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Preface

“Uh, diamonds!” — When people ask me about the topic of my Ph.D. thesis, my answer
is usually interrupted by this exclamation after the first or second sentence. And this holds
for non-physicists and physicists alike. Seemingly, people have a latent fascination with
objects made of carbon atoms arranged in a certain crystalline structure, often found as
octahedral-shaped specimen decorating all kinds of jewellery from rings to royal crowns.
While the fascination with diamond gemstones amongst laymen, gem experts, and the
wealthy is likely due to their beauty and scarcity, scientists also appreciate diamond for its
outstanding physical properties, most of which stem from the strong covalent bonds between
their atoms. Diamond is a metastable allotrope of carbon, but in contrast to the sp2-forms
graphite, graphene, fullerenes (buckminsterfullerene, nanotubes), and so on, where atoms
are tightly bound in a plane, but less so vertically, the carbon atoms in diamond bind
to four neighbouring atoms in an sp3-form, i.e. in three dimensions and equally strong
to all the four neighbours. The strong covalent bonds make diamond extremely hard, a
property which has led to its wide usage in industry and medicine as part of cutting tools.
Moreover, it makes diamond an extremely effective heat conductor with a five times higher
heat conductivity than copper at room temperature, and thus diamond is used in silicon
semiconductor manufacture as heat spreaders. Its transparency in the optical range makes
it the material of choice for laser windows.

Besides the usage of “pure” diamond and its inherent properties, there is a justified
interest in contaminated diamond containing certain impurities, for example nitrogen im-
purities. If a nitrogen impurity happens to reside close to a carbon vacancy, namely a
missing carbon atom in the crystal lattice, so-called nitrogen-vacancy (N-V) centres are
created. N-V centres are particularly interesting as they are optically active. The quantum
state of electrons that are located at these centres can be manipulated using for instance
light or electro-magnetic fields. With sufficient space between two centres, their photolu-
minescence can be detected individually. Therefore, N-V centres can function as a qbit,
i.e. the base unit of a quantum computer. [1]

Nanodiamonds – diamonds of a few nanometres in size – may soon become crucial in
human medicine. They can bind to a variety of molecules such as cancer drugs and then
deliver the drug directly to the tumour cells. This increases the efficacy of a drug and
reduces many potential side effects such as necrosis of healthy cells. Moreover, because
they are made of carbon, nanodiamonds are non-toxic and are not seen as a threat by the
immune system. [2]

These are just two examples of how science, driven by an exploratory urge, takes an
object found in nature, engineers and manipulates its material properties to the most
extreme, and creates a product with numerous applications. In fact, science has driven
many of the important milestones in the history of human civilisation. The invention of
the telescope enabled Galilei and other scientists of those days to carry out astronomical
observations, confirming the earlier contrived Copernican heliocentric system. This was
not only of scientific importance, but had a huge sociocultural impact as it was proven
that the earth was not the centre of the solar system. It might well have been these
astronomical observations that stimulated Leibniz and Newton independently to develop the
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calculus allowing the prediction of planetary configurations, and remaining a key ingredient
in modern physics and engineering.

Another milestone was certainly the growing understanding of the constituents of the
perceptible world around us, and how these interact with each other. Anaximenes of Mile-
tus, a Greek philosopher, thought the world was made of air; water and stone being a result
of its compression, and fire a result of its dilution. This model of matter was later falsified,
and replaced by others. With the discovery of the electron and Rutherford’s scattering
experiments using thin gold films, it became clear that the perceptible world is made of
atoms; an atom in turn consists of a nuclei in the centre and electrons forming an outer
shell. Maxwell described the dispersion of light in his equations, accomplishing the unifi-
cation of the electric and the magnetic force into a single concept. Curie was driven by a
curiosity to uncover the process behind the radioactive decay. Einstein explained the photo-
effect as the quantised exchange of energy between a photon and an electron, also giving
insight into wave-particle duality. Later, with the discovery of the up- and the down-quark,
the gluon confining these quarks into protons and neutrons, and the bosons of the weak
interaction governing the radioactive β-decay, physicists created a “Standard Model of par-
ticle physics” (SM) describing matter as quarks and leptons. The SM does not only model
matter as quarks and leptons, it also describes three of the four known forces (these being
the weak, the strong, and the electromagnetic force) that interact among them making use
of local gauge theories. For the gravitational force, the one most perceived by humans, a
quantum theory is still lacking.

It is justified to ask how much the general public cares about these findings. In the
end, day-to-day life as we know it today would be impossible without the advances of sci-
ence. The invention of the Internet, digital cameras and smartphones, cars, MRI machines,
PET-scans, and satellite TV, among others, would have been impossible with Anaximenes’
rudimentary concept of the world’s constituents. And people appreciate these advances.
Science is one of the important driving forces behind innovation; and encouraging and en-
abling young students to think and to “question the answer” is a key element in this driving
force. Hence, the money spent for research and teaching facilities is money well spent.
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CVD — Chemical vapour deposition
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GPS — Global positioning system
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IIS — Ionised impurity scattering
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LF — Likelihood function
MIP — Minimum ionising particle
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NIS — Neutral impurity scattering
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1. INTRODUCTION

Progress in science leads to an ever evolving frontier of knowledge, with new, ingenious
experiments testing theories and models to higher and higher precision, and in ways never
thought of before. Pushing this frontier is also a goal at the largest particle accelerator
ever built, the Large Hadron Collider (LHC) [3], which was constructed on the border
between Switzerland and France, and is managed by the European Organisation for Nuclear
Research, CERN. The LHC is a circular proton accelerator that collides two proton beams
at unprecedented energy and luminosity, enabling scientists for the first time to get a glance
at the elusive Higgs boson, to name just one of the important findings made since the first
collisions in 2009. The protons are accelerated to a certain energy and are kept on a circular
trajectory by means of magnetic fields produced by superconducting magnets, which are
cooled to lower than −270 ◦C, or 1.9 K. In order to “see” particles like the Higgs boson, that
are created in collisions and decay almost immediately into other daughter-particles, one
has to track these daughter-particles, namely measure their trajectory in time and space
away from the collision point. As these particles are often charged, they lose a considerable
part of their kinetic energy whilst traversing matter. This energy can be measured with
various techniques and materials; often a semiconductor or gas is the material of choice,
diamond being one example.

At room temperature, diamond is used at the LHC for a mere counting experiment in
order to measure the flux of charged particles through a certain surface. [4] This measure-
ment is needed in order to quantify the so-called beam losses. Beam losses occur when
protons of the beam sheer out of their normal trajectory and hit collimators, which are
installed to clean the beam from these outliers. The interaction of these outliers with a
collimator produces a large amount of stray-particles which eventually leave the volume
of the accelerator. Before they leave the accelerator, they traverse the cold mass of the
magnet. Particle flux detectors placed within the cold mass would give the most accurate
results about their flux, with diamond being one of the material candidates. As these de-
tectors should be placed within the cold mass of the magnets, they have to be operated at
the ambient temperature, i.e. at 1.9 K. These cryogenic detectors have not been realised
yet, but are under investigation [5] and act as a key motivation for the research presented
herein.

Diamond, a wide band gap semiconductor with exceptional electrical properties [6], has
found its way in diverse fields of applications reaching from the usage as a sensor material for
beam loss monitors (BLM) at particle accelerators, to laser windows [7], to UV light sensors
in space applications, e.g. for space weather forecasting [8]. It is furthermore an interesting
candidate for heat tolerable, radiation hard, very fast, low power transistors. Its wide
band gap (5.47 eV) results in a high breakdown field (> 103 V/µm). Single-crystal diamond
features very low leakage current of a few picoampere for field strengths E ≤ 1 V/µm
rendering very precise signal current measurements possible.

Though often used at room temperature, little is known about the charge transport in
diamond towards liquid helium temperatures. However, a better understanding is crucial for
the operation of cryogenic BLMs, for example within the cold mass of a magnet of the Large
Hadron Collider. Furthermore, for space flight applications a transistor/sensor material,
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1. INTRODUCTION

that is reliable and well understood over a huge temperature range, is desirable. In this
work the method of the transient current technique is employed at temperatures between
2 K and 295 K using α-radiation. The electric field strength is varied by a factor of 30. The
temperature and electric field strength dependence of the pulse shape, the charge carrier
transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured
in detector-grade scCVD diamond. Models are presented which explain consistently the
various parts of the recorded data in terms of charge creation and fundamental excitations
in semiconductors on one side, and various charge transport related aspects as acoustic
phonon scattering on the other.

Furthermore, the usability of diamond in time-critical applications is tested, and the
main results are presented. The excellent time resolution of diamond detectors was used
in order to cross-check the timing system of the CNGS facilities at CERN, providing key
information in the search of the faulty system, that led to an incorrect neutrino velocity
measurement above the speed of light [9] by the OPERA [10] experiment, which was later
withdrawn. With the diamond detectors in place, the charge yield and the single-pulse time
resolution in an high flux environment was quantified. The ATLAS experiment [11] at the
LHC provides a use case for beam loss studies, and results on non-collision backgrounds
are shown.

This work is structured as follows: After this introduction, diamond as a semiconductor
and the physics governing them are discussed in Chap. 2. Chapter 3 gives an overview of
radiation detection of charged particles and how diamond is used as a solid state ionisa-
tion chamber. Details and photographs of the set-up used, the data taking, and the data
processing are described in Chap. 4, followed by the results of the cryogenic measurements
presented in Chap. 5. Examples of timing applications of chemical vapour deposition di-
amonds and the measurement of the time resolution constitute Chaps. 6, 7, and 8, each
contemplating the experimental situation of the single application.

2



2. CVD DIAMOND – A WIDE BAND GAP
SEMICONDUCTOR

After a general overview of semiconductors (Sec. 2.1) fundamental properties, characteristic,
and mechanisms are reviewed keeping a special attention to diamond (Sec. 2.2). Diamond
growth is discussed in Sec. 2.3 and diamond interfaces to metal in Sec. 2.4. Amongst other
sources, references [12, 13, 14, 6] were mainly used for the compilation of Chap. 2.

2.1. Introduction to Semiconductors

Ohm’s law of semiconductors, namely j = σ E, allows for a categorisation of solids into
metals, semiconductors, and insulators by their conductance σ, which is the constant of
proportionality between an electric field strength E and its induced current density j.
The conductivity of semiconductors is of electronic nature in contrast to ionic conductiv-
ity (cited after Ref. [12]). Metals, e.g. copper or gold, are solids with conductances higher
than 104 (Ωcm)−1. Insulators like paraffin have conductances smaller than 10−8 (Ωcm)−1.
Semiconductors, in terms of conductances, are situated in between them; a prominent ex-
ample being silicon with an intrinsic conductances of the order of 10−5 (Ωcm)−1. [13] The
conductivity of semiconductors depends on the temperature; the classification made above
is valid at room temperature (RT). Towards lower (higher) temperatures their conductivity
decreases (increases). The conductivity of intrinsic diamond at RT is effectively zero, for
real diamond the conductivity depends on the quality of the diamond. Conductances of the
order of 10−12 (Ωcm)−1 or lower are commonly encountered values, and diamond is therefore
often referred to as an insulator. However, with a closer look at the material, it becomes
obvious, that diamond is best described by the term “wide band gap semiconductor”. This
is because (almost) all properties of diamond can be described with the same physics as
encountered in silicon, just by the scaling of certain properties like the energy of the band
gap. Some properties of diamond and silicon are listed in Tab. 2.1. The classification of
diamond as an insulator is therefore correct in terms of conductances, but a classification
as a semiconductor meets the general physical situation better.1 Besides element semicon-
ductors there are compound semiconductors as gallium arsenide (GaAs), indium phosphide
(InP), and silicon carbide (SiC), among others. Typical applications of semiconductors
range from diodes and transistors in integrated circuits, to temperature sensors, pressure
sensors, photo sensors, solar cells, to light-emitting diodes and lasers.

The chemical bond in semiconductors differs from the well-known ionic bond, and is
discussed here by taking the example of diamond. The electron configuration of carbon is
[1s22s22p2], hence the valence shell is half filled. When carbon atoms are brought closely
together the [s2p2] configuration is promoted to a [sp3] configuration. The s- and p-states
hybridise to four tetrahedral, directed, club-shaped functions. “The overlap of two clubs
from neighbouring atoms results in an energy gain via the exchange interaction” [12, p. 10],
which is larger than the energy needed for the promotion. This is the covalent bond. The

1Paraffin is an example of an insulator, which is not a wide band gap semiconductor.
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2. CVD DIAMOND

Table 2.1.: A comparison of properties of diamond and silicon. [13] Additional values of
basic properties in diamond can be found in Ref. [6], p. 30.

Crystal Latt. Band Gap Diel. Intrisic Debye
Element structure const. gap type coeff. Density carrier conc. Temp.

[Å] [eV] [gcm−3] [cm−3] [K]

C Diamond 3.57 5.47 Ind. 5.7 3.52 10−27 1860
Si Diamond 5.43 1.12 Ind. 11.9 2.33 1010 645

final outcome is a configuration with four nearest neighbours per atom resulting in the
crystallisation into the “diamond structure” for e.g. diamond and silicon, only that in the
silicon case the valence shell configuration is [3s23p2] instead of [2s22p2].

2.2. Basis of Semiconductor Physics

2.2.1. Crystal structure

An ideal three dimensional crystal lattice is described by three fundamental translation
vectors a, b, c: The point lattice is reproduced for every integer, linear combination of
them, i.e. the set of lattice points obeys L = la+mb+ nc. [12, 13] A lattice structure can
in general be described by more than one set of equivalent fundamental vectors. In order
to represent the real lattice, on every lattice point a basis is situated consisting either of a
single atom or of a group of atoms featuring the same composition and orientation.

A unit cell is a carefully constructed volume which reproduces the entire lattice by suc-
cessively placing one unit cell next to each other in a complete and non-overlapping manner.
One possibility of a unit cell is the smallest possible parallelepiped spanned by the three
fundamental vectors reproducing the lattice by successive translation operations. The vol-
ume of this unit cell is V = (a × b) · c. [13] A special type of the unit cell is the so-called
Wigner-Seitz cell, which is constructed around a single lattice point. It is constructed via
the perpendicular bisectors of the connecting lines between the examined lattice point and
its neighbours, see Fig. 2.1 (A) for illustration.

In addition to the translation operation, there are other symmetry operations that can
be operated on the point lattice leaving the lattice invariant, i.e. rotations, parity transfor-
mations, and their combination. The entirety of such point (point + translation) symmetry
operations, that leaves the lattice invariant, forms a point group (space group). [17, 12] The
number of lattice types allowing for these operations is limited: There are in total 7 (14)
lattice types for the point group (space group) in the three dimensional space. These are
called the Bravais lattices. One of the Bravais lattices is the face centred cubic (fcc) lattice,
which is a cubic lattice with atoms at each corner and in the middle of each of the six faces,
see Fig. 2.2 (A). The diamond lattice is a fcc unit cell with two atoms at its basis, one at
l = m = n = 0, or (0, 0, 0) and the other at 1

4a · (1, 1, 1), shown in Fig. 2.2 (B). [17] The
lattice constant is a = 3.57 Å in diamond, the nearest neighbour distance is a0 = 1.54 Å
resulting in an atomic concentration of 1.76×1023 cm−3 and a density of 3.52 gcm−3.

Another important aspect of a direct lattice is its reciprocal lattice, i.e. the lattice in
which the Fourier transform of the original lattice is represented. Considering a plane wave
with wave vector k defined by exp (ik · r) = cos (k · r) + i sin (k · r), and a set of lattice
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2.2. BASIS OF SEMICONDUCTOR PHYSICS

(A) (B)

Figure 2.1.: (A) Construction rule of the Wigner-Seitz cell: Straight lines are drawn from
the considered lattice point to the nearest neighbours. The perpendicular bi-
sectors form the Wigner-Seitz cell. (from [15]) (B) The Wigner-Seitz cell of the
reciprocal fcc-lattice is shown. The faces form the edge of the Brillouin zone.
The indicated points are explained in the text. (from [16])

points R of the original Bravais lattice, the following holds true if this plane wave has the
same periodicity as the lattice:

exp (ik · (r +R)) = exp (ik · r) ⇒ exp (ik ·R) = 1 (2.1)

Therefore the reciprocal lattice is defined by the set of vectors k that satisfy Eq. (2.1) for
all lattice points R. It can be shown, e.g. using the Laue construction, cf. [12], that the
following vectors satisfy this:

A = 2π
b× c

(a× b) · c
, B = 2π

c× a
(a× b) · c

, C = 2π
a× c

(a× b) · c
. (2.2)

The reciprocal lattice can then be represented by the form G = hA+ kB+ lC, with h, k, l
integer. [13] Since this lattice is periodic, physical properties defined in k-space inherit this
periodicity. E.g. the electron dispersion relation, which is a representation of the electron
energy in k-space, is periodic. Many physical observations as reflection and diffraction of
waves off crystals are readily described using the wave vector and the reciprocal lattice. It
is hence a common tool in crystallography.

The construction rule of the Wigner-Seitz cell can also be used on the reciprocal lattice,
the result is the so-called Brillouin zone (BZ). The first BZ of the fcc-lattice is depicted
in Fig. 2.1 (B). The high-symmetry point Γ is the origin of the reciprocal space, the X-,
the K-, and the L-point are the edges of the first BZ in the [100], [110], and [111] direc-
tion, respectively. They are situated at 2π

a (1, 0, 0), 2π
a (3/4, 3/4, 0), and 2π

a (1/2, 1/2, 1/2),
respectively.

2.2.2. Energy band model in position space

The electron energy states of single, isolated carbon atoms are discrete and equal for all
carbon atoms. When the distance between single atoms is reduced to the atomic scale,
hybridisation takes place, i.e. the electron states themselves change. This is a direct conse-
quence of the Pauli principle. With decreasing distance the energy gain due to the exchange
interaction rises, whereas the electrostatic repulsion increases. At the nearest neighbour

5



2. CVD DIAMOND

(A) (B)

Figure 2.2.: (A) The fcc point lattice with a primitive basis and a lattice constant a is
depicted (from [18]) next to the diamond lattice with a biatomic basis in (B)
with a nearest neighbour distance of a0 =

√
3 · a/4 = 1.54 Å (from [19]).

distance a0 the combination of interaction and repulsion energy has a minimum, and atoms
arrange themselves at this distance. The stationary atomic cores then create the periodic
potential in position space for the electrons. Moreover, the former discrete states of the
many atoms now arrange in “continuous bands” of energy states, i.e. bands with many
states of energy differences much smaller than their absolute energy. The bands are thus
a result of the coupling of the wave function of neighbouring atoms. Figure 2.3 shows this
concept. Observations show a “forbidden band” in between allowed bands. In order to
understand the occurrence of this forbidden energy range, or energy gap, one has to look
at the energy bands in the reciprocal lattice, i.e. in k-space.

2.2.3. Energy band model in k-space

The band structure, or dispersion relation of an electron in a crystal is the relationship
between its energy E and momentum k. k is also called crystal momentum, although
it is not the momentum of a crystal atom. In order to obtain it, the time independent
Schrödinger equation is solved for various approximations, one example being the one-
electron approximation [13][

− ~2

2m
∇2 + V (r)

]
φn(r,k) = En(k)φn(r,k). (2.3)

The Bloch theorem states that the solutions of this equation for periodic potentials are of
the form

φn(r,k) = exp (ik · r)Un(r,k), (2.4)

where Un(k, r) is periodic in r and n is the band index. The periodicity of Un follows from
the periodicity of the direct lattice. As discussed above, the reciprocal lattice of a periodic
direct lattice is again periodic: Just as a translation by L in the direct space leaves the direct
lattice invariant, the reciprocal lattice is invariant under a translation by G. The energy
eigenvalues E(k) are thus periodic in k-space and E(k) = E(k+G). It is therefore sufficient
to describe the energy-momentum relation within one Brillouin zone. As a convention, the
first BZ from k = −π/a to k = +π/a is usually considered. The band gap Eg is then a result
of the fact that there exist no eigenfunctions φ(r,k) with eigenvalues E(k) that fall within
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2.2. BASIS OF SEMICONDUCTOR PHYSICS

(A) (B)

Figure 2.3.: The single atom with discrete energy states (A), and the energy bands in the
periodic crystal as a result of the coupling of the wave function of neighbouring
atoms (B). The energy gap Eg is indicated between the upper limit of the va-
lence band (EV) and the lower limit of the conduction band (EC). (reproduced
from [12, p. 11])

a certain energy range. The bands below the energy gap are the valence bands, which
are completely filled at T = 0 K. The conduction bands lie above the gap; therefore the
minimum of the conduction bands EC and the maximum of the valence bands EV define
the borders of the “forbidden gap”. The eigenfunctions of Eq. (2.3) are either symmetric
or anti-symmetric under exchange of indistinguishable electrons. The symmetric functions
have non-vanishing electron probability density between two lattice atoms and are binding,
whereas the probability density of the anti-symmetric functions vanishes in the middle of
two atoms, resulting in a repelling atom-electron configuration. As a result, the size of the
band gap is the difference of the energy expectation values between the symmetric and the
anti-symmetric eigenfunctions.

For a free electron (V = 0), the spacial part of the time-independent, one-dimensional
Schrödinger equation is solved by φk(x) = φ0 exp (ikx) with the eigenvalues

E(k) =
(
~2/2m

)
k2 (2.5)

corresponding to the classical expression of the kinetic energy using the quantum mechanical
relation p ≡ ~k, and hence E = p2/2m = 1/2mv2. The dispersion relation for the non-free
electron will differ from the free one, and the energy might not merely depend quadratically
on k. Boundary conditions for the wave functions are imposed by the finite crystal size.
For a crystal of length L, only waves with λ = L,L/2, L/3, ... and thus k = 0,±2π

L ,±
4π
L , ...

“fit” into the crystal, with ∆k = 2π
L . The discrete values in k result in turn in discrete

values for E(k), but with macroscopic crystal sizes, a quasi-continuous k emerges and this
property is inherited to E(k). [12] In the non-free case, an effective, tensorial mass m∗ is
defined with components

m∗ij =

(
1

~2

∂E(k)

∂ki∂kj

)−1

, i = x, y, z. (2.6)

In other words, an electron in a periodic potential moves with an effective mass m∗ rather
than with me. Deviations from the pure quadratic dependence of E(k) lead to an energy
dependent effective mass.
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•

Figure 2.4.: The band structure in diamond is shown. (from [14]) The CBM is marked with
a “•”. The indirect band gap lies between Γ25′ and “•”.

Band structure calculations are commonly done within certain models making certain
assumptions in order to facilitate the calculations. Important examples are the orthog-
onalised plane wave method, the pseudo-potential method, and the k · p method. The
example shown here for diamond is, however, calculated using the linearised augmented
plane wave method, see Fig. 2.4. The energetically highest point of the valence band, the
valence band maximum (VBM), is marked by Γ25′ and sits on the high symmetry point Γ
at k = 0. This point is defined to have zero energy. Above Γ25′ the next allowed point is
Γ15 with an energy EΓ15 = (7.3±0.1) eV, which is the lowest conduction band at k = 0.
This is called the direct gap in diamond. However, there are energetically lower states along
e.g. the [100] direction (Γ → X) with a minimum at a distance of k0 = 0.76 in units of π

a .
The energy of this indirect gap is Eg = 5.47 eV [20] and this point is the global conduction
band minimum (CBM). In Fig. 2.4 the CBM is marked with a “•”. Semiconductors with
the CBM situated at k = 0 are called direct semiconductors; indirect semiconductors like
diamond have their CBM at k 6= 0.

For a transition from Γ25′ to the CBM, not only an energy transfer of 5.47 eV is needed
in order to obey energy conservation, but also k-momentum conservation has to be ac-
counted for. This momentum is absorbed or provided by the crystal lattice in terms of
phonons, i.e. vibrations of the crystal lattice. An emitted photon cannot serve to conserve
k-momentum: A UV-photon has a wavelength of ∼250 nm and k = 2π

λ , whereas the k-space
is defined on the lattice constant a. The UV-photon could hence only make up for about a
per mill of the k-momentum.

Figure 2.4 shows the CBM along the [100] direction. However, there are six equivalent
directions [100], [1̄00], [010], [01̄0], [001], [001̄] – the full set of equivalent directions denoted
as 〈100〉 – resulting in six equivalent minima. Along one direction, the dispersion relation of
the free electron is of parabolic shape. Drawn in three dimensional space spanned by kx, ky,
and kz, the surfaces of equal energy form ellipsoids along the 〈100〉 directions, as shown in
Fig. 2.5 (A). The ellipsoidal shape implies that the effective mass tensor does not simplify
to a scalar, but that the effective mass depends on the direction. Along the symmetry axes
the electron mass is the longitudinal mass me,l, transverse to them the electron mass is the
transverse mass me,t. Holes, i.e. vacant electron states in the valence band left behind by
electrons that have been excited to the conduction band, have also at least two different
masses, depending on their band. The heavy (light) hole mass mh,h (mh,l) is the mass of
holes in the upper and wider (lower and narrower) valence band starting at Γ25′ along the

8



2.2. BASIS OF SEMICONDUCTOR PHYSICS

(A) (B)

Figure 2.5.: The shape of the constant energy surfaces are shown for electrons (A) and
heavy holes (B) in diamond. There are six equivalent “electron valleys” and the
surfaces are ellipsoids along the 〈100〉 directions with their centre at k0 = 0.76.
The heavy hole constant energy surfaces are complicated: rather cubic with
round edges and warped faces.

〈111〉 directions (Γ→ L, see again Fig. 2.4 and Fig. 2.1 (B)). The surfaces of equal energy
are shown for heavy holes in Fig. 2.5 (B).

2.2.4. Phonon dispersion and thermal conductivity

At temperatures above absolute zero the atoms of a lattice move, i.e. they oscillate around
their rest position. Their movement can be treated classically within the adiabatic, har-
monic approximation: [14]

• Due to the Newtonian reaction principle the forces that electrons and nuclei exert upon
each other are equal but directly opposed. Qualitatively, this leads to MR̈ ≈ mr̈,
with the mass and position of the nucleus M and R, and those of the electron m and
r. With m � M , it is obvious that the electrons accelerate much faster than the
nuclei. The adiabatic approximation is then the assumption that the electrons can
adapt adiabatically on the slow movement of the nuclei, in a way that the electrons
remain in their ground state. Therefore, the movement of the nuclei and the electrons
can be decoupled. The total energy of the system consisting of electrons and nuclei
is then the simple sum of the potential energy of the electrons as a function of the
nucleus position and the kinetic energy of the nuclei: Etot = Uel+Tnuc = Uel(R)+ P 2

2M .

• The explicit form of Uel(R) can in general be quite complicated. Within the harmonic
approximation, the potential is assumed to be quadratic within a close vicinity of the
rest position a0 and depends only on the second derivative of the pair-wise interaction
potential.

Within this approximation the frequency of oscillations as a function of the wave number
q in a one dimensional lattice with a basis of two atoms with masses M1 and M2 can be
calculated analytically. If additionally only the nearest-neighbour coupling is accounted
for, the longitudinal oscillation frequencies are
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ω2 = C ·
(

1

M1
+

1

M2

)
± C ·

√(
1

M1
+

1

M2

)2

− 4

M1M2
sin2

(qa
2

)
(2.7)

with a coupling constant C. Diamond features a single element basis, i.e. M = M1 = M2,
and Eq. (2.7) simplifies to

ω2 =
2C

M

(
1±

√
1− sin2

(qa
2

))
. (2.8)

At q = 0 , or λ→∞, the following two frequencies are found

ω+ =

√
4C

M
(2.9)

ω− = 0 (2.10)

The dispersion relation for a one-dimensional lattice with a biatomic, single element basis
is shown in Fig. 2.6 (A) for the longitudinal modes: longitudinal acoustic (LA) and longi-
tudinal optical (LO). The frequency ω− is proportional to q near q = 0 and the two basis
atoms oscillate in phase. This branch is called the acoustic branch since the displacement
of bases along the propagation direction leads to regions with denser or less dense atom
density, just as in sound waves. For the upper branch the atoms oscillate in opposite phase.
In ion crystals this opposite phase oscillation leads to time variable dipole moments which
play an important role for the optical properties of a medium. This branch is therefore
called the optical branch. For crystals with single element bases, the longitudinal modes
are degenerated at the borders of the BZs (q = π/a ⇒ sin qa/2 = 1), whereas different
masses of the bases atoms lead to different frequencies at these points. In three dimensions
transverse modes need to be added, i.e. transverse acoustic (TA) and transverse optical
(TO) modes. Figure 2.6 (B) shows the calculated phonon spectrum for diamond within
the adiabatic bond charge model (solid lines). Data points from neutron scattering experi-
ments are shown as dots. The adiabatic bond charge model shows an excellent agreement
with the data. When comparing Fig. 2.6 (A) and (B), one can spot the LO and TO mode
shown in (A) in the left part of (B): Starting from the Γ-point on the very bottom left
towards the X-point are the ∆-phonons. At the X-point the modes ∆1 and ∆′2 meet in
X1; these are the LA and LO modes, respectively.

If the dynamics of the lattice are quantised analogous to the quantisation of the frequency
spectrum of the black body radiation, the oscillation modes of the lattice with a frequency
ω(q) have energies

(
n+ 1

2

)
~ω(q). Here, n is the population number of the oscillation with

wave vector q. Phonons are the quanta of the oscillation field of a crystal, i.e. the oscillation
modes of the atoms. They can be considered as quasi-particles with momentum p = ~q
and energy E = ~ω, disregarding the zero-point energy.

Contrary to many other solids, the outstanding thermal conductivity of diamond is me-
diated almost entirely by phonons. Diamond has the highest known thermal conductivity
for temperatures above ∼100 K. Pure specimen have a conductivity of 25 Wcm−1K−1, 12C
enriched samples reach even 33 Wcm−1K−1. The high thermal conductivity is rendered
possible by the high phonon velocity in diamond: Longitudinal (Transversal) modes propa-
gate with vph,l = 1.75×106 cm/s (vph,t = 1.28×106 cm/s). vph,l corresponds to the velocity
of sound in a medium.
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Figure 2.6.: The dispersion relation of the longitudinal lattice vibrations for a crystal lattice
with a two-atomic single element basis (A). On the right (B), the calculated
(solid lines) branches are shown along crystallographic axes. Data points from
neutron scattering measurements are shown as dots. (from [14])

2.2.5. Crystal defects and impurities

The arrangement of atoms within a real crystal can differ from the ideal situation, i.e. atoms
can be found displaced from their lattice site, or lattice sites remain empty. But this is not
the only option for a distortion of the periodicity. During the synthesis of the crystal, the
presence of foreign atoms in the deposition plasma, which can never be completely avoided,
leads to the deposition of such foreign atoms in the crystal lattice.2 Another possibility
to create defects is the irradiation of diamond with energetic particles. Distortions of the
periodicity of the lattice are called crystal defects. All defects distort the periodicity of
the lattice and therefore the periodicity of the potential. This has an influence on the
electronic and phononic transport properties of the lattice. The defects are classified in
different classes: line defects, planar defects, bulk defects, and point defects:

• Line defects are defects, where e.g. a crystal plane stops within the crystal. The
adjacent planes above and below the one in question then do not continue coplanar,
but have to bend slightly around the line defect.

• Grain boundaries are classified as planar defects. When two crystal seeds meet during
the crystal growth, the crystallographic direction of the lattice changes abruptly.
These grain boundaries are abundant in polycrystalline diamond and many electrical
and optical properties depend on their concentration. Another example of a planar
defect are stacking faults. The hexagonal close-packed (hcp) structure differs from
the fcc structure only in stacking order. If the first layer A has a second layer B above
it, the atoms will not be exactly on top of each other, but the centre of the atoms
from layer B are in the centre of a triangle formed of three atoms from layer A. The
third layer in an hcp crystal will be exactly on top of A, and the structure evolves as
ABABAB. But in the fcc configuration the third layer is in a different position with
the layers being parallel to the (111) planes of the fcc unit cell and only the forth

2The synthesis of diamond itself will be discussed later.
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(A) (B)

Figure 2.7.: (A) Different types of point defects in diamond are shown schematically. (based
on [14]) (B) Additionally, the atomic structure of the nitrogen-vacancy centre
is shown as a special type of a combined point defects. (from [21])

layer will be exactly on top of layer A again. A stacking fault in diamond could then
be a stacking as ABCABCABABCABC.

• Bulk defects are regions in the bulk where many defects, e.g. vacancies, are found,
or where impurities cluster. The occurrence of these bulk defects depend on the
growth process on the one hand, and on the other of the mobility of defects in the
bulk. In turn, the mobility of defects depends on the considered solid. A special type
of bulk defects is the presence of graphite inclusions in diamond. Since the diamond
configuration of the lattice is not the energetically preferred configuration, it is difficult
to avoid the nucleation of carbons atoms at graphite lattice sites, and hence grown as
well as natural diamond specimens always contain a certain percentage of graphite.
When bulk defects extend from one surface to the other they can drastically change
the electric behaviour of a certain specimen.

• Point defects, as the name suggests, are defined as zero-dimensional defects, that
involve usually only one or two lattice sites. For historical reasons, they are also
called centres, e.g. colour centres, nitrogen-vacancy centres, etc. The different types
of point defects are explained below. A schematic illustration of various types of point
defects is given in Fig. 2.7 (A).

Many important electronic and optical properties of diamond depend on the presence,
and hence concentration, of point defects. Point defects can be intrinsic – with carbon
atoms misplaced from their regular lattice site –, or extrinsic involving foreign atoms, or the
combination of the two. Vacancies in diamond are point defects, where a carbon lattice site
is not occupied by a carbon atom. The nearest neighbours are therefore missing a binding
partner and move closer towards the vacancy. A self-interstitial in diamond is an additional
carbon atom within a cell. As there is no free lattice site, the additional atom leads to
a distorted arrangement in its vicinity. Foreign atoms can occur on either substitutional
or interstitial sites. Foreign-interstitial atoms are impurities that do not occupy a carbon
lattice site. Group III elements like boron on substitutional sites create acceptor states
in the band structure, since one nearest carbon neighbour will be left without an electron
to form a covalent bond. Group V elements like nitrogen and phosphor have five valence
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Figure 2.8.: The energy levels of donor and acceptor levels within the band gap are shown
schematically. Note the that hole energy increases downwards.

electrons. On substitutional sites, four electrons are used to form covalent bonds. The
fifth “dangling” electron forms a donor state. The acceptor and the donator state can be
excited to the valence or the condition band, respectively, under external energy supply.
This activation energy Ea is smaller than the band gap, but still of the order of at least
a few hundred millielectronvolt in diamond. Prominent examples in diamond are boron
(0.37 eV) [22], nitrogen (1.7 eV) [23], and phosphor with reported activation energy ranging
from as low as 0.05-0.2 eV to as high as 0.84-1.16 eV [24]. Figure 2.8 schematically shows a
donor and an acceptor level in the band gap, and their respective activation energies.

Of considerable interest are so called N-V centres in diamond, i.e. a substitutional nitrogen
atom paired with a vacancy site, see Fig. 2.7 (B). These N-V centres are electrically and
optically active. Electron spins at N-V centres are well defined and sensitive to electric
and magnetic fields, and light. They are therefore adjustable and can be read via lasers.
Spin coherence times are approaching one second [25] making N-V centres a very interesting
candidate for quantum computing using the electron spin as a qbit.

In the following, the wave function and energy levels of donor states are discussed within
the Effective Mass Theory (EMT). The EMT has been developed and in detail been de-
scribed by Kohn [26]. In the present work, the compilation of the basic ideas as outlined in
Ref. [12] is followed. This will later on be important in order to understand the so-called
inter-valley scattering of electrons. The donor atom, often a group V element, introduces an
electron state in the forbidden zone between the CBM and the VBM. In order to describe
the wave function of this state, the potential ψ(r) of the donor is assumed to be local and of
Coulomb character sufficiently far from the centre of the donor: ψ(r) = ψ(r) = − e

4πε0εr
1
r .

