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1 Introduction

This dissertation analyzes two important types of insurance: defined benefit pension in-
surance in Chapter 2 and participating life insurance in Chapters 3 and 4.

Private defined benefit (DB) pension plans are insured in many countries by a pension
guarantee fund (PGF), which is created by the government to protect pension benefi-
ciaries (employees) from losing their promised pension benefits on retirement.1 Sponsors
(employers) are obliged to participate in the pension-protection scheme by paying a legally
specified annual premium to the PGF. As a plan becomes underfunded and the employer
is not able to salvage the plan without going out of business, a distress termination of
the plan can be initiated, then the PGF steps in to cover its deficit.
However, the DB pension insurance has been abused by sponsors. It has been found

that the PGF creates additional incentives for sponsors to underfund their DB pension
plans and incur excessive investment risk in their pension portfolios, see e.g., Bodie et
al. (1987) and Cooper and Ross (2003), thus taking advantage of the PGF. Together
with some other reasons, for example the decline of stock market prices in 2000, the de-
crease of interest rates, and unfavourable demographic and employment trends, see e.g.,
Armstrong (2004), Wilcox (2006), and Brown (2008), the PGFs have been accumulating
deficits over time and experiencing difficulty in performing the pension-protection func-
tion.2 However, in view of its financial difficulty, the PGF has an involuntary termination
of underfunded DB pension plans as its only possibility of intervention due to legislative
rules that are placed on the DB pension insurance, see Kalra and Jain (1997). Rather
than waiting for a DB plan to become severely underfunded, the PGF can terminate the
contract, take over the plan, and cover the deficit.
Chapter 2 proposes a termination rule based on a critical funding ratio for a PGF

1Examples include pension guarantee funds in Sweden (created in 1960), Finland (1962), the United
States (1974), Germany (1974), Canada (1980), Chile (1981), Switzerland (1985) and Japan (1989).

2Data on aggregate surplus and deficits of two pension guarantee funds, i.e., the Pension Benefit Guar-
anty Corporation in the United States, and the Pension Benefits Guarantee Fund in Canada, during
a recent decade, are presented in Chapter 2.
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who considers closing an underfunded pension plan.3 This ratio is determined by solving
an expected utility maximization problem on behalf of plan beneficiaries subject to two
constraints designed to preserve the PGF’s viability. The first constraint is an upper
bound on the PGF’s annual intervention probability; the second one is a restriction on
the expected shortfall of an underfunded pension plan which is not closed.

A participating life insurance contract, being one of the most important life insurance
products, employs a profit-sharing mechanism. In addition to a minimum interest guar-
antee, it promises a bonus payment which is linked to the insurance company’s financial
performance to policyholders upon survival and upon death. The contract is usually
embedded with a surrender option by exercising which policyholders can sell the contract
back to the company and receive surrender benefits.
Similar as beneficiaries in a DB pension plan, policyholders face a risk of receiving

too little benefit as the insurance company declares bankruptcy at maturity. In order to
protect policyholders, regulatory authorities impose early default mechanisms (protection
schemes) to monitor insurance companies’ financial status and close them before it is too
late so.4 As an early regulatory intervention is imposed by a regulator, an interesting
and important question is how the policyholders who now bear early default risk of the
insurance company will react on it, for example, by adjusting their surrender behaviors.
Since the early regulatory intervention can reframe the payment structure for the pol-

icyholders, as a response they may change their surrender decision-making behaviors,
which in turn affects their contracts’ payments and value. However, this has not been
taken into account in the current literature. In Chapter 3, we analyze the impacts of
the early default risk of the insurance company on the pricing of participating policies
by endogenously modelling the policyholders’ surrender behaviors and uncovering the
impacts of the early default risk on the policyholders’ surrender decision making.5 Since
policyholders may surrender their contracts for cash in emergency, corresponding to the
Emergency Fund Hypothesis, see Kim (2013); and also due to limited financial informa-
tion and pricing knowledge, not all the policyholders can evaluate their contracts correctly
so as to surrender them optimally, see Li and Szimayer (2014), it is more reasonable to
consider policyholders as partly rational from a purely financial point of view.

3This Chapter is based on Cheng and Uzelac (2015), an earlier version of which has become my Master’s
thesis.

4Examples of early default mechanisms include Solvency II and the Swiss Solvency Test implemented
by the Swiss Financial Market Supervisory Authority, see Chapter 3 for more discussions.

5This Chapter is based on Cheng and Li (2015).
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Policyholders’ partial rationality is further linked to their mortality risk by taking into
account a systemic health shock6 in Chapter 4.7 As the policyholders’ normal health
state switches to the impaired state due to the systemic health shock, two surrender
change scenarios are proposed in this chapter: the first, policyholders hurry to access
surrender values due to their threatening financial liquidity (surrender more likely in
emergency)8; the second, policyholders become more careful in evaluating and surrender-
ing their contracts (surrender more likely at an optimal time point). Based on the two
surrender change scenarios, Chapter 4 analyzes the effects of the systemic health shock on
the contract valuation, and further discusses the influence of the early default regulatory
intervention on the contract value in the two scenarios.

6A systemic health shock harms the public health and lasts for a relatively long-time period. One
example of the systemic health shock is the smog, which is a severe air pollution event and currently
prevalent in Asia, see Chapter 4 for more discussions.

7This Chapter is based on Cheng (2015).
8As a policyholder’s health gets damaged, a high demand of cash spent on necessary medical treatments
and improving his living conditions threatens the policyholder’s financial liquidity, see Chapter 4 for
more discussions.
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2 A Termination Rule for Pension
Guarantee Funds

2.1 Introduction
A defined benefit (DB) pension plan promises pension beneficiaries (employees) a spec-
ified amount of benefits on retirement, which is determined by a formula that usually
takes into account the beneficiaries’ years of service with the sponsor (the employer),
their salary, and their age. Contributions from the sponsor and future investment re-
turns constitute the plan’s assets. When assets fall short of accrued pension liabilities,
the plan is underfunded, which exposes beneficiaries to the risk of failure to receive the
full promised pension benefits on their retirement. Underfunding of DB pension plans in
the U.S. and in other countries has been documented in the empirical literature, see e.g.,
Armstrong (2004), Franzoni and Marin (2006), Selody (2007), and Severinson (2008).
Moreover, underfunding has been shown to be an equilibrium outcome in an imperfect
financial market, see e.g., Ippolito (1985) and Cooper and Ross (2002). In an attempt to
protect pension beneficiaries against loss of promised benefits, many developed countries
have created a pension guarantee fund (PGF), also known as pension benefit guarantee
insurance.1 Examples are the Pension Benefit Guaranty Corporation (PBGC) in the
United States (created in 1974), the Pension Benefits Guarantee Fund (PBGF) in On-
tario, Canada (1980), as well as the guarantee funds in Sweden (1960), Finland (1962),
Germany (1974), Chile (1981), Switzerland (1985) and Japan (1989).
The PGF charges the sponsor an annual premium, which is specified by law, for insuring

pension benefits promised to beneficiaries. It can become active in two cases. In the first
case, when the insured DB plan is underfunded while the sponsor is unable to salvage the
plan without going out of business, the sponsor submits a distress termination application
and waits for an approval by the PGF. In the second case, the PGF initiates a termination

1According to Jametti (2008), the introduction of pension benefit guarantee insurance was motivated
by the underfunding problem of DB pension plans. The pension guarantee fund is one of three
pension benefit security mechanisms; the other two are solvency requirements and sponsor support,
see Broeders and Chen (2013).
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of the underfunded pension fund for protecting pension beneficiaries, which is known as
an involuntary termination in practice. In each type of termination, the PGF takes over
the underfunded DB plan, using its own assets to pay the benefits of current and future
retirees, up to a limit called a maximum guarantee. The maximum guarantee is set by law
and updated periodically, e.g., annually in the U.S. However, due to a variety of reasons,
which include the decline of stock market prices in 2000, the decrease of interest rates,
excessive risk-taking by plan sponsors, and unfavourable demographic and employment
trends, the PGFs have been experiencing difficulty in performing this function, see e.g.,
Armstrong (2004), Wilcox (2006), and Brown (2008). Table 2.1 shows the financial status
of the PBGC in the U.S. and the PBGF in Ontario, Canada during a recent decade.2

2003 2004 2005 2006 2007
PBGC(USD$) −11, 499 −23, 541 −23, 111 −18, 881 −14, 066
PBGF(CAD$) −137.5 −107.2 −237.4 −274.2 −112.8

2008 2009 2010 2011 2012
PBGC(USD$) −11, 151 −21, 946 −23, 030 −26, 036 −34, 379
PBGF(CAD$) −102.2 −47.4 +103.3 −6.2 +76.2

Table 2.1: Aggregate surplus (+) and deficits (−) of PBGC and PBGF from 2003 to 2012 (million).

In view of the financial status of the PGF, a debate revolving around flaws in its design
has sprung up. Thus far most of the academic literature has focused on the lacking incen-
tive compatibility of premium calculation,3 proposing risk-based premiums instead, see
e.g., Lewis and Pennachi (1994), and Chen (2011). However, Kalra and Jain (1997) argue
that by law pension benefit guarantors4 are prevented from controlling the riskiness of
investments by pension plans and from adjusting their premiums accordingly. This leaves
the involuntary termination of underfunded DB pension plans as their only possibility
of intervention.5 Rather than waiting for a DB plan to become severely underfunded, a
PGF can terminate the contract, take over the plan, and cover the deficits.

From the economic point of view, two main arguments support this type of intervention.
First, there is a moral hazard problem between the sponsor and the pension benefit

2See the PBGC and PBGF’s annual financial reports, http://www.pbgc.gov and
http://www.fsco.gov.on.ca/EN/PENSIONS/Pbgf/Pages/default.aspx.

3Nevertheless, a variable premium component that takes the degree of underfunding of pension funds
into account has been introduced in the U.S., the major part of PBGC’s premium are flat. In
particular, 70 percent of PBGC’s premium were flat in 2010, see www.pbgc.gov.

4The terms “pension benefit guarantors” and “pension guarantee funds” are equivalent in this paper.
5The PBGC states that initiating a termination helps to protect the interests of plan beneficiaries as
well as its insurance program. However, it does not specify a termination rule, see www.pbgc.gov.
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guarantor. Cooper and Ross (2003) find that a PGF creates additional incentives for
sponsors to underfund their DB pension plans and to incur excessive investment risk in
their pension portfolios. The threat of termination can mitigate these adverse incentives
in two cases in particular: sponsors might be tempted to lower current cash payments
to their employees, promising them higher future pensions in return thanks to (risky)
investments; and they may fail to account for taxes due. Second, financially troubled
sponsors are likely to understate their liabilities (Bodie et al. 1987)6, exposing the PGF
to a considerable insolvency risk. Therefore, an involuntary termination can substantially
reduce the amount of liability falling on the PGF.
These considerations raise the issue of the proper timing of intervention. In particu-

lar, how strongly underfunded should a pension fund be in order to be terminated by
the PGF? On the one hand, terminating too early may deprive the pension fund of the
opportunity to recover and the beneficiaries of the opportunity to receive full promised
pension benefits (recall that they are capped if the PGF takes over). On the other hand,
terminating too late may result in higher liabilities for the PGF, jeopardizing its financial
equilibrium.

This paper proposes a termination rule based on a critical funding ratio to limit the
PGF’s own risk of insolvency. It uses an expected utility maximization framework for
determining a termination threshold, taking into account both risk aversion of pension
beneficiaries and two constraints on the PGF’s intervention. First, the intervention prob-
ability constraint (IPC) puts a limit on the frequency with which the PGF can step
in to cover the pension plan’s deficits. Second, the expected shortfall constraint (ESC)
limits the value of expected deficits of the underfunded pension plan. This specification
has advantages of both identifying pension funds with the highest cost of insolvency, see
Doff (2008), and protecting the PGF’s future viability. It also reflects U.S. law, which
states that the PBGC may terminate a pension plan to avoid being burdened by excessive
losses.
The critical funding ratio is derived from a model with a one-year planning horizon by

maximizing a power utility function designed to capture the interests of pension benefi-
ciaries. This utility function becomes the objective function of the PGF on the grounds
that its mission is to protect pension beneficiaries. The use of the DB plan’s funding ratio
in the utility function can be motivated in two ways. First, it is a quantity commonly

6A popular subterfuge has been to use excessive interest rates for discounting pension liabilities, see
Bodie et al. (1987).
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used by the industry and in regulatory practice.7 Second, it reflects the fact that what
really matters in pension fund management is not the value of assets per se, but how their
value relative to the fund’s liabilities, see Martellini and Milchau (2008). By determin-
ing an optimal critical funding ratio one solves an optimal stopping problem, which has
been addressed in the insurance literature. For example, Grosen and Jørgensen (2000),
Bacinello (2003), Bauer et al. (2006), Nordahl (2008), and Schmeiser and Wagner (2011)
evaluate life insurance contracts with embedded surrender options, which are exercised
by policyholders at an optimal point in time.

Work closely related to the present paper includes Acharya and Dreyfus (1989) and
Kalra and Jain (1997). Acharya and Dreyfus determine jointly deposit insurance premi-
ums and optimal termination policies applied to financial institutions. They derive an
optimal termination threshold in terms of an assets-to-deposits ratio, below which an ail-
ing financial institution should be closed, by minimizing the deposit insurer’s net liability.
Kalra and Jain adopt the PBGC’s point of view; they propose an optimal termination
policy that takes into account restrictions on the DB pension insurer’s intervention, in
particular regarding a premium adjustment. They view the pension benefit guarantee
insurance as a down-and-out put option, with which the PBGC takes over a plan if the
losses from terminating it are smaller than the losses from letting the plan continue.
Hence, termination is governed by profit maximization. By contrast, this paper recog-
nizes the fact that a PGF, being a government agency, has a welfare motivation, aiming
at preserving pensions in the interest of beneficiaries.8 Accordingly, its objective differs
from that of a value-maximizing insurance company. This calls for evaluating the PGF’s
intervention in terms of pension beneficiaries’ utility. Additionally, two novel restrictions
importantly governing the PGF’s financial viability are introduced and a different mech-
anism of solving the constrained utility maximization problem is used for determining
the optimal termination policy.
The remainder of this paper is organized as follows. In Section 2.2, the termination

rule is stated and the one-year expected utility objective and the two constraints are
introduced. Next, the utility maximization problem is simplified by deriving closed-form
expressions for both the expected utility and the two constraints, which are shown to
have monotonicity properties. Section 2.3 provides a numerical illustration of expected
utility for beneficiaries with different degrees of relative risk aversion over a reasonably

7For example, Dutch DB pension plans are obliged to keep their one-year ahead funding ratio at 1.05
or higher.

8Salisbury (1996) even views the PGF as a social insurance program that intentionally subsidizes the
DB system. The welfare motivation is reflected in the PBGC’s statutory mandate, see www.pbgc.gov.
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wide range of parameter values for the drift, the volatility, and the initial funding ratio
determining beneficiaries’ one-year expected utility. Preferences regarding intervention
by the PGF turn out to consistently depend on relative risk aversion. Section 2.4 focuses
on the critical value of risk aversion at which one-year expected utility curve inverts
and relates this value to the parameters characterizing the funding ratio process. Also, a
functional form for the critical level of risk aversion is conjectured and proved analytically.
Solutions to the optimization problem first subject to the IPC only and then, subject to
both the IPC and ESC are presented in Section 2.5. Section 2.6 concludes the paper.

2.2 Model framework

2.2.1 A termination rule

Consider a DB pension plan for a homogeneous group of employees which can be repre-
sented by a typical beneficiary. This DB pension plan is insured at time t0 = 0 by the
PGF. The sponsoring company is charged by an annual premium, which is specified by
law on an annual basis. The funding ratio of the plan at time t is denoted by Rt, which
is assumed to follow a geometric Brownian motion under the market probability measure
P. Therefore,

dRt = µRt dt+ σRt dW P
t , R0 > 0 . (2.1)

Here W P is a standard Brownian motion under P, while µ and σ > 0 denote the constant
drift and volatility coefficients, respectively.
The termination rule that the PGF uses to intervene specifies a termination-triggering

funding ratio (termination ratio for short) η at time t0. Once the pension plan’s funding
ratio falls below η, the plan is closed and taken over by the PGF. In this event, the PGF
uses its own assets, which consist of collected premiums and investment returns9, to cover
the deficits of the pension plan and to pay benefits, up to a guarantee limit set by law
and adjusted periodically. The time of intervention τ is the first time the pension plan’s
funding ratio drops below the termination ratio,

τ := inf{t > 0 |Rt 6 η}. (2.2)

The higher the termination ratio, the more likely the DB pension plan is closed by
the PGF. The PGF is assumed to assess its solvency status10 and its termination ratio

9We abstract from the investment strategy of the PGF, which influences its ability to pay benefits.
10While PGF’s solvency status influences the feasible set of termination ratios under two constraints

introduced in Section 2.3 below, maximizing solvency is not the objective of the PGF in this paper.
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annually11, taking into account its annual premium income. We abstract from any in-
fluence the distress termination application initiated by the sponsoring company might
have on the PGF’s intervention rule, i.e., its termination ratio. The PGF’s termination is
therefore triggered by the funding ratio of the pension plan only. In order to exclude the
case τ = +∞, i.e., termination never happens, η > 0 is assumed. Conversely, η < R0 is to
make sure that the pension plan is not terminated at t0, the time of issue of the contract
(or reset of the termination ratio, respectively). Finally, η < 1 because it does not make
sense for the PGF to close a plan that is fully funded, i.e., Rt > 1. To summarize, the
PGF chooses the termination ratio η from the set H ≡ (0,min{R0, 1}).

2.2.2 One-year expected utility

As stated in the introduction, the PGF pursues a welfare motive, which is reflected in
its mission of preserving pension plans and protecting employees against loss of their
pensions. Accordingly, the PGF is seen as a perfect agent of the pension beneficiary,
implying that it adopts the beneficiary’s utility function as its objective function. The
higher the funding ratio, the more confident beneficiaries can be to get the promised
benefits on retirement. They are characterized by a power utility function with the
funding ratio of the DB plan and their degree of relative risk aversion (symbolized by δ,
see below) involved.
Given that the PGF sets the termination ratio annually, one-year expected utility is

the appropriate criterion. If termination is triggered within the year, it depends on the
funding ratio at intervention time Rτ . Since the funding ratio is modelled as a continuous
stochastic process, Rτ coincides with the termination ratio η in this case, i.e., if τ 6 1,
expected utility is given by E[U(Rτ )] = E

[
η(1−δ)

1−δ

]
. For τ > 1, the funding ratio at year

one is the independent variable, yielding expected utility E[U(R1)] = E
[
R

(1−δ)
1
1−δ

]
. One-

year expected utility thus consists of two parts, conditional on whether or not termination
occurs within the year. It can be written compactly as

E[U(Rτ∧1)] = E

[
1{τ61}η

(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]
, δ > 0, δ 6= 1 (2.3)

where τ ∧ 1 denotes the minimum of τ and 1, and 1X is the indicator function for a set
X.

11The time of contract issue t0 = 0 can actually be considered as the time of when the PGF sets the
termination ratio.
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2.2.3 Two constraints on the termination ratio

In this section, we incorporate two constraints on the termination ratio designed to limit
the PGF’s insolvency risk. The first is an intervention probability constraint (IPC), which
imposes an upper bound on the PGF’s annual probability of intervention. Lacking such
a constraint, the PGF would easily run out of funds. Define the minimum value of the
funding ratio Rt between t0 = 0 and t1 = 1 by XR,

XR := inf
t∈[0,1]

{Rt}. (2.4)

Then, the IPC states,
P (τ 6 1) = P (XR 6 η) 6 ε, (2.5)

where ε ∈ (0, 1] that is set by the PGF taking into account its current financial situation
and expected pension payment upon intervention, e.g., the maximum guarantee payment.
If the PGF is currently not in good financial shape, lowering ε works as a solvency cushion
because it causes a postponement of intervention.
However, a pension plan, that is not terminated within one year but has a funding

ratio below one, is in deficit. Note that the amount of deficits has no upper limit since Rt

measures the ratio of the pension plan’s assets to its total liabilities. Terminating a plan
in deficit can worsen the future financial position of the PGF. To mitigate this drawback
of the IPC, consider a second constraint, the expected shortfall constraint (ESC). The
ESC seeks to limit the ’long-run’ insolvency risk of the PGF by putting a restriction on
the size of expected deficits of an ongoing but underfunded pension plan at year one. For
simplicity, assume the DB plan’s liabilities to be constant within one year. Then, the
expected deficit must not exceed a certain percentage q > 0 of the plan’s liabilities, with
q set by the PGF,

E
[
(1−R1)1{τ>1}1{R161}

]
6 q. (2.6)

The ESC is also considered by Shi and Werker (2012).12 It protects the PGF’s future
financial status by limiting expected pension coverage for an ongoing underfunded pension
plan. This is of particular importance in the case of a large pension fund, where a given
value Rt = η implies large potential liabilities for the PGF.

12However, they consider the restriction on the induced expected shortfall subject to a VaR constraint.
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2.2.4 Simplifying the utility maximization problem

In this section we formally state the closed-form expressions for the one-year expected
utility and the two constraints, resulting in the two constrained utility maximization
problems which are numerically analyzed in Section 2.3. At this point, the one-year
expected utility is defined,

E

[
1{τ61}η

(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]

= η(1−δ)

1− δ P (XR 6 η) + 1
1− δ

∫ R0

η

∫ ∞
η

r(1−δ)f(R1,XR)(r, x)drdx, (2.7)

where f(R1,XR) denotes the joint density function of (R1, XR). By applying the closed-
form expressions of P (XR 6 η) and f(R1,XR), summarized in Appendix 2.7.1, to the
function (2.7), one obtains

E

[
1{τ61}η

(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]

= 1
1− δ

η(1−δ)
[
Φ
( 1
σ

ln η

R0
− µ

σ
+ 1

2σ
)

+
(
η

R0

)( 2µ
σ2−1)

Φ
( 1
σ

ln η

R0
+ µ

σ
− 1

2σ
) ]

+R
(1−δ)
0 e(1−δ)(µ− 1

2 δσ
2)
[
Φ
(
− 1
σ

ln η

R0
+ µ

σ
+ (1

2 − δ)σ
)

−
(
η

R0

)( 2µ
σ2 +1−2δ)

Φ
( 1
σ

ln η

R0
+ µ

σ
+ (1

2 − δ)σ
) ] ,

=: U(η, δ, µ, σ, R0), δ > 0, δ 6= 1 (2.8)

where Φ(.) and φ(.) are the distribution function and the density function of a standard
normal variable, respectively. The one-year expected utility is denoted by U , which is
a continuously differentiable function of the termination ratio η for given values of the
relative risk aversion parameter δ, the drift parameter µ, the volatility σ of the funding
ratio process, and the plan’s initial funding ratio R0.

Next, the one-year intervention probability and the expected shortfall are expressed in
closed form and their monotonicity properties stated.
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Lemma 1 The one-year intervention probability has the following closed-form expression

P (τ 6 1) = P (XR 6 η)

= Φ
( 1
σ

ln η

R0
− µ

σ
+ 1

2σ
)

+
(
η

R0

)( 2µ
σ2−1)

Φ
( 1
σ

ln η

R0
+ µ

σ
− 1

2σ
)

=: hIP (η, µ, σ,R0), (2.9)

where the one-year intervention probability, denoted by hIP , is continuous and monoton-
ically increasing from 0 to 1 as η increases from 0 to R0 for given values of (µ, σ,R0).

If only the IPC (hIP 6 ε) is imposed, giving rise to the constraint set

CIPC(µ, σ,R0) ≡ H ∩ {η : hIP (η, µ, σ,R0) 6 ε}, (2.10)

then the one-year expected utility maximization problem can be compactly written as

max
η∈CIPC(µ,σ,R0)

U(η, δ, µ, σ, R0). (2.11)

Lemma 2 The expected shortfall of an ongoing underfunded DB pension plan at time
t = 1 has the following closed-form expression,

E
[
(1−R1)1{τ>1}1{R161}

]
= Φ

(
− 1
σ

lnR0 −
µ

σ
+ 1

2σ
)
− Φ

( 1
σ

ln η

R0
− µ

σ
+ 1

2σ
)

−
(
η

R0

)( 2µ
σ2−1) [

Φ
( 1
σ

ln η

R0
+ µ

σ
− 1

2σ
)
− Φ

(
1
σ

ln η2

R0
+ µ

σ
− 1

2σ
)]

−R0e
µ
[
Φ
(
− 1
σ

lnR0 −
µ

σ
− 1

2σ
)
− Φ

( 1
σ

ln η

R0
− µ

σ
− 1

2σ
)]

+R0e
µ
(
η

R0

)( 2µ
σ2 +1) [

Φ
( 1
σ

ln η

R0
+ µ

σ
+ 1

2σ
)
− Φ

(
1
σ

ln η2

R0
+ µ

σ
+ 1

2σ
)]

=: hES(η, µ, σ,R0), (2.12)

where the expected shortfall, denoted by hES, is continuous and monotonically decreasing
as the termination ratio η increases on the interval H ≡ (0,min{R0, 1}), with lim

η→0
hES(η, µ, σ,R0)

= Φ
(
− 1

σ
lnR0− µ

σ
+ 1

2σ

)
−R0e

µΦ
(
− 1

σ
lnR0− µ

σ
− 1

2σ

)
and lim

η→min{R0,1}
hES(η, µ, σ,R0) = 0

for given values of (µ, σ,R0).

