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Chapter 1: Abstract 

The incidence of mood pathologies, such as chronic anxiety and major 

depression, is a serious health problem in modern societies. The knowledge 

about the molecular mechanisms involved in the development of these 

disorders is crucial for preventive and therapeutic approaches. Mood 

pathologies are complex, and rise from the interaction of genetic and 

environmental factors.  

The experience of chronic stress in everyday life is a main environmental 

factor for the development of mood pathologies. Therefore, identification of 

the biological mechanisms involved in stress response and of molecular 

markers underlying the individual’s vulnerability or resilience to stress-related 

mood pathologies is of crucial importance. 

Enkephalin has been shown to play an important role in stress reactivity, 

leading to anxiolytic and antidepressant effects under acute models of stress. 

Thus, in the present study, we aimed to assess the role of enkephalin in stress 

reactivity under chronic stress conditions. In order to do that, we submitted 

constitutive preproenkephalin KO (Penk KO) and WT mice to five weeks of 

CMS protocol, followed by analysis of the baseline corticosterone levels, as 

well as anxiety and depression-like phenotypes, as measures of stress 

adaptation.  

Our study revealed that constitutive Penk KO mice show a higher resilience to 

the behavioral and hormonal effects induced by CMS, when compared with 

WT animals. Exposure to CMS induced an increase in baseline corticosterone 

levels and anxiety and depressive-like phenotypes in the WT. In contrast, Penk 

KO animals exhibited resilience to the mentioned effects.  

In addition, we showed that CMS induces an increase in the Penk gene 

expression in the paraventricular nucleus of the hypothalamus (PVN) of WT 
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mice.  Therefore, enkephalin signaling pathways originating in the PVN are 

involved in the stress response to the CMS conditions, and may contribute to 

the vulnerability to the CMS effects observed in these animals. 

Furthermore, gene expression analyses of the endogenous opioid, 

glucocorticoid and CRH systems, in WT and Penk KO mice, revealed several 

gene expression differences between these animals. Our findings might 

contribute to the insights of gene expression profiles underlying vulnerable 

and/or resilient phenotypes to CMS conditions.  
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Chapter 2: Introduction 

2.1 Stress and stress response 

Stress can be induced by any internal or external stimuli, which is perceived as 

a real or predicted threat to the organism´s homeostasis and survival 1–5. As a 

consequence of perception of a potentially stressful condition, the organism 

triggers several physiological and behavioral alterations in order to adapt to 

internal or external changes and survive. Thus, the stress response is defined 

by the concept of  “allostasis”, i.e. maintenance of homeostasis through 

physiological and behavioral changes 3,5. 

Stressful conditions may elicit an array of stress responses, depending on the 

type and duration of the stress stimuli 6–8. Moreover, stress response rely on  

the activation of several processes and systems, such as metabolic pathways 

and the cardiovascular, endocrine and the central nervous (CNS) systems 1,7,8.  

2.2 Physiology of the stress response: Health and pathological conditions  

Stress response is usually a beneficial biological process, which, through 

“allostasis”, allows adaptation to new conditions and survival 3,4. However, 

“allostasis” requires the coordinated activation of several biological mediators 

involved in the stress response, such as hormones, cytokines or 

neurotransmitters, and mobilizes high energy resources 3–5.  Exaggerated 

and/or sustained stress response may be highly demanding to the organism, 

leading to a depletion of energetic resources and to an overuse and imbalance 

of several biological mediators, i.e. “allostatic overload” 5. Therefore, stress 

response must be proportional to the intensity and duration of the stress 

stimuli. When not efficiently activated and/or terminated, it can be 

deleterious to the organism 4,5,9,10. “Allostatic overload” leads to maladaptive 

stress response, and is associated with the onset of pathological conditions, 
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such as chronic anxiety, post-traumatic stress disorder or major depression 

(MD) 2,5,11–13.  

2.3 Neurobiology of the stress response 

Stress response is diverse in nature. Different stress stimuli may be perceived 

by distinct sensory pathways, leading to the activation of distinct circuits 

involved in the processing, integration, and execution of stress response. In a 

general manner, stress stimuli can be divided in two major groups: 1) systemic 

stressors, which have a strong physiological component and represent an 

immediate threat to organism´s homeostasis and survival; 2) processive 

stressors, which involve psychological components and require prior emotional 

and/or cognitive processing before inducing an effector stress response 6,8. 

Systemic stressors include as example, hypoxia, dehydration or hemorrhage, 

while restraint and social stressors belong to processive stressors. In addition, 

some authors differentiate between processive stressors with only a 

psychological component, such as social stress, and processive stressors which 

have psychological and physical components, such as restraint and footshock 

stressors 7.  

The CNS plays a major role in the integration and coordination of the stress 

response. Sensory pathways relay stress stimuli information to the CNS. Then, 

the CNS integrates it and sends output signals (e.g. neurotransmitters, 

hormones and cytokines) to distinct peripheral systems and within the CNS 

itself, triggering the activation of specific effector pathways involved in stress 

response 1,5. CNS-mediated stress response involves several brain areas (e.g. 

hypothalamus, hippocampus and amygdala), neurotransmitter systems (e.g. 

GABA, glutamate and dopamine) and hormones (e.g. glucocorticoids and 

adrenaline)1,7,8,13. Activation of specific neuronal circuits during stress response 

is defined by the nature of the stress stimuli. Stress-regulatory neuronal circuits 
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can be divided in high-order and low-order processing circuits 6,8. Perceived 

systemic stressors activate low-order processing stress neuronal circuits 

directly, which initiates an immediate stress response. These neuronal circuits 

include several hypothalamic (e.g. suprachiasmatic  and paraventricular nuclei) 

and brain stem nuclei (e.g. raphe nuclei and locus coeruleus) 6,8. On the other 

hand, high-order processing neuronal circuits, or limbic areas, are activated by 

processive stressors. Distinct sensory pathways convey stimuli information to 

the sensory cortex, leading to further activation of several limbic areas.  

Activation of these brain circuits initiates emotional and cognitive processes, 

which give a psychological meaning to the stimuli. This psychological load 

defines the specific activation of down-stream (intermediary and low order-

sensory brain areas) neuronal circuits during stress response 6,8. Hippocampus, 

prefrontal cortex (PFC) and amygdala are among the limbic stress-related 

neuronal circuits 6,8. Limbic neuronal circuits have a special role in learned and 

anticipatory stress responses. These brain areas are highly sensitive and plastic 

to prior stress experiences. During stress exposure and response, they are 

modulated in order to retain information and associate it with the stressors per 

se. These cues may be remembered during posterior life experiences, enabling 

the organism to anticipate a stressful condition and initiate a faster stress 

response, therefore increasing adaptation and survival to challenges through 

life 7,8.  

The CNS is also involved in the attenuation and/or termination of stress 

response. During stress response, the CNS triggers the activity of specific 

circuits (e.g. hippocampus-PVN), which restrain stress response. These allow 

the organism to attenuate and/or terminate stress response when adaptation 

is reached and/or stress stimuli are not present anymore 8,11,13.  In addition, 

CNS-mediated restraint of the stress response also avoids an imbalance in the 
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levels of biological mediators, which might have pathological consequences 1,5.  

One of the most important CNS-mediated stress response restraint 

mechanisms is the glucocorticoid negative feedback (detail description in the 

following chapter 2.4) 1,5,13. Chronic and/or uncontrollable stress conditions are 

believed to impair CNS-restraint mechanisms in stress response, and are 

associated with the development of pathological states, such as chronic anxiety 

and major depression 1,5,13. 

Within the CNS, the paraventricular nucleus of the hypothalamus (PVN) is a 

central structure in the integration and modulation of the stress response. It 

integrates information about different stressors, perceived and processed by 

peripheral and/or other CNS brains areas 8,14,15. The PVN is a heterogeneous 

structure, comprising several distinct functional subdivisions and neuronal 

populations involved in the control of the autonomic and hormonal stress 

response  6–8,14,16. Medial parvocellular neurons, which produce corticotrophin 

releasing hormone (CRH), have a central role in the neuroendocrine stress 

response. These neurons, together with the anterior pituitary and adrenal 

glands, constitute the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis 

is the main system responsible for the neuroendocrine stress response. The 

medial parvocellular CRH neurons project to the median eminence in proximity 

to the anterior lobes of the pituitary glands. Activation of CRH neurons by 

stressors leads to the release of CRH into the median eminence, stimulating the 

production and release of the adrenocorticotropic hormone (ACTH) by the 

pituitary glands. This in turn leads to the production and secretion of 

glucocorticoids by the adrenal glands 6,14,16 (Figure 2.1). Glucocorticoids are the 

major effector hormones in the stress response, modulating important and 

distinct physiological functions in the peripheral organs and in the brain 1,7,9,17. 

In addition, the neuroendocrine stress response is also controlled by another 
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PVN subdivision: PVN magnocellular neurons, which, among others, express 

the neuropeptides vasopressin (VP) and oxytocin (OTX) and control the 

posterior part of the pituitary gland. These neurons are activated under more 

restricted psychological stress conditions, such as  parturition and dehydration 

stress 18–20 (Figure 2.1). The PVN is also involved in the control of the autonomic 

stress response, which occurs via neuronal projections from the dorsal 

parvocellular subdivision. These neurons, which among others express the 

neuropeptide CRH, modulate the autonomic nervous system via projections to 

several brain stem nuclei, such as the core nucleus involved in noradrenergic 

signaling - locus coeruleus (LC) - and to the spinal cord 16,21–23 (Figure 2.1).  
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Figure 2.1 Subdivisions of the paraventricular nucleus of the hypothalamus (PVN) involved 

in the neuroendocrine and autonomic stress responses. PVN is composed of several 

subdivisions, where distinct neuronal populations are involved in the neuroendocrine and 

autonomic stress responses. CRH neurons at the medial parvocellular subdivision (green 

triangle) are the head of the hypothalamic-pituitary-adrenal (HPA) axis. Stimulation of 

these neurons leads to the production and secretion of corticotrophin releasing hormone 

(CRH), which in turn stimulates the production and secretion of adrenocorticotropic 

hormone (ACTH) by the anterior pituitary gland. ACTH then leads to the production and 

release of glucocorticoids by the adrenal glands.  Vasopressin (VP) and oxytocin- (OTX)-

secreting neurons at the magnocellular subdivision (yellow circle) regulate the production 

of several hormones at the level of the posterior pituitary gland. VP and OTX magnocellular 

neurons are strongly involved in neuroendocrine response to osmotic and parturition 

stressors. CRH-expressing neurons of the dorsal parvocellular subdivision (red square) 

mediate the activation of the autonomous sympathetic nervous system during the stress 

response via projections to several brain stem nuclei, such as the noradrenergic locus 

coeruleus (LC). Brain and adrenal gland images adapted from www.servier.com. 

2.4 Glucocorticoids in stress response 

Glucocorticoids (mainly cortisol in humans and corticosterone in rodents) are 

secreted by the adrenal glands and released into the circulation.  

Glucocorticoid actions affect many peripheral organs and regulate  distinct 

physiological functions, such as metabolism, growth, reproduction and 

immune responses 1,7,16. Additionally, glucocorticoids can cross the blood 

brain barrier, thereby affecting the central nervous system 9,17. Besides their 

role in the stress response, glucocorticoids are also involved in the regulation 

of appetite and sleep 24. Glucocorticoid secretion is defined by two distinct, 

but intermingled patterns: 1) circadian cycle and 2) ultradian cycle. Circadian 

cycle of glucocorticoids secretion is characterized by slow and long oscillatory 

waves, which lead to relatively smooth variations in glucocorticoids levels 

during different time periods of the day. Two main extreme peaks of circadian 

http://www.servier.com/
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glucocorticoid secretion can usually be observed: a lower peak at the 

beginning of the resting phase and a higher peak at the beginning of the 

active phase 24–27. In addition, secretion of glucocorticoids can occur in a fast 

and pulsatile fashion. These fast pulsatile secretions define the glucocorticoid 

ultradian rhythm. Pulsatile release of glucocorticoids is important for the 

maintenance of the glucocorticoid receptor responsiveness 25. It is the 

frequency and amplitude, at which several pulsatile peaks occur, which 

delineate the circadian cycle of the glucocorticoids 24,25,27,28.  Therefore, high 

levels of glucocorticoids during the circadian cycle are due to an increase in 

the frequency and/or amplitude of the ultradian pulses, whereas low levels 

are a result of a decrease in the frequency and/or amplitude of pulsatile 

secretions (see figure 2.2 as example). 

         

Figure 2.2 Ultradian and circadian cycles of baseline corticosterone levels. 

Ultradian cycle is defined by a fast pulsatile secretion of glucocorticoids (black line). The 

number and amplitude of ultradian pulses delineate the circadian cycle of glucocorticoids 

secretion (green line). Figure adapted from Riedemann et al, 2010 24 . 

 

The effects of glucocorticoids are mainly exerted through two types of 

receptors: the mineralocorticoid receptor (MR) and the glucocorticoid 

receptor (GR). MR and GR receptors are typically cytosolic receptors, but they 
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are also found in the cell membranes 29–32. In the central nervous system, MR 

and GR display a distinct distribution. MR is only expressed in neurons and 

mostly in limbic areas, such as amygdala, PFC and hippocampus. GR is 

expressed in glial cells and neurons and widespread throughout the brain, 

with the highest expression in the PVN and hippocampus 29,33. Both cortisol 

and corticosterone have a much higher affinity for the MR than for the GR. 

Therefore, under basal conditions, when glucocorticoid levels are relatively 

low, it is the activation of MR that occurs predominantly. On the other hand, 

the occupancy of GR receptors increases at a high scale when the levels of 

glucocorticoids increase. Increased glucocorticoid secretion occurs due to the 

stimulation of the adrenal glands by hypothalamic CRH, under stress 

conditions or due to other physiological functions, such as sleep and appetite 

stimulation 17,24,29.   

