
LEARNING WITH GRAPHS
USING KERNELS FROM

PROPAGATED INFORMATION

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenscha�lichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
MARIONNEUMANN

aus
Augsburg

Bonn, ����

Angefertigt mit Genehmigung der Mathematisch-Naturwissenscha�lichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

�. Gutachter: Prof. Dr. Stefan Wrobel
�. Gutachter: Prof. Dr. Kristian Kersting
Tag der Promotion: ��.��.����
Erscheinungsjahr: ����

Marion Neumann

Fraunhofer Institut für Intelligente Analyse-
und Informationssysteme IAIS

und

Bonn-Aachen International Center for
Information Technology B-IT

und

Rheinische Friedrich-Wilhelms-Universität Bonn,
Institut für Informatik III

ACKNOWLEDGEMENTS

First, I would like to thank Prof. Dr. Stefan Wrobel, Prof. Dr. Kristian Kersting,
and Prof. Dr. Christian Bauckhage for giving me the opportunity to work on my
thesis in cooperation with the Computer Science Department at the University of
Bonn and the Knowledge Discovery Department at Fraunhofer ����.

�is work would not have been possible without the support and advice of two
people: Roman Garnett and Kristian Kersting. �roughout the work on my thesis,
many constructive discussions with them and helpful comments from them paved
the way to new ideas, interpretations, solutions, and experiments.� �is also
includes proofreading the dra�s of this thesis. I am especially grateful to Roman
for everything and to Kristian for his ceaseless enthusiasm, all his suspenseful
ideas, and the meetings at Starbucks.

I also wish to thank the members of the ������ and ���� groups at Fraunhofer
���� for all the lively discussions, interesting spotlights, reading group seminars,
and breakfasts: Ahmed Jawad, Fabian Hadiji, Babak Ahmadi, Martin Mladenov,
Mirwaes Whabzada, Shan Huang, Martin Schiegg, Zhao Xu, Anja Pilz, Daniel
Paurat, Katrin Ullrich, Michael Kamp, Olana Missura, Pascal Welke, Mario Boley,
Roman Garnett, Tamás Horváth, and�omas Gärtner.

Especially, I would like to thank Dr. Zhao Xu for her scienti�c advice, Dr. Babak
Ahmadi for answering all my coding and Linux questions and for being a best
friend, Daniel Paurat for being the best o�ce-mate (ever), and Anja Pilz for her
honest friendship. Further, I want to thank Shan Huang and Daniel Marthaler for
their cooperation and the fantastic development of our pyGPs implementation,
Plinio Moreno, Laura Antanas, and Luc De Raedt for our joint project work on
robotic grasping, Christian Bauckhage, Lisa Hallau, and Benjamin Klatt for our
joint project work on plant disease classi�cation, and Roman Garnett and Je�
Schneider for giving me the opportunity to visit ���.

�is work vastly bene�ted from collaborations with my co-authors: Kristian
Kersting, Roman Garnett, Novi Patricia, Christian Bauckhage, Plinio Moreno,
Laura Antanas, Babak Ahmadi, Lisa Hallau, Benjamin Klatt, Nils Kriege, Petra
Mutzel, Rui Pimentel de Figueiredo, José Santos–Victor, and Luc De Raedt.

Lastly, I would like to thank my family at home, my friends from ���� ��, and
all the climbing friends in and around Bonn. �ey supported me and helped

�[gulp]

iii

me to stay clear-headed and to rock the �- indoors, the �b outdoors, and the �a
multi-pitch routes in beautiful Switzerland.

�is work was supported by the Fraunhofer ������� fellowship ������, by the
European Commission under contract number ���-������-First-��, and by the
Federal Ministry of Food, Agriculture, and Consumer Protection (�����) based
on a decision of the German Federal O�ce for Agriculture and Food (���) under
the innovation support program with grant number “����������.”

iv

ABSTRACT

Traditional machine learning approaches are designed to learn from independent
vector-valued data points. �e assumption that instances are independent, how-
ever, is not always true. On the contrary, there are numerous domains where data
points are cross-linked, for example social networks, where persons are linked by
friendship relations. �ese relations among data points make traditional machine
learning di�cult and o�en insu�cient. Furthermore, data points themselves can
have complex structure, for example molecules or proteins constructed from var-
ious bindings of di�erent atoms. Networked and structured data are naturally
represented by graphs, and for learning we aim to exploit their structure to improve
upon non-graph-based methods.

However, graphs encountered in real-world applications o�en come with rich addi-
tional information. �is naturally implies many challenges for representation and
learning: node information is likely to be incomplete leading to partially labeled
graphs, information can be aggregated from multiple sources and can therefore be
uncertain, or additional information on nodes and edges can be derived from com-
plex sensor measurements, thus being naturally continuous. Although learning
with graphs is an active research area, learning with structured data, substantially
modeling structural similarities of graphs, mostly assumes fully labeled graphs
of reasonable sizes with discrete and certain node and edge information, and
learning with networked data, naturally dealing with missing information and
huge graphs, mostly assumes homophily and forgets about structural similarity.
To close these gaps, we present a novel paradigm for learning with graphs, that
exploits the intermediate results of iterative information propagation schemes on
graphs. Originally developed for within-network relational and semi-supervised
learning, these propagation schemes have two desirable properties: they capture
structural information and they can naturally adapt to the aforementioned issues
of real-world graph data.

Additionally, information propagation can be e�ciently realized by random walks
leading to fast, �exible, and scalable feature and kernel computations. Further,
by considering intermediate random walk distributions, we can model structural
similarity for learning with structured and networked data. We develop several
approaches based on this paradigm. In particular, we introduce propagation kernels
for learning on the graph level and coinciding walk kernels andMarkov logic sets
for learning on the node level. Finally, we present two application domains where
kernels from propagated information successfully tackle real-world problems.

v

CONTENTS

L��� �� F������ ix

L��� �� T����� xi

L��� �� A��������� xii

� I����������� �
�.� Networks and Structured Data: New Challenges for Learning �
�.� Contributions �
�.� Structure of the�esis �

� B���������: L������� ���� G����� ��
�.� Graphs: Networked and Structured Data ��
�.� Machine Learning with Graphs ��
�.� Information Propagation on Graphs ��
�.� Kernels and Graphs ��
�.� �e Relational Perspective ��

I Propagation Kernels ��
� P������, P�������W���, ��� P������� S������� ��

�.� Kernel-based Graph Classi�cation ��
�.� Our Approach: Propagation Kernels ��

� P���������� K������ ��� G������ G����� ��
�.� Propagation Kernel Framework ��
�.� ��–Component �: Node Kernel ��
�.� ��–Component �: Propagation Scheme ��
�.� Empirical Evaluation ��

� P���������� K������ ��� G��� G����� ��
�.� Grid Graphs and Discrete Convolution ��
�.� E�cient Propagation Kernel Computation ��
�.� Empirical Evaluation: Image-based Texture Classi�cation ��

T���������: F��� ��� G���� �� ��� N��� L���� ��

vii

��������

II CoincidingWalk Kernels ���
� P������, P�������W���, ��� P������� S������� ���

�.� Node Classi�cation in Sparsely Labeled Graphs ���
�.� Our Approach: Coinciding Walk Kernels ���

� C���������W��� K������ ���
�.� Partially Absorbing and Parallel RandomWalks ���
�.� Kernel Computation ���
�.� Empirical Evaluation ���

T���������: F��� N��� C������������� �� S�� C��������� ���

� B����� G�����: R��������� S�� C��������� ���
�.� Problem, Proposed Solution, and Related Work ���
�.� Markov Logic Sets ���
�.� Empirical Evaluation ���
�.� Summary and Discussion ���

III BeyondMolecules:
Novel Applications for Learning with Graphs ���

� ��-O����� C������������� ���
�.� Problem Introduction and Related Work ���
�.� Object Category Prediction with Propagation Kernels ���
�.� Experimental Evaluation ���
�.� Summary and Discussion ���

�� I����-����� P���� D������ C������������� ���
��.� Problem Introduction and Related Work ���
��.� Leaf Spot Detection with Coinciding Walk Kernels ���
��.� Plant Disease Classi�cation with Propagation Kernels ���
��.� Summary and Discussion ���

C��������� ���

A N���� �� � S���������M������ ����� �� P������� ��� ���

B G�������: N���� �� R����������� C�������� ���

B����������� ���

viii

LIST OF FIGURES

�.� Chemical Compounds (Structured Data) �
�.� Social Network (Networked Data) �

�.� Graph, Subtrees, and Induced Subgraphs ��
�.� Label Structure ��
�.� Subtree Patterns ��
�.� (Hyper)graph of Houses in Pompeii ��

�.� Graph Classi�cation ��
�.� Image Scene Graph ��
�.� Point Clouds ��
�.� Propagation Kernels: Relation to other Graph Kernels ��

�.� Propagation Kernel Computation ��
�.� Attribute Kernels ��
�.� Parameter Sensitivity of Propagation Kernels ��
�.� Sensitivity to Missing Node Labels ��
�.� Sensitivity to Noisy Node Labels ��
�.� Sensitivity to Noisy Edge Weights ��
�.� Runtime for Partially Labeled ������ ��
�.� Log Runtime vs. Accuracy on Attributed Graphs ��

�.� Grid Graph ��
�.� Time and Space Complexity Analysis ��
�.� Brodatz Dataset ��

�.� Node Classi�cation ���
�.� Limitations of Hypothesis �.� ���

�.� Subgraph of the ���������-������ Dataset ���
�.� Correlation of Kernel Values with Distance and Class Labels ���
�.� Results on ���������-������ ���
�.� Results on Benchmark Graphs ���
�.� Parameter Sensitivity of ��� ���
�.� Runtimes on ��-xk ���

�.� Example ��� Ranking ���
�.� Illustration of Markov Logic Sets ���

ix

���� �� �������

�.� Task-Dependent Grasping Pipeline ���
�.� Semantic k-nn Graphs of Household Objects ���
�.� Object Ontology for Task-dependent Grasping ���
�.� Parameter Sensitivity of Propagation Kernels on �� ���
�.� Missing Information vs. Accuracy on �� ���
�.� Number of Iterations vs. Accuracy on �� ���
�.� Number of Iterations vs. Accuracy on ���� ���
�.� Estimated Category Distributions ���
�.� Number of Iterations vs. Average Rank on ���� ���

��.� Example Images of Sugar Beet Leaves ���
��.� Color-Based Symptom Extraction ���
��.� Limitations of Color Filter ���
��.� ��� for Leaf Spot Detection – Example � ���
��.� ��� for Leaf Spot Detection – Example � ���
��.� Example Regions of ������ ���

�.� Cosine Function ���

x

LIST OF TABLES

�.� Graph Kernels and their Intended Use ��

�.� Dataset Statistics and Properties ��
�.� Results on Labeled Graphs ��
�.� Results on Partially Labeled Graphs ��
�.� Runtimes on Attributed Graphs ��
�.� Accuracies on Attributed Graphs ��

�.� Dataset Statistics and Properties ��
�.� Results on Grid Graphs ��

�.� Dataset Statistics and Properties ���
�.� Results on ���������-������ ���
�.� Results on Benchmark Graphs ���

�.� Comparison of ��� and ������ ���
�.� Results on Pompeii ���
�.� Full Results on Pompeii ���
�.� Results on Smokers-Friends ���

�.� Dataset Statistics and Properties ���
�.� Results on Attributed Point Cloud Graphs (��) ���
�.� Results on Object Category Prediction (���� and ����) ���

��.� Results For Leaf Spot Detection ���
��.� Dataset Statistics and Properties ���
��.� Results on ����� and ������ ���

xi

LIST OF ALGORITHMS

� General Propagation Kernel Computation ��
� ���������-��� ��
� Propagation Kernel for Fully Labeled Graphs ��
� Propagation Kernel (���) for Attributed Graphs ��
� Propagation Kernel for Grid Graphs ��
� Coinciding Walk Kernel Computation ���
� Markov Logic Sets ���

xii

������� �

INTRODUCTION

�.� Networks and Structured Data: New Challenges for Learning �

�.� Contributions �

�.� Structure of the�esis �

� .� N������� ��� S��������� D��� : N�� C��������� ���
L�������

Whereas several decades ago networked and structured data almost always rep-
resented “real” networks such as tra�c or electricity networks, “plain” chemical
structures like molecular connections of atoms, or “simple” social relationships
such as family trees, nowadays networked and structured data is not only univer-
sally present, it also comes with diverse and complex additional information. We
use the world wide web, a network of approximately �� billion webpages� with vast
amounts of information such as text, images, or videos, on a daily basis. We live
in a society of interconnected individuals where social and professional networks
are common means of communication and organization. Every day, users upload
terabytes of data such as images, videos, or status messages to their social network
accounts, and thousands of new friendship and like relations are established every
second of the day. Similarly, immense scienti�c progress leads to ever more re�ned
models and theories of interactions in biological processes and structures. For ex-
ample, biological interactions giving rise to protein–protein interaction networks
can vary widely in their nature and are spatially and temporally heterogeneous.
Autonomous mobile manipulation robots collect massive amounts of continuous
sensor data to build networked models of the environment they act in. Further-
more, phenomena such as the increasing use of sensors to track our behaviour
and the inexorable progress in the development of better communication, sensing,
storage, and computing devices indicates that this trend of collecting and analyzing
networks with heterogeneous information will most likely continue in the future.
As the networks are getting bigger and bigger and structured data is getting more
and more complex and diverse, it is likely to encounter missing or uncertain infor-
mation. Further, with the development of better sensing techniques, networks can

�http://www.worldwidewebsize.com/

�

http://www.worldwidewebsize.com/

������������

(a) Molecule � (b) Molecule � (c) Molecule �

(d) Graph G� (e) Graph G� (f) Graph G�

Figure �.�: Chemical Compounds (Structured Data). Chemical structures (a–c)
and corresponding graph representations (d–f) for three molecules: �, �, and
�. Node colors represent node types, which here are di�erent elements such as
carbon (green), oxygen (yellow), hydrogen (blue), and chlorine (red). Edge types,
lengths, and other node information is not depicted for the sake of simplicity.

be more easily enhanced with continuous measurements in addition to discrete
labels. �us, representing, analyzing, and learning from this kind of data becomes
more important, more demanding, and also more exciting (���, et al., ����; ����
and �������, ����; ����������� and ���������, ����; ��������, ����).

Structured and networked data are commonly represented by graphs and we
can distinguish domains where a single graph represents relations among data
instances (networked data) from domains of multiple graphs, where whole data
entities are themselves structured objects (structured data). �e following two
examples illustrate the di�erence between networked and structured data and
exemplify occurrences of additional and missing information.

E������ �.� (C������� C�������� – S��������� D���)

Consider a domain of chemical compounds where each molecule itself
is represented by a set of atoms and a set of bonds connecting pairs of
atoms. �ree example chemical compounds are shown in the top row of
Figure �.�. Each atom is of a certain element (hydrogen, oxygen, etc.) and

�

�.�. �������� ��� ���������� ����: ��� ���������� ��� ��������

-DFT���-DFT���

$QQH���$QQH���

5RPD���5RPD���

(PLO���(PLO���

-DPH���-DPH���

(GZD���(GZD���

5\DQ���5\DQ���

0LFK���0LFK���

2OJD���2OJD���

*X\����*X\����

7LPR���7LPR���.RQU���.RQU���

*HRU���*HRU���

0DUW���0DUW��� &RQR���&RQR���

-HDQ���-HDQ���

/LQG���/LQG���

/DVV���/DVV���

7LQH���7LQH���

%HUL���%HUL���

0DUW���0DUW���

-DQD���-DQD���

=HUN���=HUN���

<RQJ���<RQJ���
5HQD���5HQD���

:HQT���:HQT���

8OUL���8OUL���

6WHI���6WHI���

<DPX���<DPX���

,JL�)S,JL�)S

0LJX���0LJX���

'HQL���'HQL���
.HYL���.HYL���

$QGU���$QGU���

+HLN���+HLN���

)DEL���)DEL���

'DQL���'DQL���

7KRP���7KRP���

1LHQ���1LHQ���

6DQG���6DQG���

'LUN���'LUN���

0DLN���0DLN���

)U¶N���)U¶N���

2OLY���2OLY���

$QGU���$QGU���

$QQH���$QQH���

�OYD����OYD���

6RPD���6RPD���

5RVV���5RVV���

6SHQ���6SHQ���

9LUS���9LUS���

%DUE���%DUE���

/HH����/HH����

$QGU���$QGU���

&KUL���&KUL���

0DWW���0DWW���

0DUH���0DUH���

-DQQ���-DQQ���

$VOD���$VOD���

6KDX���6KDX���

)ULH���)ULH���

9LQF���9LQF���

0DUL���0DUL���

%HQM���%HQM���

0LFK���0LFK���

9­FW���9­FW���

*LO����*LO����

(PLO���(PLO���

7KRP���7KRP���

0DUN���0DUN���

7KRP���7KRP���

0LUM���0LUM���

6WHS���6WHS���

/HWR���/HWR���

3LHW���3LHW���

3LHU���3LHU���

%DED���%DED���

'RUL���'RUL���

$LQH���$LQH���

$LVO���$LVO���

=ROW���=ROW���

6XUD���6XUD���

)DEL���)DEL���

-DPL���-DPL���

5XEH���5XEH���

5DKH���5DKH���

%HQM���%HQM���

7KLM���7KLM���

$PLQ���$PLQ���

$PLQ���$PLQ���
0DUN���0DUN���

2OLY���2OLY���

'DQL���'DQL���

'DYL���'DYL���

:ROI���:ROI���

5DPR���5DPR���

-LYD���-LYD���

8OL����8OL����

/XUF���/XUF���

)UHG���)UHG���

7KRP���7KRP���

%HWW���%HWW���

5DPR���5DPR���

0DXU���0DXU���

7RP¡���7RP¡���

&KUL���&KUL���

$QQD���$QQD���

3DUL���3DUL���

'RQJ���'RQJ���

%RQQ���%RQQ���

*HQQ���*HQQ���

(PDQ���(PDQ���

.HUU���.HUU���

'DQL���'DQL���

(ULN���(ULN���

/L�1D/L�1D

/XLV���/XLV���

7REL���7REL���

6LON���6LON���

$QJH���$QJH���

$QMD���$QMD���

$QDV���$QDV���

1LFR���1LFR���

(LQH���(LQH���

0DQX���0DQX���

1XXU���1XXU���

6DQN���6DQN���

7LOO���7LOO���

-RKD���-RKD���

%ULW���%ULW���

.DUH���.DUH���

/L]]���/L]]���

&RQQ���&RQQ���

5LFK���5LFK���

'RPL���'RPL���

0HUO���0HUO���

'RPL���'RPL��� -DQD���-DQD���

%RHQ���%RHQ���

5DID���5DID���

'LUN���'LUN���

$QQ����$QQ����

$OH[���$OH[���

*HRU���*HRU���

7KRP���7KRP���

%HKU���%HKU���

(YD����(YD����

5DID���5DID���

.DWK���.DWK���

(OLV���(OLV���

,QJD���,QJD���

/RXL���/RXL���

'HQQ���'HQQ��� 0DUN���0DUN���

3IXL���3IXL���

3DWU���3DWU���

$QGU���$QGU���

7REL���7REL���

0DWW���0DWW���

2GLH���2GLH���

.DUH���.DUH���

&KUL���&KUL���

-DQ����-DQ����

7KRP���7KRP���

'RUR���'RUR���

0HUO���0HUO���

0LFK���0LFK���

-HQV���-HQV���

3HWH���3HWH���

.HQQ���.HQQ���

&KUL���&KUL���

3KLO���3KLO���

%DXW���%DXW���

6WHI���6WHI���

+HQG���+HQG���

-R+D���-R+D���

7REL���7REL���

-HQV���-HQV���

6HED���6HED���

0DWW���0DWW���

0DWW���0DWW���

6HE����6HE����

0LFK���0LFK���

.DUV���.DUV���

+HUP���+HUP���

6HUJ���6HUJ���

-HQV���-HQV���

2Q7R���2Q7R���

6XVD���6XVD���

*LRY���*LRY���

/LQG���/LQG���

(a) Nodes indicated by names

&=&=

'.'.

1212

),),
""

,7,7

,7,7

""/$/$

""

/$/$

/$/$(6(6

""

(6(6

(6(6

)5)5

""
)5)5

)5)5

1/1/

""

""

1/1/

%%

%%

%%

%%

%%

""

""

%% *%*%

%%

%%

%%

%%

%%

%%

%%

%% *%*%

""

%%
%%

""

""
""

%%

%%

%%

""

""

""

8686

8686

8686

8686

8686

""

8686

""

8686

8686

""

8686

""8686

8686

""

8686

""

8686
8686

8686

""

8686

8686

8686

8686

8686

8686

""

""

8686

""

8686

""

""

8686

""

8686 8686

8686

8686

8686

""

""

8686
'('(

""

'('(
'('(

'('(

'('(

'('(

'('(

'('(

'('(

""

""
""

'('(

'('(

'('(

'('(

'('(

'('(

'('(

""

'('(

""

'('(

'('(

'('(

""

""

""

""

'('(

'('(

""

'('(

'('(

'('(

'('(

""

""

'('(

'('(

""

'('(

'('(

""

'('(

'('(

""

'('(

'('(""

'('(

'('(

""

'('(

""

'('(

'('(

""
'('(

'('(

""

'('(

""

'('(

""

'('(

'('(
""

'('(

""

'('(

'('(
'('(

'('(

""

'('(

'('('('(

'('(

""

'('(

'('(

""

'('(

'('(
""

'('(

""

'('(

'('(

'('(

(b) Missing information

Figure �.�: Social Network (Networked Data). Graph representing a social net-
work of persons and their friendship relations. In Panel (a) each (abbreviated)
name represents a person and the text size is proportional to the number of
connected friends. �e edge colors represent groups of friends from di�erent
social contexts; for instance, purple friendship relations are “friends from work,”
red “friends from study and travel abroad’,’ turquoise “friends from sports,” and
so on. Panel (b) shows the country of residence of each person encoded by color
and a two-letter label; ? indicates missing information.

the bonds have a certain type (single, double, etc.). As each object of interest
– each molecule – can be represented by one graph, we have a domain of
structured data. �e bottom row of Figure �.� illustrates example graph
representations of the three chemical compounds. Moreover, we have access
to additional information for atoms and bonds such as the length of the
secondary structure elements (the nodes) or measurements for various
properties, such as hydrophobicity, van der Waals volume, polarity, ��
coordinates of the structures, or distances between them.

E������ �.� (S����� N������ – N�������� D���)

A classical example for networked data are social-network graphs such
as shown in Figure �.�(a). Here individual persons are the data points of
interest and a graph is created from their relations among one another.
Our respective domain is then one (possibly disconnected) graph, where
two nodes representing two persons are linked if they are in a relation, for

�

������������

instance a friendship relation. Now, we can imagine that persons provide
additional information other than their names, such as their country of
residence. However, as this information is revealed voluntarily it is likely
that it is not available for every person. �us, when analyzing the social
network with respect to where the persons live, we will have to deal with
missing information as illustrated in Figure �.�(b).

Graphs are an expressive form of representation for networked and structured data.
To make use of the encoded information for reasoning, it is of great interest to
compare and analyze graphs e�ciently and automatically. In the case of chemical
compounds introduced in Example �.�, we might like to predict a certain property
of a protein from the arrangement of its atoms and bindings. Social networks as
exempli�ed in Example �.� constitute a deep source of information for sociologists
studying role models and social behaviour, as well as for companies marketing
their products on social-network platforms. One approach towards achieving
these goals is to apply machine learning to graph data. Learning with graphs
– intersecting machine learning (������, ����; ��������, ����), graph theory
(���������, ����), and graph mining (���� and ������, ����; ��� and ������,
����; ������, et al., ����), as well as statistical relational learning (������ and
������, ����) – has become an active and growing research area in computer
science (��������, et al., ����; �������, et al., ����; ������������, et al., ����).
�is thesis will make contributions in this interdisciplinary �eld of statistical
machine learning with graph data.

�e essential step in learning with graphs is to compare graph structure, either
entire graphs in the case of structured data or neighborhood structures of nodes
in the case of networked data. �e comparison of complex data instances can
elegantly be achieved by kernels. Intuitively, kernels measure the similarity among
all pairs of data points; mathematically, kernels correspond to an inner product
in a reproducing kernel Hilbert space. Kernel-based learning and kernels for
graph data will be introduced in depth in Section �.� in the next chapter. So, to
achieve learning with graphs we can essentially compute kernels for structured
and networked data. More precisely, the considered kernels are graph kernels and
kernels on graphs.

However, graphs encountered in real-world applications come with many chal-
lenges. Structured data is o�en enriched with additional information attached to
the graphs’ nodes and edges. �is naturally implies several challenges for repre-
sentation, kernel construction, and learning such as:

• missing information occurring from partially observable data,
• uncertain information arising from aggregating information from multiple
sources, and

�

�.�. �������� ��� ���������� ����: ��� ���������� ��� ��������

• continuous information derived from complex and possibly noisy sensor
measurements.

Learning with networked data is not only commonly applied to large-scale graphs,
where building a kernel matrix between all pairs of data points is costly, but also to
domains where structural similarity is present. Example application domains are
relational knowledge bases like yago� and ��pedia.� �is leads to new challenges
for kernel construction and learning that require going beyond the exploitation of
homophily, which is the assumption that nearby nodes have the same properties.

So, to achieve successful learning with graphs one has to account for these proper-
ties not only while constructing the graphs, but also when measuring and com-
paring their structure. Despite the growing interest in research on learning with
graphs, there are still many open issues resulting from the characteristics of real-
world graph data. General limitations of existing approaches to learning with
graphs are the ability to deal with uncertain and incomplete information, space
and time e�ciency, and the insu�cient use of available information. Existing
kernels for learning with graphs, for example, are not fast, �exible, and powerful
at the same time. Learning with structured data, and especially graph kernel
methods, substantially model the structural similarities of graphs, however they
mostly assume fully labeled graphs of reasonable sizes with discrete and certain
node and edge information. Graphs with uncertain and incomplete information
are not considered and only recently scalable kernels for graphs with continuous
node attributes have been introduced. Learning with networked data is naturally
dealing with missing information. An example task is to predict the missing labels
in a partially labeled graph. Also e�cient algorithms for learning on large graphs
have been developed. However, these methods mostly exploit homophily and
fail for graphs with high structure similarity and sparsely observed labels� as they
use the available structural information insu�ciently. In general, there is only
limited knowledge transfer among the subareas: learning with structured data
(learning on the graph level), learning with networked data (learning on the node
level), and learning with relational data. Particular approaches from the literature
and their limitations will be discussed in the chapters introducing the problems
and respective solutions studied in this thesis.

Despite these limitations, there are well established machine learning methods
such as kernel machines for vector-valued data, and e�cient and fast algorithms
to propagate information in networks that can naturally incorporate missing and
uncertain information. Example algorithms based on the idea of propagating

�www.mpi-inf.mpg.de/yago-naga/yago/
�http://dbpedia.org/
�We will use the term sparsely labeled (graph) instead of partially labeled (graph) to indicate
that only very few labels are observed.

�

www.mpi-inf.mpg.de/yago-naga/yago/
http://dbpedia.org/

������������

information on graphs are PageRank and label propagation (���� and ����, ����;
���, ����). Both tackle tasks of great practical and theoretical importance, and
thoroughly developed and optimized implementations have been proposed in the
recent years. Hence, the key insight leading to the main contribution of this thesis
is that we can use these iterative information propagation schemes on graphs –
and especially their intermediate results – to e�ciently represent graph structure
for labeled, partially labeled, and attributed graphs. �e created features or kernels
from graph data will then serve as input to traditionalmachine learning algorithms.
�e following section lists the contributions of this thesis speci�cally and relates
them to the author’s previously published work.

� .� C������������
�is thesis makes several contributions to learning with graphs.

First, it introduces a graph kernel that e�ciently captures the structure of data
instances represented as graphs for learning on the graph level (Part I; Contribu-
tions � and �).

Second, it claims and shows that e�cient and meaningful structure representation
through iterative information propagation schemes on graphs improves node
classi�cation in sparsely labeled graphs and in settings where only few example
seeds for retrieval are provided. (Part II; Contributions �, �, and �).

And �nally, it showcases that kernels from propagated information can be success-
fully applied to real-world learning problems that are novel to the graph kernel
community (Part III; Contributions � and �).

�e following list summarizes the contributions of this thesis.

�. �e thesis presents a novel paradigm that exploits probability distributions of
node information evolving from iterative information propagation schemes
on graphs to e�ciently capture graph structure and naturally deal with
missing information for learning tasks in domains of both networked and
structured data.

�. We introduce and study propagation kernels (��s) for learning on the graph
level.

• ��s are a general family of graph kernels based on random walks
computable for graphs with discrete node labels and continuous node
attributes.

• �ey provide the �rst graph kernel framework naturally designed for
partially labeled graphs.

• ��s are more scalable and faster than state-of-the-art kernels for struc-
tured data.

�

�.�. �������������

• �ey are the �rst graph kernels feasible for large-scale image data.

�. We present the coinciding walk kernel (���) for learning on the node level.

• �e ��� is the �rst label-dependent kernel on graphs leveraging infor-
mation propagation, in particular parallel partially absorbing random
walks.

• We claim and show that ���s exploit structure similarity in addition
to homophily – even for sparsely labeled graphs – in a meaningful way.

• ���s are more scalable and can be computed more e�ciently than
state-of-the-art kernels on graphs.

�. We introduceMarkov logic sets (���), a PageRank-based approach to set
completion for relational data leveraging structural graph features.

• �e ��� approach shows that graph-based learning algorithms, in par-
ticular those leveraging information propagation schemes, are useful
for learning in relational domains.

• It is the �rst approach to set completion for relational data.
• ��� represents the �rst use of li�ed PageRank and label propagation
in information retrieval.

�. We show that kernels from propagated information can be applied in real-
world applications.

• We present the �rst application of graph kernels to �� object classi�ca-
tion for robotic grasping

• We showcase the �rst application of kernels derived from graph data
to image-based plant disease detection and classi�cation.

�e contributions of this thesis are based on work previously published in the
following peer-reviewed journals, conferences, and workshops:

Contribution �:
N������, M., G������, R., B��������, C. and K�������, K. (����a). Propa-
gation Kernels: E�cient Graph Kernels from Propagated Information. Machine
Learning. Under review.

N������, M., P�������, N., G������, R. and K�������, K. (����b). E�cient
Graph Kernels by Randomization. In: Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases (����/����–����), pp.
���–���.

N������, M., G������, R., M�����, P., P�������, N. and K�������, K. (����a).
Propagation Kernels for Partially Labeled Graphs. In: ��th Workshop on Mining
and Learning with Graphs (���–����). Edinburgh, ��.

�

������������

Contribution �:
N������, M., G������, R. and K�������, K. (����b). Coinciding Walk Kernels:
Parallel Absorbing RandomWalks for Learning with Graphs and Few Labels. In:
Asian Conference on Machine Learning (����–����), pp. ���–���.

N������, M., G������, R. and K�������, K. (����a). Coinciding Walk Kernels.
In: ��th Workshop on Mining and Learning with Graphs (���–����). Chicago,
Illinois, ���.

Contribution �:
N������, M., K�������, K. and A�����, B. (����). Markov Logic Sets: To-
wards Li�ed Information Retrieval using PageRank and Label Propagation. In:
Proceedings of the ��th ���� Conference on Arti�cial Intelligence (����–����), pp.
���–���.

Contribution �:
N������, M., M�����, P., A������, L., G������, R. and K�������, K. (����c).
Graph Kernels for Object Category Prediction in Task-Dependent Robot Grasping.
In: ��th Workshop on Mining and Learning with Graphs (���–����). Chicago,
Illinois, ���.

N������, M., H�����, L., K����, B., K�������, K. and B��������, C. (����b).
Erosion Band Features for Cell Phone Image Based Plant Disease Classi�cation.
In: Proceedings of the ��nd International Conference on Pattern Recognition (����–
����), pp. ����–����.

� .� S�������� �� ��� T�����
�e thesis is organized in three parts. Part I and II cover the main algorithmic
contributions to learning with graphs, the propagation kernel, the coinciding walk
kernel, and Markov logic sets. Part III presents applications of the approaches
developed in the previous parts to graphs arising in real-world learning problems.
Before themain contributions of this thesis are derived, Chapter � provides a gentle
introduction to learning with graphs. �erefore, a casual title for this background
chapter could be “things to know before we start.” First, we establish the basis
for understanding this thesis, namely we introduce networked, structured and
relational data, exemplify learning tasks, and de�ne the concepts of graphs and
graph structure. �en, we introduce statistical machine learning as well as the
considered learning tasks involving graph data and give a brief outline of related
research �elds. One of the main ideas in this thesis is to propagate information
on graphs in order to learn something about their structure. �erefore, the third
section in this background chapter will cast information propagation on graphs
in the light of random walks, a fundamental concept intersecting statistics and
graph theory. Moreover, we will derive kernel-based learning within the previ-
ously developed framework of statistical machine learning and give an overview
on kernels for networked data, referred to as kernels on graphs and kernels for

�

�.�. ��������� �� ��� ������

structured data called graph kernels. To understand the contributions of this thesis
in the broader context of relational learning, Chapter � is concluded by changing
the perspective of data representation from graphs to relational data.

Part I and II derive the main contributions of this work and hence successively
answer the following questions: what?, why?, how?, and does it work? �at means,
a�er stating the problem de�nition (what?) and showing limitations of existing
related work (why?), the respective approaches are technically developed (how?).
�en they will be empirically evaluated on comprehensive sets of benchmark
problems (does it work?). Part III will then investigate the question: does it really
work? which could be also rephrased to: can the developed techniques help to solve
relevant problems?

More speci�cally, Part I introduces propagation kernels (��s). A�er stating the
problem of graph classi�cation and discussing previous approaches to it, we de�ne
and evaluate propagation kernels for general graphs in Chapter �. �en, we
present a technique to e�ciently compute ��s for large grid graphs and use them
for image based texture classi�cation (Chapter �). A transition section summarizes
Part I and leads over to Part II.�is part is concerned with node classi�cation in
sparsely labeled graphs. A�er de�ning the problem and reviewing related work,
we introduce coinciding walk kernels (���s) in Chapter �. �erein, partially
absorbing random walks are discussed and the kernel computation is derived.
���s are evaluated on benchmark graphs and a knowledge completion scenario
using graphs with high structure similarity. Another transition section summarizes
the �rst two chapters of Part II and leads over to a more speci�c learning on the
node level task, namely relational set completion. Chapter � discusses Markov
logic sets, our approach to set completion leveraging relational data and graphs
in order to derive structural features for query sets consisting of very few items
only. Part III then again consists of two chapters presenting novel applications
for learning with graphs: �� object categorization (Chapter �) and image-based
plant disease classi�cation (Chapter ��). Both chapters introduce the respective
problems and discuss the performance of the derived kernels on comprehensive
datasets. �� object category prediction will be tackled with propagation kernels.
Plant disease classi�cation from image data allows the use of both coinciding
walk kernels and propagation kernels. ���s can be used for the detection of leaf
spots caused by plant diseases and the �� version for grid graphs can be applied to
disease classi�cation. We compare the graph kernel based classi�er to a texture
feature based approach, which we speci�cally designed for the problem of leaf
spot classi�cation. �is approach is also introduced brie�y.

�e conclusion summarizes all contributions of this thesis, discusses its achieve-
ments, and points out open problems and future research directions for learning
with graphs and relational data.

�

������� �

BACKGROUND: LEARNING WITH GRAPHS

�.� Graphs: Networked and Structured Data ��

�.� Machine Learning with Graphs ��

�.� Information Propagation on Graphs ��

�.� Kernels and Graphs ��

�.� �e Relational Perspective ��

� .� G����� : N�������� ��� S��������� D���
In the following, we introduce more examples of networked and structured data,
outline tasks for learning with graphs, and give the basic de�nitions of graphs and
graph structure. Further, we will brie�y discuss graph construction and general
graph analysis.

�.�.� Networks, Relations, and Structured Data
Networked data is usually modeled by a single graph representing relations among
data instances. Structured data are domains of multiple graphs, where whole
data entities are themselves structured objects. Networked data is closely related
to relational data; however, relational data is usually represented by tuples of
constants or variables grouped into relations, so-called predicates. Relational data
can be modeled by graphs, and this graph view can then be regarded as networked
data. However, relational data is generally more expressive in the sense that the
constants, which correspond to the nodes in the graph view, are instantiations
of general variables. �at is not necessarily the case for networked data where
this information is o�en lost once the graphs are created. Relational data will be
introduced in Section �.�.

Note that the general term network can actually refer to all three types of data. For
instance tra�c networks constitute networked data as de�ned before; however,
protein–protein interaction networks can form a domain of structured data. Rela-
tional data is sometimes referred to as logic networks. �erefore, we will not give
a strict de�nition for the term network and when used its meaning will be clear
from the context.

��

����������: �������� ���� ������

In Examples �.� and �.�, we have seen two example domains of structured and
networked data, namely chemical compounds and social networks. Further real-
world domains of structured data are superpixel graphs representing semantic
image scene compositions (��������� and ����, ����), networks extracted
from ��� images modeling structural and functional connections in the brain
(���� and �������, ����), text documents re�ecting complex content dependen-
cies (�����, et al., ����), graphs representing mathematical formulas and proofs
(������������, et al., ����), or manifold data modeling objects and scenes ob-
served by autonomous mobile robots (�������, et al., ����; ��������, et al.,
����). Other examples of networked data, also called single-graph domains, are
graphs derived from the world wide web or Wikipedia linking web or wiki pages
(���� and ����, ����), product–user graphs indicating user and item similarities
as well as purchase relations, that is, which user bought which items (�����, et al.,
����), graphs representing massive online game universes where solar systems are
connected by “jump gates” (�������, et al., ����), tra�c and public transportation
networks (�������, et al., ����) and graphs modeling sediment movements in
geomorphology (�������� and �����������, ����).

As indicated by these examples, graph data arises in various contexts and models
very diverse phenomena. Nevertheless, in all these scenarios we almost always
want tomake use of the information encoded in the graphs for reasoning. Classical
example tasks in learning with graphs are unsupervised tasks such as clustering,
that is, for example the grouping of nodes in a graph, supervised tasks such as
classi�cation and regression, where we want to predict a discrete class label or a
continuous value for unseen target nodes or graphs, and information retrieval
tasks such as ranking, where the goal is, for example to rank the nodes in a graph
according to their importance in the network. A comprehensive introduction to
machine learning and learning tasks for graph data will be provided in Section �.�.
�e following examples, extending Examples �.� and �.�, illustrate the classi�cation
of molecules as an example graph-classi�cation task and community detection in
social networks as an example node-clustering task.

E������ �.� (C������� C�������� – G���� C�������������)

In the context of drug design, new chemical compounds are developed and
analyzed. So, let us consider a large database of chemical compounds such
as introduced in Example �.�. Further, assume that these molecules have
observable properties that can be con�rmed by some expensive chemical
studies. Such properties are for example against which biological target
they are active and whether they are non-mutagenic to prevent the causing
of cancer. For instance, molecule A in Figure �.�(a) is an example of a
mutagenic compound and molecule B (Figure �.�(b)) is an example of

��

�.�. ������: ��������� ��� ���������� ����

a non-mutagenic compound. Now, we design new chemical compounds
including for example molecule C depicted in Figure �.�(c). �us, molecule
C is one of our potential candidates for being used in a new drug against
a certain disease. We know its structure, that is, the elements it consists
of and how they are connected. Hence, we know its graph representation
illustrated in Figure �.�(f). However, we do not know any properties of our
newly designed candidate drug. To avoid unnecessary, expensive laboratory
experiments, we want to compare it to the data in our database. Assuming
that similarly structured molecules have similar properties, we can then get
an idea about whether our candidate drug is mutagenic or not. Applying
machine learning to the graph database of molecules with known properties
and the graph of our new test molecule, we are able to infer whether or
not it is mutagenic. Leveraging graph classi�cation, a classical task in the
area of learning with graphs, we predict that molecule C will most likely
be mutagenic. Hence, we do not want to prioritize considering it as our
new drug. As we could make this decision without conducting expensive
chemical tests, we saved time and money in our drug-development process.

E������ �.� (S����� N������ – C�������� D��������)

In social network analysis one of the most frequently analyzed properties
is the network’s community structure. �at is, we want to know how many
communities there are, how big they are, how they are connected among
each other, and how big the overlap of the di�erent communities is. To
answer these questions for our social network shown in Figure �.�, we need
to �nd its communities. A community in a social network is de�ned to
be a group of persons with a high number of friendship relations among
each other and a low number of connections to persons in other groups.
Hence, community detection in social networks is actually the same as
clustering the nodes in the social network graph such that nodes in the
same cluster are densely connected and nodes in di�erent clusters have low
connectivity. �us, computing the node clustering of our graph leads to
the communities in the corresponding social network. For the network in
Figure �.�, where the communities are highlighted by di�erent colors, we
�nd that there are four major, mainly disconnected communities and one
huge cluster consisting of four sub-communities with high overlap. Further,
there are several disconnected small groups of one to three persons. All this
information could be revealed without knowing any of the persons in the
network. We merely used the graph structure to infer the clusters. If we

��

����������: �������� ���� ������

now assume that we have further knowledge about some of the persons,
such as where they live, where they work, where they went to school, or
what kind of sports they play, then it would even be possible to deduce that
the “purple group” are friends knowing each other from work, the “red
group” are friends knowing each other form studying abroad, and the huge
connected cluster of the “lilac, turquoise, yellow, and green groups” are
friends knowing each other from climbing in Bonn, where sub-communities
are di�erent training groups preferring di�erent climbing gyms or knowing
each other from their studies or jobs.

Both examples show that we compare graph structure, that is, either entire graphs
in the case of structured data or neighborhood structures of nodes in the case
of networked data. To be able to develop information propagation methods on
graphs (Section �.�) and techniques to compare graphs or nodes in a graph for
learning (Section �.�), we next provide the main de�nitions of graph data.

�.�.� De�nitions
In this section, we introduce commonly used de�nitions and terms for graphs,
graph types, and node and edge information. A graph is de�ned as follows.

D��������� �.� (G����, A��������M�����) A graph G = (V , E) is a set of
vertices V = {v�, v�, . . . , vi , v j, . . . , vn}, also called nodes, and a set of undirected
binary edges� E = {{vi , v j} � vi , v j ∈ V}. Let the number of nodes be �V � = n and the
number of edges �E� = m; then a graph can be represented by its adjacency matrix
A ∈ Nn×n, where ai j = � i� {vi , v j} ∈ E and ai j = � i� {vi , v j} ∉ E.

�us, a graph is fully speci�ed by its adjacency matrix, and a non-zero element
ai j of the adjacency matrix indicates an edge between nodes vi and v j. Edges
connecting a node with itself are called self-edges and appear on the diagonal of the
adjacency matrix; that is, if vi has a self edge, then aii = �. For a graph without self
edges the adjacency matrix A has �m non-zero entries. Now we have established
the basic representation of a graph. However, there is more to graphs than vertices
and edges. In the introduction we already saw that nodes can have types, which
is already a simple extension to De�nition �.�. A graph can have various kinds
of discrete or continuous information attached to its nodes and edges. When
representing and analyzing node information, we distinguish labels and attributes.

�In the context of this thesis we consider edges to be binary; that is, each edge connects
two nodes. Graphs with edges connecting more than two nodes, so-called hypergraphs,
commonly occur in relational domains. For this thesis it is su�cient to approximate such
data by graphs with binary edges where one hyperedge connecting k nodes is divided into
k(k − �)�� edges connecting every pair of the incident k nodes.

��

�.�. ������: ��������� ��� ���������� ����

D��������� �.� (L�����) Label information ℓi ∈ N of a node vi ∈ V can be speci-
�ed by a label function ℓ∶V → L, where L = [k] = {�, �, . . . , k} is a �xed set of k
possible labels.

We distinguish between binary and multi-class labels, where binary means that
we have only two classes L = {+,−}, and multi-class means that there are k > �
classes. �e terms “labels” and “classes” are used interchangeably. We treat the
binary case as a special case, because if in the presence of binary labels a node is
not of class + (does not have label +) it automatically means that it has to be of
class − (has to have label −). In this thesis, we assume each node has exactly one
label. Multi-label problems, where a single node can have multiple labels, are not
considered (�������, et al., ����; ����, et al., ����).

D��������� �.� (A���������) Attribute information xi of a node vi ∈ V can be
speci�ed by a D-dimensional vector of continuous values xi ∈ RD.

In this thesis, we consider labels to be categorical and typically one-dimensional.
Attributes will typically be multi-dimensional with numerical values. To ease
notation, we can subsume the given information on the nodes into the label
function ℓ∶V → L, where L = ([k],RD). So, a graph with additional information
on its nodes is speci�ed by G = (V , E , ℓ). In classical machine learning and
statistics, the distinction between labels and attributes arises from the fact that
some values are given and some are inferred. Labels are usually dependent variables
that need to be estimated based on the measured attributes, termed independent
variables. �is distinction will not always be important when considering graph
data in this work.

So, graph types with respect to the given information on their nodes are:

• unlabeled graphs, where no label information is given,
• labeled graphs, also fully labeled graphs, where each node is endowed with a
known label,

• partially labeled graphs, where only a subset of nodes has observed labels,
and

• attributed graphs, where continuous information on the nodes is available.

E������ �.� (S����� N������ – L����� ��� A���������)

In our social network introduced in Example �.� the nodes labels could
be the gender of a person, that is L = {male, female} = {�, �} and the
attributes of a person could be their age and height. �at is, node vi
representing Anna would have label ℓi = � and attributes xi = [��, �.��]�

��

����������: �������� ���� ������

where age is given in years and the height is measured in meters. Our
social network graph is now an attributed and labeled graph. In the case
of missing information, if for instance a person does not reveal her gender,
we deal with a partially labeled graph. Similarly, attribute information
can also be partially observed.

�e types of edge information we will consider are continuous edge weights,
discrete edge types, and binary edge directions. Edge weights occur when we want
to model the distance or similarity between the nodes. �is is naturally the case
when the nodes represent points in a metric space, for instance in tra�c networks
or �� point clouds. Edge weights will be stored in the weight matrix.

D��������� �.� (W�����M�����) In the presence of edge weights a graph can be
represented by its weighted adjacency matrix, or short, weight matrix, W ∈ Rn×n.
We de�ne edge weights to be positive; i.e., wi j ≥ �. �e weight wi j of an edge {vi , v j}
is proportional (inversely proportional) to the similarity (distance) of its incident
nodes.

�at is, the larger the weights, the stronger the connection between two nodes.
�e smaller the weights, the weaker the connection between the nodes. And in
turn a weight of zero indicates that the nodes are disconnected. In the example of
a tra�c network, large edge weights therefore correspond to short actual distances
between two intersections. Intuitively this means that large weights model an easy
transition between the two intersections, and small weights re�ect low connectivity,
and therefore a more di�cult transition between nodes.

Edges in a graph can be directed or undirected. Directed edges can be seen as a
sort of directed �ow such as one way streets in a tra�c network. Another example
of a directed graph is a webgraph constructed from hyperlinks having an origin
(the page where the hyperlink is placed on) and a destination (the page where the
hyperlink is linking to).

L���� �.� If the edges of a graph are undirected, its adjacency matrix A is symmet-
ric. �e same holds for the weight matrix W of weighted graphs.

Note that every undirected graph can be viewed as a directed graph where each
undirected edge (vi , v j) is replaced by two directed edges (vi , v j) and (v j, vi).
Edge types were brie�y mentioned in Example �.�, where atoms in chemical com-
pounds are connected by single or double bonds. �ey occur mostly in relational
data, where multiple types of relations can model for example similarity relations
or purchase relations in a product–user graph. Similarity relations link two items
or two users if they are similar, and purchase relations connect a user to a product
if the user bought that particular item. Many graph representations – especially

��

�.�. ������: ��������� ��� ���������� ����

when used in learning with graphs – ignore the edge types once the graph is
constructed for the sake of simplicity.

Grouping graphs by the information on their edges gives the following list of graph
types:

• weighted graphsmodeling the similarity/distance between nodes,
• multi-relational graphs with typed edges,
• directed graphs with edges having an origin and a destination, and
• undirected graphs where edges do not have a direction.

When analyzing graphs it is common to measure structure indicators such as the
minimum or maximum node degree, the number or length of (shortest) paths or
the number or length of cycles in a graph.

D��������� �.� (N��� D�����) �e degree of a node is given by the number of
neighbors of that node, deg(vi) = �v j ∈ Ni �, whereNi is the set of nodes connected
to vi . �e node degree can be computed as the row sum of the adjacency matrix
deg(vi) = ∑n

j=� ai j.
D��������� �.� (P���, C����, T���) A path of length k is a sequence of vertices
{v�, v�, v�, . . . , vk , vk+�} connected by k edges {(v�, v�), (v�, v�), . . . , (vk , vk+�)} such
that all vertices are distinct. A cycle is a closed path with v� = vk+�. A tree is a graph
without cycles.

D��������� �.� (C�������� G����) A graph is connected if there exists a path
from any node to any other node in the graph.

Grouping graphs by their graph structure leads to the following list of graph types:

• line graphs or chains are connected graphs with a maximum node degree
of �,

• trees are connected graphs without cycles,
• grids are graphs derived from the graph Cartesian product Gm ×Gn of line
graphs consisting of m and n nodes,

• bounded degree graphs are graphs where the degree of each node is bounded
by a �xed number b,

• fully connected graphs are (typically weighted) graphs where each node is
connected to every other node in the graph (deg(vi) = n − �,∀vi ∈ V), and

• general graphs are graphs without any assumption on their structure.

Most real-world graphs are general graphs and when comparing graphs it is com-
mon to consider their parts, so-called subgraphs.

��

����������: �������� ���� ������

�

� �

� �

�

(a) Graph G

�

� �

� �

�

� �

� �

�

(b) Subtrees of G

�

� �

� �

�

�

� �

(c) Induced subgraphs of G

Figure �.�: Graph, Subtrees, and Induced Subgraphs. Panel (a) illustrates a
graph with six nodes. Panel (b) shows two subtrees of graph G, and panel (c)
shows two induced subgraphs of G.

D��������� �.� (S�������, S������) G′ = (V ′, E′) is a subgraph of graph G =
(V , E) if E′ ⊂ E and the incident vertices V ′ ⊂ V. G′ is called a subtree if it does not
contain cycles.

O�en we consider induced subgraphs, where V ′ ⊂ V and E′ includes all edges in
G that join two nodes in V ′. Figure �.� illustrates a graph with example subtrees
and induced subgraphs. �e most straightforward way of comparing subgraphs is
to assess whether they are actually “the same”, that is, whether they are isomorphic.
Graph isomorphism is de�ned as follows.

D��������� �.� (G���� I����������) An isomorphismbetween two graphsG(�)
and G(�) is a bijective mapping f ∶ V (�) → V (�) between the nodes of the graphs
such that any two nodes u, v in the �rst graph G(�) are connected by an edge if and
only if their respective maps f (u), f (v) are connected in the second graph G(�).
When considering graph isomorphism, graph structure is seen as the arrangement
of nodes in the graphs. Such a graph comparison, however, completely ignores
additional information on the nodes such as labels and attributes. In this thesis, we
will be concerned with kernels for structured and networked data measuring the
structural similarity among graphs or among the nodes of a graph by considering
the arrangement of node information. Hence, in the context of this thesis graph
structure is de�ned as the interplay of node connections (e.g., links and edges)
with the actual information on the nodes, which is, in the simplest case, encoded
by numerical labels. �us, in this case we de�ne graph structure to mean label
structure. Intuitively label structure takes the node information into account and
two graphs with the same edge structure are actually very di�erent if the nodes
in the respective graphs have di�erent labels. Figure �.� illustrates two graphs
with the same edge structure but di�erent label structure. In the context of this
thesis, we are interested in measuring and comparing the structure of two graphs

��

�.�. ������: ��������� ��� ���������� ����

G(�) G(�)

Figure �.�: Label Structure. �e two graphs G(�) and G(�) have the same node
and edge structure as well as the same number of node labels, however, their label
structure is di�erent. Node labels are encoded by color.

or subgraphs by means of their label arrangement. Hence, graph structure in our
work implies label structure and in turn, the interplay of edges with the actual
information on the nodes, e.g., their labels.

D��������� �.�� (L���� S��������) Label structure is de�ned as the arrange-
ment of labels in a graph.

Note that unlabeled graphs are implicitly endowed with labels, namely the node
degrees. So, for graphs without label information, we can measure label structure
by setting the label function to be ℓ(vi) = deg(vi). In this thesis, we will derive
methods to represent graph structure of (partially) labeled graphs by their label
structure.

�.�.� Graph Construction and Analysis
So far, we have de�ned graphs and introduced several types of graphs. Further,
we introduced graph structure as a key concept to study graph similarity and in
turn to achieve learning with graphs. Graphs arise in several contexts: graphs
model the dependencies among data points (networked data), graph model the
structure of objects (structured data), graphs model the dependencies of variables
in statistical models, so-called graphical models, graphs can be generated from
random graph models such as Erdős–Rényi random graphs or Barabási–Albert
random graphs, and graphs can be created from a distance or similarity measure
among data points. In such metric-induced graphs, the nodes are points living
in a metric space and the edges can be derived from the distance or similarity of
the points’ attributes by considering nearest-neighbor graphs or fully connected
graphs with appropriately weighted edges. �ese graph representations are o�en
used in semi-supervised learning (��������, et al., ����).

