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Abstract

Systematic surveys of the extra-galactic sky have revealed the existence of large-
scale structures in the Universe: the galaxy distribution is organized in a complex
network of filaments surrounding underdense regions and crossing at density peaks
which host galaxy clusters. These structures are believed to form through grav-
itational instability starting from quantum density fluctuations in the primordial
Universe. The seeds for galaxy formation are imprinted as tiny temperature per-
turbations on the Cosmic Microwave Background (CMB), which provides us with
a snapshot of the Universe when it was just 380,000 years old. At late times, ob-
servers can measure the statistical properties of galaxies (e. g. spatial clustering),
as well as the light distribution of nearby objects in more detail.

Perhaps surprisingly – considering the huge dynamical range and complexity
of the Universe – recent years have witnessed the emergence of a cosmological
concordance model, dubbed ΛCDM. This six-parameter model is highly successful
in describing cosmological structure formation from the very early universe to the
current galaxy population. The ΛCDM model derives its name from the two
components that make up the majority of the cosmic energy density: Cold Dark
Matter (CDM), a species of elementary particles that dominates gravitational
structure formation but has so far eluded direct detection, and the cosmological
constant Λ, responsible for the observed accelerated expansion. The ΛCDM model
is the basis on which we try to address the following fundamental questions:

1. How can we accurately describe the growth of structures over the cosmologi-
cal time-scale of almost 14 billion years? How do we deal with the assumption
that structure formation is dominated by dark matter (which only interacts
gravitationally), while we generally observe galaxies via their electromagnetic
emission?

2. What is the origin of the initial perturbations? Which theoretical tools allow
us to gain insight into the physics of the primordial Universe?

3. Can we apply what we learned from the large-scale evolution of the density
field to our Galactic neighborhood? Does the formation history of the Milky
Way have implications for our cosmological model?

The theoretical foundation of cosmological structure formation is outlined in the
first two chapters of this thesis. After a description of the expanding, homogeneous
background space-time, we summarize in Chapter 2 how initial density perturba-
tions grow until they collapse to form bound structures, called dark matter halos.
This chapter contains an introduction to the concept of bias between the matter



density field and its observable tracers (e. g. galaxies). Finally, we discuss theoret-
ical predictions for the primordial Universe and how specific initial conditions can
manifest themselves in large-scale clustering statistics like the power spectrum.

During the last two decades, numerical simulations have become a powerful tool
to study astronomical objects on a large range of scales. They are used extensively
in all areas of astronomy and astrophysics, like the formation of single stars and
planets, analyzing the dynamics of star clusters, modeling hydrodynamical pro-
cesses in galaxies like our Milky Way, and last but not least studying the large-scale
structure of cosmological volumes. In Chapter 3 we describe the general method-
ology of cosmological N -body simulations, its strengths and limitations, and the
specific implementation used in this work, the gadget-2 code. The following
chapters rely heavily on results of these simulations, as they can be used to test
theoretical predictions or compare the ΛCDM model with observational data.

After these rather extensive introductory chapters – necessary due to the broad
scope of this thesis – Chapters 4 to 6 contain the results of three separate projects,
each related to one of the questions outlined above. In Chapter 4 we describe a
novel numerical method to test perturbative methods for computing the density
contrast of dark matter, and compare the result against full N -body simulations.
In addition, we test the validity of a popular bias model and find that it lacks the
accuracy required to fully exploit the statistical power of upcoming galaxy surveys.

Chapter 5 deals with local primordial non-Gaussianity (PNG), a specific type
of initial conditions for structure formation. While the most stringent constraints
on primordial non-Gaussianity currently come from the CMB, galaxy clustering
provides an independent validation of these results, and future large-scale structure
surveys are even predicted to surpass the CMB constraints. However, we show that
galaxy clustering suffers from specific parameter degeneracies which are not present
in the CMB. We caution against the commonly used simple model to measure PNG
parameters, and instead promote Bayesian model selection to asses the influence
of these degeneracies in the data.

Chapter 6 addresses the subject of near-field cosmology, i. e. the concept of
supplementing the constraints on the overall cosmological model with small-scale
information from the local Universe. In particular, this chapter deals with the dy-
namical properties of simulated subhalos around high-resolution Milky-Way sized
dark matter halos, representative of the population of dwarf galaxies around our
own Galaxy. We investigate the physical conditions needed to rapidly circularize
the orbits of infalling systems, possibly giving rise to peculiar stellar streams such
as the recently observed Monoceros overdensity.
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1 Introduction

1.1 ΛCDM – A brief description

Before delving into the theoretical aspects of cosmology we want to state a few
key concepts and observations that established the Lambda Cold Dark Matter
(ΛCDM) model as the standard model of cosmology over the past ∼ 20 years.

Notation and Units We denote 3-vectors in boldface (x), while 4-vectors and
other tensors are generally distinguished by having Greek indices. When using the
Einstein sum convention, Roman indices run from 1 to 3 and Greek indices run
from 0 to 3. In all derivations we will assume natural units, i. e. c = ~ = 1. Typical
cosmological units are 1 M⊙ ≈ 2 ·1030 kg (solar mass), 1 Mpc = 106pc ≈ 3.1 ·1022m
(Megaparsec) and 1 Gyr = 109 years (Gigayear). Mass and length units are also
often expressed in h−1 M⊙ or h−1 Mpc where h ∼ 0.7 parameterises our ignorance
of the local expansion rate (see Equation (1.7)). Our Fourier convention is

f̃(k) =
∫

d3x eikx f(x) ⇐⇒ f(x) =
∫ d3k

(2π)3
e−ikx f̃(k). (1.1)

A list of commonly used acronyms is provided at the end of the thesis.

Cosmological redshift Observations of nearby galaxies show that on average,
galaxies move away from us. This recession velocity is caused by the fact that the
Universe is expanding, and leads to a time dilation which changes the frequency of
the photons between emitter and observer. If the peculiar velocities of the objects
are negligible, the redshift is a distance indicator, and, because of the finite speed
of light, also a measure of the look-back time.

The Cosmological Principle On the largest scales (or at early times), the mass
distribution in the Universe is considered to be homogeneous and isotropic. Red-
shift surveys that measure the angular coordinates and distance of large numbers
of galaxies show that their distribution is isotropic on scales & 200 Mpc (Maddox
et al., 1996; Percival et al., 2001), and homogeneity follows from the assumption
that our position in the Universe is not special (the Copernican Principle). In
addition, the temperature of the CMB radiation, emitted at a time when the Uni-
verse was only 380.000 years old (Penzias & Wilson, 1965; Dicke et al., 1965), is
isotropic to within 1 part in 105 over the whole sky, reflecting the accuracy of the
Cosmological Principle at very early times.

1



1.2 Describing space-time with General Relativity 1 Introduction

Dark Matter (DM) The matter content of the Universe is dominated by dark
matter, a species of yet unknown elementary particles, which interact through
gravity but do not emit or absorb light (although some species may self-annihilate
into standard model particles, and eventually photons). Cold dark matter is non-
relativistic at the time when the CMB is released, while the terms warm and hot

dark matter refer to particles which are relativistic/ultra-relativistic at early times.
Therefore the CDM in ΛCDM stands for cold dark matter.

The existence of dark matter has been deduced indirectly from the rotation
curves of spiral galaxies (Sofue & Rubin, 2001), gravitational lensing (Schneider,
2006), the dynamics and x-ray temperature of galaxy clusters (Allen et al., 2011),
the galaxy correlation function (Eisenstein et al., 2005), and the amplitude of the
Cosmic Microwave Background fluctuations. These observations consistently show
that there is about 5 times as much dark matter as baryons1, and DM contributes
about 25% to the total energy budget of the Universe.

DM particles have so far eluded direct detection, apart from the hotly disputed
claim from the DAMA/LIBRA2 experiment (e. g. Bernabei et al., 2008), which
seems to be incompatible with several other experiments (Kopp et al., 2010). As
the allowed parameter range is rapidly shrinking (Baudis, 2012), alternative models
that predict deviations of gravity from General Relativity (GR) are becoming more
popular. However, so far none of these Modified Gravity models can collectively
explain the astronomical observations (Clifton et al., 2012).

Accelerated expansion and Dark Energy (DE) Not only is the Universe ex-
panding, but the expansion is currently accelerating. This is attributed to another
rather mysterious component called Dark Energy (DE). In ΛCDM, DE is expressed
by the cosmological constant Λ, while the term Dark Energy often refers to mod-
els with time-dependent energy density. So far, no indication of a deviation of
Λ from a constant has been found, but current constraints are still nowhere near
the percent (or even sub-percent) accuracy of other cosmological parameters (e. g.
Suzuki et al., 2012, and Table 2.1). While there were already hints for a non-zero
cosmological constant in the early 1990’s (Efstathiou et al., 1990), the definitive
proof came from SN observations (Riess et al., 1998; Perlmutter et al., 1999); a
discovery which was subsequently awarded with the Nobel Prize for Physics in
2011. Approximately 70% of the total energy budget of the Universe is found to
be in the form of dark energy (e. g. Planck Collaboration et al., 2013a).

1.2 Describing space-time with General Relativity

We start our description of the cosmos by considering the expanding background
that obeys the Cosmological Principle; perturbations will be added in Chapter

1In cosmology, the term “baryonic” matter encompasses the standard model particles: electrons,
protons and all higher elements. Neutrinos are usually treated separately, as they are standard
model particles but could also be considered a form of relativistic dark matter.

2DArk MAtter Large sodium Iodide Bulk for RAre processes
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1 Introduction 1.2 Describing space-time with General Relativity

2. For the sake of brevity, we will only collect the most important definitions and
results in this section. For detailed derivations and proofs we refer to e. g. Dodelson
(2003) or Weinberg (2008).

The first objective in this context is to define a suitable set of coordinates. For
a general metric gµν , the line element is given by

ds2 = −gµνdxµdxν , (1.2)

where repeated indices are summed over. We follow the usual convention that the
0 coordinate denotes time and our choice for the metric signature is {−, +, +, +}.
One can define a comoving observer, who always sees the Universe as homogeneous
and isotropic, by considering hyper-surfaces of constant time t and 3D spatial
coordinate x. This coordinate choice leads to the Friedmann-Robertson-Walker
(FRW) metric

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.3)

The spatial part reduces to spherical coordinates for k = 0, and k therefore de-
scribes the 3D curvature, which can be positive (k > 0), negative (k < 0) or
Euclidean (k = 0), and has units of length−2. The scale factor a(t) describes the
radial expansion (or contraction) of the Universe. Conventionally, a(t) is fixed to
be unity today: a(t0) ≡ 1. While the comoving observer follows the expansion of
the background, Equation (1.3) tells us that physical coordinates of an object are
time-dependent:

r(t) = a(t)x. (1.4)

By introducing a new radial coordinate χ, the metric can be rewritten as

ds2 = dt2 − a2(t)
[
dχ2 + f 2

k (χ)(dθ2 + sin2 θdφ2)
]

, (1.5)

where

fk(χ) =






sin (
√

kχ)/
√

k k > 0

χ k = 0

sinh (
√

−kχ)/
√

−k k < 0

. (1.6)

Independently of the exact expressions for a(t) and the value of k, we can derive
several quantities that follow from the FRW metric alone. The time evolution of
the scale factor can be expressed by the expansion rate of the Universe, also called
the Hubble parameter,

H(t) =
ȧ

a
, (1.7)

where the dot denotes a derivative with respect to t. The value of H(t) to-
day, H0, is called the Hubble constant, and it is often parameterised by H0 =
100 h km s−1Mpc−1 with h ∼ 0.7.

An important consequence of the expansion of the Universe is that photons are
redshifted due to time dilation. Light rays travel on null-geodesics of space-time,

3



1.2 Describing space-time with General Relativity 1 Introduction

which implies ds2 = 0 in Equation (1.3). For radial light rays (assuming without
loss of generality that dθ = dφ = 0), this leads to

dt = ±a(t) dχ, (1.8)

where the sign depends on the direction of the light ray (away from or towards the
observer). For a light ray emitted at t1 and reaching the observer at the coordinate
origin at t0, this can be integrated to yield the comoving radial separation:

χ =
∫ t0

t1

dt′

a(t′)
. (1.9)

Since χ is a comoving coordinate, which is independent of time, we immediately
see that a time interval at time t1 is related to time interval at t0 via

dt1

a(t1)
=

dt0

a(t0)
, (1.10)

and since a time interval is the inverse of the frequency we can define the redshift

z by

(1 + z) ≡ ν1

ν0

=
a(t0)
a(t1)

=
1

a(t1)
, (1.11)

where in the last step we have used a(t0) = 1. By definition, z = 0 today and
the sign of z determines whether we see photons with a redshift or a blueshift. If
the emission frequency of the photon can be determined (i. e. when the physical
process is known), the redshift can also be used as a distance indicator.

The fact that all but a few nearby galaxies appear to be redshifted tells us that
the scale factor was smaller at earlier times. The outliers are due to an additional
Doppler shift from the galaxy’s peculiar velocity (of the order of a few hundred
km/s), which can be larger than the cosmological redshift for nearby objects. For
an object with velocity u(x, t) ≡ ṙ(t), the peculiar velocity v(x, t) is therefore
defined by

u(x, t) = ȧx + v(x, t), (1.12)

and the first term is the recession velocity due to expansion. For nearby sources,
we recover the famous Hubble law vrec = H0|r|.

Equation (1.9) also allows us to define the comoving particle horizon, i. e. the
maximum distance that light can travel in a time interval between ti and t:

χh =
∫ t

ti

dt

a(t)
=
∫ a

ai

d ln a

aH(a)
(1.13)

If we choose the initial time ti → 0, dh = a(t) χh gives us the maximum physical
separation of two regions in space that have been in causal contact between the
Big Bang and time t. As we will explain in section 2.3, this causality condition
is apparently violated by the uniformity of the Cosmic Microwave Background. A
solution for this Horizon problem is provided by the theory of Inflation.

Apart from the radial separation, we are also interested in the distance between

4



1 Introduction 1.3 The energy content of the Universe

two points measured perpendicular to the line of sight, e. g. for two sources at
the same redshift (or the diameter of an extended source), given an angle dθ on
the sky. The length of this line element ds can be obtained from Equation (1.5)
by setting dt = dχ = dφ = 0, and leads to the definition the angular diameter
distance

DA =
ds

dθ
= a(t)fk(χ). (1.14)

Although it is not explicitly used in this thesis, we will mention another distance
measure for completeness, the luminosity distance. Since the observed flux F of
a source decreases with the square of the distance to the observer, we can define
the luminosity distance as

DL =

√
L

4πF
(1.15)

where L is the total luminosity over all frequencies. The luminosity distance is
employed for example when using Supernovae of Type Ia to constrain the expansion
history; their intrinsic brightness is related to the decay time of their light emission
(Branch & Tammann, 1992).

The distance estimates are related by the distance-duality relation

DL = (1 + z)2DA = (1 + z)fk(χ), (1.16)

which holds independently on the curvature k. Testing the distance-duality re-
lation by combining different probes provides constraints on the metric and even
exotic physics like the nature of dark energy (Bassett & Kunz, 2004).

1.3 The energy content of the Universe

The expressions derived in the previous section follow directly from the FRW
metric without any assumptions on the exact form of scale factor or the value of
the spatial curvature. Enter General Relativity (GR), which relates the metric gµν

to the energy content of the Universe – parameterised by the energy-momentum
tensor Tµν – in the Einstein Field Equations (EFE)

Rµν − 1
2

gµνR = −8πGTµν − Λgµν , (1.17)

where the Ricci tensor Rµν and Ricci scalar R are uniquely determined by first
and second derivatives of the metric, and G is the gravitational constant. The
cosmological constant Λ was originally introduced by Einstein to allow for a static
Universe, but is used today to explain the observed accelerated expansion (see
below). Note that the signs on the right-hand side of Equation (1.17) depend on
the sign conventions used in the derivation (e. g. Misner et al., 1973).

Applying the Cosmological Principle, it can be shown that Tµν has to be the
energy-momentum tensor of a perfect fluid3, T = diag(ρ, p, p, p), where the mass

3A perfect fluid is characterised by its rest frame mass density and isotropic pressure; shear

5



1.3 The energy content of the Universe 1 Introduction

density ρ and the pressure p are related via an equation of state (EoS)

p = wρ. (1.18)

Inserting the metric and T into Equation (1.17) leads (after some algebra) to the
Friedmann equations (FE)

(
ȧ

a

)2

=
8πG

3
ρ − k

a2
+

Λ
3

(1.19)

ä

a
= −4πG

3
(ρ + 3p) +

Λ
3

(1.20)

which describe the expansion rate and the acceleration as functions of the density,
pressure and spatial curvature. The two Friedmann equations can be combined to
yield the adiabatic equation4

d(a3ρ)
dt

= −p
da3

dt
, (1.21)

which is valid for each fluid component individually if there is no exchange of
energy. Assuming a constant EoS parameter w, the adiabatic equation leads to

ρ(a) = a−3(w+1)ρ0, (1.22)

where ρ0 is the density today, at a(t0) = 1.

The time evolution is therefore related to the EoS parameter of the fluid. For
non-relativistic matter (CDM, baryons) w ≈ 0, while for relativistic particles (pho-
tons, neutrinos) w = 1/3. The cosmological constant Λ can also be included by
defining ρΛ = (8πG)−1Λ, and ρΛ = const. then requires wΛ = −1. This leads to
the peculiar property pΛ = −ρΛ, and further emphasizes the significance of the
observed accelerated expansion at late times: The acceleration ä depends on ρ+3p

which is positive for ordinary matter, but negative for a dominating cosmological
constant Λ, or any other species with w < −1/3. However, this phenomenologi-
cal description does not offer much in the way of explaining the physics behind a
negative EoS parameter.

Assuming a non-interacting fluid with time-independent w for each component,
the total energy density and pressure can then be written as

ρ(a) = ρm(a) + ρr(a) + ρΛ, p(a) =
ρr(a)

3
− ρΛ, (1.23)

where we have used subscripts to distinguish “matter” (non-relativistic particles)
and “radiation” (relativistic particles).

stress and viscosity vanishes. This property is reminiscent of the definition of the comoving
observer, and is therefore a sensible choice. A more formal proof can be found e. g. in Weinberg
(2008).

4Any two equations from the set (1.19)-(1.21) can be used to derive the third, and Equation
(1.21) is also a direct consequence of local energy-momentum conservation in the EFE.

6



1 Introduction 1.4 Thermal history

The final ingredient for our model is the curvature parameter k. We first define
the critical density ρcrit(a) = 3H2(a)/(8πG), which is the total energy density for
a flat Universe (k = 0). The density parameters are then given by normalizing ρi

with ρcrit,

Ωm(a) =
ρm(a)
ρcrit(a)

, Ωr(a) =
ρr(a)

ρcrit(a)
, ΩΛ(a) =

ρΛ

ρcrit(a)
, (1.24)

Ωtot(a) = Ωm(a) + Ωr(a) + ΩΛ(a) = 1 + k/(aH)2 (1.25)

where the last equality on the second line follows from Equation (1.19). A universe
with k > 0 has a total density higher than ρcrit, while a universe with negative
curvature has a total density less than ρcrit. The curvature can thus be determined
by the deviation of Ωtot from unity. Note that when the density parameters are
measured from observations, their value is generally given at z = 0, which is
denoted by Ωi,0 or simply Ωi without an explicit time-dependence. In that case,
Equation (1.19) can be rewritten as

H2(a) = H2
0

[
Ωr

a4
+

Ωm

a3
+

(1 − Ωtot)
a2

+ ΩΛ

]
, (1.26)

where the time-dependence of the individual components follows directly from
Equation (1.22). In general, H(a) contains contributions from all components
of the fluid and the solution for a(t) has to be found numerically. However, the
different dependence on a(t) means we can obtain approximate analytical solutions
for certain epochs where a single component dominates the energy density. For
a flat Universe dominated by Ωr, it is straightforward to show that a(t) ∼ t1/2,
whereas matter domination is characterised by a(t) ∼ t2/3.

Current constraints on the density parameters at z = 0 are Ωm ∼ 0.3 (baryons
and dark matter), ΩΛ ∼ 0.7, Ωr < 10−4 and |1 − Ωtot| . O(10−3), whereas the
Hubble constant is H0 ∼ 70 km s−1 Mpc−1. For a more complete list of cos-
mological parameters (including error bars) see Table 2.1 at the end of Chapter
2.

1.4 Thermal history

In this section, we will give a brief description of the thermal history of our Uni-
verse. As we go back in time (a → 0), the Universe becomes hotter and denser, and
the interaction rates increase as well. This implies that at some point all particle
species were in thermal equilibrium, and thus the most important quantity in the
following discussion will be the temperature T . Since E = kBT , we can express
the temperature in eV, where 1eV ∼ 1.2 · 104 K. With our choice of c = 1, mass
and energy are equivalent as well and we can use temperature, energy and mass
interchangeably.

We will start our discussion at energy scales of a few hundred MeV, where
baryons, photons and neutrinos are tightly coupled, and the temperature of the
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1.4 Thermal history 1 Introduction

Figure 1.1: Evolution of the cosmological scale factor as a function of time, redshift,
and the corresponding energy scale. The different epochs and observational techniques
are explained in detail in the text. [Figure taken from Baumann (2009).]

Universe is thus identical to that of the plasma, which implies T ∼ (1 + z).5 Note
that we do not know a priori if the physical laws that apply on Earth are applicable
also in the early Universe, since current particle physics experiments are only able
to probe physics up to energy scales of a few TeV. However, this also means that
the early Universe is a test bed for new physics on energy scales that are out of
reach of current (and even future) particle colliders. A qualitative illustration of
the different epochs along with a selection of observational probes used to study
them is shown in Figure 1.1 (from Baumann 2009), and will be described in the
following.

The early Universe The initial conditions of the Universe are a highly speculative
phase that is often based on effective theories that are able to reproduce the late-
time amplitude and evolution of fluctuations. An important ingredient is a period
of early exponential expansion, called Inflation (section 2.3), caused by a scalar
field that dominates the energy density of the Universe. It is very difficult to
put direct observational constraints on the physics of the early Universe as no
photons can from before the epoch of recombination (see below) can reach us.
Some models of Inflation predict an observable background of gravitational waves,
but the sensitivity of current instruments is still too low to observe it. At the end
of the inflationary phase the scalar field decays and its energy is used to produce all
known particles species (“reheating”), and the Universe enters into the radiation
domination phase.

5This follows immediately for photons from the redshift and Eγ ∼ kBT , and can be extended to
the tightly coupled baryon-photon plasma because the ratio of the number density of baryons
to photons is η ∼ 10−8.
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Radiation domination After reheating, the energy contents of the Universe can
be described by a hot plasma. Baryons and radiation (photons and neutrinos)
are tightly coupled to each other and are thus in thermal equilibrium. The scale
factor grows as a(t) ∼ t1/2, so the expansion is no longer accelerated. Initial density
fluctuations begin to grow under the effects of gravity, but the photon pressure in
the plasma temporarily prevents the condensation of baryonic overdensities. As the
temperature drops, interaction rates between particles decrease and begin to slowly
move away form thermodynamical equilibrium. The neutrinos are the first to
decouple from the plasma since they only interact via the weak force. In principle,
this neutrino background should present a homogeneous signal comparable to the
CMB (with slightly lower temperature), but neutrinos are of course notoriously
difficult to detect.

Big Bang Nucleosynthesis (BBN) Once the temperature drops to a few MeV,
higher elements can form out of protons and neutrons. This is limited to Helium
isotopes and traces of Lithium and Beryllium because of the lack of tightly bound
isotopes with mass numbers between 5 and 8, and the large number of dissoci-
ating high-energy photons. Since three-body interactions are rare, the formation
of higher elements is strongly suppressed until the first generations of stars pro-
vide more favourable conditions for their production. Using standard interaction
rates and the expansion predicted by the Friedmann equations, BBN predicts the
primordial abundance of light elements in excellent agreement with observations
(e. g. Alpher et al., 1948; Walker et al., 1991; Spergel et al., 2007).

Matter domination At around z ∼ 4800 the Universe enters into the matter
dominated phase. A flat Universe dominated by cold dark matter and without a
cosmological constant, i. e. Ωtot = Ωm = 1, is called an Einstein-deSitter (EdS)
Universe, and the expansion is described by a(t) ∼ t2/3. Even after the paradigm
shift to ΛCDM, the EdS model is still often used to simplify analytical calculations.
Recombination and reionization (see below), and most of the actual structure
growth happen during this epoch, which eventually ends when the cosmological
constant Λ begins to dominate around z = 0.6.

Recombination and the CMB Around z ∼ 1100, free electrons and protons
can combine to neutral hydrogen, and the photons are released as a homogeneous
background radiation, the Cosmic Microwave Background. After recombination,
the baryons can follow gravity and fall into the potential wells created by the dark
matter which was not prevented from collapsing by the pressure of the photons.
However, there will also be a small but significant influence of the baryons on the
dark matter distribution, which manifests itself in the so-called Baryonic Acoustic
Oscillations (BAO) imprinted on the CMB and on galaxy clustering.

The recombination processes are so efficient that the Universe is opaque to
high-energy photons for a while, because their mean-free path is very small and
their temperature keeps decreasing through the expansion. This epoch is therefore
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called the “dark ages”, because it can not be probed by electromagnetic radiation.
Perturbations continue to grow and in the highest overdensities, the clumps of
neutral hydrogen become so dense that they can ignite fusion processes, leading
to the first generation of stars. The light from the CMB is also polarized through
anisotropic Thompson scattering during its propagation through the large-scale
structure. This polarisation contains additional information about structure for-
mation in the early Universe and will be probed in great detail by the Planck

satellite.

Reionization and galaxy formation Once the first stars and galaxies have formed,
their radiation can re-ionize the surrounding neutral medium. This means that
from this point on the Universe will become transparent to photons again. On
small scales, this is expected to happen in patches around the strongest ionizing
sources6, but macroscopically it is still very difficult to determine the exact phys-
ical processes and even the starting and end point of this epoch. Apart from the
strongly ionizing radiation from quasars, dwarf galaxies may also play a significant
role – even though their luminosity is much lower – because they are much more
numerous (Stark et al., 2007). The epoch of reionization is still poorly constrained,
but current estimates place it between z = 12 and z = 6 (Stark et al., 2010, and ref-
erences therein). Since the Universe at those times still consists mainly of neutral
hydrogen, the 21-cm spin-flip transition can be used to study this phase.

Late-time accelerated expansion The final transition occurs at z ∼ 0.6, about
5.6 Gyrs ago. The Universe turns from decelerating into accelerating as it be-
comes dominated by Dark Energy/the cosmological constant Λ. Several ways of
probing the late-time evolution of structures exist: as mentioned above, Super-
novae Type Ia can be used to derive the expansion history because their intrinsic
luminosity is known. The statistics of the clustering of galaxies in the large-scale
structure (LSS). The Lyman-α emission of quasars (QSOs) can be seen to high
redshifts because these objects are intrinsically very luminous. In addition, gravi-
tational deflection of photons (Gravitational Lensing, see e. g. Schneider 2006) by
the intervening matter can be used to constrain the statistics of the density field
directly.

6Quasars or quasi-stellar objects (QSOs) are galaxies with a supermassive black hole in their
center which dumps a lot of energy into the surrounding medium when it is fed by mass
accretion.
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2 Structure formation

A universe described by the Friedmann-Robertson-Walker (FRW) metric is a
rather boring place. Since the matter distribution is homogeneous and isotropic
by construction, it would simply remain in this equilibrium state forever – apart
from expansion and contraction. In order to form any of the structures we see
today (stars, galaxies, . . . ), the primordial universe has to allow for some sort of
perturbations about the background given by the FRW metric. Note that in this
chapter we will often make qualitative comparisons to the results of numerical
simulations, which are formally introduced in Chapter 3.

The earliest picture we have of the inhomogeneous Universe is the Cosmic Mi-
crowave Background (CMB), showing relative temperature differences of the order
10−5. Temperature perturbations correspond to density perturbations, and ini-
tially overdense regions will attract more matter than regions with less than aver-
age density (section 2.1). These overdense regions will eventually stop expanding
with the background and collapse into bound structures, called dark matter halos

(section 2.2). These halos serve as condensation points for galaxy formation by
providing the potential wells into which baryons can fall after decoupling. The
spatial clustering as well as the mass function1 of halos contain a wealth of cos-
mological information. However, parameter constraints from large-scale structure
are severely hampered by the existence of biasing (section 2.2.1).

The origin and amplitude of the initial perturbations is a puzzle by itself, be-
cause at early times we have to rely on effective theories to make predictions that
are in agreement with the properties of the CMB. In section 2.3 we will discuss
how the theory of Inflation can be used to predict the amplitude of the initial
density perturbations as well solve several apparent fine-tuning problems in the
early Universe. Most models of Inflation depend on applying quantum field theory
to one or more scalar fields, which had been a purely theoretical concept until the
recent discovery of the Higgs Boson (ATLAS Collaboration et al., 2012), therefore
providing an intimate connection between the early Universe and (extensions of)
the standard model of particle physics.

In section 2.4 we introduce the concept of Primordial non-Gaussianity (PNG),
i. e. the deviation of the distribution function of the perturbations from a Gaus-
sian. Any detection of PNG is a direct probe for inflationary physics, as well as
an opportunity to find new physics. While current constraints on PNG comes
primarily from the CMB, future large-scale-structure (LSS) observations will be
able to obtain similar precision by taking advantage of a scale-dependence in the
bias parameter which is absent in the Gaussian case.

1The number density of objects in a given mass range, see section 2.1.4
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2.1 Describing structure growth

We have described the energy content of the Universe by a perfect fluid consisting
of dark matter, “baryons” like electrons and protons, and “radiation” in the form
of neutrinos and photons. The most general equation to describe a (possibly)
relativistic fluid with phase-space distribution function f(x, v, t) is the collisional
Boltzmann Equation (BE), which in its most basic form looks quite innocent,

df

dt
= C [f ] , (2.1)

and simply enforces particle conservation in phase-space. Here, v is the peculiar
velocity defined in Equation (1.12), and the term on the right-hand side of Equation
(2.1) describes particle collisions, or scattering processes. However, describing the
scattering processes and including superhorizon2 effects using GR is highly non-
trivial. For a full treatment we refer to e. g. Ma & Bertschinger (1995) or Dodelson
(2003).

Here, we are mainly interested in the growth of matter perturbations which
means we can focus on cold dark matter (CDM). For the case of a fluid dominated
by CDM, we can make several simplifying assumptions which also provide the basis
of Standard Perturbation Theory used in Chapter 4. CDM is collisionless and thus
the right-hand side of Equation (2.1) vanishes. Secondly, on scales smaller than
the horizon, we can apply the weak-field limit and describe the dark matter fluid
with Newtonian dynamics only. Solutions to the BE can then be derived by taking
moments of the peculiar velocity, i. e.

∫
d3v vnf(x, v, t) with n = 0, 1, 2, and so on.

Furthermore, we only consider the growth of fluctuations during the matter
dominated epoch, which allows us to use the Friedman equation for a pure Einstein-
deSitter (EdS) Universe thereby simplifying the calculations. This assumption is
justified because it can be shown that any subhorizon growth is dominated by that
during the matter dominated epoch. Finally, we consider the dark matter fluid in
the single-stream approximation (i. e. neglecting velocity dispersion), which implies
that any moments with n > 2 vanish. Even after all these simplifying assumptions,
the resulting analytic description is quite accurate as long as the perturbations stay
small. Other effects can be included in the transfer function (section 2.1.2) which
is usually calculated numerically.

In addition to the peculiar velocity, it is useful to define the density contrast

δ(x, t) ≡ ρ(x, t) − ρ̄(t)
ρ̄(t)

, (2.2)

where ρ̄(t) is the time-dependent mean density of the Universe. Note that the fore-
going equations are already expressed in comoving coordinates. The 3 equations
describing a Newtonian fluid in terms of δ(x, t), v(x, t) and the scale factor a(t)

2A perturbation is said to be "inside the horizon" at time t if its wavelength in Fourier space is
k ≫ aH . Conversely, k ≪ aH implies superhorizon perturbations.
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are the Continuity Equation (describing mass conservation)

∂δ(x, t)
∂t

+
1
a

∇x · [(1 + δ(x, t)) · v(x, t)] = 0, (2.3)

the Euler Equation (describing momentum conservation)

∂v(x, t)
∂t

+
ȧ

a
v(x, t) +

1
a

[v(x, t) · ∇x]v(x, t) = −1
a

∇xΦ(x, t), (2.4)

and the Poisson equation

∇2
xΦ(x, t) =

3H2
0Ωm

2a
δ(x, t), (2.5)

which relates the gravitational potential and the density contrast in an expanding
Universe. Since these equations form a set of non-linear, coupled partial differen-
tial equations, a general analytical solution does not exist. Numerical solutions
are considered in Chapter 3, but it is also possible to find approximate analytical
solutions via perturbation theory. Finding the linear solution is quite straightfor-
ward and will be discussed briefly in the next section, while Chapter 4 deals with
perturbation theory up to third order.

