Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
- Fachbereich Pflanzenernährung -

Genetic and physiological factors of ozone tolerance in rice (*Oryza sativa* L.)

Inaugural – Dissertation zur Erlangung des Grades

Doktor der Agrarwissenschaften (Dr. agr.)

der Landwirtschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von

Yoshiaki Ueda

aus

Okayama, Japan

Referent: Koreferent: Koreferent: Fachnahes Mitglied: Vorsitzender: Tag der mündlichen Prüfung: Erscheinungsjahr: Prof. Dr. Michael Frei Prof. Dr. Florian M. W. Grundler Prof. Dr. Kazuhiko Kobayashi Prof. Dr. Lukas Schreiber Prof. Dr. Mathias Becker 21.08.2015 2015

Abstract

Intensive human activities have contributed to the increase of tropospheric ozone. Ozone is toxic to plants and causes serious damage to crop production and global food supply. Therefore it is necessary to adapt crops to high ozone concentration to cope with increasing ozone concentrations and a growing demand for food. To investigate the tolerance mechanisms and genetic factors conferring ozone stress tolerance, reverse-genetic and forward-genetic studies have been conducted in rice (*Oryza sativa* L.), which serves as the staple crop for more than half of the global population.

In the reverse-genetics approach, a previously suggested candidate gene, an *OZONE-RESPONSIVE APOPLASTIC PROTEINI* (*OsORAP1*), was characterized regarding its involvement in ozone stress tolerance. Knock-out of *OsORAP1* led to the mitigation of leaf visible symptoms and lipid peroxidation formation under ozone stress. Gene expression levels of jasmonic acid (JA) marker genes were higher in the knock-out line. These results showed that OsORAP1 is involved in the formation of leaf visible symptoms partly together with JA, which negatively regulates the cell death. Apoplastic localization of the protein was confirmed by transient expression of an OsORAP1/GFP fusion construct in *Nicotiana benthamiana* leaf epidermal cells. Sequence analysis revealed substantial polymorphisms in promoter sequences between susceptible Nipponbare and tolerant Kasalath cultivars. It reinforced the possibility that different promoter sequences were responsible for differential regulation of OsORAP1 expression, which eventually led to contrasting ozone stress tolerance.

A genome-wide association study was conducted to explore novel genetic factors related to ozone stress tolerance. A mapping population comprising 328 rice accessions was subjected to season-long ozone fumigation, and nine traits were evaluated. A broad range of responses was observed among the population, as well as significant ozone effect. The subsequent mapping with more than 30,000 genetic markers yielded 16 significant markers applying the threshold of P < 0.0001. Detailed sequence analysis for the candidate genes for leaf visible symptom formation revealed significant linkage between amino acid polymorphisms in a conserved motif in *RING* gene and detected genetic markers.

In conclusion, a novel mechanism and candidate genetic loci for ozone tolerance in rice were identified. It will open the way for ozone-tolerant crop breeding.

Kurzfassung

Intensive menschliche Aktivität hat zu erhöhter troposphärischer Ozonkonzentration geführt. Ozon verursacht verminderte Ernteerträge und bedroht folglich die Nahrungsmittelversorgung. Daher ist es dringend nötig Nutzpflanzen zu züchten, die tolerant gegen hohe Ozonkonzentrationen sind, um die stetig steigenden Ozonkonzentrationen und den wachsenden Bedarf an Nahrungsmitteln zu bewältigen. Um Toleranzmechanismen und genetische Faktoren zu erforschen, wurden reversegenetische und forward-genetische Untersuchungen in Reispflanzen (*Oryza sativa* L.) durchgeführt, die das Hauptnahrungsmittel für mehr als die Hälfte der Weltbevölkerung darstellen.

In der reverse-genetischen Methode wurde ein auf Ozon reagierendes apoplastisches Protein1 (OsORAP1) im Rahmen von Ozontoleranz charakterisiert, das zuvor als ein Kandidat für Ozontoleranz vorgeschlagen wurde. Die Knockout-Linie zeigte weniger Blattschäden und eine niedrigere Bildung von reaktiven Sauerstoffspezies und damit höhere Ozontoleranz als der Wildtyp. Jasmonsäure (JA)-verwandte Gene wurden in der Knockout-Linie hochreguliert. Diese Ergebnisse implizierten, dass OsORAP1 an der Bildung von Blattschäden (d. h. Zelltod) beteiligt sein könnte, teilweise mit JA, die unter Ozon den Zelltod unterdrückt hat. Eine transiente Expression eines GFP Fusionproteins in *Nicotiana benthamiana* lokalisierte OsORAP1 im Apoplast. Eine Sequenzanalyse offenbarte, dass Promotorsequenzen von *OsORAP1* zwischen Nippponbare und Kasalath Kultursorten eventuell der Grund für die unterschiedlichen Ozontoleranzen sein könnten.

Eine genomweite Assoziationskartierung (GWAS) wurde durchgeführt um nach neuen genetischen Faktoren für die Ozonstresstoleranz zu suchen. Insgesamt wurden 328 Reissorten aus 77 Ländern einer erhöhten Ozonkonzentration ausgesetzt. Ein breites Spektrum von Phenotypen und signifikanten Ozoneffekten wurde beobachtet. Die folgende Kartierung mit mehr als 30.000 genetischen Markern identifizierte 16 signifikanten Marker. Eine Sequenzanalyse von Kandidatengenen deckte einen signifikanten Zusammenhang zwischen detektierten Markern und Aminosäure-Polymorphismen im konservierten Motiv des *RING* Gens auf.

Zusammenfassend lässt sich sagen, dass neue Mechanismen sowie Kandidatenloci für die Ozontoleranz aufgedeckt wurden. Diese Ergebnisse werden sehr hilfreich für die Züchtung ozontoleranter Nutzpflanzen sein.

Dedication

I dedicate my thesis to my dearest family, who supported and encouraged me during my doctoral study in Germany. I would also like to dedicate my thesis to the late Prof. Dr. Haruto Sasaki (The University of Tokyo), who gave me great scientific inspirations and motivation on my research.

Acknowledgments

Foremost, I would like to sincerely thank Prof. Dr. Michael Frei for providing me with the great opportunity to work under his supervision, as well as guiding me throughout the research and sharing scientific knowledge with me. I would also like to thank Prof. Dr. Florian Grundler for being my co-supervisor. I also thank him for sharing experimental facilities with me. I would like to thank Prof. Dr. Kazuhiko Kobayashi for reading and giving comments on my thesis, despite a short notice. My gratitude also goes to Prof. Dr. Lukas Schreiber for accepting my request to be in the committee. I also would like to thank Prof. Dr. Mathias Becker for his contribution as the chairman.

My sincere thank also goes to the workers and students of Molecular Phytomedizine group, especially Dr. Shahid Siddique, for sharing their experimental technique and knowledge. Philipp Gutbrod helped me with cloning and bacteria transformation. Zoran Radakovic showed me basic handling of *Arabidopsis* plants. Julia Holbein helped me with confocal microscopy. I would like to thank many other people that I could not mention here due to the limitations of space.

I would also like to express my warm thanks to Prof. Dr. Thorsten Kraska and the technical staffs at the Campus Klein-Altendorf of University of Bonn. The genomewide association study would not have been possible without the most-advanced facility and their continuous support.

Prof. Dr. Matthias Wissuwa helped me during my stay in IRRI and field phenotyping training. I would also like to send my thanks to him for the introduction of the association mapping. I would also like to thank Jae-Sung Lee, who worked with me in the laboratory and field at IRRI and supported my stay.

My gratitude also goes to Prof. Dr. Andreas Meyer and Dr. Isabel Aller, who helped me with bioinformatic and phylogenetic analyses.

I would like to express my sincere appreciation to Benedict Chijioke Oyiga and Shree Pariyar, with whom I made many discussions about the association mapping. We also exchanged our knowledge and ideas, through which I obtained some new inspirations on my study.

Finally but not least, I would like to thank the workers in Pflanzenernährung for support in experiments and facility. Especially I would like to send gratitude to the colleagues in our group, Dr. João Abreu Neto, Dr. Stefanie Höller and Linbo Wu, for scientific discussions, supports with experiments and critical comments on my thesis. I really appreciate this small, hard-working and efficient group. Elsa Matthus gave me precious comments with deep insight. Felix Frimpong, Yitao Qi and Shangkun Lai made enormous contribution for the mapping study. Vitalij Dombinov shared his experiences with *Arabidopsis* transformation with me. Asis Shrestha conducted a biochemical analysis for me. David Sayaogo also helped me in the laboratory and the greenhouse. I am really grateful for the help that I received during my study.

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst habe, keine anderen als die angegebenen Hilfsmittel benutzt und die Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, kenntlich gemacht habe.

Diese Arbeit hat in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegen.

Bonn, den

Yoshiaki Ueda

Unterschrift

Table of Contents

Abstract	i
Acknowledgments	iv
Erklärung	vi
Table of Contents	vii
List of Figures	ix
List of Tables	xi
List of Abbreviations	xiii
Chapter 1 General Introduction	1
1. The threat of tropospheric ozone	1
2. Rice: the most important staple crop with great diversity	5
3. Ozone tolerance mechanisms	8
4. Genetic mapping of ozone stress tolerance	15
5. Aims of this study	18
References	
Chapter 2 Comparison of two high-throughput ascorbate measurements	32
Abstract	32
1. Introduction	33
2. Materials and Methods	35
3. Results and Discussion	39
4. Conclusions	48
References	49
Chapter 3 A novel gene OsORAP1 enhances cell death in ozone stress in rice	52
Abstract	52
1. Introduction	53

Table of Contents

2. Materials and Methods	56
3. Results	63
4. Discussion	79
5. Conclusions and Outlook	83
References	86
Chapter 4 Identification of novel loci involved in ozone stress tolerance in rice.	93
Abstract	93
1. Introduction	94
2. Materials and Methods	96
3. Results	101
4. Discussion	114
References	119
Chapter 5 General Discussion	124
1. Novel mechanisms and genetic loci for ozone tolerance in rice	124
2. Future perspectives	131
3. How can crop breeding contribute to future global food security?	134
References	150
Summary of the thesis	154
Appendices	168
Peer-review publications	250
Other scientific activities	252
Curriculum Vitae	253

List of Figures

Figure 1-1: Estimated increase of ozone concentration by 2050 compared with that of
2005 in the worst scenario
Figure 1-2: Subpopulation structure of <i>Oryza sativa</i>
Figure 1-3: Scheme of Halliwell-Asada cycle and other antioxidant systems in cytosol
and apoplast
Figure 1-4: Two QTLs affecting leaf symptom formation under ozone stress and their
effect in rice
Figure 1-5: Rice population used for the mapping in Zhao et al. (2011)
Figure 2-1: Correlation between standard AsA concentration and measured AsA
concentration
Figure 2-2: Standard curve generated by the DPD method
Figure 2-3: Absorbance spectrum of red cabbage sample and three AsA standards
subjected to the DPD assay compared with blank samples
Figure 2-4: Correlation of reduced and total AsA values of rice samples obtained from
an iron stress experiment using two analysis methods
Figure 3-1: Bioinformatic and physiological analysis of OsORAP1
Figure 3-2: Expression analysis of OsORAP1, two other ascorbate oxidase (AO) genes,
and a microRNA, <i>Osmir528</i>
Figure 3-3: Formation of leaf visible symptoms and biochemical parameters in three
rice lines
Figure 3-4: Effects of ozone on stomatal conductance and growth characteristics 70
Figure 3-5: Measures of oxidative stress in three rice lines
Figure 3-6: Ascorbate oxidase (AO) activity
Figure 3-7: Apoplastic ascorbate content and redox status
Figure 3-8: Involvement of OsORAP1 in phytohormone signalling
Figure 3-9: Sequence comparison of OsORAP1 of Nipponbare and Kasalath rice
cultivars
Figure 3-10: Proposed mode of action of OsORAP1 in rice
Figure 4-1: Box plots for relative phenotypic values
Figure 4-2: Association mapping result for square-root transformed leaf bronzing score
(t-LBS)

Figure 4-3: Association mapping result for relative dry weight (DW) 10)7
Figure 4-4: Association mapping results for relative single panicle weight (SPW) 10)8
Figure 4-5: Sequence variation of <i>EREBP</i> (<i>LOC_Os05g29810</i>)	0
Figure 4-6: Analysis of RING (LOC_Os05g29710)11	2
Figure 5-1: History of subpopulation divergence of rice	28
Figure 5-2: Manhattan plots in the neighbouring regions of previously identified QTLs	s.
	30
Figure 5-3: Transition of production and prices of rice since 1961 (adopted from	
Khush, 2001)	35
Figure 5-4: Correlation between relative shoot dry weight (x-axis) and relative total	
panicle weight (y-axis) 13	37

List of Tables

Table 2-1: Effects of different extraction solvents on the consistency between two
ascorbate analysis methods and the stability of ascorbate during storage on ice
Table 2-2: Recovery rates of reduced and total AsA in samples spiked with internal
standards
Table 2-3: AsA concentration measured with two analysis methods
Table 2-4: Effects of interfering pigments on ascorbate analysis in red cabbage
samples using two analysis methods
Table 2-5: Effects of iron on the consistency of ascorbate measurements in dilution
experiments
Table 2-6: Recovery rates in spiking experiments using AsA extracts obtained from
rice plants exposed to iron stress and control plants
Table 4-1: Effect of ozone stress on phenotypic values. 102
Table 4-2: Correlation coefficient and P value of pair-wise comparison of each
phenotype
Table 5-1: Origin of accessions in each subpopulation in the mapping population used
in Chapter 4 129
Table 5-2: Number of differentially regulated genes between Nipponbare and SL41.
Table 5-3: Number of differentially regulated genes between Nipponbare and SL46.
Table 5-4 Enriched gene ontology (GO) terms from the genes down-regulated in SL41.
Table 5-5 Enriched gene ontology (GO) terms from the genes up-regulated in SL41.
Table 5-6 Enriched gene ontology (GO) terms from the genes showing a significant
interaction between genotype and treatment between Nipponbare and SL41 142
Table 5-7 Enriched gene ontology (GO) terms from the genes down-regulated in SL46.
Table 5-8 Enriched gene ontology (GO) terms from the genes up-regulated in SL46.

List of Abbreviations

ACO	aminocyclopropane-1-carboxylic acid oxidase
ACS	aminocyclopropane-1-carboxylic acid synthase
AO	ascorbate oxidase
AOT40	accumulated ozone exposure over a threshold of 40 ppb
AsA	ascorbate
CSSL	chromosome segment substitution line
DHA	dehydroascorbate
DMF	dimethylformamide
DPD	2, 2'-dipyridyl
DTT	dithiothreitol
DW	dry weight
EREBP	ethylene-responsive element binding protein
ET	ethylene
FW	fresh weight
GLM	general linear model
GO	gene ontology
GWAS	genome-wide association study
HR	hypersensitive response
IWF	intercellular washing fluid
JA	jasmonic acid
КО	knock-out line
LBS	leaf bronzing score
LD	linkage disequilibrium
MAF	minor allele frequency
MDA	malondialdehyde

MLM	mixed linear model
MPA	metaphosphoric acid
NEM	N-ethylmaleimide
OE	over-expression line
ORAP1	OZONE-RESPONSIVE APOPLASTIC PROTEINI
PCA	principal component analysis
PCD	programmed cell death
PSII	photosystem II
RING	really interesting new gene
ROS	reactive oxygen species
Rubisco	1,5-bisphosphate carboxylase/oxygenase
QQ plot	quantile-quantile plot
QTL	quantitative trait locus
SA	salicylic acid
SNP	single-nucleotide polymorphism
TCA	trichloroacetic acid
TGAL	thioglycolic acid lignin
TKW	thousand kernel weight
t-LBS	square-root transformed leaf bronzing score
TPW	total panicle weight
SPW	single panicle weight

Chapter 1 General Introduction

1. The threat of tropospheric ozone

Human activity causes many effects on the surrounding environment. Since the industrial era, water, soil and air have been changing in an unprecedented speed ever in the human history. Most of the consequences of human activities lead to unfavourable effect, which is acknowledged as environmental pollution, and this in turn causes serious problems to human life. One of the most serious environmental pollutions emerging these years is tropospheric ozone (Akimoto, 2003).

Ozone is formed by photochemical reactions from oxidized nitrogen (NO_x, including NO and NO₂), carbon monoxide (CO) and volatile organic compounds (VOCs) such as methane, all of which are contained in exhaust gas from transportations and industries (Yamaji et al., 2006). While ozone concentration in the stratosphere (which is termed 'good ozone' due to the capacity to block harmful ultraviolet-B radiation from the space) is decreasing, the ozone concentration in the troposphere (termed 'bad ozone') has been rising since the last century, which is ascribed to the elevated anthropogenic gas emission (Donahue, 2011). For instance, the emission of NO_x is estimated to double by 2020 compared with 1990 in some areas (Streets and Waldhoff, 2000), and this increase of NO_x emission is considered to be the main contributor to the increase of ozone concentration in the troposphere. This elevated anthropogenic gas emission has led to the current background concentration of nearly 90 ppb in some areas in the summer season (Yamaji et al., 2006), which is considerably higher than that of the beginning of the 20th century (less than 20 ppb) (Vingarzan, 2004). The current anthropogenic gas emission will further exacerbate the situation in the future. Dentener et al. (2006) estimated the current and future increase of ozone concentration in the troposphere as 2 to 4 ppb per year depending on the extent of anthropogenic gas emission and air quality legislations. Large increase of ozone concentration is

expected in Asian countries, especially in South Asia and China (Fig. 1-1). These are highly developing areas and the precursor gas emission is also dramatically growing.

Figure 1-1: Estimated increase of ozone concentration by 2050 compared with that of 2005 in the worst scenario (Lei *et al.*, 2013). The below bar shows the extent of concentration shift (unit, ppb).

Tropospheric ozone is harmful for living organisms. For human bodies, high tropospheric ozone concentration causes respiratory diseases, asthma, increased allergy and higher mortality rate (Sheffield et al., 2011; Shiraiwa et al., 2011; Orru et al., 2013). For plants and natural vegetation, negative effects caused by ozone encompass multiple levels. At the plant community and ecosystem level, elevated tropospheric ozone causes lower biomass production, which derives from impaired CO₂ assimilation rate due to closure of stomata and dysfunction of photosynthetic apparatus (Ainsworth et al., 2012). This loss of CO2 fixation, together with impaired carbon sequestration to the soil (Loya et al., 2003), affects the global carbon cycle. It leads to the increase of CO_2 in the atmosphere, which might accelerate global warming and further climate change (Ainsworth et al., 2012). At the individual plant level, ozone causes cell death and alteration in the chemical composition, as well as negative effects on the biomass production (Frei et al., 2011; Wang and Frei, 2011). These affected plants, especially in case of agricultural crops, cause decline of crop quality and hence detrimental economic losses (discussed later). For example, cereals and legume crops generally have higher protein concentration in the harvested fraction

under ozone stress compared with the control condition (Wang and Frei, 2011). This is not favourable since high protein content in grain leads to the deterioration of the taste, for example, in rice (Matsuzaki *et al.*, 1973).

The impacts of elevated tropospheric ozone concentration on plants have been estimated by modelling studies. It has been known that the dose of ozone and the effects on plants have positive correlation. In crop fields and forest, an index which shows a good applicability for the assessment of the extent of impact caused by ozone is 'accumulated ozone exposure over a threshold 40 ppb (AOT40)'. The index AOT40 and the relative crop yield show strong negative correlations (Mills et al., 2007), and therefore, is used frequently for the modelling. In this model, ozone concentration up to 40 ppb is not considered to have any effects on plants, and the concentration above 40 ppb is summed up over time to estimate the impact of ozone. In other words, it is deduced that the critical effect of ozone begins to emerge above 40 ppb. In recent years, the average concentration has by far exceeded this threshold, which readily implies the presence of toxicity to vegetation. Indeed, in urban areas, one can already see detrimental effects of tropospheric ozone on vegetation (Feng et al., 2014). Teixeira et al. (2011) conducted yield prediction modelling in four major crops. In their research, it was illustrated that more than 10% of crop yield might be lost because of high tropospheric ozone in some areas. Especially in China and India, which are responsible for almost 50% of world's rice production, more than 10 million t is estimated to be lost every year in each country. These crop losses lead to economic damage, as well as food shortage. Van Dingenen et al. (2009) estimated that the global economic loss of crops caused by elevated tropospheric ozone is 14-26 billion USD annually.

In the light of global population growth and increasing hunger, it is becoming of utmost importance to keep enough supply of food for the growing demands. Due to the shift of dieting habits and increasing population, which is expected to reach 9 billion (FAO STAT, http://faostat3.fao.org/home/E, as of November 2014), the demand for food supply is expected to double by 2050 (Tilman *et al.*, 2011). Moreover, the demand for high yield is growing also because of the shrinking area of the earth surface suitable for cropping. Many adverse environmental conditions (*e.g.* drought and nutrient toxicity/deficiency) and too intensive agricultural systems have been limiting the productivity and lessening the available land surface for agriculture (Foley

et al., 2005). Current rice production is only achieved less than 45% of the maximum capacity, partly due to environmental constraints (Mueller *et al.*, 2012). Considering the large amount of crop loss due to elevated tropospheric ozone, much potential is left to improve food supply by coping with the huge impact of ozone on cropping or mitigating the effect of tropospheric ozone on farms. Therefore, the adaptation of agricultural crops for high tropospheric ozone concentration, which accounts for fairly large amount of crop losses, is becoming urgently necessary.

2. Rice: the most important staple crop with great diversity

Rice is classified in genus Oryza in the grass family (Wang et al., 2006). Among the Oryza genus, two species, namely Asian rice (O. sativa) and African rice (O. glaberrima), are two domesticated species (Wang et al., 2006). O. sativa is widespread around the world and constitutes most of the cultivated rice. On the other hand, O. glaberrima is a perennial species grown only in West Africa^{*} (Juliano, 1993; Linares, 2002). Rice has been grown as a crop since prehistoric time for approximately 10,000 years (Jiang and Liu, 2006), feeding people longer than any other crop species (Maclean et al., 2002). It is suitable as a staple crop for many reasons: (i) it has high yield capacity (reaching nearly 10 t/ha in optimal conditions), implying that a large number of people can be fed with smaller field area; (ii) it has many diverse cultivars adapted to many climate conditions, enabling the cultivation in many parts of the world; and (iii) it is abundant in protein (around 7 to 8% in milled rice) and micronutrients such as vitamin B, vitamin E, zinc and iron, providing people with sufficient nutrients (Juliano, 1993). The annual production of rice sums up to 750 million t in 2013 (FAO STAT), which is the third greatest yield among the cereal crops, next to wheat and maize. Nowadays, grown in more than 110 countries in the world, it stands as the staple crop for more than half of the world's population (Maclean et al., 2002). It is an important crop also because of usability of the straw. The rice straw can be used as a material for handcrafts or houses, and it also plays a role as feed for livestock. For example, the rice straw is fed to more than 90% of ruminants in Asia (Devendra and Sevilla, 2002), which demonstrates a highly important role of rice straw in livestock farming in this area. Thus, it is clear that rice is the most important crop in the world, not only as a food supporting a huge population in large area of the Earth but also as an important resource for humans and livestock.

The origin of the cultivated rice is estimated to be South China, near the middle area of the Pearl River, considering the genetic architectures of the wild rice and domesticated rice (Huang *et al.*, 2012). First, a certain group of wild rice (*O. rufipogon*) acquired/lost some important traits, such as self-crossing habit, grain size

^{*} Therefore 'rice' refers to O. sativa hereafter unless otherwise mentioned.

and shattering habit. Hereby the domestication began, which is the origin of, as currently known, the *japonica* subgroup of rice. After that, these *japonica* rice cultivars were crossed with another type of *O. rufipogon* in South and Southeast Asia and developed into the currently known *indica* subgroup. Subsequently, each of the *japonica* and *indica* subgroups developed into several subpopulations (discussed later). Nowadays, more than 100,000 types of rice are stored in the gene bank of the International Rice Research Institute (IRRI) (IRRI website, http://irri.org/ourwork/research/genetic-diversity/international-rice-genebank, as of November 2014). This number is considerably greater than the current maize seed bank resources (28,000 samples, CYMMT website, http://www.cimmyt.org/en/germplasm-bank, as of November 2014). Hence, rice is one of the most diverse crop species, which was probably achieved by the outcrossing habit of ancestor species (Kovach *et al.*, 2007), broad geographical distribution and long history of cultivation.

In addition to the fact that rice is a staple crop with utmost importance, it has relatively small genome size. The rice genome is diploid and has a total genome size of 389 Mb (in the cultivar Nipponbare), which is considerably smaller compared with other crops; tetraploid maize (Zea mays) has 2,500 Mb, and hexaploid wheat (Triticum aestivum) has 17,000 Mb (Feuillet et al., 2011). It urged the researchers to determine the complete genomic code of rice for the first time in any crop species in 2005 (International Rice Genome Sequencing Project, 2005). It opened the era for functional genomics research in rice. Nowadays, in the time of post-genome era, population genetics and exploitation of diverse cultivars have been acknowledged as highly important for deeper understanding of the species (Li and Zhang, 2013). In 2005, 234 rice cultivars were genotyped by simple sequence repeats markers and it revealed existence of five subpopulations in rice: aus, indica, aromatic, temperate japonica, and tropical japonica (Fig. 1-2, the first two belong to indica subgroup and the latter three belong to *japonica* subgroup; Garris et al., 2005). Recently, approximately 3,000 rice cultivars were completely *de novo* sequenced, through which complex genetic architecture, genetic diversity and evolutionary history have been elucidated (The 3,000 rice genomes project, 2014).

Figure 1-2: Subpopulation structure of *Oryza sativa* (taken from Kovach *et al.*, 2007). Unrooted neighbour-joining tree was constructed based on 169 markers from 234 *O. sativa* cultivars. Five main subpopulations of rice are shown. The subpopulations *indica* and *aus* belong to *indica* subgroup, and the subpopulations *aromatic, tropical japonica* and *temperate japonica* belong to *japonica* subgroup. The branch colour represents the chloroplast haplotype.

Thus, rice is the most important crop in the world with great genetic diversity, which implies the large potential for investigations and exploitation of resources. Moreover, many diverse sources of information and tools to handle rice genomics and genetics have become available, and it opened the ways for in-depth investigations. Therefore, rice also serves as a crop with the most powerful and suitable material for investigations of genetic information, not to mention the importance as the food which supports a large population.

3. Ozone tolerance mechanisms

The effect of ozone on plants has been investigated for more than a century. It was more than 150 years ago that the toxicity of ozone was first acknowledged in plants. Lea (1864) observed that barley seedlings grew more slowly and the gravitropism was disrupted under an ozone atmosphere. Nearly a century later, a significant impact of tropospheric ozone on crop vegetation was proposed by Middleton (1956) and Middleton *et al.* (1958), when atmospheric pollution was becoming a serious problem in developed countries, causing substantial economic losses. At this point, major important findings were already made: (i) there were differences in the extent of damage among cultivars (*i.e.* genotypic differences); (ii) the effect on biomass and leaf visible symptom formation did not necessarily correlate (*i.e.* they are under different regulations); and (iii) the extent of symptoms and ozone concentration showed positive linear correlation (*i.e.* dose-dependency of ozone effect) (Middleton, 1956), all of which are the basis for the present-day research.

Investigations on the molecular level have been also conducted since the end of the 20th century. Since ozone is a gaseous substance, it is mainly taken up by plants through the stomata (Omasa et al., 2002). Ozone in the stomatal pore is quickly degraded into other substances, as shown by quasi-0 ozone concentration in the stomatal pore (Laisk et al., 1989). The toxicity of ozone derives from the free radicals formed after the degradation of ozone in the apoplast. Upon deposition of ozone in the apoplast, many kinds of highly reactive substances are produced. These molecules are termed reactive oxygen species (ROS). ROS include hydrogen peroxide (H_2O_2) , superoxide anion radical (O_2^{\bullet}) , hydroxyl radical (OH^{\bullet}) and many other reactive molecules including ozone itself. As the name implies, these molecules are highly reactive and cause changes in the chemical and physical composition of attacked molecules. For instance, ozone damages the lipids constituting cell membranes (Luwe et al., 1993), thus leading to loss of membrane functions such as fluidity and permeability (Nouchi, 2002). ROS are also capable of degrading proteins and cleaving DNA (Thompson et al., 1987). These types of damage do not only originate from incoming ozone itself, since ozone causes accumulation of secondary ROS, which further damage biomolecules (Ueda et al., 2013). ROS also react with other molecules in the apoplast such as lignin precursors. ROS deprive lignin precursors of hydrogen, thus enabling coupling of these precursors into polymers (Frei, 2013). The increase of lignin gives rigidity to cell walls, but it also leads to brittleness of the plant tissue. It may affect a plant's susceptibility to mechanical damage (Frei, 2013).

Considering these facts, it is highly important to efficiently scavenge ROS under ozone stress to cope with the incoming stress through both enzymatic and nonenzymatic pathways. Molecules reducing oxidative stress are termed antioxidants. Antioxidants usually deprive ROS of excessive electrons, thereby rendering more stable molecules and removing the toxicity of ROS. One of the most important antioxidants is ascorbate (AsA). AsA has two hydroxyl groups (-OH) and is capable of donating two electrons, producing two keton groups (=O). It is hydrophilic and soluble in water, and exists in many compartments of the cells. AsA has higher reactivity to ozone than lipids, which means that AsA can exhibit a protective role against the damage to lipid caused by ozone (Urbach et al., 1990). It functions as an effective radical scavenger by being a part of 'Halliwell-Asada cycle' (also termed 'ascorbate-glutathione cycle'), which is a system in living organisms to avoid excessive oxidative stress (Fig. 1-3; Asada, 1999). It is a cycle in which toxic H_2O_2 can be detoxified to water via the aid of AsA and glutathione, which was proposed by Foyer and Halliwell in 1976 (Foyer and Halliwell, 1976), and has been considered one of the most important metabolite cycles to remove excessive ROS under a variety of stress conditions (Asada, 1999).

The importance of AsA as a factor conferring stress tolerance to ozone has been known for a long time. It was already shown in the middle of the last century that exogenous application of AsA to plants resulted in partial or complete mitigation of foliar injury under elevated ozone concentrations (Freebairn, 1960; Menser, 1964), implying a positive effect of AsA for ozone tolerance in plant species. Later on, the importance of AsA under ozone stress was also demonstrated by the use of forward genetics. One *Arabidopsis (Arabidopsis thaliana)* mutant showing extreme sensitivity to ozone, which was named *SOZ1* (sensitive to ozone), was shown to have lower AsA content compared with the wildtype (Conklin *et al.*, 1996). Later, *SOZ1* locus, which was renamed *VTC1* (vitamin C), turned out to code a GDP-D-mannose pyrophosphorylase, which is one of the enzymes involved in AsA biosynthesis (Conklin *et al.*, 1997). The subsequent analyses using other AsA deficient mutants, *vtc2*, *vtc3* and *vtc4*, showed higher susceptibility to ozone in these mutants, which all had less than 50% of AsA content compared with the wildtype (Conklin *et al.*, 2000).

This further proved the importance of AsA to cope with ozone stress. The capacity of AsA to confer ozone stress tolerance has also been confirmed in other plant species by altering AsA concentration via reverse-genetic approaches (Frei *et al.*, 2012).

Figure 1-3: Scheme of Halliwell-Asada cycle (surrounded by the gray dashed square) and other antioxidant systems in cytosol and apoplast (modified after Pignocchi and Foyer, 2003). AO, ascorbate oxidase; APX, ascorbate peroxidase; AsA, reduced ascorbate; DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; GR, glutathione reductase; GSH, reduced glutathione; GSSG, oxidized glutathione; MDHA, monodehydroascorbate; MDHAR, monodehydroascorbate reductase; and SOD, superoxide dismutase.

AsA exists in many compartments of plant cells. The apoplast also contains fairly high concentration (mM order) of AsA (Horemans *et al.*, 2000). Moreover, the apoplastic space is void of NADPH, which is an indispensable factor in Halliwell-Asada cycle, although other ROS scavenging enzymes such as superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase seem to be present in the apoplast (Vanacker *et al.*, 1998; Pignocchi and Foyer, 2003). Therefore, it can be deduced that AsA, not glutathione or other antioxidant enzymes, determines the extent of ozone detoxification in the

apoplast because Halliwell-Asada cycle apparently is not functional in the apoplast due to lack of NADPH. Together with the fact that ozone enters plants through stomata and that the apoplastic space is the first cellular compartment to encounter ozone, it is conceivable that the apoplastic AsA could be a crucial factor determining ozone stress tolerance. This concept has been confirmed by many different approaches. From the physiological aspect, Luwe et al. (1993) experimentally showed that apoplastic AsA was oxidized after ozone fumigation and that reduced AsA detoxified the incoming ozone in the apoplast. In a more recent physiological study, Feng et al. (2010) compared two wheat cultivars showing contrasting tolerance to elevated ozone concentration. Through this study, it was found that the cultivar with higher apoplastic AsA showed higher tolerance to chronic ozone stress, demonstrating the role of apoplastic AsA as a determinant factor for ozone stress tolerance. Turcsányi et al. (2000) employed a physicochemical modelling approach and demonstrated that 30 to 40% of incoming ozone was detoxified by apoplastic AsA in Vicia faba. In another approach using reverse-genetics, Sanmartin et al. (2003) successfully modified the content and the redox status of apoplastic AsA by introducing an ascorbate oxidase (AO) gene into tobacco plants. The over-expression plants showed increase of AO activity and depletion of reduced AsA in the apoplast, which led to higher susceptibility to ozone in terms of leaf visible injury and photosynthetic activity. All these studies have led to the current consensus; the ozone is detoxified in the apoplast by AsA and it determines the extent of stress to plants.

As stated above, the formation of leaf visible symptoms is one of the unique reactions that ozone triggers in plants. It is also of high importance in agriculture, since the leaf visible symptoms can cause detrimental effects on the quality and production of leafy vegetables, forage crops, and ornamental plants (Middleton, 1956). Leaf visible symptoms under ozone stress in plants usually occur in the form of unevenly distributed small spot-like lesions, which often appear along veins (Wohlgemuth *et al.*, 2002), while some plant species show chlorotic leaf symptoms and bleaching (Langebartels *et al.*, 2002). The former type of symptoms resembles the ones developed during incompatible pathogen infection (Wohlgemuth *et al.*, 2002), which induces hypersensitive response (HR). HR is a reaction induced upon attack of incompatible pathogen and is characterized by programmed cell death in the infected leaves. In addition to the above-mentioned cell death, the similarity between ozone

stress and pathogen infection can be also portrayed from other perspectives, such as the induction of pathogenesis-related genes (PR genes) and production of ROS (Heath, 2000; Rao *et al.*, 2000). Schraudner *et al.* (1992) found that two of the *PR* genes, namely β -1,3-glucanase and chitinase, were induced under ozone stress in tobacco plants. Rao *et al.* (2000) noted that ROS formation, especially in the apoplast, is a specific characteristic common to both ozone stress (which directly induces apoplastic ROS) and pathogen infection. As a consequence of these similarities, enhanced pathogen tolerance was observed in ozone-treated plants (Yalpani *et al.*, 1994). However, these efforts linking ozone stress and pathogen infection have not completely elucidated specific mechanisms for ozone stress tolerance or the target genes for future crop breeding.

In more recent years, the mechanisms of cell death under ozone stress have been elucidated through intensive research by Kangasjärvi et al. (2005) in the model plant Arabidopsis. Plant hormones are major factors participating in the response to ozone and formation of visible symptoms. Especially, ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) play crucial roles in the signal transduction and cell death formation under ozone stress. The involvement of these plant hormones has been shown by using hormone-insensitive or hormone-overproducer mutant lines (Overmyer et al., 2000; Rao and Davis, 2001; Kangasjärvi et al., 2005). It is generally agreed that SA and ET stimulate the propagation of cell death, while JA contains cell death (Rao and Davis, 2001; Kangasjärvi et al., 2005). These regulation systems involve gene expression reprogramming. Since ozone first attacks the apoplastic space of the plant cells, it has to be transmitted to the nuclei and cellular organelles to facilitate proper acclimation/resistance such as changes of gene expression and photosynthetic properties. Several possible modes of action have been proposed to date: (i) direct transport of ROS, especially hydrogen peroxide, which has long life (approximately 1 ms) and small molecule size (Petrov and Van Breusegem, 2012), into the cytosol from the apoplast through aquaporins (Bienert and Chaumont, 2014); (ii) recognition of the overall redox status of antioxidants (e.g. AsA) in the apoplast (Munné-Bosch et al., 2012); (iii) involvement of receptor-like protein kinases on the plasma membrane, which transmits the external environmental status towards inside via phosphorylation (Wrzaczek et al., 2010); (iv) oxidative damage of membranes (Mueller and Berger, 2009); and (v) retrograde signalling from the plastids to the

12

nuclei (Baier and Dietz, 2005). To date, the involvement of these components are not clarified yet and no consensus has been claimed yet, although they are not mutually exclusive.

Contrary to the intensive exploration on the mechanisms of leaf visible symptoms, the physiological mechanisms of reduced biomass and grain yield under ozone stress have not been well described to date. Although some cultivars are more tolerant than others under ozone stress in terms of biomass production (*i.e.* the biomass production of some cultivars is less vulnerable to ozone stress; Frei *et al.*, 2008; Sawada and Kohno, 2009), few candidate genes for this trait have been proposed to date. In rice, Tsukahara et al. (2013) conducted a QTL mapping study and suggested an ABERRANT PANICLE ORGANIZATION 1 (APO1) as the candidate gene for total grain yield loss under chronic ozone stress. APO1, which codes an F-box protein, was implied to affect the grain yield by controlling the primary rachis branch formation, and it showed contrasting expression patterns between the tolerant and the susceptible cultivars (Tsukahara et al., 2013). Notably, the total grain yield was decreased although the total biomass production and photosynthesis rate were not substantially affected by ozone treatment in the study by Tsukahara et al. In another study, Shi et al. (2009) observed that the reduced rice grain yield under ozone stress was ascribed to decreased spikelets number per panicle, rather than the number of panicle or single grain mass. These studies imply that different resource allocation, rather than source limitation, determines the grain yield under ozone stress in rice. Some studies with the model plant Arabidopsis showed that the resource distribution under adverse conditions is responsible for determining biomass production, since the total available energy is limited (Lozano-Durán and Zipfel, 2015). A study by Todesco et al. (2010) identified an ACCELERATED CELL DEATH 6 (ACD6) gene, which confers broadrange biotic stress tolerance at the cost of retarded growth. The study by Todesco et al. illustrated plants' adaptive mechanism between vigorous growth and protection against pathogens. Recently, Lozano-Durán et al. (2013) proposed that a transcription factor BZR1 orchestrates the resource allocation to these two trade-off factors (i.e. growth and defence) under biotic stress and hence determines the biomass production in Arabidopsis. These studies point to the possibility that a key modulator, such as a transcription factor, determines the impact of ozone on the biomass production by affecting the resource allocation to growth and defence response under ozone stress.

Another explanation for reduced biomass production is that the lowered productivity under ozone stress is ascribed to significantly decreased leaf area and impaired photosynthetic activity (Ainsworth et al., 2012). Ozone causes impairment of photosynthesis and photosynthetic apparatus at multiple levels. Closure of stomata is one of the fastest physiological responses to elevated ozone, occurring within less than 10 min from the onset of ozone exposure (Vahisalu et al., 2008). Several mechanisms have been suggested for the stomatal closure (*i.e.* decreased stomatal conductance) under ozone stress. Paoletti and Grulke (2005) proposed that elevated CO₂ concentration in the stomatal pore due to impaired carbon assimilation rate (discussed later) is responsible for stomatal closure under ozone stress. On the other hand, Vahisalu et al. (2008) identified a protein SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) from an ozone-susceptible Arabidopsis mutant, which regulates anion effluxes in guard cells and therefore controls stomatal aperture under ozone (ROS) stress. The closure of stomata is considered as an adaptive mechanism for elevated ozone, since the stomatal aperture determines ozone flux and damage to the plants (Fiscus et al., 2005; Brosché et al., 2010; Hoshika et al., 2014). However, the closure of stomata succeedingly leads to lower CO₂ uptake, directly limiting the carbon availability for the photosynthetic apparatus. Ozone also damages photosystem II (PSII) reaction centre and decreases the efficiency of PSII (Fiscus et al., 2005; Kobayakawa and Imai, 2011), which catalyzes the first step of the light reaction of photosynthesis. Most notably, ozone lowers ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, which is the primary cause of decreased carbon assimilation (Fiscus et al., 2005). The transcript level of Rubisco small subunit, as well as protein content decreases under ozone stress (Fiscus et al., 2005; Ueda et al., unpublished data). These negative effects lead to lower production of carbohydrate and consequently, lower biomass production.

4. Genetic mapping of ozone stress tolerance

One major strategy to dissect quantitative genetic factors and get insight into unknown mechanisms underlying a certain trait is genetic mapping (Yano and Sasaki, 1997; Salvi and Tuberosa, 2005). In general, two parental cultivars showing contrasting phenotypes are crossed at the first step, and the mapping population is subsequently developed by various methods (reviewed in McCouch and Doerge, 1995; Collard et al., 2005). By obtaining genotypic and phenotypic data, chromosomal regions which carry genetic factors contributing to a certain phenotype (quantitative trait locus; QTL) can be identified. This mapping strategy is called QTL mapping. Probably due to the lack of proper mapping population and awareness of the threat of ozone, QTL studies under ozone stress in plant species were first conducted only after the year 2000. Several studies have successfully identified QTLs related to ozone stress in several plant species such as wheat (Quarrie et al., 2006), poplar (Street et al., 2011), and Arabidopsis (Brosché et al., 2010). The identification of QTLs clearly showed that ozone stress tolerance is genetically regulated. Rice is the first plant species in which QTL study was reported for ozone tolerance. Lee et al. (2000) used a tolerant cultivar Milyang 23 and a susceptible cultivar Gihobyeo as parental lines, and the resultant 164 recombinant inbred lines were used for mapping for leaf visible damage under acute ozone stress (300 ppb, 3 h). This study identified three QTLs on chromosomes 1, 7 and 11, which were responsible for the formation of leaf visible symptoms. Subsequent analysis revealed significant association between three DNA markers and the formation of leaf visible symptoms (Kim et al., 2004). However, as Chen et al. (2009) mentioned, acute and short-term (usually more than 150 ppb, for several hours) ozone exposure, and mild and long-term (usually less than 150 ppb, for more than a week) exposure result in different responses in plants in terms of distribution of damage and changes in photosynthetic parameters. This implies that the effect of extreme ozone stress cannot be directly applied to the mapping of long-term related traits such as biomass production and yield. As discussed above, the current ozone concentration in the troposphere is stably high (monthly average exceeding 70 ppb in some areas in Asia; Yamaji et al., 2008), and the high ozone levels may persist for extended periods of time. Therefore taking into account the future application of mapping for the agriculture, a mapping under mild and long-term exposure of ozone would have been needed.

In a detailed QTL mapping study in rice by Frei et al. (2008), a temperate japonica rice cultivar Nipponbare (sensitive to ozone) and an aus rice cultivar Kasalath (tolerant to ozone) served as parental lines. A QTL mapping was conducted targeting leaf visible injury, biomass production and stomatal conductance under long-term ozone stress. A total of six loci were identified through the mapping. Among them, three QTLs (OzT3, OzT8 and OzT9) were verified using chromosomal segment substitution lines (CSSLs) containing each QTL. As a result, it was shown that a CSSL line SL41 harbouring the OTL on the chromosome 9 (OzT9) from Kasalath allele in the genetic background of Nipponbare showed attenuated leaf visible symptoms under ozone stress. Another CSSL line SL15 harbouring the QTL on the chromosome 3 (OzT3) from the tolerant cultivar Kasalath showed accelerated formation of leaf visible symptoms (Fig. 1-4). The other QTL on chromosome 8 (OzT8) derived from Kasalath was responsible for maintaining high biomass production under ozone stress. A detailed physiological study on OzT8 (Chen et al., 2011) showed that the photosynthetic capacity of SL46, which contains Kasalath allele at OzT8, was maintained high under ozone stress compared with Nipponbare. Another study focusing on leaf visible symptoms (Frei et al., 2010) revealed differential gene regulations and biochemical properties among Nipponbare and two CSSL lines, SL41 and SL15, which harbour OzT9 and OzT3 from Kasalath, respectively. In the latter study, a comparative transcriptome analysis, supplemented by the information of previous QTL mapping study, identified a potential candidate gene near the QTL OzT9, which might be involved in the formation of leaf visible symptoms under ozone stress (discussed later).

Figure 1-4: Two QTLs affecting leaf symptom formation under ozone stress and their effect in rice. SL41 and SL15 are chromosome segment substitution lines with Nipponbare genetic background with chromosome segment(s) from tolerant cultivar Kasalath. The 12 chromosomes of Nipponbare origin are shown in green colour, and the introgressions from Kasalath are shown in pale red colour. The detected QTLs, namely *OzT3* and *OzT9*, are shown in bright red colour. The below picture shows the extent of leaf visible symptoms after ozone stress in the two lines.

In addition to the mitigated leaf visible symptom formation in SL41 carrying *OzT9* locus from Kasalath allele, it was also associated with another favourable trait *i.e.* attenuated lignin formation under ozone stress. Lignin is one of the cell wall components, which gives rigidity to plant cells. Its formation is accelerated by ozone, probably by enhancing the radical formation of lignin precursors in the apoplast (Frei, 2013). SL41 showed significantly lower increase of lignin under elevated ozone concentration compared with the parent line Nipponbare (Frei *et al.*, 2011). Higher lignin content decreases the digestible fraction of rice straw, leading to lower feed value of the straw for the ruminant animals. Therefore lower lignin content under ozone stress in SL41 is an agronomically favourable trait.

5. Aims of this study

(I) Optimization of high-throughput apoplastic AsA analysis method

As mentioned above, the apoplastic AsA is considered to be a determinant for ozone stress tolerance. Therefore it is indispensable to measure the AsA content from the apoplast to assess and shed light on ozone stress tolerance in plant species. However, several factors have been making it difficult to analyse the apoplastic AsA levels in rice plants: (i) the extremely low content of AsA in the apoplast; (ii) the time and effort needed to obtain the apoplastic AsA from rice leaves; and (iii) the long time needed to analyse AsA in biological samples. In most cases, the apoplastic AsA is measured by first obtaining intercellular washing fluid (IWF), which is a mixture of apoplastic solution and infiltrated buffer. In detail, a buffer is first infiltrated into the apoplastic space of a leaf by vacuum and, if necessary, pressurization, and later the IWF is obtained by centrifugation, which is conducted at a gentle speed to avoid damage of cell membranes. This 'infiltration-centrifugation method' is preferable to other ones such as direct centrifugation method (Meinzer and Moore, 1988), perfusion method (Bernstein, 1971) and the chamber pressurization method (Jachetta et al., 1986) in terms of lower contamination by cytosolic compounds (Mühling and Sattelmacher, 1995). Considering the high AsA concentration in the cytosol, a slight contamination of cytosolic fluid in the IWF might distort the results and therefore should be avoided. The first step to obtain IWF by the infiltration-centrifugation method is to infiltrate a buffer solution into the apoplastic space from the stomata. Therefore, the effort needed for the infiltration step highly depends on the stomatal pore size. Rice has extremely small stomatal pore size (Nouchi et al., 2012), and it makes the infiltration difficult. This difficulty was overcome by repetition of vacuum and pressurization only recently (Nouchi et al., 2012). However, the extremely low amount of IWF obtained from the rice leaf samples and the time-consuming AsA measurement process still remained the hurdle for the analysis of apoplastic AsA from many samples. Moreover, AsA extract should be quickly assayed because extended storage leads to oxidation or degradation of AsA (Weissberger et al., 1943; Koshiishi and Imanari, 1997). High-throughput metabolite analysis is crucial for the phenotyping of large population, which is indispensable for a breeding process targeting certain trait or stress tolerance. In Chapter 2, two previously reported AsA analysis methods, namely the dipyridyl-based method and the AO-based method, were compared in

terms of sensitivity, accuracy and the effect of interfering substances in highthroughput protocols. This chapter provides a strong basis for the reliable, highly sensitive and high-throughput AsA measurements, which enabled the in-depth analysis of apoplastic AsA in rice.

(II) Characterization of a previously suggested candidate gene

Previous mapping and microarray studies by Frei et al. (2008, 2010) suggested a candidate gene underlying tolerance in SL41 compared with Nipponbare cultivar. This is a putative AO gene. Several lines of evidence support the plausibility of this gene as the genetic factor explaining the effect of the QTL OzT9 from Kasalath: (i) the gene expression level is highly induced (up to 100-fold) under ozone stress, and the expression patterns under ozone stress show differences among lines, being low in the tolerant line (SL41) while the susceptible lines (Nipponbare and SL15) showed higher expression than SL41; (ii) the selected putative AO is likely to control the oxidation of reduced AsA to the oxidized form, which relates to the previously established modes of action of ozone stress in the plant tissues; and (iii) the genetic locus of this gene is in the proximity of the identified OzT9 chromosomal region. To date, several studies have attempted to elucidate the physiological significance of AO family proteins in several plant species (reviewed in De Tullio et al., 2004, 2013). Conclusively, these studies have revealed higher stress tolerance in the AO knock-out lines and lower tolerance in the AO over-expression lines to abiotic stresses such as salinity stress, herbicide (methyl viologen), and oxidative stresses (hydrogen peroxide and ozone) (Sanmartin et al., 2003; Yamamoto et al., 2005). These pieces of evidence demonstrated the high cost of possessing AO, which have led to the notion that AO is a 'mysterious enzyme' (Dowdle et al., 2007). Although each plant species possesses multiple AO homologues (Hoegger et al., 2006; De Tullio et al., 2013), only five AO genes have been thus far experimentally shown to code enzymes with AO activity, through enzyme fractioning or genetic engineering: the ones from cucumber (Cucumis sativus) (Ohkawa et al., 1989), pumpkin (Cucurbita maxima) (Esaka et al., 1990), tobacco (Nicotiana tabacum) (Kato and Esaka, 1996; Pignocchi et al., 2003), tomato (Solanum lycopersicum) (Garchery et al., 2013) and Arabidopsis (Yamamoto et al., 2005). Many other 'AO proteins' were deduced based on the sequence similarity with previously known AO proteins, based on homology search or DNA hybridization

experiments using probe sequences originating from partial AO sequences. Therefore it remains still questionable if other homologues also possess AO activity. In Chapter 3, these questions were tackled by using reverse-genetics in rice. One knock-out and over-expression line of the rice putative AO gene, which was named *OZONE-RESPONSIVE APOPLASTIC PROTEINI (OsORAP1)*, were obtained and physiological and functional investigations were conducted. A novel physiological mechanism of cell death under ozone stress will be also discussed.

(III) Genome-wide association study under ozone stress

While previous studies successfully shed light on genetic factors contributing to the ozone stress tolerance in rice, the following three questions had not been addressed: (i) Are there some other novel genetic factors and genes involved in and determining the ozone stress tolerance in rice?; (ii) Are other traits besides leaf visible symptom formation and biomass production also controlled by genetic factors under ozone stress?; and (iii) What are these factors? One pitfall of the classical QTL mapping is that the mapping populations are derived from only two parental cultivars. The resolution of the mapping (i.e. the size of chromosomal segment identified by mapping) is limited by the genetic recombination events between the two parental cultivars. Furthermore, it neglects all the genetic factors which do not show sequence variation between the two cultivars. A new technique called 'genome-wide association study (GWAS)' has been developed in plant species in the last decade to overcome this limitation. In GWAS, dozens or hundreds of independent cultivars are used for the mapping, based on, in most cases in recent years, single-nucleotide polymorphism (SNP) markers across the genome of the species. In plant species, since the development of the first genome-wide SNP markers in Arabidopsis by Schmid et al. (2003), the power and usefulness of GWAS have been shown to date. Among many studies, the one by Atwell et al. (2010) is quite noteworthy in terms of the number of markers and phenotypic traits assessed. In the study by Atwell et al., a total of 216,130 SNP markers were used for the mapping of 107 traits from 199 *Arabidopsis* accessions. In rice, several large-scale GWASs including SNP genotyping have been conducted until now (Huang et al., 2010; Zhao et al., 2011; Huang et al., 2012; Chen et al., 2014). Among them, Zhao et al. (2011) used 413 different rice accessions from 82 countries, and genotyped them by 44,100 SNP markers (Fig. 1-5). Their study provided a strong
basis for the use of the population and the SNP markers to reveal hitherto unknown genetic factors underlying phenotypic traits in rice. The advantage of conducting GWAS in plant species is that the genotyping data can be used again if the same population is used for the mapping of other traits ('genotype or sequence once and phenotype many times over' strategy; Zhao *et al.*, 2011). Indeed, the same mapping population and genotyping data was utilized for mapping of aluminium stress tolerance (Famoso *et al.*, 2011), demonstrating the appropriateness of the population and SNP markers for abiotic stress tolerance. In Chapter 4, the first attempt to use GWAS for ozone stress in rice will be reported. This is the first GWAS under ozone stress in any crop species and provides evidence for the applicability of GWAS for environmental stresses. Based on the result of mapping and the sequence analyses, local linkage disequilibrium analysis was subsequently conducted. Potential candidate genes and their involvement in ozone stress tolerance will be also discussed.

Figure 1-5: Rice population used for the mapping in Zhao *et al.* (2011). The country of origin, the number of accessions deriving from the country, and subpopulation classification are shown. Representative grains from each subpopulation are shown below with and without hull.

In summary, this thesis investigated the following three main questions:

(I) How can AsA analysis be improved, especially for the analysis of apoplastic AsA?

What is the most appropriate analysis method?;

(II) How does the putative AO gene (*OsORAP1*) affect ozone stress tolerance in rice? Can this gene explain the effect of *OzT9* from the tolerant Kasalath cultivar mitigating ozone stress tolerance in rice?;

and

(III) Are other ozone-related traits besides leaf visible symptom and biomass production (shoot weight and total grain yield) also genetically regulated? Are there potential novel genetic loci affecting ozone stress tolerance in rice?

References

Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. *Annual review of plant biology* **63**, 637–661.

Akimoto H. 2003. Global air quality and pollution. Science 302, 1716–1720.

- **Asada K.** 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. *Annual review of plant physiology and plant molecular biology* **50**, 601–639.
- Atwell S, Huang YS, Vilhjálmsson BJ, et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631.
- Baier M, Dietz K-J. 2005 Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. *Journal of Experimental Botany* 56, 1449–1462.
- **Bernstein L.** 1971. Method for determining solutes in the cell walls of leaves. *Plant Physiology* **47**, 361–365.
- Bienert GP, Chaumont F. 2014. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. *Biochimica et Biophysica Acta* 1840, 1596–1604.
- Brosché M, Merilo E, Mayer F, *et al.* 2010. Natural variation in ozone sensitivity among *Arabidopsis thaliana* accessions and its relation to stomatal conductance. *Plant, Cell and Environment* 33, 914–925.
- **Chen CP, Frank TD, Long SP.** 2009. Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. *Plant, Cell and Environment* **32**, 327–335.
- Chen CP, Frei M, Wissuwa M. 2011. The *OzT8* locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. *Plant, Cell and Environment* 34, 1141–1149.
- Chen W, Gao Y, Xie W, *et al.* 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. *Nature genetics* **46**, 714–721.
- **Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK.** 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. *Euphytica* **142**, 169–196.
- Conklin PL, Pallanca JE, Last RL, Smirnoff N. 1997. L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant *vtc1*. *Plant Physiology* **115**, 1277–1285.
- Conklin PL, Saracco SA, Norris SR, Last RL. 2000. Identification of ascorbic aciddeficient Arabidopsis thaliana mutants. Genetics 154, 847–856.

- Conklin PL, Williams EH, Last RL. 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 9970–9974.
- Dentener F, Stevenson D, Ellingsen K, *et al.* 2006. The global atmospheric environment for the next generation. *Environmental Science & Technology* **40**, 3586–3594.
- **Devendra C, Sevilla CC.** 2002. Availability and use of feed resources in crop–animal systems in Asia. *Agricultural Systems* **71**, 59–73.
- Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. *Atmospheric Environment* **43**, 604–618.
- **Donahue NM.** 2011. Atmospheric chemistry: The reaction that wouldn't quit. *Nature chemistry* **3**, 98–99.
- Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. 2007. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal 52, 673–689.
- Esaka M, Hattori T, Fujisawa K, Sakajo S, Asahi T. 1990. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. *European Journal of Biochemistry* **191**, 537–541.
- Famoso AN, Zhao K, Clark RT, et al. 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS genetics 7, e1002221.
- Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J. 2010. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. *Environmental Pollution* 158, 3539–3545.
- Feng Z, Sun J, Wan W, Hu E, Calatayud V. 2014. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. *Environmental Pollution* 193, 206–301.
- Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. 2011. Crop genome sequencing: lessons and rationales. *Trends in plant science* 16, 77–88.
- Fiscus EL, Booker FL, Burkey KO. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. *Plant, Cell and Environment* 28, 997–1011.
- Foley JA, DeFries R, Asner GP, et al. 2005. Global consequences of land use. *Science* **309**, 570–574.
- Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. *Planta* **133**, 21–25.
- **Freebairn HT.** 1960. The prevention of air pollution damage to plants by the use of vitamin C sprays. *Journal of the Air Pollution Control Association* **10**, 314–317.
- Frei M. 2013. Lignin : Characterization of a multifaceted crop component. *The Scientific World Journal* 2013, 436517.

- Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker K. 2011. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. *Global Change Biology* 17, 2319–2329.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* **61**, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Südekum K-H, Kohno Y. 2012. Leaf ascorbic acid level–Is it really important for ozone tolerance in rice? *Plant Physiology and Biochemistry* **59**, 63–70.
- Garchery C, Gest N, Do PT, *et al.* 2013. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. *Plant, Cell and Environment* **36**, 159–175.
- Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in *Oryza sativa* L. *Genetics* 169, 1631–1638.
- **Heath MC.** 2000. Hypersensitive response-related death. *Plant molecular biology* **44**, 321–334.
- Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. 2006. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. *The FEBS Journal* 273, 2308–2326.
- Horemans N, Foyer CH, Potters G, Asard H. 2000. Ascorbate function and associated transport systems in plants. *Plant Physiology and Biochemistry* **38**, 531–540.
- Hoshika Y, Carriero G, Feng Z, Zhang Y, Paoletti E. 2014. Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. *Science of the Total Environment* 481, 453–458.
- Huang X, Kurata N, Wei X, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.
- Huang X, Wei X, Sang T, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature genetics 42, 961–967.
- International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. *Nature* **436**, 793–800.
- Jachetta JJ, Appleby AP, Boersma L. 1986. Use of the pressure vessel to measure concentrations of solutes in apoplastic and membrane-filtered symplastic sap in sunflower leaves. *Plant Physiology* **82**, 995–999.
- Jiang L, Liu L. 2006. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. *Antiquity* **80**, 355–361.

Juliano BO. 1993. Rice in human nutrition. Rome: FAO.

- Kangasjärvi J, Jaspers P, Kollist H. 2005. Signalling and cell death in ozone-exposed plants. *Plant, Cell and Environment* 28, 1021–1036.
- Kato N, Esaka M. 1996. cDNA cloning and gene expression of ascorbate oxidase in tobacco. *Plant molecular biology* **30**, 833–837.
- Kim K-M, Kwon Y-S, Lee J-J, Eun M-Y, Sohn J-K. 2004. QTL mapping and molecular marker analysis for the resistance of rice to ozone. *Molecules and cells* 17, 151–155.
- Kobayakawa H, Imai K. 2011. Effects of the interaction between ozone and carbon dioxide on gas exchange, photosystem II and antioxidants in rice leaves. *Photosynthetica* **49**, 227–238.
- Koshiishi I, Imanari T. 1997. Measurement of ascorbate and dehydroascorbate contents in biological fluids. *Analytical Chemistry* **69**, 216–220.
- Kovach MJ, Sweeney MT, McCouch SR. 2007. New insights into the history of rice domestication. *Trends in genetics* 23, 578–587.
- Laisk A, Kull O, Moldau H. 1989. Ozone concentration in leaf intercellular air spaces is close to zero. *Plant Physiology* 90, 1163–1167.
- Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H. 2002. Oxidative burst and cell death in ozone-exposed plants. *Plant Physiology and Biochemistry* 40, 567–575.
- Lea MC. 1864. On the influence of ozone and some other chemical agents on germination and vegetation. *American Journal of Science* **37**, 373–376.
- Lee JJ, Kwon YS, Sohn JK. 2000. Identification of RFLP marker associated with ozone resistance in rice. *Korean Journal of Breeding* **32**, 279–284.
- Lei H, Wuebbles DJ, Liang X-Z, Olsen S. 2013. Domestic versus international contributions on 2050 ozone air quality: How much is convertible by regional control? *Atmospheric Environment* 68, 315–325.
- Li Z-K, Zhang F. 2013. Rice breeding in the post-genomics era: from concept to practice. *Current opinion in plant biology* 16, 261–269.
- Linares OF. 2002. African rice (*Oryza glaberrima*): History and future potential. *Proceedings* of the National Academy of Sciences of the United States of America **99**, 16360–16365.
- Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP. 2003. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. *Nature* 425, 705–707.
- Lozano-Durán R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C. 2013. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. *eLIFE* **2**, e00983.

- Lozano-Durán R, Zipfel C. 2015. Trade-off between growth and immunity: role of brassinosteroids. *Trends in plant science* 20, 12–19.
- Luwe MWF, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (*Spinacia oleracea* L.) leaves. *Plant Physiology* **101**, 969–976.
- Maclean JL, Dawe DC, Hardy B, Hettel GP. 2002. *Rice almanac*. 3rd Edition. Wallingford: CABI publishing.
- Matsuzaki A, Matsushima S, Tomita T. 1973. Analysis of yield-determining process and its application to yield-prediction and culture improvement of lowland rice: CXIII. Effects of the nitrogen top-dressing at the full heading stage on kernel qualities. *Japanese Journal of Crop Science* 42, 54–62.
- McCouch SR, Doerge RW. 1995. QTL mapping in rice. Trends in genetics 11, 482–487.
- Meinzer FC, Moore PH. 1988. Effect of apoplastic solutes on water potential in elongating sugarcane leaves. *Plant Physiology* **86**, 873–879.
- Menser HA. 1964. Response of plants to air pollutants. III. A relation between ascorbic acid levels and ozone susceptibility of light-preconditioned tobacco plants. *Plant Physiology* 39, 564–567.
- Middleton JT. 1956. Response of plants to air pollution. *Journal of the Air Pollution Control Association* **6**, 7–9, 50.
- Middleton JT, Darley EF, Brewer RF. 1958. Damage to vegetation from polluted atmospheres. *Journal of the Air Pollution Control Association* **8**, 9–15.
- Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H. 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. *Atmospheric Environment* **41**, 2630–2643.
- Mueller MJ, Berger S. 2009. Reactive electrophilic oxylipins: Pattern recognition and signalling. *Phytochemistry* **70**, 1511–1521.
- Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 2012. Closing yield gaps through nutrient and water management. *Nature* **490**, 254–257.
- Mühling KH, Sattelmacher B. 1995. Apoplastic ion concentration of intact leaves of field bean (*Vicia faba*) as influenced by ammonium and nitrate nutrition. *Journal of plant physiology* 147, 81–86.
- Munné-Bosch S, Queval G, Foyer CH. 2012. The impact of global change factors on redox signaling underpinning stress tolerance. *Plant Physiology* 161, 5–19.
- Nouchi I. 2002. Responses of whole plants to air pollutants. In: Omasa K, Saji H, Youssefian S, Kondo N, eds. *Air Pollution and Plant Biotechnology*. Tokyo: Springer, 3–39.
- Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. *Plant and cell physiology* **53**, 1659–1668.

- **Ohkawa J, Okada N, Shinmyo A, Takano M.** 1989. Primary structure of cucumber (*Cucumis sativus*) ascorbate oxidase deduced from cDNA sequence: Homology with blue copper proteins and tissue-specific expression. *Proceedings of the National Academy of Sciences of the United States of America* **86**, 1239–1243.
- **Omasa K, Tobe K, Kondo T.** 2002. Absorption of organic and inorganic air pollutants by plants. In: Omasa K, Saji H, Youssefian S, Kondo N, eds. *Air Pollution and Plant Biotechnology*. Tokyo: Springer, 155–178.
- Orru H, Andersson C, Ebi KL, Langner J, Åström C, Forsberg B. 2013. Impact of climate change on ozone-related mortality and morbidity in Europe. *The European Respiratory Journal* 41, 285–294.
- Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis *rcd1* mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. *The Plant Cell* **12**, 1849–1862.
- **Paoletti E, Grulke NE.** 2005. Does living in elevated CO₂ ameliorate tree response to ozone? A review on stomatal responses. *Environmental Pollution* **137**, 483–493.
- Petrov VD, Van Breusegem F. 2012. Hydrogen peroxide-a central hub for information flow in plant cells. *AoB plants* 2012, pls014.
- Pignocchi C, Foyer CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. *Current opinion in plant biology* **6**, 379–389.
- **Quarrie SA, Quarrie SP, Radosevic R, et al.** 2006. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. *Journal of Experimental Botany* **57**, 2627–2637.
- Rao MV, Davis KR. 2001. The physiology of ozone induced cell death. Planta 213, 682–690.
- Rao MV, Koch JR, Davis KR. 2000. Ozone: a tool for probing programmed cell death in plants. *Plant molecular biology* 44, 345–358.
- Salvi S, Tuberosa R. 2005. To clone or not to clone plant QTLs: present and future challenges. *Trends in plant science* **10**, 297–304.
- Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK. 2003. Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. *Planta* **216**, 918–928.
- Sawada H, Kohno Y. 2009. Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. *Plant Biology* **11**, 70–75.
- Schmid KJ, Sörensen TR, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B. 2003. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in *Arabidopsis thaliana*. *Genome research* 13, 1250–1257.

- **Schraudner M, Ernst D, Langebartels C, Sandermann H.** 1992. Biochemical plant responses to ozone. III. Activation of the defense-related proteins β-1, 3-glucanase and chitinase in tobacco leaves. *Plant Physiology* **99**, 1321–1328.
- Sheffield PE, Knowlton K, Carr JL, Kinney PL. 2011. Modeling of regional climate change effects on ground-level ozone and childhood asthma. *American journal of preventive medicine* 41, 251–257.
- Shi G, Yang L, Wang Y, et al. 2009. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, Ecosystems and Environment 131, 178–184.
- Shiraiwa M, Sosedova Y, Rouvière A, *et al.* 2011. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. *Nature chemistry* **3**, 291–295.
- Street NR, Tallis MJ, Tucker J, Brosché M, Kangasjärvi J, Broadmeadow M, Taylor G. 2011. The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F₂ progeny. *Environmental Pollution* **159**, 45–54.
- Streets DG, Waldhoff ST. 2000. Present and future emissions of air pollutants in China: SO₂, NO_x, and CO. *Atmospheric Environment* **34**, 363–374.
- Teixeira E, Fischer G, van Velthuizen H, et al. 2011. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmospheric Environment 45, 2569–2576.
- The 3,000 rice genomes project. 2014. The 3,000 rice genomes project. GigaScience 3, 7.
- **Thompson JE, Legge RL, Barber RF.** 1987. The role of free radicals in senescence and wounding. *New Phytologist* **105**, 317–344.
- Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences of the United States of America* 108, 20260–20264.
- Todesco M, Balasubramanian S, Hu TT, *et al.* 2010. Natural allelic variation underlying a major fitness trade-off in *Arabidopsis thaliana*. *Nature* **465**, 632-636.
- Tsukahara K, Sawada H, Matsumura H, Kohno Y, Tamaoki M. 2013. Quantitative trait locus analyses of ozone-induced grain yield reduction in rice. *Environmental and Experimental Botany* 88, 100–106.
- **De Tullio MC, Guether M, Balestrini R.** 2013. Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. *Plant Signaling and Behavior* **8**, e23213.
- **De Tullio MC, Liso R, Arrigoni O.** 2004. Ascorbic acid oxidase: an enzyme in search of a role. *Biologia Plantarum* **48**, 161–166.
- **Turcsányi E, Lyons T, Plöchl M, Barnes J.** 2000. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (*Vicia faba* L.). *Journal of Experimental Botany* **51**, 901–910.

- Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T. 2013. Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. *Plant Physiology and Biochemistry* 70, 396–402.
- **Urbach W, Schmidt W, Rümmele S,** *et al.* 1990. Wirkungen von Umweltschadstoffen (SO₂, O₃ und NO_x) auf Photosynthese und Membran intakter Blätter und Pflanzen. In: Urbach W, ed. Waldschadenforschung und Wirkungen von Umweltschadstoffen. Würzburg: Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen (PBWU).
- Vahisalu T, Kollist H, Wang Y-F, et al. 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. *Nature* 452, 487–491.
- Vanacker H, Carver TLW, Foyer CH. 1998. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. *Plant Physiology* **117**, 1103–1114.
- Vingarzan R. 2004. A review of surface ozone background levels and trends. *Atmospheric Environment* 38, 3431–3442.
- Wang Y, Frei M. 2011. Stressed food The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems and Environment 141, 271–286.
- Wang F, Yuan Q-H, Shi L, et al. 2006. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal 4, 667–676.
- Weissberger A, LuValle JE, Thomas DS. 1943. Oxidation processes. XVI. The autoxidation of ascorbic acid. *Journal of the Americal chemical society* 65, 1934–1939.
- Wohlgemuth H, Mittelstrass K, Kschieschan S, *et al.* 2002. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. *Plant, Cell and Environment* 25, 717–726.
- Wrzaczek M, Brosché M, Salojärvi J, et al. 2010. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC plant biology 10, 95.
- Yalpani N, Enyedi AJ, León J, Raskin I. 1994. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. *Planta* 193, 372–376.
- Yamaji K, Ohara T, Uno I, Kurokawa J, Pochanart P, Akimoto H. 2008. Future prediction of surface ozone over east Asia using Models-3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia. *Journal of Geophysical Research* 113, D08306.
- Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa J, Akimoto H. 2006. Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan? *Atmospheric Environment* 40, 1856–1868.
- Yamamoto A, Bhuiyan MNH, Waditee R, *et al.* 2005. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and *Arabidopsis* plants. *Journal of Experimental Botany* **56**, 1785–1796.

- Yano M, Sasaki T. 1997. Genetic and molecular dissection of quantitative traits in rice. *Plant molecular biology* 35, 145–153.
- **Zhao K, Tung C-W, Eizenga GC**, *et al.* 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in *Oryza sativa*. *Nature communications* **2**, 467.

Chapter 2 Comparison of two high-throughput ascorbate measurements

(Ueda Y, Wu L, Frei M. 2013. A critical comparison of two high-throughput ascorbate analyses methods for plant samples. *Plant Physiology and Biochemistry* **70**, 418–423.)

Abstract

Ascorbate (AsA) is an important metabolite involved in stress response and development of plants. Therefore it is necessary to quantify the AsA content in many fields of plant science, including high-throughput and critical applications. In this study we compared two different microplate-based AsA assays, which are suitable for high-throughput applications: an ascorbate oxidase (AO)-based assay and a dipyridyl (DPD)-based assay. These methods were compared in critical applications, *i.e.* (i) when AsA concentrations were very low such as in apoplastic extracts, (ii) when plants contained pigments interfering with the spectrometric measurements, and (iii) when plants contained high iron concentration interfering with the colour reactions. The precision of measurements was higher with the DPD method, as illustrated by higher recovery rates of internal AsA standards. On the other hand, the AO method was more sensitive to low levels of AsA. This was an advantage in determining apoplastic AsA concentration in rice, which was substantially lower than that of whole tissues. The AO method also had the advantage that plant pigments and high iron concentrations in plants tissues did not interfere with the analysis, as opposed to the DPD assay. In conclusion, both assays had advantages, and the choice of a suitable method depends on the specific application.

1. Introduction

Ascorbate (AsA) is one of the most important antioxidants determining abiotic and biotic stress tolerance in plants, as well as plant growth (Gallie, 2013). AsA is involved in the detoxification of reactive oxygen species (ROS) due to its capacity to donate electrons to ROS without becoming a toxic radical itself (Asada, 1999). AsA occurs both in the symplast and the apoplast, but the concentrations in the apoplast are much lower and usually account for only around 5 to 10% of the total AsA pool (Horemans et al., 2000). Apoplastic ascorbate plays an important role in determining the redox status of the apoplast and transducing signals to cytosol (Pignocchi and Foyer, 2003). Due to its outstanding function as presumably the most important antioxidant in plants, ascorbate has been suggested as a potential breeding target to develop crops resistant to abiotic and biotic stresses (Frei et al., 2008, 2010; Lisko et al., 2013). Breeding applications typically require the screening of a large number of plant samples; however, ascorbate degrades easily (Koshiishi and Imanari, 1997), which makes it difficult to analyse large numbers of samples, as a time lag in the measurement may lead to distorted results. Therefore, high-throughput methods are required that allow for the processing of a large number of samples quickly.

Many methods have been used in determining the AsA concentration in biological samples, including spectrometric and chromatographic methods (Washko et al., 1992; Koshiishi and Imanari, 1997; Badrakhan et al., 2004). However, some of these methods require special equipment or are not suitable for high-throughput applications in plants. Microplate-based spectrometric methods may overcome these difficulties. An ascorbate oxidase (AO) based method (hereafter referred to as the AO method; Queval and Noctor, 2007) relies on spectrometric measurements at a wavelength of 265 nm, which represents the absorbance maximum of reduced AsA. Changes in absorbance are measured after adding AO (EC 1.10.3.3) to the samples to determine reduced AsA, while dehydroascorbate (DHA) is measured by monitoring DHA reduction after adding the reducing agent dithiothreitol (DTT). An alternative method (Stevens et al., 2006; Gillespie and Ainsworth, 2007) is based on the reduction of ferric to ferrous iron by reduced AsA, and a subsequent colour reaction between ferrous iron and 2, 2'-dipyridyl (DPD), which is measured at 525 nm (hereafter referred to as the DPD method). To our knowledge, no direct comparison between these two methods has been reported, and these methods have not been evaluated

under critical applications. In our work with plants exposed to environmental stresses, we encountered problems with AsA analyses under the following conditions: (i) when sample concentrations were very low; (ii) when plants contained pigments interfering with spectrometric measurements; and (iii) when plants contained high levels of iron. The latter problem is particularly relevant in rice research, because excessive iron concentrations in rice tissue are a very widespread phenomenon limiting rice productivity (Becker and Asch, 2005). Therefore, the aim of this study was to directly compare two microplate-based assays for AsA analysis regarding their suitability for critical applications.

2. Materials and Methods

2.1. Plant material

Rice (*Oryza sativa* L., cultivars Nipponbare and Dongjin) was grown in a greenhouse in 60-L hydroponic tanks with Yoshida solution (Yoshida *et al.*, 1976). Rice shoots of around eight week old plants were harvested around noontime, flash-frozen in liquid nitrogen and stored at -80 °C until analysis. In the iron stress experiment, rice plants were grown hydroponically in Yoshida solution for 7 weeks, and were exposed to an excess ferrous iron stress at 300 ppm of FeSO₄ for 10 days as described (Engel *et al.*, 2012). Red cabbage was obtained from a local market, ground with liquid nitrogen soon after the purchase and stored at -80 °C until analysis.

2.2. Extraction of AsA

Sample materials were ground with a mortar and pestle in liquid nitrogen, and AsA was extracted with 1 mL extraction solvent from around 70 mg of flash-frozen sample. The extract was cleared by centrifugation for 20 min at 4 °C and 15,000 g and kept on ice for further analysis.

2.3. AsA measurement (dipyridyl method)

The method was similar to that used by Gillespie and Ainsworth (2007), but it was adjusted to 200 μ L micro tube scale. All the following procedures except for DTT and *N*-ethylmaleimide (NEM) treatment were conducted with samples stored on ice. Four 20 μ L aliquots of each sample or AsA standard (Thermo Fisher Scientific, Waltham, MA) were pipetted into PCR tubes and were mixed with 10 μ L of 75 mM potassium phosphate buffer (pH 7.0). Two sub-samples for the total AsA assay were mixed with 10 μ L of 10 mM DTT and incubated at room temperature for 10 min, followed by addition of 10 μ L of 0.5% (w/v) NEM to remove the remaining DTT. In the two sub-samples used for reduced AsA analyses, 20 μ L of 10% (w/v) TCA, 40 μ L of 43% (w/v) H₃PO₄, 40 μ L of 4% (w/v) 2, 2'-dipyridyl (in 70% (v/v) ethanol), and 20 μ L of 3% (w/v) FeCl₃ were added to all the tubes. The FeCl₃ solution was filtrated before use. Samples were immediately mixed vigorously and incubated at 37 °C for 60 min.

(Brand, Wertheim, Germany), and the absorbance was read at 525 nm using a Powerwave XS2 microplate reader (BioTek, Bad Friedrichshall, Germany). AsA concentrations were estimated from a standard curve ranging from 0.1 to 8 mM. All analyses were conducted at least in duplicate.

2.4. AsA measurement (ascorbate oxidase method)

This method is based on direct spectrometric measurement as described by Luwe *et al.* (1993) and Queval and Noctor (2007) with some modifications. First, lyophilized AO (Wako Pure Chemical Industries, Osaka, Japan) was dissolved in a 1:1 mixture of glycerol and 50 mM potassium phosphate buffer (pH 6.0) to obtain a 0.1 U/ μ L solution. For the measurement of reduced AsA, the reaction mixture consisted of 10 μ L of extract, 80 μ L of 0.1 M potassium phosphate buffer (pH 7.0) and 10 μ L of 0.01 U/µL AO (AO stock solution diluted 10-fold with 0.1 M potassium phosphate buffer, pH 7.0). In blank wells, which did not contain the enzyme, AO solution was substituted with 0.1 M potassium phosphate buffer (pH 7.0). For the measurement of DHA, the reaction mixture consisted of 10 μ L of extract, 80 μ L of 0.1 M potassium phosphate buffer (pH 7.8) and 4 mM DTT contained in the same buffer. In blank wells, DTT was substituted with potassium phosphate buffer (pH 7.8). Both measurements were started by shaking the plate for 5 sec, followed by continuous absorbance reading at 265 nm using UV-transparent microplates. Absorbance was monitored until the reactions were completed, which was after 2 min in the AO reaction and after 7 to 8 min in the DTT reaction. The absorption of AO and DTT at the final concentration was < 0.003 OD₂₆₅, respectively, and was neglected. Concentrations were calculated as follows:

Reduced AsA (mM in the extract) =
$$\frac{(\text{Mean OD}_{\text{withoutAO}} - \text{MinOD}_{\text{withAO}})}{14.3 \times 0.29} \times 10$$

DHA (mM in the extract)
$$= \frac{(MaxOD_{withDTT} - MeanOD_{withoutDTT})}{14.3 \times 0.29} \times 10$$

where 14.3 (mM⁻¹ cm⁻¹) is extinction coefficient of reduced AsA (Luwe *et al.*, 1993), and 0.29 represents the path length of 100 μ L solution in a 96-well flat-bottom UV

plate (Corning Inc., Corning, MA). Total AsA was calculated as the sum of reduced and oxidized AsA. All analyses were conducted at least in duplicate.

2.5. Preparation of IWF from rice

Intercellular washing fluid (IWF) was obtained from rice leaves according to the method of Nouchi et al. (2012) with slight modifications. The 1st and 2nd fullyexpanded rice leaves were detached and immediately used for the analysis. The leaves were weighed and washed with 0.05% (v/v) Triton X-100 to remove the hydrophobic layer from the leaf surface, followed by rinsing with distilled water. As infiltration buffer, 10 mM citrate buffer (pH 3.0) containing 0.2 mM EDTA was used (Frei et al., 2010). The buffer was infiltrated into the apoplastic space by repeated vacuumpressure cycles using a 60-mL syringe (DIK-8392-12, Daiki Rika Kogyo, Saitama, Japan). After the infiltration, the leaves were dried with paper towels, weighed, inserted into a 1 mL pipette tip, and placed inside a 1.5 mL tube containing 50 µL of 6% (w/v) metaphosphoric acid (MPA). After centrifugation (4 °C and 5,000 g for 5 min), the leaves were weighed again to determine the volume of IWF, and the mixture of 6% MPA and IWF (hereafter referred to as IWF preparation) was used for AsA measurement. Possible cytosolic contamination of the IWF was tested in each sample by measuring glucose-6-phosphate content, which is specific to the cytosol (Nouchi et al., 2012). Briefly, 10 µL of IWF preparation was mixed with 80 µL of 50 mM Tris-HCl (pH 8.1) and 10 µL of 5 mM NADP in a microplate well. The plate was shaken for 4 sec, and the kinetics was read at 340 nm for 1 min to obtain a baseline. After adding 5 μ L of 0.01 U/ μ L glucose-6-phosphate dehydrogenase, the plate was shaken again for 4 sec, the absorbance at 340 nm was continuously monitored for 5 min, and samples were omitted if any increase in absorbance was observed. These analyses were conducted in duplicate.

2.6. Dilution and spiking assays

AsA extracts were diluted with 6% MPA to 0.5 and 0.25 fold concentrations. Spiking samples were prepared by mixing the original samples with the same volume of 2 mM, 1 mM, 0.2 mM or 0 mM reduced AsA in 6% MPA (corresponding to 1 mM, 0.5 mM, 0.1 mM and 0 mM spikes). Recovery rates were determined as follows:

Recovery rate (%)

$$=\frac{(\text{concentration}_{\text{spiked samples}}) - (\text{concentration}_{0 \text{ mM spiked samples}})}{(\text{spiked concentration})} \times 100$$

2.7. AO inhibition assay

The AO assay was conducted according to Pignocchi *et al.* (2003) with addition of iron. AO was dissolved in 0.1 M sodium phosphate buffer (pH 5.6) at 0.001 U/µL. The reaction mixture consisted of 70 µL of 0.1 M sodium phosphate buffer (pH 5.6), 10 µL of either 1 mM FeSO₄, 1 mM FeCl₃ or water, 10 µL of 0.001 U/µL AO and 10 µL of 2 mM reduced AsA. The reaction mixture was mixed in 96-well microplate by pipetting, the kinetics was monitored at the wavelength of 265 nm for 1 min and the average AsA oxidation rate was calculated. Non-enzymatic AsA oxidation occurring in blank wells lacking the enzyme was deducted.

3. Results and Discussion

3.1. Extraction Solvents

Several extraction solvents were tested regarding their suitability for the two assays. Acidic solvents are usually employed because low pH inhibits the enzymatic oxidation of reduced AsA (Nakamura et al., 1968), as well as the autoxidation (Weissberger et al., 1943). We tested 6% trichloroacetic acid (TCA; Gillespie and Ainsworth, 2007), 6% MPA (Lee et al., 1984), and 0.2 N HCl (Queval and Noctor, 2007), and compared these acidic solvents with distilled water. AsA was extracted from 16 different rice shoot samples using each solvent, and the extracts were analysed using both the AO and the DPD method to determine the consistency between the two methods. To further test the effect of solvents on AsA degradation, the samples were stored on ice for 4 h and assayed again. Slopes and R-square values were calculated for the linear regressions between the values obtained from the DPD and the AO method, and for the values obtained before and after the storage of samples for 4 h (Table 2-1). Distilled water retained almost no reduced AsA even soon after the extraction, leading to reduced AsA values almost below the detection limit (data not shown). There was high consistency between the two methods as illustrated by slope values close to one and relatively high R-square values in all of the acidic solvents. Somewhat lower Rsquare values in total AsA might be due to relatively lower recovery rate of DHA, as previously suggested (Queval and Noctor, 2007). When values obtained after 0 and 4 h of storage were correlated, the slopes of the linear regression were close to one in the 6% MPA treatment. This indicates that total and reduced AsA were not degraded. In contrast, some degradation or oxidation occurred after 4 h of storage in 6% TCA and 0.2 N HCl, as indicated by lower slope values in these treatments (Table 2-1). Thus, MPA was more effective than other organic acids in preventing non-enzymatic AsA oxidation, which may occur due to the presence of catalytic metals (Lyman et al., 1937). Therefore, we used 6% MPA as extraction solvent in all further analyses.

		AO-DPD		AO (0 h)-AO (4 h)		DPD (0 h)-DPD (4 h)	
Extraction Solvent		Redued AsA	Total AsA	Reduced AsA	Total AsA	Reduced AsA	Total AsA
	Slope	1.02	1.02	0.88	0.93	0.96	0.82
6% TCA	R-square	0.95	0.62	0.97	0.85	0.85	0.75
	Slope	1.05	1.17	1.02	1.09	0.96	0.91
6% MPA	R-square	0.94	0.78	0.97	0.84	0.87	0.89
	Slope	1.21	1.06	0.86	0.79	0.83	0.55
0.2 N HCl	R-square	0.84	0.61	0.86	0.67	0.90	0.50
Distilled	Slope	-0.23	0.63	0.14	0.70	1.19	0.87
water	R-square	0.13	0.44	0.14	0.61	0.41	0.69

Table 2-1: Effects of different extraction solvents on the consistency between two ascorbate analysis methods and the stability of ascorbate during storage on ice.

AsA was extracted from 16 rice shoot samples and the extracts were assayed with both the AO and the DPD method soon after the extraction (0 h), or after storage on ice for 4 h (4 h). AO-DPD, linear regression coefficients of values obtained from the DPD method vs values obtained from the AO method; AO (0 h)-AO (4 h) and DPD (0 h)-DPD (4 h), linear regression coefficients of values obtained after 4 h of storage vs values obtained without storage using the respective methods.

3.2. Validation of the analyses using ascorbate standards

To test the validity and detection limit of the analysis, multiple concentrations of AsA standards (0 to 10 mM) were prepared in 6% MPA and analysed with the two methods. In the AO method, the quantification of AsA is based on an extinction coefficient value of $\varepsilon = 14.3$ (mM⁻¹ cm⁻¹). The standard AsA concentration and the calculated concentration showed high correlation between 0.02 mM and 8 mM of the standard series, showing an *R*-square value of 0.99 (Fig. 2-1). However, the slope value was 0.87 (average of two independent experiments), implying a more than 10% difference between the measured and actual concentration. Using a standard curve to quantify AsA concentration instead of an extinction coefficient might solve this problem. Outside the range of 0.02 to 8 mM, the relationship between AsA concentration at 265 nm was not strictly linear, making measurements unreliable.

Figure 2-1: Correlation between standard AsA concentration and measured AsA concentration based on an extinction coefficient of $\varepsilon = 14.3 \text{ mM}^{-1} \text{ cm}^{-1}$ using the AO method. Measurements were conducted in duplicate.

In the DPD method, the calculation of AsA concentration is based on a standard curve. The absorption values of different standard concentrations were deducted from blanks and denoted as ΔA_{525} values, and the correlation between the standard AsA concentration and ΔA_{525} was tested (Fig. 2-2). The linear range of the standard series ($R^2 = 0.99$) was limited to only 0.1 to 8 mM, which implies that the method is less sensitive than the AO method.

Figure 2-2: Standard curve generated by the DPD method. AsA standards were prepared in 6% MPA. ΔA_{525} shows the difference of absorption at 525 nm between standards and blanks after the reaction. Measurements were conducted in quadruplicate.

To further confirm the reliability of the assays, extracts were spiked with internal AsA standards and the recovery rate was determined. AsA was extracted from three rice shoot samples and additional 1, 0.5 and 0.1 mM of reduced AsA were added to the samples. The original and spiked samples were assayed using both methods and the recovery rates were determined. Both methods showed recovery rates similar to those observed in other biochemical assays (Polle *et al.*, 1990; Hodges *et al.*, 1999; Queval and Noctor, 2007), but the DPD method showed higher values than the AO method (Table 2-2), implying that AsA concentration was more precisely determined in the DPD method than the AO method.

Table 2-2: Recovery rates (%) of reduced and total AsA in samples spiked with internal standards.

1 mM spike		0.5 mM spike		0.1 mM sp	0.1 mM spike	
Method	Reduced	Total	Reduced	Total	Reduced	Total
DPD method	93.1±2.9	95.8±2.2	90.9±0.5	92.1±2.1	77.3±8.1	113.7±36.2
AO method	83.8±1.8	88.5±6.1	78.5±3.4	81.8±6.2	91.6±15.8	82.8±23.8

AsA was extracted from rice shoots with 6% MPA and spiked with additional 1, 0.5 and 0.1 mM of reduced AsA. Values are means \pm standard deviation (n = 3).

3.3. Apoplastic AsA analysis in rice

As discussed above, the AO method was more sensitive to low concentrations of AsA than the DPD method. The detection limit is usually not critical in measurements of whole plant tissues, where AsA concentration ranges from 5 to 138 μ mol/g fresh weight (FW) (Gest *et al.*, 2013). With such samples, a suitable ratio of sample weight and solvent volume can be devised to ensure concentrations > 0.1 mM in the extract. However, the AsA concentration of the apoplast is quite low compared with that of whole tissue. Burkey *et al.* (2003) reported that apoplastic total AsA ranges from 15 to 600 nmol/g FW, depending on the plant species and conditions. We also conducted apoplastic AsA measurement in rice leaves using both the AO and the DPD method (Table 2-3). Unlike the AO method, the DPD method failed to detect any reduced AsA in rice apoplastic extracts, which was below 0.1 mM. Usually the amount of IWF obtained is quite low in all plant species. An additional difficulty encountered with rice leaves is their comparatively smaller stomatal pore size and a strong hydrophobic layer on the leaf surface, thus making it difficult to obtain apoplastic extracts (Nouchi

et al., 2012). In our case the average yield of IFW from rice leaves was $244 \pm 47 \ \mu g/g$ FW (n = 22) and we were able to measure both the reduced and oxidized AsA concentration in the apoplast from less than 500 mg of leaf samples with at least two analytical replicates, in addition to analyses of cytosolic contaminants. The AO method thus has advantages in detecting both reduced and total AsA when the amount of sample material is limited and the concentration is low as in apoplastic extracts from rice.

Table 2-3: Apoplastic AsA concentration in rice leaves measured using two different analysis methods.

	Reduced AsA	Total AsA
Method	(nmol/g FW)	(nmol/g FW)
DPD method	N.D.	20.6 ± 5.9
AO method	5.2±3.5	20.8 ± 5.4

N.D., not detected; and FW, fresh weight. Values refer to whole leaf fresh weight and represent means \pm standard deviation (n = 4).

3.4. Possible effect of interfering plant pigments

Pigments contained in plant extracts may affect spectrometric measurements if their absorbance spectrum is similar to that of measured compounds. This may particularly affect the DPD method, which is based on a colourimetric reaction measured at 525 nm corresponding to red colour. We tested red cabbage (*Brassica oleracea*) as an example for a plant containing red pigments. The extract showing red colour was assayed with both methods. Substantial differences were seen in the values obtained from two methods if the red colour arising from plant pigments was ignored (Table 2-4). Therefore we tried to eliminate the overestimation of AsA concentration in the DPD method by subtracting the absorption caused by pigments. In additional blank samples, the DPD solution was substituted with 70% ethanol in an otherwise identical reaction mix. Alternatively, blank samples could be obtained by AO treatment to remove reduced AsA prior to the assay, as suggested previously (Garchery *et al.*, 2013). The absorption peak of the blank solution (without DPD) was about 530 nm, which greatly affected the quantification of AsA in the DPD method (Fig. 2-3). Subtraction of blank values led to very similar results as those obtained from the AO

method (Table 2-4). Therefore, unknown plant samples should always be checked for the presence of interfering pigments when the DPD method is employed. The AO method is less susceptible to artefacts produced by plant pigments, as it is based on changes in absorbance (after the addition of AO or DTT), instead of a single absorbance value. It may be considered as an advantage of the AO method that testing for the presence of pigments, and if applicable, the subtraction of blank values is not required.

	Total AsA concentration in the extract (m			
Sample number	AO method	DPD method without background subtraction	DPD method with background subtraction	
1	0.40	1.62	0.40	
2	0.45	1.70	0.44	
3	0.43	1.44	0.41	
4	0.68	2.42	0.69	

Table 2-4: Effect of interfering pigments on ascorbate analysis in red cabbage samples using two different analysis methods.

AsA was extracted from four red cabbage leaf samples with 6% MPA and subsequently assayed with both methods. In the DPD method, additional blanks containing 70% ethanol instead of DPD solution were measured, and the absorbance of the blanks was subtracted from the sample absorbance.

Figure 2-3: Absorbance spectrum of a red cabbage sample and three AsA standards subjected to the DPD assay compared with blank samples lacking DPD in the reaction mix.

3.5. Samples containing high levels of iron

The DPD method is based on the reduction of ferric iron (Fe^{3+}) into ferrous iron (Fe^{2+}) by reduced AsA, which then reacts with DPD. Therefore it is conceivable that high levels of iron already present in samples affect the result. To test this hypothesis we sampled leaves from rice plants which had been grown hydroponically in nutrient solutions containing excess iron (300 ppm FeSO₄). Similar iron concentrations are frequently observed in soil solution of rice paddies, where iron toxicity constitutes one of the most important nutrient imbalances worldwide (Becker and Asch, 2005). The average iron concentration of rice shoots obtained from this experiment was 8.2 g/kg DW (n = 4). These samples were used for AsA assays using both methods, along with control samples grown without excess iron. The correlations between the AO method and the DPD method were very poor (Fig. 2-4). Especially reduced AsA was overestimated in samples from the iron stress treatment using the DPD method, which was presumable due to the excessive uptake of ferrous iron into the leaves, which reacted with DPD. The AO method may thus be considered as more suitable to analyse samples from iron stress treatments. However, ferric iron (Fe^{3+}) is also known as an inhibitor of AO (Itoh et al., 1995), which may thus lead to an underestimation of reduced AsA using the AO method. Based on the measured shoot iron concentration, we estimated that the iron concentration in the extracted solution would be around 1 mM (final concentration 0.1 mM in the assay mixture) when 70 mg of fresh sample was extracted with 1 mL of solvent. We tested if this iron concentration affected AO activity by measuring the activity of purified AO enzyme with the addition of the above-mentioned iron concentration. AO activity was quantified by monitoring the enzyme kinetics at 265 nm in a buffer containing AsA with or without addition of iron as either $FeSO_4$ (Fe^{2+}) or $FeCl_3$ (Fe^{3+}). Almost no inhibition was observed, as AO activity with both 0.1 mM FeSO₄ or 0.1 mM FeCl₃ was 98% compared with a control without iron. Therefore we concluded that the AO method is suitable for analysis of samples containing high amounts of iron. AO is reported to be inhibited also by hydrogen peroxide (White and Krupka, 1965), sodium azide (Itoh et al., 1995), and phenolic compounds (Gaspard et al., 1997), but inhibition occurs at relatively high concentrations of these compounds, which are unlikely to be reached in plant extracts. To our present knowledge, AO activity should therefore not be significantly inhibited in plant extracts.

Figure 2-4: Correlation of reduced and total AsA values of rice samples obtained from an iron stress experiment using two analysis methods. Concentrations in plant extracts are plotted.

We conducted dilution and spiking experiments with samples from iron stress and control treatments to further confirm that inhibitory effects did not occur (Tables 2-5 and 2-6). Samples from the iron stress treatment showed similar recovery rates as those from the control. The ratio of AsA concentration measured in diluted/undiluted samples was similar to the dilution factor even in samples from the iron treatment (Table 2-5). As for the spiking experiment, the recovery rates of iron-stressed samples were somewhat lower and more variable compared with non-stressed samples but were still above 80%. We therefore concluded that the AO method was more suitable to determine AsA content in plant samples containing high levels of iron. Excessive iron uptake is typically associated with plants growing on anaerobic soils with low redox potential, where iron occurs in its soluble form Fe²⁺. Apart from rice, this may affect other plant species such as *Eugenia uniflora* (Jucoski *et al.*, 2013) or tea (Hemalatha and Venkatesan, 2011).

Table 2-5: Effects of iron on the consistency of ascorbate measurements in dilution experiments.

	x0.5 dilution factor		x0.25 dilution factor		
Samples	Reduced	Total	Reduced	Total	
Control	0.51±0.05	0.51±0.03	$0.24{\pm}0.04$	0.24 ± 0.04	
Fe-treated	0.57 ± 0.16	0.51 ± 0.13	0.26 ± 0.08	0.25 ± 0.04	

Ratios of the concentrations measured in diluted/undiluted samples are shown, which should ideally be identical to the dilution factor. AsA was extracted from non-stressed and Fe-stressed rice shoots with 6% MPA. The extract was assayed with the AO method. Values are means \pm standard deviation (n = 4).

Table 2-6: Recovery rates (%) in spiking experiments using AsA extracts obtained from rice plants exposed to iron stress and control plants.

	0.5 mM spike		0.1 mM spike		
Samples	Reduced	Total	Reduced	Total	
Control	89.9±4.8	86.4±5.1	96.5±9.0	97.7±4.2	
Fe-treated	86.6±3.6	82.7±2.0	85.6±9.3	85.6±17.0	

AsA was extracted from non-stressed and Fe-stressed rice shoots with 6% MPA and spiked with additional 0.5 and 0.1 mM of reduced AsA. Samples were assayed with the AO method and recovery rate was determined as indicated in Materials and Methods. Values are means \pm standard deviations (n = 4).

4. Conclusions

In conclusion both the DPD and the AO method have advantages and disadvantages. The AO method is more straightforward and thus more suitable for high-throughput applications. Moreover it has the advantages of being more sensitive to low levels of AsA, and that plant pigments or iron do not affect the analytical results. However the AO method showed slightly lower recovery rate of internal standards than the DPD method, and there were slight differences between standard concentrations and measured concentrations determined by an extinction coefficients. These results should help researchers choose a suitable AsA analysis method for particular applications.

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (FR2952/1-1).

References

- Asada K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. *Annual review of plant physiology and plant molecular biology* 50, 601–639.
- Badrakhan C-D, Petrat F, Holzhauser M, Fuchs A, Lomonosova EE, de Groot H, Kirsch M. 2004. The methanol method for the quantification of ascorbic acid and dehydroascorbic acid in biological samples. *Journal of Biochemical and Biophysical Methods* 58, 207–218.
- Becker M, Asch F. 2005. Iron toxicity in rice—conditions and management concepts. *Journal* of Plant Nutrition and Soil Science 168, 558–573.
- Burkey KO, Eason G, Fiscus EL. 2003. Factors that affect leaf extracellular ascorbic acid content and redox status. *Physiologia Plantarum* 117, 51–57.
- Engel K, Asch F, Becker M. 2012. Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. *Journal of Plant Nutrition and Soil Science* 175, 871–881.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* 61, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Gallie DR. 2013. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. *Journal of Experimental Botany* 64, 433–443.
- Garchery C, Gest N, Do PT, *et al.* 2013. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. *Plant, Cell and Environment* **36**, 159–175.
- Gaspard S, Monzani E, Casella L, Gullotti M, Maritano S, Marchesini A. 1997. Inhibition of ascorbate oxidase by phenolic compounds. Enzymatic and spectroscopic studies. *Biochemistry* **36**, 4852–4859.
- Gest N, Gautier H, Stevens R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? *Journal of Experimental Botany* 64, 33–53.
- Gillespie KM, Ainsworth EA. 2007. Measurement of reduced, oxidized and total ascorbate content in plants. *Nature protocols* **2**, 871–874.
- Hemalatha K, Venkatesan J. 2011 Impact of iron toxicity on certain enzymes and biochemical parameters of tea. *Asian Journal of Biochemistry* **6**, 384–394.
- Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acidreactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. *Planta* 207, 604–611.

- Horemans N, Foyer CH, Asard H. 2000. Transport and action of ascorbate at the plant plasma membrane. *Trends in plant science* **5**, 263–267.
- Itoh H, Hirota A, Hirayama K, Shin T, Murao S. 1995. Properties of ascorbate oxidase produced by *Acremonium* sp. HI-25. *Bioscience, Biotechnology, and Biochemistry* **59**, 1052–1056.
- Jucoski GD, Cambraia J, Ribeiro C, de Oliveira JA, de Paula SO, Olivia MA. 2013. Impact of iron toxicity on oxidative metabolism in young *Eugenia uniflora* L. plants. *Acta Physiologiae Plantarum* **35**, 1645–1657.
- Koshiishi I, Imanari T. 1997. Measurement of ascorbate and dehydroascorbate contents in biological fluids. *Analytical Chemistry* **69**, 216–220.
- Lee EH, Jersey JA, Gifford C, Bennett J. 1984. Differential ozone tolerance in soybean and snapbeans: Analysis of ascorbic acid in O₃-susceptible and O₃-resistant cultivars by high-performance liquid chromatography. *Environmental and Experimental Botany* **24**, 331–341.
- Lisko KA, Hubstenberger JF, Phillips GC, Belefant-Miller H, McClung A, Lorence A. 2013. Ontogenetic changes in vitamin C in selected rice varieties. *Plant Physiology and Biochemistry* **66**, 41–46.
- Luwe MWF, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (*Spinacia oleracea* L.) leaves. *Plant Physiology* **101**, 969–976.
- Lyman CM, Schultze MO, King CG. 1937. The effect of metaphosphoric acid and some other inorganic acids on the catalytic oxidation of ascorbic acid. *Journal of Biological Chemistry* 118, 757–764.
- Nakamura T, Makino N, Ogura Y. 1968. Purification and properties of ascorbate oxidase from cucumber. *The Journal of Biochemistry*. 64, 189–195.
- Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. *Plant and cell physiology* **53**, 1659–1668.
- Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH. 2003. The function of ascorbate oxidase in tobacco. *Plant Physiology* 132, 1631–1641.
- Pignocchi C, Foyer CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. *Current opinion in plant biology* **6**, 379–389.
- Polle A, Chakrabarti K, Schürmann W, Rennenberg H. 1990. Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (*Picea abies* L., Karst.). *Plant Physiology* 94, 312–319.
- **Queval G, Noctor G.** 2007. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during *Arabidopsis* rosette development. *Analytical Biochemistry* **363**, 58–69.