In the brain, both fast and delayed effects of glucocorticoids can occur. Fast 

effects involve either facilitation or inhibition of neuronal cell signaling and 

are mediated by the activation of membrane bound receptors and G-protein 

coupled signaling pathways 29,32. Activation of these receptors by 

glucocorticoids leads to the activation of intracellular pathways, which 

modulate the activity of several channels and receptors and the release of 

neurotransmitters. These effects are independent of alterations in gene 

expression 9,17,29,32. On the other hand, delayed effects of glucocorticoids 

involve alterations in gene expression through the activation of cytosolic MR 

and GR receptors. Activation and binding of these receptors by glucocorticoids 

leads to the translocation of the receptors to the nucleus, where they bind to 

glucocorticoid response elements (GREs) and/or interact with certain 

transcription factors responsible for repression or stimulation of gene 

expression 9,17,29. MR and GR both can bind to GREs, but only GR can interact 
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with transcription factors. Thus, both MR and GR are involved in the 

stimulation of gene expression, but only GR is responsible for repression of 

gene expression 17. Therefore, GR and MR play different modulatory roles 

during the stress response. MR is implicated in the onset and maintenance of 

glucocorticoid-mediated effects in the stress response, while GR is involved in 

its termination 17. 

As previously mentioned, when not efficiently activated and/or terminated, 

the stress response can be deleterious 3–5,9,12. High and sustained 

corticosterone levels are associated with deleterious effects, such as 

deregulation of metabolic functions, immunosuppression 1 and decrease in 

neuronal proliferation, survival and plasticity 34–36. An important feature of 

GRs is their role in mediating the glucocorticoid feedback mechanism. Too 

high and/or sustained levels of glucocorticoids activate GRs expressed in the 

PFC, hippocampus, PVN and pituitary gland, exerting an inhibitory effect on 

the HPA axis activity. Activation of the GRs  leads to an inhibition of PVN 

parvocellular CRH neurons and/or pituitary gland activity, which results in a 

decrease in glucocorticoid secretion (Figure 2.3) 24,32,37. 
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Figure 2.3 Stress-induced HPA axis activity and glucocorticoid-mediated negative feedback 

mechanism. Perception and processing of stress stimuli lead to the activation of the HPA 

axis. HPA axis activation begins with the stimulation of the PVN parvocellular CRH neurons. 

As a consequence, CRH is released and binds to the anterior pituitary gland receptors, 

stimulating the production and release of ACTH. In turn, ACTH stimulates the adrenal 

glands leading to the secretion and release of glucocorticoids. In order to avoid the 

deleterious effects of prolonged high levels of glucocorticoids, the latter also exert an 

inhibitory negative feedback action. Thus, when high levels of glucocorticoids are present, 

glucocorticoid receptors (GRs) (blue circles) expressed in the PVN, hippocampus, PFC and 

pituitary gland, are activated (red lines). Activation of these receptors leads to the 

inhibition of the parvocellular CRH neurons and/or of the pituitary gland activity, 

decreasing the production and release of more glucocorticoids. ACTH, adrenocorticotropic 

hormone. CRH, corticotrophin-releasing hormone. GR , glucocorticoid receptors. HPA axis, 

hypothalamic-pituitary-adrenal axis. PFC, prefrontal cortex. PVN, paraventricular nucleus of 

the hypothalamus. Brain and adrenal gland images adapted from www.servier.com. 

 

http://www.servier.com/
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2.5 The CRH system in the stress response 

The CRH system includes several peptides - CRH and urocortins (UCN) 1-3, 

their receptors, CRH receptors 1 and 2 (CRHr1, CRHr2) and a CRH binding 

protein (CRHbp), which binds to the CRH and UCN peptides, reducing the 

amount of free peptides (Figure 2.4) 7,38–40. The CRH peptide binds CRHr1 with 

higher affinity than CRHr2. UCN 2 and 3 bind CRHr2, whereas UCN 1 has equal 

affinity for both receptors. These peptides and their receptors are widely and 

differentially distributed throughout the CNS, including important areas 

involved in the stress response, such as amygdala, hippocampus, PFC and 

hypothalamus 7,11,39–41.  The CRH system is involved in the endocrine stress 

response via hypothalamic pathways and in behavioral and autonomic 

responses to stress via extra-hypothalamic areas, such as amygdala 7,42 and 

hippocampus 43. Pharmacological and genetic studies showed that activation 

of CRHr1 has a stimulatory role in stress reactivity leading to anxiogenic 

effects 44–46, whereas activation of the CRHr2 is involved in the termination of 

the stress response, exerting anxiolytic effects 45,47,48. 
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Figure 2.4 The CRH system: ligands and receptors. The CRH system is composed of 4 peptide 

ligands (CRH, UCN 1, 2 and 3) receptors (CRHr1 and 2), and the CRH binding protein, which 

binds to CRH and UCN 1. CRH, corticotropin releasing hormone. CRHbp, corticotropin 

releasing hormone binding protein. CRHr, corticotropin releasing hormone receptor. UCN, 

urocortin. Figure and legend adapted from Bale and Vale, 2004 45. 

2.6 The endogenous opioid system in stress response 

The endogenous opioid system is composed of several Gi-protein coupled 

receptors - delta (DOP), mu (MOP) and kappa (KOP) opioid receptors - and their 

endogenous peptide ligands: β-endorphin, leu-enkephalin, met-enkephalin, 

dynorphin A and dynorphin B49,50. Endogenous opioid peptides are generated 

from precursor proteins, which are the pro-opiomelanocortin for β-endorphin, 

proenkephalin for leu-enkephalin and met-enkephalin and prodynorphin for 

dynorphin A and dynorphin B.  These precursors are, in turn, encoded by 

prepro-opiomelanocortin (POMC), preproenkephalin (PENK) and 

preprodynorphin (PDYN) genes. Different opioid peptides have differential 
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binding affinities to opioid receptors. β-endorphin binds to MOP and DOP with 

equal affinity. Dynorphins bind almost exclusively to the KOP. Enkephalins bind 

both DOP and MOP, however, they have a higher affinity for DOP 49,50. 

Endogenous opioid peptides and receptors have a widespread localization in 

brain regions involved in the regulation of stress reactivity, such as PVN, 

amygdala, hippocampus and PFC (Figure 2.5) 49. 
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Figure 2.5 Anatomical distribution of the endogenous opioid system components in the 

rodent brain (rat and mouse). A) Opioid receptors: top figure - peptide expression; bottom 

figure - mRNA expression. B) Opioid peptides: top figure - protein expression; bottom figure 

- mRNA expression. BLA, basolateral nucleus, amygdala. BNST, bed nucleus of the stria 
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terminalis. CeA, central nucleus, amygdala. CoA, cortical nucleus, amygdala. CPu, caudate 

putamen. DMH, dorsomedial nucleus of the hypothalamus. FRCx, frontal cortex. HPC, 

hippocampus. LC, locus coeruleus. NAc, nucleus accumbens. PCx, parietal cortex. PVN, 

paraventricular nucleus, hypothalamus. VMH, ventralmedial nucleus, hypothalamus. VTA, 

ventral tegmental area. Figure and legend adapted from Le Merrer et al, 2009 (Le Merrer et 

al. 2009).  

The potential role of the endogenous opioid system in stress response has been 

in the focus of stress-related research for some time now. In mice and rats, 

distinct stress conditions induce alterations in Penk, Pdyn and Pomc gene 

expression 50–53, as well as in the enkephalin, dynorphin and β-endorphin 

peptide levels  50. Also, mRNA expression of opioid receptors 54–57,  as well as 

their protein levels 50,58 and function 59 are altered after stress exposure. In 

addition, treatments with agonists and antagonists for the different opioid 

receptors lead to stress-related hormonal and behavioral alterations 50,60–65. 

Finally, knockout (KO) mice for the different opioid peptides 66–68 and receptors 

67,69–71  underline the importance of , and are an important tool to understand 

the role of, the endogenous opioid system in stress response, 

2.6.1 Enkephalin, DOP and MOP in stress response 

Previous studies showed that alterations in the Penk mRNA expression (Table 

2.1) and enkephalin peptide levels (Table 2.2) in different brain areas of 

rodents can be induced by distinct stress conditions. For example,  

electroconvulsive shocks increase Penk mRNA in the hypothalamus 72 and 

chronic hypertonic stress in the PVN 73. Fourteen days of isolation stress in rats 

decrease Penk mRNA levels in the caudate putamen (CPu) and in the nucleus 

accumbens (NAc) 74, but lead to its increase in the hypothalamus 75. In the PVN, 

both acute 76,77 and chronic 76 immobilization stress induce an up-regulation of 

the Penk gene expression. Chronic immobilization stress also increases Penk 

mRNA expression in the  hippocampus 52, but decreases it in the NAc 78.  In the 
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CPu, Penk mRNA levels increase after acute immobilization stress, but decrease 

after chronic immobilization stress 79. Chronic unpredictable stress (CUS) 

induces an increase in the Penk mRNA expression in the NAc, central nucleus of 

the amygdala (CeA), PVN, ventral medial hypothalamus (VMH) and in the 

hippocampus 53. In contrast, CUS induces a decrease in Penk mRNA in the 

basolateral nucleus of the amygdala (BLA) in rats 80. Moreover, chronic social 

stress also induces a decrease in the Penk mRNA expression in the BLA 51.  

 

Table 2.1 Stress-induced alterations in the Penk gene expression in rats. BLA, basolateral 

nucleus of the amygdala. CeA, central nucleus of the amygdala. CPu, caudate putamen. 

CUS, chronic unpredictable stress. NAc, nucleus accumbens. PVN, paraventricular nucleus 

of hypothalamus. VMH, ventral medial nucleus of the hypothalamus. 

Brain area Stress  Penk mRNA 
alterations 

References 

BLA  CUS        ↓  Bérubé, Poulin, et 
al. 2013 

Chronic social 
defeat stress 

       ↓  Bérubé, Laforest, et 
al. 2013 

CeA CUS        ↑  Christiansen et al. 
2011 

CPu  Fourteen days 
of isolation 
stress  

       ↓  Angulo et al. 1991 

Acute 
Immobilization 

       ↑  Lucas et al. 2007 

Chronic 
immobilization 

       ↓  Lucas et al. 2007 

Hippocampus Chronic 
immobilization 

       ↑  Chen et al. 2004 

CUS        ↑  Christiansen et al. 
2011 

Hypothalamus Fourteen days 
of isolation 
stress  

       ↑  Iglesias et al. 1992 
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Electroconvulsi
ve shocks  

       ↑  Yoshikawa et al. 
1985 

Nac Fourteen days 
of isolation 
stress  

       ↓  Angulo et al. 1991 

Chronic 
immobilization 

       ↓  Poulin et al. 2014 

CUS        ↑  Christiansen et al. 
2011 

PVN Chronic 
hypertonic 
stress  

       ↑  Young & Lightman 
1992 

Chronic 
immobilization 

       ↑  Dumont et al. 2000 

Acute 
immobilization 

       ↑  Dumont et al. 2000;  
Palkovits 2000 

 CUS         ↑  Christiansen et al. 
2011 

VMH CUS         ↑  Christiansen et al. 
2011 

 

In addition, stress-induced alterations of enkephalin peptide levels were also 

reported in several studies. For instance, enkephalin peptide levels are up-

regulated by electroconvulsive shocks in the hypothalamus and CPu  72. On the 

other hand, footschock stress leads to a decrease in peptide levels  in the 

hypothalamus and CPu 81. Forced swim stress decreases the levels of 

enkephalin peptide in the CPu in rats 81. Fourteen days of isolation stress, in 

contrast, increase enkephalin peptide levels in the hypothalamus 75. Chronic 

mild stress (CMS) leads to a decrease in the levels of the enkephalin peptide in 

the NAc of rats 82. Acute social interaction stress increases the release of 

enkephalin peptide in the NAc. However, increased release of enkephalin in the 

NAc, mediated by acute social interaction stress, is abolished in animals 

previously submitted to CMS 83. 
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Table 2.2 Stress-induced alterations in the enkephalin peptide levels in rats. CPu, caudate 

putamen. CMS, chronic mild stress. NAc, nucleus accumbens. 

Brain area Stress  Enkephalin 
peptide 
alterations  

References 

CPu  Electroconvulsive 
shocks  

        ↑  Yoshikawa 
et al. 1985 

Footschock         ↓  Nabeshima 
et al. 1992 

Forced swim         ↓  Nabeshima 
et al. 1992 

Hypothalam
us 

Footschock         ↓  Nabeshima 
et al. 1992 

Fourteen days of 
isolation stress 

        ↑  Iglesias et 
al. 1992 

NAc CMS         ↓  Dziedzicka-
Wasylewska 
& Papp 
1996 

Acute social stress        ↑  Bertrand et 
al. 1997 

CMS + Acute social 
stress 

        =   
 

Bertrand et 
al. 1997 

 

Moreover, enkephalin receptors, MOP and DOP, were also shown to be 

modulated by stress. For instance, seventy-two hours of sleep deprivation in 

rats lead to a decrease in the number of MOP and DOP in the limbic system 84. 

Foot-shock stress decreases, and water deprivation increases, MOP binding in 

the septum of rats 85. Water deprivation increases DOP binding in the CPu and 

NAc in rats 85. Acute and repeated social stress increase Oprm1 mRNA 

expression in the ventral tegmental area (VTA) in rats 56,57. Thus, stress effects 

on the expression of the Penk, Oprm1 and Oprd1 genes, as well as peptide and 
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protein levels, may differ between different brain regions and are dependent 

on the nature of the stress stimulus (type and duration).  

The importance of enkephalin and its receptors in stress response was also 

demonstrated in several pharmacological studies. Administration of exogenous 

enkephalin or enkephalin catabolism inhibitors induce an increase in 

enkephalin levels and ameliorate anxiety and depression – like phenotypes in 

mice and rats 65,86–89. Moreover, agonist-induced activation of enkephalin 

receptors was shown to influence anxiety levels. Thus, agonists of DOPs have 

anxiolytic effects 63–65,90,91, while agonists of MOPs  can induce  both anxiogenic 

64,92 and anxiolytic responses 93. 

Finally, the importance of enkephalin, MOPs and DOPs in stress response was 

demonstrated using KO animals for the genes encoding the enkephalin peptide 

(Penk KO) and its receptors, MOPs (Oprm1 KO) and DOPs (Oprd1 KO). 

Constitutive Penk KO animals present high basal anxiety levels 66,94–97 and 

exacerbated anxiety and depression-like phenotypes after exposure to 

footshock stress 98. Moreover, Penk KO mice show prolonged hormonal 

alterations in response to acute stress conditions 66. In addition, mice with a 

specific down-regulation of the Penk gene in the CeA present a reduction in 

basal anxiety levels 99. On the other hand, knock-down of the Penk gene in the 

BLA leads to anxiety-like phenotypes 80 (Table 2.3.).  