2.1.1 Linear theory

If we only consider small perturbations in the density contrast, the peculiar velocity
and the gravitational potential: δ ≪ 1, |v| ≪ 1 and Φ ≪ 1, we can linearise
Equations (2.3)-(2.5) in these quantities. Neglecting higher-order terms leads to

∂δ(x, t)
∂t

+
1

a(t)
∇x · v(x, t) = 0, (2.6)

and
∂v(x, t)

∂t
+ H(t)v(x, t) = − 1

a(t)
∇xΦ(x, t), (2.7)

while the Poisson equation is already linear in δ, |v| and Φ.
We can now combine these equations by taking the time derivative of Equa-
tion (2.6), the divergence of Equation (2.7) and inserting the Poisson Equation
to obtain

∂2δ(x, t)
∂t2

+ 2H(t)
∂δ(x, t)

∂t
− 3H2

0 Ωm

2a3(t)
δ(x, t) = 0. (2.8)

This equation does not explicitly contain x or derivatives of x. Therefore the
solution factorises and can be written as a product of functions of x and t:

δ(x, t) = D+(t)∆+(x) + D−(t)∆−(x), (2.9)

where D+ and D− are the two independent solutions of the time dependent part
of Equation (2.8). D+ describes the time evolution of growing perturbations and
is thus called the linear growth-factor, while the second term describes a solution
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that decays with time, which we will therefore neglect.

One can show by insertion that H(t) is a solution to Equation (2.9) (albeit the
decaying part, and only for a time-independent EoS parameter), but it can be used
to construct the growing solution (Heath, 1977). Assuming a constant wΛ for the
vacuum energy, D(a) ≡ D+(a) is given by:

D(a) ∝ H(a)
∫ a

0

da′

[Ωm/a′ + ΩΛa′2 + Ωr/a′2 + (Ωtot − 1)]3/2
, (2.10)

which needs to be evaluated numerically except in a few limiting cases. For ex-
ample, in an Einstein-deSitter (EdS) Universe, where Ωtot = Ωm = 1, we have
D(t) ∼ a(t) and structures simply grow proportional to the scale factor. For a
ΛCDM Universe, D(t) instead grows slower than a(t) at late times, leading to a
suppression the density contrast relative to the EdS case.

A note of caution: Two different conventions can be used to determine the
constant of proportionality in Equation (2.10), either by defining D ≡ 1 today
(convenient when dealing mostly with event at z = 0), or by defining D ≡ a during
matter domination (sensible because we know the amplitude of the fluctuations at
that time from the CMB). When using the latter definition, structure formation
in a ΛCDM Universe is suppressed by a factor of ∼ 1.3 at z = 0 with respect
to the EdS solution. For consistency with the existing literature we are forced to
use both normalizations in this thesis: the former in Chapter 4 and the latter in
Chapter 5.

2.1.2 Transfer function

We need to keep in mind the assumptions that we made in order to obtain the
solution for D(t): we have only considered matter perturbations inside the horizon
during the epoch of matter domination. This means that the “initial” density
fluctuation ∆+ in Equation (2.9) is not equivalent to the actual primordial density
perturbations that are generated during Inflation (section 2.3). Finding out what
happens to perturbations e. g. on superhorizon scales or during the earlier epoch
of radiation domination unfortunately does require extended calculations with the
Boltzmann Equation. While some parts can be done analytically, the final steps
generally involve numerical integration, and the results depend on the cosmological
parameters and the detailed physical properties of the components (e. g. “hot”
vs. “cold” dark matter, or the small but important influence of baryons on dark
matter).

The main result from the full treatment for matter perturbations is the following
(e. g. Dodelson, 2003): on superhorizon scales, perturbations are always allowed to
grow, both during radiation and matter domination. However, on scales smaller
than the horizon, matter perturbations suffer suppressed growth during radiation
domination. This means that a perturbation which enters the horizon early, during
radiation domination, will be suppressed at late times with respect to a matter
perturbation that entered the horizon only during matter domination. The dif-
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ference in growth can be expressed through the transfer function T (k), defined
by

δ̃(k, z0)

δ̃(k, zi)
= T (k)

δ̃(ks, z0)

δ̃(ks, zi)
. (2.11)

The transfer function describes the growth of a density perturbation on scale k

today, δ̃(k, z0) relative to the growth of a perturbation that never suffered from
suppressed growth during radiation domination δ̃(ks ≪ k, z0), normalized with
respect to the initial density perturbations δ̃i(k) and δ̃i(ks).

By definition, T (k) → 1 on the largest scales, but the small scale behaviour
depends sensitively on the exact nature of the DM particles. For CDM, T (k) ∼
ln (k)/k2 on small scales, while the free streaming of warm or hot dark matter is
able to erase structures for large k, which translates into an exponential cutoff
for T (k). Approximate fitting functions were provided for example by Bardeen
et al. (1986) and Eisenstein & Hu (1998), but higher accuracy can be obtained
using optimized numerical algorithms like CAMB (Code for Anisotropies in the
Microwave Background, Lewis et al. 2000).

2.1.3 Statistics of spatial clustering

As we will discuss in more detail in section 2.3, the theory of Inflation predicts that
the perturbations in the primordial density field are sourced by quantum fluctua-
tions which are blown up to classical scales by a period of exponential expansion
in the very early Universe. This means that we merely observe a realisation of
a random field with certain statistical properties, which can be expressed by a
(formally infinite) series of moments. In the case of the underlying density field
δ(x, t), we already know from the definition that the first moment, the ensemble
average 〈δ(x, t)〉 = 0 at any time t.

We can also consider the spatial clustering in Fourier space, which leads to the
definition of the power spectrum P (k) as the connected part of the second moment:

〈δ̃(k1)δ̃(k2)〉c = (2π)3δD(k − k1 − k2)P (k), (2.12)

where the fact that P (k) only depends on the modulus of k is due to the assumed
isotropy, and the Dirac delta function δD ensures the translation invariance re-
quired by homogeneity. Defined in this way, the power spectrum is simply the
Fourier transform of the 2-point correlation function, which describes the excess
clustering with respect to a random field generated by a Poisson process (Peebles,
1980). The connected, or irreducible part is defined by subtracting any lower order
contribution:

〈δ̃(k1)δ̃(k2)〉c = 〈δ̃(k1)δ̃(k2)〉 − 〈δ̃(k1)〉〈δ̃(k2)〉, (2.13)

so in the case of a zero-mean field 〈δ1δ2〉c = 〈δ1δ2〉. The normalisation of P (k) is
often expressed through the variance of the power spectrum calculated from linear
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theory, Plin(k, z),

σ2(R, z) =
∫ d3k

(2π)3
Plin(k, z)|W (R, k)|2, (2.14)

where W (k, R) is the Fourier transform of the filter function used to smooth the
density field on scale R.3 For historical reasons, a common choice is to normalise
the power spectrum by σ8 ≡ σ(R = 8 h−1 Mpc, z = 0) ∼ 0.8.

Analogously, we can define the bispectrum via the connected part of the 3-point
correlator:

〈δ̃(k1)δ̃(k2)δ̃(k3)〉c = (2π)3δD(k1 + k2 + k3)B(k1, k2, k3). (2.15)

In this case, the Dirac delta function implies that only closed triangle configura-
tions contribute to the signal.

In general, an infinite number of moments is required to describe the density
field. In the case of a Gaussian random field, however, all the information is con-
tained in the 2-point function. Higher order connected moments either vanish
(for n odd), or can be written as products of the power spectrum using Wick’s
theorem. The temperature fluctuations in the CMB tell us that the primordial
Universe is indeed very nearly Gaussian (e. g. Planck Collaboration et al., 2013b),
which is also predicted by the simplest models of Inflation (section 2.3). How-
ever, even a small deviation from Gaussianity in the initial conditions, so-called
primordial non-Gaussianity (PNG) would constitute a fundamental discovery. We
will return to this topic in section 2.4 and Chapter 5. Additionally, non-linear
structure formation introduces non-Gaussian features at late times by mixing dif-
ferent k-modes (Fry, 1984). While the amplitude of this gravitationally induced
bispectrum is generally much higher than that expected from PNG, their differ-
ent scale-dependence can be used to disentangle the primordial contribution by
considering only specific triangle configurations.

2.1.4 Non-linear structure formation

Linear structure formation is only valid if the density contrast is small, which
applies to early times, or sufficiently smoothed large scales modes. It is therefore
desirable to develop analytical techniques that extend the validity of linear theory
towards smaller scales. The full non-linear evolution of Equations (2.3) - (2.5) may
only be followed using numerical simulations (Chapter 3). Figure 2.1 shows the
matter power spectrum at z = 0 from linear theory and the non-linear prediction
using a fit to simulations (Smith et al., 2003). While both predictions agree well
on large scales, the small-scale clustering is strongly enhanced in the non-linear
case. Why not always use a fitting function instead of trying to find analytical
descriptions? Unfortunately, it is difficult to predict how accurate such a fit is

3Assuming ergodicity and averaging over a large enough region, ensemble and spatial average
are equivalent.
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Figure 2.1: Matter power spectrum at z = 0 calculated from linear theory, and a non-
linear prediction based on fits to numerical simulations (Smith et al., 2003). On large
scales (small k), the power spectrum is essentially “primordial” and thus proportional
to k (see section 2.3), while the small-scale behavior is dictated by the transfer function,
so Plin(k) ∼ k−3.

when cosmological parameters used in the simulation are changed, and Running
simulations for every possible parameter combinations is prohibitively expensive
in terms of computing time.

In this thesis, we will focus on Standard Perturbation Theory (SPT) which is
probably the most widely used extension to linear theory (see e. g. the review by
Bernardeau et al. 2002). The successes and failures of SPT will be discussed in
detail in Chapter 4, where we additionally show a new way of testing its accuracy
against numerical simulations. Here we just give a brief description of the basic
idea, which is to expand the density contrast in a series of higher-order terms, which
are related to the linear solution by convolving δlin with a set of kernel functions.
As shown in Appendix A, these kernels can be calculated recursively from the
Euler and Continuity Equation. SPT can extend the validity of linear theory to
“mildly non-linear scales” (k . 0.5 h Mpc−1), but suffers from convergence issues
especially at late times. Other more complicated theories are able to improve
the small-scale behavior using techniques like resummation, renormalization, path
integrals, or by including additional short-range terms in the equations of motion
(Carlson et al. 2009, Carrasco et al. 2013; and references therein).
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2.2 Dark matter halos

Eventually, gravitational collapse leads to the formation of bound structures that
decouple from the Hubble expansion; these objects are called dark matter halos.

A simple analytical model to describe halo formation is the spherical collapse
model (Peebles, 1967; Gunn & Gott, 1972). Consider a spherical region which
initially grows with the expanding universe. If the region was initially overdense,
it will begin to collapse under its own gravity, provided that its density contrast
exceeds a critical threshold value. The spherical collapse model predicts that
regions with an initial overdensity (∆ρ/ρ̄)i collapse into objects with final density
(∆ρ/ρ̄)f ∼ 200, after the Universe has expanded by a factor af /ai ∼ 1.68 (∆ρ/ρ̄)i.
While these values are derived assuming an EdS Universe (Ωm = Ωtot = 1), they
are still reasonably valid for ΛCDM as well. During the collapse, the halo will
eventually reach an equilibrium state through violent relaxation. Note that energy
conservation dictates that the halo will stop collapsing at a minimum radius, called
the virial radius, which is about 1/2 of the maximum radius before collapse.

The spherical collapse model thus relates the density contrast to the epoch
of collapse, and this can be used to calculate the fraction of mass in collapsed
objects at a certain time t, based on a given probability distribution for the density
field (Press & Schechter, 1974). This probability can be transformed into a halo
mass function, i. e. the mean number density of halos in a given mass interval.
Independently on the exact values of the cosmological parameters (as long as
the dark matter is “cold”, Bhattacharya et al. 2011), the mass function can be
parameterised as

dn̄h

dM
(M, z) = f(σ)

ρ̄m

M

d ln σ−1

dM
, (2.16)

where σ = σ(M, z) is the root mean square of the linear density field on mass scale
M , e. g. M = 4πρ̄mR3/3 for a spherical top hat filter. The multiplicity function
f(σ) can either be predicted by theory or by fitting the results of a simulation
(reaching an accuracy of < 5%, Tinker et al. 2008). The result from Press &
Schechter (1974) is

f(σ) =

√
2
π

δc

σ
exp

(
−δ2

c

2σ2

)
, (2.17)

where δc ∼ 1.68 is the density threshold from the spherical collapse model.

The simple Press-Schechter model is in reasonable agreement with numerical
simulations, but overpredicts (underpredicts) the abundance of low-mass (high-
mass) halos. Theoretical extensions include e. g. treating the crossing of the density
threshold as a random walk (Bond et al., 1991; Lacey & Cole, 1993), considering
an ellipsoidal collapse (Sheth et al., 2001), or allowing for non-Gaussian initial
conditions (Maggiore & Riotto, 2010). Popular fitting functions from simulations
include those by Sheth & Tormen (1999), Jenkins et al. (2001), Tinker et al. (2008)
and Pillepich et al. (2010).
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2 Structure formation 2.2 Dark matter halos

Figure 2.2: Left: Illustration of the biasing effect. Shown in blue is the dark mat-
ter distribution from a numerical simulation (2D projection of a 3D slice of thickness
10 h−1 Mpc), while dark matter halos above a certain mass are shown as red points. The
correlation between matter overdensity and the number of dark matter halos is clearly
non-trivial. Right: Galaxy power spectra measured for two different populations (points
with errorbars), while lines show fits to the predicted matter power spectrum when bi-
asing is taken into account (solid: linear theory, dashed: including phenomenological
non-linear corrections). [Right panel taken from Tegmark et al. (2006).]

2.2.1 Halo and galaxy bias

Dark matter overdensities can already grow prior to recombination while the
baryons are still coupled to the photons. After recombination, the baryonic compo-
nents will eventually fall into the dark matter potential wells and galaxy formation
will be triggered inside halos. In the hierarchical structure formation scenario, col-
lapse happens on small scales first, and larger structures like groups and clusters
form through the merging of smaller objects. Since dark matter halos are the
result of collapsing overdensities, the spatial clustering of halos should be related
to the spatial clustering of the matter density field. This relationship is referred
to as biasing, and halos are called biased tracers of the dark matter field.

However, most observations will actually measure the photons emitted by the
baryonic component (stars, galaxies, etc.), and one large dark matter halo may
contain several galaxies. A distinction has thus to be made between halo bias and
galaxy bias, and we will concentrate on halo bias because it is more straightforward
to deal with analytically and in the context of DM simulations. Given a model of
halo bias, the effect of galaxy formation can for example be included by additional
models of the halo occupation distribution (e. g. Kauffmann et al., 1997; Benson
et al., 2000; Kravtsov et al., 2004, and references therein).

Examples of the effects of biasing are illustrated in Figure 2.2. The left panel
shows the matter field of a dark matter-only numerical simulation4 (blue dots) and

4For details on numerical simulations of structure formation and halo finding see Chapter 3.
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2.2 Dark matter halos 2 Structure formation

the position of collapsed halos above a certain mass threshold in the same volume
(red points). As expected, the number of halos is higher in overdense regions at
the intersection of filaments, and the overall structure of the dark matter field
is traced by collapsed objects. However, it is obvious that only observing the
point distribution of halos leads to an incomplete picture of the density field,
especially inside voids (underdense regions). The right panel shows the power
spectrum measured for two different galaxy populations in the Sloan Digital Sky
Survey (points with error bars, Tegmark et al., 2006). Note that the different lines
represent fits to the data using the matter power spectrum from linear theory
(solid), and including non-linear corrections to both the power spectrum and bias
model on small scales (dashed, Cole et al. 2005). One sample includes only red
galaxies with high luminosities (LRG=Luminous Red Galaxies), which are often
found inside galaxy clusters, while the “Main” sample consists of a mix of galaxies.
These examples illustrate that bias can depend on mass, redshift, galaxy type or
environment, as well as the detailed formation history of the halo (e. g. Sheth &
Tormen, 2004; Gao et al., 2005; Zehavi et al., 2011).

Historically, bias was first discussed in detail by Kaiser (1984) to explain the
observed difference in correlation length between galaxies and galaxy clusters.
Starting from the assumption that galaxy clusters form at maxima of the (Gaus-
sian) density field, Kaiser was able to calculate the 2-point correlation function ξ>ν

for regions above a density threshold νσ (σ being the r. m. s. density of a region
with radius R, and ν a positive number)

ξ>ν(r) ≈ ν2

σ2
ξ(r), (2.18)

which is related to the 2-point correlation function of the underlying density field,
ξ(r). The amplitude of the bias b2

ν = ν2/σ2 can be predicted by smoothing the
density field on a given mass scale (e. g. based on the spherical collapse model
discussed above), and the results were in reasonable agreement with observations
at that time, finding bν ∼ 5 for massive clusters.

Predictions for the bias can also be derived from the mass function. By splitting
the density field in a long-range and a short-range part δ(x) = δL(x) + δS(x) (the
peak-background split, Bardeen et al. 1986), the bias function can be related to the
halo mass function (Cole & Kaiser, 1989)

bpb ≡ ∂ ln n̄h(M, z)
∂δL

+ 1, (2.19)

where δL = νσ(M, z) in the peak-background split. The physical interpretation is
that a large-scale mode with e. g. δL > 1 lowers the threshold for collapse, leading
to a change in the local number density of halos at a given mass scale. Unfor-
tunately, neither the mass function nor δL is easily accessible from observations,
but Equation (2.19) can be applied to one of the theoretical or simulated mass
functions discussed in the previous section. Note that one can either consider the
density contrast in Lagrangian space or in Eulerian space, where the former is ap-
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2 Structure formation 2.3 Initial conditions: Inflation

plied in the initial conditions (section 2.4) and the latter at later times (Chapter
4). On large scales the Eulerian and Lagrangian bias are related by bE = bL + 1
(Mo & White, 1996; Catelan et al., 1998, 2000).

A more phenomenological approach is to relate the density field of the tracers
(i. e. a smoothed representation of the spatial distribution of halos or galaxies) to
the dark matter by a general functional B of the matter density contrast δ,

δtracer(x) = B [δ] . (2.20)

In principle, the functional B can take many forms, but the most common case is
that of local Eulerian bias (Dekel & Rees, 1987; Fry & Gaztanaga, 1993), where
the tracer field depends only on the matter field at the same location, i. e. δ(x).
A natural extension of this model is non-deterministic bias which includes some
scatter around a mean bias relation (Scherrer & Weinberg, 1998; Dekel & Lahav,
1999). Expressing the bias through Equation (2.20) allows for another interpre-
tation of B: any bias function could be expressed by a set of bias parameters
that should be measured, not predicted from theory (e. g. McDonald, 2006). This
interpretation does not require the knowledge of whichever physical processes are
responsible for the exact form of halo or galaxy bias. We will return to this point
in Chapter 4.

When the bias is simply a constant factor b, the correlation function for δtracer is
just a scaled version of the corresponding dark matter statistic (the same is true
for Equation (2.18) on large scales). Transforming to Fourier space, this linear

biasing results in a tracer power spectrum

Ptracer(k) = b2P (k). (2.21)

Linear biasing is often used when extracting cosmological parameters from the
observed galaxy power spectrum or correlation function, but this simple relation
is only valid in the large-scale limit (Bardeen et al., 1986; Scherrer & Weinberg,
1998). We stress again that b generally depends on e. g. halo mass, galaxy type,
or redshift.

Analytical models for the bias function give reasonable predictions on large
scales, but often fail when confronted with the details of small-scale clustering.
This is especially troubling because the constraining power resides in the small
scales of the power spectrum where the statistical error bars are much smaller.
Paired with the fact that smaller scales are more difficult to model even for the dark
matter field alone due to non-linearities, biasing constitutes a severe systematic
effect that stands in the way of utilising the full statistical potential of current and
future large field galaxy surveys.

2.3 Initial conditions: Inflation

The idea of an early epoch of exponential expansion is usually attributed to Guth
(1981), followed up by a flurry of related publications, e. g. Linde (1982); Albrecht
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2.3 Initial conditions: Inflation 2 Structure formation

& Steinhardt (1982); Hawking et al. (1982); Starobinsky (1982) and Wald (1983).
For a summary of detailed calculations we refer to Mukhanov et al. (1992); Mal-
dacena (2003) and Baumann (2009).

Flatness problem From the first FE we can describe the curvature as a function
of time and this can be expressed by re-arranging Equation (1.25):

1 − Ωtot(a) = − k

(aH)2
, (2.22)

where aH is called the comoving Hubble radius. This equation has two immediate
implications: The sign of the curvature is conserved, so an open Universe can
not turn into a closed Universe and vice versa. Second, any initial deviation from
flatness will grow with time if (Ha)−1 increases, and this can easily be shown to be
the case during both matter and radiation domination. The fact that Ωtot is very
close to 1 at the current epoch (see Table 2.1) then requires that the Universe has
to be almost perfectly flat in the initial conditions. However, an early epoch where
(Ha)−1 actually decreases (meaning that the Hubble radius increases) would solve
this apparent fine-tuning problem.

Horizon problem The Cosmic Microwave Background radiation is isotropic up
to 1 part in 105 over the whole sky. The particle horizon at recombination – rep-
resenting the maximum distance that particles could have interacted on until that
moment – can be translated into an angle on the sky by using the angular diameter
distance (Equations (1.13) - (1.14)). The resulting angle of ∼ 2◦ contradicts the
observed isotropy unless causality is violated or if the Universe was somehow ini-
tially homogeneous on larger scales. This presents the second fine-tuning problem
of the initial conditions. However, as with the Flatness problem, an increasing
Hubble horizon towards early times would allow for causal interaction on much
larger scales. Put in another way, the homogeneity of the largest scales accessible
to us today constrains the minimal amount of expansion during the inflationary
period.

The origin of structures With Inflation, we also obtain a natural explanation
for the origin of the primordial perturbations: initially tiny quantum fluctuations
are blown up by the rapidly increasing scale factor until they become “classical”
perturbations when their fluctuation time-scale exceeds the Hubble time. The sim-
plest models of Inflation result in fluctuations that are nearly perfectly Gaussian
(e. g. Gangui et al., 1994), in concordance with the statistics of the CMB, and any
deviation from exact Gaussianity can put constraints on the type of inflationary
physics (section 2.4 and Chapter 5). Inflation also explains the absence of obser-
vational evidence for topological defects like magnetic monopoles, which could be
produced at temperatures above the Grand Unified Theory (GUT) scale (Preskill,
1979). Their density will be diluted by the exponential expansion, making it es-
sentially impossible to observe them.
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General requirement for Inflation The time derivative of the comoving Hubble
horizon is directly related to the acceleration,

d
dt

(aH)−1 = − ä

(aH)2
, (2.23)

so if the left hand side is < 0 the acceleration has to be positive. Using the identity
ä/a = Ḣ + H2, we can write the acceleration as

ä

a
= H2(1 − ǫ), (2.24)

where we have defined ǫ = −Ḣ/H2. For positive acceleration, ǫ < 1. By inserting
both Friedmann equations into Equation (2.24), we can write ǫ in terms of the
EoS parameter w:

ǫ =
3
2

(w + 1). (2.25)

This means we have found 3 equivalent conditions for Inflation: a decreasing Hub-
ble radius, accelerated expansion and an EoS parameter w < −1/3, which can all
be satisfied by requiring ǫ < 1. In the following, we will attempt to connect these
conditions to the physics of the early Universe.

2.3.1 The action principle

In this section we revisit the underlying principles of field theory, avoiding however
any lengthy derivations. The basis of the Einstein field equations (Equation (1.17))
is the requirement that the Einstein-Hilbert action,

SEH = − 1
16πG

∫
d4x

√−g (R + LM), (2.26)

is invariant under an infinitesimal variation of the metric. The different contribu-
tions to the action are g = det gµν , the Ricci scalar R describing the curvature,
and the Lagrangian density LM which describes any matter field present at early
times (this could also include a cosmological constant). The field equations can
then be derived by requiring δ[SEH] = 0 under gµν → gµν + δgµν .

In general, any Lagrangian can be described by a kinetic term and a poten-
tial term which determine the dynamical evolution of the field, and the resulting
field equations depend on its functional form. Even without knowing the detailed
physical processes involved, we can make a few statements about the Lagrangian
at early times: We have found that the conditions for Inflation are ä > 0, or
equivalently w < −1/3, and this criterion could be fulfilled for example by a cos-
mological constant with w = −1 (this was the original proposition by Guth 1981).
A more general idea is to consider a new scalar field5 φ(x, t) called the Inflaton,
that provides the dominant energy content in the primordial Universe.

If this field initially resides in a non-vacuum state inside the potential, it will

5We briefly discuss multi-field models and other non-standard contributions in section 2.4.
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“roll” towards its true minimum, while driving the accelerated expansion of the
Universe (see Figure 2.3). Once it reaches the potential minimum, its energy has
to be transformed into standard model particles during an epoch called reheating.
Since the energy scales at such early times are far beyond those accessible to current
particle physics experiments, the exact process of reheating is unknown, but likely
also depends on the details of the previous inflationary period (e. g. Bassett et al.,
2006, and references therein). The whole process of Inflation and reheating should
therefore be considered an effective theory, with a scalar field designed such that
it matches the observations of the CMB temperature fluctuations. However, we
will see later that inflationary models also make predictions that can be used to
constrain the almost infinite set of models that are able to solve the 3 puzzles
explained at the beginning of this section.

2.3.2 Single field slow-roll Inflation

The Inflaton field can be incorporated in the Einstein-Hilbert action by adding the
Lagrangian

Lφ =
1
2

∂µφ∂µφ − V (φ), (2.27)

which consists of a “standard” kinetic term, and a potential term V (φ) which
describes the self-interaction of the field. This Lagrangian is said to be “minimally
coupled” to gravity because it is a simple additive term to the Einstein-Hilbert
action and does not directly multiply R. The energy momentum tensor is given
by

T µν = ∂µφ∂νφ − gµν
Lφ, (2.28)

which allows us to derive the density and pressure of φ:

ρ =
1
2

φ̇2 + V (φ) +
1
2

(∇φ)2, (2.29)

p =
1
2

φ̇2 − V (φ) +
1
6

(∇φ)2. (2.30)

Since the Universe should be homogeneous within the small patch that is inflated,
the assumption that φ only depends on t and not on x is justified, and all terms
with ∇ in the previous equations vanish. In addition, we also neglect all contribu-
tions from spatial curvature (justified by Equation (2.22)). With ρ and p, we can
write down the Friedmann Equations for φ:

H2 =
8πG

3

(1
2

φ̇2 + V (φ)
)

, (2.31)

and the equation of motion follows from the general requirement that T µν is con-
served

φ̈ + 3Hφ̇ + V,φ = 0, (2.32)

where V,φ denotes the derivative of V with respect to φ.

By calculating the time derivative of (2.31), inserting (2.32), and using (2.24)
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reheating

Figure 2.3: Potential for slow-roll Inflation, where the value of the field φ is used instead
a time coordinate. Inflation happens while the scalar field rolls down towards its true
minimum, where its energy is transformed into standard model particles. φCMB marks
the creation of the CMB fluctuations by quantum fluctuations δφ around the mean value,
and φend marks the endpoint of the slow-roll period. The time between φCMB and φend

has to be large enough to allow the Universe to expand by about 60 e-folds in order to
solve the Horizon Problem. [Figure taken from Baumann (2009).]

we obtain an expression for ǫ, which depends on the time derivative of φ,

ǫ =
1
2

φ̇2

H2
. (2.33)

Since we required ǫ < 1, this gives us the first condition on the Inflaton field in
order to have an early epoch of accelerated expansion. If we also want Inflation
to last a sufficiently long time (e. g. to solve the Horizon problem), we need a
condition on ǫ̇ as well. Taking the time derivative of the previous equation, a little
algebra yields

η ≡ ǫ − ǫ̇

2ǫH
= − φ̈

Hφ̇
, (2.34)

which relates the change in ǫ to the second time derivative of φ by defining a
second parameter |η| < 1.

Now consider the case where the potential dominates over the kinetic term,
φ̇ ≪ V (φ), which immediately implies ρ ≈ −p, reminiscent of Λ at late times.
Since H2 ∼ V as well, Equation (2.33) tells us that in this case ǫ ≪ 1 and |η| ≪ 1.
Since ǫ is by definition also proportional to Ḣ, we find ρ ∼ H2 ∼ V (φ) ∼ const.,
which is referred to as “slow-roll” Inflation (illustrated in Figure 2.3). In this
model, inflationary expansion occurs as long as the field is rolling down the slowly
changing potential slope. Eventually, the slow-roll phase has to transition into the
reheating phase, and H will no longer be constant.

A constant Hubble parameter implies exponential expansion with a(t) ∼ eHt.
In order to explain the amplitude of the initial fluctuations and to ensure that
the largest scales accessible to current observations have been in causal contact at
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some time in the past, N ∼ 60 e-folds of inflation are required (Liddle & Lyth,
1993).

2.3.3 Seeds for structure formation

During Inflation, the Inflaton field has local quantum fluctuations ∆φ(x, t) around
its mean value φ(t). These fluctuations translate into a locally different time
evolution, where each patch evolves faster or slower depending on the sign of
the fluctuation. This creates local density perturbations, which become classical
perturbations after horizon exit where the fluctuation time-scale is longer than the
Hubble time. In general, a change in the density will induce a perturbation in the
metric gµν because both are coupled through the field equations.

When performing any calculation involving inhomogeneities, care must be taken
when defining a coordinate system (gauge).6 In the unperturbed Universe the
choice of the comoving observer was straightforward, as it preserved the condi-
tions for homogeneity and isotropy. In a perturbed Universe that choice is no
longer unique, but often calculations can be simplified by selecting the right gauge.
Note however that GR implies that any physical perturbation must be gauge in-
dependent. Instead of choosing a specific gauge, it is therefore also sensible to
define gauge-independent quantities and try to find their relation to e. g. density
perturbations that we are interested in.

Furthermore, it can be shown that to linear order, scalar, vector and tensor
perturbations7 evolve independently from each other (e. g. Baumann 2009), so we
can consider each in turn. In most models, vector perturbations are not generated
with large amplitudes, and they will also decay with the subsequent expansion, so
they can be neglected. We are interested in the creation of classical density pertur-
bations, which are sourced by scalar perturbations, while primordial gravitational
waves are sourced by tensor perturbations (e. g. Bardeen, 1980).

Starting from the Einstein-Hilbert action, the amplitude of scalar perturbations
can be calculated as follows: We consider the comoving curvature perturbation
R(x, t), which measures the spatial curvature of constant-φ hypersurfaces. In
addition to being gauge-independent, it can be shown that R remains constant
outside of the horizon, making it sufficient to calculate the amplitude at the time
of horizon crossing where k = Ha. The curvature perturbations act like a potential
that sources the density perturbations (see below). Once we have determined
their amplitude, the subsequent evolution is given by the transfer function and the
growth factor as described in section 2.1.

Treating the metric perturbations as small allows us to expand the action up
to second order in R. The requirement that the action vanishes leads to the
Mukhanov Equation (Mukhanov et al., 1992), which describes the time evolution
of the curvature perturbations in a form similar to a damped harmonic oscillator.
In general, the solutions to this equation have to be found numerically, because

6See Kodama & Sasaki (1984) for a discussion of the different gauge choices.
7The different classes are defined by the way they behave under coordinate transformations.
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they depend on the time evolution of both φ and H . Additionally, the final result
depends on the vacuum state which sources the fluctuations. A common choice is
that of a thermal state without particle production (Christensen, 1976; Bunch &
Davies, 1978).

By defining the dimensionless power spectrum

∆2(k) =
k3

(2π)3
P (k), (2.35)

and evaluating the solutions of R at horizon crossing (denoted by ∗), the steps
outlined above lead to an expression for the curvature power spectrum

∆2
R(k) =

1
8π2

H2
∗

M2
pl

1
ǫ∗

, (2.36)

where Mpl = (8πG)−1/2 is the Planck mass in natural units.8

This rather simple expression contains a few interesting properties. If we write
∆2

R
(k) as a power law

∆2
R(k) ∼ kns−1, (2.37)

slow-roll Inflation predicts a scalar index ns = 1 + 2η∗ − 4ǫ∗ ≈ 1. This scale-
independence of the initial curvature perturbations is often referred to as a Harrison-
Zeldovich power spectrum, predicted by Harrison (1970) and Zel’dovich (1972)
based on arguments about entropy and the initial amplitude required for galaxy
formation, roughly a decade before the work of Guth (1981). The fact that ns

deviates from 1 can be qualitatively understood by remembering that H and ǫ are
nearly – but not exactly – constant during Inflation. Since the amplitude of each
mode is determined by its amplitude at horizon crossing, changes in H translate
into a scale-dependence in the power spectrum. The deviation of ns from unity
has already been confirmed to an accuracy of 5σ, providing strong evidence for
the inflationary paradigm (Planck Collaboration et al., 2013a).

Roughly speaking9, the relation between R and the density perturbations δ is
given by the Poisson equation and additional factors of order unity. In Fourier
space this means δ̃ ∼ R̃k2, so we finally find for the power spectrum of primordial

density perturbations

Pδ(k) = A(kp)

(
k

kp

)ns

, (2.38)

where the amplitude A ∼ H2
p/(8πG) at an arbitrary pivot scale kp = aHp can be

measured from the CMB. The primordial dependence on k can still be observed
in the matter power spectrum on the largest scales where the transfer function is
constant (see Figure 2.1).

