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1 Introduction1 

The increased emergence of bacteria resistant to antibiotics is a serious threat to 

modern medicine (Schäberle and Hack, 2014). The successful treatment of bacterial 

infections is in danger, since ever more multi-, and even pan-resistant bacteria evolve. 

This development is aggravated by the fact that, since the golden age of antibiotics in 

the 70ies, the number of new antibiotically active drugs introduced into therapy is 

dramatically dwindling. Therefore, research to identify new putative antibiotics has to 

be pursued and intensified. Natural products, especially microbe-derived compounds, 

proved themselves as a good source for antibiotics. Besides the well-known 

proliferative producer organisms like the streptomycetes and bacilli, currently 

myxobacteria move into the focus. This group of bacteria synthesises structurally 

diverse secondary metabolites, distinct from the classes known so far from traditional 

antibiotic producers. An example for a myxobacterial metabolite successfully 

introduced into therapy, albeit in another therapeutic area, is the anti-cancer drug 

ixabepilon, a derivative of the myxobacterial metabolite epothilone, which was 

launched in 2007 (Thompson, 2007). Interestingly, many myxobacterial compounds 

showing promising antibacterial activities were identified to date, however none of 

these was further developed as a drug.  

In this review all myxobacterial compounds with antibiotic activity, which could serve 

as lead structures for future developments are discussed, according to their mode of 

action. 

 

1.1 Myxobacterial antibiotics that target bacterial RNA polymerase 

Bacterial RNA polymerase (RNAP) is an established target for antibiotics (Chopra, 

2007; Ho et al., 2009; Mariani and Maffioli, 2009; Villain-Guillot et al., 2007). It is an 

essential enzyme and well suited for the attack of antibiotics, since the bacterial 

subunits are highly conserved, but differ from the eukaryotic ones. This way, such 

antibiotics are highly selective, have a broad-spectrum activity and low toxicity. 

RNAP-inhibitors in clinical use are the rifamycins, natural products and their 

derivatives originating from actinomycetes, which are of particular importance in the 

                                                           
1
 The introduction is published in Schäberle et al., 2014; Antibiotics from myxobacteria. 
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treatment of tuberculosis. Other infections are also amenable to therapy with 

rifamycins, e.g. in infections with Bacillus anthracis (inhalation anthrax) a combination 

therapy using a rifamycin together with ciprofloxacin or doxycycline proved successful 

in the 2001 anthrax attacks (Srivastava et al., 2011). Fidoxamicin, another RNA 

synthesis inhibitor was only recently approved for Clostridium difficile infections 

(Artsimovitch et al., 2012). 

Up to date four antibiotics and their corresponding derivatives are known from 

myxobacteria, which inhibit bacterial RNAP, namely corallopyronin A, myxopyronin A, 

ripostatin A, and sorangicin A.  

 

1.1.1 Corallopyronins and myxopyronins  

Corallopyronins were first isolated in 1985 from a Corallococcus coralloides strain 

from Tunisia (Jansen et al., 1985). Corallopyronin A (I) has several interesting 

structural features. A pyrone ring forms the central rigid core of the molecule, to 

which two conformationally more flexible chains are attached, i.e. the lipophilic 

western chain with three methyl groups, a hydroxyl group, and a diene element, and 

the eastern chain with one methyl group, an enamide function, and a methyl 

carbamate moiety. Carbamates are a rarely found structural moiety in secondary 

metabolites from bacteria.  

Three analogues are known, i.e. corallopyronin A´ (III), corallopyronin B (II) and 

corallopyronin C (IV). The double-bond Δ19,20 is Z-configurated in corallopyronin A’, 

whereas in the main metabolite corallopyronin A the configuration of this double-

bond is E. Corallopyronin A´ may be an artefact formed during isolation and storage of 

corallopyronin A. Corallopyronin B differs from A in the western chain by an 

additional methylene group, assumed to be derived from the respectively 

incorporated starter unit, i.e. a propionyl instead of an acetyl moiety, during the 

biosynthesis of this chain (Erol et al., 2010). Corallopyronin C is characterized by a 

tetrahydrofuran ring in the western chain. However also in this case, it cannot be 

excluded that corallopyronin C is an artefact of the isolation process, and might be 

formed through a reaction of the C-24 hydroxyl group of corallopyronin A with the 

diene motif.  
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Beside the above mentioned analogues, further structures related to the 

corallopyronins were published already in 1983, called myxopyronin A (V) and B (VI) 

(Kohl et al., 1983). These were isolated from a Myxococcus fulvus strain, and share 

the eastern chain and the central pyrone ring with corallopyronin A, but in the case of 

the myxopyronins the non-hydroxylated western chain is shorter, and terminated for 

myxopyronin A at the respective corallopyronin carbon C-24, and for myxopyronin B 

at the respective corallopyronin-carbon C-25.  

Due to their close structural relationship, which is also reflected in the genomic 

organisation of the recently published biosynthetic gene clusters encoding the 

corallopyronins (Erol et al., 2010) and the myxopyronins (Sucipto et al., 2013) 

biosynthesis, these α-pyrone antibiotics can be considered jointly in the following 

paragraphs. Feeding experiments with 13C-labelled precursors gave first biosynthetic 

insights (Erol et al., 2010). The resulting labelling pattern allowed the conclusion, that 

these antibiotics are constructed from two chains, which are interconnected to form 

the central pyrone motif (Erol et al., 2010; Irschik et al., 1983a, 1985; Kohl et al., 1984; 

Schmitz et al., 2013). The two chains creating the backbone of the molecules are 

synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthase 

(NRPS/PKS) hybrid system (Erol et al., 2010; Sucipto et al., 2013), whereby the PKS is 

of the trans-acyltransferase (AT) type (Piel, 2010). Indeed, 11 intact acetate units and 

a glycine moiety are incorporated into the corallopyronin A backbone. The methyl 

groups originate partially from S-adenosyl-L-methionine (SAM), but also from acetate, 

whereby in the latter case C-2 of acetate is incorporated via a β-branching mechanism 

(Erol et al., 2010). The formation of the methyl carbamate (i.e. C-13) unit is most 

unusual, and until recently only little was known concerning its biosynthesis. Feeding 
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experiments with [13C]bicarbonate suggested that carbonic acid is the origin of C-13 in 

corallopyronin A biosynthesis. The published biosynthetic gene cluster (Erol et al., 

2010) confirmed the labelling studies and opened up possibilities to analyse specific 

features of the biosynthesis in detail. Thus, further experimental data for the 

incorporation of the unusual starter carbonic acid (or its methyl ester) (Schäberle et 

al., 2014a), as well as for the biochemical basis of an , to β,γ double-bond shift in 

corallopyronin A biosynthesis were obtained. The latter involved a shift of the double 

bond Δ10,11 in the precursor molecule of corallopyronin A to the Δ11,12 position due to 

the action of the shift domain DH*, encoded in module 3 of the PKS/NRPS cluster 

(Kusebauch et al., 2010; Lohr et al., 2013; Moldenhauer et al., 2010). 

Total chemical syntheses were successfully performed for myxopyronin A and B in 

1998 (Hu et al., 1998), followed by the synthesis of derivatives of myxopyronin B 

(Doundoulakis et al., 2004; Lira et al., 2007). For the corallopyronins with the more 

complex western chain it took much longer, but finally in 2012 a complete chemical 

access to the molecule was published (Rentsch and Kalesse, 2012). 

 

 

 

 

 

Antibiotic activity of corallopyronins and myxopyronins. Corallopyronin A was 

assayed toward a series of microorganisms, and showed promising activity against 

Gram-positive bacteria with MIC values in the range of 0.097 µg/mL (Staphylococcus 

aureus) and 0.39 µg/mL (Bacillus megaterium) (Irschik et al., 1985). Corallopyronin B 

was less active in the same test systems with MIC values of 0.39 µg/mL (S. aureus) 

and 3.1 µg/mL (B. megaterium), respectively. Corallopyronin C (respective MICs 0.78 

and 6.25 µg/mL) and the double bond isomer corallopyronin A´ (respective MICs 0.78 

and 1.56 µg/mL) were much less active. The corallopyronins did not show antibiotic 

activity against Gram-negative bacteria, apart from the mutant Escherichia coli strain 

tolC, which is a hypersensitive phenotype due to the absence of the efflux protein 

TolC.  
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The antibiotic profile of the myxopyronins was comparable, whereby the activity was 

not as high as that of corallopyronin A. Myxopyronin B performed better than 

myxopyronin A (MIC MyxA 1.0 and 6.0 µg/mL; MIC MyxB 0.3 and 0.8 µg/mL against 

S. aureus and B. megaterium, respectively) (Irschik et al., 1983a). In the initial activity 

assessments in the 80ies neither activity of the myxopyronins, nor of the 

corallopyronins was observed against Mycobacterium phlei (Irschik et al., 1983a, 

1985). Our recent evaluation of corallopyronin A required 64 μg/mL in Müller-Hinton 

medium and 128 μg/mL of corallopyronin A in Lysogeny Broth medium to inhibit 

Mycobacterium smegmatis. An MIC of 16 μg/mL of corallopyronin A was determined 

for the sensitive strain Mycobacterium bovis Bacillus Calmette-Guérin (BCG), the 

latter causing animal tuberculosis with only subordinate relevance for human 

tuberculosis (Ayele et al., 2004; Schiefer et al., 2012). Furthermore, we observed an 

MIC value of 0.25 µg/mL toward a methicillin resistant (MRSA) strain of S. aureus SG 

511 (Institute collection of IMMIP, University of Bonn, Germany) (Schmitz, 2013). It 

should be noted, that the recently determined MICs toward S. aureus are much 

higher as the ones described in 1985, but nevertheless in a very promising range. In 

our experiments the MIC against Micrococcus luteus H78S 1–3 was found to be 

0.5 µg/mL while toward Bacillus subtilis 168 instead, an MIC of 32 µg/mL was 

determined (Rentsch and Kalesse, 2012). The low sensitivity of B. subtilis towards 

pyrone antibiotics was also noted in another study, in this case using racemic 

myxopyronin B, which produced only slight inhibition zones in disk diffusion assays at 

a concentration of 30 µg/ml (Yakushiji et al., 2013). 

The activity of corallopyronin A was further determined against Wolbachia species, 

intracellular bacteria of nematodes (Schiefer et al., 2012). These Gram-negative 

proteobacteria of the order Rickettsiales are obligate endosymbionts of nematodes, 

and considered as a novel target for controlling filarial infections like lymphatic 

filariasis or onchocerciasis (Taylor et al., 2010). As one of a multitude of screened 

substances, corallopyronin A proved itself to be in vivo active. In the model applied, 

mice were infected with the filarial nematode Litomosoides sigmodontis. Beginning 

the day after the infection, mice were untreated or given intraperitoneal injections 

containing corallopyronin A (35 mg/kg/day) for 28 days. Five weeks post infection, 

worms were recovered from the pleural cavity and depletion of Wolbachia was 
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monitored by qPCR. More than 99 % of Wolbachia were depleted from L. sigmodontis 

worms after corallopyronin A treatment (P < 0.0001 compared with untreated) 

(Schiefer et al., 2012). This treatment does finally also kill the nematodes, since they 

are dependent on their bacterial symbionts. It should be emphasised that, the 

antibiotic is in vivo effective against intracellular Wolbachia despite the many 

boundaries, and membranes the drug has to penetrate, like blood vessels, pleura, 

worm cuticle, worm cells, vesicles, Wolbachia inner and outer membranes (Schäberle 

et al., 2014b; Schiefer et al., 2012). Toxicity in mice was not detected up to the 

maximum tested of 100 mg/kg (Irschik et al., 1983a). 

The low activity against mycobacteria may here be regarded as an advantage of 

corallopyronin A, since it opens up the possibility to develop a drug for filariasis 

elimination without concern for cross-resistance development in tuberculosis 

(Schäberle et al., 2014b; Schiefer et al., 2012). 

A report in 2009 stated that no activity was observed for corallopyronin A in a 

S. aureus sepsis model in mice after parenteral dosage, but no experimental details 

for the respective experiments were given. The authors assumed that the lack of in 

vivo activity was due to high serum protein binding (Haebich and von Nussbaum, 

2009). Indeed, in a later study Moy et al. described that the MIC of myxopyronin B 

toward S. aureus increased > 128-fold in the presence of human serum albumin (Moy 

et al., 2011). In the light of the above discussed in vivo experiments, however, 

corallopyronin A has to be judged as very promising for further development at least 

as an antinematodal agent targeting intracellular Wolbachia.  

Mode of action. The mode of action of these natural products was determined by 

studying, protein, RNA and DNA synthesis in antibiotic treated S. aureus cells by 

adding the radioactive precursors [U-14C]leucine, or [2-14C]uracil, or [U-14C]thymidine. 

The result of these incorporation experiments showed that thymidine incorporation 

was not affected, while leucine and uracil incorporation decreased. The reduction of 

leucine incorporation was clearly delayed with respect to the immediate inhibiting 

effect on uracil-incorporation. Thus, inhibition of RNA synthesis was suggested as 

primary target. Consequently, the influence of myxopyronin A directly on the enzyme 

RNAP of Thermus thermophilus was determined in in vitro experiments. It was found 

that myxopyronin A acts specifically on bacterial RNAP, while the corresponding 
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eukaryotic enzyme was not affected even at the highest concentration tested, i.e. up 

to 200 µg/mL myxopyronin A and 40 µg/mL corallopyronin A, respectively (Irschik et 

al., 1983a, 1985). Interestingly, corallopyronin A inhibited the growth of rifampin-

resistant S. aureus (O’Neill et al., 2000). Therefore, it was concluded that 

corallopyronin A must address a new binding pocket on RNAP and thus represented a 

novel mode of action. Subsequent X-ray analysis and biochemical data on 

T. thermophilus RNAP complexed with myxopyronin A, and independently of a 

desmethyl derivative of myxopyronin B, revealed the mode of action of these 

antibiotics on the molecular level (Belogurov et al., 2008; Mukhopadhyay et al., 

2008). 

Mukhopadhyay et al. showed that myxopyronin A interacts with the RNAP ‘‘switch 

region’’, i.e. the hinge that mediates opening and closing of the RNAP active centre 

cleft (Mukhopadhyay et al., 2008). By this binding the correct interaction of RNAP 

with the template promoter DNA is prevented. It was further suggested that 

myxopyronin A acts by inhibiting transcription initiation, since inhibition requires 

myxopyronin-RNAP-interaction prior to interaction with promoter DNA. Thus, it was 

proposed that myxopyronin A interferes with the opening and closing of the RNAP 

clamp by jamming the hinge. Belogurov et al. also found desmethyl myxopyronin B 

binding to the same pocket deep inside the RNA polymerase clamp head domain 

(Belogurov et al., 2008). Through this binding the interaction with the DNA template 

in the transcription bubble is disturbed and might compromise binding to, or directly 

clash with, the melted template DNA strand (Belogurov et al., 2008). Footprinting 

data showed that promoter DNA is indeed melted, but that its propagation towards 

the active site is blocked. 

The X-ray structures pictured that adjacent to the myxopyronin A binding pocket an 

additional hydrophobic pocket is situated (Belogurov et al., 2008). This organization 

may provide an explanation for the decrease of antibiotic activity going along with a 

decrease in length of the western chain. It seems that a complete jamming of the 

binding pocket infers more efficient with the hinge region, and consequently results 

in a better antibiotic activity. Modelling corallopyronin A into Wolbachia RNAP 

indicated that the binding pockets analysed by Mukhopadhyay et al., and by 

Belogurov et al., for myxopyronins, were completely occupied, explaining the 
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superior activity of the molecule (Schiefer et al., 2012). Correspondingly, the weaker 

activity of corallopyronin B, possessing a longer western chain may result in partial 

repulsion, since this molecule seems already too large. 

The detailed knowledge on the binding mode of myxopyronin on RNAP was taken by 

several studies as a starting point for a structure-based ligand design of novel RNAP 

inhibitors. Described are either hybrid compounds, which include structural features 

of the myxopyronins (Sahner et al., 2013; Yakushiji et al., 2013) or molecules with a 

pyridyl-benzamide skeleton (McPhillie et al., 2011) or so-called squaramide 

derivatives (Buurman et al., 2012) which are structurally completely different to the 

respective natural product. All synthesized compounds that were found based on this 

approach are considerably less active than the natural products. 

Besides the RNAP-inhibiting effect, the α-pyrone-containing antibiotics might also 

possess an additional mechanism of action, since inhibitory effects on fatty acid 

synthesis were shown for antibiotic agents with an α-pyrone moiety (Giddens et al., 

2008). Further, 1 slightly induced the fabHB biosensor that is responsive to inhibition 

of fatty acid biosynthesis (Mariner et al., 2011). 

Resistance development. Resistance development is well described for the RNAP-

targeting rifamycins (Wehrli and Staehelo, 1971). Likewise resistance can develop 

against the above described inhibitors of the RNAP switch region by mutations of the 

RNAP resulting in a change of the respective binding pocket (Mariner et al., 2011; 

Moy et al., 2011; Srivastava et al., 2011). Despite this observation, it would be 

worthwhile considering whether the corallopyronin-type antibiotics could be useful in 

combination therapy, as well known for the rifamycins. In this context it is also of 

interest – as mentioned above – that there is no concern about cross-resistance in 

tuberculosis-causing pathogens. Corallopyronin A is now in the focus of a translational 

project to be developed as a drug for filariasis elimination (Annual report 2012 of the 

German Centre for Infection Research). 

