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Nutritional strategies and their influence on the expression of nutrient sensing  
G protein-coupled receptors in adipose tissue of dairy cows 

Adipose tissue (AT) plays a central role in the regulation of metabolism at the onset of lactation as a 
major contributor of energy through the mobilization of nonesterified fatty acids. This time period is 
especially crucial, because the feed intake does not increase to the same extent as the energy 
requirements for milk synthesis. To improve the metabolic situation of dairy cows during this time, 
different nutritional interventions can be applied. A pivotal role in the coordination of metabolic 
processes is taken by nutrient sensing G protein-coupled receptors (GPCR), which can modulate, for 
example adipocyte metabolism as a consequence of the extracellular availability of nutrients. The main 
objective of this thesis was to study the effect of conjugated linoleic acids (CLA), nicotinic acid (NA) 
and dietary energy density on the mRNA expression of different GPCR relevant for nutrient sensing, 
namely the free fatty acid receptors (FFAR) 1, 2, and, 3 and hydroxycarboxylic acid receptor (HCAR) 
2, in bovine AT. Additionally, this thesis investigated the difference in the mRNA expression of the 
aforementioned receptors between AT from subcutaneous (SC) and visceral (VC) locations. Moreover, 
their mRNA expression from late pregnancy up to the entire following lactation cycle with special 
emphasis on the transition period have been studied. For these purposes, separate feeding trials were 
conducted. In the CLA-1 trial, the mRNA abundance of FFAR 1 and 2 and HCAR2 was measured in AT 
biopsies (SC AT from tail head) from multiparous cows (n=21) taken at d -21, 21, 105, 196, and 252 
relative to calving. In the CLA-2 trial, the mRNA abundance of FFAR 1, 2 and 3 and HCAR2 was 
measured in AT samples from 3 SC depots (tail head, sternum, and withers) and from 3 VC depots 
(retroperitoneal [RP], mesenteric, and omental) from primiparous cows slaughtered at d 1 (n=5), 42 
(n=10) and 105 (n=10) relative to calving. In both trials, the animals were allocated either to a group 
receiving CLA or to a group receiving a control fat supplement for the period of d 1 to 182 (CLA-1 trial) 
or d 1 to 105 (CLA-2 trial) of lactation. In the NA trial, 20 multiparous cows were divided into a group 
fed a diet supplemented with NA and a group fed a diet without supplemented NA. Half of each group 
was fed either a high-concentrate (HC, n=10) diet with a 60:40 concentrate-to-roughage ratio or a low-
concentrate (LC, n=10) diet with a 30:70 concentrate-to-roughage ratio on a dry matter basis from d 1 
to d 21 relative to calving. The mRNA abundance of FFAR 1, 2 and 3 and HCAR2 was measured in 
biopsies of SC AT (tail head) and RP AT obtained at d -21, 1 and 21 relative to calving. In all trials, the 
mRNA abundance of the target genes was measured by quantitative PCR. The effects of CLA on the 
investigated AT were limited to the mRNA abundance of FFAR1 in the omental and RP AT of the 
primiparous animals (CLA-2 trial), whereby in both tissues the mRNA abundance of FFAR1 was higher 
in the CLA-treated animals than in the control animals at d 105 relative to calving and in RP AT 
additionally at d 42 relative to calving. The supplementation of NA to the animals’ diet showed no 
influence on the herein investigated receptors’ mRNA expression in SC and RP AT. However, the 
mRNA abundance of FFAR2 was altered due to the different energy densities of the diet fed the first 
three weeks after calving. At d 21 after calving, the FFAR2 mRNA abundance was 2.5-fold higher in 
the RP AT of the LC cows than in the HC cows. The expression of FFAR3 mRNA was inversely related 
to FFAR2 mRNA, with a lower FFAR3 mRNA abundance at d -21 than at d 1 relative to calving. The 
mRNA abundance of HCAR2 in AT was not influenced either by the different applied nutritional 
strategies or by the progress of the transition period. In summary, the effects of the different nutritional 
strategies on the expression of the nutrient sensing receptors investigated herein were rare or, in the case 
of NA, absent. The results of the present thesis provide to the basic understanding of the regulation of 
FFAR 1, 2 and 3 and HCAR2 in different bovine AT at the level of transcription.  



Einfluss verschiedener Fütterungsstrategien auf die Expression von nutrient sensing  
G-Protein-gekoppelten Rezeptoren im Fettgewebe der Milchkuh 

Zu Beginn der Laktation, nimmt das Fettgewebe (AT) eine zentrale Rolle in der Stoffwechselregulation 
mit der Energiebereitstellung durch die Mobilisierung von nicht-veresterten Fettsäuren ein. Dieser 
Zeitraum ist besonders kritisch, da die Futteraufnahme nicht im gleichen Maß ansteigt wie der 
Energiebedarf für die Synthese der Milch. Zur Verbesserung der Stoffwechselsituation in dieser Zeit 
können verschiedene Fütterungsstrategien angewendet werden. Eine entscheidende Bedeutung in der 
Koordination von Stoffwechselprozessen spielen nutrient sensing G-Protein-gekoppelte Rezeptoren 
(GPCR), welche imstande sind z.B. den Fettzellstoffwechsel der extrazellulären Verfügbarkeit von 
Nährstoffen anzupassen. Das Hauptziel dieser Arbeit war die Untersuchung des Einflusses einer 
Supplementation von konjugierten Linolsäuren (CLA), einer Supplementation von Nikotinsäure (NA) 
und von Futterrationen mit unterschiedlicher Energiedichte auf die mRNA-Expression verschiedener 
nutrient sensing GPCR, namentlich der freie Fettsäuren-bindenden Rezeptoren (FFAR) 1, -2 und -3, 
sowie des Hydroxycarbonsäuren-bindenden Rezeptors (HCAR) 2, im bovinen AT. Ebenfalls, wurden 
die Unterschiede zwischen subkutan (SC) versus viszeral (VC) lokalisiertem AT in der mRNA-
Expression der oben genannten Rezeptoren untersucht. Es wurde auch ihre mRNA-Expression von der 
späten Trächtigkeit bis zur folgen Laktation mit besonderem Augenmerk auf die Transitphase 
untersucht. Zu diesem Zweck erfolgten separate Fütterungsversuche. Im CLA 1-Versuch wurde die 
mRNA-Menge des FFAR1, -2 und des HCAR2 im SC AT (vom Schwanzansatz) pluriparer Tiere (n=21), 
welches an d 21 ante partum (a.p.), sowie an d 21, 105, 196, und 252 post partum (p.p.) entnommen 
wurden, gemessen. Zusätzlich wurde im CLA 2-Versuch die mRNA-Menge des FFAR1, -2, -3 und des 
HCAR2 in Proben aus 3 SC Fettdepots (vom Schwanzansatz, vom Brustbein, vom Widerrist) und 3 VC 
Fettdepots (retroperitoneal [RP], mesenterial und omental) von primiparen Kühen gemessen, welche bei 
der Schlachtung an d 1 (n=5), d 42 (n=10) und d 105 (n=10) p.p. gewonnen wurden. In beiden Versuchen 
wurden die Tiere jeweils aufgeteilt in eine Gruppe, die ein CLA-Supplement oder eine Gruppe, die ein 
Kontrollsupplement von d 1 bis d 182 p.p. (CLA 1-Versuch) oder von d 1 bis d 105 p.p. (CLA 2-
Versuch) erhielt. Im NA-Versuch wurden 20 pluripare Kühe aufgeteilt in eine Gruppe mit (n=10) und 
eine Gruppe ohne (n=10) NA-Supplementation des Futters. Je die Hälfte der Tiere einer Gruppe erhielt 
entweder eine Futterration mit einem hohen Kraftfutteranteil von 60 % und einem niedrigen 
Raufutteranteil von 40% (HC; n=10) oder mit einem niedrigen Kraftfutteranteil von 30 % und einem 
hohen Raufutteranteil von 70% (LC; n=10). Die Fütterung der verschiedenen Rationen bzw. die NA-
Supplementation des Futters erfolgte von d 1 bis d 21 p.p. Die mRNA-Menge von FFAR1, -2, -3, and 
HCAR2 wurde in Bioptaten aus dem SC AT (vom Schwanzansatz) und RP AT, welche an d 21 a.p., d 1 
p.p. und d 21 p.p. entnommen wurden, quantifiziert. In allen Versuchen wurde die mRNA-Menge der 
Zielgene mittels quantitativer PCR gemessen. Ein Einfluss der CLA-Supplementation des Futters zeigte 
sich in Unterschieden in der FFAR1 mRNA-Menge im omentalen und RP AT der primiparen Tiere, 
wobei die mRNA-Menge des FFAR1 in beiden AT höher an d 105 p.p. und im RP AT zusätzlich an d 
42 p.p. in der CLA-Gruppe im Vergleich zur Kontrollgruppe war. Die NA-Supplementation des Futters 
zeigte keinen Einfluss auf die mRNA-Expression der hier untersuchten Rezeptoren im SC und RP AT 
der Tiere. Allerdings zeigten die Futterrationen mit unterschiedlicher Energiedichte einen Einfluss auf 
die FFAR2 mRNA-Expression. An d 21 p.p. war die FFAR2 mRNA-Menge um ein 2,5-faches höher im 
RP AT der Kühe mit der LC-Futterration im Vergleich zu den Kühen mit der HC-Futterration. Die 
mRNA-Expression von FFAR3 verhielt sich umgekehrt proportional zu der von FFAR2; mit einer 
niedrigeren FFAR3 mRNA-Menge an d 21 a.p. im Vergleich zu d 1 p.p. Die mRNA-Menge von HCAR2 
in den untersuchten AT wurde weder von den verschiedenen Fütterungsstrategien beeinflusst, noch 
zeigte diese Veränderung im Verlauf der Transitphase. Zusammenfassend lässt sich sagen, dass die 
mRNA-Expression der hier untersuchten nutrient sensing GPCR durch die unterschiedlichen 
Fütterungsstrategien kaum beeinflusst wurde, wobei die Supplementation von NA keinerlei Einfluss 
zeigte. Die Ergebnisse dieser Arbeit tragen zum grundlegenden Verständnis der Regulation des FFAR1, 
-2 und -3, sowie des HCAR2 in verschiedenen bovinen AT auf der Ebene der Transkription bei.
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Introduction 

1 Introduction 

The genetic selection during the last few decades has succeeded in producing dairy cattle 

breeds with substantially increased milk yields, which has not remained without 

consequences for animal health and welfare. The high demands on the animals’ metabolism 

in adapting to the requirements of lactation are often related to metabolic disorders, reduced 

fertility, lameness and various infectious diseases in the periparturient period. Overcoming 

these restrictions in the effectiveness of milk production implies challenges for dairy 

farming. To minimize the incidence of disease in the periparturient period, different 

management and nutritional strategies are used in practice, e.g. providing nutritional 

supplements or increasing the energy content in the diet. Adipose tissue contributes crucially 

to lactation through the mobilization of energy, therefore the physiological processes and 

changes in this organ are of particular importance at the onset of lactation, a period 

characterized by a comprehensive negative energy balance. As the negative energy status 

offers a special approach in studying certain G protein-coupled receptors that are involved 

in nutrient sensing, some insights into their expression patterns in different bovine adipose 

tissues during energy deficit can be provided. Identification and a better understanding of 

possible adjustments of these modulatory factors involved in nutrient sensing in the different 

adipose tissue depots could help to improve strategic concepts for nutrition management of 

dairy cattle in the critical time around parturition and thus contribute to animal welfare. 

 

1.1 Adipose tissues 

Based on diverse biochemical and functional characteristics, adipose tissue (AT) can be 

classified into two distinct types: white AT (WAT) and brown AT (BAT). White AT is the 

predominant and most abundant type of AT in adult, nonhibernating mammals (Ahima, 

2006; Marra and Bertolani, 2009) and forms the focus of this thesis. Brown AT differs from 

WAT mainly by its multilocular adipocytes and its higher number of mitochondria 

expressing the tissue-specific uncoupling protein-1 (UCP-1). Mediated by UCP-1, which 

allows BAT a respiratory oxidation of fatty acids uncoupled from the production of 

adenosine triphosphate (ATP), BAT is able to produce local heat also known as nonshivering 

thermogenesis (Cannon and Nedergaard, 2004). Brown AT was considered to exist only in 

a limited number of mammalian species and in specific physiological conditions such as in 

neonates and infants (Gesta et al., 2007). However, there is evidence that functional BAT 

also occurs in adult humans and that brown adipocytes can be found in WAT depots as so-
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called “brown-in-white” or “beige” adipocytes (Cypess et al., 2009; Cinti, 2012; Beranger 

et al., 2013) and in WAT depots of adult fattening cattle where the mRNA expression of the 

brown adipocytes-specific UCP-1 has been demonstrated (Asano et al., 2013). 

 

1.1.1 Structure and function of white adipose tissue 

The highly vascularized WAT is a loose connective tissue (Wronska and Kmiec, 2012) that 

contains mainly unilocular adipocytes sized 20 to 200 μm, with the size of the adipocyte 

depending on its functional and developmental stage (Cinit, 2001; Frühbeck, 2008). The 

characteristic spherical shape of adipocytes can be attributed to one single large lipid droplet 

within the adipocyte, which is surrounded by a thin layer of cytoplasm. The lipid droplet 

displaces the nucleus and other cell organelles, such as the mitochondria, to the margin of 

the adipocyte where they form a thickening in the cytoplasmic rim surrounding the lipid 

vacuole; this gives adipocytes their characteristic signet ring morphology (Frühbeck, 2008). 

Besides adipocytes, which account for about one third of all cell types in WAT, WAT 

contains cells of the stromal vascular fraction (SVF; Marra and Bertolani, 2009). The SVF 

includes, for example, multipotent stem cells, macrophages and other infiltrating immune 

cells, fibroblasts, preadipocytes, endothelial cells of blood and lymphatic vessels, 

sympathetic nerve fibers and various other cell types (Hauner, 2005; Ahima, 2006; Wronska 

and Kmiec, 2012). Chemically, human WAT is mainly composed of triacylglycerides (TAG, 

80 to 85 % of tissue weight), and the remaining part consists of water, proteins and minerals 

(Shen et al., 2003; Trayhurn et al., 2006).  

Its chemical composition reflects well the major function of WAT as a store of energy in the 

form of TAG. In times of excess energy intake, nonesterified fatty acids (NEFA) are 

synthesized and accumulated in WAT as TAG; in periods when energy expenditure exceeds 

the energy intake, those NEFA are released (Bing and Trayhurn, 2009). The two major 

metabolic processes responsible for the accumulation and breakdown of TAG in WAT are 

lipogenesis and lipolysis, respectively (Boschmann, 2001). 

Other than the described role as a sink and source for energy, WAT was discovered as an 

endocrine organ in the last few decades. In the early 1990s, it was described that the pro-

inflammatory cytokine tumor necrosis factor-α (TNF-α) is synthesized and released by 

adipocytes (Hotamisligil et al., 1993). Shortly thereafter, the secretory role of WAT was 

affirmed with the identification of the hormone leptin and its corresponding OB gene in 1994 

(Zhang et al., 1994). Today, leptin is well known as a key hormone in the regulation of food 
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intake as a signal of satiety, of energy expenditure, in the regulation of the innate immune 

system, and the modulation of glucose and fat metabolism (Blüher and Mantzoros, 2009). 

Such factors, which are mainly expressed in WAT in a regulated manner, are collectively 

termed adipokines (adipose tissue cytokines), whereby the adipocytes as well as the cells of 

the SVF participate in secretion (Marra and Bertolani, 2009; Wronska and Kmiec, 2012). 

The adipokines enable WAT to cross-talk with other organs including, for example, the 

brain, liver and skeletal muscle. During the last few years an array of adipokines have been 

identified (Bing and Trayhurn, 2009), and the most important ones are summarized in 

Figure 1.  

 

 
Figure 1. Schematic overview of some adipose tissue-secreted factors. WAT secretes a 
multiplicity of factors that can act autocrine or paracrine at local level or they can signal in 
an endocrine manner to modulate appetite, nutrient metabolism, insulin sensitivity, 
inflammation and adipose tissue development (modified from Trayhurn et al. (2006), Lago 
et al. (2007) and Jagannathachary and Kamaraj (2010)). ACE: angiotensin-converting 
enzyme; CCL: CC-chemokine ligand; CRP: c-reactive protein; CXCL: CXC-chemokine 
ligand; IGF-1: insulin-like growth factor-1; IL: interleukin; MCP-1: monocyte 
chemoattractant protein-1; PAI-1: plasminogen activator inhibitor-1; SAA: serum amyloid 
A; TGF-β: transforming growth factor-β; TNF-α: tumor necrosis factor-α; VEGF: vascular 
endothelial growth factor; WAT: white adipose tissue. 
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Due to the expression and secretion of adipokines, WAT exerts important influences on 

numerous metabolic and physiological processes such as appetite regulation, lipid 

metabolism, insulin sensitivity, adipocyte proliferation and differentiation, angiogenesis, 

immune responses, reproduction, blood coagulation and blood pressure regulation (Wronska 

and Kmiec, 2012). Their participation in a wide range of systemic processes brought 

adipokines into the focus of life science, for example as the link between obesity and insulin 

resistance as well as other pathological conditions (Antuna-Puente et al., 2008). It is worth 

mentioning that mammalian AT also functions as a thermal insulator and mechanical 

cushion (Shen et al., 2003). 

 

1.1.2 Subcutaneous versus visceral adipose tissue 

Considering the anatomical location, WAT can be distinguished into subcutaneous (SC), 

visceral (VC) and intraorgan AT (Boschmann, 2001). Table 1 shows the corresponding 

major depots in humans with a description of their location. As the SC and VC are the major 

AT depots in the human body (Ahima, 2006), this chapter aims to compare the anatomical 

and physiological differences between these two depots.  

 

Table 1. White adipose tissue depots in humans classified according to their anatomic 
location (modified from Boschmann (2001), Wronska and Kmiec (2012) and Fitzgibbons 
and Czech (2014)) 

Depot  Location description 

Subcutaneous adipose tissues  

abdominal  In the hypodermis back and anterior of the abdomen 

gluteo-femoral In the hypodermis of the gluteo-femoral region 

mammary Fat pad in the hypodermis of the mammary 

Visceral adipose tissues 

omental Superficial surround the intestines 

mesenteric Deeply buried around the intestines 

retroperitoneal Near the kidneys, dorsal side of the abdominal cavity 

epicardial Adjacent to the myocardium and encased by the visceral pericardium 

paracardial Surround the parietal pericardium 

Intraorgan adipose tissues 

intrahepatic Fat depots in the liver 

intra- and 
intermuscular 

Fat depots between the muscle fibers and between muscle groups 



5 

 

 

Introduction 

The SC AT is located under the skin in the hypodermis, where it forms a fat layer. The VC 

AT can be found around the organs in the abdominal cavity and mediastinum (Wronska and 

Kmiec, 2012). In humans, the SC AT depot is the largest one, accounting for about 80 % of 

the total body fat, but when the TAG storage capacity of SC AT is exceeded or impaired, fat 

accumulation in the VC depots is elevated. Furthermore, the amount of VC AT in the human 

body depends on gender and age (Wajchenberg et al., 2002). In contrast, the fat distribution 

in cattle, measured by separation and weighing of single carcass tissues, seems to be 

different: The intermuscular fat depots represent at least a two-fold greater proportion of the 

total carcass fat than SC AT (Gibb et al., 1992; Mahgoub, 1995). Compared to beef breeds, 

dairy cattle breeds deposit relatively more fat in the VC than in the SC AT depots (Wright 

and Russel, 1984). However, the weight of individual cattle body fat depots is likely to vary 

depending on growth, stage of lactation and feeding (Williams, 1978; Butler-Hogg et al., 

1985; von Soosten et al., 2011; Drackley et al., 2014). Beside their sizes, the depots also 

differ in their blood drainage: The SC depots and the VC retroperitoneal (RP) AT drain into 

the systemic circulation via the inferior Vena cava, while omental and mesenteric AT drain 

blood directly to the liver through the portal vein. This has important consequences for the 

effects of mediators released from the SC and RP AT; they will exert systemic rather than 

hepatic effects. However, the omental and mesenteric adipocytes can provide free fatty acids 

(FFA) and adipokines directly to the liver by the portal drainage (He et al., 2008; Ibrahim, 

2010). Based on this link, the evident “portal vein theory” asserts that a high rate of lipolysis 

in these two VC AT leads to increased hepatic fat accumulation and liver insulin resistance 

(Kabir et al., 2005; He et al., 2008). Generally, VC AT is more vascularized and innervated 

than SC AT (Ibrahim, 2010). 

Compared to VC AT, the SC AT contains a higher portion of small adipocytes, which are 

more insulin-sensitive and have a higher affinity for FFA and TAG accumulation than large 

adipocytes. Thus, the adipocytes from VC depots are more insulin-resistant than those from 

SC AT (Ibrahim, 2010). For cows it has been reported that the area of adipocytes in the RP 

depot is consistently larger than the area of adipocytes in the SC depot independent of the 

nature of the forage fed (Faulconnier et al., 2007), and surprisingly also compared to 

adipocytes from omental and mesenteric depots (Pike and Roberts, 1984; Akter et al., 2011). 

Lipolysis in adipocytes is regulated to a great extent by catecholamines (e.g. adrenaline and 

noradrenaline) through the lipolytic β-adrenergic receptors and the anti-lipolytic α2-

adrenergic receptor (Langin, 2006). With regard to the molecular differences between VC 

and SC AT, VC AT seems to have a higher catecholamine-induced lipolytic rate due to a 
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higher density of β3-adrenergic receptors than SC AT (Ibrahim, 2010). Additionally, VC 

adipocytes are less sensitive to α2-adrenergic receptor-dependent inhibition of lipolysis 

(Ibrahim, 2010). There is evidence that RP AT from dairy cattle also has a higher lipolytic 

activity than AT from the SC depots due to higher expression of hormone-sensitive lipase 

and a higher NEFA release in response to a catecholamineric stimulus in RP AT ex vivo 

(Locher et al., 2011; Kenéz et al., 2013). In addition, compared to other fat depots, mainly 

RP AT is mobilized during early lactation in dairy cows (von Soosten et al., 2011) and 

lactation-induced effects on adipocyte size, with smaller adipocytes in mid lactation 

compared to 1 d after calving, are limited to RP AT (Akter et al., 2011). The apoptotic 

activity identified by staining apoptosis-specific deoxyribonucleic acid (DNA) fragments 

was lowest in RP AT when compared other VC and SC fat depots from heifers (Häussler et 

al., 2013). 

The adipocytes from SC fat depots of nonobese humans secrete more leptin and adiponectin 

(ADIPOQ) than those from VC fat depots (Wajchenberg et al., 2002; Wronska and Kmiec, 

2012). A higher concentration of some inflammatory cytokines such as interleukin-6 (IL-6), 

TNF-α and C-reactive protein in the circulation is associated with abdominal obesity 

(Ibrahim, 2010). The release of IL-6 and prostaglandin (PG) E2 from VC AT explants was 

greater than that from SC AT explants (Fain et al., 2004). In humans, the properties of the 

SC and VC AT depots as described before result in increased metabolic and cardiovascular 

risks associated with excessive accumulation of VC AT. However, the depot-specific 

characteristics of AT from ruminants, in particular from dairy cattle, need further 

investigation. 

 

1.1.3 Physiological adaptations during the transition period 

In humans, the relatively small additional costs of lactation can be sufficiently covered by 

the diet, by large SC body fat depositions when dietary intake is restricted, and to a certain 

extent by metabolic adaptations. In many other mammalian species, in particular species 

domesticated for dairy production, lactation is a process requiring a very high energy 

allocation (Prentice and Prentice, 1988). In this context, the term “transition period” 

comprises the period from late pregnancy to early lactation in dairy cattle, defined as the 

time from 3 weeks before to 3 weeks after calving (Grummer, 1995). With the onset of 

lactation, the energy requirements of dairy cattle for milk production increase considerably 

while the energy intake by voluntary feed intake does not, thus result in a negative energy 

balance (NEB). The main organ sites where adaptations to NEB occur are AT, liver, muscle, 
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gut and the mammary gland; their metabolic and endocrine regulation and coordination are 

key components of NEB compensation (Drackley, 1999; Herdt, 2000). In particular, the AT, 

as described in a previous section, represents the energy storage of the body and thus 

provides energy for maintenance, lactogenesis and galactopoesis by releasing NEFA during 

the NEB in early lactation. Given that the sensitivity to lipolytic signals (e.g. epinephrine 

and norepinephrine) is enhanced, lipolysis is the dominating pathway in adipocytes during 

the NEB occurring with the onset of lactation, whereas lipid deposition by lipogenesis is 

considerably shut down during this time. Likewise the absorption and the de novo synthesis 

of fatty acids are downregulated in adipocytes. The consequence of the increased lipolysis 

is the release of fatty acids from AT. Those fatty acids are released as NEFA from AT into 

the circulation and represent the major energy source for cattle during the transition period 

(McNamara and Hillers, 1986; Ingvartsen, 2006). Another major consequence of the high 

nutrient demand for milk production in the transition period is an increased state of insulin 

resistance in AT and muscle, which reduces peripheral glucose uptake and thus facilitates 

the flow of nutrients away from maternal stores to the mammary gland (Bell and Bauman, 

1997; Ingvartsen, 2006). The glucose uptake of the mammary gland seems to be independent 

from insulin, as in lactating cows as well as in lactating nonruminants, the mammary 

transport of glucose is largely facilitated by the insulin-independent glucose transporter 

(GLUT) 1 and not by the insulin-responsive GLUT4 (Bell and Bauman, 1997). The 

interaction of several hormones creates an environment that favors the mobilization of fatty 

acids from adipocytes and reduces the glucose uptake during the NEB, e.g. the low insulin 

concentrations in the periparturient period, the reduced insulin-like growth factor-I and 

elevated growth hormone concentrations in the circulation (Esposito et al., 2014). 

Figure 2 illustrates the relationship between AT lipid metabolism and the lipid metabolism 

of the liver as well as the mammary gland, since these two organs, as mentioned before, are 

also important for the metabolic compensation of the NEB. Some major factors that promote 

either lipogenesis or lipolysis are also listed in Figure 2. 
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Figure 2. Schematic overview of lipid metabolism in adipose tissue, liver and mammary 
gland (modified from Drackley (1999) and Esposito et al. (2014)). The factors promoting 
(+) either lipogenesis or lipolysis are listed under the corresponding pathway. Dashed lines 
indicate processes that occur at low rates or only during certain physiological states e.g. the 
negative energy balance at the onset of lactation. GH: growth hormone; IGF-1: insulin-like 
growth factor-1; NEFA: nonesterified fatty acids; TAG: triacylglycerides; VLDL: very-low-
density lipoprotein; WAT: white adipose tissue. 
 

The excessive lipid mobilization from AT is linked with greater incidence of health problems 

during the transition period. The extremely high rates of NEFA release from AT increase 

accordingly the NEFA uptake by the liver and its TAG content (Figure 2). If the NEFA 

cannot be completely metabolized via the Krebs cycle because of a low accessibility of 

oxaloacetate, the NEFA are converted to ketone bodies (acetoacetic acid, acetone and β-

hydroxybutyrate [BHBA]) (Ingvartsen, 2006). The elevated plasma levels of ketone bodies 

are associated with ketosis and an excessive lipid and TAG accumulation in the liver 

characterizing the fatty liver syndrome (Drackley, 1999; Ingvartsen, 2006; Esposito et al., 

2014). Several studies indicate that a subclinical course of both diseases can be a relevant 
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problem for up to 50 % of dairy cattle in early lactation (Ingvartsen, 2006; Esposito et al., 

2014). 