The Schrödinger Equation is then[
− ~2

2me
∇2 + V (r) + eψ(r)

]
χ(r) = Eiχ(r) (2.11)

with the lattice potential V (r). The defect wave function is then expanded in terms of the
known electron wave functions φn(r,k) of the undoped crystal, see Eq. (2.3),

χ(r) =
∑
n,k

A∗n,kφn(r,k) (2.12)

with the band index n and the expansion coefficients A∗n,k. For an analytic calculation, only
one band, the conduction band (n = 1), and a small region around the CBM in k-space
are considered (k = 0 for direct and k− k0 = 0 for indirect semiconductors). With almost
continuous k-values the spectral function A(k) is defined as A(k) = A∗(k)/|∆k|. For its
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Fourier transform F (r) =
∫
A(k) exp (ik · r) d3k, one can show that under the assumption

of a strongly localised potential the intrinsic solutions of the undoped crystal generate the
conduction band with an effective dispersion relation E(k) = ~2k2/2m∗. For the Fourier
transform the “Effective Mass” Schrödinger Equation remains[

− ~2

2m∗
∇2 − e2

4πε0εr

1

r

]
F (r) = EiF (r), (2.13)

which is identical to the Schrödinger Equation of the hydrogen atom scaled with εr and
m∗ rather than me. The energy Ei in Eq. (2.13) relates to the excitation from the ground
state of the defect to the conduction band, just as in the case of the hydrogen atom the
energy relates to the excitation from the ground state to the vacuum. The eigenvalues of
Eq. (2.13) are those of the hydrogen atom scaled with the dielectric constant of the medium
and the effective mass

Ei,n = − 1

ε2
r

m∗

me

Ry

n2
(2.14)

with n = 1, 2, 3, ... and the Rydberg energy Ry = mee4

8ε20h
2 = 13.6 eV. Assuming εr = 5.7 and

m∗

me
≈ 1

2 , an element independent defect activation energy of 0.2 eV is found. The order of
magnitude of this value fits the situation for boron impurities, but e.g. the ground state of
nitrogen impurities is not modelled correctly. A further correction for the “chemical shift”
is needed. Important for now is the result of the spectral function A(k). With the solutions
for F (r) being the scaled solutions of the hydrogen atom, the three-dimensional Fourier
transform of the ground state becomes [12]

A(k) ∝ 1((
1

a∗0

)2

+ (k − k0)2

)2 (2.15)

with the scaled Bohr radius a∗0 = 4πε0εr~2

e2m∗ . The energy of the ground state can then be

written as Ei,1 = Ei = − ~2

2m∗
1

(a∗0)2 . The width of the spectral function ∆k = 2/a∗0, which

is defined over the 1/4-values if the maximum, therefore depends on Ei as ∆k ∝
√
Ei. In

other words, the deeper the ground state of the impurity the broader is the state in k-space,
which can have a strong effect on scattering processes. Processes that usually require a k-
momentum conserving phonon can occur efficiently in doped crystals, where the impurities
provide the momentum conservation. [12]

2.2.6. Population statistics

For the calculation of the population statistics, i.e. the density of populated states in the
conduction/valence band, two ingredients are necessary: (1) the distribution function and
(2) the density of states. In order to define the distribution function easily, first the Fermi
energy has to be defined. The following is based on the comprehensive descriptions given
in [12] and [13].

The chemical potential µ is an intensive thermodynamic property characterising the
representative one-particle energy within an ensemble of N particles with total energy Etot.
It is given by the fundamental thermodynamic relation of the internal energy U :

dU = TdS − pdV +
∑
i

µidNi (2.16)
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Here, S is the entropy and different particle types are denoted with i. At constant volume
and constant entropy the chemical potential is

µi =
∂Ui
∂Ni

. (2.17)

The total derivative of the free energy F := U − T · S is

dF = −SdT − pdV +
∑
i

µidNi. (2.18)

In thermal equilibrium (dF = 0) and at constant temperature and volume∑
i

µidNi = 0 (2.19)

is found. Consider now the interface between a metal and a semiconductor with number
of electrons N1 and N2. Electrons can diffuse from the semiconductor into the metal, or
vice versa. In either case dN1 = −dN2, and the steady-state condition µ1 = µ2 is found.
The chemical potential is called the Fermi energy in semiconductor physics and is constant
under steady state conditions. That is, if two materials with different chemical potential
(Fermi energy) are brought in close contact, the Fermi energy in both regions equalises by
the net exchange of electrons until a thermal equilibrium is reached.

In a many particle system with identical particles obeying the Pauli exclusion principle,
the probability to find a particle with energy E follows a Fermi-Dirac distribution. For
electrons and holes with the Fermi energy EF this respectively is

fe(E) =
1

e(E−EF)/kBT + 1
, (2.20)

fh(E) = 1− fe(E) =
1

e(EF−E)/kBT + 1
. (2.21)

For the Boltzmann approximation E − EF � kBT (EF − E � kBT ) this becomes the

fe(E) = e−(E−EF)/kBT and fh(E) = e−(EF−E)/kBT . (2.22)

In order to calculate the population statics, a further ingredient is needed besides the
distribution function. The density of states D(k), or D(E), is the number of states within
an interval ∆k in k-space, or equivalently dE in energy space, at a fixed value k, or E0.
Be D(k)dk = 1

(2π)3 dk the number of standing waves per volume in three dimensions. In

E-space at a fixed energy E0, this becomes [12, p. 105]

D(E0) =

∫
1. BZ

D(k)δ
(
E(k)− E0(k)

)
d3k (2.23)

or written as an integral over a constant energy surface E0

D(E0) =

∫
E=E0

D(k)
d3k

|∇kE(k)|
. (2.24)

In the case of diamond with M = 6 equivalent valleys and with equal energy surfaces of
ellipsoidal shape, the electron density of states as a function of the energy can be written
as [12, p. 153]

De(E) =
1

2π2

(
M2/3 2mdos,e

~2

)3/2√
E − EC (2.25)
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with the electron density of state mass

mdos,e =
(
me,l ·m2

e,t

)1/3
. (2.26)

Analogously to the electron case, there is a hole density of states Dh(E) and a hole density
of states mass mdos,h, which depends on the masses of holes of two different parabolic bands:
(1) the light hole mass mh,l and (2) the heavy hole mass mh,h. According to Eq. (2.6) this
corresponds to two bands featuring different degrees of curvature.

Note that the density of state masses are the mass parameters that give the correct
densities of states. They are to be distinguished from the moving masses of the electron/hole
in the lattice potential. With expressions for both the distribution function and the density
of states, the electron and hole population densities at energy E are

n(E) = De(E)fe(E) and p(E) = Dh(E)fh(E). (2.27)

The free charge carrier density is then readily calculated as the integral from the CBM to
infinity [13]

n =

∞∫
EC

De(E)fe(E)dE (2.28)

=
2√
π
ndos,c · F1/2

(
EF − EC

kBT

)
. (2.29)

Fn(ξ) are the so-called Fermi-Dirac integrals and are tabulated. ndos,c (ndos,v) is the effective
conduction (valence) band density of states:

ndos,c =
1

4π3/2

(
2mdos,e

~2
kBT

)3/2

and ndos,v =
1

4π3/2

(
2mdos,h

~2
kBT

)3/2

. (2.30)

Using the Boltzmann approximation, the free charge carrier population density are

n = ndos,c · exp

(
EF − EC

kBT

)
and p = ndos,v · exp

(
EV − EF

kBT

)
. (2.31)

for electrons and holes, respectively. The product of n and p is the Law of mass action

n · p = ndos,cndos,v · exp

(
−Eg

kBT

)
, (2.32)

and depends only on the temperature and the band gap Eg for a given semiconductor.

Intrinsic charge density In the case of intrinsic diamond with zero impurities (n = ni
and p = pi), for each thermally excited electron there is exactly one hole remaining in the
valence band. Therefore neutrality yields ni = pi. Using the Law of mass action the free
charge carrier density is then [13]

ni =
√
ndos,c · ndos,v · exp

(
− Eg

2kBT

)
. (2.33)
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2.2. BASIS OF SEMICONDUCTOR PHYSICS

Figure 2.9.: The Arrhenius plot of the free carrier concentration is plotted over a wide
temperature range. (based on [27, 12])

For intrinsic diamond with ndos,c ≈ 1020 cm−3, ndos,v ≈ 1019 cm−3, Eg = 5.47 eV, the
intrinsic charge density at 300 K is ni ≈ 10−27 cm−3. A sample of volume V = 0.5 cm ×
0.5 cm × 0.05 cm would then contain 10−29 ≈ 0 free electrons. In the real world intrinsic
diamond does not exist. It is clear that the free charge carrier density in real diamond at
RT is dominated by impurities.

Extrinsic charge density The activation energy Ea of donor and acceptor states was dis-
cussed within the EMT model, and was much smaller than the band gap. This has a strong
effect on the free charge carrier density, as in the singly doped case (only acceptors or only
donors) [13]

n or p ∝ exp

(
− Ea

2kBT

)
(2.34)

with the activation energy Ea replacing Eg in the intrinsic case. Here, the Fermi-energy is
shifted upwards and lies between EC and donor level ED, or between EV and the acceptor
energy EA in the case of acceptor doping. In the mixed case, where both donors and
acceptors are present in the crystal, the Fermi-energy remains around the centre of the gap
if the temperature is low enough for both impurities to not be completely ionised, and [13]

n or p ∝ exp

(
− Ea

kBT

)
. (2.35)

Combining the intrinsic case with the only p-doped or the only n-doped case, the free
carrier concentration over a wide temperature range is depicted in Fig. 2.9. On the abscissa
the inverse temperature is plotted, on the ordinate the natural logarithm of the free charge
carrier density. This is called the Arrhenius plot. Starting on the right hand side the charge
density increases with increasing temperature (to the left), as more carriers from donors or
acceptors are excited to the conduction or valence band. When all impurities are excited,
the charge density reaches a plateau and remains constant. On the left hand side, at even
higher temperatures, the intrinsic population dominates.
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2. CVD DIAMOND

Figure 2.10.: Concept of free charge carrier drift in semiconductors. (based on [12, p. 17])

2.2.7. Electrical conductivity and transport

Electrical conductivity in intrinsic semiconductors arises only when electrons are excited
from the valence band to the conduction band: At absolute zero, electrons in the fully
occupied valence band cannot add to conduction as this would imply an increase in (kinetic)
energy, whilst there are no free energetically higher states in this band. Additionally, an
increase in kinetic energy is only possible under energy supply, which corresponds to an
increase in temperature. At temperatures above absolute zero, electrons can be excited
thermally to the conduction band leaving behind unoccupied states in the valence band.
Without an electric field, each electron trajectory is a thermal “random walk”, with no
effective net velocity. Under the influence of an electrical field, the electron drifts along the
electric field lines resulting in a net non-zero velocity component.

The vacant state in the valence band from an excited electron results in another type
of conductivity: Electrons from neighbouring covalent bonds can “jump” into this vacant
state, leading to a propagation of the vacant state in the opposite direction of the electron
transport. This conduction can formally be described by formulating the entirety of the
∼1023−1 electrons in the valence band. A more economic and practical way offers a single-
particle representation of the vacant state, called hole. [12] This hole has a positive charge
of +e. Figure 2.10 illustrates the concept of electron and hole drift.

Net charge transport in semiconductors happens in non-equilibrium situations, e.g. when
free charge carriers are created locally under local energy supply with subsequent relaxation
via diffusion to an quasi-equilibrium state with uniform distribution of free charge carriers
over the crystal. Charge transport of free charge carriers occurs, of course, also under the
influence of an externally applied electric field. In the equation of motion for the electron,
external forces as electric fields as well as internal forces as e.g. the resulting force from the
lattice potential, need to be accounted for. As described above, the mass of an electron
within a periodic potential is replaced by an effective mass m∗, but the “lattice forces”
of a perfect lattice without oscillations do not result in a resistance upon the electron.
Imperfections and the presence of phonons result in scattering of the electrons. In the
Drude model [28] the electron equation of motion under the influence of an externally
applied electric field is

18



2.2. BASIS OF SEMICONDUCTOR PHYSICS

Table 2.2.: Low-field mobility values in cm2/Vs for various materials.

material electron mobility hole mobility

diamond 1800a 2500a

Si 1500b 450b

GaAs 8500b 320b

a measured herein b cf. Ref. [13]

m∗e

(
r̈ +

ṙ

〈τR〉

)
= eE. (2.36)

Here, different possible scattering mechanisms are combined in a single effective momentum
relaxation time τR, or scattering time. In the steady-state (r̈ = 0), this leads to

ve =
e 〈τR,e〉
m∗e

E = µeE, with µe :=
e 〈τR,e〉
m∗e

. (2.37)

and equivalently µh :=
h〈τR,h〉
m∗h

for holes.3 In this model, the mobility is independent of

the electric field strength, and it is only valid for low field strengths (E < 104 V/cm or
E < 1 V/µm). The order of magnitude of the momentum relaxation time can be inferred
from measured mobility values: with µ ≈ 2000 cm2/Vs and m∗ ≈ me, it is found that
τR ≈ 1 ps. With electron and hole charge densities ne and nh, respectively, the current
densities are

je = evene and jh = hvhnh (2.38)

and the total current density is [17]

j = je + jh = (eµene + hµhnh)E ≡ σE, (2.39)

which is Ohm’s law for semiconductors. The conductivity σ is proportional to the mobility.
Common values of the low-field mobility are listed in Tab. 2.2. Drift mobility values in
diamond for both carrier types, electrons and holes, in scCVD diamond samples vary sig-
nificantly in the literature. Their values have been reported to be ∼ 2300 cm2/Vs for holes
and ∼ 1700 cm2/Vs for electrons using α-induced currents [29], and 2000 to 2250 cm2/Vs
for holes and 2200 to 2750 cm2/Vs for electrons using laser induced currents [30]. Isberg et
al. reported a hole mobility value as high as µh = (3400± 400) cm2/Vs. [31]

In Sec. 2.2.6 the intrinsic free carrier concentration ni at room temperature was derived. It
is therefore clear that the intrinsic conduction of diamond is negligible. The conductivity of
real diamond crystals must therefore arise from either doping – i.e. deliberately incorporated
impurities –, unintentional impurities, and/or defects. The temperature dependence of their
carrier densities were also discussed in Sec. 2.2.6.

The different scattering mechanisms and their temperature dependence are now discussed.
With the mobility as defined in Eq. (2.37), its temperature dependence emerges from the
temperature dependence of the momentum relaxation time. The brackets denote an average

3e is the charge of the electron, h the charge of the hole: ∓1.6×10−19 C.
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2. CVD DIAMOND

over the energy distribution of the carriers. The relaxation time is often a polynomial
function of the carrier energy with τR = τ0 (ξ/kBT )r with the kinetic energy ξ of the
carrier. At low fields, and moderate temperatures, it is the acoustic phonon scattering and
the ionised impurity scattering that dominates the mobility. At high fields, the emission of
optical phonons becomes relevant and limits the carrier velocity. Towards low temperatures,
the neutral impurity scattering can play an important role. For electrons, as well the
intervalley scattering is important, as will be discussed in Chap. 5. If various independent
scattering processes contribute to the total scattering, according to Matthiesson’s rule their
momentum relaxation time add inversely to a combined momentum relaxation time; the
same holds true for the combined mobility: [32, 33]

τ−1
R =

∑
i

τ−1
i , and µ−1 =

∑
i

µ−1
i . (2.40)

Acoustic phonon scattering No explicit calculation shall be given here, but can be found
in Ref. [34]. Thermalised carriers have wavelengths much longer than the lattice constant
and therefore scatter only with long wavelength phonons. The longitudinal long wavelength
phonons are waves leading to compression or extension of the crystal lattice, which in turn
affects the band edge locally. A non-constant band edge over position space introduces
potential barriers off which the carriers scatter. The scattering time is inversely proportional
to the temperature τR ∝ T−1. The temperature dependence of the mobility resulting from
acoustic phonon (APS) scattering reads

µAPS ∝ T−3/2. (2.41)

The exponent of −3/2 emerges from the average over the energy distribution of the carriers.
Experimental values for temperatures between 2 K and room temperature in diamond are
presented in Chap. 5.

Ionised impurity scattering If impurities are thermally ionised, these impurities create
stationary Coulomb-like potentials in the lattice. With increasing carrier energy, the scat-
tering cross-section decreases. The resulting mobility of the ionised impurity scattering
(IIS) can be written as [35]

µIIS ∝
1

nii(T )
T 3/2. (2.42)

With the exponent being +3/2 it can be easily distinguished experimentally from the APS.
Note that the IIS is inversely proportional to the ionised impurity density nii. Towards
lower temperatures nii decreases, see Fig. 2.9.

Neutral impurity scattering Neutral impurity atoms, i.e. foreign atoms that are not
ionised, do not exhibit a Coulomb-like potential, but distort the lattice potential locally.
Under the assumption of hydrogenic energy states of the impurity, Erginsoy [36] derived
a temperature independent scattering time τR. Therefore 〈τR〉 = τR and the mobility is
independent of the temperature, too:

µNIS ∝
1

nn
T 0. (2.43)

As in the case of the IIS, the NIS is inversely proportional to the neutral impurity density nn.
With increasing temperature, neutral impurities ionise, and the neutral impurity density
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2.2. BASIS OF SEMICONDUCTOR PHYSICS

Figure 2.11.: The temperature dependence of different combinations of scattering mecha-
nisms is shown on double-logarithmic scales, cf. as well [13, 12].

therefore decreases with increasing temperature. Other authors derived corrections to the
approach followed by Erginsoy. [37, 38]

A graphical visualisation of the temperature dependence of the mobility combining the
three aforementioned scattering mechanisms is shown in Fig. 2.11.

Intervalley scattering As was discussed in Sec. 2.2.3 diamond is a multivalley semicon-
ductor with six equivalent conduction band minima. Under certain conditions electrons can
scatter from one valley to another. If the valley into which the electron scatters is on the
same k-axis, the scattering is called g-type. When an electron is scattered into an orthog-
onal valley, it is called f-type, cf. illustration in Fig. 2.12. For this either a k-momentum
conserving phonon is required, or the momentum has to be absorbed by the impurities in
the crystal [12], cf. the spectral function of impurities (Eq. (2.15)). A net flux from longi-
tudinal valleys to orthogonal valleys, or vice versa, is called re-population. A re-population
can change the average mobility – average over different valleys – and hence the drift ve-
locity of free carriers owing to the different effective masses in the different valleys. The
re-population effect can therefore be seen in the transit time of carriers, if the effect is
sufficiently large.

Velocity saturation Electrons that are accelerated in an electric field gain energy. At low
fields the energy gain is sufficiently small in order for the carrier energy to remain close
to the thermal equilibrium value of 3/2 kBT . However, with increasing field strength the
energy gain in between two scattering processes is large enough for the carrier to undergo
inelastic scattering. In contrast to elastic scattering processes like the APS, IIS, and NIS,
an inelastic process changes the energy of the carrier. First, the carrier stimulates acoustic
phonon modes and the carrier temperature over the lattice temperature becomes

Te
T

=
1

2

1 +

√
1 +

3π

8

(
µ0E

vsound

)2
 . (2.44)
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2. CVD DIAMOND

Figure 2.12.: The two different types of intervalley scattering are shown. f-type (g-type) is
a scattering process into an orthogonal (parallel) valley. [39, 12]

The drift velocity scales with the square root of the ratio [40]

vedrift =

√
Te
T
µ0E. (2.45)

With further increasing fields, the carrier energy surpasses the optical phonon energy of
Eopt = 163 meV in diamond leading to a velocity saturation. Within a simple model, the
saturation velocity is [41]

vsat =

√
8Eopt

3πmdos
tanh

(
Eopt

2kT

)
. (2.46)

At temperatures tested in this work, tanh(...) ≈ 1. With mdos ≈ 0.5 the above estimate
yields vedrift ≈ 2.2×106 cm/s. Ferry [42] calculated a saturation velocity of 2.3×106 cm/s
at fields larger than 2 − 3 V/µm by solving the Boltzmann transport equations, taking
into account various scattering processes. The result from Monte Carlo simulations by
Osman [43] differs from Ferry’s result and predicts a saturation velocity of 1.5×106 cm/s at
10 V/µm. In Chap. 5 the measured saturation velocity is discussed including its temperature
dependence.

Effective drift velocity model According to a simple model [44], the drift velocity over a
large field range is can be described as

vdrift(E) = µ(E)E =
µ0E

1 +
µ0E

vsat

, (2.47)

where µ0 is the low-field mobility. The model reduces to the Drude model at low fields

(µ(E)
E→0−−−→ µ0) and accounts for a saturation velocity vsat towards high fields. Details as

the intervalley scattering are not accounted for therein.
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2.2.8. Non-equilibrium processes

If a system is in thermal equilibrium then its carrier distribution is described by a single
Fermi energy EF. However, there are many interesting non-equilibrium cases, which deserve
a closer inspection. Non-equilibrium situations in semiconductors can usually be treated
making use of subsystems which themselves are in thermal equilibrium, but are not in
equilibrium with each other. [12] Consider a semiconductor in thermal equilibrium, that is
n2
i = np. When free charge carriers are created locally via external energy input, electrons

are excited into the conduction band, though not necessarily to the band edge, but to any
free state in the conduction band depending on the energy transferred to the considered
electron. The electrons then thermalise via intra-band scattering processes to the band edge
with a relaxation time of the order of τrelax ≈ 10−13 s losing their kinetic energy to phonons.
The electron system is then in thermal equilibrium, but it is not with the hole system. In
this situation quasi-Fermi energies EeF and EhF define the chemical potential for the two
subsystems of electrons and holes, respectively. The difference ∆EF = EeF−EhF expresses the
amount of disturbance of the equilibrium. [12] Recombination, diffusion, and other processes
bring the system back to thermal equilibrium. Edge-to-edge recombination involve either
k-momentum conserving phonons or momentum absorbing impurities, and depending on
their abundance recombination lifetimes are of the order of τlife ≈ 10−9...10−3 s. Therefore
the excited carriers will first thermalise and reach an quasi-equilibrium state, and then
recombine subsequently.

The generic case of charge transport in semiconductors is described by three sets of
equations: (1) the Poisson equation, (2) the transport equations, and (3) the continuity
equations, c.f. e.g. [13, 12]

4φ = − ρ

εrε0
(2.48)

je = eµenE − e∇(De · n)

jh = hµhpE − h∇(Dh · p)
(2.49)

∂n

∂t
= Gne −Rne −

1

e
∇× je

∂p

∂t
= Gnh −Rnh −

1

h
∇× jh

(2.50)

with the electrostatic potential φ, the charge density ρ, the dielectric constant εr, the vac-
uum permittivity ε0, the diffusion constants De and Dh for electrons and holes, respectively,
and the carrier generation and recombination rate G and R. The Poisson equation follows
readily from the Maxwell equations. The first term in the transport equations is the field
induced current, as discussed in Sec. 2.2.7, the second one is the diffusion current induced
by a non-zero concentration gradient. In the continuity equations, the last term is the
spatial transport rate. Starting from these equations, the reaction of the system on a lo-
cal perturbation of a previous equilibrium and its tendency to go back to an equilibrium
can be expressed. Under certain conditions the equations can be solved analytically. The
reduction of perturbation happens over time via e.g. recombination processes or dielectric
relaxation, and over space via transport or displacement of charges including polarisation.
Explicit calculations of the characteristic lengths and times of these relaxation processes
shall not be given here, but only their results: [12, p. 193f]

• The dielectric relaxation time: τdiel = ε0εr
eµn , about ∼10−13 s. It is the temporal re-

laxation time constant for electron (hole) density disturbance in n-doped (p-doped)
semiconductors.
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Figure 2.13.: Different types of trapping and thermal detrapping processes are shown.

• The Debye length: λDebye =

√
ε0εrkBT

e2n
. This is the spatial relaxation constant for a

stationary disturbance, i.e. the screening length.

• The recombination time or lifetime: τrec, more details below.

• The diffusion length: L =
√
Dτrec. The diffusion length describes the spatial relax-

ation of the disturbance via diffusion within the recombination time.

• The drift length: Ldrift = µτrec|E|. The drift length describes the spatial relaxation
of the disturbance via drift within the recombination time.

Trapping and recombination processes Impurities and other imperfections of the crys-
tal create energy levels within the band gap. Spatially seen, these levels resides at the
impurity/imperfection. A free electron, or hole, approaching such sites can be “trapped”
by them, resulting in a locally bound electron, or hole, at these trapping sites. They are
therefore also called trapping centres. The inverse process is also allowed, i.e. after a certain
time the trapped charge is excited, i.e. “detrapped” from the trap by thermal excitation.
In thermal equilibrium the rates of trapping and detrapping are equal. For a system out
of thermal equilibrium, i.e. n2

i 6= np, trapping processes help to restore the thermal equi-
librium. Without a formal derivation, the carrier trapping times are [13]

τe,h =
1

σe,hvthntrap
(2.51)

with the trap density ntrap, the thermal velocity vth ≈
√

3kBT
m∗ and the capture cross-section

for electrons or holes σe,h. The formula is plausible: (1) For higher trap densities the
trapping time decreases as it is more likely that within a given time, a charge undertaking
thermal movement passes close enough to a trapping centre and is trapped. (2) With
higher capture cross-section the trapping is more likely. (3) With higher thermal velocity a
charge covers a longer distance within a given time and is hence more likely to be trapped.
Trapped electrons can either detrap or even recombine with a hole in the valence band.
The detrapping time constant depends exponentially on the lattice temperature

τdt
e,h =

exp (Ea/kBT )

σe,hvthntrap
. (2.52)

Detrapping time constants that are of the order of pico- or nanoseconds at RT can therefore
be of the order of microseconds, or even days at cryogenic temperatures. Figure 2.13 shows
two trapping and two detrapping processes.
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Figure 2.14.: The absorption of a photon via the excitation of an electron to the conduc-
tion band and a k-momentum conserving phonon is shown. The radiative
recombination is the reverse process. (from [12, p. 234])

In addition to the recombination via trapping centres radiative or non-radiative (Auger)
band-to-band recombination processes are possible which involve photon emission or en-
ergy transfer to a free electron or hole, respectively. The time scale of the radiative process
in diamond as a indirect semiconductor is of the order of 1 µs and is the reverse process
of the photon absorption, which is shown in Fig. 2.14. The same process in direct semi-
conductors as e.g. GaAs are of the order of nanoseconds for equal excess carrier densities.
In Auger processes a free electron recombines with a hole by transferring its energy to
another free electron, or hole. The energy receiving charge therefore is excited high into
the conduction/valence band. As it includes a third partner its rate is of third order:
R = Ce · n2p+ Ch · p2n with the Auger coefficients Ce and Ch. [12]

2.2.9. Excitons

In 1931, Y. Frenkel proposed the existence of “excitation waves” in solids [45]. Excitons
have since been observed in many semiconductors, including silicon [46] and diamond [47].
When an electron gets excited to the conduction band, it leaves behind a free electron state
in the valence band, referred to as a hole. The positively charged hole and the negatively
charged electron attract each other via the Coulomb force and can undergo a bonding
process under the emission of a phonon into a hydrogenic state, referred to as an exciton.
The energy of the two charges bound into an exciton is hence reduced by the binding energy
in comparison to the free electron-hole pair, with the energy level of the electron slightly
below the conduction band, as the binding energy is much smaller than the band gap. In
diamond, the binding energy is Ex = (80.0±0.5) meV [47] and the size is rx ≈ 1.37 nm,
where the size is inferred from a hydrogen atom scaled with the dielectric constant and the
effective mass of the exciton.

Dynamics of exitons The elementary, intrinsic excitation in semiconductors is the so-
called Wannier-Mott exciton. Its binding energy is of the order of a few or a few tens of
millielectronvolt, and its size is large compared to the nearest neighbour distance: ax � a0.
The Coulomb force between the electron and the hole constituting the exciton is screened
with the dielectric constant. Under the assumption of parabolic, isotropic bands, the time
independent two-particle Schrödinger equation becomes [12]
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(
− ~2

2m∗e
∇2
e −

~2

2m∗h
∇2
h −

e2

4πε0εr

1

|re − rh|

)
Ψ(re, rh) = (Etot − Eg)Ψ(re, rh). (2.53)

The transformation into the centre-of-mass (COM) frame with the total mass M = m∗e+m
∗
h,

the relative coordinate r = re−rh, and the COM coordinateR = (m∗ere+m
∗
hrh)/M decou-

ples the relative movement from the one of the centre-of-mass. The wave function factorises
thus into the COM-part and the relative part: Ψ(re, rh) = Ψrel(r) ·ΨCOM(R). The decou-
pled equations stipulate hydrogenic eigenfunctions for the relative part, and standing waves
for the COM part. A reduced mass mred is defined as mred = (1/m∗e + 1/m∗h)−1. Note that
the relevant effective masses of electrons and holes in all exciton formulae are the optical
masses m∗0,e and m∗0,h, which can be calculated from the density of states masses mdos,e

and mdos,h, which in turn are to be used in the actual transport problem. In diamond, the
optical masses have to be carefully selected from a rather broad range of measured density
of state mass values, c.f. the definitions and a discussion in Ref. [48]. The eigenvalues are

Erel = Ex,n = − 1

ε2
r

mred

me

Ry

n2

ECOM =
~2

2M
K2,

(2.54)

with K = ke−kh. Note the similarity with Eq. (2.14). The ground state energy (n = 1) is
the exciton binding energy Ex,1 = Ex = 80 meV. The size of the excitons is the Bohr radius

aBohr
0 = 4πε0~2

mee2
scaled with the reduced mass and the dielectric constant: ax = me

mred
εra

Bohr
0 =

1.37 nm. [12, p. 241f]

Lifetimes The lifetime of a single, isolated exciton is governed by two competing types
of processes: the thermal dissociation and the recombination. At high temperatures, the
lattice provides sufficient energy to break up the exciton, i.e. excite the electron from the
exciton state to the conduction band. As this is a thermodynamic effect, it is reasonable to
assume, that this lifetime is directly proportional to exp (Ex/kBT ). Therefore, the thermal
lifetime τth of excitons in diamond is a function of the temperature and is O(30 ps) at room
temperature, as will be shown later. Towards lower temperatures, the thermal lifetime
increases with exp (Ex/kBT ), reaching ∼150 µs at 50 K. The recombination lifetime of
free excitons τγrec involving an energy-conserving UV-photon and a k-conserving phonon is
O(µs). [49] However, photon-less recombination processes of bound excitons, e.g. bound to
impurities, are considerably shorter and are O(ns). [50] The time scale of this process is
likely to be impurity density dependent. In the samples used here, the impurity density is
O(ppb) resulting in a recombination lifetime dominated by a fast photon-less recombination.
Hence, the lifetime of the single, isolated exciton is dominated by the thermal lifetime at
RT and by the recombination lifetime at cryogenic temperatures.

A high-density ensemble of electron-hole pairs within a confined space reaches a quasi-
equilibrium with the density ratio of free e-h pairs to excitons following a Boltzmann-
distribution. [51] Under these conditions, no meaningful thermal lifetime can be defined.
However, if charges are dragged out of the volume via an electric field, excitons will evap-
orate in order to reach a new quasi-equilibrium. The evaporation lifetime τevap is not only
a function of the temperature, as in the case of τth, but also of the charge flux leaving the
volume. Additionally, the evaporation process is, as for τth, in competition with the re-
combination process. If the rate of free charges leaving the ionisation volume is larger than
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Table 2.3.: The different processes involved in the decay of excitons and their order of
lifetime as a function of temperature, with the dominant process for each tem-
perature highlighted in red.

T [K] τevap τrec τγrec

@1 V/µm

300 30 psb < 10 nsa 1 µsc

100 10 nsa 10 nsa 1 µsc

50 150 µsb 1 µsc

a measured b inferred from measurement at 100 K c cf. [49]

the maximal rate of evaporating excitons, the evaporation happens “freely”, and hence
with τth as in the case of the single, isolated exciton. Therefore, at high electric field
strengths, the exciton evaporation happens with the thermal lifetime, whereas at low elec-
tric field strengths the evaporation is curbed and takes place with an evaporation lifetime
τevap > τth. The evaporation lifetime dominates at high temperatures, the recombination
lifetime at low temperatures. An overview of the different processes and their lifetimes is
given in Tab. 2.3.

2.3. Synthesis of CVD Diamond

The growths of diamond is possible under very different conditions. Natural diamond usu-
ally forms under high pressure of 45 kbar to 60 kbar in combination with temperatures
around 1300 K. These conditions can be found in two regions on earth: (1) in the litho-
spheric mantle and (2) below relatively stable continental plates. Volcanic activity is needed
to transport diamond-bearing rock from depths about 150 km below the surface to depths
in reach of human mining activities. Annually, approximately 26 000 kg of diamonds are
mined. [52] Diamonds are classified in different types by concentration and type of their
chemical impurities. Natural diamond are usually of type Ia (∼98 %). Type Ia diamond
contains dominantly nitrogen impurities, up to 3000 ppm. Type IIa diamond contains con-
siderably less nitrogen, often at or below the sensitivity of nitrogen detection techniques.
Boron enriched type II diamonds are classified as type IIb.

Among various techniques to synthesise diamond the plasma-assisted chemical vapour
deposition technique produces the highest quality diamond to date, and is the only technique
discussed here. However, many details about diamond synthesis is not publicly available
as many diamond growers do not publish their “recipe”. The basic idea is as follows: A
hot plasma is created from the source gases methane (CH4), molecular hydrogen (H2), and
optionally an oxygen containing compound like acetone (CH3)2CO within a reactor cavity.
The plasma is created using a microwave generator usually using commercially available
frequencies like 2.45 GHz, 915 MHz, or 13.56 MHz. The microwaves ionise the source gases
and heat electrons to about 5000 K, whereas the neutral species remain at relatively low
temperatures of about 1100 K. Hot electrons then activate the reactant gases. The plasma’s
centre is positioned above a substrate on which diamond is supposed to form. A schematic
description of a CVD reactor is shown in Fig. 2.15 (A), and a picture of a commercially
available set-up in Fig. 2.15 (B). Carbon atoms are produced in the hot plasma by stripping
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(A) (B)

Figure 2.15.: A plasma-assisted CVD reactor is depicted schematically in (A). (based
on [14]) (B) shows a commercially available set-up. [54]

off hydrogen atoms of methane. The substrate itself is cooled and the free carbon atoms
thus settle on the substrate surface. In more detail, the three main steps in chemical vapour
deposition of diamond are (1) the breakup of hydrogen molecules to atomic hydrogen, (2)
the diamond nucleation, and (3) the diamond growth. A detailed description of the gas
phase chemistry which is important to all three steps is out of the scope of this work.
Readers are referred to Ref. [53] for an overview of different chemistries and references
therein for a more detailed insight.

• Atomic hydrogen plays at least three important roles in the plasma. First, it etches
non-diamond-bonded material from the surface and therefore largely reduces graphite
inclusions. The addition of oxygen compounds creates OH is the plasma which sup-
ports the graphite etching. Secondly, it reduces methane to CH3, CH3 to CH2, ... via
the reactions

CH4 + H(g)→ CH3 + H2(g)

CH3 + H(g)→ CH2 + H2(g)

...

(2.55)

Thirdly, it activates hydrogen-terminated carbon surface sites as it binds with the
terminating hydrogen atom, see Fig. 2.16.

• Nucleation is an important step in diamond growth as it serves as the seeds of sub-
sequent diamond deposition. However, in spite of ongoing research the nucleation
process is poorly understood so far. One model discussed in Ref. [55] comprises
the adsorption of polycyclic aromatic hydrocarbons (PAHs) on the substrate surface.
The PAHs are formed from the source gases via chemical reactions in the plasma, but
the aromatic rings consist mostly of sp2 bonds. Hydrogen abstraction is thought to
convert sp2 bonds to sp3 bonds.

• The growth is again a delicate issue. The temperature of the growth surface is an
important property of the growth process and needs to be controlled carefully. At too
high a temperature many hydrogen atoms within a small area might desorb from the
surface within a short period of time (microseconds) resulting in re-arrangement of the
surface into graphite. Therefore, individual hydrogen atoms have to be abstracted
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Carbon atom

Hydrogen atom

Activated site

Figure 2.16.: A hydrogen terminated surface site is activated via hydrogen abstraction by
atomic hydrogen. (reproduced from [57])

from the supposedly hydrogen-terminated surface, see the role of hydrogen in the
first bullet. The activated site can then be filled with any reactive species. Diamond
growth is thought to occur when a hydrocarbon fills the activated site with subsequent
hydrogen abstraction. Note that further adsorption of PAHs is not desired after
nucleation as this would increase graphitic phases in the diamond. It can thus be
concluded that the conditions favouring nucleation are different from those desired
for growth.

