

Statistical analyses and graphic presentations were made with STATA 12.2 and 

Microsoft Excel. Mixed modeling for nest analysis of variance (ANOVA) was performed 

to statistically determine the differences in soil NO3
--N and NH4

+-N content under 

different treatments at fixed layers and time. The Duncan Multiple Range test at P ≤ 

5% level was used to determine the significance levels.  

Three different indexes were used to explore the efficiency of N fertilizer use, 

namely: agronomic N fertilizer use efficiency (aNUE, kg additional grain kg-1 N applied), 

physiological nitrogen efficiency (pNUE, kg N uptake kg-1 N applied), and apparent N 

fertilizer crop recovery (RE, in percentage), and calculated as follows: 

N CK

N B

Y -Y
aNUE = 

F +F
                                                                  (3.1) 

N CK

N CK

Y -Y
pNUE=

U -U
                                                                 (3.2) 
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N CK

N B

U -U
RE=

F +F
×100                                                       (3.3) 

where YN is the grain yield with N fertilizer application (kg ha-1); YCK is the 

grain yield of the control group without N fertilizer application (kg ha-1); FN is the 

amount of N fertilizer applied (kg N ha-1); FB is the amount of N fixed by the legume 

cover crop (kg N ha-1); UN is the crop-N uptake in aboveground biomass at maturity 

with N fertilizer application (kg N ha-1); UCK is the crop-N uptake of the control 

treatment without N fertilizer (kg N ha-1). 

 

3.3 Results 

3.3.1 Grain yield and aboveground biomass 

Aboveground biomass and grain yield differed between treatments (Table 3.3). In the 

absence of mineral N fertilizer application, first-year maize (2012) yield was about 

0.8-1.3 Mg ha-1 and thus 27%-57% lower than with mineral N amendments. The 

legume cover crop increased the yield of the subsequent wheat crop by 17% and that 

of the second-year maize by 13% in comparison to the no-N-input control, while no 

significant effects were observed when the recommended or farmers’ N fertilizer rates 

were applied. The reduced and the recommended N fertilizer rates resulted in similar 

yields, while those receiving farmers’ N management showed highest grain yield in the 

first season (2012) maize crop. 
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Table 3.3 Yield and aboveground biomass (Mgha-1) of main season crops with different 

N application rate and transition season strategies in Hubei Province 

(2012-2013) 

Treatment 
Maize(2012)  Wheat (2012)  Maize(2013) 

Grain Biomass  Grain Biomass  Grain Biomass 
CN0 5.98c 14.37c  4.10d 6.62c  3.95e 11.58d 
BN0 5.90c 14.36c  3.48e 6.66c  3.51f 11.39d 
CN1 6.88b 18.32b  6.60a 11.33a  6.96ac 17.21bc 
BN1 6.88b 18.39b  6.41b 11.84a  6.84b 17.54bc 
CN2 6.95b 18.82a  6.38b 11.62a  6.93b 17.67ab 
BN2 6.85b 18.87a  6.42b 11.43a  6.92ab 17.94a 
CN3 7.28a 18.65a  5.80c 9.71b  6.75cd 17.44bc 
BN3 7.26a 18.86a  5.83c 9.98b  6.71d 17.28c 

Within the column, values followed by different letter are significantly different at p < 

0.05 with Duncan test. CN0, CN1, CN2 and CN3refer to legume cover crop treatment 

receiving no N fertilizer, reduced, recommended and farmers’ N fertilizer rates, 

respectively; BN0, BN1, BN2 and BN3refer to bare fallow treatment receiving N fertilizer 

treatments as mentioned above. 

 

3.3.2 Agronomic indices of fertilizer use efficiency 

The legume cover crop decreased the physiological N use efficiency (pNUE) at all 

studied N fertilizer rates in wheat and in the second-year maize (Table 3.4). In wheat, a 

higher N fertilizer rate increased pNUE, an effect that was not observed in maize, 

irrespective of the season. The agronomic efficiency (aNUE) of wheat and the 

second-year maize decreased with increasing N application rates, while aNUE was 

similar in the first-year maize crop (2012) among all treatments. The legume cover 

crop reduced aNUE compared to the bare fallow treatments. No differences between 

bare fallow and cover crop treatments were observed in the second-year maize season 

(2013) with the farmers’ N fertilizer application rate.  
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The legume cover crop did not significantly influence the apparent N fertilizer 

crop recovery (RE) in any of the three crop seasons (Table 3.4). However, RE decreased 

with N-application rates in both the cover crop and the bare fallow treatments. Thus, 

in contrast to the reduced N application rate, the cover crop did not affect the use 

efficiency of applied N. 

 

Table 3.4 Agronomic indicators of N fertilizer use efficiency with different N application 
rate and transition season strategies in Hubei Province (2012-2013) 

Treat
ment 

pNUE (kg kg-1)  aNUE (kg kg-1)  RE (%) 

Maize 
(2012) 

Wheat 
(2012) 

Maize 
(2013) 

 Maize 
(2012) 

Wheat 
(2012) 

Maize 
(2013) 

 Maize 
(2012) 

Wheat 
(2012) 

Maize 
(2013) 

CN1 10.8a 45.1e 32.3b  5.6ab 13.2b 18.3b  52ab 28a 58a 
BN1 11.3a 58.6b 34.5a  6.1a 15.4a 20.7a  54a 27a 60a 
CN2 10.8a 50.6c 30.6b  4.8b 10.4d 14.9c  45de 19b 49b 
BN2 11.3a 64.8a 35.4a  4.8b 13.4b 17.0b  42e 19b 48b 
CN3 11.2a 45.5d 29.1b  5.2b 6.5c 11.2d  47cd 13c 39c 
BN3 11.0a 67.6a 36.5a  5.4ab 9.4d 12.8d  47bc 12c 35c 

Within the column, values followed by different letter are significantly different at p < 

0.05 with Duncan test. CN0, CN1, CN2 and CN3 refer to legume cover crop treatment 

receiving no N fertilizer, reduced, recommended and farmers’ N fertilizer rates, 

respectively; BN0, BN1, BN2 and BN3 refer to bare fallow treatment receiving N fertilizer 

treatments as mentioned above. pNUE is physiological nitrogen use efficiency; aNUE is 

agronomical nitrogen use efficiency; RE is apparent recovery nitrogen efficiency 

percentage.  

 

3.3.3 Mineral soil N dynamics 

The NO3
- and NH4

+ are the main inorganic forms of N in the soil. In this study, the 

dynamics of NO3
--N and NH4

+-N were determined in different soil layers at 15 -day 

intervals after the harvest of the first-year maize (2012). In general, the average 
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content of both NO3
--N and NH4

+-N in the soil profiles tended to increase with N 

application rates (Table 3.5), whereby the content in NO3
--N largely exceeded that of 

NH4
+-N (Figure 3.2). Legume cover crop and reduced N application treatments did not 

have a significant effect on residual soil NH4
+-N in the root zone (0-100 cm). 

Furthermore, cover crops did not significant influence the soil mineral N content in the 

root zone (0-100 cm) during the transition season, irrespective of the mineral N rate 

applied to the preceding cereal crop (Table 3.5). In contrast, cover cropping reduced 

soil NO3
- content significantly, except in the control plots without N fertilizer during the 

wheat and the second-year maize seasons.  

 

Table 3.5 Average soil NO3
--N and NH4

+-N content (kg ha-1) during transition, wheat 

and maize seasons as affected by N application and transition season 

management in Hubei Province (2012-2013)  

Treatments 
 

Transition season  Wheat season  Maize season 
NO3

- NH4
+  NO3

- NH4
+  NO3

- NH4
+ 

CN0 12.9e 4.5d  6.1f 9.6cd  13.2f 9.4ab 
BN0 14.1e 3.9d  8.1ef 9.1d  14.3f 8.1bc 
CN1 17.7de 9.9bc  9.2e 11.0bc  24.2e 9.7ab 
BN1 22.1cd 7.1cd  14.6d 10.7cd  28.1de 9.9ab 
CN2 25.9bc 10.2bc  20.2c 10.6cd  32.9cd 10.8a 
BN2 29.8ab 8.7bc  26.2b 12.8b  37.0c 8.0bc 
CN3 29.7ab 11.5b  19.4c 14.9a  46.9b 7.2c 
BN3 33.1a 16.48a  31.5a 14.9a  54.6a 10.0ab 

Values in a column followed by the same letter do not differ significantly according to 

the performed mixed modeling ANNOVA test p=0.05. CN0, CN1, CN2 and CN3 refer to 

legume cover crop treatment receiving no N fertilizer, reduced, recommended and 

farmers’ N fertilizer rates, respectively; BN0, BN1, BN2 and BN3 refer to bare fallow 

treatment receiving N fertilizer treatments as mentioned above. 

The dynamics of NO3
--N in the root zone during the transition seasons 

revealed a risk of N leaching. At farmers’ N fertilizer application rates, we observed the 
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highest soil nitrate content in the root zone while much lower soil N was observed in 

the untreated control plots. The combination of a reduced N fertilizer rate with a cover 

crop during the transition season resulted in relatively low soil nitrate contents during 

the transition season after harvesting the maize crop (Figure 3.2). Compared to the 

high farmers’ N fertilizer rate, the cover crop combined with reduced N fertilizer rate 

was able to reduce the peak nitrate content by 25-88% in the transition season, 

62-69% in the wheat cropping season and 39-45% in the maize cropping season.  
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Figure 3.2 Effect of reduced N fertilizer rate and legume cover crop on mineral soil N 

(ammonium and nitrate) in root zone (0-100 cm) in Hubei Province (2012-2013). CN1 

means legume cover crop receiving reduced N fertilizer rates. BN0 and BN3 mean bare 

fallow receiving no N fertilizer and farmers’ N fertilizer rates, respectively 

In contrast, the treatments had less influence on soil NH4
+-N, irrespective of 

the cropping season (Figure 3.2). All treatments showed similar patterns with peak soil 

NH4
+-N values at the beginning of the wheat season and lowest values in the maize 

season and no significant differences between treatments. 

3.4 Discussion 

3.4.1 Effects of management options on yield and N-use efficiency. 

The results showed that cover cropping increased grain yields when treated with no-N 

or reduced-N fertilizers. However, increased grain yield was not observed in plots 

treated with the locally recommended or the even higher farmers’ N fertilizer rate. 

Reported effects of cover cropping on grain yield in literature have been 

inconsistent. Odhiambo (2011) observed increased corn yields after legume cover 

crops in smallholder farms. Whereas, Kramberger et al. (2009) reported decreased 

yields in some cases. Meanwhile, Gabriel and Quemada (2011) reported that corn yield 

did not respond to legume cover cropping. The main cause for the different 

observations is that legume cover crops will only be able to improve grain yield if the 

amount of N fertilizer cannot satisfy the crop requirements. This is not the case in the 

present study, whereby N fertilizer application rate exceeded the crop requirements 

and grain yield did not respond to legume cover treatments. Miguez and Bollero (2005) 

concluded, based on the comparison of the results of 34 studies using a meta-analytic 

approach, that the yield, which increased due to legume cover cropping, could still be 

decreased through higher N application rates (Miguez and Bollero, 2005). Accordingly, 

a legume cover crop instead of bare fallowing could increase the grain yield if the 
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N-application rate does not exceed the crop demand. Otherwise, it might not influence 

the subsequent crop yield.  

The control treatment without N fertilizer had significantly lower grain yield 

and aboveground biomass compared to the other N fertilizer rates. This indicates that 

additional N input is necessary to maintain sustainable yields (Larson and Frisvold, 

1996). The grain yield of maize from the first-year (2012) to second-year (2013) 

declined considerably because of N deficiency in the soil resulting from continuous no 

-N fertilizer treatment (Nyombi et al., 2010). The reduced-N and recommended N 

fertilizer treatments had statistically similar grain yields and aboveground biomass 

throughout the three crop seasons.  

This study also showed that the farmers’ management of N fertilizer usage 

could significantly increase the crop yield at the beginning of the season. However, it 

can reduce the yield of the following season if crops are continuously treated with a 

high amount of N fertilizer. The sharp change in yield is due to the inability of existing 

N content in the soil to satisfy crop demand; the crops treated with high-N fertilizer 

absorbed more N, resulting thus in higher grain yields. However, after one maize 

season, the soil was rich in N as a result of residual N. Continuous and high N fertilizer 

application could result in excessive N relative to crop demand. This could lead to 

mutual shading and higher crop competition, which leads to lower yield (Qiao et al., 

2013).  

Similarly, Meyer-Aurich et al. (2010) showed that a quadratic response 

function fits the relationship between crop yield response and N fertilizer application 

rate. The results of our study from three cropping seasons did not reveal an optimal N 

rate that maximizes grain yields. Other factors, especially soil N content, may play a 

more important role (Islam and Garcia, 2012). The similar grain yield and aboveground 
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biomass observed under different N treatments in this study could be explained by 

lower N-use efficiency at increasing N-application rates. 

Importantly, the legume cover crop exhibited significantly decreased the 

physiological nitrogen use efficiency (pNUE) at all tested N fertilizer rates, which is in 

line with previous research (Cassman et al., 2002). Compared to bare fallow fields, the 

legume cover crop without N fertilizer application improved the yield of wheat and 

maize by 15% and 11% respectively. This showed that legume cover crop systems rely 

less on additional mineral N fertilizer input than bare fallow systems, which lowers 

pNUE (Cassman et al., 1996). 

The agronomic N fertilizer use efficiency (aNUE) decreased significantly with 

increased mineral N fertilizer rate in the wheat and second-year maize (2013) crops, 

but not in the first-year maize (2012) season. After 8 months of fallow, the 

experimental field was deficient in N at the beginning of the experiment. Yields 

increased with higher N fertilizer rates, and therefore no significant N fertilizer effects 

on aNUE were observed in the first maize (2012) season. In the wheat and second-year 

maize crops, the N losses increased with higher N input. Therefore, when N supply 

exceeds crop demand, additional N input leads to lower aNUE (Di and Cameron, 2002). 

The legume cover crop decreased the aNUE at all tested fertilizer rates. This may be 

due to excessive N supply relative to crop demand.  

The legume cover crop did not influence the apparent N fertilizer crop 

recovery (RE) in any of N fertilizer treatments. Cover crops can capture N in the soil, 

but the decomposition of cover crop residues can also increase N immobilization. 

Furthermore, if the amount of N released through the decomposition of the cover 

crops exceeds the demand by the following crop, the biomass-N captured by cover 

crops can be leached into the subsoil and ground water (Arlauskiene and Maiksteniene, 

2012). To improve RE, decomposition of cover crop residue and N demand of main 
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crop should therefore be considered when implementing a legume cover crop 

management system (Justes et al., 2009). Nitrogen losses may explain the decline of RE 

at increasing N fertilizer rates observed in this study (Zhang et al., 2012).  

 

3.4.2 Effects of management options on soil N dynamics 

High mineral N content in soil presents the risk of N loss through runoff and leaching 

(Tian et al., 2007). Two-split mineral N fertilizer treatments had higher soil NO3
- residue 

than three-split treatments after the harvest of the first-year maize (2012), most was 

lost within 30 days. Therefore, the period of time shortly after maize harvest is critical 

for protecting soil NO3
--N from leaching. However, since the legume cover crops were 

not well established in the short term, this treatment could not reduce the soil mineral 

N content in this critical period (Figure 3.2). Sowing cover crops before harvesting the 

main crops should therefore be tested in the future (Arlauskiene and Maiksteniene, 

2012). Compared to farmers’ N fertilizer rates with bare fallow treatment, reduced 

three-split mineral N fertilizer and legume cover crop management options can 

significantly decrease the soil NO3
--N residue after the main crop harvest (Figure 3.2) 

because of several factors. Firstly, the cover crop traps the soil mineral N in the 

biomass, which reduces soil NO3
--N content. Secondly, bare fallow plots have higher 

nitrification activity than cover crop, which transforms more soil organic-N to NO3
--N 

(Janušauskaitė et al., 2013). Thirdly, three-split N fertilizer application could well meet 

the crop requirements, thus less NO3
--N remains as residue in the soil layers after crop 

harvesting. However, because of high nitrification rate in arid land cropping systems 

and ready transformation of NH4
+-N into NO3

--N through nitrification, neither cover 

crop treatments nor different N application rates changed the NH4
+ content 

significantly.  
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Positive correlations between residual N after the harvest of the main crops 

and N application rates were observed independently of the legume cover crop (Figure 

3.3). Soil NO3
- content increased significantly with an increase in the N application rate, 

which is in line with other research (Zheng.Y.M et al., 2007). Therefore, three-split 

application and reduced-N fertilizer management combined with legume cover 

cropping is an effective way to reduce residual soil N after harvesting the main crops, 

which in turn reduces the risk of N losses (Pasuquin et al., 2012). 

