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Chapter 1

Introduction

This thesis consists of three independent contributions in the area of microeconomic
theory which constitute Chapters 2-4. All three contributions share the feature of
agents holding multidimensional private information which motivates the title of the
thesis.

Chapter 2, entitled “Consistency and Communication in Committees”, is based on
a working paper under the same title which is joint work with Inga Deimen and Mark
T. Le Quement, both from the University of Bonn. In this paper, we generalize the
classical binary Condorcet jury model by introducing a richer state and signal space,
thereby generating a concern for consistency in the evaluation of aggregate information.
Information is of multidimensional nature here as it does not only provide information
about the defendant being guilty or innocent but also indicates a particular modality
of guilt or innocence. As coherent evidence for a particular variant of either guilt or
innocence is more meaningful than if that information were dispersed, the consistency
of signals constitutes a second informative dimension besides the mere number of signals
indicating guilt or innocence when deciding whether to acquit or convict the defendant.
We use this approach to analyze truthtelling incentives in pre-vote communication in
heterogeneous committees and find that full pooling of information followed by sincere
voting is compatible with a positive probability of ex post conflict in the committee. This
is in stark contrast to the benchmark finding for the binary signal model in Coughlan
(2000). We furthermore characterize implementability conditions for a wide class of
decision rules including the rule that maximizes committee welfare.

Chapters 3 and 4 analyze more classical instances of multidimensional information
such as different production costs or different valuations for different goods which give
rise to multidimensional screening problems. Both chapters have in common that they
provide explicit characterizations of the optimal mechanisms, a feature that is often not
achievable in the multidimensional screening literature.

Under the title “A Baseline Model of Multidimensional Screening”, Chapter 3 gener-
alizes upon a model of multidimensional screening from Armstrong and Rochet (1999)
by allowing for interaction between the dimensions through the utility function. Iden-
tifying sets of binding incentive constraints with properties of the allocation I provide

3



4 CHAPTER 1. INTRODUCTION

a full classification of the potential solutions to this model. While a large variety of
solutions can be generated within the modeling approach, I show that a substantial
combination of interaction and asymmetry between dimensions is necessary to distort
allocations away from classical properties such as “no distortion at the top” and “no
upward binding incentive constraints”. Some fundamental properties of the optimal
allocation are shown to carry over from the first best allocation to the case of private
information. The chapter is framed as an analysis of multiproduct monopoly regula-
tion. Its focus, however, is not so much on a particular application but on the general
properties of the underlying model which applies to various contexts.

Chapter 4 is entitled “Pricing a Package of Services - When (not) to Bundle” and is
based on a joint paper under the same title with Dezső Szalay from the University of
Bonn and CEPR. In this paper, we study a tractable two-dimensional model of price
discrimination. Consumers combine a rigid with a more flexible choice, such as choosing
the location of a house and its quality or size. We show that the optimal pricing scheme
involves no bundling, that is, additively separable prices if consumer types are affiliated.
Conversely, if consumer types are negatively affiliated over some portion of types then
some bundling occurs.



Chapter 2

Consistency and Communication
in Committees1

2.1 Introduction

This thesis chapter considers a deliberation and voting model in which rich state and
signal spaces combine with a binary action space. A committee consisting of privately
informed agents with known heterogeneous preferences engages in simultaneous infor-
mation exchange prior to voting. Our information structure generates a concern for
consistency in the aggregation of individual signals; a given signal is interpreted differ-
ently depending on how it matches other available evidence. We find that in contrast
to the classical model featuring binary state and signal spaces, full information sharing
and sincere voting can constitute an equilibrium although agents with some probability
disagree ex post.

Consider the example of a jury aiming at determining whether a defendant is guilty
or innocent. If guilty, he must have committed the crime at some point in time, for
example on any particular day of a given week. If innocent, at the moment of the crime
he must have been somewhere else than at the crime scene; for example at home, at
work, at the sports club, or at the grocery store. Conditional on the defendant being
guilty, only one day of the week can be the day of the crime. Conditional on him being
innocent, he can only have been in one particular place at the moment of the crime.
Different days of the week constitute mutually exclusive variants of the guilty state
while different locations constitute mutually exclusive variants of the innocent state.

Jurors gather evidence through a trial hearing which generates private signals. Be-
fore deciding whether to acquit or convict, jurors retire to deliberate and share their
private signals. Consider two possible scenarios by the end of the deliberation. In the
first scenario, half of the jurors have received a signal indicating Monday as the moment
of the crime, while the other half has received a signal indicating Wednesday. In the
second scenario, all jurors have received a signal indicating Monday. The difference

1This thesis chapter is based on a paper under the same title that is joint work with Inga Deimen
and Mark T. Le Quement, both from the University of Bonn.

5



6 CHAPTER 2. CONSISTENCY AND COMMUNICATION IN COMMITTEES4

between these two scenarios is that the second is more consistent than the first and
therefore provides more convincing evidence of guilt. In the first scenario, half of the
signals must be wrong: the crime happened either on Monday or on Wednesday. In the
second scenario, all signals are correct if the crime happened on Monday. Similarly, one
could consider scenarios involving different alibis that vary in their consistency. Jurors
do not as such care about the time at which the crime was committed or about where
the defendant was if innocent. Jurors simply wish to establish with sufficient certainty
whether the defendant is guilty or innocent and more consistent profiles yield stronger
evidence.

The core elements of the above description apply to many other situations. A second
example is that of a group of investment bankers that considers to invest in shares of
a large manufacturer, for example Chrysler. In order to do so, committee members
need to estimate whether Chrysler will avoid bankruptcy in the near future. This may
happen if either the US Federal State provides a bailout package or if some private
company (for example Fiat) decides to acquire a large part of the shares. On the other
hand, if Chrysler does go bankrupt, this may happen according to a variety of scenarios,
e.g. according to different chapters of the bankruptcy code. Another example is that of
a board of directors that seeks to predict whether a Democrat or a Republican will win
the next US presidential election, this fact affecting a variety of key variables of the US
economy. Different Democratic (Republican) candidates constitute different variants of
the Democratic (Republican) state.

We incorporate the key features of the above examples into a model of collective de-
cision making. There are two basic states, each of which is split into a set of substates.
Each signal is informative with respect to a basic state and a particular substate. It
follows that when considering a set of signals, the consistency of this set matters. The
more signals indicate a particular substate, the higher the evidence of the corresponding
basic state. Members of a heterogeneous committee, call them hawks and doves, have
the possibility to share their private signals via cheap talk before voting on a binary out-
come. In contrast to results obtained in the classical binary signal setup,2 we find that
the truthful communication and sincere voting equilibrium (TS equilibrium) is virtually
always compatible with a positive probability of ex post conflict among agents. Our
main result, Theorem 1, provides necessary and sufficient conditions for the existence
of the TS equilibrium that are satisfied for a large set of parameter values. Theorem
2 generalizes Theorem 1 to the case of more than two preference types. Theorem 3
provides necessary and sufficient conditions for the implementability of a wide class of
decision rules including the rule that maximizes committee welfare. No rule belonging
to this class is implementable in the classical model in the presence of substantial het-
erogeneity in preferences. Finally, we find that partially revealing equilibria can welfare
dominate the TS equilibrium and that sequential communication protocols may serve
as an equilibrium selection device.

The intuition for the existence of the TS equilibrium comes out clearly when com-

2See Coughlan (2000), Austen-Smith and Feddersen (2006), Meirowitz (2007), Van Weelden (2008).



2.1. INTRODUCTION 7

pared to the dynamics of the classical binary signal model.3 In the latter, in the putative
TS equilibrium, pivotality in the communication stage pins down uniquely the infor-
mation held by the remaining committee members. Disagreement among agents about
the optimal decision rule furthermore implies that there is always at least one agent
for whom this pivotal profile implies a suboptimal decision on the equilibrium path.
Consequently, this agent profitably deviates and bends the decision rule in his favored
direction. In our model, the set of pivotal profiles is not a singleton anymore. A multi-
plicity of signal profiles can yield similar conditional probabilities of guilt because the
posterior probability of guilt depends on two aspects, the total number of signals indi-
cating respectively guilt or innocence as well as the consistency among signals indicating
any given basic state. A smaller total number of guilty signals can be compensated by a
higher degree of consistency among guilty signals. The multiplicity of pivotal scenarios
in turn allows two favorable effects to come into play. First, for a subset of pivotal signal
profiles, all agents may agree with the decision following on the equilibrium path. We
call this the consensus effect. Second, given deviations from truthtelling may overturn
a conviction at some pivotal profiles while overturning an acquittal at others. In other
words, deviations do not have a predictable impact on the outcome. We call this the
uncertainty effect. These two effects independently generate incentives for truthtelling
and thereby enable the TS equilibrium to exist.

We proceed as follows. Section 1 closes with a literature review. Section 2 presents
the model. Section 3 presents an example that highlights the two effects mentioned
above. Section 4 contains the equilibrium analysis and presents Theorems 1 and 2.
Section 5 adopts a mechanism design approach. Section 6 discusses partially revealing
equilibria and sequential communication. Section 7 concludes. Lengthy proofs are
relegated to the Appendix.

Building on the theory of strategic voting as information aggregation (Austen-Smith
and Banks (1996), Feddersen and Pesendorfer (1998)), a milestone in the literature
on cheap talk deliberation and collective decisions in heterogeneous committees is the
impossibility result presented in Coughlan (2000).

This thesis chapter belongs to a class of contributions that modify the classical
model and reestablish the TS equilibrium prediction under heterogeneous preferences.
While our approach examines the role of informational consistency, Austen-Smith and
Feddersen (2006) show that uncertainty about the preferences of jury members can
render full pooling combined with sincere voting possible, as long as the voting rule
is non-unanimous. In a complementary contribution, Meirowitz (2007) shows that the
TS equilibrium exists if individual jurors are sufficiently confident that the majority
of jurors shares their own preferences. Van Weelden (2008) adds an important caveat:
when communication is sequential, uncertainty does not anymore suffice to ensure the
existence of the TS equilibrium. Le Quement (2013) shows that only minimal disagree-
ment is compatible with the TS equilibrium in large heterogeneous committees. These
caveats do not generally apply to our model.

Another class of contributions approaches the communication problem from a mech-

3See in particular Coughlan (2000).



8 CHAPTER 2. CONSISTENCY AND COMMUNICATION IN COMMITTEES6

anism design perspective. In Gerardi et al. (2009), a mediator uses the correlation among
signals to threaten heterogeneous individuals with punishment if their report does not
match other experts’ report. Gerardi and Yariv (2007) examine equilibria featuring
cheap talk communication followed by weakly dominated voting and show that the set
of equilibria is independent of the voting rule. In Wolinsky (2002), truthtelling requires
the implementation of an ex post inefficient decision rule which generates pivotal sce-
narios in which lying is costly. In the spirit of this literature, we characterize conditions
for the implementability of the welfare maximizing decision rule.

A third class of contributions maintains the classical model but examines different
communication scenarios. In Hummel (2012) as well as Le Quement and Yokeeswaran
(2014), a heterogeneous committee is split up into homogeneous subgroups in the delib-
eration phase. We show by means of an example that a partially revealing equilibrium
can welfare dominate the TS outcome.

There is a set of positive and normative reasons to focus on the full pooling sce-
nario. First, the experimental work of Goeree and Yariv (2011) documents extensive
truthtelling in heterogeneous committees and finds that individuals assign substantial
weight to the information revealed by others. Dickson et al. (2008) similarly find evi-
dence of intense sharing of information among heterogeneous jurors. Second, full infor-
mation equivalence, since Condorcet (1785), has been the main criterion for assessing the
quality of collective decisions and the TS equilibrium satisfies this criterion asymptoti-
cally. Third, the philosophical literature on deliberation (e.g. Habermas (1992), Elster
(1997), Manin (1987)) assigns an intrinsic value to exhaustive deliberations conducive
to full exchange of information.

Finally, a set of contributions in the cheap talk literature bear a formal relation to
our work. Battaglini (2002) considers a setup in which multidimensional state, signal
and action spaces generically allow for full information extraction from multiple experts.
Blume et al. (2007) show that exogenous noise in information transmission may improve
the ex ante payoffs of players by increasing truthtelling incentives. In Deimen and Szalay
(2014), the combination of a multidimensional state space and a one-dimensional action
space allows for smooth communication (as opposed to partitional communication) in
which the sender credibly announces his posterior despite relative disagreement. While
all these approaches share certain formal features with our model, the mechanisms that
drive our results are unrelated and, as far as we are aware, novel.

2.2 The Model

A jury of n agents, n ∈ N, n ≥ 3 is asked to decide whether to acquit (A) or convict
(C) a defendant. The defendant is either innocent (I) or guilty (G). Both innocence
and guilt occur in finitely many different variants i1, ..., imI

and g1, ..., gmG
, respectively,

with mI ,mG ∈ N, mI ,mG ≥ 2.5 The state space is hence given as Ω = I ∪G where I =
{i1, ..., imI

} and G = {g1, ..., gmG
}. We denote the true state of the world by ω and say

5The case of mI = mG = 1 corresponds to the classical model analyzed in Coughlan (2000) and
others.



2.2. THE MODEL 9

that the defendent is innocent if ω ∈ I and guilty if ω ∈ G. The true state of the world
is drawn from a publicly known prior distribution f over Ω. The distribution f attaches
different ex-ante probabilities to the events I and G, i.e. f (ω ∈ I) , f (ω ∈ G) ∈ (0, 1)
with f (ω ∈ I)+f (ω ∈ G) = 1. The distribution does not differentiate between variants
within the set of I-states and G-states, respectively, i.e.

f (il) =
f (ω ∈ I)

mI
∀l ∈ {1, ...,mI} ,

f (gl) =
f (ω ∈ G)

mG
∀l ∈ {1, ...,mG} .

The jury implements an action a ∈ {A,C} by voting according to some prespecified
voting rule k ∈ {1, . . . , n}. Each agent j ∈ {1, . . . , n} casts a vote in favor of one of the
two actions. If the number of votes cast for conviction is greater than or equal to k, the
defendant is convicted while otherwise he is acquitted.

We assume that agents only care whether the defendant is innocent or guilty but are
not interested per se in the particular variant of guilt or innocence that applies. The
utility of agent j from action a conditional on state ω ∈ Ω is given as

uj (a, ω) =











0 if (a, ω) ∈ {(A, I) (C,G)}
−qj if (a, ω) = (C, I)

− (1− qj) if (a, ω) = (A,G).

Utilities of correct decisions (acquitting an innocent or convicting a guilty defendant)
are normalized to 0 and qj ∈ (0, 1) is an individual and commonly known preference
parameter that characterizes the relative importance assigned by an agent to the two
types of errors.7 As agent j maximizes expected utility, he prefers conviction over
acquittal if and only if the probability of the defendant being guilty exceeds the cut-off
qj .

Prior to the voting stage, each agent receives a private signal s ∈ S = Ω. Signals are
drawn independently for each agent conditional on the state of the world ω according
to the following distribution: If ω = il for some l ∈ {1, ...,mI}, then

Pr (s = il|ω = il) = λ · p

λ+ (mI − 1)

Pr (s = ir|ω = il) =
p

λ+ (mI − 1)
∀r ∈ {1, ...,mI} , r 6= l

P r (s = gr|ω = il) =
1− p

mG
∀r ∈ {1, ...,mG} .

If ω = gl for some l ∈ {1, ...,mG}, respective expressions apply after permutating i
and g as well as I and G.8 The parameters 1

2 < p < 1 and λ > 1 have the following

7Existing results (Austen-Smith and Feddersen (2006)) indicate that truthful communication is easier
to achieve if there is uncertainty about preference types. By assuming observable preference types, we
isolate the specific truthtelling incentives that are inherent to our model.

8Note that whenever λ > 1 our signal generating process is not reducible to a process that generates
i.i.d signals conditional on I and G. It is, however, reducible to a process that generates correlated
signals conditional on I and G.
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interpretation: Applying Bayes’ law, p measures up to priors the probability that the
signal correctly reveals whether the defendant is innocent or guilty. The parameter
λ = Pr(s=il|ω=il)

Pr(s=il|ω=ir)
= Pr(s=gl|ω=gl)

Pr(s=gl|ω=gr)
measures the relative informativeness of signals with

respect to the particular variant of innocence or guilt. We finally assume that

Pr (s = il|ω = ir)

Pr (s = il|ω = gt)
≥1 ∀l, r ∈ {1, ...,mI} , t ∈ {1, ...,mG} and

Pr (s = gl|ω = gr)

Pr (s = gl|ω = it)
≥1 ∀l, r ∈ {1, ...,mG} , t ∈ {1, ...,mI}

to ensure that each i-signal (g-signal) renders each i-state (g-state) at least as likely as
each g-state (i-state). Note that this is equivalent to

p ≥ max

{

mG − 1 + λ

2mG − 1 + λ
,
mI − 1 + λ

2mI − 1 + λ

}

. (2.2.1)

A collection of signals constitutes a signal profile σ = (x1, ..., xmI
, y1, ..., ymG

) where
xl denotes the number of il-signals, l ∈ {1, ...,mI} and yl denotes the number of gl-
signals, l ∈ {1, ...,mG}. We write

x ≡
mI
∑

l=1

xl and y ≡
mG
∑

l=1

yl

for the total number of i-signals and g-signals in a given signal profile. Conditional on
signal profile σ, the posterior probability of guilt is given as

β (σ) = Pr (ω ∈ G|σ)

=
f (ω ∈ G) · Pr (σ|ω ∈ G)

f (ω ∈ G) · Pr (σ|ω ∈ G) + f (ω ∈ I) · Pr (σ|ω ∈ I)
.

In terms of utilities agents only care whether ω ∈ I or ω ∈ G, hence the number β (σ)
is a sufficient statistic for the preferred action of each individual agent for any signal
profile σ.

After having received their signals, agents engage in one round of simultaneous and
public cheap talk.9 As we focus on truthful equilibria, it is without loss of generality to
assume that each agent sends a message m ∈M = S.

To summarize, the timing of the game is as follows: Nature draws the true state
of the world ω from the distibution f . Each agent receives a private signal s. Each
agent simultaneously sends a public cheap talk message m. Each agent casts a vote.
An action a ∈ {A,C} is implemented according to the voting rule. Payoffs are realized.

Our equilibrium concept is Perfect Bayesian Equilibrium. For the main part of
the paper we are concerned with the existence of the following particular equilibrium.
Agents truthfully reveal their private information, sending a message m = s at the
communication stage. Agents (correctly) believe that other agents have revealed their
private information truthfully, and agents vote sincerely, that is, they vote for conviction
if and only if β(σ) ≥ qj . We call this the TS equilibrium.

9See Section 3 and Section 6 for some comments on sequential communication.
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2.3 A Simple Example

In this section, we present a simple example that illustrates the key forces in our model
and in particular highlights the two potential sources of truthtelling described in the
introduction: the consensus and uncertainty effects.

Assume that the jury consists of only two preference types, doves and hawks, whose
respective preference parameters are given by qD ∈ (0, 1) and qH ∈ (0, 1) with qD > qH .
Consider a three persons committee consisting of one hawk and two doves with the
voting rule given as simple majority, i.e. k = 2. Aggregate signal profiles can be ordered
exhaustively with respect to the conditional probability of guilt that they induce, namely

β (3, 0, 0, 0)
β (0, 3, 0, 0)

< . . . <
β (1, 0, 0, 2) , β (1, 0, 2, 0)
β (0, 1, 0, 2) , β (0, 1, 2, 0)

<
β (0, 0, 1, 2)
β (0, 0, 2, 1)

<
β (0, 0, 0, 3)
β (0, 0, 3, 0)

.

Suppose preference parameters qH , qD such that a dove favors conviction if and only if
the aggregate signal profile is either (0, 0, 0, 3) or (0, 0, 3, 0) while a hawk favors con-
viction if and only if the aggregate signal profile is (0, 0, 0, 3), (0, 0, 3, 0), (0, 0, 1, 2) or
(0, 0, 2, 1). In other words, while both groups require three g-signals to prefer convic-
tion, doves furthermore require these g-signals to be consistent. There are thus two
signal profiles for which hawks and doves disagree on the optimal decision, namely
(0, 0, 1, 2) and (0, 0, 2, 1).

. . .
1

β (0, 1, 0, 2)
β (0, 1, 2, 0)
β (1, 0, 0, 2)
β (1, 0, 2, 0)

β (0, 0, 1, 2)
β (0, 0, 2, 1)

β (0, 0, 0, 3)
β (0, 0, 3, 0)

qH qD

Figure 1: Conditional probabilities of guilt.

In this setting, TS strategies and beliefs always constitute an equilibrium, for any
parameter values qH and qD consistent with the above preferences. We demonstrate
this by verifying explicitly that in a putative TS equilibrium no individual agent has an
incentive to deviate from truthtelling followed by sincere voting.

Note first that whatever the announcement made by an agent in the communication
stage (truthful or not), the agent has no incentive to subsequently deviate from sincere
voting as such a deviation decreases the probability that his favored decision ensues.
Second, given that the voting rule is simple majority doves are always able to enforce
their favored decision. Indeed, if doves favor an acquittal they can implement it simply
by jointly voting for it. If doves prefer a conviction, hawks do so as well an the vote will
be unanimous. Hence the doves have no incentive to deviate from truthtelling.

We now analyze the truthtelling incentives of the hawk in the putative TS equi-
librium. The hawk’s announcement is pivotal if the remaining two agents hold signal
profiles (0, 0, 2, 0) or (0, 0, 0, 2). In the first (second) case, a g1- (g2-) announcement
would trigger conviction while any of the remaining announcements would cause acquit-
tal. To systematically analyze the hawk’s incentive to deviate at each of his possible
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information sets i1, i2, g1 and g2, note that given the symmetry of the model conditions
ensuring truthtelling of the hawk holding an i1- or an i2-signal respectively a g1- or a
g2-signal are identical modulo an exchange of subscripts. We can therefore without loss
restrict our analysis to deviations of the hawk holding an i1-signal or a g1-signal.

Assume that the hawk holds an i1-signal and is pivotal at the communication stage.
The signal profile of the entire committee is then (1, 0, 2, 0) or (1, 0, 0, 2). In either case,
the decision that is taken by the committee given the true signal profile is acquittal and
coincides with the decision favored by the hawk. Accordingly, he has no incentive to
deviate from truthtelling. Here, the consensus effect is the sole source of truthtelling:
despite heterogeneity and despite the existence of signal profiles generating conflict a
hawk with an i1-signal fully agrees with the doves on the preferred action in all pivotal
scenarios.

Assume next that the hawk holds a g1-signal and is pivotal in the communication
stage. The signal profile of the entire committee is then either (0, 0, 1, 2) or (0, 0, 3, 0).
Here, in contrast to the previous case the hawk disagrees with the acquittal decision
ensuing from truthtelling at (0, 0, 1, 2) while he agrees with the conviction decision
ensuing from truthtelling at (0, 0, 3, 0). If the hawk deviates to announcing some i-
signal, the signal profile observed at the voting stage by other agents is either (1, 0, 2, 0),
(1, 0, 0, 2), (0, 1, 0, 2) or (0, 1, 2, 0), thus leading to an undesired acquittal. The deviation
to an i-report is therefore dominated by truthtelling. If the hawk deviates to a g2-
announcement, the signal profile observed at the voting stage by the remaining agents
is given by (0, 0, 0, 3) or (0, 0, 2, 1). The deviation beneficially overturns an acquittal in
the first case but adversely overturns a conviction in the second case. The hawk thus
faces uncertainty about the impact of his statement. While for pivotal profile (0, 0, 0, 2)
a g2-report is harsher than a g1-report and constitutes the only way to induce the desired
conviction, the situation is exactly reversed for pivotal profile (0, 0, 2, 0).

Among the two pivotal profiles (0, 0, 0, 2) and (0, 0, 2, 0) faced by the hawk when
holding a g1-signal, profile (0, 0, 0, 2) thus incentivizes lying while profile (0, 0, 2, 0) in-
centivizes truthtelling. We call this the uncertainty effect. Which incentive dominates
depends on the relative likelihood assigned to these two profiles, the latter itself depend-
ing on the probability assigned to the states g1 and g2. An agent holding a g1-signal
assigns a higher probability to state g1 than to state g2 and accordingly to profile
(0, 0, 2, 0) than to profile (0, 0, 0, 2). The signal profile that incentivizes truthtelling is
thus assigned a higher probability than the one that incentivizes lying. Hence the hawk
when holding a g1-signal never prefers to announce a g2-signal. We conclude that the
TS equilibrium exists despite the existence of signal profiles generating conflict.

We close the discussion of this example with two remarks. First, the TS equilibrium
continues to exist under a sequential communication protocol where the single hawk
speaks first. Indeed, the hawk’s incentives when speaking first are identical to those
under the simultaneous protocol while the doves still determine the outcome and hence
have no incentives to deviate. Second, the TS equilibrium also exists under unanimity
when k = 3 by exactly the same arguments.11

11The existence of the TS equilibrium under sequential communication and unanimity stands in
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2.4 Analysis of the TS Equilibrium

The example of Section 3 shows that the TS equilibrium can exist despite potential
disagreement after full pooling of information. In what follows, we provide an equilib-
rium analysis for arbitrary committee sizes, assuming first only two preference types
and subsequently analyzing the case of individual preference parameters.

For any signal s ∈ S, let σs denote the signal profile that consists of one signal s only.
Moreover, for a given agent j, we denote the signal profile of all other agents by σ−j . The
following lemma compares posterior probabilities of guilt for different signal profiles; it
specifically addresses the effect of shifting mass from one entry of σ to another. This
replicates the change in beliefs of other agents achievable by misreporting a signal in
the putative TS equilibrium.

Lemma 0. For any signal profile σ = (x1, ..., xmI
, y1, ..., ymG

), the function β (σ) is
invariant under any permutation of x-entries and any permutation of y-entries of σ.
Moreover, the following inequalities hold:

β (σ + σgr) > β (σ + σil) ∀l ∈ {1, ...,mI} , r ∈ {1, ...,mG} , (2.4.1)

β (σ + σgl) ≥ β (σ + σgr) ∀l, r ∈ {1, ...,mI} , yr ≤ yl, (2.4.2)

β (σ + σil) ≤ β (σ + σir) ∀l, r ∈ {1, ...,mI} , xr ≤ xl. (2.4.3)

Condition (2.4.2) holds with equality iff yl = yr and condition (2.4.3) holds with equality
iff xl = xr.

Proof. See Appendix.

Lemma 0 shows that three factors determine the posterior probability of guilt; an
increase in the total number y of g-signals and in the consistency of the profile of g-
signals leads to an increase in the posterior probability of guilt. An increase in the
consistency of the profile of i-signals has the opposite effect.

Note that in the special case of λ = 1 which is excluded from our model, equations
(2.4.2) and (2.4.3) always hold with equality. Indeed, if λ = 1 signals do not reveal
any information that refers to a particular substate but only indicate whether ω ∈ I
or ω ∈ G. As a consequence, in the limit case of λ = 1 our model yields the same
prediction as the classical model; the TS equilibrium is not compatible with a positive
probability of ex post conflict.

Proposition 0 (Coughlan (2000)). Supposeλ = 1 or, equivalently, mG = mI = 1.
Then the TS equilibrium exists if and only if

a) at least k agents (n − k agents) favor conviction (acquittal) for any realization of
signals.

b) all agents favor the same action for any realization of signals.

contrast to the impossibility results of Van Weelden (2008) and Austen-Smith and Feddersen (2006).
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2.4.1 A two-types committee: hawks and doves

Fix the committee size n. In this subsection, we assume that there are only two prefer-
ence types qH and qD, referred to as hawks and doves, where qH < qD. For j ∈ {H,D},
we call a profile σ a type qj threshold profile if β (σ) ≥ qj and β (σ̃) < qj for all signal
profiles σ̃ satisfying β (σ̃) < β (σ). A juror of preference type qj thus prefers conviction
precisely for those signal profiles that yield at least as much evidence for the defendant
being guilty as a type qj threshold profile does.

We say that a signal profile σ is a conflict profile if conditional on signal profile σ
hawks and doves disagree on the preferred action, that is, if

qH ≤ β (σ) < qD.

Given that there are only two types of jurors, the non-unanimous voting rule k
matters only in a binary sense; we say that hawks have critical mass if the number of
hawks is weakly greater than k, so that hawks are sufficiently numerous to implement
conviction whenever they wish. Otherwise, we say that doves have critical mass.

Finally, we say that preference types q and q̃ are equivalent, denoted by q ∼ q̃, if and
only if both preference types favor the same action for any signal profile σ consisting
of n signals. Preference types are thus equivalent if and only if no conflict profiles exist
between the two or, respectively, if they have identical threshold profiles.

Before stating our main result, we invoke simple arguments to rule out a subset of
deviations from the putative TS equilibrium.

Lemma 1. Agents of the type j ∈ {H,D} that has critical mass never have an incentive
to deviate in the putative TS equilibrium.

Proof. In a putative TS equilibrium, the defendant will be convicted if and only if the
thresholds of at least k agents satisfy qj ≤ β (σ) for the revealed signal profile σ. Hawks
will be able to convict the defendant whenever they prefer to if and only if there are
at least k of them. Moreover, if hawks prefer to acquit, then doves do so as well since
qH < qD and the vote will be unanimous. Hence, if hawks have critical mass their
favored action will always be implemented and they have no incentive to deviate. A
similar reasoning holds if there are less than k hawks so that doves have critical mass.

Lemma 2. Assume that type j ∈ {H,D} does not have critical mass and assume
that the voting rule is non-unanimous. Then the vote of an agent of type j will never
influence the outcome in a putative TS equilibrium, irrespective of whether he reported
truthfully or not at the communication stage.

Proof. Agent j’s vote can only influence the outcome if the group of agents that has
critical mass votes “against their bias”, i.e. if hawks vote for acquittal or doves vote for
conviction, respectively. In both cases, however, all other agents will vote unanimously
as the remaining doves (hawks) will also favor acquittal (conviction) if hawks (doves)
do so. Hence, for any non-unanimous voting rule, the voting behavior of an agent that
does not belong to the group having critical mass can never influence the outcome.
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Lemma 2 allows us to restrict attention to incentives in the communication stage
if the voting rule is non-unanimous. It furthermore provides a hint as to what will
typically go wrong under unanimity, i.e. k = n (k = 1). Hawks (doves) can misreport
i-signals (g-signals) to trigger a conviction (an acquittal) and subsequently vote for
acquittal (conviction) if conditional on the now revealed information of other jurors it
turns out that their lie causes others to vote for an undesired outcome. Any downside
from misreporting is hence absent under unanimity voting. As a consequence of Lemma
2, we exclude the unanimous voting rule from our analysis, i.e. we assume from now on
that k ∈ {2, ..., n− 1}.

Lemma 3. Let k ∈ {2, ..., n− 1}. In a putative TS equilibrium, a hawk never has an
incentive to misreport a g-signal as an i-signal and a dove never has an incentive to
misreport an i-signal as a g-signal.

Proof. By Lemma 1 we may assume that the agent under consideration does not belong
to the group that has critical mass. Suppose agent j is a hawk holding a signal s = gl
for some l ∈ {1, ...,mG} but reports m = ir for some r ∈ {1, ...,mI}. Then the true
overall signal profile is given as σ = σ−j+σgl while the reported signal profile is given as
σ̂ = σ−j + σir . As doves have critical mass, the defendant will be convicted if and only
if β (σ̂) ≥ qD. Agent j, being a hawk, would prefer conviction whenever β (σ) ≥ qH . So
given that qD > qH , agent j can only profit from the proposed deviation if β (σ̂) > β (σ).
However, by Lemma 0, Equation (2.4.1) we have

β (σ) = β (σ−j + σgl) > β (σ−j + σir) = β (σ̂) .

Thus, for any signal profile σ−j the proposed deviation triggers a lower Bayesian pos-
terior probability of the defendant being guilty compared to a truthful report. Hence
deviating in the proposed way is detrimental to agent j. The case of a dove misreporting
an i-signal as a g-signal is alike.

Lemma 4. Let k ∈ {2, ..., n− 1}. In a putative TS equilibrium, no agent has an incen-
tive to misreport an il-signal as an ir-signal, l, r ∈ {1, ...,mI}, r 6= l, or to misreport a
gl-signal as a gr-signal, l, r ∈ {1, ...,mG}, r 6= l.

Proof. See Appendix.

The argument behind Lemma 4 relies on the uncertainty effect described in the
example of Section 3. Deviations within the set of g-signals or i-signals have opposing
effects on the outcome for different signal profils. As profiles that incentivize truthtelling
are always more likely than those that incentivize deviating, truthtelling is always prefer-
able.

The only deviations that remain to be excluded involve doves reporting an i-signal
instead of a g-signal and hawks reporting a g-signal instead of an i-signal. Let q, up to
equivalence, denote the threshold of the group that has critical mass and consider an
agent j from the group that does not have critical mass. For a given threshold q of the
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group that has critical mass, we denote the set of signal profiles of others at which an
ir-report by agent j causes an acquittal while a gl-report causes a conviction by

Pivir,gl (q) ≡ {σ−j : β (σ−j + σir) < q ∧ β (σ−j + σgl) ≥ q} .
We finally impose the following minor assumption on preferences of hawks and doves.

Assumption 1 (No partisans).
a) The preferred action of each agent depends on the aggregate signal profile.
b) Hawks require less than the maximal possible evidence of guilt to prefer conviction and
doves require less than the maximal possible evidence of innocence to prefer acquittal.

Part a) excludes partisan types whose optimal decision is independent of any avail-
able information. Part b) excludes preference types for hawks (doves) which imply
either that the other type is partisan (in the sense of Part a)) or that preference types
of hawks and doves are equivalent in which case the TS equilibrium trivially exists (cf.
Proposition 0).

We now present our main result.

Theorem 1. Let k ∈ {2, ..., n− 1}.
a) Assume hawks have critical mass. For any hawk type qH the TS equilibrium exists

if and only if the value of qD lies below an upper bound q̂D (qH) > qH given as

qD ≤ q̂D (qH) ≡ 1

P (σ−j ∈ Pivir,gl (qH) |sj = gl)

∑

σ−j∈Pivir,gl
(qH )

P (σ−j |sj = gl) · β (σ−j + σgl) .

b) Assume doves have critical mass. For any dove type qD the TS equilibrium exists
if and only if the value of qH lies above a lower bound q̂H (qD) < qD given as

qH ≥ q̂H (qD) ≡ 1

P (σ−j ∈ Pivir,gl (qD) |sj = ir)

∑

σ−j∈Pivir,gl
(qD)

P (σ−j |sj = ir) · β (σ−j + σir ) .

c) Impose Assumption 1. If hawks have critical mass, the pair (qH , q̂D(qH)) features
at least one conflict profile. Similarly, if doves have critical mass, the pair (q̂H (qD) , qD)
features at least one conflict profile.

Proof. See Appendix.

Theorem 1 provides a general existence result for the TS equilibrium. Part a),
assuming that hawks have critical mass, states the existence of a critical dove type
q̂D(qH) such that the TS equilibrium exists if and only if qD ∈ (qH , q̂D(qH)]. The
threshold q̂D(qH) corresponds to the probability of guilt conditional on all pivotal profiles
σ−j where a truthful gl-report of agent j leads to conviction while an ir-report leads
to acquittal. Part b) states the corresponding result for the case where doves have
critical mass. Part c) yields the critical qualitative statement that the TS equilibrium
is compatible with the existence of conflict profiles. It stands in stark contrast to
Coughlan’s impossibility result as stated in Proposition 0.

The existence of the TS equilibrium despite conflict is possible because the posterior
probability of guilt is determined not only by the total number of g-signals but also
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by the consistency among signals indicating respectively guilt or innocence. Reports
influence the posterior probability of guilt through both channels and hence change the
outcome for more than one profile. As a direct consequence, the set of pivotal profiles
that needs to be considered for the reporting decision is not a singleton.

Reports do not have a systematic impact on the posterior probability of guilt in the
consistency dimension; clearly, whether a particular report is more or less consistent
with other signals does not depend on the report itself but on the signals held by other
jurors. As a result of the latter observation, agents always face some uncertainty as to
which report to choose if they want to trigger a particular outcome. This uncertainty
effect is at the core of Lemma 4 and rules out deviations that involve misreports within
the set of i-reports or g-reports, respectively.

For deviations where doves report an i-signal instead of a g-signal or hawks report
a g-signal instead of an i-signal, the strategic concern is different. Here, the deviation
has a clear effect on the outcomes; g-reports unambiguously trigger additional convic-
tions when compared to i-reports. The multiplicity of pivotal profiles here allows the
consensus effect to positively affect truthtelling incentives. While hawks and doves have
diverging interests for some pivotal profiles, they agree on the preferred outcome for
others, so overturning the decision in the latter case is detrimental. This (partial) con-
sensus between hawks and doves is more pronounced the smaller the gap between the
two preference types. As a result, we get an upper bound for dove types with respect to
a given hawk types in Part a) and lower bounds for hawk types with respect to a given
dove type in Part b).