Another issue of growth is the used substrate. Homoepitaxial growth, i.e. growth
of diamond on a diamond substrate, produces the highest quality results, especially
when grown on a single-crystal substrate. To date, there is no economic way of
producing large amounts of single-crystal chemical vapour deposition (scCVD) spec-
imens. Drawbacks are the high costs, small size, variability in quality. When grown
on a polycrystalline diamond substrate, the bulk of the diamond will contain grain
boundaries. They form when diamond parts from different seeds eventually meet.
The grain boundaries function as trapping and recombination centres for free charge
carries, degrading the lifetime of the carriers, and hence the quality of the crystal.
Polycrystalline CVD (pCVD) diamond with a CCD of the order of 250 µm in a 500 µm
thick samples are grown at a rate of 1 µm/h. Grown to 1.5 mm thickness, this takes
over 60 days. The quality rises during the growth process, and after growth several
hundreds of micrometer of material are taken off from the nucleation side of the
specimen. Single-crystal CVD diamond is likely to be grown at even lower rates in
combination with smaller thicknesses and in a pure C−H chemistry. [56]

In total, faster growing techniques produce diamond more economically but of (much)
poorer quality. The electronic characteristics degrade rapidly with increasing impurity and
defect density. The best polycrystalline CVD diamond have trapping lifetimes of the order
of 1 ns, whereas scCVD diamond can be fabricated with lifetimes much larger than 30 ns.
A total of about 100 000 kg [52] of diamond is synthesized annually, and are commonly used
for e.g. cutting tools, laser windows, and heat spreaders.
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(A) (B) (C)

Figure 2.17.: The truncated (100) bulk (A), surface energy lowering C=C dimers (B), and
hydrogen-terminated surface (C) are shown. (based on [58])

2.4. Surfaces and Contacts

For a 5×5×0.5 mm3 cuboid of diamond the number of surface atoms is small in comparison
to the number of bulk atoms. However, the surface characteristics can strongly influence
the characteristics of the whole specimen. Here, some surface properties of (100) faces
are reviewed and is followed by a discussion about diamond-metal interfaces, i.e. what is
commonly called a contact.

The real surface of a diamond is not just a truncated bulk. This would clearly result in
at least one unsaturated, or dangling, bond per surface atom. This dangling bond would in
turn be highly reactive and would either bind a reactant in its vicinity, or the surface would
reconstruct itself. The theoretically truncated (100) surface is depicted in Fig. 2.17 (A). It
is thought, supported by calculations and surface analysis methods, that the surface atoms
can reconstruct in a way that each two surface atoms build C=C dimers, see Fig. 2.17 (B).
The dimers are highlighted in red. This configuration reduces the surface energy of the
electrons stemming from surface atoms considerably. A further reduction is achieved by
hydrogen-termination of the dimer atoms which changes C = C bonds into a C−C ones.
Figure 2.17 (C) shows the hydrogen-terminated surfaces.

The situation gets more sophisticated when other reactants like oxygen are allowed, or
when defects emerge from the bulk to the surface. The perfect hydrogen-terminated surface
is thought to be highly resistive, too. In reality, the surface currents dominate largely over
bulk DC currents. This is attributed to non-perfect surfaces which are less resistive.

In order to prepare a diamond specimen for the usage as a detector, the specimen has
to be coated with a metal, which in turn can be contacted via wire bonds or just by
mechanical contact to e.g. a conducting spring. The contact needs to form a stable, resistant,
homogeneous connection to the bulk material in order to withstand mechanical stress,
facilitate handling of the detector, and to ensure a position independent detector readout. It
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is desirable that the interface between the metal and the diamond surface is of ohmic nature,
i.e. that the current flowing through the device as a function of the applied bias voltage
(or electric field) is linear and symmetric in bias polarisation. If the I-V characteristics
are non linear or asymmetric the contact is called a Schottky barrier contact. Measured
I-V curves on scCVD diamond can often not be interpreted readily in terms of ohmic or
Schottky contacts. This is due to the very small currents of below a few picoampere at RT
and fields |E| < 2 V/µm. Details are discussed in Chap. 4.2.1.

Theoretically, the interface of diamond (or a semiconductor in general) with metal is
interpreted in terms of Fermi levels, work functions, and electron affinities. The metal work
function Φm is the ionisation energy of the metal into the vacuum, the electron affinity χs

is the energy difference between the lower edge of the conduction band and the vacuum.
Ψs is the energy difference between the Fermi level in the semiconductor and the vacuum.
Considering a metal and a semiconductor surface at sufficient distance δ, the Fermi energies
differ between the two. The common energy is the vacuum level. When δ is reduced until
the two are in contact, i.e. δ is below the atomic distance, a net flux of electrons from
either the metal to the semiconductor or vice versa takes place. This can be understood as
reaching a lower energy configuration as the electrons have a lower chemical potential in one
or the other medium depending on the relative positions of the Fermi levels. If the Fermi
level in the semiconductor is lower, electrons flow from the metal to the semiconductor
resulting in an increased Fermi level of the semiconductor in comparison to the Fermi level
in the metal. Thus a thermal equilibrium is reached with equal Fermi energy in both the
metal and the semiconductor.

Starting with an electrically neutral metal and an electrically neutral semiconductor,
a net flow of charges results in an electric field from the net-positively charged part to
the net-negatively charged part. The built-up of this field counteracts the net flow, until
an equilibrium is reached. The electric field varies with distance over the semiconductor
starting from the metal-semiconductor interface, and a barrier potential ΦB is formed.
Figure 2.18 shows the scenario before (A1, B1, C1, D1) and after (A2, B2, C2, D2)
bringing the metal in contact with the semiconductor. Four different scenarios are shown:
n- and p-type semiconductor with different metal work functions. In (A2, B2, C2, D2)
the band bending effect is illustrated, i.e. the valence and the conduction band are a function
of the depth, which seems to be in contradiction with the previously discussed flat band
model. The bent bands are a result of the superposition of the flat, i.e. position independent,
bands with the position dependent electrostatic energy Φ(x) building up with the net charge
flow resulting in a position dependent space charge density, and in the one-dimensional case

4Φ(x) = − e

ε0εr
ρ(x). (2.56)

The situation in diamond is unclear. The electronic grade scCVD diamond samples used
in this work are not intentionally doped. Nitrogen and boron impurity levels are below the
detection sensitivity. It is hence not known if the samples are p-type or n-type. However,
the bulk resistance is much larger than the contact resistance. The barrier potential is
usually of the order of a few volts, which is small compared to the applied bias voltage
for the tests performed in this work. The contacts are therefore believed to not play a
dominant role.
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(A1) (A2)

(B1) (B2)

(C1) (C2)

(D1) (D2)

Figure 2.18.: Four different scenarios are shown: n- and p-type semiconductor with different
metal work functions before (left) and after (right) bringing the metal in
contact with the semiconductor. (based on [13] and [12])
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For the detection of particles traversing a piece of matter two requirements must be fulfilled:
(1) the particle has to deposit, i.e. lose, energy during its transit through the detector, and
(2) the deposited energy has to be convertible into a measurable quantity. The two issues
are discussed in this chapter using the examples of α-particles, protons, and muons. The
passage of neutral particles like photons and neutrinos through matter is not discussed here.

3.1. Energy Loss of Heavy, Charged Particles in Matter

The stopping power of heavy charged particles (M � me) in matter is described accurately
by the Bethe equation [59] at moderately relativistic energies (0.1 . βγ . 1000) in units of
MeVcm2g−1

−
〈
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〉
= Kz2Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax

I2

)
− β2 − δ(γβ)

2

]
. (3.1)

The constant K is K = 4πNAr
2
emec

2 with the classical electron radius re, z the charge of
the ionising particle in units of the elementary charge, Z the atomic number of the absorber,
A the atomic mass of the absorber, β and γ are the common relativistic expressions β = v/c
and γ = 1√

1−β2
≡ E

M c2
with the speed of light c and the projectile mass M , Tmax is the

maximum kinetic energy which can be transferred to a free electron in a single collision, I
the mean excitation energy, and δ is a correction for the so-called density effect which is
important towards relativistic energies. The function is plotted in Fig. 3.1 as a function
of βγ or muon momentum and its valid region is marked as “Bethe”. Close inspection
of Eq. (3.1) explains its qualitative behaviour as a function of β or βγ. For small β, the
relativistic γ-factor is ∼1, and Eq. (3.1) is proportional to 1/β2, since ln (β2) increases
slowly. With v approaching c, β approaches 1, and therefore 1/β2 is constant, and βγ
increases. The first term inside the square brackets starts to dominate and Eq. (3.1) is
proportional to ln (βγ) as can be seen from the slow increase for βγ & 3 in Fig. 3.1. In the
transition region the stopping power has a minimum. A particle with βγ & 3 is called a
minimum ionising particles (MIP).

The Bethe theory without low energy corrections is valid down to βγ ≈ 0.1. Including
various corrections the range of the Bethe formula extends down to β ≈ 0.05. At even lower
energies, the energy loss is not described accurately by any theory. Phenomenological fitting
formulae are provided by Andersen and Ziegler. [60] Below a few 100 eV of kinetic energy,
Lindhard successfully developed a theory describing the energy loss in linear dependence of
β. [61]

3.1.1. α-particles

In this work, intensive use of α-radiation from an 241Am source is made. The α-particles
radiated by this isotope have kinetic energies of about 5.47 MeV. These α-particles have a
β = 0.054 and a γ = 1.0015, and hence a βγ = 0.054 using mα = 3.73 GeV/c2.
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3. RADIATION DETECTION

Figure 3.1.: The calculated stopping power of positive muons in copper is shown over many
orders of magnitude as a function of βγ. The region described by the Bethe
equation is marked as such. For relativistic particles radiative losses and density
effects have to be accounted for. Towards lower energies several corrections to
the Bethe equation need to be made. (from [62])

Following the discussion above, the lack of a satisfactory theory of the stopping power
for energies in the energy regime used here necessitates experimental data to be used in
order to describe the stopping process of α-particles from an 241Am source. The numbers
of interest are the penetration depth in matter, the distribution of deposited energy along
the track, and the radial energy deposition distribution. Extensive data about the stop-
ping power of electrons, protons, and α-particles in various materials are tabulated by the
National Institute of Standards and Technology (NIST, [63]), and are listed in Appendix A.
The stopping power for α-particles in amorphous carbon and water as a function of the
incident particle energy is shown Fig. 3.2 (A). When corrected for the absolute density
of the material, the two materials, as almost all solids and liquids, have similar stopping
powers over a wide energy range. The vertical line marks an incident energy of 4.6 MeV. In
Fig. 3.2 (B) the energy loss per micrometre (black line, left scale) is shown as a function of
depth along with the deposited fraction of the total particle energy (red line, right scale),
which is again chosen to be 4.6 MeV. The plot is produced using the stopping power values
from (A) and the density of diamond of 3.52 gcm−3. The step size in the simulation is set
to 10 nm, and for each step the energy loss over the step size is calculated. The stopping
power values in between two data points are inferred using a log-log interpolation. A linear
interpolation effects the stopping power by about 2 % midway between two data points.
Towards the end of the particle range, at a depth of 9.65 µm the energy loss reaches a
maximum, called the Bragg peak. After reaching the Bragg peak the particle is stopped
within another micrometre. The simulated penetration depth is δp = 10.66 µm.

The average pair-creation Epair is not the equal to the band gap, but considerably higher.
This is due to the fact, that there is ionising and non-ionising energy loss. In total, an
average pair creation energy of Epair ≈ 12 − 14 eV is found in various measurements [64].
Another reference reports values between 11 eV and 18 eV. [65] Here, a value of Epair =
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Figure 3.2.: (A) The stopping power of carbon and water for α-particles is plotted as a
function of energy (data taken from [63]). Using values from (A), the energy
deposition per µm and the deposited fraction of total energy for a 4.6 MeV
α-particle is shown in (B).

13.25 eV is used for reference. [66] With a band gap of Eg = 5.47 eV for every electron-hole
(eh) pair, about 7.8 eV are used to create phonons. I.e. on average ∼40 % of the total energy
is used for ionisation, ∼60 % for phonon creation.

The stopping power shown in Fig. 3.2 (A) is the total stopping power, which consists of
two parts: (1) the electronic stopping power and (2) the nuclear stopping power. In (1)
the α-particle loses energy to shell electrons by exciting them from the valence band to the
conduction band (not necessarily to the band-edge). The nuclear stopping power consists
of the creation of phonons in the crystal and the displacement of atoms in the lattice.
The electronic stopping power is four orders of magnitude higher than the nuclear stopping
power down to particle energies of 1 MeV according to NIST data, and they are about equal
only at 1 keV, i.e. towards the very end of the stopping process. However, the energy loss
is not mostly of ionising type. The electronic energy loss of a 4 MeV α-particle produces
electrons with a mean energy of 60 eV according to Ref. [67] (in water). With decreasing
α-energy, the mean drops, see Fig. 3.3. The solid line in Fig. 3.3 gives the average energy
of secondary electrons for He++, namely α-particles. The same order of magnitude is likely
to be correct as well in diamond. In turn, the low energetic electrons, called secondaries
(not only δ-electrons, but all electrons, that have been excited high into the conduction
band), lose their energy again by ionisation and phonon excitation. In order to sum up to
13.25 eV per e-h pair creation, the secondary electrons have to excite about four electrons
to the band edge, and lose another 40 eV in phonon excitation.

Considering the kinetic energy of 60 eV of the secondaries, the radial energy distribution
is considerably shorter than the penetration depth. Measurements with 12C ions in water
vapour at a pressure of 40 hPa showed 1/e radial track sizes O(150 nm), see Fig. 3.4 (A). In
order to estimate this value in diamond, it has to be scaled with the stopping power and the
density under the assumption of equally energetic secondaries. Figure 3.2 (A) shows similar
stopping powers. The density ratio diamond to the water vapour used in Fig. 3.4 (A) is
3.5/0.04 ≈ 88, resulting in a 1/e track size of about 150 nm/88 ≈ 2 nm in diamond. Another
measurement performed in liquid water with 3 MeV α-particles gives similar results, as is
shown in Fig. 3.4 (B). The steep fall-off in the first nanometres hampers the extraction of
an accurate value from the plot, but confirms an 1/e value of a few nanometres in radial
track size.
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Figure 3.3.: The average energy of the secondary electrons is shown as a function of the
primary energy in water. (from [67])

3.1.2. Minimum ionising particles

Cosmic rays, which consist mostly of protons, hit the earth’s atmosphere and produce
pions, kaons, and other particles in collisions with atmospheric molecules. The pions and
kaons decay rapidly and produce muons, which are energetically enough to reach the earth’s
surface and even underground laboratories. Many cosmic muons that reach the surface have
energies around 1 GeV and have therefore MIP character. The stopping power of diamond
is about a factor of 1000 higher for α-particles at 1 MeV compared to MIPs. The α-particles
used here are therefore highly ionising particles in comparison to MIPs.

At the CNGS experiment at CERN, 17 GeV muons are produced from pion decays and
directed towards the Gran Sasso massif.1 Muons at this energy have an energy loss slightly
larger than MIPs, cf. Fig. 3.1, but due to the slow increase owing to the ln-dependence
of the stopping power, the difference is small. The reasoning holds also true for 24 GeV
protons.

Figure 3.5 depicts the stopping power of MIPs as a function of the absorber material.
For absorbers with Z > 6 a linear dependence of ln (Z) is found. For carbon, the plot
gives a stopping power of 1.75 MeVg−2cm2 =̂ 616 eV/µm. Note that this is the mean
stopping power including large single-collision energy losses. These rare events can lead to
a considerable difference in comparison to the median of the energy loss.2 In practice, a
value of 36 eh/µm is widely accepted [69, 70], which corresponds to 477 eV/µm assuming an
average e-h pair creation energy in diamond of Epair = 13.25 eV.

1Details are given in Chap. 6.
2Consider 1 energy loss of 60 keV for every 1000 energy losses of 60 eV. The median is 60 eV, the mean is

120 eV.
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(A) (B)

Figure 3.4.: (A) The radial dose distribution is shown for 12C ions in water vapour at 40 hPa
(from [68]). (B) The radial dose distribution is shown for 3 MeV α-particles in
liquid water. (from [67])

3.2. Diamond as a Solid State Ionisation Chamber

The principle of operation of diamond as a charged particle detector is that of a solid
state ionisation chamber. [71] In contrast to a gas-filled ionisation chamber, where ionised
electrons and ions drift in an electric field between cathode and anode, a semiconductor
is sandwiched between two metal electrodes, well known from a parallel plate capacitor.
The incident particle then produces free eh-pairs rather than electrons and ions. They are
separated by the electric field and each of the two charges drifts towards one of the contacts,
which are on different potentials. The charge drift induces charges on the electrodes, and
a detector current idet can be read. An electrical scheme often used in particle physics is
shown in Fig. 3.6. The diamond is biased over a resistor R. The biased read-out electrode
is AC-coupled via a capacitor C to an amplifier, which amplifies the detector current and
converts it into a voltage. Here, the detector current, or simply the “signal”, is read from
the high voltage side.

3.2.1. Shockley-Ramo theorem

The detector current induced by moving charges is elegantly formulated by the Shockley-
Ramo theorem. [72] It makes use of a weighting potential Φw which describes the coupling
of a charge to an electrode.3 The weighting potential therefore depends on the electrode
configuration. With the charge trajectory r(t), the induced current reads

i(t) = q∇Φw
d

dt
r(t) = −qEwv. (3.2)

In a parallel plate configuration the weighting field is Ew = −dΦw
dx = −1/d. With the charge

drift along x, the current becomes

i(t) = qvdrift(x, t)/d. (3.3)

3N.B.: ∇Φw = −Ew 6= −E, where E is the electric field.
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Figure 3.5.: The stopping power for MIPs is plotted as a function of the atomic number of
the absorber. [62]

Assuming a time and position independent drift velocity, the time a charge needs to traverse
the entire detector thickness, called the transit time, is

tt =
d

vdrift
. (3.4)

With Q(t) = eN(t) and a constant drift velocity, the current reads

i = eN(t)/tt. (3.5)

In this case the elegance of the Shockley-Ramo theorem does not show, but it greatly sim-
plifies the derivation of induced currents on e.g. strip detectors, where a charge induces
current on many electrodes. If a time-dependent amount of charge Q(t) = eN(t) is consid-
ered to drift between the electrodes, and that the drift velocity is a function of the electric
field and the mobility, one obtains

Figure 3.6.: The principle of operation of a solid state ionisation chamber is shown for a
passage of a MIP particle including a simple electric read-out circuit.
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(A) (B)

Figure 3.7.: The two modes of particle detection, calorimetric mode (A) and MIP mode
(B), are shown with their theoretical pulse shape (bottom) assuming a con-
stant electric field.

i(t) = eN(t)µ(E)E/d. (3.6)

Note that in the case of position dependent electric field strengths, vdrift = µ(E)E is
not longer valid. Instead, the differential equation dx/dt = µ(E)E(x) needs to be solved
depending on E(x).

3.2.2. Measured detector current and charge

In this work, diamond is used as a charged particle detector in two different “modes”.
The one most extensively used is the “calorimetric” mode, where the particle is stopped
completely inside the sensor volume, as is the case for the highly ionising α-particle. For
the second, the particle traverses the complete sensor thickness and exits the volume on
the opposite site. Both situations are depicted in Fig. 3.7 (top left/right). The shape
of the induced current is different for the two modes. The short penetration depth of the
α-particle results in a local charge package, which traverses the entire detector volume.
Which charge type drifts through the bulk is a function of the chosen bias voltage. It is
then collected “as a whole” at the opposite electrode. The other charge type is collected
almost instantly at the incident electrode. A typical signal form is thus the rectangular
form in case of highly ionising particles, if charge trapping during drift is neglected. Be Q−

the amount of produced electrons. Since electrons and holes are produced pairwise, the hole
charge is Q+ = −Q−. But with one carrier type being collected immediately, the amplitude
of the signal is proportional to Q−, namely proportional to the number of produced pairs.

In case of MIP signals, all charges (Q−+Q+) start drifting initially, and the initial current
is proportional to Q− + Q+. Those charges created close to one electrode and having the
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(A) (B)

Figure 3.8.: Electric field distribution for ρ = 0 (A) and ρ > 0 (B).

opposite sign than this electrode are collected first. The collection happens linearly for
constant drift velocities resulting in a triangular-shaped signal pulse. The pulse area is
then

∫
(Q− +Q+) · vdrift/ddt = Q−. Figure 3.7 (bottom) shows the induced currents and

pulse areas for both modes.
Additional issues have an impact on the signal shape. Discussed above was the case of

a constant electric field over the detector thickness resulting in a constant drift velocity,
cf. Fig. 3.8 (A). If a non-zero net space charge is present in the detector, the electric field
is altered. For a constant space charge like in silicon, i.e. dρ

dx = 0, the electric field in the

one-dimensional case is div(E) = dE
dx ∝ ρ(x) and therefore evolves linearly over the detector

thickness, see Fig. 3.8 (B). The drift velocity is then position dependent.
The drifting charges are collected at the opposing electrode after an average transit time

tt = d/vdrift. Mathematically, this “start-drift-collect” scheme can be written as follows. If
a function Ṅstart(t) represents the distribution of the start time of drifting of charges, the
total number of started charges is Nstart(t) =

∫ t
0 Ṅstart(t) dt. With the average transit time

tt = tcoll− tstart the distribution of the collection time of charges is Ṅcoll(t) = Ṅstart(t− tt),
and the total number of collected charges is Ncoll(t) =

∫ t
0 Ṅstart(t − tt) dt. The number of

drifting charges is hence

Ndrift(t) = Nstart(t)−Ncoll(t). (3.7)

The scheme is depicted in Fig. 3.9 for two different start distributions assuming a local
charge deposition close to the incident electrode.

Trapping processes along with the charge drift further influence the signal shape. If the
trapping centres are distributed equally throughout the crystal, the trapping probability is
homogeneous. With a trapping time ttrap the number of drifting charges is the solution of
the differential equation

dN(t) =
N

ttrap
dt. (3.8)

The solution is

N(t) = N(0) e−t/ttrap . (3.9)

The total measured charge Qm is the integral over the induced current. The charge
collection efficiency (CCE) is readily defined as the fraction of measured charge over the
created charge
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(A)

(B)

Figure 3.9.: A Gaussian (A) and a exponential (B) start time distribution function (left
column), their resulting number of started charges distribution (middle col-
umn) and the drifting charges distribution (right column) are shown.

CCE =
Qm
Q0

. (3.10)

If the charge loss happens due to trapping, the charge collection distance (CCD) is

CCD =
Qm
Q0
· d. (3.11)

The CCD or CCE is often used to grade the quality of a sensor. For a scCVD diamond,
the CCE is usually close to 100 %. To date, the best polycrystalline materials have CCDs
of 250 to 300 µm in 500 µm thick samples.

The fluctuation in signal charge is a key characteristic of signal sensors as it determines
the relative resolution ∆E/E, which is important for spectroscopic measurements. In the
calorimetric mode the complete energy of the incident particle is absorbed in the material.
The fluctuation in signal charge is then not σQ =

√
Ni with the number of ionised charges

Ni = E0/Epair, but actually smaller than this simple statistical variance. A full discussion
can be found in Ref. [73]. The incident particle energy E0 is converted into phonons and
formation of free eh-pairs

E0 = EphNph + EgNi, (3.12)

with the average phonon energy Eph. Since the total energy is fixed, a fluctuation in
Ni must result in a corresponding fluctuation of Nph: ∆NiEg + ∆NphEph = 0, i.e. a
downward fluctuation in number if ionisations results in an upward fluctuation in number
of created phonons. Over many events, the energy weighted variances are therefore equal,
EgσQ = Ephσph, and

σQ =
Eph

Eg
σph =

Eph

Eg

√
Nph (3.13)

Using Eq. (3.12) one obtains
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σQ =
Eph

Eg

√
E0

Eph
− Eg

Eph
Ni =

√
Eph

Eg

(
Epair

Eg
− 1

)√
E0

Epair
=
√
FNi (3.14)

F is called the Fano factor, and F = 0.08 in diamond. [73] Due to the Fano factor and
the smaller ionisation energies in solid state detectors compared to gas-based detectors, the
energy resolution is often a factor of 25 or more better in solid state detectors.
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4. EXPERIMENTAL TECHNIQUE

4.1. The Transit Current Technique

During the last 40 years, the transient current technique (TCT) has frequently been used
in order to determine the charge carrier mobility and velocity in different materials. In
insulators, it was used in 1970 by Lampert and Mark. [74] Later, the TCT was further
developed for the measurement of the effective net charge in the space charge region of p-n
junction detectors by Eremin et al. [75] Pernegger et al. carried out TCT measurements
using α-particles for carrier excitation (α-TCT) in order to determine charge carrier prop-
erties in single-crystal chemical vapour deposition (scCVD) diamond at room temperature
(RT). [29] This investigation was followed by Pomorski et al. [76] A study of a variety of
semiconductor materials, namely CdTe, CZT, silicon p-in-n diodes, as well as two scCVDs,
has been performed by Fink et al. [77] Also photon-induced TCT studies have been made
with scCVD samples making use of a 5x-frequency multiplied Nd-YAG laser by Isberg et
al. [31]

The α-TCT provides a direct way to measure the transit time, i.e. the time a charge
needs to drift through the bulk, and hence calculate the drift velocity. This technique is
usually, and also in this work, performed in a metal-semiconductor-metal structure. The
semiconductor is used as a solid state ionisation chamber, see Sec. 3.2. Time-resolved
currents induced on a read-out electrode by the drift of free charge carriers in an externally
applied electric field are read with high bandwidth. Note that this is a current measurement,
as opposed to a charge measurement. Local, free charge deposit close to the electrode on
one side is realised by using highly ionising α-particles with short penetration depth from
an 241Am source. As the charges drift through the semiconductor bulk, the recorded signal
pulse shape is sensitive to its material properties. In present scCVD diamond, trapping
times larger than 30 ns have been realised. [29] If the current is read with wide bandwidth,
charge carrier properties can be derived accurately from pulse characteristics. Since the
charge carrier trapping time exceeds the transit time and with charge creation limited to a
small depth in comparison to the bulk thickness, the transit time can readily be calculated
from the time difference between the rising and the falling edge. With a known sample
thickness, the drift velocity can be calculated. Measurements in a wide range of electric
field strengths are used to determine the low-field mobility and the saturation velocity using
Eq. (2.47).

4.2. Samples

The samples under test (SUTs), which are referred to as S52, S57, and S79 for later
reference, have been produced using the chemical vapour deposition process by Element Six
Ltd (E6) [78]. The scCVD diamond samples have an area of 4.7× 4.7 mm2 and thicknesses
of dS52 = 515 µm, dS57 = 530 µm, and dS79 = 529 µm. A photograph of the SUTs is
shown in Fig. 4.1 in the order S52, S57, and S79 from left to right. The dislocation
and impurity densities are . 2×1014 cm−3. Diamond Detector Ltd. (DDL) [79] quotes a
nitrogen incorporation of < 1 ppb. S52 and S57 have been metallised by DDL, S79 at
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4. EXPERIMENTAL TECHNIQUE

Figure 4.1.: The three SUTs are shown. The long sides are the 110 directions, the thickness
evolves along the 〈100〉 direction.

the Physics Department of the University of Firenze, Italy. The SUTs are equipped with
metal contacts on both sides. According to the specifications from the manufacturer, the
DDL contacts are made from three layers: DLC1/Pt/Au with ∼4/10/200 nm thicknesses,
respectively. The metallised area is quadratic, has a surface of A = 4.2 × 4.2 mm2, and
does not include a guard ring. S79 has a Cr-Au metallisation of ∼400 nm total thickness,
spanning roughly A = 3.2 × 3.2 mm2. DDL quotes a charge collection efficiency of CCE
> 95% at an electric field strength of 1 V/µm. The leakage current is less than 7 pA for
E = ±1.1 V/µm. This is about six orders of magnitude smaller than the current read with
α-particles, which is O(µA). The capacitance of S57 is measured to be Cd = (2.0± 0.3) pF
with an HP Agilent 4263B. This value is in good agreement with the theoretical value of
Cth

d = εrε0
A
d ≈ 1.7 pF.

4.2.1. IV characteristics

The amount of current which flows through a sensor as a function of the applied bias voltage
is an important characteristic of the sensor itself. For a resistor R, Ohm’s law U = R · I
applies, or for a semiconductor j = σ · E. In a semiconductor in thermal equilibrium the
bulk conductivity is mediated by free charge carriers in the bulk. The higher the free charge
carrier concentration the higher is the conductivity

σ = enµe + hpµh ≡ 1/ρ (4.1)

with the resistivity ρ defined as the inverse conductivity. For the moment, it is assumed
that the mobility of electrons and holes is about equal µ = µe = µh = 2000 cm2/Vs, and
the sum of free electrons and holes be n̄ = n+ p. This results in

σ = en̄µ. (4.2)

The resistivity of a cuboid with length l in between two electrodes of area A is defined via
its resistance R and dimensions A and l. With increased area A more current flows through
the bulk at a given field strength, and with increased distance l between the electrodes the
current decreases:

ρ = R
A

l
. (4.3)

In reality, when a bias is applied to a piece of semiconductor, the measured current
is not only flowing through the bulk of it, but additionally currents can flow along the

1Diamond-Like Carbon
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Figure 4.2.: The I-t measurement for S57 is shown in (A) and a zoom into the first peak in
(B). (C) shows the derived IV characteristics with a comparison to an empty
measurement. (D) provides a zoom of the centre region of (C).

surface of the semiconductor, j = jbulk + jsurf, which tampers the measurement of the bulk
conductivity. The surface current is thought to flow via surface states, “cracks” in the
surface induced by cutting and polishing procedures, remnants of surface treatments, etc.
However, the measured current can be used as an estimate of the upper limit of the bulk
conductivity assuming that all current is actually flowing through the bulk.

The measurement itself involves the repeated measurement of the current at a given bias
voltage over time, over three minutes here. Then the bias is changed and the current is read
again over three minutes. The current reading is repeated with ∼3 Hz. Starting at zero
the bias is increased stepwise up to 800 V, then decreased down to -800 V and increased
to 0 V again. The result for the diamond sample S57 at RT is shown in Fig. 4.2. On the
top left the current readings as a function of time are shown for biases between 0 V and
800 V, on the top right a zoom is shown. The spikes are the result of the bias change: With
a higher bias applied to the sample, the detector capacity is charged. Hence a charging
current flows which decreases exponentially within a few seconds, and a stable current of a
few picoampere is reached again. The baseline reading has a noise rms of about 2 pA. After
the baseline has been restored, the current readings are averaged, and the standard error
of the mean is calculated. The mean is plotted with its standard error against the bias
voltage in the bottom plots. A measurement without a sample is superimposed in order
to check for any set-up related systematics. The “empty” measurement shows a flat IV
characteristic.

The IV-characteristics of S57 are neither symmetric nor linear. If the measured current
was the bulk current, this would imply that the contacts are not ohmic, but rather of
Schottky type. From the order of magnitude of the current, an upper limit of the free charge
carrier density is derived. At 800 V the read current is ∼5 pA, resulting in a resistance of

45



4. EXPERIMENTAL TECHNIQUE

R = U/I = (1.6±0.1)×1014 Ω and a resistivity of ρ = 6.7×1014 Ω cm. The conductivity is
therefore σ = 1.5×10−15 (Ωcm)−1. Finally, the free charge carrier concentration is

n̄ =
σ

eµ
= (4.7±0.3) cm−3. (4.4)

This is many orders of magnitude lower than for e.g. silicon. Note as well the impurity
density, which is O(1014 cm−3) according to the manufacturer specifications. This implies
that almost no impurity is thermally excited. Considering the size of the diamond used
here, the total number of free charge carriers is

N = n̄ · V = 0.05 ≈ 0. (4.5)

This reflects the wide band gap of the diamond and supports the experimental finding that
there are no known shallow (few tens of millielectronvolt) donor nor shallow acceptor levels
in diamond.

4.3. Measurement Set-up

The set-up consists mainly of three parts: (1) The cryostat holding the liquid helium, (2)
the inlet supplying various connections for sensors, valves, and a support for a tube which in
turn provides a connection to an inner vacuum chamber situated inside and near the bottom
of the cryostat, and (3) the electrical part used for the TCT measurement, temperature
measurement, and temperature regulation via a heater. A schematic overview is depicted
in Fig. 4.3.

The cryostat, shown diagonally hatched in Fig. 4.3, is a hollow cylinder, closed at the
bottom, providing a volume of 40 l in its inside. For isolation, the cylinder walls are made
of isolating materials. When the cryostat is e.g. about half filled with liquid helium, the
helium has a temperature of 4.2 K, whereas the top of the volume is in contact with the lit
of the cryostat, which remains at RT. A temperature gradient is therefore present in the
cryostat volume. The ambient pressure in the cryostat is 1 bar for temperatures T ≥ 4.2 K
and < 1 bar for T < 4.2 K.

The inlet is prepared outside of the cryostat prior to the measurements. In cryogenics, the
inlet describes the entirety of the cryostat’s lit, cross-hatched in Fig. 4.3, providing various
feed-throughs for sensors, support for the tube, the heat shields, which are connected to
the lit, and possible other attachments. The inlet supported by a support structure is
shown in Fig. 4.4 (left). After preparation in the support structure, the inlet is hauled
up with a crane and let in (respectively lowered into) the cryostat, hence the name. The
support for the tube is situated in the centre of the lit. The tube vacuum feed-through
(TVF), fitted with a KF502 vacuum flange to the tube support, is arranged around the
tube and positions as well as mechanically holds the tube in the centre of the lit, see
dashed box marked with “TVF” in Fig. 4.3 (tube). The TVF is vacuum tight enough
to support low vacua using rubber O-rings shown as blue circles. At the end of the inox
steel tube, the inner vacuum chamber (IVC) is mounted, which provides room for the
sensor holder. The IVC is evacuated prior to the measurements and then filled with helium
gas to a pressure of ∼5×10−2 mbar. This provides an excellent thermal contact whilst
maintaining a breakdown voltage above 1000 V. To be specific, the chosen pressure is below
the position of the minimum of the Paschen curve, which describes the breakdown voltage

2KF XX = “Kleinflansch-Schnellverbindung” with nominal diameter of XX millimetre.
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4.3. MEASUREMENT SET-UP

Figure 4.3.: An overview of the set-up including the cryostat with its various mechanical
and electric connections is shown schematically, see text for details. On the
right, the blueprints of the tube supplying the electric connections to the IVC,
and of the IVC itself are illustrated.

as a function of the pressure. At ∼5×10−2 mbar the breakdown voltage UB increases rapidly
with decreasing pressures, i.e. dUB/dp < 0.

A series of photographs of the set-up is shown in Figs. 4.4, 4.5, 4.6. Different mechanical
parts are denoted with Arabic numerals 1, 2, ..., electric connections are denoted with Latin
capital letters A, B, C, and cryogenic/vacuum related connections with Greek letters α, β, ...
. The mechanical parts are: The head of the tube (1), the tube itself spanning from top to
bottom in the left most picture of Fig. 4.4, the inlet (2) with its heat shields (3), the inner
vacuum chamber (4), and the connection between tube and chamber (5). The connections
of the inlet are: Vaporized helium out (α), pressure measurement for the cryostat volume
(β), connection for the syphon used for liquid helium filling (γ), the support for the tube
and its custom-made TVF (tube and TVF mounted, δ), and the connection for the level
gauge (ε), which measures the liquid helium level in the cryostat. At the head of the tube,
ζ marks the connection to the vacuum pump for the tube/IVC system, and η marks the
connection for the pressure sensor of the tube/IVC system, cf. Fig. 4.5 (middle). Besides
the vacuum related parts, the head also provides the electrical feed-throughs for signal and
temperature measurement as well as for the heater. The head has a plate providing four
SMA feed-throughs on the top. The inside of the tube, i.e. the signal cable, heater cables,
and temperature sensor cables, plus the cable support, are shown in Fig. 4.5 (top right,
bottom right without tube, bottom left with tube). The SMA connection of the signal
read-out is marked with A on the head side, and with A’ on the IVC side of the set-up.
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Figure 4.4.: Photographs of the set-up: The inlet with the tube, the head, and the IVC
seen sideways (left), the inlet in topview (top), the IVC (bottom middle),
and the tube-IVC connection (bottom right).
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1 B
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A'    B'

ζ

     η
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Figure 4.5.: Photographs of the set-up: The tube head together with the electrical con-
nections for signal and temperature measurements and the heater connection
(left). Details of the signal line without tube (right).
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                B'

Figure 4.6.: Photographs of the set-up: The assembled detector holder (top left), its var-
ious parts (top right), and the step-by-step assembly (middle and bottom
row). (design patented by CIVIDEC Instrumentation GmbH)
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(A) (B)

Figure 4.7.: A schematic cross-section view of the detector holder (A) are shown next to
the principle of operation of the 4-point temperature measurement (B).

B and B’ denote the connections for the heater and C and C’ those for the temperature
measurement, head side and IVC side respectively.