 

1.1.2 Ripostatins  

Ripostatin A–C were isolated from Sorangium cellulosum So ce377 (VII–IX) 

(Augustiniak et al., 1996; Irschik et al., 1995). Ripostatin A (VII) and B (VIII) are 14-

membered macrolides with three 2,5,8-positioned double-bonds, whereas ripostatin 
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C (IX) is a non-cyclised derivative. All ripostatins have a terminal phenyl ring. 

Ripostatin A, which occurs in methanolic solution as a mixture of ketone (VIIa) and 

hemiketal (VIIb) forms can be chemically transformed into the B form by reduction, 

and into the C form by base-catalysed elimination (Schleicher and Jamison, 2013). To 

verify the biosynthetic origin of the ripostatins, feeding experiments with sodium [l-

13C]acetate, [1,2-13C2]acetate, [1-13C]propionate, [l-13C]phenylacetate, 

[13CH3]methionine and [2-13C]phenylalanine were performed. Only phenylalanine was 

incorporated to result in a phenylethyl moiety (corresponding to the C-19–C-26 

segment in VII) (Augustiniak et al., 1996), a fact which speaks for a specific 

adenylation domain involved in the biosynthesis. Carbon C-17, C-18 and C-30 result 

from a propionate building block, whereas all other carbon atoms in the molecule 

were acetate derived (Augustiniak et al., 1996). Thus, C-29 has to be incorporated by 

a β-branching mechanism, comparable to the methyl groups C-21 and C-26 in 

corallopyronin A biosynthesis. Ripostatins are thus polyketides, largely assembled 

from acetate, and one unit of each, propionate and phenylalanine. A biosynthetic 

gene cluster, supposedly a PKS/NRPS cluster, was not yet assigned. 

Synthetic chemists showed great interest in the ripostatins. In 2012 four publications 

dealt with the total synthesis of ripostatin A and B. The overall yields of the three 

contemporaneous, independent efforts were for ripostatin B 4 % (14 steps in the 

longest linear sequence (Winter et al., 2012), 0.22 % (18 steps) (Tang and Prusov, 

2012a), 3.6 % (21 steps) (Glaus and Altmann, 2012) and for ripostatin A 5 % (14 steps) 

(Tang and Prusov, 2012b). 
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Antibiotic activity. The two compounds VII and VIII showed nearly the same 

antimicrobial activity against certain Gram-positive bacteria, mainly S. aureus strains, 

and toward E. coli tolC with MICs in the range of about 1 µg/mL. Ripostatin B 

displayed additionally minor activity against several yeasts and fungi (MIC 20 µg/mL 

against Nadsonia fulvescens and 80 µg/mL against Debaryomyces hansenii, 

respectively) (Irschik et al., 1995). The acyclic ripostatin C is biologically inactive 

(Augustiniak et al., 1996). Furthermore, it was found that no cross-resistance occurs 

between ripostatins and rifampin or sorangicin (Irschik et al., 1995). Indeed, ripostatin 

A was effective against rifampin-resistant bacteria harbouring point mutations in the 

rpoB gene sequence coding for their RNAP (Moy et al., 2011). Ripostatin A showed no 

inhibitory effect on wheat germ RNAP II at a concentration of 20 µg/mL. However, 

when applied to mouse fibroblasts L929 cells (10 µg/disc) an inhibition zone of 74 mm 

indicated a toxic effect (Irschik et al., 1995). No other toxicity data are known. 

Ripostatin A and B, even though being RNAP inhibitors such as the rifamycins, seem 

to have no activity towards mycobacteria (Irschik et al., 1995). 

Mode of action. In S. aureus cultures treated with ripostatin A (VII) RNA synthesis was 

completely blocked (Irschik et al., 1995). The antibiotic also inhibited isolated E. coli 

RNAP with an IC50 of 0.1 µg/mL (complete inhibition at 50 µg/mL). The earlier 

assumption that the ripostatin binding site differs from the one of the rifamycins was 

confirmed by analysing the cross-resistance patterns of mutagenized E. coli RNAP 

with myxopyronin A, corallopyronin A, ripostatin A, and rifampin, respectively. Thus, 

based on the Thermus thermophilus RNAP-myxopyronin A X-ray structure, it was 

concluded that despite lack of structural similarity between the ripostatins and the α-

pyrone antibiotics, both target the RNAP switch region – a binding site different to 

that of the rifamycin antibacterial agents (Mukhopadhyay et al., 2008). 

Overall, there may be a risk of toxicity concerning the ripostatins. Since the published 

data are not extensive, a detailed in vitro evalution would be valuable though. 

 

1.1.3 Sorangicins 

The sorangicin antibiotics, as the ripostatins, also originate from a myxobacterial 

strain of the genus Sorangium. Fermentation of S. cellulosum So ce12 yielded, by 

activity based screening, sorangicin A (X), the desoxygenated variant sorangicin B (XI), 
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as well as some respective glycosides, called sorangiosides (XII,XIII) (Irschik et al., 

1987; Jansen et al., 1989a, 1989b). Further sorangicin isomers were reported (A1, A2, 

A3, C1, C2, C3, C4) (Jansen et al., 1989a). The core structure comprises a large 

macrocyclic hydroxylacton with seven, in part conjugated carbon-carbon double 

bonds. Incorporated in the macrocyle are three pyran rings, one trisubstituted 

dihydro-, and two tetrasubstituted tetrahydro-pyran rings, with one of the latter also 

being part of a tetrahydro-furan ring. 

The corresponding polyketide biosynthetic gene cluster was identified and comprises 

over 120 kb (Irschik et al., 2010). Comparison to the available genome sequence of 

strain S. cellulosum So ce56 suggested that the gene cluster forms a genetic island, 

since the flanking genes in So ce12 are located sequentially within the So ce56 

genome. Detailed annotation of the seven large PKS-coding genes revealed a trans-AT 

PKS system (Piel, 2010) consisting of 23 modules (Irschik et al., 2010).  

Chemical synthesis of the structurally complex molecule sorangicin A was achieved 

using mild conditions for the critical macrocyclisation, to obtain the macrolactone in 

the desired configuration (Smith et al., 2009). Further synthetic studies were 

published, some of which also target partial structures of the sorangicins (Crimmins et 

al., 2011; Lee et al., 2012; Mohapatra et al., 2010). 

Antibiotic activity. Sorangicin A and B, the most abundant metabolites, showed 

strong inhibitory effects predominantly against Gram-positive bacteria, including 

mycobacteria, with MIC values from 0.01 µg/mL against Nocardia corallina to 

0.08 µg/mL toward Mycobacterium phlei (Irschik et al., 1987). At higher 

concentrations also Gram-negative bacteria were inhibited, e.g. MIC for E. coli was 

16 µg/mL for sorangicin A and 6 µg/mL for sorangicin B, respectively (Irschik et al., 

1987). Myxobacteria, Gram-negative themselves, are surprisingly very sensitive to 

sorangicins (MIC S. cellulosum So ce14 3 µg/mL). However, the corresponding 

glycosides are only poorly active, suggesting that this modification might represent 

the self-resistance mechanism of S. cellulosum (Kopp et al., 2007). Sorangicin A was 

weakly inhibiting different tumor cell lines with an IC50 of 15–25 µg/mL, but no 

obvious toxicity was detectable in mice up to a dosing of 300 mg/kg (Jansen et al., 

1989b). 

  



Introduction 

12 | 

 

 

 

 

 

 

 

Mode of action. Incubation of bacteria with sorangicin A and labelled precursors for 

the biosynthesis of biomacromolecules revealed RNA synthesis as the primary target 

(Irschik et al., 1987). The inhibitory effect was only observed when the compounds 

were added prior to RNA polymerisation, since after initiation of this process the 

enzyme was no longer inhibited. The same kind of RNAP interference was described 

for rifampin. Even though sorangicins lack chemical and structural similarity to the 

ansamycin rifampin, analysis of the resistance profile of mutated RNAP variants 

revealed that their RNAP binding pocket overlaps almost completely (Xu et al., 2005). 

Both antibiotics inhibit transcription by blocking the designated path of the transcript 

during the elongation process in the RNAP (Campbell et al., 2005). The activity of 

sorangicin A is, however, not as sensitive to mutations in the RNAP sequence as it is 

the case for rifampin, even if these alter the shape of the binding pocket. Thus, it was 

suggested that the conformationally more flexible sorangicin A can adapt to changes 

in the binding pocket, while the more rigid rifampin cannot (Campbell et al., 2005). 

Overall, the sorangicins have to be judged as prime candidates for further 

development, especially if they would prove superior to rifamycins in future studies.  

 

1.1.4 Etnangien  

From the two Sorangium cellulosum strains So ce750 and So ce1045 etnangien (XIV) 

was isolated (Irschik et al., 2007a). It is chemically characterized by a 22-membered, 

polyhydroxylated macrolide ring bearing a polyunsaturated C21 carboxylated side 

chain with two aliphatic hydroxyl groups (Irschik et al., 2007a). 

Detailed studies of the etnangien biosynthesis genes from S. cellulosum strain So ce56 

revealed a complex non-colinear trans-AT type PKS which performs the assembly of 

the etnangien core structure from acetate and malonyl units, which also includes the 
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methyl branches. Six open reading frames (etnD–I) were identified to encode for the 

biosynthetic assembly line. Five additional genes found in the upstream region of the 

PKS genes, are encoding for a HMG-CoA depending “β-branching box” (etnOMNPQ). 

Further five genes located in the up- and downstream region adjacent to the PKS 

genes seem to be involved in the biosynthesis of etnangien, but their distinct 

functions remain still unclear (etnABC, etnJK). To prove the proposed action of the “β-

branching box”, ΔetnP-mutants were generated. Analysis of their phenotypes showed 

that the mutants lost their ability to produce etnangien and proved thereby EtnP to 

be relevant for etnangien production. The biosynthetic gene cluster exhibits unusual 

features including split module organisation (module 3, 7, 10 and 14), skipped 

modules (probably modules 11, 14, 20), programmed module iteration (one of the 

modules 2–5), and an uncommon starter unit. Succinate was assumed to be the 

starter molecule, but phylogenetic analysis showed that KS1 belongs to the clade IV-

harbouring domains, which accept substrates containing β-OH groups. Thus, the 

actual starter unit remains to be confirmed (Menche et al., 2008). Likewise, the 

assumption of skipped modules remains obscure, because sequence data gave no 

indication for inactivity for any ketosynthase domain in the etnangien assembly line. 

Menche and Müller, together with their co-workers, predicted the 12 stereogenic 

centres of etnangien. For this purpose, the amino acid sequences of the core regions 

of the ketoreductases were analysed, regarding the presence of an aspartate residue, 

resulting in a D-configured alcohol or the absence of aspartate, suggesting an L-

configured secondary alcohol function (Kitsche and Kalesse, 2013). Bioinformatic 

predictions turned out to match fully with spectroscopic, computational and chemical 

analysis of the hydroxyl bearing stereogenic centres and also with the spectroscopic 

determination of the double bond configuration in etnangien (Menche et al., 2008). 

In 2010 Menche and his group were successful in the total synthesis of etnangien, 

which proceeded in 23 steps and 0.25 % yield (Menche et al., 2010). 
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Antibiotic activity and mode of action. Etnangien is effective against a broad panel of 

Gram-positive bacteria, some belonging to the Corynebacteria like Nocardia corallia 

and mycobacteria. Of special note is its antibiotic activity against rifampin-resistant 

S. aureus (MIC 0.62 µg/mL) (Irschik et al., 2007a). Investigations of the DNA, RNA and 

protein synthesis of etnangien-treated Micrococcus luteus cells revealed an inhibitory 

effect on the formation of all of these macromolecules. Inhibition assays using 

purified RNA (EcRNAP) and DNA polymerase (EcDNAP) and reverse transcriptase 

(HIVRT) showed comparable dose-effect curves, with a maximal inhibition reached at 

60 µg/mL etnangien. The reverse transcriptase of Moloney murine leukemia virus 

(MuLVRT) was the most sensitive virus with a nearly complete inhibition at 5 µg/mL 

etnangien. Although, eukaryotic DNA polymerase is a sensitive target for etnangien, 

only a low toxicity against mammalian cells (IC50 of 74 µg/mL against mouse 

fibroblasts cells L929) was observed (Irschik et al., 2007a). Analogs of entnangien with 

an absent or a shortened polyene side chain, or a contracted macrocycle lost their 

antibiotic activity, whereas the activity of the carboxy-methylester analogue was 

comparable with that of the natural product (Menche et al., 2010). Derivatives with 

modifications in the highly labile polyene portion of the side chain had no or merely 

marginal activity (Altendorfer et al., 2012, 2013). These synthetic studies showed that 

the macrocycle as well as the side chain are essential parts of the pharmacophore. 

 

1.2 Myxobacterial antibiotics targeting bacterial protein biosynthesis  

Ribosomes play a key role in all living organisms including microbes, and due to 

distinct differences in their molecular structure represent an important target for 

antibacterial agents. A large number of clinically useful antibiotics, e.g. 

aminoglycosides and tetracyclines, target this complex machinery responsible for 

protein synthesis. A few myxobacterial metabolites were identified, which interfere 

with this ribonucleoprotein machinery. 

 

1.2.1 Althiomycin 

The sulphur-containing antibiotic althiomycin (XV) was first isolated in 1957 from a 

Streptomyces althioticus strain (Yamaguchi et al., 1957). However, also members of 



 Introduction 

15 | 

the myxobacterial genera Cystobacter and Myxococcus are producers of this 

compound (Kunze et al., 1982), as well as the insect pathogen Serratia marcescens 

(Gerc et al., 2012). The major chemical characteristics are an oxime group, a thiazole, 

thiazoline and a methoxypyrrolinone ring (Sakakibara et al., 1974). The backbone of 

althiomycin consists of five amino acids (H2N-Gly-Cys-Ser-Cys-Gly-COOH), whereby 

the two cysteine residues are part of the thiazoline and the thiazole ring, formed in a 

heterocyclisation step. These suggestions, drawn by a retro-biosynthetic analysis, 

were confirmed via the characterisation of the althiomycin biosynthetic gene cluster 

in Myxococcus xanthus DK897 using a genome mining approach (Cortina et al., 2011). 

Six ORFs (almEDCABF, named according to their organisation in the gene cluster) 

were detected, all of which are involved in althiomycin production, as was proven by 

LC-MS analysis of knockout mutants (almABCDF-). Within the NRPS cluster, almA 

encodes for the loading and the first elongation module, whereas modules 2–5, 

encoded by almB form a mixed-type NRPS/PKS. In a molecular modelling approach, 

the binding pocket of the A domains of each module showed exact correlation with 

the amino acids predicted for the backbone of althiomycin. This finding was partially 

confirmed by feeding experiments with [13C3,15N]-L-serine and [13C3,15N]-L-cysteine. 

The first step in the assembly of the molecule is the incorporation of glycine, whose 

amino functionality is oxidized to an oxime by the N-oxygenase AlmD. Further 

building blocks are subsequently the amino acids cysteine, serine, cysteine and 

glycine, whereby the cyclisation of both cysteine residues takes place directly after 

introduction of the amino acid in module 1 and 3, respectively. The final elongation 

step is the condensation of the peptide chain with one malony-CoA unit by the single 

PKS module (module 5). Keto-enol tautomerisation of the keto group of the C-

terminal glycine moiety yields after methylation of the enol form the corresponding 

methoxy group. The latter reaction is catalysed by the SAM depending 

methyltransferase AlmC. The formation of the methoxypyrrolinone ring as the final 

step in althiomycin biosynthesis is not yet fully clarified. It was hypothesized that 

AlmF, a proline iminopeptidase, is involved in the ring formation after hydrolytic 

release of the molecule by the thioesterase domain of AlmB. However, this step may 

also be catalysed by the thioesterase alone (Cortina et al., 2011). 
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Comparative analysis of the NRPS/PKS biosynthetic gene clusters from Serratia 

marcescens and Myxococcus xanthus DK897 showed similarity in the range of 59–

72 % on the protein level. The predicted functions of the biosynthetic proteins are 

comparable with each other, except for the proteins (Alb6 vs. AlmF), encoded by the 

sixth gene (alb6 vs. almF), which differs completely. Alb6 is predicted to be a type II 

thioesterase with a proofreading function in between the NRPS/PKS machinery (Gerc 

et al., 2012), whereas AlmF is proposed to be a proline iminopeptidase and may affect 

the methoxypyrrolinone formation. 

 

 

 

 

Antibiotic activity and mode of action 

Althiomycin showed antibiotic activity against several Gram-negative and -positive 

bacteria, e.g. an MIC of 6.3 µg/mL against Klebsiella pneumoniae, of 1 µg/mL against 

E. coli 1852E PM, of 16 µg/mL against S. aureus 853E, and of 0.8 µg/mL against 

Corynebacterium diphteriae was observed (Inami and Shiba, 1986; Zarantonello et al., 

2002). 

Studies regarding the mode of action of althiomycin were performed with E. coli cells. 

