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Introduction

The standard panel data literature is moving from micro panels, where the cross-section

dimension is large and the intertemporal sample size is small, to large panels, where

both, the cross-section and the time dimension, are large. This thesis contributes to

this new and growing area of panel data treatments called “large panel data analysis”.

My dissertation consists of three essays: In the first essay, a large panel data model

with an omitted factor structure is considered. The role of the factors is to control for

the issue of the unobserved time-varying heterogeneity effects. A parameter cascading

strategy is proposed to enable efficient estimation of all model parameters when the

number of factors is unknown a priori. In the second essay, further models that combine

large panel data models with different versions of unobserved latent factors are discussed.

Computation-related issues are solved and new specification tests are introduced to check

whether or not these factors can be interpreted as classical additive fixed effects. In the

third essay, a novel method for estimating panel models with multiple structural changes

is proposed. The breaks are allowed to occur at unknown points in time and may affect

the multivariate slope parameters individually. Asymptotic results are derived, Monte

Carlo experiments are performed, and applications for highlighting these new methods

are discussed.

Due to the impressive progress of information technology, econometricians and statisti-

cians, nowadays, have the privilege of working with large dimensional data sets. In the

panel data literature, this has been succeeded by the opening of new research perspec-

tives. Recent studies have discussed large panel data models in which the unobserved

heterogeneity can be estimated by an “approximate factor structure”. The latter, unlike

the standard setup of factor models, allows for the presence of weak forms of cross-section

and time-series dependence in the idiosyncratic components. The extended regression

models combining conventional panel models and factor structures provide a generaliza-

tion of classical panel models with additive heterogeneity effects. Indeed, it allows for

the individual specific effects to be affected by unobserved common time-shocks.

1
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The first chapter is joint work with Alois Kneip. Our paper is published in Computational

Statistics and Data and Analysis; see Bada and Kneip (2014). In this chapter, we extend

the iterated least squares approach of Bai (2009) and Bai et al. (2009) in such a way that

we allow the number of factors to be unknown a priori. We propose inserting a penalty

term into the objective function to be globally optimized and updating iteratively the

estimators of all required parameters in hierarchical order. Our parameter-cascading

strategy also includes the update of the penalty term in order to adjust the height of

the penalization and to avoid under- or over-parameterization effects. We allow for the

presence of stationary and non-stationary factors and discuss the case in which the static

factor presentation arises from a small number of dynamic primitive shocks. We show

that our extension does not affect the asymptotic properties of the iterated least squares

estimator. Our Monte Carlo experiments confirm that, in many configurations of the

data, such a refinement provides more efficient estimates in terms of MSE than those that

could be achieved if the feasible iterative least squares estimator is calculated with an

externally selected factor dimension. In our application, we consider the problem of the

so-called “credit spread puzzle”–the gap between the observed corporate bond yields and

duration-equivalent government bond yields that classical financial models of credit risk

fail to explain. Our empirical study detects the presence of two unobserved primitive risk

factors affecting the U.S. corporate bond market during the period between September

2006 and March 2008.

The second chapter is written in collaboration with Domink Liebl. Our paper is pub-

lished in the Journal of Statistical Software; see Bada and Liebl (2014b). This chapter

focuses on important computational aspects related to the panel methods of Bai (2009)

and Kneip et al. (2012). As the estimation procedure of Kneip et al. (2012) involves

nonparametric estimation techniques, the choice of an appropriate smoothing parameter

can be very crucial in practice. We propose using a slightly modified version of the Gen-

eralized Cross Validation (GCV) criterion to determine an upper bound for the optimal

smoothing parameter. Using this, we can obtain an enormous gain in terms of compu-

tation compared to the cross validation criterion proposed by Kneip et al. (2012). Bai’s

method relies on an iterated least squares approach and also requires the determination

of external parameters such as the number of factors to be considered and appropriate

starting values to initiate the iteration process. We propose using the starting estimator

and the iteration scheme of Bada and Kneip (2014). Additionally, we review a wide

range of recently developed dimensionality criteria that can be applied in this context.

To examine the significance of the factors and test whether a model with factor structure

is more appropriate than a simple panel model with additive effects, we propose using

two testing procedures: a Hausman-type test and a z-test based on the method of Kneip

et al. (2012). All these methods are implemented in an R package called phtt (see Bada
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and Liebl (2014a)). To the best of our knowledge, phtt is the first software package that

provides this large number of methods for analyzing large panel data. To demonstrate

the functionality of our package, we re-explore the well known Cigar dataset and re-

visit the model of Baltagi and Li (2006) to allow for the presence of an omitted factor

structure in the idiosyncratic components.

The third chapter is based on joint work with Alois Kneip, James Gualtieri, and Robin

Sickles. This chapter proposes a novel method for estimating panel models with multiple

structural changes that may occur at unknown points in time. In spite of the growing

literature on large panel data analysis, there is an important issue that is scarcely dis-

cussed in most of the existing work –the risk of neglecting structural breaks in the data

generating process, especially when the observation period is large. Our model general-

izes the special model specification in which the slope parameters are time homogeneous.

Our theory considers breaks in a two-way panel data model, in which the unobserved

heterogeneity is composed of additive individual effects and time specific effects. We

show that our method can also be extended to cover the case of panel models with un-

observed heterogeneous common factors as proposed by Bai (2009), Kneip et al. (2012),

Ahn et al. (2001), Pesaran (2006), and Bada and Kneip (2014). We provide a general

setup allowing for endogenous models such as dynamic panel models and/or structural

models with simultaneous panel equations. Consistency under weak forms of dependency

and heteroscedasticity in the idiosyncratic errors is established and the convergence rate

of our slope estimator is derived. To detect the jump locations consistently and test

for the statistical significance of the breaks, we propose post-wavelet procedures. Our

simulations show that, in many configurations of the data, our method performs very

well. Our empirical vehicle for highlighting this new methodology addresses the stability

of the relationship between Algorithmic Trading (AT) and Market Quality (MQ). We

find evidence that the relationship between AT and MQ was disrupted between 2007

and 2008.





Chapter 1

Panel Models with Unknown

Number of Unobserved Factors:

An Application to the Credit

Spread Puzzle

1.1 Introduction

In recent years, the use of panel data has attracted increasing attention in many empirical

studies. This is motivated by the fact that such data sets allow statisticians to deal

with the problem of the unobserved heterogeneity. Recent studies have discussed large

panel data models in which the unobserved heterogeneity can be modeled by a factor

structure; see, e.g., Bai (2009), Bai et al. (2009), Kneip et al. (2012), and Pesaran (2006).

While most of the ongoing studies have focused on fitting the model for a given number

of factors, the present work considers the problem of estimating the factor dimension

jointly with the unknown model parameters. Our estimation algorithm can be applied

for models of the form:

Yit = Xitβ + FtΛ
′
i︸︷︷︸

(1×d)×(d×1)

+εit for i ∈ {1, · · · , N} and ; t ∈ {1, · · · , T}, (1.1)

where Xit is a (1× p) vector of observable regressors, β is a (p× 1) vector of unknown

parameters, Λi is a (1×d) vector of individual scores (or factor loadings), Ft is a (1×d)

vector of unobservable common time-varying factors, εit is the error term, and d is an

unknown integer, which has to be estimated jointly with β,Λi and Ft.

5
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The difference between (1.1) and the classical panel data models consists in the unob-

served factor structure FtΛ
′
i. It is noted that (1.1) not only provides a generalization of

panel data models with additive effects, where d = 2, Ft = (ft,1, 1), and Λi = (1, λ2,i),

but also includes the dynamic factor models in static form as in Stock and Watson (2005).

To illustrate this case, consider a static factor model with autocorrelated idiosyncratic

errors of order P such that

Yit = F ∗t Λ
′
i + eit and

eit = β1ei,t−1 + . . .+ βP ei,t−P + εit.

It is easily verified that integrating the expansion of eit in the first equation and using

ei,t−p = Yi,t−p − F ∗t−pΛ
′
i for each p = 1, . . . , P results in a panel model of form (1.1),

where the regressors are the lags of Yit, i.e., Xit = (Yi,t−1, . . . , Yi,t−P ), and Ft = F ∗t −
β1F

∗
t−1 − · · · − βPF ∗t−P .

Moreover, the static presentation of the unobserved factor structure in (1.1) can arise

from q-dimensional dynamic factors, say Ft, (also called primitive factors or primitive

shocks). In this case, Ft = [Ft, . . . ,Ft−m] and d = q(m+ 1) ≥ q.

Stock and Watson (2005) propose to estimate dynamic factor models in static form by

the iterated least squares method (also called iterative principal component). Bai (2009)

studies (1.1) in the context of panel data models and provides asymptotic theory for the

iterative least squares estimators when both N and T are large. However, Stock and

Watson (2005) and Bai (2009) assume the factors to be stationary. Bai et al. (2009)

extend the theoretical development of Bai (2009) to the case where the cross-sections

share unobserved common stochastic trends of unit root processes. They prove that the

asymptotic bias arising from the time series in such a case can be consistently estimated

and corrected. Ahn et al. (2013) consider the classical case where T is small and N

is large and estimate the model by using the generalized method of moments (GMM).

They show that, under fixed T , the GMM estimator is more efficient than the estimator

of Bai (2009).

A second criticism of the conventional iterative least squares method is that the number

of unobserved factors has to be known a priori. In this regard, Bai and Ng (2002) and Bai

(2004) propose new panel information criteria to assess the number of significant factors

in large panels. The performance of these criteria depends, however, on the choice of

an appropriate maximal number of factors to be considered in the selection procedure.

Hallin and Lǐska (2007) propose similar criteria in the context of generalized dynamic

factor models and provide a calibration strategy to adjust the height of the penalization;

however, the calibration requires extensive computations. Alternatively, Kapetanios

(2010) proposes a threshold approach based on the empirical distribution properties of
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the largest eigenvalue. The method requires i.i.d. errors. Onatski (2010) extends the

approach of Kapetanios (2010) by allowing the errors to be either serially correlated or

cross-sectionally dependent. Onatski (2009) proposes a test statistic based on the ratios

of adjacent eigenvalues in the case of Gaussian errors. Alternative methods for assessing

the number of factors in the context of principal component analysis and classical factor

analysis can be found in Josse and Husson (2012), Dray (2008), and Chen et al. (2010).

But note that all these approaches assume the factors to be extracted directly from

observed variables and not estimated with other model parameters.

Kneip et al. (2012) consider the case of observed regressors and unobserved common

factors and propose a semi-parametric estimation method and a sequential testing pro-

cedure to assess the dimension of the unobserved factor structure. The asymptotic

properties of their approach rely on second order differences of the factors and i.i.d.

idiosyncratic errors. Pesaran (2006) attempts to control for the hidden factor structure

by introducing additional regressors into the model, which are the cross-section averages

of the dependent variables and the cross-section averages of the observed explanatory

variables. The advantage of this estimation procedure is its invariance to the unknown

factor dimension. However, the method does not aim to consistently estimate the factor

structure but only deals with the problem of its presence when estimating the remaining

model parameters.

In this chapter, we extend the iterative approach of Bai (2009) and Bai et al. (2009)

in such a way that we allow for the number of factors to be unknown a priori. We

integrate a penalty term into the objective function to be globally optimized and update

iteratively the estimators of all required parameters in hierarchical order as described

in Cao and Ramsay (2010). Our parameter-cascading strategy also includes the update

of the penalty term in order to adjust the height of the penalization and avoid under-

and over-parameterization. Monte Carlo experiments show that, in many configurations

of the data, such a refinement provides more efficient estimates in terms of MSE than

those that could be achieved if the feasible iterative least squares estimator is calculated

with an externally selected factor dimension.

There are a lot of examples where the determination of the number of factors in the

presence of additional observed regressors is of particular interest. As an example, we

consider, in our application section, the problem of the so-called credit spread puzzle–

the gap between the observed corporate bond yields and duration-equivalent government

bond yields that classical financial models of credit risk fail to explain (see, e.g., Huang

and Huang (2012), and Elton et al. (2001)). For a long time, the credit spread has

been considered a simple compensation for credit default risk. Most empirical studies

show, however, that default risk cannot be the unique explanatory variable. Kagraoka
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(2010) decomposes the credit spread into credit risk, illiquidity risk, and an unobservable

risk component, which he defines as systematic risk premium; however, he assumes the

unobserved part to be generated by only one factor. Castagnetti and Rossi (2011) adopt

a heterogeneous panel model with multiple factors. Their results suggest that credit

spreads are driven by observable as well as unobservable common risk factors.

In our application, we extend the empirical development of Kagraoka (2010) by allowing

for the systematic risk premium to be composed of multiple hidden factors. Moreover,

we allow for some slope coefficients to be temporally heterogeneous. This differs from the

setting of Castagnetti and Rossi (2011), who use a panel model with cross-sectionally

heterogeneous slope parameters. Our empirical study relies on daily observations of

111 U.S. corporate bonds over a period of 397 business days. Our results suggest the

presence of two unobserved primitive risk factors affecting U.S. corporate bonds during

the period between September 2006 and March 2008, while one single factor is sufficient

to describe the data for the time periods prior to the beginning of the subprime crisis in

2007.

The remainder of this chapter is organized as follows: Section 2 proposes an algorithmic

refinement of the conventional iterative least squares estimation method. In Section 3,

we extend the model with additional nominal variables, discuss the model assumptions

and present some asymptotic results. Section 4 presents the results of our Monte Carlo

simulations. Section 5 describes the empirical application and interprets the results.

Conclusions and remarks are provided in Section 6.

1.2 Model and Estimation Algorithm

1.2.1 Model Identification and Estimation

In vector and matrix notation the model is written as

Yi = Xiβ + FΛ′i + εi, (1.2)

where Yi = (Yi1, · · · , YiT )
′
, X

′
i = (X

′
i1, · · · , X

′
iT )
′
, F = (F

′
1, . . . , F

′
T )
′
, Λi is a (N × d)

matrix of loading parameters, and εi is a (T × 1) vector of idiosyncratic errors.

The basic idea of our extension is to treat the conventionally iterated least squares

estimators as functions dependent on a run parameter d. The latter is fitted by means

of a penalty term that is directly integrated into the global objective function to be

optimized. The final solution is obtained by alternating between an inner iteration to
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optimize β̂(d), F̂ (β̂,d), and Λ̂i(β̂, F̂ ,d) for each given d and an outer iteration to select

the optimal dimension d̂.

Our optimization criterion can be defined as a penalized least squares objective function

of the form:

S(Λi, F, β,d) =
1

NT

N∑
i

||Yi −Xiβ − FΛ
′
i||2 + dg, (1.3)

where g is a penalty term that depends on the sample size N and T .

Before beginning with the details of the estimation procedure, it is important to mention

that the intrinsic problem of factor models consists in the identification of the true factors

and the true loading parameters. This is because FΛ
′
i can be replaced with F ∗Λ∗

′
i , where

F ∗ = FH, Λ∗
′
i = H−1Λ

′
i, and H is an arbitrary (d×d) full rank matrix. In order ensure

the uniqueness of F and Λi (up to sign change), the following normalization conditions

(d× d restrictions) are required:

(R.1):
∑N

i=1 Λ
′
iΛi/N is a (d×d) diagonal matrix, where the diagonal elements are

ordered decreasingly and

(R.2): F
′
F/T δ = Id, where Id is the (d× d) identity matrix.

The rate T δ can be chosen according to the stochastic character of Ft. Generally, δ is set

to 1 if the factors are stationary and to 2 if they are integrated of order 1; see, e.g., Bai

and Ng (2002), and Bai (2004). To be sparing with notation throughout the chapter,

from now on we set δ to 2.

Our computational algorithm is based on a parameter cascading strategy, which is pro-

posed by Cao and Ramsay (2010) to estimate models with multi-level parameters. The

algorithm is relatively easy to program and can be described and implemented by the

following logic:

Step 1 (the individual parameters Λi)

We estimate the individual parameters by minimizing the objective function S(β, F,Λi,d)

with respect to Λi for each given F, β, and d. Because the penalty term does not depend

on Λi, the optimization criterion at this stage can be expressed as:

S1(Λi|β, F,d) =
1

NT

N∑
i

||Yi −Xiβ − FΛ
′
i||2.
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Minimizing for Λi and using restriction (R.2), we get

Λ̂
′
i(F, β,d) =

[
F ′F

]−1
F ′ [Yi −Xiβ] = F ′ [Yi −Xiβ] /T 2. (1.4)

Step 2 (the time trend effects F )

We make use of result (1.4) and minimize the objective function S2(F |β,d), which

depends only on β and d:

S2(F |β,d) = 1
NT

∑N
i ||Yi −Xiβ − F Λ̂

′
i||2

= 1
NT

∑N
i || [Yi −Xiβ]− FF ′

T 2 [Yi −Xiβ] ||2.

After rearranging, we can see that minimizing S2(F |β,d) with respect to F is equivalent

to maximizing the term 1
NT

∑N
i ||

FF ′

T 2 (Yi −Xiβ)||2.

Solving for F (β,d) subject to (R.2), we obtain the following result:

F̂ (β,d) = T P̂ (β,d), (1.5)

where P̂ (β,d) is a (T × d) matrix containing the first d eigenvectors [P̂1, P̂2, · · · , P̂d],

which correspond to the first d eigenvalues, ρ̂1(β,d) ≥ ρ̂2(β,d), · · · ,≥ ρ̂d(β,d), of the

matrix

Σ̂(β,d) =
1

NT

N∑
i=1

[Yi −Xiβ(d)] [Yi −Xiβ(d)]′ . (1.6)

Step 3 (the common slope parameter β)

To estimate the slope parameter, we reintegrate (1.4) and (1.5) into (1.3) and optimize

the new intermediate objective function

S3(β|d) =
1

NT

N∑
i

||Yi −Xiβ − F̂ (β,d)Λ̂
′
i(β,d)||2. (1.7)

Because F̂ (β,d) depends nonlinearly on β, the minimization of (1.7) is conventionally

done iteratively. For a given d, the estimators of β, F , and Λi should satisfy the following

equation:

β̂(d) =

[
N∑
i=1

X ′iXi

]−1 [ N∑
i=1

X ′i

[
Yi − F̂ (β̂(d))Λ̂

′
i(β̂(d))

]]
. (1.8)



Chapter 1. Panel Models with Unknown Number of Unobserved Factors 11

We want to emphasize that our setting differs slightly from the development of Stock

and Watson (2005), Bai (2009) and Bai et al. (2009) because β̂(d), in (1.8), depends on

the unknown parameter d, which has to be jointly estimated.

Step 4 (the dimension d)

The basic idea of constructing consistent panel information criteria consists of finding

appropriate penalty functions that reestablish asymptotically the variance minimization

when the considered number of factors increases. Explicitly, the optimal dimension d̂

can be obtained by minimizing a criterion of the form

S4(d) =
1

NT

N∑
i=1

||Yi − Ŷi(d)||2 + dg, (1.9)

where Ŷi(d) is the fitted response variable based on a given dimension d. The penalty

terms proposed by Bai and Ng (2002) and Bai (2004) basically depend on the orders of

magnitude in probability of the sequences

1

NT

N∑
i=1

||Yi − Ŷi(d)||2 − 1

NT

N∑
i=1

||Yi − Ŷi(d)||2 = Ωp(κu) and (1.10)

1

NT

N∑
i=1

||Yi − Ŷi(d)||2 − 1

NT

N∑
i=1

||Yi − Ŷi(d)||2 = Op(κo), (1.11)

depending on N,T ∈ N. Here, d ∈ {0, . . . , d− 1}, d ∈ {d+ 1, . . . , dmax}, where dmax is

an arbitrary large dimension greater than d.

To ensure that limN,T→∞ P [S4(d) > S4(d)] = 1 for all d = {0, . . . , dmax|d 6= d}, it is

sufficient to choose g, such that

(i) limN,T→∞ κ
−1
u g −→ 0 and

(ii) limN,T→∞ κ
−1
o g −→∞.

The existence of a function g satisfying (i) and (ii) requires, of course, κu/κo → ∞,

which is often fulfilled because the common information, in the presence of a factor

structure, is accumulated stochastically faster than the unit specific information in the

errors, as N,T →∞. Intuitively, g can be of the form
√
κuκo or log(κu/κo)κo. For more

explicit examples, we refer the reader to the papers of Bai and Ng (2002), Bai (2004),

and Hallin and Lǐska (2007).

The problem with this method is that the degree of freedom in the choice of g is too

large, since g is not unique and multiplying it with any finite positive value will not
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hurt (i) and (ii). Bai and Ng (2002) and Bai (2004) propose to scale g with σ̂2
dmax

=
1
NT

∑N
i=1 ||Yi− Ŷi(dmax)||2. However, such a penalization can lead to a result that is too

sensitive to the choice of dmax.

In our algorithm, we utilize σ̂2
dmax

only as a starting scaler and make further use of the

parameter cascading strategy to calibrate g recursively by updating the sample variance

after updating the factor dimension. At the optimum, the obtained estimators, referred

to hereafter as entirely updated estimators and denoted by Eup, satisfy the following

system of equations:

σ̂2
Eup = 1

NT

∑N
i ||Yi −Xiβ̂Eup − F̂EupΛ̂

′
Eup,i||2,

d̂Eup = arg min
d

1
NT

∑N
i ||Yi −Xiβ̂Eup − F̂EupΛ̂

′
Eup,i||2 + g(σ̂2

Eup),

β̂Eup =

[
N∑
i=1

X ′iXi

]−1 [ N∑
i=1

X ′i

[
Yi − F̂EupΛ̂

′
Eup,i

]]
,

F̂Eup =
√
T P̂ (β̂Eup, d̂Eup), and

Λ̂
′
Eup,i = F̂

′
Eup

[
Yi −Xiβ̂Eup

]
/T 2,

(1.12)

where g(σ̂2
Eup) = σ̂2

Eupa
log(b)
b , with a = 1 and b = NT/(N + T ) if the factor structure is

composed of mixed stationary and non-stationary factors or a = T/(4 log log(T )) if all

factors are non-stationary stochastic trends.

Remark 1.1. As outlined in the introduction, the d static factors can be composed of

the leads and the lags of only q < d primitive factors. The intuition behind estimating β

with a consistent estimator of d and not q is to avoid possible omitted-variable problems.

However, assessing the number of the really existing primitive shocks in the data can

be very useful for interpretation. For this purpose, a VAR regression with order m ≤
(d̂Eup − 1) can be applied to F̂

′
Eup. If the static factors are effectively driven by q

dynamic factors, then the rank of the VAR residual covariance matrix is equal to q (at

least asymptotically). Bai and Ng (2007) and Stock and Watson (2005) make use of this

feature to provide selection procedures based on the principal components of the VAR

residuals. Alternatively, one can apply the sequential testing procedure of Onatski (2009)

or use the information criterion of Hallin and Lǐska (2007) on the spectral density matrix

of F̂EupΛ̂
′

Eup,(N) = (F̂EupΛ̂
′
Eup,1, . . . , F̂EupΛ̂

′
Eup,N ). If the factors are I(1) processes, we

replace F̂Eup,t with ∆F̂Eup,t = F̂Eup,t − F̂Eup,t−1 before estimating q.

1.2.2 Starting Values and Iteration Scheme

Note that the multidimensional objective function S(β, F,Λi,d) in (1.3) is not globally

convex. To insure that the iteration algorithm converges to the global optimum, it is

important to choose reasonable starting values for d and β. Because, in practice, only
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samples with finite dimensions can be observed, we propose starting with the following

integer: dmax =
⌊
min{

√
N,
√
T}
⌋
, where bzc indicates the integer part of z. This

technical setting provides only a systematic approach to initiate the iteration. For huge

data sets, the square root function can be replaced by the natural logarithm or by

any truncation method. But this is not necessary, since dmax will be replaced directly

after the first iteration with the estimated factor dimension and refined iteratively until

convergence. More important is the starting value of the slope parameter. We propose

using the following estimate:

β̂start =

[
N∑
i=1

X
′
i [I −GG

′
]Xi

]−1 [ N∑
i=1

X
′
i [I −GG

′
]Yi

]
, (1.13)

where G is the (T × dmax) matrix of the eigenvectors G1, . . . , Gdmax , corresponding to

the first dmax eigenvalues of the augmented matrix

ΓAug =
1

NT

n∑
i=1

[Yi, Xi][Yi, Xi]
′
.

The idea behind these starting estimates relies on the fact that the true unobserved fac-

tors F cannot escape from the space spanned by the eigenvectors of the augmented ma-

trix ΓAug. The orthogonal projection of Xi on G in (1.13) eliminates the effect of a possi-

ble correlation between the observed regressors Xi and the unobserved factors F , which

can heavily distort the value of β̂start from the true β if it is neglected. However, the prob-

lem of this starting estimate is that
[∑N

i=1X
′
i [I −GG

′
]Xi

]
and

[∑N
i=1X

′
i [I −GG

′
]Yi

]
in (1.13) will be close to zero if the observed regressors are the underlying factors, i.e.,

Xi ≈ FΛ
′
i . In this case, the estimation algorithm can misleadingly converge to an

insignificant estimate of β and compensate for that by estimating factors that origi-

nally exist only in the observed regressors. To overcome such limitation, we recommend

under-scaling the factors Gl, l = 1, . . . , dmax, with (1 − maxp∈{1,...,P} r
2
Gl,Xp

)0.5, where

rGl,Xp is the sample correlation coefficient between Gl and the p-th element of Xi (or

the p-th eigenvector of the (T × T ) covariance matrix of Xi, for p ∈ {1, . . . , dmax}).
This automatically eliminates the factors that are perfectly correlated with the observed

regressors, and gives the remaining factors appropriate weights.

In spite of the complex form of our estimates, implementing the algorithm that opti-

mizes S(Λi, β, F,d) through optimizing S1(Λi|β, F,d), S2(F |β,d), S3(β|d) and S4(d) is

relatively easy. The final estimators can be obtained by alternating between

• rm inner iterations until convergence of the following composite function:

β̂(rm) ◦ F̂ (rm) ◦ Λ̂
(rm)
i

(
d̂(m)

)
≈ β̂(rm−1) ◦ F̂ (rm−1) ◦ Λ̂

(rm−1)
i

(
d̂(m)

)
,
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for each given d̂(m), and

• outer iterations until satisfying the following convergence condition:

d̂(m+1) ◦ σ̂2(m) = d̂(m) ◦ σ̂2(m−1).

Here, the composite notation c◦b(z) is defined by c(b(z)) for each z and used to indicate

the application of one estimate on the result of another.

Note that this iteration scheme simplifies the minimization of the dimensionality criterion

(1.9), since d̂(m+1) can be obtained by

d̂(m+1) = arg min
d

1
NT

∑N
i ||Yi −Xiβ̂

(rm) − F̂ (rm)Λ̂
(rm)
i ||2 + dg(σ̂2(m))

= arg min
d

∑T
l=d+1 ρ̂

(rm)
l + dg(σ̂2(m)),

where ρ̂
(rm)
l are the ordered eigenvalues of the covariance matrix (1.6) required to com-

pute F̂ (rm) at the iteration stage rm and

σ̂2(m) =
1

NT

N∑
i

||Yi −Xiβ̂
(rm) − F̂ (rm)Λ̂

(rm)
i ||2 =

T∑
l=d̂(m)+1

ρ̂
(rm)
l . (1.14)

Selecting d̂(m+1) reverts therefore to finding the order of the smallest element in the

following set:

A(m) =


T∑

l=d+1

ρ̂
(rm)
l + da

log(b)

b

T∑
l=d̂(m)+1

ρ̂
(rm)
l

∣∣∣∣∣∣d = 0, 1, . . . , d̂(m)

 . (1.15)

A simple pseudo code that optimizes the entirely updated estimators presented in (1.12),

can be described as follows:

1. Set d̂(m) =

{
dmax if m = 0

d̂(m−1) if m > 0

2. Set β̂(rm) =

{
β̂start if rm = 0

β̂(rm−1) if rm > 0

3. Use (1.5) to calculate F̂ (rm) = F̂ (β̂(rm), d̂(m))

4. Use (1.4) to calculate Λ̂
(rm)
i = Λ̂i(F̂

(rm), β̂(rm), d̂(m))

5. Use (1.8) to update β(rm+1) = β̂(d̂(m)) by using F̂ (rm) and Λ̂
(rm)
i

6. If β̂(rm+1) ≈ β̂(rm), go to 7; else, replace the value of β̂(rm) with β̂(rm+1)

and repeat 2 − 6 with (rm + 1) instead of (rm)
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7. Use (1.14) to calculate σ̂2(m)

8. Select d̂(m+1) that corresponds to the order of the smallest element in

the set A(m) in (1.15)

9. If d̂(m+1) = d̂(m), exit; else, replace the value of d̂(m) with d̂(m+1) and

β̂(rm) with β̂(rm+1) and go to 1 with (m + 1) instead of (m) and (rm+1 +

1) instead of (rm).

Remark 1.2. We can, of course, use the analytic expression of Λ̂
′
Eup,i to write the esti-

mator of β in (1.12) conventionally as

β̂Eup =

[
N∑
i=1

X ′iMF̂Eup
Xi

]−1 [ N∑
i=1

X ′iMF̂Eup
Yi

]
, (1.16)

where MF̂Eup
= IT − F̂EupF̂

′
Eup/T

2. However, implementing the estimation algorithm

with (1.16) may destabilize the convergence of the iteration process, since the update of

the slope estimator, in this case, requires the inversion of the matrix
∑N

i=1X
′
iMF̂Eup

Xi

in each iteration stage and not only at the optimum.

Remark 1.3. In order to speed up the computation when N < T , we can reconstruct the

estimation algorithm with S1(F |Λi, β,d) and S2(Λi|β,d) instead of S1(Λi|F, β,d) and

S2(F |β,d). The benefit of such modification is to calculate the eigenvectors of a smaller

covariance matrix with a dimension (N × N) instead of (T × T ). Both computations

ultimately lead to the same result.

The routines of this method are provided in an R-Package called phtt. For more details

about this package, we refer the reader to the paper of Bada and Liebl (2014b).

1.3 Model Extension and Theoretical Results

1.3.1 Presence of Additional Categorical Variables

Our model assumptions will closely follow the the setup of Bai et al. (2009), who al-

low for mixed stationary and unit root regressors (I(0)/I(1) regressors) as well as mixed

I(0)/I(1) unobserved factors. However, our analysis encounters an additional complica-

tion allowing for model (1.2) to be obtained from transforming an underlying model of

the form:

Y ◦it = X◦itβ +
K∑
k=1

αktδik + FtΛ
′
i + µt + εit. (1.17)
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Here, Y ◦it and X◦it are the underlying observed variables that change over i and t, δik is a

nominal variable defined as δik = 1 if individual i belongs to category k, k = 1, . . . ,K <

N , and 0 otherwise, αkt is a time heterogeneous parameter describing the effect of the

categories on the dependent variable, µt is the time varying general average of Y ◦it , FtΛ
′
i

is, as above, the unobserved factor structure with unknown dimension, and εit is the

idiosyncratic error.

An application of such a model specification and examples of dependent and independent

variables are presented in Section 1.5.1. Note that the identification of the additional

parameters αkt and µt in (1.17) requires additional restrictions:

(R.3):
∑K

k αkt = 0,
∑N

i=1 Λi = 0 and
∑N

i=1 δikΛi = 0 for k = 1, . . . ,K.

This condition does not impose any unreasonable limitation but only identifies the model

parameters by imposing on the categorical variable δik and the parameters µt and αkt

to be unconnected with the parameters of the factor structure.

In order to avoid reverting to constrained optimization techniques that rely explicitly

on (R.3), we use a within-group transformation first to eliminate αkt and µt from (1.17)

and then to estimate the transformed model as described in Section 1.2. The parameters

αkt and µt can be easily estimated in a second step once d̂Eup, β̂Eup, F̂Eup, and Λ̂
′
Eup,i

are obtained. To this end, we define the linear transformation operator T (.) as

T (Zit) = Zit −
K∑
k=1

1

mk

N∑
j=1

Zitδjk, (1.18)

where mk = ]{j|δjk = 1} for k ∈ {1, . . . ,K}.

Let Yit = T (Y ◦it), Xit = T (X◦it) and εit = T (εit). By using (R.3), we can easily verify

that

T (Y ◦it) = Yit = Xitβ + FtΛ
′
i + εit. (1.19)

The transformed Model (1.19) has the same form as Model (1.2) and can be fitted by the

entirely updated estimators. In order to estimate the pre-eliminated parameters αkt and

µt, we propose to use a dummy variable regression once β̂Eup, F̂Eup, Λ̂
′
Eup,i and d̂Eup are

obtained. In fact, estimating αkt and µt does not require any iteration since restriction

(R.3) arranges for the orthogonality between δik and Λi. The solution has consequently

the same form as the classical fixed effects estimators:

µ̂t = Y .t −X .tβ̂Eup and

α̂kt = Y kt −Xktβ̂Eup − µ̂t,

where Y .t = 1
N

∑N
i Yit, X .t = 1

N

∑N
i Xit, Y kt = 1

mk

∑N
i δikYit, andXkt = 1

mk

∑N
i δikXit.
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1.3.2 Assumptions

We now consider inference of (1.19) as (N,T ) → ∞. Here, (N,T ) → ∞ has to be

interpreted as a sequential limit: first T → ∞ and then N → ∞. Throughout, we

denote by M a finite positive constant, not depending on N and T . We use B(.) to

denote a Brownian motion process defined on [0, 1] and bτc to denote the largest integer

≤ τ . We will use β◦, F ◦t and Λ◦i to respectively denote the true slope parameters, the

true factors (only identifiable up to rotation), and the true loadings parameters. EC(.) is

used to denote conditional expectation given F ◦. For all N , we assume an i.i.d. random

sample of individuals.

Our theoretical setup relies on the following assumptions.

Assumption 1. The observed regressors:

(a) mk
N converges a.s. to E(δik) as N →∞, where infk=1,...,K E(δik) > 0.

(b) Let Xitβ
◦ = Xit,1β

◦
1 +Xit,2β

◦
2 , where Xit,1 is (1×P1) vector of a I(1) multivariate

process, such that X
′
it,1 = X

′
i,t−1,1 + ζ

′
it −

∑K
k=1 δikζ̄

′
kt where ζ

′
it is a zero mean

(P1 × 1) stationary vector and ζ̄
′
kt = 1

mk

∑N
j=1 δjkζ

′
jt. Xit,2 is (1 × P2) vector

of stationary regressors, such that Xit,2 = X◦
′
it,2 −

∑K
k=1 δikX̄

◦′
kt,2 with X̄◦

′
kt,2 =

1
mk

∑N
j=1 δjkX

◦′
jt and EC(X◦it,2ζjs) = 0 for all i, j, t and s.

Assumption 2. The unobserved factor structure:

(a) E||Λ◦i ||4 ≤M ; As N →∞, E(Λ◦i δik) = 0 for all k = 1, . . . ,K, and 1
N

∑
i Λ◦

′
i Λ◦i

p→
ΣΛ, a (d× d) positive definite matrix.

(b) F ◦
′

t = F ◦
′

t−1 + η
′
t, where η

′
t is a zero mean random vector with E||η′t||4+γ ≤ M for

some γ > 0 and for all t; As T → ∞, 1
T 2

∑
t F
◦′
t F

◦
t

d→
∫
B
′
ηBη, a d × d random

matrix, where Bη is a vector of Brownian motion with a positive definite covariance

matrix Ωη. ηt is independent of X◦it,2 for all i, t, k.

(c) lim infT→∞ log log(T )/T 2
∑T

t=1 F
′◦
t F

◦
t = C, where C is a nonrandom positive def-

inite matrix.