The electrical part of the set-up used for the presented measurements consists of a PCB
sensor holder providing 50 Ω read-out lines, a thermal heater, and a CERNOX temperature
sensor. A hole of Ø = 1 mm at the bottom of the sensor holder collimates the α-particles
from the 241Am source and ensures that they impinge the detector only within the met-
allised area. The 241Am source is located at a distance of 1.5 mm from the diamond’s
bottom electrode and the high voltage is applied to the top contact. The sensor holder
is vertically inserted into the cryostat. An accurate temperature measurement (∼1 %) is
ensured by placing a T-shaped copper brick on the outside of the sensor holder, which has
been mechanically fixed to the holder for good thermal contact. The T-brick has a hole in
which the temperature sensor is placed (C’). The electrical connection of the 50 Ω read-out
lines to the amplifier, which is located outside of the cryostat, is realised via a vacuum-tight
SMA feed-through.

A sketch of the cross-section view of the sensor holder is shown in Fig. 4.7 (A). Figure 4.6
(second and third row) illustrates a step-by-step assembly of the holder. From left to right:
The bottom PCB with the SMA jack, placement of the second PCB, insertion of the
diamond, and insertion of the copper-plated beryllium spring for the realisation of the top
contact. Then, placement of the top PCB, fixing with screws, placing of the 241Am source
on the bottom PCB, and placing of the copper plate for the heater fixation and of T-brick
for temperature sensor on the top PCB.

The temperature measurement is realised via a 4-point measurement of a resistor, which
has a temperature dependent resistance. Figure 4.7 (B) illustrates the principle of oper-
ation: A current source provides a constant current through the resistor R. The voltage
drop over the resistor is measured on separate cables and is read with a Keithley 6517B.
The resistivity is readily obtained by R = ∆U/I. A table provided by the manufacturer
reads the calibrated translation from resistance to temperature. Compare also Fig. 4.7 (B)
with C’ in Fig. 4.5.

The temperature adjustment is realised via two in series connected polyimide thermofoil
heater manufactured by Minco [80]. With a fixed voltage applied to the heaters, the pro-
duced heat in a resistor R is P = U · I = U2/R. A constant energy input heats the holder
and the sample. The sample and the holder are in thermal contact with the low pressure
helium gas inside of the IVC. The gas is in thermal contact with the inner wall of the IVC,
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Figure 4.8.: The schematics of the α-TCT set-up.

whose outside wall is in contact with the liquid helium. Therefore the heat produced by the
heaters is dissipated and a steady-state is reached between heat dissipation and heating,
resulting in an adjustable, stable sample temperature.

The electrical schematics of the signal reading is shown in Fig. 4.8. The amplifier is AC-
coupled to the HV line via a 1 nF capacitor. As electron-hole (e-h) pairs are created close
to the bottom contact, one charge carrier type is collected there almost instantly, whilst
the other drifts through the entire bulk along the [001] lattice direction to reach the top
contact. Hole (electron) induced currents are read if a negative (positive) bias voltage is
applied to the top contact. A Keithley 2410 is used in order to supply the bias voltage.

The α-source has an activity of roughly 40 kBq resulting in a particle flux of < 50 Hz
for the chosen collimator size. Polarisation effects in the bulk of the sample due to strong
radiation are thus avoided. In order to cross-check non-occurrence of polarisation effects,
pulses have been compared for different radiation durations of the SUTs. The carrier transit
time measured after ten minutes and after 100 minutes of radiation agree to better than
< 1%. Additionally, the sample was flipped over and current pulses were compared between
before and after flipping. No significant differences are found.

The α-particles emitted from the 241Am source have an energy of ∼5.5 MeV. The source
is sealed with a palladium layer of ∼1.8 µm thickness. Taking into account the sealing and
the metallisation of the SUT, the α-particles reach the bulk with ∼4.6 MeV, corresponding
to 3.5×105 created e-h pairs in the bulk material under the assumption of an average e-h
pair creation energy of 13.25 eV [66]. The measurements are consistent with space-charge-
free (SCF) current measurements for all applied voltages.3 At the lowest absolute applied
bias voltage (30 V), the detector capacity is charged with 6×10−11 C on the electrodes,
or 0.37×109 e, which is much larger than the number of induced e-h pairs per α-particle.
Hence, the induced charge does not change significantly the electric field in the bulk region.

A 2 GHz, two-staged, bipolar transistor amplifier with an amplification factor of AQ
amp =

(138±7) at 3.3 pF input capacitance, an rms noise at the output of σnoise = 2.8 mV at 3 GHz
bandwidth, and an input resistance of Rin = 55 Ω amplifies the signal before it is read via
an oscilloscope. The amplifier, built for diamond applications by CIVIDEC [81], has been
tested and characterised prior to the measurements with test pulses of known amplitude
and width. It shows a linear behaviour in the tested range from 10 µV to 1000 µV input
amplitude. The minimum resolvable rise time with a 2 GHz amplifier is 180 ps. The cut-off
frequency at −3 dB within a RC-circuit is fcut = 1/(2πRin (Cd + Cstray)). Including stray

3The electric field is changed only locally by the created free charges.
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Figure 4.9.: A visualisation of the data taken at one temperature-voltage pair: The 300
recorded pulses are shown as a two-dimensional histogram, a single pulse and
the average pulse are superimposed.

capacitances fcut ≈ 1 GHz, τcut ≈ 360 ps is estimated and confirmed by data, see Sec. 5.
The signal is read via a 1.6 m long, semi-rigid UT-85 cable to bring the signal out of the
cryostat, and a 3.15 m high quality coax-cable outside of the cryostat. Both cables have an
analogue bandwidth of ∼8 GHz. The digitalisation is realised via a LeCroy WavePro 7300A
with 3 GHz analogue bandwidth at a sampling rate of 10 GS/s. Note that no bandwidth
limitation nor filtering has been used. Only at small signal-to-noise ratios (SNR < 9),
i.e. mostly at low bias voltages where the rise times are > 2 ns, the bandwidth was limited
to 200 MHz. A possible effect will be discussed later. In summary, the read-out system is
fast enough to resolve fast signal rise times coming from the detector.

4.4. Data Taking and Processing

The oscilloscope’s trigger settings are chosen such that individual pulses are recorded, when
the pulse amplitude exceeds a certain threshold of a few millivolts in coincidence with a
signal width > 2/3 of the actual width, which has been determined prior to each data taking
with loose width cuts. However, the width cut was always > 2 ns. The combination of the
two conditions reduces the trigger rate of noise induced triggers to effectively zero with-
out cutting any signal whilst maintaining a short measurement duration of a few minutes
per voltage-temperature pair. For an α-TCT signal with width < 2 ns a drift velocity of
25×106 cm/s would be required for a sample thickness of 500 µm, which is much larger than
the saturation velocity, which is of the order of 15×106 cm/s.

Three hundred pulses were recorded for every given pair of temperature and bias voltage
setting. Between two voltage settings, the HV was turned off for half a minute. After a
temperature change, sufficient time was allowed to pass for the temperature to stabilise.

In the offline analysis the individual signals are corrected for trigger jitter and combined
to form an average pulse. Only signals with an SNR > 3 are considered in order to reject
pick-up triggers induced e.g. by other equipment in the laboratory. Figure 4.9 shows the
main results of the combination of the single pulses to form an average pulse. The two-
dimension scatter plot is 2D-histogram filled with 300 single acquisitions. A logarithmic
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Figure 4.10.: The schematics of the charge calibration set-up is illustrated. The calibration
capacity is Ccal = 0.9 pF, the calibration voltage is Ucal = 243 mV.

colour scheme at the side reads the number of entries per bin, with red (blue) marking
the highest (lowest) counts. One example of a single pulse is superimposed. Finally, the
averaged pulse (AVG) is also superimposed as a solid black line, the black line coinciding
with the red region of the 2D-histogram.

To verify the set-up, published results obtained with a scCVD diamond ([29], sample
CVD2 in [77]) have been compared to results obtained with the present set-up using again
the CVD2 diamond sample. The pulse widths agree to better than 2%.

4.5. Calibration

To calibrate the set-up in an absolute manner, a charge sensitive amplifier, which is used for
spectroscopic applications, has been used to measure the total induced charge as a function
of the electric field strength at room temperature. Prior to the calibration of the measured
charge with the α-source, the used charge amplifier was calibrated. The schematics of the
calibration set-up are depicted in Fig. 4.10. A calibration pulse of Ucal = (243±5) mV is used
to create a calibration charge Qcal using a capacitor Ccal with Ccal = (0.90±0.02) pF and an
attenuator A with A = (−10.0±0.5) dB. Hence, Qcal = Ucal · 10A/20 · Ccal = (69.2±4.5) fC,
which is close enough to the actual measured charge with α-particles. The capacitive load
at the amplifier input was matched to the capacitance of the detector holder later used in
the experiment: Cload = (10.1±0.3) pF. The test charge is amplified by the charge amplifier
producing a pulse with an amplitude of a = (592±12) mV. Thus, the amplification factor
is AQ

amp = a
Qcal

= 592 mV
69.2 fC = (8.6±0.6) mV/fC. Hence, the amplification factor is uncertain

by ∼7 %.
In Fig. 4.11 the measured charge (measured voltage multiplied by AQ

amp) using α-particles
is plotted as a function of the electric field strength at RT and normal pressure. Only in the
calibration set-up, the α-particles lose energy during their travel in air, and reach the bulk
with less than 4.6 MeV, namely Eair

α = 4.28 MeV. At lower field strengths, less than the full
charge is measured, and the measured charge increases with increasing fields, saturating
at about ∼0.8 V/µm at a total charge yield of Q0 = (59.5±4.2) fC. At ∼0.3 V/µm, the
measured charge surpasses 95 % of the total charge obtained at fields E ≥ 1 V/µm. An
explanation often given for the missing charge at moderate field strengths is the more
probable trapping of charge carriers at these fields, as their drift is slower. During the
slower drift, the charges cover a longer distance as their relative movement is dominated by
the fast thermal walk, compared to the slow drift of the centre of mass. That this is not
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Figure 4.11.: The measured charge as measured with a charge sensitive amplifier is plotted
as a function of the electric field. The full charge at high fields is obtained by
a straight line fit (solid line) from 0.8 to 1.8 V/µm: Q0 = (59.5±0.3) fC. The
error is the statistical uncertainty of the fit. At ∼0.3 V/µm the CCE surpasses
95 % (dotted line).

the case in the samples tested here is readily visible from the flat pulse forms presented
in Chap. 5. The flatness is evidence for an negligible amount of charges being trapped
during drift. It is thought that at lower biases, less charges start their drift, and hence less
total charge is measured whilst maintaining a flat signal current. The full model is given
in Chap. 5.

From the above measurement, also the average pair creation energy in diamond, Epair,
is readily derived using N0 = Q0/e

Epair =
Eair
α

N0
= (11.5±0.8) eV/pair. (4.6)

The measured pair creation energy lies two σ below the reference value of 13.25 eV.
However, as reported in Ref. [65], the pair creation energy in diamond is sample-dependent
and varies with the used radiation. It is also worth noticing, that their might be a difference
between the produced and the measured charge. The produced charge is likely to be
almost independent of the sample when compared between single-crystal specimen, as the
momentum transfer of the ionising α-particle to the shell electrons is unlikely to depend on
the quality of the crystal. But, as will be seen in Chap. 5, charges can bind rapidly into
neutral excitons, and hence avoid drift, and subsequently recombine. If the recombination
process is sufficiently fast, only a fraction of the produced charge actually starts drifting. It
might therefore be valid to assume, that the physical pair creation energy in diamond lies
below 13 eV, but that fast recombination (below 1 ns) of a fraction of the charges influence
the measurement of the total charge. If the fraction of drifting, and hence measured charges
of all produced charges is α = Qm/Q0, a corrected form of Eq. (4.6) becomes

Epair = α
Eα
Nm

, (4.7)
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where α < 1 and might be sample-dependent, radiation dependent, temperature dependent,
among others, and needs to be quantified for each case.
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5. RESULTS & DISCUSSION OF TCT
MEASUREMENTS

5.1. Induced Pulses from Carrier Movement

Hole and electron induced currents were recorded within a time window of 200 ns for temper-
atures between T = 295 K and 2 K. The bias voltage was set between 30 V ≤ |Ubias| ≤ 900 V
in different step sizes. Figures 5.1, 5.2, and 5.3 show the recorded and averaged pulses for
the samples S57, S52, and S79, respectively, at ±500 V (top row) and ±100 V (bottom
row) for holes (left column) and electrons (right column). The electron pulses are
shown inverted. Additional pulses for S57 are published in Ref. [82]. For temperatures
T ≥ 150 K and T ≤ 75 K fast rise times (trise < 2 ns) are observed for both hole and elec-
tron pulses at ±500 V. At lower fields both the rise time and the fall time increase. This
is due to an increased diffusion with longer transit times and a mechanism explained in
Sec. 5.3.

The rising edge of the signal marks the start of the charge drift. The falling edge marks
the collection of charges at the opposite electrode. The time resolution for a single pulse at
RT and E = 0.94 V/µm is σt = σnoise

slope ≤
2.8 mV

50 mV/1 ns
≤ 60 ps. Note that the initial distribution

of the charge cloud also has an effect on the signal edges.
To the second half of the rising edge a fit of the form C ·

(
1−exp (−t/τrise)

)
is performed to

all averaged pulses at RT. At fields larger than 0.8 V/µm the time constant of the rising edge
is 350 ps to 400 ps, and it increases towards lower fields. The value for the time constant
found here matches the expected cut-off frequency of the measuring system, cf. Chap. 4.

At RT the signal has an almost flat top during the drift as a consequence of the field being
constant over the diamond. In turn, this means that the net space-charge in the samples is
small. A net space-charge of the order of ∼1011 e/cm3 already leads to a significant change
in pulse shape, i.e. an exponential current behaviour. [29] Such intrinsic net space-charge
seems to be absent in all three samples. For ±500 V (E = 0.94 V/µm) the pulses become
shorter with decreasing temperature due to a higher carrier mobility as acoustic phonon
scattering decreases with decreasing temperature, see Sec. 5.2.4.

In contrast to the temperature range T < 75 K and T > 150 K, the observed pulse shape
depends strongly on the temperature for 75 K ≤ T ≤ 150 K. The rising edge develops
an 1 − exp (−t/τ) behaviour while the falling edge develops a long exponentially falling
tail. These features are attributed to a retaining-releasing mechanism, in which charges are
retained inside the initial high density charge cloud, produced by the α-particle, due to the
creation of excitons, as will be discussed in Sec. 5.3. These charges are then released with
a certain temperature dependent time constant, if they have not recombined before. Note
that neither polarisation nor a non-zero net-effective space charge can explain the apparent
temperature dependence of the shape. The same effect on the pulse shape has been verified
in all three SUTs. The decrease in area, i.e. total signal charge, with decreasing temperature
for T < 150 K is due to an enhanced recombination and increased release time constant
from the charge cloud. A model explaining the temperature dependence of the pulse shape
is presented together with a data based estimation of the involved time constants in Sec. 5.3.
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Figure 5.1.: Averaged current pulses for holes/electrons (left/right column) at various
temperatures for Ubias = ±500 V (top row) and Ubias = ±100 V (bottom
row) are shown for S57. The pulses for 2 K and 50 K overlap almost completely
for both electron and holes. Note as well the similarity of electron pulses at
150 K and 295 K.

The recorded current does not drop to zero after all charges have been collected but
rather undershoots slightly. This is likely caused by a non-perfectly optimised amplifier or
due to the capacitance of the cable connecting the detector and the current amplifier. The
amplitude of the undershoot correlates with the total induced signal, hence at temperatures
smaller than 150 K the undershoot decreases with decreasing temperature.

5.2. Temperature Dependence of Charge Carrier Properties1

The temperature dependence of the low-field mobility has not been studied for tempera-
tures below 80 K. Two studies, by Nava, Canali, et al. [66, 84, 85] and Gabrysch [86] for
holes, study the drift velocities and mobilities of charge carriers in diamond at below room
temperature. Here [82, 83], charge carrier properties are studied below 80 K, and for the
first time down to 2 K.

5.2.1. Transit time

The transit time, tt, is determined by the time difference between the end time and the start
time of drift, te and ts, respectively, hence tt = te − ts. A function f(t;P ) is fitted to each

1cf. Ref. [83]
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Figure 5.2.: Current pulses for S52, see caption of Fig. 5.1.
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Figure 5.3.: Current pulses for S79, see caption of Fig. 5.1.

59



5. RESULTS & DISCUSSION OF TCT MEASUREMENTS

temperature [K]
1 10 210

 [
s

]
tr

a
n

s
it

t

­810

­30V

­40V

­60V

­80V

­100V

­200V

­300V

­500V

­900V

holes

(A)

temperature [K]
1 10 210

 [
s

]
tr

a
n

s
it

t

­810

40V

60V

80V

100V

200V

300V

500V

900V

electrons

(B)

Figure 5.4.: The transit times for holes (A) and electrons (B) at various temperatures and
fields are shown for S57. Note the double logarithmic scale. Lines are drawn
for constant voltages in order to guide the eye.

current pulse in order to find te and ts. f(t;P ) is a function of time and a set of parameters P
incorporating two complementary error functions (2−Erfc(t−ts)) and Erfc(t−te) describing
the rising and the falling edge, respectively. Additionally, an exponential component of the
form (1− exp (−(t− ts)/τ)) − Θcol(t; te) with Θcol(t; te) = 1 − exp (−(t− te)/τ) for t > te
and Θcol(t; te) = 0 otherwise, is allowed, cf. Eq. (3.7). The error functions describe a
Gaussian probability distribution for the start time of the drift around ts, and respectively
a collection at the opposite electrode around te. The 50% points mark ts and te, respectively.
The exponential part accounts for the charge release from the inner part of the charge cloud
and its respective collection.

The influence of the integration effect of the sensor capacitance on the transit time has
been evaluated. For this, measured voltage pulses um(t) have been translated into current
pulses im(t), corrected for the integration effect using

im(t) =
1

AampRin

[
um(t) +RinCd

dum(t)

dt

]
. (5.1)

The difference in transit time between input capacitance corrected current pulses and non-
corrected current pulses is negligible. The correction term has thus been omitted.

The measured transit times are shown in Fig. 5.4 for S57 as an example. All three SUTs
show the same behaviour. Transit times range from 3 ns to 40 ns for field strengths and
temperatures examined in this work. Experimental sources of uncertainties affecting the
measurement of the drift velocity are listed below including an estimate of their values.

(1) The uncertainty in sample thicknesses is estimated to be < 1%.

(2) The error in the measurement of the transit time σtt depends on the ability to identify
the rising and the falling edge, which in turn correlates with the signal-to-noise ratio
(SNR). The SNR depends on the temperature and the electric field. σtt is estimated as
σtt = σnoise

slope . At room temperature (low temperature) and E ≈ 1 V/µm, this approach
leads to uncertainties of the transit time measurement of approximately 1% (2%),
and up to 4% at low fields.

(3) At low SNRs the bandwidth limit was used in order to extent the accessible measure-
ment range towards lower electric fields. The bandwidth limit leads to slower rising
and falling edges. The effect on the transit time at Ubias = 100 V at RT is ∼1 %. At
lower biases the rising/falling edges are slower, hence the effect is smaller.
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(4) Errors due to a possible non-uniformity of the electric field can be neglected, as a
net-space charge seems to be absent in the tested samples.

(5) The uncertainty in the electric field strength is conservatively estimated to 1%.

(6) The uncertainty of the temperature measurement is about 1%.

Figure 5.4 (A) shows how the transit time for holes increases with increasing temperature
over the entire temperature range, and how it decreases with increasing field strength over
the whole field range. For electrons, Fig. 5.4 (B), the transit time decreases with increas-
ing field but does not monotonically increase with increasing temperature for all biases.
Only at high biases, down to 500 V, the transit time increases with increasing temperature
over the whole temperature range. For smaller biases, a local maximum emerges, being
more pronounced with decreasing bias. The position of the local maximum shifts to lower
temperatures with decreasing bias. The abnormal behaviour of the electron transit time is
likely to be caused by a re-population effect (see Sec. 2.2.7), a well-understood phenomenon
in silicon [87]. It was recently observed in high-purity scCVD diamond [88], but at much
lower temperatures and fields. A theoretical model that explains the main features of the
observed electron transit times is given in Sec. 5.4.

5.2.2. Drift velocity

The recorded signal is induced by the movement of all drifting carriers. Hence the measured
transit time is the average over their entirety. The measurement of the transit time tt allows
to calculate the average drift velocity as

vdrift(E) =
d

tt(E)
. (5.2)

For holes a drift velocity of vhdrift(295 K) = (8.69±0.05)×106 cm/s and for electrons of
vedrift(295 K) = (6.28±0.04)×106 cm/s is measured averaged over all samples at 0.94 V/µm.
More values are given in Tab. 5.1.

Figure 5.5 shows the average drift velocity for holes (left column) and electrons (right
column) as a function of the electric field for various temperatures. The bottom row shows
the results in double logarithmic scale. The trend of the drift velocity is inverse to the trend
of the transit time discussed above. For holes the drift velocity increases for a constant bias
voltage with decreasing temperature. Likewise, it increases for a given temperature with
increasing field strength and saturates at high fields, the asymptote yielding the saturation
velocity. For electrons the deviation from the expected behaviour is again visible at low
fields. Uncertainties are obtained using error propagation.

The Drude model of transport properties of electrons in materials [28] predicts a linear
dependence of the drift velocity on the electric field vdrift = µ0E. It is well known that this
only holds true for low field strengths. With increasing fields the drift velocity saturates
at a value vsat as the carriers acquire more energy from the field in between scattering
processes and hence obtain a higher effective temperature than the lattice. This results in
frequent emission of optical phonons. [13] Hence, the field dependent drift velocity [44]

vdrift(E) = µ(E)E =
µ0E

1 +
µ0E

vsat

, (5.3)
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Figure 5.5.: The drift velocity is plotted against the electric field for different temperatures
for S57 in linear scale ((a), (b)), and double logarithmic scales ((c), (d)). The
superimposed solid lines are fits according to Eq. (5.3). The dotted line shows
the saturation velocity for holes, which is independent of the temperature, see
Fig. 5.6. The electron saturation velocity is not constant.

is used, where µ0 is the low-field mobility, cf. Sec. 2.2.7. The model reduces to the Drude

model at low fields (µ(E)
E→0−−−→ µ0) and accounts for a saturation velocity vsat towards high

fields.
Equation (5.3) is fitted over the entire field range to both the electron and the hole data

in order to check the validity of the model. The fits are superimposed in Fig. 5.5. For holes
the model describes the data very well at all temperatures with a χ2/ndf . 1 using the
uncertainties discussed above. In order to obtain a better estimate for the uncertainties, the
uncertainties are decreased until χ2/ndf = 1. For electrons, a clear deviation from the model
is visible, most easily spotted in the double logarithmic presentation, as Eq. (5.3) does not
incorporate a possible re-population effect in the low field region. Since the model does not
describe the electron data well at low fields, the procedure to adjust the uncertainties used
for holes is not feasible for the electron data. Instead, the same corrections as obtained
for the hole data is used, assuming the same temperature dependence of uncertainties for
electrons and holes.

In order to extract the saturation velocity and its uncertainty, the fit is done once in the
high field region. vsat is then fixed and the fit is redone in the low field region in order to
determine µ0. Note that for electrons the drift velocity is not yet a linear function of the
field at the lowest accessible biases. The performed fit can hence only serve to extract a
lower limit on the electron low-field mobility.
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Table 5.1.: The drift velocity (in 106 cm/s) for holes and electrons at various temperatures
for three SUTs at ±500 V (≈ 1 V/µm). The sample average is given in the last
two columns.

S52 S57 S79 AVG

vhdrift(T ) vedrift(T ) vhdrift(T ) vedrift(T ) vhdrift(T ) vedrift(T ) vhdrift(T ) vedrift(T )

295 K 8.72 ± 0.08 6.33 ± 0.06 8.73 ± 0.08 6.30 ± 0.06 8.61 ± 0.07 6.20 ± 0.06 8.69 ± 0.05 6.28 ± 0.04
150 K 11.34 ± 0.12 8.36 ± 0.10 11.38 ± 0.16 8.29 ± 0.12 11.12 ± 0.12 8.06 ± 0.10 11.28 ± 0.09 8.24 ± 0.07
2 K 12.42 ± 0.15 9.79 ± 0.12 12.52 ± 0.19 9.71 ± 0.15 12.48 ± 0.20 9.60 ± 0.17 12.47 ± 0.11 9.70 ± 0.09

5.2.3. Saturation velocity

The fit results of the parameters vhsat and vesat as a function of temperature are shown
in Fig. 5.6 for holes (left) and electrons (right). The saturation velocity for holes are
vhsat(295 K) = (14.2±0.2)×106 cm/s and vhsat(2 K) = (14.2±0.2)×106 cm/s, and for electrons
vesat(295 K) = (13.2±0.3)×106 cm/s and vesat(2 K) = (14.2±0.2)×106 cm/s averaged over all
samples. The values found at room temperature are in good agreement with results reported
earlier. [29]

The temperature dependence of the saturation velocity was modelled to follow [41]

vsat =

√
8Eopt

3πmdos
tanh

(
Eopt

2kBT

)
, (5.4)

predicting an almost constant saturation velocity between 2 K and RT, as Eopt = 163 meV.
In this work, the hole saturation velocity vhsat is found experimentally to be almost indepen-
dent of the temperature. However, this seems not to be the case for electrons. For holes, a
constant fit to the saturation velocity data is done over the whole temperature range for each
sample individually. The found values are vhsat(S52) = (14.21±0.06)×106 cm/s, vhsat(S57) =
(14.28±0.07)×106 cm/s, and vhsat(S79) = (14.20±0.07)×106 cm/s, with a sample average
of vhsat = (14.23±0.04)×106 cm/s. For electrons, vesat seems to stabilise only below 100 K,
and a constant fit is performed in this region. Regarding the three SUTs, the fits yield
vesat(S52) = (14.23±0.19)×106 cm/s, vesat(S57) = (14.31±0.22)×106 cm/s, and vesat(S79) =
(14.15±0.23)×106 cm/s, with a sample average of vesat = (14.23±0.12)×106 cm/s. It is in-
teresting to see that at low temperatures the saturation velocity for electrons and holes are
equal within their uncertainties.

5.2.4. Low-field mobility

The fits result in a sample averaged low-field mobility of holes (µh0) and a lower limit
of the low-field mobility of electrons (µe

0
) at RT of µh0(295 K) = (2534±20) cm2/Vs and

µe
0
(295 K) = (1850±23) cm2/Vs, respectively, in good agreement with Refs. [29, 30]. The

obtained fit values for µ0 for the SUTs as a function of temperature on double-logarithmic
scale are shown in Fig. 5.7. The fit results for 295 K, 150 K, and 2 K are summarised in
Tab. 5.2. The stated uncertainties are the statistical uncertainties resulting from the fit
according to Eq. (5.3).

For holes, the low-field mobility increases with decreasing temperature over the scanned
temperature range saturating towards ultra-cold temperatures. The lower limit of the
electron low-field mobility found in this work stays about constant between 300 K and
150 K, and only then increases in order to saturate again at ultra-cold temperatures.
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Figure 5.6.: The saturation velocity from effective mobility fits is plotted against the tem-
perature for holes (a) and electrons (b). Note the zero-suppression of the
y-axis. The hole saturation velocity is constant over the measured temperature
range, whereas the electron saturation velocity is not.

Table 5.2.: The low-field mobility in cm2/Vs for holes and electrons at various temperatures.

S52 S57 S79 AVG

µh0(T ) µe
0
(T ) µh0(T ) µe

0
(T ) µh0(T ) µe

0
(T ) µh0(T ) µe

0
(T )

295 K 2532 ± 35 1767 ± 24 2592 ± 37 1850 ± 23 2499 ± 30 1785 ± 23 2534 ± 20 1802 ± 14
150 K 6130 ± 130 1884 ± 24 6400 ± 170 1977 ± 28 5860 ± 120 1861 ± 28 6080 ± 80 1905 ± 16
2 K 10110 ± 320 3009 ± 93 11520 ± 460 3023 ± 97 11770 ± 670 3154 ± 96 10740 ± 250 3061 ± 55

5.2.5. Modelling µ0

Theoretically, at temperatures around 300 K the low-field mobility is limited by the acoustic
phonon scattering (APS) following a behaviour like µAPS ∝ Tα with α = −3/2 [34]. A fit
µAPS(T ) = µ0

(
T

300 K

)α
is hence performed in the region from 200 K to 300 K to the hole

data (long dashed line in Fig. 5.7 (inset)). The fit describes the experimental data well
and the fit values are listed in Tab. 5.3. The line is continued for the reader in order to
illustrate the dependence of the fit towards lower temperatures. A sample averaged value
of αh = −1.48 ± 0.04 is found in agreement with the theoretical predictions for acoustic
phonon scattering. For electrons, the measured lower limit of the low-field mobility is about
constant, αe ≈ 0, between 150 K and 300 K. In Ref. [89] a value αe = −0.2 is reported,
supporting as well that the mobility is not dominated by the APS in this temperature and
field region.

Below 200 K, a clear deviation from the APS-only model is also observed for holes. For
both carrier types the low-field mobility saturates towards ultra-cold temperatures. This
saturation is attributed to the neutral impurity scattering (NIS), i.e. the scattering of free
charge carriers off neutral impurities. For this process the scattering time is independent
of the lattice temperature. This behaviour was first theoretically derived by Erginsoy[36].
With diminishing APS, the NIS becomes dominant towards ultra-cold temperatures.

Mathiessen’s rule [32, 33] is used to form a new model combining the acoustic phonon
scattering and the neutral impurity scattering:

µNIS+APS(T ) =

(
1

µNIS
+

1

µ′APS(T )

)−1

. (5.5)
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Figure 5.7.: The low-field mobility is plotted against the temperature on double-logarithmic
scale. The inset shows the mobility for a zoomed range from 200 K to 300 K.
The results for all three samples are shown: S52 as �, S57 as �, and S79 as
×. Superimposed are the fits (solid and short dashed line) for the APS+NIM
model (see text) in the entire temperature range, and the APS-only model (long
dashed line) for T ≥ 200 K.

Equation (5.5) is fitted to the data for holes in the entire temperature range and for elec-
trons from 2 K to 150 K. The fit results (solid and long dashed lines, respectively, in
Fig. 5.7) are reported in Tab. 5.3. The model describes the hole data well over the entire
temperature range with χ2/ndf ≈ 1 using the uncertainties obtained from fitting Eq. (5.3).
For electrons, the model fits the data well for T < 150 K. The presented measurements
allow to quote experimental values for the NIS-model. A sample averaged mobility of
µhNIS = (11 130±120) cm2/Vs and µe

NIS
= (3058±27) cm2/Vs is measured. At 300 K, the fits

yield µ′,hAPS(300 K) = (3218±35) cm2/Vs and µ′,e
APS

(300 K) = (1410±140) cm2/Vs. Note that
an inclusion of the NIS in addition to the APS leads to a higher value of the APS-mobility
and a smaller value of the exponent α: µ′,hAPS > µhAPS and α′,h < αh.

For the neutral impurity scattering as derived by Erginsoy, the momentum relaxation
time (or scattering time) τR depends on the conductivity effective mass m∗c , the dielectric
constant ε, and the neutral impurity density nn:

τNIS =
8π3m∗c

2e2

20εε0nnh3
, (5.6)

which can be rewritten as

µNIS =
1.44×1022 cm−3

nn

m∗c/m0

ε/ε0
. (5.7)
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Table 5.3.: The fit results under the assumption of the APS-only model for holes (200 K−
300 K), the APS+NIS model for holes (2 K− 300 K), and the APS+NIS model
for electrons (2 K− 150 K) are listed.

APS-only model (200 K− 300 K) µhAPS(300 K) α χ2/ndf[
cm2/Vs

]
S52 2523 ± 41 -1.47 ± 0.07 1.2
S57 2574 ± 42 -1.53 ± 0.07 1.2
S79 2479 ± 38 -1.44 ± 0.07 2.9
AVG 2522 ± 24 -1.48 ± 0.04 -

APS+NIS model (2 K− 300 K) µhNIS µ′,hAPS(300 K) α′ χ2/ndf[
cm2/Vs

] [
cm2/Vs

]
S52 10760 ± 180 3257 ± 61 -2.14 ± 0.06 1.0
S57 11280 ± 210 3327 ± 63 -2.16 ± 0.06 1.0
S79 11550 ± 230 3104 ± 55 -2.06 ± 0.05 1.0
AVG 11130 ± 120 3218 ± 35 -2.11 ± 0.04 -

APS+NIS model (2 K− 150 K) µe
NIS

µ′,e
APS

(300 K) α′ χ2/ndf[
cm2/Vs

] [
cm2/Vs

]
S52 3027 ± 45 1370 ± 210 -1.86 ± 0.20 0.6
S57 3071 ± 48 1580 ± 270 -1.79 ± 0.23 0.4
S79 3078 ± 45 1310 ± 260 -1.98 ± 0.26 0.9
AVG 3058 ± 27 1410 ± 140 -1.87 ± 0.13 -

With the ratio m∗c/m0 ≈ 0.5, and µNIS ≈ 11 300 cm/Vs, a neutral impurity density of
nn ≈ 1.2×1017 cm−3 is found.

Since ε and nn are the same for holes and electrons, the ratio of the NIS mobilities for
holes and electrons reflects an upper limit on the ratio of the conductivity effective masses.

The sample averaged upper limit mass ratio rm is found to be rm =
m∗c,h
m∗c,e

= 3.65±0.05. The

electron conductivity effective mass is m∗c,e = 3
(

1
ml

+ 2
mt

)−1
, and is theoretically predicted

to be m∗c,e = 0.48m0 (Nava [84]) or m∗c,e = 0.40m0 (Fong [14]). The hole conductivity
effective mass spreads by a factor of 3.5 in the literature: 1.60 (Rauch [90]), 0.83 (Reggiani
[91]), and 0.46 (Fong [14]).

5.2.6. Conclusion

The transit time of free charge carriers in single-crystal CVD diamond is measured using the
transient current technique at field strengths from −0.06 V/µm to −1.8 V/µm for holes, and
0.08 V/µm to 1.8 V/µm for electrons at temperatures between 2 K and 295 K. α-particles
are used to create free charges in the sample. Three samples have been studied, all showing
the same behaviour. The measured pulse shape induced by the drifting charges resembles
an almost rectangular form between room temperature and 150 K reflecting an instant and
continuous drift of charge carriers with constant drift velocity. A drastic change in pulse
shape is observed at temperatures between 75 K < T < 150 K.
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The transit time for holes increases with increasing temperature and decreasing field.
The transit time for electrons increases monotonically with increasing temperature only at
high fields E & 1 V/µm and shows a different behaviour than the one for holes at low fields.

The drift velocity saturates at all temperatures for high fields. The hole saturation ve-
locity is constant over the measured temperature range, whereas the electron saturation
velocity stabilises only below 100 K. The saturation velocity for holes and electrons, aver-
aged over all samples, are

• vhsat = (14.23±0.04)×106 cm/s and

• vesat = (14.23±0.12)×106 cm/s for T < 100 K.

Electrons and holes seem to have the same saturation velocity for T < 100 K.
At RT the measured, sample averaged values of the low-field mobility, namely

• µh0(295 K) = (2534±20) cm2/Vs and

• µe
0
(295 K) = (1802±14) cm2/Vs,

agree well with earlier results. The low-field mobility in diamond has been measured down
to 2 K for the first time:

• µh0(2 K) = (10 740±250) cm2/Vs and

• µe
0
(2 K) = (3061±55) cm2/Vs.

The mobility values at 2 K are a crucial input for the description of damage curves in scCVD
diamond. [92] There, radiation induced trapping centres degrade the quality of the crystal,
and substantial charge loss is observed with increasing irradiation.

Between 200 K and 300 K, the acoustic phonon scattering describes well the temperature
dependence of the hole low-field mobility. The fit µAPS(T ) = µ0

(
T

300 K

)α
is performed and

αh = −1.48 ± 0.04 is found as the sample average in agreement with the theoretical value
of α = −3/2.

The presented measurements show a saturation of the low-field mobility towards ultra-
cold temperatures. Over the scanned temperature range the hole low-field mobility can
be explained assuming a combination of a constant mobility term stemming from neutral
impurity scattering and a temperature dependent term from acoustic phonon scattering:

µNIS+APS(T ) =
(

1
µNIS

+ 1
µ′APS(T )

)−1
. A fit yields the sample averaged exponents α′,h =

−2.11± 0.04 and α′,e = −1.87± 0.13 for holes and electrons, respectively. For the neutral
impurity scattering, the following sample averaged mobility values are found

• µhNIS = (11 300±120) cm2/Vs and

• µe
NIS

= (3058±27) cm2/Vs.