Given the above described consensus effect, Part c) of Theorem 1 becomes very
intuitive. A type who is indifferent between truthtelling and lying necessarily faces piv-
otal profiles that incentivize truthtelling and pivotal profiles that incentivize deviating.
Consider a dove holding a gl-signal and let σ be a threshold profile of the hawks, the
latter having critical mass. Whenever qD > β (σ), the profile σ is a conflict profile. Now
consider a profile σ̃ that is either slightly less consistent with respect to its i-signals or
slightly more consistent with respect to its g-signals, but has the same total number of
i- and g-signals as σ. Then the dove is still pivotal for σ̃ as β (σ̃ − σgl + σir) < β (σ)
and β (σ̃) > β (σ). Yet for qD being sufficiently close to β (σ), that is, sufficiently much
smaller than β (σ̃), the truthtelling incentives from profile σ̃ dominate the deviation in-
centives from profile σ. Assumption 1 guarantees that such a profile σ̃ always exists.15

2.4.2 General committees

We next generalize our analysis to committees featuring more than two preference types.
For each agent j ∈ {1, ..., n} we denote the corresponding preference parameter by qj .

15Part c) of Theorem 1 as well as its discussion in the text may suggest that the range of preference
types as well as the number of conflict profiles compatible with the TS equilibrium are rather small.
This is not the case. In contrast, numerical simulations show that the parameter area that is compatible
with the existence of the TS equilibrium in our model is typically larger than in the classical binary
model in Coughlan (2000). Moreover, the number of conflict profiles compatible with the TS equilibrium
becomes large when committees increase, contrasting e.g. Le Quement (2013).
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Without loss of generality, we assume that q1 ≤ ... ≤ qn.
Let k ∈ {2, ..., n− 1} denote the prespecified voting rule. In a putative TS equilib-

rium, whenever agent k prefers conviction after truthful revelation of information, so
do all agents j < k and hence the defendant will be convicted with at least k votes.
Conversely, if agent k prefers acquittal, so do all agents j > k and hence, by the votes
of at least n − k + 1 agents, an acquittal is implemented. The implemented decision
hence always coincides with the preferred action of agent k who therefore never has an
incentive to deviate. For any juror j < k, the implemented decision rule is “dovish” as
qj < qk while for any juror j > k the decision rule is “hawkish” as qj > qk.

With the insights from the two type case, the above considerations suggest a result
of the following type. The TS equilibrium exists if and only if for all j ∈ {1, ..., n} we
have qj ∈ [q̂H (qk) , q̂D (qk)] with q̂H (q) , q̂D (q) defined as in Theorem 1. Indeed, if agent
k’s vote were to always determine the outcome, the result would take this exact form.
The caveat in the general jury model is that no pendant to Lemma 2 holds. To see
this, consider the case where a juror j < k holds an il-signal and considers reporting a
gr-signal instead to trigger additional convictions. Let σ−j denote a signal profile held
by other jurors. Four scenarios may occur.

If
β (σ−j + σil) < β (σ−j + σgr) < qk

then for both, the truthful report and the deviation, the defendant will be acquitted by
the votes of agents k, ..., n. Similarly, if

qk ≤ β (σ−j + σil) < β (σ−j + σgr)

the defendant will be convicted by the votes of agents 1, ..., k. Note that agent j < k
will always prefer a conviction here since qj ≤ qk ≤ β (σ−j + σil). In both cases, the
reporting decision does not affect the outcome.

If
β (σ−j + σil) < qk ≤ qk+1 ≤ β (σ−j + σgr)

then the defendant will be acquitted when agent j reports truthful by the votes of agents
k, ..., n. The defendant will be acquitted by the votes of agents 1, ..., j−1, j+1, ..., k+1.
Both outcomes are independent of the voting decision of agent j. The crucial case now
occurs if

β (σ−j + σil) < qk ≤ β (σ−j + σgr) < qk+1.

Here, a truthful report again leads to an acquittal by the votes of agents k, ..., n. Deviat-
ing towards a gr-report, however, makes agent j pivotal in the voting stage. Whenever
agent j prefers a conviction as β (σ−j + σil) ≥ qj he can implement this outcome by his
vote, together with agents 1, ..., j− 1, j+1, ..., k. Whenever agent j prefers an acquittal
as β (σ−j + σil) < qj he can also implement this outcome by his vote, together with
agents k + 1, ..., n. In other words, agent j can undo the adverse effect of his lie at the
voting stage so that lying is not risky here.

These insights, which symmetrically apply to the reporting decision of agents j > k,
are summarized in the following theorem.
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Theorem 2. Let k ∈ {2, ..., n− 1}.
a) The TS equilibrium exists if and only if

qj ∈
[

q (qk, qk+1) , q (qk, qk−1)
]

for all j ∈ {1, ..., n}. The lower bound q is decreasing in qk+1 and increasing in qk. The
upper bound q is decreasing in qk and increasing in qk−1.

b) If qk+1 ∼ qk then q (qk, qk+1) = q̂H (qk). If qk−1 ∼ qk then q (qk, qk−1) = q̂D (qk).
In particular, if qk−1 ∼ qk ∼ qk+1 the TS equilibrium exists if and only if

qj ∈ [q̂H (qk) , q̂D (qk)] ∀j ∈ {1, ..., n} .

Proof. In the Appendix we show that the only deviations in the communication stage
that are potentially profitable involve an agent j < k who holds an il-signal and considers
a gr-report or an agent k > j who holds a gr-signal and considers an il-report. Part a) of
Theorem 2 is then a direct consequence of the previous analysis. Deviation incentives of
an agent j < k that holds an i-signal and considers a g-report are more pronounced the
smaller qj is since the deviation may only trigger additional convictions. Hence there
exists a lower bound for qj beyond which deviations become strictly advantageous.
Moreover, by the above analysis, deviation incentives only depend on qk and qk+1.
Finally, deviating is particularly attractive for profiles σ−j of other jurors for which

β (σ−j + σil) < qk ≤ β (σ−j + σgr) < qk+1

as for these profiles agent j can always implement his preferred outcome based on the
aggregate information. Clearly, the set of such profiles σ−j shrinks when qk+1 becomes
smaller or qk becomes larger. For Part b) note that qk ∼ qk+1 implies that no profile
σ−j of other jurors exist for which

qk ≤ β (σ−j + σgr) < qk+1.

Agent j is never pivotal in the voting stage and hence incentives are identical to the
two type model with q (qk, qk+1) = q̂H (qk) = q̂H (qk+1). The argument for jurors j > k
that hold a gr-signal and consider an il-report is alike.

Theorem 2 provides important insights on the optimal composition of heterogeneous
committees with regard to maximizing truthtelling incentives. In many committees,
heterogeneity is valued for exogenous reasons. A trial jury, for example, is supposed
to represent society as a whole and hence should feature a substantial degree of het-
erogeneity. Similarly, a board of directors should feature some heterogeneity in order
to avoid cut and dried decision making. To the extent that one insists on maintaining
heterogeneity, Theorem 2 has two important implications. First, lying incentives by
biased agents can be overcome by including moderate agents in the committee and as-
signing decision power to them through a suitably chosen voting rule. Second, a single
moderate agent will not suffice to ensure truthtelling (and may even be detrimental) as
the reporting decision is then not sufficiently decisive with regard to the final outcome.
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2.5 General Mechanisms

We next consider the voting problem discussed in the previous subsection from a mech-
anism design perspective. Suppose a designer who wants to maximize the ex post
expected utility among jurors according to

Eu = E
n
∑

j=1

αjuj =
n
∑

j=1

αjEuj

for given Pareto-weights α1, ..., αn ≥ 0 with
∑n

j=1 αj = 1. The expected utility of the
committee conditional on signal profile σ is given by

Eu (σ, a) =

{

−P [ω ∈ G|σ] ·
(

1−∑n
j=1 αjqj

)

a = A

−P [ω = I|σ] ·∑n
j=1 αjqj a = C.

Hence the optimal action coincides with the preferred action of a hypothetical juror
with preference parameter q∗ ≡∑n

j=1 αjqj .
We refer to the decision rule that implements conviction whenever β (σ) ≥ q and

implements acquittal whenever β (σ) < q as decision rule q.17 Note that whenever
q ∈ (β (n, 0, ..., 0) , β (0, ..., 0, n)) there exist report profiles σ and σ̃ such that a = C
whenever σ is reported while a = A whenever σ̃ is reported. We call such a decision
rule responsive. Our main objective in this section is to identify conditions under which
a given responsive decision rule q is implementable. Invoking the revelation principle,
we may restrict to direct mechanisms where the designer commits to a policy conditional
on reports and agents report their signals truthfully subject to incentive compatibility.

The following proposition states a negative benchmark result for the classical binary
signal model.

Proposition 1. Suppose λ = 1 or, equivalently, mG = mI = 1. Unless q1 ∼ ... ∼ qn,
no responsive decision rule q is implementable.18

Proof. See Appendix.

In contrast, whenever λ > 1 as assumed in our model, this impossibility result does
not apply as shown in the following theorem.

Theorem 3. Assume λ > 1. A responsive decision rule q is implementable if and only
if

qj ∈ [q̂H (q) , q̂D (q)] ∀j ∈ {1, ..., n} .
In particular, this applies to the welfare maximizing decision rule q∗.

17As reports are assumed to be truthful, we use the same notation for aggregated report profiles that
we have used for aggregated signal profiles before.

18Gerardi et al. (2009) propose a sophisticated mechanism that under certain conditions implements
a decision rule that is arbitrarily close to the welfare maximizing rule in the classical model with
mI = mG = 1. The mechanism requires either highly accurate private signals or a large number
of agents. Moreover, it involves a sophisticated elicitation scheme in which an agent is singled out
for scrutiny with some probability; if his report is consistent with the majority’s reports, the principal
rewards the selected agent by taking his favorite action. Otherwise, the principal takes a random action.
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Proof. By Lemmas 1 and 2, the reporting incentives of a juror j with qj < q in the direct
mechanism that follows decision rule q are identical to the reporting incentives of juror
j if he faces a group of doves with qD = q that has critical mass. Similarly, the reporting
incentives of a juror j with qj > q in the direct mechanism that follows decision rule
q are identical to the reporting incentives of juror j if he faces a group of hawks with
qH = q that has critical mass. The result then follows directly from Theorem 1.

Theorem 3 provides a precise and simple characterization of the circumstances under
which a given responsive decision rule q is implementable in our model. Invoking Part c)
of Theorem 1, implementability is always compatible with some conflict between agents
whenever Assumption 1 applies to a virtual agent with preference parameter q.

If the assumptions of Theorem 3 are satisfied, implementation may take place
through different mechanisms. The first possibility is to use a classical direct mechanism
in which agents truthfully report to an external designer committed to choosing convic-
tion if and only if β (σ) ≥ q for any reported signal profile σ. However, implementation
is also possible without relying on an external designer. Consider simultaneous public
communication followed by voting under a non-unanimous voting rule, and suppose a
putative equilibrium where all agents communicate truthfully and subsequently vote
according to decision rule q. Since voting is always unanimous on the equilibrium path,
individual deviations in the voting stage never influence the outcome and incentives in
the communication stage are as in the direct mechanism.20 The gain of avoiding an
external designer comes here at the cost of weakly dominated voting strategies. Finally,
note that if there exist j ∈ {2, ..., n− 1} such that qj−1 ∼ qj ∼ qj+1 ∼ q then decision
rule q is implementable by setting k = j as a TS equilibrium of the communication and
voting game discussed in Theorem 2.

2.6 Comments on Partial and Sequential Communication

In this final section we show by means of an explicit example that an existing TS
equilibrium may be welfare dominated by a sincere voting equilibrium that involves only
partial revelation of information. We add a discussion of sequential communication as
a natural context for such partially revealing equilibria.

Fix the committee size as n = 3 and suppose mI = mG = 2. Let f (I) = f (G) = 1
2 ,

p = 3
5 , and λ = 2. Say there are two hawks (agents 1 and 2) and one dove (agent 3)

with preference parameters qH = 5
7 and qD = 7

9 . We have

β (1, 0, 0, 2) =
5

8
< qH <

6

8
= β (0, 0, 1, 2) ,

β (0, 0, 1, 2) =
6

8
< qD <

9

11
= β (0, 0, 0, 3) ,

20The prescribed mechanism as well as the independence of the (non-unanimous) voting rule are well-
known from Gerardi and Yariv (2007). Note, however, that Gerardi and Yariv (2007) do not provide
any results on implementability of particular outcomes as such, in stark contrast to our findings.
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so preferences are as in Section 3. As demonstrated there, the TS equilibrium exists if
doves have critical mass, i.e. k = 3. At the same time, the TS equilibrium does not
exist if hawks have critical mass, that is k = 1 or k = 2, since q̂D (qH) = 27

35 < 7
9 = qD.

21

However, attaching equal Pareto weights αj =
1
3 to all agents, it is easily seen that the

socially optimal decision rule involves conviction for profiles (0, 0, 2, 1) , (0, 0, 1, 2), so
it coincides with the hawks’ preferred decision rule. The existing TS equilibrium thus
leads to suboptimal acquittals for profiles (0, 0, 2, 1) and (0, 0, 1, 2).

Consider now an alternative putative equilibrium under unanimity in which agents
1 and 3 behave as before but agent 2 only reveals whether he holds an i-signal or a g-
signal, without specifying the variant, and where voting is sincere.22 In such a putative
equilibrium, it is immediate that the defendant will be acquitted whenever either at
least one i-signal is reported or agents 1 and 3 report inconsistent g-signals. However,
the conditional probability of guilt in case of agents 1 and 3 holding consistent g-signals
and agent 2 holding some g-signal is given as

P [ω ∈ G|s1 = s3 ∈ G, s2 ∈ G] =
15

19
>

7

9
= qD,

so the defendant will be unanimously convicted. It is straightforward to check that this
reporting behavior together with correct Bayesian beliefs and sincere voting constitutes
a partially revealing equilibrium.

The partially revealing equilibrium we just described improves welfare compared to
the existing TS equilibrium as it involves conviction for some instances of signal profiles
(0, 0, 1, 2) and (0, 0, 2, 1). Note that if both hawks would adopt the partially revealing
reporting strategy of agent 2, this would not suffice to convince the dove to vote for
conviction as

P [ω ∈ G|s1, s2, s3 ∈ G] = q̂D (qH) =
27

35
< qD.

This is in line with the characterization in Therorem 3; the welfare maximizing decision
rule qH cannot be implementable given that qD > q̂D (qH).

The partially revealing equilibrium therefore essentially relies on asymmetric behav-
ior of the two (ex ante identical) hawks. While this is an unattractive property in the
simultaneous communication game analyzed so far, it is a very natural feature under
sequential communication as we argue now.

Consider the same game as above under unanimity voting (k = 3) where agents
speak in order of their numbers. First, look at a putative TS equilibrium. For agent
1, incentives are identical to the simultaneous game where the TS equilibrium exists.
Agent 3 (the dove) has critical mass and hence does not have an incentive to deviate
either. Agent 2 is pivotal if and only if both other agents hold consistent g-signals.
However, in contrast to the simultaneous communication protocol, given the first agent’s
report of a particular g-signal there is no uncertainty left as to which variant of g-
signal this could be. Hence agent 2, when holding some g-signal, will always imitate

21The value q̂D (qH) corresponds to the likelihood of guilt if it is known that all agents hold some
g-signals but nothing is known about their consistency.

22For the given message space M = S, agent 2 might for example randomize with probability 1
2
over

both g-reports whenever he holds a g-signal.
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the variant announced by agent 1 to trigger a conviction, whether or not their signals
are consistent. Sequential communication therefore leads to a breakdown of the TS
equilibrium. On the other hand, if agent 2 adopts the communication strategy just
described as a deviation from the TS equilibrium path, the outcome will be precisely that
of the partially revealing equilibrium discussed before. Again, it is easy to check that
together with sincere voting these communication strategies form a Perfect Bayesian
Equilibrium also under sequential communication.

Sequential communication is known to render full revelation of information under
conflict more difficult as it reduces uncertainty of (late) speakers, see e.g. Van Weelden
(2008). While this is typically considered an unfavorable property, our example high-
lights a potentially beneficial aspect of the very same feature. Under sincere voting
and simultaneous communication, the TS equilibrium may be welfare dominated by
partially revealing equilibria. Sequential communication can then serve as a selection
device, eliminating the welfare dominated TS equilibrium while leaving the partially
revealing equilibria intact.

2.7 Conclusions

In our collective decision model with pre-vote communication, a positive probability of
ex post disagreement among agents is frequently compatible with the existence of the
truthful communication and sincere voting equilibrium. The driving forces underlying
our positive result are the consensus and uncertainty effects, both of which originate
in the multiplicity of pivotal scenarios at the communication stage. The latter fea-
ture follows from the role played by consistency given our information structure. As a
consequence of our equilibrium analysis we also obtain a positive result regarding the
implementability of threshold decision rules in heterogenous committees including the
decision rule that maximizes committee welfare. From a conceptual perspective, the
key and novel feature of our information structure is that a given signal is interpreted
differently depending on other available information; meaning is determined in context.
We find this aspect worth exploring within other communication games.

2.8 Appendix

Proof of Lemma 0. The posterior probability of guilt for signal profile σ is given as

β (σ) =
f (ω ∈ G) · Pr (σ|ω ∈ G)

f (ω ∈ G) · Pr (σ|ω ∈ G) + f (ω ∈ I) · Pr (σ|ω ∈ I)

=

[

1 +
P (ω ∈ I)

P (ω ∈ G)
·
mG

mI

·

(

p · mI

(1 − p) · (λ + mI − 1)

)x

·

(

(1 − p) · (λ + mG − 1)

p · mG

)y

·

∑mI
r=1

λxr

∑mG
l=1

λyl

]

−1

. (2.8.1)

The first claim is immediate from this formula. Note that if λ = 1 then β (σ) only
depends on x and y.

As p·mI

(1−p)·(λ+mI−1) ≥ 1, (1−p)·(λ+mG−1)
p·mG

≤ 1 by condition (2.2.1) and λ > 1, inequality

(2.4.1) follows directly from equation (2.8.1). Similarly, λ > 1 together with equation
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(2.8.1) implies (2.4.2) and (2.4.3). Equality holds if and only if λyl = λyr or λxl = λxr ,
respectivly.

Proof of Lemma 4. By Lemma 1 we may assume that the agent under consideration,
agent j, is not part of the group that has critical mass. Suppose that agent j holds a
signal s = il and considers to report m = ir with r 6= l, l, r ∈ {1, ...,mI}. Consider
two candidates for σ−j , namely σ̂ = (x1, ..., xl, ..., xr, ..., xmI

, y1, ..., ymG
) and σ̂xl←→xr =

(x1, ..., xr, ..., xl, ..., xmI
, y1, ..., ymG

) and assume without loss of generality that xl ≥ xr.
By Lemma 0 we have

β (σ̂) = β (σ̂xl←→xr) ,

β (σ̂ + σil) = β (σ̂xl←→xr + σir) ,

β (σ̂ + σir) = β (σ̂xl←→xr + σil) ,

β (σ̂ + σil) ≥ β (σ̂ + σir) ,

with equality in the last equation if and only if xl = xr. We can now compare the
expected utility of the reports m = il and m = ir conditional on σ−j ∈ {σ̂, σ̂xl←→xr}.
If both reports m = il and m = ir trigger identical actions, the reporting decision does
not matter. In particular, this is the case if xl = xr where the two candidate profiles for
σ−j coincide. If the reports trigger different actions, then m = il will trigger acquittal
for σ−j = σ̂ and conviction for σ−j = σ̂xl←→xr while m = ir will trigger conviction for
σ−j = σ̂ and acquittal for σ−j = σ̂xl←→xr . Hence

Eu [m = il|σ−j ∈ {σ̂, σ̂xl←→xr
}]− Eu [m = ir|σ−j ∈ {σ̂, σ̂xl←→xr

}]

= −
mG
∑

t=1

P (ω = gt|s = il) · P (σ−j = σ̂|ω = gt, σ−j ∈ {σ̂, σ̂xl←→xr
}) · (1− q)

+

mG
∑

t=1

P (ω = gt|s = il) · P (σ−j = σ̂xl←→xr
|ω = gt, σ−j ∈ {σ̂, σ̂xl←→xr

}) · (1− q)

−
mI
∑

t=1

P (ω = it|s = il) · P (σ−j = σ̂xl←→xr
|ω = it, σ−j ∈ {σ̂, σ̂xl←→xr

}) · q

+

mI
∑

t=1

P (ω = it|s = il) · P (σ−j = σ̂|ω = it, σ−j ∈ {σ̂, σ̂xl←→xr
}) · q

=

P (ω∈I)
mI

· p
λ−1+mI

P (ω∈I)
mI

· p+ P (ω∈G)
mG

· (1− p)
· −λ

xr+1 − λxl + λxr + λxl+1

λxr + λxl
· q

> 0.

As the set of signal profiles possibly held by the other agents splits into pairs of the
form {σ̂, σ̂xl←→xr} this shows the result. The proof for g-signals is alike.

Proof of Theorem 1. a) Given Lemmas 1-4 it remains to analyze under which circum-
stances a dove holding some g-signal wants to deviate by reporting some i-signal instead.
So assume that agent j is a dove holding signal sj = gl for some l ∈ {1, ...,mG} and
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considers reporting m = ir for some r ∈ {1, ...,mI}. Clearly, by ex-ante symmetry of
the model, the particular specifications of the g-signal and the i-report do not matter.

Following the proof of Lemma 3, for any profile σ−j ∈ Pivir,gl (qj) a truthful report
m = gl will trigger conviction while reporting m = ir will trigger acquittal. Truthful
reporting hence constitutes an equilibrium if and only if

0 ≤ Eu (mj = gl)− Eu (mj = ir)

= −
∑

σ−j∈Pivir,gl
(qH)

Pr (ω ∈ I|sj = gl) · Pr (σ−j |ω ∈ I) · qD

+
∑

σ−j∈Pivir,gl
(qH)

Pr (ω ∈ G|sj = gl) · Pr (σ−j |ω ∈ G) · (1− qD) .

The above expression is decreasing in qD, hence the inequality holds for any

qD ≤ 1

P (σ−j ∈ Pivir,gl (qH) |sj = gl)

∑

σ−j∈Pivir,gl
(qH)

P (σ−j |sj = gl) · β (σ−j + σgl) .

Equality yields q̂D (qH).
b) A symmetric argument as in Part a) yields that truthfully reporting a signal ir

rather than deviating to a signal gl is incentive compatible for a hawk if and only if

0 ≤ Eu (mj = ir)− Eu (mj = gl)

= −
∑

σ−j∈Pivil,gr (qD)

Pr (ω ∈ G|sj = ir) · Pr (σ−j |ω ∈ G) · (1− qH)

+
∑

σ−j∈Pivil,gr (qD)

Pr (ω ∈ I|sj = ir) · Pr (σ−j |ω ∈ I) · qH .

The above expression is increasing in qH , hence the inequality holds for any

qH ≥ 1

P (σ−j ∈ Pivir,gl (qD) |sj = ir)

∑

σ−j∈Pivir,gl
(qD)

P (σ−j |sj = ir) · β (σ−j + σir ) .

Equality yields q̂H (qD).
c) Consider first the case where hawks have critical mass. Let σH be a hawk threshold

profile; it exists by Assumption 1. We need to show that q̂D (qH) > β (σH) in which
case σH is a conflict profile. Suppose agent j is a dove holding a g1-signal and considers
deviating by reporting mj = i1. If qD = β (σH) then hawks and doves agree on the
optimal action for any signal profile, so truthful revelation dominates any deviation. By
continuity of Eu (mj = g1) − Eu (mj = i1) in qD it therefore suffices to find a pivotal
profile σ−j ∈ Pivi1,g1 (qH) for which dove type qD = β (σH) holding a g1-signal strictly
prefers conviction over acquittal. In other words, σ−j has to satisfy

β (σ−j + σi1) < β (σH) < β (σ−j + σg1) (2.8.2)

After reshuffling x- and y-entries, we may assume without loss of generality that σH
satisfies x1 ≥ ... ≥ xmI

, y1 ≥ ... ≥ ymG
. First, assume that y2 > 0. Then the profile

σ−j = σH −σg2 satisfies (2.8.2). Similarly, if x2 > 0 then profile σ−j = σH −σi2 satisfies
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(2.8.2). So suppose x2 = y2 = 0. If y1 = 0 then x1 = n and σH = (n, 0, ..., 0), so
hawks would want to convict irrespective of any information. If x1 = 0 then y1 = n and
σH = (0, ..., 0, y1 = n, 0, ..., 0). Both cases contradict Assumption 1. Finally, assume
x1 6= 0 6= y1. Since n ≥ 3 we must have x1 ≥ 2 or y1 ≥ 2. In the first case, σ−j =
σH − σi1 − σg1 + σi2 satisfies (2.8.2) while in the latter case σ−j = σH − σi1 − σg1 + σg2
does. This finishes the proof for hawks having critical mass. The proof for the case of
doves having critical mass is alike.

Proof of Theorem 2. All we need to show is that no other deviations apart from those
analyzed in the main text can be profitable. Clearly, as in Lemma 3, no agent j < k
with qj ≤ qk has an incentive to misreport a g-signal as an i-signal as this, if anything,
will lead to additional (undesired) acquittals compared to the TS outcome. Similarly,
no agent j > k with qj ≥ qk has an incentive to misreport an i-signal as a g-signal as
this will lead to additional (undesired) convictions.

What remains is to analyze deviations from a truthful il-report to an ir-report as
well as from a truthful gl-report to a gr-report. In particular, we need to show that
the potential influence of juror j at the voting stage does not alter the incentives as
compared to Lemma 4. Consider some juror j. If for a given signal profile σ−j of
other agents both reports result in the same voting behavior of agent k, then agent j
is indifferent. If the action is conviction, he agrees if j < k and he cannot change the
outcome at the voting stage if j > k. Similarly, if the action is acquittal, he agrees if
j > k and he cannot change the outcome at the voting stage if j < k.

If for a given signal profile σ−j of other agents both reports result in different
voting behavior of agent k, we follow the proof of Lemma 4. Suppose that agent
j holds signal s = il and considers to report m = ir. Consider candidates σ̂ =
(x1, ..., xl, ..., xr, ..., xmI

, y1, ..., ymG
) and σ̂xl←→xr = (x1, ..., xr, ..., xl, ..., xmI

, y1, ..., ymG
)

for σ−j with xl > xr as in Lemma 4. Then truthfully reporting m = il will trigger
agent k to vote for acquittal if σ−j = σ̂ and for conviction if σ−j = σ̂xl←→xr while
reporting m = ir will trigger agent k to vote for conviction if σ−j = σ̂ and for acquittal
if σ−j = σ̂xl←→xr . If j < k and hence qj ≤ qk agent j will either prefer conviction
for both, σ̂ and σ̂xl←→xr , or will prefer acquittal for σ̂ and conviction for σ̂xl←→xr . In
the former case, as agent j < k can never overturn an acquittal vote from agent k,
the action is implemented according to the vote of agent k and the same calculation as
in Lemma 4 applies. In the latter case, truthtelling will ensure the preferred outcome
of agent j so there is no incentive to deviate. Similarly, if j > k and hence qj ≥ qk,
agent j will either prefer acquittal for both, σ̂ and σ̂xl←→xr , or will prefer acquittal for
σ̂ and conviction for σ̂xl←→xr . In the former case, as agent j > k can never overturn a
conviction vote from agent k, the action is implemented according to the vote of agent
k and again the same calculation as in Lemma 4 applies. In the latter case, truthtelling
will again ensure the preferred outcome of agent j so there is no incentive to deviate.
The proof when agent j holds signal s = gl and considers to report m = gr is alike.

Proof of Proposition 1. As λ = 1, β (σ) is a function of x =
∑mI

l=1 xl and y =
∑mG

l=1 yl
only. Write lj for the minimal number of g-signals required by agent j to prefer con-
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viction over acquittal. If q1 ≁ qn and q1 < qn, we have l1 < ln. Moreover, write ld for
the minimal number of reported g-signals for which the designer convicts the agent and
note that, by responsiveness, 1 ≤ ld ≤ n. If ld < lj for some j, then agent j has a strict
incentive to misreport a g-signal as an i-signal. Indeed, the misreport will only influence
the outcome if other agents hold and report precisely ld− 1 g-signals, in which case the
total number of g-signals is ld < lj , so agent j prefers to trigger an acquittal. Conversely,
if ld > lj for some j, then agent j has a strict incentive to misreport an i-signal as a
g-signal. The misreport will only influence the outcome if other agents hold and report
precisely ld − 1 g-signals, in which case the total number of g-signals is ld − 1 ≥ lj , so
agent j prefers to trigger a conviction. But since l1 < ln, one of the two cases must
apply to either agent 1 or agent n. Hence decision rule q is not implementable unless
q1 ∼ ... ∼ qn.
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Chapter 3

A Baseline Model of
Multidimensional Screening

3.1 Introduction

Various economic contexts feature multidimensional allocation problems that come
along with multidimensional preferences on the consumer’s side or multidimensional
costs on the producer’s side. Instances of such problems are (multiproduct) monopoly
regulation, (multiproduct) procurement, or pricing problems that involve more than
one good sold at the same time. Economic modeling of these instances has given rise to
essentially equivalent mathematical frameworks involving multidimensional screening.
Rather than singling out and discussing a particular application, this thesis chapter
presents a formal solution approach to such a multidimensional screening model which
goes back to Armstrong and Rochet (1999).1 Generalizing upon the special case of
additively separable utilities analyzed by Armstrong and Rochet, I provide a full classi-
fication of all qualitatively distinct potential solutions for arbitrary interactions between
the good dimensions. Moreover, I relate particular properties of the solution to partic-
ular properties of the designer’s objective.

The screening model I consider is characterized by binary (cost) types in each of
two good dimensions. While this is likely to be a simplification with respect to most
applications it keeps the optimization problem finite-dimensional and thus allows for
an explicit characterization of the optimal allocation. Nevertheless, the task remains
intricate as various deviations must be taken into account for each type. A key step in my
solution approach is to identify different combinations of binding incentive constraints
with different properties of the (optimal) allocation. This equivalence is based on an
explicit cost-rent analysis. First, optimal transfers are characterized as a function of
the allocation, starting from a “no-rents-at-the-bottom” result for the fully inefficient
firm type. As a consequence, rents left to different firm types are also a function of

1While this thesis chapter does not focus on one particular application, to fix terminology and
notation I present the model in terms of a regulation problem and use the respective terminology also
for the rest of the introduction.

29
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the allocation only. It thus becomes a matter of direct comparison to check which
allocations render which deviations particularly attractive, taking both costs and rents
into account.

The identification of particular combinations of binding constraint with properties
of the allocation allows me to break down the complex global optimization problem
that features kinks at hyperplanes where one binding incentive constraint is replaced by
another into several smooth subproblems. Each of these subproblems corresponds to a
particular combination of binding incentive constraints whose characterizing allocational
properties are imposed as additional constraints. In a second step, I provide explicit
necessary and sufficient conditions under which circumstances a solution of a given
subproblem constitutes the solution to the global optimization problem.

The classification theorem that results from the above process is at the core of
this thesis chapter. It provides an algorithmic way to solve the global optimization
problem in a limited number of steps; moreover, it serves as a starting point for all
later refinements. The general classification renders a large set of qualitatively different
allocations possible, including “exotic” properties that cannot arise in corresponding
unidimensional problems. Solutions may feature distortions for fully efficient types,
upward binding incentive constraints and higher production levels for inefficient types
as compared to efficient types within the same dimension.

With the general classification theorem bearing a spirit of “anything goes” the key
question arises how different properties of the optimal allocation relate to economic
assumptions on the fundamentals. The model exhibits three main characteristics subject
to specification, namely the interaction between the dimensions through the valuation
function, asymmetry between the dimensions through the valuation function, and the
underlying distribution of types.

Interaction between both dimensions through the valuation function gives rise to
new effects compared to the unidimensional case. In the unidimensional case, produc-
tion costs fully determine the allocation qualitatively − even when abstracting from
optimality − as monotonicity of the allocation in costs is equivalent to implementabil-
ity. In multiple dimensions, the interplay of the allocations in both dimensions affects
efficiency and may even overturn the cost effect. To see this, consider two firm types,
type 1 being efficent in dimension 1 (labeled x) and inefficient in the dimension 2 (la-
beled y) and type 2 vice versa. Suppose furthermore that the y-allocations of both types
are ordered as efficiency with respect to costs would suggest, namely type 2 producing a
larger quantity in y, being the more cost-efficient firm in that dimension. Yet, a higher
quantity in y for type 2 may render it efficient to have type 2 also producing a higher
quantity in x despite the higher production costs if goods are sufficiently complemen-
tary. A similar phenomenon may occur for strategic substitutes when considering a
fully efficient and a fully inefficient firm type.

The above effects apply in purest form when types are common knowledge and no
distortions through rent concerns must be taken into account. However, a main finding
of this thesis chapter is that most of the basic first-best features related to interaction
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between the dimensions transfer to the private information case.2 The nature of interac-
tion thus imposes fundamental ex ante restrictions on the optimal allocation that cannot
be overturned by other factors. Invoking the equivalence between allocational proper-
ties and combinations of binding constraints, this implies that the latter set is likewise
restricted under, say, complementarity or substitutability. What is more, the sets of po-
tential combinations of binding constraints under complementarity and substitutability,
respectively, intersect precisely in those constraint combinations that are feasible for the
additively separable benchmark. Independent of any additional effects arising from dis-
tributional properties or (a-)symmetry, complementarity and substitutability are thus
shown to push the optimal allocation in distinctly different directions.

Nevertheless, distributional properties and asymmetry between the dimensions in
the valuation have substantial influence on the shape of the optimal allocation within
the limits imposed by the interaction. Consider first potential concerns arising from
distributional properties. The more likely a particular type is to occur, the more costly
it becomes to distort its allocation away from the first-best. In the unidimensional case
these considerations are well-known to determine the classical rents vs. efficiency trade-
off, see e.g. Baron and Myerson (1982). In the multidimensional framework which is
much more flexible as to which constraints bind, a less (downward) distorted type may
easily become attractive as a target for deviations and thus “attract” binding incentive
constraints from other types.3 Distributional effects are by definition inherent only to
the private information case and thus are driven by rent concerns rather than efficiency
concerns.

Finally, (a-)symmetries between the dimensions in the valuation function also have
a strong impact on the optimal allocation. On the one hand, they clearly influence
efficiency and thus the first-best allocation by determining the relative size of the cost
effect in a given dimension compared to the effect resulting from interaction. On the
other hand, asymmetry also matters when incorporating rent concerns as it determines
which of the two allocation dimensions is less costly to distort.

Changing our perspective slightly, we can also consider asymmetry and interaction
between the two good dimensions in general, whether induced by the valuation or by
the type distribution.4 In particular, the complete absence of either of the two forces
drastically restricts the set of potential solutions as was shown for the case of missing
interaction in Armstrong and Rochet (1999) and is shown for the case of complete
symmetry in this thesis chapter. What is more, the resulting allocations feature the
standard unidimensional properties such as “no distortions at the top” and monotonic
allocations with respect to production costs. Conversely, pushing the optimal allocations
beyond these standard features thus requires a substantial interplay of asymmetry and

2One important exception applies to the case of strategic substitutes where some monotonicity rela-
tions from the first-best case may fail to hold under private information.

3In Armstrong and Rochet (1999) where valuations are additively separable, correlation between
preference types is the main determinant as to which incentive constraints bind.

4Interaction in the type distribution is captured by correlation while asymmetry enters via different
probabilities for the two efficient-inefficient type combinations.
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interaction between the good dimensions.5

There is a large and diverse literature on multidimensional screening. A seminal ref-
erence is Rochet and Choné (1998) who analyze the general problem of multidimensional
preference types and multidimensional allocations in continuous dimensions. While Ro-
chet and Choné obtain valuable insights such as the existence of bunching regions for
the optimal allocation, a general explicit solution to their model seems out of bounds.

Several papers have taken a complementary approach to the present thesis chapter
by combining a simple (binary) allocation choice and with continuous type spaces. This
strand of literature has mainly been developed in the framework of pricing problems.
Adams and Yellen (1976) were the first to analyze bundling incentives in multiprod-
uct pricing. Formalizing the same approach, McAfee et al. (1989) show that bundling
generically improves upon separable pricing schemes when buying behavior can be moni-
tored. Moreover, they show that for uncorrelated types a discount for buying the bundle
improves revenues upon pricing both goods separately. More recently, Manelli and Vin-
cent (2007) analyze the problem from a more general design perspective and find that
optimal pricing schemes are typically stochastic, thereby adding a flair of continuity
to the allocation dimensions which again comes at the cost of explicit solvability. In
a complementary approach, Armstrong (2013) analyzes optimal deterministic mecha-
nisms allowing for complementarity and substitutability in consumers’ utility. A mixed
approach involving one continuous and one binary preference dimension is analyzed in
Ketelaar and Szalay (2014).6

Apart from the aforementioned paper by Armstrong and Rochet, the paper most
closely related to my contribution is Severinov (2008) who also adds complementarity
or substitutability to the Armstrong-Rochet model. The difference between Severinov’s
and my contribution is twofold. First, Severinov assumes uncorrelated preference types
and thus eliminates one source of interaction which may otherwise impact the optimal
allocation. Second, Severinov’s objective is different from mine; rather than solving
the optimization problem, Severinov compares different organizational forms to decide,
among others, whether a single producer of two goods can be procured more or less
efficiently than two seperate firms producing one good each.7 On the technical side, I use
the homotopy method from Severinov’s paper which involves the continuous deformation
of first order conditions to analyze the dynamics of allocational properties.

Finally, Litterscheid and Szalay (2014) analyze an almost identical model with posi-
tive correlation in a sequential context where the firm learns its information in dimension
2 only after having reported its type in dimension 1. As in this thesis chapter, prop-
erties of the allocation are linked to binding incentive constraints and the underlying
fundamentals. While the sequential problem is simpler in the sense that there are less

5Armstrong and Rochet show for the additively separable case that distortions at the top can only be
optimal if substantial asymmetry between good dimensions and sufficiently strong negative correlation
between type dimensions occur jointly.