(d) {Ft, X∗it,1} are not cointegrated, where X∗
′
it = X∗

′
i,t−1 + ζ∗

′
it , t = 2, . . . , T with

X∗
′
i1 = X

′
i1, ζ∗

′
it = ζ

′
it −

∑K
k=1 δikζ

0′
kt, and ζ0′

kt = EC(ζ
′
kt|δik = 1), k = 1, . . . ,K.
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Assumption 3. The error terms:

(a) Let εit = εit −
∑k

k=1 δikε̄kt with ε̄kt =
∑n

j=1
1
mk

∑n
j=1 εjtδjk. Here, εit are zero

mean error terms and EC(ε̄kt|δik = 1) = 0 for all k. Conditional on ηt the error

terms εit are cross-sectionally independent of each other as well as of X◦it.

(b) The multivariate processes wit = (εit, ζ
∗
it, ηt) are stationary. For each i, wit =∑∞

j=0 Πijvi,t−j , where vit = (vεit, v
ζ
it, v

η
t ) are mutually independent over i, t as well

as identically distributed over t. Furthermore, E(vit) = 0, E(vitv
′
it) > 0, and

E(‖vit‖8) ≤ M , where M < ∞ is independent of i, t. In addition, all further

conditions of Assumptions 2. and 3 of Bai et al. (2009) are satisfied.

The additional terms ζ̄kt and ε̄kt in Assumptions 2 and 3 reflect our subtraction of

group means. Assumption 1.a guarantees that the K categories (groups) do not vanish

as N → ∞. Assumption 1.b allows for mixed I(1)/I(0) regressors. As in Bai et al.

(2009), the I(0) regressors are assumed to be exogenous and linearly independent of the

I(1) regressors and the I(1) factors. This is only given for the purpose of simplifying the

analysis and avoiding further complications.

The requirement E(Λ◦i δik) = 0 for all k = 1, . . . ,K, in Assumption 2, is the population

version for our condition (R.3) introduced for identifying αkt. We want to emphasize

that the transformation T (.) only influences the structure of the error terms and the

explanatory variables, but not the factor structure F ◦t Λ
′◦
i . Assumptions 2.b and 2.c are

commonly used in the literature of non-stationary factor models with unit roots; see,

e.g., Bai (2004) and Bai et al. (2009). Assumption 2.d is a technical assumption used

to ensure the non-singularity of the long run covariance matrix Ωb,i of (ζ∗
′
it , η

′
t)
′
. This

allows for estimating the asymptotic bias of the slope estimator.

Assumption 3 excludes cross-section dependencies of εit and ζ∗it conditional on {ηt}. But

unconditionally, weak cross-section correlations are allowed under Assumptions 3.b of

Bai et al. (2009).

Remark 1.4. Assumption 2 considers the presence of only I(1) factors. But note that the

method is also robust to mixed I(1)/I(0) factors. Bai et al. (2009) argue that, for known

d, the limiting distribution of the slope estimator, in this case, is the same as when

all factors are I(1) (except for small modifications in the expression of the asymptotic

variance). Their arguments should also hold for our extended model.

Remark 1.5. The last part of Assumption 1.b considerably simplifies the analysis of

the asymptotic distributions of the slope parameters. This is because the I(0) and

I(1) regressors are asymptotically orthogonal and their asymptotic distributions can be

separately analyzed: while the estimator of β◦2 needs no correction and is asymptotically
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normal distributed (see Bai (2009) and Bai et al. (2009)), the estimator of β◦1 has a

distribution as if there is no I(0) regressors. Note that the aim of separating I(0) and

I(1) variables is to correctly derive the rates of convergence. Bai et al. (2009) argue

that if the ultimate purpose is to perform hypothesis testing, one can proceed as if all

regressors are I(1) since the scaling factor will be canceled out in the end.

Because of Remark 1.5, we can drop from now on the indexes 1 and 2 respectively from

β◦1 and β◦2 and focus only on the complicated case, i.e., panel cointegration model with

I(1) regressors and I(1) unobserved factors. This allows us to avoid notational mess in

the remainder of the chapter.

1.3.3 Asymptotic Distribution and Bias Correction

Under Assumptions 1-3, it can be shown that the effects of the model transformation due

to T (.) are asymptotically negligible and that the results of Bai et al. (2009) generalize

to our situation. In particular, the slope estimator β̂(d) to be obtained for the true

factor dimension d is at least T consistent and has following properties.

Proposition 1.6. Under the above assumptions, we have, as (N,T )→∞,

Σ1/2
c

(√
NT (β̂(d)− β◦)−

√
Nφ
)

d−→ N(0, Ip),

for some φ and Σc, where β̂(d) is obtained after transforming Model (1.17) with T (.).

The exact expression of φ and Σc is given in the appendix. Proposition 1.6 shows that

the limiting distribution of
√
NT (β̂(d) − β◦) is not centered at zero. Bai et al. (2009)

prove that it is possible, in such a case, to construct a consistent estimator φ̂NT of the

bias term φ. Following their suggestion, we define our entirely updated and bias corrected

(EupBC ) estimator by

β̂EupBC = β̂Eup −
1

T
φ̂NT .

This procedure does require extra work (non-parametrical kernel estimation techniques)

to estimate the long-run and one-sided long-run covariances of wit = (εit, ζ
∗
it, ηt). The

necessary assumptions and precise formulas for constructing φ̂NT are given in the ap-

pendix. Once β̂EupBC is obtained, the final bias-corrected estimators of F ◦ and Λ◦i are

given by

F̂EupBC =
√
T P̂ (β̂EupBC , d̂Eup), and

Λ̂
′
EupBC,i = F̂

′
EupBC

[
Yi −Xiβ̂EupBC

]
/T 2,

respectively.
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Note that the main difference between our approach and the methodology of Bai et al.

(2009) consists in the fact that our estimation procedure directly incorporates a dimen-

sion estimate. We show in Theorem 1 that our final estimator β̂EupBC has an asymptotic

distribution centered around zero and that d̂Eup and F̂EupBC provide respectively con-

sistent estimators of the true dimension d and the true factors F ◦ (up to rotation).

Theorem 1.7. Under assumptions 1-3, we have, as (N,T )→∞,

a) P (d̂Eup = d) → 1, if the starting estimate dmax ≥ d and g is of the form g =

cpNT such that (i) c = OP (1) and strictly positive, (ii) pNT → ∞, and (iii)
log log(T )

T pNT → 0,

b) with the additional Assumption 4,

Σ1/2
c

√
NT (β̂EupBC − β◦)

d−→ N(0, Ip),

c) and for some (d× d) invertible matrix H,

1

T

T∑
t=1

‖F̂EupBC,t − F ◦t H‖2 = OP (
1

N
) +OP (

1

T
).

Assumption 4 is given in the appendix and required only for consistency of φ. Examples

of pNT can be found in Bai (2004).

Remark 1.8. Note that conditions (ii) and (iii) in Theorem 1.7 are sufficient only to

consistently estimate the number of I(1) factors. If we assume the presence of additional

I(0) factors, we have to choose g such that (ii) min{N,T}pNT → ∞ and (iii) pNT →
0; however, some suitable regularity assumptions are required to forbid strong forms

of dependency and heteroscedasticity in the errors. For more details, we refer to the

argumentation of Bai and Ng (2002) and Bai et al. (2009) in Section 3.3.

A consistent estimator Σ̂c of Σc is also defined in the appendix. This allows us to test

for the significance of β̂EupBC .

The bias-corrected estimators of the pre-eliminated effects µt and αkt can be respectively

obtained by:

µ̂BC,t = Y .t −X .tβ̂EupBC and

α̂BC,kt = Y kt −Xktβ̂EupBC − µ̂BC,t.
(1.20)

Under our assumptions, it is easy to show that α̂kt is
√
mk consistent and has an asymp-

totic normal distribution, such that

√
mk(α̂BC,kt − αkt)

d−→ N(0, σ2
kt), (1.21)
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where σ2
kt = V ar(ε̄kt), with ε̄kt = 1

mk

∑N
i δikεit.

1.4 Monte Carlo Simulations

The goal of this section is to compare, through Monte Carlo experiments, the perfor-

mance of our algorithmic extension with the performance of the iterative least squares

estimators of Bai (2009) and Bai et al. (2009) based on an externally estimated dimen-

sion. In a first step, the feasible slope estimator, β̂(d), is naively calculated with a high

number of factors (dmax = 8). In a second step, we calculate Ŵit = Yit−Xitβ̂(dmax) and

externally estimate the factor dimension by using 5 different criteria: the panel criteria

PC1 and IC1 of Bai and Ng (2002), the panel cointegration criterion IPC1 proposed by

Bai (2004), the threshold criterion ED of Onatski (2010), and the information criterion

ICT1;n of Hallin and Lǐska (2007). The maximal number of factors used in PC1, IC1,

IPC1, ED, and ICT1;n is also set to 8. The calibration strategy of Hallin and Lǐska (2007)

(second ”‘stability interval”’ procedure) is applied on a grid interval of length 128 with

the borders 0.01 and 3 as they have suggested. Finally, we re-calculate the two-step iter-

ative least squares estimator with the optimizers of these panel criteria. The estimated

dimensions are denoted by d̂PC1, d̂IC1, d̂IPC1, d̂ED, and d̂ICT1,n
, respectively.

Our entirely updated estimator is calculated with the penalty of PC1 as described in

Section 1.2, i.e., g(σ̂Eup) = σ̂2
Eup log(NT/(N + T ))(N + T )/NT . The iteration process

is initiated by the starting values described in Section 1.2.2. The bias correction used

for estimating panel cointegration models is based on the linearly decreasing weights of

Newey and West (1987) with a truncation at
⌊
min{

√
N,
√
T}
⌋
. The maximal number

of iterations allowed for the feasible iterated least squares estimators and the two-step

estimators is 100. The inner iteration of the entirely updated estimator is also limited

to 100.

We consider panel models of the form

Yit =
P∑
p=1

Xpitβp + c
d∑
l=1

λilflt + εit,

for all i ∈ {1, . . . , N} and t ∈ {1, . . . , T}, where Xpit are the observed regressors, flt are

the factors to be estimated, λil are the corresponding loading parameters, c controls for

the weight of the factor structure in the model, and εit is the idiosyncratic error term.

The examined panel sets are the outcomes of 6 different DGPs:



22

DGP1 (panel cointegration model with I(1) factors and endogenous explanatory vari-

ables). d = 2, P = 1, β1 = 1.5, c = 1, flt = fl,t−1 + ηlt, λil ∼ N(1, 1), l =

1, 2, X1it = X1i,t−1 + ζ1it, with
ζ1it

η1t

η2t

εit

 ∼ N



0

0

0

0

 ,


1 −0.5 0.7 0.7

−0.5 1 0 −0.5

0.7 0 1 0.7

0.7 −0.5 0.7 1



 ;

DGP2 (panel cointegration model with mixed I(1)/I(0) factors). d = 3, P = 1, β1 =

1.5, c = 1, flt = fl,t−1 + ηlt, l = 1, 2, f3t =
√

0.5f3,t−1 + η3t, λil ∼ N(1, 1), l =

1, 2, 3, X1it = X1i,t−1 + ζ1it with ηlt, ζ1it, εit ∼ N(0, 1), for l = 1, 2, 3;

DGP3 (the observed regressors are the underlying factors). c = 0, P = 1, β1 = 1.5, d =

1, f1t = f1,t−1 + η1t, λi1 ∼ N(1, 1), X1it = λi1f1t + ζ1it, and η1t, ζ1it, εit ∼ N(0, 1);

DGP4 (stationary factors and weakly autocorrelated idiosyncratic errors). d = 1, P =

1, β1 = −0.75, c = 1, f1t =
√

0.5f1,t−1 + η1t, λi1 ∼ N(1, 1), X1it = 0.8λi1f1t +

ζ1it, εit = θiεi,t−1 + εit, η1t, ζ1it, εit ∼ N(0, 1), and θi ∼ U(−0.3, 0.3);

DGP5 (stationary factors and strongly autocorrelated idiosyncratic errors). d = 1, P =

1, β1 = −0.75, c = 1, f1t =
√

0.5f1,t−1 + η1t, λi1 ∼ N(1, 1), X1it = 0.8λi1f1t +

ζ1it, εit = θiεi,t−1 + εit, η1t, ζ1it, εit ∼ N(0, 1), and θi ∼ U(0.6, 0.8); and

DGP6 (no factor structure and strongly autocorrelated idiosyncratic errors). d = 0, P =

1, β1 = −0.75, c = 0, εit = θiεi,t−1 + εit, X1it, εit ∼ N(0, 1), and θi ∼ U(0.6, 0.8).

To see how the properties of the estimators vary with N and T , we consider 9 different

combinations with the sizes N = 30, 60, 120 and T = 30, 60, 120. For DGP2, we consider

the extra combination (N,T ) = (120, 300) to see how the criteria behave with the

problem of unproportional factors, which occurs in mixed I(1)/I(0) factor models because

the variance of I(1) factors diverge, as T →∞, whereas the variance of the I(0) factors

is bounded. This attitude of mixed I(1)/I(0) factors is closely related to the concept of

weak/strong factors discussed in Onatski (2012) and Onatski (2009).

Tables 1.1 and 1.2 report the averages of the estimated dimensions and the mean squared

errors (MSE) of the slope estimators obtained from 1000 replications. It is clear that

the Eup estimator outperforms the feasible estimator β̂(dmax) in all cases. This result is

not surprising, since β̂(dmax) requires the computation of (dmax − d̂Eup)NT additional

parameters comparing to β̂Eup. Moreover, the number of times the Eup algorithm

did not converge within the total of 54000 repetitions is remarkably smaller than the

number of times the conventional feasible estimator β̂(dmax) did not converge (5.41% vs.
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42.22%). The reason for this outcome is that the naive over-specification of the factor

dimension downgrades the degree of freedom available to estimate the slope parameters.

The alternation between inner and outer iterations, in our algorithm, seems, hence, to

provide a way to stabilize the numerical optimization of the objective function if d is

not well-specified.

Tables 1.1 and 1.2 reveal that PC1 has a tendency to overestimate the true dimension

if N and/or T are not large enough (30, 60). This is also the case for IPC1 when the

factors to be estimated are I(1). The IC1 criterion seems to be more robust than PC1.

This is because the penalty of IC1 is less sensitive to the scaling effect; see Bai and Ng

(2002). The results of our Monte Carlo experiments show that integrating the penalty

term of PC1 in the objective function and calibrating the hight of the penalization as

described in Section 1.2 provides a gain over the original PC1, IC1, and IPC1.

DGP1 (I(1) factors and endogenous explanatory variables) The simulation

results for DGP1 (reported in the first part of Table 1.1) show that d̂EupPC1 gives a

very precise estimation of the factor dimension and outperforms PC1, IPC1, IC1, ED,

and ICT1,n. In contrast to all other criteria, ED gets worse as N and T increase. This

weakness can be related to the strong endogeneity of the explanatory variables. For

(N,T ) = (120, 120), the MSEs of β̂EupBC , β̂(d̂IPC1), and β̂(d̂IC1T1,n
) converge to 0. This

is not surprising since our estimation strategy and the original method of Bai et al.

(2009) used with dmax ≥ d (or with a consistent external dimensionality criterion) will

produce very close outcomes in terms of MSE when both N and T are large enough.

The problem, of course, is that the required sizes of N and T ensuring such evidence

are unknown in practice. Note also that the outcomes of β̂(d̂IPC1) are conditional on

dmax = 8 and β̂(d̂IPC1) can be used only when the d static factors are not driven by

the lags of a smaller number of dynamic factors. Such limitations are overcome by our

method.

DGP2 (mixed I(1)/I(0) factors) The results of this experiment are reported in the

second part of Table 1.1. The best estimation is obtained with d̂EupPC1. IPC1 has a

tendency to overestimate the true number of I(1) factors, especially when N increases

and T is fixed. In contrast, ED and ICT1,n behave properly in such a case. Otherwise,

both ED and ICT1,n get slowly worse as T increases and N is fixed ((d̂ED, d̂ICT1,n
) =

(2.99, 3), (2.98, 2.98), (2.85, 82) for (N,T ) = (120, 60), (120, 120), and (120, 300) respec-

tively). PC1 and IC1 also show a tendency to underestimate the factor dimension. The

reason these criteria estimate, on average, a smaller dimension than d̂EupPC1 (although

d̂EupPC1 is obtained by strengthening iteratively the same penalty) is that the start-

ing estimate of d in our algorithm depends on the sample size and is larger than 8 for
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(N,T ) = (120, 120) and (120, 300). Unexpectedly, when (N,T ) = (120, 300), the MSEs

of all β estimators are larger than those obtained with smaller sample sizes. This result

can be explained by the occurrence of two effects when N is fixed and T is relatively large:

the first effect is related to the problem of mixed strong/weak factors, which can lead to

underestimate the number of I(0) factors since the proportion of the variance explained

by the I(1) factors gets much larger than the proportion of the variance explained by the

I(0) factors when T grows faster than N . Indeed, the worst MSE affiliates with IPC1,

which has, on average, the smallest estimate for d when N = 120 and T = 300; the

second effect is related to the inefficiency of estimating a bias that does not exist since

the factors and the regressors are exogenous in DGP2. Recall that the bias estimator is

the average of N individual bias estimates and converges proportionally to N .

DGP3 (the observed regressor is the underlying factor) The last two parts of

Table 1.1 present the estimation results of DGP3 obtained by initiating the iterations

with two different starting estimates of β: the first estimate is β̂start expressed in (1.13);

the second estimate is obtained by scaling the factors Gl, l = 1, . . . , dmax in (1.13)

with (1 − r2
Gl,X1

)0.5, where rGl,X1 is the sample correlation coefficient between Gl and

X1i, as described Section 1.2.2. The goal of examining DGP3 is only to test whether

the calibration of the starting factors Gl in (1.13) will enhance the effectiveness of the

estimation algorithm to correctly specify the model. The answer that can be deciphered

from the table is: Yes!

DGP4-6 (stationary panels with weak/strong autocorrelated errors) Table

1.2 reveals that there is at least one case, where ED and ICT1,n estimators outperform

d̂EupPC1. In fact, strong autocorrelations in the idiosyncratic errors (DGP4 and DGP6)

seem to inflate the number of factors obtained by using the penalty of Bai and Ng

(2002). IPC1 seems to work well for DGP4 and DGP6 (except for N = T = 30),

although theoretically this criterion is only appropriate for detecting integrated factors.

The explanation of this outcome could lie in the penalty term of IPC1, which is, by

construction, higher than the penalty of PC1 and IC1. The ED criterion also seems

to be robust against the problem of high autocorrelated idiosyncratic errors, even if

the autocorrelation coefficients are individual specific. ICT1,n is based on the spectral

density decomposition of the (disturbed) factor structure and is expected to be the most

appropriate criterion for these cases. Our estimator d̂EupPC1 behaves similarly to d̂PC1

for DGP5 and DGP6. Both estimators have a tendency to select the largest possible

dimension in the interval of the run parameter, i.e., min{
√
N,
√
T} for d̂EupPC1 and 8 for

d̂PC1. This result is in line with the simulation results of Onatski (2010) and Greenaway-

McGrevy et al. (2012) for IC1 and PC1 when the autocorrelation coefficient in the
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idiosyncratic errors is large (e.g., ≥ 0.7). In fact, Assumption C in Bai and Ng (2002)

forbid strong forms of correlation and heteroskedasticity in the error term. The Monte

Carlo experiments of Bai and Ng (2002) consider only cases in which the correlation

coefficient is smaller or equal to 0.5. Note that such a limitation is not necessary if the

factors are I(1). This is because we can replace a = 1 with a = T/(4 log log T ) in the

penalty term. The latter will diverge with N and T and dominate asymptotically any

Op(1) structure in the idiosyncratic errors.

Finally, we want to emphasize that the goal of estimating panel models with unobserved

common factors is not only to assess the dimension of the factor structure but also

to efficiently estimate the slope parameters. Inspection of the MSE values reported in

the second and third part of Table 1.2 shows that β̂Eup does not suffer from an over-

parameterization effect when the errors are strongly autocorrelated and the factors are

over estimated. The additional factors seem to compensate for the unparameterized

linear dependency in the idiosyncratic term. From the second and third part of Table

1.2, we can see that, for (N,T ) = (60, 60), the MSE of β̂Eup is smaller than the MSEs of

β̂(d̂IPC1), β̂(d̂ED), and β̂(d̂ICT1,n
). The first part of Table 1.2 shows that all criteria be-

have very well when the autocorrelation in the idiosyncratic errors is weak, in particular,

d̂EupPC1, d̂IC1, and d̂ICT1,n
.

The Monte Carlo experiments show that, in many configurations of the data, our algo-

rithmic refinement provides more efficient estimates in terms of MSE for the estimator

of β than those that can be achieved if the feasible iterative least squares estimator is

calculated with an externally selected factor dimension. Moreover, our results show that

the iterative calibration of the penalty term makes the criteria of Bai and Ng (2002)

more robust in a practical context, especially when N and/or T are small. If the id-

iosyncratic errors are strongly autocorrelated, the number of stationary factors will be

overestimated but without affecting the efficiency of the slope estimator.
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MEAN MEAN MEAN MEAN MEAN MEAN MSE MSE MSE MSE MSE MSE MSE

N T d̂EupPC1 d̂PC1 d̂IC1 d̂IPC1 d̂ED d̂ICT1,n
β̂EupBC β̂(dmax) β̂(d̂PC1) β̂(d̂IC1) β̂(d̂IPC1) β̂(d̂ED) β̂(d̂ICT1,n

)

DGP1: panel cointegration model with I(1) factors and endogenous explanatory variables (d = 2)
30 30 2.05 6.53 2.62 2.15 2.49 3.35 0.001 0.023 0.021 0.007 0.003 0.006 0.006
30 60 2.00 3.87 2.11 2.01 2.10 2.00 0.000 0.003 0.002 0.001 0.000 0.001 0.000
30 120 2.00 2.07 2.02 2.00 2.03 2.00 0.000 0.001 0.000 0.000 0.000 0.000 0.000
60 30 2.02 4.94 3.37 2.48 3.24 2.18 0.001 0.068 0.052 0.023 0.006 0.020 0.001
60 60 2.00 3.80 3.30 2.20 3.28 2.03 0.000 0.028 0.009 0.005 0.001 0.005 0.000
60 120 2.00 2.55 2.38 2.00 2.43 2.00 0.000 0.002 0.000 0.000 0.000 0.000 0.000

120 30 2.02 4.61 3.77 2.74 3.65 2.46 0.001 0.104 0.070 0.040 0.009 0.036 0.004
120 60 2.00 4.60 4.14 2.65 4.02 2.15 0.000 0.063 0.025 0.017 0.002 0.016 0.000
120 120 2.00 4.29 4.02 2.25 4.03 2.10 0.000 0.023 0.005 0.004 0.000 0.004 0.000

DGP2: panel cointegration with mixed I(1)/I(0) factors: 1 I(1) factor and 2 I(0) factors (d = 3)
30 30 3.08 6.45 3.00 2.92 2.97 4.52 0.002 0.022 0.012 0.002 0.006 0.006 0.010
30 60 3.00 4.14 2.99 2.46 2.97 2.98 0.001 0.052 0.013 0.006 0.040 0.009 0.008
30 120 3.00 2.98 2.94 1.68 2.92 2.94 0.014 0.260 0.059 0.076 0.263 0.080 0.075
60 30 3.00 4.15 3.00 2.95 2.98 3.00 0.001 0.004 0.001 0.001 0.002 0.003 0.001
60 60 3.00 3.00 3.00 2.61 2.98 2.99 0.001 0.029 0.003 0.004 0.029 0.006 0.005
60 120 3.00 2.98 2.96 1.90 2.95 2.95 0.011 0.177 0.042 0.058 0.190 0.056 0.061

120 30 3.00 3.00 3.00 2.96 2.98 3.00 0.000 0.003 0.000 0.000 0.002 0.002 0.000
120 60 3.00 3.00 3.00 2.80 2.99 3.00 0.000 0.020 0.000 0.000 0.019 0.003 0.001
120 120 3.00 2.99 2.99 2.16 2.98 2.98 0.007 0.099 0.020 0.023 0.127 0.023 0.025
120 300 3.00 2.87 2.84 1.33 2.85 2.82 0.160 0.941 0.446 0.461 0.978 0.441 0.444

DGP3: the observed regressors are the underlying factors (naive starting slope estimate)
30 30 1.01 6.18 1.00 1.00 1.00 1.84 4.679 4.681 4.681 4.679 4.679 4.679 4.680
60 60 1.00 1.02 1.00 1.00 1.00 1.00 4.693 4.693 4.693 4.693 4.693 4.693 4.693

120 120 1.00 1.00 1.00 1.00 1.00 1.00 4.693 4.693 4.693 4.693 4.693 4.693 4.693

DGP3: the observed regressors are the underlying factors (calibrated starting slope estimate)
30 30 0.01 6.12 0.01 0.00 0.01 7.74 0.00 0.001 0.000 0.000 0.000 0.000 0.000
30 120 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

120 120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

Table 1.1: Simulation results for DGP1 - DGP3. The entries are the averages of the estimated dimensions and the MSEs of the slope estimator
over 1000 replications.
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MEAN MEAN MEAN MEAN MEAN MEAN MSE MSE MSE MSE MSE MSE MSE

N T d̂EupPC1 d̂PC1 d̂IC1 d̂IPC1 d̂ED d̂ICT1,n
β̂Eup β̂(dmax) β̂(d̂PC1) β̂(d̂IC1) β̂(d̂IPC1) β̂(d̂ED) β̂(d̂ICT1,n

)

DGP4: 3 stationary factors and weak autocorrelations in the errors (d = 3)
30 30 3.07 6.53 3.01 2.94 2.98 4.81 0.001 0.004 0.003 0.001 0.006 0.007 0.002
30 60 3.00 4.18 3.00 2.80 2.97 3.00 0.001 0.001 0.001 0.001 0.036 0.011 0.001
30 120 3.00 3.01 3.00 2.20 2.97 3.00 0.000 0.000 0.000 0.000 0.242 0.014 0.000
60 30 3.00 4.21 3.00 2.97 2.98 3.00 0.001 0.001 0.001 0.001 0.003 0.008 0.001
60 60 3.00 3.00 3.00 2.93 2.98 3.00 0.000 0.000 0.000 0.000 0.011 0.008 0.000
60 120 3.00 3.00 3.00 2.57 2.96 3.00 0.000 0.000 0.000 0.000 0.121 0.019 0.000

120 30 3.00 3.01 3.00 2.98 2.97 3.00 0.000 0.001 0.000 0.000 0.002 0.010 0.000
120 60 3.00 3.00 3.00 2.97 2.98 3.00 0.000 0.000 0.000 0.000 0.005 0.010 0.000
120 120 3.00 3.00 3.00 2.91 2.95 3.00 0.000 0.000 0.000 0.000 0.021 0.023 0.000

DGP5: 1 stationary factor and strong autocorrelations in the errors (d = 1)
30 30 5.00 7.97 7.71 1.97 1.94 6.56 0.002 0.002 0.002 0.002 0.002 0.002 0.002
30 60 4.93 7.80 6.47 1.00 1.04 1.39 0.001 0.001 0.001 0.001 0.001 0.001 0.001
30 120 2.83 6.64 1.68 0.97 1.00 1.08 0.001 0.001 0.001 0.001 0.012 0.001 0.001
60 30 5.00 7.97 7.81 1.68 1.57 2.00 0.001 0.001 0.001 0.001 0.001 0.001 0.001
60 60 7.88 7.90 7.49 1.00 1.00 1.09 0.000 0.000 0.000 0.000 0.001 0.001 0.001
60 120 4.46 6.59 2.67 1.00 1.00 1.00 0.000 0.000 0.000 0.000 0.002 0.000 0.000

120 30 5.00 7.99 7.94 1.53 1.25 2.75 0.000 0.000 0.000 0.000 0.001 0.001 0.000
120 60 8.00 8.00 7.98 1.00 1.00 1.06 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120 120 8.82 7.62 6.24 1.00 1.00 1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DGP6: no factors and strong autocorrelations in the errors (d = 0)
30 30 4.99 7.94 7.54 1.48 0.71 7.51 0.002 0.002 0.002 0.002 0.002 0.002 0.002
30 60 4.83 7.72 5.62 0.00 0.03 1.09 0.001 0.001 0.001 0.001 0.001 0.001 0.001
30 120 1.79 6.42 0.57 0.00 0.00 0.17 0.001 0.001 0.001 0.001 0.001 0.001 0.001
60 30 5.00 7.93 7.65 1.17 0.27 2.14 0.001 0.001 0.001 0.001 0.001 0.001 0.001
60 60 7.77 7.83 7.16 0.00 0.01 0.95 0.000 0.000 0.000 0.000 0.001 0.001 0.001
60 120 3.23 6.34 1.51 0.00 0.00 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000

120 30 5.00 7.98 7.87 1.07 0.07 2.64 0.000 0.000 0.000 0.000 0.000 0.001 0.000
120 60 7.99 7.99 7.94 0.00 0.00 0.62 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120 120 8.11 7.44 5.47 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 1.2: Simulation results for DGP4 - DGP6. The entries are the averages of the estimated dimensions and the MSEs of the slope estimator
over 1000 replications.
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1.5 Application: The Unobserved Risk Premia of Corpo-

rate Bonds

1.5.1 The Empirical Model

The empirical evidence shows that there is a discrepancy between the observed credit

spreads and the theoretical spreads implied by the financial models of credit risk. El-

ton et al. (2001) assert that default risk cannot explain more than 25% of the credit

spread variation. Longstaff et al. (2005) argue that non-default components such as

bond-specific illiquidity and overall illiquidity risk do exist. Collin-Dufresne et al. (2001)

examine the effect of a large number of risk proxies such as changes in the spot rate,

changes in the slope of the yield curve, changes in Leverage, changes in the probability,

and changes in the business climate. They detect high cross-correlations in the residu-

als of the regressed time series and conjecture that undefined missing factors generate

these dependencies. The authors also examine the effects of several macroeconomic and

financial determinants and argue that such variables can not solve the mystery.

In this chapter, we decompose the credit spread into individual specific components and

unobserved common components generated by common risk factors. Because our focus

is on estimating the dimension of the puzzling part of the credit spread, we restrict the

observed individual specific components to the two most frequently used determinants

in the literature on corporate finance, namely the credit default risk and the illiquidity

risk; see, e.g., Huang and Huang (2012), Elton et al. (2001), and Longstaff et al. (2005).

While the default risk is the basic component of structural models, the illiquidity risk

is commonly used in reduced form models. We avoid introducing variables that are

controversial in the literature and let the data inform us about the dimension of the

missing risk factors.

Our empirical model is expressed as follows:

CSit ≈ µt +
K∑
k=1

αktδik + βLRit +
d∑
l=1

λilflt. (1.22)

The index i ∈ {1, . . . , N} denotes the single bonds, the index t ∈ {1, . . . , T} denotes the

date. The explained variable CSit is the corporate-government credit spread defined as

CSit = Rit − RG,it,

where Rit is the yield of the corporate bond i at time t and RG,it is its duration-equivalent

government bond. µt denotes the general average time-process of the credit spread.
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Following many previous studies, we consider the rating class (or rating level) to be a

measure for assessing the credit default risk; see, e.g., Gebhardt et al. (2005), Houweling

et al. (2005), and Kagraoka (2010). In fact, the rating class constitutes the synthetic

evaluation of the rating agencies, that takes into account the default probability as well

as the recovery rate. In our model, this proxy is presented by the delta function δik,

which we define as:

δik =

{
1 if bond i has the rating class k and

0 else.

In order to focus on the unobserved systematic risk premia, we follow Kagraoka (2010)

and consider only bonds that did not experience a rating migration during the observa-

tion period. Unlike most existing work, we allow for time-varying rating effects αkt. This

establishes a general framework that enables us to assess the response of the investors

over time to the credit evaluation of the rating agency.

The explanatory variable LRit measures the illiquidity risk of bond i at time t. Because

the trading frequency of corporate bonds is generally low, arbitrage theory implies that

the price of illiquidity will be reflected in the bond yield. In the literature, several

proxies of illiquidity have been considered; see, e.g., Chen et al. (2002), Bessembinder

et al. (2006), Houweling et al. (2005), and Lesmond (1999). Following Bessembinder

et al. (2006), we construct a measure based on the following quoted bid-ask spread:

LRit =

∣∣∣∣RA
it − RB

it

RB
it

∣∣∣∣× 100,

where RA
it and RB

it are the ask yield and the bid yield of bond i at time t. It is easy

to realize that the larger the spread is, the more problematic the immediate trading

becomes and vice versa. We expect the credit spread to be larger for less liquid bonds.

Because this relationship can be generalized across all corporate bonds, we assume the

slope parameter β to be cross-sectionally homogeneous. Moreover, assuming β to be

constant over i and t not only simplifies the economic interpretation, but also greatly

improves the asymptotic property of its estimator.

The term flt represents the stochastic process describing the time pattern of the under-

lying common risk factors. We may interpret flt as systematic risks, since they do not

depend on i. The scores λil are the corresponding individual loading parameters describ-

ing the effect of flt on each bond i. Like Kagraoka (2010), we interpret the interaction

between λil and flt as the systematic risk premium imposed by the investor on bond i

at time t.
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The role of d is intended to determine the number of missing factors in the credit spread

puzzle. We interpret d as a measure reflecting the degree of difficulty in diversifying the

individual bond risks in the market. The higher the dimension of the existing common

risk factors, the more difficult it is to diversify the risk.

The parameters β, λil, flt and d are estimated under Conditions (R.1)-(R.3) after elim-

inating the rating effects as described in Sections 1.2 and 1.3. We denote the transfor-

mations of CSit and LRit by Yit and Xit respectively. .

For more convincing evidence, we compare our result with the results of the following

model specifications:

(M.1) : Yit =
∑d

l=1 λilflt + εit,

(M.2) : Yit = Xitβ +
∑d

l=1 λilflt + εit,

(M.3) : Yit = D(L)Yi,t−1 +
∑d

l=1 λilflt + εit, and

(M.4) : Yit = D(L)Yi,t−1 +Xitβ +
∑d

l=1 λilflt + εit,

where D(L) is an m polynomial lag-operator. Model (M.1) is a standard static factor

model that can be estimated by principal component (PC) analysis; see, e.g., Stock and

Watson (2002) and Bai and Ng (2002). In Model (M.2), we assume that the regres-

sors are exogenous and estimate the parameters by using the two-step PC estimator of

Coakley et al. (2002). In the first step, the OLS estimator of β is obtained by ignoring

the factor structure. In a second step, we use the OLS residuals and estimate the factor

structure by the PC method. Models (M.3) and (M.4) are estimated by the feasible

iterative least squares method.

1.5.2 Data Description

Our data are extracted from Datastream, which is an online database containing a broad

range of financial entities and instruments. Our explained variable is the credit spread.

Because the maturities of many bonds do not exactly match the maturity of the available

government benchmark bonds, Datastream uses a linear interpolation to approximate

the yield of the duration-equivalent government benchmark. The spread is expressed as

yield differences in basis points. The explanatory variables are the credit rating levels

and the quoted bid-ask yield spread of the corresponding bonds. We choose the U.S.

corporate bonds rated by S&P. Our observation period extends from September 18,

2006, to May 25, 2008. This allows us to compare the dimension of the unobserved

factor structure before and after the subprime crisis emerged in the middle of this time

interval. Moreover, we choose fixed rate bonds with long remaining time to maturity.

This is to marginalize the possible term structure effects. Finally, we ignore securities
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that have missing prices. We then obtain an equidistant balanced panel data set based

on 111 U.S. corporate bonds over a period of 397 business days. The retained rating

classes are AAA, AA, A, and BBB; see Table 1.3.

Rating class AAA AA A BBB Total

Number 24 29 21 31 111

Table 1.3: Number of corporate bonds by rating class.

