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Abstract 

Chronic alcohol abuse leads to severe brain damage, which has been associated with 

alcohol-induced neuroinflammation. Recently, the cannabinoid receptor 2 (CB2), which 

is predominantly expressed on immune cells, has been shown to be involved in alcohol 

addiction. Therefore, this study aimed at investigating the role of the CB2 in alcohol-

induced neuroinflammation and at characterising alcohol-related behaviour in CB2 

knockout animals. First, the potency of different chronic alcohol models to induce 

neuroinflammation was analysed. To achieve this, levels of pro- and anti-inflammatory 

cytokines and glial activation markers were quantified in the cortex of the animals using 

ELISA and immuno-histochemical approaches. Next, we characterised the modulatory 

role of the CB2 receptor in alcohol-induced neuroinflammation. We hypothesised that 

lack of CB2 should be beneficial in alcohol-induced neuroinflammation. Therefore, the 

neuroinflammatory burden after chronic alcohol consumption was analysed in CB2 

deficient animals compared to WT controls. We can conclude that long-term models 

applied in this study led to neuroinflammation, as revealed by increased expression of 

pro-inflammatory cytokines. These changes were more pronounced when animals were 

continuously exposed to alcohol and additionally, we found a strong correlation 

between the duration of alcohol drinking and the severity of neuroinflammation. In line 

with this, long-term alcohol drinking led to a pro-inflammatory phenotype of microglia 

in the cortex. Furthermore, CB2 deficiency dampens the inflammatory response in the 

cortex. However, this effect was strongly dependent on housing conditions. In a second 

approach, the alcohol drinking pattern of CB2 deficient animals was analysed in different 

models that included environmental factors like social isolation, repeated withdrawal of 

alcohol or foot shock-induced stress. Finally, the development of tolerance, somatic 

signs of withdrawal and alcohol clearance were characterised in these mice. 

Interestingly, we detected that the CB2 receptor increased alcohol drinking in a model 

for social drinking. Additionally, our data suggest that the CB2 receptor modulates 

alcohol reward. Taken together, these data show that the CB2 receptor is involved in a 

variety of alcohol-related phenotypes ranging from alcohol-induced neuroinflammation 

to alcohol reward. In addition, the function of this receptor is strongly modulated by the 

environment.  

  



 

6 
 

1 Introduction 

Alcohol use disorder is a chronic relapsing disease that is characterised by a 

“compulsion to seek and to take the drug, loss of control in limiting intake, and the 

emergence of a negative emotional state when access to the drug is prevented” (Koob & 

Volkow, 2009). According to the status report of the World Health Organisation (WHO) 

19.4 % of adult men and 5.9 % of adult women in Germany drink in a manner posing a 

risk to health (WHO, 2014a). Moreover, in 2012 5.9 % of all global deaths were 

attributable to alcohol (WHO, 2014b). Considering the harm alcohol inflicts on users and 

to their social environment, it is the most harmful drug before heroin in second place 

(Nutt et al., 2010).  

While there is a substantial risk for humans to inherit alcoholism, environmental 

factors contribute nearly in equal strength to the development of addiction, which 

underlines the complex nature of this disease (Goldman et al., 2005). Genetic and 

environmental interaction leads to a large heterogeneity in alcohol-dependent patients 

in terms of symptom dimensions and severity of disorder. Furthermore, long-term 

alcohol abuse leads to severe cognitive deficits, which have been – similarly to other 

neurodegenerative diseases – attributed to neuroinflammation (He & Crews, 2008; 

Obernier et al., 2002; Pascual, Baliño, et al., 2011).  

The endocannabinoid system plays an important role in the modulation of 

neurological and immunological processes and is therefore a promising candidate in the 

investigation of different aspects of addiction ranging from initial drug use to cognitive 

impairments after long-term abuse. Recently, the cannabinoid receptor 2 (CB2) has been 

associated with alcoholism in humans, and has been implicated in alcohol, nicotine and 

cocaine addiction in rodents (Al Mansouri et al., 2014; Ignatowska-Jankowska et al., 

2013; Ishiguro et al., 2007; Ortega-Álvaro et al., 2013; Xi et al., 2011). These findings 

were very surprising, as for a long time the CB2 was believed to be absent in the brain 

and its function was thought to be restricted to immune function. Furthermore, it is 

involved in stress reactivity (Bahi et al., 2014; García-Gutiérrez & Manzanares, 2011; 

García-Gutiérrez et al., 2010), thereby possibly modulating alcohol consumption in 

relation to the environment (Al Mansouri et al., 2014; Ishiguro et al., 2007). These 

studies indicate an emerging role of the CB2 in alcohol abuse, which might also depend 
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on gene x environment (G x E) interactions. Moreover, it possibly modulates alcohol-

induced neuroinflammation, which can cause cognitive deficits after chronic alcohol use. 

Altogether, these reports suggest that the CB2 receptor is a valuable target to study 

alcohol-related behaviour and alcohol-induced neuroinflammation. 

1.1 Neurobiology of alcohol addiction 

Several activities like eating, sex and sport elicit pleasant feelings. They guarantee 

the survival and reproduction of the individual by acting on the brain’s reward system. 

These so-called ‘positive reinforcers’ stimulate the mesolimbic dopaminergic system, 

which is part of the reward pathway. Drugs of abuse activate the same pathway and 

protracted misuse results in pathologic changes leading to addiction (Koob & Volkow, 

2009). Alcohol activates dopaminergic neurons in the ventral tegmental area (VTA), 

which project to the nucleus accumbens (NAc) and results in the release of dopamine 

(DA) (Chiara & Imperato, 1988). This effect is a hall-mark of all drugs of abuse and is 

associated with the pleasant acute effects of the drug (Boileau et al., 2003). As a first 

feature of the development of addiction, the drug use becomes impulsive and is driven 

by positive reinforcement (Figure 1). However, as the disease progresses, after long-

term alcohol abuse, the drug use is characterised by uncontrolled compulsion to seek 

and to take the drug. Importantly, at this stage drug intake is driven by negative 

reinforcement, as a negative emotional state emerges during abstinence (Koob & 

Volkow, 2009).  
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Figure 1. The development of addiction (Modified from Koob et al. 2004; Koob & Le Moal 2008). 

From a pharmacologic point of view, alcohol is a ‘dirty’ drug because it has many 

primary targets including the γ-aminobutyric acid (GABAA), N-methyl-D-aspartic acid 

(NMDA), acetyl choline (nACh), glycine and 5-hydroxytryptamine (serotonin, 5-HT3) 

receptors, as well as G-protein activated inwardly rectifying K+ channels (GIRKs) and L-

type Ca2+ channels (Spanagel, 2009). However, the effect of alcohol is most thoroughly 

studied in the case of GABAergic and glutamatergic neurons. The GABAA receptor is a 

pentameric ligand-gated chloride channel and the major inhibitory neurotransmitter 

receptor in the mammalian brain. Acute alcohol intake increases the activity of GABAA 

receptors, which results in reduced anxiety, slurred speech, sedation, disinhibition and 

reduced levels of consciousness (Lingford-Hughes et al., 2010). Chronic alcohol use, 

however, leads to decreased GABAA receptor function, which is due to the development 

of tolerance. This effect is thought to be mediated via a decreased GABAA receptor 

density and an altered expression of GABAA subunits (Spanagel et al., 2008). Alcohol 

mediates the DA-release indirectly via GABA-ergic neurons. GABA is an important 

modulator of DA release in the NAc as GABA-interneurons tonically inhibit the activity of 

VTA DA-neurons that project to the NAc (‘GABA-brake’) (Shizgal & Hyman, 2013). 

Alcohol leads to the release of endorphin within the VTA, which acts on µ-opioid 
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receptors on GABA-interneurons. This results in the inhibition of GABA-interneurons 

and thereby in disinhibition of DA release in the NAc (Lingford-Hughes et al., 2010). 

Alcohol also profoundly modulates glutamate signalling by acting on the NMDA 

receptor. The NMDA receptor is a ligand-gated ion channel and consists of a heteromeric 

assembly of NR1, NR2(A-D) and NR3 subunits. Acute alcohol intake antagonises NMDA 

receptor function, which results in reduced excitatory transmission (Spanagel, 2009). 

Long-term adaptation to alcohol use leads to the enhanced expression of NMDA 

receptors. Nonetheless, chronic alcohol use leads to a reduced baseline activity in 

regions of the frontal cortex, which is in part dependent on glutamatergic projections. 

These regions control executive functions like working memory, attention, decision 

making and behavioural inhibition. Changes in activity of these regions are profoundly 

implicated in the development of addiction and compulsive drug use (Nestler, 2005). 

However, alcohol withdrawal results in excess glutamate activity, which is associated 

with increased cytotoxicity and is thought to contribute to cognitive impairments 

(Barron et al., 2008; Tsai & Coyle, 1998).  

1.2 Gene x environment interactions in addiction 

Twin studies revealed that the heritability of alcoholism resides between 50 and 60 

%, which indicates that genetic and environmental risk factors equally contribute to the 

development of addiction (Goldman et al., 2005). Many genes are associated with 

alcoholism, including genes encoding for alcohol metabolising enzymes or genes that are 

associated with other psychiatric diseases (Crabbe et al., 2006). Environmental risk 

factors that favour the development of addiction are manifold and include maternal 

stress, substance abuse during pregnancy, low birth weight, lack of normal parental 

care, stressful life events, childhood physical abuse and, toxic exposures (Clarke et al., 

2008). Stress is the major environmental risk factor in the development and 

maintenance of addiction, as any form of negative life events or emotionally disruptive 

condition may promote relapse (Sinha, 2008). In order to appropriately respond to 

environmental stimuli the body releases neurotransmitters and stress hormones, 

thereby activating the hypothalamus-pituitary-adrenal (HPA) axis, which is an 

important mediator of the homeostatic response (Lightman & Conway-Campbell, 2010). 

Briefly, during stress response, corticotropin-releasing hormone (CRH) is secreted from 

the paraventricular nucleus (PVN) of the hypothalamus to the pituitary gland. Here, CRH 
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induces the release of adrenocorticotropic hormone (ACTH) into the blood stream and 

stimulates the adrenal cortex to produce glucocorticoid hormones (mainly 

corticosterone in rodents and cortisol in humans). Corticosterone/cortisol provides 

negative feedback to the pituitary gland and the PVN in order to stop the stress 

response. During chronic stress, the negative feedback of the HPA axis is disrupted and 

leads to prolonged and exacerbated stress responses. During alcohol exposure and 

detoxification, the HPA axis activity is increased and remains altered for weeks after 

cessation of alcohol intake. Polymorphisms in the CRH system are associated with heavy 

drinking, often in interaction with a history of stress experience (Clarke et al., 2008; 

Zorrilla et al., 2014). Consistently, rodents also show alcohol-dependent increases in 

CRH and ACTH levels following alcohol exposure. Pharmacologic blockade of the CRH 

receptor 1 results in reduced alcohol seeking and stress-induced alcohol intake (Sillaber 

et al., 2002; Sommer et al., 2008). Importantly, glucocorticoids also modulate the reward 

system leading to enhanced DA levels in the NAc, whereas chronic stress leads to a 

reduced DA synthesis and turnover (Rodrigues et al., 2011). In summary, the HPA axis is 

an important system that orchestrates stress responses and is implicated in the 

development of addiction. 

1.3 Neuropathomechanism of chronic alcohol consumption:  

A role for neuroinflammation? 

Cycles of chronic excessive alcohol consumption and abstinence have long-lasting 

neurological and behavioural consequences, resulting in cognitive impairment and 

enhanced compulsivity. Impairments have been observed to include deficits in abstract 

problem solving, learning and memory, and executive motor functions (Fama et al., 2004). 

Furthermore, chronic alcohol consumption can lead to alcohol-associated dementia and 

Wernicke-Korsakoff syndrome, the latter of which is due to thiamine deficiency. Brain 

imaging techniques have demonstrated that chronic alcohol abuse leads to atrophy of the 

cerebellum, corpus callosum and frontal cortex (Pfefferbaum & Sullivan, 2005; Sullivan & 

Pfefferbaum, 2005). Moreover, alcohol abuse leads to severe brain volume loss, which is 

comparable to that in patients with Alzheimer’s disease. This includes shrinkage in 

cortical and subcortical regions, hippocampus, striatum and brainstem, as well as 

ventricle enlargement (Sullivan & Pfefferbaum, 2005). The diminished gray and white 
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matter density suggests a reduced connectivity in the brain. However, the underlying 

pathomechanisms are not fully understood, although oxidative stress, glutamate 

excitotoxicity and nutritional deficiency contribute in part to neurological impairments 

(Crews & Nixon, 2009; Haorah et al., 2008). Recently, another mechanism has been 

discovered, which could underlie the neuropathologic processes. Signs of alcohol-induced 

neuroinflammation were demonstrated in human post mortem tissue as revealed by 

increased expression of CCL-2, microglial (Iba1) and astrocytic (GluT5) markers in 

various brain regions (He & Crews, 2008). Since then, many studies have provided 

evidence of alcohol-induced neuroinflammation also in preclinical models (Figure 2) 

(Collins & Neafsey, 2012; Crews & Vetreno, 2011; Qin et al., 2008). The use of genetically 

modified mice established the importance of the innate immune system, specifically of the 

toll-like receptor 4 (TLR4) in alcoholism (Alfonso-Loeches et al., 2010; Fernandez-Lizarbe 

et al., 2009). Alcohol has been shown to activate the TLR4 pathway in microglia and 

astrocytes, which leads to the activation of nuclear factor kappa B (NFκB). This in turn, 

leads to the production of a wide range of pro-inflammatory mediators, including 

chemokines (CCL-2), cytokines (TNF-α, IL-1β, IL-6) and enzymes like inducible NO-

synthase (iNOS) and cyclooxygenase 2 (COX-2) (Alfonso-Loeches et al., 2010; Pascual et 

al., 2009), which lead to the enhanced production of NO and prostaglandins. Furthermore, 

cognitive impairments and demyelination were shown to be associated with 

neuroinflammation, and TLR4-deficient mice were protected against alcohol-induced 

brain damage (Alfonso-Loeches et al., 2012; Obernier et al., 2002; Pascual, Baliño, et al., 

2011).  
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Figure 2. Potential mechanism of alcohol-induced brain damage involving neuroinflammation 

(Blanco & Guerri, 2007)  

1.4 The endocannabinoid system 

The endocannabinoid system is a modulatory system that alters neural transmission, 

as well as immune function. It consists of at least two well-described cannabinoid 

receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and their 

synthesis and degradation enzymes. CB1 and CB2 are (mostly) Gi/o-protein coupled 

receptors (GPCR) that both act via inhibition of the adenylate cyclase, activation of MAP 

kinases and modulation of intracellular calcium (Ca2+) flux (McAllister & Abood, 2006). 

Furthermore, activation of CB1R inhibits voltage-dependent Ca2+-channels and activates 

inwardly rectifying potassium (K+) channels (Kir), which leads to reduced 

neurotransmitter release through a retrograde signalling pathway (Figure 3A) (Piomelli, 

2003). Being the most abundant GPCR in the brain, CB1R is involved in many 

physiological and pathological conditions (Katona & Freund, 2008).  



 

Figure 3. (A) CB1/2R signalling

degradation of endocannabinoids. For more details, please see text (taken from Di Marzo, 2004). 

On the other hand, expression of the CB

long been neglected, and due to its high expression on leukocytes its function has been 

predominantly restricted to immune modulation 

recent studies detected CB2 

stem, cerebellum, midbrain, cingulate cortex, entorhinal cortex, h

nucleus accumbens, amygdala and hypothalamus 

Gutiérrez et al., 2010; Gong et al., 2006; Navarrete et al., 2012; Onaivi et al., 2008; Van 

Sickle et al., 2005). Furthermore, two reports provide electro

suggesting a neuromodulatory function of the CB

cortex (Boon et al., 2012; Morgan et al., 2009)

CB2 receptors in the brain is still 

neuro-physiologic relevance still remains elusive.

2-arachidonyl glycerol (2

endocannabinoids (Figure 3

2-AG is a high efficacy agonist at CB

(Atwood & Mackie, 2010; Pertwee et al., 2010)

A 

13 

 

R signalling transduction pathways in the pre-synapse. (B) Synthesis and 

degradation of endocannabinoids. For more details, please see text (taken from Di Marzo, 2004). 

, expression of the CB2 in the central nervous system (CNS) has 

d, and due to its high expression on leukocytes its function has been 

predominantly restricted to immune modulation (Atwood & Mackie, 2010)

 mRNA expression in various brain regions, including

stem, cerebellum, midbrain, cingulate cortex, entorhinal cortex, hippocampus, striatum, 

nucleus accumbens, amygdala and hypothalamus (Atwood & Mackie, 2010; García

Gong et al., 2006; Navarrete et al., 2012; Onaivi et al., 2008; Van 

Furthermore, two reports provide electro-physiologic evidence 

suggesting a neuromodulatory function of the CB2 in the entorhinal and the prefrontal 

(Boon et al., 2012; Morgan et al., 2009). However, the cellular site of expression of 

receptors in the brain is still highly arguable (Atwood & Mackie, 2010)

physiologic relevance still remains elusive. 

arachidonyl glycerol (2-AG) and anandamide (AEA) are the two 

B). Both bind with comparable affinity to the CB

AG is a high efficacy agonist at CB2 and AEA shows only low affinity to this receptor 

(Atwood & Mackie, 2010; Pertwee et al., 2010). Endocannabinoids are produced on 

B 

 

 

synapse. (B) Synthesis and 

degradation of endocannabinoids. For more details, please see text (taken from Di Marzo, 2004).  

in the central nervous system (CNS) has 

d, and due to its high expression on leukocytes its function has been 

(Atwood & Mackie, 2010). However, 

various brain regions, including brain 

ippocampus, striatum, 

(Atwood & Mackie, 2010; García-

Gong et al., 2006; Navarrete et al., 2012; Onaivi et al., 2008; Van 

physiologic evidence 

in the entorhinal and the prefrontal 

However, the cellular site of expression of 

(Atwood & Mackie, 2010) and its 

AG) and anandamide (AEA) are the two most defined 

B). Both bind with comparable affinity to the CB1R, whereas 

and AEA shows only low affinity to this receptor 

Endocannabinoids are produced on 



 

14 
 

demand, and their synthesis can be triggered by Ca2+ influx (into the postsynaptic site) 

and neuronal activation. Four alternative pathways lead to the biosynthesis of AEA, 

whereas its major degrading enzyme is the fatty acid amide hydrolase (FAAH) (Di Marzo 

et al., 2004). Most of the 2-AG pool is synthesized by the diacylglycerol lipase (DAGL) (Di 

Marzo, 2011), which has two isoforms: DAGLα expression is most prevalent in the brain, 

whereas DAGLβ is the prominent enzyme for 2-AG synthesis in the liver. 2-AG is mainly 

degraded by monoacylglycerol lipase (MAGL), yielding arachidonic acid and glycerol 

(Lichtman et al., 2010). Beside 2-AG and AEA, several other endocannabinoids that do 

not bind to CB1R or CB2 have been recently identified in the brain (called non-classical 

or orphan endocannabinoids), like oleoylethanolamide (OEA) and 

palmithoylethanolamide (PEA). OEA has been shown to bind to GPR 55, whereas PEA is 

a ligand of both GPR55 and GPR119 (Godlewski et al., 2009), which have been suggested 

as novel receptors of the endocannabinoid system (Brown, 2007).  

