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Chapter 1. Introduction 
 

1 
 

1. Introduction 

1.1 The synapse 

Already in 1897 Foster and Sherrington introduced the term synapse (from Greek synapsis 

"conjunction", from synaptein "to clasp", from syn- "together" and haptein "to fasten)1 

(WESTFALL et al., 1996). By 1962 the first nervous system, though a simple one, in Phylum 

Cnidaria (corals, anemones, and jellyfish) was defined by Horridge and Mackay. After 

Santiago Ramón y Cajal, the founder of modern neuroscience (LLINÁS, 2003), many scientists 

dedicated themselves in understanding the structure and function of synapses. In 1954 Palade 

and Palay described for the first time the structure of a vertebrate synapse using electron 

microscopy (EM). Since that time our understanding of synapse architecture has deepened, 

facilitated also by enhanced imaging techniques.  

The synapse is an asymmetrical structure composed of a presynaptic terminal, a 

synaptic cleft and a postsynaptic terminal. The presynaptic terminal is important in regulating 

synaptic vesicle docking, priming, fusion and neurotransmitter release into the cleft, where the 

neurotransmitter molecules bind to the postsynaptic terminal’s receptors. In the postsynaptic 

terminal the chemical signal is converted into an electrical one and further propagated within 

the neuron. Several steps of synaptic vesicle (SV) fusion take place at a specialized structure 

in the presynaptic terminal, which contains an electron-dense cytoskeletal matrix, known as 

cytometrix at the active zone (CAZ) (review: SCHOCH and GUNDELFINGER, 2006; review: SÜDHOF, 

2012). 

 
1.2 Cytometrix at the active zone (CAZ) 

1.2.1 Active Zone Ultrastructure  

In a simplistic model the active zone consists of a proximal zone close to the plasma 

membrane, where the docking of synaptic vesicles (SV) takes place and a more distal zone 

where vesicles are tethered. Over the decades electron microscopy and tomography (EM) 

techniques have revealed the existence of an electron-dense structure expanding into the 

cytoplasma. These observed dense projections differ considerably between species (review: 

ZHAI and BELLEN, 2004). At the neuromuscular junction (NMJ) of C.elegans the dense projection 

has been described as a plaque surrounded within 100nm by a subpopulation of vesicles (Fig. 

1.1A; WEIMER et al., 2006); while in D.melanogaster, the dense structure takes the shape of a 

pedestal and a platform (T-bars) enclosed by synaptic vesicles and closely associated with 

calcium channels (Fig. 1.1B; PROKOP and MEINERTZHAGEN, 2006). In vertebrates (frog), the NMJ has 

                                                            
1 ONLINE ETYMOLOGY DICTIONARY: www.etymonline.com 
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assembly and thereby the priming step (BETZ et al., 1997; review: RIZO and SÜDHOF, 2002; STEVENS et 

al., 2005; review: SÜDHOF, 2013).  

After the action potential reaches the presynaptic terminal, voltage gated calcium 

channels open and the calcium concentration builds up in a microdomain near the priming 

complex. The calcium sensor synaptotagmin1 (present on the synaptic vesicle) together with 

the SNARE complex further enables membrane fusion (DAI et al., 2008; CHOI et al., 2010; VRLJIC et 

al., 2010) with the formation of the pore to release the neurotransmitters into the synaptic cleft.  

Following neurotransmitter release SVs are recycled via different routes, like kiss-and-run 

(vesicles undock and recycle locally), clathrin mediated endocytosis (vesicles are reacidified 

and refilled directly or by passing via the endosome compartment) (review: SÜDHOF, 2004) or via 

bulk endocytosis. Activity-dependent bulk endocytosis (ADBE) is the dominant retrieval 

pathway after an elevated stimulation activity (CHEUNG and COUSIN, 2013). 

In accordance with the network’s needs, the amount of SVs ready to release 

neurotransmitter may very as well. SV recycling is tightly regulated by the action of different 

proteins, resident at the AZ. Therefore, fluctuations in the activity of synapses could be 

mediated by the actions of various AZ proteins, as well as by the SVs cycle. These changes 

represent the fundament of presynaptic plasticity.   

 
1.4 Synaptic plasticity 

The concept of synaptic plasticity, which was for the first time formulated by Hebb in 1949, 

refers to the capacity of synapses to react accordingly to the network’s needs either be 

weakening (depression) or strengthening (potentiation) its activity. These types of changes 

may well extend over short periods (short-term plasticity) or long periods of time (long-term 

plasticity). The Hebbian theory is used to describe these synaptic changes as being associative 

and rapidly induced, shortly explained as a positive feedback process (HEBB., 1949). For 

example, upon LTP induction, synapses become more excitable and the entire network 

activity would increase leading to a runaway potentiation. To prevent such extremes, the 

homeostatic process, which hinders the network to reach high levels of activity and preserve 

the stored information, has an important role (review: POZO and GODA, 2010).  

In the active state or basal conditions synaptic transmission is mediated by the release 

of neurotransmitters from presynaptic terminals into the synaptic cleft, followed by the 

activation of different receptors on the postsynaptic terminal. Under increased network 

activity presynaptic neurons decrease their release probability (LTD-long-term depression), 

while the postsynaptic cells decrease the number of their receptors. To offset reduced network 
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activity, presynaptic neurons enhance the recycling, the number of docked vesicle and the 

release probability (LTP-long-term potentiation) (review: POZO and GODA, 2010; CASTILLO, 2012).  

There are multiple parallel mechanisms responsible for controlling pre- and postsynaptic 

homeostasis, and consequently affecting synapse activity. The molecular mechanisms that 

govern the negative feedback (homeostatic plasticity) rely on the efficiency of different 

intracellular signalling cascades to detect and to respond accordingly to changes in the 

network. These fine-tuned mechanisms include: gene expression induction, protein synthesis 

and degradation. Besides the two major mechanisms: transcription and translation, post-

translational modifications have emerged as an important factor in controlling plasticity 

(review: POZO and GODA., 2010). Several post-translational modifications have been suggested to 

modulate the function of various pre- and postsynaptic proteins, like: palmitoylation (review: 

EL-HUSSEINI and BREDT 2002), myristilation and prenylation (KUTZLEB et al., 1998; O’CALLAGHAN et al., 

2003), SUMOylation (Small Ubiquitin-like Modifier) (GIRACH et al., 2013) and phosphorylation 

(review: BARRIA, 2001). 

 
1.4.1 Presynaptic dormancy 

Presynaptic dormancy is induced as a response to a prolonged strong depolarization or 

increased action potential firing. Dormant synapses display a decrease in neurotransmitter 

release. The molecular mechanism is based on the inhibitory action of G proteins on adenylyl 

cyclase (AC), which causes a decrease in the level of cAMP and thereby directly affects the 

activity of protein kinase A (PKA) (Fig. 1.5). Therefore, presynaptic proteins are less 

phosphorylated and become susceptible to degradation through the proteasome (review: 

CRAWFORD and MENNERICK, 2012). The protein levels of RIM1α and Munc13-1 were shown to be 

decreased upon induction of presynaptic dormancy through the action of the ubiquitin-

proteasome system, while an overexpression of RIM1α in cultured neurons prevented the 

induction of silencing (JIANG et al., 2010). Recently two other presynaptic proteins, Piccolo and 

Bassoon were identified as negative regulators of the E3 ligase Siah1. In the DKO neurons the 

rate of presynaptic protein degradation was increased, leading to the observation that these 

two proteins are important regulators of the protein ubiquitination in the presynaptic terminal, 

therefore maintaining synapse integrity (WAITES et al., 2013).aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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The sequence between the zinc and PDZ domains contains several amino acid residues 

that have been suggested to be important in modulating RIM’s function (Fig. 1.7). Serine 413 

was identified as a phospho-switch that triggers presynaptic LTP in cultured cerebellar 

granular and Purkinje cell neurons, upon phosphorylation by PKA (LONART et al., 2003). These 

findings however were not confirmed by studies in knockin mice, bearing the S413A 

mutation. The phosphorylation of serine 413, although important in binding 14-3-3 proteins, 

displayed no significant role in presynaptic plasticity or in learning and memory (KAESER et al., 

2008a; YANG and CALAKOS, 2010). Other phosphoserines (Ser241 and Ser287 in RIM1α, and 

Ser335 in RIM2α) were also associated with binding to 14-3-3 proteins, when phosphorylated 

by the Ca2+/calmodulin dependent kinase II (CaMKII). The ability of RIM to bind 14-3-3 

proteins does apparently not impair the binding between RIM-Munc13 and RIM-Rab3A (SUN 

et al., 2003). The same linker region between zinc finger and PDZ domain may also act as a 

substrate for ERK2 kinase, which phosphorylates Ser447, a residue linked to the enhancement 

of glutamatergic transmission in hippocampal CA1 after stimulation with BDNF (SIMSEK-

DURAN and LONART, 2008). 

The central PDZ domain that interacts with the ELKS2/CAST protein (OHTSUKA et al., 

2002; WANG et al., 2002), plays an important role in RIM1’s distribution in cultured neurons; the 

truncated form lacking this domain being diffusely localized (Fig. 1.7; OHTSUKA et al., 2002). 

CAST binds directly not only RIM1, but also Bassoon and Piccolo, and the entire ternary 

complex RIM1-CAST-Bassoon is involved in controlling neurotransmitter release (TAKAO-

RIKITSU et al., 2004). Two reports from 2011 attribute to RIM1/2 a key role in controlling not 

only the number of docked vesicles but also the distribution and/or density of calcium 

channels at the active zone (HAN et al., 2011; KAESER et al., 2011). By generating RIM1/2 floxed 

mouse lines, in which all RIM isoforms containing a PDZ domain can be deleted by cre-

recombinase in vitro, it was shown that the PDZ domain alone was required for the proper 

localization of N- and P/Q type calcium channels (KAESER et al., 2011). 

The α- and β-RIMs contain two C-terminal domains: C2A and C2B that are separated 

by a proline-rich domain and two splice sites (B and C) (Fig. 1.7; WANG and SÜDHOF, 2003). Both 

domains do not contain the consensus calcium binding sites present in synaptotagmin’s C2- 

domains (WANG et al., 2000; DAI et al., 2005). The C2A domain was shown to have affinity in a 

calcium dependent manner for SNAP25 and Synaptotagmin1 (COPPOLA et al., 2001), even though 

NMR studies suggested that there was little binding between these proteins (DAI et al., 2005). 

Very intriguing is a point mutation in human RIM1 (R844H) that was identified in a patient 

with autosomal dominant cone-rod dystrophy-CORD7, characterized by impaired vision due 
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to the reduction in the cone and rod sensitivity (JOHNSON et al., 2003; MICHAELIDES et al., 2005). The 

C2B domain has been shown to interact with several proteins that may have an impact on 

RIM1α function at the active zone, among them Synaptotagmin1, identified to bind with high 

affinity to the C2B domain in biochemical assays (COPPOLA et al., 2001; SCHOCH et al., 2002), 

results not reproduced by NMR studies (GUAN et al., 2007). Other proteins that bind the C2B 

domain are: liprins-α (SCHOCH et al., 2002); the E3 ubiquitin ligase SCRAPPER (YAO et al., 2007) 

that controls RIM1 turn-over, facilitating ubiquitination and degradation; SAD kinase (INOUE et 

al., 2006); and the β4 subunit of voltage gated calcium channels (COPPOLA et al., 2001; KIYONAKA et 

al., 2007). In addition the interaction between RIM1 and the α1 subunit of the N-type calcium 

channel is regulated by cyclin-dependent kinase 5 (Cdk5), which enhances channel opening 

and facilitates neurotransmitters release (SU et al., 2012).  

SUMOylation was recently reported by the group of Hanley to act as a molecular 

switch for RIM1α. SUMOylated RIM1α confers affinity for Cav2.1, therefore promoting 

calcium channel clustering and synchronous synaptic vesicle release, while non-SUMOylated 

form is responsible only for vesicle priming and docking (GIRACH et al., 2013). 

Other proteins that couple RIM1/2 to calcium channels are RIM-BPs. On one hand 

RIM-BP binds the proline-rich domain of RIM1/2 (WANG et al., 2000) and on the other hand 

calcium channels, bringing these proteins in close proximity at the active zone (HIBINO et al., 

2002). 

 
1.5.1.3 RIM function 

1.5.1.3.1 RIM in invertebrates (C.elegans and D.melanogaster) 

Analysis of RIM protein function in C.elegans demonstrated that UNC-10 has a major role in 

coordinating vesicle docking and priming by regulating UNC-13 activity. It has been 

hypothesised that UNC-10/RIM may signal syntaxin, via UNC-13, to change its conformation 

from a closed to an open state. UNC-10 mutants exhibit a decrease in vesicle fusion at release 

sites, an effect suppressed by the expression of the open form of syntaxin (KOUSHIKA et al., 

2001). Furthermore, disruption of the unc-10 gene triggers a depletion of docked synaptic 

vesicles since the normal connections between SVs and dense projection filaments are 

impaired (STIGLOHER et al., 2011). 

D.melanogaster RIM mutants show decreased evoked synaptic transmission as a 

consequence of the reduction in the size of the RRP of SVs and altered Ca2+-channels 

clustering together with a decreased calcium influx. Mutants present a normal cellular 

morphology with no major changes in active zone architecture (GRAF et al., 2012; MÜLLER et al., 

2012).
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1.5.1.3.2 RIM in vertebrates (M.musculus) 

In the recent years several reports have been published, providing new data about the possible 

role of RIMs at the active zone. Different mouse models have been generated, knocking out 

either one or more isoforms, in order to gain new insights into how different variants of RIMs 

influence neurotransmitter release and presynaptic plasticity as well as to understand ability of 

the various isoforms to compensate for each other.  

 
1.5.1.3.2.1 RIM1α knock-out mice 

The first model generated targeted the most abundant isoform in the brain, RIM1α (SCHOCH et 

al., 2002). Homozygous mice were viable and fertile, with no evident structural abnormalities 

or changes in brain architecture. Overall, active zone architecture was comparable to WT 

littermates. Among the AZ proteins, Munc13-1 showed a major decrease of 60% in KOs, 

while several postsynaptic density proteins (SynGAP, PSD95, SHANK) exhibited a moderate 

increase, suggesting a role for RIM1α in synaptic remodelling (SCHOCH et al., 2002). 

Electrophysiological recordings revealed that RIM1α knockout caused a decrease in the size 

of the RRP, with no effect on synaptic vesicle recycling. These data together with findings 

from D.melanogaster and C.elegans suggest a role for RIM1α in vesicle maturation, from 

priming to calcium triggered fusion (KOUSHIKA et al., 2001; SCHOCH et al., 2002; CALAKOS et al., 2004; 

MÜLLER et al., 2012). Additionally, the RIM1α protein seems to be involved both in short-term 

plasticity as well as in presynaptic long-term potentiation (LTP) (review: MITTELSTAEDT et al., 

2010).  

Cryo-electron tomography revealed a series of changes in the AZ with regard to 

vesicle tethering and vesicle concentration in synaptosomes from RIM1α KO mice (40% 

reduction in proximal vesicles compared to control) that may account for the decrease in the 

size of the RRP. Blocking proteasome activity with MG132, the KO phenotype was rescued 

and the treated KO synaptosomes became indistinguishable from WT synaptosomes, 

displaying an increase in the number of vesicles at the AZ. This recent study highlights the 

importance of the ubiquitin-proteasome system (UPS) in the turn-over of RIM proteins, 

emerging as a key factor in controlling presynaptic plasticity (FERNANDEZ-BUSNADIEGO et al., 

2013).  

Besides deficits in synaptic transmission, KO mice display impaired learning and 

memory (POWELL et al., 2004), schizophrenia-like behaviour (BLUNDELL et al., 2010), and a higher 

susceptibility to develop spontaneous seizures after status epilepticus (PITSCH et al., 2012). 
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1.5.1.3.2.2 RIM1αβ double knock-out mice 

Mutant mice lacking both RIM1 isoforms, α and β, display a more severe impairment in 

synaptic transmission and significant changes in the solubility of different active zone 

proteins. Both isoforms are expressed in a similar pattern in the brain, with a slight increase of 

RIM1β levels in the brainstem. During development RIM1β is highly expressed in the early 

postnatal phase in this region, which may account for the lethality of the DKO mice. 

Interestingly, in RIM1α KO mice the level of RIM1β is increased 2 fold, indicating a 

compensatory effect. Among the presynaptic proteins, ELKS1/2, RIM-BP2 and the remaining 

Munc13-1 (reduced to 30% in these mutant mice), showed a higher dissociation rate from the 

insoluble protein matrix, supporting the notion of RIMs acting as scaffolding proteins for 

various AZ proteins. Synaptic transmission is severely impaired in the DKO mice with the 

observation that presynaptic long-term plasticity is not aggravated by this double deletion 

compared to RIM1 KO. Therefore, it has been suggested that RIM1α mediates both long-term 

plasticity via Rab3 as well as short-term plasticity via Munc13, while RIM1β (since it lacks 

the binding motif for Rab3) is involved only in short-term plasticity (KAESER et al., 2008b).  

 
1.5.1.3.2.3 RIM2α knock-out mice 

Since RIM1α and RIM2α, which is much less abundant, display high homology, it was 

expected that the knockout of RIM2α might partially resemble the phenotype of the RIM1α 

KO. However, deletion of the RIM2α gene did not trigger any change in release probability 

compared to the impairment in synaptic transmission and facilitation observed in the RIM1α 

KO mice (CASTILLO et al., 2002; SCHOCH et al., 2002, 2006). RIM2α KO mice were viable and fertile, 

and displayed normal brain morphology (SCHOCH et al., 2006).  

 
1.5.1.3.2.4 RIM1α/RIM2α double knock-out mice 

Deletion of both α isoforms (RIM1 and RIM2) turned out to be lethal, RIM1α/2α DKO mice 

die immediately at birth, not due to changes in brain development but due to breathing 

problems. No obvious alterations in brain morphology were detected by conventional EM. 

Protein composition analysis revealed no additional decrease in the level of Munc13-1 

compared to RIM1α KO mice. Nonetheless, immunostaining analysis of the whole-mount 

diaphragm muscle at E18.5 revealed an increased innervation or expansion of innervation 

with no major changes in the ultrastructure of the NMJ in the DKO mice. These changes were 

accompanied by impairment in synaptic transmission. Spontaneous or Ca2+-dependent 

exocytosis was not abolished, only evoked synaptic transmission (Ca2+- triggering exocytosis) 

was strongly impaired in these mutants (SCHOCH et al., 2006).  
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1.5.1.3.2.5 RIM conditional knockout mice 

As both RIM1α/RIM1β (KAESER et al., 2008b) and RIM1α/RIM2α (SCHOCH et al., 2006) DKO mice 

were lethal, conditional knockouts (floxed mouse lines) were generated to further study the 

consequences of a deficiency of all RIMs isoforms. Deletion of both RIM genes in vitro 

supported the role of RIMs in controlling vesicle priming and neurotransmitter release (KAESER 

et al., 2012). Furthermore, RIMs were shown to be responsible for proper tethering of the Ca2+ 

channels via the PDZ domain (HAN et al., 2011; KAESER et al., 2011).  

Single deletions (RIM1αβ or RIM2αβγ) altered SV priming, while double deletion 

(RIM1αβ/RIM2αβγ) impaired not only the priming but also the calcium responsiveness and 

synchronization of release. In HEK293T cells and in RIM1/2 double deficient neurons, 

RIM2γ wasn’t able to rescue the phenotype, suggesting that the C2 domain alone neither 

contributes to calcium channel activity modulation nor plays an important role in the synaptic 

function of RIM proteins (KAESER et al., 2012). 

 
Taken together, RIM1α plays an important role in synaptic vesicle priming, and in 

both presynaptic short-term and long-term plasticity. Moreover, the level of RIM1α seems to 

be correlated with the synaptic activity.  
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1.5.2.2 SV2A knock-out mice 

In spite of all the data collected until now the exact function of SV2A still remains enigmatic. 

To gain further insights into SV2A function, SV2A deficient mice were generated (CROWDER et 

al., 1999; JANZ et al., 1999). Albeit SV2A KO littermates appeared normal at birth, mice 

experienced severe seizures and died about three weeks after birth. No obvious alterations of 

synaptic density or morphology in the brain of SV2A KO mice were observed (CROWDER et al., 

1999; JANZ et al., 1999).  Therefore, SV2A seems not to be required in embryonic development 

but rather its presence is essential for survival afterwards. Electrophysiological studies further 

revealed that inhibitory (CROWDER et al., 1999; CHANG and SÜDHOF, 2009) as well as excitatory 

(CUSTER et al., 2006) neurotransmission in these mice were impaired. A similar impairment was 

also detected in adrenal chromaffin cells from SV2A KO mice, where the exocytotic burst 

defining the size of the readily releasable pool (RRP) was observed to be decreased with no 

evident alterations in the calcium level (XU and BAJJALIEH, 2001). A role in priming after vesicle 

tethering was suggested by Custer et al. (2006), who observed a similar decrease in RRP in the 

SV2A deficient mice’s brain, with no oscillation in calcium level. 

However, earlier studies using SV2A/SV2B double knockout mice with a phenotype 

resembling SV2A KO, proposed a role in regulating the calcium level during repetitive 

stimulation trains rather than priming (JANZ et al., 1999). The described decrease in the RRP size 

(CUSTER et al., 2006) was not reproduced by Chang (CHANG and SÜDHOF, 2009). A further 

observation that the protein components of SNARE complexe were reduced in SV2A KO 

mice supported the hypotheses that SV2A may have a role in the fusion mechanism (XU and 

BAJJALIEH, 2001). 

 
Taken together, the collected data suggest a role of SV2A in SV priming. Moreover, 

SV2A act as a receptor for the anti-epileptic drug Keppra. It has been suggested that Keppra 

may inhibit inappropriate interactions to occur when SV2A is overexpressed in neuronal cell 

cultures. Neurons with elevated amount of overexpressed SV2A display similar impairments 

in synaptic transmission as neurons from SV2A KO mice (NOWACK et al., 2011). It seems that 

the protein amount plays an important role in maintaining the neuronal function as well. The 

molecular mechanism of action of Keppra on SV2A is not fully elucidated.    
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Aim of the study 

One of the most important properties of the synapse is the capacity to remodel itself in 

response to ongoing activity in its environment. The synapse’s ability to weaken or strengthen 

over time in response to different stimuli is called synaptic plasticity. One way of inducing 

changes in presynaptic plasticity is to modulate SV priming and the protein machinery 

involved in this process, like RIM1α and SV2A proteins. Over the years it has been proposed 

that regulated phosphorylation/dephosphorylation events may play a role in plasticity- 

induced remodelling of established and the assembly of novel active zones.  To date the 

molecular mechanism governing these changes are not understood in detail.  

In this thesis two goals will be pursued: 

1. Examine how phosphorylation events affect RIM1α binding affinities 

RIM1α, a scaffold multi-domain protein residing in the active zone (AZ), has been shown to 

be involved in synaptic vesicle priming and in different forms of presynaptic plasticity. Both 

synaptic abundance and function have been suggested to be regulated by posttranslational 

modifications. However, the precise mechanisms involved in controlling RIM1α protein 

levels and function in the presynaptic terminal are not yet resolved.  

To understand the impact that RIM1α phosphorylation has on active zone 

reorganisation and presynaptic function, we aim at identifying novel phospho-dependent 

binding partners. Combining various stimulation protocols, in order to block or enhance 

kinases activity, different protein complexes binding to RIM1α will be identified by mass-

spectrometry. Next, these newly identified binding partners will be verified by protein-protein 

interaction assays, and the functional role of these new proteins addressed in neuronal cell 

culture. 

2. Identify novel binding partners for SV2A 

The last part of this study will be focused on the synaptic vesicle protein 2A (SV2A) protein, 

whose involvement in vesicle priming or in controlling calcium levels is not yet elucidated. 

Although SV2A is targeted by the antiepileptic drugs Keppra that only acts in case of strong 

pathophysiological activity, its mode of action is still unresolved.  

Therefore, to gain insight into the SV2A function identification of novel binding 

partners will be addressed. Different affinity methods in combination with rAAV injections in 

mice will be applied in order to find the best approach possible to purify the entire complex of 

proteins under native conditions, followed by mass-spectrometry. 