Figure 1.1: Three-dimensional plot of the credit spread curves before and after per-
forming the within-group transformation to eliminate the rating effects. The credit
spread values are on the y-axis, time is on the x-axis, and the index of bonds ordered

by rating class is on the z-axis.

Figure 1.1 displays a three-dimensional plot of the credit spread curves before and after

performing the within-group transformation discussed in Section 1.3.1.

To examine whether the data sets are affected by unit root common factors, we use

the MQ test of the Panel Analysis of Non-stationarity in Idiosyncratic and Common

Components (PANIC) proposed by Bai (2004). PANIC is developed to detect the source

and the nature of the non-stationarity in the data. In our application, we restrict our

test to the following simplified test problem:

H0 : k ≥ 1 and

H1 : k < 1,

where k is the number of independent common unit root processes. The intuition behind

this test is that if the first factor (corresponding to the largest eigenvalue) is integrated,

then MQ cannot reject the null hypothesis. The test is applied to the credit spread
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variable Yi (after eliminating the rating effects) and to the remainder term Ŵi = Yi −
Xiβ̂EupBC obtained from the entirely updated regression. For k = 1, we obtain the

following result:

Panel MQcf -value Lag order Critical value at significance level 0.05

Yi −2.2774 7 −11.022

Ŵi −1.6019 7 −11.022

The null hypothesis cannot, hence, be rejected for both Yi and Ŵi. Alternatively, one

can use the panel data unit root tests of Karavias and Tzavalis (2012), who allow for

a common structural break in the individual effects. The estimation results of Models

(M.3) and (M.4) considered with D(L)Yi,t−1 = D0Yi,t−1 +D1Yi,t−2 +D2Yi,t−3, support

qualitatively the hypothesis of the unit root because 1− D̂0− D̂1L− D̂2L
2 ≈ 0 for L = 1

(see Table 1.4).

1.5.3 Empirical Results and Interpretations

The estimation results are reported in Table 1.4. The effect of the illiquidity risk is

positive and significant in our Model as well as in (M.2), and (M.4). β̂EupBC amounts to

0.0217 (with a standard deviation of 0.004). These results are in line with the previous

findings of Chen et al. (2002), Elton et al. (2001), and Kagraoka (2010): The more

illiquid the bond, the higher the expected credit spread.

Figure 1.2 shows the percentages of the ordered eigenvalues related to the unobserved

factor structure in its static form as well as the eigenvalues obtained after applying

on the estimated factors a VAR-regression. By using the penalty term of PC1 in our

algorithm, we estimate d̂Eup = 11. The test K3 of Bai and Ng (2007), however, detects

the presence of only 2 primitive shocks. This result is confirmed by the information

criterion ICT1,n of Hallin and Lǐska (2007), which suggests the presence of 2 dynamic

factors in all models. The ED criterion of Onatski (2010) is optimized at 7, 6, 2, and

2 for Models (M.1), (M.2), (M.3), and (M.4) respectively. The criteria of Bai (2004)

indicate the presence of at least 2 unit root factors in all models except for (M.3) and

(M.4), where the unit root source seems to be automatically integrated by the lags of

Yit. 1.3 (a).

Our time-varying estimates α̂kt and their corresponding 95% confidence intervals are

depicted in Figure 1.3(a). The confidence intervals of the default risk parameters indicate

that the rating effects are statistically significant, except for class A during the time

between January and February in 2008. The part of the variance explained by the

default risk accounts for 24.06%. This result agrees with the results of most research on
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Figure 1.2: (a) The screeplot of the eigenvalues obtained from the matrix of

Σ̂(β̂CupBC , d̂Eup); (b) Proportions of the (squared) eigenvalues obtained from the resid-
uals of the VAR-regression (with p = 1) applied on the estimated factors (after inte-

grating the first 3 I(1) factors).

Figure 1.3: (a) the time series of the estimated rating effects; (b) the EupBC estimated
first and second common factors.
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Regressor EupBC M.1 M.2 M.3 M.4
Xt 0.0217∗∗∗ - 0.3013∗∗∗ - 0.0047∗∗∗

(0.004) - (0.006) - (0.001)
Yt−1 - - - 0.8029∗∗∗ 0.8021∗∗∗

- - - (0.005) (0.005)
Yt−2 - - - 0.1061∗∗∗ 0.1055∗∗∗

- - - (0.007) (0.007)
Yt−3 - - - 0.0865∗∗∗ 0.0869∗∗∗

- - - (0.005) (0.005)
Number of Factors
Static I(1)/I(0)
gNT,Eup 11 - - - -
PC1 (dmax = 11) - 11 11 11 11
ED - 7 6 2 2

Static I(1)
IPC1 (dmax = 11) 3 3 3 0 0
IPC2 (dmax = 11) 3 3 3 0 0
IPC3 (dmax = 11) 2 2 2 0 0

Primitive (dynamic)
K3(m = 1, δ = 1/4) 2 3 2 2 2
ICT

1,n 2 2 2 2 2

Table 1.4: Estimation results for Models (M.1)-(M.4).

The columns labeled with M.1-M.4 respectively present the estimation results of Models
(M.1)- (M.4). PC1 is the panel criterion of Bai and Ng (2002). ED is the threshold
criterion of Onatski (2010). IPC1-IPC3 are from Bai (2004). K3 is the selection criterion
of Bai and Ng (2007). ICT1,n is the information criterion of Hallin and Lǐska (2007).
High significant coefficients (p-value < 1%) are indexed by “***”. The values between
parentheses are the corresponding estimated standard deviations.

the credit spread; see, e.g., Collin-Dufresne et al. (2001), Huang and Huang (2012), and

Kagraoka (2010).

From Figure 1.3(a), we can see that the time patterns of α̂kt exhibit some structural

changes after July 16, 2007, in particular, the volatility of α̂kt for AAA, A, and BBB.

The negative effect of the rating class A registered during the periods prior to mid-

July became unstable and positive in 2008. These structural changes coincide with the

beginning of the subprime crisis in the U.S. market. The market perception of the credit

risk assessment performed by an external rating agency seems to depend on the market

situation and is not constant over time even if bonds remain in the same rating class.

The estimated factors, f̂1t and f̂2t, are displayed in Figure 1.3(b). These factors explain

about 84.5% of the variance in the factor structure. The forms of f̂1t and f̂2t over time

support the non-stationarity hypothesis. But note that these factors do not necessary

affect the totality of bonds.

The first and second risk component, defined respectively as Ĉit1 = λ̂i1f̂1t and Ĉit2 =

λ̂i2f̂2t, are displayed in Figure 1.4. Ĉit1 explains about 17.27% of the total variance
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of the credit spread. Bonds, which had positive Ĉit1 values during the period between

Figure 1.4: (a) the first risk component Ĉit1 = λ̂i1f̂1t; (b) the second risk component

Ĉit2 = λ̂i2f̂2t.

September 18, 2006 and July 16, 2007, experienced an important rise in the next period,

while bonds with negative Ĉit1 experienced further decreases after July 16, 2007. This

result confirms the hypothesis of Jegadeesh and Titman (1993) and Chan et al. (1996),

who assert that security returns are affected by a so-called momentum effect, because

investors typically buy stocks that have performed well in the past, and sell stocks that

have performed poorly. Our analysis thus sheds some light on an ongoing discussion

in the literature on stock market prices. The part of variance explained by the second

risk component amounts to 12.94%. The individual patterns of Ĉit2 seem to reflect the

complexity of the market behavior in the subprime period.

When re-estimating our panel model for the period spanning only the time before July

16, 2007, we detect the presence of only one primitive factor. The number of detected

common factors can therefore be interpreted as an index for assessing the complexity of

the market and the difficulty of diversification, as mentioned in Elton et al. (2001) and

Amato and Remolona (2003). The higher the number of common risk factors, the more

complex the market is.

1.6 Conclusion

In this chapter, we extend the iterative least squares approach developed to estimate

panel data models with unobserved factor structure in such a way that we allow for the

number of factors to be unknown a priori. The basic idea of our extension is to treat
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the iterative least squares estimator of Bai (2009) and Bai et al. (2009) as functions

depending on a run parameter d. The latter is fitted by means of a penalty term that

is directly integrated into the global objective function to be optimized. The final so-

lution is obtained by alternating between an inner iteration to optimize β̂(d), F̂ (β̂,d),

and Λ̂i(β̂, F̂ ,d) for each given d and an outer iteration to select the optimal dimension

d̂. Monte Carlo experiments show that our algorithm provides more efficient estimates

in terms of MSE than could be achieved if the estimator of Bai et al. (2009) is calcu-

lated with an externally selected factor dimension. We consider, in our application, the

problem of the credit spread puzzle and estimate the number of the hidden risk factors

jointly with the effect of the observed risk components. Our result proves the presence

of two unobserved common risk factors affecting the U.S. corporate bonds during the

period between September 2006 and March 2008, while one single risk factor is sufficient

to describe the data for all time periods prior to the beginning of the subprime crisis in

2007. Our analysis neglects, however, the possible effect of taxes. This component can

be introduced in the regression function by means of a reasonable determinant. There

is also a large potential for expanding panel data models with structural breaks on the

individual effects, as proposed by De Wachter and Tzavalis (2012), to panel models with

structural breaks in the unobserved factor structure.
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The R-package phtt: Panel Data

Analysis with Heterogeneous

Time Trends

2.1 Introduction

One of the main difficulties and at the same time appealing advantages of panel models

is their need to deal with the problem of the unobserved heterogeneity. Classical panel

models, such as fixed effects or random effects, try to model unobserved heterogeneity

using dummy variables or structural assumptions on the error term (see, e.g., H. (2005)).

In both cases the unobserved heterogeneity is assumed to remain constant over time

within each cross-sectional unit—apart from an eventual common time trend. This

assumption might be reasonable for approximating panel data with fairly small temporal

dimensions T ; however, for panel data with large T this assumption becomes very often

implausible.

Nowadays, the availability of panel data with large cross-sectional dimensions n and large

time dimensions T has triggered the development of a new class of panel data models.

Recent discussions by Ahn et al. (2013), Pesaran (2006), Bai (2009), Bai et al. (2009), and

Kneip et al. (2012) have focused on advanced panel models for which the unobservable

individual effects are allowed to have heterogeneous (i.e., individual specific) time trends

that can be approximated by a factor structure. The basic form of this new class of panel

models can be presented as follows:

yit =

P∑
j=1

xitjβj + νit + εit for i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, (2.1)

37
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where yit is the dependent variable for each individual i at time t, xitj is the jth element of

the vector of explanatory variables xit ∈ RP , and εit is the idiosyncratic error term. The

time-varying individual effects νit ∈ R of individual i for the time points t ∈ {1, . . . , T}
are assumed to be generated by d common time-varying factors. The following two

specifications of the time-varying individual effects νit are implemented in our R package

phtt:

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012).
(2.2)

Here, λil are unobserved individual loadings parameters, flt are unobserved common

factors for the model of Bai (2009), fl(t) are the unobserved common factors for the

model of Kneip et al. (2012), and d is the unknown factor dimension.

Note that the explicit consideration of an intercept in model (2.1) is not necessary but

may facilitate interpretation. If xit includes an intercept, the time-varying individual

effects νit are centered around zero. If xit does not include an intercept, the time-varying

individual effects νit are centered around the overall mean.

Model (2.1) includes the classical panel data models with additive time-invariant individ-

ual effects and common time-specific effects. This model is obtained by choosing d = 2

with a first common factor f1t = 1 for all t ∈ {1, . . . , T} that has individual loadings

parameters λi1, and a second common factor f2t that has the same loadings parameter

λi2 = 1 for all i ∈ {1, . . . , n}.

An intrinsic problem of factor models lies in the fact that the true factors are only

identifiable up to rotation. In order to ensure the uniqueness of these parameters, a

number of d2 restrictions are required. The usual normalization conditions are given by

(a) 1
T

∑T
t=1 f

2
lt = 1 for all l ∈ {1, . . . , d},

(b)
∑T

t=1 fltfkt = 0 for all l, k ∈ {1, . . . , d} with k 6= l, and

(c)
∑n

i=1 λilλik = 0 for all l, k ∈ {1, . . . , d} with k 6= l;

see, e.g., Bai (2009) and Kneip et al. (2012). For the model of Kneip et al. (2012), flt in

conditions (a) and (b) has to be replaced by fl(t). As usual in factor models, a certain

degree of indeterminacy remains, because the factors can only be determined up to sign

changes and different ordering schemes.

Kneip et al. (2012) consider the case in which the common factors fl(t) show relatively

smooth patterns over time. This includes strongly positive auto-correlated stationary

as well as non-stationary factors. The authors propose to approximate the time-varying
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individual effects vi(t) by smooth nonparametric functions, say, ϑi(t). In this way (2.1)

becomes a semi-parametric model and its estimation is done using a two-step estimation

procedure, which we explain in more detail in Section 2.2. The asymptotic properties of

this method rely, however, on independent and identically distributed errors.

Alternatively, Bai (2009) allows for weak forms of heteroskedasticity and dependency in

both time and cross-section dimensions and proposes an iterated least squares approach

to estimate (2.1) for stationary time-varying individual effects vit such as ARMA pro-

cesses or non-stationary deterministic trends. However, Bai (2009) rules out a large class

of non-stationary processes such as stochastic processes with integration.

Moreover, Bai (2009) assumes the factor dimension d to be a known parameter, which is

usually not the case. Therefore, the phtt package uses an algorithmic refinement of Bai’s

method proposed by Bada and Kneip (2014) in order to estimate the number of unob-

served common factors d jointly with the remaining model parameters; see Section 2.4

for more details.

Besides the implementations of the methods proposed by Kneip et al. (2012), Bai (2009),

and Bada and Kneip (2014) the R package phtt comes with a wide range of criteria (16

in total) for estimating the factor dimension d. The main functions of the phtt package

are given in the following list:

• KSS(): Computes the estimators of the model parameters according to the method

of Kneip et al. (2012); see Section 2.2.

• Eup(): Computes the estimators of the model parameters according to the method

of Bai (2009) and Bada and Kneip (2014); see Section 2.4.

• OptDim(): Allows for a comparison of the estimated factor dimensions d̂ obtained

from many different (in total 16) criteria; see Section 2.3.

• checkSpecif(): Tests whether to use a classical fixed effects panel model or a

panel model with individual effects νit; see Section 2.5.1.

The functions are provided with the usual print()-, summary()-, plot()-, coef()- and

residuals()-methods.

Standard methods for estimating models for panel and longitudinal data are also imple-

mented in the R packages plm (Croissant and Millo, 2008), nlme (Pinheiro et al., 2014),

and lme4 (Bates et al., 2014); see Croissant and Millo (2008) for an exhaustive compar-

ison of these packages. Recently, Millo and Piras (2012) published the R package splm

for spatial panel data models. The phtt package further extends the toolbox for statis-

ticians and econometricians and provides the possibility of analyzing panel data with
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large dimensions n and T and considers in the case when the unobserved heterogeneity

effects are time-varying.

To the best of our knowledge, our phtt package Bada and Liebl (2014a) is the first

software package that offers the estimation methods of Bai (2009) and Kneip et al.

(2012). Regarding the different dimensionality criteria that can by accessed via the

function OptDim() only those of Bai and Ng (2002) are publicly available as MATLAB

codes from the homepage of Serena Ng (http://www.columbia.edu/~sn2294/).

To demonstrate the use of our functions, we re-explore the well known Cigar dataset,

which is frequently used in the literature of panel models. The panel contains the per

capita cigarette consumptions of n = 46 American states from 1963 to 1992 (T = 30)

as well as data about the income per capita and cigarette prices (see, e.g., Baltagi and

Levin (1986) for more details on the dataset).

We follow Baltagi and Li (2006), who estimate the following panel model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit. (2.3)

Here, Consumptionit presents the sales of cigarettes (packs of cigarettes per capita),

Priceit is the average real retail price of cigarettes, and Incomeit is the real disposable

income per capita. The index i ∈ {1, . . . , 46} denotes the single states and the index

t ∈ {1, . . . , 30} denotes the year.

We revisit this model, but allow for a multidimensional factor structure such that

eit =

d∑
l=1

λilflt + εit.

The Cigar dataset can be obtained from the phtt package using the function data("Cigar").

The panels of the variables ln(Consumptionit), ln(Priceit), and ln(Incomeit) are shown

in Figure 2.1.

Section 2.2 is devoted to a short introduction of the method of Kneip et al. (2012), which

is appropriate for relatively smooth common factors fl(t). Section 2.3 presents the usage

of the function OptDim(), which provides access to a wide range of panel dimensionality

criteria recently discussed in the literature on factor models. Section 2.4 deals with the

explanation as well as application of the panel method proposed by Bai (2009), which

is basically appropriate for stationary and relatively unstructured common factors flt.

http://www.columbia.edu/~sn2294/
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Figure 2.1: Time series of the dependent variable ln(Consumptionit) and regressor
variables ln(Priceit) and ln(Incomeit).

2.2 Panel Models for Heterogeneity in Time Trends

The panel model proposed by Kneip et al. (2012) can be presented as follows:

yit =
P∑
j=1

xitjβj + vi(t) + εit, (2.4)

where the time-varying individual effects vi(t) are parametrized in terms of common

non-parametric basis functions f1(t), . . . , fd(t) such that

vi(t) =

d∑
l=1

λilfl(t). (2.5)

The asymptotic properties of this method rely on second order differences of vi(t), which

apply for continuous functions as well as for classical discrete stochastic time series

processes such as (S)AR(I)MA processes. Therefore, the functional notation of the time-

varying individual effects vi(t) and their underlying common factors f1(t), . . . , fd(t) does

not restrict them to a purely functional interpretation. The main idea of this approach

is to approximate the time series of individual effects vi(t) by smooth functions ϑi(t).
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The estimation approach proposed by Kneip et al. (2012) relies on a two-step procedure:

first, estimates of the common slope parameters βj and the time-varying individual

effects vi(t) are obtained semi-parametrically. Second, functional principal component

analysis is used to estimate the common factors f1(t), . . . , fd(t), and to re-estimate the

time-varying individual effects vi(t) more efficiently. In the following we describe both

steps in more detail.

Step 1: The unobserved parameters βj and vi(t) are estimated by the minimization of

n∑
i=1

1

T

T∑
t=1

yit − P∑
j=1

xitjβj − ϑi(t)

2

+

n∑
i=1

κ

∫ T

1

1

T

(
ϑ

(m)
i (s)

)2
ds, (2.6)

over all βj ∈ R and all m-times continuously differentiable functions ϑi(t), where ϑ
(m)
i (t)

denotes the mth derivative of the function ϑi(t). A first approximation of vi(t) is then

given by ṽi(t) := ϑ̂i(t). Spline theory implies that any solution ϑ̂i(t) possesses an expan-

sion in terms of a natural spline basis z1(t), . . . , zT (t) such that ϑ̂i(t) =
∑T

s=1 ζ̂iszs(t);

see, e.g., de Boor (2001). Using the latter expression, we can rewrite (2.6) to formalize

the following objective function:

S(β, ζ) =
n∑
i=1

(
||Yi −Xiβ − Zζi||2 + κζ>i Rζi

)
, (2.7)

where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, β = (β1, . . . , βP )>, ζi = (ζi1, . . . , ζiT )>,

Z andR are T×T matrices with elements {zs(t)}s,t=1,...,T and {
∫
z

(m)
s (t)z

(m)
k (t)dt}s,k=1,...,T

respectively. κ is a preselected smoothing parameter to control the smoothness of ϑ̂i(t).

We follow the usual choice of m = 2, which leads to cubic smoothing splines.

In contrast to Kneip et al. (2012), we do not specify a common time effect in model

(2.4), but the vector of explanatory variables is allowed to contain an intercept. This

means that the time-varying individual effects vi(t) are not centered around zero for each

specific time point t, but around a common intercept term. The separate estimation of

the common time effect, say θt, is also possible with our phtt package; we discuss this

in detail in Section 2.5.

The semi-parametric estimators β̂, ζ̂i = (ζ̂i1, . . . , ζ̂iT )>, and ṽi = (ṽi1, . . . , ṽiT )> can be

obtained by minimizing S(β, ζ) over all β ∈ RP and ζ ∈ RT×n.
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The solutions are given by

β̂ =

(
n∑
i=1

X>i (I −Zκ)Xi

)−1( n∑
i=1

X>i (I −Zκ)Yi

)
, (2.8)

ζ̂i = (Z>Z + κR)−1Z>(Yi −Xiβ̂), and (2.9)

ṽi = Zκ
(
Yi −Xiβ̂

)
, where Zκ = Z

(
Z>Z + κR

)−1
Z>. (2.10)

Step 2: The common factors are obtained by the first d eigenvectors γ̂1, . . . , γ̂d that

correspond to the largest eigenvalues ρ̂1, . . . , ρ̂d of the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

ṽiṽ
>
i . (2.11)

The estimator of the common factor fl(t) is then defined by the lth scaled eigenvector

f̂l(t) =
√
T γ̂lt for all l ∈ {1, . . . , d}, (2.12)

where γ̂lt is the tth element of the eigenvector γ̂l. The scaling factor
√
T yields that f̂l(t)

satisfies the normalization condition 1
T

∑T
t=1 f̂l(t)

2 = 1 as listed above in Section 2.1.

The estimates of the individual loadings parameters λil are obtained by ordinary least

squares regressions of
(
Yi −Xiβ̂

)
on f̂l, where f̂l = (f̂l(1), . . . , f̂l(T ))>. Recall from

conditions (a) and (b) that λ̂il can be calculated as follows:

λ̂il =
1

T
f̂>l

(
Yi −Xiβ̂

)
. (2.13)

A crucial part of the estimation procedure of Kneip et al. (2012) is the re-estimation

of the time-varying individual effects vi(t) in Step 2 by v̂i(t) :=
∑d

l=1 λ̂ilf̂l(t), where

the factor dimension d can be determined, e.g., by the sequential testing procedure of

Kneip et al. (2012) or by any other dimensionality criterion; see also Section 2.3. This

re-estimation leads to more efficiently estimated time-varying individual effects.

Kneip et al. (2012) derive the consistency of the estimators as n, T →∞ and show that

the asymptotic distribution of common slope estimators is given by Σ̂
−1/2
β (β̂−Eε(β̂))

d→
N(0, I), where

Σ̂β = σ2

(
n∑
i=1

X>i (I −Zκ)Xi

)−1( n∑
i=1

X>i (I −Zκ)2Xi

)(
n∑
i=1

X>i (I −Zκ)Xi

)−1

.

(2.14)
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A consistent estimator of σ2 can be obtained by

σ̂2 =
1

(n− 1)T

n∑
i=1

||Yi −Xiβ̂ −
d̂∑
l=1

λ̂i,lf̂l||2. (2.15)

To determine the optimal smoothing parameter κopt, Kneip et al. (2012) propose the

following cross validation (CV) criterion:

CV (κ) =
n∑
i=1

||Yi −Xiβ̂−i −
d∑
l=1

λ̂−i,lf̂−i,l||2, (2.16)

where β̂−i, λ̂−i,l, and f̂−i,l are estimates of the parameters β, λ, and fl based on the

dataset without the ith observation. Unfortunately, this criterion is computationally

very costly and requires determining the factor dimension d in advance. To overcome

this disadvantage, we propose a plug-in smoothing parameter that is discussed in more

detail in the following Section 2.2.1.

2.2.1 Computational Details

Theoretically, it is possible to determine κ by the CV criterion in (2.16); however, cross

validation is computationally very costly. Moreover, Kneip et al. (2012) do not explain

how the factor dimension d is to be specified during the optimization process, which is

critical since the estimator d̂ is influenced by the choice of κ.

In order to get a quick and effective solution, we propose to determine the smoothing

parameter κ by generalized cross validation (GCV). However, we cannot apply the clas-

sical GCV formulas as proposed, e.g., in Craven and Wahba (1979) since we do not

know the parameters β and vi(t). Our computational algorithm for determining the

GCV smoothing parameter κGCV is based on the method of Cao and Ramsay (2010),

who propose optimizing objective functions of the form (2.7) by updating the parameters

iteratively in a functional hierarchy. Formally, the iteration algorithm can be described

as follows:

1. For given κ and β, we optimize (2.7) with respect to ζi to get

ζ̂i = (Z>Z + κR)−1Z>(Yi −Xiβ). (2.17)
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2. By using (2.17), we minimize (2.7) with respect to β to get

β̂ =

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i (Yi − Zζ̂i)

)
(2.18)

3. Once (2.17) and (2.18) are obtained, we optimize the following GCV criterion to

calculate κGCV :

κGCV = arg min
κ

1
n
T tr(I −Zκ)2

n∑
i=1

||Yi −Xiβ̂ −Zκ(Yi −Xiβ̂)||2. (2.19)

The program starts with initial estimates of β and κ and proceeds with steps 1, 2, and 3

in recurrence until convergence of all parameters, where the initial value β̂start is defined

in (2.50) and the initial value κstart is the GCV-smoothing parameter of the residuals

Yi −Xiβ̂start.

The advantage of this approach is that the inversion of the P × P matrix in (2.18)

does not have to be updated during the iteration process. Moreover, the determina-

tion of the GCV-minimizer in (2.19) can be easily performed in R using the function

smooth.spline(), which calls on a rapid C-routine.

But note that the GCV smoothing parameter κGCV in (2.19) does not explicitly account

for the factor structure of the time-varying individual effects vi(t) as formalized in (2.2).

In fact, given that the assumption of a factor structure is true, the goal shall not be to

obtain optimal estimates of vi(t) but rather to obtain optimal estimates of the common

factors fl(t), which implies that the optimal smoothing parameter κopt will be smaller

than κGCV ; see Kneip et al. (2012).

If the goal is to obtain optimal estimates of fl(t), κopt will be used as an upper bound

when minimizing the CV criterion (2.16) (via setting the argument CV = TRUE); which,

however, can take some time. Note that, this optimal smoothing parameter κopt de-

pends on the unknown factor dimension d. Therefore, we propose to, first, estimate the

dimension based on the smoothing parameter κGCV and, second, to use the estimated

dimension d̂ (via explicitly setting the dimension argument factor.dim= d̂) in order to

determine the dimension-specific smoothing parameter κopt (via setting the argument

CV = TRUE).

2.2.2 Application

This section is devoted to the application of the method of Kneip et al. (2012) discussed

above. The computation of this method is accessible through the function KSS(), which
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has the following arguments:

R> args(KSS)

function (formula, additive.effects = c("none", "individual",

"time", "twoways"), consult.dim.crit = FALSE, d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, level = 0.01, spar = NULL,

CV = FALSE, convergence = 1e-06, restrict.mode = c("restrict.factors",

"restrict.loadings"), ...)

NULL

The argument formula is compatible with the usual R-specific symbolic designation of

the model. The unique specificity here is that the variables should be defined as T × n
matrices, where T is the temporal dimension and n is the number of the cross-section

unites.1

The argument additive.effects makes it possible to extend the model (2.4) for addi-

tional additive individual, time, or twoways effects as discussed in Section 2.5.

If the logical argument consult.dim.crit is set to TRUE all dimensionality criteria

discussed in Section 2.3 are computed and the user is asked to choose one of their

results.

The arguments d.max and sig2.hat are required for the computation of some dimen-

sionality criteria discussed in Section 2.3. If their default values are maintained, the

function internally computes d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in (2.15), where

bxc indicates the integer part of x. The argument level allows to adjust the signifi-

cance level for the dimensionality testing procedure (2.21) of Kneip et al. (2012); see

Section 2.3.

CV is a logical argument. If it is set to TRUE the cross validation criterion (2.16) of Kneip

et al. (2012) will be computed. In the default case, the function uses the GCV method

discussed above in Section 2.2.1.

The factor dimension d can be pre-specified by the argument factor.dim. Recall from

restriction (a) that 1
T

∑T
t=1 f̂l(t)

2 = 1.

Alternatively, it is possible to standardize the individual loadings parameters such that
1
n

∑n
i=1 λ̂

2
il = 1, which can be done by setting restrict.mode = "restrict.loadings".

1Note that phtt is written for balanced panels. Missing values have to be replaced in a pre-processing
step by appropriate imputation methods.
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As an illustration we estimate the Cigarettes model (2.3) introduced in Section 2.1:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit (2.20)

with eit =
d∑
l=1

λil fl(t) + εit.

In the following lines of code we load the Cigar dataset and take logarithms of the three

variables, Consumptionit, Priceit/cpit and Incomeit/cpit, where cpit is the consumer

price index. The variables are stored as T × n-matrices. This is necessary, because the

formula argument of the KSS()-function takes the panel variables as matrices in which

the number of rows has to be equal to the temporal dimension T and the number of

columns has to be equal to the individual dimension n.

R> library("phtt")

R> data("Cigar")

R> N <- 46

R> T <- 30

R> l.Consumption <- log(matrix(Cigar$sales, T, N))

R> cpi <- matrix(Cigar$cpi, T, N)

R> l.Price <- log(matrix(Cigar$price, T, N)/cpi)

R> l.Income <- log(matrix(Cigar$ndi, T, N)/cpi)

The model parameters β1, β2, the factors fl(t), the loadings parameters λil, and the

factor dimension d can be estimated by the KSS()-function with its default arguments.

Inferences about the slope parameters can be obtained by using the method summary().

R> Cigar.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income)

R> (Cigar.KSS.summary <- summary(Cigar.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income)

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)
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(Intercept) 4.0600 0.1770 23.00 < 2.2e-16 ***

l.Price -0.2600 0.0223 -11.70 < 2.2e-16 ***

l.Income 0.1550 0.0382 4.05 5.17e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Additive Effects Type: none

Used Dimension of the Unobserved Factors: 6

Residual standard error: 0.000725 on 921 degrees of freedom

R-squared: 0.99

The effects of the log-real prices for cigarettes and the log-real incomes on the log-

sales of cigarettes are highly significant and in line with results in the literature. The

summary output reports an estimated factor dimension of d̂ = 6. In order to get a

visual impression of the six estimated common factors f̂1(t), . . . , f̂6(t) and the estimated

time-varying individual effects v̂1(t), . . . , v̂n(t), we provide a plot()-method for the KSS-

summary object.

R> plot(Cigar.KSS.summary)
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Figure 2.2: Left panel: Estimated factors f̂1(t), . . . , f̂6(t). Right panel: Esti-
mated time-varying individual effects v̂1(t), . . . , v̂n(t).

The left panel of Figure 2.2 shows the six estimated common factors f̂1(t), . . . , f̂6(t) and

the right panel of Figure 2.2 shows the n = 46 estimated time-varying individual effects
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v̂1(t), . . . , v̂n(t). The common factors are ordered correspondingly to the decreasing se-

quence of their eigenvalues. Obviously, the first common factor is nearly time-invariant;

this suggests extending the model (2.20) by additive individual (time-invariante) ef-

fects; see Section 2.5 for more details.

By setting the logical argument consult.dim.crit=TRUE, the user can choose from other

dimensionality criteria, which are discussed in Section 2.3. Note that the consideration

of different factor dimensions d would not alter the results for the slope parameters β

since the estimation procedure of Kneip et al. (2012) for the slope parameters β does

not depend on the dimensionality parameter d.

2.3 Panel Criteria for Selecting the Number of Factors

In order to estimate the factor dimension d, Kneip et al. (2012) propose a sequential

testing procedure based on the following test statistic:

KSS(d) =
n
∑T

r=d+1 ρ̂r − (n− 1)σ̂2tr(ZκP̂dZκ)

σ̂2

√
2n · tr((ZκP̂dZκ)2)

a∼ N(0, 1), (2.21)

where P̂d = I − 1
T

∑d
l=1 flf

>
l with fl = (fl(1), . . . , fl(T ))>, and

σ̂2 =
1

(n− 1)tr((I −Zκ)2)

n∑
i=1

||(I −Zκ)(Yi −Xiβ̂)||2. (2.22)

The selection method can be described as follows: choose a significance level α (e.g.,

α = 1%) and begin with H0 : d = 0. Test if KSS(0) ≤ z1−α, where z1−α is the (1− α)-

quantile of the standard normal distribution. If the null hypothesis can be rejected, go

on with d = 1, 2, 3, . . . until H0 cannot be rejected. Finally, the estimated dimension is

then given by the smallest dimension d, which leads a rejection of H0.

The dimensionality criterion of Kneip et al. (2012) can be used for stationary as well

as non-stationary factors. However, this selection procedure has a tendency to ignore

factors that are weakly auto-correlated. As a result, the number of factors can be

underestimated.

More robust against this kind of underestimation are the criteria of Bai and Ng (2002).

The basic idea of their approach consists simply of finding a suitable penalty term gnT ,

which countersteers the undesired variance reduction caused by an increasing number of
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factors d̂. Formally, d̂ can be obtained by minimizing the following criterion:

PC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT (2.23)

for all l ∈ {1, 2, . . .}, where ŷit(l) is the fitted value for a given factor dimension l. To

estimate consistently the dimension of stationary factors Bai and Ng (2002) propose

specifying gnT by one of the following penalty terms:

g
(PC1)
nT = σ̂2 (n+ T )

nT
log

(
nT

n+ T

)
, (2.24)

g
(PC2)
nT = σ̂2 (n+ T )

nT
log(min{n, T}), (2.25)

g
(PC3)
nT = σ̂2 log(min{n, T})

min{n, T}
, and (2.26)

g
(BIC3)
nT = σ̂2 (n+ T − l)

nT
log(nT ), (2.27)

where σ̂2 is the sample variance estimator of the residuals ε̂it. The proposed criteria

are denoted by PC1, PC2, PC3, and BIC3, respectively. Note that only the first three

criteria satisfy the requirements of Theorem 2 in Bai and Ng (2002), i.e., (i) gnT → 0

and (ii) min{n, T}gnt → ∞, as n, T → ∞. These conditions ensure consistency of

the selection procedure without imposing additional restrictions on the proportional

behavior of n and T . The requirement (i) is not always fulfilled for BIC3, especially

when n is too large relative to T or T is too large relative to n (e.g., n = exp(T )

or T = exp(n)). In practice, BIC3 seems to perform very well, especially when the

idiosyncratic errors are cross-correlated.

The variance estimator σ̂2 can be obtained by

σ̂2(dmax) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(dmax))2, (2.28)

where dmax is an arbitrary maximal dimension that is larger than d. This kind of vari-

ance estimation can, however, be inappropriate in some cases, especially when σ̂2(dmax)

underestimates the true variance. To overcome this problem, Bai and Ng (2002) propose

three additional criteria (IC1, IC2, and IC3):

IC(l) = log

(
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2

)
+ lgnT (2.29)
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with

g
(IC1)
nT =

(n+ T )

nT
log(

nT

n+ T
), (2.30)

g
(IC2)
nT =

(n+ T )

nT
log(min{n, T}), and (2.31)

g
(IC3)
nT =

log(min{n, T})
min{n, T}

. (2.32)

In order to improve the finite sample performance of IC1 and IC2, Alessi et al. (2010) pro-

pose to multiply the penalties g
(IC1)
nT and g

(IC2)
nT with a positive constant c and apply the

calibration strategy of Hallin and Lǐska (2007). The choice of c is based on the inspection

of the criterion behavior through J-different tuples of n and T , i.e., (n1, T1), . . . , (nJ , TJ),

and for different values of c in a pre-specified grid interval. We denote the refined criteria

in our package by ABC.IC1 and ABC.IC2 respectively. Note that such a modification

does not affect the asymptotic properties of the dimensionality estimator.