Furthermore, constitutive Oprd1 KO mice present basal anxiety and depressive-

related phenotypes 100. On the other hand, constitutive Oprm1 KO mice show 

lower levels of anxiety and depression-related phenotypes, both under baseline 

100,101 and after chronic social stress conditions 102.  
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Table 2.3 Anxiety and depressive-like phenotypes of Penk KO animals. CPu, caudate 

putamen. CMS, chronic mild stress. NAc, nucleus accumbens. 

Penk gene 
modification 

Species Anxiety-like  
phenotypes 

Depressive-
like 
phenotypes 

References 

Constitutive KO Mice Basal:  ↑ Basal: = Bilkei-Gorzo et 
al. 2004; 
Bilkei-Gorzo et 
al. 2008; 
Bilkei-Gorzó et 
al. 2008; König 
et al. 1996; 
Ragnauth et al. 
2001 

Mice Basal: =; 
After foot-
shock stress :  
↑ 

Basal: =; 
After foot-
shock stress :  
↑ 

Kung et al. 
2010 

BLA 
downregulation 

Rats Basal:  ↑ Basal: = Bérubé, 
Poulin, et al. 
2013 

CeA 
downregulation 

Rats Basal:  ↓ Not accessed Poulin et al. 
2013 

 

2.6.2 Dynorphin and KOP in stress response 

Several studies implicate dynorphin and its main receptor, the kappa opioid 

receptor (KOP) 103, in hormonal and behavioral  stress reactivity. For instance, 

alterations in dynorphin mRNA expression were reported in the PVN after 

immobilization stress 77, in the NAc after chronic unpredictable stress 53 and in 

the NAc and CPu after chronic social stress 51. Moreover, activation of  KOP was 

shown to increase anxiety-like behaviors 61 and ACTH secretion 104. On the 

other hand, KOP antagonists reversed the effects of KOP activation in ACTH 

release 104 and reduced immobility time during repeated forced swim stress 105.  

In addition, altered baseline and stress-induced hormonal status, as well as 
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altered anxiety and depressive-like phenotypes were reported in Pdyn-deficient 

mice (Pdyn KO). For instance, Pdyn KO mice presented reduced anxiety 68 and 

depressive-like behaviors 62, as well as reduced serum corticosterone levels 68. 

However, some contradictory evidence has been reported: in other studies, 

increased anxiety levels and exacerbated stress-induced hormonal response 

have been demonstrated in these mice 66. To sum it up, previous studies 

suggest that dynorphin/KOP signaling is involved in the modulation of   

anxiogenic, dysphoric and hedonic behaviors, with special relevance to stress 

sensitization to repeated stress conditions 106,107.  

Dynorphin and enkephalin signaling pathways are co-localized in many stress-

relevant brain regions. For instance, different opioid receptors (MOP, DOP and 

KOP) are expressed in the LC, but exhibit a distinct synaptic localization 108. In 

another example, it was shown that enkephalin and dynorphin peptides are 

present in GABAergic neurons in the striatum, but within distinct GABAergic 

populations 109. It is not entirely clear if and at which levels enkephalin and 

dynorphin pathways may interact, and how these interactions might influence 

stress responses. However, it is plausible that changes in enkephalinergic 

and/or dynorphinergic signaling may have reciprocal effects in stress reactivity.  

2.7 Chronic mild stress protocol: an animal model to study stress-related 

mood disorders  

Mood pathologies such as major depression (MD) and chronic anxiety occur 

more and more frequently in modern societies and are among the main 

health, social and economic issues affecting not only those suffering from 

these disorders but also the society as a whole 110,111. A major problem in 

studying the biology of mood disorders is its complex etiology. Predisposition 

and susceptibility to the development of mood disorders originate from an 

interplay of genetic and environmental factors 2,11,112. Animal models in which 
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genetic manipulation is combined with distinct environmental conditions have 

been generated in the last decades and have been of great help in 

understanding the biology of mood disorders 11,113–116.  

The onset of major depression (MD) is highly correlated with environmental 

stress. Chronic and/or traumatic stressful life events have been shown to lead 

to MD episodes in genetically predisposed humans and animals 2,5,112,117,118. 

Increased prevalence of chronic anxiety and MD pathologies in Western 

countries is believed to correlate with chronic stress conditions due to daily 

lifestyle rather than to traumatic stress events 4,112,118.  In everyday life, we 

constantly experience several stressors, such as sleep deprivation, abnormal 

feeding habits or social stress 4,119,120. Each of the above mentioned mild 

stressors alone would certainly not lead to major impairments in a healthy 

organism. However, when experienced for prolonged periods of time and 

especially in an unpredictable way, such stressors can lead to cumulative 

alterations due to an exhaustion/imbalance (i.e. allostatic overuse) of the 

physiological components involved in stress coping and adaptation 3,5. 

In order to study behavioral and molecular alterations due to the prolonged 

experience of daily life mild stressors in animals, Paul Willner and colleagues 

developed the chronic mild stress protocol (CMS) 121,122.  In this model, rats or 

mice are subjected to multiple mild stressors throughout the day, such as 

periodic sleep, food or water deprivation, restraint, wet or empty home cages 

and physical contact with an unknown conspecific animal, all applied in a semi-

random way for long periods of time (4-8 weeks). CMS leads to certain 

behavioral and molecular alterations in rodents, which resemble those in 

patients suffering from MD and/or chronic anxiety 120,123–127. Among the most 

commonly observed behavioral endpoints are anhedonia, despair and 

increased anxiety 120,123,126,127. CMS also induces hormonal changes related to a 
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hyperactivation of the HPA axis, such as an increase in glucocorticoid secretion. 

Additionally, alterations in important neurotransmitters systems related to MD, 

such as CRH, serotonin, dopamine, noradrenaline, glutamate or GABA are also 

induced by the CMS protocol 124. Furthermore, common antidepressant 

treatments applied in MD patients are also effective in rodents subjected to the 

CMS protocol 127. Therefore, the CMS protocol fulfills the face validity 

(similarity to the disease symptoms), construct validity (similar etiology - 

genetic and/or environmental factors) and prediction validity (similar 

treatment responses in animals as in humans) criteria for a validated animal 

model to study human conditions 115,126.  

2.8 Aims of the present study 

In summary, the current literature underlines the important role of enkephalin 

in stress reactivity. Enkephalin peptide and mRNA levels are affected by distinct 

stressors and, in turn, alterations in enkephalin gene expression and peptide 

levels influence stress reactivity to several stress conditions (see Section 2.6 for 

details). For instance, previous studies from our group showed that Penk KO 

mice present higher basal anxiety levels 66,94,95 and exacerbated hormonal 

stress reactivity 66 to acute stress conditions compared with WT animals. 

However, stress reactivity under different stress conditions may rely on 

different stress-related circuits (see Section 2.3 for details). In addition, the 

literature suggests that the role of enkephalin in hormonal and behavioral 

stress reactivity may depend on the nature of the stress stimuli and/or on the 

stress-evoked neuronal circuits (see tables 2.1; 2.2 and 2.3).  At the beginning 

of the present study, to our knowledge, only a few studies examined the role of 

enkephalin in stress reactivity under chronic unpredictable stress conditions 

(CMS or CUS) 82,83,128. Recently, two new studies examined the effect of chronic 

unpredictable stress on Penk gene expression in distinct brain areas 53,80 and 
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how these alterations were correlated with vulnerability or resilience to stress 

conditions80. Therefore, the first aim of our project was to study the effect of 

enkephalin deficiency on stress reactivity after the CMS protocol. For that 

purpose, we submitted WT and constitutive Penk KO mice to the CMS protocol, 

followed by hormonal and behavioral evaluation. The second aim of our project 

was to examine how the CMS protocol affects the Penk gene expression in 

various brain areas with known functions in stress reactivity, such as the PVN, 

amygdala, hippocampus and PFC. Finally, our third aim was to investigate how 

the Penk gene deletion influences the gene expression of several other known 

stress response mediators, such as glucocorticoids and it receptors, the 

endogenous opioid peptide dynorphin and its receptor KOP, and the CRH 

system, in several brain areas, under basal (developmental) and CMS 

conditions. We believe that addressing these important questions will 

contribute to a better understanding about the role of enkephalin in stress 

response, and specifically under chronic stress conditions.  
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Chapter 3: Materials and methods 

3.1 Animals 

Male WT and Penk KO homozygous mice on a C57BL/6J genetic background 

were used in this study. Mice with a deletion of the Penk gene 96 were crossed 

with C57BL/6J mice for more than 10 generations in order to obtain Penk KO 

homozygous mice on a pure C57BL/6J background 94. WT mice were originally 

obtained from a commercial breeder (Janvier, France) and bred at our animal 

facility.  At postnatal day 21, pups were weaned and housed in groups of 4-5 

animals. Starting at the age of 6 weeks, WT and Penk KO male mice were 

individually housed until the end of the experimental procedure. Rooms were 

maintained at 23°C, under a 12:12 hours inverted light cycle with ad libitum 

access to water and food, except when animals were food or water restricted 

during CMS. To avoid possible maternal care effects, homozygous WT and 

Penk KO gestating females were housed together from the first week of 

gestation until the end of the lactation period. All experiments followed the 

guidelines of the German Animal Protection Law. 

 
3.2 Genotyping 

DNA from a tail biopsy was extracted by the hot shot lysis method 129. 

Amplification of the DNA for genotyping was performed by adding a master 

mix solution (GreenTaq (Promega), RNA free water, 0.5 µl E31 Primer 

(Metabion) - GCATCCAGGTAATTGGCAGGAA-, 0.5 µl neoRL Primer (Metabion) 

-CAGCAGCCTCT GTTCCACATACACTTCAT- and 0.5 µl E1R Primer (Metabion) -

TCCTTCACATTCCAGTGTGC-) to the DNA samples, followed by 40 cycles of 

amplification. The products were separated by electrophoresis. A band of 700 

bp was amplified for WT and of 550 bp for Penk KO mice (Figure 3.1).  
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Figure 3.1 Genotyping of WT and Penk KO mice with tail DNA. PCR products were 

separated in an agarose gel electrophoresis, showing fragments with the size of 700 bp for 

WT mice (lanes 1-2, 8, 11-19, and 21-22) and of 550 bp for Penk KO mice (lanes 3-7, 9-10, 

20 and 23). 

3.3 Experimental design and CMS procedure  

WT and Penk KO mice were submitted to the CMS protocol, which is a 

validated animal model to study chronic stress-related pathologies, such as 

major depression (MD) 124,126,127. The experiment was carried out using two 

cohorts of mice due to the large number of animals necessary for the study. 

The first cohort consisted of 8 WT control, 8 WT CMS, 8 Penk KO control and 8 

Penk KO CMS animals. The second cohort consisted of 15 WT control, 14 WT 

CMS, 11 Penk KO control and 10 Penk KO CMS animals. After two weeks of 

individual housing, WT and Penk KO animals from the CMS groups were 

submitted to 5 weeks of CMS consisting of the following stressors: 1 hour 
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restraint stress, 1 hour social stress (4 animals/ cage), 1-3 hours of 

stroboscopic lights, 4-8 hours tilted cages, 8-12 hours wet bedding, 8-12 hours 

cage without bedding, 24 hours light or dark periods, 18-24 hours food 

deprivation followed by 30 minutes of inaccessible food and 18-24 hours 

water deprivation followed by 30 minutes of exposure to an empty bottle. The 

different stressors were applied randomly in order to avoid adaptation to 

expected stress conditions. Additionally, some stressors, such as food and 

water deprivation, empty bottle and inaccessible food and lights on and off, 

were alternated from week to week (Table 3.1).  

 
Table 3.1 Schedule and stressors applied in the chronic mild stress protocol for one week 

period .                                                 

  

WT and Penk KO mice from control groups were handled twice a week during 

the 5 weeks of the CMS protocol. Animals were left undisturbed for a period 

of 24 hours once a week, while the sucrose preference test was performed. At 

the end of the CMS procedure, animals were tested in a battery of behavioral 
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tests to assess general exploratory and locomotor activity, anxiety and 

depression-related phenotypes. Behavioral tests were performed in the 

following order: last sucrose preference test at day 1; open field test at day 3; 

0-maze test at day 4; light-dark box test at day 5; forced swim test at day 7 

(Figure 3.2).  

                                       

 

Figure 3.2 Timeline of the experimental procedure. WT and Penk KO animals were 

submitted to 5 weeks of CMS (CMS groups) or to handling (control groups). In week 6, all 

animals were tested in a battery of behavioral tests as indicated in the scheme. 24 hours 

after the last behavioral test, animals were killed and the brains removed for gene 

expression analyses. CMS = chronic mild stress; w = week; d = day.  

3.4 Behavioral analyses 

All behavioral experiments were performed during the dark phase of the light 

cycle. 
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Open field test 

Animals were tested for exploratory and locomotor activity in the open field 

test. The test apparatus consists of an arena of 45*45*22 cm. The arena was 

dimly illuminated (20 lux at the floor level). Animals were placed in one of the 

corners and allowed to explore the arena for 10 minutes. The activity of the 

animals was recorded using a system of infrared beams connected to a 

computer. The total distance travelled (m) was analyzed with the Actimot 2 

software (TSE Systems GmbH, Germany). 

 
0-maze test 

Anxiety-related behavior was tested in the 0-maze test. The test takes part in 

a round arena, elevated 38 cm above the ground, and composed of four 

areas: two areas with walls (15 cm high) and two with only a short rim (1 cm) 

(open areas). Animals were tested for 5 minutes with 400 lux of illumination. 

Time spent in the open areas (s) was evaluated with the Ethovision software 

(Noldus). 

 
 Light-dark box test 

Anxiety-related behavior was further evaluated in the light-dark box test. The 

test apparatus is divided in two areas, a dark one (15*45*22 cm) and a lit one 

(30*45*22 cm) with 1000 lux illumination at the floor level. Both areas are 

connected by a 6*6 cm passageway. Each animal was placed in the center of 

the lit area and allowed to explore the apparatus for 10 minutes. The activity 

of the animals was recorded using a system of infrared beams connected to a 

computer. Time spent in the lit area (s) was analyzed with the Actimot 2 

software (TSE Systems GmbH, Germany). 
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Sucrose preference test  

Individually housed animals were first habituated to two drinking water 

bottles. Habituation to the sucrose solution was done within one week before 

the CMS protocol was initiated. Therefore, one water bottle was exchanged 

by a bottle filled with 1 % sucrose solution for 48 hours. The position of the 

bottles was changed after 24 hours. Animals presented preference for the 

sucrose bottle, independently of the side at which was positioned. The 

sucrose preference test was performed once a week during the 5 weeks of 

CMS by again the two bottles, one containing 1% sucrose solution and the 

other water, for 24 hours. Sucrose preference was calculated as follows: 

Sucrose preference = Sucrose intake/ (sucrose intake + water intake) * 100. 