Monitoring the effect of althiomycin on the synthesis of DNA, RNA and proteins 

revealed that althiomycin primarily inhibits protein synthesis (Fujimoto et al., 1970). 

This mechanism could be confirmed by a cell free inhibition assay of polypeptide 

synthesis in a ribosome system, using native mRNA. Further studies suggested that 

althiomycin effects the peptide bond formation by interfering with the amino acid 

bound to the A site of the ribosome. However, althiomycin did not inhibit aminoacyl-

tRNA synthesis or binding of the aminoacyl-tRNA to ribosomes. No significant 

inhibition effect of althiomycin on the protein synthesis was observed in rabbit 

reticulocytes. Thus, a low cytotoxicity and a good selectivity towards prokaryotic cells 

may be concluded (Fujimoto et al., 1970; Inami and Shiba, 1986). 

To evaluate the pharmacophore, several analogues of althiomycin have been 

synthesised. In bioactivity assays only one of the synthetic althiomycin derivatives, i.e. 

dehydroxymethyl-althiomycin, a molecule without the C-7 hydroxymethylene 
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function, retained weak antibiotic activity. The MICs for this compound were 

determined to be 32 µg/mL against S. aureus and 16 µg/mL against E. coli 1852E PM 

(Zarantonello et al., 2002). From the synthetic studies it could be deduced that the 

following chemical features have major impact on the antibiotic activity: (i) the 

configuration of the C-10 chiral centre of the thiazoline ring, (ii) the 

methoxypyrrolinone ring, (iii) the oxime moiety, and (iv) the hydroxymethyl group 

(Inami and Shiba, 1986; Zarantonello et al., 2002). 

It was reported that the pharmaceutical industry had some interest in the antibiotic 

althiomycin (Kirst et al., 1975; Zarantonello et al., 2002), mainly because of its 

antibiotic effects against Gram-negative bacteria, and despite the fact that its potency 

toward several clinically relevant Gram-positives is low. Althiomycin is water-insoluble 

and all efforts to modify the structure resulted in strongly decreased activity. There 

seems to be no current interest in the molecule, it may however, be worthwhile to 

explore SAR more extensively to exploit the lead structure offered by this natural 

product. 

 

1.2.2 Angiolam A  

Angiolam A (XVI) is a lactam-lactone antibiotic from Angiococcus disciformis An d30 

(Kohl et al., 1985). Very recently the total synthesis of angiolam A was accomplished. 

The material synthesized by this 18 step procedure enabled the revision of the 

absolute configuration and confirmed the C2–C3 double-bond of XVI to be E-

configured (Gieseler and Kalesse, 2014). The 19-membered macrocycle is decorated 

with methyl, carbonyl and hydroxyl groups and contains a single carbon-carbon 

double-bond. The side chain is monohydroxylated with three double-bonds including 

a terminal diene system. To date, no data on the biosynthesis of this molecule are 

available. 
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Antibiotic activity and mode of action. The antibiotic activity profile was found to be 

very narrow, in that only some members of the Gram-positive Bacillaceae, including 

anaerobic Clostridium perfringens, were sensitive (MIC of the latter 0.78 µg/mL) (Kohl 

et al., 1985). Gram-negative bacteria were in general resistant, except of E. coli 

mutants with increased permeability (MIC of 2.5 µg/mL against E. coli tolC) (Kohl et 

al., 1985). 

The antibiotic effect was bacteriostatic. This was tested by adding up to 10 µg/mL of 

angiolam A to growing Bacillus cells; the latter were subsequently still able to form 

colonies. The effect on macromolecule biosynthesis revealed that protein 

biosynthesis stopped completely 5 minutes after addition of angiolam A. In terms of 

toxicity to mice, no acute toxicity was observed up to a dosing of 300 mg/kg 

subcutaneously (s.c.) (Kunze et al., 1985). 

In general it seems that the antibiotic activity of angiolam A towards only a very few 

bacteria does not speak for the development of the natural product itself, unless a 

narrow spectrum of activity is aimed for. It would be worthwhile though, to analyse 

the activity of analogues for a potentially better profile. 

 

1.2.3 Myxovalargins  

Myxovalargins A (XVII) and the derivatives myxovalargin B and C were obtained from 

Myxococcus fulvus strain Mx f65 (Irschik et al., 1983b). These compounds are linear 

peptides consisting of 14 amino acids, and hydrolysis proved that many of these are 

non-proteinogenic. Among others, N-methylalanine, β-hydroxyvaline, agmatine, 3-

methylbutyric acid, α,β-dehydrovaline, α,β-dehydroleucine, and (S)-β-Tyr are 

incorporated into myxovalargins. The conversion of L-Tyr into (S)-β-Tyr by the 

catalytic action of the M. fulvus Mx f65 derived tyrosine aminomutase was proven 

(Krug and Müller, 2009), providing this essential precursor for incorporation into the 

nascent myxovalargin peptide chain. A corresponding gene cluster is not published 

yet. 
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Antibiotic activity and mode of action. The antibiotic spectrum of myxovalargins (a 

mixture of the different myxovalargins containing 90 % myxovalargin A was used in 

the studies) is prominent against Gram-positive bacteria with MICs ranging from 

0.3 µg/mL against Micrococcus luteus up to 5 µg/mL toward Corynebacterium 

mediolanum (Irschik et al., 1983b). All Gram-negative bacteria were only inhibited at 

significantly higher concentrations (MIC of 6 µg/mL against E. coli).  

The mode of action underlying the described antibiotic effects can be separated into 

two different mechanisms. At low concentrations (below 1 µg/mL) myxovalargin A 

inhibits instantaneously bacterial protein synthesis, whereas at higher concentrations 

(above 5 µg/mL), or upon prolonged incubation, cell membranes are damaged (Irschik 

and Reichenbach, 1985). In a cell free E. coli system protein synthesis was only 

inhibited, if myxovalargin A was added prior to the reaction start. This observation 

and continuing experiments with ribosomes led to the suggestion that myxovalargin A 

acts at the A site of the ribosome. Comparable results were not obtained with 

eukaryotic systems; only very high concentrations led to a partial protein synthesis 

inhibition. However, in contrast to most afore mentioned myxobacterial antibiotics, 

myxovalargin A showed cytotoxicity. The LD50 for mice (s.c.) was 10 mg/kg, and the 

LD100 30 mg/kg. Due to this toxicity along with the fact that eukaryotic ribosomes 

were not inhibited, an additional biological effect was proposed. It was found that at 

higher concentrations myxovalargin A interacted with membranes, resulting in cell 

lysis. This activity was observed when applying to Bacillus cells, but also with 

erythrocytes, and may be the reason for the toxicity observed in mice (Irschik and 

Reichenbach, 1985). 
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Overall, based on the results obtained for myxovalarin A, these compounds seem to 

be too toxic for an application as an antibiotic. However, it cannot be excluded today 

that the derivatives B–D or other derivatives will show only minor toxicity.  

 

1.3 Myxobacterial antibiotics targeting the respiratory chain  

Two antibiotically active myxobacterial metabolites were found that target the 

respiratory chain, i.e. aurachins and thuggacins. Enzymes of the respiratory chain do 

not represent a classical target in antibiotic therapy, since these proteins are highly 

conserved in all organisms. Therefore, the chance of toxicity is high. However, there 

might be the chance of finding specific inhibitors within the variants described below. 

 

1.3.1 Aurachins 

A range of isoprenoid quinoline alkaloids were isolated from Stigmatella aurantiaca 

strain SG a15, and the three main metabolites were named aurachin A (XVIII), B (XIX) 

and C (XX), while D (XXI) and E (XXII) are minor products (Kunze et al., 1987). All of 

these compounds share the quinoline nucleus, in some cases with the nitrogen being 

present as N-oxide, and are substituted with a sesquiterpene unit. In addition to 

various Stigmatella strains also Rhodococcus species were now identified as 

producers of aurachins (Kitagawa et al., 2013; Nachtigall et al., 2010). 

Concerning the biosynthesis, first insights were gained by feeding studies with 

assumed precursors like 13C- and 18O-labelled anthranilic acid, C-1 and C-2 13C-

enriched acetate and 18O-labelled molecular oxygen (   e and  un e, 2008). It was 

proven that anthranilic acid is a building block of the aurachins, presenting a 

biosynthetic bottle neck, since medium supplementation with anthranilic acid 

increased the yield of aurachins. Unexpectedly, the farnesyl residue was constructed 

in parallel via different pathways, i.e. isoprenoid biosynthesis by the mevalonate and 

non-mevalonate (methyl-erythritol phosphate/deoxy-xylulose phosphate, 

MEP/DOXP) pathway, as well as leucine degradation (   e and  un e, 2008). 

Concerning the decoration of the quinoline alkaloid moiety with an isoprenoid side 

chain, biochemical investigations showed AuaA to be the responsible enzyme, in that 

it catalyses the prenylation of 2-methyl-4-hydroxyquinoline in the presence of 
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farnesyl diphosphate (FPP), thereby yielding aurachin D (XXI) (Stec et al., 2011). 

Aurachin D harbouring the prenylation at position C-3 of the quinoline ring represents 

the precursor for aurachin C (XX), the latter on its part is converted to aurachin B 

(XIX) by a rearrangement of the farnesyl moiety from position C-3 to C-4 of the 

quinoline ring. Subsequent oxidation and heterocycle formation finally yields aurachin 

A (XVIII). After the involvement of a type II PKS (AuaD) in aurachin biosynthesis was 

proven (Sandmann et al., 2007), finally in 2011 the group of Rolf Müller identified the 

corresponding biosynthetic gene cluster, a step which was complicated by the split 

organisation of the cluster (Pistorius et al., 2011). By analysis of the non-clustered 

genes involved in the final steps of aurachin biosynthesis, insights in the migration of 

the prenyl group were obtained. In a sequential reaction first AuaG catalyses 

epoxidation which is the prerequisite for the following semipinacol rearrangement, 

enabling migration of the farnesyl group. The ketoreductase AuaH was assumed to 

subsequently reduce the isomer with the migrated prenyl group and thereby, through 

aromatisation, the molecule is stabilised (Katsuyama et al., 2012). 

Chemical synthesis of aurachin D through a key Conrad-Limpach reaction was 

established and served for the generation of analogues with cyclic as opposed to 

acyclic (concerning the oxygen heterocycle in A) analogues. This enabled first SAR 

studies (Li et al., 2013). Only the geranyl analogue of aurachin D had antibacterial 

effects comparable to that of the natural product, all other synthesised analogues did 

not perform as well. 

 

 

 

 

 

 

 

 

Antibiotic activity and mode of action. As most of the myxobacterial antibiotics, the 

aurachins were active against numerous Gram-positive bacteria, e.g. MICs against B. 

subtilis were for aurachin A: 5 µg/mL, aurachin B: 2.5 µg/mL, aurachin C: 0.15 µg/mL, 
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and aurachin D: 0.15 µg/mL. Against Gram-negative E. coli no activity of was observed 

at all (Kunze et al., 1987). Additionally, a weak but incomplete inhibition of fungi was 

found, e.g. MIC of aurachin A was 50 µg/mL against Debaryomyces hansenii and 

Saccharoymyces cerevisiae, whereby a turbidity of up to 25 % remained. In general 

the aurachins C and D were more active than A and B. 

The effects of the aurachins on the NADH oxidation were tested on beef heart sub-

mitochondrial particles, due to their structural similarity to the respiratory chain 

inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). The required concentration to 

reach 50  %inhibition was about ten-times lower than for HQNO (Kunze et al., 1987). 

This potent inhibitory effect on the bacterial and eukaryotic respiratory chains was 

the focus of subsequent biochemical studies. Thus, it was found that the cytochromes 

bo and bd, both terminal oxidases of E. coli, were inhibited by aurachin C, whereas 

aurachin D and its analogues showed selectivity for inhibition of cytochrome bd 

(Meunier et al., 1995). Using a chemically synthesized derivative, i.e. decyl-aurachin D, 

it was shown that this molecule acts on the donor side of haem b-558, thereby 

preventing electron flow from the quinol substrate (Jünemann  et al., 1997). In the 

following, the aurachins became useful tools for probing of the ubiquinol-binding site 

in cytochromes, due to their strong inhibitory effect on the respiratory chains (Mogi 

et al., 2006). 

From early on, the aurachins were suspected to have an antimalarial activity, due to 

their structural similarity with antiplasmodial drugs. This was proven by a first in vitro 

screening against Plasmodium falciparum provided by the WHO (Geneva). Indeed, 

aurachins C (IC50 [ng/mL] 26/0.9) and E (13/0.4) showed good activity against P. 

falciparum clones W-2 and D-6, respectively. These values are comparable to those of 

chloroquine (35/1.2) and artemisinine (0.43/1.1) (   e et al., 2008). Further, it was 

found that the derivative aurachin E (XXII), in contrast to the aurachins A–D, did not 

show mitochondrial respiratory inhibition and had a low cytotoxicity. The IC50 against 

mouse fibroblasts L929 was 25 µg/mL for aurachin E (XXII), compared to values 

between 1.3 and 3.2 µg/mL for the derivatives A–D. The rare E variant can be 

obtained in a semisynthetic approach by using a one-step reaction starting with the 

better accessible aurachin C (   e et al., 2008). However, no in vivo activity was 
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observed in a murine malaria model with Plasmodium berghei at 100 mg/kg, whereas 

chloroquine showed an ED90 of 2.8 mg/kg (Milhous et al., 1985). 

 

1.3.2 Thuggacins 

Three thiazole-containing macrolides (XXIII-XXVIII) were isolated in 2007 from 

Sorangium cellulosum strain So ce895 (Steinmetz et al., 2007). Due to their origin they 

were named Soce-thuggacin A (XXIII), B (XXIV) and C (XXV) (sometimes, however only 

named thuggacins). A further compound identified in S. cellulosum strain So ce895 

was 13-methyl-thuggacin A (XXVI). Special features of Soce-thuggacin A are, besides 

the thiazole ring a diene moiety (11E, 13Z), an α,β unsaturated lactone with an n-

hexyl side chain attached at C-2 and, additionally a side chain at C-16 containing three 

hydroxyl and a diene functionality. In solution Soce-thuggacin A, a 17-membered 

macrolide, rearranges under acyl migration to give Soce-thuggacin B, a 18-membered 

macrolide, and Soce-thuggacin C, a 19-membered macrolide. For the determination 

of the stereochemistry of Soce-thuggacins A–C a combination of chemical methods 

was applied, e.g. chemical derivatisation, NMR studies, molecular modelling and 

bioinformatic analysis of the ketoreductase domains of the biosynthetic genes (TugA, 

TugB, TugC) (Bock et al., 2008). 

Further two variants of the thuggacins, this time named Cmc-thuggacins (or 

alternatively thuggacin cmc), Cmc-thuggacin A (XXVII), Cmc-thuggacin B (structure 

not shown, analogous to XXIII and XXIV with a lactone bond to C-17 OH) and Cmc-

thuggacin C (XXVIII), were isolated from Chondromyces crocatus strain Cm c5. 

Structural differences of the latter towards the Soce-thuggacins, are the replacement 

of the n-hexyl side chain by a methyl group at C-2, an introduction of a primary 

hydroxyl functionality at C-32, and a side chain with removed secondary hydroxyl 

functionality at C-20 (Steinmetz et al., 2007). It was noted, that Cmc-thuggacins A–C 

just as Soce-thuggacins are present in an equilibrium with each other, especially in 

protic solvents (Jansen et al., 2012; Steinmetz et al., 2007). 

Feeding studies with labelled precursors (1-13C-acetate, 1,2-13C2-acetate, 1-13C-

propionate and 13CH3-methionine) showed that the starter of the biosynthesis of 

Soce-thuggacin A is acetate, which is elongated with three propionate, and 

subsequently five acetate units, before a fourth propionate is incorporated. 
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Condensation of the carboxyl moiety of this propionate unit with cysteine provides 

after cyclisation the thiazole ring. Additional four acetate units form the hexyl side 

chain. Finally, ring closure occurs to give the lactone. The only immediate product of 

this biosynthetic pathway in S. cellulosum seems to be thuggacin A. In 2010 Müller 

and co-workers published the comparative analysis of the Soce- and Cmc-thuggacin 

biosynthetic gene clusters, which are all derived from hybrid PKS/NRPS systems. All 

thuggacins possess a thiazole ring, which is derived classically from oxidative 

cyclization of cysteine. The enzymatic domain responsible for this reaction, i.e. a 

heterocyclisation domain, makes an acyl-NH–Cys peptide bond and then 

cyclodehydrates the product to a thiazoline (Walsh et al., 2001). This allowed the 

detection of the gene clusters of the Soce- and the Cmc-thuggacins by screening the 

respective cosmid libraries with probes based on amplified NRPS heterocyclization 

domains. The S. cellulosum thuggacin biosynthetic gene cluster (Soce-tga) occupies 

56.09 kp of the S. cellulosum genome, whereas the Cmc-thuggacin biosynthetic gene 

cluster in C. crocatus (Cmc-tug) has a size of 58.41 kb. Both biosynthetic gene clusters 

consist of twelve modules: one loading module and eleven chain extension modules. 