The results of this study will provide new insight into the molecular mechanisms by 

which the functional properties of the presynaptic release machinery might be modulated.   
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2. Materials 

2.1 Equipment  

 Application Model Company 

A 

Acrylamid electrophoresis system Mini-PROTEAN Tetra Cell/ 
Power Pac Basic Power Supply 

BioRad 

Agarose electrophoresis system SUB-CELL GT  BioRad 
Analytical balance JP  Mettler Toledo 
Autoclave Laboklav Steriltechnik AK 

B Balance SBC53  Scaltec 

C 

Capillary Sequencer 3130/xl/Genetic Analyzer Applied Biosystems 
Cell-culture hood  MSC-Advantage Thermo Scientific 
Cell-culture hood  HERA Safe KS Thermo Scientific 
Centrifuge  Rotina 420R Hettich 
Centrifuge  Mikro 200R Hettich 
Centrifuge  - Abimed 
Chamber for MS X Cell SureLock Mini-Cell Life Technologies 
Confocal laser scanning microscope A1/Ti Nikkon 

 Confocal microscope  FV1000 Olympus 

 Controller Micro4 Controller, 4- Channel World Precision Instruments 

G Gel documentation system  AlphaImager Alpha Innotech 

I 

Incubator  HERA Cell 150i Thermo Scientific 
Incubator - Binder 
Incubator Incubator 1000 Heidolph 
Incubator Incubator Mini Shaking VWR 
Infrared imaging system  Odyssey  Li-cor 
Inverse microscope  Axio Observer 1A Zeiss 
Inverse microscope Axiovert 40 CFL Zeiss 

M 

Magnetic Separator - Sigma 
Mass-spectrometer 
 (IBMB, Bonn) 

LTQ OrbitrapVelos/ Thermo 
DionexUlti Mate 3000 RSLCnano 
HPLC 

Thermo Scientific 

MilliQ -Ultra pure water  Advantage A10 Millipore 
Microsyringe pump controller Micro4 World Precision Instruments 

P 

PCR Machine  MY Cycler BioRad 
Peristaltic pump P-1 GE Healthcare 
pH-Meter InLab@ExpertDIN Mettler Toledo 
Potter Potter S B. Braun 
Power Supply PHERO-stab.500 Biotec-Fischer 
Power Supply Power Pack 25 Biometra 

R Rocking Platform  Polymax 1040 Heidolph 
Rotator SB 3 Stuart 

S 

Shaker  TH 15 Edmund Bühler 
Shaker  TH 30 Edmund Bühler 
Sonicator Labsonic 2000 B. Braun 
Spectrophotometer BIO Eppendorf 
Spectrophotometer  ND 1000  NanoDrop 
Syringe Nanofil World Precision Instruments 

T 

Thermo shaker Compact  Eppendorf 
Thermo shaker MB-102 Bioer 
Transfer System Mighty Small Transphor/ Hoefer 

TE22 
Amersham 

U 
Ultracentrifuge  WX ULTRA Series Thermo Scientific 
Ultracentrifuge Optima L series, S class Beckman Coulter 
Ultrasonicator UP50H Hilscher 

V Vacuum concentrator Concentrator plus Eppendorf 
Vortex Vortex-Genie 2  Scientific Industries 
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2.2 Chemicals 

Chemicals Company 
A  
Acetic acid Roth 
Acetonitril LC-MS Grade Roth 
Agarose Sigma 
Ammonium hydrogencarbonate Roth 
Ammonium peroxodisulphate Roth 
Ampicillin Roth 
Ampuwa Fresenius 
Antioxidant Agent Life Technologies 
Arginine-HCl Sigma 
  
B  
ß-Marcaptoethanol Roth 
Bensonase Sigma 
BES (N,N, Bis-(2-hydroxyethyl)-
2-amino-ethansulfonic acid) 

Roth 

Bovine serum albumin (BSA) Roth 
  
C  
Calcium chloride (CaCl2) Sigma 
Chlorhidric acid (HCl) Roth 
Chloroform  Roth 
Citric acid Sigma 
ComplexiolLyte114 (CL114)  LogoPharm 
CL114 Dilution Buffer LogoPharm 
Cold Water Fish Gelatine  Sigma 
  
D  
Dimethyl 3,3’-
dithiobispropionimidate-2HCl 
(DTBP) 

Pierce 

Dimethylsulfoxide (DMSO) Roth 
Disodiumhydrogenphosphat Merk 
Dithiobis 
(succinimidylpropionate) (DSP) 

Pierce 

Ditiothreitol (DTT) Roth 
DNA 6 x loading buffer Thermo Scientific 
  
E  
Ethanol Roth 
Ethidium bromide Merck 
EDTA Sigma 
  
G  
Glucose  Roth 
Glycerol Sigma 
Glycine Roth 
  
H  
HEPES Roth 
  
I  
Iodixanol (OptiPrep) Axis-Shield 
Iodoacetamide (IAA) Sigma 
Isofluran Abbott 
Isopropanol Roth 
IPTG Roth 
  

Chemicals Company 
L  
LB-Agar Roth 
LB-Medium Roth 
Laemmli Buffer Life Technologies 
Lysozym Roth 
  
M  
Magnesium chloride (MgCl2) Roth 
Magnesium sulphate (MgSO4) Roth 
Methanol  Roth 
Mowiol 4-88 Roth 
  
N  
n-dodecyl-β-maltoside (DDM) Roth 
Normal goat serum (NGS) Gibco BRL 
NuPAGE MOPS SDS Running 
Buffer 

Life Technologies 

  
P  
Paraformaldehyd (PFA) Merk 
Phenol red Sigma 
Phosphate Buffer Saline (PBS) Biochrom AG 
Potasium chloride (KCl) Roth 
Potasium dihydrogenphosphate Roth 
  
R  
Reduction Agent  Life Technologies 
Roti-Blue Roth 
Roti-Phenol/C/I Roth 
Rotiphorese Gel 30 Roth 
  
S  
Saccharose  Roth 
Sodium acetate Roth 
Sodium carbonate Roth 
Sodium chloride (NaCl) Roth 
Sodium dodecylsulfat (SDS) Roth 
Sodium dihydrogenphosphat Roth 
Sodium hydroxide (NaOH) Roth 
  
T  
TEMED Roth 
Tris-Base Roth 
Tris-chlorhidric acid Roth 
Triton-X-100 Sigma 
Trypan-Blue Life Technologies 
  
V  
Vectashield mounting medium Vectorlabs 
  
X  
Xylene Roth 
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2.3 Cell culture media 

» B27 supplement (17504) Gibco BRL 
» Basal Medium Eagle (BME) 
(41010) 

Gibco BRL 

» DNaseI (11284932001) Roche 
» Dulbecco’s Modified Eagle 
Medium (DMEM)(41966) 

Gibco BRL 

» Fetal calf serum (FCS)(16170) Life Technologies 
» Hanks’ Balanced Salt Solution 
(HBSS) (14170) 

Gibco BRL 

» Iscove’s Modified Dulbecco’s 
Medium (IMDM) (21980) 

Gibco BRL 

» L-Glutamine (25030) Gibco BRL 
» Minimal Essential Medium Sigma 

Eagle (MEM) (M2279) 
» Neurobasal medium (21103) Gibco BRL 
» Opti-MEM (31985) Gibco BRL 
» Penicillin-Streptomycin 
(15140) 

Gibco BRL 

» Phosphate Buffer Saline (PBS) 
(14190) 

Gibco BRL 

» Poly-D-Lysine (P1149) Sigma 
» Poly-L-Lysine (P1399) Sigma 
» Trypsin  Sigma 
» Trypsin EDTA (25300) Gibco BRL 
  

 

2.4 Kits 

» BigDye Terminator v3.1cycle 
Sequencing kit  

Applied  
Biosystems 

» DNA Clean and Concentration 
kit  

Zymo Research 

» Dynabeads mRNA direct  Life Technologies 
» EndoFree Plasmid Maxi kit  Qiagen 
» First-strand cDNA Synthesis kit 
(K1632)  

Thermo Scientific 

» GeneJET Plasmid Miniprep kit  Thermo Scientific 
» Lipofectamine 2000  Life Technologies 

 

» Trypsin Profile IGD Kit 
(PP0100) 

Sigma 

» QuickChangeII XL Site 
Directed Mutagenesis kit  

Stratagene 

» Pure link Midi kit 
 (DNA purification)  

Life  
Technologies 

» Zymoclean Gel DNA recovery 
kit  

Zymo Research 

 
2.5 Enzymes 

» pfuDNA polymerase 
Thermo 

Scientific 
» Restriction enzymes: 
AvrII, BamHI, BglII, ClaI, EcoRI, 
HindIII, NotI, SalI, XbaI, XhoI 

» Shrimp alkaline phosphatase 
Thermo 

Scientific 
» T4 DNA Ligase  
» T4 Polynucleotide Kinase 

 

2.6 Inhibitors 

» Calyculin A (208851) Calbiochem 
» Complete Mini EDTA free 
proteinase inhibitors 

Roche 

» Okadaic acid (495604) Calbiochem 

» phosSTOP Roche 
» SRPIN340 Axon Medchem 
» Staurosporine (S5921) Sigma 

 

2.7 Diverse materials  

» Amicon Ultra Centrifigal filters 
(3000 MWCO/100000 MWCO) 

Millipore 

» FLAG-magnetic beads Sigma 
» GFP- magnetic beads Biozol 
» Glutathion-agarose beads Sigma 
» HA- magnetic beads Pierce 
» LoBind Eppendorf tubes Eppendorf 
» NuPAGE 4-12% Bis-Tris Gel Life Technologies 

» Strep-tactin MacroPrep IBA 
» Thinwall Polyallomer 
Centrifuge Tubes (03141)/ 
Sealing Cap Assemblies (52572) 

Sorvall 

» Whatman Protran Nitrocellulose 
Membrane 0.45uM 

Whatman, GE  
Healthcare 

» Vectashield mounting medium 
with DAPI 

Vectorlabs 
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2.8 Cloning primers 
Vector Primer Name Sequence (5’-3’) Restriction 

Enzymes 

AAV-
MCS 

N-TAP 
Fw gcggaattcaccatggattataaagatgatgatg EcoRI 
Rev gcgggatcctggtcctggtttctcgaactgcgggtg BamHI 

C-TAP 
Fw gcgggatcccccggaccctggagccaccctcag BamHI 
Rev gcggtcgactcatttatcatcatcatctttataatc SalI 

GFP (N) 
Fw gcggaattcaccatggtgagcaagggcg EcoRI 
Rev gcgggatccgggtccgggcttgtacagctcgtcc BamHI 

Copine VI 
Fw gcggaattcaccatgtcggacccagagatg EcoRI 
Rev gcgggatcctgggctagggctgggag BamHI 

SRPK2 

Fw gcgatcgataccatgtcagttaactctgagaagtc ClaI 
Rev gcgtctagaagaattcaaccaaggatgtcg XbaI 
Fw gcgtctagacccgggccaatgtcagttaactctgagaagtcg XbaI 
Rev gcggtcgactcaagaattcaaccaaggatgccg SalI 

SV2A 

Fw gcgggatccatggaagaaggctttcgag BamHI 
Rev gcgaagctttcactgcagcacctgtcc HindIII 
Fw gcggaattcaccatggaagaaggctttcgag EcoRI 
Rev gcgggatccctgcagcacctgtcc BamHI 

ULK1 
Fw gcgtctagaatggagccgggccgc XbaI 
Rev gcgaagctttcaggcatagacaccactc HindIII 

ULK2 
Fw gcgtctagaatggaggtggtgggcg XbaI 
Rev gcggtcgactcacacagttgcagtgctac SalI 

VAPA 
Fw gcgtctagaaccatggcgtccgcctccg XbaI 
Rev gcgaagctttcacaagatgaatttccctagaaag HindIII 

VAPB 
Fw gcgtctagaatggcgaaggtggaacagg XbaI 
Rev gcgagatcttcacaaggcaatcttccctataatgac BglII 

CMV-
MCS 

C-TAP 
Fw gcggtcgaccccggaccctggagccaccctcagttc SalI 
Fw gcgcctaggcccggaccctggagccaccctcagttc AvrII 
Rev gcgaagctttcatttatcatcatcatctttataatc HindIII 

C2A 
RIM1α 

Fw gcggaattcaccatgaggccttctatttctgttatttctc EcoRI 
Rev gcgggatcccgggcttcgggaggcatc BamHI 

C2A-C2B 
RIM1α 

Fw gcggaattcaccatgaggccttctatttctgttatttc EcoRI 
Rev gcggtcgactgaccggatgcagggagg SalI 

Zn-PDZ 
RIM1α 

Fw gcggaattctatgtcctcggccgtggg EcoRI 
Rev gcgcctagggatcctggggatgtcacc AvrII 

KD-ULK1 
Fw gcgtctagaatggagccgggccgc XbaI 
Rev gcgaagctttcagaaagggtggtggaaaaattc HindIII 

SPD-ULK1 
Fw gcgtctagattggatgccagcaccccc XbaI 
Rev gcgaagctttcaagcctcgaaggtcacagc HindIII 

CTD-ULK1 
Fw gcgtctagacctgacctcccagaggag XbaI 
Rev gcgaagctttcaggcatagacaccactc HindIII 

KD-ULK2 
Fw gcgtctagaatggaggtggtgggcg XbaI 
Rev gcggtcgactcaaaggaaaggatggctgaaaaatg SalI 

SPD-ULK2 
Fw gcgtctagagagcaagttccagttaaaaaatc XbaI 
Rev gcggtcgactcaggcttcaaaggtgatgagac SalI 

CTD-ULK2 
Fw gcgtctagacctgaactaccagaggagac XbaI 
Rev gcggtcgactcacacagttgcagtgctac SalI 

pGEX 

C2A 
RIM1α 

Fw gcggaattccgaggccttctatttctgttatttc EcoRI 
Rev gcgctcgagtcatggctgaggcagaggtagt XhoI 

SRPK2 
Fw gcgcctaggcccgggccaaccatgtcagttaactctgagaagtcg AvrII 
Rev gcgtcgacctatctagaagaattcaaccaaggatgtcg SalI 

MSP-VAPA 
Fw gcggaattccggcgaagcacgagcagatc EcoRI 
Rev gcgaagctttcaaacagctttgctaggttccat HindIII 

CC-VAPA 
Fw gcggaattccggatatggaacctagcaaagctg EcoRI 
Rev gcgaagctttcaatctctgaaggacacggctg HindIII 

MSP-CC 
VAPA 

Fw gcggaattccggcgaagcacgagcagatc EcoRI 
Rev gcgaagctttcaatctctgaaggacacggctg HindIII 
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2.9 Sequencing primers 

Vector Primer Name Sequence (5’-3’) 

pGEX 
Fw gggctggcaagccacgtttggtg 
Rev ccgggagctgcatgtgtcagagg 

CMV Fw gagtccaaggtaggcccttt 
pAMU6 Fw tacgatacaaggctgttagagag 

 

2.10 Site-directed mutagenesis 

Target gene 
 

Sequence (5’-3’) Amino acid 
Exchange 

C2A (RIM1α) 
Fw gtctactcacacgtacatcatagagattttcgagagcgaatgttag 

R844H 
Rev ctaacattcgctctcgaaaatctctatgatgtacgtgtgagtagac 

ULK1 
Fw ggaggtggccgtcagatgcattaacaagaag 

K46R 
Rev cttcttgttaatgcatctgacggccacctcc 

ULK2 
Fw gggaggtggctattacaagtattaataaaaag 

K39T 
Rev ctttttattaatacttgtaatagccacctccc 

 

2.11 Oligonucleotides used for HA-tag cloning  

Vector Primer Name Sequence (5’-3’) Restriction 
Enzymes 

AAV-
MCS 

HA (N) 
Fw aattcaccatgtacccatacgatgttccagattacgcta EcoRI 
Rev gatctagcgtaatctggaacatcgtatgggtacatggtg BglII 

 

2.12 Oligonucleotides used for shRNA cloning  

Vector Primer Name Sequence (5’-3’) Position Restriction 
Enzymes 

pA
M

U
6 

ULK2 
≠1 

(Xiang et al., 
2007) 

Fw 
gatctcgtgcctagtattcccagagattcaagagatctctggg
aatactaggcatttttta 699-717 

(KD) 

BglII 

Rev 
agcttaaaaaatgcctagtattcccagagatctcttgaatctct
gggaatactaggcacga 

HindIII 

ULK2 
≠2 

Fw 
gatctcgggatagaatggactttgaagcttcaagagagcttc
aaagtccattctatcctttttta 772-792 

(KD) 

BglII 

Rev 
agcttaaaaaaggatagaatggactttgaagctctcttgaag
cttcaaagtccattctatcccga 

HindIII 

ULK2 
≠3 

Fw 
gatctcggctcaccatcttgtcgctttgttcaagagacaaagc
gacaagatggtgagctttttta 894-914 

(SPD) 

BglII 

Rev 
agcttaaaaaagctcaccatcttgtcgctttgtctcttgaacaa
agcgacaagatggtgagccga 

HindIII 

ULK2 
≠4 

Fw 
gatcttccgcatagaacagaatcttatactcgagtataagattc
tgttctatgcgtttttggaaa 1235-1255 

(SPD) 

BglII 

Rev 
agcttttccaaaaacgcatagaacagaatcttatactcgagta
taagattctgttctatgcggaa 

HindIII 
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2.13 Generated constructs 

Plasmids generated and used in this study.  

Vector backbone Insert Plasmid name 

AAV-FLAG/Strep 
(N-terminal/ 
C-terminal) 

ULK1/KD-ULK1 AAV-CMV-FLAG/Strep-ULK1  
AAV-CMV-FLAG/Strep-KD-ULK1  

ULK2/ KD-ULK2 AAV-CMV-FLAG/Strep-ULK2 
AAV-CMV-FLAG/Strep-KD-ULK2 

SV2A AAV-CMV/Synapsin-FLAG/Strep-SV2A 
SV2A AAV-CMV/Synapsin-SV2A-FLAG/Strep 
 - (Negative control) AAV- CMV/Synapsin-FLAG/Strep 

AAV-HA  
(N-terminal/ 
C-terminal) 

Copine VI AAV-CMV-Copine VI-HA 
SRPK2 (WT, DM, ΔSI, ΔNSI) AAV-CMV-HA-SRPK2  
VAPA AAV-CMV-HA-VAPA 
VAPB AAV-CMV-HA-VAPB 

AAV-GFP  
(N-terminal/ 
C-terminal) 

GFP-ULK2 AAV-CMV-GFP-ULK2 
SRPK2-GFP AAV-CMV-SRPK2-GFP 
SV2A- GFP AAV-CMV/Synapsin-SV2A-GFP 

CMV- FLAG/Strep 
(N-terminal/ 
C-terminal) 

Kinase dead-domain (ULK1) CMV-FLAG/Strep-KD-D-ULK1 
Kinase dead-domain (ULK2) CMV-FLAG/Strep-KD-D-ULK2 
Kinase domain (ULK1) CMV-FLAG/Strep-KD-ULK1 
Kinase domain (ULK2) CMV-FLAG/Strep-KD-ULK2 
Serine proline rich domain (ULK1) CMV-FLAG/Strep-SPRD-ULK1 
Serine proline rich domain (ULK2) CMV- FLAG/Strep-SPRD-ULK2 
C-terminal  domain (ULK1) CMV-FLAG/Strep-CTD-ULK1 
C-terminal  domain(ULK2) CMV-FLAG/Strep-CTD-ULK2 
ZF-PDZ (RIM1α) CMV-ZF-PDZ-FLAG/Strep 
C2A (RIM1α) CMV-C2A- FLAG/Strep 
C2A-C2B  (RIM1α) CMV-C2A-C2B-FLAG/Strep 

pGEX 

C2A domain (RIM1α) (WT, R844H, 
T812/814A) 

pGEX-C2A 

C2B domain (RIM1α) pGEX-C2B 
SRPK2 pGEX-SRPK2 
Major sperm protein domain (VAPA) pGEX-MSP-VAPA 
Coil coiled domain (VAPA) pGEX-CC-VAPA 
Major sperm protein domain- Coil 
coiled domain (VAPA) 

pGEX-MSP-CC-VAPA 

pAMU6 shRNA (ULK2)  
 

2.14 Plasmids obtained from other sources and used in this thesis 

Source Plasmid name
Gyorgy Lonart (EVMS, Norfolk, USA) CMV-RIM1α 
Ngo Jacky (Hong Kong, China) SRPK2 (human): WT, DM, ΔSI, ΔNSI 

Open Biosystems – Thermo Scientific 

ULK1 (Image clones-ID:6406755) 
ULK2 (Image clones-ID:5709559) 
VAPA (Image clones-ID:3490082) 
SRPK2 (Image clone-ID: 4507346) 
Copine VI (Image clones-ID:6591063) 
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2.15 Primary and secondary antibodies 

Primary Antibodies 
Antibody Assay Dilution Company 
α-Tubulin DM1A (ab7291) IB 1:1000 Abcam 
Bassoon (clone SAP7F407) IF 1:200 Enzo Life Science 
Copine VI IF 1:100 Ege Kavalali 
FLAG M2 (F1804) IB/IF 1:1000/1:200 Sigma 
GFP (ab290) IB/IHC 1:5000/1:500 Abcam 
HA.11 (Clone 16B12) IB/IF 1:1000/1:100 Convance 
PSD95 (K28/43) IF 1:200 NeuroMab 
RIM1/2 IB/IF 1:1000/1:200 BD Bioscience 
RIM1/2 (115.IT) IB/IF 1:1000/1:600 Frank Schmidt 
SRPK2 (bs-7923R) IF 1:100 Bioss 
SRPK2 (23) IB/IF 1:1000/1:100 Santa Cruz 
SV2A (119002) IB/IF 1:1000/1:200 Synaptic Sytems 
Synapsin 1/2(106004) IF 1:200 Synaptic Sytems 
Synaptotagmin 1 (105011) IB 1:1000 Synaptic Sytems 
ULK1 (ab65056) IF 1:100 Abcam 
ULK1 (OAAB05707) IF 1:100 Aviva 
ULK1 (bs-3602R) IF 1:100 Bioss 
ULK1 (D8H5) IF 1:100 Cell Signalling 
ULK2 (ab97695) IF 1:100 Abcam 
ULK2(PA5-22173) IF 1:100 Pierce 
VAPA (H-20) IB/IF 1:1000/1:100 Santa Cruz 
VAPB (H-20) IF 1:100 Santa Cruz 
    

Secondary Antibodies 
Antibody Assay Dilution Company 
Alexa Fluor 488 goat anti-mouse IF 1:200 Life Technologies 
Alexa Fluor 568 goat anti-rabbit IF 1:200 Life Technologies 
Alexa Fluor 488 goat anti-rabbit IF 1:200 Life Technologies 
Goat anti-guinea pig Cy5 IF 1:400 Jackson immunoreagents Europe Ltd 
Goat anti-mouse Cy5 IF 1:400 Jackson immunoreagents Europe Ltd 
Goat anti-mouse FITC IF 1:400 Jackson immunoreagents Europe Ltd 
Goat anti-rabbit Cy3 IF 1:400 Jackson immunoreagents Europe Ltd 
Goat anti-rabbit FITC IF 1:400 Jackson immunoreagents Europe Ltd 
IRDye goat anti-mouse 800nm IB 1:10000 Li-cor 
IRDye goat anti-rabbit 680nm IB 1:10000 Li-cor 
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3. Methods 

3.1 Molecular Biology 

3.1.1 RNA extraction and cDNA synthesis 

mRNA was extracted from total or from different regions (cortex, hippocampus) of  mouse or 

rat brain using Dynabeads mRNA direct kit (Life Technologies), according to the 

manufacturer’s instructions. 1μg of mRNA was necessary for cDNA synthesis, using oligodT 

(First-strand cDNA Synthesis, Thermo Scientific). The resulting cDNA was used in further 

PCR reactions. 

 
3.1.2 Polymerase chain reaction (PCR) 

The following standard PCR protocol (Table 3.1) and program (Table 3.2) were applied to 

amplify different fragments, which were further used in cloning techniques. The only 

differences resided in the annealing and the strand elongation steps that were adjusted 

according to the product length and primers Tm. PCR primers are listed in section 2.8. 

 
Table 3.1A: PCR protocol 

Final concentration 
1x Buffer with MgSO4  
200µM dNTP 
0.3µM Primer Fw 
0.3µM Primer Rev  
2.5 U pfu DNA polymerase (Thermo Scientific) 
50-500ng DNA 

dH2O to a final volume of 50μl 
 
Table 3.2: PCR program 

Step Temperature Time Cycle 
1- Denaturation 95°C 5 min 1x 
2- Denaturation 95°C 30 sec 

35x 3- Annealing 55°C 40 sec 
4- Elongation 72°C 2min/1kb 
5- Final elongation 72°C 10 min 1x 
 4°C ∞ 1x 

 
3.1.3 Site directed mutagenesis 

Single point mutations were introduced using QuickChangeII XL Site Directed Mutagenesis 

kit (Stratagene). The applied PCR protocol and program were according to the manufacturer’s 

instructions. Primers for site direct mutagenesis are listed in section 2.10. 
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3.1.4 Sequencing 

The sequencing of DNA plasmids was performed using BigDye Terminator v3.1cycle 

sequencing kit (Applied Biosystems) and specific sequencing primers (section 2.9), followed 

by product purification (DNA Clean and Concentration kit, Zymo Research) and analysis 

(capillary sequencer, Applied Biosystems 3130/xl/Genetic Analyser). The sequencing results 

were analysed with BioEdit Sequence Alignment Editor v.7 and with BLAST from NCBI. 

 
3.1.5 Cloning technique 

The PCR products, purified from agarose gels (Zymoclean Gel DNA recovery kit, Zymo 

Research), and the vectors were digested with specific restriction enzymes (section 2.8). 

Subsequent to digestion, both the insert and the dephosphorylated vector backbone were 

cleaned with DNA Clean and Concentration kit and ligated using the T4 DNA Ligase at 

16°C/ON or 22°C for 2-3h. For a complete list of generated constructs see section 2.13. The 

ligation reaction was used to transform chemically competent bacteria; 5-6 colonies from the 

agar plates were picked and incubated in 5ml LB-medium with appropriate antibiotic. 24h 

later DNA was extracted with the GeneJET Plasmid Miniprep kit and the presence of the 

insert was analysed with restriction enzymes followed by sequencing.  

 
3.1.5.1 Oligonucleotides cloning  

Oligonucleotides (sections 2.11 and 2.12) were annealed and phosphorylated at the 5’-end 

using the T4 polynucleotide kinase. Next, the DNA oligonucleotides were extracted using 

phenol-chloroform (Molecular Cloning, Sambrook) and precipitated in the presence of 

sodium acetate (3M) and ethanol (99.9%) at -80°C/ON. After precipitation, DNA was 

pelleted at 14.000rpm/1h/4°C and the pellet washed one time in 70% ethanol and eluted in 

10μl water. For ligation 1μl of annealed oligonucleotides was used in the presence of 

dephosphorylated vector backbone and T4 DNA Ligase. The ligation reaction was performed 

at 16°C/ON. The presence of the insert was verified in the same manner as previously 

described in cloning technique section 3.1.5. 

 
3.2 Cell Culture  

3.2.1 HEK (AAV) 293T cell culture 

Human embryonic kidney-293 cells (HEK293T or AAV293) were maintained in DMEM 

medium supplemented with penicillin/streptomycin (100units/ml penicillin and 100mg/ml 

streptomycin) and 10% FCS (fetal calf serum) in a humidified incubator at 37°C and supplied 

with 5% CO2. Splitting was performed every 3 days.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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3.2.2 HEK (AAV) 293T transfection methods  

3.2.2.1 Ca2+-phosphate method 

For transfection, cells were seeded at a density of 1.5 x 106 cells/10cm dish and allowed to 

reach 50-60% confluence. 4h prior to transfection, DMEM medium was exchanged with 

IMDM medium, supplemented with 5% FCS. 2xHEBS (50mM HEPES, 280mM NaCl, 

1.5mM Na2HPO4, pH 7.05) buffer was added to the transfection mixture containing water, 

CaCl2 and DNA (Table 3.3), under vortexing in a drop-wise fashion, and further incubated for 

2 minutes, to allow complex formation. 