6See also Chapter 4 of this thesis.
7Indeed, some of Severinov’s informal comments on the general solution concerning e.g. the irrele-

vance of upward constraints seem dubious in the light of the analysis here which features some explicit
examples for the latter phenomenon in the proofs of Section 7.
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deviations available, due to the uncertainty in the first stage out of equilibrium behavior
proves tricky to analyze.

3.2 The Model and the Maximization Problem

A designer wants to regulate or procure a firm that produces two goods whose quantity
or quality characteristics are captured by parameters x, y ∈ R+. The firm has produc-
tion costs C (x, y) = θx+ηy where θ ∈ {θl, θh} and η ∈ {ηl, ηh}, θh > θl > 0, ηh > ηl > 0
are private knowledge of the firm. The designer only knows the ex ante probabilities
of the four possible cost types, denoted by pij for type (θi, ηj), i, j ∈ {l, h}.8 I write
∆θ = θh − θl, ∆η = ηh − ηl.

The designer aims to maximize a given demand or utility function V (x, y) subject to
participation of the firm. V (x, y) is strictly concave and twice continuously differentiable
with non-degenerate (and hence negative definite) Hessian for all x, y ∈ R+. To ensure
inner solutions, I impose some additional Inada conditions such as limx→0 Vx (x, y) =∞
for all y ∈ R+, limy→0 Vy (x, y) =∞ for all x ∈ R+, limx→∞ Vx (x, y) = 0 for all y ∈ R+,
and limy→∞ Vy (x, y) = 0 for all x ∈ R+. Examples may depart from these particular
conditions.

Invoking the revelation principle (see e.g. Myerson (1982)) I restrict attention to
direct mechanisms. For each firm type (θi, ηj), i, j ∈ {l, h} the designer commits to
a production policy (xij , yij) and fixes a transfer payment Tij . Firms’ profits when
reporting truthfully are then given as

πij = Tij − θixij − ηjyij ∀ (i, j) ∈ {l, h}2

while profits of a firm of type (i, j) ∈ {l, h}2 reporting type (r, s) 6= (i, j) ∈ {l, h}2 are
denoted as

πijrs = Trs − θixrs − ηjyrs.

The designer aims to solve9

max
xij ,yij ,Tij , i,j∈{l,h}

E(i,j) [V (xij , yij)− Tij ]

subject to participation of the firm, i.e.

πij ≥ 0 ∀i, j ∈ {l, h} ,
8I will often write (i, j) to refer to type (θi, ηj) in what follows.
9The designer’s objective can be rewritten as

max
xij ,yij ,tij , i,j∈{l,h}

E(i,j) [V (xij , yij)− Tij ] = max
xij ,yij ,πij , i,j∈{l,h}

E(i,j) [V (xij , yij)− C (xij , yij)− πij ] .

In some contexts, the designer may also care about the profits of the firm, weighted by some factor
α ∈ (0, 1), thereby adding a factor (1− α) in front of πij in the objective. As this additional factor
does not qualitatively affect the analysis, I will assume α = 0 for sake of simplicity and notational
convenience.



34 CHAPTER 3. A BASELINE MODEL OF MULTIDIMENSIONAL SCREENING

and incentive compatibility of truthful reports for all firm types, i.e.

πij ≥ max
(r,s)∈{l,h}2, (r,s) 6=(i,j)

πijrs ∀ (i, j) ∈ {l, h}2 .

I write IRij to refer to the individual rationality (participation) constraint of the firm
of type (i, j) ∈ {l, h}2. The incentive compatibility constraint of firm (i, j) ∈ {l, h}2
not to mimick firm (r, s) 6= (i, j) ∈ {l, h}2 is referred to as ICijrs. If I refer to all three
IC-constraints of type (i, j) ∈ {l, h}2 simultaneously, I write ICij .

3.3 Implementability

In the unidimensional baseline model with discrete or continuous types it is a well-
known result that implementability is equivalent to monotonicity of the solution in the
reported parameter (see e.g. Baron and Myerson (1982)). This insight is in line with
the intuition that the higher the production costs of a good are, the lower is the optimal
output. With multiple goods, this intuition applies only partially as I demonstrate in
the next proposition. While, to the best of my knowledge, the result for this particular
setup has not been stated before explicitely, it can be derived as a direct implication of
Theorem 1 in Rochet (1987). We may interpret our optimization problem as a network
flow problem where each type (i, j) ∈ {l, h}2 constitutes a node and is linked to any
other type (r, s) ∈ {l, h}2 by an arc of length C (θi, ηj , xij , yij) − C (θi, ηj , xrs, yrs) for
a given allocation (x, y) ∈ R

4
+ × R

4
+. Following Rochet (1987), (x, y) is implementable

by some transfers T (x, y) if and only if the network does not feature a cycle of positive
length. In our setup this translates into the following proposition.

Proposition 1. An allocation (x, y) ∈ R
4
+ × R

4
+ is implementable through transfer
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payments T = T (θ, η) if and only if the following 16 inequalities hold:

xll − xhl ≥ 0 (I1)

yll − ylh ≥ 0 (I2)

xlh − xhh ≥ 0 (I3)

yhl − yhh ≥ 0, (I4)

∆θ · (xll − xhh) + ∆η · (yll − yhh) ≥ 0 (I5)

∆θ · (xlh − xhl) + ∆η · (yhl − ylh) ≥ 0 (I6)

∆θ · (xll − xhh) + ∆η · (yhl − yhh) ≥ 0 (I7)

∆θ · (xlh − xhh) + ∆η · (yll − yhh) ≥ 0 (I8)

∆θ · (xll − xhl) + ∆η · (yll − yhh) ≥ 0 (I9)

∆θ · (xll − xhh) + ∆η · (yll − ylh) ≥ 0 (I10)

∆θ · (xlh − xhl) + ∆η · (yll − ylh) ≥ 0 (I11)

∆θ · (xll − xhl) + ∆η · (yhl − ylh) ≥ 0 (I12)

∆θ · (xlh − xhh) + ∆η · (yhl − ylh) ≥ 0 (I13)

∆θ · (xlh − xhl) + ∆η · (yhl − yhh) ≥ 0 (I14)

∆θ · (xlh − xhl) + ∆η · (yll − yhh) ≥ 0 (I15)

∆θ · (xll − xhh) + ∆η · (yhl − ylh) ≥ 0. (I16)

We denote the set of implementable allocations, i.e. all allocations (x, y) ∈ R
4
+×R

4
+

that satisfy the above 16 inequalities, by I ⊂ R
4
+ × R

4
+.

Proposition 1 can be read from two different points of view. First, it shows that
one-dimensional monotonicity as stated in equations (I1)-(I4)“all else equal” is no longer
sufficient for implementability but must be complemented by twelve additional condi-
tions that link the two dimensions as stated in equations (I5)-(I16).

On the other hand, implementability in the multidimensional setup no longer implies
that low-cost types in a particular dimension produce more than high-cost types in the
same dimension. Indeed, equations (I1)-(I16) allow for the possibility that

xll − xhh < 0,

xlh − xhl < 0,

yll − yhh < 0,

yhl − ylh < 0,

while at most one of these inequalities can hold at a time. As I will demonstrate later
on, and has partially been demonstrated by Severinov (Severinov (2008)) before, each
of these inequalities may hold in an optimal mechanism if the interaction between both
dimensions through V (x, y) is sufficiently strong.
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3.4 First Best Allocations

For later comparison it is useful to start with a close look at the first best scenario where
the firm’s type is known to the designer. In that case the designer leaves no profits to
the firm and sets production quantities such that marginal valuations equal (constant)
marginal costs of production, that is

Vx (xij , yij) = θi

Vy (xij , yij) = ηj

for all i, j ∈ {l, h}. A central issue of this thesis chapter (cf. Section 6) is to analyze
as to which extent properties of the first best allocation transfer to the second best
allocation in the private information case. Since the relevant intuitions apply in most
pure form to the undistorted first best case, I provide a brief discussion here.

Proposition 2. The first best allocation has the following properties:
a) xll − xhl > 0, xlh − xhh > 0, yll − ylh > 0, yhl − yhh > 0.
b) If goods are complements, then xll > xlh, xhl > xhh, yll > yhl, ylh > yhh.
c) If goods are substitutes, then xll < xlh, xhl < xhh, yll < yhl, ylh < yhh.

d) If
|Vyy(x,y)|

∆η
≥ |Vxy(x,y)|

∆θ
for all (x, y) ∈ R

2
+, then xll > xhh, xlh > xhl. If |Vxx(x,y)|

∆θ
≥

|Vxy(x,y)|
∆η

for all (x, y) ∈ R
2
+ then yll > yhh, yhl > ylh.

Part a) of Proposition 2 seems straightforward. Production is cheaper for low cost
types than for high cost types, so the efficient type should produce more. A bit more
formally, decreasing the production costs should increase quantities due to decreasing
marginal valuations in each dimension, captured by Vxx < 0 and Vyy < 0, respectively.
While this essentially unidimensional intuition holds true in our multidimensional setup,
it is nevertheless worth to take a slightly closer look. Indeed, gradually decreasing θh
to θl, say, typically impacts the allocation in both dimensions unless valuations are
additively separable. Taking derivatives with respect to t of the system of first order
conditions given as

Vx (x, y) = θh − t ·∆θ

Vy (x, y) = η

yields

dx

dt
· Vxx (x, y) +

dy

dt
· Vxy (x, y) = −∆θ

dx

dt
· Vxy (x, y) +

dy

dt
· Vyy (x, y) = 0

which has a unique solution

dx

dt
=

−∆θ · Vyy (x, y)

Vxx (x, y) · Vyy (x, y)− Vxy (x, y)
2

dy

dt
=

∆θ · Vxy (x, y)

Vxx (x, y) · Vyy (x, y)− Vxy (x, y)
2 .
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Note that it is indeed the negative sign of Vxx (x, y) that determines the sign of the effect
on x. The relative size of the effects on x and y, however, is measured by |Vyy (x, y)|
and |Vxy (x, y)|, respectively. This may be surprising at first sight, given that it is the
cost parameter relating to the x-dimension that changes. However, it is the constant
value of η in Vy (x, y) = η that determines which two effects must outweigh each other,
namely those coming from |Vyy (x, y)| and |Vxy (x, y)|.

As just demonstrated, to keep both first order equations satisfied simultaneously a
shift in x, say, coming from a change in θ will typically require the allocation in the sec-
ond dimension to be adjusted as well. This is reflected in Parts b) and c) of Proposition
2. When gradually reducing θh to θl while keeping η fixed, under complementarity the
increase in x must be compensated by an increase in y to keep equation Vy (x, y) = η
satisfied. Conversely, for the case of substitutes, y must decrease to compensate for
an increase in x. Intuitively, under complementarity the value of producing more in
dimension y is larger the more is produced in dimension x and vice versa. Since low
cost types in θ will produce a larger amount x than high cost types, y is decreasing in
θ. For substitutes the converse intuition applies.

Part d) of Proposition 2 is based on both previously described effects. Assume
for the moment that ∆θ = ∆η. Thinking unidimensionally, the same intuition as in
Part a) should apply to the inequalities in Part d) as well. However, there is a caveat;
this time, not only the cost parameter in the θ-x-dimension, say, is varied but the
cost parameter in the η-y-dimension changes simultaneously, giving rise to a separate
effect on the x-allocation as described in Parts b) and c), respectively. If the latter
effect, measured by |Vxy (x, y)| as shown above, is stronger than the effect through θ,
measured by |Vyy (x, y)|, the intuition for Part a) may be overturned. The assumption
in Part d) is therefore needed to rule out this case with certainty. If ∆θ 6= ∆η, the
same forces occur. However, the size of the two potentially opposing effects has to
be adjusted by the inverse of the path length from one cost type to the other in the
respective dimension. To get a qualitative intuition, consider a situation where both
θ-types are almost identical so that ∆θ is very small compared to ∆η. In this case, the
effect from changing θ (Part a) on x is very weak as there is hardly any difference in
production costs for x conditional on θ. Hence the effect from changing η (Part b/c)
dominates. Monotonicity of x in θ may hence fail to hold across η-types. Changing η
also dominates changing θ with respect to y but has the reversed implication here; the
effects driving Part a) dominate those from Part b/c), so low cost types in η will always
produce a higher quantity of y than high cost types in η if ∆θ is small.

3.5 A General Solution Approach

In this section I present the main structural results of this thesis chapter. I establish
a characterization of the set of binding IC-constraints in terms of properties of the
optimal allocation. This allows me to break down the non-smooth global optimization
problem into eleven smooth subproblems that correspond to different properties of the
allocation. All possible solutions of the global optimization problem can be characterized
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as solutions of these subproblems.
I start by a sequence of lemmas that simplify the original optimization problem with

respect to transfers and constraints. As the arguments are easy to follow I omit formal
proofs.

Lemma 1. For each allocation (x, y) ∈ I, optimal transfers are such that IRhh binds
while all other IR-constraints are slack. Moreover, IChl, IClh and ICll bind.

The intuition for Lemma 1 is straightforward. Clearly, at least one IR-constraint
must bind as otherwise all transfers could be reduced by an identical small amount.
As any (partially or fully) efficient firm could produce the inefficient firm’s quantities
at lower costs, they would rather mimick the fully inefficient type than abstain from
participation. Hence it must be the inefficient firm’s IR-constraint that binds while
all others are slack. But then the IC-constraint of any other firm type must bind as
otherwise the designer could reduce the transfer to the respective type.

With IRhh binding we have a standard no-rent-at-the-bottom scenario. In particu-
lar, whatever the optimal allocation (x, y) ∈ I looks like, the transfer payment to the
fully inefficient firm is given as Thh = θhxhh + ηhyhh. As the next lemma states, the
remaining optimal transfers are also given as a function of the allocation only.

Lemma 2. Each type (i, j) 6= (h, h) must be linked to type (h, h) via a path of binding
IC-constraints. There exist a unique transfer function T : I → R

4
+ such that T (x, y)

maximizes the objective for given (x, y) ∈ I.
Lemma 2 eliminates transfers as independent variables from the problem and thereby

considerably simplifies the optimization task. As just argued the optimal transfer pay-
ment for type (h, h) is determined for any given implementable allocation through the
binding participation constraint IRhh. In turn, this consecutively determines the op-
timal transfers for any other type that is linked to (h, h) via a path of binding IC-
constraints. But this must apply to all other types as otherwise one could reduce the
transfers for all types that are not linked to (h, h) via a path of binding IC-constraint
by an uniform small amount.

In what follows, when referring to an implementable allocation (x, y) ∈ I I will
always silently assume that it comes along with optimal transfer payments T (x, y) ∈ R

4
+.

All arguments to derive Lemma 1 and Lemma 2 have been made without any refer-
ence to the fully inefficient type’s incentive compatibility constraint IChh. As a conse-
quence, once we combine an implementable allocation with the optimal transfers accord-
ing to Lemma 2, IChh should be satisfied automatically. Indeed, any type different from
(h, h) is linked to the fully inefficient type (h, h) by a path of binding IC-constraints.
So if IChhij was violated for some type (i, j) 6= (h, h), this were to result in a cycle of
positive length, following the path of binding IC-constraints from (i, j) to (h, h) and
then closing the cycle along the link from (h, h) to (i, j). But the non-existence of cycles
of positive length is precisely the necessary and sufficient condition for implementability
as pointed out in Section 2. Hence we get

Lemma 3. Let (x, y) ∈ I be an implementable allocation together with optimal transfers
T (x, y). Then IChh is implied by implementability.
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Lemma 2 has another direct implication which is at the core of our solution ap-
proach. Given that optimal transfers are uniquely determined by the allocation, the
allocation also fully determines the set of binding IC-constraints. We can therefore
identify particular sets of binding IC-constraints with particular subsets of the set of
implementable allocations. Within each of these subsets, transfers are just linear func-
tions of the allocation as they are always determined through the same set of binding
IC-constraints. Moreover, incentive compatibility is no longer an issue as it is inherent
in the definition of the optimal transfers T (x, y). Altogether, we can split the com-
plex original optimization problem that features non-differentiable IC-constraints into
several smooth subproblems that correspond to particular combinations of binding IC-
constraints. Each of this subproblems is then a standard Kuhn-Tucker-Problem with
two types of constraints: implementability constraints ensuring (x, y) ∈ I as well as
“regional” constraints ensuring that the optimum indeed lies in the subset of I that cor-
responds to the combination of binding IC-constraints under consideration. The next
proposition formalizes these ideas and provides explicit definitions.

Proposition 3. a) The set of implementable allocations is the union of eleven closed

and convex sets I =
⋃

i∈I
Ri, Ri ⊂ I, i ∈ I = {1a, 1b, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b} with

disjoint interior of positive mass that have the following properties:

(x, y) ∈ R1a if and only if IClllh, IClhhh, IChlhh hold with equality if and only if

∆η · (ylh − yhh)−∆θ · (xhl − xhh) ≥ 0 (R1a,1b)

∆η · (ylh − yhh) ≥ 0 (R1a,2)

∆θ · (xll − xhh)−∆η · (ylh − yhh) ≥ 0 (R1a,4a)

∆θ · (xlh − xhh)−∆η · (ylh − yhh) ≥ 0 (R1a,5a)

∆η · (yhl − yhh)−∆θ · (xhl − xhh) ≥ 0. (R1a,6b)

(x, y) ∈ R1b if and only if ICllhl, IClhhh, IChlhh hold with equality if and only if

∆θ · (xhl − xhh)−∆η · (ylh − yhh) ≥ 0 (R1b,1a)

∆θ · (xhl − xhh) ≥ 0 (R1b,2)

∆η · (yll − yhh)−∆θ · (xhl − xhh) ≥ 0 (R1b,4b)

∆η · (yhl − yhh)−∆θ · (xhl − xhh) ≥ 0 (R1b,5b)

∆θ · (xlh − xhh)−∆η · (ylh − yhh) ≥ 0. (R1b,6a)

(x, y) ∈ R2 if and only if ICllhh, IClhhh, IChlhh hold with equality if and only if

∆η · (yhh − ylh) ≥ 0 (R2,1a)

∆θ · (xhh − xhl) ≥ 0 (R2,1b)

∆θ · (xll − xhh) ≥ 0 (R2,3a)

∆η · (yll − yhh) ≥ 0. (R2,3b)
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(x, y) ∈ R3a if and only if ICllhh, IClhhh, IChlll hold with equality if and only if

∆θ · (xhh − xll) ≥ 0 (R3a,2)

∆η · (yhh − ylh) ≥ 0. (R3a,4a)

(x, y) ∈ R3b if and only if ICllhh, IClhll, IChlhh hold with equality if and only if

∆η · (yhh − yll) ≥ 0 (R3b,2)

∆θ · (xhh − xhl) ≥ 0. (R3b,4b)

(x, y) ∈ R4a if and only if IClllh, IClhhh, IChlll hold with equality if and only if

∆η · (ylh − yhh)−∆θ · (xll − xhh) ≥ 0 (R4a,1a)

∆η · (ylh − yhh) ≥ 0 (R4a,3a)

∆θ · (xlh − xll) ≥ 0. (R4a,5a)

(x, y) ∈ R4b if and only if ICllhl, IClhll, IChlhh hold with equality if and only if

∆θ · (xhl − xhh)−∆η · (yll − yhh) ≥ 0 (R4b,1b)

∆θ · (xhl − xhh) ≥ 0 (R4b,3b)

∆η · (yhl − yll) ≥ 0. (R4b,5b)

(x, y) ∈ R5a if and only if IClllh, IClhhh, IChllh hold with equality if and only if

∆η · (ylh − yhh)−∆θ · (xlh − xhh) ≥ 0 (R5a,1a)

∆θ · (xll − xlh) ≥ 0 (R5a,4a)

∆θ · (xlh − xhl) ≥ 0. (R5a,6a)

(x, y) ∈ R5b if and only if ICllhl, IClhhl, IChlhh hold with equality if and only if

∆θ · (xhl − xhh)−∆η · (yhl − yhh) ≥ 0 (R5b,1b)

∆η · (yll − yhl) ≥ 0 (R5b,4b)

∆η · (yhl − ylh) ≥ 0. (R5b,6b)

(x, y) ∈ R6a if and only if ICllhl, IClhhh, IChllh hold with equality if and only if

∆η · (ylh − yhh)−∆θ · (xlh − xhh) ≥ 0 (R6a,1b)

∆θ · (xhl − xlh) ≥ 0. (R6a,5a)

(x, y) ∈ R6b if and only if IClllh, IClhhl, IChlhh hold with equality if and only if

∆θ · (xhl − xhh)−∆η · (yhl − yhh) ≥ 0 (R6b,1a)

∆η · (ylh − yhl) ≥ 0. (R6b,5b)

b) The optimal transfer function T : I → R
4
+ is continuous, convex, and linear within

any Ri, i ∈ I, with kinks precisely along the hyperplanes that separate the above regions.
c) The optimal mechanism is unique.
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The central part of Proposition 3 is the characterization of combinations of binding
IC-constraints in terms of the allocation as given in Part a). The inequalities are derived
from an explicit comparison of firm rents. Consider for example region R1a with binding
IC-constraints IClllh, IClhhh, and IChlhh as depicted in Figure 1.

(θl, ηl)

(θh, ηl) (θl, ηh)

(θh, ηh)

Figure 1: Region R1a

The rents of types (h, l), (l, h) and (l, l) with the above combination of binding
IC-constraints are given as follows. Type (h, l) is left a rent ∆ηyhh for not imitating
type (h, h). Likewise, type (l, h) is left a rent ∆θxhh for not imitating type (h, h). To
ensure that type (l, l) does not imitate type (l, h) he must be left the rent that is left to
type (l, h) plus an additional rent ∆ηylh. The total rent of type (l, l) thus amounts to
∆θxhh +∆ηylh.

Suppose now that type (l, l) considers to imitate type (h, l) rather than type (l, h).
In that case he could claim a rent ∆ηyhh + ∆θxhl. Imitating type (l, h) is thus more
attractive than imitating type (h, l) if and only if ∆θxhh+∆ηylh−(∆ηyhh +∆θxhl) ≥ 0,
which constitutes constraint (R1a,1b). If type (l, l) considers imitating type (h, h), his
rents would amount to ∆ηyhh + ∆θxhh. As this is supposed to be less attractive than
imitating type (l, h), one must have ∆ηylh − ∆ηyhh ≥ 0 as stated in (R1a,2). In the
same way, one derives the remaining inequalities for R1a as well as for all other regions.
Note that some combinations of binding constraints have been excluded by Lemmas
1-2 and some others may violate implementability. Conversely, it is straightforward to
check that all the eleven regions in Proposition 3 have non-empty interior within I.
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Part a) of Proposition 3 yields eleven convex regions that are separated by hy-
perplanes along which the constraint that sets the two regions apart binds. We call
two regions adjacent if they are separated by a hyperplane of codimension 1. For any
hyperplane bounding region Ri, the label of the corresponding hyperplane inequality
indicates which region is adjacent to Ri along this hyperplane. A graphical illustration
of Proposition 3, Part a) is given in Figure 1. Arcs are drawn between any pair of
adjacent regions except for the inner part consisting of regions R1a, R1b, and R2 where
boundaries are depicted directly.10

1a 1b

2

3a 3b

4a 4b

5a 5b

6a 6b

Figure 2: Regions

Figure 2 also highlights some structural symmetries across regions that stem from
the fact that the model does not feature any prespecified asymmetries between the θ-x-
dimension and the η-y-dimension. Apart from Region 2 which is symmetric with respect
to both dimensions, each “a”-region has a “b”-region as a counterpart where the roles of
the two dimensions are interchanged.

Finally, Figure 2 optically suggests that regions R1a, R1b and R2 are somehow “cen-
tral”within I whereas the other regions are more “peripheric”. Despite the fact that the
representation of an 8-dimensional structure in a plane is necessarily inadequate, in the
course of this thesis chapter I will add to the idea that regions R1a, R1b and R2 indeed
play a central role for solving the problem in many cases.

10Clearly, Figure 1 is a vastly simplified representation of the set I where arcs connecting squares
correspond to 7-dimensional hyperplanes separating 8-dimensional polyhedrons.
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Transfers necessarily reflect the properties of the IC-constraints they need to keep
satisfied as stated in Part b) of Proposition 3. The global problem thus consists of
maximizing a continuous and strictly concave function E [V − T ] over a convex set I
which immediately yields uniqueness of the solution. The eleven subproblems arising
from Proposition 3 involve the maximization of a strictly concave smooth objective
E [V − T ] over a convex eight-dimensional set of allocations Ri, i ∈ I, subject to various
linear constraints. The solution to each subproblem is hence characterized by four pairs
of first-order conditions (FOCs in what follows) of the following form

Vx (xij , yij) = θi +
1

pij
·




∑

(r,s)∈{l,h}2

[

prs ·
∂πrs

∂xij

]

+ λimplementability + µregion



 , (3.5.1)

Vy (xij , yij) = ηj +
1

pij
·




∑

(r,s)∈{l,h}2

[

prs ·
∂πrs

∂yij

]

+ λimplementability + µregion



 . (3.5.2)

As we see, there are three potential sources of distortion relative to the first best; rents of
the firms, implementability concerns and the requirement to stay within the region under
consideration. Note that implementability constraints (I1)-(I16) are global constraints
and hence identical across all regions.11 Moreover, all implementability constraints
and all regional constraints as well as all transfers/profits are linear in (x, y) for a
given region, hence the right hand side of the FOCs does not depend on (x, y) directly.
To systematically label different multipliers attached to different constraints, let λj ,
j ∈ {1, ..., 16} refer to implementability constraint (Ij) from (I1)-(I16). If it is helpful
to additionally specify the region under consideration, I write λi,j , i ∈ I, j ∈ {1, ..., 16}.
Similarly, µi,j refers to the hyperplane constraint separating region Ri from the adjacent
region Rj , i, j ∈ I.

Proposition 3 and the insights from the previous paragraph provide an explicit way
to solve the global optimization problem by standard methods: solve all eleven Kuhn-
Tucker subproblems via the FOCs of the respective region and then compare which of
the eleven solutions yields the highest objective. From an algorithmic point of view
this raises three questions. First, can we know ex ante in which region(s) to expect the
solution? Second, is it possible to directly decide whether a solution of a subproblem is
globally optimal? Third, can we ease the regional problems, e.g. by excluding ex ante
certain combinations of binding constraints?

Partial or full answers to any of these questions will be given in what follows. Eco-
nomically, the first question clearly sticks out compared to the other two. Indeed,
the subsequent two sections will be devoted almost exclusively to the question which
economic or economically motivated properties of the optimization problem will imply
the optimal allocation to feature particular properties associated with different regions.
However, it is quite useful to proceed towards a map of the possible solutions in full
generality beforehand, answering parts of Questions 2 and 3 en passant. We start with
the following proposition.

11Different implementability constraints, however, will be relevant for different regions. In addition, as
implementability constraints are not necessarily orthogonal to regional constraints, multipliers attached
to implementability constraints may take different values for different regions if the optimum lies on the
boundary between different regions as well as on the implementability frontier.



44 CHAPTER 3. A BASELINE MODEL OF MULTIDIMENSIONAL SCREENING

Proposition 4. (x, y) ∈ I solves the global optimization problem if and only if it solves
the subproblem for any region Ri, i ∈ I for which (x, y) ∈ Ri.

The necessity of the condition in Proposition 4 is trivial. Obviously, an allocation
cannot be globally optimal if it is not even optimal within a given region Ri to which it
belongs. The converse is a consequence of the concavity of the global problem. Suppose
(x, y) satisfies the condition of Proposition 4 but does not solve the global problem.
Then, due to concavity, the objective must strictly increase along the line between
(x, y) and the global optimum. But as parts of this line must lie in some region Ri

which contains (x, y), this contradicts the assumed optimality of (x, y) in the respective
region.

As an immediate consequence of Proposition 4, any solution to some subproblem
Ri that is interior in Ri solves the global problem. However, given the kinkiness of the
global problem, we cannot generically expect the global solution to lie in the interior
of some region Ri. The following classification theorem lists all possible loci for the
optimal solution.

Theorem 1. Let (x, y) ∈ I solve the global optimization problem. Then one of the
following cases applies:

a) (x, y) lies in the interior of Ri ⊂ I for some i ∈ I.12 (11 cases)
b) (x, y) ∈ Ri ∩Rj for i, j ∈ I and (x, y) /∈ Rk for any k 6= i, j ∈ I. (17 cases)
c) One of the following nine cases applies:
c1) (x, y) ∈ R1a ∩R1b ∩R2 and (x, y) /∈ Rj for any j /∈ {1a, 1b, 2}.
c2) (x, y) ∈ R1a ∩R4a ∩R5a and (x, y) /∈ Rj for any j /∈ {1a, 4a, 5a}.
c3) (x, y) ∈ R1b ∩R4b ∩R5b and (x, y) /∈ Rj for any j /∈ {1b, 4b, 5b}.
c4) (x, y) ∈ R1a ∩R1b ∩R5a ∩R6a and (x, y) /∈ Rj for any j /∈ {1a, 1b, 5a, 6a}.
c5) (x, y) ∈ R1a ∩R1b ∩R5b ∩R6b and (x, y) /∈ Rj for any j /∈ {1a, 1b, 5b, 6b}.
c6) (x, y) ∈ R1a ∩R2 ∩R3a ∩R4a and (x, y) /∈ Rj for any j /∈ {1a, 2, 3a, 4a}.
c7) (x, y) ∈ R1b ∩R2 ∩R3b ∩R4b and (x, y) /∈ Rj for any j /∈ {1b, 2, 3b, 4b}.
c8) (x, y) ∈ R1a ∩R4a ∩R6b and (x, y) /∈ Rj for any j /∈ {1a, 4a, 6b}.
c9) (x, y) ∈ R1b ∩R4b ∩R6a and (x, y) /∈ Rj for any j /∈ {1b, 4b, 6a}.

According to Theorem 1, the optimal solution always lies either in the interior of
some region, or in the intersection (hyperplane) between exactly two regions, or within
particular intersections of respectively three or four regions. The proof of Theorem 1
involves a thorough technical analysis of the FOCs for each of the eleven regions. On the
one hand, any intersection of regions apart from those that are part of the classification
must be excluded. On the other hand, I show that for any intersection of regions that
is part of the classification there exist non-negative multipliers such that the FOCs of
all involved regions are satisfied simultaneously.

Tying in with the latter point, in the Appendix I provide an extended version of
Theorem 1, labeled Theorem 1*, which provides additional input to any of the 37
distinct loci (distinct in terms of intersections of regions Ri) that are potential global

12Interior refers to the metric space I. In particular, any point on the boundary of I within R
8 that

belongs to only one region Ri is meant to be an interior point of Ri.
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optima according to Theorem 1. Coming back to the previously formulated algorithmic
questions, I specify the set of implementability constraints that may bind in addition at
any of these loci, answering Question 3. Similarly, necessary and sufficient conditions
for the regional multipliers in each region are provided that directly allow us to decide
whether a solution of some regional subproblem solves the global problem as well or not,
answering Question 2. Roughly speaking, while multipliers attached to implementability
constraints may a priori become arbitrarily large, regional multipliers are bounded from
above. This is quite intuitive; while implementability must be enforced at all costs,
staying in a particular region will only be optimal if the additional distortions do not
become too costly. Rather than letting some regional multiplier grow too large it will
be more profitable to cross the boundary towards another region. The only exceptions
from this intuition are cases c8) and c9) where (x, y) ∈ R1a ∩ R4a ∩ R6b or (x, y) ∈
R1b ∩ R4b ∩ R6a imply that respectively (I12) or (I11) hold with equality, mixing up
regional and implementability concerns.

While these extensions of Theorem 1 are useful from the algorithmic perspective
as well as for some later proofs, their flair is purely technical. I therefore only state a
handy consequence here in the main text.

Proposition 5. The optimal allocation features xll > xhl, yll > ylh, xlh > xhh, yhl > yhh.

Proposition 5 states that strict one-dimensional monotonicity “all else equal” as
stated in Proposition 2 continues to hold in the private information setup. As a con-
sequence, monotonicity constraints I1-I4 do not play any role in our multidimensional
framework; only those implementability constraints that link both dimensions are of
potential relevance.

3.6 Adding Economic Structure

The solution approach of the previous section that culminates in the classification of
potential solutions in Theorem 1 is useful on its own. It provides a general overview
of what is possible and what is not, together with an algorithm how to ultimately
determine the solution of any specified optimization problem covered by the model.
Yet, making no additional structural assumptions whatsoever the algorithm as such
does not help us to relate particular specifications of the general optimization problem
to particular solution patterns. In this section, I complement the previous algorithmic
analysis by demonstrating how additional economically motivated assumptions restrict
and influence the qualitative features of the optimal allocation.

The underlying model offers two main characteristics for specification: interaction
between the two dimensions and asymmetries between the two dimensions, both cap-
tured by V (x, y) as well as the underlying distribution over types.13 In this section I
mainly focus on characteristics of V (x, y) and their impact on the optimal allocation

13Armstrong and Rochet (1999) exlude interaction between dimensions through V (x, y) while Sev-
erinov (2008) excludes interaction between dimensions in the type distribution.
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while the parametrized example in Section 7 takes the interplay between distributional
issues and properties of V (x, y) into account.

I start with two benchmark cases, namely the absence of interaction through V (x, y)
and complete symmetry. First, recall the result in Armstrong and Rochet (1999) for
the case of additively separable valuations V (x, y).

Proposition 6, Armstrong and Rochet (1999). Suppose V (x, y) = V 1 (x)+V 2 (y)
is additively separable.
a) If types are strongly positively correlated in the sense that

phh · pll − plh · phl ≥
plhphl
phh

,

then the optimal allocation features (x, y) ∈ R1a ∩R1b ∩R2.
b) If types are uncorrelated or positively correlated with

phh · pll − plh · phl <
plhphl
phh

then the optimal allocation lies in the interior of R1a ∩R1b.
c) Suppose types are negatively correlated. If correlation is sufficiently weak and dimen-
sions are not too asymmetric, the solution lies in the interior of R1a ∩ R1b as in b). If
correlation and asymmetry are sufficiently strong, the solution lies either in the interior
of R1a or R1b, or in R1a ∩R4a ∩R5a or R1b ∩R4b ∩R5b, respectively.

Armstrong and Rochet (1999) provide a detailed discussion as well as a full proof
of Proposition 6 from which I abstain here. I give a strictly quantitative version of
Proposition 6 and in particular of Part c) in the next section for the parametrized case
of quadratic valuations.

With additively separable valuations, only six cases from Theorem 1 may apply. The
solution is qualitatively determined by the remaining source of interaction betwewen
dimensions, namely correlation of preference types, and by the degree of asymmetry
between the dimensions. Note that if all interaction between the dimensions was elim-
inated, i.e. if types were additionally assumed to be uncorrelated, then Part b) applies
and the optimal allocation necessarily lies in the interior of R1a ∩ R1b. Moreover, the
optimal allocation always lies in the interior of R1a∪R1b∪R2 unless negative correlation
and asymmetry are jointly large.

I next add the second benchmark where I allow for interaction between the dimen-
sions but impose full symmetry across dimensions.

Proposition 7. Assume θh = ηh, θl = ηl, phl = plh, and V (x, y) = V (y, x). Then the
solution satisfies xij = yji for all i, j ∈ {h, l} and is determined through the following
FOCs

Vx (xhh, xhh) = θh +
∆θ

phh
·
(

plh + pll −
α

2
· pll
)

Vx (xhl, xlh) = θh +
∆θ

phl
· α
2
· pll

Vx (xlh, xhl) = θl

Vx (xll, xll) = θl
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where

α =











0 if for α = 0 the solution of the system features xhh ≥ xhl

1 if for α = 1 the solution of the system features xhh ≤ xhl

α∗ ∈ (0, 1) if for α = α∗ the solution of the system features xhh = xhl.

If xhh > xhl, the solution lies in the interior of R2. If xhh < xhl, the solution lies in the
interior of R1a ∩R1b. If xhh = xhl, the solution lies in R1a ∩R1b ∩R2.

Full symmetry is even more restrictive than additive separability of V (x, y) with
respect to the set of possible optimal allocations and almost as restrictive as the full
absence of interaction between the dimensions. The extensive consequences of full sym-
metry are already reflected in Proposition 3; all“a”- and“b”-regions require some amount
of asymmetry in the allocation and no “a”- and “b”-regions of the same type are adja-
cent except for R1a and R1b. Indeed, together with Theorem 1 this directly implies that
only the three cases captured by Proposition 7 can apply. These cases are characterized
by a unique multiplier α. The value of α is necessarily determined by distributional
properties and the interaction through V . As we see, for positive α increasing positive
correlation (keeping pll

phh
fixed) increases ∆θ

phl
· α2 · pll relative to ∆θ

phh
·
(

plh + pll − α
2 · pll

)

.
The multiplier α is hence“decreasing in the correlation”, in line with Proposition 6. The
impact of interaction through V (x, y) on α in general is less easy to capture as it will
typically depend on the allocation. However, if goods are global strategic complements
(strategic substitutes), increasing the degree of complementarity (substitutability) will
push α upwards (downwards), applying the same reasoning as explained after Proposi-
tion 2.