 
Figure 3.3 Effect of N fertilizer application rate on soil nitrate residual in the root zone 

(0-100 cm) after harvest of main crops in Hubei Province, Central China 
(2012-2013). 

 

3.5 Conclusions 

Managing crops using three-split dosage and reduced-N fertilizers in combination with 

legume cover cropping preserved yield and aboveground biomass, which implies 

higher aNUE and RE than current conventional practice. Legume cover crop treatment, 

reduced-N fertilizer and split application rates decreased soil NO3
--N content in the 

root zone (0-100 cm) during the cropping period. Large amount of soil NO3
--N were 

lost within 30 days after the maize harvest, as the legume cover crop does not prevent 
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such loss if it is sown after the harvest of the main crop. In all three cropping seasons, 

NO3
--N residue in soil after the harvest of the main crop had positive correlation with N 

application rates.  
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4. EFFECTS OF CROP AND N FERTILIZER MANAGEMENT ON NITRATE LEACHING  

4.1 Introduction 

Overuse of N fertilizer considerably enhances N leaching, which in turn causes severe 

groundwater pollution, impacting the water quality and endangering human health. 

Most of the leached NO3
--N originates from mineralized soil organic matter beyond the 

growing season, due to soil moisture increase in autumn and winter (Di and Cameron, 

2002; Kramberger et al., 2009). Leaving agricultural land fallow during the transition 

season between two crops increases the risk of NO3
--N leaching (Di and Cameron, 

2002). Therefore, replacing the bare fallow land surface with a cover crop during the 

transition season is an option to reduce NO3
--N leaching (Vos and van der Putten, 

2004). Becker et al. (2007) reported that growing a short-cycle cover crop (< 90 days) 

instead of leaving the land bare and reusing the crop residues may reduce N losses due 

to leaching and denitrification. Moreover, growing N-fixation crops during the fallow 

period could absorb additional N from the atmosphere into the cropping system and 

reduce the chemical N fertilizer demand (Pande and Becker, 2003). Further benefits of 

replacing bare fallow by cover crops such as improved N-use efficiency (Dinnes et al., 

2002b), reduced NO3
--N leaching (Vos and van der Putten, 2004), enhanced soil 

aggregate stability and water retention capacity (Quemada and Cabrera, 2002; Gabriel 

and Quemada, 2011), and weed suppression (Abawi and Widmer, 2000) were also 

reported. However, the benefits of a legume crop will be weakened with increasing N 

fertilizer application rates (Gabriel and Quemada, 2011). The benefit of reducing N loss 

becomes uncertain at high mineral N fertilizer application rates (Cassman et al., 2002), 

especially when cover crop residuals are used as green manure for the following crops 

(Tonitto et al., 2006). Therefore, to maximize the benefit of legume cover crops, 

research should focus on how to integrate cover crop management into strategies of 

mineral N fertilizer management in terms of application time and amount (Miguez and 
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Bollero, 2005). Nevertheless, only little information is available on the quantitative 

analysis of N leaching influenced by cover crops in combination with N fertilizer 

managements.  

The hypothesis of this study is that reduced three-split N fertilizer strategy 

and avoiding bare fallow have the potential to reduce N loss through leaching. The 

specific objectives were to determine the effect of the above-mentioned 

managements on: (1) water balance, (2) NO3
--N and NH4

+-N concentration in the soil 

solution, and (3) amount of NO3
--N and NH4

+-N lost through leaching. 

 

4.2 Materials and methods 

4.2.1 Experimental design and field management 

The conditions at the experimental site and the basic design of the experimental field 

managements are presented in Chapter 3. Two porous ceramic suction cups and soil 

water content sensors (Spectrum, SM-100, USA) were installed in each plot at 1.0 m 

and 1.8 m depth, respectively. Bentonite was used to avoid preferential flow after 

suction cup initialization. This was carried out following the method published by Lord 

and Shepherd (1993).  

 

4.2.2 Sampling and field measurement 

Meteorological data  

Meteorological data were collected at 0.5 km distance from the field by a weather 

station which was provided by Spectrum Company (Watchdog 2700 ET, USA). The 

following data were collected in 30-min intervals: maximum, average and minimum air 

temperature, relative humidity, precipitation, solar radiation, dew point, wind 

direction and wind speed. The reference evapotranspiration (ETo) required for 

AquaCrop (version 4.0) model input was estimated using the software of ETo calculator 
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(version 3.1) developed by the Food and Agriculture Organization (FAO) and based on 

the Penman-Monteith approach (Gabriel et al., 2012).  

 

Surface runoff and soil solution sampling 

After each rainfall event, the volume of water accumulated in the runoff collection 

tanks was determined using a volume-depth relationship. Then, 300 ml of the water 

was sampled in a pre-cleaned bottle, stored in a fridge below 4°C, and transported to 

the laboratory for NO3
--N and NH4

+-N concentration analysis. However, runoff N was 

negligible during the study period (<1% of the applied N ) and is not discussed further. 

Soil solution samples were taken in porous ceramic suction cups in 1.0 and 1.8 m 

depth. Samples were obtained by applying a suction of 70 kPa using a portable vacuum 

pump. To determine the mineral N concentration in the soil solution, three samples 

taken from the cup at a sampling day and mixed. The samples were filled in 

pre-cleaned bottles in 15-day intervals and stored in the fridge at a temperature below 

4°C, and transported to the laboratory for NO3
--N and NH4

+-N concentration analysis 

within 24 hours.  

The samples were passed through an anion-exchange resin for NO3
--N 

separation and concentration, and then measured at 220 nm and 275 nm using a UV 

spectrophotometer (UV2100, Ruili, Beijing). The samples for NH4
+-N concentration 

analysis were pre-treated by adding ZnSO4·7H2O (100 g L-1) and NaOH (1 mol L-1) and 

filtered, and finally determined by the Nessler reagent spectrophotometry method 

using a spectrophotometer with 410 nm (Krug et al., 1979). 

 

Soil water content measurement 

Soil water content (in volume %) at 1 and 1.8 m depth were measured by soil water 

content sensors, which were calibrated before use. Calibration curves with the relation 
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between soil volumetric water content and mV output from the probes were 

established in the laboratory following the method provided by the Spectrum 

Company using the soil from the experiment field. To ensure the accuracy of the soil 

water content sensor, gravimetric soil water content at 1 m depth was measured when 

the soil solution samples were taken.  

 

4.2.3 Model calibration and evaluation 

The amount of water percolated in 1.0 m and 1.8 m depth was simulated by the 

AquaCrop model. Aboveground biomass at different crop stages was used for model 

calibration. However, only one-season data were available with respect to transition 

and wheat period; the calibrated model was evaluated using the soil water content 

data of the same period (Ramanarayanan et al., 1998). The parameters used for the 

AquaCrop model input are listed in Table 4.1. These parameters were taken from four 

sources: measurements in the field (M), referring results from similar research (R), 

calibrated in this study (C), and default values from the model (D). The agreement 

between the measured and simulated soil water content values was used for model 

performance evaluation. In particular, the following criteria were applied:  

             RMSE (root mean square error) = 2
i i

1
(S -M )

nå                           (4.1) 
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where Si and Mi indicate the simulated and measured values, respectively; n indicates 

the number of observations; M  indicates the average values of measured data.  
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According to the results reported by Jamieson et al. (1991), the model 

performance can be considered excellent in case of a RRMSE < 10%, good if 10% ≤ 

RRMSE < 20%, acceptable if 20% ≤ RRMSE < 30%, and poor if RRMSE > 30%. d varies 

between 0 and 1, with 1 indicating a perfect fit of simulated and measured values, 

while 0 means no agreement between simulated and measured values (Wang et al., 

2013b).  

 

Table 4.1 Values assigned to specific model parameters to simulate the yield responses 
of different crops in Hubei Province (2012-2013) 

Parameters  
Crops 

Source 
Maize (2012) Wheat Maize (2013) 

Base temperature 8 5 10 R 

Cut-off 
temperature 

30 35 30 R 

Crop coefficient for 
transpiration at 
CC=100% 

1.06 0.18 0.429 D 

Water productivity 33 17 33 D 

Leaf growth 
threshold p-upper 0.14 0.25 0.14 D 

Leaf growth 
threshold p-lower 

0.72 0.65 0.72 D 

Stomata 
conductance 
threshold p-upper 

0.69 0.5 0.69 D 

Stomata stress 
coefficient curve 
shape 

3 3 3 D 

Senescence stress 
coefficient p-upper 

0.69 0.85 0.69 D 

Senescence stress 
coefficient curve 
shape 

3 3 3 D 

Reference harvest 
index 

47% 50% 47% D 
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GDD from 
sowing/transplanti
ng to 90% 
emergence 

1741 88 86 M 

GDD from sowing 
to senescence 

1741 819 1355 M 

GDD for sowing to 
maturity 

2009 1481 1682 M 

Minimum rooting 
depth (m) 

2 2 2 R 

Fertility stress 

CN0 (Relative biomass 
= 76%) 

BN0 (Relative biomass 
= 76%) 

Fertilized plots without 
fertility stress 

CN0 (Relative 
biomass = 57%) 

BN0 (Relative 
biomass = 57%) 
Fertilized plots 

without fertility 
stress 

CN0 (Relative 
biomass = 65%) 

BN0 (Relative 
biomass = 63%) 
Fertilized plots 

without fertility 
stress 

M 

Canopy cover per 
seedling at 90% 
emergence/transpl
anting (CC0) 

0.3 1.62-1.96 3.4 C 

Canopy growth 
coefficient (CGC) 13.2% 15.1%-17.3% 5.5% C 

Maximum canopy 
cover (CCx) 

50% 17%-28% 45%-57% C 

Mulches (Percent 
of soil surface 
covered) 

0 
Cover crop= 50%; 
Bared fallow = 0% 

0 M 

CN0, CN1, CN2 and CN3 mean legume cover crop treatment receiving none, reduced, 

recommended and farmers’ N fertilizer rates, respectively. BN0, BN1, BN2 and BN3 

means bare fallow treatment receiving none, reduced, recommended and farmers’ N 

fertilizer rates, respectively. R means values taken from similar researches. M means 

values were measured in the field. C means values were calibrated parameter in 

current study. D means values are default values from the model.  

 

4.2.4 Statistical analysis 

The amount of mineral N leaching through the soil profile was calculated by 

multiplying the N concentration in the soil solution with the volume of percolated 



EFFECTS OF CROP AND N FERTILIZER MANAGEMENTS ON NITRATE LEACHING 

57 

 

water. To represent the actual N leaching, the trapezoidal rule was used as suggested 

by Lord and Shepherd (1993). Accordingly, the total N leached during two sampling 

intervals (kg ha-1) was calculated as:  

1 20.5( )
N leached = 

100
c c v+

                         (4.4) 

where 1c and 2c  are the N content in successive pairs of sampling occasions (mg 

NO3
--N L-1), v is the amount of percolation between two sampling occasions (mm).  

 

4.3 Results 

4.3.1 Model calibration and evaluation 

Calibration 

The AquaCrop model calibration was based on the assumption that fertilizer stress did 

not occur at the N-fertilized plots, whereas fertilizer stress was taken into account at 

the control plots (without N fertilizer). With respect to consideration of the share of 

the surface covered in the model, the following differences between bare fallow and 

cover treatments in the wheat season where made: (i) when the residues of the cover 

crop were chopped and left in the field for winter wheat, the parameter for the soil 

surface covered was set at 50% mulch cover; (ii) the parameter in the bare fallow 

treatments was set 0%. The calibration procedure adjusted the canopy cover until the 

percentage error between observed and simulated aboveground biomass at different 

stages was less than 5%. The parameters set after calibration are presented in Table 

4.1. The calibrated model produced simulated values of the aboveground biomass 

which were in good agreement with the measured values at different stages (Figure 

4.1). 
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Figure 4.1 Simulated and measured aboveground biomass (Mg ha-1) in three cropping seasons (2012-2013). CN0, CN1, CN2 and CN3 
means legume cover crop treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, respectively. BN0, BN1, BN2 
and BN3 denotes bare fallow treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, respectively 
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Evaluation 

Model evaluation is necessary to determine the accuracy of simulated values 

compared to measured values. The good agreement between measured and 

simulated soil water content is reflected by relative root mean square error (RRMSE) 

and d-indexes (Table 4.2). Although AquaCrop does not have a function for 

simulating the living mulch, the volumetric soil water content simulated by the 

model during cowpea cultivation is acceptable (RMSE = 0.82-1.52%， RRMSE = 

1.13-2.94 % and d = 0.32-0.73 in 1 m depth; RMSE = 0.28-0.70%， RRMSE = 

0.96-2.41 % and d = 0.28-0.49 in 1.8 m depth). The results achieved by assessment of 

the statistical model performance prove that the calibrated Aquacrop model can be 

used to simulate the water balance under the conditions of the study site. 
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 Table 4.2 Results of statistical model evaluation based on soil volumetric data simulated by Aquacrop and measured in the field in 
Hubei Province (2012-2013) 

Depth 
(m) 

Treatment 
First-year maize (2012) 

 
Transition season 

 

Wheat 
 

 
Second-year maize (2013) 

RMSE 
RRMSE 
(%) 

d RMSE 
RRMSE 
(%) 

d RMSE 
RRMSE 
(%) 

d RMSE 
RRMSE 
(%) 

d 

1 

CN0 0.83 2.79 0.72  0.87 2.94 0.52  1.52 5.08 0.47  0.54 1.87 0.31 
BN0 1.34 4.52 0.73  0.45 1.54 0.73  1.32 4.43 0.51  0.64 2.23 0.34 
CN1 0.62 2.10 0.79  0.52 1.77 0.34  1.00 3.41 0.46  0.98 3.75 0.99 
BN1 0.70 2.38 0.82  0.58 2.01 0.40  0.83 2.83 0.55  0.87 3.38 0.99 
CN2 1.48 5.04 0.70  0.33 1.13 0.43  0.77 2.65 0.47  1.15 4.49 0.99 
BN2 0.53 1.77 0.86  0.52 1.76 0.32  1.04 3.52 0.54  1.06 4.20 0.99 
CN3 0.90 3.02 0.71  0.44 1.52 0.43  0.82 2.79 0.57  0.82 3.29 0.99 
BN3 1.22 3.97 0.75  0.59 2.06 0.47  0.70 2.39 0.58  1.08 4.24 0.99 

1.8 
 

CN0 0.82 2.74 0.70  0.44 1.49 0.45  1.02 3.41 0.51  0.59 2.02 0.33 
BN0 0.82 2.73 0.67  0.58 1.99 0.28  0.96 3.20 0.55  0.44 1.52 0.34 
CN1 1.02 3.38 0.72  0.53 1.82 0.46  1.14 3.81 0.48  2.33 8.26 0.40 
BN1 0.94 3.14 0.68  0.40 1.37 0.17  1.85 6.15 0.43  0.64 2.22 0.46 
CN2 0.94 3.16 0.66  0.28 0.96 0.41  1.38 4.60 0.45  0.34 1.16 0.45 
BN2 0.84 2.77 0.70  0.49 1.68 0.44  0.77 2.61 0.47  0.30 1.03 0.32 
CN3 0.80 2.70 0.64  0.70 2.41 0.38  1.27 4.25 0.49  0.68 2.30 0.46 
BN3 1.31 4.53 0.63  0.48 1.66 0.49  1.17 3.93 0.50  0.68 2.30 0.41 

CN0, CN1, CN2 and CN3 means legume cover crop treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, 
respectively. BN0, BN1, BN2 and BN3denotes bare fallow treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, 
respectively. RMSE is root mean square error; RRMSE is coefficient of variation of the RMSE; d is index of agreement. 
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4.3.2 Estimated water balance in different seasons 