For the derivation of hES(η, µ, σ,R0) and proof of its monotonicity property, see Ap-
pendix 2.7.2.

12



Note that according to Lemma 1 and Lemma 2, adjustments of the termination ratio
η have opposite impacts on the two constraints given fixed values of (µ, σ,R0). Setting
η at a lower value decreases the one-year intervention probability while increasing the
expected shortfall. This implies that the sets of termination ratios compatible with the
two constraints may not overlap. From a policy point of view, this raises the issue of
finding a second-best solution in case the two constraints are not satisfied simultaneously.
Hence, the PGF faces a trade-off between controlling its current and future insolvencies.
As a second-best solution, we propose a termination ratio which satisfies the IPC but
violates the ESC to the least extent possible so that the PGF’s financial capacity to
protect pension beneficiaries in the long run is preserved. Thus, we give priority to the
IPC while minimizing the risk of a future insolvency of the PGF. Since the expected
shortfall is monotonically decreasing as the termination ratio increases (see Lemma 2),
the second-best solution amounts to the highest termination ratio in the constraint set
(2.10). At this termination ratio, IPC binds due to monotonically increasing property of
the one-year intervention probability function (see Lemma 1). Therefore, this termination
ratio is ηε = h−1

IP (ε).
Hence, by defining the constraint set when both the IPC and ESC are incorporated

CIPC&ESC(µ, σ,R0) ≡ {ηε} ∪
(
{η : hIP (η, µ, σ,R0) 6 ε} ∩ {η : hES(η, µ, σ,R0) 6 q}

)
,

(2.13)

the one-year expected utility maximization problem can be compactly written as

max
η∈CIPC&ESC(µ,σ,R0)

U(η, δ, µ, σ, R0). (2.14)

Before numerically solving the utility maximization problems presented above, it is
appropriate to point out the limitations of this model. First, the expected utility function
refers to a group of beneficiaries. This raises problems from the point of view of decision
theory since there is no mechanism to aggregate individual utility functions. Second, as is
known in practice, different groups of beneficiaries are covered by a DB plan. Therefore,
this model neglects the following two complications: there may be conflicting interests of
beneficiaries linked to heterogeneous portfolios, see Zweifel and Auckenthalter (2008) for
the consequences of such conflicts of interest; the PGF takes over at one point in time
rather than a set of times, which would reflect heterogeneous preferences of beneficiaries.
Third, since beneficiaries may die and surrender their contracts during the pension fund’s
accumulation period, the solution to their utility optimization problem depends not only
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on state preferences but also time preferences. However, when calculating the expected
utility given by equation (2.3), this complication is neglected.13

2.3 Numerical illustration
For solving the constrained maximization problem (2.11) and (2.14), the properties of
the objective function are crucial. However, the expected utility function (2.8) is too
complex to be analyzed in closed form. Therefore, an illustration of numerically solv-
ing the problem over a reasonably wide range of parameter values is performed in this
section. Initial funding ratios for a DB pension fund suggested in Siegmann (2011) are
between 0.87 and 1.2. Due to a lack of data for estimating the drift and volatility of
the funding ratio process, values ranging from −0.04 to 0.04 and 0.05 to 0.5, respec-
tively are used. The relationship between the optimal termination ratio and the degree
of risk aversion characterizing pension beneficiaries is of particular interest. Therefore,
relative risk aversion varies between 0 to 5, in keeping with empirically estimated values,
see e.g., Szpiro (1986), Jackwerth (2000), Chetty (2006), and Fajardo, Ornelas and De
Farias (2012). The parameter values employed are summarized in Table 2.2.

Funding Ratio Process Parameters Relative Risk Aversion Parameter
R0 ∈ [0.87, 1.2] δ ∈ [0, 1) ∪ (1, 5]
µ ∈ [−0.04, 0.04]
σ ∈ [0.05, 0.5]

Table 2.2: Parameter values for the funding ratio process and relative risk aversion.

It is important to understand the shape of the one-year expected utility function over
the constraint set. Note that the constraint set (2.10) with the IPC only is a superset
of the constraint set (2.13) with the second constraint ESC additionally imposed. As a
first step, we focus on the utility maximization problem (2.11) only subject to the IPC as
defined in (2.10). Let the intervention probability ε be 0.025 for computing the feasible
set η ∈ CIPC(µ, σ,R0).14 Then, for each combination of parameter values (µ, σ,R0) of
Table 2.2 values of the partial derivative of U(η, δ, µ, σ, R0) w.r.t. the termination ratio η

13As an alternative to abstracting from death/surrender of the beneficiary, one could assume an av-
erage mortality/surrender propensity which is independent of termination, with payout to the
heir/beneficiary invested in a portfolio. If the portfolio develops according to the dynamics given
in (2.1) and investment returns are valued in the same way, the optimization problem again involves
state-dependent preferences only.

14The solvency test for Dutch pension funds uses 2.5% as the maximum allowable probability of the
funding ratio dropping below 100% over a one-year horizon.
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can be computed over the constraint set η ∈ CIPC(µ, σ,R0) for a given value of δ.15 This
procedure is repeated for δ ∈ [0, 1) ∪ (1, 5].16

The results of these computations are summarized in Figure 2.1. A “I” in panel (a)
of Figure 2.1 marks the parameter triples (µ, σ,R0) for which the partial derivative ∂U

∂η

is negative over the constraint set for all values of δ. One-year expected utility is de-
creasing over the constraint set regardless of beneficiaries’ risk aversion. In the interest of
beneficiaries, the PGF should set the critical funding ratio at a low value, thus avoiding
termination most of the time in this case. This occurs when the drift is positive and
the volatility is very small (σ < 0.1). Intuitively, a positive expected change in a DB
plan’s funding ratio combined with little uncertainty about its future development makes
it very likely that the plan will be fully funded again in one year’s time. Hence, regardless
of their degree of risk aversion, beneficiaries prefer the PGF not to intervene since this
would result in a cap on their benefits.
Next, a “J” in panel (b) of Figure 2.1 marks the parameter triples (µ, σ,R0) for which

∂U
∂η

is positive over the constraint set regardless of beneficiaries’ risk aversion. One-year
expected utility turns out to be increasing along the feasible termination ratio interval.
This outcome obtains once the drift becomes negative, which calls for a high critical
funding ratio, making termination by the PGF likely. This is even in the interest of
risk-neutral beneficiaries because they have to expect a worsening financial status of the
pension fund over time. Through its intervention, the PGF prevents the pension plan’s
funding level from dropping even further, causing beneficiaries to lose a still greater part
of their pension benefits.
Finally, panel (c) of Figure 2.1 exhibits the parameter triples (µ, σ,R0), marked with a

“•”, for which ∂U
∂η

changes its sign at a critical value of relative risk aversion, defined as a
critical risk aversion level. Below this level, ∂U

∂η
is negative over the constraint set; above it,

∂U
∂η

turns positive. It means that the one-year expected utility function is decreasing along
the feasible termination ratio interval for weakly risk-averse beneficiaries but increasing
for strongly risk-averse ones, i.e., the utility curve inverts at the critical risk aversion
level. This case obtains when the drift is positive while the volatility is not sufficiently
low (σ > 0.1). Intuitively, less risk-averse beneficiaries are confident that their DB pension
plan will be sufficiently funded at the end of the year. They therefore prefer the PGF
to have a low termination ratio, causing it to abstain from intervention. However, for
beneficiaries with marked risk aversion preferences, uncertainty is not acceptable even

15The values µ ∈ [−0.04, 0.04], σ ∈ [0.05, 0.5] and R0 ∈ [0.87, 1.2] are divided into 12 segments of equal
size, resulting in 123 = 1, 782 combinations. After calculating the constraint set (2.10), the partial
derivative is determined using increments of 0.01 for η.

16The increment of the coefficient of relative risk aversion is 0.01 as well.
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Figure 2.1: Computation results of partial derivative of beneficiaries’ expected utility w.r.t. the
termination ratio. Beneficiaries’ coefficient of relative risk aversion δ ∈ [0, 1) ∪ (1, 5]; funding
ratio process specified by drift µ ∈ [−0.04, 0.04], volatility σ ∈ [0.05, 0.5] and initial funding ratio
R0 ∈ [0.87, 1.2].
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though the plan’s funding ratio is increasing at a rather high rate. They prefer a high
critical funding ratio which is likely to trigger termination by the PGF likely. In sum,
demand for intervention by the PGF depends importantly on the risk preferences of
pension beneficiaries in this situation.

2.4 Critical risk aversion level
In the previous section, a critical risk aversion level at which the one-year expected
utility curve inverts was found for parameter triples (µ, σ,R0) marked with a “•" sign, see
panel (c) of Figure 2.1 again. It is of interest to see how this level, denoted by δ∗, depends
on the parameter values (µ, σ,R0) of the pension plan’s funding ratio process. Using the
parameter triple (µ, σ,R0) = (0.03, 0.2, 1.1) which belongs to the set of points marked with
“•" in panel (c) of Figure 2.1, ∂U

∂η
is plotted over the constraint set η ∈ CIPC in Figure 2.2.

Given intervention probability ε = 0.025, this constraint set is CIPC = (0, 0.71]. The
coefficient of relative risk aversion varies in the domain δ ∈ [0, 1) ∪ (1, 5]. For low values
of δ, ∂U

∂η
is negative over the entire interval (0, 0.71] of η. However, for values of δ above

approximately 1.5, ∂U
∂η

turns positive, again over the entire interval (0, 0.71] of η.17 One-
year expected utility curve inverts at δ∗ = 1.5, as indicated by the vertical plane of
Figure 2.2.

Figure 2.2: Partial derivative of the one-year expected utility as a function of η ∈ (0, 0.71] for values
of the coefficient of relative risk aversion δ ∈ [0, 1) ∪ (1, 5] with (µ, σ,R0) = (0.03, 0.2, 1.1). The
vertical plane indicates the critical risk aversion level δ∗ = 1.5.

17For relatively small values of η, it becomes difficult to distinguish the sign of ∂U∂η in Figure 2.2. However,
the statement in the text is based on the results of computation.
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Next, the relationship between δ∗ and the parameter values (µ, σ,R0) is investigated.
First, let the uncertainty concerning the pension plan’s funding ratio increase from σ = 0.2
to σ = 0.4. This calls for a new computation of the constraint set, which becomes
CIPC(µ, σ,R0) = (0, 0.43]. Panel (a) of Figure 2.3 presents ∂U

∂η
for termination ratios

η ∈ (0, 0.43] and values δ ∈ [0, 1) ∪ (1, 5], as before. The critical risk aversion value δ∗ at
which partial derivative over the entire termination ratio interval (0, 0.43] changes sign
becomes δ∗ = 0.38, down from δ∗ = 1.5 in Figure 2.2. Hence, less strongly risk-averse
pension beneficiaries with δ ∈ (0.38, 1.5] now also exhibit ∂U

∂η
> 0, causing them to prefer

intervention by the PGF. As uncertainty surrounding the funding ratio increases, the
probability of the DB plan becoming underfunded increases too; hence, more policyhold-
ers prefer intervention by the PGF.
Second, let the drift of the funding ratio process become smaller, with µ = 0.015 rather

than µ = 0.03 as in Figure 2.2, resulting in a new constraint set CIPC(µ, σ,R0) = (0, 0.7].
As shown in panel (b) of Figure 2.3, this has a very similar effect on the critical level
of risk aversion δ∗ as an increase in σ. Now the one-year expected utility curve inverts
at δ∗ = 0.75 (see the vertical plane in panel (b) of Figure 2.3), with less risk-averse
beneficiaries characterized by δ ∈ (0.75, 1.5] exhibiting ∂U

∂η
> 0 and causing them to

prefer intervention by the PGF. As the expected growth rate of the funding ratio becomes
smaller, the probability of the DB plan becoming underfunded again increases. This
causes even less strongly risk-averse beneficiaries to worry about losing their pension
benefits and therefore to prefer intervention by the PGF.
Third, consider a lower value of the initial funding ratio R0 = 0.9. With (µ, σ,R0) =

(0.03, 0.2, 0.9), the constraint set changes to CIPC = (0, 0.58]. Since in panel (c) of
Figure 2.3, the critical level of risk aversion stays the same as in Figure 2.2, i.e., δ∗ = 1.5,
beneficiaries’ preference concerning intervention by the PGF is not influenced by the DB
plan’s initial funding status. Rather, its future funding status is of importance.

The findings obtained can be summarized in the following five statements.

(1) Variations of the drift parameter µ, the volatility parameter σ, and the initial
funding ratio parameter R0 of the funding ratio process have a substantial impact
on the constraint set CIPC(µ, σ,R0) at a given value of intervention probability
(ε = 0.025, in the present case).

(2) Doubling the volatility σ (from 0.2 to 0.4) causes the critical level of risk aversion
where one-year expected utility curve inverts to drop from 1.5 to 0.38, i.e., by one-
fourth. Although with R0 = 1.1, the plan is well-funded initially, an increase in
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(a) (µ, σ,R0) = (0.03, 0.4, 1.1); CIPC(µ, σ,R0) = (0, 0.43], δ∗ = 0.38.

(b) (µ, σ,R0) = (0.015, 0.2, 1.1); CIPC(µ, σ,R0) = (0, 0.7], δ∗ = 0.75.

(c) (µ, σ,R0) = (0.03, 0.2, 0.9); CIPC(µ, σ,R0) = (0, 0.58], δ∗ = 1.5

Figure 2.3: Partial derivative of the one-year expected utility as a function of η ∈ CIPC for values
of the coefficient of relative risk aversion δ ∈ [0, 1)∪(1, 5] for given values of (µ, σ,R0). The vertical
plane indicates the critical risk aversion level δ∗.
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volatility triggers demand for intervention by the PGF even among almost risk-
neutral beneficiaries.

(3) Halving the drift µ (from 0.03 to 0.015) entails a halving of the critical level of
risk aversion, from 1.5 to 0.75 in the present case. This suggests that the current
near-zero rates of return on the assets typically held by pension funds will be likely
to boost beneficiaries’ demand for intervention by the PGF.

(4) The critical level of risk aversion drops to one fourth as σ is doubled but only to one
half as µ is halved. This difference suggests that demand for intervention by the
PGF is more sensitive to the uncertainty of the plan’s funding status than its growth
rate. This signals to sponsoring companies that an increase in the investment risk of
their pension portfolios can more likely induce beneficiaries to call for intervention
by the PGF.

(5) A lower initial funding ratio R0 (from 1.1 to 0.9) does not have an influence on
the critical level of risk aversion. This is consistent with the view that pension
beneficiaries are worried not about the pension plan’s initial funding status, but its
future funding status, which crucially depends on the uncertainty and growth rate
of its funding ratio.

These findings permit to conjecture a functional form for the critical level of risk aver-
sion, δ∗ = 2µ

σ2 . This function maps the sets (µ, σ,R0) = (0.03, 0.2, 1.1), (µ, σ,R0) =
(0.03, 0.4, 1.1) and (µ, σ,R0) = (0.015, 0.2, 1.1) to δ∗ = (1.5, 0.38, 0.75), as found in Fig-
ure 2.3. For this function, Proposition 1 holds, see Appendix 2.7.3 for proof.18

Proposition 1 Let δ∗ = 2µ
σ2 . Then, the one-year expected utility function U(η, δ, µ, σ, R0)

is strictly decreasing in η > 0 if δ < δ∗, strictly increasing in η > 0 if δ > δ∗, and constant
with respect to η > 0 if δ = δ∗ for given values of µ ∈ R, σ > 0 and R0 > 0.

2.5 The optimal termination ratio
This section is devoted to the solution of the constrained maximization problems (2.11)
and (2.14). As in Section 2.4, suppose (µ, σ,R0, ε) = (0.03, 0.2, 1.1, 0.025), while the coef-
ficient of relative risk aversion assumes the values δ = (0, 0.8, 1.6, 2.4). By Proposition 1,
the critical level of risk aversion can be computed; its value is δ∗ = 1.5. Thus, beneficia-
ries with δ = 0 and δ = 0.8 exhibit ∂U

∂η
< 0 while those with δ = 1.6 and δ = 2.4 exhibit

18We thank Lorens Imhof for contributing the proof.
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∂U
∂η

> 0. The optimal termination ratio is therefore determined by the boundary of the
corresponding constraint sets (2.10) and (2.13).

2.5.1 Expected utility maximization subject to the IPC only

In Section 2.4, the set satisfying the IPC was determined as η ∈ (0, 0.71]. Figure 2.4
plots the one-year expected utility as a function of η over this interval for the four values
of δ singled out above. It reveals that the utility value is not sensitive to changes in
the termination ratio η as long as it is low (η < 0.5), in keeping with the finding that
∂U
∂η

is extremely close to zero regardless of δ (see Figure 2.2 again). For risk-neutral
(δ = 0) and weekly risk-averse (δ = 0.8) pension beneficiaries, one-year expected utility
decreases progressively as η approaches 0.71 (see panels (a) and (b) of Figure 2.4). For
them, a low termination ratio is optimal, rendering intervention by the PGF almost non-
applicable.19 Intuitively, the legal cap on pension benefits paid out by the PGF causes
pension beneficiaries of this type to prefer possible recovery of an underfunded DB pension
fund, enabling it to pay the full promised benefits, over the prospect of losing them in
part when the plan is closed by the PGF.
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Figure 2.4: One-year expected utility as a function of the termination ratio η ∈ (0, 0.71] for δ =
(0, 0.8, 1.6, 2.4).

However, Figure 2.4 also shows that at higher values of relative risk aversion, i.e.,
δ = 1.6 and δ = 2.4, one-year expected utility starts to increase progressively as the
termination ratio approaches the upper bound of η = 0.71, reaching its maximum at

19Note that ∂U
∂η < 0 over the interval η ∈ (0, 0.71] for δ = (0, 0.8), see Proposition 1, causing the optimal

termination ratio to be extremely close to 0 with termination hardly ever triggered.
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η = 0.71 where the IPC is binding (see panels (c) and (d) of Figure 2.4). Intuitively,
more strongly risk-averse beneficiaries prefer to have the PGF exercise control through
termination since they are more concerned about the potential loss of benefits if the
pension fund continues operating. The higher the termination ratio, the safer their claims
and the higher their expected utility associated with termination.
As in Section 2.4, an analysis of the one-year expected utility can also be performed by

halving the drift (to µ = 0.015) and doubling the volatility (to σ = 0.4). The constraint
set shrinks again to become η ∈ (0, 0.7] and η ∈ (0, 0.43], respectively. The critical level
of risk aversion updates to be δ∗ = 0.75 and δ∗ = 0.38, respectively. For risk-neutral
beneficiaries, i.e., δ = 0, their one-year expected utility curve has the same pattern as in
panel (a) of Figure 2.4, but reaching the minimum at η = 0.7 and η = 0.43, respectively.
However, for beneficiaries characterized by δ = 0.8 (that is now above the updated critical
level of risk aversion δ∗ = 0.75 and δ∗ = 0.38), their one-year expected utility turns to
be increasing as the termination ratio η approaches the upper bound of η rather than
decreasing in panel (b) of Figure 2.4. Their optimal termination ratio switches to the
upper bounds of η = 0.7 and η = 0.43, respectively. At higher coefficients of relative
risk aversion (δ = 1.6, δ = 2.4), beneficiaries still exhibit increasing expected utility as in
panels (c) and (d) of Figure 2.4, albeit reaching a maximum at a lower value of η. These
results are intuitive. Since the DB plan is more likely to end up being underfunded with
lower drift or higher volatility, weakly risk-averse beneficiaries (δ = 0.8) now prefer the
PGF to intervene, protecting them from a loss of their pension benefits. Lastly, as is
known from Proposition 1, the initial funding ratio R0 does not have an influence on δ∗.
This implies that, when a different value of the initial funding ratio is selected, expected
utilities for beneficiaries with the four values of δ will have the same pattern as in panels
(a)-(d) of Figure 2.4 and their preference concerning the intervention by the PGF is not
going to change.

2.5.2 Expected utility maximization subject to both the IPC and
ESC

In this section, the ESC is added as a second constraint. It can be shown to be binding
at the termination ratio ηq = h−1

ES(q) = 0.68 (expected shortfall is set at q = 0.03).
The ESC constraint set therefore is η ∈ [0.68, 1), while the IPC constraint set continues
to be η ∈ (0, 0.71] as in Section 2.5.1. Therefore, the two constraints are compatible if
η ∈ [0.68, 0.71], indicated by the two vertical lines in Figure 2.5. The optimal termination
ratio for risk-neutral and weekly risk-averse pension beneficiaries (δ = 0, δ = 0.8) changes
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from the close-to-zero value in panels (a) and (b) of Figure 2.4 to the lower bound of
η = 0.68. Thus, while these types of beneficiary prefer to avoid termination, the PGF,
seeking to protect its future viability, imposes a higher value of termination threshold η.
By way of contrast, the upper bound η = 0.71 is optimal for more strongly risk-averse
beneficiaries (δ = 1.6, δ = 2.4), the same as under the IPC only (see panels (c) and (d)
of Figure 2.4 again).
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Figure 2.5: One-year expected utility when the IPC and the ESC are compatible; η ∈ (0, 0.71] ∩
[0.68, 1), δ = (0, 0.8, 1.6, 2.4), q = 0.03.

Clearly, the two constraint sets may fail to overlap. All it takes is to tighten the ESC,
e.g., from q = 0.03 to q = 0.015, meaning that the expected deficit must not exceed
1.5 percent of the plan’s liabilities. As shown in Figure 2.6, this causes the termination
ratio where the ESC is binding to increase to η = 0.8. Hence, the two constraint sets
now are η ∈ (0, 0.71] and [0.8, 1), respectively. As argued in Section 2.2.4, a second-best
solution is the one which satisfies the IPC while violating the ESC to the least extent.
By limiting the PGF’s annual probability of intervention, this gives priority to its current
financial guarantee. While violating the ESC to the least extent, the PGF can still find
new funding or adjust its investment strategy. Therefore, the second-best solution is
ηε = h−1

IP (ε) = 0.71. Note from panels (a) to (d) of Figure 2.6 that this solution does not
depend on beneficiaries’ risk aversion anymore.
To summarize, while the IPC leads to a termination rule that reflects beneficiaries’

risk aversion (see Proposition 1 and Figure 2.4 again), this needs not to be true when
the ESC is added. The two constraints may not be satisfied simultaneously when the
expected deficit relative to the plan’s liabilities (q) is set at a sufficiently low value. In
that event, satisfying the IPC while violating the ESC to a minimum extent is proposed
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Figure 2.6: One-year expected utility when the IPC and the ESC are not compatible; η ∈ (0, 0.71]∩
[0.8, 1), δ = (0, 0.8, 1.6, 2.4), q = 0.015.

as a second-best solution, which however does not reflect beneficiaries’ degree of relative
risk aversion, anymore.