Sucrose and water intake were calculated by subtracting the final weight 

(after 24 hours) from the initial weight of the bottles.  

 
Forced swim test 

Animals were tested for despair behavior in the forced swim test. During 6 

minutes, animals were placed in a Plexiglas cylinder (10 cm internal diameter, 

50 cm high) filled with 26-28°C water (30 cm height). Immobility time was 

measured during the last 4 minutes of the test as a measure of despair 

behavior using a stopwatch. An animal was judged to be immobile when it 

remained floating in the water, making only movements necessary to keep its 

head above the water.  

 
3.5 Hormonal measurements: corticosterone metabolites in feces 

At the second day after the end of the CMS protocol, WT and Penk KO mice 

were housed in new clean home cages. 24 hours later, feces samples at the 

home cages were collected and frozen at -80° C until further analyses of 

corticosterone levels. For corticosterone metabolites analyses, feces were 
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unfrozen, placed on open petri dishes and dried in an oven at 37°C for 1 hour. 

Subsequently, samples were grinded into a powder with the help of a pestle, 

weighted and used for corticosterone metabolites extraction followed by 

quantification by an ELISA assay for corticosterone. Corticosterone 

metabolites were extracted with 1 ml of ethanol per 100 mg of feces powder, 

followed by 30 minutes of vigorous shaking at room temperature (RT) and 30 

minutes of centrifugation at 5000 rpm at RT. Subsequently, 450 µl of the 

supernatant were collected and dried in a speedvac (Speedvac Savant, 

Thermo Scientific) for 1 hour at 35°C. Pellets were frozen at -20°C in a 

desiccator to avoid hydration of the pellets. On the following day, 

corticosterone ELISA assays were performed following the manufacturer’s 

instructions (Arbor assays: catalog number KO14-H5). 

 
3.6 Molecular analyses 

To evaluate the effect of CMS exposure in the modulation of the endogenous 

opioid system, the CRH system and the glucocorticoid receptors, mRNA levels 

of Penk, Oprd1, Oprm1, Pdyn, Oprk1, Mr, Gr, Crh, Ucn 2, Ucn 3, Crhr1, 

Crhr2and  Crhbp were measured in the PFC, PVN, amygdala and hippocampus 

of WT and Penk KO mice (Table 3.2). The decision of  which target genes 

should be measured in the analyzed brain areas was based in the gene 

expression patterns described in the literature 40,49,130 
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   Table 3.2 Names and symbols for the analyzed genes. 

         

Brain tissue samples 

Twenty-four hours after the last behavioral test, animals were sacrificed by 

cervical dislocation. Brains were removed, snap frozen in ice-cold isopentane, 

and stored at -80°C. In order to isolate the brain areas of interest, brains were 

slowly warmed up to -20°C and kept at this temperature. The brains were 

then cut in 1 mm slices using a metal matrix for mouse brains (Zivic). PFC, 

PVN, amygdala and hippocampus were isolated by the punching technique 

using a 12G punching needle, according to the coordinates of the mouse atlas 

131. Eppendorf tubes containing the isolated brain areas were stored and kept 

at     -80°C until further molecular analyses (Figure 3.3). 
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 Figure 3.3 molecular analyses, brains were cut in 1 mm slices according to the coordinates 

of the mouse atlas (Paxinos & Franklin 2007). PFC (PrL, IL, Cg) (A, B), PVN (C), amygdala 

(amyg)(D) and hippocampus (hippc)(E, F) were isolated by the punching technique using a 

12G needle.  

RNA extraction 

RNA extraction was performed by adding 1 ml Trizol reagent per hippocampus 

sample and 800 µl for PVN, PFC and amygdala. The samples were then 

transferred to magnalyser tubes and homogenized with a Precellys machine 

(Peqlab). After homogenization, samples were incubated for 5 minutes at RT. 

Subsequently, 200 µl of chloroform was added and samples were mixed by 

vortexing, incubated for 3 minutes at RT and centrifuged for 15 minutes at 

12000 rpm at 4°C. The upper aqueous phase was then transferred to a new 

tube and RNA was precipitated by adding 500 µl of isopropanol. Samples were 

incubated for 10 minutes at RT and centrifuged for 15 to 20 minutes at 12000 

rpm at 4°C. 

The supernatant was discarded, the pellet washed twice in 1 ml 75% ethanol 

followed by 10 minutes of 8000 rpm centrifugation at 4°C. Afterwards, the 

supernatant was discarded and the RNA pellet was dried on a thermoplate for 

5 minutes at 55°C. Dried pellets were dissolved in RNA-free water 

(hippocampus: 15 µl, amygdala and PFC: 6 µl, PVN: 5 µl). Optical densities at 

260 nm and 280 nm were measured using a Nanodrop spectrometer. RNA 

concentration was evaluated by optical density measurements at 260 nm. 

Purity of RNA was assessed by the ratio between the optical densities of 260 

nm and 280 nm (ratio = 260/ 280). RNA samples with ratios less than 1.85 

were rejected due to possible contamination with proteins.   
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Gene expression analysis  

cDNA was synthesized using the SuperScript First-Strand Synthesis System for 

RT-PCR Kits (Invitrogen Corp., Carlsbad, CA, USA) with oligodeoxynucleotide T 

(dT) primers according to the manufacturer’s instructions. Total RNA (20 ng 

for hippocampus and 15 ng for PFC, PVN and amygdala) was used as starting 

material. mRNA expression of the target genes was determined in triplicates 

by custom TaqMan® Gene Expression Assays (Applied Biosystems, Darmstadt, 

Germany). Each TaqMan® assay reaction consisted of 4 µl cDNA, 5 µl 

TaqMan® universal PCR Master Mix (Applied Biosystems, Darmstadt, 

Germany), 0.5 µl Custom TaqMan® Gene Expression Assay (primer) (Applied 

Biosystems, Darmstadt, Germany) (Table 3.3) and 0.5 µl of RNA-free water. 

Samples were processed in a 7500 Real-Time PCR Detection System (Applied 

Biosystems, Darmstadt, Germany) with the following cycling parameters: 95°C 

for 10 minutes (hot start), 40 cycles at 95°C for 15 seconds (melting) and 60°C 

for 1 minute (annealing and extension). Analysis was performed using the 

7500 Sequence Detection Software version 2.2.2 (Applied Biosystems, 

Darmstadt, Germany) and data were obtained as a function of threshold cycle 

(CT). For relative quantification (RQ) of the gene expression, the mean CT 

values of the triplicates of each target gene and of the housekeeping gene 

GAPDH were calculated, followed by subtraction of the mean CT values of the 

GAPDH gene to the mean CT values of each target gene (ΔCT values). Next, 

the power of all ΔCT values was calculated based on the formula power = 2^-

ΔCT 132. Finally, RQ values, presented as fold change of the WT control group, 

were obtained by the division of the power value of each sample by the mean 

power value of the WT control group. 
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Table 3.2 Names, symbols and primers for the analyzed genes by TaqMan Gene Expression 

Assays.  

       

3.7 Statistical analyses 

Hormonal and behavioral data from the two-cohorts was first analyzed by 

multifactorial ANOVA taking in account cohort number as an additional 

between-subjects factor. Interaction effects between cohort number and CMS 

or genotype were not detected. Therefore, data from the two cohorts were 

pooled. Accordingly, corticosterone measurements and the behavioral data, 

except from the sucrose preference test, were analyzed by two-way ANOVA, 

with CMS and genotype as between-subjects factors. Post-hoc analyses were 

performed using the Bonferroni test. Sucrose preference test data were 

analyzed with three-way ANOVA with repeated measures, with CMS and 

genotype as between-subjects factors and week as within-subject factor. Post-

hoc analyses for the sucrose preference test data were performed with the 

Fisher LSD test.  
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Gene expression data, except for the Penk gene, were analyzed by two-way 

ANOVA, with CMS and genotype as between-subjects factors. Post-hoc 

analyses were performed using the Bonferroni test. Penk gene mRNA 

expression in WT mice were analyzed with the Mann-Whitney U test. 

Statistical significance was set at p < 0.05. 
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Chapter 4: Results 

4.1 Cohort effect  

In order to evaluate if behavior and hormonal data from the two cohorts of 

animals could be analyzed together, i.e. pooled, we first performed statistical 

analyses including cohort as between-subjects factor.  Open field, O-maze, 

light dark box and corticosterone levels data were analyzed by three-way 

ANOVA with CMS, genotype and cohort number as between-subjects factors. 

Sucrose preference test data were analyzed by four-way ANOVA with 

repeated measures, with CMS, genotype and cohort number as between-

subjects factors and week as within-subject factor. For the forced swim test, 

only data from the first cohort of animals is available in the present study. 

Data from the second cohort of animals was not possible to evaluate due to 

problems with the video recordings. Interaction effects between cohort 

number and CMS or genotype were not detected (tables 4.1-4.5). Therefore, 

data from the two cohorts were pooled.  

 
Table 4.1 Statistical analyses of the open field test by three- way ANOVA. 

Open field F (1, 74) P 

Genotype 0,1236 0,726199 

CMS 6,3927 0,013591 

Cohort 1,4824 0,227272 

genotype*CMS 0,9239 0,339592 

genotype*cohort 1,4959 0,225188 

CMS*cohort 2,3457 0,129893 

genotype*CMS*cohort 0,0253 0,874135 
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Table 4.2 Statistical analyses of the O-maze test by three- way ANOVA. 

O-maze test F (1, 73) p 

Genotype 0,3652 0,547532 

CMS 9,7477 0,002573 

Cohort 5,1757 0,025843 

genotype*CMS 2,0503 0,156448 

genotype*cohort 0,3668 0,546613 

CMS*cohort 1,7568 0,189152 

genotype*CMS*cohort 0,0038 0,950902 

 

Table 4.3 Statistical analyses of the light-dark box test by three- way ANOVA. 

Light-Dark box test F (1, 73) P 

Genotype 0,1082 0,743136 

CMS 1,7316 0,192320 

Cohort 1,3607 0,247205 

genotype*CMS 0,0056 0,940558 

genotype*cohort 0,4889 0,486655 

CMS*cohort 1,5328 0,219660 

genotype*CMS*cohort 0,8984 0,346326 
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Table 4.4 Statistical analyses of the sucrose preference test by four- way ANOVA.   

Sucrose preference test F (1, 68) P 

Genotype 0,324 0,571328 

CMS 7,030 0,009966 

Cohort 0,197 0,658595 

genotype*CMS 3,043 0,085616 

genotype*cohort 1,173 0,282693 

CMS*cohort 0,698 0,406441 

genotype*CMS*cohort 0,000 0,988827 

  F (5, 340) P 

WEEK 1,859 0,100910 

WEEK*genotype 0,495 0,779775 

WEEK*CMS 2,918 0,013541 

WEEK*Cohort 1,674 0,140107 

WEEK*genotype*CMS 0,658 0,655540 

WEEK*genotype*Cohort 0,109 0,990278 

WEEK*CMS*Cohort 1,459 0,202779 

WEEK*genotype*CMS*Cohort 0,258 0,935831 
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Table 4.5 Statistical analyses of the corticosterone measurements by three- way ANOVA.   

Corticosterone  F (1, 62) P 

Genotype 0,8774 0,352553 

CMS 2,2832 0,135858 

Cohort 7,7765 0,007020 

genotype*CMS 21,4288 0,000019 

genotype*cohort 0,2923 0,590701 

CMS*cohort 0,2562 0,614560 

genotype*CMS*cohort 0,1794 0,673367 

 

4.2 CMS effects on the behavior of WT and Penk KO mice 

WT and Penk KO mice were tested in a battery of behavioral tests to evaluate 

the effects of the CMS protocol on locomotor activity, anxiety and depression-

like behaviors.  

CMS induces an overall hyperactivity in both WT and Penk KO mice. 

General exploratory and locomotor activity was evaluated as total distance 

travelled in the open field test (n = 18-23/ group) (Figure 4.1). CMS induced an 

overall increase in the locomotor activity in both WT and Penk KO mice, 

revealed by a CMS main effect (F (1, 78) = 5.110, p < 0.05), but no significant 

results in the Bonferroni post-hoc test. There was neither a significant 

genotype effect (F (1, 78) = 0.03712, n.s.) nor a significant CMS*genotype 

interaction (F (1, 78) = 0.6320, n.s.)  
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Figure 4.1  General exploratory and locomotor activity were evaluated by the total distance 

travelled (m) in the open field test. CMS induced an overall hyperactivity in WT and Penk KO 

mice, revealed by a significant CMS main effect. Data expressed as mean  S.E.M.          

CMS increases anxiety levels in WT but not in Penk KO mice. 

Anxiety levels were assessed in the O-maze and light-dark box tests (n = 18-22/ 

group). In the 0-maze test, time in the open areas was inversely correlated to 

anxiety levels. Results from the O-maze test, revealed that CMS induced an 

increase in the anxiety levels (CMS effect: F (1, 77) = 8.008, p < 0.01) in WT but 

not in Penk KO mice (Bonferroni post-hoc test: WT control vs. WT CMS: p < 

0.01; Penk KO control vs. Penk KO CMS: p n.s.) (Figure 4.2 A). No significant 

results for a genotype effect (F (1, 77) = 0.1147, n.s.) or for a CMS*genotype 

interaction (F (1, 77) = 1.817, n.s.) were observed. In the light-dark test, time in 

the lit area was also inversely correlated to anxiety levels. No significant results 

were observed for CMS (F (1, 77) = 0.9640, n.s.), genotype (F (1, 77) = 0.3533, n.s.) 

or for a CMS*genotype (F (1, 77) = 0.1477, n.s.) interaction in this test (Figure 4.2 

B).  
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Figure 4.2  Anxiety levels were assessed in the 0-maze and light-dark box tests. In the 0-maze 

(A), analysis revealed a significant main CMS effect in WT mice, shown by a decrease in the 

time that CMS animals spent in the open parts of the maze. In the light-dark box test (B), 

there were no differences in the anxiety levels between the experimental groups. Data 

expressed as mean  S.E.M. **p < 0.01, using two-way ANOVA followed by Bonferroni test. 

CMS induces anhedonia in the sucrose preference test and increases despair 

levels in the forced swim test in WT, but not in Penk KO mice. 