The magnitude of the soil water balance components is similar between different field 

treatments (Table 4.3). The amount of precipitation varied greatly between the 

seasons in the two years: 709 mm rainfall occurred in the first-year maize (2012) 

season, whereas only 101 mm were measured in the second year-maize (2013) season, 

which is very low compared to the 50-year average precipitation (701 mm). The 

precipitation during the transition season (August to October) was 57 mm and clearly 

lower than the 50-year value (269 mm). The precipitation in the wheat season 

exceeded the 50-year average (286 mm) by 32 mm.  
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Table 4.3 Estimated water balance components (mm) in 1 m soil profiles with different treatments during different seasons in Hubei 
Province in 2012-2013  

Treatments 
First year maize (2012)  Transition season  Wheat Second-year maize (2013) 

Rain ET Tr ∆s Drain  Rain ET Tr ∆s Drain  Rain ET Tr ∆s Drain  Rain ET Tr ∆s Drain 
CN0 709 384 180 -172 497  212 127 66 47 38  318 193 74 -75 201  101 283 179 -202 20 
BN0 709 384 180 -172 497  212 153 0 38 21  318 212 48 -72 178  101 265 154 -183 19 
CN1 709 416 231 -188 482  212 127 98 64 22  318 201 90 -81 199  101 328 233 -236 9 
BN1 709 416 231 -188 482  212 154 0 54 4  318 230 93 -87 175  101 331 237 -239 9 
CN2 709 418 234 -189 480  212 127 98 65 20  318 201 91 -81 198  101 330 240 -231 2 
BN2 709 418 234 -189 480  212 154 0 55 3  318 227 90 -86 176  101 332 243 -234 2 
CN3 709 418 234 -189 480  212 127 98 65 20  318 192 74 -74 201  101 327 236 -228 2 
BN3 709 418 234 -189 480  212 154 0 55 3  318 222 76 -80 176  101 324 232 -226 2 

 CN0, CN1, CN2 and CN3 means legume cover crop treatment receiving none, reduced, recommended and farmers’ N fertilizer 

rates, respectively. BN0, BN1, BN2 and BN3 denotes bare fallow treatment receiving none, reduced, recommended and farmers’ N 

fertilizer rates, respectively. ET indicates soil evaporation and crop transpiration; ∆s is the soil water storage changes during the whole 

period. Rain means precipitation, ET evapotranspiration, Tr crop transpiration. Drain stands for water drained out of the soil profile. 
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According to the simulated results, the plots with a cover crop had around 7 

mm and 14 mm more drainage than bare fallow plots in the transition and wheat 

season, respectively. Due to the fact that the cover crop decreased the evaporation in 

the transition season, lower evapotranspiration (ET) and higher soil water content 

values than in the bare fallow treatments were observed. Although cover crops 

reduced ET by 10-26 mm in comparison to bare fallow in the wheat season, soil water 

content was similar due to higher drainage (around 20-30 mm). Thus, a legume cover 

crop as living mulch during the transition season can reduce evaporation while 

increasing drainage and soil water content. Utilizing the cover crop residuals as green 

manure in the next crop season tends to decrease the ET and in turn increase soil 

water content and drainage.  

 

4.3.3 NO3
--N andNH4

+-N concentration in the soil solution 

The analysis of NO3
--N and NH4

+-N concentration in the soil solutions indicates the 

potential pollution risk to groundwater. Compared to the NO3
--N concentration, the 

NH4
+-N concentration can be neglected (less than 5% of NO3

--N concentration), 

therefore NH4
+-N concentration values are not provided in the present study. The 

average and maximum concentrations of NO3
--N were influenced by both cover crop 

and different N fertilizer treatments (Table 4.4). As soil solution samples cannot be 

pumped out from suction cups during very dry conditions, samples representing these 

conditions are absent in the average NO3
--N concentration calculation. In general, soil 

solutions from 1 m depth had higher NO3
--N concentrations than samples taken at 1.8 

m during all three main crop seasons; however, this difference could not be observed 

in the transition season (Table 4.4).  
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Table 4.4 Average and maximum NO3
--N concentration of leachate (mg N L-1) from 1 m and 1.8 m during different season in Hubei Province in 

2012-2013  

Depth 
(m) 

Treatment 

NO3
--N concentration 

First-year maize 
(2012)  Transition Season  Wheat  Second-year 

maize(2013) 
Average Maximum  Average Maximum  Average Maximum  Average Maximum 

1 

CN0 2.21 3.86  2.39 2.85  4.04 8.62  3.13 4.28 
BN0 2.33 3.51  3.61 3.94  4.63 8.28  3.26 4.21 
CN1 8.73 10.25  4.81 6.15  8.25 10.53  6.74 8.04 
BN1 8.92 11.03  8.62 11.67  11.63 17.81  7.82 10.29 
CN2 10.85 20.58  6.64 8.26  9.69 13.99  13.45 14.24 
BN2 10.91 21.59  11.02 14.19  13.78 21.20  17.15 18.16 
CN3 13.07 20.70  8.72 12.91  14.71 20.55  20.32 25.24 
BN3 13.65 21.72  11.12 13.73  18.78 23.17  26.97 33.09 

1.8 

CN0 2.63 3.63  1.64 1.98  4.09 8.21  4.49 6.98 
BN0 2.57 3.58  1.70 2.28  4.09 8.80  4.64 6.65 
CN1 4.42 5.81  7.79 11.02  7.61 9.02  6.66 8.27 
BN1 4.56 6.33  10.01 12.57  8.95 11.64  9.01 12.04 
CN2 5.66 8.50  10.17 13.10  8.40 9.67  8.65 10.08 
BN2 6.24 8.55  12.49 15.79  10.85 13.83  12.09 15.03 
CN3 8.48 11.47  12.08 17.75  8.90 10.90  12.61 18.10 
BN3 8.49 11.09  15.56 20.24  14.50 21.84  18.53 25.86 

CN0, CN1, CN2 and CN3 means legume cover crop treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, respectively. BN0, BN1, 

BN2 and BN3 denotes bare fallow treatment receiving none, reduced, recommended and farmers’ N fertilizer rates, respectively
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Both average and maximum of NO3
--N concentrations in the soil solutions 

increased with higher mineral N fertilizer rates. The maximum NO3
--N concentration in 

1 m depth reached up to 30 mg L-1, and occurred in the maize season at the plots with 

the farmers’ N fertilizer rate in combination with bare fallow. Reduced N fertilizer rates 

combined with legume cover crop management can reduce this peak to less than 10 

mg L-1 (Figure 4.2). Legume cover crop treatment reduced both average and maximum 

NO3
--N concentration values. Apart from the plots without N fertilizer application, 

reduced three-split N fertilizer combined with cover crop is the only treatment that 

kept the average and maximum NO3
--N concentration in the leachate under 11.3 mg 

L-1 (limit of NO3
--N content in the drinking water provided by World Health 

Organization) during the entire cropping period.  
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Figure 4.2 NO3
--N concentration of the leachate from 1.0 and 1.8 m depth with different treatments during maize, transition and wheat 

seasons in 2012-2013 (mg L-1). CN1 means legume cover crop receiving reduced N fertilizer rates. BN0 and BN3 means bare fallow 
receiving none and farmers N fertilizer rates, respectively. 
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4.3.4 NO3
--N and NH4

+-N leaching losses 

NO3
--N was the dominating fraction of mineral-N lost in the soil solution with all 

treatments and during the entire experimental period (Table 4.5). About 33-50 kg N 

ha-1 and 18-40 kg N ha-1 were lost in the first-year maize (2012) season with different N 

fertilizer rates in 1 m and 1.8 m depth, respectively, which accounts for 18% -24% of 

the applied mineral N fertilizer. Only 15-29 kg N ha-1 and 15-26 kg N ha-1 respectively 

were lost in the wheat season, which accounts for 9-13% of the applied mineral N 

fertilizer. In contrast, only 0.5-0.9 kg N ha-1 and 0-1.2 kg N ha-1 were lost by leaching in 

the second year maize (2013) season due to low rainfall (101 mm).  

Table 4.5 Mineral nitrogen loading the leachate (kg N ha-1) in 1 m and 1.8 m depth in 
Hubei Province in 2012-2013.  

Depth 
(m) 

Treatments 

Mineral N loses  

Maize 2012  
Transition 

season 
 Wheat  Maize 2013 

NO3
- NH4

+  NO3
- NH4

+  NO3
- NH4

+  NO3
- NH4

+ 

1 

CN0 13.35  2.07   0.09  0.01   7.01  0.54   0.52  0.06  
BN0 13.08  2.09   0.12  0.02   7.84  0.51   0.57  0.04  
CN1 33.82  2.34   0.17  0.02   14.64  1.01   0.74  0.01  
BN1 31.80  2.18   0.29  0.04   17.51  1.18   0.82  0.02  
CN2 48.75  2.28   0.13  0.02   17.09  0.97   0.51  0.01  
BN2 47.70  2.39   0.20  0.03   22.31  0.95   0.59  0.01  
CN3 47.27  2.65   0.12  0.03   24.29  1.52   0.77  0.01  
BN3 48.14  2.81   0.17  0.04   28.26  1.34   0.81  0.01  

1.8 

CN0 12.48  1.18   0.34  0.07   7.22  0.49   1.18  0.04  
BN0 12.96  1.09   0.05  0.01   7.27  0.44   1.12  0.08  
CN1 17.44  1.28   1.84  0.14   14.65  0.66   0.51  0.01  
BN1 17.29  1.28   0.43  0.04   15.41  0.61   1.68  0.04  
CN2 25.32  1.40   2.04  0.19   16.60  0.74   0.00  0.00  
BN2 26.03  1.09   0.31  0.03   18.73  0.76   0.00  0.00  
CN3 38.37  1.28   2.43  0.17   17.24  1.21   0.00  0.00  
BN3 38.54  1.68   0.38  0.04   25.09  1.72   0.00  0.00  

CN0, CN1, CN2 and CN3 means legume cover crop treatment receiving none, reduced, 
recommended and farmers’ N fertilizer rates, respectively. BN0, BN1, BN2 and BN3 
stands for bare fallow treatment receiving none, reduced, recommended and farmers’ 
N fertilizer rates, respectively 
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Compared to the two-split N fertilizer management, three-split and reduced 

N fertilizer treatment lowered NO3
--N leaching during the first-year maize (2012) 

season by 14-17 kg N ha-1 and 8-21 kg N ha-1 in 1 m and 1.8 m depth, respectively. This 

difference was 3-11 kg N ha-1 and 2-10 kg N ha-1 during the wheat season. However, 

the amount of NO3
--N leaching did not vary (0-1.2 kg N ha-1) with different mineral N 

fertilizer rates during the transition and second-year maize (2013) season.  

Due to very low drainage (3-38 mm in the transition season and 2-20 mm in 

second-year maize season), low NO3
--N leaching losses were observed in the transition 

and second-year maize (2013) season. Therefore, although the second-year maize 

(2013) season had the highest NO3
--N concentration at the depths 1 m (33.4 mg L-1) 

and 1.8 m (26mg L-1), only a small amount of NO3
--N was lost through leaching in this 

season due to low drainage as a consequence of low rainfall. 

 

4.4 Discussion 

4.4.1 Water balance 

Although the amount of rainfall was drastically different between the two maize 

seasons, the transpiration (Tr) values were similar, which means that Tr/ET increases in 

the drought season (Table 4.3). Other research also shows that Tr/ET values vary 

between 36% and 66% in semi-arid ecosystems, and increase with less rainfall 

(Schlesinger and Jasechko, 2014). In this study, the less rainfall only reduced the 

evaporation, crop transpiration was similar between the two maize seasons. This 

indicates that, although rainfall in the second year (2013) was much lower than the 

50-year average precipitation (701 mm), the crops did not suffer from water stress due 

to the good soil-water retention capacity of the silt loamy soil in the field. 

In comparison to the bare fallow, cover crop, on the one hand reduced the 

evaporation, on the other hand increased the transpiration. Thus, its effect on soil 
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water content and drainage volume is uncertainty. Both increasing (Muñoz-Carpena et 

al., 2008) and no effects (Zhang et al., 2009) on soil water content were reported. In 

this study, although the plots with a cover crop showed higher Tr, the ET was still lower 

than on the bare fallow plots in the transition season, which means that a cover crop 

can reduce evaporation which can compensate the increased Tr (Tonitto et al., 2006). 

Nevertheless, the drainage increased by cover crop in this study, which is contrasts 

with previous findings (Muñoz-Carpena et al., 2008; Ngome et al., 2011). The amount 

of drainage was influenced by many factors, such as evaporation rate, amount and 

intensity of rainfall. The rainfall evaporated fast in bare fallowed plots, thus bare fallow 

plots showed much higher evaporation (17-27 mm) and lower drainage values than 

the covered plots.  

 

4.4.2 NO3
--N concentration in soil solutions 

The peak of NO3
--N concentration occurred at different time in the tested two maize 

seasons. In monsoon climate, the peak NO3
--N concentration in the soil solution 

usually happens at the beginning of monsoon rain and shortly after the fertilizer 

application, when rapid mineralization rates and large amount of drainage occurred at 

the same time (Pilbeam et al., 2004). However, the peak concentration will prone 

when the monsoon rain did not come as usual. Because the soils are drying when low 

rainfall occurring in monsoon season; soil mineralization rates are increasing when 

sufficient rainfall is wetting the dry soil (Birch, 1958).  

NO3
--N concentrations in 1 m are higher than in 1.8 m soil layer during the 

main crop season; however, high concentration moved to 1.8 m layer at the transition 

season (Figure 4.2). Similar research using Br- as an indicator to check N peak 

movement in soil profiles in Beijing, China showed suggested that N peak can move to 

deeper soil layer after the monsoon rain season (Zhao, 2007). Therefore, in this study, 
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it could be because NO3
--N formed rapidly and accumulated in the upper soil layers 

due to the good vegetation coverage during the main crop seasons (Zhu et al., 2000); 

while, accumulated NO3
--N in the upper soil layers are prone to leaching to deeper soil 

layers when the cover crop is not yet established and the soil surface is still bare. 

Reduced N fertilizer application rates decreased the NO3
--N concentration of 

soil solution in both legume cover crop and bare fallow treatments, which is line with 

findings from other research (Pilbeam et al., 2004). Furthermore, a strict linear 

correlation (R2 = 0.99) between NO3
--N concentration in drainage and N-application 

rates was reported by Dauden et al. (2004). Similarly, such relation was proved in the 

present study with good correlation (R2 = 0.76). Accordingly, decreasing N fertilizer 

application rates can be regarded as an effective strategy to reduce the NO3
--N 

concentration, however, if not handled properly may cause remarked yield reduction 

(Zhu et al., 2000).  

Legume cover crop significantly decreased the NO3
--N concentrations at both 

1 m and 1.8 m depth. Similarly, Meisinger et al. (1991) reported that a legume cover 

crop can reduce the NO3
--N concentration by 20 to 80% in comparison to bare fallow. 

Cover crops, in particular legume cover crops, have the potential to accumulate the 

soil-inorganic N and trap it in biomass as an organic form, which can reduce NO3
--N 

leaching (Dinnes et al., 2002b). Tonitto et al. (2006) analyzed effects of cover crop on 

yield and N leaching from 31 corn based systems using meta-analysis method. Results 

suggested that replacing bare fallow with cover crop can reduce N concentration in soil 

solutions by 40%-70%. Moreover, this biomass that was used as green manure during 

the growing periods of the consequent crops also decreased the NO3
--N concentration 

in the soil. The main reason for this is the fact that using cover crops as green manure 

can significantly improve soil fertility, increase the biological activity of the soil, and 
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also, the available phosphorus content. As a consequence, N-use efficiency is increased 

and nitrate losses reduced (Piotrowska and Wilczewski, 2012). 

In comparison to the farmers’ conventional N fertilizer management and bare 

fallow treatment, reduced mineral N fertilizer combined with a legume cover crop 

lowered the NO3
--N concentration in both 1 m and 1.8 m depth (Table 4.4). It can thus 

be concluded that both reduced mineral N fertilizer rates and legume cover crops can 

reduce the NO3
--N concentration in the soil solution.  