Just as in the additively separable case with moderate asymmetry and moderate
(negative) correlation, under full symmetry the optimal allocation always lies in the
interior of R1a ∪ R1b ∪ R2. In the interior of R1a ∪ R1b ∪ R2, some familiar features
from the one-dimensional case apply. There is “no distortion at the top” in the sense
that the allocation for the efficient type (l, l) coincides with the first best. Moreover, no
upward or diagonal constraints ever bind, so no high-cost firm in either dimension will
ever consider to imitate a low-cost firm. From Proposition 6 and 7 we may conclude
that in any (continuously) parametrized version of our model the solution lies in the
interior of R1a ∪R1b ∪R2 if interaction and asymmetry between the two dimensions are
sufficiently weak. A somewhat substantial combination of asymmetry and interaction
is needed to get optimal allocations beyond the classical schemes.

I continue by considering less restrictive assumptions than the complete absence of
interaction or asymmetry, namely those already touched upon in Proposition 2 for the
case of observable costs − bounded interaction, strategic complementarity and strategic
substitutability. As it is useful to discuss various aspects of these results in comparison
to each other, I state all three propositions in a row and comment afterwards.

Proposition 8. Assume that |Vxx(x,y)|
∆θ

≥ |Vxy(x,y)|
∆η

and
|Vyy(x,y)|

∆η
≥ |Vxy(x,y)|

∆θ
for all

(x, y) ∈ R
2
+. Then

a) xll ≥ xhh, xlh ≥ xhl, yll ≥ yhh, yhl ≥ ylh.
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b) equality in Part a) only applies if the optimal allocation lies on a boundary hyperplane
between two regions defined by the respective inequality.
c) the solution never lies in the interior of R3a, R3b, R6a, or R6b.
d) no implementability constraint binds, so in particular IChh is slack.

Proposition 9. Suppose that Vxy (x, y) > 0 for all (x, y) ∈ R
2
+. Then

a) xll ≥ xlh, xhl ≥ xhh, yll ≥ yhl, ylh ≥ yhh and xll > xhh, yll > yhh.
b) equality in Part a) may only apply if the optimal allocation lies on a boundary hy-
perplane between two regions defined by the respective inequality or on the boundary of
I ⊂ R

8
+.

c) the solution never lies in R3a or R3b or in the interior of R4a or R4b. If the solution
lies in R2, it lies in R1a ∩R1b ∩R2.
d) no upward IC-constraints binds unless the optimal allocation lies in R4a ∩ R5a or
R4b ∩R5b, respectively.

Proposition 10. Suppose that Vxy (x, y) < 0 for all (x, y) ∈ R
2
+. Then

a) xll ≤ xlh, yll ≤ yhl and xlh > xhl, yhl > ylh.
b) equality in Part a) may only apply if the optimal allocation lies on a boundary hy-
perplane between two regions defined by the respective inequality or on the boundary of
I ⊂ R

8
+.

c) the solution never lies in R6a or R6b or in the interior of R4a ∪R5a or R4b ∪R5b.
d) no diagonal IC-constraints binds unless the optimal allocation lies in R1a∩R4a∩R5a

or R1b ∩R4b ∩R5b, respectively.

The most noteworthy feature of Propositions 8-10 is that with one exception all
properties from the case of observable costs as given in Proposition 2 carry over to the
case of privately known costs. Strict inequalities may become weak inequalities due to
the kinks or boundaries of the constraint objective (and may do so only at kinks or
boundaries); yet, distortions through incentive compatibility constraints or transfers,
respectively, are not sufficiently strong to overturn the efficiency concerns that apply
in the unconstraint case. The only exception from this rule applies to Proposition 10.
Substitutability does not imply the same monotonicity behaviour for high cost types in
a given dimension with respect to the other cost parameter as in the first best; solutions
may feature xhh < xhl or yhh < ylh. Given Proposition 6, this does not come unexpected.
If the solution in the no-interaction case may lie in the interior of R1a ∪R1b and hence
satisfy xhh < xhl or yhh < ylh, then at least a small amount of substitutability should
be compatible with these equations. The intuition for this particular inequalities to be
potentially reversed compared to the first best is as follows. Both mixed types (l, h)
and (h, l) claim rents ∆θxhh resp. ∆ηyhh for not imitating type (h, h). The necessity of
leaving these rents makes it unattractive to choose xhh and yhh too large, in particular
if types (l, h) and (h, l) are likely to occur, i.e. if types are negatively correlated. This
rent aspect not only drives the result by Armstrong and Rochet (1999) but may also
outweigh the efficiency concern that is added in case of substitutes.

Complementarity and substitutability are the most common assumptions in almost
any multiproduct context. Following Propositions 9 and 10, they allow for distinctly
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separate optimal allocations, the intersection of possible loci coinciding precisely with
the feasible loci under additive separability. Substitutability allows for optimal alloca-
tions in regions R2 ∪ R3a ∪ R3b while complementarity allows for optimal allocations
in regions R5a ∪R5b ∪R6a ∪R6b. Neither substitutability nor complementarity is com-
patible with an optimal allocation in the interior of R4a or R4b.

14 Hence already the
assumption of a constant sign for Vxy (x, y) as such is restrictive, even without further
specification.

Bounded interaction as in Proposition 8 will often be a natural assumption. With
cost differences being equal it simply says that marginal valuations in any given dimen-
sion should depend at least as much on the allocation in the very same dimension com-
pared to the allocation in the other dimension. Note in addition that the assumptions
underlying Proposition 8 do not exclusively relate to interaction. Indeed, in a very asym-
metric model interaction must be very small to satisfy both assumptions simultaneously.
Conversely, symmetry across dimensions implies |Vxx (x, y)| = |Vyy (x, y)| > |Vxy (x, y)|
due to concavity.

Any of the assumptions underlying Propositions 8-10 substantially restrict the fea-
sible loci for the optimal allocation and even more so when combined. Substitutabil-
ity and bounded interaction in the sense of Proposition 8 for example already imply
(x, y) ∈ R1a ∪ R1b ∪ R2. Moreover, the parallels to the properties of the first best so-
lution show that the valuation V (x, y) and in particular different kinds of interaction
impose qualitative restrictions on the solution that are inherently based on efficiency
concerns and cannot be overturned by rent concerns. In particular, apart from the
exception for the case of substatibility discussed above, even an extremely imbalanced
underlying type distribution cannot distort these fundamental properties as by definition
it has no impact on the first-best solution.

3.7 The Quadratic Case – An Example

In this section I analyze the design problem under the specific assumption that valua-
tions are quadratic, i.e.

V (x, y) = −1

2
a1x

2 − 1

2
a2y

2 + bxy + c1x+ c2y + d

with a1, a2 > 0, b, c1, c2, d ∈ R. V (x, y) is strictly concave if and only if detH (x, y) =
a1a2−b2 > 0 which I will assume throughout this section. Moreover, to avoid additional
factors as in Proposition 2 and Proposition 8, in this section I assume ∆θ = ∆η = ∆
and normalize by setting ∆ = 1.

As I show in the Appendix, for all qualitative purposes it is sufficient to consider a
reduced version of the quadratic problem where

V (x, y) = −1

2
a1x

2 − 1

2
a2y

2 + bxy

14The same holds for allocations in R1a ∩R4a ∩R6b or R1b ∩R4b ∩R6a as can easily be seen from the
proof of Proposition 9 and the statement of Proposition 10.
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and a1a2 − b2 = 1, ignoring negativity of the optimal allocation and consumer valu-
ations.15For any region R and any r, s ∈ {l, h} the FOCs for the optimal allocation
read

Vx (xrs, yrs) = γ1rs,

Vy (xrs, yrs) = γ2rs

where γ1rs, γ
2
rs depend on r, s ∈ {l, h}, on the region, on the multipliers and on the

model parameters but do not depend on (x, y). The solution of this system for our
specification of V (x, y) reads

xrs = −bγ2rs − a2γ
1
rs (3.7.1)

yrs = −bγ1rs − a1γ
2
rs. (3.7.2)

The parameter b = Vxy (x, y) measures the strength of interaction between the dimen-
sions through V (x, y). To measure the asymmetry between the dimensions induced by
V (x, y), I write Q = a1

a2
. With this parametrization we have

a1 =
√

Q ·
√

1 + b2,

a2 =
1√
Q
·
√

1 + b2.

Equations (3.7.1) and (3.7.2) together with the results from the previous sections
allow us to solve the quadratic optimization problem explicitly for any b ∈ R, Q > 0 and
any distribution of preference types. We use this to derive some results that specify and
complement the results from Section 6 for additively separable preferences (b = 0), com-
plements (b > 0), and substitutes (b < 0). In particular, while the main overall message
from Section 6 was that minor interaction and asymmetry lead to “standard” allocation
properties similar to those in the unidimensional case, in this section we demonstrate
that strong interaction and large asymmetries may indeed distort the solution beyond
these limits. Moreover, we comment on as to which extent the assumption of quadratic
valuations is restrictive with respect to the set of possible loci compared to Proposition
6, Proposition 9, and Proposition 10.

We start with a full characterization for the additively separable case, specifying
Part c) of Proposition 6.

Proposition 6E. Let Vxy (x, y) = b = 0.

a) If phh · pll − plh · phl ≥ plhphl
phh

then (x, y) ∈ R1a ∩R1b ∩R2.

b) If plhphl
phh

> phh · pll − plh · phl ≥ 0 then (x, y) lies in the interior of R1a ∩R1b.

c) If phh · pll − plh · phl < 0 the following holds:

15For any solution of the reduced version, there exist values c1, c2 and d such that the solution to the
original problem has identical qualitative properties with respect to all constraints but features positive
allocations and valuations. Fixing a1a2 − b2 = 1 is another normalization. See the Appendix for all
technical details.
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i) If negative correlation and asymmetry are weak in the sense that
plh·phl−phh·pll
phl·(phl+pll)

≤ Q ≤ plh·(plh+pll)
plh·phl−phh·pll then (x, y) lies in the interior of R1a ∩R1b.

ii) If negative correlation and asymmetry are intermediate in the sense that plh·(plh+pll)
plh·phl−phh·pll <

Q < plh·(1−phl)
plh·phl−phh·pll or plh·phl−phh·pll

phl·(1−plh) < Q < plh·phl−phh·pll
phl·(phl+pll)

then (x, y) lies in the interior of
R1a or R1b, respectively.
iii) If negative correlation and asymmetry are strong in the sense that Q ≥ plh·(1−phl)

plh·phl−phh·pll
or Q ≤ plh·phl−phh·pll

phl·(1−plh) then (x, y) lies in R1a ∩R4a ∩R5a or R1b ∩R4b ∩R5b, respectively.

Parts a-b) of Proposition 6E are identical to Proposition 6. In Part c), the parametrized
model allows us to precisely determine the locus of the optimal allocation as a function
of asymmetry and distributional features, with an emphasis on (negative) correlation.
In particular, for any fixed distribution featuring negative correlation, increasing the
asymmetry by means of Q → ∞ or Q → 0 will ultimately push the optimal allocation
towards the non-standard cases R1a∩R4a∩R5a or R1b∩R4b∩R5b, respectively, featuring
distortions at the top and binding diagonal and upward incentive constraints.

Note that large values Q≫ 1, that is, a large weight on the x-dimension as compared
to the y-dimension, tends to push the solution in“a”-type regions while small valuesQ≪
1 have the opposite effect. Indeed, all “a”-type regions are characterized by requiring
rather large differences in y-values for identical costs η. If the y-dimension is far less
important than the x-dimension, such large differences are much easier tolerable despite
their cost inefficiency. This scheme thus generally appears in all following results.

We next revisit the richer case of strategic complements.

Proposition 9E. Let Vxy (x, y) = b > 0.
a) The optimal allocation (x, y) lies in R1a ∪R1b ∪R6a ∪R6b.
b) No implementability constraint holds with equality.
c) The optimal allocation (x, y) may only lie outside R1a ∪R1b only if

b
2 ≥ 4 · p

2
hh

p2lh
· (phl + pll) ·

(

phl + pll +
plh

phh

)

,

√

Q ∈







√
b2 + 1

b
,

b√
b2 + 1

·






1 +

plh
phh

+

√
(

plh
phh

)2

− 4 · 1
b2

· (phl + pll) ·
(

phl + pll +
plh
phh

)

phl + pll













.

or

b
2 ≥ 4 · p

2
hh

p2hl
· (plh + pll) ·

(

plh + pll +
phl

phh

)

,

1√
Q

∈







√
b2 + 1

b
,

b√
b2 + 1

·






1 +

plh
phh

+

√
(

plh
phh

)2

− 4 · 1
b2

· (phl + pll) ·
(

phl + pll +
plh
phh

)

phl + pll













.

d) For any fixed values of b and the underlying distribution as well as for sufficiently
large (small) Q the solution lies in the interior of R1b ∩R6a (R1a ∩R6b).

Part a) of Proposition 9E shows that the assumption of quadratic valuations is quali-
tatively restrictive within the class of valuations that feature strategic complementarity.
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Compared to Proposition 9, the solution cannot lie in the interior of R5a (R5b) or in the
interior of R4a∩R5a (R4b∩R5b). To get an intuition why the optimal allocation cannot
lie in R5a, recall the discussion of the first best allocation after Proposition 2 and con-
sider R5a. Whenever asymmetry becomes too large in the sense that Vyy = a2 becomes
too small relative to Vxy = b, the solution features xhl ≥ xlh. The effect from costs θ
on the x-allocation is dominated by the effect of the y-allocation on the x-allocation
through complementarity. Hence constraint (R5a,6a) binds or is violated. On the other
hand, to satisfy constraint (R5a,1a), namely ylh − yhh − (xlh − xhh) ≥ 0, the effect of
x on y measured by Vxy = b must be sufficiently large relative to effect through costs
within the x-dimension measured by Vyy = a2. As we show in the Appendix, these two
requirements cannot be satisfied simultaneously when there is no local variation in sec-
ond derivatives. Similarly, constant second derivatives render binding implementability
constraints impossible as stated in Part b), so in particular IChh is always slack.

Part c) formulates necessary conditions under which the solution may lie outside the
core regions R1a ∪ R1b. As a consequence of Part a) and Proposition 8, we must have
b ≥ a1 or b ≥ a2 which is reflected in the lower bounds for

√
Q and 1√

Q
, respectively.

Moreover, a substantial degree of interaction through b is required, in line with the
insights from the previous section. What may be surprising is the existence of an upper
bound on the asymmetry. To see where this comes from, consider R6a and note that
from (3.7.1) and (3.7.2) we have

ylh − yhh − (xlh − xhh) = (b− a1)
(

γ2lh − γ2hh
)

+ (b− a2)
(

γ1hh − γ1lh
)

. (3.7.3)

With constraints IClhhh binding, a rent ∆θxhh must be left to type (l, h) not to imitate
type (h, h) while no compensation is needed in the y-dimension. Moreover, as constraints
IChllh and ICllhl bind, these rents (together with some other terms) must be left to types
(l, l) and (h, l) as well. At the same time, with constraint IChllh binding, additional
rents ∆ηylh must be left to type (h, l) while simultaneously type (h, l) can be charged an
additional fee ∆θxlh. Again, since ICllhl binds, both effects also apply to type (l, l). As
a result, a marginal increase in xhh is very costly in the rent dimension compared to a
marginal increase in xlh and hence γ1hh−γ1lh > 0, while a marginal increase in ylh is more
costly than a marginal increase in yhh in the rent dimension, so γ2lh − γ2hh > 0. With
both γ-differences in equation (3.7.3) being positive, the existence of an upper bound
on Q becomes obvious. If a1 becomes very large relative to a2, then a1−b becomes very
large relative to b− a2 and hence (3.7.3) becomes negative.

Part d) finally shows that with constraint IChlhh binding in addition the above
issue can be resolved for large values of Q such that (3.7.3) holds with equality. Indeed,
suppose for a moment that IChlhh binds while IChllh is slack, so the solution lies in
R1b. Then, compared to the above discussion, the rents to type (h, l) (and, to gether
with some other terms, to type (l, l)) are given as ∆ηyhh rather than ∆ηylh, so the sign
of γ2lh − γ2hh changes from positive to negative. As a conseqence, a large value of Q will
cause expression (3.7.3) to be positive. By the intermediate value theorem, attaching a
suitable multiplier µ6a,1b to weight both concerns properly yields equality in (3.7.3) and
hence shows the result.

We close with the case of strategic substitutes.
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Proposition 10E. Let Vxy (x, y) = b < 0.
a) No implementability constraint holds with equality.
b) If

−b · (1− phl)− a1 · (plh + pll) > 0, (3.7.4)

−b · (1− plh)− a2 · (phl + pll) > 0, (3.7.5)

then solution never lies in R1a ∪R1b. In particular, if

max

{

1√
Q
· plh + pll
plh + pll + phh

,
√

Q · phl + pll
phl + pll + phh

}

< 1 (3.7.6)

then sufficiently strong interaction |b| ≫ 0 implies the above inequalities. Moreover,
whenever the above inequalities hold the solution lies in the interior of R2 if and only if
a1, a2 > |b|.
c) For any fixed values of b and the underlying distribution as well as for sufficiently
large (small) Q the solution lies in the interior of R3a ∩R4a (R3b ∩R4b).

Part a) of Proposition 10E is another consequence of constant second derivatives,
similar to Part b) of Proposition 9E.

Part b) of Proposition 10E provides sufficient conditions under which the optimal
allocation lies outside the regions that are feasible in the additively separable case.
As expected, sufficiently large interaction is required. Moreover, a large probability
phh to face a fully inefficient producer type relaxes condition (3.7.6). Again, this is
very intuitive; the more likely type (h, h) is to occur, the less does a designer want
to distort the allocation of this type. Thus it becomes more attractive to imitate this
type for others, in particular for type (l, l). In addition, a high value phh is likely
to come along with substantial positive correlation. As is known from Proposition 6,
this pushes the solution towards region R2 and causes constraint Illhh to bind even
in the additively separable case. Moreover, if (3.7.4) and (3.7.5) are satisfied, upward
constraints become relevant whenever the interaction measured by the cross-derivative
b dominates the intra-dimensional change of marginal utilities measured by the second
derivatives a1 or a2. This is in line with the intuition for Proposition 2, Part d) as well
as with Proposition 8.

Similar to what has been discussed for Part c) of Proposition 9E, large asymmetries
are not compatible with both equations (3.7.4) and (3.7.2) simultaneously. On the other
hand, as just argued, large asymmetries will push solutions towards regions R3a or R3b,
respectively. Consider the case where Q becomes large, so the optimal allocation is
driven towards R3a. Constraint (R3a,4a) requires

yhh − ylh = −b
(

γ1hh − γ1lh
)

− a1
(

γ2hh − γ2lh
)

to be positive. With a1 ≫ b, the sign of the above expression crucially depends on the
sign of γ2hh− γ2lh. In R3a, constraints ICllhh, IClhhh, and IChlll bind. As a consequence,
type (l, l) is left a rent ∆ηyhh in the y-dimension for not imitating type (h, h). Together
with some additional term, this also applies to type (h, l) who otherwise would fake type
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(l, l). So the marginal costs of raising yhh exceed the marginal costs of raising ylh due
to the rent concern. Hence γ2hh − γ2lh > 0 and the above expression ultimately becomes
negative for large Q. Considering the same expression in R4a with constraint IClllh

rather than constraint ICllhh binding, the argument is exactly reversed. Type (l, l) is
left a rent ∆ηylh in the y-dimension for not imitating type (l, h) and again this also
applies to type (h, l). So γ2hh − γ2lh < 0 due to the rent concern and yhh − ylh becomes
positive. Invoking the intermediate value theorem again, attaching a suitable multiplier
µ3a,4a again provides the result.

Finally, apart from excluding binding implementability constraints, Proposition 10E
does not impose any restrictions on the possible loci of the optimal allocation beyond
Proposition 10. It is in fact not difficult to explicitly construct examples for all loci
feasible according to Proposition 10 for quadratic valuations.

3.8 Conclusions

This thesis chapter classifies the set of potential solutions to a baseline model of mul-
tidimensional screening. Relating properties of the solution to properties of the funda-
mentals I show that a substantial joint degree of interaction and asymmetry between
dimensions is necessary to push solutions away from the classical schemes of exclusively
downward binding incentive constraints. Moreover, complementarity and substitutabil-
ity are shown to shift the solution in opposing directions compared to the benchmark
case of an additively separable objective. While this thesis chapter does not emphasize
a particular application of the underlying model, related work has been applied to a
large variety of questions concerning monopoly regulation, optimal pricing or institu-
tional design. It is my best hope that this paper may serve as a useful tool or reference
for future work related to multidimensional screening problems with a clear focus on
applications and applicability rather than technical complexity.

3.9 Appendix

Lemma (Lemma A). Let V : R2 → R
2 be twice continuously differentiable and concave

with invertible (negative definite) Hessian H (x, y) everywhere. Consider a system of
first order conditions

Vx (x, y) = c+ t · a
Vy (x, y) = c+ t · b

for t ∈ [0, 1] with a, b ∈ R. Then

dx

dt
=

a · Vyy (x, y)− b · Vxy (x, y)

detH (x, y)

dy

dt
=

b · Vxx (x, y)− a · Vxy (x, y)

detH (x, y)
.
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Moreover, suppose the system of first order conditions

Vx (x, y) = a

Vy (x, y) = b

has a solution (x, y) ∈ R
2. Then (x, y) is unique.

Proof. To prove the first claim, totally differentiating

Vx (x, y) = c+ t · a
Vy (x, y) = c+ t · b

with respect to t yields

dx

dt
· Vxx (x, y) +

dy

dt
· Vxy (x, y) = a

dx

dt
· Vxy (x, y) +

dy

dt
· Vyy (x, y) = b

which has a unique solution given by

dx

dt
=

a · Vyy (x, y)− b · Vxy (x, y)

detH (x, y)

dy

dt
=

b · Vxx (x, y)− a · Vxy (x, y)

detH (x, y)
.

For the second claim, suppose for contradiction that there exist two solutions (x, y) 6=
(x̂, ŷ) . Then the function Ṽ (x, y) = V (x, y)− ax− by is still concave and has critical
points at (x, y) and (x̂, ŷ). But by concavity of Ṽ any critical point is a global maximum,
hence Ṽ (x, y) = Ṽ (x̂, ŷ) = max(x,y) Ṽ (x, y). This contradicts concavity as

Ṽ

(

1

2
(x, y) +

1

2
(x̂, ŷ)

)

>
1

2
Ṽ (x, y) +

1

2
Ṽ (x̂, ŷ) = Ṽ (x, y) = Ṽ (x̂, ŷ) .

Proof of Proposition 1. By Theorem 1 in Rochet (1987) there exist payments that im-
plement an allocation (x, y) ∈ R

4
+ × R

4
+ in an incentive compatible way if and only if

there exists no cycle of positive length. The network has six oriented 2-cycles, eight ori-
ented 3-cycles and six oriented 4-cycles, providing the following inequalitiy conditions
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for the non-existence of positive length cycles:

∆θ · (xll − xhl) ≥ 0 (ll→hl→ll)

∆η · (yll − ylh) ≥ 0 (ll→lh→ll)

∆θ · (xlh − xhh) ≥ 0 (lh→hh→lh)

∆η · (yhl − yhh) ≥ 0 (hl→hh→hl)

∆θ · (xll − xhh) + ∆η · (yll − yhh) ≥ 0 (ll→hh→ll)

∆θ · (xlh − xhl) + ∆η · (yhl − ylh) ≥ 0 (lh→hl→lh)

∆θ · (xll − xhh) + ∆η · (yhl − yhh) ≥ 0 (ll→hh→hl→ll)

∆θ · (xlh − xhh) + ∆η · (yll − yhh) ≥ 0 (ll→hh→lh→ll)

∆θ · (xll − xhl) + ∆η · (yll − yhh) ≥ 0 (ll→hl→hh→ll)

∆θ · (xll − xhh) + ∆η · (yll − ylh) ≥ 0 (ll→lh→hh→ll)

∆θ · (xlh − xhl) + ∆η · (yll − ylh) ≥ 0 (ll→hl→lh→ll)

∆θ · (xll − xhl) + ∆η · (yhl − ylh) ≥ 0 (ll→lh→hl→ll)

∆θ · (xlh − xhh) + ∆η · (yhl − ylh) ≥ 0 (lh→hh→hl→lh)

∆θ · (xlh − xhl) + ∆η · (yhl − yhh) ≥ 0 (hl→hh→lh→hl)

∆θ · (xlh − xhl) + ∆η · (yll − yhh) ≥ 0 (ll→hl→hh→lh→ll)

∆θ · (xll − xhh) + ∆η · (yhl − ylh) ≥ 0 (ll→lh→hh→hl→ll)

∆θ · (xlh − xhh) + ∆η · (yhl − yhh) + ∆η · (yll − ylh) ≥ 0 (ll→hh→hl→lh→ll)

∆θ · (xlh − xhh) + ∆θ · (xll − xhl) + ∆η · (yhl − yhh) ≥ 0 (ll→hh→lh→hl→ll)

∆θ · (xll − xhl) + ∆η · (yhl − yhh) + ∆η · (yll − ylh) ≥ 0 (ll→lh→hl→hh→ll)

∆θ · (xlh − xhh) + ∆θ · (xll − xhl) + ∆η · (yll − ylh) ≥ 0 (ll→hl→lh→hh→ll)

The last four equations are redundant as they are implied by the first four equations.
The first 16 inequalities correspond to the claim of the proposition.

Proof of Proposition 2. To prove the proposition I use the homotopy method introduced
in Severinov (2008).

a-c) Consider the following 1-parameter family of first order conditions:

Vx (xhh (t) , yhh (t)) = θh

Vx (xlh (t) , ylh (t)) = θh − t ·∆θ

Vy (xhh (t) , yhh (t)) = ηh

Vy (xlh (t) , ylh (t)) = ηh.

At t = 0, the right hand side of the first two equations and the last two equations
are equal. Hence, by Lemma A, we have xhh (0) = xlh (0), yhh (0) = ylh (0). At
t = 1, however, the system of equations is precisely the system of first order conditions
(FOCs) for the first best allocation for types (h, h) and (l, h). We next analyze how
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(xhh (t) , xlh (t) , yhh (t) , ylh (t)) ∈ R
2
+ × R

2
+ evolves along the path from t = 0 to t = 1.

Clearly, xhh and yhh are independent of t. For xlh and ylh Lemma A yields

dxlh (t)

dt
=

−∆θ · Vyy (xlh (t) , ylh (t))

detH (xlh (t) , ylh (t))
> 0,

dylh (t)

dt
=

∆η · Vxy (xlh (t) , ylh (t))

detH (xlh (t) , ylh (t))
,

which immediately implies

xfblh = xlh (1) > xlh (0) = xhh (0) = xhh (1) = xfbhh.

Moreover, if goods are complements, i.e. Vxy (x, y) > 0 for all (x, y) ∈ R
2
+, then

yfblh = ylh (1) > ylh (0) = yhh (0) = yhh (1) = yfblh ,

while if goods are substitutes, i.e. Vxy (x, y) < 0 for all (x, y) ∈ R
2
+, then

yfblh = ylh (1) < ylh (0) = yhh (0) = yhh (1) = yfblh .

The remaining claims of Parts a-c) are proven analogously.

d) Consider the following 1-parameter family of first order conditions:

Vx (xhh (t) , yhh (t)) =
θh + θl

2
+ t · ∆θ

2

Vx (xhl (t) , yhl (t)) =
θh + θl

2
+ t · ∆θ

2

Vx (xlh (t) , ylh (t)) =
θh + θl

2
− t · ∆θ

2

Vx (xll (t) , yll (t)) =
θh + θl

2
− t · ∆θ

2

Vy (xhh (t) , yhh (t)) =
ηh + ηl

2
+ t · ∆η

2

Vy (xhl (t) , yhl (t)) =
ηh + ηl

2
− t · ∆η

2

Vy (xlh (t) , ylh (t)) =
ηh + ηl

2
+ t · ∆η

2

Vy (xll (t) , yll (t)) =
ηh + ηl

2
− t · ∆η

2
.

We have xij (0) = xrs (0), yij (0) = yrs (0) for all (i, j) , (r, s) ∈ {l, h}2 as well as xij (1) =
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xfbij , yij (1) = yfbij . Moreover, applying Lemma A yields

dxhh (t)

dt
=

1

2
· ∆θ · Vyy (xhh (t) , yhh (t))−∆η · Vxy (xhh (t) , yhh (t))

detH (xhh (t) , yhh (t))
≤ 0,

dxhl (t)

dt
=

1

2
· ∆θ · Vyy (xhl (t) , yhl (t)) + ∆η · Vxy (xhl (t) , yhl (t))

detH (xhl (t) , yhl (t))
≤ 0,

dxlh (t)

dt
=

1

2
· −∆θ · Vyy (xlh (t) , ylh (t))−∆η · Vxy (xlh (t) , ylh (t))

detH (xlh (t) , ylh (t))
≥ 0,

dxll (t)

dt
=

1

2
· −∆θ · Vyy (xll (t) , yll (t)) + ∆η · Vxy (xll (t) , yll (t))

detH (xll (t) , yll (t))
≥ 0,

dyhh (t)

dt
=

1

2
· ∆η · Vxx (xhh (t) , yhh (t))−∆θ · Vxy (xhh (t) , yhh (t))

detH (xhh (t) , yhh (t))
≤ 0,

dyhl (t)

dt
=

1

2
· −∆η · Vxx (xhl (t) , yhl (t))−∆θ · Vxy (xhl (t) , yhl (t))

detH (xhl (t) , yhl (t))
≥ 0,

dylh (t)

dt
=

1

2
· ∆η · Vxx (xlh (t) , ylh (t)) + ∆θ · Vxy (xlh (t) , ylh (t))

detH (xlh (t) , ylh (t))
≤ 0,

dyll (t)

dt
=

1

2
· −∆η · Vxx (xll (t) , yll (t)) + ∆θ · Vxy (xll (t) , yll (t))

detH (xll (t) , yll (t))
≥ 0

and hence

xfbll = xll (1) ≥ xll (0) =xhh (0) ≥xhh (1) =xfbhh,

xfblh =xlh (1) ≥xlh (0) = xhl (0) ≥ xhl (1) =xfbhl ,

yfbll = yll (1) ≥ yll (0) =yhh (0) ≥yhh (1) =yfbhh,

yfbhl =yhl (1) ≥yhl (0) = ylh (0) ≥ ylh (1) = yfblh .

Proof of Proposition 3. a) By Lemma 2, each type (i, j) 6= (h, h) must be linked to
type (h, h) through a path of binding constraints. We next rule out some additional
combinations of binding IC-constraints.

Step 1: Let (x, y) be an implementable allocation together with optimal transfers
T (x, y) such that ICllhh binds while ICllhl and IClllh are slack. Then IChllh and IClhhl

are slack. To see this, note that ICllhh binding and ICllhl not binding together with
IChl imply

Thh − θlxhh − ηlyhh > Thl − θlxhl − ηlyhl

= Thl − θhxhl − ηlyhl +∆θ · xhl
≥ Thh − θhxhh − ηlyhh +∆θ · xhl

and hence

xhh > xhl.
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On the other hand, IClhhl binding together with IChl implies

Thl − θlxhl − ηhyhl ≥ Thh − θlxhh − ηhyhh

= Thh − θhxhh − ηhyhh +∆θ · xhh
≥ Thl − θhxhl − ηhyhl +∆θ · xhh

and hence

xhl ≥ ∆θ,

a contradiction. The proof for IChllh is alike.

Step 2: Let (x, y) be an implementable allocation together with optimal transfers
T (x, y) such that ICllhh binds while ICllhl and IClllh are slack. Then IChlhh or IClhhh

must bind. Indeed, by Step 1 we know that IChllh and IClhhl are slack. Hence, by
Lemma 1, IChlll or IChlhh resp. IClhll or IClhhh must bind. Suppose for contradiction
that IChlhh and IClhhh are both slack. Then

Tll − θhxll − ηlyll > Thh − θhxhh − ηlyhh,

Tll − θlxll − ηhyll > Thh − θlxhh − ηhyhh,

Tll − θlxll − ηlyll = Thh − θlxhh − ηlyhh,

as ICllhh binds by assumption. Substracting the third line twice from the sum of
the first and the second line yields

∆θ · (xll − xhh) + ∆η (yll − yhh) < 0,

a contradiction to implementability constraint (I1).

Steps 1-2 together with Lemma 2 exclude all combinations of binding constraints that
are not covered by the eleven combinations in Part a). We now derive the characterizing
properties of the allocation that correspond to any particular set of binding constraints.
For any particular combination of binding constraints, we need to check under which
assumption on the allocation it is indeed this combination of constraints among the
eleven candidates that binds. Note that, by Lemma 2, we always have Thh = θhxhh +
ηhyhh. Moreover, as the “b”-cases are symmetric to the “a”-cases, by symmetry of the
model it suffices to consider the “a”-cases as well as Case 2.

Case 1a: If IClllh, IClhhh, IChlhh bind, then

Thl = θhxhl + ηlyhl +∆η · yhh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · xhh +∆η · ylh.

Given these transfers, the following conditions imply that among the eleven possible
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combinations it is indeed IClllh, IClhhh, IChlhh that bind:

Tlh − θlxlh − ηlylh ≥ Thl − θlxhl − ηlyhl ⇒ ∆η · (ylh − yhh)−∆θ · (xhl − xhh) ≥ 0

Tlh − θlxlh − ηlylh ≥ Thh − θlxhh − ηlyhh ⇒ ∆η · (ylh − yhh) ≥ 0

Thh − θhxhh − ηlyhh ≥ Tll − θhxll − ηlyll ⇒ ∆θ · (xll − xhh)−∆η · (ylh − yhh) ≥ 0

Thh − θhxhh − ηlyhh ≥ Tlh − θhxlh − ηlylh ⇒ ∆θ · (xlh − xhh)−∆η · (ylh − yhh) ≥ 0

Thh − θlxhh − ηhyhh ≥ Tlh − θlxhl − ηhyhl ⇒ ∆η · (yhl − yhh)−∆θ · (xhl − xhh) ≥ 0.

Case 2: If ICllhh, IClhhh, IChlhh bind, then

Thl = θhxhl + ηlyhl +∆η · yhh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · xhh +∆η · yhh

and

Thh − θlxhh − ηlyhh ≥ Tlh − θlxlh − ηlylh ⇒ ∆η · (yhh − ylh) ≥ 0

Thh − θlxhh − ηlyhh ≥ Thl − θlxhl − ηlyhl ⇒ ∆θ · (xhh − xhl) ≥ 0

Thh − θhxhh − ηlyhh ≥ Tll − θhxll − ηlyll ⇒ ∆θ · (xll − xhh) ≥ 0

Thh − θlxhh − ηhyhh ≥ Tll − θlxll − ηhyll ⇒ ∆η · (yll − yhh) ≥ 0.

Case 3a: If ICllhh, IClhhh, IChlll bind, then

Thl = θhxhl + ηlyhl +∆θ · (xhh − xll) + ∆η · yhh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · xhh +∆η · yhh

and

Tll − θhxll − ηlyll ≥ Thh − θhxhh − ηlyhh ⇒ ∆θ · (xhh − xll) ≥ 0

Thh − θlxhh − ηlyhh ≥ Tlh − θlxlh − ηlylh ⇒ ∆η · (yhh − ylh) ≥ 0.

Case 4a: If IClllh, IClhhh, IChlll bind, then

Thl = θhxhl + ηlyhl +∆θ · (xhh − xll) + ∆η · ylh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · xhh +∆η · ylh

and
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Tll − θhxll − ηlyll ≥ Thh − θhxhh − ηlyhh ⇒ ∆η · (ylh − yhh)−∆θ · (xll − xhh) ≥ 0

Tlh − θlxlh − ηlylh ≥ Thh − θlxhh − ηlyhh ⇒ ∆η · (ylh − yhh) ≥ 0

Tll − θhxll − ηlyll ≥ Tlh − θhxlh − ηlylh ⇒ ∆θ · (xlh − xll) ≥ 0.

Case 5a: If IClllh, IClhhh, IChllh bind, then

Thl = θhxhl + ηlyhl +∆θ · (xhh − xlh) + ∆η · ylh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · xhh +∆η · ylh

and

Tlh − θhxlh − ηlylh ≥ Thh − θhxhh − ηlyhh ⇒ ∆η · (ylh − yhh)−∆θ · (xlh − xhh) ≥ 0

Tlh − θhxlh − ηlylh ≥ Tll − θhxll − ηlyll ⇒ ∆θ · (xll − xlh) ≥ 0

Tlh − θlxlh − ηlylh ≥ Thl − θlxhl − ηlyhl ⇒ ∆θ · (xlh − xhl) ≥ 0.

Case 6a: If ICllhl, IClhhh, IChllh bind, then

Thl = θhxhl + ηlyhl +∆θ · (xhh − xlh) + ∆η · ylh
Tlh = θlxlh + ηhylh +∆θ · xhh
Tll = θlxll + ηlyll +∆θ · (xhh + xhl − xlh) + ∆η · ylh

and

Tlh − θhxlh − ηlylh ≥ Thh − θhxhh − ηlyhh ⇒ ∆η · (ylh − yhh)−∆θ · (xlh − xhh) ≥ 0

Thl − θlxhl − ηlyhl ≥ Tlh − θlxlh − ηlylh ⇒ ∆θ · (xhl − xlh) ≥ 0.

b) This follows directly from Part a).

c) By continuity and convexity of T : I → R
4
+ and continuity and strict concavity

of V , the global optimization problem consists of maximizing a continuous and strictly
concave function E [V − T ] over a convex set I. Together with the Inada conditions,
this guarantees existence and uniqueness of a solution.