As graph domains can be of such di�erent nature, graph construction is inherently
application dependent (��� and ���������, ����; �����, et al., ����; ���, ����;
���, ����) and an in-depth discussion of graph construction goes beyond the

��

����������: �������� ���� ������

scope of this background chapter. In general, graph construction can be divided
into two steps: establishing the graph topology and quantifying the graph. �e
�rst step determines the nodes and edges in the graph, and the second step assigns
labels and attributes to the nodes and weights, types, and directions to the edges.
Once a graph is constructed, we can assume that all relevant structural information
has been embedded. To make use of the graph data for learning, however, the
encoded information can – in contrast to vector-valued data – not be used directly.
�us, further analysis on the graph(s) has to be performed in order to identify
properties or derive approximations of simpler structure. Graph analysis can be
tackled by approaches from di�erent �elds: graph mining (���� and ������,
����; ������, et al., ����; ��� and ������, ����), spectral graph theory (���
�������, ����; �����, ����), random �eld theory (Markov random �elds, also
called Markov networks, cf. Chapter � in (������ and ��������, ����) and
Chapter � in (������, ����), and Gaussian random �elds (���, ����)), andmatrix
approximation and factorization (���, et al., ����; ����� and �����, ����; ����,
et al., ����). �e contributions in this thesis can be linked to both graph mining
and random �eld theory. In general, the considered technique for graph analysis
has to �t the graph domain it is applied to and in turn needs to match the learning
task to be solved. In general, we distinguish single-graph domains, where we have
one connected or disconnected graph and reasoning is preformed on the node
level, frommultiple-graph domains, where each graph represents one data point
and learning and inference is done on the graph level. �e following section
�rst introduces machine learning in general and then common learning tasks
occurring on both levels.

� .� M������ L������� ���� G�����
One of the main goals of this thesis is to apply statistical machine learning to
graph data. In Examples �.� and �.� the tasks of graph classi�cation and node
clustering were illustrated. In this section, we introduce the main concepts and
terminology of statistical machine learning and de�ne learning tasks involving
graph data. Statistical machine learning can be divided into two areas: supervised
learning and unsupervised learning. Supervised learning tasks are classi�cation
and regression, and examples for unsupervised learning are clustering and ranking.
In fact, we will see that all these classical machine learning tasks can be applied to
single- and multiple- graph domains. Notation and content in this section largely
follow (������, et al., ����) with parts adapted from (������, ����; ���������
and��������, ����).

�.�.� Supervised Learning
Supervised learning is the problem of learning a mapping from input to output
values from empirical data. Input data instances with observed output values have
to be generalized to predict the responses for data instances with unknown target

��

�.�. ������� �������� ���� ������

values. �e input–output pairs with observed targets are called training data and
new inputs for which we want to make predictions are called test data. �e general
assumption is that there is an unknown function ftrue∶X → Y mapping from the
input spaceX to the target spaceY . In this work, we will consider one-dimensional
target spaces. �e learning task is to �nd a good approximation of this function
in order to predict the target values of unknown test cases. If the target space Y
is continuous, that is Y = R, the learning task is called regression. If it is discrete,
the task is called classi�cation. For classi�cation we assume that Y is a �nite set
of k classes. If k = � the problem is termed binary classi�cation. �e classes are
also called class labels or just labels; cf. De�nition �.�, where we de�ned labels for
the nodes of a graph. In classi�cation in general, the observed data is o�en called
labeled data, whereas the unobserved data points are considered unlabeled. In
classical machine learning, X is a space of D-dimensional vectors, X = RD, called
feature space and each coordinate xi of a data point x ∈ X is a feature. Features can
be real, ordinal, or discrete. Sometimes features are also referred to as attributes;
cf. De�nition �.�, where we de�ned attributes for the nodes of a graph.

Viewing supervised learning from a statistical perspective, we assume that our
data comes from a statistical model. �us, there is a statistical dependency be-
tween the input vector x ∈ X and the output y ∈ Y , and we want to uncover this
relationship. �is is usually modeled by an unknown function f and an additive
noise component ε such that

Y = ftrue(X) + ε, (�.�)

where Y and X are random variables. εmodels any kind of departure from the true
function such as measurement errors, and we assume that ε has an independent,
identically distributed Gaussian distribution with zero mean and variance σ�

n . As
Equation (�.�) is a statistical model, ftrue(X) can be seen as the expected value of
the conditional probability distribution Pr(Y � X), hence ftrue(x) = E(Y � X = x).
In this thesis, we focus on discriminative models for learning, as we are interested
in modeling Pr(Y � X) in order to make predictions about y from x. Solving dis-
criminative learning tasks does not require the joint distribution Pr(X ,Y). Note
that if the task is to generate (x, y) samples then this joint distribution needs to be
modeled; such approaches are called generative models. �e most prominent gen-
erative model is the hidden Markov model, see for example Chapter �� in (������,
����). It can be used to recover data sequences not being directly observable.
Applications tasks are for instance speech recognition, machine translation, or
part-of-speech tagging in natural language processing.

�e general task of discriminative machine learning is now to move from the �nite
set of observed data D = {(xi , yi) � i = �, ..., n} to a function f that predicts the
output for unseen input values x ∈ X . �is is usually done by a computer program
analyzing the di�erence of the function values on the training data to the observed

��

����������: �������� ���� ������

data, yi − f (xi), and modifying the function f accordingly. �is procedure is
called learning. �ere is no chance to uniquely determine the true function ftrue
since in�nitely many solutions will match the measured input–output pairs. In
other words, the learning problem is ill-posed. �us, an approximation of ftrue has
to be found, for example by restricting the number of considered functions. In
general there are two approaches, parametric models limit the class of functions
to be parameterized by a �xed-dimensional vector. Non-parametric models, on
the other hand, allow the dimension of the parameterization to grow with the
observed data. Some non-parametric models regularize the functions considered
according to their complexity or their contribution towards learning the model.
Before we discuss parametric and non-parametric learning in detail, we brie�y
introduce the inductive and transductive learning paradigms.

��������� ��. ������������ ��������
Approaches where a mapping function is learned from the training data that is
applicable to any test data is called inductive learning. Reasoning can also be
performed directly from the training data to a speci�c set of test points without
learning a general mapping function. �is approach is called transductive learn-
ing (������, ����). Assuming a graph database with a set of �xed graphs, the
approaches to learning with graphs on the graph level introduced in this work are
considered inductive. Learning on the node level, however, is transductive in the
sense that the whole graph including the unlabeled nodes is used for inference or
in order to establish a new feature representation. In the latter approach, once the
new feature representation is established, an inductive learner is used for making
predictions. �erefore, we focus on inductive learning algorithms in the overview
chapter.

���������� ������
A common parametric approach is to assume a linear approximation for f :

f (x) = w� +w�x� + ... +wDxD = w� + x�w,
where D is the dimension of the inputs and w� and w are parameters. In the
following, we omit the special treatment of the intercept w� by either shi�ing the
data to have zero mean prior to learning or by including an all ones variable into
the training data so that the �rst dimension of x, x� = � for all data points. �e
standard linear model, however, can easily be too restrictive and we have to use a
more general basis function model, which takes f to be a linear combination of
the so-called basis functions

f (x) =
N
�
i=� wi�i(x) = �(x)�w, (�.�)

��

�.�. ������� �������� ���� ������

where �maps the D-dimensional input vector x into an N-dimensional feature
space. �e parameter vector w is of length N now, and once the basis functions
�i(x) are determined the model is linear in the new variables. Example basis
functions are polynomials, e.g., �i(x) = x�j or �i(x) = x jxk, or other nonlinear
transformations of single or multiple input dimensions such as log or square root
transformations, �i(x) = log(x j) or �i(x) =

√x j. It is also possible to de�ne basis
functions that only consider speci�c input regions, inducing piecewise constant
models. �e linear basis expansion still leads to a parametric model as long as the
number of bases and in turn the number of parameters is independent of the size
of the training data. For parametric models, the training data is only used to learn
the parameter vector w which is commonly done by minimizing a loss function L:

min
w

n
�
i=� L(yi , �(xi)�w) = min

f

n
�
i=� L(yi , f (xi)), (�.�)

where f is de�ned by Equation (�.�) and a set or class of possible basis functions.
An example loss function, usually used for regression data, is the squared loss,
L(yi , f (xi)) = (yi− f (xi))�. Applying this loss and solving Equation (�.�) leads to
the least-squares regression model,� a very popular and simple parametric model.
Parametric models discard the training data a�er learning and thus are usually
fast in making predictions at the cost of posing stronger model assumptions.

���-���������� ������
Non-parametric models, on the contrary, make less assumptions about the data
distribution; however, the parameter vector is of the same size as the training data.
Non-parametric models are therefore also calledmemory-basedmodels as all the
training data is kept and used for making predictions. In a nearest-neighbormodel,
for example, all training points are considered to �nd the nearest ones to a given
test point, which are then used to derive its predictions. Such models have some
obvious drawbacks, for example, they fail in high-dimensional input spaces as the
nearest neighbors might actually not be close to the target point. Second, they
do not consider a structural form of the underlying predictive function, which
might be known. So, to overcome these problems and to be able to learn a model,
we again try to learn a function, but we have to control the complexity of the
considered functions. Instead of only allowing speci�c (sets of) basis functions
�i , however, we directly impose restrictions on the functions f . In the following,
we will introduce regularization methods, where model restriction is achieved by
adding a penalty term to the loss function:

min
f ∈F

n
�
i=� L(yi , f (xi)) + λJ(f). (�.�)

��e least squares estimate of w is given by ŵ = (Φ�Φ)−�Φ�y, where Φ i j = � j(x i).
��

����������: �������� ���� ������

J(f) is a functional de�ned on a function space F such that it results in lower
values for smooth functions f and larger values if f varies too rapidly over small
regions of the input space. λ is a weight parameter controlling the importance
of the regularizer. �e representer theorem, which will be stated in�eorem �.�
and discussed in more detail in Section �.�, ensures that, although the criterion
in Equation (�.�) is de�ned over an in�nite-dimensional space of functions, its
solution is �nite-dimensional. �e non-linear least-squares regression model can
be extended to the regularized least-squares model, also known as smoothing
splines. If the regularized least-squares model is used for a classi�cation task, it
is called logistic regression model. We will extend non-parametric learning to
kernel-based learning in Section �.�. Now, we will brie�y introduce another basic
and important learning paradigm, namely Bayesian learning.

�������� ��������
Bayesian machine learning approaches apply the concept of Bayesian statistics
to perform inference. A prior belief about the model is updated as additional
evidence, usually in the form of training data, is available. Bayesian inference
algorithms follow three steps:

• Specify a prior over the parameters, expressing your beliefs about the un-
known parameters before having seen any observations.

• Calculate the likelihood of the data which in words is the probability density
of the observations regarded as a function of the model parameters.

• Determine the posterior over the parameters given the data using Bayes’
Rule: Pr(A � B) = Pr(B�A)Pr(A)

Pr(B) .

Assuming that the training data is independent, the likelihood can be written as

Pr(y � X ,w) =
n
�
i=� Pr(yi � xi ,w),

where X is the D× nmatrix of training inputs sometimes also referred to as design
matrix and y is the vector of training outputs. Now, we can calculate the posterior
distribution as

posterior = likelihood × prior
marginal likelihood

, Pr(w � y, X) = Pr(y � X ,w)Pr(w)
Pr(y � X) ,

where the marginal likelihood Pr(y � X) = ∫ Pr(y � X ,w)Pr(w)dw acts as a
normalizing constant to ensure that Pr(w � y, X) has an integral of �. �is poste-
rior distribution combines information about the parameters deduced from the

��

�.�. ������� �������� ���� ������

training data (i.e., the likelihood) and the background knowledge (i.e., the prior).
Analogue to the above, one could also use the same technique to infer which
model is the best given the data. �is second level of inference is for example
described in (������, ����). To make predictions for an unseen test case x∗, we
have to consider the predictive distribution for f (x∗) = f∗. �at is to say, we
integrate the predictions of the model with respect to the posterior distribution of
the parameters

Pr(f∗ � x∗, X , y) = ∫ Pr(f∗ � x∗,w)Pr(w � X , y)dw.
�e above speci�ed predictive distribution supplies the complete Bayesian in-
ference and its mean can be used as prediction, thus the approximation for f
at x∗.
�.�.� Unsupervised and Semi-supervised Learning
In unsupervised learning, there are no output observations and the task is to
organize or group the data in a meaningful way. Unsupervised learning tasks
include clustering or ranking. �e former means that data instances are grouped
into so-called clusters such that there is highwithin-cluster similarity, and such that
the clusters themselves are well separable. In ranking, data instances are ranked
according to some score measured for all data points. In many applications we are
interested in a personalized ranking, that is, a ranking according to the preferences
of a user or some given query data. Now, the ranking score is in�uenced by the
similarity of the data points to the query. A famous example problem of this kind
is ranking webpages according to a user provided search string. If the task is to
retrieve similar data points to a given query example while ignoring the ordering in
the output cluster, then we speak of clustering on demand. �is is o�en achieved by
thresholding a personalized ranking result. Another term describing the problem
of �nding similar items to a possibly small set of query items is set completion. We
will discuss a solution to the problem of set completion using structural graph
features in relational data in Chapter �.

Approaches in semi-supervised learning use both labeled and unlabeled data for
supervised tasks like classi�cation. A detailed introduction of semi-supervised
learning concepts and various state-of-the-art methods can be found in (��������,
et al., ����). Besides approaches directly implementing the low-density separation
assumption (��������, et al., ����; ���������, et al., ����; ��������, ����),
graph-based methods are actively developed (���, ����; ����, et al., ����; ���,
et al., ����). �at is, supervised learning is applied to single-graph domains in such
a way that a metric-induced graph is created from in depended data points and
their attributes. �en, in addition to the labeled data points, the graph structure
is leveraged for prediction. Hence, semi-supervised learning is very similar to
transductive learning and, in turn, graph-based semi-supervised learning is closely
related to the approaches developed in Chapter � of this thesis.

��

����������: �������� ���� ������

�.�.� Learning Tasks for Graph Data
In the beginning of this thesis, we introduced networked data, where instances are
linked by relations (single-graph domains), and structured data, where each entity
is represented by a graph (multiple-graph domains). Now, we take a di�erent view
and distinguish two learning levels: learning on the node level and on the graph
level. �ese two levels of learning tasks can naturally be brought in line with the
di�erent graph domains. Learning on the node level is performed for networked
data, whereas learning on the graph level is applied to structured data.

���� �����
Learning in single graph domains is also referred to as within-network classi�ca-
tion or within-network relational learning (����� and �������, ����; ������ and
��������, ����). Learning tasks on the node level essentially applies supervised
and unsupervised learning to the nodes of a graph and prominent examples are:

• node classi�cation,
• node regression,
• node clustering� (community detection),
• node clustering on demand (set completion),
• node ranking, and
• edge prediction (also called link prediction).

�e main assumption when tackling learning tasks on the node level is the ho-
mophily assumption. Homophily is a concept from sociology and is de�ned as
follows (������� �� ��� �������� �������� ������������, ����).

D��������� �.�� (H��������) Homophily is a theory in sociology that people tend
to form connections with others who are similar to them in characteristics such as
socioeconmic status, values, beliefs, or attitudes.

Although originally developed in social sciences, the homophily assumption natu-
rally carries over to not only social networks (���������, et al., ����), but also to
many other domains of networked data. �is is obvious for graph representations
formed by obeying some similarity measure among the data points. However, it
also holds for webgraphs, as links are placed according to some content-based
similarity, or tra�c networks, where streets connect nearby, that is, spatially close,
places.

�us, node-level learning and inference can o�en be approached by exploiting –
or more precisely reversing – the homophily de�nition, leading to the homophily

�In the literature node clustering is o�en spuriously termed “graph clustering” as the actual
task of clustering graphs is rather rare.

��

�.�. ������� �������� ���� ������

assumption, also termed autocorrelation assumption in the literature on graph-
based machine learning (������� and ������, ����).

H��������� �.� (H��������/A�������������� A���������) Nodes that are
close to one another in the graph are likely to

• be similar,
• have the same properties,
• have the same label,
• be in the same cluster, or
• form an edge.

So, learning on the node level will be heavily based on measuring closeness in the
graph. One popular and successful technique to assess the proximity of nodes in a
graph comes from the intersection of graph theory and probability theory, namely
random walks. Before introducing random walks in the next section, we will now
change our view on learning tasks for graph data from the node to the graph level.

����� �����
Learning in multiple-graph domains is performed on the graph level and is also
called across-network learning, multiple-network learning, or learning with struc-
tured data. Learning tasks on the graph level are:

• graph classi�cation,
• graph regression,
• graph clustering (not to be confused with node clustering), and
• graph ranking.

Rather than measuring closeness in the graph, we now measure the similarity
of entire graphs. We can achieve this, for example, by comparing various char-
acteristics of the graphs in the dataset. �is approach is closely related to graph
mining, a data mining approach to �nd interesting or frequent patterns in graphs
(��� and ������, ����). �e simplest way of comparing patterns across graphs
is to count their occurrences per graph. �is approach establishes an explicit
feature transformation turning the graph data into vector-valued data points (of
counts). Now the new feature representation computed for each graph can be used
in combination with any classical machine learning technique. It is also possible to
design kernels among graphs and perform kernel-based learning. �is approach
will be discussed in Section �.�.

�is thesis will approach tasks on both levels. Doing so will reveal that it is pos-
sible to take surprisingly similar approaches to tackle problems on both levels.

��

����������: �������� ���� ������

In Part I, we will be concerned with learning on the graph level. Especially, we
will tackle graph classi�cation (and ranking) by developing a novel kernel frame-
work between graphs (Chapters � and �). In Part II, we will then transfer the
developed ideas to learning on the node level. In particular, we will investigate
node classi�cation in sparsely labeled graphs (Chapter �) and study a similar task,
namely set completion, in the more general context of relational data (Chapter �).
To understand the contributions of this thesis in a broader context, this section
about machine learning with graphs is concluded by changing the perspective
from learning with graphs to to a more general view on related research �elds.

�.�.� �e More General Perspective: Related Research Fields
Learning with graphs largely depends on graph analysis, which we will tackle in
this work by means of graph mining and random walks. Taking a more general
view, learning with graphs in general is also related to other research directions,
such as graph matching, graph partitioning, learning and inference in graphical
models, statistical relational learning and collective inference, and information
retrieval. In the following, we will brie�y discuss these related research �elds; an
in-depth introduction, however, goes beyond the scope of this thesis.

Graph matching is closely related to learning tasks on the graph level such as graph
classi�cation. In its most general de�nition, it is the problem of �nding a matching
between the nodes and edges of two graphs. �e simplest form of graph matching
when considering unlabeled graphs is constructing an isomorphism between two
graphs, cf. De�nition �.�. Although the assessment of graph isomorphism is a
problem of great interest in graph theory, it is not very useful for learning as the
isomorphism test would only provide us with the information whether or not
two graphs are isomorphic. For machine learning in general and in this thesis
in particular, however, we are more interested in how similar two graphs are.
�us, the notion of similarity is relaxed beyond strict isomorphism. Inexact or
approximate graph matching for (labeled) graphs is more useful in this context
(����, et al., ����;������ and ������, ����; �������, et al., ����; �������,
����). An overview of various graph matching problems and a survey of existing
solution approaches is given in (���������, ����).

Learning on the node level, especially the task of node clustering, is highly related
to graph partitioning. In graph partitioning the problem is to group together nodes
in a graph such that certain properties hold. A classical problem is, for example,
given a source and sink node, to �nd a partitioning separating them such that a
minimum number of edges is “cut”. By solving an energy minimization problem,
graph cuts provide a popular approach to achieve a good solution (������, et al.,
����). Practical applications can be found in many computer vision tasks such as
the stereo correspondence problem or image segmentation. Another interesting
closely related problem is local graph partitioning, where the goal is to e�ciently

��

�.�. ������� �������� ���� ������

�nd a group of nodes near a starting vertex in a possibly very large graph (�����-
���, et al., ����). Graph partitioning can also be achieved by spectral methods.
Spectral graph partitioning uses the eigendecomposition of the graph Laplacian
and especially the eigenvector corresponding to the second smallest eigenvalue,
the so-called Fiedler vector, to bisect the nodes of a graph (�����, et al., ����;
��������, ����). �e graph Laplacian will be introduced in Section �.�.� in the
context of kernels on graphs; an introduction to spectral graph theory is provided
by ����� (����).

Graphs also model the inference structure of statistical models, that is the nodes
constitute variables and the edges represent (conditional) dependencies of the
variables. Examples of such probabilistic graphical models, commonly modeled
as factor graphs, are Bayesian networks, Markov networks (also Markov random
�elds), and dependency networks. Learning and inference in graphical models
is a growing research �eld with numerous modeling approaches, solution algo-
rithms, and applications; a comprehensive overview can be found in (������ and
��������, ����).

In statistical relational learning and collective inference, variables and their depen-
dencies are againmodeled by graphs. Instead of groundedmodels, where each vari-
able re�ects one entity of interest, relational learning assumes that data instances
are only particular instances of general variables. �us, probabilistic graphical
models are extended to relational variants, such as relational Bayesian networks,
relational Markov networks, relational dependency networks, and Markov logic
networks. Section �.� will introduce relational data in more detail. Introductions
to various statistical relational learning approaches are provided in (������ and
������, ����). One of the main di�erences to graph-based machine learning and
collective inference is that in the latter latent variables are used to model various
dependencies and in turn simultaneous statistical judgments about the same vari-
ables for a set of related data instances is achieved (������, et al., ����; �������
and ������, ����). Whereas collective inference can result in more accurate pre-
dictions than conditional inference for each instance independently, it comes at
the cost of more complicated data representation and learning procedures.

Information retrieval is the problem of �nding suitable information in text docu-
ments, web pages, or image or video databases, given a search query. Information
retrieval is closely related to learning with graphs, as graphs can be used to model
the relatedness of documents and the link structure of webpages (���, ����), or
the content of a single document (�����, et al., ����). Nowadays web search is one
of the most prominent information-retrieval applications, intersecting text mining
and network analysis. An introduction to this problem and general approaches to
information retrieval can be found in (�������, et al., ����).

��

����������: �������� ���� ������

� .� I���������� P���������� �� G�����
Learning with graphs is an active and well established area in machine learning
and it turns out that many of the node-level tasks listed in the previous section
can be tackled by means of the same technique, namely random walks. Random
walks formalize the proximity of nodes in a graph probabilistically and thus are
suitable to imply the homophily assumption stated in Hypothesis �.�. Learning
algorithms based on random walks have proven powerful for node classi�cation
(��, et al., ����; ���, et al., ����; ������� and ��������, ����), node clustering
(���������, ����; ���� and ������, ����; ������ and ������, ����), link pre-
diction (��� and ����, ����; ��������� and ��������, ����), and node ranking
(�����, et al., ����; �� �����, et al., ����). Probably the most famous random
walk-based algorithm is Google’s PageRank (���� and ����, ����) developed to
rank webpages seen as nodes of the webgraph to present relevant search results. In
this work, we will use random walks to model information propagation schemes
on graphs in order to derive features representing both global as well as local graph
structure for learning on the graph and node levels. In the following, we will de�ne
Markov random walks on graphs and introduce several algorithms implementing
iterative information propagation schemes.

�.�.� RandomWalks
Before developing the technical details, let us �rst provide an intuition. Consider a
particle traveling from node to node via the edges of a graph such that the decision
of where to go next only depends on its current location. �at is, the next node to
visit is selected proportional to the number of edges and edge weights connecting
the current node to its neighbors. �is is a Markov random walk on a graph. We
can modify the walk behaviour by introducing restarts. When considering restarts,
in each step of the walk, the particle will with a certain probability be relocated
to a restart node independent of the edge structure. �e restart node is selected
uniformly at random or again with a given probability from a prede�ned set of
restart nodes. A�er the so-called teleportation, the random walk with restarts
continues according to its de�nition. �is section is mainly based on (�������,
����;��, et al., ����) and Chapter � in (���������, ����).

������� ����������
A random walk on a graph G is a Markov process X = {Xt � t ≥ �} with a given
initial state X� = vi . We will also write X(i)t to indicate the walk began at vi . Each
Xt is a random variable and the probability that the walk jumps from vi to v j, i.e.,
the transition probability τi j = Pr(Xt+� = v j � Xt = vi), only depends on the direct
neighborhood of the current state Xt = vi and not on past states. In other words,
the walk is memoryless. �e one-step transition probabilities τi j for all pairs of
nodes in V can be represented by the row-normalized weight or adjacency matrix

��

�.�. ����������� ����������� �� ������

called transition matrix,

T = D−�W , where D = diag
�
�

n
�
j=� wi j

�
�
. (�.�)

D��������� �.�� (R�����W���) Let G = (V , E) be a graph and X = {Xt �
t > �} a Markov process on the nodes V with transition probabilities given by the
transition matrix T de�ned in Equation (�.�). X is called a (Markov) random walk
on G if P(Xt+� = v j � Xt = vi) = τi j.

Since each row in T sums to one, the transition matrix is row stochastic. Further,
the t-step transition probability between two nodes vi and v j can be computed
using the matrix power

Pr(Xt = v j � X� = vi) = Pr(X(i)t = v j) = (T t)i j , (�.�)

where T� = I. If graph G consists of several components and the nodes vi and v j

are disconnected, then Pr(X(i)t = v j) = �, ∀t.
Now, assume that G is connected and non-bipartite, that is, V cannot be divided
into two disjoint sets V� and V�, where every edge in E exclusively connects nodes
in V� to nodes in V�. Further, let the starting node be chosen according to some
initial probability distribution π�, for instance uniformly at random; i.e., π�,i =
Pr(X� = vi) = ��n. �en the probability distribution of state Xt, which is given
by πt = [πt,�, πt,�, . . . , πt,n]� ∈ Rn with ∑i πt,i = �, is de�ned according to the
following recursion:

πt = T�πt−�,
πt = (T�)tπ�, (�.�)

where πt = Pr(Xt). For t →∞, πt converges to a stationary distribution π with
πi ∝ deg(vi)

�m . �e discrete time Markov process, also called Markov chain, is
ergodic.

We can also compute the probability distributions of state Xt given all possible
starting states X� by matrix multiplication. Let Pt ∈ Rn×n where (Pt)i j = Pr(Xt =
v j � X� = vi) = Pr(X(i)t = v j) and P� = I, then

Pt+� = TPt . (�.�)

Note that (Pt)i,∶ = Pr(X(i)t); that is, each row in Pt is the probability distribution
of Xt for a walk starting in vertex vi . Equation (�.�) is equivalent to Equation (�.�).
Now, πt in Equation (�.�) can be obtained from Pt by averaging its rows weighted
by the initial distribution π�; that is, πt = P�t π�.

��

����������: �������� ���� ������

������ ����� ���� ��������
To model random walks with restarts, the most simple approach is to introduce
a new transition matrix modeling the desired properties of the walk. First, let
Q ⊂ V be the set of restart nodes and let q ∈ Rn indicate the members of Q, where
qi > � for vi ∈ Q and∑i qi = �. �at is, q is a probability distribution among restart
nodes. Further, let the transition matrix T be de�ned as in Equation (�.�). For a
given restart probability β ∈ [�, �], Equation (�.�) turns into

πt = β T�πt−� + (� − β)q.
�is is analogous to adapting the transition matrix to

T̄ = β T + (� − β)E , (�.�)

where E = eq� with e ∈ Rn being the all ones vector; i.e., ei = �,∀i.

D��������� �.�� (R�����W��� ���� R������) Let G = (V , E) be a graph and
X = {Xt ∶ t > �} a Markov process on the vertices V. Let T̄ be a transition matrix
as de�ned in Equation (�.�) with β ∈ [�, �]. �en X is called a random walk with
restart if P(Xt+� = v j � Xt = vi) = τ̄i j.

�.�.� Algorithms based on the RandomWalk Model
In the following, we review several algorithms based on the concept of Markov
randomwalks (��s). So far, we have only talked about randomwalks on the nodes,
ignoring their label information. To employ random walks for node classi�cation
on partially labeled graphs or to measure label-structure similarity, the walk has
to be li�ed from being on the nodes of a graph, cf. Equation (�.�), to being on its
labels.

����� ���������
Consider a (partially) labeled graph without attributes, G = (V , E , ℓ), where
V = VL ∪VU is the union of labeled and unlabeled nodes, respectively, ℓ∶V → [k]
is a label function with known values for the nodes in VL, and k is the number
of available labels. Note that for unlabeled graphs we can set the label function
to be ℓ(vi) = ∑ j Ai j = deg(vi) and hence for fully labeled and unlabeled graphs
we have VU = �. Let the matrix P� ∈ Rn×k give the prior label distributions of all
nodes in V . If node vi ∈ VL is observed with label ℓ(vi), then the ith row in P� can
be conveniently set to a Kronecker delta distribution concentrating at ℓ(vi); i.e.,
(P�)i = δℓ(vi). �us, the simplest label-based �� on a graph is a di�usion process:

Pt+� ← TPt , (�.��)

where (Pt)i gives the distribution over ℓ(X(i)t) at iteration t.

��

�.�. ����������� ����������� �� ������

�is di�usion process, also called isotropic di�usion in image processing and com-
puter vision, is for example used for image denoising (������, ����). In machine
learning it has been introduced for semi-supervised classi�cation (������� and
��������, ����).

����� �����������
Another algorithm developed for graph-based semi-supervised learning is label
propagation (���, et al., ����). To infer the labels of the unlabeled data points,
label propagation performs a random walk starting in each unlabeled node that
stops when hitting a labeled point. For a binary classi�cation task, for example, we
are interested in the probability of hitting a positive labeled point before a negative
labeled point. Assuming that labels vary smoothly on the graph, cf. Hypothesis �.�,
we will then assign the label with the highest probability.

�e label probability matrix P� ∈ Rn×k is initialized as follows. If node vi ∈ VL is
observed with label ℓ(vi), then the ith row in P� is the Kronecker delta distribution
concentrating at ℓ(vi); i.e., (P�)i,∶ = δℓ(vi). We initialize the label distributions for
the unlabeled nodes VU with some prior, for example a uniform distribution.�
�e ith row of P� now gives the initial probability distribution for the �rst label
encountered, ℓ(X(i)�), for a random walk of length � starting at vi . To model
the fact that we are only interested in the �rst label encountered, we will have
to push back the labels of the nodes in VL a�er each propagation step. So, let
P� = �P�,[l abel ed], P�,[unlabel ed]�� be the initial label distributions of all nodes in the
graph, where the distributions in P�,[l abel ed] are those of the observed nodes and
P�,[unlabel ed] are the distributions of the unobserved nodes. Now, label propagation
is de�ned by

Pt,[l abel ed] ← P�,[l abel ed],
Pt+� ← T Pt . (�.��)

���, et al. (����) have shown that the solution to this process corresponds to the
minimum energy in a Gaussian random �eld. �e classi�cation algorithm for
Gaussian �elds can be viewed as a form of nearest neighbor approach, where the
nearest labeled examples are computed in terms of a random walk on the graph.

��������
PageRank was originally introduced to rank webpages according to the structure
of the webgraph (���� and ����, ����). Webpages with a larger number of links
pointing to them get ranked higher. Apart from its intended use, PageRank is a
powerful method for general information retrieval tasks and due to its popularity

��is prior could also be the output of an external classi�er built on additionally available
node information such as attributes.

��

����������: �������� ���� ������

highly e�cient algorithms for its computation have been engineered (���������
and �����, ����). Intuitively PageRank tries to model a random surfer following
the edges in a graph (the hyperlinks in the web). Given the graph’s transition
matrix T and E = ��n ee�

π�t = π�t−�G̃ , (�.��)

where G̃ = βT + (� − β)E is called Google matrix and β ∈ [�, �] controls the
probability that the random surfer will not follow the edge structure but jump to a
random node (webpage). �e PageRank vector is the solution of the converged
powermethod applied to G̃. A comprehensive derivation and various computation
techniques can be found in (��������� and �����, ����).

One extension to this basic PageRank model is the introduction of a probability
vector v, also called personalization vector controlling the random restarts. Given v,
the teleportation matrix in Equation (�.��) is now E = ev�. �is model, called
personalized PageRank (����������, et al., ����), is in fact equivalent to the
randomwalk with restarts introduced in De�nition �.��. Personalized PageRank or
random walks with restarts are common approaches to rank items in information
retrieval (����, et al., ����; ��� and �����, ����b). Replacing the PageRank
vector by a label probability vector leads to an approach for semi-supervised
learning called learning with local and global consistency (����, et al., ����). �is
approach is sometimes also called label spreading and is again closely related to
label propagation (������, et al., ����).

Another algorithm, based on the idea of propagating information in directed net-
works representing theweb, is the hyperlink-induced topic search (����) algorithm,
also known as hubs and authorities (���������, ����).

�.�.� Steady-State Distributions vs. Early Stopping
Assuming connected and non-bipartite graphs, all random walks introduced
previously converge to a unique steady-state distribution π∞ (�������, ����; ����
and ����, ����; ��, et al., ����). Most existing approaches based on random
walks on graphs only analyse the walks’ steady-state distributions and use them
to perform clustering, classi�cation, or ranking on the node level (������ and
��������, ����; ���, et al., ����; �� �����, et al., ����;��, et al., ����). Instead of
analyzing the limiting distribution of Pr(Xt), i.e., π∞, it is also common to analyze
the rows of Pt. Pr(X(i)t), however, also converges to a stationary distribution.
In fact, for random walks on the nodes without absorbing states as de�ned in
Equation (�.�), all rows of P∞, (P∞)i,∶, are equal. �at means that no matter
where the walk started, the steady-state distribution will be the same. Hence,
when using such non-absorbing random walks for learning it is crucial to apply
some kind of early termination in order to learn meaningful clusters or class
labels (������ and ������, ����). �is idea, also termed early stopping, was

��

�.�. ������� ��� ������

successfully introduced in power iteration clustering (��� and �����, ����a)
and node label prediction on graphs (������� and ��������, ����). Power
iteration is a general iterative algorithm to compute the eigenvector of a matrix.
�e power iteration using the transition matrix is xt+� = Txt .�is is closely related
to the random walk, Equation (�.�); however, the transition matrix is used directly
instead of its transpose and xt is not a probability. �us, there is no probabilistic
interpretation. As T is row-stochastic, xt converges to a constant vector, however,
monitoring the evolution of xt reveals that its values converge �rst locally according
to the structure of the underlying graph and then globally to one constant value
(��� and �����, ����a).

So, the general insight here is that the same holds for random walks and therefore
the intermediate distributions obtained by the random walks during the conver-
gence process are extremely interesting. In this thesis, we will adopt this idea and
use the evolution of label distributions encountered during absorbing and partially
absorbing random walks up the a given length to represent graph structure. �at
is, both techniques – partial label-absorbing random walks and early stopping –
are combined into a measure for local graph structure.

� .� K������ ��� G�����
In this section, we introduce kernel-based learning as an important solution to the
regularization problem stated in Equation (�.�). Further, we show how graph data
can be integrated into classical machine learning methods by designing kernels
among nodes or entire graphs. Kernels among nodes are referred to as kernels on
graphs and are computed on networked data. Graph kernels, on the other hand,
are kernels for structured data that are de�ned among entire graphs.�

�.�.� Kernel-based Learning
Inference for supervised learning is based on the assumption that close points in
the input space X should have similar output values y. �is means that training
points near the test points in�uence the predictions highly and this in�uence
should decrease with increasing distance. One option to capture this intuition is
to model the covariances of the outputs by a function of the inputs:

cov(y, y′) = k(x, x′) + σ�
nδx ,x′ ,

where k(x, x′) is a kernel, that is, a function measuring the similarity of any two
vectors x, x′ ∈ X . However, not every function f (x, x′) → R leads to a valid
covariance function. Considering its purpose, a covariance function, and in
turn a kernel, has to be symmetric and positive semide�nite. From the view of
probability theory, this can be understood when viewing the covariance function

�Unfortunately, the terms are not strictly distinguished in the literature.

��

����������: �������� ���� ������

as a function among two random variables Y and Y ′ and the kernel as a function
among random variables X and X′. Hence, the covariance function is an extension
of the covariance matrix of a random vector, which is positive semide�nite. �e
covariancematrix is itself a generalization of the scalar-valued variance of a random
variable, which is always positive. De�nitions can be found in any textbook about
statistics, e.g., Chapter � in (�������, ����;���������, ����).

Formally, a matrix M ∈ Rn×n is positive semide�nite i� ∀x ∈ Rn it holds that
x�Mx ≥ �, a kernel is de�ned as follows.

D��������� �.�� (P�������-S����������� K�����) k∶X ×X → R is a kernel if
• k is symmetric, k(x, x′) = k(x′, x), and
• is positive semide�nite, i.e., ∀ �nite subsets �x�, . . . , xi, xj, . . . , xn� ⊆ X the
matrix K with Ki j = k(xi, xj) is positive semide�nite.

A positive-semide�nite kernel is also termedMercer kernel and K is also called
the kernel matrix or Gram matrix.

Taking a di�erent view, sometimes called the dual representation, the kernel arises
naturally from minimizing the regularized loss function de�ned previously in
Equation (�.�):

min
f ∈F

n
�
i=� L(yi , f (xi)) + λJ(f), (�.��)

where we recall that L is a loss function, J is a penalty term, and F is a space of
functions. Equippedwith a kernel, there is a natural space of associated functionsF
for performing this optimization over. To see this we need the following de�nition.

D��������� �.�� (R���������� K�����H������ S���� (����)) AHilbert space
H is a space of functions f de�ned onX with an inner product �⋅, ⋅�H. An ����Hk is
a Hilbert space with reproducing property, that is, there is a function k∶X ×X → R,
where f (x) = k(x′, x) ∈Hk and � f (⋅), k(⋅, x)�Hk = f (x).

Note that k(x, x′) = �k(x, ⋅), k(x′, ⋅)�Hk
and hence it follows from the de�ni-

tion of an inner product that k is symmetric and positive de�nite. Further, the
Moore–Aronszajn theorem, stated and proven in (���������, ����), guarantees
the uniqueness of the kernel.

T������ �.� (M����–A�������� T������) Every positive-de�nite function k
on X ×X is uniquely determined by an ���� and vice versa.

It turns out that if we restrict the space of functions F to be a reproducing kernel
Hilbert space, that is F = Hk as de�ned in De�nition �.��, then the solution to
Equation (�.��) can be stated in terms of a kernel. �is result is stated in the
representer theorem.

��

�.�. ������� ��� ������

T������ �.� (R���������� T������) �e minimizer of a regularized empirical
loss function de�ned over a reproducing kernel Hilbert space (����) can be repre-
sented as a �nite linear combination of kernel products evaluated on the training
data.

A generalized version is stated and proven in (����������, et al., ����a). So,
restricting F to be an ����, Equation (�.��) turns into

min
f ∈Hk

n
�
i=� L(yi , f (xi)) + λ� f ��Hk

, (�.��)

where the penalty term for the spaceHk is de�ned to be the squared norm J(f) =
� f ��Hk

, where � f �Hk =
�
� f , f �Hk

.

It can be shown that the solution to Equation (�.��) is a �nite linear combination
of kernel values (�����, ����). More precisely it is the weighted sum of the kernel
evaluated at the �nite set of training inputs xi ,

f ∗(x) = n
�
i=� αik(x, xi).

Recall that we denote the training data by D = {(xi , yi) � i = �, ..., n}. As the
penalty term can also be stated in terms of the kernel

J(f) =
n
�
i=�

n
�
j=� αiα jk(xi , x j),

Equation (�.��) reduces to a �nite-dimensional optimization problem

min
α

L(y,Kα) + λα�Kα, (�.��)

where K is the positive-semide�nite n × n kernel matrix on the training data
with Ki j = k(xi , x j). �erefore, given that L is convex, the regularization problem
is convex and can be solved by simple numerical optimization algorithms. �e
kernel solution to the regularized least-squares model was called the regularization
network by ������ and������ (����); it is an example of a so-called kernelmethod.
�e use of di�erent loss functions results in di�erent kernel methods. Replacing
the squared loss by the hinge loss L(y, f (x)) =max{�, �− y f (x)} leads to support
vector machines, �rst introduced in (�����, et al., ����). �e support vector
machine classi�er is a sparse maximummargin classi�er that essentially selects
the training points most informative for the distinction of classes. �e decision
boundary and support vectors can be learned by solving a convex optimization
problem resulting from Equation (�.��). A comprehensive introduction to support
vector machines can be found in (����������� and �����-������, ����).

��

����������: �������� ���� ������

Other kernel methods are theNadaraya–Watson model (��������, ����;������,
����) also known as kernel regression, kernel density classi�cation, or short kernel
classi�cation, Gaussian processes (��������� and ��������, ����) implementing
the Bayesian learning paradigm introduced in Section �.�.�, and the lesser used
relevance vector machines (�������, ����).

So far, we have learned that kernels are de�ned by the inner product of an ����.
However, we can also view kernels as the inner product of a �xed non-linear
feature space mapping �(x):

k(x, x′) = ��(x), �(x′)� .
In the case of �nite-dimensional feature mappings the inner product is actually
the dot product, which can be computed explicitly as

k(x, x′) = �(x)��(x′).
�is view allows us to extend any learning method using the scalar product of the
input vectors to use kernels. Intuitively we substitute x�x′ by ��(x), �(x′)� and
consider the linear model in the high-dimensional (possibly in�nite-dimensional)
feature space. As the feature transformation does not need to be computed ex-
plicitly, this kernel substitution is also known as the kernel trick. So, to construct
kernels we either choose the feature mapping and then use it to de�ne the kernel
or we construct the kernel directly. When taking the latter approach, one has
to ensure that the constructed function is a valid kernel, in other words that it
corresponds to an inner product in some possibly in�nite-dimensional feature
space. For simple kernels and low-dimensional input spaces, this veri�cation can
be done explicitly, as illustrated in the following example.

E������ �.� (S�����K����� ���C������������ S����� P������)

Let x, x′ ∈ R�. k(x, x′) = (x�x′)� is a valid kernel. We can see this easily
be expanding out the terms so that

k(x, x′) = (x�x′)� = (x�x′� + x�x′�)�
= x�� x′�� + �x�x′�x�x′� + x��x′��
= (x�� ,

√
�x�x�, x��)�(x′�� ,√�x′�x′�, x′��)

= �(x)��(x′),
where �(x) = (x�� ,

√
�x�x�, x��)�.

In general, however, such an explicit construction is not possible. Another way to
prove that a kernel is valid is via De�nition �.��. �at is, we have to show that the

��

�.�. ������� ��� ������

Gram matrix K is positive semide�nite. �is can for example be done by showing
that the determinants of all upper-le� k × k sub-matrices of K are non-negative or
that the eigenvalues of K are non-negative.

Examples of simple kernels are the linear kernel:

k(x, x′) = x�x′,
and the Dirac kernel:

k(x, x′) = δ(x, x′) = � � if x = x′
� otherwise. (�.��)

A commonly used parametric kernel is the Gaussian kernel, also called the radial
basis function kernel or squared exponential kernel:

k(x, x′) = exp�−�x − x′��
�ℓ�

� , (�.��)

where ℓ is the length scale parameter. More expressive kernels can be constructed
by combining simple kernels. Sums, products, and positive scalar powers of
kernels are also valid kernels. Further, a kernel multiplied by a positive scalar or
by a polynomial with non-negative coe�cients is again a kernel.

Another powerful idea, when considering complex discrete objects, is to construct
kernels from the objects’ composite structures or parts. �ere are several lines of
research establishing such composite kernels: kernels on (multi-) sets (���, et al.,
����; ��������, et al., ����), marginalized kernels (�����, et al., ����; �������,
et al., ����), and convolution kernels (��������, ����; ���� and ��������, ����).
All these approaches allow us to de�ne kernels between discrete structures such
as strings, paths, trees, and graphs, which do not have to be of the same size. As
we will study the construction of kernels for graphs later in the thesis, we will
introduce the convolution kernel de�ned by �������� (����) in more detail here.

T������ �.� (C���������� K�����) Let x ∈ X be an input space with decompo-
sitions �x consisting of parts x�, . . . , xP, where xp ∈ Xp for all � ≤ p ≤ P are countable
sets.� Given a �nite “part” relation R ⊆ X� × . . . × XP × X with R(�x , x) = � i�
x�, . . . , xP are the parts of x and positive-semide�nite kernels kp∶Xp × Xp on the
parts, then K∶X ×X given by

K(x , x′) = ��x∈R−�(x) ��x′∈R−�(x′)
P
�
p=� kp(xp, x′p) = ��x∈R−�(x) ��x′∈R−�(x′) κ(�x , �x

′) (�.��)

is positive semide�nite.

�In a more general version Xp only need to be separable metric spaces. All countable metric
spaces are separable metric spaces.

��

����������: �������� ���� ������

Note that the relation R is �nite if R−�(x) = {�x � R(�x , x) = �} is �nite for all
x ∈ X . See (��������, ����) for the proof of�eorem �.�. �e convolution kernel
was further generalized to the so-called mapping kernel (���� and ��������,
����), which is de�ned for arbitrary transitivemapping systems {Mx ,x′ ⊆ X̂x×X̂x′ �
(x , x′) ∈ X ×X }, where X̂ = X�× . . .×XP . �emapping system for the convolution
kernel {Mx ,x′ = X̂x × X̂x′} is indeed transitive. ���� and �������� (����) also
introduced distribution kernels which evaluate distributional features rather than
maximum or minimum values of similarity or dissimilarity measures. �e basis
for these results were the convolution kernel and the probability kernel introduced
in (��������, ����).

D��������� �.�� (P���������� K�����) Let K be a valid kernel. If K(x , x′) is
positive, K(x , x′) ≥ � ∀x , x′, and∑x ,x′ K(x , x′) = �, then K is a probability distri-
bution on X ×X called a probability kernel.

Now we can construct kernels for probabilistic models with hidden variables that
model the parts of the visible variables corresponding to structured data. Models
generating data from hidden variables are called generative models. Probabilistic
generative models, which can naturally deal with missing data and objects of vari-
able size, can be applied in a discriminative setting once the kernel is constructed
((��������, ����; �������, ����) and Chapter � in (������, ����)). Another
approach to de�ne kernels using generative models are Fisher kernels (��������
and ��������, ����).

As this thesis focuses on learning with graphs, we will introduce kernels for graph
data in the following two subsections. �is will be the basis for the derivation
of kernels from ��-based node label probabilities, which is one of the main
contributions of this thesis.

�.�.� Kernels on Graphs – Kernels between Nodes
In this section, we introduce kernels among the nodes of a graph, which are used in
kernel-based approaches to learning on the node level. We will see that kernels on
graphs are closely related to random walks on graphs as introduced in Section �.�.
�e derivation largely follows results presented in (����� and ������, ����).
Note that in this section, unlike in the previous sections, n denotes the number of
nodes in a graph and thus covers all data points and not just the training examples.

D��������� �.�� (K����� �� � G����) Given a graph G = (V , E , ℓ) a kernel on
a graph k(vi , v j) is de�ned between the vertices vi , v j ∈ V of a graph and its kernel
matrix is given by K ∈ Rn×n, where Ki j = k(vi , v j).

Once determined, kernels on graphs are used in supervised learning to regularize
the model f to be smooth on the given input graph. �us the kernel should be

��

�.�. ������� ��� ������

deduced from the graph structure. Structural properties of a graph are nicely
encoded in the graph Laplacian, which is therefore o�en used to design kernels
on graphs.

D��������� �.�� (G���� L��������) Given a weighted graph G = (V , E) with
weight matrix W, the Laplacian of G is de�ned as L = D −W, where D is the n × n
diagonal matrix with entries dii = ∑n

j=�wi j. �e normalized Laplacian is de�ned by
L̃ = D−���LD−��� = I − D−���WD−���.
In the followingwe use spectral graph theory to analyze the spectral decomposition
of the Laplacian and in turn to construct di�erent kernels on graphs implementing
smoothness constraints via the regularization framework. �e spectral decompo-
sition of the Laplacian is given by

L =
n
�
i=� λixix�i ,

where λ� ≤ ... ≤ λn denote the eigenvalues of L and x�, ..., xn are the corresponding
eigenvectors. An analysis of the eigensystem (xi , λi) of L yields that the eigenvec-
tors with small eigenvalues are smooth and therefore indicate large clusters within
the data, and those with large eigenvalues are rugged and hence can be interpreted
as noise. For an extensive investigation of the geometric and algebraic aspects of
graph eigenvalues and spectral graph theory in general see (�����, ����). For any
function f ∶V → R on the �nite graph G, it holds that

f �L f = �
��i, j
� fi − f j�

� ≥ �, (�.��)

which can easily be seen by plugging in the de�nition of the Laplacian. Equa-
tion (�.��) is a measure of smoothness of f . Smaller values indicate smoother
functions f ; that is, f varies slowly over the graph. �us to achieve a desired
level of smoothness, we can vary the properties of the Laplacian, which means a
di�erent weighting of the eigenvectors of L by applying a (parametric) spectral
transformation

r̃(L) =
n
�
i=� r(λi)xix�i ,

where r∶R+ → R+ is a non-negative monotonically increasing function of λi . �is
regularization function can now be used to de�ne di�erent kernels on the given
graph.

To get a kernel matrix K that respects the smoothness properties of the data
encoded in the graph, we can create an ���� according to De�nition �.�� with an

��

����������: �������� ���� ������

inner product based on the regularization of the graph Laplacian. �us we de�ne
the Hilbert spaceH on Rn equipped with the inner product

� f , д�H = � f , r̃(L)д� = f �r̃(L)д.
H is a proper Hilbert space, since the graph Laplacian is a positive-semide�nite
matrix, which can be derived from Equation (�.��). Now it su�ces to show that
H satis�es De�nition �.�� with the kernel matrix de�ned as

K = r̃(L)−� = n
�
i=� r−�(λi)xix�i .

�e reproducing property is met i� f (i) = f �r̃(L)Ki,∶ ∀i. �is again is the case i�
f � = f �r̃(L)K, which holds i� K = r̃(L)−�. �eorem �.� guarantees the uniqueness
of the kernel k, where k(u, v) = Ki j. Some particular regularization functions, for
instance

r(λ) = � + σ�λ
r(λ) = exp(σ���λ)
r(λ) = (α − λ)−p with α ≥max

i
(λi),

lead to commonly used kernels like the regularized Laplacian kernel, the di�usion
kernel, or the p-step random walk kernel. Note that all derivations also hold for
the normalized Laplacian L̃.

In the following, we summarize the de�nitions of kernel matrices for commonly
used kernels on graphs, which are also used as baselines in this thesis and point
out their random walk interpretations. Most of the kernels include a parameter
which we will denote by α. �e di�usion kernel originally introduced by ������
and �������� (����) is de�ned as

K���� = exp �α L̃� , (�.��)

where exp(⋅) is the matrix exponential. �e di�usion kernel is closely related
to random walks as introduced in Section �.� of this background chapter. In
fact, it is the limiting distribution of Pr(X t̂ = v j � X� = vi) of a lazy random
walk, where t̂ = ��∆t with ∆t → �. A lazy random walk is a Markov random
walk, cf. De�nition �.��, with constant transition probabilities to all its neighbors,
Pr(Xt+� = v j � Xt = vi) = α if i ≠ j, and with probability �− α deg(vi) it will stay in
place, where α ≤ ��maxi deg(vi). �e i jth entry of K���� can be regarded as the sum
of the probabilities that a lazy walk takes each path from vi to v j.

��

�.�. ������� ��� ������

�e regularized Laplacian kernel is de�ned as

K���L�� = �I − α L̃�
−�

= �I − α D−���LD−����−�
= �I − α (I − D−���WD−���)�−�
= �(� + α) I − α D−���WD−����−�, (�.��)

where L̃ is the normalized Laplacian. �e Moore–Penrose pseudoinverse of the
Laplacian

K���L�� = L+ (�.��)

is a valid kernel closely related to average commute times in graphs (�����, et al.,
����). �e average commute time c(vi , v j) between two nodes vi and v j is de�ned
as the average number of steps a random walk starting in vi will take until it
reaches v j for the �rst time and then gets back to vi . It holds that c(vi , v j) =
vol(G)((L+)ii + (L+) j j − �(L+)i j), where vol(G) is the volume of graph G given
by vol(G) = ∑i Dii . K���L�� is therefore also called the commute-time kernel.
�e pseudoinverse of the Laplacian is also related to the regularized Laplacian
kernel de�ned on the unnormalized Laplacian. Both kernels have the same set of
eigenvectors and their non-zero eigenvalues are reciprocal.

Another kernel closely related to the regularized Laplacian is the von Neumann
di�usion kernel (����, et al., ����; �����, et al., ����), given by

K��� = �I − α D−���WD−����−� . (�.��)

�e entries of the p-step random walk kernel

K�� = (α I − L̃)p = ((α − �)I + D−���WD−���)p (�.��)

are proportional to the probability of a p-step random walk with restarts, cf.
De�nition �.��, where the walk restarts at the starting node. Note that the following
relation among the parameters holds: β = ��α. In general for all kernels involving the
Laplacian, we can technically either use its normalized or unnormalized version.
Some of the interpretations in terms of probabilities will however only work for
the above choices.

Closely related to kernels on graphs are data-dependent kernels, which also use all
labeled and unlabeled data points (not necessarily being nodes in a graph) during
their computation. Data-dependent kernels are widely used in semi-supervised
learning (����, et al., ����; ���������, et al., ����; �����, et al., ����), where
one strategy is to construct a graph modeling the data geometry and then compute
a kernel on this graph. Other approaches like semi-supervised support vector

��

����������: �������� ���� ������

machines (see (��������, et al., ����) for an extensive comparison and review)
try to enforce smoothness of predictions along a manifold de�ned by the data
in feature space, typically by modifying the optimization objective. In Part II
of this thesis, we will investigate kernel construction leveraging label-structure
information (cf. De�nition �.��) in plain graph data where no features on the
nodes are given. �is means we will construct a kernel which – in contrast to the
kernels used in standard semi-supervised learning – is a label-dependent kernel
rather than a data-dependent kernel.