1.5 The role of the CB2 receptor in neuroinflammation  

The CB2 receptor has been connected with many pathologic conditions including 

cardiovascular disease, allergic dermatitis, inflammatory pain, obesity as well as liver 

and bone disorders (Buckley, 2008; Cluny et al., 2012; Karsak et al., 2007; Klauke et al., 

2014; Pacher & Mechoulam, 2011). The expression of CB2 is predominantly found on 

immune cells and is also present in brain resident microglia cells (Stella, 2010). The CB2 

has been implicated in neuroinflammatory conditions like Alzheimer’s disease (AD), 

Huntington’s disease, multiple sclerosis and neuropathic pain (Ashton & Glass, 2007; 

Cabral & Griffin-Thomas, 2010; Racz, Nadal, et al., 2008). Analysis of post mortem 

tissues of AD patients showed a strong increase in CB2 expression, as well as CB2 and 

FAAH in microglia clusters at β-amyloid plaques (Benito et al., 2003; Solas et al., 2013). 

Furthermore, administration of CB2 agonists (MDA7, JWH-133 and WIN 55,212) has 

been shown to reduce microglial activation and reduced the cognitive impairment in 

rodent models of AD (Aso et al., 2013; Ramírez et al., 2005; Wu et al., 2013). Moreover, 

in a rat chronic lesion model for Huntigton’s disease the CB2 expression was increased in 

a subpopulation of microglia in the lesioned striatum (Fernández-Ruiz et al., 2007). 

Recently it has been demonstrated in a model for multiple sclerosis that CB2 expression 

increases with progression of disease, specifically in activated microglia and 

macrophages (Maresz et al., 2005). Finally, activation of the CB2 by JWH-133 or beta-
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caryophyllene (BCP) reduced thermal hyperalgesia, mechanical allodynia and microglial 

activation after partial nerve ligation, whereas the inflammatory response was 

exacerbated in CB2 deficient animals (Klauke et al., 2014; Racz, Nadal, et al., 2008).  

Evidence from in vitro studies show that CB2 activation modulates B- and T-cell 

differentiation, reduces proliferation and phagocytosis of macrophages, as well as 

production of inflammatory mediators like NO, IL-12 and TNF-α. Moreover, it is 

implicated in migration of leukocytes (Ashton & Glass, 2007; Cabral & Griffin-Thomas, 

2010). Pro-inflammatory stimulation of microglia with lipopolysaccharid (LPS) activates 

the TLR4 pathway, which leads to a massive cellular response including 

phosphorylation of MAP kinases, the production of TNF-α, IL-1β, IL-6, and induction of 

iNOS expression as well as secretion of NO. Many studies demonstrate that activation of 

the CB2 signalling blocked the LPS-induced pro-inflammatory response (Ashton & Glass, 

2007; Cabral & Griffin-Thomas, 2010; Gertsch et al., 2008). On the other hand, 

application of CB2 inverse agonists showed the same effects (Gertsch, 2008). In 

accordance with that, primary microglia isolated from CB2 deficient mice showed an 

impaired LPS response as revealed by decreased ICAM, CD40, IL-6, CCL-2 and TNF-α 

production (Schmöle et al., submitted.). These pleiotropic effects are probably due to 

ligand bias or altered receptor coupling. To sum up, activation of the CB2 signalling has 

been shown to be anti-inflammatory in many conditions, although this effect is not 

always consistent and may depend on the ligand and the cell type.  

1.6 The emerging role of the CB2 receptor in drug abuse 

Recently, a single nucleotide polymorphism (SNP) in the CNR2 gene locus, R63Q, has 

been associated with psychiatric disorders including schizophrenia, depression 

(Ishiguro et al., 2010; Onaivi et al., 2008), and alcoholism (Ishiguro et al., 2007). This 

SNP leads to a missense mutation in the first intracellular domain, which results in a 

decreased cellular response to CB2 ligands (Ishiguro et al., 2010). Based on these 

reports, preclinical studies also implied the CB2 in animal models of psychiatric 

disorders, including depression, impulsivity, anxiety and schizophrenia (García-

Gutiérrez et al., 2010; Navarrete et al., 2012; Ortega-Alvaro et al., 2011). Furthermore, 

there is emerging evidence to support the role of the receptor in drug addiction. Xi and 

co-workers discovered that high dose application of JWH-133 led to a decreased cocaine 
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self administration. This effect was independent of the CB1R and seemed to be specific 

for the CB2 (Xi et al., 2011). In the same study, application of the CB2 agonist led to a 

dose-dependent decrease in baseline dopamine levels in the NAc. This finding has been 

validated in mice overexpressing the CB2. Enhanced CB2 activity resulted in reduced 

cocaine conditioned place preference (CPP) and decreased cocaine self administration 

(Aracil-Fernández et al., 2012). On the other hand CB2 activity appears to have opposing 

effects in nicotine addiction. Inhibition of CB2 with SR144528 at low doses decreased 

nicotine CPP, whereas stimulation with O-1966 enhanced nicotine CPP. Moreover, CB2 

deficient animals did not develop nicotine CPP (Ignatowska-Jankowska et al., 2013). 

This finding has been replicated in another study reporting that antagonist treatment 

(AM630) and CB2 deficiency reduced nicotine CPP and reduced nicotine self 

administration (Navarrete et al., 2013). Contrary to this, Gamaleddin and colleagues 

reported no effect of either CB2 agonist (AM1241) or antagonist (AM630) on nicotine 

self administration, reinstatement and nicotine seeking in rats (Gamaleddin et al., 2012). 

However, the reason for these conflicting reports may be species-related differences. 

Furthermore, CB2 deficient mice on a CD1 background showed enhanced alcohol CPP, 

preference and consumption whereas alcohol self administration was not altered 

(Ortega-Álvaro et al., 2013). Moreover, the CB2 expression seems to decrease, when 

animals develop alcohol preference compared to those that did not develop (Onaivi et 

al., 2008). On the other hand, neither chronic pharmacologic treatment with JWH-015 

nor AM630 altered alcohol consumption (Ishiguro et al., 2007). Interestingly, in the 

same study chronic CB2 stimulation resulted in enhanced alcohol consumption after 

chronic mild stress compared to vehicle-treated stressed control animals. This finding 

indicates that CB2 receptor activity is modulated by stress, which points to putative G x E 

interaction of the CB2 receptor. 
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1.7 Aims of this study 

The first part of this study was aimed at (1) establishing a model for the study of 

alcohol-induced neuroinflammation. In order to do so, the potency of different models 

for alcohol consumption to induce neuroinflammation was analysed (including chronic, 

forced and intermittent forced drinking). For this, levels of neuroinflammatory markers 

(pro- and anti-inflammatory cytokines and glial activation marker) were quantified in 

the cortex of the animals with different techniques (ELISA, Western blot and 

immunohistochemistry). (2) We characterised the modulatory role of the CB2 in alcohol-

induced neuroinflammation. We hypothesised that lack of CB2 should be beneficial in 

alcohol-induced neuroinflammation ultimately leading to a reduced activation of the 

TLR4 pathway. Therefore, the cognitive performance and the neuroinflammatory 

burden after chronic alcohol consumption were analysed in CB2 deficient animals and 

compared to WT controls. Moreover, the study aimed at (3) the phenotypic analysis of 

alcohol drinking patterns in CB2 deficient animals in different models that included 

environmental risk factors like social isolation, frequent withdrawal of alcohol or foot 

shock-induced stress. Finally, the development of tolerance, somatic signs of withdrawal 

and alcohol clearance were characterised in these mice. 

  



 

18 
 

2 Material 

2.1 Equipment 

Analytical balance BP 121 S, Sartorius 

Bioanalyzer Agilent 2100 bioanalyzer, Agilent Technologies 

CCD camera AxioCam MRm, Zeiss  

Centrifuges Biofuge fresco, Heraeus Instruments 

 Biofuge pico, Heraeus Instruments 

Cryostate CM 3050 S, Leica 

Homogenisers Precellys® 24, Bertin Technologies 

 Ultra-Turrex®, IKA Werke, Staufen, Germany 

 Ultrasound homogenizer, Bandelin Sonoplus 

 1 ml glass homogeniser, Wheaton, USA 

Incubator  CB210, Binder 

Laser Scanning Microscope SP8, DMI 6000 CS, Leica 

Lux meter HI 97500 Hanna Instruments, Hamburg, Germany 

Magnetic stirrer MR 3001 K, Heidolph, Fisher 

Microscopes Axioplan 2, Zeiss Axioscope 40, Zeiss 

PCR iCycler iCycler, Bio-Rad Laboratories 

pH meter inoLab, WTW 

Polypropylene vials (15, 50 ml)  BD Bioscience, Pharmingen, San Diego, CA, USA 

Polystyrene vials (5 ml)  BD Bioscience, Pharmingen, San Diego, CA, USA 

Real-Time Cycler 7500 Real-Time PCR Detection System, 

 Applied Biosystems 

Rectal thermometer BAT-12 Physiotemp, New Jersey, USA 

Rota-Rod UgoBasile, Italy 

Safe-lock vials (0.5, 1.5, 2 ml)  Eppendorf, Hamburg, Germany 

Scanner Epson Perfection 4990, Epson 

Spectrophotometers MRX TCII, Dynex 

 NanoDrop ND-1000, Thermo Scientific 

 Ultrospec 2100 pro, GE Healthcare 

Superfrost Plus® slides  Menzel-Gläser, Braunschweig, Germany 

Startle response System TSE Systems, Germany 
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Vortexer Vortex-Genie 2, Scientific Industries 

96-well-plate  Greiner, Bio-one, Frickenhausen, Germany 

2.2 Chemicals 

If not mentioned otherwise, all reagents were purchased from Carl Roth (Karlsruhe, 

Germany), Invitrogen (Darmstadt, Germany), Merck (Darmstadt, Germany), or SIGMA-

Aldrich (Steinheim, Germany). 

2.3 Antibodies  

1st Antibody Host Dilution Company 

GFAP Rabbit 1/1500 Abcam 

Iba1 Rabbit 1/200 WAKO 

IL-1β Goat 1/50 R&D 

NeuN Rabbit 1/500 Sigma 

Table 1. List of primary antibodies used in this study 

2nd Antibody Host Dilution Company 

Anti-goat Alexa Fluor 488 Donkey 1/500 Invitrogen 

Anti-rabbit Alexa Fluor 488 Donkey 1/500 Invitrogen 

Anti-rabbit Alexa Fluor 488 Goat 1/500 Invitrogen 

Anti-rabbit Cy3 Goat 1/500 Invitrogen 

Table 2. List of secondary antibodies used in this study 

2.4 ELISA and assay kits 

Kit Company 

BCA assay ThermoFisher (23227) 

Corticosterone Enzyme Immunoassay Kit Arbor Assays  (K014) 

Mouse CCL-2 ELISA eBioscience (88-7391) 

Mouse GM-CSF ELISA eBioscience (88-7334) 

Mouse IFN-γ ELISA eBioscience (88-7314) 

Mouse IL-10 ELISA eBioscience (88-7804) 

Mouse IL-1β ELISA eBioscience (88-7013) 

Mouse IL-6 ELISA eBioscience (88-7064) 

Mouse IL4 ELISA eBioscience (88-7044) 

Mouse TNF-α ELISA eBioscience (88-7324) 
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Mouse TNF-α ELISA R&D Systems (DY410) 

NAD-NADH Reagent Multiple Test Vial Sigma-Aldrich (n7160) 

Table 3. List of ELISA and assay kits used in this study. 

2.5 Buffers and solutions 

Blocking buffer (immuno staining) 1 x PBS (pH = 7.2) 

  1 % BSA 

  10 % NS 

Glycine buffer 0.5 M glycine per 100 ml H2O 

  adjust pH with Na2CO3 to pH 9.0 

Narcotic solution  5 ml Xylariem 

  2.5 ml Ketamin 

  52.5 ml 0.9 % (w/v) NaCl 

Permeabilisation buffer  1x PBS (pH = 7.2) 

   (Immuno staining) 0.5 % Triton-X 100 

Protein lysis buffer  10 mM Tris (pH = 8) 

   (RIPA buffer) 150 mM NaCl 

  0.5 mM EDTA 

  1 % IGEPAL (Nonidet P40) 

  0.1 % (w/v) SDS 

  0.5 % deoxycholic acid 

  (prior to use: 1 tablet Complete Mini 

  Protease Inhibitor per 10 ml buffer) 

0.1 % Tween-20 

Stop solution (ELISA) 1 M H3PO4 

10 x TBS 0.2 mM Tris-HCl (pH 7.6) 

  1.37 mM NaCl 

Washing buffer (ELISA) 1x PBS 

  0.05 % (v/v) Tween-20 

Washing buffer (Immuno staining) 1 x PBS 

4% PFA 40 g paraformaldehyde per 1 l 1x PBS (pH 7.2) 

10 % SDS  100 g SDS per 1 l 1 x PBS (pH 7.2) 
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10 % sucrose solution 100 g sucrose per 1 l 1 x PBS (pH 7.2) 

20 % sucrose solution 200 g sucrose per 1 l 1x PBS (pH 7.2) 

2.6 Software  

ActiMot TSE Systems, Germany 

Adobe Photoshop CS3, Version 10.0.1, 2007 Adobe Systems 

AxioVision LE Carl Zeiss, Germany  

Ethovision Noldus, Version XT 8.15 

ImageJ Wayne Rasband, NIH, USA ,Version 1.41o 

Leica Application Suite Leica, Germany 

Microsoft Office 2011 Microsoft, Germany 

Mouse-E-Motion Infra-E-Motion, Germany 

Mendeley Mendeley Ltd., USA 

NanoDrop NanoDrop 1000, V 3.7 

Prism GraphPad Software, Inc., Version 5 (2010) 

Revelation Dynex Technologies, Inc 

Sequence Detection Software Applied Biosystems, Version 2.2.2 

Sarto Connect Sartorius, Germany 

Statistica StatSoft, Inc. Version 7.1 (2005) 

Startle response system TSE Systems, Germany 

VideoMot TSE Systems, Germany  
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3 Methods 

3.1 Animals 

Male mice (2-8 months old) carrying two truncated alleles of CNR2 (CB2) and 

wildtype (WT) littermates on a C57BL/6J background (backcrossed for > 8 generations) 

were used in this study (Buckley et al., 2000). Animals were kept in a reversed 

light/dark cycle (light off between 7:00 AM and 7:00 PM) and received food and water 

ad libitum. The housing conditions were maintained at 21 ± 1°C and 55 ± 10 % relative 

humidity. Experimental procedures complied with all regulations for animal 

experimentation in Germany and were approved by Landesamt für Natur, Umwelt und 

Verbraucherschutz in Nordrhein-Westfalen, Germany. 

3.2 Alcohol models 

3.2.1 Chronic alcohol administration 

Two models were applied to study chronic alcohol consumption: the forced drinking 

(FD) and the intermitted forced drinking paradigms (IFD). In the FD procedure animals 

were supplied with a 16 % ethanol solution as the only source of liquid (Racz et al., 

2012; Trebicka et al., 2011). To familiarise animals with alcohol a 4 % alcohol solution 

was given for three days before starting the procedure. Then the alcohol concentration 

was raised to 8 % for a further four days. After one week, animals received a 16 % 

alcohol solution for the following six months. If animals refused to drink in the 

beginning of the protocol and lost more than 10 % of their initial body weight they got 

an intra-peritoneal (i.p.) injection of 1 ml saline to counteract dehydration. During the 

whole experiment, alcohol intake (g / kg body weight and day), body weight (g) and 

food consumption (g) were measured weekly. In the IFD protocol, the alcohol 

administration was non-continuous: it was interrupted for three days per week to 

model social drinking. The ethanol consumption was determined at the end of every 

drinking session; the food consumption and body weight were measured weekly. 

3.2.2 Two-bottle choice paradigm  

Ethanol preference was determined using the two-bottle choice paradigm as 

previously described (Racz et al., 2003; Racz, Schürmann, et al., 2008). In this paradigm, 



 

23 
 

two drinking bottles with 8 % v/v alcohol (EtOH) or drinking water were available for 

the animals ad libitum. In order to avoid the development of a side preference, the 

positions of the bottles were changed daily. The consumption of liquid and food, as well 

as the body weight were measured twice per week and the intake of alcohol was 

quantified as g (EtOH) / kg (body weight) per day (g/kg*day). The preference was 

calculated in percent as the ratio of consumed alcohol to total fluid (alcohol + water) 

consumption.  

3.2.3 Stress-induced drinking 

To assess stress induced-drinking of animals in the two-bottle choice paradigm, mice 

were exposed to mild foot shocks (0.5 mA, 100 ms) after 12 weeks of alcohol access 

(Racz et al., 2012; Racz, Schürmann, et al., 2008). For this, they were placed in an 

isolated, dark chamber (Startle response, TSE) with a continuous white noise (65 dB) for 

5 minutes. Warning signals (sound and light) were presented a few seconds before the 

electric foot shocks, which were delivered five times through a grid floor. The interval 

between the foot shocks was 55–60 seconds. We recorded the behavioural responses 

(jumping reactions in g) of the animals during the stress procedure and then calculated 

the mean of the five startle reactions. 45 minutes after the stress exposure we sampled 

blood from the orbital sinus to determine the level of corcicosterone expression. The 

mice were then returned to their home cages, and alcohol as well water intake was 

determined 24 and 96 hours after the shock and calculated as average daily 

consumption. These values were compared to the ethanol preference of the last four 

weeks before the stress exposure.  

3.2.4 Acute alcohol effects and development of tolerance 

To assess acute alcohol effects in WT and CB2 knockout mice, animals were injected 

i.p. with 2 or 3.5 g / kg ethanol or saline as published previously (Racz et al., 2003; Racz, 

Schürmann, et al., 2008). The animals’ body temperature was measured with a rectal 

thermometer immediately before and 45 min after alcohol injection to determine 

alcohol-induced hypothermia. Blood was sampled 15 and 45 minutes after injection to 

assess blood alcohol levels (BAL) in plasma. To study the development of tolerance, 

animals underwent the forced drinking procedure for 5 weeks. Then acute alcohol 

injections were carried out as described above. Subsequently body temperature and 
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BALs were determined again. If the animals developed tolerance for alcohol they would 

show a reduced decrease in body temperature and lower BALs after chronic alcohol 

treatment. 