Soce-tga PKS/NRPS modules are encoded by three genes (tgaA–tgaC), whereas the 

Cmc-tug PKS/NRPS biosynthetic machinery is in contrast located on four genes (tugA–

tugD). Variations in the PKS/NRPS systems of both biosynthetic clusters are 

responsible for structural diversity. Module 3 of the Cmc-thuggacins cluster contains a 

full reductive loop (DH, KR, ER) to give the methylene group at C-20. In contrast, 

module 3 of the Soce-thuggacin cluster, consisting solely of a KR and a DH domain, 

results in a hydroxyl moiety at C-20. It is assumed that the PKS intermediate of 

module 2 is transferred to the ACP of module 3 without any reduction at the β-keto 

group. However, before chain extension takes place, the reductive domains of 

module 3, i.e. KR and DH, form the methylene moiety at C-21. Subsequently, chain 

elongation occurs and now only the KR is active, resulting in the C-20 hydroxyl 

function. The biochemical basis resulting of this “out of sequence activity” of these 

two domains is still unknown. The most prominent difference between Soce- and 

Cmc-thuggacins is the substitution at C-2. According to the methyl group at C-2 in the 

Cmc-thuggacins the recognition motif of the AT, encoded by module 11 (Cmc, TugD) 

reveals a specificity for methylmalonate as extender unit. No clear prediction could be 
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made for the AT encoded by module 11 (Soce, TgaC) in the Soce-thuggacin cluster, 

which is consistent with the idea that the Soce-acyltransferase (AT 11) accepts an 

uncommon building block to give finally the n-hexyl side chain. Possible sources for 

the hexyl side chain could be either 2-carboxy-octanyl-CoA or 2-carboxy-octanyl-ACP 

which seems to be provided by TgaD, for which the encoding gene is located 

downstream adjacent to the cluster. TgaD showed similarity to crotonyl-CoA 

carboxylase/reductase enzymes (CCR enzymes), and seemed to generate 2-carboxy-

octanoyl-CoA by a reductive carboxylation of the fatty acids derived octenoyl-CoA. 

This mechanism was recently proven for the TgaD homologue CinF, which is 

catalysing this reaction in cinnabaramide A biosynthesis of Streptomyces sp. JS360 

(Quade et al., 2011). 

Post assembly line processing occurs in Soce-thuggacins as well as in Cmc-thuggacins 

to introduce hydroxyl functionalities at C-17, or at C-17 and C-32, respectively. In both 

thuggacin clusters TugE, respectively TgaE could be determined as hydroxylases, 

which are responsible for installation of the hydroxyl group at C-17, whereby the 

hydroxylation at C-32 in Cmc-thuggacin seems to be performed by a second enzyme 

encoded elsewhere in the genome of C. crocatus. In the case of the Soce-thuggacins 

the reason for non-hydroxylation at C-32 remains unclear (Buntin et al., 2010). 

Comparison of the KSs, as most conserved domains of both gene clusters, suggested 

the thuggacin gene cluster to originate from streptomycetes and to be possibly 

acquired by myxobacteria via horizontal gene transfer. 

A highly stereoselective total synthesis of the Soce-thuggacins A–C was achieved by 

Kirschning and co-workers (Bock et al., 2008). The stereochemical assignment for 

Soce-thuggacin A-C was determined to be 2E,7R,8S,10S,11E,13Z,16S,17S,18R,19S,20S, 

21E,23E (Bock et al., 2008). Soce-thuggacin B was synthesized in 23 linear steps and 

an overall yield of 0.6 %. The total synthesis finally proved the reported structure of 

these metabolites. 
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Antibiotic activity and mode of action 

Soce-thuggacin A showed inhibitory activity against Gram-positive bacteria like 

Micrococcus luteus (MIC 3 ng/mL). Of special interest is its activity toward several 

mycobacteria, i.e. MIC against Mycobacterium phlei was found to be 0.03 µg/mL, M. 

chitae 0.60 µg/mL and M. tuberculosis 8.0 µg/mL. The activities of Soce-thuggacin A 

and B were similar to each other, but Soce-thuggacin C was much less active (Irschik 

et al., 2007b). Antibacterial effects, most importantly also against Mycobacteria, was 

demonstrated as well for the cmc-thuggacins (Walsh et al., 2001). 

Mode of action studies on Soce-thuggacin A were performed using M. luteus. After 

addition of Soce-thuggacin A to the bacterium, the first observation using radioactive 

precursors was the immediate stop of macromolecule synthesis like that of DNA, RNA 

and proteins. Further, Irschik and co-workers could show, due to the observation of 

the oxygen consumption of M. luteus, that a total inhibition of respiration was 

reached with 2.5 ng/mL Soce-thuggacin A (Irschik et al., 2007b). Experiments with 

cytoplasmatic membranes gave evidence for the inhibition of the NADH oxidase (90 % 

inhibition at 10 ng/mL Soce-thuggacin A). Additionally, the inhibition of the reduction 

of cytochromes a, b and c by NADH in membranes was detected. Summing up, Soce-

thuggacin A seems to inhibit late stages of the respiratory chain which results in a 

disruption of the energy supply for the cells. The toxicity test against mouse fibroblast 
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cells L929 gave an IC50 of 4 µg/mL, showing a toxic effect on these eukaryotic cells 

(Irschik et al., 2007b). 

 

1.4 Myxobacterial antibiotics influencing biofilm formation 

Bacteria present as a biofilm show elevated resistance to antibiotics when compared 

with their free-living counterparts. Potential reasons for this increased resistance are 

that antimicrobials cannot penetrate the barrier that biofilms represent, and that 

many cells are metabolically inactive. It is thus of special interest to find antibiotics 

active against bacterial biofilms, to tackle problems associated with, e.g. urinary tract 

infections, dental health and biofilms on medical implants (Peach et al., 2013). 

 

1.4.1 Carolacton 

The macrolide carolacton (XXIX) was isolated in 1998 by Höfle and co-workers from 

Sorangium cellulosum strain So ce960 (Höfle, 1998). Structural characteristics are a 

12-membered lactone ring with two secondary hydroxyl functions at C-17 and C-18, 

and a terminal carboxyl group at the side chain. The two double-bonds Δ15,16 and Δ7,8 

are trans configured (Jansen et al., 2010). The configuration of all eight stereogenic 

centres was determined via chemical derivatisation, and the absolute configuration 

was a refined result of the X-ray single-crystal structure of XXIX. 

Total synthesis was achieved by Schmidt and Kirschning in 2012 (Schmidt and 

Kirschning, 2012). The overall yield was 4.3 % for 22 linear steps, using commercially 

available acetoxypropionic acid as starting material.  

 

 

 

 

 

Activity and mode of action. Especially worthwhile mentioning is the antibiotic 

activity of carolacton against E. coli strain tolC with an MIC of 0.06 µg/mL, and its 

influence on biofilm formation. The main focus in further investigations was placed on 

the activity of carolacton against the caries and endocarditis associated bacterium 
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Streptococcus mutans. The latter is able to form biofilms and proved to be sensitive 

towards carolacton. At a concentration of 5 ng/mL, 33 % of the cells in the biofilm 

died, whereas a concentration of 25 ng/mL resulted in 66 % dead cells (Jansen et al., 

2010). Inhibition of biofilms in nanomolar concentrations implied that carolacton 

addresses a primary target, present only in a few copies per cell (Reck et al., 2011). 

Wagner-Döbler and co-workers suggested carolacton to target quorum sensing 

systems of S. mutans (Kunze et al., 2010). With the help of LIVE/DEAD BacLight 

bacterial viability staining, they gained a dose-response-relationship curve which 

showed a sigmoidal shape with a low threshold of 10 nM. No substantial increase of 

activity above this concentration was observed, which indicated that carolacton 

targets a signalling pathway. Confocal laser scanning microscopic images with 

LIVE/DEAD stained carolacton treated S. mutans cells visualized changes in cell 

morphology. Cells were elongated, bulged, and the number of bacterial cells stringed 

together in one chain increased (Kunze et al., 2010). Further, the applied method 

indicated that carlocaton induces membrane damages, which was confirmed by the 

detection of cytoplasmatic proteins and external DNA in an analysis (SDS-page and 

quantitative PCR) of the supernatant of carolacton treated biofilms. A time related 

profile of the transcriptional response of S. mutans to carolacton treatment indicated 

the regulation of genes with an impact on biofilm formation, autolysis, cell shape, cell 

division and pyrimidine and histidine metabolism. The investigation of correlated 

two-component signal transduction systems (TCS) (e.g. VicKRX, SMU.1037c/1038c, 

SMU.659/660 and ComDE) revealed that carolacton mainly interacts with the 

serine/threonine protein kinase (STPK) PknB (Banu et al., 2010). The latter conclusion 

could be confirmed by the insensitivity of a pknB deletion mutant S. mutans EA 72 to 

carolacton treatment (Banu et al., 2010). These conclusions were further supported 

by the close similarity of the transcriptome of the pknB deletion mutant with that of 

the carolacton treated biofilm. 

Summing up, recent insights into the mode of action of carolacton indicated that this 

compound interferes with the STPK PknB and hence with PknB-mediated signalling. 

This in turn influences pyrimidine biosynthesis, cell wall and biofilm formation, as well 

as the ComDE mediated bacteriocin production. The alterations in cell wall 

composition result in weakened cell walls, leading to loss of integrity at low pH and 
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leakage of cytoplasmatic proteins and DNA, and finally cause cell death (Reck et al., 

2011). In 2013 the biofilm reducing activity of carolacton in comparison to 

chlorhexidine and triclosan was reported (Apel et al., 2013). The incorporation of 

XXIX at a concentration of 0.002  %in dental filling material gave promising results. No 

adverse effect on the mechanical properties of the latter, and a significant effect on 

biofilm-formation were observed. 

Antifungal activity against Aspergillus niger, Pythium debaryanum and Sclerotina 

sclerotiorum in the range of 16–20 µg/mL was also reported. In 2002 the scaffold of 

carolacton was protected by a Japanese patent (Ishihara et al., 2002). 

 

1.5 Myxobacterial antibiotics targeting the type II signal peptidase LspA  

The novel target LspA is part of the lipoprotein processing system, which is essential 

in all Gram-negative bacteria, and can be conditionally essential in Gram-positives. 

Lipoproteins are ubiquitous in bacteria, play an important role in viability, and are 

also key factors in pathogenesis, since these outer membrane proteins represent 

virulence factors (Kovacs-Simon et al., 2011). In eukaryotic cells instead, LspA is 

absent, making it an attractive target for antibiotics (Hutchings et al., 2009; Tjalsma, 

1999; Xiao et al., 2012). Recently, the activity of a myxobacterial compound against 

LspA was described (Xiao et al., 2012). 

 

1.5.1 Myxovirescins 

The myxovirescin family is represented by closely related antibiotics produced by 

many myxobacterial strains, whereby the first isolation and structure elucidation was 

performed using Myxococcus virescens strain Mx v48 (Gerth et al., 1982). The basic 

structure of the molecules is a 28-membered ring, with a lactone and a lactam 

functionality. Several reports on these compounds can be found in the literature, in 

which myxovirescin A1 (XXX) is also named as antibiotic TA (from strain Tel Aviv), 

megovalicin, or M-230B (Onishi et al., 1984; Takayama et al., 1988). 

The biosynthetic gene cluster coding for the enzymes responsible for the assembly of 

this mixed PKS/NRPS-derived product (XXX) was identified in the genome-sequenced 

strain Myxococcus xanthus DK1622. The cluster has a size of approximately 83 kb and 
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consists of at least 21 orfs. Two PKSs might be involved in the biosynthesis of the C3-

hydroxyvaleryl-ACP starter which primes the biosynthesis by condensation with the 

amino acid glycine. The remaining acetates required for lactone formation are 

subsequently incorporated by PKS modules. Further building blocks were SAM-

derived methyl groups, i.e. C-32, C-33, C-34 and a succinate-derived ethyl side chain 

(C-30, C-31) (Simunovic et al., 2006). Furthermore, the incorporation of the β-methyl 

(C-29) and β-ethyl (C-30, C-31) groups into polyketide backbones (as mentioned 

before, β-branching is exemplified in many myxobacterial metabolites) was analysed 

by mutational studies performed within the myxovirescin gene cluster (Simunovic and 

Müller, 2007a; Simunovic et al., 2006). Since the identification of XXX in 1982, 

different synthetic approaches to this molecule were projected. All required a large 

number of steps, whereby the latest route to myxovirescin A1 (17 steps and over the 

longest linear sequence, 46 steps overall) resulted in an overall yield of approx. 2 % 

(Fürstner et al., 2007). Further, simplified derivatives were synthesized (Content et al., 

2003) since it was shown that removal of some substitution on the left-hand side of 

the macrolactam ring, e.g. the oxygen bound to C-20, does not affect activity 

(Trowitzsch-Kienast et al., 1989). 

 

 

 

 

 

 

Antibiotic activity and mode of action. The first antimicrobial evaluation of 

myxovirescin A1 showed a promising MIC of 1 µg/mL against E. coli, while Gram-

negative P. aeruginosa, as well as Gram-positive S. aureus and B. megaterium were 

affected with merely an MIC of 30 µg/mL. In an agar diffusion assay, using the 

aforementioned strains, only E. coli showed an inhibition halo (Gerth et al., 1982). In 

contrast, other reports stated that all Bacillus strains were found to be very sensitive 

towards the antibiotic (MIC 0.1–5 µg/mL), as well as Pseudomonas and 

Staphylococcus strains (MIC 5–25 µg/mL) (Rosenberg and Dworkin, 1996). A reason 

for these differing results may be the strong influence of the test conditions. Thus, 
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sensitive E. coli could be protected by the addition of calcium or bovine serum. In in 

vivo assays XXX did not protect mice infected with lethal doses of (not further 

specified) pathogenic bacteria (Rosenberg and Dworkin, 1996). This was due to the 

strong tissue binding properties of the compound (Rosenberg et al., 1984). Thus, 

myxovirescin A1 was not distributed in the organism as such, however retained its 

activity when bound to membranes or surfaces (Rosenberg and Dworkin, 1996). Due 

to its high adhesive properties, the compound was tested with 8 human volunteers 

suffering from gingivitis. They were treated with 4 applications of 0.1 mg 

myxovirescin A1. In this experiment the 3 indices, i.e. plaque, gingival and bleeding, 

showed a rapid decrease (Manor et al., 1989). Concerning toxicity it was reported 

that “relatively large doses of myxovirescin A were not toxic to rats” (Rosenberg and 

Dworkin, 1996). The bactericidal activity of myxovirescin A1 needs ongoing protein 

synthesis and thus cell metabolism, which indicated that the compound kills bacteria 

in a target-specific manner. Analysis of the resistance mechanism of several E. coli 

mutants led to the conclusion that the type II signal peptidase (LspA) is the target of 

myxovirescin A1, since overexpression of LspA, and also inactivation of lpp (coding for 

the outer membrane “Braun’s” lipoprotein), both specifically conferred resistance to 

E. coli. (Xiao et al., 2012). Thus, two consequences of the LspA interaction could be 

responsible for the bactericidal effect: (i) a toxic build-up of Lpp inside the cell leading 

to lethal cross-linking of the cell wall and the inner membrane, and (ii) the inhibition 

of the proper localization of essential lipoproteins to the outer membrane (Xiao et al., 

2012). This conclusion is also supported by the fact that the biosynthetic gene cluster 

of myxovirescin encodes two lspA paralogs that might play a role in self-resistance of 

the producer strain. The identification of the molecular target, i.e. LspA, for 

myxovirescin A1 opened up new opportunities for lead optimization. LspA represents 

a novel antibiotic target and therefore the highly active myxovirescin A1 can be seen 

as a promising lead structure for further studies. 
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1.6 Myxobacterial antibiotics with an unknown mode of action 

1.6.1 Chondrochlorens 

Chondromyces crocatus strain Cm c5, reported as the producer of thuggacins (see 

above), was also found to produce the chondrochlorens. 2003 the group of Höfle 

reported two chloro-hydroxy-styryl amides, the characteristic styrene moiety of 

which is linked by an amide bond with a 14-membered aliphatic side chain (Jansen et 

al., 2003). Chondrochloren A (XXXI) and B (XXXII) differ merely concerning the 

methoxy or ethoxy functionality at C-2, respectively. 

Sequencing efforts of a cosmid library of the genome of C. crocatus strain Cm c5 led 

to the elucidation of the biosynthetic gene cluster of the chondrochlorens, which 

spans over a contiguous stretch of ~68 kb on the C. crocatus chromosome (Rachid et 

al., 2009). The biosynthetic mixed type PKS/NRPS gene cluster consists of 10 core 

genes (cndA–cndF) and several post PKS/NRPS processing genes (cndI, encoding for a 

SAM depended methyltransferase; cndH, encoding for a tyrosine halogenase; cndG, 

encoding for an oxidative decarboxylase). The genetic architecture and the scaffold of 

the natural products are highly colinear. The biosynthetic process uses butyrate as 

the starter unit, succeeded by the condensation with three methylmalonate units, 

and subsequently with two methoxymalonyl units. Finally, NRPS related proteins 

incorporate tyrosine or 3-chloro-L-tyrosine into the PKS chain, and then the molecule 

is released from the biosynthetic enzymes by a thioesterase. The FAD-linked oxidative 

carboxylase CndG is responsible for tyrosine decarboxylation from pre-

chondrochlorens A and B, which yields the styryl moiety in chondrochlorens (Rachid 

et al., 2010). 