As an extension of the parametric spectral transformation developed in (�����
and ������, ����) and sketched above, there is the possibility to adapt the trans-
formation automatically from the data by performing a search over a �xed set
of non-parametric transformations using a convex maximization of the kernel
alignment to the labeled data. �is concept leads to label-dependent kernels also
referred to as kernel–target alignment (�����������, et al., ����; ���, et al., ����;
���, et al., ����) and Chapter �� of (��������, et al., ����). �ese methods
essentially use label information to improve previously computed kernels.

�.�.� Graph Kernels – Kernels between Graphs
To apply kernel methods to learning on the graph level, a positive-semide�nite
kernel between graphs has to be constructed. �is overview on existing graph
kernels mainly follows (������������, et al., ����; ������, et al., ����). In
contrast to the previous section, where the input domain were the nodes of a
graph, the domain of interest is now a set of graphs. In this section, n denotes
the number of graphs, ni = �V (i)� denotes the number of nodes of graph G(i), and
N = ∑i ni is the total number of nodes of all considered graphs.

D��������� �.�� (G���� K�����) Given a graph database of n graphsG = {G(i) =
(V (i), E(i), ℓ)}i=�,...,n a graph kernel K(G(i),G(j)) is de�ned between graphs G(i),
G(j) ∈ G, and its kernel matrix is given by a positive-semide�nite matrix K ∈ Rn×n,
where Ki j = K(G(i),G(j)).
A common strategy to design graph kernels is to decompose the graph into smaller
substructures and then de�ne kernels on these possibly overlapping parts. �e
graph kernel is then again a combination, for example a sum, of the part kernels

K(G(i),G(j)) = �
P(i)∈G(i) �P(j)∈G(j) δ(P

(i), P(j)) κ(P(i), P(j)), (�.��)

where P(i) are the parts of G(i) and δ(P(i), P(j)) is � if the parts match structurally,
and � otherwise. As graphs are discrete objects consisting of �nitely many nodes
and edges, graph kernels can be viewed as convolution kernels, cf.�eorem �.�.
Given a relation R with R−�(G) = {�x ∶ R(�x ,G) = �}, the convolution kernel

��

�.�. ������� ��� ������

compares all substructures de�ned by the decomposition �x of a graph in a sub-
structure (or part) P and its complement P̄. �e part kernel can then be de�ned as
κ(�xi , �x j) = kP(P(i), P(j)) kP̄(P̄(i), P̄(j)), where kP̄(P̄(i), P̄(j)) ∶= �, cf. (���������
and �������, ����). To ensure positive semide�niteness, the kernel kP(P(i), P(j))
needs to be positive semide�nite.

Other approaches to guarantee positive semide�niteness of graph kernels are
to implement a weight function w(P(i), P(j)) into the part kernel κ(P(i), P(j))
ensuring convergence (��������, et al., ����), or to view κ(P(i), P(j)) itself as a
convolution kernel according to the assumptions of �eorem �.� (������ and
������, ����). In this case, the part kernel could boil down to comparing nodes
and edges for matching substructures, e.g.,

κ(P(i), P(j)) = �
eu ,u′∈P(i) �ev ,v′∈P(j) kE(eu,u′ , ev,v′) k(u, v) k(u

′, v′). (�.��)

where kE(⋅, ⋅) is an edge kernel comparing edge types (in the simplest case Dirac
kernel on the edge labels), and k(⋅, ⋅) is a node kernel comparing node labels and/or
attributes. Equation (�.��) is a convolution kernel, as the input graphs and in turn
their parts have a �nite number of nodes and edges and the part relation (being
the decomposition of graph substructures into nodes and edges) is �nite and the
parts themselves are countable sets. A closely related graph kernel measuring the
intersection of parts quantitatively is the intersection kernel (��������, ����).

�e various graph kernels proposed in the literature mainly di�er in the way the
parts are constructed and in the similarity measure used to compare them. �e
most natural way of decomposing a graph is to consider its subgraphs. However, we
cannot simply compare all subgraphs of two graphsG(i) andG(j) to get their kernel
value as this was shown to be at least as hard as solving the graph isomorphism
problem (��������, et al., ����). So, we have to limit the subgraphs, or more
general the substructures, to be compared by limiting the kind and/or size of
substructures considered. �e substructures, however, need to be big enough to
actually represent the graph structure. �erefore, comparing two graphs by only
comparing all pairs of nodes,

K(G(i),G(j)) = �
u∈G(i) �v∈G(j) k(u, v), (�.��)

is too restrictive. Commonly used substructures are paths, cf. De�nition �.�, as
for instance shortest-paths or paths generated by random walks, and limited size
subgraphs of a particular structure, such as trees, cycles, or induced subgraphs
so-called graphlets, cf. De�nitions �.� and �.�. Further, existing graph kernels
also di�er in which information they use to compare the parts, such as labels and
attributes on the nodes and edges.

��

����������: �������� ���� ������

In general there are two strategies to actually compute the kernel values between
graphs. One way is to compute a feature map �(G(i)) for each graph directly and
then the kernel value is computed from the inner product between the feature
maps K(G(i),G(j)) = ��(G(i)), �(G(j))�. �e explicitly computed features are
usually count features indicating how o�en certain substructures occur. �is
strategy is also called explicit kernel computation as the feature map is explicitly
created. One drawback of this approach is that we cannot use an arbitrary kernel
to compare node and edge information. A su�cient condition for graph kernels
to be convolution kernels is that the part kernel in Equation (�.��), κ(�x , �x′), be
a product of Dirac kernels, cf. Equation (�.��), or more general be either � or �
(������, et al., ����). �e other strategy is to compute the kernel between two
graphs implicitly. �is is usually done by considering their product graph. Doing
so allows one to employ general kernels among node attributes and edges as it is
not necessary to construct a feature map explicitly. However, this approach comes
with the cost of creating and analyzing the product graphG× = G(i)×G(j) of every
pair of graphs in the database.

D��������� �.�� (P������ G����) Given two graphs G(i) = (V (i), E(i)) and
G(j) = (V (j), E(j)), their product graph is denoted by G× = (V×, E×) and has a
vertex set

V× = {(u, v) � u ∈ V (i), v ∈ V (j)}
and an edge set

E× = {((u, v), (w , z)) � (u,w) ∈ E(i), (v , z) ∈ E(j)}.
�e product graph has a node for each pair of nodes in the original graphs, and an
edge in G× corresponds to one edge in each of the original graphs. Two nodes in
the product graph are neighbors only if the corresponding nodes in the original
graphs were both neighbors as well. Product graphs have some nice properties
making them suitable for the computation of graph kernels. First, the adjacency
matrix of a product graph is the Kronecker product of the adjacency matrices
of the original graphs, A× = A(i) ⊗ A(j); the same holds for the weight matrix
W× and the transition matrix T×. W× can, however, in general be used to capture
any kind of edge similarity. Further, performing random walks as de�ned in the
previous section on the product graph is equivalent to performing simultaneous
random walks on the original graphs (������ and ��������, ����). �at is,
Pr(Xt = (u, v) � X� = (w , z)) = (T t×)ab with a = (u− �)n j+v and b = (w− �)n j+ z
corresponds to the probability that random walks of length t on G(i) and G(j),
where the walk on G(i) starts in w and ends in u and the walk on G(j) starts in z
and ends in v, are equal.

�e random walk kernel by ������������, et al. (����) is then de�ned as

K(G(i),G(j)) = ∞�
t=� µtT t×π×, (�.��)

��

�.�. ������� ��� ������

�

� �

� �

�

(a) Graph

�

� � � �

� � � � � � � � �

(b) Node-based Subtree pattern (c) Label-based subtree pattern

Figure �.�: Subtree Patterns. Panel (a) shows an example graph where node
labels are encoded by color. Panel (b) illustrates a (node-based) subtree pattern
of depth � rooted at node �. Panel (c) shows the label-based subtree pattern of
depth � rooted at node �.

where µt is a weight guaranteeing the convergence of the in�nite sum and π× =
π i ⊗ π j is the initial probability distribution among nodes in G(i) and G(j), cf.
π� in Equation (�.�). Several variations of the random walk kernel have been
introduced in the literature. Instead of adding the probabilities of two walks being
the same, ��������, et al. (����) counted the number of matching walks. Other
variants take node labels into account and compare the label sequences instead
of node sequences (�������, et al., ����; ����, et al., ����; ���������, et al.,
����; ��������� and ����, ����). Also computed via the product graph, the
common subgraph matching kernel compares subgraphs of small sizes instead of
random walks (������ and ������, ����).

Avoiding the construction of potentially huge product graphs, explicit feature
maps for graph kernels can be computed in a more memory-e�cient manner and
o�en also faster. �e features are either some kind of similarity measure among
substructures or counts or indicators of occurrences of substructures of particular
sizes. �e graphlet kernel, for example, counts induced subgraphs of small sizes:

K(G(i),G(j)) = f(i)�f(j), (�.��)

where f(i) are the count features (������������, et al., ����). �e cyclic pattern
kernelmeasures the occurrence of cyclic and tree patterns and maps the graphs
to pattern indicator features which are independent of the pattern frequency
(��������, et al., ����). �eWeisfeiler–Lehman subtree kernel counts label-based
subtree patterns (������������, et al., ����)

Kh���(G(i),G(j)) = h���

�
h=� K(G

(i)
h ,G(j)h), (�.��)

where K(G(i)h ,G(j)h) = �f
(i)
h , f(j)h � and f

(i)
h is a count feature vector counting subtree

patterns of depth h. Figure �.� illustrates node- and label-based subtree patterns.

��

����������: �������� ���� ������

A subtree pattern is a tree rooted at a particular node where each level contains
the neighbors of its parent node. �erefore, the same nodes can appear repeatedly.
Other graph kernels based on subtree patterns have been proposed in the literature
(����� and ��������, ����; ����, ����).

Although they have the advantage of allowing for feature analysis and sparse feature
representations, explicit featuremaps can only be created e�ciently when counting
discrete features such as labeled substructures or discretized node attributes. If
we want to compare continuous node features pairwise by applying for instance a
continuous valued node kernel, then an explicit feature computation is di�cult or
even impossible (������, et al., ����).

�e shortest-path kernel is a �exible kernel comparing all shortest paths in two
graphs according to their lengths and the information on the respective nodes and
edges

K(G(i),G(j)) = �
u,v∈G(i) �w,z∈G(j) k(u,w) δ(dG(i)(u, v), (dG(j)(w , z)) k(v , z),

(�.��)
where k(⋅, ⋅) is a node kernel comparing labels and attributes of the respective
starting and end nodes of the paths and δ(⋅, ⋅) is the Dirac kernel (Equation (�.��))
among the lengths of the paths (��������� and �������, ����). Edge weights
and labels, if present, can also be captured by replacing δ(⋅, ⋅) by a general kernel
between edges. �e shortest-path kernel can be computed implicitly or explicitly
depending on the applied node and edge kernels. Another recently introduced
graph kernel based on paths is theGraphHopper kernel, which compares the nodes
encountered while hopping along shortest paths (�������, et al., ����).

�e large number of recently introduced graph kernels, which di�er vastly in their
notation and computation, indicates that the comparison of graphs in order to
perform machine learning on structured data is both considerably di�cult and
extremely important. Surprisingly, none of the above introduced kernels is �exible
enough to consider arbitrary node and edge information while still being fast and
memory e�cient. In the �rst part of this thesis, we will de�ne a novel �exible and
fast graph kernel framework overcoming these limitations of existing kernels.

� .� T�� R��������� P����������
Learning with graphs deals with reasoning in domains of interrelated and/or
complex objects. So far, we have seen that graphs are an elegant way to represent
networked and structured data being backed up by strong theoretical results
from (spectral) graph theory and e�cient computational techniques employing
matrix manipulations. Closely related to machine learning with graphs is logical
and relational learning. To employ relational learning we have to change our
perspective on the data representation from sets of vertices and edges to logical

��

�.�. ��� ���������� �����������

combinations of predicates applied to constants and variables. Being grounded
in logic, relational data representations are the basis of arti�cial intelligence (��)
(������� and ������, ����). Whereas in the past research in �� focused on logic
programming and satis�ability, machine learning has built its strength in statistical
learning in the presence of noisy observations. Both �elds derived powerful
representations meeting the requirements of their problems. However, as o�en in
science, both communities can learn a lot by extending their perspective to the
other closely related �eld. One example of a fruitful combination is the emerging
research area of statistical relational learning (���) joining logical reasoning and
uncertainty (������ and ������, ����). In this thesis, we will also exploit the
bene�ts of combining both worlds by retrieving structural patterns in relational
data representations to enhance graph-based learning. �erefore, we need a basic
understanding of the representation of relational data. �is background section
introduces relational data; for an introduction to relational learning, we refer to
(�����, ����), (������ and ������, ����), and (�� �����, ����). Notation and
illustrations in this section largely follow (�����, ����) and (�� �����, ����).

Like in statistical learning, the syntax of relational logic comprises variables and
particular data instances. �e data instances, being thought of concrete individuals,
are called constants. Variables are donated by uppercase letters (X) and constants
by lowercase words (observation1). Both, variables and constants are terms.
Properties of individuals and relations among terms are encoded by predicates
and the number of terms a predicate is de�ned on is called arity. �e building
blocks for knowledge representation are atoms, which are predicates together with
particular arguments (constants or variables). In the context of the social network
illustrated in Example �.� and Figure �.�, constants are for example phil, doro,
dirk, and unibonn and example predicates are friends and works at. Now,
atoms are

friends(phil, doro), (�.��)
works at(dirk, unibonn), (�.��)

or

friends(phil, X). (�.��)

�e atoms in Equations (�.��) and (�.��) are ground atoms, as the terms involved
consist of constants only. �e predicate in Equation (�.��) contains a variable
(X) and could be read as “all friends of Philipp”. �e power of variables comes
from the fact that we can represent (and reason about) sets of objects with certain
properties, e.g., all persons with the property of being friends with Philipp. In a
logical program or relational dataset the set of all considered constants is called

��

����������: �������� ���� ������

the (Herbrand�) universe�, the set of all possible ground atoms is the (Herbrand)
domain, and the set of all true ground atoms is called (Herbrand) interpretation.
O�en, when specifying relational data, we will list the true ground atoms only
assuming that everything not listed is false; this assumption is called the closed-
world assumption. If a database of atoms does not involve variables, then we
speak of propositional data. In Part II of this thesis we will tackle set completion
in relational data, where the given data is propositional; however, the algorithm
developed leverages variabilization. Variabilization is the technique of generalizing
ground atoms by inserting variables. For example by substituting the constant
doro in Equation (�.��) by a variable leading to Equation (�.��).

Reasoning in relational data is performed by logic programs assessing the satis-
�ability of interpretations or deducing concepts. One popular technique here is
inductive logic programming (���) ������ (����); ��������� and ������� (����).
Rules for reasoning are, for example, organized in clauses, which are if/then state-
ments. As opposed to clausal logic, rules can also be represented in (�rst-order)
predicate logic involving formulas with logical connectives (negation, implication,
conjunction, disjunction, equivalence) and quanti�ers (for all, there exists). Both
formalisms are semantically equivalent. As we will not study approaches to (sta-
tistical) relational learning but leverage logical features in graph-based machine
learning, we will not cover reasoning in relational data in depth here, but introduce
a possible graph representation for relational data.

For our work we will represent relational data by a hypergraph de�ned as follows.
In general, a hypergraph is a straightforward generalization of a graph, in which
an edge can link any number of nodes, rather than just two. More formally, a
hypergraph is a pair (V , E) where V is a set of nodes, and E is a multiset of
labeled non-empty subsets of V , called hyperedges. Now, the constants in a given
universe can be seen as nodes labeled by the predicates of the unary ground atom(s)
including the respective constant and ground atoms of larger arity formhyperedges.
Each hyperedge is labeled with the predicate symbol of the corresponding ground
atom. Nodes (constants) are linked by a hyperedge if and only if they appear as
arguments in the same predicate. If the relational database only consists of binary
predicates, then the data can be represented by a “normal” graph, as de�ned in
De�nition �.�. To visualize such a graph let us consider the following example.
Figure �.� shows the corresponding (hyper)graph.

E������ �.� (H����� �� P������ (R��������� D���))

Our domain of discourse is rooms and houses discovered when excavating

�Jacques Herbrand (����–����) was a French mathematician who studied and contributed to
mathematical logic.
�A universe can be in�nite dimensional.

��

�.�. ��� ���������� �����������

p city

h�house h�house h� househ� house

r�room r�room r� roomr� room

ty� type

f�function f� function

in

in

inin

in in
inin

isa

isa

isa

isa

typ
eof

typ
eo
f

typeof
ty
pe
of

Figure �.�: (Hyper)graph of Houses in Pompeii. (Hyper)graph representing a
toy version of the Pompeii dataset introduced in Example �.�. Nodes are labeled
by the predicates of unary ground atoms where node identi�ers are the constants.
Edges are formed by binary ground atoms having the adjacent nodes as arguments
and the respective edge label is the predicate.

Pompeii, a Roman city in southern Italy that was covered in volcanic ash
during the eruption ofMt. Vesuvius in �� ��. �is toy example is motivated
by a real-world database�analyzed in (�������, ����). �e constants are
houses such as h1, h2, etc., cities such as pompeii, rooms such as r1, r2, etc.,
functions f1, and f2 and types ty1. Predicates represent relations among
houses and rooms (e.g., in) or attributes of rooms, e.g., isa or typeog.
All true ground atoms representing our knowledge about the excavation
are now:

{city(p), house(h1), house(h2), house(h3), house(h4),
room(r1), room(r2), room(r3), room(r4), function(f1),
function(f2), type(ty1), in(h1, p), in(h2, p), in(h3, p),
in(h4, p), in(r1, h1), in(r2, h2), in(r3, h3), in(r4, h4),

isa(r1, t), isa(r2, t), isa(r4, t), isa(r3, f1), typeof(r1, ty1),
typeof(r2, ty1), typeof(r3, ty1), typeof(r4, ty1)}.

Note that in this work we will consider graphs with pairwise edges to be able
to use the information propagation techniques introduced in Section �.�. For

�http://www.stoa.org/projects/ph/home

��

http://www.stoa.org/projects/ph/home

����������: �������� ���� ������

hypergraphs with non-pairwise edges only recently approaches to learning on the
node level started to be investigated (����, et al., ����).

��

Part I

Propagation Kernels

��

Learning from structured data is an active area of research. As domains of inter-
est become increasingly diverse and complex, it is important to design �exible
and powerful methods for analysis and learning. By structured data we refer to
situations where objects of interest are structured and hence can naturally be
represented using graphs. Examples �.� and �.� introduced graphs representing the
bindings of di�erent atoms of chemical compounds, and the drug design prob-
lem as a real-world example of immense practical relevance. Other real-world
examples of structured data are scene graphs representing semantic information
in images, text documents re�ecting complex content dependencies, and manifold
data modeling objects and scenes in robotics. �e goal of learning with graphs is
to exploit the valuable and rich information inherent in graphs representing struc-
tured data. �e main challenge thereby is to e�ciently exploit the graph structure –
while allowing for missing, uncertain, and continuous information – for machine
learning tasks such as classi�cation or retrieval. A popular approach to learning
from structured data is to design graph kernels measuring the similarity between
graphs. For classi�cation or regression problems, the graph kernel can then be
plugged into a kernel machine, such as a support vector machine or a Gaussian
process, for e�cient learning and prediction.

In this part, we introduce propagation kernels, a general graph kernel framework
for e�ciently measuring the similarity of structured data. Propagation kernels are
based on the idea of monitoring how information spreads through a set of given
graphs. �ey leverage early-stage distributions from propagation schemes based
on random walks, introduced in Section �.�, to capture structural information
encoded in node labels, attributes, and edges. Doing so has two bene�ts. First, o�-
the-shelf propagation schemes can be used to naturally realize kernels for graphs
with various kinds of additional information attached to their nodes and edges
such as labeled, partially labeled, unlabeled, directed, undirected and attributed
graphs. Second, since propagation kernels are not tied to the substructures being
compared to asses graph similarity, but instead to the propagation scheme, they
can be considerably faster than state-of-the-art approaches without sacri�cing
performance.

We will also show that if the graphs at hand have a regular structure, for instance
when modeling image or video data, one can exploit this regularity to scale the
kernel computation to large databases of graphs with thousands of nodes. As an
extension to the computation for general graphs, we will develop an algorithm
for e�cient propagation kernel computation for grid graphs whose nodes can be
embedded in a square lattice.

We support our contributions by exhaustive experiments on a number of real-
world graphs, including benchmark graph databases from bioinformatics and
image data for semantic scene prediction, as well as texture classi�cation.

��

������� �

PROBLEM, PREVIOUS WORK, AND PROPOSED
SOLUTION

�.� Kernel-based Graph Classi�cation ��

�.� Our Approach: Propagation Kernels ��

In this chapter, we will formally de�ne the problem of graph classi�cation and
investigate existing solutions thereof. Wemainly focus on kernel-based approaches
for which we review previous work and show some of their weaknesses and limita-
tions. Based on these we will then introduce propagation kernels and discuss how
they can overcome the limitations of existing approaches. �en, we brie�y discuss
related work on within-network relational learning and kernels on graphs, and
kernels between probability distributions and sets.

� .� K�����-����� G���� C�������������
Graph classi�cation is the problem of predicting the class label for a data point
which is itself structured and therefore can be represented as graph. We will de�ne
the problem in terms of statistical machine learning on structured data.

P������ �.� (G���� C�������������) Given a graph databaseG = {G(i)}i=�,...,n
with training data D = {(G(i), yi)�i = �, ...,m}, where yi ∈ [k] with k being the
number of possible graph labels, �nd the labels y j ∈ [k] for all unlabeled graphs G(j)
not in the training data.

Binary graph classi�cation is illustrated in Figure �.�. To solve this task with classi-
cal supervised learning as introduced in Section �.�.� the graph representation of
the structured data entities has to be converted to vector-valued input data. Once
we have this feature representation we can leverage any learning algorithm from
the large pool of statistical machine learning methods. However, the graphs repre-
senting the data points in structured domains are encoding complex dependencies
enriched with versatile information on the nodes and edges. So, to capture this
complexity in the data explicit feature maps are usually of high, possibly in�nite,
dimension. One class of approaches that are able to elegantly deal with high di-
mensional feature representations are kernel methods as introduced in Section �.�.
�ere are two ways of designing kernels between graphs. By computing a kernel

��

�. �������, �������� ����, ��� �������� ��������

+
�

�

� �

�

�

�

�

�

�

�

−
�

�

� �

�

�

�

�

� �

�

�

�

?

�

�

�
�

�

Figure �.�: Graph Classi�cation. Binary graph classi�cation is the task of infer-
ring the class labels of structured data instances with unobserved labels (graph
on the right) from a training set of graphs with observed class labels (graphs on
the le�). �e graph labels in this illustration are L = {+,−}.

between explicitly computed graph features we get an explicit graph kernel. Graph
kernels can also be computed implicitly not taking the detour via an explicit fea-
ture map. Advantages and disadvantages of both approaches were discussed in
Section �.�.�.

Several graph kernels have been proposed in the literature, but they o�en make
strong assumptions as to the nature and availability of information related to the
graphs at hand. �e most simple of these proposals assume that graphs are unla-
beled and have no structure beyond that encoded by their edges. However, graphs
encountered in real-world applications o�en come with rich additional informa-
tion attached to their nodes and edges. �is naturally implies many challenges for
representation and learning such as:

• missing information occurring from partially observable data,
• uncertain information arising from aggregating information from multiple
sources, and

• continuous information derived from complex and possibly noisy sensor
measurements.

Images, for instance, o�en have metadata and semantic annotations which are
likely to be only partially available due to the high cost of collecting training
data; Figure �.� illustrates a partially labeled graph representing an image scene.
Point clouds captured by laser range sensors consist of continuous �� coordinates
and curvature information; in addition, part detectors can provide possibly noisy
semantic annotations, cf. Figure �.�. Entities in text documents can be backed
by entire Wikipedia articles providing huge amounts of structured information,

��

�.�. ������-����� ����� ��������������

� � �
� �

� �
�

�

��

��

��
��

��

b b ?
? ? c

?
v

?
v

c

v ?
v

Figure �.�: Image Scene Graph. Scene graph representation of and image with
partially annotated regions. �e image an ground truth labeling is taken from the
“���� semantic scenes” dataset which is publicly available at http://research.
microsoft.com/en-us/projects/objectclassrecognition/.

(a) Household objects (b) O�ce environment

Figure �.�: Point Clouds. Semantically annotated point clouds of household
objects (a) and part of an entire o�ce environment (b). �e �gures in panel (b)
are taken from the “Scene Understanding for Personal Robots” dataset created by
the Robot Learning Lab at Cornell University (http://pr.cs.cornell.edu/
sceneunderstanding/).

themselves forming another network. Further, information on the nodes can be
incomplete and uncertain as it o�en comes from complex sensor measurements
or manual labeling processes.

Surprisingly, existing work on graph kernels does not broadly account for these
challenges. In recent years several graph kernels have been developed within
the graph mining community. Categorizing graph kernels with respect to how
the graph structure is captured, we can distinguish four classes: graph kernels
based on walks, e.g. Equation (�.��) (��������, et al., ����; �������, et al., ����;
������������, et al., ����; ��������� and ����, ����; ���, et al., ����), on
paths, e.g. Equation (�.��) (��������� and �������, ����; �������, et al., ����),
graph kernels based on limited-size subgraphs, e.g. Equation (�.��) (��������,
et al., ����; ������������, et al., ����; ������ and ������, ����), and graph
kernels based on subtree-patterns, e.g. Equation (�.��) (����� and ��������,
����; ����, ����; ����� and ����, ����; ������������, et al., ����). Further,

��

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://pr.cs.cornell.edu/sceneunderstanding/
http://pr.cs.cornell.edu/sceneunderstanding/

�. �������, �������� ����, ��� �������� ��������

Table �.�: Graph Kernels and their Intended Use. Intended use of state-of-the-
art graph kernels: graphlet count kernel (��), Weisfeiler–Lehman subtree kernel
(��), cyclic pattern kernel (��), random walk kernel (���), shortest-path kernel
(��), graphHopper kernel (��), common subgraph matching kernel (���), and
propagation kernel (��). ∗Fast scaling to huge graphs or grid graphs.

information type

kernel ���� ������� ���� ���� ���� ���� ����
������ ������ ������� ������ ���������� ������∗ �����∗

�� (yes) – – – – yes –
�� yes – – – – yes –
�� yes – – yes – yes –
��� yes – yes yes yes – –
�� yes – yes yes yes – –
�� yes – yes – yes – –
��� yes – yes yes yes – –

�� yes yes yes – yes yes yes

graph kernels can be grouped with respect to their intended use of information.
We separate graph kernels designed for unlabeled graphs, labeled graphs, and
attributed graphs. An overview of existing graph kernels and their intended use is
shown in Table �.�. �is summary clearly reveals that most existing graph kernels
su�er from one of the following drawbacks: they can only handle graphs with
complete label or attribute information in a principled manner and they are either
e�cient, but limited to speci�c graph types, or they are �exible, but their computa-
tion is memory and/or time consuming. Whereas there are e�cient graph kernels
speci�cally designed for unlabeled graphs (������������, et al., ����), fully la-
beled graphs (������������, et al., ����), attributed graphs (�������, et al., ����),
or planar labeled graphs (��������� and ����, ����), there are more �exible
but slow and memory intense graph kernels such as the shortest paths, subgraph
matching, and random walk kernels (��������, et al., ����; ��������� and
�������, ����; ������������, et al., ����; ������ and������, ����). Moreover,
most of the existing graph kernels cannot take uncertain node information, or
weighted and directed edges into account in a principled manner.

�e Weisfeiler–Lehman (��) subtree kernel, one instance of the recently intro-
duced family of ��-kernels (������������, et al., ����), computes for example
count features for each graph based on the signatures arising from iterative multi-
set label determination and compression steps. In every kernel iteration, these
features are then the inputs to a base kernel and the ��-kernel is the sum of those
base kernels over the iterations, cf. Equation (�.��). �is approach is currently
one of the most e�cient and accurate graph kernels for fully labeled graphs. �e

��

�.�. ��� ��������: ����������� �������

challenge of comparing large, partially labeled graphs, however, remains to a large
extent unsolved. One proposal for extending a graph kernel to the partially labeled
case is to mark unlabeled nodes with a unique symbol, as suggested in (����-
��������, et al., ����). However, collapsing all unlabeled nodes into a single label
neglects any notion of uncertainty in the labels. Another option is to propagate
labels across the graph and then run a graph kernel on the imputed labels. Unfor-
tunately, this also ignores the uncertainty induced by the inference procedure, as
hard labels have to be assigned a�er convergence. Moreover, a two-stage approach
may run many unnecessary label propagation iterations.

Further, many datasets, as for instance images and videos, can be naturallymodeled
by graphs with regular neighborhood structure, also called grid graphs. None of the
existing graph kernels scales to huge grid graphs. If, however, graph kernels would
be capable to handle such structures we could connect graph mining and machine
learning on structured data to the entire research �eld of pattern recognition and
computer vision. �us, both �elds could bene�t from new theoretical insights,
applications, and solution approaches.

� .� O�� A������� : P���������� K������
To overcome these problems, we introduce propagation kernels. �eir design
is motivated by the observation that iterative information propagation schemes
originally developed for within-network relational and semi-supervised learning
have two desirable properties: they capture structural information and they can
o�en adapt to the aforementioned issues of real-world data. A key observation
motivating propagation kernels is that intermediate label distributions will, before
convergence, carry information about the structure of the graph. Propagation
kernels interleave label inference and kernel computation steps, avoiding the
requirement of running inference to termination. In particular, propagation
schemes such as di�usion or label propagation, introduced in Section �.�.�, can
be computed e�ciently and they can be initialized with uncertain and partial
information.

�.�.� Introduction
A high-level overview of the propagation kernel algorithm is as follows. We begin
by initializing label and/or attribute distributions for every node in the graphs
at hand. We then iteratively propagate this information along edges using an
appropriate propagation scheme. By maintaining entire distributions of labels and
attributes, we can accommodate uncertain information in a natural way. A�er each
iteration, we compare the similarity of the induced node distributions between
each pair of graphs. Structural similarities between graphs will tend to induce
similar local distributions during the propagation process, and our kernel will
be based on approximate counts of the number of induced similar distributions
throughout the information propagation.

��

�. �������, �������� ����, ��� �������� ��������

Walk-based graph kernels:→ random walk (��) kernels
(������������, et al., ����)
(�������, et al., ����)
(��������, et al., ����)

Count-based graph kernels:→ cyclic pattern kernel
(��������, et al., ����)→ graphlet count kernel
(������������, et al., ����)→ subtree-pattern kernels
(����, ����; ������������, et al., ����)

count-features = e�cient
�nding substructures = not (always)

��s = e�cient
product graph = not

propagation kernels (��)

best of both
worlds

Figure �.�: Propagation Kernels: Relation to other Graph Kernels. �is �gure
illustrates the relation of propagation kernels to other graph kernels. ��s interleave
randomwalk-based kernels and count feature-based kernels by taking the e�cient
computation steps of both graph kernel computation strategies.

To achieve competitive running times and to avoid having to compare the distri-
butions of all pairs of nodes between two given graphs, we will exploit locality
sensitive hashing (���) to bin the label and attribute distributions into e�ciently
computable graph feature vectors in time linear in the total number of nodes.
�ese new graph features will then be fed into a base kernel, a common scheme
for constructing graph kernels. Whereas ��� is usually used to preserve the ℓ�
or ℓ� distance, we are able to show that the hash values can preserve both the
total variation and the Hellinger probability metrics. Exploiting explicit feature
computation and e�cient information propagation, propagation kernels allow for
using graph kernels to tackle novel applications beyond the classical benchmark
problems on datasets of chemical compounds and small- to medium-sized image
or point-cloud graphs.

As illustrated in Figure �.�, propagation kernels interleave randomwalk-based and
count feature-based graph kernels by taking the computationally e�cient parts
of both computation strategies. Propagation kernels explicitly compute count
features, which allows them to be computed faster and more memory e�cient
than graph kernels relying on the product graph. By counting similar distributions
resulting from random walks li�ed to the labels or attributes of the graphs’ nodes
they avoid searching for substructures in the graphs and they can naturally adapt
to missing and uncertain information.

��

�.�. ��� ��������: ����������� �������

Many state-of-the-art graph kernels are tailored to compare chemical compounds
(��������, et al., ����; ���������, et al., ����; ����, et al., ����; ����� and
����, ����). And a lot of generally de�ned graph kernels are exclusively evaluated
on molecule benchmark datasets from bioinformatics (������ and ������, ����;
������������, et al., ����; ������������, et al., ����; �������, et al., ����).
Other graph kernels are tailored to very speci�c settings as structuredmathematical
domains such as formulas and terms (������������, et al., ����). �e datasets
in these domains, however, mainly consist of “nice” graphs, that are fully labeled,
have discrete and certain node and edge information, and reasonable graph sizes.
�us, it is little surprising that most existing graph kernels do not broadly account
for challenges arising in general domains of structured data, such as uncertain
and partial label information, and densely connected and huge individual graphs.
So, how can we construct an expressive kernel which is both �exible, and memory
and time e�cient? �e main insight towards answering this question is that:

A suitable propagation scheme is the key to design
fast and powerful propagation kernels.

�e main goal in choosing a suitable propagation scheme is to allow for both
runtime and memory e�cient kernel computation as well as meaningful structure
representation. For example when dealing with domains of graphs of regular
structure, such as grid graphs representing images or videos, we can employ
e�cient propagation schemes based on discrete convolution to achieve fast and
powerful graph kernels allowing us to perform graph-based image analysis not only
on the scene level (��������� and ����, ����) but also on the pixel level opening
up novel application domain for graph kernels. One interesting application here is
texture classi�cation.

�.�.� Related Work
Beside graph kernels, propagation kernels are related to two lines of research:
within-network relational learning and kernels on graphs, cf. Section �.�.�, and
kernels between probability distributions and sets.

Measuring the structural similarity of local node neighborhoods has recently
become popular for inference in networked data (������ and ��������, ����;
���������� and �������, ����) where this idea has been used for designing ker-
nels on graphs (kernels between the nodes of a graph) and for within-network
relational learning approaches. ���������� and ������� (����) use a similarity
measure based on parallel random walks with constant termination probability
in a relaxation-labeling algorithm. Another approach exploiting random walks
and the structure of subnetworks for node label prediction is heterogeneous label
propagation (����� and �����, ����). Random walks with restart are used as
proximity weights for so-called “ghost edges” in (���������, et al., ����), but
then the features considered by a later bag of logistic regression classi�ers are only
based on a one-step neighborhood. �e connection between these approaches and

��

�. �������, �������� ����, ��� �������� ��������

propagation kernels, which is based on the use of random walks to measure struc-
ture similarity, constitutes an important contact point of graph-based machine
learning for inference about node- and graph-level properties.

Propagation kernels mark another contact point, namely between graph kernels
and kernels between probability distributions (�������� and ��������, ����;
�������� and �������, ����; ������, et al., ����; ������, et al., ����) and
between sets (������ and ������, ����; ���, et al., ����). However, whereas the
former essentially build kernels based on the outcome of probabilistic inference af-
ter convergence, propagation kernels intuitively count common sub-distributions
induced a�er each iteration of running inference in two graphs. Kernels between
sets and more speci�cally between structured sets, also called hash kernels (���,
et al., ����), have been successfully applied to strings, data streams, and unlabeled
graphs. While propagation kernels hash probability distributions and derive count
features from them, hash kernels directly approximate the kernel values k(x , x′),
where x and x′ are (structured) sets. Propagation kernels iteratively approximate
node kernels k(vi , v j) comparing a node vi in graph G(i) with a node v j in graph
G(j). Counts summarizing these approximations are then fed into a base kernel
that is computed exactly.

In the following chapter, we introduce the family of propagation kernels and
discuss speci�c examples of the two main components of propagation kernels:
node kernels for comparing propagated information (Section �.�) and propaga-
tion schemes for various graph types, such as labeled, partially labeled, unlabeled,
directed, and attributed graphs (Section �.�). In Chapter �, we will show how to
e�ciently compute propagation kernels for grid graphs by means of convolutions.
In both chapters, we will demonstrate the feasibility and power of propagation
kernels on various real-world graph databases by providing experimental results
on several challenging classi�cation problems including commonly used bioinfor-
matics benchmark problems, semantic scene prediction, and image-based texture
classi�cation.

Even though the problem de�nition and evaluation framework focus on classi�ca-
tion all the techniques developed in the following apply to graph regression and
ranking without exceptions.

��

������� �

PROPAGATION KERNELS FOR GENERAL GRAPHS

�.� Propagation Kernel Framework ��

�.� ��–Component �: Node Kernel ��

�.� ��–Component �: Propagation Scheme ��

�.� Empirical Evaluation ��

In the following, we introduce propagation kernels (��s). �e main insight here
is, that the intermediate node label distributions, e.g., the iterative distribution
updates of a random-walk-based information propagation scheme, capture label
and structure information of a graph. Further, the framework naturally extends to
missing, uncertain, and continuous information on the nodes.

� .� P���������� K����� F��������
In this section, we provide the general de�nitions of the propagation kernel family
and analyze their computational complexity.

�.�.� General De�nition
Here we will de�ne a kernel K∶X × X → R among graph instances G(i) ∈ X
according to De�nition �.��. Hence, the input space X comprises graphs G(i) =
(V (i), E(i), ℓ), where V (i) is the set of nodes and E(i) is the set of edges in graph
G(i). Edge weights are represented by weighted adjacency matrices A(i) ∈ Rni×ni

and the label function ℓ endows nodes with label and attribute information� as
de�ned in Section �.�.�.

A simple way to compare two graphs G(i) and G(j) is to compare all pairs of nodes
in the two graphs:

K(G(i),G(j)) = �
v∈G(i) �u∈G(j) k(u, v),

where k(u, v) is an arbitrary node kernel determined by node labels and, if present,
node attributes. �is simple graph kernel, however, does not account for graph

�Note that not both label and attribute information have to present and both could also be
partially observed.

��

�. ����������� ������� ��� ������� ������

structure given by the arrangement of node labels and attributes in the graphs.
Hence, we consider a sequence of graphs G(i)t with evolving node information
based on information propagation, as introduced for node labels in Section �.�.
We de�ne the kernel contribution of iteration t by

K(G(i)t ,G(j)t) = �
v∈G(i)t

�
u∈G(j)t

k(u, v). (�.�)

An important feature of propagation kernels is that the node kernel k(u, v) is
de�ned in terms of the nodes’ corresponding probability distributions pt,u and pt,v ,
which we update andmaintain throughout the process of information propagation.
For propagation kernels between labeled and attributed graphs we de�ne

k(u, v) = kl(u, v) ⋅ ka(u, v), (�.�)

where kl(u, v) is a kernel corresponding to label information and ka(u, v) is a
kernel corresponding to attribute information. If no attributes are present, then
k(u, v) = kl(u, v). �e t���-iteration propagation kernel is now given by

Kt���(G(i),G(j)) = t���

�
t=� K(G

(i)
t ,G(j)t). (�.�)

L���� �.� (P���������� K������ ��� P������� S�����������) Given that
kl(u, v) and ka(u, v) are positive-semide�nite node kernels, then the propagation
kernel Kt��� is a positive-semide�nite kernel.

����� As kl(u, v) and ka(u, v) are assumed to be valid node kernels, k(u, v) is a
valid node kernel as the product of positive-semide�nite kernels is again positive
semide�nite. As for a given graph G(i) the number of nodes is �nite, we can apply
�eorem �.�. K(G(i)t ,G(j)t) is a convolution kernel (��������, ����). As sums of
positive-semide�nite matrices are again positive semide�nite, the propagation
kernel as de�ned in Equation (�.�) is positive semide�nite. �

Let �V (i)� = ni and �V (j)� = n j. Assuming that all node information is given, the
complexity of computing each contribution between two graphs, Equation (�.�),
is O(ni n j). Even for medium-sized graphs this can be prohibitively expensive
considering that the computation has to be performed for every pair of graphs in
a possibly large graph database. However, if we have a node kernel of the form

k(u, v) = � � if condition
� otherwise, (�.�)

where condition is an equality condition on the information of nodes u and v, we
can compute K e�ciently by binning the node information, counting the respective

��

�.�. ����������� ������ ���������

Algorithm � General Propagation Kernel Computation
given: graph database {G(i)}i , � iterations t���, propagation scheme(s), base
kernel �⋅, ⋅�
initialization: K ← �, initialize distributions P(i)�
for t ← � . . . t��� do

for all graphs G(i) do
for all nodes u ∈ G(i) do

quantize pt,u, where pt,u is u-th row in P(i)t ▷ bin node inform.
end for
compute Φi⋅ = �(G(i)t) ▷ count bin strengths

end for
K ← K + �Φ,Φ� ▷ compute and add kernel contribution
for all graphs G(i) do

P(i)t+� ← P(i)t ▷ propagate node information
end for

end for

bin strengths for all graphs, and computing a base kernel among these counts. �at
is, we compute count features �(G(i)t) for each graph and plug them into a base
kernel �⋅, ⋅�:

K(G(i)t ,G(j)t) = ��(G
(i)
t), �(G

(j)
t)�. (�.�)

In the simple case of a linear base kernel, the last step is just an outer product
of count vectors ΦtΦ�t , where the ith row of Φt, (Φt)i,∶ = �(G(i)t). Now, for two
graphs, binning and counting can be done inO(ni + n j) and the computation of
the linear base kernel value isO(�bins�). �is is a commonly exploited insight for
e�cient graph-kernel computation and it has already been used for labeled graphs
in previous work (������������, et al., ����).

Figure �.� illustrates the propagation kernel computation for t = � and t = � for
two example graphs and Algorithm � summarizes the kernel computation for a
graph database G = {G(i)}i = (V , E , ℓ) with a total number of N nodes. From
this general algorithm and Equations (�.�) and (�.�), we see that the two main
components to design a propagation kernel are

• the node kernel k(u, v) comparing propagated information, and

• the propagation scheme P(i)t+� ← P(i)t propagating the information within
the graphs.

��

�. ����������� ������� ��� ������� ������

�

�

�

bin � bin � bin �

G(i)�
�

�

�

�

bin � bin � bin �

G(j)�

�(G(i)�) = [�, �, �]� �(G(j)�) = [�, �, �]�
��(G(i)�), �(G(j)�)� = ��

(a) Initial label distributions and kernel contribution (t = �)

bin � bin � bin � bin �

G(i)�

bin � bin � bin � bin �

G(j)�

�(G(i)�) = [�, �, �, �]� �(G(j)�) = [�, �, �, �]�
��(G(i)�), �(G(j)�)� = ��

(b) Updated label distributions and kernel contribution (t = �)
Figure �.�: PropagationKernelComputation. Distributions, bins, count features,
and kernel contributions for two graphs G(i) and G(j) with binary node labels
and one iteration of label propagation, cf. Equation (�.�), as the propagation
scheme. Node-label distributions are decoded by color: white means p�,u = [�, �],
dark red stands for p�,u = [�, �], and the initial distributions for unlabeled nodes
(light red) are p�,u = [���, ���].

�e propagation scheme depends on the input graphs and we will give speci�c
suggestions for di�erent graph types in Section �.�. Before de�ning the node
kernels depending on the available node information in Section �.�, we brie�y
discuss the general runtime complexity of propagation kernels.

��

�.�. ��–��������� �: ���� ������

�.�.� Complexity Analysis
�e total runtime complexity of propagation kernels for a set of n graphs with
a total number of N nodes and M edges is O�(t��� − �)M + t��� n� n��, where
n� ∶= maxi(ni). For a pair of graphs the runtime complexity of computing the
count features, that is, binning the node information and counting the bin strengths
isO(ni + n j). Computing and adding the kernel contribution isO(�bins�), where
�bins� is bounded by ni + n j. So, one iteration of the kernel computation for all
graphs isO(n� n�). Note that in practice �bins�� �n� as we aim to bin together
similar nodes to derive a meaningful feature representation.

Feature computation basically depends on propagating node information along
the edges of all graphs. �is operation depends on the number of edges and the
information propagated, so it isO((k + D)M) = O(M), where k is the number
of node labels and D is the attribute dimensionality. �is operation has to be
performed t��� − � times. Note that the number of edges is usually much lower
than N�.

� .� ��–C�������� � : N��� K�����
In this section, we de�ne node kernels comparing propagated information appro-
priate for the use in propagation kernels. Moreover, we introduce locality sensitive
hashing, which is used to discretize the distributions arsing from ��-based infor-
mation propagation and the continuous attribute vectors directly.

�.�.� De�nitions
Above, we saw that one way to allow for e�cient computation of propagation
kernels is to restrict the range of the node kernels to {�, �}. Let us now de�ne the
two components of the node kernel (Equation (�.�)) in this form. �e label kernel
can be represented as

kl(u, v) = �
� if hl(pt,u) = hl(pt,v)
� otherwise, (�.�)

where pt,u is the node-label distribution of node u at iteration t and hl(⋅) is a
quantization function (������ and ����, ����), more precisely a locality sensitive
hash (���) function (�����, et al., ����), which will be introduced in more detail
in the next section. Note that pt,u denotes a row in the label distribution matrix
P(i)t , namely the row corresponding to node u of graph G(i).
Propagation kernels can be computed for various kinds of attribute kernels as long
as they have the form of Equation (�.�). �e most rudimentary attribute kernel is

ka(u, v) = �
� if ha(xu) = ha(xv)
� otherwise, (�.�)

��

�. ����������� ������� ��� ������� ������

x
v

xu

−2 −1 0 1 2

−2

−1

0

1

2

(a) ka(u, v)
x
v

xu

−2 −1 0 1 2

−2

−1

0

1

2

(b) thresholded Gaussian

x
v

xu

−2 −1 0 1 2

−2

−1

0

1

2

(c) Gaussian kernel

0

0.2

0.4

0.6

0.8

1

Figure �.�: Attribute Kernels. �ree di�erent attribute functions among nodes
with continuous attributes xu , xv ∈ [−�, �]. Panel (a) illustrates an attribute kernel
suitable for the e�cient computation in propagation kernels, panel (b) shows
a thresholded Gaussian, and panel (c) a Gaussian kernel. Note that each of the
illustrated functions has a parameter regulating its “widths”, which is either its
support or variance.

where xu is the one-dimensional continuous attribute of node u and ha(⋅) is
again an ��� function. Figure �.� contrasts this simple attribute kernel for a one-
dimensional attribute to a thresholded Gaussian function and the Gaussian kernel
(Equation (�.��)) commonly used to compare node attributes in graph kernels.
To deal with higher-dimensional attributes, we can choose the attribute kernel to
be the product of kernels on each attribute dimension:

ka(u, v) =
D
�
d=� kad(u, v), where

kad(u, v) = �
� if had(x

(d)
u) = had(x

(d)
v)

� otherwise,
(�.�)

where x(d)u is the respective dimension of the attribute xu of node u. Note that
each dimension now has its own ��� function had(⋅). However, analogous to the
label kernel, we can also de�ne an attribute kernel based on propagated attribute
distributions

ka(u, v) = �
� if ha(qt,u) = ha(qt,v)
� otherwise, (�.�)

where qt,u is the attribute distribution of node u at iteration t. Next we explain the
locality sensitive hashing approach used to discretize distributions and continuous
attributes. In Section �.�.�, we will then derive an e�cient way to propagate and
hash continuous attribute distributions.

��

�.�. ��–��������� �: ���� ������

�.�.� Locality Sensitive Hashing
Wenow describe our quantization approach for implementing propagation kernels
for graphs with node label distributions and continuous attributes. We take our
inspiration from locality sensitive hashing (�����, et al., ����), which seeks for
quantization functions on metric spaces where points “close enough” to each other
in that space are “probably” assigned to the same bin. In the case of distributions,
we will consider each node label vector as being an element of the space of discrete
probability distributions on k items equipped with an appropriate probability
metric. If we want to hash attributes directly we simply consider metrics for
continuous values.

D��������� �.� (L������� S��������H��� (���)) Let X be a metric space with
metric d∶X ×X → R, and let Y = {�, �, . . . , k′}. Let θ > � be a threshold, c > � be
an approximation factor, and p�, p� ∈ (�, �) be the given success probabilities. A set
of functionsH from X to Y is called a (θ , cθ , p�, p�)-locality sensitive hash if for
any function h ∈H chosen uniformly at random, and for any two points x , x′ ∈ X ,
it holds that
− if d(x , x′) < θ, then Pr(h(x) = h(x′)) > p�, and
− if d(x , x′) > cθ, then Pr(h(x) = h(x′)) < p�.
It is known that we can construct ��� families for ℓp spaces with p ∈ (�, �] (�����,
et al., ����). Let V be a real-valued random variable. V is called p-stable if for
any {x�, x�, . . . , xd}, xi ∈ R and independently sampled v�, v�, . . . , vd , we have
∑ xivi ∼ �x�pV . Explicit p-stable distributions are known for some p; for example,
the standard Cauchy distribution is �-stable, and the standard normal distribution
is �-stable. Given the ability to sample from a p-stable distribution V , we may
de�ne a ���H on Rd with the ℓp metric (�����, et al., ����). An element h ofH
is speci�ed by three parameters: a width w ∈ R+, a d-dimensional vector v whose
entries are independent samples of V , and b ∈ [�,w] drawn from U[�,w], and
de�ned as

h(x;w , v, b) = �v
�x + b
w
� . (�.��)

We may now consider h(⋅) to be a function mapping our distributions or attribute
values to integer-valued bins, where similar distributions end up in the same bin.
Hence, we get node kernels as de�ned in Equations (�.�) and (�.�) in the case of
distributions, as well as simple attribute kernels as de�ned in Equations (�.�) and
(�.�). To decrease the probability of collision it is common to choosemore than one
random vector v. For propagation kernels, however, we only use one hyperplane,
as we e�ectively have t��� hyperplanes for the whole kernel computation and the
probability of a hash con�ict is reduced over the iterations.

�e intuition behind the expression in Equation (�.��) is that p-stability implies
that two vectors that are close under the ℓp norm will be close a�er taking the dot

��

�. ����������� ������� ��� ������� ������

Algorithm � ���������-���
given: matrix X ∈ RN×D, bin width w, metric �
if � = � then

X ←
√
X ▷ square root transformation

end if
if � = � or � = �� then ▷ generate random projection vector

v ← ����-����(D) ▷ sample fromN (�, �)
else if � = �� or � = �� then

v ← ����-����(D)�����-����(D) ▷ sample from Cauchy(�, �)
end if
b = w ∗ ����-����() ▷ random o�set b ∼ U [�,w]
h(X) = �oor((X ∗ v + b)�w) ▷ compute hashes

product with v; speci�cally, (v�x − v�x′) is distributed as �x − x′�pV . So, in the
case where we want to construct a hashing for D-dimensional continuous node
attributes to preserve ℓ� (��) or ℓ� (��) distance

d��(xu , xv) =
D
�
d=� �x

(d)
u − x(d)v �, d��(xu , xv) = �

D
�
d=� �x

(d)
u − x(d)v �

��
���
,

we directly apply Equation (�.��). In the case of distributions, we are concerned
with the space of discrete probability distributions on k elements, endowed with
a probability metric d. Here we speci�cally consider the total variation (��) and
Hellinger (�) distances:

d��(pu , pv) = ���
k
�
i=� �p

(i)
u − p(i)v �, d�(pu , pv) = ����

k
�
i=� �
�

p(i)u −
�

p(i)v ���
���
.

�e total variation distance is simply half the ℓ� metric, and the Hellinger distance
is a scaled version of the ℓ� metric a�er applying the map p � √p. We may
therefore create a locality-sensitive hash family for d�� by direct application of
Equation (�.��), and create a locality-sensitive hash family for d� by applying
Equation (�.��) a�er applying the square root map to our label distributions.
�e ��� computation for a matrix X ∈ RN×D, where the uth row of X is xu, is
summarized in Algorithm �.

� .� ��–C�������� � : P���������� S�����
As pointed out in Section �.�.� and the previous chapter, the input graphs for graph
kernels may vary considerably. One key insight to the design of e�cient and pow-
erful propagation kernels is to choose an appropriate propagation scheme for the
graph dataset at hand. By utilizing random walks (��s) we are able to use e�cient

��

�.�. ��–��������� �: ����������� ������

Algorithm � Propagation Kernel for Fully Labeled Graphs
given: graph database G = (V , E , ℓ), � iterations t���, transition matrix T , bin
width w, metric �, base kernel �⋅, ⋅�
initialization: K ← �, P� ← δℓ(V)
for t ← � . . . t��� do

���������-���(Pt , w, �) ▷ bin node information
for all graphs G(i) do

compute Φi⋅ = �(G(i)t) ▷ count bin strengths
end for
K ← K + �Φ,Φ� ▷ compute and add kernel contribution
Pt+� ← TPt ▷ label di�usion

end for

o�-the-shelf algorithms, such as label di�usion or label propagation (�������
and ��������, ����; ���, et al., ����;��, et al., ����), to implement information
propagation within the input graphs. In this section, we explicitly de�ne propa-
gation kernels appropriate for fully labeled, unlabeled, partially labeled, directed,
and attributed graphs. In each particular algorithm, the speci�c parts changing
compared to the general propagation kernel computation (Algorithm �) will be
marked in color.