3.2.5 Somatic signs of withdrawal 

To study physical signs of withdrawal after chronic alcohol consumption we used the 

handling-induced convulsion protocol (Watson & Little, 1999). The scoring procedures 

were performed as described previously (Racz, Schürmann, et al., 2008). Briefly, animals 

were lifted gently by the tail and rotated for 5 s close to a light source (2200 lux). The 

elicited behavioural reaction was rated on a score from 0 – 3 as follows: 0 = no tremor or 

convulsion, 1 = mild tremor on lifting and turning, 2 = continuous severe tremor on 

lifting and turning, 3 = clonic forelimb extensor spasm on lifting. Animals were scored 

twice: the first time during the ethanol drinking procedure and the second time 3 hours 

after the animals had been withdrawn from alcohol. The experimenter, who performed 

the scoring, was blind to the treatment and genotype. 

3.3 Behavioural tests  

3.3.1 Dark / Light box test 

An open field arena (45 x 45 x 22 cm) was weakly illuminated with 15 lux. A dark 

compartment (45 x 18 x 22 cm) was placed at one side of the arena, with an opening 

facing the centre, which permitted the transition of animals. In the beginning of the test 

individual animals were placed in the dark compartment facing the opening, and 10 min 

testing-trials were automatically recorded by the ActiMot system (TSE Systems GmbH). 

Time spent in the dark compartment (%) was documented as a level of anxiety, whereas 

distance travelled (%) was used to analyze locomotion (Bilkei-Gorzó et al., 2004). 

3.3.2 Elevated O-Maze test 

To study if alcohol withdrawal induces anxiety, the animals were analyzed in the 

elevated O-maze test (Racz et al., 2003). The maze was 40 cm elevated above the floor 

and consisted of a ring-shaped white platform with an inner diameter of 47 cm. The O-

maze was divided into four compartments of the same size with two opposed quadrants 

closed by a non-transparent wall. The open part was illuminated with a desk lamp by 
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light sources with varying intensities (40, 120 and 700 lux) to increase aversion, 

whereas the closed quadrants remained dark (20-40 lux). For the test, animals were 

placed in the middle of an open arm facing a closed compartment and were allowed to 

freely explore the maze for 5 min. During the test, mice were automatically traced with a 

video-tracking system (Ethovision, Noldus) to assess time spent and distance travelled 

in the open areas in percent (Bilkei-Gorzó, Otto, et al., 2008; Bilkei-Gorzó, Racz, et al., 

2008). 

3.3.3 Home cage activity 

Home cage activity was monitored in single housed animals by an infrared sensor 

connected to a recording and storing system (Mouse-E-Motion, Infra-e-motion) placed 

in the lid of each cage (A. Becker et al., 2010). Mouse movements were sampled every 

second and accumulated for every 30 min. The animals were observed throughout three 

weeks to investigate withdrawal-induced changes in the active and the inactive phases. 

3.3.4 Morris water maze test 

The Morris water maze test was performed to assess the spatial memory 

performance of mice after chronic alcohol treatment (Albayram et al., 2011). Each 

mouse was tested in four consecutive sessions daily over ten days (Figure 4). The 

platform was hidden just under the surface of murky water and remained at a fixed 

spatial location (N) for the seven-day acquisition period. For each trial session the mice 

were released from a different escape sector facing the wall of the maze. During the first 

two days, animals were placed at the same starting point (S) for each session. From days 

three to seven, animals were placed to one of the four positions (N, E, S, W), respectively, 

for each session. A trial ended when the mouse reached the hidden platform and 

managed to remain there for 5 s. If a mouse did not manage to escape from the water to 

the platform within 70 s, it was gently guided to the platform and the trial was recorded 

as an escape failure with a latency of 70 s. The mouse was dried and left in the home 

cage for a brief 15 s inter-trial interval. After the seven-day acquisition phase learning 

flexibility was assessed with the reversal phase. In this part of the test the platform was 

moved to the opposing quadrant (S), and each mouse was analysed for three 

consecutive days. To assess retention of spatial memory, the platform was removed 

from the maze at the end of the test. The animals were tested 24 hrs after the final trial. 



 

In this probe trial, lasting for 70 s, each mouse was placed into the water as described 

for the training trials. The time (s) to reach the target quadrant and the time spent in the 

target quadrant was recorded.
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for the training trials. The time (s) to reach the target quadrant and the time spent in the 

target quadrant was recorded. 

Schedule of the Morris-water maze. During the acquisition phase the hidden platform 

remained always in the same quadrant (N). The platform was moved to opposite quadrant (S) 

modified from Albayram 2012). 

y locomotor activity and anxiety of mice was investigated in an open field 

arena (45 x 45 x 22 cm) under red light in a sound-attenuated compartment 

. The animals were tested during the drinking period 

after withdrawal. The animals were placed in the centre of the arena. During an 

observation period of 10 min, vertical and horizontal activity of the animals was 

monitored with an automated system (Actimot, TSE Systems). The time and the distance 

that animals spent in the centre, as well as the overall distance travelled, were analysed.

Object recognition test 

ject recognition test was used to study the declarative memory of the animals 

, 2011). In this test, animals were first habituated for 5 min during 

day period to a sawdust-covered arena (45 x 45 x 30 cm), which contained two 

marbles with a diameter of 2 cm. On the fourth day, mice explored two identical Lego® 

ee trials each lasting 6 min with an inter-trial period of 10 min were 

performed. In the test trial, one familiar object was replaced by a novel Lego® object. 

 

In this probe trial, lasting for 70 s, each mouse was placed into the water as described 

for the training trials. The time (s) to reach the target quadrant and the time spent in the 

 

water maze. During the acquisition phase the hidden platform 

remained always in the same quadrant (N). The platform was moved to opposite quadrant (S) 

y locomotor activity and anxiety of mice was investigated in an open field 

attenuated compartment (Bilkei-

. The animals were tested during the drinking period or three days 

after withdrawal. The animals were placed in the centre of the arena. During an 

and horizontal activity of the animals was 

monitored with an automated system (Actimot, TSE Systems). The time and the distance 

that animals spent in the centre, as well as the overall distance travelled, were analysed. 

used to study the declarative memory of the animals 

. In this test, animals were first habituated for 5 min during 

covered arena (45 x 45 x 30 cm), which contained two 

marbles with a diameter of 2 cm. On the fourth day, mice explored two identical Lego® 

trial period of 10 min were 

replaced by a novel Lego® object. 



 

27 
 

The test trial was performed after different intervals (10, 30 or 60 min), and the 

exploration time (s) was assessed with an automated tracking system (Ethovision, 

Noldus). Animals with intact declarative memory spent more time exploring the novel 

object and thus showed increased novel preference. To increase the object interaction 

time, objects were paired with different neutral odours (cinnamon – familiar object; 

lemon – novel object). Animals spending less than total 10 s with the objects were 

excluded from analysis.  

3.3.7 Social preference test 

This test was used to determine the preference for a social partner compared with 

an empty cage (Bilkei-Gorzó et al., 2005). Animals were habituated to a sawdust-covered 

arena (45 x 45 x 30 cm) on three consecutive days for 5 min containing two empty grid 

cages with a diameter of 10 cm. During the test session on the following day, an age 

matched mouse was placed in one of the empty cages. The exploration time spent at 

both cages was recorded with an automated system for 6 min (Ethovision, Noldus). The 

preference ratio for the social partner was calculated in percent. 

3.3.8 Social recognition test 

This test was used to determine the declarative memory with respect to social, 

emotional elements (Bilkei-Gorzó et al., 2005). Similar to the object recognition test 

animals were habituated on three consecutive days for 5 min to a sawdust-covered 

arena (45 x 45 x 30 cm) containing two empty grid cages with a diameter of 10 cm. On 

the fourth day, the mice explored two cages containing one mouse each. The test 

consisted of three trials each lasting 6 min with an inter-trial period of 10 min. In the 

test trial, one of the familiar animals was replaced by a novel interaction partner. The 

test trial was performed after different intervals (10, 30 or 60 min) and the exploration 

time (s) was assessed with an automated tracking system (Ethovision, Noldus). Animals 

with an intact declarative memory spent more time exploring the novel partner. Animals 

spending less than total 10 s with their partners were excluded from the analysis. 

Furthermore, only animals that did not show preference (50 ± 10 % ) for one partner in 

the pre-trial were included in the analysis. 
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3.3.9  Y-Maze test 

This task is specifically prefrontal cortex-dependent and investigates the working 

memory of mice (Darvas et al., 2009). The maze consisted of three 60 cm long arms 

oriented in a Y-shaped maze. Non-transparent 10 cm high walls surrounded the arms. 

The maze was illuminated with desk lamps to 20 lux. Mice were placed in the centre of 

the maze and were allowed to freely explore the arms during 10 min. The activity and 

the sequence of arm entries of the animals were recorded with an automated tracking 

system (Videomot, TSE-Systems). The working memory was assessed as the percentage 

of return (i.e. entering into the same arm) and spontaneous alternations (i.e. three 

consecutive enterings into new arms) from the total of transitions. 

3.4 Organ dissection and isolation protocols 

3.4.1 Brain removal for immunohistochemistry 

Mice were anesthetized by i.p. injection of 500-1,000 μl narcotic solution, and 

afterwards fixed on a grid plate lying on the back. Abdomen and thorax were opened, 

and the mice were transcardially perfused with first 24 ml of ice-cold PBS followed by 

24 ml of ice-cold 4 % PFA with a flow rate of 4 ml per minute. The skull was opened, the 

brain was removed and post-fixed overnight in 4 % PFA at 4°C followed by an 

incubation in 10 % (w/v) sucrose solution for 24 h, and then in 20 % (w/v) sucrose 

solution for 24 h. Brains were then snap-frozen in isopentane on dry ice and stored at -

80°C until use. Alternatively, animals were killed by cervical dislocation and fresh brains 

were directly removed, snap-frozen in isopentane on dry ice and stored at -80°C until 

use as previously published (Pradier et al., 2013). 

3.4.2 Isolation of organs for protein analysis 

After cervical dislocation, brains were isolated and snap-frozen in isopentane on dry 

ice and stored at -80°C until use. Brain regions of interest were then isolated at the 

cryostat using the punching technique. For this the brains were cut into 1 mm thick 

coronal sections using a brain matrix. The regions of interest were then identified with 

the help of a mouse brain atlas and sampled using needles with an inner diameter of 400 

to 2500 µm or cut out with a scalpel. Alternatively, fresh brains were dissected using the 

punching technique in ice cold PBS. To assess the potency of the applied alcohol model 
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on the peripheral organs, the liver (a part of the larger lobe) was also collected, snap-

frozen and stored at -80°C until use. 

3.4.3 Blood sampling and plasma preparation 

Blood was collected from the orbital sinus under short isoflurane anaesthesia. 10 µl 

of 0.21 mmol K-EDTA was added to prevent clotting. The blood samples were 

centrifuged at 4000 rpm for 20 minutes at 4°C. Supernatant was collected and frozen 

immediately and stored at -20°C until use. To assess BALs blood was collected either 

after an acute injection of alcohol or during chronic alcohol consumption (at least 5 

weeks of alcohol consumption), subsequently BALs were determined. During the 

chronic alcohol consumption the blood was consequently taken at 11 o´clock (2 hours 

after the start of active phase). 

3.5 Biochemical methods 

3.5.1 Protein isolation 

Frozen brain tissues were weighed and 10 µl/mg brain tissue of ice-cold RIPA buffer 

was added. Brain tissues were homogenized with the Ultra-Turrax homogeniser for 30 s 

on ice (5 cycles, 60 % power) and cooled on ice for 20 min. Samples were then 

centrifuged at 13,300 rpm for 20 min at 4°C. The supernatant was collected, aliquoted in 

50 μl and stored at -80°C.  

Proteins from liver samples were isolated using the Precellys™ homogeniser. For this 

liver tissue and 1 ml of lysis buffer was added to Precellys tubes, which contain ceramic 

bead. The tissue was homogenised at 5000 rpm for 20 s and then centrifuged at 13,000 

rpm for 20 min at 4°C. The supernatants were collected and stored at -80°C. 

3.5.2 Protein quantification 

To determine total protein concentration a commercial available kit was used 

(Pierce). The Bicinchoninic acid (BCA) assay is based on the biuret reaction. BCA forms a 

color-intense stable complex in the presence of proteins and copper ions with a maximal 

absorbance at 562 nm. Samples were diluted 1:10 and the total protein concentration 

was measured following manufacturer’s instructions. In brief, 25 µl of the prediluted 
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samples and the standard were loaded in duplicates on a 96 well plate and 200 µl of the 

working reagent was added to each well. After 15 min the OD was measured with the 

plate reader and the protein concentration was calculated. 

3.5.3 Enzyme-linked immunosorbent assays (ELISA)  

The principle of ELISA is based on the antibody-mediated detection of a specific 

protein in a complex matrix such as tissue homogenates, plasma, or cell culture 

supernatants. The concentration of the target protein is directly correlated to a light-

sensitive detection signal given by enzymatically oxidized 3,3’,5,5’-tetramethylbenzidine 

(TMB). The detection signal is measured at 450 nm. Mouse cytokines and chemokines 

were detected in tissue homogenates and serum following manufacturer’s instructions. 

Serum samples were assayed undiluted, whereas 100 µg/well of brain homogenates and 

50 µg/well of liver lysates were loaded on a 96 well plate. The determination of the 

concentration of cytokines or chemokines was carried out in accordance with the 

manufacturer’s instructions.  

3.5.4 Determination of blood alcohol levels 

Plasma alcohol levels were determined using a NAD-NADH Reagent. In this 

colorimetric assay the enzyme alcohol dehydrogenase oxidizes ethanol to acetaldehyde 

with the simultaneous reduction of NAD to NADH. The consequent increase in 

absorbance at 340 nm is directly proportional to the concentration of alcohol in the 

sample. To calculate the absolute concentration of alcohol in the sample, a reference 

standard with a range of 0.8 % to 0.008 % was applied in parallel to the samples. The 

assay was performed in accordance with manufacturers’ description. BALs were 

routinely determined for all models applied. 

3.5.5 Corticosterone Enzyme Immunoassay (EIA) 

To measure the stress response of WT and CB2 deficient animals to the foot shock in 

the stress-induced drinking paradigm, blood was taken from the orbital sinus one week 

prior to and 45 min after the stress. Due to circadian fluctuations in the blood 

corticosterone level, it is important to note that the blood sampling has always to be 

carried out at the same time of day. Next, plasma was prepared and stored at -20°C until 

use. Plasma samples were then assayed at a dilution of 1:50. The determination of 
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corticosterone concentration was carried out in accordance with the manufacturer’s 

instructions. 

3.6 Immuno-histochemical methods 

3.6.1 Iba1, GFAP, NeuN and IL-1ββββ immunostaining 

Brains from wild type and knockout animals were prepared as described above 

(3.4.1). Brains were then embedded in Tissue-Tek® and consecutively sectioned at 16 

µm using a cryostat. Slices were dried at 37°C for 30 min and subsequently stored at -

80°C until use. For the immuno-staining procedures slices were processed as previously 

published (Pradier et al., 2013). Briefly, slices were thawed at 37°C, washed in PBS and 

then permeabilised in 0.5 % Triton X-100 (Sigma) for 1 h. After blocking in 3 % bovine 

serum albumin, the primary antibody was applied directly onto the slices, which were 

incubated overnight in a moist compartment at 4°C (for dilutions of antibodies see Table 

1 and Table 2). The next day, slices were washed three times for 10 min, and the 

secondary antibody was applied in 0.5 % BSA for 1 h. Next, slices were washed three 

times before mounting in DAPI Fluoromount-G™. Sealing with water varnish prevented 

sections from drying-out.  

3.6.2 Image acquisition and analysis of area fraction 

For area fraction analysis, immuno fluorescent images were acquired on a Zeiss 

Axioplan microscope and recorded with a monochrome Zeiss Axiocam. Image analysis 

was performed using different macros for each staining in ImageJ. For staining 

quantification, the image contrast was enhanced and the brain regions of interest were 

traced in accordance with the mouse brain atlas (Figure 5) (Paxinos & Franklin, 2001). 

Next, a threshold was set and applied to all images. Depending on the staining, cell 

counts and/or percentage of the stained area was measured. Six to eight sections per 

animal were evaluated. 
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Figure 5. Cortical brain regions of interest (coloured). Cingulate-, motor-, somatosensory-, 

insular- and piriform cortex were selected in accordance with the mouse brain atlas (modified 

from Paxinos & Franklin 2001). 

3.6.3 Quantitative analysis of microglial cells 

For stereological quantification of microglia in the cortex every 6th slice was selected 

and stained. I analyzed in total 6 - 8 sections per region of interest from Bregma 1.18 to 

0.02 in both hemispheres per animal. The numbers of stained microglia were counted 

with ImageJ; next, the total number (n) of Iba1-immunoreactive microglia was estimated 

using the optical fractionator technique as described previously (Bondolfi et al., 2002; 

Grathwohl et al., 2009; Gundersen, 1986): 

	� = 	������	
	��	
	���	
����	�� 	× 1
��� 	×	

1
��� 	× 	

1
��� 	× 	2 

Where ssf is the section sampling fraction (i.e. one-sixth of the total sections used), 

asf is the area sampling fraction (in this case the entire region is the dissector, thus asf = 

1), and tsf is the thickness of sampling fraction (depth of field estimated as tsf = 1). 
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Multiplication by factor 2 corrects for the hemispheres. The volume (V) was calculated 

as follows: 

� = 	�����	������	�	�
	�� 	× 1
��� 	× 	

1
��� 		× 	2 

With tsf = 16 µm being the total thickness of each section. 

3.6.4 Quantification of IL-1ββββ expression in Iba1+ cells 

The standard staining protocol was used for the co-staining of IL-1β (green) and Iba1 

(red) on cortical slides. To study the co-localization of IL-1β and Iba1, Z-stacks were 

acquired on a Leica SP8 confocal microscope. Five stacks of the cingulate cortex were 

recorded for each mouse with a 20x objective. The distance between the optical sections 

was 1.5 µm. The stacks were acquired with a sequential frame scan, i.e. first the weaker 

IL-1β signal was scanned; then, separately from the first scan, the stronger Iba1 staining 

was recorded.  

For the co-localization analysis the section with the strongest Iba1/IL-1β signal was 

selected from the Z-stacks using ImageJ. Then Iba1-positive cells were outlined and 

defined as regions of interest (ROI) in the red channel; next, the area fraction of IL-1β 

expression was determined in the green channel within the respective ROIs.  