Investigation of the chlorination reaction performed by CndH implied that this occurs 

before release of the intermediate from the assembly line. This was supported by the 

fact that a cndH-deficient mutant did neither produce chondrochloren A nor B, 

whereas the biosynthesis of chondrochlorens could be restored to a good extent (i.e. 

approx. to 50 %) by the addition of 3-chloro-L-tyrosin. Nevertheless, investigation of 

the corresponding A-domain (encoded by cndF) in an ATP-PPi exchange assay 

exhibited an insignificant preference of CndF for 3-chloro-L-tyrosine as compared with 

L-tyrosine (Rachid et al., 2009). CndH belongs to the FAD-dependent halogenases 

which are closely related to the FAD-dependent aromatic hydroxylases 
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(Buedenbender et al., 2009). A gene encoding for an interacting flavin reductase 

seems to be located elsewhere in the genome (Rachid et al., 2006). 

To address the origin of the ethoxy moiety of chondrochloren B, the 

methyltransferase CndI was analyzed. cndI is located directly adjacent to the 

halogenase gene cndH in the upstream region of the chondrochloren gene cluster and 

showed homology to the superfamily of SAM radical enzymes, which catalyse 

methylation of unreactive carbon centres (Marsh et al., 2004). It was supposed that 

the ethoxy group would be the result of the methylation of an initial methoxy 

function, i.e. to be SAM derived. Extracts of a cndI deficient mutant showed 

significant lower amounts of chondrochloren B relative to chondrochloren A when 

compared to the wild-type strain, which may indeed indicate an involvement of CndI 

in the formation of the ethoxy group (Rachid et al., 2006). 

 

 

 

 

 

 

Antibiotic activity and mode of action 

Chondrochloren A was assayed for its biological activity in agar diffusion tests using 

20 µg of XXXI on a 6 mm paper disk. Only a weak antibiotic effect against M. luteus 

(13 mm inhibition zone) and Schizosaccharomyces bombe (10 mm inhibition zone) 

was found. B. subtilis and S. aureus were hardly affected (Jansen et al., 2003). Pre-

chondrochloren with a carboxyl group at C-1’ and no carbon-carbon double-bond 

between C-1’ and C-2’ (as compared to XXXII) showed at the 30 µg/disk agar diffusion 

assay no inhibition zone against M. luteus and B. subtilis. In comparison 

chondrochloren B (XXXII) produced an inhibition zone of 17 and 14 mm, respectively. 

Processing of the pre-chondrochlorens to chondrochlorenes via oxidative 

decarboxylation by CndG in biosynthesis is thus required to obtain antimicrobially 

active compounds (Rachid et al., 2010). 
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1.6.2 Indiacens A and B 

From Sandaracinus amylolyticus strain NOSO-4T, a recently characterized new 

myxobacterial genus, two 3-formylindol derivatives were isolated, i.e. indiacen A 

(XXXIII), and indiacen B (XXXIV), whereby the latter represents the chlorinated 

derivative of XXXIII (Steinmetz et al., 2012). Concerning the biosynthesis of these 

metabolites it was assumed that the indole moiety results from tryptophan. The 

origin of the prenyl side chain was investigated by feeding experiments with labelled 

precursors, i.e. [1-13C]acetate, [1,2-13C2]acetate, L-[methyl-13C]methionine, [2-

13C]propionate, and [1,2-13C2]mevalonolactone. Only supplementation with 

mevalonolactone resulted in significant 13C-enrichment at C-11. Thus, the butadienyl 

side chain can be expected to originate from mevalonolactone, or mevalonate, 

respectively (Steinmetz et al., 2012). 

 

 

 

 

 

Antibiotic activity. Indiacen A and B showed antibiotic activity against some Gram-

positive and Gram-negative bacteria. However, the antibiotic effects were mostly 

moderate. MIC against E. coli tolC was 16.6 µg/mL for XXXIII, and 33.0 µg/mL for 

XXXIV, respectively. MICs against Arthrobacter rubellus were 16.6 µg/mL and 

0.8 µg/mL, respectively. No toxicity toward mouse fibroblast L929 cells has been 

noted (Steinmetz et al., 2012). 

 

1.6.3 Maracin A and Maracen A 

In 1998 maracin A (XXXV) and maracen A (XXXVI) were isolated in the group of Höfle 

from Sorangium cellulosum strain Soce 880 and Soce 1128, respectively (Herrmann et 

al., 1998). Characteristic for maracin A is the unusual ethynyl-trans-vinyl ether moiety, 

which is replaced in maracen A by an α-chlorovinyl group. Feeding studies with 13C-

labelled acetate evidenced the biosynthesis of these metabolites from nine intact 

acetate units, whereas the carboxy group derived from C-2 of a further acetate 

precursor. The oxygen of the ether linkage is discussed to have possibly the same 
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origin as that of divinyl ethers in the red alga Polyneura latissima, which results from 

fragmentation and Hock rearrangement of a bisallylic 6-hydroperoxide (Jiang and 

Gerwick, 1997). 

 

 

 

 

 

 

 

Activity and mode of action. A screening of the National Institute of Allergy and 

Infectious Diseases (Birmingham) aiming to find compounds against Mycobacterium 

tuberculosis showed an in vitro activity of maracin A and maracen A of 

IC99 < 12.5 µg/mL. So far nothing is reported concerning in vivo studies, also no mode 

of action studies were published. An in vitro assessment of toxicity using the mouse 

fibroblast line L929 showed no cytotoxic effects up to a concentration of 24 µg/mL. 

 

1.6.4 Nannochelins  

The nannochelins (XXXVII–XXXIX) are siderophores isolated from Nannocystis 

exedens strain Na e485 and belong structurally to the citrate-hydroxamate family 

(Kunze et al., 1992). In the nannochelins the carboxyl groups of the citric acid moiety 

are linked to an N-ε-cinnamoyl hydroxyl-L-lysine(-methyl ester). The three described 

derivatives are nannochelin A (XXXVII), B (XXXVIII), and C (XXXIX) and differ in the 

methylation state of their carboxyl groups. Thus, it could not be excluded that 

nannochelin A originated from nannochelin B or C by methylation during the isolation 

process in which methanol was used. Nannochelin B, which represents the main 

product, was however detected in the culture supernatant during fermentation 

without purification.  

A total synthesis of nannochelin A was described and allows access to derivatives for 

future studies (Bergeron and Phanstiel, 1992; Sakamoto et al., 1996). 
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Antibiotic activity. Several Gram-positive test organisms, mainly Bacillus species were 

inhibited by some of the nannochelins (40 µg of the respective nannochelin per 6 mm 

paper disc) in agar diffusion tests. The resulting inhibition zones were, e.g. 0 and 

18 mm against B. megaterium DSM 32 and B. subtilis DSM 10 for XXXVIII, and 15 and 

0 mm against the same strains for XXXIX. In this test inhibition of M. luteus GBF26 

and S. aureus GBF 16 was incomplete. An MIC was determined for Brevibacterium 

ammoniagenes (which showed inhibition zones of 22–29 mm) and found to be 

1.5 µg/mL for nannochelin A and B, and 0.39 g/mL for nannochelin C. Further, also a 

few fungi were inhibited, albeit to a minor extent. 

Since the nannochelins are siderophores their mode of action remains even more 

obscure, since bacterial growth stimulation may be suggested especially for those 

bacteria which are able to use these siderophores for iron-uptake, e.g. mycobacteria 

(Guo et al., 2002). This mechanism could be used as a new form of drug delivery, 

utilizing the pathogenic organism’s own iron transport system. Thus, these 

compounds represent interesting structures for the development of conjugates, 

consisting of a lethal drug covalently attached to a siderophore. 

 

1.6.5 Roimatacene  

Roimatacene (XL) is a polyenic carboxylic acid with the molecular formula C30H44O7. 

Its isolation from Cystobacter ferrugineus Cb G35 was challenging due to chemical 

instability. The metabolite harbours an acrylic acid residue, two α-polyunsaturated 

alcohol groups, a tertiary alcohol, and several conjugated double bonds; all together 

resulting in oxygen- and light-sensitivity (Zander et al., 2011). Feeding studies with 

13C-labelled precursors, i.e. [1-13C]- and [2-13C]-labelled acetate, [13CH3]-methionine, 

and [1-13C]-propionate, clearly showed that all methyl groups are SAM-derived. The 

linear chain of carbons was found to be acetate-derived with the distinctive feature 
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that also the “C3 starter unit” derived from a methylated acetate building block 

(Zander et al., 2011). 

 

 

 

 

Antibiotic activity. Unlike most other myxobacterial antibiotically active compounds, 

which show by their majority activity against Gram-positive bacteria, roimatacene 

was found active against the Gram-negative E. coli. Activity against E. coli and 

Pseudomonas species (MIC of 8.6 µg/mL E. coli, 4.2 µg/mL Pseudomonas stutzeri) was 

in the moderate range. Only toward E. coli tolC the MIC was impressive, i.e. 0.1 µg/mL 

(Zander et al., 2011). In a proliferation assay using a mouse fibroblast cell line L929 an 

IC50 ≥ 18 µg/mL was observed. This indicated no or at the most little cell toxicity. A 

further evaluation of this antimicrobial metabolite, however, was not performed due 

to its chemical instability. Indeed, in all assays the radical scavenger 4-ethoxyphenol 

had to be added to avoid decomposition of the test sample. Detailed SAR- and mode 

of action studies may, nevertheless yield chemically more stable roimatacene 

derivatives. This is of special interest in the view of the selective activity against 

Gram-negative bacteria, a field in which new lead structures and targets are 

extremely desirable. 

 

1.6.6 Sorangiadenosine 

Sorangiadenosine (XLI) was isolated from S. cellulosum strain KM1003 and represents 

a nucleoside substituted with a sesquiterpene (Ahn et al., 2008). The molecule thus 

consists of three distinct units: (i) the heteroaromatic adenosine; (ii) the pentose 

sugar D-ribofuranose; and (iii) a bicyclic sesquiterpene of the eudesmane-type.  
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Antibiotic activity. Determination of MIC values showed sorangiadenosine to 

moderately inhibit Gram-positive bacteria, e.g. the MIC values against M. leuteus IFC 

12708 and S. aureus ATCC6538p were 6.25 and 25 µg/mL, respectively. The growth of 

E. coli cells was not inhibited. 

 

1.6.7 Sulfangolids and Kulkenon 

With the sulfangolids (XLII–XLV) the first sulphate ester containing secondary 

metabolites from myxobacteria were isolated from different Sorangium cellulosum 

strains (e.g. So ce666, So ce192, So ce1375) (Zander et al., 2012). They are macrolides 

with a prominent conjugated triene (XLIV) or tetraene (XLII, XLIII, XLV) moiety. 

Sulfangolid B (XLIII) carries an additional methoxy group, compared to sulfangolid A, 

whereas a most prominent feature of sulfangolid C (XLIV) is a six-membered semi-

ketal ring. A ketal ring is also present in sulfangolid D (XLV), even though not as a 

hemi-ketal. Only the relative configuration of sulfangolid C (XLIV) was elucidated, 

because this molecule contains conformationally less flexible elements like the hemi-

ketal ring and the dienone moiety. 

For these macrolides a PKS-based biosynthesis was assumed. Thus, feeding studies 

with [1,2-13C2]-acetate, [1-13C]-propionate, and [D10]-leucine were performed with the 

producer strain of sulfangolid C (XLIV), So ce757, and revealed a leucine derived 

isovaleryl-CoA as the starter unit. The subsequent building blocks were analysed to be 

two methyl-malonyl and one malonyl-CoA unit. Further, the branched hemi-ketal ring 

and the adjacent carbons C-20 and C-33 originate from two propionate and one 

acetate unit. Apart from that, all other carbons in compound XLIV were assembled 

from acetate units. The sulphate residue is assumed to originate from the growth 

medium used. The release of the molecule from the PKS machinery goes most 

probably along with lactonisation, resulting in the final macrolide ring (Zander et al., 

2012). The genetic basis of the biosynthesis is currently under investigation. 
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Antibiotic activity. The antibiotic spectrum of sulfangolid C ammonium salt was 

analysed by agar diffusion tests. Only marginal activity against Gram-positive bacteria 

was observed. In the case of S. aureus, B. subtilis and Nocardia corallina 10 µg/disc of 

XLIV resulted in an inhibition zone of 8–10 mm, while no inhibition was observed for 

E. coli tolC. Sulfangolid C also showed activity in an anti-HIV screen (Martinez et al., 

2013). Due to the conjugated double bonds the compounds are very sensitive to light, 

which poses a major obstacle for further investigations (Zander et al., 2012). 

 

Kulkenon (XLVI) is a further metabolite produced by a S. cellulosum strain (So ce1426) 

and shows structural similarity to the sulfangolids. Compared to the latter, molecule 

XLVI carries an additional methyl group (C-30) and is devoid of a sulphate ester 

moiety The macrolide ring consists only of 26 carbons instead of 28 as in the case of 

sulfangolids (Zander et al., 2012). Any further development of sulfangolids is hindered 

by their instability, since these macrolides decompose during storage. 

 

 

 

 

 

 

1.7 Antibiotics from marine myxobacteria 

The investigation of marine myxobacterial species has started only recently, due to 

the fact that these organisms are yet hard to cultivate and slow-growing. However, in 

2013 some antibiotically active substances have been isolated from marine 

myxobacteria. 

Salimyxin B (XLVII) and enhygrolide A (XLVIII) from Enhygromyxa salina strains 

SWB005 and SWB007, showed inhibitory activity toward the non-pathogenic 
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Arthrobacter cristallopoietes with MIC values of 8 and 4 µg/mL, respectively (Felder et 

al., 2013a). Another compound isolated by Felder et al. (Felder et al., 2013b) named 

salimabromide (XLIX) (only present in strain SWB007) possesses a new carbon 

skeleton, consisting of four rings including a highly brominated benzene ring, a furano 

lactone residue, and a cyclohexane ring, bridged by a seven-membered cyclic moiety. 

The antibiotic activity was moderate with an MIC against A. cristallopoietes of 

16 µg/mL.  
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2 Scope of the study 

This study focuses on the biosynthesis of corallopyronin A, an antibiotically active 

natural product biosynthesized by the myxobacterial strain Corallococcus coralloides 

B035. In the laboratory of Prof. König this producer strain was isolated from a soil 

sample in 2004 and enabled the identification of the corresponding putative 

biosynthetic gene cluster (Erol et al., 2010). Corallopyronin A was reported as 

potential drug against lymphatic filariasis and River blindness (Schiefer et al., 2012) 

and currently undergoes preclinical evaluation (Schäberle et al., 2014b). 

The aim of the present study was to obtain a deeper understanding of the 

biosynthesis of corallopyronin A, which is even more important in the light of its 

preclinical evaluation. Merely a detailed knowledge of its biosynthesis can enable a 

further successful development and bioengineering of this promising antibiotic. 

Corallopyronin A is generated by a trans-acting acyltransferase (AT) mixed type 

polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS). Two chains are 

separately assembled during the biosynthetic process, one solely PKS- and the other 

PKS/NRPS derived. The trans-acting ketosynthase (KS) CorB probably mediates the 

interconnection of both chains by a Claisen-type reaction resulting in the pyrone ring 

formation. Further remarkable chemical characteristics of corallopyronin A are the 

methyl carbamate starter unit of the eastern chain, as well as the C-11, C-12 double-

bond representing a rare β,γ pattern, the latter contradicting the co-linearity rule 

usually valid for classical PKS/NRPS machineries (Piel, 2010). In order to elucidate the 

genetic and enzymatic basis of the origin of this unusual β,γ pattern of the C-11, C-12 

double-bond in corallopyronin A the most likely involved dehydratase CorJ DH* was 

to be investigated during this study. Analogously to the biosynthesis of rhizoxin 

(Kusebauch et al., 2010) we assumed a specific domain (CorJ DH*) to shift the double-

bond from the α,β to the β,γ position after elongation of the nascent PKS chain. 

The current study aimed to demonstrate this enzymatic reaction in an appropriate in 

vitro assay. Therefore, the chemical synthesis of a substrate of CorJ DH*, a N-

acetylcysteamine (SNAC) activated intermediate of corallopyronin A biosynthesis was 

planned. Also the heterologous expression of such domains from the corallopyronin A 

gene cluster, which could be expected to be involved in the double-bond 

isomerisation (CorJ DH*, CorJ ACP) was targeted. The double-bond migration was 
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envisaged to be detected by applying high-resolution MS measurements using the 

phosphopantetheinyl (ppant) ejection assay (Meluzzi et al., 2008) and by NMR 

analysis. To obtain evidence for the essential amino acids involved in the double-bond 

migration process, mutated enzyme variants were planned to be constructed and 

expressed. 

The in vitro analysis of the heterologously expressed shift domain (CorJ DH*) and its 

mutated variants should provide a basic understanding of carbon-carbon double-

bond shift reactions in polyketide biosynthesis beyond that of corallopyronin A. 
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3 Material and Methods 

3.1 Solvents and Reagents 

Solvents and reagents were obtained from Roth (Karlsruhe, Germany), Sigma-Aldrich 

(Steinheim, Germany) or Fluka (Taufkirchen, Germany). 