�.�.� Labeled and Unlabeled Graphs
For fully labeled graphs we suggest the use of the label di�usion process from
Equation (�.��) as the propagation scheme. Given a database of fully labeled
graphs G = {G(i)}i=�,...,n with a total number of N = ∑i ni nodes, label di�usion
on all graphs can be e�ciently implemented bymultiplying a sparse block-diagonal
transitionmatrix T ∈ RN×N , where the blocks are the transitionmatrices T(i) of the
respective graphs, with the label distribution matrix Pt = �P(�)t , . . . , P(n)t �

�
∈ RN×k .

�is can be done e�ciently due to the sparsity of T . �e propagation kernel
computation for labeled graphs is summarized in Algorithm �. �e speci�c parts
compared to the general propagation kernel computation (Algorithm �) for fully
labeled graphs are marked in green (input) and blue (computation). For unlabeled
graphs we suggest to set the label function to be the node degree ℓ(u) = deg(u)
and then apply the same �� computation as for fully labeled graphs.

�.�.� Partially Labeled and Directed Graphs
For partially labeled graphs, where some of the node labels are unknown, we
suggest label propagation as an appropriate propagation scheme. Label propagation
di�ers from label di�usion in the fact that before each iteration of the information
propagation, the labels of the originally observed nodes are pushed back (���,
et al., ����). Label propagation as de�ned in Equation (�.��) can be implemented

��

�. ����������� ������� ��� ������� ������

for all graphs in the graph database in the same way as described for the label
di�usion process previously. �at is,

Pt,[l abel ed] ← P�,[l abel ed]
Pt+� ← T Pt

with Pt ∈ RN×k, T ∈ RN×N , and P� = �P�,[l abel ed], P�,[unlabel ed]��, where the dis-
tributions in P�,[l abel ed] represent observed labels and P�,[unlabel ed] are initialized
uniformly. Other similar update schemes, such as “label spreading” (����, et al.,
����), could be used in a propagation kernel as well. �us, the propagation kernel
computation for partially labeled graphs is essentially the same as Algorithm �,
where the initialization for the unlabeled nodes has to be adapted, and the (partial)
label push back has to be added before the node information is propagated. �e
relevant parts are the ones marked in blue. Note that for graphs with large fractions
of labeled nodes it might be preferable to use label di�usion even though they
are partially labeled, as the push back prevents the kernel to capture any graph
structure beyond the one-step neighborhoods.

To implement propagation kernels between directed graphs, we can proceed as
above a�er simply deriving transitionmatrices computed from the potentially non-
symmetric adjacency matrices. �at is, for the propagation kernel computation
only the input changes (marked in green in Algorithm �). �e same idea allows
weighted edges to be accommodated; again, only the transition matrix has to be
adapted. Obviously, we can also combine partially labeled graphs with directed or
weighted edges by changing both the blue and green marked parts accordingly.

�.�.� Graphs with Continuous Node Attributes
Nowadays, learning tasks o�en involve graphs whose nodes are attributed with
continuous information. Chemical compounds can be annotated with the length
of the secondary structure elements (represented as nodes) or measurements for
various properties, such as hydrophobicity or polarity. �� point clouds can be
enriched with curvature information, and images are inherently composed of
�-channel color information. All this information can be modeled by continu-
ous node attributes. In Equation (�.�) we introduced a simple way to deal with
attributes. �e resulting propagation kernel essentially counts similar label ar-
rangements only if the corresponding node attributes are similar as well. Note that
for higher-dimensional attributes it can be advantageous to compute separate ���s
per dimension, leading to the node kernel introduced in Equation (�.�). �is has
the advantage that if we standardize the attributes, we can use the same bin-width
parameter wa for all dimensions. In all our experiments we take this approach
and normalize each attribute to have unit standard deviation; wa is set to �. �e
disadvantage of this method, however, is that the arrangement of attributes in the
graphs is ignored.

��

�.�. ��–��������� �: ����������� ������

Algorithm � Propagation Kernel (���) for Attributed Graphs
given: graph database G = (V , E , ℓ), � iterations t���, transition matrix T , bin
widths wl , wa, metrics �l , �a, base kernel �⋅, ⋅�
initialization: K ← �, P� ← δℓ(V)
µ = X, Σ = cov(X),W� = I ▷ �� initialization
y ← ����(num samples) ▷ sample points for �� evaluations
for t ← � . . . t��� do

hl ← ���������-���(Pt , wl , �l) ▷ bin label distributions
Qt ← ��������-����(µ, Σ,Wt , y) ▷ evaluate ��s at y
ha ← ���������-���(Qt , wa, �a) ▷ bin attribute distributions
h ← hl ∧ ha ▷ combine label and attribute bins
for all graphs G(i) do

compute Φi⋅ = �(G(i)t) ▷ count bin strengths
end for
K ← K + �Φ,Φ� ▷ compute and add kernel contribution
Pt+� ← TPt ▷ propagate label information
Wt+� ← TWt ▷ propagate attribute information

end for

In the following, we derive ���, a variant of propagation kernels for attributed
graphs based on the idea of propagating both attributes and labels. �at is, we
model graph similarity by comparing the arrangement of labels and the arrange-
ment of attributes in the graph. �e attribute kernel for ��� is de�ned as in
Equation (�.�); now the question is how to e�ciently propagate the continuous
attributes and how to e�ciently model and hash the distributions of (multivariate)
continuous variables. Let X ∈ RN×D be the design matrix, where the uth row in
X is the attribute vector of node u, xu. We will associate with each node of each
graph a probability distribution de�ned on the attribute space, qu, and will update
these as attribute information is propagated across graph edges as before. One
challenge in doing so is ensuring that these distributions can be represented with
a �nite description. �e discrete label distributions from before were naturally
�nite dimensional and could be compactly represented and updated via the Pt
matrices. We seek a similar representation for attributes. Our proposal is to de�ne
the node-attribute distributions to be mixtures of D-dimensional multivariate
Gaussians, one centered on each attribute vector in X:

qu =�
v
WuvN (xv , Σ),

where the sum ranges over all nodes v, Wu,∶ is a vector of mixture weights, and
Σ is a shared D × D covariance matrix for each component of the mixture. In
particular, here we set Σ to be the sample covariance matrix calculated from the N

��

�. ����������� ������� ��� ������� ������

vectors in X. Now the N ×N row-normalized matrixW can be used to compactly
represent the entire set of Gaussian mixture (��) distributions of the attributes. As
before, we will use the graph structure to iteratively spread attribute information,
updatingW , and in turn deriving a sequence of attribute distributions for each
node to use as inputs to node attribute kernels in a propagation kernel scheme.

We begin by de�ning the initial weight matrixW� to be the identity matrix; this
is equivalent to beginning with each node attribute distribution being a single
Gaussian centered on the corresponding attribute vector:

W� = I
q�,u = N (xu , Σ).

Now, in each propagation step the attribute distributions are updated by the distri-
bution of their neighboring nodes Qt+� ← Qt . We accomplish this by propagating
themixtureweightsW across the edges of the graph according to a row-normalized
transition matrix T , derived as before:

Wt+� ← TWt = T t

qt+�,u =�
v
(Wt)uv N (xv , Σ). (�.��)

We have described how attribute distributions are associated with each node
and how they are updated via propagating their weights across the edges of the
graph. However, the weight vectors contained inW are not themselves directly
suitable for comparing in an attribute kernel ka(⋅, ⋅), because any information
about the similarity of the mean vectors is ignored. For example, imagine that
two nodes u and v had exactly the same attribute vector, xu = xv . �en mass
on the u component of the Gaussian mixture is exchangeable with mass on the
v component, but typical vectorial kernels cannot capture this. For this reason,
we use our Gaussian mixtures to associate a vector more appropriate for kernel
comparison with each node. Namely, we select a �xed set of sample points in the
attribute space (in our case, chosen uniformly from the node attribute vectors in
X), evaluate the probability density functions (���s) associated with each node
at these points, and use this vector to summarize the nodes. �is handles the
exchangeability issue from above and also allows a more compact representation
for hash inputs; in our experiments, we used ��� sample points and achieved good
performance. As before, these vectors can then be hashed jointly or individually
for each sample point. Note that the bin width wa has to be adapted accordingly.
In our experiments, we will use the latter option and setwa = � for all datasets. �e
computational details of ��� are given in Algorithm �, where the additional parts
compared to Algorithm � are marked in blue (computation) and green (input). An
extension to Algorithm � would be to re�t the ��s a�er a couple of propagation
iterations. We did not consider re�tting in our experiments as the number of
kernel iterations t��� was set to �� or �� for all datasets.

��

�.�. ��������� ����������

� .� E�������� E���������
Our intent here is to empirically investigate the power of propagation kernels (��s)
for the task of graph classi�cation stated in Problem �.�. Speci�cally, we ask:

(Q�.�) How sensitive are propagation kernels with respect to their parameters
and how should propagation kernels be used for graph classi�cation?

(Q�.�) How sensitive are propagation kernels to missing and noisy informa-
tion?

(Q�.�) Are propagation kernels more �exible than state-of-the-art graph ker-
nels?

(Q�.�) Can propagation kernels be computed faster than state-of-the-art graph
kernels while achieving comparable classi�cation performance?

Towards answering these questions, we consider several evaluation scenarios on
classical benchmark graph datasets of chemical compounds, as well as on partially
labeled semantic image scenes. We compare propagation kernels to several state-
of-the-art graph kernels including the Weisfeiler–Lehman subtree kernel (��)
(������������, et al., ����), shortest path kernel (��) (��������� and �������,
����), graph hopper kernel (��) (�������, et al., ����), and common subgraph
matching kernel (���) (������ and ������, ����).

�.�.� Datasets
�e datasets used for evaluating propagation kernels come from a variety of
di�erent domains and thus have diverse properties. We distinguish graph databases
of labeled and attributed graphs. where attributed graphs usually also have label
information on the nodes. Table �.� summarizes the properties of all datasets used
in the following experiments.

LabeledGraphs. For labeled graphs, we consider the following benchmark datasets
from bioinformatics: �����, ����, ������, and ���. ����� contains ��� sets of
mutagenic aromatic and heteroaromatic nitro compounds, and the label refers to
their mutagenic e�ect on the Gram-negative bacterium Salmonella typhimurium
(�������, et al., ����). ���� and ������ are anti-cancer screens, in particular for
cell lung cancer and ovarian cancer cell lines, respectively (���� and �������,
����). ��� consists of ���� protein structures (������ and ����, ����), where
the nodes in each graph represent amino acids and two nodes are connected by
an edge if they are less than six ångströms apart. �e graph classes are enzymes
and non-enzymes.

Partially Labeled Graphs. �e two real-world image datasets ���� �-class and
���� ��-class� are state-of-the-art datasets in semantic image processing originally

�http://research.microsoft.com/en-us/projects/objectclassrecognition/

��

http://research.microsoft.com/en-us/projects/objectclassrecognition/

�. ����������� ������� ��� ������� ������

Table �.�: Dataset statistics and properties.

properties

graphs median max # total # # node # graph attr.
dataset # nodes nodes nodes labels labels dim.

����� 188 17.5 28 3 371 7 2 –
���1 4 110 27 111 122 747 37 2 –
���109 4 127 26 111 122 494 38 2 –
�&� 1 178 241 5 748 334 925 82 2 –
����9 221 40 55 8 968 10 8 –
����21 563 76 141 43 644 24 20 –

��������� 300 100 100 30 000 – 2 1
������� 600 32 126 19 580 3 6 18
�������� 1 113 26 620 43 471 3 2 1
���-���� 1 113 26 620 43 471 3 2 29
��� 405 35 57 14 479 10 2 3
���2 467 41 56 19 252 8 2 3
���� 756 42 71 32 075 9 2 3

introduced in (����, et al., ����). Each image is represented by a conditional
Markov random �eld graph, as illustrated in Figure �.�.�e nodes of each graph are
derived by oversegmenting the images using the quick shi� algorithm,� resulting
in one graph among the superpixels of each image. Nodes are connected if the
superpixels are adjacent, and each node can further be annotated with a semantic
label. Imagining an image retrieval system, where users provide images with
semantic information, it is realistic to assume that this information is only available
for parts of the images as it is relatively easier for a human annotator to label a
small number of image regions rather than the full image. As the images in the
���� datasets are fully annotated, we can derive semantic (ground-truth) node
labels by taking the mode ground-truth label of all pixels in the corresponding
superpixel. Semantic labels are for example building, grass, tree, cow, sky, sheep,
boat, face, car, bicycle, and a label void to handle objects that do not fall into one of
these classes. We removed images consisting of solely one semantic label leading
to a classi�cation task among � classes for ����� and �� classes for ������.

Attributed Graphs. To evaluate the ability of ��s to incorporate continuous
node attributes, we consider the attributed graphs used in (�������, et al., ����;
������ and ������, ����). Apart from one synthetic dataset (���������), the
graphs are all chemical compounds (�������, ��������, ���-����, ���, ����,

�http://www.vlfeat.org/overview/quickshift.html

��

http://www.vlfeat.org/overview/quickshift.html

�.�. ��������� ����������

and ����). ��������� comprises ��� graphs with ��� nodes endowed with a
one-dimensional normally distributed attribute and ��� edges each. Each graph
class, A and B, has ��� examples, where �� resp. � node attributes in A resp. B
were �ipped randomly. Further, noise drawn fromN (�, �.���) was added to the
attributes in B. �������� is a dataset of chemical compounds with two classes
(enzyme and non-enzyme) introduced in (������ and ����, ����). ������� is a
dataset of protein tertiary structures belonging to ��� enzymes from the ������
database (���������, et al., ����). �e graph classes are their �� (enzyme
commission) numbers which are based on the chemical reactions they catalyze. In
both datasets, nodes are secondary structure elements (���), which are connected
whenever they are neighbors either in the amino acid sequence or in �� space.
Node attributes contain physical and chemical measurements including length of
the ��� in ångström, its hydrophobicity, its van der Waals volume, its polarity, and
its polarizability. For ���, ����, and ���� – originally used in (����� and ����,
����) – we use the �� coordinates as attributes.

Before we evaluate classi�cation performance and runtimes of the proposed prop-
agation kernels, we analyse their parameter sensitivity.

�.�.� Parameter Analysis
To analyse parameter sensitivity with respect to the kernel parameters w (��� bin
width) and t��� (number of kernel iterations), we computed average accuracies
over �� randomly generated test sets for all combinations of w and t���, where
w ∈ {��−�, ��−�, . . . , ��−�} and t��� ∈ {�, �, . . . , ��} on �����, �������, and ����.
�e propagation kernel computation is as described in Algorithm �, that is, we used
the label information on the nodes and the label di�usion process as propagation
scheme. To assess classi�cation performance, we �rst learn the ��� cost parameter
(c ∈ {��−�, ��−�, ��−�, ���}) on the full dataset for each parameter combination
and then performed a ��-fold cross validation (��). Further, we repeated each
of these experiments with the normalized kernel, where normalization means
dividing each kernel value by the square root of the product of the respective
diagonal entries. Note that for normalized kernels we test for larger ��� cost
values (c ∈ {��−�, ��−�, . . . , ���}). Figure �.� shows heatmaps of the results.

In general, we observe that the �� performance is relatively smooth, especially
if w < ��−� and t��� > �. Speci�cally, the number of iterations leading to the
best results are in the range from {�, �, . . . , ��}meaning that we do not have to
use a larger number of iterations in the �� computations helping to keep a low
computation time. �is is especially important for parameter learning. Comparing
the heatmaps of the normalized �� to the unnormalized one leads to the conclusion
that normalizing the kernel matrix can actually hurt performance. For �����,
Figure �.�(a) and �.�(b), the performance drops from ��.�% to ��.�%, indicating
that for this dataset the size of the graphs, or more speci�cally the amount of labels

��

�. ����������� ������� ��� ������� ������

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(a) �����

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(b) ����� (norm.)

70%

75%

80%

85%

90%

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(c) �������

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(d) ������� (norm.)

25%

30%

35%

40%

45%

50%

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(e) ����

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(f) ���� (norm.)

65%

70%

75%

80%

85%

Figure �.�: Parameter Sensitivity of Propagation Kernels. �e plots show
heatmaps of average accuracies (��-fold ��) of �� (labels only) w.r.t. the bin
widths parameter w and the number of kernel iterations t��� for three datasets
�����, �������, and ����. In panels (a, c, e) we show the kernel matrix directly;
in panels (b, d, f) we show the normalized kernel matrix. �e ��� cost parameter
is learned for each combination of w and t��� on the full dataset. ×marks the
highest accuracy.

��

�.�. ��������� ����������

from the di�erent kind of node classes are a strong class indicator for the graph
label. Nevertheless, incorporating the graph structure, i.e., comparing t��� = �
to t��� = ��, can still improve classi�cation performance by �.�%. �us, for the
datasets of chemical compounds we will use unnormalized kernels unless stated
otherwise.

Recall that our propagation kernel computation is a randomized algorithm, as
there is randomization inherent in the choice of hyperplanes used during the ���
computation. We ran a simple experiment to test the sensitivity of the resulting
graph kernels with respect to the hyperplane used. We computed the �� with
t��� = �� between all graphs in the datasets �����, �������, �����, and ������
��� times, di�ering only in the random selection of the ��� hyperplanes. To
make comparisons easier, we normalized each of these kernel matrices. We then
measured the standard deviation of each kernel entry across the repetitions to
gain insight into the stability of the �� to changes in the ��� hyperplanes. �e
median standard deviations were: �����: �.� × ��−�, �������: �.� × ��−�, �����:
�.� × ��−�, and ������: �.� × ��−�. �e maximum standard deviations over all
pairs of graphs were: �����: �.� × ��−�, �������: �.� × ��−�, �����: �.� × ��−�,
and ������: �.� × ��−�. Clearly the �� values are not overly sensitive to random
variation due to di�ering random ��� hyperplanes.

In summary, we can answer (Q�.�) by concluding that ��s are not overly sensitive
to the random selection of the hyperplane as well as to the choice of parameters.
We propose to learn t��� ∈ {�, �, . . . , ��} and �xw ≤ ��−�. Further, we recommend
to decide on using the normalized version of ��s only when graph size invariance is
deemed important for the classi�cation task. In Part III, we will apply propagation
kernels to object category prediction based on point cloud graphs and for this task
we will see that normalizing the kernel matrix is essential.

�.�.� Sensitivity to Missing and Noisy Information
�is section analyzes the performance of propagation kernels in the presence
of missing and noisy information. Classi�cation performance is evaluated by
running �-��� classi�cations using libSVM.� For the sensitivity analysis, the cost
parameter c was set to its default value of � for all datasets. �e number of kernel
iterations t��� was learned on the training splits. Reported accuracies are an
average of �� reruns of a strati�ed ��-fold cross-validation.

To asses how sensitive propagation kernels are to missing information,we compare
the predictive performance of propagation kernels when only some graphs, as for
instance graphs at prediction time, have missing labels. �erefore, we divided the
graphs of the following datasets, �����, �������, �����, and ������, into two
groups. For one group (fully labeled) we consider all nodes to be labeled, and for

�http://www.csie.ntu.edu.tw/
~

cjlin/libsvm/

��

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

�. ����������� ������� ��� ������� ������

missing labels

overall

fully labeleda
v
g
.
a
c
c
(
%
)

information observed (%)

20 40 60 80

76

78

80

82

84

86

88

(a) �����

missing labels

overall

fully labeleda
v
g
.
a
c
c
(
%
)

information observed (%)

20 40 60 80

10

20

30

40

(b) �������

missing labels

overall

fully labeleda
v
g
.
a
c
c
(
%
)

information observed (%)

20 40 60 80

75

80

85

90

(c) �����

missing labels

overall

fully labeleda
v
g
.
a
c
c
(
%
)

information observed (%)

20 40 60 80

70

75

80

85

90

(d) ������

Figure �.�: Sensitivity to Missing Node Labels. We plot observed labels (�) vs.
avg. accuracy (�) ± standard error for �����, �������, �����, and ������.
We divided the graphs randomly in two equally sized groups (fully labeled and
missing labels). �e reported accuracies are averaged over �� reruns.

the other group (missing labels) we remove x% of the labels at random, where
x ∈ {��, ��, . . . , ��}. Figure �.� shows average accuracies over �� reruns for each
dataset. Whereas for ����� we do not observe a signi�cant di�erence of the two
groups, for ������� the graphs with missing labels could only be predicted with
lower accuracy, even when only ��% of the labels were missing. For both ����
datasets, we observe that we can still predict the graphs with full label information
quite accurately; however, the classi�cation accuracy for the graphs with missing
information decreases signi�cantly with the amount of missing labels.

�e next experiment analyzes the performance of propagation kernels when label
information is encoded as attributes in a one-hot encoding. We also examine how

��

�.�. ��������� ����������

mutag

msrc21

msrc9a
v
g
.
a
c
c
(
%
)

noise level α

0 0.1 0.2 0.3 0.4

70

75

80

85

90

95

enzymes

a
v
g
.
a
c
c
(
%
)

noise level α

0 0.1 0.2 0.3 0.4

25

30

35

40

45

50

Figure �.�: Sensitivity to Noisy Node Labels. Noise level α is plotted vs. avg.
accuracy ± standard error of �� reruns on �����, ������, �����, and �������
when encoding the labels as k-dimensional attributes using a one-hot representa-
tion and attribute propagation as in Algorithm �. �e dashed lines indicate the
performance when using the usual label encoding without noise and Algorithm �.

sensitive they are in the presence of label noise. We corrupted the label encoding by
an increasing amount of noise. A noisy label distribution vector nu was generated
by sampling nu,i ∼ U(�, �) and normalizing so that∑ nu,i = �. Given a noise level
α, we used the following values encoded as attributes

xu ← (� − α)xu + α nu .

Figure �.� shows average accuracies over �� reruns for �����, ������, �����,
and �������. First, we see that using the attribute encoding of the label informa-
tion in a ��� variant only propagating attributes achieves similar performances
to propagating the labels directly in �� (dashed lines). �is con�rms that the
Gaussian mixture approximation of the attribute distributions is a reasonable
choice. Moreover, we can observe that the performance on ����� and ����� is
stable across the tested noise levels. For ������ the performance drops for noise
levels larger than �.�. Whereas the same happens for �������, adding a small
amount of noise (α = �.�) actually increases performance. �is could be due to a
regularization e�ect caused by the noise.

Finally, we performed an experiment to test the sensitivity of ��s with respect
to noise in edge weights. For this experiment, we used the datasets ���, ����,
and ����, and de�ned edge weights between connected nodes according to the
distance between the corresponding structure elements in �� space. Namely, the
edge weight (before row normalization) was taken to be the inverse Euclidean
distance between the incident nodes. Given a noise-level σ , we corrupted each

��

�. ����������� ������� ��� ������� ������

dhfr

cox2

bzr

a
v
g
.
a
c
c
(
%
)

noise level σ

0 10
−4

10
−3

10
−2

10
−1

60

65

70

75

80

85

90

Figure �.�: Noisy Edge Weights. Noise level σ is plotted vs. avg. accuracy ±
standard deviation of �� reruns on ���, ����, and ����.

edge weight by multiplying by random log-normally distributed noise:

wi j ← exp(log(wi j) + ε),

where ε ∼ N (�, σ�). Figure �.� shows the average test accuracy across �� repeti-
tions of ��-fold cross-validation for this experiment. �e ��� and ���� datasets
tolerated a large amount of edge-weight noise without a large e�ect on predictive
performance, whereas ���� was somewhat more sensitive to larger noise levels.

Summing up these experimental results we answer (Q�.�) by concluding that
propagation kernels behave well in the presence of missing and noisy information.

�.�.� Experimental Protocol
We compare classi�cation accuracy and runtime of propagation kernels (��) with
the following state-of-the-art graph kernels: Weisfeiler–Lehman subtree kernel
(��) (������������, et al., ����), shortest path kernel (��) (��������� and
�������, ����), graph hopper kernel (��) (�������, et al., ����), and common
subgraph matching kernel (���) (������ and ������, ����). Table �.� lists all
graph kernels and their intended use. In ��, ��, and ��� we used a Dirac kernel,
cf. Equation (�.��), to compare node labels and a Gaussian kernel ka(u, v) =
exp(−γ�xu − xv��) with γ = ��D for attribute information if feasible. ��� for the
bigger datasets (�������, ��������, ���������) was computed using a Gaussian
truncated for inputs with �xu−xv� > �. Wemade this decision to encourage sparsity

��

�.�. ��������� ����������

in the generated (node) kernel matrices, reducing the size of the induced product
graphs and speeding up computation. Note that this is technically not a valid kernel
between nodes; nonetheless, the resulting graph kernels were always positive
de�nite. Further, we consider several baselines not taking the graph structure into
account. ������, corresponding to a �� with t��� = �, only compares the label
proportions in the graphs, � takes the mean of a Gaussian node kernel among all
pairs of nodes in the respective graphs, and � ��� again corresponds to a �� with
t��� = � using the attribute information only. We consider graph classi�cation for
fully labeled, partially labeled, and attributed graphs.

We implemented propagation kernels in Matlab� and classi�cation performance
on all datasets is evaluated by running �-��� classi�cation using libSVM,� where
the cost parameter is learned via cross-validation on the training set. For ��
and �� the number of kernel iterations (t���, h��� ∈ {�, �, . . . , ��}) and for ���
the maximum size of subgraphs (k ∈ {�, �, �}) is learned on the training splits.
Reported accuracies are an average of �� re-runs of a strati�ed ��-fold cross-
validation. For all runtime experiments all kernels are computed for the largest
tested value of t���, h���, and k. We used a linear base kernel for all kernels
involving count features, and attributes if present were standardized. For all ��s
the ��� bin width parameters were set to wl = ��−� resp. wa = � and as ���metrics
we chose �l = �� and �a = �� in all experiments. For all �� computations we
used the fast implementation� introduced in (��������, et al., ����).

�.�.� Graph Classi�cation on Benchmark Data
Fully Labeled Graphs. �e experimental results for labeled graphs are shown in
Table �.�. On ����� the baseline using label information only (������) already
gives the best performance indicating that for this dataset the actual graph structure
is not adding any predictive information. Note that ������ corresponds to a ��
with t��� = �. On ���� and �������� performs best; however, propagation kernels
come in second while being computed over one minute faster. Although �� can
be computed quickly, it performs signi�cantly worse than �� and��. �e same
holds for ��, where for this kernel the computation is also signi�cantly slower.
In general, the results on labeled graphs show that propagation kernels can be
computed faster than state-of-the-art graph kernels while achieving comparable
classi�cation performance, thus question (Q�.�) can be answered a�rmatively.

Partially Labeled Graphs. To assess the predictive performance of propagation
kernels on partially labeled graphs, we ran the following experiments �� times. We

�All Matlab implementations of �� and ��� are publicly available at https://github.com/
marionmari/propagation_kernels. A Python implementation of �� is included in the
pyGPs-toolbox publicly available at https://github.com/marionmari/pyGPs.
�http://www.csie.ntu.edu.tw/

~

cjlin/libsvm/

�https://github.com/rmgarnett/fast_wl

��

https://github.com/marionmari/propagation_kernels
https://github.com/marionmari/propagation_kernels
https://github.com/marionmari/pyGPs
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/rmgarnett/fast_wl

�. ����������� ������� ��� ������� ������

Table �.�: Results on Labeled Graphs. Average accuracies ± standard error of
��-fold cross validation (�� runs). Average runtimes in sec (x′′), min (x′), or
hours (xh) are given in parentheses. �e kernel parameters t��� for �� and
h��� for �� were learned on the training splits (t���, h��� ∈ {�, �, . . . , ��}).
������ corresponds to �� with t��� = �. OUT OF TIME indicates that the kernel
computation did not �nish within ��h. Bold indicates that the method performs
signi�cantly better than the second best method under a paired t-test (p < �.��).

dataset

method ����� ���1 ���109 ��

�� 84.5± 0.6 (0.2′′) 84.5± 0.1 (4.5′) 83.5± 0.1 (4.4′) 78.8± 0.2 (3.6′)
�� 84.0± 0.4 (0.2′′) 85.9± 0.1 (5.6′) 85.9± 0.1 (7.4′) 79.0± 0.2 (6.7′)
�� 85.8± 0.2 (0.2′′) 74.4± 0.1 (21.3′′) 73.7± 0.0 (19.3′′) OUT OF TIME

�� 85.4± 0.5 (1.0′) 73.2± 0.1 (13.0h) 72.6± 0.1 (22.1h) 68.9± 0.2 (69.1h)

������ 85.8± 0.2 (0.2′′) 64.6± 0.0 (4.5′) 63.6± 0.0 (4.4′) 78.4± 0.1 (3.6′)

Table �.�: Results on Partially Labeled Graphs. Average accuracies (and stan-
dard errors) on �� di�erent sets of partially labeled images for �� and�� with
unlabeled nodes treated as additional label (��) and with hard labels derived
from converged label propagation (�� + ��). Bold indicates that the method
performs signi�cantly better than the second best method under a paired t-test
(p < �.��).

labels missing

dataset method 20% 40% 60% 80%

�� 90.0± 0.4 88.7± 0.3 86.6± 0.4 80.4± 0.6
����9 �� +�� 90.0± 0.2 87.9± 0.6 83.2± 0.6 77.9± 1.0

�� 89.2± 0.5 88.1± 0.5 85.7± 0.6 78.5± 0.9
�� 86.9± 0.3 84.7± 0.3 79.5± 0.3 69.3± 0.3

����21 �� +�� 85.8± 0.2 81.5± 0.3 74.5± 0.3 64.0± 0.4
�� 85.4± 0.4 81.9± 0.4 76.0± 0.3 63.7± 0.4

randomly removed ��–��� of the node labels in all graphs in ����� and ������
and computed cross-validation accuracies and standard errors. Because the��-
subtree kernel was not designed for partially labeled graphs, we compare �� to two
variants: one where we treat unlabeled nodes as an additional label “u” (��) and
another where we use hard labels derived from running label propagation (��)
until convergence (��+��). �e results are shown in Table �.�. For larger fractions
of missing labels, �� obviously outperforms the baseline methods, and surprisingly
running label propagation until convergence and then computing�� gives slightly

��

�.�. ��������� ����������

pk

wl

lp + wl
t
o
t
a
l
t
im

e
(
s
)

iteration

2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

Figure �.�: Runtime for Partially Labeled������. Average time in seconds over
�� di�erent instances of the ������ dataset with ��% labeled nodes for kernel
iterations t��� from � to ��. We compare �� to �� with unlabeled nodes treated
as additional label and with hard labels derived from converged label propagation
distributions (�� +��). �e�� implementation suggested in (������������,
et al., ����) required ��s for t��� = �� and is not included in the �gure.

worse results than��. However, label propagation might be bene�cial for larger
amounts of missing labels. �e runtimes of the compared methods on ������ are
shown in Figure �.�. �� computed as suggested in (������������, et al., ����) is
over �� times slower than ��. �ese results again con�rm that propagation kernels
have attractive scalability properties for large datasets. �e �� + �� approach
wastes computation time while running �� to convergence before it can even begin
calculating the kernel. �e intermediate label distributions obtained during the
convergence process are already extremely powerful for classi�cation.�ese results
clearly show that propagation kernels can successfully deal with partially labeled
graphs and thus questions (Q�.�) and (Q�.�) can be answered a�rmatively.

Attributed Graphs. For �� not propagating the attributes we standardized the
attributes and computed one hash per attribute dimension. �e experimental
results for various datasets with attributed graphs are illustrated in Figure �.�.
�e plots show runtime versus average accuracy, where the error bars re�ect
standard deviation of the accuracies. As we are interested in good predictive
performance while achieving fast kernel computation, methods in the upper le�
corners provide the best performance with respect to both quality and speed. For
��, ��, ��, and ��� we compare three variants. One where we use the labels only,

��

�. ����������� ������� ��� ������� ������

csmghspwlp2kpk

labels & attrattrlabels
a
v
g
.
a
c
c
(
%
)

runtime (s)

1” 10
1 1’ 10

3 1h 10h 48h

40

50

60

70

80

90

100

(a) ���������

a
v
g
.
a
c
c
(
%
)

runtime (s)

1” 10
1 1’ 10

2
10

3 1 h 5 h

30

40

50

60

70

(b) �������

a
v
g
.
a
c
c
(
%
)

runtime (s)

1” 10
1 1’ 10

2
10

3 1 h 10
4 10 h

80

85

90

(c) ���

a
v
g
.
a
c
c
(
%
)

runtime (s)

10
1 1’ 10

2
10

3 1 h 10
4 5 h

55

60

65

70

75

(d) ���-����

Figure �.�: Log Runtime vs. Accuracy on Attributed Graphs. �e plots show
log(runtimes) in seconds plotted against average accuracy (± standard deviation).
Methods are encoded by color and the used information (labels, attributes or
both) is encoded by shape. Note that ��� also uses both, labels and attributes,
however in contrast to �� both are propagated. For ���-���� the ��� kernel was
OUT OFMEMORYmeaning that ��GB were exceeded. On ��������� ��� using
the attribute information only could not be computed within ��h.

one where we use the attribute information only and one where both labels and
attributes are used. �� is computed with label information only. For ���������, cf.
Figure �.�(a), we used the node degree as label information. Further, we compare
the performance of ���, which propagates labels and attributes as described
in Section �.�.�. Detailed results on ��������� and all bioinformatics datasets
are provided in Table �.� (runtimes) and Table �.� (average accuracies). From
Figure �.� we clearly see that propagation kernels tend to appear in the upper le�

��

�.�. ��������� ����������

Table �.�: Runtimes on Attributed Graphs. All runtimes are times for kernel
computation given in sec (x′′), min (x′), or hours (xh). For all ��s t��� = ��, for
�� h��� = �� and for ��� k = �. All computations are performed on machines
with Intel cores i� with �.�GHz. Note that ��� is implemented in Java, so
comparing computation times is only possible to a limited extent. OUT OF TIME
means that the computation did not �nish within ��h.

dataset

method ��������� ������� �������� ��� ���� ��� ���2 ����

��
��
��

�� 0.1′′ 3.6′′ 17.8′′ 18.7′′ 0.9′′ 1.1′′ 3.4′′
�� 3.4′′ 4.1′′ 25.9′′ 22.2′′ 0.8′′ 1.0′′ 4.2′′
�� 5.1′′ 1.3′′ 38.7′′ 40.3′′ 1.0′′ 1.2′′ 2.3′′
�� 19.8′ 17.8′ 2.2h 1.4h 7.4′ 10.8′ 29.5′
��� 54.8h 5.2h – – 46.4′ 1.6h 3.7h

��
��

� 1.4′ 1.3′ 6.4′ 4.6′ 38.3′′ 1.1′ 3.2′
�� 0.3′′ 1.4′ 23.6′′ 10.7′ 2.6′′ 2.8′′ 14.8′′
�� 11.5h 55.4′ 5.9h 6.0h 29.5′ 25.9′ 1.3h
�� 16.2′ 13.2′ 1.9h 72.4′ 4.5′ 6.6′ 15.8′
��� OUT OF TIME 7.6′ – – 16.2h 31.5h 97.5h

��
��
��

��
��

�� 0.3′′ 1.2′ 20.0′′ 9.0′ 3.0′′ 3.5′′ 15.1′′
�2� 17.2′′ 6.7′ 31.4′ 30.6′ 1.3′ 1.8′ 5.9′
�� 13.7h 1.0h 6.8h 7.0h 20.5′ 32.9′ 1.6h
�� 16.9′ 9.8′ 1.2h 1.2h 7.8′ 11.7′ 31.2′
��� 56.8h 21.8′ – – 48.8′ 1.6h 3.7h

corner, that is, they are achieving good predictive performance while being fast,
leading to a positive answer of question (Q�.�). Note that the runtimes are on a
log scale. We can also see that ��� propagating both labels and attributes (blue
star) usually outperforms the simple �� implementation not considering attribute
arrangements (blue diamond). However, this comes at the cost of being slower. So,
we can use the �exibility of propagation kernels to trade predictive quality against
speed or vice versa according to the requirements of the application at hand. �is
supports a positive answer to question (Q�.�).

��

�. ����������� ������� ��� ������� ������
Table�.�:A

ccuracieson
Attributed

G
raphs.Averageaccuracies±

standard
errorof��-fold

crossvalidation
(��

runs).�
e

kernelparam
eterst�

�� forall��sand
h
�
�� for�

�werelearned
on

thetrainingsplits(t�
�� ,h

�
�� ∈{�,�,...,��}).W

henever
thenorm

alized
version

ofa
kernelperform

ed
betterthan

theunnorm
alized

version
w
ereporttheseresultsand

m
ark

the
m
ethod

w
ith∗.���

isim
plem

ented
in

Java
and

com
putationsw

ereperform
ed

on
a
m
achinew

ith
��G

B
ofm

em
ory.O

U
T

O
F
M
EM

O
RY

indicatesa
Java

outO
fM

em
eoryError.Bold

indicatesthatthe
m
ethod

perform
ssigni�cantly

betterthan
the

second
bestm

ethod
undera

paired
t-test(p<

�.��).�
e���

costparam
eterislearned

on
thetraining

splits.W
echoose

c∈{�� −�,�� −�,...,��
�,��

�}
fornorm

alized
kernelsand

c∈{�� −�,�� −�,�� −�,�� −�}
forunnorm

alized
kernels.

dataset

m
ethod

���������
�����

��
��������

���-����
���

���2
����

������

��
50.0±

0.0 ∗
46.0±

0.3
75.6±

0.1 ∗
75.6±

0.1 ∗
87.0±

0.4
81.0±

0.2
83.5±

0.2 ∗
�
�

50.0±
0.0 ∗

46.3±
0.2 ∗

75.5±
0.1 ∗

75.5±
0.1 ∗

88.2±
0.2

83.2±
0.2 ∗

84.1±
0.2

��
50.0±

0.0 ∗
40.4±

0.3 ∗
76.2±

0.1 ∗
76.2±

0.1 ∗
85.6±

0.3
81.0±

0.4 ∗
82.0±

0.3 ∗
��

50.0±
0.0 ∗

34.8±
0.4 ∗

72.9±
0.2 ∗

72.9±
0.2 ∗

87.0±
0.3

81.4±
0.3 ∗

79.5±
0.4

���
50.0±

0.0 ∗
60.8±

0.2
O
U
T
O
F
M
EM

O
RY

O
U
T
O
F
M
EM

O
RY

87.5±
0.2 ∗

80.7±
0.3

82.6±
0.2 ∗

���� ��
99.2±

0.1 ∗
56.4±

0.6
72.7±

0.2
74.1±

0.2 ∗
86.8±

0.2 ∗
78.2±

0.4
84.3±

0.1
��

83.9±
0.2 ∗

63.9±
0.3 ∗

74.3±
0.1 ∗

59.9±
0.0 ∗

85.0±
0.3 ∗

78.2±
0.0

78.9±
0.3 ∗

��
85.3±

0.4
68.8±

0.2 ∗
72.6±

0.1 ∗
61.2±

0.0 ∗
84.1±

0.3 ∗
79.5±

0.2 ∗
79.0±

0.2
���

–
68.9±

0.2 ∗
O
U
T
O
F
M
EM

O
RY

O
U
T
O
F
M
EM

O
RY

85.1±
0.3 ∗

77.6±
0.3

79.5±
0.2

������
���� ��

99.2±
0.1 ∗

65.9±
0.4 ∗

76.3±
0.2 ∗

75.7±
0.4 ∗

88.1±
0.2 ∗

79.4±
0.6

84.1±
0.3 ∗

�2�
98.7±

0.1
68.1±

0.5
75.9±

0.2 ∗
76.9±

0.2 ∗
88.8±

0.2
80.9±

0.4
83.5±

0.3 ∗
��

99.0±
0.1

64.3±
0.3 ∗

73.2±
0.2 ∗

59.9±
0.0 ∗

85.2±
0.2 ∗

78.5±
0.1

79.7±
0.2 ∗

��
50.0±

0.0 ∗
71.2±

0.2 ∗
73.0±

0.1 ∗
60.9±

0.0 ∗
84.8±

0.4
79.5±

0.2 ∗
80.0±

0.2
���

99.0±
0.1

72.8±
0.4 ∗

O
U
T
O
F
M
EM

O
RY

O
U
T
O
F
M
EM

O
RY

87.0±
0.2 ∗

79.2±
0.4 ∗

80.1±
0.3 ∗

�����
47.8±

0.9 ∗
68.5±

0.2 ∗
72.8±

0.2 ∗
59.8±

0.0 ∗
83.9±

0.3 ∗
78.2±

0.0
74.8±

0.2 ∗

��

������� �

PROPAGATION KERNELS FOR GRID GRAPHS

�.� Grid Graphs and Discrete Convolution ��

�.� E�cient Propagation Kernel Computation ��

�.� Empirical Evaluation: Image-based Texture Classi�cation ��

�e goal of this chapter is to compute propagation kernels for pixel grid graphs. A
graph kernel among grid graphs can be de�ned such that two grids should have
a high kernel value if they have similarly arranged node information. �is can
be naturally captured by propagation kernels as they can monitor information
spread on the grids. Näıvely, one could think that we can simply apply Algorithm �
to achieve this goal. However, given that the space complexity of this algorithm
scales with the number of edges and even medium sized images such as texture
patches will easily contain thousands of nodes, this is not feasible. For example
considering ���×���-pixel image patches with an �-neighborhood graph structure,
the space complexity required would be �.�million units� (�oating point numbers)
per graph. Fortunately, we can exploit the �exibility of propagation kernels by
exchanging the propagation scheme. Rather than label di�usion as used earlier, we
employ discrete convolution; this idea was introduced for e�cient clustering on
discrete lattices in (��������� and ��������, ����). In fact, isotropic di�usion
for denoising or sharpening is a highly developed technique in image processing
(������, ����). In each iteration, the di�used image is derived as the convolution
of the previous image and an isotropic (linear and space-invariant) �lter. In the
following, we derive a space- and time-e�cient way of computing propagation
kernels for grid graphs by means of convolutions.

� .� G��� G����� ��� D������� C����������
Given that the neighborhood of a node is the subgraph induced by all its adjacent
vertices, we de�ne a grid graph as follows.

D��������� �.� (G��� G����) A d-dimensional grid graph is a lattice graphwhose
node embedding in Rd forms a regular square tilling and the neighborhoodsN of
each non-border node are the same, i.e., they are isomorphic.

�Using a coordinate list sparse representation, the memory usage per pixel grid graph for
Algorithm � isO(�m�m�p), where m� ×m� are the grid dimensions and p is the size of the
pixel neighborhood.

��

�. ����������� ������� ��� ���� ������

(a) Square tilling (b) �-neighborhood (c) �-neighborhood (d) non-symmetric
neighborhood

Figure �.�: Grid Graph. Regular square tilling (a) and three example neighbor-
hoods (b-d) for a �-dimensional grid graph derived from line graphs L� and L�.

Figure �.� illustrates a regular square tilling and several isomorphic neighborhoods
of a �-dimensional grid graph. If we ignore boundary nodes a grid graph is a
regular graph, i.e., each non-border node has the same degree. Note that the size
of the border depends on the radius of the neighborhood. In order to be able to
neglect the special treatment for border nodes it is common to view the actual
grid graph as a �nite section of an actually in�nite graph.

A grid graph whose node embedding in Rd forms a regular square tilling can be
derived from the graph Cartesian product of line graphs. So, a �-dimensional grid
is de�ned as

G(i) = Lmi ,� × Lmi ,� ,

where Lmi ,� is a line graph with mi,� nodes. G(i) consists of ni = mi,�mi,� nodes,
where non-border nodes have the same number of neighbors. Note that the grid
graph G(i) only speci�es the node layout in the graph but not the edge structure.
�e edges are given by the neighborhood N which can be de�ned by any arbi-
trary matrix B encoding the weighted adjacency of its center node. �e nodes
being for instance image pixels can carry discrete or continuous vector-valued
information. So, in the most general setting the database of gird graphs is given by
G = {G(i)}i=�,...,n with G(i) = (V (i),N , ℓ), where ℓ ∶ V (i) → L with L = ([k],RD).
Commonly used neighborhoodsN are the �-neighborhood and the �-neighbor-
hood illustrated in Figure �.�(b) and (c); the resulting graphs are called simple grid
graph for the �-neighborhood and king’s graph for the �-neighborhood as it’s edges
show the valid moves of the king on a chessboard. In the terminology of cellular
automata the �-neighborhood is called the Von Neumann neighborhood and the
�-neighborhood is termedMoore neighborhood.

�e general convolution operation on two functions f and д is de�ned as

f (x) ∗ д(x) = (f ∗ д)(x) = ∫
∞
−∞ f (τ) д(x − τ)dτ.

��

�.�. ��������� ����������� ������ �����������

�at is, the convolution operation produces a modi�ed, also called �ltered, version
of the original function f . �e function д is called a �lter. For �-dimensional grid
graphs interpreted as discrete functions of two variables x and y, e.g., the vertex
location in the grid, we consider the discrete spatial convolution de�ned as

f (x , y) ∗ д(x , y) = (f ∗ д)(x , y) =
∞
�
i=−∞

∞
�
j=−∞ f (i , j) д(x − i , y − j),

where the computation is in fact done for �nite intervals. As convolution is a
well studied operation in low-level signal processing and discrete convolution is
a standard operation in digital image processing we can resort to highly devel-
oped algorithms for its computation; see for example Chapter � in (������, ����).
Convolutions can be computed e�ciently via the fast Fourier transformation in
O(ni log ni) per graph.

� .� E�������� P���������� K����� C����������
Let G = {G(i)}i be a database of grid graphs. To simplify notation, however
without loss of generality, we assume �-dimensional grids G(i) = Lmi ,� × Lmi ,� and
discrete label information on the nodes. Unlike in the case of general graphs, each
graph now has a natural �-dimensional structure, so we will update our notation to
re�ect this structure. Instead of representing the label probability distributions of
each node as rows in a �-dimensional matrix, we now represent them in the third
dimension of a �-dimensional tensor P(i)t ∈ Rmi ,�×mi ,�×k. Modifying the structure
makes both the exposition more clear and also enables e�cient computation. Now,
we can simply consider discrete convolution on k matrices of label probabilities
P(i, j) per grid graph G(i), where P(i, j) ∈ Rmi ,�×mi ,� contains the probabilities of
being label j and j ∈ {�, . . . , k}. For observed labels P(i)� is again initialized with a
Kronecker delta distribution across the third dimension and, in each propagation
step, we perform a discrete convolution of each matrix P(i, j) per graph. �us,
we can realize various propagation schemes e�ciently by applying appropriate
�lters, which are represented by matrices B in our discrete case. We use circular
symmetric neighbor setsNr,p as introduced in (�����, et al., ����), where each
pixel has p neighbors which are equally spaced pixels on a circle of radius r. We
use the following approximated �lter matrices in our experiments:

N�,� =
�������

� �.�� �
�.�� � �.��
� �.�� �

�������
, N�,� =

�������

�.�� �.�� �.��
�.�� �.�� �.��
�.�� �.�� �.��

�������
, and

N�,�� =

�����������

�.�� �.�� �.�� �.�� �.��
�.�� �.�� � �.�� �.��
�.�� � � � �.��
�.�� �.�� � �.�� �.��
�.�� �.�� �.�� �.�� �.��

�����������

. (�.�)

��

�. ����������� ������� ��� ���� ������

Algorithm � Propagation Kernel for Grid Graphs
given: graph databaseG = (V , E , ℓ), � iterations t���, �lter matrix B, bin width
w, metric �, base kernel �⋅, ⋅�
initialization: K ← �, P(i)� ← δℓ(Vi) ∀i
for t ← � . . . t��� do

���������-���({P(i)t }i , w, �) ▷ bin node information
for all graphs G(i) do

compute Φi⋅ = �(G(i)t) ▷ count bin strengths
end for
K ← K + �Φ,Φ� ▷ compute and add kernel contribution
for all graphs G(i) and labels j do

P(i, j)t+� ← P(i, j)t ∗ B ▷ discrete convolution
end for
end for

�e propagation kernel computation for grid graphs is summarized in Algorithm �,
where the speci�c parts compared to the general propagation kernel computation
(Algorithm �) are highlighted in green (input) and blue (computation). Using
fast Fourier transformation, the time complexity of Algorithm � isO((t��� − �)
N logN + t��� n� n�), where N is the total number of nodes, n is the number
of graphs, and n� is the number of nodes of the largest graph in G. Note that
for the purpose of e�cient computation, ���������-��� has to be adapted to
take the label distributions {P(i)t }i as a set of �-dimensional tensors. By virtue
of the invariance of the convolutions used, propagation kernels are translation
invariant, and when using the circular symmetric neighbor sets they are also ��-
degree rotation invariant. �ese properties make them attractive for image-based
texture classi�cation. �e use of other �lters implementing for instance anisotropic
di�usion depending on the local node information is a straightforward extension.

� .� E�������� E��������� : I����-����� T������
C�������������

Now, we want to empirically investigate whether propagation kernels can be com-
puted on huge grid graphs which clearly makes – if answered a�rmatively – propa-
gation kernels more �exible and powerful than existing graph kernels. Speci�cally,
we pose two questions:

(Q�.�) Are propagation kernels feasible for huge grid graphs and thus more
�exible than state-of-the-art graph kernels?

(Q�.�) Can propagation kernels achieve comparable classi�cation performance
on texture classi�cation compared to computer vision approaches?

��

�.�. ��������� ����������: �����-����� ������� ��������������

convolution (cpu)

convolution

diffusion (cpu)

diffusion

to
ta
l
ti
m
e
(s
)

graph size

400 1600 3600 6400 10000
0

1

2

3

4

5

(a) N�,�

convolution (cpu)

convolution

diffusion (cpu)

diffusion

to
ta
l
ti
m
e
(s
)

graph size

400 1600 3600 6400 10000
0

1

2

3

4

5

(b) N�,�

convolution (cpu)

convolution

diffusion (cpu)

diffusion

to
ta
l
ti
m
e
(s
)

graph size

400 1600 3600 6400 10000
0

1

2

3

4

5

(c) N�,��

convolution

diffusion

sp
ac

e
co

m
p
le
x
it
y
×
10

5

N1,4 N1,8 N2,16

0

1

2

3

4

5

(d) Memory usage per graph (n i = ��� ���)
Figure �.�: Time and Space Complexity Analysis. Comparison of two di�erent
implementations of information propagation (di�usion and convolution) in the
propagation kernel computation for a synthetic dataset of ��� grid graphs of
varying sizes. Panels (a-b) compare runtime complexities (cputime and actual
elapsed time) of the kernel computation for di�erent neighborhoodsNr,p and
panel (d) illustrates the memory usage for one grid graph with ��� ��� nodes.

�.�.� Complexity Analysis
To analyse the space and time complexity of propagation kernels empirically we
created a dataset of ��� �-dimensional grid graphs of varying sizes with randomly
assigned binary node labels. We compare the computation of propagation kernels
as stated in Algorithm � (di�usion) to the one derived for grid graphs, cf. Algo-
rithm � (convolution); both implemented inMatlab.� With respect to computation
times we compare cputime and actual elapsed time of both algorithms performed

�All implementations including the �� grid version using convolutions for information
propagation are publicly available at https://github.com/marionmari/propagation_
kernels.

��

https://github.com/marionmari/propagation_kernels
https://github.com/marionmari/propagation_kernels

�. ����������� ������� ��� ���� ������

on a machine with an �.�GHz Intel Core i� processor. Cputime is usually higher
as the actual elapsed runtime as it adds up the runtimes of parallel computations
achieved by hyperthreading. Figure �.�(a-c) shows both runtimes for di�usion
and convolution for di�erent neighborhood structures for the ��� graphs of sizes
ni ∈ {���, ���,�, ����}. First, we observe that for larger graphs convolution, i.e.,
Algorithm �, performs faster than the standard propagation kernel implementa-
tion using label di�usion; for ��� ��� nodes per graphs and N�,�, for example,
the elapsed time for di�usion is �.� seconds whereas convolution only takes �.�
seconds. So, for larger grid graphs (ni ≥ � ���) it is bene�cial to use convolutions
both measuring cputime and actual elapsed time. �inking of pixel images, graphs
with ��� × ��� pixels are actually still rather small, so considering such kind of
data will most likely result in huge grid graphs, i.e. ni � � ���. Further, we see
form all plots that both algorithms can exploit parallel computation allowed by
hyperthreading as the actual runtimes are roughly half as long as cputime.

�e original computation scheme (di�usion) relies on the transition probabilities
for all nodes in all graphs which is stored in a sparse block diagonal transition
matrix T ∈ RN×N . �e graphs for Algorithm � (convolution) can be stored as grids,
and hence, one matrix Ii ∈ Rmi ,�×mi ,� per graph and the neighborhood structure
Nr,p are hold in memory. Using a coordinate list sparse representation memory
usage per graph for Algorithm � isO(�mi,�mi,�p), whereas for Algorithm � it is
O(mi,�mi,�+p). �ememory usage for one graph with ��� ��� nodes is illustrated
in Figure �.�(d). From this analysis we can conclude that propagation kernels,
especially the implementation realizing information propagation via discrete con-
volution, are feasible for huge grid graphs both with respect to time and space
complexity. �us, question (Q�.�) can be answered positively.

�.�.� Texture Classi�cation
We now consider the ������� dataset, a classical benchmark dataset of pixel
intensity images for texture classi�cation.

Dataset. �������,� introduced in (����������� and ���, ����), covers �� tex-
tures from the Brodatz album with �� �-dimensional images per class comprising
the following subsets of images: �� “original” images (�), �� rotated versions (�),
�� scaled versions (�), and �� rotated and scaled versions (��) of the “original”
images. Each image is represented by a weighted grid graph using circular sym-
metric neighborhoods as de�ned in Equation (�.�). �e node labels are computed
from the intensity values by quantization. Table �.� summarizes the data statistics
for two datasets: one using only the original images and their rotated versions
(�������-�-�) and the full dataset (�������-�-�-�-��). Figure �.� shows two
example images with their corresponding quantized versions using three labels.