 
Table 3.3: Transfection protocol 

Components Amounts 
dH2O  1.1 ml 
CaCl2 (2.5 M) 145 μl 
DNA plasmid 4-5 μg 

2x HEBS (pH 7.05)  1.6 ml 
 

The newly formed precipitate was quickly added drop-wise in a circular motion to the 

cells. After 24h the medium was replaced with fresh DMEM supplemented with 10% FCS 

and Pen/Strep and further incubated at 37°C and 5% CO2. 48h post-transfection the cells were 

ready for harvesting. 

 
3.2.2.2 Lipofectamine method 

For shRNA transfection, the cells were seeded in a 12 well plate at a density of 1.5 x 104 

cells/well. shRNA encoding plasmids and the DNA plasmids were co-transfected in a ratio of 

(µgr) 1:1, 1:3 and 1:6 using Lipofectamine2000 (Life Technologies) according to the 

manufacturer’s instructions. 72h post-transfection, the cells were harvested and prepared for 

SDS-PAGE. 

 
3.2.3 Neuronal primary cell culture 

3.2.3.1 Generation of primary cell culture 

The hippocampal and cortical neurons were prepared from rat and mouse embryos (E18/E19). 

Different brain regions (hippocampus or cortex) were trypsinized in HBSS, using trypsin to a 

final concentration of 0.25% for 20min/37°C. After trypsinization, the tissue was washed 3-5 

times with HBSS and dissociated in 200μl DNaseI, passing the suspension 3-4 times through 

small size needles. Cells were counted (Table 3.4) and platted on poly-D-lysine pretreated 

glass coverslips (24-well plate) or on 6-wells plate in BME medium supplemented with: 1% 

FCS, 1% glucose (45%), 2% B27 and 0.5mM L-glutamine. After 24h the medium was 
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replaced with fresh DMEM medium and the neuronal cell culture incubated at 37°C/5% CO2 

for 2-3 weeks until ready to be used in experiments. 

 
Table 3.4: Counted cells per well 

Plate type Number of cells/ well 
6-well plate 120 000 cells 
24-well plate 30 000-32 000 cells 

 
3.2.3.2 Transfection of neurons 

Primary cortical and hippocampal neurons were transfected at DIV4-6 according to the 

protocol of Köhrmann et al. (1999). Neurons transfection was performed in pre-warmed 

MEM medium, while the original medium was set aside in the incubator. 1.5μg of endofree 

DNA, 30μl CaCl2 (250mM) and 30μl BES (280mM NaCl, 1.5mM Na2HPO4, 50mM BES, pH 

7.11 to 7.14) were vortexted for 20sec. and quickly added to the neurons. The neurons were 

incubated for 30-40min at 2.5% CO2. When the precipitates became visible under the 

microscope, neurons were washed twice with pre-warmed HBS (135mM NaCl, 4mM KCl, 

1mM Na2HPO4, 2mM CaCl2, 1mM MgCl2, 10mM glucose, 20mM HEPES, pH7.35), one 

time with BME and after that the original medium was added. Transfected neurons were kept 

at 37°C and 5% CO2 until DIV14, when they were prepared for immunocytochemistry. 

 
3.2.3.3 Infection of neurons 

Primary cortical neurons (24-well plate) were infected at DIV2-6 with 1-10μl crude viral 

particle extracts (rAAV serotype 1/2) per well. The infected neurons were further maintained 

at 37°C and 5% CO2 until DIV14 or 21, when ready for immunocytochemistry. 

 
3.3 Virus Production 

3.3.1 rAAV serotype 1/2 and 8 production (Ca2+-phosphate method) 

The transfection protocol was based on the Ca2+-phosphate method described above (section 

3.2.2.1), with some small additions, according to the following table 3.5.  

Table 3.5: Transfection mixture amounts: per 10/15 cm dish 

Components Serotype 1/2 
(10 cm dish) 

Serotype 8 
( 15 cm dish) 

dH2O  1.1 ml 2.4 ml 
CaCl2 (2.5 M) 145 μl 330 μl 
AAV plasmid 5.5 μg 5 μg 
pFdelta6- helper virus 11 μg 10 μg 
pNLrep / pRV1- serotype 1 2.75 μg - 
pH21- serotype 2 2.75 μg - 
p5E18-VD2/8 - 5 μg 

2x HEBS - added under vortexing 1.6 ml 2.6 ml  



Chapter 3. Methods 
 

29 
 

48h post-transfection cells were harvested in 1ml DMEM and frozen at -80°C. The 

cells were disrupted by three cycles of freezing-thawing, followed by a short spin to pellet the 

cellular debris. The supernatant containing the viral particles was kept at 4°C until further use. 

 
3.3.2 rAAV serotype 8 purification  

HEK293T cells were transfected using the Ca2+-phosphate method (sections 3.2.2.1 and 3.3.1) 

with p5E18-VD2/8 (AAV2 rep and AAV8 cap), pFdelta6 and the AAV plasmid. After 48h, 

cells were harvested in medium and centrifuged at 1.200rpm/20min. The pellet was 

resuspended in 10ml lysis buffer (150mM NaCl, 50mM Tris-HCl, pH 8.5) and three cycles of 

freezing-thawing were performed. In order to get rid of nucleic acids, 20μl benzonase 

(50U/ml suspension) was added to the lysate and incubated for 30min at 37°C. After the 

incubation, the suspension was centrifuged at 4.000rpm/30min/4°C and the clear suspension 

collected. The purification of the virus was performed using four layer discontinuous 

iodixanol gradients (ZOLOTUKHIN et al., 2002). The gradients were layered (Table 3.6) in 

ultracentrifuge tubes (Sorvall) using a peristaltic pump (P-1).  

 
Table 3.6: Iodixanol gradients 

Components  15% Iodixanol 25% Iodixanol 40% Iodixanol 54% Iodixanol 
PBS 10x 5 ml 5 ml 5 ml 5 ml 
Iodixanol 12.5 ml 20 ml 33.3 ml 45 ml 
NaCl 5M 10 ml - - - 
KCl 2.5M 50 μl 50 μl 50 μl 50 μl 
MgCl2 1M 50 μl 50 μl 50 μl 50 μl 
0.5% Phenol red  75 μl 75 μl - 75 μl 
H2O 22.3 ml 24.9 ml 11.6 ml - 

Volume used for one gradient 
 8-9 ml 5-6 ml 5 ml 2-4 ml 
 

The cellular suspension (8-9ml) was layered on top of the iodixanol gradients; the 

tubes were sealed, and centrifuged at 60.000rpm/2h/4°C (fixed angle rotor T865, Thermo 

Scientific). rAAV particles were recovered from the 40% iodixanol layer and iodixanol was 

removed by several rounds of washing with PBS, using the Amicon centrifugal filters. The 

purity of the virus was determined by SDS-PAGE and Coomassie staining.  

 
3.3.3 P0-P3 animal injection 

New-born C57/BL6 mice were anesthetized for 30-40sec. on ice, followed by injection of 1µl 

purified rAAV, serotype8 in each hemisphere (2µl/brain). Injection was performed using a 

10µl Hamilton syringe at a rate of 451nl/sec. After two to four weeks, mice were anesthetized 

with Isofluran and brains extracted and used for crude synaptosome preparation (section
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 3.4.1). All experiments were performed in agreement with the regulations of the University 

of Bonn Medical Centre Animal Care Committee.  

 
3.4 Biochemistry  

3.4.1 Preparation of crude synaptosomes  

The preparation was performed at 4°C using detergent free equipment and buffers 

supplemented with proteinase inhibitors (Roche). C57/BL6 mice (6-8 weeks old) were 

euthanized with Isoflorane, decapitated and the brains extracted. The cerebellum together with 

the most of the white matter was removed. Both hemisphere were homogenized in ice-cold 

homogenization buffer (0.32M sucrose, 50mM EDTA, 2mM HEPES, pH 7.4), supplemented 

with proteinase inhibitor (Roche) in a Teflon-glass homogenizer (7strokes, 900rpm), followed 

by centrifugation at 3.000g/15min/4°C. The pellet (P1-nuclear fraction) was removed and the 

supernatant (S1-crude synaptosomal fraction) transferred into 2ml eppendorf tubes and 

centrifuged at 14.000rpm/25min/4°C. The synaptosomal cytosol fraction (S2) was discarded 

and the pellet (P2-crude synaptosomes) resuspended in either 500μl lysis buffer (CL114 

detergent, Logopharm) or 100μl equilibration Krebs-Henseleit-HEPES buffer (118mM NaCl, 

3.5mM KCl, 1.25mM CaCl2, 1.2 mM MgSO4, 1.2mM KH2PO4, 25mM NaHCO3, 11.5mM 

glucose and  5mM HEPES-NaOH, pH 7.4).  

In the case of SV2A protein purification, P0-P3 mice were injected with purified 

rAAV (serotype 8) and after several weeks crude synaptosomes were prepared as described 

above. The P2 fraction was resuspended in lysis buffer (50mM Tris-HCl, 150mM NaCl, pH 

7.5) supplemented with proteinase, phosphatase inhibitors and 3.9mM n-dodecyl-β-maltoside 

(DDM, specific detergent for SV2A) as previously described by Lambeng et al. (2006). After 

1h incubation at 4°C the solution was clarified by centrifugation and the supernatant used for 

immunoprecipitation (section 3.4.2.4) or TAP purification (section 3.5.2). 

 
3.4.2 Protein-protein interaction assays 

3.4.2.1 Protein induction and purification from BL21 bacteria 

pGEX plasmids encoding for the protein of interest were retransformed in Escherichia coli 

BL21 (DE3). At an optic density (OD) of 0.6-0.8 of the bacterial culture, the expression of the 

GST-fusion proteins was induced by addition of IPTG (1mM) for 3-4h, under constant 

shaking at 37°C. After a centrifugation step at 4.500rpm/30min/4°C the bacterial pellet was 

resuspended in PBS supplemented with proteinase inhibitor (Roche) and lysozym (1mg/ml) 

and lysed on ice for 20min, followed by sonication and centrifugation at 4.500rpm/1h/4°C. To 

capture the protein of interest the clear supernatant was incubated for 1h with prewashed 



Chapter 3. Methods 
 

31 
 

Glutathion-agarose beads. Beads were extensively washed and resuspended in 1ml of PBS 

supplemented with proteinase inhibitors to reach 50% slurry, further used in GST-pull down 

assay (section 3.4.2.2). In order to check the efficiency of protein induction a small aliquot 

was analyzed by Coomassie staining. 

 
3.4.2.2 GST-pull down assay 

To analyse the binding of different GST-fusion proteins to native or overexpressed proteins, 

GST-pull down assays were performed with crude synaptosomes (section 3.4.1), primary 

cortical neurons and with transfected HEK293T cells by the Ca2+-phosphate method (section 

3.2.2.1). HEK293T cells were lysed for 1h in ice-cold lysis buffer (50mM HEPES pH 7.4, 

150mM NaCl, 1% Triton X-100, Complete Protease Inhibitor Cocktail Tablets), spun at 

14.000rpm/10 min/4°C and the resulting clear supernatant was incubated for 1-2h with GST 

and GST-fusion proteins. Beads were washed five times with PBS-0.5% Triton X-100 

washing buffer, boiled at 95°C/5min in Laemmli buffer with β-ME and resolved in SDS-

PAGE gel. GST and GST-fusion proteins were incubated also with lysed crude synaptosomes 

or lysed cortical neurons for 2-4h. Bound protein complexes were washed with either CL-114 

dilution buffer or PBS-0.5% Triton X-100, boiled in Laemmli buffer with β-ME at 95°C/5 

min and resolved in SDS-PAGE gel. 

 
3.4.2.3 Co-immunoprecipitation (co-IP) 

HEK293T cells were co-transfected with DNA plasmids containing the sequence encoding for 

the proteins of interest using the Ca2+-phosphate method as described in section 3.2.2.1. 48h 

post-transfection the medium was discarded and the cells harvested in ice-cold lysis buffer 

(50mM HEPES pH 7.4, 150mM NaCl, 1% Triton X-100, Complete Protease Inhibitor 

Cocktail Tablets) and lysed on ice for 1h, followed by a short centrifugation step at 

14.000rpm/10min/4°C. The supernatant was incubated at 4°C with pre-washed (in PBS) 

magnetic beads for 1h (FLAG M2 beads) or for 2-3h (HA- or GFP-magnetic beads) on a 

rotator. After the incubation time, the beads containing the protein complexes were washed 

with PBS-0.5% Triton X-100 buffer. The beads were boiled in Laemmli buffer with β-ME at 

95°C/5 min and proteins resolved in SDS-PAGE gel (8% or 10%). 

 
3.4.2.4 Immunoprecipitation (IP) 

The P0-3 C57/BL6 mice were injected into the hemisphere with 2µl of purified virus (rAAV-

SV2A-GFP, serotype 8) and two weeks after the injection crude synaptosomes were prepared 

(section 3.4.1). After the P2 fraction was solubilised, the clear supernatant was mixed for 2-3h 
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with anti-GFP antibodies (abcam 290). The antibodies were collected overnight by incubation 

with protein A/G-agarose beads (Santa Cruz). The A/G-agarose beads were collected by 

centrifugation at low speed (2.000 rpm/5 min), washed five times in PBS and boiled in 

Laemmli buffer with β-ME at 95°C/5 min. 

 
3.4.3 Protein concentration determination 

The protein concentration was determined by measuring the optical density at 260nm using 

NanoDrop. For shRNA testing, the protein concentration of all samples was adjusted to the 

lowest one, before analysing by WB. In binding assays the protein concentration of the crude 

synaptosomes was adjusted to 3-5mg/ml/reaction. 

 
3.4.4 Western Blotting (WB) 

Prior to WB, samples were resolved in 8% or 10% SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) and separated by size. The separated proteins were transferred to nitrocellulose 

membrane, followed by protein detection. The membranes were blocked with 3% cold water 

fish gelatin in PBS for 1h, incubated with primary antibodies in blocking buffer for 2h, 

washed three times/15min with PBS-0.1% Tween 20 and further incubated with secondary 

antibodies (IRDye-1:10000, section 2.15) for 40min. The detection was achieved with an 

infrared imaging system (Odyssey, Li-cor). 

 
3.5 Identification of novel binding partners by tandem-affinity purification (TAP) 

3.5.1 Protein cross-linking 

Cultured cortical neurons (DIV2) obtained from wild-type (WT), SV2A +/- and SV2A -/- 

mice were infected with crude viral particles, serotype 1/2, expressing N- or C-TAP-tagged 

SV2A. At DIV14 neurons were washed one time with PBS and proteins were cross-linked 

using three different cross-linkers (Table 3.7): 1% formaldehyde (VASILESCU et al., 2004; 

KLOCKENBUSCH and KAST, 2010), 5mM DSP (dithiobis(succinimidylpropionate), Pierce), 5mM 

DTBP (dimethyl 3,3’-dithiobispropionimidate-2HCl, Pierce). The protein cross-linking was 

performed at room temperature or at 37°C/30-60 min, followed by quenching the reaction 

with 50mM Tris, pH 7.5 or 2.5mM glycine for 5-15min. Cells were lysed either in HEPES 

buffer (50mM HEPES, 150mM NaCl, pH 7.4) or in Tris-HCl buffer (50mM Tris-HCl, 

150mM NaCl, pH 7.4) supplemented with proteinase, phosphatase inhibitors and 3.9mM n-

dodecyl-β-maltoside (DDM) for 1h/4°C. The clear supernatant was subject to either one-step 

or tandem purification as described below (section 3.5.2), with only one difference: the 
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elution was performed by boiling the beads in the presence of β-ME reducing agent at 95°C/5 

min before SDS-PAGE. 

 
Table 3.7: Cross-linkers 

Cross-linker Functional 
group 

targeted 

Cleavable Solubility Permeability Arm 
length 

Formaldehyde 

Amine to 
amine 

Yes /95°C Water soluble 

Membrane 
permeable 

2 Å 

DSP 
Yes/ β-ME/95°C 

thiol-cleavable  
Organic 
solvents 

12 Å 

DTBP 
Yes/DTT/37°C 

thiol-cleavable  
Water soluble 11.9 Å 

 
3.5.2 Strep/FLAG tandem affinity purification  

Tandem affinity purification (Fig.3.1) is based on the protocol previously described by 

Glockner, C.J., et al. (Current Protocols in Protein Science, Unit 19.20, 2009). Briefly, crude 

synaptosomes (section 3.4.1) or infected neurons (section 3.2.3.3) were lysed under native 

conditions using cold lysis buffer (50mM Tris-HCl, 150mM NaCl, pH 7.5) supplemented 

with proteinase inhibitors and/or phosSTOP (Roche), and 3.9mM n-dodecyl-β-maltoside 

(DDM). Clear supernatant was applied directly to the Strep-Tactin MacroPrep columns (IBA). 

After the adsorption, the column was washed five times with buffer W (100mM Tris-HCl, pH 

8.0, 150mM NaCl, 1mM EDTA) and elution performed with buffer E (100mM Tris-HCl, pH 

8.0, 150mM NaCl, 1mM EDTA, and 2.5mM desthiobiotin). From each collected fraction a 

small aliquot was kept for further analysis by WB. All operations were performed either at 

4°C or at room temperature.  

In the case of two-step purification all elution fractions were pooled and mixed with 

anti-FLAG M2 affinity gel (A2220, Sigma) or anti-FLAG M2 magnetic beads (M8823, 

Sigma) for 1h/4°C. Beads were washed several times with TBS (Tris buffered saline) 

supplemented with DDM and elution was performed with: (a) 200µg/ml FLAG peptide 

(F3290, Sigma) in TBS for 10-30min; (b) 1M Arg-HCl pH 3.5 in TBS (FUTATSUMORI-SUGAI et 

al., 2009)  or (c) SDS-PAGE sample buffer and boiled at 95°C/5 min.  

In one-step FLAG purification, the clear supernatant resulted from neurons’ lysis was directly 

incubated for 1h with anti-FLAG M2 beads, followed by the same washing and elution steps 

as described above.  

For sample concentration, Amicon Ultra Centrifigal filters (Milipore, MWCO, 3000) 

were used (optional step). Proteins were separated in SDS-PAGE and the gel stained with 

Coomassie Colloidal Blue according to the manufacturer’s instructions (Carl Roth). 
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3.5.3 Protein purification from HEK293T cells 

HEK293T cells transfected with the FLAG/Strep-tagged truncated form of RIM1α (ZF-PDZ 

and C2A-C2B domains) were lysed for 1h in ice-cold lysis buffer (50mM HEPES, pH 7.4, 

150mM NaCl, 1% Triton X-100, Complete Protease Inhibitor Cocktail Tablets), centrifuged 

at 14.000rpm/10min/4°C and the resulted supernatant was incubated for 1h with pre-washed 

FLAG-M2 magnetic beads. The beads were washed five times with lysis buffer and incubated 

with lysed crude synaptosomes. 

 
3.5.4 Binding assays between the different regions of RIM1α and crude synaptosomes 

Crude synaptosomes prepared as previously described (section 3.4.1) were pre-equilibrated 

for 10min/37°C in Krebs-Henseleit-HEPES buffer (118mM NaCl, 3.5mM KCl, 1.25mM 

CaCl2, 1.2mM MgSO4, 1.2mM KH2PO4, 25mM NaHCO3, 11.5mM glucose and 5mM 

HEPES-NaOH, pH 7.4) and studied under three treatment conditions for 15min/37°C: 

methanol control, Staurosporine (1μM) and 1xphosSTOP (Roche). After kinase or 

phosphatase inhibition, crude synaptosomes were lysed 1h/4°C in CL114 detergent (in the 

presence of the corresponding inhibitors), spun at 14.000rpm/20min/4°C and the supernatant 

incubated for 3-4h with purified ZF-PDZ and C2A-C2B domains of RIM1α, coupled to 

FLAG-magnetic beads. Subsequent to incubation, the magnetic beads were washed five times 

in CL114 dilution buffer and proteins denaturated at 95°C in 1x loading buffer (Life 

Technologies). Samples were separate by size in pre-cast NuPAGE4-12% Bis-Tris Gel, 

according to the manufacturer’s instruction (Life Technologies) and stained with Coomassie 

Colloidal Blue (CCB). 

 
3.5.5 Sample preparation for mass spectrometer analysis  

Bands were excised with a cleaned scalpel, placed in 0.5ml LoBind Eppendorf tubes and 

destained using destaining solution, containing 200mM ammonium hydrogencarbonate and 

40% acetonitrile (according to Sigma Protocol IGD profile kit). Gel pieces were dried using 

the vacuum concentrator for 30-40min/RT. For the maximum recovery of proteins, disulfuric 

bridges were reduced with 20mM DL-Dithiothreitol (DTT) in 100mM ammonium 

hydrogencarbonate for 30min/55°C and, the generated thiol groups were alkylated in the 

presence of 40mM iodoacetamide (IAA) in 100mM ammonium hydrogencarbonate for 

30min/RT/in the dark (aminocarboxymethylation). The solution was removed and the gel 

pieces were incubated 5min with 100mM ammonium hydrogencarbonate, further dehydrated 

two times (5min each) with 50% acetonitrile and one time (5min) with 100% acetonitrile, and 

completely dried in the vacuum concentrator. In the tryptic digestion step, performed 
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3.6 Immunochemical methods 

3.6.1 Pre-treatment of primary neurons with various inhibitors 

Rat primary cortical neurons were stimulated at DIV19-21 with different phosphatase 

inhibitors and at DIV12-14 with a specific inhibitor for SRPKs (table 3.8). As control the 

equivalent amount of methanol was used for Calyculin A and okadaic acid, DMSO for 

SRPIN340, while for phosSTOP, PBS was added to control cells (1 tablet of phosSTOP in 

1ml PBS to obtain a concentration of 10x).  

 
Table 3.8: Phosphatase and kinase inhibitors 

 Inhibitor Target Concentration Inhibition time 

Phosphatase 
Inhibitors 

Calyculin A  PP1, PP2A 2nM 30 min 
Okadaic acid  PP1, PP2A 10nM 60 min 
phosSTOP all 0.1x 60 min 

SRPK 
inhibitor 

SRPIN340 SRPK1 
SRPK2 

10µM 12-16h 

 
After the incubation time, neurons were washed 1x with PBS and fixed in 4% 

paraformaldehyde for 5min, followed by immunofluorescence (section 3.6.2). 

 
3.6.2 Immunofluorescence (IF) 

Transfected or infected neuronal cultures were fixed for 5min in 4% paraformaldehyde and  

4% glucose in PBS, permeabilised with 0.3% Triton X-100 and blocked for 1h/RT in 

blocking solution (10% BSA, 1% NGS, 0.1 Triton X-100 in PBS). Neurons were incubated 

with primary antibodies at 4°C/ON. Following the incubation, cells were washed three times 

with PBS and incubated with the secondary antibodies (section 2.15) for 40min/RT/in dark. 

Subsequently to PBS washing, cover-slips were mounted in Mowiol (Sigma) and let to dry 

O.N.  

 
3.6.3 Immunohistochemistry (IHC)  

Brains were fixed in 4% paraformaldehyde and embedded in paraffin blocks. 4µm brain slices 

were deparaffinised in xylene and rehydrated in a series of ethanol baths (100%, 95% 70% 

and 50% in PBS) for 2min each. Heat mediated antigen retrieval was performed in citric 

buffer (10mM citric acid, pH 6.0), microwaved for 10min and cooled for 30min/RT. Slices 

were blocked in PBS with normal goat serum (1:100 to 1:200) and 10% fetal calf serum for 

2h in a humidified chamber, followed by incubation with anti-GFP (ab290, 1:100), anti-

FLAG (1:100, Sigma) and anti-SV2A (1:200, 119002 SySy) primary antibodies overnight. 

After several washings with PBS, secondary antibodies goat anti-mouse FITC and goat anti-

rabbit Cy3 (Jackson ImmunoResearch) were applied at a concentration of 1:400 and
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incubated for 2h in the dark. Several washing steps with PBS were followed by mounting the 

samples with Vectashield mounting medium containing DAPI (Vectorlabs).  

 
3.7 Imaging 

Images were acquired with a laser scanning Nikon A1/Ti confocal microscope using a CFI 

Plan APO IR 60x WI objective (NA 1.27), Nikon NIS-Elements 4.0 acquisition software or 

by using a confocal microscope Olympus FV1000, UPLS Apo60X WUIS2, 1.2 NA objective. 

IHC pictures were taken using a Zeiss Axio Observer A1 inverted microscope with a Plan-

Apochromat 20x NA 0.8 air objective. 

 
3.8 Quantifications and statistical analysis  

3.8.1 Image quantification 

Bouton size quantification was performed in ImageJ program. The maximal brightness was 

determined by subtracting the background (rolling ball radius of 1/3 of the pixel width of the 

image). A 30% threshold value was applied to all compared pictures, and the number of 

synapses counted. The pixel number, obtained for each synapse, was multiplied with the pixel 

size to obtain the area of each bouton. Obtained values were binned in 0.2- steps ranging from 

0.2 to 2-2.5µm2. Co-localization analysis was performed using the JACOp plug-in in ImageJ, 

and measuring Pearson’s coefficient. Statistical analysis was performed either in Excel or in 

GraphPad Prism 6.  

 
3.8.2 WB quantification 

Images of the WB were quantified using the ImageJ program. Statistical analysis was 

performed in GraphPad Prism 6.  

 
3.9 Programmes and URLs 

ImageJ  

GraphPad Prism 6 

BioEdit v.7.1.3.0 

Seqbuilder v.8.0.2 

http://www.uniprot.org 

http://www.ncbi.nlm.nih.gov 

http://www.matrixscience.com 

http://www.insilico.uni-duesseldorf.de (Ligation calculator) 

http://www.bioinformatics.org/primerx (Designing primers for point mutations) 
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4. Results 

4.1 Impact of phosphorylation status on the properties of RIM1α  

It has been proposed that regulated phosphorylation/dephosphorylation events may play a role 

in plasticity- induced remodelling of established active zones, as well as in the assembly of 

new ones. The active zone protein RIM1α, a scaffolding multidomain protein, has been shown 

to be the substrate of two kinases, ERK2 (SIMSEK-DURAN and LONART, 2008) and PKA (LONART et 

al., 2003) and contains a large number of yet uncharacterized potential phosphorylation sites. 