2.6 Conclusion
The objective of this chapter is to derive a rule for a pension guarantee fund (PGF) when
to close an underfunded defined benefit (DB) pension plan. In contrast to designing op-
timal intervention strategies in the best interest of the PGF, see Kalra and Jain (1997),
evaluating the PGF’s intervention in terms of pension beneficiaries’ utility dispels the
main concern of the critics of the PGF’s active intervention, being its contradiction to
the PGF’s social welfare motive. Acting in the interest of pension beneficiaries, the PGF
solves a one-year expected utility maximization problem with the termination ratio η,
i.e., the funding ratio of the DB pension plan triggering intervention, as the argument.
The higher the termination ratio, the more likely the intervention by the PGF is. The
two constraints are designed to limit the PGF’s insolvency risk, the intervention prob-
ability constraint (IPC) which limits the PGF’s annual frequency of intervention, and
the expected shortfall constraint (ESC) which limits the expected deficit the PGF has to
cover when it allows an underfunded pension plan to continue.
In the view of the complexity of the objective function, numerical solutions were pre-

sented for combinations of the DB fund’s initial funding ratio, the drift of the funding
process, and its volatility, generating positive and negative partial derivatives of expected
utility w.r.t. the termination ratio. While some of the derivatives kept their sign regard-
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less of beneficiaries’ relative risk aversion, quite a few changed sign from negative to
positive when the coefficient of relative risk aversion increased above a critical risk aver-
sion level. This finding motivated an analysis of the relationship between the critical
risk aversion level, denoted by δ∗, at which one-year expected utility curve inverts, and
the parameters characterizing funding ratio process, i.e., the drift, volatility, and initial
funding ratio. Following this analysis, a conjecture as to the functional form of δ∗ was
possible and permitted the formulation of Proposition 1. According to it, the functional
form of the critical risk aversion level is δ∗ = 2µ

σ2 and the expected utility function exhibits
a monotonically decreasing and increasing relationship with the termination ratio η as
relative risk aversion δ is below and above δ∗, respectively. This implies that in the in-
terest of beneficiaries, the PGF should set the termination ratio η at a low value, causing
intervention to be unlikely, for weakly risk-averse beneficiaries characterized by δ < δ∗;
but at a high value of η, intervention becomes very likely, serving the interests of strongly
risk-averse beneficiaries characterized by δ > δ∗. Therefore, the optimal intervention by
the PGF depends crucially on the beneficiaries’ risk preferences, which differs from the
recommended intervention strategy by Kalra and Jain, i.e., the PBGC intervenes in only
extreme cases. Moreover, as volatility σ increases, the critical risk aversion level δ∗ drops.
This implies that the set of beneficiaries with δ > δ∗ increases so that more beneficiaries
prefer the intervention by the PGF. This finding not only confirms the comparative re-
sult in Kalra and Jain (1997) from the PGF’s point of view, stating that the PBGC faces
a higher risk and intervenes earlier as uncertainty concerning the pension asset process
increases, but also confirms from the beneficiaries’ point of view that their demand for
early intervention by the PGF increases as uncertainty surrounding the funding ratio is
larger. In addition to the static analysis on the volatility, a similar effect on the critical
risk aversion level as an increase in σ was found by assigning a lower value to the drift µ.
However, the initial funding ratio R0 was found not to affect δ∗, suggesting that pension
beneficiaries’ demand for earlier intervention by the PGF is driven by the plan’s future
rather than initial funding status.
Eventually, the optimal termination ratio for beneficiaries with a given value of δ is

mainly determined by the boundary of the constraint set after computing δ∗ by Propo-
sition 1. As shown in Section 2.5, imposition of only the IPC results in non-applicable
intervention by the PGF for risk neutral (δ = 0) and slightly risk-averse (δ = 0.8) ben-
eficiaries. This result may contribute to explaining the passive termination behavior of
the PBGC, as noted by Kalra and Jain. When the ESC is added, two outcomes are pos-
sible. If the admissible deficit relative to the DB plan’s liabilities is not too low, the two
constraints overlap, admitting of an optimal termination rule that reflects beneficiaries’
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relative risk aversion. However, if the relative deficit is set at a very low value, the IPC
and ESC fail to result in overlapping constraint sets, calling for a second-best solution.20

Giving priority to the IPC over the ESC can be justified with the argument that securing
the PGF’s ability to guarantee pensions now takes precedence over its financial status a
year hence, which still can improve in the meantime. However, this second-best solution
turns out to have the side effect of neglecting beneficiaries’ relative risk aversion.
This analysis could be extended in several ways. First, the PGF is modelled as insuring

only one DB pension plan. An important extension for future research is to consider a
set of plans, giving rise to portfolio effects. On the one hand, the PGF receives premium
income from several sources, permitting it to build its reserves during normal times. On
the other hand, it may be confronted with an accumulation of risks during an economic
downturn, causing several plans to be underfunded. Evidently, this extension calls for a
careful modelling of an aggregate terminating process of the insured DB plans. Second,
with regulatory practice specifying annual premiums paid to the PGF over a multi-period
horizon, the PGF might anticipate changes in its financial status over the multi-period
horizon. This would call for a dynamic termination strategy over the longer horizon
taking into account a sequence of expected shortfall values and modelling a series of
optimal probabilities of intervention, along the lines of Shi and Werker (2012) in the case
of long-term investment strategies. In this context, introducing a utility function with
a loss aversion property to characterize pension beneficiaries and studying its effect on
the optimal termination rule would be of interest (see e.g., Siegmann (2011)). Finally,
one might consider lifting current regulatory norms leading to the restrictions studied
in this paper in favor of risk-based premiums paid to the PGF, of the type common in
reinsurance. Thus, the PGF would obtain the right to charge DB pension plans with an
unfavorable development of their funding ratio an increased premium.21 But still, this
is modelled on the premise of allowing the PGFs’ termination rules to reflect pension
beneficiaries’ risk preferences.

20This situation could also obtain if the probability of intervention ε in the IPC is set to a very low
value, causing the admissible values of the termination ratio η to be low. This case is not pursued
here.

21The issue of who pays for the deficit of the PGF if it goes bankrupt, is not addressed in this paper.
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2.7 Appendix to Chapter 2

2.7.1 Closed-form expressions for pertinent probabilities

We summarize the closed-form expressions for the pertinent probabilities, see, e.g., Jean-
blanc, Yor and Chesney (2009), chapter 3, as follows
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( 1
σ
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σ
+ 1

2σ
)
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where Φ(.) and φ(.) denote the CDF and the PDF of a standard normal variable, re-
spectively. (2.15) measures the probability of the funding ratio dropping below x at time
t = 1, and (2.16), the probability of the minimum value of the funding ratio between
t0 = 0 and t = 1 falling short of x. The joint probability function and the joint density
function of (R1, XR) are given by expressions (2.17) and (2.18), respectively.

2.7.2 Derivation of the expected shortfall function

By using the closed-form expressions (2.15) and (2.18) given in Appendix 2.7.1, the
expected shortfall of an ongoing underfunded pension plan at t = 1 can be calculated as
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follows,
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= : hES(η, µ, σ,R0), η ∈ H ≡ (0,min{R0, 1}) .

The expected shortfall hES(η, µ, σ,R0) is continuous on the termination ratio η ∈ (0,min {R0, 1})
for given values of (µ, σ,R0). It is given by,
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t∈[0,1]

{Rt} > η
}


= E

Y 1{ inf
t∈[0,1]

{Rt} > η
}
 = E[Y ]E

 Y

E[Y ]1
{

inf
t∈[0,1]

{Rt} > η
}
 ,

where Y = (1 − R1)1{R161} is non-negative and does not depend on η. Applying a
multiplicative factor, this can be expressed under a different probability measure Q,

E
[
(1−R1)1{τ>1}1{R161}

]
= E[Y ]E

 Y

E[Y ]1
{

inf
t∈[0,1]

{Rt} > η
}
 = E[Y ]EQ

1{ inf
t∈[0,1]

{Rt} > η
}
 .
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This quantity is decreasing from E[Y ] to 0 as the termination ratio η increases from 0 to
min{R0, 1}. In addition, when η approaches 0, one has

lim
η→0

E
[
(1−R1)1{τ>1}1{R161}

]
= E[Y ] = E

[
(1−R1)1{R161}

]
=
∫ 1

0
(1− r)dP (R1 6 r) = Φ

(
− 1
σ

lnR0 −
µ

σ
+ 1

2σ
)
−R0e

µΦ
(
− 1
σ

lnR0 −
µ

σ
− 1

2σ
)
,

where P (R1 6 r) is given in Appendix 2.7.1.

2.7.3 Proof of Proposition 1

In the following proof of Proposition 1, the values of µ ∈ R, σ > 0 and R0 > 0 are fixed.
To reduce the number of parameters, introduce

γ = µ

σ
− σ

2 , ζ = 2γ + σ(1− δ) = σ(δ∗ − δ),

and define for all x ∈ R,

g(x) =e(ζ−2γ)xΦ(x− γ) + eζxΦ(x+ γ)

+ e( 1
2 ζ

2−γζ)
[
Φ(−x+ ζ − γ)− e2(ζ−γ)xΦ(x+ ζ − γ)

]
.

Then

U(η, δ, µ, σ, R0) = R
(1−δ)
0

1− δ g
( 1
σ

ln η

R0

)
.

As 1
σ

ln η
R0

is strictly increasing in η, the proposition will follow if (1 − δ)g′(x) can be
shown to have the same sign as δ − δ∗.
Define for every x ∈ R a function ψx : R→ R by

ψx(z) = e(
1
2 z

2+z(x−γ))Φ(x+ z − γ).

Then g′(x) can be written as

g′(x) = e(ζ−2γ)x[(ζ − 2γ)ψx(0) + ζψx(2γ)− 2(ζ − γ)ψx(ζ)], (2.19)

where the following equalities are used,

e(ζ−2γ)xφ(x− γ) = e( 1
2 ζ

2−γζ)φ(−x+ ζ − γ), eζxφ(x+ γ) = e( 1
2 ζ

2−γζ)e2(ζ−γ)xφ(x+ ζ − γ).
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To determine the sign of g′(x), one can use Lemma 3 below. To this end, one has to
verify that ψx is strictly increasing. The starting point is

ψ′x(z) = e(
1
2 z

2+z(x−γ)) [(x+ z − γ)Φ(x+ z − γ) + φ(x+ z − γ)] .

If x + z − γ ≥ 0, then ψ′x(z) is obviously positive. If x + z − γ < 0, then the inequality
1− Φ(a) < φ(a)/a for all a > 0, see, e.g., Feller (1968), page 175, implies that

ψ′x(z)
e(

1
2 z

2+z(x−γ)) = (x+ z − γ)[1− Φ(−x− z + γ)] + φ(−x− z + γ) > 0.

Hence, ψx is strictly increasing, and it follows from (2.19) and Lemma 3 that

g′(x) < 0 if ζ < min{0, 2γ} or ζ > max{0, 2γ}, (2.20)

g′(x) > 0 if min{0, 2γ} < ζ < max{0, 2γ}. (2.21)

Suppose now that δ > δ∗. Then ζ < 0. If δ > 1, then ζ < 2γ, so that, by (2.20),
g′(x) < 0 and (1 − δ)g′(x) > 0. If δ < 1, then 0 > ζ > 2γ, so that, by (2.21), g′(x) > 0
and again (1− δ)g′(x) > 0.
Suppose next that δ = δ∗. Then ζ = 0 and in view of (2.19), (1− δ)g′(x) = 0.
Suppose finally that δ < δ∗. Then ζ > 0. If δ > 1, then 0 < ζ < 2γ, so that, by (2.21),

g′(x) > 0 and (1 − δ)g′(x) < 0. If δ < 1, then ζ > 2γ, so that, by (2.20), g′(x) < 0 and
again (1− δ)g′(x) < 0.

Lemma 3 Let ψ : R→ R be a strictly increasing function. Let γ ∈ R. Then

(z − 2γ)ψ(0) + zψ(2γ) < 2(z − γ)ψ(z) if z < min{0, 2γ} or z > max{0, 2γ}

and

(z − 2γ)ψ(0) + zψ(2γ) > 2(z − γ)ψ(z) if min{0, 2γ} < z < max{0, 2γ}.

Proof. If γ = 0, the claim reduces to zψ(0) < zψ(z) for all z 6= 0. If γ 6= 0 and z = γ,
the claim reduces to −γψ(0) + γψ(2γ) > 0. In either case, the claim is an immediate
consequence of the assumption that ψ is strictly increasing.
Suppose now that γ 6= 0. Set α = min{0, 2γ}, β = max{0, 2γ}, and define for all

z 6= γ,
h(z) = (z − 2γ)ψ(0) + zψ(2γ)

z − γ
.
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Then h(α) = 2ψ(α), h(β) = 2ψ(β), and

h′(z) = γ[ψ(0)− ψ(2γ)]
(z − γ)2 < 0 for all z 6= γ,

so that h is strictly decreasing on (−∞, γ) and on (γ,∞). Hence,

h(z) > h(α) = 2ψ(α) > 2ψ(z) if z < α,

h(z) < h(α) = 2ψ(α) < 2ψ(z) if α < z < γ,

h(z) > h(β) = 2ψ(β) > 2ψ(z) if γ < z < β,

h(z) < h(β) = 2ψ(β) < 2ψ(z) if β < z.

Multiplying by (z − γ) completes the proof.
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3 Early Default Risk and Surrender
Risk: Impacts on Participating Life
Insurance Policies

3.1 Introduction
A typical participating life insurance contract provides policyholders a minimum interest
rate guarantee and bonus payments upon death and upon survival which are linked to
the performance of the insurance company. Usually, additional options are embedded
in the contracts to increase their attraction to the policyholders, among which the most
popular one is the surrender option. Surrender option entitles the policyholders the right
to terminate their contracts prematurely and to obtain the surrender benefit promised
by the insurance companies.

The policyholders may not necessarily receive the payments specified in their contracts
even if they hold the contracts till the maturity date. If the insurance company does not
have enough reserves to pay back its liabilities at the maturity, the policyholders cannot
get more than what remains in the company. To protect the policyholders from col-
lecting too little benefit as the insurance company declares bankruptcy at the maturity,
regulatory authorities impose early default mechanisms to monitor insurance companies’
financial status and close them before it is too late so. For example, under Solvency II, if
a company’s capital becomes lower than the minimum capital requirement, its licence is
revoked by the supervisory authority, see Gatzert and Wesker (2011). Also, an insurance
company supervised by the Swiss Financial Market Supervisory Authority (FINMA) can
lose its license when its risk-based capital drops below the lowest threshold specified in
the Swiss Solvency Test (SST), see FINMA Circ. 08/44 ’SST’ (2008). Proceeds from
liquidated assets are then paid to stakeholders. Hence, the policyholders also face early
default risk of the insurance company accompanied with the early regulatory intervention.
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Both surrender decision and early default intervention definitely have an direct impact
on the fair value of participating policies since they change the policies’ payment streams.
In the existing literature, most studies focus on only one of these two aspects. For exam-
ple, Grosen and Jørgensen (2000), Bacinello (2003) and Andreatta and Corradin (2003)
study the fair valuation of participating life insurance contracts with embedded surrender
options but have not counted in the early default risk triggered by the bad performance
of the insurance company, while Grosen and Jørgensen (2002), Jørgensen (2001), Bernard
et al. (2005) and Chen and Suchanecki (2007) take into account regulatory intervention
in evaluating participating contracts, but leave out surrender risk. The only work that
treats early default risk and surrender risk at the same time is Le Courtois and Nak-
agawa (2013) who model surrender risk through a Cox process of an intensity which
is correlated to the financial market but is independent of the company’s liquidation
threshold. However, since the early termination of the insurance company imposed by
the regulator reframes the payment structure for the policyholders, which we consider
as direct impacts, as a response the policyholders may change their surrender decision-
making behaviors. This influence of the enforced early bankruptcy on the policyholders’
surrender behaviors can be considered as a ’by-product’ of the regulatory intervention,
which in turn affects the policies’ payments and correspondingly, the contracts’ value. In
this paper, we closely analyze both the direct and indirect (’by-product’) impacts of the
early default risk on the pricing of the participating policies by endogenously modeling
the policyholders’ surrender behaviors and uncovering the impacts of the early default
regulation on the surrender behaviors. Besides, when regulatory rules change, insurance
companies may react differently to the regulation by adopting different investment strate-
gies, which again affects the contract values directly and indirectly through its influence
on policyholders’ surrender behavior. We hence also study the impacts of the investment
strategy on the fair value of the insurance contracts and how the insurance companies
choose the investment strategies in face of the regulatory rules.

To describe the early default risk we adopt the regulatory framework in Grosen and Jør-
gensen (2002), Jørgensen (2001) and Bernard et al. (2005), where liquidation is triggered
as the insurance company’s asset value drops below a threshold. Concerning surrendering,
in most literature, it is assumed that the policyholders are fully rational, which means
they can terminate the contract at an optimal time point so that the contract value is
maximized, see e.g., Grosen and Jørgensen (1997), Grosen and Jørgensen (2000), An-
dreatta and Corradin (2003), Bacinello (2003), and Bacinello (2005), to just name a few.
However, since there is not an active market to monitor the contract values, the surrender
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option is hardly exercised at the right time if a policyholder is not capable of evaluating
the contract correctly. Also due to the lack of a trading market for the contracts, the
policyholders, when in urgent liquidity needs, have to surrender their contracts at the
insurance company and collect the surrender guarantees, which are usually lower than the
fair contract values. Empirical evidences which confirm the so called emergency hypoth-
esis are found e.g. in Kuo et. al. (2003) and Kiesenbauer (2011). Given the limitations,
it is more reasonable to consider policyholders as partly rational from a purely financial
point of view. We adopt the approach of modeling policyholders’ partial rationality in
Li and Szimayer (2014). They consider surrender as a randomized event assuming that
arrival of the event follows a Poisson process with an intensity bounded from below and
from above. The lower and upper bounds refer to the minimum surrender rate due to
exogenous reasons and maximum surrender rate due to limited rationality respectively.
The maximum contract values are then derived by choosing surrender intensities within
the two bounds in the worst case scenario (from the perspective of the insurers). This
approach corresponds to the spirit of Solvency II. CEIOPS1 has pointed out that it may
be necessary to differentiate between different insurance products for the purpose of the
mass lapse stress.2 It is also pointed out by the CEIOPS that the lapse risk should be
treated differently for different policyholders. For example, the risk of a mass lapse is
substantially greater if the policyholders are institutional investors since they tend to
be better informed and react more quickly.3 This indicates that the rationality level of
the policyholders also plays a significant role in the analysis. Therefore, we will consider
different bounded values of the surrender intensities and analyze how the influence of
regulation rules on surrender behaviors differs with respect to policyholders’ rationality.
Similar to Li and Szimayer (2014) we derive a partial differential equation (PDE) to
characterize the price of a participating policy. However, this PDE is only valid when the
liquidation threshold has not been touched yet. Otherwise, the policy takes immediately
the liquidation value. In this sense, we are solving a barrier option pricing problem. We
apply the finite difference method proposed in Zvan et al. (1996) and Zvan et al. (2000)
to solve this problem numerically.

1CEIOPS refers to the Committee of European Insurance and Occupational Pensions Supervisors. It
was replaced by the European Insurance and Occupational Pensions Authority (EIOPA) since 2011.

2CEIOPS advices to take three lapse scenarios into consideration and choose the worst among them
to calculate the capital charge for lapse risk, see CEIOPS (2009). The advice of limiting to three
scenarios is based on the complexity of situations in reality. The mass lapse event is one of the three
scenarios considered during the calculation. In our simplified model, however, we are able to find the
worst case scenario dynamically.

3See CEIOPS (2009).
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The paper is organized as follows. In section 3.2 we model the insurance company
and introduce the payoff structure of a participating policy. The early default regulatory
framework is specified as well. Besides, both the financial market and the insurance
market are modeled with respect to the stochastic processes of the underlying asset, the
mortality risk intensity and the surrender risk intensity. In section 3.3 we derive the
PDE for the price of the policy. In section 3.4 we analyze the effect of the regulatory
framework and the investment strategy on surrender behaviors as well as on contract
values. Section 3.5 concludes.

3.2 Model Framework

3.2.1 Company Overview

Inspired by the model framework in Briys and de Varenne (1994), we consider a life insur-
ance company which acquires an asset portfolio with the initial value A0 at time t0 = 0
financed by two agents, i.e., a policyholder and an equity holder. The policyholder pays
a premium to acquire the initial liability L0 = αA0 with α ∈ (0, 1). The rest is levied
from the equity holder who acquires E0 ≡ (1−α)A0 with limited liability. The insurance
company’s balance sheet at time t0 is shown in Table 3.1. The parameter α is called as
a wealth distribution coefficient in Grosen and Jørgensen (2002).

Assets Liabilities & Equity
A0 L0 ≡ αA0

E0 ≡ (1− α)A0

Table 3.1: Insurance company’s balance sheet at t0

It is assumed that the insurance company operates in a frictionless complete and
arbitrage-free financial market over a time interval [0, T ], where time T corresponds to the
expiration date of the insurance contract. As the insurance contract expires at time T , the
insurance company closes and its assets are liquidated and distributed to stakeholders.4

4For simplicity, we assume the company closes when the contract ends. It is not a strict assumption
because it can be considered that assets raised from the policyholder and the equity holder are put
in a separate fund, as the contract ends, the fund is closed and assets left in the fund are liquidated
and distributed to the stakeholders.
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3.2.2 Participating Life Insurance Policy

By investing in the insurance company at time t0, the policyholder signs a participating
insurance contract which promises the policyholder a part of the insurance company’s
profits in addition to the guaranteed minimum interest rate at maturity date T . If the
policyholder dies before time T , the contract pays death benefits. Additionally, the poli-
cyholder can exercise the surrender option embedded in the contract before maturity T
and collects surrender benefits from the insurance company. To summarize, the contract
promises survival benefits, death benefits and surrender benefits, depending on which
event happens first. In any event, the policyholder has a priority claim on the company’s
assets and the equity holder receives what is left.

As the contract expires at maturity T , the policyholder receives a minimum guaranteed
benefit, which is given by compounding the initial liability L0 with a minimum guaran-
teed interest rate rg, i.e., LrgT = L0e

rgT , and a bonus conditional on that the asset value
generated by the contribution of the policyholder is enough to cover the minimum guar-
anteed benefit, i.e., αAT ≥ L

rg
T . Suppose δ is a participation rate in the asset surplus,

the profits shared with the policyholder are δ[αAT − L
rg
T ]+. However, it may happen

that at time T when the company’s assets are liquidated, the assets’ value is lower than
the value of the minimum guaranteed benefit. In this case, based on the assumptions
that the policyholder has a priority claim on the company’s assets and the equity holder
has limited liability, the policyholder collects what is left, i.e., AT , and the equity holder
walks away with nothing in his hands. To sum up, when the contract survives until the
maturity T the policyholder receives survival benefits which take the form

Φ(AT ) = L
rg
T + δ[αAT − LrgT ]+ − [LrgT − AT ]+. (3.1)

The policyholder may die before the contract matures. We use τd to denote the death
time of the policyholder aged x at time t0. At time τd < T , the contract pays death
benefits to the policyholder. We assume that death benefits have the same payment
structure as survival benefits, but with all the components evaluated at the death time
τd. We use rd and δd to denote the minimum guaranteed interest rate and the participation
rate for calculating the promised minimum guarantee, i.e., Lrdτd = L0e

rdτd , and the asset
surplus, respectively. Then, the death benefits have the following form at time τd

Ψ(τd, Aτd) = Lrdτd + δd[αAτd − Lrdτd ]
+ − [Lrdτd − Aτd ]

+, (3.2)
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Furthermore, by exercising the surrender option embedded in the contract, the poli-
cyholder can terminate the contract before the expiration date T . We use τs to denote
the surrender time. Once the surrender option is exercised, the company closes and its
assets are liquidated and paid to the policyholder as specified in the contract but not
more than the liquidated asset value. We consider the following surrender payment form
for the policyholder

S(τs, Aτs) = Lrsτs − [Lrsτs − Aτs ]
+, (3.3)

where Lrsτs = (1 − βτs)L0e
rsτs is the minimum surrender guarantee when the asset value

suffices. Here, rs is the minimum guaranteed interest rate at surrender and βτs is a
penalty parameter which penalizes the policyholder for early terminating the contract and
is assumed to be a deterministic decreasing function of the time. After the policyholder
is paid off, the equity holder receives the rest of the asset value.

3.2.3 Early Default Mechanism

Now we introduce early default risk of insurance company into the model. We consider
the presence of an external regulator who watches on the insurance company’s financial
status over its operating time horizon. We abstract away from cumbersome bankruptcy
rules and procedures applied to insurance companies in practice and assume the insurance
company is on-going until either the external regulator intervenes before T or the insur-
ance contract matures at T . We adopt the regulatory mechanism introduced by Grosen
and Jørgensen (2002) and set up a default-triggering barrier based on the minimum sur-
vival guarantee Bt = θL0e

rgt, where θ is a default multiplier. Once the company’s asset
value drops below the barrier before maturity T , the company is closed by the regulator
and its assets are liquidated and distributed to the stakeholders. Accordingly, we define
the early default time τb as the first time that the asset value drops below the barrier,

τb = inf {t | At ≤ Bt}. (3.4)

At time τb, the policyholder receives early default benefits, denoted by Υ(τb, Aτb), which
have the lower value of the liquidated assets and the minimum survival guarantee accrued
at the guarantee rate rg up to the early default date,

Υ(τb, Aτb) = min{Aτb , Lrgτb}, (3.5)
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where Lrgτb = L0e
rgτb . Accordingly, if the company has the liquidated assets more than

the promised minimum guarantee, the equity holder obtains what is left after paying off
the policyholder; otherwise, the equity holder gets nothing.

The default multiplier θ is set by the regulator, which actually reflects how intensively
the regulator monitors the insurance company and how strongly the regulator intends to
protect the policyholder. If the regulator believes that the insurance company is inclined
to take the advantage of the policyholder by running a risky business or is not competent
enough to manage its assets, the regulator may set a higher default multiplier to protect
the policyholder. This implies that the insurance company must bear a higher early
default risk. Otherwise, the regulator will set a lower default multiplier, which allows the
insurance company to recover from its temporary bad performance. In our model, we
restrict θ to be smaller than 1/α, which ensures A0 > B0 so that the insurance company
does not default at the initial time t0 when the contract is just issued to the policyholder.
The restriction makes economic sense since in reality there would be no equity holder
who would like to invest in a company that will be shut down by the government at the
opening day.

3.2.4 Mathematical Formulation

In this section we model the financial market and the insurance market mathematically.
We fix a filtered probability space (Ω,F ,F,P), where F = (Ft)t≥0 reflects the flow of
information available on the financial market and the insurance market. We assume that
the company invests its total initial assets in traded (risk-free and/or risky) assets on
the financial market, where the risk-free interest rate, denoted by r, is assumed to be
deterministic in time. Under the market probability measure P, the company’s asset
price process A is assumed to be governed by the following stochastic process

dAt = a(t, At)Atdt+ σ(t, At)At dWt, ∀t ∈ [0, T ]. (3.6)

Here W is a standard Brownian motion under P and generates the filtration FW =
{Ft}0≤t≤T . The functions a and σ > 0 refer to the expected rate of return and the
volatility of the asset process respectively, and both are regular enough to guarantee the
unique solution of (3.6).