3.7 Molecular biological methods 

3.7.1 RNA isolation 

Total RNA was extracted from brain tissue using the TRIzol® reagent (Life 

Technologies). The TRIzol® reagent is a monophasic solution of phenol and 

isothiocyanate and is an improvement to the method of Chomczynski (Chomczynski & 

Sacchi, 1987). It maintains RNA integrity during lysis and homogenization and allows 

RNA isolation from small amounts of tissue. Dissected tissue samples were transferred 

to 1.4 ml Precellys tubes with ceramic beads (peqLab, Erlangen, Germany), then 800 µl 

TRIzol® was added to the tubes. The tubes were put into the Precellys centrifuge, where 

the specimens were homogenized in 2 cycles at 5000 rpm for 20 sec. The samples were 

then centrifuged at 11400 rpm for 10 min at 4°C, and the supernatants were transferred 
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to a new 1.5 ml Eppendorf tube. Then 160 µl of chloroform was added to separate the 

solution into an aqueous (containing RNA) and an organic phase. The tubes were 

vortexed for 30s, allowed to remain 3 minutes at room temperature and centrifuged at 

11400 rpm for 10 minutes at 4°C. The upper, RNA containing phase was transferred into 

a new tube, and 400 µl isopropyl alcohol was added to precipitate RNA. The tubes were 

vortexed for 30 sec and allowed to incubate for 10 minutes at room temperature, and 

were then centrifuged at 11400 rpm for 10 min at 4°C. The resulting pellet contained the 

precipitated RNA. Supernatants were removed, and the pellet was washed 3 times with 

1 ml of 75 % ethanol, each washing step was followed by a centrifugation (11400 rpm, 5 

minutes, 4°C). The RNA pellet was then dried for 5-10 minutes at 50°C and dissolved in 

20 µl of RNAse-free water (Qiagen, Germany) for 10 minutes at room temperature. The 

RNA concentration (ng/ml) was determined using a spectrophotometer (NanoDrop 

1000). 

3.7.2 cDNA synthesis 

RNA was transcribed into cDNA using the SuperScript First-Strand Synthesis System 

for RT-PCR Kit (Life Technologies, Carlsbad, CA, USA). A given amount of RNA (30 ng in 

the assays used) was pipetted and adjusted to a volume of 10 µl with RNAse-free water. 

Then, 1 µl of Oligo-dT and 1 µl of dNTP were added to the samples, incubated for 5 min 

at 65°C and then for 3 min at 4°C in a PCR cycler (Biorad). 6 µl of master mix, consisting 

of 4 µl 5x First Strand Buffer and 2 µl 0.1 M DTT was subsequently pipetted into each 

tube. The samples were incubated for 2 min at 42°C and for 3 min at 4°C. Then 1 µl of 

Reverse Transcriptase was added to each sample. The probes were incubated for 1 h at 

42°C (transcription stage), followed by 15 min at 70°C (inactivation stage) and remained 

at least for 10 min at 4°C. The resulting cDNA was again diluted with an appropriate 

amount of DEPC water and stored at -20°C. 30ng (10 µl) of cDNA was used for each 

TaqMan reaction (per well). Samples containing only DEPC water were used as a control 

for possible contaminations.  

3.7.3 Quantitative polymerase chain reaction 

Differences in mRNA expression were determined by custom TaqMan® Gene 

Expression Assays (Applied Biosystems, Darmstadt, Germany) with glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as a control to standardize the amount of target 
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cDNA as described previously (Albayram et al., 2011; A. Becker et al., 2010). Samples 

were processed in a 7500 Real-Time PCR Detection System (Applied Biosystems, 

Darmstadt, Germany), and further analysis was performed using the 7500 Sequence 

Detection Software version 2.2.2 (Applied Biosystems, Darmstadt, Germany). Relative 

quantitative gene expression was calculated with the 2−ΔΔCt method (Livak & 

Schmittgen, 2001).  

3.8 Statistical data analysis 

All statistical analyses were carried out using STASTICA software package. Datasets 

containing only one independent variable (e.g. treatment or model) were analyzed by 

one-way analysis of variance (ANOVA). Datasets containing two independent variables 

(e.g. treatment and genotype or treatment and age) were evaluated using two-way 

ANOVA, whereas datasets containing three independent variables (treatment, genotype 

and housing conditions) were analyzed by three-way ANOVA. Repeated measures 

ANOVA combined with one-, two- or three-way ANOVA was applied when data from the 

same animals were collected over a given period (within effect: time). The ANOVA was 

considered to be significant at a 95 % confidence interval; the analysis was followed by a 

post-hoc test. In the case of n ≤ 4 Bonferroni correction was applied, for n ≥ 5 Fisher-LSD 

correction was performed. p-values between 0.1 and 0.06 were considered as tendency. 

For non-parametrical datasets and scores, the Kolmogorov-Smirnov test was used. Data 

are represented as mean values ± standard error of mean (S.E.M). 
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4 Results 

4.1 Comparison of chronic alcohol models to induce neuroinflammation 

In the following part I investigate the potency of two different chronic alcohol 

models (FD and IFD) and different treatment durations of alcohol consumption to 

induce neuroinflammation in our laboratory. Next, I characterise the inflammatory 

phenotype of microglia after long-term alcohol drinking in the cortex. Furthermore, I 

analysed the level of systemic inflammation in the liver to monitor the effect of chronic 

alcohol drinking.  

4.1.1 Two months of forced and intermittent forced drinking 

In previous publications from our laboratory we analysed behavioural changes of 

animals after two months of chronic alcohol treatment (Racz et al., 2003). For this 

purpose we started to investigate alcohol-induced neuroinflammation after eight weeks 

of chronic alcohol consumption. Figure 6A compares the alcohol consumption of WT 

animals in both chronic alcohol models: after two months of treatment mice drank the 

same amount of alcohol [F(1, 25) = 0.22; p = 0.64]. The food consumption was significantly 

reduced by the model [F(1, 37) = 42.94; p = 0.000] (Figure 6B). In the forced drinking 

procedure animals showed a decreased food intake compared to their water-treated 

peers. Due to the intermittent alcohol access mice showed an intermediate food 

consumption compared to the water and forced drinking groups. During the treatment 

period the body weight did not change in any of the models [F(1, 37) = 1.44; p = 0.25] 

(Figure 6C). 
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Figure 6. Ethanol and food consumption and body weight of WT animals after two months of 

forced and intermittent forced drinking. (A) WT animals drank similar amounts of alcohol 

independent of the model. (B) The forced drinking procedure led to strongly decreased food 

consumption, whereas animals with an intermittent alcohol exposure showed intermediate food 

consumption. (C) The body weight was not significantly changed after eight weeks of alcohol 

treatment (n = 13 - 14 per group). Data were analysed by repeated measures one-way ANOVA 

(main factor: model, within effect: time) and represented as mean value ± SEM. ***p < 0.001. 

Two months of alcohol treatment did not induce an inflammatory response in the 

cortex as revealed by ELISA analysis (Figure 7). The expression of neither pro- nor anti-

inflammatory cytokines was changed by the two alcohol treatments compared to water 

control animals [TNF-α: F(1,12) = 1.03, p = 0.38; IL-1β: F(1,12) = 0.20, p = 0.81; IL-6: F(1,12) = 

2.34, p = 0.13; IFN-γ: F(1,12) = 1.76, p = 0.21; CCL-2: F(1,12) = 3.64, p = 0.057; IL-10: F(1,12) = 

0.97, p = 0.40].  

 

Figure 7. Expression of inflammatory markers in the frontal cortex after two months of alcohol 

administration. The expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IFN-γ), 

chemokine CCL-2 and anti-inflammatory cytokine IL-10 were not changed after the different 

alcohol treatments (n = 5 per group). Data were analysed by one-way ANOVA (main factor: 

model) and represented as mean value ± SEM. 
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4.1.2 Six and twelve months of forced drinking 

The previously introduced alcohol models suggest that the duration of the treatment 

is a crucial factor in inducing a neuroinflammatory response. Therefore we analysed 

different durations of alcohol access in the forced drinking procedure. The panel in 

Figure 8 shows two different cohorts of WT animals that had free and continuous 

alcohol access for six and twelve months, respectively. Both cohorts drank similar 

amounts of alcohol (Figure 8A and B) and alcohol-treated mice presented a reduced 

food consumption [FD 6M: F(1,12) = 76.45, p = 0.000; FD 12M: F(1,14) = 97.01, p = 0.000] 

(Figure 8C and D) compared with water controls. The body weight was also reduced by 

the treatment, but only in the cohort that underwent the six-month treatment [F(1,12) = 

5.12, p = 0.04]. (Figure 8E). Surprisingly the animals that drank alcohol for twelve 

months showed an unchanged body weight compared to the water controls (Figure 8F) 

[F(1,14) = 0.02, p = 0.87].   
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Figure 8. Ethanol and food consumption and body weight during six and twelve months of 

chronic alcohol treatment. (A and B) show the alcohol consumption of WT animals during six 

and twelve months. Both cohorts drank similar amounts of alcohol. (C and D) The forced alcohol 

consumption resulted in significantly decreased food consumption in both cohorts. (E and F) 

The body weight was only decreased by chronic alcohol treatment in the cohort of six months of 

forced drinking. Surprisingly, the body weight of the second cohort (twelve months forced 

drinking) was not changed by the treatment (n = 7 – 8 per group). Both cohorts were subjected 

to the alcohol treatment at the same time. Data were analysed by repeated measures one-way 

ANOVA (main factor: treatment, within effect: time) and represented as mean value ± SEM. *p > 

0.05, ***p > 0.001. 

In the literature it is established that five months of alcohol treatment are enough to 

induce neuroinflammation in the cortex, which is shown by increased expression of 

CD11b, GFAP and pro-inflammatory cytokines (Alfonso-Loeches et al., 2010; Pascual, 

Fernández-Lizarbe, et al., 2011). I analysed Iba1 expression (Figure 9), which is another 

microglial activation marker, in the frontal cortex of animals treated for six- and twelve-

month with alcohol. In order to more clearly show the onset of development of 

neuroinflammation, I further added an earlier time point, two months, for the following 

immuno-histological analysis (taken from the previous study). The area fraction of Iba1 

immuno-reactivity (IR) was analysed in different cortical areas and showed a significant 

increase over time (Figure 10). This effect was enhanced in alcohol-treated animals. 

Post-hoc analysis revealed that this finding was most prominent in the cingulate [F(1,12) = 

8.92, p = 0.004], motor [F(1,12) = 10.73, p = 0.002] and piriform cortex [F(1,12) = 10.85, p = 

2. 
wee

k

6. 
wee

k

10
. w

ee
k

14
. w

ee
k

18
. w

ee
k

22
. w

ee
k

22
23
24
25
26
27
28
29
30
31
32
33

b
o

d
y 

w
ei

gh
t 

(g
)

*

2. 
wee

k

6. 
wee

k

10
. w

ee
k

14
. w

ee
k

18
. w

ee
k

22
. w

ee
k

26
. w

ee
k

30
. w

ee
k

34
. w

ee
k

38
. w

ee
k

42
. w

ee
k

46
. w

ee
k

50
. w

ee
k

22
23
24
25
26
27
28
29
30
31
32
33

b
o

d
y 

w
ei

gh
t 

(g
)

H2O forced drinking

E F



 

41 
 

0.002], where Iba1-IR was tripled after twelve months of alcohol treatment compared to 

two months of treatment. However, the changes in Iba1-IR were also significant for the 

somatosensory [F(1,12) = 5.32, p = 0.02] and insular cortex [F(1,12) = 5.89, p = 0.01].  

    

Figure 9. Representative images of Iba1-IR in the cingulate cortex of WT animals after 2, 6 and 

12 months of alcohol consumption. Scale bar represents 100 µm 
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Figure 10. Area fraction of Iba1-IR in various cortical regions after chronic alcohol consumption. 

There is a significant increase in the area fraction of Iba1-IR after twelve months of alcohol 

treatment (n = 3 per group). Data were analysed by two-way ANOVA (main factors: treatment 

and age) and represented as mean value ± SEM. *p < 0.05; **p < 0.01. 

Increased microglial activation after long-term alcohol consumption is associated 

with an increased production of pro-inflammatory cytokines. However, clear in vivo 
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evidence for the cellular source of pro-inflammatory cytokines and the assumed pro-

inflammatory phenotypic shift of microglial cells is missing. Therefore I co-stained IL-1β 

with Iba1 to monitor its cellular source in microglia and to prove that microglial cells 

shift to a pro-inflammatory phenotype after long-term alcohol treatment. The 

orthogonal section clearly shows the localisation of IL-1β (green) within the microglia 

(red) in xy-, but also in z-direction (Figure 11A). The panel in Figure 11B displays the 

different alcohol treatment durations and the respective age-matched water control 

animals. Iba1 is depicted in red, IL-1β in green. In the channel overlay DAPI is added in 

blue (Figure 11B). 
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Figure 11. Representative confocal images of Iba1 and IL-1β co-localisation in the cingulate 

cortex. (A) Orthogonal confocal image of Iba1+ cells (red) clearly showing IL-1β expression 

(green) within the cell body of microglia. (B) Confocal images of water and alcohol-treated 

animals of IL-1β-IR (green), Iba1-IR (red) and the overlay with DAPI (blue) in the cingulate 

cortex. Microglia show clearly enhanced expression of IL-1β over time. Scale bar represents 25 

µm. 

Stereological analysis of Iba1-IR cells was carried out as described in the material 

and method section (see 3.6.3). In accordance to the Iba1 stained area fraction the total 

number of microglial cells also reveals an increased number of microglia in the cingulate 

cortex [F(1,12) = 10.00, p = 0.002] (Figure 12A). The investigated cortical volumes of the 

six different experimental groups were equal in size [F(1,12) = 0.24, p = 0.78] (Figure 

12B). Next, I quantified the area fraction of IL-1β expression exclusively in microglia. An 

arbitrary threshold defining low and high levels of IL-1β expression gives a number of 

IL-1βlow and IL-1βhigh expressing microglia, which is best represented as a ratio in 

percent (Figure 12C and D). The analysis clearly shows age-dependent changes in the 

ratio of IL-1β expression revealing a decrease in IL-1βlow and an increase in IL-1βhigh 

microglia over time [F(1,12) = 11.11, p = 0.001]. With knowledge of the total number of 
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microglia in the cingulate cortex, it is possible to calculate the total number of IL-1βlow 

and IL-1βhigh microglia from the ratio (Figure 12E and F). There is no significant change 

in the total number of IL-1βlow expressing microglia [F(1,12) = 2.29, p = 0.14], but there is 

a substantial increase in IL-1βhigh expressing microglia over time [F(1,12) = 23.95, p = 

0.000], which was enhanced by alcohol treatment.  
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Figure 12. Counts of Iba1-IR cells and quantification of co-localized IL-1β-IR in the cingulate 

cortex. (A) There is a significant increase in the number of microglia after twelve months of 

alcohol treatment compared to water controls. (B) The investigated volume was similar in each 

the group. (C) The ratio of IL-1βlow expressing microglia decreases over time (D) whereas the 

ratio of IL-1βhigh expressing microglia increases significantly over age. (E) The total number of 

IL-1β low expressing microglia was not significantly altered. (F) There is a significant increase in 

IL-1βhigh expressing cells in age. This effect is stronger after chronic alcohol treatment (n = 3 per 

group). Data were analysed by two-way ANOVA (main factors: treatment and age) and 

represented as mean value ± SEM. *p < 0.05; **p < 0.01. 

Having established that long-term alcohol treatment leads to a pro-inflammatory 

phenotypic shift of microglia, I investigated possible consequences on neurons, as in 

vitro studies suggest a neurotoxic potential for microglial derived IL-1β (Block et al., 

2007). I therefore examined the neuronal numbers using the common neuronal marker 

NeuN, which labels the vast majority of neurons (Figure 13).  



 

47 
 

              

Figure 13. Representative images of NeuN-IR in the cingulate cortex of WT animals after 2, 6 and 

12 months of alcohol consumption. Scale bar represents 100 µm 
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Surprisingly, quantification of the NeuN area fraction revealed neither alcohol- nor 

age-specific changes in any of the investigated cortical regions [CC: F(1,12) = 0.46, p = 

0.63; MC: F(1,12) = 0.05, p = 0.94; SSC: F(1,12) = 0.73, p = 0.49; IC: F(1,12) = 0.06, p = 0.94; PC: 

F(1,12) = 0.18, p = 0.83] (Figure 14). 

 

Figure 14. Area fraction of NeuN-IR neurons in various cortical regions after chronic alcohol 

consumption. There were no changes in the area fraction of NeuN-IR neurons induced by the 

chronic alcohol treatment (n = 3 per group). Data were analysed by two-way ANOVA (main 
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factors: treatment and age) and represented as mean value ± SEM. Greta Krusch (technical 

assistant trainee) performed these experiments under my supervision. 

To monitor the systemic effect of alcohol on the animals, I quantified the cytokine 

burden in the liver as internal reference (Figure 15). Six months of alcohol treatment did 

not enhance cytokine production; however, the twelve-month alcohol treatment 

dramatically increased the expression of pro-inflammatory cytokines TNF-α  [F(1,20) = 

12.85, p = 0.001], IL-1β [F(1,20) = 9.98, p = 0.004] and IL-6 [F(1,20) = 17.39, p = 0.000]. 

Furthermore, the anti-inflammatory cytokines IL-4 [F(1,20) = 17.73, p = 0.000] and IL-10 

[F(1,20) = 22.36, p = 0.000] were also strongly increased by long-term alcohol treatment. 

The chemokine CCL-2 only showed a moderate increase in expression after twelve 

months of alcohol drinking [F(1,20) = 24.67, p = 0.000]. 
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Figure 15. Cytokine expression in the liver of WT animals after six and twelve months of forced 

drinking. Six months of chronic alcohol treatment elevated the levels of the chemokine CCL-2. 

After twelve months of alcohol drinking there was a strong induction in pro-inflammatory 

cytokines TNF-α, IL-1β and IL-6 detectable. The levels of anti-inflammatory cytokines IL-4 and 

IL-10 were also strongly increased (n = 5 per group). Data were analysed by two-way ANOVA 
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(main factors: treatment and age) and represented as mean value ± SEM. *p < 0.05; **p < 0.01; 

***p < 0.001. 

4.2 Effects of the CB2 on alcohol-induced neuroinflammation 

In this study we investigated the role of CB2 receptors in alcohol-induced 

neuroinflammation by histological and molecular analysis. We employed and compared 

two different models for chronic alcohol administration: the continuous forced drinking 

(FD) and the discontinuous intermittent forced drinking (IFD) during six months. We 

used to routinely keep mice singly housed to more precisely monitor their individual 

alcohol and food consumption. However, as social isolation strongly affects behaviour 

(Koike et al., 2009; Kwak et al., 2009; Martin & Brown, 2010) and cytokine expression 

(Krügel et al., 2014) we also kept animals in groups of two to three per cage thus 

introducing the novel factor ‘social environment’ to the models. 