- Stevens R, Buret M, Garchery C, Carretero Y, Causse M. 2006. Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. *Journal of agricultural and food chemistry* **54**, 6159–6165.
- Washko PW, Welch RW, Dhariwal KR, Wang Y, Levine M. 1992. Ascorbic acid and dehydroascorbic acid analyses in biological samples. *Analytical Biochemistry* **204**, 1–14.
- Weissberger A, LuValle JE, Thomas DS. 1943. Oxidation processes. XVI. The autoxidation of ascorbic acid. *Journal of the American chemical society* 65, 1934–1939.
- White GA, Krupka RM. 1965. Ascorbic acid oxidase and ascorbic acid oxygenase of *Myrothecium verrucaria*. *Archives of Biochemistry and Biophysics* **110**, 448–461.
- Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. *Laboratory Manual for Physiological Studies of Rice*. The International Rice Research Institute. Manila, The Philippines.

Chapter 3 A novel gene *OsORAP1* enhances cell death in ozone stress in rice

(Ueda Y, Siddique S, Frei M. 2015. A novel gene, *OZONE-RESPONSIVE APOPLASTIC PROTEIN1*, enhances cell death in ozone stress in rice. *Plant Physiology* [in press].)

Abstract

A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1) was characterized, which was previously suggested as a candidate gene underlying OzT9, a QTL for ozone stress tolerance in rice (Oryza sativa L.). The sequence of OsORAP1 was similar to that of ascorbate oxidase (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/GFP fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity as shown by heterologous expression of OsORAP1 in Arabidopsis mutants with reduced background AO activity. A knock-out (KO) rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 ppb average daytime concentration, 20 days) as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid (JA)-responsive genes in the KO line implied the involvement of the JA pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone susceptible Nipponbare and ozone-tolerant Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported QTL.

1. Introduction

Tropospheric ozone is one of the most important environmental pollutants adversely affecting agriculture (Ainsworth *et al.*, 2012). Ozone is formed through photochemical reactions of precursor gases such as nitrogen oxides (NO_x), carbon monoxide, and volatile organic compounds, which largely originate from anthropogenic gas emissions (Yamaji *et al.*, 2006). Recent economic development and industrialization have led to drastic increases of tropospheric ozone concentrations in East Asian countries. In some regions, the monthly average concentration currently exceeds 70 ppb (Yamaji *et al.*, 2006), temporarily reaching nearly 200 ppb (Wang *et al.*, 2007). Furthermore, the average level is expected to increase by up to 10 ppb by 2020 in these areas (compared with 2000) due to increasing anthropogenic gas emissions (Yamaji *et al.*, 2008). At these concentrations, ozone negatively affects both the crop yields (Ainsworth, 2008) and quality (Wang and Frei, 2011), and induces leaf visible symptoms such as chlorosis and bronzing (Feng *et al.*, 2014).

Rice (*Oryza sativa* L.) is the major staple crop throughout Asia, and it is strongly affected by tropospheric ozone because its cropping season overlaps with peak ozone concentrations especially in South and East Asia (Frei, 2015). Previous studies estimated around 3.7% of global rice yield loss and regionally more than 10% of rice yield loss due to elevated tropospheric ozone, and this trend will exacerbate in the future with increasing concentrations (Ainsworth, 2008; Van Dingenen *et al.*, 2009). Considering that the global food demand will double by the year 2050 (Tilman *et al.*, 2011), it is of paramount importance to get insight into ozone tolerance mechanisms in rice and breed ozone-tolerant rice varieties to ensure the global food supply.

A number of previous studies have determined genetic factors associated with ozone tolerance in rice, suggesting that this trait is controlled by multiple medium effect loci rather than a single large effect locus (Frei, 2015; Ueda *et al.*, 2015). In a study by Frei *et al.* (2008), several ozone-related quantitative trait loci (QTLs) were identified using a mapping population derived from the contrasting cultivars Nipponbare (susceptible) and Kasalath (tolerant). One of the identified QTLs, *OzT9*, was related to leaf visible symptom formation in ozone stress, where the allele from the tolerant Kasalath cultivar conferred tolerance. Underpinning the effect of *OzT9*, a chromosomal segment substitution line SL41 carrying a chromosomal introgression from Kasalath at the *OzT9* locus in Nipponbare background, produced less visible symptoms than

Nipponbare (Frei et al., 2008). A subsequent transcriptomic analysis revealed a differential gene expression profile between Nipponbare and SL41 (Frei et al., 2010). A proposed candidate gene, which was annotated as an ascorbate oxidase (AO; RAP ID: Os09g0365900), was located near the OzT9 locus, and was one of the most highly induced genes in ozone stress in the whole array. The induction of gene expression in ozone stress was significantly lower in the tolerant SL41 than in Nipponbare (Frei et al., 2010). From a physiological point of view, apoplastic ascorbate (AsA) has been shown to form the first line of defence against the ozone entering the plants through the stomata (Luwe et al., 1993; Plöchl et al., 2000; Feng et al., 2010), which supports the link between the annotation of the candidate gene and ozone stress tolerance. In line with this concept, a previous study demonstrated that an AO over-expressing tobacco (Nicotiana tabacum) negatively affected tolerance to ozone due to altered apoplastic reduced AsA content and AsA redox status (Sanmartin et al., 2003). These converging pieces of evidence suggested that the expression of this putative AO gene was associated with ozone stress tolerance in rice in terms of visible symptom formation.

AO is classified as a multicopper oxidase family protein and can be found in plant and bacterial genomes (Hoegger et al., 2006). In plants, AO family proteins are localized in the apoplast, the vacuole, the tonoplast and the Golgi apparatus (Liso *et al.*, 2004; Balestrini et al., 2012). AO is supposedly involved in AsA metabolism in the apoplast, thereby controlling its redox status (Pignocchi and Foyer, 2003). Although several studies have been conducted on AO proteins in different plant species, its diverse roles in plant metabolism remain to be fully understood. Yamamoto et al. (2005) observed that knock-down of AO led to higher tolerance to salinity and oxidative stresses in Arabidopsis (Arabidopsis thaliana). Garchery et al. (2013) reported an increase in the early fruit diameter and alteration in hexose and sucrose content in leaves in AO knock-down lines in tomato (Solanum lycopersicum). These examples raise questions regarding the physiological role of AO genes in plants, since absence or lower expression of AO genes often appears to be favourable. In contrast, AO was also suggested to enhance cell expansion and growth (Kato and Esaka, 2000; Pignocchi et al., 2003). Due to its apparently contradictory roles, AO has been named a mysterious enzyme (Dowdle *et al.*, 2007), of which the diverse biological functions remain to be fully elucidated.

In this study, we aimed at characterizing the previously identified putative AO gene *Os09g0365900*, which we named *OZONE-RESPONSIVE APOPLASTIC PROTEIN1* (*OsORAP1*), by specifically testing three hypotheses:

(I) OsORAP1 has AO activity and is localized in the apoplast;

(II) OsORAP1 affects leaf visible symptom formation in rice under chronic ozone stress;

and

(III) Because *OsORAP1* may be the gene underlying the ozone tolerance QTL *OzT9*, it shows sequence polymorphisms between tolerant and susceptible rice cultivars.

2. Materials and Methods

2.1. Sequence analysis

Rice putative AO and laccase amino acid sequences were obtained from the RAP-DB website (http://rapdb.dna.affrc.go.jp/, as of December 2013; Sakai *et al.*, 2013). Putative *Arabidopsis* AO and laccase amino acid sequences were obtained from the National Center for Biotechnology Information database (http://www.ncbi.nlm.nih.gov/, as of December 2013). MEGA5 software (Tamura *et al.*, 2011) was used to create a phylogenetic tree using the Neighbour-Joining method (Saitou and Nei, 1987). Protein motifs were searched through the InterPro database (http://www.ebi.ac.uk/interpro/, as of December 2013).

2.2. Construction of vectors and plant transformation

The vectors for transformation were constructed using the gateway cloning system (Curtis and Grossniklaus, 2003) as detailed in the Supplementary Protocol S1. Transient expression was conducted by using *Nicotiana benthamiana* leaves. These were infiltrated with *Agrobacterium tumefaciens* strain GV3101 carrying the vector pMDC83-OsORAP1, together with *A. tumefaciens* carrying pBIN61-P19 (a gift of Dr. H. Bohlmann, University of Natural Resources and Life Sciences Vienna). P19 is an RNA-silencing inhibitor, which enhances the expression of transgenes (Shah *et al.*, 2013). Each bacterium was infiltrated at an optical density of OD₆₀₀ = 2.0 in a buffer consisting of 10 mM MES (pH 5.6), 10 mM MgCl₂ and 100 μ M acetosyringone, and the signal was observed after 5 days using LSM 710 confocal microscope (Carl Zeiss, Jena, Germany). The wavelength was 488 nm for excitation and 514 to 550 nm for emission. Plasmolysis was induced by incubating the leaf segment with 1 M NaCl (Libault *et al.*, 2010) for 30 min. Mesophyll cells were directly observed by removing the epidermal cell layer using a razor blade and tweezers from the abaxial side.

Stable transformation of *Arabidopsis* was conducted by the floral-dip method (Clough and Bent, 1998). Young flowers and buds of *Arabidopsis* plants (a homozygous knock-out line: SALK_108854 for *At5g21100*, background ecotype Columbia-0) were dipped into *A. tumefaciens* (carrying pMDC32-OsORAP1 vector) solution ($OD_{600} = 0.8$) contained in 5% (w/v) sucrose solution added with 0.05% (v/v) of silwet L77. Selection of transformants was conducted on 1/2 MS medium containing 50 µg/mL hygromycin. Homozygous T3 seeds were used for the experiments.
2.3. Plant material and stress treatment

T1 seeds of two rice T-DNA insertion lines, 4A-00477 and 1B-00611, were obtained from the Crop Biotech Institute at Kyung Hee University (South Korea) (Jeon et al., 2000; Jeong et al., 2006). These T-DNA lines had been transformed using the japonica cultivar Dongjin as the wildtype (WT) and the transformation vector pGA2715, which transfers an 8.3-kb T-DNA insertion containing four tandem sequence repeats of a transcriptional enhancer element from the cauliflower mosaic virus (CaMV) 35S promoter. Line 4A-00477 (hereafter referred to as over-expression line: OE) contained the T-DNA insertion in 462 bp upstream of OsORAP1, while line 1B-00611 (hereafter referred to as knock-out: KO) contained the insertion in the intron of OsORAP1 (Figure S1A). The presence of the insertion near the gene should lead to over-expression via activation tagging, while an insertion in the intron should lead to suppressed expression (Jeong et al., 2002). The presence and orientation of the insertion were confirmed by PCR using genomic DNA as a template and the T-DNA right border primer 5'-AAC GCT GAT CAA TTC CAC AG-3' in combination with one of the following gene-specific primers: 5'-TGC AGG TTT CGT TGT CTC TG-3' (left) or 5'-GGA CGC GGT GCT ATC TTT AC-3' (right) for line 4A-00477 and 5'-TCG CAC CAA TAT CGA GAC AG-3' (left) and 5'-AGC GAG ATG CAT GTC AAC TG-3' (right) for line 1B-00611. Homozygous plants were selected in the T2 generation and used for the experiments. The seeds were sterilized with 5% (w/v)sodium hypochlorite solution for 5 min, and were rinsed five times with deionized water before imbibition. The seeds were germinated at 28 °C in the dark, and the seedlings were then transferred to a mesh floating on deionized water placed under natural light in a greenhouse. After growing for 2 weeks, the seedlings were transplanted into 60-L plastic containers filled with one-half-strength Yoshida solution (Yoshida et al., 1976). One container accommodated a total of 40 plants of the three lines (KO, OE and WT) in a random distribution. The solution was changed to full strength 3 days before the onset of ozone fumigation, and the solution was renewed every 10 days. Supplementary lighting was provided in the greenhouse from 7 AM till 8 PM every day to ensure a minimum photosynthetic photon flux density of 250 µmol s⁻¹ m⁻². The minimum temperature of the greenhouse was set to 30/25 °C (day/night). The temperature was controlled by an inner heating system and ventilation through opening roofs. Therefore, plants were exposed to ambient ozone concentration.

Arabidopsis was grown in a closed greenhouse, and the ozone concentration in the greenhouse was close to zero.

Ozone fumigation was conducted in open-top chambers (1.3-m width x 1.0-m length x 1.3-m height) surrounded by transparent plastic sheets. Ozone was generated using custom-made ozone generators (UB01; Gemke Technik, Ennepetal, Germany) after drying the air with silica gel. The generated ozone was first percolated through water to remove NO_x , and then blown into perforated plastic tubes with a fan to achieve even distribution of ozone in the chambers. The ozone concentration was permanently monitored by ozone sensors (GE 703 O3; Dr. A. Kuntze, Meerbusch, Germany) for realtime regulation of the generators. In addition, the ozone concentration was independently monitored with a handheld ozone monitor (Series 500, Aeroqual, Auckland, New Zealand) placed within the canopy. Two independent chambers were used for elevated ozone (A-O₃) were placed in identical chambers without ozone fumigation to ensure the same microclimate in both treatments. Each chamber contained two of the hydroponic containers described above.

Experiment 1

This experiment was conducted from June to August 2012. The target ozone concentration was set to 150 ppb because of relatively high ambient ozone concentration in the experimental area. The actually recorded average daytime ozone concentration of the E-O₃ treatment was 159 ± 64 ppb (average \pm standard deviation, same below; 9 AM to 4 PM), while the average concentration of A-O₃ chambers was 40 ± 14 ppb. Gene expression analysis except for tissue-specific expression, biochemical analyses except for apoplastic AsA, and AO and NADPH oxidase activity analyses were conducted in this experiment. Plant materials were harvested on the indicated days, flash-frozen in liquid nitrogen, and stored at -80 °C until analysis. Young shoots and leaves (top half of the shoot) were used for the analyses. The plants were 7 weeks old (counting from germination) after 20 days of fumigation.

Experiment 2

This experiment was conducted from July to October 2014. The target concentration was set to 90 ppb. The actually measured average concentration of the E-O₃ treatment was 86 ± 32 ppb (9 AM to 4 PM), while that of A-O₃ chambers was 12 ± 8 ppb.

Visible symptoms on the leaves were determined as 'leaf bronzing score (LBS)' (Wissuwa et al., 2006). The four youngest fully expanded leaves of each plant were assigned an LBS ranging from 0 (completely healthy) to 10 (dead) and averaged for each plant. Growth parameters, LBS, apoplastic AsA, stomatal conductance, tissuespecific expression levels of OsORAP1, and polyphenol oxidase activity were measured in this experiment (Supplementary Protocol 2). Stomatal conductance was measured using a LI-1600 Steady State Porometer (LI-COR, Lincoln, NE). The measurement was conducted on DAY 14 on the youngest fully expanded leaves. At least nine plants were taken for the measurement from each treatment and genotype, and the highest and lowest values were excluded. The measurements were conducted within 3 h around noontime on a cloudless day. The plants were 7 weeks old after 20 days of fumigation. Although different concentrations were adopted in these two experiments, the physiological responses of the plants were similar between these two experiments, as judged by the expression of OsORAP1 and the content of lipid peroxidation (Figure S2), probably due to the climate conditions and the extent of ozone stress that the plants suffered before the onset of fumigation.

2.4. RNA extraction and gene expression analysis

The samples were ground in liquid nitrogen to a fine powder, and RNA was extracted with a PeqGOLD Plant RNA extraction kit (Peqlab, Erlangen, Germany) according to the manufacturer's protocol, including DNase digestion using RQ1 DNase (Promega, Mannheim, Germany). The extracted RNA was precipitated with ethanol for further purification, and the pellet was dissolved in TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). The RNA concentration was measured with a Nanodrop 2000C instrument (Thermo Fisher Scientific, Waltham, MA) and the integrity was checked using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Reverse transcription was performed with a GoScript Reverse Transcription System (Promega) using both oligo dT primers and random hexamer primers according to the manufacturer's protocol using 300 ng of RNA (except for microRNA analysis).

MicroRNA was quantified according to Lima *et al.* (2011). Total RNA was reverse transcribed using M-MLV Reverse Transcriptase (Promega). The reaction mixture contained 500 ng of total RNA, 6 μ L of 5x reaction buffer, 1.5 μ L of 1 μ M stem-loop primer (5'-GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT

ACG CAN NNN NN-3'), 1 μ L of 10 mM dNTP mix, 25 U of RNase inhibitor, and 0.5 μ L of reverse transcriptase in a 30 μ L scale. The reaction was performed using the following conditions: 30 min at 16 °C, 30 min at 42 °C, and 5 min at 85 °C.

Quantitative PCR was performed with the StepOnePlus real-time PCR system (Applied Biosystems, Foster City, CA). The reaction mixture consisted of 5 μ L of GoTaq qPCR Master Mix (Promega), 0.2 μ L of each gene-specific primer (10 μ M) (Table S1), 3.6 μ L of nuclease-free water, and 1 μ L of cDNA sample. The reaction mixture was denatured at 95 °C for 10 min, followed by 40 cycles of 15 sec of denaturation at 95 °C and 1 min of annealing and extension at 60 °C. Melting curves were analysed after each reaction to check primer specificity. A house-keeping gene *Os05g0564200* was used as an internal control (Höller *et al.*, 2014a). The quantification of target genes was performed using $\Delta\Delta C_T$ method as in Frei *et al.* (2010). The efficiency of amplification was checked for all primer pairs using cDNA dilution series, and the values between 80% and 112% were obtained. All gene expression analyses were conducted in analytical duplicates.

2.5. Enzyme assays

Ascorbate oxidase activity

AO activity was measured according to Pignocchi *et al.* (2003). Briefly, the enzyme was extracted with 1 mL of 0.1 M sodium phosphate buffer (pH 6.5) from around 80 mg of sample ground in liquid nitrogen. The ion concentration was high enough to extract the AO from the cell wall since another extract using the same buffer including 1 M NaCl after the first extraction step retrieved only negligible AO activity in rice and *Arabidopsis*. The assay mixture consisted of 10 µL of the enzyme extract, 80 µL of sodium phosphate buffer (pH 5.6), and 10 µL of 2 mM reduced AsA. The solution was mixed by pipetting, and the kinetics were read at 265 nm ($\varepsilon = 14.3 \text{ mM}^{-1} \text{ cm}^{-1}$) with a microplate reader (Powerwave XS2 microplate reader, BioTek, Bad Friedrichshall, Germany). The protein concentration was measured according to the method of Bradford (1976).

NADPH oxidase activity

NADPH oxidase activity was measured according to Ishibashi *et al.* (2010). First, the enzyme was extracted from around 60 mg of frozen sample with 1 mL of 10 mM

sodium phosphate buffer (pH 6.0) and two times of 15-sec sonication. The supernatant was obtained by centrifugation at 16,000 g, at 4 °C for 15 min. An aliquot of 200 μ L of the extract was mixed with 1.8 mL of 100% (v/v) acetone and placed at -20 °C for more than 15 min. The protein was recovered by centrifugation at 12,500 rpm, at 4 °C for 10 min. The pellet was dissolved in 50 mM Tris-HCl (pH 8.0) containing 0.1 mM MgCl₂, 0.25 M sucrose, and 0.1% (v/v) Triton X-100. The assay mixture consisted of 10 μ L of the protein extract, 10 μ L of 5 mM nitroblue tetrazolium, 10 μ L of 1 mM NADPH, and 70 μ L of the above-mentioned Tris buffer containing MgCl₂, sucrose, and Triton X-100. The kinetics were read at 530 nm ($\epsilon = 12.8 \text{ mM}^{-1} \text{ cm}^{-1}$) and the activity was calculated based on the protein concentration.

2.6. Biochemical assays

AsA assay

Extraction and quantification of AsA from the apoplast and the whole tissue were based on Ueda *et al.* (2013b). The reduced AsA content was measured from the absorption decrease at 265 nm after the addition of 10 μ L of 0.01 U/ μ L AO to a mixture of 10 μ L of extracted AsA and 80 μ L of 0.1 M potassium phosphate buffer (pH 7.0). The oxidized AsA content was measured from the absorption increase at 265 nm after addition of 10 μ L of 2.1 M potassium phosphate buffer (pH 7.0). The oxidized AsA content was measured from the absorption increase at 265 nm after addition of 10 μ L of 4 mM dithiothreitol to a mixture of 10 μ L of extracted AsA and 80 μ L of 0.1 M potassium phosphate buffer (pH 7.8). The calculation of the AsA content was based on the extinction coefficient of $\epsilon = 14.3 \text{ mM}^{-1} \text{ cm}^{-1}$.

Chlorophyll measurements

Chlorophyll content was measured according to Porra *et al.* (1989) using dimethyl formamide (DMF) as a solvent. Approximately 10 mg of fresh sample was taken from the middle part of the second fully expanded leaf, put into a 1.5-mL tube together with 1 mL DMF without grinding, and stored at 4 °C for 24 h. The absorption of the resultant solution was read at 647, 664, and 750 nm (background) using a microplate reader. The concentrations of chlorophylls *a* and *b* were calculated by the following formulae:

Chl
$$a = \frac{12.00 \times (A_{664} - A_{750}) - 3.11 \times (A_{647} - A_{750})}{0.29}$$

Chl
$$b = \frac{20.78 \times (A_{647} - A_{750}) - 4.88(A_{664} - A_{750})}{0.29}$$

Here, 0.29 denotes the path length (cm) of the solution when 100 μ L was put onto a 96-well plate (No. 3635, Corning, Corning, NY).

MDA quantification

The amount of malondialdehyde (MDA) was determined as described previously (Hodges *et al.* 1999; Höller *et al.*, 2014b). Extraction was performed from approximately 100 mg of ground tissues with 2 mL of 0.1% (w/v) trichloroacetic acid (TCA). The supernatant was obtained after centrifugation at 4 °C and 15,000 g for 15 min. An aliquot of 250 μ L of the supernatant was mixed with 250 μ L of 20% (w/v) TCA, 0.01% (w/v) 2,6-di-tert-butyl-4-methylphenol and 0.65% (w/v) thiobarbituric acid (TBA). The mixture was heated to 95 °C for 30 min, and the absorbance of the supernatant was measured at 440, 532 and 600 nm. The absorption of blank samples, which did not contain TBA, was subtracted for each sample.

2.7. Statistical analyses

Statistical analyses were performed using the SAS programme (SAS Institute, Cary, NC) applying a PROC MIXED model. Genotype, treatment, and genotype and treatment interaction were set as fixed effects, and chambers and chamber x container were set as random effects as described by Frei *et al.* (2011). Tukey's test was conducted as a post-hoc test. *P* values below 0.05 were considered to be significant.

3. Results

3.1. Hypothesis 1: OsORAP1 is an ascorbate oxidase localized in the apoplast

The amino acid sequence of AO (EC. 1.10.3.3) is highly similar to that of laccases (EC. 1.10.3.2), which are also classified as multicopper oxidases and have a large number of family proteins (Hoegger et al., 2006). To analyse phylogenetic relationships of the rice OsORAP1 gene (Os09g0365900) with other similar genes, we first compared the sequence of OsORAP1 with other Arabidopsis and rice AO and laccase proteins. OsORAP1 was in the same clade as other Arabidopsis AO proteins (At5g21100, At5g21105 and At4g39830; Yamamoto et al., 2005; Fig. 3-1A, clade III), being closest to At4g39830 with 59% identity at the amino acid level. Three other rice proteins (Os06g0567200, Os06g0567900 and Os09g0507300) were in the same clade as the Arabidopsis AO proteins. This clade was further categorized into III-A and III-B, each including rice and Arabidopsis proteins. Analysis with other plant species also revealed clear diversification of clades III-A and III-B (Figure S3). All the known Arabidopsis laccase proteins were classified into clade I; therefore, we concluded that it represented the large laccase family. Another small family (clade II) was not classified as clade I or III, and was termed as AO-like. The AO-like subfamily did not contain the multicopper oxidase protein domain and copper-binding site (InterPro ID: IPR002355), while all the sequences in clade III did, including OsORAP1 (Figure S4). The proteins in clade III also contained a protein signature Lascorbate oxidase, plants (InterPro ID: IPR017760).

Analysis with the SignalP 4.1 programme (Petersen *et al.*, 2011) predicted a signal peptide in the first 24 amino acids and a cleavage site between amino acids 24 and 25, thereby providing evidence that OsORAP1 is a secreted protein. To experimentally confirm the subcellular localization of OsORAP1, we produced a vector construct, in which the OsORAP1 protein was fused with GFP at the C-terminus, and expressed them in *N. benthamiana* leaves with the constitutive CaMV 35S promoter. Heterologous expression in *N. benthamiana* epidermal cells showed GFP signals clearly localized in the cell periphery (Fig. 3-1B-D). Signals were observed in the periphery of the cells in mesophyll cells as well (Fig. 3-1E). Upon plasmolysis (*i.e.* dissociation of the plasma membrane from the cell wall) in epidermal cells, the signals were observed in the apoplastic space (Fig. 3-1F, arrowheads), thereby confirming the apoplastic localization of OsORAP1.

Complementation analysis was conducted to examine whether OsORAP1 had AO activity. We obtained a homozygous knock-out line for an Arabidopsis gene in clade III-B (At5g21100, SALK 108854 line) and performed an enzymatic assay of AO. Indeed, AO activity was severely reduced in this knock-out line as compared with the wildtype as reported previously (Fig. 3-1G; Yamamoto et al., 2005). To assess whether OsORAP1 exhibits AO activity, we generated transgenic Arabidopsis plants expressing CaMV 35S:: OsORAP1 in a mutant (At5g21100) background. If OsORAP1 encoded a functional AO, increased AO activity would be expected in the complementation lines as compared with non-complemented mutants. However, the decreased AO activity in the knock-out line was not recovered by the introduction of OsORAP1 despite evidence for its constitutive expression (Fig. 3-1G, H). Expression data from previous transcriptomic studies suggested that another Arabidopsis AO homologue (At4g39830, clade III-A) was specifically induced by ozone and biotic stresses (Table S2). Therefore, AO activity of a homozygous knock-out line of At4g39830 (SALK_046824 line) was tested in chronic and acute ozone stress along with control conditions (Fig. 3-1I). At4g39830 was strongly induced under acute ozone stress (Fig. 3-1J). However, AO activity level did not show marked differences between the wildtype and a knock-out line, despite the expression of At4g39830 in acute ozone stress (Fig. 3-1I, J), suggesting that At4g39830 did not dominate AO activity in Arabidopsis. Transient expression of native OsORAP1 protein under the regulation of the CaMV 35S promoter in N. benthamiana leaf also did not lead to increased AO activity despite the expression of OsORAP1 (Figure S5). Based on these observations, we confirmed that OsORAP1 was an apoplastic protein, but it had no detectable AO activity under the conditions tested in this study.

Figure 3-1: Bioinformatic and physiological analysis of *OsORAP1*. (A) Phylogenetic analysis of laccase- and ascorbate oxidase (AO)-related proteins from rice and *Arabidopsis*. The neighbour-joining method was used to generate the tree. The branch length represents the evolutionary distance calculated by the Poisson correction method. OsORAP1 (Os09g0365900) is shown in boldface and highlighted. (B-F) Subcellular localization of the OsORAP1 protein in *Nicotiana benthamiana* epidermal cells (B-D and F) and mesophyll cells (E). OsORAP1 was transiently expressed under the control of the cauliflower mosaic virus 35S promoter. The signal of GFP (B, E and F), bright field (C) and merged images (D) are shown. In F, plasmolysis was induced by incubating the leaf segment with 1 M NaCl for 30 min prior to observation. Arrowheads indicate the dissociation of cell membrane from the cell wall and resultant signals in the apoplast. Bars = 10 mm (B-D and F) and 50 mm (E). (G) AO activity of wildtype *Arabidopsis* plants (WT), a homozygous knock-out line of *At5g21100* (at5g21100-KO), and

five individual homozygous complementation lines. Values are means of four biological replicates. (H) Expression of At5g21100 (*Arabidopsis* AO homologue; top), Os09g0365900 (rice OsORAP1; middle) and At1g13320 (*Arabidopsis* reference gene; bottom). (I) AO activity of WT and a homozygous knockout line of At4g39830 (at4g39830-KO). The activity of WT was considered as 100% in each treatment, and the activity of at4g39830-KO is shown in relative values. Chronic ozone treatment was conducted at the average concentration of 110 ± 44 ppb (7 h and 17 days), and acute ozone treatment was conducted at the average concentration of 230 ± 80 ppb (6 h and 4 days). In all cases, rosette leaves of 4- to 6-week-old plants were used for the analysis. Values are means of four to six biological replicates. (J) Expression of At4g39830 (*Arabidopsis* AO homologue; top) and At1g13320 (bottom). In G and I, error bars indicate standard errors.

3.2. Hypothesis 2: OsORAP1 is involved in ozone-induced cell death in rice

Gene expression analysis

To get insight into the expression patterns of OsORAP1 in ozone stress, 4-week-old wildtype (WT) rice plants were treated either with ambient concentration of ozone (A-O₃), corresponding to the naturally occurring ozone in the greenhouse atmosphere, or with elevated ozone $(E-O_3)$ for 20 days. First, gene expression levels were analysed in different tissues in both conditions. Strong induction of the expression was observed only in young leaf blades (P < 0.001), while other tissues did not show significantly increased level of expression (Fig. 3-2A). The constitutive expression level of OsORAP1 was high in old leaves and root tissues (Fig. 3-2A). To investigate the function and physiological importance of OsORAP1 with respect to ozone tolerance in rice, a homozygous rice knock-out line (KO) and a homozygous over-expression line (OE) were obtained (Figure S1A). Four-week-old plants were treated with ozone for 20 days along with WT. Two independent experiments were conducted, through which similar results were obtained (stated below). KO did not produce any functional full-length OsORAP1 transcript due to a T-DNA insertion (Figure S1B). OsORAP1 was highly induced by elevated ozone, reaching more than 30-fold expression levels compared with A-O₃ in WT on DAY 10 (Fig. 3-2B). In all cases, significantly higher expression was observed in OE than in WT (Fig. 3-2B). Similar OsORAP1 expression levels were obtained from the second ozone fumigation experiment (Figure S2A).

The gene expression levels of the aforementioned three putative rice AO homologues were also analysed. The closest homologue, Os09g0507300, showed no expression in any of the conditions tested in our study (data not shown). The other two homologues, Os06g0567200 and Os06g0567900, showed constitutive expression in A-O₃ condition

(Fig. 3-2C, D). KO of *OsORAP1* showed a higher expression level of *Os06g0567200* than the other two lines (P < 0.05; Fig. 3-2C).

OsORAP1 is predicted to interact with a microRNA, *Osmir528*, in rice (de Lima *et al.*, 2012). Therefore, we analysed the expression of *Osmir528* in all three lines (KO, WT and OE) in A-O₃ and E-O₃ conditions. We found that transcript abundance for *Osmir528* decreased significantly in all three lines in ozone stress (P < 0.05; Fig. 3-2E). Moreover we also observed a significant interaction between genotype and treatment (GxT) (P < 0.05). These observations strongly suggest that *Osmir528* is involved in the ozone-induced transcriptional regulation of *OsORAP1*.

Figure 3-2: Expression analysis of *OsORAP1*, two other ascorbate oxidase (AO) genes, and a microRNA, *Osmir528*. (A) Expression levels of *OsORAP1* in different tissues in the ambient condition (A-O₃, 40 ppb) and the elevated ozone condition (E-O₃, 159 ppb) on DAY 20. Different tissues used in the experiment are as follows: 1, two youngest leaf blades; 2, two oldest leaf blades; 3, outer leaf sheaths; 4, inner leaf sheaths (containing newly emerging leaves); 5, half basal part of roots; and 6, half apical part of roots. The value in the parentheses is the fold increase in the E-O₃ condition in each tissue

as compared with the A-O₃ condition. Pair-wise Student's *t*-tests were conducted for each tissue between two treatments. Asterisks indicate a significant difference (P < 0.001). The y axis is shown in logarithmic scale. The expression level in the two youngest leaf blades in A-O₃ was determined as 1. (B-E) Gene expression analysis in young shoot and leaves in the A-O₃ condition (40 ppb) and the E-O₃ condition (159 ppb). (B) Expression levels of *OsORAP1* in A-O₃ and E-O₃ at three different time points in two different genotypes. (C) Expression levels of a rice AO homologue (*Os06g0567200*) in A-O₃ and E-O₃ at two different time points in three different genotypes. (D) Expression levels of a rice AO homologue (*Os06g0567900*) in A-O₃ and E-O₃ at two different time points in three different genotypes. (E) Expression of the microRNA *Osmir528* on DAY 20. In all cases, E-O₃ treatment was started (DAY 1) at the 4-week-old stage. KO, knock-out line; WT, wildtype; and OE, over-expression line. Values are means of four biological replicates (except for the WT A-O₃ sample on DAY 10 due to the loss of one sample). Error bars indicate standard errors. In B-E, ANOVA was conducted for each day, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

OsORAP1 knock-out mitigates cell death formation in ozone stress

Growth parameters and LBS were measured in WT, KO, and OE plants to assess the effect of *OsORAP1* expression in ozone stress. KO showed significantly lower LBS compared with WT and OE, demonstrating enhanced tolerance to ozone stress (Fig. 3-3A, B). The difference in LBS was not due to differences in morphology since the plant height, which might affect ozone uptake due to canopy resistance, was similar in all three lines (Figures S6 and S7A). We also did not observe significant genotypic differences in chlorophyll content or chlorophyll *a/b* ratio (Fig. 3-3C).

Stomatal conductance was measured, as ozone is mainly taken up through the stomata and the uptake is proportional to the stomatal aperture (Omasa *et al.*, 2002). We observed a clear treatment effect (P < 0.001), but no significant genotype or GxT effect (Fig. 3-4A). Growth parameters were determined on DAY 20. KO showed constitutively lower shoot fresh weight (FW) and tiller number compared with WT and OE (Fig. 3-4B). A significant correlation was seen between FW and tiller number ($r^2 = 0.81$, $P < 10^{-7}$), suggesting that large part of reduced FW in KO is ascribed to reduced tiller number. However, when grown in soil, KO showed significantly shorter flag leaf blade length, while the shape (ratio of leaf length and width) was not affected (Figure S7C, D). We further investigated the leaf weight per area to estimate the cell density, since it plays an important role for ozone stress tolerance in *Arabidopsis* (Barth and Conklin, 2003). The analysis revealed no significant genotypic differences in the cell density among genotypes (Figure S8). Taken together, KO specifically mitigated foliar cell death induced by ozone stress, while other leaf properties, such as cell density and chlorophyll content, were not affected, except for leaf length.

Figure 3-3: Formation of leaf visible symptoms and biochemical parameters in three rice lines. (A) Leaf images exposed to the ambient ozone concentration (A-O₃, 12 ppb) or the elevated ozone treatment (E-O₃, 86 ppb) after 15 days from the onset of the experiment. Representative second fully expanded leaves were photographed. (B) Leaf bronzing score from three lines on DAY 9 and DAY 20 in the E-O₃ condition (86 ppb). The values are means of 20 to 22 biological replicates on DAY 9, and eight biological replicates on DAY 20. (C) Chlorophyll content (bars, left axis) and chlorophyll *a/b* ratio (squares, right axis) in A-O₃ (40 ppb) and E-O₃ (159 ppb). The measurement was conducted on DAY 8. Elevated ozone treatment was started at the 4-week-old stage. Values are means of four biological replicates. KO, knock-out line; WT, wildtype; and OE, over-expression line. FW, fresh weight. All error bars indicate standard errors. In B and C, ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; and ***, P < 0.001.

Figure 3-4: Effects of ozone on stomatal conductance and growth characteristics. (A) Stomatal conductance of the three lines in the ambient ozone concentration (A-O₃, 12 ppb) and the elevated ozone concentration (E-O₃, 86 ppb). The measurement was conducted on DAY 14. The values are means of seven to eleven samples. Error bars indicate standard errors. (B) Growth characteristics of the three lines in A-O₃ (12 ppb) and E-O₃ (86 ppb) on DAY 20. Values are means of eight biological replicates. Error bars indicate standard errors. E-O₃ treatment was started at the 4-week-old stage. KO, knock-out line; WT, wildtype; and OE, over-expression line. ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

Knock-out line induces less oxidative damage

Lipid peroxidation (assessed as MDA equivalents) occurs even before the initiation of leaf visible symptoms and, thus, represents an indicator of oxidative stress preceding symptom formation (Ueda *et al.*, 2013a; Höller *et al.*, 2014b). Elevated ozone treatment increased the MDA content even on DAY 3 (P < 0.01; Fig. 3-5A), when the leaf symptoms had hardly emerged (data not shown). On DAY 3, MDA content was significantly lower in KO than in WT and OE. We observed a significant GxT effect on DAY 20 (P < 0.01), where MDA increased significantly in WT and OE (P < 0.01), while KO did not respond significantly to ozone. We obtained similar results from the second fumigation experiment, where a significant GxT effect was observed (Figure S2B). Next, we investigated active reactive oxygen species (ROS) production in the apoplast, since secondary ROS formation by NADPH oxidases contributes substantially to ozone damage (Overmyer *et al.*, 2000; Wohlgemuth *et al.*, 2002). Ozone stress significantly lowered the NADPH oxidase activity on DAY 20. On both days, KO showed constitutively less $O_2^{\bullet^*}$ producing activity compared with WT (Fig. 3-5B).

AO activity and apoplastic AsA content

As we expected based on the results obtained from the complementation assay, the knock-out and over-expression of *OsORAP1*, which was classified into clade III-A (Fig. 3-1A), did not affect AO activity (Fig. 3-6A). The AO activity in the whole tissue extract was also similar to that of the apoplastic washing fluid (Figure S9, $r^2 = 0.96$, P < 0.001), showing that the localization of the enzyme did not differ among lines or between the treatments. The expression level of one AO homologue (*Os06g0567900*, clade III-B) showed a highly significant correlation with measured AO activity (Fig. 3-6B), demonstrating that this homologue was the dominant AO gene in rice shoots under the conditions used for the study.

Apoplastic AsA did not show any significant differences between the lines (Fig. 3-7), which was consistent with the lack of difference in AO activity. Likewise, AsA level or redox status in the whole shoot tissue did not show genotypic differences (Figure S10). We investigated the activity of closely related laccase and other polyphenol oxidases which are also classified as copper-containing enzymes, namely catechol oxidase and tyrosine oxidase (McGuirl and Dooley, 1999). However, different

polyphenol oxidase activities, including laccase activity, also did not show genotypic differences (Figure S11).

Figure 3-5: Measures of oxidative stress in three rice lines in the ambient ozone concentration (A-O₃, 40 ppb) and the elevated ozone concentration (E-O₃, 159 ppb). (A) Lipid peroxidation as represented by malondialdehyde (MDA) equivalents. FW, fresh weight. (B) NADPH oxidase activity. Elevated ozone treatment was started at the 4-week-old stage. KO, knock-out line; WT, wildtype; and OE, over-expression line. Values are means of four biological replicates (except for the WT A-O₃ sample on DAY 10, due to the loss of one sample). Error bars indicate standard errors. Asterisks on E-O₃ bars show that the values were significantly affected by treatment. ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

Figure 3-6: Ascorbate oxidase (AO) activity in the ambient ozone concentration (A-O₃, 40 ppb) and the elevated ozone concentration (E-O₃, 159 ppb). (A) AO activity in the three lines. The samples were taken on DAY 20 of E-O₃ treatment. KO, knock-out line; WT, wildtype; and OE, over-expression line. Values are means of four biological replicates. Error bars indicate standard errors. ANOVA was conducted, and the result is shown as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; and n.s., not significant. (B) Correlation between the expression level of an AO homologue (Os06g0567900) and AO activity on DAY 20 in A-O₃ and E-O₃ conditions. Pearson's correlation coefficient and the corresponding P value are shown. Elevated ozone treatment was started at the 4-week-old stage.

Figure 3-7: Apoplastic ascorbate characteristics in the ambient ozone concentration (A-O₃, 12 ppb) and the elevated ozone concentration (E-O₃, 86 ppb). Samples were taken on DAY 15 of E-O₃ treatment. Redox status was defined as (reduced AsA)/(total AsA). Elevated ozone treatment was started at the 4-week-old stage. KO, knock-out line; WT, wildtype; and OE, over-expression line. FW, fresh weight. Values are means of four biological replicates. Error bars indicate standard errors. ANOVA was conducted, and the result is shown as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; and *, P < 0.05.

Involvement of plant hormones

We investigated the involvement of plant hormones related to the formation and propagation of leaf visible symptoms in ozone stress, such as ethylene (ET), salicylic acid (SA) and jasmonic acid (JA) (Rao and Davis, 2001; Kangasjärvi *et al.*, 2005). Through an analysis of public microarray data, it was found that *OsORAP1* is induced by exogenous SA application, which was also experimentally confirmed (Fig. 3-8A). To further investigate the interaction of *OsORAP1* with SA, we investigated in public microarray data sources the expression levels of *OsORAP1* in mutant lines for the transcription factor OsWRKY45, which is a regulator of SA response in rice (Shimono *et al.*, 2007). In the first dataset (NCBI Gene Expression Omnibus [GEO] ID: GSE23733), *OsORAP1* was induced by benzothiadiazole (BTH; a functional analogue of SA), and the expression was significantly lower in a knock-down line of *OsORAP1* was significantly higher in the *OsWRKY45* over-expression line in the second dataset (NCBI GEO ID: GSE48202; Fig. 3-8C).

We further analysed the expression levels of genes which are involved in either biosynthetic or signalling pathways of the above-mentioned hormones on DAY 1 and

DAY 20 in our mutant lines (Fig. 3-8D-H, Figure S12). The expression of *OsWRKY45* was higher in KO and OE than in WT on both days (Fig. 3-8D). On the other hand, the expression level of *Nonexpressor of Pathogenesis-Related Genes1* (*OsNPR1*), another transcription factor controlling SA response (Shimono *et al.*, 2007), was lower in KO than WT on DAY 1 (Fig. 3-8E). Differential regulation of genes was also observed in JA-related genes. The enzyme 12-oxophytodienoate reductase7 (OsOPR7) is involved in JA biosynthesis in rice, and its expression level correlates with JA level (Tani *et al.*, 2008). OsJAZ8 is involved in JA signalling and its expression level is induced by JA application (Yamada *et al.*, 2012). OsJAmyb is a transcription factor which is induced by JA (Lee *et al.*, 2001). On DAY 20, *OsOPR7* showed significantly higher expression in KO (Fig. 3-8F), and the expression of *OsJAZ8* and *OsJAmyb* was significantly higher on DAY 1 in KO (Fig. 3-8G, H). The expression level of *OsJAmyb* was higher in KO even in the A-O₃ condition on DAY 1 (Fig. 3-8H).

Figure 3-8: Involvement of OsORAP1 in phytohormone signalling. (A) Induction of *OsORAP1* by salicylic acid (SA) treatment. Six-week-old plants were sprayed with the indicated concentrations of SA in 0.1% (v/v) Tween 20, and the two youngest leaves were harvested after 48 h. The expression levels of *OsORAP1* (using primers OsORAP1-F2/R2) and an internal control (*Os05g0564200*) are shown. (B) Expression levels of *OsORAP1* in the wildtype (WT) and an *OsWRKY45* knock-down line (OsWRKY45-KD) after mock treatment (0.05% (v/v) acetone and 0.05% (v/v) Tween 20) or benzothiadiazole (BTH) treatment (0.5 mM BTH in 0.5% (v/v) acetone and 0.05% (v/v) Tween 20). The samples were taken after 12 h of treatment. The data were retrieved from an open microarray data source (NCBI GEO ID: GSE 23733). Original log₂-converted values were processed and expressed as linear values. The expression level of WT sample with mock treatment was set to 1. (C) Expression

levels of OsORAP1 in the wildtype (WT) and an *OsWRKY45* over-expression line (OsWRKY45-OE). The data were retrieved from an open microarray data source (NCBI GEO ID: GSE48202). Original log₂-converted values were processed and expressed as linear values. The expression level of WT sample was set to 1. Student's *t*-test was conducted, and the asterisks indicate a significant difference (P < 0.001). (D-H) Expression levels of phytohormone-related genes in the ambient ozone concentration (A-O₃, 40 ppb) and the elevated ozone concentration (E-O₃, 159 ppb). The gene IDs are as follows: *OsWRKY45*, *Os05g0322900*; *OsNPR1*, *Os01g0194300*; *OsOPR7*, *Os08g0459600*; *OsJAZ8*, *Os09g0439200*; and *OsJAmyb*, *Os11g0684000*. Elevated ozone treatment was started at the 4-week-old stage. Values are means of four biological replicates. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line. In B and D-H, ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

3.3. Hypothesis 3: Sequence variation at the OsORAP1 locus explains the effect of the QTL OzT9

Since OsORAP1 had been proposed as a candidate gene underlying the ozone tolerance QTL OzT9, we compared the genomic sequences of OsORAP1 in the ozonesusceptible Nipponbare, and the tolerant OzT9 donor variety Kasalath (Frei et al., 2008). Our analysis revealed a number of polymorphic sites between the two cultivars in the upstream promoter region, while the coding sequence was largely conserved (Fig. 3-9, Figure S13). The deduced amino acid sequence revealed slight modifications in the signal peptide and three amino acid substitutions in the rest of the sequence (Figure S14). These polymorphic amino acid positions were not located at conserved amino acids, and the copper binding sites were conserved in both cultivars. The first 30 amino acids in Kasalath were also predicted to be transit peptides (by SignalP 4.1); therefore, the amino acid polymorphisms in the signal peptides probably did not affect the localization of the protein. The amino acid sequence of OsORAP1 in Dongjin, which was the background cultivar for the mutant lines in this study, was identical to that of Nipponbare (Figure S14). We searched possible regulatory sequences in the promoter region (upstream 1,000 bp) of both Nipponbare and Kasalath to get insight into the differential expression patterns of OsORAP1 in these two cultivars (Tables S3-S5). In both cultivars, a W-box sequence (TTGAC) was found, which is crucial for WRKY transcription factors to bind and activate the transcription of downstream genes (Yu et al., 2001). The Nipponbare-specific cis-elements contained ethylene responsive elements, A(A/T)TTCAAA (Itzhaki et al., 1994), GCCGCC (Hao et al., 1998), and AGCCGCC (Sato et al., 1996; Kitajima et al., 1998), which are supposedly binding sites of ethylene-responsive element binding proteins.

We also analysed the *OsORAP1* sequences in a previously reported ozone-tolerant chromosome segment substitution line, SL41, which was genetically identical to Nipponbare except for a 13-Mb introgression including the OzT9 region and another introgression on chromosome 6 from the tolerant Kasalath cultivar (Frei *et al.*, 2010). Our analysis showed that the sequence of SL41 at the *OsORAP1* locus was identical to that of Kasalath (Figure S14).

Figure 3-9: Sequence comparison of *OsORAP1* of Nipponbare (top) and Kasalath (bottom) rice cultivars. First, multiple alignment was conducted using MEGA5 software. Matched nucleotides are shown in black, mismatched nucleotides are shown in light blue, and gaps are shown in white. Upstream 1,500 bp, *OsORAP1* region, and downstream 1,000 bp sequences are shown. The 5'- and 3'- untranslated regions (UTR), exons, and intron are also shown for each cultivar. Bar = 500 bp.

4. Discussion

Cell death due to ozone stress leads to losses of photosynthetically active leaf area, which is suggested to be one of the factors limiting the total productivity of plants (Fiscus *et al.*, 2005). Therefore, identification of the genetic factors underlying the formation of visible symptoms would potentially have a large effect on crop production in the future. Although no or only weak correlations between symptom formation and yield were seen when rice cultivars with very heterogeneous genetic backgrounds were tested (Sawada and Kohno, 2009; Ueda *et al.*, 2015), the implications for yield became more apparent when genetically similar lines differing in symptom formation were compared (Frei *et al.*, 2012; Wang *et al.*, 2014). In this study, we characterized *OsORAP1*, which emerged as a candidate gene for ozone stress tolerance (*i.e.* the formation of cell death) in a previous study (Frei *et al.*, 2010). To elucidate the physiological function of OsORAP1 in ozone stress, three hypotheses were tested.

Hypothesis 1: OsORAP1 is an ascorbate oxidase localized in the apoplast

Apoplastic AsA has been considered important in the context of ozone stress tolerance, as it detoxifies incoming ozone (Luwe et al., 1993; Turcsányi et al., 2000). In support of this hypothesis, altered apoplastic AsA status through the introduction of an AO gene led to differential ozone stress tolerance in tobacco plants (Sanmartin et al., 2003). In agreement with the current rice gene annotation for OsORAP1 ('L-ascorbate oxidase precursor' in RAP-DB, http://rapdb.dna.affrc.go.jp/index.html, as of January 2015), phylogenetic analysis indeed showed close relatedness of OsORAP1 to Arabidopsis AO proteins. Observation of the OsORAP1-GFP fusion protein (Fig. 3-1B-F) indeed determined the apoplastic localization of OsORAP1, which is in accordance with bioinformatic analysis (*i.e.* the existence of signal peptide) and the observed localization of AO family proteins (Liso et al., 2004; Balestrini et al., 2012). Next, we tested whether the protein had AO activity. Arabidopsis At5g21100 (clade III-B) is an AO homologue of which AO activity was previously confirmed (Yamamoto et al., 2005). Supporting these previous results, a drastic decline of AO activity was observed in a knock-out line of At5g21100 (Fig. 3-1G). This clearly showed that At5g21100 is responsible for a large part of the AO activity in Arabidopsis. In consequence, the lack of increased AO activity in the complemented

lines (Fig. 3-1G) demonstrated the absence of AO activity in OsORAP1. In rice, the AO homologue Os06g0567900 dominated the AO activity in shoots (Fig. 3-6B). Interestingly, the dominant At5g21100 and Os06g0567900 were in the same clade III-B, while OsORAP1 and At4g39830, of which homozygous knock-out lines did not show decreased AO activity, were in clade III-A (Fig. 3-1A, Figure S3). Previous transcriptomic studies and our own experiment showed that both *OsORAP1* and *At4g39830* (clade III-A) were specifically induced under oxidative and biotic stresses, while *Os06g0567900* and *At5g21100* (clade III-B) were suppressed or less affected by these treatments with the exception of methyl viologen (MV) treatment (Tables S2 and S6). These data suggest that different subclades might represent different molecular functions. Taken together, the apoplastic localization, but not the AO activity of OsORAP1, was confirmed in this study.

A constitutively high expression level of *OsORAP1* was observed in root tissues, especially in the half apical side of the root (Fig. 3-2A). According to a previous microarray study (Sato *et al.*, 2011), high expression was observed in the root cap (Figure S15). Moreover, our further investigations into the possible molecular functions revealed that *OsORAP1* was highly induced during seed imbibition (Figure S16). Supporting this, a homozygous knock-out line of *OsORAP1* (ID: M0083940-8-A) in the genetic background of Tainung 67 (a *japonica* rice cultivar) was lethal (Table S7). Therefore, OsORAP1 might be related to embryogenesis or cell elongation. It also seems that OsORAP1 is involved in leaf expansion and tiller formation (Fig. 3-4 and Figure S7). This observation is similar to previous findings that AO family proteins enhanced cell elongation and growth rate in tobacco (Kato and Esaka, 2000; Pignocchi *et al.*, 2003). The molecular function of OsORAP1 warrants further detailed investigations.

Hypothesis 2: OsORAP1 is involved in ozone-induced cell death in rice

KO was more tolerant to ozone stress in terms of leaf visible symptom formation and lipid peroxidation (Figs. 3-3A, B and 3-5A), and the lower O_2^{\bullet} production rate further supported that KO experienced less oxidative damage (Fig. 3-5B). The AO activity and apoplastic AsA content did not show any significant differences between the lines (Figs. 3-6A and 3-7), implying that tolerance in KO was not the consequence of higher ozone-detoxifying capacity through AsA in the apoplast. Apart from apoplastic AsA, mutant screening experiments in *Arabidopsis* have revealed several tolerance

mechanisms to ozone stress to date. These include AsA content, stomatal conductance, and leaf parenchyma cell density (Conklin *et al.*, 1996; Barth and Conklin, 2003; Overmyer *et al.*, 2008; Vahisalu *et al.*, 2008). In this study, none of these traits was significantly affected in *OsORAP1* mutant lines compared with WT (Fig. 3-4A, Figures S8 and S10), indicating that KO shows tolerance due to a novel mechanism. Chlorophyll content, which decreases during senescence (Miller *et al.*, 1999), thus reflecting the overall stress levels of leaves, also did not show any genotypic differences (Fig. 3-3C). Together, these data suggest that KO of *OsORAP1* specifically mitigated cell death by a novel mechanism, but not antioxidant capacity or the general status of leaves as affected by ozone.

Induction of OsORAP1 in ozone stress was specific to young leaf blades, which had very low expression in the A-O₃ condition (Fig. 3-2B). In other words, gene expression was induced in photosynthetically active tissues with high intake of ozone, since older rice leaves have reduced stomatal aperture resulting in reduced ozone influx (Maggs and Ashmore, 1998). Besides ozone stress, OsORAP1 was also induced by pathogen infection and MV stress (Table S6). Both ozone and pathogen infection induce apoplastic oxidative stress and, consequently, programmed cell death (PCD) if ROS formation exceeds a certain threshold (Heath, 2000; Kangasjärvi et al., 2005). Cell death under MV stress also shares similar characteristics with PCD (Chen and Dickman, 2004; Chen et al., 2009). In addition, PCD plays an important role during embryogenesis (Helmersson et al., 2008) and in the root cap (Pennell and Lamb, 1997), where OsORAP1 is highly expressed (Figures S15 and S16). These facts imply that OsORAP1 is closely related to PCD, possibly via ROS, while it is not induced under many other abiotic stresses such as zinc deficiency (Table S6), where the foliar symptoms are assumed to occur via traumatic oxidative damage, not via PCD (Cakmak, 2000).

SA was another factor inducing *OsORAP1*, although SA itself does not induce PCD. This induction could occur either due to SA itself or apoplastic ROS accumulation caused by SA application (Kawano and Muto, 2000; Khokon *et al.*, 2011). The expression pattern of *OsORAP1* in *OsWRKY45* mutant lines strongly suggested that its expression is highly OsWRKY45-dependent. The presence of a W-box (Eulgem *et al.*, 2000) in the promoter region of *OsORAP1* supports this concept. Although no induction of OsWRKY45 was observed in our study, OsWRKY45 might be post-translationally processed and affect the expression level of downstream genes

(Matsushita *et al.*, 2013). Gene expression levels of JA-related genes (*OsOPR7*, *OsJAZ8*, and *OsJAmyb*) suggested that JA production is enhanced in KO. Higher expression of OsWRKY45 in KO might be due to the fact that it is also induced by JA as well as SA (De Vleesschauwer *et al.*, 2013). JA counteracts ROS production and the effect of SA and ET, which promote cell death, thus containing the spread of cell death caused by ozone (Overmyer *et al.*, 2000, 2003; Kangasjärvi *et al.*, 2005). Therefore the mitigation of cell death in KO is probably associated with the JA signalling pathway.

Hypothesis 3: Sequence variation at the OsORAP1 locus explains the effect of the QTL OzT9

The sequence analysis of different rice cultivars revealed highly conserved amino acid sequences and highly divergent promoter regions (Fig. 3-9, Figure S13). The lower OsORAP1 expression in ozone stress in the tolerant line SL41 as compared with Nipponbare (Frei et al., 2010) might be explained by cis-elements such as ethylene responsive element binding sites specific to the Nipponbare promoter sequence. Moreover, retarded growth during the vegetative growth stage seen in KO was also observed in SL41 in a previous study (Frei et al., 2008), further supporting the possibility that OsORAP1 is the causative gene underlying the effect of OzT9. However, we did not observe differences in AsA content of the whole tissue and apoplast between the lines, as seen previously between Nipponbare and SL41 (Fig. 3-7, Figure S10; Frei et al., 2010), suggesting that other genes might add to the effect of OzT9 in SL41. Nucleotide polymorphisms in the promoter or regulatory sequence of a gene have been suggested to underlie several QTLs in rice, such as blast resistance (Davidson et al., 2010) and flowering time (Kojima et al., 2002; Takahashi et al., 2009). Similarly, in this study, the expression level of OsORAP1, rather than functional alteration, could be the causal polymorphism for OzT9. Fine-mapping of OzT9, further transgenic approaches (e.g. swapping the gene and promoter of OsORAP1 between contrasting cultivars), and analysis of naturally occurring polymorphisms in the OsORAP1 promoter region and their correlation with ozone tolerance are warranted to confirm this conclusion.

5. Conclusions and Outlook

Regarding the hypotheses tested in this study it can be concluded that (I) OsORAP1 is an apoplastic protein similar to an AO, but it has no measurable AO activity, (II) OsORAP1 enhances leaf visible symptoms and lipid peroxidation in ozone stress and interacts with plant hormones, and (III) sequence polymorphisms in the promoter region of OsORAP1 supported the idea that it may underlie the effect of the QTL OzT9. Based on the results obtained in this study, we hypothesize that OsORAP1 is an apoplastic protein acting as a hub for signal transduction in ozone stress in rice (Fig. 3-10). As a future perspective, the molecular function of OsORAP1 needs to be further elucidated. Considering the localization of OsORAP1, a metabolomics analysis of apoplastic fluid (Floerl et al., 2012) would presumably be helpful in identifying its substrate (Fridman and Pichersky, 2005; Pourcel et al., 2005). It is also quite tempting to examine the pathogen resistance of the lines used in the study. This has implications beyond the breeding of ozone resistance, because PCD plays an important role in pathogen resistance by confining pathogens in dead cells, thereby preventing their spread to the other tissues (Apel and Hirt, 2004). OsORAP1 may be representative of the conflicting roles of intentional PCD due to pathogen attack and unintentional PCD due to ozone influx and, therefore, warrants further investigation.

Figure 3-10: Hypothetical mode of action of OsORAP1 in rice. Apoplastic ROS (ozone) leads to oxidative stress and, consequently, programmed cell death (PCD), directly or via OsORAP1. Salicylic acid (SA) induces *OsWRKY45* expression (Shimono *et al.*, 2007), and OsWRKY45 induces OsORAP1. OsORAP1 might possibly interact with the jasmonic acid (JA) pathway (shown in the dotted line). The enhanced production of SA by ROS, production of ROS by SA, and preventive role of JA in cell death in ozone stress are established in other plant species (Rao *et al.*, 2000, 2002; Khokon *et al.*, 2011) but not yet in rice; therefore, these are shown with gray lines.

Supplementary material

Protocol S1	Method for vector construction.
Protocol S2	Method for polyphenol oxidase activity measurement.
Figure S1	Gene model of OsORAP1.
Figure S2	Expression of OsORAP1 and MDA content from Experiment 2.
Figure S3	Phylogenetic analysis of clade III from 14 different plant species.
Figure S4	Multiple alignment of the proteins in clades II and III.
Figure S5	Transient expression of OsORAP1 in Nicotiana benthamiana leaves.
Figure S6	Plant shape in ambient ozone and elevated ozone stress conditions.
Figure S7	Growth parameters of three lines.
Figure S8	Leaf dry weight per area in three lines.
Figure S9	Ascorbate oxidase activity in the apoplast.
Figure S10	Ascorbate content and redox status of whole-tissue extract.
Figure S11	Polyphenol oxidase activity.
Figure S12	Expression levels of phytohormone-related genes.
Figure S13	Sequence alignment of the OsORAP1 locus from four different rice
Figure S14	Sequence alignment of the OsORAP1 proteins from four different rice lines.
Figure S15	Expression pattern of OsORAP1 in rice root.
Figure S16	Expression of OsORAP1 during seed imbibition.
Table S1	Primers used for this study.
Table S2	Expression profile of <i>Arabidopsis</i> AO homologues under several conditions.
Table S3	Cis-elements found only in Nipponbare.
Table S4	Cis-elements found in both Nipponbare and Kasalath.
Table S5	Cis-elements found only in Kasalath.
Table S6	Expression profile of OsORAP1 and Os06g067900 under several
	conditions.
Table S7	Seed germination test of an OsORAP1 knock-out line in Tainung 67
	genetic background.

Sequence data

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers: *OsORAP1* genomic sequence of Kasalath (KT369009) and Dongjin (KT369010).

Funding

This work was supported by Deutsche Forschungsgemeinschaft (FR-2952/1-1).

Acknowledgments

The authors thank Prof. Dr. Holger Bohlmann, (University of Natural Resources and Life Sciences Vienna) for providing pBIN61-P19 vector. The authors also wish to thank Prof. Dr. Rogerio Margis (Federal University of Rio Grande do Sul) for useful advice on microRNA analysis and Prof. Dr. Florian M. W. Grundler and Philipp Gutbrod (University of Bonn) for sharing experimental facilities and technical support on vector construction.

References

- Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. *Global Change Biology* 14, 1642–1650.
- Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. *Annual review of plant biology* **63**, 637–661.
- Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. *Annual review of plant biology* 55, 373–399.
- Balestrini R, Ott T, Güther M, Bonfante P, Udvardi MK, De Tullio MC. 2012. Ascorbate oxidase: The unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. *Plant Physiology and Biochemistry* 59, 71–79.
- **Barth C, Conklin PL.** 2003. The lower cell density of leaf parenchyma in the *Arabidopsis thaliana* mutant *lcd1-1* is associated with increased sensitivity to ozone and virulent *Pseudomonas syringae. The Plant Journal* **35**, 206-218.
- **Bradford MM**. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* **72**, 248–254.
- Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. *New Phytologist* 146, 185–205.
- **Chen S, Dickman MB.** 2004 Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. *Journal of Experimental Botany* **55**, 2617–2623.
- Chen R, Sun S, Wang C, *et al.* 2009. The *Arabidopsis PARAQUAT RESISTANT2* gene encodes an *S*-nitrosoglutathione reductase that is a key regulator of cell death. *Cell Research* **19**, 1377–1387.
- **Clough SJ, Bent AF**. 1998. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735–743.
- **Conklin PL, Williams EH, Last LR.** 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 9970-9974.
- Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for high-throughput functional analysis of gene in planta. *Plant Physiology* **133**, 462–469.
- **Davidson RM, Manosalva PM, Snelling J, Bruce M, Leung H, Leach JE.** 2010. Rice germin-like proteins: Allelic diversity and relationships to early stress responses. *Rice* **3**, 43-55.

- Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. *Atmospheric Environment* 43, 604–618.
- **Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N.** 2007. Two genes in *Arabidopsis thaliana* encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. *The Plant Journal* **52**, 673–689.
- Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. *Trends in plant science* 5, 199-206.
- Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J. 2010. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. *Environmental Pollution* 158, 3539–3545.
- Feng Z, Sun J, Wan W, Hu E, Calatayud V. 2014. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. *Environmental Pollution* 193, 296–301.
- Fiscus EL, Booker FL, Burkey KO. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. *Plant, Cell and Environment* 28, 997–1011.
- Floerl S, Majcherczyk A, Possienke M, *et al.* 2012. *Verticillium longisporum* infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in *Arabidopsis thaliana*. PLos One 7; e31435.
- Frei M. 2015. Breeding of ozone resistant rice: Relevance, approaches and challenges. *Environmental Pollution* **197**, 144–155.
- Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker K. 2011. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. *Global Change Biology* 17, 2319–2329.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* 61, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Südekum K-H, Kohno Y. 2012. Leaf ascorbic acid level–Is it really important for ozone tolerance in rice? *Plant Physiology and Biochemistry* **59**, 63–70.
- Fridman E, Pichersky E. 2005. Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8; 242-248.
- Garchery C, Gest N, Do PT, *et al.* 2013. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. *Plant, Cell and Environment* **36**, 159–175.

- Hao D, Ohme-Takagi M, Sarai A. 1998. Unique mode of GCC box recognition by the DNAbinding domain of ethylene-responsive element-binding factor (ERF domain) in plant. *Journal of Biological Chemistry* 273, 26857-26861.
- Heath M. 2000. Hypersensitive response-related death. Plant molecular biology 44, 321–334.
- Helmersson A, von Arnold S, Bozhkov PV. 2008. The level of free intracellular zinc mediates programmed cell death/cell survival decisions in plant embryos. *Plant Physiology* 147, 1158-1167.
- Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acidreactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. *Planta* **207**, 604–611.
- Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. 2006. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. *The FEBS Journal* 273, 2308–2326.
- Höller S, Hajirezaei M-R, von Wirén N, Frei M. 2014a. Ascorbate metabolism in rice genotypes differing in zinc efficiency. *Planta* 239, 367–379.
- Höller S, Meyer A, Frei M. 2014b. Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level. *Journal of plant physiology* 171, 1748– 1756.
- Ishibashi Y, Tawaratsumida T, Zheng S-H, Yuasa T, Iwaya-Inoue M. 2010. NADPH oxidases act as key enzyme on germination and seedling growth in barley (*Hordeum vulgare* L.). *Plant Production Science* **13**, 45–52.
- Itzhaki H, Maxson JM, Woodson WR. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proceedings of the National Academy of Sciences of the United States of America 91, 8925-8929.
- Jeon J-S, Lee S, Jung K-H, et al. 2000. T-DNA insertional mutagenesis for functional genomics in rice. *The Plant Journal* 22, 561–570.
- Jeong D-H, An S, Kang H-G, et al. 2002. T-DNA insertional mutagenesis for activation tagging in rice. *Plant Physiology* **130**, 1636-1644.
- Jeong D-H, An S, Park S, *et al.* 2006. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. *The Plant Journal* **45**, 123–132.
- Kangasjärvi J, Jaspers P, Kollist H. 2005. Signalling and cell death in ozone-exposed plants. *Plant, Cell and Environment* 28, 1021–1036.
- Kato N, Esaka M. 2000. Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. *Planta* **210**, 1018–1022.
- Kawano T, Muto S. 2000. Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. *Journal of Experimental Botany* **51**, 685-693.

- Khokon MAR, Okuma E, Hossain MA, *et al.* 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in *Arabidopsis*. *Plant, Cell and Environment* **34**, 434-443.
- Kitajima S, Koyama T, Yamada Y, Sato F. 1998. Constitutive expression of the neutral PR-5 (OLP, PR-5d) gene in roots and cultured cells of tobacco is mediated by ethyleneresponsive *cis*-element AGCCGCC sequences. *Plant Cell Reports* **18**, 173-179.
- Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. 2002. *Hd3a*, a rice ortholog of the *Arabidopsis FT* gene, promotes transition to flowering downstream of *Hd1* under short-day conditions. *Plant and cell physiology* **43**, 1096-1105.
- Lee M-W, Qi M, Yang Y. 2001. A novel jasmonic acid-inducible rice *myb* gene associates with fungal infection and host cell death. *Molecular Plant-Microbe Interactions* 14, 527–535.
- Libault M, Zhang X-C, Govindarajulu M, *et al.* 2010. A member of the highly conserved *FWL* (tomato *FW2.2-like*) gene family is essential for soybean nodule organogenesis. *The Plant Journal* **62**, 852-864.
- Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R. 2011. Aluminum triggers broad changes in microRNA expression in rice roots. *Genetics and Molecular Research* 10, 2817–2832.
- **De Lima JC, Loss-Morais G, Margis R.** 2012. MicroRNAs play critical roles during plant development and in response to abiotic stresses. *Genetics and Molecular Biology* **35**, 1069–1077.
- Liso R, De Tullio MC, Ciraci S, et al. 2004. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of *Cucurbita maxima* L. *Journal of Experimental Botany* 55, 2589–2597.
- Luwe MWF, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (*Spinacia oleracea* L.) leaves. *Plant Physiology* 101, 969–976.
- Maggs R, Ashmore MR. 1998. Growth and yield responses of Pakistan rice (*Oryza sativa* L.) cultivars to O₃ and NO₂. *Environmental Pollution* **103**, 159–170.
- Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H. 2013. The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. *The Plant Journal* **73**, 302-313.
- McGuirl MA, Dooley DM. 1999. Copper-containing oxidases. *Current opinion in chemical biology* **3**, 138-144.
- Miller JD, Arteca RN, Pell EJ. 1999. Senescence-associated gene expression during ozoneinduced leaf senescence in Arabidopsis. *Plant Physiology* 120, 1015–1023.
- **Omasa K, Tobe K, Kondo T.** 2002. Absorption of organic and inorganic air pollutants by plants. In: Omasa K, Saji H, Youssefian S, Kondo N, eds. *Air Pollution and Plant Biotechnology*. Tokyo: Springer, 155–178.

- **Overmyer K, Brosché M, Kangasjärvi J.** 2003. Reactive oxygen species and hormonal control of cell death. *Trends in plant science* **8**, 335-342.
- **Overmyer K, Kollist H, Tuominen H, et al.** 2008. Complex phenotypic profiles leading to ozone sensitivity in *Arabidopsis thaliana* mutants. *Plant, Cell and Environment* **31**, 1237-1249.
- Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis *rcd1* mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. *The Plant Cell* **12**, 1849–1862.
- Pennel RI, Lamb C. 1997. Programmed cell death in plants. The Plant Cell 9, 1157-1168.
- Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature methods* 8, 785–786.
- Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH. 2003. The function of ascorbate oxidase in tobacco. *Plant Physiology* **132**, 1631–1641.
- Pignocchi C, Foyer CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. *Current opinion in plant biology* **6**, 379–389.
- Plöchl M, Lyons T, Ollerenshaw J, Barnes J. 2000. Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. *Planta* 210, 454–467.
- **Porra RJ, Thompson WA, Kriedemann PE.** 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls *a* and *b* extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochimica et Biophysica Acta* **975**, 384–394.
- **Pourcel L, Routaboul J-M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I.** 2005. *TRANSPARENT TESTA10* encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in *Arabidopsis* seed coat. Plant Cell **17**; 2966-2980.
- Rao MV, Davis KR. 2001. The physiology of ozone induced cell death. Planta 213, 682–690.
- Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR. 2000. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. *The Plant Cell* **12**, 1633-1646.
- Rao MV, Lee H, Davis KR. 2002. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. *The Plant Journal* **32**, 447-456.
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* **4**, 406–425.
- Sakai H, Lee SS, Tanaka T, et al. 2013. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant and cell physiology 54, e6.
- Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK. 2003 Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered

ascorbate and glutathione redox states and increased sensitivity to ozone. *Planta* **216**, 918–928.

- Sato Y, Antonio BA, Namiki N, et al. 2011. RiceXPro: a platform for monitoring gene expression in *japonica* rice grown under natural field conditions. *Nucleic acids research* 39, D1141–D1148.
- Sato F, Kitajima S, Koyama T, Yamada Y. 1996. Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGCCGCC *cis*-sequence. *Plant and cell physiology* **37**, 249-255.
- Sawada H, Kohno Y. 2009. Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. *Plant Biology* 11, 70–75.
- Shah KH, Almaghrabi B, Bohlmann H. 2013. Comparison of expression vectors for transient expression of recombinant proteins in plants. *Plant Molecular Biology Reporter* 31, 1529–1538.
- Shimono M, Sugano S, Nakayama A, Jiang C-J, Ono K, Toki S, Takatsuji H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. *The Plant Cell* 19, 2064–2076.
- Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K. 2009. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proceedings of the National Academy of Sciences of the United States of America 106, 4555-4560.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution* 28, 2731– 2739.
- Tani T, Sobajima H, Okada K, et al. 2008. Identification of the OsOPR7 gene encoding 12oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227, 517-526.
- Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences of the United States of America* 108, 20260–20264.
- **Turcsányi E, Lyons T, Plöchl M, Barnes J.** 2000. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (*Vicia faba L.*). *Journal of Experimental Botany* **51**, 901–910.
- **Ueda Y, Frimpong F, Qi Y, et al.** 2015. Genetic dissection of ozone tolerance in rice (*Oryza sativa* L.) by a genome-wide association study. *Journal of Experimental Botany* **66**, 293–306.
- **Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T.** 2013a. Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. *Plant Physiology and Biochemistry* **70**, 396–402.

- Ueda Y, Wu L, Frei M. 2013b. A critical comparison of two high-throughput ascorbate analyses methods for plant samples. *Plant Physiology and Biochemistry* **70**, 418–423.
- Vahisalu T, Kollist H, Wang Y-F, et al. 2008. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. *Nature* 452, 487-491.
- De Vleesschauwer D, Gheysen G, Höfte M. 2013. Hormone defense networking in rice: tales from a different world. *Trends in plant science* 18, 555–565.
- Wang Y, Frei M. 2011. Stressed food The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystem and Environment 141, 271–286.
- Wang X, Manning W, Feng Z, Zhu Y. 2007. Ground-level ozone in China: Distribution and effects on crop yields. *Environmental Pollution* 147, 394–400.
- Wang Y, Yang L, Höller M, Zaisheng S, Pariasca-Tanaka J, Wissuwa M, Frei M. 2014. Pyramiding of ozone tolerance QTLs *OzT8* and *OzT9* confers improved tolerance to season-long ozone exposure in rice. *Environmental and Experimental Botany* 104, 26– 33.
- Wissuwa M, Ismail AM, Yanagihara S. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. *Plant Physiology* **142**, 731–741.
- Wohlgemuth H, Mittelstrass K, Kschieschan S, *et al.* 2002. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. *Plant, Cell and Environment* 25, 717–726.
- Yamada S, Kano A, Tamaoki D, et al. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. *Plant and cell physiology* 53, 2060–2072.
- Yamaji K, Ohara T, Uno I, Kurokawa J, Pochanart P, Akimoto H. 2008. Future prediction of surface ozone over east Asia using Models-3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia. *Journal of Geophysical Research* 113, D08306.
- Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa J, Akimoto H. 2006. Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan? *Atmospheric Environment* 40, 1856–1868.
- Yamamoto A, Bhuiyan MNH, Waditee R, *et al.* 2005. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and *Arabidopsis* plants. *Journal of Experimental Botany* **56**, 1785–1796.
- Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. *Laboratory Manual for Physiological Studies of Rice*. The International Rice Research Institute. Manila, The Philippines.
- Yu D, Chen C, Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of *NPR1* gene expression. *The Plant Cell* **13**, 1527-1539.
Chapter 4 Identification of novel loci involved in ozone stress tolerance in rice

(Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. 2015. Genetic dissection of ozone tolerance in rice (*Oryza sativa* L.) by genome-wide association study. *Journal of Experimental Botany* **66**, 293–306.)

Abstract

Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subpopulations of O. sativa was exposed to ozone stress at 60 ppb for 7 h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30,000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P <0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of leaf visible symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.

1. Introduction

Due to anthropogenic gas emissions, the tropospheric ozone concentration is increasing and negatively affects natural vegetation and crop production (Ainsworth *et al.*, 2012). Ozone is known to reduce photosynthetic rates (Chen *et al.*, 2011), induce cell death (Kangasjärvi *et al.*, 2005) and affects numerous metabolic pathways (Frei *et al.*, 2010), thus decreasing crop yields (Feng and Kobayashi, 2009) and changing crop quality (Wang and Frei, 2011). A steep increase in tropospheric ozone has been observed mainly in Asian countries (Lei *et al.*, 2013), where rice is the staple food. It is estimated that rice grain yields are already being affected in Asian countries at present ozone levels. Teixeira *et al.* (2011) estimated yield losses of 18 million and 11 million t of rice per year in India and China, respectively, which corresponds to more than 5% of relative loss due to increased tropospheric ozone.

Some typical symptoms of ozone stress in plants are directly related to crop quality and yield: (i) chlorosis and pale colour of leaves; (ii) necrotic dark brown spots or dead regions on leaves; and (iii) reduced growth rate and a stunted phenotype, leading to reduced yield. Among those traits, necrotic dark brown spots are closely related to acute ozone stress and are caused either by direct oxidative damage or by programmed cell death (PCD), which involves plant hormonal pathways (Kangasjärvi *et al.*, 2005). Generally, the correlation between the above-mentioned traits is not very pronounced, suggesting that they are under independent genetic control. For example, little correlation was observed between the extent of leaf damage and growth reduction (Frei *et al.*, 2008) or grain yield (Sawada and Kohno, 2009) in screening experiments with rice.

Genotypic variation in adaptation to ozone has been reported for a number of crop species such as rice, snap bean and wheat (Flowers *et al.*, 2007; Frei *et al.*, 2008; Feng *et al.*, 2011). However, only a few studies have attempted to dissect and use this genetic variability in ozone tolerance for molecular breeding of ozone tolerant crop genotypes. A number of genetic mapping studies have employed bi-parental mapping populations to identify quantitative trait loci (QTLs) for ozone tolerance (Frei *et al.*, 2008; Brosché *et al.*, 2010; Street *et al.*, 2011; Tsukahara *et al.*, 2013). In our previous study, such a QTL-based approach was successfully employed in developing rice genotypes with superior quality traits (Frei *et al.*, 2011) and biomass production (Wang *et al.*, 2014) under ozone stress. The shortcoming of such classical QTL studies

is that they use bi-parental mapping populations, thus covering only a narrow genetic variability. Moreover, the resolution of mapping is limited by the number of genetic recombination events occurring in the mapping populations (Flint-Garcia *et al.*, 2003). More recently, genome-wide association study (GWAS) has been emerging as a powerful tool to dissect a much broader genetic variability for important traits in crops (Brachi et al., 2011). This method employs populations of unrelated individuals representing a broad genetic variability, and abundant single-nucleotide polymorphisms (SNPs) are usually used as genetic markers. Since such populations reflect the diverse evolutionary recombination events of a species, high-resolution mapping is possible depending on the extent of linkage disequilibrium (LD) in the population. In the case of rice, which was developed into a domesticated crop by selfpollination plus forced pollination by humans, GWAS has been successfully conducted with a limited number of markers due to relatively slow LD decay (half decay is achieved in around 100 to 200 kb, compared with 0.5 to 7 kb in an outcrossing crop maize; Gupta et al., 2005), while achieving high resolution. Another advantage of using rice as a model plant is that it has a relatively small genome size, which reduces the number of necessary markers. Zhao et al. (2011) conducted a GWAS using 413 rice genotypes from most of the rice growing areas in the world, based on a 44,000-SNP genotyping array, followed by mapping for 34 agronomically relevant phenotypic traits. They provided evidence for the suitability of their population for GWAS by identifying significant marker associations near known genes affecting certain traits such as plant height. The population known as the 'diversity panel', can thus be used for the mapping of hitherto unknown genes.

Here, we report the first GWAS for ozone tolerance in any agricultural crop using a panel covering a broad genetic diversity and representing all subpopulations of rice. Our aims were: (i) to gain insight into the extent of genetic variability of ozone tolerance in rice; (ii) to dissect this genetic variability into distinct loci; and (iii) identify possible candidate genes underlying these loci.

2. Materials and Methods

2.1. Plant materials and growth condition

The experiment was conducted in a greenhouse at the University of Bonn, Germany, from May to November 2013. A mapping population consisting of 328 rice cultivars was obtained from the International Rice Research Institute (IRRI, Los Baños, The Philippines). The seeds were germinated in the dark for 3 days at 28 °C, and then transferred to a greenhouse under natural light. Three-week-old seedlings were transplanted into 2 x 6 m ponds filled with soil (a local luvisol: 16% clay, 77% silt, 7% sand, 1.2% organic carbon, pH 6.3; Schneider, 2005) at 16.5 x 19 cm spacing. A constant water level of at least 3 cm was maintained from 10 days after transplanting throughout the growth season. Each of the six plots contained one replicate of all 328 cultivars in a completely randomized distribution. The plots were randomly assigned to ozone and control treatments, and open-top chambers (height 1.3 m) were built around all plots to ensure an identical microclimate. To avoid nutrient limitations, 107 g of K_2SO_4 and 98 g of $Ca(H_2PO_4)_2$ were applied to each plot as basal fertilizer at the beginning of the season, and 155 g of urea was applied in three splits during the season. Temperature, air humidity and CO₂ concentration were constantly monitored at 12 min intervals using sensors installed at 2-m height in the greenhouse. The average temperature was 25/19 °C (day/night), the average humidity was 60/80% (day/night), and the average CO_2 concentration was 460/600 ppm (day/night). Supplementary lighting was installed above the plots to ensure a minimum light intensity of 12.5 klux even on cloudy days. Water was removed from the ponds in week 19, and the plants were harvested in week 21. Panicles were separated from the shoots and dried at 50 °C for at least 72 h to complete dryness. The shoot samples were dried for 10 weeks in the greenhouse until they reached a constant moisture content of around 11% and then weighed.

2.2. Ozone treatment

Five weeks after transplanting, ozone fumigation was initiated to induce chronic stress at a target level of 60 ppb for 7 h every day. Comparable concentrations are already being observed in some areas and are expected to be reached in many countries in the future (Lelieveld and Dentener, 2000; Yamaji *et al.*, 2006). Ozone was produced using custom-made ozone generators (UB 01; Gemke Technik GmbH, Ennepetal, Germany)

with dried air passing through silica gels as input. Ozone output was regulated by an ozone monitor (K 100 W; Dr. A. Kuntze GmbH, Meerbusch, Germany) with an ozone sensor (GE 760 O3; Dr. A. Kuntze GmbH) placed inside the chambers. The generated ozone was blown into a central pipe running above the plant canopy, from which three parallel perforated side pipes for ozone distribution branched off at a distance of 40 cm from each other. The pipes were calibrated for even ozone distribution prior to transplanting of rice seedlings using a handheld ozone monitor (series 500; Aeroqual, Auckland, New Zealand). The fumigation lasted from 9 AM until 4 PM each day for 15 weeks until the end of the growth season. During the growth season, acute ozone stress was applied three times in weeks 8, 10 and 14 after transplanting. The average concentration of acute stress was 150 ppb and it lasted for 7 h (9 AM to 4 PM). The ozone concentration was constantly monitored by the handheld ozone monitor placed within the canopy during the fumigation. The average ozone concentration recorded was 63 ppb in the ozone treatment (excluding the episodes of acute stress), while in the control the concentration was 12 ppb on average.

2.3. Plant phenotyping

Leaf visible symptom and SPAD values were measured in week 12 after transplanting (*i.e.* after two applications of acute ozone stress). Tiller number and plant height were measured during the harvesting. Shoot dry weight (DW), grain yield components and lignin content were measured after the end of the season.

A modified leaf bronzing score (LBS; Wissuwa *et al.*, 2006) was assigned to each plant to evaluate leaf symptoms. It ranged from 0 to 10 according to the following criteria after evaluating all the leaves: 0, no ozone-induced symptoms in any of the leaves; 2, some symptoms on a few leaves; 4, easily visible symptoms on a few leaves; 6, moderate to severe symptoms on many leaves; 8, severe symptoms on many leaves; and 10, whole plant severely damaged. Most of the symptoms began to emerge after the episodes of acute ozone exposure.

SPAD values were measured using a SPAD 502 instrument (Konica Minolta, Osaka, Japan). Three points were measured at 20 cm distance from the tip of the second youngest fully expanded leaf of each plant, and the average of the three points was determined.

Thousand kernel weight (TKW), total panicle weight (TPW) and single panicle weight (SPW) were measured after completely drying the panicles. Twenty randomly chosen

grains were weighed from the dried panicles and the value was multiplied by 50 to obtain the TKW. Next, TPW and panicle number were measured, and SPW was obtained by dividing TPW by the number of panicles. Some accessions did not reach grain maturity or showed constitutively high spikelet sterility under the climatic conditions of this study and thus showed very high variability in the data. Therefore, 63 accessions (ten *admix*, four *aromatic*, three *aus*, 26 *indica*, four *temperate japonica* and 16 *tropical japonica*) with less than 10 g of TKW were removed from the analysis for grain-related traits (TKW, TPW and SPW) to only analyse filled grains. A further eight accessions (one *admix*, six *aus* and one *indica*) were removed for TPW and SPW because of high grain shattering.

Lignin content was measured in the third youngest fully expanded leaves from the main culm. The leaf samples were dried and pulverized, and the lignin content was determined spectrophotometrically according to Suzuki *et al.* (2009) based on the thioglycolic acid method. The pulverized samples were dried at 60 °C and extracted with water and methanol to obtain cell wall fractions. Then the samples were digested with thioglycolic acid to obtain the thioglycolic acid lignin (TGAL) complex. Finally the TGAL was dissolved in 1 N NaOH and the concentration was determined based on a standard curve using standard lignin (Sigma, St. Louis, MO) dissolved into 1 N NaOH. The final lignin content was expressed as a percentage on a DW basis.

2.4. Data analysis

A mean value of three biological replicates was used for the analysis (Table S8). To remove extreme values in each trait, data points which did not fall into the range of (mean of all accessions) \pm (3 times the standard deviation) were removed from the dataset prior to the mapping. This procedure eliminated 32 of 3075 total data points. A square-root transformation was conducted for LBS prior to the mapping, which showed skewed distribution in the original dataset. One-way ANOVA for subpopulation comparison was conducted with IBM SPSS version 21 (IBM Corp., Armonk, NY), applying a general linear model (GLM) and Tukey's HSD for the posthoc test. Two-way ANOVA was applied to analyse the effects of treatment, genotype, and the interaction of both on the phenotypic traits using a GLM. Association mapping was conducted using TASSEL 3.0 (Bradbury *et al.*, 2007) based on the SNP marker data, kinship matrix, and principal component analysis (PCA) matrix described by Zhao *et al.* (2011). This SNP array provides approximately one SNP every 10 kb,

covering all twelve chromosomes of rice. SNPs which showed a minor allele frequency (MAF) < 10% in our population were removed to decrease overestimation of the effect of SNPs with a low MAF (Brachi *et al.*, 2011). The resultant number of SNPs was 32,175. A mixed linear model (MLM) was used to calculate the association in all analyses, incorporating both PCA and kinship data. MLM was applied using the default settings (P3D for variance component analysis, compression level set to optimum level). The threshold for significantly associated markers was set to P < 0.0001 (*i.e.* $-\log_{10}P > 4.0$). LD analysis was conducted using Haploview 4.2 (Barrett *et al.*, 2005). An LD block was created when the upper 95% confidence bounds of D' value exceeded 0.98 and the lower bounds exceeded 0.70 (Gabriel *et al.*, 2002). LD blocks harbouring significant SNPs were then defined as the candidate loci. The genes located in these loci were collected. The gene annotation, closest *Arabidopsis (Arabidopsis thaliana)* homologue and gene ontology (GO) were obtained from the MSU rice genome database (http://rice.plantbiology.msu.edu/, as of March 2014).

2.5. Candidate gene sequencing and analysis

DNA sequencing of candidate genes was conducted as follows. First, genomic DNA from selected lines was extracted from seeds using a PeqGOLD plant DNA extraction kit (Peqlab, Erlangen, Germany). The region of interest was amplified by PCR with the following setup: 15 µL of GoTaq Green Master Mix (Promega, Mannheim, Germany), 0.6 µL of each primer (10 µM), 1.5 µL of dimethyl sulfoxide, 10.3 µL of water and 2 µL of extracted DNA. The following conditions were used for amplification of EREBP/RING respectively: 95 °C for 2 min, 32 cycles of 95 °C for 30 sec, 57/55 °C for 30 sec, and 72 °C for 2/1.5 min, followed by an additional 72 °C extension for 5 min. The primer sequences were 5'-AGC CAG CGA CTG TGC CAA TGT AC-3' (forward) and 5'-TAA TGT CTT CAG CAG TTC AGC CGG AG-3' (reverse) for EREBP, and 5'-CCA AAA CCC CCA AAA GCC AAT G-3' (forward) and 5'-ACC ACA CAT CCC TTA GCA ATA CAC-3' (reverse) for RING. The amplified DNA was purified after gel electrophoresis using a FastGene Gel/PCR Extraction kit (Nippon Genetics, Tokyo, Japan). The purified DNA was subjected to cycle sequencing using one of the primers used for the PCR. Sequences were compared and analysed using MEGA5 software (Tamura et al., 2011). The protein motifs were searched using the InterPro database (https://www.ebi.ac.uk/interpro/, as

of March 2014). Additional genomic sequences of *EREBP* and *RING* were obtained from the TASUKE rice genome browser (http://rice50.dna.affrc.go.jp/, as of September 2014), where the genomic sequences of 26 accessions from our mapping population were available (Kumagai *et al.*, 2013).

3. Results

3.1. Ozone effect and genotypic variation in phenotypic traits

We tested the effect of ozone on nine traits, including leaf cell death as represented by LBS; growth parameters such as plant height, shoot DW, and tiller number; grain yield component parameters such as TKW, TPW, and SPW; and biochemical parameters such as chlorophyll content (SPAD value) and foliar lignin content. We analysed foliar lignin content as an agronomically important parameter, which may represent apoplastic stress, since the coupling of monolignol molecules requires the oxidation of hydroxyl group and therefore is highly dependent on the apoplastic redox status (Frei, 2013). ANOVA (Table 4-1) demonstrated that all of these traits were significantly affected by the ozone concentration employed, *i.e.* 60 ppb for 7 h daily plus three additional episodes of 150 ppb for one day. In plant height, shoot DW, SPW, and SPAD value, we also observed a significant interaction between genotype and treatment (GxT). On average, plant height decreased by 1.0%, DW decreased by 15.9%, tiller number decreased by 8.3%, TKW decreased by 9.3%, TPW decreased by 19.7%, SPW decreased by 5.5%, SPAD decreased by 4.4%, and lignin content increased by 3.4% in ozone-treated plants as compared to control plants. Box plots for relative phenotypic values (*e.g.* [Relative plant height] = $\frac{\text{Plant height (ozone)}}{\text{Plant height (control)}} \times 100$) indicated substantial genotypic variation in ozone responses, which was particularly pronounced in the case of relative DW, relative TPW, and relative SPW (Fig. 4-1). Growth parameters and grain yield components mostly correlated significantly with each other, and LBS showed a significant correlation with relative tiller number (Table 4-2). We also compared the ozone response among the five subpopulations (aromatic, aus, indica, temperate japonica and tropical japonica) plus the admixed group, which cannot be clearly assigned to any of these subpopulations (Zhao et al., 2010; Figure S17, Table S9). Subpopulations *indica* and *temperate japonica* showed a significantly lower LBS than the other subpopulations. Constitutive lignin content and relative lignin content also showed significant differences among the subpopulations.

Phenotype	control	ozone	Treatment	Genotype	GxT
LBS	0	1.72	***	***	N.A. ^a
Plant height (cm)	181.3	179.4	***	***	*
Shoot DW (g)	43.15	36.27	***	***	***
Tiller number	8.08	7.41	***	***	n.s.
TKW (g)	20.39	18.5	***	***	n.s.
TPW (g)	19.83	15.92	***	***	n.s.
SPW(g)	2.18	2.06	**	***	**
SPAD value	39.21	37.5	***	***	**
Lignin content (%)	1.74	1.8	**	***	N.A. ^b

Table 4-1: Effect of ozone stress on phenotypic values.

The phenotypic values under control and ozone are shown. The phenotypic value is the mean of all accessions. ANOVA was performed with treatment, genotype and genotype x treatment (GxT) as fixed values. *, P < 0.05; **, P < 0.01; ***, P < 0.001; n.s., not significant; and N.A., not analysed. ^aGxT effect in LBS was not analysed since none of the control plants showed any symptoms. ^bGxT effect in lignin content was not analysed since there were no biological replicates.

Figure 4-1: Box plots for relative phenotypic values. The median of each trait is shown as the horizontal bar in the box, and the upper and lower sides of a box represent the first and third quartile values of the distribution, respectively. Whiskers extended to 1.5 times the interquartile range (box size) or to the maximum/minimum values.

	LBS	Relative plant height	Relative shoot DW	Relative tiller number	Relative TKW	Relative TPW	Relative SPW	Relative SPAD value	Lignin content	Relative lignin content	Flowering time in Arkansas
LBS	1	0.114	0.189	< 0.001	0.279	0.545	0.437	0.067	0.182	0.113	0.008
Relative plant height	-0.09	1	<0.001	0.056	0.054	0.008	< 0.001	0.890	0.095	0.705	0.242
Relative shoot DW	-0.07	0.23	1	< 0.001	<0.001	< 0.001	< 0.001	0.970	0.484	0.058	0.300
Relative tiller number	-0.18	0.11	0.68	1	0.007	<0.001	< 0.001	0.866	0.270	0.189	0.028
Relative TKW	0.07	0.12	0.21	0.16	1	< 0.001	< 0.001	0.334	0.883	0.825	0.353
Relative TPW	-0.04	0.17	0.62	0.56	0.33	1	< 0.001	0.751	0.608	0.329	0.026
Relative SPW	-0.05	0.25	0.30	0.23	0.42	0.75	1	0.582	0.504	0.669	0.461
Relative SPAD value	-0.10	-0.01	0.00	-0.01	-0.06	-0.02	0.03	1	0.654	0.197	0.122
Lignin content	0.07	-0.09	-0.04	-0.06	-0.01	-0.03	-0.04	-0.02	1	< 0.001	0.489
Relative lignin content	0.09	0.02	-0.10	-0.07	-0.01	-0.06	-0.03	-0.07	-0.52	1	0.960
Flowering time in Arkansas	0.15	-0.07	-0.06	-0.13	-0.06	-0.14	-0.05	0.09	0.04	0.00	1

Tab	le 4-2:	Correlatio	on coefficien	t and P va	lue of p	pair-wise	comparison o	of each p	phenotype.

The lower triangle shows the Pearson's correlation coefficient of each pair-wise phenotype comparison. The upper triangle shows the *P* value of the correlation. *P* values were determined by a two-tailed Student's *t*-test. Data for flowering time in Arkansas (in 305 accessions) were adopted from Zhao *et al.* (2011), where the same mapping population was used.

3.2. Association mapping

We conducted association mapping to identify loci underlying the genetic regulation of the traits mentioned above. We applied an MLM on all datasets, which takes into account the population structure and therefore renders fewer false positives compared with a GLM (Larsson *et al.*, 2013). We set a threshold of $-\log_{10}P > 4.0$ as a significant association, as adopted in other studies using the same mapping population (Famoso *et al.*, 2011; Zhao *et al.*, 2011). The threshold of $-\log_{10}P > 4.0$ was also derived from the quantile-quantile (QQ) plots, since most of the upward deviation from the linear line occurred at around $-\log_{10}P = 4.0$, which presumably indicates true positives. For all traits analysed, we identified 16 SNP markers which satisfied this threshold, being distributed throughout the rice genome (Table S10). As an alternative approach, we also compiled the top 50 SNPs in each trait (*i.e.* SNPs showing the 50 highest $-\log_{10}P$ values in each trait) to identify SNPs forming potentially important clusters even though the individual *P* values might be less significant (Table S11) as suggested by Verslues *et al.* (2014). We further determined LD blocks harbouring significant SNPs (*i.e.* $-\log_{10}P > 4.0$) as regions containing putative candidate genes, which led to a total of 195 genes (Table S12). For several traits, $-\log_{10}P$ values and QQ plots suggested relatively weak genetic association (Figures S18-S24). In the following, we focused on LBS, relative DW, and relative SPW, for which MLM analysis yielded more robust genetic associations taking into account heritability (Table S13), $-\log_{10}P$ values, and the QQ plots, where the deviation from the expected values occurred only in the most significant *P* value range.

Leaf bronzing score

The square-root transformed LBS (t-LBS) ranged from 0.0 to 2.4 (Fig. 4-2A). The corresponding QQ plot indicated deviation from the expected P values only in the most significantly associated markers, thus limiting the possibility of declaring false positives (Fig. 4-2B). Two distinct peaks were observed on the Manhattan plot when setting the threshold of $-\log_{10}P > 4.0$ (Fig. 4-2C). Determining LD blocks on the chromosomal regions where significant SNPs were observed narrowed down the region in which to look for the candidate genes (Fig. 4-2D, E). On chromosome 1, only one gene was found in the LD blocks. Although not located in the LD blocks, many β -1,3-glucanase genes were identified in the neighbouring region (12) homologues in the surrounding 285 kb). One significant SNP marker was located between two β -1,3-glucanase genes: LOC Os01g71670 (188 bp distance) and LOC Os01g71680 (1.8 kb distance). On chromosome 5, the peak was quite sharp and the flanking LD blocks showed very low $-\log_{10}P$ values (Fig. 4-2E). This region contained candidate genes encoding an EREBP and a RING which were further characterized by sequencing of contrasting haplotypes as detailed below. Several other potentially interesting genes were found by analysing LD blocks containing the top 50 SNPs although most of them did not exceed the threshold of $-\log_{10}P > 4.0$. One locus on chromosome 2 (associated with id2009675, $-\log_{10}P = 3.52$) contained a chitinase gene (LOC Os02g39330) along with four other genes, and a locus on chromosome 3 (associated with 8 SNPs, maximum $-\log_{10}P = 3.74$) contained a mitogen-activated protein kinase gene (LOC Os03g17700).

Figure 4-2: Association mapping result for square-root transformed leaf bronzing score (t-LBS). (A) Frequency distribution of observed t-LBS. (B) QQ plot of expected and observed *P* values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNPs exceeding the significance threshold of P < 0.0001 are shown in red. (D) The peak region on chromosome 1. (E) The peak region on chromosome 5. In D and E, pair-wise linkage disequilibrium between SNP markers is indicated as D' values: dark red indicates a value of 1 and white indicates 0. The dotted squares in D and E denote the linkage disequilibrium blocks which contain significant SNPs.

Relative DW

Relative DW showed a normal distribution (Fig. 4-3A) and the QQ plot showed deviation from the linear line in the most significant P value range (Fig. 4-3B). Three significant SNPs were located on chromosomes 6, 8 and 12 (Fig. 4-3C). However, we were unable to identify interesting genes among the ones located within these LD

blocks (Fig. 4-3D, E and Table S12). We also searched for genes from the LD blocks determined from the top 50 SNPs. A small but sharp peak was observed on chromosome 2. The corresponding LD block (associated with id2016513, $-\log_{10}P =$ 3.85) contained genes such as a putative hexose transporter (*LOC_Os02g58530*) and a putative sucrose synthase (*LOC_Os02g58480*), which could be related to carbon metabolism and translocation. Another LD block on chromosome 5 (associated with four SNPs, maximum $-\log_{10}P = 2.59$) contained several sugar transporters (*LOC_Os05g36414*, *LOC_Os05g36440*, *LOC_Os05g36450* and *LOC_Os05g36700*).

Relative SPW

Relative SPW was distributed approximately normally (Fig. 4-4A). The $-\log_{10}P$ values showed deviation from the expected values only in the most significantly associated markers (Fig. 4-4B), suggesting reliable performance of the MLM for this trait. By applying the threshold of $-\log_{10}P > 4.0$, we identified three significant SNPs on chromosomes 2 and 10 (Fig. 4-4C). On both chromosomes, the LD blocks consisted of a relatively small number of SNPs (Fig. 4-4D, E) and a total of 38 genes were located in the LD blocks containing these three SNPs (Table S12). The LD block on chromosome 10 contained 20 genes (excluding retrotransposons and a non-expressed gene), among which six genes had leucine-rich repeat regions including five with a GO annotation of 'signal transduction', which could be involved in ozone sensing and triggering downstream reactions.

Figure 4-3: Association mapping result for relative dry weight (DW). (A) Frequency distribution of observed relative DW. (B) QQ plot of expected and observed *P* values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNPs exceeding the significance threshold of P < 0.0001 are shown in red. (D) The peak region on chromosome 6. (E) The peak region on chromosome 8. (F) The peak region on chromosome 12. In D-F, pair-wise linkage disequilibrium between SNP markers is indicated as *D*' values: dark red indicates a value of 1 and white indicates 0. The dotted squares in D-F denote the linkage disequilibrium blocks which contain significant SNPs.

Figure 4-4: Association mapping results for relative single panicle weight (SPW). (A) Frequency distribution of observed relative SPW. (B) QQ plot of expected and observed *P* values. (C) Manhattan plot from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNPs exceeding the significance threshold of P < 0.0001 are shown in red. (D) The peak region on chromosome 2. (E) The peak region on chromosome 10. In D and E, pair-wise linkage disequilibrium between SNP markers is indicated as *D'* values: dark red indicates a value of 1 and white indicates 0. The dotted squares in D and E denote the linkage blocks which contain significant SNPs.

3.3. Co-localization of candidate loci

We analysed whether some loci were common to more than one trait. By curating the top 50 SNPs from all traits, we found that a total of 28 SNPs were shared in multiple traits (Table S11), which suggests pleiotropy of the SNPs or the existence of a closely linked gene (Zhao *et al.*, 2011). One of the SNPs (id1027640) affected four traits (relative plant height, relative tiller number, relative TPW, and relative SPW), although no convincing candidate gene was found within the LD block. Some SNPs

affected multiple categories of traits, such as leaf cell death and biochemical components (id1026656 and id5000980), leaf cell death and growth parameter (id1027571), and growth parameter and biochemical components (id12005469). These traits sharing common candidate loci were not necessarily correlated with each other (Table 4-2).

3.4. Candidate gene identification and sequence analysis

To test the plausibility of candidate genes, we determined sequence variations in contrasting haplotypes, which could be related to functional alterations. We chose the aforementioned locus on chromosome 5, which was identified for LBS, as a target region for the sequencing for the following reasons: (i) leaf cell death is one of the most conspicuous symptoms induced by ozone and is therefore of high importance and physiological interest; (ii) it gave a significant $-\log_{10}P$ value in the peak region; (iii) LBS had a higher genetic heritability $(h_{t-LBS}^2 = 0.33)$ than the average heritability from all traits ($h_{all}^2 = 0.27$), showing that a larger portion of phenotypic variance for LBS is ascribed to genetic variance (Table S13); (iv) the LD block contained a relatively small number of candidate genes; and (v) evidence from other studies strongly supports the role of candidate genes under ozone stress (discussed later). Among the 41 genes contained in this locus (Table S12), we selected genes which had informative annotation. Thus 17 retro- or transposon genes and a further two non-expressed genes were eliminated (Table S12). From the remaining 22 genes, we chose genes which were involved in either cell death pathways or were related to ethylene, which plays a crucial role in inducing cell death (Kangasjärvi et al., 2005), for further characterization by sequencing: an EREBP (ethylene-responsive element binding protein, LOC Os05g29810) and a RING ('really interesting new gene', LOC Os05g29710). The EREBP was a transcription factor which contains an ethylene-responsive binding domain. Its closest Arabidopsis homologue (At1g53910) is known to regulate oxygen sensing and trigger downstream response (Licausi et al., 2011). The RING protein contained a transmembrane domain and a RING motif. The closest Arabidopsis homologue (At5g10380) is related to the induction of pathogen resistance and cell death (Lin et al., 2008). First, we chose contrasting haplotypes for markers surrounding the genes and sequenced the genes. Genome sequences of additional accessions from a public rice genome database were also included in the analysis (Figure S25). Analysing these 34 accessions revealed eight nucleotide 109

polymorphisms in the *EREBP* gene (Fig. 4-5). We assessed the r^2 values between the observed polymorphic sites and those SNPs in the LD block, which were in the top 50 SNPs for LBS. Here, we used r^2 value rather than D' value for the assessment of association, since our objective was to get insight into the functional relationship rather than determining LD blocks. The highest r^2 value was observed at a polymorphic site in the intron (position 204 and id5006957, $r^2 = 0.53$, P < 0.0001 by a two-tailed Fisher's exact test). The polymorphic sites causing amino acid substitutions generally had low r^2 values (average $r^2 = 0.17$, highest $r^2 = 0.37$, P = 0.0017). In other words, the observed amino acid substitutions were not closely associated with the significant SNPs detected through GWAS.