8For a detailed derivation see e. g. Baumann (2009), Knobel (2012), and references therein.
9The full justification extends over several pages in Weinberg (2008) and Knobel (2012).
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2.4 Primordial non-Gaussianity

In the standard slow-roll Inflation model discussed above, the probability distri-
bution of the initial perturbations is extremely close to a Gaussian (e. g. Gangui
et al., 1994). Any deviation of the initial perturbations from a Gaussian distri-
bution would therefore invalidate one or more of the assumptions of the Inflation
model. To distinguish this effect from the late-time non-Gaussianity introduced
by non-linear evolution, any non-Gaussianity present in the initial conditions is
called Primordial non-Gaussianity (PNG).

While it is easy to quantify “Gaussianity”, the possibilities for a probability dis-
tribution to be “non-Gaussian” are infinite. As already discussed in section 2.1.3,
higher order statistics like the bispectrum vanish only in the Gaussian case. It
is therefore useful to distinguish between different classes of PNG, commonly ex-
pressed through bispectrum templates. These templates are defined by the triangle
configurations that contribute most of the signal to the bispectrum (parameterised
by three modes k1, k2 and k3 shown in Figure 2.4). The tightest constraints on
PNG currently come from the CMB (e. g. Bennett et al., 2012), but certain types
of PNG should also leave a detectable signal in the halo distribution at late times.
This signal comes in the form of a scale-dependent bias on large scales, in contrast
to the Gaussian case where the bias asymptotes to a constant value (see section
2.2.1). For a recent review on the effects of PNG on large-scale structure see
Desjacques & Seljak (2010a).

The bispectrum for single-field slow-roll models peaks in the squeezed configu-
ration, characterised by k1 ≈ k2 ≫ k3, however the predicted amplitude is orders
of magnitude below the sensitivity of current experiments (Acquaviva et al., 2003;
Maldacena, 2003). A large amplitude in the squeezed configuration is predicted
for example when multiple fields are present during Inflation (Linde & Mukhanov,
1997). The expected signal in these models only depends on the local amplitude
of the initial perturbations, and is therefore also called the local model.

Additional classes of PNG models can be constructed by relaxing one (or more)
of the other assumptions made in section 2.3.2. Kinetic terms with higher-order
derivatives in the Lagrangian generate the largest signal for equilateral triangles
(Creminelli et al., 2006). Finally, deviations from the standard Bunch-Davies
vacuum assumption give rise to folded type PNG (Meerburg et al., 2009). The
so-called orthogonal template can be constructed from a combination of equilat-
eral and folded shapes (Senatore et al., 2010). Of course once several effects are
combined, the resulting bispectrum will also be a combination of the different
templates. In that case no analytical expression for the bispectrum exists and
numerical predictions can become quite involved (Wagner et al., 2010).

In the case of PNG it is common to express the primordial fluctuations by
the Bardeen curvature potential ΦB, which is related to the comoving curvature
perturbations R and the Newtonian gravitational potential ΦG after reheating by
ΦB = 3R/5 = −ΦG (Bardeen, 1980). In terms of ΦB, the local model can be
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Figure 2.4: Representation of different triangle configurations for the bispectrum. The
squeezed and folded configurations lie on the faces of the “tetrapid”, while equilateral
triangles are located inside the volume. [Figure taken from Schmittfull et al. (2013).]

expressed by

ΦB(x) = φ(x) + fNL

[
φ(x)2 − 〈φ2〉

]
+ gNL

[
φ(x)3 − 3〈φ2〉φ(x)

]
+ . . . , (2.39)

where the non-Gaussian potential is written as a local expansion of the Gaussian
potential φ(x) with coefficients fNL, gNL, . . . and the terms proportional to the
ensemble averages ensure that the resulting non-Gaussian density field still has a
zero mean. In linear theory, φ is of order 10−5, while current constraints predict
fNL ≪ 100, emphasizing the smallness of the effect. The coefficient fNL, gNL

are usually assumed to be real-valued constants, but models with scale-dependent
fNL have also been discussed, and in that case the multiplications in Equation
(2.39) have to be replaced by convolutions (e. g. Becker et al., 2012, and references
therein).

To first order in fNL (gNL) the higher order terms in Equation (2.39) generate
a bispectrum (trispectrum) that is proportional to fNL (gNL). In addition, local
PNG leads to a scale-dependent bias on large scales, both for fNL (Dalal et al.,
2008; Matarrese & Verde, 2008; Slosar et al., 2008) and gNL (Desjacques & Seljak,
2010b; Smith et al., 2012), which we will discuss in the following.

The origin of the scale-dependence can be qualitatively understood by applying
the Laplacian to Equation (2.39). For the fNL-term, the change in the potential
translates into a change in the density contrast

δPNG ≈ δ [1 + 2fNLφ] , (2.40)
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where the approximate sign indicates that we have neglected any contributions
from the constant term in Equation (2.39), because we are interested only in the
peaks of the density field where halos form (Dalal et al., 2008). The second term
in Equation (2.40) is proportional to φ, and thus to the density contrast by k−2.
By assuming a local Lagrangian bias δh = bL δ (suitable for the initial conditions
considered here), the change in the bias induced by fNL is10

∆b ∼ 2fNL bL k−2. (2.41)

The full derivation, including the correct normalisation factors and the transfer
function to account for the evolution of the density perturbations, then leads to

∆b(k, z) = fNL(bE − 1)
3 ΩmH2

0 δc

D(z)T (k)k2
, (2.42)

where we have additionally switched to the Eulerian bias (see section 2.2.1) because
we want to measure the effect of PNG from the evolved large-scale structure.

For the gNL term, the contribution to the scale-dependent bias actually comes
from the term proportional to 〈φ2〉φ. Just like for fNL, this term modifies the
density contrast by adding a constant and therefore the scale dependence in the
bias is the same. However, both terms are expected to show a different mass and
redshift dependence (for a full discussion we refer to Smith et al. 2012 and Chapter
5). While most Inflation models predict either a dominant fNL or a dominant gNL

term, there are theories where both contributions are important (e. g. the Curvaton
model, Lyth et al., 2003). Current constraints on PNG parameters from the large-
scale structure usually assume that only one of the parameters is different from 0.
In Chapter 5 we investigate whether the degeneracy between the two contributions
can be broken in the ideal case where we know the underlying values of fNL and
gNL in a numerical simulation, and show that neglecting either term can lead to a
highly biased estimate of the local PNG parameter.

As a closing remark, folded-type PNG also leads to a scale-dependent bias,
b(k) ∼ k−1 on large scales, but the effect is orders of magnitude smaller than for
the local type. For the equilateral template the bias is only changed by a small
constant, which is therefore indistinguishable from the Gaussian case (Verde &
Matarrese, 2009; Wagner & Verde, 2012).

2.5 Cosmological parameters

When work on this thesis was begun, the standard cosmological model was mainly
constrained by the measurements of the WMAP satellite (in conjunction with
estimates from other probes like Supernovae and galaxy clustering, see below). In
March 2013, the results of the first year analysis of the Planck collaboration were
published, which had measured the cosmological parameters with even greater

10Note that there is no minus sign because φ=-φG.
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precision. While most of the values are consistent between the two probes, the
increase in precision leads to slight tension in a few cases. This shows that while
the combinations of different probes leads to an overall concordance for ΛCDM,
they may still be affected by systematic effects. In Table 2.1, WMAP++ refers to
using the CMB temperature and polarisation from the WMAP satellite, combined
with estimates for H0 and the BAO scale from large-scale structure (Hinshaw et al.,
2012). The Planck++ estimate combined the CMB temperature from Planck with
the polarisation of WMAP and the previous BAO estimate (Planck Collaboration
et al., 2013a). Constraints on the primordial non-Gaussianity parameters will be
discussed in Chapter 5.

Table 2.1: Selection of cosmological parameters from WMAP++ (Hinshaw et al., 2012)
and Planck++ (Planck Collaboration et al., 2013a). The first set of 6 parameters can
be determined directly from the data, while the others are derived using additional
assumptions. All values are given at 68% confidence unless explicitly stated otherwise.

Symbol WMAP++ (68%) Planck++ (68%) Description
Ωch

2 0.1153 ± 0.0019 0.1187 ± 0.0017 Cold dark matter
Ωbh2 0.02223 ± 0.00033 0.02214 ± 0.00024 Baryons
ΩΛ 0.7135+0.0095

−0.0096 0.692 ± 0.010 Dark energy
109∆2

R
2.464 ± 0.072 2.200 ± 0.1(03) Scalar amplitude

ns 0.9608 ± 0.0080 0.9608 ± 0.0054 Scalar index
r0.002 < 0.13 (95%) < 0.111 (95%) Tensor amplitude

w −1.073+0.090
−0.089 −1.13+0.24

−0.25 (95%) EoS parameter for Λ
100 Ωk −0.27+0.39

−0.38 −0.05+0.65
−0.66 (95%) Curvature

H0 69.32 ± 0.80 67.80 ± 0.77 Hubble rate [km s−1Mpc−1]
σ8 0.820+0.013

−0.014 0.826 ± 0.012 Power spectrum amplitude
t0 13.772 ± 0.059 13.798 ± 0.037 Age of the Universe [Gyr]
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3 Numerical simulations

So far we have discussed linear structure formation and Standard Perturbation
Theory as an extension to the slightly non-linear regime. In order to follow the
fully non-linear evolution while sampling the entire phase-space volume, one has
to resort to numerical techniques. During the last two decades, numerical simula-
tions have become a powerful tool to study astronomical objects on a large range
of scales. They are used extensively in all areas of astronomy and astrophysics,
like the formation of single stars and planets, analysing the dynamics of star clus-
ters, modelling hydrodynamical processes in galaxies like our Milky Way, and last
but not least studying the large-scale structure of cosmological volumes. Each of
these problems has to take into account different physical properties and make
assumptions to simplify the problem at hand.

The following discussion will focus on cosmological N -body simulations, because
these have been extensively used to obtain the results presented in this thesis. We
will give a general description of the N -body technique and its implementation by
the gadget-2 and subfind codes. The basic principle of an N -body simulation
is that the object of interest is traced by a set of particles which interact with each
other in a well-defined way. In this context, the term particle refers to the minimal
unit of the simulation, not a fundamental particle in the usual physical sense. In
fact, N -body particles are many orders of magnitudes heavier than fundamental
particles, single stars, or even galaxies in case of cosmological volumes (see below).

In the case of a ΛCDM universe, structure formation is dominated by dark mat-
ter, which interacts only via gravity. This allows for very simple simulations of
structure formation using only dark matter particles, without including the com-
plicated physics of baryons. While baryons can significantly affect the dark matter
distribution , these effects are important mostly on small scales (e. g. Stinson et al.,
2006; Sales et al., 2007; Sawala et al., 2013, see also Chapter 6). While early at-
tempts at simulating cosmologically relevant volumes were limited by very poor
resolution, the rapid increase in computing power coupled with efficient algorithms
has lead to a tremendous improvement in accuracy and predictive power. Current
state-of-the art N -body simulations require the use of the largest high-performance
computing facilities with millions of CPU hours1, and total memory consumption
of a few to several hundred terabyte (Kuhlen et al., 2012).

1The total number of CPU hours is the product of the actual code runtime with the number
of cores used in parallel, where Ncore is of the order several hundred to 10,000 for the largest
simulations.
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3.1 The gadget-2 code

gadget-2 is a publicly available, highly parallel code for numerical simulation of
both collisionless dark matter particles and hydrodynamics to study gas and star
formation. However, we will only use it to perform dark matter simulations and
thus restrict the description to this case.

Given a set of initial conditions and cosmological parameters, it takes a density
distribution represented by a system of particles and evolves this system forward
through gravitational interaction. gadget-2 is parallelised using MPI2 routines,
and it has been used extensively within the astronomical community to obtain
dark matter simulations of single galaxies (e. g. the Aquarius project, Springel et al.
2008) up to cosmological simulations of the Hubble volume (e. g. the Horizon Run,
Kim et al. 2011). Chapter 6 is based on simulations performed with a more recent
version, gadget-3, which differs from the previous version mainly in the efficiency
of implementation, but not in the underlying concepts.

3.1.1 Description of the problem

The basic ingredients for an N -body simulation are the size of the (comoving)
volume V that should be studied, the number of particles N used to trace the
matter distribution and the underlying cosmological model, expressed by a set of
parameters. The ensemble of particles is then evolved forward in time under the
effects of gravity. The cosmological parameters determine the expansion history
and the mass content of the virtual universe, while the box size L = V 1/3 and
particle number N determine the accessible scales and the mass resolution.

The mass of the particles can be calculated by

mp = ρcrit Ωm (L/N)3, (3.1)

where ρcrit ∼ 27.78 · 1010 h−2 M⊙ Mpc−3 in cosmological units. For example, for a
simulation with L = 1000 h−1Mpc and N = 1024, the particle mass is of the order
of 7 · 1010 h−1 M⊙, only about 15 times lower than the mass of our own galaxy.
This simulation could therefore only be used to study the clustering of massive
objects on large scales. These types of simulations are used in Chapters 4 and 5. If
one is instead interested in the internal dynamics of galaxy-sized objects, a much
better mass resolution is required, achievable by using a larger number of particles
(significantly increasing run-time, memory and storage requirements) and/or by
reducing the volume (resulting in fewer objects). This type of high-resolution
simulation is discussed in section 3.1.6 and used in Chapter 6.

Note on large box sizes The interaction between the dark matter particles is
calculated using Newtonian gravity, instead of General Relativity (GR). This is
straightforward when the boxes are small compared to the comoving horizon size.
However, even when box sizes approach the size of the observable Universe, it

2Message Passing Interface, a commonly used parallelisation technique
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appears that GR effects cancel out and so Newtonian gravity can be safely used
(e. g. Chisari & Zaldarriaga, 2011; Green & Wald, 2012, and references therein);
see e. g. Zhang (2011) or Flender & Schwarz (2012) for the opposing point of view.

For small N , the gravitational forces could be calculated directly for each pair
of particles, but this direct approach scales as N2, so it will be prohibitive for
the large number of particles required to accurately trace cosmological volumes.
Instead, the particle distribution is extrapolated to a uniform grid. From this
density field, the gravitational potential and thus the forces at each grid point can
then be calculated by solving the Poisson equation in comoving coordinates,

∇2Φ(x, t) = 4πGa2(t) [ρ(x, t) − ρ̄(t)] . (3.2)

Based on the cosmological principle, periodic boundary conditions are employed.
These boundary conditions allow the use of Fourier transformations, which allows
us to write an integral or gradient as a simple multiplication. Taking advantage
of sophisticated numerical libraries like FFTW (Fastest Fourier Transform of the
West; Frigo & Johnson 2005) leads to very efficient algorithms to solve the Poisson
equation.

3.1.2 TreePM

gadget-2 uses a TreePM code, a hybrid algorithm employing different ways of
calculating the forces between particles on large and small scales. On large scales,
the potential is calculated via the fast Particle-Mesh (PM) method, and on small
scales via the slow but precise Barnes-Hut tree method.

Particle-mesh (PM) Method Starting from an initial particle distribution, the
density field ρ is obtained by assigning the particles to a grid via interpolation.
Then, the potential Φ can be calculated by inverting the Poisson equation (3.2),
and the force is obtained by calculating the gradient of Φ, either by finite differenc-
ing in real-space, or multiplying by ik in Fourier space (which is computationally
more expensive but possibly more accurate, Ferrell & Bertschinger 1994). Finally,
the force is applied to each particle using the same grid interpolation scheme to
ensure that any artefacts like self-forces on particles vanish (Hockney & Eastwood,
1988). The PM algorithm is fast and low in memory consumption. However, the
numerical accuracy quickly degrades for particle separations smaller than a few
grid cells.

Tree method This method is also called the Barnes-Hut algorithm (Barnes &
Hut, 1986). The main idea is to subdivide the particle distribution into a hierarchy
of 3D cells called tree nodes. Each subnode, or leaf is constructed out of the parent
node by subdividing it into 8 cells with each 1/2 of the length of the parent. Each
leaf is subdivided again, until the lowest level of the tree is reached, where each
leaf contains one or zero particles. In case of a homogeneous particle distribution,

35



3.1 The gadget-2 code 3 Numerical simulations

this would simply correspond to a cubic grid. For inhomogeneous distributions,
the tree will be coarser in underdense regions and finer in overdense regions.

The force acting on a particle is then calculated by summing the partial forces
from neighbouring tree nodes, which are obtained by multipole expansions. To
lowest order, this means treating an ensemble of particles in an individual node
(or leaf) as a single particle located at the center of mass. A tree node is “opened”,
i. e. the level of refinement is increased, when the separation between it and the
particle for which the force needs be computed is less than a threshold value.

This threshold value needs to be chosen small enough to reduce force errors, but
large enough so that the simulation is not slowed down too much. Typically, force
errors of 1-2 percent are acceptable for cosmological simulations, and gadget-

2 stays below this limit even in the regime between the two methods (Springel,
2005). If the particles positions only change slightly between two timesteps, it is
also not necessary to re-calculate the full tree decomposition, and small dynamical
adjustments suffice to achieve the desired force accuracy (McMillan & Aarseth,
1993). Since the Tree algorithm is spatially adaptive, the force accuracy is not
limited by the initial choice of a grid spacing as in the case of the PM method. A
drawback of this method is that it becomes very memory intensive, so the TreePM
hybrid algorithm combines the best of both worlds.

3.1.3 Time integration

Once the forces are computed, one can perform the time integration of the equa-
tions of motion (in comoving coordinates)

dx

dt
=

v

a
,

dv

dt
+ Hv = −∇Φ(x, t)

a
. (3.3)

However, these equations are coupled: x depends on v and v depends on the force
at position x. Time integration is therefore done with a leap-frog3 integration
scheme, consisting of a series of kick and drift operations for each timestep. A
common example would be the kick-drift-kick scheme, where first the velocity is
advanced for half a time step (kick), then the position is updated with this new
velocity (drift), and finally the second half of the velocity integration is performed
(kick).

The choice of time step is crucial in a practical numerical implementation. If it
is chosen too large, the forces will not be accurate enough, and inaccuracies will
build up over time until the result no longer resembles the truth. Instead, if the
time step is chosen too small, the code will slow down significantly. The latter case
is especially problematic for high density regions. Modern codes therefore often
allow for an adaptive time stepping criterion which evolves depending on the local
density. In this way, only a subset of particles have very small timesteps, which
significantly reduces the computational cost.

3In contrast to the commonly used Runge-Kutta integrator, the leap-frog scheme is symplectic,
which is a requirement for a Hamiltonian system.
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3.1.4 Force softening and resolution

If two simulation particles get close to each other, they may actually experience
two-body relaxation, which is however only an artefact of the limited mass resolu-
tion. This behaviour can be avoided by introducing a softening parameter ǫ that
modifies the small-scale gravitational force law, e. g.

F (r) = −G
mimj

(r2 + ǫ2)3/2
r. (3.4)

This so-called Plummer softening law is both intuitive and easy to implement,
but it is not optimal (Dehnen, 2001). Nowadays a cubic spline is generally used;
nevertheless the value of the softening parameter ǫ is still often quoted as its
Plummer-equivalent. The force softening prevents unphysical “collisions” but also
sets a minimal spatial scale below which the forces are no longer accurate. Power
et al. (2003) studied this for the gadget-2 code and found that the optimal (in
terms of accuracy and computing time) softening scale for a galaxy-sized halo is
given by

ǫ ≈ 4
r200√
N200

, (3.5)

where N200 is the number of particles within the halo radius r200 (more thoroughly
defined in section 3.2). For current high-resolution cosmological simulations, this
softening scale is on the order of a few hundred parsecs, but for single objects can
be as small as a few parsecs. In case of gadget-2 the softening scale also enters
into the adaptive time stepping criterion for each particle i

∆ti ∝
√

ǫ|ai|−1, (3.6)

where |ai| is the acceleration experienced by particle i, so a small value for ǫ will
negatively impact the runtime of the simulation.

The force resolution for small separations also depends on the number of par-
ticles used to trace the density field. According to Power et al. (2003), numerical
convergence can be expected for radii where

√
200
8

N(r)
ln N(r)

[
ρ̄(r)
ρcrit

]−1/2

≥ 1, (3.7)

where N(r) and ρ̄(r) is the number of particles and the mean density inside the
radius r, respectively. In summary, the particle number affects both the minimum
mass scale (Equation (3.1)), as well as the minimum separation that can be accu-
rately probed, and this needs to be considered when deciding on the specifics of a
simulation run.

3.1.5 Initial conditions

In most cases, the initial density field of a cosmological simulation is a realisation
of a Gaussian random field with the desired clustering dictated by the late-time
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power spectrum, which can be calculated numerically by Boltzmann solvers like
CAMB (Code for Anisotropies in the Microwave Background; Lewis et al., 2000).
Starting from Gaussian white noise, the density field is scaled by the primordial
power spectrum and the transfer function (defined in section 2.1.2) at the starting
redshift. The starting redshift for a simulation is usually chosen as z ∼ 30 − 100,
high enough so that the fluctuations are still in the linear regime but at the same
time already well inside the matter dominated era. The appropriate value depends
on the exact cosmology and the box size, which determines the r. m. s. (root mean
square) value of the density fluctuations. Starting at significantly higher redshift is
generally not advisable because it will waste valuable CPU hours on purely linear
evolution, as well as enhance noise from numerical inaccuracies like the imprint of
the initial grid (see below) and round-off errors.

As already discussed in section 2.3, only the simplest inflationary model predicts
that the initial fluctuations are practically Gaussian. If the underlying model is
not that of standard slow-roll Inflation, the density field has to be modified. For
the case of local primordial non-Gaussianity (PNG) this is quite straightforward:
According to Equation (2.39), local PNG can be expressed by adding higher-
order terms to the initial potential (related to the density contrast via the Poisson
equation). Since we are considering primordial non-Gaussianity, it is important
to modify the potential before applying the transfer function to the density field,
because T (k) encodes the evolution of structures after horizon crossing. For other
PNG templates, setting up initial conditions is not as simple, and many of them
require numerical integrations of the desired bispectrum, which is computationally
expensive (Wagner et al., 2010; Regan et al., 2012). But once the initial conditions
have been suitably modified, the code behaves exactly like in the Gaussian case,
as the interaction process (gravity) is unchanged.

Sampling of the density field by the N -body particles often starts with these
particles distributed on a regular grid.4 The particles are then moved slightly
away from the grid nodes to create density perturbations. The simplest way to
calculate the initial displacements and velocities is to apply the Zel’dovich Ap-
proximation (ZA; Zel’dovich, 1970) in Lagrangian coordinates q which are related
to the Eulerian position x by a displacement field Ψ, so x = q + Ψ(q, t). The ZA
then leads to

D(t) δ(q) = −∇Ψ(1)(q, t), (3.8)

v(t) = a(t)
dD

dt
Ψ(1)(q, t), (3.9)

which relates the linear displacement field Ψ(1) to the density contrast in the initial
conditions, and D(t) is the linear growth factor defined in Equation (2.10). The
displacement field is then used to shift the particles away from their position on
the nodes of the regular grid, and assign their initial velocities. One problem with

4Another option is to start from a glass, which is the stable end-state of a short simulation with
repulsive forces.
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this approach is that the ZA introduces transient effects that can leave spurious
signatures in the evolved density field at low redshift (corresponding to per cent ef-
fects in the power spectrum). This can be avoided by starting at a redshift slightly
above that required by the density r. m. s., or by using higher-order techniques like
second-order Lagrangian perturbation theory (2LPT; Crocce et al. 2006).

3.1.6 Zoom-in simulations

Zoom-in simulations are useful when one wants to study a smaller region within a
cosmological volume, for example an individual halo in a ΛCDM background (e. g.
Katz & White, 1993). This technique is used for the Milky-Way-like Aquarius sim-
ulations (Springel et al., 2008) discussed in Chapter 6, where the particles cluster
strongly in a small spatial region, but the influence of the large-scale environment
is not negligible. In the first step, a large cosmological volume is evolved until z = 0
(or less, depending on what kind of objects are to be studied). Within this parent
simulation, the object of interest is selected, and its corresponding Lagrangian re-
gion in the initial conditions is identified. Then that region is resampled at higher
particle resolution, while the surrounding large-scale structure is sampled at low
resolution to ensure the correct large-scale density modulation. In practice, this
means defining two sets of particles with different mass that are evolved together.
The high-res region has to be chosen sufficiently large (a few times the size of
the object of interest), so that there is no undesired contamination with low-res
particles in the volume of interest.

3.2 Dark matter halos

Once the density contrast is high enough, the gravitationally bound dark matter
particles can decouple from the expansion and collapse to form structures, called
dark matter halos, which eventually host galaxies (see also section 2.2). In order
to test the analytical predictions for collapsed objects (e. g. the Press-Schechter
mass function, Equation (2.17)), we need to be able to identify these halos in our
simulation.

3.2.1 Halo finding

Historically, there have been two major classes of halo finding algorithms: Spherical
Overdensity (SO) and Friends-of-Friends (FoF), which we will briefly describe
below. Recent years have seen increased activity in developing new algorithms,
often using the full phase-space information of the particle distribution. For a
recent, detailed comparison of 17 different halo finding algorithms, see Knebe
et al. (2011, 2013).

Spherical Overdensity (SO) As a first step, the locations of local overdensities
(or peaks) in the matter distribution are identified. Then a sphere is drawn around
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each peak with increasing radius. Once the sphere encloses a certain overdensity ∆
with respect to the background, the region inside the sphere is called a dark matter
halo. Several conventions exist in the literature and care has to be taken when
comparing results. For example, the overdensity ∆ can be defined relative to the
mean density, or the critical density of the background cosmology. The boundary
of the SO halo reflects the choice of ∆, where common values are ∆ = 200 or
∆ = 500, and the corresponding halo radius is then called r200 or r500, respectively.

A somewhat misleading, but also very commonly used name for the halo radius
defined in this way is the virial radius. However, the overdensity threshold has
nothing to do with whether the halo is in virial equilibrium or not. For the re-
mainder of this thesis, we will always refer to the halo boundary of SO halos as
r200, where ∆ = 200 is taken with respect to the critical density of the Universe at
any given redshift. The mass of the halo, M200, is then calculated by integrating
the mass distribution out to r200, assuming spherical symmetry.

Friends-of-Friends (FoF) The Friends-of-Friends algorithm (Davis et al., 1985)
connects particles within a certain linking length, typically chosen to be 0.2 times
the mean particle separation. This value was originally chosen to match the theo-
retical predictions in the spherical collapse model (Efstathiou et al., 1988). Each
FoF halo consists of all particles that have been uniquely linked together. The
shape of a FoF halo is thus arbitrary, in contrast to a SO halo. Its center and bulk
velocity can either be defined as the one of the particle with the largest binding
energy – the most-bound particle – or as the center of mass computed from all
linked particles, and these two centres are often identical unless the FoF algorithm
created a spurious link between two large structures. The mass of a FoF halo is
given by the sum of all its associated particles. An example of a commonly used
FoF halo finder is the subfind code (Springel et al., 2001), discussed in section
3.2.3. If required, the “radius” of a FoF halo can be estimated by fitting a density
profile (see below) to the halo and identifying the radius where e. g. M200 corre-
sponds to the FoF mass.

Based on the differences in the definitions of FoF and SO halos, it is not sur-
prising that the resulting statistics (mass function, clustering) can be discrepant
by up to 10% (Jenkins et al., 2001; Knebe et al., 2011, 2013).

3.2.2 NFW density profile

One would expect that given the chaotic nature of structure formation, halos
came in all shapes and sizes. The latter at least is true because simulations show
a hierarchical scenario where almost all of the mass is enclosed in halos of smaller
and smaller size (expected to continue until the free-streaming scale of WIMP dark
matter, M ∼ MEarth). However, on average, the functional form of halo density
profiles in dark matter simulations was found to be universal. In the so-called
Navarro-Frenk-White profile (NFW; Navarro et al., 1997), the density at radius r
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is given by

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2
, (3.10)

which depends only on two parameters: the scale radius rs where the logarithmic
slope of the profile is −2, and ρs ≡ ρ(rs). On large scales, the logarithmic slope
approaches −3 and in the central regions of the halo it approaches −1. It is still
unclear why the chaotic processes that are involved in the collapse of halos generate
such a universal density profile (e. g. Frenk & White, 2012; Ludlow et al., 2013,
and references therein).

Note that the mass of an NFW halo, given by the integral over Equation (3.10),
diverges unless a cut-off radius is fixed. If we chose the cut-off radius as r200, the
enclosed mass can be calculated analytically and is given by

M200 = 4πρsr
3
s

[
ln(1 + c) − c

1 + c

]
(3.11)

where we have defined the concentration parameter c = r200/rs. A large value for
c therefore implies that a halo is more centrally concentrated. Note that c is in
general dependent on both mass and redshift (e. g. Bullock et al., 2001).

While the NFW profile (and alternatives like the Einasto profile, e. g. Gao et al.
2008) is a good fit to numerical simulations over several orders of magnitude in
mass, observations suggest that the actual halo mass profile is shallower in the
central regions (de Blok, 2010), but the discrepancy can be alleviated by including
baryonic feedback (e. g. Oh et al., 2011), see also the discussion in section 6.1.

3.2.3 Substructure

As expected from hierarchical structure formation, simulated halos also contain
substructure, i. e. self-bound halos within halos. In the real world, these substruc-
ture are supposed to host e. g. galaxies within clusters of galaxies, or dwarf galaxies
in the local group surrounding the Milky Way. The radial density profile of sub-
halos can be described by truncated NFW profiles, because material is stripped
from them by interactions with the main halo (Diemand et al., 2007; Springel
et al., 2008). The maximum level of nested structures within (sub-)structures is
ultimately limited by the DM free streaming scales (∼ MEarth for standard CDM
particles), and more practically by the mass resolution and the minimum number
of particles used to identify a halo (at least 20 for simple statistics like the mass
function, more if the internal properties like the density profile are to be studied).

There are also different ways to define subhalos in simulations. Here, we briefly
describe the substructure finder used for our work, the subfind code (Springel
et al., 2001): After the first selection of FoF halos is complete, each particle within
such a top level structure is considered to be a possible center for a substruc-
ture. For that, the local density is calculated (as usual on a grid), and isodensity
contours are drawn around local overdensities by continually lowering the density
threshold. If contours drawn around different density peaks come into contact, this
corresponds to a saddle point in the density profile, and determines the region that
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each substructure encompasses. Note that this process up to now allows for one
particle to be part of several subhalos within subhalos. Thus, for each substruc-
ture, the potential and kinetic energy of its particles is calculated, and all particles
with positive total energy are removed. In the final step, a particle is uniquely
assigned to the lowest level of substructure that it is bound to. This whole proce-
dure leads to a hierarchical system of structures within larger structures, and an
additional subset of particles that are not bound to any halo.

After repeating this step for every simulation output, it is possible to generate
merger trees for both FoF halos and substructures. A merger tree is simply a
linked list of progenitors and descendants for each halo at a given redshift. Since
halos can and will merge during the course of the simulation, each will have several
progenitors in many cases. The major branches of the merger tree are then defined
by following the most massive progenitor, and this can be used to study the mass
accretion history of a given structure. In Chapter 6, we employ merger trees and
another similar technique to track the time evolution of substructures in several
high-resolution simulations of Milky-Way-like galaxies.
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4 Standard Perturbation Theory and

the Local Eulerian halo bias model

This chapter represents a modified version of Roth & Porciani (2011) with small

changes in notation and additional references to literature and other chapters of

this thesis.

4.1 Introduction

Redshift surveys have revealed the existence of large-scale structures in the Uni-
verse: the galaxy distribution is organized in a complex network of filaments
surrounding underdense regions and crossing at density peaks which host galaxy
clusters. These structures are believed to form through gravitational instability
starting from (practically) Gaussian fluctuations characterized by a nearly scale-
invariant power spectrum. Mathematically, we can follow the growth of dark-
matter density (and velocity) perturbations with respect to a smooth background
in terms of a set of Eulerian fluid equations coupled with the Poisson equation. As
long as the density and the velocity deviate only slightly from their unperturbed
values, the evolutionary equations can be linearised and solved analytically. In
this case, each fluid property can be written as the superposition of a term that
grows with time and a second one that decays.

At later times, however, non-linear terms in the fluid equations become impor-
tant and it is no longer possible to derive an exact solution for realistic initial
conditions. A widespread technique to compute approximate solutions is to use
a perturbative approach and write the full solution as a series expansion in pow-
ers of the linear perturbation amplitude. This goes under the name of Standard
Perturbation Theory (SPT; Juszkiewicz 1981, Vishniac 1983, Goroff et al. 1986,
Makino et al. 1992, Bernardeau et al. 2002). In linear theory, each Fourier mode
of the fluid properties evolves independently of the others. Non-linearities in the
dynamics correspond to couplings between modes of different wavelengths. When
the statistical properties of the initial fluctuations are known, a diagrammatic
technique analogous to the Feynman diagrams can be developed to compute en-
semble averaged statistics. For a given statistic (e. g. the power spectrum), the
lowest-order, non-vanishing terms in the perturbative expansion give the leading
expression while higher- order contributions provide additional corrections. Basi-
cally, this gives an expansion in powers of the variance of the density contrast.

Since it does not account for multi-streaming, SPT should break down in the
highly non-linear configurations that lead to the formation of collapsed structures.
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In hierarchical scenarios for structure formation this happens at increasingly larger
scales with time. An interesting question is whether, and to what degree, this
breakdown affects our ability to predict the evolution of structures on the largest
scales. It is generally expected that SPT is meaningful in the so called mildly non-
linear regime, i. e. for Fourier modes with wavenumber k < a few × 0.1 h Mpc−1.