As the payoff of the contract depends not only on the asset value itself but also on the
occurrence of the death event or the surrender event, we enlarge the filtration FW in a
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minimal way to summarize all the information relevant to the contract valuation. The
filtration FW is thus enlarged toG = FW∨H whereH is jointly generated by the jump pro-
cesses Ht = 1{τd≤t} and Jt = 1{τs≤t}, i.e., the information about whether the policyholder
dies before time t and whether he surrenders the contract before time t, respectively.
The hazard rate of the random time τd, also called mortality intensity, is denoted by µ
and is assumed to a deterministic function of time.5 Similarly, we call the hazard rate of
the random time τs the surrender intensity and denote it by γ. The surrender intensity
γ needs to be modeled here. Based on our arguments in the introduction, we take into
account that the policyholder has partial rationality in surrendering the contract. We
follow the approach adopted in Li and Szimayer (2014) by assuming the surrender inten-
sity bounded from below by ρ as surrendering is not a financially optimal decision for
the policyholder, and from above by ρ̄ as surrendering becomes financially optimal, with
ρ̄ > ρ. Due to personal reasons which urge the policyholder to surrender the contract
prematurely, the lower bound of the surrender intensity ρ is assumed in any case, i.e.,
the surrender intensity at least takes the value of ρ. The size of the increase in the value
of surrender intensity as surrendering becomes financial optimal to the policyholder, i.e.,
ρ̄−ρ, measures how frequently the policyholder updates his financial market information
and makes a surrendering decision when it is optimal to do so. The more frequently he
updates and/or analyzes financial information, the larger the increase in the intensity
is, accordingly, the more rational he is. In case that ρ̄ = ∞, we are back in the setting
where the policyholder may surrender the contract at any time when it is optimal to do
so and a pure American-style contract should be priced by solving an optimal stopping
problem. The decision will be made by comparing the continuation value of the contract
and the value of surrender benefits, which are denoted by v(t, A) and S(t, A) respectively.
Depending on which decision the policyholder makes, the endogenous surrender intensity
is thus either 0 or ρ̄− ρ. To summarize, the surrender intensity takes the form of

γt =

ρ , for S(t, A) < v(t, A)

ρ̄ , for S(t, A) ≥ v(t, A).
(3.7)

On the current information available on the financial market and the insurance market,
the arrival of the death event, the arrival of the surrender event and W are independent.

5In the literature there are many discussions on stochastic mortality intensity which is more consis-
tent with the reality, see e.g. Bacinello et al. (2010), Biffis et al. (2010), Dahl (2004), Dahl and
Møller (2006). However, the stochastic feature of the mortality intensity does not have too much in-
fluence on the contract value, see Li and Szimayer (2011). Hence, we assume a deterministic mortality
intensity for simplicity and focus more on the surrender risk and the early default risk.
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Thus, we have that W is a G-martingale, and µ and γ are G-intensities of the random
death time τd and the random surrender time τs, respectively.

In the absence of arbitrage, we price the participating life insurance contract by risk-
neutral valuation with a risk-neutral measure Q for the insurer. Under the risk-neutral
measureQ on the filtration generated by the financial market, the company’s asset process
is then described by

dAt = r(t)Atdt+ σ(t, At)At dWQ
t , ∀t ∈ [0, T ], (3.8)

where WQ is a standard 1-dimensional Brownian motion under Q. Taking the mortality
risk and the surrender risk into consideration, pricing the participating life insurance
contract under the martingale measure Q with µ and γ as G-intensities of the random
times τd and τs, respectively, requires additional justification and assumption. Given
that the mortality intensity is deterministic, the mortality risk is diversifiable for the
insurer if the pool of policyholders is large enough, and thus µ is the (Q,G)-intensity
of the arrival of the death. The surrender intensity specified in (3.7) corresponds to the
worst-case scenario from the perspective of the insurance company. We therefore assume
that the insurance company does not ask for extra risk premium above the worst case
surrender intensity any more when changing from the measure P to the measure Q.6 The
bounds ρ and ρ̄ are also valid under the measure Q and the surrender intensity specified
in (3.7) corresponds to the (Q,G)-intensity of τs on the enlarged market represented by
the filtration G.7 The contract value obtained under the measure Q with the worst-
case surrender intensity γ can be interpreted as the upper price bound of the contract.
We address this issue formally in Remark 1. Consequently, the choice of the surrender
intensity in (3.7) is not only motivated by the observations of the policyholders’ surrender
behaviors on the market but also by the worst-case scenario analysis within a reasonable
range that is often adopted in practice.

6Alternatively, a higher market price for the surrender risk may be charged by lowering the lower bound
ρ and increasing the upper bound ρ̄ under the measure Q. In Proposition 3 we show formally that a
lower ρ and a higher ρ̄ lead to a higher contract value.

7Confer Li and Szimayer (2014) for a formal explanation of the surrender intensity after the change of
measure.
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3.3 Contract Valuation
In this section we evaluate the contract by taking both the (early) default risk and the
surrender risk into consideration. We are not able to find a closed-form pricing formula for
the contract, since the surrender intensity can only be determined endogenously within
our model. However, by applying the PDE approach, we can specify the surrender inten-
sity and the contract value simultaneously. The contract value is thus not represented by
a pricing formula but characterized by a PDE equation and solved numerically with the
finite difference method. This approach is applied by Li and Szimayer (2014) in a similar
setting when they price unit-linked life insurance contracts with surrender guarantees.
The crucial point in this chapter is that after introducing the early default mechanism,
the contract payoff to the policyholder is linked to the solvency of the company and has
a barrier option property. Thus, in order to evaluate the contract, we need to distinguish
between the region where At ≤ Bt and the region where At > Bt for t ∈ (0, T ), which
is similar to the barrier option pricing. For At ≤ Bt at time t ∈ (0, T ), the insurance
company must be liquidated and the policyholder only obtains Υ(t, At). For At > Bt, we
represent the contract value Vt on {t ≤ τd ∧ τs ∧ T} by

Vt = 1{t<τd∧τs}v(t, At) + 1{t=τd,τd<τs,T}Ψ(τd, Aτd) + 1{t=τs,τs<τd,T}S(τs, Aτs), (3.9)

where v is a suitably differentiable function v : [0, T ] × R+ → R+
0 , (t, A) 7→ v(t, A),

representing the pre-death/surrender value. Then we apply the balance law based on the
no-arbitrage condition on the set {t < τd ∧ τs ∧ τb ∧ T}

r(t)V (t, At)dt = EQ[dVt|Gt]. (3.10)

On the set {t < τd ∧ τs ∧ τb ∧ T}, we compute the differential of V as8

dVt = dv(t, At) + (Ψ(t, At)− v(t, At))dHt

+(S(t, At)− v(t, At))dJt, for 0 ≤ t < T, (3.11)

where H and J refer to the jump processes with the Q-intensities µ and γ respectively.
A jump in H or J leads to a change in the payment liability either of the amount
Ψ(t, At)−v(t, At) or S(t, At)−v(t, At). Plugging (3.11) into (3.10) and using Vt = v(t, At)

8Notice that in the region At > Bt, there would not be early default after the instantaneous time
period dt since the asset process is assumed to be continuous in our model.
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at time t < τd ∧ τs ∧ τb ∧ T , we obtain

r(t)v(t, At)dt = EQ[dv(t, At)|Gt] + (Ψ(t, At)− v(t, At))µ(t)dt

+(S(t, At)− v(t, At))γtdt. (3.12)

By applying Ito’s Lemma to dv(t, At), we have

EQ[dv(t, At)|Gt] = EQ

[
Lv(t, At)dt+ σ(t, At)At

∂v

∂A
(t, At)dWQ

t

∣∣∣∣Gt
]

= Lv(t, At)dt, (3.13)

where Lv(t, A) = ∂v
∂t

(t, A) + r(t)A ∂v
∂A

(t, A) + 1
2σ

2(t, A)A2 ∂2v
∂A2 (t, A). Then, on the set

{t < τd ∧ τs ∧ τb ∧ T} we have

Lv(t, At) + µ(t)Ψ(t, At) + γtS(t, At)− (r(t) + µ(t) + γt)v(t, At) = 0. (3.14)

We summarize the pricing PDE with the following proposition.

Proposition 2 For the contract value V described by (3.9), the pre-death/surrender
value v for (t, A) ∈ [0, T )× R+ is the solution of the partial differential equation

Lv(t, At) + µ(t)Ψ(t, At) + γtS(t, At)− (r(t) + µ(t) + γt)v(t, At) = 0 , (3.15)

where

γt =

ρ , for S(t, At) < v(t, At) ,

ρ̄ , for S(t, At) ≥ v(t, At) ;
(3.16)

subject to the boundary condition

v(t, At) = Υ(t, At), for t ∈ [0, T ), At = Bt = θL0e
rgt, (3.17)

and with the termination condition

v(T,AT ) = Φ(AT ), for AT ∈ R+. (3.18)

The integral representation of the solution to the above pricing PDE is shown in Corollary
1 and proved in Appendix 3.6.1.

Corollary 1 Suppose the surrender intensity γ is given. The value of the participating
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policy V can be represented on {t < τs ∧ τd ∧ τb ∧ T} by

Vt =EQ

∫ τb∧T

t
e−
∫m
t

(r(u)+µ(u)+γ(u,Au))du(µ(m)Ψ(m,Am) + γ(m,Am)S(m,Am))dm

+ 1{τb≥T}Φ(AT )e−
∫ T
t

(r(u)+µ(u)+γ(u,Au))du + 1{τb<T}Υ(τb, Aτb)e
−
∫ τb
t

(r(u)+µ(u)+γ(u,Au))du
∣∣∣∣Gt
.

(3.19)

Remark 1 The pricing problem can be formulated as looking for the worst case of the
risk-adjusted surrender intensity γ so that the contract value is maximized under the
martingale measure Q on {t < τs ∧ τd ∧ τb ∧ T},

v(t, A) = sup
γ∈Γ(t,A)

Et,AQ

∫ τb∧T

t
e−
∫m
t

(r(u)+µ(u)+γ(u,Au))du(µ(m)Ψ(m,Am) + γ(m,Am)S(m,Am))dm

+ 1{τb≥T}Φ(AT )e−
∫ T
t

(r(u)+µ(u)+γ(u,Au))du + 1{τb<T}Υ(τb, Aτb)e
−
∫ τb
t

(r(u)+µ(u)+γ(u,Au))du


(3.20)

where Γ(t, A) = {γ : [t, T ]×R+ 7→ R+ : ρ ≤ γ(u,A) ≤ ρ̄, for all t ≤ u ≤ T and A ∈ R+}
and Et,AQ denotes the expectation conditional on At = A under measure Q.9 This is a
stochastic control problem, which can be solved, according to the theorem of the Hamilton-
Jacobi-Bellman equation (confer Yong (1997) and Yong and Zhou (1999)), by dealing with
an equivalent problem

0 = sup
γ∈Γ(t,A)

Lv(t, A) + µ(t)Ψ(t, A) + γ(t, A)S(t, A)− (r(t) + µ(t) + γ(t, A))v(t, A),

(3.21)

subject to v(t, A) = Υ(t, A), for A = Bt = θL0e
rgt, and v(T,A) = Φ(A), for A ∈ R+. γ

needs to be optimally controlled: since in the equation above the part that depends on γ is
linear in γ, i.e., γ(t, A)(S(t, A)− v(t, A)), the solution to the problem is exactly the same
as is presented in equation (3.7).

Within a given regulatory framework and under a given investment strategy, i.e., for
given θ and σ, we can prove formally that a lower value of ρ and a higher value of ρ̄
lead to an increase of the contract value, see Proposition 3. This is consistent with our

9Since the financial market is complete and arbitrage free, the asset process A is unique under measure
Q.
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intuition, since a lower ρ or a higher ρ̄ indicates the increase of the rationality level of
the policyholder in the monetary sense and thus increases the contract value. The proof
is provided in Appendix 3.6.2.

Proposition 3 Suppose the early default mechanism is characterized by the default mul-
tiplier θ and the insurance company’s investment strategy by σ. Furthermore, suppose
that v is the pre-death/surrender value function of the participating policy with bounds
of the surrender intensity being ρ and ρ̄, and that w is the pre-death/surrender value
function of the policy with bounds ζ and ζ̄. Assume that ζ ≤ ρ and ρ̄ ≤ ζ̄. Then we have
w(t, A) ≥ v(t, A), for (t, A) ∈ [0, τb ∧ T ]× R+.

3.4 Numerical Analysis
In this section we adopt the finite difference method proposed by Zvan et al. (1996) and
Zvan et al. (2000) to numerically solve the PDE with a continuously applied barrier (3.15)
as stated in Proposition 2 and study the effects of the early default risk and the surrender
risk on the fair valuation of the contract as well as on the insurance company’s investment
strategies. The insurance company is set up with initial asset value A0 = 100 and 85% of
the asset value is acquired by the policyholder who buys the participating contract at time
t0 as the initial liability, which means α = 0.85. The contract matures in T = 10 years and
promises the same participation rate δ = δd = 0.9 at maturity and at death.10 The risk-
free interest rate is r = 0.04. The volatility of the company’s asset process is constant, i.e.,
σ(t, At) = 0.2.11 The volatility provides information about the riskiness of the insurance
company’s investment strategy. A higher σ indicates a higher riskiness of the investment
strategy while a lower σ implies a more conservative investment strategy.12 The minimum
guaranteed interest rates at survival, at death and at surrender are rg = rd = rs = 0.02.
As for the mortality intensity, we follow Li and Szimayer (2014) and assume that it follows
a deterministic process µ(t) = Aµ + Bcx+t for the policyholder aged x = 40 at t0 = 0
with Aµ = 5.0758 × 10−4 , B = 3.9342 × 10−5 , c = 1.1029. Additionally, the penalty

10Regulators usually require the participation rate to be kept at least at a certain level. In Germany,
e.g., it lies at 90%.

11The volatility level is obviously higher than what is adopted in practice. We choose a relatively higher
level as a benchmark to see the effect of the regulation on the insurance company’s incentive in
selecting the riskiness of the investment strategy. We will show that an effective regulation rule leads
the insurance company to choose a conservative investment strategy voluntarily.

12On a market with only one risk-free and one risky asset, a higher asset volatility is achieved by investing
more into the risky asset.
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parameter takes the form

βt =



0.05, for t ≤ 1,

0.04, for 1 < t ≤ 2,

0.02, for 2 < t ≤ 3,

0.01, for 3 < t ≤ 4,

0, for t > 4.

The parameters are summarized again in Table 3.2.

Market Parameters Contract Parameters
A0 100 α 85%
r 0.04 T 10
σ 0.2 δ, δd 0.9
Aµ 5.0758× 10−4 rg, rd, rs 0.02
B 3.9342× 10−5

c 1.1029

Table 3.2: Parameter specifications

The analysis in the following subsections is conducted for a representative policyholder.
Under the assumption that the pool of policyholders is large enough, the surrender in-
tensity of a representative policyholder gives the indication at the portfolio level about
the proportion of policyholders who will surrender the contracts. The implications for
the large pool of policyholders will be summarized in section 3.5 to conclude the paper.

3.4.1 Effects of Regulatory Frameworks on Contract Valuation

In this section we analyze the effects of the early default risk on fair contract valua-
tion. The magnitude of the early default risk depends on the strictness of the regulatory
framework, which in our model is represented by the default multiplier θ that is spec-
ified by the regulator. It indicates how the regulator judges the insurance company’s
ability to manage its assets. If the regulator is very confident about the expertise of
the insurance company and about the financial market, it will tolerate the temporary
poor performance of the company more and hence choose a lower default multiplier so
that the company has the chance to recover. Otherwise, it will set a higher value to
protect the policyholders from not being able to obtain the guaranteed benefits promised
by the company. Although a lower (higher) default multiplier is less (more) effective to
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protect the policyholders from the downside development of the company, it gives the
company more (less) chance to recover from the temporary bad performance and pay
out more (less) to the policyholders when it does recover. Hence, the level of the default
multiplier has great influence on the payoff of the contract and thus on the contract value.

Furthermore, the policyholder takes into account the impacts of the protection from
the regulator on the payments of his contract and adjusts his surrender behavior accord-
ingly, which indirectly influences the contract value. Intuitively, the policyholder makes
his surrender decision not only based on benefits that are promised by the insurance
company but also on the ability of the insurance company to meet its promise. The early
default mechanism insures the ability of the company to meet its promise by imposing a
limit on the asset value of the insurance company. A higher default multiplier indicates
that the policyholder has to worry less about the second issue because they are better
protected and will surrender the contract only when the surrender benefits are very at-
tractive. On the contrary, if the default multiplier is set lower so that the policyholders
would not be protected completely, the policyholders must take the default risk of the
insurance company seriously into account when implementing their surrender strategies.
In this case, the policyholders may be willing to surrender the contract earlier to avoid
losing too much of their initial investment.

In Table 3.3 we present the contract values for different default multipliers θ and differ-
ent rationality levels represented by (ρ, ρ̄). In the second column are the contract values
in the case when there is no early default mechanism. From the third to the fifth column
are the contract values with different levels of regulatory strength which are represented
by the different values of the default multiplier θ. For example, θ = 0.7 means that
the regulator does not allow the insurance company’s asset value to drop below 70%
of the minimum guarantee. θ = 1.1 indicates that the regulator is more conservative
and requires the company’s asset value to lie above 110% of the minimum guarantee.
Comparing the contract values in columns 2-4 where the early default regulation is first
introduced, then strengthened, the contract value increases gradually for all the types
of policyholders. Introducing the early termination rule protects the policyholder from
the downside risk and increasing the default multiplier enlarges the protection level. An
interesting feature is that the effects of early termination regulation not only depend
on the default multiplier θ but also on the rationality level of the policyholder. For
example, a policyholder with (ρ, ρ̄) = (0, 0) never surrenders her contract. This is equiv-
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no early default with early default
θ = 0.7 θ = 0.9 θ = 1.1

(0, 0) 85.6141 86.8199 90.4937 89.6619
(0, 0.03) 86.0368 87.0668 90.5088 89.6619
(0, 0.3) 88.1531 88.4680 90.6270 89.6619
(0,∞) 92.0546 92.0548 92.0628 89.6619
(0.03, 0.03) 81.8567 82.9119 86.6744 87.9197
(0.03, 0.3) 84.2656 84.5696 86.8343 87.9197
(0.03,∞) 88.5391 88.5392 88.5436 87.9197
(0.3, 0.3) 75.4561 75.7496 78.0482 83.2947
(0.3,∞) 80.7500 80.7500 80.7500 83.2951

Table 3.3: Contract values for different default multipliers θ and different rationality levels repre-
sented by (ρ, ρ̄).

alent to a European-type contract which does not allow early termination.13 We can
see that in the case when the policyholder is not competent enough to adopt a rational
surrender strategy, an effective early termination regulation may help the policyholder
improve his position. However, the benefits from the protection become smaller as the
policyholder becomes financially more rational. The default multiplier does not play a
significant role when the policyholder is able to exercise the surrender option optimally,
i.e. (ρ, ρ̄) = (0,∞).14 Since the fully rational policyholder can find the optimal surrender
strategy anyway, he does not need the protection of the regulator. However, the positive
effect of the strengthening of the regulation disappears as an over-regulation rule is car-
ried out. As the default multiplier increases from 0.9 to 1.1, the contract value decreases
in some cases, e.g., when (ρ, ρ̄) = (0, ·), (ρ, ρ̄) = (0.03,∞), among which we can even
observe the disadvantage of introducing the early default regulation. For the policyholder
with (ρ, ρ̄) = (0,∞) and (ρ, ρ̄) = (0.03,∞), the contract becomes even lower than when
there is no early default risk. As we have mentioned in Section 3.2.4 that the policyholder
with ρ̄ =∞ may surrender the contract at any time when it is optimal to do so, irrespec-
tive of exogenous reasons, he is able to protect himself from the downside risk. However,
enforcing a termination regulation with a very large default multiplier stops him from
obtaining more benefits in the favorable development of the insurance company, which
actually lowers the contract’s value. Additionally, if we take a look at the column of the
contract values for ρ = 0 and θ = 1.1, the contracts have the same value. Since when

13However, the policyholder would be better off if he terminates the contract and collects the surrender
guarantee when the value of the contract drops down. Notice that the contract value increases when
ρ̄ > 0.

14The contract values are all around 92 for (ρ, ρ̄) = (0,∞) and θ = {0, 0.7, 0.9}.
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the default multiplier is so high that the benefits that the policyholder obtains at the
liquidation of the insurance company are higher than the surrender benefits, surrender-
ing the contract becomes unattractive, which means there would also be no endogenous
reasons to surrender the contracts prematurely. Therefore, if the policyholder does not
surrender his contract for exogenous reasons (ρ = 0), the contract value stays at the same
level as the European-style contract value 89.6619, no matter how financially rational the
policyholder is.

We have discussed in section 3.1 that due to personal reasons, the policyholder sur-
render his contract even though he knows the value of surrender guarantee offered by
the insurance company is lower than the value of his contract. If the policyholder has
to liquidate his contract before maturity, which means exogenous surrender does exist,
i.e., ρ > 0, the contract’s fair value should be lower than when no exogenous surrender
exists, ρ = 0. The decrease in contract value for a given ρ̄ measures the premium that the
insurance company should not have charged due to personal non-avoidable liquidity rea-
sons. We call this premium the liquidity premium. In Figure 3.1 we present the liquidity
premia under different regulatory rules for different exogenous surrender intensities when
ρ̄ = ∞. We observe the following trends. First, within the same regulatory framework,
the liquidity premium becomes larger as the exogenous surrender intensity increases. As
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Figure 3.1: Liquidity premia as a function of the exogenous surrender intensity ρ ∈ [0, 0.3] and the
default multiplier θ ∈ [0, 1.1] when ρ̄ =∞.
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the non-rational exogenous surrender intensity increases, the insurance company needs
to compensate the policyholder more in terms of lowering contract value in order to make
the contract more attractive to the policyholder. Second, the liquidity premium increases
faster at a lower θ-level while more slowly at a higher θ-level, until the exogenous sur-
render intensity ρ also becomes quite large. This indicates that the value of the liquidity
premium is more sensitive to the policyholder’s exogenous surrender intensity level ρ at
a lower θ-level, where the protection from the regulator is low and it is more necessary
for the regulator to urge the insurance company to assess the exogenous surrender rates
more correctly. On the contrary, as the intervention by the regulator is enhanced, the
probability that the insurance company is closed increases. Liquidation may happen be-
fore the policyholder exercises the surrender option due to exogenous reasons. Since the
policyholder is not penalized at the liquidation, he may receive more than the surrender
guarantees he may otherwise obtain from surrendering the contract.

Similar to the above discussion on the impacts of exogenous surrender intensity on the
contract value, endogenous surrender intensity also influences the contract value. Since
the policyholder has limited information on financial market situation and/or limited
knowledge to evaluate the contract on his own, i.e., ρ̄ <∞, he may fail to surrender the
contract when he should do so. The contract value decreases for given ρ as the upper
bound surrender intensity ρ̄ changes from infinitely large value to a not enough high value.
This decrease in the contract value measures the premium that the insurance company
should not have charged due to limited information and/or limited evaluation ability,
which we name as rationality premium. In Figure 3.2 we plot the rationality premia as
a function of the upper bound surrender intensity ρ̄ and the default multiplier θ given
ρ = 0. It is natural to observe that the rationality premium decreases with the increase
of ρ̄ at a given protection level θ settled by the regulator, compare to Proposition 3. It
is natural to observe that the rationality premium decreases with the increase of ρ̄ at a
given protection level θ settled by the regulator, compare to Proposition 3. Furthermore,
for given rationality level (ρ, ρ̄), the rationality premium decreases when the intervention
level from the regulator is enhanced until the default multiplier θ reaches 1. Intuitively,
after the early default mechanism is introduced and even enhanced, the policyholder has
fewer surrender strategies at disposal to carry out which lower his gains from a rational
surrender action. Therefore, the insurance company should charge a lower contract price.
On the other hand, the intervention by the regulator helps the policyholder close his
contract prematurely without bringing penalties to him. Such an intervention protects
the policyholder at the moment when he should exercise the surrender option but does
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not do it for various reasons. Hence, the contract value may also increase. The overall
effect depends on the power of these two aspects and is reflected by the final contract
value presented e.g. in Table 3.3. We also see that the value of the rationality premium
is higher when the early default threshold is lower indicating the importance of assessing
the endogenous surrender intensity correctly in an non-strict regulation environment.
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Figure 3.2: Rationality premia as a function of the upper bound surrender intensity ρ̄ ∈ [0.3, 30]
and the default multiplier θ ∈ [0, 1.1].