5.3. Temperature Dependence of the Pulse Shape

The induced current pulses for electrons and holes are shown in Fig. 5.8 for selected temper-
atures in the range from 2 K to 295 K, all at a bias voltage of Ubias = ±500 V, corresponding
to a field strength of E ≈ 1 V/µm for the samples S52, S57, and S79, respectively. In con-
trast to Figs. 5.1, 5.2, and 5.3, Fig. 5.8 shows the pulses for additional temperatures in
order to illustrate the development of the pulse shape in more detail. Very similar results
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are found in all three samples. Above 150 K and below 75 K, the measured current pulses
resemble a rectangular pulse reflecting an instant and continuous drift of a constant num-
ber of charge carriers with constant drift velocity, as was discussed in the last section. A
drastic change in pulse shape, and hence in the number of drifting charges as a function
of time, is observed at temperatures between 75 K < T < 150 K. The rising edge develops
an 1 − exp (−t/τ) behaviour, while the falling edge develops a long exponentially falling
tail. This behaviour is attributed to the creation of excitons, and especially their temper-
ature dependent evaporation lifetime, in the ionisation volume. The evaporation lifetime
of excitons, i.e. the average time needed for the thermal excitation of an electron bound in
an exciton to the conduction band, features an exp (Ex/kBT )-dependence, see Sec. 2.2.9.
It increases in the scanned temperature range from ∼30 ps (300 K), to ∼10 ns (100 K), to
∼150 µs (50 K), and even longer towards 2 K. The evaporation process is in competition
with a recombination process with lifetimes of the order of nanoseconds.

The integral of the current pulses is constant between room temperature and 150 K,
decreases to about one third of the RT-value towards ∼75 K, and remains at this level
towards even lower temperatures. Note that the appearance of tails and decrease in area
set in at the same temperature T ≈ 150 K. Furthermore, the onset of this unexpected
behaviour is observed at the same temperature for both carrier types, indicating an effect
that involves both carrier types simultaneously.

Highly ionizing α-particles are used to create free charge carriers at a density of about
1021 cm−3 in the bulk of the diamond. Additionally, the α-particles heat the ionisation
volume. In this hot, high density charge cloud, excitons and free electron-hole pairs are
in thermal quasi-equilibrium with each other. [51] Firstly, the drift of free charges out of
the ionisation volume towards the opposing electrode and secondly the recombination of
excitons decrease the density of charges in the volume and perturb the quasi-equilibrium.
A new quasi-equilibrium state is reached by the subsequent evaporation of excitons.

The current induced by the evaporated charges drifting under the influence of the electric
field is again read using the transient current technique. The TCT is often used to measure
the average drift velocity of free charge carriers in, e.g., semiconductors by measuring the
transit time [82, 29]. However, a constant drift velocity is reached almost instantaneously.
In case of a constant electric field along the drift direction, the current induced by the
drifting charges on a read-out electrode is directly proportional to their number: i(t) ∝
e · N(t) · vdrift. In this work, the current i(t), and hence N(t) is measured for various
temperatures between 2 K and room temperature and a field ranging from 0.08 V/µm to
1.8 V/µm. A model is presented comprising the creation and the subsequent evaporation or
non-radiative recombination of excitons, which predicts the observed dependencies of the
pulse shape and the pulse area.

5.3.1. The model

The impinging α-particles create free charge carriers within a small volume of the diamond
bulk. The ionisation volume is described by the penetration depth of the α-particle and
the radial track size. In Sec. 3.1.1, an average penetration depth of δp = 10.66 µm is
calculated making use of NIST data and the radial 1/e track size is reasonably estimated
to be r0 ≈ 2 nm. The aspect ratio of the ionisation volume is roughly 10 000/2 = 5000. The
short r0 is a result of the amount of energy transferred from the primary α-particle to the
electrons, which is of the order of 60 eV, cf. Sec. 3.1.1. Using the amount of charge from
the calibration measurement, Q0 = 59.5 C, the charge density in the first radial 1/e length
in the instant of the impingement is
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Figure 5.8.: The induced current pulses for electrons and holes at E ≈ 1 V/µm for various
temperatures for the samples S52, S57, and S79, respectively

n =
0.68 · 59.5 C

r2
0πδp

≈ 3×1021 pairs/cm3. (5.8)

As was discussed in Chap. 3, about cphon = 60 % of the energy of the α-particle is
converted into lattice vibrations, i.e. phonons. Owing to the small initial ionisation volume,
a possible increase in temperature in the ionisation volume needs to be accounted for.
Regarding the temperature range examined in this work, the sample temperature is always
smaller than the Debye temperature, ΘDebye, in diamond, with Θ = 1860 K. Therefore, the
specific heat capacity is given as

cV(T ) =
12π4R

5

(
T

ΘDebye

)3

. (5.9)
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Figure 5.9.: The sample temperature before the impingement of the α-particle is shown as
a black solid line. The “α-heating” (t = 0 ps) and the subsequent decrease
in temperature via phonon transport is indicated for various time steps. The
corresponding radii are r(t = 0) ≈ 2 nm, r(t = 1 ps) ≈ 16.4 nm, r(t = 2 ps) ≈
30.8 nm, etc.

Using cV · V · dT = cphondE, the temperature in the initial ionisation volume Tiv as a
function of the sample temperature T0 is

Tiv =
4

√
20Θ3

Debye

12π4R
·
cphonE

V
+ T 4

0 . (5.10)

With the specific heat capacity depending on the temperature to the third power, the tem-
perature of the initial ionisation volume rises almost independently of the sample tempera-
ture to about 450 K. The hot initial plasma then cools down by heat dissipation, i.e. phonon
transport. The increase in heated volume happens mostly transversal to the cylindrical
ionisation owing to the high aspect ratio of the ionisation volume. Averaging over the
transversal modes with phonon velocities of 12.8 nm/ps and the longitudinal mode with a
phonon velocity of 17.5 nm/ps, the heat dissipation occurs with roughly vphon = 14.4 nm/ps.
The radial size of the heated volume, i.e. the phonon front, increases therefore roughly as

r(t) = r0 + vphon · t (5.11)

with values r(t = 0) ≈ 2 nm, r(t = 1 ps) ≈ 16 nm, r(t = 2 ps) ≈ 31 nm, etc. Figure 5.9 shows
the temperature of the ionisation volume as a function of the initial sample temperature
for different time steps, and hence radii, assuming a homogeneous temperature distribution
within the heated volume. Within about 10 ps, the plasma cools to approximately 55 K at
a sample temperature of 2 K, see Fig. 5.10 (A, inset) and Fig. 5.10 (B, arrow).

The electrons inside the initially hot and dense ionisation volume thermalise to the band
edge along the dispersion lines. Additionally, they undergo thermal movement and diffuse.
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Figure 5.10.: The charge density (A) and the temperature (inset) of the ionisation volume
as a function of time is shown for a sample temperature of T = 2 K. (B)
The charge density is plotted against the ionisation volume temperature for
different times 0, 1, 2, ... ps. The critical temperature and critical density for
the formation of an EHL is added.

While the electrons have not thermalised yet, their drift cannot be characterised in terms
of drift velocity/mobility, as these quantities are defined for carriers at the bottom of the
conduction band. Qualitatively, the electrons remain in the volume, that is heated by the
ionisation volume, for the following reason. If electrons are scattered behind the phonon
front, i.e. in the cold part of the bulk, these electrons lose their energy within a few scattering
processes and diffuse further with a diffusion constant given by the sample temperature,
which is colder than the ionisation volume. In the extreme case of T0 = 2 K, the electrons
almost stop to diffuse once they are ahead of the phonon front. Therefore, the excited
electrons remain approximately within the volume heated by the phonons. Making use of
this assumption a rough estimation of the electron density as a function of time is then the
one plotted in Fig. 5.10 (A). Furthermore, with the time dependence of the density and
the time dependence of the temperature at hand, the density can be plotted against the
ionisation volume temperature, shown in Fig. 5.10 (B). This plot shows as well the critical
temperature Tc and the critical density nc for the creation of an electron-hole-liquid (EHL),
i.e. the condensed state of excitons (values taken from [12]). The estimations above lead to
the conclusion that no EHL is created in the experimental situation discussed here. Hence,
the charges form an electron-hole plasma (EHP).

The electrons undergoing a scattering process with an α-particle are excited into free
states in the conduction band. Within 10−13...10−12 s these electrons thermalise via fast
intraband scattering processes to the conduction band minima. Owing to the fast diffusion
in the first picoseconds, a certain fraction of electrons and holes move to regions exhibiting
a lower free charge density, “far” from the track. There, the probability of the formation
of excitons is small. This creates an outer volume Vout with free electrons or holes, and
an inner volume Vin, where both carrier types are present at a sufficiently high density. In
this inner region, excitons form at a density n0 leaving a density n1 of free e-h pairs, with
the density ratio n1/n0 tending towards a quasi-equilibrium. [51] The situation is depicted
in Fig. 5.11 with (A) after the thermalisation but before the creation of excitons and (B)
after the creation of excitons.

The time scale of the exciton formation process is estimated to be [93]
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(A) (B)

Figure 5.11.: (A) After the thermalisation, the charges reside at the band edge (EC), with
some fraction of the charge being “outside” (nout), and the other part “inside”
(n1). (B) From n1, a certain fraction of free e-h pairs form excitons (n0). [51]

t0 =
1

σ · n · vth
, (5.12)

in analogy to charge trapping of free carriers in the bulk during drift. This would introduce
an exciton formation time, that depends on the radial distance from the track. As an
idealisation, a sharp edge is used in the calculation of the model, and it shall be seen,
if this assumption is valid. Within this idealisation, assuming a cross-section σ = r2

x π
with rx = 1.4 nm and an average thermal velocity vth ≈ 107 cm/s, a reasonable density
dependent exciton formation time scale of t0 ≈ 2 ps is found at an assumed average density
of n = 1018 cm−3, which is present after a “cooling phase”. [93]

In theory, the exciton is a composite boson. However, due to the small binding energy
of the exciton in comparison to the band gap, it does not behave at all like an elementary
boson, i.e. the electron is almost free and keeps its fermionic nature. Additionally, the
charge density in the ionisation volume is below the quantum concentration at all tested
temperatures, hence the population density ratio of excitons to free e-h pairs follows a
Maxwell-Boltzmann distribution if the population was unperturbed. However, the popula-
tion is perturbed by charge drift and recombination, where the charge drift decreases the
population n1 of free e-h pairs, and recombination decreases n0.

Non-radiative recombination processes are likely to dominate the exciton recombination
process in the samples used in this work, cf. Tab. 2.3. A further decay channel of an exciton
is the thermal dissociation with its associated lifetime being an exponential function of the
temperature, cf. Sec. 2.2.9. At RT, the thermal energy is about one third of the binding
energy (25 meV against 80 meV), which is high enough to break up excitons by exciting their
electron to the conduction band. The two processes compete with each other. While the
thermal dissociation process is highly temperature dependent, the recombination process
is thought to be not. Within an ensemble of free e-h pairs and excitons being in thermal
quasi-equilibrium, excitons will evaporate, if free electrons leave the ensemble volume in
order to reach a new quasi-steady-state. This drainage of free charges is caused by the
electric field.

Over time, all excitons either recombine or evaporate, and only the free electrons, includ-
ing those from evaporated excitons, start to drift towards the opposing electrode and hence
contribute to the measured current. The drifting charges are collected at the opposing
electrode after an average transit time tt = d/vdrift. The “start-drift-collect”-scheme was
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discussed earlier, cf. Chap. 3. The two different start distributions in Fig. 3.9 (top and
bottom) represent the charges that are initially in the outer volume and hence free (nout),
and those that evaporate from the exciton state and exit the ionisation volume (nexit),
respectively. In total, the pulse form is the sum of both. Combining the charges from the
inner and the outer volume, the induced current density, which is the proportional to the
measured quantity i(t), is

j(t) = e
(
nout(t) + nexit(t)

)
· vdrift. (5.13)

Assuming a Gaussian shape for the start time distribution of charges stemming from the
outer volume, nout(t) is

nout(t) = nout(0)

(
1

2

(
Erfc(t) + 1

)
− 1

2

(
Erfc(t− tt) + 1

))
(5.14)

The first term describes the rising edge as a shifted and normalised complementary error
function. The falling edge arises using Eq. (3.7).

In the following, nexit(t) is modelled under various assumptions. [51] It is duly noted,
that Prof. R. Sauer contributed the basic ideas on modelling the pulse shapes and the
measured total charge with its temperature dependence, and, additonally, the impurity-
assisted repopulation effect.

The free evaporation + recombination model

This model is reproduced from [94, 51]. The induced current is derived under the assump-
tion of a free evaporation process being in competition with a recombination process. If free
evaporation is assumed, the excitons start to evaporate (i.e. ionise) freely after their creation
with a temperature dependent time constant τth = t0 exp (Ex/kBT ), see Fig. 5.12. The rate
equation of n0(t) is given by the free, i.e. thermal, evaporation and the recombination term

dn0

dt
= − n0

τrec
− n0

τth
= −

(
1

τrec
+

1

τth

)
n0, (5.15)

with the solution

n0(t) = n0(0) exp (−t/τ), (5.16)

and

1

τ
=

1

τrec
+

1

τth
. (5.17)

The shape of the measured pulses is described by the time constant τ , to which is referred
to as the “shape constant”. The density n1(t) increases by the evaporation from n0:

dn1

dt
=
n0

τth
=
n0(0)

τth
exp (−t/τ). (5.18)

with the solution

n1(t) = n1(0) + n0(0)
τ

τth

(
1− exp (−t/τ)

)
. (5.19)

If additionally it is assumed, that all evaporated charges exit the ionisation volume quasi-
instantaneously, then nexit(t) = n1(t). Using Eq. (3.7), the drifting charge as a function of
time coming from the inner volume is
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Figure 5.12.: Two processes are depicted, which drain n0, namely the recombination with
τrec and the evaporation with either τth (free evaporation) or τevap (curbed
evaporation). [51]

nexit(t) =

{
n1(0) + n0(0) τ

τth
(1− exp (−t/τ)) , t ≤ tt

n0(0) τ
τth

(1− exp (−t/τ))− n0(0) τ
τth

(1− exp (−(t− tt)/τ)) , t > tt,

(5.20)

However, this model has a drawback, as the density ratio n1/n0 is not constant over time
in this model: d(n1/n0)/dt 6= 0, as can be readily verified.

The curbed evaporation + recombination model

This model is a reproduction from [94]. The induced current is derived under the assumption
of a curbed evaporation process being in competition with a recombination process. If the
transport of the evaporating charges does not happen sufficiently fast, e.g. in the case of
low electric field, the excitons do not evaporate freely, but the evaporation is curbed by the
slow transport. In the above defined “inner” volume, the excitons are in quasi-equilibrium
with the free e-h pairs, and it is assumed that the population density ratio for all times is

n1(t)

n0(t)
= c · exp (−Ex/kBT ), (5.21)

where c is the ratio of the densities of states c = Φ1
Φ0

. The reservoir n1 decreases only by the
charge drift out of the ionisation volume, which is induced by the electric field. A fraction of
the amount of charge transported away from the plasma evaporates from n0 to n1 reaching a
new quasi-equilibrium. The described process is hence a “curbed” evaporation rather than
a free one, with a time constant τevap > τth replacing the thermal evaporation in Fig. 5.12.
Therefore, the time constant τevap, with which carriers are excited from the bound state to
the free state, depends on the temperature and the drift velocity:

dn1(t)

dt
=

vdrift

L
n1(t) =

vdrift

L
· n0(t) · c · exp (−Ex/kBT ) :=

n0(t)

τevap
, (5.22)

where L is a characteristic length over which a charge needs to be transported away in
order to exit n1, and
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τevap =
L

vdrift c
exp (Ex/kBT ). (5.23)

The form of τevap is particularly interesting as it incorporates two main aspects: On the one
hand, it reflects the influence of the charge transport by the inverse-proportional dependence
on the drift velocity. On the other hand, the Boltzmann-factor reflects the temperature
dependence of the evaporation process.

The charge density in the lower state n0 decreases owing to evaporation (τevap) and
recombination (τrec):

dn0(t)

dt
= −n0(t)

τrec
− dn1(t)

dt
= −n0(t)

τrec
− n0(t)

τevap
= −

(
1

τrec
+

1

τevap

)
n0(t), (5.24)

with the solution

n0(t) = n0(0) exp (−t/τ), and again
1

τ
=

1

τrec
+

1

τevap
. (5.25)

With the solution for n0(t), Eq. (5.22) becomes

dn1(t)

dt
=
n0(0)

τevap
exp (−t/τ). (5.26)

Solving Eq. (5.26) and assuming again nexit(t) = n1(t) leads to the expression

nexit(t) =

{
n1(0) + n0(0) τ

τevap
(1− exp (−t/τ)) , t ≤ tt

n0(0) τ
τevap

(1− exp (−t/τ))− n0(0) τ
τevap

(1− exp (−(t− tt)/τ)) , t > tt,

(5.27)

Here, nexit has almost the same form as in Eq. (5.20), but τevap replaces τth. This
model, however, has the same drawback as the free evaporation + recombination model.
Additionally, n1 cannot remain at a fixed ratio with n0 and simultaneously increase in order
to describe the amount of evaporated charges. In order to overcome this drawback, a proper
relation between the densities n1 and nexit needs to be established.

The curbed evaporation + recombination + transport model

This is a modified version of a model from [94] in which a Boltzmann equilibrium is assumed
to describe the physical situation, whereas this author argues for an equilibrium off the BM
distribution. This could be caused by the scale of the transport time being of the order of
the condensation time scale. 2

A characteristic transport time τtrans is introduced characterising the average time a
charge from n1 needs to exit the ionisation volume. Figure 5.13 illustrates the model with
the exciton density n0, the free e-h pair density n1, and the density of charges that have left
the ionisation volume nexit. The initially free charges nout are omitted in the figure. The
excitons can either recombine with a time constant τrec, or evaporate with a time constant
τevap. The transport time is thought to be inversely proportional to the drift velocity, and
depends on a characteristic length L: τtrans = L/vdrift.

2Note that all models discussed here do not include condensation after the cooling phase. A model that
includes the condensation is currently under development.
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Figure 5.13.: The exciton evaporation and recombination is governed by τevap and τrec,
respectively. The τtrans governs the transport from n1 to nexit. nout is omitted.

The reservoir n1 is emptied via charge drifting out of the ionisation volume with the
transport time τtrans and thus feeds nexit. Considering time slices of fixed length ∆t, in
every slice a fraction v

L∆t of n1(t) is transferred to nexit: [51]

nexit = n1(0)
v

L
∆t+ n1(1)

v

L
∆t+ n1(2)

v

L
∆t+ ... =

1

τtrans

t∫
0

n1(t′) dt′. (5.28)

With charges leaving the ionisation volume, a new quasi-steady-state is reached by the
evaporation of excitons into the free e-h pair state. A continuity equation states the equality
of evaporating and exiting charges – only the amount of exiting charges can evaporate – in
the thermal quasi-equilibrium:

n0

τevap
=

n1

τtrans
⇒ n1

n0
=
τtrans

τevap
:= ζ(τtrans, T ), (5.29)

with an a priori unknown function ζ(τtrans, T ), which defines the ratio of n1 over n0. Note,
that if τtrans is given by the drift velocity, and hence the electric field, the evaporation
lifetime adapts to the present τtrans, and the ratio n1/n0 can be assumed to be a function of
the transport time and the temperature only. Equation (5.29) comes with two assumptions:
(1) The condensation of free e-h pairs from n1 to n0 is negligible, and (2) τtrans � τrec. In
fact, the former follows from the latter. Assuming L, the characteristic length to leave the
ionisation volume is L = δp/2, the transport time is estimated to be of the order of τtrans =
5×10−4 cm/10×106 cm/s = 50 ps. As will be seen later, the recombination lifetime is of the order
of 10 ns, and hence indeed τtrans � τrec. That is, the density n1 is emptied much faster
by transport than n0 by recombination, but condensation would only take place in case
n0 was underpopulated in comparison to n1. As this is not the case, condensation can be
neglected. If one argues, that Eq. (5.29) should additionally account for recombination, one
could write n0

τevap
+ n0

τrec
= n1

τtrans
. So, only those charges evaporate that are transported away

and that do not recombine. Solving for n1/n0 results in n1/n0 = τtrans/τevap + τtrans/τrec.
But above, it was already argued that τtrans � τrec. The error committed by neglecting the
recombination in Eq. (5.29) is therefore negligible.

Again, the exciton density depends on the evaporation and the recombination lifetimes:

dn0

dt
= − n0

τrec
− n1

τtrans

(5.29)
= − n0

τrec
− n0

τevap
= −

(
1

τrec
+

1

τevap

)
n0. (5.30)
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The solution for n0(t) is the same as before

n0(t) = n0(0) exp (−t/τ),
1

τ
=

1

τrec
+

1

τevap
. (5.31)

n1 follows as a direct consequence from Eq. (5.29):

n1(t) =
τtrans

τevap
n0(0) exp (−t/τ). (5.32)

Inserting Eq. (5.32) in Eq. (5.28) results in:

nexit(t)
nexit(0)=0

= n0(0)
τ

τevap
(1− exp (−t/τ)) , (5.33)

and again, cf. Eq. (5.20) and Eq. (5.27),

nexit(t) =

{
n1(0) + n0(0) τ

τevap
(1− exp (−t/τ)) , t ≤ tt

n0(0) τ
τevap

(1− exp (−t/τ))− n0(0) τ
τevap

(1− exp (−(t− tt)/τ)) , t > tt,

(5.34)

Here, nexit has the same form as in Eq. (5.27), but on the one hand the explicit form of τevap

is different from the one in the “curbed evaporation + recombination”-model, and on the
other the ratio n1/n0 is time-independent: d(n1/n0)/dt = 0. Therefore, with the coupling
of n1 and nexit, n1 can be in thermal quasi-equilibrium with n0, whilst nexit gives rise to
the measured current.

Determination of ζ Physically reasonable appear continuous power functions in τtrans

and exponential functions of the inverse temperature, cf. as well Eq. (5.23). Physical
boundary conditions (BQ) for the form of ζ emerge naturally from the two extreme cases
of (1) no transport, i.e. infinite transport time, and (2) vanishing transport time. For
the former, the ionisation volume remains unperturbed and n1/n0 = ζ is given by the
Boltzmann distribution: ζ(τtrans → ∞) = c · exp (−Ex/kBT ) (BQ1). For the latter, the
evaporation happens freely, and the evaporation time is given by the free evaporation:
τevap = t0 exp (Ex/kBT ), and hence ζ(τtrans, T ) = τtrans/τevap = τtrans/

(
t0 exp (Ex/kBT )

)
(BQ2). A possible function for ζ is found by starting from the Boltzmann distribution
(c · exp (−Ex/kBT )), and allowing for a perturbation, that shifts the Boltzmann factor to
smaller values, as n1 is emptied by the drift: 1/(1 + δ). The perturbation δ should only be
a function of the two competing processes, and therefore of c · t0 and τtrans:

ζ(τtrans, T ) =
1

1 + δ
c · exp (−Ex/kBT ) =

1

1 +
c · t0
τtrans

c · exp (−Ex/kBT ). (5.35)

Obviously, this choice of ζ satisfies ζ(τtrans → ∞) = c · exp (−Ex/kBT ). Additionally, for
τtrans → 0, it is found that

τevap =
τtrans

ζ
= τtrans ·

[(
c · t0
τtrans

+ 1

)
c−1 · exp (Ex/kBT )

]
τtrans→0

= t0 exp (Ex/kBT ). (5.36)

The choice of ζ shall further be compared to the models without the incorporation of the
transport time. For that purpose, the evaporation time is written under the above choice.
Substituting Eq. (5.35) in Eq. (5.29) and solving for τevap leads to the expression
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τevap = (t0 +
τtrans

c
) exp (Ex/kBT ). (5.37)

For low electric field strengths, the drift velocity is low, and hence the transport time is
long (τtrans = L

vdrift
� c · t0). Thus,

τevap ≈
τtrans

c
exp (Ex/kBT ) =

L

c · vdrift
exp (Ex/kBT ), (5.38)

which reproduces the evaporation lifetime of the curbed model. The free evaporation at
fast drift times is already fulfilled by the choice of the boundary conditions. The curbing
thus results via the finite transport time. For τtrans →∞, also the evaporation time tends
towards infinity. This is reasonable: Without any charges leaving the ionisation volume, no
excitons can evaporate.

For the sake of completeness, the density ratio is explicitly written as

n1

n0
= ζ(τtrans, T ) =

τtrans

c · t0 + τtrans
c exp (−Ex/kBT ). (5.39)

For τtrans → ∞, n1/n0 approaches the Boltzmann distribution from below, i.e. as long as
the transport time is finite, n1 is slightly smaller compared to the static case, where it is
maximal. The faster the transport time, the smaller is the ratio n1/n0, since the charges
drift faster out of the ionisation volume than they can be replaced by evaporation.

It is out of the scope of this work to proof the model discussed above. However, the
model is confronted with data and thoroughly checked. It will be shown, that the model
derived above is capable of describing the measured data accurately.

Total induced charge

Comparing Eqs. (5.20), (5.27), and (5.34), it is noticeable that they differ only in the
evaporation time constant (τth or τevap), and in the prediction of the explicit form of τevap.
But the form of nexit is the same. Therefore, the density nexit can be used generically in
order to calculate a total induced charge, without having to specify the model itself.

Again, the general procedure to determine the total induced charge has been outlined in
Refs. [93, 94], which are followed closely with minor modifications. To calculate the total
induced charge, nexit(t) and nout(t) are integrated over time, modulo the appropriate factors
for the conversion into charge according to the Shockley-Ramo theorem. The integral is
split into two parts, i.e. (1) the main part from 0 to tt and (2) the tail part from tt to
infinity. The main part of the current is the sum of the carriers from the initially outer
charges plus the current induced by charges released before t = tt, c.f. Fig. 5.14. At t = tt,
those charges that started drifting immediately are collected, and only those that started
drifting after t = 0 form the tail. The two parts, main [93, 94] and tail, read

Qmain ∝
∫ tt

0

(
nexit(t) + nout(t)

)
dt = n1(0)tt +

τ

τevap
n0(0)

(
tt−τ + τ exp (−tt/τ)

)
+ nout(0)tt (5.40)

Qtail ∝
∫ ∞
tt

nexit(t) dt =
τ

τevap
n0(0)

(
τ − τ exp (−tt/τ)

)
(5.41)

Geometrically, it is readily clear from Fig. 5.14 that the sum of Qmain +Qtail forms the area
of a rectangle with height proportional to nout +n1(0) + τ

τevap
n0(0) and width tt. Therefore
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Figure 5.14.: A graphical illustration of the decomposition of the induced current is shown.

Qmain +Qtail ∝
(
nout + n1(0) +

τ

τevap
n0(0)

)
· tt. (5.42)

The integral of the pulse, Q =
∫
i(t) dt using Eq. (3.5), integrated up to tt is then

Qmain = Qout +
τ

τevap
Qin ·

τ

tt
exp (−tt/τ), (5.43)

and when integrated to infinity, i.e. several time constants,

Qm+t = Qmain +Qtail = Qout +
τ

τevap
Qin. (5.44)

5.3.2. Comparison of the model to the data

The models described above allow for two crucial revisions against data: (1) the prediction
of the total measured charge as a function of the temperature using Eqs. (5.43) and (5.44)
and (2) the prediction of the temperature dependence of the shape constant. Additionally,
the validity of the model is cross-checked using an n-type silicon sensor in order to compare
model predictions against another semiconductor.

The measured charge as a function of temperature

At first, the measured charge is analysed as a function of temperature and compared to the
model. Its predicted temperature dependence should be consistent with an exciton binding
energy of Ex = 80 meV. The measured charge as a function of temperature is shown in
Fig. 5.15 for electrons (A) and holes (B) at E ≈ 1 V/µm. The statistical uncertainty on the
charge is estimated to be around 1 %. The integral of the current pulses is constant at about
Q0 = (51.0±0.5) fC between room temperature and 150 K, decreases to about one third of
the RT value towards ∼75 K, and remains at this level towards even lower temperatures.
This behaviour is predicted by the model under discussion. The transport time at this field
strength is thought to be short enough in order for the evaporation to happen almost freely,
i.e. τevap = t0 exp (Ex/kBT ), and therefore τevap depends exponentially on the temperature;
it increases with decreasing temperature. Depending on the ratio τ/τevap, more or less
excitons recombine before they thermally dissociate leading to a lower/higher measured
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charge, cf. the second terms on the right hand side in Eqs. (5.43) and (5.44). Substituting
τ

τevap
=

1

1 +
τevap

τrec

in Eq. (5.44) and using τevap = t0 exp (Ex/kBT ) gives rise to a formula

fQ(T ), which can be fitted to the measured charge data. The model has four parameters:

(1) the total charge, (2) the outer charge, (3) the ratio
τevap

τrec
=

t0
τrec

exp (Ex/kBT ) :=

ε · exp (Ex/kBT ) and (4) the exciton binding energy Ex. The total charge Qtot and the
outer charge Qout are highly predetermined by the two plateaus before and after the charge
drop at about 51 fC and 17 fC, respectively, and the inner charge is then Qin = Qtot−Qout.
Additionally, the exciton binding energy is set to its theoretical value Ex = 80 meV. The
fit function for the measured charge Qm+t becomes

fQm+t(T ) = Qout +
Qin

1 + ε · exp (Ex/kBT )
, (5.45)

and only ε is a priori completely undetermined.
The fit function for Qmain is more complicated, as it involves the transit time tt and the

shape constant τ , and not only the ratio of t0 over τrec. Therefore, it contains four free
parameters (t0 and τrec plus Qtot and Qout), again with Qtot and Qout highly predetermined.
Note that t0 and τrec are not redundant, as their absolute values form τ . tt is taken from
data, i.e. a simple power law fit of the transit time as a function of the temperature at
E ≈ 1 V/µm. The fit function is then

fQmain(T ) = Qout +
Qin

1 + ε · exp (Ex/kBT )
· τ
tt

exp (−tt/τ), (5.46)

and τ is again given by Eq. (5.31).
The result of the fits for Qmain and Qm+t are tabulated in Tab. 5.4 for both carrier

types and the fit functions are superimposed as dotted lines in Fig 5.15. The inner charge
constitutes about 2/3 of the total charge at a field of E = 1 V/µm, the outer charge about
1/3, summing to a total of about 51 fC. Since t0 and τrec are independent, though appear
correlated in fQmain(T ), the fits result in estimates for both of them, but with a large
uncertainties:

t0 = (4±2) ps and τrec = (20±10) ns. (5.47)

Another estimation of t0 is obtained by the following consideration. At around 100 K, Qin

has decreased to half of its RT value, see Fig. 5.15. Therefore 1
1+

τevap
τrec

= 1
2 and hence τevap =

τrec. Both the recombination lifetime and the evaporation time at 100 K are ∼(14±2) K
(see next subsection), and therefore τevap = t0 exp (Ex/kBT ) ≈ 14 ns. Thus, t0 becomes

Table 5.4.: The results of fitting, firstly, Eq. (5.46) to the charge collected until tt (Qmain,
i.e. without the tail) and secondly Eq. (5.45) to the charge including the tail
(Qm+t) are listed for electrons and holes. The exciton binding energy is fixed
to 80 meV in both cases.

Qmain Qm+t

Qtot [fC] Qout [fC] t0 [ps] τrec [ns] χ2/ndf Qtot [fC] Qout [fC] 105 ε χ2/ndf

e 50.1±0.2 16.6±0.3 4±2 20±10 1.64 51.4±0.2 17.5±0.3 9.0±0.4 0.93
h 50.2±0.2 16.0±0.3 4±2 20±10 2.00 52.0±0.2 17.1±0.3 9.6±0.4 0.82

80



5.3. TEMPERATURE DEPENDENCE OF THE PULSE SHAPE

temperature [K]

0 50 100 150 200 250 300

c
h

a
rg

e
 [

C
]

0

10

20

30

40

50

­1510×

@ 500 Vm+t
mQ

(T)m+tQ
fit: f

@ 500 Vmain
mQ

(T) mainQ
fit: f

electrons

out
Q

tot
Q

(A)

temperature [K]

0 50 100 150 200 250 300

c
h

a
rg

e
 [

C
]

0

10

20

30

40

50

­1510×

@ ­500 Vm+t
mQ

(T)m+tQ
fit: f

@ ­500 Vmain
mQ

(T) mainQ
fit: f

holes

out
Q

tot
Q

(B)

Figure 5.15.: The measured charge as a function of the temperature is shown for Qmain and
Qm+t for electrons (A) and holes (B).
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t0 = (14±2) ns/ exp
(
0.08 eV/(kB · 100 K)

)
= (1.3±0.2) ps, (5.48)

in reasonable accordance with the t0-value obtained from the Qmain-fit. A third estimation
results from the Qm+t-fit (Eq. (5.45)), where only the ratio t0/τrec appears:

ε = t0/τrec = 9.3±0.3×10−5 (5.49)

averaging the results from electrons and holes, see Tab. 5.4. Using again the evaporation
time τevap ≈ (14±2) K, it is found that

t0 = (14±2) ns · ε = (1.3±0.2) ps. (5.50)

With t0 ≈ 1 ps, the evaporation time at 50 K and 300 K follow to be of the order of 150 µs
and 30 ps, respectively, as was reported in Tab. 2.3. It is emphasised that the experimentally
found scale of t0, namely 1 ps, is crucial for the description of the observed data. If t0 was
of the order of femtoseconds, the charge would not have decreased to half of its RT value
at 100 K, but at 58 K.

The fit result from the Qmain-fit for the recombination lifetime, τrec = (20±10) ns, is of
the same of order of magnitude as the measured one at 100 K, with the measured one within
one σ of the uncertainty of the fit result.

Additional measurements using MIPs and α-particles on silicon Equation (5.37), and
thus also Eq. (5.44), predict a strong dependence of the model on the exciton binding
energy. Therefore, if the model is accurate, the effects observed in diamond should also
appear in other semiconductors at about the same value of exp (Ex/kBT ). In silicon, the
exciton binding energy is ESi

x = 14.7 meV, and therefore Ex/E
Si
x = 5.44. Hence, excitons in

silicon are expected to thermally evaporate down to much lower temperatures than those
in diamond. This should manifest in the temperature at which the observed charge loss
sets in. In diamond the charge loss starts at about 150 K, in silicon it should thus set in
at about 28 K. The silicon sensor used for comparison is of n-type, float zone silicon, with
a bulk doping of about 6×1011 cm−3, a thickness of 290 µm, and a full-depletion voltage of
Ufd = 30 V.

Figure 5.16 compares the measured, normalised charge for holes as a function of the
temperature for diamond and silicon using α-particles, and for diamond using cosmic
muons. The absolute charge at RT measured with the silicon sensor at a bias of −500 V
is QSi,-500 V

tot ≈ 170 fC in accordance with the lower pair-creation energy of about 3.6 eV.

The charge normalised to QSi,-500 V
tot is shown in the figure for two different bias voltages

(triangles). Additionally, the normalised charge obtained with diamond is given (full black
circles, normalised to 52 fC). Two important effects are visible: (1) At a bias of -60 V,
i.e. E ≈ 0.2 V/µm, the charge loss appears at about 30 K, in good agreement with the
expectation from the exciton model (black triangles). (2) At high field strengths, no charge
loss occurs, see Qα-Si @ − 500V (red, tip-down triangles). The critical voltage, at which
no charge is lost, is ∼100 V (not shown). At this critical field strength, the electric field is
strong enough to tear apart the two charges bound into an exciton. The size of excitons
in silicon is about aSi

x = 3.6 nm. The electrostatic potential difference at both ends over
the size of the exciton at the critical field strength, and its ratio over the exciton binding
energy are

e∆ΦSi
crit = e

USi
crit

d
aSi

x ≈ e
100 V

290 µm
3.6 nm = 1.2 meV,

e∆ΦSi
crit

ESi
x

≈ 8 %. (5.51)
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Figure 5.16.: A comparison of the total measured charge using α-particles on diamond and
silicon, and MIPs on diamond. The charge loss in silicon sets in at about one
fifth of the absolute temperature in comparison to diamond due to the smaller
exciton binding energy. Using MIPs almost no charge loss is observed owing
to the reduced charge density and thus larger exciton formation time.

In diamond, this ratio is not reached in the measurements presented here:

e∆ΦDi
max = e

UDi
max

d
ax = e

900 V

530 µm
1.4 nm = 2.3 meV,

e∆ΦDi
max

Ex
≈ 3 %. (5.52)

From this estimation, it is evaluated that the full charge would be measured in diamond at
a bias of 2400 V, or E ≈ 4.5 V/µm.