 

4.4.3 Extent of NO3
--N leaching 

Nitrogen leaching losses from agriculture systems originate from either native soil N 

mineralization or additional N input (Pilbeam et al., 2004). In the present study, 

non-fertilized plots showed lower NO3
--N loss through leaching indicating that mineral 

N fertilizer is the main contributor to NO3
--N losses in particular maize season. Because 

the temperature and rain increases at the same time in the monsoon climate region, 

thus, mineralization is very high which lead to high NO3
--N leaching when excessive 

apply the N fertilizer before the rainy season (Ju et al., 2007). Therefore, to avoid 

NO3
--N leaching, it is suggested to reduce the N fertilizer application rate in maize 

season in monsoon climate region (Zhu and Zhang, 2010).  

N leaching varied between two years maize seasons under the same field 

managements, which is mainly caused by different precipitation (Chen et al., 1995). 

The correlation coefficient between N leaching and precipitation was reported 0.99 by 

Zhao (2006). Similarly, a comparison of the results in two maize seasons in this study 

obviously suggests that the extent of NO3
--N leaching is highly dependent on the 

amount of precipitation.  

In comparison to traditional N managements, reduced and three-split N 

fertilizer management can better synchrony with the main crop demand and reduce N 
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losses. Therefore, research in Hunan Province, Central China report that split 

application of N fertilizer can significantly increase N uptake (Qin et al., 2013). Similarly, 

other research also has shown that reduced and three-split N fertilizer management 

can reduce nitrate leaching to groundwater and at the same time maintain maximum 

grain yield (Gehl et al., 2005). As a consequence, Power and Schepers (1989) stated 

that the most important way to reduce nitrogen losses driven by leaching is to apply 

correct amounts of N fertilizer at the proper time.  

Replacing the bare fallow with legume cover crops has been proved as an 

effective strategy to reduce NO3
--N leaching losses (Tonitto et al., 2006). The main 

advantage of the cover crops is its option to recycle N within the cropping agro-system 

which would otherwise be lost (Thorup-Kristensen et al., 2003). The contribution of 

legume cover crop during transition period in field rotation can exceed 100 kg N ha-1 

(Mueller and Thorup-Kristensen, 2001), which can benefit the consequent crops in the 

rotation (Hanly and Gregg, 2004). However, the cover crop did not significantly reduce 

NO3
--N leaching in the transition and second-year maize (2013) seasons in this research 

for two main reasons. Firstly, most of the soil residueNO3
--N was lost shortly after 

harvest of the main crops when the post-sown cover crops had not yet established 

their root system (Arlauskiene and Maiksteniene, 2012). Secondly, very little rainfall 

occurred during the transition and second-year maize seasons, which led to a small 

amount of drainage. Moreover, effects of cover crop on N leaching and succeeding 

crops yield is not only depending on precipitation, but also depend on C/N ratio of 

cover crop residual (Restovich et al., 2012). Therefore, when replacing bare fallow with 

catching crops to reduce NO3
--N leaching, the C/N ratio of catch crop residual should 

be considered. If the mineralized N from catch crop did not released in synchrony with 

consequent crop demand, it cannot reduce N leaching (Sainju et al., 2007).Thus, in this 
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study, non-significant NO3
--N leaching reduction by cover crops supposed due to late 

sowing, less precipitation or improper cover crop species selection.  

It can be concluded that both reduced three-split N fertilizer application and 

replacing bare fallow with fast growing legume cover crops in the transition season can 

reduce the amount of NO3
--N leaching. However, when precipitation is low or 

improper cover crop species selection such reduction is not observed (Gabriel and 

Quemada, 2011).  

 

4.5 Summary and conclusions 

We tested the effects of replacing bare fallow fields with legume cover crops in the 

transition season combined with N fertilizer management on water balance and N 

leaching. The modeled water balance shows that a cover crop increased soil water 

retention and decreased drainage during the transition period. Reduced N fertilizer 

application rates significantly decreased soil NO3
--N concentration in both maize and 

wheat season. However, cover crops had no effect on NO3
--N concentrations in soil 

solutions. Combining split –application of N fertilizer with a legume cover crop can 

significantly increase soil water retention and reduce N losses in a maize-wheat 

rotation system. 
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5. PERFORMANCE OF THE EPIC MODEL FOR SIMULATING WATER DYNAMICS 

AND NITRATE LEACHING  

5.1 Introduction 

Nitrogen (N) pollution of water resources from intensive agriculture and livestock 

production system is a growing concern in the Liangzihu Lake basin (30°05′～

30°27  N, 114°21′ ′-114°50  E) in Hubei Province, Central China ′ (Li et al., 2009). 

Many results have confirmed that surface and groundwater pollution can be linked to 

excessive use of chemical fertilizers (Zhu et al., 2006; Liu et al., 2008). Nitrogen is one 

of the pollutants that has caused surface water eutrophication and groundwater 

pollution. The N-related pollution of drinking water and fish-farm water resources has 

posed serious health risks for the people in China, in particularly in areas with intensive 

agriculture and high population (Qiu et al., 2001). Findings indicate that more than 

50% of the N loads in China originate from agricultural activities (Wu et al., 2013). 

Hubei Province has been identified as one of the high N-risk regions in China since 

2000, because of intensive agriculture, high N input and high precipitation (Sun et al., 

2008). 

To improve the understanding of the inter-linkage between field 

management and water pollution, field studies have been conducted in China in the 

past decades (Ju et al., 2009). However, the realization of field studies has been limited, 

because they are time consuming and involve high costs (Rudra et al., 2011). Crop 

growth processes associated with hydrological modeling approaches have been proven 

to overcome these limitations. Thus, they have been applied as tools for estimating N 

pollution all over the world. Yet, model performance tests and validation under local 

climate and agricultural conditions is a prerequisite for site-specific nutrient transport 

simulation, which to date is not well documented in Central China.  
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There are a number of models that simulate the nutrient movement from 

agricultural land. Moreover, some researchers developed their own models for specific 

regions or purposes. However, most of these models were developed for specific study 

regions or based on the intention of particular application purposes and are therefore 

not applicable in every research context (Thomas et al., 1998). Thus, the selection of 

an appropriate model is crucial for any model simulation studies. In this study, the 

selected model needed to fulfill the following requirements: (i) suitability for field scale, 

(ii) proof of successful application in subtropical region with monsoon climate, and (iii) 

capability to simulate the influence of field management on N leaching. In addition, the 

important criteria suggested by McLaughlin (2001), in terms of data input requirement, 

calibration level requirement and output usefulness were also considered. Finally, the 

EPIC model was selected, because it (i) has been applied under many conditions 

including in China (Wang et al., 2011b), (ii) considers all relevant soil processes (Gaiser 

et al., 2010), and (iii) represents most of the relevant process for quantifying 

hydrological fluxes impacts on N movement and dynamics. Details on the comparison 

of the EPIC model with other nutrient simulation models are provided by McLaughlin 

(2001).  

The EPIC model was originally developed for simulating soil productivity as 

effected by soil erosion (Williams et al., 1990). With its development and the 

additional provided components, the model has expanded the function to simulate 

nutrient transport and its related water quality problems (Williams et al., 1996). 

Sharpley et al. (1990) reported that the model can precisely predict the changes of N 

and phosphorus (P) content in the topsoil. Other studies also reported that, although N 

leaching is the most sensitive output function of the model (Roloff et al., 1998a), EPIC 

was proved to be able to estimate N losses with an acceptable level of accuracy by 

Roloff et al. (1998b). Both of the studies in Minnesota and Iowa indicated that 
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changing trends in N leaching were acceptably simulated by the EPIC model (Chung et 

al., 2001; Chung et al., 2002). The model was introduced in China in 1990; however, 

due to numerous restrictions, its application in the country is still limited (Chun, 2007). 

Moreover, it was mainly used to simulate the yields (Chavas et al., 2009), crop water 

productivity (Liu et al., 2007), soil water dynamics (Wang and Li, 2010) and soil erosion 

(Zhang et al., 2008), but was rarely applied to N-losses simulation in China. Therefore, 

the actual performance of the EPIC model for N losses has not yet been adequately 

tested in China.  

In the study presented in this chapter, we applied the EPIC model to simulate 

the N losses under different field management strategies in Liangzihu Lake basin. The 

main objective was to evaluate the simulation performance of the EPIC model for soil 

water content and N leaching in winter wheat-spring maize rotations in Central China.  

 

5.2 Materials and methods 

5.2.1 EPIC nutrient cycling component and required data input 

EPIC is a process based model consisting of nine sub-models for weather, hydrology, 

erosion, soil temperature, tillage, crop growth, management, economics and nutrient 

cycling simulations. The nutrient cycling component is one of the major sub-models 

included in the EPIC model, which can simulate chemical fertilizer strategies, nutrient 

transformation in the field, crop uptake, and nutrient movement driven by water 

fluxes. The nutrient cycling component of the model includes the N mineralization and 

immobilization processes, which were developed based on the PAPRAN model 

published by Seligman and Van Keulen (1981). The N movement with water fluxes was 

simulated through three paths: surface runoff, percolation and lateral subsurface flow. 

In this study, the experimental field has a flat topography, thus the observed surface 

runoff is very low (less than 1% of each rainfall event), which could be neglected; 
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moreover, lateral subsurface flow was also not considered. Instead, the focus of this 

study was only on N leaching losses simulation.  

The data input for the EPIC model can be divided into four categories: (1) field 

characteristics, (2) field management, (3) soil properties, and (4) weather data. With 

regard to the intended model output, users can choose different combinations of data 

input. More detailed information on model data input and model use is provided by 

Sharpley et al. (1990). 

In this study, the EPIC model (version 0509) was evaluated using field data 

collected from the experimental field located in Liangzihu Lake basin, Hubei Province, 

Central China. Soil characteristics, field management, fertilizer practices and other field 

data that used for model calibration and evaluation are provided in Chapter 2 and 3.  

5.2.2 Model parameterization 

Parameterization of the model based on measured data and information derived from 

research under similar conditions. Field capacity and wilting point were estimated 

based on soil texture by the method provided by Saxton et al. (1986). Similarly, 

saturated hydraulic conductivity was estimated using the method given by Cook et al. 

(1985). There are five different methods to estimate the potential evapotranspiration 

in the EPIC model. In this study, due to the drought in 2013, the Baier-Robertson 

method was chosen, because it has been proven highly suitable under drought 

conditions (Roloff et al., 1998a). Due to the fact that weeds and pests were well 

controlled in all of the experimental plots, the influence of pests and weeds were not 

considered in the model simulation.  

 

5.2.3 Model calibration 

The measured aboveground biomass of maize and wheat in the period 2012-2013 

were used in the calibration procedure. The calibration procedure included: (1) 
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sensitivity analysis of crop aboveground biomass to crop and soil parameters, and (2) 

the adjustment of the crop and soil parameters until the output of biomass values 

reached best fit in relation to the observed values. The organic matter was proven to 

be one of the most important factors that influenced the aboveground biomass and 

nitrate loads in the infiltrating water for all soil types (Rudra et al., 2011). Moreover, 

based on the suggestions from other researches and availability of data from field 

measurements (Gaiser et al., 2010), the biomass to energy ratio (WA) and carbon (C) 

fraction biomass pool (FBM) were confirmed as the most sensitive parameters 

influencing the aboveground biomass (Figure 5.1). 

 

Figure 5.1 Sensitivity analysis of crop yield simulation with respect to FBM (fraction of 
biomass C in soil organic matter) and WA (biomass-energy ration) in Hubei 
Province, Central China. 

 

5.2.4 Model validation 

Due to the fact that EPIC nutrient simulation processes are related to the water fluxes, 

the N balance is parallel to the water balance in the field (Ramanarayanan et al., 1998). 

Thus, soil water content and amount of N leaching were used for model performance 

evaluation. According to the suggestions provided by Moriasi et al. (2007), the 

following indices were selected for model performance evaluation: (1) Nash-Sutcliffe 
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efficiency (NSE), (2) percent bias (PBIAS), (3) ratio of the mean square error and the 

coefficient of determination (RSR), and (4) the coefficient of determination (R2). The 

indices are calculated as follow:  
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where, obs
iY  is the ith observed value, sim

iY  is the ith simulated value, meanY  is the mean 

observed value, meanX  is the mean simulated value, n is the total number of 

observations. The ranges of criteria used for evaluating model performance are listed 

in Table 5.1 

Table 5.1 Range of selected indices for model performance evaluation. NSE is 

Nash-Sutcliffe efficiency, PBIAS is percent bias (%), RSR is ratio of the mean 

square error to the standard deviation, and R2 is coefficient of 

determination. 

Indices Optimal Very good Satisfactory Unacceptable 
NSE 1 >0.65 >0 ≤ 0 
PBIAS 0 -20-20 -40- -20 & 20-40 <-40 &>40 
RSR 0 ≤ 0.5 0.5-1.0 ≥1.0 
R2 1 >0.65 ≥0.5 <0.5 
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5.3 Results and discussion 

 

5.3.1 Model calibration 

Sensitivity analysis 

Sensitivity analysis is helpful to identify the parameters that largely influence the 

output values. Thus, more attention should be paid to them when calibrating the 

model (Thooko et al., 1994). In this study, FBM and WA were proven to strongly affect 

the aboveground biomass of both maize and winter wheat in all treatments, in 

particular in the first maize season (2012). Because the initial experiment conditions 

are homogenous, these two parameters are given the same value regardless of 

treatment. Thus, results of the sensitivity analyses are only shown with respect to the 

CN0 (cover crop and without N fertilizer application) treatment (Figure 5.1). The 

simulated biomass is much higher than the measured values under the default value of 

FBM=0.04. Therefore, this was reduced to 0.01, as a result the simulated biomass 

nearly fit the observed values (Figure 5.1). The FBM influences the biomass probably 

by changing the mineralization of the soil N, which was important for crop growth at 

the beginning of the experiment (Gaiser et al., 2010). The WA was the last parameter 

to be adjusted for model calibration. To obtain the optimal fit to observed values, the 

WA for maize (default value was 40) and winter wheat (default value was 35) were 

adjusted to 50 and 30, respectively. 

Simulation of aboveground biomass 

The calibrated model accurately predicted the aboveground biomass in all treatments 

except in the non-fertilized second-year maize (2013) (Figure 5.2). In comparison with 

the other fertilized treatments, only the plots without N fertilizer application led to 

simulated biomass lower than the observed values. Particularly in the second-year 

maize season (2013), the biomass was underestimated in the non-fertilized plots by 
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more than 25%. Similar results were found when the EPIC model was applied to 

simulate the sorghum in the subtopic region (Niu et al., 2009). The authors concluded 

that model reliability decreases with decreasing N fertilizer rates. The changes 

between the two maize seasons in the non-fertilized plots are mainly due to the fact 

that the model did not adequately estimate the yield variability between years caused 

by non-N fertilizer treatment (Williams et al., 1989). Due to the fact that non-N 

fertilizer treatment is not a realistic practice, this underestimation by the calibrated 

model can be considered as an acceptable level in this study.  

5.3.2 Model validation 

Soil water content 

The calibrated model precisely predicted the soil water content in both 1 m and 1.8 m 

depths (Table 5.2). This result is in accordance to the research conducted by Wang and 

Li (2010), who reported that the EPIC model can well estimate the soil water content in 

winter wheat-spring maize rotation systems in the Chinese Loess Plateau. Nevertheless, 

the model underestimated the soil water content of all treatments in the second-year 

maize season (2013) in 1 m depth (NSE <0) (Table 5.2). This is mainly because there 

was a marked drought in that year; the underestimation of soil water contents in this 

season could be because the weak function for quantifying upward water movement  

of the EPIC model (Rabbel, 2013). 
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Figure 5.2 Calibrated EPIC model on aboveground biomass simulation in Hubei 
Province, Central China from 2012-2013. 
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In contrast, an underestimation did not occur in 1.8 m depth. When extreme 

climate conditions occur, the deeper layer will show a less distinct reaction. This can be 

concluded from the higher soil water content in 1.8 m depth compared to 1 m 

Therefore, the upward movement of water in 1.8 m depth was minimal and can be 

neglected, thus the water content in 1.8 m depth was well estimated. Overall, the 

validation results in the analyses show that the calibrated EPIC model can well 

estimate soil water content in both 1 m and 1.8 m depth under moderate climate 

conditions; while it underestimates soil water content in shallow (≤1m) soil layers 

under drought conditions.  
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Table 5.2 Evaluation of EPIC model performance applied to soil water content simulation in Hubei Province from 2012-2013. NSE is 
Nash-Sutcliffe efficiency, PBIAS is percent bias (%), RSR is ratio of the mean square error to the standard deviation, and R2 is 
coefficient of determination. CN0, CN1, CN2 and CN3 refer to legume cover crop treatment receiving no N fertilizer, reduced, 
recommended and farmers’ N fertilizer rates, respectively; BN0, BN1, BN2 and BN3 refer to bare fallow treatment receiving N 
fertilizer treatments as mentioned above. 