Under similar assumptions, Ahn and Horenstein (2009) propose selecting d by maximiz-

ing the ratio of adjacent eigenvalues (or the ratio of their growth rate). The criteria are

referred to as Eigenvalue Ratio (ER) and Growth Ratio (GR) and defined as following:

ER =
ρ̂l
ρ̂l+1

(2.33)

(2.34)

GR =
log
(∑T

r=l ρ̂r/
∑T

r=l+1 ρ̂r

)
log
(∑T

r=l+1 ρ̂r/
∑T

r=l+2 ρ̂r

) . (2.35)

Note that the theory of the above dimensionality criteria PC1, PC2, PC3, BIC3, IC1,

IC2, IC3, IPC1,IPC2, IPC3, ABC.IC1, ABC.IC2, KSS.C, ER, and GR are developed

for stochastically bounded factors. In order to estimate the number of unit root factors,

Bai (2004) proposes the following panel criteria:

IPC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT , (2.36)

where

g
(IPC1)
nT = σ̂2 log(log(T ))

T

(n+ T )

nT
log

(
nT

n+ T

)
, (2.37)

g
(IPC2)
nT = σ̂2 log(log(T ))

T

(n+ T )

nT
log(min{n, T}), and (2.38)

g
(IPC3)
nT = σ̂2 log(log(T ))

T

(n+ T − l)
nT

log(nT ). (2.39)
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Alternatively, Onatski (2010) has introduced a threshold approach based on the empirical

distribution of the sample covariance eigenvalues, which can be used for both stationary

and non-stationary factors. The estimated dimension is obtained by

d̂ = max{l ≤ dmax : ρ̂l − ρ̂l−1 ≥ δ},

where δ is a positive threshold, estimated iteratively from the data. We refer to this

criterion as ED, which stands for Eigenvalue Differences.

2.3.1 Application

The dimensionality criteria introduced above are implemented in the function OptDim(),

which has the following arguments:

R> args(OptDim)

function (Obj, criteria = c("PC1", "PC2", "PC3", "BIC3", "IC1",

"IC2", "IC3", "IPC1", "IPC2", "IPC3", "ABC.IC1", "ABC.IC2",

"KSS.C", "ED", "ER", "GR"), standardize = FALSE, d.max, sig2.hat,

spar, level = 0.01, c.grid = seq(0, 5, length.out = 128),

T.seq, n.seq)

NULL

The desired criteria can be selected by one or several of the following character variables:

"KSS.C", "PC1", "PC2", "PC3", "BIC2", "IC1", "IC2" , "IC3", "ABC.IC1", "ABC.IC2",

"ER", "GR", "IPC1", "IPC2", "IPC3", and "ED". The default significance level used

for the "KSS"-criterion is level = 0.01. The values of dmax and σ̂2 can be speci-

fied externally by the arguments d.max and sig2.hat. By default, d.max is computed

internally as d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in (2.22) and (2.28). The ar-

guments "c.grid", "T.seq", and "n.seq" are required for computing "ABC.IC1" and

"ABC.IC2". The grid interval of the calibration parameter can be externally specified

with "c.grid". The J-Tuples, (n1, T1), . . . , (nJ , TJ), can be specified by using appro-

priate vectors in "T.seq", and "n.seq". If these two arguments are left unspecified,

the function constructs internally the following sequences: T −C, T −C + 1, . . . , T , and

n−C, n−C+ 1, . . . , n, for C = min
√
n,
√
T , 30. Alternatively, the user can specify only

the length of the sequences by giving appropriate integers to the arguments "T.seq",

and "n.seq", to control for C.
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The input variable can be standardized by choosing standardize = TRUE. In this case,

the calculation of the eigenvalues is based on the correlation matrix instead of the co-

variance matrix for all criteria.

As an illustration, imagine that we are interested in the estimation of the factor di-

mension of the variable ln(Consumptionit) with the dimensionality criterion "PC1". The

function OptDim() requires a T × n matrix as input variable.

R> OptDim(Obj = l.Consumption, criteria = "PC1")

Call: OptDim.default(Obj = l.Consumption, criteria = "PC1")

---------

Criterion of Bai and Ng (2002):

PC1

5

OptDim() offers the possibility of comparing the result of different selection procedures by

giving the corresponding criteria to the argument criteria. If the argument criteria

is left unspecified, OptDim() automatically compares all 16 procedures.

R> (OptDim.obj <- OptDim(Obj = l.Consumption, criteria = c("PC3", "ER",

+ "GR", "IPC1", "IPC2", "IPC3"), standardize = TRUE))

Call: OptDim.default(Obj = l.Consumption, criteria = c("PC3", "ER",

"GR", "IPC1", "IPC2", "IPC3"), standardize = TRUE)

---------

Criterion of Bai and Ng (2002):

PC3

5

--------

Criteria of Ahn and Horenstein (2013):

ER GR

3 3
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---------

Criteria of Bai (2004):

IPC1 IPC2 IPC3

3 3 2

In order to help users to choose the most appropriate dimensionality criterion for the

data, OptDim-objects are provided with a plot()-method. This method displays, in

descending order, the magnitude of the eigenvalues in percentage of the total variance

and indicates where the selected criteria detect the dimension; see Figure 2.3.

R> plot(OptDim.obj)

Screeplot

Ordered eigenvalues
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Figure 2.3: Scree plot produced by the plot()-method for OptDim-objects. Most of
the dimensionality criteria (ER, GR, IPC1 and IPC2) detect d̂ = 3.

We, now, come back to the KSS- function, which offers an additional way to compare the

results of all dimensionality criteria and to select one of them: If the KSS()-argument

consult.dim = TRUE, the results of the dimensionality criteria are printed on the console

of R and the user is asked to choose one of the results.

R> KSS(formula = l.Consumption ~ -1 + l.Price + l.Income, consult.dim = TRUE)
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-----------------------------------------------------------

Results of Dimension-Estimations

-Bai and Ng (2002):

PC1 PC2 PC3 BIC3 IC1 IC2 IC3

5 5 5 4 5 5 5

-Bai (2004):

IPC1 IPC2 IPC3

3 3 2

-Alessi et al. (2010):

ABC.IC1 ABC.IC2

3 3

-Kneip et al. (2012):

KSS.C

6

-Onatski (2009):

ED

3

-Ahn and Horenstein (2013):

ER GR

3 6

-----------------------------------------------------------

Please, choose one of the proposed integers:

After entering a number of factors, e.g., 6 we get the following feedback:

Used dimension of unobs. factor structure is: 6

-----------------------------------------------------------
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Note that the maximum number of factors that can be given, cannot exceed the highest

estimated factor dimension (here maximal dimension would be 6). A higher dimension

can be chosen using the argument factor.dim.

2.4 Panel Models with Stochastically Bounded Factors

The panel model proposed by Bai (2009) can be presented as follows:

yit =
P∑
j=1

xitjβj + vit + εit, (2.40)

where

vit =
d∑
l=1

λilflt. (2.41)

Combining (2.40) with (2.41) and writing the model in matrix notation we get

Yi = Xiβ + FΛ>i + εi, (2.42)

where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, εi = (εi1, . . . , εiT )>, Λi = (λ1, . . . , λn)>

and F = (f1, . . . , fT )> with λi = (λi1, . . . , λid), ft = (f1t, . . . , fdt), and εi = (εi1, . . . , εiT )>.

The asymptotic properties of Bai’s method rely, among others, on the following assump-

tion:
1

T
F>F

p→ ΣF , as T →∞, (2.43)

where ΣF is a fixed positive definite d× d matrix. This allows for the factors to follow a

deterministic time trend such as ft = t/T or to be stationary dynamic processes such that

ft =
∑∞

j=1Cjet−j , where et are i.i.d. zero mean stochastic components. It is, however,

important to note that such an assumption rules out a large class of non-stationary

factors such as I(p) processes with p ≥ 1.

2.4.1 Model with Known Number of Factors

Bai (2009) proposes to estimate the model parameters β, F and Λi by minimizing the

following least squares objective function:

S(β, F,Λi) =

n∑
i

||Yi −Xiβ − FΛ>i ||2. (2.44)
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For each given F , the OLS estimator of β can be obtained by

β̂(F ) =

(
n∑
i=1

X>i PdXi

)−1( n∑
i=1

X>i PdYi

)
(2.45)

where Pd = I − F (F>F )−1F> = I − FF>/T . If β is known, F can be estimated by

using the first d eigenvectors γ̂ = (γ̂1, . . . , γ̂d) corresponding to the first d eigenvalues of

the empirical covariance matrix Σ̂ = (nT )−1
∑n

i=1wiw
>
i , where wi = Yi−Xiβ. That is,

F̂ (β) =
√
T γ̂.

The idea of Bai (2009) is to start with initial values for β or F and calculate the esti-

mators iteratively. The method requires, however, the factor dimension d to be known,

which is usually not the case in empirical applications.

A feasible estimator of (2.45) can be obtained by using an arbitrary large dimension

dmax greater than d. The factor dimension can be estimated subsequently by using the

criteria of Bai and Ng (2002) to the remainder term Yi = Xiβ̂(F̂ (dmax)), as suggested

by Bai (2009). This strategy can lead, however, to inefficient estimation and spurious

interpretation of β due to over-parameterization.

2.4.2 Model with Unknown Number of Factors

In order to estimate d jointly with β, F , and Λi, Bada and Kneip (2014) propose to

integrate a penalty term into the objective function to be globally optimized. In this

case, the optimization criterion can be defined as a penalized least squares objective

function of the form:

S(β, F,Λi, l) =

n∑
i

||Yi −Xiβ − FΛ>i ||2 + lgnT (2.46)

The role of the additional term lgnT is to pick up the dimension d̂, of the unobserved

factor structure. The penalty gnT can be chosen according to Bai and Ng (2002). The

estimation algorithm is based on the parameter cascading strategy of Cao and Ramsay

(2010), which in this case can be described as follows:

1. Minimizing (2.46) with respect to Λi for each given β, F and d, we get

Λ̂>i (β, F, d) = F> (Yi −Xiβ) /T. (2.47)
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2. Introducing (2.47) in (2.46) and minimizing with respect to F for each given β and

d, we get

F̂ (β, d) =
√
T γ̂(β, d), (2.48)

where γ̂(β, d) is a T ×d matrix that contains the first d eigenvectors corresponding

to the first d eigenvalues ρ1, . . . , ρd of the covariance matrix Σ̂ = (nT )−1
∑n

i=1wiw
>
i

with wi = Yi −Xiβ.

3. Reintegrating (2.48) and (2.47) in (2.46) and minimizing with respect to β for each

given d, we get

β̂(d) =

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i

(
Yi − F̂ Λ̂>i (β̂, d)

))
. (2.49)

4. Optimizing (2.46) with respect to l given the results in (2.47), (2.48), and (2.49)

allows us to select d̂ as

d̂ = argminl

n∑
i

||Yi −Xiβ̂ − F̂ Λ̂>i ||2 + lgnT , for all l ∈ {0, 1, . . . , dmax}.

The final estimators are obtained by alternating between an inner iteration to optimize

β̂(d), F̂ (d), and Λ̂i(d) for each given d and an outer iteration to select the dimension d̂.

The updating process is repeated in its entirety till the convergence of all the parameters.

This is why the estimators are called entirely updated estimators (Eup). In order to

avoid over-estimation, Bada and Kneip (2014) propose to re-scale gnT in each iteration

stage with σ̂2 =
∑n

i ||Yi − Xiβ̂ − F̂ Λ̂>i ||2 in stead of σ̂2(dmax). Simulations show that

such a calibration can improve the finite sample properties of the estimation method.

It is notable that the objective functions (2.46) and (2.44) are not globally convex. There

is no guarantee that the iteration algorithm converges to the global optimum. Therefore,

it is important to choose reasonable starting values d̂start and β̂start. We propose to select

a large dimension dmax and to start the iteration with the following estimate of β:

β̂start =

(
n∑
i=1

X>i (I −GG>)Xi

)−1( n∑
i=1

X>i (I −GG>)Yi

)
, (2.50)

where G is the T × dmax matrix of the eigenvectors corresponding to the first dmax

eigenvalues of the augmented covariance matrix

ΓAug =
1

nT

n∑
i=1

(Yi, Xi)(Y
>
i , X

>
i )>.
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The intuition behind these starting estimates relies on the fact that the unobserved

factors cannot escape from the space spanned by the eigenvectors G. The projection

of Xi on the orthogonal complement of G in (2.50) eliminates the effect of a possible

correlation between the observed regressors and unobserved factors, which can heavily

distort the value of β0 if it is neglected. Greenaway-mcgrevy (2012) give conditions under

which (2.50) is a consistent estimator of β. In order to avoid miss-specifying the model

through identifying factors that only exist in Xi and not Yi, Bada and Kneip (2014)

recommend to under-scale the starting common factors Gl that are highly correlated

with Xi.

According to Bai (2009), the asymptotic distribution of the slope estimator β̂(d) for

known d is given by
√
nT (β̂(d)− β)

a∼ N(0, D−1
0 DZD

−1
0 ),

whereD0 = plim 1
nT

∑n
i=1

∑T
t=1 Z

>
itZit with Zi = (Zi1, . . . , ZiT )> = PdXi− 1

n

∑n
k=1 PdXiaik

and aik = Λi(
1
n

∑n
i=1 Λ>i Λi)

−1Λ>k , and

Case 1. DZ = D−1
0 σ2 if the errors are i.i.d. with zero mean and variance σ2,

Case 2. DZ = plim 1
nT

∑n
i=1 σ

2
i

∑T
t=1 Z

>
itZit, where σ2

i = E(ε2it) with E(εit) = 0, if cross-

section heteroskedasticity exists and n/T → 0,

Case 3. DZ = plim 1
nT

∑n
i=1

∑n
j=1 ωij

∑T
t=1 Z

>
itZjt, where ωij = E(εitεjt) with E(εit) = 0,

if cross-section correlation and heteroskedasticity exist and n/T → 0,

Case 4. DZ = plim 1
nT

∑T
t=1 σ

2
t

∑n
i=1 Z

>
itZit, where σ2

t = E(ε2it) with E(εit) = 0, if het-

eroskedasticity in the time dimension exists and T/n→ 0,

Case 5. DZ = plim 1
nT

∑T
t=1

∑T
s=1 ρ(t, s)

∑n
i=1 Z

>
itZis, where ρ(t, s) = E(εitεis) withE(εit) =

0 , if correlation and heteroskedasticity in the time dimension exist and T/n→ 0,

and

Case 6. DZ = plim 1
nT

∑T
t=1

∑n
i=1 σ

2
itZ
>
itZis, where σ2

it = E(ε2it) with E(εit) = 0, if het-

eroskedasticity in both time and cross-section dimensions exists with T/n2 → 0

and n/T 2 → 0.

In presence of correlation and heteroskedasticity in panels with proportional dimensions

n and T , i.e., n/T → c > 0, the asymptotic distribution of β̂(d) will be not centered at

zero. This can lead to false inference when using the usual test statistics such as t- and

χ2-statistic. To overcome this problem, Bai (2009) propose to estimate the asymptotic

bias and correct the estimator as follows:

β̂∗(d) = β̂(d)− 1

n
B̂ − 1

T
Ĉ (2.51)
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where B̂ and Ĉ are the estimators of

B = −
(

1
nT

∑n
i=1

∑T
t=1 Z

>
itZit

)−1
1
nT

∑n
i=1

∑n
k=1(Xi − Vi)>F

(
1
T F
>F
)−1

Wik

C = −
(

1
nT

∑n
i=1

∑T
t=1 Z

>
itZit

)−1
1
nT

∑n
i=1X

>
i MFΩF

(
1
T F
>F
)−1 ( 1

n

∑n
k=1 Λ>k Λk

)−1
Λ>i

respectively. Here, Vi = 1
n

∑n
j=1 aijXj , Wik =

(
1
n

∑n
j=1 Λ>j Λj

)−1
Λ>k

1
T

∑T
t=1E(εitεkt),

and Ω = 1
n

∑n
k=1 Ωk with

Case 7. Ωk is a T × T diagonal matrix with elements ωkt = E(ε2kt) if heteroskedasticity in

both time and cross-section dimensions exist and n/T → c > 0 and,

Case 8. Ωk is a T × T matrix with elements Ωk,ts = E(εktεks) if correlation and het-

eroskedasticity in both time and cross-section dimensions exist and n/T → c > 0.

In a similar context, Bada and Kneip (2014) prove that estimating d with the remaining

model parameters does not affect the asymptotic properties of β̂(d). The asymptotic

distribution of β̂ = β̂(d̂) is given by

√
nT (β̂ − β)

a∼ N(0, D−1
0 DZD

−1
0 )

under Cases 1-6, and
√
nT (β̂∗ − β)

a∼ N(0, D−1
0 DZD

−1
0 )

under Cases 7-8, where β̂∗ = β̂∗(d̂).

The asymptotic variance of β̂ and the bias terms B and C can be estimated by replacing

F , Λi, Zit, and εit with F̂ , Λ̂i, Ẑit, and ε̂it respectively.

In presence of serial correlation (cases 5 and 8), consistent estimators for DZ and C can

be obtained by using the usual heteroskedasticity and autocorrelation (HAC) robust

limiting covariance. In presence of cross-section correlation (case 3), DZ is estimated by

D̂Z = 1
mT

∑m
i=1

∑m
j=1

∑T
t=1 Ẑ

>
it Ẑjtε̂itε̂jt, where m =

√
n. If both cross-section and serial

correlation exist (case 8), we estimate the long-run covariance of 1√
m

∑m
j=1 Ẑitε̂it.

2.4.3 Application

The above described methods are implemented in the function Eup(), which takes the

following arguments:

R> args(Eup)
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function (formula, additive.effects = c("none", "individual",

"time", "twoways"), dim.criterion = c("PC1", "PC2", "PC3",

"BIC3", "IC1", "IC2", "IC3", "IPC1", "IPC2", "IPC3"), d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, double.iteration = TRUE,

start.beta = NULL, max.iteration = 500, convergence = 1e-06,

restrict.mode = c("restrict.factors", "restrict.loadings"),

...)

NULL

The arguments additive.effects, d.max, sig2.hat, and restrict.mode have the

same roles as in KSS(); see Section 2.2.2. The argument dim.criterion specifies the

dimensionality criterion to be used if factor.dim is left unspecified and defaults to

dim.criterion = "PC1".

Setting the argument double.iteration=FALSE may speed up computations, because

the updates of d̂ will be done simultaneously with F̂ without waiting for their inner

convergences. However, in this case, the convergence of the parameters is less stable

than in the default setting.

The argument start.beta allows us to give a vector of starting values for the slope

parameters βstart. The maximal number of iteration and the convergence condition can

be controlled by max.iteration and convergence.

In our application, we take first-order differences of the observed time series. This is

because some factors show temporal trends, which can violate the stationarity condi-

tion (2.43); see Figure 2.2. We consider the following modified cigarettes model:

4 ln(Consumptionit) = β14 ln(Priceit) + β24 ln(Incomeit) + eit,

with eit =

d∑
l=1

λilflt + εit,

where 4xt = xt− xt−1. In order to avoid notational mess, we use the same notation for

the unobserved time-varying individual effects vit =
∑d

l=1 λilflt as above in (2.20). The

4-transformation can be easily performed in R using the standard diff()-function as

follows:

R> d.l.Consumption <- diff(l.Consumption)

R> d.l.Price <- diff(l.Price)

R> d.l.Income <- diff(l.Income)
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As previously mentioned for the KSS()-function, the formula argument of the Eup()-

function takes balanced panel variables as T×n dimensional matrices, where the number

of rows has to be equal to the temporal dimension T and the number of columns has to

be equal to the individual dimension n.

R> (Cigar.Eup <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ dim.criterion = "PC3"))

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

dim.criterion = "PC3")

Coeff(s) of the Observed Regressor(s) :

d.l.Price d.l.Income

-0.3140143 0.159392

Additive Effects Type: none

Dimension of the Unobserved Factors: 5

Number of iterations: 55

Inferences about the slope parameters can be obtained by using the method summary().

The type of correlation and heteroskedasticity in the idiosyncratic errors can be specified

by choosing one of the corresponding Cases 1-8 described above using the argument

error.type = c(1, 2, 3, 4, 5, 6, 7, 8).

In presence of serial correlations (cases 5 and 8), the kernel weights required for esti-

mating the long-run covariance can be externally specified by giving a vector of weights

in the argument kernel.weights. By default, the function uses internally the linearly

decreasing weights of Newey and West (1987) and a truncation at
⌊
min{

√
n,
√
T}
⌋
. If

case 7 or 8 is chosen, the method summary() calculates the realization of the bias cor-

rected estimators and gives appropriate inferences. The bias corrected coefficients can

be called by using the method coef() to the object produced by summary().

R> summary(Cigar.Eup)

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,
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dim.criterion = "PC3")

Residuals:

Min 1Q Median 3Q Max

-0.147000 -0.013700 0.000889 0.014100 0.093300

Slope-Coefficients:

Estimate Std.Err Z value Pr(>z)

d.l.Price -0.3140 0.0227 -13.90 < 2.2e-16 ***

d.l.Income 0.1590 0.0358 4.45 8.39e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Additive Effects Type: none

Dimension of the Unobserved Factors: 5

Residual standard error: 0.02804 on 957 degrees of freedom,

R-squared: 0.7033

The summary output reports that "PC3" detects 5 common factors. The effect of the dif-

ferenced log-real prices for cigarettes on the differenced log-sales is negative and amounts

to −0.31. The estimated effect of the differenced real disposable log-income per capita

is 0.16.

The estimated factors f̂tl as well as the individual effects v̂it can be plotted using the

plot()-method for summary.Eup-objects. The corresponding graphics are shown in

Figure 2.4.

R> plot(summary(Cigar.Eup))

2.5 Models with Additive and Interactive Unobserved Ef-

fects

Even though the classical additive "individual", "time", and "twoways" effects can

be absorbed by the factor structure, there are good reasons to model them explicitly.
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Figure 2.4: Left Panel: Estimated factors f̂1t, . . . , f̂7t. Right panel: Estimated
time-varying individual effects v̂1t, . . . , v̂nt.

On the one hand, if there are such effects in the true model, then neglecting them will

result in non-efficient estimators; see Bai (2009). On the other hand, additive effects can

be very useful for interpretation.

Consider now the following model:

yit = µ+ αi + θt + x>itβ + νit + εit (2.52)

with

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012),

where αi are time-constant individual effects and θt is a common time-varying effect.

In order to ensure identification of the additional additive effects αi and θt, we need the

following further restrictions:

(d)
∑n

i=1 λil = 0 for all l ∈ {1, . . . , d}

(e)
∑T

t=1 flt = 0 for all l ∈ {1, . . . , d}

(f)
∑n

i=1 αi = 0

(g)
∑T

t=1 θt = 0
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By using the classical within-transformations on the observed variables, we can eliminate

the additive effects αi and θt, such that

ẏit = ẋ>itβ + νit + ε̇it,

where ẏit = yit − 1
T

∑T
t=1 yit −

1
n

∑n
i=1 yit + 1

nT

∑T
t=1

∑n
i=1 yit, ẋit = xit − 1

T

∑T
t=1 xit −

1
n

∑n
i=1 xit+

1
nT

∑T
t=1

∑n
i=1 xit, and ε̇it = εit− 1

T

∑T
t=1 εit−

1
n

∑n
i=1 εit+

1
nT

∑T
t=1

∑n
i=1 εit.

Note that Restrictions (d) and (e) ensure that the transformation does not affect the

time-varying individual effects νit. The parameters µ, αi and θt can be easily estimated

in a second step once an estimate of β is obtained. Because of Restrictions (d) and (e),

the solution has the same form as the classical fixed effects model.

The parameters β and νit can be estimated by the above introduced estimation proce-

dures. All possible variants of model (2.52) are implemented in the functions KSS() and

Eup(). The appropriate model can be specified by the argument additive.effects =

c("none", "individual", "time", "twoways"):

"none" yit = µ+ x>itβ + νit + εit

"individual" yit = µ+ αi + x>itβ + νit + εit

"time" yit = µ+ θt + x>itβ + νit + εit

"twoways" yit = µ+ αi + θt + x>itβ + νit + εit.

The presence of µ can be controlled by -1 in the formula-object: a formula with -1

refers to a model without intercept. However, for identification purposes, if a twoways

model is specified, the presence -1 in the formula will be ignored.

As an illustration, we continue with the application of the KSS()-function in Section 2.2.

The left panel of Figure 2.2 shows that the first common factor is nearly time-invariant.

This motivates us to augment the model (2.20) for a time-constant additive effects αi.

In this case, it is convenient to use an intercept µ, which yields the following model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit,(2.53)

where vi(t) =

d∑
l=1

λil fl(t).

The estimation of the augmented model (2.53) can be done using the following lines of

code.
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R> Cigar2.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income,

+ additive.effects = "individual")

R> (Cigar2.KSS.summary <- summary(Cigar2.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income,

additive.effects = "individual")

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)

(Intercept) 4.0500 0.1760 23.10 < 2.2e-16 ***

l.Price -0.2600 0.0222 -11.70 < 2.2e-16 ***

l.Income 0.1570 0.0381 4.11 3.88e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Additive Effects Type: individual

Used Dimension of the Unobserved Factors: 5

Residual standard error: 0.000734 on 951 degrees of freedom

R-squared: 0.99

Again, the plot() method provides a useful visualization of the results.

R> plot(Cigar2.KSS.summary)

The "individual"-transformation of the data does not affect the estimation of the slope

parameters, but reduces the estimated dimension from d̂ = 6 to d̂ = 5. The remaining

five common factors f̂1, . . . , f̂5 correspond to those of model (2.20); see the middle panel

of Figure 2.5. The estimated time-constant state-specific effects αi are shown in the left

plot of Figure 2.5. The extraction of the αi’s from the factor structure yields a denser

set of time-varying individual effects v̂i shown in the right panel of Figure 2.5.
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Figure 2.5: Left Panel: Estimated time-constant state-specific effects α̂1, . . . , α̂n.
Middle Panel: Estimated common factors f̂1(t), . . . , f̂5(t). Right Panel: Estimated

time-varying individual effects v̂1(t), . . . , v̂n(t).

2.5.1 Specification Tests

Model specification is an important step for any empirical analysis. The phtt package is

equipped with two types of specification tests: the first is a Hausman-type test appro-

priate for the model of Bai (2009). The second one examines the existence of a factor

structure in Bai’s model as well as in the model of Kneip et al. (2012).

2.5.1.1 Testing the Sufficiency of Classical Additive Effects

For the case in which the estimated number of factors amounts to one or two (1 ≤ d̂ ≤ 2),

it is interesting to check whether or not these factors can be interpreted as classical

"individual", "time", or "twoways" effects. Bai (2009) considers the following testing

problem:

H0: vit = αi + θt

H1: vit =
∑2

l=1 λilflt

The model with factor structure, as described in Section 2.4, is consistent under both

hypotheses. However, it is less efficient under H0 than the classical within estimator,

while the latter is inconsistent under H1 if xit and vit are correlated. These conditions

are favorable for applying the Hausman test:

JBai = nT
(
β̂ − β̂within

)
∆−1

(
β̂ − β̂within

)
a∼ χ2

P , (2.54)
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where β̂within is the classical within least squares estimator, ∆ is the asymptotic variance

of
√
nT
(
β̂ − β̂within

)
, P is the vector-dimension of β, and χ2

P is the χ2-distribution with

P degrees of freedom.

The null hypothesis H0 can be rejected, if JBai > χ2
P,1−α, where χ2

P,1−α is the (1 − α)-

quantile of the χ2 distribution with P degrees of freedom.

Under i.i.d. errors, JBai can be calculated by replacing ∆ with its consistent estimator

∆̂ =

( 1

nT

n∑
i=1

Z>i Zi

)−1

−

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
>
it

)−1
 σ̂2, (2.55)

where

σ̂2 =
1

nT − (n+ T )d̂− P + 1

n∑
i=1

T∑
t=1

(yit − x>it β̂ −
d̂∑
l=1

λ̂ilf̂lt)
2. (2.56)

The used residual variance estimator σ̂2 is chosen here, since it is supposed to be con-

sistent under the null as well as the alternative hypothesis. The idea behind this trick is

to avoid negative definiteness of ∆̂. But notice that even with using this construction,

the possibility of getting a negative definite variance estimator cannot be excluded. As

an illustration, consider the case in which the true number of factors is greater than the

number of factors used under the alternative hypothesis, i.e., the true d > 2. In such

a case, the favorable conditions for applying the test can be violated, since the iterated

least squares estimator β̂ is computed with d̂ ≤ 2 and can be inconsistent under both

hypothesis. To avoid such a scenario, we recommended to the user to calculate β̂ with

a large dimension dmax instead of d̂ ≤ 2.

The test is implemented in the function checkSpecif(), which takes the following ar-

guments:

R> checkSpecif(obj1, obj2, level = 0.05)

The argument level is used to specify the significance level. The arguments obj1 and

obj2 take both objects of class Eup produced by the function Eup():

obj1 Takes an Eup-object from an estimation with "individual", "time", or "twoways"

effects and a factor dimension equal to d = 0; specified as factor.dim = 0.

obj2 Takes an Eup-object from an estimation with "none"-effects and a large factor

dimension dmax; specified with the argument factor.dim.
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If the test statistic is negative (due to the negative definiteness of ∆̂), the checkSpecif()

prints an error message.

R> twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 0, additive.effects = "twoways")

R> not.twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 2, additive.effects = "none")

R> checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj, level = 0.01)

Error in checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj,

level = 0.01):

The assumptions of the test are not fulfilled.

The (unobserved) true number of factors is probably greater than 2.

Notice that the Hausman test of Bai (2009) assumes the within estimator to be incon-

sistent under the alternative hypothesis, which requires xit to be correlated with vit. If

this assumption is violated, the test can suffer from power to reject the null hypothesis,

since the within estimator becomes consistent under both hypothesis.

Bai (2009) discusses in his supplementary material another way to check whether a

classical panel data with fixed additive effects is sufficient to describe the data. His

idea consists of estimating the factor dimension after eliminating the additive effects as

described in Section 2.5. If the obtained estimate of d is zero, the additive model can be

considered as a reasonable alternative for the model with factor structure. But note that

this procedure can not be considered as a formal testing procedure, since information

about the significance level of the decision are not provided.

An alternative test for the sufficiency of a classical additive effects model can be given

by manipulating the test proposed by Kneip et al. (2012) as described in the following

section.

2.5.1.2 Testing the Existence of Common Factors

This section is concerned with testing the existence of common factors. In contrast to

the Hausman type statistic discussed above, the goal of this test is not merely to decide

which model specification is more appropriate for the data, but rather to test in general

the existence of common factors beyond the possible presence of additional classical

"individual", "time", or "twoways" effects in the model.
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This test relies on using the dimensionality criterion proposed by Kneip et al. (2012) to

test the following hypothesis after eliminating eventual additive "individual", "time",

or "twoways" effects:

H0: d = 0

H1: d > 0

Under H0 the slope parameters β can be estimated by the classical within estimation

method. In this simple case, the dimensionality test of Kneip et al. (2012) can be reduced

to the following test statistic:

JKSS =
n tr(Σ̂w)− (n− 1)(T − 1)σ̂2

√
2n(T − 1)σ̂2

a∼ N(0, 1),

where Σ̂w is the covariance matrix of the within residuals. The reason for this simplifi-

cation is that under H0 there is no need for smoothing, which allows us to set κ = 0.

We reject H0: d = 0 at a significance level α, if JKSS > z1−α, where z1−α is the

(1 − α)-quantile of the standard normal distribution. It is important to note that the

performance of the test depends heavily on the accuracy of the variance estimator σ̂2.

We propose to use the variance estimators (2.15) or (2.56), which are consistent under

both hypotheses as long as d̂ is greater than the unknown dimension d. Internally, the

test procedure sets d̂ =d.max and σ2 as in (2.56).

This test can be performed for Eup- as well as for KSS-objects by using the function

checkSpecif() leaving the second argument obj2 unspecified. In the following, we

apply the test for both models:

For the model of Bai (2009):

R> Eup.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ additive.effects = "twoways")

R> checkSpecif(Eup.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

13.29 0.00 2.33 0.01
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For the model of Kneip et al. (2012):

R> KSS.obj <- KSS(l.Consumption ~ -1 + l.Price + l.Income,

+ additive.effects = "twoways")

R> checkSpecif(KSS.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

104229.55 0.00 2.33 0.01

The null hypothesis H0: d = 0 can be rejected for both models at a significance level

α = 0.01.

2.6 Interpretation

This section is intended to outline an exemplary interpretation of the panel model (2.53),

which is estimated by the function KSS() in Section 2.5. The interpretation of models

estimated by the function Eup() can be done accordingly. For convenience sake, we

rewrite the model (2.53) in the following:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit,

where vi(t) =

d∑
l=1

λil fl(t).

A researcher, who chooses the panel models proposed by Kneip et al. (2012) or Bai

(2009), will probably find them attractive due to their ability to control for very general

forms of unobserved heterogeneity. Beyond this, a further great advantage of these

models is that the time-varying individual effects vi(t) provide a valuable source of

information about the differences between the individuals i. These differences are often

of particular interest as, e.g., in the literature on stochastic frontier analysis.

The left panel of Figure 2.5 shows that the different states i have considerable different

time-constant levels α̂i of cigarette consumption. A classical further econometric analysis
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could be to regress the additive individual effects α̂i on other time-constant variables,

such as the general populations compositions, the cigarette taxes, etc.

The right panel of Figure 2.5 shows the five estimated common factors f̂1(t), . . . , f̂5(t).

It is a good practice to start the interpretation of the single common factors with an

overview about their importance in describing the differences between the vi(t)’s, which

is reflected in the variances of the individual loadings parameters λ̂il. A convenient

depiction is the quantity of variance-shares of the individual loadings parameters on the

total variance of the loadings parameters

coef(Cigar2.KSS)$Var.shares.of.loadings.param[l] = V(λ̂il)/

d̂∑
k=1

V(λ̂ik),

which is shown for all common functions f̂1(t), . . . , f̂5(t) in the following table:

Common Factor Command of the share of total variance of vi(t) Value

f̂1(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[1] 66.32%

f̂2(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[2] 24.28%

f̂3(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[3] 5.98%

f̂4(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[4] 1.92%

f̂5(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[5] 1.50%

Table 2.1: List of the variance shares of the estimated common factors

The values in Table 2.1 suggest to focus on the first two common factors, which explain

together about 90% of the total variance of the time-varying individual effects v̂i(t).

The first two common factors

coef(Cigar2.KSS)$Common.factors[,1] = f̂1(t) and

coef(Cigar2.KSS)$Common.factors[,2] = f̂2(t)

are plotted as black and red lines in the middle panel of Figure 2.5. Figure 2.6 visualizes

the differences of the time-varying individual effects vi(t) in the direction of the first

common factor (i.e., λ̂i1f̂1(t)) and in the direction of the second common factor (i.e.,

λ̂i2f̂2(t)). As for the time-constant individual effects α̂i a further econometric analysis

could be to regress the individual loadings parameters λ̂i1 and λ̂i2 on other explanatory

time-constant variables.

Generally, for both models proposed by Kneip et al. (2012) and Bai (2009) the time-

vaying individual effects

νit =
d∑
l=1

λilflt
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Figure 2.6: Left Panel: Visualization of the differences of the time-varying in-
dividual effects vi(t) in the direction of the first factor f̂1(t) (i.e., λ̂i1f̂1(t)). Right
Panel: Visualization of the differences of the time-varying individual effects vi(t) in

the direction of the second factor f̂2(t) (i.e., λ̂i2f̂2(t)).

can be interpreted as it is usually done in the literature on factor models. An important

topic that is not covered in this section is the rotation of the common factors. Often,

the common factors fl can be interpreted economically only after the application of an

appropriate rotation scheme for the set of factors f̂1, . . . , f̂d̂. The latter can be done, e.g.,

using the function varimax() from the stats package. Sometimes, it is also preferable

to standardize the individual loadings parameters instead of the common factors as it

is done, e.g., in Ahn et al. (2001). This can be done by choosing restrict.mode =

c("restrict.loadings") in the functions KSS() and Eup() respectively.