Nevertheless, the impact of RIM1α phosphorylation on active zone reorganisation and 

function is not well understood. Moreover, such posttranslational events may impact the 

binding affinity of RIM1α to some of its binding partners, and subsequently trigger, directly 

or indirectly, a cascade of events culminating in the reorganization of active zone architecture 

and changes in synaptic activity.  

4.1.1 Distribution of RIM1α in synaptic boutons is altered by hyperphosphorylation events 

Both the UPS-system (JIANG et al., 2010) and the transcriptional/translational machinery 

(LAZAREVIC et al., 2011) have been suggested to control the level of RIM1α at the active zone. In 

addition, phosphorylation events may as well affect RIM1α’s activity (Fig. 4.1).  

 

Figure 4.1: Regulation of RIM1α interactions by phosphorylation and dephosphorylation. In vivo, under 
normal physiological conditions, the activity of the cell dictates the phosphorylation state of RIM1α. 
Phosphorylation of various amino acid residues may have a direct influence on the affinity of protein interactions 
of RIM1α. In a simplified model, RIM1α is phosphorylated and binds certain proteins (Y, blue). By applying a 
phosphatase inhibitor, the equilibrium is moved toward a hyperphosphorylated state and RIM1α may interact 
with additional proteins (Z, pink). By blocking kinase activity, RIM1α may lose some of its binding partners and 
bind new ones (X, violet). For the simplicity of the model, the influence of other posttranslational modifications 
has not been taken into the account.   
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followed by affinity purification and LC-MS/MS. Four independent experiments were 

performed, and each resulted in similar band pattern after Coomassie Colloidal Blue (CCB) 

staining (Fig. 4.5).  

 

Figure 4.4: Experimental approach to identify phospho-dependent binding partners for RIM1α. The N- 
and C-terminal regions of RIM1α, fused to a FLAG/Strep-affinity tag and the respective control (tag alone) were 
overexpressed in HEK293T cells. After purification proteins were incubated with lysed mouse crude 
synaptosomes, in the presence of  1μM staurosporine, 1x phosSTOP, and the equivalent amount of methanol, as 
negative control. Samples were separated by SDS-PAGE. Bands were excised from the gel, digested with 
trypsine O.N. and peptides analysed by LC-MS/MS. 
 

 
 
Figure 4.5: Separation by SDS-PAGE of protein complexes from crude synaptosomes bound to either the 
N-terminal region (N) or C-terminal region (C) of RIM1α. After elution, co-immunoprecipitated proteins 
were separated in NuPAGE 4-12% Bis-Tris and visualized by Coomassie Colloidal Blue (CCB) staining. Each 
lane was cut in 8 small pieces and prepared for mass spectrometry according to the protocol (n=4). 
 
4.1.2.1 Identification of protein complexes associated with the C-terminal region of RIM1α 

Four independent experiments were performed using lysed crude synaptosomes and the C2A-

C2B region of RIM1α, overexpressed and purified from HEK293T cells. Immunopurified 

protein complexes were separated by SDS-PAGE and identified by mass-spectrometry. Three 

groups were analysed: control, staurosporine and phosSTOP. As negative control for 

unspecific binding, the FLAG-tag sequence alone was purified with FLAG magnetic beads.  

The MS scores of treated samples were divided by the scores of negative samples 

(protein X – sample/protein X- control). Proteins with a ratio above 2- fold enrichment were 

considered to specifically bind RIM1α and not to the FLAG sequence or the magnetic beads. 

The remaining proteins were classified in five groups, according to their subcellular 

localization independent of the pharmacological treatment (Fig. 4.6A). A significant 
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Table 4.1: Identification of proteins interacting with the RIM1α C2A-C2B region. Proteins identified with a 
high score under different conditions are summarized in the table. Proteins were sorted according to their 
subcellular localization or function. *: best score from four independent measurements. Proteins of interest for 
this work are marked in bold italic. RIM1α, representing the input, is marked in italic. Proteins common for all 
three groups are marked in green, for staurosporine and phosSTOP in orange, control and phosSTOP in lila. 

  

Protein name Control* Staurosporine* phosSTOP* Function/Localization 
14-3-3 protein beta/alpha  3788 3634 4952 

 

S
ign

allin
g cascad

es 

14-3-3 protein epsilon  7724 7543 8543 
14-3-3 protein eta  4456 4405 5467 
14-3-3 protein gamma 5111 4811 6860 
14-3-3 protein theta  5775 4945 5607 
14-3-3 protein zeta/delta  6153 5327 6806 
Calcineurin subunit B type 1 1371 1686 2307 
Calcium/calmodulin-dependent protein kinase type 
II subunit alpha 

419 2729 1028 

Calcium/calmodulin-dependent protein kinase type 
II subunit beta 

 1666 572 

Calcium/calmodulin-dependent protein kinase type 
II subunit delta 

 1445 560 

Calmodulin  154  
Casein kinase II subunit alpha 1343 1215 989 
Casein kinase II subunit alpha' 810 557 417 
Casein kinase II subunit beta 617 630 355 
Creatine kinase B-type 417 769 713 
Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-1 

99 149 145 

RasGTPase-activating protein SynGAP  58 57 
Serine/threonine-protein phosphatase 2A catalytic 
subunit beta isoform 

166   

Serine/threonine-protein phosphatase 2B catalytic 
subunit alpha isoform 

3437 4129 4420 

Serine/threonine-protein phosphatase 2B catalytic 
subunit beta isoform 

2575 2576 3082 

Serine/threonine-protein phosphatase 2A 65 kDa 
regulatory subunit A alpha isoform 

316 278 256 

SRSF protein kinase 2 169 71 266 
Rab GDP dissociation inhibitor alpha 101  58 
Septin-5 71  101 
AP-2 complex subunit alpha-2 191   

S
yn

ap
tic vesicles 

AP-2 complex subunit beta 74 95 90 
Alpha-enolase 213  300 
Dynamin-1 144 109 403 
Gamma-enolase 201 405 337 
Ras-related protein Rab-3A  174 85 
Phosphoglycerate kinase 1 49  70 
Phosphoglyceratemutase 1  82 117 
Synapsin-1  124  
Synapsin-2   82 
Vesicle-associated membrane protein-associated 
protein A 

127 105 36 

V-type proton ATPase subunit B, brain isoform  156 124 
V-type proton ATPase subunit D  124 73 
Copine-6 747 574 423

  
A

ctive Z
on

e/ 
 

P
lasm

a m
em

b
ran

e 
 

Excitatory amino acid transporter 1 381   
Excitatory amino acid transporter 2 382   
ERC protein 2  360  
Neuronal membrane glycoprotein M6-a  300 128 
Protein bassoon 395 782 623 
Protein piccolo 33 290 117 
Regulating synaptic membrane exocytosis protein 
1 (Input) 

11054 91764 114517 

Regulating synaptic membrane exocytosis protein 
2 

13665 3302 10679 

RIMS-binding protein 2 819 453 697 
Synaptosomal-associated protein 25  146 116 
Syntaxin-1A   141 
Syntaxin-1B  302  
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4.1.2.3 Analysis of the protein complexes co-purified with the overexpressed C-terminal 

region of RIM1α in primary cultured neurons  

In the previous MS data, obtained with crude synaptosomes, we identified several proteins as 

potential novel binding partners for RIM1α (Table 4.1 and 4.2, protein names are marked in 

bold italic). Therefore, to confirm these results, rat primary cortical neurons were further 

used. Primary neuronal cultures were chosen because the detection of endogenous proteins 

binding the overexpressed C-terminal region of RIM1α was more reliable.    

Rat primary cortical neurons were infected at DIV2 with rAAV (recombinant adeno 

associated virus) expressing only the C-terminal part of RIM1α and the FLAG-tag. Two 

weeks later C2A-C2B region was purified via FLAG-magnetic beads and bound protein 

complexes analysed by mass-spectrometry. The data was analysed as previously described in 

chapters 4.1.2.1 and 4.1.2.2. The highest number of proteins was found in the 

kinase/signalling group (26%) and in the CAZ (22%), excluding the group of others (Fig. 

4.8A; Table 4.3).  

Protein name Control* Staurosporine* phosSTOP* Function/Localization 
14-3-3 protein beta/alpha  3747 6375 4148 

S
ign

allin
g cascad

es 
 

14-3-3 protein epsilon  8247 11102 8344 
14-3-3 protein eta  4243 6636 4681 
14-3-3 protein gamma 6227 9722 6737 
14-3-3 protein theta  3740 7859 5630 
14-3-3 protein zeta/delta  5091 8209 5650 
Calcium/calmodulin-dependent protein kinase 
type II subunit alpha 

1447 2421 1080 

Calcium/calmodulin-dependent protein kinase 
type II subunit beta 

684 1349 572 

Casein kinase II subunit alpha 2480 1974 1210 
Casein kinase II subunit alpha' 1242 1231 725 
Casein kinase II subunit beta 560 1161 527 
Guanine nucleotide-binding protein G(o) 
subunit alpha 

 435  

RasGTPase-activating protein SynGAP 125 495 92 
Serine/threonine-protein phosphatase 2A 
catalytic subunit alpha isoform 

186 240 252 

Alpha-enolase  213  S
yn

ap
tic 

vesicle 

Ras-related protein Rab-15  80  
Synaptotagmin-1 73   
Vesicle-fusing ATPase 263 398  
V-type proton ATPase 116 kDa subunit a 
isoform 1 

 54  

V-type proton ATPase subunit E 1  224  
V-type proton ATPase catalytic subunit A 446  106 
ELKS/Rab6-interacting/CAST family member 
1 

1114 1349 1047 

P
lasm

a m
em

b
ran

e/ 
A

ctive Z
on

e (A
Z

) 

ERC protein 2 3179 5108 3790 
Protein piccolo 287 532 135 
Protein bassoon 1044 2078 783 
Protein unc-13 homolog A 175 558 174 
Regulating synaptic membrane exocytosis 
protein 2 

1764 2861 2175 

Sodium/potassium-transporting ATPase 
subunit alpha-3 

366   

Sodium/potassium-transporting ATPase 
subunit beta-1 

147   

Voltage-dependent anion-selective channel 
protein 2 

73 358  
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Table 4.3: Identification of binding proteins binding to the RIM1α C2A-C2B domain overexpressed and 
purified from rat primary cortical neurons. Proteins were grouped according to their subcellular localization 
or function. Proteins of interest for this work are marked in bold italic. In bold lila known binding partners for 
RIM1α are marked. 
 

Protein name Score Coverage Localization/Function 

14-3-3 protein beta/alpha 1450 31,71 

S
ign

allin
g cascad

es 

14-3-3 protein epsilon 4005 63,53 

14-3-3 protein eta 2665 50,41 

14-3-3 protein gamma 2504 46,96 

14-3-3 protein theta 1561 42,86 

14-3-3 protein zeta/delta 2750 47,76 

Calcium/calmodulin-dependent protein kinase type II subunit alpha 655 18,2 

Calcium/calmodulin-dependent protein kinase type II subunit beta 565 24,17 

Calmodulin 84 30,87 

Casein kinase II subunit alpha 739 43,48 

Casein kinase II subunit alpha' 224 23,14 

Casein kinase II subunit beta 318 29,77 

Creatine kinase B-type 101 13,65 

Serine/threonine-protein kinase 38 101 6,88 

Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha 

isoform 

436 21,22 

Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform 179 12,94 

Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform 2601 59,69 

Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform 3306 67,43 

SRSF protein kinase 2 92 6,75 

Alpha-enolase 359 13,82 

S
yn

ap
tic vesicle 

Clathrin heavy chain 1 62 2,69 

Phosphoglyceratemutase 1 118 10,63 

Pyruvate kinase isozymes M1/M2 74 5,08 

Ras-related protein Rab-6A 85 10,58 

Triosephosphateisomerase 225 9,36 

Vesicle-associated membrane protein-associated protein A 636 41,37 

V-type proton ATPase catalytic subunit A 209 9,56 

V-type proton ATPase subunit B, brain isoform 243 21,72 

V-type proton ATPase subunit E 1 194 11,95 

Adenylyl cyclase-associated protein 1 41 7,59 P
lasm

a m
em

b
ran

e/ A
ctive 

Z
on

e (A
Z

) 

Contactin-1 112 5,1 

Copine-6 682 26,39 

Liprin-alpha-2 583 10,1 

Liprin-alpha-3 296 8,53 

Neuromodulin 48 9,25 

Regulating synaptic membrane exocytosis protein 2 5325 3,01 

RIMS-binding protein 2 1018 31,06 

Synaptosomal-associated protein 25 229 21,36 

Syntaxin-1B 100 12,85 

Voltage-dependent anion-selective channel protein 1 279 7,09 
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4.1.3 Validation of the newly identified RIM1α binding proteins  

All filtered proteins were analysed by screening the uniprot4 and pubmed5 databases, for their 

possible functions/involvement in CAZ architecture. Based on this analysis, four candidate 

proteins were chosen to be further tested: two kinases (ULKs, SRPKs) involved in controlling 

active zone assembly in invertebrates (JOHNSON et al., 2009; NIERATSCHKER et al., 2009; WAIRKAR et 

al., 2009); VAPA/VAPB, proteins associated with bouton formation (PENNETTA et al., 2002), and 

Copine VI, whose function in synaptic plasticity has not been yet elucidated. 

 
4.1.3.1 Unc-51-like kinase (ULK) 

ULK1 and ULK2 that were the first time described in mouse by Yan et al. (YAN et al., 1998, 

1999), are protein kinases with a major role in autophagy (review: ALERS et al., 2012). Besides 

macroautophagy, ULKs play an important role in neurite outgrowth in cerebellar granular 

neurons (TOMODA et al., 1999).  

In invertebrates (C.elegans) the function of Unc-51 in axon guidance is tightly 

regulated by protein phosphatase 2A, which dephosphorylates proteins phosphorylated by this 

kinase (OGURA et al., 2010). Moreover, Unc-51 acts in presynaptic motorneurons in D. 

melanogaster, where it regulates the localization of Bruchpilot opposite to glutamate 

receptors. In its absence a decrease in synaptic density, accompanied by abnormal active zone 

composition and impaired neurotransmitters release was detected (WAIRKAR et al., 2009).  

So far, AZ protein substrates for ULK kinases have not been identified yet. In 

addition, the role of these kinases in the presynaptic terminal has not been fully elucidated. 

 
4.1.3.1.1 ULK proteins bind RIM1α 

Chromatography affinity coupled to MS analysis identified ULK2 to bind the biotin tagged 

C2 domain of RIM1α (Table 4.4). Although the score and the number of unique peptides were 

low, its association with CAZ and especially, with RIM1α protein was investigated, due to its 

involvement in controlling the assembly of the AZ in D. melanogaster (WAIRKAR et al., 2009). 

 
Table 4.4: ULK2 protein was identified to bind with C2A-C2B domain of RIM1α. The biotin tagged RIM1α 
C2-region was incubated with whole brain lysate and co-immunoprecipitated proteins were analysed by MS. 
Identification of ULK2 was performed using the human databank (international protein index). The generated 
score and the unique peptides are listed in table. 

  

                                                            
4 http://www.uniprot.org/ 
5 http://www.ncbi.nlm.nih.gov/pubmed 

Accession Number 

(UniProtKB) 

Gene name Score Unique 

peptides 

Type of experiments Description 

O75385 ULK2-Human 45 2 Co-IP (Biotin) unc-51-like kinase 2 
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To measure the degree of co-localization between the ULK kinases and the pre- and 

postsynaptic markers, pictures were analysed using the JACOp plug-in in the ImageJ software 

(BOLTE and CORDELIERS, 2006). The calculated Pearson’s coefficient indicated a high degree of 

co-localization between ULK1/2 kinases and the presynaptic proteins, Bassoon and RIM1/2. 

In addition, ULK1/2 seems to be present, even in higher amounts, in the postsynaptic site. 

This is suggested by a higher degree of co-localization between ULK1/2 and the postsynaptic 

marker, PSD95 (Fig. 4.14).  

 

 

 
Figure 4.14: Quantitative analysis of the co-localization of ULK1/2 with different synaptic markers. 
Pictures were analysed in ImageJ, measuring the Pearson’s coefficient (JACOp plug-in). Values in bars indicate 
the number of cells analysed. Statistical analysis was performed in GraphPad Prism6, performing one-way 
ANOVA (Kruskal-Wallis test), followed by Dunn’s multiple comparisons test. Bars show mean ± SEM. 
*p<0.05. 
 

4.1.3.1.4 Generation of a short-hairpin RNA against ULK2 

Biochemistry, as well immunofluorecence data suggest an interaction between RIM1α and 

ULK kinases. Therefore, to study the functional relevance of this interaction, shRNAs against 

ULK1 and ULK2, respectively, were designed and tested in HEK293T cells (Fig.4.15A). All 

four chosen shRNA efficiently knock-downed overexpressed FLAG-tagged ULK2. Three of 

these pairs had no effect on ULK1 protein levels, while pair no.4 reduced slightly the level of 

the ULK1 protein (Fig. 4.15B). Furthermore, these results were also confirmed by 

immunofluorescence using HEK293T cells (Fig. 4.15C). Overexpression of GFP-tagged 

ULK2 in HEK293T cells was accompanied by cells rounding up and detaching. These effects 

were abolished by shRNA-mediated knock-down of FLAG-tagged ULK2. 
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4.1.3.2.1 SRPK2 targets RIM1α 

The analysis of our mass-spec data revealed that SRPK2 kinase associated exclusively with 

the C2A-C2B region of RIM1α, under all experimental conditions (Table 4.5).  

In addition, co-immunoprecipitation of overexpressed FLAG-tagged RIM1α C2A-

C2B from rat primary cortical neurons followed by MS, also revealed its association with 

SRPK2 protein (MS score: 92,24).  

Experiments performed with crude synaptosomes showed the same affinity between 

the C2A-C2B domains of RIM1α and SRPK2 kinase, under all pharmacological treatments. 

However, in comparison to control and staurosporine conditions, application of phosSTOP 

increased the amount of the detected kinase. Therefore, the MS scores as well as the sequence 

coverage and the number of unique peptides were increased when phosphatase inhibitor was 

applied to mouse crude synaptosomes (Table 4.6, phosSTOP; Fig. 4.16A). RIM1α ZF-PDZ 

did not bind SRPK2 kinase. Therefore, this supports the specificity of the SRPK2 binding to 

the C2-domains of RIM1α.  

 
Table 4.5: Detection of the SRPK2 kinase as RIM1α binding protein by mass-spec under different 
experimental conditions. Mass scores are listed in correlation to various experimental conditions. Five 
independent experiments were performed.  
 

Accession 

Number 

(UniProtKB) 

Gene 

name 

Score Sequence 

coverage 

Unique 

peptides 

Type of experiments Description 

O54781 

S
R

P
K

2-
M

O
U

S
E

 

92,24 6,75 4 Co-IP from neurons  

SRSF protein kinase 2 

32 4,41 2 
Control 

169,47 7,49 4 

59,05 6,02 3 Staurosporine 

175,72 

129 

9,54 

9,1 

5 

4 
phosSTOP 

175,63 

266,65 

7,93 

10,57 

4 

6 

 
Because the kinase SRPK2 was identified with high scores in MS to bind to the C2A-

C2B domains of RIM1α, the direct interaction between these proteins was further 

investigated. Thus, GST-constructs containing either the C2A- or C2B-domain of RIM1α 

were used to examine the binding to endogenous SRPK2 from mouse brain or rat cortical 

neurons. GST-fusion proteins were incubated for several hours with either lysed crude 

synaptosomes or lysed rat primary cortical neurons, followed by SRPK2 detection by 

immunoblotting. In all cases, only the C2A-domain pulled down the native SRPK2, while the 

C2B domain did not bind the SRPK2 kinase (Fig. 4.16B, control panels).  
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Figure 4.24: SRPIN340 treatment induces a 
slight increase in co-localization of endogenous 
SRPK2 and RIM1/2 in primary cortical 
neurons. At DIV14 rat cortical neurons were 
incubated with 10μM SRPK2 inhibitor (SRPIN340, 
Axon Medchem) for 16h, followed by fixation in 
paraformaldehyde and staining for the endogenous 
SRPK2 (Santa Cruz, 23) and RIM1/2. Co-
localization was calculated using the Pearson’s 
coefficient, part of the JACOp plug-in (ImageJ). 
Statistical analysis was performed in GraphPad 
Prism 6 using Man-Whitney test (two-tailed) 

(N=2). N, number of independent experiments. 

 

4.1.3.3 Vesicle-associated membrane protein (VAMP) associated-protein A/B 

(VAPA/VAPB)  

The first report on VAPA dates back to 1995 when, by using yeast two hybrid system, VAP-

33 was identified in Aplysia californica to bind synaptobrevin-2/VAMP-2 and to play a role 

in synaptic transmission (SKEHEL et al., 1995). Several years later the mammalian homologs 

VAPA, VAPB and VAPC were characterized and their role in vesicle fusion and trafficking 

was suggested (WEIR et al., 1998; NISHIMURA et al., 1999). In accordance with the function of the 

Aplysia californica VAP-33, the D.melanogaster homologue DVAP-33 was reported to 

control synaptic bouton formation at the NMJ (PENNETTA et al., 2002) and to traffic proteins to 

axonal processes (YANG et al., 2012). VAPB protein was identified to contribute to normal 

dendrite morphology by taking part in ER-to-Golgi transport (KUIJPERS et al., 2013). A mutation 

in VAPB (P56S) was described to be the cause of a motor neuron disease (amyotrophic lateral 

sclerosis type 8-ALS8) (NISHIMURA et al., 2004). The role of VAP protein family in maintaining 

the AZ architecture has not been fully elucidated. 

 
4.1.3.3.1 VAPA/VAPB binds RIM1α 

The MS data revealed the VAPA protein as another possible candidate to bind the C2-

domains of RIM1α (Table 4.7). The VAPA protein was identified, with a similar sequence 

coverage and number of unique peptides, in all three experimental conditions using crude 

synaptosomes. Analysis of the protein complexes co-immunoprecipitated with overexpressed 

RIM1α C2A-C2B domains in primary cortical neurons identified the VAPA protein with an 

even higher score (636, 10) and percentage of sequence coverage (40%).  
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4.2.2 Optimization of SV2A protein purification from primary rat cortical neurons 

To test and optimze the affinity purification of SV2A, primary rat cortical neurons were 

transduced with viral particles (rAAV serotype 1/2) expressing SV2A with the TAP-tag either 

in the N- or C-terminal position. Two weeks after the transduction the cells were harvested, 

lysed in cold ice lysis buffer containing 3.9mM DDM (n-Dodecyl-ß-maltoside) and subjected 

to either a one- or two-step purification procedure.  

 
4.2.2.1 One-step purification yields good recovery of TAP-tagged SV2A 

Strep purification was based on the ability of the Strep-tactin matrices (streptavidin) to bind 

with high selectively to the strep sequence of the TAP-tag, allowing the purification of SV2A 

in one single step and in a column modus. To determine the purification efficiency, a small 

aliquot was kept after each purification step for further analysis by WB. The Strep purification 

alone showed a good recovery of the recombinant protein, since little material was lost during 

the procedure and the entire material was recovered after the 3rd and 4th elution steps. The 

disadvantage of this procedure was the limited binding capacity of the columns (50 to 

100nmol/ml recombinant proteins), which were therefore unable to capture the entire applied 

tagged-SV2A protein. The bands present in the flow fraction and the first two washing steps 

may indicate that the column was over-saturated with the fusion protein (Fig.4.38B). 

The capacity of the monoclonal M2-FLAG antibodies, covalently attached to the 

agarose beads, to recognise the octapeptide (DVKDDDDK) present in the TAP-tag allowed 

for the protein purification using the FLAG-tag (Batch modus). As in the case of the Strep 

purification, the column binding capacity was the limiting factor in capturing the whole 

amount of recombinant protein. However, the elution step performed with competitive FLAG 

peptides showed a sufficiently high recovery of the targeted protein (Fig.4.38C).  

Since the purpose of these procedures was to purify proteins maintaining their native 

configuration, it was mandatory to control for SV2A structural integrity. For this purpose 

Synaptotagmin1 (Syt1) was chosen because it is one of the proteins known to bind to SV2A 

(SCHIVELL et al., 1996; PYLE et al., 2000). The immunoblotting experiments showed that a 

significant amount of Synaptotagmin1 was co-eluted in the Strep purification and to a lesser 

degree in the FLAG purification procedure, indicating that the recovered SV2A protein 

retained to a certain degree its native structure (Fig.4.38). 
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5. Discussion 

Synaptic plasticity denotes the ability of neurons to respond to the ongoing network activity, 

by weakening or strengthening their activity. These adaptive changes can take place both at 

the pre- and postsynaptic terminals. Whereas the molecular mechanisms underlying 

postsynaptic plasticity have been studied in great detail, the cellular events mediating 

presynaptic plasticity are not as well understood. It has been hypothesized that presynaptic 

plasticity may involve the posttranslational modification of proteins. One of these 

modifications is the phosphorylation of proteins, which plays a role in the plasticity-induced 

remodelling of established AZs or in the assembly of novel active zones.  

Two presynaptic proteins, the AZ protein RIM1α and the SV protein SV2A have been 

shown to be important in presynaptic plasticity, by modulating the function and properties of 

the presynaptic release machinery, e.g. SV priming. However, their precise mode of action is 

still unresolved. Thus, to gain a better understanding the following goals were pursued in this 

thesis:  

(5.1) The effect of hyperphosphorylation on RIM1α at synapses.  

(5.2) The identification of novel potential phospho-dependent binding partners for RIM1α.  

(5.3) To gain insight into the enigmatic function of SV2A, we aimed to purify and analyse 

novel SV2A binding partners. 