Comparison with N -body simulations shows that, in our currently favoured
ΛCDM model and for statistics like the power spectrum and the bispectrum, SPT
is rather accurate at redshifts z > 1 (for k < 0.2 h Mpc−1) while it becomes
increasingly imprecise as z → 0 due to the fact that the variance of the density
contrast approaches unity (e. g. Carlson et al. 2009; Nishimichi et al. 2009). When
this happens, all terms in the perturbative series are of the same importance and
it does not make sense to truncate the expansion at finite order. A number of
techniques have been proposed to resum or truncate the series in a more meaningful
way (Crocce & Scoccimarro 2006, Pietroni 2008, Taruya & Hiramatsu 2008).

Another complication arises if we want to model the large-scale structure seen in
galaxy redshift surveys, namely we have to account for the fact that galaxies (and
dark-matter halos in general) are biased tracers of the underlying mass distribu-
tion. This is clearly seen observationally as different galaxy types show different
clustering amplitudes. Consistently, N -body simulations show that the distribu-
tion of dark-matter halos depends on their mass and also on other characteristics.
The most common way to account for galaxy biasing is to assume that the relation
between the fluctuation in galaxy counts within a characteristic volume centred
at a given location can be written as a power series of the corresponding volume-
averaged mass-density contrast (Fry & Gaztanaga, 1993). This Eulerian local bias
(ELB) scheme seems to give an accurate description of the large-scale clustering
of dark-matter halos in simulations (Manera & Gaztañaga, 2011). However, it is
difficult to accurately predict the bias coefficients based on models for the collapse
of fluctuations (Manera et al., 2010).

Heavens et al. (1998) have shown how the ELB model can be combined with
SPT to compute the power spectrum of biased tracers of the large-scale structure
up to next-to-leading order. Similarly, the dependence of higher order statistics
on cosmological parameters and bias coefficients can be evaluated following the
same approach (e. g. Gaztanaga & Frieman 1994; Matarrese et al. 1997; Buchalter
& Kamionkowski 1999; Sefusatti & Scoccimarro 2005).

This method has to face a technical difficulty: the ELB scheme only makes
sense when density fields are averaged over a finite volume while SPT applies to
unsmoothed fluctuations. Since the bias parameters depend on the actual scale
used for this spatial averaging procedure the model does not make unique pre-
dictions. Also, the resulting spectra and multi-spectra show unwanted features
at wavenumbers corresponding to the smoothing scale. Renormalization of the
bias parameters has been proposed to alleviate the problems (Heavens et al. 1998,
McDonald 2006).

Irrespective of these difficulties, the ELB+SPT model has been used to extract
the bias parameter that best fit observations (e. g. Verde et al. 2002). Moreover, it
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is often used to discuss how biasing and non-linearities modify baryonic acoustic
oscillations in the galaxy power spectrum (Smith et al. 2007; Jeong & Komatsu
2006, 2007, 2009a) or to quantify scale-dependent biasing in the presence of non-
Gaussian initial conditions (Taruya et al. 2008; Jeong & Komatsu 2009b; Sefusatti
2009; Giannantonio & Porciani 2010; Baldauf et al. 2011). Many forecasts about
the constraining power of cosmological parameters from future observational cam-
paigns are based on these calculations.

Even though each ingredient of the model has been separately tested against
numerical simulations, it still is unclear what level of accuracy can be achieved by
combining SPT with the ELB scheme to describe the distribution of biased tracers
of the cosmic mass distribution. Future galaxy surveys aiming at determining the
origin of cosmic acceleration will require models of the galaxy power spectrum
with per cent accuracy. Can the ELB+SPT computational scheme satisfy such a
requirement?

We present a direct comparison of model predictions against the outcome of
state-of-the-art high-resolution N -body simulations. We follow a novel approach
where we evaluate the SPT expansion of the mass density and velocity fields (up
to third order) starting from the same realisation of the linear density field that
has been used to generate the initial conditions of the simulations1. This allows
us to make a point-by-point comparison between the non-linear mass and halo
overdensities while past studies have only focussed on two- or three-point statistics
(of either SPT or ELB). Our analysis sheds new light on the interpretation of the
bias parameters in ELB and on the effect of the smoothing procedure intrinsic to
the ELB scheme.

This chapter is organized as follows: In section 4.2 we present the principles of
SPT and describe how we calculate the matter density field up to third order. The
numerical simulations used are described briefly in section 4.3. In section 4.4 we
compare the SPT matter density field to the simulations on a point-by-point basis
and using one- and two-point statistics. Section 4.5 provides an introduction into
galaxy bias, and then describes the estimation of the bias parameters and their
dependence on the halo mass and smoothing scales. Using the bias parameters
estimated from the simulation allows us to generate a biased dark matter density
field. The resulting halo density field is compared to the simulations, and the
accuracy of the halo-halo power and halo-mass cross spectra is investigated in
detail.

4.2 Standard Perturbation Theory

Linear structure formation is only valid if the density contrast is small, which
applies to large scales and/or early times. SPT presents an analytical description
to extend linear theory to smaller scales, by finding perturbative solutions to the
coupled non-linearised fluid equations (2.3) - (2.5). For convenience, we switch

1We do not consider resummed theories for which the inclusion of biasing has only recently
been discussed (Elia et al., 2011).
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to conformal time τ for the following calculations. The basic idea of SPT is that
the density contrast in Fourier space δ̃(k, τ) can be written as a sum of separable
functions of τ and k

δ̃(k, τ) =
∞∑

n=1

Dn(τ)δ̃n(k), (4.1)

θ̃(k, τ) = −H(τ)
∞∑

n=1

Dn(τ)θ̃n(k), (4.2)

where Dn(τ) ≈ [D(τ)]n with D(τ) being the linear growth factor for ΛCDM models
(Bernardeau 1994a; Scoccimarro et al. 1998), and D = 1 today. The linearised
Continuity equation (2.6) then immediately implies δ̃1 = θ̃1. In general, δ̃n(k) is
of n-th order in the linear density contrast field δ̃1(k):

δ̃n(k) =
∫ d3q1

(2π)3
. . .
∫ d3qn

(2π)3

[
δ̃1(q1), . . . , δ̃1(qn)

× Fn(q1, . . . , qn) δD(k − q1 − · · · − qn)
]
. (4.3)

The kernels Fn(q1 . . . qn) describe the mode coupling in Fourier space due to the
dynamical non-linearities. They can be derived easily for an EdS universe (see
Appendix A). The numerical corrections for a flat ΛCDM universe are of the
percent order (Bernardeau et al., 2002) and we will therefore neglect them.

The mode-coupling kernels also follow a hierarchy, which can be written as a
recursion relation for n ≥ 2 (Goroff et al., 1986):

Fn(q1, . . . , qn) =
n−1∑

m=1

Gm(q1, . . . , qm)
(2n + 3)(n − 1)

[(2n + 1)α(k1, k2)

× Fn−m(qm+1, . . . , qn) + 2β(k1, k2)

×Gn−m(qm+1, . . . , qn)
]
,

Gn(q1, . . . , qn) =
n−1∑

m=1

Gm(q1, . . . , qm)
(2n + 3)(n − 1)

[3α(k1, k2)

× Fn−m(qm+1, . . . , qn) + 2nβ(k1, k2)

×Gn−m(qm+1, . . . , qn)
]
, (4.4)

where k1 ≡ q1 + · · · + qm, k2 ≡ qm+1 + · · · + qn and F1 = G1 ≡ 1. The kernels
α(k1, k2) and β(k1, k2) are given by

α(k1, k2) ≡ (k1 + k2) · k1

k2
1

,

β(k1, k2) ≡ (k1 + k2)2(k1 · k2)
2k2

1k2
2

. (4.5)

Statistically, the SPT density field can be described by the power spectrum

(2π)3 Pmn(k) δD(k + k′) = 〈δ̃m(k) δ̃n(k′)〉, (4.6)
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where 〈·〉 denotes the ensemble average and P11(k) is called the linear power spec-
trum. The next-to-leading-order corrections (also called the one-loop corrections)
to the power spectrum are of the order of δ̃4

1 , because the correlations of third
order in δ̃1 are odd moments and vanish for the case of Gaussian initial conditions.
This means that the following terms contribute at the one-loop level:

P1-loop(k) ≡ P22(k) + 2 P13(k), (4.7)

and so we have to calculate the density contrast field up to third order. In order to
meaningfully truncate the expansion after n = 3, and to preserve the perturbative
hierarchy, we need to make sure that |δ(x)| ≪ 1. This is only true for very early
times and/or if the field is “smoothed” (averaged) over a sufficiently large scale. We
adopt a Gaussian smoothing kernel, which corresponds to a simple multiplication
in Fourier space, and denote the smoothed fields with a superscript s:

δ̃s(k) ≡ e
−(|k|R)2

2 δ̃(k). (4.8)

The time evolution of the density contrast is given by

δs
SPT(k, τ) = D(τ)δs

1(k) + D2(τ)δs
2(k) + D3(τ)δs

3(k), (4.9)

and we can obtain the real-space counterparts δs
SPT(x, τ) and δs

n(x) using inverse
Fourier transformation.

The one-loop power spectra can also be directly calculated from the linear
power spectrum (Makino et al. 1992, Jain & Bertschinger 1994) by inserting Equa-
tion (4.3) into Equation (4.6) and making extensive use of Wick’s theorem:

P22(k) = 2
∫ d3q

(2π)3
F 2

2 [k − q, q] P11(|k − q|)P11(q), (4.10)

P13(k) = 3 P11(k)
∫

d3q

(2π)3
P11(q)F (s)

3 [k, q, −q] , (4.11)

where F
(s)
3 [k, q, −q] denotes F3 [k, q, −q] symmetrized with respect to its argu-

ments.

In previous studies, the one-loop corrections to the power spectrum were cal-
culated using Equation (4.10) and Equation (4.11). In this chapter, we explicitly
calculate the third-order density contrast field point-by-point on a 3D grid and
compare it to a simulated non-linear density contrast field to test the validity of
SPT at low redshifts. We start from an initial density field with N3 grid points and
calculate the corresponding higher order density fields, which can then be evolved
to any redshift according to Equation (4.1).

While Equation (4.3) is an elegant analytical description of how the higher order
density contrast field depends on the linear one, there are other formulations which
are more suited for numerical integrations, because they do not require (n − 1)
integrations over k-space (the integral over the Dirac delta function can be done
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Figure 4.1: Left panel: δs
m(x) (blue crosses) compared to the different SPT orders

(black dotted: δs
1(x), green dashed: δs

1(x) + δs
2(x), red solid: δs

SPT(x)) at redshift 0
for the small box with R = 12 h−1 Mpc. Right panel: Same for the large box and
R = 28 h−1 Mpc. (Second order is not shown here because it is very similar to the third
order for this smoothing scale.)

analytically). Makino et al. (1992) showed that Equation (4.3) can be rewritten
as a recursion relation (their Eqs. 2.15a and 2.15b), expressed schematically like:

δ̃n = K
[
δ̃1, . . . , δ̃n−1, θ̃1, . . . , θ̃n−1

]
,

θ̃n = J
[
δ̃1, . . . , δ̃n−1, θ̃1, . . . , θ̃n−1

]
, (4.12)

where K and J are single integrals over k-space with (different) mode-coupling
kernels (see Appendix A). The starting point of this integration is given by the
linearised Continuity equation: θ̃1(k) = δ̃1(k). This method is numerically faster
because it takes significantly less time to calculate two single integrals (e. g. δ̃2 and
θ̃2 which are needed for δ̃3) than to perform a double-integral for δ̃3 using Equa-
tion (4.3). This also means that even higher-order corrections could be calculated
in the same amount of time and one obtains the velocity divergence field θ̃(k) up
to the (n − 1)-th order as a side product. We find that this method is also more
stable against numerical effects such as the discretization of the mode-coupling
kernels.

However, even with this hierarchical method, the integration time still scales
with the square of the number of grid points, because if we increase the number of
grid points by, say, a factor of 8 (doubling the resolution in each dimension), for
each of these points we also have 8 additional grid points that contribute to each
integral. This means we are limited by the resolution of our grid, i. e. the minimum
separation between grid points. The highest resolution that can be achieved with
a common workstation is (128)3 grid points.
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4.3 N-body simulation

The simulations that are used in this chapter are described in detail in Pillepich
et al. (2010). They were run using the TreePM code gadget-2 (Springel 2005) in
a flat ΛCDM cosmology starting from a Gaussian random field. The cosmological
parameters are Ωm = 0.279, Ωb = 0.0462, ΩΛ = 0.721, h = 0.701, σ8 = 0.817
and ns = 0.96. The output contains the 3D positions and velocities of the dark
matter particles, which are converted into a density contrast field on a grid using
the cloud-in-cell (CIC) algorithm. Outputs for 30 time steps between z = 10
and z = 0 logarithmically spaced in (1 + z)−1 are available. The linear density
contrast field δ1(x), which is the basis of our calculations, is obtained from the
initial conditions of the simulation. The non-linear matter field from the simulation
output at z = 0 we denote as δm(x).

The simulations consist of two cubic volumes with different side lengths L, which
are used to explore different length scales and halo masses. The small box has
L = 150 h−1 Mpc and contains (1024)3 dark matter particles with mass Mpart =
2.433 × 108 h−1 M⊙. The large box has L = 1200 h−1 Mpc and (1024)3 particles
with Mpart = 1.246 × 1011 h−1 M⊙. There are a total of 1,051,230 (1,953,437)
halos at redshift 0 identified with the Friends-of-Friends algorithm in the small
(large) simulation volume. The linking length is 0.2 times the mean inter-particle
separation and each halo contains at least 100 particles. This gives a total mass
range of 2.433 × 1010 h−1 M⊙ ≤ Mh ≤ 1.2 × 1015 h−1 M⊙. The initial redshifts are
z = 70 and z = 50, respectively.

To compare the SPT results with the simulations, we need to smooth the density
field. The resolution limit of (128)3 grid points for the SPT calculation restricts the
scales that can be probed for the large simulation box, because each grid cell has
a minimal size of 1200/128 h−1 Mpc ≈ 9.4 h−1 Mpc. In order for the smoothing
kernel to extend over several grid cells, we have to choose R ≈ 28 h−1 Mpc for
the large simulation volume. For the small box, the resolution restriction is not
significant, but we find that SPT does not give accurate results if δs(x) is of order
unity at redshift 0. For this reason, we adopt R = 12 h−1 Mpc which corresponds
to an root mean square (r. m. s.) density contrast of 0.6.

We will use the output of the simulations for both dark matter and dark matter
halos to compare with our SPT calculation and investigate different length scales,
halo masses and redshifts. The simulation results are of course not limited by
the SPT grid resolution, but if we want to make point-by-point comparisons, we
have to use the same grid and smoothing scale to the simulated mass and halo
distributions.

4.4 Dark matter

In the following sections, all density fields are considered to be at redshift 0, unless
specifically stated otherwise.
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Figure 4.2: Left: Scatter plot of δs
m(x) vs. linear order SPT (left panel), second-

order SPT (middle panel), third-order SPT (right panel). Black dashed lines show
δs

m/δs
SPT = 1. The smoothing scale is R = 12 h−1 Mpc. Note that we only show one out of

eight points to improve readability. Right: Same for the large box with R = 28 h−1 Mpc.

4.4.1 SPT density contrast field

We want to approximate the non-linear matter density contrast field δs
m(x) with

the third-order SPT field δs
SPT(x). We also have to investigate if the third-order

expansion is actually more accurate than the lower orders. Figure 4.1 shows the
different approximations to δs

m(x) along a line parallel to one of the coordinate axis
in the simulation over the box-length L (half a box-length for L = 1200 h−1 Mpc to
make the lines more distinguishable). For both simulation volumes, the third-order
density contrast gives the best approximation to the simulated matter density con-
trast δs

m(x). The agreement is already pretty good for the small box but excellent
for the large box, owing to the larger smoothing scale in the latter case. While
the linear density contrast δs

1(x) traces the overall structure of the non-linear field,
the higher order expansion is more accurate.

Figure 4.2 shows a scatter plot of the non-linear field in the simulation and
the different SPT orders for both volumes. Starting from the left panel, we see
again that the linear density contrast is not a very good approximation to the non-
linear density contrast. Although this result is not really surprising, the plot once
again shows that the linear approximation is especially wrong when |δs(x)| 6≪ 1.
The middle panel shows the density contrast up to second order and the right
panel shows the density contrast up to third order. Note that the third-order over
corrects the linear density around δs ≈ 1. From left to right the scatter around
the black line given by δs

m/δs
SPT = 1 is reduced. In all three panels the difference

to δs
m(x) is largest when |δs(x)| 6≪ 1. Again, the difference in scatter between the

large and small simulation volumes is due to the different smoothing scales used
(12 and 28 h−1 Mpc).

Figure 4.3 shows the probability distribution function (PDF) for the linear, SPT
and non-linear matter density contrast for the small box, with a smoothing scale
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Figure 4.3: Probability distribution function (PDF) for δs
SPT(x) (red solid), δs

m(x) (blue
dotted) and δs

1(x) (black dashed) at redshift 0 (small box, R = 12 h−1 Mpc).

R = 12 h−1 Mpc. This also shows that SPT provides a good approximation for the
non-linear density contrast even at redshift 0.

Redshift Dependence

So far we have only compared our SPT calculation at redshift 0. Now we want to
extend the comparison to higher redshifts. Figure 4.4 shows the conditional mean
of the non-linear density contrast given its linear counterpart at redshift 0 (left
panel) and redshift 1.6 (right panel). The lines show the conditional mean density
corresponding to: the linear evolution (black short-dashed), the SPT density (red
solid), the non-linear evolution from the simulation (blue dotted) and an analytic
expectation from the spherical collapse model (Bernardeau 1994b, Mo & White
1996, green long-dashed), all smoothed with R = 12 h−1 Mpc. The hatched areas
show the 1-σ scatter contours for SPT and simulation. SPT and non-linear mat-
ter density agree well if δs

lin is not too large, as expected, but the scatter around
the mean SPT density is generally larger than around δs

m. The spherical collapse
model (which was derived for the Einstein-de Sitter cosmological model) always
overpredicts the non-linear density contrast, and gets close only when δs < 0. The
linear approximation overpredicts the simulation at low densities, and underpre-
dicts it at high densities. The right panel shows the same for redshift 1.61. At
this redshift, SPT and non-linear matter density are in almost perfect agreement,
but the scatter in SPT is still slightly larger. The spherical collapse model and
the linear evolution are now closer to the non-linear evolution, but still show the
systematics seen at redshift 0.

The spherical collapse model is commonly used to compute Eulerian bias coef-
ficients for dark matter halos (e. g. Mo & White 1996, Giannantonio & Porciani
2010 and references therein), but it does not describe our data well. We therefore
provide a new and more accurate fitting formula for the relation between δs

m and
δs

1. The redshift range we can study is 0 ≤ z ≤ 10 in 30 bins, logarithmically

51



4.4 Dark matter 4 Perturbation theory and halo bias

Figure 4.4: Left panel: Mean non-linear matter density contrast from the simulation
(blue dotted), SPT (red solid) and an analytic prediction from the spherical collapse
model (green long-dashed) as a function of the linear density contrast at redshift 0, for
the small box with R = 12 h−1 Mpc. The hatched areas show the 1-σ scatter around
the mean for δs

SPT (horizontal hatching) and δs
m (45◦), and the black short-dashed line

corresponds to linear evolution. The inset shows the region around δs = 0, where linear
theory actually overpredicts the non-linear evolution. Right panel: Same at z = 1.61.

spaced in (1 + z)−1. For each redshift bin, we find that the parameterisation

δm(z) = A(z) + B(z) · δs
1(z) + C(z) · [δs

1(z)]2 (4.13)

gives a very good fit for all values of δs
1: the ratio of the fit residuals to the true

value is less than 5 per cent for redshift 0 and less than 1 per cent for z > 6. The
functions A, B and C depend on z in the following way:

A(z) = 0.006 − 0.054
1 + z

,

B(z) = 1.000 − 0.045
1 + z

,

C(z) = 0.643 − 0.012 z − 0.122
1 + z

. (4.14)

In the limiting case z → ∞, some of the fit coefficients do not show the right
asymptotic behaviour (A → 0, B → 1, C → 0) as one would expect because
δs

m → δs
1, so this fit should not be used for redshifts outside the fitted range. Both

density fields were smoothed with R = 12 h−1 Mpc. The choice of R does not
significantly influence the fitting parameters, but the agreement is worse when
large values of δs

1 and δs
m are allowed (i. e. R is small at low redshifts).

Another relation between the linear and non-linear density fields that is some-
times used is the lognormal transformation (e. g. Coles & Jones 1991, Bernardeau
& Kofman 1995). This has proven to yield a PDF which agrees well with sim-
ulations. However, this does not imply that it can be used as a point-by-point
relation between the linear and non-linear density fields, as pointed out by Kayo
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et al. (2001). We follow their parameterisation, which can be rewritten as

δs
m(z) = eγ(δs

1(z)− 1
2

γσ2) − 1, (4.15)

with
γ2σ2 = ln(1 + σ2

m). (4.16)

Here, σ2 (σ2
m) is the variance of the smoothed linear (non-linear) density field. We

calculate σ2 and leave γ as the fit parameter. This fit yields values for δm which are
systematically lower by ≈ 30 per cent at redshift 0 and still 20 per cent at z > 6.
So indeed the lognormal transformation can not be used to accurately predict
the evolution of an initial Gaussian field into a non-linear field. Again, this does
not mean that the statistics of a non-linear density field can not be described by a
lognormal field, just that one can not expect that, for a point-by-point comparison,
the linear field used in the transformation corresponds to the initial conditions of
that non-linear field.

4.4.2 Matter power spectra

After calculating the higher order density contrast, we now calculate the matter
power spectra up to the 1-loop order. We can do this in two ways: calculating the
volume average of the SPT density contrast via Equation (4.6) or integrating a
given linear power spectrum P11(k) via Equation (4.10)), where P11(k) is the same
power spectrum that was used to set up the initial conditions of the simulation.
This also serves as a consistency check for our grid-based calculation. The results
for the large box are shown in Figure 4.5. The small box is not shown because
it is very similar. The lines show the results from Equation (4.10) and the points
show the numerical result, without smoothing, i. e. R = 0. The errors of the power
spectra are calculated assuming that our fields are Gaussian (Feldman et al., 1994):

σ2
P =

2
nB

P 2(k), (4.17)

where nB is the number of modes in each k-bin2.
The linear power spectrum from the simulation agrees very well with the input

power spectrum until the scales which are affected by the resolution of the grid of
the matter field. Once we apply smoothing, this small-scale effect will disappear.
The P22-term from the integration and the SPT calculation fits the simulation
very well on all applicable scales. Finally, the P13-term from the SPT calculation
is slightly lower than the power spectrum integration (a factor of ≈ 1.1). The lines
that are shown in the left panel of Figure 4.5 are the integration result with limits
corresponding to the scales which are available in our simulation box, but since
the box only contains discrete modes and the power spectrum integration assumes
a continuous frequency spectrum, choosing the same upper and lower bound for

2The factor of 2 reflects the fact that we should only consider independent Fourier modes in
each bin, and for the case of a real-valued field, the modes k and −k are not independent.
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Table 4.1: Halo mass bins: I-III for the small box and IV-VI for the large box.

Mass bin Mass range [1012 h−1 M⊙] Number of halos
I 0.025 - 0.035 91,511
II 0.5 - 2 17,030
III 5 - 10 2,693
IV 12.5 - 30 376,292
V 60 - 150 71,581
VI 300 - 1200 7,673

both methods does not necessarily give the same result. A consistency check for
both methods is if the power spectra overlap in the k-region covered by both boxes.
We find that the grid-based method gives very consistent results in this region,
while there is an offset for the power spectrum integration. By slightly modifying
the integration limits for P13(k), the discrepancy in the latter can be fixed, and
both methods agree with each other.

The right panel of Figure 4.5 shows the full third-order SPT matter power
spectrum compared to the simulation. The lines show the power spectra directly
calculated from the linear and non-linear density contrast in the simulation, which
have been “glued together” to show both volumes at the same time. The points
show the result from our grid-based calculation. For the large box, linear theory,
SPT and non-linear evolution agree until k ≈ 0.1 h Mpc−1, but linear theory seems
to be the better approximation for slightly larger k. For the small box, the SPT
matter power spectrum describes the non-linear evolution better than the linear
power spectrum for scales 0.2 h Mpc−1 < k < 0.3 h Mpc−1, while they are equiv-
alent for larger scales. We stress again that these power spectra (or the density
contrast used to compute them) are not smoothed at all in both panels of Fig-
ure 4.5. This explains the discrepancy of the SPT power spectra on small scales
with respect to the good agreement of the density contrasts shown in Figure 4.1.
The fact that the points deviate from each other in the overlap region between the
large and small box is due to P13(k), as discussed above. There is excess power on
these scales for the full SPT power spectrum because P13(k) < 0.

4.5 Halos

In this section we study dark matter halos and how they relate to the underlying
matter density field. The halos are split up in 3 mass bins for each box because the
bias parameters are very sensitive to the mass of the objects (see also Figure 4.11).
Table 4.1 shows the selection criteria for the binning. Halo positions are assigned
to the grid using the CIC algorithm to obtain a continuous halo density contrast
field δh(x). The bins were chosen such that they are separated in mass, but still
contain a large enough number of halos to reduce the effect of shot noise.
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Figure 4.5: Left panel: Contributions to the SPT matter power spectrum for the big
box: P11(k) (blue solid line and squares), P22(k) (red dashed line and triangles) and
|2 P13(k)| (green dotted line and stars). The points are the results from our calculations,
while the lines are obtained from (integrating) a linear power spectrum according to
Equation (4.10). Right panel: The third-order SPT power spectrum (points with error
bars) compared to the non-linear power spectrum from the simulation (blue solid line)
and the linear power spectrum evolved to redshift 0 (black dashed line) for both boxes.
Green triangles and red squares are used to distinguish the large and small box.

4.5.1 Bias estimation

Many different bias models exist in the literature (see section 2.2.1), but they can
be broadly classified by the choice of coordinates (Eulerian vs. Lagrangian), and
their functional form (local vs. non-local). Here, we use the local Eulerian bias
model

δh(x) = F [ δm(x) ] , (4.18)

where the term “local” implies that the halo density δh(x) depends only on the
matter density δm(x) at the same point in space through a general function F .
A choice of F which is widely used is that of a linear relation between δh(x) and
δm(x) with a constant bias factor b:

δh(x) = b δm(x). (4.19)

This so-called linear biasing only changes the amplitude but not the shape of the
power spectrum, since Ph(k) = b2 Pm(k). It has been shown that this is not in
agreement with the power spectra derived from numerical simulations (e. g. Smith
et al. 2003). Also, for |b| > 1, it can lead to δh(x) < −1, which of course does not
make physical sense. However, on large scales the linear approximation is valid as
will also be shown in section section 4.5.2.

The next step would be to consider a non-linear relation between δh(x) and
δm(x). If we assume that δm(x) is a smooth field, we can Taylor-expand the right
hand side of Equation (4.18) around δm(x) ≈ 0 and get an expression for the
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higher-order bias coefficients bj

δh(x) =
∞∑

j=0

bj

j!
δj

m(x), (4.20)

where b1 is the linear bias, and b0 is determined by the requirement 〈δh(x)〉 = 0.
To be consistent with our third-order SPT matter field, we first smooth δh(x)
according to Equation (4.8) and truncate Equation (4.20) after b3:

δs
h(x) = b1δs

m(x) +
b2

2
(δs

m(x))2 +
b3

6
(δs

m(x))3 . (4.21)

This means we obtain the bi by fitting a polynomial to the scatter plot of δs
h(x)

and δs
m(x), which is shown for all six mass bins in Figure 4.6.

However, there is a subtlety in the way the local bias model is applied. While the
input mass density contrast field is smoothed on a certain scale R, and also the halo
density field in the scatter plot is smoothed on the same scale, the reconstructed

halo density from the fits also contains contributions from smaller scales. The
reason for this is the choice of the filter function in Equation (4.8). If we used
a top-hat filter in k-space, this effect would vanish, because then all modes with
k > R are set to zero (however this filter oscillates in real-space). But with the
Gaussian filter, modes with, say, kR = 2 are only damped by a factor of ≈ 0.14.
When applying the ELB model, taking the square and cube of the smoothed field
in real-space corresponds to a convolution in k-space. This unsmoothing effect can
be seen especially in the halo power spectra (section subsection 4.5.2), and limits
the scales where we can trust the calculated halo power spectra even more than
the validity of the SPT approximation discussed in section subsection 4.4.2.

Our fitting process allows for three free parameters: b1, b2 and b3 (b0 is not a free
parameter and always very close to 0 so it can be neglected). We also fit the point
cloud with fewer bias parameters and use the Akaike information criterion3 (AIC)
to determine the best fit without overfitting the data with too many parameters.
We define

δh,f1(x) ≡ b1δs
m(x),

δh,f2(x) ≡ b1δs
m(x) +

b2

2
(δs

m(x))2 ,

δh,f3(x) ≡ b1δs
m(x) +

b2

2
(δs

m(x))2 +
b3

6
(δs

m(x))3 , (4.22)

which describes the parameterisation used for fitting and the notation to denote
the halo density contrast δh,fi(x) obtained from the i-th order fit. Note that δh,fi(x)
is not written with the superscript s due to the unsmoothing effect discussed in
the previous paragraph. The errors on the parameters are calculated using the
jackknife method with 8 subsamples of the density contrast fields. Scatter plots
of δs

h(x) vs. δs
m(x) and the fitted polynomials are shown in Figure 4.6 for all six

3Basically a χ2 method which penalizes extra parameters.
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Figure 4.6: Scatter plot of δs
h(x) vs. δs

m(x). Top row: mass bins I and II (R =
12 h−1 Mpc), middle row: bins III (R = 12 h−1 Mpc) and IV (R = 28 h−1 Mpc), bottom
row: bins V and VI (R = 28 h−1 Mpc). The lines show the polynomials of different order
fitted to determine the bias parameters bi (black long-dashed: linear, green short-dashed:
second order, solid blue: third order). The black squares with errorbars show the mean
of δs

h in bins of δs
m and the 1-σ scatter around it as visual guidance. Note that to increase

readability, we only show one of every eight points used in the fitting procedure.
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Table 4.2: Bias parameters for both third-order fits for different mass bins and smooth-
ing scales R [ h−1 Mpc].

Mass bin R δs
h vs. δs

m δs
h vs. δs

SPT

b1 I 8 0.747 ± 0.006 0.666 ± 0.008
b2 I 8 −0.341 ± 0.022 −0.554 ± 0.021
b3 I 8 0.171 ± 0.034 1.542 ± 0.048
b1 I 12 0.719 ± 0.009 0.711 ± 0.010
b2 I 12 −0.300 ± 0.034 −0.438 ± 0.017
b3 I 12 0.171 ± 0.125 0.620 ± 0.111
b1 III 12 1.333 ± 0.035 1.323 ± 0.034
b2 III 12 −0.716 ± 0.140 −1.086 ± 0.093
b3 III 12 −0.288 ± 0.612 0.066 ± 0.532
b1 V 28 2.039 ± 0.023 2.037 ± 0.023
b2 V 28 0.270 ± 0.124 −0.346 ± 0.136
b3 V 28 −8.682 ± 1.476 −8.556 ± 1.446

mass bins. The mean and 1 − σ scatter for δs
h in bins of δs

m are indicated by points
with errorbars. One can see that the local bias model seems to be a rather good
approximation, although there is some scatter in the relation. A possible source
of this could be shot noise from sampling discrete halos. Assuming Poissonian
shot noise, the amplitude can be estimated by calculating the number of halos
Ns = ρh Vs that are in each smoothing volume Vs = 6π2R3, and the mean number
of halos in that mass bin, N , from the third column in Table 4.1:

∆δs
h =

∆Ns

N
=

√
N (δs

h + 1)

N
. (4.23)

where ∆Ns =
√

Ns (Poissonian noise) was used in the second step. For mass bin
I with R = 12 h−1 Mpc, |δs

h| ≤ 0.8. The maximum error from shot noise would be
∆(δs

h = 0.8) ≈ 0.03. But one can see from Figure 4.6 that the scatter does not
increase as |δs

h| increases, and that it is much larger than the maximum shot noise
error. This means that there is an intrinsic scatter around the local bias model,
i. e. the bias is not deterministic (see also Somerville et al. 2001). For the higher
mass bins with fewer halos (right panel), the effect of shot noise is more prominent.
There have been suggestions in the literature how to deal with stochasticity (e. g.
Dekel & Lahav 1999; Cai et al. 2011), but we will not include this in our modelling.
The AIC values can be converted into a relative probability wi for each model (see
e. g. the appendix of Porciani & Norberg 2006), with

∑
i wi = 1. Independent of

halo masses and smoothing scale R, the third-order bias model always provides the
best fit, with w3 ≈ 1 while w1, w2 are lower by several orders of magnitudes. This
means that although the second- and third-order fits in Figure 4.6 differ only in
regions with relatively few points, the AIC criterion clearly favours a model with
3 bias parameters.