Depth (m) Treatments 
Maize 2012  Transition  Wheat  Maize 2013 

NSE RSR PBIAS R2  NSE RSR PBIAS R2  NSE RSR PBIAS R2  NSE RSR PBIAS R2 

1 

CN0 0.1 1.0 -2.8 0.5  0.3 0.8 -0.5 0.6  0.8 0.4 -3.2 0.5  -3.6 2.1 35.6 0.6 
BN0 0.1 1.0 -0.3 0.4  0.9 0.4 -1.0 1.0  0.8 0.5 -1.7 0.9  -1.7 1.7 31.8 0.8 
CN1 0.1 1.0 -2.8 0.6  0.5 0.7 -2.1 0.9  0.5 0.7 -1.8 0.9  -0.1 1.1 17.9 0.7 
BN1 0.5 0.7 -0.9 0.7  0.7 0.6 -2.4 0.9  0.6 0.7 -2.7 0.9  -0.6 1.3 25.0 0.9 
CN2 0.2 0.9 -3.2 0.6  0.4 0.8 -1.3 0.8  0.6 0.7 -3.3 0.9  -1.0 1.4 31.1 0.9 
BN2 0.4 0.8 -2.2 0.7  0.7 0.6 -0.9 0.8  0.7 0.6 -2.1 0.9  -1.9 1.7 34.5 0.5 
CN3 0.5 0.7 -1.4 0.6  0.5 0.7 -1.2 0.8  0.7 0.6 -2.8 1.0  -1.5 1.6 30.2 0.5 
BN3 0.6 0.7 -0.1 0.6  0.5 0.7 -2.9 1.0  0.6 0.7 -2.7 1.0  -2.3 1.8 33.6 0.6 

1.8 

CN0 0.8 0.4 1.1 1.0  0.1 1.0 0.3 0.5  0.3 0.7 0.3 0.6  0.2 0.9 15.2 0.9 
BN0 0.8 0.4 1.1 1.0  0.4 0.8 -0.3 0.5  0.0 0.8 -0.2 0.5  0.0 1.0 19.0 0.9 
CN1 0.6 0.6 1.1 0.7  0.2 0.9 -0.2 0.5  0.5 0.7 0.5 0.6  0.2 0.9 9.8 1.0 
BN1 0.8 0.5 1.6 0.9  0.8 0.5 -0.5 0.8  0.4 0.7 1.2 0.7  0.2 0.9 15.3 0.9 
CN2 0.2 0.9 0.5 0.5  0.2 0.9 0.5 0.5  0.1 0.7 0.5 0.5  0.5 0.7 12.9 0.9 
BN2 0.2 0.9 1.0 0.5  0.5 0.7 -0.1 0.5  0.3 0.7 -0.2 0.6  0.5 0.7 14.4 0.9 
CN3 0.2 0.9 -0.2 0.5  0.1 0.9 -0.8 0.9  0.4 0.6 0.7 0.7  0.6 0.6 7.7 0.8 
BN3 0.4 0.8 -1.5 0.5  0.7 0.6 -1.0 0.8  0.2 0.8 0.9 0.6  0.4 0.8 17.2 0.1 
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Simulation of N leaching 

The amount of N leaching in the EPIC model simulations are not fit to the observed 

values in this study (table 5.3). The model was proved to have the highest variability in 

sensitivity when applied to N leaching (Roloff et al., 1998a). Therefore, the reported 

performances of EPIC model on N leaching simulation are varied. Rudra et al. (2011) 

found that the model could correctly simulate the long-term effects of tillage and 

residue mulching on N leaching. However, the performance of EPIC with respect to N 

leaching was found to be unsatisfactory in other studies (Forster et al., 2000), where 

both underestimation (Roloff et al., 1998b) and over-estimation (Chung et al., 2001) 

were reported. In this study, the EPIC model over-estimated the N leaching over the 

entire period except in the second-year maize season (2013), where there was very 

little rainfall (101 mm compared to the average 701 mm). In previous research, the 

imprecise estimation of N losses was explained by the inaccuracy in simulating the soil 

water content (Beckie et al., 1995). However, although soil water content is estimated 

at an acceptable level in the present study, N leaching still over-estimated. Thus, the 

inaccuracy in estimating the N transformation may be caused by other factors apart 

from soil water content. The level of over-estimation regarding N leaching for each 

rainfall event has a close relationship (R2=0.65, p<0.01) with the leaching volume. Thus, 

it can be speculated that the over-estimation is due to over-estimation of the N 

concentration in the leachate. Consequently, the over-estimation could be explained 

by the over-estimation of leachate N concentration, which may be due to (i) most of 

the water leached through the small soil pores, where less N will dissolved in the water, 

while the EPIC model has poor representation of this condition (McLaughlin et al., 

2006), (ii) the EPIC model has the tendency to over-estimate the mineralization, which 

consequently leads to over-estimation of the N concentration in soil solutions (Warner 

et al., 1997), and (iii) imprecise simulation of the temporal variability of N 
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transformations in the field (Marchetti et al., 1997). Forster et al. (2000) reported that 

although EPIC did not precisely predict the absolute values, it successfully predicted 

the change direction and percent of change. Nevertheless, the change percentage is 

not well estimated in this study.  

Table 5.3 Evaluation of EPIC model performance applied to N leaching simulation in 
Hubei Province from 2012-2013. NSE is Nash-Sutcliffe efficiency, PBIAS is 
percent bias (%), RSR is ratio of the mean square error to the standard 
deviation, and R2 is coefficient of determination. CN0, CN1, CN2 and CN3 refer 
to legume cover crop treatment receiving no N fertilizer, reduced, 
recommended and farmers’ N fertilizer rates, respectively; BN0, BN1, BN2 
and BN3 refer to bare fallow treatment receiving N fertilizer treatments as 
mentioned above. 

 

Depth 
(m) 

Indices CN0 BN0 CN1 BN1 CN2 BN2 CN3 BN3 

1 NSE -28.4 -31.3 -6.5 -12.7 -5.4 -6.9 -11.9 -12.2 
 RSR 5.4 5.7 2.7 3.7 2.5 2.8 3.6 3.6 
 PBIAS -447.7 -377.0 -201.9 -310.6 -156.3 -174.7 -175.4 -221.5 
 R2 0.1 0.1 0.5 0.4 0.7 0.4 0.3 0.3 
1.8 NSE -29.2 -28.7 -18.1 -21.7 -12.6 -11.8 -5.2 -6.8 
 RSR 5.5 5.5 4.4 4.8 3.7 3.6 2.5 2.8 
 PBIAS -263.2 -336.2 -160.7 -239.6 -139.9 -196.1 -97.6 -140.6 
 R2 0.2 0..3 0.4 0.4 0.5 0.5 0.6 0.5 

 

The data in Table 5.4 show that the relative error of simulation in the 

transition season is much higher than in the other seasons, which indicates the 

insufficient performance of the EPIC model with respect to N leaching simulation in the 

transition season. In contrast, the model showed better performance in the maize 

2012 season than in the other seasons (Figure 5.3). This is mainly because there were 

no differences between cover crop and bare fallow treatments in the maize 2012 

season. However, the differences are extremely big during the transition period 

between these two treatments. Thus, the results of this research indicate that the EPIC 

model is not good at N leaching simulation in the transition season. Moreover, results 
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show that the performance of the model will be poorer after transition season 

management. Overall, the performance of the model in this study with respect to N 

leaching simulation in the transition season and the resulting influences is not 

satisfactory.  
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Figure 5.3 Partial regression of measured and simulated N leaching (kg N ha-2) 
according to the different crop seasons in 1 m (a) and 1.8 m (b) soil depths.  

a 

b 
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Table 5.4 Overestimation of N leaching (kg N ha-1) in simulation by EPIC model in Hubei Province from 2012-2013. The minus sign 

means underestimated. The numbers in parentheses are the relative error which calculated by referring to the measured 

values. CN0, CN1, CN2 and CN3 refer to legume cover crop treatment receiving no N fertilizer, reduced, recommended and 

farmers’ N fertilizer rates, respectively; BN0, BN1, BN2 and BN3 refer to bare fallow treatment receiving N fertilizer 

treatments as mentioned above 

Treatment 1 m  1.8 m 
Amount Maize 

2012 
Transition Wheat Maize 

2013 
 Amount Maize 

2012 
Transition Wheat Maize 

2013 
CN0 102.5 (4) 36.3 (2) 13.5 (135) 53.3 (7) -0.6 (-1)  63.4 (3) 31.4 (2) 6.3 (15) 27.0 (3) -1.2 (-1) 
BN0 126.8 (5) 36.6 (2) 25.3 (181) 65.5 (8) -0.6 (-1)  88.6 (4) 31.0 (2) 18.6 (265) 40.3 (5) -1.2 (-1) 
CN1 106.6 (2) 44.1 (1) 13.9 (73) 49.3 (3) -0.8 (-1)  68.5 (2) 43.8 (2) 5.4 (3) 19.9 (1) -0.5 (-1) 
BN1 149.2 (3) 46.3 (1) 44.3 (134) 59.4 (3) -0.8 (-1)  96.4 (3) 42.9 (3) 20.7 (44) 34.5 (2) -1.7 (-1) 
CN2 125.0 (2) 71.1 (1) 13.9 (87) 40.5 (2) -0.5 (-1)  65.9 (1) 44.5 (2) 4.8 (2) 16.6 (1) 0 (0) 
BN2 170.4 (2) 72.1 (1) 43.8 (182) 55.2 (2) -0.6 (-1)  94.0 (2) 43.1 (2) 20.1 (59) 30.8 (2) 0 (0) 
CN3 134.5 (2) 89.2 (2) 13.8 (86) 32.2 (1) -0.8 (-1)  61.9 (1) 42.3 (1) 4.3 (2) 15.3 (1) 0 (0) 
BN3 181.7 (2) 88.2 (2) 45.3 (216) 49.1 (2) -0.8 (-1)  89.6 (1) 46.8 (1) 19.6 (52) 23.2 (1) 0 (0) 
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5.4 Conclusions 

The EPIC model was calibrated for winter wheat-spring maize rotation systems. Based 

on the results, the conclusions are: (1) the calibrated model can precisely predict the 

soil water content in both 1 m and 1.8 m soil depth under moderate climate conditions; 

in contrast, it underestimates the soil water content under drought conditions; (2) the 

model largely overestimated N leaching, especially during the transition period in both 

soil depths; (3) the model can be used for simulating the aboveground biomass and 

soil water content for wheat-maize rotation systems in Hubei Province, Central China, 

but not for N leaching simulation. 
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6. GENERAL DISCCUSSION AND CONCLUSIONS 

6.1 General discussion 

Relative to the demand for grain crops, farmers in Liangzihu Lake basin are over 

applying mineral N fertilizer (Goulding, 2004). Key factors contributing to this excessive 

use are low farmland productivity, small farm size, high share of off-farm income, and 

low education level of the farmers. Similar results were reported from other studies in 

China (Zhou et al., 2010; Jia et al., 2013). Ju et al. (2009) argued that farmers tend to 

apply more mineral N fertilizer to low-productive farmlands to compensate for the 

unfavorable growing conditions. Another research also found small farm size and high 

share of off-farm income being closely associated with overuse of N fertilizer (Brauw 

and Giles, 2008). Farmers with small land holdings tend to rely more on off-farm 

income, causing them to spend less time on farm work. Consequently, N use efficiency 

decreases, and the mineral N application rate increases (Zhou et al., 2010). However, 

insufficient knowledge of proper fertilizer use is the main reason for excessive use of N 

fertilizer. Although extension services are essential to mitigate the overuse of mineral 

N fertilizer, farmers are reluctant to adopt techniques introduced by extension services 

after only one training session (Huang et al., 2008; Wang et al., 2011a). Equipping 

farmers with proper knowledge through improved basic education can result in the 

reduction of N application rates and improvement of N use efficiency.  

Used in combination with cover crops, reduced N rates applied in multiple 

split doses reduce N leaching and can increase N fertilizer use efficiency. Similarly, 

Odhiambo (2011) reported that cover crops can recycle the N that may be lost through 

run-off and leaching. Additionally, reusing the residue of cover crops can increase the 

amount of soil organic matter and thus, as a result, yield improves. Moreover, in 

contrast to two-split application, three-split application was able to well meet the crop 

requirements, thereby increasing N use efficiency and decreasing N losses (Pasuquin et 
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al., 2012). While cover crops tended to increase the drainage volume, the NO3
--N 

concentration in the drainage water decreased as a result of plant uptake, making 

these cover crops so-called nitrate-catching crops (Tonitto et al., 2006).  

In this study, the EPIC model accurately predicted the crop yield and water 

content in a normal year, but grossly underestimated the soil water content under 

drought condition. The model appears to be inadequate for predicting upward water 

movement, and underestimated the water content under drought conditions (Rabbel, 

2013). On the other hand, the model largely overestimated N leaching, which is in 

accordance with other studies (Forster et al., 2000). This disparity is the result of an 

over estimation of NO3
--N concentration in the leachate, which is caused by poor 

representation of water leaching through soil pore space (McLaughlin et al., 2006), 

temporal variability of N transformation (Marchetti et al., 1997), and an 

over-estimation of the native soil N mineralization (Warner et al., 1997). 

6.2 Conclusions for nutrient management 

Farmers in Central China use, on average, 229 kg N ha-1 every year in the form of 

mineral fertilizer, which is a very high rate compared to rest of the world. The 

excessive use of N fertilizer is mainly the consequence of insufficient awareness, a lack 

of knowledge of specific crop requirements, and the low cost and high availability of 

mineral-N fertilizers. 

In maize-wheat rotation systems in Central China, the combination of legume 

cover crops with reduced mineral-N fertilizer application rates has been shown to (i) 

decrease NO3
- concentrations in soil solution, (ii) limit NO3

--N leaching losses, and (iii) 

reduce the soil residual Nmin after harvest. However, this strategy improves neither 

agronomic N-use efficiency nor N-recovery rates.  
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While the calibrated EPIC model can successfully simulate aboveground 

biomass and soil water content under wheat-maize rotations, the model greatly 

over-estimates the amount of N leached from the soil.  

 

6.3 Recommendations for reducing N losses 

To date, environmental regulations on agricultural production systems are either 

unavailable or inappropriately implemented in China. Agriculture is solely regarded as 

a provider of food and fiber. Therefore, maximizing output is primary, and, ecological 

implications and side effects are considered secondary. Application strategies and 

future policies regulating the chemical fertilizer market must increasingly consider the 

environmental costs associated with excessive mineral -N application. Regulations 

need to be urgently introduced to align fertilizer use with crop demand.  

In intensive agricultural systems with high mineral fertilizer input, farmers 

should avoid extended periods of bare fallow, particularly during the transition 

seasons between main-crops. Crop-specific, demand-based recommendations on 

application rates should be used in conjunction with cover crops. Resulting 

recommendations and guidelines about N fertilizer use must be site and season 

specific and need to take into account the resource base and farmers’ endowment 

with production factors.  

It is necessary to promote basic knowledge of proper fertilizer, as most 

farmers have insufficient knowledge of how to synchronize N fertilizer input with 

crop-N demand. Currently, they rely on their existing experience, i.e., “using more 

fertilizer leads to higher crop yield” (Jia et al., 2013), and consequently N-use efficiency 

is low.  



GENERAL DISCCUSSION AND CONCLUTION 

94 

 

6.4 Outlook on further research needs 

6.4.1 Economic analysis 

Economic strategies to reduce N fertilizer application rates 

As agricultural pollution is obscure and mostly happens on a large scale, it is not easy 

to trace pollution back to its source. Consequently, society has to shoulder the costs of 

environmental pollution; neither farmers nor the fertilizer industry is interested in 

reducing N fertilizer application rates. Elsewhere, pricing policies have been shown to 

effectively curb application rates. For instance, mineral N rates in Indonesia decreased 

from 135 to 100 kg N ha-1 when fertilizer prices increased during the 1997 economic 

crisis (Abdulrachman et al., 2004). The ratio of fertilizer prices to prices of agricultural 

products is a key factor influencing N-application rates (Goulding, 2004). In China, the 

current agricultural pollution is mainly associated with fertilizer subsidies. A new 

agricultural cost-benefit balance that considers environmental costs may help reduce 

energy wastage and environmental pollution. 