A second comparison was performed with cosmic muons, which have MIP character at
the earth surface. A charge sensitive amplifier was used to collect signals induced by the
passage of cosmic muons through the diamond sample. The relative charge is also shown
in Fig. 5.16 (green squares). The relative charge loss at 80 K is considerably less in the case
of MIPs compared to α-particles. Also this is understood qualitatively within the exciton
model. Equation (5.12) reads the exciton formation time as a function of the charge density.
The charge density after the phonon cooling was estimated to be about 1018 cm−3 in the
case of α-particles. The charge density in the track of MIPs is considerably lower, about
3×1015 cm−3. [95] As a consequence, the exciton formation time in the MIP tracks is reduced
by a factor of roughly 300, and is therefore of the order of many hundreds of picoseconds
to a few nanoseconds. Only a few excitons therefore form in the early phase of the plasma,
and hence less are able to recombine at cold temperatures. The charge loss is then smaller
for MIPs compared to α-particles.

The fitted τ as a function of the electric field at room temperature

The shape constant at RT as a function of the field strength is expected to increase with
decreasing fields due to the increasing transport time, cf. Eq. (5.37). The transport time is
inversely proportional to the drift velocity, and hence a function of the field.
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Figure 5.17.: The fitted τ at room temperature as a function of the electric field strength is
shown. The solid line serves to guide the eye. The shape constant saturates
at high fields towards the cut-off time constant of the measuring system.

Figure 5.17 shows the fitted shape constant as a function of the field strength. The
shape constant clearly increases with decreasing fields below 0.8 V/µm and saturates at
high fields towards the cut-off time constant of the measuring system. The slower rising
edges are easily visible in Figs. 5.1, 5.2, and 5.3, when comparing pulses at 500 V with
pulses at 100 V. The fact that the rise time is sensitive to the field strength, allows the
conclusion that the recombination lifetime must be at least of the order of a few hundred
picoseconds, as the shape constant is the inverse sum of the recombination lifetime and the
evaporation lifetime. If τrec was considerably smaller, it would dominate τ , and hence the
rise time would not increase.

As a rough estimate, the evaporation lifetime is of the order of 1 ns. With τevap =
L

c·vdrift
exp (Ex/kBT ), an estimate for L/c is found: L/c = 1 ns·5×106 cm/s

22 = 2.3 µm. With
c ≈ 1, this is of the expected order of magnitude, i.e. the penetration depth.

The fitted τ as a function of the temperature

At all temperatures and fields, the modelled i(t) ∝ nexit(t) + nout(t) can be fitted to the
measured pulse shape of im(t); each fit resulting in a value for τ(T,E). One example of a fit
of i(t) to the measured pulse at 100 K and 500 V is shown in Fig. 5.18. The resulting shape
constant is τ(100 K, 500 V) ≈ (6.8 ± 0.1stat ± 1.0sys) ns ≈ (7±1) ns. The current induced
from charges stemming from the outer and the inner part of the cloud are shown separately
as dashed lines featuring the Erfc-shape and the exponential shape, respectively. The sum
forms the solid line on top of the data. Compare as well Fig. 5.14. At this temperature, half
of the inner charges recombine, thus 1

1+
τevap
τrec

= 1
2 . Hence, τevap(100 K) = τrec ≈ (14±2) ns.

The fitted shape constant τ is shown in Fig. 5.19 as a function of temperature (closed
circles) at E ≈ 1 V/µm. The error bars are the statistical errors resulting from the fit.
For both electrons and holes τ remains about constant at 0.4 ns between RT and 150 K.
Between 150 K and 90 K, the shape constant increases steeply.3 Due to the decrease of the
amplitude of the tail in the current pulses with decreasing temperature, the signal-to-noise

3A comparison to measured values in the literature is difficult, or impossible, as no measurement of exciton
properties in diamond using electric fields are known to the author.
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Figure 5.18.: The fit to the measured pulse at 100 K and 500 V and its components are
depicted.

ratio at T ≤ 90 K is too small in order to accurately fit the shape constant. The fitted τ
therefore decreases for T < 90 K. The corresponding region is marked as “insensitive”.

It is now checked, if the measured temperature dependence of τ can be explained within
the exciton model using the t0-value (1 ps) extracted from charge data. Using 1

τ = 1
τrec

+ 1
τevap

and τevap = t0 exp (Ex/kBT ) one finds

τ(T ) =

(
1

τrec
+

1

τevap(T )

)−1

=

(
1

τrec
+

1

t0 exp (Ex/kBT )

)−1

. (5.53)

A possible temperature dependence of the recombination lifetime is not allowed for. It is
further important to notice that the fitted shape constant cannot be faster than the cut-off
time constant, which arises from the cut-off frequency of the measuring system, cf. Chap. 4.
In fact, the cut-off constant adds quadratically to the physical shape constant, resulting
in the fitted shape constant. Using Eq. (5.53) and an additional such parameter τcut, a
function fτ (T ) is defined as

fτ (T ) =

√(
1

τrec
+

1

t0 exp (Ex/kBT )

)−2

+ (τcut)
2, (5.54)

which is to be checked against the data. Superimposed in Fig. 5.19 as dashed lines are
fτ (T ) with the exciton binding energy Ex = 80 meV, t0 = 1.3 ps, and three different
τrec = 7, 14, 21 ns. It is clear from Fig. 5.19 that Eq. (5.54) describes the experimental
data reasonably well using the afore mentioned Ex = 80 meV, t0 = 1.3 ps, and τrec = 14 ns.
Therefore, a combination of values Ex and t0 exists that consistently explains two important
parts of the data, i.e. the temperature dependence of both the measured charge and the
fitted shape.

Additional measurements using α-particles on silicon Again silicon is used to cross-check
the validity of the exciton model across another semiconductor. Similar to the effect of the
exciton binding energy on the set-in temperature of the charge loss, the set-in temperature
of the appearance of the tails should differ in silicon in comparison to diamond. I.e., as
in the diamond case, the tails should appear in silicon at the same temperature where the
charge loss sets in, so at a temperature of about 30 K, cf. Fig. 5.16.
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Figure 5.19.: The fitted shape constant τ is shown as a function of the temperature for
electrons (A) and holes (B) at 500 V. (C) and (D) show the results in ln (τ)
vs. the inverse temperature.
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Shown in Fig. 5.20 are the fitted shape constants for holes in diamond at E ≈ 1 V/µm
(closed circles), and in silicon at E ≈ 0.2 V/µm (black triangles) and at E ≈ 1.7 V/µm (red
triangles). The tails (and exponentially rising edges) set-in at about 150 K in diamond,
when the evaporation time scale reaches the order of nanoseconds. In silicon, this happens,
for low field strengths, at around 30 K due to the smaller exciton binding energy. This
corresponds to a similar exp (Ex/kBT )-value, as predicted by the exciton model. Worth
noting is that at high field strengths, where no charge loss happens in silicon, neither tails
do appear, as the excitons are broken up rapidly by the electric field.

The measured charge as a function of the electric field

The measured charge, Qm, is now analysed at fixed temperatures as a function of the field
strength. The difference between the initially produced charge charge and the measured is
defined as [94]

∆Q = Qtot−Qm ∝ Nout +Nin−
(
Nout +Nin

τ

τevap

)
= Nin ·

(
1− τ

τevap

)
= Nin

τevap

τevap + τrec
.

(5.55)
If τrec →∞, then ∆Q→ 0 and no charge is lost. In turn, if τevap →∞, all the inner charges
recombine and ∆Q ∝ Nin. Following this subdivision, the charge at fixed temperatures as
a function of the field strength is discussed in two parts: for T ≥ 150 K, and for T ≤ 75 K.

At T ≥ 150 K In this temperature range the evaporation time is considerably shorter
than the recombination time, τevap � τrec. Equation (5.55) therefore simplifies to [51]

∆Q = Qin
τevap

τrec
=Qin

c · t0 + τtrans

c · τrec
exp (Ex/kBT ) (5.56)

ct0�τtrans= Qin
L exp (Ex/kBT )

c · τrec

1

vdrift
. (5.57)

The choice c·t0 � τtrans shall be motivated by data: Figure 5.21 depicts the measured charge
Qm as a function of the inverse drift velocity for T = 295, 250, 200, 150 K. It decreases
from ∼52 fC at the highest field strength to ∼47 fC at E ≈ 0.2 V/µm. For temperatures
≥ 150 K, Qm shows a linearly decreasing dependence on the inverse drift velocity over
the shown range (e.g. -900 V on the left side to -100 V on the ride side for holes at RT).
No saturation towards high fields is observed, and the choice c · t0 � τtrans is therefore
justified. A saturation would be expected if the evaporation time were to saturate towards
t0 exp (Ex/kBT ) at high fields, as is mathematically possible, compare Eq. (5.37). At least
in the field strength range available in this work, no such saturation is evident promoting
the choice of c t0 � τtrans.

Superimposed in Fig. 5.21 as solid lines are fits of the form

fQm(1/vdrift) = Qm = Qtot −∆Q = Qtot

(
1− 2

3

L exp (Ex/kBT )

c τrec

1

vdrift

)
(5.58)

assuming Qin/Qtot ≈ 2/3, which allows for an extraction of the slope β = 2
3
L exp (Ex/kBT )

c τrec
.

The combination of the four fits results in a slope of β = (1.0±0.1) cm/s, thus

c · τrec =
2

3

L exp (Ex/kBT )

β
≈ 8 ns. (5.59)
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Figure 5.21.: The measured charge is shown for fixed temperatures as a function of the
inverse drift velocity for electrons (A) and holes (B). The solid line are fits
according to Eq. (5.58) and are explained in the text.

This is consistent with earlier estimates, assuming that the characteristic length to leave
the ionisation volume is L = δp/2 ≈ 5 µm = 5×10−4 cm – that is, a simple average over the
distance of all carriers to one end of the cloud for a uniform distribution of carriers. The re-
sults found agree for all three measured samples and for both carrier types. It is mentioned,
that experimentally the slope does not depend strongly on the temperature, see Fig. 5.21.
As the decrease in charge is proportional to τevap/τrec, and since τevap increases exponen-
tially with decreasing temperatures, it seems evident from data that also the recombination
lifetime has a temperature dependence. Further measurements are needed to clarify this
aspect. Additionally, it is mentioned, that the above mechanism explains Fig. 4.11, where
the measured charge is plotted against the electric field.

At T ≤ 75 K In this temperature range, the evaporation lifetime has increased largely
compared to the recombination lifetime. Therefore, all charges in the inner ionisation
volume recombine, and the charge loss is maximal. Only the outer charges add to the
measured current, and hence to the total charge. Figure 5.22 shows the measured charge
for fixed temperatures as a function of the electric field strength. At temperatures T ≤ 75 K
the charge is a linearly increasing function of the field. As all inner charges recombine, this
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Figure 5.22.: The measured charge is shown for fixed temperatures as a function of the
electric field strength for electrons (A) and holes (B).
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Figure 5.23.: The drift of cylindrical electrons and hole charge clouds apart from each other
is illustrated.

means that the division of the total charge into outer charge and inner charge is a function
of the electric field. Note that the pulses at these temperatures are flat. Hence, no charge is
lost during drift, but with lower field strengths, less charges start drifting from the ionisation
volume. Therefore, the mechanism that defines how much charge is “inside” and “outside”
needs to take place within the first few hundred picoseconds. This early development of
the plasma is not accessible with the measurement presented here, but only the outcome of
that mechanism: the measured “outer” charge, i.e. the charge, which has not recombined
in the early plasma phase.

If the linear behaviour observed in Fig. 5.22 is extrapolated towards E = 0 V/µm, the
extrapolation crosses the ordinate at around 20 % of the total charge. Hence, there seems
to be an amount of charge that is “outside” at all biases, and therefore free, independent of
the electric field (denoted E/). This might be due to the low charge density at the borders
of the ionisation volume after the heat dissipation (few tens or hundreds of picoseconds).
Additionally, there is a part increasing linearly with the electric field (denoted E). In this
part, electrons and holes are either free or bound to excitons, and are therefore denoted
Boltzmann holes (BM holes) and Boltzmann electrons in Fig. 5.23.

In total, the total charge is the sum of those charges that are not influenced by the electric
field, and those, that are, hence:

Qtot = QE/ +QE = QE/ +Qrec +Qnrec. (5.60)

The measured charge Qout is the sum of the “at all biases outer” charge, and the not-
recombined charge:

Qout = QE/ +Qnrec. (5.61)

It is thought that the linear charge increase is due to a faster longitudinal drift process
during the thermalisation and cooling phase. With higher field strength, the charges clouds
drift apart faster, and less excitons can form after the cooling phase. [51] The scheme is
depicted in Fig. 5.23. However, no quantitative model can be presented here, as there is no
description of “drift” and “diffusion” of non-thermalised carriers available in the literature.
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Figure 5.24.: The transit times for electrons at various temperatures and fields are shown
for S57. Note the double logarithmic scale. Lines are drawn for constant
voltages in order to guide the eye.

5.3.3. Conclusion

A model is presented in order to explain the total measured charge as well as the pulse
shape as a function of the temperature. The model includes the heating and the ionisation
within the ionisation volume by the α-particle and subsequent charge and phonon transport.
The charges inside of the plasma form excitons, which are in a quasi-equilibrium with
free e-h pairs. Recombination and drift perturb the quasi-steady-state. The recorded
data are compared to model predictions, and a set of values is found, namely the exciton
binding energy Ex = 80 meV, a recombination lifetime of the order of a few nanoseconds,
and an exciton creation time constant of the order of picoseconds, that yield an accurate
description of the data. The model describes the appearance of tails and the charge losses
for temperatures at and below 150 K. A further cross-check is performed with a silicon pad
detector providing results that confirm the validity of the model.

5.4. The impurity-assisted repopulation effect

The transit time of electrons shows a particular behaviour, i.e. it does not monotonically
increase with temperature, as would be expected from acoustic phonon scattering. Instead,
see Fig. 5.24, for biases around 200 V a local maximum emerges, which is more pronounced
towards lower biases, particularly visible at 60 V, 80 V, and 100 V. The position of the
maximum shifts towards higher temperatures with increasing bias, until the maximum
disappears at around 300 V. This behaviour is a priori not expected and has not been
reported in the literature.

It is thought that the seen effect arises due to the different effective electron masses in
different valleys [96], and a model from [94] is reproduced here and compared to data. With
the transverse mass being smaller compared to the longitudinal mass, electrons drift faster
(slower) in the transverse (longitudinal) valleys. This therefore results in two different drift
velocities v1 and v2 for the different valleys. The six conduction band minima split up by an
energy ∆ into two different states, which are two-fold degenerated (longitudinal), and four-

90



5.4. THE IMPURITY-ASSISTED REPOPULATION EFFECT

Figure 5.25.: The band splitting is illustrated. ∆ is the energy difference between the two
states, degeneracy is given in parentheses. [94]

Figure 5.26.: (A) The f- and g-scattering processes are shown for a multivalley semiconduc-
tor and an applied electric field along the [100] direction. (B) The f-scattering
interchanges charges from the transversal valley with the longitudinal valleys.
For this, an energy difference ∆ and a momentum transfer ∆k are needed.
The ∆k is provided/absorbed by impurities in the lattice. [51]

fold degenerated (transversal), as is illustrated in Fig. 5.25. The presence of a sufficient
amount of nitrogen impurities is thought to enable intervalley f-scattering, cf. Sec. 2.2.7
and Fig. 5.26. E.g., in order to scatter from a [100] valley to a [010] valley, a [110] phonon
near the K-point, which carries a large momentum, is needed. As these are unlikely to be
present in the crystal itself, nitrogen impurities with a broad spectral function might render
efficient f-scattering possible.

With the degeneracy of states being 4 to 2, and assuming a Boltzmann distributed
population density for the densities n1 and n2 – with n1 + n2 = N –, it is found that

n1

n2
=

4

2
exp (−∆/kBT ), n1 =

N

1 + 2 · exp (−∆/kBT )
, n2 =

N

1 + 1
2 · exp (∆/kBT )

.

(5.62)
The current induced by the sum of the two densities is

j = j1 + j2 = en1v1 + en2v2 = eEN

(
µ1

1 + 2 · exp (−∆/kBT )
+

µ2

1 + 1
2 · exp (∆/kBT )

)
.

(5.63)
and the transit time becomes
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tt =
d

µ1E

1
1

1 + 2 · exp (−∆/kBT )
(1−m) +m

(5.64)

with the mobility ratio m = µ2/µ1. If the differing drift velocities arise only due to the mass
difference, but not due to a difference in the momentum relaxation time, then m becomes
independent of the temperature: µ1,2 = eτ(T )/m∗1/2. Assuming further that the main
temperature dependence of the µ1,2 stems from NIS and APS, the values from Tab. 5.3 can

be used as a prediction of the low-field mobility: µ1 = (1/µNIS + 1/µ′APS)−1. The actual
mobility at a certain bias is, of course, lower. With these values, tt is modelled to explain the
qualitative behaviour of the measured transit time. Figure 5.27 shows modelled functions
according to Eq. (5.64) for the three bias values, 60 V, 80 V, and 100 V, superimposed on
the data points. The model seems to include all features of the qualitative behaviour, but
cannot serve as a precision fit. The mobility ratio used for the three curves is m = 10 and
the energy difference is ∆ ≈ 60 meV. At the three biases, the mobility is about 78 %, 73 %,
and 67 % of the low-field mobility, respectively. The mobility ratio, and therefore mass
ratio if the same momentum relaxation time is assumed, was calculated to be m = 5.2, [97]
a factor of two lower than the one used above. The difference might arise due to distinct
electric field ranges used. At high fields, the electrons could have high k-values, at which
the bands are no longer parabolic, and therefore their effective masses are different.

The fact, that diamond might feature two different drift velocities, needs further at-
tention. The recorded current pulses do not feature a two-step falling edge, but fall off
continuously. With two drift velocities, one might naively expect two steps, as electrons in
the fast valleys might arrive significantly earlier than those in the slow valleys. This was
actually reported in ultra-pure scCVD diamond in a Ph.D. thesis by M. Gabrysch [64] and
recently in Nature Materials [96]. The substantial difference between the results reported
herein in comparison to those from Refs. [64, 96] might be that the samples used here are of
worse grade. Therefore, the presence of a sufficiently large density of impurities are thought
to give rise to a single, continuous falling edge via the following mechanism. The ionisation
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Figure 5.28.: The re-population at the fast front and the slow end of the charge package is
illustrated. (from [51])

via the α-particle creates free electrons in the conduction bands over a certain depth, say
a package. They thermalise and “fall” into both fast and slow valleys. When carriers in
both valleys start to drift, those in the fast valleys drift faster and will reach a depth, or
position, in the crystal, where no slow electrons are present. The density ratio at every
position x is thought to be Boltzmann distributed. With impurities enabling f-scattering
processes, electrons at the front of the package can scatter from the populated n1 to the
empty n0, see also Fig. 5.28.
At the left end of the charge package, the opposite effect occurs. The fast electrons have
already drifted further, such that there are no fast electrons in n1 at this end. Again,
f-scattering enables intervalley scattering, but now from the slow to the fast valley. This
turnover process4 happens continuously at the front and the end of the charge package.
Thereby, those states that are empty, i.e. not populated, are being re-populated via the
turnover process, that is, n0 is re-populated at the fast front of the charge package, and
n1 is re-populated at the slow end of the charge package. As a result, the charge package
drifts as a whole, and only one falling edge arises. [51]

Reference [96] presents the measurement of the valley quantum number of electrons,
which was carried out in parallel to the work presented herein. It discusses the possibility
of creating “valleytronic” devices, that make use of the valley quantum number of electrons
in order to encode information, the crucial property being the different effective masses
between longitudinal and transversal valleys. The work presented here shows analogue
results and emphasises the importance of the use of high quality single-crystal material if
valleytronic devices are to be realised.

5.5. Conclusion of the TCT Measurements

The transient current technique offers a straight forward method to measure charge carrier
properties accurately in many different semiconductors, including high-impedance ones like
diamond. With a temperature controlled environment, the TCT offers an even richer
tool enabling the characterisation of the temperature dependence of basic charge carrier
properties. Besides the low-field mobility and the saturation velocity, it is possible observe

4German: Umklapp-Prozess
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the implications of different effective electron masses residing in different valleys. The
peculiar current behaviour at temperatures between 150 K and 50 K allows for indirect
observation of the evaporation of excitons. Complementarily, the amount of missing charge
towards lower temperatures is the result of an increase in recombined charges, and the order
of magnitude of the recombination lifetime can be extracted to be a few nanoseconds. The
flat pulse form at and below 50 K readily shows the time scale of the evaporation time at
cryogenic temperatures (above microseconds), and the field dependence of the measured
charge below 75 K offers the conclusion, that excitons must form within the first 100 ps or
so of the initial plasma. A temperature controlled TCT therefore allows for many more
conclusions and observations than one may naively expect.

It was demonstrated that diamond as well as silicon can be used as a charged particle de-
tector in the extreme environment of liquid helium temperatures. In diamond charge losses
of about 2/3 are observed at temperatures below 50 K compared to the room temperature
charge yield using short-ranged, highly-ionising particles. Studies with MIPs showed, how-
ever, that the charge loss is energy-loss dependent, and less charge losses are observed with
MIPs in comparison to α-particles. Therefore, unirradiated diamond is fully functional for
the detection of MIPs, cf. as well [92] down to at least 2 K. With no significant charge
loss due to the extreme temperature environment, both CVD diamond and silicon serve as
candidates for the cryogenic beam loss monitors to be installed at the LHC.
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6. TIMING STUDIES FOR THE ν-ToF
MEASUREMENTS AT CNGS1

Diamond detectors were installed as a novel, fast diagnostic tool in the CNGS facility in
2011 following the neutrino time-of-flight results published by the OPERA collaboration
in September 2011. Among others, four polycrystalline CVD (pCVD) diamond detectors
were placed in the so-called secondary particle beamline about 1200 m downstream of the
CNGS target, where incoming protons produce kaons and pions in strong interactions. The
diamond detectors measure the beam structure of the muons which are produced together
with the muon neutrinos in the kaon/pion decays. Upstream of the CNGS target, a fast
beam current transformer measures the proton beam structure. The sub-nanosecond single-
pulse time resolution of pCVD diamond for a minimum ionising particle in combination
with a GPS system allows the measurement of the GPS timing of individual muon bunches
crossing the detectors with a precision of < 1 ns. The complicated structure of the CNGS
muon beam in 2011 necessitates the usage of the detector response of many adjacent bunches
in order to compare the proton beam structure with the muon beam structure. An analysis
of the detector signals was carried out, which provides an independent timing measurement
at CERN with a precision of 1.2 ns. Uncertainties from other sources as cable lengths add
up to 3.4 ns, resulting in an overall precision of 3.6 ns. The distance between the beam
current transformer and the diamond detectors has been measured to (1859.95±0.02) m.
The nominal time-of-flight of (6205.3±1.7) ns for a 17 GeV/c muon, as present in the CNGS
muon beam, falls within the uncertainties of the measured time-of-flight of (6205.2±3.6) ns.
Hence, the GPS timing measurements performed at CERN are consistent.

6.1. Introduction

The CNGS facility (CERN Neutrinos to Gran Sasso) [99] aims at the direct detection of
muon-neutrino to tau-neutrino oscillation by measuring the appearance of the tau-neutrino.
An intense muon-neutrino beam is generated at CERN and directed over 732 km towards the
Gran Sasso National Laboratory (LNGS) in Italy, where four detectors (BOREXINO [100],
ICARUS [101], LVD [102], OPERA [10]) are located. In addition to the main goal of tau-
neutrino measurements, the facility profits from accurate time and distance measurements
between the source of the CNGS neutrino beam and the Gran Sasso experiments, allowing
the determination of the neutrino velocity with high accuracy. Until 2011 the start time
of the neutrinos racing towards Gran Sasso has been solely based on measurements of the
fast beam current transformer that is installed in the primary proton beam line upstream
the CNGS target; the time structure of the protons passing through the beam current
transformer gives the Global Positioning System (GPS) time tag. After the publication
from the OPERA collaboration in September 2011 on the neutrino velocity measurements
[9], several polycrystalline chemical vapour deposition diamond detectors (DD) were placed
in the secondary beam line about 1200 m downstream of the CNGS target in order to

1cf. Ref. [98]
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Figure 6.1.: Schematic overview of the CNGS neutrino beam facility at CERN.

measure the time structure of the muon spills independently. This allows an accurate
measurement of the GPS timing of the muon bunches crossing these detectors, and provides
an independent timing measurement at CERN.

6.2. The CNGS Facility

The 400 GeV/c CNGS proton beam is fast extracted from the CERN SPS accelerator;
during a 6 s long cycle there are two extractions separated by 50 ms, each lasting 10.5 µs
with up to 2.4×1013 protons/extraction. With a 5 ns bunch spacing resulting from the
200 MHz SPS RF system, the number of bunches per extraction is 2100. The beam is sent
down an 840 m long proton beam line onto a carbon target producing kaons and pions.
The positively charged pions and kaons are energy-selected and guided with two focusing
lenses, the so-called horn and reflector, in the direction of Gran Sasso. These particles
decay in a 1000 m long, 2.5 m diameter vacuum tube into muon-neutrinos and muons. All
the hadrons, i.e. protons that have not interacted in the target and pions/kaons that have
not decayed in flight, are absorbed in a hadron stopper, see “hadron stop” in Fig. 6.1. Only
neutrinos and muons can traverse this 18 m long block of graphite and iron. The muons,
which are ultimately absorbed downstream in abound 500 m of rock, are measured in two
muon detector stations, each consisting of 41 ionisation chambers. The stations reside in
two caverns called Pit 1 and Pit 2 which are separated by 67 m of rock. The average energy
of the muon-neutrinos which are sent to Gran Sasso, is 17 GeV/c. A schematic overview of
the CNGS neutrino beam facility at CERN is shown in Fig. 6.1.

The time information at CNGS for the OPERA neutrino time-of-flight (ToF) analysis
was derived from a fast beam current transformer (BCTF40) [103] that is installed in the
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CNGS extraction line upstream of the CNGS target. The time structure of the extracted
protons is measured with this BCTF40 detector and the time information is tagged with a
GPS time.

Polycrystalline CVD diamond detectors were installed in the muon pits in November 2011.
Both the measurement set-up for the BCTF40 and the one for the DDs are connected to a
General Machine Timing (GMT) receiver, which communicates with the GPS system. The
muon beam structure is measured via the DDs and is also GPS time tagged. Using both
time tags and taking into account all additional delays, the timing measurement at CERN
can be verified independently.

The next section describes the experimental set-up, followed by the description of the
flux simulation. Details of the trigger and timing system are explained in Sec. 6.5. The
data analysis is described in Sec. 6.6.

6.3. Experimental Set-up

6.3.1. Diamond detectors

Polycrystalline CVD diamond is a suitable detector material for the measurement of the
time structure of the CNGS muon beam, as the detector response to a narrow muon bunch is
a signal with full width half maximum (FWHM) of approximately 2 ns. This is sufficiently
smaller than the bunch spacing (5 ns) of the CNGS muon beam, and hence the signals
stemming from adjacent bunches are sufficiently separated in order to identify a rising edge
for each pulse. Note that the time resolution of diamond detectors is considerably shorter,
i.e. it is in the sub-nanosecond regime, as will be shown in Sec. 6.6. Short signal time is
realised by operating the detectors at 1 V/µm. The high free charge carrier mobility in
diamond of ∼800 cm2/Vs at 1 V/µm results in a first order estimation of the FWHM of

tFWHM =
ln(2) · CCD

vdrift
=

ln(2) · CCD

µE
≈ 1.7 ns, (6.1)

where CCD is the charge collection distance, and a value of CCD = 200 µm is used here.
Hence, the FWHM is ≤ 2 ns.

The measured signal is composed of a DC part of 10.5 µs length and is modulated by a
5 ns structure resulting from the SPS RF. The DC part is the result of the overlay of signal
tails from adjacent bunches.

Three pCVD diamond detectors were installed in Pit 1, two at the centre, called Centre
Top (CT) and Centre Bottom (CB) and one 135 cm left of the centre (L). A forth one is
installed in Pit 2. In this work the signals from the DDs in Pit 1 are discussed. The set-up
in Pit 1 is depicted in Fig. 6.2 (left), and details of the Centre DDs in Fig. 6.2 (right).

The sensor material was produced by Element Six [78] and metallised by Diamond De-
tectors Ltd [79]. DDL quotes a thickness of 500 µm and a CCD of 200 µm. Measurements
have shown that the charge collection distance is rather 180 µm. All main DD parameters
are listed in Tab. 6.1. The final detectors, including a sensor holder, an RF-tight housing,
and a PCB with 50 Ω read-out lines, were provided by CIVIDEC Instrumentation [81].

6.3.2. Electronics, Read-out and Charge Collection

The detectors were connected to the bias voltage via a bias resistor (R1) of 1 MΩ resistance
and a charging capacitor (C1), see Fig. 6.3 and Tab. 6.1. The signals were read out at the
low-voltage side of the detector, which was DC-terminated to ground by a 1 MΩ resistor.

97



6. TIMING STUDIES AT CNGS

Figure 6.2.: Photo of the muon detector station (left) in Pit 1 with two detectors in the
middle of the cross and one on the left end. Additionally, a close-up of CT and
CB is shown (right).

The charging capacitors were of 11 nF capacitance for CT and L, and of 2 nF capacitance
for CB. All detectors were operated at 500 V, i.e. 1 V/µm. It is important to mention, that
the detectors were read out directly without electronic amplification. The low detector
capacitances of 10 pF and 3 pF in combination with the 50 Ω read-out impedance provide
fast time constants of 500 ps and 150 ps, respectively. This allows for the resolution of the
5 ns RF structure from the extracted SPS beam, which has already been proven. [104]

Two LeCroy WaveRunner 104MXi-A oscilloscopes with an analogue bandwidth of 1 GHz
and a sampling frequency of 5 GS/s were used for the data read-out. The oscilloscopes
sample the incoming analogue signals with 8 bits, providing an analogue-to-digital con-
verter range of 256. All detectors were connected to the read-out oscilloscopes via CK50
cables. [105] The 50 Ω cables have a specified attenuation per 100 m of 9.1 dB at 1 GHz and
2.7 dB at 100 MHz and a velocity factor (VF) of 78 %, VF being the speed of wave propa-

Table 6.1.: Main parameters of the diamond detectors installed in muon Pit 1.

Detector name Centre Top (CT) Centre Bottom (CB) Left (L)

Specified thickness [µm] a 500 500 500
Electrode size a ∅=3 mm 8×8 mm2 8×8 mm2

Electrode area [mm2] b 7.1 64 64
Ionisation volume [mm3] b 3.53 32.0 32.0
Detector capacitance [pF] b 3 10 10
Time constant [ps] b 150 500 500
Charging capacitance [nF] a 11 2 11

a Data specified by manufacturer b Calculated from manufacturer data
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Figure 6.3.: Connection scheme of the detectors. R1 is the loading resistor for the bias
voltage, C1 the charging capacitor, and D1 the detector.

gation in the cable relative to the speed of light in vacuum. The transmission time of the
three CK50 cables was measured using an oscilloscope and a pulser set to output pulses of
50 ns length with a rise time of 500 ps on 50 Ω at a repetition rate of 1 kHz. The one-way
transmission times are 328.1 ns, 328.3 ns and 328.1 ns for CT, CB, and L, respectively, cor-
responding to the actual cable length of about 77 m. The trigger signals of the oscilloscopes
were calibrated within a precision of 0.5 ns.

The charge collection of all detectors were checked prior to installation in the pit at two
different energies. One test was done using an 241Am α-source, and the other with a 90Sr β-
source. The detectors showed a charge collection of (135 000±15 %) electrons/alpha, which
fits the expected charge resulting from a sealed 241Am α-source (Eα = 4.6 MeV) for pCVD
diamond with a CCD = 190 µm. The spread over the three detectors is due to differing
CCDs. The charge tests based on the β-source showed a charge collection of (6500±20 %)
electrons/MIP across the detectors, compatible with a CCD = 180 µm.

The expected collected charge per extraction from the high intensity muon beam is
Q = QMIP ·Iµ, where Iµ is the muon flux integrated over the ionisation volume and over the
whole extraction. The measured charge per extraction, averaged over the three detectors,
agrees at a 15 % level with simulations, indicating a linear response of the diamond even at
this high particle fluence. The dark current prior to the extractions is of the order of a few
nanoampere, and hence negligible.

6.4. Flux Simulation

Monte Carlo simulations were exploited to assess the feasibility of the measurement and the
detector working environment. Calculations were performed with the FLUKA [106] code by
slightly modifying the standard set-up already used for all CNGS related simulations. [107]
The reliability of this simulation framework has been verified on many observables, in
particular for what concerns the response of the ionisation chambers in the muon pits. [108]
No effort to describe the exact geometry of detectors and supports was performed at this
stage, since the scope of the calculation was essentially to determine the time distribution
of all particles that generate a signal in the diamond detectors in order to assess that this
time distribution does not affect the sensitivity of the measurement. Not only muons, but
also secondary electrons and photons generated by muons in the pit walls and internal
materials were accounted for. The diamond detectors were modelled as a uniform layer
sandwiched between two Al supporting layers of 3 mm thickness. The detectors thickness
has been indicatively set at 0.1 mm (simulations were performed before the actual choice
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Figure 6.4.: The simulated time distribution of the energy deposition for a diamond detector
in Pit 1 is shown.

of the detectors), with a density of 3.52 g/cm3. In the simulation, two such sandwiches
were inserted in each of the muon pits, one near to the entrance wall and one in front
of the ionisation chambers, oriented perpendicularly to the beam and spanning the whole
transverse dimension of the pit. The energy deposition in the detectors were simulated as a
function of the arrival time of particles and as a function of radial distance with respect to
the beam axis. The intrinsic resolution and timing response of the detectors have not been
included in the simulations. For both positions in each pit, the distribution of deposited
energy versus arrival time peaks at the arrival of the muon bunch. The falling edge of the
simulated signal drops two orders of magnitudes in about 2 ns. Very small secondary peaks
are present, with amplitudes five orders of magnitude lower than the prompt peak, as shown
in Fig. 6.4 for a single zero-width muon bunch. The time delay of these secondary peaks
is consistent with the travel time of particles reaching the detectors after being reflected
by the downstream pit walls. Convolution of the response to a single bunch with the time
structure of a beam consisting of 2100 bunches shows that the original beam time structure
is only minimally affected.

Simulated particle fluences and simulated deposited energy at the actual diamond de-
tectors positions are reported in Tab. 6.2 per 1013 protons on target (pot). The contri-
bution from charged hadrons and neutrons is negligible. Energy deposition values have
been rescaled linearly to the finally used detector thickness in order to get a first order
estimate of the needed dynamic range of the oscilloscope for data taking. For a single ex-
traction with 2.4×1013 protons, an energy of 12 TeV are deposited in CB. With an average
electron-hole-pair creation energy of 13.25 eV and a CCD of 200 µm the amount of the total
measured charge per extraction is about 58 nC. An average bunch creates therefore 27 pC.
If it is assumed that these charges drift for 1 ns, they induce a current of 28 mA, and hence
a voltage difference of 1.35 V appears at the input of the oscilloscope. With a gain set
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Table 6.2.: Particle fluencies and deposited energy at the diamond detectors positions for
1013 pot.

Position Flux Dep. energy
[particle/cm2/1013 pot] [GeV/cm2/1013 pot]

µ e+e− γ sum

Pit 1, centre 2.4 · 107 2.7 · 106 1.5 · 107 7750
Pit 1, left 2.3 · 106 8.6 · 105 5.5 · 106 1250

to 500 mV/division, the oscilloscope translates the 1.35 V to about 80 ADC units (ADC),
which can also be seen in Fig. 6.10, Sec. 6.6.

6.5. Trigger and Timing

To confirm the accuracy of the CNGS timing system it is necessary to relate the timing
signals from the DDs with those from the BCTF40 detector previously used. This is
achieved by finding the ToF between the two detector points using the measured timestamps
and relative offsets, and ensuring that they agree with the nominal ToF over the same
distance. In order for the ToF to be measured on the nanosecond scale it is necessary to
know precisely all the delays introduced between the detection of a particle in the detector
and the signal being registered by the system in addition to the distance travelled by the
particle. The transmission times of all data-carrying cables were measured using a variety
of methods, including reflectometry and using a transportable CS4000 caesium clock. [109]
The distance travelled was measured by an independent survey group.