3.4.2 Effects of Insurance Company’s Investment Strategies

In this section we focus on the influence of insurance company’s investment strategies
on contract valuation. Furthermore, we analyze the insurance company’s risk-shifting
incentives within the two regulatory frameworks. The investment strategy is represented
by the volatility σ of the underlying asset A. The higher the volatility σ, the higher the
risk that the insurance company has entered into. In Table 3.4 we display the contract
values for different values of σ. The default multiplier θ is set to be 0.9.15

The influences of the investment strategies are different in different regulatory frame-
works. For the no early default case, we observe three tendencies, which depend on the
policyholder’s rationality. When (ρ, ρ̄) = (0,∞), (0.03,∞), the policyholder is considered
to be very financially rational because the contract will be terminated immediately when

15We have also studied the cases with θ = 0.7 and 1.1. However, we have not found any qualitative
difference in the effect of the volatility σ and hence do not present all the results here.
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no early default with early default
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

(0, 0) 85.3380 85.6141 84.7199 86.4204 90.4937 92.4513
(0, 0.03) 85.5737 86.0368 85.2578 86.5152 90.5088 92.4547
(0, 0.3) 86.7156 88.1531 87.9902 87.0566 90.6270 92.4836
(0,∞) 88.3422 92.0546 93.3676 88.3424 92.0628 93.4082
(0.03, 0.03) 82.8209 81.8567 79.7188 83.7463 86.6744 88.1438
(0.03, 0.3) 84.0278 84.2656 83.0419 84.3402 86.8343 88.1934
(0.03,∞) 85.5405 88.5391 89.6150 85.5407 88.5436 89.6439
(0.3, 0.3) 78.2582 75.4561 71.5565 78.4962 78.0482 77.8317
(0.3,∞) 80.7500 80.7500 80.7500 80.7500 80.7500 80.7500

Table 3.4: Contract values for different investment strategies represented by σ and different ratio-
nality levels represented by (ρ, ρ̄), θ = 0.9

it is optimal to do so. The increase of the underlying asset risk also implies the poten-
tially higher rate of return, which a rational policyholder can exactly capture. Hence,
the contract value increases with the asset risk. For (ρ, ρ̄) = (0, 0), (0, 0.03), (0, 0.3) and
(0.03, 0.3), which indicates either low exogenous surrender intensity or relatively but not
enough high endogenous surrender intensity, we observe firstly the increase and then the
decrease in the contract value. When the underlying asset risk increases but still stays at
a lower level, the downside risk is still limited and the optimal surrender intensity during
the life time of the contract stays anyway at a lower level. However, the chance in the
participation of the favorable development of the asset value increases. Hence, overall the
contract value increases slightly when σ increases from 0.1 to 0.2. When the asset risk
further increases, the downside risk could be so high that it is necessary to check more
frequently whether to surrender the contract or not. A lower rational surrender intensity
in this case would then lead to a lower contract value. When (ρ, ρ̄) = (0.03, 0.03) or
(0.3, 0.3), the endogenous surrender intensity is zero and the policyholder surrenders his
contract only for exogenous reasons that is not related to the contract value at all. A
higher asset risk requires a more rapid and correct response to the changing market situa-
tion. When the policyholder is not willing to do so, the contract value for the policyholder
will decrease with the increase of the volatility σ.
As the early default mechanism is implemented by the regulator, the contract value

increases as the volatility σ increases in most cases, except when the probability that
the policyholder surrender the contract due to exogenous reasons is relatively large, i.e.,
ρ = 0.3. From Table 3.4 we observe that the contract value decreases and stays constant
with σ when (ρ, ρ̄) = (0.3, 0.3) and (ρ, ρ̄) = (0.3,∞) respectively. In these cases, the
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policyholder surrenders the contract even when the asset value develops, which deprives
him of the chance of participating in the asset appreciation. Since the policyholder is
protected by the regulator through the early default barrier, the potential downside risk
is limited while the potential participation in the favorable asset performance is still pos-
sible. As long as the policyholder is not so urgent in cashing out of his contract, he can
benefit more from the regulator’s protection as the riskiness of the investment strategy
increases and his contract value increases accordingly.

Similar to what we did in section 3.4.1, we present in Figure 3.3 the liquidity pre-
mia under different investment strategies (adopted by the insurance company) in both
a world without the intervention of the regulator, see Figure 3.3 (a), and a world with
the early default mechanism, see Figure 3.3 (b). We see that, for given rationality level
(ρ, ρ̄), liquidity premium increases with the volatility of the underlying asset in both
cases. As the investment risk of the insurance company increases with a larger volatility
σ, the probability that the policyholder sells back his contract due to exogenous rea-
sons to the insurance company which has been experiencing financial difficulties becomes
higher. This indicates that increasing the riskiness of the investment generally does harm
to the policyholder who is likely to cash out of his contract when personal difficulties
occur. Hence, the contract value decreases more in order to attract policyholders as the
insurance company’s investment risk increases, which happens in both cases with and
without the early default regulation. In addition, the introduction of the early default
mechanism lowers the value of the liquidity premium for a given rationality level of (ρ, ρ̄)
and an investment strategy of the insurance company σ. Since the regulatory interven-
tion, as a substitute of an exogenous surrender of the policyholder, helps the policyholder
close his contract prematurely without bringing him any penalty, the insurance company
accordingly lowers its compensation to the policyholder.
We present the rationality premia depending on investment strategies and endogenous

surrender intensities in Figure 3.4. We see that, given the same endogeneous surrender
intensity ρ̄, the rationality premium increases monotonically with the riskiness of the in-
vestment strategy σ when there is no early default mechanism. The rationality premium
is much higher when the endogenous surrender intensity ρ̄ is low. Unlike a policyholder
who can track the performance of the insurance company and act optimally to maximize
their benefits, a partially rational policyholder faces the risk of mistakenly holding a con-
tract whose value is lower than the value of the surrender guarantee. The risk increases
as the company’s asset value becomes more volatile and is reflected by the increasing ra-
tionality premium with respect to σ. However, when the early default mechanism exists,
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(b) θ = 0.9

Figure 3.3: Liquidity premia as a function of the exogenous surrender intensity ρ ∈ [0, 0.3] and the
volatility σ ∈ [0.05, 0.5] when ρ̄ =∞.
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Figure 3.4: Rationality premia as a function of the upper bound surrender intensity ρ̄ ∈ [0.3, 30]
and the volatility σ ∈ [0.05, 0.5] when ρ = 0.
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the rationality premium first increases and then decreases with σ. The decreasing effect
can be explained by the protection from the early default mechanism, which as a remedy
for the policyholder’s ’insufficient’ surrendering leads the insurance company to lower the
rationality premium.

Due to the influence of the policyholder’ rationality and the regulatory framework on
contract value, as a response, the insurance company may change its investment strat-
egy. We assume that the insurance company performs in the interest of the equity holder.
Since the contract value can be regarded as the market value of the insurance company’s
liabilities when the insurance company is ongoing, the purpose of the company, max-
imizing the residual value for the equity holder, is thus to minimize the value of the
policyholder’s policy. From Table 3.4 we can infer which investment strategy the insur-
ance company tends to adopt. If there is no early default rule and the rationality level
of the policyholders is very high, the insurance company will prefer to take low risk in-
vestment. This gives us two implications. First, if the policyholder is rational enough
to surrender their policies, the regulator does not need to interfere into the insurance
company in order for the company to avoid too risky investment. Second, looking back
into the history, insurance companies have not always taken conservative strategies. Al-
though there are many reasons for them not to do so. For example, the market interest
rate was too low in the past and the insurance company has to invest more riskily to
achieve higher excess return so as to meet their payment obligations. Another aspect
that we can infer from our study is that the insurance company has actually assumed
that the policyholders will not always act optimally. Considering this, it is then inappro-
priate to price surrender option as a pure American-style option as it is often assumed
in the literature, since the policy tends to be overpriced under this assumption which is
unfair for the policyholders. Hence, if the insurance company chooses parameters for the
contract such that the contract’s value is exactly equal to the policyholder’s payment by
assuming a high rationality level and leading us to think that it will adopt an investment
strategy with low risk under its assumption, the company actually has the incentive to
increase the riskiness of its investment strategy afterwards. This problem will be avoided
most likely as the early default regulation is introduced. We can read out from Table 3.4
that the insurance company prefers low risk investments in all cases but one.
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3.4.3 Effects of Regulatory Frameworks and Investment Strategies
on Surrender Behaviors

To demonstrate the effect of the regulatory framework on the policyholder’s surrender
behavior, we depict in Figure 3.5 the separating boundaries which illustrate the regions
where the policyholder surrenders the contract for exogenous reasons and the regions
where the policyholder surrenders the contract for endogenous reasons. When the early
default regulation is enforced, part of the surrender region will be replaced by the early
default region.
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Figure 3.5: The separating boundary of surrender behaviors for the two regulatory frameworks and
for the different default multipliers.

Based on our consideration about the policyholder’s degree of rationality as is illus-
trated in section 3.4.1 and 3.4.2, we assume ρ = 0.03 and ρ̄ = 0.3. We begin with the
graph for the case where there is no early termination rule, see Figure 3.5 (a). Here we
can observe three regions. When the asset price A is relatively high, the policyholder

55



only surrenders for exogenous reasons, because participation in asset performance is very
attractive, which is, according to the contract design, only possible when the policyholder
holds the contract until death or until maturity. When asset price A is very low, there
would also only be exogenous surrender. This is because in this case participation in
asset performance at death or at maturity is hardly possible and early surrender carries
penalty on the minimum guarantee, the policyholder would rather to stay in the contract
if he does not have other exogenous surrender reasons. The region in the middle of the
graph corresponds to the case when the policyholder surrenders his contract for endoge-
nous reasons. In this region the probability that the policyholder surrenders the contract
increases mainly due to the reason that the policyholder wants to protect himself from
the potential downside risk when it is still not too late to do so. If the regulator inter-
venes, see Figure 3.5 (b)-(d), we observe that the region with ρ̄ = 0.3 is more and more
replaced by the early default which is triggered by the regulatory rule. When θ = 1.1 the
policyholders only surrender the contract for exogenous reasons. This is consistent with
the results presented in Figure 3.2, where the rationality premium reduces to 0 when
θ = 1.1.
In Figure 3.6 and Figure 3.7 we present the separating boundaries of surrender behav-

iors as the volatility increases from 0.1 to 0.3 when there is no early default risk and when
there is default risk respectively, assuming the rationality level of the representative poli-
cyholder is (ρ, ρ̄) = (0.03, 0.3). The first interesting observation is that the region ρ̄ = 0.3
is larger in the case where there is no early default risk than that in the case where there
is early default risk for every asset risk σ. Since policyholders feel protected by the early
default regulation imposed by the regulator, some closures of policies are carried out
by the regulator instead of the policyholders themselves. more surrenders are triggered
due to exogenous reasons instead of financially related reasons. The second interesting
observation is that as volatility σ increases the region ρ̄ = 0.3 expands when there is no
early default regulation, while it shrinks when regulator specifies an early termination
barrier during the life time of the contract. It indicates that policyholders are becoming
more sensitive and exercise more surrender options as the financial world becomes more
volatile when no early termination mechanism is established by the regulator. However,
when the early termination mechanism is introduced, due to limited rationality, more
policyholders may decide to rely on the protection from the regulator as the financial
world becomes more volatile so that the region ρ̄ = 0.3 shrinks as σ increases, and at the
same time, the regulator’s early intervention becomes more intensive.
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Figure 3.6: The separating boundary of surrender behaviors when there is no early default risk

57



t

A

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

400

450

500

ρ = 0.03

early default

ρ̄ = 0.3

(a) σ = 0.1

t

A

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

400

450

500

ρ = 0.03

early default

ρ̄ = 0.3

(b) σ = 0.2

t

A

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

400

450

500

ρ = 0.03

early default

ρ̄ = 0.3

(c) σ = 0.3

Figure 3.7: The separating boundary of surrender behaviors when there is early default risk
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3.5 Conclusion
In this chapter we have studied the impacts of early default risk and surrender risk
on participating life insurance policies. Early default is triggered once its asset value
touches a prespecified threshold. Surrender risk is represented by a surrender intensity
which is bounded from below and from above and accounts for the limited rationality
of a representative policyholder in making surrender decisions. The lower bound refers
to the policyholder’s surrender intensity for exogenous reasons while the upper bound
is achieved if the surrender value is higher than the active contract value. Since early
default risk affects the contract’s payment structure, it influences the policyholder’s sur-
render behavior. We have derived the pricing PDE equation which characterizes the
contract value and solved it numerically with the finite difference method. Based on
the numerical examples, we have analyzed the influence of early default risk, given that
the insurance company’s investment strategy is known, on the policyholder’s surrender
behavior and consequently on contract valuation. Furthermore, we have analyzed the
influence of insurance company’s investment strategy on the policyholder’s surrender be-
haviors as well as on contract values given the regulatory rule prescribed by the regulator.

The analysis for a representative policyholder can be transferred to a large pool of
policyholders. Many implications can be drawn from our analysis. First, if policyholders
are able to surrender their participating policies optimally, it is not necessary for the
regulator to set a regulatory rule to monitor the insurance company. The insurance com-
pany is actually monitored by the policyholders themselves. However, since policyholders
are mostly not completely rational to make financially optimal decisions, an early default
regulation protects these policyholders as long as the regulation is not too strict. Over-
regulation is disadvantageous to most policyholders. Second, enhancing the regulation
exerts a negative effect on the rationality premium for those policyholders who would
have more freedom to construct their own optimal stopping strategy if there were fewer
regulatory constraints. Since the effects of the regulation are different for the policyhold-
ers with different surrender reasons and the contract value that we are looking for is the
average contract value for all the policyholders, which is denoted as the contract value for
a representative policyholder in our paper, the overall effect of enhancing the regulation
on the contract value may be positive. Third, without the introduction of the regulatory
framework, we are not clear about the effect of the investment strategy on contract value.
We find that the equity holder prefers to adopt a less risky investment strategy if the pol-
icyholders are able to surrender the contracts optimally. Since the equity holder knows
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that policyholders are most of the time not financially rational enough and there are
always exogenous reasons for them to surrender the contracts prematurely, he actually
tends to invest more riskily. However, when the early default barrier is settled, an increase
in the riskiness of the investment strategy will generally have a positive effect on the con-
tract value from the perspective of the policyholders. The equity holder will then have
the incentive to reduce the riskiness of their investment, which is independent of the ra-
tionality level of the policyholders. This result is consistent with the goal of the regulator.

3.6 Appendix to Chapter 3

3.6.1 Proof of Corollary 1

We follow the proof of Theorem 2.1 in Freidlin (1985) for a similar Dirichlet problem.
Define

g(t, At) := µ(t)Ψ(t, At) + γ(t, At)S(t, At),

c(t, At) := r(t) + µ(t) + γ(t, At),

Y A
t := −

∫ t

0
c(z, Az)dz,

UA
t := v(t, At)eY

A
t .

According to the Ito’s Lemma, we obtain, for all t < m < τb∧T where t < τd∧τs∧τb∧T ,
the stochastic differential equation of UA

m as

dUA
m = ∂UA

m

∂m
dm+ ∂UA

m

∂Am
dAm + 1

2
∂2UA

m

∂A2
m

dA2
m

=
[
∂v

∂m
(m,Am)eY Am − v(m,Am)eY Am c(m,Am)

]
dm

+ ∂v

∂Am
(m,Am)eY Am (r(m)Amdm+ σ(m,Am)AmdWm)

+1
2
∂2v

∂A2
m

(m,Am)eY Amσ2(m,Am)A2
mdm

= eY
A
m (Lv(m,Am)− c(m,Am)v(m,Am))dm+ eY

A
m
∂v

∂Am
(m,Am)σ(m,Am)AmdWm

= eY
A
m (−g(m,Am))dm+ eY

A
m
∂v

∂Am
(m,Am)σ(m,Am)AmdWm

The last equation follows from equation (3.15) in Proposition 2.

60



Integrate both sides of the above equation from t to τb ∧ T and take the expectation
on both sides. Under the assumption that

EQ

[∫ τb∧T

0
||eY Am ∂v

∂Am
σ(m,Am)Am||2dm

]
<∞

which ensures

EQ

[∫ τb∧T

t
eY

A
m
∂v

∂Am
(m,Am)σ(m,Am)AmdWm

∣∣∣∣Gt
]

= 0,

we obtain

EQ[UA
τb∧T |Gt] = UA

t + EQ

[∫ τb∧T

t
eY

A
m g(m,Am)dm

∣∣∣∣Gt
]
,

and thus

v(t, At) = EQ

[∫ τb∧T

t
eY

A
m−Y At g(m,Am)dm+ e

Y Aτb∧T
−Y At v(τb ∧ T,Aτb∧T )

∣∣∣∣Gt
]
.

Since

e
Y Aτb∧T

−Y At v(τb ∧ T,Aτb∧T ) = 1{τb<T}e
Y Aτbv(τb, Aτb) + 1{τb≥T}eY

A
T v(T,AT )

= 1{τb<T}e
Y AτbΥ(τb, Aτb) + 1{τb≥T}eY

A
T Φ(AT ),

where the last equation results from the boundary conditions in Proposition 2, we obtain,
by substituting g(·, ·), c(·, ·), and Y with their original forms,

Vt = EQ

∫ τb∧T

t
e−
∫m
t

(r(u)+µ(u)+γ(u,Au))du(µ(m)Ψ(m,Am) + γ(m,Am)S(m,Am))dm

+1{τb≥T}Φ(AT )e−
∫ T
t

(r(u)+µ(u)+γ(u,Au))du + 1{τb<T}Υ(τb, Aτb)e
−
∫ τb
t

(r(u)+µ(u)+γ(u,Au))du
∣∣∣∣Gt


Corollary 1 is therefore proved.

3.6.2 Proof of Proposition 3

The pre-death/surrender value function v is the solution of the PDE (3.15) with terminal
condition v(T,AT ) = Φ(AT ) and boundary condition v(t, At) = Υ(t, At) for At ≤ Bt, and
bounds ρ and ρ̄. The pre-death/surrender value function w is the solution of the same
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PDE (3.15) with identical terminal condition w(T,AT ) = Φ(AT ) and boundary condition
w(t, At) = Υ(t, At) for At ≤ Bt but different bounds ζ and ζ̄. Assume that ζ ≤ ρ and
ρ̄ ≤ ζ̄. Now define z = w − v. It follows directly that z(T,AT ) = w(T,AT )− v(T,AT ) =
Φ(AT ) − Φ(AT ) = 0 and Z(t, At) = Υ(t, At) − Υ(t, At) = 0 for At ≤ Bt. To obtain the
dynamics of z take the difference of the PDEs describing w and v, i.e.:

0 = Lw(t, At) + µ(t)Ψ(t, At) + γw(t, At)S(t, At)− (r(t) + µ(t) + γw(t, At))w(t, At)

− (Lv(t, At) + µ(t)Ψ(t, At) + γv(t, At)S(t, At)− (r(t) + µ(t) + γv(t, At)) v(t, At))

= Lz(t, At) + (γw(t, At)− γv(t, At)) (S(t, At)− w(t, At))− (r(t) + µ(t) + γv(t, At)) z(t, At) ,

where γv and γw, respectively, are given by (3.7) using the appropriate bounds. Similar
to the proof of Corollary 1, we obtain the stochastic representation of z as follows

z(t, A) = Et,AQ

[ ∫ τb∧T

t
e−
∫m
t

(r(u)+µ(u)+γv(u,Au)) du(γw(m,Am)− γv(m,Am)) (S(m,Am)

−w(m,Am))dm
∣∣∣∣Gt
]
,

where Et,AQ denotes the expectation conditioned on At = A. From the definition of γw

in (3.7) and the assumption ζ̄ ≥ ρ̄ we see that if (S − w) ≥ 0 we have γw = ζ̄ ≥ ρ̄ ≥ γv

and thus (γw − γv) ≥ 0. On the other hand, if (S −w) < 0 then γw = ζ. By assumption
we have ζ ≤ ρ and thus γw ≤ ρ ≤ γv, or, (γw − γv) ≤ 0. Thus, we see that the integrand
in the above equation is nonnegative and therefore z ≥ 0. Since z = w − v we obtain
w ≥ v.
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4 Linking Surrender Risk to Mortality
Risk: Does the Systemic Health
Shock Matter?

4.1 Introduction
The evidence of policyholders’ health status being an influencing factor of the surrender
of life insurance contracts has been recorded in the current literature. For example, Do-
herty and Singer (2003a, 2003b) argue that the surrender rate of impaired policyholders
is higher than that of normal policyholders on a competitive settlement market. Besides,
Sutherland and Drivanos (1999) summarize findings on the financial hardship that fam-
ilies with a seriously ill member experienced in the United States1 and emphasize that
the ill patient sells a life insurance policy to acquire needed cash for dealing with such
financial hardship. Giacalone (2001) also points out that the demand of selling a life
insurance policy by ill insureds, which is an alternative to surrendering the policy, is a
major factor on viatical settlement markets. In addition, many empirical papers on lapse
determinants have found that policyholders’ characteristics, for example age and gender,
are important drivers for lapse rates, see Cerchiara et al. (2008), Milhaud et al. (2011),
Eling and Kiesenbauer (2013), Fier and Liebenberg (2013) and Kim (2013), just to name
a few. Since we know in actuarial literature, policyholders’ characteristics, in particular
policyholders’ age, have an influence on their survival rates, see for example laws of mor-
tatlity proposed by Gompertz 1825, Makeham 1860, and Oppermann 1870, the health
stage of the policyholders do influence the life insurance lapse.
Even though both the mortality risk and surrender risk have been analyzed thoroughly

in the current life insurance literature, the relationship between the two types of risk is
rarely modelled. A few literatures that we are aware of and model the relationship be-
tween the mortality risk and the surrender risk are Jones (1998) and Gatzert et al. (2009).

1The original findings on the financial hardship were publish in 1994 on the Journal of the American
Medical Association.
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The two papers recognize mortality heterogeneity of poliyholders and they adopt a frailty
factor as modelled in Vaupel et al. (1979) to measure a risk level of each policyholder in
the heterogeneous insured group. By assuming each policyholder’s surrender is a function
of the risk level, Jones (1998) analyzes the effect on the cohort force of mortality under
different assumptions on the relationship between the lapse rate and the mortality risk
level. While, Gatzert et al. (2009) focus on asymmetric surrender decisions triggered by
the secondary market, where only contracts of impaired policyholders are sold and kept
on the market, and analyze the effect of the adverse surrender behavior on the primary
insurer’s surrender profits. The two papers do consider the relationship between the
health status and surrender of policyholders, but rather in a deterministic way. First,
the frailty factor is drawn from a given distribution function to specify different health
states in a portfolio. However, any changes in the health states of the policyholders in
the portfolio are not tracked in the two papers and consequently any changes in the
policyholders’ surrender decisions due to their health state changes are not taken into
account. Second, in the paper of Gatzert et al. (2009), adverse surrender behavior of
impaired policyholders implicated by the secondary market is exogenously given, rather
than being endogenously linked to the triggering factor.

In this paper, we take into account a systemic health shock which harms the public
health and lasts for a relatively long-time period. Hence, the systemic health shock
applies to all of policyholders in the pool and damages on the policyholders’ health last
for a relatively long-time period.2 One example of the systemic health shock is the smog,
which is a severe air pollution event and currently prevalent in Asia.3 Starting from the
beginning of 2013, northern China was hit by multiple severe smog events, which damage
rural residents’ health and lead to higher mortality, see Zhou et al. (2015). Similar health
effects and the positive relationship between the smog and the mortality during smog
episodes in industrialized countries have also been recorded in some empirical studies,
see e.g., Wichmann et al. (1989) in Germany, and Anderson et al. (1995) in United
Kingdom. As the policyholders’ normal health state switches to the impaired state due

2As long as the pool is large enough, a health shock which applies only to an individual policyholder
and consequently influences the policyholder’s surrender, similar as the stochastic feature of the
policyholder’s mortality intensity, does not have much influence on the contract value, see Li and
Szimayer (2011). Hence, we focus on the health shock which applies to all policyholders in the pool
in this paper.

3The smog also happened intensively worldwide in the 19th and 20th centuries, e.g., Belgium, United
Kingdom, United States, Germany, Mexico, and Chile. In addition, other examples of the systemic
health shock in history include slums in European cities, ca. 1800-1900, potato famine in Ireland
beginning in 1845, black population in South Africa during Apartheid ca. 1955-1993, etc.
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to the systemic health shock, we expect changes in the policyholders’ surrender behavior,
which consequently have effects on the contract valuation. However, the connection
between the mortality and the surrender triggered by the systemic health shock, and the
presumed reactions of the policyholders on the surrender have not attracted attention in
the current life insurance literature.
We use a jump process to model the systemic health shock and construct a continu-

ous Markov chain to track a representative policyholder’s health state change. We then
adopt the intensity-based approach of modelling partially rational surrender of the poli-
cyholder in Li and Szimayer (2014), and propose two state-dependent surrender change
scenarios. In the first scenario, as the policyholder’s health gets damaged because of the
systemic health shock, a large demand of cash spent on necessary medical treatments
and improving his living conditions threatens the policyholder’s financial liquidity.4 As a
consequence, the policyholder is hurry to access surrender values in order to deal with the
financial liquidity problem. It corresponds to the Emergency Fund Hypothesis (EFH),
which has been investigated and confirmed in many empirical studies on life insurance
lapses, see Dar and Dodds (1989), Outreville (1990), Liebenberg et al. (2012), Fier and
Liebenberg (2013), and Kim (2013), just to name a few. Hence, in this scenario the poli-
cyholder surrenders the policy more likely for exogenous reasons. In the second scenario,
suppose the policyholder becomes more sensitive in handling his assets after experienc-
ing the health damage. Since the insurance policy is also a part of the policyholder’s
assets, see Sutherland and Drivanos (1999), we consider that the policyholder becomes
more careful in dealing with his insurance policy. Higher concentration on managing his
insurance contract requires the policyholder to collect more financial information and
improve evaluating skills, which leads to a higher surrender rationality. Based on the
two presumed scenarios, we analyze effects of the systemic health shock on the contract
valuation, and further discuss the influence of an early default regulatory rule on the
contract value in the two scenarios.