In the previous sections, we showed that δs
SPT ≈ δs

m. So instead of fitting to
the simulation matter density contrast, we can also obtain the bias parameters by
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Figure 4.7: Left panel: Probability distribution function for δh(x) (dotted blue) com-
pared to δh,f1(x) (black dashed) and δSPT

h,f1
(x) (red solid). Right panel: Probability

distribution function for δh(x) (dotted blue) compared to δh,f3(x) (black dashed) and
δSPT

h,f3
(x) (red solid). Both panels show mass bin I with R = 12 h−1 Mpc.

Figure 4.8: Probability distribution function for δh(x) (dotted blue) compared to
δh,f3(x) (black dashed) and δSPT

h,f3
(x) (red solid). Left panel: Medium mass bin III with

R = 12 h−1 Mpc. Right panel: High mass bin V with R = 28 h−1 Mpc.
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fitting δs
h(x) vs. δs

SPT(x). Similar to Equation (4.22), we define

δSPT
h,f1

(x) ≡ b̄1δs
1(x),

δSPT
h,f2 (x) ≡ b̄1 [δs

1(x) + δs
2(x)] +

b̄2

2
(δs

1(x))2 ,

δSPT
h,f3 (x) ≡ b̄1 [δs

1(x) + δs
2(x) + δs

3(x)] +
b̄2

2

[
(δs

1(x))2

+ 2δs
1(x)δs

2(x)
]

+
b̄3

6
(δs

1(x))3 . (4.24)

The bar is used to point out that bi and b̄i are generally different. This is not
particularly surprising because while we showed before that δs

m ≈ δs
SPT, the density

contrast we fit to for the b̄i is truncated at the order of the fit in δ1. Considering
the third-order fit, one therefore expects the largest deviation between the fit
parameters to occur between b3 and b̄3, which is indeed the case except for the
high mass bin V (see Table 4.2). This truncation is consistent with previous works,
and using the full SPT density contrast in the second- and third-order fits does not
improve the agreement between bi and b̄i. The errors on b̄i are also jackknife errors
from 8 subsamples, and again the third-order fit is always preferred by the AIC.
Note that the bias parameters also depend on the smoothing scale R. Both effects
can be seen in Table 4.2 for mass bins I, III and V. We do not show the values of
the fitted bias parameters for all possible combinations of mass bins and smoothing
scales, but we comment on their mass dependence for a specific smoothing scale in
section section 4.5.1. The fact that the allowed range for b3 does not include zero
in most cases is also an indication that the third-order bias parameter is required
for the fit.

Testing the Local Bias Assumption

Now we can compare the fitted halo density contrast δh,fi(x) to the true halo
density contrast from the simulations δs

h(x). Figure 4.7 shows the probability
distribution function of the fitted halo density contrast compared to the simulation.
The left panel shows the results using a linear fit, i. e. only one bias parameter
b1, fitting to δs

m and δs
1 respectively. Neither fit gives a satisfactory halo density

contrast, and the PDFs look quite different. The right panel shows the same
but this time using the third-order fit with all three bias parameters. Here, both
fits give PDFs which are almost indistinguishable, but the agreement with the
simulated halo density contrast is still not perfect. This discrepancy can be seen
for all mass bins: Figure 4.8 shows the PDFs of the third-order fits for mass bins
III and V compared to the simulated density contrast. This indicates that the
local bias model does not capture all the properties of the halo density field.

Figure 4.9 shows again two slices of the simulation along one axis, extending
over the box length L = 150 h−1 Mpc. Overplotted are the fits of different order
to δs

m (left panel) and to δs
SPT (right panel). In the former case, the different fits

behave very similarly. In the latter case, the third-order fit (black long-dashed)
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Figure 4.9: Left panel: Amplitude of the halo density contrast from the simulation
(blue crosses) compared to δh,fi(x). Red dotted: linear fit, green solid: second-order fit,
black long-dashed: third-order fit. Right panel: Same for δSPT

h,fi
(x). Both panels show

mass bin I with R = 12 h−1 Mpc. Note that this is the same region of the density field
as in the left panel of Figure 4.1.

seems to be closest to the simulation. It is clear that in both cases, the local bias
model does not resemble the simulated halo density field on small scales. We also
show the results for a medium and a high mass bin (III and V) in Figure 4.10,
but here we show only the fits to δs

m. Also for higher masses and larger smoothing
scales, the ELB model is not satisfactory on a point-by-point level, although the
PDFs shown before were similar.

We also calculate the linear correlation coefficient c and the Spearman ranked
correlation coefficient cSp which allows for a general, non-linear correlation between
the simulated and fitted δh(x) (Table 4.3). The values are very close to 1, which
shows as well that overall, the local bias assumption is not such a bad model for
out data. From now on we will use the third-order fit because it is the model
preferred by the AIC, the correlations also support this choice and it is consistent
with the order of the SPT calculation.

Mass Dependence

Figure 4.11 shows the mass dependence of the bias parameters (fitting δs
h vs. δs

m)
for the mass bins defined in Table 4.1 and R = 12 h−1 Mpc. Different symbols
distinguish the different parameters: red squares for b1, green triangles for b2 and
blue crosses for b3. The lines show a theoretical prediction for the bias parameters
obtained as follows: The first step is to apply the peak-background-split model
to the halo mass function in the simulation (from the fitting formula presented in
Pillepich et al. 2010). The second step uses the spherical collapse model to relate
the Lagrangian and Eulerian bias parameters (Giannantonio & Porciani, 2010).
The two sets of bias parameters show the same trend with halo mass, but they are
not in a perfect agreement given the jackknife errors bars (see also Manera et al.
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Figure 4.10: Amplitude of the halo density contrast from the simulation (blue crosses)
compared to δh,fi(x). Red dotted: linear fit, green solid: second-order fit, black long-
dashed: third-order fit. Left panel: Medium mass bin III with R = 12 h−1 Mpc. (Same
region as in Figure 4.9). Right panel: High mass bin V with R = 28 h−1 Mpc.

Table 4.3: Correlation coefficients for the halo density contrast for a selection of mass
bins and smoothing scales R [ h−1 Mpc].

Mass bin R Pair c cSp

I 12 〈δs
h δh,f1〉 0.987 0.989

I 12 〈δs
h δh,f2〉 0.990 0.989

I 12 〈δs
h δh,f3〉 0.990 0.989

I 12 〈δs
h δspt

h,f1
〉 0.951 0.961

I 12 〈δs
h δspt

h,f2〉 0.985 0.986
I 12 〈δs

h δspt
h,f3

〉 0.989 0.989
III 12 〈δs

h δh,f1〉 0.934 0.956
III 12 〈δs

h δh,f2〉 0.943 0.956
III 12 〈δs

h δh,f3〉 0.043 0.956
III 12 〈δs

h δspt
h,f1

〉 0.902 0.922
III 12 〈δs

h δspt
h,f2〉 0.937 0.953

III 12 〈δs
h δspt

h,f3
〉 0.944 0.957

V 28 〈δs
h δh,f1〉 0.876 0.875

V 28 〈δs
h δh,f2〉 0.876 0.875

V 28 〈δs
h δh,f3〉 0.877 0.875

V 28 〈δs
h δspt

h,f1
〉 0.866 0.869

V 28 〈δs
h δspt

h,f2
〉 0.876 0.875

V 28 〈δs
h δspt

h,f3
〉 0.877 0.875
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Figure 4.11: Mass dependence of the fitted bias parameters for R = 12 h−1 Mpc. Sym-
bols: fit parameters, lines: predictions for the simulated halo mass function. b1 (red
squares and solid line), b2 (green triangles and dashed line) and b3 (blue crosses and
dotted line).

2010). The error in b3 is strongly influenced by shot noise, because there are fewer
points in the very high and low density regions which determine the shape of the
polynomial.

4.5.2 Halo power spectra

In this section we test the accuracy of SPT and ELB for the halo power spectrum.
In order to calculate the SPT halo power spectra, we have to re-arrange δSPT

h,fi
(x)

into terms of the same order in δs
1(x), e. g.

δ
(2)
h (k) ≡ b1δs

2(x) +
b2

2
(δs

1(x))2. (4.25)

The biased, third-order SPT halo power spectrum then consists of three terms:

P SPT
f3 (k) ≡ Ph,11(k) + Ph,22(k) + 2 Ph,13(k), (4.26)

with Ph,mn(k) ∝ 〈δ̃(m)
h (k) δ̃

(n)
h (k′)〉, as in Equation (4.6). In this way we can make

sure that also the halo power spectrum does not contain terms of order higher
than δ4

1.

Figure 4.12 shows the ratio of the reconstructed halo power spectrum to the one
from the simulation (left panel: large box, right panel: small box), which has been
corrected for (Poissonian) shot noise in the following way:

Ph(k) ≡ P sim
h (k) − L3

N
, (4.27)
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Figure 4.12: Ratios of halo power spectra from our fits to the simulation. Left panel:
big simulation volume (mass bin IV, R = 28 h−1 Mpc), right panel: small simulation
volume (mass bin I, R = 12 h−1 Mpc). From top to bottom: linear fit to the linear
matter density; third-order fit to full SPT density; third-order fit to the non-linear
matter density field.

Figure 4.13: Ratios of halo-matter cross spectra from our fits to the simulation. Left
panel: big simulation volume (mass bin IV, R = 28 h−1 Mpc), right panel: small sim-
ulation volume (mass bin I, R = 12 h−1 Mpc). From top to bottom: linear fit to the
linear matter density; third-order fit to full SPT density; third-order fit to the non-linear
matter density field.
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where N is the number of halos in each bin and L is the box size. The top
panel on each side corresponds to the power spectrum of δSPT

h,f1 , while the middle
panel corresponds to δSPT

h,f3
. In the lowest panel we consider δh,f3. Two effects

can be noticed: In general, both linear and third-order SPT underestimates the
power apart from the largest scales in both boxes. However, when kR ≈ π, the
unsmoothing effect sets in, eventually leading to a diverging ratio. The lowest
panel shows that this behaviour is not caused by SPT, because δSPT

h,f3
and δh,f3 have

very similar power spectra.

We also tried to reverse the order of smoothing and fitting in the following way:
Determining the bias parameters from a scatter plot of the unsmoothed4 halo and
matter densities, then multiplying the (unsmoothed) matter density with these
new bias parameters and applying Equation (4.8) to the resulting biased halo
field. The halo power spectra from this fit do not show the unsmoothing effect
by construction, but are also incompatible with the simulation halo power spectra
on any scale. In fact, not even the linear bias parameter from this new method
agrees with the previous estimates, so that the halo power spectrum is different
from the simulation even on large scales where the smoothing should have no effect
(because Ph ≈ b2

1Pm). We therefore conclude that (not surprisingly) the order of
smoothing and fitting can not be reversed, and one has to live with the limitations
of the non-linear local bias model that re-introduces some small-scale fluctuations.

We show the ratio of the halo-matter cross spectra in Figure 4.13, the order
of the panels is the same as in the previous figure. The cross spectrum is not
affected by shot noise, and ELB spectra agree with the simulation over a larger
range of scales for the big box. Contrary to the halo power spectra, the unsmooth-
ing effect leads to an additional loss in power for the cross spectra on the very
small scales, particularly evident for the small box. Note that the best agreement
between simulation and fits is actually achieved using the linear bias parameter
and the linear matter power spectrum (top panel). For the large box, this is not
surprising because the scales in consideration are large enough for linear theory to
be a good approximation. For the small box, linear theory is underestimating the
power for the small scales, as seen before in Figs. Figure 4.5 and Figure 4.12, but
only on scales where the cross spectra from the higher-order fits are also too low.
This means that the unsmoothing effect (which does not affect the top panel) has
an even stronger influence on the halo power spectra from SPT+ELB than the
deviation from linear theory on small scales, at least within the accuracy of our
simulations. In order to investigate the systematic effects seen in Figs. Figure 4.12
and Figure 4.13, we now consider the influence of the fit residuals on auto and cross
spectra, which include both the intrinsic scatter as well as the unsmoothing effect
from the local bias scheme. We define the residual ∆(x) for the third-order fit by

∆(x) ≡ δs
h(x) − δh,f3(x), (4.28)

4That is without applying (Equation (4.8)). Of course, the fields are always smoothed at least
on the scale of the grid used in the CIC algorithm.

65



4.5 Halos 4 Perturbation theory and halo bias

Figure 4.14: Left panel: Halo power spectrum and residuals for δh,f3
(x) (upper panel,

mass bin I, R = 12 h−1 Mpc). Dashed blue line: Ph(k), solid red line: Ph,f3
(k), dotted

black line: P∆∆(k), points: the cross-term 2 P∆ δh,f3
(k). Open squares show positive

values, solid triangles show negative values of the cross-term. Ratio between Ph,f3
(k)

and Ph(k) (lower panel). Right panel: Same for the halo matter cross spectrum. Dashed
blue line: Phm(k), points: P∆ δm(k), solid red line: Pδh,f3

δm(k). Note the change in sign

at k ≈ 0.3 h Mpc−1.

from which

Ph(k) = Ph,f3
(k) + 2 P∆ δh,f3

(k) + P∆∆(k),

Phm(k) = Pδh,f3
δm(k) + P∆ δm(k), (4.29)

follows for the halo power spectrum and the halo matter cross spectrum. The left
panel of Figure 4.14 shows the different terms for Ph(k): Ph,f3

(k) (solid red) is very
close to Ph(k) (dashed blue) until k ≈ 0.3 h Mpc−1. The cross-term 2 P∆ δh,f3

(k)
(green points) can have both positive and negative values. This is indicated in
the figure by the different symbols: open squares for positive values, solid tri-
angles for negative values. Finally, P∆∆(k) is shown with a black dotted line.
Generally, 2 P∆ δh,fi

(k) and P∆∆(k) have a small amplitude, but their contribution
becomes important on smaller scales. The lower panel shows the ratio of the fit
and the simulated halo power spectrum for comparison. The region where Ph,f3

(k)
is systematically lower than Ph(k) roughly corresponds to the region where the
cross-term is positive.

The right panel of Figure 4.14 shows the terms contributing to Phm(k) (blue
dashed): the cross spectrum of the fit and the dark matter (red solid) and the
cross spectrum of the residuals and the dark matter (black points, squares positive
values, triangles negative values). In contrast to the fitted halo power spectrum
which rises on small scales, the fitted cross spectrum becomes negative at around
the same scales, indicated by the “hole” in the red solid line (for smaller scales we
then show −Pδh,f3

δm). The lower panel shows the ratio of the fit and the simulation
cross spectrum. As before, squares correspond to positive values of this ratio, and
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Table 4.4: Comparing b1, b̄1, beff , bH
eff and bspt

eff for different mass bins and smoothing
scales R. 〈·〉 here denotes the average over a specific k-range (see text). R is given in
h−1 Mpc. Errors are jackknife errors using 8 subsamples.

Mass bin R b1 b̄1 〈beff〉 〈bH
eff〉 〈bspt

eff 〉
I 6 0.773 ± 0.005 0.573 ± 0.011 0.684 ± 0.051 0.606 ± 0.040 0.623 ± 0.028
II 6 0.928 ± 0.011 0.680 ± 0.013 0.756 ± 0.057 0.484 ± 0.067 0.800 ± 0.032
III 6 1.476 ± 0.030 1.108 ± 0.043 1.198 ± 0.091 0.722 ± 0.112 1.100 ± 0.061
I 12 0.719 ± 0.009 0.694 ± 0.001 0.684 ± 0.051 0.545 ± 0.031 0.703 ± 0.044

IV 28 1.279 ± 0.008 1.278 ± 0.001 1.253 ± 0.076 1.056 ± 0.042 1.243 ± 0.059
IV 50 1.244 ± 0.028 1.241 ± 0.028 1.253 ± 0.076 1.185 ± 0.060 1.237 ± 0.054
V 28 2.040 ± 0.023 2.037 ± 0.022 1.958 ± 0.119 1.553 ± 0.295 1.947 ± 0.095
V 50 2.029 ± 0.042 2.016 ± 0.039 1.958 ± 0.119 1.697 ± 0.111 1.972 ± 0.089
VI 28 3.704 ± 0.054 3.615 ± 0.049 3.520 ± 0.222 4.739 ± 0.134 3.662 ± 0.159
VI 50 3.761 ± 0.088 3.739 ± 0.087 3.520 ± 0.222 4.461 ± 0.296 3.877 ± 0.155

triangles show where it is negative.
We conclude that the halo auto and cross spectra computed with the ELB

deviate from the simulation on scales where kR ≈ π. This affects especially the
auto spectra, and is not related to using SPT instead of the non-linear matter
field.

Biased SPT on Large Scales

Heavens et al. (1998) discuss two effects on the halo power spectrum that are
caused by using SPT. The basis for their analysis is as follows: as for the case
of the one-loop matter power spectra, one can also express the SPT halo power
spectra as integrals over products of the linear matter power spectrum and the
bias parameters (Jain & Bertschinger, 1994). The Ph,22 and Ph,13 terms defined
before can then be written as

Ph,22(k) = 2
∫

d3q

(2π)3
P11(q)P11(|k − q|) ×

[
b1F

(s)
2 (q, k − q) +

b2

2

]2

,

Ph,13(k) = 6 b1P11(k)
∫ d3q

(2π)3
P11(q)

[
b1F

(s)
3 (q, −q, k)

+
b3

6
+ b2F

(s)
2 (−q, k)

]
, (4.30)

and Ph,11(k) = b2
1P11(k). By taking the limit k → 0 of the foregoing equations, one

can study the behaviour of the SPT halo power spectrum on large scales:

1. Is the large-scale bias not b1? While the linear bias model should be
valid on large scales, Heavens et al. (1998) predict that the large-scale bias
is not b1, but can be approximated by an effective bias

bH
eff =

√

b2
1 + b1

(68
21

b2 + b3

)
σ2

R, (4.31)
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where σ2
R is the variance of the smoothed linear density field at redshift 0:

σ2
R ≡

∫ d3q

(2π)3
P11(q) e−(qR)2

. (4.32)

Equation (4.31) tells us that the difference between bH
eff and b1 depends on the

choice of the smoothing scale through σ2
R. However, b1 is supposed to describe

the large-scale behaviour of the power spectrum, where the smoothing scale
should not have any effect. The value of σ2

R will be large for smaller R

and b2 is negative in many cases, so the term in parenthesis can even become
negative, leading to b2

eff < 0. (Although this never happens for the smoothing
scales we investigate.) We can compare this with the effective bias directly
from the simulation power spectra

beff ≡
√

Ph

Pm

(4.33)

on large scales (k ≤ 0.02 h Mpc−1 for the large box and k ≤ 0.15 h Mpc−1 for
the small box), where this ratio is found to be constant within the errorbars.
Note that Ph has been corrected for shot noise, and for this specific ratio, the
dependence on the smoothing scale cancels out. Examples of the different
bias parameters are shown in Table 4.4, for mass bins in both boxes and
several smoothing scales. Here, b1 and b̄1 are the linear bias parameters from
the third-order fits, and bH

eff was also calculated from these values. We always
find the large-scale bias to be very close to b1 for reasonable5 smoothing
scales. Note that the value for beff for the small box (mass bins I-III) is
only an approximation for the large-scale bias, because the box is so small.
Comparing b1, b̄1 and 〈beff〉 for the low mass bins, it is clear that the different
estimates do not agree with each other if the smoothing scale gets too small
(R = 6 h−1 Mpc). Note also that exchanging Ph with one of the fitted halo
power spectra in Equation (4.33) does not significantly affect the value of beff

(exchanging Pm → PSPT for the SPT fit as well).

Extending the comparison to bH
eff reveals a large discrepancy to the previ-

ous values over the whole mass range and different smoothing scales. Even
though the errors on bH

eff are rather large (owing to the large errors in b̄3),
the estimates are quite different from the fit parameters and beff .

In concordance with the derivation of Equation (4.31) in Heavens et al.
(1998), we define an additional effective bias for the SPT fit:

bspt
eff ≡

√√√√P SPT
f3

P11
, (4.34)

which is also averaged over the same scales as beff . The difference to Equa-

5Meaning that the SPT assumptions about the smallness of δ are still valid at z = 0, requiring
R ≥ 8 h−1 Mpc.
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Figure 4.15: Left panel: Different contributions to Ph,22(k) (see text) and their sum
(blue solid) for mass bin IV with R = 28 h−1 Mpc. The constant power on large scales
is dominated by b2

2〈δ̃2
1(k)δ̃2

1(k′)〉/4 (green line). Right panel: The contribution A · δ2
1(x)

(solid red, with A = 5 b2/2 for enhanced visibility), which coincides with the peaks
and troughs of the underlying SPT matter density field (dashed blue) as suggested by
Heavens et al. (1998).

tion (4.33) comes because the denominator contains only the linear power
spectrum. However, the values of bspt

eff do not differ much from beff because
on large scales Pm ≈ PSPT ≈ P11.

We conclude that beff matches the fit parameters b1 and b̄1 within the error-
bars. Equation (4.31) was derived neglecting the contribution of Ph,22(k),
which seems not to be a valid approximation, as the values for bH

eff do not
agree with beff and bspt

eff . It is also important to note that the agreement of
the different bias estimations gets worse when smaller smoothing scales are
considered. This implies that using the bias parameters to infer halo masses
(by choosing R to correspond to the Lagrangian radius of the halo) can lead
to wrong results.

2. Is the SPT halo power spectrum constant on very large scales?

From Equation (4.30) we see that the Ph,22(k)-term is not directly propor-
tional to P11(k) which falls off as k → 0. It follows that this term will
eventually dominate, and it can be shown to lead to a constant halo power
spectrum on very large scales. We can study this behaviour using the SPT
halo density contrast from the third-order fit. Even with our large simula-
tion volume, we can only see that Ph,22(k) tends to a constant, but the scales
where it actually dominates are out of reach. However, we can look in more
detail at the Ph,22(k)-term, to find out why it becomes constant. From Equa-
tion (4.25), we can see that there a three terms that contribute, which are
shown in the left panel of Figure 4.15: b2

1P22(k) (red dot-dashed), the cross
term b1b2〈δ̃s

2(k)δ̃2
1(k′)〉 (black dotted) and b2

2〈δ̃2
1(k)δ̃2

1(k′)〉/4 (green dashed).
The latter term clearly dominates Ph,22(k) (blue solid line) on large scales.
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Heavens et al. (1998) suggest that this constant power comes from the peaks
and troughs of the underlying density field, which we can confirm: The right
panel of Figure 4.15 shows the SPT matter density contrast δs

SPT(x) and
b2 δ2

1(x)/2 along a line in the simulation volume. The latter term can have
either sign depending on b2, here we show the mass bin IV where b2 < 0.
Note that b2 δ2

1/2 has been multiplied by a factor of 5 in the Figure to make
the effect more visible.

4.6 Conclusion

In this chapter we have followed a novel approach by evaluating the SPT expansion
of the mass density and velocity fields up to third order, starting from the same
realisations of the linear density field that has been used to generate the initial
conditions of two N -body simulations. This allowed us to make a point-by-point
comparison between the non-linear mass and halo overdensities (using the Eulerian
local bias model), while past studies have only focussed on two- or three-point
statistics. Our results can be summarized as follows:

• We found that SPT provides a good approximation to the density field up to
redshift 0, for smoothing scales R ≥ 8 h−1 Mpc. This ensures that the linear
density contrast is typically less than one.

• We have compared the redshift evolution of the non-linear matter density
field of the simulations and SPT with the prediction of linear theory and the
spherical collapse model. We found that SPT is very close to the simulated
density for all redshifts, while both linear theory and the spherical collapse
model are in poor agreement with the simulations. The lognormal model by
Kayo et al. (2001) gives a good PDF for the non-linear density contrast but
fails when used for a point-by-point comparison.

• In Equation (4.13), we presented a simple fitting formula for the non-linear
density contrast as a function of the linear density contrast, which is accurate
at the per cent level over the full range of redshifts available to us (0 ≤ z ≤
10).

• We compared the SPT matter power spectra with the linear and non-linear
matter power spectra from the simulation. On large scales, linear theory
provides a good approximation to the simulated matter power spectra, but
SPT is superior on smaller scales, up to the maximum wavenumber we can
probe, k ≈ 0.3 h Mpc−1 at redshift 0.

• Assuming a deterministic, Eulerian local bias model (ELB) with up to 3 free
parameters, we obtained values for these parameters by fitting polynomials
to a scatter plot of the smoothed matter and halo density contrast. We
find that the third-order bias model is always preferred by the data over
models with less parameters. The reconstructed halo density is similar to

70



4 Perturbation theory and halo bias 4.6 Conclusion

the simulation, but the ELB can not accurately reproduce the simulated
field.

• We found that the bias parameters from fitting the halo distribution to the
simulated matter density field and to the SPT density field generally differ,
but the corresponding power spectra are very similar. The mass dependence
of the bias parameters shows the same trend as theoretical predictions based
on the peak-background-split approach.

• We compared both the halo-halo power spectrum and the halo-matter cross
spectrum from the fits with the ones from the simulation. The cross spec-
trum is in better agreement with the simulation than the auto spectrum
which deviates from the simulation on scales much larger than the smooth-
ing radius. This is not related to using SPT instead of the non-linear matter
field.

• We have investigated two effects on the halo power spectra, which have been
predicted by analytic considerations of SPT and the local bias model. First,
we estimated the large-scale bias beff using the halo and mass power spectra
from both the simulation and the fits. This large-scale bias is compatible
with the linear bias parameter obtained from the polynomial fit if we make
sure that the SPT assumptions are not violated, choosing the smoothing
radius R such that δ ≪ 1. This suggests that the effective bias does not
require perturbative corrections, contrary to previous results based on SPT.
Second, we determined the origin of the constant shot-noise term on very
large scales, which is caused by b2

2〈δ̃2
1 δ̃2

1〉/4 as predicted in Heavens et al.
(1998).

In summary, our study shows that SPT is a suitable approximation for the matter
field even at redshift 0, provided a large enough smoothing radius is adopted.
However, the Eulerian local bias model can not fully describe the halo density
field, which is most evident from our point-by-point comparison in Figure 4.9.
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5 Primordial non-Gaussianity and

the large-scale halo bias

This chapter represents a modified version of Roth & Porciani (2012) with small

changes in notation, additional references, and a brief discussion of the Planck
results and recent developments in the last section.

5.1 Introduction

As we have shown in the previous chapter, galaxy (or halo) bias restricts our ability
to accurately describe cosmological structure formation and to determine cosmo-
logical parameters. However, in the case of primordial non-Gaussianity (PNG),
the bias between galaxies and dark matter can actually provide additional infor-

mation. It turns out that dark matter and galaxies react differently to the change
in the underlying potential, and this leads to deviation of the bias from the case
of Gaussian initial conditions predicted from standard single-field inflation.

Currently, the most stringent constraints on PNG come from the Cosmic Mi-
crowave Background (CMB) bispectrum (e. g. Bennett et al., 2012; Planck Collab-
oration et al., 2013b). However, having another channel for a detection of PNG
is important, as any non-zero value for fNL etc. would imply some deviation from
the standard single-field inflationary model. Additionally, results from large-scale
structure probe a different range in redshift and scales, and can thus constrain
PNG models that predict e. g. fNL(k).

Here we consider the local model of PNG, in which the Bardeen curvature po-
tential during matter domination (at high-redshift) is given by

ΦB(x) = φ(x) + fNL

[
φ(x)2 − 〈φ2〉

]
+ gNL

[
φ(x)3 − 3〈φ2〉φ(x)

]
, (5.1)

where φ(x) is a zero-mean Gaussian random field, fNL and gNL are real constants,
and the symbol 〈·〉 denotes expectation values.1 On large scales, PNG of the
local type introduces a scale-dependent bias between galaxies and the underlying
matter distribution (Dalal et al. 2008, Matarrese & Verde 2008, Slosar et al. 2008,
Giannantonio & Porciani 2010), which could provide a promising signal for the
detection of non-zero PNG even at late times.

Several authors have derived observational constraints on fNL and gNL from
the galaxy power spectrum or 2-point correlation function (Slosar et al. 2008,

1These terms are required in order to ensure that the resulting non-Gaussian density field still
has a zero mean.
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Desjacques & Seljak 2010b), and recently Xia et al. (2011) reported a possible
detection of positive fNL at the 2σ level. However, these studies all assume that
the underlying model for PNG is either purely quadratic (gNL = 0) or purely cubic
(fNL = 0). In this chapter, we show that the assumption of a one-parameter model
significantly biases the estimation of the PNG parameters when both fNL and gNL

do not vanish. We also illustrate that model-selection techniques like the Bayes
factor are powerful tools to identify the model that best describes the available
data. This is particularly interesting in light of the next generation of galaxy and
cluster surveys like eROSITA (Predehl et al., 2010), Euclid (Laureijs et al., 2011)
or LSST (Ivezić et al., 2008b) which are expected to significantly reduce the error
bars of PNG parameters (e. g. Pillepich et al. 2012, Giannantonio et al. 2012).

5.2 Scale-dependent bias

The linear matter density contrast in Fourier space δ̃m(k) follows from the curva-
ture perturbations by

δ̃m(k, z) = α(k, z)Φ̃(k), (5.2)

with

α(k, z) =
2k2D(z)T (k)

3ΩmH2
0

, (5.3)

where Ωm and H0 are the current matter-density parameter and Hubble constant,
T (k) is the transfer function, and D(z) is the growth factor normalised to (1+z)−1

during the epoch of matter domination. (For more details see Chapter 2.)

Let us denote by Pm(k) the matter power spectrum and by Phm(k) the cross
spectrum between dark-matter halos (of a given mass) and mass. On large scales,
the relation between Phm(k) and Pm(k) is given by

Phm(k)
Pm(k)

= b1(fNL, gNL) + ∆b(k, fNL, gNL), (5.4)

where b1 is the linear bias parameter (a real-valued constant) and ∆b(k, fNL, gNL)
is a scale-dependent bias term introduced by PNG. Following the work of Smith
et al. (2012) (hereafter SFL12), the latter term can be split up into different
contributions (to first order in fNL and gNL):

∆b(k, fNL, gNL) =
βf fNL + βggNL

α(k)
. (5.5)

Its dependence on fNL was shown to be (Dalal et al. 2008, Matarrese & Verde
2008, Slosar et al. 2008, Giannantonio & Porciani 2010):

βf = 2 (ν̃2 − 1), (5.6)

with the peak height
ν̃ ≡ [δc(b1 − 1) + 1]1/2 (5.7)
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where δc is a parameter set to ∼ 1.4 to fit the clustering properties of friends-of-
friends halos in numerical simulations. Note that b1 modulates the amplitude of
the scale-dependent bias though ν̃. 2 Similarly, the dependence on gNL is (SFL12)

βg = κ
(1)
3 (M)

[
−0.7 + 1.4(ν̃ − 1)2 + 0.6(ν̃ − 1)3

]
− dκ

(1)
3 (M)

d log σ−1

(
ν̃ − ν̃−1

2

)
(5.8)

with κ
(1)
3 the skewness of the mass density field (smoothed on the mass scale M)

in the case of fNL = 1 and σ the linear root mean square (r. m. s.) mass-density
fluctuation on the scale M . The skewness and its derivative can be expressed in
terms of b1 and z (see Equations 46 and 47 in SFL12).

In brief, PNG of the local type makes the bias of dark-matter halos scale depen-
dent and proportional to k−2 for k → 0. It is therefore conceivable to constrain
PNG from measurements of the galaxy power spectrum, provided a model that
links galaxies to halos. However, the fNL and gNL contributions to the scale-
dependent bias in Equation (5.5) show the same scaling with the wavenumber and
it is not possible to measure both parameters from studies of a single popula-
tion of tracers of the large-scale structure. Given that βf and βg display different
scaling with halo mass and redshift, this degeneracy can be broken by consider-
ing several populations of galaxies, possibly within widely separated redshift bins.
Recent studies have accomplished this task by combining a number of observa-
tional datasets with simple models where either fNL or gNL are set to zero a priori.
With the help of numerical simulations, in this chapter we study the effect of these
simplifying assumptions on the determination of PNG.

5.3 Simulations

We have used gadget-2 (Springel, 2005) to perform two sets of dark-matter-only
simulations consisting of four realisations each. Each set corresponds to a different
fiducial model of PNG assuming fNL = 50 and gNL = ± 5 × 105, in accordance
with upper limits obtained from cosmic-microwave-background studies (Komatsu
et al. 2011, Vielva & Sanz 2010). The other cosmological parameters are chosen
in concordance with the WMAP5 analysis (Komatsu et al., 2009): Ωm = 0.279,
ΩΛ = 0.721, Ωb = 0.0462, σ8 = 0.817, h = 0.7, ns = 0.96. We follow 10243

particles within a cubic box of side L = 1200 h−1 Mpc, corresponding to a particle
mass of 1.247 × 1011 h−1 M⊙. The initial conditions are generated at redshift 50
using the Zel’dovich approximation to displace particles from a regular Cartesian
grid.