4.2.1 Single-housed animals in the FD model 

The analysis of cortical cytokine expression after six months of FD in single-housed 

animals revealed increased levels of IL-1β [F(1,20) = 5.79, p = 0.02] and IL-10 [F(1,20) = 

4.92, p = 0.03] in WT animals compared to water controls (Figure 16). CB2 deficient 

animals were resistant to the alcohol-induced effects as the expression levels did not 

change compared to the water controls. Moreover, the alcohol treatment did not alter 

the protein level of the pro-inflammatory cytokine TNF-α [F(1,20) = 0.23, p = 0.63] or IL-6 

[F(1,20) = 0.64, p = 0.43]. The lack of CB2 receptors led to a reduced expression of IL-6 

[F(1,20) = 4.83, p = 0.03] and the anti-inflammatory cytokine IL-4 [F(1,20) = 45.78, p = 

0.000]. The levels of the chemokine CCL-2 were increased in the CB2 deficient animals 

[F(1,20) = 14.45, p = 0.001]. In this setup the results suggest that lack of CB2 receptors 

inhibit the alcohol-induced changes in cytokine expression.  
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Figure 16. Cytokine expression in the frontal cortex of single-housed WT and CB2 deficient 

animals in the FD model. WT animals showed an increase in the pro-inflammatory cytokine IL-

1β and the anti-inflammatory cytokine IL-10. We could not detect any elevations in the CB2 

deficient animals. Furthermore, there was a genotype-specific elevation of the chemokine CCL-2 

and a decrease in IL-6 in CB2 deficient mice (n = 6 per group). Data were analysed by two-way 

ANOVA (main factors: treatment and genotype) and represented as mean value ± SEM. *p < 0.05; 

**p < 0.01; ***p < 0.001. 
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Histological analysis of microglia staining in the cortex (Figure 17) revealed that six-

month alcohol drinking did not increase the area fraction of Iba1-IR in WT animals in 

any of the regions (Figure 18). However, there was a genotype-dependent increase in 

Iba1-IR in CB2 deficient mice pointing to a generally more activated state of microglia in 

those animals [CC: F(1,12) = 15.22, p = 0.002; MC: F(1,12) = 16.62, p = 0.001; SSC: F(1,12) = 

11.77, p = 0.004; IC: F(1,12) = 5.88, p = 0.03, PC: F(1,12) = 9.28, p = 0.01].  

 

Figure 17. Representative images of Iba1-IR in the cingulate cortex of single-housed WT and CB2 

deficient animals in the FD model.  
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Figure 18. Area fraction of Iba1-IR in various cortical regions of single-housed WT and CB2 

deficient animals in the FD model. There is a significant increase in the area fraction of Iba1-IR in 

CB2 deleted animals (n = 4 per group). Data were analysed by two-way ANOVA (main factors: 

treatment and age) and represented as mean value ± SEM. *p > 0.05; **p < 0.01. 
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0.001, p = 0.97] cortex did not display alcohol-dependent changes. These effects were 

not affected by the genotype.  

 

Figure 19. Representative image of GFAP-IR in the cingulate cortex of single-housed WT and CB2 

deficient animals in the FD model.  
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Figure 20. Area fraction of GFAP-IR in various cortical regions of single-housed WT and CB2 

deficient animals in the FD model. There is a significant increase in the area fraction of GFAP in 

the cingulate cortex after chronic alcohol treatment. Data were analysed by two-way ANOVA and 

represented as mean value ± SEM. (n = 4 per group). **p < 0.01. 

As the CB2 receptor seems to modulate the inflammatory response to alcohol the 

expression of CNR2 transcripts was analysed in different brain regions (Figure 21). The 

mRNA expression analysis revealed only a strong tendency towards increased levels of 

CNR2 expression in the investigated brain regions after six months of alcohol treatment 

[F(1,12) = 5.44, p = 0.05]. The expression in the respective brain regions was similar 

[F(1,12) =0.33, p = 0.72]. Spleen was used as control tissue and displayed strongest CNR2 

expression. 

WT CB2

0

1

2

3

4

5

G
F

A
P

 %
 s

ta
in

ed
 a

re
a ** **

WT CB2

0

1

2

3

4

G
F

A
P

 %
 s

ta
in

ed
 a

re
a

G
F

A
P

 %
 s

ta
in

ed
 a

re
a

WT CB2

0

2

4

6

H2O EtOH

Cingulate cortex Ectorhinal cortex

Piriform cortex



 

57 
 

 

Figure 21. mRNA expression of CNR2 after six months of forced drinking. Expression of CNR2 

showed a trend to increased expression in brain regions (p = 0.05) (n = 4 per group). Spleen 

tissue served as control. Data were analysed by repeated measures one-way ANOVA (main 

factor: treatment; within effect: region) and represented as mean value ± SEM. 

Quantification of the cytokine expression in the liver of WT and CB2 knockout 

animals revealed similarly to Figure 15 no alcohol-dependent changes in WT animals 

after six months of forced drinking (Figure 22). Lack of CB2 expression accelerated the 

alcohol-induced liver damage represented by the increased expression of the pro-

inflammatory cytokines TNF-α [F(1,20) = 6.50, p = 0.01], IL-1β [F(1,20) = 13.62, p = 0.001] 

and IL-6 [F(1,20) = 4.47, p = 0.04] the anti-inflammatory cytokines IL-4 [F(1,20) = 17.73, p = 

0.000] and IL-10 [F(1,20) = 16.39, p = 0.000] and the chemokine CCL-2 [F(1,20) = 18.90, p = 

0.000]. These findings are consistent with previously published reports (Louvet et al., 

2011). Together, these data suggest that the CB2 receptor might have a pro-

inflammatory role in the brain and an anti-inflammatory effect in the liver.  
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Figure 22. Cytokine expression in the liver of single-housed WT and CB2 deficient animals in the 

FD model. WT animals did not show a significant increase in any of the investigated cytokines 

and chemokines. However, CB2 deficient animals showed elevated cytokine levels of TNF-α, IL-

1b and IL-10 and the chemokine CCL-2 (n = 6 per group). Data were analysed by two-way 
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ANOVA (main factors: treatement and genotype) and represented as mean value ± SEM. *p < 

0.05; **p < 0.01; ***p < 0.001. 

4.2.2 Single-housed animals in the IFD model 

Animals in this study were analysed in cognitive performance. They were abstinent 

for the duration of the testing during the last month of the IFD procedure. The 

quantification of cytokine expression followed the behavioural analysis and revealed 

elevated levels of IL-1β [F(1,16) = 4.95, p = 0.04] in the prefrontal cortex (Figure 23). The 

levels of TNF-α were not affected by the treatment [F(1,16) = 0.22, p = 0.63] . Deletion of 

the CB2 receptor did not influence the cytokine expression. 

 

Figure 23. Cytokine expression in the prefrontal cortex after five months of alcohol consumption 

and one month withdrawal of WT and CB2 animals in the IFD model. WT and CB2 deficient mice 

showed increased expression of IL-1β  after alcohol treatment.  The expression of TNF-α was not 

changed (n = 5 per group). Data were analysed by two-way ANOVA (main factors: treatment and 

genotype) and represented as mean value ± SEM. *p < 0.05. 

The cytokine expression in the liver showed moderate treatment effects and did not 

reach the level of significance in the post-hoc analysis (Figure 24). Treatment effects 

could be observed for the expression levels of TNF-α [F(1,15) = 6.08, p = 0.02], CCL-2 

[F(1,15) = 4.81, p = 0.04] and IL-10 [F(1,15) = 6.84, p = 0.01]. The expression of IL-1β, IL-6 

and IFN-γ was not significantly changed.  
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Figure 24. Cytokine expression in the liver after five months of alcohol consumption and one 

month withdrawal of WT and CB2 deficient animals in the IFD model. WT and CB2 deficient mice 

showed significant alcohol effects in the expression of TNF-α, CCL-2 and IL-10 (n = 5 per group). 

Data were analysed by two-way ANOVA (main factors: treatment and genotype) and 

represented as mean value ± SEM. *p < 0.05. 
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4.2.3  Group-housed animals in the FD model 

Quantification of cytokine expression in the frontal cortex of group-housed animals 

showed an increase in TNF-α [F(1,29) = 7.71, p = 0.009] and IL-1β [F(1,28) = 221.58, p = 

0.000] expression due to the alcohol treatment in WT animals (Figure 25). However, the 

expression levels of IL-6, IL-10, GM-CSF and CCL-2 were not changed. Deletion of the CB2 

receptor increased basal levels of TNF-α [F(1,29) = 14.21, p = 0.000], which were not 

affected by the alcohol treatment. The expression of IL-1β in alcohol-treated CB2 

knockout animals was increased by alcohol treatment [F(1,28) = 8.53, p = 0.006]. In 

contrast to WT animals IL-10 expression level was significantly increased in CB2 

deficient animals [F(1,27) = 4.96, p = 0.03]. Similar to WT animals, expression of IL-6, GM-

CSF and CCL-2 was not changed in CB2 deficient mice after treatment. 
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Figure 25. Cytokine expression in the frontal cortex of group-housed WT and CB2 deficient 

animals in the FD model. WT and CB2 deficient mice showed an increase in IL-1β expression 

after the alcohol treatment. Furthermore, WT animals showed an increase in TNF-

α expression (n = 5 – 8 per group). Data were analysed by two-way ANOVA (main factors: 

treatment and genotype) and represented as mean value ± SEM. *p < 0.05; **p < 0.01; ***p < 

0.001. 

In contrast to single-housed WT animals, the cytokine expression in the liver 

revealed an increased expression of TNF-α [F(1,14) = 12.56, p = 0.003] and IL-10 [F(1,14) = 

11.96, p = 0.003] (Figure 26). Furthermore, there were significant treatment effects for 

the cytokines IL-1β [F(1,14) = 9.66, p = 0.007], IL-6 [F(1,14) = 8.17, p = 0.01] and GM-CSF 

[F(1,14) = 7.54, p = 0.01]. The expression of CCL-2 was not changed. Deletion of CB2 did 

not alter the cytokine expression.  
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Figure 26. Cytokine expression in the liver of group-housed WT and CB2 deficient animals in the 

FD model. WT animals show an increase in the pro-inflammatory cytokine TNF-α and the anti-

inflammatory cytokine IL-10. We could not detect any elevations in the CB2 deleted animals (n = 

5 per group). Data were analysed by two-way ANOVA (main factors: treatment and genotype) 

and represented as mean value ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 
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4.2.4 Group-housed animals in the IFD model 

Quantification of the cytokine expression showed treatment effects in both of the 

genotypes for IL-10 [F(1,26) = 4.82, p = 0.03], which did not reach the level of significance 

in the post-hoc analysis (Figure 27). IL-1β showed a strong tendency to increased 

expression levels due to alcohol treatment [F(1,27) = 4.09, p = 0.05]. The levels of TNF-α 

were significantly elevated due to CB2 deletion [F(1,28) = 10.49, p = 0.003] and not to 

treatment [F(1,28) = 0.15, p = 0.69].  

 

Figure 27. Cytokine expression in the frontal cortex of group-housed WT and CB2 deficient 

animals in the IFD model. WT and CB2 deficient mice showed increased expression of IL-1β  and 

IL-10 after alcohol treatment. The expression of TNF-α  was slightly increased in CB2 deficient 

animals (n = 8 per group). Data were analysed by two-way ANOVA (main factors: treatment and 

genotype) and represented as mean value ± SEM. * indicates genotype effect. **p < 0.01. 
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The treatment had similar effects on cytokine expression in the liver (Figure 28). The 

factorial ANOVA showed significant effects for the treatment in TNF-α [F(1,16) = 6.92, p = 

0.01] and IL-1β [F(1,16) = 12.19, p = 0.003] in both of the genotypes. The levels of IL-10 

were neither altered by the treatment nor by the genotype [F(1,16) = 3.99, p = 0.58]. 

 

Figure 28. Cytokine expression in the liver of group-housed WT and CB2 deficient animals in the 

IFD model. Both, WT and CB2 deficient mice showed increased IL-1β   and TNF-α expression 

after chronic alcohol treatment (n = 5 per group). Data were analysed by two-way ANOVA (main 

factors: treatment and gentype) and represented as mean value ± SEM. *p < 0.05, **p < 0.01. 

4.3 Effects of alcohol on cognition, locomotion and anxiety 

In this part I present the data of the behavioural testing of animals in different 
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animals were examined during alcohol abstinence or while having free access to alcohol. 

This is, however, always indicated separately.  

4.3.1 Two months of chronic alcohol consumption: FD and IFD 

To monitor behavioural changes induced by alcohol, I first examined the animals’ 

exploratory activity in the open field after two months of FD and IFD. Animals were at 

the age of four months at the time of testing. Generally, alcohol treatment enhanced the 

activity of the animals [F(1,37) = 4.15, p = 0.02] (Figure 29A). Animals that had 

intermittent alcohol access were tested during a withdrawal phase and appeared to be 

strongly hyperactive. Animals that had continuous alcohol access were tested without 

withdrawal and also showed slightly enhanced locomotion in the open field arena. 

Moreover, the centre field activity, which is a readout for anxiety-like behaviour was not 

significantly affected by the model [F(1,37) = 2.77, p = 0.07] (Figure 29B).   

  

Figure 29. Activity in the open field of WT animals after two months of alcohol treatment in the 

FD and IFD model. (A) Overall distance travelled. (B) Distance travelled in percent in the centre 

of the open field (n = 13 - 14 per group). Forced drinking animals were analysed while they had 

free access to alcohol. Animals from the intermittent forced drinking group were tested during 

the withdrawal phase. Data were analysed by (A) repeated measures one-way ANOVA (main 

factor: model) or (B) one-way ANOVA (main factor: model) and represented as mean value ± 

SEM. * indicates comparison between the models. *p > 0.05. 
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Next, working memory performance was assessed in the Y-maze (Figure 30). Two 

parameters are presented: ‘returns’ and ‘alternations’. ‘Returns’ describe the percentage 

of performed working memory failures, which are characterised by the return into the 

same arm. This parameter was not changed by the model [F(1,37) = 1.30, p = 0.28]. 

‘Alternations’ describe the percentage of correct choices, which are revealed by entering 

a new arm. There was also no treatment effect [F(1,37) = 1.79, p = 0.18]. 

 

Figure 30. Working memory performance in the Y-maze test of WT animals after two months of 

alcohol treatment in the FD and IFD models. Different parameters were analysed including 

correct alternations and returns in percent (n = 13 - 14 per group). Forced drinking animals 

were analysed while they had free access to alcohol. Animals from the intermittent forced 

drinking group were tested during the withdrawal phase. Data were analysed by one-way 

ANOVA (main factor: model) and represented as mean value ± SEM. 

Next, the O-maze test was performed to investigate anxiety-related behaviour. Two 

parameters were analysed: the time and the distance spent in the open arms of the maze 

in per cent. Neither distance [F(1,37) = 1.22, p = 0.30] nor time spent in the open arms 

[F(1,37) = 2.01, p = 0.14] were significantly altered by the alcohol treatment (Figure 31).  
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Figure 31. Anxiety-related behaviour in the O-maze test of WT animals after two months of 

alcohol treatment in the FD and IFD model. The distance and the time spent in the open parts of 

the O-maze was calculated in percent (n = 13 - 14 per group). Forced drinking animals were 

analysed while having free access to alcohol. Animals from the intermittent forced drinking 

group were tested during the withdrawal phase. Data were analysed by one-way ANOVA (main 

factor: model) and represented as mean value ± SEM. 

4.3.2 Six months of forced drinking 

After six months of FD animals were at the age of eight months and they were 

examined while they had free access to ethanol. There was no significant change in the 

working memory performance in the Y-maze test (Figure 32). The percentage of neither 

working memory failure [F(1,14) = 2.36, p = 0.14] nor alternations [F(1,14) = 0.01 p = 0.89] 

was significantly affected. 

 

Figure 32. Working memory performance in the Y-maze test of WT animals after six months in 

the FD model. Different parameters were analysed including alternations and returns in percent. 
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The treatment did not affect the working memory performance (n = 8 per group). Alcohol-

treated animals were analysed without withdrawal. Data were analysed one-way ANOVA (main 

factor: treatment) and represented as mean value ± SEM. 

The anxiety in the O-maze test was also not significantly different between the 

groups. Both parameters ‘distance travelled’ [F(1,14) = 1.79, p = 0.20] and ‘time spent in 

the open arms’ [F(1,14) = 1.11, p = 0.30] were not significantly changed by alcohol 

drinking (Figure 33).  

 

Figure 33. Anxiety in the O-maze test of WT animals after six months in the FD model. The 

distance and the time spent in the open parts of the O-maze was calculated in percent (n = 8 per 

group). The test was performed at 700 lux. Alcohol-treated animals were analysed without 

withdrawal. Data were analysed by one-way ANOVA (main factor: treatment) and represented 

as mean value ± SEM. 

As six months of alcohol treatment did not significantly affect the behaviour of the 

animals in the Y- and in the O-maze tests, a more complex and challenging test was 

performed to investigate cognitive functions after chronic alcohol treatment. The 

Morris-water maze is a test of spatial learning and memory in an aversive environment 

(Figure 34). During the acquisition phase (Figure 34A), the animals learned to find the 

platform, which is reflected by changes in latency and path length to reach the platform. 

As early as the second day of training the latency was reduced by more than 50 % and 

after seven days the animals managed to find to the platform within twelve seconds. 

Surprisingly, chronic alcohol treatment did not influence memory acquisition during 

seven days [latency: F(1,18) = 0.00, p = 0.96; path length: F(1,18) = 0.01, p = 0.90]. The 

locomotor activity was also not changed by alcohol, as revealed by the swim speed, 
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which was similar in both groups [F(1,18) = 0.08, p = 0.77] (Figure 34B). To test the 

flexibility of learning, the position of the platform was changed to the opposite quadrant 

on the eighth day (Figure 34C). On the second day of the reversal phase, the latency was 

reduced by 50 %. The learning flexibility was not affected by the alcohol treatment 

during the three-day reversal phase [latency: F(1,18) = 0.06, p = 0.79; path length: F(1,18) = 

0.26, p = 0.61]. On the last day the probe trial was performed to monitor the strength of 

memory (Figure 34D). In order to do so, the platform was removed and the time the 

animals spent in the former target quadrant was measured. The six-month alcohol 

treatment did not influence the memory strength in this setup [F(1,18) = 1.27, p = 0.27].  

 

 

Figure 34. Spatial memory performance in the Morris-water maze of WT animals after six 

months in the FD model. (A) During the acquisition phase, water and alcohol-treated animals 

showed the same learning performance. (B) The swim speed was not affected by the treatment. 

(C) In the reversal phase, both groups showed the same learning flexibility. (D) After removal of 
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the platform in the probe trial, both groups spent the same time in the former target quadrant (n 

= 10 per group). Alcohol-treated animals were analysed without withdrawal. Data were 

analysed by (A and C) repeated measures one-way ANOVA (main factor: treatment, within 

effect: time) or (B and D) one-way ANOVA (main factor: treatment) and represented as mean 

value ± SEM. 

4.3.3 Behavioural effects of CB2 deletion after chronic alcohol drinking 

Withdrawal of alcohol leads to an imbalanced emotional state thereby precipitating 

behavioural changes. We therefore took advantage of the regular withdrawal periods in 

the intermittent forced drinking model and performed the behavioural analysis three 

days after the beginning of withdrawal, respectively. Furthermore, we investigated the 

impact of CB2 deletion on the animals’ behaviour in two different housing conditions. 

Single-housed animals 

Open field activity was investigated at the age of four months when animals already 

had two months of intermittent alcohol access, which was similar to the setup in Figure 

29. Surprisingly, the exploratory behaviour of WT mice was not changed by the 

intermittent alcohol treatment [F(1,32) = 0.31, p = 0.58] (Figure 35A). Deletion of CB2 

receptors did not alter open field activity either [F(1,32) = 0.88, p = 0.35].  Centre field 

activity was not affected by alcohol treatment either in WT or in CB2 deficient mice 

[F(1,32) = 0.11, p = 0.74] (Figure 35B). 