2.7 Summary

This chapter introduces the R package phtt for the new class of panel models proposed

by Bai (2009) and Kneip et al. (2012). The two main functions of the package are

the Eup()-function for the estimation procedure proposed in Bai (2009) and the KSS()-

function for the estimation procedure proposed in Kneip et al. (2012). Both of the

main functions are supported by the usual print()-, summary()-, plot()-, coef()-

and residuals()-methods. While parts of the method of Bai (2009) are available for
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commercially available software packages, the estimation procedure proposed by Kneip

et al. (2012) is not available elsewhere. A further remarkable feature of our phtt package

is the OptDim()-function, which provides an ease access to many different dimensional-

ity criteria proposed in the literature on factor models. The usage of the functions is

demonstrated by a real data application.



Chapter 3

Panel Models with Multiple

Jumps in the Parameters

3.1 Introduction

Panel datasets with large cross-sectional dimensions and large periods of time observa-

tions are becoming more and more available due to the impressive progress of information

technology. This has been succeeded, in the econometric literature, by the development

of new methods and techniques for analyzing large panels. There is, however, an impor-

tant issue, that is scarcely discussed in most of the existing work –the risk of neglecting

structural breaks in the data generating process, especially when the observation pe-

riod is large. In the field of empirical macroeconomics, this problem is most famously

considered by Lucas (1976), who points out the risk of predicting naively the effects

of economic policy changes based on historical data, since the emergence of important

economic events and shocks may induce changes in the model parameters during the

time. Of course, the larger the observation period, the more likely the occurrence of

such shocks. While a vast literature on change point analysis exists for univariate time

series, little research has been done on panel data models.

In this chapter, we propose a novel method for estimating panel models with multiple

structural changes that occur at unknown points in time and may affect each slope

parameter individually. We consider, for i ∈ {1, . . . , n}, t ∈ {1, . . . , T}, models of the

form

Yit =
P∑
p=1

Sp+1∑
j=1

Xit,pI
(
τj−1 < t ≤ τj

)
βτj ,p + αi + θt + εit, (3.1)

where I(.) is the indicator function, the set of jump points {τ0,p, τ1,p, . . . , τSp+1,p|τ0,p =

1 < τ1,p < . . . < τSp+1,p = T} ⊆ {1, . . . , T} and Sp are unknown, Yit is the dependent

75
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variable for individual i at time t, Xit,p is the pth explaining variable, αi is an individual

specific effect, θt is a common time parameter, and εit is an unobserved idiosyncratic

term that may be correlated with one or more explaining variables.

In single time series, the available information is often not sufficient to uncover the true

dates of the structural breaks. Only the time fractions of the break locations can be

consistently estimated and tested; see, e.g., Bai (1997), Bai and Perron (1998, 2003),

Inoue and Rossi (2011), Pesaran et al. (2011), Aı̈t-Sahalia and Jacod (2009), and Carr

and Wu (2003). In panel data models, such a limitation can be alleviated since the

cross-section dimension provides an important source of additional information. Besides

the virtue of getting improved statistical efficiency, the determination of the change

point locations can be, in many applications, of particular interest. Indeed, estimating

the number and locations of the structural breaks from the data alleviates concerns

about ad-hoc subsample selection, enables interpretation of historical events that are not

explicitly considered in the model, and avoids statistical under- or over-parametrization

related issues.

One of the earliest contributions in testing the structural breaks in panel data literature

is the work of Han and Park (1989). The authors propose a multivariate version of the

consum-test, which can be seen as a direct extension of the univariate time series test

proposed by Brown et al. (1975). Qu and Perron (2007) extend the work of Bai and

Perron (2003) and consider the problem of estimating, computing, and testing multiple

structural changes that occur at unknown dates in linear multivariate regression models.

They propose a quasi-maximum likelihood method and a likelihood ratio-type statistics

based on Gaussian errors. The method requires, however, the number of equations to be

fixed and does not consider the case of large panel models with unobserved effects and

possible endogenous regressors. Based on the work of Andrews (1993), De Wachter and

Tzavalis (2012) propose a break testing procedure for dynamic panel data models with

exogenous or pre-determined regressors when n is large and T is fixed. The method can

be used to test for the presence of a structural break in the slope parameters and/or

in the unobserved fixed effects. But their assumptions allow only for the presence of

a single break. Bai (2010) proposes a framework to estimate the break in means and

variance. Bai (2010) also considers the case of one break and establishes consistency

for both large and fixed T . Kim (2014) extends the work of Bai (2010) to allow for the

presence of unobserved common factors in the model. Pauwels et al. (2012) analyze the

cases of a known and an unknown break date and propose a Chow-type test allowing for

the break to affect some, but not all, cross-section units. Although the method concerns

the one-break case, it requires intensive computation to select the most likely individual

breaks from all possible sub-intervals when the break date is unknown.
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To the best of the authors’ knowledge, ours is the first work to deal with the problem

of multiple jump discontinuities in the parameters of panel models without imposing

restrictive assumptions on the number, the location, and/ or the aspect of the breaks.

The method can be applied to panel data with large time span T and large cross-

section dimension n and allows for T to be very long compared to n. We also consider

the classic case of panel data, in which T is fixed and only n is large. Our model

generalizes the special model specifications in which the slope parameters are either

constant over time, so that Sp = 0, or extremely time heterogeneous so that, for all

p, τ0,p = 1, τ1,p = 2, . . . , τSp+1,p = T when T is fixed. Our theory considers breaks

in a two-way panel data model, in which the unobserved heterogeneity is composed of

additive individual effects and time specific effects. We show that our method can also

be extended to cover the case of panel models with unobserved heterogeneous common

factors as proposed by Ahn et al. (2001), Pesaran (2006), Bai (2009), Kneip et al. (2012),

and Bada and Kneip (2014). Our estimation procedure is related to the Haar wavelet

technique, which we transform and adapt to the structure of the observed variables in

order to detect the location of the break points consistently. We propose a general setup

allowing for endogenous models such as dynamic panel models and/or structural models

with simultaneous panel equations. Consistency under weak forms of dependency and

heteroscedasticity in the idiosyncratic errors is established and the convergence rate

of our slope estimator is derived. To detect consistently the jump locations and test

for the statistical significance of the breaks, we propose post-wavelet procedures. Our

simulations show that, in many configurations of the data, our method performs very well

even when the idiosyncratic errors are affected by weak forms of serial-autocorrelation

and/or heteroskedasticity.

Our empirical vehicle for highlighting this new methodology addresses the stability of the

relationship between Algorithmic Trading (AT) and Market Quality (MQ). We propose

to automatically detect jumps in regression slope parameters to examine the effect of

algorithmic trading on market quality in different market situations. We find evidence

that the relationship between AT and MQ was disrupted between 2007 and 2008. This

period coincides with the beginning of the subprime crisis in the US market and the

bankruptcy of the big financial services firm Lehman Brothers.

The remainder of the chapter is organized as follows. Section 3.2 explains the basic

idea of our estimation procedure by using a relatively straightforward centered univari-

ate panel model. In Section 3.3, we consider panel models with unobserved effects and

multiple jumping slope parameters, present our model assumptions, and derive the main

asymptotic results. Section 3.4 proposes a post-wavelet procedure to estimate the jump

locations, derives the asymptotic distribution of the final estimator, and describes se-

lective testing procedures. In Section 3.5, we discuss models with an issue of omitted
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common factors and endogenous models arising from structural simultaneous equation

systems. Section 3.6 presents the simulation results of our Monte Carlo experiments.

Section 3.7 is concerned with the empirical application. The conclusion follows in Section

3.8. The mathematical proofs are collected in Appendix B.

3.2 Preliminaries

A Simple Panel Model with one Jumping Parameter

To simplify the exposition, we begin with a relatively straightforward version of (3.1).

We consider a centered univariate panel data model of the form

Yit = Xitβt + eit for i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, (3.2)

where Xit is an univariate regressor, βt is a scalar, and E(eit) = 0.

We allow for the slope parameter βt to change at unknown time points, say τ1, . . . , τS ,

such that

βt =



βτ1 for t ∈ {1, . . . , τ1},
βτ2 for t ∈ {τ1 + 1, . . . , τ2},
...

βτS for t ∈ {τS−1 + 1, . . . , τS}, and

βτS+1 for t ∈ {τS + 1, . . . , T}.

(3.3)

Some Fundamental Concepts of Wavelet Transform

The idea behind our approach consists basically of using the Haar wavelet expansion of

βt to control for its piecewise changing character. Before continuing with the estimation

method, we introduce some important concepts and notations that are necessary for our

analysis.

We assume that the intertemporal sample size T is dyadic, i.e., T = 2L−1 for some

positive integer L ≥ 2. This is because wavelet functions are constructed via dyadic

dilations of order 2l, for l ∈ {1, . . . , L}. The case of a non-dyadic time dimension will be

discussed later. Technically, the discrete wavelet transformation is much like the Fourier

transformation, except that the wavelet expansion is constructed with a two parameter

system: a dilation level l ∈ {1, . . . , L} and a translation index k ≤ 2l−2.

Let {ϕl0,k, k = 1, . . . ,Kl0}, and {ψl,k, l = l0 + 1, . . . , L; k = 1, . . . , 2l−2}, respectively,

represent collections of discrete scaling and wavelet functions defined on the discrete
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interval {1, . . . , 2L−1} such that

ψl,k(t) = aψl Il,2k−1(t)− aψl Il,2k(t) and (3.4)

ϕl0,k(t) = aϕl0Il+1,2k−1(t) + aϕl0Il+1,2k(t), (3.5)

where aϕl0 =
√

2l0−1, aψl =
√

2l−2, and Il,m(t) is the indicator function that carries the

value one if t ∈ {2L−l(m− 1) + 1, . . . , 2L−lm} and zero otherwise.

The multiscale discrete Haar wavelet expansion of βt can be presented as follows:

βt =

Kl0∑
k=1

ϕl0,k(t)dl0,k +
L∑

l=l0+1

Kl∑
k=1

ψl,k(t)cl,k, for t ∈ {1, . . . , T}, (3.6)

where Kl = 2l−2, for l > 1, and K1 = 1. The coefficients dl,k and cl,k are called scaling

and wavelet coefficients, respectively. Because ϕl0,k(t) and ψl,k(t) are orthonormal, dl,k

and cl,k are unique and can be interpreted as the projection of βt on their corresponding

bases, i.e., dl0,k = 1
2L−1

∑2L−1

t=1 ϕl0,k(t)βt and cl,k = 1
2L−1

∑2L−1

t=1 ψl,k(t)βt.

Although the Haar wavelet basis functions are the simplest basis within the family of

wavelet transforms, they exhibit an interesting property allowing for analyzing functions

with piecewise sudden changes.

Orthonormalization and Estimation

Note that the collection of functions, in (3.6), is not unique. Here, we set l0 = 1, to

fix the primary scale to be the coarsest possible with only one parameter that reflects

the general mean of βt. In addition, we propose a slightly modified version of wavelet

expansion to adapt the orthonormalization conditions to the requirements of our panel

data method.

We consider the following expansion:

βt =

L∑
l=1

Kl∑
k=1

wl,k(t)bl,k for t ∈ {1, . . . , T}, (3.7)

where

wl,k(t) =

{
a1,1 = a2,1h2,1(t) + a2,2h2,2(t) if l = 1, and

al,2k−1hl,2k−1(t)− al,2khl,2k(t) if l > 1,
(3.8)

for some positive standardizing scales al,2k−1 and al,2k that, unlike the conventional

wavelets, do not only depend on the dilation level l but also on the translation index

k. Their exact form will be discussed in detail below. We define the function hl,m(t) as
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follows:

hl,m(t) =
√

2l−2Il,m(t). (3.9)

The most appealing feature of expansion (3.7) (and (3.6) with l0 = 1) is that the set of

the wavelet coefficients {bl,k} contains at most (S + 1)L non-zero-wavelet coefficients.

This important property results from the fact that each jump in βt can be sensed at each

dilation level by at most one translation function. Proposition 3.1 states the existence

of (3.7) for any arbitrary positive real scales al,2k and al,2k−1.

Proposition 3.1. Suppose T = 2L−1, for some integer L ≥ 2, and β = (β1, . . . ,

βT )
′ ∈ RT a vector that possesses exactly S ≥ 1 jumps at {τ1, . . . , τS |τ1 < . . . < τS} ⊆

{1, . . . , T} as in (3.3). Let a1,1, al,2k−1 and al,2k be arbitrary positive real values for all

l ∈ {1, . . . , L}, and k ∈ {1, . . . ,Kl}. Thus, Expansion (3.7) exists and the set of the

wavelet coefficients {blk|l = 1, . . . , L; k = 1, . . . ,Kl} contains at most (S + 1)L non-zero

coefficients.

Using (3.7), we can rewrite Model (3.2) as

Yit =
L∑
l=1

Kl∑
k=1

Xl,k,itbl,k + eit, (3.10)

where

Xl,k,it = Xitwl,k(t).

In vector notation,

Yit = X ′itb+ eit, (3.11)

where Xit = (X1,1,it, . . . ,XL,KL,it)
′

and b = (b1,1, . . . , bL,KL)
′
.

Throughout, we assume the existence of an instrument Zit that is correlated with Xit

and fulfills E(Ziteit) = 0 for all i and t. The idea behind this assumption is to provide

a general treatment that allows for estimating models with endogenous regressors such

as dynamic models or structural models with simultaneous equations. Let Zl,k,it =

Zitwl,k(t) and Zit = (Z1,1,it, . . . ,ZL,KL,it)
′
. Because E(Ziteit) = 0 for all i and t, we can

infer that E(Zl,k,iteit) = 0, for all l and k. The required theoretical moment condition

for estimating b is

E
(
Zit(Yit −X

′
itb)
)

= 0. (3.12)
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The IV estimator of b (hereafter, denoted by b̃) is obtained by solving the empirical

counterpart of (3.12), i.e.,

1

nT

n∑
i=1

T∑
t=1

(
Zit(Yit −X

′
itb̃)
)

= 0. (3.13)

Remark 3.2. We know from the Generalized Method of Moments (GMM) that the IV

estimator is equivalent to the just-identified GMM estimator, in which the number of

instruments is equal to the number of parameters to be estimated. Our estimator of b

can be, hence, seen as a GMM estimator:

b̃ = arg min
b

1

nT

n∑
i=1

T∑
t=1

(Yit −X
′
itb)Z

′
itWTZit(Yit −X

′
itb), (3.14)

where WT is an arbitrary symmetric (T × T ) full rank matrix. Since there is no matter

how to choose WT in the just-identified case, we can use the identity matrix to solve

(3.14).

Under general assumptions, we can state the consistency of b̃ for any arbitrary collection

of wavelet functions. But the problem with naively using the conventional basis functions

is that the identification of the zero- and non-zero coefficients will be complicated. Not

only will the presence of the error term in (3.10) affect the estimates of bl,k but also the

non-orthogonality of Zl′ ,k′ ,it to Xl,k,it across different dilation and translation levels in

the objective function (the IV moment condition) will move the problem from a classical

wavelets shrinkage scheme to a complex model selection problem.

Our idea consists of adjusting the scales a1,1, al,2k−1 and al,2k in (3.8) to the structure

of Xit and Zit so that following normalization conditions are satisfied.

(a): 1
nT

∑n
i=1

∑T
t=1Zl,k,itXl′ ,k′ ,it = 1 if (l, k) = (l

′
, k
′
) and

(b): 1
nT

∑n
i=1

∑T
t=1Zl,k,itXl′ ,k′ ,it = 0 for all (l, k) 6= (l

′
, k
′
).

Proposition B.2, in Appendix B.1, gives the mathematical conditions for a1,1, al,2k−1 and

al,2k to ensure (a) and (b). The solution is

a1,1 = Q
− 1

2
1,1 ,

al,2k−1 = Q−1
l,2k−1

(
Q−1
l,2k−1 +Q−1

l,2k

)− 1
2 , and

al,2k = Q−1
l,2k

(
Q−1
l,2k−1 +Q−1

l,2k

)− 1
2 ,

whereQ1,1 = 1
nT

∑n
i=1

∑T
t=1XitZit, Ql,2k−1 = 1

nT

∑n
i=1

∑T
t=1XitZith

2
l,2k−1(t), andQl,2k =

1
nT

∑n
i=1

∑T
t=1XitZith

2
l,2k(t).
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Solving (3.13) (or (3.14)) with respect to bl,k under Restrictions (a) and (b), we obtain

b̃l,k =
1

nT

n∑
i=1

T∑
t=1

Zl,k,itYit. (3.15)

Making use of orthonormality, we can directly perform the universal thresholding scheme

of Donoho and Johnstone (1994). Our structure adapted wavelet estimator of βt (here-

after, the SAW estimator) can be obtained by

β̃t =
L∑
l=1

Kl∑
k=1

wl,k(t)b̂l,k, (3.16)

where

b̂l,k =

{
b̃l,k if |b̃l,k| > λn,T and

0 else,
(3.17)

for some threshold λn,T that depends on n and T . Theorems 3.5, 3.7 give the necessary

conditions for λn,T to ensure consistency under Assumptions A-C presented in Section

3.3.

Remark 3.3. If the explaining variable Xit is exogenous, we can choose Zit = Xit to

instrument all elements in Xl,k,it with themselves. In this case, our shrinkage estimator

b̂l,k can be interpreted as a Lasso estimator with the advantage of perfect orthogonal

regressors; see, e.g., Tibshirani (1996). More generally, if Xit is allowed to be endogenous

and Zl,k,it 6= Xl,k,it, b̂l,k can be obtained by minimizing a Lasso-penalized just-identified

GMM objective function. That is,

b̂ = arg min
b

1

nT

n∑
i=1

T∑
t=1

(Yit −X
′
itb)Z

′
itWTZit(Yit −X

′
itb) + λn,T |b|, (3.18)

where |b| =
∑L

l=1

∑Kl
k=1 |bl,k| andWT is an arbitrary symmetric (T ×T ) full rank matrix.

Note that (3.18) and (3.17) lead to the same result independently of the choice of WT .

First step SAW estimation for a straightforward centered panel model is done. Gener-

alization for multivariate models with unobserved heterogeneity effects and post-SAW

procedures follow.
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3.3 Two-way Panel Models with Multiple Jumps

Model

One of the main advantages of using panel datasets is the possibility of dealing with

problems related to the potential effect of unobserved heterogeneity in time- and cross-

section dimensions. In this section, we generalize the SAW method to models with

unobserved individual and time effects and allow for multiple jumping parameters. Col-

lecting the slope parameters in a (P × 1) time-varying vector, we can write Model (3.1)

as

Yit = µ+X
′
itβt + αi + θt + eit, (3.19)

where Xit = (X1,it, . . . , XP,it)
′

is a (P × 1) vector of regressors, βt = (βt,1 . . . , βt,P )
′

is

a (P × 1) vector of slope parameters, αi is a time-constant individual effect and θt is a

common time-varying effect. We allow for each βt,p, p ∈ {1, . . . , P}, to jump at unknown

Sp break points, say τ1,p, . . . , τSp,p, such that

βt,p =


βτ1,p for t ∈ {1, 2, . . . , τ1,p},
βτ2,p for t ∈ {τ1,p + 1, . . . , τ2,p},
...

βτSp+1,p for t ∈ {τSp,p + 1, . . . , T}.

(3.20)

The estimation procedure for this model is conceptually similar to the univariate method

discussed in Section 3.2. However, besides the need to deal with multivariate wavelets,

we have to control for the additional unknown parameters µ, αi, and θt.

From the literature on panel models, we know that uniqueness of µ, αi, and θt requires

the following identification conditions:

C.1:
∑n

i=1 αi = 0, and

C.2:
∑T

t=1 θt = 0.
(3.21)

3.3.1 Estimation

In order to cover the case of dynamic models with both small and large T , we conven-

tionally start with differencing the model to eliminate the individual effects and assume

the existence of appropriate instruments.

By taking the difference on the left and the right hand side of (3.19), we get

(Yit − Yit−1) = X
′
itβt −X

′
it−1βt−1 + (θt − θt−1) + (eit − eit−1), (3.22)
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for i ∈ {1, . . . , n} and t ∈ {2, . . . , T}.

Because n is usually supposed to be large, ∆θt = θt − θt−1, can be eliminated by

using the classical within transformation on the model, i.e., ∆Ẏit = ∆Yit− 1
n

∑n
i=1 ∆Yit.

Alternatively, we can associate ∆θt with an additional unit regressor in the model and

estimate it jointly with βt as a potential jumping parameter. Indeed, allowing for ∆θt

to be piecewise constant over time can be very useful for interpretation, especially when

the original time effect θt has approximately a piecewise changing linear trend.

Let Xit = (X
′
it,−X

′
it−1, 1)

′
and γt = (β

′
t, β

′
t−1,∆θt)

′
be (P × 1) extended vectors, where

P = 2P + 1. We can rewrite Model (3.22) as

∆Yit = (X
′
it,−X

′
it−1, 1)


βt

βt−1

∆θt

+ ∆eit,

= X
′
itγt + ∆eit,

(3.23)

for i ∈ {1, . . . , n} and t ∈ {2, . . . , T}.

By using multivariate structure adapted wavelet functions, we can estimate γt in a way

similar to the way discussed in Section 3.2.

The multivariate structure adapted wavelet expansion of γt can be presented as follows:

γt =
L∑
l=1

Kl∑
k=1

Wlk(t)bl,k for t ∈ {2, . . . , T}, (3.24)

where blk = (bl,k,1, . . . , bl,k,P )
′

is a (P × 1) vector of wavelet coefficients and Wlk(t) is a

(P × P ) multivariate wavelet basis matrix defined as

Wl,k(t) =

{
A1,1 = A2,1H2,1(t) +A2,2H2,2(t) if l = 1, and

Al,2k−1Hl,2k−1(t)−Al,2kHl,2k(t) if l > 1,
(3.25)

with

Hl,m(t) =
√

2l−2Il,m(t− 1),

and A1,1, Al,2k−1, and Al,2k are constructed so that the following orthonormality condi-

tions are fulfilled:

(A): 1
n(T−1)

∑n
i=1

∑T
t=2Z l,k,itX

′

l′ ,k′ ,it
= IP×P if (l, k) = (l

′
, k
′
) and

(B): 1
n(T−1)

∑n
i=1

∑T
t=2Z l,k,itX

′

l′ ,k′ ,it
= 0P×P for all (l, k) 6= (l

′
, k
′
).
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Here, X ′l,k,it = X
′
itWlk(t), IP×P is the (P ×P ) identity matrix, 0P×P is a (P ×P ) matrix

of zeros, and Z ′l,k,it = Z
′
itWl,k(t), where Zit is a (P × 1) vector used to instrument the

P variables in Xit; the unit regressor associated with ∆θt and the remaining exogenous

regressors (if they exist) can be, of course, instrumented by themselves.

We can easily verify that

A1,1 = Q
− 1

2
1,1 ,

Al,2k−1 = Q−1
l,2k−1

(
Q−1
l,2k−1

+Q−1
l,2k

)− 1
2 , and

Al,2k = Q−1
l,2k

(
Q−1
l,2k−1

+Q−1
l,2k

)− 1
2 ,

with

Q
1,1

=
1

n(T − 1)

n∑
i=1

T∑
t=2

ZitX
′
it,

Q
l,2k−1

=
1

n(T − 1)

n∑
i=1

T∑
t=2

ZitX
′
ithl,2k−1(t)2, and

Q
l,2k

=
1

n(T − 1)

n∑
i=1

T∑
t=2

ZitX
′
ithl,2k(t)

2.

ensure conditions (A) and (B).

The IV estimator of bl,k is the solution of the empirical moment condition

1

n(T − 1)

n∑
i=1

T∑
t=2

L∑
l=1

Kl∑
k=1

(
Z l,k,it(∆Yit −X

′
l,kitb̃l,k)

)
= 0. (3.26)

Solving (3.26) for b̃l,k under the the normalization Conditions (A) and (B), we obtain

b̃l,k,p =
1

n(T − 1)

n∑
i=1

T∑
t=2

Zl,k,it,p∆Yit,

where b̃l,k,p and Zl,k,it,p are the pth elements of b̃l,k and Z l,k,it, respectively.

The SAW estimator of βt,p can be obtained by

γ̂t,p =
L∑
l=1

Kl∑
k=1

P∑
q=1

Wlk,p,q(t)b̂l,k,q, (3.27)

or

γ̂t+1,p+P =
L∑
l=1

Kl∑
k=1

P∑
q=1

Wlk,p+P,q(t+ 1)b̂l,k,q, (3.28)
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where Wlk,p,q is the (p, q)- element of the basis matrix Wlk(t), and

b̂l,k,q =

{
b̃l,k,q if |b̃l,k,q| > λn,T and

0 else.
(3.29)

3.3.2 Assumptions and Main Asymptotic Results

We present a set of assumptions that are necessary for our asymptotic analysis. Through-

out, we use Ec(.) to define the conditional expectation given {Xit}i,t∈N∗2 and {Zit}i,t∈N∗2 ,

where N∗ = N\{0}. We denote by M a finite positive constant, not dependent on n and

T . The operators
p−→ and

d−→ denote the convergence in probability and distribution.

Op(.) and op(.) are the usual Landau-symbols. The Frobenius norm of a (p× k) matrix

A is denoted by ||A|| = [tr(A
′
A)]1/2, where A

′
denotes the transpose of A. ∆ denotes

the difference operator of first order.

Our theoretical setup relies on the following assumptions.

Assumption A - Data Dimension and Stability Intervals:

(i) T − 1 = 2L−1 for some natural number L > 1; the number of regressors P is fixed.

(ii) n → ∞; T is either fixed or passes to infinity simultaneously with n such that

log(T )/n→ 0.

(iii) minj,p |βτj,p − βτj−1,p | does not vanish when n and T pass to infinity; all stability

intervals (τj,p − τj−1,p)→∞ uniformly in n, as T →∞.

Assumption B - Regressors and Instruments:

(i) for all i and t, Ec(Ziteit) = 0; for all l ∈ {1, . . . , L} and k ∈ {1, . . . ,Kl},

Q
l,k

=
1

n · ]{s|hl,k(s) 6= 0}
∑

t∈{s|hl,k(s) 6=0}

n∑
i=1

ZitX
′
it

p−→ Q◦
l,k
,

where Q◦
l,k

is a (P × P ) full rank finite matrix with distinct eigenvectors.

(ii) The moments E||Zit||4 and E||Xit||4 are bounded uniformly in i and t; for Al,2k =

Q−1
l,2k

(Q−1
l,2k

+Q−1
l,2k−1

)−1/2 and Al,2k−1 = Q−1
l,2k−1

(Q−1
l,2k

+Q−1
l,2k−1

)−1/2, the moments

E||Al,2k||4 and E||Al,2k−1||4 are bounded uniformly in l and k.
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(iii) the multivariate distribution of {∆eit}i∈N∗,t∈N∗\{1} is Sub-Gaussian so that every

linear combination

ΠnT (as,s′ ) =

s
′∑

t=s+1

n∑
i=1

as,s′ ,it√
n(s′ − s)

∆eit,

with E(as,s′ ,it∆eit) = 0 and E
(
Π2
nT (as,s′ )

)
≤ M , is Sub-Gaussian distributed of

order ΣnT (as,s′ ) = E
(
Π2
nT (as,s′ )

)
, i.e.,

P
(
Σ
− 1

2
nT (as,s′ )|ΠnT (as,s′ )| ≥ c

)
≤ 1

c
exp(−c

2

2
),

for any c > 0.

Assumption C - Weak Dependencies and Heteroskedasticity in the Error

Term: Ec(∆eit∆ejm) = σij,tm, |σij,tm| ≤ σ̄ for all (i, j, t,m) such that

1

n(s′ − s+ 1)

n∑
i=1

n∑
j=1

s
′∑

t=s+1

s
′∑

m=s+1

|σij,tm| ≤M.

Assumption A.(i) specifies a dyadic condition on the intertemporal data size T . This

is a technical assumption that is only required for constructing the dyadic wavelet ba-

sis functions. In practice, we can replicate the data by reflecting the observations at

the boundaries to get the desired dimension. If, for instance, T − 1 = 125, we can ex-

tend the sample (Yi1, Xi1), . . . , (YiT , XiT ) with the three last observations (YiT−1, XiT−1),

(YiT−2, XiT−2), and (YiT−3, XiT−3) for T +1, T +2, and T +3, respectively. The asymp-

totic property of the estimator, will depend, of course, on the original data size and not

on the size of the replicated data. Assumption A.(ii) allows for the time dimension T to

be very long compared to n but in such a way that log(T ) = o(n). A.(ii) considers also

the classical case of panel data, in which T is fixed and only n→∞. Assumption A.(iii)

guarantees that the jumps do not vanish as n and/or T pass to infinity. The second part

of Assumption A.(iii) can be alleviated to allow for some stability intervals to stay fixed

if T →∞. Assuming the stability intervals to pass to infinity when T gets large allows

for interpreting the T -asymptotic as a full-in asymptotic.

Assumption B.(i) requires that the probability limit of Q
l,k

is a full rank finite matrix

with distinct eigenvectors. This is to ensure that its eigendecompostion exists. Assump-

tion B.(ii) specifies commonly used moment conditions to allow for some limiting terms
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to be Op(1) when using Chebyshev inequality. The Sub-Gaussian condition in Assump-

tion B.(iii) excludes heavy tailed distributed errors but does not impose any specific

exact distribution.

Assumption C allows for a weak form of time series and cross section dependence in

the errors as well as heteroskedasticities in both time and cross-section dimension. It

implies that the covariances and variances are uniformly bounded and the double sum-

mations over all possible time partitions are well behaved. The assumption generalizes

the restricted case of independent and identically distributed errors.

The following Lemma establishes the main asymptotic results for the structure adapted

wavelet coefficients.

Lemma 3.4. Suppose Assumptions A-C hold, then

(i)

sup
l,k,q

∣∣∣b̃l,k,q − bl,k,q∣∣∣ = Op
(√

log(T − 1)/n(T − 1)
)
,

(ii) for some finite M >
√

2,

sup
l,k,q

∣∣∣b̃l,k,q − bl,k,q∣∣∣ ≤M√log((T − 1)P )/n(T − 1)

holds with a probability that converges to 1 independently of n, as T →∞.

Theorem 3.5 establishes the uniform and the mean square consistency of γ̃t,p.

Theorem 3.5. Assume Assumptions A-C, then the following statements hold:

(i) supt |γ̂t,p − γt,p| = op(1) for all p ∈ {1, . . . , P}, if
√
T − 1λn,T → 0, as n, T → ∞

or n→∞ and T is fixed, and

(ii) 1
T−1

∑T
t=2 ||γ̂t − γt||2 = Op

(
J∗

(T−1)(log(T − 1)/n)κ
)
, where J∗ = min{(

∑P
p=1 Sp +

1) log(T − 1), (T − 1)} , if
√
T − 1λn,T ∼ (log(T − 1)/n)κ/2, for any κ ∈]0, 1[.

Uniform consistency is obtained when n → ∞ and T is fixed or n, T → ∞ with

log(T )/n→ 0. If the maximum number of jumps is fixed, the mean square consistency

is obtained even when n is fixed and only T →∞.

A threshold that satisfies Conditions (i) and (ii) in theorem 3.5, can be constructed as

follows:

λnT = V̂
1
2
nT

(
2 log((T − 1)P )

n(T − 1)1/κ

)κ/2
, for some κ ∈]0, 1[, (3.30)
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where V̂nT is the empirical variance estimator corresponding to the largest variance of
1√
nT

∑n
i=1

∑T
t=1Zit,l,k,p∆eit over l, k, and p. Such an estimator can be obtained by

using the residuals ẽit of a pre-intermediate SAW regression performed with a plug-in

threshold λ∗nT = 0. We want to emphasize that asymptotically all we need is that V̂nT be

strictly positive and bounded. The role of V̂
1
2
nT is only to give the threshold a convenient

amplitude. The role of κ < 1 is to trade off the under-estimation effect that can arise

from the plug-in threshold λ∗n,T = 0. An ad-hoc choice of κ is 1− log log(nT )/ log(nT ).

For more accurate choices, we refer to the calibration strategies proposed by Hallin and

Lǐska (2007) and Alessi et al. (2010).

3.4 Post-SAW Procedures

3.4.1 Tree-Structured Representation

The intrinsic problem of wavelets is that wavelet functions are constructed via dyadic

dilations. Error may make this feature spuriously generate some additional mini jumps to

stimulate the big (true) jump when it is located at a non-dyadic position. To construct

a selective inference for testing the systematic jumps it is important to encode the

coefficients that may generate such effects. One possible approach is to examine the so-

called tree-structured representation, which is based on the hierarchical interpretation

of the wavelet coefficients. Recall that the wavelet basis functions are nested over a

binary multiscale structure so that the support of an (l, k)- basis (the time interval in

which the basis function is not zero) contains the supports of the basis (l + 1, 2k − 1)

and (l+ 1, 2k). We say that the wavelet coefficient bl,k is the parent of the two children

bl+1,2k−1 and bl+1,2k. This induces a dyadic tree structure rooted to the primary parent

b1,1. To encode the possible systematic jumps, we have to traverse the tree up to the

root parent in a recursive trajectory starting from the non-zero coefficients at the finest

resolution (highest dilation level). While the presence of a non-zero coefficient, at the

highest level, indicates the presence of a jump, the parent may have a non-zero coefficient

only to indicate that the stability interval around this jump is larger than its support.

As an illustration, consider the tree-structured representation in Figure 3.1. The coeffi-

cients at the not-ringed nodes fall in the interval [−λn,T , λn,T ] and carry the value zero.

Starting from the non-zero coefficient b̃5,6 at the finest resolution and traversing the tree

up to the root parent, we can identify b̃4,3, b̃3,2, and b̃2,1 as candidates for generating po-

tential visual artifacts at points 8, 10, and 12 if a jump exists only at 11. These selected

jump points can be tested by using, e.g., the equality test of Chow (1960).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 T

෨ܾଵ,ଵ

෨ܾଷ,ଶ

෨ܾଶ,ଵ

෨ܾସ,ଷ

෨ܾହ,଺

෨ܾଷ,ଵ

෨ܾସ,ଶ෨ܾସ,ଵ ෨ܾସ,ସ

෨ܾହ,଼
෨ܾହ,ଵ

Figure 3.1: An illustrating example of a tree-structured representation for the wavelet
coefficients.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 T

෨ܾଶ,ଵ ෨ܾ
ଶ,ଵ
ሺ௦ሻ

෨ܾସ,ଷ

෨ܾଷ,ଶ

෨ܾହ,଺

non-shifted wavelet estimates
shifted wavelet estimates

෨ܾ
ଷ,ଶ
ሺ௦ሻ

෨ܾ
ସ,ଷ
ሺ௦ሻ

Figure 3.2: An illustrating example of a tree-structured representation for the shifted
and non-shifted coefficients.

If we have an additional observation, we can construct a shifted wavelet expansion

on a second (shifted) dyadic interval. The tree-structured representation of the new

coefficients can provide important information about the significance of the potential

jumps detected in the first tree. Continuing with the same example of Figure 3.1, we

can see that the tree-structured representations of the shifted and non-shifted coefficients

presented in Figure 3.2 support the hypothesis of only one jump at 11.