In addition, the expression and secretion of several adipokines, AT-derived messenger 

molecules, are altered in adaptation to the catabolic state of adipocytes. The plasma leptin 

concentrations decrease in late pregnancy and early lactation (Leury et al., 2003; Hachenberg 

et al., 2007). The same applies to ADIPOQ, an adipokine with insulin-sensitizing, food 

intake-stimulating and energy expenditure-decreasing activity (Kadowaki et al., 2008), 

which shows decreased concentrations with the onset of lactation (Giesy et al., 2012; Singh 

et al., 2014a). The decline of the mRNA expression of both adipokines in SC AT from late 

pregnancy to early lactation has also been confirmed (Koltes and Spurlock, 2012; Saremi et 

al., 2014). 

 

1.1.4 Nutrient sensing in adipose tissue 

The term “nutrient sensing” describes the ability of cells to assess the current availability or 

changes in the availability of intra- and extracellular nutrients or energy metabolism 

intermediates, and to transduce this sensory information into adjustment of the cells’ 

metabolism (Obici and Rossetti, 2003; Lindsley and Rutter, 2004; Blad et al., 2012). Some 

authors prefer instead the term “metabolic sensing” (Blad et al., 2012; Prentki et al., 2013). 

The plasma levels of energy metabolites and metabolic intermediates vary depending on the 

nutrient composition of the food intake (Blad et al., 2012), thus it may not be possible to 

make a clear delineation between the terms “nutrient” and “metabolic” sensing.  

Cells have a variety of mechanisms to sense nutrients and their metabolites resulting in an 

adjustment of their metabolism. One key cellular energy sensor is the adenosine 

monophosphate (AMP)-activated protein kinase (AMPK), which senses the nutrient 

availability indirectly over the cellular energy status and consequently regulates glucose 

metabolism, fatty acid metabolism, transcription and protein synthesis through multiple 

cellular mechanisms. Another well-studied nutrient sensing pathway is that involving the 

mammalian target of rapamycin protein kinase, which senses the availability of amino acids 

and the cellular energy status and regulates accordingly the cell growth (Lindsley and Rutter, 

2004). In mammalian AT, the activation of the hexosamine biosynthesis pathway is 

suggested as a signal of cellular satiety resulting in a downregulation of the insulin-

dependent glucose uptake as well as glycogen synthesis and induces the expression of leptin 

(Obici and Rossetti, 2003; Lindsley and Rutter, 2004). The nutrient sensing G protein-

coupled receptors (GPCR) take a pivotal role in the coordination of metabolic processes, 
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because of their ability to modulate the cells’ metabolism according to nutrient availability. 

Figure 3 shows a model of the regulation of adipocyte function through GPCR and lists 

major GPCR involved in nutrient sensing in AT. Some nutrient sensing GPCR are highly 

expressed by adipocytes and can be therapeutic targets to regulate lipolysis in dyslipidemic 

or obese individuals (Blad et al., 2012). 

 

 
Figure 3. Simplified model of the regulation of lipolysis in adipocytes through G 
protein-coupled receptors (modified from Blad et al. (2012)). The receptors are classified 
based on their coupled G proteins. The nutrient sensing GPCR are listed in the red boxes 
with their corresponding ligands in parentheses. A1: adenosine receptor A1; ACTH: 
adrenocorticotropic hormone; ACTHR: ACTH receptor; AR: adrenergic receptor; ATAGL: 
adipose TAG lipase; BHBA: β-hydroxybutyrate; BHOA: β-hydroxyoctanoate; EP3: 
prostaglandin E receptor 3; FFA: free fatty acids; FFAR: free fatty acid receptor; HCAR: 
hydroxycarboxylic acid receptor; HSL: hormone sensitive lipase; LCFA: long-chain fatty 
acids; OXTR: oxytocin receptor; PGE2: prostaglandin E2; SCFA: short-chain fatty acids; 
SUCNR1: succinate receptor 1; TAG: triacylglycerides; TSH: thyroid-stimulating hormone; 
TSHR: TSH receptor. 



11 

 

 

Introduction 

The next chapter aims to provide a detailed description of nutrient sensing through GPCR 

and, in particular, of their involvement in the regulation of the lipolytic response of 

adipocytes to the availability of extracellular nutrients or energy metabolism intermediates. 

It also aims to describe the signaling pathways displayed in Figure 3 in more detail. 

 

1.2 G protein-coupled receptors involved in nutrient sensing 

The term “G protein-coupled receptor” refers to a group of receptors whose amino acid 

sequence contains seven transmembrane helices and an interaction of these heterotrimeric 

receptors with their corresponding ligands empowers them for signal transduction by binding 

and activating intracellular G proteins (Karnik et al., 2003). Four main G proteins can be 

distinguished based on the signaling pathways they induce: Gs activates adenylyl cyclase; 

Gi/o inhibits adenylyl cyclase; Gq/11 activates phospholipase C; and G12/13 activates adenylyl 

cyclase 7, a specific adenylyl cyclase isoform (Hamm, 1998; Jiang et al., 2008). Figure 4 

gives examples of nutrient sensing GPCR as classified by the nature of their corresponding 

ligands. 

Regulation of lipolysis in adipocytes through GPCR, as displayed in Figure 3 (previous 

chapter), takes part through different signaling pathways. Activation of Gs-coupled receptors 

leads to an increased formation of cyclic AMP (cAMP) through activation of adenylyl 

cyclase. Elevated levels of cAMP activate protein kinase A, which stimulates the hormone-

sensitive lipase and the adipose TAG lipase to hydrolyze the TAG into FFA and glycerol. 

The activity of Gs-coupled receptors is counteracted by an activation of Gi/o-coupled 

receptors by inhibiting adenylyl cyclase activity. Like Gs-coupled receptors, Gq/11-coupled 

receptors also stimulate lipolysis (Blad et al., 2012) through molecular mechanisms that 

involve calmodulin, phospholipase C and protein kinase C (Carmen and Víctor, 2006; 

Chaves et al., 2011). Table 2 gives an overview of the herein considered GPCR involved in 

nutrient and metabolic sensing, their major actions and their ligands. 
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Figure 4. Schematic overview of nutrient signaling by G protein-coupled receptors in 
a mammalian cell (modified from Wellendorph et al. (2009), Blad et al. (2012) and Prentki 
et al. (2013)). The receptors are classified based on sensitivity to the breakdown products 
from the macro nutrients proteins, lipids, and carbohydrates or to energy metabolism 
intermediates. AA: amino acids; BHBA: β-hydroxybutyrate; BHOA: β-hydroxyoctanoate; 
CaR: calcium-sensing receptor; FFA: free fatty acids; FFAR: free fatty acid receptors; 
GLP1R: Glucagon-like peptide 1 receptor; GPCR: G protein-coupled receptor; HCAR: 
hydroxycarboxylic acid receptor; SUCNR1: succinate receptor 1; T1R: taste 1 receptor. 
 

Table 2. Selected nutrient sensing G protein-coupled receptors, their major actions and 
ligands (modified from Stoddart et al. (2008) and Offermanns et al. (2011)) 

Name GPCR Signal Major action Ligands 

FFAR1 40 Gq/11 and Gi/o 
Pancreatic glucose-stimulated insulin 
secretion 

MCFA, LCFA 
(C6-C22) 

FFAR2 43 Gi/o and Gq/11 Inhibition of lipolysis SCFA (C1-C6) 

FFAR3 41 Gi/o Anti-inflammatory action SCFA (C1-C6) 

HCAR2 109A Gi/o Inhibition of lipolysis Niacin, BHBA 

BHBA: β-hydroxybutyrate; LCFA: long-chain fatty acids; MCFA: medium-chain fatty acids; SCFA: 
short-chain fatty acids. 
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The free fatty acid receptors (FFAR) 1, FFAR2 and FFAR3 belong to the group of nutrient 

sensing GPCR because of their ability to transduce extracellular concentrations of specific 

FFA and to initiate adaptive responses such as the secretion of hormones (Covington et al., 

2006; Hirasawa et al., 2008). The hydroxycarboxylic acid receptor (HCAR) 2 is activated 

by BHBA as the endogenous ligand and suppresses lipolysis during starvation. In addition, 

HCAR2 is also an important target for nicotinic acid (NA) at pharmacological doses and for 

other antilipolytic drugs (Ahmed et al., 2009; Offermanns et al., 2011). Specific phenolic 

acids (e.g. trans-cinnamic acid) are also able to activate HCAR2 and thus suppress lipolysis 

in adipocytes, but with a lower binding potency than NA does (Ren et al., 2009). 

 

1.2.1 Free fatty acid receptor 1  

In 2003, three working groups deorphanized FFAR1 (previously known as GPCR40) 

independently and identified a range of medium- and long-chain saturated and unsaturated 

fatty acids as ligands for this receptor (Briscoe et al., 2003; Itoh et al., 2003; Kotarsky et al., 

2003). Another receptor for medium- and long-chain fatty acids is FFAR4 (previously 

known as GPCR120), which has an amino acid sequence identity with FFAR1 of 10 % 

(Ichimura et al., 2014). Free fatty acid receptor 1 mainly couples to the Gq/11 protein, but 

there is evidence that the receptor additionally couples weakly to the Gi/o protein (Stoddart 

et al., 2008). Based on the measurements of the FFAR1-mediated calcium mobilization, 

saturated fatty acids show different potencies to activate FFAR1 depending on their chain 

length. In contrast, across the unsaturated fatty acids the potency is probably not associated 

with their carbon chain length or their degree of saturation (Briscoe et al., 2003). The FFAR1 

gene is mainly expressed in the pancreatic islets of humans and likewise in rodents, in 

particular in the insulin-producing β-cells. In addition, FFAR1 mRNA is present in several 

other tissues or cells, such as the brain, liver, heart, skeletal muscle, immune cells, 

predominantly in monocytes, in enteroendocrine cells and in breast cancer cells (Brown et 

al., 2005; Stoddart et al., 2008). 

In normal β-cell function, FFAR1 seems to play an important role with its ability to augment 

glucose-stimulated insulin secretion (GSIS) in response to short-term elevated FFA in the 

circulation. This relationship has been studied in FFAR1 knockout mice models in which 

the pancreatic islets from FFAR1 knockout mice showed a reduced capacity to augment 

GSIS on exposure to fatty acids (Steneberg et al., 2005; Latour et al., 2007). Despite the 

augmentation of GSIS by short-term elevation of circulating FFA, their long-term elevation 

has been shown to impair insulin secretion. The available studies investigating whether the 
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effect of long-term elevated NEFA in the circulation is mediated by FFAR1 show contrasting 

results (Steneberg et al., 2005; Latour et al., 2007; Kebede et al., 2008; Lan et al., 2008). 

When fasting NEFA are high it seems that a cross-talk between PPAR-γ and FFAR1 

signaling regulates the insulin secretion in humans (Wagner et al., 2014). In addition, it has 

been suggested that the underlying mechanism of FFAR1-mediated insulin secretion from 

β-cells comprises an activation of the cAMP-dependent protein kinase and a reduction of 

voltage-gated potassium current leading to an increase in calcium ions and insulin secretion 

(Feng et al., 2006). Due to its mediating role in insulin secretion and as a possible link 

between obesity and type 2 diabetes, FFAR1 seems to be an interesting target in the treatment 

of type 2 diabetes (Briscoe et al., 2006; Bing and Trayhurn, 2009; Feng et al., 2012). The 

development of a promising selective partial agonist of FFA1, TAK-875, was stopped due 

to its liver toxicity although it is not known whether the effect was candidate- or mechanism-

specific (Ichimura et al., 2014; Srivastava et al., 2014). Knockout mice models also indicate 

that FFAR1 plays a role in glucagon release from α-cells (Flodgren et al., 2007; Lan et al., 

2008) and in secretion of glucagon-like peptide (GLP)-1, glucose-dependent insulinotropic 

polypeptide and cholecystokinin from murine enteroendocrine cells (Edfalk et al., 2008; 

Liou et al., 2011). In addition, there is evidence of an involvement of FFAR1 in cell 

proliferation, breast cancer progression (Yonezawa et al., 2004; Hardy et al., 2005) and 

decreased hepatic lipid accumulation accompanied with decreased expressions of 

lipogenesis-related proteins in mice fed a high fat diet (Ou et al., 2014). 

In 2008, Yonezawa et al. identified the FFAR1 ortholog in cattle; the amino acid sequence 

of the bovine FFAR1 is 84 % and 82 %, identical to the human FFAR1 and mouse FFAR1, 

respectively. Furthermore, FFAR1 mRNA was detected in bovine mammary epithelial cells 

as well as in the bovine mammary gland at different stages of lactation. The same study 

provided evidence that linoleic and oleic acid are involved in cellular signaling in bovine 

mammary epithelial cells through activation of FFAR1 (Yonezawa et al., 2008). Another 

working group showed the presence of an FFAR1 ortholog in bovine neutrophils, suggesting 

that the oleic acid-induced release of granules from neutrophils is mediated by FFAR1 

(Hidalgo et al., 2011). Additionally, it seems that FFAR1 might also be involved in adhesion, 

chemotaxis, granule release and intracellular responses in bovine neutrophils induced by 

linoleic acid (Mena et al., 2013). For deeper insights into the role of FFAR1 in bovine AT, 

further research is required. 
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1.2.2 Free fatty acid receptor 2 and 3 

At the same time as FFAR1, FFAR2 and FFAR3 (previously known as GPCR43 and 

GPCR41, respectively) were deorphanized as targets for short-chain fatty acids (SCFA). A 

third member of this SCFA binding receptor family, GPCR42, results most likely from a 

recent tandem gene duplication event of FFAR3 as both receptor sequences differ in only six 

amino acids. Whether the gene is an inactive pseudogene or a functional gene in some 

species or species populations is still unknown (Brown et al., 2003; Liaw and Connolly, 

2009). Table 3 lists the potency rank order of saturated fatty acids at FFAR2 and FFAR3 

from different studies.  

 

Table 3. Potency rank order of saturated fatty acids with different carbon chain lengths 
in activating the free fatty acid receptors 2 or 3 

Receptor Species  Potency rank order Reference 

FFAR2 Human C2 = C3 = C4 > C5 > C6 = C1 Brown et al. (2003) 

 Human C3 > C2 = C4 > C6 > C5 > C1 Le Poul et al. (2003) 

 Human/ mouse C3 > C2 = C4 > C1 Nilsson et al. (2003) 

 Human C3 = C2 > C1 = C5 Hudson et al. (2012) 

 Bovine C6 > C5 > C4 = C7 > C3 = C8 > C2 = C9 Hudson et al. (2012) 

FFAR3 Human C3 = C5 = C4 > C2 > C1 Brown et al. (2003) 

 Human C3 > C4 > C5 > C6 > C2 Le Poul et al. (2003) 

 Human C2 > C4 = C6 = C3 > C7 = C5 Hudson et al. (2012) 

 Bovine C2 > C4 > C7 = C3 = C6 = C5 Hudson et al. (2012) 

C1: formate; C2: acetate; C3: propionate; C4: butyrate; C5: valerate; C6: caporate;  
C7: heptanoate; C8: caprylate; C9: pelargonate; FFAR: free fatty acid receptor. 

  

For the human FFAR2, the rank order of potency was consistent between the different 

studies, with the highest binding potencies of acetate and propionate followed by butyrate 

and then valerate and formate (Brown et al., 2003; Le Poul et al., 2003; Nilsson et al., 2003). 

In contrast, the bovine FFAR2 responds with a completely different rank order of potency 

to the SCFA compared to the human ortholog of FFAR2, showing the highest affinity to 

caproate followed by valerate and then butyrate and heptaonate. This could be related to the 

fact that ruminants are exposed to higher SCFA concentrations due to fermentation of dietary 

fiber in the rumen and might indicate that FFAR2 has different functions in cattle as 

compared to humans (Hudson et al., 2012). The predominant SCFA produced by rumen 
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fermentation of dietary fiber are acetate, propionate and butyrate. Compared to human blood 

from the portal vein with total concentrations ranging from 0.16 to 0.36 mM of these three 

SCFA, sheep blood from this vessel showed concentrations of 1.60 mM (Bergman, 1990). 

The activation potencies of SCFA at the human FFAR3 were in a range similar to those at 

human FFAR2, with high affinity of the receptor to propionate, valerate and butyrate 

followed by acetate, and then caproate (Brown et al., 2003; Le Poul et al., 2003). The bovine 

and human FFAR3 showed comparable affinities to the different SCFA (Hudson et al., 

2012).  

FFAR2 is mainly expressed in immune cells e.g. neutrophils, monocytes, peripheral blood 

mononuclear cells, and lymphocytes. In addition, FFAR2 mRNA was detected in skeletal 

muscle and heart (Brown et al., 2003; Le Poul et al., 2003; Nilsson et al., 2003), in a breast 

cancer cell line (Yonezawa et al., 2004), and in murine WAT from different depots (Xiong 

et al., 2004; Hong et al., 2005). In humans, the highest expression of FFAR3 occurs in WAT, 

but the receptors’ mRNA has also been detected in various other tissues, e.g. pancreas, 

spleen, lung, brain, bone marrow, and intestine. There is evidence that FFAR3 expression 

increases during adipocyte differentiation (Brown et al., 2003). In cattle, the expression of 

both receptors has been detected in various tissues, including the liver, heart, spleen, skeletal 

muscle, kidney, brain, adrenal gland, lung, pancreas, intestine, colon, rumen, and omasum 

(Wang et al., 2009). Both receptors’ mRNA is expressed in SC AT of dairy cows, whereas 

FFAR3 mRNA abundance seems to be upregulated from antepartum (a.p.) to postpartum 

(p.p.; Lemor et al., 2009). The expression of both receptors’ mRNA also occurs in bovine 

preadipocytes isolated from an SC fat depot around the sternum and increases during a 13 d 

differentiation period (Hosseini et al., 2012). In another ruminant species, the goat, the 

mRNA encoding for FFAR3 was upregulated in SC AT, but not in RP AT, in response to 

propionate infusion in vivo (Mielenz et al., 2008).  

Some studies demonstrated stimulatory effects of SCFA on leukocyte chemotaxis, whereas 

the recruitment of leukocytes over SCFA is mediated by activation of FFAR2 (Le Poul et 

al., 2003; Maslowski et al., 2009; Sina et al., 2009; Vinolo et al., 2011). The propionate-

induced granule release from bovine neutrophils is mediated by FFAR2 (Carretta et al., 

2013). Additionally, an activation of FFAR2 by acetate or propionate stimulates in vitro 

adipocyte differentiation and development, increases the intracellular lipid content and 

inhibits lipolysis (Hong et al., 2005). The receptors’ ability to inhibit lipolysis is strongly 

supported by results from FFAR2 knockout mouse models (Ge et al., 2008). An in vitro 

study showed that SCFA stimulate GLP-1 secretion via the FFAR2 (Tolhurst et al., 2012). 
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Moreover, FFAR2 activation by SCFA has been shown to suppress insulin signaling in 

murine AT, leading to inhibition of fat accumulation in this tissue and instead lipids and 

glucose were primarily utilized in muscle tissue (Kimura et al., 2014). In nonruminants 

SCFA are produced by gut microbial fermentation, thus the FFAR2 links the metabolic 

activity of the gut microbiota with the host body energy homoeostasis (Kimura et al., 2013). 

Therefore, the FFAR2 might act as a sensor for excessive dietary energy and thus control 

energy balance through the insulin pathway in AT (Kimura et al., 2014).  

Activation of FFAR3 in adipocytes stimulates the production and secretion of leptin (Xiong 

et al., 2004). Furthermore, FFAR3-deficient mice showed increased intestinal transit rates 

and thus a reduced intestinal absorption, which might indicate that the receptor is involved 

in the secretion of gut motility-influencing hormones, such as peptide YY and GLP-1, from 

enteroendocrine cells (Samuel et al., 2008). Studies on 3T3-L1 adipocytes showed that both 

propionate and valerate increase insulin-stimulated glucose uptake and also that FFAR3 

activation plays a role in the enhanced insulin responsiveness by these two SCFA (Han et 

al., 2014). Propionate administration increases body the energy expenditure and heart rate 

of adult wild-type mice; in FFAR3 knockout mice this regulation of the sympathetic nervous 

system activity by propionate was abolished, suggesting that FFAR3 functions as an energy 

sensor in the nervous system (Kimura et al., 2011). In another study, lean mass and energy 

expenditure were reduced in male FFAR3 knockout mice, indicating that SCFA may raise 

energy expenditure by activating FFAR3 (Bellahcene et al., 2013). 

Both receptors transduce signals by coupling to Gi/o proteins and FFAR2, but not FFAR3, is 

able to couple efficiently to Gq/11 (Brown et al., 2003; Le Poul et al., 2003). In 2009, Wang 

et al. identified and characterized the genes encoding FFAR2 and FFAR3 in cattle, with 

amino acid sequences being more than 75 % identical to the human orthologues of both 

receptors. This working group also provided evidence of a coupling of these two bovine 

receptors to Gi/o proteins (Wang et al., 2009).  

Recently, Zhang et al. identified the FFAR2-like (FFAR2L) gene in ten mammalian species 

(including pig, cat, elephant, and giant panda). Functional studies with the porcine FFAR2L 

showed structural similarity with FFAR2 and similar, but not identical, properties to FFAR2; 

like FFAR2, FFAR2L is also able to bind to SCFA. The expression of this novel receptor in 

pigs was mainly restricted to the gastrointestinal tract where FFAR2 and FFAR2L seem to 

be co-expressed. However, in humans and cattle, the chromosomal region predicted to 

encode FFA2L was identified as being truncated, indicating that this gene might be a 

pseudogene without biological function in these species (Zhang et al., 2014). 
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1.2.3 Hydroxycarboxylic acid receptor 2  

The HCAR2, also referred to as GPCR109A, HM74a in human, PUMA-G in mouse or niacin 

receptor 1, belongs to the receptor family of hydroxycarboxylic acid receptors (Offermanns 

et al., 2011). Two other receptors for hydroxylcarboxylic acids are HCAR1 and HCAR3, 

also referred to as GPCR81 and GPCR109B, respectively (Offermanns et al., 2011). 

Pharmacological doses of NA have been used for decades as antilipolytic drugs for the 

treatment of dyslipidemic states in humans, but only in 2003 was the HCAR2 discovered as 

a target for NA mediating its antilipolytic effects in adipocytes (Soga et al., 2003; Tunaru et 

al., 2003; Wise et al., 2003). In addition, the ketone body BHBA was shown to be an 

endogenous ligand for HCAR2 (Taggart et al., 2005). Ketone bodies are mainly produced 

by the liver depending on the delivery of FFA from adipocytes during severe deficiency in 

energy intake (Gille et al., 2008). The antilipolytic effects exerted by activation of HCAR2 

by BHBA functions as a negative feedback mechanism to adjust an optimal lipolytic activity 

to the requirements of prolonged starvation (Gille et al., 2008). Additionally, some SCFA, 

e.g. valerate, caporate, capylate, and butyrate, were shown to activate the human HCAR2, 

but it seems unlikely that physiological concentrations of these SCFA reach sufficient levels 

to activate the receptor in humans (Taggart et al., 2005). The highest expression of human 

and murine HCAR2 was found in WAT and BAT (Soga et al., 2003; Tunaru et al., 2003; 

Wise et al., 2003), and apart from AT, HCAR2 is also expressed in various immune cells, 

e.g. neutrophils, macrophages and dendritic cells, but not in B and T lymphocytes, human 

eosinophils, or immature bone marrow cells (Schaub et al., 2001; Kostylina et al., 2008; 

Tang et al., 2008). In addition, the receptor’s mRNA is also expressed in epidermal 

Langerhans cells, in epithelial cells of the retinal pigment, of the ileum and of the colon, as 

well as in primary human keratinocytes, in human brain and in a human epidermoid 

carcinoma cell line (Maciejewski-Lenoir et al., 2006; Zhou et al., 2007; Miller and Dulay, 

2008; Tang et al., 2008; Martin et al., 2009; Thangaraju et al., 2009; Cresci et al., 2010). 

There is no functional peroxisome proliferator-activated receptor (PPAR)-response element 

in the promoter region of the HCAR2 gene, but the expression of HCAR2 seems to be 

increased by activation of PPAR-γ (Jeninga et al., 2009). The expression of HCAR2 is also 

up-regulated by certain cytokines, e.g. interferon-γ and TNF-α (Schaub et al., 2001). 

Beside the antilipolytic effect of pharmacological doses of NA mediated through HCAR2 as 

mentioned before, BHBA is also able to inhibit lipolysis in adipocytes (Taggart et al., 2005). 

Suppression of lipolysis by HCAR2 activation leads to a decreased release of FFA from 

adipocytes and supply to the liver. This in return reduces the liver synthesis of TAG, of very-
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low-density lipoprotein (VLDL) and of low-density lipoprotein (LDL) cholesterol levels 

(Carlson, 1963), all accounting for the antidyslipidemic properties of HCAR2 activation. 

Otherwise, hepatic overexpression of HCAR2 in mice unexpectedly reduced plasma 

concentrations of high-density lipoprotein (HDL) cholesterol in plasma, evidently due to an 

HCAR2-dependent reduction in cAMP production, leading to reduced efflux of cholesterol 

to apolipoprotein A-I in vivo (Li et al., 2010). However, in isolated murine macrophages, 

NA treatment enhanced the efflux of cholesterol to apolipoprotein A-I-containing HDL 

particles in an HCAR2-dependent manner (Lukasova et al., 2011). The role of HCAR2 

activation in the reported increase of circulating HDL cholesterol concentrations in 

dyslipidemic individuals in response to the pharmacological doses of NA is not clear, just as 

the mechanism of how NA increases HDL cholesterol has not been clarified yet (Gille et al., 

2008). The effect of NA in adipocytes mediated through HCAR2 activation may not provide 

a full explanation for all alterations in plasma lipid concentrations, which might also involve 

direct effects of NA on immune cells, e.g. macrophages (Kamanna and Kashyap, 2008; 

Lukasova et al., 2011). In addition, there is evidence that HCAR2 plays a physiological role 

in immune cells, e.g. macrophages and neutrophils. The receptor is recognized as being 

involved in the recruitment of neutrophils (Chen et al., 2014). Moreover, HCAR2 seems to 

be involved in the regulation of prostanoid release (e.g. PGE2, PGD2) from human 

macrophages (Gaidarov et al., 2013).  

The stimulation of the secretion of ADIPOQ from adipocytes by NA is mediated through 

HCAR2 in vivo (Plaisance et al., 2009), which has also been proven for differentiated bovine 

preadipocytes (Kopp et al., 2014). Another ligand of HCAR2, trans-cinnamic acid, is also 

able to stimulate ADIPOQ secretion in 3T3-L1 adipocytes apparently via activation of 

HCAR2 (Kopp et al., 2014).  

Furthermore, HCAR2 mediates an undesirable side effect of NA or HCAR2-targeting drugs, 

the so-called cutaneous flushing reaction, a result of cutaneous vasodilatation associated 

with tingling and burning of the affected skin areas (Benyó et al., 2005; Maciejewski-Lenoir 

et al., 2006; Gille et al., 2008; Offermanns et al., 2011). The increase in dermal blood flow 

proceeds in two phases. The first is induced by HCAR2 activation in epidermal Langerhans 

cells and results in the formation of PGD2 and PGE2, two vasodilatory prostanoids. The 

second phase is induced by HCAR2 activation in keratinocytes, which increases PGE2 

release (Benyó et al., 2005; Cheng et al., 2006; Gille et al., 2008; Hanson et al., 2010). 