 

Figure 35. Activity in the open field of WT and CB2 deficient animals after two months of alcohol 

treatment in the IFD model. (A) Neither alcohol treatment nor deletion of CB2 affected the 

overall distance travelled per minute. (B) Distance travelled in percent in the centre of the open 
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field was not affected by the treatment (n = 13 - 14 per group). Data were analysed by (A) 

repeated measures two-way ANOVA (main factors: treatment and genotype, within effect: time) 

or (B) two-way ANOVA (main factors: treatment and genotype) and represented as mean value 

± SEM.  

To investigate phenotypes of the withdrawal syndrome including insomnia and 

increased irritability, the home cage activity of the animals was monitored during three 

periods of withdrawal and alcohol consumption. The overall home cage activity of 

water-treated animals is representatively shown in Figure 36A. Alcohol-treated WT and 

CB2 deficient animals are shown in Figure 36B. These graphs demonstrate that the 

circadian rhythm was not changed after four months of chronic alcohol drinking.  
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Figure 36. Activity in the home cage of WT and CB2 deficient animals after four months of alcohol 

treatment in the IFD model. (A) Representative figure of the circadian rhythm in three hour 

intervals of water-treated control animals throughout 20 days. (B) Representative figure of the 

circadian rhythm in three hour intervals of alcohol-treated animals over 20 days (H2O n = 6 per 

group; EtOH n = 8 – 11 per group).  

For a clear overview of the home cage activity data I devided the daily activity in two 

periods: the dark, active phase (Figure 37) and the light, inactive phase (Figure 38). 

During the active phase WT animals showed a slight decrease in activity during the 

alcohol periods compared to water controls (Figure 37A). Withdrawal of alcohol slightly 

enhanced the activity to the level of water-treated animals. However, this effect was not 

significant for the treatment [F(1,12) = 0.18, p = 0.67]. In CB2 deficient animals, the home 

cage activity was significantly reduced while animals had access to alcohol [F(1,12) = 5.69, 

p = 0.03] (Figure 37B). The genotype did not further alter the activity of alcohol-treated 

animals [F(1,13) = 0.00, p = 0.99], but there was a striking effect over time [F(1,247) = 9.86, p 

= 0.000] (Figure 37C). In water-treated control animals, there were no significant 

changes [F(1,9) = 0.65, p = 0.43] (Figure 37D).  
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Figure 37. Home cage activity during the active phase of WT and CB2 deficient animals after four 

months of alcohol treatment in the IFD model. (A) Alcohol treatment did not significantly affect 

the home cage activity in WT animals. (B) Deletion of the CB2 receptor significantly reduced the 

home cage activity during the alcohol period. (C) The genotype did not influence the activity in 

alcohol-treated animals although it was decreased by alcohol treatment. (D) Water-treated 

controls did not show any difference between WT and CB2 deficient animals (H2O n = 6 per 

group; EtOH n = 8 – 11 per group). Data were analysed by repeated measures one-way ANOVA 

(main factor: treatment (A and B) or genotype (C and D), within effect: time) and represented as 

mean value ± SEM. * indicates treatment effect. **p < 0.01, ***p < 0.001. 

During the resting phase, home cage activity was decreased by more than 50 % 

compared to the active phase. Alcohol treatment neither affected activity in the sleeping 

phase in WT [F(1,11) = 1.06, p = 0.32] (Figure 38A) nor in CB2 deficient animals [F(1,9) = 

0.74, p = 0.41] (Figure 38B) compared to respective water controls. However, compared 

with alcohol-treated animals (Figure 38C), CB2 deleted mice showed a trend to 

increased activity [F(1,13) = 3.22, p = 0.09]. This effect was enhanced when comparing 

water-treated controls (Figure 38D). So, deletion of CB2 receptors resulted in a 

significantly increased activity during the sleeping phase [F(1,9) = 6.03, p = 0.03].  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1000

2000

3000

4000

ac
ti

vi
ty

 (
ar

b
. u

n
it

s)

WT H2O CB2 H2O

Withdrawal EtOH Withdrawal EtOH Withdrawal EtOH

D



 

76 
 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

ac
ti

vi
ty

 (
ar

b
. u

n
it

s)

WT EtOHWT H2O

Withdrawal EtOH Withdrawal EtOH Withdrawal EtOH

A

Activity in the light phase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

ac
ti

vi
ty

 (
ar

b
. u

n
it

s)

CB2 H2O CB2 EtOH

Withdrawal EtOH Withdrawal EtOH Withdrawal EtOH

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

ac
ti

vi
ty

 (
ar

b
. u

n
it

s)

WT EtOH CB2 EtOH

Withdrawal EtOH Withdrawal EtOH Withdrawal EtOH

C



 

77 
 

 

Figure 38. Home cage activity during the resting phase of WT and CB2 deficient animals after 

four months of alcohol treatment in the IFD model. (A and B) Alcohol treatment did not alter the 

activity during the resting phase either in WT or CB2 deficient animals. (C and D) CB2 deficient 

animals showed increased activity during the resting phase. This effect is the strongest in water 

controls (H2O n = 6 per group; EtOH n = 8 – 11 per group). Data were analysed by repeated 

measures one-way ANOVA (main factor: treatment (A and B) or genotype (C and D), within 

effect: time) and represented as mean value ± SEM. # indicates genotype effect. #p < 0.05. 

To investigate withdrawal-induced anxiety, I analysed the animals in the O-maze test 

(Figure 39A) and in the dark/light box test (Figure 39B). Distance and time spent in the 

open arm of the O-maze [distance: F(1,28) = 0.26, p = 0.60; time: F(1,28) = 1.70, p = 0.20] or 

in the open area of the dark/light box [distance: F(1,19) = 0.14, p = 0.70; time: F(1,19) = 

0.02, p = 0.87], were not altered by alcohol withdrawal.  
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Figure 39. Anxiety in the O-maze (A) and in the dark/light box test (B) of WT and CB2 deficient 

animals after five months of alcohol treatment in the IFD model (A) The distance and the time 

spent in the open parts of the O-maze were calculated in percent. The test was performed at 40 

lux. Anxiety in the dark/light box test (B) The distance and the time spent in the open parts of 

the dark/light box were calculated in percent. The test was performed at 15 lux. Alcohol-treated 

animals were analysed during a withdrawal phase after six months of intermittent alcohol 

treatment (n = 6 - 10 per group). Data were analysed by two-way ANOVA (main factors: 

treatment and genotype) and represented as mean value ± SEM. 

To investigate cognitive performance of mice after five months of alcohol drinking, I 

analysed the animals in the object and social recognition tests. Both tests are designed to 

measure the declarative memory. During the pre-test trial in the object recognition test, 

WT and CB2 deficient animals did not show preference for a specific object (Figure 40A). 

When one of the familiar objects was removed and exchanged by a novel object, water-

treated WT and CB2 deficient animals showed a significant increase in the preference for 

the novel object [F(1,33) = 27.77, p = 0.000]. This effect was also present in alcohol-

treated WT and CB2 deficient mice. 

A prerequisite for performing the social recognition test is that animals show social 

interaction with partner mice. For this purpose, the animals were subjected to the test 

for social preference. Here, both water and alcohol-treated animals showed preference 

for a partner mouse in a grid cage compared to an empty cage [F(1,27) = 39.71, p = 0.000] 

(Figure 40B). However, in the social recognition test WT, CB2 deficient control animals 

as well as alcohol-treated CB2 knockout mice did not show preference for a novel 

partner mouse (Figure 40C). Surprisingly, alcohol-treated WT animals spent 
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significantly more time with the novel compared to the familiar partner mouse [F(1,18) = 

6.73, p = 0.01].  
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Figure 40. Declarative memory performance of WT and CB2 deficient animals after five months 

of alcohol treatment in the IFD model. (A) Water- and alcohol-treated animals and alcohol-

treated WT and CB2 mice showed increased preference for the novel object in the object 

recognition test. (B) Both treatment groups showed preference for a partner mouse in the social 

preference test independent of the genotype. (C) Only alcohol-treated WT animals showed 

increased preference for the novel partner in the social recognition test (n = 9 – 12 per group). 

Data were analysed by repeated measures two-way ANOVA (main factors: genotype and 

treatment, within effect: test) and represented as mean value ± SEM.*p < 0.05, **p > 0.01, ***p > 

0.001. 

Group-housed animals 

After six months of intermittent alcohol access, the exploratory behaviour of group-

housed animals in the open field arena was analysed. Chronic alcohol treatment 

significantly increased the activity in both of the genotypes (Figure 41A) [F(1,54) = 4.43, p 

= 0.03]. Deletion of CB2 receptors decreased the exploratory behaviour of mice in the 

open field arena [F(1,54) = 6.16 p = 0.01]. The activity in the centre field of WT [F(1,58) = 

1.73, p = 0.19] and CB2 knock-out mice [F(1,58) = 3.05, p = 0.08] was not significantly 

altered (Figure 41B). 

 

Figure 41. Activity in the open field of WT and CB2 deficient animals after six months of alcohol 

treatment in the IFD model. (A) Treatment and genotype significantly influenced the overall 

distance travelled in the open field. (B) Distance travelled in percent in the center of the open 

field (n = 14 - 17 per group). The test was performed during an alcohol withdrawal phase. Data 

were analysed by three-way ANOVA and represented as mean value ± SEM. * indicates 

treatment effect, # indicates genotype effect. *p > 0.05. 
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Next, working memory performance was investigated in the Y-maze test. Working 

memory errors did not significantly increase in alcohol-treated WT animals [F(1,58) = 

1.16, p = 0.28] (Figure 42). Lack of CB2 receptors led to a higher level of returns 

compared to water-treated WT animals. Alcohol treatment did not further affect the 

working memory performance in CB2 deficient mice. The percentage of correct 

alternations was similar among the different groups [F(1,58) = 0.09, p = 0.75]. 

 

Figure 42. Working memory performance in the Y-maze test of WT and CB2 deficient animals 

after six months of alcohol treatment in the IFD model. Different parameters were analysed 

including percentages of alternations and returns. The treatment did not affect the working 

memory performance (n = 8 per group). The test was performed during an alcohol withdrawal 

phase. Data were analysed by two-way ANOVA (main factors: treatment and genotype) and 

represented as mean value ± SEM. 

Withdrawal-induced anxiety was investigated in the O-maze test (Figure 43). Both, 

distance [F(1,59) = 0.08, p = 0.77] and time [F(1,59) = 0.13, p = 0.71] spent in the open arms 

were not changed by the treatment or by the genotype.  
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Figure 43. Anxiety-related behaviour in the O-maze test of WT and CB2 deficient animals after six 

months of alcohol treatment in the IFD model. The distance and the time spent in the open parts 

of the O-maze were not changed by alcohol treatment or by the genotype (n = 12 - 19 per group). 

The test was performed at 40 lux. Alcohol-treated animals were analysed during a withdrawal 

phase after six months of alcohol treatment. Data were analysed by two-way ANOVA (main 

factors: treatment and genotype) and represented as mean value ± SEM. 

4.4 Effects of the CB2 receptor on alcohol-related behaviour 

There is increasing evidence that the CB2 receptor modulates rewarding effects of 

alcohol (Al Mansouri et al., 2014; Ishiguro et al., 2007; Ortega-Álvaro et al., 2013). Here, 

we investigated alcohol consumption in chronic alcohol models with different housing 

conditions. Furthermore, we analysed ethanol preference, as well as stress-induced 

drinking, development of tolerance through hypothermia, alcohol clearance and 

handling-induced convulsions. 

4.4.1  Alcohol consumption, body weight and food intake in chronic models 

In the FD model, single-housed WT animals drank more than their group-housed 

conspecifics [F(1,39) = 20.41, p = 0.000] (Figure 44A). This effect was similar in CB2 

deficient mice [F(1,36) = 19.92, p = 0.000] (Figure 44B). Correspondingly, in the IFD 

model, single-housed WT animals drank more ethanol than group-housed mice [F(1,29) = 

22.52, p = 0.000] (Figure 44C). Interestingly, in the IFD model group-housed CB2 

deficient animals showed the same consumption of alcohol as single-housed animals 

[F(1,21) = 0.01, p = 0.89] (Figure 44D). In single-housed animals there was no difference 

between the genotypes in the FD [F(1,17) = 0.00, p = 0.98] and the IFD [F(1,19) = 1.69, p = 
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0.20] model (Figure 44A and B). Similarly, group-housed wild type and CB2 deficient 

mice drank similar amounts of alcohol in the FD model [F(1,58) = 0.55, p = 0.46]. 

Surprisingly, group-housed CB2 knockout animals showed increased alcohol 

consumption in the IFD model compared to WT controls [F(1,31) = 21.60, p = 0.000] 

(Figure 44C and D). 

 

Figure 44. Alcohol consumption of single- and group-housed animals in the forced (A, B) and 

intermittent forced (C, D) drinking models. (A and B) In the forced drinking model single-housed 

WT and CB2 mice drank more than their group-housed conspecifics. (C) In the intermittent 

forced drinking single-housed WT animals drank significantly more than group-housed WT 

mice. (D) Group-housed CB2 animals drank the same amount of alcohol as single-housed mice in 

the intermittent forced drinking model. (WT FD single n = 12, group n = 30; WT IFD single n = 

12, group n = 19; CB2 FD single n = 10, group n= 31; CB2 IFD single n = 9, group n= 14). Data 

were analysed by repeated measures one-way ANOVA (main factor: housing condition, within 

effect: time) and represented as mean value ± SEM. ***p < 0.001. 
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The body weight was increased in the FD model in group-housed animals compared 

to single-housed mice in both genotypes [WT: F(1,38) = 4.40, p = 0.04; CB2: F(1,41) = 4.49, p 

= 0.04] (Figure 45A and B). The housing conditions did not significantly alter the body 

weight in the IFD model in either of the genotypes [WT: F(1,29) = 0.15, p = 0.69; CB2: F(1,21) 

= 0.98, p = 0.33] (Figure 45C and D). In water control WT animals housing conditions did 

not affect the body weight gain [F(1,68) = 0.72, p = 0.40] (Figure 45E). Interestingly, 

group-housed CB2 deficient animals showed increased body weight compared to single-

housed controls [F(1,62) = 11.14, p = 0.001] (Figure 45F). In single-housed animals 

deletion of CB2 did not affect the body weight [FD: F(1,21) = 2.28, p = 0.14; IFD: F(1,19) = 

0.00, p = 0.99; H2O: F(1,37) = 0.09, p = 0.75]. However, peer-housing led to increased body 

weight in CB2 deficient animals in the FD model [F(1,58) = 5.69, p = 0.02] and in water 

controls [F(1,93) = 10.31, p = 0.001], but not in the IFD model [F(1,31) = 0.62, p = 0.43] 

compared to WT littermates. 
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Figure 45. Body weight of single- and group-housed animals in the forced (A, B), intermittent 

forced (C, D) drinking models and in water control mice (E, F). (A and B) Group-housed WT and 

CB2 mice showed increased body weight in the forced drinking model. (C and D) In the 

intermittent forced drinking model both WT and CB2 animals showed the same body weight 

independent of the housing conditions. (E) Similarly, the housing conditions did not alter the 

body weight in water control WT animals. (F) Interestingly, water-treated, group-housed CB2 

animals showed a significant increase in body weight compared to single-housed animals. (n: 

WT FD single = 12, group = 30; WT IFD single = 12, group = 19; WT H2O single = 22, group = 48; 

CB2 FD single  = 10, group = 31; CB2 IFD single = 9, group = 14; CB2 H2O single = 18, group = 47). 
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Data were analysed by repeated measures one-way ANOVA (main factor: housing condition, 

within effect: time) and represented as mean value ± SEM. *p < 0.05, **p < 0.01. 

As food consumption of the animals was constant during the entire experiments, we 

calculated mean values for each group (Table 4). CB2 deficient mice ate generally more 

compared to WT animals [F(1,262) = 7.97, p = 0.005]. We also found significant differences 

in food intake comparing the models [F(2,262) = 33.25, p < 0.0001] and the housing 

conditions [F(1,262) = 13.08, p = 0.003]. In the FD model WT mice showed a significantly 

elevated food consumption when they were single housed [F(1,39) = 4.08, p = 0.05] (Table 

4). This effect was enhanced in the IFD model [F(1,29) = 10.11, p = 0.003] (Table 4). 

Group-housed CB2 deficient animals showed a similar food consumption as single-

housed mice in both drinking paradigms [FD: F(1,41) = 2.44, p = 0.12; IFD: F(1,21) = 3.09, p 

= 0.09] (Table 4). In water control animals of both genotypes we could not detect any 

differences in food intake between group- and single-housed animals [WT: F(1,69) = 2.24, 

p = 0.13; CB2: F(1,63) = 1.36, p = 0.24] (Table 4). The FD paradigm led to strongly 

decreased food consumption compared to water control mice [WT single: F(1,32) = 10.28, 

p = 0.003; WT group: F(1,76) = 38.16, p = 0.000; CB2 single: F(1,27) = 19.90, p = 0.000; CB2 

group: F(1,77) = 17.59, p = 0.000] (Table 4). This effect was similar in a comparison 

between FD and IFD models [WT single: F(1,21) = 43.61, p < 0.001; WT group: F(1,47) = 

6.30, p = 0.015; CB2 single: F(1,19) = 38.85, p < 0.001; CB2 group: F(1,43) = 20.31, p < 0.001]. 

In the IFD model only group-housed WT animals showed decreased food intake 

compared to water controls [F(1,65) = 4.84, p = 0.03]. 

 

Table 4. The mean food consumption of alcohol-treated single- and group-housed animals in the 

FD and IFD models and water control mice. Housing: The food consumption was moderately, but 

significantly increased in single-housed WT animals in the FD model compared to group-housed 

mice (*). This effect was more pronounced in the IFD model (**). Single housing did not affect 

the food intake in water-treated WT animals. Single-housed CB2 knockout mice ate similar 

amounts of food in all models compared to group-housed animals. Model: Alcohol treatment in 
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the FD model resulted in reduced food consumption in both genotypes and housing conditions 

compared to the IFD model (mmm) and to water controls (www). Furthermore, group-housed WT 

animals in the IFD model ate significantly less compared to water controls (w) and to CB2 

knockout animals (g) in the same housing condition and model. n: WT FD single = 12, group = 30; 

WT IFD single = 12, group = 19; WT H2O single = 22, group = 48; CB2 FD single  = 10, group = 31; 

CB2 IFD single = 9, group = 14; CB2 H2O single = 18, group = 47. Data were analysed by one-way 

ANOVA (main factor: housing condition) and represented as mean value ± SEM. */w/m/gp < 0.05; 

**/ww/mmp < 0.01; www/mmmp < 0.001.  

For a comprehensive statistical analysis alcohol consumption and body weight gain 

we used a repeated measures three-way ANOVA. The main factors were the following: 

genotype, alcohol model and housing conditions. The ethanol intake was significantly 

affected by the model [F(1,131) = 3.921, p = 0.049] and the housing conditions [F(1,131) = 

30.97, p = 0.000], but not by the genotype [F(1,131) = 0.13, p = 0.71] (Table 5). However, 

WT and knockout animals showed a significantly altered alcohol consumption, which 

was dependent on the housing conditions [F(1,131) = 3.842, p = 0.05] and on the drinking 

paradigm  together with the social environment [F(1,131) = 11.149, p = 0.001] (Table 5). 