In the multivariate case, the interpretation of the tree-structured representation can
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be complicated since the nodes represent vectors that contain simultaneous information

about multiple regressors. In order to construct an individual tree for each parameter, we

can re-transform each element of the (P × 1) vector γt with the conventional univariate

wavelet basis functions defined in (3.4). Recall that, in our differenced model, γt,p = βt,p

and γt,p+P = βt−1,p. This allows us to obtain for each slope parameter, βp, two sets of

univariate wavelet coefficients:

c
(s)
l,k,p =

1

T − 1

T∑
t=2

ψl,k(t− 1)γt,p, (3.31)

and

c
(u)
l,k,p =

1

T − 1

T−1∑
t=1

ψl,k(t)γt+1,p+P . (3.32)

We use the superscripts (s) and (u) in (3.31) and (3.32) to denote the shifted and non-

shifted coefficients, respectively.

Replacing γt,p with γ̃t,p =
∑L

l=1

∑Kl
k=1

∑P
q=1Wlk,p,q(t)b̃l,k,q and γt+1,p+P with γ̃t+1,p+P =∑L

l=1

∑Kl
k=1

∑P
q=1Wlk,p+P,q(t+ 1)b̃l,k,q, we obtain

c̃
(s)
l,k,p =

1

T − 1

T∑
t=2

ψl,k(t− 1)γ̃t,p, (3.33)

and

c̃
(u)
l,k,p =

1

T − 1

T−1∑
t=1

ψl,k(t)γ̃t+1,p+P . (3.34)

Having an appropriate threshold for c̃
(u)
l,k,p, we can construct the shifted and non-shifted

tree-structured representation for each parameter, as before. This can provide important

information about the potential spurious jumps since all low level parameters in the

shifted tree fall in the highest level of the non-shifted tree and vice versa. Based on this

predicate, we propose a selection method for consistently detecting the jump locations.

All we need is an appropriate threshold for the highest coefficients.

The following Lemma establishes the uniform consistency in k and p of both c̃
(s)
L,k,p and

c̃
(u)
L,k,p and states their order of magnitude in probability.

Lemma 3.6. Suppose Assumptions A-C hold, then, for all p ∈ {1, . . . , P} and m ∈
{m, s}

sup
k

∣∣∣c̃(m)
L,k,p − c

(m)
L,k,p

∣∣∣ = Op
(√

log(T − 1)/n(T − 1)
)
.
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From Lemma 3.6, we can intuitively see that asymptotically both c̃
(m)
L,k,p and b̃l,k,p can

be shrunk by the same threshold λn,T . Theorem 3.7 gives the necessary asymptotic

conditions to ensure consistency of the jump selection method.

3.4.2 Detecting the Jump Locations

As mentioned earlier, interpreting all jumps of the SAW estimator as structural breaks

may lead to an over-specification of the break points. In this Section, we exploit the

information existing in the shifted and unshifted univariate wavelet coefficients (3.33)

and (3.34) to construct a consistent selection method for detecting the jump locations.

We use (3.33) and (3.34) to obtain the following two estimators of ∆βt:

∆β̃
(u)
t,p =

KL∑
k=1

∆ψL,k(t)ĉ
(u)
L,k,p, for t ∈ E , (3.35)

and

∆β̃
(s)
t,p =

KL∑
k=1

∆ψL,k(t− 1)ĉ
(s)
l,k,p, for t ∈ Ec, (3.36)

where

ĉ
(.)
l,k,p = I(|c̃(.)

l,k,p| > λn,T ),

E is the set of the even time locations {2, 4, . . . , T−1}, Ec is the complement set composed

of the odd time locations {2, 3, . . . , T} \ E , and I(.) is the indicator function.

The number of jumps of each parameter can be estimated by

S̃p =
∑
t∈E

I(∆β̃
(u)
t,p 6= 0) +

∑
t∈Ec

I(∆β̃
(s)
t,p 6= 0). (3.37)

The jump locations τ̃1,p, . . . , τ̃S̃p,p can be identified as follows:

τ̃j,p = min

{
s

∣∣∣∣∣j =

s∑
t=2

I
(

∆β̃
(u)
t,p 6= 0, t ∈ E

)
+

s∑
t=3

I
(

∆β̃
(s)
t,p 6= 0, t ∈ Ec

)}
, (3.38)

for j ∈ {1, . . . , S̃p}. The maximal number of breaks S =
∑P

p=1 = Sp can be estimated

by S̃ =
∑P

p=1 S̃p.

Theorem 3.7. Under Assumptions A-C, if (c.1) :
√

n(T−1)
log((T−1))λn,T → ∞ and (c.2) :

√
T − 1λn,T → 0, as n, T →∞, then

(i) limn,T→∞ P (S̃1 = S1, . . . , S̃p = Sp) = 1 and
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(ii) limn,T→∞ P (τ̃1,1 = τ1,1, . . . , τ̃SP ,P = τSP ,P |S̃1 = S1, . . . , S̃p = Sp) = 1.

The crucial element for consistently estimating τ1,1, . . . , τSP ,P is, hence, using a threshold

that converges to zero but at a rate slower than
√

log(T − 1)/(n(T − 1)).

3.4.3 Post-SAW Estimation

For known τ1,p, . . . , τSp,p, we can rewrite Model (3.22) as

∆Ẏit =

P∑
p=1

Sp+1∑
j=1

∆Ẋ
(τj,p)
it,p βτj,p + ∆ėit, (3.39)

where

∆Ẋ
(τj,p)

(it,p) = ∆Ẋit,pI
(
τj−1,p < t ≤ τj,p

)
,

with τ0,p = 1 and τSp+1,p = T , for p ∈ {1, . . . , P}. The dot operator transforms the

variables as follows: u̇it = uit − 1
n

∑n
i=1 uit.

Depending on the set of the jump locations τ := {τj,p|j = 1, . . . , Sp + 1, p = 1, . . . , P},
the vector presentation of Model (3.39) can be rewritten as

∆Ẏit = ∆Ẋ
′

it,(τ)β(τ) + ∆ėit, (3.40)

where β(τ) = (βτ1,1 , . . . , βτS1+1,1 , . . . , βτ1,P . . . , βτSP+1,P )
′

and ∆Ẋit,(τ) = (∆Ẋ
(τ1,1)
it,1 , . . . ,

∆Ẋ
(τS1+1,1)

it,1 , . . . ,∆Ẋ
(τ1,P )
it,P . . . ,∆Ẋ

τ(SP+1,P )

it,P )
′

.

Let Zit,p denote the instrument chosen for ∆Ẋit,p and Zit,(τ) = (Z
(τ1,1)
it,1 , . . . , Z

(τS1+1,1)

it,1 ,

. . . , Z
(τ1,P )
it,P , . . . , Z

τ(SP+1,P )

it,P )
′
, with Z

(τj,p)
it,p = Zit,pI

(
τj−1,p < t ≤ τj,p

)
. The conventional

IV estimator of β(τ) is

β̂(τ) =
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẏit
)
. (3.41)

Conditional on S̃1 = S1, . . . , S̃P = SP , we can replace the set of the true jump locations τ

in (3.41) with the detected jump locations τ̃ := {τ̃j,p|j ∈ {1, . . . , Sp+1}, p ∈ {1, . . . , P}},
to obtain the post-SAW estimator:

β̂(τ̃) =
( n∑
i=1

T∑
t=2

Zit,(τ̃)∆Ẋ
′

it,(τ̃)

)−1( n∑
i=1

T∑
t=2

Zit,(τ̃)∆Ẏit
)
. (3.42)
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From (3.26) and (3.42), we can see that the number of parameters to be estimated after

detecting the jump locations is much smaller than the number of parameters required

to estimate the slope parameters in the SAW regression (
∑P

p=1(Sp + 1) < T (P − 1)). It

is evident that such a gain in terms of regression dimension improves the quality of the

estimator.

Assumption E - Central Limits: Let T(τ) be a (S + P × S + P ) diagonal matrix

with the diagonal elements T1,1, . . . , TSP+1,P , where Tj,p = τj,p − τj−1,p + 1.

(i) : (nT(τ))
−1
∑n

i=1

∑T
t=2 Zit,(τ)∆Ẋ

′

it,(τ)

p→ Q◦(τ) where Q◦(τ) is a full rank finite matrix.

(ii) : (nT(τ))
−1
∑n

i=1

∑T
t=2

∑n
j=1

∑T
s=2 Zit,(τ)Z

′

js,(τ)σij,ts
p→ V ◦(τ), where V ◦(τ) is a full rank

finite matrix.

(iii) :
(
nT(τ)

)− 1
2
∑n

i=1

∑T
t=2 Zit,(τ)∆ėit

d→ N(0, V ◦(τ)).

Assumption E presents standard assumptions that are commonly used in the literature

on instrumental variables.

Theorem 3.8. Suppose Assumptions A-E hold. Then conditional on S̃1 = S1, . . . , S̃p =

Sp, we have
√
nT

1
2

(τ)

(
β̂(τ̃) − β(τ)

) d→ N(0,Σ(τ)),

where Σ(τ) = (Q◦(τ))
−1
(
V ◦(τ)

)
(Q◦(τ))

−1.

If T → ∞ and all Tj,p diverge proportionally to T , then β̂τj ,p achieves the usual
√
nT -

convergence rate. Based on the asymptotic distribution of β̂(τ̃), we can construct a

Chow-type test to examine the statistical significance of the detected jumps and/or a

Hotelling test to examine whether a model with constant parameters is more appropriate

for the data than a model with jumping parameters.

Because Σ(τ) is unknown, consistent estimators of Q◦(τ) and V ◦(τ) are required to perform

inferences. A natural estimator of Q◦(τ) is

Q̂(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)∆X
′

it,(τ̃)

and a consistent estimator of Σ(τ) can be obtained by

Σ̂(τ̃),j = Q̂−1
(τ̃)V̂

(c)
(τ̃) Q̂

−1
(τ̃),

where V̂
(c)

(τ̃) a consistent estimator of V ◦(τ̃) that can be constructed depending on the

structure of ∆ėit. For brevity, we distinguish only four cases:



Chapter 3. Panel Models with Multiple Jumps in the Parameters 95

1. The case of homoscedasticity without the presence of auto- and cross-section cor-

relations:

V̂
(1)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2,

where σ̂2 = 1
n(T−1)

∑n
i=1

∑T
t=2 ∆ˆ̇e2

it, with ∆ˆ̇eit = ∆Ẏit −∆Ẋ
′

it,(τ̃)β̂(τ̃).

2. The case of cross-section heteroskedasticity without auto- and cross-section corre-

lations:

V̂
(2)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2
i ,

where σ̂2
i = 1

T−1

∑T
t=2 ∆ˆ̇e2

it.

3. The case of time heteroskedasticity without auto- and cross-section correlations:

V̂
(3)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2
t ,

where σ̂2
t = 1

n

∑n
i=1 ∆ˆ̇e2

it.

4. The case of cross-section and time heteroskedasticity without auto- and cross-

section correlations:

V̂
(4)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)∆
ˆ̇e2
it.

Proposition 3.9. Under Assumptions A-E, we have, as n, T →∞, Σ̂
(c)
(τ̃) = Σ(τ) +op(1),

for c = 1, 2, 3, and 4.

Remark 3.10. If the errors (at the difference level) are autocorrelated, V
(c)

(τ̃) can be es-

timated by applying the standard heteroskedasticity and autocorrelation (HAC) robust

limiting covariance estimator to the sequence {Zit,(τ̃)∆ˆ̇eit}i∈N∗,t∈N∗\{1}; see, e.g., Newey

and West (1987). In the presence of additional cross-section correlations, one can use

the partial sample method together with the Newey-West procedure as proposed by Bai

(2009). A formal proof of consistency remains, in this case, to be explored.

3.5 SAW with Unobserved Multifactor Effects

If the endogeneity arises from a dynamic model such that one variable on the right hand

side is the lag of the explained variable Yit, one can follow the existing literature on

dynamic panel models and choose one of the commonly used instruments such as Yit−2,

Yit−3, and/or Yit−2 − Yit−3 ; see, e.g., Anderson and Hsiao (1981), Arellano and Bond

(1991), and Kiviet (1995).
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In this section, we discuss two possible model extensions: the case in which endogeneity

arises from an omitted factor structure; and the case in which endogeneity is due to the

presence of simultaneous equations.

Presence of Multifactor Errors

There is a growing literature on large panel models that allows for the presence of

unobserved time-varying individual effects having an approximate factor structure such

that

eit = Λ
′
iFt + εit,

where Λi is a (d × 1) vector of individual scores (or loadings) Λi1, . . . ,Λid and Ft a

(d × 1) vector of d common factors F1t, . . . , Fdt. Note that this extension provides a

generalization of panel data models with additive effects and can be very useful in many

application areas, especially when the unobserved individual effects are non-static over

time; see, e.g., Pesaran (2006), Bai (2009), Ahn et al. (2013), Kneip et al. (2012), and

Bada and Kneip (2014).

Leaving the factor structure in the error term and estimating the remaining parameters

without considering explicitly the presence of a potential correlation between the ob-

served regressors X1,it, . . . , XP,it and the unobserved effects Λi and Ft may lead to an

endogeneity problem caused by these omitted model components. The problem with the

presence of the factor structure in the error term is that such a structure can not be elim-

inated by differencing the observed variables or using a simple within-transformation.

Owing to the potential correlation between the observable regressors X1,it, . . . , XP,it and

the unobservable heterogeneity effects, we fairly allow for the data generating process of

Xp,it to have the following form:

Xp,it = ϑ
′
p,iFt + Λ

′
iGp,t + apΛ

′
iFt + µp,it, (3.43)

where ϑp,i is a (d × 1) vector of unknown individual scores, Gp,t is a (d × 1) vector

of unobservable common factors, ap is a p-specific univariate coefficient, and µit is an

individual specific term that is uncorrelated with εit, Λi, ϑi, Ft and Gt.

Rearranging (3.43), we can rewrite Xp,it as

Xp,it = ϑ∗
′
p,iG

∗
p,t + µp,it, (3.44)

where

ϑ∗
′
p,i = H(apΛ

′
i + ϑ

′
p,i,Λ

′
i), (3.45)
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and

G∗p,t = H−1(F
′
t , G

′
p,t)
′
, (3.46)

for some (2d × 2d) full rank matrix H. The role of H is only to ensure orthonormality

and identify uniquely (up to a sign change) the elements of the factor structure so that∑T
t=1G

′∗
p,tG

∗
p,t/T is the identity matrix and

∑n
i=1 ϑ

∗′
p,iϑ
∗
p,i/n is a diagonal matrix with

ordered diagonal elements.

We can see from (3.43) that a perfect candidate for instrumenting Xp,it is µp,it. Since

µp,it is unobserved, a feasible instrument can be obtained by

Zp,it = Xp,it − ϑ̂∗
′
p,iĜ

∗
p,t, (3.47)

where Ĝ∗
′
p,t is the t-th row element of the (2d × 1) matrix containing the eigenvectors

corresponding to the ordered eigenvalues of the covariance matrix of Xp,it and ϑ̂∗
′
p,i is the

projection of Ĝ∗
′
p,t on Xp,it. If d is unknown, one can estimate the dimension of ϑ∗

′
p,iG

∗
p,t

by using an appropriate panel information criterion; see, e.g., Bai and Ng (2002) and

Onatski (2010). A crucial assumption about the form of dependency in µp,it is that, for

all T and n, and every i ≤ n and t ≤ T ,

1.
∑T

s=1 |E(µp,itµp,is)| ≤M and

2.
∑n

k=1 |E(µp,itµp,kt)| ≤M .

Bai (2003) proves the consistency of the principal component estimator when addition-

ally 1
T

∑T
t=1G

∗′
p,tG

∗
p,t

p→ ΣG∗p for some (2d×2d) positive definite matrix ΣG∗p , ||ϑ
∗
p,i|| ≤M

for all i and p, and || 1n
∑n

i=1 ϑ
∗′
p,iϑ
∗
p,i−Σϑ∗p || −→ 0, as n→∞ for some (2d× 2d) positive

definite matrix Σϑ∗p .

By instrumenting Xp,it with Zp,it in (3.47), we can estimate consistently the jumping

slope parameters as before. A formal proof remains, of course, to be explored.

Two-Step SAW for Jumping Reverse Causality

Besides the issues of omitted variables and dynamic dependent variables, another im-

portant source of endogeneity is the phenomenon of reverse causality. This occurs when

the data is generated by a system of simultaneous equations so that changes in the

right-hand side of the model cause changes in the left-hand side variable and changes in

the left-hand side variable cause simultaneous changes in the right-hand side variable.

A famous example of simultaneous equation models is the partial equilibrium model of

supply and demand in a market with perfect competition.
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Consider the following two-way simultaneous equation model:

Yit = µ+
P∑
p=1

Xp,itβt,p + αi + θt + eit, (3.48)

and

Xq,it = btYit +
∑

p∈{1,...,P}\{q}

Xp,itdt,p + v + ui + ϑt + νit, (3.49)

for some a q ∈ {1, . . . , P}, where bt 6= 1/βt,q, and the parameters v, ui, and ϑt are

unknown parameters.

Neglecting the structural form of Xq,it in Equation (3.49) and estimating the regression

function (3.48) without instrumenting this variable results in an inconsistent estimation

since Xq,it and eit are correlated (due to the presence of Yit in Equation (3.49)). A

natural way to overcome this type of endogeneity problem is to use the fitted variable

obtained from Equation (3.49) as an instrument after replacing Yit with its expression

in (3.48). In the literature on IV methods, this procedure is termed two-stage least

squares method. But note that our method involves an additional complication related

to the time-changing character of βt,q and the presence of the unobservable heterogeneity

effects. Indeed, inserting (3.48) in (3.49) and rearranging it leads to a panel model with

time-varying unobservable individual effects:

Xq,it =
∑

p∈{1,...,P}\{q}

Xp,itd
∗
t,p + ϑ∗1t + uiϑ

∗
2t + αiϑ

∗
3t + εit, (3.50)

where
d∗t,p = btβt,p + dt,p,

ϑ∗1t = btµ+btθt+ϑt+v
1−btβt,p ,

ϑ∗2t = 1
1−btβt,p ,

ϑ∗3t = btµ+btθt+ϑt+v
1−btβt,p , and

εit = bteit + εit.

Note that the regression model in (3.50) can be considered a spacial case of the model

with multifactor errors discussed above. A potential instrument for Xq,it in (3.48) is

Zq,it =
∑

p∈{1,...,P}\{q}

Xp,itd̂
∗
t,p + ϑ̂

′
iĜt, (3.51)

where d̂∗t,p and ϑ̂
′
iĜt are the estimators of bt and ϑ

′
iGt = ϑ∗1t+uiϑ

∗
2t+αiϑ

∗
3t, respectively,

which can be obtained from (3.50) by using the instruments proposed above to control

for the omitted factor structure ϑ∗1t + uiϑ
∗
2t + αiϑ

∗
3t.
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3.6 Monte Carlo Simulations

In this section, we examine, through Monte Carlo simulations, the finite sample perfor-

mance of our method. Our data generating-processes are based on the following panel

data model:

Yit = Xitβt + αi +
√
θiteit for i ∈ {1, . . . , n} and t ∈ {1, . . . T},

where

βt =


βτ1 for t ∈ {1, . . . , τ1},
...

βτS+1 for t ∈ {τS + 1, . . . , T},

(3.52)

with

βτj =
2

3
· (−1)j and τj =

⌊
j

S + 1
(T − 1)

⌋
, for j = 1, . . . , S + 1.

We examine the situations where the number of jumps is S = 0, 1, 2, 3. In the no-jump

case (S = 0), we compare the performance of our method with the performance of the

classical Least Squares Dummy Variable Method (LSDV), the Generalized Least Squares

Method for random effect models (GLS), the Iterated Least Squares Method (ILS) of Bai

(2009), and the semi-parametric method (KSS) of Kneip et al. (2012). Our thresholding

parameter is calculated with κ = 1− log(log(nT ))/ log(nT ). To see how the properties

of the estimators vary with n and T , we consider 12 different combinations with the sizes

n = 30, 60, 120, 300 and T = 2L−1 + 1, for L = 6, 7, 8, i.e., T = 33, 65, 129. We consider

the cases of dyadic (e.g., when S = 1 and τ1 = (T −1)/2) and non-dyadic jump locations

(when S = 2, 3) as well as models with exogenous and endogenous regressors. In total,

our experiments are based on the results of seven different DGP-configurations:

DGP1 (exogeneity, and i.i.d. errors): the dependent variable Xit is uncorrelated with

eit and generated by

Xit = 0.5αi + ξit, (3.53)

with ξit, αi, eit ∼ N(0, 1) and θit = 1 for all i and t.

DGP2 (exogeneity, and cross-section heteroskedasticity): the DGP of the exogenous

regressor Xit is of form (3.53); cross-sectionally heteroskedastic errors such that eit ∼
N(0, 1) with θit = θ∗i ∼ U(1, 4) for all t
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DGP3 (exogeneity, and heteroskedasticity in time and cross-section dimension): the

DGP of the exogenous regressor Xit is of form (3.53); heteroskedastic errors in time and

cross-section dimension such that eit ∼ N(0, 1) and θit ∼ U(1, 4).

DGP4 (exogeneity, and serial correlation with cross-section heteroskedasticity): the

DGP of the exogenous regressor Xit is of form (3.53); homoscedasticity and autocorre-

lation in the errors such that

eit = ρieit−1 + ζit, (3.54)

with ρi ∼ U(0, .5), ζit ∼ N(0, .5), and θit = 1 for all i and t.

DGP5 (endogeneity due to a hidden factor structure): Xit and eit are correlated

through the presence of a hidden factor structure:

eit = λift + εit and

Xit = 0.3αi + 0.3νt + 0.3λift + µit,
(3.55)

with λi, ft ∼ N(0, .5), θit = 1 for all i and t, and αi ∼ N(0, 1).

DGP6 (endogeneity due to a hidden approximate factor structure): Xit and eit are

correlated as in DGP5, but

εit = ρe,iεi,t−1 + ζe,it,

µit = ρµ,iµi,t−1 + ζµ,it,
(3.56)

with ζe,it, ζµ,it ∼ N(0, .5), ρe,i, ρµ,i ∼ U(0, .5), θit = 1 for all i and t, and αi ∼ N(0, 1).

DGP7 (no-jumps, endogeneity, and hidden approximate factor structure): the slope

parameter does not suffer from structural breaks so that βt = 2 for all t; the regressor

and the error are correlated through the presence of an approximate factor structure as

in DGP6.

Tables 3.1 -3.4 report the estimation results obtained by averaging the results of 1000

replications. The third, sixth, and ninth columns in Tables 3.1-3.3 report the averages

of the estimated number of jumps S̃ detected by (3.37) for S = 1, 2, and 3, respectively.

The MISE of our estimator is calculated by 1
1000

∑1000
r=1

(
1
T

∑T
t=1(β̂rt − βt)2), where β̂rt is

the pointwise post-SAW estimate of βt obtained in replication r. The fourth, seventh,

and tenth columns in Tables 3.1 -3.3 give, on average, the values of a criterion (hereafter

called MDCJ) that describes the mean distance between the true jump locations and
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the closest post-SAW detected jumps. The MDCJ criterion is calculated as follows:

MDCJ =
1

S

S∑
j=1

min
l∈{1,...,S̃}

|τj − τ̃l|.

We use the R-package phtt to calculate LSDV, ILS, and KSS and plm to calculatd GLS .

The corresponding MSEs of LSDV, GLS, ILS, and KSS are obtained by 1
1000

∑1000
r=1

(
β̂r(M)−

β)2, where β̂r(M) is the estimate of β = β1 = · · · = βT obtained in replication r by using

method M = LSDV, ILS, and KSS. The results are reported in Table 3.4.

DGP1
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
60 33 1.0 0.000 0.001 2.0 0.000 0.004 3.0 0.000 0.008
120 33 1.0 0.000 0.001 2.0 0.000 0.004 3.0 0.000 0.007
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.007
30 65 1.0 0.000 0.001 2.1 0.000 0.001 3.1 0.000 0.002
60 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
120 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 1.0 0.000 0.000 2.1 0.000 0.000 3.1 0.000 0.002
60 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.000
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.000

DGP2
30 33 0.9 3.100 0.118 1.5 2.731 0.181 2.2 2.349 0.193
60 33 1.0 0.000 0.003 2.0 0.111 0.011 3.0 0.053 0.013
120 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.008
30 65 0.8 9.200 0.173 1.5 5.470 0.191 2.4 4.160 0.180
60 65 1.0 0.000 0.001 1.8 0.665 0.021 2.9 0.531 0.030
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.9 13.81 0.124 1.4 16.40 0.261 2.0 12.31 0.231
60 129 1.0 2.519 0.021 2.0 0.859 0.017 2.9 0.851 0.022
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

Table 3.1: Simulation results of the Monte Carlo experiments for DGP1-DGP2. The
entries are the averages of 1000 replications.

In our examined data configurations, the MISE of the post-SAW estimator and the

average of the estimated number of jumps behave properly as both n and T get large

as well as when T is fixed and only n gets large. The method performs perfectly in the

benchmark case where idiosyncratic errors are independent and identically distributed

even when n and T are relatively small (e.g., the combinations where n = 30 and/or T =

33 in the first part of Table 3.1). In most of the examined cases, where heteroskedasticity

in the cross-section and time dimension and/or week serial correlations exist, the method

behaves very well, in particular when n is large (see results of DGP3-DGP4 in Tables

3.1 and 3.2). The quality of the estimator seems to be independent of the number and

the location of the jumps (i.e., dyadic, for S = 1, and non-dyadic for S = 2, 3). Not

surprisingly, the jump selection method performs poorly when n is fixed and only T is

large. In such a case, the threshold under-estimates the true number of jumps and the

MDCJ increases with T . This effect vanishes properly as n gets large.
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DGP3
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 0.9 3.000 0.117 1.5 2.730 0.180 2.3 2.347 0.190
60 33 1.0 0.000 0.003 2.0 0.110 0.014 3.0 0.053 0.016
120 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.008
30 65 0.7 9.300 0.170 1.5 5.470 0.191 2.4 4.160 0.181
60 65 1.0 0.000 0.001 1.9 0.660 0.025 2.9 0.533 0.031
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.9 13.80 0.124 1.3 16.41 0.260 2.0 12.37 0.235
60 129 1.0 2.520 0.023 2.0 0.860 0.016 2.9 0.853 0.023
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

DGP4
30 33 0.2 12.60 0.477 0.5 8.250 0.431 0.6 8.673 0.499
60 33 0.4 9.000 0.340 1.0 5.280 0.309 1.4 5.280 0.360
120 33 0.9 1.500 0.059 1.8 1.210 0.087 2.6 1.013 0.116
300 33 1.0 0.000 0.002 2.0 0.000 0.004 3.0 0.000 0.009
30 65 0.3 23.22 0.426 0.4 17.49 0.453 0.5 17.72 0.488
60 65 0.6 13.02 0.238 0.9 11.49 0.318 1.2 11.62 0.403
120 65 0.9 4.340 0.080 1.8 2.190 0.073 2.6 2.560 0.110
300 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.003
30 129 0.1 55.44 0.496 0.3 37.41 0.472 0.4 36.05 0.516
60 129 0.5 34.02 0.305 0.8 26.66 0.377 1.0 26.88 0.427
120 129 0.8 10.08 0.091 1.7 6.880 0.116 2.5 6.187 0.146
300 129 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.001

Table 3.2: Simulation results of the Monte Carlo experiments for DGP3-DGP4. The
entries are the averages of 1000 replications.

DGP5
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 0.8 4.100 0.187 1.3 3.230 0.250 2.1 3.367 0.291
60 33 1.0 0.000 0.004 2.0 0.119 0.017 3.0 0.058 0.020
120 33 1.0 0.000 0.003 2.0 0.000 0.007 3.0 0.000 0.010
300 33 1.0 0.000 0.002 2.0 0.000 0.002 3.0 0.000 0.009
30 65 0.7 9.700 0.210 1.4 5.976 0.210 2.4 4.860 0.211
60 65 1.0 0.000 0.002 1.9 0.690 0.031 2.9 0.539 0.038
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.8 19.80 0.224 1.2 21.41 0.361 2.0 19.37 0.315
60 129 1.0 2.611 0.053 2.0 0.952 0.017 2.8 1.153 0.033
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

DGP6
30 33 0.2 11.66 0.448 0.5 8.250 0.427 0.6 8.320 0.498
60 33 0.5 7.200 0.272 1.0 5.390 0.306 1.5 4.907 0.370
120 33 0.9 0.900 0.036 1.8 0.990 0.074 2.6 1.013 0.114
300 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.009
30 65 0.3 22.94 0.419 0.3 18.77 0.484 0.6 16.93 0.480
60 65 0.5 14.88 0.272 1.1 10.44 0.304 1.1 13.76 0.401
120 65 0.8 5.580 0.102 1.8 1.980 0.070 2.6 2.667 0.116
300 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.003
30 129 0.1 54.74 0.493 0.1 40.53 0.487 0.3 38.61 0.523
60 129 0.3 42.84 0.383 0.7 27.52 0.372 1.0 26.45 0.432
120 129 0.8 11.34 0.102 1.8 5.160 0.091 2.4 7.680 0.157
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

Table 3.3: Simulation results of the Monte Carlo experiments for DGP5-DGP6. The
entries are the averages of 1000 replications.
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Table 3.3 reports the results of our experiments when the regressors are affected by

an omitted factor structure in the error term. The proposed two-step SAW procedure

seems to perform very well even when heteroskedasticity in the cross-section and time

dimension and/or week serial correlations are present.

The goal of examining DGP7 is to test whether SAW is also able to detect the no-jump

case. The answer that can be deciphered from Table 3.4 is: Yes. Our method is slightly

inferior in terms of MSE than ILS but better than LSDV, GLS, and KSS. Because

LSDV and GLS neglect the presence of the factor structure in the model and KSS is

only appropriate for factors that possess smooth patterns over time, the MSEs of these

three estimators are affected by a small bias that seems to persist even when n and T

get large.

DGP7 (S = 0)
Method post-SAW LSDV GLS ILS KSS

n T S̃ MISE MSE MSE MSE MSE
30 33 0.0000 0.0062 0.0105 0.0148 0.0007 0.0104
60 33 0.0000 0.0041 0.0105 0.0142 0.0006 0.0101
120 33 0.0000 0.0012 0.0090 0.0125 0.0002 0.0085
300 33 0.0000 0.0004 0.0093 0.0128 0.0001 0.0090
30 65 0.0000 0.0039 0.0105 0.0135 0.0004 0.0099
60 65 0.0000 0.0015 0.0102 0.0130 0.0002 0.0101
120 65 0.0000 0.0005 0.0099 0.0126 0.0001 0.0098
300 65 0.0000 0.0001 0.0108 0.0137 0.0000 0.0108
30 129 0.0000 0.0015 0.0101 0.0129 0.0002 0.0102
60 129 0.0000 0.0008 0.0103 0.0127 0.0001 0.0104
120 129 0.0000 0.0002 0.0101 0.0125 0.0000 0.0101
300 129 0.0000 0.0000 0.0090 0.0112 0.0000 0.0090

Table 3.4: Simulation results of the Monte Carlo experiments for DGP7. The entries
are the averages of 1000 replications.

The Monte Carlo experiments show that, in many configurations of the data, our method

performs very well even when the idiosyncratic errors are weakly affected by serial-

autocorrelation and/or heteroskedasticity and this independently of the number and

locations of the jumps.

3.7 Application: Algorithmic Trading and Market Quality

An issue of increasing debate, both academically and politically, is the impact of al-

gorithmic trading (AT) on standard measures of market quality such as liquidity and

volatility. Proponents, including many of the exchanges themselves, argue that AT

provides added liquidity to markets and is beneficial to investors. Opponents instead

caution that algorithmic trading increases an investor’s perception that an algorithmic
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trading partner possesses an informational advantage. Furthermore, incidents such as

the ”flash crash”, although circumstantial in nature, do nothing to alleviate these fears.

Recent work examining the effects of AT on market quality have generally found its

presence to be beneficial in the sense that standard measures of liquidity such as bid-ask

spreads and price-impact are reduced as a consequence of the increase in AT. For example

Hendershott et al. (2011) find that, with the exception of the smallest quintile of NYSE

stocks, AT almost universally reduces quoted and effective spreads in the remaining

quintiles. Hasbrouck and Saar (2013) find similarly compelling evidence using a measure

of AT constructed from order level data. A drawback of both approaches and more

specifically of the standard panel regression approach is that estimates of the marginal

effect of increasing are necessarily averaged over all possible states of the market. This

is problematic from an asset pricing perspective.

Of particular importance to the concept of liquidity is the timing of its provision. The

merits of added liquidity during stable market periods at the expense of its draw back

during periods of higher uncertainty are ambiguous without a valid welfare analysis and

can potentially leave investors worse off. The issue of timing is particularly important

for empirical work examining the effects of AT on market quality. Samples are often

constrained in size due to limitations on the availability of data and computational con-

cerns. As noted by Hendershott et al. (2011), it may be because samples often used

do not cover large enough periods of market turbulence to detect possible negative ef-

fects. Additionally, standard subsample analysis requires the econometrician to diagnose

market conditions as well their start and end dates, in effect imposing their own prior

beliefs on the factors that might cause variation in the marginal effects. Because of

this we propose the use of our estimator to automatically detect jumps in slope param-

eters. Indeed, our methodology alleviates concerns about ad-hoc subsample selection.

Furthermore, we believe analysis of periods where the effects vary may provide valuable

insight for future studies (both theoretical and empirical) and policy recommendations

regarding the regulation of trading in financial markets.

3.7.1 Liquidity and Asset Pricing

Before discussing the effects of liquidity on asset pricing, we first examine conventional

tests that assume constant parameters. In this simple example, we regress a measure of

market quality on an AT proxy for an individual stock using the following model:

MQt = α+ATtβ + et, (3.57)
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where the time index t ∈ {1, . . . , T}. If the slope parameter is time varying then β

in (3.57) presents only the time average of the true parameter, say βt. In this case

the conventional estimator of β is consistent only under the assumption
∑T

t=1AT
2
t (βt−

β)/T
p−→ 0, as T get large. Even when such a requirement is satisfied, the average effect

is not the correct measure to consider when the question is whether AT is beneficial to

market quality.

A general result in asset pricing that is a consequence of no arbitrage is that there exists

a strictly positive stochastic discount factor (SDF) such that,

1 = Et(Mt+1Rt+1),

where Mt+1 is the SDF and Rt+1 is the return on a security. This expression can be

expanded and rewritten as,

Et(Rt+1) =
1

Et(Mt+1)
− 1

Et(Mt+1)
covt(Mt+1, Rt+1).

Expected security returns (i.e., its risk premium) are a function of covariance with the

SDF. While the form of the SDF depends on the asset pricing model one is considering,

it can in general be thought of as the ratio of marginal value of wealth between time

t + 1 and t. Therefore, holding the expectation of Mt+1 constant, if a security pays off

more in states where the marginal value of wealth is relatively low and less in states

where the marginal value of wealth is relatively high (covt(Mt+1, Rt+1) < 0) then that

security earns a premium for this undesirable property. In light of the above analysis,

if a security’s returns contain a stochastic liquidity component then its covariance with

the SDF can have a substantial impact on expected returns.

The model of Acharya and Pedersen (2005) is particularly relevant as it exemplifies the

many avenues through which time varying liquidity can affect expected returns. Using

an overlapping generations model they decompose conditional security returns into five

components: one related to the expected level of illiquidity and four others related to

covariance terms between market return, market illiquidity, security returns and security

illiquidity. They show that portfolio returns are increasing in the covariance between

portfolio illiquidity and market illiquidity and decreasing in the covariance between secu-

rity illiquidity and the market return. A consequence of this is that if AT intensifies these

dynamics in the liquidity for a particular security then the effect will be to increase the

risk premium associated with that security. Increased risk premiums represent higher

costs of capital for firms, thus increased AT can potentially decrease firm investment

(relative to a market with no AT) through its effects on liquidity dynamics.
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3.7.2 Data

Our sample consists of a balanced panel of stocks whose primary exchange is the New

York Stock Exchange (NYSE) and covers the calendar period 2003− 2008. The choice

of this sample period reflects our desire to include both relatively stable and turbulent

market regimes. We are limited in our choice of sample periods by the fact that AT is

a recent phenomenon and that our estimation procedure requires a balanced panel. In

this six-year period we consider results in a total of 378 firms.