 

Economic analysis of alternative strategies  

Cover crops and multi-split application of mineral N fertilizer have proven effective in 

reducing N losses to the environment. However, because using multi -split application 

and cover crops enhances the labor demand as compared to “traditional” field 

management systems, these may not be suitable for the current resource endowment 

of some production systems. On the other hand, legumes may provide an additional 

food or income source while saving N fertilizers. These strategies are thus likely to 

reduce the environmental costs, which to date, have seldom been considered and are 

difficult to evaluate.  
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6.4.2 Scaling up the models 

Because of crop, soil and climate diversity, it is important to evaluate the nutrient 

losses within an environment with similar soil and climate conditions following a 

model-based extrapolation to watershed scale (Goulding, 2004). However, the present 

research has highlighted several shortcomings of scaling up such experiments to small 

watershed scale: 

(1) Functions in the EPIC model are limited, and extrapolation of N losses to 

watershed scale showed a very poor fit. 

(2) The study area is predominantly divided up into small land holdings occupied 

by small-scale farmers. Therefore, the watersheds consist of a large number of 

different plots, each with their own crops and management strategy, causing a 

diversity that hampered extrapolation efforts. 

(3) Insufficient data exist for evaluating the model performance at watershed scale 

(Addiscott, 1998). Discharge hydrograph readings from small watersheds are 

intermittent, and data required for model calibration are often missing. Further 

research is needed to improve the nutrient loss estimates, and the progression from  

field to small watershed scale. 



REFERENCES 

96 

 

7. REFERENCES 

 

Abawi, G.S., Widmer, T.L., 2000. Impact of soil health management practices on 
soilborne pathogens, nematodes and root diseases of vegetable crops. Applied 
Soil Ecology 15, 37-47. 

Abdulrachman, S., Pahim, Z.S., Djatiharti, A., Dobermann, A., Witt, C., 2004. 
Site-specific nutrient management in intensive irrigated rice systems of West 
Java, Indonesia. Science Publisher, Los Banos, Philippines. 

Addiscott, T.M., 1998. Modelling concepts and their relation to the scale of the 
problem. Nutrient Cycling in Agroecosystems 50, 239-245. 

Addiscott, T.M., Whitmore, A.P., Powlson, D.S., 1992. Farming, Fertilizers and the 
Nitrate Problem. C.A.B. International, Wallingford, UK. 

Almasri, M.N., Kaluarachchi, J.J., 2007. Modeling nitrate contamination of groundwater 
in agricultural watersheds. Journal of Hydrology 343, 211-229. 

Arlauskiene, A., Maiksteniene, S., 2012. Mineral nitrogen dynamics and nitrate 
leaching in a catch crop and straw management system. Journal of Food, 
Agiculture & Environment 10, 1188-1193. 

Barton, L., Colmer, T.D., 2006. Irrigation and fertilizer strategies for minimizing 
nitrogen leaching from turf grass. Agricultural Water Manage 80, 160-175. 

Becker, M., Asch, F., Maskey, S.L., Pande, K.R., Shah, S.C., Shrestha, S., 2007. Effects of 
transition season management on soil N dynamics and system N balances in 
rice–wheat rotations of Nepal. Field Crops Research 103, 98-108. 

Beckie, H.J., Moulin, A.P., Campbell, C.A., Brandt, S.A., 1995. Testing effectiveness of 4 
simulation-models for estimating nitrates and water in 2 soils. Canadian Journal 
of Soil Science 75, 135-143. 

Behera, S.K., Panda, R.K., 2009. Effect of fertilization and irrigation schedule on water 
and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region 
Agriculture, Ecosystems and Environment 130, 141-155. 

Belle, G.v., 2008. Statistical Rules of Thumb. A John Wiley & SONS, INC., Publication, 
New Jersey, USA. 

Birch, H.F., 1958. The effect of soil drying on humus decomposition and nitrogen 
availability. Plant and Soil 10, 9-31. 

Boesch, D.F., 2002. Challenges and opportunities for science in reducing nutrient 
over-enrichment of coastal ecosystems. Estuaries and Coasts 25, 744-758. 



REFERENCES 

97 

 

Bosch, D.J., ZenaL.Cook, Fuglie, K.O., 1995. Voluntary versus mandatary agricultural 
policies to protect water quality: adoption of nitrogen testing in Nerbraska. 
Review of Agricultural Economics 17, 13-24. 

Boyer, E.W., Howarth, R.W., Galloway, J.N., Dentener, F.J., Cleveland, C., Asner, P., 
Green, P., Vorosmarty, C., 2004. Current N inputs to world regions. Island Press, 
Washinton DC, USA. 

Borah, D.K., Bera, M., 2003. Watershed-scale hydrologic and nonpoint-source pollution 
models Review of applications. American Society of Agricultural Engineers 46, 
1553-1566. 

Brauw, A.D., Giles, J., 2008. Migrant labor markets and the welfare of rural households 
in the developing world: evidence from China. World Bank Policy Research 
Working Paper NO.4585. The World Bank, Washington D.C, USA. 

Bremner, J.M., 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal 
of Agricultural Science 55, 11-37. 

Brown, J.R., 1993. The Sanborn Field Experiment. In: R.A.Leigh, A.E.Johnston (Eds.), 
Long-term Experiments in Agricultral and Ecological Sciences. CAB International, 
Harpenden, UK, pp. 39-52. 

Cameron, K.C., Di, H.J., Moir, J.L., 2013. Nitrogen losses from the soil/plant system: a 
review. Annals of Applied Biology 162, 145-173. 

Caporali, F., Campiglia, E., 2000. Inceasing Sustainability in Mediterranean Cropping 
Systems with Self-Reseedng Annual Legumes. CRC Press, New York, USA. 

Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H., 
1998. Non-point pollution of surface waters with phosphorus and nitrogen. 
Ecological Applications 8, 559-568. 

Cassman, K.G., DeDatta, S.K., Amarante, S.T., Liboon, S.P., Samson, M.I., Dizon, M.A., 
1996. Long-term comparison of the agronomic efficiency and residual benefits 
of organic and inorganic nitrogen sources for tropical lowland rice. 
Experimental Agriculture 32, 427-444. 

Cassman, K.G., Dobermann, A., Walters, D.T., 2002. Agroecosystems, nitrogeN-use 
efficiency, and nitrogen management. Ambio 31, 132-140. 

Chavas, D.R., Izaurralde, R.C., Thomson, A.M., Gao, X., 2009. Long-term climate change 
impacts on agricultural productivity in eastern China. Agricultural and Forest 
Meteorology 149, 1118-1128. 

Chen, H., Teng, Y., Wang, J., 2013. Load estimation and source apportionment of 
nonpoint source nitrogen and phosphorus based on integrated application of 



REFERENCES 

98 

 

SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China. 
Environmental monitoring and assessment 185, 2009-2021. 

Chen, Z., Yuan, F., Yao, Z., Zhou, C., Fu, G., Song, Y., Li, X., 1995. The movement and 
leaching loss of NO3-N in profile of chao soil in Beijing. Plant Nutrient and 
Fertilizer Science 1, 71-79. 

Chinese National Bureau of Statistic, 2013. 2012 National Economic and Social 
Development Statistic Bulletin, Beijing, China. 

Chun, L., 2007. The Simulation of Alfalfa Production Based on EPIC Model. Chinese 
Academy of Agricultural Sciences, Beijing, China. 

Chung, S.W., Gassman, P.W., Gu, R., Kanwar, R.S., 2002. Evaluation of EPIC for 
assessing tile flow and nitrogen losses for alternative agricultural management 
systems. Transactions of the ASABE 45, 1135-1146. 

Chung, S.W., Gassman, P.W., Huggins, D.R., Randall, G.W., 2001. EPIC tile flow and 
nitrate loss predictions for three Minnesota cropping systems. Journal of 
Environmental Quality 30, 822-830. 

Cook, D.J., Dickinson, W.T., Rudra, R.P., 1985. Games: the Guelph Model for Evaluating 
Effects of Agricultural Management Systems on Erosion and 
SedimentatioN-User's Manual Technical Report 126-71. School of Engineering, 
University of Guelph, Guelph, Canada. 

Dauden, A., Quilez, D., Vera, M.V., 2004. Pig slurry application and irrigation effects on 
nitrate leaching in Mediterranean soil lysimeters. Journal of environmental 
quality 33, 2290-2295. 

Delgado, J.A., Shaffer, M., Brodahl, M.K., 1998. New NLEAP for shallow and deep 
rooted rotations: Irrigated agriculture in the San Luis Valley of south central 
Colorado. Journal of Soil and Water Conservation 53, 332-337. 

Delgado, J.A., Shaffer, M.J., 2002. Essentials of a national nitrate leaching index 
assessment tool. Journal of Soil and Water Conservation 57, 327-335. 

Di, H.J., Cameron, K.C., 2002. Nitrate leaching in temperate agroecosystems: sources, 
factors and mitigating strategies. Nutrient Cycling in Agroecosystems 64, 
237-256. 

Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., 2002a. Review and 
Interpretation: Nitrogen Management Strategies to Reduce Nitrate Leaching in 
Tile-Drained Midwestern Soils. Agronomy Journal 94, 153-171. 



REFERENCES 

99 

 

Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., Colvin, T.S., 
Cambardella, C.A., 2002b. Nitrogen management strategies to reduce nitrate 
leaching in tile-drained midwestern soils. Agronomy Journal 94, 153-171. 

Duan, S.W., Zhang, S., Huang, H.Y., 2000. Transport of dissolved inorganic nitrogen 
from the major rivers to estuaries in China. Nutrient Cycling in Agroecosystems 
57, 13-22. 

Feng, Z.M., 2007. Future food security and arable land guarantee for population 
development in China. Population Research 31, 15-29. 

Forster, D.L., Richards, R.P., Baker, D.B., Blue, E.N., 2000. EPIC modeling of the effects 
of farming practice changes on water quality in two Lake Erie watersheds. 
Journal of Soil and Water Conservation 55, 85-90. 

Gabriel, J.L., Muñoz-Carpena, R., Quemada, M., 2012. The role of cover crops in 
irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen 
accumulation. Agriculture, Ecosystems & Environment 155, 50-61. 

Gabriel, J.L., Quemada, M., 2011. Replacing bare fallow with cover crops in a maize 
cropping system: Yield, N uptake and fertiliser fate. European Journal of 
Agronomy 34, 133-143. 

Gaiser, T., de Barros, I., Sereke, F., Lange, F.-M., 2010. Validation and reliability of the 
EPIC model to simulate maize production in small-holder farming systems in 
tropical sub-humid West Africa and semi-arid Brazil. Agriculture, Ecosystems & 
Environment 135, 318-327. 

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., 
Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the 
nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 
889-892. 

Garnett, T., Godfary, H.C.J., 2012. Sustainable intensification in agriculture: Navigating 
a course through competing fodd system priorities Food Climate Research 
Network and the Oxford Martin Programme on the Future of Food, University 
of Oxford, UK, pp. 6-9. 

Garnett, T., Appleby, M.C., Balmford, A., Bateman, I.J., Benton, T.G., Bloomer, P., 
Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., 
Smith, P., Thornton, P.K., Toulmin, C., Vermeulen, S.J., Godfray, H.C.J., 2013. 
Sustainable Intensification in Agriculture: Premises and Policies. Science 341, 
33-34. 

Gehl, R.J., Schmidt, J.P., Maddux, L.D., Gordon, W.B., 2005. Corn Yield Response to 
Nitrogen Rate and Timing in Sandy Irrigated Soils. Agronomy Journal 97, 1230. 



REFERENCES 

100 

 

Giampietro, M., Pastore, G., 2001. Operationalizing the concept of sustainabilitz in 
agriculture: Characterizing agroecosystems on a multi-Ceiteria, multiple Scale 
performance space. CRC Press, London, UK. 

Golden, M., Leifert, C., 1999. Potential risks and benefits of dietary nitrate. The Royal 
Society of Chemistry, Cambridge, UK. 

Goulding, K., 2004. Pathways and Losses of Fertilizer Nitrogen at Different Scales. 
Island Press, Washington, USA. 

Hall, M.D., Shaffer, M.J., Waskom, R.M., Delgado, J.A., 2001. Regional nitrate leaching 
variability: what makes a difference in north-eastern Colorado. . Journal of the 
American Water Resources Association 37, 139-148. 

Han, H. Y., Zhao, L. G., 2009. Farmers' Character and Behavior of Fertilizer 
ApplicatioN-Evidence from a Survey of Xinxiang County, Henan Province, China. 
Agricultural Sciences in China 8, 1238-1245. 

Hanly, J.A., Gregg, P.E.H., 2004. Green-manure impacts on nitrogen availability to 
organic sweetcorn (Zea mays). New Zealand Journal of Crop and Horticultural 
Science 32, 295-307. 

Heffer, P., 2009. Assessment of Fertilizer Use by Crop at the Global Level: 
2006/07-2007/08. International Fertilizer Industry Association, Paris, France. 

Howarth, R.W., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, 
T., Marcus, N., McGlathery, K., Sharpley, A., Walker, D., 2000. Nutrient pollution 
of coastal rivers, bays, and seas. Issues in Ecology 7, 1-15. 

Huang, J., Hu, R., Cao, J., Rozelle, S., 2008. Training programs and in-the-field guidance 
to reduce China's overuse of fertilizer without hurting profitability. Journal of 
Soil and Water Conservation 63, 165A-167A. 

Huang, J., Wang, X., Zhi, H., Huang, Z., Rozelle, S., 2011. Subsidies and distortions in 
China’s agriculture: evidence from producer-level data*. Australian Journal of 
Agricultural and Resource Economics 55, 53-71. 

Huang, J.K., Hu, R., Chao, J., Rozelle, S., 2009. Agricultural extension system reform and 
agent time allocation in China. China Economic Review 20, 303-315. 

Hubei Provincial Bureau of Statistics, 2008. Hubei Rural Statistical Yearbook. China 
Statistics Press, Beijing, China. 

Islam, M.R., Garcia, S.C., 2012. Rates and timing of nitrogen fertilizer application on 
yield, nutritive value and nutrient-use efficiency of early- and late-sown forage 
maize. Grass and Forage Science 67, 24-33. 



REFERENCES 

101 

 

Jamieson, P.D., Porter, J.R., Wilson, D.R., 1991. A test of the computer simulation 
model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops 
Research 27, 337-350. 

Janušauskaitė, D., Arlauskienė, A., Maikštėnienė, S., 2013. Soil mineral nitrogen and 
microbial parameters as influenced by catch crops and straw management. 
Zemdirbyste-Agriculture 100, 9-18. 

Jemo, M., Abaidoo, R.C., Nolte, C., Horst, W.J., 2006. Genotypic variation for 
phosphorus uptake and dinitrogen fixation in cowpea on low-phosphorus of 
southern Cameroon. Journal  of Plant Nutrition and Soil Science 169, 816-825. 

Jia, X.-p., Huang, J.-k., Xiang, C., Hou, L.-k., Zhang, F.-s., Chen, X.-p., Cui, Z.-l., Bergmann, 
H., 2013. Farmer's Adoption of Improved Nitrogen Management Strategies in 
Maize Production in China: an Experimental Knowledge Training. Journal of 
Integrative Agriculture 12, 364-373. 

Ju, X.-T., Liu, X.-J., Pan, J.-R., Zhang, F.-S., 2007. Fate of 15N-Labeled Urea Under a 
Winter Wheat-Summer Maize Rotation on the North China Plain. Pedosphere 
17, 52-61. 

Ju, X., Liu, X., Zhang, F., Roelcke, M., 2004. Nitrogen Fertilization, Soil Nitrate 
Accumulation, and Policy Recommendations in Several Agricultural Regions of 
China. AMBIO: A Journal of the Human Environment 33, 300-305. 

Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, 
P., Zhu, Z.L., Zhang, F.S., 2009. Reducing environmental risk by improving N 
management in intensive Chinese agricultural systems. Proceedings of the 
National Academy of Sciences of the United States of America 106, 3041-3046. 