Anhedonia and despair levels were evaluated as measures of depression-like 

behaviors.  Anhedonic levels were assessed in the sucrose preference test (n = 

17-22/ group), where a state of anhedonia is reflected through a decreased 

preference for the sucrose solution. Repeated measures three-way ANOVA for 

WT and Penk KO mice revealed that CMS induced anhedonia (CMS effect (F (1, 

72) = 6.704, p < 0.05) in WT but not in Penk KO mice (Fisher’s LSD post-hoc test: 

WT control vs. WT CMS: p < 0.05;  Penk KO control vs. Penk KO CMS: p n.s.) 
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(Figures 4.3 A and B). In addition, a significant week*CMS interaction was 

observed (F (5, 360) = 2.660, p < 0.05), indicative that CMS effects in the sucrose 

preference were different along the several weeks of CMS submission. 

Fisher’s LDS test showed a significant CMS*week effect in WT animals 

between week 1 and week 5 (Figures 4.3). No significant genotype (F (1, 72) 

=0.128, n.s.), CMS*genotype (F (1, 72) =2.915, n.s.), week*genotype (F (5, 360) = 

0.366, n.s.) or week*genotype*CMS (F (5, 360) = 0.563, n.s.) effects were 

observed.  

Despair behavior was measured in the forced swim test (n = 8/ group). Despair 

behavior is correlated with an increase in immobility time. No significant results 

for genotype (F (1, 28) = 0.01431, n.s.) or CMS*genotype interaction (F (1, 28) = 

3.709, n.s.) effects were observed. However, a significant CMS effect (F (1, 28) = 

5.497, p < 0.05) was observed. Bonferroni post-hoc test revealed a significant 

CMS-induced increase in the immobility time in WT (WT control vs. WT CMS: p 

< 0.05), but not in Penk KO mice (Penk KO control vs. Penk KO CMS: p n.s.) 

(Figure 4.3 C). 
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Figure 4.3 Anhedonia was measured in the sucrose preference test for WT (A) and for Penk 

KO mice (B). Five weeks of CMS led to a decreased preference for the sucrose solution 

(anhedonia) in WT but not in Penk KO mice. Data expressed as mean  S.E.M. * p <0.05; ** p 

< 0.01, *** p < 0.001, using three-way ANOVA with repeated measurement followed by 

Fisher´s LSD test. Despair behavior was measured in the forced swim test (C). CMS led to an 

increase in the immobility time (despair) in WT but not in Penk KO mice. Data expressed as 

mean  S.E.M. * p <0.05, using two-way ANOVA followed by Bonferroni test.  

4.3 CMS effects in the baseline corticosterone levels of WT and Penk KO mice 

In order to evaluate the impact of the CMS protocol on the basal activity of 

the HPA axis, baseline corticosterone levels from WT and Penk KO mice were 

analyzed in feces collected after the termination of the 5 weeks of the CMS 

protocol. 

 
CMS induces an increase in the baseline corticosterone levels in WT but not in 

Penk KO mice.   

Corticosterone levels in feces, produced within 24 hours, were measured at the 

end of the CMS protocol in WT and Penk KO mice (n = 17-18/ group) (Figure 

4.5). We found neither CMS (F (1, 66) = 2.15, n.s.) nor genotype (F (1, 66) = 0.98, 

n.s.) effects, but a significant CMS*genotype interaction (F (1, 66) = 20.47, p < 

0.0001). Post-hoc analyses showed that CMS significantly increased the 

corticosterone levels in WT animals (WT control vs. WT CMS: p < 0.001), but 

not in Penk KO mice (Penk KO control vs. Penk KO CMS: p n.s.). Moreover, post-

hoc analyses also revealed that WT control animals present lower 

corticosterone levels compared with Penk KO control animals (p < 0.05), and 

that, in opposition, WT CMS animals present higher corticosterone levels than 

Penk KO CMS (p < 0.001).   
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Figure 4.5 Measurement of corticosterone levels in feces, produced within 24 hours, after 

5 weeks of CMS. CMS led to a significant increase in the corticosterone levels in WT mice, 

but not in Penk KO mice.  Corticosterone levels in the control groups were higher in Penk 

KO compared to WT animals, while in the CMS groups, corticosterone levels were higher in 

WT than in Penk KO mice. Data are expressed as mean  S.E.M.  # p < 0.05; ### and *** p < 

0.001. * comparison between control and CMS groups. # comparison between WT and 

PENK KO groups. Two-way ANOVA followed by Bonferroni test. 

4.4 Gene expression analyses 

To evaluate the effects of the CMS protocol on the gene expression of genes 

with a putative important role in CMS-induced stress reactivity, mRNA levels 

of several genes were evaluated in the PFC, PVN, amygdala and hippocampus 

of WT and Penk KO mice. 

 
4.4.1 Gene expression of the opioid system  

 
CMS increases Penk gene expression in the PVN of WT mice. 

CMS induced an increase in the Penk mRNA levels in the PVN (n = 5-6/ group) 

(U = 3.000; p< 0.05), without affecting the Penk mRNA levels in the PFC (n = 8/ 

group) (U = 18.00, n.s.), amygdala (n = 5-7/ group) (U = 12.00, n.s.) and 

hippocampus (n = 7/ group) (U = 13.00, n.s.) (Figure 4.6).  
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Figure 4.6 Penk gene mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus of WT control and WT CMS mice. CMS led to a significant increase of mRNA 

expression in the PVN. No significant changes were observed in the other brain regions 

analyzed. Data are expressed as fold change relative to the WT control group. * p < 0.05, 

using Mann-Whitney U test.  

Penk KO mice present lower Oprd1 gene expression in the hippocampus than 

WT animals. 

mRNA expression of the Oprd1 gene was measured in the PFC (n = 8/group) , 

amygdala (n = 4-6/group), and hippocampus (n = 6-7/group) of WT and Penk 

KO mice from control and CMS groups (Figure 4.7). Oprd1  mRNA  is not 

present in the PVN 49, and therefore not was measured in this brain area. In the 

PFC, no significant results were observed for CMS (F (1, 28) = 0.2688, n.s.), 

genotype (F (1, 28) = 0.7598, n.s.), or CMS*genotype (F (1, 28) = 0.05575, n.s.) 
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effects. In the amygdala, CMS (F (1, 18) = 0.2954, n.s.), genotype (F (1, 18) = 3.723, 

n.s.) and CMS*genotype (F (1, 18) = 0.09430, n.s.) effects were not significant 

either. In the hippocampus, Penk KO mice presented an overall lower Oprd1  

mRNA expression compared with WT mice, revealed by a main genotype effect 

(F (1, 21) =0.09430, p< 0.05), but no significant results in the Bonferroni post hoc 

test. No significant effects for CMS (F (1, 21) = 2.109, n.s.) or CMS*genotype (F (1, 

21) = 0.1441, n.s.) were observed in the hippocampus. 

    

Figure 4.7 Oprd1 mRNA expression was measured in the PFC, amygdala and hippocampus of WT 

and Penk KO mice from control and CMS groups. Statistical analyses showed a significant main 

genotype effect in the hippocampus, due to an overall lower gene expression in Penk KO mice 

compared with WT animals. No significant results were observed in the other brain areas analyzed. 

Data are expressed as fold change relative to the WT control group.  

 

CMS and Penk gene deletion do not influence Oprm1 gene expression. 

Oprm1 mRNA expression was measured in the PFC (n = 8/ group), PVN (n = 6/ 

group), amygdala (n = 5-7/ group) and hippocampus (n = 7/ group) of WT and 
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Penk KO mice from control and CMS groups (Figure 4.8). No significant results 

were observed in the PFC (CMS: F (1, 28) = 0.4536, n.s.; genotype: F (1, 28) = 0.2622, 

n.s.; CMS*genotype interaction: F (1, 28) = 0.2283, n.s.),  PVN  (CMS: F (1, 19) = 

3.251, n.s.; genotype: F (1, 19) = 1.084, n.s.; CMS*genotype interaction: F (1, 19) = 

0.3875, n.s.), amygdala (CMS : F (1, 19) = 0.1012, n.s.; genotype F (1, 19) = 2.221, 

n.s.; CMS*genotype interaction: F (1, 19) = 0.5662, n.s.) or in the hippocampus 

(CMS: F (1, 24) = 0.7720, n.s.; genotype: F (1, 24) = 3.057, n.s.;  CMS*genotype 

interaction: F (1, 24) = 2.362, n.s.). 

   

 

Figure 4.8 Oprm1 mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus of WT and Penk KO mice from control and CMS groups. Statistical analyses 

showed no significant results in any of the brain areas. Data are expressed as fold change 

relative to the WT control group. 
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Penk KO mice present opposite alterations in the Pdyn gene expression in the 

PVN and amygdala compared with WT mice.  

Pdyn mRNA expression analyses in the PFC (n= 8/ group), revealed no 

significant results for CMS (F (1, 27) = 1.925, n.s.), genotype (F (1, 27) = 2.182, n.s.) 

or CMS*genotype (F (1, 27) = 1.925, n.s.). In the PVN (n= 6/ group) lower Pdyn 

mRNA levels in Penk KO CMS compared to WT CMS animals  were  revealed 

by a significant genotype effect (F (1, 19) = 7.810, p < 0.05) and  significant 

results in the Bonferroni post-hoc test (WT CMS vs. Penk KO CMS: p < 0.05). 

Neither the CMS effect (F (1, 19) = 1.438, n.s.) nor the CMS*genotype interaction 

(F (1, 19) = 1.353, n.s.) were significant. In the amygdala (n= 5-7/ group) was 

observed a significant main genotype effect (F (1, 18) = 6.031, p< 0.05), but the 

Bonferroni post-hoc test was not significant. Thus, suggesting an overall 

increase in the Pdyn mRNA levels in the amygdala of Penk KO mice compared 

with WT animals. No significant results were observed for a CMS effect (F (1, 18) 

= 0.4434, n.s.) or CMS*genotype interaction (F (1, 18) = .3578, n.s.). In the 

hippocampus (n= 7/ group) no significant results were observed for a CMS (F 

(1, 24) = 0.1542, n.s.), genotype (F (1, 24) = 1.059, n.s.), or CMS*genotype 

interaction (F (1, 24) =0.4674, n.s.) effects (Figure 4.9). 
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Figure 4.9 Pdyn mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus of WT and Penk KO mice from control and CMS groups. Statistical analyses 

revealed significant genotype effects in the PVN and in the amygdala. In the PVN, 

significant main genotype effect and Bonferroni results, revealed lower gene expression in 

Penk KO CMS mice compared with WT CMS mice.  In the amygdala, significant main  

genotype effect but not significant results in the post-hoc test show an overall higher gene 

expression in the Penk KO mice compared with WT animals. Data are expressed as fold 

change relative to the WT control group. * p<0.05, using two-way ANOVA followed by 

Bonferroni test. 

CMS increases Oprk1 gene expression in the PVN in Penk KO, but not in WT 

mice 

Oprk1 mRNA expression was measured in the PFC (n = 7-8/ group), PVN (n = 5-

6/ group), amygdala (n = 4-6/ group) and hippocampus (n = 6-7/ group) of WT 

and Penk KO mice from control and CMS groups (Figure 4.10). In the PFC, no 

significant results for CMS (F (1, 27) = 1.112, n.s.), genotype (F (1, 27) = 0.03308, 

n.s.), or for CMS*genotype (F (1, 27) = 0.2725, n.s.) effects were observed. In the 
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PVN, a significant CMS effect was observed (F (1, 19) = 9.368, p < 0.01), which 

was due to an up-regulation in the Oprk1 gene expression in Penk KO CMS 

animals (WT control vs. WT CMS: p n.s.; Penk KO control vs. Penk KO CMS: p 

<0.05). No significant results were observed for genotype (F (1, 19) = 0.6654, n.s.) 

or CMS*genotype (F (1, 19) = 0.5016, n.s.) effects. No significant results were 

observed in the amygdala (CMS: F (1, 18) = 3.129, n.s.; genotype: F (1, 18) = 3.559, 

n.s.; CMS*genotype interaction: F (1, 18) = 0.1106, n.s) or hippocampus (CMS: F (1, 

20) = 2.807, n.s.; genotype: F (1, 20) = 1.298, n.s.; CMS*genotype interaction: F (1, 20) 

= 1.582, n.s.). 

   

Figure 4.10 Oprk1 mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus of WT and Penk KO mice from control and CMS groups. Statistical analyses 

revealed a significant CMS effect in the PVN, which was due to an up-regulation in the Kor 

gene expression. A Bonferroni post-hoc test showed significant results for Penk KO, but not 

for WT mice. Data are expressed as fold changes relative to the WT control group. * 

p<0.05, using two-way ANOVA followed by Bonferroni test. 
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4.4.2 Gene expression of glucocorticoid receptors  

CMS decreases Gr gene expression in the PVN in WT, but not in Penk KO 

mice. 

Gr mRNA expression was measured in the PFC (n = 6-7/ group), PVN (n = 5-7/ 

group), amygdala (n = 7/ group) and hippocampus (n = 7/ group) of WT and 

Penk KO mice from control and CMS groups (Figure 4.11). In the PVN, a 

significant CMS effect was observed (F (1, 21) = 6.324, p < 0.05), and post-hoc 

analysis showed a significant reduction of Gr mRNA levels in WT mice after 

CMS (WT control vs. WT CMS, p< 0.05) but no changes in Penk KO mice. No 

significant genotype effect (F (1, 21) = 1.719, n.s.) or CMS*genotype interaction (F 

(1, 21) = 3.960, n.s) were observed. In the PFC, amygdala and hippocampus, no 

significant CMS (F (1, 21) = 0.1448, n.s.; F (1, 24) = 0.4408, n.s.; F (1, 24) = 1.095, n.s.), 

genotype (F (1, 21) = 0.3547, n.s., F (1, 24) = 2.478, n.s.; F (1, 24) = 1.841, n.s.) or 

CMS*genotype (F (1, 21) = 0.03623, n.s.; F (1, 24) = 0.1912, n.s.; F (1, 24) = 0.007452, 

n.s.) effects were observed.  
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Figure 4.11 Gr mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus. Statistical analyses showed a significant decrease in the mRNA levels in the 

PVN of WT mice after CMS. No other significant results were observed in any of the 

analyzed brain areas. Data are presented as fold change relative to the WT control group. * 

p < 0.05. Two-way ANOVA followed by Bonferroni test. 