Figure 4-5: Sequence variation of *EREBP* (*LOC_Os05g29810*). The polymorphic sites of *EREBP* in 34 accessions are shown together with two adjacent SNP markers and those among the top 50 SNP markers for leaf bronzing score, which are located within the linkage disequilibrium block (shown with asterisks). In the observed polymorphic sites, the number after EREBP indicates the position from the transcription initiation site. The sites within black frames (EREBP117, EREBP393, EREBP627 and EREBP812) cause amino acid substitution/insertion. The matrix shows the r^2 values of each pair-wise comparison of markers and polymorphic sites. Higher values are shown in a darker colour. The number in the square shows the 100-fold value of r^2 , which ranged from 0 to 100. The amino acid sequence 53 to 111 is a DNA-binding domain, and 53 to 116 is an AP2/ERF domain.

The *RING* was located near a SNP marker with a high $-\log_{10}P$ value (id5006874, - $\log_{10}P = 3.40$; Fig. 4-6A). Allele A at the position id5006874 occurred mainly in aromatic and temperate japonica, and allele G occurred mainly in aus and indica subpopulations, while tropical japonica subpopulation contained both alleles at a relatively high ratio (Fig. 4-6B). When conducting association mapping separately for each subpopulation, the same peak at this locus occurred only in the tropical japonica subpopulation (Figure S26). Therefore, we chose two to five lines from each subpopulation, plus randomly selected additional lines from tropical japonica subpopulation carrying each allele, and sequenced the genomic region of the RING. We also added rice genome sequences from a public database into the analysis (Figure S27). In a total of 50 accessions, nucleotide sequence variation was observed at 12 positions (Fig. 4-6A). Four of them caused an amino acid substitution or insertion. We determined the correlation between the observed polymorphisms and those among the 50 SNPs, which were located within the LD block. Two of the amino acid substitutions (positions 635 and 652) were highly associated with significant SNPs (average $r^2 = 0.70$ and 0.65, highest $r^2 = 0.89$ and 0.80 respectively, P < 0.0001 for both positions). Moreover, these two amino acid substitution sites were located in the RING motif, which is crucial for the activity of this protein (Fig. 4-6A). We classified the accessions according to the allele at id5006874, which showed the strongest association with the amino acid substitutions in the RING motif (Fig. 4-6B). Type 1 contained allele A at id5006874 and was highly significantly associated with arginine at the amino acid positions 141 and 147. In contrast, type 2 had allele G at id5006874 and was associated with histidine at the amino acid position 141 and serine at the amino acid position 147 (Figure S27). We compared the t-LBS of genotypes carrying the alleles A and G at this position in the tropical japonica subpopulation. The allele G was associated with a higher t-LBS than allele A (P < 0.01; Fig. 4-6C). We then obtained the amino acid sequences of previously characterized RING proteins from other plant species and compared the RING motif sequence with the RING protein in our study. Comparison of the motif showed that a conserved amino acid arginine was substituted by serine in type 2 (Fig. 4-6D).

Figure 4-6: Analysis of *RING* (*LOC_Os05g29710*) as a candidate gene underlying the peak for squareroot transformed leaf bronzing score (t-LBS) on chromosome 5. (A) The polymorphic sites of the *RING* gene. The genomic sequences of the *RING* gene from 50 accessions are shown together with two adjacent SNP markers and those among the top 50 SNP markers for t-LBS, which were located within the linkage disequilibrium block (shown with asterisks). In the observed polymorphic sites, the number after RING shows the position from the transcription initiation site. The sites with black frames (RING469, RING475, RING635 and RING652) cause amino acid substitution/insertion. The matrix shows the r^2 values of each pair-wise comparison of markers and polymorphic sites. Higher values are shown in a darker colour. The number in the square shows the 100-fold value of r^2 , which ranged from 0 to 100. The amino acid sequence 29 to 50 is a transmembrane domain (TM), and 133 to 175 is a zincfinger motif (RING). (B) Allele frequency of each subpopulation at id5006874. '0' stands for missing data in the original genotyping. Accessions containing A at this position are termed as 'type 1' and those containing G are termed as 'type 2'. IND, *indica*; TEJ, *temperate japonica*; and TRJ, *tropical*

japonica. (C) t-LBS in the *tropical japonica* subpopulation. The asterisks indicate that the allele G at id5006874 is associated with a significantly higher t-LBS by Student's *t*-test (P < 0.01). (D) Amino acid sequence comparison of the 42 amino acid RING motif between the rice RING protein and other previously reported cell death or defence reaction-related RING proteins: *Arabidopsis* ATL9 (Berrocal-Lobo *et al.*, 2010), *Arabidopsis* RING1 (Lin *et al.*, 2008), rice EL5 (Takai *et al.*, 2001), potato StRFP1 (Ni *et al.*, 2010), and pepper RING1 (Lee *et al.*, 2011). Completely conserved amino acids are shown against a black background. Strong groups (as defined by Pam250 score of > 0.5) are shown against a light gray background (Gonnet *et al.*, 1992). An amino acid substitution between type 1 and type 2 ($R \rightarrow S$) is shown in boldface in the arrowed position.

4. Discussion

We studied the natural variation of rice in response to ozone and identified candidate loci regulating important phenotypes under ozone stress. To the best of our knowledge, this is the first large scale tolerance screening and GWAS focusing on ozone stress in any crop species. We adopted a target concentration of 60 ppb for the whole season and obtained an average concentration of 63 ppb during the season. This corresponds to an increase around 25 to 75% compared with the current average tropospheric ozone concentration (Ainsworth et al., 2012) and is known to cause rice yield reduction by around 14% (Ainsworth, 2008). Additionally, three episodes of acute ozone stress (150 ppb) were applied, which is frequently observed in the early summer season in Asia (Tang et al., 2012). On average, all the growth parameters and SPAD value decreased under ozone stress, while lignin content increased, which is in accordance with previous studies (Shi et al., 2009; Frei et al., 2011; Ainsworth et al., 2014). A slightly higher yield reduction as assessed by TPW in the current study (Table 4-1) compared with the previous reports might be ascribed to the three episodes of acute ozone stress applied during the season. The substantial genotypic differences observed in ozone response in all phenotypic traits highlight the rich genetic diversity which can be exploited through GWAS. Thus, our fumigation scheme proved optimal to induce a wide range of phenotypic variation, and therefore we concluded that this mapping population and the observed phenotypes constitute a powerful resource for association mapping.

The significant positive correlation between growth parameters and yield components suggests source limitations for the grain yield under ozone stress. In other words, carbon assimilation or sugar loading is limiting grain yield, rather than sink limitations such as storage and phloem unloading. Another factor highly affecting the yield could be flowering time. Although we did not measure the flowering time for the whole population, we found a significant negative correlation between relative TPW and the flowering time (*i.e.* the number of days from transplanting until flowering) recorded in Arkansas (data adopted from Zhao *et al.* 2011, where the same population was used; r = -0.14, P = 0.026). This negative correlation could suggest that the longer the plants were exposed to ozone before flowering, the more the grain yield was affected. We also found that five SNPs (id1013335, id1013354, id1013362, id1013402 and id1013422) appeared in the top 50 SNPs for both relative TPW and the flowering time

recorded in Arkansas, which further implies an effect of flowering time on the grain yield under ozone stress. However, one should be cautious in applying the flowering time recorded elsewhere to our dataset, since this trait is highly affected by day length and temperature sum.

We applied an MLM incorporating both a kinship and PCA matrix to all the phenotypes to avoid false positives, which are likely to result from naïve GLM (Larsson et al., 2013). The QQ plots for t-LBS, relative DW and relative SPW (Figs. 4-2B, 4-3B and 4-4B) indicated good applicability of the model for these traits (Zhang et al., 2010). For several traits, the MLM might have been too conservative and rendered false negatives, as QQ plots indicated $-\log_{10}P$ values even below the expected distribution, although Manhattan plots exhibited clearly defined peaks (Figures S18-S24). Employing LD blocks to define the genomic regions in which to search for candidate genes has advantages over the fixed window approach, in which a certain distance from a significant SNP is considered as the region containing candidate genes (Courtois et al., 2013), in terms of elimination of falsely included or excluded genes (Chen et al., 2012). In our study, the candidate regions ranged from < 1 kb to > 1 Mb depending on the chromosomal position. This suggests that the resolution of the association mapping depends highly on the LD of the neighbouring regions of the significant SNPs. Since some of the LD blocks harbouring significant SNPs did not contain any annotated gene, this method might have produced some false negatives, or the identified region contained important DNA binding or gene regulation sites, in which case the causal gene is not directly detected in the LD block (Sur et al., 2013).

Some of the putative candidate genes were involved in pathogen resistance and response. Ozone stress differs from many other abiotic stresses in the sense that the apoplast is the first cell component encountering oxidative stress. Ozone enters the plants through the stomata and produces reactive oxygen species in the apoplast, which induces responses and downstream signals similar to those observed under pathogen attack (Conklin and Barth, 2004), and ultimately lead to PCD (Kangasjärvi *et al.*, 2005), coinciding with the expression of pathogenesis-related (PR) genes (Rao *et al.*, 2000). Thus, the identification of several candidate genes for LBS, which have been characterized in connection with pathogen resistance, appears highly plausible. For example, β -1,3-glucanase and chitinase belong to the glycosyl hydrolase families

19 and 17, and are classified as PR-2 and PR-3 protein, respectively (Brederode *et al.*, 1991). Both have catalytic activity causing degradation of fungal cell walls (Mauch *et al.*, 1988), thereby enhancing the resistance to pathogens (Zhu *et al.*, 1994). Both genes have been recognized as ozone-inducible genes and are proposed to determine ozone sensitivity (Ernst *et al.*, 1992; Street *et al.*, 2011). Since two of the PR proteins were detected near the significantly associated loci based on leaf cell death, our study supports the concept of similarities in pathogen and ozone response.

Another candidate gene possibly associated with leaf visible symptoms is an *EREBP* gene (LOC Os05g29810), which was found in the LD block containing the significant SNPs on chromosome 5 (Fig. 4-2E). A low correlation between amino acid substitution/insertion and the significant SNPs (Fig. 4-5) suggests that the polymorphisms in this gene were not directly associated with the significant GWAS signal. Also, since polymorphisms were not in the functional domain of EREBP, its effect on leaf visible symptoms, if any, would presumably be through posttranscriptional modification or expression level rather than functional alteration of the protein. An even more plausible candidate identified in the peak on chromosome 5 was a RING gene (LOC Os05g29710), encoding an E3 ubiquitin ligase, and is classified as C3-H2-C3 RING protein due to the amino acid sequence of the zinc ion binding site. This RING protein is part of a large protein family which is emerging as an important factor during pathogen infection and induction of defence reactions (Trujillo and Shirasu, 2010). Amino acid sequence comparison with the homologues showed that one of the amino acid substitutions in the type 2 (which is associated with allele G at position id5006917) is located in the conserved region of the RING motif (Fig. 4-6D). In many previous studies, amino acid changes leading to functional variance or phenotypic difference occurred in conserved protein motifs (Yamanouchi et al., 2002; Kobayashi et al., 2008). In the case of the RING protein, we assume that this conserved region is crucial for the activity or determines the selectivity of the substrate protein.

In summary, our study demonstrated substantial genotypic variation in ozone tolerance in rice, which provides a rich basis for adaptive breeding. GWAS identified convincing candidate loci based on significant peaks, heritability, LD analysis, and candidate gene identification for LBS. We found a number of novel polymorphisms in an *EREBP* and a *RING* gene, which could be candidate genes controlling leaf visible damage due to their locations in an identified LD block and their annotated functions. These indirect lines of evidence warrant further investigation of these genes and their involvement in ozone tolerance using reverse genetic approaches.

Supplementary material

Figure S17 Subpopulation comparison of all phenotypes.

Figures S18-S24

	Distribution and association mapping results for all phenotypic traits.					
Figure S25	Sequence variation of EREBP gene.					
Figure S26	Association mapping for square-root transformed leaf bronzing score (t					
	LBS) in each subpopulation.					
Figure S27	Sequence variation of RING gene.					
Table S8	List of all the phenotypic values.					
Table S9	Correlation coefficient and P value of pair-wise comparison of each					
	phenotype in each subpopulation.					
Table S10	List of significant SNPs identified through association mapping.					
Table S11	List of the top 50 SNPs from each phenotype.					
Table S12	List of genes located within the identified candidate loci for all					
	phenotypes.					
Table S13	Heritability of each trait.					

Funding

This work was supported by Deutsche Forschungsgemeinschaft (FR-2952/1-1) and Stiftung Fiat Panis.

Acknowledgments

The authors thank Dr. Matthias Wissuwa (JIRCAS, Tsukuba, Japan) and all members of the GRiSP Global Rice Phenotyping Network for sharing experiences in GWAS and the International Rice Research Institute (IRRI), especially Dr. Kenneth McNally, for providing seeds. The authors also thank the technical assistants in the experimental facility of the University of Bonn.

References

- Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. *Global Change Biology* 14, 1642–1650.
- Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. 2014. Using leaf optical properties to detect ozone effects on foliar biochemistry. *Photosynthesis research* **119**, 65–76.
- Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. *Annual review of plant biology* **63**, 637–661.
- **Barrett JC, Fry B, Maller J, Daly MJ.** 2005. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* **21**, 263–265.
- Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S. 2010. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitinand NADPH oxidase-mediated defense responses. *PLoS one* 5, e14426.
- Brachi B, Morris GP, Borevitz JO. 2011. Genome-wide association studies in plants: the missing heritability is in the field. *Genome biology* **12**, 232.
- Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* 23, 2633–2635.
- Brederode FT, Linthorst HJ, Bol JF. 1991. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. *Plant molecular biology* **17**, 1117–1125.
- Brosché M, Merilo E, Mayer F, *et al.* 2010. Natural variation in ozone sensitivity among *Arabidopsis thaliana* accessions and its relation to stomatal conductance. *Plant, Cell and Environment* 33, 914–925.
- Chen C, DeClerck G, Tian F, Spooner W, McCouch S, Buckler E. 2012. *PICARA*, an analytical pipeline providing probabilistic inference about *a priori* candidates genes underlying genome-wide association QTL in plants. *PLoS one* 7, e46596.
- Chen CP, Frei M, Wissuwa M. 2011. The *OzT8* locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. *Plant, Cell and Environment* 34, 1141–1149.
- **Conklin PL, Barth C.** 2004. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. *Plant, Cell and Environment* **27**, 959–970.
- Courtois B, Audebert A, Dardou A, *et al.* 2013. Genome-wide association mapping of root traits in a japonica rice panel. *PLoS one* **8**, e78037.

- Ernst D, Schraudner M, Langebartels C, Sandermann H. 1992. Ozone-induced changes of mRNA levels of beta-1,3-glucanase, chitinase and 'pathogenesis-related' protein 1b in tobacco plants. *Plant molecular biology* 20, 673–682.
- Famoso AN, Zhao K, Clark RT, et al. 2011. Genetic architecture of aluminum tolerance in rice (*Oryza sativa*) determined through genome-wide association analysis and QTL mapping. PLoS genetics 7, e1002221.
- Feng Z, Kobayashi K. 2009. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. *Atmospheric Environment* 43, 1510– 1519.
- Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR. 2011. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. *Global Change Biology* 17, 580–591.
- Flint-Garcia SA, Thornsberry JM, Buckler ES. 2003. Structure of linkage disequilibrium in plants. *Annual review of plant biology* 54, 357–374.
- Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB. 2007. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (*Phaseolus vulgaris* L.) genotypes differing in sensitivity to ozone. *Environmental and Experimental Botany* **61**, 190–198.
- Frei M. 2013. Lignin : Characterization of a multifaceted crop component. *The Scientific World Journal* 2013, 436517.
- Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker K. 2011. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. *Global Change Biology* 17, 2319–2329.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* **61**, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Gabriel SB, Schaffner SF, Nguyen H, *et al.* 2002. The structure of haplotype blocks in the human genome. *Science* 296, 2225–2229.
- Gonnet GH, Cohen MA, Benner SA. 1992. Exhaustive matching of the entire protein sequence database. *Science* 256, 1443–1445.
- Gupta PK, Rustgi S, Kulwal PL. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. *Plant molecular biology* 57, 461–485.
- Kangasjärvi J, Jaspers P, Kollist H. 2005. Signalling and cell death in ozone-exposed plants. *Plant, Cell and Environment* 28, 1021–1036.
- Kobayashi Y, Kuroda K, Kimura K, *et al.* 2008. Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. *Plant Physiology* **148**, 969–980.

- Kumagai M, Kim J, Itoh R, Itoh T. 2013. TASUKE: a web-based visualization program for large-scale resequencing data. *Bioinformatics* 29, 1806–1808.
- Larsson SJ, Lipka AE, Buckler ES. 2013. Lessons from *Dwarf8* on the strengths and weaknesses of structured association mapping. *PLoS genetics* **9**, e1003246.
- Lee DH, Choi HW, Hwang BK. 2011. The pepper E3 ubiquitin ligase RING1 gene, *CaRING1*, is required for cell death and the salicylic acid-dependent defense response. *Plant Physiology* **156**, 2011–2025.
- Lei H, Wuebbles DJ, Liang X-Z, Olsen S. 2013. Domestic versus international contributions on 2050 ozone air quality: How much is convertible by regional control? *Atmospheric Environment* 68, 315–325.
- Lelieveld J, Dentener FJ. 2000. What controls tropospheric ozone? *Journal of Geophysical Research* 105, 3531–3551.
- Licausi F, Kosmacz M, Weits DA, *et al.* 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. *Nature* **479**, 419–422.
- Lin S-S, Martin R, Mongrand S, Vandenabeele S, Chen K-C, Jang I-C, Chua N-H. 2008. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. *The Plant Journal* 56, 550–561.
- **Mauch F, Mauch-Mani B, Boller T.** 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β -1,3-glucanase. *Plant Physiology* **88**, 936–942.
- Ni X, Tian Z, Liu J, Song B, Xie C. 2010. Cloning and molecular characterization of the potato RING finger protein gene *StRFP1* and its function in potato broad-spectrum resistance against *Phytophthora infestans*. *Journal of plant physiology* **167**, 488–496.
- Rao M, Koch J, Davis K. 2000. Ozone: a tool for probing programmed cell death in plants. *Plant molecular biology* 44, 345–358.
- Sawada H, Kohno Y. 2009. Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. *Plant Biology* **11**, 70–75.
- Schneider RJ. 2005. Pharmaka im Urin : Abbau und Versickerung vs . Pflanzenaufnahme. In: Bastian A, Bornemann C, Hachenberg M, Oldenburg M, Schmelzer M, eds. Nährstofftrennung und -verwertung in der Abwassertechnik am Beispiel der "Lambertsmühle". Bonn, Germany, 54–81.
- Shi G, Yang L, Wang Y, et al. 2009. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, Ecosystems and Environment 131, 178–184.
- Street NR, Tallis MJ, Tucker J, Brosché M, Kangasjärvi J, Broadmeadow M, Taylor G. 2011. The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F₂ progeny. *Environmental Pollution* **159**, 45–54.

- Sur I, Tuupanen S, Whitington T, Aaltonen LA, Taipale J. 2013. Lessons from functional analysis of genome-wide association studies. *Cancer research* **73**, 4180–4184.
- Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T. 2009. Highthroughput determination of thioglycolic acid lignin from rice. *Plant Biotechnology* **26**, 337–340.
- Takai R, Hasegawa K, Kaku H, Shibuya N, Minami E. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from *Arabidopsis*, in response to *N*-acetylchitooligosaccharide elicitor. *Plant Science* 160, 577–583.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular biology and evolution* 28, 2731– 2739.
- Tang H, Liu G, Zhu J, Han Y, Kobayashi K. 2012. Seasonal variations in surface ozone as influenced by Asian summer monsoon and biomass burning in agricultural fields of the northern Yangtze River Delta. *Atmospheric Research* 122, 67–76.
- Teixeira E, Fischer G, van Velthuizen H, et al. 2011. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmospheric Environment 45, 2569–2576.
- Trujillo M, Shirasu K. 2010. Ubiquitination in plant immunity. Current opinion in plant biology 13, 402–408.
- Tsukahara K, Sawada H, Matsumura H, Kohno Y, Tamaoki M. 2013. Quantitative trait locus analyses of ozone-induced grain yield reduction in rice. *Environmental and Experimental Botany* 88, 100–106.
- Verslues PE, Lasky JR, Juenger TE, Liu T-W, Kumar MN. 2014 Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. *Plant Physiology* **164**, 144–159.
- Wang Y, Frei M. 2011. Stressed food The impact of abiotic environmental stresses on crop quality. *Agriculture, Ecosystems and Environment* 141, 271–286.
- Wang Y, Yang L, Höller M, Zaisheng S, Pariasca-Tanaka J, Wissuwa M, Frei M. 2014. Pyramiding of ozone tolerance QTLs *OzT8* and *OzT9* confers improved tolerance to season-long ozone exposure in rice. *Environmental and Experimental Botany* 104, 26– 33.
- Wissuwa M, Ismail AM, Yanagihara S. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. *Plant Physiology* **142**, 731–741.
- Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa J, Akimoto H. 2006. Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan? *Atmospheric Environment* 40, 1856–1868.

- Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America **99**, 7530–7535.
- Zhang Z, Ersoz E, Lai C-Q, *et al.* 2010. Mixed linear model approach adapted for genomewide association studies. *Nature genetics* **42**, 355–360.
- Zhao K, Tung C-W, Eizenga GC, et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in *Oryza sativa*. Nature communications 2, 467.
- **Zhao K, Wright M, Kimball J, et al.** 2010. Genomic diversity and introgression in *O. sativa* reveal the impact of domestication and breeding on the rice genome. *PLoS one* **5**, e10780.
- Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ. 1994. Enhanced protection against fungal attack by constitutive co–expression of chitinase and glucanase genes in transgenic tobacco. *Nature biotechnology* 12, 807–812.

Chapter 5 General Discussion

1. Novel mechanisms and genetic loci for ozone tolerance in rice

In the current study, novel mechanisms for cell death formation under ozone stress (Chapter 3) and genetic loci involved in ozone stress tolerance (Chapter 4) were explored in rice. Elucidation of genetic factors and isolation of causative genes for a certain trait are prerequisites for marker-assisted breeding. Therefore, these novel findings will pave the way for future crop improvement and consequently contribute to the world food supply in the 21st century.

In Chapter 2, two small-scale and high-throughput ascorbate (AsA) measurement methods were compared, and an appropriate method was suggested for different situations in plant research. For the measurement of apoplastic AsA, the ascorbate oxidase (AO) method was superior to the dipyridyl (DPD) method, which was less sensitive and could not detect reduced AsA in the apoplast. The previously reported method using spectrophotometer and a cuvette would have needed more than 10 min for each sample (deduced from previous protocols such as Luwe *et al.*, 1993). In the new microplate-based AO method, 24 samples could be simultaneously measured within 30 min (after the extraction), with two analytical replicates. Moreover, the amount of intercellular washing fluid (IWF) needed for the measurement was around 100 μ L in the previous protocol for one technical replicate. This is of high importance in case of AsA measurement from IWF since the amount IWF is usually very small, especially in rice due to technical constraints (Nouchi *et al.*, 2012). These

facts demonstrate good applicability of the AO method for high-throughput measurement of apoplastic AsA. As mentioned in Chapter 1, apoplastic AsA plays a pivotal role in determining ozone tolerance of plants. Therefore the measurement of apoplastic AsA would be a possible target for future crop breeding aiming at ozone tolerance. This high-throughput apoplastic AsA measurement will aid such a breeding process, as well as other situations in plant science where a large number of samples need to be processed (as in Chapter 3).

In Chapter 3, a candidate gene for ozone stress tolerance was characterized by a reverse-genetic strategy in rice. Important clues for the physiological significance of the putative AO gene (*OsORAP1*) were presented. Contrary to the hypothesis, OsORAP1 did not show AO activity, and the enhanced tolerance in the knock-out line (KO) was not because of higher detoxification or differential uptake of ozone. It was concluded that less leaf visible symptoms in KO resulted from the absence of 'suicide aiding effect' that OsORAP1 seems to possess. Therefore, OsORAP1 does not confer ozone stress tolerance (*i.e.* less leaf visible symptom formation) through the currently-acknowledged mechanism, where apoplastic AsA detoxification determines the extent of damage to the cells. Rather it is likely that the local *OsORAP1* expression in the attacked sites propagates the signal through some unknown mechanisms, which eventually leads to enhanced cell death formation, although the expression pattern of *OsORAP1* should be investigated at sub-tissue levels to confirm this hypothesis.

Although it is generally agreed that apoplastic AsA constitutes the first line of defence against ozone as discussed in Chapter 1, Booker *et al.* (2012) argued that apoplastic AsA contributes to the detoxification of ozone only to a minor extent. Therefore it is possible that certain unknown factor besides AsA contributes to the mitigation of ozone stress in the apoplast. Moldau (1998) suggested that phenolic compounds could also serve as electron donors for ozone. Moreover, AO proteins are capable of oxidizing phenolic compounds (Dayan and Dawson, 1976). Taking into account that OsORAP1 is predicted to possess oxidoreductase activity by I-TASSER (Zhang, 2008), OsORAP1 might possibly have the capability to oxidize phenolic compounds, thereby participating in ozone stress tolerance. However, the concentration of phenolic compounds in the apoplast is too low to effectively remove incoming ozone (Booker *et al.*, 2012). Hence, it is not likely that the unknown substrate of OsORAP1 directly contributes to the detoxification of ROS in the apoplast. It is more likely that

OsORAP1 is involved in the signal transduction, which triggers certain downstream pathways.

Plants possess innate systems to amplify signals from the environment, thereby facilitating the induction of defence responses. This mechanism has been unveiled in the context of plant pathology. One example is oxidative burst mediated by plasma membrane-localized NADPH oxidases, which takes place upon incompatible pathogen infection (Lamb and Dixon, 1997; Foyer and Noctor, 2003). Oxidative burst is responsible for activation of ROS production in the apoplast, which further triggers disease resistance. In another system, endogenous molecules such as ATP and oligosaccharides released from cell walls upon cell rupture and pathogen infection are sensed by nearby cells. The recognition of these molecules (termed 'danger-associated molecular patterns') leads to intensification of plant defence response (Schwessinger and Zipfel, 2008; Macho and Zipfel, 2014). The possible involvement of OsORAP1 in cell death under ozone stress could be interpreted as reminiscent of this intensification of signals under pathogen infection. Since plants have not experienced high ozone concentration in their evolutionary history, this signal-amplification mechanism that OsORAP1 possesses would not have been specifically developed for ozone stress tolerance. Rather plants may have developed the OsORAP1 protein to cope with invading pathogens through induction of resistance and confinement of pathogens by cell death, which has unintentionally led to decreased ozone stress tolerance. Indeed, blast fungus infection led to contrasting expression patterns of OsORAP1 in two rice lines showing different susceptibility (Inoue et al., personal communication). The tolerant line showed earlier but somewhat weaker induction of OsORAP1 compared with the susceptible line, which strengthens the potential role of OsORAP1 in blast fungus resistance. Mittler (2002) noted that plants decrease rather than increase the antioxidant capacity during biotic stress to enable the cells to trigger the defence response. Ueda et al. (2013) also observed that the gene expression levels of antioxidant enzymes decreased under ozone stress, contrary to the expectation. These observations demonstrate common responses under ozone stress and pathogen infection, where plants amplify oxidative stress (feed-forward regulation), which might be advantageous for pathogen tolerance but disadvantageous for ozone stress tolerance. However, this is not the only explanation for ozone stress tolerance, since the quantitative trait loci (QTLs) detected for leaf bronzing score (LBS) under ozone stress (Chapter 4) do not co-localize with the ones for pathogen resistance in rice (Bandillo et

al., 2013). Altogether, it would be tempting to investigate the expression pattern of *OsORAP1* on sub-tissue level and examine pathogen resistance (*e.g.* against rice blast fungus) in the lines used in the study, as well as elucidating the molecular function of OsORAP1.

In Chapter 4, identification of chromosomal loci responsible for major traits under ozone stress was conducted by using 32,175 single-nucleotide polymorphism (SNP) markers through a genome-wide association study (GWAS). This marker number is by far larger compared with, for example, 3,267 restriction fragment length polymorphism markers provided for Nipponbare/Kasalath bi-parental mapping population, which can be used for classical QTL studies. This number, together with the higher recombination rate in the diverse population, proved higher resolution in GWAS. The overall significance (as judged by $-\log_{10}P$ values) was largely comparable to previous GWASs using the same population (Zhao et al., 2011; Famoso et al., 2011). In some previous cases GWAS peaks showed quite high $-\log_{10}P$ values, for example, for flowering time and seed length, where a few genes dominate the phenotype (Zhao et al., 2011). Multiple peaks observed in the current study, together with moderate - $\log_{10}P$ values, therefore implied that the phenotypes under ozone stress are controlled by many genetic factors. Moreover, some loci were shown to have pleiotropic effects. For example, a locus on chromosome 1 (42.38 to 42.43 Mb) was identified for five different traits (Table S11). These results demonstrated complex genetic regulation of traits under ozone stress in rice.

The subsequent attempt to identify a candidate gene was conducted by analysing linkage disequilibrium (LD) between sequence polymorphisms within candidate genes and detected SNP markers. This 'GWAS and local LD analysis by re-sequencing' approach is a major strategy of GWAS in human genetics (Service *et al.*, 2014) and model plant species *Arabidopsis (Arabidopsis thaliana)* (Sterken *et al.*, 2012; Barboza *et al.*, 2013; Motte *et al.*, 2014), but few studies attempted this approach in rice (such as the one by Chen *et al.* (2014)). In the current study, this approach identified strong LD between the significant SNP markers and amino acid substitutions in *RING*. This local LD analysis approach, as well as GWAS, is quite effective for plant species, since the same population can be used for many mapping studies. The currently available comparative genome sequence databases (*e.g. Arabidopsis* 1001 genomes project and rice TASUKE genome browser; Weigel and Mott, 2009; Kumagai *et al.*, 2013) and efforts for genome sequencing in other plant species will probably reinforce

this approach and support the identification of causative polymorphisms for a certain trait after GWAS.

The subpopulations *temperate japonica* and *indica* showed significantly lower LBS, showing higher tolerance to ozone in terms of leaf visible symptom formation. Temperate japonica and indica subpopulations have different domestication history (Fig. 5-1), and these are the two subpopulations which have the lowest level of relatedness among five subpopulations ($F_{st}^{\dagger} = 0.45$ between *temperate japonica* and *indica*, as opposed to $F_{st} = 0.20$ between *temperate japonica* and *tropical japonica*; Garris et al., 2005). This suggests that ozone tolerance (i.e. less leaf visible symptom formation) was not acquired during domestication or subpopulation divergence. Temperate japonica and indica subpopulations contain a large number of accessions from East and Southeast Asia (Table 5-1). Therefore it is conceivable that ozone tolerance was conferred to *temperate japonica* and *indica* subpopulations due to the selection pressure related to geography or climate. It is tempting to speculate that the formation of leaf visible symptoms is linked to a certain trait favourable in East and Southeast Asia. In natural vegetation, evidence for natural selection of ozone stress tolerance has been observed, as shown by correlation between local ozone concentration and ozone stress tolerance of *Plantago* species (Lyons et al., 1997). However, in the case of the mapping population used in the current study, the possibility that local ozone concentration has affected selection cannot be confirmed. This is because the cultivars used in the study are mostly traditional cultivars, which were developed before the tropospheric ozone concentrations became problematic in East and Southeast Asian countries (since the late 20th century; Vingarzan 2004).

Figure 5-1: History of subpopulation divergence of rice (modified from Huang et al., 2012, Figure 4).

[†] F_{st} is an index showing population differentiation between two groups based on genetic variability. It ranges from 0 to 1, and higher value is associated with lower relatedness (Kovach *et al.*, 2007).
Subpopulation	Accessions	Major origin (and number of accessions)
Admix	48	United States (8), Madagascar (4), Bangladesh/Japan/Australia (each 3)
Aromatic	12	Iran (5), India (2)
Aus	55	Bangladesh (20), India (16), Pakistan (5)
Indica	74	China (including Hong Kong) (19), Taiwan (9), India (8), Philippines (5), Vietnam (4)
Temeperate japonica	69	Japan (12), China (5), Spain/Taiwan/Korea (each 4)
Tropical japonica	70	United States (15), Indonesia (5), Brazil/Philippines/Cote D'Ivoire (each 4)

Table 5-1: Origin of accessions in each subpopulation in the mapping population used in Chapter 4.

The mapping population consisting of 328 rice accessions was categorized into subpopulations. The number of the accessions in each subpopulation and main countries of origins are shown. The number in the parenthesis is the number of accession from the country.

The previously identified QTLs (OzT8 for biomass production and OzT9 for leaf visible symptoms) were not clearly detected in the current study (Fig. 5-2). A small peak was observed outside the OzT8 region from the Manhattan plot for relative DW (Fig. 5-2A), and a very low peak value was observed within the OzT9 region for square-root transformed LBS (Fig. 5-2B). This type of disagreement between the result of QTL study and that of GWAS has been also documented in other studies (Famoso et al., 2011). Several possibilities can be considered for it. The most likely explanation is the different allele frequency in different mapping populations. In the QTL mapping by bi-parental population, all the possible sequence variations between two parental cultivars can serve as markers. On the other hand, in GWAS (Chapter 4), only SNP markers with more than 10% of minor allele frequency (MAF) were used for the subsequent mapping. Filtering out the SNPs with low MAF is necessary to prevent overestimation of the effect of SNPs with lower MAF and distorted results. Therefore, rare alleles are generally not captured by GWAS. The sequence polymorphisms (between Nipponbare and Kasalath) identified in the previous QTL study might represent rare alleles, which were not included in the mapping by GWAS. An alternative explanation is the different regulation mechanisms for ozone stress tolerance among diverse cultivars. As observed, multiple genetic loci were involved in ozone tolerance. It is conceivable that the previously identified QTLs play a role for the differential tolerance between Nipponbare and Kasalath, but these factors might not be dominant when analysing the broad large genetic variability covered by GWAS. It is possible that different rice cultivars adopt different tolerance mechanisms to ozone, as observed in other stresses such as iron toxicity (Wu *et al.*, 2014). The last possibility originates from different environmental conditions and ozone treatment schemes that two mapping studies employed. While the mapping of *OzT8* and *OzT9* was conducted at 110 ppb ozone for 12 days using the plants grown in a hydroponic system (Frei *et al.*, 2008), the current study adopted 60 ppb ozone for the whole season using the plants grown in the soil. A QTL identified under a certain condition may not be detected under different environmental condition (QTL x environment interaction), as proposed previously (El-Soda *et al.*, 2014).

Figure 5-2: Manhattan plots in the neighbouring regions of previously identified QTLs. (A) A plot for relative DW on chromosome 8. (B) A plot for square-root transformed leaf bronzing score on chromosome 9. Previously identified QTLs (Frei *et al.*, 2008) are shown in red colour.

2. Future perspectives

Although the current research has partly untangled complex mechanisms and genetic regulation of ozone stress tolerance in rice, several questions remain to be answered. The first question is AsA transport across the plasma membrane. As discussed in Chapter 1, the apoplastic AsA might determine ozone stress tolerance. Since the final step of AsA biosynthesis occurs in mitochondria[‡] (Horemans *et al.*, 2000), it has to be transported to many compartments of the cell, including apoplast. Homologues of mammalian AsA transporter, SVCT, were found in Arabidopsis by Maurino et al. (2006). These family proteins were named NAT proteins, which has 12 members in Arabidopsis. However, the AsA transport activity of AtNAT family has not been confirmed to date. Moreover, several data have suggested absence of AsA transporting activity in AtNAT proteins (Hunt, 2013; Niopek-Witz et al., 2014). Recently, the first AsA transporter in plant species was identified in Arabidopsis by Miyaji et al. (2015). The identified transporter, AtPHT4;4, is localized at chloroplast envelope and transports AsA from cytosol into the stroma, thereby conferring tolerance to high light stress. Further characterization of PHT family proteins in Arabidopsis and other plant species, as well as another independent exploration of AsA transporter (Smirnoff et al., 2013, presented in 11th POG conference) might identify the plasma membranelocalized AsA transporter and reveal the significance of AsA transport across the plasma membrane in ozone stress tolerance. The second question is how plant cells sense ozone. There has been a long controversy on this topic as introduced in Chapter 1. Recently Idänheimo et al. (2014) experimentally showed the involvement of plasma membrane-localized cysteine-rich receptor-like kinase in apoplastic oxidative stress. This supports the hypothesis that a certain substance in the apoplast is sensed by a receptor on the plasma membrane, enabling the transduction of signals from the apoplast into cytosol via phosphorylation. Indeed this observation does not exclude other mechanisms, such as direct penetration of ROS into the cytosol and involvement of redox sensors. Considering the relatively short duration of time (less than 100 years) for which the plants were exposed to elevated ozone concentrations, it is unlikely that plants possess specific receptor for ozone. It is more probable that plants have sensors which respond to general apoplastic ROS formation, probably via modification of

[‡] Alternative pathways have been also proposed. The biosynthetic pathway of ascorbate is still not completely elucidated yet and controversial, as detailed in Linster and Clarke (2008).

apoplastic proteins, and ozone also takes part in this pathway. One of the signal transduction pathways related to apoplastic ROS was recently identified through reverse-genetic screening of ozone sensitive mutants in Arabidopsis (Wrzaczek et al., 2009, 2014), and further investigation would unveil other pathways. The last question to be answered is to validate the involvement of the identified candidate genes in ozone tolerance. One of the identified genes for leaf visible symptoms is an E3 ubiquitin ligase *RING* (Chapter 4). The author's own analysis (see the Supplementary Protocol S3) of a previously reported microarray dataset (data adopted from Frei et al., 2010) implied the involvement of ubiquitin-proteasome pathway in the ozone tolerance in rice (Tables 5-2, 5-4, 5-5 and 5-6). In the ozone-tolerant SL41, which produces significantly reduced leaf visible symptoms compared with Nipponbare, the gene ontology[§] (GO) terms of 'protein ubiquitination', 'ubiquitin ligase complex' and 'ubiquitin-protein ligase activity' were highly over-represented among the genes down-regulated compared with Nipponbare. Similarly, the gene set which showed a significant interaction between genotype and treatment (GxT) was enriched in the terms 'protein ubiquitination', 'ubiquitin ligase complex', 'ubiquitin-protein ligase activity' and 'ubiquitin thiolesterase activity'. These results demonstrate differential regulation of ubiquitin-related genes between a tolerant and a susceptible line, supporting the possible involvement and physiological significance of this pathway. The ubiquitin-proteasome pathway plays an important role under pathogen infection and signalling (Trujillo and Shirasu, 2010). Considering the similarity between ozone stress and pathogen infection (discussed in Chapter 1), it can be speculated that the ubiquitin-proteasome pathway partially determines ozone stress tolerance. Similarly, in a comparative microarray study with Nipponbare and SL46 (Chen et al., unpublished data), which maintains higher biomass under ozone stress than Nipponbare, the GO term 'sucrose synthase activity' was enriched in the gene set which showed significant interactions (Tables 5-3, 5-7, 5-8 and 5-9). A sucrose synthase GxT (LOC Os02g58480) was identified as a candidate gene through GWAS for relative dry weight (biomass production) in Chapter 4. These results strongly suggest that the sucrose metabolism is involved in the biomass production under ozone stress in rice. The elucidation of the significance of these candidate genes as well as physiological studies is to be awaited.

[§] Gene ontology shows functional categorization of proteins. It gives hierarchical annotation in each category of 'Biological process', 'Cellular component' and 'Molecular function'.

Table 5-2: Number of differentially regulated genes between Nipponbare and SL41.

Category	Number of probes
Down-regulated in SL41	6630
Up-regulated in SL41	641
GxT interaction	6549
Total	42475

The original data was adopted from Frei *et al.* (2010). Briefly, rice was treated with 120 ppb ozone for 13 days (7 h per day), and total RNA was extracted from shoots. In the original experiment, Nipponbare, SL41 (carrying OzT9 allele from Kasalath in Nipponbare background) and SL15 (carrying OzT3 allele from Kasalath in Nipponbare background) were used. Statistical analysis was conducted again using only Nipponbare and SL41 according to Frei *et al.* (2010) (without SL15 in the original file). Raw *P* values of 0.05 were considered significant.

Table 5-3: Number of differentially regulated genes between Nipponbare and SL46.

Category	Number of probes
Down-regulated in SL46	4481
Up-regulated in SL46	1275
GxT interaction	2629
Total	42475

The microarray data was kindly provided by Dr. Chen, Dr. Pariasca-Tanaka and Prof. Dr. Wissuwa (JIRCAS, Tsukuba, Japan). Rice was treated with 100 ppb ozone for 25 days (7 h per day), and total RNA was extracted from the second most recently expanded leaf. Nipponbare and SL46 (carrying OzT8 allele from Kasalath in Nipponbare background) were used. Statistical analysis was conducted according to Frei *et al.* (2010). Raw *P* values of 0.05 were considered significant.

3. How can crop breeding contribute to future global food security?

Since the middle of the last century, crop breeding has contributed to a huge extent to the global food supply. In case of rice, a historical epoch termed 'green revolution' took place in the 1960s. Through the introduction of a semidwarf gene sd-1 (Spielmeyer et al., 2002), which led to less production of straw and more grain yield, breeding programmes have drastically increased the rice yield during the green revolution (Khush, 2001). Evenson and Gollin (2003) estimated that crop production in the developing countries would be less than 80% and the price would have risen by 35 to 66% if there had been no crop breeding since 1965. This would have decreased the calorie intake per capita by more than 10% in developing countries (Evenson and Gollin, 2003). These data clearly demonstrate that crop breeding plays an outstanding role in ensuring food supply for a growing world population (Fig. 5-3). The improvement of crops is still ongoing and contributing to the rise in crop yields. Recently, a novel submergence tolerant gene (SUB1) was introduced into popular rice varieties (Ismail et al., 2013). These submergence-tolerant rice (or 'snorkel' rice) cultivars are already commercially distributed, and proved to achieve 1 to 3 t/ha increase of grain yield after flooding as compared with conventional cultivars (Ismail et al., 2013). Another example is the breeding for tolerance to phosphorus deficiency (-P). Phosphorus deficiency is one of the major nutrient deficiencies in soil, which leads to 50 to 70% of grain yield loss compared with well-fertilized soil (Gamuyao et al., 2012). Introduction of a single gene (PSTOL1) that -P intolerant modern cultivars do not possess, enhanced the grain yield under -P condition by 60% compared with the background cultivar lacking the *PSTOL1* gene (Gamuyao et al., 2012). This value corresponds to a mitigation of the effect of -P by around 40 to 50%. As shown by these examples, improvement of crops by breeding is still effective and much potential is left for further yield increase.

Figure 5-3: Transition of production and prices of rice since 1961 (adopted from Khush, 2001).

Isolation of the causative genes for a certain trait is desirable to break the linkage between the identified QTL and unfavourable genes (Jiang and Zeng, 1995; Alpuerto *et al.*, 2009). In other words, transferring large chromosomal fragments in the breeding process might introduce genes which cause negative effects. Besides, identifying the gene will deepen the understanding of the regulation of traits. The identification of the gene underlying a certain trait would be followed by marker-assisted breeding, which is considered faster and more precise compared with the conventional breeding (Alpuerto *et al.*, 2009). In the current study, suppressed expression of *OsORAP1* was shown to ameliorate leaf visible symptoms under ozone stress. Although the involvement of other genes cannot be ruled out, a breeding programme targeting the *ORAP1* locus in other plant species might be beneficial in the production of, for example, leafy vegetables and ornamental crops. It might also have potential roles in preventing loss of photosynthetically active leaf area, thereby contributing to the overall biomass production and crop yield (Fiscus *et al.*, 2005).

Considering the significant damage of ozone stress and effectiveness of crop breeding, a crucial question to be addressed is how beneficial the crop breeding targeting elevated tropospheric ozone is. To date, no gene has been experimentally confirmed to affect the relative grain yield under ozone stress. Taking into account the positive correlation between the shoot dry weight and total grain yield in Chapter 4 (P < 0.001, Fig. 5-3), it seems crucial to maintain vigorous shoot growth under ozone stress to maintain the yield. Therefore, currently-ongoing efforts to isolate single gene loci responsible for biomass production under ozone stress, as well as the characterization of previously suggested candidate gene for total grain yield, APO1 (Tsukahara et al., 2013), will have a significant impact on the supply of rice in the severely affected area. The SL46 rice line, which carries the biomass-related QTL OzT8 from the tolerant cultivar Kasalath in the genetic background of the susceptible cultivar Nipponbare, is less vulnerable to ozone stress than Nipponbare in terms of biomass production (Chen et al., 2013; Wang et al., 2014). In the study by Chen et al., SL46 mitigated the effect of ozone by around 30% (absolute value). Moreover, pyramiding previously identified two QTLs (OzT8 and OzT9) mitigated the effect of ozone by around 40% in shoot biomass production (Wang et al., 2014), demonstrating a positive additive effect of genetic factors for future crop improvement. If this value is applied to the regression equation between the relative shoot dry weight (X, %) and relative total panicle weight (Y, %) from Chapter 4 (Fig. 5-4): $Y = 0.858 X + 9.864 (R^2 = 0.35)$, an increase of 40% of shoot DW production would lead to around 34% more total panicle weight production. Taking into account the average rice yield loss estimation of 3.7% (in the year 2000) by elevated tropospheric ozone concentration (Van Dingenen et al., 2009), breeding would suppress the world rice yield loss by 1.3%. This corresponds to the increase of around 7.8 million t of rice production considering the world rice yield in 2000 (600 million t; FAO STAT). Moreover, breeding of other crops such as wheat and maize for ozone tolerance would entail further yield gains. With the increase of ozone concentration and the urgent need to increase crop production in the future, the effect of crop breeding targeting ozone tolerance will be even more tremendous. This will undoubtedly contribute to the global food security in the 21st century.

Figure 5-4: Correlation between relative shoot dry weight (x-axis) and relative total panicle weight (y-axis). The data were taken from Chapter 4. A total of 249 data points were ploted after elimination of extreme values. The regression equation and coefficient of determination are shown.

GO ID	GO Name	Category	Hyper p value
GO:0005975	carbohy drate metabolic process	В	0.000
GO:0006096	glycolysis	В	0.000
GO:0006099	tricarboxy lic acid cy cle	В	0.000
GO:0006350	transcription	В	0.000
GO:0006468	protein amino acid phosphory lation	В	0.000
GO:0006810	transport	В	0.000
GO:0006886	intracellular protein transport	В	0.000
GO:0006950	response to stress	В	0.000
GO:0008152	metabolic process	В	0.000
GO:0015031	protein transport	В	0.000
GO:0016192	vesicle-mediated transport	В	0.000
GO:0045449	regulation of transcription	В	0.000
GO:0045226	extracellular polysaccharide biosynthetic process	В	0.000
GO:0055114	oxidation reduction	В	0.000
GO:0006694	steroid biosynthetic process	В	0.000
GO:0009058	biosynthetic process	В	0.000
GO:0009734	auxin mediated signaling pathway	В	0.000
GO:0044237	cellular metabolic process	В	0.000
GO:0006032	chitin catabolic process	В	0.001
GO:0006812	cation transport	В	0.001
GO:0006816	calcium ion transport	В	0.001
GO:0016567	protein ubiquitination	В	0.001
GO:0019538	protein metabolic process	В	0.001
GO:0030154	cell differentiation	В	0.001
GO:0015904	tetracycline transport	В	0.002
GO:0009873	ethy lene mediated signaling pathway	В	0.002
GO:0030418	nicotianamine biosynthetic process	В	0.002
GO:0006417	regulation of translation	В	0.002
GO:0030001	metal ion transport	В	0.002
GO:0006108	malate metabolic process	В	0.003
GO:0007047	cellular cell wall organization	В	0.003
GO:0006568	tryptophan metabolic process	В	0.003
GO:0001539	ciliary or flagellar motility	В	0.003
GO:0006835	dicarboxy lic acid transport	В	0.004
GO:0005737	cytoplasm	С	0.000
GO:0005794	Golgi app aratus	С	0.000
GO:0016020	membrane	С	0.000
GO:0030117	membrane coat	С	0.000
GO:0030126	COPI vesicle coat	С	0.000
GO:0031410	cytop lasmic vesicle	С	0.000
GO:0000151	ubiquitin ligase complex	С	0.000
GO:0016021	integral to membrane	С	0.000
GO:0005789	endop lasmic reticulum membrane	С	0.000
GO:0005743	mitochondrial inner membrane	С	0.000
GO:0005761	mitochondrial ribosome	С	0.001
GO:0048046	ap op last	С	0.001
GO:0009288	bacterial-type flagellum	С	0.002
GO:0009514	gly oxy some	С	0.002
GO:0005759	mitochondrial matrix	С	0.002
GO:0012511	monolayer-surrounded lipid storage body	C	0.003

Table 5-4: Enriched gene ontology (GO) terms from the genes down-regulated in SL41.

Table 5-4 (continued)

GO ID	GO Name	Category	Hyper p value
GO:0000166	nucleotide binding	М	0.000
GO:0000287	magnesium ion binding	М	0.000
GO:0003700	sequence-specific DNA binding transcription factor activity	М	0.000
GO:0003824	catalytic activity	М	0.000
GO:0004672	protein kinase activity	М	0.000
GO:0004674	protein serine/threonine kinase activity	М	0.000
GO:0004713	protein tyrosine kinase activity	М	0.000
GO:0004721	phosphoprotein phosphatase activity	М	0.000
GO:0004872	receptor activity	М	0.000
GO:0005488	binding	М	0.000
GO:0005509	calcium ion binding	М	0.000
GO:0005515	protein binding	М	0.000
GO:0005524	ATP binding	М	0.000
GO:0016301	kinase activity	М	0.000
GO:0016491	oxidoreductase activity	М	0.000
GO:0016740	transferase activity	М	0.000
GO:0016757	transferase activity, transferring glycosyl groups	М	0.000
GO:0016758	transferase activity, transferring hexosyl groups	М	0.000
GO:0016787	hydrolase activity	М	0.000
GO:0030145	manganese ion binding	М	0.000
GO:0043565	sequence-specific DNA binding	М	0.000
GO:0046872	metal ion binding	М	0.000
GO:0003854	3-beta-hydroxy-delta5-steroid dehydrogenase activity	М	0.000
GO:0005215	transporter activity	М	0.000
GO:0005388	calcium-transporting ATPase activity	М	0.000
GO:0008831	dTDP-4-dehydrorhamnose reductase activity	М	0.000
	oxidoreductase activity, acting on the CH-OH group of donors, NAD or NAD)P	
GO:0016616	as acceptor	М	0.000
GO:0016769	transferase activity, transferring nitrogenous groups	М	0.000
GO:0016776	phosphotransferase activity, phosphate group as acceptor	М	0.000
GO:0016857	racemase and epimerase activity, acting on carbohydrates and derivatives	М	0.000
GO:0016887	ATPase activity	М	0.000
GO:0017111	nucleoside-triphosphatase activity	М	0.000
GO:0030955	potassium ion binding	М	0.000
GO:0004568	chitinase activity	М	0.000
GO:0016798	hydrolase activity, acting on glycosyl bonds	М	0.000
GO:0030528	transcription regulator activity	М	0.000
GO:0015085	calcium ion transmembrane transporter activity	М	0.000
GO:0008233	peptidase activity	М	0.000
GO:0019201	nucleotide kinase activity	М	0.001
GO:0031072	heat shock protein binding	М	0.001
GO:0004842	ubiquitin-protein ligase activity	М	0.001
GO:0004022	alcohol dehy drogenase (NAD) activity	М	0.001
GO:0008324	cation transmembrane transporter activity	М	0.001
GO:0003995	acyl-CoA dehydrogenase activity	М	0.001
GO:0015520	tetracy cline: hy drogen antiporter activity	М	0.001
GO:0003743	translation initiation factor activity	М	0.001
GO:0004096	catalase activity	М	0.002
GO:0004579	dolichy l-dip hosp hooligosaccharide-protein gly cotransferase activity	М	0.002
GO:0030410	nicotianamine synthase activity	М	0.002
GO:0004743	pyruvate kinase activity	М	0.002

GO ID	GO Name	Category	Hyper p value
GO:0005529	sugar binding	М	0.002
GO:0043169	cation binding	М	0.002
GO:0003924	GTPase activity	М	0.002
GO:0016847	1-aminocyclopropane-1-carboxylate synthase activity	М	0.003
GO:0030170	pyridoxal phosphate binding	М	0.003
	ATPase activity, coupled to transmembrane movement of ions, phospho	rylative	
GO:0015662	mechanism	Μ	0.003
GO:0017153	sodium:dicarboxy late symporter activity	М	0.004
GO:0008236	serine-type peptidase activity	М	0.004
GO:0004364	glutathione transferase activity	М	0.004
GO:0005506	iron ion binding	М	0.005
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compounds	М	0.005
GO:0004966	galanin receptor activity	М	0.006
GO:0019205	nucleobase, nucleoside, nucleotide kinase activity	М	0.006
GO:0015079	potassium ion transmembrane transporter activity	М	0.006
GO:0009055	electron carrier activity	М	0.007

Table 5-4 (continued)

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed significantly lower expression (according to raw *P* values) in SL41 compared with Nipponbare. A total of 6630 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

GO ID	GO Name	Category	Hyper p value
GO:0006635	fatty acid beta-oxidation	В	0.000
GO:0055114	oxidation reduction	В	0.000
GO:0008152	metabolic process	В	0.000
GO:0005975	carbohy drate metabolic process	В	0.000
GO:0010152	pollen maturation	В	0.000
GO:0042128	nitrate assimilation	В	0.001
GO:0006631	fatty acid metabolic process	В	0.001
GO:0006857	oligopeptide transport	В	0.001
GO:0006810	transport	В	0.002
GO:0009737	response to abscisic acid stimulus	В	0.004
GO:0006979	response to oxidative stress	В	0.005
GO:0006281	DNA repair	В	0.006
GO:0005578	proteinaceous extracellular matrix	С	0.001
GO:0005777	peroxisome	С	0.001
GO:0016020	membrane	С	0.002
GO:0005506	iron ion binding	М	0.000
GO:0009055	electron carrier activity	М	0.000
GO:0016491	oxidoreductase activity	М	0.000
GO:0016787	hydrolase activity	М	0.000
GO:0016798	hydrolase activity, acting on glycosyl bonds	М	0.000
GO:0020037	heme binding	М	0.000
GO:0005215	transporter activity	М	0.000
GO:0046872	metal ion binding	М	0.000
GO:0004867	serine-type endopeptidase inhibitor activity	М	0.000
GO:0005509	calcium ion binding	М	0.000
GO:0003997	acyl-CoA oxidase activity	М	0.000
GO:0050660	FAD or FADH2 binding	М	0.000
GO:0043169	cation binding	М	0.001
GO:0004497	monooxy genase activity	М	0.002
GO:0051539	4 iron, 4 sulfur cluster binding	М	0.003
GO:0005201	extracellular matrix structural constituent	М	0.003
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compounds	М	0.003
GO:0030414	peptidase inhibitor activity	М	0.004

Table 5-5: Enriched gene ontology (GO) terms from the genes up-regulated in SL41.

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed significantly higher expression (according to raw *P* values) in SL41 compared with Nipponbare. A total of 641 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

GO ID	GO Name	Category	Hyper p value
GO:0005975	carbohy drate metabolic process	В	0.000
GO:0006099	tricarboxy lic acid cy cle	В	0.000
GO:0006350	transcription	В	0.000
GO:0006468	protein amino acid phosphory lation	В	0.000
GO:0006810	transport	В	0.000
GO:0006886	intracellular protein transport	В	0.000
GO:0006950	response to stress	В	0.000
GO:0008152	metabolic process	В	0.000
GO:0015031	protein transport	В	0.000
GO:0016192	vesicle-mediated transport	В	0.000
GO:0045449	regulation of transcription	В	0.000
GO:0055114	oxidation reduction	В	0.000
GO:0006096	glycolysis	В	0.000
GO:0006635	fatty acid beta-oxidation	В	0.000
GO:0019538	protein metabolic process	В	0.000
GO:0042128	nitrate assimilation	В	0.000
GO:0045226	extracellular polysaccharide biosynthetic process	В	0.001
GO:0030001	metal ion transport	В	0.001
GO:0006812	cation transport	В	0.001
GO:0015904	tetracy cline transport	В	0.001
GO:0016567	protein ubiquitination	В	0.001
GO:0006835	dicarboxylic acid transport	В	0.002
GO:0006857	oligopeptide transport	В	0.002
GO:0009873	ethylene mediated signaling pathway	В	0.002
GO:0030418	nicotianamine biosynthetic process	В	0.002
GO:0006032	chitin catabolic process	В	0.002
GO:0006417	regulation of translation	В	0.002
GO:0007165	signal transduction	В	0.002
GO:0009058	biosynthetic process	В	0.002
GO:0006108	malate metabolic process	В	0.002
GO:0009734	auxin mediated signaling pathway	В	0.003
GO:0000272	polysaccharide catabolic process	В	0.003
GO:0001539	ciliary or flagellar motility	В	0.003
GO:0009239	enterobactin biosynthetic process	B	0.005
GO:0005737	cytoplasm	C	0.000
GO:0005794	Golgi apparatus	C	0.000
GO:0016020	membrane	C	0.000
GO:0030117	membrane coat	C	0.000
GO:0030126	COPI vesicle coat	C	0.000
GO:0031410	cytop lasmic vesicle	C	0.000
GO:0005789	endon lasmic reticulum membrane	C	0.000
GO:0000151	ubiquitin ligase complex	C C	0.000
GO:0005743	mitochondrial inner membrane	C	0.000
GO:0005761	mitochondrial ribosome	C	0.000
GO:0016021	integral to membrane	C	0.000
GO:0009288	hacterial-type flagellum	C	0.001
GO:0005759	mitochondrial matrix	C	0.001
GO:0005777	peroxisome	C	0.002
GO:0048046	anonlast	C	0.000
GO:0000166	nucleotide binding	M	0.007

Table 5-6: Enriched gene ontology (GO) terms from the genes showing a significant interaction between genotype and treatment between Nipponbare and SL41.

Table 5-6 (continued)

CO000227 magesciant on binding M 0.000 CO00003700 sequence-precific DNA binding transcription factor activity M 0.000 CO0000472 protein kinase activity M 0.000 CO0000473 protein kinase activity M 0.000 CO00004713 protein tyrosine kinase activity M 0.000 CO00005201 transports activity M 0.000 CO00005215 transports activity M 0.000 CO00016701 transports activity M 0.000 CO00016701 kinase activity M 0.000 CO00016701 transforce activity M 0.000 CO0001671 transforce activity M 0.000 CO0001672 transforce activity M 0.000 CO0001678 transforce activity M 0.000 CO0001678 transforce activity, transforcing bycoxyl bonds M 0.000 CO0001678 transforce activity, transforcing bycoxyl bonds M 0.000 CO0001678	GO ID	GO Name	Category	Hyper p value
CO-0003700 sequence-specific DNA binding transcription fixtor activity M 0,000 CO-0003824 protein kinase activity M 0,000 CO-0004672 protein kinase activity M 0,000 CO-0004672 protein kinase activity M 0,000 CO-0004673 protein kinase activity M 0,000 CO-000548 binding M 0,000 CO-0005599 calchum ison binding M 0,000 CO-000548 binding M 0,000 CO-000548 protein binding M 0,000 CO-000548 protein binding M 0,000 CO-001670 transferms activity M 0,000 CO-0016740 transferms activity M 0,000 CO-001678 transferms activity cransferring beoxyl groups M 0,000 CO-001678 transferms activity cransferring beoxyl groups M 0,000 CO-001678 transferms activity cransferring beoxyl groups M 0,000 CO-0016777 transferms activity cransferring beoxyl groups M 0,000 CO-0016781 transferms activity cransferring beoxyl groups M 0,000 CO-0016782 transferms activity cransferring beoxyl groups	GO:0000287	magnesium ion binding	М	0.000
CO0008241 entalytic activity M 0,000 CO0004674 protein isses activity M 0,000 CO0004674 protein tyrosine kinase activity M 0,000 CO0004671 protein tyrosine kinase activity M 0,000 CO00045715 transporter activity M 0,000 CO0005515 protein binding M 0,000 CO0005524 ATP binding M 0,000 CO0016491 oxdoreductase activity M 0,000 CO0016757 transferase activity, transferring bycosyl groups M 0,000 CO0016758 transferase activity, transferring bycosyl groups M 0,000 CO0016758 transferase activity, transferring bycosyl groups M 0,000 CO0016758 transferase activity M 0,000 CO0016788 hydrolase activity M 0,000 CO0016788 hydrolase activity M 0,000 CO0004575 transferase activity M 0,000 CO0004576 sequence-specific DNA binding M 0,000 CO0004572 metal ion binding M 0,000 CO0004572 posphoprotein phosphatese activity M 0,000 CO000	GO:0003700	sequence-specific DNA binding transcription factor activity	М	0.000
CO0004/72protein kinase activityM0,000CO0004713protein tyrosine kinase activityM0,000CO0004713protein tyrosine kinase activityM0,000CO0005215transporter activityM0,000CO0005290eakium ion bindingM0,000CO0005290eakium ion bindingM0,000CO0005291protein bindingM0,000CO0005292activityM0,000CO0005291protein bindingM0,000CO0005291activity transferring glycoxyl groupsM0,000CO0016740transferrase activity, transferring hexoxyl groupsM0,000CO0016757transferrase activity, transferring hexoxyl groupsM0,000CO0016787hydrolase activity, cransferring hexoxyl groupsM0,000CO0016787hydrolase activity, cransferring hexoxyl groupsM0,000CO0016787hydrolase activity, cransferring hexoxyl groupsM0,000CO0016787hydrolase activity, acting on glycoxyl bondsM0,000CO0016787hydrolase activity, acting on glycoxyl bondsM0,000CO0004872receptor activityM0,000CO0004872receptor activityM0,000CO0004872receptor activity, acting on the CILOH group of donos, NAD or NAD orMCO0005566FAD or FADH2 bindingM0,000CO0005577heat activity acting on cabolydrates and derivativesM0,000CO0	GO:0003824	catalytic activity	М	0.000
CO0000474 protein serine/theorine kinase activity M 0.000 CO0000713 protein tyrosene kinase activity M 0.000 CO00005215 transporter activity M 0.000 CO0000518 binding M 0.000 CO0005515 protein binding M 0.000 CO0005514 https://doi.org/10.000 M 0.000 CO0005521 ATP binding M 0.000 CO0016740 transferase activity M 0.000 CO0016741 transferase activity, transferring glocoyl goups M 0.000 CO0016757 transferase activity, transferring glocoyl goups M 0.000 CO0016787 hydrolase activity, acting on glycoyl Bouds M 0.000 CO0016788 indy drolase activity, acting on glycoyl Bouds M 0.000 CO0005045 sequence-specific DNA binding M 0.000 CO0005045 sequence-specific DNA binding M 0.000 CO0005046 FAD or FADH2 binding M 0.000 CO0005056 echtranse activity, acting on the CH-OH group of donors, NAD or NADP CO0005056 CO0005057 receptor activity M 0.000 CO00005187 receptor activity, acting on earbohydra	GO:0004672	protein kinase activity	М	0.000
CO0004713protein tyrosine kinase activityM0.000CO0005215transporter activityM0.000CO0005599ealcum ion bindingM0.000CO0005512protein bindingM0.000CO0005524ATP bindingM0.000CO0016301kinase activityM0.000CO0016374transferase activityM0.000CO0016375transferase activity (ansferring glycosyl goupsM0.000CO0016377transferase activity, transferring glycosyl goupsM0.000CO0016378transferase activity, transferring glycosyl bondsM0.000CO0016378hydrobase activity, cransferring plycosyl bondsM0.000CO0016378hydrobase activity, acting on glycosyl bondsM0.000CO00016372netal ion bindingM0.000CO0004582enclain bindingM0.000CO0004582receptor activity, acting on the CH-OH goup of donors, NAD or NADPTCO0004582receptor activity, acting on the CH-OH goup of donors, NAD or NADPTCO0004583chrinase activity, acting on the CH-OH goup of donors, NAD or NADP0.000CO0004584chrinase activity, acting on the CH-OH goup of donors, NAD or NADP0.000CO0004587nacemase activity, acting on the CH-OH goup of donors, MAD or NADP0.001CO0005866receptor activity, acting on the CH-OH goup of donors, NAD or NADP0.001CO000587nacemase activity, acting on the CH-OH goup of donors, MAD or NADP0.001	GO:0004674	protein serine/threonine kinase activity	М	0.000
CO0005215transporter activityM0.000CO0005205protein bindingM0.000CO0005505protein bindingM0.000CO0005515protein bindingM0.000CO000524ATP bindingM0.000CO0005751transferase activityM0.000CO0016767transferase activity, transferring bexosyl groupsM0.000CO0016771transferase activity, transferring bexosyl groupsM0.000CO0016787hy drolese activity, acting on glycosyl bondsM0.000CO0016787hy drolese activity, acting on glycosyl bondsM0.000CO0016788hy drolese activity, acting on glycosyl bondsM0.000CO0004575real lon bindingM0.000CO0004575real lon bindingM0.000CO0004572metal lon bindingM0.000CO0004572prosphorotein phosphatse activityM0.000CO0004572prosphorotein phosphatse activityM0.000CO0004573hy drolese activity, acting on the CH-OH group of donors, NAD or NADP0.0000CO0004574heat sock protein bindingM0.0000CO0004575neares activity, acting on carbohydrates and derivativesM0.000CO0004575neares activity, acting on carbohydrates and derivativesM0.0001CO0004575neares activity, acting on carbohydrates and derivativesM0.0001CO0004575neares activity, acting on carbohydrates and derivati	GO:0004713	protein tyrosine kinase activity	М	0.000
CO0005488bindingM0,000GO0005599eakiam ion bindingM0,000GO0005514ATP bindingM0,000GO0005524ATP bindingM0,000GO0016301kinase activityM0,000GO0016301kinase activityM0,000GO0016740transferase activityM0,000GO0016777transferase activity, transferring glycosyl groupsM0,000GO0016787hy drolase activity, transferring plycosyl groupsM0,000GO0016787hy drolase activity, acting on glycosyl bondsM0,000GO0016787hy drolase activity, acting on glycosyl bondsM0,000GO00016787hy drolase activity, acting on glycosyl bondsM0,000GO00016787hy drolase activity, acting on the CH-OII group of donors, NAD or NADPW0,000GO0004682receptor activityM0,000GO0004682receptor activity, acting on the CH-OII group of donors, NAD or NADPW0,000GO00046857racemase activity, acting on carbohydrates and derivativesM0,000GO00046857racemase and epimerase activity, acting on carbohydrates and derivativesM0,000GO00046857racemase and epimerase activity, acting on carbohydrates and derivativesM0,001GO0004687ATPaea activityM0,001GO0004687ATPaea extivityM0,001GO000566echin transmerbrase cativity, acting on carbohydrates and derivativesM0,001<	GO:0005215	transporter activity	М	0.000
CO0005599eakumian inindingM0.000CO0005594ATP bindingM0.000CO0005524ATP bindingM0.000CO00016301kinase activityM0.000CO0016491oxdoreductase activity, transferring glycosyl groupsM0.000CO0016775transferase activity, transferring plexosyl groupsM0.000CO0016787hydrolase activity, transferring plexosyl groupsM0.000CO0016787hydrolase activity, transferring plexosyl groupsM0.000CO0016787hydrolase activity, acting on glycosyl bondsM0.000CO00016787hydrolase activity, acting on glycosyl bondsM0.000CO00016787indyrolase activity, acting on glycosyl bondsM0.000CO00016787magmeci oin bindingM0.000CO00016787mela bindingM0.000CO0004872mela bindingM0.000CO0004872receptor activityM0.000CO0004872receptor activity, acting on the CH-OH group of donors, NAD or NADP0.000CO0004877receptor activity, acting on carbohy drates and derivativesM0.000CO0004877reacemat activity, acting on carbohy drates and derivativesM0.000CO0004877reacemat activity, acting on carbohy drates and derivativesM0.000CO0004877reacemat activity, acting on carbohy drates and derivativesM0.000CO00048787action transmembrane transporter activityM0.001 <td>GO:0005488</td> <td>binding</td> <td>М</td> <td>0.000</td>	GO:0005488	binding	М	0.000
CO0005515 CO0005524Protein bindingM0.000GO0005524ATP bindingM0.000GO00016591oxidoreductase activityM0.000GO0016757transferase activity, transferring glycosyl groupsM0.000GO0016757transferase activity, transferring hexosyl groupsM0.000GO0016757transferase activity, transferring hexosyl groupsM0.000GO0016757hydrolase activity, acting on glycosyl bondsM0.000GO0016778hydrolase activity, acting on glycosyl bondsM0.000GO00016785sequence-specific DNA bindingM0.000GO00045765reseptor activityM0.000GO0004572metal ion bindingM0.000GO0004572receptor activityM0.000GO0004572receptor activity, acting on the CH-OH group of donors, NAD or NADPM0.000GO000055electron carrier activity, acting on the CH-OH group of donors, NAD or NADP0.0000.000GO0001579hit insee activity, acting on the CH-OH group of donors, NAD or NADP0.0000.0000GO000055electron carrier activity, acting on carbohydrates and derivativesM0.000GO0001587racemase and epimerae activity, acting on carbohydrates and derivativesM0.001GO00016877racemase activity, acting on carbohydrates and derivativesM0.001GO00016877racemase activity, acting on carbohydrates and derivativesM0.001GO0000560ico non binding <td>GO:0005509</td> <td>calcium ion binding</td> <td>М</td> <td>0.000</td>	GO:0005509	calcium ion binding	М	0.000
CO0005524ATP bindingM0.000GO0016301kinase activityM0.000GO0016301coiderdutase activityM0.000GO0016740transferase activity, transfering glycosyl groupsM0.000GO0016757transferase activity, transfering becosyl groupsM0.000GO0016757hydrolase activity, transfering becosyl groupsM0.000GO0016758hydrolase activity, transfering becosyl groupsM0.000GO0016778hydrolase activity, acting on glycosyl bondsM0.000GO00016787hydrolase activity, acting on glycosyl bondsM0.000GO00016787maganese: ion bindingM0.000GO0001578modulation bindingM0.000GO0016787metal ion bindingM0.000GO0016787metal ion bindingM0.000GO00016787receptor activityM0.000GO00016787receptor activity, acting on the CH-OH group of donors, NAD or NADPGO0000458GO00016616as acceptorM0.000GO00016657raceriase activityM0.000GO00016657raceriase activity, acting on carbohydrates and derivativesM0.000GO00016657raceriase activityM0.000GO00016657raceriase activityM0.000GO00016657raceriase activityM0.000GO00016657raceriase activityM0.000GO00016657racerias activityM0.000 <td>GO:0005515</td> <td>protein binding</td> <td>М</td> <td>0.000</td>	GO:0005515	protein binding	М	0.000
CO0016301kmase activityM0.000GO0016740transferase activityM0.000GO0016770transferase activity, transferring peosyl goupsM0.000GO0016775transferase activity, transferring hexosyl goupsM0.000GO0016777hydrolase activity, acting on glycosyl goupsM0.000GO0016778hydrolase activity, acting on glycosyl bondsM0.000GO0016778hydrolase activity, acting on glycosyl bondsM0.000GO0016785sequence-specific DNA bindingM0.000GO00045672metal con bindingM0.000GO00045721phosphoprotein phosphates activityM0.000GO00045721phosphoprotein phosphates activityM0.000GO0004568chitinase activity, acting on the CH-OH group of donors, NAD or NADP0.000GO0004568chitinase activity, acting on tarbely drates and derivativesM0.000GO00016877racemase and spinerase activity, acting on carbohydrates and derivativesM0.000GO00016857racemase and spinerase activity, acting on carbohydrates and derivativesM0.000GO00016857racemase and spinerase activity, acting on carbohydrates and derivativesM0.001GO0005566iron in bindingM0.001GO0005566iron in bindingM0.001GO0005566iron in bindingM0.001GO0005588activity chorbannose reductase activityM0.001GO0005586cation transmenhrane transport	GO:0005524	ATP binding	М	0.000
GO0016491 exidereductase activity M 0,000 GO0016774 transferase activity, transferring by cosyl groups M 0,000 GO0016775 transferase activity, transferring by cosyl groups M 0,000 GO0016787 hydrobase activity, caring on gly cosyl bonds M 0,000 GO0016787 hydrobase activity, acting on gly cosyl bonds M 0,000 GO0016787 hydrobase activity, acting on gly cosyl bonds M 0,000 GO0016787 manganese ion binding M 0,000 GO0016787 receptor activity M 0,000 GO00046721 phosphatase activity, acting on the CH-OH group of donors, NAD or NADP GO000 GO0016616 as acceptor M 0,000 GO0000525 electron carrier activity M 0,000 GO0000526 receptor activity M 0,000 GO000556 receptor activity M 0,000 GO000556 receptor activity, acting on carbohydrates and derivatives M 0,000 GO000556 reco	GO:0016301	kinase activity	М	0.000
GO:0016740transferase activityM0.000GO:0016757transferase activity, transfering lycosyl groupsM0.000GO:0016758hydrolase activity, transfering hexosyl groupsM0.000GO:0016787hydrolase activity, transfering hexosyl groupsM0.000GO:0016788hydrolase activity, transfering hexosyl groupsM0.000GO:0016788hydrolase activity, transfering hexosyl groupsM0.000GO:00316487marganese ion bindingM0.000GO:0043565sequence-specific DNA bindingM0.000GO:0044872metal ion bindingM0.000GO:0044872receptor activityM0.000GO:0044872receptor activityM0.000GO:0044872receptor activity, acting on the CH-OH group of donors, NAD or NADP0.000GO:004568chirinase activity, acting on exbohydrates and derivativesM0.000GO:004576racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:000577racemase and epimerase activity, acting on carbohydrates and derivativesM0.001GO:000587racemase and epimerase activityM0.001GO:000587racemase and epimerase activityM0.001GO:000587activityM0.001GO:000587potase activityM0.001GO:0005887ATPase activityM0.001GO:000587potase activityM0.001GO:000587potase acti	GO:0016491	oxidoreductase activity	М	0.000
GG00016757transferring glycosyl groupsM0.000GO0016758transferring hexosyl groupsM0.000GO0016758hydroliase activity, transferring hexosyl groupsM0.000GO0016778hydroliase activity, acting on glycosyl bondsM0.000GO00016758hydroliase activity, acting on glycosyl bondsM0.000GO00016757metal ion bindingM0.000GO0004556sequence-specific DNA bindingM0.000GO0004721phosphoprotein phosphatse activityM0.000GO0004721phosphoprotein phosphatse activityM0.000GO0004872receptor activityM0.000GO0004872receptor activityM0.000GO0004872receptor activity, acting on the CH-OH group of donors, NAD or NADPGO000GO0004568chitinase activityM0.000GO00055electron carrier activity, acting on carbohydrates and derivativesM0.000GO000687racemase and epimerase activity, acting on carbohydrates and derivativesM0.001GO0006877racemase and epimerase activityM0.001GO0006876iron ion bindingM0.001GO0006877ATPase activityM0.001GO0006877ATPase activityM0.001GO0006877ATPase activityM0.001GO0006877ATPase activityM0.001GO0006873potassium ion bindingM0.001GO0006874GTPase act	GO:0016740	transferase activity	М	0.000
GO.0016788transferase activity, transferring bexosyl groupsM0,000GO.0016787hydrolase activity, acting on gly cosyl bondsM0,000GO.0016788hydrolase activity, acting on gly cosyl bondsM0,000GO.0016786hydrolase activity, acting on gly cosyl bondsM0,000GO.0016787metal ion bindingM0,000GO.0016786retal ion bindingM0,000GO.0016787retal ion bindingM0,000GO.0004721phosphoptoticn phosphatase activityM0,000GO.0016616as acceptorM0,000GO.0016616as acceptorM0,000GO.0016616as acceptorM0,000GO.0004558chitinase activity, acting on the CH-OH group of donors, NAD or NADPGO.0000GO.0005870reacemase and epimerase activity, acting on carbohydrates and derivativesM0,000GO.0005871racemase and epimerase activity, acting on carbohydrates and derivativesM0,001GO.0005873racemase and epimerase activityM0,001GO.0005874GTPase activityM0,001GO.0005875potaisum ion bindingM0,001GO.0005874GTPase activityM0,001GO.000555potaisum ion bindingM0,001GO.000324GtTPase activityM0,001GO.0003254cation transmembrane transporter activityM0,001GO.0003254cation transmembrane transporter activityM0,001<	GO:0016757	transferase activity, transferring glycosyl groups	М	0.000
GO:0016787hydrolase activityM0.000GO:0016778hydrolase activity, acting on glycosyl bondsM0.000GO:0030145manganese ion bindingM0.000GO:004565sequence-specific DNA bindingM0.000GO:0045672metal ion bindingM0.000GO:0046872metal ion bindingM0.000GO:0046872presphoprotein phosphatase activityM0.000GO:004721phosphoprotein phosphatase activityM0.000GO:004672receptor activity, acting on the CH-OH group of donors, NAD or NADPGO:0004568GO:004568chitinase activityM0.000GO:004576ratinese activity, acting on carbohydrates and derivativesM0.000GO:001677racemase and epimerase cativity, acting on carbohydrates and derivativesM0.000GO:0005506iron ion bindingM0.001GO:000831dTDP-4-dehydrorhanmose reductase activityM0.001GO:000562coenzyme bindingM0.001GO:0008324GTPse activityM0.001GO:0005324cation transporter activityM0.001GO:0003538calcahu-transporter activityM0.001GO:0005324cation transporter activityM0.001GO:0003538calcahu-transporter activityM0.001GO:0005325cation transporter activityM0.001GO:0005388calcahu-transporter activityM0.001GO:0005505transporting ATPase activityM<	GO:0016758	transferase activity, transferring hexosyl groups	М	0.000
GO:0016798hydrolase activity, acting on glycosyl bondsM0,000GO:001355sequence-specific DNA bindingM0,000GO:004355sequence-specific DNA bindingM0,000GO:0045872metal ion bindingM0,000GO:0040572phosphoprotein phosphatase activityM0,000GO:0040872receptor activityM0,000GO:004872receptor activity, acting on the CH-OH group of donors, NAD or NADP0GO:0016616as acceptorM0,000GO:0016616as acceptorM0,000GO:0016616as acceptorM0,000GO:0016616as acceptorM0,000GO:0016617recemtristivityM0,000GO:0016857recemtase and epimerase activity, acting on carbohydrates and derivativesM0,000GO:0016857racemase and epimerase activity, acting on carbohydrates and derivativesM0,000GO:0005506iron ion bindingM0,001GO:0005813dTDP-4-dehydrorhannose reductase activityM0,001GO:0016857ATPase activityM0,001GO:0005924GTPase activityM0,001GO:0005062coency me bindingM0,001GO:0005324cation transmembrane transporter activityM0,001GO:0003224GTPase activityM0,001GO:0005388cation transmembrane transporter activityM0,001GO:000338cation transmembrane transporter activityM0,001GO:000	GO:0016787	hydrolase activity	М	0.000
GO:0030145 manganese ion binding M 0.000 GO:0043565 sequence-specific DNA binding M 0.000 GO:0046872 metal ion binding M 0.000 GO:0050660 F AD or F ADI12 binding M 0.000 GO:0004872 receptor activity M 0.000 GO:0016616 as acceptor M 0.000 GO:0004568 chitinase activity, acting on the CH-OH group of donors, NAD or NADP GO:00016616 GO:0016616 as acceptor M 0.000 GO:00030250 electron carrier activity M 0.000 GO:0016857 racemase and epimerase activity, acting on carbohydrates and derivatives M 0.000 GO:000550 iron ion binding M 0.000 GO:000550 M 0.001 GO:000550 gridase activity M 0.001 GO:000562 coerzyme binding M 0.001 GO:000551 potassium ion binding M 0.001 GO:000562 coerzyme binding M 0.001 GO:000552 potassium ion binding M 0.001 GO:0005324 GT Pase activit	GO:0016798	hydrolase activity, acting on glycosyl bonds	М	0.000
GO:0043565sequence-specific DNA bindingM0.000GO:00406872metal ion bindingM0.000GO:0050660FAD or FADH2 bindingM0.000GO:004721phosphoprotein phosphatase activityM0.000GO:0004872receptor activityM0.000GO:0016616as acceptorM0.000GO:0004578chitnase activity, acting on the CH-OH group of donors, NAD or NADPGO:0004568GO:001656chitnase activity, acting on acbohydrates and derivativesM0.000GO:0001657racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0005506iron ion bindingM0.0000.000GO:0005506iron ion bindingM0.0010.000GO:0005506iron ion bindingM0.0010.000GO:0005506iron ion bindingM0.0010.001GO:0005506coenzy me bindingM0.0010.001GO:000555potasium ion bindingM0.0010.001GO:0005924GT Pase activityM0.001GO:001577phosphotrase activityM0.001GO:001578cation transporting ATPase activityM0.001GO:001578cation transporting ATPase activityM0.001GO:001577phosphotrase activity, phosphate group as acceptorM0.001GO:001578cation transporting ATPase activityM0.001GO:001578cation-transporting ATPase activity<	GO:0030145	manganese ion binding	М	0.000
GO:0046872metal ion bindingM0.000GO:0050660FAD or FADH2 bindingM0.000GO:0004721phosphoprotein phosphatase activityM0.000oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP0.000GO:0004872receptor activityM0.000GO:0004568chitinase activity, acting on the CH-OH group of donors, NAD or NADP0.000GO:0004568chitinase activityM0.000GO:0004568chitinase activityM0.000GO:00031072heat shock protein bindingM0.000GO:0008233peptidase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activity, acting on carbohydrates and derivativesM0.001GO:0008233peptidase activityM0.001GO:0008831dTDP-4-dehydrorhamnose reductase activityM0.001GO:0005662coenzy me bindingM0.001GO:0003924GTPase activityM0.001GO:0003924GTPase activityM0.001GO:0003925potassium ion bindingM0.001GO:000395acyl-CA dehydrogenase activityM0.001GO:000395acyl-CA dehydrogenase activityM0.001GO:000395acyl-CA dehydrogenase activityM0.001GO:000395acyl-CA dehydrogenase activityM0.001GO:000395acyl-CA dehydrogenase activityM0.001GO:0016776phosphotransferase activi	GO:0043565	sequence-specific DNA binding	М	0.000
GO0050660FAD or FADH2 bindingM0,000GO0004721phosphoprotein phosphatase activityM0,000GO0004872receptor activityM0,000GO0016616as acceptorM0,000GO0004568chitinase activity, acting on the CH-OH group of donors, NAD or NADPM0,000GO0009055electron carrier activityM0,000GO0016616as acceptorM0,000GO0009055electron carrier activity, acting on carbohydrates and derivativesM0,000GO0008233peptidase activity, acting on carbohydrates and derivativesM0,000GO0008233peptidase activityM0,001GO0005506iron ion bindingM0,001GO0008831dTDP-4-dehydrorhannose reductase activityM0,001GO0008223alcohol dehydrogenase (NAD) activityM0,001GO0003955potassium ion bindingM0,001GO0003955potassium ion bindingM0,001GO0003924GT Pase activityM0,001GO0003925action transmembrane transporter activityM0,001GO0003926calcium-transporting ATPase activityM0,001GO0003928calcium-transporting ATPase activityM0,001GO0003928calcium-transporting ATPase activityM0,001GO0003929cay tech A dehydrogenase activityM0,001GO000392calcium-transporting ATPase activityM0,001GO000392 <td>GO:0046872</td> <td>metal ion binding</td> <td>М</td> <td>0.000</td>	GO:0046872	metal ion binding	М	0.000
GO:0004721phosphoprotein phosphatase activityM0.000GO:0004872receptor activityM0.000oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADPM0.000GO:0016616as acceptorM0.000GO:000055electron carrier activityM0.000GO:0016877racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008831peptidase activity, acting on carbohydrates and derivativesM0.000GO:0016887ATPase activityM0.001GO:000566iron ion bindingM0.001GO:000566cornay me bindingM0.001GO:0005662coenzy me bindingM0.001GO:00030955potassum ion bindingM0.001GO:00030955potassum ion bindingM0.001GO:00030955potassum ion bindingM0.001GO:00030954cativityM0.001GO:0003924GTPase activityM0.001GO:0003955acyl-CoA dehydrogenase activityM0.001GO:0016776phosphotransferase activityM0.001GO:001511mulceoside-triphosphatase activityM0.001GO:0016776phosphotransferase activityM0.001GO:001775soduum ion bindingM0.001GO:001775phosphotransferase activityM0.001GO:001775soduum ion bindingM0.001GO:001775phosphotr	GO:0050660	FAD or FADH2 binding	М	0.000
GO:0004872receptor activityM0.000oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADPGO:0016616as acceptorM0.000GO:0004568chitinase activityM0.000GO:00055electron carrier activityM0.000GO:0016857racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activityM0.000GO:0008233peptidase activityM0.001GO:0008233peptidase activityM0.001GO:0008506iron ion bindingM0.001GO:0005062coenzy me bindingM0.001GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:0003924GT Pase activityM0.001GO:0003924cation transmembrane transporter activityM0.001GO:0003924cation transmembrane transporter activityM0.001GO:0003925potasium ion bindingM0.001GO:0003924cation transporter activityM0.001GO:0003955acy I-CoA dehy drogenase activityM0.001GO:0003924cation transporter activityM0.001GO:0003955potase activity, phosphate group as acceptorM0.001GO:0003958calcium-transporting ATPase activityM0.001GO:0003951molybdenum ion bindingM0.001GO:0003952calcium-transporting ATPase activityM0.00	GO:0004721	phosphoprotein phosphatase activity	М	0.000
oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADPGO:0016616as acceptorMGO:0004568chitinase activityMGO:0009055electron carrier activityMGO:001072heat shock protein bindingMGO:00116857racemase and epimerase activity, acting on carbohydrates and derivativesMGO:0008233peptidase activityMGO:0008506iron ion bindingMGO:0016887ATDP-4-dehydrorhannose reductase activityMGO:0016887ATP-ase activityMGO:0005662coenzyme bindingMGO:0004022alcohol dehydrogenase (NAD) activityMGO:0003924GTPase activityMGO:0003925potassium ion bindingMGO:0003924GTPase activityMGO:0003925action transmembrane transporter activityMGO:0003926calcium-transporting ATPase activityMGO:0003927gt Pases activityMGO:0003928calcium-transporting ATPase activityMGO:0003929acyt-CoA dehydrogenase activityMGO:0003925posphotransferase activity, phosphate group as acceptorMGO:00016776phosphotransferase activityMGO:00030151molybdenum ion bindingMGO:00030151molybdenum ion bindingMGO:0003025calcium-transporting ATPase activityMGO:0003025tarasceptranse activityMGO:0003025tarasceptranse activityM <td< td=""><td>GO:0004872</td><td>receptor activity</td><td>М</td><td>0.000</td></td<>	GO:0004872	receptor activity	М	0.000
GO:0016616as acceptorM0.000GO:0004568chitinase activityM0.000GO:0009055electron carrier activityM0.000GO:0016877racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0016887racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0016887racemase and epimerase activityM0.000GO:0016887ATDP-4-dehydrorhamnose reductase activityM0.001GO:0016887ATPase activityM0.001GO:0016887ATPase activityM0.001GO:0005066coenzy me bindingM0.001GO:0005062coenzy me bindingM0.001GO:0003025potassium ion bindingM0.001GO:0003924GTP ase activityM0.001GO:0003924GTP ase activityM0.001GO:0003925activityM0.001GO:0003926cyl-CoA dehydrogenase activityM0.001GO:0003927cation transmembrane transporter activityM0.001GO:0005388calciam-transporting ATP ase activityM0.001GO:00030151molybdenum ion bindingM0.001GO:00030152tetracycline-hydrogen activityM0.001GO:0003025cysteamine dioxy genese activityM0.001GO:00030151molybdenum ion bindingM0.001GO:0005520tetracycline-hydrogen antiporter activityM<		oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP		
GO:0004568chitinase activityM0.000GO:0009055electron carrier activityM0.000GO:001072heat shock protein bindingM0.000GO:0016857racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activityM0.000GO:0005506iron ion bindingM0.001GO:0005506iron ion bindingM0.001GO:0005506coenzy me bindingM0.001GO:0005062coenzy me bindingM0.001GO:0005062coenzy me bindingM0.001GO:0005055potassium ion bindingM0.001GO:0003924GTP ase activityM0.001GO:0003925potassium ion bindingM0.001GO:0003924GTP ase activityM0.001GO:0003925action transmembrane transporter activityM0.001GO:0003925acy1-CoA dehydrogenase activityM0.001GO:0003953acy1-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:000151molybdenum ion bindingM0.001GO:00047800cysteamine dioxy genase activityM0.001GO:00047800cysteamine dioxy genase activityM0.001GO:001520tetracycline-hydrogen antiporter activityM0.001GO:0005252GTP bindingM0.001GO:0005252GTP binding	GO:0016616	as acceptor	М	0.000
GO:0009055electron carrier activityM0.000GO:0031072heat shock protein bindingM0.000GO:00016857racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activityM0.000GO:0008506iron ion bindingM0.001GO:0005506iron ion bindingM0.001GO:0008831dTDP-4-dehydrorhamnose reductase activityM0.001GO:0006827A TPase activityM0.001GO:000662coenzy me bindingM0.001GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:0003925potasaium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0003924cation transmembrane transporter activityM0.001GO:0003925acyl-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:000511molybenum ion bindingM0.001GO:000512teracycline.hydrogen activityM0.001GO:00051388calcium-transporting ATPase activityM0.001GO:00047800cysteamine dioxy genase activityM0.001GO:00051520tetracycline.hydrogen antiporter activityM0.001GO:0005255GTP bindingM0.001GO:0005252GTP bindingM0.001GO:0005252GTP bindingM0.001GO:0005	GO:0004568	chitinase activity	М	0.000
GO:0031072heat shock protein bindingM0.000GO:0016857racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activityM0.000GO:0005506iron ion bindingM0.001GO:0008831dTDP-4-dehydrorhamnose reductase activityM0.001GO:0016887ATPase activityM0.001GO:0050662coenzyme bindingM0.001GO:0030652potassium ion bindingM0.001GO:0030955potassium ion bindingM0.001GO:0030924GTPase activityM0.001GO:0003244cation transmembrane transporter activityM0.001GO:0003955acy I-CoA dehydrogenase activityM0.001GO:0003995acy I-CoA dehydrogenase activityM0.001GO:00016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:001711molybdenum ion bindingM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0017800cysteamine dioxy genase activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:0005255GTP bindingM0.001GO:0005256tetracycline:hydrogen antiporter activityM0.001GO:0005255GTP bindingM0.001<	GO:0009055	electron carrier activity	М	0.000
GO:0016857racemase and epimerase activity, acting on carbohydrates and derivativesM0.000GO:0008233peptidase activityM0.001GO:0005506iron ion bindingM0.001GO:0008831dTDP-4-dehydrorhamnose reductase activityM0.001GO:0016887ATPase activityM0.001GO:0050662coenzyme bindingM0.001GO:004022alcohol dehydrogenase (NAD) activityM0.001GO:0030955potassium ion bindingM0.001GO:0030924GTPase activityM0.001GO:003224cation transmembrane transporter activityM0.001GO:000538calcium-transporting ATPase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:0017133sodium:dicarboxylate symporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:000528transcription regulator activityM0.001GO:003028transcription regulator activityM0.001GO:003028transcription regulator activityM0.001GO:003028transcription regulator	GO:0031072	heat shock protein binding	М	0.000
GO:008233peptidase activityM0.000GO:0005506iron ion bindingM0.001GO:0008831dTDP-4-dehydrorhamnose reductase activityM0.001GO:0016887ATPase activityM0.001GO:0050662coenzyme bindingM0.001GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:0030955potassium ion bindingM0.001GO:0030924GTPase activityM0.001GO:000324cation transmembrane transporter activityM0.001GO:0003955acyl-CoA dehydrogenase activityM0.001GO:003995acyl-CoA dehydrogenase activityM0.001GO:003995acyl-CoA dehydrogenase activityM0.001GO:0003988calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:001511molybdenum ion bindingM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:000528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528tr	GO:0016857	racemase and epimerase activity, acting on carbohydrates and derivatives	М	0.000
GO:0005506iron ion bindingM0.001GO:0008831dTDP-4-dehy drorhamnose reductase activityM0.001GO:0016887ATPase activityM0.001GO:0050662coenzyme bindingM0.001GO:0004022alcohol dehy drogenase (NAD) activityM0.001GO:0030955potassium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0003924cation transmembrane transporter activityM0.001GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acy1-CoA dehydrogenase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:003151molybdenum ion bindingM0.001GO:00047800cysteamine dioxy genase activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001	GO:0008233	peptidase activity	М	0.000
GO:0008831dTDP-4-dehydrorhamnose reductase activityM0,001GO:0016887ATPase activityM0,001GO:0050662coenzy me bindingM0,001GO:004022alcohol dehydrogenase (NAD) activityM0,001GO:0030955potassium ion bindingM0,001GO:0003924GTPase activityM0,001GO:000324cation transmembrane transporter activityM0,001GO:0017111nucleoside-triphosphatase activityM0,001GO:0003995acy1-CoA dehydrogenase activityM0,001GO:0003995acy1-CoA dehydrogenase activityM0,001GO:0016776phosphotransferase activity, phosphate group as acceptorM0,001GO:003151molybdenum ion bindingM0,001GO:0047800cysteamine dioxy genase activityM0,001GO:0015520tetracycline:hydrogen antiporter activityM0,001GO:0017153sodium:dicarboxylate symporter activityM0,001GO:005255GTP bindingM0,001GO:0030528transcription regulator activityM0,001GO:0030528transcription regulator activityM0,001GO:0030528transcription genution antiporter activityM0,001GO:0030528transcription genution activityM0,001GO:0030528transcription genution activityM0,001GO:0030528transcription genution activityM0,001GO:0030528	GO:0005506	iron ion binding	М	0.001
GO:0016887ATPase activityM0.001GO:0050662coenzy me bindingM0.001GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:003955potassium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0008324cation transmembrane transporter activityM0.001GO:0003955acyl-CoA dehydrogenase activityM0.001GO:0003995acyl-CoA dehydrogenase activityM0.001GO:0003995acyl-CoA dehydrogenase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:001511molybdenum ion bindingM0.001GO:0047800cysteamine dioxygenase activityM0.001GO:0015200tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0005285GTP bindingM0.001GO:0015206tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:003255GTP bindingM0.001GO:003256transcription regulator activityM0.001GO:00328transcription regulator activityM0.001GO:00328transcription regulator activityM0.001GO:00328transcription regulator activityM0.001GO:0030528transcription regulato	GO:0008831	dTDP-4-dehydrorhamnose reductase activity	М	0.001
GO:0050662coenzy me bindingM0.001GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:0030955potassium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0008324cation transmembrane transporter activityM0.001GO:0007111nucleoside-triphosphatase activityM0.001GO:0003995acy1-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:001511molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:001520tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0005255GTP bindingM0.001GO:003028transcription regulator activityM0.001GO:003028transcription regulator activityM0.001GO:003028transcription regulator activityM0.001GO:003160mathematicM0.001GO:00328transcription regulator activityM0.001GO:00328transcription regulator activityM0.001GO:00328transcription regulator activityM0.001	GO:0016887	ATPase activity	М	0.001
GO:0004022alcohol dehydrogenase (NAD) activityM0.001GO:0030955potassium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0008324cation transmembrane transporter activityM0.001GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acy1-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:001776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0005525GTP bindingM0.001GO:003028transcription regulator activityM0.001GO:003161molybden bindingM0.001GO:0030528transcription regulator activityM0.001	GO:0050662	coenzy me binding	М	0.001
GO:0030955potassium ion bindingM0.001GO:0003924GTPase activityM0.001GO:0008324cation transmembrane transporter activityM0.001GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acy1-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0005388calcium-transporting ATPase activity, phosphate group as acceptorM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:004842ubiquitin-protein ligase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:003169action bindingM0.001	GO:0004022	alcohol dehydrogenase (NAD) activity	М	0.001
GO:0003924GTPase activityM0.001GO:0008324cation transmembrane transporter activityM0.001GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acyI-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:004842ubiquitin-protein ligase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:005525GTP bindingM0.001GO:003528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001	GO:0030955	potassium ion binding	М	0.001
GO:0008324cation transmembrane transporter activityM0.001GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acyI-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:004842ubiquitin-protein ligase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:0030528action bindingM0.001GO:0030528transcription regulator activityM0.001	GO:0003924	GTPase activity	М	0.001
GO:0017111nucleoside-triphosphatase activityM0.001GO:0003995acy1-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:004842ubiquitin-protein ligase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:0005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001	GO:0008324	cation transmembrane transporter activity	М	0.001
GO:0003995acyl-CoA dehydrogenase activityM0.001GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:0047802ubiquitin-protein ligase activityM0.001GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:0005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:0030528transcription regulator activityM0.001	GO:0017111	nucleoside-triphosphatase activity	М	0.001
GO:0005388calcium-transporting ATPase activityM0.001GO:0016776phosphotransferase activity, phosphate group as acceptorM0.001GO:0030151molybdenum ion bindingM0.001GO:0047800cysteamine dioxy genase activityM0.001GO:0004842ubiquitin-protein ligase activityM0.001GO:0015520tetracy cline:hy drogen antiporter activityM0.001GO:0005525GTP bindingM0.001GO:0005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:003160action bindingM0.001	GO:0003995	acyl-CoA dehydrogenase activity	М	0.001
GO:0016776phosphotransferase activity, phosphate group as acceptorM0,001GO:0030151molybdenum ion bindingM0,001GO:0047800cysteamine dioxy genase activityM0,001GO:0004842ubiquitin-protein ligase activityM0,001GO:0015520tetracycline:hy drogen antiporter activityM0,001GO:0017153sodium:dicarboxylate symporter activityM0,001GO:0005525GTP bindingM0,001GO:0030528transcription regulator activityM0,001GO:003160action bindingM0,001	GO:0005388	calcium-transporting ATPase activity	М	0.001
GO:0030151molybdenum ion bindingM0,001GO:0047800cysteamine dioxy genase activityM0,001GO:0004842ubiquitin-protein ligase activityM0,001GO:0015520tetracycline:hydrogen antiporter activityM0,001GO:0017153sodium:dicarboxylate symporter activityM0,001GO:0005525GTP bindingM0,001GO:0030528transcription regulator activityM0,001GO:003160action bindingM0,001	GO:0016776	phosphotransferase activity, phosphate group as acceptor	М	0.001
GO:0047800cysteamine dioxy genase activityM0,001GO:004842ubiquitin-protein ligase activityM0,001GO:0015520tetracy cline:hy drogen antiporter activityM0,001GO:0017153sodium:dicarboxy late symporter activityM0,001GO:0005525GTP bindingM0,001GO:0030528transcription regulator activityM0,001GO:0030528action bindingM0,001	GO:0030151	molybdenum ion binding	М	0.001
GO:0004842ubiquitin-protein ligase activityM0,001GO:0015520tetracycline:hydrogen antiporter activityM0,001GO:0017153sodium:dicarboxylate symporter activityM0,001GO:0005525GTP bindingM0,001GO:0030528transcription regulator activityM0,001GO:0030528action bindingM0,001	GO:0047800	cysteamine dioxygenase activity	М	0.001
GO:0015520tetracycline:hydrogen antiporter activityM0.001GO:0017153sodium:dicarboxylate symporter activityM0.001GO:0005525GTP bindingM0.001GO:0030528transcription regulator activityM0.001GO:0030528action bindingM0.001	GO:0004842	ubiquitin-protein ligase activity	М	0.001
GO:0017153 sodium:dicarboxylate symporter activity M 0.001 GO:0005525 GTP binding M 0.001 GO:0030528 transcription regulator activity M 0.001 GO:0030528 transcription regulator activity M 0.001	GO:0015520	tetracycline:hydrogen antiporter activity	M	0.001
GO:0005525 GTP binding M 0.001 GO:0030528 transcription regulator activity M 0.001 CO:003140 action binding M 0.001	GO:0017153	sodium:dicarboxy late symporter activity	М	0.001
GO:0030528 transcription regulator activity M 0.001 GO:0042160 action binding M 0.001	GO:0005525	GTP binding	М	0.001
CO-00/2160 article binding AM CO-001	GO:0030528	transcription regulator activity	М	0.001
00.0045107 cation binding IVI ().001	GO:0043169	cation binding	М	0.001

Table 5-6	(continued)
-----------	-------------

GO ID	GO Name	Category	Hyper p value
GO:0003997	acyl-CoA oxidase activity	М	0.002
GO:0004579	dolichy l-diphosphooligosaccharide-protein gly cotransferase activity	М	0.002
GO:0030410	nicotianamine synthase activity	М	0.002
	oxidoreductase activity, acting on other nitrogenous compounds as donors, with		
GO:0046857	NAD or NADP as acceptor	М	0.002
GO:0004743	pyruvate kinase activity	М	0.002
GO:0030414	peptidase inhibitor activity	Μ	0.002
GO:0051082	unfolded protein binding	М	0.002
GO:0016769	transferase activity, transferring nitrogenous groups	М	0.002
	ATPase activity, coupled to transmembrane movement of ions, phosphorylative		
GO:0015662	mechanism	М	0.002
GO:0015085	calcium ion transmembrane transporter activity	М	0.003
GO:0016829	lyase activity	М	0.003
GO:0046873	metal ion transmembrane transporter activity	М	0.003
GO:0008667	2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase activity	М	0.003
GO:0008236	serine-type peptidase activity	М	0.003
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compounds	М	0.004
GO:0004364	glutathione transferase activity	М	0.004
GO:0005529	sugar binding	М	0.004
GO:0019201	nucleotide kinase activity	М	0.004
GO:0004221	ubiquitin thiolesterase activity	М	0.004
GO:0020037	heme binding	М	0.004
GO:0015079	potassium ion transmembrane transporter activity	М	0.005
GO:0048037	cofactor binding	М	0.005
GO:0008061	chitin binding	М	0.006
GO:0030170	pyridoxal phosphate binding	М	0.007
GO:0003854	3-beta-hydroxy-delta5-steroid dehydrogenase activity	М	0.007
GO:0008237	metallopeptidase activity	М	0.007
	oxidoreductase activity, acting on paired donors, with incorporation or reduction		
GO:0016705	of molecular oxy gen	М	0.007
GO:0016614	oxidoreductase activity, acting on CH-OH group of donors	М	0.007
GO:0051287	NAD or NADH binding	Μ	0.007
GO:0008312	7S RNA binding	М	0.007
GO:0019904	protein domain specific binding	М	0.007
GO:0008565	protein transporter activity	М	0.008

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed a significant interaction between treatment (control/ozone) and genotype (Nipponbare/SL41). A total of 6549 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

GO ID	GO Name	Category	Hyper p value
GO:0006468	protein amino acid phosphorylation	В	0.000
GO:0006564	L-serine biosynthetic process	В	0.000
GO:0006810	transport	В	0.000
GO:0006915	apoptosis	В	0.000
GO:0006952	defense response	В	0.000
GO:0009698	phenylpropanoid metabolic process	В	0.000
GO:0055114	oxidation reduction	В	0.000
GO:0006754	ATP biosynthetic process	В	0.000
GO:0006811	ion transport	В	0.000
GO:0008152	metabolic process	В	0.000
GO:0009765	photosynthesis, light harvesting	В	0.000
GO:0006350	transcription	В	0.000
GO:0006032	chitin catabolic process	В	0.001
GO:0006355	regulation of transcription, DNA-dependent	В	0.001
GO:0008652	cellular amino acid biosynthetic process	В	0.001
GO:0006559	L-phenylalanine catabolic process	В	0.001
GO:0000160	two-component signal transduction system (phosphorelay)	В	0.001
GO:0009738	abscisic acid mediated signaling pathway	В	0.002
GO:0046854	phosphoinositide phosphorylation	В	0.002
GO:0043687	post-translational protein modification	В	0.002
GO:0051246	regulation of protein metabolic process	В	0.002
GO:0045449	regulation of transcription	B	0.002
GO:0006950	response to stress	B	0.002
GO:0008643	carbohydrate transport	B	0.003
GO:0006544	glycine metabolic process	B	0.005
GO:0006812	cation transport	B	0.004
GO:0016020	membrane	C	0.00
GO:0000166	nucleotide binding	M	0.000
GO:0003824	catalytic activity	M	0.000
GO:0004672	protein kinase activity	M	0.000
GO:0004674	protein kinase activity	M	0.000
GO:0004713	protein tyrosine kinase activity	M	0.000
GO:0005488	hinding	M	0.000
GO:0005524	ATP hinding	M	0.000
GO:0016301	kinase activity	M	0.000
GO:0016491	ovidoreductase activity	M	0.000
GO:0016740	transferase activity	M	0.000
GO:0017111	nucleoside_trinhosnhatase activity	M	0.000
GO:001/111 GO:0030170	nucleosade-inprosphatase activity	M	0.000
GO:0046872	metal ion hinding	M	0.000
GO:0040872	transporter activity	M	0.000
60.0003213	A TPase activity coupled to transmembrane movement of ions.	111	0.000
GO:0015662	phosphorylative mechanism	М	0.000
GO:0016787	hydrolase activity	М	0.000
GO:0000287	magnesium ion binding	М	0.000
GO:0005506	iron ion binding	М	0.000
GO:0003700	sequence-specific DNA binding transcription factor activity	М	0.000
GO:0004568	chitinase activity	М	0.000
GO:0030145	manganese ion binding	М	0.000
GO:0004617	phosphoglycerate dehydrogenase activity	М	0.001
GO:0016211	ammonia ligase activity	M	0.001

Table 5-7: Enriched gene ontology (GO) terms from the genes down-regulated in SL46.