Due to the fact that the receptor is also expressed in intestinal epithelial cells and one of its 

ligands, butyrate, is present in millimolar concentrations in the lumen, it has been suggested 
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that HCAR2 mediates the suppressive function of butyrate in the development of colon 

cancer (Thangaraju et al., 2009). The actions of HCAR2 are induced by receptors coupling 

to Gi/o proteins (Taggart et al., 2005; Gaidarov et al., 2013). It seems that the signaling via 

HCAR2 is dependent on the cell type. In adipocytes, HCAR2 exerts its activity through a 

Gαi subunit that mediates the inhibition of adenylyl cyclase and thus the reduction of 

intracellular cAMP concentrations. In macrophages, HCAR2 exerts signaling via Gβγ 

subunits augmenting intracellular cAMP concentrations when additional Gs stimuli are 

present (Gaidarov et al., 2013). 

The bovine sequence of HCAR2 shares 83 % homology with human HCAR2 and it has been 

suggested that the sequence encodes for a receptor that is able to bind NA (Titgemeyer et 

al., 2011). Protein and mRNA of the receptor have been detected in bovine M. longissimus, 

one VC AT (RP AT), 2 SC AT depots (back fat and tail head fat) and different regions of 

the brain. Surprisingly, the highest expression was observed in bovine liver: 

Immunofluorescence performed with a primary anti-HCAR2 and fluorescent-labeled 

secondary antibody showed that the protein is also expressed in parenchymal cells and not 

exclusively by immune cells (Titgemeyer et al., 2011). When compared to other species, e.g. 

man and mouse (Tunaru et al., 2003; Wise et al., 2003), the high expression of HCAR2 in 

bovine liver seems unusual (Titgemeyer et al., 2011). Additionally, BHBA and butyrate 

inhibit lipolysis in bovine adipocytes (Metz et al., 1974). The HCAR2-mediated pathway 

also seems to be functional in bovine AT and activated by both NA and BHBA in vitro 

(Kenéz et al., 2014). Furthermore, the HCAR2 mRNA expression is downregulated from late 

pregnancy to 3 weeks after calving, indicating the relevance of an HCAR2-mediated 

regulation of lipolysis during the transition period (Lemor et al., 2009).  

 

1.3 Nutritional supplements and other strategies in dairy cattle feeding 

Passing through the transition period without production diseases increases the profitability 

of the high-yielding dairy cow, therefore the management of nutrition of the animals has 

received enormous interest during the last few decades (Drackley, 1999; Ingvartsen, 2006). 

To overcome the critical transition period, different nutritional strategies can be applied to 

improve the animals’ health by supporting the metabolic adaptations that dairy cows undergo 

during this period. Established possible interventions are the use of fatty acids (e.g. 

conjugated linoleic acids [CLA], eicosapentaenoic acid, docosahexanoic acid), the use of 

methyl donors (e.g. choline, methionine) in the transition diet, and the manipulation of the 
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energy density of the diet (Esposito et al., 2014). The nutritional strategies considered in this 

thesis are the use of CLA and nicotinic acid (NA), and the modulation of energy density. 

Concentrates containing nonfiber carbohydrates (NFC; starch provided by grains) can be 

used to increase the energy density of the diet by increasing the digestibility and the passage 

rate of the diet as well as the ruminal production of propionate (Rabelo et al., 2001; Drackley 

et al., 2005; Esposito et al., 2014). Fatty acids can also be used to increase the energy density 

(Drackley et al., 2005). The additive feeding of CLA as well as the modulation of energy 

density targets amelioration of the NEB during the transition period, whereby CLA reduces 

the output of energy via milk by reducing mammary synthesis of fatty acids (Loor and 

Herbein, 1998), and a higher dietary energy density might increase the energy intake.  

The antilipolytic properties of NA have been well studied in humans and for decades NA 

has been used as a potent lipid-modifying drug (Gille et al., 2008). Based on its antilipolytic 

properties, some studies tested NA as a feed additive for high-yielding dairy cattle to prevent 

fatty liver and ketosis due to a limitation of excessive lipid mobilization (Waterman and 

Schultz, 1972; Fronk and Schultz, 1979). A reduced mobilization of FA from AT in response 

to NA might contribute to a reduced risk of metabolic disorders among dairy cattle in the 

transition period (Yuan et al., 2012). 

 

1.3.1 Conjugated linoleic acids 

Supplementing CLA in the diet of dairy cows enhances their content in milk and thereby 

contributes to the nutritive value of milk and milk products (Griinari and Baumann, 1999; 

Dhiman et al., 2000). In addition, CLA have been shown to limit the extent of the 

comprehensive physiological NEB by decreasing milk fat secretion and in turn decreasing 

the caloric demand of milk production in early-lactating dairy cows, whereby particularly 

the trans-10,cis-12 (t10,c12) CLA isomer is known to induce milk fat depression (Bauman 

et al., 2000).  

 

1.3.1.1 Structure and origins 

The term “conjugated linoleic acids” refers to a mixture of positional and geometric isomers 

of octadecadienoic acid with a conjugated double-bond system. The different CLA isomers 

result from the position of the double bond pair (e.g. 8-10, 9-11, and 10-12) separated by a 

single bond and from the four possible configurations (cis-trans, trans-cis, cis-cis, or trans-

trans) of the double bond (Bauman et al., 2000). Naturally, CLA are widespread in plant and 
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animal tissues, whereas the highest amounts occur in food products (milk and meat) derived 

from ruminant animals in the range of 2–7 mg per g of total fat (Chin et al., 1992). The 

predominant CLA in products derived from ruminants is the cis-9,trans-11 (c9,t11) isomer 

(Chin et al., 1992; Bauman et al., 2000). Beside the c9,t11 isomer, the trans-10,cis-12 

(t10,c12) isomer has also been shown to possess biological activities (Banni, 2002). 

Commercially available CLA supplements mainly contain a 1:1 mixture of these two CLA 

isomers (Banni, 2002). Usually the commercially available CLA is synthetically prepared 

from linoleic acid (LA) from, for example, safflower oil by alkaline isomerization (Koba 

and Yanagita, 2014). Figure 5 shows the structure of LA and the two main isomers, c9,t11 

and t10,c12 CLA, deriving from LA. 

 

 

(cis-9,cis-12) linoleic acid 

 
 

cis-9,trans-11 isomer 

 

trans-10,cis-12 isomer 

Figure 5. Chemical structures of linoleic acid and its two main derivatives (modified 
from Tsuzuki et al. (2006)) 
 

The CLA in ruminants’ milk and meat arise from the production at two sites: One source is 

the biohydrogenation of LA into stearic acid by rumen bacteria (such as Butyrivibrio 

fibrisolvens) leading to CLA as an intermediate product, and the other source is the CLA 

synthesis by animal tissues from trans-11 octadecenoic acid (Bauman et al., 2000). Dairy 

cows’ dietary intake of unsaturated fatty acids, such as LA, ranges from 300 g/d (2 % of dry 

matter intake [DMI]) without fat supplements to 700 g/d (5 % of DMI) with fat supplemented 

to their diet (Santos, 2011). Figure 6 displays the endogenous synthesis of c9,t11 CLA at 

these two sites, whereat it is the predominant isomer, representing at least 80 % of the total 

CLA content in milk and meat from cattle (Bauman et al., 2000). In contrast, the t10,c12 

CLA represents less than 2 % of the total milk CLA (Piperova et al., 2000).  

 

O 

OH 

O 

OH 

OH 

O 



23 

 

 

Introduction 

 

Figure 6. Predominant pathways of C18 fatty acids including the rumen and tissue 
biosynthesis of cis-9,trans-11 conjugated linoleic acid (modified from Griinari and 
Baumann (1999)) 

 
When TAG, the major form of dietary lipids, enter the rumen, the ester linkages are 

hydrolyzed through catalysis by microbial lipases (Bauman et al., 2000; Bauman et al., 

2011). In the rumen, the cis-double bonds of the dietary unsaturated fatty acids are 

isomerized to form conjugated cis/trans double bond systems. Further hydrogenation of the 

cis-double bonds leads to the formation of trans-11 octadecenoic acid, also known as 

vaccenic acid, which is a common intermediate in biohydrogenation. As the hydrogenation 

of vaccenic acid limits the rate of complete biohydrogenation of unsaturated C18 fatty acids, 

it accumulates in the rumen. Portions of c9,t11 CLA and vaccenic acid formed in the rumen 

escape outright biohydrogenation and are absorbed in the intestine (Griinari and Baumann, 

1999). Also, the conversion of vaccenic acid to c9,t11 CLA catalyzed by Δ9-desaturase in 

the tissues accounts for the large portion of CLA in milk and meat. The activity of Δ9-

desaturase appears to be highest in the mammary gland in lactating ruminants, whereas in 

growing animals AT shows the highest activity of this enzyme (Griinari and Baumann, 1999; 

Griinari et al., 2000).  
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It is worth mentioning that several factors, including breed, age, the bacterial rumen 

population, and diet of the animal, influence the CLA content in milk and meat, wherein 

dietary factors are of major importance (Bauman et al., 2000; Dhiman et al., 2005). Diets 

rich in lipid substrates for ruminal synthesis of c9,t11 CLA (e.g. diets supplemented with 

plant oils containing high amounts of LA) and diets increasing the rumen population of 

bacteria involved in the biohydrogenation of unsaturated fatty acids (e.g. diets with a high 

forage-to-concentrate ratio) elevate the content of CLA in milk fat (Griinari and Baumann, 

1999). 

 

1.3.1.2 Effects of conjugated linoleic acids in nonruminants 

In various animal and cell culture studies, numerous physiological functions and putative 

beneficial health effects such as anticarcinogenic, antiobese, and antihypertensive effects, as 

well as the prevention of atherosclerosis and enhancement of immune function exerted by 

CLA, have been identified (Oleszczuk et al., 2012; Koba and Yanagita, 2014). The c9,t11 

CLA isomer and the t10,c12 CLA isomer exert different effects, whereby some effects are 

exerted solely by one of these isomers and other effects are exerted by both isomers together 

(Oleszczuk et al., 2012; Koba and Yanagita, 2014).  

For instance, in vitro studies showed that the anticarcinogenic activity seems to be 

independent of the CLA isomer used and studies in rats indicate a dose-dependent 

anticarcinogenic effect of CLA in the range of 0 to 1.5 % of body weight (Koba and 

Yanagita, 2014). There is also evidence that the growth inhibitory effect on different human 

cancer cell lines is mediated by activation of PPAR-γ, which induces apoptosis and inhibits 

the proliferation of different human cancer cell lines (Koba and Yanagita, 2014). However, 

the mechanisms of the anticarcinogenic properties of CLA remain largely unclear and their 

potential beneficial effects on different cancer types are ambiguous. The potential 

anticarcinogenic effects of CLA seem to be dependent on the site of the cancer; from in vitro 

studies and rodent models there is evidence that CLA have potential beneficial effects on 

colorectal, breast and prostate cancer (McCrorie et al., 2011). 

The effects of CLA on body composition as well as their hypolipidemic effects have been 

attributed to the t10,c12 isomer rather than to the c9,t11 isomer (Koba and Yanagita, 2014). 

Rodent, but not human studies, showed a CLA-induced reduction in energy intake. 

Nevertheless, the reducing effect of CLA on body fat mass seems to be not solely dependent 

on energy intake as several studies have reported reduced body fat mass even without 

changes in the energy intake. Also, the CLA-induced suppression of animal and human 
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preadipocyte differentiation, the inhibition of lipogenesis and the stimulation of lipolysis 

may account for the potential of CLA for reducing body fat mass. In WAT from rodents, a 

mixture of both isomers or the t10,c12 isomer alone induced the UCP-2 transcription, which 

probably enhances the respiratory oxidation of fatty acids (Kennedy et al., 2010). Results 

from human intervention studies for investigating the CLA effect on body composition in 

normal weight, overweight and obese subjects are inconsistent. The majority of these studies 

have shown no effect on body weight and just some reported reduced body fat mass 

following CLA supplementation. However, the promising evidence of the CLA effect on 

body composition from animal studies could not be reproduced in human intervention 

studies (McCrorie et al., 2011). 

Numerous animal model studies reported anti-atherosclerotic effects of a mixture of both 

CLA isomers or the t10,c12 isomer due to the reduction of circulating total cholesterol, TAG, 

LDL cholesterol and blood pressure as well as an elevation of HDL cholesterol, whereas 

human studies did not provide clear evidence of the CLA effect on the risk of cardiovascular 

disease (Dilzer and Park, 2012). In some human clinical trials, a mixture of both CLA 

isomers or the t10,c12 isomer caused unfavorable changes in serum lipids with regard to 

cardiovascular-related risks, enhanced lipid peroxidation and increased the plasma 

concentrations of C-reactive protein, an inflammatory marker associated with cardiovascular 

disease (Oleszczuk et al., 2012). Additionally, CLA binds to FFAR1 with high affinity and 

one cannot exclude a potential contribution of FFAR1 to β-cell dysfunction through long-

term application of CLA (Schmidt et al., 2011). 

It has also been suggested that feeding of CLA normalizes impaired glucose tolerance in 

obese, diabetic rats. Since CLA are able to activate PPAR-γ, the antidiabetic effect of CLA 

could be mediated by PPAR-γ activation resulting in increased plasma ADIPOQ 

concentrations and thus amelioration of hyperinsulinemia (Houseknecht et al., 1998), 

whereas the t10,c12 CLA seems to be the isomer influencing the glucose tolerance (Koba 

and Yanagita, 2014). However, studies in humans reported inconsistent results: The majority 

of studies reported no effects of CLA supplementation on blood glucose and plasma insulin 

levels or reported impairing effects by both CLA isomers on glucose metabolism (Risérus 

et al., 2002; Risérus et al., 2004; Dilzer and Park, 2012). Inasmuch as some human and 

rodent studies indicate that CLA might decrease insulin sensitivity, induce hepatic 

lipodystrophy and exert pro-atherosclerotic effects, the safety of CLA supplementation for 

human nutrition is still questionable (Oleszczuk et al., 2012). 
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1.3.1.3 Effects of conjugated linoleic acids in dairy cows 

The t10,c12 CLA inhibits mammary milk fat synthesis in a dose-dependent manner (Bauman 

et al., 2000; de Veth et al., 2004) at various stages of lactation (Hutchinson et al., 2011), 

whereas milk yield, milk lactose and milk protein are generally not affected (Bauman et al., 

2008). A key regulator in the milk fat depression (MFD) induced by t10,c12 CLA is the 

sterol response element-binding protein (SREBP)-1 as many lipogenic enzymes have 

SREBP response elements in their promoter region (Bauman et al., 2008). It has been shown 

that expression of SREBP-1, a gene highly expressed in bovine mammary tissue, is decreased 

during t10,c12 treatment and thus might downregulate the expression of lipogenic enzymes 

(Harvatine and Bauman, 2006). In CLA supplementation-induced MFD all fatty acids in 

milk are reduced, but most of the studies observed a relatively greater reduction in de novo 

synthesized fatty acids (Peterson et al., 2003; Hötger et al., 2013). Therefore it is likely that 

the t10,c12 CLA isomer predominantly inhibits de novo fatty acid synthesis in the mammary 

gland (Peterson et al., 2003; Hötger et al., 2013). 

Beside the t10,c12 CLA, two other isomers that are produced as intermediates in rumen 

biohydrogenation (Bauman et al., 2011), t9,c11 and c10,t12 CLA, have also been identified 

as suppressing milk fat synthesis (Saebø et al., 2005; Perfield et al., 2007). The secretion of 

milk fat is energetically the most expensive process, as the fat energy content represents 40 

to 50 % of the total energy concentration of milk (Bauman and Currie, 1980; Santos, 2011). 

The ability of CLA to reduce the energy output via milk could therefore be a nutritional 

strategy for ameliorating the NEB in early lactation (Bauman et al., 2000). However, the 

findings from some studies on the effects of CLA supplementation on DMI and NEB are 

contradictory. In some studies a slightly inhibitory effect of CLA supplementation on DMI 

has been reported (Bauman et al., 2000; Moallem et al., 2010; Pappritz et al., 2011b; von 

Soosten et al., 2011; Hötger et al., 2013), results from one study indicate an increasing effect 

of CLA on DMI (Shingfield et al., 2004) and some studies reported no effect of CLA 

treatment on DMI (Perfield et al., 2002; Bernal-Santos et al., 2003; Castañeda-Gutiérrez et 

al., 2005). The same applies for the calculated energy balance, whereas a reduction 

(Shingfield et al., 2004) as well as an aggravation (Pappritz et al., 2011b; Hötger et al., 2013) 

or no changes in p.p. NEB (Bernal-Santos et al., 2003; Selberg et al., 2004; Castañeda-

Gutiérrez et al., 2005; Moallem et al., 2010) in response to CLA supplementation have been 

reported. The inconsistent results concerning the DMI and the calculated energy balance 

might be due to the different design of the studies, e.g. the dosage of t9,c11 CLA and t10,c12 

CLA, the preparation (i.e. rumen protected versus non-rumen protected) and form of 
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application of the CLA supplement, the beginning and duration of the CLA supplementation 

or the dietary status and the stage of lactation of the investigated cows. The supplementation 

of CLA may thus not necessarily result in an improvement of energy balance in dairy cows 

(Hötger et al., 2013). Table 4 provides a summary of the biological responses to CLA 

supplements in dairy cattle and the applied dosages and preparation forms of CLA used in 

the different studies. As shown in Table 4, most studies indicate that CLA supplementation 

has no effect on the concentrations of plasma metabolites such as glucose, NEFA and BHBA 

or metabolic hormones including insulin, insulin growth factor (IGF)-1, and leptin, whereby 

most of the studies investigated the effect of supplements containing only the t10,c12 isomer 

or a 1:1 mixture of the t10,c12 and c9,t11 CLA isomers.  

There is evidence that CLA might affect metabolic processes such as endogenous glucose 

production, a process that ensures the supply of glucose for mammary milk production in 

ruminants. The measurement of endogenous glucose production by infusion of uniformly 

labeled 13C glucose and the measurement of enrichment of this tracer by gas 

chromatography-mass spectrometry revealed lower endogenous glucose production rates in 

the third week of lactation, whereby the hepatic gene expression of two key enzymes 

involved in gluconeogenesis also tended to be lower in CLA-treated animals (Hötger et al., 

2013). 

The aforementioned reducing effect of CLA on body fat content observed in studies with 

rodents could not be conclusively confirmed for lactating cows. On the one hand, CLA 

tended to slightly decrease DMI (von Soosten et al., 2012) and a decreased size of adipocytes 

in VC and SC AT in CLA-treated animals during early lactation has been observed, which 

prefigures rather lipolytic and/or antilipogenic effects of CLA on AT (Akter et al., 2011). 

It was also shown that the decline of serum concentrations of ADIPOQ around parturition is 

extended in early lactation in response to CLA supplementation (Singh et al., 2014b). On the 

other hand, body fat mobilization was reduced in animals fed a CLA supplemented diet, 

suggesting improved utilization of the metabolizable energy (von Soosten et al., 2012), and 

an increasing effect of t10,c12 CLA-induced MFD on the gene expression of lipogenic genes 

in AT has been observed (Harvatine et al., 2009). It is conceivable that the CLA effect on 

bovine AT metabolism observed in some studies is mediated through alterations in nutrient 

sensing and signaling (de Veth et al., 2009). 
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Table 4. Summary of the most frequently observed biological responses to conjugated 
linoleic acids in dairy cows (modified from Bauman et al. (2011)) 

Process Effect(s) 

Milk   

Protein and lactose Output unchanged1, 2, 3, 4 

Fat Output decreased up to 50 %1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 

Fatty acid profile All FA reduced, but relatively greater reduction in de novo synthesized 
FA1, 3, 6, 7, 8, 9, 10, 11, 16 

Whole-animal metabolism 

Feed intake Slight reduction in DMI1, 10, 12, 13, 17  

Ketogenesis Plasma BHBA unchanged3, 5, 11, 12, 17  

Liver lipids TAG content unchanged4, 5  

Plasma hormones 

IGF-1 IGF-1 plasma concentration unchanged1, 11 

Leptin Leptin plasma concentration unchanged2 

ADIPOQ ADIPOQ plasma concentrations decreased18 

Glucose homeostasis 

Glucose set point Plasma glucose unchanged1, 2, 3, 4, 5, 6, 11, 12 

Basal insulin Plasma insulin unchanged1, 2, 4, 6, 11, 17 

Stimulated Glucose response to insulin unchanged2, 6 

Lipolysis 

Basal Plasma NEFA unchanged2, 3, 5, 6, 12, 13, 17 

Stimulated Response to β-adrenergic stimulation unchanged6 

Tissue-specific metabolism 

Mammary gland   

Lipid synthesis 
enzymes 

Decreased mRNA abundance of enzymes involved in FA uptake, 
synthesis, transport, desaturation, and esterification7, 8, 13 

 
Transcription factors Decreased expression and activation of SREBP1 and S147, 8, 14, and 

PPAR-γ219 

Adipose tissue 

Lipid synthesis 
enzymes 

Increased mRNA expression of transcription factors (SREBP1 and S14) 
and of enzymes involved in FA synthesis, uptake, and desaturation9 

 

Adipocyte size 
Decreased adipocyte sizes in subcutaneous and visceral adipose 
tissue20 

Liver   

Fatty acid metabolism 
enzymes 

Unchanged expression of key enzymes involved in lipogenesis, 
ketogenesis, and β-oxidation16 
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Table 4. Continued. 

References Dosage of t10,c12 and c9,t11 isomers  and 
application form of the CLA 

1 Bauman et al. (2000) Abomasal infusion of 10 g/d t10,c12 or c9,t11 CLA 

2 Baumgard et al. (2002) Abomasal infusion of 13.6 g/d t10,c12 CLA 

3 Perfield et al. (2002) 126 g/d RPP (10 % t10,c12 and 9 % c9,t11 CLA) 

4 Castañeda-Gutiérrez et al. (2005) 295 g/d RPP (6 % t10,c12 and 6 % c9,t11 CLA) 

5 Bernal-Santos et al. (2003) 126 g/d RPP (10 % t10,c12 and 9 % c9,t11 CLA) 

6 de Veth et al. (2006) 115 g/d RPP (10 % t10,c12 and 10 % c9,t11 CLA) 

7 Harvatine and Bauman (2006) Jugular vein infusion of 10 g/d t10,c12 CLA 

8 Gervais et al. (2009) Jugular vein infusion of 10 g/d t10,c12 CLA 

9 Harvatine et al. (2009) Abomasal infusion of 7.5 g/d t10,c12 CLA 

10 Moallem et al. (2010) RPP containing 4.7 g/d t10,c12 and 4.7 g/d c9,t11 CLA 

11 Hutchinson et al. (2011) RPP containing 7 g/d t10,c12 and 7 g/d c9,t11 CLA 

12 Pappritz et al. (2011b) 100 g/d RPP (12 % t10,c12 and 12 % c9,t11 CLA) 

13 von Soosten et al. (2011) 100 g/d RPP (12 % t10,c12 and 12 % c9,t11 CLA) 

14 Han et al. (2012) 200 g/d RPP (37 % t10,c12 and 38 % c9,t11 Ca-CLA) 

15 Hutchinson et al. (2012) RPP containing (5 g/d t10,c12 and 5 g/d c9,t11 CLA) 

16 Schlegel et al. (2012) RPP containing 4 g/d t10,c12 and 4 g/d c9,t11 CLA 

17 Hötger et al. (2013) 50 g/d RPP (9.3 % t10,c12 and 10.3 % c9,t11 CLA) 

18 Singh et al. (2014b) 100 g/d RPP (12 % t10,c12 and 12 % c9,t11 CLA) 

19 Saremi et al. (2014) 100 g/d RPP (12 % t10,c12 and 12 % c9,t11 CLA) 

20 Akter et al. (2011) 100 g/d RPP (12 % t10,c12 and 12 % c9,t11 CLA) 
ADIPOQ: adiponectin; BHBA: β-hydroxybutyrate; CLA: conjugated linoleic acids; DMI: dry matter 
intake; FA: fatty acid; IGF-1: insulin growth factor-1; MFD: milk fat depression; NEFA: 
nonesterified fatty acid; PPAR-γ2: peroxisome proliferator-activated receptor γ-2; RPP: rumen-
protected preparation; S14: thyroid hormone-responsive spot 14; SREBP: sterol regulatory 
element-binding protein; TAG: triacylglycerides. 
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1.3.2 Niacin 

The effect of supplementing niacin is not as well studied as the effect of supplementing CLA 

in dairy cows’ diets; however, numerous studies about the effects of applied pharmacological 

doses of NA in humans and rodents have been published. 

 

1.3.2.1 Structure and sources 

Niacin (also known as vitamin B3) belongs to the group of water-soluble B vitamins and is 

a generic descriptor for NA (pyridine 3-carboxylic acid) and derivatives exhibiting 

qualitatively the biological activity of nicotinamide (NAM, pyridine 3-carboxylic acid 

amide) (Bates, 1998; Carlson, 2005; Combs, 2012). Niacin is defined as a group of dietary 

precursors to nicotinamide adenine dinucleotide (NAD), other than tryptophan (Penberthy 

and Kirkland, 2012). As well as NA and NAM, a third form of niacin, NAM riboside, has 

been discovered (Bieganowski and Brenner, 2004). Causing confusion in the use of the 

generic and specific terms, in some countries, e.g. North America the term “niacin” refers 

exclusively to NA (Bates, 1998; Combs, 2012). In this thesis the term “niacin” refers 

generically to nicotinic acid (NA) and nicotinamide (NAM), whereas the termes “nicotinic 

acid” and “nicotinamide” refer specifically to each.  

Figure 7 shows the chemical structures of the niacin vitamers NA, NAM and NAM riboside.  

Niacin occurs in foods either as NA, as NAM or as the pyridine nucleotide coenzymes NAD 

and nicotinamide adenine dinucleotide phosphate (NADP). Another source for nearly all 

species, including mammals, is the endogenous synthesis of the vitamin from the amino acid 

L-tryptophan. In ruminants, an important additional source is the production of niacin by 

rumen microbes (Bates, 1998; Niehoff et al., 2009). 

 

 
Figure 7: Chemical structures of the niacin vitamers nicotinic acid, nicotinamide and 
nicotinamide riboside (modified from Penberthy and Kirkland (2012)) 
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The estimated daily requirement of approximately 289 mg/d of niacin for a 650 kg lactating 

cow with a DMI of 22 kg/d and a milk yield of 35 kg/d seems to be covered by their estimated 

ruminal synthesis of 1804 mg/d regardless of the absorption rates in the rumen (NRC, 2001). 

Additionally, the diet seems to influence the ruminal synthesis of niacin, since an effect of 

the content of nonfiber carbohydrates in the diet as well as an effect of the forage content in 

the diet on ruminal niacin (both vitamers NA and NAM) synthesis have been reported 

(Schwab et al., 2006). However, it is not clear which portion of the synthesized niacin is 

absorbed and which portion is degraded in the rumen (Niehoff et al., 2009) as most NA is 

absorbed from the duodenum, converted to NAD and afterwards hydrolyzed to NAM, which 

is the main transport form of niacin in the blood (Henderson and Gross, 1979). 