The body weight was influenced by all main factors examined [G: F(1,260) = 5.75, p = 0.01; 

M: F(1,260) = 9.85, p < 0.001; H: F(1,260) = 14.07 p < 0.001] (Table 5). Moreover, the changes 

in body weight were not affected by interactions between genotypes, housing conditions 

and models. 

 

Table 5. Statistical analysis of ethanol consumption and body weight in relation to genotype, 

alcohol drinking model and housing conditions. The ethanol consumption was significantly 

affected by two main factors: alcohol drinking model and housing conditions. Furthermore, we 

observed significant interactions for gene x housing and gene x model x housing. The body 
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weight was significantly affected by all main factors analyzed and did not show significant 

interactions. Data were analyzed by repeated measures three-way ANOVA (main factors: 

genotype, model and housing condition, within effect: time) and represented as p-value and 

observed power (alpha = 0.05).  

The blood alcohol levels were not significantly different between the genotypes [FD 

single: F(1,16) = 0.09, p = 0.76; FD group: F(1,34) = 0.39, p = 0.53; IFD single: F(1,9) = 0.98, p = 

0.34; IFD group: F(1,34) = 0.39, p = 0.53]. However, as blood was not sampled at the same 

point of time it is not possible to compare the BALs of the different alcohol models.  

 
Table 6. Blood alcohol level after chronic alcohol access in the different alcohol models. Blood 

alcohol level (g / l) was not significantly altered by the genotype (n: WT FD single = 10, group = 

18; WT IFD single = 7, group = 13; CB2 FD single  = 8, group = 18; CB2 IFD single = 4, group = 9).  

Data were analyzed by one-way ANOVA and represented as mean value ± SEM.  

4.4.2 Alcohol preference 

In the two-bottle choice test WT animals showed a constant preference for alcohol of 

about 60 % [F(1,24) = 2.64, p = 0.11] (Figure 46A), whereas CB2 deficient animals 

significantly decreased their preference over time from 60 % to 36 % [F(1,120) = 2.95, p = 

0.01]. As the preference values of the animals were not normally distributed, we 

performed a nonparametric analysis of the first (Figure 46C) and the last two weeks 

(Figure 46D). Here, CB2 knockout animals showed a significant decrease in alcohol 

preference after twelve weeks compared to the WT controls [p < 0.05]. The alcohol 

consumption was similar in both strains, although CB2 deficient animals showed a 

stronger decrease in alcohol consumption than the WT controls [F(1,24) = 1.72, p = 0.20] 

(Figure 46B). 
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Figure 46. Alcohol drinking behaviour in the two-bottle choice test of WT and CB2 deficient 

animals. (A) The alcohol preference in WT animals remained constant, whereas CB2 deficient 

animals showed reduced alcohol preference in the end compared to the beginning. (B) Alcohol 

consumption was similar in WT and CB2 deficient animals. (C) The alcohol preference in the first 

two weeks. (D) The alcohol preference in the last two weeks. Only at the end of the test did CB2 

deficient animals showe a significantly decreased preference (WT n = 14; CB2 n = 12). (A and B) 

Data were analyzed by repeated measures one-way ANOVA (main factor: genotype, within 

effect: time) and represented as mean value ± SEM. (C and D) Data were analyzed by the 

nonparametric Kolmogorov-Smirnov test and represented as mean value ± SEM. *p < 0.05; ##p 

< 0.01. * indicates treatment effect; # indicates time effect in CB2 deficient animals. 
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4.4.3 Stress-induced drinking 

As the CB2 receptor has been shown to modulate stress responses (García-Gutiérrez 

et al., 2010; Ishiguro et al., 2007), we investigated the alcohol preference and blood 

corticosterone levels after application of mild foot shocks in WT and CB2 deficient mice 

at the end of the two-bottle choice test. The stress resulted only in a moderate increase 

in alcohol preference in WT animals, which was not significant (Figure 47A). However, 

the alcohol preference of CB2 knockout mice did not increase at all after the stress and 

was significantly lower compared to WT animals [F(1,18) = 18.90, p = 0.000]. The foot 

shock induced a startle response (Figure 47B) and a robust humoral stress response, 

which was similar in both of the genotypes [F(1,17) = 116.68, p = 0.000] (Figure 47C). 

However, there was a significant stress x genotype interaction for the expression levels 

of corticosterone [F(1,17) = 12.22, p = 0.002]. 
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Figure 47. Stress-induced drinking of WT and CB2 deficient animals. (A) Alcohol preference after 

the foot shock did not significantly increase in WT animals. CB2 deficient animals showed lower 

alcohol preference compared to WT (WT n = 11; CB2 n = 9). (B) The startle response to the foot 

shock was similar in both genotypes. (C) Plasma corticosterone levels showed a strong increase 

after the foot shock (n = 9 - 10). Data were analyzed by repeated measures one-way ANOVA 

(main factor: genotype, within effect: stress) and represented as mean value ± SEM. # indicates 

genotype effect, * indicates stress effect. #p < 0.05, ##/**p < 0.01, ###/***p < 0.001. 

4.4.4 Development of tolerance 

The development of tolerance was assessed by measuring hypothermia after acute 

injection of alcohol before and three weeks after chronic alcohol consumption. Acute 

injection of 2 g/kg alcohol in ethanol naïve WT animals decreased the body temperature 

by 2.6 °C (Figure 48A). This effect was less pronounced in CB2 deficient animals, as the 

body temperature only decreased by 1.3 °C [F(1,19) = 9.37, p = 0.006]. Injection of 3.5 

g/kg ethanol strongly decreased the body temperature in both genotypes by 2.8 °C. After 

chronic alcohol treatment, WT animals developed tolerance to alcohol as acute alcohol 

injection of 2 and 3.5 g/kg only decreased the body temperature by 1 °C (Figure 48B). 

CB2 knockout animals showed tolerance to alcohol only after injection of 3.5 g/kg. 

 

Figure 48. Alcohol-induced hypothermia and tolerance of WT and CB2 deficient animals. (A) 

After injection of 2 g/kg EtOH CB2 deficient animals showed less hypothermia than WT controls. 

This effect is saturated after injection of 3.5 g/kg EtOH. (B) After three weeks of chronic, 

continuous alcohol access both strains developed similarly tolerance to acute alcohol injections 

(n = 5 – 6 per group). Data were analyzed by two-way ANOVA (main factors: genotype and 

injection) and represented as mean value ± SEM. **p < 0.01. 
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During the measurement of body temperature, we observed a difference in this 

parameter in alcohol naïve WT and CB2 animals. Therefore, we measured the body 

temperature in alcohol naive and chronic alcohol-treated animals (Figure 49). Alcohol 

naïve CB2 knock-out animals showed a reduced body temperature compared to WT 

controls [F(1,19) = 4.5, p = 0.04]. Deletion of the CB2 receptor resulted in slightly reduced 

body temperature in alcohol naïve animals. Those animals did not show a change in 

their body temperature after chronic alcohol access, presenting increased body 

temperature compared to chronic alcohol treated WT mice [F(1,19) = 35.3, p = 0.000]. 

 

Figure 49. Effect of chronic alcohol treatment on the body temperature of WT and CB2 deficient 

animals. The body temperature of WT animals was strongly decreased by chronic alcohol 

treatment, whereas CB2 deficient animals did not show a decrease in body temperature (H2O n = 

3; EtOH n = 8 – 9). Data were analyzed by two-way ANOVA (main factors: treatment and 

genotype) and represented as mean value ± SEM. **p < 0.01, ***p < 0.001. 

4.4.5 Alcohol clearance 

In the chronic alcohol models, we observed moderately altered blood alcohol levels 

in CB2 deficient animals compared to WT controls. Therefore, we measured the rate of 

alcohol metabolism in alcohol naïve and chronically alcohol-treated animals (Figure 50). 

Application of 2 g/kg of ethanol yielded blood ethanol concentrations around 4 g/l. After 

three hours blood alcohol was reduced to 1 g/l (Fig. 5A). This effect was independent of 

the genotype [F(1,37) = 0.04, p = 0.82]. The alcohol clearance was similar in chronic 

alcohol treated animals [F(1,30) = 0.05, p = 0.80] (Fig. 5 B). Thus, the rate of alcohol 

metabolism was not affected by the genotype and chronic alcohol treatment. 
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Figure 50. Alcohol clearance after acute and chronic alcohol administration of WT and CB2 

deficient animals. (A) Injection of 2 g/kg EtOH resulted in a similar alcohol clearance in WT and 

CB2 animals. (B) After chronic alcohol treatment both strains metabolized alcohol in a similar 

way (n = 9 per group). Data were analyzed by two-way ANOVA (main factors: genotype and time 

point) and represented as mean value ± SEM.  

4.4.6 Handling-induced convulsions 

The severity of withdrawal seizures was assessed by scoring handling-induced 

convulsions. The animals were scored while they had free access to alcohol. They were 

scored again three hours after withdrawal was initiated. We could detect a strong 

increase in convulsions independent of the genotype [WT: p < 0.001; CB2: p < 0.01] 

(Figure 51A and B). 

 

Figure 51. Scoring of handling-induced convulsions after alcohol withdrawal of WT and CB2 

deficient animals. (A) WT animals showed increased convulsions during the withdrawal. (B) CB2 
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deficient mice also show increased handling-induced convulsions during the alcohol withdrawal. 

Data were analyzed by the nonparametric Kolmogorov-Smirnov test and represented as mean 

value ± SEM. **p < 0.01; ***p < 0.001. 
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5 Discussion 

The results will be discussed in two parts: the first part is about alcohol-induced 

neuroinflammation, its modulation by the CB2 and its effects on cognition. The second 

part focusses on the role of the CB2 receptor in alcohol addiction and includes alcohol 

preference, modulation of alcohol drinking by the social environment and systemic 

effects of alcohol. 

5.1 Alcohol-induced neuroinflammation 

Recently it has been discovered that neuroinflammation develops after chronic 

alcohol consumption (He & Crews, 2008), which might lead to the cognitive decline 

(Sullivan & Pfefferbaum, 2005). This process is known to be mediated via the innate 

immune system; specifically the TLR4 has been shown to play a crucial role in alcohol-

induced neuroinflammation (Alfonso-Loeches et al., 2010). As the CB2 receptor is known 

to modulate the TLR4 pathway the hypothesis was tested whether deletion of the CB2 

would lead to decreased neuroinflammation and improve cognitive performance after 

chronic alcohol consumption in mice. Therefore, in the following part I discuss the 

potency of different alcohol drinking models to induce neuroinflammation and 

characterise the microglial activation state after long-term alcohol drinking. After that, I 

discuss the modulatory role of the CB2 in alcohol-induced neuroinflammation and 

outline the effects of CB2 deletion on cognitive performance after chronic alcohol 

drinking. Finally, I will evaluate the effect of alcohol in the long-term models on systemic 

liver inflammation. 

5.1.1 Potency of different alcohol models to induce neuroinflammation 

The models investigated in this study induced neuroinflammation only after 

prolonged alcohol consumption. Animals that underwent the forced or intermittent 

forced drinking protocol for two months did not show increased cytokine expression in 

the frontal cortex. However, extending the protocols to six months of alcohol 

consumption led to an enhanced cytokine expression in this region, which is in 

accordance with published reports where similar alcohol models were applied (Alfonso-

Loeches et al., 2010). After six months of forced alcohol consumption WT animals 

showed similar pro-inflammatory responses in cytokine expression in the cortex, 
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independent of housing conditions. IL-1β was always significantly induced; TNF-α 

showed an enhanced increase in group-housed animals and IL-10 was stronger induced 

in single-housed mice. This expression profile is consistent with published reports 

(Alfonso-Loeches et al., 2010; Fernandez-Lizarbe et al., 2009). The expression of IL-6 

was not altered by alcohol treatment, which is in contrast to the literature (Alfonso-

Loeches et al., 2010). However, in the published study IL-6 was quantified at mRNA 

level, whereas in the present study protein levels were investigated. Therefore the 

difference is probably due to post-transcriptional regulation of IL-6 expression. 

Furthermore, the expression of chemokine CCL-2 was not changed after long-term 

alcohol drinking, although CCL-2 was shown to be increased in post-mortem brain 

samples of alcoholics and after binge alcohol exposure in C57BL/6J mice (Crews et al., 

2011; He & Crews, 2008). The discrepancy about CCL-2 expression in the different 

studies might be related to the use of different models and species. Surprisingly, six-

month-long alcohol consumption did not lead to an enhanced activation of microglia, 

which is contrary to published reports (Alfonso-Loeches et al., 2010; Pascual, Baliño, et 

al., 2011). This effect might be attributable to the use of different microglial markers. In 

these studies CD11b was used to characterise microglia, whereas Iba1 was used in this 

study. However, only a few reports showed Iba1 in alcohol-related studies: one showed 

mildly increased Iba1 expression in the hippocampus after a binge-drinking model in 

rodents (Marshall et al., 2013), whereas another showed Iba1 expression in post 

mortem tissue of alcoholics (He & Crews, 2008). In the present work Iba1-IR was shown 

to be increased not before twelve months of alcohol drinking, which may parallel the 

finding in human post mortem tissue (He & Crews, 2008). Therefore it is possible that 

expression of CD11b precedes the induction of Iba1 in microglia after chronic alcohol 

treatment, and Iba1 may thus be considered a more conservative marker for microglial 

activation in this model.  

Evaluation of the effect of frequent alcohol withdrawals suggests that the induction 

of cytokine expression in WT animals is positively correlated with the amount of 

ingested alcohol. This is indicated by the enhanced inflammatory response in the FD 

models compared to the IFD models. This suggests that regular withdrawal did not 

enhance the expression of cytokines. Thus, repeated withdrawal of alcohol does not 

seem to promote a pro-inflammatory phenotype of microglia. However, alcohol 
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withdrawal has been shown to increase activation of astrocytes (revealed by enhanced 

GFAP-IR) as a consequence of increased glutamate signalling during periods of 

abstinence (Miguel-Hidalgo, 2006). Consistent with the literature GFAP expression was 

increased in the cortex after six months of continuous alcohol drinking. However, this 

effect was restricted to the cingulate cortex and could not be observed in the ectorhinal 

or piriform cortex.  

5.1.2 Chronic alcohol leads to pro-inflammatory phenotype of microglia  

Chronic alcohol intake increased expression of pro-inflammatory cytokines and 

enhanced expression of the microglial marker Iba1 after twelve months of forced 

drinking. These findings suggest that microglia shift towards a pro-inflammatory 

activation state although current literature lacks in vivo evidence for such a phenotypic 

switch. Therefore this is the first study showing co-localisation of IL-1β and Iba1 in the 

cortex after chronic alcohol consumption. Twelve month alcohol consumption increased 

the total number of pro-inflammatory microglia. As pro-inflammatory microglial cells 

are known to exert neurotoxic effects (Block et al., 2007), the neuronal density was 

investigated using NeuN-IR. Neither alcohol nor age affected the density of neurons in 

the cortex. This finding does not exclude minor neural degeneration after chronic 

alcohol consumption, as there are reports showing increased degeneration and 

apoptosis following alcohol treatment (Crews & Nixon, 2009; Sullivan & Zahr, 2008). 

Importantly, the majority of apoptotic cells seems to be glial and not neural cells 

(Sullivan & Zahr, 2008). Furthermore, imaging studies clearly show that alcohol leads to 

severely decreased brain volumes (Sullivan & Pfefferbaum, 2005). However, this effect 

does not consistently correlate with the cognitive impairment of alcoholics, thereby 

suggesting that the reduced cognitive abilities of alcoholics are more likely due to a 

reduced connectivity of neurons (Zahr & Sullivan, 2009). Microglia could be involved in 

this process, as their function also comprises the maintenance of synaptic integrity 

(Graeber, 2010). Thus, the phenotypic shift of microglia may directly (via enhanced 

phagocytosis) or indirectly (via pro-inflammatory cytokines) lead to a reduced synaptic 

integrity. However, further studies are necessary to investigate this hypothesis in more 

detail.  
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5.1.3 Modulatory role of CB2 in alcohol-induced neuroinflammation 

The neuroinflammatory response activated by alcohol is mostly triggered via the 

TLR4 pathway. As the CB2 is a well-known modulator of the TLR4 signalling pathway 

(Gertsch, 2008), the hypothesis was tested whether CB2 deletion would dampen the 

alcohol-induced neuroinflammation in the cortex. Having established a model that 

induces neuroinflammation after six months of chronic alcohol access, the modulatory 

role of CB2 in this process was investigated in the FD and IFD models. Chronic alcohol 

treatment led to a mild increase of the CNR2 expression in various brain regions, 

including the cortex, suggesting that the receptor is involved in long-term adaptations to 

alcohol, which possibly involves neuroinflammation. Indeed, alcohol-induced 

neuroinflammation appeared to develop differently in CB2 deficient animals compared 

to their WT conspecifics. However, this effect is probably specific to housing conditions. 

Single-housed CB2 deficient animals showed a blunted response in IL-1β and IL-10 

expression levels after chronic alcohol consumption. Furthermore, deletion of CB2 per se 

reduced IL-6 and IL-4 expression, but increased expression of CCL-2 and Iba1. On the 

other hand, group-housed animals showed an alcohol-induced increase in IL-1β and IL-

10 expression levels. The expression of IL-6 and CCL-2 was similar to that of WT 

animals, but expression of TNF-α was increased by CB2 deletion independent of the 

treatment. Together these data indicate that CB2 deficiency by itself leads to a different 

activation state of microglia. Social isolation might further alter the immune response in 

these animals, as social stress is well accepted to modify immune functions (Salak-

Johnson & McGlone 2007; Kelley & Dantzer 2011; Bartolomucci 2007). Activation of CB2 

is generally considered to be anti-inflammatory (Ashton & Glass, 2007) and lack of CB2 

signalling should therefore result in an exacerbated immune response. However, there 

are also pleiotropic effects reported for the receptor, which might depend on the 

inflammatory stimulus and ligands, as both CB2 selective agonists and inverse agonists, 

inhibited activation of the TLR4 pathway (Gertsch, 2008). In conclusion, the CB2 might 

play a pro-inflammatory role in alcohol-induced neuroinflammation possibly by 

modulating TLR4 signalling in microglia. However, this effect is probably specific to 

environmental conditions and needs further investigation.  
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5.1.4 Effects of chronic alcohol consumption on cognition 

Chronic alcohol drinking has been associated with cognitive deficits in multiple 

rodent models, including impaired spatial and reversal learning (Cacace et al., 2012; 

Obernier et al., 2002) and object recognition (Pascual, Baliño, et al., 2011). In the present 

study, working, declarative and spatial memory performance was investigated after 

long-term alcohol drinking. However, clear alcohol effects could not be observed. 