Table 5-7 (continued)

GO ID	GO Name	Category	Hyper p value
GO:0016841	ammonia-lyase activity	М	0.001
GO:0004693	cyclin-dependent protein kinase activity	М	0.001
GO:0008353	RNA polymerase II carboxy-terminal domain kinase activity	М	0.001
GO:0016791	phosphatase activity	М	0.001
GO:0016820	hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances	М	0.001
GO:0005515	protein binding	М	0.001
GO:0043565	sequence-specific DNA binding	М	0.002
	oxidoreductase activity, acting on the CH-OH group of donors, NAD or		
GO:0016616	NADP as acceptor	М	0.002
GO:0019787	small conjugating protein ligase activity	М	0.002
GO:0004428	inositol or phosphatidylinositol kinase activity	М	0.002
GO:0019904	protein domain specific binding	М	0.002
GO:0004872	receptor activity	М	0.002
GO:0016597	amino acid binding	М	0.003
GO:0016773	phosphotransferase activity, alcohol group as acceptor	М	0.004
GO:0005509	calcium ion binding	М	0.004
GO:0016874	ligase activity	М	0.004

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed significantly lower expression (according to raw *P* values) in SL46 compared with Nipponbare. A total of 4481 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

GO ID	GO Name	Category	Hyper p value
GO:0006412	translation	В	0.000
GO:0007018	microtubule-based movement	В	0.000
GO:0045449	regulation of transcription	В	0.000
GO:0006626	protein targeting to mitochondrion	В	0.001
GO:0045039	protein import into mitochondrial inner membrane	В	0.001
GO:0019953	sexual reproduction	В	0.002
GO:0005622	intracellular	С	0.000
GO:0005840	ribosome	С	0.000
GO:0030529	ribonucleoprotein complex	С	0.000
GO:0042719	mitochondrial intermembrane space protein transporter complex	С	0.001
GO:0005794	Golgi apparatus	С	0.004
GO:0005874	microtubule	С	0.008
GO:0000166	nucleotide binding	М	0.000
GO:0003735	structural constituent of ribosome	М	0.000
GO:0005524	ATP binding	М	0.000
GO:0016787	hydrolase activity	М	0.000
GO:0030528	transcription regulator activity	М	0.000
GO:0003777	microtubule motor activity	М	0.000
GO:0016740	transferase activity	М	0.000
GO:0016757	transferase activity, transferring glycosyl groups	М	0.001
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compounds	М	0.002
GO:0003774	motor activity	М	0.002
GO:0016301	kinase activity	М	0.002
GO:0005385	zinc ion transmembrane transporter activity	М	0.002
GO:0004031	aldehyde oxidase activity	М	0.003
GO:0016491	oxidoreductase activity	М	0.003
GO:0051537	2 iron, 2 sulfur cluster binding	М	0.003
GO:0017111	nucleoside-triphosphatase activity	М	0.003
GO:0005488	binding	М	0.004
GO:0008199	ferric iron binding	М	0.004
GO:0004347	glucose-6-phosphate isomerase activity	М	0.004
GO:0043169	cation binding	М	0.004
GO:0042626	ATPase activity, coupled to transmembrane movement of substances	М	0.005
GO:0046872	metal ion binding	М	0.006
GO:0046873	metal ion transmembrane transporter activity	М	0.006
GO:0005506	iron ion binding	Μ	0.006
GO:0008233	peptidase activity	М	0.006

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed significantly higher expression (according to raw *P* values) in SL46 compared with Nipponbare. A total of 1275 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

GO ID	GO Name	Category	Hyper p value
GO:0006468	protein amino acid phosphorylation	В	0.000
GO:0006915	apoptosis	В	0.000
GO:0006952	defense response	В	0.000
GO:0009698	phenylpropanoid metabolic process	В	0.000
GO:0006559	L-phenylalanine catabolic process	В	0.000
GO:0006887	exocytosis	В	0.000
GO:0008152	metabolic process	В	0.000
GO:0006810	transport	В	0.000
GO:0006094	gluconeogenesis	В	0.001
GO:0016998	cell wall macromolecule catabolic process	В	0.001
GO:0015746	citrate transport	В	0.001
GO:0006950	response to stress	В	0.001
GO:0055085	transmembrane transport	В	0.001
GO:0006096	glycolysis	В	0.002
GO:0050832	defense response to fungus	В	0.002
GO:0006334	nucleosome assembly	В	0.002
GO:0006829	zinc ion transport	В	0.003
GO:0009058	biosynthetic process	В	0.003
GO:0006563	L-serine metabolic process	В	0.003
GO:0016020	membrane	С	0.000
GO:0016021	integral to membrane	С	0.000
GO:0000145	exocyst	С	0.000
GO:0005874	microtubule	С	0.003
GO:0000786	nucleosome	С	0.005
GO:0000166	nucleotide binding	М	0.000
GO:0004672	protein kinase activity	М	0.000
GO:0004674	protein serine/threonine kinase activity	М	0.000
GO:0004713	protein tyrosine kinase activity	М	0.000
GO:0004872	receptor activity	М	0.000
GO:0005515	protein binding	М	0.000
GO:0005524	ATP binding	М	0.000
GO:0016301	kinase activity	M	0.000
GO:0017111	nucleoside-triphosphatase activity	М	0.000
GO:0003824	catalytic activity	М	0.000
GO:0016211	ammonia ligase activity	М	0.000
GO:0016841	ammonia-lyase activity	M	0.000
GO:0016887	ATPase activity	M	0.000
GO:0016874	ligase activity	М	0.000
GO:0046872	metal ion binding	М	0.000
GO:0015137	citrate transmembrane transporter activity	M	0.000
GO:0004347	glucose-6-phosphate isomerase activity	M	0.001
GO:0042626	ATPase activity, coupled to transmembrane movement of substances	М	0.001
GO:0030145	manganese ion binding	М	0.001
GO:0022891	substrate-specific transmembrane transporter activity	M	0.001
GO:0000287	magnesium ion binding	M	0.002
GO:0005215	transporter activity	M	0.002
GO:0016740	transferase activity	M	0.002
GO:0005385	zinc ion transmembrane transporter activity	M	0.003
GO:0005488	binding	М	0.003
	oxidoreductase activity, acting on paired donors, with incorporation or		0.005
GO:0016705	reduction of molecular oxygen	М	0.003

Table 5-9: Enriched gene ontology (GO) terms from the genes showing a significant interaction between genotype and treatment between Nipponbare and SL46.

Table 5-9 (continued)

GO ID	GO Name	Category	Hyper p value
GO:0004372	glycine hydroxymethyltransferase activity	М	0.004
GO:0016157	sucrose synthase activity	М	0.004
GO:0004568	chitinase activity	М	0.004
GO:0016491	oxidoreductase activity	М	0.004

Gene ontology (GO) enrichment analysis was conducted from a set of genes which showed a significant interaction between treatment (control/ozone) and genotype (Nipponbare/SL46). A total of 2629 probes were subjected to GO enrichment analysis using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of July 2014). The output raw Hyper *P* values were corrected to false discovery rate (FDR) according to Benjamini and Hochberg (1995), and FDR < 0.05 was considered as significant. Only over-represented GO terms are shown together with GO ID, category and Hyper *P* value. The category classification is as follows: B, biological process; C, cellular component; and M, molecular function.

References

- Alpuerto V-LEB, Norton GW, Alwang J, Ismail AM. 2009. Economic impact analysis of marker-assisted breeding for tolerance to salinity and phosphorous deficiency in rice. *Review of Agricultural Economics* 31, 779–792.
- Bandillo N, Raghavan C, Muyco PA, et al. 2013. Multi-parent advanced generation intercross (MAGIC) populations in rice: progress and potential for genetics research and breeding. *Rice* 6, 11.
- Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJB, Koornneef M, Alcázar R. 2013. *Arabidopsis* semidwarfs evolved from independent mutations in *GA20ox1*, ortholog to green revolution dwarf alleles in rice and barley. *Proceedings of the National Academy of Sciences of the United States of America* 110, 15818–15823.
- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B* (*Methodological*) 57, 289–300.
- **Booker FL, Burkey KO, Jones AM.** 2012. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of *Arabidopsis thaliana* L. *Plant, Cell and Environment* **35**, 1456–1466.
- Chen CP, Frei M, Wissuwa M. 2011. The *OzT8* locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. *Plant, Cell and Environment* 34, 1141–1149.
- **Chen W, Gao Y, Xie W**, *et al.* 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. *Nature genetics* **46**, 714–721.
- **Dayan J, Dawson CR.** 1976. Substrate specificity of ascorbate oxidase. *Biochemical and Biophysical Research Communications* **73**, 451–458.
- Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. *Atmospheric Environment* 43, 604–618.
- **El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM.** 2014. Genotype × environment interaction QTL mapping in plants: lessons from *Arabidopsis*. *Trends in plant science* **19**, 390-398.
- Evenson RE, Gollin D. 2003. Assessing the impact of the green revolution, 1960 to 2000. *Science* **300**, 758–762.
- Famoso AN, Zhao K, Clark RT, et al. 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS genetics 7, e1002221.
- Fiscus EL, Booker FL, Burkey KO. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. *Plant, Cell and Environment* 28, 997–1011.

- Foyer CH, Noctor G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. *Physiologia Plantarum* **119**, 355–364.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* **61**, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Gamuyao R, Chin JH, Pariasca-Tanaka J, *et al.* 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. *Nature* **488**, 535–539.
- Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in *Oryza sativa* L. *Genetics* 169, 1631–1638.
- Horemans N, Foyer CH, Potters G, Asard H. 2000. Ascorbate function and associated transport systems in plants. *Plant Physiology and Biochemistry* **38**, 531–540.
- Huang X, Kurata N, Wei X, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.
- Hunt KA. 2013. Functional characterization of the *Arabidopsis* Nucleobase-Ascorbate Transporter family (NAT) reveals distinct transport profiles and novel substrate specificity. 2013 IPFW Student Research and Creative Endeavor Symposium. Indiana University Purdue University Fort Wayne.
- Idänheimo N, Gauthier A, Salojärvi J, et al. 2014. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications 445, 457–462.
- Ismail AM, Singh US, Singh S, Dar MH, Mackill DJ. 2013. The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. *Field Crops Research* **152**, 83–93.
- Jiang C, Zeng Z-B. 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. *Genetics* 140, 1111–1127.
- Khush GS. 2001. Green revolution: the way forward. *Nature Reviews Genetics* 2, 815–822.
- Kovach MJ, Sweeney MT, McCouch SR. 2007. New insights into the history of rice domestication. *Trends in genetics* 23, 578–587.
- Kumagai M, Kim J, Itoh R, Itoh T. 2013. TASUKE: a web-based visualization program for large-scale resequencing data. *Bioinformatics* 29, 1806–1808.
- Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. *Annual review of plant physiology and plant molecular biology* **48**, 251–275.
- Linster CL, Clarke SG. 2008. L-ascorbate biosynthesis in higher plants: the role of VTC2. *Trends in plant science* 13, 567–573.

- Luwe MWF, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (*Spinacia oleracea* L.) leaves. *Plant Physiology* **101**, 969–976.
- Lyons TM, Barnes JD, Davison AW. 1997. Relationships between ozone resistance and climate in European populations of *Plantago major*. *New Phytologist* **136**, 503–510.
- Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. *Molecular Cell* 54, 263–272.
- Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge U-I. 2006. Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in *Arabidopsis thaliana*. *Plant and cell physiology* **47**, 1381–1393.
- Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. *Trends in plant science* 7, 405–410.
- Miyaji T, Kuromori T, Takeuchi Y, *et al.* 2015. AtPHP4;4 is a chloroplast-localized ascorbate transporter in *Arabidopsis*. *Nature communications* **6**, 5928.
- Moldau H. 1998. Hierarchy of ozone scavenging reactions in the plant cell wall. *Physiologia Plantarum* **104**, 617–622.
- Motte H, Vercauteren A, Depuydt S, *et al.* 2014. Combining linkage and association mapping identifies *RECEPTOR-LIKE PROTEIN KINASE1* as an essential *Arabidopsis* shoot regeneration gene. *Proceedings of the National Academy of Sciences of the United States of America* 111, 8305–8510.
- Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T. 2014. Biochemical characterization and structure–function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from *Arabidopsis thaliana*. *Biochimica et Biophysica Acta* 1838, 3025–3035.
- Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. *Plant and cell physiology* **53**, 1659–1668.
- Schwessinger B, Zipfel C. 2008. News from the frontline: recent insights into PAMPtriggered immunity in plants. *Current opinion in plant biology* **11**, 389–395.
- Service SK, Teslovich TM, Fuchsberger C, *et al.* 2014. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. *PLoS genetics* **10**, e1004147.
- Smirnoff N, Page M, Ishikawa T. 2013. Ascorbate and photosynthesis: how does Arabidopsis adjust leaf ascorbate concentration to light intensity? 11th International POG Conference (Reactive Oxygen and Nitrogen Species in Plants). Warsaw.
- Spielmeyer W, Ellis MH, Chandler PM. 2002. Semidwarf (*sd-1*), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 9043–9048.
- Sterken R, Kiekens R, Boruc J, *et al.* 2012. Combined linkage and association mapping reveals *CYCD5;1* as a quantitative trait gene for endoreduplication in *Arabidopsis*.

Proceedings of the National Academy of Sciences of the United States of America **109**, 4678–4683.

- Trujillo M, Shirasu K. 2010. Ubiquitination in plant immunity. Current opinion in plant biology 13, 402–408.
- Tsukahara K, Sawada H, Matsumura H, Kohno Y, Tamaoki M. 2013. Quantitative trait locus analyses of ozone-induced grain yield reduction in rice. *Environmental and Experimental Botany* 88, 100–106.
- Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T. 2013. Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. *Plant Physiology and Biochemistry* 70, 396–402.
- Vingarzan R. 2004. A review of surface ozone background levels and trends. *Atmospheric Environment* 38, 3431–3442.
- Wang Y, Yang L, Höller M, Zaisheng S, Pariasca-Tanaka J, Wissuwa M, Frei M. 2014. Pyramiding of ozone tolerance QTLs *OzT8* and *OzT9* confers improved tolerance to season-long ozone exposure in rice. *Environmental and Experimental Botany* 104, 26– 33.
- Weigel D, Mott R. 2009. The 1001 genomes project for Arabidopsis thaliana. Genome biology 10, 107.
- Wrzaczek M, Brosché M, Kollist H, Kangasjärvi J. 2009. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS. Proceedings of the National Academy of Sciences of the United States of America 106, 5412–5417.
- Wrzaczek M, Vainonen J, Stael S, *et al.* 2014. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in *Arabidopsis*. *The EMBO Journal* **34**, 55-66.
- Wu L-B, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. *Rice* 7, 8.
- **Zhang Y.** 2008. I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* **9**, 40.
- **Zhao K, Tung C-W, Eizenga GC**, *et al.* 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in *Oryza sativa*. *Nature communications* **2**, 467.

'Genetic and physiological factors of ozone tolerance in rice (*Oryza sativa* L.)'

Summary of the thesis

Introduction

Anthropogenic gas emission has led to a significant increase of tropospheric ozone. The ozone concentration in the troposphere has reached more than four times that the level of the beginning of the 20th century in some areas (Vingarzan, 2004; Yamaji *et al.*, 2006). Ozone has high reactivity and oxidation power, which cause severe damage to living organisms. It also adversely affects crop production and food supply. Global crop losses caused by elevated tropospheric ozone sums up to more than 10 billion USD annually (Van Dingenen *et al.*, 2009). The ozone concentration is predicted to increase further in the future in many parts of the world (Lei *et al.*, 2013). To cope with the food shortage caused by further growth of global population and shrinkage in the arable area, it is of paramount importance to get insight into the mechanisms of ozone tolerance and adapt crops to the elevated ozone concentration.

A very important crop contributing to the world food supply is rice (*Oryza sativa* L.). It is cultivated in more than 100 countries around the world and serves as a staple crop for more than half of the world's population, mainly in Asian countries (Maclean *et al.*, 2002). Currently the annual production of rice is 750 million t, which is the third among cereal crops next to wheat and maize (in 2013, FAO STAT, http://faostat3.fao.org/home/E, as of November 2014). However, rice is largely cultivated in areas where high tropospheric ozone is expected, thus suffering from severe damage (Fig. P1). For example, current-level ozone concentration in the troposphere is estimated to cause more than 15% of rice yield losses in some areas (Ainsworth, 2008). Hence, it is urgently needed to elucidate ozone tolerance mechanisms and enhance the stress tolerance in rice. Having been cultivated for more than 10,000 years in diverse geographical and climatic conditions (Kovach *et al.*,

2007), rice has rich genetic diversity, which is shown by an extremely large number of rice germplasm accessions in public seed banks (more than 100,000 types of rice; IRRI website, http://irri.org/our-work/research/genetic-diversity/international-rice-genebank, as of November 2014). Moreover, it is the first crop species of which complete genome sequence was determined due to the importance as a crop and relatively small genome size compared with other crop species (International Rice Genome Sequencing Project, 2005). Since then, rice has served as an ideal model crop for functional genomics.

Figure P1: Rice plants affected by elevated tropospheric ozone concentration. Visible symptoms are observed on the leaf blades. The photo was taken in Yangzhou, China, in September 2013.

Physiological and genetic studies have been conducted to date to unravel the complex mechanisms of ozone stress tolerance. In plants, ozone causes early senescence, cell death (Fig. P2), growth retardation and altered chemical composition (Fiscus *et al.*, 2005; Wang and Frei, 2011). The toxicity of ozone to plants is ascribed to its ability to produce harmful reactive oxygen species (ROS). Upon intake of ozone to plants through the stomata, ozone is rapidly degraded in the apoplast and produces ROS such as hydrogen peroxide, superoxide anion radical and hydroxyl radical. These ROS damage cells and induce further responses in plants (Kangasjärvi *et al.*, 2005).

Therefore it is important to detoxify the harmful and highly reactive ROS from the apoplast to avoid extensive damage to plants. Plants have an innate system to remove excessive ROS generated by adverse conditions. In this system, ascorbate (AsA) plays a crucial role to accept excessive electron from ROS (Foyer and Halliwell, 1976; Asada, 1999). The apoplast also contains a relatively large amount of AsA (approximately 10% of the total content; Horemans et al., 2000). The apoplastic AsA is considered to react with incoming ozone and serve as the first line of defence against ozone. Previous studies using several approaches illustrated the involvement of apoplastic AsA in ozone tolerance in crop species (Luwe et al., 1993; Turcsányi et al., 2000; Sanmartin et al., 2003; Feng et al., 2010). Through these studies, it was shown that higher apoplastic AsA content is favourable in coping with ozone stress, which is presumably due to a higher capacity to detoxify ozone in the apoplast before it leads to damage. However, in the case of rice, the technique to extract intercellular washing fluid (IWF) (containing apoplastic solutes) was developed only recently due to small stomata size and the hydrophobic layer on the leaf surface (Nouchi et al., 2012). Furthermore, the AsA measurement is quite laborious and requires large amount of samples. This is specifically a hurdle for AsA measurement of IWF since the volume of samples is quite limited. Time-consuming processes of AsA measurement also hindered the measurement of AsA from large numbers of samples due to instability of AsA. Therefore, few studies have attempted to prove the significance of apoplastic AsA under ozone stress in rice.

Figure P2: Necrotic leaf symptoms on a rice leaf (left), chlorotic leaf symptoms and bleaching on a tomato leaf (middle) and a healthy tomato leaf (right).

Forward-genetic approaches have also been used to identify the mechanisms of ozone tolerance. In rice, Frei et al. (2008) conducted a QTL mapping under chronic ozone stress using a bi-parental population. This mapping study identified and validated three QTLs for formation of leaf visible symptoms and biomass production. In a following detailed study, Frei et al. (2010) suggested a candidate gene conferring ozone stress tolerance in rice, *i.e.* a putative ascorbate oxidase (AO) gene (RAP ID: Os09g0365900). This putative AO gene (named OZONE-RESPONSIVE APOPLASTIC PROTEINI; OsORAP1) was located in the proximity of the identified QTL OzT9, which affected the visible symptoms under ozone stress. Moreover, a chromosomal segment substitution line SL41 (containing OzT9 allele from the tolerant Kasalath cultivar in the background cultivar Nipponbare) showed significantly lower expression level of OsORAP1. Considering lower visible symptoms in SL41, it was hypothesized that the expression level of OsORAP1 determined the extent of leaf visible symptom by altering apoplastic AsA content and redox status. AO is considered as a 'mysterious enzyme' which has puzzled researchers for a long time (Dowdle et al., 2007). The reason is that it oxidizes reduced AsA in the apoplast, which is crucial to detoxify excessive ROS in the apoplast. Therefore this reaction seems 'wasteful', considering the physiological importance of reduced AsA as discussed above. Furthermore, the physiological significance of AO family proteins under stress conditions still remained enigmatic.

While the mapping study by Frei *et al.* (2008) successfully identified several QTLs related to ozone stress tolerance, the following questions remained: (i) Are there novel loci affecting ozone stress tolerance?; (ii) Are ozone-related traits other than symptom formation and biomass production also genetically regulated?; and (iii) What are the responsible genetic factors? A key to answer these questions is to conduct a genome-wide association mapping study (GWAS), a technique which was recently established in rice. In GWAS, independent cultivars (usually several dozens to several hundreds) serve as the mapping population. Genetic markers (usually single-nucleotide polymorphism (SNP) markers) are then combined with phenotypic value of each cultivar, through which significant markers can be identified. GWAS has several advantages over the classical bi-parental QTL studies such as exploitation of larger genetic diversity and higher resolution of mapping (Han and Huang, 2013).

In this thesis, the following questions were addressed:

(I) How can we overcome the difficulties in measuring apoplastic AsA in rice leaves? Which method is the most appropriate and enables high-throughput analysis?;

(II) How is the candidate gene, putative AO, involved in ozone stress tolerance in rice? What is the physiological function of the putative AO under ozone stress?;

and

(III) Are there novel genetic loci affecting ozone stress tolerance? How does GWAS perform under ozone stress in rice? Can we identify candidate genes?

Materials and Methods

(I) Comparison of two AsA measurement methods

Two previously reported AsA measurement methods, namely a dipyridyl (DPD)-based method (Stevens *et al.*, 2006; Gillespie and Ainsworth, 2007) and an AO-based method (Takahama and Oniki, 1992; Queval and Noctor, 2007) were adjusted to microplate-scale and compared regarding their detection limit, effect of interfering substance and accuracy. The DPD method was based on the reduction of Fe³⁺ to Fe²⁺ by reduced AsA under acidic conditions. Fe²⁺ further reacted with DPD and formed red colour deriving from Fe²⁺-DPD chelate. The quantification was based on a standard curve made with a standard AsA series. In the AO method, direct absorption of reduced AsA (at the wavelength of 265 nm) was monitored and used for the quantification ($\varepsilon = 14.3 \text{ mM}^{-1} \text{ cm}^{-1}$). The absorption of sample AsA solution was read before and after addition of AO or dithiothreitol (DTT). AO led to the decrease of the absorption, while DTT increased the absorption, since only reduced AsA has absorption at 265 nm. The content of reduced AsA and dehydroascorbate (DHA) was determined from the absorption shift after the addition of AO/DTT.

Rice shoots and red cabbage (for the assessment of interfering pigments) were used as sample materials. AsA was extracted from the samples using four different extraction solvents (6% (w/v) metaphosphoric acid, 6% (w/v) trichloroacetic acid, 0.2 N HCl and deionized water) and AsA was quantified by both the DPD and the AO method. For the iron inhibition assay, rice shoots stressed with 300 ppm FeSO₄ was used for the sample. For the assay of apoplastic AsA, IWF was obtained from rice leaves by the infiltration-centrifugation method (Nouchi *et al.*, 2012) and used for the assay.

(II) Characterization of a rice putative AO gene

The above-mentioned putative AO gene (OsORAP1) was characterized through a reverse-genetic approach. An over-expression line (OE) and a knock-out rice line (KO) were obtained from the Crop Biotech Institute, Kyung Hee University (South Korea). These original seeds were grown and subjected to genotyping using gene-specific primers and a vector primer. Seeds from homozygous plants were used for all the analyses. These homozygous transgenic plants were grown together with the wildtype Dongjin in standard Yoshida hydroponic culture system (Yoshida et al., 1976) in a greenhouse in Bonn. Ozone fumigation was initiated around 3 weeks after the transplanting at the average concentration of 120 ppb for 7 h per day and lasted for 20 days to give chronic stress. Custom-made ozone generators and self-made open-top chambers (Fig. P3A) were used for the experiment. Ozone was blown into perforated plastic tubes with a fan, enabling even distribution of ozone in the chamber. Two independent chambers were prepared both for control and ozone treatments. Growth phenotype (shoot fresh weight and tiller number), leaf visible symptoms as represented by 'leaf bronzing score (LBS)' (Wissuwa et al., 2006), gene expression analysis and other biochemical assays were conducted.

Agrobacterium-mediated transformation of *Arabidopsis (Arabidopsis thaliana)* and *Nicotiana benthamiana* plants were conducted via gateway cloning system (Curtis and Grossniklaus, 2003) as follows. The coding sequence of *OsORAP1* was cloned into pMDC83 and pMDC32, yielding a fusion protein of OsORAP1-GFP and the original OsORAP1 protein, respectively, under the regulation of cauliflower mosaic virus 35S promoter. OsORAP1-GFP was transiently expressed in *N. benthamiana* epidermal cells by the agroinfiltration method (Shah *et al.*, 2013) and subjected to confocal microscopy after 5 days. Native OsORAP1 protein was introduced into an *Arabidopsis* homozygous AO knock-out line by floral-dip transformation (Clough and Bent, 1998) for complementation analysis. Phylogenetic and sequence analyses were conducted using MEGA5 software (Tamura *et al.*, 2011).

Figure P3: Two different ozone fumigation systems used in the study. (A) Small scale open-top chamber used in the greenhouse in Bonn. The size was typically $1.0 \times 1.3 \times 1.3 \text{ m}$ (width, length and height). (B) Large scale open-top chamber used in the association mapping in Rheinbach. The size was $2.0 \times 6.0 \times 1.3 \text{ m}$ (width, length and height).

(III) Genome-wide association study for ozone stress tolerance in rice

A mapping population consisting of 328 rice accessions from 77 countries was obtained from the International Rice Research Institute (IRRI, Los Baños, The Philippines). The experiment was conducted in Campus Klein-Altendorf of University of Bonn (Rheinbach, Germany). The plants were transplanted into soil and supplied with basic fertilizers (N, P and K) in six different ponds (2 x 6 m), each containing all 328 lines. Three of them were randomly assigned to the ozone treatment, while the other three were subjected to control conditions. Open-top chambers (Fig. P3B) were constructed around each pond, including control chambers to ensure similar microclimate. Ozone was generated with custom-made ozone generators and blown into perforated plastic tubes with a fan. Ozone treatment lasted for 7 h every day (from 9 AM to 4 PM) at a target ozone concentration of 60 ppb. The actually measured ozone concentration in the treatment was 63 ppb, while that of control chambers was 12 ppb. Acute ozone stress (150 ppb, 7 h) was introduced three times during the season. LBS and chlorophyll content (SPAD value) were measured on the 12th week from the transplanting, and all growth traits and lignin content were measured during or after the harvesting in the 21st week. The panicle and shoot samples were dried and the weight was determined. Panicle number and thousand kernel weight were also measured. Lignin content was determined using the thioglycolic acid method from the third fully expanded leaves from the top (Suzuki et al., 2009).

Phenotypic values were loaded into TASSEL 3.0 (Bradbury *et al.*, 2007), together with previously reported > 30,000 SNP markers for the population (Zhao *et al.*, 2011). A mixed linear model was used to eliminate confounding effects due to population structure and obtain more reliable mapping results. Linkage disequilibrium (LD) blocks were determined using Haploview 4.2 (Barret *et al.*, 2005). Genomic sequence data were obtained either from a public comparative rice genome database (TASUKE genome browser; Kumagai *et al.*, 2013) or the author's own sequencing experiment.

Results and Discussion

(I) Comparison of two AsA measurement methods

Among various extraction solvents, 6% metaphosphoric acid was superior to other solvents in terms of preventing AsA oxidation during storage. When the two analysis methods were compared, the DPD method showed higher accuracy as assessed by higher recovery rate of standard AsA. However, the AO method had lower detection limit (*i.e.* higher sensitivity) than the DPD method. The AO method was more robust when interfering substances (*e.g.* excessive iron or red pigment) existed in the samples. As mentioned above, the AsA content in the apoplast is extremely low and the detection limit is often critical. In this study, reduced AsA was not detected by the DPD method, but the AO method successfully detected it. Therefore it was shown that both the DPD method and the AO method have advantages and disadvantages depending on conditions. Particularly, the AO method turned out to be more suitable for the analysis of apoplastic AsA.

(II) Characterization of a rice putative AO gene

Phylogenetic analysis showed that OsORAP1 was in the same clade as previously reported *Arabidopsis* AO proteins and contained a crucial protein motif possibly determining the activity. However, OsORAP1 was classified into different subclades from proteins of which the presence of AO activity was previously demonstrated. A complementation analysis did not show the existence of AO activity in OsORAP1. A localization study using OsORAP1-GFP fusion protein and *in silico* analysis demonstrated that OsORAP1 was localized in the apoplast. Taken together, it was

concluded that OsORAP1 is an apoplastic enzyme which is classified into a novel class of AO protein with unknown function.

OsORAP1 expression was strongly induced under ozone stress. Complete absence of the expression in KO and enhanced expression in OE were also confirmed (Fig. P4). KO showed significantly lowered leaf visible symptoms than WT and OE under ozone stress. KO accumulated significantly lower amounts of lipid peroxidation products, which is used as an oxidative stress marker. However, the content of chlorophyll, which reflects the overall stress level in the whole leaf, did not show significant differences between the lines. Moreover, the apoplastic AsA content and redox status did not significantly differ between the lines. These observations suggested that OsORAP1 is involved in the formation of leaf visible symptoms (*i.e.* cell death formation) rather than attenuation of overall stress level to the plant. This notion was further supported by the expression levels of phytohormone-related genes. Two of jasmonic acid (JA) marker genes, *OsJAZ8* and *OsJAmyb*, showed increased expression levels in KO than WT. JA has been reported to help containment of ozone-induced lesion. Therefore it is likely that OsORAP1 is involved in leaf visible symptoms partly in co-regulation with phytohormones.

Figure P4: Expression levels of *OsORAP1* under control and ozone stress condition in three lines used in the study. Plants were treated with 150 ppb ozone for 10 days, and RT-PCR was conducted using gene-specific primers (OsORAP1-F1/R1). The electrophoresed band of *OsORAP1* is shown with the band of a house-keeping gene (*U2 snRNP*).

Sequence comparison of the *OsORAP1* locus between the susceptible Nipponbare and the tolerant Kasalath cultivars, which served as parental lines for the previous QTL mapping study (Frei *et al.*, 2008), revealed extensive polymorphisms in the promoter region. As discussed above, the expression levels of *OsORAP1* was associated with the extent of leaf visible symptoms. The observed polymorphisms could be responsible for the determination of transcript levels of *OsORAP1*, thus affecting the formation of

symptoms under ozone stress (Frei *et al.*, 2010). Furthermore, tolerant SL41 carried Kasalath allele of *OsORAP1*, which further implied the involvement of OsORAP1 in the mitigation of leaf visible symptoms under ozone stress in SL41.

In conclusion, OsORAP1 was shown to positively affect the leaf visible symptom formation. Higher ozone stress tolerance in SL41 might be partly ascribed to different promoter sequence at *OsORAP1* locus compared with Nipponbare.

(III) Genome-wide association study for ozone stress tolerance in rice

Season-long ozone treatment significantly affected all growth/yield traits (plant height, tiller number, dry weight, thousand kernel weight, total panicle weight and single panicle weight). Significant decreases in chlorophyll content (SPAD value) and significant increase in lignin content were observed, which is consistent with previous reports (Shi *et al.*, 2009; Frei *et al.*, 2011; Ainsworth *et al.*, 2014). LBS ranged from 0 to 5.7. Subpopulation analysis revealed that LBS was significantly lower in *indica* and *temperate japonica*.

The subsequent association mapping yielded a total of 16 significant (P < 0.0001) SNP markers for the above traits. An LD block containing significant SNP marker(s) was defined as a candidate locus. The candidate loci from the 16 SNP markers contained 195 genes. Among the traits analysed, a detailed sequence analysis was conducted for candidate genes for LBS due to high genetic heritability and significance. Two genes were chosen for further characterization based on their possible involvement in ethylene signalling and the cell death cycle. One of them, an ethylene-responsive element binding protein (EREBP) contained eight sequence polymorphisms. However, only one polymorphism in an intron showed strong LD with the detected markers. On the other hand, the other candidate gene, a really interesting new gene (RING), contained 12 polymorphisms. Overall LD with the detected markers was higher in RING, and especially, two amino acid mutations in the RING motif (zinc binding domain) showed strong linkage with the detected markers. Therefore, it is highly plausible that RING could determine the formation of leaf visible formation under ozone stress in rice, although the involvement of other genes cannot be ruled out. This is supported by the function of an Arabidopsis RING homologue, which is involved in signal transduction upon pathogen infection (Lin et al., 2008). Identification of other pathogen-related genes (β-1,3-glucanase and chitinase) on other loci detected for LBS

further supported the similarity between ozone stress and pathogen infection, as demonstrated previously (Ernst *et al.*, 1992; Rao *et al.*, 2000).

Curation of top 50 SNPs (*i.e.* SNPs with the 50 lowest P values) from all traits elucidated co-localization of the identified loci. This approach demonstrated pleiotropy of some identified loci. It was also observed that the flowering time (*i.e.* the days before flowering) and relative yield showed significant negative correlation. This raises the possibility that the longer the plant is exposed to ozone before flowering, the more yields are affected. All these results provide useful information for the improvement of crops to cope with elevated ozone concentration in the future.

References

- Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. *Global Change Biology* 14, 1642–1650.
- Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. 2014. Using leaf optical properties to detect ozone effects on foliar biochemistry. *Photosynthesis research* 119, 65–76.
- Asada K. 1999. The water-water cycle in chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. *Annual review of plant physiology and plant molecular biology* 50, 601–639.
- **Barrett JC, Fry B, Maller J, Daly MJ.** 2005. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* **21**, 263–265.
- Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* 23, 2633–2635.
- **Clough SJ, Bent AF**. 1998. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735–743.
- Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for high-throughput functional analysis of genes in planta. *Plant Physiology* **133**, 462–469.
- Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. *Atmospheric Environment* 43, 604–618.
- **Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N.** 2007. Two genes in *Arabidopsis thaliana* encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. *The Plant Journal* **52**, 673–689.
- Ernst D, Schraudner M, Langebartels C, Sandermann H. 1992. Ozone-induced changes of mRNA levels of beta-1,3-glucanase, chitinase and 'pathogenesis-related' protein 1b in tobacco plants. *Plant molecular biology* 20, 673–682.
- Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J. 2010. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. *Environmental Pollution* **158**, 3539–3545.
- Fiscus EL, Booker FL, Burkey KO. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. *Plant, Cell and Environment* 28, 997–1011.
- Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. *Planta* 133, 21–25.
- Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker K. 2011. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. *Global Change Biology* 17, 2319–2329.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* **61**, 1405–1417.
- Frei M, Tanaka JP, Wissuwa M. 2008. Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. *Journal of Experimental Botany* 59, 3741–3752.
- Gillespie KM, Ainsworth EA. 2007. Measurement of reduced, oxidized and total ascorbate content in plants. *Nature protocols* **2**, 871–874.
- Han B, Huang X. 2013. Sequencing-based genome-wide association study in rice. *Current opinion in plant biology* 16, 133–138.
- Horemans N, Foyer CH, Potters G, Asard H. 2000. Ascorbate function and associated transport systems in plants. *Plant Physiology and Biochemistry* **38**, 531–540.
- International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. *Nature* **436**, 793–800.
- Kangasjärvi J, Jaspers P, Kollist H. 2005. Signalling and cell death in ozone-exposed plants. *Plant, Cell and Environment* 28, 1021–1036.
- Kato N, Esaka M. 1996. cDNA cloning and gene expession of ascorbate oxidase in tobacco. *Plant molecular biology* **30**, 833–837.
- Kovach MJ, Sweeney MT, McCouch SR. 2007. New insights into the history of rice domestication. *Trends in genetics* 23, 578–587.
- Kumagai M, Kim J, Itoh R, Itoh T. 2013. TASUKE: a web-based visualization program for large-scale resequencing data. *Bioinformatics* 29, 1806–1808.

- Lei H, Wuebbles DJ, Liang X-Z, Olsen S. 2013. Domestic versus international contributions on 2050 ozone air quality: How much is convertible by regional control? *Atmospheric Environment* 68, 315–325.
- Lin S-S, Martin R, Mongrand S, Vandenabeele S, Chen K-C, Jang I-C, Chua N-H. 2008. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. *The Plant Journal* **56**, 550–561.
- Luwe MWF, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (*Spinacia oleracea* L.) leaves. *Plant Physiology* **101**, 969–976.
- Maclean JL, Dawe DC, Hardy B, Hettel GP. 2002. *Rice almanac*. 3rd Edition. Wallingford: CABI publishing.
- Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. *Plant and cell physiology* **53**, 1659–1668.
- Queval G, Noctor G. 2007. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during *Arabidopsis* rosette development. *Analytical Biochemistry* **363**, 58–69.
- **Rao MV, Koch JR, Davis KR.** 2000. Ozone: a tool for probing programmed cell death in plants. *Plant molecular biology* **44**, 345–358.
- Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK. 2003. Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. *Planta* **216**, 918–928.
- Shah KH, Almaghrabi B, Bohlmann H. 2013. Comparison of expression vectors for transient expression of recombinant proteins in plants. *Plant Molecular Biology Reporter* 31, 1529–1538.
- Shi G, Yang L, Wang Y, et al. 2009. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, Ecosystems and Environment 131, 178–184.
- Stevens R, Buret M, Garchery C, Carretero Y, Causse M. 2006. Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. *Journal of agricultural and food chemistry* 54, 6159–6165.
- Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T. 2009. Highthroughput determination of thioglycolic acid lignin from rice. *Plant Biotechnology* 26, 337–340.
- Takahama U, Oniki T. 1992. Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. *Plant and cell physiology* **33**, 379–387.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary

distance, and maximum parsimony methods. *Molecular Biology and Evolution* **28**, 2731–2739.

- **Turcsányi E, Lyons T, Plöchl M, Barnes J.** 2000. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (*Vicia faba L.*). *Journal of Experimental Botany* **51**, 901–910.
- Vingarzan R. 2004. A review of surface ozone background levels and trends. *Atmospheric Environment* 38, 3431–3442.
- Wissuwa M, Ismail AM, Yanagihara S. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. *Plant Physiology* **142**, 731–741.
- Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa J, Akimoto H. 2006. Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan? *Atmospheric Environment* 40, 1856–1868.
- Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. *Laboratory Manual for Physiological Studies of Rice*. The International Rice Research Institute. Manila, The Philippines.
- Wang Y, Frei M. 2011. Stressed food The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems and Environment 141, 271–286.
- **Zhao K, Tung C-W, Eizenga GC**, *et al.* 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in *Oryza sativa*. *Nature communications* **2**, 467.

Supplementary data

Chapter 3

Supplementary Protocol S1: Vector construction
Supplementary Protocol S2: Measurement of enzyme activity 174
Supplementary Figure S1: Gene model of OsORAP1
Supplementary Figure S2: Expression of OsORAP1 and MDA content from the
Experiment 2
Supplementary Figure S3: Phylogenetic analysis of clade III from 14 different plant
species
Supplementary Figure S4: Multiple alignment of ascorbate oxidase (AO) and AO-like
proteins from Arabidopsis and rice
Supplementary Figure S5: Transient expression of OsORAP1 in Nicotiana
benthamiana plant
Supplementary Figure S6: Plant shape of three lines
Supplementary Figure S7: Growth parameters of three lines
Supplementary Figure S8: Leaf dry weight per area in three lines
Supplementary Figure S9: Ascorbate oxidase (AO) activity in the apoplast 185
Supplementary Figure S10: Ascorbate content and redox status of whole tissue extract.
Supplementary Figure S11: Polyphenol oxidase activity
Supplementary Figure S12: Expression levels of phytohormone-related genes 188
Supplementary Figure S13: Multiple alignment of OsORAP1 locus from four different
rice lines
Supplementary Figure S14: Multiple alignment of OsORAP1 protein from four
different rice lines
Supplementary Figure S15: Expression pattern of OsORAP1 in root tissues
Supplementary Figure S16: Expression of OsORAP1 during seed imbibition 197

Supplementary Table S1: Primers used for the study	198
Supplementary Table S2: Expression profile of Arabidopsis AO homologues under	
several conditions.	199
Supplementary Table S3: Cis-elements found only in Nipponbare.	200
Supplementary Table S4: Cis-elements found both in Nipponbare and Kasalath	202
Supplementary Table S5: Cis-elements found only in Kasalath	206
Supplementary Table S6: Expression profile of OsORAP1 and Os06g0567900 under	er
several conditions.	208
Supplementary Table S7: Seed germination test of an OsORAP1 knock-out line in	
Tainung 67 genetic background	208

Chapter 4

Supplementary Figure S17: Subpopulation comparison of all phenotypes 209
Supplementary Figure S18: Association mapping result for relative plant height 211
Supplementary Figure S19: Association mapping result for relative tiller number 212
Supplementary Figure S20: Association mapping result for relative thousand kernel
weight (TKW)
Supplementary Figure S21: Association mapping result for relative total panicle
weight (TPW)
Supplementary Figure S22: Association mapping result for relative SPAD value 215
Supplementary Figure S23: Association mapping result for constitutive lignin content.
Supplementary Figure S24: Association mapping result for relative lignin content. 217
Supplementary Figure S25: Sequence variation of <i>EREBP</i> gene
Supplementary Figure S26: Association mapping result in each subpopulation for
square-root transformed leaf bronzing score (t-LBS)
Supplementary Figure S27: Sequence variation of RING gene
Supplementary Table S8: All the accessions and phenotypic data used for the mapping

Supplementary	able 56. All the accessions and phenoty	pie data used for the mapping.
Supplementary 7	Cable S9: Correlation matrix in each subr	population

Supplementary Table S10: List of significant SNPs identified through association	
mapping	. 233
Supplementary Table S11: List of the top 50 SNPs from each trait	. 234
Supplementary Table S12: List of genes located within the identified candidate loc	ei for
all phenotypes	. 242
Supplementary Table S13: Heritability of each trait.	. 245

Chapter 5

Supplementary Protocol S3: Gene ontology (GO) enrichment analysis of microarray	
latasets	46

Supplementary data for Chapter 3

Supplementary Protocol S1

Vector construction

The coding sequence of the putative rice AO gene (Os09g0365900; OsORAP1) was amplified through the following strategy. First, a partial fragment beginning from the start codon (fragment 1, 890 bp) of the sequence was obtained by PCR using Nipponbare (a *japonica* cultivar) cDNA as a template with the following thermal condition: 98 °C 2 min, 33 cycles of 98 °C 15 sec, 58 °C 30 sec and 72 °C 30 sec, followed by extra 3 min of 72 °C extension. The reaction mixture consisted of 4 µL of 5x Phusion HF buffer (Thermo Fisher Scientific, Waltham, MA), 0.4 µL of each primer (10 µM), 1 µL of dimethyl sulfoxide (DMSO), 0.4 µL of dNTP (10 mM), 0.2 µL of Phusion DNA polymerase (Thermo Fisher Scientific), 12 µL of nuclease-free water and 2 µL of cDNA. The other partial sequence (fragment 2, 1124 bp) was obtained using Nipponbare genomic DNA as a template for PCR since this fragment did not contain an intron region. The PCR thermal condition was the following: 95 °C 2 min, 33 cycles of 95 °C 30 sec, 55 °C 30 sec and 72 °C 75 sec, followed by extra 5 min of 72 °C extension. The reaction mixture consisted of 15 µL of 2x GoTag Green Master Mix (Promega, Mannheim, Germany), 0.6 µL of each primer (10 µM), 1.5 µL of DMSO, 10.3 µL of nuclease-free water, and 2 µL of template DNA. In both cases, DMSO was added at a final concentration of 5% (v/v) to facilitate the amplification of high GC region contained in OsORAP1 (71% overall GC content, 81% partial GC content in 212 bp repeat region) (Varadaraj and Skinner, 1994). The fragments were purified using a GenElute Gel Extraction Kit (Sigma, St. Louis, MO) after agarose gel electrophoresis with minimum exposure to UV light. The primers were created so that the two fragments had 29 bp overlap. The primer sequences were the following; 5'-CTA GCT ACC AAA GCA TAA CAA GCT C-3' (forward) and 5'-GTA GAT GTT GAG GTT CTT CAC CAC-3' (reverse) for the fragment 1, and 5'-CGT TCG TGG TGA AGA ACC TC-3' (forward) and 5'-GCA AAT TAC ACA CCA TAG TGT GG-3' (reverse) for the fragment 2. Next, a fusion-PCR was conducted using the two fragments obtained above using a pair of nested primers following the protocol of Szewczyk et al. (2006) with the following reaction setup: 0.5 µL of each eluted DNA

fragment, 5 µL of 2x GoTaq Green Master Mix, 0.4 µL of each primer (10 µM), 0.5 µL of DMSO, and 2.2 µL of nuclease-free water. The thermal condition was the following: 95 °C 2 min, 25 cycles of 95 °C 20 sec, 70 °C 1 sec, 0.1 °C/sec down to 54 °C, 54 °C 30 sec, 0.2 °C/sec up to 72 °C, and 72 °C for extension. The extension time was 2 min constant till cycle 10, and was extended 5 sec for each cycle till cycle 25 (*i.e.* 3 min 15 sec at cycle 25) to compensate for the loss of the extension activity of *Taq* enzyme in the later phase of the PCR reaction. The primer sequences were 5'-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTG CAT GAT GCG GTG TAG CGA CCG-3' (forward) and 5'-<u>GGG GAC CAC TTT GTA CAA AAA AGC TTT GTA CAA AAGC TTT GTA CAA GAA AGC TGG GTC GTG GCC GCC CCT GGT TTT G-3' (reverse). The resultant fragment (*attB-OsORAP1*, 1791 bp) was cut out from an agarose gel after electrophoresis and purified. The underlined sequences are the *attB* tags necessary for the following BP reaction.</u>

The attB-OsORAP1 fragment was introduced into pDONR207 by BP reaction. An aliquot of 2 µL of the attB-OsORAP1 fragment after gel purification was mixed with 260 ng of pDONR207 (carrying anti-gentamicin gene) and 1 µL of BP clonase (Thermo Fisher Scientific), and TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0) was added to make a final volume of 5 μ L. The reaction mixture was incubated at room temperature for 6 h yielding an entry vector pENTR207-OsORAP1, and 1 µL of proteinase K was added to stop the reaction. The transformation of E. coli strain DH5a was conducted according to the following procedure: an aliquot of 2 µL of the BP reaction solution was added to 100 µL of E. coli competent cells and incubated for 30 min on ice. The mixture was heat-shocked for 30 sec at 42 °C, immediately transferred on ice, and 450 µL of SOC medium was added. The mixture was incubated for 1 h at 37 °C with gentle shaking, and the resultant culture was plated on an LB plate containing 10 µg/mL of gentamicin. The colony was grown overnight, and a single colony was picked and used for cell culture (in LB medium containing gentamicin) and a colony PCR for insertion check. The plasmid was extracted from 5 mL of cell culture using a plasmid extraction kit (GenElute Plasmid Miniprep Kit, Sigma). LR reaction was conducted to introduce OsORAP1 to the destination vector pMDC83 and pMDC32. pMDC83 contains C-terminal GFP fusion protein under the target protein driven by 2x 35S promoter. pMDC32 contains 2x 35S promoter and it expresses the native protein of the target gene (Curtis and Grossniklaus, 2003). The reaction mixture consisted of 170 ng of pENTR207-OsORAP1, 300 ng of destination vector (pMDC83

or pMDC32) and 1 μ L of LR clonase (Thermo Fisher Scientific), and TE buffer (pH 8.0) was added up to 5 μ L. The mixture was incubated at room temperature for 6 h yielding the vector pMDC83-OsORAP1 and pMDC32-OsORAP1, and 1 μ L of proteinase K was added to stop the reaction. The transformation of *E. coli* strain DH5 α was conducted as described above except for that LB plates contained 50 μ g/mL of kanamycin. The insertion was checked by a colony PCR. The two vectors were verified by sequencing, and complete match to the original *OsORAP1* sequence was confirmed. The transformation of *Agrobacterium tumefaciens* strain GV3101::pMP90 was conducted as follows. First, 900 ng of each plasmid was added to 50 μ L of competent cells of agrobacterium, and the mixture was frozen in liquid nitrogen. Then the mixture was incubated for 5 min at 37 °C and 1 mL of YEB medium was added. After 3 h of incubation at room temperature, the cells were cultured on a YEB plate containing 10 μ g/mL of gentamicin, 50 μ g/mL of rifampicin, and 50 μ g/mL of kanamycin. The transformatis were checked by a colony PCR.

Supplementary Protocol S2

Measurement of enzyme activity

The activity of three enzymes was measured from the soluble fraction and the ionically-bound fraction. Enzyme was extracted from approximately 80 mg of sample ground with liquid nitrogen. The sample was mixed with 1 mL of 0.1 M sodium phosphate buffer (pH 6.5) and centrifuged for 10 min at 4 °C and 15,000 g. The supernatant was defined as soluble fraction. Another buffer consisting of 0.1 M sodium phosphate butter (pH 6.5) and 1 M NaCl was added to the pellet after the first extraction, mixed vigorously, and the supernatant was recovered by centrifugation. This fraction was defined as ionically-bound fraction. The protein concentration of each fraction was determined by the Bradford method (Bradford, 1976).

1) Laccase activity

Laccase activity was determined according to Zarivi *et al.* (2013). The reaction mixture contained 10 μ L of protein extract, 80 μ L of McIlvaine buffer (0.1 M citric acid/0.2 M K₂HPO₄; pH 4.0) and 10 μ L of 5 mM 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) as a substrate. The reaction mixture was mixed, and the kinetics was read at 420 nm at 25 °C for 40 min with the microplate reader. The slope was determined from the linear phase (between 10 to 40 min) and used for the calculation. The extinction coefficient of $\varepsilon = 36 \text{ mM}^{-1} \text{ cm}^{-1}$ (at 420 nm) was used for the calculation.

2) Catechol oxidase activity

The reaction mixture contained 10 μ L of protein extract, 80 μ L of 0.1 M potassium phosphate buffer (pH 7.0) and 10 μ L of 50 mM catechol as a substrate. The mixture was mixed and the kinetics was read at 390 nm at 25 °C for 80 min with the microplate reader. The slope was determined from the linear phase (between 0 to 30 min) and used for the calculation. The extinction coefficient of $\epsilon = 1.37 \text{ mM}^{-1} \text{ cm}^{-1}$ (at 390 nm) was used for the calculation.

3) Tyrosinase activity

The reaction mixture contained 10 μ L of protein extract, 80 μ L of 0.1 M potassium phosphate buffer (pH 7.0) and 10 μ L of 1 mM tyrosine as a substrate. The mixture was mixed and the kinetics was read at 280 nm at 25 °C for 80 min with the microplate

reader. The slope was determined from the linear phase (between 10 to 30 min) and used for the calculation. The extinction coefficient of $\epsilon = 2.63 \text{ mM}^{-1} \text{ cm}^{-1}$ (at 280 nm) was used for the calculation.

Supplementary Figure S1: (A) Gene model of *OsORAP1*. The T-DNA insertion position and direction in a knock-out line (KO) and an over-expression line (OE) are shown. LB: left border, RB: right border. The positions of primers used for RT-PCR are also shown. (B) Expression of OsORAP1 in wildtype and knock-out line in the ambient ozone concentration (A-O₃) and the elevated ozone concentration (E-O₃). OsORAP1 was amplified by PCR using OsORAP1-F1/R1 primers and gel electrophoresis was conducted. The electrophoresis bands of *OsORAP1* and *U2 snRNP* (an internal control) are shown.

Supplementary Figure S2: Physiological response of plants from the second fumigation experiment. (A) Expression of *OsORAP1* and (B) malondialdehyde (MDA) content from the ambient condition (A-O₃, 12 ppb) and the elevated ozone condition (E-O₃, 86 ppb). Plants were treated with elevated ozone for 20 days, and young shoots and leaves were used for the analysis. Values are means of four biological replicates. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line. ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; and **, P < 0.01.

0.05

Supplementary Figure S3: Phylogenetic analysis of ascorbate oxidase family proteins from 14 different plant species with complete genome sequences (7 monocot species and 7 eudicot species). Amino acid sequence of OsORAP1 was subjected to pattern-hit initiated BLAST (PHI-BLAST; Zhang et al., 1998) on NCBI BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with default settings, specifying multicopper-oxidases 1 and 2 patterns (consensus sequence: $GX[FYW]X[LIVMFYW]HCH{PR}{K}XH{S}X{LFH}G[LM]X(3)[LIVMFY])$ from indicated plant species. $E < 10^{-100}$ was set to the cutoff value, since this threshold eliminated similar sequences such as laccase, while including ascorbate oxidase family proteins. Redundant proteins and partial sequences Gene were manually removed. IDs were obtained from either NCBI database (http://www.ncbi.nlm.nih.gov/) or Ensembl Plants database (http://plants.ensembl.org/index.html). Phylogenetic tree was generated by MEGA 5 software (Tamura et al., 2011) using the neighbour-joining method. The branch length indicates the evolutionary distances as calculated by the Poisson correction method. A and B correspond to the classification of subclades III-A and III-B as in Fig. 3-1A.

Os01g0816700	MTTMRASAALLLVAAAVLAAVR-AEDPYHFFDWKVTYG-TRTIMDVAQKVMLINDMFPGPTINCSSNNNIVVNVFN-QLDHPLLFN	83
Os07g0510900		2
AT4G12420		80
Os09g0507300	MRTWRLAVLACLCAAAAAAPAEAKTHHHTWNITYQYKSPDC-FRKLAVTINGESPGPTIRAAQGDTLVVTVHNMLDTENTAIH	82
Os09g0365900	MMRCSDRLLCSLFLAAALFGVAAAATRRHDWDISYQFTSPDC-VRKLAVTINGHTPGPTIRAVQGDTIVVNVKNSLLTENVAIH	83
AT4G39830	MRRPKRSSDIVHVFNLMVLCFIALFFSSVLCQCKIRFKWEVKJEFKSPDC-FEKLVITINGKFFGPTIKAQQDTIVVELKNSFMTENVAVH	92
Os06q0567900	MAAAVQLLVVAAAAMAAACCAGMAAAATVEVTWDVEYVLWAPDC-QQVMIGINGFFGPNITARAGDVISVIIMNNKHTEGVVIH	87
AT5G21100	MAVIVWWLLTVVVVAFHSASAAVVESTWEVEYKYWWPDC-KEGIVMAINGQFPGPTIDAVAGDTVIIHVVNKLSTEGVVIH	80
AT5G21105	MSYDEHTSSSFTYISQMGVWWIVLVVAVLTHTASAAVREYHWEVEYKYWSPDC-KEGAVMTVNGEFPGPTIKAFAGDTIVVNLTNKLTTEGLVIH	94
Os01q0816700	WHELCREKNSENDEMPE-ENEFECEGUNETEKWOPKDOIGEFFEPSMCMORRACEACEIITEHSELLIPVPFDEPAGDYPVIGODETEDH	173
Os07g0510900	RNGLOGRRNSHEDCVAG-TTOPH PBGGNTTNILQVKDQIGTYPYFPSLAFHKAAGCFCAIRVLSRPMIPVPFPPPAADYPLLIGDWYKANH	92
Os07g0119400	WNGTKYRKNSS ODCVLG-INN OF PEGANETYKFOAKDOLGE FYNFPSYAMHAACCFGALINWYGRPAIVYPYPPAGOFTLINGOWYKAGH	176
Os09g0507300	WHORK ISSNART AGAINST HERANNALLER WILD LET FEBARE WARAGE SET WARALT TEVESTEDGUITT	171
Os09g0365900	w <mark>hen</mark> register and the second of the second s	177
AT4G39830	WHGTPR IGTPN FDCVEGVICC FILEGEVAIN OFVD-REFAYM HSHYGNGESGY IEMIOSPPATEPEPFTYDYDRNFLITTWWHKSM	181
Os06g0567200	WHORE GIFWALTASIC AND CETTING VULLETING UNDER AN AND A CHORAGE ISSUE VALUE FRIDE TO SUM AND CETTING AND	181
AT5G21100	WHEIR KGTEMADEAAGV CEPUNEGET TYKFIVD-KACHFYHKHYMCHYGMORSSEIYCMLIWRSPKERLIYDGEFNLLUSDWUHQSI	166
AT5G21105	W <mark>HGI</mark> REFGSPEANGVECEAENGGETETENFTVE-KEGEHF <mark>EHGH</mark> YGMC <mark>E</mark> SAGEYESLIEDVAKGKSERLRYDGEFNLIESENEHEAI	183
Os01g0816700	* * TVLAKNIDAGKSIIGRPAGIVINGKNFKDASNPPMYTMFAGBUN	216
Os07g0510900	TDLKYMIDSGKAIGFPDGILINGRSWDGYTFNVQQCKTY	131
Os07g0119400	KQLRQAHDAGGG-GAHPPPDAHLINGMPSAAAFVGDQGRTY	216
AT4G12420 Os09c0507300	TALRAPDOK	221
Os09q0365900	YEQAAGHASVPWWWGEPQSILINGGRFVNCSS-SPATAASCNVSHPDC-APAVFAVVPGATA	239
AT4G39830	SEKATGRASIPFKWVGEPQSTATOCRGRFNCSNNLTTPPSLVSGVCNVSNADC-SRFILTVIPGATA	247
Os06g0567200	YTQWYGISSNP-FRWIGEPOSITINGEG	237
AT5G21100	HAQELARSENP-MRWIEEPOST LINGGOFNCIONARSENVELOUDANISERVELOUDANISERVELOUDANISEROFICENSOLAPVINVEVEL	233
AT5G21105	PSQELGESSKPMRW GEAQSELENCERGQFNCSLAAQFSNNTSLPMCTFKEGDQCAPQILHVEPNCT	250
000100916700		31.0
Os07q0510900	REPUSINGLIST NURFOR THIN A WESTMOTISS DURING SYSTEMA OF PAURADVSTRFTSKIISTT-AVERAGSGKSPA-ALP	225
Os07g0119400	LERVSNVGVKTSVNVRIQCHSLRIVEVECTHPVQNVYDSLIVHVCQSVAFEVTIDK-AAQDYAVVASARFSPGASPIMATGTUHNSSAVSRAPG-PLP	312
AT4G12420	RLEVSNVGISTSINFRIQGINLVIADSSCSYTVQNYTSIDIHVCCSYSFIVTNONASSDWYWASARVVNETIWRRVTGVSILKYTNSKGKAKG-QLP	320
Os09g0507300 Os09g0365900	RIFEGSITSLASSE FELEGETTIVE PURT I VEPVVKNEHISE SETISVOTALODESRSMEASHVSKDPTRTAPCK-AVERASAAUHER FRVASVTSLANFFECEFFUTVEDICKVVR PVVKNINI SETISVOTALODENRIVALASNVSKEPAPTCTIAVIAVGGRRSBRADD	330
AT4G39830	RIRIGSLTALSALSFQIEGENLTVVEADCHYVEPFTVKNIFVYSGETYSVILKADONPRRNYMITSSIVSRPA-TTPPATAVLNYYPNHPRRRPP	341
Os06g0567200	RIRVASTTSLASINLAVGNEKLTVVBADGNYVEPFAVDD DIYSGISYSVEITTDODTSANYWVSVGVRGROP-RTAPALAVENWRPNRASRIP	330
AT5G21100	RIFASTTEDS UNVEIGHERTIVE AUGHENTIVE AUGHENTIVE STÖRSTANDER AUGHENSVEVERGERPERTVPAL-AUSSANGAAPPFUGLP	3/1
AT5G21105	RIRISSTTALAS NLAVÇEHLUVVE ADENYITPFTTDELETYSESSYSVELTEDQDPSQNYYISVEVRERKP-NTTQALTILNYVTAPASKLP	343
0-01-001-0700		400
Os07q0510900	EGFS - GUARDSINGWADTAWADIAS ARAFARGOSINIGUININI IRIASSAT - VNGKORVSVNAUSAV DUADIALINASGAV FINASSAT - VNGKORVSVNAUSAV DUADIALINASGAV FINAS	314
Os07g0119400	apppeQaen SMNQARSFRWNLTAS AARPNPQGSFHYGTIATSRTLYDANSAPV-LAGQRRYAYNCYSFVV-PDHELKTVDNYNTAN-VIGWD	401
AT4G12420	PGPQDEFDRTBSMNQARSIRWNVSASGARPNPQGSFKYGSINVTDVYVPRNMPVTISGKRTTINGGSFKN-PSGPINADKLKVKD-VYKLD	412
Os09q0365900	TPPFIGPANNDTAYRVRCSIATVAHPAH2VPPPTSDRTHUENTUKKIG-OIEWAHNVSFTL-PHPFULAMKRGL-GAFDQR-FFFD	425
AT4G39830	TSESSNIVPENNDTRSRLACELAIKARRGFIHALPENSDKVIVELNTQNEVNG-YREWSVNNVSYHH-PKTEYLFALKQNFT-NAFDWRFTAPEN	433
Os06g0567200	AAAPPAT-PAM DDFARSKAFT VRILGRAGVTPPPPATSDRIEDINTONRMGGHVWWSINNVWVL-PAMYLGSLKWGTR-SALPSA-ARPS OCEDDING DANNMORSKAFT VRILGRAGVTPPPPATSDRIEDINGSCHVWSWIGHVWWSINNVWVL-PAMYLGSLKWGTR-SALPSA-ARPS	420
AT5G21100	SHPPPVT-PIMNTDRSKSFSKKIFAAKGY-PKPPEKSHOQLILINTQNLYED-YTWSIINVSLSV-PVTYLGSIRVGFK-SAYDLK-SPAK	413
AT5G21105	SSPPPVT-PRODDFERSKNFSKKIFSAMGS-PSPPKKYRKRLIZINTQNLIDG-YTWAAINNYSIVT-PATEYICSVKYNK-LGFNRKSPPR	431
Os01g0816700	LIGDVPPATT-VPOKLAPNVISAEFRTFIEVVERMPEKSIDSELINGYAEFAAGMGPEIWTPECRKTVNLLDTVSREMIGWE	482
Os07g0510900	TISDSPSGGGGGAYLQTAVMGASYRDYVEIVFDNPENEVQSMHILCYAEWVVCMDCCKMSSASRQGYNLRDAVSRYDYVGYD	397
Os07g0119400	SVPARPDGAAPRSGTPVWRINLHEFIEVVFONTENELQSWHLIGYDEWVVGYGNGCWTENQRTTYNLVDAQARHWVGYM	481
AT4G12420 Os09d0507300	PKREDTG PARVATSIINGTYRGFMEVULONDTRANGYMENTERSTURVCUTCHTENSRGFINKUGIBARSHIDUYE YD-HGSINISSDDSIAURHAAVRIAIGSVUDVIONTAT PDPDNGRSFTHEVIGHTHEHDBWVCUCYCERSTUPFVDGDINASSAGGAVMINVAIHE	515
Os09g0365900	YAGAAAFDYYAVQGNPNATTSDAFYRLFGSVVDVVLONANMLAANS-SETHOWELHCHDEWVLGHGAGAGD-PAVHPAAYNLRDFINKNTVAVHF	519
AT4G39830	YD-SRNYDIFAKPINANATSDGIYRLFNSTVDVIIONANTNNNNSETHPMBLHCHDFWVLGYCGCKDM-ESEDPKRYNRVDPIKRNYVEVCF	526
Os06g0567200	DTS GKSID VIR PPAN PNTYGENVI VIAHNATVOVI UNANALARNV-SEVHVELEN HENGELEVITG GLGABREDAGLAALINI KNPPI UNANVIE JASPE DVDVR PPANNATTAS KVPRI HENGEVUNVI ON ANVI. REV-SRTHPOHLH HENGEVIC GVGGRVD-DAAHAAGIN JAND PTI NAVI VIEJ	515
AT5G21100	KLIMDNYDIMKPPPNPNTTKGSGIYNFAFGIVVDVI <mark>IONANVLKGVI-SEIHPWHIHC</mark> HDFWVLGYGECKGK-PGIDEKTFNLKNPPIRNTVVIYP	507
AT5G21105	SYRMD-YDIMNPPPPPNTTTGNGIYVFPPNVTV <mark>DVI</mark> I <mark>OX</mark> ANVLKGIV-SEI HFMILK CHDENVMCYGC&GK-PGIDEKTYNLKNPPIRMEZIEY	524
Os01g0816700	* * * RS WAN MLTFD NAEMM NIESNMWERYYLEAQLYVSWVSPARSLRDEYNMEEIELR SE KVVGLPMPPSYLPA553	3
Os07g0510900	NSWLAT YMPLENVEMMNVRSENWARQYLEQOFYLRWWTSSTSWRDEYPIEKNALLCERAAGRRTRPL464	ł
Os07g0119400		5
Os09q0507300	GAUNTER DES DE LE CALLES	
Os09g0365900	FGWDAIRFRADAFEVMAF <mark>ECHIEAHFFMEMGINFE</mark> EGVERVGELEFEMGGEKTRGH	,
AT4G39830	FGWIATURFRAINERFWIGSFUCHIESHFFMCMGIWESGLIKKNSSIISSSINGCECTKR	2
Os06q0567900	I GUNTHAR VALUETS WAR TO HER FELENSAUGUT VERERA VERVSLITERAR VERVSLI	-
3mEc01100		2
A15G21100	FGWTAURFVTDNPEVMFFECHIEPHLHMCMGVMFVEGVDRIGKMEIDDEALGCCLTRKWLMNRGRP573	·

Multicopper-oxidases signature 1: G-x-[FYW]-x-[LIVMFYW]-x-[CST]-x-{PR}-{K}-x(2)-{S}-x-{LFH}-G-[LM]-x(3)-[LIVMFYW]

Multicopper-oxidases signature 2: H-C-H-x(3)-H-x(3)-[AG]-[LM]

*** *

Supplementary Figure S4: Multiple alignment of proteins in clades II and III from *Arabidopsis* and rice. The sites with completely conserved amino acid are shown in black colour, and the sites with similar amino acids are shown in gray colour. Predicted copper-binding sites (Lin *et al.*, 2013) are indicated by asterisks with red background. The squared position contains Multicopper-oxidases signature 1 and 2, of which sequences are shown below. The denotation of signature is according to Prosite website (http://prosite.expasy.org/).

Supplementary Figure S5: Transient expression of *OsORAP1* in *Nicotiana benthamiana* plant. The leaves of *N. benthamiana* were infiltrated at an optical density of $OD_{600} = 2.0$ of *Agrobacterium tumefaciens* carrying pMDC32-OsORAP1 vector (OsORAP1). As empty vector control (EV), *A. tumefaciens* carrying pMDC32 was infiltrated. The infiltration was carried out together with *A. tumefaciens* carrying pBIN61-P19 at the same optical density to enhance the expression of the transgene. The plants were grown in a greenhouse after the infiltration, and the samples were taken after 10 days from the infiltrated area. Ascorbate oxidase (AO) activity and gene expression were analysed. *EF-1 α* gene was used as a reference. A representative leaf picture is shown on the top. Values are means of three different leaves. Error bars indicate standard errors.

Supplementary Figure S6: Morphology of the three lines in the ambient ozone concentration (A-O₃, 12 ppb) and the elevated ozone concentration (E-O₃, 86 ppb). The plants were grown in hydroponic tanks for three weeks before the initiation of elevated ozone stress, and the picture was taken on DAY 15 of E-O₃ treatment. KO, knock-out line; WT, wildtype; and OE, over-expression line.

Supplementary Figure S7: Growth characteristics of wildtype and two mutant lines grown in the soil. (A) Plant height, (B) tiller number, (C) flag leaf blade length, and (D) flag leaf blade length/width ratio are shown. In A and B, values are average of three individuals, and in C and D, values are average of 27 to 30 different flag leaves from three individual plants. ANOVA was conducted for all the data, and significant differences are indicated with different alphabets in C. All error bars indicate standard errors.

Supplementary Figure S8: Leaf dry weight per leaf area in the ambient ozone concentration (A-O₃, 12 ppb) and the elevated ozone concentration (E-O₃, 86 ppb). The plants were grown in hydroponic tanks for three weeks before the initiation of elevated ozone stress, and the samples were taken 20 days after the onset of elevated ozone treatment. Samples were dried at 70 °C for 3 days after the harvesting. Three to four leaves (1st and 2nd fully expanded leaves from the top) per plant were used for the measurement of dry weight and leaf area. Leaf area was measured using a scanner and OMA2.0 system (HGoTECH GmbH, Bonn, Germany). Values are means of 12 to 16 leaves deriving from four individual plants. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line. ANOVA was conducted, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; and ***, P < 0.001.

Supplementary Figure S9: Ascorbate oxidase (AO) activity in the apoplast in the ambient ozone concentration (A-O₃, 40 ppb) and the elevated ozone concentration (E-O₃, 159 ppb). The AO activity in the apoplastic washing fluid was measured according to Frei *et al.* (2010) on DAY 16. Values are means of three or four biological replicates. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line.

Supplementary Figure S10: Ascorbate (AsA) content and redox status in the whole tissue in the ambient ozone concentration (A-O₃, 40 ppb) and the elevated ozone concentration (E-O₃, 159 ppb). The samples were taken on DAY 20, and AsA content and redox status were measured. Values are means of four biological replicates. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line. ANOVA was conducted, and the result is shown as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; and n.s., not significant.

Supplementary Figure S11: Polyphenol oxidase activity of three lines using different substrates. The plants were grown in ambient ozone concentration (A-O₃, 12 ppb) or elevated ozone concentration (E-O₃, 86 ppb). The enzymatic activities were determined according to Supplementary Protocol 2. Values are means of four biological replicates. (A, B) Laccase activity, (C, D) catechol oxidase activity, (E, F) tyrosinase activity. A, C and E show the activity from the soluble fraction, and B, D and F show the activity from the ionically-bound fraction. Error bars indicate standard errors. KO, knock-out line; WT, wildtype; and OE, over-expression line. Laccase activity in the soluble fraction and tyrosinase activity in the ionically-bound fraction between treatment and genotype was observed. The asterisk indicates the value was significantly affected by elevated ozone treatment (P < 0.05). N.D., not detected; and n.s., not significant.

Supplementary Figure S12: Gene expression level of phytohormone-related genes on DAY 1 and DAY 20. Plants were treated with the ambient ozone concentration ($A-O_3$, 40 ppb) or the elevated ozone

concentration (E-O₃, 159 ppb) for 20 days. Total RNA was extracted from leaves and shoots on the indicated time points and qPCR was conducted with gene-specific primers (Table S1). ET, ethylene; JA, jasmonic acid; and SA, salicylic acid. Aminocyclopropane-1-carboxylic acid synthase (ACS) is the ratelimiting enzyme of ET production (Rzewuski and Sauter, 2008). It determines the production of ET under ozone stress together with another enzyme aminocyclopropane-1-carboxylic acid oxidase (ACO), which succeeds ACS in the biosynthetic pathway (Tuomainen et al., 1997). Among several isoforms, the expression levels of OsACS2 (Os04g0578000) and OsACO7 (Os01g0580500) were previously shown to correlate with the formation of ET in rice in ozone stress (Cho et al., 2008). OsEIL1 (Os03g0324300) is a cytosolic protein involved in ethylene signalling (Mao et al., 2006; Rzewuski and Sauter, 2008). OsETR2 (Os04g0169100) is an ethylene receptor located on the plasma membrane, and its expression is induced by ethylene (Yau et al., 2003). OsLOX8 (Os08g0509100) is involved in the first step of JA biosynthesis, and its expression is induced by ozone stress (Cho et al., 2008). OsPAD4 (Os11g0195500) is supposedly involved in JA signalling (Ke et al., 2014). OsICS1 (Os09g0361500) is involved in one of the SA biosynthetic pathways (Kyndt et al., 2012). Values are means of four biological replicates. Error bars indicate standard errors. ANOVA was conducted for each day, and the significance is denoted as follows: G, genotype; T, treatment; GxT, genotype and treatment interaction; n.s., not significant; *, P < 0.05; **, P < 0.01; and ***, P < 0.001. KO, knock-out line; WT, wildtype; and OE, over-expression line.

Nipponbare Dongjin Kasalath SL41	nactical Gentietana Antagtinith trith stere cocada cacco at secara cotatà taanate teatat gacaa accarta gentra co-et nactical gentietana antagtinith taita stere cocade accoco at secara cotatà taanate teatat gacaa accarta gentra co-et ne chitet genere concene secara caccoco at secare accoco de secare concene concesso de la concene sa tesse se ne chitet genere concene se canca concene secare cococo de secare concesso de concesso de la concesso de la contesta de la concene se concesso de la concesso de la concene se concene sa tesse se concesso de la concene se concene sa tesse se concesso de la concene se concene se concesso de la concene se concesso de la concesso de la concesso de la concesso de la concene se concene se concesso de la concene se c
Nipponbare Dongjin Kasalath SL41	actic taal cace of the application of the transformatic contraction of the transformatic contract and the contract of the transformatic contract of the tran
Nipponbare Dongjin Kasalath SL41	ACLÉARCTETACTACATATATTTETCAGAGETTATEGATAALGETACCTETTAT-COTACGATTGACGAGETATACCAGATTGEGATAGETATACCAGATTGEGATAGET ACLÉARCTETAGETAGATATATTTETCAGAGETTATEGATAALGETACOTETTAT-COTACGATTGACGAGETATACCAGATTGEGATAGETAGATAGEATAGE
Nipponbare Dongjin Kasalath SL41	CACEARAT GTTTCTATATETEATA-AGEANATGTACANGATANATGCNAAATAACGTACGGCGGGGGGGGGG
Nipponbare Dongjin Kasalath SL41	GACTATHCTTTRICCTECACCTTUCCTTGTCTCTERCTTCTAGTTAGAGACTAACCCAACTCACCCCCTRIAAAAACCCAACCCCGCAGGGGHTCAGGA GACTATHCTTTRICCTCCACCTTUCCTTGTCTCTCACTTGTAGTTAGAGACTAACCCAACTCACCCCCCRIAAAACCCAACCCGAGGGGHTCAGGA RATCCCTGGAGGAGAGAGGGATTTTCAGGTC-CCTGCTCT
Nipponbare Dongjin Kasalath SL41	ICANTEANICETRECECCIANCRCATCONTCAURETINACEAACECCAAGEACTCAACCCEAAGECCE <mark>-CECEAATCO</mark> CGTCEAAGAACTUGCCAAGAACA ICAATEAATECTYGCGCCAACACATCONTCAURETINACEAACECCEAAGEACTCAACCCEAAGEACEC-CECEAGACCACATCOCGTCEAATAATCIGCCAAAEA ITAA-EGGCCCCCCCACATAAAATAAGCTTAUTTUTECTUCTECAACTCTUAAEGAGCCAEACECEAAAAATTAATTUTCETE-TGTGG ITAA-EGGCCGCACATAAAATAAGCTUATTUTTECTUCTECACCTCTUAAEGAGCCAEACECEAAAAATTAATTUTCETE-TGTGG
Nipponbare Dongjin Kasalath SL41	TCTGCATGCTATGTCTCGATGTCTCTTTGTACTCTGTGATTTTCCATATCATATATCATATATAAACHACHACHACHATTATCTTACGAGAGGCCTGGAACCAAT TCTGGTTGGTATGTCTGTTTGTCTTTGTACTCTGTGATTTTCCATATAACHATAAACHACHACHACHACHACTTGGCCTATTATGTTACGAGAGGCCTGAACCAAT CATGTTAAGATGCGCATGCAAAAAAGGGAGGAGGAGATTTTTGTGAGAGGGGTGACASTTA
Nipponbare Dongjin Kasalath SL41	атаатсотисиситистотототите-алогистотасалося оснасоватотасостваталостаттапосстотассестасос атватсотисиситистотите-алогистатаста са посласоватота со спасоватота со ставланостаттапосско са со сестасо- ала атеститиства спасовала са посла и со
Nipponbare Dongjin Kasalath SL41	ССЕРСЕМ ТАЛЬЙССТАМТ ТАРАСТАВСЕРАВАХСААЛ ССАРТССССИТТ ТЕЛОТОГСТ И СЛАГСАЛТИЛСИ СЕЛТРИС СЛОСАТТОГССАТОГСС ССЕРСЕМ ТАЛАЙ ССТАМТ ТАРАСТАВСИ В СОРОЛНИИ ССЕРССИТТ ТЕЛОТОГСТ И СЛАГСАЛТИЛСИ СОРОЛНИИ СОРОЛНИИ СОРОСАТИТСИ ССЕРСЕМСИ И ТАРАМ СОРОССТОТОРИ СЛОДАТС — ПТТТАЛЛИ ССЕРССИТАТАЛСИ СТИСКИТИ СПИСТИ СЛИСИТИ СОРОЛНИИ С СОРОЛНИИ С ССЕРСЕМСИ И ТАРАМ СОРОССТОТОРИ СЛОДАТС — ПТТТАЛЛИ ССЕРССИТАТАЛСИ С И И СЛИСИИ С ССТИСИ С И И СЛИСИТИ С ОТ ССЕРС
Nipponbare Dongjin Kasalath SL41	РТССАССТАС — ТАСАССТССЭЛТАТТТАРАСТССАВАТАССАСАТТТССАСТАССТСССТССАВАРАССТСАВАРАТТАТССАССАВАРАЛТА АГСОАССТАС — ТАСАССТССЭЛТАТТТАРАСТССАВАТАССАСАТТТССАССТСССССССССТСАВАРАСТСАВАРАЛТАТССАССАВАРАЛТА СПАРАТСТАССТАТАССТСОЛТАТТТАРАСТСАВАРССАВАТАССТТСРАСССТССТСА
Nipponbare Dongjin Kasalath SL41	TCAACGATTAAACTATAAATATGGETTGAGETCGAAAAGGAAGACGCTGTCAMAAGAAATGGGCAACTGGAAAAGG-ACAATHGGGTAGAGGETAAAGGAAC TCAACGATTAAACTATABAATGGETTGAGGTGGAAAAGGAAGACGCTGTCAMAAGAAATGGGCAACTGGGAAAGG-ACAATHGGGTAGAGGTAAAGCAAC CAAGGACAGGTAGACATTAGAATABGTGGTGGATGGTTTTGBGCGGATGGGAAAGCGACGGAGAGAGTGAAAATCTGAAATCGAAATGATTC CAATAGACAGGTAGACATTAGAATABGTGGTGGATGGTTTTTGTGCGGCACGATGGGAAACTGGGAGACTTGAAATCTGAAATCAATTGATTG
Nipponbare Dongjin Kasalath SL41	NTICCCCAACTESTAAAC CARAACTATAAACTCTCTCATATTCCATAATAATTTTECATTATCCACAAAACTCGCCCATCCAAAAAAGTCGCCCGTAAAATTAACAATA ATTECCCCAACTESTAAAC CARAACTATAAATCCTCTCATAATAAATTTTECATTTTACCACAAAACTCGCCCATCCAAAAAAGTCGCCCTTAATTAA
Nipponbare Dongjin Kasalath SL41	ach triannanan an coortanan tarta chanaich cocottoccortach charcott the cortain a branth transferentiett to car Agn triannanan an coortanan tarta chanaich cocottoccortach charcott the constant and tartat the thittett to car Con contrict on gives
Nipponbare Dongjin Kasalath SL41	CCARCEGE CATENECTTE TRENCTESCTAGES SECTEMENCE ACCORST GAACAAGRAAM ATAEGAS SECTES SECTEMENTARAAAAAAAAAAAAAAAAAA CCAACEGE CATENESTTE TRENCTES SECTES SECTEMENCE ACTOR GAACAAGRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nipponbare Dongjin Kasalath SL41	PARAGCAC CATC TETECCATARAAGECA GAGEARTCAATCAACAGCCATTCAACGTCGAAGCCCTCCATATCCCACATATATAT
Nipponbare Dongjin Kasalath SL41	TAE CASEGETTES CARTER CARTER CONTROL PARATICA CONTROL TO CONTROL TO CONTROL CO
Nipponbare Dongjin Kasalath SL41	ACCALAGEAGE TAGCTACCALAGCATAACAAGE TOTE CAGE CTALA CASTERIA TOTE CAGE TOTAACAGE CONCECTE CONC
Nipponbare Dongjin Kasalath SL41	eccecetettcegcetcec <mark>ce</mark> ccecegeceacegececceaceactegeacateaceaettcacettcacettcacettecett ² Cecaagetgeccetca eccecetettcegcetcece <u>c</u> cecegeceacecegeceaceaceaetegeacateacetaceettcacettcacettceceactecettcettcecettcettcecettcettcecettcettcecettcettcecettcettcecettcettcecettcettcecettcettcettcecettc

Supplementary Figure S13: Sequence alignment of OsORAP1 from Nipponbare, Dongjin, Kasalath and SL41.

Supplementary Figure S13 (continued)

Supplementary Figure S13 (continued)

Supplementary Figure S13 (continued)

Nipponbare Dongjin Kasalath SL41	acacacctgcaaggctgcaaccatcggagtactccagaccaaaaggataga <mark>c</mark> gcactccagttaaaagaaaaaagaacaataaacatcatttt acacacctgcaaggctgcaaccatccgcatcgagtactccagacaaaaggataga <mark>c</mark> gcactccagttaaaacaaaaagaacaataaacatcatttt acacacctgcaaggctgcaaccatccgcatcgagtactccagaccaaaaggaatagatggtgcagtccagttaaaacaaaaaagaacaataaacatcatttt acacacctgcaaggctgcaaccatccgcatcgagtactccagaccaaaaggaatagatggtgcactccagttaaaacaaaaaagaacaataaacatcatttt acacacctgcaaggctgcaaccatccgcatcgagtactccagaccaaaaagaatagatggtgcactccagttaaaacaaaaaagaacaataaacatcatttt
Nipponbare Dongjin Kasalath SL41	TAGTTATATTAAGGCTATATAGCTATATTATTACACATCTTTTTTAGTTTCATACCACCACACACTA TAGTTATATTAAGGCTATATAGCTATATTATTACACATCTTTTTTAGTTTCATACCACCACCACACTA TAGTTATATTAAGGCTATATAGCTATATTATTTACACACATCTTTTTTAGTTTCATACCACCACACTA <mark>GTACAGA</mark> TCCTTCCATCTGTGACGGCAC TAGTTATATTAAGGCTATATAGCTATATTATTTACACATCTTTTTTAGTTTCATACCACCACACTA <mark>GTACAGA</mark> TCCTTCCATCTGTGACGGCAC TAGTTATATTAAGGCTATATAGCTATATTATTTACACCATCTTTTTTAGTTTCATACCACCACACACA

Supplementary Figure S13 (continued)

Upstream 1,500 bp, *OsORAP1* region and downstream 1,000 bp sequences were obtained either by sequencing experiment or from public database (RAP-DB, http://rapdb.dna.affrc.go.jp/, as of June 2014). Multiple alignment was conducted using MEGA5 software (Tamura *et al.*, 2011). Matched nucleotides are shown in black colour. Transcript and splicing sites information was obtained from RAP-DB based on Nipponbare sequence. Since annotated genome information of Kasalath was not available, the start codon was predicted as follows. First, the obtained Kasalath sequence was BLASTed against RNA-seq read archive of Kasalath (http://www.ncbi.nlm.nih.gov/sra, experiment ID DRA000685 (Oono *et al.*, 2013), as of September 2014). The most upstream reading was determined as the transcription initiation site. The start codon in Kasalath and SL41 was determined to provide the longest open reading frame in the transcript.

Multicopper-oxidases signature 1/2

Supplementary Figure S14: Multiple alignment of OsORAP1 protein from Nipponbare, Dongjin, Kasalath and SL41. The amino acid sequences were obtained from the genomic sequences of OsORAP1, and multiple alignment was conducted using MEGA5 software (Tamura *et al.*, 2011). Prediction of signal peptide was conducted using SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/, as of October 2014). The sites with completely conserved amino acids are shown in black colour, and the sites with similar amino acids are shown in gray colour. Multicopper-oxidases signature 1 and 2 and signal peptide are shown in red squares. Asterisk (*) shows predicted copper-binding sites. Pound sign (#) indicates cysteine residues forming disulfide bonds (Lin *et al.*, 2013).

Supplementary Figure S15: Expression patterns of *OsORAP1* in rice root tissues. Red colour shows high expression, and blue colour shows low expression. The data was taken from RiceXPro database (http://ricexpro.dna.affrc.go.jp/). The values indicate the normalized signal intensity (log₂) when the average expression level was set to 0.

Supplementary Figure S16: Expression of *OsORAP1* during seed imbibition. The seeds of Dongjin were dehusked, soaked in deionized water, and incubated at 28 °C for 24 h in dark. RNA was extracted from the seeds, and RT-PCR was conducted. The expression levels of *OsORAP1* (*Os09g0365900*, using OsORAP1-F1/R1 primers) and reference gene (*Os05g0564200*) are shown.

Supplementary Table S1: Primers used for the study.

Gene name	Gene ID	5'-Forward primer-3'	5'-Reverse primer-3'
OsORAP1 -F1/R1	Os09g0365900	CAGTCGCTGCTCATCAACGGGC	CCACCACCGTCATCTCGTGCC
OsORAP1 -F2/R2 (for qPCR)	Os09g0365900	TAGCTCAACAGGACGCACAC	ACACCGCATCATGTTCACTCT
Rice AO homologue	Os09g0507300	GTGAGGTTCAGGGCGAGCAA	TGACTAAGCTGTTGGACGTTCG
Rice AO homologue	Os06g0567200	CGGCATCAGACAGATCGGGA	CGAAGCGATAGGTGAAGGTTTC
Rice AO homologue	Os06g0567900	TGACGTGGGACGTGGAGTA	GCGTGCCAAACTGTCTGATG
Osmir528	Osmir528	CCTGGAAGGGGGCATGCA	GTGCAGGGTCCGAGGT
OsACS2	Os04g0578000	GGAGTCCGACACCAAATCAATG	GTCCAGAGAAAGCTGGTTCTC
OsACO7	Os01g0580500	CCTGTAAGGACTGGGGGCTTC	TCCAGGTGCTCGTCGTAATG
OsEIL1	Os03g0324300	CAACCGTGTCTACACCTGCC	TTCCGGTCAAGGAACCCGTA
OsETR2	Os04g0169100	AGTCGCAGTCGCCCTATCAC	CAGCAAGTCCCTGTGTTGCG
OsNPR1	Os01g0194300	AGAAGGGACCCACAACTCGG	TCCTCGCCAAAGCAACTCGG
OsWRKY45	Os05g0322900	GACGAGGTTGTCTTCGATCTG	CGTGGAATCCATCTTCTTTCGATC
OsICS1	Os09g0361500	AGTAAAGGTCGTACTGGCAAGG	AGGAGCATCAGGTGGCTGTA
OsOPR7	Os08g0459600	CATTGAAGCAGGTTTTGATGGCA	CCATACTCGTCAGTGCGGTC
OsLOX8	Os08g0509100	TCTCTCGATTCTGCACGCCT	GGCTGGACGATGGATTGAGC
OsJAZ8	Os09g0439200	CACACAACAGTCTTCCCGATCTG	TCACCGTTAGCTTGCTTGGAC
OsJAmyb	Os11g0684000	GCAAGAGGTTCAAGGATGCCA	AGCTAGTCACCATGCTCGGA
OsPAD4	Os11g0195500	GCTGTGCAGATCCCCTGAAT	TGACACAAAGCACCGGAGGA
U2 snRNP (Reference, rice)	Os05g0564200	CACAACAGGCCAACTGTGTC	GAGGGTCTCAACCTCACCAA
Arabidopsis AO homologue (for genotyping and RT-PCR)	At5g21100	ATCCACGTCGTCAACAAACTC	AGCAAGAGCAGTTGTGCTAGC
Arabidopsis AO homologue (for genotyping)	At4g39830	TCCACGGTTGAATTGAATCTC	GTATGTCAGAGAAAGCCACCG
Arabidopsis AO homologue (for RT-PCR)	At4g39830	GTCTCAAACGCTGATTGTTCG	CGTAGTGTCCGTCTGCTTCA
AtPP2AA3 (Reference, Arabidopsis)	At1g13320	AGCGTAATCGGTAGGGAGTG	CGATAAGCACAGCAATCGGG
NbEF-1a (Reference, tobacco)	AY206004	TGTGGAAGTTTGAGACCACC	GCAAGCAATGCGTGCTCAC

Gene name, gene ID and primer sequences are shown. The primer sequences for *NbEF-1* α were taken from Ishihama *et al.* (2011). The primer sequences for *Osmir528* were taken from Lima *et al.* (2011). The primers for genotyping of *Arabidopsis* mutants were used with a vector primer 5'-ATT TTG CCG ATT TCG GAA C-3' to confirm T-DNA insertion.

Stress	At4g39830	At5g21100	Reference
Cold stress (12 h)	2.4	0.2	Kilian <i>et al</i> . , 2007
Salinity stress (12 h)	1.0	0.6	Kilian <i>et al</i> ., 2007
Drought stress (12 h)	1.3	1.0	Kilian <i>et al</i> . , 2007
Wound (12 h)	1.1	0.4	Kilian <i>et al</i> ., 2007
Ozone (125 ppb, 3 h)	4.2	0.8	Booker <i>et al</i> ., 2012
Pathogen (P. syringae) (12 h)	8.1	0.4	De Vos et al., 2005
Chitin treatment (30 min)	4.9	1.1	Ramonell et al., 2005
Elicitor (elf18) treatment (10 h)	19.3	0.2	Tintor et al., 2013

Supplementary Table S2: Expression levels of two Arabidopsis genes under several stress conditions.

Expression data were obtained from publicly available microarray data sources. The fold increase values under the denoted stress conditions are shown for At4g39830 and At5g21100. The left column shows the type and duration of stress treatment.

Table S3: Cis-elements found only in Nipponbare OsORAP1 promoter region.

Only in Nipponbare

Name	Sequence	PLACE ID	Description
CANBNNA PA	CNAACAC	S000148	Core of "(CA)n element" in storage protein genes in Brasica napus (B.n.); embryo- and endosperm-specific transcription of napin (storage protein) gene, napA; seed specificity; activator and repressor
AGCBOXNF GLB	AGCCGCC	S000232	"AGC box" repeated twice in a 61 bp enhancer element in tobacco (N.p.) class I beta-1,3-glucanase (GLB) gene; "GCC-box", Binding sequence of Arabidopsis AtERFs; AtERF1,2 and 5 functioned as activators of GCC box-dependent transcription; AtERF3 and 4 acted as repressors; AtERF proteins are stress signal-response factors; EREBP2 binding site; Conserved in most PR-protein genes; Rice MAPK (BWMK1) phosphorylates OS EREBP1, which enhance DNA-binding activity of the factor to the GCC box;
GCCCORE	GCCGCC	S000430	Core of GCC-box found in many pathogen-responsive genes such as PDF1.2, Thi2.1, and PR4; Has been shown to function as ethylene-responsive element; Appears to play important roles in regulatingiasmonate-responsive gene expression; Tomato Pti4 (ERF) regulates defence-related gene expression via GCC box and non-GCC box cis elements (Myb1 (GTTAGTT) and G-box(CACGTG))
CGACGOSA MY3	CGACG	S000205	"CGACG element" found in the GC-rich regions of the rice (O.s.) Amy3D and Amy3E amylase genes, but not in Amy3E gene; May function as a coupling element for the G box element
NODCON1 GM	AAAGAT	S000461	One of two putative nodulin consensus sequences
OSE1ROOT NODULE	AAAGAT	S000467	One of the consensus sequence motifs of organ-specific elements (OSE) characteristic of the promoters activated in infected cells of root nodules
CIACADIA NLELHC	CAANNNN ATC	S000252	Region necessary for circadian expression of tomato (L.e.) Lhc gene
IBOXCORE	GATAA	S000199	"I box", "I-box", Conserved sequence upstream of light-regulated genes; Conserved sequence upstream of light-regulated genes of both monocots and dicots
LEAFYATA G	CCAATGT	S000432	Target sequence of LEAFY in the intron of AGAMOUS gene in Arabidopsis
CPBCSPOR	TATTAG	S000491	The sequence critical for Cytokinin-enhanced Protein Binding in vitro, found in -490 to -340 of the promoter of the cucumber (CS) POR (NADPH-protochlorophyllide reductase) gene
SREATMSD	TTATCC	S000470	"sugar-repressive element (SRE)" found in 272 of the 1592 down-regulated genes after main stem decapitation in Arabidopsis
REBETALGI HCB21	CGGATA	S000363	"REbeta" found in Lemna gibba Lhcb21 gene promoter; Located at -114 to -109; A GATA sequence created at a position six nucleotides upstream could replace the function of REbeta; Required for phytochrome regulation
HEXAMERA TH4	CCGTCG	S000146	hexamer motif of Arabidopsis thaliana (A.t.) histone H4 promoter

POLASIG2 AATTAAA S000081 "PolyA signal"; poly A signal found in rice alpha-amylase; -10 to -30 in the case of animal genes. AATAAA; AATAAA; AATAAA; AATAAA;
Table S3 (continued)

Name	Sequence	PLACE ID	Description
ANAERO1C ONSENSUS	AAACAAA	S000477	One of 16 motifs found in silico in promoters of 13 anaerobic genes involved in the fermentative pathway (anaerobic set 1)(Mohanty et al., 2005); Arbitrary named ANAERO1CONSENSUS by the PLACEdb curator
	GGCCCAW		
UP1ATMSD	WW	S000471	"Up1" motif found in 162 of the 1184 up-regulated genes after main stem decapitation in Arabidopsis
AMYBOX2	TATCCAT	S000021	"amylase box"; "amylase element"; Conserved sequence found in 5'upstream region of alpha-amylase gene of rice, wheat, barley; "amylase box" (Huang et al. 1990); "amylase element" (Hwang et al., 1998)
OTIFOSRA MY3D	TATCCAY	S000256	"TATCCAY motif" found in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY motif and G motif (see S000130) are responsible for sugar repression (Toyofiaku et al. 1998)
SEF1MOTIF	ATATTTAW 7 W	5000006	"SEF1 (soybean embryo factor 1)" binding motif; sequence found in 5'-upstream region (-640; -765) of soybean beta-conglicinin (7S globulin) gene
NTBBF1AR ROLB	ACTTTA	S000273	NtBBF1(Dof protein from tobacco) binding site in Agrobacterium rhizogenes (A.r.) rolB gene; Found in regulatory domain B (-341 to -306); Required for tissue-specific expression and auxin induction
TAAAGSTK ST1	TAAAG	S000387	TAAAG motif found in promoter of Solanum tuberosum (S.t.) KST1 gene; Target site for trans-acting StDof1 protein controlling guard cell-specific gene expression; KST1 gene encodes a K+ influx channel of guard cells
BIHD10S	TGTCA	S000498	Binding site of OsBIHD1, a rice BELL homeodomain transcription factor
AUXREPSIA A4	A KGTCCCAT	F S000026	"AuxRE (Auxine responsive element)" of pea (P.s.) PS-IAA4/5 gene; Indoleacetic acid-inducible genes; domain A; TGA1a is preferentially expressed in root tip meristems; TGA1a may contribute to the expression of GST isoenzymes, especially in root tip meristems
TATABOX3	TATTAAT	S000110	"TATA box", TATA box found in the 5'upstream region of sweet potato sporamin A gene
ERELEE4	AWTTCAA A	S000037	"ERE (ethylene responsive element)" of tomato (L.e.) E4 and carnation GST1 genes; GST1 is related to senescence; Found in the 5'-LTR region of TLC1.1 retrotransposon family in Lycopersicon chilense (Tapia et al.); ERE motifs mediate ethylene-induced activation of the U3 promoter region
BP5OSWX	CAACGTG	S000436	OsBP-5 (a MYC protein) binding site in Wx promoter
T/GBOXATI IN2	AACGTG	S000458	"T/G-box" found in tomato proteinase inhibitor II (pin2) and leucine aminopeptidase (LAP) genes; Involved in jasmonate (JA) induction of these genes; bHLH-Leu zipper JAMYC2 and JAMYC10 proteins specifically recognaize this motif (Boter et al., 2004)
SORLREP3A T	A TGTATATA T	S000488	one of "Sequences Over-Represented in Light-Repressed Promoters (SORLREPs) in Arabidopsis; Computationally identified phyA-repressed motifs
Upstream (http://ww = A/T/C/	n 1,000 bp ww.dna.af G; K = G/	from the ffrc.go.jp/ /T; W = A	transcript initiation site of Nipponbare and Kasalath OsORAP1 was subjected to <i>cis</i> -element search through PLACE database PLACE/, as of May 2015) using default settings. The <i>cis</i> -elements which appear only in Nipponbare are shown with name, ID and description. N/T; $Y = C/T$.

Table S4: Cis-elements common in Nipponbare and Kasalath OsORAP1 promoter region.