 

1.3.2.2 Physiological functions and pharmacological actions in nonruminants 

As mentioned before, both vitamers of niacin, NA and NAM, are precursors of NAD and 

NADP, which are ubiquitous coenzymes in numerous redox reactions in the cell (Bates, 

1998; Combs, 2012). The coenzyme NAD is used more by redox enzymes for catabolic 

reactions, e.g. oxidation of substrates in the Krebs cycle), whereas its phosphorylated 

derivate NADP is used more for anabolic reactions, e.g. as a reducing agent for the synthesis 

of lipids and steroids (Rongvaux et al., 2003). The coenzyme NAD is able to readily accept 

and donate electrons in reactions catalyzed by dehydrogenases, leading in particular to the 

generation of ATP in the mitochondrial electron transport chain (Rongvaux et al., 2003). 

Adenosine diphosphate (ADP)-ribose transferring enzymes use NAD as a substrate for poly-

ADP-ribosylation to repair DNA (Menissier de Murcia et al., 2003) and for mono-ADP-

ribosylation with a regulatory function in immune response and GPCR signaling (Corda and 

Di Girolamo, 2003). Furthermore, NAD is involved in the synthesis of cyclic ADP-ribose 

and nicotinic acid adenine dinucleotide phosphate, both of which increase intracellular 

calcium concentrations (Lee, 2001). The redox state of NAD and NADP regulates the DNA 

binding activity of transcription factors and thus regulates the expression of genes (Lin and 

Guarente, 2003). It has also been proposed that an increased flux through the NAD salvage 

pathway regulates the deacetylase activity of the NAD-dependent silent information 

regulator 2p and thus the extension of the life span in yeast (Anderson et al., 2002). 

The binding to certain P2Y receptors enables NAD to act as a neurotransmitter. For example, 

in colonic cells, the binding of NAD to P2Y1 inhibits colonic muscle contraction (Penberthy 

and Kirkland, 2012). 
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Pellagra is a systemic disease caused by dietary niacin deficiency and is characterized by 

dermatitis, diarrhea and dementia leading to death if the diet is not improved (Penberthy and 

Kirkland, 2012). Pellagra occurs mainly in developing nations where corn and its products 

are the major food source or where the diet is poor in niacin and/or tryptophan (Hegyi et al., 

2004). In developed countries, sporadic cases of pellagra occur among chronic alcoholics or 

people dependent on drugs (e.g. certain tuberculosis medicine or chemotherapeutics) and 

patients in states of malabsorption (Hegyi et al., 2004; Penberthy and Kirkland, 2012). 

Although NA and NAM are equally effective forms of the vitamin, it is exclusively NA that 

is a powerful pharmacological agent inhibiting lipolysis in AT (Bates, 1998; Combs, 2012). 

Thus, for decades pharmacological doses of NA have been used in the treatment of 

dyslipidemia and for the prevention of cardiovascular diseases in humans. At doses higher 

than 1.5 g/d NA decreases TAG, VLDL, LDL cholesterol, and total cholesterol plasma 

concentrations while increasing HDL cholesterol plasma concentrations in dyslipidemic 

individuals (Gille et al., 2008). Due to these changes in plasma lipid concentrations, NA 

decreases the risk of cardiovascular diseases (Carlson, 2005). A six-month treatment of 

impaired glucose tolerance with extended-release NA resulted in increased HDL cholesterol 

and ADIPOQ concentrations, and decreased the fasting concentration of TAG in the 

circulation (Linke et al., 2009). In addition, the treatment with extended-release NA altered 

the mRNA abundance of genes in isolated adipocytes from patients’ abdominal SC AT. For 

example, the expression of mRNA of ADIPOQ and PPAR-γ increased and for hormone 

sensitive lipase, fatty acid synthase and HCAR3 decreased compared to the baseline and the 

patients within the control group (Linke et al., 2009). 

As described in a previous section, some plasma lipid altering effects of NA can be explained 

through activation of HCAR2 in adipocytes leading to an inhibition of lipolysis (Soga et al., 

2003; Tunaru et al., 2003; Wise et al., 2003), but there is also evidence of lipid altering 

effects of NA independent from activation of HCAR2 (Lauring et al., 2012). It is unlikely 

that HCAR3, a receptor with at least 1000-fold lower affinity for NA than HCAR2, mediates 

the pharmacological effects of NA; however, some synthetic agonists (e.g. acifran) are able 

to activate both receptors with equal affinity (Offermanns et al., 2011). The vitamer NAM 

is not able to activate either HCAR2 or HCAR3 (Gille et al., 2008).  

In human subjects, a major rebound increase of NEFA blood concentrations when NA blood 

concentrations fall has been observed, because NA acts relatively temporary on lipolysis 

(Offermanns, 2006). Increased circulating NEFA levels have been shown to decrease insulin 

sensitivity, which might be a contraindication for the use of NA in type 2 diabetic patients 
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(Gille et al., 2008). The administration of pharmacological doses of NA can also cause side 

effects. One side effect mediated through the activation of HCAR2 is NA-induced flushing 

and is described in a previous section. The treatment of dyslipidemia with extended-release 

NA is associated with decreased insulin sensitivity, whereas the mechanisms responsible for 

the insulin resistance caused by extended-release niacin are not known (Fraterrigo et al., 

2012). Other possible side effects might be gastrointestional problems when NA is orally 

administered, chemical hepatitis due to the application of NA in an extended-release form 

(Dalton and Berry, 1992) and hyperuricemia (Gershon and Fox, 1974). Whether these side 

effects involve the activation of HCAR2 is currently not known (Gille et al., 2008).  

 

1.3.2.3 Effects of niacin in dairy cows 

The results from some studies indicate that niacin supplementation of the diet for dairy cows 

increases milk yield (Drackley et al., 1998; Lohölter et al., 2013), possibly due to a reduction 

of subclinical ketosis (Fronk and Schultz, 1979). As mentioned before, NA is also able to 

induce a flushing reaction primarily characterized by cutaneous vasodilatation through 

activation of HCAR2 leading to an increased formation of vasodilatory PG. Additionally, 

the possible alleviation of heat stress in dairy cows in response to NA has been investigated, 

due to the ability of NA to induce vasodilatation and thus possibly decrease body and skin 

temperature during thermal stress (Di Costanzo et al., 1997; Zimbelman et al., 2010). Table 

5 provides a summary of the most frequently observed biological responses to niacin 

supplements in dairy cattle and the applied dosages and vitamers in the different studies.  

Niacin increases protozoal numbers in the rumen fluid mainly by increasing Entodinium ssp. 

(Erickson et al., 1990; Doreau and Ottou, 1996), a protozoa species that regulates the rumen 

environment by consuming starch and thus might increase the bacterial population and 

microbial protein synthesis in the rumen (Erickson et al., 1991). However, the bacterial 

population in the rumen seems to be unaffected by niacin supplementation (Doreau and 

Ottou, 1996). The effect of niacin on the ruminal protozoa population could also alter the 

production of SCFA in the rumen since the presence of some protozoa might increase 

ruminal butyrate production (Ranilla et al., 2007). As summarized in Table 5, in two studies 

essentially the proportion of butyric acid in the total rumen SCFA concentrations increased 

in response to niacin, whereas the total concentration of SCFA and the propionic acid 

proportions remained unchanged (Erickson et al., 1990; Christensen et al., 1996). 
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Table 5. Summary of the most frequently observed biological responses to niacin, 
mainly to the vitamer nicotinic acid, in dairy cows*  (modified from Niehoff et al. (2009)) 

Process Effect(s) 

Milk   

Yield Increase1, 2, 3, 4, 5, 6 

Protein yield Slight increase of output4, 5, 7, 8 

Fat yield Slight decrease of output6, 9 

Whole-animal metabolism during moderate to severe h eat stress 

Temperature Decreased skin temperature10 and decreased body temperature11 

Heat loss Increased evaporative heat loss11 

Ruminal protozoa population and SCFA 

Protozoa Increase of protozoa, especially Entodinium spp., in rumen fluid12, 13 

Total SCFA  Unchanged concentration of total SCFA in the rumen12, 14, 15, 16 

Acetic acid Slight reduction of acetic acid portion15 

Propionic acid Portion of propionic acid unchanged12, 14, 15, 16 

Butyric acid Increase of the portion of butyric acid12, 15 

Blood metabolites and insulin 

NEFA Unchanged plasma concentrations4, 5, 8, 17 

BHBA Decreased plasma concentrations1, 8, 18 

Glucose Plasma concentrations unchanged4, 5, 7, 8, 9, 16, 17 

Insulin Plasma concentrations unchanged7, 17 

Tissue-specific metabolism 

Adipose tissue 

HSL Unchanged protein expression of HSL17 

HCAR2 Unchanged mRNA and protein expression of HCAR219 

Liver   

TAG content Unchanged content of TAG9 

HCAR2  Unchanged mRNA and protein expression of HCAR219 
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Table 5. Continued. 

References Dosage of the applied niacin vitamers in the 
supplement 

1 Fronk and Schultz (1979) 12 g/d NA as treatment on ketosis 

2 Kung et al. (1980) 6 g/d niacin (no information on the vitamer used) 

3 Muller et al. (1986) 6 g/d NA 

4 Cervantes et al. (1996) 12 g/d nicotinamide 

5 Drackley et al. (1998) 6 g/d NA 

6 Lohölter et al. (2013) 24 g/d of supplement containing at least 99.5 % of NA 

7 Horner et al. (1986) 7 g/d niacin as niacin-corn premix 

8 Erickson et al. (1992) 12 g/d NA  

9 Yuan et al. (2012) 12 g/d rumen-protected supplement containing 65 % NA 

10 Di Costanzo et al. (1997) 12 g/d to 36 g/d NA 

11 Zimbelman et al. (2010) 12 g/d rumen-protected supplement containing 65 % NA 

12 Erickson et al. (1990) 12 g/d supplement containing either nicotinamide or NA 

13 Doreau and Ottou (1996) 6 g/d NA via the ruminal cannula 

14 Campbell et al. (1994) 12 g/d NA 

15 Christensen et al. (1996) 12 g/d NA 

16 Madison-Anderson et al. (1997) 12 g/d NA 

17 Locher et al. (2011) 24 g/d non-protected supplement (≥99.5 % NA) 

18 Morey et al. (2011) 24 g/d encapsulated supplement (40 % bioavailable NA) 

19 Titgemeyer et al. (2011) Abomasal infusion of 16 g/d of NA (≥99.5 %) in steers 
*One study included in the table has been performed on steers (reference 19). 
BHBA: β-hydroxybutyrate; FA: fatty acids; HCAR2: hydroxycarboxylic acid receptor 2; HSL: 
hormone sensitive lipase; NA: nicotinic acid; NEFA: nonesterified fatty acids; SCFA: short-chain 
fatty acids; TAG: triacylglycerides. 
 

In most of the studies investigating the effect of niacin on several blood parameters, niacin 

supplementation did not alter the blood concentrations of NEFA and glucose (Table 5). The 

rebound of NEFA blood concentrations after a period of NA application has also been 

observed in dairy cows, starting 2 to 3 h after abomasal infusion of NA (Pires and Grummer, 

2007). A few studies reported a decreasing effect of NA supplementation to the diet on 

BHBA blood levels. The decrease of BHBA concentrations in response to NA was 

accompanied by a decrease in NEFA concentrations in the blood of primiparous cows in one 

study (Morey et al., 2011) and in another study in the blood of ketotic cows at the onset of 

lactation (Fronk and Schultz, 1979). 

However, feeding trials investigating the effect of niacin supplementation to the diet of dairy 

cows did not provide consistent results due to the different design of the studies, e.g. the 

vitamer and dosage of the niacin supplement, the beginning and duration of the 

supplementation or the composition of the diet and the stage of lactation of the investigated 
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cows (Niehoff et al., 2009). It has been suggested that the response to NA supplementation 

might be greater in early rather than later stages of lactation (Jaster and Ward, 1990). 

Additionally, it is currently unknown how much absorption in the rumen or abomasum 

contributes to the total absorption of niacin (Niehoff et al., 2009). 

 

1.3.3 Effects of modulating the dietary energy density in transition dairy cows 

With the onset of lactation, the energy requirements of dairy cattle for milk production and 

maintenance increase considerably while the energy intake by voluntary feed intake does not 

increase at the same rate and thus dairy cows undergo a period of NEB (Drackley, 1999; 

Herdt, 2000). The formulation of diets that minimize this NEB, in particular in the first weeks 

p.p., not only improves milk yield, but also reduces the mobilization of body reserves and 

the risk of postparturient health problems (Drackley, 1999). One possible strategy to meet 

the energy required for milk production and thus reduce the extent of NEB is adaptation of 

the dietary energy density (Weiss and Pinos-Rodríguez, 2009).  

The energy density of cows’ diet depends on its composition as well as its digestibility, 

including the ability of the cow to absorb the nutrients contained (Santos, 2011). Depending 

on the level of feed intake and retention time in the rumen, the diet’s energy density is a 

dynamic value in ruminants; e.g. an increased feed intake results in shorter rumen retention 

times and thus decreases the overall digestibility of feed (Santos, 2011). Therefore the energy 

density of the diet can be changed by changing its caloric density or by changing the 

digestibility of the diet through alteration of its components. For example, sources rich in 

fatty acids can be used to increase the caloric density of the diet and NFC can be used to 

increase the digestibility and passage rate of the diet fed (Rabelo et al., 2001; Drackley et 

al., 2005; Esposito et al., 2014). A usual diet of ruminants contains less than 3 % of fatty 

acids arising from forage, grains, or seeds that are rich in LA or linolenic acids. Standard 

concentrate feed contains a large amount of NFC, such as starch, provided by grains (e.g. 

corn, barley, sorghum, and canola), but also other nutrients such as fatty acids, protein, and 

neutral detergent fiber provided by whole or processed oilseeds (Santos, 2011). In addition, 

concentrates are formulated to provide the animals with minerals and vitamins, which are 

not abundant in forage. As forage is a more economical source of dietary energy and 

nutrients, the diet of dairy cows should contain the maximum level of forage and also ensure 

a sufficient supply of energy and nutrients (Miller, 1979). Some benefits of an increased 

energy density by increasing the concentrate portion containing NFC have been reported and 

the additional energy might help the dairy cow to overcome the NEB at the onset of lactation, 
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especially when the voluntary feed intake is reduced (Rabelo et al., 2003). However, forage 

is an important source of crude fiber and cows’ diets should contain more than 18 % crude 

fiber of the DMI to ensure the stimulation of rumination and salivary secretion to buffer the 

effect of SCFA produced in the rumen (GfE, 2001; Santos, 2011). Thus, a certain amount of 

dietary fiber is required to avoid digestive disturbances such as ruminal acidosis, diarrhea, 

and displaced abomasum (Santos, 2011). 

Due to the limited capacity of the rumen and the increased energy requirements at the 

beginning of lactation, the energy density of the diet is an important criterion for the 

formulation of the ration. This chapter describes the biological responses to changes of 

dietary energy density mainly through alteration of the forage-to-concentrate ratio in the pre-

fresh and post-fresh transition diet of dairy cows. 

 

1.3.3.1 Effects of modulating the energy density in the pre-fresh diet 

Three weeks before calving, dairy cows experience a transient decrease in DMI by up to 

30 % and the energy requirements to support the gravid uterus growth increase by about 

20 % during this time. Therefore, increasing the energy density of the pre-fresh transition 

diet may help to maintain energy intake and to rectify the imbalance between energy 

requirements and dietary energy intake p.p. (Ingvartsen and Andersen, 2000; Huang et al., 

2014). At least in multiparous cows, an increased energy density of the diets fed resulted in 

an increase of energy balance in the late a.p. period until the day of calving (Hayirli et al., 

2002; Rabelo et al., 2003). Likewise, the magnitude of increase in energy intake energy due 

to higher energy density during the a.p. period is higher for multiparous than for primiparous 

animals (Rabelo et al., 2003). As reported in several studies, the more balanced the energy 

status is in animals fed a diet with higher energy density, the higher plasma glucose (Minor 

et al., 1998; Rabelo et al., 2005) and insulin concentrations that are reached (Holcomb et al., 

2001; Rabelo et al., 2005). Less NEB also results in lower NEFA concentrations (Minor et 

al., 1998; Vandehaar et al., 1999; Holcomb et al., 2001; Doepel et al., 2002; Rabelo et al., 

2005). In particular, the lower plasma NEFA concentrations indicate less mobilization of AT 

in animals fed a diet with increased energy density (Rabelo et al., 2005). The effects of the 

energy density on the hepatic content of TAG are not equivocally reported: In some studies 

no differences between animals fed a diet with high energy density versus animals fed a diet 

with lower energy density of liver TAG were reported (Minor et al., 1998; Rabelo et al., 

2005). Some studies reported reduced liver TAG after calving in response to an increased 

energy density of the a.p. diet (Vandehaar et al., 1999; Doepel et al., 2002). However, the 
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energy density of the diet fed during the first 3 weeks after calving seems to have the biggest 

impact on the metabolic status p.p., whereas the a.p. diet’s energy density has only minor 

effects on the p.p. metabolic status (Vandehaar et al., 1999; Dann et al., 2005; Rabelo et al., 

2005).  

On the other hand, excessive overfeeding of cows during the last month of gestation has 

negative effects on the performance in the following lactation. Overconditioning of dairy 

cows (150 % versus 100 % energy consumption of the calculated energy requirements) with 

the diet fed from 3 weeks before the anticipated calving date up to parturition resulted in 

decreased milk yield, milk lactose content and DMI in the first 4 weeks p.p., whereas the 

average EB remained unaffected in this period (Huang et al., 2014). In contrast, in another 

study cows fed a diet containing 150 % of the required energy had greater milk yield and a 

greater milk fat percentage, but also a lower DMI and milk lactose during the first 3 weeks 

of lactation than cows fed diets containing 100 % or 80 % of the required energy (Janovick 

and Drackley, 2010). Additionally, in overfed cows a greater energy deficit in the first weeks 

p.p. has been observed compared to cows limited to 100 % of energy requirements in the dry 

period, whereas the effects diminished as lactation proceeded (Dann et al., 2006; Janovick 

and Drackley, 2010). An explanation for the more severe NEB could be the sharp decrease 

of DMI shortly before parturition in the overconditioned animals (Dann et al., 2006; 

Janovick and Drackley, 2010). At the onset of lactation, the incidence of hyperketonemia is 

greater in cows fed a diet exceeding energy requirements than in cows fed a controlled-

energy diet during the dry period (Mann et al., 2015). When cows consume more than 150 % 

of the calculated energy requirements provided by a diet with high energy density in the pre-

fresh period the reproductive performance also declines, as reflected by a longer time interval 

between parturition and conception (Cardoso et al., 2013).  

Beside the effect of different forage:concentrate ratios, an increased energy density of the 

a.p. diet through supplementation with plant oil (1.6 % of DMI as calcium salts of soybean 

oil versus no fatty acid supplement) decreased the DMI 3 weeks before calving (Karimian 

et al., 2015). Controversially, an increased diet energy density for the last 4 weeks prior to 

calving by supplementation with 6.5 % fatty acids compared to 3.3 % fatty acids based on 

DMI to cows’ diet had no effect on a.p. DMI, body weight, glucose and NEFA 

concentrations (Afzalzadeh et al., 2010). 

In summary, several studies have investigated the potential benefits (e.g. improved 

metabolic status p.p., reduced incidence of subclinical ketosis and improved reproductive 

performance) of consuming an energy-controlled diet that meets and does not exceed the 
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energy requirements during the 3 weeks before calving (Drackley, 1999; Dann et al., 2005; 

Janovick et al., 2011; Mann et al., 2015). However, feeding trials investigating the effect of 

the energy density of the pre-fresh diet on dairy cows provide inconsistent results due to 

different total energy consumption relative to their calculated energy requirements. 

Additionally, studies differ in the chosen strategy to enhance the energy density, e.g. an 

increased NFC portion in the diet or the supplementation of fatty acids to the diet. Further 

research is needed to clarify the discrepancy between the different studies. 

 

1.3.3.2 Effects of modulating the energy density in the post-fresh diet 

In common practice, cows are usually fed a diet containing smaller forage portions after 

calving for 3 to 4 weeks (Rabelo et al., 2003). During the first 3 weeks of lactation, a higher 

DMI, energy intake and milk yield have been observed when feeding a complete diet 

containing a higher portion of concentrate than a diet containing a lower portion of 

concentrate with separate feeding of concentrate and forage (Ingvartsen et al., 2001). An 

increased dietary energy density by increasing the portion of NFC (47 % versus 41 % NFC 

based on DM) immediately after calving also resulted in a higher energy intake and an 

increased rate of milk production compared to cows fed a diet with lower energy density 

(Rabelo et al., 2003). When changing over the diet of all cows to a diet high in energy density 

after 3 weeks of lactation, the differences in milk production and energy intake between the 

high and low energy density group disappeared (Rabelo et al., 2003). In addition, animals 

fed a diet with higher energy density had lower ruminal pH values and higher ruminal 

propionate concentrations in the third week of lactation (Rabelo et al., 2003). The animals 

fed with the diet higher in energy density had higher circulating glucose and insulin 

concentrations during the first 3 weeks of lactation, maybe due to the higher ruminal 

concentrations of propionate, a glucogenic precursor and a potent insulin secretagogue, that 

were observed, as suggested by Rabelo et al. (2005). With regard to hepatic lipid metabolism, 

the cows fed a diet with higher energy density for the first 3 weeks of lactation had lower 

hepatic TAG and lower blood BHBA concentrations than the cows fed a diet lower in energy 

density, whereas the blood concentrations of NEFA did not differ between the two groups 

(Rabelo et al., 2005).  

On the other hand, an increased energy density of the p.p. diet by supplementation with 

soybean oil (1.7 % of calcium salts of soybean oil based on DM in the first 3 weeks of 

lactation versus no supplementation of fatty acids) decreased the DMI and the net energy 

intake and thus deteriorated the NEB in the animals receiving a diet supplemented with 
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soybean oil (Karimian et al., 2015). Moreover, the animals fed a diet supplemented with 

soybean oil 3 weeks after calving had higher plasma TAG concentrations, likely as a result 

of higher hepatic TAG production due to an increased absorption of fatty acids, compared 

to the animals fed a diet supplemented without fatty acids during this time (Karimian et al., 

2015).  

Discrepancies between studies may result from differences in the energy level of the diet, 

the digestibility of the dietary components and differences in the strategies chosen for 

increasing the energy density (Karimian et al., 2015). The effects of different dietary energy 

sources have been described for dairy cows (van Knegsel et al., 2005; van Knegsel et al., 

2007b), in particular the effect of lipogenic (diet with a high fiber and/or fat content) versus 

glucogenic (diet with a high starch/NFC content) diets. Lipogenic nutrients originate from 

the microbial fermentation of fiber in the rumen mainly to acetate and butyrate, or from fatty 

acids (van Knegsel et al., 2007b). In contrast, glucogenic nutrients originate from starch that 

has escaped rumen degradation or gluconeogenesis and from propionate, as a major 

precursor for gluconeogenesis (van Knegsel et al., 2007b).  

Several studies reported an improved EB of dairy cows in early lactation when fed a more 

glucogenic ration compared with an isocaloric, more lipogenic ration, as reflected by a 

higher calculated EB, lower plasma BHBA and NEFA concentrations as well as lower 

hepatic TAG content (van Knegsel et al., 2007b; van Knegsel et al., 2014; Chen et al., 2015). 

A possible reason for the improved EB in the transition period in response to a more 

glucogenic diet could be the reduced milk fat content and thus a reduced energy output via 

milk (van Knegsel et al., 2007a; van Knegsel et al., 2014). The contrasting results of studies 

increasing the energy density through higher portions of NFC in the ration (Rabelo et al., 

2003; Rabelo et al., 2005) and those supplementing fatty acids (Karimian et al., 2015) are 

likely due to the fate (glucogenic or lipogenic) of the nutrients contributing to the dietary 

energy. 
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2 Objectives 

As mentioned in the introduction, less is known about the regulation of the aforementioned 

genes expressing the receptors involved in nutrient and metabolic sensing in the AT of dairy 

cattle. In particular, the AT of dairy cattle at the onset of lactation can offer special insights 

into the expressional regulation of these receptors in response to a state of NEB, in which 

AT is mobilized to adapt to the high energy demands of milk production. However, AT from 

different sites, e.g. SC and VC, may respond differently to the metabolic and endocrine 

changes related to the onset of lactation. Thus, this thesis aimed: 

1) to study the expression of selected GPCR involved in nutrient sensing (FFAR 1, 2 

and 3 and HCAR2) in the AT of dairy cattle from late pregnancy up to the entire 

following lactation cycle (with special emphasis on the transition period), and 

2) to compare the expression of these genes in AT from different SC and VC locations. 

 

In modern dairy cattle husbandry, the welfare of the animals is of special interest and to 

minimize the incidence of diseases in the transition period due to metabolic stress, different 

nutritional strategies are used in practice, e.g. feeding of nutritional supplements or 

increasing the energy density of the post-fresh diet. This thesis also aimed to investigate 

whether there is an effect of 

3) supplementing 100 g/d of rumen-protected CLA (1:1 mixture of cis-9,trans-11 and 

trans-10,cis-12) to the animals’ diet from d 1 up to d 182 p.p., or  

4) supplementing 24 g/d of non-rumen-protected NA to animals’ diet from d 1 to d 21 

p.p., or 

5) feeding with diets with different energy density (diet with a 60:40 

concentrate:roughage ratio versus diet with a 30:70 concentrate:roughage ratio on a 

DM basis) from d 1 to d 21 p.p., on the expression of FFAR1, 2 and 3 and HCAR2 in 

SC and VC AT of dairy cattle. 

 

Adipose tissue, as the major energy store, plays a central role in the regulation of metabolism 

at the onset of lactation. Therefore, understanding the expressional regulation of the GPCR 

investigated herein that are involved in nutrient and metabolic sensing under dynamic 

physiological changes is highly relevant. 
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Abstract 

The free fatty acid receptor FFA1, FFA2, FFA3 and hydroxy-carboxylic acid receptor 

(HCA)2 are G protein-coupled receptors, acting as energy and metabolic sensors. Herein, we 

characterized the tissue-specific mRNA abundance of genes encoding for these receptors at 

different stages of lactation. In addition, potential effects of supplementation with or without 

conjugated linoleic acids (CLA) were tested. Tissues from pluriparous cows (subcutaneous 

adipose tissue [SAT] and liver) and from primiparous cows (3 SAT locations, 3 visceral 

adipose tissues, liver, mammary gland and skeletal muscle) were used from 2 separate trials. 

In primiparous cows, the mRNA abundance of all receptors (FFA3 was not detectable by the 

applied protocol in muscle and udder) was lowest in muscle (P < 0.05). With exception of 

FFA1, gene expression of the investigated receptors was higher in adipose tissue than in the 

non-adipose tissue. Expression of FFA1 in liver (P < 0.03), of FFA2 in SAT (P < 0.01) and 

HCA2 in SAT (P < 0.01) from pluriparous cows changed during the observation period (days 

-21 to 252 relative to parturition). The correlation between mRNA abundance of HCA2 and 

peroxisome proliferator-activated receptor gamma (PPARG) and likewise PPARG2 

(P < 0.01) in SAT indicates a link between HCA2 and PPARG. Differences in receptor 

mRNA abundance between the CLA-fed and the control animals were scarce and limited to 

HCA2 and FFA1 in 1 and 2 time points, respectively (less hepatic HCA2 mRNA in CLA-fed 

pluriparous cows and greater FFA1 mRNA abundance in 2 visceral adipose depots in CLA-

treated primiparous cows). In view of metabolic changes occurring during the different 

phases of lactation, in particular, the altered concentrations of nonesterified fatty acids and 

β-hydroxybutyrate acting as receptor ligands, the longitudinal tissue specific 

characterization provided herein allows a first insight into the regulation of these receptors 

at gene expression level.  