Halos are selected using a friends-of-friends halo finder with a linking length of
0.2 times the mean interparticle separation. We consider only objects with at least

2Some authors write ν̃ in term of the linear-bias factor obtained from Gaussian initial conditions,
but Giannantonio & Porciani (2010) have demonstrated that the full b1 should appear in
Equation (5.7). Note, however, that the correction to b1 due to PNG is generally small and,
in most practical cases, the difference between the two formulations is negligible.
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Table 5.1: The top section describes the galaxy samples used in the analysis of Xia
et al. (2011): redshift, type, effective linear bias parameter beff and number of objects
Ngal. The middle section illustrates the properties of specific halo subsamples from our
simulations that have been selected to approximate the observational dataset described
above: redshift, mass range (in 1013 h−1 M⊙), linear bias parameter b1, number of objects
in each mass bin, Nhalo, after combining the four realisations. We denote this as the
“current sample”. The bottom section refers to an hypothetical sample of more massive
objects that should become available in the coming times. We label this the “future
sample”.

z 0 0.5 1 1.5 2 Name
Type - LRGs NVSS QSOs -
beff - 1.9 2 2.3 - Observations
Ngal - 10 × 105 1.4 × 105 1.7 × 105 -
Mass - 1.6-2.5 1-1.25 1-1.25 -

b1 - 1.8 2 2.9 - Current sample
Nhalo - 6 × 105 4 × 105 2.7 × 105 -
Mass 6.25-9.5 4-6.25 4-6.25 4-6.25 2.5-4

b1 1.8 2.5 4.0 4.9 5.9 Future sample
Nhalo 1.7 × 105 2.1 × 105 1.1 × 105 0.4 × 105 0.4 × 105

80 particles, so the halo mass range is 1013 h−1 M⊙ ≤ Mhalo ≤ 2 × 1015 h−1 M⊙

at z = 0. We use outputs at z = {0, 0.5, 1, 1.5, 2}. The scale-dependent bias
parameter b(k) for the halos is measured from the ratio of the (k-binned) halo-
matter cross spectrum and the matter auto spectrum, averaged over the four
realisations. We only consider the range 0.007 h Mpc−1 ≤ k ≤ 0.04 h Mpc−1 where
Equation (5.8) holds as shown in SFL12. The errors on b(k) are calculated using
an estimator derived in the appendix of Smith & LoVerde (2011).

To make sure that Equations (5.5)-(5.8) (with δc = 1.42) can also be applied to
our simulations, we fix fNL and gNL to the input values and use a standard χ2-fit
to measure b1 as a function of halo mass and redshift. We find good χ2 values
in all cases, and the fitted b1 is compatible with the value expected for the case
of Gaussian initial conditions (see Equation 14 from Pillepich et al. 2010). We
can therefore safely assume that the fitting formulae given by SFL12 accurately
describe the scale-dependent bias for our sets of simulations.

5.4 Parameter estimation

We employ the simulations to build mock observational data for b(k) and use them
to estimate the PNG parameters under different model assumptions. We consider
two sets of halo mass and redshift bins as described in Table 5.1. The first set is
chosen to closely resemble the observations used by Xia et al. (2011). The second
set covers a wider range in redshift and linear bias parameter b1 and exemplifies
datasets (for groups and clusters of galaxies) that will be available in the near
future (e. g. with the eROSITA mission plus spectroscopic follow up).
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Figure 5.1: Credibility intervals (68.3 and 95.4 per cent) for fNL and gNL. Solid:
positive gNL, dotted: negative gNL. The black crosses indicate the input values for fNL

and gNL. Left panel: using the current sample, right panel: using the future sample.

5.4.1 Two-parameter model for PNG

We first consider a model (M2) with three free parameters, fNL, gNL and b1, and
assume Gaussian errors on b(k) to build their likelihood function. We adopt a
flat prior within a finite region of parameter space (considerably more extended
than the likelihood function) and marginalize the posterior distribution over b1.
Figure 5.1 shows the marginal posterior probability density for fNL and gNL by
marking the 68.3 and 95.4 per cent credibility intervals for the model parameters.
The two panels refer to the different sets of mass and redshift bins defined in
Table 5.1 (current data on the left, future data on the right). Different sets of
curves in the same panel refer to the different fiducial models used to generate the
initial conditions of the simulations. In all cases, the fiducial values for fNL and
gNL, indicated by the black crosses, lie within the 95.4 per cent credibility region
region. Note that the current datasets are not expected to give tight constraints on
the model parameters which are also degenerate. The credibility intervals shrink
when more mass/redshift bins are used. The small rotation of the contour levels
in the right panel is caused by including data from z = 2, which significantly
improves the constraints on gNL, and only slightly weakens the constraints on fNL

(with respect to the current dataset).

5.4.2 One-parameter models for PNG

We now consider two simpler models by assuming that PNG is either purely
quadratic (gNL ≡ 0, M1f ) or purely cubic (fNL ≡ 0, M1g). All the rest is left
unchanged with respect to M2, so that M2, M1f and M1g form a set of nested
models.

The marginal posterior probability distribution for fNL obtained combining the
current dataset with model M1f is presented in Figure 5.2. The left panel shows
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Figure 5.2: Constraints on fNL for model M1f (where gNL ≡ 0 is assumed a priori).
Left: simulation with gNL = 5×105, right: simulation with gNL = −5×105. Constraints
from the 3 redshift bins in the current sample are shown with different line styles: z = 0.5
dotted, z = 1 long-dashed, z = 1.5 dot-dashed. The posterior pdf obtained combining
the 3 redshift bins is shown with a solid line. For comparison, we also show the combined
posterior for the future dataset (short-dashed). The two horizontal lines indicate the 68.3
and 95.4 per cent credibility intervals for each of the combined posteriors. The vertical
dotted line shows the input value fNL = 50.

the result for the simulation with positive gNL and the right panel for negative gNL.
Different line styles indicate the individual redshifts bins: dotted, long-dashed, dot-
dashed for z = {0.5, 1, 1.5}, while the solid curve shows the combined probability
for all redshifts. For the simulation with gNL = 5 × 105, the resulting 95.4 per
cent credibility region (lower horizontal solid line) marginally includes the input
value fNL = 50, indicated by the vertical dotted line, but the maximum is shifted
towards higher values. When fNL and gNL have opposite sign, the maximum a
posteriori value is biased low, and the input value is excluded at high significance.
In both cases, there is an apparent redshift dependence of fNL, and this trend
depends on the sign of gNL. Thus, if a redshift dependence was ever detected from
observations, it may just indicate that the wrong model for PNG is assumed. We
note that the results in Xia et al. (2011) actually hint at a redshift dependence of
fNL although the error bars are quite large. If taken at face value, the ordering of
the estimates would suggest that gNL < 0. Additionally, Figure 5.2 includes the
combined probability for the 5 mass and redshift bins of the future dataset for
comparison (short-dashed). The shift away from the input value is qualitatively
the same, but larger for the future dataset. This can be understood by comparing
the degeneracy between fNL and gNL in Figure 5.1.

The marginal posterior probability distribution for gNL under model M1g is
shown in Figure 5.3. As in the previous Figure, the two panels show the re-
sults for the simulations with gNL = ± 5 × 105. In both cases, the maximum a
posteriori estimate is biased high, and the input value lies well outside the 95.4
per cent credibility regions. The estimates from the different redshifts are almost
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Figure 5.3: Constraints on gNL for model M1g (where fNL ≡ 0 is assumed a priori). Left
panel: simulation with gNL = 5×105, right panel: simulation with gNL = −5×105. Line
styles are the same as in 2. The vertical dotted line shows the input value gNL = ± 5×105.
Note that the long-dashed curve (z = 1) seems to be missing in the left panel because
the corresponding probability density is too low.

incompatible with each other, and there is no apparent trend with z as seen in
model M1f . For the case of negative gNL, the estimation procedure favours a Gaus-
sian model although both input PNG parameters are substantially different from
0. The combined probability of the future dataset is shown by the short-dashed
curve. Here, the shift away from the input value for gNL is smaller, and the con-
straints are tighter than for the current dataset, in accordance with the rotation
of the contours in Figure 5.1.

5.4.3 Model selection

Our results show that the choice of the underlying model for PNG has a significant
effect on the estimates of fNL and gNL. Only model M2 returned estimates which
were in agreement with the fiducial values, while setting a parameter to zero a priori
(as often done in the literature) produced biased results. Here we investigate if
the data themselves can be used to establish which parameterisation should be
preferred.

Given a set of data D, the relative evidence in favour of a model with respect
to a second one can be quantified in terms of the Bayes factor (e. g. Kass 1993,
Trotta 2008)

Bab =
P (D|Ma)
P (D|Mb)

=
∫
La(D|Ma, θa) πa(θa) dθa∫
Lb(D|Mb, θb) πb(θb) dθb

. (5.9)

Here Li(D|Mi, θi) gives the probability of getting the data D given the model
Mi with parameters θi (i. e. Li is proportional to the likelihood function for the
model parameters), πi(θi) is the prior probability density for the model parameters
and P (D|Mi) denotes the Bayesian evidence for model Mi (i. e. the probability of
getting the data under model Mi after marginalizing over the values of the model

79



5.5 Conclusion 5 Primordial non-Gaussianity and bias

parameters).
We find that M2 is strongly favoured over M1f and M1g, with a Bayes factor

> 30, except for one case3. Based on the Jeffreys scale (Jeffreys, 1961), this
provides “very strong” evidence in favour of M2. We thus recommend the use of
Bayes factors in future determinations of PNG from observational data based on
galaxy 2-point statistics.

5.5 Conclusion

Using two sets of N -body simulations starting from non-Gaussian initial conditions
of the local type with {fNL, gNL} = {50, ± 5 × 105}, we have investigated the bias
of dark-matter halos on large scales. Motivated by the widespread practice of
considering only one-parameter models for PNG to fit observational data, we have
studied the effect of model assumptions on the determination of model parameters
based on 2-point statistics of the galaxy distribution. We have considered two
sets of mass and redshift bins: the first one is chosen to emulate the current
observational samples, while the second approximates data from future cluster
surveys. Our main conclusions can be summarized as follows:

• Fitting the mock data with the input (two-parameter) PNG model gives un-
biased results although estimates for fNL and gNL turn out to be degenerate.
This degeneracy can be at least partially broken using higher-order statistics
of galaxy clustering, like the bispectrum.

• If we assume a purely quadratic model (gNL = 0), the maximum a posteriori
estimate for fNL is biased high (low) for the simulations with gNL = 5 × 105

(gNL = −5×105), respectively. The input value of fNL = 50 is almost always
excluded at very high confidence. If we consider each redshift bin separately,
a spurious systematic shift of the fNL-estimate with z appears, which also
depends on the sign of gNL. If seen in observations, this effect could actually
indicate the necessity for a more complex model.

• If we assume a purely cubic model (fNL = 0), the maximum a posteriori
estimates for gNL are artificially shifted to larger values, which differ from
the input value much more than the broadness of the posterior distribution.
When the fiducial PNG parameters have opposite sign, the two contributions
to the scale-dependent bias can cancel out, leading to a false null detection.

• Our analysis could be extended by considering even higher-order terms in
the expansion of Equation (5.1). However, this phenomenological approach
adds degrees of freedom which are not necessarily independent because they
may be related to each other through the underlying physics. Alternatively,
one could test specific inflationary models and put direct constraints on their
properties (e. g. coupling constants) that determine the PNG parameters.

3Using the current sample, M1f is only disfavoured by a factor of 9 (3) for the simulation with
positive (negative) gNL.
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• Given a dataset, statistical model selection techniques are capable to identify
the optimal PNG parameterization and thus avoid estimation biases due to
incorrect simplifying assumptions. The Bayes factor very strongly favours
the two-parameter model over a purely quadratic or purely cubic model for
our simulations. It is thus important to apply this model selection to future
constraints on PNG from observational data.

Note on recent developments The recent first year data release of the Planck

mission led to significant improvement in the accuracy of CMB constraints on
the parameter fNL. Previous constraints from WMAP give for the local model
fNL = 37 ± 20, for equilateral-type NG fNL = 51 ± 136, while for the orthogonal
shape fNL = −245 ± 100 (68% confidence level, Bennett et al., 2012). Due to its
higher precision, Planck finds f loc

NL = 2.7±5.8, f eq
NL = −42±75 and f orth

NL = −25±39
(68% confidence level, Planck Collaboration et al., 2013b). New constraints on gNL

from the CMB have not yet been published.
Giannantonio et al. (2014) used a combination of large-scale structure probes to

measure the PNG parameters, while also considering the degeneracy for the scale-
dependent bias. Their constraints are compatible with the null-detection from the
CMB for both parameters with |fNL| . 30 and gNL . 105 at 95% confidence level,
and the use of Bayesian model selection criteria showed no evidence for non-zero
PNG. Nevertheless, the error bars on these parameters are still large compared to
the CMB, so a definitive conclusion from LSS data will require at least the next
generation of galaxy and cluster surveys (e. g. Pillepich et al., 2012).
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6 Near-field Cosmology: How to

find a Unicorn in a Haystack

6.1 Introduction

The previous chapters have focused on cosmological structure formation on large
scales, using galaxy groups or clusters at intermediate and high redshifts to better
understand structural evolution. However, observations of the local Universe – the
region surrounding the Milky Way galaxy – can also be used to place important
constraints on cosmological models. This is known as near-field cosmology, a
recently coined term (Freeman & Bland-Hawthorn, 2002) with roots dating back
to the 1960s (e. g. Eggen et al., 1962).

The Local Group consists of two massive galaxies, the Milky Way (MW) and
Andromeda, the slightly smaller spiral galaxy M33, as well as a large number of
“dwarf” galaxies orbiting as satellites. The halos of dwarf galaxies are the first
objects to collapse that are capable of trapping baryons to fuel star formation,
and they are therefore considered to be the basic building blocks of all subse-
quent galaxy formation. Their abundance at high redshift makes them suitable
candidates for the sources of reionisation (Stark et al., 2007), and their low metal
content allows a comparison of the primordial helium abundance to predictions of
Big Bang Nucleosynthesis (Izotov et al., 2007). Understanding the origin of these
objects, as well as how they impact the formation of more massive systems, is
therefore of fundamental importance to unraveling the complex physics of galaxy
formation.

Before the first data release of the Sloan Digital Sky Survey (SDSS, York et al.
2000), there were 11 known dwarf satellites of the Milky Way, now referred to as the
“classical” dwarfs. Recent dedicated surveys of the local group, such as the Pan-
Andromeda Archaeological Survey (McConnachie et al., 2009) and HST/ANGST1

(Dalcanton et al., 2009), as well as wide field surveys, such as the Two Micron
All-Sky Survey (Skrutskie et al., 2006) and further data releases of the SDSS have
more than doubled the number of known Galactic dwarf galaxies, with many more
likely to lie below current detection limits. Dwarf galaxies are characterized by
low luminosities, MV > −17 (Tammann, 1994), and small characteristic sizes,
as inferred from their surface brightness profiles. There is, however, no obvious
distinction between the physical properties of normal and dwarf galaxies; rather
there is a continuous distribution of sizes and luminosities (Graham & Guzmán,

1Hubble Space Telesc. Advanced camera for surveys Nearby Galaxy Survey Treasury Program
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Figure 6.1: The locations of the Milky Way’s dwarf satellite galaxies shown in Galactic
coordinates (the Galactic center is located at l = 0◦, b = 0◦ and the Galactic plane
lies along b = 0◦). Blue circles show the classical dwarf galaxies; red circles show the
ultra-faint satellites identified in the SDSS (including 3 globular clusters: Koposov 1
& 2 and Segue 3). The grey shaded region shows the SDSS footprint (data-release 8),
and the dashed line marks the orbit of the Sagittarius dwarf galaxy as predicted by
Niederste-Ostholt et al. (2010). [Figure taken from Belokurov (2013).]

2003, and references therein) extending down to mass scales normally associated
with globular star clusters. At these low masses, dwarf galaxies differ from star
clusters due to the presence of dark matter (DM), which is absent in the latter.

As with normal galaxies, dwarfs can also be subdivided into different morpho-
logical classes ranging from gas poor dwarf spheroidal and ellipticals, to gas rich
dwarf irregulars (e. g. Kormendy et al., 2009). As for normal spirals and ellipti-
cals, dwarf galaxies also follow a density-morphology relation: dwarf spheroidals
preferentially live in the high-density regions surrounding more massive galaxies,
whereas irregulars are predominantly found in low-density peripheral regions (e. g.
Grebel, 2001). This suggests an environmental dependence to dwarf galaxy mor-
phology which can be used to decipher the main mechanisms responsible for their
evolution. Figure 6.1 shows the spatial distribution of the currently known Milky
Way dwarf galaxies (taken from Belokurov 2013), split into the classical dwarfs
(blue circles) and the more recently detected ultra faint dwarfs (red circles). The
grey area shows the footprint of the SDSS (data-release 8), and the dashed line
marks the orbit of the Sagittarius dwarf galaxy as proposed by Niederste-Ostholt
et al. (2010) (see below).

Within hierarchical structure formation models, low mass dark matter halos are,
on average, the first to collapse, with more massive systems forming through the
merger and accretion of these smaller subunits. One consequence of this process is
the presence of “substructure” within dark matter halos: these are the surviving
self-bound cores of previous generations of accreted systems, and are thought to
be the primary sites of dwarf galaxies within the Local Group. As a result, un-
derstanding both the global properties of the Local Group’s dwarf galaxy system,

84



6 Near-field Cosmology 6.1 Introduction

as well as their internal properties, is essential for reconstructing exactly how the
Milky Way and Andromeda galaxies formed.

One puzzle, for example, is the spatial distribution of dwarf galaxies around
the Milky Way and Andromeda: a large fraction of the Milky Way’s dwarf galax-
ies lie in a plane that is roughly perpendicular to the disc of the Milky Way
(Lynden-Bell, 1976; Pawlowski et al., 2012), and recent observations have hinted
at a similar ring-like structure around Andromeda (Ibata et al., 2013; Conn et al.,
2013). Some authors consider this a serious challenge to ΛCDM (Kroupa et al.,
2005; Pawlowski et al., 2012), since the observed planar structure is difficult to
reconcile with the roughly isotropic distribution of dark matter substructures seen
in numerical simulations of Milky Way-like dark matter halos. However, others
have pointed out that preferential accretion of massive satellites along large-scale
filaments can naturally explain the observed distribution within the context of
the ΛCDM model (Libeskind et al., 2011; Lovell et al., 2011). Alternatively, the
majority of the MW’s dwarf galaxies may have formed directly from the tidal
debris stripped from a previous merger. One of the most well-known examples
is the Magellanic stream (Mathewson et al., 1974), created by the interaction of
the Milky Way and the Magellanic clouds. The stripped material includes stars,
but also atomic and molecular gas and dust, which can fuel the formation of tidal
dwarf galaxies, which should be devoid of dark matter (e. g. Mirabel et al. 1992;
Barnes & Hernquist 1992). Since tidal dwarf galaxies would be aligned with the
tidal arms in which they form, they naturally explain the disk-like distribution of
the Galactic satellites as originating from a previous interaction between the MW
and a now-disrupted companion (Metz et al., 2008). This scenario seems unlikely,
however, given the large mass-to-light ratios inferred for most Local Group dwarf
galaxies, implying that they contain a significant amount of dark matter.

Similar to tidal streams, stellar streams are remnants of past or ongoing mergers,
often found in the inner, dense regions of galaxies where tidal forces are strongest.
They are typically devoid of gas, which has either been consumed in a star burst at
infall or stripped by ram pressure. Stellar streams closely trace the orbit of their
progenitor and can be stable for several gigayears (Springel & White, 1999); their
structure and location within the host can be used to probe the host’s potential,
resulting in robust mass profile constraints which can then be compared with
theoretical expectations. Stellar streams therefore offer powerful probes of galactic
structure and evolution and can be used to constrain models of structure formation
on small scales. Perhaps the most prominent stellar stream within the Milky Way
is the remnant of the Sagittarius dwarf galaxy (Mateo et al., 1996), although
numerous others have been detected in both the Milky Way and Andromeda,
as well as in other nearby galaxies (e. g. Ibata et al., 2001a,b; Martínez-Delgado
et al., 2008). The Sagittarius stream is extended and lies well outside of the
Galactic plane, allowing it to be studied in detail. Niederste-Ostholt et al. (2010),
for example, modeled Sagittarius’ orbit (shown as dashed line in Figure 6.1) and
estimated that the progenitor has lost up to 70% of its initial stellar mass, which
is now mixed with the intrinsic stellar populations of the Milky Way’s halo and
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disk.

Another peculiar stellar structure within the Milky Way is the Monoceros Over-
density (MO, Greek for “Unicorn”), which lays at a distance of ∼ 18 kpc from
the Galactic center (Newberg et al., 2002) and has an estimated stellar mass of
2×107 ≤ M∗ ≤ 5×108 M⊙ (Yanny et al., 2003). Similar to the Sagittarius stream,
the Monoceros Overdensity (MO) is rather broad and extends over a large range
in Galactic longitude (∼ 180◦), but instead of lying perpendicular to the Galactic
disk like Sagittarius, the MO forms a ring-like structure that roughly aligns with
the Galactic plane (Ibata et al., 2003; Crane et al., 2003; Rocha-Pinto et al., 2003;
Yanny et al., 2003; Martin et al., 2005, 2006; Conn et al., 2005a,b, 2007, 2008;
Jurić et al., 2008; Ivezić et al., 2008a; de Jong et al., 2010; Sollima et al., 2011;
Conn et al., 2012, and references therein). A possible progenitor for the MO (if
indeed it is the remnant of a tidally disrupted MW satellite) is the Canis Major
dwarf galaxy (CMa, Martin et al., 2004), which lies at (l, b) = (−120◦, −9◦) and a
distance of 7 kpc from the Sun. Alternatively, the alignment of the MO with the
disk could be explained if the MO and CMa are only apparent stellar overdensities
resulting from, for example, the excitation of the Galactic disk by a past merger
event, or a strong warp in the disk (Moitinho et al., 2006; Momany et al., 2006;
Kazantzidis et al., 2008). However, this is disfavored by measurements of the stel-
lar metallicities of MO stars, which are considerably lower than those of disk stars
with similar Galactic coordinates (e. g. Ivezić et al., 2008a).

The left panel of Figure 6.2 shows an ensemble of observations of MO and CMa,
collected by Conn et al. (2007) (referred to as “this paper” in the plot legend).
Each symbol marks a detection of stars that can be associated with those structures
by their position in a color-magnitude diagram (CMD). Filled symbols lie above
the galactic plane and open symbols lie below. The solid line shows an additional
stellar stream observed by Grillmair (2006).2 The ∼1 kpc error on the position
measurements is indicated by the bar in the bottom right corner. The right panel
shows an edge-on view of the stellar overdensity as a function of distance R to
the galactic center and height Z above the Galactic plane determined using SDSS
data (Jurić et al., 2008). A smooth model for the Milky Way’s stellar halo has
been subtracted from the observed stellar distribution; the MO is the residual at
Z ∼ 0 and R ∼ 20 kpc.

Considerable observational and theoretical effort has been devoted to under-
standing the origin of the MO, and it is now generally accepted that its kinematics
are consistent with a stellar stream stripped from a merging dwarf galaxy. Under
this assumption, the multitude of available observations is sufficient to allow a re-
construction of the progenitor’s orbit. Peñarrubia et al. (2005) performed a large
number of simulations of satellite stripping in MW-like potential in an attempt to
constrain the properties of the MO’s progenitor. They were able to numerically re-
produce the geometry and kinematics of the stream by assuming that the infalling

2Curiously, this author concluded that the detected stream is not physically associated with the
MO, but this is not mentioned in Conn et al. (2007). A more recent study by Carlin et al.
(2010) is also unable to determine unambiguously whether this stream is part of the MO.
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Figure 6.2: Left panel: A collection of observations of the Monoceros overdensity and
the Canis Major dwarf galaxy. [Figure taken from Conn et al. (2007), see text for
a detailed description.] Right panel: Edge-on view of the residual stellar overdensity
(color scale) in SDSS data after subtracting a smooth model of the Milky Way’s halo.
The Monoceros overdensity is shown as a residual excess of stars close to the Galactic
plane (Z = 0 and R ∼ 20 kpc). The parameters nH and qH describe the halo model.
[Figure taken from Jurić et al. (2008).]

satellite had a mass of ∼ 6×108 M⊙ and followed a prograde, coplanar and nearly
circular orbit before being disrupted. However, due to uncertainties in some of
the model’s parameters (mainly the axis ratios of the Milky Way’s halo) both the
mass and position of the progenitor were poorly constrained. Similar quality fits,
for example, were obtained for progenitor masses in the range ∼ (3 −9) ×108 M⊙,
provided its current position is ∼ 15 kpc from the center of the galaxy, roughly
twice as distant as the CMa overdensity.

Recent proper motion measurements of member stars have been used to con-
strain the orbit of CMa (Dinescu et al., 2005). The orbit has an apocentric distance
of 14±0.2 kpc, and pericenter of 10±0.9 kpc, suggesting that its orbital circularity
is roughly in line with what is expected for the MO progenitor. In fact, the best-fit
N -body orbits obtained by Peñarrubia et al. (2005) are consistent with the proper
motion-based orbits derived by Dinescu et al. (2005), supporting the hypothesis
that the MO is a remnant of CMa. Whether or not this can be confirmed, it
remains difficult to explain how a low-mass satellite came to be on such a circular
orbit: the results of simulations of Milky Way-mass dark matter halos indicate
that most satellites are accreted on highly eccentric orbits. The orbital decay rate
due to dynamical friction is proportional to the mass of the satellite and the den-
sity of the host at its location (Chandrasekhar, 1943; Binney & Tremaine, 2008).
Dynamical friction timescales for low-mass satellites are therefore very long, and
this process alone is unlikely to be sufficient to fully circularize a the orbit of a
typical satellite given the finite age of the Milky Way.

The physical mechanism responsible for circularizing progenitor’s orbit is there-
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fore unclear, though a number of possibilities exist. One of them, as discussed by
Peñarrubia et al. (2005), is that the mass of the MO’s progenitor is substantially
larger than predicted by their best-fit model. A 1.8 × 109 M⊙ progenitor, for ex-
ample, will be dragged by dynamical friction to a typical distance of ∼ 7.2 kpc,
which agrees with the observed distance to CMa. Alternatively, the progenitor
of the MO may have been “born” relatively close to the Galactic center and on
a circular orbit. This would allow the system to survive to the present day by
evading the strong tidal effects of the Galactic center. Or, as proposed by Michel-
Dansac et al. (2011), three-body interactions between the Milky Way and two (or
more) infalling satellites could have led to rapid changes in the orbital energies
and angular momenta of the infalling systems and, under the right circumstances,
result in the circularization of one of their orbits.

In this chapter, we use high resolution N -body simulations of the formation of
MW-like dark matter halos to study which of these two possibilities best explains
the origin of the MOs progenitor. To do so, we trace the full dynamical history of
all subhalos that were ever accreted by their host galaxy, as well as their association
with other dark matter halos before being accreted onto the main halo. In doing
so, we are able to identify subhalos which are today on circular orbits and identify
the physical mechanisms responsible for their circularization.

6.2 Numerical methods

In this section we provide a brief description of our main numerical and analy-
sis methods. This includes a description of the Aquarius simulations (Springel
et al., 2008), our halo finding and orbit tracking algorithms, as well as other im-
portant analysis techniques. We discuss a variety of possible subhalo orbits and
define selection criteria to create idiosyncratic subsamples based on their dynam-
ical properties.

6.2.1 The Aquarius simulations

The Aquarius project comprises a suite of six dark matter-only simulations of
Milky Way-like halos. These were first identified in a larger volume “parent”
simulation (the Millennium-II simulation, Boylan-Kolchin et al. 2009), have virial
masses on the order of M200 ∼ 1012 h−1 M⊙ and have no neighbors within 1 h−1 Mpc
exceeding half of their present-day mass. Each halo was then resimulated at higher
resolution, with increasing numbers of particles in order to identify limitations due
to numerical resolution (Navarro et al., 2010). For any given run, a minimum of
100 snapshots were saved between z = 20 and 0, which is more than sufficient
for accurately characterizing the full dynamical evolution of the dark matter halos
and subhalos.

All simulations adopted the same set of cosmological parameters: Ωm = 0.25,
ΩΛ = 0.75, h = 0.73, ns = 1, and σ8 = 0.9. (For a definition of these parameters
see Chapter 1). Although these values are not strictly consistent with the most
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Table 6.1: Various properties of the Aquarius simulations used in this work (see Springel et al. (2008) for a detailed description). Halo names consist
of a letter (A to F) for each halo, and a number encoding the resolution level (2-4, with 2 being the highest resolution used in this work). mpart is the
dark matter particle mass in the high-resolution region, and Mmin

sub = 20 mpart is the minimum subhalo mass adopted for our group and halo finders.
The properties of the host halo at z = 0 are M200, r200 and v200, which denote the mass, radius and circular velocity within a spherical region with
a mean density of 200 times the critical density for closure. The last column indicates the method of subhalo tracking: using merger trees (MT), or
our own method when particle data (PD) is available; both described in section 6.2.3.

Halo mpart [ h−1 M⊙] Mmin
sub [ h−1 M⊙] M200 [ h−1 M⊙] r200 [ h−1 kpc] v200 [km s−1] Comments

Aq-A-2 1.000 × 104 2.000 × 105 1.345 × 1012 179.41 179.55 MT
Aq-A-3 3.585 × 104 7.170 × 105 1.341 × 1012 179.31 179.36 MT
Aq-A-4 2.868 × 105 5.736 × 106 1.342 × 1012 179.36 179.37 PD
Aq-B-2 4.706 × 103 9.412 × 104 5.982 × 1011 137.02 137.06 MT
Aq-B-4 1.637 × 105 3.274 × 106 6.092 × 1011 137.86 137.86 PD
Aq-C-2 1.021 × 104 2.042 × 105 1.295 × 1012 177.26 177.31 MT
Aq-D-2 1.020 × 104 2.040 × 105 1.295 × 1012 177.28 177.33 MT
Aq-D-4 1.954 × 105 3.908 × 106 1.307 × 1012 177.82 177.83 PD
Aq-E-2 7.002 × 103 1.400 × 105 8.652 × 1011 154.96 155.01 MT
Aq-F-2 4.946 × 103 9.892 × 104 8.282 × 1011 152.72 152.76 MT
Aq-F-4 1.335 × 105 2.670 × 106 8.024 × 1011 151.11 151.12 PD
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recent estimates from Planck and WMAP (see section 2.5), the differences are
expected to mainly affect halo collapse times and are largely irrelevant for the
evolutionary and dynamical properties of halo and subhalo orbits that we discuss
here. The analysis in this chapter uses both high resolution (level-2) and lower
resolution (level-4) versions of each Aquarius halo. In Table 6.1 we provide a
naming convention for the simulations and a list of several important properties
of each Aquarius halo.

The high-resolution level-2 runs contain a large number of low-mass structures;
this is important for statistical analysis, since circular subhalo orbits are expected
to be rare in cosmological halos. The level-4 data is used to study the effects of
environment, mass resolution, and to visualize the unbound filamentary structure
along which the majority of infalling halos are accreted (Libeskind et al., 2011;
Lovell et al., 2011). This is computationally less cumbersome than using the level-
2 particle data directly, but numerically accurate given that the relevant properties
of the halos converge at the percent level between the two resolutions (Springel
et al., 2008; Navarro et al., 2010).

6.2.2 Halo and subhalo catalogs

Dark matter halos are identified in each simulation output using a friends-of-friends
(FOF) halo finder with a linking-length of 0.2 b, where b is the mean inter-particle
distance. Each FOF halo is then dissected into self-bound substructure halos using
the subfind algorithm (Springel et al., 2001, summarized in section 3.2.3) , which
separates the main dark matter halo from its smaller system of satellite halos. For
clarity, we refer to the largest “substructure” halo within any FOF halo as the main

or host halo; any sub-dominant halos we refer to as substructure halos, or simply
as subhalos, for short. subfind ensures that each halo or subhalo is gravitationally
self-bound, which rids the halo catalogs of loose groupings of particles that may
(temporarily) pollute the FOF lists. In addition, it records the position, velocity,
mass and various other useful characteristics of halos that greatly simplifies later
analysis. For our runs we have adopted a minimum of 20 particles per halo or
subhalo.

6.2.3 Orbit tracking

In order to study the orbits of subhalos in our simulations we require a method
of tracking them across different subfind outputs. We consider all associated

subhalos, defined as those that have been within the time-dependent virial radius
of the main halo’s progenitor at some point in the past (see also Ludlow et al.,
2009). We therefore consider both bound and unbound objects, as well as those
that have been disrupted by tidal interactions with the host halo since z = 2.

For the level-2 simulations our orbit tracking was based on halo merger trees,
which were constructed in the following way (Boylan-Kolchin et al., 2009). Starting
at the initial redshift, the particles within each halo are identified in two subsequent
time steps. If all particles within a particular halo are found within another halo
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at subsequent time-step then this is the descendant of that halo. If, instead, they
are spread over several halos, then the particles are weighted by their binding
energy, and the halo that contains most of the highly bound particles from the
previous snapshot defines the descendant. Most of the time this will be the halo
which contains most particles, but the weighting allows for a distinction in the case
where several halos contain roughly the same number of tracked particles. With
this methodology, a halo may have multiple progenitors but only one descendant,
reflecting hierarchical structure formation. By linking halos across cosmic time
in this way we can characterize the full dynamical history of a given dark matter
halo, including the evolution of its structural properties, as well as its its dynamical
association with any other structures. Note that it is also possible for a halo to
“skip” one time step if it, for example, enters a high density environment and the
subfind algorithm fails to detect it, or if it temporarily falls below the 20 particle
limit. We have carefully identified and excised such instances in our runs so that
they do not impact our results and interpretation.