This paper is organized as follows. In Section 4.2 we present the insurance company’s
financial structure and introduce the participating life insurance policy. Both mortality
risk and surrender risk are modelled by a jump process and linked through a systemic
health shock, which is also modelled by a jump process. Based on the health shock jump
process, we construct a continuous two-state Makov chain and accordingly introduce

4We have talked about the financial hardship of ill patients in the beginning of the introduction, see
Sutherland and Drivanos (1999). Here, we use a more general term, financial liquidity problem, to
include policyholders who are not terminally ill but still need a large amount of cash to pay for
necessary medical treatments.
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the two surrender change scenarios as the policyholder’s health state becomes impaired.
Besides, we also specify the early default regulatory rule imposed by a regulator. In
Section 4.3 we derive a coupled partial differential equation (PDE) system for the price
of the policy. In Section 4.4 we study effects of both the systemic health shock and
regulatory frameworks on the contract valuation in the two surrender change scenarios.
We conclude in Section 4.5.

4.2 The Model Framework

4.2.1 Insurance company and Participating Life Insurance Policy

We fix a filtered probability space (Ω,F ,F,Q), where the filtration F = (Ft)t≥0 reflects
the flow of information available on both the financial market and insurance market, and
Q is an martingale measure in the absence of arbitrage. Following Cheng and Li (2015),
we consider an insurance company founded at time t0 = 0 by two agents, a representative
policyholder and an equity holder. The representative policyholder pays a single premium
for a participating life insurance contract and acquires an initial liability L0 ≡ αA0 with
a ∈ (0, 1), where A0 denotes the company’s initial assets’ value. The equity holder invests
the remaining E0 ≡ (1−α)A0 in the insurance company. The insurance company invests
its initial assets A0 in the traded risky and risk-free assets on the financial market. Under
the martingale measure Q, we assume the company’s asset price satisfies the following
stochastic process

dAt = r(t)Atdt+ σ(t, At)AtdWQ
t , ∀t ∈ [0, T ] and A0 > 0, (4.1)

where the short rate r is assumed to be a deterministic function of time, the function σ > 0
is the volatility of the asset price process, and T refers to the maturity of the participating
contract. WQ is a standard 1-dimensional Brownian motion under Q, which generates
the filtration FW = (Ft)t≥0. For simplicity, we assume the insurance company announces
a closure as the contract matures at time T and distributes its liquidated assets to the
stakeholders. The policyholder is assumed to have a priority claim to the insurance
company’s assets and the equity holder is subject to limited liability. Therefore, as the
participating life insurance contract continues and expires at maturity T , the policyholder

66



receives survival benefits, which have the following structure5

Φ(AT ) = L
rg
T + δ[αAT − LrgT ]+ − [LrgT − AT ]+. (4.2)

The first term following the equality refers to the minimum guaranteed benefits promised
to the policyholder, which are calculated by compounding the initial liability with a
minimum guaranteed interest rate rg, i.e., LrgT = L0e

rgT . The second term describes the
share of the company’s profits written in the contract, i.e., the bonus payment δ(αAT −
L
rg
T ) conditional on αAT > L

rg
T , where δ is called a participation rate. Given that the

equity holder has limit liability, when the company has less-than-minimum-guarantee
assets at maturity T , the policyholder only receives what is left in the company AT ,
which is captured by the last term in the above equation.

4.2.2 Morality Risk and Systemic Health Shock

We model the policyholder’s death by a jump process H = (Ht)t≥0 with Ht = 1{τd≤t} for
0 ≤ t ≤ T , where τd denotes the death time of the policyholder. We denote the smallest
filtration making τd as a stopping time by H = (Ht)t≥0 with Ht = σ(Hs : 0 ≤ s ≤ t).
If the policyholder dies before the contract ends naturally, the insurance policy pays out
death benefits. We use Ψ(τd, Aτd) to denote the death benefits paid out at τd < T , which
are assumed to have the same payment structure as the survival benefits

Ψ(τd, Aτd) = Lrdτd + δd[αAτd − Łrdτ ]+ − [Lrdτ − Aτd ]+, L
rd
t = L0e

rdτd , (4.3)

where rd and δd denote a minimum guaranteed interest rate and a participation rate
at death, respectively. Moreover, the jump process has intensity µt, named as mortality
intensity. As we have introduced in Section 4.1, that the public may encounter a systemic
health shock during the insuring period, e.g., the smog, which damages the representative
policyholder’s health. We model the systemic health shock by a jump process L = (Lt)t≥0

with Lt = 1{τl≤t} for t ≥ 0, where τl denotes the arrival of the health shock. We assume
that as the systemic health shock occurs, the policyholder’s health state changes from the
‘normal’ state to the ’impaired’ state. Since the health damage preserves for a relative
long period, for example, the smog in the European cities lasted for decades and people
lived in highly polluted environment for a very long period, for simplicity we assume that
the representative policyholder stays in the impaired state after the health shock shortest
till the maturity of the contract. We assume a state-dependent mortality intensity which

5We adopt the contract payment forms in Cheng and Li (2015).
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has the following form6

µt = m0(t) +m11{τl≤t}, m1 > 0. (4.4)

Here m0(t) is a deterministic intensity function of time t, which represents a realistic pre-
diction of the mortality intensity as long as the policyholder stays in the normal health
status. As the health shock impairs the policyholder’s health status, the mortality in-
tensity increases by m1 > 0, i.e., a systematic deviation of mortality from the mortality
prediction m0(t), resulting in a deterministic intensity function m0(t) + m1 for the poli-
cyholder in the impaired state.

Now based on the jump process Lt = 1{τl≤t}, we construct a continuous-time two-state
Markov chain

X = (Xt)t≥0 (4.5)

to describe the change in policyholder’s health state, see chapter 2 of Norris (1997). We
describe the state space of the Markov chain X by the set of two unit vectors, denoted
by E = {e1, e2}, where e1 = (1 0)′ and e2 = (0 1)′ refer to the normal health state
and the impaired health state, respectively, see Buffington and Elliot (2002). The two-
state Markov chain generates the filtration FX = (FXt )t≥0, which is independent of the
deterministic predicted mortality component m0(t). Under the assumption that the jump
process Lt has intensity κ and the policyholder’s health stays in the impaired state after
the systemic health shock, we have the following generator matrix

C =
−κ κ

0 0

 . (4.6)

κ describes the intensity that the policyholder’s health state jumps from the normal state
to the impaired state. Accordingly, we have the transition probability, Pij(t) = P(Xt =
ej|X0 = ei), i, j ∈ {1, 2}, t ≥ 0, as the solution of the following forward equation

dP
dt

(t) = P(t)C, P(0) = I2, (4.7)

where P(t) = (Pij(t))i,j=1,2 is the transition matrix of X and I2 is the identity matrix

6In this paper, we focus on the linkage of mortality risk and surrender risk triggered by the systemic
health shock. Hence, we model the mortality intensity function form (4.4) with m1 exclusively
capturing the systematic deviation of mortality from expected mortality rates due to the health
shock. We refer readers who are interested in dynamics of human mortality taking into account
random fluctuations and systematic deviations from the chosen mortality basis to Biffis (2005).
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of two dimensions.7 The generator matrix C yields the decomposition for the stochastic
differential of X, dXt = C ′Xtdt + dMt, where Mt is a two-dimensional martingale on
the filtration FX , see Elliot et al. (1994). Since the mortality jump process of H is
conditionally independent of the filtration FX , Mt is also a martingale on the enlarged
filtration Z = H∨FX under Q,8 see chapter 6 of Bielecki and Rutkowski (2004). Moreover,
given that the mortality risk is not linked to the financial market, we can work on the
enlarged filtration G = FW ∨Z, where WQ is a (Q,G) standard Brownian, Mt is a (Q,G)
martingale, and µt is a (Q,G) intensity of random death time τd.

4.2.3 Surrender Risk and State-dependent Surrender Scenarios

A surrender option is written in the contract, by exercising which the policyholder can
terminate his contract before the maturity T . In this section, we describe surrender
behavior of the policyholder. By taking into account that the policyholder’s surrender
decision-making behavior is subject to his health status, we model the policyholder’s
surrender by the first arrival of a Markov-modulated Poisson process. It generates the
filtration J = (Jt)t≥0, with Jt = σ(Js = 1{τs≤s} : 0 ≤ s ≤ t), where τs denotes the
random surrender time. If the contract is terminated at τs < T , surrender benefits of the
following form

S(τs, Aτs) = Lrsτs − [Lrsτs − Aτs ]
+, Lrsτs = (1− βτs)L0e

rsτs (4.8)

are paid to the policyholder. rs is used to calculate the minimum guaranteed benefits
in the event of surrender. By terminating the contract before the contract matures,
the policyholder does not participate in the company’s profits, but only obtains the
minimum surrender guarantee Lrsτs as the company has enough assets, i.e., Aτs > Lrsτs ,
otherwise, the policyholder receives only what is left in the company Aτs . Additionally,
a penalty parameter βt, which is assumed as a decreasing function of time, is applied for
calculating the minimum surrender guarantee. The earlier the contract is terminated by
the policyholder, the higher punishment that the policyholder bears for doing so.
We denote the hazard rate of the surrender time τs by γt, called surrender intensity,

which depends on the health state of the policyholder Xt, the value of surrender benefits

7For explicitly solving the differential equation (4.7), see chapter 2 of Norris (1997).
8Even though choosing the martingale measure Q is not discussed in this paper, it is worth emphasizing
that the diversification argument on risk-neutral measure does not apply when systematic deviations
of mortality from expected mortality rates are considered. A risk premium needs to be priced by the
market, see more discussions on calibration in Biffis (2005).
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S(t, At) and the contract’s continuation value, denoted by v(t, At, Xt).9 In this paper, we
consider that the policyholder is partially rational and the surrender intensity is bounded.
More in detail, due to exogenous reasons, for example, liquidity demand, the policyholder
decides to surrender his contract for cash even though it is not financially optimal to do
so, i.e., the value of surrender benefits is lower than the contract’s continuation value.
Therefore, in this case a lower bound value is assigned to the surrender intensity, and
depending on the policyholder’s health state, we write the lower bound of the surrender
intensity as ρXt with ρ = (ρ1 ρ2) for Xt ∈ {e1, e2}. ρ1 and ρ2 are the lower bound
surrender intensity value in the normal state and in the impaired state respectively. On
the contrary, when the value of surrender benefits is higher than the contract continu-
ation value, it happens that since the policyholder has restricted financial information
and/or limited financial competency of evaluating the contract, he does not surrender
his contract. Hence, we assign a upper bound value to the surrender intensity. Same as
the case with the lower bound surrender value, the upper bound intensity value is also
state-dependent, which can be written as ρ̄Xt with ρ̄ = (ρ̄1 ρ̄2), ρ̄1 > ρ1 and ρ̄2 > ρ2
for Xt ∈ {e1, e2}. ρ̄1 and ρ̄2 are the upper bound surrender intensity value in the normal
health state and in the impaired health state respectively. The difference between the
upper bound intensity value and the lower bound intensity value, i.e., ρEi = ρ̄i − ρi for
i ∈ {1, 2}, also called endogenous surrender intensity, describes how sensitive the poli-
cyholder is about the financial information and how much efforts the policyholder puts
into analyzing financial information and evaluating his insurance contract. Since the
surrender process J is also conditionally independent of the filtration generated by the
Markov-chain FX , we can now work on the enlarged filtration F = J ∨ G, where WQ is
a (Q,F) standard Brownian, C is the generator of Markov-chain X with Mt as a (Q,F)
martingale, and µt and γt are (Q,F) the intensity of the jump process H and the jump
process J , respectively.

In the present paper, we consider the following two presumed state-dependent surrender
scenarios. First, we have argued in the introduction that the policyholder’s health gets
damaged after the systemic health shock, which worsens his financial position as the
demand of cash raises up consequently. We would expect that the systemic health shock
shortens the expected duration of the arrival of policyholder’s exogenous surrender. As we
have pointed out in the introduction, this consequence is supported under the Emergency
Fund Hypothesis (EFH), which describes that policyholders surrender their contracts to

9The continuation value of the contract v(t, At, Xt) is the pre-death-and-surrender contract value, which
is further explained in Section 4.3.
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cope with their personal financial distress.10 Hence, in Scenario 1, as the policyholder’s
health status switches to the impaired state after the health shock, the policyholder
becomes more likely to surrender his contract for exogenous reasons, which implies an
increase in the exogenous surrender intensity, i.e., ρ2 > ρ1. At the same time, as the
policyholder hurries to his contract’s surrender value, he overlooks the information on
the financial market and reduces the efforts in analyzing the contract continuation value.
It results in a lower value of the endogenous surrender intensity after the health shock,
i.e., the difference between lower bound intensity value and the upper bound intensity
value becomes smaller, ρE2 < ρE1 . For simplicity, we assume the upper bound surrender
intensities in both health states have the same value, i.e., ρ̄1 = ρ̄2 with ρ̄1 = ρ1 + ρE1 , and
ρ̄2 = ρ2 + ρE2 . We summarize the first state-dependent surrender scenario in Remark 2.

Remark 2 In Scenario 1, we model the representative policyholder’s surrender by the
Markov-modulated Poisson process with the surrender intensity γt

γt =

(ρ1 ρ2)Xt , for S(t, At) < v(t, At, Xt),

(ρ̄1 ρ̄1)Xt , for S(t, At) ≥ v(t, At, Xt),
(4.9)

for (t, At) ∈ (0, T ) × R+ and Xt ∈ {e1, e2}, where ρ1 < ρ2 < ρ̄1 and v(t, At, Xt) is the
contract continuation value.

In the second state-dependent surrender scenario, we suppose that the systemic health
shock does not have significant influence on the policyholder’s exogenous surrender deci-
sion making, but leads the policyholder to be more cautious and careful in handling his
personal investment portfolio, including his participating life insurance contract which
yields the insurance company’s profit-sharing benefits. So, in this scenario, first, the ex-
ogenous surrender intensities share the same value in both the normal health state and
the impired health state, i.e., ρ2 = ρ1. Second, since the policyholder pays more attention
on collecting the financial information and puts more efforts into evaluating the contract
after the systemic health shock, he becomes financially more rational, which implies a
higher endogenous surrender intensity value in the impaired state than the one in the
normal state, i.e., ρE2 > ρE1 . Therefore, given ρ̄1 = ρ1 + ρE1 and ρ̄2 = ρ2 + ρE2 , we have a
higher upper bound surrender intensity value in the impaired health state than the value
in the normal health state. We summarize the second state-dependent surrender scenario
in Remark 3.

10literatures on confirming the EFH are given in Section 4.1.
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Remark 3 In Scenario 2, we model the representative policyholder’s surrender by the
Markov-modulated Poisson process with the surrender intensity γt

γt =

(ρ1 ρ1)Xt , for S(t, At) < v(t, At, Xt),

(ρ̄1 ρ̄2)Xt , for S(t, At) ≥ v(t, At, Xt),
(4.10)

for (t, At) ∈ (0, T ) × R+ and Xt ∈ {e1, e2}, where ρ1 < ρ̄1 < ρ̄2 and v(t, At, Xt) is the
contract continuation value.

4.2.4 Early Default Mechanism

We assume there is an external regulator who monitors the insurance company’s financial
structure continuously and adopt the early default mechanism introduced by Grosen and
Jørgensen (2002). The regulator sets a default-triggering threshold, which is based on the
minimum survival guaranteed benefits promised by the insurance company, Bt = θL0e

rgt

where θ is called the default multiplier. As the value of the insurance company’s assets
drops below the threshold value before the maturity T , the regulator intervenes and
closes the insurance company. The default multiplier θ reflects the strictness of the
early default mechanism imposed by the regulator. As the regulator is confident on the
insurance company’s operation of its assets, she will set a lower default multiplier value
so that she will not intervene when the insurance company has only temporarily bad
performance. Otherwise, a higher default multiplier is used to protect the policyholder
by shutting down the insurance company before its asset value drops too much. In the
model, we restrict the default multiplier to be θ < 1/α so that A0 > B0 and the regulator
does not close the company at the contract-issuing time t0. As the regulator closes the
insurance company at the early default time τb := inf{t | At < Bt}, the company’s assets
are liquidated and distributed to its stakeholders. We use Υ(τb, Aτb) to denote the early
default benefits paid to the policyholder, which have the lower value of the company’s
liquidated assets and the minimum survival guaranteed benefits,

Υ(τb, Aτb) = min{Aτb , Lrgτb}, Lrgτb = L0e
rgτb . (4.11)

If the value of the company’s liquidated assets is higher than that of the minimum survival
guarantee, i.e., Aτb > Lrgτb , after paying off the policyholder, the equity holder takes away
what is left in the company. Otherwise, the policyholder gets the company’s liquidated
assets Aτb and the equity holder receives nothing.

72



4.3 Contract Valuation
In this section, by using the balance law, see Dai et al. (2007), we derive a system of two
coupled partial differential equations following Uzelac and Szimayer (2014) to evaluate
the participating life insurance contract. As the contract’s payoffs depend on the time t
and the company’s asset value At, we have the contract’s value V as a function of t and
At. Additionally, since the systemic health shock has influence on the mortality intensity
of the death process and also the surrender intensity of the surrender process, which
accordingly affects the payoffs to the policyholder, the contract’s value also depends on
the policyholder’s health state Xt. Therefore, at time t we have the contract’s value
Vt = V (t, At, Xt). Moreover, as the early default mechanism has influence on the payoffs
to the policyholder, same as in Cheng and Li (2015), we also distinguish the region where
the early bankruptcy occurs and the region where the company is on-going to evaluate the
contract. First, if the company’s asset value drops below the default barrier at t ∈ (0, T ),
i.e., At ≤ Bt, the regulator closes the company and the policyholder receives the early
default benefits. It implies that in the region of At ≤ Bt, the policyholder’s contract has
the value of the early default benefits Vt = Υ(t, At). Second, in the region of At > Bt

where the insurance company is on-going, i.e., t < τb, we suppose the contract’s value
Vt has the form of Vt = 1{t<τd,τs}v(t, At, Xt) on the set {t < τd, τs} ∩ {t ≤ T}, where
v(t, At, Xt) measures the pre-death-and-surrender value for any t ∈ [0, T ], At ∈ R+ and
Xt ∈ E . For each state Xt = ei, i ∈ {1, 2}, we define vi(t, At) := v(t, At, ei), which is
a suitable differential function vi : [0, T ] × R+ → R+, (t, At) → vi(t, At). Accordingly,
the vector of pre-death-and-surrender contract values for the two states can be defined as
v(t, At) = (v1(t, At) v2(t, At)), with that we have v(t, At, Xt) = v(t, At)Xt. Further, we
write the state-dependent mortality intensity specified in (4.4) as µt = (µ1(t) µ2(t))Xt,
where µ1(t) = m0(t) and µ2(t) = m0(t) + m1, for any t ∈ [0, T ]. As the policy-
holder is in the normal state, i.e., Xt = e1, he has the predictable mortality intensity
µt = µ1(t) = m0(t). Once the health shock occurs, the policyholder’s health changes
to the impaired state, i.e., Xt = e2, his mortality intensity increases by m1. More-
over, the surrender intensity γ described in Section 4.2.3 in both scenarios is a func-
tion of the time t, the contract’s value Vt and the health state Xt, which can be writ-
ten as γt = γ(t, Vt, Xt). By defining the surrender intensity in each state Xt = ei,
i ∈ {1, 2} by γi(t, Vt) := γ(t, Vt, ei), we have the state-dependent surrender intensity that
γt = γ(t, vt, Xt) = (γ1(t, v1) γ2(t, v2))Xt = (γ1(t, v(t, At)e1) γ2(t, v(t, At)e2))Xt on the
set {t < τd, τs} ∩ {t < T}.
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Suppose now At > Bt, we represent the contract’s value on the set {t ≤ τd∧ τs∧T} by

Vt = 1{t<τd,τs}v(t, At, Xt) + 1{t=τd,τd<τs,T}Ψ(t, At) + 1{t=τs,τs<τd,T}S(t, At), (4.12)

which implies that as either the death or surrender occurs over (t, t + dt), the payment
liability changes by either Ψ(t, At) − v(t, At) or S(t, At) − v(t, At). First, we apply the
balance law based on the no-arbitrage condition to the contract’s value Vt on the set
{t < τd ∧ τs ∧ T}

r(t)Vtdt = EQ[dVt | Ft] (4.13)

and obtain

r(t)v(t, At, Xt)dt = EQ[dv(t, At, Xt) + (Ψ(t, At)− v(t, At, Xt))dHt

+(S(t, At)− v(t, At, Xt))dJt | Ft]

= EQ[dv(t, At, Xt) | Ft] + (Ψ(t, At)− v(t, At, Xt))µ(t,Xt)dt

+(S(t, At)− v(t, At, Xt))γ(t, Vt, Xt)dt. (4.14)

Then, similar as in Uzelac and Szimayer (2014), by applying Ito’s lemma to the differential
of v(t, At, Xt) and using the decomposition for the stochastic differential of the Markov
chain X, dXt = C ′Xtdt+ dMt, where Mt is a F martingale and C ′ is the transpose of the
generator matrix of X, we have

dv(t, At, Xt) = Lv(t, At, Xt)dt+ v(t, At)dXt + σ(t, At, Xt)At
∂v

∂A
(t, At, Xt)dWQ

t

= Lv(t, At, Xt)dt+ v(t, At)C ′Xtdt+ v(t, At)dMt

+σ(t, At, Xt)At
∂v

∂A
(t, At, Xt)dWQ

t , (4.15)

where L is define as Lv(t, A,X) = ∂v
∂t

(t, A,X)+r(t)A ∂v
∂A

(t, A,X)+1
2σ

2(t, A)A2 ∂2v
∂A2 (t, A,X).11

We now plug (4.15) to (4.14) and use the following result

EQ[v(t, At)dMt | Ft] = EQ[σ(t, At, Xt)At
∂v

∂A
(t, At, Xt)dWQ

t | Ft] = 0 (4.16)

11For the Ito’s formula for general semimartingales, see section II of Protter (2005).
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to obtain

r(t)v(t, At, Xt) = Lv(t, At, Xt) + v(t, At)C ′Xt + (Ψ(t, At)− v(t, At, Xt))µ(t,Xt)

+(S(t, At)− v(t, At, Xt))γ(t, Vt, Xt). (4.17)

By arranging the terms in the equation (4.17), we have the following partial differential
equation (PDE)

0 = Lv(t, At, Xt) + Ψ(t, At)µ(t,Xt) + S(t, At)γ(t, Vt, Xt)

−(r(t) + µ(t,Xt) + γ(t, Vt, Xt))v(t, At, Xt) + v(t, At)C ′Xt, (4.18)

which holds for any t ∈ [0, T ), At ∈ R+ and Xt ∈ E . So for each state Xt = ei, i = 1, 2,
we have the following state-dependent PDE

0 = Lvi(t, At) + Ψ(t, At)µi(t) + S(t, At)γi(t, vi(t, At))

−(r(t) + µi(t) + γi(t, vi))vi(t, At) + v(t, At)C ′ei, (4.19)

where Lvi(t, At) = Lv(t, At, ei). The no-arbitrage condition in state i = 1, 2 is vi(T,A) =
Φ(T,A), A ∈ R+. Given the pre-death-and-surrender value vi for i = 1, 2, we can write
the contract value Vt on the set {t ≤ τd ∧ τs ∧ T} in the region of At > Bt as follows

Vt = 1{t<τd,τs}(1{Xt=e1}v1(t, At) + 1{Xt=e2}v2(t, At))

+1{t=τd,τd<τs,T}Ψ(t, At) + 1{t=τs,τs<τd,T}S(t, At). (4.20)

We summarize the results in the following proposition.

Proposition 4 Given the contract value Vt described in (4.20), the pre-death-and-surrender
value functions vi(t, At), i = 1, 2 for t ∈ [0, T ) and At ∈ R+ are the solutions of the fol-
lowing system of partial differential equations:

0 = Lv1(t, At) + Ψ(t, At)µ1(t) + S(t, At)γ1(t, v1(t, At))

−(r(t) + µ1(t) + γ1(t, v1(t, At)))v1(t, At) + κ(v2(t, At)− v1(t, At)), (4.21)

0 = Lv2(t, At) + Ψ(t, At)µ2(t) + S(t, At)γ2(t, v2(t, At))

−(r(t) + µ2(t) + γ2(t, v2(t, At)))v2(t, At), (4.22)
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where µ1(t) = m0(t) and µ2(t) = m0(t) +m1; subject to the boundary conditions

v1(t, At) = v2(t, At) = Υ(t, At) for At = Bt = θL0e
rgt (4.23)

and with the termination conditions

v1(T,AT ) = v2(T,AT ) = Φ(AT ) for AT ∈ R+. (4.24)

The surrender intensity in the state i = 1, 2 has the form of

γi(t, vi) =

(ρ1 ρ2)ei , for S(t, At) < vi(t, At),

(ρ̄1 ρ̄2)ei , for S(t, At) ≥ vi(t, At),
(4.25)

where ρ1 < ρ2 < ρ̄1 = ρ̄2 in the scenario 1, or ρ1 = ρ2 < ρ̄1 < ρ̄2 in the scenario 2.