Proof of Proposition 4. Clearly, it is a necessary condition for global optimality of an
allocation (x, y) ∈ I that it is optimal within each region Ri for which (x, y) ∈ Ri. To
prove sufficiency, assume that (x, y) ∈ I solves the subproblem for any region Ri for
which (x, y) ∈ Ri and suppose, for contradiction, that the globally optimal allocation is
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given by (x̂, ŷ) 6= (x, y) ∈ I. Then, by concavity of the objective W , for any λ > 0 we
have

W (λ (x, y) + (1− λ) (x̂, ŷ)) > λW (x, y) + (1− λ)W (x̂, ŷ)

> W (x, y) .

Moreover, as each Rj is closed, (x, y) /∈ Rj implies λ (x, y) + (1− λ) (x̂, ŷ) /∈ Rj for
sufficiently small. But since I =

⋃

Ri and I is convex, this implies that there exists
some λ > 0 and some i ∈ I such that (x, y) ∈ Ri and λ (x, y) + (1− λ) (x̂, ŷ) ∈ Ri,
contradicting optimality of (x, y) within Ri.

Theorem 1*. An allocation (x, y) ∈ I solves the global optimization problem if and
only if

a) (x, y) lies in the interior of some region Ri, i ∈ I and solves the associated FOCs
with µi = 0. All implementability constraints are slack with the possible exception of
λ3a,5, λ3a,7, λ3b,5, λ3b,8, λ4a,10, λ4a,12, λ4a,16, λ4b,9, λ4b,11, λ4b,15, λ5a,6, λ5a,13, λ5b,6,
λ5b,14, λ6a,6, λ6a,11, λ6b,6, and λ6b,12.

b) (x, y) lies in the interior of a hyperplane Ri ∩Rj for two adjacent regions Ri and
Rj, i, j ∈ I and solves the associated FOCs such that all implementability constraints
are slack with the possible exception of λ3a,5 = λ4a,10, λ3a,7 = λ4a,16, λ3b,5 = λ4b,9,
λ3b,8 = λ4b,15, λ4a,12 = λ5a,6, λ4a,16 = λ5a,13, λ4b,11 = λ5b,6, and λ4b,15 = λ5b,14 ≥ 0 and
µi,j = 1− µj,i ∈ [0, 1] with the possible exception of

µ3a,4a = 1− µ4a,3a +
λ4a,10 + λ4a,16

pll + phl
∈
[

0, 1 +
λ4a,10 + λ4a,16

pll + phl

]

µ3b,4b = 1− µ4b,3b +
λ4b,9 + λ4b,15

pll + plh
∈
[

0, 1 +
λ4b,9 + λ4b,15

pll + plh

]

µ4a,5a = 1− µ5a,4a +
λ5a,6 + λ5a,13

phl
∈
[

0, 1 +
λ5a,6 + λ5a,13

phl

]

µ4b,5b = 1− µ5b,4b +
λ5b,6 + λ5b,14

plh
∈
[

0, 1 +
λ5b,6 + λ5b,14

plh

]

.

c1) (x, y) ∈ R1a ∩R1b ∩R2 solves the associated FOCs with λ = 0 and

µ1a,1b = 1− µ1b,1a − µ1b,2= µ2,1b ∈ [0, 1] ,

µ1b,1a = 1− µ1a,1b − µ1a,2= µ2,1a ∈ [0, 1] .

c2) (x, y) ∈ R1a ∩R4a ∩R5a solves the associated FOCs with λ = 0 and

µ1a,4a = 1− µ4a,1a − µ4a,5a= µ5a,4a ∈ [0, 1] ,

µ4a,1a = 1− µ1a,4a − µ1a,5a= µ5a,1a ∈ [0, 1] .

c3) (x, y) ∈ R1b ∩R4b ∩R5b solves the associated FOCs with λ = 0 and

µ1b,4b = 1− µ4b,1b − µ4b,5b= µ5b,4b ∈ [0, 1] ,

µ4b,1b = 1− µ1b,4b − µ1b,5b= µ5b,1b ∈ [0, 1] .
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c4) (x, y) ∈ R1a ∩R1b ∩R5a ∩R6a solves the associated FOCs with λ = 0 and

µ1a,1b = 1− µ1b,1a = 1− µ6a,5a = µ5a,6a ∈ [0, 1] ,

µ1a,5a = µ5a,6a ·
pll
phl

+ (1− µ5a,1a)

= µ1b,6a ·
phl + pll

phl

= −µ6a,5a ·
pll
phl

+ (1− µ6a,1b) ·
phl + pll

phl
∈
[

0, 1 + µ1a,1b ·
pll
phl

]

.

c5) (x, y) ∈ R1a ∩R1b ∩R5b ∩R6b solves the associated FOCs with λ = 0 and

µ1b,1a = 1− µ1a,1b = 1− µ6b,5b = µ5b,6b ∈ [0, 1] ,

µ1b,5b = µ5b,6b ·
pll
plh

+ (1− µ5b,1b)

= µ1a,6b ·
plh + pll

plh

= −µ6b,5b ·
pll
plh

+ (1− µ6b,1a) ·
plh + pll

plh
∈
[

0, 1 + µ1b,1a ·
pll
plh

]

.

c6) (x, y) ∈ R1a ∩R2 ∩R3a ∩R4a solves the associated FOCs with λ = 0 and

µ1a,4a = 1− µ4a,1a = 1− µ3a,2 = µ2,3a ∈ [0, 1] ,

µ1a,2 = µ2,3a ·
phl
pll

+ (1− µ2,1a)

= µ4a,3a ·
phl + pll

pll

= −µ3a,2 ·
phl
pll

+ (1− µ3a,4a) ·
phl + pll

pll
∈
[

0, 1 + µ1a,4a ·
phl
pll

]

.

c7) (x, y) ∈ R1b ∩R2 ∩R3b ∩R4b solves the associated FOCs with λ = 0 and

µ1b,4b = 1− µ4b,1b = 1− µ3b,2 = µ2,3b ∈ [0, 1] ,

µ1b,2 = µ2,3b ·
plh
pll

+ (1− µ2,1b)

= µ4b,3b ·
plh + pll

pll

= −µ3b,2 ·
plh
pll

+ (1− µ3b,4b) ·
plh + pll

pll
∈
[

0, 1 + µ1b,4b ·
plh
pll

]

.

c8) (x, y) ∈ R1a∩R4a∩R6b solves the associated FOCs with λ = 0 except for λ4a,12 and
λ6b,12 and

µ1a,4a · phl = (1− µ4a,1a) · phl + λ4a,12 = λ6b,12 ≥ 0,

µ1a,6b · (pll + plh) = (1− µ6b,1a) · (pll + plh) + λ6b,12= λ4a,12 ≥ 0.
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c9) (x, y) ∈ R1b ∩R4b ∩R6a solves the associated FOCs with λ = 0 except for λ4b,11 and
λ6a,11 and

µ1b,4b · plh = (1− µ4b,1b) · plb + λ4b,11 = λ6a,11 ≥ 0,

µ1b,6a · (pll + phl) = (1− µ6a,1b) · (pll + phl) + λ6a,11= λ4b,11 ≥ 0.

Proof of Theorem 1*. The proof of Theorem 1* proceeds in three steps. In Step 1,
we identify for each region Ri the minimal set of implementabilty constraints λi that
guarantees implementability of an allocation in Ri. All other implemetablity constraints
can then be eliminated from the Kuhn-Tucker subproblem in region Ri. Step 2 is a
lemma on convex sets. In Step 3, by ruling out all other potential options we prove
that the optimal allocation always lies in one of the loci listed in Theorem 1*. The
conditions on the multipliers then ensure that all multipliers are non-negative and the
FOCs coincide for all regions in which the solution lies.

Step 1. In R1a, constraints (I2), (I4) together with (R1a,1b), (R1a,2), (R1a,4a),
(R1a,5a), and (R1a,6b) imply all other implementability constraints as16

I1 = R1a, 1b+R1a, 4a

I3 = R1a, 2 +R1a, 5a

I5 = 2 ·R1a, 2 +R1a, 4a+ I2

I6 = R1a, 5a+R1a, 6b

I7 = R1a, 2 +R1a, 4a+ I2

I8 = 2 ·R1a, 2 +R1a, 5a+ I2

I9 = R1a, 1b+R1a, 2 +R1a, 4a+ I2

I10 = R1a, 2 +R1a, 4a+ I2

I11 = R1a, 1b+R1a, 5a+ I2

I12 = R1a, 4a+R1a, 6b

I13 = R1a, 5a+ I4

I14 = R1a, 1b+R1a, 5a+ I4

I15 = R1a, 1b+R1a, 2 +R1a, 5a+ I2

I16 = R1a, 4a+ I4.

Likewise, constraints (I1) and (I3) together with (R1b,1a), (R1b,2), (R1b,4b), (R1b,5b),
and (R1b,6a) imply all other implementability constraints in R1b.

In R2, constraints (I3), (I4) together with (R2,1a), (R2,1b), (R2,3a), (R2,3b) imply
all other implementability constraints as

16Here as well as in later proofs I use references to inequality constraints without brackets when
referring to their left hand side only, i.e. to the term required to be non-negative.
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I1 = R2, 1b+R2, 3a

I2 = R2, 1a+R2, 3b

I1 = R2, 3a+R2, 3b

I6 = R2, 1a+R2, 1b+ I3 + I4

I7 = R2, 3a+ I4

I8 = R2, 3b+ I3

I9 = R2, 1b+R2, 3a+R2, 3b

I10 = R2, 1a+R2, 3a+R2, 3b

I11 = R2, 1a+R2, 1b+R2, 3b+ I3

I12 = R2, 1a+R2, 1b+R2, 3a+ I4

I13 = R2, 1a+ I3 + I4

I14 = R2, 1b+ I3 + I4

I15 = R2, 1b+R2, 3a+ I3

I16 = R2, 1a+R2, 3b+ I4.

In R3a, constraints (I1), (I3), (I5), (I7) together with (R3a,2) and (R3a,4a) imply
all other implementability constraints as

I2 = R3a, 2 +R3a, 4a+ I5

I4 = R3a, 2 + I7

I6 = 2 ·R3a, 2 +R3a, 4a+ I1 + I3 + I7

I8 = R3a, 2 + I3 + I5

I9 = R3a, 2 + I1 + I5

I10 = R3a, 4a+ I5

I11 = 2 ·R3a, 2 +R3a, 4a+ I1 + I3 + I5

I12 = R3a, 2 +R3a, 4a+ I1 + I7

I13 = R3a, 2 +R3a, 4a+ I3 + I7

I14 = 2 ·R3a, 2 + I1 + I3 + I7

I15 = 2 ·R3a, 2 + I1 + I3 + I5

I16 = R3a, 4a+ I7.

Likewise, constraints (I2), (I4), (I5), and (I8) together with (R3b,2) and (R3b,4b)
imply all other implementability constraints in R3b.

In R4a, constraints I1, I2, I3, I10, I12, and I16 together with R4a,1a, R4a,3a, and
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R4a,5a imply all other implementability constraints as

I4 = R4a, 1a+ I16

I5 = R4a, 3a+ I10

I6 = R4a, 5a+ I12

I7 = R4a, 3a+ I16

I8 = R4a, 3a+R4a, 5a+ I10

I9 = R4a, 3a+ I1 + I2

I11 = R4a, 5a+ I1 + I2

I13 = R4a, 5a+ I16

I14 = R4a, 1a+R4a, 5a+ I1 + I16

I15 = R4a, 1a+R4a, 5a+ I1 + I10.

Likewise, constraints (I1), (I2), (I4), (I9), (I11), and (I15) together with (R4b,1b),
(R4b,3b), and (R4b,5b) imply all other implementability constraints in R4b.

In R5a, constraints (I2), (I3), (I6), and (I13) together with (R5a,1a), (R5a,4a), and
(R5a,6a) imply all other implementability constraints as

I1 = R5a, 4a+R5a, 6a

I4 = R5a, 1a+ I13

I5 = R5a, 1a+R5a, 4a+ I2 + 2 · I3
I7 = R5a, 1a+ 2 ·R5a, 4a+ I2 + I13

I8 = R5a, 1a+ I2 + 2 · I3
I9 = R5a, 1a+R5a, 4a+R5a, 6a+ I2 + I3

I10 = R5a, 4a+ I2 + I3

I11 = R5a, 6a+ I2

I12 = R5a, 4a+ I6

I14 = R5a, 1a+R5a, 6a+ I13

I15 = R5a, 1a+R5a, 6a+ I2 + I3

I16 = R5a, 4a+ I13.

Likewise, constraints (I1), (I4), (I6), and (I14) together with (R5b,1b), (R5b,4b),
and (R5b,6b) imply all other implementability constraints in R5b.

In R6a, constraints (I1), (I3), (I6), and (I11) together with (R6a,1b) and (R6a,5a)
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imply all other implementability constraints as

I2 = R6a, 5a+ I11

I4 = R6a, 1b+R6a, 5a+ I3 + I6

I5 = R6a, 1b+ 2 ·R6a, 5a+ I1 + I3 + I11

I7 = R6a, 1b+ 2 ·R6a, 5a+ I1 + 2 · I3 + I6

I8 = R6a, 1b+R6a, 5a+ 2 · I3 + I11

I9 = R6a, 1b+R6a, 5a+ I1 + I3 + I11

I10 = 2 ·R6a, 5a+ I1 + I3 + I11

I12 = R6a, 5a+ I1 + I6

I13 = R6a, 5a+ I3 + I6

I14 = R6a, 1b+ I3 + I6

I15 = R6a, 1b+ I3 + I11

I16 = 2 ·R6a, 5a+ I1 + I3 + I6.

Likewise, constraints (I2), (I4), (I6), and (I12) together with (R6b,1a) and (R6b,5b)
imply all other implementability constraints in R6b.

Assume that (I2) binds in R1a, i.e. yll = ylh. From the proof of Proposition 3
together with (3.5.1) and (3.5.2) we get FOCs in R1a reading

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ1a,5a · phl]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ1a,4a · phl] .

If µ1a,5a > µ1a,4a = 0, then (x, y) ∈ R5a and hence xll ≥ xlh. But from the above FOCs
it then follows that xll < xlh, a contradiction. If µ1a,4a > µ1a,5a = 0, then (x, y) ∈ R4a

and hence xll ≤ xlh. But from the above FOCs it then follows that xll > xlh, a
contradiction. If µ1a,5a > 0 and µ1a,4a > 0, then xll = xlh as (x, y) ∈ R4a ∩ R5a. If
µ1a,5a = µ1a,4a = 0, then xll = xlh from the above FOCs. Hence xll = xlh. But then,
again invoking (3.5.1) and (3.5.2), FOCs in R1a given as

Vy (xlh, ylh) = ηh +
∆η

plh
· [pll − µ1a,1b · pll − µ1a,2 · pll + µ1a,4a · phl + µ1a,5a · phl + λ2]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ2]

imply that (x, y) ∈ R1b or (x, y) ∈ R2. If (x, y) ∈ R1b, then xll = xlh and yll = ylh
together contradict the FOCs for R1b given as

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ1b,1a · pll + µ1b,6a · (phl + pll)]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ1b,4b · plh]
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If (x, y) ∈ R2, then xll = xlh and yll = ylh together contradict the FOCs for R2 given as

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ2,1a · pll]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ2,3b · plh − λ2] .

Assume next that (I4) binds in R1a, i.e. yhl = yhh. Then xhl ≤ xhh by (R1a,6b) and
hence FOCs in R1a given as

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ1a,1b · pll + µ1a,4a · phl + µ1a,5a · phl − µ1a,6b · (plh + pll)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ1a,1b · pll + µ1a,6b · (plh + pll)]

imply (x, y) ∈ R1b or (x, y) ∈ R6b. If (x, y) ∈ R1b then yhl = yhh implies xhl = xhh
through (R1b,2) and (R1b,5b). If (x, y) ∈ R6b then yhl = yhh implies xhl = xhh through
(R1a,6b). Invoking the FOCs in R1a given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [phl + µ1a,1b · pll + µ1a,2 · pll − µ1a,4a · phl − µ1a,5a · phl + µ1a,6b · (plh + pll) + λ4]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−µ1a,6b · (plh + pll)− λ4]

this implies (x, y) ∈ R4a or (x, y) ∈ R5a which together with yhl = yhh and xhl = xhh
contradicts the FOCs in R4a given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ4a,1a · phl + µ4a,3a · (phl + pll)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ12 − λ16]

or the FOCs in R5a given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ5a,1a · phl]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ6 − λ13] .

Likewise, (I1) and (I3) cannot bind in R1b.
Suppose (I4) binds in R2, i.e. yhl = yhh. Together with xhl ≤ xhh as given by

(R2,1b), FOCs in R2 given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ2,1a · pll + µ2,3b · plh + λ4]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ4]

imply (x, y) ∈ R1a, a contradiction to what we have already shown. Likewise, (I3)
holding with equality implies (x, y) ∈ R1b and thus another contradiction.
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Suppose I1 binds in R3a , i.e. xll = xhl . FOCs in R3a read

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ7]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ5] .

If λ5 > λ7 = 0, then yll > yhl from the above FOCs, but yll > yhl together with
(I5) binding contradicts (I7). If λ7 > λ5 = 0, then yll < yhl from the above FOCs, but
yll < yhl together with (I7) binding contradicts (I1). If λ5 > 0 and λ7 > 0, then yll = yhl
as both, (I5) and (I7) bind. If λ5 = λ7 = 0, then yll = yhl from the above FOCs. Thus
xll = xhl and yll = yhl, but this together with FOCs in R3a given as

Vx (xhl, yhl) = θh +
∆θ

phl
· [λ1]

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ3a,2 · phl − λ1 − λ5 − λ7]

implies (x, y) ∈ R2 which in turn implies (x, y) ∈ R1a, a contradiction. Next, assume
(I3) binds in R3a, i.e. xlh = xhh. Together with ylh ≤ yhh as implied by R3a,4a and
FOCs in R3a given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ3a,4a · (phl + pll) + λ5 + λ7]

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ3a,4a · (phl + pll)]

this implies (x, y) ∈ R4a ∩ R3a. But then ylh = yhh, and together with xlh = xhh and
FOCs in R3a given as

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ3a,2 · phl + λ3 + λ5 + λ7]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−λ3]

this implies (x, y) ∈ R2, a contradiction. Likewise, constraints (I2) and (I4) cannot bind
in R3b.

Assume (I2) binds in R4a, i.e. yll = ylh. Since we have xll ≤ xlh from (R4a,5a) ,
FOCs in R4a given as

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ4a,5a · phl − λ3]

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ4a,1a · phl + µ4a,5a · phl − λ1 − λ10 − λ12 − λ16]

imply either (x, y) ∈ R1a or (x, y) ∈ R5a. The former being excluded already, (x, y) ∈
R4a ∩R5a implies xll = xlh. Together with yll = ylh and FOCs in R4a given as

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ4a,1a · phl − µ4a,3a · (phl + pll) + λ2 + λ10 + λ12 + λ16]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ2 − λ10]
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this implies (x, y) ∈ R1a or (x, y) ∈ R3a. The former case has been excluded already
while the latter implies (x, y) ∈ R2 which also has been excluded. Next, assume that
(I1) binds in R4a, i.e. xll = xhl. FOCs of R4a read

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ12 − λ16]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ10] .

If yll > yhl then λ10 > 0, implying

∆θ · (xll − xhh) + ∆η · (yhl − ylh) < ∆θ · (xll − xhh) + ∆η · (yll − ylh) = 0

and hence contradicting (I16). If yhl > yll then either λ16 > 0 contradicting (I10) as

∆θ · (xll − xhh) + ∆η · (yll − ylh) < ∆θ · (xll − xhh) + ∆η · (yhl − ylh) = 0

or λ16 > 0, contradicting (I1) or (I2) as

∆θ · (xll − xhl) + ∆η · (yll − ylh) < ∆θ · (xll − xhl) + ∆η · (yhl − ylh) = 0.

Thus yll = yhl, and together with xll = xhl FOCs of R4a reading

Vx (xhl, yhl) = θh +
∆θ

phl
· [λ1 + λ12]

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ4a,1a · phl + µ4a,5a · phl − λ1 − λ10 − λ12 − λ16]

imply (x, y) ∈ R1a or (x, y) ∈ R5a. The former case being excluded already, (x, y) ∈
R4a ∩R5a together with xll = xhl, yll = yhl contradicts the FOCs of R5a reading

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ5a,6a · pll + λ6]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ5a,4a · phl] .

Finally, assume that I3 binds in R4a, i.e. xlh = xhh. Together with yhh ≥ ylh as given
by R4a,3a, FOCs in R4a reading

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ4a,1a · phl + µ4a,3a · (phl + pll)]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ4a,1a · phl − µ4a,3a · (phl + pll) + λ2 + λ10 + λ12 + λ16]

yield (x, y) ∈ R1a or (x, y) ∈ R3a. The latter case has been excluded already while the
former case implies (x, y) ∈ R2 which has also been excluded. Likewise, constraints (I1),
(I2), and (I4) cannot bind in R4b.
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Assume I2 binds in R5a i.e. yll = ylh. Together with xll ≥ xlh as implied by (R5a,4a),
FOCs in R5a reading

Vx (xlh, ylh) = θl +
∆θ

plh
· [−phl + µ5a,1a · phl + µ5a,4a · phl − µ5a,6a · pll − λ3 − λ6 − λ13]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ5a,4a · phl]

yield (x, y) ∈ R1a or (x, y) ∈ R4a, both being excluded already. Next, suppose I3 binds
in R5a, i.e. xlh = xhh. Together with ylh ≥ yhh as implied by (R5a,1a), FOCs in R5a

given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ5a,1a · phl]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ5a,1a · phl + λ2 + λ6 + λ13]

yields (x, y) ∈ R1a which implies (x, y) ∈ R2 which has already been excluded. Likewise,
constraints (I1) and (I4) cannot bind in R5b.

Assume (I1) binds in R6a, i.e. xll = xhl. FOCs in R6a yield

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ6]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ11] .

If λ6 > λ11 = 0 then yhl > yll, but yhl > yll together with (I6) binding violates (I11). If
λ11 > λ6 = 0 then yhl < yll, but yhl < yll together with (I11) binding violates (I6). If
λ6 > 0 and λ11 > 0, then yll = yhl as both (I6) and (I11) bind. If λ6 = λ11 = 0, then
yll = yhl from the above FOCs. Hence xll = xhl and yll = yhl, but this together with
FOCs of R5a reading

Vx (xhl, yhl) = θh +
∆θ

phl
· [pll − µ6a,5a · pll + λ1 + λ11 + λ6]

Vx (xll, yll) = θl +
∆θ

pll
· [−λ1]

implies (x, y) ∈ R5a which in turn implies (x, y) ∈ R4a, a contradiction. Next, suppose
(I3) holds with equality, i.e. xlh = xhh. Together with ylh ≥ yhh as implied by R6a,1b
implies and FOCs in R6a reading

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ6a,1b · (pll + phl)]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ6a,1b · (pll + phl) + λ11 + λ6]

this yields(x, y) ∈ R1b which has already been excluded. Likewise, (I2) and (I4) cannot
bind in R6b. This finishes Step 1.
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For later reference, we list the FOCs for each of the eleven subproblems, introducing
some normalization of the multipliers µregion to which the theorem refers.

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ1a,1b · pll + µ1a,4a · phl + µ1a,5a · phl − µ1a,6b · (plh + pll)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ1a,1b · pll + µ1a,6b · (plh + pll)]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ1a,5a · phl]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ1a,4a · phl]

Vy (xhh, yhh) = ηh +
∆η

phh
· [phl + µ1a,1b · pll + µ1a,2 · pll − µ1a,4a · phl − µ1a,5a · phl + µ1a,6b · (plh + pll)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−µ1a,6b · (plh + pll)]

Vy (xlh, ylh) = ηh +
∆η

plh
· [pll − µ1a,1b · pll − µ1a,2 · pll + µ1a,4a · phl + µ1a,5a · phl]

Vy (xll, yll) = ηl







R1a

Vx (xhh, yhh) = θh +
∆θ

phh
· [plh + µ1b,1a · pll + µ1b,2 · pll − µ1b,4b · plh − µ1b,5b · plh + µ1b,6a · (phl + pll)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [pll − µ1b,1a · pll − µ1b,2 · pll + µ1b,4b · plh + µ1b,5b · plh]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ1b,6a · (phl + pll)]

Vx (xll, yll) = θl

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ1b,1a · pll + µ1b,4b · plh + µ1b,5b · plh − µ1b,6a · (phl + pll)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−µ1b,5b · plh]

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ1b,1a · pll + µ1b,6a · (phl + pll)]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ1b,4b · plh]







R1b

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ2,1b · pll + µ2,3a · phl]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ2,1b · pll]

Vx (xlh, ylh) = θl

Vx (xll, yll) = θl +
∆θ

pll
· [−µ2,3a · phl]

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ2,1a · pll + µ2,3b · plh]

Vy (xhl, yhl) = ηl

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ2,1a · pll]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ2,3b · plh]







R2
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Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ3a,2 · phl + λ5 + λ7]

Vx (xhl, yhl) = θh

Vx (xlh, ylh) = θl

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ3a,2 · phl − λ5 − λ7]

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ3a,4a · (phl + pll) + λ5 + λ7]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ7]

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ3a,4a · (phl + pll)]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ5]







R3a

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ3b,4b · (plh + pll) + λ5 + λ8]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ3b,4b · (plh + pll)]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−λ8]

Vx (xll, yll) = θl +
∆θ

pll
· [−λ5]

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll + plh)− µ3b,2 · plh + λ5 + λ8]

Vy (xhl, yhl) = ηl

Vy (xlh, ylh) = ηh

Vy (xll, yll) = ηl +
∆η

pll
· [−plh + µ3b,2 · plh − λ5 − λ8]







R3b

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ4a,1a · phl + λ10 + λ16]

Vx (xhl, yhl) = θh +
∆θ

phl
· [λ12]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ4a,5a · phl − λ3]

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ4a,1a · phl + µ4a,5a · phl − λ10 − λ12 − λ16]

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ4a,1a · phl + µ4a,3a · (phl + pll)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ12 − λ16]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ4a,1a · phl − µ4a,3a · (phl + pll) + λ10 + λ12 + λ16]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ10]







R4a
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Vx (xhh, yhh) = θh +
∆θ

phh
· [µ4b,1b · plh + µ4b,3b · (plh + pll)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [(plh + pll)− µ4b,1b · plh − µ4b,3b · (plh + pll) + λ9 + λ11 + λ15]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−λ11 − λ15]

Vx (xll, yll) = θl +
∆θ

pll
· [−λ9]

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll + plh)− µ4b,1b · plh + λ9 + λ15]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−µ4b,5b · plh]

Vy (xlh, ylh) = ηh +
∆η

plh
· [λ11]

Vy (xll, yll) = ηl +
∆η

pll
· [−plh + µ4b,1b · plh + µ4b,5b · plh − λ9 − λ11 − λ15]







R4b

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ5a,1a · phl + λ13]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ5a,6a · pll + λ6]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−phl + µ5a,1a · phl + µ5a,4a · phl − µ5a,6a · pll − λ6 − λ13]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ5a,4a · phl]

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ5a,1a · phl]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ6 − λ13]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ5a,1a · phl + λ6 + λ13]

Vy (xll, yll) = ηl







R5a

Vx (xhh, yhh) = θh +
∆θ

phh
· [µ5b,1b · plh]

Vx (xhl, yhl) = θh +
∆θ

phl
· [(plh + pll)− µ5b,1b · plh + λ6 + λ14]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−λ6 − λ14]

Vx (xll, yll) = θl

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll + plh)− µ5b,1b · plh + λ14]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−plh + µ5b,1b · plh + µ5b,4b · plh − µ5b,6b · pll − λ6 − λ14]

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ5b,6b · pll + λ6]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ5b,4b · plh]







R5b
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Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ6a,1b · (pll + phl)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [pll − µ6a,5a · pll + λ11 + λ6]

Vx (xlh, ylh) = θl +
∆θ

plh
· [− (phl + pll) + µ6a,1b · (pll + phl) + µ6a,5a · pll − λ6 − λ11]

Vx (xll, yll) = θl

Vy (xhh, yhh) = ηh +
∆η

phh
· [µ6a,1b · (pll + phl)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ6]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ6a,1b · (pll + phl) + λ11 + λ6]

Vy (xll, yll) = ηl +
∆η

pll
· [−λ11]







R6a

Vx (xhh, yhh) = θh +
∆θ

phh
· [µ6b,1a · (pll + plh)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [(plh + pll)− µ6b,1a · (pll + plh) + λ6 + λ12]

Vx (xlh, ylh) = θl +
∆θ

plh
· [−λ6]

Vx (xll, yll) = θl +
∆θ

pll
· [−λ12]

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll + plh)− µ6b,1a · (pll + plh)]

Vy (xhl, yhl) = ηl +
∆η

phl
· [− (plh + pll) + µ6b,1a · (pll + plh) + µ6b,5b · pll − λ6 − λ12]

Vy (xlh, ylh) = ηh +
∆η

plh
· [pll − µ6b,5b · pll + λ6 + λ12]

Vy (xll, yll) = ηl







R6b.

Step 2: We show the following lemma. Define J ⊂ I via (x, y) ∈ Rj ⇔ j ∈ J and
assume that #J ≥ 3. Then at least one region Rj1 with j1 ∈ J is adjecent to two (or
more) other regions Rj2 , Rj3 with j2, j3 ∈ J .

Proof: Choose ǫ > 0 sufficiently small such that Bǫ (x, y)∩
⋃

i∈I\J
Ri = ∅ and fix l,m ∈ J .

Let (x, y)l and (x, y)m be interior points in respectively Rl and Rm within Bǫ (x, y). We
can choose (x, y)l and (x, y)m such that the line L = {λ · (x, y)l + (1− λ) (x, y)m , λ ∈ [0, 1]}
intersects all hyperplanes separating regions Ri, i ∈ I at most once and does not hit any
intersection of two or more such hyperplanes. Then any point on L is either an interior
point of some region Rj , j ∈ J or is an interior point of a hyperplane Rj∩Rk between two
adjacent regions Rj , Rk, j, k ∈ J . Hence there exist 0 = λ0 < λ1 < ... < λn−1 < λn = 1,

n ≤ #I − 1 such that L =
⋃

i=1,...,n

Li, Li = {λ · (x, y)l + (1− λ) (x, y)m , λ ∈ [λi−1, λi]}

and Li ⊂ Rji for some ji ∈ J with j1 = l and jn = m. Note that n ≥ 2 by assumption. If
n = n (l,m) = 2 then Rl and Rm are adjacent as λ1 · (x, y)l+(1− λ1) (x, y)m ∈ Rl∩Rm

is interior in Rl∩Rm by assumption. In this case we apply the same approach to Rl and
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some other region Rs, s 6= m, l, s ∈ J . If again n = n (l, s) = 2, then Rl is adjecent to Rm

and Rs, proving the claim. So assume that n ≥ 3. Then, choosing some λj2 ∈ (λ1, λ2),
λj3 ∈ (λ2, λ3) applying the same approach to Rj1 = Rl and Rj2 with points (x, y)l
and (x, y)j2 = λj2 · (x, y)l + (1− λj2) (x, y)m as well as to Rj2 and Rj3 with points
(x, y)j2 = λj2 · (x, y)l + (1− λj2) (x, y)m and (x, y)j3 = λj3 · (x, y)l + (1− λj3) (x, y)m
yields n (l, j2) = 2 = n (j2, j3) and hence Rj2 is adjacent to Rj1 and Rj3 , proving the
lemma.

The lemma from Step 2 implies that we only need to check intersections of three
or more regions when at least one of these regions is adjacent to at least two of the
other regions. Note first that for cases c4-c7) where (x, y) lies in the intersection of four
regions, any triplet of regions implies the fourth in each case. It is therefore enough
to show the following. The optimal allocation (x, y) cannot lie in the intersection of
any three regions that are feasible according to Step 2 not covered by Theorem 1*. It
then follows immediately by direct comparison that (x, y) cannot lie in any non-trivial
intersection of any of the loci stated in Theorem 1*.

Step 3: Assume that (x, y) ∈ R1a ∩R1b ∩R4a. Then (R1a,1b) and (R1a,4a) holding
with equality imply xll = xhl in R1b, contradicting Step 1. Likewise, (x, y) ∈ R1a∩R1b∩
R4b is impossible.

Assume that (x, y) ∈ R1a ∩ R2 ∩ R5a. Then (R1a,2) and (R1a,5a) holding with
equality imply xlh = xhh in R2, contradicting Step 1. Likewise (x, y) ∈ R1b ∩ R2 ∩ R5b

is impossible.
Assume that (x, y) ∈ R1a ∩R2 ∩R6b. Then

∆η · (ylh − yhh) = 0,

∆η · (ylh − yhl) ≥ 0,

∆η · (yhl − yhh) ≥ 0

imply yhh = yhl in R1a, contradicting Step 1. Likewise, (x, y) ∈ R1b ∩ R2 ∩ R6a is
impossible.

Assume that (x, y) ∈ R1a ∩R5a ∩R6b. Then

∆θ · (xhl − xhh)−∆η · (yhl − yhh) = 0

implies xhl ≥ xhh. Moreover, from

∆η · (ylh − yhh)−∆θ · (xlh − xhh) = 0

∆θ · (xhl − xhh)−∆η · (yhl − yhh) = 0

we get

∆θ · (xhl − xlh) + ∆η · (ylh − yhl) = 0.

As implementability implies

∆θ · (xhh − xlh) + ∆η · (ylh − yhl) ≥ 0



3.9. APPENDIX 77

it follows that xhl = xhh in R5a, contradicting Step 1. Likewise, (x, y) ∈ R1a∩R5a∩R6b

is impossible.

Assume that (x, y) ∈ R1a ∩ R2 ∩ R3b. Then yll = yhh = ylh in R1a, contradicting
Step 1. Likewise, (x, y) ∈ R1b ∩R2 ∩R3a is impossible.

Assume that (x, y) ∈ R2∩R3a∩R3b. Then xll = xhh, yll = yhh, implying (x, y) ∈ R1a

via the FOCs of R2 given as

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ2,1a · pll + µ2,3b · plh + λ4]

Vy (xll, yll) = ηl +
∆η

pll
· [−µ2,3b · plh] ,

and thus contradicting (x, y) /∈ R1a ∩R2 ∩R3b.

Assume that (x, y) ∈ R3a ∩ R4a ∩ R5a. Then xlh = xll ≤ xhh in R3a, contradicting
Step 1. Likewise, (x, y) ∈ R3b ∩R4b ∩R5b is impossible.

Finally, assume that (x, y) ∈ R4a ∩ R5a ∩ R6b. Then xll = xlh = xhl in R4a,
contradicting Step 1. Likewise, (x, y) ∈ R4b ∩R5b ∩R6a is impossible.

As any intersection of feasible regions according to Theorem 1* is either part of the
classification or contains at least one of the intersections we just excluded, this completes
Step 3.

Proof of Proposition 5. This is a direct consequence of Step 1 of Theorem 1*.

Proof of Proposition 7. We first prove the symmetry properties. Suppose there is a
solution (x, y) = (xhh, xhl, xlh, xll, yhh, yhl, ylh, yll). Then, by symmetry between the
x-dimension and the y-dimension, the vector (x̂, ŷ) defined as x̂ij = yji, ŷij = xji,
i, j ∈ {l, h} also constitutes a solution as

pij · V (xij , yij) + pji · V (xji, yji) = pij · V (ŷji, x̂ji) + pji · V (ŷij , x̂ij)

= pij · V (x̂ij , ŷij) + pji · V (x̂ji, ŷji)

for all i, j ∈ {l, h}. Hence (x, y) = (x̂, ŷ).

Next, note that dxhh

dα > 0 as differentiating the first FOC with respect to α yields

dxhh
dα

=
− ∆θ

phh
· pll2

(Vxx (xhh, xhh) + Vxy (xhh, xhh))

= −
∆θ · pll

phh

(

1 1
)

·H (xhh, xhh) ·
(

1
1

)

> 0

where the second equality follows from of V and positivity follows from negative defi-
niteness of the Hessian H of V at (xhh, xhh). Hence precisely one of the three cases for
α applies.
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To check the defining inequalities of the respective regions as well as implementability
it is enough to show that for any value of α ∈ [0, 1] we have xll ≥ xhh, xlh ≥ xlh,
xll ≥ xhl, xlh ≥ xhh. As Vxx (x, y) = Vyy (xy) for all (x, y) ∈ R

8
+ by symmetry and

H (x, y) = Vxx (x, y) · Vyy (x, y)− Vxy (x, y)
2 > 0

by negative definiteness of H (x, y) for all (x, y) ∈ R
8
+, we have |Vxx (x, y)| > |Vxy (x, y)|

for all (x, y) ∈ R
8
+, and hence the claim follows from Proposition 8 which is proven

below as well as from Proposition 5.