Working memory performance, which is dependent on the prefrontal cortex activity 

(Jones, 2002), was assessed in the Y-maze test. Neither alcohol treatment nor genetic 

deletion of the CB2 showed an effect in this test. Interestingly, animals that were single-

housed for six months committed more working memory errors (Figure 33 8 – 10 %) 

compared to age-matched group-housed animals (Figure 42 3 – 5 %). This effect seemed 

to be elicited by social isolation; but this issue has been little addressed in the literature. 

It can only be speculated that social isolation influences animals’ behaviour via changes 

in the dopaminergic system in the prefrontal cortex (Fitzgerald et al., 2013). DA 

signalling in the prefrontal cortex plays an important role in the cognitive process of 

working memory as reduced DR1 function leads to a decreased working memory 

performance (Sawaguchi & Goldman-Rakic, 1991). Therefore a reduced DA-activity 

induced by social isolation might parallel the reduced working memory performance in 

these animals. 

The declarative memory performance was investigated in the object and social 

recognition tests following long-term alcohol treatment. Animals that were subjected to 

this test were single-housed for six months and alcohol treatment did not alter the 

cognitive performance. Importantly, the general memory performance of these animals 

was very low. Although they displayed an increased preference for the novel object this 

effect was only detectable after an interval of ten minutes. Analysis at later points in 

time (30 and 60 min) indicated that WT control animals did not recognise the previously 

encountered object (data not shown). Moreover, the interaction time was so short that 

the objects had to be odour-cued in order to increase the time spent with the objects. 

However, this is in line with published reports about decreased memory performance 

after single housing (Möller et al., 2013; Pereda-Pérez et al., 2013). Therefore these 

results do not permit a clear evaluation of alcohol effects as the cognitive performance is 

heavily restricted by social isolation. Interestingly, single-housed WT animals showed a 
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good spatial memory performance in the Morris-water maze and had escape latencies, 

which are consistent with the literature (Albayram et al., 2011). Mice that performed 

this task were of the same age, underwent the same treatment and were kept in the 

same housing conditions compared to those of the object recognition test. The difference 

between these tests is the environment: the object recognition test is performed in a 

non-aversive open field arena, whereas the Morris-water maze test is carried out in a 

water basin, which provides a highly aversive environment for the animals. This 

suggests that single housing did not affect memory performance per se but rather led to 

a strong deficit in motivation to perform the task. Surprisingly, alcohol treatment did not 

impair memory performance in the Morris-water maze test in WT mice. This is contrary 

to published results reporting an impaired memory acquisition and reversal learning in 

rats after a three-bottle choice regimen (Cacace et al., 2012). Furthermore, Obernier and 

co-workers reported a mild deficit in reversal learning after a four-day binge drinking 

procedure (Obernier et al., 2002). These discrepancies may be due to species and model 

differences, or more importantly, be related to the fact that mice used in the present 

study were analysed during alcohol access and not during withdrawal. Moreover, as 

neuroinflammation developed after six months of alcohol drinking, this finding also 

indicates that neuroinflammation per se does not affect spatial memory performance in 

the Morris-water maze.  

5.1.5 Chronic alcohol-induced liver inflammation and modulation by CB2  

Twelve month forced alcohol drinking resulted in a robust pro-inflammatory 

response in the liver, which was indicated by strongly increased protein expression of 

TNF-α, IL-1β, IL-6 and CCL-2. The anti-inflammatory cytokines IL-4 and IL-10 were also 

strongly increased, possibly in order to counteract the pro-inflammatory environment. 

After six months, single-housed WT animals did not show altered cytokine expression. 

However, deletion of the CB2 resulted in a robust pro-inflammatory response after six 

months of alcohol drinking, similar to that observed after twelve months in WT animals. 

This is consistent with previously published articles reporting an anti-inflammatory role 

of the CB2 in the liver. Trebicka and co-workers found the most pronounced liver 

damage in CB2 deficient single-housed female mice after eight months of alcohol 

treatment in the same model (Trebicka et al., 2011). Furthermore, Louvet et al. reported 
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a pro-inflammatory phenotypic shift of Kupfer cells in CB2 deleted animals treated with 

liquid diet (Louvet et al., 2011).  

Group housing resulted in a different hepatic cytokine expression profile in WT 

animals: in both models (FD and IFD) WT mice showed slightly increased expression of 

TNF-α and IL-1β. Furthermore, IL-6, IL-10 and GM-CSF were increased in WT animals 

with continuous alcohol access. These findings suggest that the onset of liver 

inflammation (revealed by cytokine expression) in this model appears to be earlier 

when animals are group-housed compared to single-housed animals, where hepatic 

inflammation starts after around eight months of alcohol drinking (see Trebicka, 2011). 

Chronic alcohol treatment leads to immunodeficiency and increases the risk of 

infectious diseases (Cook, 1998; Nelson & Kolls, 2002). Therefore, it is possible that 

long-term alcohol enhances the inflammatory response to pathogens from the faeces of 

littermates in peer-housed animals. Surprisingly, group-housed CB2 deficient animals 

showed a blunted inflammatory response towards alcohol, which was indicated by 

unchanged cytokine expression. However, cytokine expression does not necessarily 

reflect liver fibrosis. Thus, fibrotic scoring of group-housed CB2 deficient animals is 

required to state whether CB2 also exerts an anti-inflammatory function in group-

housed animals as described for single-housed CB2 deficient mice (Trebicka et al., 2011).  

5.2 Role of the CB2 receptor in alcohol-related behaviour 

The second part of the discussion focuses on the rewarding effects of alcohol in CB2 

deficient mice. Furthermore, interactions of the receptor with the environment, 

including the use of different alcohol models and housing conditions, will be highlighted. 

Finally, the effects of the CB2 on withdrawal-induced anxiety and locomotion, the 

development of tolerance and alcohol clearance will be discussed. 

5.2.1 Alcohol preference and stress-induced drinking 

We detected a difference between the genotypes in the alcohol preference test. 

Single-housed CB2 deficient animals showed a reduced preference for alcohol, which 

became significant over time. These data indicate that alcohol has no rewarding effect in 

CB2 deficient animals under conditions that can be considered to be ‘normal’ or ‘non-

stressed’. In contrast to our finding, Ortega-Alvaro and colleagues found an increase in 
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alcohol preference in the two-bottle choice test using CB2 knockout animals (Ortega-

Álvaro et al., 2013). It is important to mention that these mice were on an outbred (CD1) 

background, which is known for its alcohol avoidance (Short et al., 2006). Mice used in 

our study were on a C57BL/6J inbred background that is known for its high alcohol 

preference (Short et al., 2006). Here, they showed a preference of around 60 %, which is 

consistent with earlier findings (Racz, Schürmann, et al., 2008; Yoneyama et al., 2008). 

Thus, the contradictory results between these two reports may be a consequence of 

background differences.  

To investigate stress-induced alcohol drinking, the animals were stressed with mild 

electric foot shocks. The foot shock procedure did not result in an increase of either 

alcohol preference or intake, albeit the animals of both genotypes elicited a strong stress 

response as revealed by the startle response and the increase in corticosterone plasma 

levels. This diverges from recently published reports from our laboratory (Racz et al., 

2003, 2012). However, this discrepancy is known in the literature as there are also 

reports showing no increase in alcohol preference after the foot-shock procedure (for 

review: Becker et al. 2011). In another study Ishiguro and co-workers found that chronic 

mild stress (CMS) increased the alcohol preference in one experiment, whereas they 

found no increase in another experiment (Ishiguro et al., 2007). These results thus 

illustrate the variability of stress-related alcohol consumption. Moreover, it can also be 

speculated that the gender of the experimenter plays an important role in this 

behaviour. Recently, it has been shown that olfactory male-related stimuli resulted in 

stress-induced analgesia in mice (Sorge et al., 2014). However, as WT animals did not 

react as expected we cannot draw conclusions from this experiment about the effect of 

the CB2 receptor in this paradigm. 

5.2.2 Effects of the CB2 receptor on alcohol consumption 

In this study, we investigated the effect of the CB2 receptor on alcohol consumption 

in relation to the social environment. Group-housed WT animals showed reduced 

alcohol intake in the IFD model compared to single-housed controls, whereas this effect 

was absent in CB2 knockout mice. The social environment plays an important role in 

alcohol drinking behaviour as group housing consequently reduced alcohol intake in WT 

animals, which is consistent with the literature (Lopez et al., 2011). However, if the 
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access to alcohol is limited, peer housing differently affected the ethanol consumption in 

WT and CB2 knockout animals. Here, we used the IFD as a model for regular, but 

moderate social drinking with repeated phases of abstinence.  Our data suggest that the 

CB2 receptor plays an important role in the regulation of drinking behaviour, which 

integrates social environment together with withdrawal-induced stress. Interestingly, 

the involvement of the CB2 receptor in gene x environment interactions has already 

been considered by Ishiguro et al. (2007). They reported that pharmacologic 

manipulation of CB2 receptor activity modulated alcohol consumption only after chronic 

mild stress (Ishiguro et al., 2007). Additionally, they found a functional single nucleotide 

polymorphism (SNP) in the CB2 receptor associated with alcoholism in a human study 

(Ishiguro et al., 2007).  This SNP in the CNR2 gene locus, R63Q, leads to a missense 

mutation in the first intracellular domain, which results in a decreased cellular response 

to CB2 receptor ligands (Ishiguro et al., 2007). Our results using CB2 knockout animals 

are in line with this. Furthermore, a recent study investigated a novel natural CB2 

agonist, beta-caryophyllene (BCP), in alcohol-related behaviours (Al Mansouri et al., 

2014). BCP-treated animals showed constantly low alcohol preference, whereas vehicle-

treated mice increased preference. However, in this experiment animals were daily i.p. 

injected with BCP or vehicle. These daily injections can be considered as a constantly 

repeated stress factor, which is known to enhance ethanol preference (Little et al., 

1999). Thus, the effect of BCP can be related to its stress relieving action as latest results 

revealed an anxiolytic- and anti-depressant-like effect of this compound (Bahi et al., 

2014). In line with this, mice overexpressing the CB2 receptor showed a reduced 

hormonal and behavioural stress reactivity (García-Gutiérrez & Manzanares, 2011). 

Altogether, these findings suggest that CB2 receptors play an important role in stress-

coping that is associated with alcohol-related behaviours.  

5.2.3 Effects of the CB2 receptor on body weight and food consumption 

In our study we detected increased body weight gain in group-housed WT animals 

with continuous alcohol access. This finding is supported by the literature as several 

reports revealed that social housing conditions modulate weight gain and food 

consumption in mice (Guo et al., 2004; van Leeuwen et al., 1997; Yamada et al., 2000). 

Interestingly, CB2 knockout mice were more sensitive to the social environment as 

group housing led to increased body weight gain. Furthermore, genetic deletion of the 
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CB2 receptor increased body weight compared to WT in group-housed mice, which was 

accompanied by a slightly increased food intake. These data indicate a gene x 

environment interaction for the regulation of body weight in CB2 knockout mice. We 

already reported increased body weight and food intake in single-housed female CB2 

deficient mice (Trebicka et al., 2011). In line with this, CB2 overexpressing mice 

appeared to be leaner and also displayed reduced food intake (Romero-Zerbo et al., 

2012). Furthermore, Agudo et al. showed that only old male CB2 deficient animals 

displayed an increased body weight, which was associated with increased food intake 

(Agudo et al., 2010). Thus, it is likely that the CB2 receptor regulates body weight gain 

and food consumption and that this modulatory effect is dependent on the social 

environment and gender. 

We found that alcohol consumption was accompanied with a reduced food intake. 

Independent of the genotype, the food consumption was negatively correlated with the 

amount of ingested alcohol. This effect was the most pronounced in the FD model where 

animals drank the largest amount of alcohol and consumed the least food. The 

relationship between alcohol and food consumption has been little addressed in 

preclinical studies, but widely investigated in alcoholic patients. A detailed review 

analysing this interaction was based on a Medline database search for the period from 

1984 to 2010. 31 studies were included and selected depending on relevance and 

quality of design (Sayon-Orea et al., 2011). They found positive, negative and no 

correlation between alcohol consumption and weight gain. However, this effect was 

highly dependent on the drinking pattern of the patients (heavy and light-to-moderate 

drinkers) and the type of alcoholic beverages consumed (beer, wine, spirits).  Analogous 

to human studies our results suggest that the effect of alcohol on food consumption may 

depend on the genetic background and also on the alcoholic strength of ethanol 

solutions. 

5.2.4 Withdrawal-induced anxiety and locomotion 

The withdrawal syndrome is characterised by different phenotypes including 

anxiety, anorexia, insomnia, tremor, convulsions and sympathetic response (Koob & Le 

Moal, 2006). Withdrawal-induced anxiety can also be observed in mice (Racz et al., 

2003). In the present study, withdrawal-induced anxiety was not detected either in the 
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O-maze, open field, or in the dark light box test. However, the level of anxiety of alcohol-

treated animals was compared to water controls. Thus, it is possible that withdrawal-

induced anxiety should be compared to animals that have alcohol access at the time of 

testing (Racz et al., 2003). Furthermore, deletion of CB2 did not affect the anxiety-like 

behaviour. This result has been independently reproduced by colleagues in the same 

animal husbandry (Bilkei-Gorzo et al., unpublished data). Contrary to this, García-

Gutiérrez and colleagues reported that pharmacologic blockade of the CB2 resulted in 

increased anxiety and overexpression of CB2 led to anxiolytic-like behaviour (García-

Gutiérrez et al., 2012; García-Gutiérrez & Manzanares, 2011). However, anxiety is 

critically affected by the laboratory environment (like cages and noise level in the 

animal husbandry) thereby possibly masking subtle phenotypes (Bilkei-Gorzó, Otto, et 

al., 2008; Crabbe et al., 1999).  

The locomotor activity in the open field was already extremely enhanced after two 

months of intermittent alcohol access in some WT animals compared to water controls. 

This effect was not observed in a second cohort of animals, suggesting that the initial 

observation was biased by a few animals that were extremely sensitive to alcohol 

treatment. However, after six months of intermittent alcohol treatment the exploratory 

behaviour was strongly increased in group-housed animals. The activity in the open 

field displays exploratory behaviour in a novel environment and is known to be largely 

mediated by the NMDA receptors (Castellani & Adams, 1981; Liljequist et al., 1991). As 

alcohol antagonises NMDA receptor function, long-term alcohol consumption results in 

compensatory effects leading to increased receptor expression (Holmes et al., 2013; 

Spanagel et al., 2014). Thus, alcohol withdrawal is characterised as a hyperglutamatergic 

state, which leads to increased locomotion. However, this effect becomes significant only 

after six months of alcohol treatment. 

Deletion of the CB2 receptor decreased exploratory behaviour in eight-month-old 

animals that were reared in groups, which is consistent with the literature (Ortega-

Alvaro et al., 2011). However, four-months-old single-housed animals did not show 

decreased locomotion. This discrepancy might be due to the use of different housing 

conditions as social isolation is known to affect locomotor activity (Võikar et al., 2005). 

This probably indicates a novel G x E interaction for the CB2. However, this effect may 
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also depend on the body weight as group-housed CB2 deficient mice were shown to be 

much heavier, thereby reducing locomotion. 

Monitoring of the home cage activity aimed at investigating aspects of the alcohol 

withdrawal syndrome, such as insomnia, increased irritability (hyperlocomotion) or a 

shifted circadian rhythm. This study revealed that the circadian rhythm was not altered 

after four months of repeated alcohol drinking and withdrawal cycles in single-housed 

animals. Furthermore, alcohol consumption resulted in a decreased home cage activity 

compared to water controls, which might be attributed to the sedative effect of alcohol 

(Koob & Le Moal, 2006). During withdrawal, the home cage activity was increased 

compared to the prior alcohol period. This suggests that alcohol withdrawal leads to 

hyperlocomotion similar to the activity in the open field. Furthermore, the activity 

during the inactive phase was not affected by alcohol withdrawal indicating that 

insomnia might be not reflected in this animal model. Surprisingly, CB2 deficient water-

treated animals displayed increased activity during the resting phase, which indicates 

that these animals sleep less. The endocannabinoid system is involved in the regulation 

of sleep. So far these effects have been attributed to CB1R signalling (Gates et al., 2014; 

Murillo-Rodríguez, 2008). These data suggest that the CB2 might also play a role in the 

regulation of sleep. However, the exact mechanism needs further investigation.  

5.2.5 Development of tolerance, handling-induced convulsions and alcohol 

clearance 

We also analysed the effect of CB2 receptors on development of alcohol-induced 

tolerance and physical signs of withdrawal. WT and CB2 knockout animals similarly 

developed tolerance to alcohol. However, CB2 deficient mice showed reduced 

hypothermia to acute injection of low-dose alcohol. Furthermore, we could not detect 

any difference between the genotypes in handling-induced convulsions after alcohol 

withdrawal. In contrast to this, Ortega-Alvaro et al. detected increased physical signs of 

withdrawal in CB2 deficient animals (Ortega-Álvaro et al., 2013). As we already 

mentioned, this study has been performed with mice on a CD1 background. 

Furthermore, the experimental design was different as they scored the animals at 

different time points of the withdrawal. Furthermore, we analysed the clearance of 

ethanol after an acute injection of 2 g / kg (Figure 50). The rate of alcohol clearance was 
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not affected by the genotype in naïve or chronic alcohol treated mice. Thus, the CB2 

receptor does not modulate metabolism of alcohol. 
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6 Conclusion and Outlook 

We can conclude that all models applied in this study led to neuroinflammation as 

revealed by cytokine expression and immuno-histochemistry. These changes were more 

pronounced when animals were continuously exposed to alcohol. Additionally we found 

a strong correlation between the duration of alcohol drinking and the severity of 

neuroinflammation. In line with this, long-term alcohol drinking led to a pro-

inflammatory activation of microglia in the cortex. Furthermore, CB2 deficiency 

dampens the inflammatory response in the cortex. However, this effect was strongly 

dependent on the housing conditions. Interestingly, we detected a similar 

environmental effect for the modulatory role of CB2 receptors in alcohol drinking 

behaviour and in the regulation of body weight gain. Additionally, our data suggest that 

the CB2 receptor is involved in the modulation of alcohol reward. However, several open 

questions remain that require further investigation. As the site of CB2 expression is 

highly controversial further studies will have to elucidate through which cell type the 

receptor mediates its effects. Thus, use of conditional knockout mice might address the 

important question whether the behavioural phenotypes are mediated through neurons 

or immune cells. Additionally, the environmental interactions of the receptor in alcohol-

related behaviour have to be investigated in more detail. Chronic treatment with CB2 

agonist ‘BCP’ in a model with intermittent alcohol access might further support the role 

of the receptor in alcohol addiction. Finally, CB2 deficient animals might be analysed in a 

larger variety of alcohol models that include environmental factors like social or cue-

induced stress.  
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