Furthermore, the contract continuation values v1 and v2 are influenced by the bounds
(ρ̄1, ρ1) and (ρ̄2, ρ2) of surrender intensity. It can be proved that v1 and v2 increase as
a higher value of ρ̄1, and lower values of ρ1 and ρ2 are imposed in Scenario 1; or higher
values of ρ̄1 and ρ̄2, and a lower value of ρ1 are imposed in Scenario 2. This has economic
intuition. Since the policyholder with a lower value of exogenous surrender intensity
and a higher level of monetary rationality in state i = 1, 2 can carry out the surrender
decision more likely at the optimal time, his contract value then increases in either state.
See Appendix 4.6.1 for proof of Proposition 5.12

Proposition 5 Within the given regulatory framework characterised by the default multi-
plier θ and the given investment strategy of the insurance company described by σ, suppose
pre-death-and-surrender value functions v1 and v2 are solutions to the system of the two
PDEs in Proposition 4. Furthermore, suppose that ṽ1 and ṽ2 are also solutions to the
system of the two PDEs in Proposition 4 but with ˜̄ρ1 ≥ ρ̄1, ρ̃1 ≤ ρ1 and ρ̃2 ≤ ρ2 in Sce-
nario 1, or ˜̄ρ1 ≥ ρ̄1, ˜̄ρ2 ≥ ρ̄2 and ρ̃1 ≤ ρ1 in Scenario 2. Then we have ṽ1(t, A) ≥ v1(t, A)
and ṽ2(t, A) ≥ v2(t, A) for (t, A) ∈ [0, τb ∧ T ]× R+.

4.4 Numerical Analysis
In this section we numerically solve the coupled PDE system with a continuously ap-
plied barrier in Proposition 4 by using the finite difference method proposed by Zvan et
al. (1996) and Zvan et al. (2000). First, we study effects of the systemic health shock

12For an alternative proof of Proposition 5, confer Uzelac and Szimayer (2014).
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together with changes in the surrender behavior due to the health shock on the con-
tract valuation. We analyze how the effects change with respect to the health damage
level represented by m1 and we further compare these effects within different regulatory
frameworks θ. Second, we focus on the effects of regulatory frameworks on the contract
valuation given that the systemic health shock is taken into account for pricing together
with different considerations of changes in the policyholder’s surrender behavior after the
health damage.

We use the following benchmark values of the relevant parameters for the numerical
computation. At time t0 = 0, the insurance company is set up by issuing a participating
life insurance contract to the policyholder and levying money from the equity holder.
It has initial assets A0 = 100, which are invested into assets traded on the financial
market. The risk-free interest rate is r = 0.04 and the volatility of the company’s asset
process is assumed to be constant σ = 0.2. 85% of the company’s initial assets are
labelled as initial liabilities, i.e., α = 0.85, in the participating policy that matures in
10 years. The contract guarantees a minimum interest rate 0.02 at maturity, death and
surrender, which means rg = rd = rs = 0.02. On top of the minimum interest rate
guarantee, the contract promises a participation rate 0.9 both at maturity and at death,
i.e., δ = δd = 0.9. However, if the policyholder terminates his contract before maturity,
the following penalty parameter value is applied to calculate the surrender benefits

βt =



0.05, for t ≤ 1,

0.04, for 1 < t ≤ 2,

0.02, for 2 < t ≤ 3,

0.01, for 3 < t ≤ 4,

0, for t > 4.

It implies that the earlier the policyholder surrenders his contract, the more punishment
he faces by doing so. We assume that the policyholder who buys the contract at t0
is at age y = 40 and his predictable mortality intensity function m0(t) has the form
m0(t) = Aµ + Bcy+t with Aµ = 5.0758× 10−4 , B = 3.9342× 10−5 , c = 1.1029, which is
used in Cheng and Li (2015) and Li and Szimayer (2014). At the occurrence of the health
shock, the policyholder’s health state switches from the normal state to the impaired
state, and his mortality intensity shifts up by m1 = 0.05. The intensity of the health
shock process is assumed to be κ = 0.075 in the benchmark. Lastly, we assume that the
benchmark value of the regulatory threshold θ is equal to 0.9.
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4.4.1 Effects of the Systemic Health Shock on the Contract
Valuation

In this section we analyze the effects of the systemic health shock on the contract’s
fair value in both the case where the health shock does not influence the policyholder’s
surrender decision making and the case where the policyholder adjusts his surrender
behavior after the health shock, as described in both Scenario 1 and Scenario 2. In order
to further isolate influence of the early default regulation on these effects, we conduct
the analysis in both regulation-free and with-regulation environments. For the sake of
discussion, in the following subsections we suppose assume that the insurance company
overlooks the systemic health shock while pricing the contract, which means the contract
value computed with no health shock is charged to the policyholder.

4.4.1.1 When Surrender Risk is not Linked to Mortality Risk

We start in the situation where there is no early fault mechanism and the policyholder’s
surrender behavior does not change after the health shock. We present contract values for
different types of policyholders, whose surrender rationalities in the normal and impaired
states are represented by (ρ1, ρ̄1) and (ρ2, ρ̄2) respectively, satisfying (ρ1, ρ̄1) = (ρ2, ρ̄2),
before and after the systemic health shock is taken into account for pricing in Table 4.1.
m1 measures the damage level of the health shock, which takes values of 0.01, 0.03, 0.05
and 0.07 in the computation. In column 2 are contract values which are computed when
the systemic health shock is overlooked by the insurance company and charged to the
different types of policyholder. We see that the contract value is highest for the fully
rational policyholder represented by (0,∞) and decreases as the exogenous surrender in-
tensity increases and the endogenous surrender intensity decreases. As the health shock
with a minor damage level is presented for pricing, see column 3 with m1 = 0.01, we
observe that except for the fully rational policyholder, the contract value for the rest
of policyholders becomes higher. Furthermore, the contract value keeps increasing with
the damage level of the health shock for these policyholders, but decreasing for the fully
rational policyholder. We know that the participating life insurance contract attracts
policyholders by promising a participation in the company’s favorable asset performance.
For the fully rational policyholder who is capable of making an optimal surrendering de-
cision, an increase in his mortality due to the systemic health shock lowers his chance of
participating in the company’s asset surplus at maturity. Hence, the insurance company
has to lower the contract price in order to compensate the fully rational policyholder
and the compensation increases with the damage level of the health shock. However, for
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(ρ1, ρ̄1) = (ρ2, ρ̄2) no early default regulation
no health shock with health shock

m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07
(0, 0) 85.6140 85.6442 85.7003 85.7512 85.7974

(0, 0.03) 86.0368 86.0614 86.1071 86.1486 86.1863
(0, 0.3) 88.1531 88.154 88.1558 88.1574 88.159
(0, ∞) 92.0546 92.0376 92.0055 91.9759 91.9485

(0.03, 0.03) 81.8567 81.9306 82.0676 82.1913 82.3034
(0.03, 0.3) 84.2656 84.3098 84.3918 84.466 84.5332
(0.03, ∞) 88.5391 88.5593 88.5964 88.6293 88.6585
(0.3, 0.3) 75.4561 75.534 75.68 75.8138 75.9367
(0.3, ∞) 80.75 80.75 80.75 80.75 80.75

Table 4.1: Contract values for different rationality levels represented by (ρ
i
, ρ̄i), i = 1, 2 with

ρ1 = ρ2 and ρ̄1 = ρ̄2 and different health damage levels represented by m1 in the situation when
there is no early default mechanism.

partially rational policyholders, there are two situations where bearing a higher mortality
intensity after the health shock may help improve their positions, leading to a higher con-
tract value. The first situation is that for a partially rational policyholder with ρ̄i <∞,
i = 1, 2 who has difficulties in collecting information on the financial market and ana-
lyzing the contract’s fair value, the increasing death probability after the health shock
exempts him from making endogenous surrender decisions, in particular at the time when
he should surrender his contract but fails to do so. The second situation refers to the
case where the policyholder with ρ

i
> 0, i = 1, 2 has to surrender the contract due to

personal non-avoidable reasons. If the policyholder dies before he surrenders his contract
for exogenous reasons, he receives death benefits without any punishment. And these
protecting effects of the systemic health shock on the partially rational policyholders be-
come more significant, i.e., the contract value keeps increasing, as the damage level m1

increases from 0.01 to 0.07. Therefore, in the regulation-free environment, the contract of
the partially rational policyholder is undervalued, while the contract of the fully rational
policyholder is overvalued.

Next, we take into consideration the early default mechanism imposed by the regulator.
We start with a relatively mild regulatory rule represented by θ = 0.7, which requires
the insurance company to hold assets’ value not less than 70% of the promised interest
rate guarantee. Contract values for the different types of policyholders with the different
increases in the mortality intensity after the health shock are presented in Table 4.2. Now
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(ρ1, ρ̄1) = (ρ2, ρ̄2) with early default regulation, θ = 0.7
no health shock with health shock

m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07
(0, 0) 86.8199 86.833 86.8574 86.8797 86.9001

(0, 0.03) 87.0668 87.0773 87.0968 87.1146 87.131
(0, 0.3) 88.468 88.4657 88.4615 88.4576 88.4542
(0, ∞) 92.0548 92.0377 92.0057 91.976 91.9486

(0.03, 0.03) 82.9119 82.971 83.0805 83.1796 83.2693
(0.03, 0.3) 84.5696 84.6107 84.687 84.7561 84.8186
(0.03, ∞) 88.5392 88.5594 88.5965 88.6294 88.6586
(0.3, 0.3) 75.7496 75.8243 75.9641 76.0924 76.2103
(0.3, ∞) 80.7500 80.7500 80.7500 80.7500 80.7500

Table 4.2: Contract values for different rationality levels represented by (ρ
i
, ρ̄i), i = 1, 2 with

ρ1 = ρ2 and ρ̄1 = ρ̄2 and different health damage levels represented by m1 in the situation when
the regulator imposes an early default mechanism with θ = 0.7.

we see that, with the protection of the regulator, the contract value decreases not only for
the fully rational policyholder but also for the policyholder with (ρ

i
, ρ̄i) = (0, 0.3), i = 1, 2

as the health shock is taken into account for pricing. As we have discussed in Section
4.2.4, the early default regulation helps protect the policyholder from the downside risk
of the company’s asset process. More in detail, it protects the policyholder who is not
competent enough to terminate his contract as the company’s asset performance worsens
and his contract value drops below the value of surrender benefits by closing the company
and paying him early default benefits. Under the protection of the regulator, this policy-
holder, who surrenders his contract with relatively high competency, i.e., ρ̄i = 0.3, and at
the same time does not surrender his contract because of exogenous reasons, actually acts
like the fully rational policyholder. Hence, the policyholder with (0, 0.3) faces a similar
situation as the fully rational policyholder when the systemic health shock is taken into
consideration for pricing, which is a higher death probability after the health shock lowers
the probability that the policyholder participates in the company’s favourable asset per-
formance at maturity. So the contract becomes less attractive for the policyholder under
the protection of the regulator. However, for the rest policyholders who have relatively
low financial rationality and/or do surrender contracts for exogenous reasons, since the
mild regulatory rule does not fully assist them in carrying out optimal surrender strate-
gies, their contract values increase as the systemic health shock is considered for pricing,
the same as in Table 4.1.
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Suppose now a stricter regulatory rule, i.e., δ = 0.9, is imposed and we present contract
values for different types of policyholders within this regulatory framework in Table 4.3.
As a higher company’s asset value, i.e., 90% of minimum interest rate guaranteed value, is
required by the regulator, policyholders get more intensively protected from the downside
risk of the insurance company. It results in that more policyholders (the policyholders who
have relatively low financial competency, e.g., (ρ

i
, ρ̄i) = (0, 0.03) and (ρ

i
, ρ̄i) = (0, 0), are

(ρ1, ρ̄1) = (ρ2, ρ̄2) with early default regulation, θ = 0.9
no health shock with health shock

m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07
(0, 0) 90.4937 90.4817 90.4592 90.4385 90.4194

(0, 0.03) 90.5088 90.4967 90.474 90.4531 90.4339
(0, 0.3) 90.627 90.6142 90.5902 90.5682 90.5487
(0, ∞) 92.0628 92.0457 92.0135 91.9838 91.9563

(0.03, 0.03) 86.6744 86.7049 86.7611 86.8114 86.8566
(0.03, 0.3) 86.8343 86.8634 86.9169 86.9649 87.0079
(0.03, ∞) 88.5436 88.5638 88.6009 88.6338 88.663
(0.3, 0.3) 78.0482 78.1081 78.2204 78.3234 78.4181
(0.3, ∞) 80.75 80.75 80.75 80.75 80.75

Table 4.3: Contract values for different rationality levels represented by (ρ
i
, ρ̄i), i = 1, 2 with

ρ1 = ρ2 and ρ̄1 = ρ̄2 and different health damage levels represented by m1 in the situation when
the regulator imposes an early default mechanism with θ = 0.9.

(ρ1, ρ̄1) = (ρ2, ρ̄2) with early default regulation, θ = 1.1
no health shock with health shock

m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07
(0, 0) 89.6619 89.659 89.6534 89.6482 89.6433

(0, 0.03) 89.6619 89.659 89.6534 89.6482 89.6433
(0, 0.3) 89.6619 89.659 89.6534 89.6482 89.6433
(0, ∞) 89.6619 89.659 89.6534 89.6482 89.6433

(0.03, 0.03) 87.9197 87.934 87.9602 87.9838 88.005
(0.03, 0.3) 87.9197 87.934 87.9602 87.9838 88.005
(0.03, ∞) 87.9197 87.934 87.9602 87.9838 88.005
(0.3, 0.3) 83.2948 83.3209 83.3698 83.4148 83.4563
(0.3, ∞) 83.2952 83.3212 83.37 83.415 83.4565

Table 4.4: Contract values for different rationality levels represented by (ρ
i
, ρ̄i), i = 1, 2 with

ρ1 = ρ2 and ρ̄1 = ρ̄2 and different health damage levels represented by m1 in the situation when
the regulator imposes an early default mechanism with θ = 1.1.

included) face the same situation as the fully rational policyholder, where their contract
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values decrease as the systemic health shock is considered for pricing. Therefore, more
contracts are overpriced by the insurance company as the regulation strengthens, which
helps improve the company’s position. Further, we obtain similar results when an over-
regulation rule is imposed, see the contract values in Table 4.4 where θ = 1.1. Moreover,
we observe the dominating positive effects of the health shock on the contract valuation
for policyholders with non-zero exogenous surrender intensities ρ

i
> 0 in any regulatory

environment, i.e., their contract value increases as the health shock is considered in Table
4.1, 4.2, 4.3 and 4.4.

4.4.1.2 When Surrender Risk is linked to Mortality Risk

Now we focus on the situation when the policyholder’s surrender behavior changes after
the health shock. Table 4.5-4.8 present contract values for policyholders whose surrender
behaviors change as described in Scenario 1 after the health shock within different reg-
ulatory frameworks. In the third column of Table 4.5-4.8 are contract values which are
computed by assuming no systemic health shock so that policyholders’ surrender behav-
iors are consistent during the entire insuring period. For the sake of discussion, suppose
that these contract prices are charged to the policyholders. We observe that contract
values for all different types of policyholders in columns 4-7 where the systemic health
shock is considered for pricing are lower than the charged prices, which holds true within
all different regulatory frameworks. As we have described in Section 4.2.3 that in Sce-
nario 1 policyholders bear more financial distress after experiencing the health damage,
it is more likely that the policyholders surrender their contracts for exogenous reasons
and also become impatient in analyzing the contracts’ value, which consequently lowers
their contracts’ value. By comparing to changes in the contract value in Section 4.4.1.1,
we notice that this negative effect of the policyholder’s exogenous irrationality after the
health shock dominates the positive effects of the systemic health shock on the contract
valuation that we have mentioned in Section 4.4.1.1, which holds true within all differ-
ent regulatory frameworks. The higher the exogenous surrender intensity increases, the
more likely the policyholder exercises his contract for exogenous reasons and the more
his contract value decreases. The decrease in the contract value measures the premium
that the insurance company should have not charged given that the health shock can
occur and the policyholder becomes more irrational after experiencing it. Therefore, if
the company overlooks the systemic health shock, an overly-priced contract is going to
be sold to the policyholder, which is definitely not a wish of the regulator. But sadly, the
regulator cannot help change the policyholder’s position by imposing the early default
mechanism in this situation.
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(ρ1, ρ̄1) (ρ2, ρ̄2) no early default regulation
no health with health shock & scenario 1
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0.03) (0.03, 0.03) 86.0368 84.612 84.7559 84.8861 85.004
(0, 0.3) (0.03, 0.3) 88.1531 86.8415 86.9303 87.0107 87.0838

(0.3, 0.3) 82.0224 82.2885 82.5373 82.7686
(0.03, 0.3) (0.3, 0.3) 84.2656 80.1099 80.3463 80.5667 80.771
(0, ∞) (0.03, ∞) 92.0546 90.9427 90.983 91.0188 91.0508

(0.3, ∞) 86.8433 87.0237 87.2001 87.3668
(0.03, ∞) (0.3, ∞) 88.5391 84.9128 85.0756 85.2352 85.386

Table 4.5: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in impaired state represented by (ρ2, ρ̄2) in Scenario 1 and different health damage levels
represented by m1 in the situation when there is no early default mechanism.

(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 0.7
no health with health & scenario 1
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0.03) (0.03, 0.03) 87.0668 85.6502 85.7661 85.8711 85.9663
(0, 0.3) (0.03, 0.3) 88.468 87.1544 87.2372 87.3123 87.3803

(0.3, 0.3) 82.3384 82.6003 82.8429 83.0686
(0.03, 0.3) (0.3, 0.3) 84.5696 80.4093 80.6407 80.8557 81.0571
(0, ∞) (0.03, ∞) 92.0548 90.9428 90.9831 91.019 91.0509

(0.3, ∞) 86.8433 87.0238 87.2002 87.3668
(0.03, ∞) (0.3, ∞) 88.5392 84.9128 85.0757 85.2353 85.3861

Table 4.6: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in impaired state represented by (ρ2, ρ̄2) in Scenario 1 and different health damage levels
represented by m1 in the situation when the regulator imposes an early default mechanism with
θ = 0.7.

In addition, we observe that as the damage level of the health shock represented by m1

increases, the contract value increases for all types of policyholders. Since after the health
shock, the policyholder is more likely to terminate his contract for personal non-avoidable
liquidity reasons, experiencing a higher level of health damage increases the chance that
the policyholder gets death benefits before he exercises the surrender option and gets
surrender benefits with punishments. Furthermore, by comparing the decreases in the
contract value as the health shock is taken into consideration in Table 4.5-4.8, we find
that the decrease in the contract value for any type of the policyholder is significantly
smaller in the case when an over-regulation is imposed by the regulator, i.e., θ = 1.1.
With the over-regulation rule, it is more likely that the regulator forces the company
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(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 0.9
no health with health shock & scenario 1
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0.03) (0.03, 0.03) 90.5088 89.2506 89.3111 89.3655 89.4144
(0, 0.3) (0.03, 0.3) 90.627 89.3855 89.4434 89.4953 89.5421

(0.3, 0.3) 84.8058 85.0368 85.2511 85.4504
(0.03, 0.3) (0.3, 0.3) 86.8343 82.8091 83.018 83.2115 83.391
(0, ∞) (0.03, ∞) 92.0628 90.9493 90.9896 91.0255 91.0575

(0.3, ∞) 86.8468 87.0273 87.2038 87.3705
(0.03, ∞) (0.3, ∞) 88.5436 84.9154 85.0783 85.2379 85.3888

Table 4.7: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in impaired state represented by (ρ2, ρ̄2) in Scenario 1 and different health damage levels
represented by m1 in the situation when the regulator imposes an early default mechanism with
θ = 0.9.

(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 1.1
no health with health shock & scenario 1
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0.03) (0.03, 0.03) 89.6619 89.1331 89.1614 89.1869 89.2098
(0, 0.3) (0.03, 0.3) 89.6619 89.1331 89.1614 89.1869 89.2098

(0.3, 0.3) 87.1187 87.2198 87.3136 87.4009
(0.03, 0.3) (0.3, 0.3) 87.9197 86.1287 86.2213 86.3071 86.3868
(0, ∞) (0.03, ∞) 89.6619 89.1331 89.1614 89.1869 89.2098

(0.3, ∞) 87.1188 87.2198 87.3136 87.4009
(0.03, ∞) (0.3, ∞) 87.9197 86.1288 86.2213 86.3071 86.3868

Table 4.8: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in impaired state represented by (ρ2, ρ̄2) in Scenario 1 and different health damage levels
represented by m1 in the situation when the regulator imposes an early default mechanism with
θ = 1.1.

to shut down and pay out its liquidated assets very early, even at the time when the
company is operating well. Hence, the effects of the health damage due to the systemic
health shock and the accompanied more irrational surrender behavior after the health
shock on the contact valuation are less significant than those in the environment with
no regulation or with a mild regulatory rule, i.e.,θ = 0.7 and θ = 0.9. If the regulator is
aiming at lowering the difference between the contract’s selling price and its fair value,
an overly-regulated early default rule should be imposed.

So far we have discussed about the Scenario 1 and now we present contract values

84



for policyholders whose surrender behaviors change after the health shock as described in
Scenario 2 within different regulatory frameworks in Table 4.9-4.12. Policyholders become
more careful and responsible in handling their contracts after experiencing the health
damage in Scenario 2, which has positive effects on the contract valuation. Hence, first,
we observe that contract values in Table 4.9-4.11 are higher than the ones in Table 4.1-4.3
where the policyholders’ surrender behaviors are assumed to be consistent. The larger the
increases in the policyholders’ financial rationalities, the higher the policyholders’ contract
values. Second, as the regulation is harshly imposed, i.e., θ = 1.1, we observe that the
improvements of policyholders’ endogenous surrender behaviors do not have any impacts
on the contract valuation and in addition, the contract values for the policyholders who
have the same value of the exogenous surrender intensity are the same as the values
in the case when the policyholders’ surrender behaviors are consistent before and after
the health shock, see Table 4.4 and 4.12. Since as the insurance company is liquidated
under the overly regulatory rule, the policyholder receives early default benefits which
have a higher value than that of surrender benefits, the policyholder is not going to
surrender his contract for endogenous reasons. Therefore, whether there is an increase in
the policyholder’s financial intensity and how large the increase is after the health shock
become irrelevant for determining the contracts’ values.
Now we discuss about the effects of taking into account the health shock for pricing

within the different regulatory frameworks. Same as in the previous subsection, suppose
the company overlooks the health shock while pricing the contract. First, Table 4.9
summarizes contract values when there is no early default regulatory rule, where we
observe higher contract values for all the levels of the health damage when the health shock
is considered for pricing. The more rational the policyholder becomes after experiencing
the health shock, i.e., the larger ρ̄2 − ρ̄1, the larger the increase in his contract value
and the more the contract is undervalued. Additionally, we observe that the increase in
the contract value for the policyholder who has zero exogenous surrender intensity and
an infinitely large value of endogenous surrender intensity after experiencing the health
shock becomes smaller as the damage level of the health shock increases. Since the
policyholder with (0,∞) in the impaired health state can exercise his contract optimally
but an increase in the mortality rate lowers the chance that the policyholder participates
in sharing profits of the company in the long run, the contract value decreases with
respect to the health damage level for these types of policyholders. This phenomenon
also corresponds to the decreasing contract value with respect to m1 for the fully rational
policyholder in Table 4.1. The rest policyholders with a non-zero exogenous intensity
or a finite endogenous surrender intensity in the impaired state, i.e., ρ2 = {0.03, 0.3} or
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(ρ1, ρ̄1) (ρ2, ρ̄2) no early default regulation
no health with health & scenario 2
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0) (0, 0.03) 85.614 85.7461 85.7936 85.8368 85.876
(0, 0.3) 86.3106 86.316 86.3212 86.326
(0, ∞) 87.5263 87.4844 87.4454 87.4092

(0, 0.03) (0, 0.3) 86.0368 86.6051 86.6099 86.6145 86.6188
(0, ∞) 87.7756 87.7341 87.6956 87.6599

(0, 0.3) (0, ∞) 88.1531 89.0928 89.0541 89.0182 88.9849
(0.03, 0.03) (0.03, 0.3) 81.8567 82.5029 82.5941 82.6769 82.7522

(0.03, ∞) 83.692 83.7313 83.766 83.7968
(0.03, 0.3) (0.03, ∞) 84.2656 85.2254 85.2641 85.2985 85.329
(0.3, 0.3) (0.3, ∞) 75.4561 76.2958 76.3865 76.4778 76.5642

Table 4.9: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in impaired state represented by (ρ2, ρ̄2) in Scenario 2 and different health damage levels
represented by m1 in the situation when there is no early default mechanism.