Proof of Proposition 8. a+b) We have

R1a











∆θ · (xll − xhh) = R1a, 2 +R1a, 4a ≥ 0

∆θ · (xlh − xhl) = R1a, 1b+R1a, 5a ≥ 0

∆η · (yll − yhh) = R1a, 2 + I2 > 0

R1b











∆θ · (xll − xhh) = R1b, 1a+ I1 > 0

∆η · (yll − yhh) = R1b, 2 +R1b, 4b ≥ 0

∆η · (yhl − ylh) = R1b, 1a+R1b, 5b ≥ 0

R2























∆θ · (xll − xhh) = R2, 3a ≥ 0

∆θ · (xlh − xhl) = R2, 1b+ I3 > 0

∆η · (yll − yhh) = R2, 3b ≥ 0

∆η · (yhl − ylh) = R2, 1a+ I4 > 0

R3a











∆θ · (xlh − xhl) = R3a, 2 + I1 + I3 > 0

∆η · (yll − yhh) = R3a, 2 + I1 > 0

∆η · (yhl − ylh) = R3a, 4a+ I4 > 0

R3b











∆θ · (xll − xhh) = R3b, 2 + I1 > 0

∆θ · (xlh − xhl) = R3b, 4b+ I3 > 0

∆η · (yhl − ylh) = R3b, 2 + I2 + I4 > 0

R4a

{

∆θ · (xlh − xhl) = R4a, 5a+ I1 > 0

∆η · (yll − yhh) = R4a, 3a+ I2 > 0

R4b

{

∆θ · (xll − xhh) = R4b, 3b+ I1 > 0

∆η · (yhl − ylh) = R4b, 5b+ I2 > 0
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R5a











∆θ · (xll − xhh) = R5a, 4a+ I3 > 0

∆θ · (xlh − xhl) = R5a, 6a ≥ 0

∆η · (yll − yhh) = R5a, 1a+ I2 + I3 > 0

R5b











∆θ · (xll − xhh) = R5b, 1b+ I1 + I4 > 0

∆η · (yll − yhh) = R5b, 4b+ I4 > 0

∆η · (yhl − ylh) = R5b, 6b ≥ 0

R6a











∆θ · (xll − xhh) = R6a, 5a+ I1 + I3 > 0

∆η · (yll − yhh) = R6a, 1b+ I2 + I3 > 0

∆η · (yhl − ylh) = R6a, 5a+ I6 > 0

R6b











∆θ · (xll − xhh) = R6b, 1a+ I1 + I4 > 0

∆θ · (xlh − xhl) = R6b, 5b+ I6 > 0

∆η · (yll − yhh) = R6b, 5b+ I2 + I4 > 0.

All strict inequalities follow from Theorem 1* showing that not all constraints on the
RHS can hold with equality simultaneously. Moreover, note that by Theorem 1* all
weak inequalities above imply that the allocation lies on a separating hyperplane which
is defined by the inequality under consideration, in line with Proposition 8, Part b). To
prove the remaining (weak) inequalities, we apply the homotopy method extensively.
Start with region R1a. If µ1a,2 > 0 then (x, y) ∈ R2 and hence yhl > ylh. Similarly,
if µ1a,1b > 0 then (x, y) ∈ R1b and hence yhl ≥ ylh and Part b) applies. So assume
µ1a,2 = µ1a,1b = 0. Consider

Vx (xhl (t) , yhl (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xlh (t) , ylh (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhl (t) , yhl (t)) = ηl +
∆η

2
−∆η · t · c

Vy (xlh (t) , ylh (t)) = ηl +
∆η

2
+ ∆η · t · d

with

a =
1

2
+

µ1a,6b · (plh + pll)

phl

b =
1

2
+

µ1a,5a · phl
plh

c =
1

2
+

µ1a,6b · (plh + pll)

phl
,

d =
1

2
+

pll + µ1a,4a · phl + µ1a,5a · phl
plh

.

At t = 1 this yields the FOCs of R1a. At t = 0 we have xhl (0) = xlh (0), yhl (0) = ylh (0).
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Note that a = c, d > b. Hence, at any t ∈ [0, 1] we have

dylh
dt

= ∆η · Vxx (xlh (t) , ylh (t)) · d+∆θ · Vxy (xlh (t) , ylh (t)) · b ≤ 0,

dyhl
dt

= −∆η · Vxx (xlh (t) , ylh (t)) · c−∆θ · Vxy (xlh (t) , ylh (t)) · a ≥ 0,

implying yhl = yhl (1) > ylh (1) = ylh. Likewise, in R1b we get xlh ≥ xhl.
Suppose next that (x, y) ∈ R3a. Consider

Vx (xhh (t) , yhh (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xll (t) , yll (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhh (t) , yhh (t)) = ηl +
∆η

2
+ ∆η · t · c

Vy (xll (t) , yll (t)) = ηl +
∆η

2
−∆η · t · d

with

a =
1

2
+

(plh + pll + phl)− µ3a,2 · phl + λ5 + λ7

phh

b =
1

2
+

phl − µ3a,2 · phl + λ5 + λ7

pll

c =
1

2
+

(phl + pll)− µ3a,4a · (phl + pll) + λ5 + λ7

phh
,

d =
1

2
+

λ5

pll
.

At t = 1 this yields the FOCs of R3a. At t = 0 we have xhh (0) = xll (0), yhh (0) = yll (0).
Note that a ≥ c, b ≥ d . Hence, at any t ∈ [0, 1] we have

dxhh
dt

= ∆θ · Vyy (xhh (t) , yhh (t)) · a−∆η · Vxy (xhh (t) , yhh (t)) · c ≤ 0,

dxll
dt

= −∆θ · Vyy (xll (t) , yll (t)) · b+∆η · Vxy (xlh (t) , ylh (t)) · d ≥ 0

and hence xll = xll (1) ≥ xhh (1) = xhh. Moreover, the inequality is strict unless
µ3a,2 = 1 implying xll = xhh and thus Part b) applies. Likewise, in R3b we get yll ≥ yhh.

Suppose next that (x, y) ∈ R4a. Consider first

Vx (xhh (t) , yhh (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xll (t) , yll (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhh (t) , yhh (t)) = ηl +
∆η

2
+ ∆η · t · c

Vy (xll (t) , yll (t)) = ηl +
∆η

2
−∆η · t · d
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with

a =
1

2
+

(plh + pll + phl)− µ4a,1a · phl + λ10 + λ16

phh

b =
1

2
+

phl − µ4a,1a · phl − µ4a,5a · phl + λ10 + λ12 + λ16

pll

c =
1

2
+

µ4a,1a · phl + µ4a,3a · (phl + pll)

phh

d =
1

2
+

λ10

pll
.

At t = 1 this yields the FOCs of R4a. At t = 0 we have xhh (0) = xll (0), yhh (0) = yll (0).
We have a ≥ c, b ≥ d. Hence, at any t ∈ [0, 1] we have

dxhh
dt

= ∆θ · Vyy (xhh (t) , yhh (t)) · a−∆η · Vxy (xhh (t) , yhh (t)) · c ≤ 0,

dxll
dt

= −∆θ · Vyy (xll (t) , yll (t)) · b+∆η · Vxy (xlh (t) , ylh (t)) · d ≥ 0,

with at least one inequality being strict unless (x, y) ∈ R1a ∩ R2 ∩ R3a ∩ R4a so that
Part b) is satisfied. So xll = xll (1) ≥ xhh (1) = xhh. Likewise, one shows that yll ≥ yhh
in R4b. Consider next

Vx (xhl (t) , yhl (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xlh (t) , ylh (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhl (t) , yhl (t)) = ηl +
∆η

2
−∆η · t · c

Vy (xlh (t) , ylh (t)) = ηl +
∆η

2
+ ∆η · t · d

with

a =
1

2
+

λ12

phl

b =
1

2
+

µ4a,5a · phl
plh

c =
1

2
+

λ12 + λ16

phl

d =
1

2
+

(phl + pll)− µ4a,1a · phl − µ4a,3a · (phl + pll) + λ10 + λ12 + λ16

plh
.

If µ4a,3a > 0 then yhl > yhh = ylh, so assume µ4a,3a = 0. At t = 1 this yields the FOCs
of R4a while at t = 0 we have xhl (0) = xlh (0), yhl (0) = ylh (0). Note that a ≤ c, b < d
if µ4a,3a = 0. Hence, at any t ∈ [0, 1] we have

dylh
dt

= ∆η · Vxx (xlh (t) , ylh (t)) · d+∆θ · Vxy (xlh (t) , ylh (t)) · b ≤ 0,

dyhl
dt

= −∆η · Vxx (xlh (t) , ylh (t)) · c−∆θ · Vxy (xlh (t) , ylh (t)) · a ≥ 0
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So yhl = yhl (1) > ylh (1) = ylh. Similarly, in R4b we get xlh > xhl.
Suppose (x, y) ∈ R5a. If µ5a,6a > 0 then xlh = xhl, then (I6) implies yhl ≥ ylh and

yhl = ylh contradicts FOCs

Vy (xhl, yhl) = ηl +
∆η

phl
· [−λ6 − λ13]

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll)− µ5a,1a · phl + λ6 + λ13] .

Hence we may assume µ5a,6a = 0. Consider

Vx (xhl (t) , yhl (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xlh (t) , ylh (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhl (t) , yhl (t)) = ηl +
∆η

2
−∆η · t · c

Vy (xlh (t) , ylh (t)) = ηl +
∆η

2
+ ∆η · t · d

with

a =
1

2
+

λ6

phl

b =
1

2
+

phl − µ5a,1a · phl − µ5a,4a · phl + λ6 + λ13

plh

c =
1

2
+

λ6 + λ13

phl

d =
1

2
+

(phl + pll)− µ5a,1a · phl + λ6 + λ13

plh
.

At t = 1 this yields the FOCs of R5a. At t = 0 we have xhl (0) = xlh (0), yhl (0) = ylh (0).
Note that a ≤ c, b < d. Hence, at any t ∈ [0, 1] we have

dylh
dt

= ∆η · Vxx (xlh (t) , ylh (t)) · d+∆θ · Vxy (xlh (t) , ylh (t)) · b < 0,

dyhl
dt

= −∆η · Vxx (xlh (t) , ylh (t)) · c−∆θ · Vxy (xlh (t) , ylh (t)) · a ≥ 0,

implying yhl = yhl (1) > ylh (1) = ylh. Similarly, in R5b we get xlh > xhl.
Finally, suppose (x, y) ∈ R6a. If µ6a,5a > 0 then xlh = xhl, so assume µ6a,5a = 0.

Consider

Vx (xhl (t) , yhl (t)) = θl +
∆θ

2
+ ∆θ · t · a

Vx (xlh (t) , ylh (t)) = θl +
∆θ

2
−∆θ · t · b

Vy (xhl (t) , yhl (t)) = ηl +
∆η

2
−∆η · t · c

Vy (xlh (t) , ylh (t)) = ηl +
∆η

2
+ ∆η · t · d
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with

a =
1

2
+

pll + λ11 + λ6

phl

b =
1

2
+

phl + pll − µ6a,1b · (pll + phl) + λ6 + λ11

plh

c =
1

2
+

λ6

phl

d =
1

2
+

(phl + pll)− µ6a,1b · (pll + phl) + λ6 + λ11

plh
.

At t = 1 this yields the FOCs of R5a. At t = 0 we have xhl (0) = xlh (0), yhl (0) = ylh (0).
Note that a > c, b = d. Hence, at any t ∈ [0, 1] we have

dxlh
dt

= −∆η · Vxx (xlh (t) , ylh (t)) · b−∆θ · Vxy (xlh (t) , ylh (t)) · d ≥ 0,

dxhl
dt

= ∆η · Vxx (xlh (t) , ylh (t)) · a+∆θ · Vxy (xlh (t) , ylh (t)) · c < 0,

implying xlh = xlh (1) > xhl (1) = xhl. But this contradicts (R6a,5a), so µ6a,5a > 0,
xlh = xhl and (x, y) ∈ R5a∩R6a. Similarly, in R6b we get yhl = ylh and (x, y) ∈ R5b∩R6b.

c) This follows directly from (R3a,2), (R3b,2), (R6a,5a), and (R6b,5b).
d) By Part a) and Proposition 5 it suffices to check that (I5), (I6), (I15), and (I16)

never hold with equality. However, by Part b) and Theorem 1* at most one of the
inequalities in Part a) may hold with equality. This proves the result.

Proof of Proposition 9. a-c) Suppose (x, y) ∈ R1a. Then ylh ≥ yhh by (R1a,2). FOCs

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ1a,1b · pll + µ1a,4a · phl + µ1a,5a · phl − µ1a,6b · (plh + pll)]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ1a,1b · pll + µ1a,6b · (plh + pll)]

together with yhl > yhh imply xhl > xhh unless (x, y) ∈ R1b or (x, y) ∈ R6b, the former
implying xhl ≥ xhh by (R1b,2) and the latter implying xhl > xhh by (R6a,5a) and (I3).
FOCs

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ1a,5a · phl]

Vx (xll, yll) = θl +
∆θ

pll
· [−µ1a,4a · phl]

together with yll > ylh imply xll > xlh unless µ1a,5a > 0 in which case xll ≥ xlh is
implied by (R5a,4a). Finally, if µ1a,6b > 0 then (x, y) ∈ R6b, implying yll > yhl via
(R6b,5b) and (I2). Otherwise, if µ1a,6b = 0 then FOCs

Vy (xhl, yhl) = ηl

Vy (xll, yll) = ηl
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together with xll > xhl and complementarity imply yll > yhl. The proof for (x, y) ∈ R1b

is alike.

Suppose (x, y) ∈ R2. Then (R2,1a) and (R2,1b) must hold with equality. Indeed, if
µ2,1a = 0 or µ2,1b = 0, respectively, then FOCs

Vy (xhh, yhh) = ηh +
∆η

phh
· [(phl + pll)− µ2,1a · pll + µ2,3b · plh]

Vy (xlh, ylh) = ηh +
∆η

plh
· [µ2,1a · pll]

and

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll)− µ2,1b · pll + µ2,3a · phl]

Vx (xhl, yhl) = θh +
∆θ

phl
· [µ2,1b · pll]

together with xlh > xhh and yhl > yhh and complementarity imply ylh > yhh or xhl >
xhh, respectively, contradicting (R2,1a) or (R2,1b). The remaining claims then follow
from what was shown for R1a and R1b.

Suppose (x, y) ∈ R5a. Then xll ≥ xlh by (R5a,4a) and ylh > yhh by (R5a,1a) and
(I3). If (I6) or (I13) hold with equality, then (R5a,6a) or (I3) together with (I2) imply
yll > yhl. Otherwise λ6 = λ13 = 0 and FOCs

Vy (xhl, yhl) = ηl

Vy (xll, yll) = ηl

together with xll > xhl and complementarity imply yll > yhl. If (R5a,6a) holds with
equality, then (I3) implies xhl > xhh. If λ6 > 0 then (I6) holds with equality and
xhl ≥ xhh as otherwise I13 = I6 +∆θ · (xhl − xhh) ≥ 0 was violated. If λ6 = µ5a,6a = 0
then FOCs

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ5a,1a · phl + λ13]

Vx (xhl, yhl) = θh

together with yhl > yhh and complementarity imply xhl > xhh. Analogous results follow
for (x, y) ∈ R5b.

If (x, y) ∈ R4a then (R4a,5a) must bind. Indeed, if µ4a,5a = 0 then FOCs

Vx (xlh, ylh) = θl

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ4a,1a · phl − λ1 − λ10 − λ12 − λ16]

together with yll > ylh and complementarity imply xll < xlh, contradicting (R4a,5a).
Similarly, if (x, y) ∈ R4b then (R4b,5b) must bind.
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(x, y) cannot be an elemnt of R3a. Indeed, if (x, y) ∈ R3a then yll ≥ yhh. But then
FOCs

Vx (xhh, yhh) = θh +
∆θ

phh
· [(plh + pll + phl)− µ3a,2 · phl + λ5 + λ7]

Vx (xll, yll) = θl +
∆θ

pll
· [−phl + µ3a,2 · phl − λ5 − λ7]

together with complementarity imply xll > xhh, contradicting (R3a,2). Similarly, (x, y)
cannot be an element of R3b.

If (x, y) ∈ R6a then xll > xlh is implied by (R6a,5a) and (I1), xhl > xhh is implied
by (R6a,5a) and (I3), and ylh > yhh is implied by (R6a,5a) and (I3). If (I6) holds
with equality, then yll ≥ yhl as otherwise I11 = I6 + ∆η · (yll − yhl) ≥ 0 was violated.
Otherwise λ6 = 0 and FOCs

Vy (xhl, yhl) = ηl

Vy (xll, yll) = ηl +
∆η

pll
· [−λ11]

together with xll > xhl and complementarity imply yll > yhl. Analogous results follow
for R6b. The second claim in Part a) follows directly from the first claim and Proposition
5.

d) This is an immediate consequence of Part c) given that (x, y) ∈ R4a/b ⇒ (x, y) ∈
R5a/b as shown above.

Proof of Proposition 10. a-c) Let (x, y) ∈ R3a. Then (R3a,2) and (I2) imply xlh > xll.
If (I7) holds with equality, then yhl ≥ yll as otherwise I1 = I7 + ∆η · (yhl − yhh) ≥ 0
was violated. Otherwise λ7 = 0 and FOCs

Vy (xhl, yhl) = ηl

Vy (xll, yll) = ηl +
∆η

pll
· [−λ5]

together with xll > xhl and substitutability imply yll > yhl. The case (x, y) ∈ R3b is
alike.

Suppose (x, y) ∈ R1a. FOCs

Vy (xhl, yhl) = ηl +
∆η

phl
· [−µ1a,6b · (plh + pll)]

Vy (xll, yll) = ηl

together with xll > xhl and substitutability imply yhl > yll. If (R1a,4a) holds with
equality then xlh ≥ xll by (R4a,5a). Otherwise µ1a,4a = 0 and FOCs

Vx (xlh, ylh) = θl +
∆θ

plh
· [−µ1a,5a · phl]

Vx (xll, yll) = θl
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together with ylh < yll and substitutability imply xll < xlh. Analogous implications
follow for (x, y) ∈ R1b.

If (x, y) ∈ R4a then (R4a,3a) or (R4a,1a) must bind. Indeed, if µ4a,3a = µ4a,1a = 0
then FOCs

Vy (xhh, yhh) = ηh

Vy (xlh, ylh) = ηh +
∆η

plh
· [(phl + pll) + λ10 + λ12 + λ16]

together with xlh > xhh and substitutability imply ylh < yhh, contradicting (R4a,3a).
Likewise, if (x, y) ∈ R4b then (R4b,3b) or (R4b,1b) must bind.

Suppose (x, y) ∈ R2. If (R2,3a) or (R2,3b) hold with equality, then xlh > xhh = xll
or yhl > yhh = yll, respectively. Otherwise µ2,3a = µ2,3b = 0 and FOCs

Vx (xlh, ylh) = θl

Vx (xll, yll) = θl

Vy (xhl, yhl) = ηl

Vy (xll, yll) = ηl

together with yll > ylh and xll > xhl and substitutability imply xlh > xll and yhl > yll.

If (x, y) ∈ R5a then (R5a,4a) must bind. Otherwise, FOCs

Vx (xlh, ylh) = θl +
∆θ

plh
· [−phl + µ5a,1a · phl − µ5a,6a · pll − λ3 − λ6 − λ13]

Vx (xll, yll) = θl

together with ylh < yll and substitutability imply xll < xlh, contradicting (R5a,4a).
Similarly, if (x, y) ∈ R5b then (R5b,4b) must bind.

The optimal allocation (x, y) cannot lie in R6a. First, note that if (x, y) ∈ R6a then
(R6a,5a) cannot hold with equality as this would imply (x, y) ∈ R5a ∩ R6a which, by
our results on R5a, would imply (x, y) ∈ R4a ∩ R5a ∩ R6a, contradicting Theorem 1*.
But if µ6a,5a = 0 then FOCs

Vx (xhl, yhl) = θh +
∆θ

phl
· [pll + λ11 + λ6]

Vx (xlh, ylh) = θl +
∆θ

plh
· [− (phl + pll) + µ6a,1b · (pll + phl)− λ6 − λ11]

together with xhl > xlh and substitutability imply yhl < ylh, contradicting (I6). Simi-
larly, the optimal allocation (x, y) cannot lie in R6b. The second claim in Part a) follows
directly from the first claim and Proposition 5.

d) This is an immediate consequence of Part c).
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The quadratic case: Technicalities. Assume that

V (x, y) = −1

2
a1x

2 − 1

2
a2y

2 + bxy + c1x+ c2y + d

with a1, a2 > 0, b, c1, c2, d ∈ R and detH (x, y) = a1a2−b2 > 0, ensuring strict concavity
of V (x, y). Moreover, assume ∆θ = ∆η = 1.

For any region R and any r, s ∈ {l, h}, FOCs read

Vx (xrs, yrs) = γ1rs

Vy (xrs, yrs) = γ2rs

with solution

xrs =
−b
(

γ2rs − c2
)

− a2
(

γ1rs − c1
)

a1a2 − b2
,

yrs =
−b
(

γ1rs − c1
)

− a1
(

γ2rs − c2
)

a1a2 − b2
.

The common factor 1
a1a2−b2 = [detH (x, y)]−1 only rescales the solution and does not

affect any implementability or regional constraints. It is therefore without loss of gen-
erality to assume that a1a2 − b2 = 1. Similarly, neither implementability nor regional
constraints depend on c1, c2 as for any r, s, l,m ∈ {l, h} we have

xrs − xlm = −b
(

γ2rs − γ2lm
)

− a2
(

γ1rs − γ1lm
)

,

yrs − ylm = −b
(

γ1rs − γ1lm
)

− a1
(

γ2rs − γ2lm
)

.

Both c1 and c2 shift the solutions by a constant in all x-allocations and by another
constant in all y-allocations, and these two constants only depends on a1, a2, b but not
on any other primitives of the model as captured by γ1, γ2. A sufficiently large value
for d guarantees positive consumer valuations without affecting the optimal allocation.

Lemma E. Let

x̃rs = −bγ2rs − a2γ
1
rs

ỹrs = −bγ1rs − a1γ
2
rs

denote the (possibly negative) solutions of the first order conditions of the optimization
problem for the case c1 = c2 = 0 (and a1a2 − b2 = 1), for any r, s ∈ {l, h}. Then

xrs = −b
(

γ2rs − c2
)

− a2
(

γ1rs − c1
)

,

yrs = −b
(

γ1rs − c1
)

− a1
(

γ2rs − c2
)

solve the corresponding first order order conditions for any c1, c2 ∈ R and there exist
c1, c2 ∈ R such that xrs, yrs > 0 for any r, s ∈ {l, h}.
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Proof. We only need to show the statement concerning positivity of xrs, yrs for any
r, s ∈ {l, h}. Note that

xrs = x̃rs + bc2 + a2c1,

yrs = ỹrs + bc1 + a1c2.

If b ≥ 0, choose c1 = c2 sufficiently large. If b < 0, define z = max {|x̃rs| , |ỹrs| |r, s ∈ {l, h}},
fix some ǫ > 0 and set c2 = −a2

b c1 +
(z+ǫ)

b . Then for c1 sufficiently large we have

xrs = x̃rs + (z + ǫ)

> 0

yrs = ỹrs +
a1
b
(z + ǫ)− 1

b
c1

> 0.

Proof of Proposition 6E. Part a-b) are an immediate consequence of Proposition 6. As
for Part c), the FOCs for the interior of R1a yield

xhh = −a2 ·
(

θh +
pll + plh

phh

)

yhh = −a1 ·
(

ηh +
phl
phh

)

xhl = −a2 · θh
yhl = −a1 · ηl
xlh = −a2 · θl
ylh = −a1 ·

(

θh +
pll
plh

)

xll = −a2 · θl
yll = −a1 · ηl

and hence

ylh − yhh − (xhl − xhh) = a1 ·
(

phl
phh

− pll
plh

)

− a2 ·
(

pll + plh
phh

)

xll − xhh − (ylh − yhh) = −a1 ·
(

phl
phh

− pll
plh

)

+ a2 ·
(

pll + plh + phh
phh

)

xlh − xhh − (ylh − yhh) = −a1 ·
(

phl
phh

− pll
plh

)

+ a2 ·
(

pll + plh + phh
phh

)

.
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Symmetrically, for region R1b we get

xhl − xhh − (ylh − yhh) = a2 ·
(

plh
phh

− pll
phl

)

− a1 ·
(

pll + phl
phh

)

yll − yhh − (xhl − xhh) = −a2 ·
(

plh
phh

− pll
phl

)

+ a1 ·
(

pll + phl + phh
phh

)

yhl − yhh − (xhl − xhh) = −a2 ·
(

plh
phh

− pll
phl

)

+ a1 ·
(

pll + phl + phh
phh

)

.

Inserting Q = a1
a2

directly yields the result.

Proof of Proposition 9E. a) Invoking Proposition 9 we only need to show that the op-
timal allocation (x, y) does not lie in the interior of R5a, R5a ∩ R4a, R5b, or R5b ∩ R4b.
We focus on “a”-type regions. For R5a we have

γ1hh = θh +
(plh + pll + phl) + λ13

phh
γ2hh = ηh

γ1hl = θh +
λ6

phl
γ2hl = ηl +

−λ6 − λ13

phl

γ1lh = θl −
(1− µ5a,4a) · phl + λ6 + λ13

plh
γ2lh = ηh +

(phl + pll) + λ6 + λ13

plh

γ1ll = θl −
µ5a,4a · phl

pll
γ2ll = ηl

and

ylh − yhh − (xlh − xhh) = b
(

γ1hh − γ1lh + γ2lh − γ2hh
)

(3.9.1)

−
√

Q
√

(1 + b2)
(

γ2lh − γ2hh
)

− 1√
Q

√

(1 + b2)
(

γ1hh − γ1lh
)

xlh − xhl = −b
(

γ2lh − γ2hl
)

+
1√
Q

√

(1 + b2)
(

γ1hl − γ1lh
)

. (3.9.2)

Note that (3.9.1) is concave in
√
Q. Taking derivatives with respect to

√
Q yields a

maximum at
√

Q =

√

γ1hh − γ1lh
γ2lh − γ2hh

. (3.9.3)

Inserting (3.9.3) in (3.9.1) yields

ylh − yhh − (xlh − xhh) = b
(
γ
1
hh − γ

1
lh + γ

2
lh − γ

2
hh

)
− 2

√

(1 + b2) ·
√

γ2
lh − γ2

hh

√

γ1
hh − γ1

lh.

This expression is nonnegative if and only if

b2 ≥ 4
(

γ1hh − γ1lh
) (

γ2lh − γ2hh
)

[(

γ1hh − γ1lh
)

−
(

γ2lh − γ2hh
)]2 (3.9.4)
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Now consider (3.9.2). Clearly, (3.9.2) is most relaxed if b is as small as possible. Inserting
(3.9.3), rearranging and inserting (3.9.4) with equality requires

−4
(
γ
1
hh − γ

1
lh

)2 (
γ
2
lh − γ

2
hl

)2
+

[(
γ
1
hh − γ

1
lh

)
+

(
γ
2
lh − γ

2
hh

)]2 (
γ
1
hl − γ

1
lh

)2 ≥ 0. (3.9.5)

However, it is readily checked that this is a quadratic expression in γ1hh − γ1lh with

negative leading coefficient −4
(

γ2lh − γ2hl
)2

+
(

γ1hl − γ1lh
)2

and negative discriminant

4
(

γ2lh − γ2hh
)2 (

γ1hl − γ1lh
)4 − 16

(

γ2lh − γ2hl
)2 (

γ2lh − γ2hh
)2 (

γ1hl − γ1lh
)2

,

thus (3.9.5) is always negative. As a consequence, whenever b is sufficiently large for
(3.9.1) to be non-negative at its maximum given by (3.9.3), constraint (3.9.2) is violated
when imposing (3.9.3). Note that (3.9.2) is non-negative if and only if

√

Q ≤
√

(1 + b2)

b
· γ

1
hl − γ1lh

γ2lh − γ2hl
. (3.9.6)

To prove the claim of Part a) it is hence sufficient to show that inserting (3.9.6) with
equality in (3.9.1) yields a negative expression. After some rearranging, the relevant
term reads

b
2 [(

γ
2
lh − γ

2
hl

)
−

(
γ
1
hl − γ

1
lh

)]

︸ ︷︷ ︸

>0

[(
γ
1
hl − γ

1
lh

) (
γ
2
lh − γ

2
hh

)
−

(
γ
2
lh − γ

2
hl

) (
γ
1
hh − γ

1
lh

)]

︸ ︷︷ ︸

<0

−
(
γ
1
hl − γ

1
lh

)2 (
γ
2
lh − γ

2
hh

)
< 0.

b) Invoking Theorem 1* it suffices to show that whenever the optimal solution lies
in the interior of R6a or R6b, no implementability constraint holds with equality. Again
it suffices to consider R6a. In the interior of R6a we have

γ1hh = θh +
plh + pll + phl

phh
γ2hh = ηh

γ1hl = θh +
pll
phl

γ2hl = ηl

γ1lh = θl −
phl + pll

plh
γ2lh = ηh +

phl + pll
plh

γ1ll = θl γ2ll = ηl

By Proposition 9 we have yll ≥ yhl so we may focus on (I6) exclusively. Suppose (I6) is
violated but (R6a,1b) is satisfied. Then

xlh − xhl + yhl − ylh =

(
1 +Q√

Q

√

(1 + b2)− 2b

)

·
(
1− plh

plh

)

(3.9.7)

+

(
1√
Q

√

(1 + b2)− b

)[
pll

phl

]

< 0,

xhl − xlh =

(

b− 1√
Q

√

(1 + b2)

)(
1− plh

plh

)

− 1√
Q

√

(1 + b2)

(
pll

phl

)

(3.9.8)

≥ 0.

But (3.9.7) implies
√
Q < phl(1−plh)+pllplh

phl(1−plh) while (3.9.8) implies
√
Q > phl(1−plh)+pllplh

phl(1−plh) , a
contradiction.
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c) Consider region R6a. To establish necessary conditions such that the optimal
allocation may lie in the interior of R5a ∪ R6a or in the interior of R6a we must ensure
that constraint (R6a,1b) is satisfied with strict inequality. We have

γ1hh = θh +
plh + pll + phl

phh
γ2hh = ηh

γ1hl = θh +
(1− µ6a,5a) pll

phl
γ2hl = ηl

γ1lh = θl −
phl + (1− µ6a,5a) pll

plh
γ2lh = ηh +

phl + pll
plh

γ1ll = θl γ2ll = ηl

and

ylh − yhh − xlh + xhh = b
(

γ1hh − γ1lh + γ2lh − γ2hh
)

(3.9.9)

−
√

Q
√

(1 + b2)
(

γ2lh − γ2hh
)

− 1√
Q

√

(1 + b2)
(

γ1hh − γ1lh
)

By Proposition 8, (x, y) ∈ R6a is only possible if b ≥ a2 = 1√
Q
·
√

(1 + b2), providing

the lower bound given in the Proposition. Moreover, this implies that the above expres-
sion is decreasing in µ6a,5a as γ1lh is increasing in µ6a,5a. Being interested in necessary
conditions only we may thus assume that µ6a,5a = 0 and neglect constraint (R6a,5a).
Multiplying (3.9.9) with

√
Q > 0 yields a quadratic expression in

√
Q with negative

leading coefficient. The expression is hence positive if it has positive discriminant

b2 · 1

p2hh
− 4

(

phl + pll
plh

)(

1

phh
+

phl + pll
plh

)

,

yielding the lower bound for b2 stated in the Proposition, and if

√
b2 + 1

b
·
√

Q > 1 +

plh
phh

−
√

(

plh
phh

)2
− 4 · 1

b2
· (phl + pll) ·

(

phl + pll +
plh
phh

)

phl + pll
,

√
b2 + 1

b
·
√

Q < 1 +

plh
phh

+

√

(

plh
phh

)2
− 4 · 1

b2
· (phl + pll) ·

(

phl + pll +
plh
phh

)

phl + pll
.

Together, these results prove Part c) with respect to R6a. The proof for region R6b is
alike.

d) Consider again R6a. Including constraint µ6a,1b we have

γ1hh = θh +
(plh + pll + phl)− µ6a,1b · (pll + phl)

phh
γ2hh = ηh +

µ6a,1b · (pll + phl)

phh

γ1hl = θh +
pll
phl

γ2hl = ηl

γ1lh = θl −
phl + pll − µ6a,1b · (pll + phl)

plh
γ2lh = ηh +

phl + pll − µ6a,1b · (pll + phl)

plh

γ1ll = θl γ2ll = ηl
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and thus

xhl − xlh =

(

b− 1√
Q

·
√

(1 + b2)

)[

1 +
(phl + pll)− µ6a,1b · (pll + phl)

plh

]

− 1√
Q

·
√

(1 + b2)

[

1 +
pll

phl

]

ylh − yhh − xlh + xhh =

(

2b− 1 +Q√
Q

√

(1 + b2)

)(
(phl + pll)− µ6a,1b · (pll + phl)

plh

)

−
(

b−
√

Q ·
√

(1 + b2)
)(

µ6a,1b · (pll + phl)

phh

)

+

(

b− 1√
Q

·
√

(1 + b2)

)(

1 +
(plh + pll + phl)− 2µ6a,1b · (pll + phl)

phh

)

.

Clearly, Q sufficiently large implies xhl−xlh > 0 irrespective of the value of µ6a,1b ∈ [0, 1].
Moreover, as demonstrated in c), for µ6a,1b = 0 we have ylh−yhh−xlh+xhh < 0 whenever
Q is sufficiently large while for µ6a,1b = 1 we have

ylh − yhh − xlh + xhh =

(

2b− 1 +Q√
Q

√

(1 + b2)

)(
(phl + pll)− µ6a,1b · (pll + phl)

plh

)

−
(

b−
√

Q ·
√

(1 + b2)
)(

µ6a,1b · (pll + phl)

phh

)

+

(

b− 1√
Q

·
√

(1 + b2)

)(

1 +
(plh + pll + phl)− 2µ6a,1b · (pll + phl)

phh

)

=
(√

Q ·
√

(1 + b2)− b
)(

pll + phl

phh

)

+

(
1√
Q

·
√

(1 + b2)− b

)(
phh + plh − (pll + phl)

phh

)

which, for any fixed vaues of b and the distribution, becomes positive for large Q. Hence,
by the intermediate value theorem, for any Q sufficiently large there exists µ6a,1b ∈ (0, 1)
such that

xhl − xlh > 0

ylh − yhh − xlh + xhh = 0.

This proves the claim. The statement for R6b follows analogously.

Proof of Proposition 10E. a) Invoking Theorem 1* and Proposition 10 it suffices to
check that no implementability constraint holds with equality if the optimal allocation
lies in the interior of R3a, R3a ∩ R4a, R3b, or R3b ∩ R4b. We focus on “a”-type regions.
In R3a we have

γ1hh = θh +
plh + pll + phl + λ5 + λ7

phh
γ2hh = ηh +

(1− µ3a,4a) · (phl + pll) + λ5 + λ7

phh

γ1hl = θh γ2hl = ηl −
λ7

phl

γ1lh = θl γ2lh = ηh +
µ3a,4a · (phl + pll)

plh

γ1ll = θl −
phl + λ5 + λ7

pll
γ2ll = ηl −

λ5

pll
.
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As yll ≤ yhl by Proposition 10, it suffices to check (I5) exclusively. Suppose (I5) is
violated but (R3a,2) is satisfied. Then

xhh − xll = −
(

b+
1√
Q

·
√

(1 + b2)

)(

1 +
(1− µ3a,4a) · (phl + pll)

phh

)

− 1√
Q

·
√

(1 + b2)

(
plh + µ3a,4a · (pll + phl)

phh
+

phl

pll

)

(3.9.10)

> 0

xll − xhh + (yll − yhh) =

(

2b+
1 +Q√

Q

√

(1 + b2)

)(

1 +
(1− µ3a,4a) · (phl + pll)

phh

)

+

(

b+
1√
Q

·
√

(1 + b2)

)(
plh + µ3a,4a · (pll + phl)

phh
+

phl

pll

)

(3.9.11)

< 0.