CMS and Penk gene deletion did not influence Mr gene expression. 

mRNA expression of the Mr gene was measured in the PFC (n= 6-7/ group), 

amygdala (n= 7/ group) and hippocampus (n= 7/ group) of WT and Penk KO 

mice from control and CMS groups (Figure 4.12). MR mRNA is not present in 

the PVN 130 and therefore not was measured in this brain area.  No significant 

results were observed in the PFC (CMS effect: F (1, 22) = 0.3723, n.s.;  genotype 

effect: F (1, 22) = 0.09656, n.s.; CMS*genotype interaction: F (1, 22) = 1.178, n.s.), 

amygdala (CMS effect; F (1, 24) = 01922, n.s.; genotype effect: F (1, 24) = 0.1075, 

n.s.; CMS*genotype interaction: F (1, 24) = 0.8023, n.s.); or hippocampus (CMS 
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effect: F (1, 22) = 1.210, n.s.; genotype effect: F (1, 22) = 4.228, n.s.; CMS*genotype 

interaction: F (1, 22) = 1.744, n.s.). 

 

      

Figure 4.12 Mr mRNA expression was measured in the PFC, amygdala and hippocampus. 

Statistical analyses showed no significant results.  Data are presented as fold change relative 

to the WT control group. 

 4.4.3 Gene expression of the CRH system 

 

Penk KO animals present higher Crh gene expression in the amygdala than 

WT mice.  

Crh mRNA expression was measured in the PFC (n = 6-7/ group), PVN (n = 6-7/ 

group), amygdala (n = 6-7/ group) and hippocampus (n = 6/ group) of WT and 

Penk KO mice from control and CMS groups (Figure 4.13). No significant results 

were observed in the PFC (CMS: F (1, 22) = 0.002649, n.s.; genotype: F (1, 22) = 
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0.2744, n.s.; CMS*genotype interaction: F (1, 22) = 0.08536, n.s) or in the PVN 

(CMS: F (1, 21) = 3.452, n.s.;  genotype effect: F (1, 21) = 0.7814, n.s.;  

CMS*genotype interaction: F (1, 21) = 1.440, n.s.). In the amygdala, a significant 

genotype effect (F (1, 22) = 10.60, p <0.01) was observed, and the Bonferroni 

post-hoc test revealed a significant increase in the gene expression in Penk KO 

CMS mice compared with WT CMS animals (WT CMS and Penk KO CMS: p 

<0.05). No significant results were observed for CMS effects (F (1, 22) = 0.2331, 

n.s.) or CMS*genotype interaction (F (1, 22) = 0.3147, n.s.). In the hippocampus, 

no significant results for CMS (F (1, 20) = 3.455, n.s.), genotype (F (1, 20) = 1.194, 

n.s.) or CMS*genotype interaction (F (1, 20) = 2.142, n.s.) effects were observed. 

  

Figure 4.13 Crh mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus. Statistical analyses revealed higher Crh gene expression in the amygdala of 

Penk KO CMS mice compared with WT CMS mice. No other significant results were 

observed in any of the analyzed brain areas. Data are expressed as fold changes relative to 

the WT control group. * p<0.05, using two-way ANOVA followed by Bonferroni test. 
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CMS and Penk gene deletion do not influence Ucn 2 and 3 gene expression.  

Accordingly to the literature 40 mRNA expression for urocortins is absent in the 

PFC and hippocampus. Furthermore, the literature also shows that in Ucn2 

mRNA is expressed in PVN, and Ucn3 mRNA in the amygdala.  Therefore, in the 

present study Ucn2 mRNA expression was measured in the PVN (n = 5-7/ 

group) and Ucn3 mRNA expression in the amygdala (n =6-7/ group) (Figure 

4.14). No significant results were observed  for the Ucn 2 gene expression in 

the PVN (CMS: F (1, 21) = 0.09422, n.s.; genotype: F (1, 21) = 1.173, n.s.; 

CMS*genotype interaction: F (1, 21) = 0.9791, n.s.), or for the Ucn 3 gene 

expression in the amygdala (CMS: F (1, 21) = 0.3115, n.s.; genotype: F (1, 21) = 

0.9901, n.s.; CMS*genotype interaction: F (1, 21) = 0.3772, n.s.). 

 

Figure 4.14 mRNA expression of Ucn2 was measured in the PVN and of Ucn3 in the 

amygdala. Statistical analyses showed no significant results. Data are expressed as fold 

changes relative to the WT control group. 

CMS and Penk gene deletion affect CRHr1 gene expression   

Crhr1 mRNA expression was measured in the PFC (n = 7/ group), PVN (n = 6-7/ 

group), amygdala (n = 6-7/ group) and hippocampus (n = 5-6/ group) of WT and 

Penk KO mice from control and CMS groups (Figure 4.15). In the PFC, a 

significant CMS*genotype interaction (F (1, 24) = 5.178, p < 0.05) was observed, 

and the Bonferroni post-hoc test revealed a significant increase in the mRNA 
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levels in WT animals after CMS conditions (WT control vs. WT CMS: p <0.05). 

No significant results were observed for CMS (F (1, 24) = 1.238, n.s.) or genotype 

(F (1, 24) = 0.1024, n.s.) effects. 

  
No significant results were observed in the PVN (CMS: F (1, 23) = 1.306, n.s.; 

genotype: F (1, 23) = 0.2494, n.s.; CMS*genotype interaction: F (1, 23) = 3.797, n.s.); 

or in the amygdala (CMS: F (1, 22) = 0.5772, n.s.; genotype: F (1, 22) = 0.01376, n.s.; 

CMS* genotype interaction: F (1, 22) = 1.662, n.s.). In the hippocampus, a 

significant genotype effect was observed (F (1,19) = 5.807, p<0.05.), and the 

Bonferroni post-hoc test showed significantly lower mRNA levels in the Penk 

KO control group compared to WT control (p < 0.05). No significant results for 

CMS effect (F (1, 19) = 0.01555, n.s.) or CMS*genotype interaction (F (1, 19) = 2.121, 

n.s.) were observed. 
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Figure 4.15 Crhr1 mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus. Statistical analyses revealed a significant CMS*genotype interaction in the 

PFC, which was due to an increase in the mRNA levels after CMS in WT mice. Furthermore, a 

significant genotype effect was observed in the hippocampus, due to a lower mRNA 

expression in Penk KO mice compared with WT mice under control conditions, but not after 

CMS. No other significant results were observed in any of the analyzed brain areas. Data are 

expressed as fold changes relative to the WT control group. * p<0.05, using two-way ANOVA 

followed by Bonferroni test. 

Penk KO mice present an overall lower Crhr2 gene expression in the amygdala 

than WT animals. 

 Crhr2 mRNA expression was measured in the PVN (n = 5-7/ group), amygdala 

(n = 7/ group) and hippocampus (n= 5-6/ group) (Figure 4.16). Crhr2 mRNA is 

not present in the PFC 40 and therefore not was measured in this brain area. In 

the PVN, no significant results were observed for CMS (F (1, 19) = 0.6117, n.s.), 

genotype (F (1, 19) = 0.05640, n.s.) or CMS*genotype interaction (F (1, 19) = 0.1529, 

n.s.) effects. In the amygdala, an overall lower gene expression in the Penk KO 

animals compared with WT mice was revealed by  a significant main genotype 

effect (F (1, 23) = 5.417, p< 0.05) but no significant results with the Bonferroni 

post-hoc test. No significant results were observed for CMS (F (1, 23) = 0.3691, 

n.s.) or for CMS*genotype interaction (F (1, 23) = 1.180, n.s.) effects. In the 

hippocampus, no significant results were observed for CMS (F (1, 19) =0.05558, 

n.s.), genotype (F (1, 19) = 2.046, n.s.) or for CMS*genotype interaction (F (1, 19) = 

0.5131, n.s.) effects. 
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Figure 4.16 Crhr2 mRNA expression was measured in the PVN, amygdala and hippocampus. 

Statistical analyses revealed a main genotype effect in the amygdala, with an overall 

decrease of the gene expression in Penk KO mice compared with WT animals. No other 

significant results were observed in any of the analyzed brain areas. Data are expressed as 

fold change of WT control group. 

CMS has opposite effects in the Crhbp gene expression in the hippocampus of 

WT and Penk KO mice. 

Crhbp mRNA expression was measured in the PFC (n = 6-7/ group), PVN (n = 7/ 

group), amygdala (n = 6-7/ group) and hippocampus (n = 5-6/ group) (Figure 

4.17). No significant results were found in the PFC (CMS: F (1, 23) = 0.05937, n.s.; 

genotype: F (1, 23) = 1.710, n.s.; CMS*genotype interaction: F (1, 23) = 0.4282, n.s.), 

PVN (CMS: F (1, 23) = 0.3860, n.s.; genotype: F (1, 23) = 1.574, n.s.; CMS*genotype 

interaction: F (1, 23) = 0.1258, n.s.) or amygdala (CMS: F (1, 22) = 0.03198, n.s.; 
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genotype: F (1, 22) = 0.6848, n.s.; CMS*genotype interaction: F (1, 22) = 1.147, n.s.). 

In the hippocampus, was observed a significant main CMS*genotype 

interaction (F (1, 19) = 7.453, p<0.05), but no significant results with post-hoc 

analyses. These results show that the CMS has an opposite overall effect in WT 

and PENK KO mice. No significant results were observed for CMS (F (1, 19) = 

0.07945, n.s.) or genotype (F (1, 19) = 0.01876, n.s.) effects. 

  

Figure 4.17 Crhbp mRNA expression was measured in the PFC, PVN, amygdala and 

hippocampus. Statistical analyses revealed a main CMS*genotype interaction in the 

hippocampus, showing that CMS induces opposite changes in the gene expression in WT and 

Penk KO mice. No other significant results were observed in any of the analyzed brain areas. 

Data are expressed as fold change relative to the WT control group. 
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Chapter 5: Discussion 

The present study was designed to investigate the role of enkephalin in stress 

reactivity under chronic stress conditions and in the susceptibility to chronic 

stress-related mood pathologies. Therefore, we submitted WT and 

constitutive Penk KO mice to the chronic mild stress (CMS) protocol, followed 

by hormonal, behavioral and gene expression analyses.  

Modulation of enkephalin levels under several stress conditions, as well as its 

potential role as an anxiolytic and/ or antidepressant compound, was 

previously shown in several studies 65,86,89 (see details in chapter 2.7). 

Moreover, mice lacking the Penk gene (Penk KO) exhibited enhanced basal 

anxiety levels 66,94–96, but no basal depression-related phenotype 

133.Nevertheless, Penk KO mice showed an increased vulnerability to 

developed anxiety and depression-related phenotypes followed submission to 

foot-shock stress 98. Thus, we hypothesized that Penk KO mice would show a 

higher vulnerability to anxiety and depression-related phenotypes when 

submitted to a CMS protocol. 

 
5.1 Behavioral reactivity of WT and Penk KO mice 

To investigate the impact of the Penk gene deletion in stress reactivity to CMS 

conditions, WT and Penk KO mice were submitted to a CMS protocol, followed 

by behavioral testing to assess anxiety and depressive-like phenotypes. 

 
5.1.1 Basal behavioral phenotype of WT and Penk KO mice 

Under basal/unstressed conditions (control groups), we detected similar 

levels of anxiety and depression-like behaviors between Penk KO and WT 

mice. Although these findings are in contrast to some of the previously 

published data 66,94–96, they can be readily explained by the distinct 

experimental conditions. Mice from the present study were single–housed for 
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8 weeks, submitted to an extensive period of handling, and the same animals 

were tested in multiple behavioral paradigms. In previous studies 66,94–96, Penk 

KO animals were group-housed and naïve for each behavioral test. It is well 

known that group- versus single-housing 134 as well as test-test interactions 

135,136 strongly influence behavioral phenotypes. Furthermore, previously, our 

group showed that the basal phenotype of Penk KO mice is particularly 

sensitive to environmental conditions 95 . In that study, Penk KO mice from the 

same colony but housed in two different facilities presented distinct anxiety-

like behavior in the O-maze test, while showing enhanced anxiety levels 

compared with WT mice. This arose because Penk KO animals from one 

facility spent less time in the open areas of the maze, while Penk KO mice 

from the other facility showed a generalized freezing behavior in both open 

and closed areas of the maze, indicative of an extreme anxiety/fear. 

Furthermore, re-analyses of previous data from our group (supplementary 

figure 1) revealed that Penk KO mice are more sensitive to social housing 

conditions than WT mice. While housing conditions do not affect anxiety 

levels of WT animals, Penk KO mice show enhanced anxiety levels when 

housed with conspecifics, but not after two weeks of single-housing. 

Moreover, a similar basal anxiety-like phenotype between Penk KO and WT 

mice was also previously shown by Kung et al. 98,in animals group-housed and 

tested in a battery of behavioral tests. In the present study, to avoid variability 

in stress reactivity due to the hierarchic status occurring in group-housed 

animals 59,137, and to minimize the number of experimental animals, we used 

individual-housed animals, which were tested in a battery of behavioral 

paradigms.  
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To sum up, the present and previously data suggest that the basal anxiety 

phenotype of Penk KO mice is highly sensitive to environmental and 

experimental conditions, such as housing, handling and behavioral testing. 

 

5.1.2 Behavioral phenotype of WT and Penk KO mice after submission to 5 

weeks of CMS 

In accordance with the literature, CMS increased anhedonia in the sucrose 

preference test, increased despair status in the forced swim test and 

increased anxiety levels in the O-maze test in WT mice 120,123,124,127. In stark 

contrast, CMS did not induce anxiety or depression-like phenotypes in Penk 

KO mice, which showed no significant alterations in their anhedonic, despair 

or anxiety levels. 

Since the behavioral outcome in the forced swim and in the O-maze tests may 

be influenced by differences in locomotor and/or exploratory activity 138,139140, 

the animals were also tested in the open field test under dim light conditions 

(20 lux). Exploratory drive and/ or locomotor activity were similar between 

WT and Penk KO mice from control groups. CMS induced a similar slight 

increase in the activity of mice of both genotypes. CMS-induced hyperactivity 

was also described by others 138,139. Therefore, we exclude that differences in 

the exploratory drive and/or locomotor activity may influence the distinct 

anxiety- and depression-like phenotypes observed between WT and Penk KO 

mice after CMS.  