�http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html

��

http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html

�.�. ��������� ����������: �����-����� ������� ��������������

(a) bark (b) grass

(c) bark-� (d) grass-�

Figure �.�: Brodatz Dataset. Example images from ������� (a,b) and the corre-
sponding quantized versions with � colors (c,d) of the two texture classes bark
and grass.

Table �.�: Dataset statistics and properties. Note that for both datasets median
and maximum number of nodes are the same.

properties

graphs median total # # node # graph
dataset # nodes nodes labels labels

�������-�-� 1 024 4 096 4 194 304 3 32
�������-�-�-�-�� 2 048 4 096 8 388 608 3 32

For parameter learning we used a random subset of ��% of the original images
and their rotated versions.

Experimental Protocol. We implement the following experimental protocol. �e
training data comprises a subset of randomly selected ��% of the �������-�-�
data to account for the large number of classes (�� textures). On this training
subset we performed a grid search over the �� parameter t���, the quantization
values col, and the neighborhoods B. We used the following parameter ranges:
t��� ∈ {�, �, �, �, ��, ��, ��}, col ∈ {�, �, �, ��, ��}, and B ∈ {N�,�, N�,�, N�,��}, cf.

��

����������: ���� ��� ����� �� ��� ���� �����

Table �.�: Results on Grid Graphs. Average accuracies ± standard errors of
��-fold �� (�� runs). �e �� parameter t��� as well as color quantization and
pixel neighborhood was learned on a training subset of the full dataset. Average
cputimes in sec (x′′) or min (x′) given in parentheses refer to the learned param-
eter settings. For ����-����� and ������ the same color quantization as for ��
was applied. ������ corresponds to �� with t��� = �.

dataset

method �������-�-� �������-�-�-�-��

�� 89.6± 0.0 (3.5′) 85.7± 0.0 (7.1′)
������ 5.0± 0.0 (1.1′) 4.9± 0.0 (2.2′)
����-���� 87.2± 0.0 (29.5′′) 79.4± 0.0 (44.8′′)
����-����� 78.6± 0.0 (24.9′′) 68.6± 0.0 (44.8′′)

Equation (�.�). �e best performance on the training data was achieved with �
colors and an �-neighborhood. For testing we use test suites similar to the ones
provided with the dataset.� All train/test splits are created such that whenever an
original image (�) occurs in one split, their modi�ed versions (�,�,��) are also
included in the same split. We compare �� to the simple baseline ������ using
label counts only and to a commonly-used second-order statistical feature based
on the gray-level co-occurrence matrix comparing intensities (����-����) resp.
quantized labels (����-�����) of neighboring pixels originally introduced in
(��������, et al., ����).

Results. �e experimental results are shown in Table �.�. While not outperform-
ing sophisticated, highly tuned, and thus complex state-of-the-art computer vision
approaches to texture classi�cation (���, et al., ����; �����, et al., ����), we �nd
that it is feasible to compute ��s on the huge image datasets achieving respectable
performance basically out-of-the-box. �is is – compared to the immense tuning
of features and methods commonly done in computer vision – a great success. ��
achieves an average accuracy of almost ��% on this ��-class classi�cation problem.
Comparing this result with the baseline ������ using no graph structure, we
observe that texture classi�cation heavily relies on the arrangement of intensity val-
ues and that propagation kernels are indeed capable to capture this by measuring
label structure, cf. De�nition �.��, In conclusion, we can answer question (Q�.�)
a�rmatively based on the observation that propagation kernels are an extremely
promising approach intersecting machine learning, graph mining, and computer
vision.

��e test suites provided with the data are incorrect. We use a corrected version in all our
experiments.

��

TRANSITION: FROM THE GRAPH TO THE NODE
LEVEL

To summarize, random walk-based models provide a principled way of spreading
information and even handling missing and uncertain information within graphs.
Known labels are, for example, propagated through the graph in order to label all
unlabeled nodes. In this �rst part of the thesis, we showed how to use random
walks to discover structural similarities for the construction of a graph kernel,
namely the propagation kernel.

As our experimental results demonstrate, propagation kernels are competitive in
terms of accuracy with state-of-the-art kernels on several classi�cation benchmark
datasets of labeled and attributed graphs. In terms of runtime, propagation kernels
outperform all recently developed e�cient and scalable graph kernels. Moreover,
being tied to the propagation scheme, propagation kernels can be easily adapted
to novel applications, such as the classi�cation of partially labeled graphs and huge
grid graphs, which have not been tractable for graph kernels before. Summarizing
all experimental results performed on general and grid graphs, the capabilities
claimed in Table �.� are supported. Propagation kernels have proven extremely
�exible and e�cient, and thus overcome the limitations of existing graph ker-
nels, which are either �exible but lack e�cient computations, or they are fast but
specialized to limited application settings.

While we have used classi�cation to guide the development of propagation kernels,
the results are directly applicable to regression, clustering, and ranking, among
other tasks. Employing message-based probabilistic inference schemes such as
(loopy) belief propagation (�������, et al., ����) directly paves the way to dealing
with graphical models.

�e goal of propagation kernels is to uncover label-structure similarity, cf. De�-
nition �.��, in order to compare structured data. Intuitively, propagation kernels
count common sub-distributions induced in each iteration of running inference
in two graphs leading to the insight that graph kernels are much closer to graph-
based learning on the node level than assumed before. �is naturally leads to
the question whether label-structure similarity can also be leveraged for the com-
parison of nodes in a graph and thus can be used for learning tasks on the node
level such as node label prediction. Except for rare recently proposed methods,
approaches to node classi�cation, clustering, and ranking heavily rely on the as-
sumption that nodes that are close to one another in the graph are likely to have

��

����������: ���� ��� ����� �� ��� ���� �����

the same properties, and thus should have the same label, be in the same cluster,
or should have similar ranking values. �is homophily assumption was stated in
Hypothesis �.�. Following the key insight of propagation kernels, that two graphs
are similar if the probability distributions on their node information is evolving
similarly, we assume that two nodes in a graph should also have similar labels if
their label distributions behave similarly. Going beyond the classical homophily
assumption, this insight leads to the claim that local structure similarity can also
be an indicator for the class label of a vertex.

In the second part of this thesis, we will therefore investigate the use of information
propagation schemes to measure local structure similarity of graph vertices in
networked data. Re�ning and transferring the insights and techniques developed
for learning on the graph level, we will design a kernel among the nodes of a graph.
�e coinciding walk kernel will be de�ned in terms of the probability that the labels
encountered during parallel random walks coincide. Being a kernel on a graph,
the coinciding walk kernel will then be used for learning on the node level.

���

Part II

CoincidingWalk Kernels

���

In this part, we are concerned with learning on the node level in networked data.
�e entities of interest are represented as nodes in a graph. Example domains with
problems of great practical importance can easily be found in web sciences, for
instance the ranking of webpages in the web graph, the retrieval of similar items
for recommendation systems, the placement of advertisements on social network
platforms, or the completion of knowledge in the wikipedia graph created from
interlinked wiki pages. We will assume that for the problem at hand the graph
representation of the data is given as de�ned in Section �.�.�. �at is, we have a
set of nodes and edges represented as an adjacency matrix and, if available, some
additional information on the nodes and edges is provided in form of a label vector,
and attribute and weight matrices. Learning on the node level applies techniques
from statistical machine learning in order to cluster the nodes, retrieve interesting
nodes, or predict unknown values on the nodes in a graph. In the light of the
applications mentioned above, this is an important and challenging task.

�e challenges, however, do not only arise from the data representation as sets
of nodes and edges and the interpretation of the link structure or the meaning of
the versatile relations encoded. Networked data is usually huge, and the available
information for training is o�en very sparse and can be uncertain. In the following,
we will study the problem of predicting unknown properties of the nodes in a
graph in the presence of very few nodes with observed target values. �e main
contribution is the design of coinciding walk kernels, which leverage – next to the
homophily assumption – local structure similarity to tackle learning on the node
level with sparse training data. Inspired by the success of random walk-based
schemes for the construction of propagation kernels in the �rst part of this thesis,
coinciding walk kernels are de�ned in terms of the probability that the labels
encountered during parallel random walks coincide. In addition to its intuitive
probabilistic interpretation, coinciding walk kernels outperform existing kernel-
and walk-based methods on the task of node label prediction in sparsely labeled
graphs with high label-structure similarity. We also show that their computation
is faster than many state-of-the-art kernels on graphs.

Another problem closely related to classi�cation in sparsely labeled graphs is the
retrieval of similar items to a very small query set consisting of positive exam-
ples only. In order to be able to tackle this task, o�en called set completion, we
will broaden our view on data representation from plain graphs to the relational
perspective. As the items can be modeled by nodes in a graph, we can employ
random walk-based propagation techniques to �nd items that are similar to the
query items in the sense of either being close in the graph, or having a similar
local structure. However, as the task is considerably more di�cult, we will have to
go beyond the analysis of pure graph representations as used so far in this thesis.
�e relational perspective on the data allows us to investigate this challenging
retrieval task by enriching graph-based approaches with relational techniques
such as variabilization of predicates and relational path�nding.

���

������� �

PROBLEM, PREVIOUS WORK, AND PROPOSED
SOLUTION

�.� Node Classi�cation in Sparsely Labeled Graphs ���

�.� Our Approach: Coinciding Walk Kernels ���

In the following, we will de�ne the problem of node classi�cation in sparsely labeled
graphs and review state-of-the-art approaches to tackle it. We will mainly focus
on two lines of previous approaches, methods based on random walks (��s) and
kernels on graphs. A�er identifying the weaknesses of existing work when dealing
with sparsely labeled graphs, we will introduce coinciding walk kernels – our
approach to overcome them.

� .� N��� C������������� �� S������� L������ G�����
Given a partially labeled graph with a set of labeled nodes, node classi�cation
is the task of predicting the labels of the remaining unobserved nodes. Node
classi�cation in a partially labeled graph is illustrated in Figure �.�. In contrast
to partially labeled graphs, sparsely labeled graphs have only a small fraction of
labeled vertices. In the following, we will de�ne the problem of node classi�cation
in sparsely labeled graphs in terms of statistical machine learning with networked
data.

P������ �.� (N��� C������������� �� S������� L������ G�����) Given a
graph G = (V , E , ℓ) with �V � = n, V = VL ∪ VU where VL = {vi}i=�,...,m is the set
of nodes with known labels ℓi ∈ [k] and m� n, �nd the labels ℓ j of the unlabeled
nodes v j ∈ VU .

Node classi�cation in a partially labeled graphs is a well-studied problem. Two
of the most popular approaches to solve this task are random walk-based algo-
rithms as introduced in Section �.� and kernel methods, cf. Section �.�. In contrast
to the previous part, the kernels are now de�ned on the nodes of a graph and
therefore also termed kernels on graphs. In recent years various kernels among the
nodes of a graph have been introduced. Commonly used kernels on graphs are
the di�usion kernel, Equation (�.��) (������ and ��������, ����), the p-step

���

�. �������, �������� ����, ��� �������� ��������

� � ?

� ?
�

?

�

?

�

?

�
�

�

Figure �.�: Node Classi�cation. Illustration of the node classi�cation task in a
partially labeled graph with label setL = {�, �, �}. Given the nodes with observed
labels the task is to infer the labels of the nodes marked with ? using the graph
structure and, if present, additional information on the nodes and edges.

random walk kernel, Equation (�.��) (����� and ������, ����), the Moore–
Penrose pseudoinverse of the Laplacian, Equation (�.��) (�����, et al., ����), and
the regularized Laplacian kernel, Equation (�.��) (����� and ������, ����). In
the related �eld of semi-supervised learning, so-called data-dependent kernels
are o�en constructed from the Laplacian of a graph modeling the data geometry
of vector-valued independent data (����, et al., ����; ���������, et al., ����;
������� and ������, ����; �����, et al., ����). All of these kernels have random
walk interpretations; however, none of them considers known labels during their
computation, which is – as we will see in the next chapter – crucial when dealing
with sparsely labeled graphs. Whereas kernel methods such as support vector
machines enable us to construct �exible decision boundaries o�en resulting in clas-
si�cation performance superior to that of the model based approaches, ��-based
algorithms use the known labels directly by propagating themon the graph in order
to infer the labels of unobserved nodes. Successful random walk-based algorithms
are label propagation (���, et al., ����), partially labeled classi�cationwithMarkov
random walks (������� and ��������, ����), learning with partially absorbing
random walks (��, et al., ����), and learning with local and global consistency
(����, et al., ����). Most ��-based approaches, absorbing or not, only analyse
the walks’ steady-state distributions (������ and ��������, ����; ���, et al.,
����; ��� and �����, ����b; ��, et al., ����). Random walks using the graph’s
row-normalized adjacency matrix as the transition matrix converge to a constant
steady-state distribution as already discussed in Section �.�. For these walks, the
idea of early stopping was successfully introduced in power iteration methods
for clustering (��� and �����, ����a) and node label prediction (������� and
��������, ����). �e insight here is that the intermediate distributions obtained

���

�.�. ���� �������������� �� �������� ������� ������

by the random walks during the convergence process are extremely interesting;
most existing approaches, however, only consider the probability distributions at
(the possibly early) termination, ignoring their evolution.

Most walk- and kernel-based methods directly or indirectly imply the homophily
or autocorrelation assumption already stated in Hypothesis �.�. �is assumption,
however, claiming that nodes that are close to one another in the graph are likely
to have the same label, comes with two major drawbacks. �e �rst problem is
that for some datasets the assumption is simply not valid. So, in this case by
completely ignoring structure similarity and other class indicators we will not be
able to solve the classi�cation task satisfactorily (Limitation �). Second, homophily
is extremely di�cult to exploit when having access to only few training data, as
within a small neighborhood of each unlabeled node we will not have a su�cient
amount of label evidence tomake con�dent predictions (Limitation �). �us, when
dealing with either the �rst problem or with sparsely labeled graphs, we will have
to go beyond labeling or retrieving nodes according to the homophily assumption.
Figure �.� illustrates both Limitation � and Limitation �. �at is, to overcome
both problems we have to make use of additional information encoded in the
data. �is can be achieved, for example, by exploiting additional information in
the form of node attributes. Unfortunately, attribute information is not always
available. �us, inspired by the success of predictive graph mining, we propose to
exploit structural similarities. In particular, we design a kernel among the nodes
of a graph to analyze the local graph structure, which is represented by the nodes,
their labels, and the edge structure in a small neighborhood around each node of
interest. To do so, we will leverage information propagation techniques based on
random walks. Exploiting structure similarity will turn out to be the key insight
to derive a good solution to Problem �.�.

An existing approach to learning with structure similarity for node classi�cation
was introduced by ���������� and ������� (����). A similarity measure based on
parallel ��s with constant termination probability is used in a relaxation labeling
algorithm; we will denote this method by ��. Intuitively, parallel ��s are label
sequences generated from multiple random walks starting from di�erent nodes.
However, instead of comparing actual walks, we compare the probabilities of
their occurrences. Parallel ��s will be de�ned in the next chapter. �e similarity
measure used in �� corresponds to the probability that parallel random walks
with constant termination probability are of exactly the same length and generate
exactly the same sequence of labels at all times. Even though �� is rather general
in the sense of being able to use labeled edges, it has two major drawbacks. First,
it has four parameters: two regulating the in�uence of label uncertainty and of the
similarity measure in the relaxation labeling iterations, the constant termination
probability γ, and the maximum walk length t���. Second, the minimal space
complexity for node label prediction scales with the number of unlabeled nodes
(�VU � × n), which is unfavorable for node classi�cation in large sparsely labeled

���

�. �������, �������� ����, ��� �������� ��������

(a) Populated places graph

?
?

?

?
?

?
?

(b) Limitation �

??
? ?

? ?
? ? ??

?
?
??

?

?

?
??

?

?

??

?
??

????
?

? ? ?? ?
?

? ? ?
?

?

???

? ?
?

?
?
?

?

?
?
?

?

?

(c) Limitation �

Figure �.�: Limitations of Hypothesis �.�. �is �gures illustrates the limitations
of the homophily assumption for node label prediction on a subgraph of the
���������-������ graph extracted from ��pedia consisting of the ��� nearest
nodes to the node “Atlanta.” �e graph layout algorithm used (OpenOrd) was
force-directed; nearby nodes have a high connectivity. Class labels are encoded by
color (country (green), administrative region (light green), city (blue), town (light
blue), village (pink)). �e edge colors are created by perceptual blending of the
colors of the incident nodes. Panel (a) shows the whole subgraph and the detail
used to illustrate the limitation. Panel (b) illustrates Limitation �: for the three
nodes marked red the homophily assumption is not valid. Panel (c) illustrated
Limitation �: in sparsely labeled graphs homophily is di�cult to exploit.

graphs. Moreover, their similarity measure R(t���) is used in an iterative relaxation
labeling approach in which R(t���) is changing over the iterations, and despite
being a valid kernel� it is not clear how to use it directly in a kernel method.

�Note that ���������� and ������� (����) did not show that their similarity matrix R is a ker-
nel, but by taking a slightly di�erent view we can write R(t���) = γ�∑t���

t=� (�− γ)�t∏t
t̃=� Pt̃P�̃t ,

���

�.�. ��� ��������: ���������� ���� �������

Another approach to node classi�cation, exploiting the structure of subnetworks to
derive local and global features for the discovery of disease genes, is heterogeneous
label propagation (����� and �����, ����). �e biggest limitation of this work
is that it needs explicitly known subnetworks. Label-independent features such as
node degrees or number of incident links, or measures like betweenness centrality
or clustering coe�cients, are used for node classi�cation in (��������� and
�������-���, ����). However, these measures are incorporated in a rather ad
hoc fashion and no kernel is de�ned. Random walks with restart are used as
proximity weights for ghost edges in (���������, et al., ����), but then the
features considered by a later bag of logistic regression classi�ers are only based on
a one-step neighborhood. Other previous approaches to classi�cation, in particular
in sparsely labeled graphs, introduce latent graphs by adding additional edges (���,
et al., ����), run multiple random walks with restarts (��� and �����, ����b),
and suggest schemes for active learning (�� and ���, ����). Methods using label
information to improve kernels, known as label-dependent kernels or kernel–target
alignment, have proven successful in semi-supervised and supervised learning
(�����������, et al., ����; ���, et al., ����; ���, et al., ����). A similar approach,
performing label-dependent feature extraction, was successfully applied to node
classi�cation in social networks (�����������, et al., ����). All these approaches
either do not de�ne a kernel – which is one of our goals here – or they do not use
the label information directly in the kernel construction. �is can, however, be
elegantly done by monitoring label-absorbing random walks, as we will show in
the following.

� .� O�� A������� : C��������� W��� K������
To overcome the problems of merely exploiting the homophily assumption, chang-
ing the graph structure, or adapting the kernel to the observed class labels a�er its
computation, we propose an alternative approach: coinciding walk kernels (���s).
Coinciding walk kernels move beyond the straightforward homophily assumption
by making an extended assumption. Not only are nearby nodes likely to have the
same label, but also nodes with similar local structure. �e goal of ���s is to
exploit the label-structure similarity assumption, where label structure is the ar-
rangement and connectivity of labels on nearby nodes, as stated in De�nition �.��.

H��������� �.� (L����-S�������� S��������� A���������) Nodes with sim-
ilarly arranged labels in their local neighborhoods are likely to

• be similar,

where∏ is the Hadamard product , i.e., the element-wise product of matrices. �is leads
to a straightforward proof of positive de�niteness for graphs with unlabeled edges; see also
Appendix A.

���

�. �������, �������� ����, ��� �������� ��������

• have the same properties,
• have the same label,
• be in the same cluster, or
• form an edge.

In particular, coinciding walk kernels use short random walks to quantify how
similarly the labels surrounding each node are arranged in the graph. �e design
of ���s is clearly inspired by the construction of propagation kernels; however,
they de�ne a kernel among the nodes of a graph.

None of the existing kernels on graphs, cf. Section �.�.�, considers known labels
during their computation, and as a result, they cannot take advantage of Hypothe-
sis �.�. So, in contrast to these approaches, we view known node labels as providing
valuable information that should be considered in the construction of a kernel
used for node label prediction. In coinciding walk kernels partially absorbing
random walks (����s) with the absorbing states being the observed nodes give the
known labels in�uence over the walk process (���, et al., ����;��, et al., ����).
Intuitively, a ���� stops progressing with some probability once it hits a labeled
node. ����s will be introduced formally in the next chapter. We consider the
distribution over sequences of labels encountered during a ���� from a node as
encoding its label structure. To address Hypothesis �.�, we then de�ne the ���
between two nodes to be the probability that parallel ����s leaving from those
nodes coincide, that is, hit the same label at the same time. By li�ing the random
walk from being on the nodes of a graph to being on its labels, two nodes can
be similar even if they are very distant from each other in the graph, or even on
disconnected graphs. On the other hand, two ����s could encounter similar label
sequences simply by virtue of having le� from nearby nodes in the graph, so the
��� is also compatible with Hypothesis �.�.

In addition, coinciding walk kernels implement the early stopping criteria, cf.
Section �.�, by using the entire evolution of labels encountered during partially ab-
sorbing random walks up the a given length as representing local structure, rather
than using only the limiting distribution. ���s therefore substantially leverage
inference by aggregating label predictions based on di�erent walk lengths. �e
distribution of labels encountered during ����s clearly depends on the locations
and labels of previously observed nodes, connecting the ��� to data-dependent
kernels (����, et al., ����; ���������, et al., ����; ������� and ������, ����;
�����, et al., ����). Our approach, however, investigates kernel construction lever-
aging label-structure information in plain graph data where no features on the
nodes are given. �is means that the kernel developed is – in contrast to the ker-
nels used in standard semi-supervised learning – a label-dependent kernel rather
than a data-dependent kernel. Instead of modifying an existing kernel to improve

���

�.�. ��� ��������: ���������� ���� �������

alignment on the labeled data as done in kernel–target alignment approaches,
���s use the label information directly in the kernel construction by exploiting
label absorbing random walks.

�e main contribution to solve Problem �.� is the introduction of the coinciding
walk kernel, the �rst label-dependent kernel on graphs leveraging label informa-
tion directly in the kernel construction, which provides a learning method for
node classi�cation that intertwines inference and kernels on graphs. Moreover,
���s e�ciently combine the bene�ts of kernel methods and ��-based inference
approaches in networked data. We will demonstrate empirically that this can
considerably improve node label prediction, especially in sparsely labeled graphs,
overcoming the limitations of merely exploiting the homophily assumption.

���

������� �

COINCIDING WALK KERNELS

�.� Partially Absorbing and Parallel RandomWalks ���

�.� Kernel Computation ���

�.� Empirical Evaluation ���

In this chapter, we derive and evaluate coinciding walk kernels for node classi-
�cation on sparsely labeled graphs. First, we will de�ne the main ingredient of
coinciding walk kernels, namely partially absorbing random walks. A�er intro-
ducing the coinciding walk kernel and its probabilistic interpretation, we show
its positive de�niteness, illustrate its capability to capture label-structure similar-
ity, and evaluate its parameter sensitivity, runtime, and predictive performance
empirically.

�.� P�������� A�������� ��� P������� R����� W����
As the main ingredient of coinciding walk kernels, the label-structure similarity
of nodes in a graph, is modeled by the probability that parallel partially absorbing
randomwalks coincide, wewill now review partially absorbing and parallelMarkov
random walks on graphs. Further, we will explain how we examine label-structure
similarity via parallel partially label-absorbing random walks. General Markov
random walks on a graph are de�ned in Section �.�. Recall that random walks can
be intuitively illustrated by a particle traveling from node to node via the edges of
the graph. In every node, the decisionwhere to go next only depends on the current
location and thus, the node to visit next is selected proportional to the number of
edges and edge weights connecting the current node to its neighbors. �is walk
behaviour can be modi�ed by introducing absorbing states. When reaching an
absorbing state, our particle is not able to continue its walk, but is instead caught
in a loop staying at that node. �e absorbing states could for example be chosen as
the subset of the nodes having observed labels, a natural choice in our paradigm.
Further, we can de�ne partially absorbing random walks, where absorbing nodes
only activate with a given probability.

�.�.� Absorbing RandomWalks
Consider a graph G = (V , E) with �V � = n vertices and a set of edges E speci�ed
by a weighted adjacency matrixW ∈ Rn×n. Let now S ⊆ V be a subset of nodes

���

�. ���������� ���� �������

in G. Given T as de�ned in Equation (�.�), we de�ne an absorbing random walk
to have the modi�ed transition probabilities T̂ , de�ned as

τ̂i j =
���������

� if i ∈ S and i ≠ j
� if i ∈ S and i = j
τi j otherwise,

(�.�)

where τi j refers to the entries of T . Nodes in S are “absorbing” in that a walk never
leaves a node in S a�er it is encountered. A node s ∈ S is also called a sink.

In analogy with the label di�usion and label propagation algorithms introduced
in Section �.�.�, we li� the random walk from being on the nodes of a graph,
cf. Equation (�.�), to being on its labels. Consider a partially labeled graph G =
(V , E , ℓ) where V = VL ∪VU is the union of labeled and unlabeled nodes, ℓ∶V →
[k] is a label function with known values for the nodes in VL, and k is the number
of available labels. We will describe how we can monitor the distribution of labels
encountered during absorbing random walks on G. Let the matrix P� ∈ Rn×k give
the prior label distributions of all nodes in V . If node vi ∈ VL is observed with label
ℓ(vi), then the ith row in P� is the Kronecker delta distribution concentrating at
ℓ(vi); i.e., (P�)i,∶ = δℓ(vi). We initialize the label distributions for the unlabeled
nodes VU with some prior, for example a uniform distribution.� �e ith row of
P� now gives the initial probability distribution for the �rst label encountered,
ℓ(X(i)�), for an absorbing random walk of length � starting at vi . Now, it is easy to
see by induction that by iterating the map

Pt ← T̂Pt−�, (�.�)

(Pt)i,∶ gives the distribution over ℓ(X(i)t). If we now set the absorbing states to be
the labeled nodes, S = VL, then we have a label-absorbing random walk. �is label-
absorbing random walk is equivalent to the label propagation algorithm (���,
et al., ����) introduced in Section �.�.� as modifying the transition matrix, Equa-
tion (�.�), and performing iterative distribution updates with it, Equation (�.�), is
the same as pushing back the observed labels a�er each iteration, Equation (�.��).
Hence, label propagation can be understood as simulating label-absorbing random
walks and predicting for an unlabeled node the label most likely encountered �rst
on these walks.

D��������� �.� (A�������� R�����W���) Let G = (VL ∪VU , E) be a partially
labeled graph and X = {Xt � t > �} a Markov process on the nodes V = VL ∪VU . Let
T̂ be a transition matrix as de�ned in Equation (�.�) with S = VL. �en X is called
an absorbing random walk if P(Xt+� = v j � Xt = vi) = τ̂i j.

We will use the term absorbing random walk to actually mean label-absorbing
random walk for the rest of this thesis.

��is prior could also be the output of an external classi�er built on available node attributes.

���

�.�. ��������� ��������� ��� �������� ������ �����

�.�.� Partially Absorbing RandomWalks
Random walks with fully absorbing states at the labeled nodes as de�ned above
are somewhat restrictive, as only the �rst label encountered will have an impact
on the evolution of a particular random walk. A straightforward extension is
to so�en the de�nition of absorbing states. �is can be naturally achieved by
employing partially absorbing random walks (����s) (��, et al., ����). In the
setting of label-absorbing random walks, the simplest way to de�ne ����s is to
extend our graphG by adding a special node for each label in [k] and adding edges
from each labeled node vi ∈ VL to its respective label node. We then make these
auxiliary nodes absorbing states and vary the transition probabilities from these
to the labeled nodes. �e transition probabilities in this graph G̃ = (V ∪ [k], Ẽ)
are given by T̃ having the following block structure:

T̃ =
��������

TU ,U TU ,L �
(� − α)TL,U (� − α)TL,L α δL

� � I

��������
, (�.�)

where α ∈ [�, �) is the absorbing probability. Partially absorbing random walks
generalize both, fully absorbing random walks and non-absorbing random walks
de�ned above. By setting α = � we can exactly model the fully absorbing random
walks in De�nition �.�. On the other hand, by setting α = � we get the simple
non-absorbing random walk from De�nition �.��, which when li�ed to the labels
leads the label di�usion process stated in Equation (�.��). Note that again we will
refer to the partially label-absorbing random walk by the simple term partially
absorbing random walk.

D��������� �.� (P�������� A�������� R�����W���) Let G = (VL ∪ VU , E)
be a partially labeled graph and X = {Xt � t > �} a Markov process on the nodes
V = VL ∪VU . Let T̃ be a transition matrix of the extended graph G̃ = (V ∪ L(L), Ẽ)
as de�ned in Equation (�.�) with α ∈ [�, �]. �en X is called a partially absorbing
random walk if P(Xt+� = v j � Xt = vi) = τ̃i j.

�.�.� Parallel RandomWalks
�e �nal ingredient we need are parallel random walks, as they allow one to refer
to the sequences of states of two or more random walks of the same length. Co-
occurring random walks can be used to describe the similarity of either entire
graphs or nodes in a graph based on the structure of the local neighbourhood
of the nodes. �ese similarities will be the basis of the coinciding walk kernel
de�ned in the next section. Let us now give a formal de�nition of parallel random
walks. A parallel random walk of length t��� among a set of nodes S is given by
the sequences {X(i)t }�≤t≤t��� of t��� states visited by the random walks starting at
the respective nodes vi ∈ S.

���

�. ���������� ���� �������

D��������� �.� (P������� R�����W���) Let G = (V , E) be a graph and X =
{Xt � t > �} a Markov process on the nodes V. A parallel random walk of length
t��� among a set of nodes S is given by the sequences {X(i)t }�≤t≤t��� of t��� states
visited by the random walks starting at the respective nodes vi ∈ S.

�.� K����� C����������
Now we will introduce and de�ne the coinciding walk kernel, which is the main
contribution of our work. �e intuition underlying ���s is simple: ����s on
partially labeled graphs encode both label and structure similarity. �us, ���s
can exploit Hypotheses �.� and �.� for learning tasks on graphs. Before we show
that K�� is a valid kernel, we discuss its probabilistic interpretation as well as some
interesting properties.

�.�.� De�nition and RandomWalk Interpretation
�e coinciding random walk kernel on a graph G = (V , E) is de�ned as

K�� =
�

t��� + �
t���

�
t=� PtP�t , (�.�)

where the matrices of label probabilities Pt ∈ Rn×k are obtained by replacing T̂ by
T̃ in Equation (�.�) and considering the respective entries in the extended label
probability matrix P̃t ,

P̃t+� ← T̃ P̃t
Pt = (P̃t)i�vi∈V ,

and PtP�t is an outer product of the discrete label probability distributions. Note
that P̃t ∈ Rn+k×k is simply the probability matrix Pt extended by a k × k identity
matrix. K�� has two kernel parameters: the absorbing probability α, and the
maximum walk length t���, where α controls trade-o� between the homophily
and label-structure similarity assumptions.

(Pt)i(Pt)�j can be interpreted as the probability that parallel ����s leaving from
vi and v j are on nodes with the same label at time t, that is, that ℓ(X(i)t) = ℓ(X(j)t).
Hence, the coinciding walk kernel has the following intuitive interpretation: its
value for two nodes vi and v j is the probability that parallel ����s of length t���
starting from vi and v j encounter the same label at any given time � ≤ t ≤ t���.

L���� �.� (C���������W��� K������ ��� P������� S�����������) K�� as de-
�ned in Equation (�.�) is positive semide�nite (i.e., is a valid Mercer kernel).

����� It is obvious that K�� is a positive-semide�nite kernel as it is the scaled
sum of polynomial kernels k(x , y) = (x�y + c)d , with c = � and d = �; i.e.,
K��(vi , v j)∝ ∑t���

t=� (Pt)i(Pt)�j . �

���

�.�. ������ �����������

Algorithm � Coinciding Walk Kernel Computation
given: max walk length t���, absorbing rate α, inital label distributions P� ∈
Rn×k, weighted adjacency matrixW ∈ Rn×n
initialization: K ← P�P�� , T = D−�W , where D = diag(∑ jwi j)
T̃ ← ���������-�����(T , α) ▷ cf. Eq. (�.�)
for t ← �...t��� do

P̃t ← T̃ P̃t−� ▷ one step transition
Pt ← (P̃t)i , i ∈ {�, .., n}
K ← K + PtP�t ▷ add kernel contribution

end for
K�� ← �

t���+� K ▷ normalize kernel

�e computation of the coinciding walk kernel on a graph G is summarized in
Algorithm �.

�.�.� Complexity Analysis
�e runtime complexities of the required naı̈ve calculations are O(k t��� �E� n)
for the one step transition andO(k t��� n�) for the kernel contribution, where �E�
is the number of edges. It is worth mentioning that for most learning tasks it is
su�cient to compute the train–train and train–test fractions of the kernel matrix.
�is can be accomplished e�ciently by precomputing the {Pt} and summing only
the required outer products with a complexity of O(k t��� �VL�n). Algorithm �
has an overall computational complexity ofO(k t��� �E� n); however, the kernel
computation for sparse graphs (small �E�) with few labeled nodes (�VL� � n) is
e�cient.

�.�.� Illustration
Figure �.� illustrates the coinciding walk kernel on a subgraph of a labeled graph
built from concepts in the ��pedia ontology marked as “populated places.”� Each
concept is a node in our graph and is backed by a Wikipedia page. We added
an undirected edge between two places if one of their corresponding Wikipedia
pages links to the other. In the ��pedia ontology populated places are divided into
�ve classes country, administrative regions, city, town, and village. �is example
was chosen because the resulting graph does not necessarily exhibit homophily;
for example, villages (approximately half the dataset) are much more likely to
link to countries than to other villages. For our illustration, we built a graph with
�V � = ��� nodes by taking a breadth-�rst search from “Atlanta.” We then calculate
the pseudoinverse of the Laplacian kernel (L+) as well as the coinciding walk kernel

�An implementation of the used ��pedia (www.dbpedia.org) graph extractor is available at
https://github.com/rmgarnett/dbpedia_graph_extractor.

���

www.dbpedia.org
https://github.com/rmgarnett/dbpedia_graph_extractor

�. ���������� ���� �������

(a) True labels (b) K�� (α = �.�) (c) L+

(d) Detail true labels (e) Detail K�� (f) Detail L+

Figure �.�: Subgraph of the ���������-������ Dataset. Panels (a-c) show a
subgraph of the ���������-������ graph extracted from ��pedia consisting
of the ��� nearest nodes to the node “Atlanta.” �e graph layout algorithm used
(OpenOrd) was force-directed; nearby nodes have a high connectivity. �e edge
colors are created by perceptual blending of the colors of the incident nodes.
Panel (a) shows the class labels (country (green), administrative region (light
green), city (blue), town (light blue), village (pink)). Panel (b) and (c) illustrate
the values of the coinciding walk kernel and L+ of the kernel row for Atlanta,
colored red. Dark blue means high similarity, i.e., high kernel value, and white
represents low similarity. Panels (d-f) show a detail of the graphs in (a-c), where
some city nodes are highlighted by red circles.

(with α = �.� and t��� = ��), using a random selection of ��� of the nodes for VL.
Atlanta was not among the labeled nodes. �e graph layout re�ects connectivity
so that nearby nodes in the plot have higher connectivity. �e rows of K�� corre-
sponding to KAtlanta,∶ are illustrated in Figure �.� (b) and (e). As Atlanta is a city we
expect other nodes with the ground truth label city to have high kernel values. One
can clearly see that ��� is able to capture structure similarity as several distant
nodes with ground truth city nodes have high values and nearby nodes having
ground truth labels other than city including nodes in the direct neighbourhood
of Atlanta show low values. �e rows of L+ are shown in Figure �.� (c) and (f).
Here, we see that L+ (on average) decreases smoothly with increasing distance

���

�.�. ������ �����������
K

A
t
la
n
t
a
,
:

shortest path distance

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) K�� (α = �.�)
K

A
t
la
n
t
a
,
:

shortest path distance

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(b) L+

Figure �.�: Correlation of Kernel Values withDistance andClass Labels. Scatter
plots of the ground truth class labels (encoded by color) of the nodes in the
subgraph of the ���������-������ graph. Shortest path distance is plotted
against the normalized values of KAtlanta,∶ for K�� (a) and L+ (b), respectively.

from Atlanta re�ecting the homophily assumption, Hypothesis �.�; whereas the
value of K�� also shows some highly correlated far-away nodes, cf. Figure �.� (e),
as well as less correlated nearby nodes. �is behavior can also be observed by
comparing the shortest path distance to the respective kernel values as illustrated
in Figure �.�. Here, the magnitude of K�� is highly correlated with the correct
label (city) – the highest kernel values are exclusively achieved by other cities
throughout the network, exactly the behavior desired for predicting Atlanta’s label.
It is also interesting to note that the lowest kernel values are exclusively among
nodes in the “town” class (with one exception where the label is “administrative
region”), perhaps due to strikingly di�erent label structure in their neighborhoods.
For L+ the correlation between kernel values and class labels is not clearly visible.

�.�.� Limit Case: Label Propagation Kernel
In the following, we will give further intuition of ���s by considering t��� →∞
and α = �. In this case, we are e�ectively taking in�nitely long label-absorbing ��s.
Because every such walk is eventually constant, the sequence of label probabilities
{Pt} will eventually converge; call this converged matrix P∞. Notice that P∞ is
exactly the matrix calculated when performing label propagation, as given in
Equation (�.�). We de�ne the following label propagation kernel:

K�� = P∞P�∞. (�.�)

Notice that for two observed nodes i , j ∈ VL, we have K��(i , j) = � if ℓ(i) = ℓ(j)
and K��(i , j) = � otherwise. For a labeled node i and an unlabeled node j, we have

���

�. ���������� ���� �������

K��(i , j) = (P∞)ℓ(i), j; that is, the K�� matrix is simply populated by the converged
label propagation probabilities. Now, we have the following corollary of Lemma �.�.

C�������� �.� K�� as de�ned in Equation (�.�) is positive semide�nite (i.e. is a
valid Mercer kernel).

Further, for α = � K�� converges to K�� in the limit as t��� →∞,

K�� = lim
t���→∞K��.

�is can be easily seen as the sum in Equation (�.�) is eventually dominated by
outer products of the converged Pt terms.

�.� E�������� E���������
Our intention here is to investigate the power of coincidingwalk kernels for the task
of node label prediction in sparsely labeled graphs.�Wecompare their performance
to existing methods from the kernel and collective inference community. �e
main questions to answer are:

(Q�.�) Are ���s able to capture structure similarity and therewith improve over
state-of-the-art graph-based learning methods on datasets suggesting
Hypothesis �.�?

(Q�.�) Can���s perform competitivewith state-of-the-artmethods ondatasets
where mostly homophily (Hypothesis �.�) holds?

(Q�.�) Can ���s be computed e�ciently with respect to runtime and space
complexity?

Further, we analyse parameter sensitivity and computational properties of ���s.

�.�.� Experimental Protocol
Wecompare the classi�cation accuracy in several real-world graphs of the following
methods:

• ���: coinciding walk kernels,
• ��: label propagation (���, et al., ����),
• ��: relaxation labeling using structure similarity (���������� and �������,
����),

• ���: local and global consistency (����, et al., ����),

�Our ��� implementation is available at https://github.com/rmgarnett/

coinciding_walk_kernel.

���

https://github.com/rmgarnett/coinciding_walk_kernel
https://github.com/rmgarnett/coinciding_walk_kernel

�.�. ��������� ����������

• ���: von Neumann di�usion kernel (����, et al., ����; �����, et al., ����),
• ����: di�usion kernel (������ and ��������, ����), and
• �+: pseudoinverse of the (normalized) Laplacian (�����, et al., ����).

�� as de�ned in Equation (�.��) is the obvious baseline approach. �� was brie�y
introduced in Section �.�. It is currently the most accurate method in the area of
collective classi�cation, cf. results in (���������� and �������, ����). ��� is a
di�usion scheme for semi-supervised learning suggested in (����, et al., ����).
During the development of their method, ����, et al. (����) also suggested the
kernel KVND = (I − αD−���AD−���)−� which is the von Neumann di�usion kernel
on the normalized adjacency matrix (���) (�����, et al., ����), cf. Equation (�.��)
with the adjacency matrix instead of the weight matrix. Note that ��� is closely
related to the regularized Laplacian kernel, Equation (�.��) (����� and ������,
����). Hence, we choose ���, ���� and �+ to represent existing successful kernels
on graphs. All kernel-based predictions (���, ���, ����, and �+) are achieved
via support vector machine (���) classi�cation.

�e following graph datasets are used for evaluation:

• ���������-������� (link graph extracted from ��pedia, described in Sec-
tion �.�.�),

• ������ (cocitation graph of webpages from computer science departments
of four universities),

• ����� (connected coauthor graph extracted from the ���� database),
• ����� (citation network of scienti�c papers), and
• ��������� (citation network of scienti�c papers).

Tomeasure to which extend homophily, cf. De�nition �.��, is present in the datasets,
we compute a statistic, Pswitch, as the probability that amixed randomwalk switches
labels on adjacent nodes. �at is, if P∞ is the stationary distribution of the random
walk� and Pswitch�i is the vector of conditional probabilities of switching labels
from a given node, then Pswitch = P�∞Pswitch�i . Low values of this measure signal
the presence of homophily (favoring Hypothesis �.�), whereas high values indi-
cate a lack of label smoothness (rejecting Hypothesis �.�). For datasets with low
Pswitch, exploiting label-structure similarity (Hypothesis �.�) may be more bene�-
cial. Pswitch and other properties of all datasets are summarized in Table �.�. For
the ���������-������ dataset, we created graphs of varying sizes by performing

�http://www-kd.iai.uni-bonn.de/pubattachments/727/populated_places.
tar.xz

�http://www.netkit-srl.sourceforge.net/data.html
�http://www.cs.illinois.edu/homes/mingji1/DBLP_four_area.zip
�http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
�P∞ can be calculated as the normalized eigenvector of T� with maximal eigenvalue.

���

http://www-kd.iai.uni-bonn.de/pubattachments/727/populated_places.tar.xz
http://www-kd.iai.uni-bonn.de/pubattachments/727/populated_places.tar.xz
http://www.netkit-srl.sourceforge.net/data.html
http://www.cs.illinois.edu/homes/mingji1/DBLP_four_area.zip
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

�. ���������� ���� �������

Table �.�: Dataset Statistics and Properties. ��-xk is short for ���������-
������-xk. � graphs indicates the number of connected components and Pfreq the
proportion of the most frequent class. Pswitch re�ects the probability of adjacent
nodes switching their labels.

properties

dataset # nodes # edges # labels # graphs Pfreq Pswitch
��-1k 1 000 5 253 5 1 43% 69%
��-3k 3 000 16 546 5 1 50% 66%
��-5k 5 000 26 648 5 1 53% 70%
����� 1 462 61 766 6 4 28% 33%
���� 1 711 2 898 4 1 36% 21%
���� 2 708 5 278 7 78 30% 18%
�������� 3 264 4 536 6 390 21% 26%

��-100k 100 000 374 480 (used for runtime analysis cf. Fig. 7.6)

a breadth-�rst search from the �rst node in the graph (Alabama). Note that the
���������-������ datasets have a rather high probability that adjacent nodes are
of di�erent labels, i.e. Pswitch is high. �is can also be seen in Figure �.�(a). Hence,
for these datasets we expect structure similarity to be important for node label
prediction. For ����� we combined the cocitation networks of all universities
(Cornell, Texas, Washington, and Wisconsin) into one disconnected graph.

We focus on sparsely labeled graphs and use �� randomly generated test splits
for �% up to ��% labeled nodes. �e test sets are the same for each method and
all reported classi�cation accuracies are an average over the results on the ��
test sets. �e performance of all kernel-based classi�ers is evaluated by running
�-��� classi�cations using libSVM.� Parameter learning is done by the follow-
ing protocol. For each method we train all parameters (including the ��� cost
parameter) jointly via grid search on �� randomly generated training splits having
�% and ��% labeled nodes. Again, the training sets are the same for each method.
For prediction we use the �rst set of parameters (trained for �% labeled data)
for training percentages from �% to �% and the second set of parameters for all
scenarios with more than �% labeled data. �e following parameter values were
tested:

• ���: t��� ∈ {�, �, . . . , ��, ��, . . . , ���},
α ∈ {�, �.��, �.��, �.��, �.�, �.�, �.�, �.�, �.�, �.��, �.��, �.��, �},

�http://www.csie.ntu.edu.tw/
~

cjlin/libsvm/

���

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

�.�. ��������� ����������

Table �.�: Results on ���������-������. Average accuracies (�) on �� test
sets of the ���������-������ datasets for �% and ��% labeled nodes. ��-xk is
short for ���������-������-xk. ● indicates statistically signi�cant best perfor-
mance among the kernel methods and bold indicates statistically signi�cant best
performance among all methods both under a paired t-test (p < �.��).

method

dataset ��� ���� �+ ��� �� ��� ��

��-1k
5%

52.4 ● 44.3 45.2 46.1 42.6 42.8 32.7
��-3k 61.0 60.2 51.5 52.6 57.7 60.9 44.7
��-5k 58.4 59.7 53.4 54.5 53.3 58.8 39.9

��-1k
10%

55.0 ● 50.6 48.5 49.9 46.1 48.2 33.8
��-3k 63.3 63.2 53.9 55.8 59.4 62.0 50.2
��-5k 64.0 ● 61.6 55.5 57.4 59.2 60.4 40.4

• ��: N ∈ {�, �, . . . , �}, γ ∈ {�.�, �.�, �.�, �.�}, α�� ∈ {�.��, �.�, . . . , �.�},
β�� ∈ {�.�, �.�, . . . , �.�},

• ��� and ���: α ∈ {�.��, �.��, �.��, �.�, �.�, �.�, �.�, �.�, �.��, �.��, �.��},
• ����: temperature β ∈ �{−�,...,�}, and
• all kernel methods: ��� cost C ∈ �{−�,...,�}.

�.�.� Predictive Performance
Exploiting Structure Similarity. Here, we analyse the performance of all meth-
ods on the ���������-������ datasets where – indicated by a high switching
probability Pswitch, cf. Table �.� – one can expect structure similarity to be useful
for classi�cation. �e predictive performances for three variations with � ���,
� ���, and � ��� nodes (��-�k, ��-�k, ��-�k) for �% and ��% labeled nodes are
summarized in Table �.�. ��� performed signi�cantly better (under a paired t-test
with p < �.��) than the comparing methods on three out of six experiments. Only
in one of six cases (�% on ��-�k) did ���� and ��� perform slightly better than
���; however, the di�erence was not signi�cant. Hence, exploiting label-structure
similarity via partially label absorbing randomwalks clearly improves over existing
graph-based learning on non-homophilic datasets. Figure �.� shows results for
�% to ��% labeled nodes for ��-�k and ��-�k. In general, we observe that ���
achieves the best results followed by all other kernels on graphs (���, ����, and
�+), ��� and ��. �us, question (Q�.�) can be answered a�rmatively. �� fails to
accurately predict the labels in the populated places graphs as it relies purely on
the homophily assumption and therefore cannot leverage the structure similarity
inherent to these networks. Surprisingly, �� does not achieve convincing results
either.

���

�. ���������� ���� �������

l+diffvndlgcrllpcwk

a
v
g
.
a
c
c
(
%
)

labeled nodes (%)

1 3 5 7 9 11 13 15

30

40

50

60

(a) ��-�k

a
v
g
.
a
c
c
(
%
)

labeled nodes (%)

1 3 5 7 9 11 13 15

30

40

50

60

70

(b) ��-�k

Figure �.�: Results on ���������-������. Average accuracies and standard
errors (�) on ��-�k and ��-�k for all comparedmethods.�e dashed lines indicate
�% and ��% training data, corresponding to the results in Table �.�.

Common Benchmark Graphs. �e predictive performances for four common
benchmark graphs (����, �����, ����, and ��������) with �% and ��% labeled
nodes are summarized in Table �.�. �ese datasets mostly obey the autocorre-
lation assumption (Hypothesis �) which can be seen from the rather low label
switching probabilities reported in Table �.�. In the scenario with �% labeled nodes,
��� performed signi�cantly better (under a paired t-test with p < �.��) than
the comparing kernel methods (����, �+, and ���) on all four datasets. Fur-
ther, ��� performs signi�cantly best for ��������, whereas ��� outperforms all
other methods for ���� and ����. When considering ��% labeled nodes, ���
performed signi�cantly best among the kernels on graphs in three out of four
cases. Comparing all methods, ��� and ��� both win signi�cantly on one dataset.
Overall, ��� outperforms all kernels on graphs on a representative sample of
common benchmark graphs. �ese results indicate that incorporating label infor-
mation into the kernel construction, i.e., using a label-dependent kernel such as
��� for node classi�cation, improves performance over kernels on graphs using
graph structure only. Further, ��� perform competitively compared to a range
of successful prediction methods from the areas of semi-supervised learning and
collective inference. Figure �.� shows average accuracies and standard errors of all
compared methods for �% up to ��% labeled nodes for ����� and ��������. On
�����, ��� is clearly the best performing kernel on graphs and in comparison
to all methods it is the second best classi�er. On ��������, ��� performs signi�-
cantly better than all baselines for label fractions larger then �%. As Pswitch (��%)
is fairly low on this dataset, this success might be explained by the huge number

���

�.�. ��������� ����������

l+diffvndlgcrllpcwk

a
v
g
.
a
c
c
(
%
)

labeled nodes (%)

1 3 5 7 9 11 13 15

20

30

40

50

60

(a) �����

a
v
g
.
a
c
c
(
%
)

labeled nodes (%)

1 3 5 7 9 11 13 15

30

40

50

60

(b) ��������

Figure �.�: Results on Benchmark Graphs. Average accuracies and standard
errors (�) on on ����� and �������� for all compared methods. �e dashed
lines indicate �% and ��% training data, corresponding to the results in Table �.�.

Table �.�: Results on Benchmark Graphs. Average accuracies (�) on �� test sets
of the datasets ����, �����, ����, and �������� for �% and ��% labeled nodes.● indicates statistically signi�cant best performance among the kernel methods
and bold indicates statistically signi�cant best performance among all methods
both under a paired t-test (p < �.��).

method

dataset ��� ���� �+ ��� �� ��� ��

����

5%

62.8 ● 55.6 60.2 56.7 61.7 64.0 61.0
����� 61.5 ● 47.7 38.8 54.4 57.2 61.6 43.4
���� 72.1 ● 70.6 57.2 59.9 67.9 73.8 73.2
�������� 53.5 ● 50.8 50.9 49.0 51.2 51.6 50.9

����

10%

69.3 ● 65.5 67.9 66.2 67.9 69.4 69.1
����� 63.2 ● 52.6 49.0 59.0 61.0 65.6 45.7
���� 76.0 77.2 ● 67.4 70.9 73.5 78.2 78.2
�������� 57.8 ● 55.4 52.8 55.2 55.5 55.4 54.9

of connected components (���) – ��� is able to capture similarities between two
nodes in disconnected components, whereas other kernels on graphs always give a
value of zero in these cases. To summarize the results on graph benchmark datasets
with low switching probabilities indicating the presence of homophily, ��� does

���

�. ���������� ���� �������

t
m
a
x

α

0 0.2 0.4 0.6 0.8 1

0%

20%

40%

60%

80%

0

20

40

60

80

100

Figure �.�: Parameter Sensitivity of ���. Heatmap of average accuracies of
��� w.r.t. t��� and α on the ���� dataset. �e accuracies are averaged over ��
randomly generated test sets with �% labeled nodes. ×marks the highest accuracy
for t��� = �� and α = �.��.

outperform all compared kernels on graphs. And also in comparison to all other
methods coinciding walk kernels achieve good results. Only ��� performs slightly
better in some cases. Nevertheless, we can conclude that ���s are also able to
exploit homophily and thus we can give a positive answer to question (Q�.�).

�.�.� Parameter Analysis and Runtimes
To analyse the sensitivity of ���’s predictive power with respect to changes in
the kernel parameters, we computed the average accuracies over �� randomly
generated test sets for all combinations of α and t���, where α ∈ {�.�, �.��, . . . , �.�}
and t��� ∈ {�, �, . . . , ���} on the ���� dataset with �% labeled data. A heatmap of
the results is shown in Figure �.�. Whereas the highest accuracy (��.�%) is achieved
for an absorbing probability of α = �.�� and a maximum walk length of t��� = ��,
we see that for all α > �.� and t��� > �, the accuracy is higher than ��%. �is
shows that ��� is not eminently sensitive to its parameters. �e slight slope to
the isoperformance curves suggest that walks of a given length and absorbing
probability behave somewhat like slightly longer walks with a slightly smaller
absorbing probability, which agrees with intuition.