 

3.2 Enzymes 

The enzymes used in this work were obtained from Fermentas (St. Leon Rot, 

Germany), Promega (Mannheim, Germany) or Roth (Karlsruhe, Germany). They were 

applied following the respective manufacturer´s recommendations for use. 

Restriction enzymes were purchased together with the appropriate reaction buffers 

and were applied according to the provided company´s protocols. 

 

3.3 Molecular biological kits 

Molecular biological kits were received from Quiagen (Hilden, Germany), Promega 

(Mannheim, Germany), Epicentre (Madison, U.S.A) or Zymo Research Europe 

(Freiburg, Germany). They were used accordingly to the respective provided 

company´s protocols. 

 

3.4 Media, stock solutions and buffers 

Media and stock solutions used to prepare media were sterilized either via steam 

sterilization or via membrane filtration. 

 

Media Ingredients 

LB medium 10 g tryptone, 5 g yeast extract, 10 g NaCl, 

water ad 1000 mL, pH=7.5 

LB agar 10 g tryptone, 5 g yeast extract, 5 g NaCl, 15 g 

agar, water ad 1000 mL, pH=7.5 

VY/2 agar 50 ml yeast suspension (10 %), 1.36 g CaCl2 x 

2H20, 15 g agar, water ad 1000 mL, pH=7.2; 
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after sterilization add 1 mL trace element 

solution I and 1 mL vitamin B12 solution 

MD1 + G medium 3 g casitone, 0.7 g CaCl2 x 2H2O, 2 g 

MgSO4 x 7H2O, 2.2 g glucose, water ad 

1000 mL, pH=7.5; after sterilization add 1 mL 

trace element solution I and 1 mL vitamin B12 

solution 

SOB medium 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 

0.186 KCl, water ad 1000 mL, pH=7.5 

SOC medium 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 

0.186 KCl, water ad 1000 mL, pH=7.5, after 

sterilization add 1 mL of 1 M glucose solution 

PMM medium 

(Stephan et al., 2006) 

12 g glucose, 8 g Na2HPO4, 5 g KH2PO4, 3 g 

(NH4)2SO4, water ad 1000 mL, after 

sterilization add 1 mL magnesium sulphate 

solution, 10 mL trace element solution II, 

30 mL salt solution.  

 

 

Stock solutions Ingredients 

Magnesium stock solution 

(Stephan et al., 2006) 

250 mg MgSO4 x 7H2O, water ad 1000 mL. 

Salt solution 

(Stephan et al., 2006) 

10 mg FeSO4 x 7H2O, 10 mg CaCl2 x 2H2O, 

water ad 1000 mL  

Trace element solution I 20 mg ZnCl3, 100 mg MnCl2 x 4H2O, 10 mg 

H3BO3, 10 mg CuSO4, 20 mg CoCl2, 5 mg 

SnCl2 x 2H2O, 5 mg LiCl, 20 mg KBr, 20 mg KI, 

10 mg Na2MoO4 x 2H2O, 5.2 g Na-EDTA 

x 2H2O, water ad 1000 mL 

Trace element solution II 

(Stephan et al., 2006) 

200 mg FeCl3 x 6H2O, 200 mg MnSO4 H2O, 

50 mg ZnSO4 x 7H2O, 20 mg CuCl2 x 5H2O, 

10 mg (NH4)6Mo7O24 x 4H2O, water ad 
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1000 mL 

Vitamin B12 solution 0.5 mg cyanobobalamine ad 1 mL water 

Ampicillin stock 100 mg ampicillin ad 1 mL water 

Apramycin stock 100 mg apramycin ad 1 mL water 

Carbenicillin stock 100 mg carbenicillin ad 1 mL water 

Chloramphenicol stock 12 mg ampicillin ad 1 mL ethanol 

Kanamycin stock 60 mg kanmycin ad 1 mL water 

Streptomycin stock 100 mg streptomycin ad 1 mL water 

Tetracyclin stock 10 mg tetracyclin ad 1 mL water 

 

 

Buffer Composition 

Buffer 1  50 mM Tris- HCl (pH=8), 10 mM EDTA, 

100 µg/ml RNase A 

Buffer 2 200 mM NaOH, 1 %SDS 

Buffer 3 3 M potassium acetate (pH=5.5) 

TE-buffer 10 mM Tris- HCl (pH=8), 1 mM EDTA 

10x TBE-buffer 0.89 M Tris, 0.02 M EDTA, 0.87 M H3BO3 

Protein lysis buffer 50 mM NaH2PO4, 300 mM NaCl, 10 mM 

imidazole, pH=8 

Protein wash buffer 50 mM NaH2PO4, 300 mM NaCl, 20 mM 

imidazole (alternative 40 mM), pH=8  

Protein elution buffer 50 mM NaH2PO4, 300 mM NaCl, pH=8; for 

gradual elution use 100, 150, 200, 300 mM 

imidazole 

10x glycine SDS electrophoresis 

buffer 

250 mM Tris, 2 M glycine, 1 % SDS, pH=9 

Staining solution 10 %acetic acid, 50 % ethanol, 0.005 % 

coomassie brilliant blue R-250, 40 % water 

Destaining buffer 10 % acetic acid, 30 % methanol, 60 % water 

  



Material and Methods 

46 | 

3.5 Bacterial strains 

In the main focus of this study is the producer strain of corallopyronin A Corallococcus 

coralloides B035 which harbours the biosynthetic gene cluster of corallopyronin A. 

The strain Pseudomonas putida KT2440 is envisaged to be the heterologous host for 

parts of the corallpoyronin A gene cluster. E. coli XL1 Blue was used for plasmid 

construction. For protein expression experiments either E. coli Bap-1 or E. coli BL21 

were used. E.coli BW25113 was used for Lamda Red strategies in correlation with the 

knock-out approach of the trans-acyltransferase in Corallococcus coralloides B035. 

 

Organism Genotype Provider 

Corallococcus coralloides 

B035 

wild type own strain collection 

Pseudomonas putida  

KT 2440 

wild type Prof. Piel lab 

E. coli XL1 Blue (K12) recA1 endA1 gyrA69 thi-1 

hsdR17 supE44 relA1 lac 

[F´proAB laclqZΔM15 Tn 10 

(Tetr] 

Agilent (Böblingen, 

Germany) 

E. coli Bap-1 n.a.; sfp from B. subtilis (Pfeifer and Khosla, 2001) 

E. coli BL21 F- ompT gal dcm Ion hsdSb 

(rB
- mB

-) λ(DE3 [lac lacUV5-

T7 gene1 ind 1 sam7 nin5]) 

Invitrogen (Karlsruhe, 

Germany) 

E.coli BW25113 F-, Δ(araD-araB)567, 

ΔlacZ4787 (::rrnB-3), λ-, 

rph-1, Δ(rhaD-rhaB)568, 

hsdR514 

(Gust et al., 2003) 
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3.6 Vectors 

Vector Resistance Manufactuer 

pcc1FOS™ chloramphenicole Epicentre Biotechnologies (Madison, U.S.A) 

pET28a(+) kanamycin Merck (Darmstadt, Germany) 

pGEM-T ampicillin Promega (Mannheim, Germany) 

pIJ773 apramycin (Gust et al., 2003) 

pIJ778 streptomycin (Gust et al., 2003) 

pKD46 ampicillin (Datsenko and Wanner, 2000) 

SuperCos1 ampicillin, 

kanamycin 

Agilent (Böblingen, Germany) 

 

3.7 DNA constructs in this study 

Construct Vector Insert 

FJ7 SuperCos1 Genomic DNA from Corallococcus 

coralloides B035 with parts of the 

corallopyronin Acluster 

FJ7 AT::aadA SuperCos1 AT::aadA 

FJ7 AT::aac(3)IV SuperCos1 AT:: aac(3)IV 

FJ7_aadA_EcoRV/SpeI SuperCos1 aadA_EcoRV/SpeI 

pIB861_apra pIB861 aac(3)IV 

FJ7_pm/xylS SuperCos1 pm, xylS, aac(3)IV 

pGEMT_trpE/tetA pGEMT trpE, tetA 

FJ7_pm/xylS/trpE SuperCos1 pm, xylS, trpE, tetA, aac(3)IV 

pGEMT_CorJ DH* pGEMT corJ DH* 

pGEMT_CorJ ACP pGEMT corJ ACP 

pGEMT_CorJ DH*ACP pGEMT corJ DH*ACP 

pGEMT_CorJ DH*H47A ACP pGEMT corJ DH*H47A ACP 

pGEMT_CorJ DH*D211N ACP pGEMT corJ DH*D211N ACP 

pet28a_CorJ DH* pet28a(+) corJ DH* 

pet28a_CorJ ACP pet28a(+) corJ ACP 

pet28a_CorJ DH*ACP pet28a(+) corJ DH*ACP 
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pet28a_CorJ DH*H47A ACP pet28a(+) corJ DH*H47A ACP 

pet28a_CorJ DH*D211N ACP pet28a(+) corJ DH*D211N ACP 

 

3.8 Primers 

Primers used in this work were designed from multi sequence alignment and 

purchased from Eurofins MWG Operin (Ebersberg, Germany). Oligonucleotides were 

reconstituted in sterile water and adjusted to a concentration of 100 pmol/µL. They 

were stored at -20 °C for longer periods and at -4 °C for a short time. A list of the 

sequences of primers out of this work is given in the appendix (8.1). 

 

3.9 Software and databases 

Basis Local Alignment Search Tool; Blast [www.blast.ncbi.nlm.nih.gov] provided by 

the National Centre for Biotechnology Information (NCBI) is used for multiple 

sequence alignment for protein primary sequences and for nucleotide sequences. 

Blastx translates nucleotide sequences in its corresponding amino acid sequence 

which subsequently are compared to the amino acid database. Blastp uses a protein 

query for comparison with the protein database. Blastn was used to compare a 

nucleotide sequence with the nucleotide database of NCBI. 

ClustalW [www.ebi.ac.uk/Tools/msa/clustalw2] provides by the European 

Bioinformatics Institute (EBI), part of the European Molecular Biology Lab (EMBL), 

was applied to from multiple sequence alignments of nucleotide or amino acid 

sequences. Given reference sequences are NCBI derived. 

Clone Manager is a purchased program (Sci-Ed Software) and was used due to its set 

of tools for primer design and for planning of cloning experiments as well as for 

graphic map drawing. 

NEBcutter V2 (www.tools.neb.com/NEBcutter2; New England Biolabs) was applied to 

carry out restriction side analysis. 

Artemis Genome Browser and Annotation Tool is a freely available program 

provided by the Sanger Institute. It was utilized to visualize bioinformatic features and 

to annotate open reading frames in sequences plasmid, cosmid or genome derived as 

well as to analyze the GC-content of a sequence. 

http://www.tools.neb.com/NEBcutter2
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ProtPram is a free bioinformatic tool provide by the Swiss Institute for Bioinformatics. 

It was applied to calculate the molar extinction factor ε, necessary for determination 

of the concentration of purified heterologously expressed proteins. 

 

3.10 General molecular biological methods 

3.10.1 Sterilization 

Solutions, media and all working tools used to apply on microbial organisms were 

sterilized by steam sterilization at 121 °C and 2 bar for 20 min in a Varioclav steam 

sterilizer. Heat sensitive solutions were sterilized by filtration through an 0.22 µm 

membrane, instead. 

 

3.10.2 Cultivation, storage and disposal of organisms 

All working-steps concerning cultivation of microorganisms were done on a lamina air 

flow clean bench to provide sterile conditions. Instruments, solutions, media and 

other working materials were beforehand sterilized via steam sterilization, membrane 

filtration or by the heat of a Bunsen burner flame. 

Corallococcus coralloides B035 was inoculated from a Petri dish and incubated in 

300 mL flasks containing 100 mL MD1+G liquid medium on a horizontal shaker at 

30 °C and 160 rpm or on VY/2 agar plates in an incubator at 30 °C. The incubation 

time was between three and five days. Pseudomonas putida KT2440 was incubated 

either in 100 mL liquid LB medium in 300 mL flasks on a horizontal shaker at 30 °C and 

160 rpm, on LB agar plates or on PMM agar plates at 30 °C in an incubator. Incubation 

times vary between 3 h and two days according to the experiment, respectively. Small 

cultures of Escherichia coli cells were carried out in 10 mL flasks filled with 3 mL LB 

liquid medium or in 2 mL tubes at 160 rpm at 30 °C or 37 °C, depending on the hosted 

plasmid or cosmid. For cultivation on LB agar plates 250 µL of a Escherichia coli 

suspension was spread on the agar plate. After the solvent was moved into the agar 

the plate was incubated at 30 °C or 37 °C in an incubator. The incubation time was 

16 h, if not stated otherwise. 

For long terms of storage glycerin cultures were prepared. Therefore 500 µL of a fully 

grown liquid culture was mixed with 500 µL of a sterile 87 % glycerin solution in a 
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cryogenic vial. After thoroughly merging the vial was stored at -80 °C. For short period 

storage glycerin cultures were frozen at -20 °C. 

For waste disposal of microorganisms they were autoclaved for 20 min at 121 °C and 

2 bar. 

 

3.10.3 Antibiotic selectivity test 

Corallococcus coralloides B035 (Erol et al., 2010) was tested toward natural resistance 

against different antibiotics. VY/2 plates were incubated with 300 µL liquid culture at 

30 °C for 5. Growth on the agar plates was determined and the inhibition capacity 

was classified (Schmitz, PhD thesis, 2013). 

 

3.11 Molecular biological methods concerning bacterial organisms 

3.11.1 Transformation of bacteria 

Preparation of competent cells for heat shock procedure. A 3 mL LB culture was 

inoculated with a single bacteria colony and incubated over night at 37 °C and 

160 rmp. The culture was further transferred into a 300 mL flask containing 70 mL 

2xYT medium and incubated at 37 °C and 180 rpm to an OD600=0.3-0.4 and 

subsequent harvested centrifugation for 10 min at 8000 rpm at 4 °C. To achieve 

competence the cells were treated with 10 mL of ice cold CaCl2/MgCl2-solution 

(70 mM CaCl2, 20 mM MgCl2) and incubated on ice for 30 min. After harvesting the 

cells again by centrifugation they were suspended in 3.5 mL ice cold CaCl2/MgCl2-

solution and 875 µL glycerol was added. The chemically competed cells were finally 

stored in 100 µL aliquots at -80 °C until usage. 

 

Preparation of competed cells for electroporation procedure. Electro-competed cells 

were always freshly prepared in order to use on the same day. Following procedure 

was modified after Gust et al., 2003. During the whole procedure cells were strictly 

kept ice cold. 100 mL SOB medium in a 500 mL flask were inoculated with 3 mL pre-

culture and incubated until OD600=0.5. The culture was splitted into two 50 mL falcon 

tubes. After harvesting the cells via centrifugation, 6000 rpm for 5 min, the 

supernatant was removed and each pellet was washed with 25 mL 10 % glycerol 
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solution. This step was repeated and further washing steps were done with 20 mL, 

10 mL and 5 mL 10 % glycerol solution. The pellets were combined, suspended in 

300 µL 10 % glycerol solution and finally stored on ice in 100 µL aliquots.  

 

Transformation of Escherichia coli cells by heat shock. For reasons of in vivo 

amplification of plasmids or protein expression E. coli cells were transformed with 

foreign DNA. Therefore a 100 µL aliquot of chemical competed cells were thawed on 

ice, mixed with 5–10 µL DNA and incubated on ice for 30 min. Afterwards, the cells 

were subjected to heat shock at 42 °C for 90 s and immediately replaced on ice for 

2 min. For recovery purpose the cells were incubated in 1 mL LB medium at 37 °C and 

1000 rpm for 1 h. 250 µL of the cell suspension were spread on agar plates containing 

the suitable antibiotics for selection of positive transformants and incubated over 

night at 30° or 37 °C. In the case of pGEM-T vector as introduced DNA the agar plates 

contained x-gal (4 mg/mL) as additive in order to select via blue-white screening. 

Positive clones were verify by whole-cell PCR (3.12.2). 

 

Transformation of Escherichia coli cells by electroporation. Freshly prepared electro- 

competed cells were mixed with 4–20 µL of the DNA to be introduced and filled into a 

pre-chilled electroporation cuvette with a diameter of 2 mm. Following a voltage of 

2.5 kV was applied in Biorad MicroPulser™. The cells were rapidly recovered with 

1 mL ice cold SOC medium and incubated in a 10 mL tube at 30 °C at 160 rpm for 1–

2 h. Afterwards, 600 µL of the cell suspension were spread on agar plates containing 

suitable antibiotics for selection and the plates were incubated at 30 °C over night. 