But (3.9.10) implies

√

Q >
1 +

(1−µ3a,4a)·(phl+pll)
phh

+
plh+µ3a,4a·(pll+phl)

phh
+ phl

pll

1 +
(1−µ3a,4a)·(phl+pll)

phh

while (3.9.11) implies

√

Q <
1 +

(1−µ3a,4a)·(phl+pll)
phh

+
plh+µ3a,4a·(pll+phl)

phh
+ phl

pll

1 +
(1−µ3a,4a)·(phl+pll)

phh

,

a contradiction.
b) Consider R2a. Ignoring constraints towards regions R1a and R1b we have

γ1hh = θh +
plh + pll + µ2,3a · phl

phh
γ2hh = ηh +

phl + pll + µ2,3b · plh
phh

γ1hl = θh γ2hl = ηl

γ1lh = θl γ2lh = ηh

γ1ll = θl −
µ2,3a · phl

pll
γ2ll = ηl −

µ2,3b · plh
pll

,

yielding

yhh − ylh = −b

[

1 +
plh + pll + µ2,3a · phl

phh

]

− a1

[
phl + pll + µ2,3b · plh

phh

]

(3.9.12)

xhh − xhl = −b

[

1 +
phl + pll + µ2,3b · plh

phh

]

− a2

[
plh + pll + µ2,3a · phl

phh

]

(3.9.13)

xll − xhh = (b+ a2)

[

1 +
phl + pll

phh

]

+ 2b · µ2,3b · plh
pll

+ 2a2 ·
µ2,3a · phl

pll
(3.9.14)

yll − yhh = (b+ a1)

[

1 +
plh + pll

phh

]

+ 2b · µ2,3a · phl
pll

+ 2a1 ·
µ2,3b · plh

pll
. (3.9.15)

In case of µ2,3a = µ2,3b = 0, equations (3.7.4) and (3.7.5) guarantee yhh − ylh > 0,
xhh − xhl > 0 and the solution lies in the interior of R2 if and only if in addition
a1 > |b|, a2 > |b|. Note that at most one of (3.7.4) and (3.7.5) may fail to hold as
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a1a2 − b2 = 1. Assume without loss of generality that a2 ≤ |b| and consider R3a.
Ignoring constraint towards R4a we have

γ1hh = θh +
plh + pll + (1− µ3a,2) · phl

phh
γ2hh = ηh + ηh +

phl + pll
phh

γ1hl = θh γ2hl = ηl

γ1lh = θl γ2lh = ηh

γ1ll = θl −
(1− µ3a,2) · phl

pll
γ2ll = ηl

and thus

xhh − xll = −b

[

1 +
phl + pll

phh

]

(3.9.16)

−a2

[

1 +
plh + pll + (1− µ3a,2) · phl

phh
+

(1− µ3a,2) · phl
pll

]

yhh − ylh = −b

[

1 +
plh + pll + (1− µ3a,2) · phl

phh

]

− a1

[
phl + pll

phh

]

. (3.9.17)

Clearly, (3.9.17) holds by assumption for any µ3a,2 ∈ [0, 1]. But since a2 ≤ |b| we either
have that (3.9.16) is positive for µ3a,2 = 0 in which case the optimal allocation lies in
the interior of R3a or there exists µ2,3a ∈ [0, 1] such that (3.9.16) holds with equality
and the solution lies in the interior of R2∩R3a. If instead of a2 ≤ |b| we assume a1 ≤ |b|,
an analogous argument applies for R3b.

c) Using the expressions listed in Part a) for R3a, constraints (R3a,2) and (R3a,4a)
are given as

xhh − xll = −
(

b+
1√
Q

√

(1 + b2)

)(

1 +
(1− µ3a,4a) (phl + pll)

phh

)

(3.9.18)

− 1√
Q

√

(1 + b2)

(
plh + µ3a,4a (pll + phl)

phh
+

phl

pll

)

yhh − ylh = −b

[
1

phh

]

−
√

Q
√

(1 + b2)

[
(1− µ3a,4a) (phl + pll)

phh
− µ3a,4a (phl + pll)

plh

]

(3.9.19)

Clearly, the value of (3.9.18) is strictly positive for any µ3a,4a ∈ [0, 1] if Q is sufficiently
large. On the other hand, for any Q ≥ 1 there exists some value µ3a,4a ∈ (0, 1) such
that (3.9.19) is equal to zero. Hence, for sufficiently large Q, the solution lies in the
interior of R3a ∩ R4a. An analogous proof applies for Q very small, considering region
R3b instead.



Chapter 4

Pricing a Package of Services -
When (not) to Bundle1

4.1 Introduction

Many important decisions in our lives involve choices among bundles and trade-offs
between several taste dimensions. Constructing a house is presumably one of the most
important of such instances. First and foremost, the location of the house has to be
chosen. Several choices ranging from the number of floors, the number of rooms on each
floor, construction materials, and on to the very last details of the interior decor follow
the first decision. Some of these choices are extremely flexible and so involve marginal
adjustments. Other choices are arguably more rigid; typically, only a very limited
number of alternative locations are available at any given time. We are interested in
the design of pricing schemes in such situations featuring a combination of flexible and
rigid choices. Moreover, as in our leading example, the rigid choice has important
consequences both in terms of utility and in terms of costs.

A natural concern one may have when making such important choices is “not to give
away too much”. Will a real estate developer adjust the price for constructing our house
condition on whether the house is located in a posh or a middle class area? Intuition -
at least ours - suggests that this would make a lot of sense.

We study this question in a stylized model involving choices along two margins only:
the location and the quality (or equivalently, the size) of a house. The answer contradicts
our näıve intuition. In the very case where consumers with a taste for living in the posh
area are likely to be ones who appreciate higher quality houses more in the sense of
affiliated taste parameters, the real estate developer does not “exploit” consumers in the
posh area at the optimum. The optimal marginal price for increases in the quality of
the house is exactly the same, whether the house is located in the posh or the middle
class area. In the terminology of the literature, there is no bundling.

The intuition is as follows. The seller wishes to extract informational rents from the

1This thesis chapter is based on a paper under the same title that is joint work with Dezső Szalay
from the University of Bonn and CEPR.
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consumer. The consumer has two pieces of information, his marginal valuation for mov-
ing to a posh area and his marginal valuation for a slightly nicer house. Unfortunately,
from the seller’s perspective, extracting rents from poshness tastes comes at the cost of
extracting rents from quality tastes. Clearly, if the consumer could be forced to choose
the location of his house based on his tastes for poshness only, then the seller would def-
initely adjust the marginal prices for constructing the house upwards in the posh area.
Given consumers in the posh area are more likely to have higher valuations for nicer
houses, the usual trade-off between extracting rents from quality tastes versus efficiency
of the quality allocation is resolved more in favor of rent extraction and hence marginal
prices for quality are higher. However, when the tastes for the area are unobservable,
consumers with a taste for poshness facing the above marginal prices for quality would
have a strict incentive to live in the middle class area. To make moving into the posh
area more attractive, the seller has to lower the marginal prices for increases in the
quality of houses. The surprising element is that the optimal selling procedure involves
no flexibility at all to condition marginal prices on location choice.

To understand the complete absence of flexilibity, consider any type who is just
indifferent between living in the posh and the middle class area. Affiliation implies that
in an optimal pricing scheme, all consumers with higher tastes for quality must also be
indifferent between living in either area. This indifference condition directly forces the
quality choices of these consumers to be equal and hence requires that they face the
same marginal prices. Thus, facing affiliated types, the seller’s flexibility to condition
marginal prices for quality on the tastes for poshness is confined to consumers with low
tastes for quality if at all. To gain any flexibility even with that portion of consumers,
the seller must leave rents to consumers buying the lowest quality house in the posh
area, which implies an increase in rents to all consumers locating in the posh area. The
gain from the adjustment of marginal prices for qualities simply does not outweigh this
cost. In short, our result can be understood as a characterization of the set of consumers
who are indifferent between entering the market and staying out: all consumers with
the lowest taste for quality, both among those with and without a taste for poshness,
are indifferent with respect to participating. Given this indifference at the optimum,
any attempt to bundle that is desirable from the seller’s point of view would violate
incentive compatibility with respect to the location choice, i.e. give consumers with a
taste for poshness a strict incentive to live in the middle class area.

We also establish a converse to our no-bundling result. If consumers’ tastes are
locally negatively affiliated - that is, tastes for living in the middle class area and for
nicer houses are affiliated - then the optimum will necessarily display some bundling,
at least for a strictly positive mass of consumers. Indeed, the seller now would ideally
want to (locally) decrease marginal prices for higher qualities for consumers in the posh
area relative to the middle class area, a change that consumers with a taste for poshness
would welcome. On the other hand, consumers who don’t value living in a posh area
have a strict incentive to buy a house in the middle-class area when marginal prices for
nicer houses are the same in both areas. Hence, there is now some flexibility to adjust
marginal prices suitably.

This thesis chapter analyzes a model of multi-dimensional screening. The seminal
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references are Armstrong (1996) and Rochet and Choné (1998). Armstrong (1996)
solves the multiproduct monopoly problem and shows that at the optimum typically
some types are excluded if the type space is convex. Our problem involves convex
types for the size of houses but large taste differences with respect to poshness of the
area. As a result, we do not get exclusion. Rochet and Choné (1998) solve a very
general problem and establish robust features of solutions; in particular, they confirm
that optimal allocations generally feature exclusion of some types and show on top that
optimal allocations also involve bunching over portions of types. Our problem is much
simpler than these problems. The reason is that the second best optimal allocation
of consumers to areas is immediate in our problem and so the name of the game is
simply to choose optimal marginal prices for quality conditional on location choices.
The optimum involves both bunching and separation: the allocation of consumers to
areas separates consumers based on their tastes for poshness but is independent of their
tastes for quality; the allocation of quality separates consumers with respect to their
tastes for quality but is independent of their tastes for poshness.

Bundling was first analyzed by Adams and Yellen (1976), who showed by exam-
ple that bundling can be profitable if tastes are negatively correlated. McAfee et al.
(1989) establish sufficient conditions for bundling to increase profits in the Adams and
Yellen (1976) model. Their conditions are consistent with weakly negative correlation,
but they emphasize that the correlation of types is not the appropriate measure. In
these approaches, the set of available mechanisms is restricted to prices of bundles, an
approach that is extended by Manelli and Vincent (2007). Manelli and Vincent (2006)
study more generally revenue maximizing mechanisms for a firm selling N objects. As in
Thanassoulis (2004), the optimal mechanism may involve randomization. More recently,
Hart and Reny (2014) show that revenue optimal pricing schemes may have surprising
features; in particular, the seller’s revenue can decrease if the buyer’s multidimensional
valuation increases - something that cannot happen in dimension one; moreover, they
provide new examples where stochastic mechanisms are optimal. Armstrong and Ro-
chet (1999) characterize the optimal mechanism in a model with two goods and two
taste parameters on binary supports. They show that no bundling occurs for the case
of strong positive correlation. We obtain no bundling even for slightly positive correla-
tions - when types are affiliated. The reason lies precisely in the structure of our optimal
location allocation, which is different from the one in Armstrong and Rochet (1999).

Our problem differs from the approaches taken in Manelli and Vincent (2006, 2007),
Thanassoulis (2004), and Hart and Reny (2014) in two ways. First, these papers study
revenue maximization whereas in our model there are substantial costs of production. In
the presence of such costs - which seems reasonable in our introductory example - profit
maximization and revenue maximization are different objectives. Though seemingly
innocuous, this property allows us to reduce the dimensionality of our two-dimensional
problem right away to one dimension. As a result, our optimum does not involve any
randomization, which is not trivial to rule out in higher dimensional problems. The
second difference is that we combine one inflexible choice (an either-or-choice) with a
more flexible one. The inflexible choice is the same as the choices studied in the work
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by Manelli and Vincent (2006,2007) and, more recently, by Armstrong (2013).3 We
combine this choice of the seller with a more flexible one - any non-negative size of a
house - as in the approaches of Armstrong (1996) and Rochet and Choné (1998).

Our model is so stylized that our problem becomes amenable to essentially uni-
dimensional methods. In particular, our design problem boils down to choosing a pair
of uni-dimensional schedules, where the consumer’s choice of where to locate can be
treated as a type dependent outside option. Type dependent outside options are studied
in Jullien (2000). However, the difference to Jullien (2000) is that the outside option is
endogenous, resulting from the optimal design of the scheme for consumers locating in
the middle-class area. Similar techniques are also used in the countervailing incentives
context by Maggi and Rodriguez-Clare (1995). Our approach is related to Kleven et al.
(2009), who study the design of tax schemes for couples and singles and give conditions
for bundling in the tax context: different marginal taxes at the same income level for
couples and for singles. The institutional details as well as our approach and assumptions
are quite different. 4 However, the common element is a combination of a discrete with a
flexible choice. This gives rise to a design problem that remains nicely tractable despite
its multidimensional nature.

4.2 The Model

A risk-neutral seller (she) wants to sell a package of two goods. The first good is divisible
and its quantity (or quality) is labeled x ∈ R≥0. The second good is indivisible and
we write q ∈ [0, 1] for the probability of selling the second good. The seller faces a
risk-neutral buyer (he) whose valuation for the bundle of goods is given as

V (x, q, θ, η) = θx+ ηq

where θ ∈
[

θ, θ
]

, 0 < θ < θ < ∞ and η ∈
{

η, η
}

, 0 < η < η are preference parameters
that are private knowledge of the buyer. The seller only knows the distribution F (θ, η) of
the buyer’s preference parameters. We assume that F has a continuously differentiable
probability density function f (θ, η) which is strictly positive everywhere on

[

θ, θ
]

×
{

η, η
}

. To shorten notation we write β = Pr
(

η = η
)

and 1−β = Pr (η = η). Moreover,
the buyer has an outside option of buying nothing which earns him a utility of zero.

For given values x ≥ 0 and q ∈ [0, 1] the seller faces (expected) production costs

C (x, q) = C (x) + c · q

where C (x) denotes the costs for producing quantity x of good one and c > 0 denotes
the constant marginal cost of producing the second good. We assume that C (x) is

3Armstrong (2013) studies bundling when there are demand complementarities or substitutabilities
and restricts his analysis to deterministic mechanisms. We allow for more flexible allocations and
mechanisms but stick to additively separable valuations.

4The objective in the tax context (redistribution) differs from ours (profit maximization); while tax
payers can be forced to participate, consumers cannot. Finally, we allow for statistical dependence
among types and characterize direct mechanisms (also allowing for stochastic mechanisms).
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increasing, twice continuously differentiable and strictly convex in x with C (0) = 0,
limxց0

∂C
∂x (x) = 0 and limxր∞

∂C
∂x (x) = +∞. Production costs are known to the seller.

The seller aims to maximize his expected surplus from selling a bundle (or, more
generally, a lottery over bundles) to the buyer given as

Π = E [p (x, q)− C (x, q)]

where p = p (x, q) denotes the (lottery over) prices for the bundle or the lottery (x, q).6

Invoking the revelation principle (see e.g. Myerson (1982)) we can think of the seller’s
pricing problem as a direct mechanism where the buyer communicates his type (θ, η) and
in return is offered a lottery over allocations (x (θ, η) , q (θ, η)) together with a lottery
over prices p (θ, η), subject to incentive compatibility and participation constraints.

A buyer (θ, η) who reports type
(

θ̂, η̂
)

receives an expected utility of

U
(

θ̂, θ, η̂, η
)

= θx
(

θ̂, η̂
)

+ ηq
(

θ̂, η̂
)

− p
(

θ̂, η̂
)

.

If reports coincide with true types we write u (θ, η) = U (θ, θ, η, η). Moreover, we write
u (θ), u (θ), x (θ), x (θ) for u

(

θ, η
)

, u (θ, η), x
(

θ, η
)

, x (θ, η) respectively and u = u (θ),
u = u (θ).

Writing

Π (θ, η) = p (θ, η)− C (x (θ, η) , q (θ, η))

for her expected profit from type (θ, η), the seller seeks to maximize

Π = Eθ,ηΠ(θ, η)

subject to incentive compatibility and participation7

u (θ, η) ≥ U
(

θ̂, θ, η̂, η
)

∀θ, θ̂ ∈
[

θ, θ
]

, η, η̂ ∈
{

η, η
}

, (1)

u (θ, η) ≥ 0 ∀θ ∈
[

θ, θ
]

, η ∈
{

η, η
}

. (2)

4.3 Analysis

To solve our problem, we proceed as follows. We begin with a discussion of the first-best
and establish a connection between the first-best and the second-best that simplifies our
problem dramatically. We then characterize implementable allocations and reformulate
our problem in a more tractable way.

6Slightly abusing notation, we do not distinguish here notationswise between deterministic variables
x ≥ 0 and p ≥ 0 and lotteries over these variables. As we shall prove in Lemma 1, only deterministic
allocations will be relevant for our analysis.

7The seller may want to exclude certain types from participation. However, exclusion in the
sense of buyers who prefer the outside option is outcome equivalent to offering the zero trade
(x = 0, q = 0, p = 0) to these buyers and hence included in the optimization problem.
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4.3.1 First-best Efficiency and the Optimal q-Allocation

When the buyer’s preference parameters (θ, η) are common knowledge, the seller can
perfectly discriminate between customers and would extract the full surplus by setting
prices equal to

p (θ, η) = θx (θ, η) + ηq (θ, η)

where x (θ, η) and q (θ, η) are chosen efficiently, i.e.

Cx (x (θ, η))− θ = 0

and

q (θ, η) =

{

0 η < c

1 η ≥ c.

In particular, x (θ, η) = x (θ) is independent of η and q (θ, η) = q (η) is independent of
θ.

In this paper we are interested in the case where production costs play a substantial
role. We therefore assume that the efficient allocation involves allocating product q to
the high preference type only and impose for the remainder of the paper

Assumption 1.

η < c < η.

The following lemma shows that with relevant production costs in the above sense
the optimal mechanism is deterministic. Moreover, the efficient q-allocation determined
by Assumption 3 will also be implemented in the optimal mechanism for the constrained
problem with asymmetric information.

Lemma 1. Under Assumption 1, the optimal mechanism is deterministic in x and q
and separates η-types in q efficiently, that is q (θ, η) = 1, q

(

θ, η
)

= 0 for all θ ∈
[

θ, θ
]

.

First best efficiency of the allocation in q translates into second best optimality for
the following two reasons. Clearly, efficiency is desirable for the seller as it maximizes
her profits for any given surplus of a buyer. At the same time the buyer’s incentive
constraints under the efficient allocation are as relaxed as they can possibly be. Indeed,
the excess surplus of a buyer of type η mimicking type η compared to a buyer who
truly is of type η is minimized, being equal to 0, while the excess loss of a buyer of type
η mimicking type η compared to a buyer who truly is of type η is maximized, being
equal to η − η. Clearly, the resulting allocation is deterministic in q. Since consumer
valuations are linear in x and the seller has convex costs, the mechanism is deterministic
in x by a standard result (cf. e.g. Fudenberg and Tirole (1991)).

Lemma 1 shows that with relevant production costs all potential distortions will
occur in the x-dimension only. This finding has two important consequences. First, it
makes the problem sufficiently tractable to derive explicit solutions, contrasting many
other multidimensional setups. Secondly, it allows us to directly relate and compare all
effects that arise from the presence of a second dimension to the well-known solution of
the standard one-dimensional problem.
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4.3.2 Implementable Allocations

In this section we bring the incentive constraints (1) into a more tractable form to
solve the seller’s problem. The key tool is the following lemma which allows us to
split the two-dimensional incentive compatibility constraints into two one-dimensional
constraints.

Lemma 2. For any mechanism featuring q (θ, η) = 1, q
(

θ, η
)

= 0 for all θ ∈
[

θ, θ
]

,
thus in particular for the optimal mechanism in our maximization problem, the incentive
constraint

u (θ, η) ≥ U
(

θ̂, θ, η̂, η
)

∀θ, θ̂ ∈
[

θ, θ
]

, η, η̂ ∈
{

η, η
}

is equivalent to the pair of one-dimensional incentive constraints

u (θ, η) ≥ U
(

θ̂, θ, η, η
)

∀θ, θ̂ ∈
[

θ, θ
]

, η ∈
{

η, η
}

, (3)

u (θ, η) ≥ U (θ, θ, η̂, η) ∀θ ∈
[

θ, θ
]

, η, η̂ ∈
{

η, η
}

. (4)

The main insight behind Lemma 2 is that the buyer’s incentive how to report his
preference parameter θ does not depend on his preference parameter η. To see this,

compare a buyer of type (θ, η) who considers reporting
(

θ̂, η̂
)

with a buyer of type

(θ, η̂) who considers the same report. The difference in utilities between type (θ, η) and

type (θ, η̂) when reporting
(

θ̂, η̂
)

is given as q
(

θ̂, η̂
)

(η − η̂). But this term does not

depend on θ̂ as q
(

θ̂, η̂
)

= q (η̂). In particular, it takes the same value if θ̂ = θ, so it

is non-positive by constraint (4). As a consequence, since type (θ, η̂) does not have an

incentive to misreport as
(

θ̂, η̂
)

by (3), neither does type (θ, η).

The optimal quality allocation characterized in Lemma 1 has the properties named
in Lemma 2. We can therefore replace the general incentive compatibility constraint
(1) in our maximization problem by the two one-dimensional constraints (3), (4). The
following Lemma characterizes the implications of these two constraints for our maxi-
mization problem.

Lemma 3. The incentive constraint (3) is satisfied if and only if

u (θ, η) = u (θ, η) +

ˆ θ

θ
x (y, η) dy (5)

and x (θ, η) is non-decreasing in θ for all η ∈
{

η, η
}

. The incentive constraint (4) is
satisfied if and only if

q
(

θ, η
) (

η − η
)

≤ u (θ)− u (θ) ≤ q (θ, η)
(

η − η
)

for any θ ∈
[

θ, θ
]

.
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Lemma 3 is a standard result. For the reader’s convenience, we give a full proof in
the Appendix. Note that Lemma 3 allows us to write prices as

p (θ, η) = θx (θ, η) + ηq (θ, η)− u (θ, η)

= θx (θ, η) + ηq (θ, η)− u (θ, η)−
ˆ θ

θ
x (y, η) dy

and thus to eliminate them from the optimization problem. Moreover, as an immediate
consequence of Lemma 3 and non-negativity of x ∈ R≥0, all participation constraints
u (θ, η) ≥ 0, (θ, η) ∈

[

θ, θ
]

×
{

η, η
}

, are implied by u = u
(

θ, η
)

≥ 0 and incentive
compatibility.

4.3.3 The Pricing Problem

The results derived in the previous section enable us to state the seller’s problem in a
tractable way. We write

B (x, q, θ, η) = θx+ ηq − C (x)− cq − x · 1− F (θ|η)
f (θ|η)

for the seller’s virtual surplus conditional on η and

ρ (θ, u, u) = u (θ)− u (θ) = u− u+

ˆ θ

θ
[x (y)− x (y)] dy

for the excess rent of a type (θ, η) over a type
(

θ, η
)

. Substituting transfers, applying
integration by parts and invoking Lemmas 1-3, the seller’s optimization problem reads

max
x(·),x(·),u,u

Π(x, x, u, u)

= β

ˆ θ

θ
B
(

x (θ) , 0, θ, η
)

f
(

θ|η
)

dθ − βu (6)

+ (1− β)

ˆ θ

θ
B (x (θ) , 1, θ, η) f (θ|η) dθ − (1− β)u

subject to

u ≥ 0 (7)

ρ (θ, u, u) ≥ 0 ∀θ ∈
[

θ, θ
]

(8)

ρ (θ, u, u) ≤ η − η ∀θ ∈
[

θ, θ
]

(9)

x (θ) , x (θ) non-decreasing in θ (10)

x (θ) , x (θ) ≥ 0 ∀θ ∈
[

θ, θ
]

. (11)

We refer to this problem as Problem P. An immediate observation is that setting u = 0
is optimal, avoiding any lump-sum rents for the low valuation types in the η-dimension.
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Indeed, at θ constraint (8) implies u ≥ u, so a positive u implies a positive u. Since
both constraints (8) and (9) only depend on u− u and both, u and u, are costly for the
seller, choosing u as small as possible is optimal. Thus, to simplify notation, we write
ρ (θ, u, u) = ρ (θ, u) henceforth.

In what follows we will approach the above optimization problem with control-
theoretic methods. As we demonstrate in the next section, under the additional as-
sumption of affiliated preference types this approach allows us to reduce the problem to
a simple one-dimensional optimization task, maximizing the objective Π (u) as a func-
tion of the lump-sum rents u for high η-types only. The reader who, when reading first,
is mainly interested in the rents-vs-bundling trade-off involved in this maximization may
skip through the following discussion and jump directly to Section 6.

4.4 Solution: a Control-Theoretic Characterization

To make Problem P more tractable, we first show that the optimal x-schedules are
reasonably regular.

Lemma 4. The schedules (x∗ (θ) , x∗ (θ)) that solve Problem P are continuous.

The main intuition for Lemma 4 is ubiquitous in economics: B (x, q, θ, η) is strictly
concave in x and concavity favors smoothing. A formal proof which ensures that smooth-
ing near a putative discontinuity is compatible with constraints (8) and (9) is provided
in the Appendix.

To solve optimization problems like Problem P, it is a standard approach to consider
a reduced problem with less constraints first and then impose (distributional) assump-
tions that guarantee the remaining constraints to be satisfied. Problem P without the
monotonicity and non-negativity constraints (10) and (11) can be regarded as a control
problem with state variables u (θ), u (θ), control variables x (θ) = u̇ (θ), x (θ) = u̇ (θ)
and two inequality constraints that involve the state variables u (θ), u (θ) only. Call this
reduced problem P’.

Problem P’ is still relatively complex, yet solution techniques are available, e.g. from
Seierstad and Sydsaeter (1987). Fixing some value u for the moment, Problem P’ gives
rise to a Hamiltonian

H = H (u (θ) , u (θ) , x (θ) , x (θ) , κ (θ) , κ (θ) , θ)

= βB
(

x (θ) , 0, θ, η
)

f
(

θ|η
)

+ (1− β)B (x (θ) , 1, θ, η) f (θ|η)
+κ (θ) · x (θ) + κ (θ) · x (θ) .

with two costate variables κ (θ), κ (θ) as well as an associated Lagrangian

L = H + µ1 (θ) · (u (θ)− u (θ)) + µ2 (θ) ·
((

η − η
)

− (u (θ)− u (θ))
)

where µ1 (θ) and µ2 (θ) denote the multipliers associated to constraints (8) and (9).
A frequent issue in control-theoretic problems with constraints on the state variables

lies in the fact that often neither costate variables nor control variables need to satisfy
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standard regularity conditions. However, since we know that the control schedules
must be continuous to solve Problem P, we may restrict attention to continuous control
schedules (which immediately implies continuous costate schedules) for Problem P’ as
well.

To proceed towards a solution of the control problem, it is helpful to make ourselves
aware of some special features of constraints (8) and (9) as well as the Hamiltonian H.
Indeed, note that H does not depend on u (θ) and u (θ) at all while (8) and (9) only
depend on u (θ)− u (θ) rather than each state variable individually. As a consequence,
the Lagrange equations

∂κ (θ)

∂θ
= −∂L

∂u
,

∂κ (θ)

∂θ
= −∂L

∂u

rewrite as

κ̇ (θ) = µ1 (θ)− µ2 (θ) = −κ̇ (θ) .

In the Appendix we show that µ1 (θ) and µ2 (θ) are sufficiently regular to apply the
fundamental theorem of calculus, so together with transversality κ

(

θ
)

= 0 = κ
(

θ
)

the
above equations imply κ (θ) = −κ (θ).10

The reduction from two costate variables to one is at the core of the following
proposition which is based on a result in Seierstad and Sydsaeter (1987).

Proposition 1. An optimal continuous allocation for the reduced problem P’ is char-
acterized by the following pair of equations

(

−Cx (x
∗ (θ)) + θ −

1− F
(

θ|η
)

f
(

θ|η
)

)

· βf
(

θ|η
)

+ κ∗ (θ) = 0 (12)

(

−Cx (x
∗ (θ)) + θ − 1− F (θ|η)

f (θ|η)

)

· (1− β) f (θ|η)− κ∗ (θ) = 0 (13)

where κ∗ (θ) denotes the optimal costate variable. The optimal costate variable has the
following properties:

a) κ∗ (θ) is continuous.
b) κ∗ (θ) is locally constant around all θ ∈

[

θ, θ
]

at which neither (8) nor (9) binds.

c) At any θ ∈
(

θ, θ
)

where (8) or (9) binds,

κ∗ (θ) = κb (θ) ≡ (1− β) f (θ|η) ·
(

1− F (θ)

f (θ)
− 1− F (θ|η)

f (θ|η)

)

(14)

so that x∗ (θ) = x∗ (θ).
d) κ∗ (θ) is weakly increasing whenever (8) binds and weakly decreasing whenever

(9) binds.
e) κ∗

(

θ
)

= 0.

10See the proof of Proposition 1 in the Appendix for the technical details.
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Most of the properties of the optimal costate variable κ (θ) in Proposition 1 are either
standard in control theory or easy to see.11 Part a) is a direct consequence of Lemma 4.
Part b) is the usual type of result in a control-theoretic problem: the costate variable
is the dynamic “integrated” equivalent to a Lagrange multiplier in a static optimization
problem. Part c) follows directly from Lemma 3: marginal utilities must be equal for
both η-types whenever (8) or (9) bind at an interior point as otherwise the constraints
would be violated “slightly to the left” or “slightly to the right”. Part e) is the standard
transversality condition for control problems with free endpoints, implying the classical
“no-distortion-at-the-top”.

Part d), finally, constitutes a powerful tool to determine the areas of binding con-
straints.13 Indeed, whenever (8) or (9) bind at an interior value θ we must have
x∗ (θ) = x∗ (θ) according to Part c). The corresponding κ (θ)-schedule easily computes
from equations (12) and (13) as κb (θ) where the subscript “b” stands for “bunching” of
x in η. For any interval where κb (θ) is monotonic, Part d) of Proposition 1 leaves only
one of the two constraints (8) and (9) as potentially binding. Moreover, neither of the
two constraints can bind around a local extremum of κb (θ). Note that κb

(

θ
)

= 0, so
κb (θ) is compatible with transversality.

We find the following heuristic argument useful to understand the result. From the
seller’s point of view, the costate variable κ (θ) (or, more precisely, its absolute value)
measures the additional distortion of the optimal x-allocation compared to the one-
dimensional case with known η-types. This distortion is caused by the buyer’s option
to misreport his η-type, captured by constraints (8) and (9). The seller clearly prefers
κ (θ) to be equal to zero (and u = 0). In this case, both x-schedules maximize the values
of the integrals in (6) pointwise and the schedules coincide with the solution of the two
one-dimensional allocation problems in x conditional on η = η and η = η, respectively.
We therefore refer to this scenario as the case of (quasi-)observable η. It constitutes
an upper bound on what is potentially achievable for the seller: she fully exploits the
information over the θ-type contained in the η-type at no costs. Yet, the solution for
observable η may not be incentive compatible as the resulting x- and u-schedules may
violate constraints (8) or (9).

At the other extreme, consider the x-schedule that constitutes the solution to the
one-dimensional problem unconditional on η defined by

−Cx (x (θ)) + θ − 1− F (θ)

f (θ)
= 0.

Setting x (θ) = x (θ) = x (θ) for all θ ∈
[

θ, θ
]

corresponds to setting κ (θ) = κb (θ)
everywhere. In this scenario, (8) and (9) are automatically satisfied as the utility of
high and low η-types coincides for all θ and we may certainly set u = 0. However, this

11We omit stars for κ- and x-schedules as well as values of u whenever we discuss potential candidates
for the optimal mechanism. The relation between κ- and x-schedules is nonetheless assumed to be
defined through equations (12) and (13).

13Its proof goes back to Neustadt (1976).



106CHAPTER 4. PRICING A PACKAGEOF SERVICES -WHEN (NOT) TO BUNDLE14

candidate solution comes at a cost: the seller does not exploit the information about θ
that is contained in η at all. It thereby constitutes a lower bound on what is achievable
for the seller.

We illustrate the previous discussion in Figure 1 and Figure 2. Both figures show
a pair of x-schedules that corresponds to the case of observable η. In Figure 1, the
schedules are clearly infeasible for our problem if u = 0. Indeed, on [θ, θ1] the x-schedule
of the low η-type lies above the x-schedule of the high η-type, thereby violating (8) as

ρ (θ, u = 0) =

ˆ θ

θ
[x (y)− x (y)] dy < 0,

for any θ ∈ (θ, θ1). Hence some distortion through κ (θ) or some positive lump-sum rent
u is necessary. On the other hand, if the roles of both schedules are reversed as depicted
in Figure 2, constraint 8 is clearly satisfied everywhere as

A =

ˆ θ1

θ
[x (θ)− x (θ)] dθ > 0

and

A =

ˆ θ1

θ
[x (θ)− x (θ)] dθ >

ˆ θ

θ1

[x (θ)− x (θ)] dθ = B.

The allocation corresponding to the observable η-case is hence feasible if and only if
constraint (9) holds everywhere, i.e. if

A = ρ (θ1, u = 0) ≤ η − η.

The level and shape of the optimal x-allocation depends crucially on the joint distribu-
tion of types. In the next section, we impose more structure in that respect.
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x(θ)

θ
θ
′

θθ
0

x(θ)

x(θ)

x(θ)

x(θ)

Figure 1: x-schedules for the observable-η-case are infeasible.

x(θ)

θ
θ
′

θθ
0

x(θ)

x(θ)

x(θ)

x(θ)

A

B

Figure 2: x-schedules for the observable-η-case are feasible iff A ≤ η − η.
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4.5 A Characterization for Affiliated Types

In this section we analyze the implications of Proposition 1 for the solution of Problem
P’ under the assumption that preference types are affiliated. We fully characterize the
solution up to the choice of u which is studied in Section 6.

We consider continuously differentiable densities with full support. Hence affiliation
is equivalent to

Assumption 2.

∂

∂θ

[

f (θ|η)
f
(

θ|η
)

]

> 0 ∀θ ∈
[

θ, θ
]

.

With affiliated types, it is easy to see that the seller cannot implement the schedules
corresponding to observable η characterized by κ (θ) = 0 and u = 0. Affiliation implies
the reversed hazard rate order

1− F (θ|η)
f (θ|η) >

1− F
(

θ|η
)

f
(

θ|η
)

for any θ < θ, cf. Shaked and Shanthikumar (2007). Setting κ (θ) = 0 for all θ then
implies that x (θ) > x (θ) for any θ < θ and hence, together with u = 0, a violation of
the constraint ρ (θ, u) ≥ 0 for any θ > θ. The seller therefore faces a trade-off. To relax
the constraint ρ (θ, u) ≥ 0 she could either leave higher rents to the high η-types by
increasing u or she could distort the optimal schedules away from the observable-η-case
by choosing κ (θ) different from zero.

Affiliation allows us to pin down the optimal bunching region for x in η as a function
of u.

Proposition 2. For given u ∈
[

0, η − η
]

, under affiliation there exists θ
′ ∈
[

θ, θ
]

such

that for all θ ≥ θ
′
the optimal schedules satisfy x∗ (θ) = x∗ (θ) = x∗ (θ) where x∗ (θ) is

defined by

−C1
x (x

∗ (θ)) + θ − 1− F (θ)

f (θ)
= 0, (15)

implying

κ∗ (θ) = κb (θ) ∀θ ≥ θ
′
.

For all θ < θ
′
the optimal schedules x∗ (θ) and x∗ (θ) are defined by

(

−C1
x (x

∗ (θ)) + θ −
1− F

(

θ|η
)

f
(

θ|η
)

)

· βf
(

θ|η
)

+ κ∗ = 0 (16)

(

−C1
x (x

∗ (θ)) + θ − 1− F (θ|η)
f (θ|η)

)

· (1− β) f (θ|η)− κ∗ = 0 (17)
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for some constant κ∗ = κ∗ (u) such that

u+

ˆ θ
′

θ
[x∗ (θ, κ∗ (u))− x∗ (θ, κ∗ (u))] dθ = 0, (18)

and

κ∗ = κb

(

θ
′
)

(19)

by continuity of κ∗ (θ).

Proposition 2 states that there is a single point θ
′
at which constraint (8) switches

from slack to binding and the x-schedules switch from separation in η to bunching in η.
Heuristically, the argument is very simple. Consider any point θ̃ at which (8) is binding,

implying that x∗
(

θ̃
)

= x∗
(

θ̃
)

at that point. Such a point must exist, since otherwise

the seller could increase profits by reducing u. Then, (8) is satisfied slightly to the right
of θ̃, say for θ̃ + ε for ε small but positive if and only if x∗ (θ) ≥ x∗ (θ) for θ = θ̃ + ε.
However, this requires that κ∗ (θ) increases at that point. To see this, suppose κ were
constant around θ̃. Then, totally differentiating (16) and (17) with respect to θ reveals

that x∗ increases faster in θ than x∗ at points θ̃ where x∗
(

θ̃
)

= x∗
(

θ̃
)

if and only if

types are locally affiliated around θ̃.

We now relate this heuristic argument more formally to our previous analysis. Tak-
ing derivatives of (14) yields

sign
∂κb (θ)

∂θ
= sign

∂

∂θ

[

f (θ|η)
f
(

θ|η
)

]

∀θ < θ, (20)

so together with κb
(

θ
)

= 0 this shows that under affiliation κb (θ) is strictly increasing
and non-positive everywhere as depicted in Figure 3.
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θ
θ
′

θ
′′

θ

κ(θ)

0

κ∗

κb(θ)

κb(θ) = κ∗(θ)

Figure 3: Following the schedule κb (θ) to the right of θ
′

minimizes distortions.

Leaving the schedule κb (θ) in favor of a constant κ-schedule at some θ
′′
> θ

′
as

indicated in Figure 3 through the dotted line is clearly suboptimal then. Informally

speaking, it deliberately increases distortions through κ (θ) on the interval
[

θ
′′
, θ
]

rel-

ative to following the schedule κb (θ). Formally, this is reflected in a violation of the
transversality condition κ∗ (θ) = 0 as stated in Proposition 1, Part e). For all technical
details, we refer to the appendix.

4.6 A No-Bundling Result

Proposition 2 boils the complex control problem P’ down to a one-dimensional optimiza-
tion problem in the choice parameter u. Reformulating Proposition 2 in that spirit, we
get

Proposition 2*. Under affiliation, Problem P’ is equivalent to the following Problem
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P”. Maximize

Π(u) = β

ˆ θ
′
(u)

θ
B
(

x∗ (θ, κ∗ (u)) , 0, θ, η
)

f
(

θ|η
)

dθ

+ (1− β)

ˆ θ
′
(u)

θ
B (x∗ (θ, κ∗ (u)) , 1, θ, η) f (θ|η) dθ

+ β

ˆ θ

θ
′
(u)

B
(

x∗ (θ) , 0, θ, η
)

f
(

θ|η
)

dθ (21)

+ (1− β)

ˆ θ

θ
′
(u)

B (x∗ (θ) , 1, θ, η) f (θ|η) dθ

− (1− β)u.

subject to
u ∈

[

0, η − η
]

where x∗ (θ) , x∗ (θ) , x∗ (θ) , κ∗ (u) , θ
′
are defined by equations (15)-(19).

The trade-off underlying the optimal choice of u ∈
[

0, η − η
]

is depicted in Figure 4.

x(θ)

θ
θ
′

θθ
0

−u

x∗ (θ, κ∗ (u))

x∗ (θ, κ∗ (u))

x∗(θ)

Figure 4: Raising u pushes θ
′

to the right and enables the seller to separate a
larger portion of types.