Nipponbare and Kasalath

Name	Sequence	PLACE ID	Description
ARR1AT	NGATT	S000454	"ARR1-binding element" found in Arabidopsis; ARR1 is a response regulator; N=G/A/C/T; AGATT is found in the promoter of rice non-symbiotic haemoglobin-2 (NSHB) gene (Ross et al., 2004)
			Binding consensus sequence of Arabidopsis (A.t.) transcription factor, RAV1; RAV1 specifically binds to DNA with bipartite sequence motifs of RAV1-A (CAACA) and RAV1-B (CACCTG); RAV1 protein contain AP2-like and B3-like domains; The AP2-like and B3-like domains recognize the CAACA and CACCTG motifs, respectively; The expression level of RAV1 were relatively high in rosette
RAV1AAT	CAACA	S000314	leaves and roots
POLASIG3	AATAAT	S000088	"Plant polyA signal"; Consensus sequence for plant polyadenylation signal
			Core site required for binding of Dof proteins in maize (Z.m.); Dof proteins are DNA binding proteins, with presumably only one zinc finger, and are unique to plants; Four cDNAs encoding Dof proteins,
DOFCOREZ	AAAG	5000265	Dofl, Dof2, Dof3 and PBF, have been isolated from maize; PBF is an endosperm specific Dof protein that binds to prolamin box; Maize Dof1 enhances transcription from the promoters of both cytosolic
IVI	AAAO	3000203	olumpiosphate kinase (CyrrDK) and a non-phonosynanetic rere gene, whate Doi2 supressed the C4rere pronoter
			"GATA box"; GATA motif in CaMV 35S promoter; Binding with ASF-2; Three GATA box repeats were found in the promoter of Petunia (P.h.) chlorophyll a/b binding protein, Cab22 gene; Required for
GATABOX	GATA	S000039	high level, light regulated, and tissue specific expression; Conserved in the promoter of all LHCII type I Cab genes
NODCON2			
GM	CTCTT	S000462	One of two putative nodulin consensus sequences
0.0500.055			
OSE2ROOT	CTCTT	\$000468	One of the consensus sequence motifs of organ, specific elements (OSE) characteristic of the promoters activated in infected cells of root nodules
HODOLL	cicii	5000100	one of the consensus sequence months of organ specific controls (OSE) enductional of the profilions detrated in interfed consort for houses
CURECORE			
CR	GTAC	S000493	GTAC is the core of a CuRE (copper-response element) found in Cyc6 and Cpx1 genes in Chlamydomonas; Also involved in oxygen-response of these genes
CACTFTPP			Tetranucleotide (CACT) is a key component of Mem1 (mesophyll expression module 1) found in the cis-regulatory element in the distal region of the phosphoenolpyruvate carboxylase (ppcA1) of the C4
CA1	YACT	S000449	dicot F. trinervia
CTC INTCI			
0	GTGA	\$000378	"GTGA motif" found in the promoter of the tobacco (N t) late pollen gene g10 which shows homology to pectate lyase and is the putative homologue of the tomato gene lat56. Located between -96 and -93
-			
EECCRCAH 1	GANTTNC	S000494	"EEC"; Consensus motif of the two enhancer elements, EE-1 and EE-2, both found in the promoter region of the Chlamydomonas Cah1 (encoding a periplasmic carbonic anhydrase); Binding site of Myb transcription factor LCR1 (see Yoshioka et al, 2004)
			Consensus GT-1 binding site in many light-regulated genes, e.g., RBCS from many species, PHYA from oat and rice, spinach RCA and PETA, and bean CHS15; For a compilation of related GT elements
GT1CONSE NSUS	GRWAAW	S000198	and factors, see Villain et al. (1996); GT-1 can stabilize the TFIIA-TBP-DNA (TATA box) complex; The activation mechanism of GT-1 may be achieved through direct interaction between TFIIA and GT-1; Binding of GT-1-like factors to the PR-1a promoter influences the level of SA-inducible gene expression

CAATBOX1 CAAT S000028 "CAAT promoter consensus sequence" found in legA gene of pea

ROOTMOTI

FTAPOX1 ATATT S000098 Motif found both in promoters of rolD

Table S4 (continued)

Name	Sequence	PLACE ID	Description
SITEHATCA	7		
TC	TGGGCY	S000474	"Site II element" found in the promoter regions of cytochrome genes (Cytc-1, Cytc-2) in Arabidopsis; Located between -147 and -156 from the translational starts sites (Welchen et al., 2005)
REALPHAL GLHCB21	AACCAA	S000362	"REalpha" found in Lemma globa Lhcb21 gene promoter; Located at -134 to -129; Binding site of proteins of whole-cell extracts; The DNA binding activity is high in etiolated plants but much lower in green plants; Required for phytochrome regulation
CCAATBOX 1	CCAAT	S000030	Common sequence found in the 5'-non-coding regions of eukaryotic genes; "CCAAT box" found in the promoter of heat shock protein genes; Located immediately upstream from the most distal HSE of the promoter; "CCAAT box" act cooperatively with HSEs to increase the hs promoter activity
MYBST1	GGATA	S000180	Core motif of MybSt1 (a potato MYB homolog) binding site; MybSt1 cDNA clone was isolated by using CaMV 35S promoter domain A as a probe (Baranowskij et al. 1994); The Myb motif of the MybSt1 protein is distinct from the plant Myb DNA binding domain described so far
CBFHV	RYCGAC	S000497	Binding site of barley (H.v.) CBF1, and also of barley CBF2; CBF = C-repeat (CRT) binding factors; CBFs are also known as dehydration-responsive element (DRE) binding proteins (DREBs)
SORLIP2AT	GGGCC	S000483	one of "Sequences Over-Represented in Light-Induced Promoters (SORLIPs) in Arabidopsis; Computationally identified phyA-induced motifs
EBOXBNNA PA	A CANNTG	S000144	E-box of napA storage-protein gene of Brassica napus (B.n.); See S000042 (CACGTGMOTIF); see S000407 (Myc consensus: CANNTG); This sequence is also known as RRE (R response element)(Hartmann et al., 2005)
MYCCONS ENSUSAT	CANNTG	S000407	MYC recognition site found in the promoters of the dehydration-responsive gene rd22 and many other genes in Arabidopsis; Binding site of ATMYC2 (previously known as rd22BP1); see S000144 (E-box; CANNTG), S000174 (MYCATRD22); MYC recognition sequence in CBF3 promoter; Binding site of ICE1 (inducer of CBF expression 1) that regulates the transcription of CBF/DREB1 genes in the cold in Arabidopsis; ICE1 (Chinnusamy et al., 2004);) This sequence is also known as RRE (R response element)(Hartmann et al., 2005)
POLLEN1LI LAT52	E AGAAA	S000245	One of two co-dependent regulatory elements responsible for pollen specific activation of tomato (L.e.) kt52 gene; Found at -72 to -68 region; See S000246 (POLLEN2LELAT52); AGAAA and TCCACCATA (S000246) are required for pollen specific expression; Also found in the promoter of tomato endo-beta-mannanase gene (LeMAN5) gene (Filichkin et al. 2004)
TATCCAOS AMY	TATCCA	S000403	"TATCCA" element found in alpha-amylase promoters of rice (O.s.) at positions ca.90 to 150bp upstream of the transcription start sites; Binding sites of OsMYBS1, OsMYBS2 and OsMYBS3 which mediate sugar and hormone regulation of alpha-amylase gene expression
RYREPEAT BNNAPA	CATGCA	S000264	RY repeat" found in RY/G box (the complex containing the two RY repeats and the G-box) of napA gene in Brassica napus (B.n.); Found between -78 and -50; Required for seed specific expression; dist B ABRE mediated transactivation by ABI3 and ABI3-dependent response to ABA; a tetramer of the composite RY/G complex mediated only ABA-independent transactivation by ABI3; B2 domain of ABI3 is necessary for ABA-independent and ABA-dependent activation through the dist B ABRE
RYREPEAT	L		
EGUMINBC X	CATGCAY	S000100	"RY repeat (CATGCAY)" or legumin box found in seed-storage protein genes in legume such as soybean (G.m.)
RHERPATE XPA7	KCACGW	S000512	"Right part of RHEs (Root Hair-specific cis-Elements)" conserved among the Arabidopsis thaliana A7 (AtEXPA7) orthologous (and paralogous) genes from diverse angiosperm species with different hair distribution patterns
ABRELATE RD1	ACGTG	S000414	ABRE-like sequence (from -199 to -195) required for etiolation-induced expression of erd1 (early responsive to dehydration) in Arabidopsis
ACGTATER D1	ACGT	S000415	ACGT sequence (from -155 to -152) required for etiolation-induced expression of erd1 (early responsive to dehydration) in Arabidopsis

Table S4 (continued)

Name	Sequence	PLACE ID	Description
TUTUDONO			
TATABOXC) ТАТТТАА	\$000400	Binding site for Os 1BP2, found in the promoter of rice pal gene encoding phenylalanine ammona-lyase; Os 1F1IB stimulated the DNA binding and bending activities of Os 1BP2 and synergistically enhanced
SPAL	IAIIIAA	5000400	USE 1 binding give in CoAV/255 promotes TCACC motify: Sag \$00002 (AS1); Found in UDD 1 binding give a public to the TCACC motify and in more promotes
ASEIMOTI	2		AST-1 binding site in Carly 555 promoter, AST-1 binds to two TOACG moust, see \$000025 (AST), round in http:// binding.gite.org/line.gite.toAcG moust an indiry promoters and are invited in the carly the second and the second and the carly the second and the seco
CAMV	TGACG	5000024	and are involved in trainscriptional activation of several genes by advant and/or sancy several genes by adv
CAW	IUACU	3000024	s a new inclusion of the FOR family, ADMA and DARK Subset During and a set central activity
WBOXATN			w-00x hours in promoter of Arabotopsis unlimit (AL) INTAT gene, Located between +/0 and +// in tancein, They were recognized specification by sancytic actu (SA)-induced WART to DAY officiality of Sancytic actuality of Sancytic a
PR1	TTGAC	\$000390	
110	110/10	5000570	2002)
			"A core of TGAC-containing W-box" of e.g. Amv32b promoter: Binding site of rice WRKY71 a transcriptional repressor of the gibberellin signaling pathway. Parsley WRKY proteins bind specifically to
WRKY7108	5 TGAC	S000447	TGAC-containing W hox elements within the Pathogenesis-Related Class IO (PR-10) sense (Fulsem et al. 1999)
-			
300ELEMEN	1		
Т	TGHAAAR	K S000122	Present upstream of the promoter from the B-hordein gene of barley and the alpha-gliadin, gamma-gliadin, and low molecular weight glutenin genes of wheat
GT1GMSCA			
M4	GAAAAA	S000453	"GT-1 motif" found in the promoter of soybean (Glycine max) CaM isoform, SCaM-4; Plays a role in pathogen- and salt-induced SCaM-4 gene expression
			"TATA box"; TATA box found in the 5'upstream region of pea legA gene; sporamin A of sweet potato; TATA box found in beta-phaseolin promoter (Grace et al.); sequence and spacing of TATA box
TATABOX2	TATAAAT	S000109	elements are critical for accurate initiation (Grace et al.)
			Binding site for all animal MYB and at least two plant MYB proteins ATMYB1 and ATMYB2, both isolated from Arabidopsis; ATMYB2 is involved in regulation of genes that are responsive to water stress
MYBCORE	CNGTTR	S000176	in Arabidopsis; A petunia MYB protein (MYB.Ph3) is involved in regulation of flavonoid biosynthesis (Solano et al. EMBO J 14:1773 (1995))
PYRIMIDIN			
EBOXOSRA			Pyrimidine box found in rice (O.s.) alpha-amylase (RAmylA) gene; Gibberellin-respons cis-element of GARE and pyrimidine box are partially involved in sugar repression; Found in the promoter of barley
MYIA	CCTITI	\$000259	alpha-amylase (Amy2/32b) gene which is induced in the aleurone layers in response to GA; BPBF protein binds specifically to this site
MUDOCON	-		
ENGLISAT	NAACVC	5000400	NVD essential a firm la de constant of the data destina essential constant a 22 and annu other essential Ambidensia
ENSUSAI	TAACKU	5000409	WYB recognition site found in the promoters of the denytration-responsive gene to22 and many other genes in Atabidopsis
- 10DEHVDSE	2		" 10 promoter alamant" found in the harley (H v.) oblocontect not a promoter. Involved in the avpression of the plottid gene pcbD which encodes a photosystem II reaction center oblocontrol binding
D	, TATTCT	\$000392	- to promote element of the section of the section of the promote section of the pastal gene poor when encodes a protosystem in reaction center encoder protocol and the section of the pastal gene poor when encodes a protosystem in reaction center encoder protocol and the section of the pastal gene poor when encodes a protosystem in reaction center encoder protocol and the section of the pastal gene poor when encodes a protosystem in reaction center encoder protocol and the section of the pastal gene poor when encodes a protosystem in reaction center encoder protocol and the section of the pastal gene poor when encoder a protosystem in reaction center encoder protocol and the pastal gene poor when encoder a protosystem in reaction center encoder poor when encoder a protocol and the pastal gene poor when encoder a poor when encoder a protocol and the pastal gene poor when encoder a poor when encoder a poor when encoder a poor when encoder poor when encoder a poor when encoder a poor when encoder a poor w
<u> </u>	miller	5000572	
			Core of consensus maize P (much homolog) hinding site: 6 hn core: Maize P gene specifies red nomentation of kernel periearn, och, and other floral organs: P hinds to A1 gene, but not B21 gene: Maize C1
MYBPZM	CCWACC	\$000179	(myb homolog) activates (hitho in the rest (Grotewold et al. 1994)
			"TATA box": TATA box found in the 5'unstream region of sweet potato sporamin A gene: TATA box found in beta-phaseolin promoter (Grace et al.): sequence and spacing of TATA box elements are
TATABOX4	TATATAA	S000111	critical for accurate initiation (Grace et al.)
MYBCORE			"Myb core" in the 18 bp sequence which is able to activate reporter gene without leading to M-phase-specific expression, found in the promoter of Arabidopsis thaliana cyclin B1:1 gene; the 18 bp sequence
ATCYCB1	AACGG	S000502	share homology with a sequence found in the N. sylvestris cyclin B1 promoter (Trehin et al., 1999; see S000283)
MYCATRD2	2		Binding site for MYC (rd22BP1) in Arabidopsis (A.t.) dehydration-resposive gene, rd22; MYC binding site in rd22 gene of Arabidopsis thaliana; ABA-induction; Located at ca200 of rd22 gene; Also
2	CACATG	S000174	MYB at ca141 of rd22 gene

Table S4 (continued)

Name	Sequence	PLACE ID	Description
MYCATERD 1) CATGTG	S000413	MYC recognition sequence (from -466 to -461) necessary for expression of erd1 (early responsive to dehydration) in dehydrated Arabidopsis; NAC protein bound specifically to the CATGTG motif (Tran et al., 2004)); NAC protein bound specifically to the CATGTG motif (Tran et al., 2004)
MYBPLANT	MACCWAN C	И S000167	Plant MYB binding site; Consensus sequence related to box P in promoters of phenylpropanoid biosynthetic genes such as PAL, CHS, CHI, DFR, CL, Bz1; Myb305; M=A/C; W=A/T; See S000355; The AmMYB308 and AmMYB330 transcription factors from Antirrhinum majus regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco
BOXLCORE DCPAL	ACCWWCC	C S000492	Consensus of the putative "core" sequences of box-L-like sequences in carrot (D.c.) PAL1 promoter region; DCMYB1 bound to these sequences in vitro
CGCGBOX AT	VCGCGB	S000501	"CGCG box" recognized by AtSR1-6 (Arabidopsis thaliana signal-responsive genes); Multiple CGCG elements are found in promoters of many genes; Ca++/calmodulin binds to all AtSRs
MARTBOX	TTWTWTT WTT	S000067	"T-Box"; Motif found in SAR (scaffold attachment region; or matrix attachment region, MAR)
SEF4MOTIF GM7S	RTTTTTR	S000103	"SEF4 binding site"; Soybean (G.m.) consensus sequence found in 5'upstream region (-199) of beta-conglycinin (7S globulin) gene (Gmg17.1); "Binding with SEF4 (soybean embryo factor 4)"
DPBFCORE DCDC3	ACACNNG	S000292	A novel class of bZIP transcription factors, DPBF-1 and 2 (Dc3 promoter-binding factor-1 and 2) binding core sequence; Found in the carrot (D.c.) Dc3 gene promoter; Dc3 expression is normally embryo- specific, and also can be induced by ABA; The Arabidopsis abscisic acid response gene ABI5 encodes a bZIP transcription factor; abi5 mutant have a pleiotropic defects in ABA response; ABI5 regulates a subset of late embryogenesis-abundant genes; GIA1 (growth-insensitivity to ABA) is identical to ABI5
ABRERATC AL	MACGYGB	S000507	"ABRE-related sequence" or "Repeated sequence motifs" identified in the upstream regions of 162 Ca(2+)-responsive upregulated genes; see also ABRE
NAPINMOT IFBN	TACACAT	S000070	Sequence found in 5' upstream region (-6, -95, -188) of napin (2S albumin) gene in Brassica napus (B.n.); Interact with a protein present in crude nuclear extracts from developing B. napus seeds

Upstream 1,000 bp from the transcript initiation site of Nipponbare and Kasalath OsORAP1 was subjected to *cis*-element search through PLACE database (http://www.dna.affrc.go.jp/PLACE/, as of May 2015) using default settings. The *cis*-elements which are common in both cultivars are shown with name, ID and description. N = A/T/C/G; K = G/T; W = A/T; Y = C/T; B = C/G/T; M = A/C; R = A/G; V = A/C/G; H = A/C/T.

Table S5: Cis-elements found only in Kasalath OsORAP1 promoter region.

Only in Kasalath

Name	Sequence	PLACE ID	Description
CACGTGM OTIF	CACGTG	S000042	"CACGTG motif"; "G-box"; Binding site of Arabidopsis GBF4; C. roseus G-box binding factor 1 (CrGBF1) and 1 (CrGBF2) can act as transcriptional repressors of the Str promoter via direct interaction with the G-box; See S000345; Essential for expression of beta-phaseolin gene during embryogenesis in bean, tobacco, Arabidopsis; Tomato Pti4 (ERF) regulates defense-related gene expression via GCC box and non-GCC box cis-element (Myb1 (GTTAGTT) and G-box (CACGTG)); A prominent hit by in silico analysis in both induced and repressed phyA-responsive promoters (Hudson and Quail 2003)
TATABOX5	TTATTT	S000203	"TATA box"; TATA box found in the 5'upstream region of pea (Pisum sativum) glutamine synthetase gene; a functional TATA element by in vivo analysis
CARGCW8 GAT	CWWWWW WWWG	V S000431	A variant of CArG motif (see S000404), with a longer A/T-rich core; Binding site for AGL15 (AGAMOUS-like 15)
SORLIP1AT	GCCAC	S000482	one of "Sequences Over-Represented in Light-Induced Promoters (SORLIPs) in Arabidopsis; Computationally identified phyA-induced motifs; SORLIP 1 is most over-represented, and most statistically singnificant; Over-represented in light-induced cotyledon and root common genes and root-specific genes (Jiao et al. 2005; see S000486)
CELLCYCL ESC	CACGAAA A	S000031	"cell cycle box" found in URS2 (-940/-200) of HO gene of S.cerevisiae; cell-cycle-specific activation of transcription
WBOXNTE RF3	TGACY	S000457	"W box" found in the promoter region of a transcriptional repressor ERF3 gene in tobacco; May be involved in activation of ERF3 gene by wounding
WBOXNTC HN48	CTGACY	S000508	"W box" identified in the region between - 125 and -69 of a tobacco class I basic chitinase gene CHN48; NtWRKY1, NtWRKY2 and NtWRKY4 bound to W box; NtWRKYs possibly involved in elicitor- responsive transcription of defense genes in tobacco
MYB2AT	TAACTG	S000177	Binding site for ATMYB2, an Arabidopsis MYB homolog; ATMYB2 binds oligonucleotides that contained a consensus MYB recognition sequence (TAACTG), such as is in the SV40 enhancer and the maize bronze-1 promoter (Urao et al., Plant Cell 5:1529 (1993)); ATMYB2 is involved in regulation of genes that are responsive to water stress in Arabidopsis
SV40CORE NHAN	E GTGGWWF G	I S000123	"SV40 core enhancer"; Similar sequences found in rbcS genes
MYBATRD2 2	CTAACCA	S000175	Binding site for MYB (ATMYB2) in dehydration-responsive gene, rd22; MYB binding site in rd22 gene of Arabidopsis thaliana; ABA-induction; Located at ca141 of rd22 gene; Also MYC at ca200 of rd22 gene
MYB1AT	WAACCA	S000408	MYB recognition site found in the promoters of the dehydration-responsive gene rd22 and many other genes in Arabidopsis
L1BOXATP DF1	TAAATGYA	A S000386	"L1 box" found in promoter of Arabidopsis thaliana (A.t.) PROTODERMAL FACTOR1 (PDF1) gene; Located between -134 and -127; Involved in L1 layer-specific expression; L1-specific homeodomain protein ATML can bind to the "L1 box", A cotton fiber gene, RD22-like 1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif (Wang et al., 2004); HDZip IV
BS1EGCCR	AGCGGG	S000352	"BS1 (binding site 1)" found in E. gunnii Cinnamoyl-CoA reductase (CCR) gene promoter; nuclear protein binding site; Required for vascular expression
BOXCPSAS 1	CTCCCAC	S000226	Box C in pea (P.s.) asparagine synthetase (AS1) gene; Found at -45; AS1 is negatively regulated by light; Box C binds with nuclear proteins, which was competed by a putative repressor element RE1 (see S000195)

Table S5 (continued)

Name	Sequence	PLACE ID	Description
CRTDREHV			
CBF2	GTCGAC	S000411	Preferred sequence for AP2 transcriptional activator HvCBF2 of barley; "Core CRT/DRE motif"; HvCBF2 bound to a (G/a)(T/c)CGAC core motif (Xue, 2003); DNA binding is regulated by temperature
SURECORE			Core of sulfur-responsive element (SURE) found in the promoter of SULTR1;1 high-affinity sulfate transporter gene in Arabidopsis; SURE contains auxin response factor (ARF) binding sequence
ATSULTR11	GAGAC	S000499	(GAGACA)(see S000270 ARF:TGTCTC; its complementary seq is GAGACA), and this core sequence is a part of it; this core seq is involved in -S response
RYREPEAT			
GMGY2	CATGCAT	S000105	"RY repeat motif (CATGCAT)", Present in the 5' region of the soybean (G.m.) glycinin gene (Gy2)
SEF3MOTIF			"SEF3 binding site"; Soybean (G.m.) consensus sequence found in the 5' upstream region of beta-conglycinin (7S globulin) gene; AACCCA(-27bp-)AACCCA; SEF=soybean embryo factor; SEF2; SEF3;
GM	AACCCA	S000115	SEF4
E2FCONSE			
NSUS	WTTSSCSS	S000476	"E2F consensus sequence" of all different E2F-DP-binding motifs that were experimentally verified in plants (Vandepoele et al., 2005)

IRO2OS CACGTGG S000505 OsIRO2-binding core sequence; "G-box plus G"; Transcription factor OsIRO2 is induced exclusively by Fe deficiency

Upstream 1,000 bp from the transcript initiation site of Nipponbare and Kasalath OsORAP1 was subjected to *cis*-element search through PLACE database (http://www.dna.affrc.go.jp/PLACE/, as of May 2015) using default settings. The *cis*-elements which appear only in Kasalath are shown with name, ID and description. W = A/T; Y = C/T; H = A/C/T; S = G/C.

Stress	Os09g0365900	Os06g0567900	Reference
Cold stress (12 h)	1.0	0.9	Yun et al., 2010
Salinity stress (30 days)	0.7	0.6	Walia et al., 2005
Drought stress (12 h)	1.3	1.7	Minh-Thu et al., 2013
Zinc deficiency (4 weeks)	1.0	1.4	Widodo et al., 2010
Iron toxicity (1 g/L Fe^{2+} , 4 days)	1.8	1.7	Wu et al., unpublished
Ozone (120 ppb, 7 h, 13 days)	39.1	0.3	Frei et al., 2010
Methyl viologen (24 h)	2.7	3.1	This study
Blast fungus (48 h)	5.9	2.1	Chujo et al., 2013

Supplementary Table S6: Expression levels of rice OsORAP1 and Os06g0567900 gene under several stress conditions.

Expression data were obtained from publicly available microarray data sources, or experimentally determined for methyl viologen (MV) treatment. The fold increase values under the denoted stress conditions are shown for Os09g0365900 and Os06g0567900. The left column shows the type and duration of stress treatment. For MV treatment, plants were sprayed with 50 mM MV added with 0.1% (v/v) Tween 20, or 0.1% (v/v) Tween 20 alone as a mock treatment. The shoot samples were taken after 24 h and the gene expression levels were analysed by real-time PCR.

Supplementary Table S7: Germination rate of heterozygous knock-out line of *OsORAP1* in Tainung 67 genetic background.

	Germinated	Not germinated	Predicted ratio	Germination rate
Plate 1	56	18	3:1	75.70%
Plate 2	48	18	3:1	72.70%
Plate 3	53	17	3:1	75.70%
Total	157	53	3:1	74.80%

Seeds were obtained from *OsORAP1* heterozygous knock-out plants with the genetic background of Tainung 67. Seeds were sterilized with 5% (w/v) NaClO for 5 min, rinsed with water 5 times and sown on 0.8% (w/v) agar plates. The number of seedlings was counted after 16 days of incubation at 28 °C in dark. The seeds were considered germinated when either coleoptile or radicle emerged from the embryo. Chi-square test was conducted with the null hypothesis that the germination rate was 75%. The parameters used were: *d* (degrees of freedom) = 1 and $\chi^2 = 0.0063$. It rendered *P* = 0.9365 and therefore it was concluded that the homozygous seeds were lethal. Genotyping of 43 randomly chosen germinated seeds from another experiment did not contain any homozygous mutant (15 null, 28 heterozygous).

Supplementary data for Chapter 4

Supplementary Figure S17: Subpopulation comparison of all phenotypes. The whole population was classified into five subpopulations or admixed group as proposed by Zhao *et al.* (2010). Mean values and standard errors are shown. The subpopulations were composed as follows: ADMIX (admixed group, n =

48), AROMATIC (n = 12), AUS (n = 55), IND (*indica*, n = 74), TEJ (*temperate japonica*, n = 69), TRJ (*tropical japonica*, n = 70). In E-G, 63 lines with thousand kernel weight (TKW) less than 10 g (ten ADMIX, four AROMATIC, three AUS, 26 IND, four TEJ and 16 TRJ) were eliminated to evaluate only matured grains. In F and G, lines with high grain shattering (one ADMIX, six AUS and one IND) were further eliminated. For A, I and J, letters above the bars indicate significant differences at P < 0.05. All other parameters showed no significant differences. (A) leaf bronzing score (LBS), (B) relative plant height, (C) relative dry weight (DW), (D) relative tiller number, (E) relative TKW, (F) relative total panicle weight (TPW), (G) relative single panicle weight (SPW), (I) relative SPAD value, (H) constitutive lignin content, (J) relative lignin content.

Supplementary Figure S18: Association mapping result for relative plant height. (A) Frequency distribution of observed relative plant height. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNP exceeding the significance threshold of P < 0.0001 is shown in red. (D) The peak region on chromosome 8. In D, pair-wise linkage disequilibrium between SNP markers is indicated as D' values: dark red indicates a value of 1 and white indicates 0. The dotted square in D denotes the linkage disequilibrium block which contains the significant SNP.

Supplementary Figure S19: Association mapping result for relative tiller number. (A) Frequency distribution of observed relative tiller number. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNP exceeding the significance threshold of P < 0.0001 is shown in red. (D) The peak region on chromosome 1. In D, pair-wise linkage disequilibrium between SNP markers is indicated as D' values: dark red indicates a value of 1 and white indicates 0. The dotted square in D denotes the linkage disequilibrium block which contains the significant SNP.

Supplementary Figure S20: Association mapping result for relative thousand kernel weight (TKW). (A) Frequency distribution of observed relative TKW. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue.

Supplementary Figure S21: Association mapping result for relative total panicle weight (TPW). (A) Frequency distribution of observed relative TPW. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue.

Supplementary Figure S22: Association mapping result for relative SPAD value. (A) Frequency distribution of observed relative SPAD value. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue and the SNPs exceeding the significance threshold of P < 0.0001 are shown in red. (D) The peak region on chromosome 4. (E) The peak region on chromosome 5. In D and E, pair-wise linkage disequilibrium between SNP markers is indicated as D'values: dark red indicates a value of 1 and white indicates 0. The dotted squares in D and E denote the linkage disequilibrium blocks which contain significant SNPs.

Supplementary Figure S23: Association mapping result for constitutive lignin content. (A) Frequency distribution of observed constitutive lignin content. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. The top 50 SNPs are shown in blue.

Supplementary Figure S24: Association mapping result for relative lignin content. (A) Frequency distribution of observed relative lignin content. (B) QQ plot of expected and observed P values. (C) Manhattan plots from association mapping using the Mixed Linear Model. Top 50 SNPs are shown in blue.

,				DNA AP2	A binding do /ERF domain	main		011 2			
			$\overline{\left\langle \cdot \right\rangle}$						7/	×	
Plant II) Subpor	id5006910	117	127	204	212	393	627	812	917	id5006916
639	TEJ	С	G	т	т	т	G	С		Α	Т
45	ARO	С	G	С	Т	Т	G	С	GGA	А	С
112	ARO	С	G	С	Т	Т	G	С	GGA	А	С
318	AUS	Т	G	С	С	A	T	T		С	Т
353	AUS	Т	G	С	С	A	T	T		С	Т
171	IND	С	A	С	C	T	G	C		Α	Т
184	TEJ	С	G	C	T	T	G	C		Α	Т
218	ADM	С	A	С	С	Т	G	С		A	Т
308	TRJ	С	A	С	С	Т	G	С		A	Т
154	TEJ	С	0	Т	Т	Т	0	0	GGA	A	С
41	TEJ	С	G	С	Т	Т	G	С	GGA	A	С
131	TEJ	С	G	С	Т	Т	G	С	GGA	A	С
113	TEJ	С	0	0	Т	Т	0	С		Α	С
32	TEJ	С	G	Т	Т	Т	G	0		Α	Т
104	TEJ	С	0	0	Т	Т	G	С	GGA	Α	С
75	TRJ	С	0	0	Т	Т	0	С		Α	С
17	TRJ	С	G	0	Т	Т	0	С	GGA	А	С
635	TRJ	С	G	Т	Т	Т	0	С		Α	Т
116	TRJ	С	0	Т	Т	Т	G	0		Α	С
165	TRJ	С	0	Т	Т	Т	0	0	GGA	А	С
23	TRJ	С	G	С	Т	Т	G	С	GGA	A	С
101	TRJ	С	G	С	Т	Т	G	С	GGA	А	С
93	ARO	С	G	С	Т	Т	G	С	GGA	А	С
16	ARO	С	G	С	Т	Т	G	С	GGA	А	С
53	ARO	С	G	С	Т	Т	G	С	GGA	А	С
107	IND	Т	0	Т	Т	Т	0	С		А	Т
102	IND	С	А	С	С	Т	G	С		А	Т
71	IND	Т	G	С	С	А	Т	С		С	Т
3	IND	С	0	Т	С	Т	0	С		А	Т
61	IND	С	0	0	С	Т	0	С		А	Т
105	AUS	С	0	0	Т	Т	G	С		А	С
81	AUS	С	А	С	С	Т	G	С		А	Т
78	AUS	С	0	Т	С	Т	G	С		А	Т
50	AUS	С	G	Т	Т	Т	G	С		А	С
<u> </u>	1	*	R (17)	Sym	*	1	A (43)	P(121)	-(182)	*	*

Supplementary Figure S25: Sequence variation of *EREBP* gene. The genomic sequences of *EREBP* from a total of 34 lines are shown together with two adjacent SNPs. The amino acid sequence 53 to 111 is a DNA binding domain, and 53 to 116 is an AP2/ERF domain. The reference sequence from Nipponbare is shown in boldface on the top. The possible amino acid substitution in the coding sequence is shown in the bottom row. The amino acid in the reference sequence, its position and the substituted amino acid are shown. '0' stands for missing data. 'Syn.' denotes that the SNP causes silent mutation. Asterisks show that the SNP position has been already reported by OryzaSNP project (McNally *et al.*, 2009).

Supplementary Figure S26: Association mapping result in each subpopulation for square-root transformed leaf bronzing score (t-LBS). The subpopulations consisted of AUS (n = 55), IND (*indica*, n = 74), TEJ (*temperate japonica*, n = 69) and TRJ (*tropical japonica*, n = 70). Association mapping was not conducted in ADMIX and AROMATIC subpopulation. The dotted red line on chromosome 5 denotes the position of the *RING* (*LOC_Os05g29710*).

			5' UI	TR F	ТМ	Exc	on	R	ING						
Plant ID	Subnon	id500687	4 121	159	469	471	475	635	652	663	876	1048	1120	1304	id5006882
	Sabbob	10.500007		137	402	0		055	0.52	005	0/0	1 0 4 8	07	15.0-1	103000882
639 14	TRI	A 4	C	G		с С	A A	G	C	<u>с</u>	с С	T T	GT	A 4	
26	TRI	A	C	G		C	A	G	c	C	C	Т	GT	A	Г
45	ARO	A	Č	Ğ		Č	A	Ğ	Č	Č	Č	Т	GT	A	Г
46	TRJ	A	С	G		С	A	G	С	С	С	Г	GT	A	Г
112	ARO	А	С	G		С	А	G	С	С	С	Т	GT	A	Г
135	TRJ	А	С	G		С	А	G	С	С	С	Г	GT	A	Г
184	TEJ	A	С	G		С	A	G	С	С	С	Т	GT	A	Г
213	TRJ	A	C	G		C	A	G	C	C	C	Г	GT	A	<u> </u>
264	ADM	A	C	G		C	A	G	C		C	I T	GT	A	<u> </u>
207	TDI	A	C	с С		C C	A	u C	6		C C	μ π	GI	A	
285	ADM	A	C	G		C	A	G	r r	r r	c c	и T	GT	A	- <u>r</u>
68	ADM	G	G	т	TCGTCG	c C	G	4	Δ	G	c c	Δ	01	r C	
75	TRJ	G	G	т	TCGTCG	C C	G	A	A	G	c	Т		c	c
139	TRJ	G	G	T	TCGTCG	C	G	A	A	G	C	A		C	C
166	ADM	0	G	T	TCGTCG	C	G	A	A	G	C	Т		C	c
171	IND	G	G	Т	TCGTCG	C	G	А	А	G	C	Т	GT	A	D
209	IND	0	G	Т	TCGTCG	С	G	А	А	G	С	Т		С	С
218	ADM	G	G	Т	TCGTCG	С	G	А	А	G	С	A		С	С
231	IND	G	G	Т	TCGTCG	С	G	А	А	G	С	Т	GT	A	Г
242	TRJ	G	G	Т	TCGTCG	С	G	А	А	G	С	Т		С	С
308	TRJ	G	G	Т	TCGTCG	С	G	А	A	G	С	A		С	С
318	AUS	G	G	G	TCGTCG	Т	A	А	A	G	A	Т		С	С
324	AUS	G	G	G	TCGTCG	Т	A	A	A	G	A	Г		С	C
353	AUS	G	G	G	TCGTCG	Т	A	A	A	G	A	Т		C	C
635	TRJ	G	G	T	TCGTCG	C	G	A	A	G	C	A		C	C
154	TEJ	A	C	G	0	0	0	G	0	0	C	T T	GT	A	T
41	TEJ	A	C	G	0	0	A	G	0	0	C	1	GI	A	T
131	TEI	A	C	G	0	0 C	A	0	C	C	C C	I т	GT	A	T
32	TEI	A	C	G	TCGTCG	C C	Δ	G	0	0	c	т	GT	A .	T
104	TEJ	A	C	G	TCGTCG	C	A	0	0	0	C	Т	GT	A	T
17	TRJ	A	C	G	0	0	0	0	0	ů 0	C	т Т	GT	A	T
116	TRJ	А	C	G	TCGTCG	с.	A	Ğ	Č	Ĉ	C	Т	GT	A	Т
165	TRJ	А	С	G	0	0	А	0	0	0	С	Т	GT	А	Т
23	TRJ	А	С	G	TCGTCG	С	А	G	С	С	С	Т	GT	А	Т
101	TRJ	A	С	G	TCGTCG	С	A	G	С	С	С	Т	GT	A	Т
16	ARO	А	С	G	TCGTCG	С	А	G	С	С	С	Т	GT	А	Т
53	ARO	А	С	G	TCGTCG	С	А	G	С	С	С	Т	GT	А	Т
105	AUS	A	C	G	TCGTCG	C	A	G	C	C	C	Г	GT	A	T
50	AUS	A	C	G	TCGTCG	C	A	G	C	C	C	T T	GT	A	
95	AKU	A	C	G	TCGTCG	C	A	G	C	G	C	<u>п</u>	GT	A	
71		G	G	G	ICGICG	1	A 0	0	0	U C		11 T			
61	IND	G	G	т	0	v C	4	4	4	0	A	и T		r r	
78	AUS	G	G	т	0	c c	G	0	0	c	c	ці T		r	C
81	AUS	G	G	Ť	TCGTCG	c	G	A	A	Ğ	č	ŕ		č	c
3	IND	G	Ğ	T	0	0	0	G	С	0	Ć	T		č	C
102	IND	G	G	Т	TCGTCG	C	G	0	С	0	C	Т		Ċ	С
Amino acid	l	*	*		(86)	*, Syn.	T (88)	R (141)	R (147)	Syn.	*			*	*
substitutior	ı				→ss		→A	→н	→s						

Supplementary Figure S27: Sequence variation of *RING* gene. The genomic sequences of *RING* from 50 lines are shown together with two adjacent SNPs. The amino acid sequence 29 to 50 is a transmembrane domain (TM), and 133 to 175 is a zinc-finger motif (RING). The reference sequence from Nipponbare is shown in boldface on the top. The possible amino acid substitution in the coding sequence is shown in the bottom row. The amino acid in the reference sequence, its position and the substituted amino acid are shown. '0' stands for missing data. 'Syn.' denotes that the SNP causes silent mutation. Asterisks show that the SNP position has been already reported by OryzaSNP project (McNally *et al.*, 2009).

NSETVID	Accession Name	Country of origin	Subpopulation	Leaf bronzing score	Control plant height	Ozone plant height	Control dry weight	Ozone dry weight	Control tillernumber	Ozone tiller number	Control thousand kernel weight	Orone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
3 A	i-Chiao-Hong	China	IND	0.7	197.0	191.7	70.7	49.4	11.3	8.3	21.4	18.2	31.8	15.9	2.9	2.2	425.0	417.0	1.6	1.4
4 A	RC 10177	India	AUS	0.3	187.0	184.7	42.8	26.0	5.7	4.0	9.2	11.9	11.2	8.2	0.8	1.2	374.0	415.5	1.7	1.8
5 A	RC 10352	India	AROMATIC	3.7	223.7	230.3	102.5	76.7	13.7	9.7	19.8	19.3	26.9	21.0	2.1	2.1	405.7	377.3	1.6	1.6
6 A	RC 7229	India	AUS	4.3	212.3	217.3	33.7	34.2	3.7	4.0	22.4	18.6	14.7	14.3	3.4	3.9	347.0	382.5	1.8	1.9
8 A	sse Y Pung	Philippines	TRJ	3.3	225.0	205.0	56.4	39.5	5.0	5.0	21.6	16.8	12.6	6.4	2.3	1.6	373.0	303.7	1.9	2.2
9 Ba	aber	India	TEJ	2.0	205.0	206.7	52.6	32.3	7.0	6.7	23.8	19.1	35.3	25.8	4.8	3.7	432.3	406.3	1.7	2.1
10 Ba	aghlani Nangarhar	Afghanistan	TEJ	2.0	146.7	147.0	27.1	17.9	8.7	6.7	16.8	14.1	11.3	2.9	1.3	0.5	445.0	400.0	1.8	1.9
12 Ba	asmati	Pakistan	AROMATIC	2.0	226.7	209.0	70.8	57.9	12.5	10.3	20.9	14.0	53.8	9.1	2.6	0.9	385.3	348.0	1.5	1.7
13 Ba	asmati 1	Pakistan	AUS	2.0	210.0	201.7	66.3	64.1	12.0	12.0	20.6	14.2	19.6	13.4	1.0	0.9	383.0	343.3	1.4	1.5
14 Ba	asmati 217	India	TRJ	4.7	219.0	189.7	65.5	31.5	12.7	8.3							378.0	321.7	1.9	1.9
16 Bi	ico Branco	Brazil	AROMATIC	2.3	238.0	234.3	137.6	109.5	14.3	13.7							379.3	390.3	1.4	1.6
17 Bi	inulawan	Philippines	IND	0.3	91.3	84.0	17.4	6.8	5.7	5.0							372.3	348.0	1.7	1.9
18 B.	J 1	India	AUS	3.3	208.0	204.0	86.2	66.2	26.7	17.7	22.1	21.0					387.0	360.7	1.5	1.9
19 Bl	lack Gora	India	AUS	2.0	191.2	198.7	44.8	35.0	8.7	7.7	25.4	22.3	37.0	24.1	2.8	2.3	373.7	364.3	1.6	1.8
21 By	yakkoku Y 5006 Seln	Australia	IND	2.7	190.7	186.3	60.0	42.8	11.0	8.7	20.0	16.3	15.0	13.7	1.7	2.5	413.0	370.0	1.5	1.6
22 Ca	aawa/Fortuna 6-103-15	Taiwan	TRJ	3.0	210.3	209.0	81.4	51.3	9.7	7.0	22.1	21.2	10.0	11.5	1.7	1.7	338.5	343.7	1.5	1.8
23 Ca	anella De Ferro	Brazil	TRJ	2.0	239.3	232.0	107.6	47.8	7.5	5.7	17.6	14.6	26.9	13.6	2.8	2.3	385.7	368.7	1.8	1.7
24 Ca	arolina Gold	United States	TRJ	2.3	229.0	213.3	62.2	53.0	6.0	5.7	23.0	19.1	20.2	13.7	3.2	2.3	376.3	361.0	1.8	1.8
25 Ca	arolina Gold	United States	TRJ	3.3	229.0	223.7	45.3	50.2	5.7	6.7	19.5	13.7	19.8	12.7	3.6	2.1	387.0	383.0	1.8	1.7
26 Ca	arolina Gold Sel	United States	TRJ	2.0	232.3	218.5	48.1	48.9	5.7	5.3	24.8	18.4	14.9	10.9	3.4	2.3	377.0	377.7	1.8	1.9
27 Cl	hahora 144	Pakistan	TRJ	2.7	159.7	153.0	21.3	16.2	5.0	4.3	22.5	17.9	6.4	4.2	1.8	1.1	351.7	355.3	2.0	1.8
29 Cl	hau	Vietnam	IND	0.3	226.7	227.0	55.7	44.1	8.7	7.0							378.3	383.0	1.9	2.0
30 Cl	hiem Chanh	Vietnam	IND	2.0	245.3	228.7	78.5	69.4	16.7	16.3	20.3	18.4	31.2	24.1	2.2	1.8	394.0	416.0	2.3	2.0
31 CI	hinese	China	TEJ	0.7	143.7	147.7	22.3	20.0	6.7	6.7	12.1	15.5	4.2	3.7	0.6	0.6	396.0	373.0	1.9	1.9
32 CI	hodongji	South Korea	TEJ	1.7	174.3	167.7	38.4	30.0	8.3	6.3	18.0	15.3	11.9	6.2	1.8	1.4	380.3	396.7	2.1	2.1
33 CI	huan 4	Taiwan	AUS	3.3	184.7	186.3	50.2	56.3	13.7	12.7	18.9	18.3	23.0	16.1	1.5	1.3	369.0	342.0	1.5	1.9
35 C0	O18	India	IND	1.3	243.5	225.5	68.6	125.5	9.0	12.7	17.8	13.1	25.0	39.5	2.5	2.5	349.3	350.7	2.2	2.1
36 C	S-M3	United States	TEJ	1.0	179.7	163.7	31.3	14.3	7.5	5.0	24.9	16.8	11.6	2.9	1.2	0.8	428.7	429.7	2.1	2.3
37 Ci	uba 65	Cuba	TRJ	2.7	148.0	153.3	21.8	14.3	5.3	4.3	10.6	9.5	4.1	1.8	0.6	0.5	360.3	402.5	2.1	2.0
39 D.	A16	Bangladesh	ADMIX	3.0	235.7	229.0	90.6	76.1	16.3	12.7	33.0	33.0	31.9	29.4	2.3	2.8	371.7	359.7	2.1	2.0
40 Da	am	Thailand	ADMIX	1.3	202.3	193.0	23.1	32.2	4.3	6.0	17.5	20.6	6.5	4.7	1.3	0.9	365.3	351.7	1.5	1.4
41 Da	armali	Nepal	ADMIX	2.3	281.0	270.0	81.1	82.7	8.0	9.3	20.6	16.4	38.6	34.5	4.7	4.9	429.0	386.7	1.7	1.8
43 D	ee Geo Woo Gen	Taiwan	IND	0.0	101.7	99.3	13.9	13.0	9.7	10.0							375.7	372.3	1.1	1.3
44 DI	hala Shaitta	Bangladesh	AUS	0.5	147.7	154.0	20.1	17.3	5.0	5.0	12.1	13.1	6.0	2.0	1.1	0.4	403.0	370.3	1.5	1.9
45 D	om-sufid	Iran	AROMATIC	0.0	201.0	213.3	46.6	45.4	8.7	7.3	23.5	19.7	26.1	17.3	2.9	1.8	392.0	426.3	1.4	1.4
46 D	ourado Agulha	Brazil	TRJ	1.0	212.3	217.0	62.6	57.7	7.7	8.7	28.4	20.7	19.6	10.8	3.1	1.3	366.7	370.0	1.8	1.7
49 D'	V85	Bangladesh	AUS	0.7	174.0	178.3	26.4	20.4	9.0	11.3	18.2	19.0					347.0	357.7	1.5	1.6
50 D	Z78	Bangladesh	AUS	1.7	195.5	197.3	38.5	38.7	7.3	6.7	27.1	26.6	31.3	23.3	5.3	2.5	378.7	419.7	2.1	1.7
51 Ea	arly Wataribune	Japan	TEJ	0.7	175.0	171.0	45.6	30.5	10.3	8.0	22.9	18.7	15.8	11.2	1.7	1.4	382.0	425.3	1.8	1.9
53 Fi	rooz	Iran	AROMATIC	1.0	226.7	238.7	120.7	121.9	14.3	12.0							371.0	366.0	1.4	1.4

Supplementary Table S8: All the accessions and phenotypic data used for the mapping.

NSFIV ID	Accession Name	County of origin	Sultropulation	Leaf bronzing score	Control plant height	Ozone plant height	Control dry weight	Ozone dıy weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
54 Fo	rtuna	United States	TRJ	17	196.3	205.5	29.0	37.4	47	6.0	8.8	18.0	16	71	04	14	402.0	383.0	18	1.8
56 Ge	umobyeo	South Korea	TEJ	0.7	108.7	112.3	6.3	9.8	3.7	5.7				,			400.3	385.0	2.1	1.9
57 Gh	arib	Iran	IND	0.0	193.7	191.0	61.5	73.1	9.0	10.7							395.3	372.0	1.3	1.5
58 Gh	ati Kamma Nangarhar	Afghanistan	AUS	2.7	183.7	197.7	48.8	85.2	8.0	12.0	12.9	16.7	16.9	25.9	1.3	1.3	373.7	341.3	1.4	1.3
59 Go	go Lempuk	Indonesia	TRJ	1.7	214.0	219.0	87.5	88.1	8.0	7.7	21.2	23.8	32.5	32.4	4.3	4.1	371.7	344.0	1.9	2.3
61 Gu	an-Yin-Tsan	China	IND	1.3	206.7	196.3	75.0	59.1	10.3	10.0	21.6	20.9	28.1	23.6	1.1	1.4	393.0	325.0	1.7	1.9
65 Ho	onduras	Honduras	TRJ	1.7	235.5	242.3	64.9	54.9	6.0	5.0	23.2	23.5	22.0	19.4	3.7	3.9	365.0	341.5	1.8	1.9
66 Hs	ia Chioh Keh Tu	Taiwan	IND	0.3	201.3	198.0	36.2	47.5	8.0	8.0							397.0	353.5	1.8	2.0
67 Hu	i Lo Tao	China	TEJ	0.0	213.3	207.2	53.3	57.3	9.7	9.0	19.2	16.7	15.3	12.9	1.6	2.2	416.3	389.7	1.8	1.8
68 I-C	Geo-Tze	Taiwan	ADMIX	1.0	171.7	179.3	47.8	33.6	11.7	7.7	18.3	14.5	11.4	3.8	0.9	0.7	354.3	360.0	1.7	1.9
69 IA	C 25	Brazil	TRJ	1.0	225.7	215.8	40.7	35.9	6.0	4.5	28.7	26.9	18.3	13.3	3.0	3.4	394.7	409.3	1.5	1.8
70 Igu	ape Cateto	Haiti	TRJ	3.7	197.0	196.3	35.3	40.6	7.7	7.7	13.5	13.1	9.9	9.5	1.5	1.3	335.7	339.7	1.6	1.7
71 IR	36	Philippines	IND	0.0	105.7	114.0	10.8	17.2	7.3	10.7							388.5	360.0	1.5	1.6
72 IR	8	Philippines	IND	0.3	124.3	112.0	10.5	10.9	5.3	8.3							387.7	378.7	1.3	1.7
73 IR.	AT 177	French Guiana	TRJ	2.0	184.7	184.7	26.2	31.8	5.0	6.0	25.8	20.2	9.9	8.5	2.4	0.9	379.3	331.0	1.6	2.0
74 IR	GA 409	Brazil	IND	2.0	129.0	125.7	19.1	27.0	6.3	8.0	15.7	14.8	3.5	9.9	0.6	0.8	396.7	383.0	1.2	1.4
75 Jar	nbu	Indonesia	TRJ	4.5	203.0	204.0	41.2	33.8	5.0	4.0	15.3	10.9	5.9	5.1	1.4	1.3	359.0	377.0	1.9	2.2
76 Jay	ya	India	IND	1.3	111.3	112.0	25.7	20.6	10.3	10.0							384.0	374.0	1.5	1.6
77 JC	149	India	IND	1.7	239.7	248.0	82.7	58.5	9.0	6.7	17.7	12.0	22.5	11.9	2.5	2.4	380.3	405.0	1.6	1.7
78 Jh	ona 349	India	AUS	0.7	193.7	192.0	72.4	52.7	16.0	13.7	22.5	20.7	42.5	30.7	1.5	1.5	386.7	380.3	0.6	1.0
79 Joi	uiku 393G	Japan	TEJ	0.7	129.7	128.7	16.3	6.7	7.0	3.7	12.6	10.0	9.0	2.3	1.3	0.8	476.0	390.3	1.9	2.0
81 Ka	lamkati	India	AUS	0.7	194.7	205.3	48.5	35.7	10.0	6.7	12.0	11.7	8.2	6.1	0.7	0.4	361.0	350.3	2.0	2.1
83 Ka	menoo	Japan	TEJ	1.7	165.7	160.0	18.8	17.0	4.7	5.7	12.2	14.5	10.4	7.3	1.8	1.2	385.0	402.0	1.7	1.9
85 Ka	salath	India	AUS	0.3	210.7	213.0	56.2	49.8	11.7	12.3	16.3	16.5	26.8	30.8	2.2	2.7	386.0	368.7	2.2	2.0
87 Ke	riting Tingii	Indonesia	ADMIX	3.0	207.7	209.7	25.5	36.5	3.7	4.3	23.3	27.1					406.7	365.0	1.9	1.9
88 Kh	ao Gaew	Thailand	AUS	2.5	193.0	202.0	27.9	26.6	4.0	3.0	17.1	16.2					391.0	371.3	1.6	2.1
89 Kh	ao Hawn	Thailand	TRJ	1.5	205.7	195.7	45.2	36.3	4.7	5.7	12.9	12.2	8.2	6.6	1.8	1.1	428.0	407.5	1.5	1.9
90 Kia	ang-Chou-Chiu	Taiwan	IND	1.0	184.7	180.0	40.2	27.6	9.7	7.3	23.6	22.5	34.1	21.6	3.6	2.7	397.3	360.0	1.7	1.6
92 Ki	nastano	Philippines	TRJ	2.0	205.3	195.7	36.5	24.5	4.0	3.7	26.3	18.0	12.4	6.7	3.1	1.8	357.0	362.7	1.8	2.3
93 Kit	trana 508	Madagascar	AROMATIC	1.5	222.0	226.3	91.3	80.1	10.0	11.7	16.7	15.2	14.0	14.6	1.0	1.2	357.3	376.0	2.1	1.5
96 KU	J115	Thailand	ADMIX	1.7	212.0	203.7	31.2	23.2	4.3	4.0	24.2	26.1	8.4	6.3	2.3	1.3	384.3	363.7	2.1	2.2
97 Ku	ın-Min-Tsieh-Hunan	China	IND	2.3	210.7	209.7	47.2	31.3	9.0	7.0	21.8	20.8	31.5	11.5	3.0	1.8	376.3	399.0	1.6	1.6
98 L-2	202	United States	TRJ	0.3	120.3	121.3	14.5	7.9	6.3	5.3	13.3	7.5	3.4	0.9	0.8	0.4	335.7	369.7	1.6	1.7
99 LA	AC 23	Liberia	TRJ	1.7	200.7	191.3	35.4	27.6	4.3	4.7	25.7	23.7	7.7	5.5	1.7	1.4	398.7	337.0	1.3	2.2
100 La	crosse	United States	ADMIX	2.7	193.0	194.3	29.7	44.2	4.3	6.0							360.3	375.7	1.8	1.8
101 Le	mont	United States	TRJ	0.3	99.5	101.5	6.7	9.9	3.0	5.5							446.7	379.3	1.5	1.0
102 Le	ung Pratew	Thailand	IND	0.0	264.3	280.3	84.7	107.7	12.0	11.3	19.0	19.2	38.0	37.8	2.6	3.1	394.0	372.3	1.9	2.2
103 Lu	k lakhar	Afghanistan	TEJ	0.0	121.0	119.0	13.0	13.5	5.7	6.3	17.1	167	16.6	10.0	20	2.5	391.0	352.7	1.6	1.5
104 Ma	ansaku	Japan	TEJ	2.7	177.3	178.0	24.8	18.9	6.0	4.3	17.1	16.7	16.8	12.3	2.9	2.7	427.3	384.0	1.7	2.1
105 Me	enr	Iran	AUS	1.3	188.5	190.0	46.7	41.0	8.7	7.3	11.9	10.0	17.3	15.2	0.9	1.1	350.3	3/4.7	1.4	1.3

NSFTV ID	Accession Name	County of origin	Subpopulation	Leaf bronzing score	Control plant height	Ozore plant height	Control dry weight	Ozone dry weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Orone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
106 Mi	ng Hui	China	IND	0.3	118.3	111.3	22.9	14.3	9.0	7.0							392.0	356.0	2.0	1.9
107 Mi	riti	Bangladesh	TRJ	1.0	190.3	184.2	31.9	32.3	6.7	7.0	27.4	20.2	13.0	20.1	2.3	3.1	383.3	358.0	1.3	1.6
108 Mc	roberekan	Guinea	TRJ	0.0	148.7	227.0	33.8	29.8	3.7	3.3	26.1	23.7	6.6	8.3	1.7	3.2	393.7	401.7	1.6	2.0
109 MT	TU9	India	IND	1.5	218.7	214.0	78.4	51.2	12.3	8.0	25.6	23.2	58.3	33.6	3.0	4.0	367.7	338.7	1.7	1.6
110 Mu	idgo	India	IND	0.3	235.3	238.0	76.6	71.2	8.7	8.0	33.7	29.9	27.9	25.6	2.6	3.7	442.0	418.0	1.5	2.0
112 N12	2	India	AROMATIC	3.7	218.0	210.3	56.2	67.7	11.7	7.0							372.3	328.0	1.9	1.9
113 No	rin 20	Japan	TEJ	1.0	144.7	133.5	14.8	11.2	5.7	5.3	15.8	15.6	11.2	7.1	2.4	1.9	422.7	357.3	1.9	2.3
114 No	va	United States	ADMIX	1.7	200.3	198.7	39.1	38.3	4.7	4.3							380.7	380.7	2.0	1.6
116 NP	E 844	Pakistan	TRJ	1.7	221.7	217.7	37.7	38.6	4.0	4.7	25.0	22.9	15.3	12.6	3.8	2.7	416.0	389.7	1.8	2.0
117 O-I	uen-Cheung	Taiwan	IND	1.0	186.7	185.0	52.5	37.6	11.7	10.3	22.6	19.9	36.9	30.8	2.8	3.6	388.0	360.0	1.6	1.7
118 Orc)	Chile	TEJ	1.7	159.0	172.5	25.8	20.2	7.7	7.3	26.0	22.8	23.0	18.6	3.0	2.5	435.7	375.7	1.8	1.7
119 Ory	zica Llanos 5	Colombia	IND	0.7	115.7	129.2	20.0	15.3	5.3	5.7							373.3	377.3	1.8	1.7
120 OS	6	Nigeria	TRJ	4.7	226.5	226.7	61.0	48.0	8.0	6.3	26.1	25.0	17.9	10.5	2.3	2.4	368.0	340.7	2.0	1.9
121 Ost	tiglia	Argentina	TEJ	0.5	163.7	170.5	31.0	17.3	6.0	5.3	19.9	18.5	13.3	8.2	1.6	1.6	414.0	394.0	2.0	2.0
122 Pac	li Kasalle	Indonesia	TRJ	3.0	244.3	246.7	54.7	40.7	8.7	6.3							377.7	333.0	1.9	2.1
123 Pag	gaiyahan	Taiwan	IND	0.7	198.7	187.0	68.0	51.0	10.7	9.0							397.0	384.3	1.7	1.6
125 Pac	o-Tou-Hung	China	IND	1.3	237.0	226.0	75.9	86.8	12.0	15.0	22.0	19.8					363.3	369.0	2.1	2.0
126 Par	paku	Taiwan	IND	2.3	220.3	227.7	54.0	59.8	6.0	6.7	21.3	23.1	19.1	21.1	2.8	3.5	401.0	392.0	1.9	1.9
128 Pat	o De Gallinazo	Australia	ADMIX	1.3	179.3	167.7	15.4	16.5	4.7	4.7	14.2	11.4	4.4	5.6	0.9	0.9	402.7	393.3	1.9	1.8
129 Per	n-Kuh	Taiwan	IND	1.0	194.7	194.7	74.5	71.1	10.3	11.7							396.0	355.0	1.8	1.4
130 Per	i-Kun-isao-iu	Dhutan	IND	1.0	194.7	202.7	61.2	42.5	13.0	11.5	15.5	12.0	24.2	22.7	2.4	25	372.3	240.2	1.0	1.0
131 Fill	huwaa	Sri Lonko	AUS DD	4.7	190.5	102.0	61.2	42.5	7.2	5.0	20.8	13.9	16.0	22.7	2.4	2.5	270.0	246.0	2.4	1.5
132 Kat	uto Komoohi	Jonon	TEL	2.3	217.0	202.7	82.0	50.5 44.4	10.2	5.0	20.8	17.0	26.8	9.0	2.2	2.0	200.2	265.2	2.4	2.5
135 RIK 125 PT	1021.60	Zajra	TPI	0.7	165.0	165.0	40 Q	10.1	9.0	3.7	21.0	19.0	11.0	21.0	5.5	3.9 0.6	377.0	361.7	1.7	1.5
135 RT	\$14	Vietnam	IND	0.7	102.0	100.0	75.8	13.1	12.0	9.7	18.4	16.4	10.4	2.2	2.2	2.0	287.2	257.2	1.5	1.5
137 RT	S4	Vietnam	IND	1.3	270.7	269.0	97.9	70.8	12.0	93	20.5	19.8	31.9	27.2	2.5	3.7	392.7	383.0	2.1	2.4
139 544	542A 3-49B-2B12	United States	TRI	1.5	153.7	150.0	16.4	16.9	33	5.0	20.0	19.0	51.5	27.2	2	5.7	407.3	359.7	1.8	1.9
140 Sat	um	United States	ADMIX	1.5	166.0	167.7	32.1	29.4	6.0	67							393.7	373.0	1.8	1.9
141 Ser	atoes Hari	Indonesia	IND	2.3	264.3	283.7	82.8	93.0	93	8.0							397.3	354.0	2.3	2.5
142 Sha	u-Kuh	China	IND	2.0	261.0	262.7	106.8	101.3	14.0	13.0	15.2	18.4	22.2	34.0	1.5	2.7	390.7	348.7	1.9	2.1
143 Shi	nriki	Japan	TEJ	0.0	155.7	156.3	35.4	22.9	11.0	8.3	19.9	14.4	6.7	3.4	0.8	0.7	399.0	381.0	2.0	2.3
144 Sho	berned	United States	TEJ	1.3	151.7	150.7	28.2	17.2	8.7	6.3	17.5	10.4	5.8	1.3	0.8	0.3	395.7	353.7	1.7	1.8
145 Sho	ort Grain	Thailand	IND	2.3	253.7	243.7	146.8	115.2	13.3	10.0	25.5	22.9	52.4	35.9	3.8	3.8	343.7	329.3	1.8	1.7
147 Sin	ampaga Selection	Philippines	TRJ	2.3	172.7	173.7	39.4	24.8	6.0	4.7	16.0	5.7	4.7	1.5	0.9	0.3	376.3	366.0	2.0	2.0
148 Sin	tane Diofor	Burkina Faso	IND	2.7	227.3	226.7	134.9	87.3	15.7	8.7							327.0	312.3	1.8	1.9
150 Sul	tani	Egypt	TRJ	3.0	158.3	161.4	20.0	17.2	3.7	3.7	18.4	18.0	12.0	10.2	1.8	1.5	384.7	360.0	1.9	2.0
152 T 1		India	AUS	1.7	194.7	196.3	28.4	27.8	6.3	6.0	18.0	15.9	5.1	9.2	0.8	1.2	354.7	367.3	1.3	1.7
153 T20	5	India	AUS	2.0	157.7	188.7	26.6	40.3	6.0	8.3	28.7	28.1	37.8	49.5	4.7	4.7	360.7	322.7	2.0	1.8
154 Ta	Hung Ku	China	TEJ	1.7	196.3	193.0	55.2	53.3	7.3	12.0	22.1	26.0	24.8	36.2	4.3	3.9	416.0	391.3	1.6	1.9

	ά.
ADDURATE	,
	-

155 It Mao Tao Chan TID 0.3 218.0 099 070 11.0 90 80 87 90 83.1 14 15 00 83.3 84.0 16 18 110 143 110 143 110 143 110 143 110 143 110 143 110 143 110 143 110 143 110 143 110 110 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 111 113 113 113 113 113 113 113 113 113 113	NSFTV ID	Accession Name	County of origin	Subpopulation	Leafbronzing.score	Control plant height	Ozone plant height	Control dry weight	Ozone dıy weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
16161616101716161716808717171617171617161717161717161716171716171716171716171617171617171716171716171716171716171716171717161717161717161717161717171617171716171717161717171717171717171718171817181617181617181617181617181617181617181617181718181818181818181818181818 <td>155 Te</td> <td>a Mao Tsao</td> <td>China</td> <td>TEJ</td> <td>03</td> <td>208.3</td> <td>212.0</td> <td>69.9</td> <td>67.0</td> <td>11.0</td> <td>9.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>408.3</td> <td>432.0</td> <td>18</td> <td>1.5</td>	155 Te	a Mao Tsao	China	TEJ	03	208.3	212.0	69.9	67.0	11.0	9.0							408.3	432.0	18	1.5
19 19 10 <	156 Ta	aichung Native 1	Taiwan	IND	0.7	118.0	110.2	11.0	15.3	8.0	8.7							381.3	401.3	1.7	1.8
18 Tayons' Mo Tayon	157 Ta	ainan Iku 487	Taiwan	TEJ	0.7	145.0	137.5	18.4	14.7	6.3	5.7	18.8	17.1	9.1	3.4	1.5	0.7	385.3	384.0	1.9	1.7
Indig China ND 0.2 0.00 0.2 0.2 0.2 0.2 0.00 0.	158 Ta	aipei 309	Taiwan	TEJ	1.0	147.3	138.0	29.6	13.9	8.0	5.7	19.1	8.3	11.4	0.6	1.6	0.2	405.3	424.0	1.6	1.8
IPANA ⁶ India IND 13 2120 917 12.5 48.8 92.0 10.0 10.1 10.4 2.5 1.6 10.0 10.1 10.0	161 Te	eQing	China	IND	0.7	109.2	102.3	21.2	11.7	8.3	7.7							432.7	362.0	1.7	1.5
Inducan Philoppins NDD 13 217 2187 127 248 250 140 663 150 <	162 TI	KM6	India	IND	1.3	212.0	194.7	52.1	39.9	10.3	10.0	17.1	13.7	21.1	14.4	2.5	1.4	390.3	359.0	1.8	1.7
Instrumese Indomesina TR 0.3 81.0 0.0 24.3 40.0 30.0 12.0 24.3 24.4 21.0 24.5 24.6 21.0 24.5 24.6 21.0 24.5 24.6 21.0 24.5 24.6 24.6 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.7 24.5 24.5 24.7 24.8 24.6 24.5 24.7 24.5 24.7 24.5 24.7 24.5 24.7 24.5 24.7 24.5 24.7	163 Ta	aducan	Philippines	IND	1.3	237.7	218.7	112.5	48.8	25.0	14.0	16.8	15.0	50.9	12.8	1.9	1.0	377.0	380.0	1.8	1.9
i fo Spinh 21 Madagasar ADMX 30 36.3 37.3 18.8 76.4 70.4	165 Tr	rembese	Indonesia	TRJ	0.3	181.0	180.7	27.2	24.3	4.0	3.0	16.3	10.4	3.7	2.8	0.9	0.9	455.0	391.7	1.8	1.8
167 Destrick 4-22-Bis-44 Unice States TM 0.3 137.7 11.8 19.5 3.0 3.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 12.0 11.0 6.7 7.0 17.3 16.3 4.2 6.4 0.4 10.0 42.0 40.70 2.1 18.0 172 Zbeenhan 2 Fame TB 0.0 14.3 14.0 19.7 17.7 7.0 7.3 16.0 18.3 12.6 6.4 1.4 1.3 43.0 1.9 1.7 17.0 7.6 7.6 7.6 7.6 1.6 1.4 1.3 43.0	166 Ts	sinala 421	Madagascar	ADMIX	3.0	263.0	243.3	104.2	76.4	12.0	93	24.4	21.6	79.1	55.0	62	6.5	370.3	358.3	2.2	2.2
168 May Mao Me2 Andagasear ADMIX 47 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 21.7 21.8 25.9 28.8 30.0 41.0 20.0 20.0 20.0 20.0 20.0 20.0 21.7 21.8 25.9 28.8 30.0 41.0 42.0 40.0 20.0	167 B	6616A 4-22-Bk-5-4	United States	TRJ	0.3	136.3	137.7	11.8	19.5	3.0	3.0							390.0	389.3	1.6	1.5
171 ZHE 733 China IND 0.0 0.7 114.5 113.7 13.8 11.1 6.7 7.0 17.3 10.3 4.2 6.4 0.4 10 42.0 40.0 2.1 11.8 172 Zhenshan 2 China IND 10 14.3 14.0 19.7 7.0 17.0	168 V	ary Vato 462	Madagascar	ADMIX	47	235.0	223.0	44.4	46.3	83	9.0	25.0	21.7	21.8	25.9	28	3.0	418.7	391.7	2.0	2.0
172 Zbenshan 2 China IND 10 92.3 94.0 12.1 11.9 8.3 10.3 No	171 ZI	HE 733	China	IND	0.7	114.5	113.7	13.8	11.1	67	7.0	17.3	16.3	42	6.4	0.4	1.0	422.0	407.0	2.1	1.8
176 583 Evador TR 10 143. 1470 197 77 70 7.3 160 18.3 126 96 1.4 1.3 46.0 42.7 19 1.7 177 68-2 Fnance TE 2.3 142.3 141.7 23.8 146 8.7 6.0 17.6 11.4 18.4 5.8 2.0 0.9 447.7 4.80 1.8 2.0 179 Bellardone Fnance TE 0.0 168.0 17.2 2.0 2.44 9.0 6.7 2.40 19.0 3.3 17.4 2.4 2.8 48.0 38.1 1.8 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	172 Z	henshan 2	China	IND	1.0	92.3	94.0	12.1	11.9	83	10.3							414 7	358.7	2.1	1.6
177 68-2 France TEJ 2.3 14.2 14.17 2.3 14.6 8.7 6.0 17.6 11.4 18.1 5.8 2.0 0.9 44.77 41.80 1.8 2.0 178 ARC 6578 India AUS 0.7 205.0 202.2 20.4 5.0 3.3 161 15.0 14.5 8.3 2.3 2.8 30.3 30.3 1.9 1.7 179 Bellardone France TEI 2.0 166.0 167.7 2.9 12.0 2.0	176 58	33	Fcuador	TRJ	1.0	143.3	147.0	19.7	17.7	7.0	73	16.0	18.3	12.6	96	14	13	463.0	427.7	19	17
178 AKC 6578 India AUS 0.7 2050 20.9 44.5 21.7 6.3 3.3 16.1 17.0 16.5 8.13 2.3 2.8 35.0 35.0 19.0 17.7 179 Bellardone France TEI 0.0 166.0 166.3 36.0 19.4 10.0 6.3 26.0 19.0 31.3 17.4 3.4 2.8 48.3 34.3 19.1 17.1 180 Benlok Peru TEI 2.0 10.6 16.63 36.0 19.4 10.0 6.3 26.4 15.7 19.7 7.4 2.4 48.0 2.4 48.0 30.17 37.0 17.7 18.8 5.3 3.7 2.5 2.1 6.2 2.9 1.2 1.0 30.7 37.0 1.7 1.8 1.6	177 68	2-2	France	TEL	23	142.3	141 7	23.8	14.6	87	6.0	17.6	11.4	18.1	5.8	2.0	0.9	447 7	418.0	1.9	2.0
179 Bellardone Find TEJ 00 100 101 101 133 174 34 2.8 438.3 394.3 1.8 1.8 180 Benllok Peru TEJ 2.0 166.0 166.3 36.9 19.4 100 6.3 20.4 15.7 19.7 7.4 2.0 1.2 446.0 38.1.7 1.5 181 Box Vsta El Salvador TRI 3.3 17.4 2.1 2.5 2.2.1 6.2 2.9 1.2 446.0 38.1.7 1.7 1.5 184 Boxbon Spain TEJ 2.7 2.1.7 2.1.7 2.5 2.6 40.1 7.3 2.4 40.6 1.4 4.4 4.9 2.5 2.6 40.7 7.3 2.2 40.6 40.1 7.3 2.4 1.0 1.2 2.5 2.6 40.1 7.3 2.4 1.0 1.2 2.5 2.6 40.1 7.7 7.6 7.6 7.6 7.6 7.6 7.7 7.4 1.6 7.7 7.4 1.3 1.6 1.5	178 A	RC 6578	India	AUS	0.7	205.0	209.2	44.5	21.7	63	33	16.1	15.0	14.5	83	2.0	2.8	350.3	350.3	1.0	1.7
Iso Benlok. Presc. TE 2.0 160 160 6.3 2.0 1.0 100 10.7 12.0 10.0 12.0 10.0	179 Be	ellardone	France	TEL	0.0	168.0	171.2	32.0	20.4	9.0	67	24.0	19.0	33.3	17.4	3.4	2.8	438.3	394.3	1.9	1.7
183 Boarwate Elsalvador TRJ 32 1933 1767 207 188 5.3 3.7 25.9 22.1 6.2 2.9 1.2 1.0 3597 37.0 1.7 1.5 184 Bombon Spain TEJ 2.7 21.7 2007 2400 46.0 46.1 5.3 5.3 22.4 206 1.44 1.49 2.5 2.6 401.7 38.0 1.6 <	180 Be	enllok	Peru	TEL	2.0	166.0	166.3	36.9	19.4	10.0	63	20.4	15.7	197	74	2.0	1.2	446.0	381.7	1.0	1.0
Ista Data La Definition Fiel 10 <	183 B	na Vista	Fl Salvador	TRI	3.3	193.3	176.7	29.7	18.8	53	3.7	25.9	22.1	62	29	1.2	1.0	359.7	374.0	1.7	1.7
Iss British Hodurns Ceole Belize TRU L0 220 230 37.7 55.6 50 7.3 22.4 10.0 12.7 12.1 2.6 30.0 37.7 35.6 20.0 2	184 Be	ombon	Snain	TEL	27	212.7	209.7	46.0	46.1	53	53	22.4	20.6	14.4	14.9	2.5	2.6	401.7	384.0	1.6	1.5
186 Bark 100	185 Br	ritish Honduras Creole	Belize	TRI	2.0	220.0	223.0	37.7	55.6	5.0	73	22.1	19.0	12.7	21.1	2.5	3.0	357.7	372.7	2.0	2.0
Instruction	186 B	ul Zo	South Korea	TEL	1.3	159.3	154.0	19.8	14.6	5.0	43	17.4	13.6	4.0	3.5	0.8	0.8	394.0	383.7	1.7	1.7
Instruction Bulgaria TRI 3.3 11/5.7	187 C	57-5043	United States	TRI	3.7	174.3	173.7	15.8	18.9	3.7	3.7	17.4	15.0	4.0	5.5	0.0	0.0	411.3	412.5	1.7	1.7
Iso Corporation Dargenta File 100 2.0 18.0 10	188 C	oppocina	Bulgaria	TRI	33	167.3	180.5	23.9	37.3	37	47							406.7	379.0	1.0	1.0
Instruction Vinter States IRJ 4.0 190. 190. 190. 11.0 <th11.0< th=""> 11.0 11</th11.0<>	189 C	riollo I a Eria	Venezuela	IND	2.0	186.3	189.8	71.9	60.8	12.0	9.7	13.4	16.0	31.9	33.0	16	2.0	374.0	357.3	1.6	1.5
191 Dotation Iran AROMATIC 1,3 20.5 1,3 20.7 1,4 1,5 1,4 1,5 191 DomZard Iran AROMATIC 1,3 20.5 21.4 64.1 52.0 1,3 80.0 25.6 23.0 34.3 20.1 2.7 2.1 42.63 397.0 1,4 1,5 192 Erythroceros Hokkaido Poland TEJ 0,3 127.8 134.5 10.6 8.5 5.7 5.0 26.7 24.1 10.1 7.9 1.7 1.9 265.5 260.5 1.9 2.3 193 Fossa Av Burkina Faso TRJ 1.0 230.3 210.5 39.6 32.4 4.3 5.0 18.1 12.8 9.7 8.5 2.0 1.8 387.3 394.0 1.7 2.0 195 IRAT 13 Cote Divoire TRJ 1.3 160.0 147.3 22.9 14.7 5.3 4.3 25.2 19.0 6.7 5.0 1.5 4.7 5.7 5.0 1.5 4.7 5.7 5.0 1.5 4.7 <t< td=""><td>190 D</td><td>elrev</td><td>United States</td><td>TRI</td><td>4.0</td><td>190.8</td><td>192.0</td><td>38.7</td><td>33.4</td><td>5.7</td><td>4.0</td><td>15.4</td><td>10.0</td><td>51.7</td><td>55.0</td><td>1.0</td><td>2.0</td><td>381.0</td><td>354.5</td><td>1.0</td><td>1.5</td></t<>	190 D	elrev	United States	TRI	4.0	190.8	192.0	38.7	33.4	5.7	4.0	15.4	10.0	51.7	55.0	1.0	2.0	381.0	354.5	1.0	1.5
191 Domizand India ARCMARTIC 1.9 20.5.3 21.4.7 04.1 32.5 11.5 5.0 22.6 24.1 10.1 2.7 2.1 42.05 50.0 1.9 12.1 192 Erythroceros Hokkaido Poland TEI 0.3 127.8 134.5 10.6 8.5 5.7 5.0 26.7 24.1 10.1 7.9 1.8 387.3 394.0 1.7 2.0 195 Fossa Av Burkina Faso TRJ 1.3 160.0 147.3 22.9 14.7 5.3 4.3 25.2 19.0 6.7 5.0 1.5 1.2 385.7 358.7 1.9 1.7 1.9 1.5 1.0 1.7 2.0 2.1 1.7 1.6 1.7 2.0 2.0 1.7 1.6 3.3 2.9 3.8 39.3 4.7 5.0 1.5 1.5 1.5 3.8 374.7 36.0 2.2 2.1 1.7 1.8 38.0 376.7 2.0 2.0 1.9 1.6 1.7 1.9 1.7 3	101 D	om Zard	Iran	AROMATIC	1.0	205.3	214.7	64.1	52.0	11.2	9.0	25.6	22.0	24.2	20.1	27	2.1	426.3	307.0	1.0	1.7
193 Formation 100 121 100 121 100	191 D	ourzaiu wthroceros Hokkaido	Poland	TEL	0.3	127.8	134.5	10.6	8.5	57	5.0	25.0	23.0	10.1	20.1	1.7	1.0	265.5	260.5	1.4	2.3
195 103 a 103 <th< td=""><td>193 Ec</td><td></td><td>Burkina Faso</td><td>TRI</td><td>1.0</td><td>230.3</td><td>210.5</td><td>39.6</td><td>32.4</td><td>43</td><td>5.0</td><td>18.1</td><td>12.8</td><td>9.7</td><td>85</td><td>2.0</td><td>1.9</td><td>387.3</td><td>394.0</td><td>1.7</td><td>2.5</td></th<>	193 Ec		Burkina Faso	TRI	1.0	230.3	210.5	39.6	32.4	43	5.0	18.1	12.8	9.7	85	2.0	1.9	387.3	394.0	1.7	2.5
Institution Institution <thinstitution< th=""> <thinstitution< th=""></thinstitution<></thinstitution<>	195 IR	2AT 13	Cote D'Ivoire	TRI	1.0	160.0	147.3	22.9	14.7	53	4.3	25.2	19.0	67	5.0	1.5	1.0	385.7	358.7	1.7	1.7
190 JM/6 Main IAD 5.5 240.5 2	106 IN	470	Mali	IND	2.2	240.3	220.2	86.7	66.5	87	9.2	20.2	19.0	0.7	5.0	1.5	1.2	374.7	346.0	2.2	2.1
197 Ratiky Fill Bugaria TRJ 2.0 201.7 102.5 53.6 57.5 4.7 5.0 5.0 56.0 54.7 5.0 20.7 20.8 34.7 5.0 50.7 </td <td>107 12</td> <td>auklari Ani</td> <td>Myanmar</td> <td>ADMIX</td> <td>2.0</td> <td>240.5</td> <td>162.3</td> <td>22.8</td> <td>20.2</td> <td>4.7</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>388.0</td> <td>376.7</td> <td>2.2</td> <td>2.1</td>	107 12	auklari Ani	Myanmar	ADMIX	2.0	240.5	162.3	22.8	20.2	4.7	5.0							388.0	376.7	2.2	2.1
199 Mojito Colorado Bolivia TRJ 3.0 21.0 17.3 42.6 17.2 6.0 3.7 36.0 36.0 37.5 1.8 1.7 199 Mojito Colorado Bolivia TRJ 3.0 201.0 173.7 42.6 17.2 6.0 3.7 36.0 37.0 36.0 36.0 1.8 1.7 201 Pate Blanc Mn 1 Cote D'Ivoire TRJ 1.7 22.0 235.0 45.3 35.1 5.0 3.3 21.9 24.5 10.5 9.6 2.2 3.2 471.0 406.0 1.6 1.7 202 Pratao Brazil TRJ 3.0 216.3 226.0 72.2 43.1 10.0 6.7 28.3 27.5 26.5 14.9 2.4 2.9 382.0 361.3 1.6 1.7 203 Radin Ebos 33 Malaysia IND 1.3 210.0 217.3 84.2 46.7 10.5 9.3 17.7 15.1 60.4 40.8 2.5 1.9 34.0 21.5 1.9 2.1 204 Razza 77 Italy	197 Ka	aukkyi Alli	Pulgaria	TPI	0.3	122.2	128.5	16.7	15.5	4.7	5.0							358.0	240.2	1.0	2.0
197 Mojno Colorado Borva FN 5.0 20.0 17.5 42.0 17.2 6.0 5.7<	100 M	Laiite Colomdo	Balizia	TRI	3.0	201.0	172.7	10.7	17.2	4.7	27							267.0	257.0	1.9	2.0
202 Pratao Braza IT 3.0 21.63 22.60 7.2.2 43.1 10.0 6.7 28.3 21.5 21.6 21.6 22.6 7.2.2 43.1 10.0 6.7 28.3 27.5 26.5 14.9 2.4 2.9 38.0 46.3 1.6 1.7 202 Pratao Braza IND 3.0 216.3 226.0 72.2 43.1 10.0 6.7 28.3 27.5 26.5 14.9 2.4 2.9 382.0 361.3 1.6 1.7 203 Radin Ebos 33 Malaysia IND 1.3 210.0 217.3 84.2 46.7 10.5 9.3 17.7 15.1 60.4 40.8 2.5 1.9 384.0 421.5 1.9 2.1 204 Razza 77 Italy TEJ 1.0 177.0 192.7 43.0 26.6 7.5 6.0 26.5 23.2 23.7 11.0 3.1 1.8 426.0 383.3 1.5 1.7 205 Rinaldo Bersani Italy ADMIX 1.3 177.8 173.7	201 De	ate Planc Mn 1	Cote D'Ivoire	TRI	5.0	201.0	225.0	42.0	25.1	5.0	3.7	21.0	24.5	10.5	96	2.2	2.2	471.0	406.0	1.0	2.0
202 Finded Ender FRO 5.0 210.5 220.7 42.1 10.0 0.7 26.5 21.5 20.5 14.9 2.4 2.9 362.0 501.5 1.0 1.7 203 Radin Ebos 33 Malaysia IND 1.3 210.0 217.3 84.2 46.7 10.5 9.3 17.7 15.1 60.4 40.8 2.5 1.9 384.0 421.5 1.9 2.1 204 Razza 77 Italy TEJ 1.0 177.0 192.7 43.0 26.6 7.5 6.0 26.5 23.7 11.0 3.1 1.8 426.0 383.3 1.5 1.7 205 Rinaldo Bersani Italy ADMIX 1.3 177.8 173.7 41.8 25.3 7.7 5.0 29.9 18.4 3.9 3.8 455.3 40.47 1.6 1.7 206 Roiofityx 738 Madagascar ADMIX 4.0 273.7 205.7 7.0 29.0 50.7 7.2 21 40.5 3.9 3.8 455.3 40.7 1.0 3.1 4.3	201 F2 202 Dr	ratao	Brazil	TRI	3.0	216.3	235.0	72.5	43.1	10.0	5.5	28.2	24.5	26.5	14.0	2.2	20	382.0	361.2	1.0	1.7
205 Rdin Los 55 Madysia RD 1.5 210.0 217.5 64.2 40.7 10.5 9.5 17.7 15.1 00.4 40.6 2.5 1.9 2.1 204 Razza 77 Italy TEJ 1.0 177.0 192.7 43.0 26.6 7.5 6.0 26.5 23.7 11.0 3.1 1.8 426.0 383.3 1.5 1.7 205 Rinaldo Bersani Italy ADMIX 1.3 177.8 173.7 41.8 25.3 7.7 5.0 29.9 18.4 3.9 3.8 455.3 404.7 1.6 1.7 206 Roisfitzy 738 Madagascar ADMIX 4.0 23.7 7.0 22.5 14.0 6.3 25.0 20.9 18.4 3.9 3.8 455.3 40.47 1.6 1.9 2.1 206 Roisfitzy 738 Madagascar ADMIX 4.0 23.7 7.0 22.5 14.0 6.3 25.0 20.0 50.7 2.1 40.5 3.9 3.8 45.3 4.9 3.9 3.8 45.3 4.9 <td>202 FI 202 D</td> <td>adin Fhos 33</td> <td>Malaysia</td> <td>IND</td> <td>1.2</td> <td>210.5</td> <td>220.0</td> <td>84.2</td> <td>45.1</td> <td>10.0</td> <td>0.7</td> <td>177</td> <td>15.1</td> <td>20.5</td> <td>14.9 20.9</td> <td>2.4</td> <td>2.9</td> <td>384.0</td> <td>421.5</td> <td>1.0</td> <td>2.1</td>	202 FI 202 D	adin Fhos 33	Malaysia	IND	1.2	210.5	220.0	84.2	45.1	10.0	0.7	177	15.1	20.5	14.9 20.9	2.4	2.9	384.0	421.5	1.0	2.1
Zer Razza // Ray Fes 1.0 17.0 152.7 45.0 20.0 7.3 0.0 20.3 25.2 25.7 11.0 5.1 1.6 420.0 385.5 1.5 1.7 205 Rinaldo Bersani Italy ADMIX 1.3 177.8 173.7 41.8 25.3 7.7 5.0 29.1 26.5 29.9 18.4 3.9 3.8 455.3 404.7 1.6 20.0 20.5 20.1 20.5 20.9 18.4 3.9 3.8 455.3 404.7 1.0 20.1 20.5 20.0 50.7 9.2 4.3 21 405.7 392.5 1.9 21 40.5 20.0 50.7 9.2 4.3 21 40.5 3.9 3.8 457.3 40.9 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.0 3.0 3.0 4.3 21 40.5 3.0 4.0 3.0 3.0 4.0 3.0 3.0	205 Na 204 Dz	nam 1.005 55	Italaysia	TEI	1.5	177.0	102 7	43.0	40.7 26.6	75	9.5 6.0	265	22.2	22.7	40.0	2.5	1.9	426.0	421.5	1.9	2.1
20 Ruindado Balsani Ruy ADMIX 1.5 177.0 175.7 41.0 25.5 7.7 50 25.1 20.5 25.7 10.4 5.9 5.0 455.5 404.7 1.0 1.7 20 Ruindado Balsani	204 Ki 205 D:	inaldo Bercani	Italy	A DMIX	1.0	177.0	194./	45.0	20.0	7.5 77	5.0	20.5	23.2	20.0	18.4	3.1	1.8	420.0	202.2	1.5	1.7
	205 N	ninfotsy 738	Madagascar	ADMIX	4.0	2377	205.7	70.2	22.5	14.0	63	25.0	20.5	29.9 50.7	0.4	43	2.0	405.7	398.5	1.0	2.1

NSFIV	Accession 1	Country of	Subpopula	Leafbronzin	Control plan	Ozone plant	Control dry	Ozone dry v	Control tiller	Ozone tiller	Control thousand I	Ozone thousand k	Control total par	Ozone total pan	Control single pa	Ozone single par	Control S	Ozone SP	Control lignir	Ozone lignin
Ð	aniy	origin	tion	gscore	height	height	weight	weight	number	unber	cemel weight	emel weight	icle weight	cle weight	nicle weight	icle weight	ŇD	ĄD	content	content
207 S	ligadis	Indonesia	IND	1.0	215.8	204.7	59.4	32.2	8.7	5.7	22.8	19.2	22.7	10.1	2.7	1.8	357.3	338.0	2.2	1.6
208 S	SLO 17	India	IND	0.7	234.7	221.0	90.5	54.8	11.7	8.3	20.9	18.9	32.5	23.0	3.8	2.7	380.0	365.7	1.6	1.5
209 T	chibanga	Gabon	IND	1.0	112.0	114.0	18.3	40.5	8.0	11.0	13.5	11.1	4.3	15.7	0.5	0.9	440.3	377.7	1.5	1.5
211 T	okyo Shino Mochi	Japan	ADMIX	1.0	190.2	186.3	33.0	35.5	9.3	8.3	24.6	24.0	31.9	37.2	3.7	3.5	438.3	390.0	2.1	2.0
213 W	VC 3397	Jamaica	TRJ	0.7	209.5	193.0	71.1	39.0	7.0	7.0	20.7	14.3	23.9	20.0	3.5	3.7	386.7	384.3	1.9	1.7
214 W	VC 4419	Honduras	TRJ	3.0	157.8	164.5	25.0	25.8	5.3	4.0	12.9	14.1	4.4	7.3	1.0	1.6	347.3	413.0	1.9	1.5
215 W	WC 4443	Bolivia	TRJ	1.3	192.5	186.3	39.6	27.9	7.3	4.7	27.8	22.6	14.3	6.3	2.4	1.9	315.3	360.7	1.8	1.4
216 Y	abani Montakhab 7	Egypt	TEJ	0.3	142.5	138.7	27.6	18.6	8.7	7.3	11.6	8.7	3.7	2.4	0.4	0.4	399.7	387.3	1.8	1.9
217 Y	/RL-1	Australia	ADMIX	2.3	169.0	177.7	32.8	20.0	7.3	4.7	18.2	22.6	14.1	11.4	1.9	2.6	344.5	375.5	1.3	1.4
218 P	PI 298967-1	Australia	ADMIX	4.3	169.0	159.0	21.8	19.1	6.7	6.3	20.3	15.7	14.2	6.4	1.9	1.2	386.0	385.0	2.0	1.9
220 A	zerbaidjanica	Azerbaijan	TEJ	0.3	161.7	166.0	40.8	29.7	13.7	11.7	26.3	25.5	36.6	28.6	2.3	2.6	399.7	397.0	1.8	1.9
221 S	adri Belyi	Azerbaijan	AROMATIC	1.0	185.0	188.5	39.5	45.7	9.0	7.7	20.9	19.7	35.2	33.1	2.9	3.3	386.7	428.0	1.4	1.3
222 P	araiba Chines Nova	Brazil	IND	0.7	212.7	198.0	63.3	23.6	10.7	10.0	21.6	16.2	50.7	27.1	4.6	3.9	382.0	388.0	2.0	1.8
226 IF	RAT 44	Burkina Faso	TRJ	2.0	173.0	154.7	23.9	10.7	5.7	5.7	30.8	24.8	18.9	21.4	3.2	3.8	355.7	382.3	1.7	1.8
227 R	Riz Local	Burkina Faso	ADMIX	1.7	208.0	205.3	78.4	69.3	7.7	9.0	31.7	24.9	39.3	40.0	4.2	4.5	367.7	377.7	1.7	1.5
228 C	CA 902/B/2/1	Chad	AUS	2.0	174.0	174.3	30.3	20.9	9.3	6.0	22.2	20.2					389.3	403.0	1.3	1.5
229 N	Jiquen	Chile	TRJ	1.7	140.7	132.7	17.7	20.0	8.3	10.3	25.5	23.5	17.4	20.7	2.0	1.8	401.7	383.3	2.0	1.6
231 H	Iunan Early Dwarf No. 3	China	IND	0.7	83.7	91.0	14.5	9.4	7.0	7.0	14.2	15.2	10.5	9.3	0.9	1.2	373.7	279.3	1.6	2.0
232 S	Shangyu 394	China	TEJ	0.0	113.7	113.0	7.2	7.1	5.0	5.7	14.7	12.5	6.7	7.1	1.1	1.3	420.7	387.0	2.4	2.3
234 A	Aijiaonante	China	IND	0.0	101.0	96.3	26.0	17.8	14.0	10.7	11.8	9.4	12.1	14.0	1.0	1.1	429.0	396.7	1.8	2.2
235 S	ze Guen Zim	China	IND	0.3	186.5	184.8	75.5	63.4	12.7	13.0	20.1	15.5	46.0	38.1	1.9	2.4	394.3	384.7	1.7	1.5
236 W	VC 521	China	ADMIX	1.3	156.3	153.2	31.4	30.3	5.3	4.5							397.7	378.3	2.2	1.9
239 W	VAB 502-13-4-1	Cote D'Ivoire	TRJ	5.0	173.0	166.0	19.9	23.1	6.7	5.7	19.2	24.6	13.4	19.1	2.2	3.1	388.0	323.3	1.8	1.9
240 W	VAB 501-11-5-1	Cote D'Ivoire	TRJ	4.3	170.8	167.3	21.4	22.3	5.3	5.7	25.7	24.2	16.6	20.4	3.2	3.6	391.3	332.7	1.9	2.1
241 Đ	CIA 76-S89-1	Cuba	IND	0.3	105.0	105.7	14.9	24.6	6.0	11.0							381.3	369.3	1.4	1.3
242 2	7	Dominican Republic	TRJ	1.0	199.3	191.8	39.5	29.6	4.7	4.7	22.6	22.2	18.7	14.4	4.3	3.2	402.0	370.0	1.9	1.9
244 A	Arabi	Egypt	ADMIX	4.0	150.8	169.0	30.2	26.6	9.0	6.3	19.0	17.7	5.3	4.7	0.6	0.9	384.7	337.0	1.6	1.9
245 S	ab Ini	Egypt	TEJ	1.3	177.7	187.0	34.3	35.8	8.7	7.3	27.9	25.9	27.6	26.2	3.2	3.4	424.0	389.0	1.5	1.5
246 S	araya	Fiji	AUS	3.0	191.3	191.0	38.1	51.5	11.3	14.7	23.5	21.0	26.2	32.7	2.0	2.1	358.0	320.0	1.6	1.7
247 D	Desvauxii	Former Soviet Union	TEJ	0.3	165.7	173.0	29.1	27.3	6.3	8.0	24.8	18.9	17.2	20.0	2.3	2.3	393.3	345.7	1.5	1.6
248 C	Caucasica	Former Soviet Union	TEJ	1.0	180.5	187.0	36.7	33.5	8.0	6.7	25.3	24.5	21.6	27.9	2.6	4.2	431.0	412.3	1.3	1.6
249 P	Pirinae 69	Former Yugoslavia	ADMIX	1.3	181.3	174.3	50.8	47.9	8.3	7.0	30.1	19.4	26.0	15.6	3.2	1.6	411.7	375.0	1.8	1.6
251 H	1256-76-1-1-1	Argentina	TRJ	0.5	127.3	126.0	12.1	26.5	6.0	7.0							398.0	401.7	1.8	1.7
252 D	Djimoron	Guinea	IND	2.7	205.7	194.2	69.4	67.0	10.7	13.0	17.2	15.1	26.7	32.5	1.1	1.1	391.3	366.0	2.0	1.9
254 H	ion Chim	Hong Kong	IND	1.0	205.3	195.0	37.0	25.8	8.0	6.7	14.1	14.1	22.3	10.4	2.0	1.3	392.7	389.0	2.0	2.1
255 P	ai Hok Glutinous	Hong Kong	IND	0.7	184.7	189.7	80.8	85.0	14.3	14.3	23.0	11.8	23.0	30.1	0.8	1.1	385.3	392.0	1.7	1.9
257 A	Agusita	Hungary	TEJ	1.0	152.8	163.7	18.0	14.8	5.3	4.7	24.7	20.2	18.3	12.6	2.8	2.1	402.7	368.3	1.8	1.5
258 T	ia Bura	Indonesia	I KJ	2.7	213.3	211.3	42.4	34.3	6.7	6.7	20.8	17.7	14.7	14.3	2.2	2.3	362.3	317.0	2.3	2.2
259 S	aari 1 or Misri	Iran	ADMIX	2.3	191.7	210.0	73.4	83.0	10.0	9.7	29.3	24.3	44.3	33.3	4.5	5.8	374.7	378.3	1.8	1.7
260/20	05	Iran	AROMATIC	3.0	248.7	261.0	176.5	142.2	20.0	16.3							371.5	312.0	2.0	1.7