 
5.1 Hyperphosphorylation alters the distribution of the presynaptic protein RIM1α at 

synapses 

Presynaptic plasticity involves the structural remodelling of the CAZ, which in turn engages 

dynamic changes in protein turnover and protein interactions. At the D.melanogaster NMJs 

an increase in the amount of the active zone protein Bruchpilot (Brp) and an enlargement of 

the presynaptic cytometrix structure was detected after the rapid induction of presynaptic 

strengthening. Moreover, the fast recruitment of Brp to the AZ led to an increase in the 

number of SVs and calcium channels at synapses (WEYHERSMÜLLER et al., 2011). The structural 

remodelling of the CAZ on a timescale of minutes was further supported by studies in 

hippocampal neurons using a fluorescently labelled Bassoon. The local redistribution of the 

AZ component led to rapid changes in the size of the AZ, which correlated with modifications 

in the RRP and the release probability (MATZ et al., 2010). Prolonged silencing of excitatory 

neurons caused a down-regulation of cellular expression levels of distinct presynaptic 

proteins, including RIM1α (LAZAREVIC et al., 2011). Interestingly, the decrease in the amount of 

RIM1α was not caused by UPS-dependent degradation but rather dependent on other 
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mechanisms, like the regulation of transcription and/or translation. Whereas the number of 

synapses labelled by RIM1α was decreased after silencing, the remaining positive puncta 

showed an increase in the level of RIM1α. This suggested a redistribution of RIM1α after 

prolonged activity deprivation (LAZAREVIC et al., 2011). 

Even though the precise molecular mechanisms controlling synaptic adaptation are not 

well understood, protein phosphorylation has been postulated to contribute to the underlying 

synapse remodelling and plasticity. For example, ERK kinase, which can integrate a variety 

of signals, exerts many downstream effects, like, dendritic spine stabilization, modulation of 

ion channels or receptor insertion (review: SWEATT, 2004). Cdk5 was shown to be involved in 

LTP and LTD, acting as a homeostatic regulator of synaptic plasticity (review: SHAH and LAHIRI, 

2014). One of the central enzymes actively involved in presynaptic plasticity is PKA, e.g. 

essential for mossy fiber (MF)-LTP (review: CASTILLO, 2012).  

It has been shown that the presynaptic protein RIM1α acts as substrate for several 

kinases: PKA (LONART et al., 2003), ERK2 (SIMSEK-DURAN and LONART, 2008), CaMKII (SUN et al., 

2003) and SAD-B (INOUE et al., 2006). Whereas the phosphorylation of the amino acid residue 

S413in RIM1α by PKA was required for the induction of presynaptic LTP in cultured 

cerebellar granular and Purkinje cell neurons (LONART et al., 2003), studies in mice expressing  

mutations in this position were not able to confirm this (KAESER et al., 2008a; YANG and CALAKOS, 

2010). Although RIM1α has been shown to be phosphorylated by a variety of kinases, the 

functional implications of phosphorylation/dephosphorylation of RIM proteins are not well 

understood. However, such posttranslational modifications regulated by synaptic activity, 

may directly impact RIM1α’s properties, like its binding affinity to other proteins or its 

stability.  

To test if the increased phosphorylation status of RIM1α affects its level or its 

association with the AZ, neuronal cell cultures were incubated with various phosphatase 

inhibitors. At different time intervals the neuronal cultures were fixed, endogenous RIM1/2 

was labelled and the area of the bouton marked by RIM1α determined. Our results show, that 

by shifting the equilibrium to a hyperphosphorylated state, RIM1α distribution at synapses is 

altered. Application of phosSTOP led to a significant increase in the number of boutons with 

smaller RIM1α marked areas in comparison to control conditions. By blocking only the PP1 

and PP2A phosphatases using either 10nM okadaic acid or 2nM Calyculin A, a non-

significant increase in the number of RIM1/2 labelled boutons with smaller sizes compared to 

DMSO control conditions was detected.  
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High level of protein phosphorylation may affect RIM1α turn-over by either 

increasing or decreasing its stability. Computer-based simulations have described proteins to 

become more degradable if more sites are phosphorylated (multi-site phosphorylation). Such 

phosphorylation-dependent degradation processes are important for proteins involved in 

regulating the cell cycle (VAREDI et al., 2010). Because RIM1α is a protein with multiple 

phosphorylation sites, high kinase activity might trigger a degradation process. However, the 

total intensity of RIM1/2 labelling was not changed after phosSTOP treatment compared to 

the control condition. Therefore, these results do not suggest that a degradation mechanism 

might be induced by phosphorylation of RIM1α. On the other hand, phosphorylation may as 

well protect proteins from degradation, by blocking for example either the binding of E3 

ubiquitin ligase to the substrate or by impairing its interaction with E2 ubiquitin-conjugation 

enzymes. It was hypothesised that RIM1α phosphorylation by PKA, may provide resistance to 

the degradation by the proteasome (CROWFORD and MENNERICK, 2012). However, to date there is 

no experimental evidence supporting this hypothesis. 

In addition to protein stability, phosphorylation events may impact the association of 

RIM1α with the CAZ. It has been shown that certain phosphorylation events of CAZ 

components induce protein solubilisation by interfering with their intermolecular interactions. 

Binding of the 14-3-3 adapter protein to phosphorylated Bassoon (S2845) decreased the 

attachment of Bassoon to the AZ (SCHRÖDER et al., 2013). Moreover, treatment of neuronal 

cultures with the phosphatase inhibitor okadaic acid inhibitor further induced solubilisation 

and diffusion of Bassoon, CAST and RIM proteins (SCHRÖDER et al., 2013). Accordingly, our 

experiments may indicate that hyperphosphorylated RIM1/2 protein becomes more soluble 

and diffuses away from the AZ and the bouton.  

Prolonged exposure to okadaic acid has been shown to have cytotoxic effects on a 

variety of cells and to mediate neurodegenerative mechanisms by blocking PP2A phosphatase 

activity. The impairment of PP2A activity stimulates a large group of kinases, like ERK2, 

CaMKII, PKA (review: KAMAT et al., 2013). In our experiments, 1h stimulation did not induce 

neurotoxicity and moreover, the observed changes in the distribution of RIM1α may be a 

direct consequence of the interplay between multiple kinases that act at synapses. 

However, in interpreting the functional relevance of our observation, it has to be 

considered that hyperphosphorylation of proteins induced by various pharmacological 

treatments is not physiological, but rather pushes the system to one side of the equilibrium. 

Secondly, our approach, immunocytochemistry, does not allow capturing the dynamic nature 

of phosphorylation events. In summary, our analysis revealed that the distribution of the 
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RIM1/2 protein is influenced by kinase activity and that hyperphosphorylation may affect the 

association of RIM1α with the CAZ.  

 
5.2 Identification of novel phosphorylation-dependent RIM1α binding proteins  

Over the years proteomics has emerged as an important tool to identify and characterize 

components of the pre- and postsynaptic terminals. Over 1000 proteins were identified in 

synaptosomes from whole mouse brain, representing the first inventory of the synaptic 

proteome (SCHRIMPF et al., 2005). Nevertheless the interactome of presynaptic proteins is not yet 

fully characterized, especially, when considering posttranslational modifications or transitory 

protein interactions. 

To identify novel potential binding partners for the N- and C-terminal region of 

RIM1α we performed affinity purifications and mass spectrometry (MS). By using this 

approach more than 100 proteins were identified to associate with either the RIM1α ZF-PDZ 

or the RIM1α C2A-C2B domains. These proteins were classified in five categories: signaling 

cascades/kinases (SC), synaptic vesicles (SV), plasma membrane/active zone (AZ), 

cytoskeleton (C) and others (O). Of these, the proteins of the signalling cascades/kinases and 

plasma membrane/active zone group accounted for nearly half of the total identified proteins. 

Another large class was the others group, which included mitochondrial proteins or proteins 

whose localizations and functions were not well known.  

In a recent study, the immunopurification and MS analysis of the presynaptic AZ 

resulted in the identification of 485 proteins, data that suggests the AZ to be enriched in 

proteins involved not only in neurotransmitter release but also in other cellular activities 

(WEINGARTEN et al., 2014). On the other hand, a comparison of the proteome of glutamatergic and 

GABA-ergic synapses showed no major differences between proteins involved in SV docking 

and release. Besides SV and AZ proteins, ion channels and transporters were also identified 

(BOYKEN et al., 2013). In accordance with Weingarten et al., we detected an overlap between our 

identified proteins and the purified AZ-proteins from their study. Similar proteins were 

presented in the SV group (vATPase subunit A, C1 and E1; synapsin-1, Rab-3A, 

phosphoglycerate kinase 1, peroxiredoxin-6, alpha-enolase, pyruvate kinase isozymes 

M1/M2, malate dehydrogenase, AP-2 subunit alpha-2, dynamin-1-like protein, clathrin light 

chain A and B); the AZ group (GLAST-1, synatxin-1B, EAAT2, SNAP-25, Thy-1, neuronal 

membrane glycoprotein M6-a, paralemmin-1, copine, thioredoxin-related transmembrane 

protein); the SC group (heat shock proteins, G proteins, 14-3-3 proteins, septin-5, 

calcineurin); the C group (tubulins, actin, septin-11, septin-6, cofilin-1, profilin-1). 
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In addition to these, the known binding partners of RIM1α were purified from mouse 

crude synaptosomes and rat primary cortical neurons: 14-3-3 proteins, ELKS2/CAST, RIM-

BP, liprins. Other putative interacting proteins, like Munc13 or voltage-gated calcium 

channels, were not identified, probably due to a technical problem or due to the transitory 

nature of the interaction. The combination of buffer stringency and incubation time may be a 

limiting factor in analysing proteins that display transitory or weak interactions with RIM1α. 

Boyken et al. did also not identify Munc13 by MS, even though it was detected by WB in the 

same preparation (BOYKEN et al., 2013).  

Whereas in the previous attempts at identifying novel RIM1α binding partners the 

posttranslational modifications were not taken into account, in this new experimental design 

we analysed the phosphorylation-dependent binding affinities between RIM1α and various 

proteins as well. Kinase and phosphatase blockade triggered changes in the phosphorylation 

status of RIM1α that were accountable for increasing or decreasing its binding affinity (Table 

5.1). In this respect, RIM1α binding to certain proteins appeared to be phosphorylation 

dependent. This was, for example the case for SRPK2 (up-regulation with phosSTOP) and 

VAP proteins (up-regulation with staurosporine).  

 
Table 5.1: The number of proteins binding the different regions of RIM1α under various pharmacological 
treatments. The values represent the number of proteins binding RIM1α in only one condition. Four 
independent measurements were performed with the RIM1α C2A-C2B region, and two with the RIM1α ZF-PDZ 
region.    
  

Region (RIM1α) Staurosporine treatment phosSTOP treatment 
ZF-PDZ 18 3 

C2A-C2B 29 25 
 
 Several proteins were chosen to be further investigated in biochemical assays, due to 

their direct involvement in AZ assembly. In this study we focused in particular, on four novel 

binding partners for RIM1α: two kinases (ULK and SRPK), trafficking proteins (VAPA, 

VAPB) and a calcium binding protein (copine VI).  

 
5.2.1 Two novel potential kinases associate with RIM1α protein  

The analysis of the protein complexes bound to the C2-domains of RIM1α identified two 

classes of kinases: serine/threonine kinases (ULK family) and serine/arginine kinases (SRPK 

family), which have been recently described as novel potential regulators of AZ assembly 

during synaptic plasticity and synaptogenesis (JOHNSON et al., 2009; NIERATSCHKER et al., 2009; 

WAIRKAR et al., 2009). To date nothing is known about the mammalian homologs with regard to
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AZ function. Here, we report the direct binding between the presynaptic protein RIM1α and 

the members of the ULK and the SRPK family, respectively.   

 
5.2.1.1 Unc-51-like kinase (ULK) binds the C2-domains of RIM1α 

In our MS data, ULK2 was only identified with a low score. However, due to its suggested 

role in AZ assembly, the potential interaction with the presynaptic protein RIM1α was 

investigated. Using several independent biochemical approaches we found: (1) both ULK1 

and ULK2 bind both C2-domains of RIM1α; (2) the interaction with RIM1α is mediated by 

their kinase domains; (3) inactivation of the catalytic activity of ULKs, by impairing the ATP 

binding site (K46R in ULK1, K39T in ULK2) (TOMODA et al., 1999; YAN et al., 1999), completely 

abolished its binding affinity for RIM1α. The presence of a lysine residue in the ATP pocket 

site ensures the autophosphorylation of the ULK1/2-spacer region that positively regulates 

kinase activity (TOMODA et al., 1999; YAN et al., 1999). It’s believed that once autophosphorylation 

is impaired, the binding affinity of ULK1 and ULK2 for other substrates, like RIM1α protein, 

will decrease. Such is the case for fibroblast growth factor receptor substrate 2/3 that acts as 

substrate for WT-ULK1 and ULK2. In the presence of the kinase deficient form of ULK2 

(K39T) the FRS2/3 is no longer bound and phosphorylated (AVERY et al., 2007). 

Besides autophosphorylation, the activity of ULK1/2 is also under the control of other 

kinases. AMPK kinase for example, phosphorylates S555 of ULK1, thereby promoting the 

binding of ULK1 to 14-3-3 adapter proteins (BACH et al., 2011). 14-3-3 proteins are conserved 

regulatory molecules, able to bind a multitude of proteins, like S413 phosphorylated RIM1α 

(KAESER et al., 2008a) or S2845 phosphorylated Bassoon (SCHRÖDER et al., 2013). Thus, ULK kinases 

may act either directly, binding and phosphorylating RIM1α protein, or indirectly by 

modulating the function of other classes of proteins, such as adapter proteins. 

ULK kinases have an unique phosphorylation recognition motif characterized by 

hydrophobic residues at multiple positions. According to peptide arrays the amino acids M, L 

and S are preferred in position -3; F, V, I and Y in positions +1 and +2; while L can be found 

at position +2 as well (PAPINSKI et al., 2014). Phosphorylation sites encompassing all these 

criteria were not found in RIM1α; however, this does not exclude phosphorylation at 

unconventional sites. 

The positive interactions between ULKs and RIM1α were further supported by co-

localization experiments in primary neuronal cultures. Both ULK kinases showed co-

distribution with both the presynaptic proteins Bassoon and RIM1α, and the postsynaptic 

marker PSD-95. However, the degree of overlap with the presynaptic proteins was smaller 
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than with the postsynaptic marker. Studies in embryonic sensory neurons indicated that both 

ULK1 and ULK2 were present in axons and in growth cones, where punctuate structures were 

observed (ZHOU et al., 2007). 

In all our biochemical studies RIM1α was able to bind both ULK1 and ULK2. This 

could be explained by the fact that both ULK1 and ULK2 have a high sequence homology 

(TOMODA et al., 1999). The mRNA expression profiles of ULK1 and ULK2 in adult mice indicate 

that the level of ULK1 in the cortex and hippocampus are much lower compared to ULK2 

(Allen Brain Atlas7). Therefore, it remains to be elucidated if both isoforms or only one of 

them plays any significant role in the presynaptic compartment.  

The ULK family, part of the serine/threonine kinase group, comprises five members, 

of which only two, ULK1 and ULK2, were shown to be expressed in brain (TOMODA et al., 

1999). Whereas the role of ULK proteins in autophagy is documented (review: ALERS et al., 2012), 

their involvement in maintaining the CAZ is less well understood. ULK kinases have been 

linked to various processes from neurite outgrowth (TOMODA et al., 2004; ZHOU et al., 2007; OGURA 

et al., 2010) to the assembly of the AZ ultrastructure in D.melanogaster (WAIRKAR et al., 2009).  

ULK kinase regulates axon formation in cerebellar neurons via the SynGAP-ULK-

Syntenin-1 complex (TOMODA et al., 1999). Moreover, Syntenin-1 co-localizes within the 

presynaptic terminal with ELKS, contributing to the organization of the AZ (KO et al., 2006). 

ELKS, on the other hand, interacts with the PDZ-domain of RIM1α, possibly controlling 

either its distribution in cultured neurons (OHTSUKA et al., 2002; WANG et al., 2002) or inhibiting 

Ca2+-channel binding to RIM1α and attenuating neurotransmitter release (KAESER et al., 2011). 

Via ELKS-Syntenin-1, ULK kinases might act on RIM1α and on other presynaptic proteins 

promoting changes in AZ architecture. Additionally, ULK may regulate the interaction 

between RIM1α-ELKS or RIM1α-Ca2+-channels as well, which could have a direct impact on 

AZ ultrastructure or on the release machinery.    

The postulated role of ULKs proteins in controlling AZ density and composition is 

based on studies in D.melanogaster, where ULKs regulate the localization of Bruchpilot 

(ELKS homolog) protein opposite to the glutamate receptors at synapses. The mechanism of 

action relies on the inactivation of ERK2 kinase by ULK, thereby promoting synapse 

development. Unc-51/ULK mutants displayed increased ERK2 kinase activity, while 

Bruchpilot was absent from many synapses (WAIRKAR et al., 2009). Since in mammalian cells 

RIM1α is a substrate for ERK2 kinase (SIMSEK-DURAN and LONART, 2008), it is tempting to 

speculate that ULK kinase may indirectly influence RIM1α phosphorylation level and in

                                                            
7 http://mouse.brain-map.org 
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NIERATSCHKER et al., 2009) may indicate that other presynaptic proteins could act as mediators 

between SRPK79D and Brp.  

One such protein could be RIM1α. The following data favours the idea that RIM1α 

could act as a possible substrate for SRPK2: (1) the high affinity of SRPK2 for the C2A-

domain of RIM1α; (2) bioinformatical identification of RS dipeptides in the RIM1α sequence. 

Thus, SRPK2 could directly associate with RIM1α and phosphorylate it. Besides the RS 

dipeptides, SRPK2 may also phosphorylate unconventional sites in RIM1α, like the one 

previously described in Tau proteins-‘PSLP’ (HONG et al., 2012). Analysis of the RIM1α binding 

in the presence of a docking grove mutant (SRPK2-DM) revealed only a slight decrease in the 

RIM1α binding affinity compared to SRPK2-WT control. Moreover, deletion of both, the N-

terminal region, important for the kinase activity, and the linker region, triggered as well a 

decrease in RIM1α binding affinity. Because in the presence of these truncated proteins, the 

binding to RIM1α was not completely abolished, the only regions from SRPK2 that could 

directly mediate these affinities are the catalytic domains. In consequence it remains to be 

elucidated, which kinase domain is directly involved in this interaction.  

  Up to date, only two proteins, SNAP25 and Syt1, were identified to bind the C2A-

domain of RIM1α (COPPOLA et al., 2001). However, NMR studies were not able to confirm these 

findings (DAI et al., 2005). Identification of SRPK2 may represent the first specific binding 

partner for the RIM1α C2A-domain. The exact role of the C2A-domain in RIM proteins has 

not been fully elucidated. One point mutation in the C2A-domain of RIM1α (R844H) was 

linked to the autosomal dominant cone-rod dystrophy-CORD7, characterized by impaired 

vision due to the reduction in the cone and rod sensitivity (JOHNSON et al., 2003; MICHAELIDES et al., 

2005). Individuals with such mutations display enhanced cognitive functions in at least the 

verbal and executive domains (SISODIYA et al., 2007). 

IF studies support the co-localization of SRPK2 and RIM1α in the presynaptic 

compartment, despite the fact that the detected level of SRPK2 at synapses was significantly 

lower than at the soma. However, this is in agreement with the previous report of Nieratschker 

et al. (2009), where they could show that the expression level of SRPK79D was low and not 

well detected by the antisera raised against this protein. According to the Allen Brain Atlas, 

the mRNA expression level of SRPK2 in adult mouse brains seems to be low in the cortex 

compared to hippocampus. Because all our immunohistochemistry was performed with 

cortical neurons, a further investigation of the co-localization of SRPK2 and RIM1α in 

hippocampal neurons should be conducted as well.  
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Whereas studies in D.melanogaster suggested an important role for SRPK2 in 

preventing the ectopic formation of AZs within the axons (JOHNSON et al., 2009; NIERATSCHKER et 

al., 2009), the role of SRPKs in mammalian neurons, in particular in AZ formation, has not 

been fully addressed. The molecular mechanism by which SRPK79D prevents the unspecific 

accumulation of Brp at unconventional sites is not understood. However, it could be 

hypothesised that in mammalian cells SRPK2 might act in a similar way, regulating the 

assembly of AZ as well. Phosphorylation of RIM1α by SRPK2 may protect RIM1α against an 

unspecific accumulation/aggregation in different parts of the cell preventing in this way a 

premature assembly of the AZ. Once RIM1α reaches the correct destination (synaptic 

bouton), phosphatases could remove some of the phosphate groups promoting protein-protein 

interactions to occur. Additionally, certain functions of presynaptic proteins may be directly 

regulated by SRPK2 kinase activity. In this respect, the amount of SRPK2 present in the 

presynaptic terminal may be critical. Intriguingly, our IF data revealed that by blocking the 

activity of SRPK1 and SRPK2, a slight increase in the co-localization of SRPK2 with RIM1α 

was detected in the boutons. Because no sufficient data is available regarding the 

irreversibility of the inhibitor SRPIN340, we cannot conclude whether this presynaptic 

accumulation of SRPK2 represents active or inactive kinase.  

Besides affecting the functions of presynaptic proteins, SRPK2 might promote 

changes in AZ architecture, by targeting the cytoskeleton as well. It has been reported that 

SRPK2 binds and phosphorylates Tau proteins (tau proteins stabilize the microtubules) 

impairing tau-dependent microtubule polymerization and neurite outgrowth (HONG et al., 2012). 

Hong et al. (2012) also showed that the knockdown of SRPK2 in the hippocampus of the 

Alzheimer’s disease mouse model (APP/PS1) impact presynaptic functions. The amplitude of 

pair pulse facilitation (PPF), an indicator of presynaptic activity, was elevated in APP/PS1 

mice, in which SRPK2 levels were decreased by injecting a lentivirus expressing a specific 

shRNA against this kinase (LV-shSRPK2), compared to WT. Unfortunately no 

electrophysiological data comparing the WT versus WT LV-shSRPK2 mice was presented. 

An increased in PPF was also measured in RIM1α KO mice, consistent with a reduced release 

probability (SCHOCH et al., 2002; PITSCH et al., 2012). Thus, it can be hypothesized that SRPK2 by 

phosphorylating various substrates may impact proper synaptic transmission. In 

D.melanogaster the deletion of SRPK79D does not induce any significant changes in the 

synaptic transmission at the NMJs (NIERATSCHKER et al., 2009). However, an overexpression of 

this kinase impaired synaptic transmission, probably by disrupting either the assembly of T-

bars or the AZ organization (JOHNSON et al., 2009). Due to multiple effects this kinase might 
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have on various presynaptic proteins, further experimental data are necessary to explain 

whether SRPK2 acts as a negative regulator of AZ assembly, similar to D.melanogaster, or 

has a more subtle role in controlling diverse aspects in synaptic transmission.  

 
5.2.2 VAPA/B proteins bind specifically the C2A-domain of RIM1α  

The protein VAPA was identified with relative high scores in our MS analysis with both 

crude synaptosomes and neuronal cultures. In addition, the treatment of mouse crude 

synaptosomes with a kinase inhibitor (staurosporine) increased the level of VAPA detected by 

MS compared to the phosSTOP or control samples. These results corroborated with GST-pull 

down assays, in which kinase blockade increased not only the endogenous level of VAPA but 

also the binding affinity to the C2A-domain of RIM1α. Thus, a global kinase inhibition seems 

to favour the binding between RIM1α and VAPA. 

The VAP protein family includes two highly homologous members: VAPA and 

VAPB/C (NISHIMURA et al., 1999). Both VAPA and VABP were identified to bind exclusively 

the C2A-domain of RIM1α in various biochemical assays, potencially due to their high degree 

of sequence homology. However, in our MS data we only detected VAPA, even though 

VAPB is expressed more abundantly in the brain (Allan Brain Atlas), indicating a preferential 

binding of VAPA to RIM1α.  

Interestingly, the mutation of two threonine residues (T812/814A) in the RIM1α C2A-

domain completely abolished the binding of RIM1α to VAPA. Bioinformatics predicts these 

threonines to be part of a PKA recognition motif. Either these threonine residues are 

necessary to mediate the direct binding of the RIM1α C2A-domain to VAPA or the 

phosphorylation status of these amino acid residues could impact the binding.   

Taken together, this study shows that: (1) VAP proteins, and especially VAPA, bind 

specifically the RIM1α C2A-domain; (2) this association seems to be mediated by the 

threonine residues in the RIM1α C2A-domain. 

Even though, Teuling et al. reported that VAPB did not co-distribute with presynaptic 

proteins, we observed that in rat cortical neurons these proteins were present in the same 

presynaptic compartment. The highest VAPA/B signal was detected, as previously published, 

in the soma, where the ER compartment is located (TEULING et al., 2007). However, IF analysis 

revealed that both VAP proteins showed a weak co-localization with endogenous RIM1α and 

Bassoon at the synapse. Because VAPs are actively involved in trafficking, their steady-state 

levels at synapses might be low. 

Initially, VAP proteins were associated with plasma membrane fusion events in 

neuronal cells, via their interaction with Synaptobrevin/VAMP-2 protein (SKEHEL et al., 1995; 
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WEIR et al., 1998). However, later studies have shown that VAPA was not directly involved in 

SVs exocytosis but rather involved in regulating the organization of the ER (AMARILIO et al., 

2005) and in ER-Golgi trafficking (KUIJPERS et al., 2013). Moreover, it was hypothesised that 

VAPA might play a role in trafficking or chaperoning vesicular components such as VAMP-2 

through the ER to the presynaptic compartment (SKEHEL et al., 2000). The hypothesis of VAP 

proteins being actively involved in protein trafficking is supported by the fact that the 

D.melanogaster homolog, DVAP-33A was identified to selectively transport proteins to 

axonal processes (YANG et al., 2012). A reduction in the presynaptic DVAP-33A induced 

structural changes, like the disruption of synaptic microtubules and the accumulation of 

clusters of proteins and SVs along the axons (FORREST et al., 2013). In mouse cortical neurons 

VAPA is transported, through its interaction with protruding via KIF5, from the soma to 

neurites (MATSUZAKI et al., 2011). All these data could suggest a potential role of VAP proteins in 

assisting the selective transport of various axonal proteins, such as RIM1α, to either nascent 

or mature AZs. Therefore, we may speculate that besides VAMP-2, RIM1α could also be 

trafficked to the synaptic bouton via VAP proteins, a transport dependent on the 

phosphorylation status of both proteins. Future experiments will try to decipher the role of 

phosphorylation events in controlling the traffic of RIM1α. 