For the level-4 simulations we follow a different approach and generate our own
subhalo tracking algorithm that uses both the subfind outputs as well as the dark
matter particle data. The method is similar to the merger tree method described
above, although it differs in several details. The biggest difference is that we
first identify halos at low redshifts and trace their evolution backward in time, as
opposed to the forward-constructed merger trees. Nevertheless, we consider all
subhalos that have been within the virial radius of the main halo, and were not
fully disrupted prior to z ∼ 2. To identify the progenitor of a particular subhalo
we first identify all subhalos in the previous snapshot that contain some of its
particles. If any of these halos contain more than 70% of the subhalo’s total mass
then we define this as the progenitor subhalo. Otherwise, we weight particles by
their binding energy and identify which of the progenitor candidates contributes
most of its mass to the most-bound parts of the descendants mass distribution.
Matching particles across several snapshots is computationally time consuming
and so it is only employed in cases where a large fraction of the subhalo’s mass
is distributed among many possible progenitors. In addition, we enforce that
the mass of a subhalo can not increase by more than a factor of 3 between two
snapshots. This prevents mismatching of subhalos with larger objects with which
they may have had a close encounter, and also accounts for subhalos that may have
been temporarily lost while orbiting within the dense background of the main halo.
In this case we simply skip one (or more) snapshot and repeat the process again at
the next (earlier) time. This allows the subhalo to re-emerge from its interaction
and, in most instances, we successfully recover its orbit even if several outputs
have been skipped (an example orbit with “holes” near its pericentric passage is
shown in Figure 6.3 using solid red lines).

The majority of the results presented in section 6.3 use only the orbits calculated
from the merger trees, so the second method just described serves mainly as a
consistency check. As we will show below, both methods lead to very similar
statistical distributions of subhalo properties. This means that we have created
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a reliable tracking method that can be used in future projects for which merger
trees are unavailable.

Orbits tracked in this way can be used to identify subhalos occupying roughly
circular orbits, and to study their dynamical and structural evolution. Figure 6.3
shows a selection of approximately circular subhalo orbits (top panel) and their
mass evolution (bottom panel) as a function of look-back time in the Aq-F-4 run.
The connected black circles show the virial radius r200 (top) and mass M200 (bot-
tom) of the host halo. These orbits exhibit considerable complexity and subhalos
that are on circular orbits today may have been accreted on highly eccentric or-
bits in the recent past. Consider, for example, the three subhalos that infall at
at look-back time of tlb = 4.5 Gyr (shown as black dotted, purple dashed and
green dot-dashed lines in Figure 6.3). These halos were accreted on highly radial
orbits but rapidly circularized upon reaching their first pericentric passage. The
“wiggles” in their obits prior to infall betray the fact that these systems are in fact
part of a larger infalling group; the interaction between the merging group and the
potential of the main halo resulted in rapid changes in their orbital energy and
angular momentum and, in these cases, to the complete circularization of their
orbits. Such 3-body interactions have previously been discussed in the context
of unbound orbits (Ludlow et al., 2009), and may also result in systems gaining
orbital energy (cyan triple-dot-dashed line) and being fully ejected from the sys-
tem (solid blue line). In contrast, the three subhalos that fall in at early times,
roughly 11 Gyrs ago (red solid, orange dashed and cyan triple-dot-dashed), have
maintained roughly the same orbital eccentricity over the past 10 Gyr. These ob-
jects have avoided complete disruption because their approximately circular orbits
have kept them away from the strong disruptive tides associated with the central
density cusp of their host halo.

These results indicate that there may be several mechanism behind the gen-
eration of circular orbits in cosmological dark matter halos. We will return to
a discussion of these possibilities in the following section, but first provide some
basic characteristics of subhalo orbits in the next section.

6.2.4 Orbit classification

The halo tracking methods described above provide a list of subhalo properties as
a function of time that can be used to categorize subhalo orbits. Here we provide a
brief summary of some important characteristics of orbits that will be useful when
interpreting the results presented in the following section.

• The infall redshift, zin, is defined as the time when a subhalo’s orbit first
crosses the virial radius of the host halo. Any quantity measured at infall
will carry the subscript “in”. Note that we will often refer to the time since

infall, which is simple the look-back time, tlb, from z = 0 to zin.

• Associated subhalos initially recede with the Hubble flow, reaching a max-
imum distance from the center of their host before zin. We will use this
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Figure 6.3: The evolution of subhalo properties in Aq-F-4 as a function of time. Shown
are the radial separation from the main halo’s center (top panel) and the bound mass as
identified by the subfind algorithm (bottom panel) as a function of look-back time from
z = 0. The solid grey line with black points shows the evolution of the virial radius and
mass of the main halo, respectively; each dot marks a simulation snapshot. See the text
for a more complete description of the different subhalo orbits.

“turn-around” radius, rturn, to characterize the orbital energy of a subhalo
and to determine whether subsequent interactions with other halos have led
to net losses or gains in orbital energy. Although this is technically the first
apocenter of a given orbit, we will refer to it as the turn around radius so
that apocenters are only defined for associated systems.

• Not every subhalo survives until z = 0. They may, for example, completely
merge with another structure (not necessarily the main halo), be destroyed
by interactions, or drop below the detection threshold of the subfind algo-
rithm. In this case we also record the minimum redshift zmin up to which
a subhalo can be identified. We find that the majority of subhalos survive
until the end of the simulation. However, this depends slightly resolution,
with more subhalos disappearing in the low-res runs due to the decrease in
their characteristic internal densities.

• Finally, the peri- and apocenter of a subhalo’s orbit are defined as the min-
imum and maximum separation from the main halo center after infall, re-
spectively. These extrema can be estimated directly from the trajectory of
the subhalo over cosmic time, or from the Radial Energy Equation (REE)
using its instantaneous orbital energy and angular momentum within the
potential of the main halo (Binney & Tremaine, 2008). We will discuss both
possibilities below.
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Figure 6.4: Probability distribution of subhalo properties with both tracking methods
for halo Aq-F. The number of associated subhalos for which each quantity can be
calculated is indicated in the legend. For example, each associated halo must have a
turn-around radius and infall time, but not for all of them can we calculate the apo- and
pericenter from the orbits. As expected, there are fewer halos identified in the level-4
run, but their properties are very similar. In addition, we show the distribution of apo-
and pericenter as calculated from the radial energy equation (REE, blue), for the level-2
data. This shows that both tracking methods lead to the same results, but already
indicates systematic differences between the two estimates for rapo and rperi (mostly for
the latter).

The “shape” of a subhalo’s orbit (whether radial or circular) can be characterized
by its eccentricity, ǫ, defined

ǫ =
rapo − rperi

rapo + rperi
. (6.1)

Here rapo and rperi are the apocentric and pericentric distances between the object
and the center of the main halo. Purely radial orbits will have ǫ = 1, whereas
ǫ = 0 defines a perfectly circular orbit. Estimating ǫ requires knowledge of both
rapo and rperi. The first estimate (ǫrec) comes directly from the subhalo’s tracked
orbit, by choosing the most recent local maximum and minimum as values of the
apo- and pericenter, making sure that genuine extrema are found (so that ṙ = 0
at both rapo and rperi). The second estimate (ǫpot) uses the radial energy equation,

r−2 +
2 [Φ(r) − E]

|ℓ|2 = 0, (6.2)
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at redshift 0. Here, Φ(r) is the gravitational potential of the host at radius r;
E = Ekin + Epot and ℓ are the total orbital energy and angular momentum of the
satellite. The two solutions to this equation are rapo and rperi.

There are several reasons to prefer the subhalo orbits directly in the calculation
of ǫ: 1) the radial energy equation only applies to bound orbits and so does not
necessarily apply to all substructures; 2) the input potential for the radial energy
equation must be calculated directly from the particle data assuming spherical
symmetry, which can be problematic during mergers; 3) the direct method allows
us to select halos that have completed at least one full orbit within the main halo
(since we are searching for progenitors of a stellar stream which requires time to
be stripped, this is a reasonable choice).

Figure 6.4 shows a comparison between both tracking methods and different
ways to estimate the apo- and pericenter. In the top row, the distribution of
subhalo properties (rturn and tinf) is shown for both resolution levels of Aq-F.
The number of associated halos is given in the legend. Even though there are
fewer subhalos in the level-4 data because of the lower mass resolution, the overall
distribution are almost identical. In the lower panel, we show the distribution
of rapo and rperi. The number of subhalos is lower here because these values are
not defined for every associated subhalo: One drawback of the direct method is
that rapo is only well-defined for systems that have completed at least one full orbit
within the body of the main halo. This is not satisfied, for example, in cases where
the subhalo is on its approach to first apocenter; in these cases, and if necessary, we
adopt the apocenter estimated from the radial energy equation3. Similarly, the rperi

may not be defined if the minimum radius is not a true extremum. Additionally
subhalos in the low-res run are more likely to “disappear” close to their pericenter,
which explains the rather low number with defined pericenters in Aq-F-4.

Circular subhalos We define circular orbits as those that satisfy the following
three conditions: 1) the subhalo is inside r200 at zmin; 2) ǫ < 0.2 (so that rapo <

1.5 rperi), and 3) the subhalo’s most recent apocenter was inside r200. The first and
second condition are straightforward; the third restricts the sample to subhalos
whose entire orbits lie within r200, and are therefore not simply “grazing” the
virial boundary of the main halo.

How likely is it for a subhalo to be on a circular orbit and how does this probabil-
ity differ between the six Aquarius halos? In Figure 6.5 we compare the eccentricity
distribution for associated subhalos in each simulation. The red histogram corre-
sponds to ǫrec and the blue hatched histogram to ǫpot. Note that we only show
those halos for which both eccentricity estimates are defined (i. e. both apo- and
pericenter are calculable for each method). One can see that the distribution of
ǫpot is shifted slightly towards more radial orbits; for ǫ < 0.2, however, the distri-
butions are quite similar. This can be seen in the plot’s legend, where the fraction
of subhalos with ǫ < 0.2 is provided for each estimate of ǫ. (Note that this fraction

3For systems that have completed at least one full orbit within their host, we have explicitly
verified that both methods provide accurate estimates of the apo- and pericentric distances.
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Figure 6.5: Distribution of eccentricities for all associated subhalos in the six level-2
Aquarius halos. Blue hatched regions corresponds to ǫrec, for which halo apocenters and
pericenters are computed directly from their orbital tracks; red histograms show ǫpot,
for which rapo and rperi are derived from the radial energy equation. In general, the
distributions are quite similar. One exception is halo Aq-F, which has a major merger
at low redshift that disturbs the symmetry of the halo potential and, consequently,
biases estimates of ǫpot. (Note that perturbations from spherical symmetry in the halo
potential induced by this merger affect mainly rperi; estimates of the apocentric distance
are robustly estimated by both methods.) The legend gives the fraction of subhalos with
ǫ < 0.2 with respect to the total number of subhalos for which both estimates can be
calculated, which is about half of the total number of associated subhalos.
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Figure 6.6: One-to-one comparison of the different definitions of eccentricity for Aq-A-2
(left panel) and Aq-F-2 (right panel). All subhalos for which both eccentricities are well
defined are shown as grey circles, and those that fulfill all three criteria for circularity
as red diamonds (see section 6.2.4 for details). The solid squares trace the median;
boxes and whiskers indicate the 10th, 25th, 50th and 90th percentiles of the scatter. The
fraction of all associated subhalos on circular subhalos is given in the bottom right corner
of each panel. For relaxed halos, like Aq-A, there is a good correspondence between
both estimates of the orbital eccentricity. For Aq-F-2, which has experienced a late-
time merger, the correlation is somewhat weakened; we have traced this to inaccurate
estimates of rperi obtained from the radial energy equation.
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is relative to the number of subhalos for which both estimates are defined, which
is about 50% of all associated subhalos.)

A more direct comparison of ǫpot and ǫrec is shown in Figure 6.6 for halos Aq-A
(left panel) and Aq-F (right panel). For a quiescent halo like Aq-A there is a
tight correlation between ǫpot and ǫrec, with only few outliers. These occur when a
subhalo has not spent enough time inside the main halo to reach a stable orbit, in
which case its most recent apo- and pericenter may not coincide with the estimates
from Equation (6.2). The agreement between the two ǫ estimates for Aq-F is
considerably worse. We have traced the origin of this discrepancy to a late time
merger (occurring at z ≈ 0.45), in which roughly half of the halo’s present day
mass is accreted over a very short time interval (see Ludlow et al. 2012). This
accretion event perturbs the potential of the main halo leading to strong departures
from spherical symmetry and, therefore, slightly biases estimates of rperi obtained
from the radial energy equation. Note that we have explicitly verified that the
discrepancy between ǫpot and ǫrec is largely a result of differences in pericenter
estimates, with apocenters largely unaffected. We will discuss Aq-F in more detail
in the following sections.

The fraction of associated subhalos that are on circular orbits is provided in the
bottom right corner of each panel. This value varies between ∼1% and ∼3.6% for
the six Aquarius halos. Note that this fraction gives the number of circular halos
with respect to the total number of associated halos, and so can not be directly
compared to the fraction of subhalos with ǫ < 0.2 quoted in Figure 6.5. As
expected, the fraction of subhalos on circular orbits is quite low, which is why it is
important to have simulations with large numbers of satellites in order to increase
the sample statistics. In the following, we will use ǫ ≡ ǫrec when characterizing
orbital circularity, unless explicitly stated otherwise.

Ejected subhalos Not every infalling subhalo will lose energy and angular mo-
mentum and end up on a tightly bound orbit. Some will gain energy from multi-
body interactions and may be ejected from the system entirely. We consider a
subhalo to have been ejected, when its position at zmin is > r200(zmin) and > rturn,
such that its halo-centric distance is beyond both the host’s virial radius as well as
its original turn-around radius. A less strict limit would be to choose rapo > rturn,
but this would include a large number of subhalos that are falling back towards
the main halo at low redshift. Since the number of ejected orbits is large even
with the strict selection criterion, we adopt r(zmin) > rturn because this defines the
subsample of those that have already been ejected.
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6.3 Results

6.3.1 Satellite accretion and the origin of circular and ejected

subhalos

After defining samples of circular and ejected halos we can then investigate their
dynamical history. Since the dynamical properties of a subhalo will be strongly
affected by interactions with the main halo, the infall time will play an important
role: The longer a subhalo has been orbiting within the body of the main halo
the more time has been available for processes such as dynamical friction and
tidal stripping to affect its orbit. In Figure 6.7 we show the radial velocity vs.
the distance to the main halo for all (z = 0) associated subhalos in Aq-A-2. The
color-coding indicates the time since infall in gigayears. There is a clear separation
in vr(r) space between subhalos that fall in early (tin > 10 Gyrs) and those that
fall in at later times. Systems that are accreted early are more likely to end up at
small radii, while most that fall in at later times occupy the outer regions of the
host halo. that are accreted late. These are systems that are just now located at
their first pericenter, and are rare because of the large characteristic velocities of
subhalos near the center of the host. The radial of infall time is consistent with
previous work (Rocha et al., 2012) based on the Via Lactea II simulation.

Interestingly, the most recently accreted systems have typically large halo-centric
radii. In fact, roughly 45% of subhalos accreted in the past Gyr are currently
beyond the virial radius of the host, indicated by the vertical line in Figure 6.7.
This is actually expected from simple self-similar, secondary infall models (SSIM,
e. g. Fillmore & Goldreich 1984, Bertschinger 1985). SSIMs envision three distinct
regions surrounding a growing dark matter halo: 1) an envelope of material, beyond
the current turn-around radius, in which mass shells still expand with the Hubble
flow; 2) an intermediate “infall” region in which material has decoupled from
the Hubble flow but have not yet experienced shell-crossing (halos in this region
are indicated by grey dots in Figure 6.7) and, 3) an inner region in which mass
shells have experienced repeated shell crossing and virialization has occurred.n
Within SSIMs, accreted mass shells have their orbital energy gradually degraded
until they reach a stable configuration. In Bertschinger’s SSIM, for example, the
first apocenter (after zturn) reaches a distance of roughly 0.9 rturn, and a stable
orbital configuration with rapo ∼ 0.8 rturn. Therefore, orbits with apocenters as
large as ∼ 1.6 r200 are entirely consistent with expectations from SSIMs. Because
rturn(z) increases steadily with time, subhalos with higher accretion redshifts, zin,
are expected to dominate the inner regions of a halo. This is consistent with the
radial segregation of subhalos by accretion time shown in Figure 6.7.

What is not consistent with the expectations of simple SSIMs are the presence
of subhalos well beyond ∼ 1.6 r200, roughly 288 h−1 kpc in the case of Aq-A. Nev-
ertheless, ∼ 17% of all associated subhalos occupy such orbits, with several having
apocentric radii exceeding 4 r200! As previously discussed by Ludlow et al. (2009),
the dynamics of these system are a result of 3-body interactions which can propel
low-mass objects onto unorthodox orbits that would otherwise be unattainable
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Figure 6.7: Radial velocity as a function of halo-centric distance for all (z = 0) halos
and subhalos in Aq-A-2. Colored points show the distribution of all associated subhalos,
defined as those that have at some point in the past been within the (time-dependent)
virial radius of the main progenitor halo. All points have been colored by their accretion
time onto the main halo; grey dots are used for halos that are on their first approach
but have not yet crossed the halo’s virial radius. Clearly subhalos that fall in early
occupy tightly bound orbits in the central region of the main halo, with only moderate
contamination by those that fall in at late times, as expected from simple self-similar
infall models. The dashed (dotted) lines show the circular (escape) velocity of the main
halo at a given radius. The virial radius is indicated using a solid vertical line. Note
that many associated subhalos are today well beyond the virial radius of the main halo,
with several receding at speeds that exceed the system’s nominal escape velocity at their
location.

(see also Sales et al. 2007). The sample of “ejected” subhalos, defined in section
6.2.4, contains such objects.

Can a similar dynamical process result in the rapid circularization of subhalo
orbits, or is it a gradual process brought on by, for example, the orbital decay
associated with dynamical friction? Clues can be gleaned from Figure 6.8, where
we show the distribution of accretion times for associated subhalos in all six level-2
Aquarius runs. In each panel the grey histograms correspond to the distribution
of zin for all associated subhalos; red and blue histograms show the subsamples for
objects whose orbits satisfy the criteria for circular or ejected orbits, respectively.
For comparison, we show the mass accretion history4 of the main halo as black
points, which also illustrates the time resolution of the simulations (one point for
each timestep). In most cases, the total number of infalling subhalos is a rather
smooth function of time for intermediate and low redshifts, which reflects the

4We define the mass accretion history as the time evolution of the virial mass, M200, of each
halo’s main progenitor.
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smooth mass accretion histories. One exception is Aq-F which has a major merger
between 3 and 5 Gyr ago, and a corresponding increase in the total number of
accreted satellites. Note, however, that the zin distributions for the circular and
ejected subhalos are much more discontinuous. The majority of subhalos which
are on circular orbits today fall in at early times, with a distribution that tapers
off towards lower redshift. In fact, averaged over all simulations, roughly 50%
of all circular subhalos are accreted in the first 4 Gyr after the Big Bang. This
is roughly of the same order as the characteristic half-mass assembly times of
each main progenitor halo (except for Aq-F, where this takes & 8 Gyrs), and
is coincident with the rapid assembly phase of MW-mass DM halos (Bullock &
Johnston, 2005). This preference for early accretion extends as well to the ejected
subhalo population, but their distribution is shifted towards slightly later infall
times relative to circular subhalos. The exception is Aq-F, in which roughly 50%
of circular, and 70% of ejected subhalos are clearly associated with the late-time
major merger, suggesting that three-body interactions are capable of leading to
orbital circularization just as they are to ejection.

The early accretion times of subhalos on circular orbits, however, may indicate
that their circularization is largely a result of dynamical friction decaying their
orbits over long periods of time. In Figure 6.9 we plot the halo-centric radius
and bound mass for several circular subhalos in Aq-F. Note that the circular
subhalos with early accretion times (shown as black curves in this plot) do not

show the characteristic orbital decay normally associated with dynamical friction.
Rather, their orbits change very little since zin; they appear to have always been
on nearly circular orbits. The evolution of their bound mass agrees with this
interpretation: for the most part, the mass is smoothly stripped from the subhalo;
it does not exhibit the periodic mass loss associated with the tidal decay induced
by dynamical friction. The red curves in this show the orbits of several subhalos
whose accretion times coincide with the late-time merger. These orbits clearly
evolve differently than those associated with early accretion. These systems reach
large turn-around radii (rturn ≈ 2 − 4 r200) before infalling onto the main halo.
After their first pericenter, the subhalos lose a considerable fraction of their infall
energy leading to the immediate reduction of their apocentric radii. Take as an
example the solid red curve in Figure 6.9. This subhalo had a turn-around radius
of ∼ 3 r200. Based on Bertschinger’s SSIM model this object would therefore be
expected to reach a first apocenter of rapo ≈ 0.9 rturn ≈ 410 h−1 kpc, rather than
the observed apocenter of ∼ 100 h−1 kpc.

These results indicate that major mergers can lead both the the ejection of low-
mass halos from the system, but also to the rapid circularization of others orbits.
In the next section we focus on the late time merger in Aq-F in order to better
understand how the merger dynamics can lead to such extreme events.

6.3.2 The major merger of Aq-F

Halo Aq-F is an interesting case because it contains the largest fraction of circular
subhalos, and most of them accrete at late times. In addition, the infall time
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Figure 6.8: Accretion histories of dark matter (black circles) and subhalos (histograms)
for all six Aquarius halos. Black circles trace the evolution of the virial mass, M200, of
the each halo’s main progenitor. Grey histograms show the distribution of accretion
times for all z = 0 associated subhalos; the red and blue histograms correspond to
the subsamples of circular and ejected subhalos, respectively. The majority of circular
subhalos appear to have been accreted at early times, when the halo’s main progenitor
was in a phase of rapid merging and assembly. One exception to this is halo Aq-F,
in which ∼ 45% of all circular subhalos are accreted during a late-time major merger.
This suggests that rapid fluctuations in the potential driven by mergers can lead to the
complete circularization of otherwise eccentric orbits.
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Figure 6.9: Halo-centric distance (top panel) and bound mass (bottom panel) as a
function of look-back time for several circular subhalos identified in Aq-F. The virial
radius and mass of the main halo is shown as blue lines with black dots representing each
simulation snapshot. Black lines correspond to halos with early infall times, between
10 and 12 Gyrs ago, while red lines show several subhalos that are associated with the
late-time major merger event (see Figure 6.8). Linestyles for a given subhalo are the
same in both panels. Subhalos that fall in early are characterized by a small turn-around
radius with very little change in subsequent apocentric radii. These objects are gradually
stripped of a significant fraction of their original mass. This is contrary to the episodic

reduction of apocentric radius and bound mass at pericenter expected from dynamical
friction. Late infalling subhalos have large turn-around radii and circularize abruptly at
first pericenter, which we interpret as being a result of the rapid loss of orbital energy
induced by a three-body interaction.
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distribution in Figure 6.8 also shows a peak for ejected subhalos at a similar, but
slightly later time than the one for circular subhalos. In Figure 6.10 we plot the
joint distribution of rturn and rapo for associated subhalos in Aq-F, each expressed
in units of the halo virial radius. The full distribution of associated subhalos
are shown as light grey points; the colored points show both the circular subhalos
(open circles) as well as those that are ejected (crosses). The color coding of points
indicates the infall time of each individual subhalo, with blue highlighting early
and red late accretion times as in previous Figures.

The majority of subhalos (64%) have rapo < rturn, as expected from SSIMs.
Note also that the circular subhalos (open circles, mostly above the 1:1 line) have a
bimodal distribution of accretion times. This is also indicated by the red histogram
in the right-hand panel, which gives the distribution of rturn for circular subhalos.
There is a clear peak at roughly rturn/r200 ≈ 0.8 and a second at ≈ 2.2, which is
consistent with bimodal accretion time distribution of the same subhalos shown in
Figure 6.8, and the characteristic orbits shown in Figure 6.9. The “cloud” of orange
points with rturn/r200 ≈ 2.2 correspond to the subhalos whose orbits are rapidly
circularized by the late-time merger. Ejected subhalos (crosses, mostly below the
1:1 line) have a narrower distribution of turn-around radii, with a median value
of rturn/r200 ≈ 1.6. They also have typical accretion times which are distinct from
those of the circular subhalos, as can be seen from the slightly darker shade of
red for the majority of ejected systems. The distribution of rapo is flat and closely
resembles that for all associated subhalos (grey histogram).

These differences in accretion times and turn-around radii can, in fact, be traced
to the unique characteristics of the merger. Figure 6.11 shows two orthogonal pro-
jections of the spatial distribution of FOF dark matter halos at z ≈ 0.75, roughly
1.5 Gyr before the start of the merger event. For clarity, individual FOF halos are
shown as thin black circles (provided that their mass exceeds 3×109 h−1 M⊙) with
radii proportional to their mass: r = (3 M/800 π ρcrit)1/3. All halos are centered
with respect to the location of the main progenitor of Aq-F at this redshift (thick
black circle at the origin). The two most massive halos (apart from the main halo)
are two merging partners with approximately the same accretion times, marked
with M1 and M2 in the right hand panel. These objects have mass ratios of
M1/Mhost ∼ 0.36 and M2/Mhost ∼ 0.1.

Also plotted in Figure 6.11 are the locations of circular (red) and ejected (blue)
subhalos that have accretion times that approximately span the duration of the
merger. This reveals an astonishing disparity: ∼ 90% of the circular subhalos are
associated with M1 prior to infall, and ∼ 75% of ejected ones with M2. Note that
basically all of these subhalos are associated with one of the merging partners
prior to infall. This suggests that complex merger geometries can readily generate
extreme subhalo orbits, from highly circular to radial.

6.3.3 Orbital circularization

How does a merger event give rise to a population of circular or ejected subhalos?
Insight can be gathered from Figure 6.12, where we plot the radial velocity-distance

104



6 Near-field Cosmology 6.3 Results

Figure 6.10: Turn-around radius vs. orbital apocenter for associated subhalos in
Aq-F-2, normalized to r200(z = 0). Circular and ejected subhalos are marked by open
circles and crosses, respectively, and are colour-coded by their infall time. Grey points
show the remaining associated subhalos. The histograms in the upper and right-hand
panels show the distribution of rapo and rturn for each of the 3 subsamples (red for circu-
lar subhalos, blue for ejected ones, and grey for the full associated sample). The bimodal
distribution of accretion times for circular subhalos is clearly seen in their turn-around
radii. Because of their late accretion times, many subhalos associated with this merger
have not yet completed one full orbit within the main halo. In these cases, apocenters
have been estimated from the radial energy equation.

Figure 6.11: Z-X and Z-Y projections of halo positions in a cube with sidelength
800 h−1 kpc for Aq-F-2 at z ∼ 0.75, shortly before the major merger, centered on the
main halo (central thick black circle). Thin black circles correspond to isolated friends-
of-friends halos with MFOF > 3 × 109 h−1 M⊙; the radius of the circle is calculated
from the FOF mass: r = (3 M/800 π ρcrit)

1/3. Colored points indicate subhalos that,
at z = 0, are on either circular orbits (red) or ejected ones (blue), and whose accretion
times coincide with the time of the major merger. The circular and ejected subhalos
are clearly associated with two distinct mergers that occur nearly simultaneously (thick
black circles marked with M1 and M2 in the right panel).
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Figure 6.12: Radial velocity as a function of distance from the main halo for subhalos
and dark matter particles associated with the late-time merger in Aq-F. In each panel,
grey dots show a random subsample of dark matter particles (from the level-4 data)
belonging to the z = 0 main halo or, at z > 0, to its most massive progenitor. Colored
circles correspond to circular subhalos (red), or ejected ones (blue); pink or cyan dots
show a random sample of DM particles associated with each merging object. From top to
bottom, different panels correspond to different characteristic times during the merger:
the first infall of M2 (top panels), M2’s first pericentric passage (second panels), one
crossing time since zin,1 (third panels), and finally at z = 0. The lines show the circular
velocity profile of the host halo at each snapshot. Vertical solid and dotted lines mark
the host’s virial and half-mass radius; the “concentration”, rhalf/r200, is given in each
panel.
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relation for dark matter and subhalos at four characteristic times during the merger
event. We adopt the same color-coding as in Figure 6.11: circular subhalos are
shown as red open circles, and ejected subhalos as blue filled circles. The pink
and cyan dots correspond to dark matter particles associated with M1 and M2,
respectively, and the grey dots show a random sample of DM particles drawn from
the main halo (or, at z > 0, from its most massive progenitor). From top to
bottom, the redshifts correspond to zin,2, zperi,2, zchar,1 and z = 0, respectively.
Here, zchar,1 corresponds to the time tin,1 + 2 r200(tin,1)/V200(zin,1), which is roughly
one crossing time after zin,1 (∼ 2 Gyrs after infall). The legend also provides a
measure of the main halo concentration, rhalf/r200, where rhalf is the radius inside
which half of the mass is located (dashed vertical line); a low value of this parameter
therefore indicates that the halo is more compact.

It is clear from the upper panels of Figure 6.12 that zin,1 > zin,2; M1 has already
crossed the virial radius of the main halo (indicated by the solid vertical line)
at the point that M2 is first infalling at zin,2 ≈ 0.43. At z = 0.35 M1 has gone
through is first pericentric passage and is now moving towards its apocenter, but
the mass added by M2 creates a deeper potential well that “traps” subhalos around
vr ∼ 0 km/s. This interpretation is clearly supported by the red points in Figure
6.12, which remain approximately stationary in the vr − r plane since zperi,2 ≈
0.35, caused by a decrease in orbital energy. Such an event is not conducive to
orbital energy gain, however, which explains why M1 contains virtually no ejected
subhalos. The ejection of subhalos can nevertheless be understood in terms of the
same merger dynamics. The right hand panels of Figure 6.12 shows that ejected
satellites accrete onto the main halo slightly later than their host’s center of mass.
These subhalos are themselves approaching pericenter within the infalling group at
the same time that the group itself is approaching pericenter within the main halo.
The deepened gravitational potential associated with the merger of M2 results in
an excess gravitational pull on these subhalos, leading to uncharacteristically high
pericentric velocities, in contrast to those associated with M1 where vr ∼ 0 km/s.
The dense merging core then oscillates into a state of maximal expansion (during
the virialization process) and the subhalos can escape the shallow core with excess
energy.

This process results in distinct differences in the eccentricity and orbital energy
distributions of subhalos associated with either M1 or M2. In Figure 6.13 we plot
the distribution of ǫ5 and the orbital energy Eorb normalized to V 2

200(z = 0) of
the host for subhalos that are associated with either M1 (red histograms) or M2

(blue histograms) prior to infall. The grey histograms show for comparison the
same distributions for all subhalos that are accreted over the narrow redshift range
associated with the merger. The overall redistribution of energy discussed above is
clearly seen here. For example, the median eccentricity for subhalos infalling with
M1 is ǫ̃1 ∼ 0.51, whereas ǫ̃2 ∼ 0.67. Similar trends can be seen in the subhalo’s
present-day orbital energies: those infalling with M1 are today on more tightly
bound orbits, with median values Ẽorb,1 = −2.5 V 2

200 and Ẽorb,2 = −1.8 V 2
200.

5To construct this plot we use ǫpot only for subhalos for which ǫrecis undefined.
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Figure 6.13: Probability distribution of orbital eccentricities (left panel) and orbital
energy (right panel) for subhalos that are associated with either M1 (red) or M2 (blue,
hatched), as well as all subhalos that are accreted in the same narrow redshift interval
(grey, filled). The total number of halos in each subsample is provided in the legend, and
differs between the panels because for some halos these values can not be calculated.

Net energy gains and loses such as these are a direct consequence of a violent
form of relaxation driven by global fluctuations in the potential of the main halo
during major mergers. The statistics of this process were first laid out in Lynden-
Bell (1967) and invoked to explain the origin of the smooth and symmetric lumi-
nosity profiles of elliptical galaxies. A key point is that the timescale associated
with violent relaxation is on the order of a crossing time, and so results in very
rapid redistribution of the energies and angular momenta. With this in mind we
provide a final view of the merger process in Figure 6.14. Here, the connected
blue circles trace the evolution of the virial mass, M200, of the main progenitor
of Aq-F, and the green squares show the corresponding concentration of the halo,
rhalf/r200. The arrows indicate the time of infall, and of pericentric passage, where
tperi,i = tin,i + r200(tin,i)/V200(tin,i), one half of a crossing time after infall for halo i.

The start of the merger coincides with a sharp decrease in halo compactness,
represented by an increase in the concentration parameter. At tin,2, for example,
rhalf/r200 ∼ 0.57. This is a factor of ∼ 1.7 higher than the minimum concentration
of ∼ 0.34 occurring shortly after, at roughly tperi,2. This temporarily renders
the system in a state of maximal compression leading to a sudden drop in the
central gravitational potential, followed by an increases as the system oscillates to
a new state of equilibrium. These oscillations in the dynamical state of the halo
affect subhalo orbits differently depending on a complex interplay between their
initial locations and energies. Imagine, for example, a test particle falling into the
gravitational potential of a dark matter halo. If the potential of the halo is static
no relaxation occurs; the total energy and angular momentum of the particle are
integrals of motion and hence remain constant in time. If the potential rapidly
deepens after the particle crosses pericenter the particle loses energy, since it sees a
deeper potential than when it first fell in. If instead the potential rapidly expands
then a net energy gain results from the weaker gravitational attraction of the host
halo.