20 Islam Bahe Iang ALIS 20 Islas 54.6 24.2 IJS IL7 19.9 IJS IL7 19.9 IJS ILS IJS 37.0 IJS 11.2 11.5 38.0 ILS 38.7 31.0 11.2 11.3 31.0 12.0 38.7 31.0 12.0 11.3 12.0 31.0 12.0 38.7 31.0 12.0 12.0 31.0 12.0 38.0 12.0 12.0 32.0 12.0<	NSFIV ID	Accession Name	Country of origin	Subpopulation	Leafbronzing.score	Control plant height	Ozone plant height	Control dry weight	Ozone dıy weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panide weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
202 Indivo	261 Shim I	Balte	Iraq	AUS	2.0	168.5	168.8	54.6	42.4	13.3	11.7	19.9	18.3					380.7	317.0	1.2	1.4
264 Maraceli Indy TPJ 0.3 163 1642 27 0.6 67 0.6 27 2.6 1.4 1.5 1.4 1.5 <th< td=""><td>262 Halwa</td><td>a Gose Red</td><td>Iraq</td><td>AUS</td><td>1.3</td><td>135.7</td><td>132.3</td><td>16.2</td><td>22.8</td><td>10.3</td><td>11.5</td><td>21.9</td><td>20.7</td><td>15.3</td><td>8.9</td><td>1.2</td><td>0.8</td><td>378.7</td><td>340.0</td><td>1.3</td><td>1.5</td></th<>	262 Halwa	a Gose Red	Iraq	AUS	1.3	135.7	132.3	16.2	22.8	10.3	11.5	21.9	20.7	15.3	8.9	1.2	0.8	378.7	340.0	1.3	1.5
10 halo Imaly ADMX 0.0 18.0 18.0 18.4 18.3 18.0 18.1 18.5 18.7 18.6 18.1 18.5 18.7 18.6 18.7 18.0 18.0 18.7 18.0 18.0 18.7 18.0 18.0 18.7 18.0 <	263 Marat	telli	Italv	TEJ	0.3	165.3	161.2	29.7	21.0	6.7	9.0	23.9	20.7	23.6	14.7	3.1	2.4	476.3	459.0	1.8	1.8
basis Injara Diff Oid Sea S	264 Baldo		Italy	ADMIX	0.3	183.0	184.7	36.6	35.2	6.0	6.7	31.1	34.3	35.9	31.0	4.1	4.5	472.7	445.7	1.6	1.7
164 164 164 172 180 123 <td>265 Vialon</td> <td>ne</td> <td>Italy</td> <td>TEJ</td> <td>0.3</td> <td>202.0</td> <td>195.2</td> <td>44.0</td> <td>58.4</td> <td>7.3</td> <td>8.0</td> <td>27.7</td> <td>28.9</td> <td>30.6</td> <td>35.8</td> <td>4.5</td> <td>4.5</td> <td>410.7</td> <td>398.0</td> <td>1.6</td> <td>1.7</td>	265 Vialon	ne	Italy	TEJ	0.3	202.0	195.2	44.0	58.4	7.3	8.0	27.7	28.9	30.6	35.8	4.5	4.5	410.7	398.0	1.6	1.7
267 Path Path <	266 Hideri	isirazu	Japan	ADMIX	0.7	164.7	160.0	13.0	12.3	4.7	4.0	16.8	16.7	9.8	11.2	2.2	3.2	397.3	442.0	1.6	1.8
268 Nonlovi Karakhstan TE 10 172 1800 1330 183 83 83 297 23 18 39 31 113 1007 16 1 269<	267 Hatsu	mishiki	Japan	TEJ	2.3	172.2	163.0	25.5	23.0	8.7	8.0	20.3	18.6	21.0	13.7	2.1	1.7	392.5	385.0	1.5	2.1
269 Sondensis Kandbartan IND 1.0 1450 1430 153 210 5.7 5.0 210 220 12.2 5.9 2.3 0.7 47.0 97.3 1.6 1 270 Oxogovka Macedonia ADMIX 2.5 166.3 155.0 162.3 166.5 30.8 2.3 31.3 16.6 2.6 2.8 445.0 366.7 1.9 1.8 1.2 1.8 1.8 1.7 1.8 1.8 1.7 7.8 2.8 6.7 1.8 1.4 1.8 1.8 1.7 1.8 1.4 1.8 1.8 1.7 1.8 <td>268 Vavilo</td> <td>ovi</td> <td>Kazakhstan</td> <td>TEJ</td> <td>1.0</td> <td>179.2</td> <td>196.0</td> <td>36.1</td> <td>33.0</td> <td>83</td> <td>83</td> <td>29.7</td> <td>26.3</td> <td>28.9</td> <td>31.8</td> <td>39</td> <td>3.1</td> <td>412.3</td> <td>400.7</td> <td>1.6</td> <td>17</td>	268 Vavilo	ovi	Kazakhstan	TEJ	1.0	179.2	196.0	36.1	33.0	83	83	29.7	26.3	28.9	31.8	39	3.1	412.3	400.7	1.6	17
270 Orogovaka Macedonia ADMIX 13 170.3 150.3 150.7 162.7 162.6 63.0 23.3 99.9 163.3 99.6 26.6 28.8 463.3 463.0 467.0 18.8 1 273 Varyla Madagascar ADMIX 2.0 20.5 191.3 461.5 37.7 7.3 23.3 23.1 21.5 18.8 2.4 3.0 40.03 36.0 1.8 1.8 274 Varyla Malaysia TRI 20 10.1 20.7 18.5 27.8 7.8 23.1 21.5 16.8 2.0 2.0 40.8 1.0 21.6 18.0 1.0 2.0 27.7 7.8 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 </td <td>269 Sunde</td> <td>ensis</td> <td>Kazakhstan</td> <td>IND</td> <td>1.0</td> <td>145.0</td> <td>143.0</td> <td>18.3</td> <td>21.0</td> <td>5.7</td> <td>5.0</td> <td>22.1</td> <td>22.0</td> <td>12.2</td> <td>5.9</td> <td>2.3</td> <td>0.7</td> <td>447.0</td> <td>397.3</td> <td>1.6</td> <td>1.9</td>	269 Sunde	ensis	Kazakhstan	IND	1.0	145.0	143.0	18.3	21.0	5.7	5.0	22.1	22.0	12.2	5.9	2.3	0.7	447.0	397.3	1.6	1.9
271 Number Masedonia ADMIX 2.5 96.3 96.7 30.8 36.6 5.0 5.3 32.2 3.3 13.2 16.5 3.2 3.3 40.50 36.7 1.9 1 273 Yaryla Madagascar ADMIX 2.0 2005 19.1 46.1 34.2 7.7 7.3 25.8 23.3 21.1 12.6 7.1 13.8 2.4 1.9 40.03 37.00 1.8 1 275 Kulaysia Malaysia TEI 0.7 16.3 15.5 7.7 8.5 2.1 12.6 2.1 18.0 2.0 2.6 38.7 4.00 1.4 1 276 Kukay Mali TEI 0.0 12.7 12.9 13.4 14.0 16.0 6.7 2.0 1.4 15.5 1.0 2.0 4.0 4.0 1.5 1.0 2.0 4.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	270 Osogo	ovka	Macedonia	ADMIX	1.3	170.3	155.0	12.7	14.2	4.0	4.0	29.3	19.9	14.3	9.6	2.6	2.8	446.3	436.7	1.8	1.8
237 Varyla Madagascar ADMIX 2.0 200.5 191.3 46.1 34.2 7.7 7.3 25.8 2.3 12.7 13.8 2.4 19 40.03 37.00 1.8 1 274 Padi Pagilong Malaysia TEI 0.7 10.53 15.5 2.98 15.7 7.8.5 2.1.1 12.6 9.7 2.4 3.0 41.8.7 24.0 3.0 41.8.7 24.0 1.4 1.4 1.4 1.5 1.6 1.1 1.6 5.7 7.8 7.7 8.5 2.1.1 1.6 1.6 5.2 2.4 4.1 1.5 1.0 2.0 37.5 7.85 1.8 1.4 1.5 1.5 1.1 1.5 1.2.4 4.1 1.5 1.5 2.4 4.1 1.5 1.0 2.0 37.5 7.85 1.8 1.6 4.5 2.4 4.1 1.5 1.5 1.6 1.8 1.6 1.5 1.6 1.8 1.6 1.5 1.6 1.8 1.6 1.5 1.6 1.8 1.6 1.5 3.70 </td <td>271 M Bla</td> <td>atec</td> <td>Macedonia</td> <td>ADMIX</td> <td>2.5</td> <td>196.3</td> <td>196.7</td> <td>30.8</td> <td>36.6</td> <td>5.0</td> <td>53</td> <td>32.2</td> <td>33 3</td> <td>13.2</td> <td>16.5</td> <td>32</td> <td>33</td> <td>405.0</td> <td>368.7</td> <td>19</td> <td>1.6</td>	271 M Bla	atec	Macedonia	ADMIX	2.5	196.3	196.7	30.8	36.6	5.0	53	32.2	33 3	13.2	16.5	32	33	405.0	368.7	19	1.6
247 Padi Pagalong Malaysia TRJ 2.0 910 2097 48.1 57.4 7.0 7.3 23.3 22.1 12.6 9.7 2.4 30.4 48.7 36.5 1.9 1 275 Si Malaysia TEJ 0.7 165.3 15.5 7.7 8.5 23.1 21.5 2.1 18.0 2.9 2.6 38.87 42.0 1.8 1 276 Kukau Mai AUS 1.0 12.7 12.9 1.3.2 2.0 4.0 6.7 2.9 2.4 4.1 1.5 1.0 2.0 47.7 40.2 1.6	273 Varyla	a	Madagascar	ADMIX	2.0	200.5	191.3	46.1	34.2	77	73	25.8	22.3	12.7	13.8	2.4	19	400.3	370.0	1.8	1.6
275 Sri Mahysia Dua Mahysia TE 0.7 165 153 7.7 8.5 2.1 1.6 2.1 1.80 2.9 2.6 38.7 4.00 1.4 1 276 Kaukau Mali AUS 1.0 2167 1217 129 2.6 8.0 18.8 16.4 3.52 3.4 1.7 2.0 375.7 38.7 1.8 1 277 GurbiakSebela Mesico ADMIX 1.0 124.0 124.0 125 1.4 1.0 2.0 4.0 5.0 6.7 5.0 6.7 2.0 1.4 1.5 1.0 2.0 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 6.0 6.7 2.0 1.4 1.0 1.0 0.0 0.0 1	274 Padi P	Pagalong	Malaysia	TRJ	2.0	191.0	209.7	48.1	57.4	7.0	73	23.3	22.1	12.6	97	2.4	3.0	418.7	386.5	19	1.8
276 Kaukau Mali AUS 1.0 2167 211.7 82.6 82.8 6.7 8.0 18.8 16.4 25.2 34.8 1.7 2.0 37.5 38.57 1.8 1.8 277 Gambiaka Sebela Maii TEI 0.0 127.7 129.9 13.3 210 40 60 22.9 21.4 4.1 15.3 10.9 20.9 37.5 38.57 1.8 1.9 278 C1-65-3 Mosico ADMIX 1.0 124.0 116.7 12.9 14.3 14.5 17.9 6.0 7.0 26.7 23.8 12.2 41.2 2.0 5.0 418.0 36.3 25.0 1.8 1.8 1.7 2.9 1.8 1.8 1.1 1.5 1.4 1.9 1.4 4.0 6.0 1.2 41.4 40.0 1.0 <t< td=""><td>275 Sri Ma</td><td>alaysia Dua</td><td>Malaysia</td><td>TEJ</td><td>0.7</td><td>165.3</td><td>153.5</td><td>29.8</td><td>15.5</td><td>77</td><td>8.5</td><td>23.1</td><td>21.5</td><td>21.1</td><td>18.0</td><td>2.9</td><td>2.6</td><td>388.7</td><td>420.0</td><td>14</td><td>17</td></t<>	275 Sri Ma	alaysia Dua	Malaysia	TEJ	0.7	165.3	153.5	29.8	15.5	77	8.5	23.1	21.5	21.1	18.0	2.9	2.6	388.7	420.0	14	17
277 Gambiaka Sebela Maii TEJ 00 127. 129 13.3 210 40 67 229 214 4.1 153 1.0 2.0 40.7 40.2 1.6 1.9 275 Kon Suito Mongolia TEJ 3.3 116.7 12.9 14.6 5.0 6.3 72.5 38.6 1.2 41.2 5.0 5.0 5.0 7.2 38.6 1.2 41.8 36.3 2.0 1.8 3.0 7.7 1.8 1.0 7.2 2.3 4.2 4.2 4.6 9 1.2 1.6 38.3 3.83 1.8 1.0 280 Schibcia Moraceo TEJ 0.3 11.3 2.47 1.0 1.17 4.3 1.8 1.0 2.7 4.6 0.8 1.3 41.4 40.0 1.6 1.6 1.6 1.7 1.6 1.8 1.6 1.6 1.6 1.6 1.7 1.6 1.8 2.7 4.6 0.8 1.7 1.6 1.7 1.6 1.8 2.7 1.6 1.8 2.7 <	276 Kauka	au	Mali	AUS	1.0	216.7	211.7	82.6	82.8	6.7	8.0	18.8	16.4	35.2	34.8	1.7	2.0	375.7	385.7	1.8	1.6
278 C1-6-5-3 Mexico ADMIX 1.0 1240 1167 12.9 14.6 5.0 6.3 279 Kon Suito Mongolia TEJ 3.3 1933 144.3 14.5 17.9 6.0 7.0 26.7 23.8 12.2 4.12 2.0 5.0 41.8 36.3 2.0 1.8 280 Saku Mongolia ADMIX 2.0 11.3 24.7 1.0 1.7 4.3 4.3 18.9 16.1 2.7 4.6 0.8 1.3 34.4 402.0 1.6 1.2 283 Chibka Mozmbique TEJ 2.0 11.0 14.2 13.6 2.5 2.20 7.0 8.0 2.2 1.6 8.9 9.6 1.3 1.4 402.0 1.6 1.2 284 IR-44595 Nepal IND 0.0 110.0 15.5 7.1 7.0 1.9 4.3 5.0 18.1 14.5 6.8 10.5 1.4 2.0 41.8 3.0 1.7 1.1 285 Tox 782-20-1 Nigeria TEJ 1.7 <t< td=""><td>277 Gambi</td><td>iaka Sebela</td><td>Mali</td><td>TEJ</td><td>0.0</td><td>127.7</td><td>129.9</td><td>13.3</td><td>21.0</td><td>4.0</td><td>6.7</td><td>22.9</td><td>21.4</td><td>4.1</td><td>15.3</td><td>1.0</td><td>2.0</td><td>407.7</td><td>402.7</td><td>1.6</td><td>1.4</td></t<>	277 Gambi	iaka Sebela	Mali	TEJ	0.0	127.7	129.9	13.3	21.0	4.0	6.7	22.9	21.4	4.1	15.3	1.0	2.0	407.7	402.7	1.6	1.4
279 Kon Suito Mongolia TEJ 3.3 139.3 144.3 14.5 17.9 6.0 7.0 26.7 23.8 12.2 41.2 2.0 5.0 418.0 366.3 2.0 1 280 Saku Mongolia ADMIX 2.0 11.7 171.3 24.9 15.8 3.7 4.7 18.4 15.9 4.4 6.9 1.2 1.6 3.44.7 402.0 1.6 3.44.7 402.0 1.6 3.44.7 402.0 1.6 3.44.7 402.0 1.6 3.44.7 402.0 1.5 2.5 2.0 7.0 8.0 2.2 1.64 8.9 9.6 1.3 1.3 34.47 402.0 1.5 2.7 2.4 7.3 1.0 1	278 C1-6-5	5-3	Mexico	ADMIX	1.0	124.0	116.7	12.9	14.6	5.0	6.3							375.7	386.0	19	1.8
280 Saku Mongolia ADMIX 20 1747 1713 249 158 3.7 4.7 184 159 4.4 6.9 1.2 1.6 386.3 385.3 1.8 1 282 Thomphe Du Maroc Morocco TEJ 0.3 113.2 124.7 12.0 11.7 4.3 4.3 18.9 16.1 2.7 4.6 0.8 1.3 41.4 402.0 1.6 1 283 Chibica Mozambique TEJ 2.0 143.2 136.3 25.5 22.0 7.0 8.0 22.2 16.4 8.9 9.6 1.3 341.7 40.0 1.5 2 284 IR-4595 Nepal NRD 0 10.0 155.7 17.0 11.9 4.3 5.0 18.1 14.5 6.8 10.5 1.4 2.0 415.3 371.0 1.4 1 285 Lusicano Portugal TEJ 1.7 168.0 160 2.6 17.9 8.3 8.0 2.2 2.12 3.0 2.0 6.3 2.4 43.3 43.0	279 Kon S	Suito	Mongolia	TEJ	3 3	139.3	144.3	14.5	17.9	6.0	7.0	26.7	23.8	12.2	41.2	2.0	5.0	418.0	366.3	2.0	19
282 Triomphe Du Maroc Moracco TEI 0.3 113.2 12.0 11.7 4.3 4.3 18.9 16.1 2.7 4.6 0.8 1.3 41.4 402.0 16.1 2.7 4.6 0.8 1.3 41.4 402.0 1.6 1.2 2.7 4.6 0.8 1.3 41.4 402.0 1.5 2.7 283 Chibica Mozambique TEJ 2.0 14.3 2.5 2.0 7.0 8.0 2.2 16.4 8.9 9.6 1.3 41.4 402.0 1.5 2.7 284 IR4455 Nigeria TRU 1.3 150 155.7 17.0 11.9 4.3 5.0 18.1 14.5 6.8 10.5 1.4 2.0 41.5 3.71.0 1.4 1.4 1.3 14.7 2.6 17.9 8.3 8.0 2.2 2.4 0.1 2.6 1.7 1.1 2.6 1.5 1.4 1.4 2.0 1.6 2.7 1.1 2.6 1.6 1.5 1.3 41.4 1.0 1.7 43.3	280 Saku		Mongolia	ADMIX	2.0	174.7	171.3	24.9	15.8	37	47	18.4	15.9	4.4	69	12	1.6	386.3	385.3	1.8	1.6
283 Chibica Mozambique TEJ 20 143.2 163.3 22.5 22.0 163.4 163.6 163 <th163< th=""> 163 <th163< th=""> <t< td=""><td>282 Triom</td><td>nhe Du Maroc</td><td>Morocco</td><td>TEL</td><td>0.3</td><td>113.2</td><td>124.7</td><td>12.0</td><td>11.7</td><td>43</td><td>43</td><td>18.9</td><td>16.1</td><td>27</td><td>4.6</td><td>0.8</td><td>1.0</td><td>414 7</td><td>402.0</td><td>1.6</td><td>1.5</td></t<></th163<></th163<>	282 Triom	nhe Du Maroc	Morocco	TEL	0.3	113.2	124.7	12.0	11.7	43	43	18.9	16.1	27	4.6	0.8	1.0	414 7	402.0	1.6	1.5
284 IR-44595 Nepal IND 0.0 101.0 1190 14.5 22.4 7.3 11.0 1.1 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <th1.1< th=""> 1.1 1.1<</th1.1<>	283 Chibic	ca	Mozambique	TEJ	2.0	143.2	136.3	25.5	22.0	7.0	8.0	22.2	16.4	8.9	9.6	13	1.3	384.7	397.0	1.5	2.0
285 Tox 782-20-1 Nigeria TRI 1.7 151 17.0 11.9 4.3 50 18.1 14.5 6.8 10.5 1.4 2.0 415.3 371.0 1.4 1 288 Italica Carolina Poland TEJ 1.7 143.0 141.7 22.6 17.9 8.3 8.0 22.9 24.0 21.4 22.6 1.8 2.5 409.7 366.5 1.5 1 290 Junposta Puerto Rico TEJ 0.3 141.3 134.7 8.9 138.5 6.7 6.7 9.2.7 1.2.7 1.1 2.6 376.5 1.4 2.0 1.1 2.0 7.6 1.0 5.7 6.7 9.3 11.2 3.7 10.7 0.6 1.3 417.3 433.3 1.8 2.0 1.1 2.0 5.0 5.3 1.2.3 1.6 1.5 1.2.7 1.1 2.6 3.45 3.1 2.0 1.4 1.0 1.7 1.2.7 1.1 2.6 1.3 4.3 1.6 1.7 1.2.7 1.1	284 IR-445	595	Nepal	IND	0.0	101.0	119.0	14.5	22.4	73	11.0							409.3	373 3	17	1.8
288 Italica Carolina Poland TEJ 1.7 1430 1417 22.6 17.7 1830 17.7 1830 17.7 1830 17.7 1830 17.7 1830 17.7 1830 17.7 1830 17.7 1830 17.7 17.7 1830 17.7	285 Tox 78	82-20-1	Nigeria	TRI	1.3	151.0	155.7	17.0	11.9	43	5.0	18.1	14.5	6.8	10.5	14	2.0	415.3	371.0	1.7	1.0
280 LusitanoPortugalTEJ1.71.6.61.112.101.171.6.61.102.01.172.0.62.1.72.1.71.112.03.0.71.171.001.0<	288 Italica	Carolina	Poland	TEL	1.7	143.0	141 7	22.6	17.9	83	8.0	22.9	24.0	21.4	22.6	1.8	2.5	409.7	366.5	1.5	1.0
290 Amposta Puerto Rico TEJ 0.3 1413 134.7 8.9 13.8 10.5 1.0.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.8 10.5 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	289 Lusita	mo	Portugal	TEL	1.7	168.0	160.0	26.9	19.9	10.7	73	22.5	21.0	30.6	20.6	3.0	2.3	448.3	430.0	1.7	1.1
291 Troploca 70/76 Romania TEJ 0.0 106.0 11.2 3.7 11.2 3.7 11.2 11.4 12.0 14.3 14.3 14.3 14.3 14.5 14.5 14.5 14.5 15.5 15.5 15.5 15.5 15.7 12.7 14.7 12.0 14.7 14.0 14.3 14.3 14.3 14.5 14.5 15.5 15.5 15.5 15.7 15.7 15.7 16.7 <th16.7< th=""> 16.7 16</th16.7<>	200 Ampo	neta	Puerto Rico	TEI	0.3	141.3	134.7	8.9	13.8	5.0	53	12.3	16.8	57	12.7	1.1	2.5	376.5	434.3	2.0	1.0
293 TOP TOP Senegal ADMIX 2.7 217.0 2080 88.9 71.3 9.7 9.3 31.3 11.6 11.7 42.2 5.4 6.3 409.0 411.0 11.8 11.7 11.8 </td <td>291 Toplo</td> <td>bea 70/76</td> <td>Romania</td> <td>TEI</td> <td>0.0</td> <td>106.0</td> <td>112.3</td> <td>7.6</td> <td>11.0</td> <td>5.7</td> <td>67</td> <td>93</td> <td>11.2</td> <td>3.7</td> <td>10.7</td> <td>0.6</td> <td>1.3</td> <td>417.3</td> <td>433.3</td> <td>1.8</td> <td>21</td>	291 Toplo	bea 70/76	Romania	TEI	0.0	106.0	112.3	7.6	11.0	5.7	67	93	11.2	3.7	10.7	0.6	1.3	417.3	433.3	1.8	21
294 SL 22-613 Siera Lone ADMIX 3.3 157.3 150.2 19.4 15.3 4.3 17.5 13.2 3.1 3.4 0.5 0.8 35.8 14.0 1.8 2 295 Bombilla Spain TEJ 3.3 172.7 164.0 35.1 25.9 9.0 6.3 22.5 24.5 14.8 10.9 2.0 1.7 419.7 409.3 1.6 1 296 Dosel Spain TEJ 0.7 137.3 140.0 15.0 8.8 6.0 5.3 20.5 20.0 5.3 7.9 1.0 1.2 415.0 403.7 1.5 1 297 Bahia Spain TEJ 0.3 128.7 129.5 14.2 13.0 4.0 4.7 24.6 23.2 4.3 6.1 1.0 1.5 396.3 412.3 1.4 1 297 Bahia Spain TEJ 0.3 189.0 184.0 43.7 48.1 10.0 14.3 18.2 19.7 44.9 56.5 2.8 3.7 395.7 387.7 <td>293 TOg 7</td> <td>7178</td> <td>Senegal</td> <td>ADMIX</td> <td>27</td> <td>217.0</td> <td>208.0</td> <td>88.9</td> <td>73.3</td> <td>97</td> <td>93</td> <td>31.3</td> <td>31.6</td> <td>41.7</td> <td>42.2</td> <td>5.4</td> <td>6.3</td> <td>409.0</td> <td>411.0</td> <td>1.0</td> <td>17</td>	293 TOg 7	7178	Senegal	ADMIX	27	217.0	208.0	88.9	73.3	97	93	31.3	31.6	41.7	42.2	5.4	6.3	409.0	411.0	1.0	17
295 Bombila Spain TEJ 3.3 172.7 164.0 35.1 25.9 9.0 6.3 22.5 24.5 14.8 10.9 2.0 1.7 419.7 409.3 1.6 <th1.6< th=""> 1.6 <th1.6< th=""> <t< td=""><td>294 SL 22-</td><td>-613</td><td>Sierra Leone</td><td>ADMIX</td><td>3.3</td><td>157.3</td><td>150.2</td><td>19.4</td><td>15.3</td><td>43</td><td>47</td><td>15.5</td><td>13.2</td><td>3.1</td><td>3.4</td><td>0.5</td><td>0.8</td><td>358.7</td><td>343.0</td><td>1.8</td><td>2.0</td></t<></th1.6<></th1.6<>	294 SL 22-	-613	Sierra Leone	ADMIX	3.3	157.3	150.2	19.4	15.3	43	47	15.5	13.2	3.1	3.4	0.5	0.8	358.7	343.0	1.8	2.0
296 Dosel Spain TEJ 0.7 13.7 10.0 15.0 8.8 6.0 5.3 20.0 5.3 7.9 1.0 1.2 41.5 40.3 11.6 <t< td=""><td>295 Bomb</td><td>illa</td><td>Snain</td><td>TEL</td><td>33</td><td>172.7</td><td>164.0</td><td>35.1</td><td>25.9</td><td>9.0</td><td>63</td><td>22.5</td><td>24.5</td><td>14.8</td><td>10.9</td><td>2.0</td><td>17</td><td>4197</td><td>409.3</td><td>1.6</td><td>1.6</td></t<>	295 Bomb	illa	Snain	TEL	33	172.7	164.0	35.1	25.9	9.0	63	22.5	24.5	14.8	10.9	2.0	17	4197	409.3	1.6	1.6
297 Bahia Spain TEJ 0.3 128.7 129.5 14.2 13.0 40.0 47.7 24.6 23.2 23.2 4.3 6.1 1.0 1.2 14.0 14.7 1.4 1 298 LD 24 Sri Lanka IND 1.0 178.3 175.2 46.4 46.5 6.7 8.0 - 416.3 348.0 1.9 1 298 LD 24 Sri Lanka IND 0.3 189.0 184.0 43.7 48.1 10.0 14.3 18.2 19.7 44.9 56.5 2.8 3.7 395.7 387.7 1.8 1 301 Melanotrix Tajikistan TEJ 1.0 196.8 195.0 40.7 37.7 9.0 10.3 22.6 23.1 32.6 30.9 3.7 3.4 432.3 358.7 1.7 1 303 Kihogo Tanzania TEJ 0.0 123.3 12.0 15.2 11.4 4.3 4.0 22.6 23.1 3.6 30.9 3.4 432.3 358.7 1.7 1 <td< td=""><td>296 Dosel</td><td>1</td><td>Spain</td><td>TEI</td><td>0.7</td><td>137.3</td><td>140.0</td><td>15.0</td><td>8.8</td><td>6.0</td><td>5.3</td><td>20.5</td><td>20.0</td><td>5.3</td><td>79</td><td>1.0</td><td>1.7</td><td>415.0</td><td>403.7</td><td>1.5</td><td>1.6</td></td<>	296 Dosel	1	Spain	TEI	0.7	137.3	140.0	15.0	8.8	6.0	5.3	20.5	20.0	5.3	79	1.0	1.7	415.0	403.7	1.5	1.6
298 LD 24 Sri Lanka IND 1.0 178.3 175.2 46.4 46.5 6.7 8.0 1.0 <th1.0< th=""> <th1.0< th=""> 1.0</th1.0<></th1.0<>	297 Bahia		Spain	TEI	0.7	128.7	129.5	14.2	13.0	4.0	47	24.6	23.2	43	61	1.0	1.2	396.3	412.3	1.5	1.0
299 SML 242 Suriname IND 0.3 189.0 184.0 43.7 48.1 10.0 14.3 18.2 19.7 44.9 56.5 2.8 3.7 395.7 387.7 1.8 1 301 Melanotrix Tajikistan TEJ 1.0 196.8 195.0 40.7 37.7 9.0 10.3 22.6 23.1 32.6 30.9 3.7 34 395.7 387.7 1.8 1 303 Kihogo Tarzania TEJ 0.0 123.3 121.0 15.2 11.4 4.3 4.0 20.4 25.0 4.1 4.4 0.8 1.2 404.0 357.0 1.2 1 304 519 Uruguay IND 2.3 202.7 193.0 65.5 44.5 11.7 9.7 18.0 16.8 36.6 26.3 1.9 2.0 368.3 345.3 1.6 1	298 LD 24	l	Sri Lanka	IND	1.0	178.3	175.2	46.4	46.5	67	8.0	21.0	20.2		0.1	1.0	1.0	416.3	348.0	1.0	1.5
201 Mill 24	299 SML 3	747	Suriname	IND	0.3	189.0	184.0	43.7	48.1	10.0	14.3	18.2	19.7	44.9	56.5	28	37	395.7	387.7	1.9	1.7
303 Kihogo Tanzania TEJ 0.0 12.3 12.1 15.2 11.4 4.3 4.0 20.4 25.0 4.1 4.4 0.8 1.2 404.0 357.0 1.2 1 303 Kihogo Tanzania TEJ 0.0 123.3 121.0 15.2 11.4 4.3 4.0 20.4 25.0 4.1 4.4 0.8 1.2 404.0 357.0 1.2 1 304 519 Unguay IND 2.3 202.7 193.0 65.5 44.5 11.7 9.7 18.0 16.8 36.6 26.3 1.9 2.0 368.3 345.3 1.6 1	301 Melan	2-12	Tajikistan	TEL	1.0	196.8	195.0	40.7	37.7	9.0	10.3	22.6	23.1	32.6	30.9	3.7	3.4	432.3	358.7	1.0	1.7
304 519 Uruguay IND 2.3 2027 1930 65.5 44.5 11.7 9.7 18.0 16.8 36.6 26.3 1.9 2.0 368.3 345.3 1.6 1	303 Kibog	10111	Tanzania	TEI	0.0	123.3	121.0	15.2	11.4	43	4.0	20.4	25.0	41	44	0.8	1.2	404.0	357.0	1.7	1.0
557577 $51000000000000000000000000000000000000$	304 519		Uruguay	IND	2.0	202.7	193.0	65.5	44.5	117	9.7	18.0	16.8	36.6	26.3	1 0	2.0	368.3	345 3	1.2	1.2
305 Doble Carolina Rinaldo Barcan Linumay ADMIX 0.0 1750 1727 253 322 60 57 263 225 14.7 155 23 25 4167 4053 1.4 1	305 Deble	Carolina Rinaldo Paro	an Uruguay	ADMIX	2.5	175.0	172.7	25.2	32.2	60	57	26.2	22.5	14.7	15.5	22	2.5	416.7	405.3	1.0	1.9
306 Wilk 3764 Hibbelstan TEL 13 1807 1720 310 300 87 97 221 233 265 28 29 36 423 4240 14 2	306 WIR 3	3764	Uzbekistan	TEI	1.3	180.7	172.0	25.5	30.0	87	97	20.5	22.3	26.5	28.3	2.5	2.5	432.3	424.0	1.4	2.0
307 Uzbeskii 2 Uzbekistan TEI 1.3 177.5 17.50 18.9 20.8 4.3 4.0 221 265 9.4 69 2.9 17 4670 3763 1.7 1	307 Uzbek	kskii 2	Uzbekistan	TEJ	1.5	177.5	175.0	18.9	20.8	43	4.0	22.1	26.5	94	69	2.9	17	467.0	376 3	17	1.0

308 kmen 501 Vene and Aare TM 3.0 16.7 18.7 0.3 4.0 2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.0 1.0 2.5 1.5	NSFIVID	Accession Nime	County of origin	Subpopulation	Leafbronzing.score	Control plant height	Ozone plant height	Control dry weight	Ozone dıy weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
311 8010ZmeTrit670717.680718.1851806303.3 </td <td>308 Llanero</td> <td>501</td> <td>Venezuela</td> <td>TRJ</td> <td>3.0</td> <td>161.7</td> <td>158.7</td> <td>19.3</td> <td>14.7</td> <td>4.3</td> <td>4.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>408.3</td> <td>394.0</td> <td>2.3</td> <td>2.4</td>	308 Llanero	501	Venezuela	TRJ	3.0	161.7	158.7	19.3	14.7	4.3	4.0							408.3	394.0	2.3	2.4
3113 (5) 10.1 10.1 10.2 31.2 10.0	310 R 101		Zaire	TRJ	2.7	171.7	166.0	21.5	15.5	4.0	3.3							376.7	317.7	1.8	1.9
31331382.083.092.783.092.783.093.082.083.	311 56-122-	23	Thailand	TEJ	2.7	138.5	138.5	18.5	13.7	6.7	6.3	14.0	10.6	6.2	3.2	1.1	0.6	377.3	415.3	1.9	2.1
313 Bix B	312 Aswina	a 330	Bangladesh	AUS	3.3	192.7	186.0	43.7	40.7	11.7	13.3	19.3	22.1	36.7	33.6	2.7	2.2	381.3	377.0	1.9	2.2
315 Metrifisifie Myannur NUS 2.0 19.0 8.0 10.	313 BR24		Bangladesh	IND	2.7	147.3	144.0	25.3	41.7	5.0	7.7	17.6	15.4	9.3	13.7	1.8	1.7	345.3	327.0	1.6	2.0
316 Dowelyam Mp ND 10 97.3 97.3 97.3 97.3 87.3 97.4 87.3 97.0 16.0 97.3	314 CTG15	516	Bangladesh	AUS	2.3	162.2	159.3	26.4	20.3	9.0	8.0	16.2	11.8	5.8	3.0	0.7	0.4	368.3	323.7	1.6	1.9
316 D D 2 Bangludesh AUS 3.7 07 0 6.0 5.7 7.0 2.0	315 Daweb	yan	Myanmar	IND	1.0	210.7	197.3	105.1	47.4	11.3	8.3	25.9	16.4	35.4	15.6	1.2	1.4	380.3	374.7	1.4	1.5
317 D1 123 Bangladesh AUS 3.3 900 18.7 31.2 32.5 6.7 7.0 20.0 20.2 18.7 21.4 3.8 21.4 3.8 <t< td=""><td>316 DD 62</td><td></td><td>Bangladesh</td><td>AUS</td><td>3.7</td><td>170.0</td><td>160.7</td><td>44.4</td><td>25.9</td><td>6.0</td><td>5.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>362.3</td><td>328.0</td><td>1.6</td><td>1.5</td></t<>	316 DD 62		Bangladesh	AUS	3.7	170.0	160.7	44.4	25.9	6.0	5.3							362.3	328.0	1.6	1.5
318 D24 Bangladesh AUS 0.7 20.8 19.2 6.3 5.7	317 DJ 123		Bangladesh	AUS	3.3	196.0	189.7	31.2	32.5	6.7	7.0	26.0	29.2	16.8	21.4	3.3	3.6	389.0	360.0	1.6	1.9
310 DK 12 Bangladesh AUS 3.0 9.01.3 9.03 9.50 4.71 9.3 7.7 1.61 1.61 1.34 1.6 1.4 40.53 3.02.3 1.53 1.61 3.14 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.41 1.61 3.51 1.61 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.60 1.51 1.61 1.51 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.61 1.51 1.51 1.51 1.51 1.51<	318 DJ 24		Bangladesh	AUS	0.7	208.3	198.2	62.7	43.2	6.3	5.7							351.0	366.3	1.5	1.7
320 DM 43 Bangladesh AUS 2.0 198.0 17.3 27.8 14.3 8.0 22.1 16.1 33.4 13.6 1.5 1.4 400.3 30.0 1.3 1.4 321 DM 56 Bangladesh AUS 2.0 157. 160.0 24.8 25.3 8.3 8.0 1.8 1.9 3.6 4.8 0.5 0.9 37.7 47.0 1.3 1.9 322 DM 140 Bangladesh AUS 2.0 157.7 160.0 24.8 25.3 8.3 8.0 1.8 1.9 3.6 4.8 0.5 0.9 37.7 1.0 1.3 1.9 324 DV 123 Bangladesh AUS 5.7 163.1 2.1 8.0 7.7 4.6 15.6 7.7 4.8 0.8 0.7 32.7 1.6 1.5 325 EMATA A 1634 Myanmar IND 5.0 1.83.3 3.0 2.1 8.0 7.7 4.8 1.8 1.7 8.7 2.1 8.0 1.5 8.0 1.5 1.5 8.0 1.5	319 DK 12		Bangladesh	AUS	3.0	201.3	195.3	55.0	47.1	9.3	7.7	15.6	12.6	13.7	7.4	1.0	0.8	342.7	352.3	1.8	2.1
321 DM 56 Bangladesh AUS 2.3 157 16.0 2.4 2.5.3 8.3 1.4.4 1.4 1.0 0.4 0.2 31.0 28.0 1.7 1.9 322 DN 140 Bangladesh AUS 2.0 177 185 84.0 2.3 8.3 10.1 1.1 0.4 0.2 37.3 39.3 1.6 1.5 322 DN 140 Bangladesh AUS 2.7 159.2 169.3 12.1 0.4 1.5 2.9 5.5 1.5 2.0 38.7 32.7 1.6 1.8 325 EMATA 16-34 Manmar RIN 5.0 1.7 1.60 1.7 8.0 4.7 1.6 1.5 2.8 1.7 4.8 0.8 0.7 3.8 0.9 2.0 2.	320 DM 43		Bangladesh	AUS	2.0	198.0	186.0	77.3	27.8	14.3	8.0	22.1	16.1	33.4	13.6	1.5	1.4	405.3	360.3	1.3	1.8
322 DM 59 Bangladesh AUS 20 157 1600 243 23. 8.3 8.0 13.8 17.9 3.6 4.8 0.5 0.9 37.7 347.0 1.3 1.9 323 DN140 Bangladesh AUS 5.7 159.2 161.1 21.4 24.1 5.3 5.7 19.4 19.4 9.1 5.2 9.4 0.5 9.4 0.5 38.7 32.7 1.6 1.8 325 EMATA A 16-34 Myanmar IND 5.0 182.7 160.1 8.7 9.0 - - - 32.7 1.6 1.8 326 Chorbhai Bangladesh AUS 1.7 18.4 16.7 16.3 2.0 1.6 6.0 1.7 8.6 8.7 9.0 1.8 1.8 1.6 1.6 2.0 2.0 3.03 3.0 1.9 1.9 2.3 3.03 1.0 1.0 1.1 2.0 3.0 3.0 1.0 1.2 2.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 <t< td=""><td>321 DM 56</td><td></td><td>Bangladesh</td><td>AUS</td><td>2.3</td><td>157.0</td><td>153.2</td><td>19.8</td><td>8.9</td><td>5.3</td><td>4.3</td><td>14.4</td><td>14.0</td><td>2.9</td><td>1.1</td><td>0.4</td><td>0.2</td><td>381.0</td><td>298.0</td><td>1.7</td><td>1.9</td></t<>	321 DM 56		Bangladesh	AUS	2.3	157.0	153.2	19.8	8.9	5.3	4.3	14.4	14.0	2.9	1.1	0.4	0.2	381.0	298.0	1.7	1.9
32 DN 140 Bangladesh AUS 2.0 17.0 </td <td>322 DM 59</td> <td></td> <td>Bangladesh</td> <td>AUS</td> <td>2.0</td> <td>155.7</td> <td>160.0</td> <td>24.8</td> <td>25.3</td> <td>8.3</td> <td>8.0</td> <td>13.8</td> <td>17.9</td> <td>3.6</td> <td>4.8</td> <td>0.5</td> <td>0.9</td> <td>357.7</td> <td>347.0</td> <td>1.3</td> <td>1.9</td>	322 DM 59		Bangladesh	AUS	2.0	155.7	160.0	24.8	25.3	8.3	8.0	13.8	17.9	3.6	4.8	0.5	0.9	357.7	347.0	1.3	1.9
324 DV 123 Bangladesh AUS 5.7 19.2 16.3 12.4 2.1 5.7 10.1 11.5 2.9 5.5 0.4 0.6 887 32.7 1.6 1.8 325 EMATA 16-34 Myanmar IND 5.0 182.3 182.3 182.6 0.9 44.0 8.7 9.0 - - 35.7 3.8 39.7 1.2 2.1 326 Ghorbhai Bangladesh AUS 0.7 7.3 1.9 1	323 DNJ 14	0	Bangladesh	AUS	2.0	197.3	185.8	84.9	87.6	12.3	12.5	19.4	19.4	31.9	21.0	1.5	2.0	375.3	393.5	1.6	1.5
325 EMATA A 16.34 Myanmar IND 5.0 182.3 182.3 182.7 6.0 44.0 8.7 9.0	324 DV 123		Bangladesh	AUS	5.7	159.2	163.1	21.4	24.1	5.3	5.7	10.1	11.5	2.9	5.5	0.4	0.6	388.7	327.7	1.6	1.8
326 Ghorbhai Bangladesh AUS 1.3 174.8 16.7 31.0 17.8 8.0 4.7 14.6 15.6 8.7 4.8 0.8 0.7 35.7 3220 2.0 2.2 327 Goria Bangladesh AUS 0.7 20.4 10.9 82.8 21.2 28.9 1.0 2.8 21.2 2.9 2.0 32.3 21.6 2.0 37.3 30.7 1.4 1.6 328 Jamir Bangladesh AUS 4.0 0.20.7 196.3 2.0 2.6.3 9.7 9.0 10.0 15.3 12.3 2.16 2.0 3.7.3 3.0.3 37.5 2.1 2.3 31 Khao To Long 27 Thailand ADMIX 2.5 18.4 17.6 6.4 3.2 9.7 4.0 4.5 18.5 12.8 6.0 0.4 0.5 30.0 34.1 1.0 1.7 1.3 1.5 2.5 1.6 4.0 4.7 4.8 1.6 1.4 4.7 4.6 1.5 1.5 1.6 1.0 1.5 1.8	325 EMAT.	A A 16-34	Myanmar	IND	5.0	182.3	182.7	60.9	44.0	8.7	9.0							352.7	349.7	2.2	2.1
327 Goria Bangladesh AUS 0.7 17.8 180.3 32.0 2.4 1.7 8.7 2.28 2.12 2.8 1.9 38.3 399.7 1.9 1.9 328 Jamir Bangladesh AUS 1.7 2040 19.8 55.1 51.8 16.7 16.3 22.9 21.5 31.5 32.1 32.3 2.0 2.3 32.1 3.1 1.0 16.5 1.0 1.6.5 1.0 1.0 1.0 1.0 3.1 1.0 1.0 1.0 1.1 1.0	326 Ghorbh	iai	Bangladesh	AUS	1.3	174.8	168.7	31.0	17.8	8.0	4.7	14.6	15.6	8.7	4.8	0.8	0.7	353.7	322.0	2.0	2.2
328 Jamir Bangladesh AUS 1.7 204.0 191.8 55.1 51.8 16.7 16.3 22.9 21.5 393.3 41.5.3 1.4 1.6 329 Kachilon Bangladesh AUS 3.0 202.7 196.3 29.0 26.3 97.9 19.0 16.5 3 21.6 14.9 2.0 2.0 373.3 41.5.3 1.4 1.6 331 Khao Tot Long 227 Thailand AUS 3.0 191.0 18.5 21.0 3.3 21.6 14.9 1.9 2.3 36.0 37.3 2.1 2.3 332 KPF-16 Bangladesh ADMIX 2.5 184.3 17.7 5.2 8.7 4.0 4.5 16.2 11.7 4.7 5.3 1.2 1.1 347.7 30.37 2.3 2.1 334 Lonello Thailand TEJ 0.0 108.0 21.5 46.0 22.0 21.1 6.0 47.7 23.3 23.4 1.3 1.7 4.7 4.3.7 43.6 36.2 1.2 1.1 34.10 41.0	327 Goria		Bangladesh	AUS	0.7	173.8	180.3	32.0	22.4	11.7	8.7	22.8	21.2	28.9	17.0	2.8	1.9	388.3	399.7	1.9	1.9
329 Kachilon Bangladesh AUS 40 2027 1963 29.0 26.3 9.7 9.0 10.0 16.5 19.4 12.3 2.0 2.0 374.3 370.5 1.8 2.3 331 Khao Tot Long 227 Thailand AUS 3.0 19.0 184.5 40.3 25.4 10.3 8.3 22.1 23.3 21.6 14.9 1.9 2.3 36.0 375.3 2.1 23.3 332 KPF-16 Bangladesh ADMIX 2.5 184.3 178.7 61.4 32.4 14.3 10.0 11.5 18.5 12.8 6.0 0.4 0.5 30.0 374.3 370.5 2.1 1.7 333 Leuang Hawn Thailand TEJ 0.0 108.0 11.5 5.2 8.7 4.0 4.5 16.2 11.7 4.7 5.3 1.2 1.1 347.0 30.3 2.0 1.1 34.0 4.7 8.3 2.0 17.0 8.5 1.0 1.7 1.8 3.1 1.0 1.7 1.9 3.1 40.0 4.0	328 Jamir		Bangladesh	AUS	1.7	204.0	191.8	55.1	51.8	16.7	16.3	22.9	21.5					393.3	415.3	1.4	1.6
331 Khao Tot Long 227 Thailand AUS 3.0 191.0 184.5 40.3 25.4 10.3 8.3 22.1 23.3 21.6 14.9 1.9 2.3 363.0 375.3 2.1 2.3 332 KPF-16 Bangladesh ADMIX 2.5 184.3 178.7 61.4 32.4 14.3 10.0 11.5 12.8 6.0 0.4 0.5 390.0 375.3 2.1 2.3 333 Leuang Hawn Thailand TEJ 0.0 108.0 117.5 5.2 8.7 4.0 4.7 20.3 23.4 13.7 8.6 3.6 3.1 434.0 462.0 1.7 1.6 333 Leuang Hawn Myanmar ADMIX 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.5 17.0 8.2 9.2 1.2 1.5 465.0 382.0 1.7 1.9 336 Paung Malaung Myanmar AUS 1.3 172.0 181.2 40.2 47.7 8.3 8.7 23.0 16.6 13.6 21.6 10.9 <t< td=""><td>329 Kachilo</td><td>on</td><td>Bangladesh</td><td>AUS</td><td>4.0</td><td>202.7</td><td>196.3</td><td>29.0</td><td>26.3</td><td>9.7</td><td>9.0</td><td>19.0</td><td>16.5</td><td>19.4</td><td>12.3</td><td>2.0</td><td>2.0</td><td>374.3</td><td>370.5</td><td>1.8</td><td>2.3</td></t<>	329 Kachilo	on	Bangladesh	AUS	4.0	202.7	196.3	29.0	26.3	9.7	9.0	19.0	16.5	19.4	12.3	2.0	2.0	374.3	370.5	1.8	2.3
332 KPF-16 Bangladesh ADMIX 2.5 184.3 178.7 61.4 32.4 14.3 10.0 11.5 18.5 12.8 6.0 0.4 0.5 390.0 341.0 1.9 1.7 333 Leuang Hawn Thailand TEJ 0.0 108.0 117.5 5.2 8.7 4.0 4.5 16.2 11.7 4.7 5.3 1.2 1.1 347.7 303.7 2.3 2.1 334 Lonello Thailand TEJ 0.7 170.0 162.0 25.2 15.1 4.0 4.7 20.3 23.4 1.3 450.0 1.5 450.0 1.7 1.6 335 Okshitmayin Myanmar AUS 1.3 170.0 181.2 40.2 44.7 8.3 8.7 23.0 166 13.7 1.4 1.3 1.1 409.3 354.0 1.7 1.7 337 Sabharaj Bangladesh IND 2.0 196.0 202.8 79.3 52.5 11.3 9.7 23.1 20.5 36.6 29.0 1.2 1.2 40.3	331 Khao T	ot Long 227	Thailand	AUS	3.0	191.0	184.5	40.3	25.4	10.3	8.3	22.1	23.3	21.6	14.9	1.9	2.3	363.0	375.3	2.1	2.3
333 Leuang Hawn Thailand TEJ 0.0 108.0 11.7.5 5.2 8.7 4.0 4.5 16.2 11.7 4.7 5.3 1.2 1.1 347.7 303.7 2.3 2.1 334 Lomello Thailand TEJ 0.7 170.0 162.0 25.2 15.1 4.0 4.7 20.3 23.4 13.7 8.6 3.6 3.1 434.0 462.0 1.7 1.6 335 Okshitmayin Myanmar ADMIX 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.5 17.0 8.6 3.6 3.1 434.0 462.0 1.7 1.6 336 Paung Malaung Myanmar AUS 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.5 16.6 13.7 14.7 1.3 1.4 409.3 392.0 1.7 1.7 337 Sabharaj Bangladesh IND 2.0 16.3 15.3 19.9 15.1 7.0 5.0 16.8 21.6 10.9 7.6 1.9 1.6	332 KPF-16		Bangladesh	ADMIX	2.5	184.3	178.7	61.4	32.4	14.3	10.0	11.5	18.5	12.8	6.0	0.4	0.5	390.0	341.0	1.9	1.7
334 Lomello Thailand TEJ 0.7 170.0 162.0 25.2 15.1 4.0 4.7 20.3 23.4 13.7 8.6 3.6 3.1 434.0 462.0 1.7 1.6 335 Okshitmayin Myanmar ADMIX 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.5 17.0 8.2 9.2 1.2 1.5 465.0 382.0 1.7 1.6 336 Paung Malaung Myanmar AUS 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.0 16.6 13.7 1.4 1.3 1.4 40.9 384.0 1.7	333 Leuang	; Hawn	Thailand	TEJ	0.0	108.0	117.5	5.2	8.7	4.0	4.5	16.2	11.7	4.7	5.3	1.2	1.1	347.7	303.7	2.3	2.1
335 Okshirmayin Myanmar ADMIX 1.3 156.2 148.0 22.0 21.1 6.0 5.3 20.5 17.0 8.2 9.2 1.2 1.5 465.0 382.0 1.7 1.9 336 Paung Malaung Myanmar AUS 1.3 172.0 181.2 40.2 44.7 8.3 8.7 23.1 16.6 13.7 14.7 1.3 1.1 409.3 354.0 1.7	334 Lomello	0	Thailand	TEJ	0.7	170.0	162.0	25.2	15.1	4.0	4.7	20.3	23.4	13.7	8.6	3.6	3.1	434.0	462.0	1.7	1.6
336 Paung Malaung Myanmar AUS 1.3 1/2.0 181.2 40.2 44.7 8.3 8.7 23.0 16.6 13.7 14.7 1.3 1.1 409.3 53.0 1.7 1.7 337 Sabharaj Bangladesh IND 2.0 196.0 202.8 79.3 52.5 11.3 9.7 23.1 20.5 36.6 29.0 1.2 1.2 403.3 392.7 1.7 1.7 338 Sitpwa Myanmar TEJ 1.7 158.0 153.3 19.9 15.1 7.0 5.0 16.6 10.9 7.6 1.9 1.6 42.0 41.3 2.1 2.0 2.0 16.6 17.7 17.7 339 Yodanya Myanmar IND 1.3 199.3 199.0 43.0 46.5 11.3 9.7 22.5 24.4 35.8 30.1 3.2 3.3 429.0 418.3 1.6 1.7 1.6 42.0 41.3 1.6 42.0 41.6 1.6 42.0 41.3 1.6 42.0 41.6 1.6 42.0	335 Okshitr	mayın	Myanmar	ADMIX	1.3	156.2	148.0	22.0	21.1	6.0	5.3	20.5	17.0	8.2	9.2	1.2	1.5	465.0	382.0	1.7	1.9
337 Sabharaj Bangladesh IND 2.0 196.0 202.8 79.3 52.5 11.3 9.7 23.1 20.5 36.6 29.0 1.2 1.2 1.2 1.2 1.2 403.3 392.7 1.7 1.7 338 Sitpwa Myanmar TEJ 1.7 158.0 153.3 19.9 15.1 7.0 5.0 16.8 21.6 10.9 7.6 1.9 1.6 422.3 417.0 2.1 2.0 339 Yodanya Myanmar IND 1.3 199.3 199.0 43.0 46.5 11.3 9.7 22.5 21.4 35.8 30.1 3.2 417.0 2.1 2.0 1.6 42.3 417.0 2.1 2.0 1.6 42.3 417.0 2.1 2.0 1.0 1.0 40.5 1.0 9.7 2.1 2.0 1.0 40.5 1.0 40.5 1.0 1.0 1.0 1.4 3.8 347.3 349.5 1.5 1.6 340 Berenj Afghanistan AUS 0.5 199.7 191.3 58.5 <td>336 Paung</td> <td>Malaung</td> <td>Myanmar</td> <td>AUS</td> <td>1.3</td> <td>172.0</td> <td>181.2</td> <td>40.2</td> <td>44.7</td> <td>8.3</td> <td>8.7</td> <td>23.0</td> <td>16.6</td> <td>13.7</td> <td>14.7</td> <td>1.3</td> <td>1.1</td> <td>409.3</td> <td>354.0</td> <td>1.7</td> <td>1.7</td>	336 Paung	Malaung	Myanmar	AUS	1.3	172.0	181.2	40.2	44.7	8.3	8.7	23.0	16.6	13.7	14.7	1.3	1.1	409.3	354.0	1.7	1.7
338 Stipwa Myanmar FD 1.7 180 15.3 19.9 15.1 7.0 5.0 16.8 21.6 10.9 7.6 1.9 1.6 422.3 417.0 2.1 2.0 339 Yodanya Myanmar IND 1.3 199.3 199.0 43.0 46.5 11.3 9.7 22.5 24.4 35.8 30.1 3.2 3.3 429.0 418.3 1.6 1.7 340 Berenj Afghanistan ADMIX 4.0 230.0 227.0 66.6 50.8 8.7 8.0 18.2 14.4 36.8 34.7 3.4 4.8.5 1.5 1.6 1	337 Sabhara	aj	Bangladesh	IND	2.0	196.0	202.8	/9.3	52.5	11.3	9.7	23.1	20.5	36.6	29.0	1.2	1.2	403.3	392.7	1./	1.7
339 Yodanya Myanmar IND 1.3 199.3 199.3 140.5 11.3 9.7 22.5 24.4 35.8 30.1 5.2 3.3 42.0 418.3 1.6 1.7 340 Berenj Afghanistan ADMIX 4.0 230.0 227.0 66.6 50.8 8.7 8.0 18.2 12.5 14.5 8.2 1.4 0.8 347.3 349.5 1.5 1.6 1.7 341 Shirkati Afghanistan AUS 0.5 199.7 191.3 58.5 56.7 9.7 11.0 19.7 15.0 14.9 16.6 0.6 0.7 357.5 364.7 1.0 1.0 342 Cenit Argentina TRJ 2.0 191.0 189.3 27.6 27.1 3.7 3.7 11.0 4.7 5.0 1.3 1.4 360.7 359.0 1.8 1.9 343 Victoria F.A. Argentina ADMIX 1.3 193.0 188.0 26.3 21.2 4.7 4.7 19.6 25.0 20.9 13.1 4.1 2.7	338 Sitpwa		Myanmar	IEJ	1.7	158.0	153.3	19.9	15.1	/.0	5.0	16.8	21.6	10.9	7.6	1.9	1.6	422.3	417.0	2.1	2.0
340 berenj Argnanistan ADMIX 4.0 250.0 227.0 66.6 50.8 8.7 8.0 16.2 12.5 14.5 8.2 1.4 0.8 547.5 349.5 1.5 1.0 1.0 341 Shirkati Afghanistan AUS 0.5 199.7 191.3 58.5 56.7 9.7 11.0 19.7 14.5 8.2 1.4 0.8 547.5 349.5 1.0 1.0 341 Shirkati Argentina TRJ 2.0 191.0 189.3 27.6 27.1 3.7 3.7 11.0 4.7 5.0 1.4 360.7 359.0 1.8 1.9 343 Victoria F.A. Argentina ADMIX 1.3 193.0 188.0 26.3 21.2 4.7 4.7 19.6 25.0 20.9 13.1 4.1 2.7 431.0 413.7 2.0 1.9 344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 20.5 14.0 17.9 19.4 25.0 27.6 1.8 1.5 403.3 362.0 1.7	240 Demoni	ya	Myanmar	IND	1.3	220.0	199.0	45.0	40.5	11.5	9.7	18.2	24.4	35.8	30.1	3.2	3.3	429.0	418.5	1.0	1.7
341 Shikari Augualistan AUS 0.3 197.7 191.3 38.3 50.7 9.7 11.0 197.7 15.0 14.9 14.0 0.0 0.7 537.3 504.7 100 100 342 Cenit Argentina TRJ 2.0 191.0 189.3 27.6 27.1 3.7 3.7 11.5 11.0 4.7 5.0 1.3 1.4 360.7 359.0 1.8 1.9 343 Victoria F.A. Argentina ADMIX 1.3 193.0 188.0 26.3 21.2 4.7 4.7 19.6 25.0 20.9 13.1 4.1 2.7 431.0 413.7 2.0 19.9 344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 205.0 77.5 65.8 13.0 14.0 17.9 19.4 25.0 27.6 1.8 1.5 403.3 362.0 1.7 2.0 1.9 344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.7 25.0 27.6 1.8 1.5 403.3 362.0 1.7 2.0 </td <td>240 Berenj 241 Shirkoti</td> <td>:</td> <td>Afghanistan</td> <td>ADMIA</td> <td>4.0</td> <td>230.0</td> <td>101.2</td> <td>59.5</td> <td>56.7</td> <td>8.7</td> <td>8.0</td> <td>18.2</td> <td>12.5</td> <td>14.5</td> <td>8.2</td> <td>1.4</td> <td>0.8</td> <td>347.5</td> <td>349.5</td> <td>1.5</td> <td>1.0</td>	240 Berenj 241 Shirkoti	:	Afghanistan	ADMIA	4.0	230.0	101.2	59.5	56.7	8.7	8.0	18.2	12.5	14.5	8.2	1.4	0.8	347.5	349.5	1.5	1.0
342 Cent Argentina IK 2.0 191.0 189.5 27.6 27.1 5.7 5.7 11.5 11.0 4.7 5.0 1.3 1.4 500.7 539.0 1.8 1.9 343 Victoria F.A. Argentina ADMIX 1.3 193.0 188.0 26.3 21.2 4.7 4.7 19.6 25.0 20.9 13.1 4.1 2.7 431.0 413.7 2.0 1.9 344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 205.0 77.5 65.8 13.0 14.0 17.9 19.4 25.0 27.6 1.8 1.9 347 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 205.0 77.5 65.8 13.0 14.0 17.9 19.4 25.0 27.6 1.8 1.5 403.3 362.0 1.7 2.0 1.9 345 Trape 1.9 19.0 19.5 2.1 20.1 20.1 27.6 1.8 1.5 403.3 362.0 1.7 2.0 <td>341 Shirkati</td> <td>1</td> <td>Aignanistan</td> <td>AUS</td> <td>0.5</td> <td>199.7</td> <td>191.5</td> <td>38.5</td> <td>27.1</td> <td>9.7</td> <td>2.7</td> <td>19.7</td> <td>15.0</td> <td>14.9</td> <td>14.0</td> <td>0.6</td> <td>0.7</td> <td>357.5</td> <td>364.7</td> <td>1.0</td> <td>1.0</td>	341 Shirkati	1	Aignanistan	AUS	0.5	199.7	191.5	38.5	27.1	9.7	2.7	19.7	15.0	14.9	14.0	0.6	0.7	357.5	364.7	1.0	1.0
344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 20.3 21.2 4.7 4.7 19.0 20.9 15.1 4.1 2.7 451.0 41.5.7 2.0 1.9 344 Habiganj Boro 6 Bangladesh ADMIX 4.7 196.0 205.0 77.5 65.8 13.0 14.0 17.9 19.4 25.0 27.6 1.8 1.5 403.3 362.0 1.7 2.0 1.9 245 P1 102 P1.1 P1.0 105.7 20.1 20.1 20.2 20.5 20.5 17.5 65.8 13.0 14.0 17.9 19.4 25.0 27.6 1.8 1.5 403.3 362.0 1.7 2.0 245 P1.1 P1.1 P1.0 19.6 20.5 77.5 65.8 13.0 14.0 17.9 19.4 25.0 25.6 1.5 403.3 362.0 1.7 2.0	342 Cenit 342 Viotoria	EA	Argentina		2.0	191.0	189.3	27.0	27.1	5.7 47	5.7 47	11.5	25.0	4./ 20.0	5.0	1.3	1.4	300.7 431.0	339.0 412.7	1.8	1.9
347 Haugai junto 0 Dangareshi ADVIA 4,7 120,0 203,0 77,3 03,6 15,0 14,0 17,7 12,4 23,0 27,0 1,8 1,5 403,3 302,0 1,7 2,0	345 VICTOR	ni Boro 6	Pangladash	ADMIX	1.3	195.0	205.0	20.5	21.2 65.8	4.7	4.7 14.0	17.0	25.0	20.9	13.1 27.6	4.1	2.7	451.0	415./	2.0	2.0
47 1V 1V Konglodesh AUN AZ 1VAU 1VN7 ZNI ZUA 70 57 776 771 721 169 75 75 76 7070 7707 70 10	245 DZ 102	11 1010 0	Bangladesh	ADMIA	4./	190.0	205.0	25.1	30.4	7.0	57	22.6	27.1	23.0	27.0	1.0	1.3	405.5	302.0	2.0	2.0
	345 DZ 193	87	Bangladesh	AUS	4.3	185.0	195./	55.2	50.4 64.7	11.3	10.0	22.0	27.1 18.5	25.1	23.6	2.5	2.3	282.2	376.0	2.0	1.9
Seventiation Diagnosti Acts Lo 10.0 11.3 10.0 21.0 16.2 25.3 25.0 1.2 0.9 362.3 30.0 10.1 12.3 348 (This 1030) Chins IND 0.3 1017 1877 40.2 48.4 10.1 48.1 477 4.2 2.00.2 30.05 2.0 2.0 2.0 2.0 2.0 2.0 30.05 2.0 2.0 2.0 2.0 2.0 2.0 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 0.9 30.2 30.0 10.1 1.2 1.2 0.9 30.2 30.0 10.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	348 China 1	039	China	IND	2.0	105.0	187.7	49.2	48.8	10.3	9.0	18.7	10.5	48.1	42.7	4.2	3.6	392.5	300.5	2.0	2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	349 Chang	Ch'Sang Hsu Tao	China	IND	17	184.0	177.3	49.2 61.0	52.8	97	9.0	20.2	14.5	19.4	42.7 15.1	4.5	0.9	338.0	362.3	1.0	17
353 ARC 1036 India AUS 43 1913 1970 320 233 70 43 175 186 220 139 21 19 3953 3803 17 19	353 ARC 10)376	India	AUS	43	191.3	197.0	32.0	23.3	7.0	43	17.5	18.6	22.0	13.9	2.1	1.9	395.3	389.3	17	1.7

NSFIVID	Accession Name	Country of origin	Subpopulation	Leaf bronzing score	Control plant height	Ozone plant height	Control dry weight	Ozone dıy weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panide weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
355 ASD	1	India	TEJ	13	184 7	1773	33.6	24.9	93	7.0	22.6	19.5	27.5	20.0	2.7	3.0	477 7	423.0	19	2.0
356 JC 11	7	India	IND	0.7	199.0	174.3	48.3	45.4	11.0	9.3	19.1	19.1	41.3	36.0	4.3	4.0	398.3	399.3	1.9	1.3
357 9524		India	AUS	1.5	224.3	218.5	56.0	46.3	6.3	6.7	24.7	21.7	31.5	18.2	5.3	2.6	333.3	374.0	1.9	1.8
358 ARC	10086	India	ADMIX	1.0	192.7	185.3	35.5	26.3	4.7	4.0	11.2	10.6	3.4	3.6	0.8	0.8	379.3	388.0	2.2	2.2
359 Suria	mkuhi	India	AUS	2.0	160.7	159.7	19.8	13.9	53	5.0							338.3	352.3	14	17
360 PTB	30	India	AUS	3.0	196.3	197.0	36.1	30.7	9.3	7.3	19.9	17.6	12.5	8.6	1.3	1.2	342.0	348.3	2.0	2.1
361 F R 1	13A	India	TEJ	47	209.7	233.7	130.9	117.0	10.0	93							353.3	357.0	19	1.8
363 Edon	nen Scented	Japan	TEJ	2.3	204.0	157.7	26.5	29.6	5.0	63	22.1	20.4	13.4	22.4	4.5	37	397.0	377.3	2.2	2.1
364 Rikut	to Norin 21	Japan	ADMIX	3.3	178.0	174.7	32.7	26.5	6.7	5.3	21.4	19.9	28.1	24.3	4.2	4.3	412.7	347.0	1.8	2.1
365 Shiro	gane	Japan	TEJ	0.3	122.7	123.5	12.9	10.7	6.7	7.3	11.9	13.5	6.6	5.5	0.7	0.6	461.0	449.7	1.4	2.2
366 Kiuki	i No. 46	Japan	TEJ	07	166.3	164.0	39.1	16.8	10.0	63	19.3	14.2	23 3	37	2.0	07	414.0	403.0	2.0	1.8
367 Sanb	vang-Daeme	Korea	ADMIX	2.3	249.0	230.0	54.4	13.9	5.3	3.5	21.6	20.2	33.3	14.5	4.5	5.7	407.3	356.7	1.8	1.9
368 Deok	ieokiodo	Korea	TEJ	1.3	182.5	193.7	38.9	56.5	7.7	7.7	17.3	12.8	10.1	10.9	1.6	1.4	398.0	387.7	1.8	1.9
369 Sathi	j	Pakistan	AUS	3.0	192.0	190.0	37.4	29.4	11.0	9.7	24.5	20.1	29.9	18.6	2.7	2.7	385.7	348.7	1.5	1.8
370 Coars	se	Pakistan	AUS	3.0	208.3	209.0	63.4	65.2	11.0	11.3	18.6	19.0	42.4	27.4	3.0	2.8	363.7	366.7	1.2	1.0
371 Santh	hi Sufaid	Pakistan	AUS	2.3	184.3	188.0	51.4	42.6	10.3	9.3	15.1	13.9	20.0	10.0	1.1	0.7	376.3	378.3	1.3	1.7
372 Sufai	id	Pakistan	AUS	2.7	207.7	203.7	48.7	39.7	10.3	9.7	17.4	16.9	18.3	13.3	1.6	1.5	352.3	330.7	1.2	1.5
373 Lamb	payeque 1	Peru	AROMATIC	2.0	233.7	248.0	99.8	67.9	12.0	10.7	21.9	17.6	37.0	26.0	3.2	2.5	363.7	355.3	1.5	1.7
376 Brevi	iaristata	Portugal	ADMIX	1.3	200.0	202.0	34.1	42.1	5.0	5.5	31.6	31.4	20.5	30.1	4.1	3.8	445.3	427.7	1.5	1.5
377 PR 30	04	Puerto Rico	TRJ	2.7	208.7	203.0	50.8	40.2	5.7	5.0	16.8	14.0	9.9	9.2	2.2	2.0	396.5	330.0	2.0	2.1
378 Kalul	bala Vee	Sri Lanka	AUS	2.7	194.0	195.7	93.5	67.0	14.3	13.7	22.1	20.5	63.1	44.0	3.4	3.9	401.3	380.3	1.4	1.7
380 Taina	an-Iku No. 512	Taiwan	TEJ	1.7	149.7	143.3	22.1	15.8	5.7	5.0	17.5	17.8	3.6	2.6	0.7	0.6	425.0	392.0	2.1	1.9
384 318		TURKEY	TRJ	3.0	200.7	185.0	48.9	30.1	7.7	5.0	24.0	18.8	15.7	6.8	2.0	1.3	399.7	320.3	1.9	1.7
385 Nira		United States	IND	1.3	178.7	189.0	43.6	45.8	8.0	11.3	23.6	19.2	33.8	41.9	3.7	3.0	395.0	345.0	1.8	1.9
386 Palm	yra	United States	ADMIX	3.3	185.3	184.3	27.7	29.5	4.0	4.3							376.7	387.0	2.0	1.9
387 M-20)2	United States	ADMIX	0.0	121.3	120.7	9.5	9.5	4.3	5.0	14.9	20.6	2.6	1.4	0.7	0.4	467.0	412.5	1.8	1.8
389 CI 11	011	United States	ADMIX	1.7	182.0	178.3	24.5	19.5	6.0	3.7							496.0	458.7	2.5	2.1
390 CI 11	026	United States	ADMIX	0.3	151.7	159.5	17.5	14.7	5.0	5.5							318.3	322.3	2.3	2.1
392 Edith	I	United States	TRJ	0.7	196.7	200.0	36.7	41.5	6.0	6.3	20.0	18.2	13.5	12.5	2.1	2.3	380.3	385.0	1.9	2.0
394 Lady	Wright Seln	United States	TRJ	0.5	169.0	160.5	26.7	22.9	5.7	5.3	22.1	18.6	11.3	9.0	2.3	2.1	386.7	395.0	1.7	2.0
395 OS 6	(WC 10296)	Zaire	TRJ	1.7	179.3	164.0	46.0	19.3	6.0	4.3	16.9	16.5	23.6	5.4	1.7	1.3	368.0	314.0	1.9	1.8
396 Coco	drie	United States	TRJ	1.7	113.0	120.7	18.6	14.1	6.3	6.0	12.5	7.1	2.0	0.7	0.3	0.2	386.3	373.7	1.6	1.7
397 Cybo	onnet	United States	TRJ	1.0	108.0	116.7	13.2	11.1	4.7	5.3							386.0	371.0	1.6	1.6
635 Azuc	ena	Philipppines	TRJ	3.0	224.5	207.3	48.8	35.6	6.7	4.7	22.5	19.4	13.2	10.4	3.3	2.2	417.0	363.0	1.8	1.7
636 Sadu	Cho	Korea	IND	1.7	171.3	180.5	50.0	40.2	13.0	11.3	13.5	12.6	18.9	21.6	0.8	1.7	408.3	404.0	2.0	2.3
637 N 22		India	AUS	2.7	193.0	194.0	44.6	38.4	11.0	10.7	18.1	16.5	26.4	19.3	2.3	1.8	373.0	359.3	1.9	2.0
638 More	oberekan	Guinea	TRJ	2.5	224.0	210.7	40.5	25.3	3.7	3.0	25.0	22.9	9.5	4.7	2.6	2.0	437.7	404.5	1.8	1.7
639 Nipp	onbare	Japan	TEJ	0.3	136.0	134.0	17.5	13.8	6.0	6.3							388.0	368.5	1.9	1.8
640 Dom-	-So fid	Iran	AROMATIC	3.3	220.3	226.0	87.7	78.3	10.3	10.0	10.7	11.1	11.5	10.4	0.9	1.0	406.3	389.0	1.7	1.6
641 Tainu	ung 67	Taiwan	TEJ	0.3	134.0	129.0	18.7	13.9	6.0	5.7	13.3	8.8	3.0	0.6	0.4	0.2	392.0	366.0	2.2	2.1

Supplementary Tal	ole S8 (c	continued)
-------------------	-----------	------------

NSFIV ID	Accession Name	Country of origin	Subpopulation	Leaf bronzing score	Control plant height	Ozone plant height	Control dry weight	Ozone dry weight	Control tiller number	Ozone tiller number	Control thousand kernel weight	Ozone thousand kernel weight	Control total panicle weight	Ozone total panicle weight	Control single panicle weight	Ozone single panicle weight	Control SPAD	Ozone SPAD	Control lignin content	Ozone lignin content
642 Zhe	enshan 97B	China	IND	0.0	93.7	92.0	11.6	10.9	8.3	8.7							408.3	398.3	1.9	1.8
643 Min	nghui 63	China	IND	1.0	130.0	126.0	36.9	32.5	12.3	13.0	12.3	9.6	1.4	4.9	0.3	0.5	402.0	364.0	2.1	1.7
644 IR64	4	Philippines	IND	1.0	105.0	108.7	18.6	12.4	8.3	7.0							417.7	362.7	1.9	1.8
645 M20	02	United States	ADMIX	1.3	125.3	125.3	16.8	10.5	6.3	4.7							441.0	460.0	1.5	1.9
647 Cyp	press	United States	TRJ	3.3	124.0	129.3	11.4	13.8	7.7	6.7							385.0	375.3	1.7	1.5
648 Sha	n-Huang-Zhan-2	China	IND	0.3	108.7	109.7	15.2	11.8	7.0	6.7							429.3	394.0	1.8	1.8
651 Dula	ar	India	AUS	4.0	186.7	183.3	32.6	24.2	7.3	6.3	20.2	17.9	18.3	11.5	2.7	2.0	412.3	393.0	1.3	1.6
652 Li-Ji	iang-Xin-Tuan-Hei-Gu	China	ADMIX	2.7	218.0	207.0	43.3	27.8	9.3	8.0	19.5	19.6	28.6	15.7	2.5	2.4	402.0	371.7	1.4	1.6

The mean value of three biological replicates is shown. For mapping, raw value was used for lignin content, square-root transformed value was used for leaf bronzing score, and the ratio (ozone/control) was used for the rest of the traits. Gray cells are extreme values which were removed prior to the mapping. Empty cells from thousand kernel weight, total panicle weight and single panicle weight are the accessions which had less than 10 g of average thousand kernel weight or showed high shattering habit, which were removed from the original dataset.

admix	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kernel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
Leaf bronzing score	1.00	0.912	0.241	0.416	0.376	0.536	0.956	0.395	0.823	0.204
Relative plant height	-0.02	1.00	0.463	0.842	0.200	0.327	0.167	0.727	0.117	0.673
Relative dry weight	-0.17	0.11	1.00	< 0.001	0.939	0.006	0.911	0.752	0.938	0.033
Relative tiller number	-0.12	0.03	0.70	1.00	0.693	< 0.001	0.868	0.442	0.787	0.027
Relative thousand kernel weight	-0.15	0.21	-0.01	0.07	1.00	0.644	0.990	0.312	0.937	0.578
Relative total panicle weight	-0.11	0.17	0.45	0.53	-0.08	1.00	0.002	0.791	0.949	0.106
Relative single panicle weight	0.01	0.23	-0.02	-0.03	0.00	0.49	1.00	0.423	0.529	0.812
Relative SPAD	-0.13	0.05	0.05	0.11	-0.17	0.05	0.14	1.00	0.449	0.787
Lignin content	0.03	-0.23	-0.01	-0.04	0.01	0.01	-0.11	-0.11	1.00	< 0.001
Relative lignin content	0.19	0.06	-0.31	-0.32	-0.09	-0.27	0.04	-0.04	-0.54	1.00
aromatic	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kernel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
<i>aromatic</i> Leaf bronzing score	Leaf bronzing score	Relative plant height	Relative dry weight 0.624	Relative tiller number	Relative thousand kemel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content U.100	Relative lignin content 162.0
<i>aromatic</i> Leaf bronzing score Relative plant height	Leaf bronzing score Leaf bronzing 1.00 -0.33	Relative plant height 0.295	tu Belative dry weight 0.624 0.552	Relative tiller number 0.365 0.720	Relative thousand kernel weight 0.0200	Relative total panicle weight Relative 10an Relative 10an	Relative single panicle weight 0.504	CP C	rganin content Liganin content 0.100 0.875	Relative lignin content Relative Jignin content 0.519
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight	асов Геанрингия 1.00 -0.33 -0.16	Relative plann height 00.1 -01.9	Relative dry weight 0.624 0.552 1.00	Leading to the second s	Relative thousand kernel weight 0.360 0.194 0.545	Relative total panicle weight Relative total panicle 0.131 0.402	Relative single panicle weight 0.345 0.4777	0.011 0.434 0.434	uteruo C.100 0.875 0.875	Relative lignin content Relative lignin content 0.519 0.519
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number	геафриоизіна score Геафриоизіна -0.16 -0.29	0.295 0.10 0.12	u.624 0.624 0.552 1.00 -0.25	umpet 0.365 0.720 0.424 1.00	thousand kernel weight Relative thousand kernel weight 0.360 0.194 0.545 0.790	Kelative total panicle weight Relative total panicle weight 0.852 0.131 0.402 0.190	U.504 0.504 0.477 0.251	0.011 0.434 0.434 0.077	0.100 0.875 0.875 0.539	Relative lignin content 0.791 0.519 0.194
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight	геафронхия Геафронхия -0.33 -0.16 -0.29 0.38	unit for the second sec	units of the second sec	balance 0.365 0.720 0.424 1.00 0.11	the selative thousand kernel weight 0.360 0.194 0.545 0.790 1.00	unit of the second seco	U. 251 0.006	0.011 0.434 0.434 0.632	0.100 0.875 0.539 0.554	U.791 0.791 0.519 0.194 0.241
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight	1.00 -0.33 -0.16 -0.29 0.38 0.08	Relative plant height Relative plant height 0.295 1.00 -0.19 0.51 0.58	tu initial initia in	Lange	tion tion tion tion tion tion tion tion	Relative total panicle weight total panicle weight 0.131 0.402 0.100 0.013 1.00	Relative single panicle weight 0.504 0.345 0.477 0.251 0.006 <0.001	0.011 0.434 0.434 0.077 0.632 0.132	0.100 0.875 0.539 0.248	unit content 0.791 0.519 0.519 0.194 0.241 0.045
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight Relative single panicle weight	1.00 -0.33 -0.16 -0.29 0.38 0.08 0.28	Relative 0.295 0.295 0.10 0.12 0.51 0.58 0.39	tu b b c c c c c c c c c c c c c c c c c	unuper 0.365 0.720 0.424 1.00 0.11 0.52 0.46	thousand kernel weight Relative thousand kernel weight 0.360 0.545 0.790 0.82 0.86	Relative to tal panicie weight Relative to tal 0.131 0.208.0 0.100 0.013 0.013 0.001 0.013	unities weight 0.504 0.345 0.477 0.251 0.006 <0.001 1.00	0.011 0.434 0.434 0.077 0.632 0.132 0.343	0.100 0.875 0.539 0.554 0.248 0.198	U.791 0.791 0.519 0.194 0.241 0.045 0.044
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight Relative single panicle weight Relative SPAD	L.00 -0.33 -0.16 -0.29 0.38 0.08 0.28 -0.70	0.295 0.100 0.12 0.58 0.39 0.25	1.00 0.624 0.552 1.00 -0.25 0.35 0.30 0.25	balance bal	turner to the second se	United and a second sec	unities weight banicle weight banicle weight 0.504 0.345 0.477 0.251 0.006 <0.001 1.00 0.39	0.011 0.434 0.434 0.432 0.632 0.132 0.343 1.00	0.100 0.875 0.875 0.539 0.554 0.248 0.198 0.182	0.791 0.519 0.519 0.194 0.241 0.045 0.044 0.934
<i>aromatic</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight Relative single panicle weight Relative SPAD Lignin content	L.00 -0.33 -0.16 -0.29 0.38 0.28 -0.70 0.50	0.295 1.00 -0.19 0.25 0.39 0.25 -0.10	1,00 0.624 0.552 1.00 -0.25 0.35 0.30 0.25 0.05	0.365 0.720 0.424 1.00 0.11 0.52 0.46 0.53 0.20	turner to the second se	ttp diamond logo 0.852 0.131 0.402 0.190 0.013 1.00 0.95 0.588 0.466	United and a state of the second state of the	0.011 0.434 0.434 0.434 0.077 0.632 0.132 0.343 1.00 -0.41	0.100 0.875 0.875 0.539 0.554 0.248 0.198 0.182 1.00	0.791 0.519 0.519 0.241 0.045 0.044 0.934 0.002

Supplementary Table S9: Correlation matrix in each subpopulation.

aus	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kernel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
Leaf bronzing score	1.00	0.883	0.391	0.906	0.504	0.271	0.443	0.062	0.799	0.351
Relative plant height	0.02	1.00	0.001	0.081	0.086	0.023	0.926	0.288	0.116	0.105
Relative dry weight	0.12	0.42	1.00	< 0.001	0.228	< 0.001	0.573	0.450	0.676	0.097
Relative tiller number	-0.02	0.24	0.78	1.00	0.352	< 0.001	0.605	0.652	0.742	0.049
Relative thousand kernel weight	0.09	0.24	0.17	0.13	1.00	0.045	0.027	0.736	0.148	0.539
Relative total panicle weight	0.17	0.34	0.61	0.56	0.30	1.00	< 0.001	0.589	0.760	0.641
Relative single panicle weight	0.12	-0.01	0.09	0.08	0.33	0.62	1.00	0.383	0.352	0.585
Relative SPAD	-0.25	-0.15	-0.10	-0.06	0.05	-0.08	0.13	1.00	0.320	0.117
Lignin content	0.04	0.21	-0.06	-0.05	0.20	-0.05	-0.14	0.14	1.00	< 0.001
Relative lignin content	0.13	-0.22	-0.23	-0.27	-0.09	-0.07	0.08	-0.21	-0.54	1.00
indica	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kernel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
Leaf bronzing score	1.00	0.687	0.322	0.166	0.542	0.978	0.689	0.510	0.008	0.715
Relative plant height	-0.05	1.00	0.029	0.071	0.241	0.315	0.013	0.117	0.623	0.140
Relative dry weight	-0.12	0.25	1.00	< 0.001	0.689	< 0.001	0.230	0.494	0.128	0.178
Relative tiller number	-0.16	0.21	0.76	1.00	0.913	< 0.001	0.163	0.345	0.081	0.377
Relative thousand kernel weight	0.09	0.17	0.06	-0.02	1.00	0.809	0.557	0.069	0.916	0.679
Relative total panicle weight	0.00	0.15	0.68	0.62	-0.04	1.00	< 0.001	0.062	0.504	0.909
Relative single panicle weight	-0.06	0.36	0.18	0.21	0.09	0.55	1.00	0.092	0.783	0.765
Relative SPAD	0.08	-0.18	-0.08	-0.11	-0.26	-0.27	-0.25	1.00	0.511	0.625
Liquin contont										
Lignin content	0.31	-0.06	-0.18	-0.20	0.02	-0.10	0.04	0.08	1.00	< 0.001

Supplementary Table S9 ((continued)
--------------------------	-------------

temperate japonica	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kernel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
Leaf bronzing score	1.00	0.521	0.308	0.158	0.823	0.637	0.145	0.767	0.981	0.497
Relative plant height	-0.08	1.00	0.068	0.721	0.632	0.162	0.097	0.181	0.372	0.235
Relative dry weight	-0.12	0.22	1.00	< 0.001	0.008	< 0.001	< 0.001	0.572	0.491	0.133
Relative tiller number	-0.17	0.04	0.64	1.00	0.008	< 0.001	< 0.001	0.273	0.466	0.742
Relative thousand kernel weight	-0.03	-0.06	0.33	0.33	1.00	0.003	< 0.001	0.418	0.230	0.820
Relative total panicle weight	-0.06	0.18	0.73	0.65	0.37	1.00	< 0.001	0.300	0.342	0.235
Relative single panicle weight	-0.18	0.21	0.59	0.42	0.44	0.86	1.00	0.259	0.276	0.332
Relative SPAD	-0.04	-0.16	0.07	0.13	0.10	0.13	0.14	1.00	0.562	0.565
Lignin content	0.00	-0.11	0.08	-0.09	-0.15	-0.12	-0.14	-0.07	1.00	< 0.001
Relative lignin content	0.08	-0.14	-0.18	-0.04	-0.03	-0.15	-0.12	0.07	-0.42	1.00
tropical japonica	Leaf bronzing score	Relative plant height	Relative dry weight	Relative tiller number	Relative thousand kemel weight	Relative total panicle weight	Relative single panicle weight	Relative SPAD	Lignin content	Relative lignin content
tropical japonica Leaf bronzing score	Leaf bronzing score	Relative plant height	Relative dry weight 0.332	Relative tiller number 0.012	Relative thousand kernel weight 0.582	Relative total panicle weight	Relative single panicle weight	Relative SPAD 0.125	Lignin content 0.003	Relative lignin content 162.0
<i>tropical japonica</i> Leaf bronzing score Relative plant height	aross score for the second sec	Relative plant height 800.0	Relative dry weight Resolution Relative dry weight Resolution Resolution Reso	Relative tiller number Relative tiller number 0.352	Relative thousand kernel weight 882.0	Relative total panicle weight 0.1600	Relative single panicle weight 0.007	Creative SPAD 0.125 0.223	Triguin content D.0003 D.330	Relative lignin content 0.791
<i>tropical japonica</i> Leaf bronzing score Relative plant height Relative dry weight	геафронтіна score Геафронтіна score Геафронтіна Г.00 -0.23 -0.12	theight the second theight the second theight the second theight the second t	U.337 0.039 1.00	0.012 0.352 <0.001	Relative thousand kernel weight 0.285 0.302 0.003	Relative total panicle weight Relative total panicle weight 0.155 <0001	Relative single panicle weight 800.0 900.0	Claritice SPAD Relative SPAD 0.125 0.223 0.727	0.003 0.330 0.781	Relative lignin content 0.791 0.514 0.315
<i>tropical japonica</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number	еодрагия Геафрониция -0.23 -0.12 -0.30	unit for the second sec	Relative dry weight 800.0 Relative dry weight 900.1 00	Relative tiller number 0.012 0.352 <0.001 1.00	thousand kernel weight 0.285 0.302 0.003 0.157	Relative total panicle weight Relative total panicle weight 0.155 0.001	the single panicle weight 0.004 0.005 0.006 0.143	OVds 3.1125 0.125 0.223 0.727 0.494	0.003 0.330 0.781 0.482	uniu content 0.791 0.514 0.315 0.764
<i>tropical japonica</i> Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight	1.00 -0.23 -0.12 -0.30 0.15	Relative plant height 0.054 0.011 0.14	tu i i i i i i i i i i i i i i i i i i i	Relative tiller number Relative tiller 100.052 <0.011 0.00 0.19	kelative thousand kernel weight 0.2855 0.302 0.003 0.157 1.00	Relative total panicle weight 8100.0> 100.0> 100.0> 100.0>	Relative single panicle weight 0.000 0.005 0.000 0.143 <0.001	0.125 0.223 0.727 0.494 0.343	tusuo التي 1 0.003 0.330 0.781 0.482 0.792	University of the second secon
tropical japonica Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thous and kernel weight Relative total panicle weight	1.00 -0.23 -0.12 -0.30 0.15 0.01	the big the second second seco	tu bio bio bio bio bio bio bio bio bio bio	Relative tiller number 0.012 0.352 <0.001 0.19 0.47	tų siena karieti type type type type type type type type	Relative total panicle weight Relative total panicle weight 0.155 0.0001 0.001 0.001	Relative single panicle weight 0.904 0.005 0.006 0.143 <0.001 <0.001	0.125 0.223 0.727 0.494 0.343 0.946	tustuo 	unin content 0.791 0.514 0.315 0.764 0.898 0.460
tropical japonica Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thous and kernel weight Relative total panicle weight Relative single panicle weight	1.00 -0.23 -0.12 -0.30 0.15 0.01 -0.02	the bigst state of the state of	tų bila kip situla 20.337 0.039 0.62 0.40 0.55 0.37	0.012 0.352 <0.001 1.00 0.19 0.47 0.20	the second secon	tig 0.916 0.155 <0.001	Relative single panicle weight 0.004 0.005 0.000 0.143 <0.001 <0.001 1.00	0.125 0.223 0.727 0.494 0.343 0.946 0.867	0.003 0.330 0.781 0.482 0.792 0.744 0.688	untent 0.791 0.514 0.315 0.764 0.898 0.460 0.826
tropical japonica Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight Relative single panicle weight Relative SPAD	1.00 -0.23 -0.12 -0.30 0.15 0.01 -0.02 -0.18	the second secon	u.337 0.337 0.039 1.00 0.62 0.40 0.55 0.37 0.04	unnber 0.012 0.352 <0.001 0.19 0.47 0.20 -0.08	the selection of the se	Relative total panicle weight cotal panicle weight selection of the select	the single panicle weight 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.125 0.223 0.727 0.494 0.343 0.946 0.867 1.00	0.003 0.330 0.781 0.482 0.792 0.744 0.688 0.984	U.791 0.791 0.514 0.315 0.764 0.898 0.460 0.826 0.126
tropical japonica Leaf bronzing score Relative plant height Relative dry weight Relative tiller number Relative thousand kernel weight Relative total panicle weight Relative single panicle weight Relative SPAD Lignin content	1.00 -0.23 -0.12 -0.30 0.15 0.01 -0.02 -0.18 0.35	telative bill telative telativ	tu isp wip wip wip wip wip wip wip wi	Relative tiller number 0.012 0.352 <0.001 0.19 0.47 0.20 -0.08 -0.09	the second secon	Relative total pamicle weight Relative total pamicle weight 0.155 <0.010 0.010 0.89 0.01 -0.05	tuil 0.904 0.005 0.006 0.143 <0.001	0.125 0.223 0.727 0.494 0.343 0.946 0.867 1.00 0.00	tusuo .uu .T 0.003 0.330 0.781 0.482 0.792 0.744 0.688 0.984 1.00	University of the second secon

The population was devided into five main subpopulations and the admixed group, and the correlation coefficient and its significance were calculated. The lower triangle shows the correlation coefficient between two traits, and the upper triangle shows the P values of the correlation. The correlation coefficient was calculated using Pearson's correlation coefficient, and P values were obtained using two-tailed Student's *t*-test.

	1.
Λm	nondiago
AD	nenances.
1 L L L	penarees

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value	MAF	Major allele	Minor allele	Location
Square-root transformed leaf bronzing score	id1026704	1	41535807	5.39	0.11	С	Т	188 bp upstream LOC_Os01g71670
Square-root transformed leaf bronzing score	id1027269	1	42082183	4.20	0.24	А	G	intron LOC_Os01g72560
Square-root transformed leaf bronzing score	id5006917	5	17249762	4.09	0.48	С	Т	intergenic region
Relative plant height	id8002494	8	7984606	4.20	0.24	С	Т	exon LOC_Os08g13420 (T683M)
Relative dry weight	id6015530	6	27382490	4.88	0.10	С	Т	intergenic region
Relative dry weight	id8002877	8	9107117	4.18	0.18	С	Т	intergenic region
Relative dry weight	id12008228	12	23661669	4.87	0.31	Т	А	intergenic region
Relative tiller number	id1027513	1	42325443	4.23	0.29	Α	С	380 bp upstream LOC_Os01g72970
Relative SPW	ud2001239	2	21778775	4.68	0.34	Т	С	intergenic region
Relative SPW	id2008679	2	21812170	5.12	0.13	G	А	intron LOC_Os02g36190
Relative SPW	id10004968	10	17366969	4.27	0.33	Т	С	86 bp upstream LOC_Os10g33140
Relative SPAD	wd4003148	4	30724662	4.12	0.40	Α	С	3'-UTR LOC_Os04g51820
Relative SPAD	id5000986	5	1545155	4.66	0.42	G	А	intergenic region
Relative SPAD	id5000988	5	1546671	4.12	0.28	Α	С	762 bp upstream LOC_Os05g03620
Relative SPAD	id5001009	5	1614147	4.20	0.45	G	А	intergenic region
Relative SPAD	id5001440	5	2539289	4.17	0.47	С	Т	intron LOC_Os05g05210

Supplementary Table S10: List of significant SNPs identified through association mapping.

The SNPs showing $-\log_{10}P$ value > 4.0 are listed together with the corresponding trait, SNP marker ID (used in rice diversity panel), chromosome number, physical position (bp, as in MSU 7 database), $-\log_{10}P$ value, minor allele frequency, minor and major allele and the location of the SNPs on the chromosome. The location of the SNP marker was classified as exon, intron, untranslated region, upstream or downstream if the SNP was located within 1,000 bp from a gene, or intergenic region otherwise. If the SNP was located in an exon of a gene, amino acid substitution was shown if applicable (original amino acid, amino acid position and the resultant amino acid).

Supplementary Table S11: List of the top 50 SNPs from each trait.

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value l	LD block start (bp)	LD block end (bp)	LD block size (bp)
Relative plant height	id1000058	1	204126	2.82	174692	401599	226907
Relative plant height	id1003397	1	4090558	3.04	4005917	4173403	167486
Relative plant height	id1003490	1	4173403	3.04	4005917	4173403	167486
Relative tiller number	id1003733	1	4427772	3.31	4408400	4427772	19372
Relative lignin content	id1004041	1	4971993	2.63	4969392	4975371	5979
Relative thousand kernel weight	id1004242	1	5326062	2.66	5326062	5475749	149687
Relative total panicle weight	id1004242	1	5520002	2.36	5326062	54/5/49	149087
Relative tiller number	id1005142	1	6668083	3.43	6661627	6668083	6456
Relative dry weight	id1005178	1	6794133	2.98	6787032	7054453	267421
Square-root transformed leaf bronzing score	id1005516	1	7180947	2.81	7177403	7332852	155449
Relative single panicle weight	id1006289	1	8174333	3.39	8137725	8510834	373109
Relative SPAD	id1007879	1	10998909	3.12	10939343	11357494	418151
Lignin content	ud1000550	1	11906109	3.24	11856807	12308329	451522
Lignin content	id1008322	1	11924993	3.37	11856807	12308329	451522
Lignin content	id1008336	1	11931155	2.74	11856807	12308329	451522
Lignin content	id1008346	1	11952182	3.31	11856807	12308329	451522
Lignin content	id1008401	1	12065469	2.82	11856807	12308329	451522
Lignin content	101008403	1	12066168	2.93	11856807	12308329	451522
Relative total panicle weight	ud1009376	1	14311295	2.00	141/2690	1433/513	2796927
Relative single nanicle weight	id1012723	1	22418794	3.73	22369525	22498177	128652
Lignin content	id1012795	1	22557082	3.36	22557082	22721951	164869
Lignin content	id1012821	1	22563986	2.88	22557082	22721951	164869
Lignin content	ud1001004	1	22591363	3.20	22557082	22721951	164869
Lignin content	id1012822	1	22591601	2.92	22557082	22721951	164869
Lignin content	id1012834	1	22594722	2.92	22557082	22721951	164869
Lignin content	id1012836	1	22595242	3.20	22557082	22721951	164869
Relative SPAD	id1013296	1	23193989	2.82	23116088	23248184	132096
Relative total panicle weight	id1013335	1	23315502	3.13	23313092	23315780	2688
Relative total panicle weight	ud1001043	1	23315780	2.87	23313092	23315780	2688
Relative total panicle weight	id1013354	1	23338226	2.61	23337421	23338972	1551
Relative total panicle weight	101013362	1	23338972	2.68	23337421	23338972	1551
Relative tiller number	id1013402	1	23361499	2.01	23361499	23363919	2420
Relative total nanicle weight	id1013402	1	23361499	3.05	23361499	23363919	2420
Relative total panicle weight	id1013404	1	23361760	2.03	23361499	23363919	2420
Relative tiller number	id1013422	1	23367451	2.79	23366322	23367451	1129
Relative total panicle weight	id1013422	1	23367451	3.00	23366322	23367451	1129
Relative single panicle weight	id1013546	1	23579131	2.70	23518306	23609631	91325
Relative single panicle weight	id1013566	1	23583742	2.71	23518306	23609631	91325
Square-root transformed leaf bronzing score	id1016608	1	28367634	2.81	28347716	28429542	81826
Relative tiller number	id1017391	1	29441562	2.84	29324976	29445755	120779
Relative tiller number	id1017422	1	29449009	2.65	29448630	29488546	39916
Relative tiller number	id1017430	1	29482477	2.73	29448630	29488546	39916
Relative tiller number	101018950	1	31421262	2.97	none	none	142065
Relative lignin content	id1019383	1	31921430	2.50	31876884	32019849	142903
Relative tiller number	ud1001373	1	32300029	2.62	32172130	32326843	154713
Relative dry weight	id1020214	1	32698021	2.61	none	none	0
Relative thousand kernel weight	id1021758	1	34786169	2.79	34690632	34788248	97616
Relative thousand kernel weight	id1021759	1	34788248	2.64	34690632	34788248	97616
Relative lignin content	id1023570	1	37391135	3.05	37312393	38233157	920764
Square-root transformed leaf bronzing score	id1023791	1	37686259	2.80	37312393	38233157	920764
Square-root transformed leaf bronzing score	id1025077	1	39548414	2.99	none	none	0
Square-root transformed leaf bronzing score	id1025088	1	39553459	2.81	39549203	39825564	276361
Square-root transformed leaf bronzing score	id1025198	1	39620806	2.82	39549203	39825564	276361
Relative tiller number	id1025292	1	39/99820	2.66	39549203	39825564	2/6361
Relative tiller number	id 1025321	1	39824649	2.64	39549203	39825564	2/6361
Relative single panicle weight	id1025863	1	40623063	2.71	40233277	40014580	501105
Square-root transformed leaf bronzing score	id1026656	1	41349739	3.46	41349739	41535420	185681
Lignin content	id1026656	. 1	41349739	3.06	41349739	41535420	185681
Lignin content	id1026660	1	41386306	3.15	41349739	41535420	185681
Lignin content	id1026685	1	41396262	3.97	41349739	41535420	185681
Square-root transformed leaf bronzing score	id1026704	1	41535807	5.39	41535729	41535835	106
Relative thousand kernel weight	id1027233	1	42036835	2.64	42036835	42062369	25534
Square-root transformed leaf bronzing score	id1027269	1	42082183	4.20	42082183	42086346	4163
Relative tiller number	id1027397	1	42256178	3.23	42255303	42256178	875
Square-root transformed leaf bronzing score	dd1001373	1	42256875	3.06	none	none	0

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value I	D block start (bp)	LD block end (bp)	LD block size (bp)
Square-root transformed leaf bronzing score	dd1001565	1	42316278	2.92	42316278	42336093	19815
Relative tiller number	id1027507	1	42324402	3.10	42316278	42336093	19815
Relative total panicle weight	id1027507	1	42324402	2.90	42316278	42336093	19815
Relative tiller number	id1027513	1	42325443	4.23	42316278	42336093	19815
Relative total panicle weight	id1027513	1	42325443	2.73	42316278	42336093	19815
Square-root transformed leaf bronzing score	id1027525	1	42328671	3.43	42316278	42336093	19815
Relative tiller number	id1027529	1	42329156	3.28	42316278	42336093	19815
Relative total panicle weight	id1027529	1	42329156	2.07	42316278	42336093	19815
Relative tiller number	dd1001675	1	42336093	2.83	42316278	42336093	19815
Relative tiller number	id1027563	1	42339408	2.73	42336674	42340565	3891
Relative total panicle weight	id1027563	1	42339408	2.22	42336674	42340565	3891
Square-root transformed leaf bronzing score	id102/56/	1	42351580	2.79	42340608	42374798	34190
Square-root transformed leaf bronzing score	id102/5/1	1	42352040	3.36	42340608	42374798	34190
Relative tiller number	102/5/1	1	42352040	2.73	42340608	423/4/98	34190
Relative ther number	101027576	1	42552787	3.20	42340608	42374798	34190
Square root transformed loof bronging soore	id1027585	1	42352787	2.08	42340608	42374798	34190
Palativa total papiala waight	id1027585	1	42334084	2.78	42340008	42374798	54190
Relative total panicle weight	id1027633	1	42370080	2.07	42277000	42425303	49294
Relative plant height	id1027640	1	42377009	2.74	42377009	42425595	40304
Relative tiller number	id1027640	1	42378501	3.04	42377009	42423393	48384
Relative total panicle weight	id1027640	1	42378501	2.62	42377009	42425393	48384
Relative single panicle weight	id1027640	1	42378501	3 38	42377009	42425393	48384
Relative thousand kernel weight	id1027649	1	42380579	2.68	42377009	42425393	48384
Relative single panicle weight	id1027656	1	42393687	3.52	42377009	42425393	48384
Relative single panicle weight	id1027666	1	42397035	2.88	42377009	42425393	48384
Square-root transformed leaf bronzing score	dd1001865	1	42397374	2.88	42377009	42425393	48384
Relative single nanicle weight	id1027668	1	42397407	2.98	42377009	42425393	48384
Relative tiller number	id1027703	1	42434413	3 29	none	none	0
Relative tiller number	dd1001952	1	42435589	2.68	42435589	42443477	7888
Relative single panicle weight	dd1001952	1	42435589	3.92	42435589	42443477	7888
Relative single panicle weight	id1027708	1	42436371	2.80	42435589	42443477	7888
Relative single panicle weight	id1027716	1	42439601	3.63	42435589	42443477	7888
Square-root transformed leaf bronzing score	dd1001979	1	42439864	3.15	42435589	42443477	7888
Relative SPAD	id1027775	1	42572243	3.12	42484324	42581918	97594
Relative thousand kernel weight	id1028484	1	43142537	2.87	43121356	43252778	131422
Relative tiller number	id2000443	2	629586	3.34	none	none	0
Relative tiller number	id2002594	2	4869035	2.86	4851178	4870186	19008
Relative tiller number	id2002597	2	4870186	2.97	4851178	4870186	19008
Relative tiller number	id2003314	2	6481090	2.64	6440863	6494147	53284
Relative single panicle weight	id2003743	2	7286487	2.67	7249337	7367879	118542
Relative lignin content	id2003809	2	7437761	2.51	7436591	7442135	5544
Square-root transformed leaf bronzing score	id2004165	2	8247250	3.04	8245076	8249418	4342
Relative lignin content	id2006786	2	17038133	2.75	17038133	17042470	4337
Lignin content	id2006793	2	17042470	3.28	17038133	17042470	4337
Relative lignin content	id2006996	2	17497082	2.44	none	none	0
Square-root transformed leaf bronzing score	id2008053	2	20713818	3.51	20713818	20764778	50960
Square-root transformed leaf bronzing score	id2008457	2	21116832	2.93	21100935	21116832	15897
Relative single panicle weight	ud2001239	2	21778775	4.68	21714292	21856224	141932
Relative total panicle weight	id2008679	2	21812170	3.14	21714292	21856224	141932
Relative single panicle weight	id2008679	2	21812170	5.12	21714292	21856224	141932
Relative total panicle weight	id2008710	2	21946539	2.17	21945345	21946769	1424
Relative plant height	id2008858	2	22329854	3.09	22262297	22410305	148008
Relative plant height	id2008860	2	22330712	3.09	22262297	22410305	148008
Relative plant height	id2008881	2	22350598	3.01	22262297	22410305	148008
Relative plant height	id2008883	2	22353205	3.26	22262297	22410305	148008
Relative plant height	id2008897	2	22361733	2.79	22262297	22410305	148008
Square-root transformed leaf bronzing score	id2009604	2	23690576	2.85	23605507	23711733	106226
Square-root transformed leaf bronzing score	1d2009675	2	23746901	3.52	23731042	23746901	15859
Square-root transformed leaf bronzing score	id2009700	2	23767137	2.84	23767137	23818687	51550
Square-root transformed leaf bronzing score	id2009720	2	23//6189	3.39	23767137	23818687	51550
Relative thousand kernel weight	1d2009748	2	23818687	3.10	23767137	23818687	51550
Relative thousand kernel weight	102009750	2	23819881	2.76	23819009	23819881	872
Relative SPAD	id2010101	2	2416/855	2.22	2416/855	241/4658	6803
Relative SPAD	102010410	2	24565561	3.43	none	none	0
Relative total paniela weight	id2010490	2	24629502	2.82	24628475	24629502	1027
Relative single papiele weight	id2010091	2	24//0/91	3.24	24//0000	241/0/91	1429
Relative tiller number	id20109/4	2	20208210	2.81	25250///	25256215	1438
Relative tiller number	id2011084	2	20408438	2.04	20401460	20409484	2019
reactive thei nullbei	10/2012402	2	20/03134	2.19	20/02089	20/2303/	22948