In the following we analyse the scalability of the ��� computation for sparsely
labeled networks. As investigating fast and scalable kernel methods goes beyond
the scope of our work, we focus our analysis on the scalability of the kernel
computation. We compare the runtimes for calculating all tested kernels on the
���������-������ dataset with up to ��� ��� nodes. Once the kernel matrix is

���

�.�. ��������� ����������

l+diffvndcwk

r
u
n
t
im

e
(
s
)

number of nodes

1%

5%

10
%

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Figure �.�: Runtimes on ��-xk. We show the loglog plot of number of nodes
versus runtimes for the kernel computations of all kernels on graphs (��� with
�%, �% and ��% labeled nodes, ���, ����, and �+) on ��-xk where x ∈ {���, � ×
���, � × ���, . . . , ���}.

computed, all kernel-based methods scale comparably. Note that the iterative ��
method not having to compute a kernel is usually faster then kernel-based classi�-
cation; however, prediction results are also signi�cantly worse for most datasets.
Figure �.� shows the runtimes on the ��-xk dataset for x ∈ {�, �, �, ��, ��, ��, ���}.
For ���, whose runtime depends on the training fraction, we show curves for ��,
��, and ��� labeled nodes. We note that the ��� took about the same amount
of time with n = ��� ��� as ���� did for n = �� ��� and �+ and ��� did for
n = �����. �e smaller slope for the ��� also shows a more slowly growing
runtime in general. Finally, we make two remarks regarding the ��method, whose
runtime is on a similar order as ���’s. First, ��must recalculate the kernel matrix
multiple times, whereas we only compute it once. Second, the time and storage
requirements of �� grow with the test size rather than the training size. For ex-
ample, on the ��-���k dataset with �� training data, ��� requires approximately
�.�GB of storage, whereas �� requires about ��GB.

�e computational complexities of the compared methods are

• ���: O(k t��� �E� n),
• ��: O(k Niter �E�),
• ��: O(k t��� Niter�VU �n),

���

�. ���������� ���� �������

• ����: O(n�), and
• �+: O(n�),

where k is the number of labels, �E� is the number of edges, t��� is the maximum
walk length, Niter is the number of iterations with t��� ≤ Niter , and n is the total
number of nodes in the graph. Note that both �� and ��� computations are very
e�cient for sparse graphs (small �E�) with few labeled nodes (�VL�� n). Further,
if ��� is used for node classi�cation in a kernel machine, then we do not need to
compute the full kernel matrix but it su�ces to compute train–train and train–test
fractions. If we use a sparse kernel machine, such as support vector machines,
then it even su�ces to compute (support vectors)–test fractions for predictions.
So, compared to other methods the coinciding walk kernel computation for node
label prediction scales favorably especially if the number of labeled nodes is small.
Coinciding walk kernels have nice memory and computation complexities and can
be computed faster than state-of-the-art kernels on graphs. �ese results support
a positive answer of question (Q�.�).

���

TRANSITION: FROM NODE CLASSIFICATION TO SET
COMPLETION

To summarize, probabilistic models based on random walks li�ed to the node
labels propagate information through the graph in order to label all unlabeled
nodes. By leveraging graph structure, usually encoding some kind of similarity of
adjacent vertices, they exploit the homophily assumption. However, as we have
seen in the previous two chapters, approaches that assume only homophily have
two problems. First, they rely on having su�cient label information within a small
neighborhood of each unlabeled node. Due to the high costs of acquiring training
data and the enormous size of present-day networks, however, it is common to have
only very few labeled nodes. �is results in having too few observations near many
unlabeled nodes to e�ectively apply Hypothesis �.�. �us, when data are sparsely
labeled, classi�cation gets increasingly more di�cult and we therefore have to
do more than simply exploiting closeby labels to accurately classify unlabeled
nodes. �e second drawback of approaches entirely based on the homophily
assumption is that they cannot make use of structure similarity and thus the
similarity of distant or even disconnected nodes in a network based on their local
graph structure is not exploitable for node label prediction. To overcome these
limitations, we introduced a new kernel on graphs, the coinciding walk kernel,
bringing together graph-based label inference and kernel methods to leverage
bene�ts from both �elds for learning tasks in sparsely labeled networks. �e kernel
values of ���s are given by the probability that the labels encountered during
parallel absorbing random walks on partially labeled graphs coincide. �at is, two
nodes have a high kernel value if the labels surrounding each node are arranged
similarly. Our extensive experiments demonstrated that ���, which takes both
Hypotheses �.� and �.� into account, scales and is robust across all tested datasets
for node classi�cation in sparsely labeled graphs.

In addition to sparse training data, the objective – that is, the question of what it is
we want to �nd in the data – might be only indirectly given. On a social network
platform, a user might have liked only two or three brands and might not have
clicked on any advertisements at all; nevertheless, it is of great interest for the
provider of the platform that the right pages or products are recommended to the
user or that the right ads are placed on the user’s site. Right in this context could
mean being likely to be clicked on. Hence, the task is to �nd suitable information
in the data and/or to deduce a concept describing the query from only a small set
of examples. Whereas we are still able to model items and the similarities among

���

����������: ���� ���� �������������� �� ��� ����������

them by nodes and edges of a graph, the learning setting is even more restrictive
than having access to sparse label information. �e �rst problem is that we have
even less training data and the second is that the labels are positives only. So, it
is less surprising that traditional graph-based supervised learning methods are
powerless.

Structure similarity, however could be useful to �nd the hidden query concept
exempli�ed by the query items or expand the query set. Unfortunately, there is
no obvious way to use coinciding walk kernels to perform concept learning or
solve the set completion task as even methods such as one-class support vector
machines need a su�cient amount of positively labeled training nodes. So, instead
of monitoring label distributions evolving from label-absorbing randomwalks one
idea is to run random walks with restarts from the query nodes. Unfortunately,
the ranking produced by random walks with restarts cannot capture structure
similarity; all nodes close to the query nodes will be ranked high and distant nodes
will be ranked low. To solve the set completion task, however, we want nodes to be
ranked high if they are connected to the query nodes in the same way. One way
of achieving this is to analyze the paths starting from the query nodes. To do so,
we will change the way of modeling the data from plain graph representations to
relational ones in order to leverage relational path�nding enhancing the random
walk-based methods. Our strategy will be to compare paths leaving from the
query nodes and evolving on a graph representing relational data in order to
�nd interesting nodes uncovering more details about the latent query. �e idea
behind this approach is to bring together graph-based learning, relational data
representation, and structure similarity to tackle the challenging set completion
task.

���

������� �

BEYOND GRAPHS: RELATIONAL SET COMPLETION

�.� Problem, Proposed Solution, and Related Work ���

�.� Markov Logic Sets ���

�.� Empirical Evaluation ���

�.� Summary and Discussion ���

In this chapter, we investigate the problemof dealingwith extremely sparse training
data comprising only a few positively labeled nodes in a graph, and the task
of �nding the most-similar nodes to these so-called query points. We call this
task set completion, as we are concerned with the problem of retrieving items
meeting the condition or concept implicitly posed by a set of query items. We
will consider domains of relational data, and our goal in this chapter is to transfer
the graph-based techniques applied in this thesis so far to this more-general
data representation and demanding learning setting. In doing so, we will tackle
set completion of the nodes in a graph by leveraging the power of information
propagation and relational data representation.

� .� P������ , P������� S������� , ��� R������ W���
If the node classi�cation task as stated in Problem �.� is even more specialized in
the sense that we only have positively labeled data points in the training set, then
we speak of unary or one-class classi�cation (����������, et al., ����b; �������,
et al., ����; �������� and ������, ����). �e same problem is also referred to as
learning from positives only (���������, ����; ����� and ����, ����). From
this perspective, node classi�cation in sparsely labeled graphs can be reformulated
as given a small set of positively labeled data, �nd the labeling of the unobserved
data points without knowing any negative training examples. Another view on the
same problem is information retrieval. Here, the problem is formulated as �nding
the most-similar items to some user-provided query items, where the importance
lies on the quality of the set of retrieved items neglecting its completeness. We
will view this task from the relational perspective and de�ne it as set completion
in relational data. Relational data and all relevant terminology was introduced in
Section �.�.

���

�. ������ ������: ���������� ��� ����������

P������ �.� (S�� C��������� �� R��������� D���) Given relational dataD =
{(C , P)} as a set of atoms on the universe of constants C and predicates P, and a
query setQ = {qi}i=�,...,m, whose items are constants, predicates, or atoms, from D,
i.e., qi ∈ D, and m � �D�, set completion is the problem of retrieving a set Q̃ ⊃ Q
where the items in Q̃ are related to the query items.

Set completion is also referred to as clustering on demand, which can be described
from a clustering point of view as follows. Clustering on demand is the problem
of grouping the data in such a way that data points similar to those given in the
query form a cluster. Loosely speaking we cluster the data in such a way that the
demands or restrictions posed by the user providing the query are met. Originally
the problem has been addressed by “Google™ Sets,” however, since September
���� this service is not online anymore. “Google™ Sets” treated the clustering on
demand problem as a large-scale clustering problem that involved millions of
data instances extracted from web data. ���������� and ������ (����) have
proposed a Bayesian approach, called Bayesian sets (�����), for solving it. For a
brief introduction of Bayesian learning in general, see Section �.�.�. As in other
retrieval problems, ����� computes a score measuring for each item how relevant
it is to the query. Speci�cally, using a probabilistic model of the unknown concept,
it computes the relevance score by comparing the posterior probability of an item,
given the query, to the prior probability of that item. A very similar approach
to ����� is Bayesian surprise, which is measured based on the Kulback–Leibler
divergence to quantify the di�erences between prior and posterior distributions
(���� and �����, ����). Bayesian surprise, however, was used in signal processing
to detect surprising events in videos, acoustic signals, or images (��������� and
������������, ����; �������, et al., ����). A similar measure applied to nodes in
networked data is di�erential PageRank (������) (�����, et al., ����). ������
produces a ranking among the nodes of a graph based on the di�erence of general
importance and query relatedness. In fact, we will utilize ������ in our proposed
solution, and we will show in the next section why ������ alone is not enough to
solve Problem �.� satisfactory.

All mentioned approaches, including “Google™ Sets” and �����, have focused
on propositional universes assuming that the items are representable as attribute–
value vectors. Nowadays, the role of structure and relations in the data has becomes
more and more important (������ and ������, ����). Information about one
item can help us to reach conclusions about other items. Such domains are hard to
represent meaningfully using a set of propositional features. �us, it is natural to
ask the question: how do we solve the clustering on demand problem for relational
domains? An investigation of this question leads to our main contribution:Markov
logic sets (���).

Our objective is to retrieve complex objects and relations among them – that is,
(ground) atoms from a logical concept – given a query consisting of a few atoms

���

�.�. �������, �������� ��������, ��� ������� ����

from that concept. To leverage techniques from graph-based machine learning
we formulate this task as a within-network relational learning problem using few
labels only. Our proposed algorithm ranks atoms using a score based on random
walks with restart (���), cf. De�nition �.��, namely the probability that a random
surfer hits an atom starting from the query atoms. Speci�cally, we compute an
initial ranking using personalized PageRank, a particular model of random walks
with restart, cf. Section �.�.�. �en, we �nd paths of atoms that are connected via
their arguments, and variablize the ground atoms in each path, in order to create
features for the query. �ese features are used to re-personalize the original ���
and to �nally compute the set completion, based on label propagation (���, et al.,
����) also introduced in Section �.�.�. ��� is related to relational path�nding,
which has been proven successful for learning the structure of Markov logic
networks (���s) (���������� and ��������, ����). For instance, ���������
and ������ (����) as well as ��� and �������� (����) proposed to use it to
�nd a path of ground atoms in the training data. �ey also variablize ground
atoms in the path but then they construct a��� whose nodes are the paths viewed
as Boolean variables (conjunctions of atoms). In contrast, ��� uses the features
to compute a PageRank that generalizes well across similar items. Moreover, we
exploit that random walk-based techniques can naturally exploit computational
symmetries and show that li�ed inference for label propagation is indeed possible.

Similar to the approach presented in (�����, et al., ����), ��� considers the cluster-
ing on demand problem as within-network relational learning problem: the input
is a single data graph in which some of the instances are labeled and the task is to
infer the labels of the remaining instances, see e.g. (������� and ������, ����) and
references in there. Existing within-network relational learning methods indeed
exploit the statistical dependencies among instances in order to improve classi�-
cation performance. However, they assume that positive and negative labels are
given for some nodes, and inference is generally still at the level of propositional
logic. �e latter also holds for the relational variants of ����� (�����, et al., ����).
For these approaches it is di�cult – if not impossible – to employ existing inference
techniques exploiting computational symmetries, termed li�ed inference. Making
use of computational symmetries of information propagation schemes is one of our
goals here. Speci�cally, we will study li�ed versions of PageRank and label propa-
gation. Moreover existing clustering on demand and within-network relational
learning approaches assume a single, �nite feature space for all items;��� does not
since it employs ��� and learns query speci�c features automatically. ��� and ��-
��� (����) present an approach to relational retrieval based on path-constrained
���; ���, however, constructs positive and negative labels from logical features
and �nally applies label propagation to derive a ranking based on the probabili-
ties of being in the positive class. Recently, ��� and ����� (����b) have shown
how to employ ��� for within-network relational learning using few positive
and negative labels only; ��� assumes only positive labels. ��������� (����)

���

�. ������ ������: ���������� ��� ����������

has proposed inductive logic programming (���) techniques for single-predicate
learning from positive examples only; ��� solves a multi-predicate learning prob-
lem in a transductive setting. Probabilistic explanation based learning (������,
et al., ����) produces generalized explanations from examples. Similar to this
approach but leveraging conceptual graphs similar to the (hyper)graphs used in
��� is graph-based relational concept learning (��������, et al., ����). However,
both approaches learn concepts to explain a query; ��� provides set completions,
even if no concept/explanation is present. In the following, we will �rst introduce
and illustrate the Markov logic sets algorithm, and then evaluate it empirically on
a real-world relational dataset by �nding completions of sets of objects describing
the Roman city of Pompeii.

� .� M����� L���� S���
Nowwe can state the��� algorithmand showhow itsmain parts, namely PageRank
and label propagation, can be li�ed by exploiting computational symmetries.

�.�.� Introduction
Imagine you catch parts of a conversation of two archaeologists: “... the room is a
taberna ... City of Pompeii ...” What is the conversation about? Which concept is
described by function(taberna) and city(pompeii)? “Taberna” is the Latin
word for “shop”, and Pompeii is the Roman city in southern Italy that was covered
in volcanic ash during the eruption of Mt. Vesuvius in �� ��. So, the two archaeol-
ogists might have talked about the daily life of Romans in Pompeii and where they
went shopping.

�is example encapsulates the very practical and interesting machine learning and
information retrieval problem, namely to automatically create sets or clusters of
items from a few examples only. More formally, consider a universe of items I . For
instance, I may consist of publications, web pages, images, movies, places and ar-
tifacts found in Pompeii, or any other type of objects we may wish to form queries
on. �e user provides a query in the form of a very small subset of itemsQ ⊂ I
constituting examples of some concept in the data, say {function(taberna),
city(pompeii)}, which we will abbreviate in the following by {function(t),
city(p)}. �e algorithm then has to provide a completion to the set Q, that is,
some set Q̃ ⊂ I that presumably includes all the elements in Q and other ele-
ments in I , which are also elements of this concept, say {house(h1), house(h2),
house(h4), . . .} and other objects that are related to shops in Pompeii.

De�ning a relevance score among nodes is one of the fundamental building blocks
in graph-based machine learning. One very successful technique is based on ran-
dom walks with restart (���). Concretely, Markov logic sets employ the seminal
PageRank (��) algorithm (���� and ����, ����) as introduced in Section �.�.�,
which is the (limit) stationary probability that a random walker is at some node,

���

�.�. ������ ����� ����

�.��
p city

�.��
h�house �.��

h�house −�.��
h� house�.��

h� house

�.��
r�room �.��

r�room
−�.��
r� room�.��

r� room

−�.��
ty�

type�.��
tfunction

−�.��
f� function

Figure �.�: Example ��� Ranking. Ranking (rounded to the second digit) of
Markov logic sets (���) for the query {function(t), city(p)} on the toy ver-
sion of the Pompeii dataset (Example �.�). All houses with a shop are ranked
high, whereas h3, which has no shop, is ranked low. �e sign of the score actually
suggests to exclude h3 from the �nal set completion.

but personalized on the query. Following the idea underlying �����, ��� actually
computes the relevance score by comparing the posterior PageRank of an item
given the query, i.e., the personalized PageRank, to the prior PageRank of that
item, i.e., the uniform PageRank. �is di�erential PageRank (������) has been
proven to be successful for ranking folksonomies (�����, et al., ����) but has
two major drawbacks for our setting:

�. it does not make use of the rich structure relational domains provide as it
treats items which are ground atoms monolithically, and

�. it ranks items high that are generally surprising but unrelated to the query.

To generalize across items, we �nd paths of ground atoms that are connected
via their arguments and variablize the ground atoms in each path, in order to
create logical features, and use the features to compute a personalization vector for
(����)��. Further, to overcome the second limitation of ������, we only estimate
negative and positive labels for items ranked lowest and highest, respectively, by
������ if they conform the features. �en, the labels are spread across the graph
using label propagation. Hence, the name Markov logic sets originated from the
use ofMarkov random walks as well as logical features to compute set completions.

Recall the conversation of the two archaeologists introduced in the beginning of
this section. In the small toy universe considered, cf. Example �.�, ��� discovers
that they talked about shopping places in Pompeii and it perfectly retrieves houses
and rooms used as shops as shown in Figure �.�. A comparison of ��� to the

���

�. ������ ������: ���������� ��� ����������

Table �.�: Comparison of ��� and ������. Rankings found by Markov
logic sets (���) and di�erential PageRank (������) for the query{function(t), city(p)} on the toy version of the Pompeii dataset de-
scribed in Example �.�.

��� ������

rank item rank item

0.38 function(t) 1.00 function(t)
0.38 city(p) 0.64 house(h4)
0.13 house(h4) 0.64 house(h1)
0.13 house(h2) 0.64 house(h2)
0.13 house(h1) 0.63 city(p)
0.12 room(r4) 0.63 function(f1)
0.12 room(r1) 0.52 house(h3)
0.12 room(r2) 0.44 room(r2)−0.04 type(ty1) 0.44 room(r4)−0.06 house(h3) 0.44 room(r1)−0.51 function(f1) 0.04 type(ty1)−0.53 room(r3) 0.00 room(r3)

di�erential PageRank is given in Table �.�. For ���, all houses containing a shop
are ranked high, whereas h3, which has no shop, is ranked low. Actually the sign
suggests to exclude h3 from the �nal set completion. ������ ranks h3 and the type
of its room ty1 essentially on par with the shops, and the rooms that were used as
shops too low. Next we will formally state the ��� algorithm and provide another
illustrative example.

�.�.� ��� Algorithm
Algorithm � summarizes ���, and Figure �.� provides an example run with the
query {house(h1), house(h2)} for the toy universe of objects in the city of Pom-
peii described previously.

��� begins with computing the ��� on the queryQ. �e result, see Figure �.�(a),
illustrates that this ��� is not enough to solve the set completion problem satis-
factory. House h4 should be in the set completion as it has a shop. Including also
r4, the room of h4, also includes h3, the only house without a shop. Excluding r4,
however, is suboptimal as it is the only room and the shop of h4.

To improve upon this, ��� generalizes the personalization values across the net-
work. �is is done by the following procedure. First, ��� �nds paths P of length
starting from � up to k (k = � in our example) in the hypergraph starting in

���

�.�. ������ ����� ����

Algorithm �Markov Logic Sets
given: Query setQ, Graph G = (V , E), max path length k
initialization: V+ = Q, V− = �, L = � ▷ label and feature sets
xq = ���(G ,Q) ▷ personalized PageRank onQ
P ← �������-�����(G, k,Q) ▷ paths starting in query atoms
F ← �������-������������(P) ▷ variablizing some of the arguments
L← �������-���������������(F) ▷ �nd discriminative features
for all v ∈ V do ▷ reweight personalization

w(v) = � ▷ weight of item v
for ℓ ∈ L do

if ℓ(end) = v then
w(v) = w(v) + xq(ℓ(end))

end if
end for

end for
xp = ���(G ,w) ▷ reweighted personalized PageRank
xu = ��(G) ▷ uniform PageRank
xd = xp − xu ▷ di�erential PageRank
for all v ∈ V do ▷ construct label set

for i ∈ {p, d} do
if �xi(v) −min xi � < ε & no ground feature �red for v then

V− ← v
else if �xi(v) −max {xi(u)�u �∈ Q}� < ε & a feature �red for v then

V+ ← v
end if

end for
end for
r = �����-�����������(G ,V+,V−) ▷ label propagation
return: ranking of positive label probabilites of r

the query nodes (�������-�����(G, k,Q)), where a path is de�ned as a set of
hypernodes and hyperedges such that for any two hyperedges e� and en in the set,
there exists an ordering of (a subset of) hyperedges in the set e�, e�, . . . , en such
that ei and ei+� share at least one node. �e path length is the number of hyper-
edges it contains. Hence, length-� paths do only contain one hypernode and no
hyperedges. In our toy example a path of length � is for example p = “house(h1)−
in(r1, h1)−room(r1)−typeof(r1, t)−function(t)”. �e paths of hyperedges
are then generalized into pathfeatures F (�������-������������(P)). Pathfea-
tures are conjunctions of relational atoms with variablized arguments. �erefore,
we �rst variablize all arguments except the atoms in the start and end nodes, e.g.

���

�. ������ ������: ���������� ��� ����������

�.��
p city

�.��
h�house �.��

h�house �.��
h� house�.��

h� house

�.��
r�room �.��

r�room
�.��
r� room�.��

r� room

�.��
ty�

type�.��
tfunction �.��

f� function

(a) PageRank xq personalized onQ
�.��
p city

�.��
h�house �.��

h�house �.��
h� house�.��

h� house

�.��
r�room �.��

r�room
�.��
r� room�.��

r� room

�.��
ty�

type�.��
tfunction �.��

f� function

(b) Unnormalized reweighted personalization w

�.��
p city

�.��
h�house �.��

h�house �.��
h� house�.��

h� house

�.��
r�room �.��

r�room
�.��
r� room�.��

r� room

�.��
ty�

type�.��
tfunction �.��

f� function

(c) Di�erential PageRank xd = xp − xu
�.��
p city

�.��
h�house �.��

h�house −�.��
h� house�.��

h� house

�.��
r�room �.��

r�room
−�.��
r� room�.��

r� room

−�.��
ty�

type�.��
tfunction −�.��

f� function

(d) Final label propagation ranking r

Figure �.�: Illustration ofMarkovLogic Sets.�emajor steps of runningMarkov
logic sets for the query {house(h1), house(h2)} on the toy version of the Pom-
peii dataset, which is described in the main text. �e �nal ranking is shown
in (d). Using � as threshold would result in {h1, h2, h4, p, r1, r2, r4, t} as set
completion.

“house(h1)− in(Y, X)− room(Y)− typeof(Y, t)− function(t)”. To create can-
didate logical features per path the constants in the start and end nodes are then
variablized in all possible combinations, for the example path above, one of the four
possible pathfeatures is: f = “house(X) − in(Y, X) − room(Y) − typeof(Y, t) −
function(t)”, where the constant in the start node h1 is variablized. However,
��� selects only discriminative features, called logical features L, (�������-
���������������(F)). To assess whether a feature is discriminative, we run a ��
personalized on end atoms and check whether

�. the variance of the ��� scores of the query items covered by the feature is
small, and

�. their mean is signi�cantly di�erent from the mean of ��� scores of items
over the same predicate that are not in the query.

Only if (�) and (�) succeed using a χ�-test, do we include the feature; this applies
for example to f .

���

�.�. ������ ����� ����

A�erwards, ��� recomputes the personalization of each “interesting” node in G
using the ��� onQ, xq, of the nodes generating the respective logical pathfeatures.
Interesting are all nodes that are end nodes ℓ(end) in the logical pathfeatures.
And the respective personalization weight per feature is then xq(ℓ(end)). In our
running example the set of end nodes is ℓ(end) = {house(X), function(Y),
function(t)}. Intuitively, nodes that are structurally related to all query items
in the same way get assigned a personalization weight. For our running example,
this yields the unnormalized personalization vector shown in Figure �.�(b). As
one can see, the weight of item t (taberna) is increased from � (it is not a query
member, consequently its initial personalization was �) to �.��. One is tempted
to just recompute the ��� using this new personalization, xp, and indeed items
with resulting minimal rank are de�nitely unrelated to the query – therefore we
give them a negative label (cf. construct label set below) but only if no feature �red
for the item – and t (taberna) gets ranked higher now. However, h3 and h4 still
get similar, low relevance scores: the concept “houses with shops” has not been
identi�ed yet. Why is this the case?

Ranking items simply by the (reweighted) personalized �� is not sensible since
some items may be more probable than others, regardless of the query. ���
removes this e�ect by computing the di�erential �� (������), xd , w.r.t. the uniform
��, xu. �e ������ scores for our running example are shown in Figure �.�(c).
Now, it is sensible to assign positive (negative) labels to the items with maximal
(minimal) xp or xd , if features have (not) �red. For our example, the set of positively
labeled nodes is V+ = {h1, h2, h3} and the set of negatively labeled nodes is
V+ = {f1, r3}. Finally, ��� runs label propagation, cf. Equation (�.��), using
V+ and V− to achieve specialization, that is, to create the �nal ranking (�����-
�����������(G,V+,V−)). For our toy example this �nal ranking is shown in
Figure �.�(d). As one can see, h4 and h3 can now clearly be separated.

�.�.� Exploiting Symmetries: Li�ed Information Retrieval
However, we make another important and novel contribution. We note that
the core computations in both PageRank and label propagation, namely solv-
ing systems of linear equations, can be done distributively and e�ciently using
Gaussian belief propagation (����) (�������, et al., ����). Gaussian belief prop-
agation extends the message passing algorithm (loopy) belief propagation (��)
(�������, et al., ����) from binary to Gaussian random variables. �ere are, how-
ever, many improvements that can be made to (��)��, especially when applied to
inference in graphical models containing structural symmetries. Such symmetries
are commonly found in relational domains (������, ����). To exploit these
symmetries, li�ed (loopy) belief propagation (���) approaches have been recently
developed (������ and ��������, ����; ��������, et al., ����) to automatically
group nodes and potentials together into supernodes and superpotentials if they

���

�. ������ ������: ���������� ��� ����������

send and receive identical messages. ��� then runs a modi�ed �� on this com-
pressed network, also referred to as li�ed network. ��� has been proven to yield
signi�cant e�ciency gains compared to belief propagation on important �� tasks
such as link prediction and entity resolution. Here, we demonstrate its potential
for another important �� and novel li�ed inference task: information retrieval
using PageRank and label propagation. All core computations in both PageRank
and label propagation can be solved by combining the ���� approach to solving
linear systems of �������, et al. (����) together with the color passing approach
��� of ��������, et al. (����), yielding li�ed ���� (�����). �is approach was
introduced in (������, et al., ����). Here, we present its �rst application to the
information retrieval task of relational set completion.

� .� E�������� E���������
Our intention here is to investigate the following questions:

(Q�.�) Is ��� e�ective in ranking atoms with respect to a given query?

(Q�.�) How does ��� perform compared to ����� and the intermediate rank-
ings xp and xd of ���?

(Q�.�) Are there symmetries in the label propagation matrix that can be used
by �����?

To this aim, we implemented ��� and ����� in Python using ����� for the PageR-
ank and label propagation computations. In all experiments, we set the restart
probability β = �.� for the ��� computations. For (�)����, we used the “�ooding”
message protocol where messages are passed in parallel each step. Messages were
not damped, and the convergence threshold was ��−�. We did not compare to
the relational ����� variant of �����, et al. (����) as they assume a single joint
feature space. To accommodate for this, we ran ����� (with its parameter c = �)
using our feature setsF resp. L. More precisely, �����F uses all possible relational
pathfeatures, whereas �����L includes only the discriminative features found by
���. For evaluation purposes, we ran all approaches on two datasets: a relational
datasets in the spirit of the smoker–friends Markov logic network and the Pompeii
dataset introduced in (�������, ����) and mentioned already earlier. Allison has
used data about artifacts in their original context to challenge many common
assumptions about the function of particular types of objects, the use of particular
spaces, and the consistency of patterns of use across di�erent houses. �e dataset
contains more than � ��� artifact records for �nds in �� architecturally similar
“atrium-style” houses in Pompeii. Artifacts are annotated with one of ��� typologi-
cal categories (coin, amphora, etc.) and in which of the rooms they were found.
In total, there are ��� rooms in the �� houses. For each room, we have its type
(main garden, front hall, shop, etc.) and function (culina, taberna, etc.). We have
focused on the rooms and houses providing us with a dataset consisting of ���

���

�.�. ������� ��� ����������

node potentials and ���� edge potentials (viewed as a graphical model as used by
(�)����). Table �.� shows the summarized results.

�e �rst query consisted of � of the in total � houses with shops. As one can see
the rankings/completions of xp, xd , and �����F do not cover the set of houses
with shops and the query relevant information. �����L and ���, however, are
able to retrieve the houses with shops, the respective rooms, and type or function
information. In other words, they have discovered the concept “houses with shops”.
Other houses are also ranked high, since one of the discriminative features is
house(X). By just removing one house from the query, as done inQ�, the concept
“houses with shops” is not clearly identi�ed by any method. ���, though, provides
query-relevant information such as common discriminative types and functions of
the query houses (function(t), among others). Apart from completing the set of
all houses, it also retrieves city(p). �e intermediate ��� rankings fail to return
reasonable information as for example other houses. �e third query,Q�, consisted
of � of the in total �� rooms in house(h1). We show the non-compressed top-��
ranked items for this query in Table �.�. �e rankings illustrate that ��� is able
to capture all relevant information, by ranking house(h1) the highest followed
by all its rooms, the types and functions of the query atoms and city(p). xd also
retrieves all rooms of house(h1); however, it then fails to rankmore relevant room
functions and types �tting the query rooms. ����� as well as xp also provide only
parts of the information, but no complete summary. �e results for queryQ� on
the smokers–friends network are shown in Table �.�. For this dataset the results
are qualitatively similar. In particular, all elements of clique a are ranked highest
only by ��� and �����L.
All together, this clearly shows that (Q�.�) ��� �nds reasonable set completions
and that (Q�.�) its performance is better than its intermediate rankings and as
good as or even better than ����� using relational features. �e di�erence in
performances of the two ����� variants demonstrate that discriminative relational
pathfeatures indeed carry useful information. �e compression ratios of the label
propagation matrices – ratio of (� nodes + � edges) li�ed vs. ground – were �.��
for Q� – Q� and �.�� for Q�. �is means that for example for query Q� instead
of ��� variables and � ��� factors the li�ed network had ��� variables and � ���
factors. �ese compression rates show that li�ed inference for label propagation is
possible and sensible. (Q�.�) can be answered a�rmatively. Note that ���� and
����� produce the same results.

� .� S������ ��� D���������
In conclusion,Markov logic sets is the �rst, generally applicable, retrieval frame-
work for relational data that can naturally be li�ed by exploiting computational

���

�.
��
��

��
��

��
��

:�
��
��

��
��

�
��
�
��

�
��
��
��
�

Table �.�: Results on Pompeii. Top-�� ranked unary ground atoms produced by the intermediate rankings of ��� xp (���)
and xd (������), �����F , �����L and ��� for three di�erent queriesQ�–Q� on the Pompeii dataset. �e Pompeii dataset
consists of rooms in �� Pompeian households. �e rankings are shown using a compressed, almost natural language like
representation. E.g. “� query houses, � function, city(p), ...” denotes a ranking in which the four houses in the query are
ranked �rst, followed by a ground atom describing a function of a room, followed by the ground atom city(p), and so on.

Q� = {house(h2

),house(h
5

),house(h
9

),house(h
12

)}
xp (���) 4 query houses, 1 function, city(p), 3 types, 2 functions, 13 rooms of h2, 2 types, 1 function, 13 rooms of h5
xd (������) 4 query houses, 13 rooms of h2, 20 rooms of h5, 3 rooms of h12, 4 rooms of h9
�����F all 30 houses, 1 rooms of h2, 4 rooms of h5, 2 rooms of h12, 3 types
�����L 8 houses with shops, 11 rooms (shops), function(t), typeof(ty20), 19 other houses
��� typeof(ty20), function(t), 8 houses with shops, 22 other houses, city(p), 7 rooms (shops)

Q� = {house(h2

),house(h
5

),house(h
9

)}
xp (���) 3 query houses, 1 function, city(p), 3 types, 13 rooms of h2, 1 function, 1 type, 17 rooms of h5
xd (������) 3 query houses, 13 rooms of h2, 20 rooms of h5, 4 rooms of h9
�����F 3 query houses, all remaining 27 houses, 8 rooms of h2 resp. h5, 2 types
�����L 3 query houses, all remaining 27 houses, 10 rooms

��� 3 types and 3 functions of rooms appearing in the query houses, all 30 houses, city(p), 3 rooms

Q� = {room(r1e), room(r1r), room(r
1h

), room(r
1f

), room(r
1o

)}
xp (���) house(h1), 5 query rooms, 4 functions, 5 types, city(p), 15 rooms of h1, 6 houses, 2 types, 1 function
xd (������) house(h1), 5 query rooms, 15 rooms of h1, 1 type, 15 functions, 5 other rooms
�����F 5 query rooms, 15 rooms of h1, 20 other rooms
�����L 20 rooms of h1, city(p), house(h1), 18 other rooms

��� house(h1), 5 query rooms, 15 rooms of h1, 3 types resp. functions of rooms inQ3, city(p), 12 other rooms

��
�

�.�.
���

�
���

���
����������

Table �.�: Full Results on Pompeii. Top-�� ranked unary ground atoms on Pompeii of queryQ�.

Q� = {room(r1e), room(r1r), room(r
1h

), room(r
1f

), room(r
1o

)}
xp (���) xd (������) ��� ����� F ����� L

1.0 house(h1) 1.0 house(h1) 0.7168 house(h1) 9.33 room(r1e) 6.03 room(r1a)
0.7219 room(r1e) 0.8831 room(r1e) 0.5486 room(r1e) 9.21 room(r1f) 6.03 room(r1g)
0.7214 room(r1f) 0.8828 room(r1f) 0.5484 room(r1f) 7.6 room(r1g) 6.03 room(r1e)
0.7163 room(r1r) 0.8798 room(r1r) 0.5466 room(r1r) 7.6 room(r1r) 6.03 room(r1s1)
0.716 room(r1o) 0.8797 room(r1o) 0.5346 room(r1o) 7.55 room(r1o) 6.03 room(r1i)
0.7152 room(r1h) 0.8792 room(r1h) 0.5343 room(r1h) 7.55 room(r1q) 6.03 room(r1r)
0.3461 fctn(cubiculum) 0.4392 room(r1g) 0.0555 room(r1ST) 7.0 room(r1i) 6.03 room(r1o)
0.185 type(ty4) 0.4391 room(r1q) 0.0554 room(r1m) 7.0 room(r1d) 6.03 room(r1p)
0.1729 fctn(fauces) 0.4388 room(r1l) 0.0546 room(r1s1) 7.0 room(r1h) 6.03 room(r1m)
0.1586 type(ty12) 0.4388 room(r1i) 0.0545 room(r1s) 7.0 room(r1l) 6.03 room(r1c)
0.158 fctn(tablinum) 0.4388 room(r1d) 0.0466 room(r1g) 5.32 room(r1a) 6.03 room(r1f)
0.158 type(ty7) 0.4388 room(r1m) 0.0459 room(r1a) 4.76 room(r1s) 6.03 room(r1ST)
0.1579 type(ty5) 0.4386 room(r1s1) 0.0453 room(r1p) 4.76 room(r1ST) 6.03 room(r1UF)
0.1579 fctn(ala) 0.4382 room(r1ST) 0.0453 room(r1b) 4.74 room(r1m) 6.03 room(r1d)
0.1577 type(ty8) 0.4382 room(r1s) 0.0453 room(r1c) 4.71 room(r1s1) 6.03 room(r1h)
0.0367 city(pompeii) 0.4382 room(r1a) 0.0453 room(r1n) 3.47 room(r1b) 6.03 room(r1n)
0.0342 room(r1g) 0.4374 room(r1c) 0.0453 room(r1UF) 3.45 room(r1n) 6.03 room(r1s)
0.034 room(r1q) 0.4373 room(r1p) 0.0346 room(r1q) 3.44 room(r1UF) 6.03 room(r1q)
0.0333 room(r1i) 0.4373 room(r1n) 0.0343 room(r1l) 3.44 room(r1p) 6.03 room(r1l)
0.0333 room(r1l) 0.4373 room(r1UF) 0.0343 room(r1i) 3.43 room(r1c) 6.03 room(r1b)
0.0333 room(r1d) 0.4372 room(r1b) 0.0343 room(r1d) 3.36 room(r22F) 3.42 city(pompeii)
0.0327 room(r1a) 0.4278 type(ty5) 0.0331 fctn(ala) 3.36 room(r6e) 3.42 house(h1)
0.0316 room(r1s) 0.4278 fctn(ala) 0.0331 type(ty5) 3.36 room(r1102) 1.33 room(r14UF)
0.0315 room(r1p) 0.4223 fctn(peristylum ambulatio) 0.0321 type(ty7) 3.36 room(r8r) 1.33 room(r15A)
0.0314 room(r1b) 0.4223 fctn(oecus triclinium) 0.0321 fctn(tablinum) 3.36 room(r1206) 1.33 room(r15V)
0.0314 room(r1ST) 0.4223 fctn(cubiculum ala) 0.0234 type(ty8) 3.36 room(r14m) 1.33 room(r15O)
0.0314 room(r1c) 0.4223 fctn(peristylum viridarium) 0.0203 fctn(fauces) 3.36 room(r26q) 1.33 room(r15R)
0.0314 room(r1n) 0.4223 fctn(fauces andrones) 0.0107 city(pompeii) 3.36 room(r26h) 1.33 room(r15P)
0.0314 room(r1UF) 0.4223 fctn(oecus exedra) 0.0036 type(ty17) 3.35 room(r23I) 1.33 room(r15E′)
0.0313 room(r1m) 0.4223 fctn(atrium vestibulum) 0.0033 room(r15D) 3.35 room(r3006) 1.33 room(r15L′)���

�. ������ ������: ���������� ��� ����������

Table �.�: Results on Smokers-Friends. Top-�� ranked unary ground atoms
produced by the intermediate rankings of ��� xp (���) and xd (������), �����F ,
�����L and��� for queryQ� consisting of � persons from the same clique (clique
a) on the smokers dataset. �e smokers dataset is composed of �� persons of
which � smoke and � have cancer organized in � friendship cliques {a, b, c, d}
with few inter-clique links. �e subscripts denote the ith person in a clique. Items
of clique a are highlighted in gray.

Q� = {p(a1),p(a3),p(a4)}
xp (���) xd (������) �����F �����L ���

p(a4) p(a3) p(a5) p(a1) p(a5)
p(a1) p(a1) p(a3) p(a4) p(a3)
p(a3) s(a2) s(a3) p(a2) p(a4)
p(a2) s(a1) s(a4) p(a3) p(a1)
p(a5) s(a4) s(a2) p(a5) s(a2)
p(b5) c(a2) s(a1) s(a4) c(a2)
p(d2) c(a4) s(b2) s(a1) p(a2)
c(a2) p(a5) s(b4) s(a2) s(a3)
s(a2) s(a3) s(b1) s(a3) s(a1)
s(a3) p(a4) s(b5) c(a2) s(a4)
p(d1) s(b5) s(d2) c(a4) c(a4)
p(d3) c(b5) p(a1) c(b1) p(d2)
p(b2) s(d2) p(a2) s(b1) s(d2)
p(c4) s(b2) c(a2) s(b2) p(d4)
p(d4) c(d1) c(a4) s(b4) p(d5)
p(d5) c(b1) c(b1) s(b5) p(d1)
p(b1) s(b1) c(b5) c(b5) c(d1)
p(b4) s(b4) c(d1) s(d2) p(c4)
p(b3) p(b3) p(a4) c(d1) p(d3)
p(c2) p(d5) p(d5) p(b5) p(c3)

symmetries.� It takes a query consisting of a small set of ground atoms and re-
turns additional ground atoms that belong in this set. Speci�cally, it computes a
relevance score for each ground atom by comparing the personalized PageRank
for it given the query to the unpersonalized PageRank of that ground atom. Since

�We attempt to develop a pragmatic and general framework that is li�able; at the moment,
we make no claim that li�ed techniques necessarily run faster than a specialized, one-o�
solution.

���

�.�. ������� ��� ����������

similar items should intuitively get similar relevance scores, ��� uses relational
path�nding to �nd generalized personalization vectors. Based on the relevance,
positive and negative labels are constructed that are turned in the �nal ranking
using label propagation on the li�ed network. �e experimental results demon-
strate that the networks used can be compressed and thus, li�ed retrieval is not
insurmountable: ��� performs e�ectively in retrieving relational set completions.

���

Part III

BeyondMolecules:
Novel Applications for Learning with

Graphs

���

Learning with graphs has numerous application areas. As we have seen in the intro-
duction and previous parts, the variety reaches from the classi�cation of chemical
structures, over social network analysis and reasoning in web data, knowledge
graphs, or citation networks, to predicting usage frequencies in tra�c and com-
munication networks, or massive online gaming universes. However, most of
these domains are networked data – with one exception: databases of molecules.
Molecules are atoms connected by bonds, which can be elegantly modeled as
graphs. Other types of structured data used in machine learning are sets, strings,
and trees. Among these structures, graphs have the most expressive form and thus
are one of the most challenging and interesting to work with. Most algorithms for
predictive graph mining are, however, designed for or exclusively evaluated on the
classi�cation of molecules or proteins. Only recently have other applications been
studied, for instance the analysis of graphs generated from ���� data (��������,
et al., ����).

Problems in bioinformatics such as drug design are of high practical and scienti�c
relevance. Combined with easy access to benchmark data, this is a strong reason
for the popularity of evaluating methods such as graph kernels on molecule data.
Another reason is that the molecule graphs are “nice” graphs in the sense that they
are fully annotated without uncertainty in the atom and bond labels and there
exist standard ways of how to represented chemical compounds as graphs. In
addition, the available benchmark datasets either comprise many small graphs
(such as ���) or smaller sets of possibly larger graphs (such as ���), cf. Table �.�.
In the following, we will move beyond these “nice” learning settings and introduce
two exciting and important applications in the �elds of robotic grasping and
computer vision that have not been addressed by learning with graphs. Here, the
graphs are typically only partially observed, they can be huge, and nodes and
edges are naturally endowed with continuous information. We will show how the
challenges arising in these domains can be tackled with the techniques developed
throughout this thesis. Speci�cally, we will apply propagation kernels to �� object
category prediction and image-based plant disease classi�cation. Further, we will
demonstrate the use of coinciding walk kernels for image-based leaf spot detection.

In fact, kernels from propagated information are mainly based on easily inter-
changeable propagation schemes. Due to this �exibility and their e�ciency, they
can be applied to large graph databases with missing and uncertain node infor-
mation, and thereby to novel domains beyond databases of molecules. First,
propagation kernels are able to compare larger graphs with reasonable time ex-
pended, opening up the use of graph kernels for object category prediction of ��
point clouds in the context of robotic grasping. Point clouds of household objects,
for example, consist of partially observed curvature and part information, and de-
pending on their size and the perception distance they can easily consist of several
thousands of nodes. Traditional graph kernels su�er from enormous computation
times or memory problems even for medium-sized datasets, rendering their use

���

for this task problematic. �ese issues are aggravated even more when considering
image data. So far, graph kernels have been used for image classi�cation on the
scene level where the nodes comprise segments of similar pixels and one image is
then represented by less than ��� so-called superpixels (��������� and ����,
����). Utilizing o�-the-shelf techniques for e�cient di�usion on grid graphs as
introduced in this thesis allows the use of kernels from propagated information to
analyze images on the pixel level and thus opens up a whole area of interesting
problems in the intersection of graph-based machine learning and computer vi-
sion. As a �rst step, we apply coinciding walk kernels and propagation kernels
in the context of image-based plant disease detection and classi�cation, where
we consider a dataset of thousands of graphs containing a total amount of several
millions of nodes.

���

������� �

�D-OBJECT CLASSIFICATION

�.� Problem Introduction and Related Work ���

�.� Object Category Prediction with Propagation Kernels ���

�.� Experimental Evaluation ���

�.� Summary and Discussion ���

Grasping is a critical and di�cult problem in robotics. �e problem of simply
�nding a stable grasp is di�cult enough, but to perform a useful grasp, we must
also consider other aspects of the grasping task: the object, its properties, and any
task-related constraints. �e choice of grasping region is highly dependent on the
category of an object. �us, we will study the automated prediction of object cate-
gories of a large variety of household objects such as cups, pots, pans, bottles, and
various tools. Category prediction is achieved by employing propagation kernels
between point cloud graphs measuring the similarity of objects based on their
manifold information and semantic parts. Our work highlights the importance of
moving towards the use of machine learning approaches for structured data in
order to achieve the dream of autonomous and intelligent robot grasping: learning
to map low-level visual features to good grasping points under consideration of
object–task a�ordances and high-level world knowledge. We evaluate propagation
kernels for object category prediction on a (synthetic) dataset of �� objects with
�� categories and a (more realistic) dataset of ��� point clouds derived from laser
range data with part labels estimated by a part detector. Finally, we point out the
bene�t of leveraging kernel-based object category distributions for task-dependent
robot grasping.

� .� P������ I����������� ��� R������ W���
In the following, we present a novel application area for learning with graphs:
vision-based robotic grasping. Objects can be grasped in di�erent ways. For ma-
nipulation tasks in arbitrary and dynamic environments, it is essential to perform
a good grasp. �at is, the grasp depends on the speci�c manipulation scenario:
the task, the object, its properties, as well as grasp constraints (e.g., the gripper
con�guration). �us, autonomous and intelligent robot grasping heavily relies on
reasoning about world knowledge, in the form of object ontologies and object–task

���

�. ��-������ ��������������

Figure �.�: Task-Dependent Grasping Pipeline. Top row: �� object (cup); ��
pose and symbolic parts (with labels top (yellow), middle (blue), bottom (red),
and handle (green)); �� k-nn graph�with part labels; graph kernel-based category
distribution. Bottom row: probabilistic logical module; �� predicted pre-grasp
(middle) and grasping point module.

a�ordances, visual features, as well as object categorical and task-based informa-
tion.

Consequently, it is di�cult – if not impossible – to learn an unstructured model
that directly maps visual perceptions to task-dependent grasps, as for instance
introduced in (���� and ������, ����; ��������� and �����, ����; ����, et al.,
����; ������, et al., ����). �is may be especially the case if the robot acts
in highly dynamical real-world environments handling a huge range of objects
having di�erent categories, functionalities and task a�ordances, such as objects
found in households, supermarkets, or industrial sites. Instead, we investigate an
intermediary probabilistic logical module to semantically reason about the most
likely object part to be grasped, given the scene description, object category, and
task constraints. �en, a mapping is learned from part-related local visual features
to good grasping points. We propose a probabilistic logical pipeline, illustrated in
Figure �.�, exploiting graph kernels, object and task ontologies, semantic reasoning,
as well as perceptual low-level learning. By leveraging world knowledge and
relations to encode compact grasping models, our pipeline can generalize over
similar object and task categories, thus o�ering a natural way to encode the non-
trivial realization of high-level knowledge. �is allows us to experiment with a
wide range of object categories and is therefore a critical aspect of autonomous
agents acting deliberately in new environments. In this context, the exploitation of
object ontologies, task a�ordances, and grasping constraints, and thus, successful

��e edges are colored according to the colors of the adjacent nodes.

���

�.�. ������� ������������ ��� ������� ����

(a) champagne glass (b) co�ee mug (c) wine bottle

(d) butcher knife (e) hammer (f) frying pan

Figure �.�: Semantic k-nnGraphs ofHouseholdObjects. Semantic k-nn graphs
(k = �) for six objects, (a) champagne glass, (b) co�ee mug, (c) wine bottle (d)
butcher knife, (e) hammer, and (f) frying pan with part labels top (yellow),middle
(blue), bottom (red), usable area (cyan), and handle (green).�e edges are colored
according to the colors of the adjacent nodes.

generalization, heavily depends on a good object category estimation. For example,
a cup cannot be stored upside-down in a cupboard if it contains liquid, whereas
for a full can this should be possible. As an example for task-dependent grasping,
a knife should be grasped by its handle if its intended use is for cutting, whereas it
has to be grasped at the blade if the task is passing it to a human. For the same
task a screwdriver, however, could be grasped in any region as there is no danger
for the interacting human to cut him/herself. So, our focus here will be on object
category prediction, cf. the top row of Figure �.�. �e main contribution of this
chapter is the use of propagation kernels for �� point clouds to perform object
categorization in the context of robot grasping. �e full reasoning approach for
task-dependent robot grasping is described in (�������, et al., ����).

Object categories are predicted by employing object similarity based on manifold
and semantic part information via propagation kernels as introduced in the �rst

���

�. ��-������ ��������������

Figure �.�: Object Ontology for Task-dependent Grasping. Ontology for the
objects of di�erent �� categories considered for task-dependent grasping.

part of this thesis. Given a (partial) �� point cloud, the surface normals, and part
labels of each point, we construct a k-nearest neighbour (k-nn) graph and compute
object similarities based on the kernel values among the respective labeled and
attributed k-nn graphs. Object category prediction is achieved by applying a
weighted vote on the categories of the most similar objects. Figure �.� shows k-nn
graphs for six di�erent objects. To enhance robustness, we compute a distribution
over categories rather than hard predictions. Knowing the object category allows
the robot to reason about object–task a�ordances and to generalize over object
parts in similar task-dependent grasping situations. Generalization is achieved by
utilizing an object ontology as illustrated in Figure �.�.

Object categorization is an important problem in computer vision and robotics
with numerous and versatile approaches. An extensive overview of related work is
therefore beyond the scope of this section. In the following, we review approaches
based on graph kernels as well as some recent ones considering �� point cloud data.
Considerably previous work addresses the problem of object categorization via
graph kernels for �� images (��������� and ����, ����; ��������, et al., ����;
���������� and ������, ����; �������, et al., ����; ��������, et al., ����;
�����, et al., ����). Although the approaches are quite successful for medium
sized graphs derived from �� data, it is not clear how to generalize them to handle
general �� point clouds, where exploiting the manifold structure of the data is
more challenging. �us, we exploit the graph representation of �� point clouds
and the expressive features generated by the propagation kernel, which is able to
deal with large graphs and missing information, commonly encountered in point
clouds derived from laser range sensors.

Closely related is the work in (����, ����), which introduces a subtree-pattern
kernel for point clouds. �is graph kernel is a special instance of the Weisfeiler–

���

�.�. ������ �������� ���������� ���� ����������� �������

Lehman subtree kernel, cf. Equation (�.��), (������������, et al., ����) which
has proven to be successful on various bioinformatics benchmark datasets. Em-
ploying the Weisfeiler–Lehman test of isomorphism to compare subtree-patterns
is highly e�cient and hence, bounding the number of child nodes in the subtrees
as suggested in (����, ����) is not necessary for the sake of e�ciency. Further,
experimental evaluation in (����, ����) is only carried out for character recog-
nition based on small �� point clouds and not for more challenging problems,
such as general object categorization on �� point cloud data. We will compare
propagation kernels to the Weisfeiler–Lehman subtree kernel in our experimental
evaluation.

Several other closely related lines of work tackle the problem of �� object recog-
nition (����� and ������, ����; �����, et al., ����; �������� and ��, ����).
However, they do not exploit manifold information in a graph kernel. �us, to
the best of our knowledge we present the �rst approach utilizing manifold-based
graph kernels for �� point cloud categorization and real-world robotic grasping.
In the following, we will introduce our approach to object category prediction
employing propagation kernels.

� .� O����� C������� P��������� ���� P���������� K������
Ourmain goal is to estimate the category of an object by retrieving the objects with
the most similar global properties based on a graph kernel leveraging manifold
information and semantic object parts. While bene�cial for grasping point predic-
tion (�������, et al., ����a), global object similarity also ensures a strong enough
appearance-based predictor for object category. �is prediction in the form of
a distribution on object categories is then used as a prior for the probabilistic
logical reasoning for task-dependent grasping. We will use propagation kernels as
introduced in Chapter � of this thesis to model global object similarity for object
category prediction.

�.�.� Graph Representation of �� Point Clouds
To get the distribution on object categories for a particular query object, we �rst
represent its �� point cloud as a graph. �en the graph kernel between this graph
and graphs built from objects in an object database can be computed to retrieve the
objects deemed most similar. We represent each object by a labeled and attributed
graph where the labels are semantic parts and the graph structure is given by
a k-nearest neighbour (k-nn) graph by connecting the k = � nearest points in
the point clouds with respect to the Euclidean distance in �� space. For each
directed edge we add an edge pointing in the opposite direction to make the graph
undirected. k-nn graphs of several objects are illustrated in Figure �.�.

Curvature information can be captured in two di�erent ways, either by node at-
tributes or edge weights. In our experiments we will compare both representations

���

�. ��-������ ��������������

and discuss the trade-o� between accuracy and speed of the kernel computation.
When representing curvature by edge weights, we assign a weight re�ecting the
change in the object surface between the incident nodes encoded by the angle
between the normals to the tangent planes at the respective points. �e weight of
edge (u, v) between two nodes is given by

wuv = �nu ⋅ nv �, (�.�)

where nu is the normal of point u and ⋅ is the dot product. When using attributes,
we endow each node with a continuous curvature attribute approximated by its
derivative, that is, by the tangent plane orientations of its adjacent nodes. �e
attribute of node u is given by

xu =
�

�N (u)� �v∈N (u) �nu ⋅ nv �, (�.�)

where nu is the normal of point u andN (u) are the neighbors of node u. Some
notes on geometry and the derivation of these expressions are provided in Ap-
pendix B.

�e nodes have �ve semantic classes encoding object part information: top,middle,
bottom, handle and usable area. We stress that our graph representation of �� point
clouds as illustrated in Figure �.� captures both manifold information (geodesic
distance) via their structure and semantic information (object parts) via their node
labels.