Moreover, studies on DVAP-33A provide evidence of its importance in bouton 

formation by mediating the interaction between microtubules and presynaptic membranes 

(PENNETTA et al., 2002). DVAP-33 overexpression in presynaptic terminals induced an increase 

in the number of boutons that displayed a significantly reduced size and contained fewer 

vesicles (PENNETTA et al., 2002; CHAI et al., 2008). With respect to the total number of AZs Chai et 

al. (2008) did not observe any significant changes, while Ratnaparkhi et al. (2008) observed a 

decrease in the number of AZs. The study of Ratnaparkhi et al. suggests that VAP proteins 

might control the structural remodelling of AZs. However, up to date there not sufficient data 

connecting VAP proteins and AZ assembly in mammalian neurons.  

Besides the suggested role in protein transport and bouton formation, VAP proteins 

could be actively involved in AZ protein sorting in ER-Golgi as well (Fig. 5.2). Active zone 

proteins are processed in the soma of neurons in different ways. While Piccolo, Bassoon and 

ELKS share a common Golgi-derived transport vesicle, Munc13 exits the soma on a distinct 

Golgi-derived vesicle. Surprisingly, RIM1α associates with transport vesicles in a post-Golgi 

compartment. However, to date the molecular mechanism governing this sorting is not well 

understood (MAAS et al., 2012). Thus, an intriguing question is the potential involvement of VAP 

proteins in sorting RIM1α in the ER-Golgi compartment. VAPA was shown to be involved
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Our biochemistry data suggests a strong preference of Copine VI for the C2B-domain 

of RIM1α, while binding to full-length RIM1α is Ca2+-dependent. Since RIM1α C2-domains 

lack the amino acids necessary to bind calcium ions (COPPOLA et al., 2001; GUAN et al., 2007), only 

the C2-domains of Copine VI  are able to bind these divalent ions.  

Because these C2-domains can form homo- or heterodimers, the MS data was 

analysed for increased occurrence of C2-domain containing proteins, such as Synaptotagmin1 

or other copines. Such proteins, associating with the C-terminal part of RIM1α, were scarcely 

present in our MS data. Moreover, other copines were not detected in the MS. Together these 

observations support the specificity of the interaction.  

Previous reports have suggested that Copine VI is enriched in the postsynaptic 

terminal (Alexander Kriz, 2010; urn: urn:nbn:ch:bel-bau-diss89692). However, our IF of endogenous 

Copine VI in primary cultured neurons also suggests a presynaptic localization, where it 

partially co-localizes with the presynaptic protein RIM1α. Therefore, Copine VI might be 

present on both pre- and postsynaptic terminals, mediating different cellular processes. 

Additionally, the study of Nakayama showed that Copine VI could be present in low amounts 

in some parts of axons as well (NAKAYAMA et al., 1999). Unpublished data of our collaborators 

attribute to Copine VI a presynaptic function as well, e.g. the regulation of SV fusion. 

In summary, identification of Copine VI, as a potential binding partner for RIM1α, 

may point to a possible link between the function of RIM1α and the calcium-dependent events 

in the presynaptic terminal. Future experiments will be performed in order to examine the 

relevance of this interaction in the presynaptic terminal. 

 
5.3 Identification of novel SV2A binding partners: new experimental approaches  

Because of the still enigmatic function of the synaptic vesicle protein 2A (SV2A) in synaptic 

transmission and neuronal network plasticity, identification of novel potential binding 

partners for SV2A could provide insights into its role at synapses. 

SV2A is 12-pass transmembrane protein with a high degree of posttranslational 

modifications that include a highly glycosylated intravesicular loop and a N-terminus 

containing at least ten phosphorylation sites (review: MENDOZA-TORREBLANCA et al., 2013). To date 

only a limited number of binding partners for SV2A have been identified, such as 

Synaptotagmin1 and clathrin adaptor proteins (review: MENDOZA-TORREBLANCA et al., 2013; YAO et 

al., 2010), whose functional relevance for the function of SV2A are still unclear.  

Since the previous strategies to purify and identify novel SV2A binding partners were 

based mainly on GST pull-down or yeast two-hybrid assays using only parts of SV2A and did 
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not take into the account the posttranslational modifications (SCHIVELL et al., 1996; YAO et al., 

2010), we attempted to analyse the binding partners of overexpressed SV2A using a tandem 

affinity purification method. By applying one- or two-step purifications we aimed at the 

identification of specific SV2A binding partners by maintaining at the same time the native 

SV2A protein conformation. Therefore, a FLAG/Strep sequence was tagged either in the N- 

or C-terminus of SV2A in order to detect any differences in SV2A binding affinities. 

Different approaches were tested in order to co-purify SV2A and its potential binding partners 

both from cortical neurons as well as from transduced mouse brain.    

Purification of overexpressed SV2A from brain by employing the tandem-affinity 

methodology proved to be inconsistent between different trials. The major problems that we 

encountered were: (1) the expression level of the recombinant protein did not give a good 

yield after purification because either the viral titer was not high enough or the virus did not 

express high levels of protein; (2) the purification methodology used to co-purify the tagged-

SV2A had an unsatisfactory efficiency. During different approaches of purification, in most 

of the cases, the recombinant protein was lost, especially when the Strep column was used, 

either because the column was not able to retain the applied material (technical problem) or 

the Strep sequence in the tag was masked by various protein contaminants. In the case of 

FLAG-beads, most of the captured SV2A could not be eluted from beads. In contrary to the 

poor yield of SV2A after purification from brain, sufficiently high amounts were obtained 

when mouse primary cultured neurons were used as starting material.  

It has been demonstrated that the number of SV2A molecules per SV is critical for its 

function (TAKAMORI et al., 2006; NOWACK et al., 2011). Therefore, to avoid high levels of 

overexpressed SV2A in addition to the endogenous one, neuronal primary cultures were 

prepared from SV2A+/- or SV2A -/- mice. Moreover, to fix transient and/or weak interactions 

between SV2A and other proteins, a series of cross-linkers were used. However, neither the 

cross-linkers nor the primary cultures prepared from KO treatment produced a visible 

enrichment in the co-purified proteins. Because we could not see an improvement, wild-type 

neuronal cultures were further used for the final experiment. Compared to heterozygous or 

knock-out neurons, WT neurons allowed for a higher amount of starting material. Preparation 

of neuronal cultures from heterozygous or knock-out mice was limited to the number of 

embryos available at a certain time-point, since KO SV2A mice cannot be breed (CROWDER et 

al., 1999). 

The analysis of protein complexes co-precipitated with SV2A by MS revealed several 

proteins previosly reported to associate with the N-terminal region of SV2A (YAO et al., 2010), 
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like: AP-1 complex, Transcriptional activator protein Pur-beta, Tubulin beta-2A chain, Syt1. 

Additionally, other proteins were identified by MS, e.g. Latrophilin, EHD1; however, none of 

these potential SV2A binding partners could be verified in binding assays.  

Overall, the attempt to identify novel potential interacting partners for SV2A has been 

unsuccessful. This might be due to the fact that interactions require the native structure of the 

12-transmembrane protein, a structure that in turn could have hampered the purifications of 

the SV2A proteome. Even though the detergent, used to solubilize SV2A under native 

conditions, was reported to maintain SV2A’s binding properties to Syt1 and Keppra (anti-

epileptic drug) (LAMBENG et al., 2006), it might not have preserved the native structure and 

therefore interactions might have been lost. According to various protein-protein databases8, 

also for other multi-pass membrane proteins, e.g. synaptophysin or SCAMP, fewer binding 

partners are known. 

Over the years different functions have been attributed to SV2A, like: neurotransmitter 

transport, gel matrix (the sugar moieties attached to the intravesicular loop may hold and 

release neurotransmitters) or modulator of exocytosis (review: MENDOZA-TORREBLANCA et al., 2013).  

Experimental data suggest that SV2A mediates SV fusion by regulating the action of Syt1. 

The N-terminal region of SV2A binds and keeps Syt1 inactive until the level of intracellular 

calcium rises. Once the calcium level is high the binding is disrupted and Syt1 interacts with 

the SNARE complex facilitating SV fusion. Additionally, during endocytosis SV2A binds 

Syt1 and prevents its diffusion. The recycling after SV fusion is mediated by clathrin adaptor 

proteins that bind both Syt1 and SV2A (review: MENDOZA-TORREBLANCA et al., 2013). The fact that 

these proteins, Syt1 and various adaptor proteins have been identified by our MS may suggest 

that SV2A, in order to fulfil its function, does not require a large number of interacting 

proteins. 

Because our attempt to purify and resolve the SV2A proteome was not successful, 

other novel approaches are needed to be developed, e.g. generation of a knock-in mouse 

model expressing a tagged SV2A. Such a model would give the opportunity to study more 

closely not only the potential binding partners of SV2A but also the function of this protein.       

 
 

 

 

                                                            
8 http://www.uniprot.org/uniprot/P07825 (synaptophysin, R.norvegicus) 
  http://www.uniprot.org/uniprot/P56603 (SCAMP, R.norvegicus) 
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6. Outlook 

Taken together, the results of this thesis identified four novel RIM1α binding partners: two 

kinases, a calcium binding protein and proteins involved in trafficking and bouton formation. 

The next step will be to investigate the functional relevance of these new RIM1α binding 

proteins. Therefore, the following three major questions will need to be addressed in future 

experiments: 

1. The role of SRPK2 and ULK1/2 in maintaining or/and controlling the AZ architecture and 

composition. In this regard, the role of these novel kinases in the presynaptic terminal should 

be investigated by using a specific SRPK2 inhibitor (SRPIN340) as well as shRNA-mediated 

knock-down in neuronal cultures. In addition, it will be necessary to examine the possible 

contribution of these kinases in controlling the release machinery, for example by measuring 

the SV exo- and endocytosis using the fluorescent FM-dyes. Moreover, electrophysiological 

recordings of neuronal cultures treated with either shRNA or SRPIN340 would be useful to 

reveal any changes that may occur during synaptic transmission when kinase function is 

blocked. Additionally, it will be necessary to examine whether RIM1α is a direct substrate of 

these kinases.  

2. The role of VAP proteins in modulating the  function or trafficking of RIM1α. It should be 

tested if VAP proteins play a role in trafficking presynaptic proteins to the boutons, in 

particular RIM1α. Analysing if the absence of VAPA and/or VAPB results in an impairment 

of RIM1α trafficking, could be tested by confocal live-imaging. Next, it should be examined 

the functional relevance of C2A-domain phosphorylation in respect to the function of VAPA. 

To evaluate whether VAP proteins may constitute a link between the core release machinery 

and RIM1α, electrophysiological recordings of neuronal cultures overexpressing WT or 

T812/814A RIM1α (point mutations in the C2A-domain that abolished the binding to VAPA) 

could be performed.  

3. The role of the interaction between the calcium-binding protein, Copine VI and RIM1α in 

presynaptic plasticity. To address the function of Copine VI, shRNAs targeting specifically 

Copine VI will be used to investigate whether this protein has any major impact on the 

function of RIM1α and on synaptic transmission.  

 
Because the amount of SV2A seems to be critical for its function, a knock-in mouse 

model could be generated by inserting a tag in SV2A locus. Expression of this new tagged 

protein could be analysed in the whole brain. Moreover, the tagged SV2A could be purified 

from either whole brain or specific brain area in order to identify novel interacting partners. 
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7. Summary 

Synaptic plasticity encompasses various cellular mechanisms, which confer synapses the 

ability to react and adapt to ongoing changes in network activity. Some of the suggested 

mechanisms include remodelling and/or assembly of active zones (AZ), and modulation of 

neurotransmitter release. At the molecular level posttranslational modifications of proteins, 

e.g. phosphorylation, have been reported to be associated with these events. Two components 

of the release machinery, RIM1α and synaptic vesicle protein 2A (SV2A) were shown to be 

actively involved in presynaptic plasticity. However, the impact of posttranslational 

modifications, like phosphorylation, on the function of these proteins is not well understood. 

Therefore, the goals of this thesis were:  

(1) To examine the impact of phosphorylation on the binding properties of RIM1α;  

(2) To identify and analyse novel binding partners for SV2A. 

We found that the distribution of RIM1α at synapses is altered after globally 

increasing the level of phosphorylation, while its total level remained unchanged, suggesting 

that the association of RIM1α with the CAZ is controlled by its phosphorylation status. 

Affinity purification and MS revealed that alterations in the phosphorylation status of RIM1α 

affected its affinity to specific binding partners. Out of the identified proteins, four candidates 

with a potential functional link were chosen to be further analysed in binding assays: two 

kinases (unc-51-like kinase 1/2, serine arginine protein kinase 2), one calcium-binding protein 

(Copine VI), and proteins involved in trafficking (vesicle-associated membrane protein 

(VAMP) associated-protein A/B). Interestingly, RIM1α may represent the first AZ substrate 

for ULKs and SRPK2, which in D.melanogaster have already been linked to the assembly of 

AZs. This may support the hypothesis that both ULKs and SRPK2 could be actively involved 

in controlling not only RIM1α’s function but also its association with the CAZ. VAP proteins, 

by specifically binding the C2A-domain of RIM1α, may contribute to control the trafficking 

of RIM1α to the synapse. Copine VI may regulate the function of RIM1α in a calcium-

dependent manner. Further analysis will reveal if these novel interactions may have any 

functional relevance for the function of RIM1α. In summary, we identified novel RIM1α 

binding partners, of which some interact with RIM1α in a phosphorylation-dependent manner. 

Further studies will have to examine if these are involved in mediating the association of 

RIM1α with the CAZ or its role in plasticity. 

The last part of the study was dedicated to another presynaptic protein, SV2A. To date 

the role played by SV2A in SV priming is not fully elucidated. Therefore, to gain insight into 

the enigmatic function of SV2A identification of novel binding partners was pursued. 
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Different affinity purification strategies coupled to MS were performed in order to identify the 

SV2A proteome. However, none of these approaches resulted in the identification of novel 

interacting proteins, which could be further verified in biochemical assays.  

Taken together, the findings of this thesis may form the basis for further functional 

studies in order to decipher the molecular mechanisms underlying the function of RIM1α and 

in consequence, the role of RIM1α in presynaptic plasticity. 
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8.2 cDNA and Protein sequences 

8.2.1 RIM1α cDNA sequence (R.norvegicus)- NCBI Ref. seq: NM_052829.1 

[atgtcctcggccgtggggccccgaggtcctcgcccacccacggtgcctccccctatgcaagaactgcccgacctgagccacctgaccgaggaggagaggaac
attatcatggcagtgatggaccggcagaaggaagaggaggaaaaagaagaggccatgctcaa]E1gtgtgttgtcagggacatggcgaagcctgctgcctgcaa
aacaccaagaaatgctgaaagccagccccatcaaccaccact]E2gaacattttcagatgtgtctgtgttcccagaaagccaagcagcgaagagggaggcccaga
aagagactg]E3gagattgcatcaacagtttgaaagctacaaggagcaagtgagaaaaatcggagaggaagcgaggcgttaccagggcgagcacaaggatgat
gccccgacgtgtggaatctgtcataagacaaagtttgctgatggatgtggccatctctgctcctattgtcgcaccaagttctgtgcacgctgcggaggccgtgtgtctc
tgcgatcgaacaatgaggacaaagtg]E4gttatgtgggtatgcaatttatgtcgaaagcaacaagaaatcttaacgaaatctggagcgtggttctttggaagtggccc
tcagcagcctagtcaagatgggactctgagtgacacggccacaggtgctggatctgaggtgccaagagaaaagaaagcaaggctccaagagcgatcaaggtctc
agacgcccttgagtacagcagctgtctcttcccaagacactgctacccccggtgcaccgttgcacaggaacaaaggggctgagccctcacagcaagccttgggtc
ctgaacagaagcaggcatcaagatcaagaagcgagccaccgagggaaag]E5gaagaaggctccagggctttcagagcagaatggcaagggaggccagaag
agcgagcgcaaacgtgtccccaagtctgtggtgcaacccggggaagggatcgcggatgagagggagaggaaagagaggcgggaaacccgcaggttggaga
aagggcgctcccaggactactcagaccggcctgagaaacgcgacaatggcagggtggcggaagaccagaagcagaggaaggaggaggagtaccagactag
gtaccgcagcgaccctaacctggctcgctacccggtgaaggcgccgccagaggagcagcagatgcgcatgcacgcccgggtgtcccgagcgaggcacgagc
ggcgccacagcgacgtggcgctcccgcacaccgaggcagctgccgccgcgccggctgaggccacggcgggcaagcgcgcgccggccaccgccagggtct
ctcccccggagtccccgcgcgcacgcgcggcggccgcccagcctcccaccgagcacgggccaccgccgccgcggccagccccgggtcccgcagagccac
ccgagccgcgcgtccccgagccgctccgtaagcagggccgcctggacccgggctcggccgtgcttctgcgcaaggccaagcgcgagaaggcggagagcatg
ctgcggaacgactcgctgagctccgatcagtccgagtccgtgcggccatccccgcccaagcctcaccggcccaagcggggaggcaagagacgtcagatgtcg
gtgagcagctcggaggaggagggcgtgtccacaccggagtacacgagctgcgaggacgtggagctggagagcgagagcgtgagcgagaaag]E6gtgactt
ggattactactggttggatcccgccacgtggcacagcagggaaacgtcgcctatcagttcg]E7catcctgtaacgtggcagccgtctaaagagggagatcgacta
atcggccgtgttattcttaacaaaagaacaaccatgcccaaagaatcaggtgcattattgggtctgaag]E8gtggttggaggaaaaatgacggacttagggcgcctt
ggtgctttcatcaccaaagtaaagaagggcagcctggcagacgtcgtcggacacctaagagcag]E9gggacgaagtcctagagtggaatggtaaacccctgcc
gggagcaacaaacgaagaagtttacaacattatcttagaatcaaaatcagaacctcaagttgagattattgtttcaaggcctattgg]E10tgacatccccaggatccct
gagagttcccatcctcccctggagtcca]E11gttcaagttcctttgaatctcagaaaatggaaaggccttctatttctgttatttctccaaccagccctggagctctgaaa
gatgccccacaagtcttaccagggcaactctca]E12gtgaagctatggtatgataaagtggggcaccagctgattgtaaatgttctacaagcaacagatctaccccct
agagtagatggccgtcccaggaatccctatgtaaaaatgtattttcttccagatagaag]E13cgacaaaagtaaaaggagaaccaaaacagtaaagaaacttctaga
gccaaaatggaaccagacatttgtctactcacacgtacatcgtagagattttcgagagcgaatgttagagattaccgtgtgggaccagccgagagtacaggacgaa
gagagtgaatttcttggagag]E14atcctcatagagttggaaacagcgcttttagatgatgagccccattggtataaactccagacacatgacgaatcttcactacctct
gcctcagccatcaccgttcatgcccaggcggcatattcatggagagagctccagcaaaaagctacaaa]E15gatctcagcgaatcagtgatagtgacatctcagatt
atgaggttgatgatggtattggagtagtgcctccag]E16tgggttatagagctagtgctagagagagtaaagcaaccacgttaacagtgccagagcaacaaagaac
tacacatcaccgctcacgttccgtgtctcctcatcgcggcgatgatcagggaaggcctcgttcacgtttaccaaatgtgccattacagag]E17gagcttagatgaaatt
catccaacacgaaggtcacgttctccaacccgacaccatgatgcctcccgaagcccggccgatcacagatccagacatgtggaaagtcaatattcgtcagagcca
gacag]E18tgagcttctcatgctgcccagagcaaaacgaggacgaagtgcagaaagcctacacatgaccaga]E19gaccttgttaggtactctaacacattacca
cccaagatgcctttattacaaaacgactaccgttggagcagcagt]E20gaactgcagccctctcttgacagggctaggagtgctagtaccaactgcttgagaccaga
tactagtttgcattcaccagaacgagaaag]E21gggtagatggtccccctccctagataggaggcgacctgctagccccaggattcaaatccagcatgcatctccg
gagaatgacag]E22gcactccagaaagtctgaaagatgtagcatccaaaaacagtctaggaaaggcacagcctctgatgcagacag]E23ggttctcccaccatg
cctttctagaaggggatacgcaaccccaagagcaaccgatcaaccggtcgttaggggaaagcatcccactcgttcacggtcgagcgagcactctagtgtcagaac
cctgtgttctatgcaccaccttgcccccggagggtcggcgccaccttctccacttctgacaag]E24aacgcaccgacaaggaagcccaacccagtctcctccagca
gacacatccttcggcagtcgccgtggaagacagctcccacaggtgccagttcgaagcggcagtatagaacaag]E25caagcttagtagtggaggagcgaacga
gacagatgaaagtgaaagttcaccgatttaagcagacaacagggtctgggtctagtcaagaacttgaccacgagcaatactccaag]E26tacaacatacataaaga
tcagtacagaagctgtgataacgcgtctgccaagtcttcagatagtgatgtcagtgatgtgtccgccatttccagagccagcagtacctcacgcctcagcagcacaa
gctttatgtcagagcagtctgagcgccccaggggtaggatcag]E27ttcatttacccccaaaatgcaaggcagacggatggggacttcaggaagagccatcatca
agagcaccagtgtaagtggagagatatatacactggaacgtaatgacggtagccagtcggacacggccgtaggtaccgtcggagccggtggaaagaaacgaag
atccagcctgagcgccaaagtggtagccattgtgtctcgaagaagcaggagcacgtcacagctcagccagacag]E28agtcgggccacaagaagttgaaaagc
accatccagaggagtacggaaacaggaatggcagctgaaatgcggaagatggtgagacagccgagccgggagtccacggatggcagcatcaacagttatagct
cggaaggaaa]E29cttgatatttcctggagttcgagtaggacccgacagtcagttcagtgatttccttgatgggttgggaccagcgcagctcgttggccgtcagacg
ctcgccaccccggccatgg]E30gcgatatccaaatcgggatggaggataagaagggtcagttggaggttgaggttatcagagcccggagccttacacaaaaacc
tggttccaaatctacacccg]E31ctccctatgtgaaagtatatcttttggaaaatggagcctgtattgccaaaaagaagacaagaattgcacggaaaactctcgatcctt
tgtatcagcagtccctggtttttgatgaaagtccacagggtaaagttcttcag]E32gtgattgtctggggtgactatggaagaatggaccacaaatgctttatgggtgtg
gctcaaatcttgttggaagaacttgatctatccagcatggtgattggatggtataaattgttccctccgtcctcactggtggatcccactctcgctcccctgacccgccg
ggcttcccaatcatctctggaaagttcgtccgggcctccctgcatccggtcatag]E33  
 
8.2.2 RIM1α protein sequence (R.norvegicus) 

MSSAVGPRGPRPPTVPPPMQELPDLSHLTEEERNIIMAVMDRQKEEEEKEEAMLKCVVRDMAKPAACKTPRNAESQ
PHQPPLNIFRCVCVPRKPSSEEGGPERDWRLHQQFESYKEQVRKIGEEARRYQGEHKDDAPTCGICHKTKFADGCG
HLCSYCRTKFCARCGGRVSLRSNNEDKVVMWVCNLCRKQQEILTKSGAWFFGSGPQQPSQDGTLSDTATGAGSEV
PREKKARLQERSRSQTPLSTAAVSSQDTATPGAPLHRNKGAEPSQQALGPEQKQASRSRSEPPRERKKAPGLSEQNG
KGGQKSERKRVPKSVVQPGEGIADERERKERRETRRLEKGRSQDYSDRPEKRDNGRVAEDQKQRKEEEYQTRYRS
DPNLARYPVKAPPEEQQMRMHARVSRARHERRHSDVALPHTEAAAAAPAEATAGKRAPATARVSPPESPRARAAA
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AQPPTEHGPPPPRPAPGPAEPPEPRVPEPLRKQGRLDPGSAVLLRKAKREKAESMLRNDSLSSDQSESVRPSPPKPHR
PKRGGKRRQMSVSSSEEEGVSTPEYTSCEDVELESESVSEKGDLDYYWLDPATWHSRETSPISSHPVTWQPSKEGDR
LIGRVILNKRTTMPKESGALLGLKVVGGKMTDLGRLGAFITKVKKGSLADVVGHLRAGDEVLEWNGKPLPGATNE
EVYNIILESKSEPQVEIIVSRPIGDIPRIPESSHPPLESSSSSFESQKMERPSISVISPTSPGALKDAPQVLPGQLSVKLWYD
KVGHQLIVNVLQATDLPPRVDGRPRNPYVKMYFLPDRSDKSKRRTKTVKKLLEPKWNQTFVYSHVHRRDFRERML
EITVWDQPRVQDEESEFLGEILIELETALLDDEPHWYKLQTHDESSLPLPQPSPFMPRRHIHGESSSKKLQRSQRISDS
DISDYEVDDGIGVVPPVGYRASARESKATTLTVPEQQRTTHHRSRSVSPHRGDDQGRPRSRLPNVPLQRSLDEIHPTR
RSRSPTRHHDASRSPADHRSRHVESQYSSEPDSELLMLPRAKRGRSAESLHMTRDLVRYSNTLPPKMPLLQNDYRW
SSSELQPSLDRARSASTNCLRPDTSLHSPERERGRWSPSLDRRRPASPRIQIQHASPENDRHSRKSERCSIQKQSRKGT
ASDADRVLPPCLSRRGYATPRATDQPVVRGKHPTRSRSSEHSSVRTLCSMHHLAPGGSAPPSPLLTRTHRQGSPTQS
PPADTSFGSRRGRQLPQVPVRSGSIEQASLVVEERTRQMKVKVHRFKQTTGSGSSQELDHEQYSKYNIHKDQYRSC
DNASAKSSDSDVSDVSAISRASSTSRLSSTSFMSEQSERPRGRISSFTPKMQGRRMGTSGRAIIKSTSVSGEIYTLERND
GSQSDTAVGTVGAGGKKRRSSLSAKVVAIVSRRSRSTSQLSQTESGHKKLKSTIQRSTETGMAAEMRKMVRQPSRE
STDGSINSYSSEGNLIFPGVRVGPDSQFSDFLDGLGPAQLVGRQTLATPAMGDIQIGMEDKKGQLEVEVIRARSLTQK
PGSKSTPAPYVKVYLLENGACIAKKKTRIARKTLDPLYQQSLVFDESPQGKVLQVIVWGDYGRMDHKCFMGVAQI
LLEELDLSSMVIGWYKLFPPSSLVDPTLAPLTRRASQSSLESSSGPPCIRS*  
 