Nether bernamberØD10552ØD270712.00 ØD27051 ØD270741 <th>Trait</th> <th>SNP marker ID</th> <th>Chr</th> <th>Position (MSU7)</th> <th>-log10P value I</th> <th>D block start (bp)</th> <th>LD block end (bp)</th> <th>LD block size (bp)</th>	Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value I	D block start (bp)	LD block end (bp)	LD block size (bp)
Relative channelADD1816229037922.02.002907711307484397701Lapin contertADD1816233343733444383397701Lapin contertADD1890233777381.0334447013464681201060Relative functance land weightADD1800237771881.134447013464681201060Relative functance land weightADD180024759082.04462847344334010009Relative functance land weightADD1906234789023.123462847344334010009Relative functance land weightADD197823462847346384010009Relative functance land weightADD1979234632863.12346828473464384010009Relative functance land weightADD1979234632863.12346828473464384010009Relative functance land weightADD1979234632863.12346828473464384010009Relative functance land weightADD1979234532663.12346828473464384010009Relative functance land weightADD1979234532763564793464384010009Relative functance land weightADD197923587963527548356479364679Relative functance land weightADD197923587973527548356479366479Relative functance land weightADD1971333771	Relative tiller number	id2012484	2	28725037	2.60	28702089	28725037	22948
Lapin contentLapin selectLapin select <thlapin select<="" th="">Lapin select<!--</td--><td>Relative tiller number</td><td>id2013255</td><td>2</td><td>29933912</td><td>2.63</td><td>29875711</td><td>30074445</td><td>198734</td></thlapin>	Relative tiller number	id2013255	2	29933912	2.63	29875711	30074445	198734
Liphn contentADM 802333400020433467223446361ADM 90Richter bounnank kennel weightADM 9002333778183.16334647013466461ADM 90Richter bounnank kennel weightADM 900237078092.633466234734463840(160793)Richter bounnank kennel weightADM 900237078092.633466234734463840(160793)Richter bounnank kennel weightADM 900234079022.163466234734463840(160793)Rather bounnank kennel weightADM 900234079023466234734463840(160793)Rather bounnank kennel weightADM 900234079023466234734463840(160793)Rather bounnank kennel weightADM 9002340814163466234734463840(160793)Rather bounnank kennel weightADM 900235078663103466234734463840(160793)Rather bounnank kennel weightADM 900235078663103466234734463840(160793)Rather downank kennel weightADM 900235078663103527594352459235245	Lignin content	id2014816	2	33386734	2.94	32836722	33433823	597101
Balance pain heigh 4201409 2 337539 3.00 33443701 33664651 230000 Balance bousand kend weight 42010503 2 34707350 2.61 34463747 34643840 (16070) Balance bousand kend weight 42010500 2 34707300 2.61 34663247 34643840 (16070) Balance bousand kend weight 4201070 2 34603407 34643840 (16070) Relative bousand kend weight 42010772 2 34603460 34663847 34643840 (16070) Relative bousand kend weight 42010772 2 3460386 1.02 34663847 34643840 (16070) Relative bousand kend weight 42010772 2 3460386 30 3322748 34543840 (16070) Relative bousand kend weight 42010701 2 34683861 30 3322748 3523471 3443480 (16070) Relative bousand kend weight 42010701 2 3480380 100733 322174 3453471 3600 3600	Lignin content	id2014824	2	33393059	2.94	32836722	33433823	597101
the bits SAD 0 ADD 10 ADD 10 ADD 100 ADD 100 <tha< td=""><td>Relative plant height</td><td>id2014909</td><td>2</td><td>33575539</td><td>3.06</td><td>33436701</td><td>33666861</td><td>230160</td></tha<>	Relative plant height	id2014909	2	33575539	3.06	33436701	33666861	230160
Itality: Lability: Lability: <thlability:< th=""> Lability: <thlability:< th=""> <thlability:< th=""> <thlab< td=""><td>Relative SPAD</td><td>id2014918</td><td>2</td><td>33577618</td><td>3.16</td><td>33436701</td><td>33666861</td><td>230160</td></thlab<></thlability:<></thlability:<></thlability:<>	Relative SPAD	id2014918	2	33577618	3.16	33436701	33666861	230160
Bathree thousand kared weight idil idil< idil <td>Relative thousand kernel weight</td> <td>id2015653</td> <td>2</td> <td>34707350</td> <td>2.63</td> <td>34682847</td> <td>34843840</td> <td>160993</td>	Relative thousand kernel weight	id2015653	2	34707350	2.63	34682847	34843840	160993
Idealare thousand karnel weight k2019500 2 3475033 2.76 3462347 3443440 100993 Idealare thousand karnel weight k2019590 2 34790212 3.12 3462347 3444340 100993 Relarie thousand karnel weight k201972 2 3462347 3444340 100993 Relarie thousand karnel weight k201972 2 3462347 3444340 100993 Relarie thousand karnel weight k2019710 2 3462064 310 3462347 3444340 100993 Relarie oftwaight k2019710 2 3480056 265 3462347 34449340 100993 Relarie oftwaight k2019710 2 3520768 3921748 35254247 26909 Relarie oftwaight k201613 2 3520781 35254247 3690 3525748 35254247 3690 35246479 8810 Relarie oftwaight k201613 2 3520781 35254247 3693 35264479 8810 3626479 8810	Relative thousand kernel weight	id2015660	2	34708959	2.63	34682847	34843840	160993
Bathire brownamk kennel weight kD105965 2 34799207 31.91 3462387 3444340 10093 Behnire brownamk kennel weight kD105778 2 3462387 34443481 10093 Behnire brownamk kennel weight kD105774 2 3462356 31.91 34642347 34443481 10093 Behnire brownamk kennel weight kD105774 2 3482356 31.91 34642347 34443481 10093 Behnire brownamk kennel weight kD105779 2 3453356 31.91 34642347 34443481 10093 Behnire brownamk kennel weight kD105779 2 3553768 35253748 35254477 32690 Behnire driv weight kD201670 2 3553768 35253728 35264779 8819 Behnire driv weight kD201671 3 3257772 35264779 36819 32219 32264779 36325 32564779 36325 32564779 36325 32264779 36325 32264779 36325 32264779 36319 3221219	Relative thousand kernel weight	id2015690	2	34759038	2.76	34682847	34843840	160993
Bachire bounsand kernel weight ±D105966 2 34799072 3.12 34622847 34434840 100935 Bedinter bounsand kernel weight ±D105712 2 34623267 31443484 100935 Bedinter bounsand kernel weight ±D105712 2 34623267 31443484 100935 Bedinter bounsand kernel weight ±D105712 2 3463161 210 34463247 34443484 100935 Retinter bousand kernel weight ±D105713 2 3460165 218 3516646 3221640 29244 Retinter dovesand kernel weight ±D101610 2 3521710 3 3221640 3221640 3241734 35245417 20607 Retinter dovesand kernel weight ±D101612 2 3521710 3 321543 325144 3251441 206013 Retinter bousand kernel weight ±D101612 2 3251701 351 331754 4079133 321541 20609 Retinter bousand kernel weight ±D101616 2 3251791 318 331754	Relative thousand kernel weight	id2015695	2	34795012	3.19	34682847	34843840	160993
Ackurce Nousank kernd weight kD19718 2 3402347 34462347 3446347 160793 Reture Nousank kernd weight kD19724 2 3462358 3.10 34662347 34463480 160793 Reture Nousank kernd weight kD197579 2 3463047 34463247 34463480 160793 Reture Nousank kernd weight kD197579 2 3463047 34463247 34463480 160793 Reture Nousank kernd weight kD197579 2 3463047 34443480 160793 Reture Onverght kD197107 2 3557661 3527548 3522417 2660 Reture Onverght kD101619 2 3557661 3525647 35264779 8189 Reture Onverght kD101613 3 397770 3.12 3437654 4779133 322193 Reture Onverght kD00215 3 3537673 356735 3546739 8819 32219 Reture Onverght kD00215 3 397790 3.12 381764 4779133 <td>Relative thousand kernel weight</td> <td>id2015696</td> <td>2</td> <td>34795072</td> <td>3.12</td> <td>34682847</td> <td>34843840</td> <td>160993</td>	Relative thousand kernel weight	id2015696	2	34795072	3.12	34682847	34843840	160993
Balance Housand Lend vieght 4201572 2 3462350 3.12 3462347 3443340 160933 Balance Housand Lend vieght 4201579 2 34643540 210 3462350 3463341 3443340 160933 Relarce Housand Lend vieght 4201579 2 3464050 226 3466247 3443340 160933 Relarce Housand Lend vieght 4201670 2 354616 236 3527548 3525427 3554673 35666 3554737 35666 3554737 35667 355477 356673 3556737 357575 3554773 3507377 350737 350737 <	Relative thousand kernel weight	id2015718	2	34820449	3.17	34682847	34843840	160993
Ackarce mousand kennel verght A2015724 2 3482360 3.19 34682347 34843344 106993 Relarce mousand kennel verght A201579 2 3483406 3.19 34682347 34843444 106993 Relarce mousand kennel verght A2015742 2 3489066 3.29 34682347 34843444 106993 Relarce oft verght A20151616 2 3524768 35252412 3609 Relarce oft verght A2016162 2 3526403 35252920 35244739 8810 Relarce oft verght A2016152 2 3526108 3.3 35252920 35244739 8810 Relarce oft verght A2016152 2 350168 2.3 3517572 35024732 320139 Relarce oft verght A2016152 3 37770 3.12 3817954 477939 2.01139 Relarce oft verght A302016 3 4.03377 3.2 3817954 4479139 2.01139 Relarce oft verght A302016 3	Relative thousand kernel weight	id2015722	2	34825306	3.12	34682847	34843840	160993
Icklure thousand kenel weight 42015729 2 3448161 201 34682347 34483484 100993 Relarier thousand kenel weight 42015797 2 34840463 226 3158022 34840463 100915 Relarier dry weight 42016070 2 33217481 233 35227548 35254147 26009 Relarier dry weight 42016120 2 33250486 309 35225748 35254173 8819 Relarier dry weight 4201613 2 33250486 309 35255920 35264739 8819 Relarier dry weight 4201613 2 377772 318 3572572 3582193 8317854 4079193 221219 Relarier drosand kenel weight 4300208 3 4433044 107656 1064228 4433644 107656 Relarier drosand kenel weight 4300208 3 530277 237 544239 5788237 66878 Relarier drosand kenel weight 4300042 3 530277 244239 5788237 <	Relative thousand kernel weight	1d2015724	2	34825826	3.19	34682847	34843840	160993
Actine to invasand arma ivageh A2015/09 2 A480,061 1.0 460,024,01 1.0000 Reture invasand arma ivageh A2015/07 2 3188,025 2.02 3318,0004 3216,050 32944 Reture of vageh A2016101 2 3318,0014 3252,7548 3525,4217 20007 Reture of vageh A2016101 2 335,0016 3.0 3552,920 352,4473 8819 Reture of vageh A2016101 2 335,0161 3.0 3552,920 352,4473 8819 Reture of vageh A201611 2 335,0161 3.0 3552,920 352,4473 8819 Reture of vageh A201611 2 330,0175 449,0193 20179 2018 479,030 20179 2018 449,7933 20179 2018 449,7933 20179 2018 449,844 4109,953 20179 560,774 4464 2016,77 449,443 410,955 20177 444,943 410,955 20179 560,775 444,944 <	Relative thousand kernel weight	id2015729	2	34834516	2.91	34682847	34843840	160993
Relative div weight kDD/D/SA 2 MADALON 2.33 MADALON MADALON MADALON Relative div weight kDD/D/D/D 2 33518064 335227548 352217548 352217548 352217548 352217548 35224127 26009 Relative div weight kDD/D/D/D 2 335275748 35224759 3524759 3524759 3524759 3524779 3819 Relative div weight kDD/D/D/D 2 3357770 312 3817054 4079195 2215 Relative divoxaght kDD/D/D 3 3977770 312 3817054 4079195 2215 Relative divoxaght kDD/D/D 3 4433077 325 3817054 4079195 2215 Relative divoxaght kDD/D/D 3 4430047 344 340548 107456 443564 167456 Relative divoxaght kDD/D/D 3 4430047 347 354257 56227 56227 56227 56227 56227 56227 56227 56227	Relative thousand kernel weight	id2015739	2	34839061	3.19	34682847	34843840	160993
Acataric dy weight k1201610 2 351800 3518000 3518000 3521754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35221754 35217517 359017 3581 7581	Relative thousand kernel weight	102015743	2	34840365	2.95	34682847	34843840	160993
Datame of y weight b200100 2 3.32.1381 3.32.1384 3.32.21544 3.32.212147 3.32.212144 3.32.212144	Relative dry weight	12016070	2	35188325	2.82	35180904	35210508	29544
Dealme dry weight ALD0005 2 2.52-74.7 AD007 Relative dry weight AD016152 2 35557101 35225920 35224739 8819 Relative dry weight AD016152 2 3556183 2.53 35225920 3524739 8819 Relative dry weight AD016151 3 2577001 2.75 2.518677 307693 527372 3992195 202139 Relative Relaxis dissonal kernel weight AD002161 3 3977700 3.12 3817054 4079193 222139 Relative Ribusand kernel weight AD002476 3 44303054 3.19 4266228 443364 167656 Relative Ribusand kernel weight AD002476 3 4303073 2.73 5942359 5768237 668878 Relative Ribusand kernel weight AD00233 3 512729 2.82 5970817 66878 Relative Ribusand kernel weight AD00233 3 512729 5839795 597021477 43482 Sqauae-root transformed lar bronzing score	Relative dry weight	102016104	2	35247081	2.03	35227548	35254247	20099
numet of weight L20105 2 L20105 L20	Relative dry weight	id2010108	2	35250480	3.09	35255920	35264730	20099
nume of weight id 201651 2 1.5797762 3.88 3572372 35932195 1.0002 Relative SYAD id 3001415 3 2773901 2.75 2.518077 3076493 557816 Relative SYAD id 3001414 3 3977770 3.12 3817954 4079193 222139 Relative thousand kernel weight id 300240 3 4433064 167455 Relative thousand kernel weight id 3002476 3 4433054 167455 Relative thousand kernel weight id 300382 3 5202873 2.73 5642359 5708237 668578 Relative thousand kernel weight id 300318 3 512729 2.82 5708237 668578 Relative thousand kernel weight id 300451 3 812883 2.98 833975 9724277 43482 Square-not transformed kaf bronzing score id 300451 3 9189351 10002203 44288 Square-not transformed kaf bronzing score id 300451 3 9182591 10002203 44288 <td>Relative dry weight</td> <td>id2016152</td> <td>2</td> <td>35261836</td> <td>2 53</td> <td>35255920</td> <td>35264739</td> <td>8819</td>	Relative dry weight	id2016152	2	35261836	2 53	35255920	35264739	8819
num to yngin Libority 2 2.77% 2.87 2.87% 2.07%	Relative dry weight	id2010132	2	35707762	2.55	35233920	35204739	206423
nume num	Palative SPAD	id2010515	2	2573901	2.75	2518677	3076493	557816
Rahre thousand kernel weight id 3002164 3 983734 3.39 3817054 4079193 202199 Relative thousand kernel weight id 300228 3 433977 3.25 3817054 4079193 202199 Relative thousand kernel weight id 3002476 3 4340281 3.17 4266228 4433664 167456 Relative thousand kernel weight id 3003194 3 5579279 2.67 5942359 5708237 668378 Relative thousand kernel weight id 3003194 3 537979 2.67 5942359 5708237 668378 Relative thousand kernel weight id 300415 3 848383 2.98 853098 5379715 10002203 444828 Square-toot transformed leaf bronzing score id 300617 3 9993515 3.22 988397915 10002203 444288 Square-toot transformed leaf bronzing score id 300514 3 970853 3.62 9887915 10002203 444288 Square-toot transformed leaf bronzing score id 300510 3	Relative thousand kernel weight	id3002151	3	3977709	3.12	3817054	4079193	262139
Relative thousand kernel weight id 3002208 3 403 3977 3.25 381 704 407 912 20213 Relative thousand kernel weight id 300240 3 443 8054 1.19 42 46228 443 3664 167456 Relative thousand kernel weight id 3001476 3 442 42259 57 08237 665878 Relative thousand kernel weight id 300238 3 5512739 2.82 5042359 57 08237 665878 Relative thousand kernel weight id 300228 3 551273 2.82 502022 70202 71020 Square-not transformed leaf bronzing score id30067 3 905155 3.62 9587915 10002203 444288 Square-not transformed leaf bronzing score id300510 3 9708755 3.62 9587915 10002203 444288 Square-not transformed leaf bronzing score id300514 3 9708755 3.62 9587915 10002203 444288 Square-not transformed leaf bronzing score id300514 3 973650 3.19 9587	Relative thousand kernel weight	id3002164	3	3983734	3 39	3817054	4079193	262139
Relative thousand kernel weight id 3002450 3 4433054 3.19 4266228 4433684 167355 Relative thousand kernel weight id 3002176 3 4320273 2.73 5042359 5708237 668378 Relative ting paniel weight id 3003144 3 5573272 2.67 5042359 5708237 668578 Relative ting number id 300451 3 5432572 2.82 5442359 5708237 668578 Relative thousand kernel weight id 300451 3 843283 2.98 8250062 8570874 300752 Square-root transformed leaf bronzing score id 300505 3 9950553 3.62 9557915 10002203 444288 Square-root transformed leaf bronzing score id 300514 3 970875 3.62 9557915 10002203 444288 Square-root transformed leaf bronzing score id 300514 3 970875 3.62 9557915 10002203 444288 Square-root transformed leaf bronzing score id 3005127 3 9818620 <td>Relative thousand kernel weight</td> <td>id3002208</td> <td>3</td> <td>4033977</td> <td>3 25</td> <td>3817054</td> <td>4079193</td> <td>262139</td>	Relative thousand kernel weight	id3002208	3	4033977	3 25	3817054	4079193	262139
Relative thousand kernel weight id 3002476 id 342281 id 317 id 566228 id 43084 in 7456 Relative single panick weight id 3003476 3 5202873 2.73 5602359 5708237 665878 Relative tius and kernel weight id 300328 3 5512729 2.82 5642359 5708237 665878 Relative thousand kernel weight id 3004451 3 8432883 2.98 823095 9274277 434482 Square-root transformed leaf bronzing score id 3004977 3 9193941 2.85 8833795 9274277 434482 Square-root transformed leaf bronzing score id 3005012 3 968155 3.62 9587915 10002203 414288 Square-root transformed leaf bronzing score id 3005102 3 9708735 3.62 9587915 10002203 414288 Square-root transformed leaf bronzing score id 3005120 3 971853 3.62 9587915 10002203 414288 Square-root transformed leaf bronzing score id 3005120 3	Relative thousand kernel weight	id3002450	3	4330054	3 19	4266228	4433684	167456
Relative single panicle weight id3003082 3 5202873 2.73 5042359 5708237 665878 Relative thousand kernel weight id3004253 3 5517259 2.67 5042359 5708237 665878 Relative tiler number id3004253 3 5718237 665878 Relative tiles stands id3004451 3 8432833 2.98 8250052 85708237 665878 Square-root transformed leaf bronzing score id3004051 3 9051553 2.79 8839795 9274277 434625 Square-root transformed leaf bronzing score id300504 3 9068059 3.62 9587915 10002203 44288 Square-root transformed leaf bronzing score id300504 3 971853 3.74 9587915 10002203 44288 Square-root transformed leaf bronzing score id3005104 3 971853 3.62 9587915 10002203 44288 Square-root transformed leaf bronzing score id3005104 3 991627 3.68 9587915 10002203	Relative thousand kernel weight	id3002476	3	4342381	3.17	4266228	4433684	167456
Relative thousand kernel veight id 3003194 3 5379379 2.67 5042259 5708237 665878 Relative SPDD id300228 3 5512729 2.82 5042359 5708237 6668778 Relative SPDD id3004451 3 842883 2.98 825082 8570874 32072 Square-not transformed leaf bronzing score id3004977 3 9051533 2.79 88339795 9274277 434482 Square-not transformed leaf bronzing score id3005012 3 9880155 3.62 9587915 10002203 444288 Square-not transformed leaf bronzing score id3005041 3 9708735 3.62 9587915 10002203 444288 Square-not transformed leaf bronzing score id3005120 3 9718531 3.19 9587915 10002203 444288 Square-not transformed leaf bronzing score id3005147 3 9913627 3.68 9587915 10002203 444288 Square-not transformed leaf bronzing score id3005145 3 9933669	Relative single panicle weight	id3003082	3	5202873	2.73	5042359	5708237	665878
Relative tiller number tillow 3 5512729 2.8.2 5042359 5708237 665878 Relative tolsand kernel weight d3004253 3 7886467 3.34 7849199 7920201 71002 Square-root transformed leaf bronzing score d300477 3 905153 2.79 8839795 9274277 43482 Square-root transformed leaf bronzing score d3006005 3 9680689 3.62 9587915 10002203 44288 Square-root transformed leaf bronzing score d3006012 3 9681555 3.62 9587915 10002203 44288 Square-root transformed leaf bronzing score d3000514 3 971883 3.74 9587915 10002203 44288 Square-root transformed leaf bronzing score d3005145 3 9913627 3.63 9587915 10002203 44288 Square-root transformed leaf bronzing score d3005145 3 9913627 3.63 9587915 10002203 44288 Square-root transformed leaf bronzing score d3005145 3	Relative thousand kernel weight	id3003194	3	5379379	2.67	5042359	5708237	665878
Relative SPAD id3004251 3 788647 3.34 7740199 7920001 702002 Relative thousand hernel weight id300457 3 903553 2.27 8839795 9274277 434482 Square-root transformed ler bronzing score id300407 3 909361 2.85 8839795 9274277 434482 Square-root transformed ler bronzing score id3005005 3 9681555 3.62 9587915 10002203 444288 Square-root transformed ler bronzing score id3005145 3 9774537 3.62 9587915 10002203 444288 Square-root transformed ler bronzing score id3005120 3 9784206 3.72 9587915 10002203 444288 Square-root transformed ler bronzing score id3005120 3 9913627 3.68 9587915 10002203 444288 Square-root transformed ler bronzing score id3005138 3 993669 2.15 9587915 10002203 444288 Square-root transformed ler bronzing score id3005138 3	Relative tiller number	id3003238	3	5512729	2.82	5042359	5708237	665878
Relative thousand kernel weight id3004451 3 9432883 2.98 825082 8570874 320792 Square-root transformed leaf bronzing score id3004807 3 9019361 2.85 5883795 9274277 434482 Square-root transformed leaf bronzing score id3005012 3 9681555 3.62 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005014 3 9708735 3.62 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005145 3 9718453 3.74 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005142 3 9913627 3.63 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005145 3 99913627 1.63 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005143 3 10565639 2.13 9587915 10002203 444288 Relative totansformed leaf bronzing score	Relative SPAD	id3004253	3	7886467	3.34	7849199	7920201	71002
Spare-root transformed leaf bronzing score id3004807 3 9019361 2.85 8839795 9274277 434482 Square-root transformed leaf bronzing score id300500 3 9680089 3.62 9587915 10002203 444288 Square-root transformed leaf bronzing score id300504 3 9708735 3.62 9587915 10002203 444288 Square-root transformed leaf bronzing score id300514 3 9718533 3.74 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005127 3 98418620 3.19 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005158 3 9913667 2.15 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005158 3 9939669 2.15 9587915 10002203 444288 Relative total panick weight id300517 3 1564592 2.13 1564202 2.1366 Relative total panick weight id3005183 3	Relative thousand kernel weight	id3004451	3	8432883	2.98	8250082	8570874	320792
Square-toot transformed leaf bronzing score id300807 3 9680089 3.62 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005012 3 968155 3.62 9587915 10002203 414288 Square-toot transformed leaf bronzing score id300504 3 9708735 3.62 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005104 3 9718535 3.74 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005120 3 9818620 3.19 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005128 3 9913627 3.63 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005145 3 9913627 3.63 9587915 10002203 414288 Relative total panick weight id3007832 3 1561856 1524022 213166 Relative totag and kernel weight id3007832 3 15618757<	Square-root transformed leaf bronzing score	id3004757	3	9051553	2.79	8839795	9274277	434482
Square-toot transformed leaf bronzing score id3005012 3 9680089 3.62 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005012 3 9707835 3.62 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005045 3 9717853 3.72 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005104 3 97918206 3.72 9587915 10002203 414288 Square-toot transformed leaf bronzing score id300517 3 9913667 2.15 9587915 10002203 414288 Square-toot transformed leaf bronzing score id3005178 3 9939669 2.15 9587915 10002203 414288 Relative total panick weight id3006917 3 1561850 2.23 9587915 10002203 414288 Relative total anck end weight id3007831 3 1561856 15824022 213166 Relative totanad kernel weight id300781 3 1561856	Square-root transformed leaf bronzing score	id3004807	3	9199361	2.85	8839795	9274277	434482
Square-root transformed leaf bronzing score id3005012 3 9681555 3.62 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005014 3 9701853 3.74 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005104 3 9791850 3.19 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005127 3 9818509 3.68 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005145 3 9913627 3.63 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005184 3 9913627 3.63 9587915 10002203 414288 Relative total panick weight id3005193 3 1265639 2.13 9587915 10002203 414288 Relative total and kernel weight id3007812 3 12656437 12856639 41228 Relative thousand kernel weight id3007882 3 1561856	Square-root transformed leaf bronzing score	id3005005	3	9680089	3.62	9587915	10002203	414288
Square-root transformed leaf bronzing score id300304 3 9708735 3.62 9587915 10002203 414288 Square-root transformed leaf bronzing score id300510 3 971853 3.74 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005120 3 9818529 3.19 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005127 3 9913669 2.15 9587915 10002203 414288 Square-root transformed leaf bronzing score id300518 3 9939669 2.15 9587915 10002203 414288 Relative total panick weight id300517 3 16000880 2.13 9587915 10002203 414288 Relative total panick weight id300781 3 15618856 15824022 21366 Relative thousand kernel weight id300781 3 15614856 15824022 21366 Relative thousand kernel weight id300782 3 15678743 2.98 15610856 15824022	Square-root transformed leaf bronzing score	id3005012	3	9681555	3.62	9587915	10002203	414288
Square-orot transformed leaf bronzing score id300514 3 9715853 3.74 9587915 10002203 414288 Square-orot transformed leaf bronzing score id3005127 3 9848599 3.68 9587915 10002203 414288 Square-orot transformed leaf bronzing score id3005127 3 9845599 3.68 9587915 10002203 414288 Square-orot transformed leaf bronzing score id3005138 3 9913627 3.63 9587915 10002203 414288 Relative total panick weight id3005193 3 10000880 2.13 9587915 10002203 414288 Relative total panick weight id300717 3 1565639 2.43 1323758 13655639 414288 Relative thousand kernel weight id300781 3 1561856 15824022 213166 Relative thousand kernel weight id3007881 3 1567533 2.93 15610856 15824022 213166 Relative thousand kernel weight id300789 3 1567533 2.93	Square-root transformed leaf bronzing score	id3005034	3	9708735	3.62	9587915	10002203	414288
Square-root transformed leaf bronzing score id3005104 3 9794206 3.72 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005127 3 9818520 3.19 9587915 10002203 414288 Square-root transformed leaf bronzing score id3005145 3 9913667 3.68 9587915 10002203 414288 Relative total panicle weight id3005178 3 10000080 2.13 9587915 10002203 414288 Relative total panicle weight id3005173 3 15618492 2.98 15610856 15824022 213166 Relative thousand kernel weight id300782 3 15618492 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 1567475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15678743 2.93 15610856 15824022 213166 Relative thousand kernel weight id300789 3 26	Square-root transformed leaf bronzing score	id3005045	3	9715853	3.74	9587915	10002203	414288
Square-oot transformed leaf bronzing score id3005120 3 9818820 3.19 9587915 10002203 414288 Square-oot transformed leaf bronzing score id3005127 3 99845599 3.68 9587915 10002203 414288 Square-oot transformed leaf bronzing score id3005183 3 9939669 2.15 9587915 10002203 414288 Relative total panick weight id3005193 3 10008060 2.13 9587915 10002203 414288 Relative total panick weight id3006197 3 13655639 2.13 9587915 10002203 414288 Relative thousand kernel weight id3007831 3 15618402 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 1567533 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 1567533 2.93 15610856 15824022 213166 Relative thousand kernel weight id300879 3 1567637	Square-root transformed leaf bronzing score	id3005104	3	9794206	3.72	9587915	10002203	414288
Square-oot transformed leaf bronzing score id3005147 3 9845599 3.68 9587915 10002203 444288 Square-root transformed leaf bronzing score id3005145 3 9913627 3.63 9587915 10002203 444288 Relative total panick weight id3005193 3 10000880 2.13 9587915 10002203 444288 Relative total panick weight id3007811 3 1365639 2.43 13237358 13655639 448281 Relative thousand kernel weight id3007831 3 15618492 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15674475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 15675533 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15678743 2.98 15610856 15824022 213166 Relative thousand kernel weight id301299 3 26877848 2.68 26865467 27051135 185668 Relativ	Square-root transformed leaf bronzing score	id3005120	3	9818620	3.19	9587915	10002203	414288
Square-voot transformed leaf bronzing score id3005145 3 9913667 3.63 9987915 10002203 414288 Relative total panick weight id3005193 3 10000880 2.13 9587915 10002203 414288 Relative total panick weight id3005193 3 13655639 2.43 13237358 13655639 418281 Relative thousand kernel weight id3007831 3 15618506 15824022 213166 Relative thousand kernel weight id3007882 3 15614856 15824022 213166 Relative thousand kernel weight id3007881 3 15674475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15678743 2.99 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15678743 2.99 15610856 15824022 213166 Relative thousand kernel weight id3011299 3 26877959 3.12 26865467 27051135 185688 <	Square-root transformed leaf bronzing score	id3005127	3	9845599	3.68	9587915	10002203	414288
Relative total panicle weight id3005158 3 99000860 2.15 9587915 10002203 414288 Relative total panicle weight id3006193 3 10000860 2.13 9587915 10002203 414288 Relative total panicle weight id3006917 3 13655639 2.43 13237538 13655639 418281 Relative thousand kernel weight id3007831 3 15618492 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15674475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 1567533 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 1567533 2.93 15610856 15824022 213166 Relative tiller number id3008579 3 15678743 2.98 15610856 15824022 213166 Relative SPAD id3011299 3 2687784 2.68 26865467 27051135 188668 Relative SPAD id3012205 3	Square-root transformed leaf bronzing score	id3005145	3	9913627	3.63	9587915	10002203	414288
Relative total panicle weight id 3005193 3 1000820 2.13 9587915 10002203 414288 Relative tigini content id 3006917 3 13655639 2.43 1363566 15824022 213166 Relative thousand kernel weight id 3007832 3 15618508 3.22 15610856 15824022 213166 Relative thousand kernel weight id 3007862 3 15644405 2.75 15610856 15824022 213166 Relative thousand kernel weight id 3007881 3 1567475 3.07 15610856 15824022 213166 Relative thousand kernel weight id 3007883 3 1567533 2.93 15610856 15824022 213166 Relative tiller number id 3007889 3 15678743 2.98 15610856 15824022 213166 Relative single panicle weight id 3007897 3 1600978 2.97 1755436 1777502 219156 Relative single panicle weight id 3011200 3 26877959 3.12 26865467 27051135 185668 Relative single panicle weight	Relative total panicle weight	id3005158	3	9939669	2.15	9587915	10002203	414288
Relative lignin content id3006917 3 13655639 2.43 13237358 13655639 418281 Relative thousand kernel weight id3007832 3 15618492 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007882 3 15614405 2.75 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15674475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 1567533 2.93 15610856 15824022 213166 Relative tiller number id3007889 3 1567533 2.93 15610856 15824022 213166 Relative tiller number id3007889 3 15678743 2.98 15610856 15824022 213166 Relative single panicle weight id3011299 3 26877848 2.68 26865467 27051135 185668 Relative single panicle weight id301205 3 270598278 2.7775008 28275789 500781 Relative SPAD id3012206 3	Relative total panicle weight	id3005193	3	10000880	2.13	9587915	10002203	414288
Relative thousand kernel weightid30078313156184922.981561085615824022213166Relative thousand kernel weightid3007862315644052.751561085615824022213166Relative thousand kernel weightid30078813156744753.071561085615824022213166Relative thousand kernel weightid30078833156753332.931561085615824022213166Relative thousand kernel weightid30078893156757432.981561085615824022213166Relative thousand kernel weightid30078993156757432.981561085615824022213166Relative tiller numberid3007897315609782.971755434617773502219156Relative sigle panicle weightid30113003268779593.122686546727051135185668Relative thousand kernel weightid30122053279692782.98276928702777424981379Relative SPADid30122053279122522.752777500828275789500781Relative sPADid30142803302240992.252978392030322184538264Relative single panicle weightid30142803302240992.732978392030322184538264Relative single panicle weightid30142803302240992.732978392030322184538264Relative single panicle weightid301585 <t< td=""><td>Relative lignin content</td><td>id3006917</td><td>3</td><td>13655639</td><td>2.43</td><td>13237358</td><td>13655639</td><td>418281</td></t<>	Relative lignin content	id3006917	3	13655639	2.43	13237358	13655639	418281
Relative thousand kernel weight id3007832 3 15618508 3.22 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15614405 2.75 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 15675533 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15675733 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15678743 2.98 15610856 15824022 213166 Relative tiller number id3008579 3 15678743 2.98 15610856 15824022 213166 Relative tiller number id3011299 3 26877848 2.68 26865467 27051135 185668 Relative thousand kernel weight id3011202 3 27885788 3.06 27775008 28275789 500781 Relative SPAD id3014280 3 30224099 2.75 27775008 28275789 500781 Relative single panicle weight id30142	Relative thousand kernel weight	id3007831	3	15618492	2.98	15610856	15824022	213166
Relative thousand kernel weight id3007862 3 15644405 2.75 15610856 15824022 213166 Relative thousand kernel weight id3007881 3 15675533 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 15675733 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 15678743 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 156078743 2.98 15610856 15824022 219156 Relative single panicle weight id3011299 3 26877848 2.68 26865467 27051135 185668 Relative SPAD id3011205 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id301192 3 27698278 3.06 27775008 28275789 500781 Relative single panicle weight id3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id3014820<	Relative thousand kernel weight	id3007832	3	15618508	3.22	15610856	15824022	213166
Relative thousand kernel weight id3007881 3 15674475 3.07 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 15675733 2.93 15610856 15824022 213166 Relative thousand kernel weight id3007883 3 15675743 2.98 15610856 15824022 213166 Relative thousand kernel weight id3007889 3 17600978 2.97 17554346 1777302 219156 Relative tiller number id3011299 3 26877848 2.68 26865467 27051135 185668 Relative thousand kernel weight id3011300 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id3001192 3 27698278 2.96 27675008 28275789 500781 Relative sPAD id3012596 3 27912252 2.75 27775008 28275789 500781 Relative total panice weight id3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id301412 <	Relative thousand kernel weight	id3007862	3	15644405	2.75	15610856	15824022	213166
Relative thousand kernel weight id 3007883 3 15675533 2.93 15610856 15824022 213166 Relative thousand kernel weight id 3007889 3 15678743 2.98 15610856 15824022 213166 Relative tilter number id 300579 3 17600978 2.97 17554346 17773502 219156 Relative tilter number id 3011299 3 26877848 2.68 26865467 27051135 185668 Relative tilter single panicle weight id 301205 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id 3012956 3 2785788 3.06 27775008 28275789 500781 Relative spAD id 3012596 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3015855	Relative thousand kernel weight	id3007881	3	15674475	3.07	15610856	15824022	213166
Relative thousand kernel weight id 300/889 3 156/8/43 2.98 156/0856 15824022 213166 Relative tiller number id 3008579 3 17600978 2.97 17554346 17773502 219156 Relative single panicle weight id 3011299 3 26877848 2.68 26865467 27051135 1885668 Relative SPAD id 3011300 3 26877959 3.12 26865467 27051135 1885668 Relative SPAD id 3012205 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id 3012596 3 27912252 2.75 27775008 28275789 500781 Relative total panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id 3015865 3 </td <td>Relative thousand kernel weight</td> <td>id3007883</td> <td>3</td> <td>15675533</td> <td>2.93</td> <td>15610856</td> <td>15824022</td> <td>213166</td>	Relative thousand kernel weight	id3007883	3	15675533	2.93	15610856	15824022	213166
Relative tiller number id 3008579 3 17600978 2.97 17554346 17775002 219156 Relative single panicle weight id 3011299 3 26877848 2.68 26865467 270511135 185668 Relative SPAD id 3011200 3 26877959 3.12 26865467 27051135 185668 Relative SPAD id 3012205 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id 3012205 3 27698278 3.06 27775008 28275789 500781 Relative SPAD id 3012596 3 27912252 2.75 27775008 28275789 500781 Relative total panicle weight id 3014280 3 30224099 2.25 29783920 30322184 538264 Relative total panicle weight id 3014810 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014812 3 30286260 2.06 30348817 30456968 108151 Relative single panicle weight id 3015855 3 328869	Relative thousand kernel weight	id300/889	3	156/8/43	2.98	15610856	15824022	213166
Relative single panicle weight id 3011299 3 2687/848 2.68 26805467 27051135 185668 Relative SPAD id 3011300 3 26877959 3.12 26865467 27051135 185668 Relative SPAD id 30112005 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id 30112205 3 27885788 3.06 27775008 28275789 500781 Relative SPAD id 3012206 3 27912252 2.75 27775008 28275789 500781 Relative SPAD id 3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id 301412 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014585 3 32881854 3.28 32787372 33043750 286378 Relative single panicle weight id 3015865 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id 3015865 3 32926134	Relative tiller number	12011200	3	1/6009/8	2.97	1/554346	1///3502	219156
Relative SPAD Id 3011300 3 268 / 1959 3.12 26865467 27051135 185688 Relative SPAD id 3012005 3 27698278 2.98 27692870 27774249 81379 Relative SPAD id 3012205 3 27885788 3.06 27775008 28275789 500781 Relative SPAD id 3012596 3 27912252 2.75 27775008 28275789 500781 Relative single panicle weight id 3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id 3014555 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id 3015865 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id 3015865 3	Relative single panicle weight	12011299	3	26877848	2.68	26865467	2/051135	185668
Relative tirolusand kenet weight Id 3012205 3 21092218 21092210 21174249 31379 Relative SPAD id 3001192 3 27885788 3.06 27775008 28275789 500781 Relative SPAD id 3012596 3 27912252 2.75 27775008 28275789 500781 Relative SPAD id 3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id 301412 3 30396260 2.06 30348817 30456968 108151 Relative single panicle weight id 3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id 3015865 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id 3017560 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id 3017560 3 32926244 2.75 32757372 33043750 <	Relative SPAD	id2012205	3	208//939	3.12	26865467	2/051135	183008
Relative SPAD id301792 3 2785788 5.00 27175008 222759 500781 Relative SPAD id3012596 3 27971252 2.75 27775008 28275789 500781 Relative SPAD id3012596 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id301412 3 30396260 2.06 30348817 30456968 108151 Relative single panicle weight id3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926244 2.75 32757372 33043750 286378 Lignin content id3017560 3 35433033 2.97 35433033 35465246 32213	Relative thousand kennel weight	442001102	2	27098278	2.98	27092870	2///4249	500781
Relative single panicle weight id301250 3 2171222 2.73 21713000 20213103 500731 Relative total panicle weight id3014280 3 30224099 2.25 29783920 30322184 538264 Relative single panicle weight id3014280 3 30224099 2.73 29783920 30322184 538264 Relative single panicle weight id301412 3 30396260 2.06 30348817 30456968 108151 Relative single panicle weight id3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926244 2.93 32757372 33043750 286378 Relative single panicle weight id3017560 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017564 3 35433033 2.98 354330	Pelative SPAD	id3012596	3	27003700	2.00	27775008	28275789	500781
Relative single panicle weightid30142803302240992.732978392030322184538264Relative single panicle weightid30142803302240992.732978392030322184538264Relative single panicle weightid3014285330362602.063034881730456968108151Relative single panicle weightid30158553328818543.283275737233043750286378Relative single panicle weightid30158643329261342.933275737233043750286378Relative single panicle weightid30158653329261342.933275737233043750286378Relative single panicle weightid30158653329262442.753275737233043750286378Lignin contentid30175603354330332.97354330333546524632213Lignin contentid30175643354334532.98354330333546524632213Lignin contentid30178663357717702.8335769794357117701976Relative SPADid30178993358243552.83nonenone0	Relative total paniele weight	id3012390	3	27912232	2.75	27773008	20273789	538264
Relative single panicle weight id3014412 3 3028070 2.03 3043750 30456968 1001161 Relative total panicle weight id3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id3015855 3 32881690 2.84 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926244 2.75 32757372 33043750 286378 Relative single panicle weight id3017560 3 3543033 2.97 35433033 35465246 32213 Lignin content id3017564 3 35433453 2.98 355433033 35465246 32213 Lignin content id3017866 3 35771770 2.83 35769794	Relative single panicle weight	id3014280	3	30224099	2.23	29783920	30322184	538264
Relative single panicle weight id3015855 3 32881854 3.28 32757372 33043750 286378 Relative single panicle weight id3015859 3 32886090 2.84 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926244 2.75 32757372 33043750 286378 Lignin content id3017560 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017564 3 35433453 2.98 3556794 35717170 1976 Relative SPAD id3017899 3 35824355 2.83 none	Relative total panicle weight	id3014412	3	30396260	2.06	30348817	30456968	108151
Relative single panicle weight id3015859 3 3288090 2.84 32757372 33043750 286378 Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926244 2.75 32757372 33043750 286378 Lignin content id3017560 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017866 3 3571770 2.83 35769794 3577170 1976 Relative SPAD id3017899 3 35824355 2.83 none none 0	Relative single panicle weight	id3015855	3	32881854	3 28	32757372	33043750	286378
Relative single panicle weight id3015864 3 32926134 2.93 32757372 33043750 286378 Relative single panicle weight id3015865 3 32926244 2.75 32757372 33043750 286378 Relative single panicle weight id3017560 3 352926244 2.75 32757372 33043750 286378 Lignin content id3017564 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017866 3 35771770 2.83 35769794 35771770 1976 Relative SPAD id3017899 3 35824355 2.83 none 0	Relative single panicle weight	id3015859	3	32886090	2.84	32757372	33043750	286378
Relative single panicle weight id3015865 3 32926244 2.75 3275772 33043750 286378 Lignin content id3017560 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017564 3 35433453 2.98 35433033 35465246 32213 Lignin content id3017866 3 35771770 2.83 35769794 35771770 1976 Relative SPAD id3017899 3 35824355 2.83 none 0	Relative single panicle weight	id3015864	3	32926134	2.93	32757372	33043750	286378
Lignin content id3017560 3 35433033 2.97 35433033 35465246 32213 Lignin content id3017564 3 35433453 2.98 35433033 35465246 32213 Lignin content id3017866 3 35771770 2.83 35769794 35771770 1976 Relative SPAD id3017899 3 35824355 2.83 none none 0	Relative single panicle weight	id3015865	3	32926244	2.75	32757372	33043750	286378
Lignin content id 3017564 3 35433453 2.98 35433033 35465246 32213 Lignin content id 3017866 3 35771770 2.83 35769794 35771770 1976 Relative SPAD id 3017899 3 35824355 2.83 none none 0	Lignin content	id3017560	3	35433033	2.97	35433033	35465246	32213
Lignin content id 3017866 3 35771770 2.83 35769794 35771770 1976 Relative SPAD id 3017899 3 35824355 2.83 none none 0	Lignin content	id3017564	3	35433453	2.98	35433033	35465246	32213
Relative SPAD id3017899 3 35824355 2.83 none 0	Lignin content	id3017866	3	35771770	2.83	35769794	35771770	1976
	Relative SPAD	id3017899	3	35824355	2.83	none	none	0
Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value L	D block start (bp)	LD block end (bp)	LD block size (bp)	
---	---------------	-----	-----------------	-----------------	--------------------	-------------------	--------------------	
Relative SPAD	id3018013	3	35882893	2.81	35827861	35902029	74168	
Relative SPAD	id3018096	3	35963966	3.67	35909353	35976506	67153	
Relative SPAD	id3018154	3	35979532	2.96	35979532	36100266	120734	
Relative SPAD	id3018157	3	35979857	3.03	35979532	36100266	120734	
Relative SPAD	id3018168	3	35982080	3.01	35979532	36100266	120734	
Relative SPAD	id3018359	3	36136637	2.91	36106430	36136637	30207	
Relative SPAD	id3018393	3	36187187	3.42	36155000	36288832	133832	
Relative SPAD	id3018399	3	36188014	3.64	36155000	36288832	133832	
Relative lignin content	id4000806	4	1758758	2.78	1758758	1760163	1405	
Relative dry weight	ud4000543	4	7521880	2.61	7356732	11879743	4523011	
Relative dry weight	id4002885	4	7558749	2.67	7356732	11879743	4523011	
Relative dry weight	id4003021	4	8682949	2.77	7356732	11879743	4523011	
Relative dry weight	id4003033	4	8762568	2.58	7356732	11879743	4523011	
Relative dry weight	id4003349	4	10564642	2.74	7356732	11879743	4523011	
Relative lignin content	104003766	4	12196453	2.66	ND	12214567	ND	
Square-root transformed leaf bronzing score	104004207	4	14183946	3.57	1413/882	14262565	124683	
Lignin content	14004892	4	1/183360	2.77	16933227	17185622	252395	
Lignin content	14004901	4	1/185622	2.83	16933227	17185622	252395	
Relative dry weight	14005769	4	19/41992	2.73	19565554	19/95048	229494	
Relative right beight	14006026	4	20132388	2.51	20014349	20342342	328193	
Relative plant neight	14000855	4	21320209	2.83	21319307	21342089	22382	
Relative lignin content	id4007370	4	223/1291	2.04	22371291	22455290	779474	
Relative lignin content	id4008330	4	20042008	2.47	23740823	20320299	269326	
Lignin content	id4009840	4	29304914	2.50	29457611	29727137	209320	
Lignin content	id4009930	4	29798030	3 44	29776353	29799783	23430	
Relative tiller number	id4010137	4	30213031	3.69	30042158	30215772	173614	
Relative tiller number	id4010147	4	30215772	3.65	30042158	30215772	173614	
Relative SPAD	id4010398	4	30708157	3.14	30572064	30724662	152598	
Relative SPAD	wd4003148	4	30724662	4.12	30572064	30724662	152598	
Relative SPAD	id4011239	4	32401691	2.77	32359551	32404251	44700	
Relative plant height	id 5000502	5	878185	3.10	873390	891285	17895	
Relative SPAD	id 5000798	5	1161078	3.83	1129010	1165808	36798	
Relative SPAD	id5000894	5	1278055	2.88	none	none	0	
Square-root transformed leaf bronzing score	id 5000980	5	1506220	2.85	1459590	1506761	47171	
Relative SPAD	id 5000980	5	1506220	3.23	1459590	1506761	47171	
Relative SPAD	id5000986	5	1545155	4.66	1545155	1682431	137276	
Relative SPAD	id5000988	5	1546671	4.12	1545155	1682431	137276	
Relative SPAD	id5001006	5	1613746	3.99	1545155	1682431	137276	
Relative SPAD	id5001009	5	1614147	4.20	1545155	1682431	137276	
Relative SPAD	id5001011	5	1615248	3.61	1545155	1682431	137276	
Relative SPAD	id5001043	5	1680423	2.98	1545155	1682431	137276	
Relative SPAD	id5001082	5	1870287	2.76	1870287	1896801	26514	
Lignin content	id5001305	5	2261234	3.10	2261234	2266858	5624	
Lignin content	id5001307	5	2266267	3.47	2261234	2266858	5624	
Lignin content	ud5000116	5	2266858	3.15	2261234	2266858	5624	
Relative SPAD	id5001358	5	2358432	2.98	2335172	2530491	195319	
Relative SPAD	id5001368	5	2371020	2.98	2335172	2530491	195319	
Relative SPAD	id5001424	5	2505482	2.90	2335172	2530491	195319	
Relative SPAD	id5001426	5	2524224	3.22	2335172	2530491	195319	
Relative SPAD	id5001439	5	2539180	3.48	2532749	2540010	7261	
Relative SPAD	id5001440	5	2539289	4.17	2532749	2540010	7261	
Relative SPAD	id5001443	5	2540010	3.50	2532749	2540010	7261	
Relative SPAD	id5001447	5	2541735	3.19	none	none	0	
Relative SPAD	id5001496	5	2614163	3.48	2611736	2812540	200804	
Relative SPAD	id5001540	5	2773921	3.01	2611736	2812540	200804	
Relative SPAD	id5001613	5	2860263	2.78	2812831	2860263	47432	
Relative single panicle weight	id5001916	5	3308047	2.72	3231101	3483362	252261	
Relative lignin content	id5002322	5	4326323	2.65	4237117	4608778	371661	
Relative lignin content	id5002330	5	4329769	2.67	4237117	4608778	371661	
Relative lignin content	id5002336	5	4403981	3.72	4237117	4608778	371661	
Lignin content	id5002340	5	4405039	2.78	4237117	4608778	371661	
Relative lignin content	105002340	5	4405039	3.57	4237117	4608778	371661	
Relative lignin content	105002343	5	4406266	3.52	4237117	4608778	371661	
Relative lignin content	id5002555	5	4560816	2.65	4237117	4608778	3/1661	
Lignin content	103002365	5	4565557	2.65	4237117	4608778	3/1661	
Lignin content	105004029	5	7965624	2.75	7/22361	8035671	313310	
Square not transformed leaf bronzing score	id 5006820	5	17007620	2.8/	17001932	1/340893	238961	
Square-root transformed leaf bronzing score	id 5006874	5 5	1/09/030	2.8/	17081932	1/340893	258961	
square-root transformed leaf bronzing score	RIJUU06/4	э	1/1/546/	5.40	1/081932	1/340893	208961	

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value l	LD block start (bp)	LD block end (bp)	LD block size (bp)
Square-root transformed leaf bronzing score	id5006882	5	17177287	3.37	17081932	17340893	258961
Square-root transformed leaf bronzing score	id5006917	5	17249762	4.09	17081932	17340893	258961
Square-root transformed leaf bronzing score	id5006921	5	17278368	3.54	17081932	17340893	258961
Square-root transformed leaf bronzing score	id5006957	5	17335310	3.04	17081932	17340893	258961
Relative dry weight	id5009204	5	21698191	3.06	21520059	21765809	245750
Relative dry weight	1d5009236	5	21722470	3.10	21520059	21765809	245750
Relative dry weight	105009252	5	21/3/21/	2.86	21520059	21765809	245750
Relative dry weight	id 5009260	5	21/4056/ 21765809	3.29	21520059	21765809	245750
Relative dry weight	id5009270	5	21765809	2.89	21520039	21/03809	243730
Relative dry weight	id 50095271	5	22260982	2.59	21789734	23191534	1401800
Relative dry weight	id5009533	5	22262597	2.53	21789734	23191534	1401800
Relative dry weight	id5009548	5	22294655	2.58	21789734	23191534	1401800
Relative dry weight	id5009553	5	22329739	2.59	21789734	23191534	1401800
Relative dry weight	id5010339	5	23196533	2.73	23192557	23238236	45679
Relative thousand kernel weight	id5011026	5	24112155	2.66	24073706	24153780	80074
Relative total panicle weight	id5013309	5	27413299	2.12	27413299	27419785	6486
Relative dry weight	id6001161	6	1587958	2.71	none	none	0
Relative dry weight	id6001169	6	1590614	2.89	1589859	1591489	1630
Square-root transformed leaf bronzing score	1d6002500	6	3117393	2.84	3079074	3245705	166631
Relative plant height	106002518	6	3138055	3.06	3079074	3245705	166631
Relative total panicle weight	106002613	6	3245705	2.08	30/90/4	3245705	277044
Relative total panicle weight	id6002690	6	3290851	2.17	3288039	3505083	277044
Relative total panicle weight	id6002701	6	3331293	2.01	3288039	3565083	277044
Relative single nanicle weight	id6002745	6	3331293	2.13	3288039	3565083	277044
Relative total panicle weight	id6002750	6	3331719	2.25	3288039	3565083	277044
Relative total panicle weight	id6002753	6	3333531	2.45	3288039	3565083	277044
Relative single panicle weight	id6002753	6	3333531	2.67	3288039	3565083	277044
Relative total panicle weight	id6002767	6	3365147	2.08	3288039	3565083	277044
Relative total panicle weight	id6002778	6	3378593	2.08	3288039	3565083	277044
Relative total panicle weight	id6002798	6	3409986	2.00	3288039	3565083	277044
Relative total panicle weight	id6002804	6	3415295	2.19	3288039	3565083	277044
Relative lignin content	id6003868	6	6102112	2.45	5874707	6149929	275222
Relative lignin content	ud6000288	6	6149929	2.54	5874707	6149929	275222
Relative lignin content	id6003878	6	6150705	2.68	6150705	6181369	30664
Relative lignin content	id6003886	6	6152443	2.57	6150705	6181369	30664
Square-root transformed leaf bronzing score	106004094	6	6450686	2.78	6401217	6458990	5///3
Relative tiller number	106004657	6	/195418	2.68	7195038	7500053	305015
Relative tiller number	id6007211	6	11335701	2.80	11333425	11335701	2276
Relative total panicle weight	id6007211	6	11335701	2.72	11333425	11335701	2276
Relative SPAD	id6009229	6	16178354	3.09	14348413	16322729	1974316
Square-root transformed leaf bronzing score	id6010557	6	19997868	3.52	19867540	20037143	169603
Square-root transformed leaf bronzing score	id6010782	6	20676259	2.91	20167772	20789922	622150
Relative plant height	id6011457	6	21982423	3.19	21594032	22083453	489421
Relative plant height	id6011459	6	21983366	3.08	21594032	22083453	489421
Relative plant height	id6011784	6	22811564	3.23	22811036	22811564	528
Relative dry weight	id6013288	6	24913235	2.56	24805278	24985716	180438
Lignin content	id6014825	6	26634670	3.61	26568040	26660888	92848
Relative lignin content	id6014825	6	26634670	2.64	26568040	26660888	92848
Relative dry weight	id6015530	6	27382490	4.88	27169002	27382490	213488
Relative tiller number	id6015530	6	27382490	2.81	27169002	27382490	213488
Relative total panicle weight	106015530	6	27382490	2.98	27169002	27382490	213488
Square root transformed leaf bronzing score	id6016985	7	31003300	3.19	120689	31209340	224521
Palativa lignin content	id 7000050	7	412556	2.79	150089	555220	224551
Relative SPAD	id7000612	7	4649633	2.74	3862042	4690279	828237
Relative tiller number	id7001442	7	7973082	2.60	7575084	9830107	2255023
Relative single panicle weight	id7001787	7	10065311	2.81	9986580	11059439	1072859
Relative single panicle weight	ud7000750	7	10069296	2.81	9986580	11059439	1072859
Relative SPAD	wd7001619	7	12383193	3.82	11621241	14609592	2988351
Relative plant height	id7002483	7	15705746	3.98	15347454	15783982	436528
Relative plant height	id7002504	7	15778441	3.29	15347454	15783982	436528
Relative plant height	id7002511	7	15783982	3.44	15347454	15783982	436528
Relative thousand kernel weight	id7002801	7	18131988	2.88	18112337	18131988	19651
Relative thousand kernel weight	id7002824	7	18203932	2.63	18133033	18340346	207313
Relative lignin content	1d7003553	7	21690387	2.51	21690387	21691463	1076
Relative lignin content	id7003683	7	22106228	2.49	22087975	22106228	18253
Lignin content	ia /004144	/	23352533	3.04	23352533	23749170	396637

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value l	LD block start (bp)	LD block end (bp)	LD block size (bp)
Lignin content	id7004145	7	23353153	3.15	23352533	23749170	396637
Lignin content	id7004147	7	23397917	3.14	23352533	23749170	396637
Lignin content	id7004152	7	23402064	3.02	23352533	23749170	396637
Lignin content	id7004236	7	23626884	3.12	23352533	23749170	396637
Relative thousand kernel weight	ud7001748	7	24070937	2.66	23902555	24217159	314604
Relative SPAD	id7005764	7	28748176	2.78	28748176	28866029	117853
Relative single panicle weight	ud8000441	8	7651501	2.89	7610150	7762348	152198
Relative single panicle weight	1d8002341	8	7651801	2.70	7610150	7762348	152198
Relative plant height	108002474	8	7946139	2.80	7880420	7990630	110210
Relative plant height	108002490	8	7972601	3.21	7880420	7990630	110210
Relative plant height	id8002494	0 8	8061366	4.20	7880420	7990030	110210
Relative plant height	id8002515	8	8061532	3.58	8061532	8110168	18636
Relative plant height	id8002535	8	8107390	3.98	8061532	8110168	48636
Relative plant height	id8002538	8	8109057	3.10	8061532	8110168	48636
Relative plant height	id8002540	8	8110168	3.06	8061532	8110168	48636
Relative dry weight	id8002687	8	8761031	2.71	none	none	0
Relative dry weight	id8002877	8	9107117	4.18	9107117	9126757	19640
Relative total panicle weight	id8002959	8	9201517	2.01	9198147	9201580	3433
Relative total panicle weight	id8003259	8	10255023	2.28	10162063	10655137	493074
Relative total panicle weight	id8003440	8	10752334	2.48	10744639	12260698	1516059
Relative total panicle weight	id8003470	8	10904409	2.08	10744639	12260698	1516059
Relative plant height	id8004125	8	15361853	3.02	15280176	15631111	350935
Lignin content	id8004263	8	15715575	2.96	15715575	16031418	315843
Relative lignin content	id8004948	8	18676233	2.62	18572809	19027763	454954
Lignin content	id8005576	8	20431619	2.86	20427347	20431619	4272
Square-root transformed leaf bronzing score	id8005661	8	20766217	3.30	20708815	20928072	219257
Relative single panicle weight	id8006881	8	24803160	2.67	none	none	0
Relative plant height	id8007026	8	25732130	3.08	25681614	25861199	179585
Relative total panicle weight	id8007067	8	25902075	2.05	25889638	26138246	248608
Relative single panicle weight	id8007067	8	25902075	3.44	25889638	26138246	248608
Relative lignin content	id8007079	8	25956252	2.44	25889638	26138246	248608
Relative lignin content	id8007122	8	26106055	3.10	25889638	26138246	248608
Lignin content	ud8001738	8	26137272	2.77	25889638	26138246	248608
Lignin content	id8007129	8	26138246	2.76	25889638	26138246	248608
Lignin content	id8007136	8	26143127	2.96	26138443	26143395	4952
Lignin content	id8007143	8	26148673	2.94	26144377	26148673	4296
Relative single panicle weight	id8007277	8	26542005	2.91	26522932	26572534	49602
Relative single panicle weight	id8007280	8	26547937	3.01	26522932	26572534	49602
Relative single panicle weight	ud8001763	8	26572534	2.94	26522932	26572534	49602
Relative plant height	1d8007408	8	27158102	3.42	27154863	27158102	3239
Relative lignin content	id8007614	8	27657121	2.45	27644713	27657121	12408
Lignin content	1d9001200	9	4561489	3.06	4451839	4641583	189744
Lignin content	10002928	9	10486881	2.85	none	none	0
Relative thousand kernel weight	10003162	9	11513243	3.80	none	none	0
Relative thousand kernel weight	109003164	9	115/18/3	2.93	none	none	0
Relative thousand kernel weight	109003632	9	1316//5/	2.75	13161911	ND	ND
Lignin content	109003032	9	1510/757	2.49	15161911	15567052	221402
Lignin content	109004364	9	15282227	3.47	15245049	15567052	321403
Lignin content	109004423	9	15355422	3.00	15245049	15567052	321403
Relative tiller number	id9004439	9	20028058	3.03	10048107	20126967	178860
Relative lignin content	id9007075	9	20028038	2.60	20157986	20120907	559820
Relative tiller number	id 10000021	10	112886	2.00	20137380	112886	17564
Relative tiller number	id10000021	10	112000	2.91	112937	112380	3298
Relative dry weight	id10000028	10	179097	2.53	147398	303254	155856
Relative tiller number	id10000028	10	179097	3.80	147398	303254	155856
Relative tiller number	id10000105	10	587378	2.94	587378	588693	1315
Relative tiller number	wd10000214	10	742505	2.85	680072	742505	62433
Relative lignin content	id10000212	10	1105635	2.86	1105635	1137829	32194
Relative lignin content	id10000237	10	1193146	2.63	1164189	1240092	75903
Relative tiller number	id10000559	10	2105294	2.59	2105294	2149319	44025
Relative tiller number	id10002079	10	6536152	2.59	6495219	6542749	47530
Relative plant height	wd10002654	10	12200062	3.05	12019245	13079689	1060444
Relative plant height	wd10002741	10	12405458	3.01	12019245	13079689	1060444
Relative plant height	id10003308	10	12477302	3.07	12019245	13079689	1060444
Relative plant height	id10003320	10	12480953	3.01	12019245	13079689	1060444
Relative plant height	wd10002922	10	12600440	3.05	12019245	13079689	1060444
Relative plant height	id10003329	10	12686147	3.18	12019245	13079689	1060444
Relative plant height	id10003331	10	12687964	3.02	12019245	13079689	1060444

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value	LD block start (bp)	LD block end (bp)	LD block size (bp)
Relative plant height	wd10002947	10	12696271	3.07	12019245	13079689	1060444
Relative plant height	id10003354	10	12773018	3.03	12019245	13079689	1060444
Relative plant height	id10003364	10	12818896	3.15	12019245	13079689	1060444
Relative plant height	id10003368	10	12863056	3.01	12019245	13079689	1060444
Relative plant height	id10003371	10	12864656	3.00	12019245	13079689	1060444
Relative plant height	id10003380	10	12880441	3.08	12019245	13079689	1060444
Relative plant height	id10003381	10	12882675	2.96	12019245	13079689	1060444
Relative plant height	wd10003039	10	12942023	2.96	12019245	13079689	1060444
Relative plant height	id10003390	10	12975321	2.93	12019245	13079689	1060444
Relative single panicle weight	id10003623	10	13782039	2.89	13782039	14488618	706579
Relative lignin content	id10004685	10	16823791	2.47	16790136	16943046	152910
Relative single panicle weight	id10004934	10	17273846	3.03	17228916	17414240	185324
Relative single panicle weight	id10004953	10	17361778	3.20	17228916	17414240	185324
Relative single panicle weight	id10004968	10	17366969	4.27	17228916	17414240	185324
Relative total panicle weight	id11002940	11	7440741	2.68	7440741	7518809	78068
Relative thousand kernel weight	1d11003505	11	9058117	2.93	9029858	9081750	51892
Relative dry weight	1d11003918	11	10697135	2.61	10405648	10885796	480148
Relative thousand kernel weight	1d11004739	11	14324286	2.90	10974127	14851997	3877870
Relative thousand kernel weight	1d11004960	11	15174386	2.95	14886048	15390435	504387
Relative plant neight	wd11002155	11	158/4941	2.90	none	none	226544
Relative dry weight	1011005541	11	16283//1	2.85	16283395	16509939	226544
Relative dry weight	id11005911	11	16981957	2.97	16954234	1/059195	104961
Relative lignin content	ud11001008	11	1/634934	2.49	none	none	0
Relative dry weight	1011006506	11	18393512	3.83	18315964	18409258	93294
Relative lignin content	1011006547	11	1842/8/2	2.43	1842/8/2	18431900	4094
	1011006569	11	18449220	2.45	18444663	1849/286	52623
Relative lignin content	1011006588	11	18495915	2.72	18444663	1849/286	52623
Relative total panicle weight	1011008601	11	22570666	2.14	22564193	22570666	64/3
Relative total panicle weight	id11000872	11	22571195	2.03	22571129	22571195	64
Square root transformed loof bronging coord	dd11008035	11	22581509	3.10	225/0805	22582906	2514
Square-toot transformed lear bronzing score	id11000406	11	22048809	3.28	22047843	22030339	2514
Palative SPAD	id11009400	11	242/804/	3.08	24234277	24330370	77186
Lignin content	id11009575	11	24605517	2.75	24728131	24603317	2757
Palative lignin content	id11010050	11	25500315	2.75	25504555	25507092	346
Relative dry weight	id11010738	11	25020582	2.77	25000000	25020728	118671
Relative dry weight	id11010258	11	26318850	2.55	25309990	26318850	508
Relative dry weight	ud11001609	11	26327481	3 20	26326121	26327481	1360
Relative tiller number	id11010448	11	26475568	3.04	26453836	26476262	22426
Lignin content	id11010955	11	27594430	2 73	20455650	27594430	9733
Lignin content	id11010555	11	28735824	3 31	none	none	0
Relative lignin content	id11011672	11	28969154	2.79	28969154	28972941	3787
Relative lignin content	id11011686	11	28973574	2.49	none	none	0
Relative thousand kernel weight	id12000510	12	1157980	2.64	941087	ND	ND
Relative lignin content	id12001658	12	3876956	2.60	3321156	3937979	616823
Relative lignin content	ud12000260	12	4871704	2.76	4554103	5037545	483442
Relative dry weight	id12002594	12	6142005	2.65	5860219	6185402	325183
Relative SPAD	id12003671	12	ND	2.93	8757292	9184585	427293
Relative total panicle weight	ud12000566	12	9231272	2.04	9229978	9255373	25395
Relative lignin content	id12004099	12	10607918	2.53	10187067	10631970	444903
Relative single panicle weight	id12004298	12	11224533	2.74	11192933	13886605	2693672
Relative single panicle weight	id12005116	12	14179322	2.70	13891437	14218146	326709
Relative lignin content	id12005196	12	14394933	2.56	14234209	14491254	257045
Relative single panicle weight	id12005215	12	14491225	2.92	14234209	14491254	257045
Relative single panicle weight	id12005221	12	14492915	3.30	14492915	14547101	54186
Relative single panicle weight	id12005222	12	14493184	3.27	14492915	14547101	54186
Relative plant height	id12005228	12	14494269	3.28	14492915	14547101	54186
Relative plant height	id12005236	12	14496493	3.10	14492915	14547101	54186
Relative single panicle weight	id12005245	12	14547101	3.72	14492915	14547101	54186
Relative single panicle weight	id12005277	12	14831486	2.95	14770987	14832683	61696
Relative single panicle weight	id12005278	12	14831605	2.96	14770987	14832683	61696
Relative single panicle weight	id12005391	12	15239935	3.94	15156073	15453575	297502
Relative dry weight	id12005469	12	15453575	2.52	15156073	15453575	297502
Relative lignin content	id12005469	12	15453575	2.43	15156073	15453575	297502
Relative lignin content	id12005561	12	15843436	2.53	15778231	15864073	85842
Relative dry weight	wd12002971	12	15912775	3.49	15866816	15912775	45959
Relative total panicle weight	wd12003381	12	16905472	3.13	16500144	17003227	503083
Relative single panicle weight	wd12003381	12	16905472	3.36	16500144	17003227	503083
Relative total panicle weight	id12005779	12	17200196	2.07	17196296	17200196	3900
Relative tiller number	id12006261	12	18763833	2.88	18763833	18764104	271

Trait	SNP marker ID	Chr	Position (MSU7)	-log10P value L	D block start (bp)	LD block end (bp)	LD block size (bp)
Relative thousand kernel weight	id12006502	12	19470916	3.16	19469816	19518299	48483
Relative thousand kernel weight	id12006504	12	19472152	3.17	19469816	19518299	48483
Relative thousand kernel weight	id12006532	12	19492867	3.76	19469816	19518299	48483
Relative thousand kernel weight	id12006540	12	19495892	3.88	19469816	19518299	48483
Relative dry weight	id12006850	12	21209160	2.68	21205508	21209292	3784
Relative lignin content	id12007272	12	21906434	2.46	none	none	0
Relative dry weight	ud12001410	12	23628972	3.99	23556025	23664806	108781
Relative dry weight	id12008228	12	23661669	4.87	23556025	23664806	108781
Relative tiller number	id12008228	12	23661669	2.94	23556025	23664806	108781
Relative dry weight	id12009860	12	26768077	2.58	26761501	26768077	6576

Supplementary Table S11 (continued)

A total of 50 SNPs which showed the highest $-\log_{10}P$ values were collected from each trait, and the position, $-\log_{10}P$ value and the corresponding LD block are shown. The SNPs were ordered according to the chromosomal position. The LD blocks were determined by using Haploview 4.2 applying the method of Gabriel (detailed in the Materials and Methods). The red colour shows SNP markers which are shared by more than one trait. ND indicates 'no data'. Boldface on the LD block indicates that the LD block contains multiple SNPs.

Supplementary Table S12: List of genes located within the identified candidate loci for all phenotypes.

TraitCreaDescriptionNumber of the starting of the starting optimisAll 20130Sequence to transformed last housing score1LOC 00022000represent precise, partaine, CACTA, LoS per nub-class, expressedSequence to transformed last housing score2LOC 00022010represent precise, partaine, CACTA, LoS per nub-class, expressedSequence to transformed last housing score3LOC 00022010represent precise, partaine, Ty-ja, gays valcakes, expressedSequence to transformed last housing score3LOC 00022010represent precise, partaine, analisatific, expressedSequence to transformed last housing score3LOC 00022010represent precise, partaine, analisatific, expressedSequence to transformed last housing score3LOC 00022010represent precise, partaine, analisatific, expressedSequence to transformed last housing score3LOC 00022000repressed proteinSequence to transformed last housing score3LOC 00022000repressedSequence to transformed last housing score3LOC 00022000repressedSequence to transformed last housing score3LOC 00022000repressedSequence to transformed last housing score </th <th></th> <th></th> <th></th> <th></th> <th>Closest Arabidonsis</th>					Closest Arabidonsis
Square-oxt ransformed kat froming score Square-oxt ransformed kat froming score Square-oxt ransformed kat froming score 5 10C 00052000 Square-oxt ransformed kat froming score 5 10C 00052010 Square-oxt ransformed kat froming score 5 10C 00052010 5 10C 00052010 Square-oxt ransformed kat froming score 5 10C 00052010 5 10C 00052010 Square-oxt ransformed kat froming score 5 10C 00052010 5 10C 00052000 5 10	Trait	Chr	Gene ID	Putative function	homologue
Super-cost transformed kat Provings cost 9 LCC 0/05/2010 retrostange on preckin, platake, and/safial, cyrensed Super-cost transformed kat Provings cost 9 LCC 0/05/2010 retrostange on preckin, platake, and/safial, cyrensed Super-cost transformed kat Provings cost 9 LCC 0/05/2010 retrostange on preckin, platake, and/safial, cyrensed Super-cost transformed kat Provings cost 9 LCC 0/05/2010 retrostange on preckin, platake, and/safial, cyrensed Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, and/safiel, cyrensed A12/21760 Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, and/safiel, cyrensed A12/2200 Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, cyrensed A12/2010 Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, cyrensed A12/2010 Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, cyrensed A12/2010 Super-cost transformed kat Provings cost 9 LCC 0/05/2017 retrostange on preckin, platake, cyren	Square-root transformed leaf bronzing score	1	LOC Os01g72560	expressed protein	At2g41200
Square-cot transformed kalf housing score 10.00 0.000 <td>Square-root transformed leaf bronzing score</td> <td>5</td> <td>LOC_Os05g29090</td> <td>transposon protein, putative, CACTA, En/Spm sub-class, expressed</td> <td></td>	Square-root transformed leaf bronzing score	5	LOC_Os05g29090	transposon protein, putative, CACTA, En/Spm sub-class, expressed	
Square-not transformed Laf Forung score 100 0.06029201 retrinsposos protein, putative, unclassified, expressed Square-not transformed Laf Forung score 100 0.0652910 retrosposos protein, putative, unclassified, expressed Square-not transformed Laf Forung score 100 0.0652910 retrosposos protein, putative, unclassified, expressed Square-not transformed Laf Forung score 100 0.06529105 retrosposos protein, putative, unclassified, expressed Square-not transformed Laf Forung score 100 0.06529105 retrosposos protein, putative, unclassified, expressed ATIg 2700 Square-not transformed Laf Forung score 100 0.06529107 retrosposos protein, putative, expressed ATIg 2700 Square-not transformed Laf Forung score 100 0.06529107 retrosposos protein, putative, expressed ATIg 2700 Square-not transformed Laf Forung score 100 0.06529107 retrosposos protein, putative, expressed ATIg 20100 Square-not transformed Laf Forung score 100 0.06529107 retrosposos protein, putative, expressed ATIg 20100 Square-not transformed Laf Forung score 100 0.06529107 retrosposos protein, putative, expressed ATIg 2	Square-root transformed leaf bronzing score	5	LOC_Os05g29100	retrotransposon protein, putative, unclassified, expressed	
Square-not transformed Lef Normiz score 5 00C_0652970 etc. expressed protein substrate, particular, particular	Square-root transformed leaf bronzing score	5	LOC_Os05g29110	retrotransposon protein, putative, unclassified, expressed	
Sequence of transformed Leff Norming score 5 1000 0005/2010 expressed protein Action 2010 000000000000000000000000000000000	Square-root transformed leaf bronzing score	5	LOC_Os05g29120	retrotransposon protein, putative, Ty3-gypsy subclass, expressed	
Super-cost transformed Left horoning sector 1 OCC. 0055/2107 expressed groups At2p1750 Square-root transformed Left horoning sector 1 DCC. 0055/2107 references and protein patience, particular, partic	Square-root transformed leaf bronzing score	5	LOC_Os05g29130	retrotransposon protein, putative, unclassified, expressed	
Super-cost anaformed Laf houring seever 5 LOC DODS 2010 Oppotencial protein Integration Square-cost ransformed Laf houring seever 5 LOC DODS 2010 epressed protein Square-cost ransformed Laf houring seever 5 LOC DODS 2010 epressed protein Square-cost ransformed Laf houring seever 5 LOC DODS 2010 epressed AT 1g7 2200 Square-cost ransformed Laf houring seever 5 LOC DODS 2010 entorespace protein patiety, carpersed AT 1g7 2200 Square-cost ransformed Laf houring seever 5 LOC DODS 2010 Entorespace protein patiety, carpersed AT 2g1 2020 Square-cost ransformed Laf houring seever 5 LOC DODS 2010 epressed epressed epressed epressed epressed epressed AT 2g1 2020 Epressed AT 2g1 2020 Epressed AT 2g1 2020 Epressed Epressed <td>Square-root transformed leaf bronzing score</td> <td>5</td> <td>LOC_0s05g29140</td> <td>expressed protein</td> <td>At2a47560</td>	Square-root transformed leaf bronzing score	5	LOC_0s05g29140	expressed protein	At2a47560
Square-root transformed Lar Ibrozung score 1 LOC_005/2017 epressed protein Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A11/72200 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A11/72200 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1 LOC_005/2017 RINC-112 (morang-score protein, putative, cupressed A15/81030 Square-root transformed Lar Ibrozung score 1	Square-root transformed leaf bronzing score	5	LOC Os05g29160	hypothetical protein	1112547500
Square-out transformed kar brouzing score 1 CC_005/2078 National score protein, patitive, curposed A11/27200 Square-out transformed kar brouzing score 1 CC_005/2076 National score protein, patitive, curposed A11/27200 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposes ad halos, curposed A52/1030 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposes ad halos, curposed A52/1030 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposes ad halos, curposed A22/0100 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposed A22/0100 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposed A22/0100 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposed A14/07330 Square-out transformed kar brouzing score 1 CC_005/2076 Nationapposed protein, patitive, curposed A14/0730 Square-out transformed kar brouzing score 1 </td <td>Square-root transformed leaf bronzing score</td> <td>5</td> <td>LOC_Os05g29170</td> <td>expressed protein</td> <td></td>	Square-root transformed leaf bronzing score	5	LOC_Os05g29170	expressed protein	
Square-not transformed for throung score I.O.C. 0.045/2900 Period A1127200 Square-not transformed for throung score I.O.C. 0.045/2900 Period A1127200 Square-not transformed for throung score I.O.C. 0.045/2900 Period A1127200 Square-not transformed for throung score I.O.C. 0.045/29700 Period A1127200 Square-not transformed for throung score I.O.C. 0.045/29700 Period A126(0300 Square-not transformed for throung score I.O.C. 0.045/29700 Period Period Square-not transformed for throung score I.O.C. 0.045/29700 Period Period Square-not transformed for throung score I.O.C. 0.045/29700 Period Period A126/000 Square-not transformed for throung score I.O.C. 0.045/29700 Period A126/000 A126/000 Square-not transformed for throung score I.O.C. 0.045/29700 Period A126/000 A126/000 Square-not transformed for throung score I.O.C. 0.045/29700 Period A126/000 A126/000 A126/000 A126/000 A126/000 A126/000 A126/000 A126/000 <	Square-root transformed leaf bronzing score	5	LOC_Os05g29174	retrotransposon protein, putative, unclassified, expressed	
Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein represed protein Square-not transformed kar browning score 1 LOC_005/2900 represed protein represed protein represed protein Square-not transformed kar browning score 1 LOC_005/2900 repressed protein repressed prot	Square-root transformed leaf bronzing score	5	LOC_Os05g29676	RING-H2 finger protein, putative, expressed	At1g72200
Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unbessited, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, uncessited, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, uncessited, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, uncessited, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, uncessited, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unclusistified, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unclusistified, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unclusistified, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unclusistified, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzing score protein, putative, unclusistified, expressed Spanser out instantional kai fronzing score I/OC_005/2770 Fronzinscore protein, putative, unclusistified, expressed <td>Square-root transformed leaf bronzing score</td> <td>5</td> <td>LOC_Os05g29680</td> <td>expressed protein</td> <td></td>	Square-root transformed leaf bronzing score	5	LOC_Os05g29680	expressed protein	
Square-cont marsformed kat browing score 5 LOC 0.0529720 NING-H2 finger protein patatove, cyressed A15(0380 Square-cont marsformed kat browing score 5 LOC 0.0529720 retornamous protein, patative, inclussified, expressed Square-cont marsformed kat browing score 5 LOC 0.0529720 retornamous protein, patative, inclussified, expressed A220070 Square-cont marsformed kat browing score 5 LOC 0.0529720 retroscaptores of the score	Square-root transformed leaf bronzing score	5	LOC_0s05g29690	retrotransposon protein, putative, unclassified, expressed	
Square-not marked by the sequence of the seque	Square-root transformed leaf bronzing score	5	LOC_0s05g29710	RING-H2 finger protein putative expressed	At5g10380
Signare-root transformed karl browing score 5 LOC_04529770 extremase inhibits family protein, patative, expressed Signare-root transformed karl browing score 5 LOC_04529770 expressed protein Signare-root transformed karl browing score 5 LOC_04529770 expressed AL250390 Signare-root transformed karl browing score 5 LOC_04529770 expressed AL264020 Signare-root transformed karl browing score 5 LOC_04529700 expressed protein AL264020 Signare-root transformed karl browing score 5 LOC_045292700 expressed protein AL264020 Signare-root transformed karl browing score 5 LOC_045292700 expressed protein AL264020 Signare-root transformed karl browing score 5 LOC_045292870 basis salvary protein, patative, CACTA, Expressed AL264020 Signare-root transformed karl browing score 5 LOC_045292970 basis salvary protein, patative, expressed AL264020 Signare-root transformed karl browing score 5 LOC_045292970 basis salvary protein, patative, expressed AL292816 Signare-root transformed karl browing score 5	Square-root transformed leaf bronzing score	5	LOC Os05g29720	retrotransposon protein, putative, Ty1-copia subclass, expressed	
Square-root transformed karf browing score 5 LOC_06529770 expressed or vertaso/cetin methylesterase inhibitor family protein, putative, scoressed Square-root transformed karf browing score 5 LOC_06529770 expressed or vertaso/cetin methylesterase inhibitor family protein, putative, curvessed Al220309 Square-root transformed karf browing score 5 LOC_06529770 expressed protein Al224000 Square-root transformed karf browing score 5 LOC_06529700 perimesen putative, expressed Al4264330 Square-root transformed karf browing score 5 LOC_06529700 perimesen protein, putative, expressed Al4264400 Square-root transformed karf browing score 5 LOC_06529700 repressed protein Al426400 Square-root transformed karf browing score 5 LOC_06529870 repressed protein, putative, expressed Al4293460 Square-root transformed karf browing score 5 LOC_06529870 sepressed protein Al4293460 Square-root transformed karf browing score 5 LOC_06529870 sepressed protein Al4293460 Square-root transformed karf browing score 5 LOC_06529870 sepressed protein Al429	Square-root transformed leaf bronzing score	5	LOC_Os05g29730	retrotransposon protein, putative, unclassified, expressed	
square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed Square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed A1220390 Square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed A122039 Square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed A12230 Square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed A12230 Square-root transformed kaf bronzing score 5 LOC_0.04052973 cytoserus P25.01E1, pitative, expressed A12230 Square-root transformed kaf bronzing score 5 LOC_0.04052973 transpoor protein, pitative, expressed A123310 Square-root transformed kaf bronzing score 5 LOC_0.04052983 transpoor transformed kaf bronzing score 5 LOC_0.04052983 square-root transformed kaf bronzing score 5 LOC_0.0452983 Square-root transformed kaf bronzing score 5 LOC_0.	Square-root transformed leaf bronzing score	5	LOC_Os05g29735	expressed protein	
Square-root transformed for forwards score 1.0.C0.005,29730 cytochrome P450 71E1, putative, expressed Square-root transformed for forwards score 1.0.C0.005,29730 cytochrome P450 71E1, putative, expressed At2g30390 Square-root transformed for forwards score 1.0.C0.005,29730 cytochrome P450 71E1, putative, expressed At2g44200 Square-root transformed for forwards score 1.0.C0.005,29780 performation pathweet pathwe				invertase/pectin methylesterase inhibitor family protein, putative,	
Square-root transformed for forwards score 1 COC_00529720 Cyncochethaler 12, CHE January, Explessed Alg2309 Square-root transformed for forwards score 1 COC_00529720 retortaneposon protein, patative, expressed Alg24123 Square-root transformed for forwards score 1 COC_00529700 retortaneposon protein, patative, expressed Alg24123 Square-root transformed for forwards score 1 COC_00529780 retortaneposon protein, patative, expressed Alg24123 Square-root transformed for forwards score 1 COC_00529890 retortaneposon protein, patative, expressed Alg23460 Square-root transformed for forwards score 1 COC_00529890 retortaneposon protein, patative, cACTA, InSgm sub-class, expressed Alg23460 Square-root transformed for forwards score 1 COC_00529890 retortaneposon protein, patative, cACTA, InSgm sub-class, expressed Alg23460 Square-root transformed for forwards score 1 COC_00529990 expressed protein Alg23460 Square-root transformed for forwards score 1 COC_005299200 expressed protein Alg24763 Square-root transformed for forwards score 1 COC_005299920 </td <td>Square-root transformed leaf bronzing score</td> <td>5</td> <td>LOC_Os05g29740</td> <td>expressed</td> <td></td>	Square-root transformed leaf bronzing score	5	LOC_Os05g29740	expressed	
Spaner-oot transformed fair fronzing score 5 DOC 005629770 expressed protein translamided to protection Spaner-oot transformed fair fronzing score 5 DOC 005629770 pectimestranse, putative, expressed Ald_p40230 Spaner-oot transformed fair fronzing score 5 DOC 005629780 AP2 domain containing protein, pattive, carpressed Ald_p40230 Spaner-oot transformed fair fronzing score 5 DOC 005629780 AP2 domain containing protein, pattive, CACTA, EnS/pm alb-class, expressed Spaner-oot transformed fair fronzing score 5 DOC 005629780 hypothetical protein Spaner-oot transformed fair fronzing score 5 DOC 005629780 sing score protein Ald_234600 Spaner-oot transformed fair fronzing score 5 DOC 005629970 sing score protein Ald_234600 Spaner-oot transformed fair fronzing score 5 DOC 005629970 scynessed frotein Ald_202316 Spaner-oot transformed fair fronzing score 5 DOC 005629970 scynessed frotein Ald_202316 Spaner-oot transformed fair fronzing score 5 DOC 005629970 scynessed frotein Ald_202316 Spaner-oot transformed fair fr	Square-root transformed leaf bronzing score	5	LOC_0s05g29750	ferrochelatase-2 chloroplast precursor putative expressed	At2g30390
Square-root transformed kal Proofing score 5 LOC_00529780 represent ansformed kal Proofing score 5 LOC_00529780 represend protein AtagA4020 Square-root transformed kal Proofing score 5 LOC_00529780 represend protein AtagA4020 Square-root transformed kal Proofing score 5 LOC_00529780 transposon protein, patirite, CACTA, EnSgm sub-class, expressed Square-root transformed kal Proofing score 5 LOC_00529780 transposon protein, patirite, carchastified Atlg29460 Square-root transformed kal Proofing score 5 LOC_00529780 transposon protein, patirite, carchastified Atlg29460 Square-root transformed kal Proofing score 5 LOC_00529780 represed protein Atlg29460 Square-root transformed kal Proofing score 5 LOC_00529780 represed protein Atlg29460 Square-root transformed kal Proofing score 5 LOC_00529780 represed protein Atlg29460 Square-root transformed kal Proofing score 5 LOC_00529790 represed protein Atlg29660 Square-root transformed kal Proofing score 5 LOC_0050529790 represed protein	Square-root transformed leaf bronzing score	5	LOC Os05g29770	expressed protein	1112630330
Square-cost transformed lar brozing score 5 LOC_00529780 pectreations: expressed A1dg2330 Square-cost transformed lar brozing score 5 LOC_005297810 AP2 domain containing protein; expressed A1dg24020 Square-cost transformed lar brozing score 5 LOC_005297820 https://domain.containing protein; expressed A1dg24020 Square-cost transformed lar brozing score 5 LOC_005297820 https://domain.containing protein; expressed A1dg29460 Square-cost transformed lar brozing score 5 LOC_005297870 https://domain.contain.containing protein; pattive; expressed A1dg29460 Square-cost transformed lar brozing score 5 LOC_005297870 https://domain.contain.	Square-root transformed leaf bronzing score	5	LOC_Os05g29780	retrotransposon protein, putative, unclassified, expressed	
Square-root transformed kal bronzing score 5 LOC_065923980 expressed protein Al2g44020 Square-root transformed kal bronzing score 1 LOC_0659239820 transposon protein, putative, CACTA, EnSpm sub-class, expressed Square-root transformed kal bronzing score 1 LOC_0659239820 transposon protein, putative, cACTA, EnSpm sub-class, expressed Square-root transformed kal bronzing score 1 LOC_0659239820 transposon protein, putative, capressed Al4g39460 Square-root transformed kal bronzing score 1 LOC_0659239820 transposon protein, putative, capressed Al4g02616 Square-root transformed kal bronzing score 1 LOC_065923980 texpressed protein Al1g02816 Square-root transformed kal bronzing score 1 LOC_0659239900 texpressed protein Al1g02816 Square-root transformed kal bronzing score 1 LOC_0659239900 texpressed protein Al1g02816 Square-root transformed kal bronzing score 1 LOC_0659239900 texpressed protein Al1g02816 Square-root transformed kal bronzing score 1 LOC_0659239900 texpressed protein Al1g247630 Square-root trans	Square-root transformed leaf bronzing score	5	LOC_Os05g29790	pectinesterase, putative, expressed	At4g02330
Square-toot transformed lar horozing score 5 LOC 0.05229810 AP2 domain containing protein, pattressed At1g53910 Square-toot transformed lar horozing score 5 LOC 0.05229820 hypochetical protein Square-toot transformed lar horozing score 5 LOC 0.05229820 hypochetical protein Square-toot transformed lar horozing score 5 LOC 0.05229820 hypochetical protein Square-toot transformed lar horozing score 5 LOC 0.05229800 hypochetical protein At4g39460 Square-toot transformed lar horozing score 5 LOC 0.05229800 hypochetical protein At4g03460 Square-toot transformed lar horozing score 5 LOC 0.05229900 cyressed protein At1g02816 Square-toot transformed lar horozing score 5 LOC 0.05229900 cyressed protein At1g02816 Square-toot transformed lar horozing score 5 LOC 0.05229900 cyressed protein At1g02816 Square-toot transformed lar horozing score 5 LOC 0.05229900 cyressed protein At2g0730 Square-toot transformed lar horozing score 5 LOC 0.05229900 cyressed protein At2g0730 Square-toot trans	Square-root transformed leaf bronzing score	5	LOC_Os05g29800	expressed protein	At2g44020
Square-toot transformed kal froming score 5 LOC_00529240 Transpoon protein, putative, CACTA, Em/Spm sub-class, expressed Square-toot transformed kal froming score 5 LOC_00529240 Transpoon protein, putative, CACTA, Em/Spm sub-class, expressed Square-toot transformed kal froming score 5 LOC_00529240 Transpoon protein, putative, CACTA, Em/Spm sub-class, expressed Square-toot transformed kal froming score 5 LOC_00529240 Transpoon protein, putative, capressed Arig29460 Square-toot transformed kal froming score 5 LOC_005292400 Styptime-toot protein, putative, capressed Arig29460 Square-toot transformed kal froming score 5 LOC_005299200 Styptime-toot protein, putative, capressed Arig29460 Square-toot transformed kal froming score 5 LOC_00529940 Styptime-toot protein, putative, capressed Arig247630 Square-toot transformed kal froming score 5 LOC_00529940 Styptime-toot protein, putative, capressed Arig26130 Square-toot transformed kal froming score 5 LOC_00529940 Styptime-toot protein, putative, capressed Arig26130 Square-toot transformed kal froming score 5 LOC_00529940 Styptime	Square-root transformed leaf bronzing score	5	LOC_Os05g29810	AP2 domain containing protein, expressed	At1g53910
Spaner toot transformed kar frozzág score 5 i LOC 0052938 i productur potent putative, expressed i retortansposen protein, putative, CACTA, En/Spn sub-class, expressed Ar4g39460 Spaner-oot transformed kar frozzág score 5 i LOC 00529280 i LOC 00529280 i Spaner-oot transformed kar frozzág score 5 i LOC 00529280 i LOC 00529280 i Spaner-oot transformed kar frozzág score 5 i LOC 00529280 i Spaner-oot transformed kar frozzág score 5 i LOC 00529280 i Spaner-oot transformed kar frozzág score 5 i LOC 00529280 i LOC 00529280 i Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At1g02816 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At1g02816 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At1g02816 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At1g02816 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At2g47650 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At2g47650 Spaner-oot transformed kar frozzág score 5 i LOC 00529290 i expressed protein At2g47650 Spaner-oot transformed kar frozzág score 5 i LOC 00582930 i kar erobrzygenese i abandant protein, putative, expressed At2g67830 Spaner-oot transformed kar frozzág score 5 i LOC 005821320 i transposon protein, putative, expressed At2g67650 Spaner-oot transformed kar frozzág score 5 i LOC 005821320 i transposon protein, putative, expressed At2g67650 Spaner-oot transformed kar frozzág score 5 i LOC 005821320 i transposon protein, putative, expressed At2g67650 Spaner-oot transformed kar frozzág score 5 i LOC 005821320 i transposon protein, putative, expressed At2g67650 Spaner-oot transformed kar frozzág score 5 i LOC 005821320 i transposon protein, putative, CACTA, En/Spn sub-class, expressed Rehitve plant height 8 i LOC 005821330 i expressed protein At1g78800 Rehitve plant height 8 i LOC 005821330 i expressed protein At1g78800 Rehitve plant height 8 i LOC 005821330 i expressed protein At1g7850 Reh	Square-root transformed leaf bronzing score	5	LOC_Os05g29820	transposon protein, putative, CACTA, En/Spm sub-class, expressed	
square-root transformed kaf bronzing scor 5 LOC_005/2986 Turnsposon protein, putative, CACTA, EnSym sub-class, expressed square-root transformed kaf bronzing scor 5 LOC_005/2986 Turnsposon protein, putative, expressed A14g39460 square-root transformed kaf bronzing scor 5 LOC_005/2988 Turnsposon protein, putative, expressed A12g06860 square-root transformed kaf bronzing scor 5 LOC_005/2990 expressed protein A11g02816 square-root transformed kaf bronzing scor 5 LOC_005/2990 expressed protein A11g02816 square-root transformed kaf bronzing scor 5 LOC_005/2990 expressed protein A12g07830 square-root transformed kaf bronzing scor 5 LOC_005/2990 expressed protein A12g7630 square-root transformed kaf bronzing scor 5 LOC_005/2990 expressed protein A12g67830 square-root transformed kaf bronzing score 5 LOC_005/29974 Ipage Lag172 A13g67830 square-root transformed kaf bronzing score 5 LOC_005/29974 Ipage Lag172 A13g67830 square-root transformed kaf bronzing score 5 <t< td=""><td>Square-root transformed leaf bronzing score</td><td>5</td><td>LOC_Os05g29829</td><td>retrotransposon protein putative unclassified</td><td></td></t<>	Square-root transformed leaf bronzing score	5	LOC_Os05g29829	retrotransposon protein putative unclassified	
Square-root transformed leaf bronzing scor 5 IOC OxC	Square-root transformed leaf bronzing score	5	LOC Os05g29850	transposon protein, putative, CACTA, En/Spm sub-class, expressed	
Square-root transformed kaf bronzing score 5 LOC_0452980 basic salivary proline-rich protein 3 precursor, putative, expressed A13g05800 Square-root transformed kaf bronzing score 5 LOC_04529900 expressed protein A13g05800 Square-root transformed kaf bronzing score 5 LOC_04529900 expressed protein A11g02816 Square-root transformed kaf bronzing score 5 LOC_04529990 expressed protein A12g05810 Square-root transformed kaf bronzing score 5 LOC_04529990 expressed protein A12g6730 Square-root transformed kaf bronzing score 5 LOC_04529990 expressed protein A12g6730 Square-root transformed kaf bronzing score 5 LOC_04529994 ipase protein A13g65100 Rehtive plant height 8 LOC_045821320 transposon protein, putative, expressed A13g65100 Rehtive plant height 8 LOC_045821300 transposon protein, putative, CACTA, En/Spm sub-class, expressed Rehtive plant height 8 LOC_045821300 transposon protein, putative, TA, En/Spm sub-class, expressed Rehtive plant height 8 LOC_045813300	Square-root transformed leaf bronzing score	5	LOC_Os05g29860	mitochondrial carrier protein, putative, expressed	At4g39460
Square-root transformed kaf bronzing score 5 LOC_00522930 3-hydroxyacy/CoA dehydrogenace, putative, expressed A13g0680 Square-root transformed kaf bronzing score 5 LOC_00522900 expressed protein A13g0680 Square-root transformed kaf bronzing score 5 LOC_00522900 expressed protein A13g0680 Square-root transformed kaf bronzing score 5 LOC_00522900 expressed protein A12g0730 Square-root transformed kaf bronzing score 5 LOC_00522900 expressed protein A12g0730 Square-root transformed kaf bronzing score 5 LOC_00522900 expressed protein A12g0730 Square-root transformed kaf bronzing score 5 LOC_005829309 expressed protein A12g0730 Relative plant height 8 LOC_005821320 expressed protein A12g0780 Relative plant height 8 LOC_005821320 expressed protein A12g0780 Relative plant height 8 LOC_005821320 expressed protein A11g78890 Relative plant height 8 LOC_005821320 expressed protein A11g1680	Square-root transformed leaf bronzing score	5	LOC_Os05g29870	basic salivary proline-rich protein 3 precursor, putative, expressed	
Square-root transformed larb bronzing score5LOCCoSt622900cryptoresAll g02816Square-root transformed larb bronzing score5LOCCoSt622920expressed proteinAll g02816Square-root transformed larb bronzing score5LOCCoSt622900expressed proteinAll g02816Square-root transformed larb bronzing score5LOCCoSt622900expressed proteinAll g02816Square-root transformed larb bronzing score5LOCCoSt622900expressed proteinAll g02830Square-root transformed larb bronzing score5LOCCoSt622900expressed proteinAll g02630Rehitve plant height8LOCCoSt6212900expressed proteinAll g02630Rehitve plant height8LOCCoSt6212900expressed proteinAll g02630Rehitve plant height8LOCCoSt621300expressed proteinAll g0280120Rehitve plant height8LOCCoSt621300expressed proteinAll g7880Rehitve plant height8LOCCoSt621300expressed proteinAll g16800Rehitve plant height8LOCCoSt621300expressed proteinAll g1680Rehitve plant height8LOCCoSt621300expressed proteinAll g16800Rehitve plant height8LOCCoSt621300expressed proteinAll g16800Rehitve plant height8LOCCoSt621300expressed proteinAll g1550Rehitve plant height8 <td< td=""><td>Square-root transformed leaf bronzing score</td><td>5</td><td>LOC_Os05g29880</td><td>3-hydroxyacyl-CoA dehydrogenase, putative, expressed</td><td>At3g06860</td></td<>	Square-root transformed leaf bronzing score	5	LOC_Os05g29880	3-hydroxyacyl-CoA dehydrogenase, putative, expressed	At3g06860
Square-root transformed kall bronzing score 5 LOC_050522900 cyrcssed protein putative, expressed 5 LOC_050522900 cyrcssed protein 5 LOC_05052900 cyrcssed protein 5	Square-root transformed leaf bronzing score	5	LOC_Os05g29900	expressed protein	At1g02816
Square-root transformed kaf bronzing score 5 LOC_050529930 texpressed protein Algg/7630 Square-root transformed kaf bronzing score 5 LOC_050529930 expressed protein Algg/7630 Square-root transformed kaf bronzing score 5 LOC_050529930 expressed protein Algg/7630 Square-root transformed kaf bronzing score 5 LOC_050529937 expressed protein Algg/7630 Square-root transformed kaf bronzing score 5 LOC_050529937 expressed protein Algg/7630 Relative plant height 8 LOC_050812320 expressed protein Algg/7630 Relative plant height 8 LOC_050812320 expressed protein Algg/7630 Relative plant height 8 LOC_05081320 expressed protein Algg/7630 Relative plant height 8 LOC_05081330 expressed protein Algg/7630	Square root transformed leaf bronzing score	5	LOC_0s05g29910	expressed protein	At1:002816
Square-root transformed kaf brouzing score Square-root transformed kaf brouzing score Rehitve plant height LoC_0.058(3120 Scoressed protein Square-root transformed kaf brouzing score Square-root transformed kaf brouzing Scoressed protein Square-root score Square-root sc	Square-root transformed leaf bronzing score	5	LOC_0s05g29930	late embryogenesis abundant protein, putative, expressed	111202010
Square-root transformed kaf bronzing score 5 LOC_00529950 expressed protein A12g47630 Square-root transformed kaf bronzing score 5 LOC_0058291270 spressed protein A12g47830 Relative plant height 8 LOC_0058213270 spressed protein A13g06190 Relative plant height 8 LOC_0058213270 spressed protein A13g07810 Relative plant height 8 LOC_0058213200 spressed protein A13g78800 Relative plant height 8 LOC_0058213200 spressed protein A11g78800 Relative plant height 8 LOC_0058213300 spressed protein A12g1550 Relative plant height 8 LOC_0058213300 spressed protein A12g16860 Relative plant height 8 LOC_0058213300 spressed protein	Square-root transformed leaf bronzing score	5	LOC_Os05g29940	expressed protein	
Square-root transformed leaf bronzing score 5 LOC_060523974 Mpace, pattive, expressed protein A12g7430 Relative plant height 8 LOC_060523747 Mpace, pattive, expressed protein A13g02830 Relative plant height 8 LOC_0605813200 expressed protein A13g02810 Relative plant height 8 LOC_0605813200 expressed protein A13g02810 Relative plant height 8 LOC_0605813300 expressed protein A11g78890 Relative plant height 8 LOC_0605813330 expressed protein A11g78890 Relative plant height 8 LOC_0605813330 expressed protein A11g78890 Relative plant height 8 LOC_060581330 expressed protein A11g78890 Relative plant height 8 LOC_0605813300 expressed protein A11g16860 Relative plant height 8 LOC_0605813300 expressed protein A12g1550 Relative plant height 8 LOC_0605813400 expressed protein A12g1550 Relative plant height 8 LOC_0605813400 expr	Square-root transformed leaf bronzing score	5	LOC_Os05g29950	expressed protein	
Square-root transformed leaf bronzing score 5 LOC_0505229974 lipase, putative, expressed A13g62830 Relative plant height 8 LOC_0508813270 expressed protein A13g62830 Relative plant height 8 LOC_0508813270 expressed protein A13g62830 Relative plant height 8 LOC_0508813200 expressed protein A11g78890 Relative plant height 8 LOC_0508813300 expressed protein A11g78890 Relative plant height 8 LOC_0508813300 expressed protein A11g78890 Relative plant height 8 LOC_0508813330 expressed protein A11g78890 Relative plant height 8 LOC_0508813330 expressed protein A11g78890 Relative plant height 8 LOC_0508813300 expressed protein A11g16860 Relative plant height 8 LOC_0508813300 expressed protein A12g15560 Relative plant height 8 LOC_0508813300 expressed protein malative, expressed A15g67900 Relative plant height 8 LOC_05086138100 <td< td=""><td>Square-root transformed leaf bronzing score</td><td>5</td><td>LOC_Os05g29960</td><td>expressed protein</td><td>At2g47630</td></td<>	Square-root transformed leaf bronzing score	5	LOC_Os05g29960	expressed protein	At2g47630
Relative plant height 8 LOC_0508[31250 specifies/specifies Alsgob/90 Relative plant height 8 LOC_0508[31280 expressed protein Al1g78890 Relative plant height 8 LOC_0508[31330 expressed protein Al1g78890 Relative plant height 8 LOC_0508[31330 expressed protein Al1g16860 Relative plant height 8 LOC_0508[31330 expressed protein Al1g16860 Relative plant height 8 LOC_0508[31300 expressed protein Al1g1550 Relative plant height 8 LOC_0508[31300 expressed protein Al2g1550 Relative plant height 8 LOC_0508[31400 expressed protein Al2g1550 Relative plant height 8 LOC_0508[31400 expressed protein Al2g1550 <tr< td=""><td>Square-root transformed leaf bronzing score</td><td>5</td><td>LOC_Os05g29974</td><td>lipase, putative, expressed</td><td>At3g62830</td></tr<>	Square-root transformed leaf bronzing score	5	LOC_Os05g29974	lipase, putative, expressed	At3g62830
Active plant height 6 LOC_0508g1320 repressed protein Relative plant height 8 LOC_0508g1320 transposon protein, putative, CACTA, En/Spm sub-class, expressed Relative plant height 8 LOC_0508g1330 transposon protein, putative, CACTA, En/Spm sub-class, expressed Relative plant height 8 LOC_0508g1330 expressed protein At1g78890 Relative plant height 8 LOC_0508g1330 retrotransposon protein, putative, CACTA, En/Spm sub-class, expressed Relative plant height 8 LOC_0508g1330 retrotransposon protein, putative, Ty1-copia subclass, expressed Relative plant height 8 LOC_0508g1330 retrotransposon protein, putative, expressed At1g16860 Relative plant height 8 LOC_0508g1330 expressed protein At1g16860 Relative plant height 8 LOC_0508g1330 expressed protein At2g1550 Relative plant height 8 LOC_0508g1340 expressed protein At2g2905 Relative plant height 8 LOC_0508g1340 retrotransposon protein, putative, unclassified Relative plant height 8 LOC_0508g1420 retrotransposon protein, putative, unclassified Relative dy weight <t< td=""><td>Relative plant height</td><td>8</td><td>LOC_Os08g13250</td><td>speckie-type POZ protein, putative, expressed</td><td>At3g06190</td></t<>	Relative plant height	8	LOC_Os08g13250	speckie-type POZ protein, putative, expressed	At3g06190
Relative plant height 8 LOC_0s08g13200 transposon protein, putative, CACTA, En/Spm sub-class, expressed Relative plant height 8 LOC_0s08g13300 expressed protein At1g78800 Relative plant height 8 LOC_0s08g13300 expressed protein At1g78800 Relative plant height 8 LOC_0s08g13300 expressed protein At1g78800 Relative plant height 8 LOC_0s08g13300 expressed protein At1g16660 Relative plant height 8 LOC_0s08g13300 expressed protein At1g1550 Relative plant height 8 LOC_0s08g13300 expressed protein At1g1550 Relative plant height 8 LOC_0s08g13300 expressed protein At2g15560 Relative plant height 8 LOC_0s08g13400 expressed protein putative, unclassified At4g29905 Relative plant height 8 LOC_0s06g44900 retroarsposon protein, putative, unclassified, expressed At5g60900 Relative draw weight 6 LOC_0s06g44900 retroarsposon protein, putative, unclassified, expressed At5g57123 Relative draw weight 6 LOC_0s06g44900 retroarsposon protein, putative, expresse	Relative plant height	8	LOC_0s08g13280	expressed protein	
Relative plant height 8 LOC_0508g13300 ransposon protein, putative, CACTA, En/Spm sub-class, expressed Relative plant height 8 LOC_0508g13300 expressed protein At1g78890 Relative plant height 8 LOC_0508g13300 expressed protein At1g78890 Relative plant height 8 LOC_0508g13300 expressed protein, putative, Ty1-copia subclass, expressed Relative plant height 8 LOC_0508g13300 expressed protein At1g16860 Relative plant height 8 LOC_0508g13300 expressed protein At1g1550 Relative plant height 8 LOC_0508g13300 expressed protein At2g1550 Relative plant height 8 LOC_0508g13400 expressed protein At4g29905 Relative plant height 8 LOC_0508g13400 expressed protein in utative, unclassified At4g29905 Relative plant height 8 LOC_0508g13400 expressed protein in utative, unclassified, expressed At5g60900 Relative dry weight 6 LOC_0506g44900 retroarasposon protein, putative, unclassified, expressed At5g7090 Relative dry weight 6 LOC_0506g44900 expressed protein	Relative plant height	8	LOC Os08g13290	transposon protein, putative, CACTA, En/Spm sub-class, expressed	
Relative plant height8LOC_0508[13310expressed proteinAt1g78890Relative plant height8LOC_0508[1330retrotransposon protein, putative, Ty1-copia subclass, expressedRelative plant height8LOC_0508[1330retrotransposon protein, putative, Ty1-copia subclass, expressedAt1g16800Relative plant height8LOC_0508[1330expressed proteinAt1g16800At1g1550Relative plant height8LOC_0508[1330expressed proteinAt1g1550Relative plant height8LOC_0508[1330expressed proteinAt2g1550Relative plant height8LOC_0508[1340expressed proteinAt429905Relative plant height8LOC_0508[1340expressed proteinAt429905Relative plant height8LOC_0508[1340expressed proteinAt429905Relative plant height8LOC_0508[1340expressed proteinAt429905Relative plant height8LOC_0508[1340expressed proteinAt5g60900Relative plant height6LOC_0508[1340expressed proteinAt5g5090Relative dry weight6LOC_0508[4390retrotransposon protein, putative, unclassified, expressedAt5g57090Relative dry weight6LOC_0508[4490expressed proteinAt5g57123Relative dry weight6LOC_0506[45000expressed proteinAt4g25940Relative dry weight6LOC_0506[45000expressedAt5g57123Relative dry weight6LOC_0506[45000expressed protein<	Relative plant height	8	LOC_Os08g13300	transposon protein, putative, CACTA, En/Spm sub-class, expressed	
Relative plant height 8 LOC_0s08g13320 expressed protein At1g7880 Relative plant height 8 LOC_0s08g1330 retrotransposon protein, putative, Ty1-copia subclass, expressed Relative plant height 8 LOC_0s08g13300 retrotransposon protein, putative, ty1-copia subclass, expressed Relative plant height 8 LOC_0s08g13300 exher the repeat protein, putative, expressed At1g1550 Relative plant height 8 LOC_0s08g13400 expressed protein At2g15500 Relative plant height 8 LOC_0s08g13400 retrotransposon protein, putative, unclassified St560900 Relative dry weight 6 LOC_0s06g44900 retrotransposon protein, putative, unclassified, expressed At5g5090 Relative dry weight 6 LOC_0s06g44900 retrotransposon protein, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_0s06g44900 <td>Relative plant height</td> <td>8</td> <td>LOC_Os08g13310</td> <td>expressed protein</td> <td></td>	Relative plant height	8	LOC_Os08g13310	expressed protein	
Relative plant height 8 LOC 0508g13350 retrotransposon protein, putative, 1y1-copia subclass, expressed Relative plant height 8 LOC_0508g13360 expressed protein At1g16860 Relative plant height 8 LOC_0508g13300 expressed protein, putative, expressed At1g1550 Relative plant height 8 LOC_0508g13300 expressed protein At1g1550 Relative plant height 8 LOC_0508g13300 expressed protein At2g1550 Relative plant height 8 LOC_0508g13400 expressed protein At2g1550 Relative plant height 8 LOC_0508g13400 expressed protein kinase, putative, expressed At4g29905 Relative plant height 8 LOC_0508g13400 expressed protein kinase, putative, expressed At5g60900 Relative dry weight 6 LOC_0506g44900 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0506g44900 retrotransposon protein, putative, unclassified, expressed Experiment Relative dry weight 6 LOC_0506g44900 retrotransposon protein, putative, expressed At5g57090 Relative dry weight 6 LOC_0506g44900 express	Relative plant height	8	LOC_Os08g13320	expressed protein	At1g78890
Relative plant height6LOC_OsoBg13350reformation plattive, ryrecolar statictass, expressedAt1g16860Relative plant height8LOC_OsoBg13360expressed proteinAt1g51550Relative plant height8LOC_OsoBg13380expressed proteinAt2g15560Relative plant height8LOC_OsoBg13300expressed proteinAt2g15560Relative plant height8LOC_OsoBg13410expressed proteinAt4g29905Relative plant height8LOC_OsoBg13410expressed protein, bitative, unclassifiedKelch repeat protein, plattive, unclassifiedRelative plant height8LOC_OsoBg13410retrotransposon protein, plattive, unclassified, expressedAt5g60900Relative dry weight6LOC_OsoBg144205retrotransposon protein, plattive, unclassified, expressedAt5g57090Relative dry weight6LOC_OsOBg449607retrotransposon protein, plattive, unclassified, expressedAt5g57090Relative dry weight6LOC_OsOBg44900expressed proteinAt5g57090Relative dry weight6LOC_OsOBg44900expressed proteinAt5g57090Relative dry weight6LOC_OsOBg44900expressed proteinAt5g57090Relative dry weight6LOC_OsOBg45020expressed proteinAt5g57080Relative dry weight6LOC_OsOBg45020expressedAt5g50800Relative dry weight6LOC_OsOBg45020expressedAt5g50800Relative dry weight6LOC_OsOBg45020expressedAt4g25940	Relative plant height	8	LOC_Os08g13330	retrotransposon protein, putative, Tyl-copia subclass, expressed	
Relative plant heightE DCC_0s0g13360kelar repeat protein, putative, expressedAt1g51550Relative plant height8LOC_0s0g13360keklar repeat protein, putative, expressedAt1g51550Relative plant height8LOC_0s0g13300expressed proteinAt4g29505Relative plant height8LOC_0s0g13400expressed proteinAt4g29505Relative plant height8LOC_0s0g13410retrotransposon protein, putative, unclassifiedSecondaryRelative plant height8LOC_0s0g14400secondarySecondaryAt5g60900Relative dry weight6LOC_0s0g44960retrotransposon protein, putative, unclassified, expressedRelative dry weightRelative dry weight6LOC_0s0g44970auxin efflux carrier component, putative, expressedAt5g57090Relative dry weight6LOC_0s0g44970auxin efflux carrier component, putative, expressedAt5g57123Relative dry weight6LOC_0s0g44900ubiquitin-conjugating enzyme, putative, expressedAt5g57090Relative dry weight6LOC_0s0g44900ubiquitin-conjugating enzyme, putative, expressedAt5g57123Relative dry weight6LOC_0s0g45000ubiquitin-conjugating enzyme, putative, expressedAt5g05080Relative dry weight6LOC_0s0g45020expressedAt4g03390STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative,ressedRelative dry weight6LOC_0s0g45050clathrin assembly protein, putative, expressedAt4g25940Relative dry weight6 <td< td=""><td>Relative plant height</td><td>8</td><td>LOC_0s08g13340</td><td>expressed protein</td><td>At1g16860</td></td<>	Relative plant height	8	LOC_0s08g13340	expressed protein	At1g16860
Relative plant height 8 LOC_Os08g13380 expressed protein At2g15560 Relative plant height 8 LOC_Os08g13300 expressed protein At2g15560 Relative plant height 8 LOC_Os08g13400 expressed protein At2g2905 Relative plant height 8 LOC_Os08g13400 expressed protein, putative, unclassified Relative plant height 8 LOC_Os08g13400 expressed protein, putative, unclassified, expressed At5g60900 Relative plant height 6 LOC_Os06g44970 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_Os06g44970 auxin efflux carrier component, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_Os06g44970 auxin efflux carrier component, putative, unclassified, expressed At5g57123 Relative dry weight 6 LOC_Os06g44900 transposon protein, putative, expressed At5g05080 Relative dry weight 6 LOC_Os06g44900 transposon protein, putative, expressed At5g05080 Relative dry weight 6 LOC_Os06g44900 transposon protein, putative, expressed At5g05080 Relative dry weight 6 LOC_Os06g45020 <td< td=""><td>Relative plant height</td><td>8</td><td>LOC Os08g13360</td><td>kelch repeat protein, putative, expressed</td><td>At1g51550</td></td<>	Relative plant height	8	LOC Os08g13360	kelch repeat protein, putative, expressed	At1g51550
Relative plant height8LOC_Os08g13390expressed proteinAt2g1550Relative plant height8LOC_Os08g13400expressed proteinAt4g2905Relative plant height8LOC_Os08g13400expressed protein, putative, unclassifiedHot2005Relative plant height8LOC_Os08g13400expressed protein, putative, unclassified, expressedAt5g60900Relative dry weight6LOC_Os06g44940retrotransposon protein, putative, unclassified, expressedFerrotransposon protein, putative, unclassified, expressedRelative dry weight6LOC_Os06g44970auxin efflux carrier component, putative, expressedAt5g57090Relative dry weight6LOC_Os06g44970auxin efflux carrier component, putative, expressedAt5g57090Relative dry weight6LOC_Os06g44900transposon protein, putative, expressedAt5g57090Relative dry weight6LOC_Os06g44900transposon protein, putative, expressedAt5g05080Relative dry weight6LOC_Os06g45000ubiquitin-conjugating enzyme, putative, expressedAt5g05080Relative dry weight6LOC_Os06g45020expressedtransposon protein, putative, unclassified, expressedAt4g03390Relative dry weight6LOC_Os06g450300expressedtransposon protein, putative, unclassified, expressedAt4g03390Relative dry weight6LOC_Os06g450300expressedtransposon protein, putative, expressedAt4g03390Relative dry weight6LOC_Os06g450300expressed protein, putative, unclassifi	Relative plant height	8	LOC_Os08g13380	expressed protein	
Relative plant height 8 LOC_Os08g13400 expressed protein At4g29905 Relative plant height 8 LOC_Os08g13410 retrotransposon protein, putative, unclassified Xt5g60900 Relative plant height 8 LOC_Os06g43420 S-domain receptor-like protein kinase, putative, expressed At5g60900 Relative dry weight 6 LOC_Os06g43420 retrotransposon protein, putative, unclassified, expressed Xt5g67090 Relative dry weight 6 LOC_Os06g44960 retrotransposon protein, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_Os06g44960 expressed protein At5g57123 Relative dry weight 6 LOC_Os06g44900 transposon protein, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_Os06g44900 transposon protein, putative, Pong sub-class Xt5g5080 Relative dry weight 6 LOC_Os06g45010 expressed protein Xt5g5080 Relative dry weight 6 LOC_Os06g45020 expressed Transposon protein, putative, unclassified, expressed At4g03390 Relative dry weight 6 LOC_Os06g45020 expressed Transposon protein, putative, unclass	Relative plant height	8	LOC_Os08g13390	expressed protein	At2g15560
Relative plant height 8 LOC_0s08g13410 retrotransposon protein, putative, unclassified Relative plant height 8 LOC_0s08g13420 S-domain receptor-like protein kinase, putative, expressed At5g60900 Relative dry weight 6 LOC_0s06g43940 retrotransposon protein, putative, unclassified, expressed Xt5g60900 Relative dry weight 6 LOC_0s06g44940 retrotransposon protein, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_0s06g44990 expressed protein At5g57020 Relative dry weight 6 LOC_0s06g44990 transposon protein, putative, unclassified, expressed At5g57090 Relative dry weight 6 LOC_0s06g44990 transposon protein, putative, expressed At5g57020 Relative dry weight 6 LOC_0s06g45920 transposon protein, putative, expressed At4g03300 Relative dry weight 6 LOC_0s06g45920 expressed Transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45920 transposon protein, putative, putative, expressed At4g03300 Relative dry weight 6 LOC_0s06g45920 transposon protein, putative, unclassified, expressed	Relative plant height	8	LOC_Os08g13400	expressed protein	At4g29905
Relative plain neight as LOC_0506g19420 s-domain receptor-ince protein knase, plaative, expressed Alsg00900 Relative dry weight 6 LOC_0506g44960 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0506g44960 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0506g44960 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0506g44990 expressed protein At5g57020 Relative dry weight 6 LOC_0506g44990 transposon protein, putative, unclassified, expressed At5g05080 Relative dry weight 6 LOC_0506g44900 transposon protein, putative, putative, expressed At5g05080 Relative dry weight 6 LOC_0506g45000 ubiquitin-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_0506g45020 expressed TRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, Relative dry weight 6 LOC_0506g45000 transposon protein, putative, expressed At4g03390 Relative dry weight 6 LOC_0506g45000 transposon protein, putative, expressed At4g25940	Relative plant height	8	LOC_Os08g13410	retrotransposon protein, putative, unclassified	4+5~60000
Relative dry weight 6 LOC_0s06g44950 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g44950 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g44950 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g44950 expressed protein At5g57123 Relative dry weight 6 LOC_0s06g44950 transposon protein, putative, expressed At5g05080 Relative dry weight 6 LOC_0s06g45000 ubiquitin-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_0s06g45010 expressed protein At4g03390 STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, Relative dry weight 6 LOC_0s06g45020 expressed Relative dry weight 6 LOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight 6 Relative dry weight 6 LOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45030 tra	Relative dry weight	6	LOC_0s08g13420	retrotransposon protein putative unclassified expressed	At5g00900
Relative dry weight 6 LOC_0s06g44960 retrotransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g44970 auxin efflux carrier component, putative, expressed At5g57090 Relative dry weight 6 LOC_0s06g44970 transposon protein, putative, Pong sub-class At5g57123 Relative dry weight 6 LOC_0s06g44900 transposon protein, putative, Pong sub-class At5g05080 Relative dry weight 6 LOC_0s06g45000 ubiquitrin-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_0s06g45020 expressed protein At4g03390 STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, expressed Relative dry weight Relative dry weight 6 LOC_0s06g45020 expressed Expressed Relative dry weight 6 LOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight ELOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g450300 transposon protein, putative, unclassified, expressed At4g25940 Relative dry weight 6 LOC_0s06g45040	Relative dry weight	6	LOC_0s06g44950	retrotransposon protein, putative, unclassified, expressed	
Relative dry weight6LOC_0s06g44970auxin efflux carrier component, putative, expressedAt5g57090Relative dry weight6LOC_0s06g44980expressed proteinAt5g57123Relative dry weight6LOC_0s06g44980transposon protein, putative, Pong sub-classAt5g57090Relative dry weight6LOC_0s06g44980expressed proteinAt5g0709Relative dry weight6LOC_0s06g4500ubiquitin-conjugating enzyme, putative, expressedAt5g05080Relative dry weight6LOC_0s06g45020expressed proteinAt4g03390Relative dry weight6LOC_0s06g45020expressedFransposon protein, putative, unclassified, expressedRelative dry weight6LOC_0s06g45020expressedFransposon protein, putative, expressedRelative dry weight6LOC_0s06g45030transposon protein, putative, expressedAt4g25940Relative dry weight6LOC_0s06g45050calthrin assembly protein, putative, expressedAt4g25940Relative dry weight6LOC_0s06g45080expressed proteinImage: SpressedRelative dry weight6LOC_0s06g45080expressed protein assembly protein, putative, expressedAt2g15910Relative dry weight6LOC_0s06g45090expressed protein assembly protein, putative, expressedAt2g15910Relative dry weight6LOC_0s06g45080expressed protein assembly protein, putative, expressedAt4g29950Relative dry weight6LOC_0s06g45090expressed protein assembly protein, putative, expres	Relative dry weight	6	LOC_Os06g44960	retrotransposon protein, putative, unclassified, expressed	
Relative dry weight 6 LOC_Os06g44980 expressed protein At5g57123 Relative dry weight 6 LOC_Os06g44990 transposon protein, putative, Pong sub-class At5g05080 Relative dry weight 6 LOC_Os06g45000 ubiquitin-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_Os06g45000 expressed protein At4g03390 Relative dry weight 6 LOC_Os06g45020 expressed STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, Relative dry weight 6 LOC_Os06g45020 expressed expressed Relative dry weight 6 LOC_Os06g45030 transposon protein, putative, unclassified, expressed At4g03390 Relative dry weight 6 LOC_Os06g45030 transposon protein, putative, unclassified, expressed At4g25940 Relative dry weight 6 LOC_Os06g45050 cathrin assembly protein, putative, expressed At4g25940 Relative dry weight 6 LOC_Os06g45050 expressed protein 4t2g15910 Relative dry weight 6 LOC_Os06g45050 rab/GAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6	Relative dry weight	6	LOC_Os06g44970	auxin efflux carrier component, putative, expressed	At5g57090
Relative dry weight 6 LOC_0s06g44990 transposon protein, putative, Pong sub-class Relative dry weight 6 LOC_0s06g45000 ubiquitin-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_0s06g45000 ubiquitin-conjugating enzyme, putative, expressed At4g03390 Relative dry weight 6 LOC_0s06g45020 expressed Fransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45020 transposon protein, putative, unclassified, expressed Ktg25940 Relative dry weight 6 LOC_0s06g45020 transposon protein, putative, expressed At4g25940 Relative dry weight 6 LOC_0s06g45050 transposon protein, putative, expressed At4g25940 Relative dry weight 6 LOC_0s06g45060 expressed protein Expressed protein Relative dry weight 6 LOC_0s06g45060 expressed protein spitative, expressed At4g25940 Relative dry weight 6 LOC_0s06g45080 repressed protein spitative, expressed At2g15910 Relative dry weight 6 LOC_0s06g450800 repressed protein spitative, expressed At4g25950 Relative dry	Relative dry weight	6	LOC_Os06g44980	expressed protein	At5g57123
Relative dry weight 6 LOC_OS06g45000 ubquint-conjugating enzyme, putative, expressed At5g05080 Relative dry weight 6 LOC_OS06g45000 expressed protein At4g03390 STRUBBELIG-RECEPTOR FAMILY 3 precursor, putative, Relative dry weight 6 LOC_OS06g45000 expressed Relative dry weight 6 LOC_OS06g45000 expressed ransposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_OS06g45000 expressed At4g25940 Relative dry weight 6 LOC_OS06g45060 expressed protein, putative, expressed At4g25940 Relative dry weight 6 LOC_OS06g45060 expressed protein, sputative, expressed At4g25940 Relative dry weight 6 LOC_OS06g45080 rabGAP/TBC domain-containing protein, putative, expressed At4g25950 Relative dry weight 6 LOC_OS06g45090 rabGAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6 LOC_OS06g45090 rabGAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6 LOC_OS06g45100 protein, expressed At4g29950 Relative dry	Relative dry weight	6	LOC_Os06g44990	transposon protein, putative, Pong sub-class	1.5.05000
Relative dry weight 6 LOC_0s06g45020 expressed Relative dry weight 6 LOC_0s06g45020 expressed Relative dry weight 6 LOC_0s06g45020 expressed Relative dry weight 6 LOC_0s06g45020 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45020 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45050 clathrin assembly protein, putative, expressed Relative dry weight 6 LOC_0s06g45060 expressed protein Relative dry weight 6 LOC_0s06g45080 rabGAP/TBC domain-containing protein, putative, expressed Relative dry weight 6 LOC_0s06g45090 expressed protein Relative dry weight 6 LOC_0s06g45090 rabGAP/TBC domain-containing protein, putative, expressed Relative dry weight 6 LOC_0s06g45090 expressed protein FAD binding domain of DNA photolyase domain containing FAD binding domain of DNA photolyase domain containing	Relative dry weight	6	LOC_Os06g45000	appressed protein	At5g05080
Relative dry weight 6 LOC_Os06g45020 expressed Relative dry weight 6 LOC_Os06g45040 expressed Relative dry weight 6 LOC_Os06g45040 B-box zinc finger family protein, putative, expressed Relative dry weight 6 LOC_Os06g45040 B-box zinc finger family protein, putative, expressed Relative dry weight 6 LOC_Os06g45050 clathrin assembly protein, putative, expressed Relative dry weight 6 LOC_Os06g45060 expressed protein Relative dry weight 6 LOC_Os06g45080 expressed protein Relative dry weight 6 LOC_Os06g45080 rabGAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6 LOC_Os06g45080 expressed protein FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_Os06g45080 expressed protein FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_Os06g45100 protein, expressed At5g24850	Reactive dry weight	0	LOC_0500g45010	STRUBBELIG-RECEPTOR FAMILY 3 precursor putative	111-803330
Relative dry weight 6 LOC_0s06g45030 transposon protein, putative, unclassified, expressed Relative dry weight 6 LOC_0s06g45040 B-box zine finger family protein, putative, expressed Relative dry weight 6 LOC_0s06g45050 clathrin assembly protein, putative, expressed At4g25940 Relative dry weight 6 LOC_0s06g45050 clathrin assembly protein, putative, expressed At4g25940 Relative dry weight 6 LOC_0s06g45060 expressed protein At2g15910 Relative dry weight 6 LOC_0s06g45080 rabGAP/TBC domain-containing protein, putative, expressed At4g2950 Relative dry weight 6 LOC_0s06g45080 rabGAP/TBC domain-containing protein of DNA photolyase domain containing At4g2950 Relative dry weight 6 LOC_0s06g45100 expressed protein At4g2950 Relative dry weight 6 LOC_0s06g45100 protein, expressed At5g24850	Relative dry weight	6	LOC_Os06g45020	expressed	
Relative dry weight 6 LOC_Os06g45040 B-box zinc finger family protein, putative, expressed Relative dry weight 6 LOC_Os06g45050 cathrin assembly protein, putative, expressed At4g25940 Relative dry weight 6 LOC_Os06g45050 cathrin assembly protein, putative, expressed At2g15910 Relative dry weight 6 LOC_Os06g45050 idplthamide biosynthesis protein 3, putative, expressed At2g15910 Relative dry weight 6 LOC_Os06g450500 repressed protein At4g29950 Relative dry weight 6 LOC_Os06g450500 repressed protein FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_Os06g45100 protein, expressed At5g24850	Relative dry weight	6	LOC_Os06g45030	transposon protein, putative, unclassified, expressed	
Relative dry weight 6 LOC_Os06g45050 chtrin assembly protein, putative, expressed At4g25940 Relative dry weight 6 LOC_Os06g45050 expressed protein At2g15910 Relative dry weight 6 LOC_Os06g45080 diphthamide biosynthesis protein 3, putative, expressed At2g15910 Relative dry weight 6 LOC_Os06g45080 rabGAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6 LOC_Os06g45080 rabGAP/TBC domain-of DNA photolyase domain containing At4g29950 Relative dry weight 6 LOC_Os06g45100 protein, expressed At4g29950	Relative dry weight	6	LOC_Os06g45040	B-box zinc finger family protein, putative, expressed	
Relative dry weight 6 LOC_Os06g45060 expressed protein Relative dry weight 6 LOC_Os06g45070 diphtmamide biosynthesis protein 3, putative, expressed At2g15910 Relative dry weight 6 LOC_Os06g45080 rabGAP/TBC domain-containing protein, putative, expressed At4g29950 Relative dry weight 6 LOC_Os06g45100 expressed protein FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_Os06g45100 protein, expressed At5g24850	Relative dry weight	6	LOC_Os06g45050	clathrin assembly protein, putative, expressed	At4g25940
Relative dry weight b LOC_USU06450/U appintamide biosynthesis protein 3, putative, expressed At2g15910 Relative dry weight 6 LOC_Os06g45000 rabGAP/TBC domain-containing protein, putative, expressed At4g2950 Relative dry weight 6 LOC_Os06g45000 rabGAP/TBC domain-containing protein, putative, expressed At4g2950 Relative dry weight 6 LOC_Os06g45100 protein, expressed protein FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_Os06g45100 protein, expressed At5g24850	Relative dry weight	6	LOC_Os06g45060	expressed protein	442-15010
Relative dry weight 6 LOC_Osobg45000 respressed protein FAD binding domain of DNA photolyase domain containing protein, expressed Attg2950 Relative dry weight 6 LOC_Osobg45100 protein, expressed Attg24850	Relative dry weight	6	LOC_0s06g45070	rabGAP/TBC domain-containing protein putative, expressed	At2g15910 At4o29950
FAD binding domain of DNA photolyase domain containing Relative dry weight 6 LOC_0s06g45100 protein, expressed At5g24850	Relative dry weight	6	LOC Os06245090	expressed protein	
Relative dry weight 6 LOC_0s06g45100 protein, expressed At5g24850				FAD binding domain of DNA photolyase domain containing	
	Relative dry weight	6	LOC_Os06g45100	protein, expressed	At5g24850