Justes, E., Mary, B., Nicolardot, B., 2009. Quantifying and modelling C and N 
mineralization kinetics of catch crop residues in soil: parameterization of the 
residue decomposition module of STICS model for mature and non mature 
residues. Plant and Soil 325, 171-185. 

Küsters, J., Lammel, J., 1999. Investigations of the energy efficiency of the production 
of winter wheat and sugar beet in Europe. European Journal of Agronomy 11, 
35-43. 

Kormawa, P., Munyemana, A., Soule, B., 2003. Fertilizer market reforms and factors 
influencing fertilizer use by small-scale farmers in Bénin. Agriculture, 
Ecosystems & Environment 100, 129-136. 

Kramberger, B., Gselman, A., Janzekovic, M., Kaligaric, M., Bracko, B., 2009. Effects of 
cover crops on soil mineral nitrogen and on the yield and nitrogen content of 
maize. European Journal of Agronomy 31, 103-109. 



REFERENCES 

102 

 

Krug, F.J., Ruzicka, J., Hansen, E.H., 1979. Determination of Ammonia in Low 
Concentrations with Nessle ‘s Reagent by Flow Injection Analysis. Analyst 104, 
47-54. 

Kuangfei, L., Yaling, X., Xuefeng, L., Pastore, G., 1999. Loss of Nitrogen, Phosphorus, 
and Potassium Through Crop Harvests in Agroecosystems of Qianjiang, Hubei 
Province, PR China. Critical Reviews in Plant Sciences 18, 393-401. 

Kung, J.K.-s., Cai, Y.-S., 2000. Property Rights and Fertilizing Practices in Rural 
China-Evidence from Northern Jiangsu. Modern China 26, 276-308. 

Larson, B.A., Frisvold, G.B., 1996. Fertilizers to support agricultural development in 
sub-Saharan Africa: What is needed and why. Food Policy 21, 509-525. 

Larson, C., 2003. Losing Arable Land, China Faces Stark Choice: Adapt or Go Hungry. 
Science 339, 644-645. 

Leigh, R.A., Johnston, A.E., 1994. Long-term experiments in agricultural and ecological 
sciences. Oxford University Press, Wallingford, UK. 

Lena, B.V., 1994. Nutrient preserving in riverine transitional strip. Journal of Human 
Environment 3, 342-347. 

Levy, P.S., Lemeshow, S., 1999. Sampling for populations: Methods and applications 
(3rd ed.). . Johon Wiley & Sons, New York, USA. 

Li, B., Fan, C., 2009. Externality and dinking water safety treatment in rural area 
Jianghan Plain. Joumal of Economies of Water Resources 27, 42-45. 

Li, J., Dong, Z., Gong, J., Norse, D., 2006. Agrochemical use and nitrate pollution of 
groundwater in typical crop production areas of China- case studis in Hubei, 
Hunan, Shandong and Hebei provinces. China Environmental Science Press, 
Beijing. 

Li, Y., Zhang, W., Ma, L., Huang, G., Oenema, O., Zhang, F., Dou, Z., 2013. An Analysis of 
China's Fertilizer Policies: Impacts on the Industry, Food Security, and the 
Environment. Journal of environmental quality 42, 972-981. 

Li, Z., Zhao, L., Zhang, J., Chen, H., Zhou, Z., 2009. Strategic study on ecological 
environment protection for Liangzihu Lake. Environmental Science & 
Technology 32, 34-40. 

Li, Z.H., Sun, D.Z., 2009. Study on the ecological environment protection of Liangzihu 
Lake. Science Press, Beijing, China. 

Liu, G.-h., Li, E.-h., Yuan, L.-y., Li, W., 2008. Occurrence of aquatic macrophytes in a 
eutrophic subtropical lake in relation to toxic wastewater and fish overstocking. 
Journal of Freshwater Ecology 23, 13-19. 



REFERENCES 

103 

 

Liu, J., Diamond, J., 2005. China's environment in a globalizing world. Nature 435, 
1179-1186. 

Liu, J., Wiberg, D., Zehnder, A.J.B., Yang, H., 2007. Modeling the role of irrigation in 
winter wheat yield, crop water productivity, and production in China. Irrigation 
Science 26, 21-33. 

Lobell, D.B., Ortiz-Monasterio, J.I., Asner, G.P., 2004. Relative importance of soil and 
climate variability for nitrogen management in irrigated wheat. Field Crops 
Research 87, 155-165. 

Lord, Shepherd, M.A., 1993. Developments in the use of porous ceramic cups for 
measuring nitrate leaching. Journal of Soil Science 44, 435-449. 

Lu, J., Gong, D., Shen, Y., Liu, M., Chen, D., 2013. An inversed Bayesian modeling 
approach for estimating nitrogen export coefficients and uncertainty 
assessment in an agricultural watershed in eastern China. Agricultural Water 
Management 116, 79-88. 

Mapiki, A., Reddy, G.B., Singh, B.R., 1993. Fate of fertilizer- 15N to a maize crop grown 
in Northern Zambia. Acta Agric Scand, Sect B. Soil Plant Sci 43, 231-237. 

Marchetti, R., Donatelli, M., Spallacci, P., 1997. Testing denitrification functions of 
dynamic crop models. Journal of environmental quality 26, 394-401. 

Mckinney, P.A., Parslow, R., Bodansky, H.J., 1999. Nitrate exposure and childhood 
diabetes. The Royal Society of Chemistry, Cambridge, UK. 

McLaughlin, N.A., 2001. Improving nitrogen leaching preictions within the MCLONE4 
program. The Faclty of Graduate Studies. University of Guelph, Orrawa, Canada, 
p. 319. 

McLaughlin, N.A., Rudra, R.P., Ogilvie, J.R., 2006. Simulation of nitrate loss in tile flow 
for central Cannadian conditions. Canadian Biosystems Engineering 48, 
1.41-41.54. 

Meisinger, J.J., Hargrove, W.L., Mikkelsen, R.L., Williams, J.R., Benson, V.W., 1991. 
Effect of cover crop on groundwater quality. In: Hargrove, W.L. (Ed.), Cover 
crops for clean waer. Soil and Water Conservation Society, Ankeny, IA, USA. pp. 
57-68. 

Meyer-Aurich, A., Weersink, A., Gandorfer, M., Wagner, P., 2010. Optimal site-specific 
fertilization and harvesting strategies with respect to crop yield and quality 
response to nitrogen. Agricultural Systems 103, 478-485. 

Miguez, F.E., Bollero, G.A., 2005. Review of corn yield response under winter cover 
cropping systems using meta-analytic methods. Crop Science 45, 2318-2329. 



REFERENCES 

104 

 

Mitchell, C.C., Delaney, D.P., Balkcom, K.S., 2008. A historical summary of Alabama's 
old rotation (circa 1896): The world's oldest, continuous cotton experiment. 
Agronomy Journal 100, 1493. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 
2007. Model evaluation guidelines for systematic quantification of accuracy in 
watershed simulations. Transactions of the ASABE 50, 885-900. 

Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., Cleemput, O.V., 1998. 
Closing the global N2O budget nitrous oxide emissions through the agricultural 
nitrogen cycle. Nutrient Cycle in Agroecosystem 52, 225-248. 

Muñoz-Carpena, R., Ritter, A., Bosch, D.D., Schaffer, B., Potter, T.L., 2008. Summer 
cover crop impacts on soil percolation and nitrogen leaching from a winter corn 
field. Agricultural Water Management 95, 633-644. 

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. 
Closing yield gaps through nutrient and water management. Nature 490, 
254-257. 

Mueller, T., Thorup-Kristensen, K., 2001. N-fixation of selected green manure plants in 
an organic crop rotation. Biological Agriculture & Horticulture 18, 345-363. 

Mundus, S., Menezes, R.S.C., Neergaard, A., Garrido, M.S., 2008. Maize growth and soil 
nitrogen availability after fertilization with cattle manure and/or gliricidia in 
semi-arid NE Brazil. Nutrient Cycling in Agroecosystems 82, 61-73. 

National Bureau of Statistics of China, 2010. 
http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm. . 

Ngome, A.F.E., Becker, M., Mtei, K.M., 2011. Leguminous cover crops differentially 
affect maize yields in three contrasting soil types of Kakamega, Western Kenya. 
Journal of Agriculture and Rural Development in the Tropics and Subtropics 112, 
1-10. 

Niu, X., Easterling, W., Hays, C.J., Jacobs, A., Mearns, L., 2009. Reliability and input-data 
induced uncertainty of the EPIC model to estimate climate change impact on 
sorghum yields in the U.S. Great Plains. Agriculture, Ecosystems & Environment 
129, 268-276. 

Nyenje, P.M., Foppen, J.W., Uhlenbrook, S., Kulabako, R., Muwanga, A., 2010. 
Eutrophication and nutrient release in urban areas of sub-Saharan Africa — A 
review. Science of the Total Environment 408, 447-455. 

Nyombi, K., van Asten, P.J.A., Corbeels, M., Taulya, G., Leffelaar, P.A., Giller, K.E., 2010. 
Mineral fertilizer response and nutrient use efficiencies of East African highland 
banana (Musa spp., AAA-EAHB, cv. Kisansa). Field Crops Research 117, 38-50. 



REFERENCES 

105 

 

Odhiambo, J.J.O., 2011. Potential use of green manure legume cover crop in 
smallholder maize production systems in Limpopo province, South Africa. 
African Journal of Agricultural Research 6, 107-112. 

Olsen, S.R., Cole, C.V., Wantanabe, F.S., Dean, L.A., 1954. Estimation of Available 
Phosphorus in Soil by Extraction with Sodium Bicarbonate. USDA Circle. 939. 
U.S.Goverment Print Office, Washington, DC, USA. 

Pande, K.R., Becker, M., 2003. Seasonal soil nitrogen dynamics in rice-wheat cropping 
systems of Nepal. Journal of Plant Nutrition and Soil Science 166, 499-506. 

Pasuquin, J.M., Saenong, S., Tan, P.S., Witt, C., Fisher, M.J., 2012. Evaluating N 
management strategies for hybrid maize in Southeast Asia. Field Crops Research 
134, 153-157. 

Paudel, K.P., Lohr, L., Martin, N.R., 2000. Effect of risk perspective on fertilizer choice 
by sharecroppers. Agricultural Systems 66, 115-128. 

Pedersen, A., Thorup-Kristensen, K., Jensen, L.S., 2009. Simulating nitrate retention in 
soils and the effect of catch crop use and rooting pattern under the climatic 
conditions of Northern Europe. Soil Use and Management 25, 243-254. 

Peng, S.B., Buresh, R.J., Huang, J.L., Yang, J.C., Zou, Y.B., Zhong, X.H., Wang, G.H., Zhang, 
F.S., 2006. Strategies for overcoming low agronomic nitrogen use efficiency in 
irrigated rice systems in China. Field Crops Research 96, 37-47. 

Pilbeam, C.J., Gregory, P.J., Munankarmy, R.C., Tripathi, B.P., 2004. Leaching of nitrate 
from cropped rainfed terraces in the mid-hills of Nepal. Nutrient Cycling in 
Agroecosystems 69, 221-232. 

Piotrowska, A., Wilczewski, E., 2012. Effects of catch crops cultivated for green manure 
and mineral nitrogen fertilization on soil enzyme activities and chemical 
properties. Geoderma 189-190, 72-80. 

Power, J.F., Schepers, J.S., 1989. Nitrate contamination of groundwater in North 
America Agriculture Ecosystems & Environment 26, 165-187. 

Qiao, F., Lohmar, B., Huang, J., Rozelle, S., Zhang, L., 2003. Producer benefits from 
input market and trade liberalization: The case of fertilizer in China. American 
Journal of Agricultral Economics 85, 1223-1227. 

Qiao, J., Yang, L., Yan, T., Xue, F., Zhao, D., 2013. Rice dry matter and nitrogen 
accumulation, soil mineral N around root and N leaching, with increasing 
application rates of fertilizer. European Journal of Agronomy 49, 93-103. 



REFERENCES 

106 

 

Qin, J., Impa, S.M., Tang, Q., Yang, S., Yang, J., Tao, Y., Jagadish, K.S.V., 2013. Integrated 
nutrient, water and other agronomic options to enhance rice grain yield and N 
use efficiency in double-season rice crop. Field Crops Research 148, 15-23. 

Qiu, D., Wu, Z., Liu, B., Deng, J., Fu, G., He, F., 2001. The restoration of aquatic 
macrophytes for improving water quality in a hypertrophic shallow lake in 
Hubei Province, China. Ecological Engineering 18, 147-156. 

Quemada, M., Cabrera, M.L., 2002. Characteristic moisture curves and maximum 
water content of two crop residues. Plant and Soil 238, 295-299. 

Rabbel, I., 2013. Modeling tree water use and soil water dynamics of irrigated 
afforestation plantation in Khorezm (Uzbekistan). Geographsches intitut. Bonn 
University, Bonn, Germany, p. 79. 

Ramanarayanan, T.S., Storm, D.E., Smolen, M.D., 1998. Analysis of nitrogen 
management strategies using EPIC. Journal of the American Water Resources 
Association 34, 1199-1211. 

Restovich, S.B., Andriulo, A.E., Portela, S.I., 2012. Introduction of cover crops in a 
maize–soybean rotation of the Humid Pampas: Effect on nitrogen and water 
dynamics. Field Crops Research 128, 62-70. 

Roloff, G., Jong, d.R., c, N.M., 1998a. Crop yield, soil temperature and sensitivity of 
EPIC under central-eastern Canadian conditions. Canadian Journal of Soil 
Science 78, 431-439. 

Roloff, G., Jong, d.R., Campbell, C.A., Zentner, R.P., Benson, V.M., 1998b. EPIC 
estimates of soil water, nitrogen and carbon under semiarid temperate 
conditions. Canadian Journal of Soil Science 78, 551-562. 

Rudra, R.P., Ahmed, S.I., McLaughlin, N.A., Goel, P.K., 2011. Simulating nitrogen 
pollution potential in surface and subsurface runoff in Ontariao using EPIC 
model. Canadian Biosystems Engineering 53, 1.11-11.18. 

Sainju, U.M., Singh, B.P., Whitehead, W.F., Wang, S., 2007. Accumulation and crop 
uptake of soil mineral nitrogen as influenced by tillage, cover crops, and 
nitrogen fertilization. Agronomy Journal 99, 682-691. 

Salmerón, M., Isla, R., Cavero, J., 2011. Effect of winter cover crop species and planting 
methods on maize yield and N availability under irrigated Mediterranean 
conditions. Field Crops Research 123, 89-99. 

Salmeron, M., Cavero, J., Quilez, D., Isla, R., 2010. Winter Cover Crops Affect 
Monoculture Maize Yield and Nitrogen Leaching under Irrigated Mediterranean 
Conditions. Agronomy Journal 102, 1700-1709. 



REFERENCES 

107 

 

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimating gneralized 
soil-water characteristics from texture. Soil Science Society of America Journal 
50, 1031-1036. 

Schilling, K.E., Wolter, C.F., 2001. Contribution of base flow to non-point source 
pollution loads in an agricultural watershed. Ground Water 39, 2001. 

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. 
Agricultural and Forest Meteorology 189-190, 115-117. 

Seligman, N.G., Van Keulen, H., 1981. PAPRAN: A simulation model of annual pasture 
production limited by rainfall and nitrogen, Pudoc, Wageningen, The 
Netherlands. 

Sharpley, A., Jones, C.A., Williams, J.R., 1990. The nutrient component of EPIC. In: 
Sharpley, A., Williams, J.R. (Eds.), EPIC-Erosion/Productivity Impact Calcualtor: 1. 
Model Documentation. Department of Agriculture, Temple, TX, USA. 

Sitthaphanit, S., Limpinuntana, V., Toomsan, B., Panchaban, S., Bell, R.W., 2010. 
Growth and Yield Responses in Maize to Split and Delayed Fertilizer Application 
on Sandy Soils Under High Rainfall Regimes. Natural.Sciences. 44, 991-1003. 

Smil, V., 1999. Nitrogen in crop production: An account of global flows. Global 
Biogeochemical Cycles 13, 647-662. 

State Environment Protection Agency, 1998. Report on the State of Environment in 
China. Environment Protection, Beijing, China. pp. 3-9. 

State Environment Protection Agency, 2003. Report on the State Environment in China 
Environment Protection, Beijing, China. pp. 3-17. 