Thus, the present results show a higher resistance of the Penk KO mice to the 

detrimental behavioral effects of CMS, which is indicative of a resilience-like 

phenotype. 
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5.2 Corticosterone regulation in WT and Penk KO mice 

Glucocorticoids (cortisol in humans and corticosterone in rodents) are the 

main mediators of the neuroendocrine stress response. Their production and 

secretion is driven by the HPA axis. CRH-parvocellular PVN neurons stimulate 

the production of ACTH by the pituitary gland, which in turn stimulates the 

production of glucocorticoids by the adrenal glands 6,7,25 (see details in section 

2.4). Increased levels of glucocorticoids are essential during several 

physiological functions, such as in the sleep/wake cycle, and in the stress 

response 3,17,25. However, sustained higher glucocorticoid levels have 

deleterious effects for the brain and peripheral organs5,17. Alterations in 

baseline levels of corticosterone suggest a poor control of secretion, which 

may lead to dysregulation of several physiological functions and an increase in 

the susceptibility to maladaptive stress responses 5,12,17,141. Both genetic and 

environmental factors might induce long-term alterations in the regulatory 

mechanisms controlling glucocorticoid secretion 5,12,17,141. Baseline 

hyperactivity of the HPA axis, is a feature in several pathologies, such as 

anxiety and major depression 12,17, and is also a common endpoint of the CMS 

protocol in rodents 34,142. Therefore, we investigated gene-environment 

effects of Penk gene deletion and of CMS on the baseline levels of 

glucocorticoids (see detailed method in chapter 3.5). 

 
5.2.1 Regulation of baseline corticosterone secretion under control 

conditions 

Our results show that baseline corticosterone levels in control animals were 

higher in Penk KO than in WT mice. These results contrast with previous data 

from our group 66, in which naïve Penk KO animals present lower baseline 

levels of corticosterone than WT mice. This difference can be most likely 

explained by the differential sampling procedures. In the previous study 66, 
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corticosterone levels were measured from blood samples at a single time 

point, while in the present study the measurements were done from feces 

collected over a period of 24 hours. Glucocorticoid baseline levels display 

circadian fluctuations (over a period of 24 hours) 24,28,25,143 and also a second 

type of fast, pulsatile fluctuation (45 to 60 min interpulse interval), i.e. in an 

ultradian pattern 24,25,28,29,144. Therefore, a 24 hours sampling procedure is a 

more reliable marker for evaluation of general corticosterone secretion and 

avoids putative misleading results due to inter- and/or intra-group 

mismatching of circadian and ultradian cycles. Furthermore, this method 

allows the detection of alterations which may occur in several specific time 

points 140, and/or small continuous alterations, which individually are below 

detection threshold, but are indicative of a general alteration in baseline 

glucocorticoid secretion 145. In addition, collection of feces samples is non-

invasive and allows to collect samples during long periods of time from the 

same animals without disturbing them and, therefore without interfering with 

baseline secretion levels 146. 

 
5.2.2 Regulation of baseline corticosterone secretion in CMS animals 

Analyses of baseline corticosterone levels after CMS revealed an increase in 

WT mice, but not in Penk KO animals. Furthermore, after CMS Penk KO mice 

have lower baseline glucocorticoid levels when compared to WT mice. 

Increased baseline corticosterone levels in WT mice after CMS suggest a CMS-

induced chronic hyper-activation of the HPA axis indicative of a maladaptive 

neuroendocrine stress response. In contrast, the lack of significant CMS 

induced alterations in baseline corticosterone levels in Penk KO mice, suggests 

a more robust neuroendocrine system, which is indicative of better stress 

copying mechanisms and resilience. 
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Together, behavioral and hormonal data show that Penk KO mice can cope 

better with CMS than WT animals. The resilience of Penk KO mice is surprising 

and the opposite of our initial hypothesis. These results suggest that a 

decrease in enkephalin signaling contributes to a better adaptation to CMS 

conditions and/or that the constitutive deletion of the Penk gene leads to 

developmental compensations, which have a protective effect under CMS-

conditions. 

5.3 Regulation of the Penk gene by CMS in WT mice 

To scrutinize possible brain areas on which enkephalin functions as mediator 

of the stress response under CMS conditions, we measured the levels of the 

Penk gene in WT animals before and after CMS, in brain areas known to be 

involved in the behavioral and/or hormonal stress response, i.e. amygdala, 

hippocampus, PFC and PVN 8,14. 

Penk gene expression was altered only in the PVN, where CMS induced an 

increase in the Penk gene expression. Similar results were shown after 

exposure to other stressors, such as hypertonic saline injections 20,73,147,148, 

immobilization 76,77,149 and chronic variable stress 53. Thus, our results suggest 

that enkephalin produced in the PVN is an important modulator of the stress 

response to CMS. 

The PVN is considered a central station for stress integration, where several 

neuronal populations, distributed among several subdivisions, are involved in 

the control of behavioral and neuroendocrine alterations during the stress 

response 14,16 (see details in chapter 2.3). Enkephalinergic cell bodies are 

present in both parvocellular and magnocellular subdivisions of the PVN, with 

the majority of PVN enkephalinergic cells localized in the parvocellular 

subdivision 20,21,73,77,147,150,151. Enkephalin produced in the PVN may be released 

locally 152, where it can bind to MOP and DOP expressed in different PVN-



85 
 

neuronal populations 153–157. Moreover, PVN-enkephalinergic projections can  

release enkephalin in other brain regions involved in stress response or in the 

modulation of physiological functions commonly affected by stress conditions 

158,159.  

Importantly, a  sub-population of PVN parvocellular CRH-expressing  neurons, 

positioned at the head of the HPA axis 6,7,14, co-express enkephalin 150,151,160 , 

suggesting enkephalin as a putative co-modulator of the neuroendocrine 

stress response. Enkephalin released by these neurons may influence the 

neuroendocrine stress response via distinct mechanisms. These neurons 

project to the median eminence, where enkephalin released by the axon 

terminals can activate opioid receptors expressed at the pituitary glands 

153,161,162 and/or  at the hypophysiotropic neuronal terminals 147,153,163,164. In 

addition, these neurons may release enkephalin somatodendritically in the 

PVN 152,157, where opioid receptors are present in important neuronal 

populations involved in the modulation of stress response 157. Indeed, 

GABAergic neurons, which form synapses with CRH and CRH/enkephalin 

parvocellular neurons, express pre-synaptic MOP receptors, and the activation 

of these receptors results in presynaptic inhibition of GABA release (LTD 

GABA). Therefore, decreasing the GABAergic modulatory role onto the 

neuroendocrine parvocellular neurons 157, which is of high importance to 

restrain the hyperactivity of the HPA axis165,166 . During stress conditions, 

GABA is believed to exert an inhibitory action, decreasing the firing of CRH 

neuroendocrine neurons, and consequently, corticosterone secretion 15,166–169. 

Thus, a CMS-induced increased expression of the Penk gene and increase 

release of enkephalin peptide in the PVN, might increase the activation of 

MOP at the GABAergic neurons. This would decrease the GABAergic tone in 

the PVN neuroendocrine CRH neurons, contributing to the stress-induced 



86 
 

hyperactivation of the HPA axis and increased corticosterone secretion (figure 

5.1). In line with this hypothesis, decreased GABAergic tone in the PVN and 

increased corticosterone levels were previously shown after CMS conditions 

in WT mice 169. Moreover, in our study, animals lacking enkephalin present a 

reduction in corticosterone secretion compared with WT mice, after exposure 

to CMS conditions. 

In summary, our results show that CMS induced an increase in the Penk gene 

in WT mice, suggesting that PVN-enkephalin signaling is a strong candidate in 

the modulation of stress response under CMS conditions. Not excluding the 

possible influence of other enkephalin-signaling neuronal pathways in the 

observed phenotype of WT mice after CMS exposure, we discussed a 

hypothetical model through which an increase in enkephalin release, locally in 

the PVN, could contribute to the CMS-induced maladaptive stress response in 

these animals. Future studies need to evaluate GABA levels, GABAergic tone, 

and the effects of GABA in neuroendocrine CRH neurons, in the PVN of WT 

and Penk KO mice to solidify this speculative mechanism. 

5.4 Gene expression analyses in WT and Penk KO animals 

To obtain further insights into the molecular mechanisms contributing to the 

distinct behavioral and hormonal phenotypes between WT and Penk KO mice 

after CMS, we evaluated gene expression profiles of other known mediators 

involved in the stress response, namely components of the endogenous 

opioid, glucocorticoid and CRH systems, in WT and Penk KO mice. 
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Figure 5.1 Enkephalin signaling in the PVN: modulation of CRH neuroendocrine neurons. 

(A). Parvocellular CRH neurons within the PVN are under inhibitory control by GABA. 

Presynaptic MOPs expressed in GABAergic neurons may be activated by enkephalin, 

inhibiting GABA release, leading to a decrease in the inhibitory tone onto CRH neurons. 

Thus, increased enkephalin signaling in the PVN observed under CMS conditions may 

contribute to hyper-excitation of CRH neuroendocrine neurons, leading to increased 

corticosterone secretion and thus, anxiety- and depression-related behavioral phenotypes. 

(B) In contrast, lack of enkephalin may contribute to the maintenance of the inhibitory 

GABAergic tone onto CRH neurons, restraining the activity of CRH neurons under CMS 

conditions, which could mediate the resilience to CMS. 

 
5.4.1 mRNA expression of the Oprd1 and Oprm1 genes  

Enkephalin binds and activates DOP and MOP 49,50. Therefore, alterations in 

the gene expression levels of these receptors may be translated into altered 

number of functional receptors at the cell surface, which in turn may 

influence the role of enkephalin in stress reactivity. Analyses of Oprd1 and 

Oprm1 gene expression revealed only a main genotype effect in the Oprd1 

gene expression in the hippocampus, with lower Oprd1 gene expression in the 

hippocampus of Penk KO mice compared to WT animals. No other alterations 

in the Oprd1 or Oprm1 gene expression were detected. Our results are not in 

agreement with a previous study on which Penk KO mice presented equal 

levels of Oprd1 gene expression in the hippocampus compared with WT 

animals 174. The discrepant results can be explained by the different 

experimental conditions. While in the previous study, animals were naïve, in 

the present study, animals were submitted to handling and tested in several 

behavioral paradigms before gene expression evaluation, conditions which 

are known to influence gene expression 175,176. In addition, the use of different 

evaluation methods, mRNA expression vs. binding-affinity measurements may 

also explain the observed differences.  
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In the hippocampus, DOP receptors are mainly present presynaptically in 

parvalbumin and somatostatin -positive GABAergic interneurons, which form 

inhibitory synapses with glutamatergic pyramidal neurons 177–179. Activation of 

DOP receptors is associated with a facilitation in hippocampal excitability, via 

indirect disinhibition of glutamatergic pyramidal cells 177–179. Sustained 

increase in hippocampus excitability is believed to contribute to the 

deleterious effects of the chronic stress on hippocampal structure and 

functioning 34,123,180. Thus, a decrease in hippocampal DOP expression in the 

Penk KO mice can attenuate a CMS-induced hippocampal excitability and 

contribute to a higher resilience to the deleterious effects of CMS in these 

animals.  

5.4.2 mRNA expression of the Pdyn and Oprk1 genes 

 The involvement of the endogenous opioid system in stress response and 

mood disorders is not confined to enkephalin and its receptors (DOP and 

MOP). Several studies support the role of dynorphin and its main receptor, 

the kappa opioid receptor (KOP) 103, in the modulation of stress response and 

susceptibility to pathophysiological conditions, such as anxiety and major 

depression 107,181,182. Furthermore, long-term deletion of the Penk gene may 

lead to developmental compensatory mechanisms in other components of the 

endogenous opioid system 174,183–185. Therefore, expression of the Pdyn and 

the Oprk1 genes was analyzed in WT and Penk KO mice from control and CMS 

groups in the PFC, hippocampus, amygdala and PVN. 

Our results revealed an overall up-regulation of the Pdyn gene expression in 

the amygdala of Penk KO compared with WT mice. Furthermore, we observed 

a down-regulation of the Pdyn gene in the PVN of Penk KO versus (vs.) WT 

animals following CMS. Finally, results from the Oprk1 gene expression 
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revealed that CMS induced a significant upregulation of the Oprk1 gene in the 

PVN of Penk KO mice.  

Pdyn mRNA in the amygdala, is mainly expressed in the central nucleus (CeA) 

182. Therefore, we will restrict our discussion to the influence of dynorphin 

signaling pathways related with dynorphin synthesized in the CeA. Dynorphin 

synthesized in the CeA can be locally released by dendrites and/or axon 

terminals 181,182, where it can bind to KOP expressed presynaptic  in GABAergic 

neurons 186, leading to inhibition of GABA release, locally or in CeA-GABAergic 

efferents to other brain areas 14. Activation of KOP in the CeA is suggested to 

mediate fear conditioned responses but not anxiety 187. Nevertheless, KOP 

activation in the CeA may influence pathways with opposite regulatory effects 

in stress response. As examples, while a KOP-mediated decrease GABAergic 

tone from the CEA to the BST may inhibit PVN activity, a KOP-mediated 

decrease GABAergic tone from the CEA to the raphe nuclei might lead to an 

increase activation of the PVN 6,14.  In addition, the effects of CeA 

dynorphinergic neurons can influence other brain regions, to which these 

neurons project 188,189. For instance, CeA send dynorphinergic projections to 

the locus coeruleus (LC), the key brain area where noradrenaline is 

synthesized. These neurons are suggested to inhibit the excitatory effects of 

the CRH peptide at the noradrenergic neurons, leading to possible anxiolytic 

effects 188,189. Therefore, an up-regulation of Pdyn gene in the amygdala of 

Penk KO mice could decrease the activity of the noradrenergic system in the 

LC, contributing to an attenuation of stress reactivity. This is in line with the 

observed phenotype of Penk KO CMS mice in the present study.  

To sum up, an upregulation of the Pdyn gene in the amygdala may attenuate 

or exacerbate stress response, depending on which pathways dynorphin is 

involved. Thus, further studies are needed to clarify how a CMS-induced Pdyn 
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gene expression in the amygdala of Penk KO mice influences the CMS-induced 

reactivity.  