To build measures of market quality, we use the NYSE Trade and Quotation Database

(TAQ) provided by Wharton Research Data Services (WRDS) to collect intra-day data

on securities. We aggregate intra-day up to a monthly level to construct our sample,

which consists of 65 months for each firm. We merge the TAQ data with information on

price and shares outstanding from the Center for Research in Security Prices (CRSP).

A discussion of our algorithmic trading proxy and measures of market quality follows.

3.7.2.1 The Algorithmic Trading Proxy

Our AT proxy is motivated by Hendershott et al. (2011) and Boehmer et al. (2012), who

note that AT is generally associated with an increase in order activity at smaller dollar

volumes. Thus the proxy we consider is the negative of dollar volume (in hundreds of

dollars, Volit) over time period t divided by total order activity over time period t. We

define order activity as the sum of trades (Trit) and updates to the best prevailing bid

and offer (qit) on the securities’ primary exchange:

ATit = − Volit
Trit + qit

.

An increase in ATit represents a decrease in the average volume per instance of order

activity and represents an increase in the AT in the particular security. For example,

an increase of 1 unit of ATit represents a decrease of $100 of trading volume associated

with each instance of order activity (trade or quote update).

Our proxy, like that in Boehmer et al. (2012), differs from the proxy in Hendershott

et al. (2011) since they have access to the full order book of market makers whereas we

only have access to the trades and the best prevailing bid and offers of market makers

through TAQ. We appeal to the same argument as Boehmer et al. (2012) in that many

AT strategies are generally executed at the best bid and offer rather than behind it.

Therefore, we feel our proxy is in general representative of the full order book.
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3.7.2.2 Market Quality Measures

We consider several common measures of market quality to assess the impact of AT on

markets for individual securities.

Proportional Quoted Spread

The proportional quoted spread (PQSit) measures the quoted cost as a percentage of

price (Bid-Offer midpoint) of executing a trade in security i and is defined as,

PQSit = 100

(
Ofrit − Bidit

0.5(Ofrit + Bidit)

)
.

We multiply by 100 in order to place this metric in terms of percentage points. We ag-

gregate this metric to a monthly quality by computing a share volume-weighted average

over the course of each month. An increase in PQSit represents a decrease in the amount

of liquidity in the market for security i due to increased execution costs.

Proportional Effective Spread

The proportional effective spread (PESit) is quite similar to (PQSit) but accommodates

potentially hidden liquidity or stale quotes by evaluating the actual execution costs of a

trade. It is defined as,

PESit = 100

(
|Pit −Mit|

Mit

)
,

where Pit is the price paid for security i at time t and Mit is the midpoint of the prevailing

bid and ask quotes for security i at time t. Thus, PESit is the actual execution cost

associated with every trade. We again aggregate this measure up to a monthly quantity

in the same way as we do for quoted spreads. Like PQSit, PESit is also in terms of

percentage points. An increase in PESit represents a decrease in the amount of liquidity

in the market for security i due to increased execution costs.

Measures of Volatility

We also consider two different measures of price volatility in security i over time period

t. The first is the daily high-low price range given by,

H-Lit = 100

(
maxτ∈t(Pit)−minτ∈t(Pit)

Pit

)
,
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which represents the extreme price disparity over the course of a trading day. We also

consider the realized variance of returns over each day computed using log returns over

5-minute intervals:

RVit = 100

(∑
τ∈t

r2
iτ

)
.

Realized variance is a nonparametric estimator of the integrated variance over the course

of a trading day (see, for example, Andersen et al. (2003)). We aggregate both measures

up to a monthly level by averaging over the entire month. We additionally multiply

both variables by 100, thus H−Lit is the price range as a percentage of the daily closing

price and RVit is an estimate of the integrated variance of log returns in percentages.

Both measures represent a measure of the price dispersion over the course of the trading

month.

Additional Control Variables

While we attempt to determine the effect our AT proxy has on measures of market

quality we include in all our regressions a vector of control variables to isolate the effects

of AT independent of the state of the market. We lag the control variables by one

month so they represent the state of the market at the beginning of the trading month

in question. The control variables are: (1) Share Turnover (STit), which is the number of

shares traded over the course of a day in a particular stock relative to the total amount of

shares outstanding; (2) Inverse price, which represents transaction costs due to the fact

that the minimum tick size is 1 cent; (3) Log of market value of equity to accommodate

effects associated with micro-cap securities; (4) Daily price range to accommodate any

effects from large price swings in the previous month.

To avoid adding lagged dependent variables in the model, for regressions where the

daily price range is the dependent variable we replace it in the vector of controls with

the previous month’s realized variance.

We additionally include security and time period fixed effects to proxy for any time

period or security related effects not captured by our included variables. We consider

panel regressions of the form

MQit = αi + θt + ATitβt +W
′
itϑ+ eit, (3.58)

where MQit is the market quality measure under consideration, αi and θt are the security

and time period fixed effects, W is a vector of the lagged control variables listed above,

and eit is the innovation to MQit, which we assume to be dependent of the fixed effects

and the control variables. The time subscript on the parameter beta allows for a possibly
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time varying effect of AT on market quality. Thus we are able to test the null hypothesis

of a constant effect versus the alternative of a time jumping effect. We are also able to

measure the magnitude and direction of any possible change.

Potential Endogeneity Issue

Absent a theoretical model of AT, an issue on which the literature is still somewhat

agnostic, it is uncertain whether AT strategies attempt to time shocks to market quality.

This creates the potential problem of endogeneity with our AT proxy. That is, when

estimating the regression equation (3.58), E(ATiteit) 6= 0.

To overcome this potential issue we use the approach of Hasbrouck and Saar (2013)

(albeit with different variables) and choose as an instrument the average value of algo-

rithmic trading over all other firms not in the same industry as firm i. To this end, we

define industry groups using 4-digit SIC codes and define these new variables AT−IND,it.

The use of this IV assumes that there is some commonality in the level of AT across all

stocks that is sufficient to pick up some exogenous variation. It further rules out trading

strategies by AT across firms in different industry groups. Lacking complete knowledge

of the algorithms used by AT firms we view this assumption to be reasonable.

To estimate the model we use a two-stage approach and first fit the regression model,

ATit = ai + gt + bAT−IND,it + dWit + εit (3.59)

to obtain an instrument, Zit, for ATit given by the fitted values from (3.59), i.e., Zit :=

ÂTit = âi+ ĝt+ b̂AT−IND,it+ d̂Wit, where âi, ĝt, b̂, and d̂ are the conventional estimates

of ai, gt, b, and d.

We then carry out the second stage regression using equation (3.58) as described in

Section 3.3. For comparison purposes, we additionally apply the conventional panel

data model assuming constant slope parameter, i.e., β1 = β2 = · · · = βT .

3.7.3 Results

Table 3.5 presents the results from a baseline model that assumes the slope parameters

are constant over time.1 These results are largely consistent with previous studies that

find a positive (in terms of welfare) average relationship between AT and measures

of market quality over the time period considered. The coefficient estimates on the

1For the purpose of readability we divide the AT variable by 100 to reduce trailing zeros after the
decimal.
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AT proxy are negative and significant for all four measures of market quality that we

consider. That is, increases in AT generally reduce both of the spread measures and

both of the variance measures we consider.

Dependent Variable ÂTit ln(ME)it−1 T/Oit−1 1/Pit−1 H-Lit−1 RVit−1

PQSit Coef. -0.013 -0.003 0.027 0.619 0.002
t-value -3.61 -2.65 0.73 15.38 5.67

PESit Coef. -0.006 -0.001 -0.077 0.517 0.004
t-value -3.62 -1.83 -3.42 18.51 16.96

RVit Coef. -0.691 0.046 -1.575 7.25 0.415
t-value -12.73 2.39 -2.45 10.19 44.46

H-Lit Coef. -1.404 -0.038 -6.15 7.88 1.151
t-value -11.6 -1.04 -4.71 6.04 35.78

N=378 T=71

Table 3.5: Instrumental variable panel data model with constant parameters
This table shows the results of the 2SLS panel regression of our measures of market quality on our AT

proxy. The dependent variables are proportional quoted spread, proportional effective spread, daily
high-low price range and daily realized variance. In addition to AT, additional regressors included as
control variables are the previous month’s log of market Cap (ln(ME)), share turnover (T/O), inverse

price (1/P) and high-low price range (H-L). When the dependent variable is the current month’s
high-low price range, last month’s value of realized variance (RV) is used instead to avoid a dynamic

panel model. Standard errors are corrected for heteroskedasticity.

To gauge the size of this effect we note that the within-standard deviation of our AT

proxy, after being scaled by 100, is 0.18. Combining this with the coefficient estimates

from Table 3.5 implies that a one standard deviation increase in AT results in quoted

spreads (effective spreads) being lowered by approximately 0.002% (0.001%). On an

absolute level these effects are small. For example, given a hypothetical stock with

an initial price of $100, a one standard deviation increase in AT would reduce the

quoted spread by less than a penny.2 These results differ from those in Hendershott

et al. (2011). We attribute this to a combination of the differences in our AT proxies

as well as our inclusion of a more recent sample period. One possible explanation

is that the initial increase in AT during its inception has been far larger in terms of

effects than subsequent increases. For the variance measures, a one standard deviation

increase in our AT proxy results in a decrease in the proportional daily high-low spread

of approximately 0.25% and a decrease in realized variance associated with percentage

log returns of approximately 0.12 (or equivalently a reduction in realized daily volatility

of approximately 0.35%).

From a welfare perspective the magnitude of the effect is important. As mentioned

above and further investigated below, if AT amplifies variation in liquidity this is likely

2It should be noted that this is technically impossible.
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to demand a premium from investors and increase the cost of a capital for firms using

markets in which AT is present. Because of this, any benefits in terms of increased

liquidity on average, needs to be evaluated against the costs associated with increased

variation.

Tables 3.6 through 3.9 present the results when we allow the parameter to jump discretely

over time. The coefficient estimates in Tables 3.6 through 3.9 represent the size of the

estimated jump in the coefficient and a test of its significance, as outlined the previous

section. Figures 4 through 7 plot both the estimated SAW coefficients and the results

from period by period cross-sectional regressions. The effect of AT on our measures of

market quality is stable prior to the 2007-2008 period. Of course, the 2007-2008 period

covers the financial crisis, a time during which liquidity in many markets tightened

substantially. During the financial crisis period we find significant evidence of both

positive and negative jumps in the coefficient on AT.

For the two spread measures we find evidence of two large positive jumps in the coeffi-

cients in April and September/October of 2008 and other smaller jumps around those

two time periods. A positive jump in the coefficient represents a reduction in the benefit

of AT on spreads and potentially a reversal in its effects on spreads. Such is the case for

the two large positive jumps mentioned above. We find that during these two months

increases in AT lead to an increase in spreads and thus transacting in the securities

with high AT is, other things being equal, costlier than in low AT securities. April and

September/October of 2008 represent two particularly volatile periods for equity mar-

kets (and markets in general) in the US. In April markets were still rebounding from

the bailout of Bear Stearns and its eventual sale to JP Morgan. This all occurred dur-

ing a period when the exposure of many banks to US housing markets through various

structured financial products was beginning to be understood by investors. Similarly,

the failure of Lehman Brothers in September was another event that rattled financial

markets. The results for our variance measures are similar, as we also find evidence

of both positive and negative jumps during the 2007-2008 period. Of note is that for

realized variance we find the jumps to be, in general, beneficial for investors. That is,

we find that increases in AT cause a larger reduction in realized variance. Some caution

should be taken with respect to the interpretation of these results due to the fact that

variance is generally found to be strongly autocorrelated. Although we attempt to con-

trol for this using the lagged value of the high-low price range, it is possible the use of

this variable is not sufficient.

A potential explanation for the variation in the marginal effect of AT is the presence

of increased uncertainty. From both a valuation and a regulatory/policy perspective,

the periods following large, unpredictable shocks to asset markets can be associated
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with heightened uncertainty among investors. If investors fear that algorithmic traders

possess an informational advantage then it would be precisely during these periods when

an increase in AT would cause investors to be most at risk. Although a model of the

dynamic effects of AT and uncertainty is beyond the scope of this chapter, the above

results clearly point to a time varying relationship between the effects of AT on various

measures of market quality.

Coef. Z-value p-value
on the difference

from 2003-09-01 to 2008-02-01 6.49e-05 - - -

from 2008-03-01 to 2008-03-01 6.51e-04 1.650 0.0998 .

from 2008-04-01 to 2008-04-01 4.13e-03 6.420 1.36e-10 ***

from 2008-05-01 to 2008-08-01 7.66e-04 -7.420 1.16e-13 ***

from 2008-09-01 to 2008-10-01 1.03e-03 0.932 0.3510

from 2008-11-01 to 2008-12-01 -1.46e-04 -4.620 3.83e-06 ***

Table 3.6: Post-wavelet estimates for the proportional quoted spread.
This table presents the Post-SAW estimates for the parameters and the results of tests for jump
significance for the coefficient of AT when the dependent variable is PQS. The column labeled
estimate is the Post-SAW estimate for the parameter and the Z statistic represents a test of the

significance of the change from the previous time period (set equal to 0 for the first period). All tests
are asymptotic. *** denotes significance at the 0.1% level, ** denotes significance at the 1% level, *

denotes significance at the 5% level and . denotes significance at the 10% level.
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Figure 3.3: Time varying effect of algorithmic trading on the proportional quoted
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2007-08-01 9.06e-06 - -

from 2007-09-01 to 2007-12-01 6.73e-04 3.750 0.000176 ***

from 2008-01-01 to 2008-02-01 1.35e-04 -2.000 0.045800 *

from 2008-03-01 to 2008-03-01 5.31e-04 1.160 0.248000

from 2008-04-01 to 2008-04-01 4.19e-03 10.700 < 2.2e-16 ***

from 2008-05-01 to 2008-08-01 4.15e-04 -15.600 < 2.2e-16 ***

from 2008-09-01 to 2008-09-01 -1.74e-03 -7.540 4.77e-14 ***

from 2008-10-01 to 2008-10-01 1.79e-03 11.700 < 2.2e-16 ***

from 2008-11-01 to 2008-12-01 3.55e-06 -9.610 < 2.2e-16 ***

Table 3.7: Post-wavelet estimates for the proportional effective spread.
This table presents the Post-SAW estimates for the parameters and the results of tests for jump
significance for the coefficient of AT when the dependent variable is PES. The column labeled
estimate is the Post-SAW estimate for the parameter and the Z statistic represents a test of the

significance of the change from the previous time period (set equal to 0 for the first period). All tests
are asymptotic. *** denotes significance at the 0.1% level, ** denotes significance at the 1% level, *

denotes significance at the 5% level and . denotes significance at the 10% level.
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2007-06-01 -0.017100 - - -

from 2007-07-01 to 2007-07-01 -0.048500 -1.08 0.28200

from 2007-08-01 to 2007-08-01 -0.154000 -2.68 0.00745 **

from 2007-09-01 to 2008-08-01 -0.012400 5.23 1.65e-07 ***

from 2008-09-01 to 2008-09-01 -0.107000 -4.40 1.07e-05 ***

from 2008-10-01 to 2008-10-01 -0.000913 4.59 4.33e-06 ***

from 2008-11-01 to 2008-12-01 -0.021400 -1.60 0.11000

Table 3.8: Post-wavelet estimates for the daily high-low price range.
This table presents the Post-SAW estimates for the parameters and the results of tests for jump
significance for the coefficient of AT when the dependent variable is H − L. The column labeled
estimate is the Post-SAW estimate for the parameter and the Z statistic represents a test of the

significance of the change from the previous time period (set equal to 0 for the first period). All tests
are asymptotic. *** denotes significance at the 0.1% level, ** denotes significance at the 1% level, *

denotes significance at the 5% level and . denotes significance at the 10% level.
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Figure 3.5: Time varying effect of algorithmic trading on the daily high-low price
range.
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2008-08-01 -0.008080 -14.20 < 2.2e-16 ***

from 2008-09-01 to 2008-09-01 -0.063100 -5.09 3.57e-07 ***

from 2008-10-01 to 2008-10-01 0.000888 5.29 1.21e-07 ***

from 2008-11-01 to 2008-12-01 -0.007830 -1.26 0.208

Table 3.9: Post-wavelet estimates for the realized variance.
This table presents the Post-SAW estimates for the parameters and the results of tests for jump

significance for the coefficient of AT when the dependent variable is RV . The column labeled estimate
is the Post-SAW estimate for the parameter and the Z statistic represents a test of the significance of

the change from the previous time period (set equal to 0 for the first period). All tests are asymptotic.
*** denotes significance at the 0.1% level, ** denotes significance at the 1% level, * denotes significance

at the 5% level and . denotes significance at the 10% level.
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Figure 3.6: Time varying effect of algorithmic trading on the realized variance.

3.8 Conclusion

This chapter generalizes the special panel model specifications in which the slope param-

eters are either constant over time or extremely time heterogeneous to allow for panel

models with multiple structural changes that occur at unknown date points and may

affect each slope parameter individually. Consistency under weak forms of dependency

and heteroscedasticity in the idiosyncratic errors is established and convergence rates are

derived. Our empirical vehicle for highlighting this new methodology addresses the sta-

bility of the relationship between Algorithmic Trading (AT) and Market Quality (MQ).

We find evidence that the relationship between AT and MQ was disrupted during the
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time between 2007 and 2008. This period coincides with the beginning of the subprime

crisis in the US market and the bankruptcy of the big financial services firm Lehman

Brothers.



Appendix A

Appendix of Chapter 1

A.1 Theoretical Results and Proofs

Before beginning with proofs, we now define these quantities and show how to construct

consistent estimate of the bias term. Following again Bai et al. (2009) we first use kernel

estimators to approximate the long-run covariance matrices of wit. Estimates of εit,

ζit and ηt are given by the regression residuals ε̂it, ζ̂it = ∆Xit and η̂t = ∆F̂t. For all

h = −T + 1, . . . , T − 1 and all i = 1, . . . , n let Γ̂ε,i(h), Γ̂ε,ζ,i(h), Γ̂ε,η,i(h), Γ̂ε,b,i(h) and

Γ̂b,i(h) denote the (1× 1(, (1× p), (1× d) , (1× (p+ d)) and ((p+ d)× (p+ d)) empirical

lag h autocovariance matrices of (ε̂it, ε̂i,t+h), (ε̂it, ζ̂i,t+h), (ε̂it, η̂t+h), (ε̂it, (ζ̂
′
i,t+h, η

′
t+h)′) as

well as ((ζ̂ ′i,t, η̂
′
t)
′, (ζ̂ ′i,t+h, η̂

′
t+h)′), t = 1, . . . , T . Then define

Ω̂ε,i =
T−1∑

j=−T+1

ω(
j

κ
)Γ̂ε,i(j), Ω̂ε,b,i =

T−1∑
j=−T+1

ω(
j

κ
)Γ̂ε,b,i(j)

Ω̂b,i =

T−1∑
j=−T+1

ω(
j

κ
)Γ̂b,i(j), Ω̂ε|b,i = Ω̂ε,i − Ω̂′ε,b,iΩ̂

−1
b,i Ω̂ε,b,i,(

∆̂+
ζ,ε,i

∆̂+
η,ζ,i

)
=

(∑T−1
j=0 ω( jκ)Γ̂ε,ζ,i(h)∑T−1
j=0 ω( jκ)Γ̂ε,η,i(h)

)
−
T−1∑
j=0

ω(
j

κ
)Γ̂b,i(h)Ω̂−1

b,i Ω̂ε,b,i.

Here, the kernel function ω(.) satisfies the following assumption:

Assumption 4. The kernel function ω(.):

The kernel function ω(.) : R→ [−1, 1] satisfies (i) ω(0) = 1, ω(x) = ω(−x), (ii)∫ 1
−1 ω(x)2dx <∞ and with Parzen’exponent q ∈ (0,∞) such that lim 1−ω(x)

|x|q <∞
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and lim inf(N,T )↔∞

(
log(T )
log(N)

)
> 1; the bandwidth parameter κ ∼ N b where b ∈

( 1
2q , lim inf

(
log(T )
log(N)

)
− 1).

Ω̂ε,i, Ω̂ε,b,i, Ω̂b,i, Ω̂ε|b,i, ∆̂+
ζ,ε,i and ∆̂+

η,ζ,i estimate their theoretical analogues Ωε,i, Ωε,b,i,

Ωb,i, Ωε|b,i, ∆+
ζ,ε,i and ∆+

η,ζ,i which are defined by replacing in the above equation the

terms ω( ·κ)Γ̂·(·) by the corresponding true autocovariance matrices of wit = (εit, ζ
∗
it, ηt).

In addition, summation then ranges from −∞ to ∞ (instead of −T + 1 to T − 1) and 0

to ∞ (instead of 0 to T − 1).

Now define the projection matrices of F ◦ as MF = IT −F ◦(F ◦
′
F ◦)−1F ◦

′
and the scalar

aik as the element i, k of the projection matrix AΛ = Λ◦(Λ◦
′
Λ◦)−1Λ◦

′
. Corresponding

estimates M̂F and âik are obtained by replacing F ◦ and Λ◦ by F̂ and Λ̂. Then let

Zi = MFX
∗
i −

1

N

N∑
j=1

MFX
∗
j aij , Ẑi = M̂FXi −

1

N

N∑
j=1

M̂FXj âij

Conditional on F ◦, the bias term φ is then given by

φ =

(
1

NT 2

N∑
i=1

Z
′
iZi

)−1
1

N

N∑
i=1

θi,

θi = Z
′
i(∆bi)Ω

−1
b,i Ωε,b,i + ∆+

ζ,ε,i − δ
′
i∆

+
η,ζ,i,

∆b̂i = (∆X∗i −
1

N

N∑
j=1

∆X∗j aij ,∆F
◦), δi = (F ◦

′
F ◦)−1F ◦

′
Xi,

and a consistent estimator can be determined by

φ̂NT =

(
1

NT 2

N∑
i=1

Ẑ
′
iẐi

)−1
1

N

N∑
i=1

θ̂i,

θ̂i = Ẑ
′
i(∆b̂i)Ω̂

−1
b,i Ω̂ε,b,i + ∆̂+

ζ,ε,i − δ̂
′
i∆̂

+
η,ζ,i,

∆b̂i = (∆Xi −
1

N

N∑
j=1

∆Xj âij ,∆F̂ ), δ̂i = (F̂
′
F̂ )−1F̂

′
Xi.

Conditional on F ◦, Bai et al. (2009) show that there exists random matrices RCi,

defined as conditional expectations of integrated Brownian motions with individually

different covariance structure, such that as (N,T ) → ∞ we have 1
NT 2

∑N
i=1 ZiZ

′
i →d

limN→∞
1
N

∑N
i=1RCi. The covariance matrix Σc is then defined by

Σc =

(
lim
N→∞

1

N

N∑
i=1

RCi

)−1(
lim
N→∞

1

N

N∑
i=1

Ωε|b,iRCi

)(
lim
N→∞

1

N

N∑
i=1

RCi

)−1

, (A.1)
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Bai et al. (2009) do not propose an estimator of Σc. However, following their arguments

it is straightforward to show that a consistent estimate of the covariance matrix Σc is

given by

Σ̂c =

(
1

NT 2

N∑
i=1

Ẑ
′
iẐi

)−1
1

NT 2

N∑
i=1

Ω̂ε|b,iẐ
′
iẐi

(
1

NT 2

N∑
i=1

Ẑ
′
iẐi

)−1

,

We then obtain the following proposition:

Proposition A.1. Under Assumptions 1-3, we have, as (N,T )→∞,

Σ1/2
c

(√
NT (β̂(d)− β◦)−

√
Nφ
)

d−→ N(0, Ip),

where β̂(d) is the iterative least squares estimator obtained after transforming Model

(1.17) by using T (.).

Proof of A.1: Let Z̃i = M̂FXi− 1
N

∑N
j=1 M̂FXjaij . In view of Proposition 4 and Lemma

A.2 of Bai et al. (2009) we only have to show that 1
NT 2

∑N
i=1 Z̃

′
iZ̃i and 1√

NT

∑N
i=1 Z̃

′
iεi

have the same limit distributions as 1
T 2Z

′
iZi and 1√

NT

∑N
i=1 Z

′
iεi. Note that Xit−X∗it =

Xi,t−1 − X∗i,t−1 + (
∑K

k=1 δik(ζ̄kt − ζ0
kt)) is also an I(1)-process. But the innovations

(
∑K

k=1 δik(ζ̄kt − ζ0
kt)) are averages over mk individuals and hence varC((

∑K
k=1 δik(ζ̄kt −

ζ0
kt)) ≤ M1/N , where M1 < ∞ is some constant independent of i, t. Therefore, as

(N,T )→∞ ‖ 1
NT 2

∑N
i=1 Z̃iZ̃

′
i − 1

NT 2

∑N
i=1 ZiZ

′
i‖ = OP (N−1/2). Our assumptions imply

that conditional on {ηt} the random variables ζ∗it and εit are independent. Consequently,

as (N,T ) → ∞, we have 1√
NT

∑N
i=1 Z̃

′
i(
∑K

k=1 δikε̄k) =
∑K

k=1( 1√
NT

∑N
i=1 δikZ̃

′
i)ε̄k =

oP (1) as well as 1√
NT

∑N
i=1(Z

′
i−Z̃

′
i)εi = oP (1). One can conclude that 1√

NT

∑N
i=1 Z̃

′
iεi =

1√
NT

∑N
i=1 Z

′
iεi + op(1). The proposition is an immediate consequence. �

Corollary A.2. Under Assumptions 1-4, we have, as (N,T )→∞,

Σ1/2
c

(√
NT (

(
β̂(d)− 1

T
φ̂NT

)
− β◦)

)
d−→ N(0, Ip),

where β̂(d) is the iterative least squares estimator obtained after using the transformation

operator T (.) and φ̂NT is estimated as above.

Proof of Corollary A.2: Corollary 1 follows from a straightforward generalization

of the arguments used in the proof of Theorem 2 in Bai et al. (2009). Note that, all

additional terms induced by the differences X∗it − Xit and εit − εit are asymptotically

negligible. �
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The main difference between our approach and the methodology of Bai et al. (2009) con-

sists in the fact that our estimation procedure directly incorporates a dimension estimate.

Our final estimator β̂EupBC = β̂(d̂Eup)− 1
T φ̂NT , thus, relies on the estimated dimension

d̂Eup. The following theorem shows that with high probability d̂Eup will asymptotically

coincide with the true dimension d. The asymptotic distributions derived in Corollary

1 thus remain valid when replacing d by d̂Eup. Furthermore, the final estimator F̂EupBC

yields a consistent estimator of the true factor structure (up to rotations).

Theorem A.3. Under assumptions 1-3, we have, as (N,T )→∞,

a) P (d̂Eup = d)→ 1, if the starting estimate dmax ≥ d and g is of the form g = cpNT

such that (i) c = OP (1) and strict positive, (ii) pNT →∞, and (iii) log log(T )
T pNT →

0,

b) with the additional Assumption 4,

Σ1/2
c

√
NT (β̂EupBC − β◦)

d−→ N(0, Ip),

c) and for some (d× d) invertible matrix H,

1

T

T∑
t=1

‖F̂EupBC,t − F ◦t H‖2 = OP (
1

N
) +OP (

1

T
).

Proof of Theorem A.3: Assertion a). We can infer from the theoretical results of Bai

et al. (2009) that

1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(d))2 = OP (1), (A.2)

where Ŷit(d) denotes the fitted variable for the true dimension d.

Since our estimates are obtained by minimizing least squares objective function, we have,

∀l ∈ {d+ 1, d+ 2, . . . , dmax},

1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(l))2 ≤ 1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(d))2 = OP (1). (A.3)

On the other hand, straightforward generalization of the arguments of Bai (2004) shows

that, ∀l ∈ {0, . . . , d− 1},

1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(l))2 − 1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(d))2 = Op(T/ log log(T )). (A.4)

Note that (A.4) is strict positive.
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By construction of the estimation algorithm, we know that the number of outer iterations

rm is maximal dmax+1, where dmax is larger than d. To prove that lim(N,T )→∞ P (d̂Eup =

d) = 1, we use inductive reasoning and show that, for all outer iterations r ∈ {1, . . . , rm|d̂(rm) =

d̂(rm−1)},

lim(N,T )→∞ P (d̂(1) = d|dmax ≥ d) = 1, and

lim(N,T )→∞ P (d̂(r) = d) = 1, r ∈ {2, . . . , rm|d̂(rm) = d̂(rm−1)},

as long as g satisfies Conditions (i)− (iii).

First of all, we show that the optimal dimension d̂(1) obtained by using the stating scaling

coefficient σ̂2(dmax) = 1
NT

∑T
t=1(Yit − Ŷit(dmax))2 in g is consistent.

According to (A.3), σ̂2(dmax) = Op(1).

Since

S
(1)
4 (l)− S(1)

4 (d) =
1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(l))2 − 1

NT

N∑
i=1

T∑
t=1

(Yit − Ŷit(d))2 + (l − d)g(1),

where g(1) = σ̂2(dmax)pNT such that pNT → ∞ and log log(T )
T pNT → 0, as (N,T ) → ∞,

we can conclude from (A.3) and (A.4) that

lim
(N,T )→∞

P (S
(1)
4 (l)− S(1)

4 (d) > 0) = 0 ∀l ∈ {0, . . . , dmax|l 6= d}.

Because d̂(1) is the minimizer of S
(1)
4 (l), it follows that

lim
(N,T )→∞

P (d̂(1) = d) = 1. (A.5)

At the outer iteration stage r + 1, the law of total probability implies

lim(N,T )→∞ P (d̂(r+1) = d) = lim(N,T )→∞

(
P (d̂(r+1) = d|d̂(r) = d)P (d̂(r) = d)

+ P (d̂(r+1) = d|d̂(r) 6= d)P (d̂(r) 6= d)
)
.

To complete the proof, we have, therefore, to verify that

lim
(N,T )→∞

P (d̂(r+1) = d|d̂(r) = d) = 1, for r = 2, . . . , rm. (A.6)
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According to (A.3), we have, for d̂(r) = d, σ̂2(d̂(r)) = Op(1). From (A.3) and (A.4), we

can conclude that

lim
(N,T )→∞

P (S
(r+1)
4 (l)− S(r+1)

4 (d) > 0) = 0 ∀l ∈ {0, . . . , dmax|l 6= d},

with g(r) = σ̂2(d̂(r))pNT , and hence

lim
(N,T )→∞

P (d̂(r+1) = d|d̂(r) = d) = 1, for r = 2, . . . , rm.

Induction implies

lim
(N,T )→∞

P (d̂(r+1) = d|d̂(r) = d) = lim
(N,T )→∞

P (d̂(r+1) = d) = 1, for r = 2, . . . , rm.

Assertion a) is an immediate consequence.

Now, we have

Σ−1/2
c

(√
NT (β̂CupBC(d̂Eup)− β)

)
= Σ−1/2

c

(√
NT (β̂CupBC(d)− β)

)
+ Σ−1/2

c

(√
NT (β̂CupBC(d̂Eup)− β̂CupBC(d)

)
= Σ−1/2

c

(√
NT (β̂CupBC(d)− β)

)
+ oP (1).

By Corollary 1, Assertion b) is, hence, an immediate consequence. Assertion c) follows

from Assertion a) and Proposition 5 of Bai et al. (2009). �
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Appendix of Chapter 3

B.1 Proofs of Section 3.2

Lemma B.1. Let T = 2L−1 for some integer L ≥ 2 and β = (β1, . . . , βT )
′ ∈ RT a vector

that possesses exactly one jump at τ ∈ {1, . . . , T} such that

βt =

{
βτ for t ∈ {1, . . . , τ}
βτ+1 6= βτ for t ∈ {τ + 1, . . . , T}.

Let wlk(t) be defined as (3.8) and hlk(t) as (3.9), where a1,1, al,2k−1 and al,2k are positive

real values for all l ∈ {1, . . . , L}, and k ∈ {1, . . . ,Kl}. There then exists unique lτ non-

zero coefficients {blkl |lτ ≤ L}, where kl ∈ {1, . . . ,Kl}, such that

βt =

lτ∑
l=1

wlkl(t)blkl .

Proof of Lemma B.1: To prove the proposition, we show that βt can be reconstructed

by using at most L wavelet basis if it processes exactly one jump, say at τ ∈ {1, . . . , T}.
To simplify the exposition, we re-define the wavelet basis wl,k(t), for l > 1 as follows:

wl,k(t) = a∗l,2k−1h
∗
l,2k−1(t)− a∗l,2kh∗l,2k(t),

where

h∗l,k(t) =

{
1 for t ∈

{(
2L−l−1(k − 1) + 1

)
, . . . ,

(
2L−l−1k

)}
0 else.

This is equivalent to (3.8). The unique difference is that the coefficients a∗l,2k−1 and a∗l,2k

are scaled by
√

2l in order to simplify the construction of h∗l,k(t) and let it be either 1 or

0.
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Note that by construction, there exists a unique lτ ∈ {2, . . . , L} and a unique klτ ∈
{1, . . . , 2lτ−2} such that

wlτklτ (τ) = a∗lτ ,2klτ−1 and wlτklτ (τ + 1) = −a∗lτ ,2klτ .

Moreover, there exists in each level l ∈ {1, . . . , L|l < lτ} at most one basis wlkl(t) that

satisfies the following condition:

wlkl(τ) = wl,kl(τ + 1) 6= 0.

Define the time interval Il, for each l = 1, . . . , lτ , as follows:

Il = {t ∈ {1, . . . , T}|wl,kl(t) 6= 0}.

such that
lτ⋃
l=1

Il = {1, . . . , T}

and

Ilτ ⊂ Ilτ−1 ⊂ · · · ⊂ I2 ⊆ I1 = {1, . . . , T}.

We now begin with the thinnest interval Ilτ that contains the jump. Define

β
(lτ )
t =


βt = βτ if t ≤ τ and t ∈ Ilτ ∩ {t|t ≤ τ}
βt = βτ+1 if t > τ and t ∈ Ilτ ∩ {t|t > τ}
0 else.

Because βτ 6= βτ+1 and a∗lτ ,2klτ−1, a
∗
lτ ,2klτ

> 0, there exists a non-zero coefficient blτ ,klτ =
βτ−βτ+1

a∗lτ ,2klτ−1+a∗lτ ,2klτ
and a constant β(lτ ) 6= {βτ , βτ+1} such that

β
(lτ )
t =


βτ = β(lτ ) + a∗lτ ,2klτ−1blτ ,klτ if t ≤ τ and t ∈ Ilτ
βτ+1 = β(lτ ) − a∗lτ ,2klτ blτ ,klτ if t > and t ∈ Ilτ
0 else.

(B.1)

Using the definition of wlk(t), we can rewrite (B.1) as

β
(lτ )
t =

{
βt = β(lτ ) + wlτ ,klτ (t)blτ ,klτ if t ∈ Ilτ
0 else.

(B.2)
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Consider the second thinnest interval Ilτ−1 . Let

β
(lτ−1)
t =


βt if t ∈ Ilτ−1 \ Ilτ
β(lτ ) if t ∈ Ilτ
0 else.