 

Electroporation of Pseudomonas putida KT2440 cells. 2 mL of a pre-culture were 

inoculated in 100 mL LB medium and incubated until a OD600=0.5 at 30 °C and 

160 rpm. During the next steps it was important to keep the sample ice cold. Hence, 

the cells were harvested via centrifugation at 6000 rpm for 5 min at 4 °C, the 

supernatant was removed and the pellet was suspended in 25 mL ice cold 10 % 

glycerol solution. Washing steps with 20 mL, 10 mL and 5 mL 10 % glycerol solution 

followed. Finally the cell suspension was taken up in 300 µL 10 % glycerol solution and 

allocated in 100 µL samples. The electro- competed cells were mixed with 4–20 µL of 
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DNA to be transferred, and filled in a pre-chilled electroporation cuvette. To apply a 

voltage of 2.5 kV a Biorad MicroPulser™ was used. The cells were recovered 

immediately with 600 µL of ice cold LB medium and incubated for 2 h at 30 °C and 

160 rpm. Positive transformants were selected on PMM solid agar containing suitable 

antibiotics and verified via whole cell PCR (3.12.2). 

 

3.12 Molecular biological methods concerning nucleic acids 

3.12.1 Isolation of DNA 

Isolation of vector DNA. Plasmids, fosmids or cosmids were isolated from the host 

strain (usually E. coli). Normally 3 mL liquid media were inoculated with one single 

colony and incubated over night. For larger demand of vector DNA midi or maxi 

preparations were done. Thus means 10 mL or 100 mL medium were inoculated. 

Vectors were purified with Promega´s PureYield Miniprep or with Qiagen Plasmid 

Mini, Midi or Maxi Kit according to the manufactures instructions. Otherwise, 

bacterial cells of a 3 mL culture were harvested via centrifugation and suspended in 

350 µL buffer 1, treated with 350 µL buffer 2 and neutralized with 400 µL ice cold 

buffer 3. Cell debris and proteins were pelleted by centrifugation and removed. The 

supernatant containing the remaining DNA was again purified with 800 µL 

phenol/chloroform in equal parts to remove protein remains. Solved DNA in the 

aqueous phase was precipitated by isopropanol and centrifugation. The obtained 

DNA pellet was finally washed with 70 % ethanol, dried and dissolved in 20–100 µL 

sterile water. 

 

Isolation of genomic DNA. For isolation purpose of Corallococcus coralloides B035 

and Pseudomonas putida KT2440 derived genomic DNA the Promega Genomic Wizard 

 it was used according to the manufacturers’ instructions. 

 

3.12.2 PCR 

Polymerase chain reaction. PCR is a method exerted for amplification of DNA 

sequences of interest inbetween two primer regions. Oligonucleotides appropriate to 

the DNA sequence of interest were designed with the help of the program Clone 
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Manager. First DNA was denaturated to single stranded DNA by heating what allows 

the primers to anneal to the homolog DNA region. Then a thermostable DNA 

polymerase elongates the DNA stand beginning at the primers 3’ end. Repetitive 

cycles of different temperatures for denaturation, annealing and elongation make a 

exponential amplification of determined DNA regions possible. In this study the 

Thermus aquaticus (Taq) derived DNA- polymerase was used for all PCR reactions. 

The composition of the PCR reaction mixture, appropriate in this study, is shown as 

follows. 

 

10x PCR buffer 4 µL 

10x MgCl2-solution (25 mM) 1 µL 

DMSO 1 µL 

Primer 1 (100 µM) 0.5 µL 

Primer 2 (100 µM) 0.5 µL 

dNTPs (10 mM) 0.4 µL 

Taq polymerase (5 U/µL) 0.16 µL 

DNA template 1 µL 

Water  ad 20 µL 

 

Whole cell PCR. For rapid testing on DNA introduced into bacteria, bacterial material 

was directly stirred into the PCR mixture. The first denaturation step of repetitive 

cycles of the PCR protocol was in this respect prolonged to ensure complete 

denaturation of the double stranded DNA. 

 

Sequential PCR amplification. In order to exchange one amino acid in a protein it was 

necessary to gain an exchange of nucleotides in the protein encoding DNA sequence. 

To achieve that side specific mutation a chimeric DNA molecule was created by 

sequential PCR amplification. In the first round amplifications two PCR products were 

gained containing a region of overlapping homology to each other. Both PCR products 

were purified away from the primers, mixed in one reaction tube and annealed by 

denaturation a renaturation. Taq DNA-polymerase was added and gained one PCR 

fragment with the length to the sum of the two fragments. In the second round 
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amplification complementary outside set primers were added to the mixture in order 

to amplify the heteroduplex DNA species. Hereafter the applied PCR program is 

shown. 

1. Initial enaturation 95 °C 3.0 min 

2. Denaturation 95 °C 30 s 

3. Annealing 65 °C 30 s 

4. Elongation 72 °C 1.0 min 

5. Final elingation 72 °C 5.0 min 

6. Cooling 4 °C hold 

 

Steps 2–4 were repeated 10 times, without primers. In the following outside set 

primers were added and the PCR program was run again. Then steps 2–4 were 

repeated 20 times. 

 

3.12.3 Restriction digestion  

DNA restriction endonucleases belongs originally to bacterial defence mechanism 

against foreign DNA. Their restriction sides are marked as palindromic DNA sequence 

of 4–8 nucleotides. After cleavage of the phosphodiester-bonds within the DNA 

backbone blunt or sticky ends remain corresponding to the restriction enzyme used, 

respectively. The effectiveness of each restriction enzyme depends on temperature, 

reaction medium and methylation pattern of the DNA to be restricted. Purchased 

restriction en ymes in this work were applied according to the manufacturers’ 

instructions. Restriction digestion was performed to prepare PCR- fragments, vectors 

and other DNA molecules for cloning purpose. Usually DNA was restricted by two 

different restriction enzymes, e.g. for clear orientation of incorporated DNA 

fragments in vectors. In the case of a digestion reaction with only one enzyme the 

linearised vector was subsequently dephosphorylated to prevent self-ligation. 

 

3.12.4 Dephosphorylation of linear DNA 

Vectors cut with only one restriction enzyme had to be dephosphoylized to avoid self-

ligation when foreign linear DNA should be introduced. To prevent self-ligation the 
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vector’s open ends were dephosphorylated by calf intestine alkaline phophatase 

(CIAP) or by shrimp alkaline phosphatise (SAP) according to the manufacturers’ 

instructions. To remove the phophatase, which potentially disturb subsequent 

ligation reactions, the DNA mixture was purified away from the enzyme using a 

Qiagen MiniPrep Kit. 

 

3.12.5 Agarose gel electrophoresis and DNA recovery 

Mixtures of DNA fragments of different size were separated by gel electrophoresis, 

e.g. restricted vectors, PCR fragments or genomic DNA. The areas of interests were 

cut out of the gel and the DNA was purified with the help of a Qiagen gel extraction 

kit following manufacturers’ instructions. Isolated DNA was dissolved in ultrapure, 

sterile water. 

 

3.12.6 Ligation of DNA into a vector 

To introduce DNA fragments into a vector, both had to be subjected to a restriction 

digestion (3.12.3). Subsequent ligation of the resulting linear DNA molecules were 

performed by a T4 DNA- ligase, which is able to link the 5’-phopshodiester moiety and 

the 3’-hydroxyl functionality of linear DNA molecules with each other. Thus, DNA 

molecules with blunt or with compatible sticky ends could be stitched together. The 

result was a circular double stranded DNA molecule consisting of a selected DNA 

fragment and the vector scaffold. T4 DNA-ligase was used analogously to a standard 

protocol and to the manufacturers’ instructions. For in vivo amplification of the 

obtained vector construct and for save storage it was transferred into a bacterial host 

like Escherichia coli XL1 blue (3.5 and 3.11.1). 

 

3.12.7 Sequencing of DNA constructs and PCR fragments 

To determine the sequence of PCR fragments and to exclude mutations in plasmids 

their DNA sequence had to be analyzed. Sequencing was performed by GATC Biotech 

AG (Konstanz, Germany) on an ABI3730xl after the Sanger dideoxy method (Sanger et 

al., 1977). For sequencing reaction either specific primer pairs complementary to the 
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PCR fragment, or general primer pairs complementary to the vector were used. The 

obtained sequence information were processed with Clone Manager. 

 

3.13 Molecular biological methods concerning proteins 

3.13.1 Heterologous expression of the proteins  

For the in vitro investigations of proteins a sufficient amount of the desired protein is 

required. In order to obtain that usually over expression of the respective protein in a 

heterologous host is applied. Therefore the DNA sequence of the target protein was 

cloned into an expression vector (i.e. pET28a(+)). The pET28a(+) vector contains an 

isopropyl-β-D-thiogalactopyranosid (IPTG) inducible promoter as well as an affinity tag 

like the 6-his tag to facilitate the purification of the protein via affinity 

chromatography.  

In the first step the DNA sequence of the protein was amplified and the resulting PCR 

fragment was ligated into the pGEMT vector. To exclude mutations in between the 

amplified DNA sequence the construct was submitted to sequencing at GATC (3.12.7). 

Second the DNA encoding for the protein was cut out of the pGEMT construct and 

cloned into the multiple cloning side of the expression vector (pET28a(+) so that the 

DNA sequence of the protein is in-frame with the 6-his tag within the vector. Finally E. 

coli Bap-1 or BL21 cells were transformed with the generated plasmid, and positive 

transformants were determined by whole-cell PCR (3.12.2). 

A 3 mL pre-culture of the pET28a(+) construct was used to inoculate the main culture 

of 1 L LB medium, containing kanamycin. The culture was grown at 37 °C to an OD600 

of ~0.5 and then chilled to 16 °C. To induce protein expression IPTG was added to the 

medium in a final concentration of 0.5 or 1 mM and the culture was further incubated 

overnight at 16 °C. 

 

3.13.2 Cell lysis by sonication 

Cells used for protein expression were harvested by centrifugation at 4000 rpm for 

30 min at 4 °C. Afterwards the pellet was resuspended in 2 mL lysis buffer and placed 

on ice. Cells were lysed with the help of the Branson Sonifier 250, set to output level 

4, 50 % duty cycle. The samples were sonified five times with ten pulses each. Cell 
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debris and insoluble parts were pelleted by centrifugation at 8000 rpm for 15 min at 

4 °C. The supernatant containing the soluble protein was collected for further 

purification via affinity chromatography. 

 

3.13.3 Purification of the recombinant protein by Ni-NTA affinity chromatography 

Proteins containing a 6-his tag can easily be purified by affinity chromatography on a 

Ni-NTA matrix. The twice positive charged Ni2+ ions interact with the histidine 

residues of the 6-his tag and bind the protein to the matrix while other proteins elute. 

With increasing concentrations of imidazole unspecific linked proteins can be eluted 

due to the competition of imidazole with hisitine for the binding to Ni2+. The 6-his tag 

ensure that the target protein elutes only at high imidazole concentrations. 

The Ni-NTA gravity flow column consists of a Ni-NTA agarose matrix which is 

equilibrated with lysis buffer. The sample, also dissolved in lysis buffer, was added to 

the column and is allowed to pass the matrix. The resulting flow through was added 

once again to the matrix to ensure a nearly complete binding of the protein to the Ni-

NTA matrix. Then the column was washed twice with 4 mL washing buffer. 

Subsequent elution of the protein occurred in five elution steps with each 0.5 mL 

elution buffer with increasing imidazole concentrations (100, 150, 200, 300, 300 mM 

imidazole). All fractions, flow through fraction to last elution fraction, were collected 

and stored on ice to avoid protein degradation. 

 

3.13.4 SDS-Polyacrylamind gel electrophoresis (SDS-PAGE) and Coomassie staining 

All collected fractions of the protein purification were subjected to SDS-PAGE to 

record the purity and the average quantity of the target protein in each fraction. First 

the fractions were boiled and treated with mercapto ethanol to reduce all di-sulfide 

bonds to gain unfolded proteins. During electrophoresis in a SDS milieu the proteins 

are charged completely negative and are able to be strictly separated due to their 

molecule weight. The separating gel is gained by the polymerization of bis-acrylamid 

to polyacrylamide which gives a molecular sieve. Depending on the molecular weight 

of the proteins to be separated the concentration of polyacrylamide can be adapted. 

To achieve focussed protein bands, discontinuous gels were used where the 
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separating gel is covered with a stacking gel with a lower acrylamid concentration. In 

a first step the separating gel was prepared, which was pipetted between two plastic 

plates with a spacer distance of 1.5 mm directly after initiating the polymerisation by 

APS (ammoniumperoxosulfate). To form a smooth surface the separating gel was 

covered with isopropanol, which was removed before addition of the stacking gel. 

The reaction mixture of both components of the discontinuous gels is as follows: 

 

SDS stacking gel   

Tris/HCl pH 6.8 (1 M) 375 µL 

SDS (10 %) 30 µL 

Bis-acrylamide (30 %) 510 µL 

Water 2040 µL 

APS (10 %) 30 µL 

TEMED 3 µL 

 

SDS separating gel   

Tris/Hcl pH 6.8 (1 M) 2500 µL 

SDS (10 %) 100 µL 

Bis-acrylamide (30 %) 4000 µL 

Water 3300 µL 

APS (10 %) 100 µL 

TEMED 4 µL 

 

For each run the reservoir of the electrophoresis assembly were filled with fresh SDS 

electrophoresis buffer. The protein samples were mixed with denaturing loading 

buffer and boiled for 5 min at 90 °C, before loading them on the gel. Electrophoresis 

was performed in a XCell SureLock® Mini-Cell. The voltage was 100 V until the 

samples reached the separating gel, then it was increased to 130 V. As a reference a 

molecule size marker was loaded on the gel as well.  

Following directly after the electrophoresis the proteins were visualized by a 

coomassie-staining. The gel was immersed in the staining solution and shortly heated 

in a microwave and subsequent incubated several minutes on a horizontal shaker. 
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Destaining of the background colour was performed by shaking with destaining buffer 

for several hours at room temperature. Gels were documented with the INTAS 

illuminator. 

 

3.13.5 Concentration of the proteins and buffer exchange 

Samples containing purified heterologously expressed proteins were concentrate 

using spin filter column (Millipore, 10 kDa exclusion size). This method was also used 

to remove imidazole from the elution buffer, which could disturb subsequent assays. 

The elution buffer was replaced in several centrifugation steps with 50 mM Tris/HCl 

(pH 8) to achieve a final volume of 250 to 500 µL protein solution. Proteins scheduled 

for the MS based ejection assay (3.17.1) were buffered in 50 mM deuterated Tris/HCl 

(pH 8), which was prepared beforehand: 50 mM aqueous Tris/HCl solution (1 mL each 

sample) were dried in a SpeedVac completely, and were resolved in the same volume 

of D2O. 

 

3.13.6 Determination of the protein concentration 

Proteins containing tyrosine and tryptophan residues and disulphide bonds will 

absorb in the UV range of 280 nm making the correlation between absorbance and 

protein-concentration for purified proteins possible. The calculation is based on the 

Lambert-Beer equation (formula 3-1). It requires the knowledge of the molar 

extinction factor (ε) which was calculated for a given protein sequence with the 

program ProtPram provided by the Swiss Institute for Bioinformatics.  

 

Formula 3-1: 


dOD

L

mol
onconcentrai











  

OD280=optical density at λ=280 nm 

d=dilution factor 

ε=molar extinction factor [M-1cm-1] 
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3.14 Chromatography 

Affinity chromatography. See Molecular biological methods concerning proteins 

(3.13.3). 

 

Thin layer chromatography. For reaction control during synthesis of compounds 1, 5–

8, 10–13 thin layer chromatography was performed on Merck aluminum sheets, silica 

gel 60 F254. After detection under UV light (254 nm) development took place using a 

solution of ninhydrin in ethanol (0.2 % (m/V). As purification method column 

chromatography was carried out on Merck silica gel 60 (70–230 mesh). As eluent  a 

mixture of ethyl acetate/petroleum ether or a mixture of dichloromethane/methanol 

was used. 

 

High performance liquid chromatography (HPLC). HPLC was performed on either a 

Merck-Hitachi system equipped with an L-6200A pump, an L-4500A photodiode array 

detector, a D-6000A interface with D-7000 HSM software and a Rheodyne 7725i 

injection system, or a Waters system, controlled by a Waters millennium software, 

consisting of a 717 puls autosampler, 600 pump with in-line degasser and a 996 

photodiode array detector. Either a Waters Atlantis C18 column (5 µm, 4.6×250 mm), 

or a Waters Symmetry 300 C4 column (5 μm, 4.6 mm×250 mm) were used for 

preparative HPLC purification of synthesis products of enzyme assay reaction 

products. 

 

3.15 NMR spectroscopy 

1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance 300 DPX operating 

at 300 MHz (1H) or 75 MHz (13C), on a Bruker Avance 500 DRX operating at 500 MHz 

(1H) or 125 MHz (13C) or on a Brucker Avance 600 operating at 600 MHz (1H) or 

300 MHz (13C) respectively. Processing of the NMR spectra was done using Bruker 1D 

WIN-NMR, 2D WINNMR or XWIN-NMR Version 2.6 or 3.1. Chemical shifts were given 

in ppm relating to the center of the solvent peak at reference: [D4]MeOH 

3.35/49.3 ppm, [D6]DMSO 2.49/39.7 ppm. Multiplicity of carbon atoms was deduced 

by DEPT experiments. Structural assignment were based on spectra resulting from 
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one or more of the following NMR experiments: 1H, 13C, DEPT 135, 1H-1H COSY, 1H-13C 

HSQC (direct correlation) and 1H-13C HMBC (long range correlation). 