Table dy wightChr. Gore IDPatter function.Patter function.Rather dy wight6LOC_OMESIDSATM particles, praintse, pracessedAll p1900Rather dy wight6LOC_OMESIDSParter function.All p1900Rather dy wight6LOC_OMESIDSprovide practice.All p1910Rather dy wight6LOC_OMESIDSprovide practice.All p1910Rather dy wight6LOC_OMESIDSprovide practice.All p1910Rather dy wight1LOC_OMESIDSRather dy wightAll p1910Rather dy wight1LOC_OMESIDSRather dy wightAll p1910<					Closest
Addue to yverght Loc Color (Color) Addue to yverght Addue to yverght <th< th=""><th>Twoit</th><th>Chr</th><th>Cana ID</th><th>Putative function</th><th>Arabidopsis</th></th<>	Twoit	Chr	Cana ID	Putative function	Arabidopsis
Rather dy signif 6 1.0C Outgestion All [2000] Rather dy signif 6 Code Galastion Incommonsion protein particle, cupressed All [2000] Rather dy signif 6 Code Galastion Incommonsion protein particle, cupressed Rather dy signif 6 Code Galastion Rather dy signif 6 Loc Code Galastion Incommonsion protein particle, cupressed Rather dy signif 8 Code Galastion Incommonsion protein particle, cupressed Rather dy signif 6 Loc Code Galastion Income context intext, Cupressed Rather dy signif 8 Rather dy signif	Relative dry weight	6	LOC 0s06945110	DNA binding protein putative expressed	At4931350
Rehine div sught 6 1.CC_000(513) approximation for domain containing protein, expressed ASS/2000 Rehine div sught 6 1.CC_000(513) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(513) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(512) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(512) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(512) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(522) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(522) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(522) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(522) Balan aligner, patative, expressed ASS/2000 Rehine div sught 6 1.CC_000(522) Balan aligner, patative, expressed ASS/2000 Rehine div s	Relative dry weight	6	LOC Os06g45120	ATP synthase, putative, expressed	At1g78900
Relative dry weight	Relative dry weight	6	LOC_Os06g45130	expressed protein	-
Relative div yraght 6 LOC Colog/510 polan algren, patable, cypresol Relative div yraght 6 LOC Colog/510 polan algren, patable, cypresol Relative div yraght 6 LOC Colog/510 polan algren, patable, cypresol Relative div yraght 6 LOC Colog/510 polan algren, patable, cypresol Relative div yraght 6 LOC Colog/510 polan algren, patable, cypresol Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Alg/5100 Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Alg/5100 Relative div yraght 6 LOC Colog/520 preson algren, patable, cypresol Alg/5100 Relative div yraght 10 LOC Colog/5200	Relative dry weight	6	LOC_Os06g45140	bZIP transcription factor domain containing protein, expressed	At5g24800
Relative dry weight • LCC_004/2010 Pathe and argen, pathese, expressed Relative dry weight • LCC_004/20150 pathese, expressed All_205410 Relative dry weight • LCC_004/20150 pathese, expressed All_205410 Relative dry weight • LCC_004/20150 pathese, expressed All_207180 Relative dry weight • LCC_004/20150 pathese, expressed All_21716 Relative dry weight • LCC_004/20150 pathese, expressed All_21716 Relative dry weight • LCC_004/201500 pathese, expressed All_22170 Relative dry weight • LCC_004/201500 pathese, expressed <td>Relative dry weight</td> <td>6</td> <td>LOC_Os06g45150</td> <td>pollen allergen, putative, expressed</td> <td></td>	Relative dry weight	6	LOC_Os06g45150	pollen allergen, putative, expressed	
 Nature dy vegin I. 102 Config 1518 Ackine dy vegin I. 102 Config 1528 Ackine dy vegin	Relative dry weight	6	LOC_Os06g45160	pollen allergen, putative, expressed	
Rakine dy veglin 	Relative dry weight	6	LOC_0s06g45170	pollen allergen, putative, expressed	
Relative dy veglt 6 LOC_00002(150) publics allogin, publics, expressed Relative dy veglt 6 LOC_0002(150) publics allogin, publics, expressed Relative dy veglt 6 LOC_0002(150) publics allogin, publics, expressed Relative dy veglt 6 LOC_0002(150) publics allogin, publics, expressed All 50510 Relative dy veglt 6 LOC_0002(150) Publics allogin, publics, expressed Alg 50510 Relative dy veglt 6 LOC_0002(150) Publics, publics, expressed Alg 2710 Relative dy veglt 6 LOC_0002(1520) Publics, publics, publics, expressed Alg 2710 Relative dy veglt 100C_0002(1520) Publics high publics, publics, expressed Alg 2710 Relative dy veglt 100C_012(1520) Public high publics, publics, expressed Alg 2710 Relative dy veglt 100C_012(1520) Public high publics, publics, expressed Alg 25400 Relative dy veglt 100C_012(1520) Public high publics, expressed Alg 25400 Relative dy veglt 100C_012(1520) Public high publics, expressed Alg 25400	Relative dry weight	6	LOC_0s06g45184	retrotransposon protein putative, Tv3-gypsy subclass expressed	
Rehine dy vergin 6 1.00 ⁺ _0.0062520 prop 3 polen alergen putative, expressed Rehine dy vergin 6 1.00 ⁺ _0.0062522 prop 3 polen alergen putative, improved All p5010 Rehine dy vergin 6 1.00 ⁺ _0.0062523 Polen alergen, putative, improved All p5010 Rehine dy vergin 6 1.00 ⁺ _0.00625267 Rehine dy vergin All p5010 Rehine dy vergin 6 1.00 ⁺ _0.0062527 Provide history for the partice, inclussified, capressed All p5110 Rehine dy vergin 6 1.00 ⁺ _0.00625287 Provide history for the partice, inclussified, capressed All p5121 Rehine dy vergin 1 1.00 ⁺ _0.00625287 Provide history for the partice, inclussified, capressed All p5121 Rehine dy vergin 1 1.00 ⁺ _0.01224540 Rehine history for the partice, inclussified, capressed All p5160 Rehine dy vergin 1 1.00 ⁺ _0.01224540 Rehine history for the partice, inclussified, capressed All p5170 Rehine dy vergin 1 1.00 ⁺ _0.01224540 Rehine history for the partice, inclussified, capressed All p51710 Rehine dy vergin 1 1.00 ⁺ _0	Relative dry weight	6	LOC_Os06g45190	pollen allergen, putative, expressed	
Rolinko dy vogli 6 1.00_00692120 polica aligne, putative, capressed Rolinko dy vogli 6.100_00692120 polica aligne, putative, capressed A11_50010 Rolinko dy vogli 6.100_00692120 postes of polica aligne, putative, capressed A11_50010 Rolinko dy vogli 6.100_006921207 managene protein, patative, mutasified, appressed A11_50010 Rolinko dy vogli 6.100_006921207 managene protein, patative, mutasified, appressed A207180 Rolinko dy vogli 6.100_006921207 protein kinasi APELIB, chlorophist prestruct, patative, capressed A1227160 Rolinko dy vogli 1.00_001921307 protein kinasi appressid A1227160 Rolinko dy vogli 1.00_001243404 present containing protein, capressed A1227160 Rolinko dy vogli 1.00_001234407 present containing protein, capressed A1227160 Rolinko dy vogli 1.00_001234407 present containing protein, capressed A1227160 Rolinko dy vogli 1.00_001234407 present containing protein, capressed A1227160 Rolinko dy vogli 1.00_00123440 RNA econtaining protein, capressed A1229100 <t< td=""><td>Relative dry weight</td><td>6</td><td>LOC_Os06g45200</td><td>group 3 pollen allergen, putative, expressed</td><td></td></t<>	Relative dry weight	6	LOC_Os06g45200	group 3 pollen allergen, putative, expressed	
Rehure dy weigh Partier dy	Relative dry weight	6	LOC_Os06g45210	pollen allergen, putative, expressed	
Relative dy weight - DOC_05069239 machine recepters takes A22073 precoration parative, expressed A11g50610 Acgs2508 precisions parative, expressed A11g50610 Acgs2508 precisions parative, expressed A12g5100 Precisions Protein parative, expressed A12g51780 Precision Protein Parative, expressed A12g51780 Precision Protein Parative, expressed A12g51780 Precision Protein Protein Parative, expressed A12g51780 Precision Protein Protein Protein Protein Parative, Precision Protein Prote	Relative dry weight	6	LOC_Os06g45220	expressed protein	
Adamba of young a constraint of the second state Ar.2.20.00 presented plante, spressed Ar.2.2000 presented plante, spressed Ar.2.2.2000 presented plante, spressed Ar.2.2.2000 presented plante, spressed Ar.2.2.2000 presented plante, spressed Ar.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Relative dry weight	6	LOC_Os06g45230	pollen allergen, putative, expressed	41.50(10
Rokine dy weight 600 000000000000000000000000000000000000	Relative dry weight	6	LOC_Os06g43240	tPNA pseudouridine synthase family protein putative, expressed	At1g50610 At5g35400
Rakine dy weight 6 O.C. 004065230 rempione protein putative, unclosafiel, expressed J.J. 2007 (19) Rakine dy weight 6 I.O.C. 0040652300 rempione protein putative, expressed At4g1730 Rakine dy weight 1 I.O.C. 004065200 rempione protein putative, expressed At4g1730 Rakine dy weight 1 I.O.C. 004065200 rempione protein putative, expressed At4g1730 Rakine dy weight 1 I.O.C. 004065200 rempione protein putative, expressed At1g1750 Rakine dy weight 1 I.O.C. 004052300 RVI main practice, expressed At1g1750 Rakine dy weight 1 I.O.C. 01228440 RVI Recomposition fundy domine containing protein, expressed At1g1750 Rakine dy weight 1 I.O.C. 01228440 RVI Recomposition fundy domine containing protein, expressed At1g1750 Rakine dy weight 1 I.O.C. 01228440 RVI Recomposition fundy domine containing protein, expressed At1g1750 Rakine dy weight 1 I.O.C. 001283400 Ryressed protein Riskine dy weight Riskine dy weight Riskine dy weight Riskine dy weight Riskine d	Relative dry weight	6	LOC_0s06g45260	transposon protein putative unclassified expressed	Albg55400
Reline dy weight 6 LOC_00645520 point Ensise APK IB, chlorophat precursor, putative, expressed AL2g7130 Reline dy weight 8 LOC_00645530 GDU1, putative, expressed AL2g1730 Reline dy weight 1 LOC_00645100 GDU1, putative, expressed AD2g1715 Reline dy weight 1 LOC_00162500 GDU1, putative, expressed AD2g1700 Reline dy weight 1 LOC_01224800 NYB famby transcription factor, putative, expressed AD2g1700 Reline dy weight 1 LOC_01224800 RYM Reline dy weight AD2 AD29000 Reline dy weight 1 LOC_01224800 RYM Recommend AD29000 AD29000 Reline dy weight 1 LOC_01224800 RYM Recommend AD29000 AD29000 Reline dy weight 1 LOC_01224800 RYM Recommend AD29000 RYM Recommend AD29000 Reline dy weight 1 LOC_01224800 RYM Recommend AD297100 RYM Recommend AD297100 Reline dy weight 1 LOC_001224000 RXM Recommend AD297100	Relative dry weight	6	LOC Os06g45270	transposon protein, putative, unclassified, expressed	
Relative day weight 6 LOC_006485070 DUID, patative, capressed At4g21730 Relative day weight 8 LOC_00685070 DUID, patative, capressed At4g21730 Relative day weight 10 LOC_00685070 DUID, patative, capressed At4g2170 Relative day weight 10 LOC_001284800 TNP1, patative, capressed At4g27700 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At4g27800 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At4g27800 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At4g27800 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At4g07530 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At4g07530 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At1g07530 Relative day weight 10 LOC_01284800 TNP1, patative, capressed At1g07530 Relative dikp mather LOC_00127800 TNP16700117792	Relative dry weight	6	LOC_Os06g45280	protein kinase APK1B, chloroplast precursor, putative, expressed	At2g07180
Reluire div weight 8 LOC_0088[3500 GDU1, parative, expressed At4g21730 Reluire div weight 12 LOC_0088[3500 GDV1 Parative, expressed At2g2765 Reluire div weight 12 LOC_001223400 MYB family transcription factor, putative, expressed At2g3765 Reluire div weight 12 LOC_01223440 W1 domain containing protein, expressed At1g55460 Reluire div weight 12 LOC_01223440 W1 domain containing protein, expressed At1g55460 Reluire div weight 12 LOC_01223440 W1 domain containing protein, expressed At2g58400 Reluire div weight 12 LOC_01223480 W1 compation multif anding protein At2g5840 Reluire div weight 12 LOC_012238300 CRAETCROW, putative, expressed At1g07530 Reluire div weight 12 LOC_01223840 CRAETCROW, putative, expressed At1g07530 Reluire div weight 12 LOC_041223800 CRAETCROW, putative, expressed At1g07530 Reluire div weight 12 LOC_041223800 CRAETCROW, putative, expressed At1g1740	Relative dry weight	6	LOC_Os06g45290	pollen allergen, putative, expressed	
Rehtre dry weight 8 LOC_048g4508 profile rich protein 3, patistic, expressed A1g21215 Rehtre dry weight 12 LOC_042g4800 profile rich patistic, expressed A1g27600 Rehtre dry weight 12 LOC_042g4800 profile ratio corporation frame protein, expressed A1g25460 Rehtre dry weight 12 LOC_042g4800 profile ratio corporation and/or expressed A1g25460 Rehtre dry weight 12 LOC_042g4800 profile ratio corporation and/or expressed A1g25800 Rehtre dry weight 12 LOC_042g4840 profile ratio corporation profile, expressed A1g25800 Rehtre dry weight 12 LOC_042g4840 expressed protein Rehtre dir number 1 LOC_004g2780 protein Rehtre dir number 1 LOC_004g2780 protein Rehtre dir number 1 LOC_004g2780 expressed rehter hydrolution expressed A1g21740 Rehtre dir number 1 LOC_004g2640 expressed rehter hydrolution expressed A1g2440 Rehtre sing pancie weight 2 LOC_002g2610 expressed rehter hydrolution expressed A1g2440 Rehtre sing pancie weight 2 LOC_002g2610 expressed Rehter hydrolution expressed A1g2440 Rehtre sing pancie weight 2 LOC_002g2610 expressed Rehter hydrolution expressed A1g2440 Rehtre	Relative dry weight	8	LOC_Os08g15070	GDU1, putative, expressed	At4g31730
Reture dy weight [1] 10C 0612/8400 MYB family transcription factor, publice, expressed AD2/7500 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/7500 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, corpressed (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, methylice, expressed protein (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, methylice, expressed protein (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, methylice, inputsor, expressed (AD2/2000 Returns dy weight [2] 10C 0612/8400 KYB inputsor, methylice, inputsor, expressed (AD2/17/0 KYB inputsor, methylice, expre	Relative dry weight	8	LOC_Os08g15080	proline rich protein 3, putative, expressed	At3g21215
keture dry weight = 1 ketwe dry ketwe dry weight = 1 ketwe dry ketwe dry weight = 1 ketwe dry	Relative dry weight	12	LOC_Os12g38400	MYB family transcription factor, putative, expressed	At2g37630
nature day weight 12 10.C 0.6123830 der spessel protein spatister, expressed Adg/S400 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed Adg/2800 Rehine day weight 21 10.C 0.6123840 (Marmia continuing protein, expressed (Marmia continuing protein, putative, expressed (Marmia continuing protein, putative, expressed (Marmia continuing protein, put	Relative dry weight	12	LOC_0s12g38410	avpraced protein	
Relative dy weight1210.C $Oot 2034340$ KI domain containing protein, expressed $Afg 1970$ Relative dy weight1210.C $Oot 2034340$ NA recognition motif family protein, expressed $Adg 2080$ Relative dy weight1210.C $Oot 20343470$ NA recognition motif family protein, expressed $Adg 2080$ Relative dy weight1210.C $Oot 20323470$ expressed protein $Atg 20800$ Relative dy weight1210.C $Oot 203234800$ expressed protein $Atg 20700$ Relative dy weight1210.C $Oot 203234800$ expressed protein $Atg 20700$ Relative dy weight1210.C $Oot 203234800$ expressed protein $Atg 20710$ Relative div marker110.C $Oot 20323400$ expressed protein $Atg 20710$ Relative div marker110.C $Oot 204238000$ expressed protein $Atg 20710$ Relative single panck weight210.C $Oot 204238000$ expressed protein $Atg 21740$ Relative single panck weight210.C $Oot 204238000$ expressed protein $Atg 21740$ Relative single panck weight210.C $Oot 204238000$ expressed protein $Atg 25700$ Relative single panck weight210.C $Oot 204238100$ expressed protein $Atg 25700$ Relative single panck weight210.C $Oot 204236100$ ethermic strutter,	Relative dry weight	12	LOC_0s12g38430	SR repressor protein putative expressed	At3955460
Relative dy weight12LOC_01238450exoston family domain containing protein, expressedAt223040Relative dy weight12LOC_01238470expressed proteinAt322880Relative dy weight12LOC_01238470expressed proteinAt197530Relative dy weight12LOC_01238480SCARCROW, putative, expressedAt197530Relative dy weight12LOC_01238480GRF zine finger family proteinSCARCROW, putative, expressedAt197530Relative dy weight12LOC_01238450GRF zine finger family proteinAt599310Relative dy weight12LOC_010127390Supressed proteinAt599310Relative dilty number1LOC_0010127300garssed proteinAt291340Relative dilty number1LOC_001027300garssed proteinAt291340Relative sille panicke weight2LOC_00127300garssed proteinAt291340Relative sille panicke weight2LOC_00127300garssed proteinAt291340Relative sille panicke weight2LOC_00122610proteinAt291340Relative sille panicke weight2LOC_00122610proteinAt291340Relative sille panicke weight2LOC_00122610protein patiet, systeps subclass, expressedAt187340Relative sille panicke weight2LOC_001226100protein patiet, systeps subclass, expressedAt187400Relative single panicke weight2LOC_001226100transpoon protein, patiet, systeps subclass, expressedAt187340R	Relative dry weight	12	LOC Os12g38440	XH domain containing protein, expressed	At1g15910
Relure dry weight 12 LOC_01238460 RNA recognition motif family protein, expressed A1528880 Relure dry weight 12 LOC_012384780 expressed protein A1190730 Relure dry weight 12 LOC_012384780 expressed protein A1190730 Relure dry weight 12 LOC_012384780 rmsponon protein, putative, unclassified, expressed A1190730 Relure dry weight 12 LOC_012384780 expressed protein A559031 Relure dry weight 12 LOC_010127970 expressed protein A559031 Relure dille number 1 LOC_010127970 expressed protein A559031 Relure dille number 1 LOC_010127970 expressed protein A2231440 Relure single punick weight 2 LOC_010226100 expressed protein A2231440 Relure single punick weight 2 LOC_010226100 expressed protein A224570 Relure single punick weight 2 LOC_010226100 expressed protein A127440 Relure single punick weight 2 LOC_010226100 expressed prote	Relative dry weight	12	LOC Os12g38450	exostosin family domain containing protein, expressed	At2g29040
Reluive dy weight 12 LOC_05128470 expressed protein Reluive dy weight 22 LOC_05128480 expressed protein Reluive dy weight 22 LOC_05128480 expressed protein Reluive dy weight 22 LOC_05128480 expressed protein Reluive dy weight 22 LOC_051284850 expressed protein Reluive dy weight 22 LOC_051284850 expressed protein Reluive dy weight 22 LOC_051284850 expressed protein Reluive dy weight 21 LOC_051284850 expressed protein Reluive dy weight 21 LOC_051284850 expressed protein Reluive div mumber Reluive single panick weight 21 LOC_05022600 expressed protein Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_050226100 environme P450 patintye, expressed Reluive single panick weight 21 LOC_05022610 expressed protein Reluive single panick weight 21 LOC_05022610 expressed protein Reluive single panick weight 21 LOC_05022600 expressed protein Rel	Relative dry weight	12	LOC_Os12g38460	RNA recognition motif family protein, expressed	At3g28880
Relative dry weight 12 LOC 0.512,24840 expressed protein Exciting dry weight 22 LOC 0.512,24840 expressed protein putative, expressed At1g0750 ranspoon protein, putative, expressed At1g0750 ranspoon protein, putative, weight 22 LOC 0.512,24850 expressed protein At5g0310 Exciting dry weight 12 LOC 0.512,24850 expressed protein At5g0310 Exciting dry weight 12 LOC 0.512,24850 expressed protein At5g0310 Exciting dry weight 12 LOC 0.512,24850 expressed protein At5g0310 Exciting dry weight 12 LOC 0.512,24851 expressed protein At5g0310 Exciting dry weight 12 LOC 0.501,27290 DIF630 DIF630 DIF630 DIF630 Direct dry weight All 21740 Exciting dry weight 21 LOC 0.501,27290 DIF630 DIF6	Relative dry weight	12	LOC_Os12g38470	expressed protein	
Relative dry weight 12 LOC 0.1228340 SCARECROW, putative, expressed Atlg07530 Relative dry weight 12 LOC 0.012283581 GRF zinc finger family protein Relative dry weight 12 LOC 0.012283581 GRF zinc finger family protein Relative dry weight 12 LOC 0.012283584 expressed protein Relative dry weight 12 LOC 0.012283584 expressed protein Relative dry weight 12 LOC 0.00127290 URSA uridine S-cathoxymethysimomethy modification enzyme Relative single panick weight 1 LOC 0.002293610 reporterion At2g13440 Relative single panick weight 2 LOC 0.002293610 reporterion At2g45570 Relative single panick weight 2 LOC 0.0022936140 reporters of protein At2g45570 Relative single panick weight 2 LOC 0.0022936140 reporters of protein At2g4570 Relative single panick weight 2 LOC 0.0022936160 reporters of protein At2g4570 Relative single panick weight 2 LOC 0.0022936160 rentorsone protein, patative, expressed At	Relative dry weight	12	LOC_Os12g38480	expressed protein	
Relative dry weight 12 LOC_04128580 transpoon proten, putative, unclassified, expressed Relative dry weight 12 LOC_05128552 expressed protein Relative dry weight 12 LOC_05128552 expressed protein Relative dry weight 12 LOC_05128552 expressed protein Relative tiller number 1 LOC_050127366 expressed protein Relative tiller number 1 LOC_050127366 expressed protein Relative tiller number 1 LOC_050127366 expressed protein Relative single panick weight 2 LOC_050226100 expressed protein Relative single panick weight 2 LOC_050226100 erprotency matrixe, expressed A12g7460 Relative single panick weight 2 LOC_050226150 erprotencer, putatire, unckasified, expressed A12g7460 Relative single panick weight 2 LOC_050226150 erprotencer, putatire, unckasified, expressed A15g25120 Relative single panick weight 2 LOC_050226150 erprotencersed protein, putatire, unckasified, expressed A15g25120 Relative single panick we	Relative dry weight	12	LOC_Os12g38490	SCARECROW, putative, expressed	At1g07530
Active dy weight 12 LOC_06123836 GHV 742 Linger Linnip protein Relative dy weight 12 LOC_06123836 expressed protein Relative dry weight 12 LOC_06123836 expressed protein Relative tiller number 1 LOC_060127390 gHV and the expressed Att[21740 Relative tiller number 1 LOC_060127390 gHV, pathots, expressed Att[21740 Relative tiller number 1 LOC_060127390 gHV, pathots, expressed Att[21740 Relative single panick weight 2 LOC_06127390 gHV, pathots, expressed Att[21740 Relative single panick weight 2 LOC_060226100 expressed protein Relative single panick weight 2 LOC_060226100 transposon protein, putative, expressed Relative single panick weight 2 LOC_060226100 transposon protein, putative, expressed Att[29460 Relative single panick weight 2 LOC_060226100 transposon protein, putative, expressed Relative single panick weight 2 LOC_060226100 transposon protein, putative, unclassified, expressed Relative single panick weight 2 LOC_060226100 transposon protein, putative, unclassified, expressed Att[27460 Relative single panick weight 1 LOC_060226200 terpoten protein, putative, expressed Att[27460 Relative single panick weight 1 LOC_060226200 terpoten synthase, chronols precursor, putative, expressed Att[27460 Relative single panick weight 1 LOC_060226200 terpoten synthase, putative, expressed Att[27460 Relative single panick weight 1 LOC_061023900 expressed protein Relative single panick weight	Relative dry weight	12	LOC_Os12g38500	transposon protein, putative, unclassified, expressed	
Relative diff veght 12 LOC 05123334 Capressed protein Relative diff veght 1 LOC 05123334 capressed protein A15207310 Relative tiler number 1 LOC 05127379 DUF650DUF632 domains containing protein, putative, expressed A1221740 Relative tiler number 1 LOC 05127379 DUF650DUF632 domains containing protein, putative, expressed A1221740 Relative single panick weight 2 LOC 050226400 expressed protein A1231440 Relative single panick weight 2 LOC 050226101 cytochrome P450, putative, expressed A12g45570 Relative single panick weight 2 LOC 050226130 cyptochrome P450, putative, expressed A12g7460 Relative single panick weight 2 LOC 050226130 cyptochrome P450, putative, expressed A15g25120 Relative single panick weight 2 LOC 050226130 cyptochrome P450, putative, expressed A15g25120 Relative single panick weight 2 LOC 050226100 cyptochrome P450, putative, expressed A15g25120 Relative single panick weight 1 LOC 0502262010 cyptochrome P450, putative, ex	Relative dry weight	12	LOC_Os12g38520	expressed protein	
Relative tiler number 1 LOC_001g7290 sypersed protein At5g09310 Relative tiler number 1 LOC_001g7290 sypersed protein At5g170 Relative single panck weight 2 LOC_002g2600 retortange protein, putative, expressed At2g13440 Relative single panck weight 2 LOC_002g2600 retortange protein, putative, tyj-gypsy subclase, expressed At2g15570 Relative single panck weight 2 LOC_002g2610 retortange protein At2g1570 Relative single panck weight 2 LOC_002g2610 retortange protein At2g1570 Relative single panck weight 2 LOC_002g2610 retortange protein At2g1570 Relative single panck weight 2 LOC_002g2610 typothetical protein At2g1570 Relative single panck weight 2 LOC_002g2610 typothetical protein At5g25120 Relative single panck weight 2 LOC_002g26100 typothetical protein At5g25120 Relative single panck weight 2 LOC_002g26100 typothetical protein At5g25120 Relative single panck weight 1 LOC_002g26100 typothetical protein At5g	Relative dry weight	12	LOC Os12g38540	expressed protein	
Relative tiller number 1 LOC_001g7390 DUFR30/DUF632 domains containing protein, putative, expressed At1g21740 Relative single panick weight 1 LOC_0001g7390 gidA, putative, expressed At2g13440 Relative single panick weight 2 LOC_0002g2600 retroatings posen protein, putative, Ty3-gyps subclass, expressed At2g45570 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At2g45570 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At1g70460 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At1g70460 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At5g25120 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At5g25120 Relative single panick weight 2 LOC_0002g26101 cytochrome P450, putative, expressed At5g25120 Relative single panick weight 2 LOC_0002g26101 cytochrome synthase, putative, expressed At3g04400 Relative single panick weight 10 LOC_0002g26101 cytoc	Relative tiller number	1	LOC_Os01g72960	expressed protein	At5g09310
IRNA uridine 5-carboxymethylamiomethyl modification enzyme IRNA uridine 5-carboxymethylamiomethyl modification enzyme Rehtive single panick weight1 LoC 0.0402,3600 cypessed proteinAr2g13440Rehtive single panick weight2 LoC 0.0402,3610cypessed proteinAr2g45570Rehtive single panick weight2 LoC 0.0402,3610cypessed proteinAr2g45570Rehtive single panick weight2 LoC 0.0402,3610cypessed proteinAr1g7460Rehtive single panick weight2 LoC 0.0402,3610transpoon protein, putative, cypessedAr1g7460Rehtive single panick weight2 LoC 0.0402,3610transpoon protein, putative, try3-gypsy subclassTRehtive single panick weight2 LoC 0.0402,3610transpoon protein, putative, try3-gypsy subclassTRehtive single panick weight2 LoC 0.0402,3620transpoon protein, putative, try3-gypsy subclassTRehtive single panick weight1 LoC 0.0402,3620transpoon protein, putative, try3-gypsy subclassAr3g1780Rehtive single panick weight1 LoC 0.0402,3520transpoon protein, putative, try3-gypsy subclassAr3g25120Rehtive single panick weight1 LoC 0.0402,3200cypessed proteinAr3g1780Rehtive single panick weight10 LoC 0.0402,3200cypessed proteinAr3g04400Rehtive single pani	Relative tiller number	1	LOC_Os01g72970	DUF630/DUF632 domains containing protein, putative, expressed	At1g21740
Relative single panick weight1LOCCol02300expressedAC2g1340Relative single panick weight2LOCCol0236000expressed proteinAC2g4570Relative single panick weight2LOCCol0236100exptension protein, putative, expressedAC2g4570Relative single panick weight2LOCCol02236100exptension protein, putative, expressedAC2g4570Relative single panick weight2LOCCol02236101exptension protein, putative, expressedAL1g79460Relative single panick weight2LOCCol02261610treptension protein, putative, unclassified, expressedAL5g25120Relative single panick weight2LOCCol02261610treptension protein, putative, unclassified, expressedAL5g25120Relative single panick weight2LOCCol02261610treptension protein, putative, unclassified, expressedAL5g25120Relative single panick weight2LOCCol02261601treptension protein, putative, unclassified, expressedAL5g25120Relative single panick weight1LOCCol02262001pytohetical proteinRelative single panick weight1LOCCol0226101Relative single panick weight1LOCCol02262001terptension protein, putative, expressedAL5g25120Relative single panick weight10LOCCol02232001terptension proteinRelative, expressedAL5g04400Relative single panick weight10LOCCol02232901retrosand protein, putative, unclassif				tRNA uridine 5-carboxymethylaminomethyl modification enzyme	
Retirve single panicle weight2LOCCoSU2g4000expressed proteinRetirve single panicle weight2LOCCoSU2g4010cytochrome P450, putative, expressedA12g45570Retirve single panicle weight2LOCCoSU2g4010cytochrome P450, putative, expressedA12g45570Retirve single panicle weight2LOCCoSU2g4010expressed proteinA11g79460Retirve single panicle weight2LOCCoSU2g4016tytochrome P450, putative, expressedA15g25120Retirve single panicle weight2LOCCoSU2g4016tytochrome P450, putative, expressedA15g25120Retirve single panicle weight2LOCCoSU2g4010transposon protein, putative, inclussified, expressedA15g25120Retirve single panicle weight2LOCCoSU2g4010expressedA15g25120Retirve single panicle weight2LOCCoSU2g4010expressedA15g25120Retirve single panicle weight2LOCCoSU2g4010expressedA15g25120Retirve single panicle weight1LOCCoSU2g4020expressedA15g25120Retirve single panicle weight1LOCCoSU2g4020expressedA15g25120Retirve single panicle weight10LOCCoSU2g4020expressedA15g25120Retirve single panicle weight10LOCCoSU2g4020expressedA15g25120Retirve single panicle weight10LOCCoSU2g4020expressedA14g02180Retirve single p	Relative tiller number	1	LOC_Os01g72980	gidA, putative, expressed	At2g13440
Reture single pancke weight2Loc 0:05/2;3610cytochrome P430, putative, expressedA12g45570Reture single pancke weight2LOC 0:05/2;3610cytochrome P430, putative, expressedA12g45570Reture single pancke weight2LOC 0:05/2;3610cytochrome P430, putative, expressedA11g79460Reture single pancke weight2LOC 0:05/2;3610cytochrome P430, putative, expressedA15g25120Reture single pancke weight2LOC 0:05/2;3620repressed proteinReture single pancke weight1LOC 0:05/2;3620repressed proteinReture single pancke weight10LOC 0:05/2;3620repressed proteinReture single pancke weight10LOC 0:05/2;3620repressed proteinReture single pancke weight10LOC 0:05/2;3600repressed proteinReture single pancke weight10LOC 0:05/2;3600repressed proteinReture single pancke weight10LOC 0:05/2;3600repressed proteinReture single pancke weight10LOC 0:05/2;3600retoransposon prote	Relative single panicle weight	2	LOC_Os02g36090	expressed protein	
Relitive single panic k weight 2 IAC 0.502/26120 Production in Praso, putative, expressed At1g79460 Relitive single panic k weight 2 IAC 0.502/26130 expressed protein At1g79460 Relitive single panic k weight 2 IAC 0.502/261610 expressed protein At1g79460 Relitive single panic k weight 2 IAC 0.502/26160 expressed protein, putative, unclassified, expressed At5g25120 Relitive single panic k weight 2 IAC 0.502/26160 expressed protein, putative, unclassified, expressed At5g25120 Relitive single panic k weight 2 IAC 0.502/26160 expressed protein At5g25120 Relitive single panic k weight 2 IAC 0.502/26120 expressed At5g25120 Relitive single panic k weight 2 IAC 0.502/26120 expressed At5g25120 Relitive single panic k weight 1 IAC 0.502/26220 repressor protein, putative, expressed At1g79460 Relitive single panic k weight 1 IAC 0.502/252020 repressor protein At1g79460 Relitive single panic k weight 10 IAC 0.502/25200 repressor protein, putative, expressed At1g79460 Relitive sin	Relative single paniele weight	2	LOC_0s02g36100	retrotransposon protein, putative, 193-gypsy subclass, expressed	A+2~45570
Relitive single panick weight 2 IOC_080226130 expressed protein Relitive single panick weight 2 IOC_0802261614 terpene synthase, putative, expressed At1g79460 Relitive single panick weight 2 IOC_0802261614 terpene synthase, putative, expressed At5g25120 Relitive single panick weight 2 IOC_080226161 transposon protein, putative, unclassified, expressed At5g25120 Relitive single panick weight 2 IOC_080226160 transposon protein, putative, unclassified, expressed At5g25120 Relitive single panick weight 2 IOC_080226200 typothetical protein Relitive single panick weight 2 IOC_080226200 typothetical protein Relitive single panick weight 1 IOC_080226200 terpene synthase, othropats proteins, putative, expressed At4g02780 Relitive single panick weight 10 LOC_080229200 terrotransposon protein, putative, expressed At3g04400 Relitive single panick weight 10 LOC_080229200 terrotransposon protein in 200000 Relitive single panick weight 10 LOC_080229200 terrotransposon protein Relitive single panick weight 10 LOC_080292000 terotransposon protein Relitiv	Relative single panicle weight	2	LOC_0s02g36120	hypothetical protein	At2g45570
Relative single panick weight2LOC_0s02g36140terpene synthase, putative, expressedA11g79460Relative single panick weight2LOC_0s02g36160cytochrome P450, putative, expressedA15g25120Relative single panick weight2LOC_0s02g36160retrotransposon protein, putative, urp3-gypsy subclassRelative single panick weight2LOC_0s02g36100retrotransposon protein, putative, Ty3-gypsy subclassRelative single panick weight2LOC_0s02g36100cytochrome P450, putative, expressedA15g25120Relative single panick weight2LOC_0s02g36200hypothetical proteinA15g2780Relative single panick weight2LOC_0s02g36200hypothetical proteinRelative, expressedA14g0780Relative single panick weight1LOC_0s02g36200retrotransposon protein, putative, expressedA14g07400Relative single panick weight10LOC_0s10g32900expressed proteinRelative, expressedA14g04400Relative single panick weight10LOC_0s10g32900expressed proteinRelative, expressedA15g04400Relative single panick weight10LOC_0s10g32900retrotransposon protein, putative, unclassified, expressedA15g04400Relative single panick weight10LOC_0s10g32900retrotransposon protein, putative, unclassified, expressedA15g04400Relative single panick weight10LOC_0s10g33000retrotransposon protein, putative, unclassified, expressedA15g3400Relative single panick weight10LOC_0s10g33000retrotra	Relative single panicle weight	2	LOC_Os02g36130	expressed protein	
Relative single panick weight 2 LOC 0x02g36150 cytochrome P450, patative, expressed At5g25120 Relative single panick weight 2 LOC 0x02g36160 transposon protein, putative, unclassified, expressed Relative single panick weight 2 LOC 0x02g36100 transposon protein, putative, unclassified, expressed Relative single panick weight 2 LOC 0x02g36200 hypothetical protein Relative single panick weight 2 LOC 0x02g36200 hypothetical protein Relative single panick weight 1 LOC 0x02g36200 ehrearene synthase, chloroplast precursor, putative, expressed At4g02780 Relative single panick weight 10 LOC 0x02g36200 expressed protein At3g04400 Relative single panick weight 10 LOC 0x10g32930 erepressynthase, spressed At3g04400 Relative single panick weight 10 LOC 0x10g32930 retrostransposon protein, putative, expressed At3g04400 Relative single panick weight 10 LOC 0x10g32940 expressed At3g04400 Relative single panick weight 10 LOC 0x10g33000	Relative single panicle weight	2	LOC_Os02g36140	terpene synthase, putative, expressed	At1g79460
Rehtive single panick weight 2 LOC_0s02g36160 transposon protein, putative, unclassified, expressed Rehtive single panick weight 2 LOC_0s02g36170 retrotransposon protein, putative, unclassified, expressed At5g25120 Rehtive single panick weight 2 LOC_0s02g36180 cytochrome P450, putative, expressed At5g25120 Rehtive single panick weight 2 LOC_0s02g36201 ent-kaurene synthase, chloroplast precursor, putative, expressed At4g02780 Rehtive single panick weight 1 LOC_0s10g32900 repressed protein At4g0400 Rehtive single panick weight 10 LOC_0s10g32900 expressed protein Reference Rehtive single panick weight 10 LOC_0s10g32900 expressed protein Reference Rehtive single panick weight 10 LOC_0s10g32970 eukaryotic inputative, unclassified, expressed At5g04460 Rehtive single panick weight 10 LOC_0s10g32970 eukaryotic inputative, unclassified, expressed At5g3520 Rehtive single panick weight 10 LOC_0s10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Rehtive single panick weight 10 LOC_0s10g33000 retrotransposon protein	Relative single panicle weight	2	LOC_Os02g36150	cytochrome P450, putative, expressed	At5g25120
Relative single panick weight 2 LOC_0s02236100 retrotransposon protein, putative, Ty3-gyps yubclass Relative single panick weight 2 LOC_0s02236100 transposon protein, putative, expressed At5g25120 Relative single panick weight 2 LOC_0s02236200 hypothetical protein Relative single panick weight 2 LOC_0s02236200 hypothetical protein Relative single panick weight 2 LOC_0s02236200 erpnee synthase, choroplast precursor, putative, expressed At1g27460 Relative single panick weight 10 LOC_0s10g329200 ribosonal protein, putative, expressed At1g04400 Relative single panick weight 10 LOC_0s10g329300 expressed protein Relative single panick weight 10 LOC_0s10g329200 repressed protein Relative single panick weight 10 LOC_0s10g329200 retrotransposon protein, putative, expressed At5g04460 Relative single panick weight 10 LOC_0s10g32900 retrotransposon protein, putative, expressed At5g04460 Relative single panick weight 10 LOC_0s10g32900 retrotransposon protein, putative, unclassified, expressed At5g35710 Relative single panick weight 10 LOC_0s10g33000	Relative single panicle weight	2	LOC_Os02g36160	transposon protein, putative, unclassified, expressed	
Rehtive single panicle weight 2 LOC Os0226180 transposon protein, putative, unclassified, expressed At5g25120 Rehtive single panicle weight 2 LOC Os0226120 hypothetical protein At5g25120 Rehtive single panicle weight 2 LOC Os0226020 expressed At4g02780 Rehtive single panicle weight 10 LOC_Os0226020 expressed putative, expressed At3g04400 Rehtive single panicle weight 10 LOC_Os10g32930 expressed protein Rehtive single panicle weight 10 Rehtive single panicle weight 10 LOC_Os10g32930 expressed protein Rehtive single panicle weight 10 Rehtive single panicle weight 10 LOC_Os10g32930 eukaryotic translation initiation factor, putative, expressed At3g04460 Rehtive single panicle weight 10 LOC_Os10g32970 eukaryotic translation initiation factor, putative, expressed At5g35620 Rehtive single panicle weight 10 LOC_Os10g32900 receptor-like protein kinase 2 precursor, putative, expressed At5g34030 Rehtive single panicle weight 10 LOC_Os10g33000 receptor-like protein kinase 2 precursor, putative, expressed At5g34030 Rehtive single panicle wei	Relative single panicle weight	2	LOC_Os02g36170	retrotransposon protein, putative, Ty3-gypsy subclass	
Relative single panicle weight2LOC Osl2g2600cytochrone P430, pulative, expressedAD525120Relative single panicle weight2LOC Osl2g26020hypothetical proteinA14g02780Relative single panicle weight1LOC_Osl2g26020terpene synthase, chloroplast precursor, putative, expressedA14g07460Relative single panicle weight10LOC_Osl2g23020respressed proteinA13g04400Relative single panicle weight10LOC_Osl2g23020expressed proteinRelative, expressedRelative single panicle weight10LOC_Osl2g23020expressed proteinRelative, expressedRelative single panicle weight10LOC_Osl2g23020retroranspoon protein, putative, expressedA13g04460Relative single panicle weight10LOC_Osl2g2300retroranspoon protein, putative, expressedA15g04460Relative single panicle weight10LOC_Osl2g2300retroranspoon protein, putative, expressedA15g24030Relative single panicle weight10LOC_Osl2g2300retroranspoon protein, putative, unclassified, expressedA15g24030Relative single panicle weight10LOC_Osl2g2300retroranspoon protein, putative, unclassified, expressedA15g24030Relative single panicle weight10LOC_Osl2g2300retroranspoon protein, putative, unclassified, expressedA12g3710Relative single panicle weight10LOC_Osl2g3300repressed proteinA14g02210Relative single panicle weight10LOC_Osl2g3300repressed proteinA14g02210	Relative single panicle weight	2	LOC_Os02g36180	transposon protein, putative, unclassified, expressed	1.5.05100
Relative single panick weight 2 LOC_0S0223620 inplointical protein Relative single panick weight 2 LOC_0S0223620 erpene synthase, putative, expressed At4g02780 Relative single panick weight 10 LOC_0S1023220 repnen synthase, putative, expressed At3g04400 Relative single panick weight 10 LOC_0S10g32940 expressed protein At3g04400 Relative single panick weight 10 LOC_0S10g32940 expressed protein Relative, expressed At3g04460 Relative single panick weight 10 LOC_0S10g32940 expressed protein Relative, expressed At3g04460 Relative single panick weight 10 LOC_0S10g32940 expressed protein putative, expressed At3g04460 Relative single panick weight 10 LOC_0S10g32940 expressed protein in 2, putative, expressed At3g04460 Relative single panick weight 10 LOC_0S10g32940 expressed protein in 2, putative, expressed At5g35620 Relative single panick weight 10 LOC_0S10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Relative single panick weight 10 LOC_0S10g330300 expressed protein	Relative single paniele weight	2	LOC_Os02g36190	cytochrome P450, putative, expressed	At5g25120
Relative single panick weight 1 LOC_002g3622 terpene synthase, putative, expressed At1g79460 Relative single panick weight 10 LOC_0010g32920 repressed protein Relative single panick weight Nago4400 Relative single panick weight 10 LOC_0010g32920 repressed protein Relative single panick weight Nago4400 Relative single panick weight 10 LOC_0010g32950 pertortarnsposon protein, putative, expressed At3g04460 Relative single panick weight 10 LOC_0010g32970 expressed protein Relative single panick weight At3g04460 Relative single panick weight 10 LOC_0010g32970 expressed protein putative, unclassified, expressed At3g04460 Relative single panick weight 10 LOC_0010g32970 expressed protein initiation factor, putative, expressed At5g44030 Relative single panick weight 10 LOC_0010g32900 receptor-like protein kinase 2 precursor, putative, expressed At1g35710 Relative single panick weight 10 LOC_0010g33000 retrotransposon protein, putative, unclassified, expressed At1g25710 Relative single panick weight 10 LOC_0010g33000 expressed protein At4g02210 <td>Relative single panicle weight</td> <td>2</td> <td>LOC_Os02g36210</td> <td>ent-kaurene synthase chloroplast precursor putative expressed</td> <td>At4002780</td>	Relative single panicle weight	2	LOC_Os02g36210	ent-kaurene synthase chloroplast precursor putative expressed	At4002780
Relative single panicle weight10LOC_0S10g32920ribosomal protein, putative, expressedAt\$g04400Relative single panicle weight10LOC_0S10g32940expressed proteinRelative single panicle weight10LOC_0S10g32960expressed proteinRelative single panicle weight10LOC_0S10g32960expressed proteinRelative single panicle weight10LOC_0S10g32960erctoransposon protein, putative, expressedAt\$g04460Relative single panicle weight10LOC_0S10g32960cretoransposon protein, putative, expressedAt\$g04460Relative single panicle weight10LOC_0S10g32960CESA7 - cellulose synthase, expressedAt\$g04460Relative single panicle weight10LOC_0S10g32960CESA7 - cellulose synthase, expressedAt\$g04400Relative single panicle weight10LOC_0S10g32000retrotransposon protein, putative, unclassified, expressedAt\$g2510Relative single panicle weight10LOC_0S10g33000retrotransposon protein, putative, unclassified, expressedAt\$g210Relative single panicle weight10LOC_0S10g33000expressed proteinAt\$g02210Relative single panicle weight10LOC_0S10g33000expressed proteinAt\$g02210Relative single panicle weight10LOC_0S10g33000expressed proteinAt\$g02210Relative single panicle weight10LOC_0S10g33000expressed proteinAt\$g02210Relative single panicle weight10LOC_0S10g33000expressed proteinAt\$g02210R	Relative single panicle weight	2	LOC Os02g36220	terpene synthase, putative, expressed	At1g79460
Relative single panick weight 10 LOC_0s10g32930 expressed protein Relative single panick weight 10 LOC_0s10g32940 expressed protein Relative single panick weight 10 LOC_0s10g32940 peroxisome assembly protein 12, putative, expressed Relative single panick weight 10 LOC_0s10g32940 peroxisome assembly protein 12, putative, expressed At3g04460 Relative single panick weight 10 LOC_0s10g32940 evaryotic transption initiation factor, putative, expressed At3g04460 Relative single panick weight 10 LOC_0s10g32940 everytermsaltion initiation factor, putative, expressed At3g04460 Relative single panick weight 10 LOC_0s10g32900 receptor-like protein kinase 2 precursor, putative, expressed At1g35710 Relative single panick weight 10 LOC_0s10g33000 retrotransposon protein, putative, unclassified, expressed Rt1g35710 Relative single panick weight 10 LOC_0s10g330300 expressed protein At4g02210 Relative single panick weight 10 LOC_0s10g33030 expressed protein Rt4g02210 Relative single panick weight 10 LOC_0s10g33060 expressed At1g35710	Relative single panicle weight	10	LOC_Os10g32920	ribosomal protein, putative, expressed	At3g04400
Relative single panicle weight10LOC_OS10g32940 LOC_OS10g32950expressed proteinRelative single panicle weight10LOC_OS10g32950 retrotransposon protein, putative, unclassified, expressedA13g04460Relative single panicle weight10LOC_OS10g32960 collog32970eukaryotic translation initiation factor, putative, expressedA15g35620Relative single panicle weight10LOC_OS10g32980CESA7 - cellulose synthase, expressedA15g44030Relative single panicle weight10LOC_OS10g32900receptor-like protein kinase 2 precursor, putative, expressedA11g35710Relative single panicle weight10LOC_OS10g33000recrotransposon protein, putative, unclassified, expressedR1g35710Relative single panicle weight10LOC_OS10g33020expressed proteinR1g35710Relative single panicle weight10LOC_OS10g33001recrotransposon protein, putative, unclassified, expressedA14g02210Relative single panicle weight10LOC_OS10g33002expressed proteinA14g02210Relative single panicle weight10LOC_OS10g33001recreptor-like protein kinase precursor, putative, expressedA14g02510Relative single panicle weight10LOC_OS10g33001expressed proteinA14g02210Relative single panicle weight10LOC_OS10g33070expressed proteinA14g08850Relative single panicle weight10LOC_OS10g33080expressed proteinA14g08850Relative single panicle weight10LOC_OS10g33080expressed proteinA14g257	Relative single panicle weight	10	LOC_Os10g32930	expressed protein	
Relative single panick weight 10 LOC_0S10g32950 retrotransposon protein, putative, unclassified, expressed At3g04460 Relative single panick weight 10 LOC_0S10g32960 peroxisome assembly protein 12, putative, expressed At5g35620 Relative single panick weight 10 LOC_0S10g32990 celkaryotic translation initiation factor, putative, expressed At5g35620 Relative single panick weight 10 LOC_0S10g32990 receptor-like protein kinase 2 precursor, putative, expressed At1g35710 Relative single panick weight 10 LOC_0S10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Relative single panick weight 10 LOC_OS10g33020 expressed protein At1g02210 Relative single panick weight 10 LOC_OS10g33030 expressed protein At1g02210 Relative single panick weight 10 LOC_OS10g33030 expressed protein At1g02210 Relative single panick weight 10 LOC_OS10g33030 expressed protein kinase precursor, putative, expressed At1g02210 Relative single panick weight 10 LOC_OS10g33070 expressed protein At1g35710 Relative single panick weight 10 LOC_OS10g	Relative single panicle weight	10	LOC_Os10g32940	expressed protein	
Relative single panicle weight 10 LOC_0S10g32900 peroxinom assembly protein 12, putative, expressed At5g4460 Relative single panicle weight 10 LOC_OS10g32900 celkaryotic translation initiation factor, putative, expressed At5g44030 Relative single panicle weight 10 LOC_OS10g32900 receptor-like protein kinase c xpressed At5g44030 Relative single panicle weight 10 LOC_OS10g33000 receptor-like protein kinase c xpressed At1g35710 Relative single panicle weight 10 LOC_OS10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Relative single panicle weight 10 LOC_OS10g33000 expressed protein At4g02210 Relative single panicle weight 10 LOC_OS10g33020 expressed protein At4g02210 Relative single panicle weight 10 LOC_OS10g33030 expressed protein At4g02210 Relative single panicle weight 10 LOC_OS10g33000 expressed protein At4g02210 Relative single panicle weight 10 LOC_OS10g33000 expressed protein Relative single panicle weight 10 LOC_OS10g33000 expressed At4g08850 Relative single panicle	Relative single panicle weight	10	LOC_Os10g32950	retrotransposon protein, putative, unclassified, expressed	442-04460
Relative single panicle weight10LOC_OS10g3290CESA7 - cellulose synthase, expressedAt5g4030Relative single panicle weight10LOC_OS10g3290CESA7 - cellulose synthase, expressedAt5g4030Relative single panicle weight10LOC_OS10g3290recreptor-like protein kinase 2 precursor, putative, expressedAt5g44030Relative single panicle weight10LOC_OS10g33000retrotransposon protein, putative, unclassified, expressedAt5g44030Relative single panicle weight10LOC_OS10g33010retrotransposon protein, putative, unclassified, expressedRt4g02210Relative single panicle weight10LOC_OS10g33010expressed proteinAt4g02210Relative single panicle weight10LOC_OS10g33040receptor-like protein kinase precursor, putative, expressedAt1g35710Relative single panicle weight10LOC_OS10g33060expressed proteinAt4g02210Relative single panicle weight10LOC_OS10g33070expressed proteinRt402210Relative single panicle weight10LOC_OS10g33070expressedAt4g08850Relative single panicle weight10LOC_OS10g33080expressed proteinRt2g4280Relative single panicle weight10LOC_OS10g33104expressed proteinRt2g4240Relative single panicle weight10LOC_OS10g33104expressed proteinRt2g4240Relative single panicle weight10LOC_OS10g33104expressed proteinRt1g35710Relative single panicle weight10LOC_OS10g33104	Relative single paniele weight	10	LOC_Os10g32960	peroxisome assembly protein 12, putative, expressed	At3g04460
Relative single panicle weight 10 LOC_Os10g33000 retrotransposon protein, putative, expressed At1g35710 Relative single panicle weight 10 LOC_Os10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Relative single panicle weight 10 LOC_Os10g33000 retrotransposon protein, putative, unclassified, expressed At1g35710 Relative single panicle weight 10 LOC_Os10g33020 expressed protein At4g02210 Relative single panicle weight 10 LOC_Os10g33030 expressed protein At4g02210 Relative single panicle weight 10 LOC_Os10g33030 expressed protein At4g02210 Relative single panicle weight 10 LOC_Os10g33050 expressed protein At4g02210 Relative single panicle weight 10 LOC_Os10g33070 expressed protein At4g08850 Relative single panicle weight 10 LOC_Os10g33070 expressed protein At4g08850 Relative single panicle weight 10 LOC_Os10g33070 expressed protein At1g35710 Relative single panicle weight 10 LOC_Os10g33100 expressed protein At1g35710 Relative single panicle w	Relative single panicle weight	10	LOC_Os10g32980	CESA7 - cellulose synthase. expressed	At5g44030
Relative single panicle weight 10 LOC_Os10g33000 retrotransposon protein, putative, unclassified, expressed Relative single panicle weight 10 LOC_Os10g33010 retrotransposon protein, putative, unclassified, expressed Relative single panicle weight 10 LOC_Os10g33020 expressed protein Relative single panicle weight 10 LOC_Os10g33030 expressed protein Relative single panicle weight 10 LOC_Os10g33030 expressed protein Relative single panicle weight 10 LOC_Os10g3306 expressed protein Relative single panicle weight 10 LOC_Os10g3306 expressed protein Relative single panicle weight 10 LOC_Os10g3306 expressed protein Relative single panicle weight 10 LOC_Os10g3307 expressed Relative single panicle weight 10 LOC_Os10g3307 expressed Relative single panicle weight 10 LOC_Os10g3307 expressed Relative single panicle weight 10 LOC_Os10g33100 expressed Relative single panicle weight 10 LOC_Os10g33100 expressed Relative single panicle weight 10 LOC_Os10g33100 <td>Relative single panicle weight</td> <td>10</td> <td>LOC Os10g32990</td> <td>receptor-like protein kinase 2 precursor, putative, expressed</td> <td>At1g35710</td>	Relative single panicle weight	10	LOC Os10g32990	receptor-like protein kinase 2 precursor, putative, expressed	At1g35710
Relative single panicle weight10LOC_Os10g33010retrotransposon protein, putative, unclassified, expressedRelative single panicle weight10LOC_Os10g33020expressed proteinAt4g02210Relative single panicle weight10LOC_Os10g33030expressed protein kinase precursor, putative, expressedAt1g35710Relative single panicle weight10LOC_Os10g3306expressed proteinAt4g02210Relative single panicle weight10LOC_Os10g3306expressed proteinAt4g08850Relative single panicle weight10LOC_Os10g3307expressed proteinAt4g08850Relative single panicle weight10LOC_Os10g33080expressed proteinexpressedAt1g35710Relative single panicle weight10LOC_Os10g33104expressed proteinexpressedAt1g35710Relative single panicle weight10LOC_Os10g33104expressed proteinexpressedAt1g35710Relative single panicle weight10LOC_Os10g33130expressed proteinAt1g35710Relative single panicle weight10LOC_Os10g33130expressedAt3g24240Relative single panicle weight	Relative single panicle weight	10	LOC Os10g33000	retrotransposon protein, putative, unclassified, expressed	0
Relative single panicle weight 10 LOC_0s10g33020 expressed protein At4g02210 Relative single panicle weight 10 LOC_0s10g33030 expressed protein kinase precursor, putative, expressed At1g35710 Relative single panicle weight 10 LOC_0s10g33030 expressed protein At4g02210 Relative single panicle weight 10 LOC_0s10g33030 expressed protein At4g08850 Relative single panicle weight 10 LOC_0s10g33070 brc2-5D, putative, expressed At4g08850 Relative single panicle weight 10 LOC_0s10g33070 expressed protein expressed Relative single panicle weight 10 LOC_0s10g33070 expressed protein expressed Relative single panicle weight 10 LOC_0s10g33070 expressed At1g35710 Relative single panicle weight 10 LOC_0s10g33080 expressed protein expressed Relative single panicle weight 10 LOC_0s10g33104 expressed At1g35710 Relative single panicle weight 10 LOC_0s10g33104 expressed At1g35710 Relative single panicle weight 10 LOC_0s10g33130 expressed	Relative single panicle weight	10	LOC_Os10g33010	retrotransposon protein, putative, unclassified, expressed	
Relative single panick weight 10 LOC_0s10g33030 expressed protein At4g02210 Relative single panick weight 10 LOC_0s10g33030 receptor-like protein kinase precursor, putative, expressed At1g35710 Relative single panick weight 10 LOC_0s10g33070 expressed protein At4g08850 Relative single panick weight 10 LOC_0s10g33070 expressed protein At4g08850 Relative single panick weight 10 LOC_0s10g33070 expressed protein At4g08850 Relative single panick weight 10 LOC_0s10g33070 expressed protein At4g08850 Relative single panick weight 10 LOC_0s10g33070 expressed protein At1g35710 Relative single panick weight 10 LOC_0s10g33104 expressed protein At1g35710 Relative single panick weight 10 LOC_0s10g33104 expressed At1g35710 Relative single panick weight 10 LOC_0s10g33104 expressed protein At1g35710 Relative single panick weight 10 LOC_0s10g33130 expressed At1g324240 Relative single panick weight 10 LOC_0s10g331314 hcrVz protein, putative,	Relative single panicle weight	10	LOC_Os10g33020	expressed protein	
Relative single panicle weight 10 LOC_OS10g33040 receptor-like protein kinase precursor, putative, expressed At1g35710 Relative single panicle weight 10 LOC_OS10g33050 expressed protein At4g08850 Relative single panicle weight 10 LOC_OS10g33070 expressed protein At4g08850 Relative single panicle weight 10 LOC_OS10g33070 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33001 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33004 expressed At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed At1g324240 Relative single panicle weight 10 LOC_OS10g33104 hcv/t2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g33104 hcv/t2 protein, putative, expressed At2g440 Relative single panicle weight 10 LOC_OS10g	Relative single panicle weight	10	LOC_Os10g33030	expressed protein	At4g02210
Relative single panicle weight 10 LOC_OS10g33050 expressed protein Relative single panicle weight 10 LOC_OS10g33070 expressed protein Relative single panicle weight 10 LOC_OS10g33070 expressed protein Relative single panicle weight 10 LOC_OS10g33080 expressed protein Relative single panicle weight 10 LOC_OS10g33080 expressed Relative single panicle weight 10 LOC_OS10g33080 expressed Relative single panicle weight 10 LOC_OS10g33104 expressed protein Relative single panicle weight 10 LOC_OS10g33104 expressed protein Relative single panicle weight 10 LOC_OS10g33104 expressed Relative single panicle weight 10 LOC_OS10g33107 POT domain containing peptide transporter, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g33109 e	Relative single panicle weight	10	LOC_Os10g33040	receptor-like protein kinase precursor, putative, expressed	At1g35710
Relative single panicle weight 10 LOC_OS10g33070 expressed Atlg30830 Relative single panicle weight 10 LOC_OS10g33070 expressed protein Relative single panicle weight 10 LOC_OS10g33080 expressed protein Relative single panicle weight 10 LOC_OS10g33104 expressed Atlg35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein expressed Relative single panicle weight 10 LOC_OS10g33104 expressed Atlg324240 Relative single panicle weight 10 LOC_OS10g33140 hcvYt2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g33170 POT domain containing peptide transporter, putative, expressed At5g46050 Relative single panicle weight 10 LOC_OS10g3319 expressed protein At5g46050	Relative single paniele weight	10	LOC_Os10g33050	expressed protein	4+4-09950
Relative single panicle weight 10 LOC_OS10g33080 expressed At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g224240 Relative single panicle weight 10 LOC_OS10g33104 expressed At3g24240 Relative single panicle weight 10 LOC_OS10g33170 POT domain containing peptide transporter, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g33170 POT domain containing peptide transporter, putative, expressed At5g46050 Relative single panicle weight 10 LOC_OS10g33170 POT domain containing peptide transporter, putative, expressed At5g46050	Relative single panicle weight	10	LOC_0s10g33070	expressed protein	A14800000
Relative single panicle weight 10 LOC_OS10g33080 expressed At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_OS10g33103 expressed protein At3g24240 Relative single panicle weight 10 LOC_OS10g33104 hcrVf2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g33170 POT domain containing peptide transporter, putative, expressed At5g46050 Relative single panicle weight 10 LOC_OS10g33104 expressed protein At5g46050	reactive sangle particle weight	10	Ecc_corogotoro	enpreused protein	
Relative single panicle weight 10 LOC_Os10g33080 expressed At1g35710 Relative single panicle weight 10 LOC_Os10g33104 expressed protein At1g35710 Relative single panicle weight 10 LOC_Os10g33130 expressed protein At1g35710 Relative single panicle weight 10 LOC_Os10g33130 expressed At3g24240 Relative single panicle weight 10 LOC_Os10g33140 hor V12 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g33170 POT domin containing peptide transporter, putative, expressed At5g46050 Relative single panicle weight 10 LOC_Os10g33170 expressed protein At5g46050				leucine-rich repeat receptor protein kinase EXS precursor, putative,	
Relative single panicle weight 10 LOC_Os10g33104 expressed protein Relative single panicle weight 10 LOC_Os10g33104 expressed protein Relative single panicle weight 10 LOC_Os10g33104 hcvY12 protein, putative, expressed At3g24240 Relative single panicle weight 10 LOC_Os10g33104 hcvY12 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g33104 POT domain containing peptide transporter, putative, expressed At5g46050 Relative single panicle weight 10 LOC_Os10g33109 expressed protein At5g46050	Relative single panicle weight	10	LOC_Os10g33080	expressed	At1g35710
Relative single panicle weight 10 LOC_OS10g3130 expressed At3g24240 Relative single panicle weight 10 LOC_OS10g3140 hcrVf2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g3310 POT domain containing peptide transporter, putative, expressed At2g34930 Relative single panicle weight 10 LOC_OS10g3310 POT domain containing peptide transporter, putative, expressed At5g46050	Relative single panicle weight	10	LOC_Os10g33104	expressed protein	
Relative single panicle weight 10 LOC_Os10g3130 expressed At3g24240 Relative single panicle weight 10 LOC_Os10g31310 herVf2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g31310 herVf2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g33100 POT domain containing peptide transporter, putative, expressed At5g46050				have a laboration of the travel	
Relative single panicle weight 10 LOC_Os10g33140 herVf2 protein, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g33170 POT domain containing peptide transporter, putative, expressed At2g34930 Relative single panicle weight 10 LOC_Os10g33190 expressed protein At2g46050	Relative single panicle weight	10	LOC 0c10c22120	eucine-rich repeat receptor protein kinase EXS precursor, putative,	At3a24240
Relative single panice weight 10 LOC_Os10g33170 POT domain containing peptide transporter, putative, expressed At5g46050 Relative single panice weight 10 LOC_Os10g33170 expressed protein At5g46050	Relative single panicle weight	10	LOC_0s10g33140	hcrVf2 protein nutative expressed	At2934930
Relative single panicle weight 10 LOC Os10g33190 expressed protein	Relative single panicle weight	10	LOC Os10g33170	POT domain containing peptide transporter. putative. expressed	At5g46050
	Relative single panicle weight	10	LOC_Os10g33190	expressed protein	

Supplementary Table S12 (continued)

				Closest
T 14	CI.	C ID	Detection Constant	Arabiaopsis
1 rait	Cnr	Gene ID	Putative function	nomoiogue
Relative single panicle weight	10	LOC_Os10g33200	expressed protein	
Relative single panicle weight	10	LOC_Os10g33204	hypothetical protein	
Delecter CDAD		100.0-04-51(10	calcium-transporting ATPase, plasma membrane-type, putative,	4.5.57110
Relative SPAD	4	LOC_Os04g51610	expressed	At5g5/110
Relative SPAD	4	LOC_Os04g51620	expressed protein	1.2.12500
Relative SPAD	4	LOC_0s04g51630	60S ribosomal protein L7, putative, expressed	At3g13580
Relative SPAD	4	LOC_Os04g51640	expressed protein	
Relative SPAD	4	LOC_Os04g51650	expressed protein	1.2.20500
Relative SPAD	4	LOC_Os04g51660	transferase family protein, putative, expressed	At3g29590
Relative SPAD	4	LOC_Os04g51680	expressed protein	At5g10695
Relative SPAD	4	LOC_Os04g51690	glycosyl hydrolase family 4/ domain contain protein, expressed	Atlg51590
Relative SPAD	4	LOC_Os04g51700	DNA ligase I, ATP-dependent family protein, expressed	At5g57160
Relative SPAD	4	LOC_Os04g51/10	expressed protein	At1g16860
Relative SPAD	4	LOC_Os04g51720	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	4	LOC_Os04g51/30	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	4	LOC_Os04g51740	retrotransposon protein, putative, Ty3-gypsy subclass	
Relative SPAD	4	LOC_Os04g51750	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	4	LOC_Os04g51760	expressed protein	
Relative SPAD	4	LOC_Os04g517/0	expressed protein	At1g/8890
Relative SPAD	4	LOC_Os04g51780	expressed protein	At4g29960
Relative SPAD	4	LOC_Os04g51786	containing DUF163, putative, expressed	At5g10620
Relative SPAD	4	LOC_Os04g51792	PAP fibrillin family domain containing protein, expressed	At5g19940
Relative SPAD	4	LOC_Os04g51794	DNA binding protein, putative, expressed	At4g31350
Relative SPAD	4	LOC_Os04g51796	DNA repair ATPase-related, putative, expressed	At2g24420
Relative SPAD	4	LOC_Os04g51800	MYB protein, putative, expressed	At4g09460
Relative SPAD	4	LOC_Os04g51809	expressed protein	
Relative SPAD	4	LOC_Os04g51820	OsHKT1;1 - Na+ transporter, expressed	At4g10310
			TKL_IRAK_CR4L.4 - The CR4L subfamily has homology with	
Relative SPAD	5	LOC_Os05g03620	Crinkly4, expressed	At3g55950
Relative SPAD	5	LOC_Os05g03630	dnaJ domain containing protein, expressed	At3g09810
Relative SPAD	5	LOC_Os05g03640	flavonol synthase/flavanone 3-hydroxylase, putative, expressed	At5g05600
Relative SPAD	5	LOC_Os05g03650	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	5	LOC_Os05g03660	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	5	LOC_Os05g03670	retrotransposon protein, putative, Ty3-gypsy subclass, expressed	
Relative SPAD	5	LOC_Os05g03680	retrotransposon protein, putative, unclassified, expressed	
Relative SPAD	5	LOC_Os05g03690	retrotransposon protein, putative, Ty3-gypsy subclass, expressed	
Relative SPAD	5	LOC_Os05g03700	hypothetical protein	
Relative SPAD	5	LOC_Os05g03710	retrotransposon protein, putative, unclassified	
Relative SPAD	5	LOC_Os05g03730	retrotransposon protein, putative, unclassified	
Relative SPAD	5	LOC_Os05g03740	transcription factor TF2, putative, expressed	At2g38250
Relative SPAD	5	LOC_Os05g03750	expressed protein	
Relative SPAD	5	LOC_Os05g03760	zinc finger family protein, putative, expressed	At5g58620
Relative SPAD	5	LOC_Os05g03770	expressed protein	
Relative SPAD	5	LOC_Os05g03780	cation efflux family protein, putative, expressed	At2g46800
Relative SPAD	5	LOC_Os05g03790	expressed protein	
Relative SPAD	5	LOC_Os05g05200	O-acyltransferase, putative, expressed	At1g57600
Relative SPAD	5	LOC Os05g05210	WD domain, G-beta repeat domain containing protein, expressed	At4g03020

The trait, chromosome number, gene ID, putative function, closest *Arabidopsis* homologue and gene ontology (GO) are shown. All information was obtained from MSU rice genome database (http://rice.plantbiology.msu.edu/, as of March 2014). The closest homologue of *Arabidopsis* was listed only when available in the database. The gray colour means either the gene is a transposable element or not expressed.

Trait	Genetic variance	Residual variance	Heritability (h^2)
Square-root transformed leaf bronzing score	0.09	0.18	0.33
Relative plant height	8.38	17.13	0.33
Relative dry weight	156.41	661.14	0.19
Relative tiller number	143.13	403.28	0.26
Relative thousand kernel weight	18.42	243.67	0.07
Relative total panicle weight	0.02	1798.91	0.00
Relative single panicle weight	487.36	833.63	0.37
Relative SPAD	21.66	47.40	0.31
Lignin content	0.07	0.03	0.74
Relative lignin content	14.54	150.24	0.09
Average			0.27

Supplementary data for Chapter 5

Supplementary Protocol S3

Gene ontology (GO) enrichment analysis of microarray datasets

An original microarray dataset was obtained from the study by Frei et al. (2010), where the cultivar Nipponbare was subjected to comparative microarray together with two chromosomal segment substitution lines (SL15 and SL41; detailed in Chapter 1). Only Nipponbare and SL41 were used for the GO enrichment analysis because of lack of detailed physiological studies with SL15. Statistical analyses were conducted again using only Nipponbare and SL41 as in Frei et al. (2010). Raw P values were used rather than adjusted false-discovery rate (FDR) to determine differentially expressed genes because too few genes showed significance after the FDR correction. Raw P value of 0.05 was considered significant. The genes which showed significant upregulation in SL41, significant down-regulation in SL41, and a significant interaction between genotype and treatment were curated. The gene IDs in the original file (RAP-DB IDs) were converted to **MSU** IDs on **RAP-DB** website (http://rapdb.dna.affrc.go.jp/, as of November 2014) since only MSU ID was compatible with the subsequent analysis. GO enrichment analysis was conducted using Rice Oligonucleotide Array Database (http://www.ricearray.org/index.shtml, as of November 2014; Cao et al., 2012). Each set of genes was loaded into the database, and the enriched GO terms were determined in the category of 'Biological process', 'Cellular component' and 'Molecular function'. The calculated P values (Hyper P values) were corrected for multiple comparison according to the method of Benjamini and Hochberg (1995). Adjusted FDR of 0.05 was considered significant. Only overrepresented GO terms were shown on the list.

The same analysis was conducted for another comparative microarray study using Nipponbare and SL46, which carry the biomass-related QTL *OzT8* from Kasalath. The experimental details are given in the table legend.

Supplementary References

- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B* (*Methodological*) 57, 289–300.
- Booker F, Burkey K, Morgan P, Fiscus E, Jones A. 2012. Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in *Arabidopsis thaliana* L. *Plant, Cell and Environment* **35**, 668–681.
- **Bradford MM.** 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* **72**, 248-254.
- Cho K, Shibato J, Agrawal GK, *et al.* 2008. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. *Journal of Proteome Research* 7, 2980–2998.
- Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald PC. 2012. The Rice Oligonucleotide Array Database: an atlas of rice gene expression. *Rice* **5**, 17.
- **Chujo T, Miyamoto K, Shimogawa T, et al.** 2013. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. *Plant molecular biology* **82**, 23–37.
- Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for high-throughput functional analysis of gene in planta. *Plant Physiology* **133**, 462–469.
- Frei M, Tanaka JP, Chen CP, Wissuwa M. 2010. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. *Journal of Experimental Botany* 61, 1405–1417.
- Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. 2011. Phosphorylation of the *Nicotiana benthamiana* WRKY8 transcription factor by MAPK functions in the defense response. *The Plant Cell* 23, 1153–1170.
- Ke Y, Liu H, Li X, Xiao J, Wang S. 2014. Rice Os*PAD4* functions differently from Arabidopsis At*PAD4* in host-pathogen interactions. *The Plant Journal* **78**, 619-631.
- Kilian J, Whitehead D, Horak J, *et al.* 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. *The Plant Journal* **50**, 347–363.
- Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Höfte M, Gheysen G. 2012. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. *Plant Biology* 14, 73-82.
- Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R. 2011. Aluminum triggers broad changes in microRNA expression in rice roots. *Genetics and Molecular Research* 10, 2817–2832.

- Lin Y, Gu X, Tang H, Hou Y, Yu D, Zhang X. 2013. Cloning and expression analysis of an ascorbate oxidase (AO) gene from strawberry (*Fragaria×ananassa* cv. Toyonaka). *Journal of Agricultural Science* 5, 14-22.
- Mao C, Wang S, Jia Q, Wu P. 2006. *OsEIL1*, a rice homolog of the *Arabidopsis EIN3* regulates the ethylene response as a positive component. *Plant molecular biology* **61**, 141-152.
- McNally KL, Childs KL, Bohnert R, *et al.* 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 12273–12278.
- Minh-Thu P-T, Hwang D-J, Jeon J-S, Nahm BH, Kim Y-K. 2013. Transcriptome analysis of leaf and root of rice seedling to acute dehydration. *Rice* 6, 38.
- Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. *Plant Physiology* **157**, 305–316.
- **Oono Y, Kawahara Y, Yazawa T, et al.** 2013. Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-seq profiles. *Plant molecular biology* **83**, 523–537.
- Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S. 2005. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen *Erysiphe cichoracearum*. *Plant Physiology* **138**, 1027– 1036.
- Rzewuski G, Sauter M. 2008. Ethylene biosynthesis and signaling in rice. *Plant Science* 175, 32–42.
- Szewczyk E, Nayak T, Oakley CE, et al. 2006. Fusion PCR and gene targeting in Aspergillus nidulans. Nature protocol 1, 3111–3120.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution* 28, 2731– 2739.
- Tintor N, Ross A, Kanehara K, *et al.* 2013. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during *Arabidopsis* immunity to bacterial infection. *Proceedings of the National Academy of Sciences of the United States of America* **110**, 6211–6216.
- **Tuomainen J, Betz C, Kangasjärvi J, Ernst D, Yin Z-H, Langebartels C, Sandermann H.** 1997. Ozone induction of ethylene emission in tomato plants: regulation by differential accumulation of transcripts for the biosynthetic enzymes. *The Plant Journal* **12**, 1151– 1162.
- Varadaraj K, Skinner DM. 1994. Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engineered DNA polymerases. *Gene* 140, 1–5.

- **De Vos M, Van Oosten VR, Van Poecke RMP, et al.** 2005. Signal signature and transcriptome changes of *Arabidopsis* during pathogen and insect attack. *Molecular Plant-Microbe Interactions* **18**, 923-937.
- Walia H, Wilson C, Condamine P, et al. 2005. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. *Plant Physiology* 139, 822–835.
- Widodo B, Broadley MR, Rose T, *et al.* 2010. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. *New Phytologist* **186**, 400–414.
- Yau CP, Wang L, Yu M, Zee SY, Yip WK. 2004. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. *Journal of Experimental Botany* **55**, 547-556.
- Yun K-Y, Park MR, Mohanty B, et al. 2010. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC plant biology 10, 16.
- Zarivi O, Bonfigli A, Colafarina S, Aimola P, Ragnelli AM, Miranda M, Pacioni G. 2013. Transcriptional, biochemical and histochemical investigation on laccase expression during *Tuber melanosporum* Vittad. development. *Phytochemistry* 87, 23-29.
- Zhang Z, Schäffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF. 1998. Protein sequence similarity searches using patterns as seeds. *Nucleic acids research* 26, 3986-3990.
- **Zhao K, Wright M, Kimball J, et al.** 2010. Genomic diversity and introgression in *O. sativa* reveal the impact of domestication and breeding on the rice genome. *PLoS one* **5**, e10780.

Peer-review publications

<u>Ueda Y</u>, Wu L, Frei M. 2013. A critical comparison of two high-throughput ascorbate analyses methods for plant samples. *Plant Physiology and Biochemistry* **70**, 418–423.

<u>Contribution</u>: All the experiments except for iron stress treatment. Data analysis and manuscript preparation.

<u>Ueda Y</u>, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. 2015. Genetic dissection of ozone tolerance in rice (*Oryza sativa* L.) by genome-wide association study. *Journal of Experimental Botany* **66**, 293–306.

<u>Contribution</u>: Leading the experiment at the experimental site, large part of phenotyping (LBS measurement, lignin quantification, height measurement and tiller number counting), all the statistical and bioinformatic analyses and manuscript preparation.

<u>Ueda Y</u>, Siddique S, Frei M. 2015. A novel gene, *OZONE-RESPONSIVE APOPLASTIC PROTEIN1*, enhances cell death in ozone stress in rice. *Plant Physiology* [In Press].

<u>Contribution</u>: All the experiments except for confocal microscope imaging and genotyping of rice mutants. Statistical and bioinformatic analyses and manuscript preparation.

Matthus E, Wu L-B, <u>Ueda Y</u>, Höller S, Becker M, Frei M. 2015. Loci, genes and mechanisms associated with tolerance to ferrous iron toxicity in rice (*Oryza sativa* L.). *Theoretical and Applied Genetics*. [In Press]

<u>Contribution</u>: Part of phenotyping (shoot/root length measurement and tiller number counting). Establishment of DNA sequencing protocol and mapping method. Q value computation and discussion.

Höller S, <u>Ueda Y</u>, Wu L, Wang Y, Hejirezaei M-R, Ghaffari M-R, von Wirén N, Frei M. 2015. Ascorbate biosynthesis in rice (*Oryza sativa* L.) and its involvement in stress tolerance and plant development. *Plant molecular biology* **88**, 545-560.

<u>Contribution</u>: System setup for ozone stress treatment and ozone concentration measurement.

Wu L-B, <u>Ueda Y</u>, Lai S-K, Frei M. 2015. Shoot tolerance mechanisms to iron toxicity in rice (*Oryza sativa* L.) – evidence for a pro-oxidant activity of ascorbate. *Under review*.

<u>Contribution</u>: Support in the greenhouse experiment, hypothesis testing experiments and part of qPCR experiments.

Other scientific activities

Conference participation

28th-31st January 2013: ICP Vegetation 26th Task Force Meeting. Halmstad, Sweden. <Oral Presentation>

•<u>Ueda Y</u>, Wang Y, Wissuwa M, Frei M. Genetic approaches to increase tolerance to ozone in rice. Abstract pp. 41.

17th-19th July 2013: 11th International POG Conference–Reactive Oxygen and Nitrogen Species in Plants. Warsaw, Poland.

<Poster Presentation>

•<u>Ueda Y</u>, Wang Y, Frei M. The role of ascorbate oxidase under ozone stress in rice. Abstract pp. 199. (in *Journal of Biotechnology, Computational Biology and Bionanotechnology* **94**, 2013)

* Best Poster Award

18th-21st May 2014: International Conference on Ozone and Plants. Beijing, China. <Oral Presentation>

•<u>Ueda Y</u>, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. A Genome-wide association study (GWAS) reveals genetic factors underlying ozone tolerance in rice (*Oryza sativa* L.). Abstract pp. S3–15.

24th-26th June 2015: 12th International Conference on Reactive Oxygen and Nitrogen Species in Plants: from model systems to field. Verona, Italy.

<Poster Presentation>

•<u>Ueda Y</u>, Siddique S, Frei M. Characterization of OsORAP1, a novel positive regulator of cell death under ozone stress in rice (*Oryza sativa* L.). Abstract pp. 98.

Research stay

3rd-16th March 2013: The International Rice Research Institute (IRRI). Los Baños, The Philippines.

Curriculum Vitae

Name: Yoshiaki Ueda

Place of Birth: Okayama, Japan

Nationality: Japanese

Education:

April 2003–March 2006: Okayama-Asahi High School, Okayama

April 2006–March 2008: College of Arts and Sciences, The University of Tokyo

April 2008–March 2010: Faculty of Agriculture, The University of Tokyo Bachelor thesis title: 'The effect of ozone stress on the gene expression in

rice (Oryza sativa L.) [In Japanese]'

April 2010–March 2012: Graduate School of Agricultural and Life Sciences, The University of Tokyo

Master thesis title: 'How does ozone cause reactive oxygen formation and damage to photosystem II in rice leaves?–Elucidation of mechanisms'

May 2012–present: Institute of Crop Science and Resource Conservation (INRES), University of Bonn

Work experience:

April 2012: Research fellow, Laboratory of Plant Biotechnology, The University of Tokyo

Awards:

July 2013: Best poster award (POG President – Stanisław Karpiński Award) in 11th International POG conference (Reactive Oxygen and Nitrogen Species in Plants). Warsaw, Poland.

March 2013, May 2014: Conference travel grant. *Theodor-Brinkmann-Graduate School.* Bonn, Germany.

253