 

Keywords: cow, lactation, transition period, free fatty acid receptor, hydroxy-carboxylic 

acid receptor, conjugated linoleic acid 
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Introduction 

Lactation, as a highly successful reproductive strategy of mammalian species, requires 

partitioning of nutrients toward the mammary gland. Almost all mammals undergo a period 

of negative energy balance at the onset of lactation [1]; in dairy cows selected for high milk 

yields, the extent of the negative energy balance is particularly pronounced and may last for 

several weeks [2]. To meet the energy requirements for milk production, body reserves, 

mainly fat, need to be mobilized because the voluntary feed intake does not increase as fast 

as does milk production. In early lactating cows, lipolysis ensures the release of nonesterified 

fatty acids (NEFA) from adipose tissue (AT), which can then be used by other organs [3]. In 

this context, we herein considered particularly G protein–coupled receptors (GPR) whose 

activation by nutrients or is related to the secretion of hormones that are involved in 

metabolic regulation including lipolysis. A group of free fatty acid receptors, including 

FFA1, FFA2, and FFA3 previously known as GPR40, GPR43, and GPR41, respectively, are 

receptors for free fatty acids (FFAs) and enable FFAs to act as signal molecules [4]. Indeed 

these receptors share structural homology, but they differ concerning their agonists and 

physiological effects.Figure 1summarizes the different actions of the ligands via their 

corresponding receptors FFA1/2/3 and hydroxy-carboxylic acid receptor (HCA2). FFA1 is a 

target for medium and long-chain fatty acids, whereby saturated and unsaturated FFAs are 

able to activate this receptor [5,6]. Activation of FFA1 amplifies glucose-stimulated insulin 

secretion (GSIS) and FFA1 is most abundant in insulin-producing pancreaticb-cells and is 

also expressed in other tissues. In contrast, FFA2 and 3 are both activated by short chain 

fatty acids with unequal affinities for ligands with different carbon chain lengths [4]. In 

adipocytes, activation of FFA2 has an inhibitory effect on lipolysis [7] and FFA3 activation 

stimulates leptin secretion [8]. Recently, Wang et al [9] identified the genes encoding for 

FFA2/3 on the bovine genome. The HCA2 (previously termed GPR109A) is activated by 

niacin and b-hydroxybutyrate (BHB) was identified as an endogenous ligand of HCA2. 

Besides its function as metabolic sensor suppressing lipolysis during starvation, HCA2 is 

also an important target for a group of antilipolytic drugs and particularly expressed in 

adipocytes [10,11]. Studies in cell culture and rodents are indicating that conjugated linoleic 

acids (CLA) act as lipolytic agent [12]. However, the CLA effects in lactating cows are not 

entirely clarified yet [13]. Among others CLA is an agonist for FFA1, whereby both CLA 

isomers cis-9,trans-11 and the trans-10,cis-12 were found to activate FFA1 [14]. 

We hypothesized that the FFAs receptor and HCA2 are involved in the regulation of lipolysis 

and energy partitioning in dairy cows and that the mRNA expression of these receptors may 
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change depending on the metabolic changes occurring during the lactation cycle in a tissue-

specific manner. Using biopsies from liver and subcutaneous fat of pluriparous cows, we 

aimed to characterize the longitudinal changes from 3 week antepartum until the 36th week 

of lactation; for assessing the target receptor mRNA in additional tissues, in particular 

visceral fat depots, samples were obtained from primiparous cows that were slaughtered on 

days 1, 42, or 105 of lactation. In view of CLA being able to activate FFA1, we also aimed 

to test whether dietary supplementation with CLA might affect the mRNA expression of 

FFA1 but also of FFA2, FFA3, and HCA2 in a lactation state-specific manner. 

 

Materials and Methods 

Animals, sampling and treatments 

Two trials were conducted at the experimental station of the Institute of Animal Nutrition, 

Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany, according to the European 

Community regulations concerning the protection of experimental animals. Authorization 

for both experiments was given by the Lower Saxony State Office for Consumer Protection 

and Food Safety (LAVES), Oldenburg, Germany (File Numbers 33.14.42502-04-071/07 and 

33.11.42502-04-071/07). In both trials, cows were fed a partial mixed ration for ad libitum 

consumption consisting of 37 % concentrate and 63 % silage based on dry matter content 

during the treatment period. In addition, 3.5 kg concentrate in trial 1 and 4 kg concentrate in 

trial 2 based on dry matter content were provided by computerized concentrate feeding 

stations (RIC; Insentec, B.V., Marknesse, Netherlands) in pelleted form. Supplemental, 

rumen-protected CLA (Lutrell pure; BASF SE, Ludwigshafen, Germany) were added to the 

pelleted concentrate provided by the concentrate station, containing 12 % each of the cis-

9,trans-11 and the trans-10,cis-12 isomer. Besides CLA, the supplement contained stearic, 

palmitic, and oleic acids. The concentrate fed to the control group contained a rumen-

protected fat supplement (Silafat; BASF SE) in which CLA were substituted by stearic acid. 

Both supplements were fed at a level of 100 g/d during treatment periods. Water was 

available ad libitum. In both trials, cows were fed according to the recommendations of the 

German Society of Nutrition Physiology [15]. The cows were housed in group pens 

according to their feeding group. More details about trial 1 are published by Pappritz et al 

[16] and about trial 2 by von Soosten et al [17]. 
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Trial 1  

Pluriparous German Holstein cows (n = 21) were divided into a CLA (n = 11) and a control 

group (n = 10) at the day of calving. The respective supplements were fed from day 1 until 

day 182 postpartum (p.p.). From both feeding groups, biopsies were collected from 

subcutaneous AT (SAT; tail head fat) and from liver at days -21, 21, 105, 196, and 252 

relative to calving. 

 

Trial 2  

From 25 primiparous German Holstein cows, 5 animals were slaughtered at day 1 p.p. and 

the remaining animals were allocated randomly to either CLA or control fat supplement 

starting from day 1 p.p. Five cows per group were slaughtered at days 42 and 105 p.p. 

Samples were collected from 3 visceral adipose tissues (VAT; omental, mesenterial, and 

retroperitoneal), 3 SAT (tail head, withers, and sternum), liver, Musculus semitendinosus, 

and mammary gland parenchyma after slaughter. The tissue samples from both trials were 

snap-frozen in liquid nitrogen and stored at -80°C until further processed for RNA 

extraction. 

 

Determination of body condition score and back fat thickness, blood collection, analysis of 

NEFA and BHB 

Body condition score and back fat thickness recordings, and blood sampling were assembled 

on the same days as the biopsies. As described earlier [16], body condition score of each 

animal was estimated using a 5-point system [18], using the average of two scores from 

different persons as assigned value. Ultrasonic measuring point of back fat thickness from 

each cow was at a line between the upper range of tuber coxae and tuber ischiadicum [19]. 

NEFA and BHB were measured in heparin plasma using an automatic analyzer (Cobas Mira 

Plus System from Roche Diagnostica Ltd, Basel, Switzerland) with the respective test kits 

(NEFA: HR(2) R1+R2 Set, WAKO Chemicals GmbH, Neuss, Germany; BHB: RANBUT, 

RB 1008, Randox Laboratories GmbH, Wülfrath, Germany). 

 

Relative quantification of mRNA 

The preparation of the samples including RNA extraction and complementary DNA (cDNA) 

synthesis are described in detail by Saremi et al [20]. The sequences of the primers used and 

their required conditions for quantitative PCR are provided in Table 1. All polymerase chain 

reaction products were confirmed by sequencing. Relative quantification of the target genes 
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using efficiency corrected data was performed with standard curves diluted from cDNA 

except in case of FFA3 in trial 2, where a dilution series based on purified amplicon was 

used. Efficiency corrected data were used for analysis. The reaction was performed in an 

Mx3000P (Stratagene, Amsterdam, the Netherlands and Agilent, Santa Clara, CA) with a 

total volume of 10 µL consisting of 2 µL cDNA (diluted 1:4) as template, 1 µL primer mix, 

2 µL water, and 5 µL SYBR Green JumpStart Taq Readymix (Sigma-Aldrich, Nümbrecht, 

Germany). 

 

Reference gene stability and data analysis in trial 1 

To determine the most stably expressed genes for subsequent data normalization, a set of 

seven genes was tested separately for each tissue and their stability was evaluated with 

geNorm [21]. As final reference genes (RG), low density lipoprotein receptor–related protein 

10 (LRP10), glyceraldehyde-phosphate-dehydrogenase (GAPDH), and RNA polymerase II 

(POLR2A) for SAT were used; for liver, eukaryotic translation initiation factor 3, subunit K 

(EIF3K), LRP10, and POLR2A appeared as the most stable genes [20]. 

 

Reference gene stability and data analysis in trial 2 

The estimation of the RG was performed with qBASEplus 2.0 (Biogazelle, Ghent, Belgium). 

Dependent of tissue or tissue combinations, a set of RG with the highest stability in target 

tissue(s) was selected for normalization. All subsequent calculations and data quality 

controls were done based on this software [22]. The details about the final RG in trial 2 are 

provided by Saremi et al [23]. Data are presented as ratios of the mRNA abundance of the 

genes of interest and the geometric mean of the corresponding RG. 

 

Statistical analyses 

The statistical analyses were performed with the software package SPSS 20.0 (SPSS Inc, 

Chicago, IL). Statistical significance was set at P ≤ 0.05. In trial 1, we used Mann-Whitney 

U test for comparing the control vs the CLA group and Wilcoxon signed-rank test followed 

by Bonferroni correction to examine time-related changes. For correlation studies, Spearman 

rank correlation coefficient was calculated. In trial 2, the general linear model, with fixed 

effects for treatment, date, and the respective interaction were applied. In case of nonnormal 

distribution and inhomogeneous variances, nonparametric tests (Kruskal-Wallis or Mann-

Whitney U) were used. 
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Results 

Trial 1 

The mRNA expression results from trial 1 are summarized in Figure 2. All significant 

correlation coefficients (P < 0.01) from the correlation studies in trial 1 are listed in Table 

2. For all 3 genes measured in trial 1, the expression profiles between SAT and liver differed. 

The mRNA abundance of FFA1 in SAT showed no time-related changes during the lactation 

cycle. In contrast, a time effect with higher FFA1 mRNA abundance on 21 d before calving 

in comparison with 21 d after calving (P < 0.03) was observed in liver. The FFA2 mRNA 

abundance in SAT was higher at day 21 in comparison with day 105 after calving (P < 0.01). 

In liver, the mRNA abundance of FFA2 remained unchanged during lactation. The mRNA 

abundance of FFA3 in samples of this trial was not quantifiable. In SAT tissue, a time effect 

was evident with decreasing mRNA abundance of HCA2 from 21 d before compared with 

day 105 (P < 0.01), 196 (P < 0.005), and 252 (P < 0.01) after parturition. The mRNA 

abundance of HCA2 in liver showed no changes over time and was affected by CLA only at 

one time point, that is, on day 105 p.p., the mRNA abundance of HCA2 was less in CLA 

treated cows than in the control cows. 

 

Trial 2 

In trial 2, the coefficients of correlation for comparisons between FFA1, FFA2, FFA3, and 

HCA2 mRNA abundance were not significant at the level of P < 0.01 (data not shown).Table 

3contains the mRNA abundances of FFA1, FFA2, FFA3, and HCA2 in different tissues of 

primiparous cows supplemented with or without CLA; in case of absence of differences 

between CLA and control group, pooled data were used. Because, time and treatment effects 

only occurred in few cases, we pooled the data across time and treatment to provide a 

comparison of the mRNA abundances in the different tissues tested (Fig. 3). In general, the 

abundances of the receptors were highest in the AT depots, with exception of FFA1 that had 

the highest abundance in liver. Comparing SAT and VAT for FFA2 and FFA3 expression 

revealed higher mRNA abundance in the VAT depots.  

For FFA1 mRNA abundance, we observed differences between CLA and control group in 

omental and retroperitoneal AT. In both tissues, greater values (P < 0.05) were recorded on 

day 105 and in retroperitoneal AT additionally on day 42 in the CLA group than in the 

control group. In the control group, the mRNA abundance in 2 VAT, that is, in mesenterial 

and retroperitoneal AT, showed time-related changes. The highest mRNA abundance of 

FFA1 was found in liver and the lowest in muscle. Among all AT, the FFA1 mRNA 
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abundance was highest in SAT from withers. In the mammary gland, FFA1 mRNA was not 

detectable with the protocol used herein. 

Time-related changes in FFA2 mRNA abundance occurred in SAT from withers with lower 

mRNA abundance on day 1 in comparison with day 105. The mRNA abundance of FFA2 was 

highest in mesenterial and second highest in omental AT, both belonging to the VAT depots.  

We observed time effects in mesenterial, retroperitoneal AT, and SAT from withers with 

higher FFA3 mRNA abundance on day 1 vs day 105. In addition, the abundance in 

mesenterial AT and SAT from withers was higher on day 1 than on day 42. As mentioned 

before for trial 1 (SAT and liver), the mRNA encoding for FFA3 was also not quantifiable in 

liver, in mammary gland, and in muscle from trial 2 with the assay protocol we used. The 

FFA3 mRNA abundance was higher in the analyzed VAT, whereby retroperitoneal AT had 

the highest abundance. In SAT from sternum, the lowest values over all tissues were 

observed. In mammary gland and in liver, time-related changes were seen with higher HCA2 

mRNA abundance on day 1 in comparison with day 42 and 105 in mammary gland and an 

inverse time-effect in liver, respectively. The expression of HCA2 was higher in the analyzed 

AT than in the non-AT, with lowest HCA2 mRNA abundance in muscle. 

 

Discussion 

Regulation of FFA1, FFA2, and FFA3 

We observed the highest abundance of FFA1 mRNA in liver. Up to now, physiological roles 

of FFA1 are only shown in pancreatic β-cells and enteroendocrine cells. In both cell types, 

activation of FFA1 leads to stimulation of the GSIS by pancreatic β-cells, whereby in 

response to FFAs, enteroendocrine cells stimulate GSIS indirectly by modulating the 

secretion of incretin hormones [24,25]. Besides, it was shown that glucagon secretion is in 

part dependent on FFA1 activation [26,27]. In humans, the mRNA abundance is very low in 

liver compared with AT and muscle [28]. Based on this observation, we speculate that the 

high mRNA abundance we detected in liver might be related to the peculiarities of ruminant 

physiology in general or the specific adaptation to pregnancy and lactation. We could not 

confirm with our data that FFA1 mRNA is present in the bovine mammary gland as reported 

by Yonezawa et al [29]; this discrepancy is possibly due to the limited amount of total RNA 

used for cDNA synthesis in our protocol. 

It has already been reported that long-chain CLA isomers are able to activate FFA1 [14]. 

The abundance of the FFA1 receptor mRNA was increased by CLA treatment in trial 2, but 

this difference was limited to only 2 visceral AT depots (omental and retroperitoneal). A 
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study on primary cultured chicken hepatocytes provided evidence that linoleic acid increases 

FFA1 expression in vitro [30]. In these cells [30], it was shown that activation of FFA1 

stimulated PPARα,β,δ signaling, a mechanism which might be involved in the upregulation 

of FFA1 by CLA in the 2 visceral AT. 

As discussed before [4], shown also in cattle [9], and confirmed by our present data, the 

expression patterns of FFA2 are tissue specific. In addition, our data point to a regulation of 

the receptor mRNA during the peripartal period in SAT of tail head in trial 1 and in SAT of 

withers in primiparous cows in trial 2. Recent studies focusing on FFA2 demonstrate 

functions of this receptor in anti-inflammatory processes [31]. Functionality of bovine FFA2 

was demonstrated in vitro [9]. In dairy heifers propionate, one of the main ligands of FFA2 

induces granule release from neutrophils [32], but Yonezawa et al [33] were not able to 

confirm short-chain fatty acids signaling via FFA2 in contrast to FFA3 in bovine mammary 

epithelial cells. Therefore, mediation of short-chain fatty acids signaling in ruminants might 

be limited to specific tissues or cells and cannot be extended to all tissues. In mice, activation 

of FFA2 reduces lipolysis [34]. Therefore, the reduction of FFA2 mRNA from early to mid-

lactation might be related to the observation of increasing basal lipolysis in pluriparous dairy 

cattle throughout lactation [35,36]. Contrary to this, the primiparous animals from trial 2 had 

less FFA2 mRNA around parturition as compared with mid-lactation only in SAT from 

withers, pointing to differential gene regulation between different adipose depots. 

In contrast to previous studies [9], we detected FFA2 mRNA expression in bovine AT with 

greatest mRNA abundance in omental and the second highest in mesenterial AT. These AT 

are the only ones draining directly through the portal vein into the liver [37] and, therefore, 

these VAT may react more directly to stimulated lipolysis than SAT [38,39]. Thus, we 

assume that in consequence of lipolysis, AT derived metabolites of omental and mesenteric 

AT depots affect liver metabolism more potently than retroperitoneal AT and the SAT 

depots. The higher abundance of the FFA2 receptor mRNA, provided its translation to the 

functional protein, might be involved in limiting lipolysis especially from these 2 adipose 

depots. FFAs reduce hepatic insulin sensitivity as demonstrated in rats [40]. Therefore, the 

regulation of FFA2 expression might be important for mitigating the stimulated NEFA flux 

to the liver to support maintenance of insulin sensitivity. We observed lower mRNA 

expression of FFA2 in muscle vs liver, which has been reported in pigs before [41]. 

The FFA3 mRNA was present in all analyzed AT from trial 2. In humans, FFA3 expression 

was highest in AT [5]. However, obversefindings were also reported, that is absence of FFA3 

mRNA in human AT or adipocytes [7] or bovine AT [9]. The detection of FFA3 mRNA 
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substantiates former studies from our group demonstrating FFA3 mRNA in bovine SAT and 

in differentiated bovine preadipocytes [42,43]. The higher FFA3 abundance in VAT vs SAT 

in sheep previously reported from our group [44] was herein confirmed for dairy cattle. 

With this study we could not confirm the presence of FFA3 mRNA in mammary gland [29], 

which might be due to the assay as discussed for FFA1. Based on the greater FFA3 mRNA 

abundance in two VAT (mesenterial and retroperitoneal) and one SAT (withers) on day 1 

compared to day 105 after parturition, FFA3 seems to be down-regulated from early to mid-

lactation at least in discrete AT of primiparous cows.  

The correlation between FFA1 and FFA2 mRNA abundances in SAT suggests concordant 

regulation of these receptors expression at least in pluriparous cows. The positive correlation 

of FFA2 mRNA in SAT with plasma NEFA concentration might indicate transcriptional 

regulation resulting in a negative feedback mechanism to down-regulate lipolysis, which 

may help to fine-tune lipolysis throughout lactation. 

 

Regulation of HCA2 

We observed highest abundance of the HCA2 mRNA in AT which is different from 

Titgemeyer et al [45]. In their study, notably more HCA2 mRNA was observed in liver than 

in AT of steers. Nevertheless, these results were not supported by likewise measured HCA2 

protein abundance. We speculate that the differences between our results and the results of 

Titgemeyer et al [45] might be related to the different sex of the animals. However, similar 

to their results, we also found low abundance in muscle. Muscle, as a non-AT, is only of 

minor relevance in providing FFAs by lipolysis [46]. Generally, the lower HCA2 mRNA 

abundance in the analyzed non-AT vs the analyzed AT may argue for a relatively higher 

physiological relevance of this receptor in AT. However, the only time-related changes of 

HCA2 mRNA abundance in AT were observed in trial 1 with decreasing values from day 21 

to day 105 relative to parturition. This decrease might partly counteract the increase of the 

circulating concentrations of BHB, the endogenous ligand of HCA2 occurring during the 

transition from pregnancy to lactation and thus dampen the antilipolytic effects of BHB. 

The function of HCA2 in liver in which increasing mRNA abundance with time of lactation 

was observed (trial 2) is not entirely clarified yet. Li et al [47] provide first indications that 

HCA2 is involved in reduction of hepatic cholesterol release. However, cholesterogenesis in 

liver is less important in ruminants when compared with AT and the intestine as shown in 

goats [48]. De novo synthesis of cholesterol might be crucial for milk synthesis, yet the 
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expression of the liver synthesis machinery is not activated until week 2 p.p.[49]and the 

functional interrelationship with hepatic HCA2 expression remains to be further elucidated. 

Lemor et al [42] already reported a trend for decrease of HCA2 mRNA in SAT during the 

transition from late pregnancy to early lactation. The present study supports decreasing 

values from late pregnancy to mid and late lactation. This corroborates that HCA2 with its 

lipolysis adjusting impact seems to be relevant during the considered period, at least in SAT. 

Correlations between HCA2 and peroxisome proliferator–activated receptor gamma 

(PPARG) mRNA abundance have been reported for murine epididymal AT recently [50]. 

Activation of the nuclear receptor PPARG improves, for example, insulin sensitivity and 

promotes AT differentiation [51]. Jeninga et al [52] provided evidence that PPARG directly 

regulates HCA2 gene expression in murine adipocytes. Our findings suggest comparable 

regulation in the bovine [20]. The stronger positive correlation between PPARG and HCA2 

in SAT vs liver is in support of PPARG having a greater impact on the regulatory mechanism 

of the anti-lipolytic receptor HCA2 in AT than in non-AT in dairy cows. The PPARG2 

isoform is most abundant in adipocytes [53] and we also observed high correlation between 

PPARG2 and HCA2 mRNA abundance in SAT; we thus assume that the regulatory link also 

applies for the PPARG2 isoform. 

 

Conclusion 

The present longitudinal and tissue-specific characterization of FFA1/2/3 and HCA2 mRNA 

expression in dairy cows provides a first insight into their regulation at the level of 

transcription throughout lactation and the relation with the concomitant metabolic and 

hormonal changes, in particular with regard to fat metabolism. The correlation established 

between PPARG likewise PPARG2 and HCA2 points to a functional interplay particularly 

in AT. Nevertheless, our understanding of the physiological roles of FFA1/2/3 and HCA2 in 

lactating cows but also in other physiological states and other species is just at the beginning. 
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Table 1 
Sequences of the primer and real-time polymerase chain reaction conditions used for quantification of the target genes 

Gene Forward Primer Sequence (5'-3') 
Reverse Primer Sequence (5'-3') Acc. no. a bp b Con. (nM) c Mean Cq d Annealing 

(s/°C) e Elongation  (s) f 

FFA1g AATTCCACCAGCTCCTTGGGCAT 
GGCCGCCTTTAGCTTCCGTCT 

XM_870502 213 800 31.4 60/60 60 

FFA2h CGCTCCTTAATTTCCTGCTG 
CAAAGGACCTGCGTACGACT 

NM_001163784 174 800 29.9 60/60 60 

FFA3i ACCTGATGGCCCTGGTG 
GGACGTGAGATAGATGGTGG 

NM_001145233 215 1200 28.7 40/60 30 

HCA2
j GGACAGCGGGCATCATCTC 

CCAGCGGAAGGCATCACAG 
XM_002701703 140 200 27.6 30/61 30 

PPARGk AGGATGGGGTCCTCATATCC 
GCGTTGAACTTCACAGCAAA 

Y12420 121 800 23.6 60/61 60 

PPARG2l ATTGGTGCGTTCCCAAGTTT 
GGCCAGTTCCGTTCAAAGAA 

Y12420 57 400 
22.0 

60/60 60 

a NCBI Accession Number. 
b Base pairs. 
c Concentrations for each primer. 
d Mean quantification cycle from trial 1 and 2 (except FFA3 which was not quantifiable in trial 1). 
e Initial denaturation for 10 min at 90°C; denaturat ion for 30 s at 95°C. 
f Extension at 72°C. 
g Free fatty acid receptor 1. 
h Free fatty acid receptor 2 [43]. 
i Free fatty acid receptor 3. 
j Hydroxy-carboxylic acid receptor 2 [43]. 
k Peroxisome proliferator-activated receptor gamma [43]. 
l Peroxisome proliferator-activated receptor gamma 2 [20]. 
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Table 2  
Coefficients of correlation (Spearman) for comparisons between FFA1, FFA2, and 
HCA2 mRNA abundance in SAT and liver, PPARG/2 mRNA abundance in SAT as well 
as for comparisons of receptors mRNA with body condition and blood variables in 
pluriparous cows (trial 1) 

Tissue   SAT  Liver 

 Gene FFA1 FFA2 HCA2  FFA1 FFA2 HCA2 

S
A

T
 

FFA1 --- 0.478 0.323  --- ns ns 

FFA2  --- 0.314   --- ns 

HCA2   ---    --- 

PPARGa ns ns 0.782  ns ns ns 

PPARG2a ns ns 0.712  ns ns 0.294  

Li
ve

r 

FFA1 ---  ns  0.350  --- 0.456 ns 

FFA2  ---  ns   --- 0.382 

HCA2   ---    --- 

PPARGa ns ns ns  ns ns 0.319 

BCSa ns ns 0.435  ns ns ns 

BFTa ns ns 0.429  ns ns ns 

NEFAa 0.340 0.300 ns  ns ns ns 

BHBa ns ns ns  ns ns ns 

Abbreviations: BCS, body condition score; BFT, back fat thickness; BHB, β-hydroxybutyrate; 
FFA, free fatty acid receptor; HCA, hydroxy-carboxylic acid receptor; ns, not significant; PPARG, 
peroxisome proliferator–activated receptor gamma; NEFA, non-esterified fatty acids; SAT, 
subcutaneous adipose tissue. 
The table shows Spearman correlation coefficients (P < 0.01). Pooled data from the control 
group, the group supplemented with CLA, and all sampling dates were used for analysis. 
a Data for PPARG, PPARG2, BCS, BFT, NEFA, and BHB were published earlier [16,20]. 
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Table 3 
FFA1, FFA2, FFA3 and HCA2 mRNA abundance in different tissues of primiparous cows (trial 2) supplemented with or without CLA and 
sampled at day 1, 42 or 105 after parturition 

    D TR Tissue mRNA abundance (A.U.) 
  VAT 

omental 
VAT  
mesenterial 

VAT  
retroperitoneal 

SAT  
tail head 

SAT  
withers 

SAT 
sternum 

Muscle Mammary 
gland 
tissue 

Liver 

FFA1           

    1 --- 0.96±0.40 0.56±0.05a 0.68±0.16ab 0.82±0.24 1.04±0.17 0.59±0.38 0.98±0.24 ND 0.96±0. 31 
    42 CON 2.37±0.69 1.40±0.12b 1.27±0.22a 1.50±0.52 2.33±0.55 1.58±0.48 1.13±0.31 1.04±0.34 
 CLA 1.38±0.29 1.18±0.30 1.89±0.37 1.32±0.39 1.91±0.42 1.00±0.34 0.72±0.06 1.14±0.30 
    105 CON 0.80±0.26 0.92±0.38ab 0.57±0.19b 0.84±0.35 2.04±0.92 2.24±0.61 1.46±0.35 1.19±0.18 
 CLA 1.77±0.09 0.90±0.19 1.45±0.33 1.20±0.34 2.44±0.60 0.66±0.22 1.20±0.43 2.00±0.25 