Leaving higher rents u to the high η-types comes at a twofold gain. By moving κ∗

upwards and hence closer towards zero, distortions of the x-schedules relative to the
case of observable η in the separation region are reduced. By moving θ

′
to the right the

separation region itself is enlarged. The first-order effect through marginally shifting θ
′
,
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however, is zero by continuity of the optimal schedules at θ
′
together with an envelope

argument and hence negligible.
By (18), the increase of κ∗ in u is measured by

dκ∗

du
(u) = − 1

´ θ
′

θ

[

∂x
∂κ∗ (θ)− ∂x

∂κ∗ (θ)
]

dθ
> 0. (22)

Increasing κ∗ shifts the x-schedules closer towards the case of observable η-types on
[

θ, θ
′
]

and reduces the excess rents of high η-types given by
´ θ

′

θ [x∗ (θ)− x∗ (θ)] dθ.

Using the above formula (22) as well as equations (12) and (13), we get

dΠ

du
(u) = −κ∗ (u)− (1− β) ,

hence these conducive effects are measured precisely by |κ∗ (u)| = −κ∗ (u). Moreover,
we have just argued that

d2Π

du2
(u) = −dκ∗

du
(u) < 0,

so our problem is concave in u. Therefore, setting u∗ > 0 is optimal if and only if
increasing u away from zero is optimal. However, (14) implies that

−κ∗ (u = 0) = −κb (θ) = (1− β) ·
(

1− f (θ|η)
f (θ)

)

< 1− β.

Therefore the gain from moving the schedules closer to the observable-η-case can never
compensate for the direct loss from leaving higher rents to high η-types through u
measured by the share size 1− β of high η-types. Hence u∗ = 0 solves Problem P”.

To ensure that the solution to Problem P’ and P” is monotonic and non-negative, it
suffices to impose standard assumptions on the inverse hazard rate:

Assumption 3. The distribution F = F (θ) features strictly positive virtual valuations

θ − 1−F (θ)
f(θ) with strictly positive derivative ∂

∂θ

[

θ − 1−F (θ)
f(θ)

]

> 0 for all θ ∈
[

θ, θ
]

.17

Our main result is now a direct consequence of the previous analysis.

Theorem 1. Under Assumptions 1-3, the optimal mechanism for the seller involves no
lump-sum rents to high η-types, i.e. u∗ = 0. The optimal allocations are given as

q∗ (θ, η) = q∗ (η) =

{

0 η = η

1 η = η

and x∗ (θ, η) = x∗ (θ), where x∗ (θ) solves

−C1
x (x

∗ (θ)) + θ − 1− F (θ)

f (θ)
= 0.

17For Theorem 1, the slightly weaker condition of a non-negative and non-decreasing virtual valuation
is sufficient. In the next section, however, it will be helpful to impose slightly stricter conditions as stated
in Assumption 3.
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Prices are given as

p∗ (θ, η) = θx∗ (θ) + ηq∗ (η)−
ˆ θ

θ
x∗ (y) dy.

Conditioning prices on allocations rather than buyers’ types by setting p∗ (x, q) = p∗ (x (θ) , q (η)),
optimal prices split into two additively separable price components

p∗1 (x) + p∗2 (q)

for the two goods. No bundling occurs.

The seller is not willing to leave rents to high η-types in order to buy the ability to
condition x-allocations on η under affiliation. Rather, the optimal mechanism involves
complete bunching of the x-schedules with respect to η. Just as the optimal q-allocation
only depends on η by Lemma 1, the optimal x-allocation only depends on θ. The
quantity schedule x∗ (θ) has the familiar features. There is no distortion for buyers with
valuation θ, there is a downward distortion for all types with valuation below θ, and
there is no (lump-sum) rent at θ for either η-type. The schedule coincides with the
solution for the one-dimensional problem unconditional on η.

The reformulation at the end of Theorem 1 is a direct implication of the taxation
principle (see e.g. Rochet (1985)). It allows us to rewrite prices p∗ as conditional
on allocations rather than preference types. Optimal prices are given as the buyer’s
valuation for quantity x plus the buyer’s valuation for good q minus rents of the buyer.
The rents of the buyer, however, do not depend on his η-type but only on his θ-type
given that the excess rents ρ∗ (θ, u = 0) of high η-types over low η-types are equal to
zero for all θ. Hence, rents of the buyer do not depend on his q-allocation but only on
his x-allocation and

p∗ (x, q = 1)− p∗ (x, q = 0) = η

for any quantity x. Optimal prices can therefore be split into two additively separable
components

p∗ (x, q) = p∗1 (x) + p∗2 (q)

where p∗1 denotes the price for good one and p∗2 denotes the price for good two, the latter
being equal to zero for q = 0 by normalization and equal to η for q = 1.

4.7 Beyond Affiliation

The previous two sections have been devoted to the analysis of the optimal pricing
scheme for affiliated preference types, showing that no bundling is optimal. In this final
section, we show the converse result: whenever types are not (weakly) affiliated, there
exists an interval of positive mass where in the optimum x-schedules are separated in η
and hence bundling occurs.

Building on our previous analysis we directly state our result.
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Theorem 2. Under Assumptions 1 and 3, the solution of Problem P features no
bundling if and only if types are weakly affiliated.

The “if”-part of Theorem 2 has been covered in the two previous sections, noting
that all proofs go through for weak affiliation as well. Showing the opposite direction
consists of two steps.

First, we argue that the solution of the reduced problem P’ features bundling on an
interval of positive mass whenever types are not weakly affiliated. To see this, note that
no bundling implies κ∗ (θ) = κb (θ) for all θ ∈

[

θ, θ
]

as otherwise, by continuity of κ∗ (θ)
and Proposition 1c), there will be an interval of positive length where x∗ (θ) 6= x∗ (θ).
Clearly, in an optimal mechanism (8) must bind for at least one θ ∈

[

θ, θ
]

as otherwise
u > 0 can be reduced without violating any constraints. However, together with κ∗ (θ) =
κb (θ) and x∗ (θ) = x∗ (θ) for all θ ∈

[

θ, θ
]

this implies that (8) must bind everywhere.
But according to Proposition 1, Part d) this is only possible if κb (θ) is weakly increasing
everywhere which cannot be the case unless types are weakly affiliated due to equation
(20).

If the solution of Problem P’ is feasible for Problem P, we are done. However, As-
sumption 3 in general will not guarantee that the solution schedules of Problem P’ are
non-negative and monotonic when κ∗ (θ) 6= κb (θ) on some interval. So suppose the solu-
tion to Problem P’ is not feasible for Problem P. Note that Assumption 3 guarantees the
no bundling schedule x∗ (θ) being strictly positive with strictly positive first derivative
everywhere. In other words, the no-bundling schedule x (θ) = x (θ) = x∗ (θ) is bounded
away from the boundaries of the convex set of implementable allocations that are de-
fined by monotonicity and feasibility constraints (11) and (10). This allows us to form
a non-trivial convex combination of the no-bundling schedules x (θ) = x (θ) = x∗ (θ)
and the solution to the reduced Problem P’ that is feasible for Problem P and, due to
concavity of the objective in x, strictly improves upon the no-bundling schedules.19

We qualitatively illustrate the reasoning of the previous paragraphs in Figure 5 and
Figure 6 for the case of negatively affiliated preference types where

∂

∂θ

[

f (θ|η)
f
(

θ|η
)

]

< 0 ∀θ ∈
[

θ, θ
]

.

The solution for Problem P’ is easy to derive from Proposition 1. Negatively affiliated
preference types imply

1− F (θ|η)
f (θ|η) <

1− F
(

θ|η
)

f
(

θ|η
)

for all θ < θ, so setting κ∗ (θ) = 0 would result in x (θ) ≥ x (θ) for all θ ∈
[

θ, θ
]

with

equality only at θ. The relevant constraint hence is given by (9). As a consequence,
the seller clearly has no incentive to leave lump-sum rents to high η-types; setting
u = 0 maximally relaxes (9) and simultaneously maximizes her profits. The seller hence
separates x-schedules in η as long as this is possible without violating constraint (9) for

19We refer to the Appendix for all technical details.
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u = 0, that is, up to some point θ
′
> θ. Correspondingly, the schedule κb (θ) is positive

and decreasing everywhere and the optimal costate schedule κ∗ (θ) for Problem P’ is
shaped as in Figure 5, giving rise to schedules x∗ (θ) and x∗ (θ) such that

ˆ θ
′

θ
[x∗ (θ)− x∗ (θ)] dθ = η − η.

This area corresponds to the grey-shaded area in Figure 6. However, the schedules

x∗ (θ) and x∗ (θ) on
[

θ, θ
′
]

do not necessarily constitute a feasible solution for Prob-

lem P, even though the bunching schedule x∗ (θ) is positive and increasing everywhere.
Indeed, for sufficiently small θ in Figure 6 the schedule x∗ (θ) is decreasing and the
schedule x∗ (θ) becomes negative.21 Yet, both these violations of constraints (10) or
(11) can be resolved by forming a convex combination of x∗ (θ) or x∗ (θ), respectively,
and the bunching schedule x∗ (θ) as indicated by the dashed graphs in Figure 6 which
still improves upon the full bunching schedule x∗ (θ).

θ
θ
′

θ

κ(θ)

0

κ∗

κb(θ)

κb(θ) = κ∗(θ)

Figure 5: Optimal costate schedule for Problem P’ if types are anti-affiliated.

21Schedules for x∗ (θ) and x∗ (θ) on
[

θ, θ
′

]

are defined via (16) and (17). For positive κ∗, negative

values of x∗ (θ) may occur if the optimal x-schedule for known η = η features exclusion of low θ-types
while a (locally) decreasing schedule x∗ (θ) may occur if f (θ|η) is decreasing. Both phenomena are
compatible with negative affiliation and Assumption 3.
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x(θ)

θ

x∗(θ)

ε · x∗(θ) + (1− ε) · x∗(θ)
x∗(θ)

ε · x∗(θ) + (1− ε) · x∗(θ)

x∗(θ)

θ
′

θ

x∗(θ)

Figure 6: Convex combinations of schedules x∗(θ) and x∗(θ) resp. x∗(θ) and
x∗(θ) render the solution feasible, that is non-negative and monotonic.

4.8 Conclusions

Adams and Yellen (1976) have shown that bundling increases profits if consumers’ multi-
dimensional tastes are negatively correlated. We study a related question in the context
of a richer but still manageable allocation problem. We show that no bundling occurs
if types are affiliated and conversely that some bundling does occur if they are not.

4.9 Appendix

Proof of Lemma 1:

For any report (θ, η), a feasible stochastic mechanism is characterized by a distribution
H (θ, η) (x, q, p) over allocations and transfers such that expectations EH(θ,η) [·] over
x, q, p exist. Clearly, due to quasilinear utilities, seller and buyer are indifferent be-
tween any lottery over prices and the expected value of this lottery, so we may assume
that prices are deterministic. Start with an arbitrary Bayesian incentive compatible
mechanism H with deterministic transfers and change the q-allocation to first best, i.e.
q (θ, η) = 1, q

(

θ, η
)

= 0, while adjusting prices such that expected equilibrium profits
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of the buyer remain constant. For any θ at which the original mechanism featured
q (θ, η) < 1 this increases revenues from type (θ, η) by (1− q (θ, η)) · [η − c] > 0 while for
any θ at which the original mechanism featured q

(

θ, η
)

> 0 this increases revenues from

type
(

θ, η
)

by q
(

θ, η
)

·
[

c− η
]

> 0. We need to show that the new mechanism is still
incentive compatible. In the η-dimension, Bayesian incentive compatibility constraints
of the original mechanism read

uold (θ, η) ≥ Uold
(

θ, θ, η, η
)

= uold
(

θ, η
)

+ q
(

θ, η
)

·
(

η − η
)

uold
(

θ, η
)

≥ Uold
(

θ, θ, η, η
)

= uold (θ, η)− q (θ, η) ·
(

η − η
)

at any θ ∈ Θ. They certainly imply the IC-constraints for the new mechanism given as

unew (θ, η) ≥ Unew
(

θ, θ, η, η
)

= unew
(

θ, η
)

,

unew
(

θ, η
)

≥ Unew
(

θ, θ, η, η
)

= unew (θ, η)−
(

η − η
)

.

since the RHS is smaller for the new mechanism while the LHS hasn’t changed. Bayesian
incentive compatibility then follows from

Unew
(

θ̂, θ, η̂, η
)

= Unew
(

θ̂, θ̂, η̂, η
)

+
(

θ − θ̂
)

· Enew
H(θ̂,η̂)

[x]

= Unew
(

θ̂, θ̂, η̂, η
)

+
(

θ − θ̂
)

· Eold
H(θ̂,η̂)

[x]

≤ Uold
(

θ̂, θ̂, η̂, η
)

+
(

θ − θ̂
)

· Eold
H(θ̂,η̂)

[x]

= Uold
(

θ̂, θ, η̂, η
)

≤ uold (θ, η)

= unew (θ, η) .

Here we use that neither buyer’s utilities nor x-allocations were changed (2nd and 6th

line), we use incentive compatibility of the original mechanism (5th line) and we use

that Unew
(

θ̂, θ̂, η̂, η
)

≤ Uold
(

θ̂, θ̂, η̂, η
)

as shown above (3rd line).

As a consequence, the optimal mechanism is non-stochastic in q. To show that the

optimal mechanism is non-stochastic in x, note that for any report profile
(

θ̂, η̂
)

and

type profile (θ, η) expected buyers’ utilities

U
(

θ̂, θ, η̂, η
)

= θ · EH(θ̂,η̂) [x] + η · EH(θ̂,η̂) [q]− p (θ, η)

only depend on expected values of x (and q). Hence assigning x
(

θ̂, η̂
)

= EH(θ̂,η̂) [x] with

probability 1 does not alter the incentive problem of the buyer but increases expected

equilibrium profits of the firm from type
(

θ̂, η̂
)

due to Jensen’s inequality by

EH(θ̂,η̂) [C (x)]− C
(

EH(θ̂,η̂) [x]
)

≥ 0.
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Proof of Lemma 2:

As q (θ, η) = q (η) is independent of θ for any η ∈
{

η, η
}

, the one-dimensional constraints
imply

U
(

θ̂, θ, η̂, η
)

= U
(

θ̂, θ, η̂, η̂
)

+ q
(

θ̂, η̂
)

· (η − η̂)

≤ u (θ, η̂) + q (θ, η̂) · (η − η̂)

= U (θ, θ, η̂, η)

≤ u (θ, η)

for all θ, θ̂ ∈
[

θ, θ
]

, η, η̂ ∈
{

η, η
}

.

Proof of Lemma 3:

Monotonicity of x in θ is necessary as

u (θ, η) ≥ U
(

θ̂, θ, η, η
)

= u
(

θ̂, η
)

+ x
(

θ̂, η
)(

θ − θ̂
)

,

u
(

θ̂, η
)

≥ U
(

θ, θ̂, η, η
)

= u (θ, η)− x (θ, η)
(

θ − θ̂
)

imply
[

x
(

θ̂, η
)

− x (θ, η)
]

·
(

θ − θ̂
)

≤ 0.

To show necessity for the first part, suppose without loss of generality that θ > θ̂. Then

x
(

θ̂, η
)

≤
u (θ, η)− u

(

θ̂, η
)

(

θ − θ̂
) ≤ x (θ, η) .

But as x (θ, η) is non-decreasing in θ, it is continuous but for at most countably many
points and at any point of continuity of x (θ, η) in θ taking limits θ̂ → θ yields uθ (θ, η) =
x (θ, η), so integrating over θ yields (5). For sufficiency, note that by the fact that the
allocation is non-negative and monotonic we have

u (θ, η)− U
(

θ̂, θ, η, η
)

= u (θ, η)− u
(

θ̂, η
)

− x
(

θ̂, η
)(

θ − θ̂
)

=

ˆ θ

θ̂

[

x (y, η)− x
(

θ̂, η
)]

dy

≥ 0

for all θ, θ̂ ∈
[

θ, θ
]

. The second part of the Lemma follows from

U
(

θ, θ, η, η
)

= u
(

θ, η
)

+ q
(

θ, η
)

·
(

η − η
)

,

U
(

θ, θ, η, η
)

= u (θ, η)− q (θ, η) ·
(

η − η
)

.
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Proof of Lemma 4:

Suppose one of the solution schedules is not continuous at some θ
′ ∈
(

θ, θ
)

. By mono-

tonicity of the optimal schedules, both schedules have left and right limits at θ
′
so there

must be a jump dicontinuity at θ
′
. Write x∗l (θ) for the left limit points and. x∗r (θ) for

the right limit points. First, suppose that x∗ is not continuous at θ
′
. For any δ > 0

sufficiently small, define

xδ (θ) =











x∗ (θ) θ /∈
[

θ
′ − δ, θ

′
+ δ
]

c∗ (δ) =

´ θ
′
+δ

θ
′
−δ

x∗(θ)dθ

2δ θ ∈
[

θ
′ − δ, θ

′
+ δ
]

.

Note that

lim
δ→0

c∗ (δ) =

[

x∗l

(

θ
′
)

+ x∗r
(

θ
′
)]

2

and that xδ (θ) is non-decreasing and non-negative given that x∗ is. By concavity of B
in x, we have

∂

∂δ
|δ=0 [Π (xδ, x

∗
, u)−Π(x∗

, x
∗
, u)]

=
∂

∂δ
|δ=0

[

β

ˆ θ
′

θ
′
−δ

[
B
(
xδ (θ) , 0, θ, η

)
−B

(
x
∗ (θ) , 0, θ, η

)]
f
(
θ|η

)
dθ

]

+
∂

∂δ
|δ=0

[

β

ˆ θ
′

+δ

θ
′

[
B
(
xδ (θ) , 0, θ, η

)
−B

(
x
∗ (θ) , 0, θ, η

)]
f
(
θ|η

)
dθ

]

= β · f
(

θ
′

|η
)

·



2B





[

x∗
l

(

θ
′

)

+ x∗
r

(

θ
′

)]

2
, 0, θ

′

, η



−B
(

x
∗
l

(

θ
′
)

, 0, θ
′

, η
)

−B
(

x
∗
r

(

θ
′
)

, 0, θ
′

, η
)





> 0.

Hence, for sufficiently small δ, the mechanism (xδ, x
∗) increases the value of the objective

Π which would contradict optimality of (x∗, x∗) if the mechanism (xδ, x
∗) were to satisfy

all constraints. Note that ρ (θ, u) takes the same values for the original mechanism

and for (xδ, x
∗) outside

[

θ
′ − δ, θ

′
+ δ
]

. Hence it suffices to check contraints (8) and

(9) on
[

θ
′ − δ, θ

′
+ δ
]

for the mechanism (xδ, x
∗). If neither (8) nor (9) binds at θ

′

for the original mechanism, then both constraints will also be satisfied for (xδ, x
∗) on

[

θ
′ − δ, θ

′
+ δ
]

if δ is chosen sufficiently small. Note that, at any θ,

ρ (θ, u) = u+

ˆ θ

θ
[x (y)− x (y)] dy

is (weakly) larger for the original mechanism than for (xδ, x
∗). Hence constraint (9) will

never be violated by (xδ, x
∗) given that it was satisfied by (x∗, x∗). So the only case
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in which (xδ, x
∗) is not feasible for any δ > 0 is when (8) binds at θ

′
for the original

mechanism.

But then we must have x∗l

(

θ
′
)

≤ x∗l

(

θ
′
)

as otherwise, if x∗l

(

θ
′
)

> x∗l

(

θ
′
)

, this

inequality continues to hold on a small interval
[

θ
′ − ǫ, θ

′
]

and hence ρ
(

θ
′ − ǫ

)

<

ρ
(

θ
′
)

= 0, contradicting incentive compatibility of the mechanism (x∗, x∗). Similarly

we must have x∗r
(

θ
′
)

≤ x∗r
(

θ
′
)

as otherwise, if x∗r
(

θ
′
)

> x∗r
(

θ
′
)

, this inequality

continues to hold on a small interval
[

θ
′
, θ

′
+ ǫ
]

and hence ρ
(

θ
′
+ ǫ
)

< ρ
(

θ
′
)

= 0,

again contradicting incentive compatibility of the mechanism (x∗, x∗). Thus we have

x∗l

(

θ
′
)

≤ x∗l

(

θ
′
)

< x∗r
(

θ
′
)

≤ x∗r
(

θ
′
)

, so x∗ also has a jump discontinuity at θ
′
.

Next, suppose that x∗ is not continuous at θ
′
. Just as before, define the following

schedule for δ > 0 sufficiently small:

xδ (θ) =











x∗ (θ) θ /∈
[

θ
′ − δ, θ

′
+ δ
]

c∗ (δ) =

´ θ
′
+δ

θ
′
−δ

x∗(θ)dθ

2δ θ ∈
[

θ
′ − δ, θ

′
+ δ
]

.

Note that

lim
δ→0

c∗ (δ) =

[

x∗l

(

θ
′
)

+ x∗r
(

θ
′
)]

2

and that xδ (θ) is non-decreasing and non-negative given that x∗ is. By concavity of B
in x, we have

∂

∂δ
|δ=0 [Π (x∗

, xδ, u)−Π(x∗
, x

∗
, u)]

=
∂

∂δ
|δ=0

[

(1− β)

ˆ θ
′

θ
′
−δ

[B (xδ (θ) , 1, θ, η)−B (x∗ (θ) , 1, θ, η)] f (θ|η) dθ
]

+
∂

∂δ
|δ=0

[

(1− β)

ˆ θ
′

+δ

θ
′

[B (xδ (θ) , 1, θ, η)−B (x∗ (θ) , 1, θ, η)] f (θ|η) dθ
]

= (1− β) · f
(

θ
′

|η
)

·



2B





[

x∗
l

(

θ
′

)

+ x∗
r

(

θ
′

)]

2
, 1, θ

′

, η



−B
(

x
∗
l

(

θ
′
)

, 1, θ
′

, η
)

−B
(

x
∗
r

(

θ
′
)

, 1, θ
′

, η
)





> 0.

So again, for sufficiently small δ, the new mechanism (x∗, xδ) increases the value of the
objective Π compared to the original mechanism. As before, ρ (θ, u) takes the same

values for the original mechanism and for (x∗, xδ) outside
[

θ
′ − δ, θ

′
+ δ
]

, so it suffices

to check contraints (8 and (9) on
[

θ
′ − δ, θ

′
+ δ
]

for the mechanism (x∗, xδ). If neither
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(8) nor (9) binds at θ
′
for the original mechanism, then both constraints will also be

satisfied for (xδ, x
∗) on

[

θ
′ − δ, θ

′
+ δ
]

if δ is chosen sufficiently small. At any θ,

ρ (θ, u) = u+

ˆ θ

θ
[x (y)− x (y)] dy

is (weakly) smaller for the original mechanism than for (x∗, xδ). Hence constraint (8)
will never be violated by (x∗, xδ) given that it was not violated by (x∗, x∗). So the only
case in which (x∗, xδ) is not feasible for any δ > 0 is when (9) binds at θ

′
for the original

mechanism. In that case, however, we must now have x∗l

(

θ
′
)

≤ x∗l

(

θ
′
)

< x∗r
(

θ
′
)

≤
x∗r
(

θ
′
)

, so x∗ also has a jump discontinuity at θ
′
.

Together, both cases yield a contradiction and hence prove the result on
(

θ, θ
)

.
Either schedule x∗ is continuous or, at any point where x∗ is not continuous, both
schedules are discontinuous and constraint (9) binds. At the same time, either x∗ is
continuous or, at any point where x∗is not continuous, both schedules are discontinuous
and constraint (8) binds. As (8) and (9) cannot both bind at a given θ

′
, the only

possibility is that both schedules x∗, x∗ are continuous.

Finally, consider the the boundaries θ and θ. By monotonicity, we have

x∗ (θ) ≤ x∗r (θ)

x∗
(

θ
)

≥ x∗l
(

θ
)

x∗ (θ) ≤ x∗r (θ)

x∗
(

θ
)

≥ x∗l
(

θ
)

so x∗r (θ) , x
∗
l

(

θ
)

, x∗r (θ), x
∗
l

(

θ
)

exist. Setting

x∗ (θ) = x∗r (θ)

x∗
(

θ
)

= x∗l
(

θ
)

x∗ (θ) = x∗r (θ)

x∗
(

θ
)

= x∗l
(

θ
)

neither changes Π or ρ nor violates monotonicity, and it guarantees continuity of (x∗, x∗)
at the boundaries.

Proof of Proposition 1:

We invoke Seierstad and Sydsaeter (1987), Ch. 5, Thm. 2, p. 332 f.25 For the optimal
solution schedules (x∗ (θ) , x∗ (θ)) and fixed values u = u (θ) = 0, u = u (θ) this theorem
yields the existence of costate variables (κ (θ) , κ (θ)) with κ

(

θ
)

= κ
(

θ
)

= 0 such that

25Note that the roles of x and u are reversed in this thesis chapter as compared to the notation in
Seierstad and Sydsaeter (1987)
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(x∗ (θ) , x∗ (θ)) maximizes

H (u∗ (θ) , u∗ (θ) , x (θ) , x (θ) , κ (θ) , κ (θ) , θ) = βB
(

x (θ) , 0, θ, η
)

f
(

θ|η
)

+ (1− β)B (x (θ) , 1, θ, η) f (θ|η) (23)

+ κ (θ) · x (θ) + κ (θ) · x (θ) .
In addition, there exist a componentwise non-decreasing function µ (θ) = (µ1 (θ) , µ2 (θ))
with the following properties: µ1 is constant on any interval where ρ (θ, u) > 0 and µ2

is constant on any interval where
(

η − η
)

− ρ (θ, u) > 0. Moreover,

κ (θ) = (κ (θ) ,κ (θ)) ≡ (κ (θ) , κ (θ)) + µ∗ (θ) ·
(

−1 1
1 −1

)

(24)

is continuous, and at any point where (x∗ (θ) , x∗ (θ)) and µ (θ) are continuous, κ (θ) is
differentiable with

∂ (κ (θ) ,κ (θ))

∂θ
= − ∂

∂ (u (θ) , u (θ))
[

H (u∗ (θ) , u∗ (θ) , x∗ (θ) , x∗ (θ) , κ (θ) , κ (θ) , θ)− µ (θ) ·
(

−1 1
1 −1

)

·
(

x∗ (θ)
x∗ (θ)

)]

= (0, 0) .

Since x∗ (θ) and x∗ (θ) are assumed to be continuous and µ (θ) is non-decreasing
and hence continuous everywhere except for at most countably many points, κ (θ) is
continuous and differentiable everywhere except for at most countably many points,
with derivative being equal to 0. But then, by standard calculus (see e.g. Königsberger
(2004)), κ (θ) is Lipschitz continuous with Lipschitz constant 0 everywhere, i.e. κ (θ) =
κ is constant everywhere. Hence, evaluating (24) at θ = θ we get κ

(

θ
)

= −µ1

(

θ
)

+

µ2

(

θ
)

, κ = +µ1

(

θ
)

− µ2

(

θ
)

and hence

κ (θ) = µ1 (θ)− µ1

(

θ
)

− µ2 (θ) + µ2

(

θ
)

,

κ (θ) = −µ1 (θ) + µ1

(

θ
)

+ µ2 (θ)− µ2

(

θ
)

= −κ (θ) .
Define κ∗ (θ) = κ (θ) and note the first-order conditions of (23) are precisely the equa-
tions charaterizing the optimal schedules. As H is concave in x the first-order conditions
are sufficient. Moreover, as the constraints (8), (9) are linear (and hence quasi-concave)
in (u (θ) , u (θ)), the conditions in Seierstad and Sydsaeter (1987), Ch. 5, Thm. 2, p.
332 f. are sufficient, cf. Seierstad and Sydsaeter (1987), Ch. 5, Thm. 3, p. 337. The
properties of κ∗ (θ) are straightforward:

a) Continuity of κ∗ (θ) follows directly from continuity of (x∗ (θ) , x∗ (θ)).
b) This follows directly from κ∗ (θ) = κ (θ) = µ1 (θ) − µ1

(

θ
)

− µ2 (θ) + µ2

(

θ
)

and
the respective properties of µ1 and µ2.

c) Continuity of κ∗ (θ) and(x∗ (θ) , x∗ (θ)) implies that for any θ ∈
(

θ, θ
)

where (8) or
(9) binds it must hold that x∗ (θ) = x∗ (θ) as otherwise the respective constraint would
be violated either at θ + δ or at θ − δ for δ > 0 sufficiently small.

d) This is implied by the monotonicity properties of µ1 and µ2 via κ∗ (θ) = κ (θ) =
µ1 (θ)− µ1

(

θ
)

− µ2 (θ) + µ2

(

θ
)

.

e) This follows from the transversality condition κ
(

θ
)

= 0.
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Proof of Proposition 2:

Note first that from equations (12) and (13) we get

∂x (θ)

∂κ
=

1

βf
(

θ|η
)

· C1
xx (x (θ))

> 0,

∂x (θ)

∂κ
= − 1

(1− β) f (θ|η) · C1
xx (x (θ))

< 0.

In an optimal mechanism, constraint (8) must bind for at least one θ ∈
[

θ, θ
]

. Otherwise

the continuous function ρ∗ (θ, u) attains its minimum ǫ > 0 at some θ̂ on the compact
interval

[

θ, θ
]

and decreasing u by ǫ does not harm any constraints and simultaneously

increases revenues. So assume ρ∗
(

θ̂, u
)

= 0 for some θ̂ ∈
[

θ, θ
]

. We want to show

that this implies ρ∗
(

θ̂, u∗
)

= 0 for any θ ≥ θ̂. Suppose first that θ̂ = θ. Since κ∗ (θ)

is continuous and locally either follows a constant schedule or κb (θ), and since κb (θ)
is increasing, κ∗ (θ) < κb (θ) would imply κ∗ (θ) = κ∗ (θ) < κb (θ) ≤ κb

(

θ
)

= 0 for

all θ ∈
[

θ, θ
]

, contradicting transversality κ∗
(

θ
)

= 0 as stated in Proposition 1, Part
e). On the other hand, κ∗ (θ) > κb (θ) by continuity of κ∗ (θ) and κb (θ) would imply
κ∗ (θ) > κb (θ) on some interval [θ, θ + ǫ] of positive length ǫ > 0, violating (8) at any

θ > θ within this interval. Hence for θ̂ = θ we must have κ∗
(

θ̂
)

= κb

(

θ̂
)

just as for

any other θ̂ ∈
[

θ, θ
]

, following Proposition 1, Part c) and e).

As a consequence, note that κ∗ (θ) ≤ κb (θ) for any θ > θ̂ as κb (θ) is increasing and

κ∗ (θ) is continuous and follows either a constant schedule or κb (θ). Suppose κ∗
(

θ̃
)

<

κb

(

θ̃
)

for some θ̂ < θ̃ ≤ θ. Then κ∗ (θ) = κ∗
(

θ̃
)

< κb

(

θ̃
)

≤ κb
(

θ
)

= 0 for any θ ≥ θ̃ by

continuity of κ∗ (θ) and Proposition 1, Part b)+c), contradicting κ∗
(

θ
)

= 0 as required

by Proposition 1, Part e). Defining θ
′
= inf

{

θ ∈
[

θ, θ
]

: ρ∗ (θ, u∗) = 0
}

completes the
proof.

Proof of Theorem 1:

By Proposition 2 we have

u =

ˆ θ
′

θ
[x∗ (y)− x∗ (y)] dy

which, as x∗
(

θ
′
)

= x∗
(

θ
′
)

= x∗
(

θ
′
)

, implies

dκ∗

du
(u) = − 1

´ θ
′

θ

[

∂x∗

∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]

dy
> 0.



124CHAPTER 4. PRICING A PACKAGEOF SERVICES -WHEN (NOT) TO BUNDLE27

Using this as well as equations (12) and (13) we get

dΠ

du
(u)

=

ˆ θ
′

θ

[

βf
(

θ|η
)

· ∂B
∂x

(

x∗ (θ) , 0, θ, η
)

· ∂x
∗

∂κ∗
(θ) · dκ

∗

du
(u)

]

dθ

+

ˆ θ
′

θ

[

(1− β) f (θ|η) · ∂B
∂x

(x∗ (θ) , 1, θ, η) · ∂x
∗

∂κ∗
(θ) · dκ

∗

du
(u)

]

dθ − (1− β)

=
κ∗ (u) ·

´ θ
′

θ
∂x∗

∂κ∗ (θ) dθ
´ θ′

θ

[

∂x∗

∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]

dy
−

κ∗ (u) ·
´ θ

′

θ
∂x∗

∂κ∗ (θ) dθ
´ θ′

θ

[

∂x∗

∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]

dy
− (1− β)

= −κ∗ (u)− (1− β) ,

implying u∗ = 0 as demonstrated in the main text. The theorem then immediately
follows from Proposition 2. The reformulation in terms of prices conditional on quan-
tities rather than preference types is a direct implication of the taxation principle as
explained in the main text.

Proof of Theorem 2:

As demonstrated in the main text, the solution schedules (x∗ (θ) , x∗ (θ) , u∗) for Prob-
lem P’ deviate from the full bunching schedule (x∗ (θ) , x∗ (θ) , u = 0) on an interval of
positive mass. We are left to formally show that, under Assumption 3, there exists a
convex combination

(xλ (θ) , xλ (θ) , uλ) = λ · (x∗ (θ) , x∗ (θ) , u∗) + (1− λ) · (x∗ (θ) , x∗ (θ) , 0)

with λ > 0 such that the schedules (xλ (θ) , xλ (θ) , uλ) satisfy constraints (8)-(11) and
that

Π (xλ (θ) , xλ (θ) , πλ) > Π(x∗ (θ) , x∗ (θ) , 0) .

As constraints (8) and (9) are linear in (x, x, u) and, by construction, satisfied by
(x∗ (θ) , x∗ (θ) , u∗) and (x∗ (θ) , x∗ (θ) , u = 0), they are also satisfied by any convex com-
bination of the two. Moreover, as (x∗ (θ) , x∗ (θ)) and (x∗ (θ) , x∗ (θ)) are continuous and
hence bounded on

[

θ, θ
]

and x∗ (θ) ≥ x∗ (θ) > 0 for all θ ∈
[

θ, θ
]

by Assumption 3,
(xλ (θ) , xλ (θ)) are positive for sufficiently small values λ > 0 as well and hence satisfy
(11).

Concerning (10), note that the optimal costate variable κ∗ (θ) that corresponds
to (x∗ (θ) , x∗ (θ) , u∗) is bounded. Indeed, since κ∗ (θ) is continuous on

[

θ, θ
]

with

κ∗
(

θ
)

= κb
(

θ
)

= 0 and is either locally constant or follows κb (θ), we have κ∗ (θ) ∈
[

minθ∈[θ,θ] κb (θ) ,maxθ∈[θ,θ] κb (θ)
]

which is bounded by compactness of
[

θ, θ
]

and con-

tinuity of κb (θ). Moreover, on any interval
[

θ
′
, θ

′′
]

⊂
[

θ, θ
]

, the costate variable κ∗ (θ) is

constant or lies within
[

minθ∈[θ′ ,θ′′ ] κb (θ) ,maxθ∈[θ′ ,θ′′ ] κb (θ)
]

. Hence, for any θ ∈
[

θ, θ
]
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the set of subdifferentials ∂κ∗ (θ) is bounded by
[

min
{

0, ∂κb(θ)
∂θ

}

,max
{

0, ∂κb(θ)
∂θ

}]

and

therefore the subdifferentials of (x∗ (θ) , x∗ (θ)) given as

∂x∗ (θ) =
1

Cxx (x∗ (θ))
·





∂

∂θ

[

θ −
1− F

(

θ|η
)

f
(

θ|η
)

]

+
κ∗ (θ) · ∂f(θ|η)∂θ − f

(

θ|η
)

· ∂κ∗ (θ)
βf
(

θ|η
)2



 ,

∂x∗ (θ) =
1

Cxx (x∗ (θ))
·
(

∂

∂θ

[

θ − 1− F (θ|η)
f (θ|η)

]

− κ∗ (θ) · ∂f(θ|η)∂θ − f (θ|η) · ∂κ∗ (θ)
(1− β) f (θ|η)2

)

are bounded as well. Since

∂x∗ (θ)
∂θ

=
1

Cxx (x∗ (θ))
·
(

∂

∂θ

[

θ −
1− F

(

θ|η
)

f
(

θ|η
)

])

is continuous on
[

θ, θ
]

and strictly positive by Assumption 3, it is bounded away from

zero by compactness of
[

θ, θ
]

. Hence, again, for sufficiently small λ > 0 we have

∂xλ (θ) ⊂ R+,

∂xλ (θ) ⊂ R+,

showing (10).
Finally, from (6) and concavity of B in x together with

Π (x∗ (θ) , x∗ (θ) , u∗) > Π(x∗ (θ) , x∗ (θ) , u = 0)

we get

Π (xλ (θ) , xλ (θ) , uλ) = Π (λ · (x∗ (θ) , x∗ (θ) , u∗) + (1− λ) · (x∗ (θ) , x∗ (θ) , 0))
> λΠ(x∗ (θ) , x∗ (θ) , u∗) + (1− λ)Π (x∗ (θ) , x∗ (θ) , 0)

> λΠ(x∗ (θ) , x∗ (θ) , 0) + (1− λ)Π (x∗ (θ) , x∗ (θ) , 0)

= Π (x∗ (θ) , x∗ (θ) , 0)

which proves the theorem.
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