 
In the PVN, Pdyn expressing neurons are mainly localized at the magnocellular 

subdivision, where these neurons are involved in the modulation of the 

neurohypophysial system and co-express vasopressin (VP) 20,190,191. PVN- 

dynorphin is believed to attenuate the activity of several neuropeptides, such 

as VP locally152,182,190, or at the level of the median eminence 

(neurohypophysial neurons) 18,20,161,192. Moreover, KOP are expressed in 

several neuronal populations within the PVN 152. Activation of KOP in the PVN 

was shown to have an important role in the modulation of the HPA axis, 

leading to an increase in ACTH and corticosterone secretion 104,193–195. In 

summary, dynorphin-KOP signaling in the PVN is suggested to contribute to an 

activation of the HPA axis activity. Therefore, a decrease in Pdyn expression in 

the PVN of Penk KO mice can contribute to an attenuation of the hormonal 

stress response, which is in line with our data.  On the other hand, an increase 

in the Oprk1 gene expression in the PVN of Penk KO CMS mice, can contribute 

to an increase activation of the HPA axis and corticosterone secretion under 

CMS conditions. However, an increased activation of the HPA axis in Penk KO 

mice is not supported by our present results, which show that these animals 

present no alterations in corticosterone levels after CMS, and even have lower 

corticosterone levels than WT CMS mice. One factor accounting for that, 

might be a counterbalancing effect due to a decrease in the expression of 

PVN-Pdyn gene expression also observed in these animals. 

Overall, our data suggest that the resilient phenotype of Penk KO mice under 

CMS conditions may be related with alterations in the dynorphin-KOP 

signaling, namely in the PVN, between these animals and WT mice.  
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5.4.3 mRNA expression of the Gr and Mr genes  

The role of glucocorticoids in the modulation of cellular processes under basal 

and stress conditions does not only depend on the hormonal levels, but also 

on the expression profile of GR and MR receptors 196. Furthermore, 

glucocorticoids have auto-regulatory mechanisms to avoid a sustained 

increase in corticosteroid levels and consequent deleterious effects 17,37,197. 

Activation of glucocorticoid receptors in the hippocampus, PFC and PVN 

contribute to an attenuation of the HPA axis activity, while in the amygdala it 

has an opposite effect 198. Generally, sustained high glucocorticoid levels, due 

to stress or to injection of exogenous glucocorticoids, leads to a down-

regulation of glucocorticoid receptors199. However, differential stress 

protocols and/or treatment with exogenous glucocorticoids may lead to 

distinct alterations in the gene expression of glucocorticoid receptors 165,200–

202. For instance, repeated restraint stress during one week led to an increase 

Gr mRNA in the PVN, while 3 weeks had no effect200. In another study, chronic 

variable stress led to a reduction in the PVN Gr mRNA165. The results of the 

present study show a significant CMS induced decreased GR mRNA expression 

in the PVN in WT animals. GR receptors in the PVN are expressed in several 

neuronal populations, which are important modulators of the HPA axis 

activity, such as CRH-expressing parvocellular neurons 203–205. Activation of GR 

in these neuronal populations inhibits the HPA axis activity, via a direct 

negative feedback mechanism 6,165. Thus, CMS-induced reduction of GR in the 

PVN of WT mice may mediate a deficit in the inhibitory control of 

corticosteroid secretion, which is supported by the observed increased 

baseline corticosterone levels after CMS in these animals. On the other hand, 

a lack of alterations in the PVN-GR expression in Penk KO mice after CMS, 
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suggest a more robust HPA axis regulatory mechanism in these animals. This is 

in line with the observed lower baseline corticosterone levels in Penk KO 

animals compared with WT mice after CMS conditions. 

5.4.4 mRNA expression of the different components of the CRH system  

The CRH system plays an important role in stress response 40,44,124,206,207. 

Alterations in the CRH system signaling may lead to differential stress 

responses and susceptibility to develop mood disorders  40,44,124,206,207. The 

activation of CRHr1 by the CRH and UCN I peptides, or by exogenous agonists 

was shown to lead to anxiogenic effects and to stress hyper-sensibility 45. In 

addition, mice overexpressing the Crh gene present increased basal anxiety 

phenotypes and increased baseline corticosterone secretion 140. On the other 

hand, activation of CRHr2 via UCN 1, 2 and 3 or exogenous agonists is 

suggested to be involved in the termination of the stress response 45.  

Elements of the CRH system and the endogenous opioid system are co-

expressed within several neuronal circuits involved in stress response 

77,151,160,189. Moreover, it was shown that several types of stressors induce 

alterations in both the CRH and opioid systems in the same brain regions 77. In 

addition, genetic manipulation of the CRH system leads to gene expression 

alterations in components of the endogenous opioid system 208. Therefore, we 

hypothesized that the deletion of the Penk gene may influence gene 

expression in the CRH system under basal and/or CMS conditions.  

5.4.4.1 mRNA expression of the Crh, Ucn and Crhbp genes 

We observed a higher expression of the Crh gene in the amygdala of Penk KO 

CMS compared to WT CMS animals. Increased Crh levels in the amygdala is 

associated with anxiogenic states and HPA axis hyperactivity 209–212,which was 

not observed, in Penk KO mice, in our study. A possible explanation for that 

can be related with an intermingled signaling between enkephalin and CRH 
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within the amygdala or in brain areas which receive amygdalar CRH 

projections, on which the lack of enkephalin masks the anxiogenic role of 

higher CRH levels. 

In addition, we observed an interaction effect in the Crhbp gene expression in 

the hippocampus, where WT CMS animals present a decrease and Penk KO 

CMS mice an increase in the gene expression.  Crhbp overexpression is 

associated with anxiolytic, and Crhbp deletion with anxiogenic effects 45. 

CRHbp is a water soluble protein, which binds to CRH and UCN 1 peptides, 

competing with the CRHr1 213. Thus, CRHbp is an important modulator of the 

CRH system, reducing the concentration of CRH and UCN 1 free peptides 

45,213,and in consequence the activation of CRHr1. Increase activation of CRHr1 

in the hippocampus, under chronic stress, is associated with deleterious 

effects in neuronal functioning and morphology 43,212. Therefore, increased 

levels of CRHbp in the hippocampus of Penk KO mice may lead to a reduced 

activation of CRHr1, contributing to the stress resilience observed in these 

animals.   

5.4.4.2 mRNA expression of the Crhr1 and Crhr2 genes 

Our results revealed an interaction effect in the regulation of the Crhr1 mRNA 

in the PFC, due to a CMS-induced upregulation of Crhr1 mRNA in the PFC of 

WT but not in Penk KO mice. Alterations in the Crhr1 mRNA in the PFC of rats 

and mice, after CMS conditions were reported in other studies 211,214–216. 

However, in these studies, Crhr1 mRNA expression decreased rather than 

increased. Furthermore, depressed suicide victims exhibited a decrease in 

CRH binding sites217. Decrease in Crhr1 mRNA or binding sites is believed to be 

a compensatory mechanism to attenuate the increased PFC Crh gene 

expression and CRH peptide levels also observed in depressed suicide victims 

218.   We have no explanation why we observed opposite results to the ones 
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described in the literature. Nevertheless, an up-regulation of Crhr1 mRNA can 

increase the CHR signaling, contributing to pro-depressive states 211,214–216,218, 

as we observed in WT CMS  mice in our study. 

Moreover, we observed a down-regulation in the Crhr1 gene expression in the 

hippocampus of Penk KO control animals compared with control WT mice. 

CRHr1 is widely expressed among hippocampal pyramidal neurons 219–221 but 

also in GABAergic interneurons 222. CRH-CRHr1 signaling was shown to be 

necessary for normal hippocampal development and maturation43. 

Furthermore, brief and moderate increase in CRH-CRHr1 signaling was shown 

to improve hippocampal plasticity, supporting learning and memory 224–226. On 

the other hand, severe and/or chronic stress conditions lead to long lasting  

activation of CRH-CRHr1 signaling, which was shown to be associated with 

neuronal atrophy and spine loss43. Therefore, lower baseline levels of CRHr1  

might lead to abnormal development and maturation of hippocampal 

neurons, which can contribute to impairments in stress response regulation, 

since the hippocampus has an important regulatory role in stress reactivity 

14,227,228. In opposition, lower baseline levels of CRHr1 might have a protective 

effect during chronic stress conditions, attenuating exacerbated hippocampal 

excitability, which would be in line with the observed phenotype in Penk KO 

mice in our study.  

In addition, we observed an overall down-regulation in the Crhr2 gene 

expression in the amygdala of Penk KO mice compared to WT animals. CRHr2 

is suggested to have an important role in stress response termination, mainly 

in the attenuation of exaggerated and/or sustained activation of stress 

response mechanisms 40,45. Therefore, lower levels of CRHr2 may contribute to 

an impairment of stress response termination and increase susceptibility to 

the deleterious effects of chronic stress 40,45. In our study Penk KO mice 
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present lower expression of CRHr2 gene in the amygdala, but these animals 

do not present an impairment in stress response termination.  It is possible 

that the lack of enkephalin in Penk KO mice prevent an exacerbated activation 

of stress response mechanisms, masking the putative effects of lower levels of 

CRHr2 signaling in the termination of stress response.  

Overall, differences in the gene expression of the CRH system components, 

due to both developmental and environmental conditions, in WT and Penk KO 

mice, may support the distinct phenotype between these animals under CMS. 

Therefore, it is important further research on the interaction between the 

CRH system and enkephalin signaling in stress reactivity under CMS 

conditions. 

5.4.5 Summary of gene expression results  

We identify enkephalin with origin in the PVN as a mediator in stress response 

to CMS. Furthermore, we discuss a putative mechanism by which an increase 

Penk gene expression in the PVN can contribute to the prodepressive and 

anxiogenic CMS-induced phenotype in WT mice, but absent in Penk KO 

animals, in the present study.  

In addition, we identify several differences in the gene expression of the 

endogenous opioid, glucocorticoid and CRH systems, between WT and Penk 

KO mice, before and after CMS conditions. In line with the observed resilient 

phenotype of Penk KO mice, we found a decrease Pdyn in the PVN, a decrease 

gene expression of Crhr1 in the hippocampus, an increase Crhbp also in the 

hippocampus, and the lack of alterations in the Gr expression in the PVN, of 

Penk KO mice. On the other hand, not in line with the resilient phenotype 

observed in Penk KO mice, we observed  an increase Crh and decrease Crhr2 

expression in the amygdala of Penk KO mice, suggesting that the lack of 
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enkephalin masks the expected increase stress susceptibility associated with 

these alterations.   

To sum up, however not a complete  “black and white” picture, our gene 

expression analyses in CMS- resilient Penk KO and susceptible WT mice, might 

give an important contribute to the identification of gene expression profiles 

associated with a better stress copying mechanisms to CMS conditions.  

5.5 Technical considerations  

Constitutive Penk KO animals: Constitutive KO animals are very useful models 

in order to identify the contribution of specific molecules in several behavioral 

phenotypes and physiological functions. However, several limitations accrue 

from these models. First, the constitutive deletion of a gene may lead to 

developmental compensations, which may be difficult to interpret and/or to 

discriminate from the environmental effects. Secondly, the constitutive 

deletion of a gene makes impossible to distinguish the specific role of a 

molecule in distinct signaling pathways, both within the brain and peripheral 

tissues, where molecules may have distinct functional relevance depending on 

the expression site 229. Thus, future studies should rely on more specific 

models such as conditional and inducible KO mice 229. 

Tissue isolation for gene expression analysis:  The Palkovits punching 

technique is widely used for extraction of brain tissue samples because is an 

easy and fast execution method 230. However, this procedure does not allow 

the isolation of distinct subnuclei or subdivisions of small brain areas, and 

even less of specific cell populations. Therefore, misleading results may occur, 

due to possible differential regulations of a gene between different sub nuclei, 

subdivisions or cell populations within a brain area. Therefore, techniques 

such as laser capture microdissection are a necessary step to understand the 
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role of  a specific molecule in different cell populations or subdivisions, which 

may undergo different physiological functions 231.  

Gene expression vs. protein expression: Gene expression measurements 

might give a good picture of how and if a specific molecule is involved in the 

modulation of a function.  However, mRNA quantification does not account to 

post-transcriptional and post-translational modifications, which may lead to 

significant differences between the mRNA expression and protein/ peptide 

levels 232. Furthermore, assuming a positive correlation between gene 

expression and protein synthesis, gene expression do not allows identification 

of the brain areas where protein expression levels are changed (locally and/ or 

in other brain areas, which receive projections from the brain area where the 

cell bodies are localized). Thus, in future studies, western-blot and/ or 

immunohistochemistry must be also performed to correlate alterations in the 

gene expression with alterations in protein levels, and identification of brain 

areas where the alterations in gene expression will be reflected.  
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Chapter 6: Summary/Conclusions 

The current literature highlights an anxiolytic and antidepressant effect of 

enkephalin. In the present study, we suggest that under certain stress 

conditions, namely CMS, enkephalin signaling might have the opposite effect. 

Our key finding is that constitutive Penk KO mice show a higher resilience to 

the deleterious behavioral and hormonal effects induced by CMS when 

compared with WT animals. Importantly, while WT mice present exacerbated 

anxiety- and depression-like phenotypes and increased levels of 

corticosterone after 5 weeks of CMS, no alterations were observed in the 

Penk KO mice.  

Furthermore, our study shows that Penk gene expression is up-regulated in 

the PVN of WT mice after CMS conditions. Because these animals showed 

vulnerability to CMS conditions, this suggests a putative involvement of PVN-

enkephalin in the deleterious effects of CMS. 

Overall, our data underlines the importance of enkephalin in stress response. 

Yet, in opposition to what was shown by others under distinct stress 

conditions, the lack of enkephalin favors, rather than impairs the adaptation 

to CMS conditions. Therefore, we emphasize the need to study the role of 

enkephalin under distinct stress conditions, as well as its role in several 

signaling pathways. 

In addition, we show several differences in the gene expression of the 

endogenous opioid, glucocorticoid and CRH systems, between WT and Penk 

KO mice, which may account to the differential phenotype between these 

animals to CMS. Therefore, contributing to the identification of gene 

expression profiles involved in the resilience and vulnerability to CMS-induced 

pathologies  



100 
 

 

 

7 Supplementary data 

7.1. Supplementary figure 1 

 

Supplementary figure 1 housing effects in the anxiety levels of WT and Penk KO mice tested 

in the O-maze test. Penk KO mice under group-housed conditions present an increase in the 

anxiety levels in the o-maze test (decrease time in the open areas of the maze), compared 

with wild type mice. Penk KO mice individual-housed for a period of two weeks do not show 

differences in the anxiety levels tested in the o-maze test, compared with WT mice. Data 

expressed as mean  S.E.M. ** p <0.01, using two-way ANOVA followed by Bonferroni test 

(data published at supplementary material at  Melo I. et al, 2014)233 . 
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