6.5.1. Survey

Initially, the survey group has aligned all the components of the CNGS line, including the
BCTF40, with respect to a network of geodetic points which was determined by topograph-
ical methods linked to the SPS geodetic network. Neither GPS measurements at the surface
level nor link between surface to tunnel were realised. The relative accuracy of this under-
ground network, measured with high precision instruments such as the Electronic Distance
Measurer Mekometer ME5000, the total station TDA5005 and the Gyro-theodolite GYRO-
MAT2000, could be estimated to be in the range of a few millimetres. Then, additional
measurements were carried out, with less accurate measuring techniques, to localise the
DDs and the BCTF40 position with respect to the same network. These measurements
yield a distance dBCT-DD between the BCTF40 and the DDs in Pit 1 of:

dBCT-DD = (1859.95±0.02) m. (6.2)

6.5.2. Set-up at CERN

There are two timing measurements made on the CNGS beam line; one for the primary
(proton) beam as it leaves the SPS ring and passes BCTF40 and one for the secondary
(muon and neutrino) beam from the DDs located in Pit 1, see Fig. 6.5. The delays examined
here are those between the start time of an event window as measured by a reference GMT
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Figure 6.5.: An overview of the timing offsets at the CNGS facility is shown. The distance
between the BCTF40 and the DDs is about 1860 m.

receiver located in the CERN control room (CCR) and the same time measured at the
oscilloscopes reading the detector signals. Hence, this is done for the BCTF40 and for
the DDs individually, with a common “clock” provided by the GMT. Additionally, the
cable length for the signal transmission from the detectors to the oscilloscopes is taken
into account. The different delays for the primary and the secondary beam are explained
subsequently.

Primary Beam

There are four individual values which sum to create the delay δBCT for the primary beam
time stamp: (1) the time taken to traverse the hardware between the BCTF40 and the
oscilloscope in room HCA442, (2) between the oscilloscope and the a so-called Control
Timing Receiver (CTR1) in HCA442, (3) between the CTR1 in HCA442 and the reference
CTR in the CCR, and (4) a value of 99 216.0 ns subtracted, via software, from the database
time stamp as a correction between the CTR time and the GPS time. These values sum to

δBCT = (−581.0±0.9 + 26.6±1.0 + 10 077.8±2.0− 99216.0) ns = (−89 692.6±2.4) ns. (6.3)

All stated corrections include propagation delays and signal encoding/decoding latencies.
The stated value of 99 216.0 ns is a software delay and has no uncertainty. Figure 6.6
shows the delay chain. In order to measure the delay between the reference CTR and the
CTR1, the CS4000 was transported between them, connecting it to the External Clock
Input at one end and the External Start Input at the other. The accuracy of the CS4000
in the time between the two measurements is estimated to be better than 2.0 ns. [110] This
delay was also calibrated by means of the two-way calibration technique with a reversible
fibre path. [9, 109, 110] There is evidence for variations in the cabling delays according
to the ambient temperature which can change from day to day. [109] These variations are
monitored for the delay between the CTRs by a fibre running in parallel to the cable by
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comparison with the original calculated value of 10 077.8 ns. The estimated yearly variation
is less than 2 ns and is negligible within the time period of data taking of the data discussed
in this work. However, the systematic uncertainty is taken conservatively to be 2 ns.
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Figure 6.6.: The time delays for the primary beam time stamp are shown.

Secondary Beam

A similar process applies to the timing of the secondary beam (Fig. 6.7). It is characterised
by four separate delays: (1) the time taken to traverse the hardware between the DDs and
the oscilloscope in cavern TZ80, (2) between the oscilloscope trigger and the Control Timing
Receiver (CTR2) in cavern TZ80 providing the trigger time stamps (3) the position of the
trigger signal within the read-out window, (4) and finally between the CTR2 timebase and
the timebase of reference CTR installed in the CCR. The rising edge of the trigger signal
triggering the oscilloscope in TZ80, which is time-related to the onset of the SPS kicker
magnet, can be placed somewhere around or within the read-out window of the oscilloscope.
As the time difference between the start of the read-out window of the BCTF40 and that
of the DDs is derived in this section, the relative position of the rising edge of the trigger
to the start of the read-out window has to be accounted for. Note, that a different position
of the trigger edge would have let to an equivalently differing choice of the software delay
explained in Sec. 6.5.3. The trigger is placed at 2500 ns after the start of the read-out
window, hence the window starts 2500 ns earlier. It should be noted that point (4) above
was measured only with the help of the two-way technique, due to the impossibility of
transporting the CS4000 to the TZ80 cavern. The sum of the delays yield the value

δDD = (−328.2±0.5 + 31.1±1.0− 2500.0 + 29 082.9±2.0) ns = (26 285.8±2.3) ns. (6.4)
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Figure 6.7.: The time delays for the secondary beam time stamp are shown.

6.5.3. Calculation of δdelay

The time stamps tBCT
GPS and tDD

GPS as logged on the TIMBER database [111] for the primary
and the secondary beams, respectively, are adjusted by the above offsets to yield:
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tBCT = tBCT
GPS + δBCT (6.5)

and

tDD = tDD
GPS + δDD − 30 000.0 ns (6.6)

for the start times of the measurement windows. The −30 000.0 ns is a software delay with
no uncertainty and stems from fact that the TIMBER database provides only a certain
time window (12 µs) out of the total read-out time span. The GPS time stamps logged in
the TIMBER database hold a difference of

tBCT
GPS − tDD

GPS = (79 911.3±0.5) ns. (6.7)

The time difference between the start of the read-out window of the BCTF40 and the start
of the read-out window of the DDs is hence:

δdelay = tDD − tBCT

= tDD
GPS + δDD − 30 000.0 ns−

(
tBCT
GPS + δBCT

)
= (−79 911.3±0.5 + 26 285.8±2.3 + 89 692.6±2.4− 30000) ns

= (6067.1±3.4) ns. (6.8)

6.6. Data Analysis

The timeline offset δoffset of the data within the read-out windows is derived in this section.
This is needed, since the windows from BCTF40 and the DDs might not be equally fitted
around the signals as depicted in Fig. 6.8. Using δoffset and δdelay from Sec. 6.5, it is possible
to measure the ToF from the BCTF40 to the DDs. This serves as a cross-check of the timing
of the BCTF40 detector, which was used for the ToFν measurements [9].

The recorded data from the DDs and from the BCTF40 is analysed offline with a custom-
made analysis making use of the ROOT analysis framework [112]. As described in Sec. 6.2
the SPS delivers two extractions per cycle. The second extraction has a different shape
compared to the first extraction as a result from the SPS filling scheme. Hence, averaging
both extractions to form a single pulse is counterproductive, as pulse characteristics like

104



6.6. DATA ANALYSIS

troughs and peaks used later in the analysis would be less pronounced. The analysis
presented here focuses on the data obtained from the first extraction to extract a value
for δoffset. After the analysis of the first extraction, the possible improvement of the final
results including a full analysis of the second extraction is given.

The sample rate of the presented data is 1 GS/s. Hence, only every fifth data point from
the original data taking at 5 GS/s is used. This reduces the amount of data to be processed
by 80 % while keeping the time resolution high enough for the purpose of this analysis. In
total 151 spills recorded on 15.11.2011 between 10 a.m. and 11 a.m. (UTC) are taken into
account for the presented analysis, of which 119 resulted from non-empty extractions.

First, the detector response from single extractions is shown, then the data treatment
is explained, followed by the discussion of the treated data from the three DDs and the
BCTF40 individually. The DD and the BCTF40 data is then used to calculate δoffset.

6.6.1. Detector Response

The bare detector response as measured with the oscilloscope within a time window of
12 µs from a single extraction for the three DDs and the BCTF40 is shown in Fig. 6.9. As
these plots hold 12000 data points each, the signals appear as a broad band at the given
plot resolution. A simple 5 ns average is added in red to guide the eye. The four detector
responses in Fig. 6.9 originate from the same extraction. With a sufficiently fast muon
detector system, it is reasonable to compare the topology of the signal from the BCTF40
with those from the DDs. A comparison by eye reveals, that certain features of the signal
present in all four signals, e.g. the dip flanked by two peaks from 6600 ns to 8500 ns, as
indicated by the arrows. This is the first time that the proton beam structure could be
compared to the muon beam structure due to the fact that before the installation of the DDs
drift chambers had been used as muon detectors, which have orders of magnitudes larger
rise times. Also the shape of the Left detector is similar to those from the Centre detectors,
but with reduced intensity and adapted oscilloscope gain. The fact that both technologies,
the beam current transformer and the solid state diamond-based ionisation chamber, show
similar signals allow the conclusion that the diamond detector system works as expected
with an analogue bandwidth of at least as high as the one from the BCTF40 (∼200 MHz).
The similarity in shape of the signals then renders a timing analysis possible that utilises the
topology of the signals. Note that the BCTF40 is a beam current transformer and detects
the SPS proton beam current, whereas the DDs detect muons originating from pions and
kaons produced by SPS protons in the target. However, the DD signals are very similar to
the BCTF40 signal.

A zoom from 2800 ns to 2900 ns for CT is shown in Fig. 6.10 (A). The 5 ns (200 MHz)
SPS beam structure is evident. It is worth mentioning that the signal does not return to
its baseline at the end of a bunch; each bunch has a tail of the order of a few nanoseconds.
This leads to a certain pile-up of signals from neighbouring bunches. Therefore, the timing
analysis needs to be carried out in such a way that it is not dependent on pile-up.

6.6.2. Signal to Noise Ratio

The baseline and the baseline noise of the i-th extraction, bi and σnoise
i , measured in ADC

counts, are calculated for every non-empty extraction. The mean σnoise characterises the
mean baseline noise, b the mean baseline. Then for each DD as well as for the BCTF40
the average signal amplitude 〈y〉i is calculated in the range from 5000 ns to 6000 ns , where

the signal reaches a “flat top”. Again, the mean 〈y〉 represents the mean signal amplitude
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Figure 6.9.: Detector response of a single extraction. In red, a 5 ns arithmetic average is
displayed to guide the eye. The arrows show the same two position in time for
all detectors; a very similar structure is observed in all four.

in this region. The two values are used to quantify a signal-to-noise ratio (SNR) for every
detector; all numbers are shown in Tab. 6.3.

The SNR values in Tab. 6.3 illustrate the difference in signal quality between the DDs and
the BCTF40. The DDs deliver an SNR of above 64, in comparison to an SNR of 11 for the
BCTF40. The signal quality of the BCTF40 also suffers from oscillations or pick-up noise
in the regions from 0 ns to 2000 ns, and from 8000 ns to 12 000 ns. A frequency analysis
of these parts revealed a major contribution at 25 MHz. This pick-up is common to all
recorded extractions for the BCTF40. These parts of the signal are therefore disregarded
in the timing analysis. CB and L have better SNRs than the CT for two reasons: (1)
the electrode areas of CB and L are larger than that of CT leading to a larger signal and

Table 6.3.: Characteristic noise and signal values for the DDs and the BCTF40.

BCT CT CB L

σnoise/ADC counts 650 1.09 1.17 1.43

〈y〉/ADC counts -11570 - 30.35 23.72 8.16

b/ADC counts -18791 -100.45 -71.0 -104.90

SNR 11.1 64.3 81.0 79.1
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Figure 6.10.: (A) A zoom in the detector response for CT for a single spill is shown. (B)
The corrected arrival time (see text) is shown as a histogram for the 119
non-empty spills.

(2) the fact that the noise is not dominated by the detectors capacity but rather by the
least-significant-bit noise of the oscilloscope.

6.6.3. Time Resolution and Phase Shift

The single-pulse time resolution of DDs in combination with fast electronics has often been
proven to be better than 1 ns for MIPs, cf. e.g. Ref. [113]. This holds true as well for
the DDs used in this analysis and has been tested in the laboratory before installation.
For a higher signal charge than the charge produced by a MIP, a better time resolution is
expected. From Fig. 6.10 (A), partial rise times for every bunch of trise ≤ 2 ns over 30 ADC
can be concluded, and hence a slope s of s > 15 ADC/ns. Therefore, the time resolution

σt = σnoise

s < 0.1 ns.
The difficulty in this analysis is the complexity of the signal; the uncertainty of the point

in time of the arrival of the first bunch at the DDs is not dominated by the time resolution
of the DDs themselves, but by the long rise time (1 µs) of the kicker magnet resulting in
a steadily increasing muon intensity per bunch arriving at the DDs during the rising edge.
However, the jitter of the trigger signal is small, hence it is sufficient to find the modulo 5 ns
shift for each extraction. This shift can then be applied to each extraction. Thereby, the
phases of the extractions are aligned such that an equivalent point in time is found. The
modulo 5 ns shift is found by analysing the signal within the global rising edge – as opposed
to a local one for a single bunch – from 800 ns to 1000 ns. The SPS beam structure can
easily be found by comparing five different sums

∑(n), where each sum represents a sum
over signal amplitude values yDD(t) separated by 5 ns with an offset of n = 0, 1, 2, 3, 4 ns:∑(n) =

∑
i
yDD(5i + n). The largest sum finds the phase ϕi of the maximum within the

5 ns SPS beam structure. The resulting histogram of the ϕi-corrected arrival time is shown
in Fig. 6.10 (B). The evident 5 ns structure of the time of arrival shows the suitability of
this approach. The spread in the corrected arrival time is, again, caused by the long rising
edge.

107



6. TIMING STUDIES AT CNGS

time [ns]
0 2000 4000 6000 8000 10000

A
D

C
 c

o
u

n
t

0

20

40

60

80

100

Centre Top

(A)

time [ns]

2800 2820 2840 2860 2880 2900

A
D

C
 c

o
u

n
t

40

45

50

55

60

65

70

75

80

85

90

(B)

Figure 6.11.: An Overview (A) and a zoom (B) of the averaged signal for CT is shown.

6.6.4. Data Treatment

Averaging

In order to make a statement about the CNGS timing at CERN, the 119 non-empty signals
are combined to form an average signal. This averaging makes the analysis robust against
fluctuations in the single extractions. In order to average the signals correctly, the phase
ϕi is used. The timeline of every single extraction is shifted by −ϕi in order to ensure an
aligned phase. For simplicity the baseline was shifted to zero. The average pulse values
yavg(t) =

∑
i yi(t)/119− b, with the baseline b from Tab. 6.3. The average signal for CT is

shown in Fig. 6.11.
The difference in average shift ∆ϕ = ϕDD−ϕBCT is determined for each DD with respect

to the BCTF40. These average shift differences are much smaller than the errors resulting
from other uncertainties, and can hence be omitted.

Note that the signal amplitude of the average pulse varies about 30 ADC on top of the
DC part, about as much as for the single pulse, compare Fig. 6.10 (A) and Fig. 6.11 (B).
This is to be expected if the phase-finding algorithm is working, and hence the phases are
not smeared out, and if the extractions are sufficiently alike.

Filtering and Normalisation

The averaged signal is now filtered in order to remove its 5 ns SPS beam structure facilitating
the subsequent timing analyses. The applied filter method is a raised-cosine filter of width
w, which belongs to the class of Finite Impulse Response filters. The applied equation for
filtering is:

yavg,filterd(t;w) =

w/2∑
j=−w/2

yavg(t+ j) ·
(

1 + cos

(
2π

j

w

))
, (6.9)

and the averaged, filtered signals with w = 15 ns for CT, CB, L, and BCTF40 are shown
in Fig. 6.12. Additionally to the filtering, each DD signal is normalised to its average
amplitude between 6650 ns and 6750 ns, the section of highest signal amplitude featuring
a sharp peak. The same is done for the BCTF40, but with the average amplitude taken
between 6510 ns and 6610 ns. The windows for the calculation of the average amplitude do
not overlap for the DDs and the BCTF40. A difference of 140 ns was chosen due to obvious
indications of an offset between the starting point of the read-out windows, that is e.g. the
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Figure 6.12.: The averaged, filtered, and normalised detector responses are displayed for
the three DDs and the BCTF40.

sharp peak appearing 140 ns earlier in the BCTF40 data than in the DDs data as well as
the position of the rising/falling edge at the start/end of the extractions.

6.6.5. Calculation of δoffset

Figure 6.8 explains the timeline offset δoffset between the signals within their read-out win-
dows. The averaged and filtered pulses are used to determine δoffset in two different ways.
The “fitting method” uses the topology of the signal at two different positions applying a fit
to the detector responses over a sample section of 80 ns width. The chosen sections feature
a trough and are indicated in Fig. 6.12 with “Fit 1” and “Fit 2”. This method is referred
to as local. A method that uses a much wider section, is the cross-correlation method.
This calculates the cross-correlations between two signals over a number of microseconds.
Therefore, this method is referred to as global.

The Local Method

The fitting method exploits a rather simple approach of fitting a second order polynomial
to an apparent trough in the detector responses,

yfit(t) = a(t− t0)2 + c, (6.10)

within a section of 80 ns width. The t0 defines the lowest point of the trough and is readily
determined for all four detector signals. The method is applied in two regions: from 4550 ns
to 4630 ns (Fit 1), shown in Fig. 6.13, and from 6380 ns to 6460 ns (Fit 2) for the DDs, but
140 ns earlier for both fits for the BCTF40. By eye it is visible as well that a steep trough is
apparent in all four detector signals alike, but about 140 ns earlier in time for the BCTF40.
Each fit then yields a t0. The values are collected in Tab. 6.4 (top). The difference between
the t0 for the DDs and the BCTF40 form δoffset, δoffset = tDD

0 −tBCT
0 , see Tab. 6.4 (bottom).

Note that pile-up adds to c, but does not affect t0. Hence, this approach is robust against
pile-up. As the result of this method, the weighted mean and error of the six δoffset values
are quoted:

δfit
offset = (140.0±2.5) ns. (6.11)
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Figure 6.13.: The averaged, filtered detector response (solid lines) around a trough and the
corresponding parabolic fits (dashed) are shown for one fit region.

Table 6.4.: The fit results for t0 and the resulting δoffset are listed. The top table gives the
absolute position of the trough minimum. The lower table states δoffset.

BCT CT CB L

trough 1 t0/ns 4446.9 ± 0.5 4586.1 ± 0.5 4586.4 ± 0.5 4582.6 ± 1.1
trough 2 t0/ns 6272.8 ± 0.8 6413.1 ± 0.8 6415.6 ± 0.8 6420.5 ± 1.4

CT-BCT CB-BCT L-BCT

trough 1 δoffset/ns 139.2 ± 0.7 139.5 ± 0.7 135.7 ± 1.2
trough 2 δoffset/ns 140.3 ± 1.1 142.8 ± 1.1 147.7 ± 1.6

The Global Method

This method employs a one-parameter likelihood function (LF) between two signals to form
a likelihood estimator Θ̂, e.g. between CT and BCTF40:

Θ̂(τ ; CT,BCT) = LF(fCT(t), fBCT(t+ τ)), (6.12)

in order to find a possible offset between them. If a signal coming from either a DD
or from the BCTF40 is correlated with itself, it is called an auto-estimator (Θ̂a). A cross-
estimator (Θ̂x) is the result of a correlation of two signals stemming from different detectors.
In order to find the δoffset, the correlation is calculated as a function of a parameter τ
which describes a time shift between the time arguments of the correlated functions, hence
Θ̂x(τ ; f1, f2) = LF(f1(t), f2(t+τ)), and Θ̂a(τ ; f1) = LF(f1(t), f1(t+τ)). The auto-estimator
is used to check that the used method yields reasonable results in terms of topology and
amplitude. The expected result for the Θ̂as is a minimum at τ = 0. Furthermore, the depth
of the minimum for the Θ̂a can be compared to that of the Θ̂x; the latter is expected to be
shallower than the former. The absolute value at the minimum of Θ̂a(τ) should be zero for
all auto-estimators.

The chosen likelihood function uses the absolute difference in first derivative at a
given point in time for the two signals under test, hence |f ′1(t)− f ′2(t+ τ)|. This difference
is calculated for every point in time t in a specified range, i.e. from tstart to tend. The
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absolute values are being summed; the sum forming the cross-estimator value Θ̂x(τ) in case
different functions are correlated, or the auto-estimator value Θ̂a(τ) in case a function was
correlated with itself. This procedure is then repeated for every τ ranging from -500 ns to
+500 ns in steps of 1 ns. The position of the minimum of Θ̂x(τ ; DD,BCT) is the offset
between the recording windows. One minimum is found for every DD-BCTF40-pair. The
full formula is:

Θ̂x(τ ; f1, f2) =

tend∑
t=tstart

∣∣f ′1(t)− f ′2(t+ τ)
∣∣ , τ = −500 ns, ..., 500 ns (6.13)

and equivalently for Θ̂a(τ). The local derivative for a progression – the recorded signal is
a progression with finite time steps rather than a continuous function – is the difference
of two neighbouring points: f ′ = f(t)−f(t+1 ns)

∆t . Here ∆t = 1 ns. It is stressed that the
“standard” cross-correlation function (f ∗ g)(τ) =

∑
f1(t)f2(t + τ) has not been chosen

as the LF. The cross-correlation is not independent of the absolute values of the tested
correlated signals, hence global maxima might appear due to changes in amplitude values,
and not due to a better match. Therefore, in the presented analysis the difference rather
than the product of two functions is chosen for the LF in order to avoid this dependence.
Then, the first derivative is chosen as the function ought to be correlated. This has the
advantage that the minimum of the likelihood estimator is more pronounced, as can easily be
shown. Additionally, differentiation attenuates the low frequency spectrum where most of
the spectral differences between detectors are located, e.g. possible skin effect on the cables,
different detector capacitances, pile-up and possible offset on the signals. Both auto- and
cross-estimators have been calculated in the range from tstart = 4000 ns to tend = 8000 ns.

The calculated auto-estimators are shown in Fig. 6.14 (top left) for a filter width of
w = 15 ns. The minima of the Θ̂as are more pronounced then the minima of the Θ̂xs, as
expected, and their position are at 0 ns as expected from an auto-correlation. Also, their
position are at τ = 0 independent of w (not shown). Furthermore, the absolute value at
τ = 0 is exactly zero, but the functions in Fig. 6.14 (top left) are drawn with an offset for
better visibility.

The cross-estimators of the BCTF40 signal with each DD signal separately are shown in
Fig. 6.14 (top right, bottom) as a function of τ for three different filter widths. In order to
avoid an overlay of the different cross-correlation graphs, arbitrary offsets have been added
to the Θ̂xs. The position of the minima for Θ̂x(CT,BCT), Θ̂x(CB,BCT), and Θ̂x(L,BCT),
i.e. the calculated δoffsets, are listed in Tab. 6.5. Their mean and error are (138.1±1.2) ns. It
is evident from the lower right picture of Fig. 6.14, that a raised cosine filter of 5 ns width
is not sufficient to filter out the SPS bunch structure from the detector response. This
results in a large variation in the cross-estimator Θ̂x value over 5 ns due to the matching
(or non-matching) bunch structure depending on τ mod 5. The amplitude of the variation
due to the overall extraction structure is roughly a factor 4 smaller. Additionally, the Θ̂xs
between different DDs have been checked. The positions of the minima are also located at
τ = 0, which further proves the reliability of this method. As the result of the likelihood
estimator method, the mean and standard deviation of the nine δoffset values are quoted:

δΘ̂x
offset = (138.1±1.2) ns. (6.14)
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Figure 6.14.: The likelihood auto-estimators Θ̂a(τ) are shown for w = 15 for the four detec-
tors separately, with all their minima at 0 ns (top left). The likelihood cross-
estimators Θ̂x(τ ; DD,BCT) between each DD and the BCTF40 for w = 30 ns
and w = 15 ns (top right, bottom left) have their minima around -138 ns.
The likelihood cross-estimators Θ̂x(τ ; DD,BCT) for w = 5 ns (bottom right)
shows no pronounced minimum.

6.7. Results

In order to verify the CNGS timing at CERN, the ToF for charged particles from the beam
current transformer BCTF40 to the diamond detectors downstream of the CNGS target
was measured and compared to its nominal value. The measured ToF uses the total delay
between the start of the read-out windows δdelay and the offset δoffset of the timelines within
the recording windows, hence ToF = δdelay + δoffset. As presented in Sec. 6.5, the time
difference between the start of the recording window of the BCTF40 and the recording
window of the DDs is

δdelay = (6067.1±3.4) ns.

In Sec. 6.6, δoffset was calculated based on two different methods to be

δfit
offset = (140.0±2.5) ns and δΘ̂x

offset = (138.1±1.2) ns

using the fitting method and the likelihood cross-estimator method, respectively. Although
derived on very different parts of the signal, each method’s result is consistent with the
other within their precision. No additional source of a significant systematic uncertainty is
known. Neither do the results suggest one. The measured ToF is hence

ToFfit = (6207.1±4.2) ns and ToFΘ̂x
= (6205.2±3.6) ns

for the fitting method and for the likelihood cross-estimator method, respectively.
A cross-check of the data stemming from the second extraction was done, and no signif-

icant difference to the δoffset of the first extraction is found. A full analysis of the second
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Table 6.5.: The position of the minimum of the likelihood cross-estimator Θ̂x(DD,BCT)
between the BCTF40 and the individual DDs.

min
(
Θ̂x(DD,BCT)

)
DD = CT DD = CB DD = L

δoffset/ns for w = 15 ns 137 136 139
δoffset/ns for w = 20 ns 138 137 138
δoffset/ns for w = 30 ns 139 139 140

extraction would improve the uncertainties of δΘ̂x
offset and δfit

offset , i.e. σ
δΘ̂x
offset

and σδfit
offset

re-

spectively, roughly by a factor of
√

2. Since the uncertainty of δdelay is larger than σ
δΘ̂x
offset

and σδfit
offset

and since the ToF is the sum of δdelay and δoffset, the impact on σToF caused by a

possible improvement of σ
δΘ̂x
offset

and σδfit
offset

is small: 0.4 ns and 0.1 ns for σToFfit
and σToFΘ̂x

,

respectively.
The value for the nominal ToF combines the travelled distance of (1859.95±0.02) m, as

measured by the CERN GEO survey, and the combined velocity v of the original proton
and its production/decay products. The SPS protons have a momentum of 400 GeV/c, the
pions and kaons an average momentum of 35 GeV/c, and hence the muons have an average
momentum of 17 GeV/c. Under the assumption of not-completely relativistic muons, a ToF
of

ToFnom =
1859.95 m

v
= (6205.3±1.7) ns,

is found, where the uncertainty is dominated by the decay position of the pions/kaons
within the decay tube. The 1.7 ns reflect the spread in the decay position of 68 % of the
pions/kaons decaying in the decay tube, centred midway within the tube, and the resulting
difference in arrival time. ToFnom lies well within the errors of ToFfit and ToFΘ̂x

. Under

the assumption of completely relativistic muons, ToFnom = 1859.95 m
c = (6204.1±1.7) ns.

6.8. Conclusion

As a result of the neutrino time-of-flight publication of OPERA in 2011, polycrystalline
CVD diamond detectors were installed in the secondary beam line downstream from the
CNGS target in order to measure the time structure of the muon spill. This allows for
an independent verification of the CNGS timing at CERN, which was previously only
based on the measurements of the protons passing through a fast beam current transformer
(BCTF40) before they hit the CNGS target. The distance between the two detector posi-
tions was carefully measured as well as all the time delays from the detection of the particles
until the signal was registered. Detailed analysis of the signal shape was performed. The
nominal time-of-flight of the protons and their secondary particles produced in the CNGS
target travelling at almost the speed of light between the BCTF40 and the diamond detec-
tors was compared with the measured time-of-flight of the charged particles passing through
these detectors. The nominal time-of-flight lies well within the uncertainty of the measured
time-of-flight. The results show that the time measurements performed at the CERN part
of CNGS using the BCTF40 and the diamond detectors are consistent.
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7. TIME RESOLUTION MEASUREMENTS
WITH THE µ-BEAM AT CNGS

In February 2012 the diamond muon detectors in the secondary beam line of the CNGS
facility were slightly modified in order to cope with the high beam intensities foreseen for
the 2012 CNGS operation. Polycrystalline CVD diamond has often been tested at low
fluences of minimum ionising particles, but there is a lack of data at high impact ionisation.
The high intensity muon beam at CNGS is used to study the time resolution of diamond
detectors at high impact ionisation. The integrated muon flux of roughly 4.7×105 cm−2

per bunch produce a measured charge of 300 pC per bunch in the diamond sensor. A MIP
creates 36 pair/µm in diamond. For a 500 µm thick sensor, the measured charge amounts
to 18 000 pairs · CCE/2 ≈ 7200 e = 1.15 fC, at a charge collection efficiency (CCE) of
roughly 40 % at 1 V/µm. For a single minimum ionising particle (MIP), a time resolution
of σMIP

t = (687±42) ps has been reported. [113] A better time resolution is expected with
increasing signal charge.

7.1. The CNGS Beam in 2012

The CERN SPS accelerator delivers a fast-extracted 400 GeV/c proton beam for CNGS.
One extraction per SPS super-cycle is directed towards the CNGS target lasting 7000 ns and
containing on average P = (12.5±1.4)×1012 p/ext (protons/extraction) for the extractions
examined in this work. Each extraction consists of 64 bunches coming in 4 bunch trains
containing 16 bunches each. The bunch spacing amounts to 100 ns, the train spacing is
300 ns. [114] The protons produce pions and kaons in the CNGS target, which are energy
selected and steered towards Gran Sasso d’Italia. During their flight, the pions and kaons
decay in a vacuum decay tube into muons and muon-neutrinos with an average muon energy
of ∼17 GeV/c. The bunch profile is roughly triangular shaped with a full-width at half-
maximum (FWHM) of 1.5 ns. The 12.5×1012 p/ext produce a muon flux of 4.68×105 cm−2

per bunch in the centre of the Pit 1 cavern, where the diamond detectors are placed. The
muon yield per proton at the diamond detector is µp = 2.4×10−6 cm−2.

7.2. Experimental Set-up

The set-up used in Pit 1 is almost identical with the set-up used in 2011. All charging ca-
pacitors have been changed to be C1 = 11 nF. Also the data taking and the data processing
is identical with the 2011 procedure, see Chap. 6. The data used for this time resolution
study was taken on April 21st, 2012 between 2 a.m. and 3 a.m.
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Figure 7.1.: The averaged detector response over all extraction is shown for the complete
extraction.

7.3. Results and Discussion

7.3.1. The total measured charge

The average detector response over all non-empty extractions analysed in this work is shown
in Fig. 7.1, and a zoom into the first bunch for a single extraction in Fig. 7.2. At first,
the measured amount of charge is discussed, as it is not clear if a linear response is to be
expected at this high particle flux. A first order estimate of the expected signal charge is
compared to the measured signal charge. The charge created from a single MIP crossing the
detector at right angle is QMIP = 18 000 pair, i.e. 36 000 e, created over the whole thickness
of the sensor. If these charges drift under the influence of an electric field, they induce a
current of i(t) = Q(t) vdrift/d. The total induced current under the assumption of infinite
charge lifetime is i(t) = QMIP

vdrift
d

(
1− vdrift t

d

)
. Hence the amount of induced charge is

QMIP,ind =
∫ tt

0 i(t) dt = QMIP/2 using d = vdrift tt with the transit time tt.
If a linear charge yield of the diamond detectors up to high muon fluences in combination

with negligible charge trapping is assumed, the amount of expected charge for an entire
extraction reads

Q0 = P · µp ·Adet ·QMIP,ind = 55.3 nC. (7.1)

The measured amount of charge is based on the integral of the average measured signal.
With the integral Im = 43 470 ADC/ns, an oscilloscope gain of g = 15.6 mV/ADC, and
taking into account the 50 Ω read-out line and the fact that the signal was split into two
signals to feed two oscilloscope channels (−6 dB), the measured charge is

Qm = 2 · Im · g/50 Ω = 27.1 nC, (7.2)

which corresponds to a charge collection efficiency of 27.1/55.3 = 49 %.
As can be seen from Fig. 7.1, after a bunch crossed the sensor the signal current does

not return to its baseline present prior to the first bunch. In fact, there seems to be an
exponentially saturating behaviour during the bunch train, which lifts the baseline from
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Figure 7.2.: A Landau fit to a single detector response of a first bunch is shown.

0 ADC to about 1.5 ADC. The area below this lifted baseline amounts to about 2400 ADCns
per bunch train, and hence Ibase = 9600 ADCns for the full extractions. If Qm is corrected
for this baseline offset,

Qcorr = Qm −Qbase = 21.1 nC (7.3)

is found, corresponding to a charge collection efficiency of CCEcorr = 38 %. This is about
the expected CCE for a single MIP in pCVD diamond. It may hence be concluded that
the pCVD diamond has an about linear response in the fluence range from single MIP to
100 THz (300.000 particles within 3 ns). The peculiar behaviour of the baseline has been
observed in other high flux experiments as well. [115] Further investigation is needed to pin
down a physical explanation.

7.3.2. The time resolution

The detector response to a single traversing muon bunch as measured with the oscilloscope
within a time window of 50 ns is shown in Fig. 7.2. A rise time (10%-90%) of about 1 ns
is evident. For this time resolution study, the detector response to each first bunch from a
total of 146 extractions is analysed. First, the baseline of each pulse is shifted to zero. Then,
a Landau function is fitted to the detector response of the first bunch in each extraction,
see Fig. 7.2 for one exemplary fit. Additionally, the baseline noise σnoise of the acquisition
is calculated in a time region prior to every first bunch.

The single pulse time resolution σt of a measurement system is defined as [116]

σt =
σnoise

max(slope)
, (7.4)

where max(slope) is the maximum slope within the rise time of the signal. In order to
determine the single pulse time resolution, the maximum slope of the Landau-Fit within
the rise time is calculated. Figure 7.3 (A) shows the noise distribution in ADC units
and Fig. 7.3 (B) the distribution of the maximum slope in units of ADC/ns. The means
and RMSs are σ = (1.23±0.05) ADC and max(slope) = (83.5±8.7) ADC/ns. The time
resolution hence is
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Figure 7.3.: Distribution of the rms noise of the signal prior to the extraction (A) and the
distribution of the maximum slope of the Landau-Fits (B).

σt = (14.7±1.7) ps. (7.5)

The noise is dominated by the least-significant-bit noise of the 8-bit oscilloscope. With
a 12-bit (16-bit) data acquisition system, a time resolution of σ12b

t ≈ 1 ps (σ16b
t < 100 fs) is

feasible. The real electric noise at a gain of 5 mV/div is much smaller than 1 mV, compared
to the one used for the measurement of g · σ ≈ 19 mV.

7.4. Conclusion

The time resolution of polycrystalline diamond has been analysed at high impact ionisation
of 300 pC per bunch with the muon beam in the secondary beam line of the CNGS facility.
A single pulse time resolution of

σt = (14.7±1.7) ps (7.6)

is found. Additionally, the linearity of the signal delivered by the diamond was estimated
at first order. No significant deviation from a linear behaviour of the signal charge as a
function of the flux is observed up to a muon flux per detector of 3×105 within 3 ns.
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8. THE BEAM CONDITIONS MONITOR
AT THE ATLAS EXPERIMENT

8.1. Introduction

In this chapter the characterisation of the non-collision backgrounds with the ATLAS detec-
tor is discussed, and techniques in order to identify them are presented.1 First, the Large
Hadron Collider (LHC) and the ATLAS detector are introduced, then the definitions of
the sources of non-collision backgrounds are discussed. Subsequently, a brief introduction
to the characteristics of the ATLAS trigger system and LHC beam structure are given,
followed by characterisation of the beam induced background with the Beam Conditions
Monitor (BCM) sub-detector.

8.1.1. The LHC and the ATLAS detector

The LHC [3] – the largest, man-made circular particle accelerator ever built – is managed
by the European Organisation for Nuclear Research (CERN) and produced its first particle
collisions in 2009. Its circumference measures 26.7 km and it resides about 100 m under
ground. In its two proton storage rings, it can accelerate protons to almost the speed of
light, and will be able to collide them a centre-of-mass energy of

√
s = 14 TeV at a bunch-

crossing (BC) frequency of 40 MHz. Superconducting magnets, cooled to 1.9 K using super-
fluid helium, bend the trajectory of the protons on circular paths. The design luminosity
is as high as L = 1034 cm−2s−1, two order of magnitudes higher compared to the second
most energetic collider: the Tevatron at Fermilab2. The high luminosity is made possible
by filling the LHC with up to 2808 bunches with over 1011 protons each, adding up a total
stored beam energy of 724 MJ. A combination of a photograph and a drawing of the LHC
magnet is shown in Fig. 8.1.