Note that βt is constant over Ilτ−1 \ Ilτ ; it can be either βτ or βτ+1. Now, because

β(lτ ) 6= {βτ , βτ+1}, we can determine a second unique non-zero coefficient blτ−1,klτ−1
and

a second unique constant β(lτ−1) 6= {βτ , βτ+1} such that

β
(lτ−1)
t =


β(lτ−1) + wlτ−1,klτ−1

(t)blτ−1,klτ−1
= βt if t ∈ Ilτ−1 \ Ilτ

β(lτ−1) + wlτ−1,klτ−1
(t)blτ−1,klτ−1

= β(lτ ) if t ∈ Ilτ
0 else.

Because wlτ ,klτ (t) = 0 for all t /∈ Ilτ−1 and all t ∈ Ilτ−1 \ Ilτ , adding wlτ ,klτ (t)bl,kl on

both sides, gives

β
(lτ−1)
t + wlτ ,klτ (t)bl,kl =


βt + wlτ ,klτ (t)bl,kl if t ∈ Ilτ−1 \ Ilτ
β(lτ ) + wlτ ,klτ (t)bl,kl if t ∈ Ilτ
0 else.

Moreover, because β(lτ ) + wlτ ,klτ (t)bl,kl = βt for all t ∈ Ilτ , we can write

β
(lτ−1)
t + wlτ ,klτ (t)bl,kl =

{
β(lτ−1) +

∑lτ
l=lτ−1wl,kl(t)bl,kl = βt if t ∈ Ilτ−1

0 else.

Replacing β
(tτ−1)
t by β

(tτ−2)
t and proceeding with the recursion until β

(lτ−l)
t , for l ∈

{2, . . . , lτ}, we end up with

β
(lτ−l)
t +wlτ−l+1,klτ−l+1

(t)blτ−l+1,klτ−l+1
=

{
β(lτ−l) +

∑lτ
s=lτ−l ws,ks(t)bs,ks = βt if t ∈ Ilτ−l

0 else.

(B.3)

where β(lτ−l) is constant over Ilτ−l. Finally, from (B.3), we can infer that, for all

t ∈ I1 = {1, . . . , T},

βt = β(1) +

lτ∑
l=2

wl,kl(t)bl,kl ∀t ∈ {1, . . . , T}.
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Because β(1) is a constant and w11(t) = a11 6= 0, ∀t ∈ {1, . . . , T}, we can express βt in

terms of lτ ≤ L basis such that

βt =

lτ∑
l=1

wl,kl(t)bl,kl ∀t ∈ {1, . . . , T}.

This completes the proof. �

Proof of Proposition 3.1: To prove the assertion, we expand the original vector in

a series of S vectors so that each new vector contains only one jump, and make use of

Proposition B.1. Let β be a T × 1 vector such that

β =



β1

β2

...

βτ1

βτ1+1

...

βτ2

βτ2+1

...

βτS+1

...

βT



=



βτ1

βτ1
...

βτ1

βτ2
...

βτ2

βτ3
...

βτS+1

...

βτS+1


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where {τs ∈ {1, . . . , T}|τ1 < . . . < τS}. We can transform β in a series of S + 1 Vectors,

βτ1 , . . . , βτS as follows:

βτ1
...

βτ1

βτ2
...

βτ2

βτ3
...

βτS

βτS+1

...

βτS+1


︸ ︷︷ ︸

β

=



βτ1 − βτ2
...

βτ1 − βτ2
0
...

0

0
...

0

0
...

0


︸ ︷︷ ︸

βτ1

+ . . .+



βτS−1 − βτS
...

βτS−1 − βτS
βτS−1 − βτS
...

βτS−1 − βτS
βτS−1 − βτS
...

0

0
...

0


︸ ︷︷ ︸

βτS

+



βτS
...

βτS

βτS
...

βτS

βτS
...

βτS

βτS+1

...

βτS+1


︸ ︷︷ ︸

βτS+1

,

so that each new vector processes exactly one jump (except βτS+1, which is constant

over all). From Proposition B.1, we know that each vector βτs , s = 1, . . . , S, processes

a unique expansion of the form

βτs =
L∑
l=1

Kl∑
k=1

wlkb
(s)
lk

with at most L non-zero coefficients in {b(s)lk }l=1,...,L;k=1,...,Kl , where

Kl =

{
1 if l = 1

2l−2 if l = 2, . . . , L.

The fact that β =
∑S+1

s=1 βτs completes the proof. �

Proposition B.2. If a1,1, al,2k−1 and al,2k are chosen for each l ∈ {1, . . . , L} and k ∈
{1, . . . ,Kl} such that

(i) a2
l,2k−1

1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k−1(t) + a2

l,2k
1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k(t) = 1,

(ii) al,2k−1
1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k−1(t) − al,2k

1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k(t) = 0

(iii) a2
1,1

1
nT

∑n
i=1

∑T
t=1 XitZit = 1
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then (a) and (b) are satisfied for all l, l
′ ∈ {1, . . . , L}, k,∈ {1, . . . ,Kl}, and k

′
,∈

{1, . . . ,Kl′ |l 6= l
′}, or k, k

′
,∈ {1, . . . ,Kl|k 6= k

′
; l = l

′}.

Proof of Proposition B.2: To prove that (i)− (iii) imply the orthonormality Con-

ditions (a) and (b), for all l, l
′ ∈ {1, . . . , L}, k ∈ {1, . . . ,Kl}, and k

′ ∈ {1, . . . ,Kl′}, it is

sufficient to verify the following three statements:

(S.1): condition (b) holds if l = l
′

and k
′ 6= k.

(S.2): condition (b) holds if (ii) is satisfied for all l
′
< l, and

(S.3): condition (a) holds if (i) and (iii) are satisfied for all (l, k) = (l
′
, k
′
).

Before checking S.1-S.3, we begin with examining the product Zl,k,itXl′ ,k′ ,it. If (l, k) 6=
(l
′
, k
′
),

Zl,k,itXl′ ,k′ ,it = Zit,lkZit,l′k′

= XitZit
(
wlk(t)wl′k′ (t)

)
= XitZit (al,2k−1hl,2k−1(t)− al,2khl,2k(t))

(
al′ ,2k′−1hl,2k′−1(t)− al′ ,2k′hl′ ,2k′ (t)

)
= XitZit

(
al,2k−1al′ ,2k′−1hl,2k−1(t)hl′ ,2k′−1(t)− al,2k−1al′ ,2k′hl,2k−1(t)hl′ ,2k′ (t)

−al,2kal′ ,2k′−1hl,2k(t)hl′ ,2k′−1(t) + al,2kal′ ,2k′hl,2k(t)hl′ ,2k′ (t)
)

If (l, k) = (l
′
, k
′
),

Zl,k,itXl,k,it = XitZit (wlk(t))
2

= XitZit (al,2k−1hl,2k−1(t)− al,2khl,2k(t))2

= XitZit

a2
l,2k−1h

2
l,2k−1(t) + a2

l,2kh
2
l,2k(t)− 2al,2k−1al,2k hl,2k−1(t)hl,2k(t)︸ ︷︷ ︸

0


= XitZit

(
a2
l,2k−1h

2
l,2k−1(t) + a2

l,2kh
2
l,2k(t)

)
,

(B.4)

The product hl,2k−1(t)hl,2k(t) (in the third line) is zero because hl,2k(t) = 0, for all t ∈{(
(2k − 2)2L−l + 1

)
, . . . ,

(
(2k − 1)2L−l

)}
, hl,2k−1(t) = 0, for all t ∈

{(
(2k − 1)2L−l + 1

)
, . . . ,

(
2k2L−l

)}
and both hl,2k(t) = hl,2k−1(t) = 0 else.

Consider (S.1). If l = l
′
, and k

′ 6= k, we have, for all t ∈ {1, . . . , T},

Zl,k,itXl′ ,k′ ,it = ZitXit

al,2k−1al,2k′−1 hl,2k−1(t)hl,2k′−1(t)︸ ︷︷ ︸
=0

−al,2k−1al,2k′ hl,2k−1(t)hl,2k′ (t)︸ ︷︷ ︸
=0

−al,2kal,2k′−1 hl,2k(t)hl,2k′−1(t)︸ ︷︷ ︸
=0

+al,2kal,2k′ hl,2k(t)hl,2k′ (t)︸ ︷︷ ︸
=0


= 0
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This implies (b), for all l, l
′ ∈ {2, . . . , L|l = l

′} and k, k
′ ∈ {1, . . . , 2l−2|k′ 6= k}.

Consider (S.2). If l
′
< l, we have by construction either

Zl,k,itXl′ ,k′ ,it = ZitXital′ ,2k′hl′ ,2k′ (t) (al,2k−1hl,2k−1(t)− al,2khl,2k(t))
= al′ ,2k′

(
ZitXital,2k−1hl,2k−1(t)hl′ ,2k′ (t)− ZitXital,2khl,2k(t)hl′ ,2k′ (t)

)
or

Zl,k,itXl′ ,k′ ,it = ZitXital′ ,2k′−1hl′ ,2k′−1(t) (al,2k−1hl,2k−1(t)− al,2khl,2k(t))
= al′ ,2k′−1

(
ZitXital,2k−1hl,2k−1(t)hl′ ,2k′−1(t)− ZitXital,2khl,2k(t)hl′ ,2k′−1(t),

)
If hl′ ,2k′ (t) =

√
2l, then hl′ ,2k′−1(t) = 0 and if hl′ ,2k′−1(t) =

√
2l, then hl′ ,2k′ (t) = 0,

otherwise both hl′ ,2k′ (t) and hl′ ,2k′−1(t) are zeros. Thus condition (ii) ensures (b).

Consider (S.3). From (B.4), we can easily verify that (a) is a direct result of (i) for all

l ∈ {2, . . . , L} and k ∈ {1, . . . ,Kl}.�

B.2 Proofs of Section 3.3

Proof of Lemma 3.4: The IV estimator of our (modified) wavelets coefficients is

given by

b̃l,k,p =
1

n(T − 1)

n∑
i=1

T∑
t=2

Zlk,it,p∆yit,

=
1

n(T − 1)

n∑
i=1

T∑
t=2

Zlk,it,p(
L∑
l=1

Kl∑
k=1

P∑
q=1

Zlk,it,qbl,k,q + ∆eit),

= bl,k,p +
1

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Zlk,it,p∆eit.
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The last equality is due to the orthonormality conditions (A) and (B). Subtracting bl,k,p

from both sides and multiplying by
√
n(T − 1), we get, for l > 1,

√
n(T − 1)(b̃l,k,p − bl,k,p) =

1√
n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Zlk,it,q∆eit,

=
1√

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Wlk,pq(t)Zit,q∆eit,

=
1√

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Al,2k,pqhl,2k(t)Zit,q∆eit

− 1√
n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Al,2k−1,pqhl,2k−1(t)Zit,q∆eit,

=
1√

n(2L−l−1 − 1)

P∑
q=1

Al,2k,pq

n∑
i=1

∑
t∈{hl,2k(t)6=0}

Zit,q∆eit

− 1√
n(2L−l−1 − 1)

P∑
q=1

Al,2k−1,pq

n∑
i=1

∑
t∈{hl,2k−1(t)6=0}

Zit,q∆eit,

where Wlk,pq(t) and Al,m,pq are the (p, q)- elements of the matrices Wl,k(t) and Al,m,

respectively. and, for l = 1,

√
n(T − 1)(b̃1,1,p − b1,1,p) =

1√
n(2L − 1)

P∑
q=1

A1,1,pq

n∑
i=1

T∑
t=2

Zit,q∆eit.

By Assumption B.(i), we know that Ec(Zit∆eit) = 0, for all i and t. The law of total

expectation implies

E
(√

n(T − 1)(b̃l,k,p − bl,k,p)
)

= 0,

for all l and k. The total variance, for l > 1, can be written as

Σl,k,p = E
(
(
√
n(T − 1)(b̃l,k,p − bl,k,p))2

)
,

= E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rEc
(
∆eit∆ejs

)
+E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k−1,pqAl,2k−1,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rEc
(
∆eit∆ejs

) ,

= Πl,k,1 + Πl,k,2,
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where
∑P

q,r=1,
∑n

i,j=1 and
∑

t,s∈H denote the double summations
∑P

q=1

∑P
q=1

∑n
i=1

∑n
j=1

and
∑

t∈{Hl,2k(t)6=0}
∑

s∈{Hl,2k(s)6=0}, respectively.

For l = 1,

Σ1,1,p := E
(
(
√
n(T − 1)(b̃1,1,p − b1,1,p))2

)
= E

 P∑
q,r=1

1

n(2L − 1)
A1,1,pqA1,1,pr

n∑
i,j=1

T∑
t,s=2

Zit,qZjs,rEc
(
∆eit∆ejs

) .

By using Assumption C, we can infer

Πl,k,1 = E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rσij,ts

 ,

≤ E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,r|σij,ts|

 ,

Πl,k,2 ≤ E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k−1,pqAl,2k−1,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,r|σij,ts|

 , and

Σ1,1,p ≤ E

 1

n(2L − 1)

P∑
q,r=1

A1,1,pqA1,1,pr

n∑
i,j=1

T∑
t,s=2

Zit,qZjs,r|σij,ts|

 .

Because E(||Al,2k||4) and E(||Al,2k−1||4) are bounded uniformly in l, k, and E(||Zit||4),

and |σij,ts| is bounded uniformly in i, j, t, s (see Assumptions B and C), we can easily

show (by Cauchy-Schwarz inequality) that Σl,k,p ≤ M is bounded uniformly in l, k, p.

Using Assumption B(iii), we can write

P

(∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
≤ P

(
Σ
− 1

2
l,k,p

√
n(T − 1)

∣∣∣b̃l,k,p − bl,k,p∣∣∣ > c

)
,

≤ 1

c
exp(−c

2

2
). (B.5)

Using Boole’s inequality and (B.5), we get

P

(
sup
l,k,p

∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
≤

∑
l,k,p

P

(∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
,

≤ (2L−1P )
1

c
exp(−c

2

2
),

= (T − 1)P
1

c
exp(−c

2

2
),

where
∑

l,k,p denotes the triple summation
∑L

l=1

∑Kl
k=1

∑P
p=1. The assertion of the the-

orem follows by replacing c with
√

2 log((T − 1)P )c∗ for any c∗ > 0. �
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Proof of Theorem 3.5: We have first to prove that (i) : supt |γ̃t,p − γt,p| = op(1)

for all p ∈ {1, . . . , P} if
√
T − 1λn,T → 0, as n, T → ∞ or n → ∞ and T is fixed, and

then conclude that (ii) : 1
T−1

∑T
t=2 ||γ̃t − γt||2 = Op((log(T − 1)/n)κ), if

√
T − 1λn,T ∼

(log(T − 1)/n)κ/2, for κ ∈]0, 1].

By construction,

γ̃t,p − γt,p =

P∑
q=1

L∑
l=1

Kl∑
k=1

Wlk,pq(t)b̂l,k,q −
P∑
q=1

L∑
l=1

Kl∑
k=1

Wlk,pq(t)bl,k,q, (B.6)

where

b̂l,k,q = b̃l,k,q − b̃l,k,q(|b̃l,k,q| < λn,T ). (B.7)

and

Wlk,pq(t) = Al,2k,pq(t)Hl,2k(t)−Al,2k−1,pq(t)Hl,2k−1(t), (B.8)

=
√

2l−2Al,2k,pqI(Hl,2k(t) 6= 0)−
√

2l−2Al,2k−1,pqI(Hl,2k−1(t) 6= 0).

Plugging (B.7) and (B.8) in (B.6) and using the absolute value inequality, we get

|γ̃t,p − γt,p| ≤
P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k(t) 6= 0)(b̃l,k,q − bl,k,q)|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k(t) 6= 0)b̃l,k,qI(|b̃l,k,q| < λn,T )|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k−1,pqI(Hl,2k−1(t) 6= 0)(b̃l,k,q − bl,k,q)|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k−1(t) 6= 0)b̃l,k,qI(|b̃l,k,q| < λn,T )|,

= a+ b+ c+ d.
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Because b̃l,k,pI(|b̃l,k,p| < λn,T ) < λn,T and |b̃l,k,p − bl,k,p| ≤ supl,k,p |b̃l,k,p − bl,k,p| for all

p ∈ {1, . . . , P}, we can write

a ≤ sup
l,k,p
|b̃l,k,p − bl,k,p|

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)|,

b ≤ λn,T

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)|,

c ≤ sup
l,k,p
|b̃l,k,p − bl,k,p|

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq

√
2l−2I(Hl,2k(t) 6= 0)|, and

d ≤ λn,T

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq

√
2l−2I(Hl,2k−1(t) 6= 0)|.

By Assumption B, E(||Al,2k||4) and E(||Al,2k−1||4) are bounded uniformly in l and k.

We can deduce that

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)| = Op(1)
L∑
l=1

Kl∑
k=1

|
√

2l−2I(Hl,2k(t) 6= 0)| and

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq

√
2l−2I(Hl,2k−1(t) 6= 0)| = Op(1)

L∑
l=1

Kl∑
k=1

|
√

2l−2I(Hl,2k−1(t) 6= 0)|.

Moreover, from the construction of Hl,2k(t) and Hl,2k−1(t), we can easily verify that

sup
t

L∑
l=1

Kl∑
k=1

√
2l−2I(Hl,2k−1(t) 6= 0) =

L∑
l=1

√
2l−2 = O(

√
2L−1) = O(

√
T − 1)

By Lemma 3.4, we can infer that

sup
t,p
|γ̃t,p − γt,p| = sup

l,k,p
|b̃l,k,p − bl,k,p| ×Op(

√
T − 1) + λn,T ×Op(

√
T − 1),

= Op
(√ log(T − 1)

n
+
√
T − 1λn,T

)
. (B.9)

Assertion (i) follows immediately if
√
T − 1λn,T → 0 with log(T − 1)/n→ 0, as n, T →

∞.

Consider Assertion (ii). Let Lp := {(l, k)|bl,k,p = 0} denote the set of double indexes cor-

responding to the non-zero true wavelet coefficients so that γt,p =
∑P

q=1

∑L
l=1

∑Kl
k=1Wl,k,pq(t)bl,k,q

can be written as

γt,p =

P∑
q=1

∑
(l,k)∈Lp

Wl,k,pq(t)bl,k,q,
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and γ̃t,p =
∑P

q=1

∑L
l=1

∑Kl
k=1Wlk,pq(t)b̂l,k,q as

γ̃t,p =

P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)b̂l,k,q +

P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q.

The difference, can be written as

γ̃t,p − γt,p =

P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q) +

P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q.

Averaging the square, we get

1

T − 1

T−1∑
t=2

(γ̃t,p − γt,p)2 =
1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q)

2

+
1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q

2

− 1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q)

×
 P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q

 ,

=
1

T − 1

T−1∑
t=2

e2
t +

1

T − 1

T−1∑
t=2

f2
t −

1

T − 1

T−1∑
t=2

etft.

From the analysis of assertion (i), we can see that

et = sup
l,k,p
|b̂l,k,p − bl,k,p|Op(1)

P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1)

= Op
(√ log(T − 1)

n(T − 1)
+ λn,T

) P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1),

and

ft = sup
(l,k)∈Lp,p

|b̂l,k,p|Op(1)

P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1).
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Using Cauchy-Schwarz inequality to (
∑P

q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6=

1))2 over (l, k), we can infer that

e2
t ≤ Op

( log(T − 1)

n(T − 1)
+ λ2

n,T

) P∑
q=1

∑
(l,k)∈Lp

2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1),

and

1

T − 1

T−2∑
t=2

f2
t ≤ ( sup

(l,k)∈Lp,p
|b̂l,k,p|)2Op(T − 1).

If
√
T − 1λn,T ∼ (log(T − 1)/n)κ/2, then plim( 1

T−1

∑T−2
t=2 f2

t ) = 0 as T and\or n pass to

infinity, for any κ ∈]0, 1[.

Let us now examine the average of e2
t over t. If, in total, the maximal number of jumps

is S∗ =
∑P

p Sp, then by Proposition 3.1 the number of non-zero coefficients is at most

(S∗ + 1)L. By taking the average of e2
t over t, we can hence infer that

1

T − 1

T−1∑
t=2

e2
t ≤ Op

( log(T − 1)

n(T − 1)
+ λ2

n,T

)
(min{(S∗ + 1) log(T − 1), (T − 1)}) .

Finally, because plim( 1
T−1

∑T−2
t=2 f2

t ) = 0, by Cauchy-Schwarz inequality, we can infer

that 1
T−1

∑T−1
t=2 etft also can be neglected. Thus

1

T − 1

T−1∑
t=2

(γ̃t,p − γt,p)2 = Op
(J∗(log(T − 1)/n)κ

(T − 1)

)
,

where J∗ = min{(S∗ + 1) log(T − 1), (T − 1)}. This completes the proof. �

B.3 Proofs of Section 3.4

Proof of Lemma 3.6: We have to show that

sup
k,p∈{1,...,P}

∣∣∣c̃(m)
L,k,p − c

(m)
L,k,p

∣∣∣ = Op
(√

log(T − 1)/(n(T − 1))
)
,

for m = s, u.
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For p ∈ {1, . . . , P} and m = s, we have by construction

c̃
(s)
L,k,p − c

(s)
L,k,p =

1

T − 1

T∑
t=2

ψL,k(t− 1)(γ̃t,p − γt,p),

=
1

T − 1

T∑
t=2

ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)(b̃l,m,q − bl,m,q),

=
1

T − 1

∑
t∈{ψL,k(t−1) 6=0}

ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)(b̃l,m,q − bl,m,q),

where
∑

l,m,q denotes the triple summation
∑L

l=1

∑Kl
k=1

∑P
q=1.

Taking the absolute value, we obtain

|c̃(s)
L,k,p − c

(s)
L,k,p| ≤ sup

l,k,p
|b̃l,k,p − bl,k,p|

1

T − 1

∑
t∈{ψL,k(t−1)6=0}

∣∣∣∣∣∣ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)

∣∣∣∣∣∣ .
Recall that 1

T−1

∑
t∈{ψL,k(t−1) 6=0} ψL,k(t− 1)2 = 1. By using Cauchy-Schwarz inequality,

we can easily verify that

1

T − 1

∑
t∈{ψL,k(t−1)6=0}

∣∣∣∣∣∣ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)

∣∣∣∣∣∣ ≤
 1

T − 1

∑
t∈{ψL,k(t−1)6=0}

(
∑
l,m,q

Wl,m,p,q(t))
2

1/2

.

Because the support of ψL,k(t− 1) is of length 2 (
∑

t I(t ∈ {ψL,k(t− 1) 6= 0}) = 2 ), by

using a similar analysis to that used in the proof of Theorem 3.5, we can easily verify

that the term in the last inequality is Op(1). By Lemma 3.4, we can hence infer that

|c̃(s)
L,k,p − c

(s)
L,k,p| ≤ sup

l,k,p
|b̃l,k,p − bl,k,p|Op(1) = Op(

√
log(T − 1)/n(T − 1)).

The proof of supL,k,p |c̃
(u)
L,k,p−c

(u)
L,k,p| being Op(

√
log(T − 1)/n(T − 1)) is similar and thus

omitted. �

Proof of Theorem 3.7: To prove the assertion, we show, in a first part, that asymp-

totically no jump can be detected in the stability intervals if λn,T satisfies Condition c.1.

In a second part, we show that all existing jumps must be asymptotically identified if

λn,T satisfies Condition c.2.
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We begin with defining the following sets for each p ∈ {1, . . . , P}:

Jp := {τ1,p, . . . , τSp,p},

J cp := {1, . . . , T} \ Jp,

J p := {2, 4, . . . , T − 1} ∩ Jp,

J p := {3, 5, . . . , T} ∩ Jp,

J cp := {2, 4, . . . , T − 1} \ J p, and

J cp := {3, 5, . . . , T} \ J p.

Here, Jp is the set of all jump locations for parameter βt,p, J cp is its complement, which

contains only the stability intervals, J p is the set of all even jump locations and J p is

the set of all odd jump locations so that J p ∩ J p = ∅ and J p ∪ J p = Jp. Finally, the

sets J cp and J cp define the complements of J p and J p, respectively.

Define the event

ωn,T := { sup
t∈J cp , p∈{1,...,P}

{|∆β̃(u)
t,p |IJ cp + |∆β̃(s)

t,p |IJ cp} = 0},

where IJ cp
= I(t ∈ J cp), IJ c

p
= I(t ∈ J cp) and I(.) is the indicator function.

To prove that no jump can be identified in the stability intervals, we have to show, that

P (ωn,T ) → 1, if
√

n(T−1)
log(T−1)λn,T → ∞, as n, T → ∞ or as n → ∞ and T is fixed. Note

that J cp and J cp are adjacent.

Let’s now start with the no-jump case in J cp. By construction, we have, for all t ∈
{2, 4, . . . , T − 1},

∆β̃
(u)
t,p =

KL∑
k=1

∆ψL,k(t)ĉ
(u)
L,k,p

Recall that at l = L, the construction of the wavelets basis implies that at each t ∈
{2, 4, . . . , T − 1} there is only one differenced basis ∆ψL,k(t) that is not zero. Let

Kcp = {k|∆ψL,k(t) 6= 0, t ∈ J cp} = {k|∆ψL,k(t − 1) 6= 0, t ∈ J cp}. We can infer that

{supt∈J cp
|
∑KL

k=1 ∆ψL,k(t)ĉ
(u)
L,k,p| = 0} occurs only if {supk∈Kcp |c

(u)
L,k,p| = 0} occurs.

By analogy, we can show the same assertion for the complement set J cp, i.e., {supt∈J c
p
|∆β̃(s)

t,p | =

0} occurs only if {supk∈Kcp |ĉ
(s)
L,k,p| = 0} occurs.

To study P (ωn,T ), it is hence sufficient to study

P ( sup
k∈Kcp,m,p∈{1,...,P}

|ĉ(m)
L,k,p| = 0) = P ( sup

k∈Kcp,m,p∈{1,...,P}
|c̃(m)
L,k,p| < λn,T ).
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By Lemma 3.6, supk∈Kcp,m,p∈{1,...,P} |c̃
(m)
L,k,p| = Op

(√
log(T − 1)/n(T − 1)

)
, since c

(m)
L,k,p =

0, for all k ∈ Kcp, and p ∈ {1, . . . , P}. Thus, if
√

n(T−1)
log(T−1)λn,T → ∞, as n, T → ∞ or

n→∞ and T is fixed, then P (ωn,T )→ 1.

To complete the proof and demonstrate that all true jumps will be asymptotically iden-

tified, we suppose that there exists a jump location τj,p ∈ J p ∪ J p for at least one

p ∈ {1, . . . , P} that is not detected and show the contradiction. If τj,p ∈ J p, then

|∆β̃(u)
τj,p,p|IJ p + |∆β̃(s)

τj,p,p|IJ p = |∆β̃(u)
τj,p,p|.

Adding and subtracting ∆β
(u)
τj,p,p, we get

∆β̃(u)
τj,p,p =

KL∑
k=1

∆ψL,k(τj,p)(c̃
(u)
L,k,p − c

(u)
L,k,p)−

KL∑
k=1

∆ψL,k(τj,p)c̃
(u)
L,k,pI(c̃

(u)
L,k,p < λn,T )

+

KL∑
k=1

∆ψL,k(τj,p)c
(u)
L,k,p,

= I + II + III.

By Lemma 3.6, I = op(1), II = op(1) as long as
√
T − 1λn,T → 0, and III 6= 0 because∑KL

k=1 ∆ψL,k(t)c
(u)
L,k,p = ∆β

(u)
τj,p,p 6= 0. The probability of getting ∆β̃

(u)
τj,p,p = 0 converges

hence to zero.

If τj,p ∈ J p, then

|∆β̃(u)
τj,p,p|IJ p + |∆β̃(s)

τj,p,p|IJ p = |∆β̃(s)
τj,p,p|.

The prove is similar to the case of τj,p ∈ J p and thus omitted. This completes the proof.

�

Proof of Theorem 3.8: Recall that the post-Wavelet estimator is obtained by

replacing the set of the true jump locations τ1,1, . . . , τS1+1,1, . . . , τ1,P , . . . , τSP+1,P in

β̂(τ) = (β̂τ1,1 , . . . , β̂τS1+1,1 , . . . , β̂τ1,P , . . . , β̂τSP+1,P )
′

by the estimated jump locations τ̃ :=

{τ̃j,p|j ∈ {1, . . . , Sp+1}, p ∈ {1, . . . , P}}, given S̃1 = S1, . . . , S̃p = Sp. By using Theorem

3.7, we can infer that, conditional on S̃1 = S1, . . . , S̃p = Sp,

√
nT

1
2

(τ̃)β̂(τ̃) =
√
nT

1
2

(τ)β̂(τ) + op(1).
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To study the asymptotic distribution of
√
nT

1
2

(τ̃)β̂(τ̃) it is hence sufficient to study
√
nT

1
2

(τ)β̂(τ).

β̂(τ) =
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẏit
)

= β(τ) +
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆ėit
)
.

Scaling by
√
nT

1
2

(τ̃) and rearranging, we get

√
nT

1
2

(τ)

(
β̂(τ̃) − β(τ)

)
=

(
(nT(τ))

−1
n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1((
nT(τ)

)− 1
2

n∑
i=1

T∑
t=2

Zit,(τ)∆ėit

)
.

By Assumption E, the first term on the right hand side converges in probability to Q◦(τ)

and the second term converges in distribution to N(0, V ◦(τ)). Slutsky’s rule implies

√
nT

1
2

(τ)

(
β̂(τ) − β(τ)

) d→ N(0, (Q◦(τ))
−1
(
V ◦(τ)

)
(Q◦(τ))

−1).

It follows

√
nT

1
2

(τ̃)

(
β̂(τ̃) − β(τ)

)
=
√
nT

1
2

(τ)

(
β̂(τ) − β(τ)

)
+ op(1)

d→ N(0, (Q◦(τ))
−1
(
V ◦(τ)

)
(Q◦(τ))

−1).

This completes the Proof. �

Proof of Proposition 3.9 Consider c = 1 (the case of homoscedasticity without pres-

ence of auto- and cross-section correlation). Because by Assumption E, we know that

(nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

p→ Q◦(τ) and

(nT(τ))
−1

n∑
i=1

T∑
t=2

n∑
j=1

T∑
s=2

Zit,(τ)Z
′

js,(τ)σij,ts
p→ V ◦(τ),

it suffices to prove that

V̂
(1)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃)σ̂
2 p→ V

(1)
(τ) ,
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where V
(1)

(τ) = (nT(τ))
−1
∑n

i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2, with σ2 = Ec(∆ėit).

V̂
(1)

(τ̃) − V
(1)

(τ) = (
1

n(T − 1)

n∑
i=1

T∑
t=2

∆ê2
it − σ2)(nT(τ̃))

−1
n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃),

= +σ2

(
(nT(τ̃))

−1
n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃) − (nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)

)
,

= a+ b.

From Assumption B(ii), we can infer

||a|| ≤ (
1

n(T − 1)

n∑
i=1

T∑
t=2

∆ê2
it − σ2)

1

n

n∑
i=1

T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2,

=

(
1

n(T − 1)

n∑
i=1

T∑
t=2

((∆ê2
it −∆e2

it) + (∆e2
it − σ2))

)
1

n

n∑
i=1

T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2,

From

∆ˆ̇eit = ∆Ẏit −∆Ẋ
′

it,(τ̃)β̂(τ̃),

= ∆ėit + ∆Ẋ
′

it,(τ̃)(β(τ̃) − β̂(τ̃)), (B.10)

and by using Theorem 3.8 together with Assumption B(ii), we can show that

1

n(T − 1)

n∑
i=1

T∑
t=2

∆ˆ̇eit −
1

n(T − 1)

n∑
i=1

T∑
t=2

∆ėit = op(1). (B.11)

By the law of large numbers,

1

n(T − 1)

n∑
i=1

T∑
t=2

∆ėit − σ2 = op(1).

Thus, ||a|| = (op(1) + op(1))Op(1) = op(1). Moreover, from Theorem 3.7, we can infer

that, given S̃1 = S1, . . . , S̃P = SP ,

(nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃) = (nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ)Zit,(τ) + op(1).

Thus,

V̂
(1)

(τ̃) − V
(1)

(τ) = op(1).
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Consider c = 2 (the case of cross-section heteroskedasticity without auto- and cross-

section correlations). Because of Assumption E, it suffices to prove that

V̂
(2)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃)σ̂
2
i

p→ V
(2)

(τ) ,

where V
(2)

(τ) = (nT(τ))
−1
∑n

i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2
i , with σ2

i = Ec(∆ėit).

V̂
(2)

(τ̃) − V
(2)

(τ) =
1

n

n∑
i=1

(σ̂2
i − σ2

i )(T(τ̃))
−1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃),

= +
1

n

n∑
i=1

σ2
i

(
(T(τ̃))

−1
T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃) − (T(τ))
−1

T∑
t=2

Zit,(τ)Z
′

it,(τ)

)
,

= d+ e.

||d|| ≤ 1

n

n∑
i=1

(σ̂2
i − σ2

i )
T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2,

=
1

n

n∑
i=1

((σ̂2
i −

1

(T − 1)

T∑
t=2

∆ėit)− (σ2
i −

1

(T − 1)

T∑
t=2

∆ėit)
1

n

T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2.

From Equation (B.10), and Theorem 3.8, we can infer

1

(T − 1)

T∑
t=2

∆ˆ̇eit −
1

(T − 1)

T∑
t=2

∆ėit = op(1)νi, (B.12)

where 1
n

∑n
i=1 |νi| = Op(1). Moreover,

σ2
i −

1

(T − 1)

T∑
t=2

∆ėit = op(1)µi, (B.13)

where 1
n

∑n
i=1 |µi| = Op(1). Note that the first terms in (B.12) and (B.13) do not depend

on i. By using Assumption B(ii), we can infer

||d|| ≤ op(1)
1

n

n∑
i=1

|νi|
T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2 + op(1)

1

n

n∑
i=1

|µi|
T∑
t=2

||(T(τ̃))
−1/2Zit,(τ̃)||2,

= op(1)Op(1) + op(1)Op(1).

The proof of e being op(1) is similar to the proof of b in the first part. This is because

σ2
i does not affect the analysis.
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The proof of V̂
(3)
τ̃ being (nT(τ))

−1
∑n

i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2
t + op(1), with σ2

t = Ec(∆ėit)

is conceptually similar and thus omitted.

Finally, consider c = 4 (The case of cross-section and time heteroskedasticity without

auto- and cross-section correlations). As in the previous cases, all we need is to prove

that

V̂
(4)

(τ̃) = (nT(τ̃))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)∆
ˆ̇e2
it

p→ V
(4)

(τ) ,

where

V
(4)

(τ) = (nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)σ
2
it,

with σ2
it = Ec(∆ėit).

V̂
(4)

(τ̃) − V
(4)

(τ) = (nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)(∆
ˆ̇e2
it −∆ė2

it)

+(nT(τ))
−1

n∑
i=1

T∑
t=2

(Zit,(τ̃)Z
′

it,(τ̃) − Zit,(τ)Z
′

it,(τ))∆ė
2
it

+(nT(τ))
−1

n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)(∆ė
2
it − σ2

it).

= f + g + h.

Cauchy-Schwarz inequality implies

||f || ≤

(
(nT(τ))

−1
n∑
i=1

T∑
t=2

||Zit,(τ)||2
)1/2(

(nT(τ))
−1

n∑
i=1

T∑
t=2

(∆ˆ̇e2
it −∆ė2

it)

)1/2

= op(1).

By using Theorem 3.8, we can also verify that ||g|| = op(1). Finally, Cauchy-Schwarz,

Assumption B(ii), the law of large numbers implies that ||h|| = op(1). It follows

V̂
(4)

(τ̃)

p→ V
(4)

(τ) .

This completes the proof. �
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