�.�.� Graph-kernel Based Object Classi�cation
�e similarity measure among objects is a kernel function over counts of similar
node label distributions of the intermediate iterations of a information propagation
scheme on the graphs. We use propagation kernels as de�ned in Equation (�.�)
applied to fully labeled graphs, cf. Section �.�.�. Note that we use label di�usion as
propagation scheme even though there could be a small fraction of unlabeled nodes
in the graphs due to missing sensor measurements. �e node label distributions
for unlabeled nodes will be initialized uniformly. However, no label push back, cf.
Equation (�.��), is performed as missing labels are expected to occur in rare cases
only; namely when the part detector is not able to uniquely map the points in the
point clouds to a speci�c part.

Propagation kernels leverage the power of evolving continuous node label distribu-
tions as graph features and hence capture bothmanifold and semantic information.
Given a new object with graph representation G∗ that the robot aims to grasp, we
�rst select the top n most similar graphs {G�,�,Gn}, where similarity is given by
the respective row of the correlation matrix K̂, where

K̂i j =
Ki j�
KiiK j j

(�.�)

���

�.�. ������������ ����������

and K is the propagation kernel as computed by Algorithm �. Note that by using
K̂ instead of K we achieve a normalization with respect to the number of points in
the point clouds and hence, with respect to the scale of the objects. We set n = ��
in all our experiments. Second, we build a weighted average over the categories of
the objects corresponding to {G�,�,Gn}, where the weight function is de�ned as

f (x) = exp (−x) (�.�)

with x being the rank a�er sorting the kernel row K̂∗,∶. �is average is �nally
used as a prior distribution on the object category for a query object with graph
representation G∗ in the probabilistic logical module, where the �nal reasoning
about the grasp to be performed is executed. For example, the prior distribution
over object categories for the cup in Figure �.� using t��� = �� is:

0.56 ∶ cup;0.36 ∶ can;0.05 ∶ pot;0.02 ∶ pan;0.002 ∶ bottle.

Now, we will proceed by presenting experimental results on object category pre-
diction.

� .� E����������� E���������
Our intention here is to investigate the power of graph kernels, especially the
propagation kernel, for object category prediction and thus its applicability in a
probabilistic logical approach to task-dependent robot grasping. �e three main
questions we aim to answer in this section, are:

(Q�.�) How sensitive are propagation kernels with respect to their parameters,
and with respect to missing label and attribute information for the task
of object category prediction?

(Q�.�) Does incorporating manifold information, i.e. graph structure, improve
upon label-based category prediction?

(Q�.�) Are propagation kernels competitive with state-of-the-art graph kernels
the use in task-dependent robot grasping?

�.�.� Datasets
�e three datasets (��, ����, and ����) for quantitative evaluation are generated
with the help of the���� simulator� and their statistics are summarized in Table �.�.

For the �rst dataset (��) data acquisition is fully simulated. �at is, we have the
complete point cloud of the input object and the semantic part labels are pro-
vided as ground truth. �e point cloud is obtained from a previously de�ned

�http://orca-robotics.sourceforge.net

���

http://orca-robotics.sourceforge.net

�. ��-������ ��������������

Table �.�: Dataset Statistics and Properties. Note, that ���� and ���� di�er in
the node labeling. In ���� nodes are manually labeled, whereas in ���� semantic
node labels are estimated by a part detector. �� is used in all experiments as
database, so that graph kernels for the more realistic scenarios (���� and ����)
are computed between the �� database graphs and the respective query object.

properties

graphs median max # total # # node # graph attr.
dataset # nodes nodes nodes labels labels dim.

�� 41 964 5 037 1 377 5 11 1
����/���� 126 1 229 4 447 1 442 5 11 1

�� mesh of the object by up-sampling points using midpoint surface subdivi-
sion. Object parts are extracted manually from the point cloud. �is “perfect
scenario” is then used twofold. First, we use this dataset to analyze the parameter
sensitivity of propagation kernels and to evaluate object category prediction in
a synthetic scenario. �e dataset denoted as �� contains �� objects belonging
to �� categories modeled by the ontology illustrated in Figure �.�. Second, we
use these �� objects G�� = {G�, ...,G��} as database to compute the propagation
kernel Kt���(G∗,G��) = ∑t���

t=� K(G(t)∗ ,G(t)��) to get the similarity among any query
object G∗ and the database objects. Hence, �� is used as object database in all
experiments; it has a total of �� ��� nodes. Further, we plan to use it in execution
time on a robot performing task-dependent grasps.

For the other two datasets (���� and ����) the point clouds are simulated laser
range data and the following steps of obtaining the scene description are executed
in the ���� simulator. Each point cloud of a query object is a partial view from
one out of eight possible angles. �e �� data for each view is acquired from a
simulated range camera (with the parameters of the Kinect sensor), placed on the
robot platform. For each object we use between one and eight views depending
on whether the object is symmetric or not. So, for symmetric objects as the
champagne glass, cf. Figure �.�, we only use one point cloud. We further consider
two possible settings. In a �rst setting, we obtain the labels manually from the
point cloud, that is we use ground truth label information. We denote this dataset
as ����. In a second setting we also replace ground truth parts with more realistic
part detector estimates.� We denote this dataset as ����. �e two more realistic
datasets ���� and ���� each contain ��� labeled point clouds which are instances
of �� objects of all categories except cooking tool. �e datasets �� and ���� are
available for download at http://www.first-mm.eu/data.html.

�Note, that the part detector estimates are corrected for various tool objects as the current
detector only detects correct parts but not their correct location.

���

http://www.first-mm.eu/data.html

�.�. ������������ ����������

t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(a) ��
t
m
a
x

w

10
−8

10
−6

10
−4

10
−2

0

2

4

6

8

10

12

14

(b) �� normalized

60%

65%

70%

75%

80%

Figure �.�: Parameter Sensitivity of Propagation Kernels on��. �e plots show
heatmaps of average accuracies (leave-one-out ��) of �� (labels only) w.r.t. the
bin widths parameter w and the number of kernel iterations t��� for the dataset
��. In panel (a) we show the kernel matrix directly; in panel (b) we show the
normalized kernel matrix. ×marks the highest accuracy.

�.�.� Parameter Analysis and Sensitivity to Missing Information
To analyse parameter sensitivity for object category prediction with respect to
the kernel parameters w (��� bin width) and t��� (number of propagation kernel
iterations), we computed average accuracies over �� randomly generated test sets
for all combinations of w and t���, where w ∈ {��−�, ��−�, . . . , ��−�} and t��� ∈
{�, �, . . . , ��}, on the �� dataset. From Figure �.� showing the resulting heatmaps
of accuracies from a leave-one-out corss validation, we see that it is favorable to
normalize the kernel matrix in order to make the predictions independent of the
object scale. A cup scanned from a larger distance being represented by a smaller
graph is still a cup and should be similar to a larger cup scanned from a closer
view. So, for our experiments on object category prediction we will use normalized
graph kernels. Further, we will set the bin width parameter of ��� to w = ��−�.
To asses how sensitive propagation kernels are to missing information, we ran-
domly selected x% of the nodes in all graphs of �� and removed their labels
(������) or attributes (����), where x ∈ {��, ��, . . . , �}. To study the perfor-
mance when both label and attribute information is missing, we selected (indepen-
dently) x% of the nodes to remove their label information and x% of the nodes
to remove their attribute information (������ & ����). Figure �.� shows the
average accuracy of �� reruns. While we see that the accuracy decreases with
more missing information, the performance stays more stable in the case when
attribute information is missing. �is suggests that semantic part information
is more important for the problem of object category prediction. Further, the
standard error is increasing with more missing information, which also follows

���

�. ��-������ ��������������

labels & attr

labels

attr

a
v
g
.
a
c
c
(
%
)

information observed (%)

10 20 30 40 50 60 70 80 90 100

50

55

60

65

70

75

80

85

Figure �.�: Missing Information vs. Accuracy on ��. We plot observed infor-
mation (�) vs. avg. accuracy (�) ± standard error of ��� on ��. For ������ only
label information is missing, for ���� only attribute information is missing and
for ������ & ���� both is missing. �e reported accuracies are averaged over ��
reruns.

the intuition that more unknown information results in a higher variance in the
predictions.

In summary, we can answer question (Q�.�) by concluding that ��s are not overly
sensitive to the choice of parameters and that they behave well in the presence of
missing information.

�.�.� Experimental Protocol
We compare propagation kernels (��) to the Weisfeiler–Lehman subtree kernel
(��) and several baselines: a linear kernel (�) taking as input only the label counts
but no graph structure, an attribute kernel (�) taking the mean of a Gaussian node
kernel among the attributes of all pairs of nodes in the respective graphs, and �
��� corresponding to �� with t��� = � using the attribute information only. For
all �� computations we use the fast (but exact) hashing-based implementation
of the Weisfeiler–Lehman kernel as introduced in (��������, et al., ����). �e
propagation kernel leveraging continuous node attributes (���) is described in
Algorithm �. To achieve classi�cation we select the ��most similar objects from
the database �� based on the respective row of the normalized kernel matrix, Equa-
tion (�.�), and build a weighted average of their categories using Equation (�.�).
Note that predicting the object category utilizing a kernel machine directly (we

���

�.�. ������������ ����������

Table �.�: Results on Attributed Point Cloud Graphs (��). Average accuracies
(avg. acc in �) and average ranks (avg. rank) of the true category (the lower
the better) of ��� �� on ��. �e reported standard errors (stderr) refer to ��
kernel recomputations for all methods. Average (elapsed) runtimes for kernel
computations (possibly utilizing hyperthreading) are given in seconds (x′′). ��*
uses the edge weights de�ned in Equation (�.�), whereas all other methods use
unweighted graphs. �e kernel parameters, t��� for all ��s and h��� for��, were
learned on the training splits (t���, h��� ∈ {�, �, . . . , ��}). � ��� corresponds to
�� with t��� = �. Bold indicates best performance.

������ ������
���� ����

� �� �� ��* �� �2� � � ���

avg. acc 63.4 75.6 70.7 71.0 76.8 82.9 36.4 63.4± stderr 0.0 0.6 0.0 0.2 1.3 0.0 0.0 0.0
avg. rank 1.88 1.54 1.83 1.70 1.60 1.41 4.34 1.88
runtime 0.0′′ 0.2′′ 0.4′′ 0.2′′ 0.3′′ 34.8′′ 40.0′′ 0.0′′

tried support vector machine classi�cation) did not give competitive results. �is
might be caused by the large number of classes in combination with few training
examples. For missing part label information on the nodes we initialize the label
distribution uniformly. For�� we use an additional label as suggested in (����-
��������, et al., ����). For all experiments on �� we learn the �� and�� kernel
parameter t��� and h��� on each training set by leave-one-out cross validation
(��� ��). �e parameter ranges are set to t���, h��� ∈ {�, �, ..., ��}. For the exper-
iments on ���� and ���� we use the best parameter values based on one ��� ��
on all objects in ��. For ��, performance is measured by ��� ��. On ���� and
���� we report average results on all objects as �� is used as separate training data
set.

�.�.� Quantitative Results on Object Category Prediction
In our �rst set of experiments we consider attributed graphs where the curvature
information is encoded as a one-dimensional continuous node attribute as given by
Equation (�.�). We use the �� objects in �� and follow the experimental protocol
introduced above. �e experimental results for the �� object classi�cation are
summarized in Table �.�. Propagation kernels can easily deal with the point cloud
graphs. From the set of baseline graph kernels considered in the experimental
evaluation in Chapter �, only �� could be computed. Shortest path kernel (��)
(��������� and �������, ����), graph hopper kernel (��) (�������, et al.,
����), and common subgraph matching kernel (���) (������ and ������, ����)

���

�. ��-������ ��������������

wl

pk

a
v
g
.
a
c
c
(
%
)

iterations

0 5 10 15

60

65

70

75

80

85

Figure �.�: Number of Iterations vs. Accuracy on ��. Accuracy (�) is plotted
against the number of kernel iterations of �� and ��. For �� accuracies are
averaged over �� kernel recomputations; the standard error was �% except for
t��� = �, �, �� it was �.�%, �.�%, �.�%. Both methods use unweighted graphs and
label information only; no attributes are used.

were either ��� �� ������� or the computation did not �nish within ��h for all
settings. On �� we clearly see that both graph kernels �� and�� improve upon
using label or attribute information only; however,�� performsworse than ��. ��*
using the curvature information encoded in the edge weights, cf. Equation (�.�),
gives worse results than considering unweighted graphs (��). Propagation kernels
clearly bene�t form their �exibility as classi�cation accuracy can be improved
from ��.�% to ��.�% when considering the object curvature attribute in ���,
cf. Equation (�.�). Further, propagation kernels signi�cantly leverage manifold
information as the performance of all �� methods is better than using label or
attribute information only.

In the next experiment we study the behavior of �� and�� with respect to their
kernel iterations. Average accuracies plotted against the number of kernel iterations
are shown in Figure �.�. �e best results for �xed number of iterations of �� on
unweighted graphs using the labels only reach ��.�% accuracy and are achieved
for kernel iterations larger than ��. �e result when using label information only is
��.�% accuracy. It corresponds to the results of �� and�� for t��� = h��� = �. ��
can only improve upon this baseline by �.�% which is achieved a�er one iteration.
�� improves the baseline by ��.�% resulting in an accuracy over ��%, which is

���GB of memory were exceeded.

���

�.�. ������������ ����������

wl

pk
a
v
g
.
a
c
c
(
%
)

iterations

0 5 10 15

45

50

55

60

Figure �.�: Number of Iterations vs. Accuracy on ����. Accuracy (�) is plotted
against the number of kernel iterations of �� and ��. For �� accuracies are
averaged over �� kernel recomputations; standard errors were below �.�% for all
values of t���.

considered a good performance in object recognition tasks. �ese results are
extremely promising given that we tackle a classi�cation problem with �� classes
having only �� training examples for each query object.�us, questions (Q�.�) and
(Q�.�) can already be answered a�rmatively. Unfortunately, computing ��� on ��
took over half a minute. �is is not desirable in a scenario where a robot actually
attempts to grasp an object. In the following set of experiments, simulating the
more realistic scenarios in task-dependent grasping, we will therefore not consider
curvature information.

Now, we will evaluate �� and�� on the more realistic scenarios ���� and ����.
We choose the kernel iteration parameters for both methods according to the
best results on �� leading to t��� = �� for �� and h��� = � for ��. Predictive
performance and runtimes are reported in Table �.�. On ���� only propagation
kernels are able to improve the performance of the baseline method. In the third
scenario (����) average accuracies are slightly worse for both graph kernels than
just using the label information only. However, plotting average accuracies against
the number of kernel iterations, as shown in Figure �.�, reveals that �� actually
can improve upon using labels only. �us by changing the learning procedure to
set t��� we can hope to improve object category prediction even in the challenging
scenario ����. �us, question (Q�.�) can be answered a�rmatively. For ��
setting h��� = � gives the best performance leading to the conclusion that this
kernel cannot leverage manifold information encoded in the graph structure of

���

�. ��-������ ��������������

Table �.�: Results on Object Category Prediction (���� and ����). Average
accuracies (avg. acc in � ± stderr) and average rank (avg. rank) of the true
category in the distributions (the lower the better) on all objects in the datasets
���� and ���� for graph kernels �� and ��, and the baseline �. �e reported
standard errors (stderr) refer to �� kernel recomputations for all methods. Bold
indicates best performance for the respective measure.

� �� ��
(t��� = 0) (h��� = 1) (t��� = 12)

��
�
� avg. acc 61.1 ±0.0 58.7 ±0.0 64.4 ±0.2

avg. rank 1.78 1.71 1.56
runtime 0.0′′ 0.3′′ 0.1′′

��
��

avg. acc 57.9 ±0.0 57.1 ±0.0 56.4 ±0.2
avg. rank 2.09 2.01 1.83
runtime 0.0′′ 0.3′′ 0.1′′

the �� point clouds in ����. �ese results lead to an a�rmative answer of (Q�.�);
propagation kernels outperform the considered sate-of-the-art graph kernels on
the task of object category prediction in the context of task-dependent robot
grasping.

Besides analyzing the most probable category, our aim here is to also evaluate the
category distributions and their use in the probabilistic logical approach to task-
dependent grasping. First, we analyze example distributions for objects of three
di�erent categories bowl, cup, and knife in Figure �.�. �e category distributions
for all bowls have its highest probability at the correct category (Figure �.�(a)).
Predicting the category of mug large, however, fails (Figure �.�(b)). �is might
be because the body of this particular cup is shaped more like one of the pans
and some pots in the database. In general it is reasonable that the cups look more
like pans and pots as they have a similar shape� and the same parts (top,middle,
bottom, and handle). �e distributions of the knives (Figure �.�(c)) clearly show
their similarity to other knives but also to other tool objects like hammers and
screwdrivers. �is is consistent with their semantic parts (usable area and handle).
�e higher probability mass for the category knife is caused by their shape, i.e.,
the graph structure of the corresponding point clouds. �is behaviour is exactly
desired in the probabilistic logical grasping model as task a�ordances and object
ontology can be used to achieve generalization.

In order to quantitatively compare the distributions we compute the average rank
of the true category in the distributions obtained from all kernels �,��, and ��.

�Note, that we use the correlation matrix (Equation (�.�)) which yields a normalization with
respect to the size (number of nodes).

���

�.�. ������������ ����������

bowl3bowl2bowl

mug largemug shortmug ikea

b
ot
tl
e

h
am

m
er

sc
re
w
d
ri
ve
r

k
it
ch
en

to
ol

b
ow

l

p
anp

ot

k
n
if
e

ca
n

gl
as
s

cu
p

p
r
o
b
a
b
il
it
y
(
%
)

25

50

75

100

(a) Bowls

b
ot
tl
e

h
am

m
er

sc
re
w
d
ri
ve
r

k
it
ch
en

to
ol

b
ow

l

p
anp

ot

k
n
if
e

ca
n

gl
as
s

cu
p

p
r
o
b
a
b
il
it
y
(
%
)

25

50

75

100

(b) Cups

butcher2butchervegetable

b
ot
tl
e

h
am

m
er

sc
re
w
d
ri
ve
r

k
it
ch
en

to
ol

b
ow

l

p
anp

ot

k
n
if
e

ca
n

gl
as
s

cu
p

p
r
o
b
a
b
il
it
y
(
%
)

25

50

75

100

(c) Knives

Figure �.�: Estimated Category Distributions. Distributions among categories
derived from �� with t��� = �� for three example objects of each of the following
categories: bowl (a), cup (b), and knife (c).

�e results are also listed in Table �.�. Again, we see that leveraging the graph
structure improves the average rank especially for the third scenario ����. As we
are also interested in achieving good performance as fast as possible we show the
average rank of the true category plotted against the number of kernel iterations
in Figure �.�. On ���� �� iterations of �� result in the lowest average rank for the
Weisfeiler–Lehman subtree kernel. However, �� results in a not much worse rank
a�er only � kernel iterations and hence in faster time. In robotics computation
time is an important criteria. Obviously we do not want the robot pausing too

���

�. ��-������ ��������������

wl

pk

a
v
g
.
r
a
n
k

iterations

0 5 10 15

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Figure �.�: Number of Iterations vs. Average Rank on ����. Average ranks of
the true category in the distribution are plotted against the number of kernel
iterations of �� and��. For both axes lower values are better as we would like to
achieve the best possible result, i.e., an average rank of �, as fast as possible.

long before actually grasping the desired object appropriately. Hence, evaluating
applicability in robotics also involves analyzing the trade-o� between qualitative
performance and computation time. Figure �.� clearly shows a superior behaviour
for propagation kernels as a lower rank is reached in shorter time. �ese results
answer question (Q�.�) a�rmatively.

�.�.� Bene�ts for Task-dependent Grasping
In this paragraph, we aim to investigate the importance of using the object category
distributions derived from the propagation kernel in the probabilistic logical
pipeline described in the problem introduction. We compare the performance of
incorporating kernel-based distributions versus uniform distributions on object
categories for two inference problems. In the �rst problem, we want to infer the
most suitable grasping task to be performed on a given query object. �e second
problem is to predict the most suitable pre-grasp, i.e. graspable region for a given
grasping task. �is setting is depicted in the bottom row of Figure �.� for the given
task pass. Fraction of successful predictions on �� for task selection is ��.��%
when using the uniform prior and ��.��% when incorporating the manifold prior
derived by propagation kernels. For the pre-grasp selection we achieve ��.��%
accuracy with the uniform prior and ��.��% with the ��-based manifold prior. A
more detailed evaluation of the whole probabilistic logical pipeline can be found
in (�������, et al., ����). In summary, the results for both grasping tasks are

���

�.�. ������� ��� ����������

signi�cantly better when using the graph kernel distribution as opposed to the
uniform one.

� .� S������ ��� D���������
To summarize, we have presented a novel application of graph kernels, speci�cally,
object category prediction as a prerequisite for task-dependent robotic grasping.
Given an object to grasp, we convert its �� point cloud into a graph and use a
part detector to predict part labels for each node. Continuous curvature infor-
mation is encoded as node attributes. �is graph representation of an object is
then compared to graphs of known objects in a database, and the most similar
ones are used to predict the category of the unknown object. Whereas many
state-of-the-art graph kernels cannot cope with the graphs derived from �� point
clouds, propagation kernels can be computed among the database of �� objects
covering more than �� ��� nodes in under ���milliseconds. Further, propagation
kernels outperformWeisfeiler–Lehman subtree kernels and we showed in a series
of experiments that it is able to quickly and accurately predict an object’s category.
Further, we show that propagation kernels behave naturally in the presence of
missing label and attribute information. �is is especially important for object
category prediction based on �� point clouds as labels and attributes are derived
from sensor measurements of a laser range scanner mounted on a mobile robotic
platform. Finally, our graph-kernel-based object category predictor has measur-
able impact on the overall quality of the task-dependent robotic grasping pipeline
it is part of. Our results highlight the importance of good category distributions for
task-dependent robot grasping and encourage further research on graph kernels
for object category prediction.

���

������� ��

IMAGE-BASED PLANT DISEASE CLASSIFICATION

��.� Problem Introduction and Related Work ���

��.� Leaf Spot Detection with Coinciding Walk Kernels ���

��.� Plant Disease Classi�cation with Propagation Kernels ���

��.� Summary and Discussion ���

Modern communication and sensor technology coupled with powerful pattern
recognition algorithms for information extraction and classi�cation allow the
development and use of integrated systems to tackle environmental problems.
�is integration is particularly promising for applications in crop farming, where
such systems can help to control growth and improve yields while harmful en-
vironmental impacts are minimized. �us, the vision of sustainable agriculture
for anybody, anytime, and anywhere in the world can be put into reach. In this
chapter, we study the use of kernels from propagated information for the task of
disease classi�cation based on cell phone images of sugar beet leaves. In particular
we analyze the use of coinciding walk kernels for leaf spot detection, a �rst crucial
step in the pattern recognition pipeline. Further, we apply propagation kernels
to texture-based disease classi�cation. �e classi�cation of disease symptoms
caused by various fungi or bacteria is evaluated on a comprehensive dataset of
� ��� regions extracted from ��� images of sugar beet leaves.

�� .� P������ I����������� ��� R������ W���
In this section, we will motivate the importance of accurate plant disease classi-
�cation and give a brief introduction to diseases of sugar beet plants. Moreover,
we will introduce the core steps of the considered pattern recognition pipeline for
plant disease classi�cation.

��.�.� Sustainable Agriculture for Anybody, Anytime, and Anywhere
In the presence of increasing environmental challenges such as water scarcity,
climate change, concerns to food safety and the reduction of adverse environmental
impacts, sustainable agriculture is an extremely important resort to cope with
a rapidly growing world population. �e scope of farming that is sustainable
outreaches short-term yield maximization and e�ciency steered exploitation of

���

��. �����-����� ����� ������� ��������������

resources. Instead the focus lies on farming methods to secure long-term yields of
products satisfying the food and �ber needs of animals and humans while even
enhancing the quality of the environment. One important aspect to achieve this
goal is to control the outbreak and spread of plant diseases causing signi�cant
reduction in the quantity and quality of farming products. Hereby, it is crucial to
apply targeted rather than broad and overdosed preventive control to minimize
soil and water damage. Targeted disease control, however, relies on two major
requirements. First, plant diseases need to be identi�ed reliably, even for early
stage outbreaks. And second, information about diseases and possible treatments
has to reach crop producers and farmers promptly, especially in remote areas that
are di�cult to access by experts. �e approach presented in this chapter aims
to achieve both requirements, accurate plant disease classi�cation and real-time
forecasting based on the particular state in the �eld.

In addition to providing farmers with treatment recommendations, accurate plant
disease classi�cation is also pivotal in order to monitor the outbreak and spread of
diseases. �is information can then again be used to predict yield losses and to
forecast the temporal and spatial disease spread facilitating the coordination of
countermeasures. While there exist many methods to classify plant diseases as for
instance molecular techniques, non-invasive approaches such as visual assessment,
are more favorable. Modern techniques of visual disease assessment are based on
digital photography combined with image analysis (����, et al., ����; �������
and �����, ����a) or hyperspectral imaging (�����, et al., ����; ���, et al., ����).
Visual image analysis also contributes to the understanding of biological processes
such as the molecular mechanisms of photosynthesis (�������, et al., ����) or the
growth rate and spread of symptoms on the disease carrier (������ and ������,
����; �����, et al., ����).

Mobile devices such as smart phones have become widespread consumer products
and the prevalence and ease of use of smart phone cameras provides new challenges
and opportunities for image processing and analysis. Opportunities arise from
the availability of digital cameras in environments where they were not naturally
present only a few years ago. Challenges are due to the fact that implementations
of image processing algorithms on a cell phone have to comply with particular
characteristics such as constrained battery life, restricted computational power,
or limited bandwidth. �e work reported here results from a project on using
cell phone images in an agricultural scenario. We are developing a system where
farmers take pictures of plants they suspect to be infected by a disease such as
shown in Figure ��.�. Information extracted therefrom are then send to a central
server and analysis results are supposed to be reported back to the farmer while
still in the �eld. In this setting, e�cient and reliable image analysis is pivotal.
Given the weak connection strengths out in the �elds or the increased fees for high
volume data transfer, it is hardly possible to transmit several pictures of su�cient
resolution. If, on the other hand, the extraction of regions of interest or even

���

��.�. ������� ������������ ��� ������� ����

(a) Cercospora (b) Ramularia (c) Pseudomonas

(d) Rust (e) Phoma (f) Cercospora &Phoma

Figure ��.�: Example Images of Sugar Beet Leaves. Cell phone camera images
of beet leaves showing leaf spots caused by (a) Cercospora beticola (cerc), (b)
Ramularia beticola (ram), (c) Pseudomonas syringae (pseu), (d) Uromyces betae
(rust), (e) Phoma betae (pho), and (f) combined infestation of Cercospora and
Phoma.

the feature computation were performed by an app running on the cell phone,
transmission times and costs reduce considerable. In this case, however, elaborate
image processing techniques being both robust and limited to the restricted com-
putational resources need to be applied. State-of-the-art approaches address these
issues by implementing cascades of e�cient image preprocessing, region detection,
feature extraction, and classi�cation steps (�������, et al., ����b; ��-�����, et al.,
����; ������� and �����, ����a,b). Usually these steps are heavily tailored to
the recognition of pathogens that infect crop plants (������, ����).

��.�.� Diseases of Sugar Beet Plants
Sugar Beet (Beta vulgaris subsp. vulgaris) is a widely cultivated commercial crop
used to produce, for example, table sugar. Unfortunately, fungal and bacterial

���

��. �����-����� ����� ������� ��������������

attacks frequently reduce yields. An early recognition of disease onsets assisted
by our pattern recognition approach can trigger targeted control reducing costs
and environmental burden. In particular, we attempt to automatically recognize
symptoms of �ve common kinds of infections of sugar beet plants:

Cercospora beticola (cf. Figure ��.�(a)) is a fungal plant pathogen. Infected beet
plants show leaf spots that are round blemishes with a de�nite edge between
infected and healthy leaf tissue; while the border of a spot is typically darker and
of brownish-reddish hue, spot interiors appear bright with dark spores.

Ramularia beticola (cf. Figure ��.�(b)), also a fungal pathogen infecting beet plants,
shows irregular leaf spots with light interior surrounded by a light brown to brown
border. �e interior shows white spores. Leaf spots at a pronounced stage are
likely to chap or form coadunate regions.

Pseudomonas syringae pv. aptata (cf. Figure ��.�(c)), the only considered bacterial
pathogen commonly infecting beets, shows light to dark brown spots potentially
with a light interior. �e spots may have a brown to black edge.

Uromyces betae (cf. Figure ��.�(d)) is a fungal pathogen causing sugar beet rust.
Typical symptoms are small reddish-brownish spots surrounded by yellow areas.

Phoma betae (cf. Figure ��.�(e)) is a soil-borne fungus and plant pathogen showing
rather large leaf spots of concentric rings with irregular shape and less pronounced
edges; borders of a spot are yellowish or light brown, spot interiors are charac-
terized by darker brownish hues; when several spots are present, they can grow
together and form larger blotches.

��.�.� Pattern Recognition Pipeline for Plant Disease Classi�cation
Following existing work, we take a statistical machine learning approach using
�eld data re�ecting the variety of the real environment to deal with changes in
illumination, scale, and perspective (�������, et al., ����b; ��-�����, et al., ����;
������� and �����, ����a,b). �e data considered for learning and evaluation
in our approach are cell phone images from unconstrained settings – di�erent
camera types, di�erent resolutions, no constraints on how to take the image.
Pattern recognition pipelines for plant disease classi�cation essentially consist
of three steps: region detection, feature extraction, and class prediction. Region
detection is performed on the whole input image to extract regions of interest being
likely to show disease symptoms. In this step a common approach is to apply a color
�lter, cf. Figure ��.� (�������, et al., ����b; ������� and �����, ����b). While
being feasible on the cell phone the computation is rather ad-hoc and therefore
very sensitive to the applied color thresholds. To minimize the data volume to be
sent to the central sever for further processing the color �lters are likely to detect
only a small subset of the regions showing disease symptoms. �erefore, we study
the application of coinciding walk kernels introduced in Chapter � of this thesis to

���

��.�. ������� ������������ ��� ������� ����

(a) input image (b) max ��� (c) �ltered image (d) binary regs (e) extracted regs

Figure ��.�: Color-Based Symptom Extraction. Cell phone camera image of a
beet leaf su�ering from Phoma betae (a), and preprocessing and region detection
steps: maximal ��� values (b), color-�ltered binary image (c), binary region
image (d), and extracted regions (c).

detect leaf spots based on a few positive training regions derived by a color �lter.
We will introduce this approach in more detail in Section ��.�.

Feature computation and classi�cation is then performed on each extracted region
independently. �is approach enables us to identify leaves showing infection
symptoms from multiple diseases as illustrated in Figure ��.�(f). Feature computa-
tion is the core step in the pattern recognition pipeline. A wide range of possible
techniques can be considered to extract meaningful descriptors. On the one hand,
the input regions contain complex information, such as intensity and color values,
edge contours, or intensity changes, which can be revealed by applying various
transformations to the input region images. On the other hand, a variety of statis-
tics can be extracted from the original image and its transformations. Existing
approaches to plant disease classi�cation as described in (�������, et al., ����b;
��-�����, et al., ����; ������� and �����, ����a) rely on statistical texture de-
scriptors (��������, et al., ����) for e�cient and accurate classi�cation. However,
considering all possible combinations of statistical measures and input images
leads to a high-dimensional, complex feature space being both costly to compute
and prone to over�tting. For example, if we consider the following commonly used
image transformations: intensity image, red, green, and blue channel, local binary
patterns (�����, et al., ����) of the intensity image, gradient magnitude image,
gradient direction image, and the local binary pattern of the gradient magnitude
image as input values, and three simple statistics: mean, variance, and entropy, as
well as three co-occurrence-based features according to (��������, et al., ����)
(e.g. for four di�erent pixel o�sets) we get �� single (possibly multi-dimensional)
descriptors. �is considerably small set of candidate features leads to ��� possible
descriptor sets being extremely costly to compute and to evaluate. �us, deriving
a meaningful feature set turns into a highly non-trivial feature selection process

���

��. �����-����� ����� ������� ��������������

(�������, et al., ����b; ������� and �����, ����a). To overcome this problem
we propose the use of propagation kernels for texture-based plant disease classi�ca-
tion. Surprisingly, applying the grid graph implementation of propagation kernels,
introduced in Chapter �, straight out-of-the-box results in highly promising classi-
�cation accuracies while avoiding the complex feature selection process. We will
evaluate this approach on a comprehensive dataset of � ��� regions extracted from
��� images recorded with six di�erent cell phone camera types in Section ��.�.

�� .� L��� S��� D�������� ���� C��������� W��� K������
In this section, we study the use of coinciding walk kernels introduced in Chapter �
for the task of image-based leaf spot detection.

��.�.� Limitations of Color-Filter Approaches
Extraction of diseased regions in images of plant leaves is most commonly tackled
by simple color �lters. Color-based leaf spot detectors essentially compute a binary
image B from the input image I such that all pixels with color values above a given
threshold are foreground pixels and all other pixels are background pixels. We can
also compare the values of the di�erent color channels up to a threshold to derive
B. �e choice of color-�lter and threshold heavily depends on the appearance
of the disease symptoms. Figure ��.�(b) illustrates the maximal color values of
an example image I (Figure ��.�(a)) showing a sugar beet leaf and Figure ��.�(c)
shows the color-�ltered binary image when selecting all pixels with maximal red
value. Unfortunately, this result is not yet satisfactory, and thus, various additional
�lter steps have to be applied; e.g., median �ltering, connected component analysis,
hole �lling, �ltering of regions adjacent to the image borders, as well as �ltering of
regions with undesired shapes. Although these steps can lead to good results as
shown in Figures ��.�(d) and ��.�(e), they need to be implemented carefully and
more importantly their parameters need to be adjusted speci�cally for each plant
or even each plant disease.

An additional problem of color-�lter based approaches is that the decision whether
a pixel is a foreground or background pixel is only based on the values of each pixel
separately ignoring the color structure of their neighbors. Figure ��.� illustrates
the problem for two cases, where based on the single pixel values the target regions
would be detected wrongly. In this thesis, we have introduced coinciding walk
kernels to measure label structure of the nodes in a graph in their local neighbor-
hoods. Viewing images as grid graphs and color information as node labels, we
can apply coinciding walk kernels to measure the color arrangement of pixels in
order to classify whether a pixel is showing a disease symptom or not.

��.�.� Region Detection with Coinciding Walk Kernels: An Empirical
Demonstration

To study the capability of coinciding walk kernels to detect disease regions given
very few areas of an image showing both healthy and diseased leaf parts, we

���

��.�. ���� ���� ��������� ���� ���������� ���� �������

(a) Case �: healthy region, disease region, target region

(b) Case �: healthy region, disease region, target region

Figure ��.�: Limitations of Color Filter. In both cases depicted in Panel (a)
and (b) a threshold-based color �lter would wrongly detect the target regions
(depicted on the right) given the training data for healthy (le� image) and disease
regions (middle image).

derived the following graph representation of the two images depicted in Panel
(a) in Figures ��.� and ��.�. �e graph structure is given by the pixel grid graph
according to the derivation introduced in Section �.�. We use a �-neighborhood
and further quantized the input image using �� colors to get the node labels, cf.
Panel (b) in Figures ��.� and ��.�. However, these labels are not the target classes for
prediction. �e classi�cation problem is to predict whether a pixel is a foreground
(“diseased”) or a background (“healthy”) pixel. �at is, the class labels used as
training data are not the ones being propagated in the coinciding walk kernel
computation. Also note that, as we have fully observed node information, we
will set α = � in Algorithm �. No absorbing states are used in the random walks;
the information propagation process is label di�usion, cf. Equation (�.��). �e
positively labeled regions were generated by a color-�lter simply selecting the
pixels with maximal red values (������) followed by several additional �lters
(connected component analysis, hole �lling, as well as �ltering of regions with
undesired shapes); the negative training regions were selected by manually placing
a bounding box around healthy leaf parts, cf. Panels (c,e) in Figures ��.� and ��.�.
Detection is achieved via binary ��� classi�cation using the precomputed ���
kernel matrix. To account for the high class imbalance we used a class weighting

���

��. �����-����� ����� ������� ��������������

Table ��.�: Results For Leaf Spot Detection. Precision, recall and area under the
curve (���) in � for leaf spot detection on Example � and Example � using color
information only (����� ����, t��� = �) and two ���s with t��� = �� and ��.
Bold indicates best performance for the respective measure.

����� ���� ��� ���
t��� = 0 t��� = 20 t��� = 60

Ex
am

pl
e1 precision 39.6 28.2 28.4

recall 56.5 72.2 66.6
��� 86.2 92.1 91.7

Ex
am

pl
e2 precision 36.0 40.4 39.2

recall 41.7 82.8 90.0
��� 70.2 96.9 98.8

of � ∶ �� in libSVM;� the cost parameter was set to the default value of � for all
experiments.

Figures ��.� and ��.� show the ground truth regions (Panel (d)) and the predictions
of coinciding walk kernels (Panel (f-h)) for the two example images. �e result
in Panel (f) is a ��� with t��� = � corresponding to a classi�cation using color
values of each single pixel only (����� ����). Panels (g,h) show the results when
incorporating color arrangements of neighboring pixels. First, we can see that the
initially applied ������ �lter fails in both examples to detect all disease regions.
Coinciding walk kernels basically detect all infected regions for both example
images. Note that small detection artifacts are not problematic as they can be
handled by applying an additional size �lter. Comparing these detection results
to the ones achieved by an approach merely based on the color information of
each single pixel, cf. Panel (f) in Figures ��.� and ��.�, we observe that leveraging
the arrangement of pixel values, i.e., using ��� with t��� > �, leads to a clear
improvement. In Example � ����� ���� fails to detect the lighter leaf spot in
the top le� corner. To quantitatively compare the di�erent methods we compare
precision, recall and area under the curve (���), when comparing the true labels to
the decision values of the ���.�e results for both example images are summarized
in Table ��.�. ��� with t��� = �� and t��� = �� clearly outperform �����
���� by achieving recall rates of over ��% for Example � and ��% for Example
�. Further, ��� is clearly improved to above ��% for both images. �e results in
this demonstration show that coinciding walk kernels are a promising approach
to leaf spot detection.

�http://www.csie.ntu.edu.tw/
~

cjlin/libsvm/

���

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

��.�. ���� ���� ��������� ���� ���������� ���� �������

(a) Input image (b) Quantized image

(c) ������ �lter (d) Ground truth

(e) Negative examples (f) ����� ���� (t��� = �)

(g) ��� (t��� = ��) (h) ��� (t��� = ��)
Figure ��.�: ��� for Leaf Spot Detection – Example �. Input image (a), quan-
tized version (b), regions detected by ������ �lter – also used as positive exam-
ples (c), ground truth (d), negative examples (d), and ��� results (f-h).

���

��. �����-����� ����� ������� ��������������

(a) Input image (b) Quantized image

(c) ������ �lter (d) Ground truth

(e) Negative examples (f) ����� ���� (t��� = �)

(g) ��� (t��� = ��) (h) ��� (t��� = ��)
Figure ��.�: ��� for Leaf Spot Detection – Example �. Input image (a), quan-
tized version (b), regions detected by ������ �lter – also used as positive exam-
ples (c), ground truth (d), negative examples (d), and ��� results (f-h).

���

��.�. ����� ������� �������������� ���� ����������� �������

Table ��.�: Dataset Statistics and Properties. Number of graphs per class, total
number of graphs, and median and total number of nodes for the two considered
datasets ����� and ������.

class frequencies statistics

cerc ram pseu rust pho n-inf total # median total #
dataset graphs # nodes nodes

����� 57 57 44 47 36 55 296 4 800 1 391 925
������ 1 003 255 494 72 55 1 108 2 957 4 725 13 587 375

�� .� P���� D������ C������������� ���� P���������� K������
In Chapter � we have seen that propagation kernels can be employed for pixel-
image-based texture classi�cation. �e classi�cation of disease regions extracted
from images of plant leaves is another computer vision task relying on the compar-
ison of color and intensity changes. Classical approaches capture these changes of
pixel intensity values by computing high-dimensional statistical features based
on the color level co-occurrence or based on gradient information (�������,
et al., ����b). Here, we will use propagation kernels computed between pixel grid
graphs for this task.

��.�.� Datasets and Experimental Protocol
�e images in ������, introduced in (�������, et al., ����b), are regions showing
disease symptoms extracted from a database of ��� ��� images of beet leaves
taken with six di�erent cell phone cameras. �e dataset has six classes: �ve are leaf
spots caused by the previously introduced pathogens Cercospora beticola (cerc),
Ramularia beticola (ram), Pseudomonas syringae (pseu), Uromyces betae (rust),
and Phoma betae (pho). To handle regions extracted by the region detector not
belonging to one of these classes we consider a sixth class non-infected (n-inf).
Example regions of this class could be healthy leaf parts, such as re�ections or leaf
veins, dirt on the leave, holes, or earth on the ground. �ese regions occur as a
simple and e�cient region detector was applied being feasible on the smart phone.
We use ��% of the full data covering a balanced number of classes (��� regions)
for parameter learning; this dataset is called �����. �e full dataset (������)
will then be used for evaluation. Note that this dataset is highly imbalanced with
two infrequent classes accounting for only �% of the examples and two frequent
classes covering ��% of the examples. �e class frequencies of both datasets are
listed in Table ��.�. For each region we form a graph according to the pixel grid as
described in Section �.�. To get discrete node labels we quantize the color values
using a �xed number of equidistant levels. Figure ��.�(a) and (b) illustrates two
regions and their quantized versions (c) and (d).

���

��. �����-����� ����� ������� ��������������

(a) phoma (b) cercospora (c) phoma-� (d) cercospora-�

Figure ��.�: Example Regions of ������. Example leaf spot images (a,b) and
the corresponding quantized versions with � colors (c,d) of the two classes phoma
and cercospora.

We use the following experimental protocol. Performance is measured by average
accuracy and classi�cation is achieved by running �-��� using libSVM.� First, the
�� parameters (t��� ∈ {�, �, �, �, ��, ��, ��} and bin width wl ∈ {��−�, ��−�, ��−�}),
quantization value (col ∈ {�, �, �, ��, ��}), neighborhood (B ∈ {N�,�, N�,�, N�,��},
cf. Equation (�.�)), and ���-cost parameter c ∈ {��−�, ��−�, . . . , ���} are learned
on ����� via a ��-fold cross validation. For ����� the best performance was
achieved with t��� = �, wl = ��−�, col = �, N�,�, and c = ��−�. Now, we evaluate
�� on the full dataset ������ using these parameter values. �e performance is
averaged over �� randomly generated but �xed train/test splits.

We compare �� to the simple baseline ������ using label counts only and to
a ��-dimensional second-order statistical feature� based on the gray-level co-
occurrence matrix comparing intensities (����-����) resp. quantized labels
(����-�����) of neighboring pixels originally introduced in (��������, et al.,
����). Note that the computations were not feasible for other graph kernels such as
the Weisfeiler–Lehman subtree kernel as the median number of nodes per graph
on ������ is � ��� and the total number of nodes exceeds ��.�million.

��.�.� Results
�e experimental results on ����� and ������ are shown in Table ��.�. While
not outperforming sophisticated approaches speci�cally tailored to the problem
of leaf spot classi�cation, we can show that it is feasible to compute ��s on the, for
graph-kernel applications, huge image datasets. Further, on ������ �� achieves
an average accuracy of ��.�% out-of-the-box. �e best reported result on this

�http://www.csie.ntu.edu.tw/
~

cjlin/libsvm/

�We computed the following statistics for four pixel o�sets (pixel distance d = � and angles
θ = {�○, ��○, ��○, ���○}): angular second moment, correlation, entropy, inverse di�erence
moment, sum entropy, di�erence entropy, sum variance, di�erence variance, and variance.

���

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

��.�. ������� ��� ����������

Table ��.�: Results on ����� and ������. Average accuracies ± standard errors
of ��-fold �� (�� reruns). Average runtimes in sec (x′′) or min (x′) given in
parentheses refer to the kernel computation or feature computation for the learned
parameter settings. For ����-����� and ������ the same color quantization as
for �� was applied. ������ corresponds to �� with t��� = �.

dataset

method ����� ������

�� 72.7± 0.4 (17.6′′) 82.5± 0.1 (3.0′)
������ 43.1± 0.0 (4.9′′) 59.5± 0.0 (11.5′′)
����-���� 67.2± 0.0 (6.7′′) 76.6± 0.0 (1.4′)
����-����� 13.2± 0.0 (6.7′′) 37.5± 0.0 (1.1′)

problem is ��.�% accuracy, which could only be achieved by a ���-dimensional
feature ensemble of several �rst- and second-order statistics being computed
locally – incorporating expert knowledge about the phenotype of the considered
diseases – from the full color and gradient information (�������, et al., ����b).
Comparing the performance of �� to only counting the quantized color labels, we
see that for both datasets leveraging the arrangement of labels is clearly bene�cial.
Classical second-order statistics only analyzing the changes of the quantized pixel
values of neighboring pixels (����-�����) fail to predict the diseases accurately.
����-���� using the original intensity values performs also worse than ��. We
can conclude that propagation kernels are a promising approach to plant disease
classi�cation.

�� .� S������ ��� D���������
In this chapter, we presented a novel and important application domain for kernels
from propagated information. Both, coinciding walk kernels and propagation
kernels, are able to exploit the arrangement of color-based node information in
pixel grid graphs for learning tasks on the node and on the graph level. Speci�cally,
we showed that coinciding walk kernels seem promising for leaf spot detection
given a small subset of training regions. �e grid graph implementation of prop-
agation kernels can be employed to plant disease classi�cation out-of-the-box.
Given these successful initial results and the importance of the problem this is
a good starting point for a further investigation of propagation kernels in this
domain. More elaborate input values such as local binary patterns or gradient
information could be explored as node information. Further, propagation kernels
can be computed without any modi�cation for local image regions such as the
recently introduced erosion bands (�������, et al., ����b). �ese adaptions will
most likely boost the performance of ��s already signi�cantly.

���

CONCLUSION

Learning with graphs, with its versatile approaches and challenging applications of
growing importance, is an actively studied research area in computer science. As
novelmethods o�en either require in-depth technical understanding or are applica-
tion driven, most approaches have so far been developed for either structured data,
networked data, or relational data and models. However, a�er studying techniques
and applications separately for several decades now, it is time to move towards
a better understanding of what it means to learn with graph data by starting to
incorporate insights from other learning domains.

S������
We took a �rst step towards this goal by applying propagation techniques on graphs
for learning tasks in structured, networked, and relational data. �e main insight,
leading to the results presented in this work, is that information propagation
on graphs – so far only used for inference on the node level – captures graph
structure, adapts to missing, uncertain, and continuous information, scales, and is
e�ciently computable. �us, we can use it to design graph features and kernels for
learning on the graph level, learning on the node level, and learning in relational
domains. In this way, we were able to develop a graph kernel for learning with
structured data that naturally copes with missing and uncertain information,
a kernel between the nodes of a graph for learning with networked data that
exploits structural similarities in addition to the homophily assumption, and a
set-completion algorithm that leverages structural information in relational data.

Speci�cally, in Part I we introduced propagation kernels for learning on the graph
level, and in Part II coinciding walk kernels for learning on the node level and
Markov logic sets for graph-based information retrieval in relational data. Further-
more, by design kernels from propagated information have two valuable bene�ts:
they are �exible and scale to large graphs. �us, we were able to apply them to
novel application domains in Part III. Speci�cally, we applied propagation kernels
to object category prediction and image-based plant disease classi�cation, and we
studied the use of coinciding walk kernels for leaf spot detection in plant images.

F����� W���
Kernels from propagated information are already a promising learning paradigm
for graph data. However, there are several interesting technical aspects and exten-
sions worth exploring. In the following, we discuss these in more detail.

���

����������

Technical Future Work
In both of our kernel frameworks, propagation kernels and coincidingwalk kernels,
it would be bene�cial to understand and automatically learn which information –
graph structure or attribute/label information – is most important for prediction
tasks. Moreover, learning the number of iterations used to propagate information
for both kernels is time consuming. To guide parameter learning or even make it
dispensable, the design of heuristics, along the lines of those introduced in previous
work on random-walk based clustering (��� and �����, ����a), is an important
open question. Further insights in understanding these parameters would also
be bene�cial for other iterative graph kernels (������������, et al., ����) and
learning approaches using structural similarities (���������� and �������, ����).

A similar concern holds for ranking-based set completion, where we have not
yet addressed in detail how to set the size of the completion. Since we use label
propagation, using zero as the threshold would be a natural choice, but other
thresholds are possible. An interesting extension to Markov logic sets would be
to apply inductive logic programming techniques (���������, ����) on the
retrieved completion to extract a general description of the latent concept. Using
dynamic PageRank techniques (����� and ������, ����) would pave the way to
online clustering on demand and is de�nitely a growth path for li�ed inference.
Since we were able to show that label propagation can be performed on the li�ed
network, which is itself is an advance, further experimentation and applications
exploiting computational symmetries for graph based learning via li�ed inference
is another important direction.

When considering benchmark data for evaluation and real-world applications, it
is essential to gain a good understanding of the problems, and the graph repre-
sentations used have to be sensible and suitable for the learning method applied.
For example, biological interactions giving rise to protein–protein interaction
networks can vary widely in their nature and are spatially and temporally hetero-
geneous. As a result, abstract representations of such networks and their analysis
need to account for the expressiveness of the interactions (�����, et al., ����).
In general, graph construction is not a well-studied problem. Speci�c open ques-
tions are: how to construct a reliable graph from partially observed data, how to
construct graphs based on dissimilarities, and how to make a robust graph when
multiple evidence gives rise to possibly inconsistent graph structure (���, ����).

Open Research Questions
Beside these more technical issues, open questions of broader scope are: further
challenges of graph data beyond the ones discussed in this thesis, memory-e�cient
representation of graph structure and compatible time-e�cient algorithms for
learning with graphs, and a deeper exploration of the close relation of graph-based
and semi-supervised learning, graph kernels, and relational learning.

���

Whereas in this work, we tackled the challenges of missing information on graphs
and/or nodes, and uncertain and continuous node annotations for the construc-
tion of graph kernels, kernels for graph data do not consider missing edges or
dynamic graphs with evolving node and edge structure (������� and �������,
����; ���������, et al., ����; ������, ����). �e central open question, not
only for graph construction, but also for feature construction, kernel design, and
learning is: how canwe deal with dynamic networks/graphs? �ese are for example
common in social networks, where new users sign up and new friendship rela-
tions are established or deleted, and how can we address uncertainty in the graph
structure, occurring, for example, in web graphs created from noisy hyperlinks
(���, ����). By introducing graph-based relational set completion, we provided
an initial approach to connecting learning with graphs and relational data. Further
exploiting the rich structure in relational data, beyond binary relations encoded
in predicates, types, variables, and formulas, would most-likely be bene�cial for
learning with structured and networked data (���� and ��������, ����).

As indicated by the real-world application scenarios in Part III of this thesis, an
essential goal of future research on learning with graphs should be to improve the
e�ciency of feature extraction, kernel construction, and learning. Towards scaling
machine learning with graphs to “big data”, we believe that three techniques are
worthwhile to be explored: parallel computing, the exploitation of symmetries, and
graph approximation. In Chapter �, we have shown how to leverage the regular
structure in gird graphs to scale graph kernels to large graph databases with a total
number of millions of nodes. In the same spirit, techniques to exploit symmetries
(������, ����) should be explored for both graph kernels and kernels on graphs.
Architectures that allow for parallel algorithms to analyze graphs have recently been
introduced (���, et al., ����;��������, et al., ����). Whereas popular algorithms
such as PageRank can be implemented easily, kernel construction and kernel-
based learning for graph data has not been considered yet. Graph approximation
(�������� and ���������, ����) and matrix factorization (����, et al., ����;
����� and �����, ����; ���, et al., ����) are other promising techniques to cope
with huge graphs. While matrix factorization has been applied to kernel matrices
(�����, et al., ����; ���� and ����������, ����) and matrix factorization itself
has been kernelized (������ and �����, ����), to the best of our knowledge neither
graph kernels nor kernels on graphs from approximated graphs have been derived
and studied.

In this thesis, we exploited that graph kernels and graph-based learning (learning
on the node level) are closely related. We developed a graph kernel for predictive
graph mining by leveraging the intermediate results of information propagation
on the input graphs – a technique traditionally introduced for graph-based and
semi-supervised learning – and we introduced a kernel between the nodes of a
graph that exploits structural similarities. A natural extension to this work is the
derivation of a unifying propagation-based framework for structure representation

���

����������

independent of the learning task being on the graph or on the node level. Such an
approach could open the door for joint inference for node-level and graph-level
tasks. Further, we could study which information is important for which task and
thus data acquisition and learning procedures could be designed accordingly.

As shown in this work the propagation kernel framework is a �exible and powerful
approach to learning from structured data. An interesting avenue for future exten-
sions are the development of kernels among graphical models. As propagation
kernels between graphs leverage graph-based inference techniques, a propagation
scheme to realize kernels between graphical models could be belief propagation, an
iterative message passing algorithm to infer marginal distributions of the variables
in graphical models (�������, et al., ����). ���� and ������ (����) use kernels
among variables to learn the structure of graphical models. In a similar spirit, com-
paring graphical models with kernels might also be useful for structure learning.
Recently, ����� (����) established a connection between acyclic graphical models
and graph-based learning. In particular, it was shown that the PageRank solution
of a suitable graph representation corresponds to the single node marginals in the
graphical model. Moreover, approaches to interlink statistical relational learning
and (kernel-based) regression were introduced (��������, et al., ����; �������,
et al., ����; ������, ����). �ese connections indicate that it is possible to move
from graph-based learning in relational data to (graph- and kernel-based) learning
in and among relational models.