The ATLAS detector [11] at the LHC is situated in an underground cavern at a depth
of 80 m. Its basic parameters are a weight of 7000 t, a diameter of 22 m, and a width of
44 m. Proton-proton collisions occur at the centre of the experiment. In order to measure
the total transverse momentum of a collision, the ATLAS detector is designed to cover a
pseudo-rapidity of |η| = 4.9 around the collision point with η = − ln

(
tan(θ/2)

)
. Here, θ

is the polar angle with respect to the theoretical LHC beam line. An illustration of the
ATLAS detector is shown in Fig. 8.2. With the x-axis pointing towards the centre of the
LHC ring, φ defined with respect to the x-axis, and the z-axis defined along LHC beam 2,
the ATLAS coordinate system is right-handed. ATLAS is divided into two sides A and C,
where side A is the receiving beam 1 from the east, whereas side C receives beam 2 from
the west.

The inner tracking detector of ATLAS covers a pseudo-rapidity of |η| < 2.5 and is em-
bedded in a 2 T superconducting solenoid. High-resolution measurement of charged particle

1cf. [117], where the author of this thesis was a co-author
2ceased operations on September 30th, 2011
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Figure 8.1.: A picture of an LHC magnet is shown. [118]

momentum and vertex position is a key feature of the inner tracking system, and is ren-
dered possible by the combination of a pixel detector followed by a strip tracker detector.
Particle identification is facilitated by a transition radiation tracker. Shell-wise, the tracker
is followed by a high-granularity liquid-argon electromagnetic calorimeter and a hadronic
calorimeter, which is based on scintillator-tiles for |η| < 1.7 and on liquid-argon technology
for |η| > 1.5. The calorimetry is surrounded by large superconducting toroid magnets. The
outermost shell is a muon spectrometer.

Another important ATLAS sub-detector, extensively used in beam-related studies is the
Beam Conditions Monitor. [119] Its primary purpose is to monitor beam conditions and
protect against anomalous beam-losses, that could result in detector damage. Aside from
this protective function it is also used to monitor luminosity and beam-background levels.
It consists of two detector stations (forward and backward) with four modules each. A
module consists of two polycrystalline chemical vapour deposition diamond sensors. The
sensors are about 500 µm thick and the sensor area is 10 mm×10 mm, equipped with metal
electrodes covering 8 mm × 8 mm. The diamond sensors are positioned at z = ±184 cm,
corresponding to a z/c = 6.13 ns time-of-flight to/from the interaction point. The sensors
are at a radius of 55 mm, i.e. at an |η| of about 4.2 and arranged as a cross – two sensors on
the vertical and two on the horizontal axis. They provide a precise time resolution in the
sub-nanosecond regime [113], which can be used to identify beam-backgrounds, as shown in
Sec. 8.3.

8.1.2. Definition of non-collision backgrounds

Signals detected in the ATLAS detector do not always origin from beam-beam collision,
but also from cosmic-ray showers and so-called beam-induced background (BIB) [121]. This
type of background is called non-collision background and the BIB part is studied herein.
Cosmic-ray showers produced in proton-gas collisions in the atmosphere are another source
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Figure 8.2.: A technical drawing of the ATLAS detector is shown. [120]

of non-collision background. [122] Out of these cosmic-rays, mostly high-energy muons reach
the ATLAS cavern, whereas other contents are stopped earlier. Triggers can be fired by
both the BIB or cosmic-ray muons as they deposit energy in the calorimeter, or signals from
these sources can overlap with proton-proton collisions, eventually leading to false triggers.

When protons are lost upstream of the interaction point, secondary cascades are produced
by hitting collimators or residual gas molecules in the LHC. These secondary particles can
in general follow the LHC beam and induce background signals in the detectors, which
bias the physics analyses. Different factors affect the rate of the BIB, e.g. machine optics,
collimator settings, residual gas densities, and filling schemes. In general, three different
types of BIBs are defined: [117]

• Tertiary halo: protons lost on limiting apertures near the experiment, typically the
tertiary collimator (TC) situated at z ≈ ±150 m from the interaction point. These
are a normal feature of the 3-stage cleaning of the LHC, where the 2-stage cleaning
in dedicated sections (Interaction Region (IR) 7 for betatron and IR 3 for momentum
cleaning) is complemented by a tertiary collimator.

• Inelastic beam-gas: produced in inelastic interactions of protons with the residual
gas inside the beam-pipe. Simulation studies [123, 124] show that these give a signifi-
cant contribution even from a distance larger than 550 m from the interaction point3,
i.e. from the LHC arc.

• Elastic beam-gas: elastic beam-gas scattering can result in small angular deflections
of the protons. Usually such protons are intercepted within one turn on limiting
apertures. A non-negligible fraction of them are expected to end up on the TC.

3The LHC long straight sections are 545 m long.
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Tertiary halo and elastic beam gas events produce similar signals in the ATLAS detec-
tor as in both cases protons are lost on the TC and a collimated flux of secondaries is
produced. The secondaries that reach the ATLAS detector are mostly high-energy muons.
Simulation studies show that these muons cross the detector at radii typically smaller than
2 m. Also inelastic beam-gas interactions in the straight sections of the LHC produce com-
parable background. In contrast, inelastic beam-gas interactions from arc regions result in
tangentially emitted muons crossing ATLAS at larger radii.

Additionally to the above discussed BIBs, other types of non-collision backgrounds ex-
ist. [125] The LHC operating frequency is 400 MHz, i.e. within 25 ns there are ten buckets
spaced by 2.5 ns. If the crossing angle between the two LHC beams at the interaction point
is zero, parasitic proton-proton collisions can occur at multiples of 37.5 cm away from the
interaction point, when protons leak from their original bucket to a neighbouring bucket.
Therefore, the LHC is designed to produce collisions at a nominal crossing-angle of 285 µrad,
largely reducing the rate of parasitic collisions. Only if in both of the colliding bunches
protons have leaked in a neighbouring bucket, so-called satellite collision can occur at the
interaction point itself. These are likely to be proportional to the square of the amount of
leakage in to neighbouring buckets and are therefore accordingly improbable.

Here, and to a larger extent in Ref. [117], a first qualitative characterisation of the various
backgrounds is given.

8.1.3. The LHC beam structure and the ATLAS trigger system

The design bunch-crossing frequency of the LHC is 40 MHz [3], which corresponds to a 25 ns
spacing between the bunches. The length of the LHC therefore offers 3564 bunch positions,
which are numbered uniquely by a bunch-crossing identifier (BCID). Up to 2808 bunches
can be filled in the LHC, with a maximum of 32 and a bunch spacing of 150 ns during 2010.
Unfilled bunches are a consequence of the injection scheme and an abort gap is needed for
a safe extraction of the beam in the event of a beam dump.

In order to group bunches of a corresponding type, the bunches are organised in bunch
groups by the ATLAS Central Trigger Processor (CTP) [126]. The CTP takes the Level-1
(L1) trigger decision for every bunch based on various input signals and issues the type of
trigger items that matched the signals. The trigger items requirements can be changed by
software and are adapted for different filling schemes. Those items that are used for non-
collision background monitoring are described in Table 8.1. With different filling schemes
and on-going machine development, the definition of the bunch group needs to be pro-
grammable and is matched to the individual filling scheme for each fill. The bunch groups
of interest for this study are: [117]

• Paired: a bunch in both LHC beams in the same BCID;

• Unpaired isolated: a bunch in only one LHC beam with no bunch in the other
beam within 3 BCIDs

• Unpaired non-isolated: a bunch in only one LHC beam with a nearby (within
3 BCID) bunch in the other beam

• Empty: a BCID containing no proton bunch in both beams.
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8.2. Beam Background Levels during 2010 Data-taking

The time measurements performed by the ATLAS sub-detectors can be used to distinguish
beam backgrounds from collisions. As discussed above, particles stemming from BIB typi-
cally travel parallel to the beam direction z, enter the ATLAS detector from one side and
exit on the opposite. Hence, particles from BIBs typically first produce hits on one side
before the BC, and subsequently hits after the bunch crossing on the other. However, par-
ticles from beam collisions travel outward from the interaction point and therefore produce
hits in the sub-detectors at the same point in time on both of the two ATLAS sides (A and
C), with both hits on both sides occurring after the BC.

The hits happening before (after) the BC are called “out-of-time” (“in-time”). As a
result, any sub-detector with modules at identical positions in both positive and negative
z and with sufficiently high timing resolution can be used to discriminate between these
processes, using the observable ∆t = t2 − t1. For in-time hits, ∆t = t2 − t1 ≈ 0, for
out-of-time hits ∆t = t2 − t1 = ∆z/c.

The cleanest BIB sample was provided by the BCM sub-detector with the so-called
L1 BCM AC CA trigger, which selects beam-background-like events. For this trigger an
event is selected if a hit on one side is out-of-time, i.e. early by 12.3 ns with respect to
collision hits, with another hit being in-time on the other side. The width of the time window
during which a hit is accepted is 6.25± 2.75 ns before and after the nominal collision time
of any BCID. Since the time-window for accepting a L1 BCM AC CA trigger was rather
narrow, it is a reasonably pure halo-trigger even in colliding bunch pairs. The trigger bit
itself carries no information about the direction of the two beams, i.e. if the background was
of type A-to-C or C-to-A. This information is available in the CTP monitoring database
with less time-granularity and was not systematically used in the analysis of 2010 data.

The L1 BCM AC CA trigger rate normalised to the number of protons in the machine
over the entire 2010 proton running period is shown in Figure 8.3. When the proton intensity
was altered from low-intensity to nominal (∼1011 protons/bunch) intensity at the end of
June, a step in the measured background level is seen. Multi-bunch injection introduced
another small step. The introduction of 150 ns bunch-trains clearly affected the background
level due to electron-cloud build-up in the machine and thereby a worsening of the vacuum.
It is found that the L1 BCM AC CA rate is correlated with the quality of the beam pipe
vacuum, i.e. with the pressure inside the beam pipe. Figure 8.3 shows the average pressure
per fill and the increase at the end of the year of the L1 BCM AC CA rate and the beam
pipe pressure.

Table 8.1.: ATLAS Trigger items used during the 2010 proton runs for the monitoring and
studies of non-collision backgrounds. [117]

Trigger item Description Usage for background monitoring/studies

L1 BCM AC CA BGRP0 BCM halo-like coincidence BIB level
L1 BCM Wide BGRP0 BCM collision-like coincidence Collisions in unpaired BCIDs
L1 J5 UNPAIRED ISO Jet with pT > 5 GeV Fake jets due to BIB
L1 J5 UNPAIRED NONISO Jet with pT > 5 GeV Fake jets due to BIB
L1 TAU5 UNPAIRED ISO Narrow jet with pT > 5 GeV Fake jets due to BIB
L1 J10 UNPAIRED ISO Jet with pT > 10 GeV Fake jets due to BIB
L1 J10 UNPAIRED NONISO Jet with pT > 10 GeV Fake jets due to BIB
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Figure 8.3.: The BCM specific BIB trigger rate is shown, with the rate normalised to 1011

protons, for the whole proton-proton running period of 2010. The two fills
(LHC fill number 1309 and 1440) used for further studies are marked with
a rectangle (original marker) and additionally with an upward arrow. The
corresponding ATLAS run numbers are 162882 and 167607 with low and high
BIBs, respectively. [117]

With small size diamond detectors used in the BCM, the trigger efficiency of the BCM on
tertiary halo events is inherently low. Furthermore, the BCM can only detect BIB events
that have particles at a certain radii from the beam pipe. BIB events triggered by the
BCM can therefore be of different topology and origin compared to those e.g. seen by the
calorimeter. Consequently, BIB events detected by BCM do not necessarily coincide with
BIB events detected by other ATLAS subdetectors, and detectors with higher efficiency
and a different coverage need to be studied, too, cf. [117].

8.3. Characterisation of BIBs with the BCM sub-detector

The properties of the BIB events can be studied using the precise time measurements of the
Beam Conditions Monitor (BCM) sub-detector, described in Sec. 8.1. The different time
characteristics of collisions and BIBs presented in Sec. 8.2 are used here. For events that
contain at least one hit per station, the time-of-flight (∆t) can be calculated and is used
to distinguish events resulting from beam losses from those occurring from proton-proton
interactions. A positive ∆t for the BCM sub-detector corresponds to an event containing
a hit in station A with a subsequent hit in station C, and the ∆t is calculated for hits
occurring in the same bunch crossing as

∆t = tC − tA. (8.1)

The data-taking sessions considered in this analysis have been chosen for their low
(run 162882) and high (run 167607) beam background conditions. Events with at least one
hit per station were analysed. The required CTP trigger is of type ’L1 BCM Wide BGRP0’
or ’L1 BCM AC CA BGRP0’, the latter defined in Sec. 8.2. The trigger window of the
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Figure 8.4.: The ∆t distribution derived from BCM hits is shown for the two data-taking
sessions under study, i.e. LHC run numbers 1309 (left) and 1440(right) [117].

’L1 BCM Wide BGRP0’ trigger item is defined as 0.4 ns to 8.2 ns after the collision and re-
quired at least one hit on both sides.4 The abbreviation BGRP0 is short for ’Bunch Group 0’,
which includes all BCIDs with the exception of the abort gap, hence it includes also paired
and unpaired crossings. When multiple hits are present for an event, ∆t values for all pairs
are calculated and each ∆t is weighted by the inverse number of pairs w = 1/n. Addition-
ally, each event is corrected according to the trigger prescale in each luminosity block. A
luminosity block is a certain time interval during which the luminosity, trigger, and detector
conditions can be considered as constant. A change in the LHC beam, trigger, or detector
conditions will cause the creation of a new luminosity block.

The ∆t distributions derived from BCM hits are shown in Fig. 8.4 for the two data-taking
sessions under study. Collision-like events accumulate around ∆t = 0 ns and background-
like events around ∆t = ±12.3 ns, as marked with solid lines. Note the logarithmic scale on
the vertical-axis. The three distinctive peaks around the three mentioned positions function
as a proof of the ability of the BCM to distinguish between the two types of events under
discussion here. Hence, it can be used to select a pure background sample, but it should be
mentioned that due to the small area of the BCM detector, the selection has a quite low
acceptance.

For the two data-taking sessions examined here, the number of collision events and the
number of halo events is estimated by the area of the histograms around the three peaks,
i.e. the area around ∆t = 0 ns and the sum of areas around ∆t = ±12.3 ns. For the low
background run, a ratio (collision over halo) of roughly 280 is found. In contrast to that, the
high background run presented with a ration of ∼60 as measured with the BCM. Hence, a
smaller difference between the two event numbers indicates a worsening of the background
conditions. The L1 BCM Wide trigger lacks statistics to observe collision-like events in
unpaired BCIDs (red hatched areas around ∆t = 0 ns) as its prescale is set according to
the collision hit rate with paired bunches, and is therefore heavily prescaled. In order to
remedy this, dedicated BCM triggers for unpaired crossings have been introduced in the
course of 2011.

The BCM ∆t is plotted versus the BCID in Fig. 8.5 in order to determine whether there
is any BCID dependence in the beam conditions. It can be concluded from Fig. 8.5 that

4The expected arrival time for particles originated in collisions is 6.13 ns.
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Figure 8.5.: The BCM ∆t is plotted against the BCID for the two data-taking sessions
under study, i.e. LHC fill numbers 1309 (top left) and 1440 (top right). [117]
Additionally, the same plot is shown for a run from end of April 2011. There,
events occurring in between trains are clearly visible (mostly blue and around
∆t = 0).

the conditions are comparable for all filled BCIDs. The discrimination power of the BCM is
again corroborated by the fact that, visible especially in the low background run, events from
unpaired crossing are readily identified in those BCIDs, that are actual unpaired bunches
according to the LHC filling scheme [127]. Also, the paired BCIDs can be identified and
correspond to the fill structure. Additionally, the same plot is shown for a run from end of
April 2011. There, 598 bunches were arranged in 11 bunch trains, and the bunch spacing
within the train was 50 ns (compared to 150 ns in run 167607). Events occurring in between
trains are clearly visible (mostly blue and around ∆t = 0).

8.3.1. Conclusion

The ATLAS Beam Conditions Monitor is an ATLAS sub-detector, which makes use of fast
diamond sensors in order to detect charged particles. The sub-nanosecond time resolution
allows for an excellent timing measurement of the passage of these particles. With station
on both sides of the interaction point, the BCM is capable of distinguishing beam halo from
collision events, by measuring the time difference between hits on different sides. It can
therefore provide a pure halo sample. However, owing to the low acceptance of the small
sensors, the BCM provides poor efficiency. With the BCM serving as a proof of principle of
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the capabilities of a diamond based charged particle sensor, an upgrade project, the ATLAS
Diamond Beam Monitor (DBM), is foreseen to be installed in the ATLAS experiment during
the ongoing shut-down (2013/2014). Unlike the BCM, the DBM is equipped with a pixelised
read-out, allowing for bunch-by-bunch collision point tracking. With other experiments, for
example the CMS experiment at the LHC, installing diamond based detectors, too, diamond
becomes more and more the detector material of choice for time-critical sub-detectors.
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9. SUMMARY AND FUTURE WORK

Along with a broadening fundamental knowledge about diamond comes the possibility of
its usage in numerous applications. Besides the examples given in the preface, this work
proves the usability of diamond as a charged particle detector at liquid helium temperatures
and in high-flux environments.

A temperature controlled TCT set-up has been constructed, which is a powerful tool
for the characterisation of the temperature dependence of semiconductor properties. Three
single-crystal CVD diamond samples, that have been studied with the transient current
technique, show a very similar behaviour in all measured aspects. The measured tran-
sit time at various field strength enables the measurement of the charge carrier mobility.
For holes the mobility increases with decreasing temperature due to the acoustic phonon
scattering, but it saturates for ultra-cold temperatures. The low-field mobility for holes
at room temperature is measured to be µh0(295 K) = (2534±20) cm2/Vs and µh0(2 K) =
(10 740±250) cm2/Vs. For electrons, only a lower limit on the low-field mobility results
from the pursued measurements. It is measured to be µe

0
(295 K) = (1802±14) cm2/Vs and

µe
0
(2 K) = (3061±55) cm2/Vs. These measurements, for the first time, allow for an experi-

mental estimation of the mobility governed by the neutral impurity scattering. Holes show
a NIS mobility of µhNIS = (11 130±120) cm2/Vs, and electrons of µe

NIS
= (3058±27) cm2/Vs.

The lifetime of excitons in diamond is usually studied using spectrometry in order to mea-
sure the light from radiative recombination processes. No literature about the combination
of a spectroscopic measurement with an applied electric field is available. Herein, an electric
measurement of currents resulting from evaporating excitons is presented. The recorded
pulse shapes are modelled under the assumption of the creation and subsequent evaporation
and recombination of excitons. Details of the derivation of the exciton model are given and
a subsequent discussion compares the model to the data. The evaporation time at room
temperature is found to be a few tens of picoseconds, a few nanoseconds at 100 K, and
further exponentially increasing towards even lower temperatures. A non-radiative recom-
bination lifetime can be estimated to be of the order of a few nanoseconds. Additional
measurements undertaken with a silicon pad detector are compared to the diamond data,
and a successful plausibility check of the model is performed.

Additionally, an anomalous temperature behaviour of the transit time of electrons is
observed. This is thought be the result of different drift velocities present in the longitudinal
and transversal valleys of the multi-valley semiconductor diamond; a future application
being valleytronic devices that make use of the valley quantum number of the electron in
order to encode binary information.

The secondary beam line of CNGS and the proton-proton collisions at ATLAS were
taken as use cases of diamond detectors, where time resolution is critical. At CNGS, the
time-of-flight of charged particles is studied, helping to solve the problem of “faster than
light”-neutrinos. Additionally, the charge yield and the single-pulse time resolution at high
impact ionisation is measured. The charge yield of polycrystalline CVD samples is shown to
increase linearly with the impact ionisation up to a muon flux per detector of 3×105 within
3 ns. The measured single-pulse time resolution is σt = (14.7±1.7) ps. At ATLAS, the

129



9. SUMMARY AND FUTURE WORK

diamond sensors of the BCM are used to successfully distinguish halo events from collision
events.

In the future, the temperature controlled transient current technique needs to be carried
out on irradiated samples. This opens the possibility of studying radiation induced defects
in unprecedented accuracy, and might render the determination of the energy level of these
defects possible. If it was possible to create shallow defects with radiation, an important
problem of diamond as a transistor material could be overcome, as there are no shallow
donors nor acceptors known in diamond. A second possibility to study radiation induced
defects is the thermally stimulated current technique, which could be used at radiation
levels, at which the current resulting from an α-particle is not detectable any more.

It is clear from this work and other recent studies, that diamond is a diversely applicable
material, with many prospects in future devices; researches today just lifting the curtain
for discoveries to come.
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A. Stopping Power Values from NIST

Listed is the dE/dx in diamond for various α-energies.

Eα [MeV] dE/dx [MeV/µm] Eα [MeV] dE/dx [MeV/µm] Eα [MeV] dE/dx [MeV/µm]

1.00×10−3 3.480×102 2.75×10−1 1.897×103 1.75×101 3.117×102

1.50×10−3 3.730×102 3.00×10−1 1.934×103 2.00×101 2.811×102

2.00×10−3 3.930×102 3.50×10−1 1.992×103 2.50×101 2.360×102

2.50×10−3 4.104×102 4.00×10−1 2.031×103 2.75×101 2.189×102

3.00×10−3 4.262×102 4.50×10−1 2.055×103 3.00×101 2.043×102

4.00×10−3 4.547×102 5.00×10−1 2.067×103 3.50×101 1.808×102

5.00×10−3 4.803×102 5.50×10−1 2.069×103 4.00×101 1.624×102

6.00×10−3 5.039×102 6.00×10−1 2.064×103 4.50×101 1.477×102

7.00×10−3 5.259×102 6.50×10−1 2.052×103 5.00×101 1.357×102

8.00×10−3 5.467×102 7.00×10−1 2.037×103 5.50×101 1.257×102

9.00×10−3 5.664×102 7.50×10−1 2.017×103 6.00×101 1.171×102

1.00×10−2 5.853×102 8.00×10−1 1.995×103 6.50×101 1.098×102

1.25×10−2 6.290×102 8.50×10−1 1.971×103 7.00×101 1.034×102

1.50×10−2 6.690×102 9.00×10−1 1.946×103 7.50×101 9.773×101

1.75×10−2 7.060×102 9.50×10−1 1.920×103 8.00×101 9.274×101

2.00×10−2 7.406×102 1.00 1.893×103 8.50×101 8.829×101

2.25×10−2 7.730×102 1.25 1.753×103 9.00×101 8.429×101

2.50×10−2 8.037×102 1.50 1.621×103 9.50×101 8.067×101

2.75×10−2 8.329×102 1.75 1.504×103 1.00×102 7.738×101

3.00×10−2 8.607×102 2.00 1.401×103 1.25×102 6.459×101

3.50×10−2 9.128×102 2.25 1.311×103 1.50×102 5.576×101

4.00×10−2 9.609×102 2.50 1.232×103 1.75×102 4.928×101

4.50×10−2 1.006×103 2.75 1.162×103 2.00×102 4.431×101

5.00×10−2 1.048×103 3.00 1.100×103 2.25×102 4.037×101

5.50×10−2 1.087×103 3.50 9.950×102 2.50×102 3.716×101

6.00×10−2 1.125×103 4.00 9.097×102 2.75×102 3.451×101

6.50×10−2 1.160×103 4.50 8.398×102 3.00×102 3.226×101

7.00×10−2 1.194×103 5.00 7.812×102 3.50×102 2.868×101

7.50×10−2 1.226×103 5.50 7.313×102 4.00×102 2.595×101

8.00×10−2 1.257×103 6.00 6.881×102 4.50×102 2.379×101

8.50×10−2 1.287×103 6.50 6.502×102 5.00×102 2.204×101

9.00×10−2 1.315×103 7.00 6.168×102 5.50×102 2.060×101

9.50×10−2 1.342×103 7.50 5.870×102 6.00×102 1.938×101

1.00×10−1 1.368×103 8.00 5.602×102 6.50×102 1.834×101

1.25×10−1 1.485×103 8.50 5.360×102 7.00×102 1.745×101

1.50×10−1 1.584×103 9.00 5.141×102 7.50×102 1.667×101

1.75×10−1 1.668×103 9.50 4.941×102 8.00×102 1.598×101

2.00×10−1 1.739×103 1.00×101 4.758×102 8.50×102 1.538×101

2.25×10−1 1.800×103 1.25×101 4.029×102 9.00×102 1.483×101

2.50×10−1 1.852×103 1.50×101 3.509×102 9.50×102 1.435×101

[continued] [continued] 1.000×103 1.391×101
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Zusammenfassung

Diamant, ein Halbleiter mit großer Bandlücke und außergewöhnlichen elektrischen Eigen-
schaften, wird in verschiedensten Anwendungen verwendet. Diese reichen von der Be-
nutzung als Sensormaterial in Strahlverlustmonitoren (engl.: Beam Loss Monitor, BLM)
an Teilchenbeschleunigern, über Laserfenster, bis hin zu UV-Licht-Sensoren in der Raum-
fahrt, z.B. für Weltraumwettervorhersagen. Auch ist Diamant ein interessanter Kandi-
dat für hitzetolerante, strahlenharte, sehr schnelle, verlustarme Transistoren. Seine große
Bandlücke (5.47 eV) hat eine hohe Durchbruchspannung von über 1×103 V/µm zur Folge.
Einkristall-Diamant besticht außerdem mit einem äußerst niedrigen Leckstrom von der Ord-
nung pA für Feldstärken E ≤ 1 V/µm, welches die sehr genau Messung eines Signalstroms
ermöglicht.

Diamant wird oft bei Raumtemperatur verwendet, jedoch ist wenig über den Ladungs-
transport bei Flüssig-Helium Temperaturen bekannt. Jedoch ist ein besseres Verständ-
nis der Transportmechanismen ausschlaggebend für den Betrieb eines kryogenen BLMs,
der zum Beispiel in der Kaltmasse eines LHC-Magneten eingesetzt werden soll. Darüber
hinaus sind für die Raumfahrt Transistormaterialien von Nöten, die verlässlich funktion-
ieren und über einen großen Temperaturbereich gut verstanden sind. In dieser Arbeit
wird die Methode der transienten Strommessung (engl.: transient current technique) unter
der Benutzung von α-Strahlung in einem Bereich von 2 K bis 295 K eingesetzt. Die elek-
trische Feldstärke wird um einen Faktor 30 variiert. Dies ermöglicht die Messung der
Temperaturabhängigkeit und der Feldstärkenabhängigkeit der Pulsform, der Ladungstran-
sitzeit, sowie der Driftgeschwindigkeit, der Saturationsgeschwindigkeit, und der Niederfeld-
beweglichkeit in Einkristall-Diamant von Detektor-Qualität. Modelle werden vorgestellt,
die konsistent die Daten einerseits mittels Ladungserzeugung und Fundamentalanregun-
gen in Halbleitern und Transportmechanismen wie akustische Phononstreuung andererseits
beschrieben.

Drei Diamantproben wurden studiert; alle zeigen ein sehr ähnliches Verhalten. Die
Messung der Transitzeit bei verschiedenen Feldstärken ermöglicht die Berechnung der Be-
weglichkeit. Für Löcher steigt die Beweglichkeit mit fallenden Temperaturen aufgrund der
akustischen Phononstreuung, und saturiert gen ultra-kalte Temperaturen. Die Niederfeld-
beweglichkeit für Löcher beträgt µh0(295 K) = (2534±20) cm2/Vs bei Raumtemperatur und
saturiert gegen µh0(→ 2 K) = (11 130±120) cm2/Vs. Für Elektronen kann nur eine un-
tere Grenze der Niederfeldbeweglichkeit angegeben werden. Diese wurde zu µe

0
(295 K) =

(1802±14) cm2/Vs gemessen und saturiert gegen µe
0
(→ 2 K) = (3058±27) cm2/Vs. Die

Elektrontransitzeit bei niedrigen Feldstärken zeigt ein anderes Verhalten als die der Löcher,
und folgt nicht dem erwarteten Verlauf. Es wird vermutet, dass dies durch einen, durch
Verunreinigungen ermöglichten, Repopulations-Effekt verursacht wird. Die gemessenen
Pulsformen werden unter der Annahme der Erzeugung und der anschließenden Verdamp-
fung oder der Rekombination von Exitonen modelliert. Details der Herleitung des Exitonen-
modells werden diskutiert, gefolgt von einem Vergleich von Daten und Modell. Zusätzlich
werden Messungen an einem Silizium-Pad-Detektor mit denen von Diamant verglichen, und
die Modellvorhersagen für Silizium überprüft.
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Zusammenfassung

Schließlich wird die Einsetzbarkeit von Diamant in zeitkritischen Anwendungen demon-
striert, und die wichtigsten Ergebnisse dargestellt. Die Flugzeitmessung von Muonen im
Sekundärstrahl des CERN Neutrino to Gran Sasso-Experiments (CNGS) wurden benutzt
um die Korrektheit und Genauigkeit des CNGS Zeitmesssystems zu bestätigen. Dies war
entscheidend bei der Suche nach dem fehlerhaften System, welches zu einer Neutrino-
Geschwindigkeitsmessungen oberhalb der Lichtgeschwindigkeit führte, dessen Veröffentlich-
ung durch die OPERA Kollaboration später zurückgezogen wurde.

Zusätzlich wurde die Zeitauflösung von Diamantdetektoren in einem Hochflussexperie-
ment zu σt = (14.7±1.7) ps gemessen. Abschließend wurde Daten der Diamantdetektoren
des ATLAS Beam Conditions Monitor (BCM) ausgewertet, welcher viele Informationen
über den Protonstrahl am LHC, z.B. über die Lumnositaet und die Menge an Strahlverlus-
ten, liefert. Hier wird der Fokus auf nicht-kollisions Untergründe gerichtet.
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induced electron-phonon energy relaxation in many-valley semiconductors at low tem-
peratures, Phys. Rev. Lett. 95 (2005) 206602. doi:10.1103/PhysRevLett.95.206602.
URL http://link.aps.org/doi/10.1103/PhysRevLett.95.206602

[40] J. L. Moll, Physics of Semiconductors, Wiley, New York, Chapter 10.

[41] R. S. Sussmann, CVD diamond for electronic devices and sensors, John Wiley & Sons,
Chichester, 2009.

[42] D. K. Ferry, High-field transport in wide-band-gap semiconductors, Phys. Rev. B 12
(1975) 2361–2369. doi:10.1103/PhysRevB.12.2361.

[43] M. Osman, M. Imam, N. Nintunze, Diffusion coefficient of electrons in diamond,
Applications of Diamond Films and Related Materials (1991) 611–614Y. Tzeng, M.
Yoshikawa, editors.

[44] Z. Li, H. Kraner, Modeling and simulation of charge collection properties for neutron
irradiated silicon detectors, Nuclear Physics B - Proceedings Supplements 32 (1993)
398 – 409.

[45] J. Frenkel, On the Transformation of light into Heat in Solids. I, Phys. Rev. 37 (1931)
17–44. doi:10.1103/PhysRev.37.17.

[46] G. G. Macfarlane, T. P. McLean, J. E. Quarrington, V. Roberts, Fine Struc-
ture in the Absorption-Edge Spectrum of Si, Phys. Rev. 111 (1958) 1245–1254.
doi:10.1103/PhysRev.111.1245.

[47] P. J. Dean, E. C. Lightowlers, D. R. Wight, Intrinsic and Extrinsic Recombination
Radiation from Natural and Synthetic Aluminum-Doped Diamond, Phys. Rev. 140
(1965) A352–A368. doi:10.1103/PhysRev.140.A352.

137



Bibliography

[48] R. Sauer, N. Teofilov, K. Thonke, Exciton condensation in diamond, Diamond and
Related Materials 13 (48) (2004) 691 – 699, 14th European Conference on Dia-
mond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide.
doi:http://dx.doi.org/10.1016/j.diamond.2003.10.005.
URL http://www.sciencedirect.com/science/article/pii/

S0925963503003509

[49] K. Takiyama, M. Abd-Elrahman, T. Fujita, T. Oda, Photoluminescence and
decay kinetics of indirect free excitons in diamonds under the near-resonant
laser excitation, Solid State Communications 99 (11) (1996) 793 – 797.
doi:http://dx.doi.org/10.1016/0038-1098(96)00309-2.

[50] N. Naka, J. Omachi, H. Sumiya, K. Tamasaku, T. Ishikawa, M. Kuwata-Gonokami,
Density-dependent exciton kinetics in synthetic diamond crystals, Phys. Rev. B 80
(2009) 035201. doi:10.1103/PhysRevB.80.035201.

[51] R. Sauer, private communications.

[52] A. YARNELL, The many facets of man-made diamonds, Chemical & Engineering
News Archive 82 (5) (2004) 26–31. doi:10.1021/cen-v082n005.p026.

[53] L. S. Pan, D. R. Kania, Diamond: electronic properties and applications, Kluwer
Academic Publ., Boston, MA, 1995, chapter 3.4.

[54] Diamond Materials, http://www.diamond-materials.com/DE/company/

deposition.htm.

[55] M. Sunkara, J. C. Angus, C. C. Hayman, F. A. Buck, Nucleation of diamond crystals,
Carbon 28 (6) (1990) 745 – 746. doi:http://dx.doi.org/10.1016/0008-6223(90)90265-
Z.

[56] J. Dodson, private communications.

[57] L. S. G. Plano, Structure and chemistry in diamond-producing dc plasmas, Ph.D.
thesis, Leland Stanford Jr. University, 1991.

[58] S. Mehandru, A. B. Anderson, Adsorption of H, CH3, CH2 and C2H2 on 2 1
restructured diamond (100): Theoretical study of structures, bonding, and migra-
tion, Surface Science 248 (3) (1991) 369 – 381. doi:http://dx.doi.org/10.1016/0039-
6028(91)91183-X.

[59] H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie,
Annalen der Physik 397 (3) (1930) 325–400. doi:10.1002/andp.19303970303.

[60] H. Andersen, J. Ziegler, Hydrogen stopping powers and ranges in all elements, Stop-
ping and ranges of ions in matter, Pergamon Press, 1977.

[61] J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28 (8).

[62] J. Beringer, et al., Review of particle physics, Phys. Rev. D 86.

[63] See http://www.nist.gov/pml/data/star/index.cfm for stopping power values.

[64] M. Gabrysch, Charge Transport in Single-crystalline CVD Diamond, Ph.D. thesis,
Uppsala University, Electricity (2010).

138



Bibliography

[65] C. Weiss, A CVD Diamond Detector for (n,α) Cross-Section Measurements, Ph.D.
thesis, Vienna University of Technology, Vienna, Austria, (in preparation) (2013).

[66] F. Nava, et al., Transport Properties of Natural Diamond Used as Nuclear Particle
Detector for a Wide Temperature Range, Nuclear Science, IEEE Transactions on
26 (1) (1979) 308 –315. doi:10.1109/TNS.1979.4329650.

[67] S. Uehara, H. Nikjoo, Monte Carlo Track Structure Code for Low-Energy Alpha-
Particles in Water, J. of Phys. Chemistry B 106 (42) (2002) 11051–11063.
doi:10.1021/jp014004h.

[68] G. Laczk, Investigation of the Radial Ionization Distribution of Heavy Ions with an
Optical Particle Track Chamber and Monte-Carlo Simulations, Ph.D. thesis, GSI,
Darmstadt (2006).

[69] S. Zhao, Characterization of the electrical properties of polycrystalline diamond films,
Ph.D. thesis, Ohio State University (1994).

[70] H. Kagan, private communications.

[71] S. Friedland, J. Mayer, J. S. Wiggins, The Solid-State Ionization Cham-
ber, Nuclear Science, IRE Transactions on 7 (2-3) (1960) 181–185.
doi:10.1109/TNS2.1960.4315761.

[72] S. Ramo, Currents Induced by Electron Motion, Proceedings of the IRE 27 (9) (1939)
584 – 585.

[73] R. C. Alig, S. Bloom, C. W. Struck, Scattering by ionization and phonon emission in
semiconductors, Phys. Rev. B 22 (1980) 5565–5582. doi:10.1103/PhysRevB.22.5565.

[74] M. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York, 1970.

[75] V. Eremin, N. Strokan, E. Verbitskaya, Z. Li, Development of transient current and
charge techniques for the measurement of effective net concentration of ionized charges
(Neff) in the space charge region of p-n junction detectors, Nucl. Instrum. Methods
Phys. Rev. A 372 (3) (1996) 388 – 398. doi:10.1016/0168-9002(95)01295-8.

[76] M. Pomorski, et al., Characterisation of single crystal cvd diamond particle detectors
for hadron physics experiments, Phys. Status Solidi A 202 (11) (2005) 2199–2205.
doi:10.1002/pssa.200561929.
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