FFA2           

    1 --- 6.22±1.42 2.48±0.55 1.23±0.39 0.52±0.12 0 .40±0.17a 0.29±0.08 0.58±0.15 2.47±2.10 1.67±0.99 
    42 P 6.13±1.52 2.76±0.46 0.81±0.18 0.96±0.17 0.90±0.26ab 0.72±0.20 0.79±0.21 1.22±0.29 1.11±0.15 
    105 P 3.19±0.81 2.01±0.39 0.52±0.12 0.70±0.16 1 .06±0.21b 0.76±0.12 1.49±0.24 1.78±0.52 1.20±0.20 

FFA3           

    1 --- 1.96±0.61 3.16±0.68a 5.33±0.79a 1.70±0.47 1.47±0.22a 0.61±0.11 ND ND ND 
    42 P 1.77±0.46 1.77±0.19b 4.80±0.67a 0.97±0.26 0.75±0.20b 0.45±0.09 
    105 P 1.10±0.47 0.84±0.22b 1.73±0.41b 0.93±0.34 0.40±0.09b 0.35±0.16 

HCA2           

    1 --- 0.75±0.15 1.09±0.30 1.67±0.41 1.66±0.20 3 .22±0.89 0.97±0.18 1.47±0.35 5.98±3.09 a 0.43±0.12a 
    42 P 1.45±0.33 0.82±0.16 1.81±0.26 1.62±0.49 1.81±0.57 1.12±0.30 0.92±0.21 0.72±0.18 b 1.04±0.18b 
    105 P 1.02±0.27 0.97±0.21 1.81±0.29 1.43±0.23 2 .37±0.77 1.05±0.28 0.57±0.12 0.65±0.11 b 1.41±0.41b 
Abbreviations: CLA, CLA group; CON, control group; D, days relative to calving; FFA, free fatty acid receptor; HCA, hydroxy-carboxylic acid receptor; ND, not detectable; 
SAT, subcutaneous adipose tissue; TR, treatment; VAT, visceral adipose tissue; P, pooled data from both groups. 
The shown values are mean values (mean ± standard error of the mean). Significant differences (P < 0.05) between CON and CLA are depicted by bold values. If CLA 
and CON were not different, pooled data (P) are displayed. Significant differences between days per tissue are indicated by different superscript letters (P < 0.05). Data 
are normalized based on the geometric mean of Eukaryotic translation initiation factor 3 (EIF3K), Lipoprotein receptor–related protein 10 (LRP10), RNA polymerase II 
(POLR2A), Emerin (EMD), Marvel domain containing 1 (MARVELD1), and Hippocalcin-like 1 (HPCAL1) for each SAT and mesenterial VAT; EIF3K, LRP10, POLR2A, 
EMD, and MARVELD1 for omental and retroperitoneal VAT; HPCAL1, LRP10, POLR2A, EIF3K, glyceraldehyde-phosphate dehydrogenase (GAPDH) for liver; LRP10, 
EMD, POLR2A, EIF3K for muscle, and MARVELD1, EMD, LRP10, EIF3K, POLR2A, HPCAL1 for mammary gland tissue. 
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Fig. 1. Schematic model illustrating the presently known functions of the ligands via their 
corresponding receptors. BHB, b-hydroxybutyrate; CLA, conjugated linoleic acid; FFA, free 
fatty acids; FFA, free fatty acid receptor; GSIS, glucose-stimulated insulin secretion; HCA, 
hydroxy-carboxylic acid receptor; LCFA, long-chain fatty acids; MCFA, medium-chain 
fatty acids; SCFA, short-chain fatty acids. Adapted from Stoddart et al [4], Brown et al [5,6], 
Hong et al [7], Xiong et al [8], and Offermanns et al [11]. 
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Fig. 2. Longitudinal mRNA expression of FFA1/2 and HCA2 in SAT from tail head and liver 
from pluriparous cows (trial 1). Except for HCA2 mRNA abundance in liver, pooled data 
from control and CLA group is shown (means ± standard error of the mean) because no CLA 
effect was observed. Different letters indicate significant differences between the sampling 
dates (P < 0.05). CLA effects are defined using number sign for time-matched comparisons 
(P < 0.05). The dashed lines indicate the supplementation period (from day 1 to 182 after 
parturition). CON, control group; CLA, group supplemented with conjugated linoleic acids; 
FFA, free fatty acid receptor; HCA, hydroxy-carboxylic acid receptor; SAT, subcutaneous 
adipose tissue. 
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Fig. 3. Comparison of the mRNA abundance of FFA1/2/3 and HCA2 in different tissues of 
primiparous cows (trial 2). Data were pooled from all groups and sampling dates (means ± 
standard error of the mean). Significant differences between tissues are indicated by different 
letters. Data are normalized based on the geometric mean of Eukaryotic translation initiation 
factor 3 (EIF3K), Lipoprotein receptor–related protein 10 (LRP10), RNA polymerase II 
(POLR2A), and Hippocalcin-like 1 (HPCAL1) for each FFA2 and HCA2; EIF3K, LRP10, 
POLR2A, HPCAL1, and Emerin (EMD) for FFA1; EIF3K, LRP10, POLR2A, HPCAL1, 
EMD, and Marvel domain containing 1 for FFA3. FFA, free fatty acid receptor; HCA, 
hydroxy-carboxylic acid receptor; ND, not detectable; NQ, not quantifiable; SAT, 
subcutaneous adipose tissue; VAT, visceral adipose tissue. 
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Abstract 

We recently showed that the mRNA expression of genes encoding for specific nutrient 

sensing receptors, namely the free fatty acid receptors (FFAR) 1, 2, 3, and the 

hydroxycarboxylic acid receptor (HCAR) 2, undergo characteristic changes during the 

transition from late pregnancy to lactation in certain adipose tissues (AT) of dairy cows. We 

hypothesised that divergent energy intake achieved by feeding diets with either high or low 

portions of concentrate (60%v.30% concentrate on a dry matter basis) will alter the mRNA 

expression of FFAR 1, 2, 3, as well as HCAR2 in subcutaneous (SCAT) and retroperitoneal 

AT (RPAT) of dairy cows in the first 3 weeks postpartum (p.p.). For this purpose, 20 

multiparous German Holstein cows were allocated to either the high concentrate ration (HC, 

n=10) or the low concentrate ration (LC, n=10) from day 1 to 21 p.p. Serum samples and 

biopsies of SCAT (tail head) and RPAT (above the peritoneum) were obtained at day −21, 

1 and 21 relative to parturition. The mRNA abundances were measured by quantitative PCR. 

The concentrations of short-chain fatty acid (SCFA) in serum were measured by gas 

chromatography-flame ionisation detector. The FFAR1 and FFAR2 mRNA abundance in 

RPAT was higher at day −21 compared to day 1. At day 21 p.p. the FFAR2 mRNA 

abundance was 2.5-fold higher in RPAT of the LC animals compared to the HC cows. The 

FFAR3 mRNA abundance tended to lower values in SCAT of the LC group at day 21. The 

HCAR2 mRNA abundance was neither affected by time nor by feeding in both AT. On day 

21 p.p. the HC group had 1.7-fold greater serum concentrations of propionic acid and lower 

concentrations of acetic acid (trend: 1.2-fold lower) compared with the LC group. Positive 

correlations between the mRNA abundance of HCAR2 and peroxisome proliferator-

activated receptorγ-2 (PPARG2) indicate a link between HCAR2 and PPARG2 in both AT. 

We observed an inverse regulation of FFAR2 and FFAR3 expression over time and both 

receptors also showed an inverse mRNA abundance as induced by different portions of 

concentrate. Thus, indicating divergent nutrient sensing of both receptors in AT during the 

transition period. We propose that the different manifestation of negative EB in both groups 

at day 21 after parturition affect at least FFAR2 expression in RPAT. 

 

Keywords: transition period, bovine adipose tissue, metabolic sensing 
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Implications 

At the onset of lactation, the feed intake does not increase to the same extent as the energy 

requirements for milk synthesis resulting in a negative energy balance in high-yielding dairy 

cows. To cover the energy requirements of increasing milk synthesis, the mobilisation of 

energy from adipose tissue is crucial during the peripartal period. We studied the effects of 

two different concentrate portions in the feeding ration on the transcriptional regulation of 

four different nutrient sensing receptors, involved in adipose tissue metabolism. We used 

adipose tissue from a subcutaneous and a visceral localisation. The findings of our study 

may help to understand, in parts, how the energy density of the ration may affect the 

metabolism of adipose tissue due to the expression of the investigated receptors. 

 

Introduction 

One of the most challenging times for high-yielding dairy cows is the transition from late 

pregnancy to early lactation. The energy requirements in early lactation cannot be entirely 

met by voluntary feed intake and the animals therefore enter a state of negative energy 

balance (EB) during which lipolysis increases to provide non-esterified fatty acids (NEFA) 

from adipose tissue (AT) as energy substrates for other organs or precursors for milk fat 

synthesis (Drackley, 1999). In a previous study we observed differential expression of 

particular G protein-coupled receptors (GPCR) mRNAs, which are involved in energy and 

metabolic sensing, due to lactation induced changes in EB (Friedrichs et al., 2014). These 

GPCRs belong to the family of free fatty acid receptors (FFAR) 1, 2, and 3 (also known as 

GPCR40, GPCR43 and GPCR41, respectively). They enable free fatty acids (FFA), as their 

ligands, to act as signaling molecules (Stoddart et al., 2008). The FFAR1 is a target for 

saturated and unsaturated medium and long chain fatty acids (LCFA) (Brown et al., 2005). 

The FFAR1 is most abundant in insulin-producing pancreatic β-cells, but it is also expressed 

in other tissues; however, its physiological role in adipose is not clear. In contrast to FFAR1, 

the physiological functions of FFAR2 and FFAR3 have been identified and comprise an 

inhibition of lipolysis in adipocytes through activation of FFAR2 (Honget al., 2005) and 

increased leptin secretion by activation of FFAR3 (Xiong et al., 2004). The receptors FFAR2 

and FFAR3 are activated by short-chain fatty acids (SCFA). In cattle the affinity of FFAR2 

and FFAR3 for FFA is different to human or murine receptors with preference for FFA with 

a longer carbon backbone: FFAR2 displaying affinity C6 > C5 > C4 = C7 > C3 = C8 > C2 

= C9 and the bovine FFAR3 displays no affinity for C1 (Hudson et al., 2012). Besides 

serving as major substrates for energy production in ruminants, SCFA have various other 



Manuscript 2 66 
 

regulatory effects (Bergman, 1990). They may increase blood insulin and glucagon 

concentrations in ruminants (Harmon, 1992), regulate gene expression in vitro (Li et al., 

2007) and exert immune-modulatory effects; for example FFAR2 is involved in granule 

release from bovine neutrophils induced by propionate (Carretta et al., 2013). It is well 

documented that the energy density of the diet influences the microbial SCFA production in 

the rumen, for example a high energy content or high concentrate proportion in the diet 

increases the production of propionate (Rabelo et al., 2003). The hydroxycarboxylic acid 

receptor (HCAR) 2 (previously termed GPCR109A) is mainly expressed in adipocytes and 

can be activated by niacin and β-hydroxybutyrate (BHBA) as an endogenous ligand. Due to 

its function as metabolic sensor suppressing lipolysis during starvation, HCAR2 is an 

important target for a group of antilipolytic drugs (Offermanns et al., 2011). We recently 

reported that the HCAR2 ligand niacin stimulates the expression of HCAR2 in differentiated 

bovine preadipocytes in vitro (Kopp et al., 2014). Comparable to other mammalian species, 

the retroperitoneal AT (RPAT) from dairy cattle seems to have a higher lipolytic activity 

than subcutaneous AT (SCAT) due to the higher expression of hormone-sensitive lipase and 

the greater lipolytic response to adrenergic stimulation in RPAT (Locher et al., 2011; Kenéz 

et al., 2013). In dairy cattle two isoforms of the transcription factor peroxisome proliferator-

activated receptor γ (PPARG), namely PPARG and its isoform PPARG-2 were described 

(Sundvold et al., 1997). Both members of the nuclear-receptor family bind various fatty acids 

and their activation is associated with the improvement of insulin sensitivity by increasing 

glucose and fatty acid uptake. The isoform PPARG2 is the leading isoform in adipose tissue 

and is involved in the regulation of adipocyte differentiation (Hammarstedt et al., 2005; 

Tyagi et al., 2011). The mRNA abundance of PPARG in mice and of both receptors in SCAT 

of dairy cows were shown to be positively linked with HCAR2 (Wanders et al., 2012; 

Friedrichs et al., 2014). 

Therefore, we hypothesised that differing portions of concentrate in and niacin 

supplementation to the diet of dairy cattle in the first 3 weeks postpartum (p.p.) will alter the 

expression of metabolic sensing receptors in two adipose depots. In this study we describe 

the mRNA expression of genes encoding FFAR1, FFAR2, FFAR3 and HCAR2 in a SCAT 

and RPAT of cows in the transition period as influenced by time and the diet fed p.p.  
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Material and methods 

Animals, Feeding and Sample Collections 

This study was conducted at the experimental station of the Friedrich Loeffler Institute, 

Federal Research Institute for Animal Health, Braunschweig, Germany. All animal 

experiments were conducted according to the European Community regulations concerning 

the protection of experimental animals and were approved by the Lower Saxony state office 

for consumer protection and food safety (LAVES, Oldenburg, Germany). The experimental 

design has been described in detail elsewhere (Locheret al., 2011). Briefly, 20 multiparous 

pregnant German Holstein cows, dried off 8 weeks before calving, were fed according to the 

recommendations of the German Society of Nutrition Physiology (GfE, 2001). On day 1 p.p. 

one half of the cows (n=10) was allocated to either the high-concentrate (HC) group 

receiving a diet with a 60 : 40 concentrate-to-roughage ratio (on a dry matter (DM) basis) or 

the low-concentrate (LC) group receiving a diet with a 30 : 70 concentrate-to-roughage ratio. 

The HC diet comprised 24% and 16% and the LC diet 42% and 28% corn and grass silage, 

respectively. One half of each dietary group also received as part of the pelletized 

concentrate 24 g powdered niacin per day which contained at least 99.5% nicotinic acid 

(Lonza Ltd, Basel, Switzerland). All diets were fed individually as a total mixed ration. The 

detailed composition of the diet as well as nutrient, fiber, and energy content of the different 

feed ingredients fed p.p. is provided in Supplementary Table S1 and elsewhere (Locher et 

al., 2011). Milk yield was recorded daily by a milk meter (Lemmer-Fullwood GmbH, 

Lohmar, Germany) and milk composition was analysed twice a week by a milk analyser 

based on Fourier transform infrared spectroscopy (Milkoscan FT 6000; Foss Electric, 

Hillerød, Denmark). The individual DM intake was recorded by a computerised feeding 

system (Insentec BV, Marknesse, the Netherlands). Data for milk yield, milk composition 

and DM intake were pooled for each week of lactation. Energy balance was calculated as 

follows: EB = NEL intake – energy in milk – NEM (GfE, 2001). On day −21, 1, and 21 

relative to parturition, blood and AT samples were obtained. Blood samples were drawn 

from the jugular vein in the morning and centrifuged at 2000 × g for 10 min to separate 

serum and plasma. The AT samples were obtained by biopsy as described previously 

(Locher et al., 2011), whereby the SCAT samples were taken from the tail head region and 

the RPAT samples were taken directly above the peritoneum each time alternating from the 

left and right flank. The AT samples were snap-frozen in liquid nitrogen. The serum, plasma 

and AT samples were stored at −80°C until further processed. 
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Measurement of SCFA in serum 

The concentrations of serum SCFA were determined according to the method described by 

Kristensen (2000). Briefly, 450 µl plasma was treated an internal standard solution (50 µl 2-

ethyl butyrate, 75.45 µmol/10 ml), 700 µl 2-chloroethanol and 700 µl acetonitrile. Samples 

were centrifuged (15 min, 4°C, 3000 × g) and 1600 µl of the supernatant was combined with 

20 µl 0.5 N NaOH and 1600 µl heptane. After mixing for 30 s, the aqueous phase (1300 µl) 

was removed and treated with 10 µl 37% HCl, 100 µl pyridine and 50 µl 2-chloroethyl 

chloroformate. After 5 min at RT, the reaction mixture was extracted with 2500 µl H2O and 

100 µl chloroform and the organic phase was separated after centrifugation (3 min, RT, 

3000 × g). The organic phase was dried with Na2SO4 (15 mg) for 30 min and 1 µl injected 

into a gas chromatograph equipped with a flame ionisation detector (Series 17A; Shimadzu 

Corp., Kyoto, Japan). Separation was achieved on a free fatty acid phase column (length 

25 m, internal diameter 0.25 mm, particle diameter 0.25 μm) (Kristensen, 2000). 

 

Relative quantification of mRNA 

After homogenisation of the AT samples with the Precellys®24 system (peQLab 

Biotechnology, Erlangen, Germany), total RNA was extracted from each sample using 

Trizol (Invitrogen, Karlsruhe, Germany) with a subsequent DNase (Qiagen, Hilden, 

Germany) treatment in solution and purified using spin columns (RNeasy® Mini Kit, 

Qiagen, Hilden, Germany). From 1 µg total RNA a reverse transcription with RevertAidTM 

(Fermentas, St. Leon-Rot, Germany) in a Multicycler PTC 200 (MJ Research, Watertown, 

MA) was performed resulting in an 80 µl cDNA reaction volume. The real-time PCR mixes, 

with a total volume of 10 µl consisting of 2 µl cDNA (diluted 1 : 4) as template, 1 µl primer 

mix, 2 µl water and 5 µl SYBR Green JumpStart Taq Readymix (Sigma-Aldrich, 

Nümbrecht, Germany), were performed in an Mx3000P (Agilent, Santa Clara, CA, USA) in 

three replicates. The sequences of the primers used and the conditions used in qPCR are 

provided in Table 1. All PCR products were confirmed by sequencing. Relative 

quantification of the target genes using efficiency corrected data was performed with 

standard curves diluted from cDNA except in case of FFAR3, for which a dilution series 

based on the purified amplicon was used. The qPCR efficiency of the target genes are also 

provided separately in Table 1 and those of the reference genes were in the range from 98.3% 

to 103.1%. 
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Reference gene stability and data analysis 

To determine the most stably expressed genes for subsequent data normalisation, a set of 

seven genes was tested with qBASEplus 2.0 (Biogazelle, Ghent, Belgium) separately for each 

tissue and for both tissues combined. Based on the stability of their expression as final 

reference genes, low density lipoprotein receptor-related protein 10, RNA Polymerase II and 

emerin were used for RPAT and comparison of both tissues; for SCAT, marvel domain 

containing 1 was additionally used for normalisation. Data are presented as ratio of the 

mRNA abundance of the gene of interest and the geometric mean of the corresponding 

reference genes. The characteristics of the primers and their real-time PCR conditions used 

for the reference genes are described elsewhere (Saremi et al., 2012). 

 

Statistical analyses 

The statistical analyses were performed with the software package SPSS (version 21.0, SPSS 

Inc., Chicago, IL, USA). All data are presented as arithmetic means ± SEM, significance 

was set at P < 0.05 and a trend was noted when 0.05 < P < 0.10. Data were tested for normal 

distribution using the Kolmogorov–Smirnov test and homogeneity of variances was tested 

using the Levene’s test. Accordingly, the general linear model or Mann–Whitney U test was 

used for comparing the HC v. the LC group or the groups with and without niacin 

supplementation. To test for differences between the sampling dates, the ANOVA or the 

Wilcoxon signed-rank test followed by Bonferroni correction was used. Parametric testing 

was performed for FFAR1 mRNA abundance in RPAT and HCAR2 mRNA abundance in 

both tissues. For correlation analyses, the Spearman’s rank correlation coefficient (two-

tailed) was calculated.  

 

Results 

Temporal effects 

As shown in Figure 1, the mRNA abundance of FFAR1 and FFAR2 in SCAT remained 

unchanged during the transition period. In contrast, an effect of time with greater abundance 

of FFAR1 and FFAR2 mRNA on day −21 in comparison to day 1 relative to calving 

(P < 0.01) was observed in RPAT. The mRNA abundance of FFAR3 was lower at day −21 

compared to day 1 relative to calving in both tissues (SCAT: P < 0.05; RPAT: P < 0.05); in 

RPAT day −21 was also lower compared to day 21 p.p. (P < 0.05). The HCAR2 mRNA was 

neither affected by time nor by treatment. 
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At day 1 after parturition propionic acid, n-butyric acid, n-valeric acid, and n-caproic acid 

were detectable albeit at low levels in <50% of the samples. For these SCFA we compared 

only day −21 with day 21 relative to calving (Figure 2). Except for n-butyric acid and n-

valeric acid, all SCFA and total SCFA concentrations were lower on day −21 than on day 

21; acetic acid (P < 0.01) and total SCFA (P < 0.01) in serum were also higher at day 21 

compared with day 1 after parturition. The concentrations of n-butyric acid did not change 

with time and n-valeric acid was higher at the beginning compared to the end of the transition 

period (P < 0.05). Acetic acid formed the highest portion of total SCFA. 

 

Dietary effects 

In this study we found no effect of supplementing niacin on any of the variables investigated. 

For this reason, data of the subgroups (with or without niacin) were each pooled within the 

HC and the LC group for all further analyses. 

With the exception of FFAR2 in RPAT, we detected no differences between the HC and the 

LC group (Table 2); in RPAT the mRNA abundance of FFAR2 was greater in the LC animals 

than in the HC cows at day 21 relative to calving (P < 0.01). The abundance of FFAR3 

mRNA tended to lower values in SCAT of LC v. HC animals (P < 0.1). On day 21 after 

calving the LC group, compared to the HC group, had 1.7-fold lower serum concentrations 

of propionic acid (P < 0.01) and 1.2-fold higher concentrations of acetic acid serum as a 

trend (P < 0.01; Figure 2). In Table 3 the performance data and the concentrations of 

particular and total SCFA in serum from day 21 p.p. are listed separately for the LC and the 

HC group. 

 

Location effects 

When comparing both tissues, we observed a trend for a lower FFAR1 mRNA abundance in 

RPAT compared to SCAT at day 1 (P < 0.1) and 21 (P < 0.1) after parturition. The 

expression of FFAR2 was not different between SCAT and RPAT at the different sampling 

dates. In RPAT, FFAR3 mRNA abundance was greater compared to FFAR3 mRNA 

abundance in SCAT at day −21 relative to calving (P < 0.05). Also HCAR2 mRNA 

abundance was higher in RPAT compared to SCAT at day −21 (P < 0.05) and also at day 21 

(P < 0.05) relative to calving. 
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Results of the correlation studies 

As summarised in Table 4 (r values reported in the table), in SCAT the mRNA abundance 

of FFAR1 and FFAR2 was positively correlated (P < 0.01), but not in RPAT. In both AT the 

mRNA abundance of HCAR2 was positively correlated with FFAR3 (SCAT: P < 0.01; 

RPAT: P < 0.01) and peroxisome proliferator-activated receptorγ-2 (PPARG2; SCAT: 

P < 0.01; RPAT: P < 0.01). The HCAR2 mRNA abundance in SCAT was related to the one 

in RPAT (P < 0.01); HCAR2 and PPARG2 were interrelated among RPAT and SCAT 

(P < 0.05). The independent analysis of both feeding groups revealed partly higher 

correlation coefficients which was associated at least partly with the observation that the 

correlation between the receptor mRNAs exist only within the LC group. This was relevant 

for FFAR3 compared to FFAR1 (r = −0.516; P < 0.05) as well as compared to FFAR2 

(r = −0.598; P < 0.01), HCAR2 and FFAR1 (r = −0.654; P < 0.01) within SCAT. In RPAT 

HCAR2 correlated with FFAR2 only within the LC group (r = 0.494; P < 0.01) but with 

FFAR3 only within the HC group (r = 0.606; P < 0.01). 

We observed a positive correlation between FFAR1 mRNA abundance in SCAT and n-

caproic acid concentration in serum (r = 0.322; P < 0.05) and a negative correlation between 

FFAR3 mRNA abundance in SCAT and n-butyric concentration in serum 

(r = −0.369; P < 0.05). The FFAR2 mRNA abundance in SCAT was correlated with the 

glucose concentrations in serum (r = 0.346; P < 0.01). The target mRNA measured in RPAT 

showed no correlation with the measured SCFA at all. The FFAR2 mRNA abundance in 

RPAT and the BHBA concentration in the circulation were correlated (r = 0.307; P < 0.05). 

In RPAT, the FFAR3 mRNA abundance was negatively correlated with the triglyceride 

concentrations in serum (r = −0.406; P < 0.01) and positively with the ones of NEFA in 

serum (r = 0.287; P < 0.05), respectively. We also observed a negative correlation between 

FFAR3 mRNA abundance in RPAT and EB (r = −0.585; P < 0.05). 

 

Discussion 

Changes in FFAR1 expression 

Less information is available about the influence of dietary components or metabolites on 

FFAR1 expression (Kebede et al., 2012). In the present study in dairy cows, the concentrate 

portion in the diet had no effect on the FFAR1 mRNA expression in both AT depots. A 

recent study in mice showed that the digestibility of fibre affects FFAR1 expression in AT, 

that is, soluble fibre compared to insolublefibre intake was accompanied with an increased 

SCFA production in the colon and was associated with increasing FFAR1 mRNA abundance 
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in the epididymal AT (Isken et al., 2010). However, this link could not be confirmed with 

our results for dairy cows. The reasons for the downregulation of this receptor from late 

pregnancy to early lactation observed herein and its physiological consequences in RPAT 

remain unknown as does the function of this receptor in adipocytes. Generally, the FFAR1 

gene expression in AT is very low compared to pancreas and brain in humans (Itoh et al., 

2003), and lower in AT compared to liver in cattle (Friedrichs et al., 2014). Therefore, the 

importance of the regulation of FFAR1 mRNA or the corresponding protein should be 

verified in future using adequate models. 

 

Changes in FFAR2 and FFAR3 expression related to SCFA content in blood 

In differentiated murine adipocytes, acetic and propionic acid were demonstrated to 

stimulate the gene expression of FFAR2 in vitro and both fatty acids also affected 

adipogenesis and adipocyte differentiation (Hong et al., 2005). In the current study, the LC 

diet expectedly resulted in decreased concentrations of propionic acid in serum and in a trend 

for increased acetic acid concentrations. Concomitantly the mRNA abundance of FFAR2 

was increased in RPAT. Even though acetic acid is the most abundant SCFA in the 

circulation, the pEC50 potency values for the bovine FFAR2 and FFAR3 reported by Hudson 

et al. (2012) are in the millimolar range and let us assume that the circulating concentrations 

of acetic acid recorded in the cows of the present study were not able to activate either 

receptor. Based on their characterised affinities for SCFA (Hudson et al., 2012) we speculate 

that the plasma concentration of butyric acid may stimulate both receptors. 

It remains open as to whether the observed changes of the abundance of FFAR2 mRNA in 

RPAT were triggered by the altered circulating SCFA concentrations in the animals or not. 