L������ L������
In most parts of this thesis, with exception of Chapter �, we have focused on
kernels for machine learning with graph data. Whereas a great amount of graph
kernels has been proposed in the recent years, it is not clear whether this is the
best way to approach learning with structured data. Only recently explicit and
implicit computation schemes of graph kernels have been started to be analyzed
theoretically and empirically (������, et al., ����). Note that explicit computation
can be actually seen as feature extraction from graph inputs, and the computa-
tion of explicit graph kernels is o�en more e�cient and usually yields the same
performance as implicit kernels. Also in other research �elds, such as computer
vision, high-dimensional feature maps are highly successful. So, why did we never
ask whether we actually need to focus on kernel design or if it is more promising
to concentrate on feature extraction for graph data? �e focus of learning with
graphs could bene�t from an in-depth discussion of this question and maybe
instead of overly focusing on the development of novel kernels, we should start
integrating graph data and learning methods in general. So, the focus of future
research should be bringing together learning methods and feature extraction,
where feature extraction subsumes kernel construction.

Another conclusion from this thesis is that graph structure can be measured by
running inference in graphs representing structured, networked, and relational

���

data. On the other hand, kernels for graph data are based on graph structure. So,
a more general view of this work could lead to the development of kernels from
inference problems in general. �is would have the bene�t that we do not have to
care about the format of the input data, but the inference procedure(s) performed
can themselves lead to kernels for improved learning and prediction.

���

APPENDIX

A N���� �� � S���������M������ ����� �� P������� ��� ���

B G�������: N���� �� R����������� C�������� ���

���

�������� �

NOTES ON A SIMILARITY MEASURE BASED ON
PARALLEL RWS

�e similarity R(t���)
u,v in (���������� and �������, ����) is de�ned to be the

probability that parallel random walks leaving from u and v:

• have the same length,

• have length less than or equal to t���, and

• encounter exactly the same label sequence before termination.

De�ne the random variable tu to be the length of a walk leaving from node u,
where “length” indicates the number of transitions made before termination.

�e walks considered have a constant termination probability of γ. �erefore the
probability of a walk having exactly length t is independent of u. �e exact value
is γ(� − γ)t , because it must transition t times and terminate once:

Pr(tu = t � u, t, γ) = Pr(tu = t � t, γ)
= γ(� − γ)t .

�e walks are independent, so the probability that both walks have exactly the
length t is simply this quantity squared:

Pr(tu = tv = t � u, v , t, γ) = Pr(tu = t � t, γ)Pr(tv = t � t, γ)
= γ�(� − γ)�t .

Finally, to �nd the probability that both walks are the same length and have length
less than or equal to t���, we take the sum over all allowable walk lengths:

Pr�(tu = tv) ∧ (tu ≤ t���) ∧ (tv ≤ t���) � u, v , t���, γ� =
t
�
t=� ��� Pr(tu = tv = t � t, γ)

= γ�
t
�
t=� ���(� − γ)�t .

We now have the probability of two of the three conditions above. As for ���s, cf.
Equation (�.�), we may compute the probability that the labels encountered on

���

�. ����� �� � ���������� ������� ����� �� �������� ���

the t-th step of parallel random walks leaving from u and v are equal from the Pt
matrix, cf. label di�usion Equation (�.��). De�ne the random variable ut to be the
node visited on the t-th step by a random walk leaving from u (so u� is always u).

Pr�ℓ(ut) = ℓ(vt) � u, v , t� = �PtP�t �u,v .
If we are given the lengths of both walks, t, then we may �nd the probability that
all labels encountered are equal by taking a product:

Pr�
t���

�
t=� ℓ(ut) = ℓ(vt) � u, v , t� = �

t
�
t=� ���PtP�t �

u,v
,

where the ∏ indicates a Hadamard� (also Schur�) product of matrices. �e
Hadamard product is the element-wise product of matrices.

Finally, combining all three conditions, we may write the entire R(t���) matrix as

R(t���) = γ� t
�
t=� ���(� − γ)�t

t
�
t̃=� Pt̃P

�̃
t ,

which is positive de�nite because the set of positive-de�nite matrices is closed
under sums and Hadamard products. �e latter is given by the Schur product
theorem stating that the Hadamard product of two positive-de�nite matrices is
again a positive-de�nite matrix (�����, ����).

�Jacques Hadamard (����–����) was a Frenchmathematician contributiong to function theroy,
di�erential geometry and partial di�erential equations.
�Issai Schur (����–����) was Jewishmathematician – born in Russia and working in Germany –
contributing to group theory, algebra, and theoretical physics.

���

�������� �

GEOMETRY: NOTES ON REPRESENTING CURVATURE

Intuitively curvature can be understood as how smooth the surface of a curve or a
point cloud is in Euclidean space. �e straight line or the (in�nite) (hyper)plane,
for example, has zero curvature. For our data representation we are interested in
measuring the change in curvature at a certain location on the surface of a point
cloud in �� Euclidean space. �is can be achieved by comparing the respective
surface normals of two or several points.

So, given two points represented by �-dimensional column vectors u, v ∈ R�, we
denote their normals by nu and nv , where nu ,nv ∈ R�. �e surface normal of a
point is the same as the normal to the tangent plane of the point. We consider unit
length normals, that is �nu� =

√nu ⋅ nu = � and we denote the scalar or dot product
beween two vectors by ⋅ , where for a, b ∈ R� it holds that a ⋅b = a�b. Note that the
direction of a normal is not unique as the vector pointing in the opposite direction
of a normal is also a normal. Algorithms computing the normals of points in a ��
point cloud, try to adjust the directions to be smooth among neighboring points,
however, we cannot guarantee that the normals point in the same direction.

In the graph representation of �� point clouds we employ curvature information
twofold. On the one hand, we can model the change of the curvature between
two points by edge weights. On the other hand, we can also assign a curvature
attribute to each node in the graph. �at is, for each point we will approximate
its curvature by its approximate derivative, which is given by the mean change in
curvature from the respective point to its neighbors.

In the �rst case our goal is to have smaller weights for larger changes in curvature.
So, a measure of the change in curvature is the angle between the (unit length)
normals of two points,

nu ⋅ nv = cos θ ⇔ arccosnu ⋅ nv = θ . (�.�)

As the cosine is a strictly monotonically decreasing function on the interval [�, π],
corresponding range to angles between �° and ���°, we can directly use nu ⋅ nv ∈
[−�, �] to represent the edge weight between two points u and v. Cosine plotted on
the interval [�, π] is shown in Figure �.�. To guarntee that the weights are posititve
we could now add � to the cosine of the angle between the normals of the nodes u
and v corresponding to the points u and v,

wu,v = nu ⋅ nv + �. (�.�)

���

�. ��������: ����� �� ������������ ���������

� ���π ���π ���π π

−�

−�.�

�

�.�

�

θ

co
sθ

Figure �.�: Cosine Function. Strictly monotonically decreasing cosine function
on the interval [�, π] with values in [−�, �].

However, Equation (�.�) has one problem. As we cannot guarantee that the nor-
mals are pointing in the same direction we could measure “wrong” angles and
therefore get wrong edge weights. �is could then lead to edge weights indicating
a drastic change in curvature in actually smooth regions. To avoid this problem,
we assume that the angles between the normals of two adjacent points is not larger
than ��°, that is, θ ∈ [�, ���π]. With this assumption nu ⋅ nv now takes values in
[�, �] if we compare normals pointing in the same direction and we get values in
[−�, �] if we compare normals pointing in opposite directions. �e magnitudes
of the values are the same. So, to avoid comparing “wrong” normals we take the
norm of the cosine of the angle as edge weight

wuv = �nu ⋅ nv �. (�.�)

For node attributes we approaximate the change of curvature in one point by
the average change of curvature between that point and its neighbors, where in
our representation neighborhood is given by the k-nn graph. By taking the same
assuption as for the edge weights that the normals of two incident point should
point in the same direction, the attribute xu for node u is given by

xu =
�

�N (u)� �v∈N (u) �nu ⋅ nv �, (�.�)

whereN (u) are all nodes adjacent to u in the graph.

���

BIBLIOGRAPHY

A�����, G. (����). Plant Pathology. �th edn. Elsevier Inc.

A�����, B. (����). Graphical Models and Symmetries: Loopy Belief Prop-
agation Approaches. Ph.D. thesis, University of Bonn, Bonn, Germany.
urn:nbn:de:hbz:5n-37209.

A�����, B., K�������, K. and S�����, S. (����). Multi-Evidence Li�ed Message
Passing, with Application to PageRank and the Kalman Filter. In: Proceedings
of the ��nd International Joint Conference on Arti�cial Intelligence (�����–����),
pp. ����–����.

A�-H����, H., B���-A����, S., R������, M., B����, M. and A���������,
Z. (����). Fast and Accurate Detection and Classi�cation of Plant Diseases.
International Journal of Computer Applications, vol. ��, no. �, pp. ��–��.

A������, P. (����). Pompeian Households: An Analysis of the Material Culture.
Tech. Rep. ��.DG��.P� A���, Cotsen Institute of Archaeology, Los Angeles,
CA, US.

A�������, R., C����, F.R.K. and L���, K.J. (����). Local Graph Partitioning
using PageRank Vectors. In: ��th Annual ���� Symposium on Foundations of
Computer Science (����–����), pp. ���–���.

A������, L., F�������, P., C����, F., T���������, T. and D� R����, L. (����).
A Relational Kernel-Based Framework for Hierarchical Image Understanding.
In: Joint ���� International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition (����/���–����), pp. ���–���.

A������, L., M�����, P., N������, M., �� F���������, R.P., K����-
���, K., S�����-V�����, J. and D� R����, L. (����). High-level Reason-
ing and Low-level Learning for Grasping: A Probabilistic Logic Pipeline.
arXiv:1411.1108v1 [cs.RO].

A��������, N. (����). �eory of Reproducing Kernels. Transactions of the
American Mathematical Society, vol. ��, no. �, pp. ���–���.

B���, F.R. (����). Graph Kernels between Point Clouds. In: Proceedings of the
��th International Conference on Machine Learning (����–����), pp. ��–��.

���

������������

B���, F.R. and J�����, M.I. (����). Learning Graphical Models with Mercer
Kernels. In: Advances in Neural Information Processing Systems �� (����–����),
pp. ����–����.

B��������, L. and L�������, J. (����). Supervised RandomWalks: Predicting
and Recommending Links in Social Networks. In: Proceedings of the �th In-
ternational Conference on Web Search and Web Data Mining (����–����), pp.
���–���.

B��, L., R����, L., T�������, A. and H������, E.R. (����). A quantum Jensen–
Shannon graph kernel for unattributed graphs. Pattern Recognition. To appear.

B��������, C. and K�������, K. (����). E�cient Information�eoretic Cluster-
ing on Discrete Lattices. arXiv:1310.7114 [cs.CV].

B�����, Y., D��������, O. and L� R���, N. (����). Label Propagation and
Quadratic Criterion. In: C�������, O., S���������, B. and Z���, A. (eds.),
Semi-Supervised Learning, pp. ���–���. MIT Press.

B�����, C.M. (����). Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer Science + Business Media, LLC.

B���, C.H., P����, G.H., P�����, P.E. and G�������, T.R. (����). Plant Disease
Severity Estimated Visually, by Digital Photography and Image Analysis, and
by Hyperspectral Imaging. Critical Reviews in Plant Sciences, vol. ��, no. �, pp.
��–���.

B���, J. and K�����, D. (����). Learning Grasping Points with Shape Context.
Robotics and Autonomous Systems, vol. ��, no. �, pp. ���–���.

B����, P., L�����, V., S������, M. and V����, S. (����). Graph �brations, graph
isomorphism and PageRank. ����� –�eoretical Informatics and Applications,
vol. ��, no. �.

B��������, B. (����). Modern Graph�eory. Springer Science + Business Media,
Inc.

B��������, K.M. and K������, H.-P. (����). Shortest-Path Kernels on Graphs.
In: �th ���� International Conference on Data Mining (����–����), pp. ��–��.

B��������, K.M., O��, C.S., S���������, S., V�����������, S.V.N., S����,
A.J. and K������, H.P. (����). Protein function prediction via graph kernels.
In: Proceedings of the ��th International Conference on Intelligent Systems for
Molecular Biology (����–����), pp. ��–��.

���

������������

B����, B.E., G����, I.M. and V�����, V.N. (����). A training algorithm for
optimal margin classi�ers. In: Proceedings of the �th Annual ���Workshop on
Computational Learning�eory (����–����), pp. ���–���. ��� Press.

B������, M.R., L��, J., S���, X. and B����, C.M. (����). Learning multi-label
scene classi�cation. Pattern Recognition, vol. ��, no. �, pp. ����–����.

B�����, Y., V������, O. and Z����, R. (����). Fast approximate energy mini-
mization via graph cuts. ���� Transactions on Pattern Analysis and Machine
Intelligence, vol. ��, no. ��, pp. ����–����.

B������, U., G�����, L. and M��������, S.A. (eds.) (����). Eighth Workshop
on Mining and Learning with Graphs (���–����), ������ Explorations, vol. ��,
no. �.

B���, S. and P���, L. (����). �e Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks, vol. ��, no. �-�, pp. ���–���.

C������, A. and S����, J. (����a). Image pattern classi�cation for the identi�ca-
tion of disease causing agents in plants. Computers and Electronics in Agriculture,
vol. ��, no. �, pp. ���–���.

C������, A. and S����, J. (����b). An image-processing based algorithm to
automatically identify plant disease visual symptoms. Biosystems Engineering,
vol. ���, no. �, pp. �–��.

C����������, D. and F��������, C. (����). Graph Mining: Laws, Tools, and
Case Studies. Synthesis Lectures on Data Mining and Knowledge Discovery.
Morgan & Claypool Publishers.

C�������, O., S���������, B. and Z���, A. (eds.) (����). Semi-Supervised Learn-
ing. MIT Press.

C�������, O., S��������, V. and K������, S.S. (����). Optimization Techniques
for Semi-Supervised Support Vector Machines. Journal of Machine Learning
Research, vol. �, pp. ���–���.

C�����, S.P. (����). Factor Graphs for Relational Regression. Ph.D. thesis, New
York University, New York, NY, US. 978-1-109-90255-6.

C����, F. (����). Spectral Graph�eory. American Mathematical Society.

C����, W.W. (����). Graph Walks and Graphical Models. Tech. Rep. CMU-ML-
��-���, Carnegie Mellon University, Pittsburgh, US.

C���, D.J. and H�����, L.B. (����). Mining Graph Data. John Wiley & Sons,
Inc.

���

������������

C����������, N. and S����-T�����, J. (����). An Introduction to Support Vector
Machines: And Other Kernel-based Learning Methods. Cambridge University
Press.

C����������, N., S����-T�����, J., E��������, A. and K������, J.S. (����).
On Kernel–Target Alignment. In: Advances in Neural Information Processing
Systems �� (����–����), pp. ���–���.

D����, M., I��������, N., I����, P. and M�������, V.S. (����). Locality-
sensitive Hashing Scheme Based on p-Stable Distributions. In: Proceedings
of the ��th Annual Symposium on Computational Geometry (���–����), pp.
���–���.

D� K����, J., L������, A.M.L. and G�������, B. (����). “Tell Me More”: Finding
Related Items from User Provided Feedback. In: ��th International Conference
on Discovery Science (��–����), pp. ��–��.

D� R����, L. (����). Logical and Relational Learning. Springer-Verlag Berlin
Heidelberg.

D������, A.K., L���� �� C�������, R.L., D������, G., S����������, A.J.
and H�����, C. (����). Structure–Activity Relationship of Mutagenic Aromatic
and Heteroaromatic Nitro compounds. Correlation with molecular orbital en-
ergies and hydrophobicity. Journal of Medicinal Chemistry, vol. ��, no. �, pp.
���–���.

D������, F., T������, M. and S�����, S. (����). Graph matching using a direct
classi�cation of node attendance. Pattern Recognition, vol. ��, no. �, pp. ����–
����.

D���������, C. and K������, G. (����). Within-Network Classi�cation Using
Local Structure Similarity. In: Proceedings of the European Conference on Ma-
chine Learning and Knowledge Discovery in Databases (����/����–����), pp.
���–���.

D���, U. and K�������, K. (����). Fisher Kernels for Relational Data. In: Pro-
ceedings of the ��th European Conference on Machine Learning (����–����), pp.
���–���.

D�����, P.D. and D���, A.J. (����). Distinguishing Enzyme Structures from
Non-enzymes Without Alignments. Journal of Molecular Biology, vol. ���, no. �,
pp. ���–���.

D�������, O., J�����, A. and P����, J. (����). A Graph-Matching Kernel for
Object Categorization. In: ��th ���� International Conference on Computer
Vision (����–����), pp. ����–����.

���

������������

D�����, K.E. and H�����, R.J. (����). Cytological analysis of wheat infection
by the leaf blotch pathogen Mycosphaerella graminicola. Mycological Research,
vol. ���, no. �, pp. ����–����.

D��������, S. and L������, N. (����). An Introduction to Inductive Logic Pro-
gramming. In: D��������, S. and L������, N. (eds.), Relational Data Mining, pp.
��–��. Springer-Verlag Berlin Heidelberg.

E������ �� ��� A�������H������� D����������� (ed.) (���� January). �e
American Heritage Dictionary of the English Language. Houghton Mi�in Com-
pany.

E����, C. and N���, K. (����). Learning Classi�ers from Only Positive and
Unlabeled Data. In: Proceedings of the ��th ��� ������ International Conference
on Knowledge Discovery and Data Mining (���–����), pp. ���–���.

F����, R. and S�����, C. (����). Plane-based object categorization using rela-
tional learning. Machine Learning, vol. ��, no. �, pp. �–��.

F������, A., K��������, N., P�������, J., �� B������, M. and B��������,
K.M. (����). Scalable kernels for graphs with continuous attributes. In: Advances
in Neural Information Processing Systems �� (����–����), pp. ���–���.

F���, S. and S���������, K. (����). E�cient ��� training using low-rank kernel
representations. Journal of Machine Learning Research, vol. �, pp. ���–���.

F����, P.A. (����). Simply Logical – Intelligent Reasoning by Example. Wiley
Professional Computing. John Wiley & Sons, Inc.

F��������, S. (����). Community detection in graphs. arXiv:0906.0612v2
[physics.soc-ph].

F����, F., F����������, K., Y��, L., P������, A. and S������, M. (����). An Exper-
imental Investigation of Kernels on Graphs for Collaborative Recommendation
and Semisupervised Classi�cation. Neural Networks, vol. ��, pp. ��–��.

F�������, P., C����, F., D�R����, L. andD�G����, K. (����). kLog: A Language
for Logical and Relational Learning with Kernels. Arti�cial Intelligence, vol. ���,
pp. ���–���.

F�������, P., K�������, K. and T����, K. (eds.) (����). Fi�hWorkshop onMining
and Learning with Graphs (���–����).

G��������, B. (����). Matching Structure and Semantics: A Survey on Graph-
Based Pattern Matching. Tech. Rep., ���� FS-��-��, pp. ��–��.

���

������������

G��������, B. and E������-R��, T. (����). Leveraging Label-Independent
Features for Classi�cation in Sparsely Labeled Networks: An Empirical Study.
In: Second International Workshop on Advances in Social Network Mining and
Analysis (������–����), Revised Selected Papers, pp. �–��.

G��������, B., T���, H., E������-R��, T. and F��������, C. (����). Using
Ghost Edges for Classi�cation in Sparsely Labeled Networks. In: Proceedings
of the ��th ��� ������ International Conference on Knowledge Discovery and
Data Mining (���–����), pp. ���–���.

G������, R., G�������, T., E��������, T., G���������, E. and �O��������,
P. (����). Predicting Unexpected In�uxes of Players in EVE Online. In: ����
Conference on Computational Intelligence and Games (���–����).

G�������, T. (����). Predictive Graph Mining with Kernel Methods. In: B����-
��������, S., M�����, U., H�����, L.B. and C���, D.J. (eds.), Advanced
Methods for Knowledge Discovery from Complex Data, Advanced Information
and Knowledge Processing, pp. ��–���. Springer Science + Business Media.

G�������, T., F����, P.A., K��������, A. and S����, A.J. (����). Multi-Instance
Kernels. In: Proceedings of the ��th International Conference onMachine Learning
(����–����), pp. ���–���.

G�������, T., F����, P.A. and W�����, S. (����). On graph kernels: Hardness
results and e�cient alternatives. In: Proceedings of the ��th Annual Conference on
Computational Learning�eory and �th Kernel Workshop (����/������–����),
pp. ���–���.

G�����, A. and G���, R. (����). Vector Quantization and Signal Compression.
Kluwer Academic Publishers.

G�����, L. and T�����, B. (eds.) (����). Introduction to Statistical Relational
Learning. Adaptive Computation and Machine Learning. MIT Press.

G���������, Z. and H�����, K.A. (����). Bayesian Sets. In: Advances in Neural
Information Processing Systems �� (����–����), pp. ����–����.

G�������, K., H������, J., S������, D., G��������, R. and B�������, M.
(����). ���� Analysis with Sparse Weisfeiler–Lehman Graph Statistics. In: �th
International Workshop on Machine Learning in Medical Imaging (����–����),
pp. ��–��.

G�����, M. and K����, S. (����). Kernelized Bayesian Matrix Factorization. ����
Transactions on Pattern Analysis and Machine Intelligence, vol. ��, no. ��, pp.
����–����.

���

������������

G�������, J.A., H�����, L.B. and C���, D.J. (����). Graph-Based Relational
Concept Learning. In: Proceedings of the ��th International Conference on
Machine Learning (����–����), pp. ���–���.

G���, M., M������, M. and S����, L. (����). Exact and approximate graph
matching using random walks. ���� Transactions on Pattern Analysis and
Machine Intelligence, vol. ��, no. �, pp. ����–����.

G�����, F.C. (����). Large Dynamic Graphs: What Can Researchers Learn from
�em? ���� News, vol. ��, no. �.

H�����, F., T��, H. and D�����, T.S. (����). Mining of Data with Complex
Structures, chap. ��: Graph Mining, pp. ���–���. Studies in Computational
Intelligence. Springer-Verlag Berlin Heidelberg.

H����, L., P�����, J.W., R��������, D.L. and L�����, S.C. (����). Protein–
protein interaction networks and biology – what’s the connection? Nature
Biotechnology, vol. ��, no. �, pp. ��–��.

H��, J. and K�����, M. (����). Data Mining: Concepts and Techniques, chap. �:
Graph Mining, Social Network Analysis and Multirelational Data Mining, pp.
���–���. Morgan Kaufmann.

H�������, R.M., S��������, K. and D������� (����). Textural Features for
Image Classi�cation. ���� Transactions on Systems, Man and Cybernetics, vol.
���–�, no. �, pp. ���–���.

H��������, Z. and B���, F. (����). Image Classi�cation with Segmentation
Graph Kernels. In: ���� Conference on Computer Vision and Pattern Recognition
(����–����).

H�����, T., T���������, R. and F�������, J. (����). �e Elements of Statistical
Learning: Data Mining, Inference and Prediction. �nd edn. Springer Science +
Business Media, LLC.

H�������, D. (����). Convolution Kernels on Discrete Structures. Tech. Rep.,
University of California, Santa Cruz, US.

H���������, T., K�����, S. and J��, G. (����). An Analytical Comparison of
Approaches to Personalizing PageRank. Tech. Rep. ����-��, Stanford InfoLab,
Stanford, US.

H�������, T. and S����������,W. (����). Geomorphic coupling and sediment
connectivity in an alpine catchment – Exploring sediment cascades using graph
theory. Geomorphology, vol. ���, no. �, pp. ��–���.

���

������������

H�������, T., G�������, T. and W�����, S. (����). Cyclic pattern kernels for
predictive graph mining. In: Proceedings of the ��th ��� ������ International
Conference on Knowledge Discovery and Data Mining (���–����), pp. ���–���.

H����, A., J�������, R., S������, C. and S�����, G. (����). Information
Retrieval in Folksonomies: Search and Ranking. In:�e SemanticWeb: Research
and Applications, �rd European Semantic Web Conference (����–����), pp. ���–
���.

H����, Z., Z���, D.D. and C���, H. (����). Analyzing Consumer–Product
Graphs: Empirical Findings and Applications in Recommender Systems. Man-
agement Science, vol. ��, no. �, pp. ����–����.

H����, T. and K����, R. (����). A Heterogeneous Label Propagation Algorithm
for Disease Gene Discovery. In: Proceedings of the ��th ���� International
Conference on Data Mining (���–����), pp. ���–���.

I�����, W. and K�������, S. (����). Product Graphs, Structure and Recognition.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, Inc.

I���, L. and B����, P. (����). Bayesian Surprise Attracts Human Attention. In:
Advances in Neural Information Processing Systems �� (����–����), pp. ���–���.

J�������, T. and H�������, D. (����). Exploiting Generative Models in Discrim-
inative Classi�ers. In: Advances in Neural Information Processing Systems ��
(����–����), pp. ���–���.

J�����, B. (����). Digital Image Processing. �th edn. Springer-Verlag Berlin
Heidelberg.

J�����, T., K�����, R. and H�����, A. (����). Probability Product Kernels.
Journal of Machine Learning Research, vol. �, pp. ���–���.

J�����, D., N������, J. and G��������, B. (����). Why Collective Inference
Improves Relational Classi�cation. In: Proceedings of the ��th ��� ������
International Conference on Knowledge Discovery and Data Mining (���–����),
pp. ���–���.

J�, M. andH��, J. (����). AVarianceMinimization Criterion to Active Learning on
Graphs. In: ��th International Conference on Arti�cial Intelligence and Statistics
(�������–����), ����Workshop and Conference Proceedings, pp. ���–���.

J����, C., C�����, F., S��������, R. and Z���, M. (����). Text Classi�cation
usingGraphMining-based Feature Extraction. Knowledge-Based Systems, vol. ��,
no. �, pp. ���–���.

���

������������

J�������, T. (����). Transductive Inference for Text Classi�cation using Support
VectorMachines. In: Proceedings of the ��th International Conference onMachine
Learning (����–����), pp. ���–���.

J�������, T. (����). Transductive Learning via Spectral Graph Partitioning. In:
Proceedings of the ��th International Conference on Machine Learning (����–
����), pp. ���–���.

K����������, T., K�������, P. and D������, P. (����). Label-Dependent
Feature Extraction in Social Networks for Node Classi�cation. In: Second
International Conference on Social Informatics (�������–����), pp. ��–���.

K������, H., T����, K. and I�������, A. (����). Marginalized Kernels Between
Labeled Graphs. In: Proceedings of the ��th International Conference onMachine
Learning (����–����), pp. ���–���.

K������, M., R�����, E., W�����, E.-S. and D������, J. (����). One-class
classi�cation with Gaussian processes. Pattern Recognition, vol. ��, no. ��, pp.
����–����.

K�������, K., A�����, B. and N��������, S. (����). Counting Belief Prop-
agation. In: Proceedings of the ��th Conference on Uncertainty in Arti�cial
Intelligence (���–����), pp. ���–���.

K�������, K., M�������, M., G������, R. and G����, M. (����). Power
Iterated Color Re�nement. In: Proceedings of the ��th ���� Conference on
Arti�cial Intelligence (����–����), pp. ����–����.

K�����, A., D� R����, L. and T�������, H. (����). Probabilistic Explanation
Based Learning. In: Proceedings of the ��th European Conference on Machine
Learning (����–����), pp. ���–���.

K������, J., C��������, W.J., �� C�����, T., W��������, D., Y��, F., I�����-
�����, J. and O����, M. (����). Domain anomaly detection in machine
perception: A system architecture and taxonomy. ���� Transactions on Pattern
Analysis and Machine Intelligence, vol. ��, no. �, pp. ���–���.

K��������, J.M. (����). Authoritative Sources in a Hyperlinked Environment.
Journal of the ���, vol. ��, no. �, pp. ���–���.

K��, S. and D�������, P. (����). Learning Markov Logic Network Structure
via Hypergraph Li�ing. In: Proceedings of the ��th International Conference on
Machine Learning (����–����), pp. ���–���.

K�����, D. and F�������, N. (����). Probabilistic Graphical Models: Principles
and Techniques. Adaptive Computation and Machine Learning. MIT Press.

���

������������

K�����, R. and J�����, T. (����). A Kernel Between Sets of Vectors. In: Proceed-
ings of the ��th International Conference on Machine Learning (����–����), pp.
���–���.

K�����, R.I. and L�������, J.D. (����). Di�usion Kernels on Graphs and Other
Discrete Input Spaces. In: Proceedings of the ��th International Conference on
Machine Learning (����–����), pp. ���–���.

K������, H.S., A����, A., J�������, T. and S�����, A. (����). Semantic Label-
ing of �D Point Clouds for Indoor Scenes. In: Advances in Neural Information
Processing Systems �� (����–����), pp. ���–���.

K������, U. (����). Einführung in die Wahrscheinlichkeitstheorie und Statistik.
Vieweg und Sohn Verlag.

K�����, N. and M�����, P. (����). Subgraph matching kernels for attributed
graphs. In: Proceedings of the ��th International Conference onMachine Learning
(����–����). arXiv:1206.6483v1 [cs.LG].

K�����, N., N������, M., K�������, K. and M�����, P. (����). Explicit versus
Implicit Graph Feature Maps: A Computational Phase Transition for Walk
Kernels. In: ��th ���� International Conference on Data Mining (����–����).
To appear.

L�������, J.D. and L������, G. (����). Information Di�usion Kernels. In:
Advances in Neural Information Processing Systems �� (����–����), pp. ���–���.

L��������, A.N. and M����, C.D. (����). Google’s PageRank and Beyond: �e
Science of Search Engine Rankings. Princeton University Press.

L��, N. and C����, W.W. (����). Relational Retrieval using a Combination of
Path-Constrained RandomWalks. Machine Learning, vol. ��, no. �, pp. ��–��.

L���, I., L��, H. and S�����, A. (����). Deep Learning for Detecting Robotic
Grasps. In: Proceedings of Robotics: Science and Systems IX (���–����).

L�������, J. and F��������, C. (����). Scalable Modeling of Real Graphs using
Kronecker Multiplication. In: Proceedings of the ��th International Conference
on Machine Learning (����–����), pp. ���–���.

L����, G., D�����, T. and S����-T�����, J. (����). Data Dependent Kernels in
Nearly-linear Time. In: ��th International Conference on Arti�cial Intelligence
and Statistics (�������–����), ����Workshop and Conference Proceedings, pp.
���–���.

���

������������

L��������, M., F�������, D., G�����, G., S�����, A. and T����, S. (����).
Anytime search in dynamic graphs. Arti�cial Intelligence, vol. ���, no. ��, pp.
����–����.

L��, F. and C����, W.W. (����a). Power Iteration Clustering. In: Proceedings of the
��th International Conference on Machine Learning (����–����), pp. ���–���.

L��, F. and C����, W.W. (����b). Semi-Supervised Classi�cation of Network
Data Using Very Few Labels. In: International Conference on Advances in Social
Networks Analysis and Mining (������–����), pp. ���–���.

L��, Y. (����). Graph-based learning models for information retrieval: A survey.
Tech. Rep., Michigan State University, East Lansing, US.

L��, Y. and K��������, K. (����). A Comparison of Graph Construction and
Learning Algorithms for Graph-Based Phonetic Classi�cation. Tech. Rep.,
University of Washington, Seattle, US.

L��, Z.-Y., W�, H.-F. and H����, J.-F. (����). Application of Neural Networks
to Discriminate Fungal Infection Levels in Rice Panicles Using Hyperspectral
Re�ectance and Principal Components Analysis. Computers and Electronics in
Agriculture, vol. ��, no. �, pp. ��–���.

L������, L. (����). RandomWalks on Graphs: A Survey. In: M������, D., S���, V.T.
and S������, T. (eds.), Combinatorics, Paul Erdős is Eighty, vol. �, pp. ���–���.
János Bolyai Mathematical Society.

L��, Y., G�������, J.E., K�����, A., B������, D., G�������, C. and H�����-
�����, J.M. (����). GraphLab: ANewFramework For ParallelMachine Learning.
arXiv:1006.4990v1 [cs.LG].

L��, L. and Z���, T. (����). Link Prediction in Complex Networks: A Survey.
Physica A: Statistical Mechanics and its Applications, vol. ���, no. �, pp. ����–����.

M��K��, D.J.C. (����). Bayesian Interpolation. Neural Computation, vol. �, no. �,
pp. ���–���.

M����, M., E�, C.H., D����, R., H���, K. and K�����, D. (����). Improving
Generalization for �D Object Categorization with Global Structure Histograms.
In: ���� ����/��� International Conference on Intelligent Robots and Systems
(����–����), pp. ����–����.

M�������, A., B���, L. and D����, F. (����). Object Classi�cation Based on
Graph Kernels. In: Proceedings of the ���� International Conference on High
Performance Computing and Simulation (����–����), pp. ���–���.

���

������������

M���, P., U���, N., A�����, T., P�����, J.-L. andV���, J.-P. (����). Extensions of
Marginalized Graph Kernels. In: Proceedings of the ��st International Conference
on Machine Learning (����–����), pp. ���–���.

M����, P. andV���, J.-P. (����). Graph kernels based on tree patterns formolecules.
Machine Learning, vol. ��, no. �, pp. �–��.

M����, M., ��� L������, U. and H���, M. (����). In�uence of graph construc-
tion on graph-based clustering measures. In: Advances in Neural Information
Processing Systems �� (����–����), pp. ����–����.

M�������, G., A������, M.H., B��, A.J., D������, J.C., H���, I., L�����, N. and
C���������, G. (����). Pregel: A System for Large-scale Graph Processing. In:
Proceedings of the ���� ��� ������ International Conference on Management
of Data (���–����), pp. ���–���.

M�������, L.M. and Y�����, M. (����). One-Class ���s for Document Classi�-
cation. Journal of Machine Learning Research, vol. �, pp. ���–���.

M������, C.D., R�������, P. and S�������, H. (����). Introduction to Informa-
tion Retrieval. Cambridge University Press.

M�P������, M., S����-L����, L. and C���, J.M. (����). Birds of a Feather:
Homophily in Social Networks. Annual Review of Sociology, vol. ��, no. �, pp.
���–���.

M������, S. and B�����, M. (����). Laplacian Support Vector Machines Trained
in the Primal. Journal of Machine Learning Research, vol. ��, pp. ����–����.

M����, A.K. and E����, C. (����). Link Prediction via Matrix Factorization. In:
Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (����/����–����), pp. ���–���.

M��������, L. and M�����, R. (����). Bottom-up learning of Markov logic
network structure. In: Proceedings of the ��th International Conference on
Machine Learning (����–����), pp. ���–���.

M��, M.R., B�����, A.J. and Z����, Z. (����). Modifying Kernels Using Label
Information Improves ��� Classi�cation Performance. In: �th International
Conference on Machine Learning and Applications (�����–����), pp. ��–��.

M�������, T.M. (����). Machine Learning. �st edn. McGraw-Hill, Inc.

M��������, L. and L����, M. (����). Active Learning of Visual Descriptors for
Grasping using Non-parametric Smoothed Beta Distributions. Robotics and
Autonomous Systems, vol. ��, no. �, pp. ���–���.

���

������������

M�����, P.J., H�, P. and V����������, N. (����). A Kullback–Leibler Divergence
Based Kernel for ��� Classi�cation in Multimedia Applications. In: Advances
in Neural Information Processing Systems �� (����–����), pp. ����–����.

M��������, S. (����). Learning from Positive Data. In: Proceedings of the
Inductive Logic Programming Workshop (���–����), pp. ���–���.

N�������, E.A. (����). On Estimating Regression. �eory of Probability and its
Applications, vol. �, no. �, pp. ���–���.

N������, M., G������, R., B��������, C. and K�������, K. (����a). Propa-
gation Kernels: E�cient Graph Kernels from Propagated Information. Machine
Learning. Under review.

N������, M., G������, R. and K�������, K. (����a). Coinciding Walk Kernels.
In: ��th Workshop on Mining and Learning with Graphs (���–����).

N������, M., G������, R. and K�������, K. (����b). Coinciding Walk Kernels:
Parallel Absorbing RandomWalks for Learning with Graphs and Few Labels.
In: Asian Conference on Machine Learning (����–����), pp. ���–���.

N������, M., G������, R., M�����, P., P�������, N. and K�������, K. (����a).
Propagation Kernels for Partially Labeled Graphs. In: ��th Workshop on Mining
and Learning with Graphs (���–����).

N������, M., H�����, L., K����, B., K�������, K. and B��������, C. (����b).
Erosion Band Features for Cell Phone Image Based Plant Disease Classi�cation.
In: Proceedings of the ��nd International Conference on Pattern Recognition
(����–����), pp. ����–����.

N������, M., K�������, K. and A�����, B. (����). Markov Logic Sets: Towards
Li�ed Information Retrieval using PageRank and Label Propagation. In: Pro-
ceedings of the ��th ���� Conference on Arti�cial Intelligence (����–����), pp.
���–���.

N������, M., K�������, K., X�, Z. and S�����, D. (����). Stacked Gaussian
Process Learning. In: �th ���� International Conference on Data Mining (����–
����), pp. ���–���.

N������, M., M�����, P., A������, L., G������, R. and K�������, K. (����c).
Graph Kernels for Object Category Prediction in Task–Dependent Robot Grasp-
ing. In: ��th Workshop on Mining and Learning with Graphs (���–����).

N������, M., P�������, N., G������, R. and K�������, K. (����b). E�cient
Graph Kernels by Randomization. In: Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in Databases (����/����–����),
pp. ���–���.

���

������������

N������, J. and J�����, D. (����). Leveraging Relational Autocorrelation with
Latent Group Models. In: �th ���� International Conference on Data Mining
(����–����), pp. ���–���.

O����, T., P�����������, M. and M���������, T. (����). Multiresolution gray-scale
and rotation invariant texture classi�cation with local binary patterns. ����
Transactions on Pattern Analysis and Machine Intelligence, vol. ��, no. �, pp.
���–���.

P���, H.-J. and F������, K. (����). Structural and Functional Brain Networks:
From Connections to Cognition. Science, vol. ���, no. ����, pp. �������+.

P�����, T. and G�����, F. (����). Networks for Approximation and Learning.
Proceedings of the ����, vol. ��, no. �.

P���, P. and L�����, M. (����). Computing Communities in Large Networks
Using RandomWalks. Journal of Graph Algorithms and Applications, vol. ��,
no. �, pp. ���–���.

R����, J. andG�������, T. (����). Expressivity versus E�ciency of GraphKernels.
In: Proceedings of the �st International Workshop on Mining Graphs, Trees and
Sequences, pp. ��–��.

R������, U., N�����, C.J., S����, C. and H��������, L. (����). Monitoring
spatio-temporal dynamics of photosynthesis with a portable hyperspectral imag-
ing system. Photogrammetric Engineering & Remote Sensing, vol. ��, no. �, pp.
��–��.

R��������, C. andW�������, C. (����). Gaussian Processes for Machine Learning.
Adaptive Computation And Machine Learning. MIT Press.

R������, R. and K������, H. (����). Fast and Scalable Algorithms for Semi-
supervised Link Prediction on Static and Dynamic Graphs. In: Proceedings
of the European Conference on Machine Learning and Knowledge Discovery in
Databases (����/����–����), pp. ���–���.

R���, J., P���������, B., H�����, G. and F����, E. (����). Classi�er Chains for
Multi-label Classi�cation. Machine Learning, vol. ��, no. �, pp. ���–���.

R���������, M. and D�������, P. (����). Markov Logic Networks. Machine
Learning, vol. ��, pp. ���–���.

R����, R.A. and G�����, D.F. (����). Dynamic PageRank Using Evolving Telepor-
tation. In: �th International Workshop on Algorithms and Models for the Web
Graph (���–����), pp. ���–���.

���

������������

R����, V., B��������, P., C�����, G., G������, S., L��������, L. and R����, P.
(����). Components of rate-reducing resistance to cercospora leaf spot in sugar
beet: conidiation length, spore yield. Journal of Plant Pathology, pp. ���–���.

R����, T., M������, A.-K., S������, U., O����, E.-C., D����, H.-W. and
P������, L. (����). Early detection and classi�cation of plant diseases with
Support Vector Machines based on hyperspectral re�ectance. Computers and
Electronics in Agriculture, vol. ��, no. �, pp. ��–��.

R������, S.J. and N�����, P. (����). Arti�cial Intelligence: A Modern Approach.
�nd edn. Pearson Education.

S�������, S. and L�, F.-F. (����). �D Generic Object Categorization, Localization
and Pose Estimation. In: ��th ���� International Conference on Computer Vision
(����–����).

S�����, A., W���, L.L.S. and N�, A.Y. (����). Learning Grasp Strategies with
Partial Shape Information. In: Proceedings of the ��rd ���� Conference on
Arti�cial Intelligence (����–����), pp. ����–����.

S��������, B. and S�����������, R. (����). “Wow!” Bayesian surprise for salient
acoustic event detection. In: ���� International Conference on Acoustics, Speech
and Signal Processing (������–����), pp. ����–����.

S������, M., N������, M. and K�������, K. (����). Markov Logic Mixtures
of Gaussian Processes: Towards Machines Reading Regression Data. In: ��th
International Conference on Arti�cial Intelligence and Statistics (�������–����),
����Workshop and Conference Proceedings, pp. ����–����.

S���������, B., H�������, R. and S����, A.J. (����a). AGeneralized Representer
�eorem. In: ��th Annual Conference on Computational Learning�eory and �th
European Conference on Computational Learning�eory (����/��������–����),
pp. ���–���.

S���������, B., P����, J.C., S����-T�����, J., S����, A.J. andW���������, R.C.
(����b). Estimating the Support of a High-Dimensional Distribution. Neural
Computation, vol. ��, no. �, pp. ����–����.

S��������, I., C����, A., E������, C., G�����, M., H����, C., H���, G. and
S��������, D. (����). ������, the enzyme database: Updates and major new
developments. Nucleic Acids Research, vol. ��, no. Database-Issue, pp. ���–���.

S����, J. (����). Bemerkungen zur �eorie der beschränkten Bilinearformen
mit unendlich vielen Veränderlichen. Journal für die reine und angewandte
Mathematik, vol. ���, pp. �–��.

���

������������

S���������, D. and S�����, A. (����). Geometry Aware Local Kernels for
Object Recognition. In: ��th Asian Conference on Computer Vision (����–����),
pp. ���–���.

S������, O., S�����, P.H., W���, J.K., B������, D. and D����, D. (����). Gaus-
sian Belief Propagation Solver for Systems of Linear Equations. In: ���� Interna-
tional Symposium on Information�eory (����–����), pp. ����–����.

S�����������, N., S���������, P., ��� L������, E.J., M�������, K. and
B��������, K.M. (����). Weisfeiler–Lehman Graph Kernels. Journal of
Machine Learning Research, vol. ��, pp. ����–����.

S�����������, N., V�����������, S.V.N., P����, T., M�������, K. and B���-
�����, K.M. (����). E�cient graphlet kernels for large graph comparison. In:
��th International Conference on Arti�cial Intelligence and Statistics (�������–
����), ����Workshop and Conference Proceedings, pp. ���–���.

S��, Q., P��������, J., D���, G., L�������, J., S����, A.J. and V�����������,
S.V.N. (����). Hash Kernels for Structured Data. Journal of Machine Learning
Research, vol. ��, pp. ����–����.

S��, X., L�, Y. and Y�, P.S. (����). Collective Prediction with Latent Graphs.
In: Proceedings of the ��th ��� Conference on Information and Knowledge
Management (����–����), pp. ����–����.

S���, K. and K�������, T. (����). A Generalization of Haussler’s Convolution
Kernel – Mapping Kernel. In: Proceedings of the ��th International Conference
on Machine Learning (����–����), pp. ���–���.

S����, R., H�����, K., G���������, Z. andA������, E. (����). RankingRelations
using Analogies in Biological and Information Networks. Annals of Applied
Statistics, vol. �, no. �, pp. ���–���.

S��������, V., N�����, P. and B�����, M. (����). Beyond the Point Cloud:
from Transductive to Semi-supervised Learning. In: Proceedings of the ��nd
International Conference on Machine Learning (����–����), pp. ���–���.

S�����, P. and D�������, P. (����). Li�ed First-Order Belief Propagation. In:
Proceedings of the ��rd ���� Conference on Arti�cial Intelligence (����–����),
pp. ����–����.

S����, A. and K�����, R.I. (����). Kernels and Regularization on Graphs. In:
Proceedings of the ��th Annual Conference on Computational Learning�eory
and �th Kernel Workshop (����/������–����), pp. ���–���.

���

������������

S�������, S.H. (����). Exploring complex networks. Nature, vol. ���, no. ����,
pp. ���–���.

S��, J., X��, Y., Z����, H. and F��������, C. (����). Less is More: Sparse Graph
Mining with Compact Matrix Decomposition. Statistical Analysis and Data
Mining, vol. �, no. �, pp. �–��.

S�����, C. and M�C�����, A. (����). An Introduction to Conditional Random
Fields for Relational Learning. In: Introduction to Statistical Relational Learning,
Adaptive Computation and Machine Learning, pp. ��–���. MIT press.

S������, M. and J�������, T. (����). Partially Labeled Classi�cation with
Markov Random Walks. In: Advances in Neural Information Processing Sys-
tems �� (����–����), pp. ���–���.

T������, M.E. (����). Sparse Bayesian Learning and the RelevanceVectorMachine.
Journal of Machine Learning Research, vol. �, pp. ���–���.

T�����, N. and S�����, N. (����). Data Clustering by Markovian Relaxation
and the Information Bottleneck Method. In: Advances in Neural Information
Processing Systems �� (����–����), pp. ���–���.

T���, H., F��������, C. and P��, J.-Y. (����). Fast RandomWalk with Restart
and Its Applications. In: �th ���� International Conference on Data Mining
(����-����), pp. ���–���.

T��, J.Y., T��, Y.H. and L��, P.Y. (����). Gabor Filters as Feature Images for Co-
variance Matrix on Texture Classi�cation Problem. In: K������, M., K������,
N. and C������, G. (eds.), Advances in Neuro-Information Processing, vol. ����,
pp. ���–���. Springer-Verlag Berlin Heidelberg.

T�����������, E., U����, J., G������, H. and H�����, T. (����). Semantic Graph
Kernels for Automated Reasoning. In: Proceedings of the ��th ���� International
Conference on Data Mining (���–����), pp. ���–���.

T����, K., K��, T. and A���, K. (����). Marginalized Kernels for Biological
Sequences. In: Proceedings of the ��th International Conference on Intelligent
Systems for Molecular Biology (����–����), pp. ���–���.

U������, S. (����). An EigendecompositionApproach toWeightedGraphMatch-
ing Problems. ���� Transactions on Pattern Analysis and Machine Intelligence,
vol. ��, no. �, pp. ���–���.

V����������, K. and O��, E. (����). Reduced multidimensional co-occurrence
histograms in texture classi�cation. ���� Transactions on Pattern Analysis and
Machine Intelligence, vol. ��, no. �, pp. ��–��.

���

������������

V�����, V. (����). Statistical Learning�eory, chap. �: Estimating the Values of
Function at Given Points, pp. ���–���. John Wiley & Sons, Inc.

V�����������, S.V.N., B��������, K.M. and S����������, N.N. (����). Fast
Computation of Graph Kernels. In: Advances in Neural Information Processing
Systems �� (����–����), pp. ����–����.

V�����������, S.V.N., K����, S., N������, J. andW�����, S. (����). Introduction
to the special issue on mining and learning with graphs. Machine Learning,
vol. ��, no. �, pp. ��–��.

V�����������, S.V.N., S����������, N.N., K�����, R.I. and B��������,
K.M. (����). Graph kernels. Journal of Machine Learning Research, vol. ��, pp.
����–����.

��� L������, U. (����). A tutorial on spectral clustering. Statistics and Comput-
ing, vol. ��, no. �, pp. ���–���.

W����, G. (����). Spline Models for Observational Data. Society for Industrial
and Applied Mathematics.

W���, N. and K������, G. (����). Comparison of Descriptor Spaces for Chemical
Compound Retrieval and Classi�cation. In: �th ���� International Conference
on Data Mining (����–����), pp. ���–���.

W���, N., W�����, I.A. and K������, G. (����). Comparison of Descriptor
Spaces for Chemical Compound Retrieval and Classi�cation. Knowledge and
Information Systems, vol. ��, no. �, pp. ���–���.

W�����, T. and M�����, H. (����). State of the Art of Graph-based Data Mining.
��� ������ Explorations Newsletter, vol. �, no. �, pp. ��–��.

W��������, L. (����). All of Statistics: A Concise Course in Statistical Inference.
Springer Science + Business Media New York.

W������, C. (����). Dynamic Alignment Kernels. In: Advances in Large Margin
Classi�ers, pp. ��–��.

W�����, G.S. (����). Smooth Regression Analysis. Sankhyā: �e Indian Journal
of Statistics, vol. ��, no. �, pp. ���–���.

W���, J.M., C��������, A. and M����, T.P. (����). Object categorization by
learned universal visual dictionary. In: ��th ���� International Conference on
Computer Vision (����–����), pp. ����–����.

���

������������

W�����, S. (����). Inductive Logic Programming for Knowledge Discovery in
Databases. In: D��������, S. and L������, N. (eds.), Relational Data Mining, pp.
��–���. Springer-Verlag Berlin Heidelberg.

W�, X.-M., L�, Z., S�, A.M.-C., W�����, J. and C����, S.-F. (����). Learning
with Partially Absorbing RandomWalks. In: Advances in Neural Information
Processing Systems �� (����–����), pp. ����–����.

X����, R. and N������, J. (����). Pseudolikelihood EM for Within-Network
Relational Learning. In: �th ���� International Conference on Data Mining
(����–����), pp. ����–����.

Y���, Z., H��, T., D�����, O., C���, X. and O��, E. (����). Clustering by
Nonnegative Matrix Factorization Using Graph RandomWalk. In: Advances in
Neural Information Processing Systems �� (����–����), pp. ����–����.

Y������, J.S., F������, W.T. andW����, Y. (����). Understanding Belief Propaga-
tion and Its Generalizations. In: L��������, G. and N����, B. (eds.), Exploring
Arti�cial Intelligence in the New Millennium, pp. ���–���. Morgan Kaufmann
Publishers.

Z����, D., Z���, Z.-H. and C���, S. (����). Non-negative matrix factorization
on kernels. In: �th Paci�c Rim International Conference on Arti�cial Intelligence
(������–����), pp. ���–���.

Z����, L., S���, M., L��, X., B�, J. and C���, C. (����). Fast Multi-View Segment
Graph Kernel for Object Classi�cation. Signal Processing, vol. ��, no. �, pp. ����–
����.

Z���, D., B�������, O., L��, T.N., W�����, J. and S���������, B. (����). Learn-
ing with Local and Global Consistency. In: Advances in Annual Conference on
Neural Information Processing Systems �� (����–����), pp. ���–���.

Z���, D., H����, J. and S���������, B. (����). Learning with Hypergraphs:
Clustering, Classi�cation, and Embedding. In: Advances in Neural Information
Processing Systems �� (����–����), pp. ����–����.

Z��, X. (����). Semi-supervised Learning with Graphs. Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, PA, US. 0-542-19059-1, AAI3179046.

Z��, X., G���������, Z. and L�������, J.D. (����). Semi-Supervised Learning
Using Gaussian Fields and Harmonic Functions. In: Proceedings of the ��th
International Conference on Machine Learning (����–����), pp. ���–���.

Z��, X., K������, J.S., G���������, Z. and L�������, J.D. (����). Non-
parametric Transforms of Graph Kernels for Semi-Supervised Learning. In:
Advances in Neural Information Processing Systems �� (����–����), pp. ����–����.

���

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Networks and Structured Data: New Challenges for Learning
	Contributions
	Structure of the Thesis

	Background: Learning with Graphs
	Graphs: Networked and Structured Data
	Machine Learning with Graphs
	Information Propagation on Graphs
	Kernels and Graphs
	The Relational Perspective

	Propagation Kernels
	Problem, Previous Work, and Proposed Solution
	Kernel-based Graph Classification
	Our Approach: Propagation Kernels

	Propagation Kernels for General Graphs
	Propagation Kernel Framework
	pk–Component 1: Node Kernel
	pk–Component 2: Propagation Scheme
	Empirical Evaluation

	Propagation Kernels for Grid Graphs
	Grid Graphs and Discrete Convolution
	Efficient Propagation Kernel Computation
	Empirical Evaluation: Image-based Texture Classification

	Transition: From the Graph to the Node Level

	Coinciding Walk Kernels
	Problem, Previous Work, and Proposed Solution
	Node Classification in Sparsely Labeled Graphs
	Our Approach: Coinciding Walk Kernels

	Coinciding Walk Kernels
	Partially Absorbing and Parallel Random Walks
	Kernel Computation
	Empirical Evaluation

	Transition: From Node Classification to Set Completion
	Beyond Graphs: Relational Set Completion
	Problem, Proposed Solution, and Related Work
	Markov Logic Sets
	Empirical Evaluation
	Summary and Discussion

	Beyond Molecules: Novel Applications for Learning with Graphs
	3d-Object Classification
	Problem Introduction and Related Work
	Object Category Prediction with Propagation Kernels
	Experimental Evaluation
	Summary and Discussion

	Image-based Plant Disease Classification
	Problem Introduction and Related Work
	Leaf Spot Detection with Coinciding Walk Kernels
	Plant Disease Classification with Propagation Kernels
	Summary and Discussion

	Conclusion
	Notes on a Similarity Measure based on Parallel rws
	Geometry: Notes on Representing Curvature
	Bibliography