(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 0.7
no health with health shock & scenario 2
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0) (0, 0.03) 86.8199 86.8905 86.9106 86.929 86.9459
(0, 0.3) 87.2396 87.2363 87.2334 87.2309
(0, ∞) 88.2585 88.217 88.1785 88.1427

(0, 0.03) (0, 0.3) 87.0668 87.4174 87.414 87.411 87.4083
(0, ∞) 88.4096 88.3685 88.3304 88.2949

(0, 0.3) (0, ∞) 88.468 89.3082 89.2695 89.2336 89.2003
(0.03, 0.03) (0.03, 0.3) 82.9119 83.3358 83.4183 83.4931 83.5609

(0.03, ∞) 84.3451 84.3845 84.4193 84.4502
(0.03, 0.3) (0.03, ∞) 84.5696 85.4357 85.4745 85.5089 85.5394
(0.3, 0.3) (0.3, ∞) 75.7496 76.5002 76.5906 76.6816 76.7679

Table 4.10: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in imparied state represented by (ρ2, ρ̄2) in Scenrario 2 and different levels represented by m1
in the situation when the regulator imposes an early default mechanism with θ = 0.7.

ρ̄2 = {0.03, 0.3}, would still benefit from the increasing probability of dying and receiving
death benefits, as we have discussed in Section 4.4.1.1. Suppose now an early default
regulatory rule with a relatively low threshold θ = 0.7 is imposed by the regulator, see
Table 4.10. We observe the same effects of improvements in the policyholders’ financial
rationality after the health shock on the contract valuation as in the case of no regulation,
i.e., higher contract values for all types of policyholders as the health shock is taken into
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(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 0.9
no health with health shock & scenario 2
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0) (0, 0.03) 90.4937 90.4857 90.463 90.4421 90.4228
(0, 0.3) 90.5172 90.4929 90.4705 90.45
(0, ∞) 90.8561 90.8196 90.7859 90.7546

(0, 0.03) (0, 0.3) 90.5088 90.528 90.5038 90.4815 90.4609
(0, ∞) 90.8658 90.8295 90.7958 90.7646

(0, 0.3) (0, ∞) 90.627 90.9437 90.9077 90.8743 90.8435
(0.03, 0.03) (0.03, 0.3) 86.6744 86.7406 86.7946 86.8429 86.8863

(0.03, ∞) 87.0891 87.1278 87.1621 87.1925
(0.03, 0.3) (0.03, ∞) 86.8343 87.1995 87.238 87.2722 87.3025
(0.3, 0.3) (0.3, ∞) 78.0482 78.3673 78.4534 78.5401 78.6222

Table 4.11: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in imparied state represented by (ρ2, ρ̄2) in Scenrario 2 and different levels represented by m1
in the situation when the regulator imposes an early default mechanism with θ = 0.9.

(ρ1, ρ̄1) (ρ2, ρ̄2) with early default regulation, θ = 1.1
no health with health shock & scenario 2
shock m1 = 0.01 m1 = 0.03 m1 = 0.05 m1 = 0.07

(0, 0) (0, 0.03) 89.6619 89.659 89.6534 89.6482 89.6433
(0, 0.3) 89.659 89.6534 89.6482 89.6433
(0, ∞) 89.659 89.6534 89.6482 89.6433

(0, 0.03) (0, 0.3) 89.6619 89.659 89.6534 89.6482 89.6433
(0, ∞) 89.659 89.6534 89.6482 89.6433

(0, 0.3) (0, ∞) 89.6619 89.659 89.6534 89.6482 89.6433
(0.03, 0.03) (0.03, 0.3) 87.9197 87.934 87.9602 87.9838 88.005

(0.03, ∞) 87.934 87.9602 87.9838 88.005
(0.03, 0.3) (0.03, ∞) 87.9197 87.934 87.9602 87.9838 88.005
(0.3, 0.3) (0.3, ∞) 83.2948 83.3209 83.3698 83.4148 83.4563

Table 4.12: Contract values for different rationality levels in the normal state represented by (ρ1, ρ̄1)
and in imparied state represented by (ρ2, ρ̄2) in Scenrario 2 and different levels represented by m1
in the situation when the regulator imposes an early default mechanism with θ = 1.1.

account for pricing. Additionally, as we have explained in Section 4.4.1.1 that with the
regulator’s protection, policyholders with (ρ2, ρ̄2) = (0, 0.3) in the impaired state do
actually behave like the fully rational policyholder, so they also dislike the increasing
damage level of the health shock and their contract values are decreasing with the health
damage level. Therefore, under the mild protection of the regulator, even though all
the different types of policyholders are still in an favorable position, there are more
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policyholders who are concerned about the damage level of the health shock.
However, as the regulatory rule becomes stricter, see Table 4.11, we observe the

disadvantage of overlooking the health shock while pricing the participating contract
by the insurance company for some types of policyholders. Fair contracts’ values for
the policyholder with (ρ1, ρ̄1) = (0, 0) in the normal state and (ρ2, ρ̄2) = (0, 0.03) or
(ρ2, ρ̄2) = (0, 0.3) in the impaired state, and the policyholder with (ρ1, ρ̄1) = (0, 0.03) in
the normal state and (ρ2, ρ̄2) = (0, 0.3) in the impaired state are lower than the prices
which are computed with no health shock and paid to the insurance company at some
damage levels represented by m1. As the regulatory threshold θ increases from 0.7 to
0.9, more assets are required to be kept in the company so that the policyholder is more
intensively protected from the downside risk of the company’s asset process. Under such
intensive protection, the improvement of the policyholder’s financial rationality after the
systemic health shock plays a less significant role in enhancing his contract’s value. But
still, a higher mortality in the impaired state lowers the policyholder’s chance to partici-
pate in the company’s long-run profits, which consequently lowers his contract value. So
under the regulator’s intensive protection, the policyholder’s contract value becomes very
sensitive to the trade-off between the increase in the policyholder’s financial rationality
given by ρ̄2−ρ̄1 and the damage level of the health shock represented bym1. For example,
the contract value for the policyholder who has no exogenous surrender reasons and only
a marginal improvement in his endogenous surrender intensity after the health shock,
i.e., (ρ1, ρ̄1) = (0, 0), (ρ2, ρ̄2) = (0, 0.03), is lower than the contract value without taking
into account the health shock. In addition, for policyholders whose surrender intensities
switch from (ρ1, ρ̄1) = (0, 0) or (ρ1, ρ̄1) = (0, 0.03) in the normal state to (ρ2, ρ̄2) = (0, 0.3)
in the impaired state, their contract values are higher than the values obtained without
taking into account the shock if the health damage level is relatively low, i.e., m1 = 0.01,
but are lower when m1 ≥ 0.03. To sum up, in such the moderately intensive regulatory
environment, policyholders’ financial positions turn to be sensitive to the magnitude of
the health shock and the changes in the policyholders’ surrender behaviors. Some policy-
holders are being overly charged by the insurance company and this overpricing scenario
is going to enlarged as the regulatory rule is further strengthened with θ = 1.1, see Table
4.12. We see that the contracts’ values for the policyholders who do not surrender their
contracts for exogenous reasons are lower than when the health shock is not considered,
no matter how financially rational the policyholders become after experiencing the health
shock. As we have mentioned in the beginning of this section that with the over protec-
tion of the regulator the policyholder would not surrender his contract on his own, the
increase in his endogenous surrender intensity does not effectively bring positive effects on
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the contract valuation. Therefore, as the health shock is taken into account for pricing,
the contract value drops consequently. Moreover, same as in Scenario 1, the difference in
the contract’s value before and after the health shock is considered for pricing is smallest
for all the different types of policyholders when the regulation is imposed harshly by the
regulator. Lastly, from Table 4.9-4.12 we see that policyholders with non-zero exogenous
surrender intensities benefit from the company’s pricing strategy which does not take into
account the systemic health shock within all the different regulatory frameworks, which
will draw the attention of the insurance company to policyholders’ financial capability.

4.4.2 Effects of Regulatory Frameworks on Contract Valuation

Suppose now the insurance company is aware of the existence of the systemic health shock
and takes into account the shock while pricing the contract, where m1 has the benchmark
value 0.05. So, in this section, we analyze effects of different regulatory frameworks on
the contract valuation given different surrender reactions of the policyholder after ex-
periencing the health shock. First, we present contract values when the policyholder’s
surrender decision making is not influenced by the health shock, i.e., (ρ1, ρ̄1) = (ρ2, ρ̄2), in
Table 4.13. We observe that as the regulation is imposed and moderately strengthened,
see columns 3-5, the contract value increases for all the different types of policyholders.
And the increase in the contract value becomes less significant as the policyholder is more
financially rational. Since it is more likely that financially more rational policyholders
carry out an optimal surrender strategy on their own,benefits of the regulator’s protection

with health shock (m1 = 0.05)
(ρ1, ρ̄1) (ρ2, ρ̄2) & without change in the surrender behavior

no early default regulation with early default regulation
θ = 0.7 θ = 0.9 θ = 1.1

(0, 0) (0, 0) 85.7512 86.8797 90.4385 89.6482
(0, 0.03) (0, 0.03) 86.1486 87.1146 90.4531 89.6482
(0, 0.3) (0, 0.3) 88.1574 88.4576 90.5682 89.6482
(0, ∞) (0, ∞) 91.9759 91.976 91.9838 89.6482

(0.03, 0.03) (0.03, 0.03) 82.1913 83.1796 86.8114 87.9838
(0.03, 0.3) (0.03, 0.3) 84.466 84.7561 86.9649 87.9838
(0.03, ∞) (0.03, ∞) 88.6293 88.6294 88.6338 87.9838
(0.3, 0.3) (0.3, 0.3) 75.8138 76.0924 78.3234 83.4148
(0.3, ∞) (0.3, ∞) 80.75 80.75 80.75 83.415

Table 4.13: Contract values for different multipliers θ and different rationality levels represented by
(ρ
i
, ρ̄i), i = 1, 2.
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become lower. However, as the regulation parameter θ increases from 0.9 to 1.1, we see
that the contract value for the policyholder with (ρ

i
, ρ̄i) = (0, ·), who does not surrender

his contract for exogenous reasons, and (ρ
i
, ρ̄i) = (0.03,∞), who has a very low exoge-

nous surrender intensity but an infinitely large endogenous surrender intensity, becomes
smaller. Too much intervention from the regulator starts hurting the policyholder by
depriving him of the chance to keep his contract and actively participate in the favorable
development of the company. Hence, strengthening the early default regulatory rule is
not always favorable, which is consistent with Cheng and Li (2015) where participating
contracts are evaluated in a model with no systemic health shock. By comparing our
results to Cheng and Li (2015), we notice that assuming the health shock but no changes
in the policyholder’s surrender behavior after the health shock does not bring more com-
plexities to the effects of the regulatory frameworks on the contract valuation.

Suppose now as described in Scenario 1, the policyholder becomes more impatient af-
ter experiencing the health shock and surrenders his contract more likely for personal
non-avoidable reasons, which means ρ2 > ρ1. We present the contract values for all
the different types of policyholders within different regulatory frameworks in Table 4.14.
Same as in Table 4.13, we observe that introducing the early default regulatory rule and
moderately enhancing its protection level do improve the position of the policyholder
with all the different rationality levels. However, an interesting feature is that the ef-
fect of an over-regulation rule on the contract valuation depends on the policyholder’s
surrender reaction after experiencing the health shock. Without knowing the change in
the policyholder’s surrender behavior, the effect of further strengthening the early default
regulatory rule becomes unclear. For example, for the policyholder with (ρ1, ρ̄1) = (0, 0.3)
and (ρ1, ρ̄1) = (0,∞) in the normal state, his contract value can either decrease or in-
crease as the default multiplier increases from 0.9 to 1.1 depending on how impatient
the policyholder becomes after experiencing the health shock. If the policyholder’s ex-
ogenous surrender intensity increases to 0.3, the over-regulation does further improve
his position. However, if there is only a small change in the policyholder’s exogenous
surrender-decision making, i.e., ρ2 = 0.03, there is a decrease in his contract value. We
know that even though the over-regulation rule lowers the chance of the policyholder to
participate in the company’s profits in the long run, it protects the policyholder from
getting punished when he terminates the contract due to exogenous reasons by liquidat-
ing the company and paying out the early default benefits. Hence, as the policyholder
hurries to surrender his contract for liquidity reasons after having the health damage,
it is better for the policyholder to have the over-regulation rule, by applying which the
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with health shock (m1 = 0.05)
(ρ1, ρ̄1) (ρ2, ρ̄2) & with the change in the surrender behavior (Scenario 1)

no early default regulation with early default regulation
θ = 0.7 θ = 0.9 θ = 1.1

(0, 0.03) (0.03, 0.03) 84.8861 85.8711 89.3655 89.1869
(0, 0.3) (0.03, 0.03) 87.0107 87.2123 89.4953 89.1869

(0.3, 0.3) 82.5373 82.8429 85.2511 87.3136
(0, ∞) (0.03, ∞) 91.0188 91.019 91.0255 89.1869

(0.3, ∞) 87.2001 87.2002 87.2038 87.3136
(0.03, 0.3) (0.3, 0.3) 80.5667 80.8557 83.2115 86.3071
(0.03, ∞) (0.3, ∞) 85.2352 85.2353 85.2379 86.3071

Table 4.14: Contract values for different multipliers θ and different rationality levels represented by
(ρ
i
, ρ̄i), i = 1, 2 which are consistent with the description in Scenario 1.

policyholder receives early default benefits that are higher than the surrender benefits.
The policyholder with (ρ1, ρ̄1) = (0.03,∞) in the normal state also belongs to this group.
Overall, depending on the changes in the policyholders’ surrender behaviors after the
health shock, the over-regulation rule can be welcomed by more policyholders.

Suppose, being different from Scenario 1, policyholders become financially more ratio-
nal after experiencing the health shock as described in Scenario 2. We present contract
values for different types of policyholders within different regulatory frameworks in Ta-
ble 4.15. We observe the same positive effects of imposing the early default regulatory
rule and moderately strengthening it on the contract valuation as in Table 4.13 and Ta-
ble 4.14, i.e., the contract value increases as the regulatory rule with θ = 0.7 is introduced
and the regulation threshold θ increases to 0.9. However, as θ increases further to 1.1,
with which the company is going to be liquidated even when it has enough assets to cover
the promised minimum guarantee, such the over-regulation rule is not welcomed by the
policyholders who do not surrender the contract for exogenous reasons. It has the same
effect of the over regulation on the contract valuation as in Table 4.13. However, since in
Scenario 2 the policyholder is becoming financially more rational in handling his contract
after the health shock, such the over-protection does block him from participating in the
company’s profits to a further extent. Hence, we observe that the decrease of the contract
value for the policyholder with (0, ·) in Table 4.15 is larger than that in Table 4.13 where
there is no improvement in the policyholder’s financial rationality. It is also the reason
for the policyholder, who has a non-zero exogenous surrender intensity, that his contract
value in Scenario 2 does not increase as much as in the case where there is no improve-
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with health shock (m1 = 0.05)
(ρ1, ρ̄1) (ρ2, ρ̄2) & with the change in the surrender behavior (Scenario 2)

no early default regulation with early default regulation
θ = 0.7 θ = 0.9 θ = 1.1

(0, 0) (0, 0.03) 85.8368 86.929 90.4421 89.6482
(0, 0.3) 86.3212 87.2334 90.4705 89.6482
(0, ∞) 87.4454 88.1785 90.7859 89.6482

(0, 0.03) (0, 0.3) 86.6145 87.411 90.4815 89.6482
(0, ∞) 87.6956 88.3304 90.7958 89.6482

(0, 0.3) (0, ∞) 89.0182 89.2336 90.8743 89.6482
(0.03, 0.03) (0.03, 0.3) 82.6769 83.4931 86.8429 87.9838

(0.03, ∞) 83.766 84.4193 87.1621 87.9838
(0.03, 0.3) (0.03, ∞) 85.2985 85.5089 87.2722 87.9838
(0.3, 0.3) (0.3, ∞) 76.4778 76.6816 78.5401 83.4148

Table 4.15: Contract values for different multipliers θ and different rationality levels represented by
(ρ
i
, ρ̄2), i = 1, 2 which are consistent with the description in Scenario 2.

ment in his surrender decision making, see Table 4.13. The more financially rational
the policyholder becomes after experiencing the health shock, the more the policyholder
dislikes the over-protection of the regulator.

4.5 Conclusion
In this paper we have modelled the connection between the mortality risk and surrender
risk trigged by the systemic health shock. We take into account the partial rationality of
a representative policyholder and assume his surrender intensity is bounded from below
and from above due to exogenous surrender reasons and restricted evaluating capacity
respectively. By modelling the systemic health shock by a jump process, we construct a
continuous two-state Markov chain to capture both the state-dependent mortality inten-
sity and the state-dependent surrender intensity. When the systemic health shock occurs,
the representative policyholder’s mortality intensity increases, and, at the same time, ei-
ther the policyholder becomes more impatient in accessing surrender values in Scenario 1
so that his lower bound surrender intensity increases, or the policyholder becomes more
careful in surrendering the contract in Scenario 2 so that his upper bound surrender in-
tensity increases. The two scenarios are analyzed both in a regulation-free environment
and in an environment with an early default mechanism imposed by a regulator. The
regulator monitors the company’s financial performance and closes the company when its

92



asset value drops below a prespecified threshold according to the early default regulatory
rule.
We have derived a coupled PDE system for pricing the contract and solved it numer-

ically with the finite difference method. In order to easily discuss our numerical results,
we suppose that the insurer charges the policyholder the price which is determined when
the health shock is overlooked. We quantify the disadvantage on the policyholder with
all different levels of rationality, who is more likely to surrender his contract for exoge-
nous reasons after experiencing the health shock, i.e., in Scenario 1. The early default
regulation lowers the magnitude of the disadvantage, but it does not help eliminate the
disadvantage on the policyholder. Differently, if the policyholder’s financial rationality
increases after he becomes impaired, he takes advantage of the insurer by paying the
price which is lower than the fair contract value when the regulatory rule is absent or
weakly imposed. However, such the advantage disappears for some policyholders when
the early default regulation becomes stricter. All policyholders who do not surrender the
contract for exogenous reasons pay a price which is higher than the contract fair value
when the regulation is overly imposed. Recognizing the link between the mortality risk
and surrender risk, and the policyholder’s surrender change is important for both the pol-
icyholder and the insurer. It is also important for the regulator to design an protective
early default mechanism.
This paper can be extended further. For example, instead of modelling an increase

in the policyholder’s mortality intensity over the rest of the contract life as the health
shock occurs, first, one can consider a mean reversion process. If the policyholder slowly
recovers from the necessary medical treatments, the increase in the mortality intensity
vanishes slowly and his mortality intensity may converge to the predicted intensity level
before the contract ends. Second, since the policyholder’s health damage may accumulate
as the health shock exists over the rest of the contract term, one could model the increase
in the mortality intensity to be a time-dependent function. No matter which modelling of
the mortality intensity, the change in the policyholder’s surrender behavior can be linked
to the deviation to the expected mortality level so that a continuous surrender intensity
change is constructed.
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4.6 Appendix to Chapter 4

4.6.1 Proof of Proposition 5

Proof of Proposition 5 in Scenario 1. We follow the proof of Proposition 3 in Chapter 3 for
a similar comparative study. Suppose pre-death-and-surrender value functions v1(t, At)
and v2(t, At) are solutions to the system of the two PDEs in Proposition 4 with bounds
of (ρ1, ρ̄1) at state i = 1, (ρ2, ρ̄2) at state i = 2, and ρ̄1 = ρ̄2 in Scenario 1, v1(t, At) and
v2(t, At) satisfy the two PDEs (4.21) and (4.22) with terminal conditions v1(T,AT ) =
v2(T,AT ) = Φ(AT ) and boundary conditions v1(t, At) = v2(t, At) = Υ(t, At) for At ≤ Bt.
Suppose pre-death-and-surrender value functions ṽ1(t, At) and ṽ2(t, At) are solutions to
the system of the two PDEs in Proposition 4 but with bounds of (ρ̃1,

˜̄ρ1) at state i = 1,
(ρ̃2,

˜̄ρ2) at state i = 2, and ˜̄ρ1 = ˜̄ρ2 in Scenario 1, ṽ1(t, At) and ṽ2(t, At) satisfy the two
PDEs (4.21) and (4.22) with terminal conditions ṽ1(T,AT ) = ṽ2(T,AT ) = Φ(AT ) and
boundary conditions ṽ1(t, At) = ṽ2(t, At) = Υ(t, At) forAt ≤ Bt. Assume ρ̃1 ≤ ρ1, ρ̃2 ≤ ρ2
and ˜̄ρ1 ≥ ρ̄1. Define z1(t, At) = ṽ1(t, At) − v1(t, At) and z2(t, At) = ṽ2(t, At) − v2(t, At).
It follows directly that z1(T,AT ) = ṽ1(T,AT ) − v1(T,AT ) = Φ(AT ) − Φ(AT ) = 0 and
z2(T,AT ) = ṽ2(T,AT ) − v2(T,AT ) = Φ(AT ) − Φ(AT ) = 0. Also, z1(t, At) = Υ(t, At) −
Υ(t, At) = 0 and z2(t, At) = Υ(t, At)−Υ(t, At) = 0 for At ≤ Bt. To obtain the dynamics
of z1 and z2 take the difference of the two PDEs describing ṽ1 and ṽ2 and the two PDEs
describing v1 and v2, respectively, i.e.,

0 = Lṽ1(t, At) + Ψ(t, At)µ1(t) + S(t, At)γ̃(t, At, e1)

−(r(t) + µ1(t) + γ̃(t, At, e1)) ṽ1(t, At) + κ(ṽ2(t, At)− ṽ1(t, At))

− (Lv1(t, At) + Ψ(t, At)µ1(t) + S(t, At)γ(t, At, e1)

−(r(t) + µ1(t) + γ(t, At, e1)) v1(t, At) + κ(v2(t, At)− v1(t, At)))

= Lz1(t, At) + (γ̃(t, At, e1)− γ(t, At, e1)) (S(t, At)− ṽ1(t, At)) + κz2(t, At)

−(r(t) + µ1(t) + γ(t, At, e1) + κ) z1(t, At) ;

0 = Lṽ2(t, At) + Ψ(t, At)µ2(t) + S(t, At)γ̃(t, At, e2)− (r(t) + µ2(t) + γ̃(t, At, e2)) ṽ2(t, At)

− (Lv2(t, At) + Ψ(t, At)µ2(t) + S(t, At)γ(t, At, e2)− (r(t) + µ2(t) + γ(t, At, e2)) v2(t, At))

= Lz2(t, At) + (γ̃(t, At, e2)− γ(t, At, e2)) (S(t, At)− ṽ2(t, At))

−(r(t) + µ2(t) + γ(t, At, e2)) z2(t, At) ,
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where γ(t, At, ei) and γ̃(t, At, ei), i = 1, 2, are given by (4.25) using the appropriate
bounds mentioned above. Similar to the proof of Corollary 1 in Chapter 3, we obtain the
stochastic representation of z1 and z2 as follows

z1(t, A) = Et,AQ

[ ∫ τb∧T

t
e−
∫m
t

(r(u)+µ1(u)+γ(u,Au,e1)+κ) du((γ̃(m,Am, e1)− γ(m,Am, e1)) (S(m,Am)

−ṽ1(m,Am)) + κz2(m,Am))dm
∣∣∣∣Ft
]
; (4.26)

z2(t, A) = Et,AQ

[ ∫ τb∧T

t
e−
∫m
t

(r(u)+µ2(u)+γ(u,Au,e2)) du(γ̃(m,Am, e2)− γ(m,Am, e2)) (S(m,Am)

−ṽ2(m,Am))dm
∣∣∣∣Ft
]
, (4.27)

where Et,AQ denotes the expectation conditioned on At = A. From the definition of
γ̃(t, A, ei), i = 1, 2 in (4.25) and assumptions ρ̃1 ≤ ρ1, ρ̃2 ≤ ρ2 and ˜̄ρ1 ≥ ρ̄1, we see that if
S(t, A)− ṽ2(t, A) ≥ 0 we have γ̃(t, A, e2) = ˜̄ρ2 = ˜̄ρ1 ≥ ρ̄1 = ρ̄2 ≥ γ(t, A, e2) in Scenario 1
and thus γ̃(t, A, e2) − γ(t, A, e2) ≥ 0. On the other hand, if S(t, A) − ṽ2(t, A) < 0 we
have γ̃(t, A, e2) = ρ̃2 ≤ ρ2 ≤ γ(t, A, e2). Hence, γ̃(m,Am, e2) − γ(m,Am, e2) ≤ 0. In
sum, the integrand in (4.27) is nonnegative and therefore z2(t, A) ≥ 0. Since z2(t, A) =
ṽ2(t, A) − v2(t, A), we have ṽ2(t, A) ≥ v2(t, A). Same as above proving z2(t, A) ≥ 0
in (4.27), we obtain that the integrand in (4.26), i.e., (γ̃(t, A, e1) − γ(t, A, e1)) (S(t, A −
ṽ1(t, A)) + κz2(t, A), is also nonnegative given z2(t, A) ≥ 0 and therefore z1(t, A) ≥ 0.
Since z1(t, A) = ṽ1(t, A)−v1(t, A), we have ṽ1(t, A) ≥ v1(t, A). Proposition 5 in Scenario 2
can be proved in a similar way.
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