This concludes our description of the double merger of Aq-F. We have shown
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Figure 6.14: Evolution of the virial mass, M200 (blue circles), and concentration (green
squares) for the main progenitor halo of Aq-F. The halo concentration is defined here
as the ratio between the half-mass and virial radii at any given time, rh(z)/r200(z).
Arrows labeled tin,1 and tin,2 indicate the infall times of M1 and M2, respectively. The
subsequent arrows, labeled tcr,i, correspond to one half of a crossing time later, i.e. to
tin,i + r200(tin,i)/V200(tin.i), which roughly coincide with the pericenter of halo i. Note
that the start of the merger phase coincides with a rapid decrease in the concentration
of the main halo; a maximum concentration is reached at approximately the same time
as the first pericenters of the merging pair.

that a specific merging event can create a large number of both circular and ejected
subhalos. In the next section, we attempt to connect these simulation-based results
to the observed dwarf galaxies of the Local Group.

6.3.4 Monoceros candidates

In the previous sections we discussed how mergers can result in the rapid circular-
ization of infalling subhalo orbits. A low eccentricity orbit, however, is only one
prerequisite for the Monoceros stream. Other aspects to consider are its location
within the halo, its mass, and whether or not the system could have plausibly
trapped gas in order to fuel star formation. In this section we discuss how these
constrains affect the frequency of Monoceros-like systems in the Aquarius simu-
lation. We emphasize however that large uncertainties associated with modeling
the MO and identifying luminous galaxies in collisionless N -body simulations pre-
cludes a detailed modeling of MO-like systems.

Observations suggest that the separation of the MO from the Galactic center is
at most ∼ 20 kpc, and a lower limit on its mass comes from the observed stellar
mass of the stream: M∗ ≥ 1.5 × 107 h−1 M⊙ (converted to our value of h = 0.73,
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Table 6.2: Number of subhalos that fulfill the selection criteria discussed in this section,
for the level-2 simulations as well as Aq-A-3 for comparison. The first column shows the
number of subhalos that exist at zion = 9, out of which we select those with vmax > vcrit =
10 km/s, which significantly reduces the sample. The third column shows the number
of “luminous” halos with radial separation r < 0.1 r200 which is the upper observational
bound for the MO. This already emphasises the rarity of such objects, even without
any constraints on their orbital properties. The fourth column shows the total number
of circular subhalos found at redshift 0. When the star formation criterion is applied to
this sample, we obtain our final “MO-like” sample (no radius constraint is used here).

Halo Nsub at zion vmax > vcrit r < 0.1 r200 ǫ < 0.2 MO-like

Aq-A-2 19058 697 98 409 14
Aq-A-3 5502 598 21 121 7
Aq-B-2 19919 371 116 1117 19
Aq-C-2 16328 707 80 477 21
Aq-D-2 19772 829 161 490 22
Aq-E-2 20078 605 100 818 36
Aq-F-2 29194 521 171 1891 36

Yanny et al. 2003). Note that this is a conservative lower limit since the mass-to-
light ratios of Galactic dwarfs are M/L ≥ 5 M⊙/L⊙, with significantly larger values
for lower luminosities (e. g. McConnachie 2012). An estimate of the progenitor’s
initial mass can be obtained from the best-fitting model of Peñarrubia et al. (2005),
which gives Min = 0.73 × 109 h−1 M⊙. Nevertheless, as discussed by Peñarrubia
et al. (2005), estimates of the progenitors mass are poorly constrained and can vary
significantly for different assumptions regarding the shape of the Milky Way’s dark
matter halo. For this reason, we do not attempt to restrict our sample of circular
subhalos to Monoceros-like systems based on (poorly known) mass constraints.

Stellar streams require progenitors that are capable of forming stars. Star for-
mation is generally thought to occur in dark matter halos massive enough to trap
and cool gas prior to its heating by reionization. Because the Aquarius simulations
do not contain any gas or star formation recipe we must resort to an empirical
model and the properties of the dark matter halos to judge whether they could
have hosted star formation. Hydrodynamic simulations of galaxy formation have
shown that halos with vmax & 10 km/s at or before reionization are sufficiently
massive to trap and cool gas, which leads to significant star formation (Okamoto
& Frenk 2009, Geen et al. 2013, Sawala et al. 2013). This offers a simple and plau-
sible means of associating dark matter halos with luminous objects. In fact, these
same arguments have been used to reconcile the disparity in the mass function of
dark matter substructures found in N -body simulations with the paucity of ob-
served satellites around the Milky Way (citations needed). However, reionization
is not instantaneous and the redshift range over which it occurs is not particularly
well known. Most observations indicate that it lies somewhere between z = 12
and z = 6. For simplicity, we assume zion = 9 and use max [vmax(z > 9)] to flag
for subhalos that may today be visible through their starlight.

We therefore adopt constraints on orbital eccentricity (ǫ < 0.2) and peak circu-
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Figure 6.15: Top panel: Radial velocity as a function of distance for MO-like subhalos
in all six level-2 Aquarius halos (different symbols), scaled with r200 and v200 of their
respective halo. The black arrows show the properties of the Milky Way dwarf galaxies

from McConnachie (2012). The length of the arrow indicates the uncertainty from the
unknown tangential velocity of the dwarf galaxies (for details see text). The dashed
contours show the escape speed for the individual halos. The cyan region marks the
broad radial band where the Monoceros stream has been observed, which includes the
Canis Major (vr < 0) and Sagittarius (vr > 0) dwarf galaxies. Bottom panel: Radial
distribution of MO-like subhalos, combined for all six simulations (thick black line), and
for all associated subhalos in each of the simulations (thin grey lines) for comparison.

lar speed at zion in order to estimate the rate of occurrence of MO-like systems. In
general, the Monoceros overdensity (and Canis Major dwarf galaxy) are expected
to be extremely rare in galaxies with quiescent assembly histories similar to the
Aquarius halos. This is reflected in the total numbers of subhalos that pass the dif-
ferent cuts, given in Table 6.2. The constraint on vmax(z > 9) reduces significantly
the number of subhalos which could be possible progenitors for Monoceros: only
3 − 10% of associated subhalos are able to form stars based on this criterion, and
of these systems only ∼ 1.2% to 7% find themselves on circular orbits today. Since
this leaves us with very few candidates, hereafter we combine the results from all
six Aquarius halos by scaling their properties with those of their respective hosts.

The top panel of Figure 6.15 shows the radial velocity of all MO-like subhalos,
scaled with r200 and v200 of their respective host. For comparison, we overplot
the properties of the known Galactic dwarfs (from McConnachie 2012) as black
arrows, assuming a virial radius for the MW of rMW ∼ 198 h−1 kpc6. Note that

6The observational constraints on the MW’s virial radius are rather weak, ranging from ∼
146 h−1 kpc to ∼ 250 h−1 kpc, with errors of the order of 50 h−1 kpc (e. g. Li & White 2008,
Wang et al. 2012, Boylan-Kolchin et al. 2013). We therefore adopt the median value between
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the velocities of the dwarf galaxies have been measured as radial velocities in
the Solar rest frame, and the unknown tangential component translates into an
systematic uncertainty in the Galactic rest frame, which is much larger than the
actual measurement error (McConnachie, 2012). The tip of the arrow assumes the
tangential velocity in the Solar rest frame to be zero, whereas the base of the arrow
assumes a tangential component of the same magnitude as the measured radial
component, therefore providing an upper limit. The dashed contours in Figure 6.15
show the escape speed for the different Aquarius halos. The cyan region marks
the broad radial band between 7 and 15 h−1 kpc where the Monoceros stream has
been observed, which includes the Canis Major (vr < 0) and Sagittarius (vr > 0)
dwarf galaxies. Inside this narrow radial band, only a handful of subhalos remain:
only 9 out of ∼ 75000 Aquarius subhalos across all six simulations have properties
similar to those predicted for a Monoceros progenitor.

6.4 Conclusion

We have used a set of six high-resolution dark matter halos from the Aquarius

simulations to investigate the occurrence and origin of subhalos on circular orbits
within the inner regions of a halo. By tracing each subhalo through its dynamical
evolution, we were able to determine the orbital properties of associated subhalos,
i. e. those that have been inside r200 of the host at any point in their evolution. We
compared our own tracking method with the results from a merger tree analysis and
found that neither the specific method of subhalo tracking nor the resolution level
of the simulation has a significant influence on our results. This is in agreement
with the excellent numerical convergence of the Aquarius simulations found in
previous works.

In order to define a subsample of circular orbits, we investigated two ways of
defining the eccentricity: through their orbital energy, Equation (6.2), and by
directly determining the apo- and pericenters from their orbits. In general, we
found that the accuracy of the orbital energy equation depends strongly on the
degree of relaxation of the host halo. In particular, this affects the calculation of
the pericentric radius, because the inner part of the potential is more susceptible
to disruptions by mergers. Using the eccentricity determined from the orbits leads
to a “cleaner” sample of circular orbits, but also reduces the sample to only those
subhalos that have completed at least one full orbit within the main halo. In
accordance with previous studies, we found that the infall time strongly influences
the dynamical properties of a subhalo: those that fall in early will reach smaller
radial separations and lose a larger fraction of their mass by tidal stripping.

We find clear indications that circular subhalos can either come from early times,
when they fall in with already low eccentricity, or from late times in association
with mergers. Not only do the infall times correlate with the mergers, but also the
subhalo’s association with another substructure plays an important role. This is

these extremes to scale the observed dwarf galaxy distances and velocities. Note however
that the results do not depend very strongly on this choice.
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particularly evident in the case of Aq-F, which has a double merger at low redshift.
While a significant fraction of subhalos associated with the first merger ends up on
circular orbits, the second merging halo basically contributes ejected subhalos only.
Investigating this double merger in both level-2 and level-4 simulations, and find
that the deepening of the potential well by the second infall traps many subhalos
belonging to the first merger and allows them to circularise more efficiently.

In the final section, we compare the properties of the subhalos in our circular
subsample with those of the peculiar Monoceros stellar stream observed in the
Milky Way, which may be a remnant of an infalling satellite galaxy. In addition
to having a circular orbit at small radial separation, the subhalos must also be
able to form stars prior to infall. We enforce this criterion by applying a cut in
the maximum circular velocity, vmax, prior to the epoch of reionisation, which is
commonly used to separate “luminous” from “dark” subhalos in simulations with-
out star formation. We compare the properties of the circular, luminous subhalos
with the distribution of dwarf galaxies around the Milky Way and the orbit of
the Monoceros stream. We find that most subhalos have larger orbital radii than
Monoceros, re-emphasizing the rarity of this object. Across all six simulations,
only a handful of star-forming subhalos have properties similar to Monoceros.

We conclude that substructures on circular orbits are extremely rare in simulated
cold dark matter halos. Nevertheless, major mergers may provide the physical
conditions needed to rapidly circularize orbits of infalling systems and thereby give
rise to stellar streams such as the Monoceros overdensity. Whether these findings
apply generally to major mergers, or are the result of idiosyncrasies within the
Aquarius halo sample, will require further investigation.
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7 Summary & Outlook

In this thesis we have investigated several problems related to cosmological struc-
ture formation and numerical simulations. The first three chapters provided an
introduction to the ΛCDM model, the concept of cosmological structure formation,
and the principles of N -body simulations. We will now summarize our findings
and provide a short outlook of future work for each topic.

Perturbation theory and biasing In Chapter 4 we tested third-order Standard
Perturbation Theory (SPT) as an approximation to non-linear cosmological struc-
ture formation. A novel approach was used to numerically calculate the three-
dimensional dark matter density field using SPT from the initial conditions of two
high-resolution cosmological simulations. The calculated density field was com-
pared to the non-linear dark matter field of the simulations both point-by-point
and statistically. For smoothing scales above 8 h−1 Mpc it showed a good agree-
ment up to redshift 0. We presented a simple fitting formula to relate the linear and
non-linear density contrast that accurately recovers the non-linear time evolution
for 0 ≤ z ≤ 10 at the per cent level.

To address the problem of biasing between the matter field and the halos identi-
fied in the simulation, we employed the Eulerian local bias model (ELB), including
non-linear bias up to the third order. The bias parameters were obtained by fitting
a scatter plot of halo and matter density (both from the simulation and from SPT).
Using these bias parameters, we were able to reconstruct the halo density field.
We found that this reconstruction is not able to capture all the details of the halo
distribution. In addition, we investigated if the large scale bias can be described
by a constant and if it corresponds to the linear bias parameter b1 of the local
bias model. We also discussed how well the halo-halo power spectrum and the
halo-mass cross spectrum from the reconstructed halo density field agree with the
corresponding statistics from the simulation. The results show that while SPT is
an excellent approximation for the matter field for suitably large smoothing scales
even at redshift 0, the ELB model can only account for some of the properties of
the halo density field.

This work is easily extendable because our SPT calculation produces the dark
matter velocity field as a by-product of the density field. The velocity field is
crucial for connecting observations and theoretical models of large-scale structure
formation, because of redshift-space distortions (e. g. Kaiser, 1987; Hamilton, 1998;
Hawkins et al., 2003). Since distances in cosmology are often measured by red-
shifts, the peculiar velocities of galaxies with respect to the homogeneous Hubble
flow result in distortions of galaxy correlation functions on the smallest scales. For
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example, a galaxy falling into the potential well of a large cluster will appear fur-
ther away (closer to us) when it is between us and the cluster (behind the cluster)
because its peculiar velocity creates an additional positive (negative) contribution
to its measured redshift. Corrections for these effects rely on accurately estimating
the peculiar velocity field, often employing linear theory or perturbative extensions
(e. g. Heavens et al., 1998; Scoccimarro, 2004; Taruya et al., 2010). Our calcula-
tions will enable us to test these assumptions and/or provide more accurate models
for the mildly non-linear regime.

Primordial non-Gaussianity from large-scale structure In Chapter 5 we con-
sidered the effect of primordial non-Gaussianity (PNG) on the galaxy bias, which
can be used to detect and constrain deviations from standard single-field Inflation.
The local model of primordial non-Gaussianity makes strong predictions for the
galaxy bias on large scales, introducing a scale-dependence which is absent in the
Gaussian case. Current observational constraints from galaxy clustering on fNL

(skewness) and gNL (kurtosis) assume that the other PNG parameters are van-
ishing. Using two sets of cosmological N -body simulations where both fNL and
gNL are non-zero, we showed that this strong assumption generally leads to biased
estimates and spurious redshift dependencies of the parameters. Additionally, if
the signs of fNL and gNL are opposite, the amplitude of the scale-dependent bias
is reduced, possibly leading to a false null detection. Finally, we showed that
model selection techniques like the Bayesian evidence can (and should) be used
to determine if more than one PNG parameter is required by the data. Future
LSS surveys are expected to yield PNG parameters with an accuracy compatible
with those from the CMB, so it is important to understand and avoid this possible
degeneracy in order to confirm the constraints coming from the early Universe.

A natural extension of this work would be to explore the constraints from the
galaxy bispectrum and trispectrum. In the local PNG model, the matter bispec-
trum is directly proportional to fNL, and the trispectrum is proportional to gNL.
This can be used to break the degeneracy between the two parameters that appears
for the scale-dependent bias in the power spectrum. Theoretical modeling for the
bispectrum or trispectrum is even more complicated than for the power spectrum,
but numerical simulations could be used to study the expected signals in detail. In
order to beat down statistical uncertainties, these simulations have to cover large
volumes, while keeping the particle resolution high enough to explore a large range
in halo masses. Precise predictions of the effects of PNG on large-scale structure
provide insights on the generation of perturbations in the very early universe, and
a confirmation of a deviation from Gaussianity would constitute a major discovery
in cosmology and fundamental physics.

In addition, further constraints from large-scale structure probes would require
the improved understanding of systematics in the survey data. This could be
achieved for example by cross-correlating the spatial clustering of different galaxy
populations as shown for example in Giannantonio et al. (2014). This type of
study not only yields robust results, but can also lead to the discovery of previously

116



7 Summary & Outlook

unknown effects caused by the observation strategy, the instruments, or the data
processing pipeline.

The Monoceros stream and subhalo orbits In Chapter 6 we have focused on
near-field cosmology and properties of the Local Group environment. The forma-
tion history of the Milky Way and local environment – especially its dwarf galaxy
population – provide and important testbed for both cosmological models and
galaxy formation. We have used a set of six high-resolution dark matter halos
from the Aquarius simulations to investigate the occurrence and origin of subha-
los on circular orbits within the inner regions of a halo. By tracing each subhalo
through its dynamical evolution, we were able to determine their orbital properties
like eccentricity and infall time. We found clear indications that circular subha-
los either fall in with already low eccentricity during the formation of the main
halo (early mode), or later on only in association with mergers of the host halo
(late mode). In addition, we also defined a second sample of subhalos: those that
were accreted onto the main halo but are not able to lose enough energy, and are
subsequently ejected again.

Since the Aquarius halos were selected specifically to resemble the quiescent for-
mation of the our Milky Way, these late-time mergers are rare, and only happen
in one of the six halos. This double merger event at z ∼ 0.5 lead to an unchar-
acteristic increase in circular subhalo orbits via the late mode, and was therefore
studied in more detail. The two primary classes of subhalos orbits, circular and
ejected, are clearly associated with the first and second (by infall time) merging
partner, respectively. This can be explained by the change in potential well of the
main halo during the double merger: the second merger happens when the first
merging partner has reached its pericenter, and thus its subhalos are captured in
the deepening potential well caused by the second merger. When the main halo
potential rebounds, the subhalos associated with the second merger have not had
have enough time to be captured, and are ejected very efficiently. This increase
in the late accretion mode is of particular interest for a possible MO progenitor,
because an early infall would have led to a much more pronounced effect of tidal
stripping and is difficult to reconcile with the observed coherent stellar remnant.

In order to generate a stellar stream like the MO at redshift 0, the infalling
subhalo must also be able to form stars prior to its accretion by the host. We
enforced this criterion by applying a cut in the maximum circular velocity prior
to the epoch of reionisation to separate “luminous” from “dark” subhalos in our
dark-matter simulations. This allowed us to compare the properties of luminous
subhalos on circular orbits with the observed distribution of dwarf galaxies around
the Milky Way. The star-formation criterion significantly reduces the number of
subhalos that can be compared to MW dwarfs, even before applying the orbital
circularity condition. Finally, the MO’s observed orbital radius of ∼ 18 kpc is
found to be another strong selection criterion, further reducing the number of
subhalos which can be considered as possible progenitors. We therefore conclude
that subhalos on circular orbits (and in particular, with the properties of the
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Monoceros stream) are very uncommon objects within the context of dark matter
simulations of MW-type halos, even when their number is enhanced by rare merger
events.

There are at least two general directions for future work on this topic.1 Our
finding that late-time (double) mergers significantly enhance the abundance of
circular orbits is only based on one out of six Aquarius halos. A larger sample
of MW-like halos of similar or higher mass resolution would therefore be required
to validate this hypothesis. Higher mass and force resolution would also provide
a more complete sample of subhalos with properties compatible to the MO, and
allow us to probe the innermost regions of the halo more accurately.

Secondly, instead of using the star-formation cut on the maximum circular ve-
locity, one could include an actual stellar component by “post-processing” of the
simulations. Cooper et al. (2010) developed a method to “tag” a fraction of the
dark matter particles with stellar properties based on the semi-analytical galaxy
formation code Galform (Cole et al. 1994, 2000; Bower et al. 2006). This process
is repeated for all snapshots, so a star formation history can be defined for each
tagged particle. Their model is able to reproduce a satellite luminosity function
that is in agreement with observations, without running a full hydrodynamical
simulation. In addition to determining the origin of circular streams in a Milky
Way-like halo, we would also be able to predict the dynamical properties, ages
and metallicities of the stars (within the accuracy of the semi-analytical model).
This method has been very recently applied by Gómez et al. (2013), who study
the phase-space distribution of stellar streams in the Aquarius simulations. These
numerical predictions can then be compared with the properties of stellar streams
in the Milky Way, including those that will be newly detected by the recently
launched Gaia satellite (Perryman et al., 2001). Gaia will measure the positions
and peculiar velocities of roughly one billion stars in the Milky Way with high accu-
racy, leading to a significant improvement in the identification of merger remnants
(Gómez et al., 2010).

1The most desirable study, a combination of both statistical power and accuracy (potentially
using full hydrodynamical simulations) would require a significant computational effort.
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A Hierarchical SPT calculation

For the following calculations, it is convenient to rewrite the equations of motion
from section 2.1 in terms of the conformal time τ , defined by

dτ =
dt

a(t)
, (A.1)

introducing the conformal Hubble parameter H(τ) ≡ d ln a/dτ = Ha. The non-
linear Continuity and Euler Equation are then given by

∂δ(x, τ)
∂τ

+ θ(x, τ) = −∇ · [δ(x, τ)u(x, τ)] , (A.2)

and

∂θ(x, τ)
∂τ

+H(τ)θ(x, τ)+
3
2

ΩmH
2(τ)δ(x, τ) = −∇·

{
[u(x, τ) · ∇] u(x, τ)

}
. (A.3)

Here, θ(x, τ) is the velocity divergence, which in the case of vanishing vorticity1

reads
θ(x, τ) = ∇ · u(x, τ), (A.4)

and in Fourier space

ũ(k, τ) =
ik
k2

θ̃(k, τ). (A.5)

We will sketch the derivation of the mode-coupling kernel for the Continuity Equa-
tion, the Euler Equation can be treated completely analogously. Transforming
(A.2) into Fourier space yields

∂δ̃(k, τ)
∂τ

+ θ̃(k, τ) = −
∫

d3x eikx ∇ · [δ(x, τ)u(x, τ)] (A.6)

= −
∫

d3x
∫ d3k1

(2π)3

∫ d3k2

(2π)3
eikx

3∑

j=1

∇j

[
ũj(k1)e

−ik1xδ̃(k2)e
−ik2x

]

= −
∫

d3x
∫ d3k1

(2π)3

∫ d3k2

(2π)3
eikx δ̃(k2)

3∑

j=1

ũj(k1)∇j

[
e−ix(k1+k2)

]

=
∫

d3x
∫ d3k1

(2π)3

∫ d3k2

(2π)3
ei(k−k1−k2)x δ̃(k2)ũ(k1) [i(k1 + k2)]

=
∫ d3k1

(2π)3

∫
d3k2 δD(k − k1 − k2) δ̃(k2) ũ(k1) [i(k1 + k2)]

1This assumption is justified by the single-stream approximation (section 2.1).
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where we have temporarily dropped the τ -dependence in the intermediate steps,
used a subscript j to denote the components of u and ∇, and inserted the definition
of the Dirac delta function

(2π)3δD(k) =
∫

d3x eikx, (A.7)

in the final step. Replacing ũ by θ̃ using Equation (A.5) and defining

α(k1, k2) =
k1 · (k1 + k2)

k2
1

, (A.8)

we finally obtain

∂δ̃(k, τ)
∂τ

+ θ̃(k, τ)

= −
∫ d3k1

(2π)3

∫
d3k2 δD(k − k1 − k2) θ̃(k1, τ) δ̃(k2, τ) α(k1, k2). (A.9)

The Euler Equation can be treated in the same way, resulting in

∂θ̃(k, τ)
∂τ

+ H(τ) θ̃(k, τ) +
3
2

ΩmH
2(τ) δ̃(k, τ)

= −
∫ d3k1

(2π)3

∫
d3k2 δD(k − k1 − k2) θ̃(k1, τ) θ̃(k2, τ) β(k1, k2), (A.10)

where the second mode-coupling kernel is given by

β(k1, k2) =
(k1 + k2)2(k1 · k2)

2k2
1k2

2

. (A.11)

A.1 Solution for an EdS universe

For the following derivation we will assume an EdS universe (Ωm = 1, ΩΛ = 0);
the extension to ΛCDM will be discussed below. We make the Ansatz that the
density and velocity divergence can be written as separable functions:

δ̃(k, τ) =
∞∑

n=1

an(τ) δ̃n(k), (A.12)

θ̃(k, τ) = −H(τ)
∞∑

n=1

an(τ) θ̃n(k), (A.13)

For the following derivation, it is also convenient to introduce the short-hand
notation δD(k, qn) ≡ δD(k − q1 − · · · − qn).

Inserting these expansions into the previously derived non-linear equations of
motion will lead us to a recursion relation for δ̃n and θ̃n. But first we will calculate
a few time derivatives that will be needed later. In the EdS case, a = τ 2/τ 2

0 and
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H = 2/τ , so
∂a

∂τ
=

2τ

τ 2
0

= Ha and
∂H

∂τ
= −1

2
H

2. (A.14)

The time derivative of δ̃(k, τ) then reads

∂δ̃(k, τ)
∂τ

=
∞∑

n=1

nan−1 ∂a

∂τ
δ̃n(k) = H

∞∑

n=1

nanδ̃n(k). (A.15)

The linearised Continuity equation – Equation (A.6) with the right-hand side set
to 0 – then gives the linear solution δ̃1(k) = θ̃1(k).

Inserting the expansions (A.12), (A.13), and the time derivative of δ̃(k, τ) into
the Continuity equation (A.9), and dividing by a common factor H, we obtain

∞∑

n=1

nanδ̃n(k) −
∞∑

n=1

anθ̃n(k)

=
∫ d3k1

(2π)3

∫
d3k2 δD(k, k2) α(k1, k2)

∞∑

n=1

anθ̃n(k1)
∞∑

m=1

amδ̃m(k2)

=
∫ d3k1

(2π)3

∫
d3k2 δD(k, k2) α(k1, k2)

∞∑

n=2

n−1∑

m=1

anθ̃n−m(k1) δ̃m(k2), (A.16)

where we note that the second equality is only applicable for n > 1, but we already
know the linear solution. Comparing the left and right-hand sides we obtain the
first recursion relation

nδ̃n(k) − θ̃n(k) =
∫ d3k1

(2π)3

∫
d3k2 δD(k, k2) α(k1, k2)

n−1∑

m=1

θ̃n−m(k1) δ̃m(k2) (A.17)

For the Euler equation, we need to calculate the time derivative of θ̃(k, τ),

∂θ̃(k, τ)
∂τ

= −∂H(τ)
∂τ

∞∑

n=1

anθ̃n(k) − H(τ)
∞∑

n=1

nan−1 ∂a

∂τ
θ̃n(k)

=
1
2
H

2
∞∑

n=1

anθ̃n(k) − H
2a

∞∑

n=1

nan−1θ̃n(k)

= −1
2
H

2
∞∑

n=1

(2n − 1) anθ̃n(k). (A.18)

Inserting this into the Euler equation, and dividing by a common factor of −H2,
we arrive at:

(2n + 1) θ̃n(k) − 3 δ̃n(k)

= 2
∫ d3k1

(2π)3

∫
d3k2 δD(k, k2) β(k1, k2)

n−1∑

m=1

θ̃n−m(k1) θ̃m(k2) (A.19)

Calling the right-hand side of Equations (A.17) and (A.19) R
(n)
1 and R

(n)
2 , respec-
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tively, we can solve for δ̃n and θ̃n

δ̃n(k) =
1

(2n + 3)(n − 1)

[
(2n + 1)R(n)

1 (k, k1, k2) + R
(n)
2 (k, k1, k2)

]
(A.20)

θ̃n(k) =
1

(2n + 3)(n − 1)

[
3R

(n)
1 (k, k1, k2) + nR

(n)
2 (k, k1, k2)

]
(A.21)

One then makes the Ansatz (e. g. Goroff et al., 1986)

δ̃n(k) =
∫

d3q1 · · ·
∫

d3qn δD(k, qn) Fn(q1, . . . , qn) δ̃1(q1) · · · δ̃1(qn) (A.22)

θ̃n(k) =
∫

d3q1 · · ·
∫

d3qn δD(k, qn) Gn(q1, . . . , qn) δ̃1(q1) · · · δ̃1(qn), (A.23)

which describes the n-th order solution as n convolution of the linear solution
with kernels Fn and Gn. Note that we already used the previously derived initial
solution to replace θ̃1 by δ̃1.

Inserting this Ansatz into the right-hand side of Equations (A.20) and (A.21),
and setting them equal to the right-hand side of Equations (A.22) and (A.23) leads
to rather lengthy expressions which are however rather straightforward to simplify
by integrating out the Dirac delta function in R

(n)
i . This finally leads to another

set of recursion relations for Fn and Gn

Fn(q1, . . . , qn) =
n−1∑

m=1

Gm(q1, . . . , qm)
(2n + 3)(n − 1)

[
(2n + 1)α(k1, k2)Fn−m(qm+1, . . . , qn)

+2 β(k1, k2)Gn−m(qm+1, . . . , qn))
]

(A.24)

Gn(q1, . . . , qn) =
n−1∑

m=1

Gm(q1, . . . , qm)
(2n + 3)(n − 1)

[
3α(k1, k2)Fn−m(qm+1, . . . , qn)

+2nβ(k1, k2)Gn−m(qm+1, . . . , qn)
]

(A.25)

with F1 ≡ G1 ≡ 1, k1 = q1 + . . . + qm and k2 = qm+1 + . . . + qn.

Before going further, it is important to consider how R
(n)
1 and R

(n)
2 behave under

the exchange of k1 and k2, which is determined by α and β. We can see from
Equations (A.8) and (A.11) that R

(n)
2 is symmetric, but R

(n)
1 is not. This means

that if we want to integrate out the Dirac delta function that appears in R
(n)
i , we

have to symmetrise the terms containing α. This then leaves us with expressions
for δn and θn which require n − 1 3D integrals. This form is useful because it
relates everything back to the linear density field, and higher order power- and
cross-spectra can be related to the linear power spectrum that is easy to compute
(e. g. Heavens et al., 1998). However, it is not advantageous for the point-by-point
computation performed in Chapter 4.

An alternative solution can be found by directly considering Equations (A.20)
and (A.21) (Juszkiewicz, 1981; Vishniac, 1983; Makino et al., 1992). Integrat-
ing over the Dirac delta function in R

(n)
i and symmetrising the terms with R

(n)
1
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immediately leads to

δ̃n(k) =
1

(2n + 3)(n − 1)

∫ d3k1

(2π)3

{
(2n + 1)

2

[
n−1∑

m=1

θ̃n−m(k1) δ̃m(k − k1)

α(k1, k − k1) +
n−1∑

m=1

θ̃n−m(k − k1) δ̃m(k1) α(k − k1, k1)

]

+2 β(k1, k − k1)
n−1∑

m=1

θ̃n−m(k1) θ̃m(k − k1)

}
(A.26)

θ̃n(k) =
1

(2n + 3)(n − 1)

∫ d3k1

(2π)3

{
3
2

[
n−1∑

m=1

θ̃n−m(k1) δ̃m(k − k1)

α(k1, k − k1) +
n−1∑

m=1

θ̃n−m(k − k1) δ̃m(k1) α(k − k1, k1)

]

+2nβ(k1, k − k1)
n−1∑

m=1

θ̃n−m(k1) θ̃m(k − k1)

}
(A.27)

which is equivalent to Equations (2.15a) and (2.15b) in Makino et al. (1992) with
H(k − p) = α(k − p, p) and F = β. Note that there is a small typo in their
Equation (2.15a), it should say F (p, k − p) instead of F (p, p − k).

This solution is much more suitable for a direct, numerical calculation of the
third-order density field as done in Chapter 4, because it only involves one 3D
integral, and the mode-coupling kernels are always the same. It will thus take
roughly the same time to calculate each order in the expansion, because the so-
lution is based on the previous orders, while this fact is not used in the previous
method. Of course this also means that even if we are only interested in δn we
also need to calculate θn−1. However this is actually an advantage, as studying
the velocity divergence is relevant e. g. in the context of redshift-space distortions
(Kaiser, 1987; Hawkins et al., 2003).

A.2 Solution for a flat ΛCDM universe

The derivation above is technically only correct in the case of an EdS universe.
However, it can be easily extended even in the case of a non-zero cosmological
constant. We start by replacing the scale factor a(t) for the time evolution of the
density contrast by the growth factor D(t). The time evolution for the velocity
divergence then immediately follows from the linearised Continuity equation, and
we obtain

δ̃(k, τ) = D(τ)δ̃1(k), (A.28)

θ̃(k, τ) = −Hf(Ωm, ΩΛ)D(τ)δ̃1(k), (A.29)

where

f(Ωm, ΩΛ) ≡ d ln D

d ln a
=

1
H

d ln D

dτ
(A.30)
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encodes the difference of growth between a ΛCDM and an EdS universe. Based on
the similarities to Equations (A.12) and (A.13), it is sensible to make the Ansatz

δ̃(k, τ) =
∞∑

n=1

Dn(τ)δ̃n(k), (A.31)

θ̃(k, τ) = −Hf(Ωm, ΩΛ)
∞∑

n=1

En(τ)θ̃n(k) (A.32)

where Dn(τ) and En(τ) have to be determined. By insertion, it can be shown that
this Ansatz is a solution for the non-linear equations of motions with Dn ≈ En ≈
Dn, as long as f(Ωm, ΩΛ) ≈ Ω0.5

m , and the latter approximation is highly accurate
for flat ΛCDM models independent of Ωm (Scoccimarro et al. 1998, also shown
numerically by Bernardeau 1994a).

The mode-coupling kernels are also slightly affected because this new time de-
pendence is not an exact power law (Bernardeau, 1994a), but the differences are
only of percent order even at redshift 0 where the deviation from EdS is largest,
so this effect is usually neglected.
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