8.2.3 ULK1 cDNA and Protein sequence (M.musculus)- Clone ID:6406755/GenBank: 
BC059835   
ATGGAGCCGGGCCGCGGCGGCGTCGAGACCGTGGGCAAGTTCGAGTTCTCTCGCAAGGACCTGATTGGACACGGCGCCTT  
 M  E  P  G  R  G  G  V  E  T  V  G  K  F  E  F  S  R  K  D  L  I  G  H  G  A  F 
CGCGGTGGTCTTCAAGGGTCGACACCGCGAGAAGCACGACCTGGAGGTGGCCGTCAAATGCATTAACAAGAAGAACCTTG  
  A  V  V  F  K  G  R  H  R  E  K  H  D  L  E  V  A  V  K  C  I  N  K  K  N  L  
CCAAGTCCCAAACACTGCTGGGAAAGGAAATCAAAATCCTGAAGGAACTAAAGCACGAAAACATCGTGGCGCTGTATGAC  
A  K  S  Q  T  L  L  G  K  E  I  K  I  L  K  E  L  K  H  E  N  I  V  A  L  Y  D  
TTCCAGGAAATGGCTAATTCTGTCTACCTGGTCATGGAGTATTGTAATGGTGGAGACCTGGCTGACTACCTGCACACTAT  
 F  Q  E  M  A  N  S  V  Y  L  V  M  E  Y  C  N  G  G  D  L  A  D  Y  L  H  T  M  
GCGCACACTGAGTGAAGACACTGTCAGGCTTTTCCTACAGCAGATCGCTGGCGCCATGCGGCTGCTGCACAGCAAGGGCA  
  R  T  L  S  E  D  T  V  R  L  F  L  Q  Q  I  A  G  A  M  R  L  L  H  S  K  G  
TCATCCACCGGGACCTGAAGCCCCAAAACATCCTGCTGTCCAACCCTGGGGGCCGCCGGGCCAACCCCAGCAACATCCGA  
I  I  H  R  D  L  K  P  Q  N  I  L  L  S  N  P  G  G  R  R  A  N  P  S  N  I  R  
GTCAAGATTGCTGACTTTGGATTCGCTCGGTACCTCCAGAGCAACATGATGGCGGCCACACTCTGTGGTTCTCCTATGTA  
 V  K  I  A  D  F  G  F  A  R  Y  L  Q  S  N  M  M  A  A  T  L  C  G  S  P  M  Y  
CATGGCTCCTGAGGTCATTATGTCCCAGCACTACGATGGAAAGGCTGACCTGTGGAGCATTGGCACCATTGTCTACCAGT  
  M  A  P  E  V  I  M  S  Q  H  Y  D  G  K  A  D  L  W  S  I  G  T  I  V  Y  Q  
GTCTGACAGGGAAGGCCCCTTTTCAGGCCAGCAGCCCTCAGGATTTGCGCCTGTTTTATGAGAAGAACAAGACACTAGTT  
C  L  T  G  K  A  P  F  Q  A  S  S  P  Q  D  L  R  L  F  Y  E  K  N  K  T  L  V  
CCTGCCATCCCCCGGGAGACATCAGCTCCCCTGCGGCAGCTGCTCCTGGCTCTGTTGCAGCGGAACCACAAGGACCGCAT  
 P  A  I  P  R  E  T  S  A  P  L  R  Q  L  L  L  A  L  L  Q  R  N  H  K  D  R  M  
GGACTTTGATGAATTTTTCCACCACCCTTTCTTGGATGCCAGCACCCCCATCAAGAAATCCCCACCTGTGCCTGTGCCCT  
  D  F  D  E  F  F  H  H  P  F  L  D  A  S  T  P  I  K  K  S  P  P  V  P  V  P  
CATATCCAAGCTCAGGGTCTGGCAGCAGCTCCAGCAGCAGCTCTGCCTCCCACCTGGCCTCTCCACCGTCCCTGGGGGAG  
S  Y  P  S  S  G  S  G  S  S  S  S  S  S  S  A  S  H  L  A  S  P  P  S  L  G  E  
ATGCCACAGCTACAGAAGACCCTTACCTCCCCAGCCGATGCTGCTGGCTTTCTTCAGGGCTCCCGGGACTCTGGTGGCAG  
 M  P  Q  L  Q  K  T  L  T  S  P  A  D  A  A  G  F  L  Q  G  S  R  D  S  G  G  S  
CAGCAAAGACTCCTGTGACACAGATGACTTTGTCATGGTCCCAGCCCAGTTTCCAGGTGATCTAGTTGCTGAGGCAGCCA  
  S  K  D  S  C  D  T  D  D  F  V  M  V  P  A  Q  F  P  G  D  L  V  A  E  A  A  
GTGCCAAGCCCCCACCTGATAGCCTGCTGTGTAGTGGGAGCTCATTGGTGGCCTCTGCTGGCCTAGAGAGCCACGGCCGT  
S  A  K  P  P  P  D  S  L  L  C  S  G  S  S  L  V  A  S  A  G  L  E  S  H  G  R  
ACCCCCTCTCCCTCTCCGACCTGCAGCAGCTCTCCCAGCCCCTCTGGCCGGCCTGGCCCCTTCTCCAGCAACAGGTACGG  
 T  P  S  P  S  P  T  C  S  S  S  P  S  P  S  G  R  P  G  P  F  S  S  N  R  Y  G  
TGCCTCGGTCCCCATTCCTGTCCCCACTCAGGTGCACAATTACCAGCGCATCGAGCAAAACCTGCAATCGCCCACTCAAC  
  A  S  V  P  I  P  V  P  T  Q  V  H  N  Y  Q  R  I  E  Q  N  L  Q  S  P  T  Q  
AGCAGACAGCCAGGTCCTCTGCCATCCGAAGGTCAGGGAGCACCAGCCCCCTGGGCTTTGGCCGGGCCAGCCCATCACCC  
Q  Q  T  A  R  S  S  A  I  R  R  S  G  S  T  S  P  L  G  F  G  R  A  S  P  S  P  
CCCTCCCACACCGATGGAGCCATGCTGGCCAGGAAGCTGTCACTTGGAGGTGGCCGTCCCTACACACCTTCTCCCCAAGT  
 P  S  H  T  D  G  A  M  L  A  R  K  L  S  L  G  G  G  R  P  Y  T  P  S  P  Q  V  
GGGAACCATCCCAGAGCGACCCAGCTGGAGCAGAGTGCCCTCCCCACAAGGAGCTGATGTGCGGGTTGGCAGGTCACCAC  
  G  T  I  P  E  R  P  S  W  S  R  V  P  S  P  Q  G  A  D  V  R  V  G  R  S  P  
GACCCGGTTCCTCTGTGCCTGAGCACTCTCCAAGAACCACTGGGCTGGGCTGCCGCCTGCACAGTGCCCCTAACCTGTCC  
R  P  G  S  S  V  P  E  H  S  P  R  T  T  G  L  G  C  R  L  H  S  A  P  N  L  S  
GACTTCCATGTTGTGCGTCCCAAGCTGCCTAAGCCCCCAACAGACCCACTGGGAGCCACCTTTAGCCCACCCCAGACCAG  
 D  F  H  V  V  R  P  K  L  P  K  P  P  T  D  P  L  G  A  T  F  S  P  P  Q  T  S  
CGCACCCCAGCCATGCCCAGGGCTACAGTCTTGCCGGCCACTGCGTGGCTCACCTAAGCTGCCTGACTTCCTACAGCGGA  
  A  P  Q  P  C  P  G  L  Q  S  C  R  P  L  R  G  S  P  K  L  P  D  F  L  Q  R  
GTCCCCTACCCCCCATCCTAGGCTCTCCTACCAAGGCCGGGCCCTCCTTTGACTTCCCCAAAACCCCCAGCTCTCAGAAT  
S  P  L  P  P  I  L  G  S  P  T  K  A  G  P  S  F  D  F  P  K  T  P  S  S  Q  N 
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TTGCTGACCCTGTTGGCTAGGCAGGGGGTAGTAATGACACCACCTCGGAACCGTACACTGCCTGACCTCTCCGAGGCCAG  
 L  L  T  L  L  A  R  Q  G  V  V  M  T  P  P  R  N  R  T  L  P  D  L  S  E  A  S  
TCCTTTCCATGGCCAGCAGCTGGGCTCTGGCCTTCGGCCCGCTGAAGACACCCGGGGTCCCTTTGGACGGTCCTTCAGCA  
  P  F  H  G  Q  Q  L  G  S  G  L  R  P  A  E  D  T  R  G  P  F  G  R  S  F  S  
CCAGCCGCATTACGGACCTGCTGCTTAAGGCTGCATTTGGGACTCAGGCCTCTGACTCAGGCAGCACAGACAGCCTACAG  
T  S  R  I  T  D  L  L  L  K  A  A  F  G  T  Q  A  S  D  S  G  S  T  D  S  L  Q  
GAGAAACCTATGGAGATTGCTCCCTCTGCTGGCTTTGGAGGGACTCTGCATCCAGGAGCTCGTGGTGGAGGGGCCAGCAG  
 E  K  P  M  E  I  A  P  S  A  G  F  G  G  T  L  H  P  G  A  R  G  G  G  A  S  S  
CCCAGCACCTGTGGTATTTACTGTAGGCTCCCCACCCAGTGGTGCCACCCCACCCCAGAGTACCCGTACCAGAATGTTCT  
  P  A  P  V  V  F  T  V  G  S  P  P  S  G  A  T  P  P  Q  S  T  R  T  R  M  F  
CAGTGGGCTCTTCCAGCTCCCTGGGCTCTACTGGCTCCTCCTCTGCCCGCCACTTAGTGCCTGGGGCCTGTGGAGAGGCC  
S  V  G  S  S  S  S  L  G  S  T  G  S  S  S  A  R  H  L  V  P  G  A  C  G  E  A  
CCGGAGCTTTCTGCCCCAGGCCACTGCTGTAGCCTTGCTGACCCCCTTGCTGCCAACTTGGAGGGGGCTGTGACCTTCGA  
 P  E  L  S  A  P  G  H  C  C  S  L  A  D  P  L  A  A  N  L  E  G  A  V  T  F  E  
GGCTCCTGACCTCCCAGAGGAGACCCTCATGGAGCAAGAGCACACGGAAACCCTACACAGTCTGCGCTTCACACTAGCGT  
  A  P  D  L  P  E  E  T  L  M  E  Q  E  H  T  E  T  L  H  S  L  R  F  T  L  A  
TTGCACAGCAAGTTCTGGAGATTGCAGCCCTGAAGGGAAGTGCCAGTGAGGCCGCCGGTGGCCCTGAGTACCAGCTCCAG  
F  A  Q  Q  V  L  E  I  A  A  L  K  G  S  A  S  E  A  A  G  G  P  E  Y  Q  L  Q  
GAAAGTGTGGTGGCTGACCAGATCAGTCAGTTGAGCCGAGAGTGGGGCTTTGCAGAGCAACTGGTTCTGTACTTGAAGGT  
 E  S  V  V  A  D  Q  I  S  Q  L  S  R  E  W  G  F  A  E  Q  L  V  L  Y  L  K  V  
GGCTGAGCTGCTGTCCTCAGGCCTACAGACTGCCATTGACCAGATTCGAGCTGGCAAACTCTGCCTTTCATCTACTGTGA  
  A  E  L  L  S  S  G  L  Q  T  A  I  D  Q  I  R  A  G  K  L  C  L  S  S  T  V  
AGCAGGTGGTACGCAGACTAAATGAGCTGTACAAGGCCAGCGTGGTATCCTGCCAGGGCCTCAGCTTGCGACTTCAGCGC  
K  Q  V  V  R  R  L  N  E  L  Y  K  A  S  V  V  S  C  Q  G  L  S  L  R  L  Q  R  
TTCTTTCTGGACAAACAACGGCTGCTGGACGGGATCCATGGTGTCACTGCAGAGCGGCTCATCCTCAGCCATGCTGTGCA  
 F  F  L  D  K  Q  R  L  L  D  G  I  H  G  V  T  A  E  R  L  I  L  S  H  A  V  Q  
AATGGTACAATCAGCTGCCCTTGATGAGATGTTCCAGCACCGAGAGGGCTGTGTACCGAGATATCACAAAGCCCTGCTAT  
  M  V  Q  S  A  A  L  D  E  M  F  Q  H  R  E  G  C  V  P  R  Y  H  K  A  L  L  
TGCTGGAGGGGTTGCAGCACACTCTCACGGACCAGGCAGACATTGAGAACATTGCCAAATGCAAGCTGTGCATTGAGAGG  
L  L  E  G  L  Q  H  T  L  T  D  Q  A  D  I  E  N  I  A  K  C  K  L  C  I  E  R  
AGACTCTCGGCCCTGCTGAGTGGTGTCTATGCCTGA  
 R  L  S  A  L  L  S  G  V  Y  A  * 

 

8.2.4 ULK2 cDNA and Protein sequence (M.musculus)- Clone ID:5709559/GenBank: 
BC046778   
ATGGAGGTGGTGGGCGACTTCGAGTACTGCAAGCGGGACCTCGTGGGACACGGGGCCTTCGCTGTGGTCTTCCGGGGGCG  
 M  E  V  V  G  D  F  E  Y  C  K  R  D  L  V  G  H  G  A  F  A  V  V  F  R  G  R  
GCACCGCCAGAAAACTGATTGGGAGGTGGCTATTAAAAGTATTAATAAAAAGAACTTGTCAAAATCACAAATTCTGCTTG  
  H  R  Q  K  T  D  W  E  V  A  I  K  S  I  N  K  K  N  L  S  K  S  Q  I  L  L  
GAAAGGAAATAAAAATCTTAAAGGAGCTTCAGCATGAAAACATCGTAGCGCTCTATGATGTTCAGGAATTGCCCAACTCT  
G  K  E  I  K  I  L  K  E  L  Q  H  E  N  I  V  A  L  Y  D  V  Q  E  L  P  N  S  
GTCTTTCTGGTGATGGAGTATTGCAATGGTGGAGACCTGGCAGATTATTTGCAAGCTAAAGGAACTCTGAGTGAAGATAC  
 V  F  L  V  M  E  Y  C  N  G  G  D  L  A  D  Y  L  Q  A  K  G  T  L  S  E  D  T  
TATCAGAGTGTTTCTCCATCAGATTGCGGCAGCCATGCGAATCCTGCACAGCAAAGGGATAATCCACAGGGATCTCAAAC  
  I  R  V  F  L  H  Q  I  A  A  A  M  R  I  L  H  S  K  G  I  I  H  R  D  L  K  
CACAGAATATCCTGTTGTCTTATGCCAATCGAAGGAAGTCGAATGTCAGTGGTATTCGTATTAAAATAGCTGATTTTGGT  
P  Q  N  I  L  L  S  Y  A  N  R  R  K  S  N  V  S  G  I  R  I  K  I  A  D  F  G  
TTCGCACGGTACCTACATAGTAACACAATGGCAGCGACACTGTGTGGATCCCCAATGTACATGGCTCCCGAGGTTATTAT  
 F  A  R  Y  L  H  S  N  T  M  A  A  T  L  C  G  S  P  M  Y  M  A  P  E  V  I  M  
GTCTCAACATTATGATGCTAAGGCAGATTTATGGAGCATAGGAACAGTGATCTATCAATGCCTAGTTGGAAAACCACCTT  
  S  Q  H  Y  D  A  K  A  D  L  W  S  I  G  T  V  I  Y  Q  C  L  V  G  K  P  P  
TTCAGGCTAATAGTCCTCAGGACCTAAGGATGTTTTATGAAAAAAACAGGAGCTTAATGCCTAGTATTCCCAGAGAAACA  
F  Q  A  N  S  P  Q  D  L  R  M  F  Y  E  K  N  R  S  L  M  P  S  I  P  R  E  T  
TCACCTTACTTGGCTAATCTCCTTTTGGGTTTGCTTCAGAGAAATCAAAAGGATAGAATGGACTTTGAAGCATTTTTCAG  
 S  P  Y  L  A  N  L  L  L  G  L  L  Q  R  N  Q  K  D  R  M  D  F  E  A  F  F  S  
CCATCCTTTCCTTGAGCAAGTTCCAGTTAAAAAATCTTGCCCAGTCCCAGTGCCTGTGTATTCTGGCCCTGTCCCTGGAA  
  H  P  F  L  E  Q  V  P  V  K  K  S  C  P  V  P  V  P  V  Y  S  G  P  V  P  G  
GCTCCTGCAGCAGCTCACCATCTTGTCGCTTTGCTTCTCCACCATCCCTTCCAGATATGCAGCATATTCAGGAAGAAAAC  
S  S  C  S  S  S  P  S  C  R  F  A  S  P  P  S  L  P  D  M  Q  H  I  Q  E  E  N  
TTATCCTCCCCACCGTTGGGTCCTCCCAACTATCTACAGGTGTCCAAAGACTCTGCGAGTAATAGTAGCAAGAACTCTTC  
 L  S  S  P  P  L  G  P  P  N  Y  L  Q  V  S  K  D  S  A  S  N  S  S  K  N  S  S  
TTGTGACACGGATGACTTTGTTTTGGTTCCACACAACATCTCGTCAGACCACTCATATGACATGCCAATGGGGACTACGG  
  C  D  T  D  D  F  V  L  V  P  H  N  I  S  S  D  H  S  Y  D  M  P  M  G  T  T  
CCAGACGTGCTTCAAATGAATTCTTTATGTGTGGAGGGCAGTGTCAACCTACTGTGTCACCTCACAGCGAAACAGCCCCA  
A  R  R  A  S  N  E  F  F  M  C  G  G  Q  C  Q  P  T  V  S  P  H  S  E  T  A  P  
ATTCCAGTTCCTACTCAAGTAAGGAATTATCAGCGCATAGAACAGAATCTTATATCCACTGCCAGCTCTGGCACAAACCC  
 I  P  V  P  T  Q  V  R  N  Y  Q  R  I  E  Q  N  L  I  S  T  A  S  S  G  T  N  P 
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ACATGGTTCTCCAAGATCTGCAGTAGTACGAAGGTCTAATACCAGCCCCATGGGCTTCCTCCGGGTTGGGTCCTGCTCCC  
  H  G  S  P  R  S  A  V  V  R  R  S  N  T  S  P  M  G  F  L  R  V  G  S  C  S  
CTGTACCAGGAGACACAGTGCAGACAGGAGGACGAAGACTCTCTACTGGCTCTTCCAGGCCTTACTCACCATCCCCTTTG  
P  V  P  G  D  T  V  Q  T  G  G  R  R  L  S  T  G  S  S  R  P  Y  S  P  S  P  L  
GTTGGTACCATTCCTGAACAGTTTAGTCAGTGCTGCTGTGGACATCCTCAGGGCCATGAAGCCAGGAGTAGGCACTCCTC  
 V  G  T  I  P  E  Q  F  S  Q  C  C  C  G  H  P  Q  G  H  E  A  R  S  R  H  S  S  
AGGTTCTCCAGTGCCACAGACCCAGGCACCACAGTCACTCTTACTGGGTGCTAGACTGCAGAGTGCACCCACCCTCACCG  
  G  S  P  V  P  Q  T  Q  A  P  Q  S  L  L  L  G  A  R  L  Q  S  A  P  T  L  T  
ATATCTATCAGAACAAGCAGAAGCTCAGAAAGCAGCACTCTGACCCTGTGTGTCCGTCCCATGCTGGAGCTGGGTATAGT  
D  I  Y  Q  N  K  Q  K  L  R  K  Q  H  S  D  P  V  C  P  S  H  A  G  A  G  Y  S  
TACTCACCTCAGCCTAGTCGGCCTGGCAGCCTTGGGACCTCTCCCACCAAGCACACGGGGTCCTCTCCACGGAATTCTGA  
 Y  S  P  Q  P  S  R  P  G  S  L  G  T  S  P  T  K  H  T  G  S  S  P  R  N  S  D  
CTGGTTCTTTAAAACTCCTTTACCAACAATCATTGGCTCTCCTACTAAGACTACAGCTCCTTTCAAAATCCCTAAAACAC  
  W  F  F  K  T  P  L  P  T  I  I  G  S  P  T  K  T  T  A  P  F  K  I  P  K  T  
AAGCATCTTCTAACCTGTTAGCCTTGGTTACTCGTCATGGGCCTGCTGAAAGCCAGTCCAAAGATGGGAATGACCCTCGT  
Q  A  S  S  N  L  L  A  L  V  T  R  H  G  P  A  E  S  Q  S  K  D  G  N  D  P  R  
GAGTGTTCCCACTGCCTCTCAGTACAAGGAAGCGAGAGGCATCGATCTGAGCAGCAGCAGAGCAAGGCAGTGTTTGGCAG  
 E  C  S  H  C  L  S  V  Q  G  S  E  R  H  R  S  E  Q  Q  Q  S  K  A  V  F  G  R  
ATCTGTCAGTACTGGGAAGTTATCAGAACAACAAGTAAAGGCACCTTTAGGTGGACACCAGGGCAGCACGGATAGTTTAA  
  S  V  S  T  G  K  L  S  E  Q  Q  V  K  A  P  L  G  G  H  Q  G  S  T  D  S  L  
ACACAGAACGACCAATGGATGTAGCTCCTGCAGGAGCCTGTGGTGTTATGCTGGCATTGCCAGCAGGAACAGCAGCAAGC  
N  T  E  R  P  M  D  V  A  P  A  G  A  C  G  V  M  L  A  L  P  A  G  T  A  A  S  
GCCAGAGCTGTCCTCTTCACCGTGGGGTCTCCTCCACACAGTGCCACAGCCCCCACTTGTACTCATATGGTCCTTCGAAC  
 A  R  A  V  L  F  T  V  G  S  P  P  H  S  A  T  A  P  T  C  T  H  M  V  L  R  T  
AAGAACCACCTCAGTGGGGTCCAGCAGCTCAGGAGGTTCCTTGTGTTCTGCAAGTGGCCGAGTATGTGTGGGCTCCCCTC  
  R  T  T  S  V  G  S  S  S  S  G  G  S  L  C  S  A  S  G  R  V  C  V  G  S  P  
CTGGACCAGGGTTGGGCTCTTCCCCACCAGGAGCAGAGGGAGCTCCCAGCCTAAGATACGTGCCTTATGGTGCTTCACCA  
P  G  P  G  L  G  S  S  P  P  G  A  E  G  A  P  S  L  R  Y  V  P  Y  G  A  S  P  
CCCAGCCTAGAGGGTCTCATCACCTTTGAAGCCCCTGAACTACCAGAGGAGACACTGATGGAGCGAGAGCACACAGACAC  
 P  S  L  E  G  L  I  T  F  E  A  P  E  L  P  E  E  T  L  M  E  R  E  H  T  D  T  
CTTACGCCATCTGAACATGATGTTAATGTTTACTGAGTGTGTGCTGGACCTGACGGCAGTGAGGGGTGGGAACCCTGAGC  
  L  R  H  L  N  M  M  L  M  F  T  E  C  V  L  D  L  T  A  V  R  G  G  N  P  E  
TGTGCACATCTGCTGTGTCCTTGTACCAGATTCAGGAGAGTGTAGTTGTGGACCAGATCAGCCAGCTAAGCAAAGATTGG  
L  C  T  S  A  V  S  L  Y  Q  I  Q  E  S  V  V  V  D  Q  I  S  Q  L  S  K  D  W  
GGGCGGGTGGAGCAGCTGGTGTTGTACATGAAGGCAGCACAGCTGCTGGCGGCTTCCCTGCATCTCGCCAAAGCTCAGGT  
 G  R  V  E  Q  L  V  L  Y  M  K  A  A  Q  L  L  A  A  S  L  H  L  A  K  A  Q  V  
CAAGTCTGGGAAGCTGAGCCCATCCATGGCTGTGAAACAAGTTGTTAAAAATCTGAATGAAAGATACAAATTCTGCATCA  
  K  S  G  K  L  S  P  S  M  A  V  K  Q  V  V  K  N  L  N  E  R  Y  K  F  C  I  
CCATGTGCAAGAAACTTACAGAAAAGCTGAATCGCTTCTTCTCCGATAAACAGAGATTTATTGATGAAATCAACAGTGTG  
T  M  C  K  K  L  T  E  K  L  N  R  F  F  S  D  K  Q  R  F  I  D  E  I  N  S  V  
ACTGCAGAGAAACTCATCTATAATTGTGCTGTGGAAATGGTTCAATCTGCAGCCCTGGATGAGATGTTTCAGCAGACTGA  
 T  A  E  K  L  I  Y  N  C  A  V  E  M  V  Q  S  A  A  L  D  E  M  F  Q  Q  T  E  
AGACATCGTTTATCGCTACCACAAGGCAGCCCTTCTTTTGGAAGGCTTAAGTAAGATCCTGCAGGACCCTACAGATGTTG  
  D  I  V  Y  R  Y  H  K  A  A  L  L  L  E  G  L  S  K  I  L  Q  D  P  T  D  V  
AAAATGTGCATAAGTATAAATGTAGTATTGAAAGAAGATTGTCAGCACTCTGCTGTAGCACTGCAACTGTGTGA  
E  N  V  H  K  Y  K  C  S  I  E  R  R  L  S  A  L  C  C  S  T  A  T  V  *  

 
Kinase domain of ULK1/2 is depicted in blue, serine proline rich domain in black and C-
terminal domain in orange. 
 