Sun, B., Shen, R.-P., Bouwman, A.F., 2008. Surface N Balances in Agricultural Crop 
Production Systems in China for the Period 1980–2015. Pedosphere 18, 
304-315. 

Tamini, T., Mermoud, A., 2002. Water and nitrogen dynamics under irrigation onion in 
a semi-arid area. Irrigation and Drainage Systems 51, 77-86. 

Thomas, D.L., Evans, R.O., Shirmohammadi, A., Engel, B.A., 1998. Agricultural 
non-point source water quality models: their use and application. ASAE Annual 
International Meeting. ASAE, Nile Road, St.Joseph, USA, p. 2950. 

Thooko, L.W., Rudra, R.P., Dickinson, W.T., Patni, N.K., Wall, G.J., 1994. MODELING 
PESTICIDE TRANSPORT IN SUBSURFACE DRAINED SOILS. Transactions of the 
Asae 37, 1175-1181. 



REFERENCES 

108 

 

Thorup-Kristensen, K., Magid, J., Jensen, L.S., 2003. Catch crops and green manures as 
biological tools in nitrogen management in temperate zones. Advances in 
Agronomy, 79, 227-302. 

Tian, P., Zhao, G., Li, J., Gao, J., Zhang, Z., 2012. Integration of monthly water balance 
modeling and nutrient load estimation in an agricultural catchment. 
International Journal of Environmental Science and Technology 9, 163-172. 

Tian, Y.-H., Yin, B., Yang, L.-Z., Yin, S.-X., Zhu, Z.-L., 2007. Nitrogen runoff and leaching 
losses during rice-wheat rotations in Taihu Lake Region, China. Pedosphere 17, 
445-456. 

Tonitto, C., David, M.B., Drinkwater, L.E., 2006. Replacing bare fallows with cover crops 
in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N 
dynamics. Agriculture, Ecosystems & Environment 112, 58-72. 

Van Reeuwijk, L.P., 2002. Procedures for Soil Analysis. International Soil Reference and 
Information Centre, Wageningen, Netherlands. 

Vighi, M., Chiaudani, G., 1987. Eutrophication in Europe, the role of agricultural 
activities. Elsevier, Amsterdam, Netherlands. 

Vos, J., van der Putten, P.E.L., 2004. Nutrient cycling in a cropping system with potato, 
spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops 
on nitrate leaching in autumn and winter. Nutrient Cycling in Agroecosystems 
70, 23-31. 

Waithaka, M.M., Thornton, P.K., Shepherd, K.D., Ndiwa, N.N., 2007. Factors affecting 
the use of fertilizers and manure by smallholders: the case of Vihiga, western 
Kenya. Nutrient Cycling in Agroecosystems 78, 211-224. 

Wang, W., Lu, J., Li, Y., Zou, J., Su, W., 2013a. Fertilizer Plays an Important Role in 
Current Crop Production: A Case Study from Hubei. Better Crops 97, 18-20. 

Wang, W., Lu, J., Ren, T., Li, X., Su, W., Lu, M., 2012a. Evaluating regional mean optimal 
nitrogen rates in combination with indigenous nitrogen supply for rice 
production. Field Crops Research 137, 37-48. 

Wang, W., Lu, J., Ren, T., Li, Y., Zou, J., Su, W., Li, X., 2012b. Inorganic fertilizer 
application ensures high crop yields in modern agriculture: a large scale field 
case study in Central China. Journal of Food, Agiculture & Environment 10, 
703-709. 

Wang, X., Huang, J., Zhang, L., Rozelle, S., 2011a. The rise of migration and the fall of 
self employment in rural China's labor market. China Economic Review 22, 
573-584. 



REFERENCES 

109 

 

Wang, X., Wang, Q., Fan, J., Fu, Q., 2013b. Evaluation of the AquaCrop model for 
simulating the impact of water deficits and different irrigation regimes on the 
biomass and yield of winter wheat grown on China's Loess Plateau. Agricultural 
Water Manage 129, 95-104. 

Wang, X.C., Li, J., 2010. Evaluation of crop yield and soil water estimates using the EPIC 
model for the Loess Plateau of China. Mathematical and Computer Modelling 
51, 1390-1397. 

Wang, X.C., Li, J., Tahir, M.N., Hao, M.D., 2011b. Validation of the EPIC model using a 
long-term experimental data on the semi-arid Loess Plateau of China. 
Mathematical and Computer Modelling 54, 976-986. 

Warner, G.S., Stake, J.D., Guillard, K., Neafsey, J., 1997. Evaluation of EPIC for a shallow 
New England soil .2. Soil nitrate. Transactions of the Asae 40, 585-593. 

Williams, J., 2005. Understanding the Overuse of Chemical Fertilizer in China A 
synthesis of historic trends, recent studies, and field experiences. Macalester 
University, p. 29. 

Williams, J.R., Jones, C.A., Dyke, P.T., 1990. The EPIC model. In: Sharpley, A.N., Williams, 
J.R. (Eds.), EPIC-Erosion/Productivity Impact Caculator: 1. Model Documentation. 
U.S. Department of Agriculture, Temple, TX, USA, p. 235. 

Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A., 1989. THE EPIC CROP 
GROWTH-MODEL. Transactions of the Asae 32, 497-511. 

Williams, J.R., Nearing, M., Nicker, A., Skidmore, E., Valentin, C., King, K., Svabi, R., 
1996. Using soil erosion models for global change studies. Journal of soill and 
water conservation 51, 381-385. 

World Health Organization, 1984. Guidelines for drinking water quality. 
Recommendations. Vol.1. . WHO, Geneva, Switzerland. 

Wu, M., Tang, X., Li, Q., Yang, W., Jin, F., Tang, M., Scholz, M., 2013. Review of 
Ecological Engineering Solutions for Rural Non-Point Source Water Pollution 
Control in Hubei Province, China. Water Air and Soil Pollution 224. 

Yang, L.Z., Sun, B., 2008. Nutrient cycle and balance management in Chinese 
agriculttural system. Science Press, Beijing, China. 

Yunju, L., Kahrl, F., Jianjun, P., Roland-Holst, D., Yufang, S., Wilkes, A., Jianchu, X., 2012. 
Fertilizer use patterns in Yunnan Province, China: Implications for agricultural 
and environmental policy. Agricultural Systems 110, 78-89. 

Zhang, G., Gong, Z., 2012. Analysis of soil total nitrogen content. Science Press, Beijing, 
China. 



REFERENCES 

110 

 

Zhang, J., Li, Z., Li, K., Huang, W., Sang, L., 2012. Nitrogen Use Efficiency under 
Different Field Treatments on Maize Fields in Central China: A Lysimeter and 15 

N Study. Journal of Water Resource and Protection 4, 590-596. 

Zhang, K.L., Shu, A.P., Xu, X.L., Yang, Q.K., Yu, B., 2008. Soil erodibility and its 
estimation for agricultural soils in China. Journal of Arid Environments 72, 
1002-1011. 

Zhang, S., Lovdahl, L., Grip, H., Tong, Y., Yang, X., Wang, Q., 2009. Effects of mulching 
and catch cropping on soil temperature, soil moisture and wheat yield on the 
Loess Plateau of China. Soil and Tillage Research 102, 78-86. 

Zhang, W., Tian, Z., 1995. Research about underground water nitrate pollution by 
nitrogen fertilizer application in south part of China. Journal of plant nutrient 
and fertilization 1, 80-87. 

Zhao, L., 2007. Effects of high precipitation and irrigation on nitrate movement in soil 
profiles. Plant nutrient. Chinese Agricultural University, Beijing, China. 

Zhao, R.F., 2006. Sustainability assessment of winter wheat and summer maize 
rotation system on optimizing the management of water and nitrogen 
resources. Plant Nutrient. Chinese Agricultural University, Beijing, China. 

Zheng.Y.M, Ding.Y.F, Wang.Q.S., Li.G.H, H.Z, W., Wang.S.H, 2007. Effect of nitrogen 
applied before transplanting on tillering and nitrogen utilization in rice. Acta 
Agronomica Sinaica 24, 513-519. 

Zhou, Y., Yang, H., Mosler, H.-J., Abbaspour, K.C., 2010. Factors affecting farmers’ 
decisions on fertilizer use: Acase study for the Chaobai watershed in Northern 
China. The Journal of Sustainable Development 4, 80-102. 

Zhu, J.G., Han, Y., Liu, G., Zhang, Y.L., Shao, X.H., 2000. Nitrogen in percolation water in 
paddy fields with a rice wheat rotation Nutrient Cycle Agroecosystem 57, 75-82. 

Zhu, Z., Zhang, F., 2010. Study on N fertilizer apllication in main Agro-ecosystem and 
improve N fertilizer utility. Science Press, Beijing, China. 

Zhu, Z.L., Chen, D.L., 2002. Nitrogen fertilizer use in China – Contributions to food 
production, impacts on the environment and best management strategies. 
Nutrient Cycle Agroecosystem 63, 117-127. 

Zhu, Z.L., Norse, D., Sun, B., 2006. Policy for reducing nonpoint pollution from crop 
production in China. Chinese Environmental Science Press, Beijing, China 

 



APPENDIX 

 

8. APPENDIX 

Appendix 1 List of information about field management in Hubei Province, Central 

China (2012-2013) 

Date Field operation 
2012  
15-April Plough the experimental field to approximately 8-12 cm depth and level the 

field.  
17-April Apply basic N fertilizer and all of the P, K fertilizer prior to sowing. Sow maize at 

a hill spacing of 50 cm × 50 cm with 2 seeds per hill. Spray pre-emergence 
herbicides for weed control. 

1-May Apply topdressing N fertilizer. Remove smaller plant, if there 2 germinations on 
one hill.  

31-May Apply N fertilizer to plots with N1 treatment. Clear weeds by hand hoeing. 
10-August Harvest maize, leave 5 cm stubble. Weigh fresh weight of plant tissues on site, 

and then transport plant tissues to the laboratory for chemical analysis in a 
closed plastic bag.  

11-August Remove maize residues from the plots; break the stubble and plough the field 
to approx. 8-12 cm depth. Sow cowpea in the cover crop treatment plots at a 
spacing of 40 cm × 50 cm. Weed control in plots with cover crop, leave weeds in 
bared fallow. 

6-October First cowpea pick. Pick cowpea fruit, and determine fresh weight of the 
production from each plot. 

20-October Second cowpea pick. Harvest straw and chop into 2-3 cm segments, leave straw 
on plots. Clean weeds in plots with bared fallow and chop into 2-3 cm 
segments. Plough all plots to approx. 8-12 cm depth, mixing plant segments 
with the soil. 

21-October Apply basic N fertilizer and P, K fertilizer for wheat season. Sow wheat by hand 
at the rate of 2.4 million seeds per ha with a row spacing of 20 cm. Spray 
pre-emergence herbicides for weed control. Control weeds by hand hoeing.  

2013  
9-March Apply topdressing N fertilizer.  
6-April Apply N fertilizer to plots with N1 treatment. 
17-April Sow maize in a seedbed near experimental field.  
19-May Harvest wheat leaving 5-cm stubble, and weigh aboveground biomass. 

Transport plant tissues to laboratory in a closed plastic bag. Remove all straw 
from the plots. Destroy stubbles by hand hoeing and plow field to 8-12 cm 
depth before for transplanting the maize 

20-May Transplant maize into plots at a hill spacing of 50 cm × 50 cm. Field 
management is the same as in the previous maize season. 

1-June Apply top dressing N fertilizer. 
24-June Apply N fertilizer to plots with N1 treatment. 
25-August Harvest maize and transport plant samples to laboratory.  
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Appendix 2 Map of household survey area in Liangzihu Lake basin, Hubei Province, 

Central China. 
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Appendix 3 Factors that Affect the Nitrogen Fertilizer Application4 

INTRODUCTION: I am a student from center for development research, Bonn University. This 

questionnaire is used to analyze the factors that relate to nitrogen fertilizer application. As an 

expert in agricultural practice, your answer is very important for us. Your answer will be only 

used for research purpose. This questionnaire is treated with anonymity; please feel free to 

answer this questionnaire. Thanks for your cooperation!   

Section 1 Background of farmers (Respondents are head of the householder) 

Gender: _____  Age:__________  Irrigate/Rain fed   Series NO:______   

1. How many people in your family last year 

A 1  B2  C 3  D 4  E 5  F______ 

1.1 Details about family members 

Sex_________________________, Age_________________________, 

Career______________________, Education_____________________ 

Salary______________________ 

2. How many labors5 are available in your home last year? 

 A 1  B 2  C 3  D 4  E 5  F______ 

3. How much arable land do you have?  

________ Mu,  paddy field,  arid land (15Mu=1ha) 

4. Do you have any other job? 

                                                      
4Most data from this questionnaire are from the year of 2013.   
5Labor means more than 18 years old and do farm work when needed, who can have other part time 

job.  
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  Yes, please answer next question      No 

4.1 How much did you earned from other job last year? 

__________________________ 

5. What is your education level? 

 A Without  B primary school  C high school  D specialized school  E______ 

6. What kind of crop(s) do you plant last year? 

  A Wheat, ___mu  B Maize, _____mu  C Rapeseed , _____mu  D Rice, _____mu  E Peanut, 

_____mu  F _________ 

7. How did you evaluate the fertility of your farmland? 

  A Very Fertile B Fertile  C Not Fertile  D Extremely Bad   

7.1 How did you get this conclusion? 

_____________________________________________ 

8. Does your farmland ever have a disaster6 (drought/flood) within recent 5 years? 

    Yes, details______________________           No 

9. Did you exchange your farmland with other farmer regularly? 

   Yes, Change cycle is ___________Years      No 

10 How many bags fertilizer did you applied in your farmland last year? 

  ________bags,  _____kg/bag.  Type of fertilizer _________ 

                                                      
6Disaster means any happening that causes great harm or damage; serious or sudden misfortune; calamity. 

Webster’s Dictionary (Neufeldt & Guralnik, 1997) 
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  _________ t organic fertilizer.   Type of organic fertilizer________ 

Section 2 Economic Factors 

11.  The total income7 did your family earned last year (Chinese ¥)?  

   A. ≤20,000  B 20,000- ≤30,000  C30,000- ≤40,000  D 40,000- ≤50,000 E>50,000 

12. Would you please estimate the yields that you had last year? 

  ________kg (Wheat, Maize, Rice, Rapeseed, _____) 

13. Had you received any subsides from government last year? 

   Yes, How much? _____________, For what? __________        No 

14. How much did you expect to gain from 1000RMB of fertilizer application? 

_______________________________.       I don’t know 

Section 3 Knowledge Factors 

15. Have you ever received the fertilizer knowledge training? 

    Yes, Where ________, When_________     No 

16. Where did you get the fertilizer knowledge? 

 A Experience   B Talk with other farmers  C Book  D Internet  F______ 

17. How did you apply the fertilizer? 

 A Machine   B Manually C Other methods,  ____________ 

18. Do you know how to identify the quality of fertilizer? 

                                                      
7Total income means annual household after-tax income includes salary, production sale and other 

income.   
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  Yes, How?______________. Example: ____________Good, ___________Bad         No, I don’t 

know. 

 19. Compare to 5 years ago, did you change the quantity of nitrogen fertilizer application? 

   Yes, (increase/decrease)   Why ________            No 

20. Do you agree that “the more nitrogen fertilizer the better for crop”?  

   Yes,             No, answer the next question 

201.1. How much nitrogen fertilizer do you think is suitable for your crops? 

  __________________________________________________ 

21. Have you ever applied any other fertilizer except nitrogen, phosphorous and potassium?  

     Yes, Which ______________                No, never 

Section 4 Other Factors 

22. The distance between home and farmland? 

      _________Km. or _________minutes by _________. 

23. The distance between home and nitrogen fertilizer sell point? 

       ________Km or _________minutes by _________. 

24. How did you transport the fertilizer? 

   A. Car.  B. Labor. C. Motor bike  D. ________ 

25. The road condition that used for nitrogen fertilizer transportation? 

   A. Village level   B. County level.  C. Municipal level.  D National level. 

26. Have you ever irrigated your farmland last year? 
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Yes, please answer the next question.  No 

26.1 How far from the water resource to your farmland? 

   _______________ Km.  

27. Do you know any policies that affect your fertilization in recent 5 years? 

For example: the “tax-free” policy. 

__________________________________________________________ 

28. Do you have special methods that may save the nitrogen fertilizer? 

___________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