An in vitro study on bovine adipose tissue explants showed no effect of propionic acid on 

FFAR2 and FFAR3 expression (Hosseini et al., 2012) and a recent study on human cell 

culture explants from omental AT showed no effect of neither acetic acid nor propionic acid 

on FFAR2 expression during differentiation (Dewulf et al., 2013). The previously reported 

link between peroxisome proliferator-activated receptor γ (PPARG) and FFAR2 in mice 

(Dewulf et al., 2013) could not be confirmed by our study. Thus, the observed weak 

correlation between the mRNA abundance of PPARG2, the most prominent PPARG isoform 

in AT (Tyagi et al., 2011) and FFAR2 in cattle, point to species specificity. As reported 

previously (Locher et al., 2011), animals from the LC group underwent a more negative EB 

in the third week of lactation, showed higher BHBA concentrations and had numerically 

higher NEFA concentrations (although there was no significant dietary effect), at day 21 
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after parturition, indicating a more extensive fat mobilisation in LC animals. Expressional 

up-regulation and activation of FFAR2 in these animals seems to counteract extensive 

lipolysis in RPAT due to its role in inhibition of lipolysis in adipocytes (Hong et al., 2005) 

supported by the negative correlation between FFAR2 mRNA abundance and EB. However, 

the herein observed decline in FFAR2 mRNA abundance in RPAT from late pregnancy to 

the onset of lactation might be associated with the declining EB during this time period to 

reduce the inhibitory effects of FFAR2 on lipolysis and thus to enable the necessary p.p. 

catabolism. In previous works, we also observed no differences of FFAR2 mRNA abundance 

in SCAT comparing day −21, 1 and 21 relative to calving, but differential expression 

between the different adipose depots (Friedrichs et al., 2014). The expression of FFAR3 

mRNA was inversely related to FFAR2 mRNA with higher FFAR3 mRNA abundance in 

late pregnancy compared to the onset of lactation in RPAT. Another indication for the 

inverse expressional regulation of both receptors is the detected trend with lower values for 

FFAR3 mRNA abundance in the SCAT of animals from the LC group and the negative 

correlation between FFAR2 and FFAR3 mRNA abundance in SCAT. The negative 

correlation between FFAR2 and FFAR3 mRNA abundance in SCAT occurred solely in the 

LC group which might indicate a greater importance of these receptors in the animals that 

underwent a more severe negative EB. 

Based on the higher responsiveness of RPAT v. SCAT towards lipolytic stimuli in cattle 

(Locher et al., 2011; Kenéz et al., 2013) and the herein observed changes with time and 

energy intake, the differential expression of FFAR2 in RPAT suggests that energy sensing 

might be more important in RPAT than SCAT. In addition, the circulating concentrations of 

propionic acid achieved by the feeding regime using either high or low portions of 

concentrate were related to the mRNA abundance of FFAR2 in RPAT, but not in SCAT, 

also indicating that metabolic sensing through FFAR2 to adapt lipolysis might be more 

important in RPAT than SCAT. We also provide evidence for an inverse differential 

expression of both receptors in RPAT of dairy cattle in the periparturient period. With the 

results for the correlation between FFAR1 and FFAR2 mRNA abundance we can confirm 

the previously suggested concordant regulation of these receptors expression in SCAT 

(Friedrichs et al., 2014). 

 

Changes in HCAR2 expression 

The circulating concentrations of BHBA, the endogenous ligand of HCAR2, were different 

between HC and LC animals, but the mRNA abundance of HCAR2 in both AT was not 
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affected by the diet. In an in vitro study on bovine SCAT and RPAT explants the lack of 

BHBA-induced change on HCAR2 expression has already been described, attributed the lack 

to the short duration of the treatment (Hosseini et al., 2012). Based on our previous and 

present results we speculate that BHBA is not regulating the transcription of HCAR2 in 

bovine AT. However, in our study the HCAR2 expression did not differ between the animals 

fed a diet supplemented with niacin compared to the animals fed a diet without niacin. A 

possible explanation for the missing effect could be the ruminal degradation of the niacin, 

as the supplement used herein was not rumen-protected. 

In another study we found a decrease of the receptor mRNA abundance from late pregnancy 

(day −21) to mid- (day 105) and late-lactation (day 252 relative to calving), but also not in 

the time interval considered in the current study (Lemor et al., 2009; Friedrichs et al., 2014). 

We thus assume that the expressional regulation of HCAR2 and the feedback of BHBA on 

lipolysis via this receptor are only relevant if BHBA concentrations are in a range observed 

during ketosis. Effects of high BHBA concentrations on lipolysis were shown by Kenéz et 

al. (2014) in vitro but not evident in the current study at least at sampling on day 21 p.p. 

Alternatively or in addition it might be that up-regulation is more relevant in stages of 

positive EB to limit lipolysis. Irrespective of time, in our study the mRNA abundance of 

HCAR2 was higher in RPAT than in SCAT, whereas a recent report describes greater 

HCAR2 protein abundance in SCAT than RPAT (Kenéz et al., 2014). However, a study in 

rumen-fistulated Holstein steers showed no difference in HCAR2 protein as well as mRNA 

abundance between SCAT and RPAT, respectively (Titgemeyer et al., 2011). 

A correlation between HCAR2 and PPARG2 in SCAT has been reported for cattle previously 

(Friedrichs et al., 2014) and this association can be extended to bovine RPAT based on our 

present results. Similarly, HCAR2 was shown to be positively associated with PPARG in 

mice (Wanders et al., 2012). Feeding a high-fat diet reduced HCAR2 expression in murine 

epididymal adipose tissue and correlated with a decline in PPARG expression (Wanders et 

al., 2010). In both AT investigated the mRNA abundance of PPARG2 was not affected by 

the concentrate portion fed to the animals; considering the potential regulatory impact of 

PPARG on HCAR2 expression, this might explain the unaltered HCAR2 mRNA abundance. 

Thus we assume that HCAR2 is regulated through PPARG rather than by its endogenous 

ligand BHBA. This assumption is in line with the study of Kopp et al. (2014) in which the 

mRNA abundance of HCAR2 was not downregulated in bovine adipocytes in vitro by 

uncoupling of G-protein signalling using pertussis toxin. 
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Conclusions 

Energy balance after parturition affects the mRNA abundance of FFAR an HCAR2 in RPAT 

and SCAT differently. Based on our results divergent nutrient sensing by FFAR2 and 

FFAR3 in AT of dairy cows is indicated. The adjustment of lipolysis by HCAR2 mRNA 

abundance may take place only in case of subclinical or clinical BHBA concentrations 

during the transition period, alternatively in case of positive EB to limit lipolysis. 
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8 Table 1. Sequences of the primer and real-time PCR conditions used for the quantification of the target genes in the adipose tissue 
of dairy cows 

Gene1 Forward Primer Sequence (5'-3') 
Reverse Primer Sequence (5'-3') Acc. no. 2 bp Con. 

(nM)3 
Mean 
Cq4 

Annealing 
(s|˚C)5 

Elongation  

(s)6 Efficiency 

FFAR1 AATTCCACCAGCTCCTTGGGCAT 
GGCCGCCTTTAGCTTCCGTCT 

NM_001309646 213 800 35.7 60|60 60 100.2% 

FFAR2 CGCTCCTTAATTTCCTGCTG 
CAAAGGACCTGCGTACGACT 

NM_001163784 174 800 34.6 60|60 60 109.6% 

FFAR3 ACCTGATGGCCCTGGTG 
GGACGTGAGATAGATGGTGG 

NM_001145233 215 200 35.0 40|60 30 104.0% 

HCAR2 GGACAGCGGGCATCATCTC 
CCAGCGGAAGGCATCACAG 

XM_010823378 140 200 28.9 30|61 30 100.5% 

PPARG2 ATTGGTGCGTTCCCAAGTTT 
GGCCAGTTCCGTTCAAAGAA 

Y12420 57 400 26.2 60|60 60 108.0% 

1FFAR1 = free fatty acid receptor 1 (Friedrichs et al., 2014); FFAR2 = free fatty acid receptor 2 (Hosseini et al., 2012); FFAR3 = free fatty 
acid receptor 3 (Friedrichs et al., 2014); HCAR2 = hydroxycarboxylic acid receptor 2 (Lemor et al., 2009); PPARG2 = peroxisome proliferator-
activated receptor gamma 2 (Saremi et al., 2014). 
2Acc. No. = NCBI Accession Number. 
3Concentrations for each primer. 
4Mean quantification cycle from SCAT and RPAT. 
5Initial denaturation for 10 min at 90°C; denaturati on for 30 s at 95°C.  

6Extension at 72°C.  
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Table 2. Relative tissue mRNA abundance of free fatty acid receptor 1, 2, 3, and 
hydroxycarboxylic acid receptor 2 in subcutaneous and retroperitoneal adipose tissue of 
dairy cows fed either high or low portions of concentrate 

Gene1 d F2 
Relative tissue mRNA abundance 3 

SEM4 
SCAT RPAT 

FFAR1 -21 - 1.18 1.17 0.20 

1 - 1.11 1.06 0.17 

21 HC 0.96 1.53 0.25 

LC 1.93 1.20 0.31 

FFAR2 -21 - 1.12 1.53 0.13 

1 - 0.77 0.72 0.10 

21 HC 2.11 0.74* 0.34 

LC 0.98 1.85* 0.26 

FFAR3 -21 - 0.64 0.73 0.12 

1 - 4.28 4.91 1.74 

21 HC 6.03† 3.16 1.25 

LC 1.20† 3.09 1.18 

HCAR2 -21 - 1.43 1.59 0.15 

1 - 1.25 1.17 0.20 

21 HC 1.47 1.34 0.20 

LC 1.40 1.09 0.19 

*Values within a column marked with a star differ significantly at P<0.05 between the HC and LC 
group at d 21 after parturition. 
†Values within a column marked with a cross differ at P<0.10 (trend) between the HC and LC 
group at d 21 after parturition. 
1FFAR1 = free fatty acid receptor 1; FFAR2 = free fatty acid receptor 2; FFAR3 = free fatty acid 
receptor 3; HCAR2 = hydroxycarboxylic acid receptor 2. 
2F = feeding: HC = high concentrate group fed a diet with 60 : 40 concentrate-to-roughage ratio; 
LC = low concentrate group fed a diet with 30 : 70 concentrate-to-roughage ratio. Both diets were 
fed from d 1 to d 21 relative to calving. 
3SCAT = s.c. adipose tissue; RPAT = retroperitoneal adipose tissue. 
Given are means presented as ratios of the mRNA abundance of the gene of interest and the 
geometric mean of the corresponding reference genes. For SCAT, lipoprotein receptor-related 
protein 10, RNA Polymerase II, emerin and marvel domain containing 1 were used for 
normalization. For RPAT, lipoprotein receptor-related protein 10, RNA Polymerase II and emerin 
were used for normalization. The values for d 21 are shown separately concerning to feeding on 
a high concentrate vs. on a low concentrate diet. 
4SEM = standard error of the mean. The pooled standard error of the mean relative mRNA 
abundance in SCAT and RPAT is given. 
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Table 3. Performance data and serum concentrations of metabolites and short chain 
fatty acids of dairy cows fed either high or low portions of concentrate.  

Item HC 1 LC2 SEM3 P-value 

DMI (kg/d)4 18.93a 16.32b 0.58 < 0.01 

NEL (MJ/d)4 141.7a 113.7b 4.14 < 0.01 

Milk yield (kg/d)4 37.0 31.4 1.82 <0.10 

Milk fat (%)4 4.3a 5.0b 0.19 < 0.05 

Milk protein (%)4 3.4a 3.1b 0.07 < 0.05 

ECM (kg/d) 40.6 37.9 2.39 0.44 

EB (MJ/d)4 -15.3a -33.7b 5.85 < 0.05 

BHBA (mmol/L)4 0.47a 0.76b 0.08 < 0.05 

Triglyceride (μmol/L) 0.13a 0.22b 0.03 < 0.05 

NEFA (μmol/L) 674.5 848.8 170.79 0.29 

Acetic acid (μmol/L) 710.5 841.2 52.15 < 0.10 

Propionic acid (μmol/L) 40.9a 24.3b 3.38 < 0.01 

n-Butyric acid (μmol/L) 32.2 31.0 1.78 0.66 

n-Valeric acid (μmol/L) 21.9 18.4 1.54 0.14 

n-Caproic acid (μmol/L) 32.5 32.7 2.28 0.95 

Total SCFA (μmol/L) 867.2 957.5 54.63 0.26 

a,bValues within a row with different superscript letters differ significantly at P<0.05 between 
the HC and LC group at d 21 after parturition or in the third week of lactation, respectively. 
1HC = high concentrate group fed a diet with 60 : 40 concentrate-to-roughage ratio. 
2LC = low concentrate group fed a diet with 30 : 70 concentrate-to-roughage ratio. 
Both diets were fed from d 1 to d 21 relative to calving. 
Given are means. Performance data are given as means for the third week of lactation; all 
variables assessed in serum were obtained on d 21 postpartum. 
3SEM = standard error of the mean. The pooled standard error of the mean values from the 
HC group and LC group is given. 
4Data has been published previously by Locher et al. (2011). 
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Table 4. Coefficients of correlation (Spearman) between relative 
mRNA abundance of receptors involved in nutrient sensing and 
peroxisome proliferator-activated receptor γ-2 in subcutaneous and 
retroperitoneal adipose tissue (SCAT and RPAT, respectively) of dairy 
cows 
Tissue  SCAT  RPAT 

 Gene1 FFAR1 FFAR2 FFAR3 HCAR2  HCAR2 

SCAT FFAR1 --- 0.40** ns -0.29*  ns 

FFAR2  ---- -0.38* -0.31*  ns 

FFAR3   --- 0.50**  ns 

HCAR2    ----  0.44** 

PPARG2 -0.32* ns ns 0.54**  0.30* 
RPAT FFAR1 ns ns ns ns  ns 

FFAR2 ns ns ns ns  ns 

FFAR3 ns ns ns ns  0.46** 

HCAR2 ns ns ns 0.44**  - 

PPARG2 ns ns ns ns  0.45** 
**P < 0.01; *P < 0.05. 
1FFAR1 = free fatty acid receptor 1; FFAR2 = free fatty acid receptor 2; 
FFAR3 = free fatty acid receptor 3; HCAR2 = hydroxycarboxylic acid 
receptor 2; PPARG2 = peroxisome proliferator-activated receptor γ-2. 
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Fig. 1. Relative mRNA abundance of the free fatty acid receptor 1, 2, and 3 and 
hydroxycarboxylic acid receptor 2 at d -21, 1 and 21 relative to parturition in subcutaneous 
(SCAT, white bars) and retroperitoneal adipose tissue (RPAT, grey bars) of dairy cows. 
Pooled data from the cows fed either low or high portions of concentrate low are shown 
(means ± SEM) to compare the mRNA abundances between both AT. A line indicates a 
difference between the tissues with the corresponding P-value written above. Different small 
letters and different capital letters indicate significant differences in between the sampling 
dates in SCAT and in RPAT (P < 0.05), respectively. For normalisation enabling a 
comparison of both tissues, the ratio of the mRNA abundance of the gene of interest and the 
geometric mean of the mRNA abundance of low density lipoprotein receptor-related protein 
10, RNA Polymerase II and emerin was used. 
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Fig. 2. Specific short-chain fatty acids (SCFA) and total SCFA in serum of dairy cows on 
day−21 and 21 relative to calving, for acetic acid and total SCFA additionally at day 1 
relative to calving. Except for acetic and propionic acid, pooled data from cows fed either 
low (LC; fed a diet with 30 : 70 concentrate-to-roughage ratio; white bars) or high portions 
of concentrate (HC; fed a diet with 60 : 40 concentrate-to-roughage ratio; dark grey bars) are 
shown (means ± SEM; light grey bars), because no effect of different portions of concentrate 
in the diet were observed. Different letters indicate significant differences between the 
sampling dates (P<0.05), whereas in the first two graphs capital letters indicate differences 
in the LC group and small letters indicate differences in the HC group. The effects of 
different portions of concentrate in the diet are defined using a line with the corresponding 
P-value written above. 
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5 General discussion and conclusions 

This thesis compiles the results from three conducted trials, of which two investigated the 

influence of supplementation with CLA (CLA-1 trial: multiparous cows from d -21 up to d 

252 relative to calving; CLA-2 trial: primiparous cows from d 1 up to d 105 relative to 

calving) and one trial with a 2 x 2 factorial design investigated the influence of NA 

supplementation as well as the modulation of energy density of the post-fresh diet (NA trial: 

multiparous cows from d -21 up to d 21 relative to calving). 

 

Changes during the transition from pregnancy to lactation 

Except for HCAR2, the expression of all receptors studied herein changed in RP AT during 

the transition period, suggesting a role of these three fatty acid binding receptors in nutrient 

sensing during the transition period in RP AT. During the transition period, the expression 

of HCAR2 changed neither in SC AT nor in RP AT, and among all receptors in SC AT only 

FFAR3 mRNA was altered during this time. The two investigated receptors for SCFA, 

FFAR2 and FFAR3, were inversely regulated during the transition period up to mid lactation 

in RP AT, whereas FFAR2 seemed to be downregulated from late pregnancy to calving and 

afterwards upregulated. The FFAR3 mRNA expression showed a vice versa regulation in 

RPAT. Both receptors and their downstream targets seem to exert different actions on lipid 

and glucose metabolism: Activation of FFAR2 has been shown to suppress lipolysis (Ge et 

al., 2008) and insulin signaling (Kimura et al., 2014); in contrast, FFAR3 stimulates the 

secretion of leptin (Xiong et al., 2004), a possible promoter of lipolysis (Rodríguez et al., 

2003), and has been shown to enhance the insulin responsiveness (Han et al., 2014). The 

herein observed inverse regulation of both receptors’ expression is possibly a 

complementary adaptation of adipocytes’ metabolism. In consideration of their actions, the 

observed expressional changes of both receptors from late pregnancy to the onset of lactation 

were unexpected as they would account for an improved insulin signaling at least in RP AT 

at the beginning of lactation. However, the effect of FFAR2 and FFAR3 on the insulin 

signaling pathway may be small compared to their activity on lipid metabolism. 

Another feature of the murine FFAR3 is its ability to interact with BHBA, albeit 

contradictory interactions indicating BHBA functions as antagonist (Kimura et al., 2011) or 

agonist (Won et al., 2013) for FFAR3 expressed by neurons were reported. The circulating 

concentrations of NEFA and in turn BHBA often increase as a result of intensive lipolysis 

due to the energy demands in early lactation. In this regard, reconnoitering the link between 

FFAR3 and BHBA would improve our understanding of these receptors’ physiological role 



85 

 

 

General discussion and conclusions 

in times of energy deficits. In considering the expression of HCAR2, an important target for 

BHBA, remaining unchanged during the transition period, the regulation of FFAR3 seems 

even more interesting. However, in a short-term experiment with explants of SC AT 

(sternum) and RP AT, BHBA treatment had no effect on the mRNA abundance of either 

FFAR3 or HCAR2 in either tissue (Hosseini et al., 2012).  

As already mentioned, the circulating NEFA concentrations normally increase with the onset 

of lactation and the downregulation of FFAR1 mRNA in RP AT from -21 to 1 d relative to 

calving might be a feedback mechanism to avoid overstimulation of the FFAR1-associated 

signaling pathways by its ligands. Activation of the FFAR1 has been shown to decrease the 

hepatic lipid accumulation in mice fed a high-fat diet (Ou et al., 2014). Thus the observed 

decline of hepatic FFAR1 mRNA abundance from d -21 to 21 relative to calving may 

account for a rise in lipid accumulation during this time in dairy cows. 

 

Comparison of VC versus SC AT depots 

The animals studied in the CLA-2 trial had 30.0 kg total AT as a sum of RP, omental, 

mesenteric, and SC adipose depots, accounting for 6.7 % of the empty body weight directly 

after calving (von Soosten et al., 2011). At 42 DIM the weight of the total AT showed an 

expected decrease to 23.0 kg (von Soosten et al., 2011). With regard to the distribution of 

weight among the investigated AT, omental AT had the most weight (7.4 to 11.0 kg) and the 

whole SC adipose fraction the least weight (3.0 to 4.9 kg) at 1, 42, and 105 DIM (von Soosten 

et al., 2011). Despite their different extents in dairy cows, the total mass of all VC AT studied 

was negatively correlated with the circulating ADIPOQ concentrations as already shown for 

humans (Cnop et al., 2003; Saito et al., 2012), whereas SC AT was not associated with the 

ADIPOQ concentrations in serum in cows (Singh et al., 2014a). In addition, the mass of each 

individual VC AT depot, mesenterial, omental, and RP AT, was negatively correlated with 

the ADIPOQ concentration in the serum of dairy cows (Singh et al., 2014a). Generally, 

FFAR2 and FFAR3 were more highly expressed in the VC AT than SC AT, suggesting a 

more important function of the VC AT in the sensing of SCFA by these receptors. 

Among the different AT studied herein, the RP AT seems to have the most crucial role in 

allocating the energy. It seems that the RP AT reacts most sensitively to the advancement of 

lactation, as it was the only AT studied in the CLA-2 trial with a decrease of its depot weight 

when comparing the first day in milk (DIM) with 42 DIM and 105 DIM (von Soosten et al., 

2011). Moreover, RP AT was the only fat depot showing alterations in adipocyte sizes 

related to the duration of the lactation. The adipocyte size in RP AT of the animals that 
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received a diet supplemented with a control fat (mainly containing stearic acid) was 1.2-fold 

smaller at 105 DIM than at 1 DIM (Akter et al., 2011). The decreased depot weight and the 

decreased adipocyte size limited to RP AT suggest a preferential mobilization of this AT 

(Akter et al., 2011). 

A further unique feature of RP AT seems to be its low concentration of ADIPOQ, an 

adipokine suppressing lipolysis (Tao et al., 2014). Among all the bovine AT investigated, 

RP AT had the lowest ADIPOQ concentration and, considering the wet tissue weight, the 

lowest amount of total ADIPOQ (Singh et al., 2014a). One of the receptors studied in this 

work, the FFAR3, showed the highest gene expression in RP AT and an activation of FFAR3 

stimulates the secretion of leptin (Xiong et al., 2004), which in turn has been shown to exert 

lipolytic effects on the AT of rodents. This is supported by observations by Saremi et al. 

(2014), showing the numerically highest expression of leptin and its receptor in RP AT in 

the animals of the CLA-2 trial. Both, low ADIPOQ concentrations and high leptin 

concentrations in RP AT, would also account for a higher lipolytic rate in this depot based 

on the paracrine effects of leptin and ADIPOQ. 

The studies available from monogastric species comparing VC AT from other different sites 

with RP AT are limited to rats. Compared to mesenteric VC AT, RP AT from rats has larger 

adipocyte sizes and higher expression of lipolytic enzymes, such as HSL and adipose TAG 

lipase (Palou et al., 2009). In the same animal cohort, PPAR-γ2 and SREBP1 expression, two 

transcription factors relevant in lipogenesis, decreased rapidly after 4 h of fasting and 

adipose TAG lipase increased after 24 h of fasting in RP AT, but not in mesenteric AT (Palou 

et al., 2010). 

 

Influence of CLA supplementation to the diet 

The animal experiments studied herein confirmed the reported reduction of milk fat by CLA. 

In the primiparous animals from the CLA-2 trial the milk fat percentage decreased by 14 % 

from week 1 to week 6 of lactation, but only after 28 DIM in the group that received 100 g/d 

of rumen-protected CLA (providing 6.0 g/d of the t10,c12 CLA and 5.7 g/d of the c9,t11 

CLA) compared to the group that received an isocaloric control fat supplement (von Soosten 

et al., 2011). In the period from week 6 to week 26 of lactation, the milk fat percentage was 

12 % lower in the multiparous animals from the CLA-2 trial within the CLA group than in 

the control group (Pappritz et al., 2011b). Surprisingly, both experiments resulted in different 

alterations of the milk fatty acid pattern. In the multiparous animals (CLA-1 trial), CLA 

supplementation reduced significantly the portion of C16:0 and C16:1 in total in milk 
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(Pappritz et al., 2011b). In the primiparous animals (CLA-2 trial), the decrease in milk fat 

was characterized by a significant decrease in single de novo synthesized fatty acids (C8:0, 

C10:0 and C12:0) as well as C16:0 over the whole supplementation period (von Soosten et 

al., 2013). These disaccording observations might be due to the different duration of 

supplementation (26 weeks versus 15 weeks). Possibly, the decrease of de novo synthesized 

fatty acids does not appear in later stages of lactation and thus overlap the alteration in mid 

lactation as the data for the supplementation period have been pooled for analysis. Another 

possible explanation could be an effect of parity. However, the proportion of t10,c12 CLA 

in the milk of multiparous animals (CLA-1 trial) was slightly increased in the CLA group, 

indicating a transfer to the mammary gland and milk fat throughout the supplementation 

period, whereas the portion of c9,t11 CLA in milk remained unaffected (Pappritz et al., 

2011b). Investigations of the mammary gland imply a transfer of both isomers towards the 

mammary gland, whereas transfer efficiency seems to be less than 0.1 % of the consumed 

total CLA (von Soosten et al., 2013). At 42 and 105 DIM the PPAR-γ2 mRNA abundance 

in the mammary gland was lower in the animals treated with CLA than in the cows receiving 

the control fat supplement (Saremi et al., 2014). As fatty acids cannot bind to SREBP1, this 

transcription factor regulates parts of the MFD caused by the t10,c12 CLA isomer indirectly 

(Kadegowda et al., 2009). In contrast, PPAR-γ is a target for CLA and t10,c12 CLA has been 

shown to inhibit PPAR-γ expression and its downstream genes regulating lipogenesis 

(Kadegowda et al., 2013). Thus an involvement of PPAR-γ in the mammary lipid 

metabolism seems to be likely.  

In the multiparous animals (CLA-1 trial), the CLA supplementation to the diet also 

decreased the mRNA abundance of PPAR-γ at 105 DIM in the liver of CLA cows compared 

to the controls (Saremi et al., 2014). The mRNA abundance of PPAR-γ decreased in liver 

tissue of the cows receiving a diet supplemented with CLA even beyond the supplementation 

period at 196 DIM, and the same was evident for PPAR-γ2 in SCAT (Saremi et al., 2014). 

The results of our correlation studies indicate of an expressional link between PPAR-γ and 

HCAR2 in the liver (CLA-1 trial) as well as PPAR-γ2 and HCAR2 in the AT (CLA-1 trial 

and NA trial) of cows. In accordance with the decreased PPAR-γ expression, we observed 

herein a decreased mRNA of HCAR2 in the liver of the CLA animals in the CLA-1 trial. 

However, we did not observe a CLA effect on the expression of HCAR2 in SC AT from the 

tail head of the multiparous animals, even if the PPAR-γ2 expression had been decreased by 

supplementation of CLA to the diet. Differences in the mRNA abundance of the investigated 

receptors in the AT of CLA-fed animals and in the AT of control animals were scarce and 
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limited to FFAR1. We observed higher expression of FFAR1 in omental and RP AT of the 

primiparous animals fed a diet supplemented with CLA at 105 DIM and in RP AT 

additionally at 42 DIM (CLA-2 trial). Up to now, the specific functions of FFAR1 in 

adipocytes or AT have been unknown. Possibly, there is an effect of a single nucleotide 

polymorphism (SNP) of the FFAR1 gene region on adipocytes’ lipid metabolism reflected 

by different fasting plasma NEFA concentrations in human subjects with different SNP of 

the FFAR1 gene (Walker et al., 2011). Another recent study reported a decreased hepatic 

lipid accumulation accompanied with a decreased hepatic mRNA expression of lipogenesis-

related proteins as well as SREBP1 mRNA expression in response to the activation of 

FFAR1 in mice (Ou et al., 2014). It has been shown that CLA are potent ligands of the 

murine FFAR1 (Schmidt et al., 2011). The observed expressional upregulation in two VC 

AT in response to CLA could in turn result in a decreased expression of SREBP1, a decreased 

rate of lipogenesis and reduced lipid accumulation. Indeed, a study in human adipocytes 

provided evidence of a suppression of transcription factors (e.g. SREBP1 and PPAR-γ) by 

the t10,c12 CLA isomer, but not the c9,t11 CLA, which resulted in a decreased de novo lipid 

synthesis followed by a decreased lipid accumulation (Obsen et al., 2012). Nonetheless, the 

involvement of FFAR1 was not investigated in this study (Obsen et al., 2012). In 

consideration of FFAR1 acting as a metabolic sensor for the extracellular availability of 

LCFA in AT, a response to a higher availability of its ligands with a decreased synthesis of 

fatty acids would be reasonable. Stearic acid is also a ligand of FFAR1 (Itoh et al., 2003) 

and was used in the control fat supplement to replace CLA for providing isoenergetic rations. 