8.2.5 VAPA cDNA sequence (M.musculus)- Clone ID:3490082/GenBank:BC003866 
 
ATGGCGTCCGCCTCCGGGGCCATGGCGAAGCACGAGCAGATCCTGgTCCTCGACCCTCCTTCAGACCTCAAATT
CAAAGGCCCCTTCACAGATGTAGTCACTACAAATCTTAAATTGCAAAATCCATCGGATAGAAAAGTGTGTTTC
AAAGTGAAGACTACAGCACCTCGCCGGTACTGTGTGCGGCCCAACAGTGGGATTATTGACCCGGGGTCAATTG
TGACTGTTTCAGTAATGCTGCAACCCTTTGATTATGATCCGAATGAAAAGAGTAAACATAAGTTCATGGTACAG
ACAATTTTTGCTCCACCAAACATTTCAGATATGGAAGCTGTGTGGAAAGAAGCAAAACCTGATGAATTAATGG
ATTCTAAATTGAGATGTGTGTTTGAAATGCCGAATGAAAATGATAAGCTGAATGATATGGAACCTAGCAAAGC
TGTTCCACTGAATGCATCCAAACAAGACGGACCCCTGCCAAAACCAcACAGTGTTTCACTCaATGATACGGAAA
CAAGGAAACTGATGGAAGAGTGCAAGCGACTCCAGGGAGAAATGATGAAGCTCTCAGAAGAAAACCGACACC
TGAGAGATGAAGGCCTAAGGCTCAGAAAGGTAGCACATTCGGATAAACCTGGATCCACCTCAGCCGTGTCCTT
CAGAGATAATGTCACCAGTCCTCTTCCTTCTCTTCTGGTTGTAATTGCAGCCATTTTCATTGGATTCTTTCTAGG
GAAATTCATCTTG 
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8.2.6 VAPA Protein sequence (M.musculus)  
 
MASASGAMAKHEQILVLDPPSDLKFKGPFTDVVTTNLKLQNPSDRKVCFKVKTTAPRRYCVRPNSGIIDPGSIVTVS
VMLQPFDYDPNEKSKHKFMVQTIFAPPNISDMEAVWKEAKPDELMDSKLRCVFEMPNENDKLNDMEPSKAVPLNA
SKQDGPLPKPHSVSLNDTETRKLMEECKRLQGEMMKLSEENRHLRDEGLRLRKVAHSDKPGSTSAVSFRDNVTSPL
PSLLVVIAAIFIGFFLGKFIL  

 
8.2.7 VAPB cDNA sequence (M.musculus)- NCBI Ref. seq: NM_019806.5 
 
ATGGCGAAGGTGGAACAGGTCCTGAGCCTCGAGCCACAACACGAGCTCAAGTTCCGAGGTCCCTTCACTGATG
TTGTCACCACCAACCTAAAGCTTGGCAACCCAACAGACCGAAATGTGTGTTTTAAAGTGAAGACCACAGCACC
TCGCAGGTACTGCGTGCGGCCCAACAGTGGGGTCATTGATGCCGGGGCCTCTCTCAATGTGTCTGTGATGTTAC
AGCCTTTCGATTATGATCCCAATGAGAAAAGTAAACACAAGTTTATGGTTCAGTCTATGTTTGCTCCGCCTGAC
ACTTCTGATATGGAGGCAGTATGGAAGGAGGCAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGT
TTGAATTGCCAGCAGAAAATGCTAAACCACATGATGTAGAAATAAATAAAATCATACCTACGAGTGCATCCAA
GACAGAAGCACCGGCAGCCGCAAAGTCCCTGACATCGCCCCTCGATGACACAGAAGTAAAGAAGGTGATGGA
AGAGTGCAGGCGGCTGCAGGGGGAGGTGCAGAGGCTTCGGGAGGAGAGCAGGCAGCTCAAGGAAGAAGACG
GACTTCGGGTGAGGAAGGCGATGCCGAGCAACAGCCCCGTGGCGGCTCTGGCGGCCACTGGGAAGGAGGAGG
GCCTGAGCGCCCGGCTGCTGGCCCTGGTGGTTCTGTTCTTTATCGTTGGTGTCATTATAGGGAAGATTGCCTTG 

 
8.2.8 VAPB Protein sequence (M.musculus)  
 
MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGVIDAGASLNVSVMLQPF
DYDPNEKSKHKFMVQSMFAPPDTSDMEAVWKEAKPEDLMDSKLRCVFELPAENAKPHDVEINKIIPTSASKTEAPA
AAKSLTSPLDDTEVKKVMEECRRLQGEVQRLREESRQLKEEDGLRVRKAMPSNSPVAALAATGKEEGLSARLLAL
VVLFFIVGVIIGKIAL  

 
8.2.9 Copine VI  cDNA sequence (M.musculus)- Clone ID:6591063/GenBank:BC050766 
 
atgtcggacccagagatgggatgggtgcctgagcccccggccatgaccctgggagcctctcgagtggagctgcgggtgtcctgccatggcctgctggaccgag
acacgctcacaaagccgcatccatgtgtgctgctcaaactctactcggatgagcagtgggtggaggtggaacgcacggaggtgcttcgctcctgttcaagcccagt
cttctcccgggtgctggccattgaatacttttttgaagagaagcagcctttgcagttccacgtgttcgatgccgaggatggagccaccagccccagcagcgacacctt
cctcgggtctacggagtgcaccttgggccagattgtgtcacaaaccaaggtcactaagccattactgctgaagaatgggaagacggcgggcaagtctactatcacg
attgtggctgaggaggtatcaggtaccaacgactatgtgcaacttaccttcagagcccacaagctggataacaaggatctgttcagcaagtctgaccccttcatggag
atttataagaccaatggagaccagagtgaccaactggtctggaggactgaggtggtgaaaaacaacctgaaccccagctgggagccattccgcctgtccttgcatt
ctttgtgcagctgtgacatccacaggccgctcaagttcctggtatatgactatgactccagtggaaagcacgacttcatcggcgagttcaccagcacattccaggaaa
tgcaagaggggaccgcaaaccctgggcaggagatgcagtgggactgtatcaaccccaagtaccgagacaagaagaagaattacaagagctcagggacagtcgt
gctggcccagtgcaccgtggaaaaagtccacaccttcctggattatatcatgggtggctgccagatcagcttcacggtggctatcgacttcactgcctccaatgggg
acccaaggagcagccagtctctgcactgcctcagcccccgacagcccaaccactacctgcaggccttgcgcacagtgggcggtatctgccaggactatgacagt
gataagcggttcccagcttttggcttcggagctcgaatccccccaaactttgaggtctcccatgactttgctatcaactttgacccagaaaatcctgaatgtgaagagat
ctcaggggtcatagcctcctaccgccgctgcttgcctcagatccagctctatggtcctaccaacgtggcccctatcatcaaccgtgtggctgaaccagcccagcgag
agcagagcaccggccaagccacgaagtattcagtactgctggtgctcactgacggtgtggtgagtgatatggcagagacccgaacagccattgtgcgagcctccc
gcctgcccatgtcaatcatcatcgtgggtgtgggcaacgctgacttctctgacatgaggctactggacggagatgatggtcccctgcgttgcccaaagggggtacct
gcagcccgtgacattgtccagtttgtgcccttcagggacttcaaggacgctgccccctctgcactagctaagtgtgtcctggcagaggtgccacggcaggtggtag
agtactatgccagccaaggtatcagtcccggggctcccaggccctccacgccagctatgactcccagccctagccca 
 
8.2.10 Copine VI  Protein sequence (M.musculus)  
 
MSDPEMGWVPEPPAMTLGASRVELRVSCHGLLDRDTLTKPHPCVLLKLYSDEQWVEVERTEVLRSCSSPVFSRVLA
IEYFFEEKQPLQFHVFDAEDGATSPSSDTFLGSTECTLGQIVSQTKVTKPLLLKNGKTAGKSTITIVAEEVSGTNDYVQ
LTFRAHKLDNKDLFSKSDPFMEIYKTNGDQSDQLVWRTEVVKNNLNPSWEPFRLSLHSLCSCDIHRPLKFLVYDYD
SSGKHDFIGEFTSTFQEMQEGTANPGQEMQWDCINPKYRDKKKNYKSSGTVVLAQCTVEKVHTFLDYIMGGCQISF
TVAIDFTASNGDPRSSQSLHCLSPRQPNHYLQALRTVGGICQDYDSDKRFPAFGFGARIPPNFEVSHDFAINFDPENPE
CEEISGVIASYRRCLPQIQLYGPTNVAPIINRVAEPAQREQSTGQATKYSVLLVLTDGVVSDMAETRTAIVRASRLPM
SIIIVGVGNADFSDMRLLDGDDGPLRCPKGVPAARDIVQFVPFRDFKDAAPSALAKCVLAEVPRQVVEYYASQGISP
GAPRPSTPAMTPSPSP 
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8.2.11 SRPK2 cDNA sequence (M.musculus)-Clone ID: 4507346/GenBank:BC020178 
 
ATGTCAGTTAACTCTGAGAAGTCGTCCTCTTCAGAAAGGCCGGAGCCTCAACAGAAAGCTCCTTTAGTTCCTCC
TCCTCCACCACCACCACCGCCACCACCACTGCCAGACCCCGCACCCCCAGAGCCAGAGGAGGAGATTCTGGGG
TCAGATGATGAGGAGCAGGAGGACCCCGCAGATTACTGCAAAGGTGGCTATCATCCAGTGAAAATTGGAGATC
TCTTCAATGGTCGATATCATGTCATTAGAAAGCTAGGATGGGGGCACTTTTCTACTGTATGGCTGTGCTGGGAT
ATGCAAGGGAAAAGATTTGTTGCAATGAAAGTTGTAAAAAGTGCCCAGCATTATACAGAGACAGCCTTGGATG
AAATTAAACTACTCAAATGCGTTCGAGAAAGTGACCCCAGTGACCCAAACAAAGACATGGTAGTTCAGCTAAT
TGATGACTTCAAGATCTCAGGCATGAATGGGATACATGTCTGCATGGTCTTTGAAGTACTTGGTCACCATCTCC
TCAAATGGATCATCAAATCCAACTATCAAGGCCTCCCAGTACGTTGTGTGAAGAGTATCATTCGACAGGTCCTT
CAAGGGTTAGATTATCTACACAGTAAGTGCAAGATAATTCACACCGACATAAAGCCGGAAAACATCTTGATGT
GTGTGGATGACGCTTACGTGAGAAGAATGGCAGCCGAAGCCACGGAGTGGCAGAAAGCAGGTGCTCCTCCTCC
CTCTGGGTCTGCAGTGAGTACGGCTCCACAGCAAAAACCTATAGGAAAAATATCTAAAAACAAAAAGAAAAA
GCTGAAAAAGAAACAGAAGAGACAGGCTGAGTTGCTGGAGAAACGCCTACAGGAGATTGAGGAATTGGAGCG
AGAAGCCGAAAGGAAAATCCTAGAGGAGAACATCACCTCTGCAGAAGCTTCCGGGGAGCAGCAGGATGGAGA
GTACCAGCCGGAGGTGACACTGAAAGCAGCCGACTTAGAGGACACAACTGAGGAAGAGACAGCAAAGGATAA
TGGTGAAGTTGAAGACCAGGAAGAGAAAGAAGATGCAGAGAAGGAGAACGCGGAGAAGGATGAAGATGATG
TTGAACAGGAACTTGCAAACTTAGACCCTACCTGGGTGGAGTCCCCGAAAGCCAATGGCCATATTGAAAATGG
CCCGTTCTCACTGGAGCAGCAGCTGGAGGATGAAGAGGACGATGAAGATGACTGTGCAAATCCCGAGGAGTA
TAACCTCGATGAGCCAAATGCAGAGAGTGATTACACGTATAGCAGCTCCTATGAACAATTCAATGGTGAATTG
CCAAATGGACAACATAAGACTTCAGAGTTTCCCACACCGTTGTTTTCTGGGCCCTTAGAACCTGTGGCCTGTGG
CTCTGTGATTTCAGAGGGATCGCCACTTACCGAGCAGGAGGAAAGCAGTCCCTCCCATGACAGAAGCAGGACA
GTTTCAGCCTCTAGTACTGGAGATTTGCCAAAAACAAAAACCCGGGCGGCTGACCTGTTGGTGAACCCTCTGG
ATCCACGGAATGCAGATAAAATTAGAGTAAAAATTGCTGACCTGGGAAATGCTTGTTGGGTGCATAAACATTT
CACAGAGGATATCCAGACACGTCAGTATAGGTCCATAGAGGTTTTAATAGGAGCAGGCTACAGCACACCTGCA
GACATTTGGAGTACAGCTTGCATGGCATTTGAGCTCGCCACAGGAGACTATTTGTTCGAACCGCATTCTGGGGA
AGACTATTCCAGAGATGAAGACCACATAGCCCACATCATAGAGCTGCTAGGCAGTATCCCAAGGCACTTTGCT
CTGTCTGGAAAATATTCTCGGGAATTCTTCAATCGCAGAGGAGAACTGCGGCACATCACCAAGCTGAAGCCCT
GGAGCCTCTTTGATGTACTTGTGGAAAAGTATGGCTGGCCCCATGAAGATGCTGCACAATTTACAGATTTCCTG
ATCCCAATGTTAGAGATGGTTCCAGAAAAACGAGCCTCAGCTGGCGAATGCCTTCGACATCCTTGGTTGAATTC
T 

 
8.2.12 SRPK2 Protein sequence (M.musculus) 
 
MSVNSEKSSSSERPEPQQKAPLVPPPPPPPPPPPLPDPAPPEPEEEILGSDDEEQEDPADYCKGGYHPVKIGDLFNGRY
HVIRKLGWGHFSTVWLCWDMQGKRFVAMKVVKSAQHYTETALDEIKLLKCVRESDPSDPNKDMVVQLIDDFKIS
GMNGIHVCMVFEVLGHHLLKWIIKSNYQGLPVRCVKSIIRQVLQGLDYLHSKCKIIHTDIKPENILMCVDDAYVRRM
AAEATEWQKAGAPPPSGSAVSTAPQQKPIGKISKNKKKKLKKKQKRQAELLEKRLQEIEELEREAERKILEENITSAE
ASGEQQDGEYQPEVTLKAADLEDTTEEETAKDNGEVEDQEEKEDAEKENAEKDEDDVEQELANLDPTWVESPKA
NGHIENGPFSLEQQLEDEEDDEDDCANPEEYNLDEPNAESDYTYSSSYEQFNGELPNGQHKTSEFPTPLFSGPLEPVA
CGSVISEGSPLTEQEESSPSHDRSRTVSASSTGDLPKTKTRAADLLVNPLDPRNADKIRVKIADLGNACWVHKHFTE
DIQTRQYRSIEVLIGAGYSTPADIWSTACMAFELATGDYLFEPHSGEDYSRDEDHIAHIIELLGSIPRHFALSGKYSREF
FNRRGELRHITKLKPWSLFDVLVEKYGWPHEDAAQFTDFLIPMLEMVPEKRASAGECLRHPWLNS  

 
8.2.13 SV2A (R.norvegicus)-NCBI Ref. seq: NM_057210.2 
 
atggaagaaggctttcgagaccgagcagcgttcatccgtggggccaaagacattgccaaggaagttaagaagcacgcggccaagaaggtggtgaagggtctcg
acagagtccaggatgaatattcccgaaggtcctactcccgctttgaggaggaggaggatgatgatgacttccctgcccctgctgacggctattaccgcggagaagg
ggcccaggatgaggaggaaggtggcgcttccagtgatgccactgagggccacgatgaggatgatgagatctacgagggagaatatcagggcatcccccgggc
agagtctgggggcaaaggcgaacggatggcagatggggcacccctggctggagtgagagggggcttaagtgatggggagggtccccctgggggtcgcgggg
aggcgcagcggcgtaaagatcgggaagaattggctcagcagtatgagaccatcctccgggagtgcggccatggtcgcttccagtggacactctacttcgtgctgg
gtctggcgctgatggccgatggtgtagaggtctttgtggtgggctttgtgctgcccagtgctgagaaagatatgtgcctgtcggactccaacaaaggcatgctaggc
ctcattgtgtacctgggcatgatggtgggggccttcctctggggaggcctggctgatcggctgggtcggagacagtgtctgctcatctcgctctcagtcaacagcgt
cttcgctttcttctcatccttcgtccagggttatggcaccttccttttctgccgcctcctttctggggttgggattggtggttccatccccattgtcttctcctatttttcggagtt
tctggcccaggagaaacgtggggagcatttgagctggctctgtatgttctggatgattggtggcgtgtatgcagctgcaatggcctgggccatcatcccccactatgg
gtggagtttccagatgggctctgcttaccagttccacagctggagggtctttgtcctcgtctgtgcctttccctctgtgtttgccatcggggctctgactacgcagccgg
agagtccccgcttcttcttagagaatgggaagcacgatgaggcctggatggtgctgaagcaggttcatgacaccaacatgcgagccaagggccatcctgagcgag
tcttctcagtaacccacattaaaacgattcatcaggaggatgaattgattgagatccagtcagacacaggaacctggtaccagcgctggggagtgcgggctttgagc
ctggggggtcaggtttgggggaacttcctctcctgcttcagtccagagtaccggcgcatcactctgatgatgatgggggtatggttcaccatgtccttcagctactacg
gtttgactgtctggtttcccgacatgatccgccatctccaggctgtggactatgcagcccgaaccaaagtgttcccaggggagcgcgtggagcacgtgacatttaact
tcacactggagaatcagatccaccgagggggacagtacttcaatgacaagttcatcgggctgcgtctgaagtcagtgtcctttgaggattccctgtttgaggaatgtta
ctttgaagatgtcacatccagcaacacattcttccgcaactgcacattcatcaacaccgtgttctacaacacggacctgtttgagtacaagttcgtgaacagccgcctg
gtgaacagcacattcctgcacaataaggaaggttgcccactagatgtgacagggacgggcgaaggtgcctacatggtgtactttgtcagcttcttggggacactgg
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ctgtgctccctggaaatattgtgtctgctctgctcatggacaagattggcaggctcagaatgcttgctggttccagtgtgttgtcctgtgtttcctgcttcttcctgtcttttg
ggaacagtgagtcagccatgatcgctctgctctgcctttttgggggagtcagtattgcatcctggaacgcgctggacgtgctgactgttgaactctacccttccgacaa
gaggacgacggccttcggcttcctgaatgccctgtgtaagctggcagctgtactgggcatcagcatcttcacgtcctttgtgggaatcaccaaggccgctcccatcct
cttcgcctcagctgcgcttgcccttggtagctctctggctctgaagctgcctgagacccggggacaggtgctgcag 
 
8.2.14 SV2A  Protein sequence (R. norvegicus)  
 
MEEGFRDRAAFIRGAKDIAKEVKKHAAKKVVKGLDRVQDEYSRRSYSRFEEEEDDDDFPAPADGYYRGEGAQDEE
EGGASSDATEGHDEDDEIYEGEYQGIPRAESGGKGERMADGAPLAGVRGGLSDGEGPPGGRGEAQRRKDREELAQ
QYETILRECGHGRFQWTLYFVLGLALMADGVEVFVVGFVLPSAEKDMCLSDSNKGMLGLIVYLGMMVGAFLWGG
LADRLGRRQCLLISLSVNSVFAFFSSFVQGYGTFLFCRLLSGVGIGGSIPIVFSYFSEFLAQEKRGEHLSWLCMFWMIG
GVYAAAMAWAIIPHYGWSFQMGSAYQFHSWRVFVLVCAFPSVFAIGALTTQPESPRFFLENGKHDEAWMVLKQV
HDTNMRAKGHPERVFSVTHIKTIHQEDELIEIQSDTGTWYQRWGVRALSLGGQVWGNFLSCFSPEYRRITLMMMG
VWFTMSFSYYGLTVWFPDMIRHLQAVDYAARTKVFPGERVEHVTFNFTLENQIHRGGQYFNDKFIGLRLKSVSFED
SLFEECYFEDVTSSNTFFRNCTFINTVFYNTDLFEYKFVNSRLVNSTFLHNKEGCPLDVTGTGEGAYMVYFVSFLGTL
AVLPGNIVSALLMDKIGRLRMLAGSSVLSCVSCFFLSFGNSESAMIALLCLFGGVSIASWNALDVLTVELYPSDKRTT
AFGFLNALCKLAAVLGISIFTSFVGITKAAPILFASAALALGSSLALKLPETRGQVLQ  
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9. Abbreviations 

 

A  EM Electron microscopy  
AAV Adeno associated virus ER Endoplasmic reticulum 
AC Adenylyl cyclase ERK2 Extracellular signal-regulated kinase2 
ADBE Activity-dependent bulk endocytosis ES Elution steps 
APS Ammonium peroxodisulphate F  
ATP  Adenosine tri-phosphate FCS Fetal calf serum 
AZ  
 

Active Zone 
 

FM  Name after Fei Mao, who synthetized for 
the first time these dyes 

B  Fw  Forward 
BDNF Brain-derived neurotrophic factor G  
BES N,N, Bis-(2-hydroxyethyl)-2-amino-

ethansulfonic acid 
G 
GFP 

Gravitational 
Green fluorescent protein 

BME  Basal Medium Eagle GPCR G-protein coupled receptor 
Brp  Bruchpilot GSH Glutathione 
BSA  Bovine serum albumin GST  Glutathione S-transferase 
β-ME Beta mercaptoethanol GTP Guanosintriphosphate 
C  H  
Ca2+ Calcium ions h  Hour 
CaCl2 

CaMKII 
Calcium chloride 
Ca2+/calmodulin-dependent protein kinase 
II 

HA  
HBS 
HBSS 

Human influenza hemaglutinin 
HEPES buffered saline 
Hanks buffered salt solution 

cAMP 
CASK 
 
CAZ 
CC 

Cyclic adenosine-3,5-monophosphate 
Calcium/calmodulin-dependent serine 
protein kinase 
Cytomatrix at the active zone 
Coiled-coil domain 

HEK 
293T 
HEPES 

Human embryonic kidney cell line 293T 
 
2-[4-(2-hydroxyethyl)piperazin-1-
yl]ethanesulfonic acid 

CCB Coomassie Colloidal Blue I  
cDNA Complementary DNA IAA  Iodamidacetate 
Cdk5 Cyclin-dependent kinase 5 IB Immunoblotting 
CMV Cytomegalovirus IC50 Half inhibitory concentration 
CNS Central nervous system IF Immunofluorescence 
CO2  Carbon dioxide IgG Immunoglobulin G 
Co-IP Co-immunoprecipitation IHC Immunohistochemistry 
CTD  C-terminal domain IMDM Iscove’s Modified Dulbecco’s Medium 
C-
terminus  

Carboxyl terminus IP 
IPTG 

Immunoprecipitation 
Isopropyl-β-D-thiogalactoside 

D  IRDye  InfraRed Dye 
DAPI 4’,6-diamidin-2-phenylindol K  
DDM n-dodecyl-β-maltoside kb  Kilo base 
dH2O Distillate water KCl Potassium chloride 
DIV  Day in vitro KD Kinase domain 
DMEM Dulbecco's Modified Eagle's Medium kDa Kilo Dalton 
DMSO  Dimethyl sulfoxide KH2PO4 Potasium dihydrogenphosphate 
DNA   Deoxyribonucleic acid KO  Knock-out 
dNTP  Deoxyribonucleotide triphosphate L  
DSP Dithiobis (succinimidylpropionate) LAR Leukocyte common antigen related 
DTBP Dimethyl 3,3’-dithiobispropionimidate-

2HCl 
LB-
medium  

Luria broth medium 

DTT Ditiothreitol LC-MS Liquid chromatography- mass spectrometry 
E  LTD Long-term depression 
E18,5 Embryo at day 18.5 after fertilization LTP  Long-term potentiation 
EDTA  Ethylenediaminetetraacetic acid   
ELKS Name stems from the proteins high content 

in glutamate (E), leucine (L), lysine (K), and 
serine (S) 
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M  RIM-BPs  RIM-binding proteins 
M Molar RNA  Ribonucleic acid 
MCS   Multiple cloning site rpm  Rotation per minute 
MEM  Minimal essential medium RRP Readily releasable pool 
MF Mossy fibres RS Arginine/serine dipeptides 
mg  Miligram RT  Room temperature 
MgCl2 Magnesium chloride RT-PCR  Reverse transcription PCR 
MgSO4 Magnesium sulphate S  
min  Minute S1 Supernatant 1 
ml  Millilitre sec Seconds 
mM  Milimolar SEM  Standard error of the mean 
mRNA  Messenger RNA shRNA Short hairpin RNA 
MS Mass spectrometry SDS  Sodium dodecyl sulfate 
MSP Major sperm protein domain SNAP25   Synaptosomal-associated protein 25 
MW  
MWCO 

Molecular weight 
Molecular weight cut off 

SNARE  
 

Soluble N-ethylmaleimide-sensitive factor 
(NSF) attachment protein receptors 

Μg Microgram SPRD Serine proline rich domain 
μl Microliter SRPK  Serine arginine protein kinase 
µm Micromolar SS Splice site 
N  SV  Synaptic vesicle 
NaCl Sodium chloride SV2A  Synaptic vesicle protein 2 A 
NAD Nicotinamide adenine dinucleotide Syt1 Synaptotagmin1 
NaHCO3 Sodium carbonate T  
Na2HPO4 Disodiumhydrogenphosphat TAP   Tandem affinity purification 
NaOH Sodium hydroxide TBS Tris buffered saline 
NCBI National Center for Biotechnology 

Information 
TEMED 
Tm 

N,N,N',N'-Tetramethylethylendiamin 
Melting temperature   

ng  Nanogram TMD Transmembrane domain 
NGS  Normal goat serum TMR Transmembrane region 
nm Nanometer U  
nM Nanomolar U Units 
NMJ Neuromuscular junction ULK Unc51-like kinase 
N-
terminus  

Amino-terminus UF 
UNC 

Unbound fraction 
Uncoordinated 

O  UPS Ubiquitin-proteasome system 
OD  Optical density V  
OE 
ON 

Over expression 
Over night 

VAPA/VAP
B 

Vesicle-associated membrane protein (VAMP) 
associated protein A/B  

P  VAMP-2 Vesicle associated membrane protein 2 
P2 Pellet 2- crude synaptosomes VGCG Voltage gated calcium channels 
PAGE Polyacrylamide gel electrophoresis vWA Von Willebrand factor type A  
PBS Phosphate buffered saline W  
PCR Polymerase chain reaction WB  Western blot 
PDZ Post synaptic density; Drosophila disc 

large tumour suppressor; zonula 
occludens-1 protein 

WS 
WT 

Washing steps 
Wild-type 

Pen/Strep  Penicillin/Streptomycin Z  
PFA Paraformaldehyde ZF Zinc finger domain 
PKA  Protein kinase A   
PKC Protein kinase C   
PP1 Protein phosphatase 1   
PP2A Protein phosphatase 2A   
R    
Rev Reverse    
RIM  Rab3 interacting molecule   
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