Thus an effect of the control fat supplement could not be excluded, but seems unlikely as it 

binds with 100-fold less affinity than linoleic acids at least to the human and rodent FFAR1 

(Itoh et al., 2003). However, the available data do not allow at present a conclusive appraisal; 

further research is needed to identify the role of FFAR1 in adipocytes. Furthermore, the role 

of FFAR4, another receptor for LCFA highly expressed in AT and a possible target for CLA 

(Oh et al., 2010; Shen et al., 2013), should be investigated.  

A possible explanation for the limited CLA effects on AT observed herein may be the very 

low transfer efficiency of supplemented t10,c12 CLA into the AT fractions of the cows at 

105 DIM after consuming a CLA-supplemented diet. Approximately 0.03 to 0.06 % of total 

consumed t10,c12 CLA was transferred to the single VC AT depots and 0.01 % of total 

consumed t10,c12 CLA to the whole SC AT fraction (von Soosten et al., 2013). Due to an 

increased incorporation of the c9,t11 and the t10,c12 CLA isomer in adipocyte membrane 

phospholipids of obese rats in response to CLA supplementation, the fluidity and 
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permeability of the adipose membranes have been shown to be reduced (Martins et al., 

2010). However, further research is needed to point out whether the membrane incorporation 

of the CLA isomers supports the CLA-mediated effects by altering the properties of the 

membranes. 

 

Influence of nicotinic acid supplementation to the diet and rumen-protection 

The supplementation of NA to the diet of dairy cows neither influenced cows’ performance, 

nor the concentration of blood metabolites or hormones (Locher et al., 2011) nor the mRNA 

abundance of the receptors studied herein (NA trial). Conceivably, the adequacy of the 

supplemented NA in a non-rumen-protected form is questionable, as this form has a poor 

stability in the rumen because of its microbial degradation (Erickson et al., 1991) and thus 

approximately only 5 % of the supplemented NA reaches the duodenum, where it is mainly 

absorbed (Santschi et al., 2005). A more effective form of NA supplementation, if orally 

applied, is provided by rumen-protected, encapsulated supplements containing NA 

surrounded by several layers of lipids, which are insoluble in the rumen and thus prevent 

microbial degradation of the NA (Morey et al., 2011). Results from other studies 

investigating the effect of niacin supplementation on blood NA concentrations are not 

consistent, whereas blood NAM concentrations seem to increase in response to niacin supply 

(Niehoff et al., 2009). 

However, the CLA supplement used herein is thought to be rumen-protected, and in spite of 

lipid encapsulation of the CLA in the supplement, just a small portion (5–8 %) escaped 

ruminal biohydrogenation and only 0.4 g of the daily consumed 8 g t10,c12 CLA reached 

the duodenum (Pappritz et al., 2011a). 

 

Influence of modulating the dietary energy density 

The concentrate fed to the animals in the post-fresh diet (NA trial) mostly consisted of wheat 

grain (50 %), soybean meal (27 %) and corn (21 %) and thus provided more NFC to the 

animals than the fed roughage. As estimated, the concentrate provided more metabolizable 

energy (12.9 to 13.1 MJ/kg of DM) than both silages (10.7 to 10.8 MJ/kg of DM) fed to the 

multiparous animals (Locher et al., 2011).  

The increased energy density directly after calving resulted in a higher DMI, an increased 

milk protein content, and a decreased milk fat content in the animals fed the high-concentrate 

(HC; 60:40 concentrate:roughage ratio) diet compared to the animals fed the low-concentrate 

(LC; (HC; 30:70 concentrate:roughage ratio) diet (Locher et al., 2011). Additionally, the HC 
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animals tended toward a higher milk yield in the third week of lactation compared to the LC 

animals (Locher et al., 2011). Due to the higher DMI, the higher metabolizable energy of the 

concentrate and the lower milk fat content, the animals fed the HC diet underwent a less 

negative EB (−15.3 ± 6.0 MJ/d versus −33.8 ± 7.7 MJ/d) during this time (Locher et al., 

2011). The TAG and BHBA blood concentrations were also lower in the animals fed the HC 

diet than in the animals fed the LC diet at d 21 after calving, whereas NEFA concentrations 

were numerically lower without reaching the level of significance (Locher et al., 2011). This 

is in accordance with the observations of Rabelo et al. (2005) regarding lipid metabolism in 

a study investigating the effect of different portions of NFC (47 % versus 41 % NFC based 

on DM). The multiparous cows fed a diet with increased dietary energy density immediately 

after calving for the first 3 weeks of lactation had lower hepatic TAG and lower blood BHBA 

concentrations than the multiparous cows fed a diet lower in energy density, whereas the 

blood concentrations of NEFA did not differ between the two groups (Rabelo et al., 2005). 

The lower BHBA and TAG could reflect a lower mobilization of AT as the energy demands 

at the onset of lactation are more adequately covered by the energy provided by the diet 

higher in energy density. In contrast to Rabelo et al. (2005), who observed higher glucose 

and insulin concentrations in the animals fed the diet higher in energy density, neither of the 

portions of concentrate resulted in different glucose and insulin concentrations in the animals 

studied in the NA trial (Locher et al., 2011). The animals fed with a diet containing a lower 

portion of concentrate had a higher FFAR2 mRNA abundance in RP AT and tended to have 

a lower FFAR3 mRNA abundance in SC AT at 21 d after calving. As already mentioned, 

activation of FFAR2 by SCFA mediates the suppression of lipolysis (Hong et al., 2005; Ge 

et al., 2008). In addition, activation of the receptor also suppresses insulin signaling, leading 

to the inhibition of fat accumulation in AT and promotion of a lipid and glucose utilization 

in muscle tissue (Kimura et al., 2014). A higher suppression of the insulin signaling leads to 

higher rates of lipolysis and decreased rates of fatty acid and TAG synthesis as well as 

decreased TAG and glucose uptake (Dimitriadis et al., 2011). However, as insulin is known 

to decrease lipolysis (Dimitriadis et al., 2011), further studies need to investigate the 

discrepancy between the demonstrated suppression of lipolysis and the demonstrated 

suppression of insulin signaling by activation of FFAR2 in AT. 

 

In conclusion, the effects of the different nutritional strategies on the expression of the 

nutrient sensing receptors investigated herein were rare or, in case of the NA, absent. The 

effects of CLA were limited to the mRNA abundance of FFAR1 in omental and RP AT. The 
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effects of different energy densities of the diet fed post-fresh were limited to the expression 

of FFAR2 in RP AT. The observed effects indicate a higher expressional responsiveness of 

VC AT to nutritional factors compared to SC AT of dairy cows, at least at the molecular 

level. Another hint regarding the higher responsiveness of RP AT compared to SC AT to the 

energy status is provided by the observed expressional changes of FFAR1 and FFAR2 just 

in RP AT and not in SC AT in the transition period. In contrast, the expression of FFAR3 

showed alterations in SC and RP AT. The expressional regulation of HCAR2 in AT was not 

influenced either by the different applied nutritional strategies or by the progress of the 

transition period. This points to a higher relevance of metabolites and nutrients in the 

expressional regulation of the investigated FFAR than HCAR2 in the AT of dairy cows, at 

least in the current studies. However, a better understanding of the mechanisms and actions 

of FFAR activation would help to identify the consequences of signal transduction over these 

receptors for the whole metabolism. 
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6 Summary 

With the onset of lactation, the energy requirements of dairy cattle for milk production and 

maintenance increase considerably while the energy intake by voluntary feed intake does 

not, thus resulting in a negative energy balance (NEB). The adaption to the requirements of 

lactation is often related to metabolic disorders, reduced fertility, lameness and various 

infectious diseases in the periparturient period accompanied with restrictions in the 

effectiveness of milk production. To minimize the disease incidence during this time, 

different management and nutritional strategies are used in practice, e.g. feeding of 

nutritional supplements or increasing the energy content in the diet. Adipose tissue (AT) is 

an important energy store. Therefore, the physiological processes and changes in this organ 

are of particular importance during this period of comprehensive NEB. Due to their ability 

to sense nutrient and energy availability and accordingly adapt cells’ metabolism, a pivotal 

role in the coordination of metabolic processes is taken by nutrient sensing G protein-

coupled receptors (GPCR). However, there has been very little investigation on the 

regulation of mRNA expression of nutrient sensing GPCR in the AT of dairy cattle. Thus, 

the aim of this thesis was to study the mRNA expression of selected GPCR involved in 

nutrient sensing (free fatty acid receptors [FFAR] 1, 2, and 3, and hydroxycarboxylic acid 

receptor [HCAR] 2) in the AT of dairy cattle in the transition period (d -21 to d 21 relative 

to calving), and to compare the expression of these genes in AT from different subcutaneous 

(SC) and visceral (VC) locations. The main focus of this thesis was to study potential effects 

on the mRNA expression of the aforementioned receptors of different nutritional strategies, 

namely supplementing conjugated linoleic acids (CLA) or nicotinic acid (NA) to the diet of 

the dairy cows as well as feeding diets with different energy densities. The mRNA 

abundance of FFAR 1, 2, and 3, and HCAR2 was quantified by qPCR. 

 

In Manuscript 1, the possible changes in mRNA expression of FFAR 1, 2, and 3, and 

HCAR2 depending on the metabolic changes occurring during the lactation cycle and on 

supplementing CLA to the diet of dairy cows were tested in AT from different SC and VC 

locations. For this purpose two separate feeding trials (CLA-1 and CLA-2 trial) were 

conducted. In both trials, German Holstein cows were allocated to a CLA group receiving 

100 g/d of a rumen-protected CLA supplement (1:1 mixture of cis-9,trans-11 and trans-

10,cis-12) or a control group receiving 100 g/d of a control supplement (in which CLA was 

substituted by stearic acid) on the day of calving. The CLA-1 trial was carried out in 21 

multiparous cows (CLA group: n = 11; control group: n = 10) and the respective supplements 
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were fed from d 1 until d 182 after calving. From both feeding groups, biopsies were 

collected from SC AT from the tail head region at d -21, 21, 105, 196, and 252 relative to 

calving. In the CLA-2 trial, from 25 primiparous cows, 5 animals were slaughtered at d 1 

and the remaining animals were allocated randomly to either CLA (n = 10) or control 

supplement (n = 10) starting from day 1 after calving. Five cows per group were slaughtered 

at d 42 and 105 p.p. Samples were collected from 3 VC AT (omental, mesenterial, and 

retroperitoneal [RP]) and 3 SC AT (tail head, withers, and sternum) after slaughter. In the 

CLA-1 trial, the FFAR2 mRNA abundance in SC AT was higher at d 21 than at d 105 after 

calving. A time effect was also evident for HCAR2 expression with decreasing mRNA 

abundance of HCAR2 from 21 d to d 105 after parturition. The observed correlation between 

mRNA abundance of HCAR2 and peroxisome proliferator-activated receptor (PPAR)-γ 

likewise PPAR-γ2 in SC AT indicates a link between HCAR2 and PPAR-γ gene expression. 

In the CLA-2 trial, a comparison of SC AT and VC AT revealed a higher mRNA abundance 

of FFAR2 and FFAR3 in the VC AT depots, pointing to a higher adaptability of the VC AT 

to metabolite and nutrient availability compared to SC AT. Furthermore, the findings of this 

study substantiate the presence of FFAR2 and FFAR3 mRNA in the AT of dairy cows. In 

the CLA-2 trial, we observed differences between the CLA and the control group in omental 

and RP AT, with higher values of FFAR1 mRNA abundance on d 105 and in RP AT 

additionally on d 42 in the CLA group than in the control group. However, to interpret such 

effects, further studies are needed to identify the role of FFAR1 in adipocytes.  

  

In Manuscript 2, the mRNA expression of genes encoding for FFAR1, FFAR2, FFAR3, and 

HCAR2 in SC AT and VC AT of cows in the transition period as influenced by time and NA 

supplementation to the diet or divergent portions of concentrate in the diet was described. 

For this aim, 20 multiparous German Holstein cows were allocated either to a high-

concentrate (HC) group receiving a diet with a 60:40 concentrate:roughage ratio (on a dry 

matter basis; n = 10) or a low-concentrate (LC) group receiving a diet with a 30:70 

concentrate:roughage ratio (n = 10) on d 1 p.p. One half of each group received 24 g of non-

rumen-protected NA (NA trial). On d -21, d 1, and d 21 relative to parturition, serum samples 

were taken and AT were obtained by biopsy, with SC AT samples being taken from the tail 

head region and RP AT samples being taken directly above the peritoneum each time 

alternating from the left and right flank. In serum the short-chain fatty acids (SCFA) were 

quantified via GC-FID. In this study we found no effect of supplementing NA on the 

receptors’ mRNA investigated. Possibly as a mechanism to counteract extensive lipolysis in 
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RP AT, the mRNA abundance of FFAR2 in RP AT was higher in the LC than in the HC 

cows at d 21 after calving. In addition, the abundance of FFAR3 mRNA tended to lower 

values in SC AT of LC versus HC animals. In RP AT, an effect of time with greater 

abundance of FFAR1 and FFAR2 mRNA on d -21 in comparison to d 1 relative to calving 

was observed. The mRNA abundance of FFAR3 was lower at d -21 than at d 1 relative to 

calving in SC and RP AT, and in RP AT additionally lower than at to 21 d after calving. The 

mRNA abundance of FFAR3 changed inversely as compared to FFAR2 in RP AT, a finding 

that is further supported by the negative correlation between FFAR3 and FFAR2 in SC AT. 

The observed inverse regulation of FFAR2 and FFAR3 in RP AT might indicate that the 

signal transduction exert different physiological effects between the two receptors. Based on 

the potency values for the different SCFA found in the literature for the bovine FFAR2 and 

FFAR3, we assume that both receptors are activated by the measured concentrations of 

butyric acid rather than by acetic acid in the circulation. In this study, the HCAR2 mRNA 

abundance was neither affected by treatment nor by time. Thus, we speculate that the 

expressional regulation of HCAR2 is more relevant in times of positive energy balance for 

limiting lipolysis. The results from correlation studies provide further hints of an 

expressional regulation of HCAR2 over PPAR-γ2 in SC AT, but also in RP AT of cows. 

 

Besides providing information about the longitudinal mRNA expression of certain GPCR 

that are involved in nutrient sensing in AT from different locations, the present thesis 

contributes some initial insights into the adjustments of these modulatory factors in response 

to different nutritional strategies. Moreover, the dissertation serves as a basis for further 

studies exploring the role of FFAR1 in adipocytes as well as the role of FFAR2 and FFAR3 

in lipid metabolism. Further studies should also investigate other nutrient sensing GPCR, 

such as FFAR4, and include the expression of the investigated receptors in AT at the protein 

level. Identification of FFAR participation in different pathways, not only in AT, could help 

to identify the importance and consequences of signal transduction via these receptors for 

the whole metabolism in cattle and in other species. 
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7 Zusammenfassung 

Mit beginnender Laktation, steigt der Energiebedarf von Milchkühen für die 

Milchproduktion deutlich an, wohingegen die Energiezufuhr über die freiwillige 

Futteraufnahme nur langsam ansteigt, was eine negative Energiebilanz (NEB) zur Folge hat. 

Die Anpassung an die Anforderungen der Laktation geht daher häufig mit 

Stoffwechselstörungen, verminderter Fruchtbarkeit, Lahmheit und verschiedenen 

Infektionskrankheiten im peripartalen Zeitraum einher, was wiederum zu einer Minderung 

der Effektivität der Milchproduktion führt. Um die Erkrankungsinzidenz während dieser Zeit 

zu minimieren, finden verschiedene Management- und Fütterungsstrategien, wie z.B. der 

Einsatz von Nahrungssupplementen oder die Erhöhung des Energiegehaltes der Futterration, 

in der Praxis Anwendung. Da das Fettgewebe (AT) ein wichtiger Energiespeicher ist, sind 

die physiologischen Prozesse und Veränderungen in diesem Organ in Zeiten einer 

ausgeprägten NEB von besonderer Bedeutung. Aufgrund ihrer Fähigkeit den 

Zellstoffwechsel der Verfügbarkeit von Nährstoffen und Metaboliten im 

Energiestoffwechsel anzupassen, nehmen nutrient sensing G-Protein-gekoppelte 

Rezeptoren (GPCR) eine zentrale bei der Koordinierung von Stoffwechselprozessen ein. 

Bislang liegen nur wenige Studien zur Untersuchung der Regulation der mRNA-Expression 

von nutrient sensing GPCR im AT von Milchkühen vor. Ein Ziel der vorliegenden Arbeit 

war daher die Untersuchung der mRNA-Expression ausgewählter nutrient sensing GPCR, 

der freie Fettsäuren-bindenden Rezeptoren (FFAR) 1, -2, -3, und des Hydroxycarbon-säuren-

bindenden Rezeptors (HCAR) 2, im AT von Milchkühen in der Transitphase (d 21 ante 

partum [a.p.] bis d 21 post partum [p.p.]). Zudem wurde die Expression dieser Gene im AT 

unterschiedlicher subkutaner (SC) und viszeraler (VC) Lokalisationen verglichen. Das 

Hauptaugenmerk dieser Arbeit lag jedoch auf der Untersuchung des Einflusses 

verschiedener Fütterungsstrategien auf die mRNA-Expression der oben genannten 

Rezeptoren, wobei ein möglicher Einfluss einer Supplementation von konjugierten 

Linolsäuren (CLA), einer Supplementation von Nikotinsäure (NA) oder einer Fütterung von 

Rationen mit unterschiedlicher Energiedichte untersucht wurde. Die mRNA-Menge von 

FFAR1, -2, -3 und HCAR2 wurde mittels qPCR bestimmt. 

 

In Manuskript 1 , wurden mögliche Einflüsse der Stoffwechselveränderungen während der 

Laktation und der Einfluss einer Supplementation von CLA auf die FFAR1, -2 , -3 und 

HCAR2 mRNA-Expression im AT von Milchkühen verschiedener SC und VC 

Lokalisationen untersucht. Zu diesem Zweck wurden zwei separate Fütterungsversuche 
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durchgeführt (CLA 1- und CLA 2-Versuch). In beiden Versuchen wurden Holstein-Frisean-

Milchrinder entweder einer CLA-Gruppe, in welcher die einzelnen Tiere 100 g/d eines 

pansengeschützten CLA-Supplements (1:1-Mischung von cis-9,trans-11 und trans-10,cis-

12) erhielten, oder einer Kontrollgruppe, in welcher die Tiere 100 g/d eines 

Kontrollsupplements (in dem CLA wurde durch Stearinsäure ersetzt wurde) erhielten, 

zugeteilt. Alle Supplemente wurden ab dem Tag der Abkalbung gefüttert. Der CLA 1-

Versuch wurde an 21 pluriparen Kühen (CLA-Gruppe: n=11; Kontrollgruppe: n=10) 

durchgeführt, wobei die entsprechenden Supplemente von d 1 bis d 182 p.p. gefüttert 

wurden. Von beiden Gruppen wurden Biopsate an d 21 a.p., sowie an d 21, 105, 196 und 

252 p.p. vom SC AT aus der Region um den Schwanzansatz entnommen. Im CLA 2-Versuch 

wurden von 25 primiparen Kühe, fünf Tiere an d 1 p.p. geschlachtet, den verbleibenden 20 

Tieren wurde von d 1 p.p. an entweder das CLA- (n=10) oder das Kontrollsupplement (n=10) 

verabreicht. An d 42 p.p. bzw. d 105 p.p. wurden je fünf Kühe pro Gruppe geschlachtet, 

wobei Gewebeproben aus drei VC Fettdepots (omental, mesenterial und retroperitoneal 

[RP]) und drei SC Fettdepots (vom Schwanzansatz, vom Brustbein, vom Widerrist) 

entnommen wurden. Im CLA 1-Versuch war die FFAR2 mRNA-Menge in SC AT höher an 

d 21 p.p. im Vergleich zu d 105 p.p. Die HCAR2 mRNA-Menge zeigte einen Abfall im 

Verlauf der Laktation mit niedrigerer mRNA-Menge an d 105 p.p. im Vergleich zu d 21 p.p. 

Die Korrelation zwischen der mRNA-Menge von HCAR2 und der mRNA-Menge von dem 

Peroxisom-Proliferator-aktivierten Rezeptor (PPAR)-γ, sowie dessen Isoform PPAR-γ2, im 

SC AT deutet auf einen regulatorischen Zusammenhang zwischen der HCAR2- und der 

PPAR-γ/2-Genexpression hin. Ein Vergleich der SC und VC Fettdepots zeigt höhere FFAR2 

und FFAR3 mRNA-Mengen in den VC Depots im CLA 2-Versuch, was ein Hinweis auf 

eine höhere Anpassungsfähigkeit des VC AT an die Verfügbarkeit von Nährstoffen im 

Vergleich zum SC AT sein könnte. Zudem belegen die Ergebnisse dieser Studie das 

Vorkommen von FFAR2 und FFAR3 mRNA im bovinen AT. Im CLA 2-Versuch, zeigten 

sich Unterschiede zwischen der CLA- und der Kontrollgruppe im omentalen und RP AT 

hinsichtlich der FFAR1 mRNA-Menge, wobei die mRNA-Menge des FFAR1 höher an d 

105 p.p. und im RP AT zusätzlich an d 42 p.p. in der CLA-Gruppe im Vergleich zur 

Kontrollgruppe war. Für eine Interpretation dieser Effekte sind allerdings weitere Studien 

nötig, welche die Auswirkungen einer FFAR1-Aktivierung auf den Fettzellstoffwechsel 

untersuchen. 
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In Manuskript 2 , erfolgte die Darstellung der mRNA-Expression von FFAR1, -2, -3, und 

HCAR2 in einem SC AT und einem VC AT in der Transitphase. Zudem wurde der Einfluss 

einer Supplementation von Nikotinsäure (NA) und von Futterrationen mit unterschiedlichem 

Kraftfutteranteil auf die mRNA-Expression dieser Rezeptoren untersucht. Hierfür wurden 

20 pluripare Holstein-Frisean-Milchrinder entweder einer Gruppe zugeteilt, die eine 

Futterration mit einem hohen Kraftfutteranteil von 60 % und einem niedrigen Raufutteranteil 

von 40 % (HC; n=10) erhielt; oder einer Gruppe, die eine Futterration mit einem niedrigen 

Kraftfutteranteil von 30 % und einem hohen Raufutteranteil von 70 % (LC; n=10) erhielt 

(bezogen auf die Trockenmasse). Je die Hälfte der Tiere beider Gruppe erhielt 24 g/d eines 

nicht-pansengeschützen NA-Supplements. Die Fütterung des Supplements bzw. der 

verschiedenen Rationen erfolgte von d 1 bis d 21 p.p. An d 21 a.p., d 1 und d 21 p.p. wurden 

Serumproben und Biopsate des AT gewonnen. Das SC AT wurde dabei im Bereich des 

Schwanzansatzes und das RP AT direkt über dem Bauchfell alternierend über die linke oder 

rechte Flanke entnommen. Im Serum wurden die kurzkettigen Fettsäuren (SCFA) mittels 

GC-FID gemessen. Die NA-Supplementierung des Futters zeigt in diesem Versuch keinen 

Einfluss auf die mRNA-Menge der untersuchten Rezeptoren und die Serumkonzentrationen 

der SCFA. An d 21 p.p. war die FFAR2 mRNA-Menge im RP AT der Tiere aus der LC-

Gruppe höher als im RP AT der Tiere aus der HC-Gruppe, was eventuell einen Mechanismus 

darstellt um einer gesteigerten Lipolyse im RP AT entgegenzuwirken. Ebenfalls, zeigte sich 

ein Trend mit niedrigeren mRNA-Mengen des FFAR3 im SC AT der Tiere aus der LC-

Gruppe versus der HC-Gruppe. Im RP AT konnte ein Zeiteffekt beobachtet werden mit 

größerer FFAR1 und FFAR2 mRNA-Menge an d 21 a.p. im Vergleich zu d 1 p.p. Die FFAR3 

mRNA-Menge hingegen war niedriger an d 21 a.p. im Vergleich zu d 1 p.p. im SC und RP 

AT; im RP AT war diese ebenfalls niedriger an d 21 a.p. im Vergleich zu d 21 p.p. Das Gen 

für FFAR3 zeigte eine umgekehrt proportionale Expression im Vergleich zu FFAR2, was 

sich ebenfalls in der negativen Korrelation zwischen der FFAR2 und FFAR3 mRNA-Menge 

im SC AT wiederspiegelte. Die beobachtete inverse Regulation von FFAR2 und FFAR3 im 

RP AT könnte darauf hindeuten, dass eine Signaltransduktion über einen der beiden 

Rezeptoren jeweils unterschiedliche physiologische Effekte hat. Aufgrund der aus der 

Literatur bekannten Konzentrationen der verschiedenen SCFA die für eine Aktivierung des 

bovinen FFAR2 bzw. FFAR3 nötig sind, kann davon ausgegangen werden dass die 

gemessenen Buttersäure-Konzentrationen eher in Lage sind beide Rezeptoren zu aktivieren 

als die gemessenen Essigsäure-Konzentrationen. Die mRNA-Menge von HCAR2 in den 

untersuchten AT wurde weder von den verschiedenen Fütterungsstrategien beeinflusst, noch 
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zeigte diese Veränderung im Verlauf der Transitphase. Das lässt vermuten, dass die 

Regulation der HCAR2-Expression relevanter für die Restriktion der Lipolyse in Zeiten einer 

positiven Energiebilanz ist. Die Ergebnisse der durchgeführten Korrelationsstudien liefern 

weitere Hinweise für Regulation der HCAR2-Expression über PPAR-γ2 im bovinen SC AT, 

sowie im RP AT. 

 

Neben der Charakterisierung der mRNA-Expression von einigen nutrient sensing GPCR in 

unterschiedlich lokalisierten AT, gibt die vorliegende Arbeit einen ersten Einblick in die 

Anpassungen dieser modulierenden Faktoren im bovinen AT an verschiedene 

Fütterungsstrategien. Darüber hinaus dienen die hier gezeigten Ergebnisse als Basis für 

weitere Untersuchungen zur Aufklärung der Funktion des FFAR1 in Adipozyten, sowie des 

Einflusses einer FFAR2- bzw. FFAR3-Aktivierung auf den Fettstoffwechsel. Nachfolgende 

Studien sollten weitere nutrient sensing GPCR, z.B. FFAR4, einschließen und auch die 

Proteinexpression dieser Rezeptoren im AT erfassen. Ein Identifizieren der Beteiligung der 

FFAR-Aktivierung an einzelnen Stoffwechselprozessen nicht nur im AT, könnte helfen die 

Bedeutung und die Auswirkungen einer Signaltransduktion über diese Rezeptoren für den 

gesamten Stoffwechsel von Milchrindern, aber auch von anderen Spezies, zu bestimmen. 
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