 

3.16 Mass spectrometry 

HPLC-MS (ESI) measurements were performed by Frau M. Schneider (Pharmaceutical 

Institute of the University of Bonn) or by Frau. E. Eguereva (Institute for 

Pharmaceutical Biology of the University of Bonn) employing an Agilent 1100 Series 

HPLC including DAD, with a RP 18 column (Macherey-Nagel Nucleodur 100, 

125 mmx2 mm, 5 µm) coupled with an API 2000, Triple Quadrupole, LC/MS/MS, 

applied Biosystems/MDS Sciex and ESI source. A gradient elution of (from 90 % H2O to 

100 % MeOH in 10 min, then 100 % MeOH to 20 min, with added NH4Ac, 2 nM, DAD 

220.0–400.0 nm) was chosen for compound characterization and purity 

determination. Mass spectrometric analysis of proteins was done by M. Sylvester 

(Institute for Biochemistry and Microbiology of the University of Bonn) using a 

Thermo LTQ Orbitrap Velo coupled with an Advion TriVersaNanoMate enabling a 

continues electron spray. 

 

3.17 In vitro assays to prove the functional role of the DH* 

3.17.1 Phosphopantethein (Ppant) ejection assay 

The activity of the heterologously expressed shift domain CorJ DH* was determined in 

a MS based in vitro assay: the ppant ejection assay, which enables the analysis of 

carrier bound intermediates (Meluzzi et al., 2008). In the first reaction step the SNAC-

activated substrate should bind to the ppant arm of the holo-ACP protein. The second 

reaction step should be the shift of the double-bond, performed by the “shift 

domain§ CorJ DH*. Therefore the substrate 1 was loaded onto the 

phosphopantethein arm of the CorJ ACP unit of the heterologously expressed 

didomain CorJ DH*-ACP by co-incubation at room temperature. The shift reaction 

started directly at this time (substrate addition was set as time point zero). The assay 

volume was 100 µL containing 2 % DMSO: 10 µL protein solution, 2 µL substrate 1 

(equal to 0.2 mM), 38 µL buffer (deuterated Tris 50 mM, pH 8.0). The reaction 

mixture was incubated at room temperature for 1 h, 3 h and 20 h. To stop the 
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reaction it was directly injected into the HPLC column (Waters Symmetry 300 C4; 

solvent: linear gradient from 70 % water to 65 % acetonitrile over 30 min, flow: 

1.0 mL/min) to obtain a desalted sample, which was immediately lyophilized with 

liquid nitrogen. 

The respective samples were dissolved in an adequate volume of electro spray 

solution (49.5 % H2O, 49.5 % methanol, 1% formic acid). 10 µL samples were loaded 

onto the 96 well plate of the NanoMate spray robot coupled to the LTQ Orbitrap 

Velos. A spray chip with 5 µm nozzle diameter was used at a spray voltage of 1.6 kV 

and 0.3 psi pressure setting. An environmental polysiloxane ion with m/z 445.12003 

was used as lock mass for internal calibration. Typical mass deviation was <2 ppm. 

Isolation and fragmentation were performed in the linear ion trap, detection of the 

final product spectrum was done with the Orbitrap analyzer. 

The same procedure and assay conditions were applied for investigating of CorJ holo-

ACP, CorJ DH*H47A holo-ACP and CorJ DH*D211N holo-ACP. 

3.17.2 NMR based assay 

The double bond shift mediated by the “shift domain” CorJ D * was additionally 

monitored using a NMR based in vitro assay. To perform this assay the didomain CorJ 

DH*-ACP was heterologously expressed in E. coli BL21, as an apo-enzyme, without a 

ppant arm. The purified protein CorJ DH* apo-ACP (re-buffered in non-deuterated 

Tris-buffer) was incubated with substrate 1 for 16 h. The assay volume was 500 µL 

containing 1 % DMSO: 250 µL protein solution, 5 µL substrate 1 (equal to 0.5 mM), 

245 µL buffer (Tris 50 mM, pH 8.0). The assay was stopped by adding an equal volume 

of methanol. The protein was pelleted by centrifugation. The supernatant was 

transferred to a new vial and dried in vacuo. Subsequently, the sample was prepared 

for adjacent NMR experiments by dissolving it in deuterated methanol. 

  



Material and Methods 

63 | 

3.18 Chemical syntheses of compounds 1, 5–8, 10–13 

Syntheses of compounds 1, 5–8, 10–13 were carried out in cooperation with Dr. 

Maxim Frizler of the research group of Prof. Dr. M. Gütschow (Institute for 

Pharmaceutical Chemistry I of the University of Bonn). 

 

3.18.1  (E)-4-Methoxycarbonylaminobut 2-enoic acid (6) 

 

 

 

For the first step, crotonic acid (3) (8.60 g, 100 mmol) was dissolved in CCl4 (200 mL). 

Subsequently, N-bromosuccinimide (21.4 g, 120 mmol) and AIBN (500 mg, 3.05 mmol) 

were added and heated under reflux to 95–100 °C for 2 h. After the mixture was 

cooled down to rt, the solvent was removed and the resulting solid was recrystallized 

from ethyl acetate/petroleum ether to give (E)-4-bromobut-2-enoic acid (4) (7.10 g, 

43 %). Analytical data of 4 were in agreement with those reported in the literature 

(Höfling et al., 2008). Secondly, compound 4 (3.20 g, 19.4 mmol) was treated 

dropwise with 25 % aq. NH3 (15 mL) and the reaction mixture was stirred for 20 h at 

rt. The solvent and excess ammonia were removed under reduced pressure to obtain 

a brown solid which was subsequent dissolved in water and passed through a column 

of acidic resin (Dowex 50W-X8). The column was washed with water and compound 5 

was eluted with 5 % NH3. The solution was concentrated and poured into ethanol. 

The resulting precipitate was filtered off and dried to yield 15 (0.25 g, 11 %). Finally, 

compound 5 (210 mg, 1.78 mmol) was dissolved in water containing NaHCO3 (0.30 g, 

3.57 mmol) to convert it into the corresponding free acid 6. Thereafter the solvent 

and remaining NH3 were evaporated. The residue was dissolved in a dioxane/H2O 

mixture (2:1) and treated with methyl chloroformate (0.17 g, 1.8 mmol). After 

evaporation of the solvent the residue was suspended in H2O and the aqueous 

suspension was adjusted with 10 % KHSO4 to pH ~2 and extracted with ethyl acetate 

(3 × 30 mL). The combined organic layers were concentrated in vacuo, the resulting 

residue was adjusted to pH ~9 using NaHCO3 and again extracted with ethyl acetate 

(3 × 30 mL) to remove by-products. The aqueous phase was acidified under vigorous 

stirring with 37 % HCl and extracted with ethyl acetate (3 x 30 mL). The combined 

O

O

H
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O
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organic layers were washed with brine. The solvent was removed to obtain 

compound 6 (200 mg, 71 %). 1H NMR (500 M  , [D6]DMSO) δ 3.54 (s, 3 , 

CH3OCONH), 3.75–3.78 (m, 2H, NHCH2CH=CH), 5.77 (dt, 3J=15.8 Hz, 4J=1.9 Hz, 1H, 

NHCH2CH=CH), 6.73 (dt, 3J=15.8 Hz, 3J=4.7 Hz, 1H, NHCH2CH=CH), 7.41 (bs, 1H, 

NHCH2CH=CH), 12.24 (bs, 1H, COOH); 13C NMR (125 M  , [D6]DMSO) δ 41.15 

(NHCH2CH=CH), 51.62 (CH3OCONH), 121.34 (NHCH2CH=CH), 145.56 (NHCH2CH=CH), 

156.85 (OCONH), 166.97 (COOH). 
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3.18.2 (E)-S-2-Acetamidoethyl 4-(methoxycarbonylamino)but-3-enethioate (7)  

(7)     (8) 
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Compound 6 (210 mg, 1.32 mmol) was dissolved in DCM (15 mL) and subsequently 

treated with DMAP (16 mg, 0.13 mmol) and EDC (230 mg, 1.45 mmol). N-

acetylcysteamine (160 mg, 1.34 mmol) was dissolved in DCM and added dropwise 

under ice cooling to the reaction mixture. It was allowed to warm up to rt and stirred 

over 2 h. After evaporation of the solvent the residue was suspended in H2O and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed 

with 10 % KHSO4 (10 mL), H2O (10 mL), sat. NaHCO3 (10 mL), H2O (10 mL), and brine. 

The solvent was dried (NaSO4) and removed in vacuo. The oily residue was purified by 

column chromatography on silica gel using ethyl acetate as eluent to obtain 7 (6 mg, 

1.7 %). Compound 8 was the main product when two equivalents of N-

acetylcysteamine (315 mg, 2.64 mmol) were added to the reaction mixture. 1H NMR 

of 7 (300 M  , [D4]MeO ) δ 1.95 (s, 3 , N COC 3), 3.03 (t, 3J=6.6 Hz, 2H, 

SCH2CH2NH), 3.27 (d, 3J=7.3 Hz, 2H, NHCH=CHCH2), 3.35 (t, 3J=6.6 Hz, 2H, 

SCH2CH2NH), 3.73 (s, 1H, CH3OCONH), 5.17 (dt, 3J=14.3 Hz, 3J=7.3 Hz, 1H, 

NHCH=CHCH2), 6.62 (d, 3J=14.3 Hz, 1H, NHCH=CHCH2). 1H NMR of 8 (300 MHz, 

[D4]MeO ) δ 1.96 (s, 3 , N COC 3), 1.98 (s, 3H, NHCOCH3), 2.29 (dd, 1H, 3J=4.8 Hz, 

2J=15.7 Hz, COCH2), 2.74 (t, 3J=6.6 Hz, 2H, SCH2CH2NH), 2.78 (dd, 1H, 3J=8.0 Hz, 

2J=15.7 Hz, COCH2), 3.07 (t, 3J=6.6 Hz, 2H, SCH2CH2NH), 3.27 (m, 1H, NHCH2CH), 3.28 

(m, 1H, SCH), 3.36 (m, 1H, NHCH2CH), 3.38 (m, 2H, SCH2CH2NH), 3.39 (m, 2H, 

SCH2CH2NH), 3.68 (s, 3H, CH3OCONH) 8.13 (bs, 1H), 8.25 (bs, 1H) ; 13C NMR of 8 

(125 M  , [D4]MeO ) δ 22.6 (2 x COCH3), 29.38 (CH(S)CH2CH2), 31.42 (SCH2CH2), 

40.1, 40.5 (SCH2CH2), 43.2 (CH(S)CH2CH2), 45.9 (CH(S)CH2CH2), 47.9 (CH2CO), 52.6 

(COOCH3), 159.6 (COOCH3), 173.4, 173.5 (COCH3), 198.3 (COS). 
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3.18.3 S-2-Acetamidoethyl 2-bromoethanethioate (10) 

 

Bromo-acetylbromide (9) (5, 1.69 g, 8.37 mmol) was dissolved in THF (20 mL), treated 

with triethylamine (1.02 g, 10.1 mmol), and N-acetylcysteamine (1.00 g, 8.39 mmol) 

was added dropwise. The resulting reaction mixture was stirred for 1.5 h at room 

temperature. The solvent was removed and the oily residue was suspended in H2O. 

The aqueous suspension was extracted with ethyl acetate (3 × 30 mL), washed with 

10 % KHSO4 (30 mL), H2O (30 mL), sat. NaHCO3 (30 mL), and sat. NaCl (30 mL), and 

dried over Na2SO4. The crude product was purified by column chromatography using 

ethyl acetate as eluent to obtain 10 as a white solid (0.45 g, 22 %). NMR data are in 

accordance with those from literature (Roblot et al., 1993). 1H NMR (500 MHz, 

[D6]DMSO) δ 1.78 (s, 3 , N COC 3), 2.97 (t, 3J=6.8 Hz, 2H, SCH2CH2NH), 3.19 (app. q, 

2H, SCH2CH2NH), 4.43 (s, 2H, BrCH2CO), 8.02 (bs, 1H, SCH2CH2NH); 13C NMR (125 MHz, 

[D6]DMSO) δ 22.62 (N COC 3), 29.36, (SCH2CH2NH), 34.82 (SCH2CH2NH), 37.95 

(BrCH2CO), 169.43 (NHCOCH3), 192.75 (BrCH2CO). 
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3.18.4 S-2-Acetamidoethyl 2-(diethoxyphosphoryl)ethanethioate (11) 

 

Compound 10 (0.43 g, 1.79 mmol) was solved in THF, treated with triethyl phosphite 

(0.30 g, 1.81 mmol) and stirred at 130 °C in a sealed tube for 3.5 h. The reaction 

mixture was dissolved in ethyl acetate (60 mL), washed with sat. NaHCO3 (2 × 30 mL) 

and brine (30 mL) and dried over Na2SO4. The crude oily product was purified on 

column chromatography using ethyl acetate (10 fractions, the volume of each fraction 

was 50 mL) and additionally ethyl acetate/MeOH (7:3) as eluents to obtain 11 as an 

oily product (0.16 g, 30 %). NMR spectroscopic observations are in agreement with 

those reported in literature (Zhou et al., 2010). 1H NMR (500 M  , [D6]DMSO) δ 1.23 

(t, 3J=7.1 Hz, 6H, 2 × OCH2CH3), 1.78 (s, 3H, NHCOCH3), 2.92 (t, 3J=6.9 Hz, 2H, 

SCH2CH2NH), 3.14–3.18 (m, 2H, SCH2CH2NH), 3.45 (d, 2JPH=21.1 Hz, 2H, PCH2CO), 

4.00–4.05 (m, 4H, 2 × OCH2CH3), 7.99 (t, 3J=5.1 Hz, 1H, NHCOCH3); 13C NMR (125 

M  , [D6]DMSO) δ 16.21, 16.26 (2 × OCH2CH3), 22.62 (NHCOCH3), 28.81 

(SCH2CH2NH), 38.17 (SCH2CH2NH), 42.23 (d, 1JPC=127 Hz, PCH2CO), 62.17, 62.22 

(2 × OCH2CH3) 169.38 (NHCOCH3), 190.31 (d, 2JPC = 6.7 Hz, PCH2CO). 
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3.18.5 (E)-S-2-Acetamidoethyl 4-(tert-butyloxycarbonylamino)but-2-enethioate (12) 

 

Compound 11 (0.13 g, 0.44 mmol) was dissolved in THF (20 mL). Sodium hydride 

(18 mg (60 % in mineral oil), 0.45 mmol) was added, and the resulting reaction 

mixture was stirred at -10 °C for 30 min. N-(tert-Butyloxycarbonyl)glycinal (70 mg, 

0.44 mmol) was added, and it was stirred for 1 h at -10 °C. TLC was used for reaction 

control. THF was removed, and the resulting residue was extracted with ethyl acetate 

(3 × 30 mL). The combined organic layers were washed with brine (30 mL) and 

concentrated in vacuo. The precipitated white solid was filtered off. The crude oily 

product was purified by column chromatography using ethyl acetate as eluent to 

obtain 12 as an oily product (40.0 mg, 30 %). 1H NMR (500 M  , [D6]DMSO) δ 1.38 (s, 

9H, C(CH3)3), 1.78 (s, 3H, NHCOCH3), 2.96 (t, 3J=6.8 Hz, 2H, SCH2CH2NH), 3.18 (app. q, 

3J=6.0 Hz 2H, SCH2CH2NH) 3.74 (bs, 2H, NHCH2CH=CH), 6.17 (dt, 3J=15.7 Hz, 4J=1.8 Hz, 

1H, NHCH2CH=CH), 6.77 (dt, 3J=15.7 Hz, 3J=4.6 Hz, 1H, NHCH2CH=CH), 7.16 (bs, 1H, 

NHCH2CH=CH), 8.02 (t, 3J=5.4 Hz, 1H, SCH2CH2NH); 13C NMR (125 M  , [D6]DMSO) δ 

22.61 (NHCOCH3), 28.12 (SCH2CH2NH), 28.29 (C(CH3)3), 38.27 (SCH2CH2NH), 40.81 

(NHCH2CH=CH), 78.22 (C(CH3)3), 127.10 (NHCH2CH=CH), 143.40 (NHCH2CH=CH), 

155.63 (OCONH), 169.36 (NHCOCH3), 188.69 (CHCOS). 
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3.18.6  (E)-S-2-Acetamidoethyl 4-(methoxycarbonylamino)but-2-enethioate (1) 

 

Compound 12 (30 mg, 0.099 mmol) was dissolved in CH2Cl2 (30 mL), treated with TFA 

(5.0 mL) and stirred 30 min at 0 °C. The solvent was evaporated under reduced 

pressure and the oily residue (compound 13) was dissolved in 20 mL dry THF. TEA 

(40 mg, 0.40 mmol) and methyl chloroformate (37 mg, 0.39 mmol) were added, and it 

was stirred for 2 h at 0 °C. THF was removed. The oily residue was treated with H2O 

and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were 

washed with brine (30 mL) and concentrated in vacuo. The crude oily product was 

purified by column chromatography using ethyl acetate as eluent to obtain 1 as an 

oily product (15 mg, 58 % from 12). 1H NMR (500 M  , [D4]MeO ) δ 1.96 (s, 3 , 

NHCOCH3), 3.11 (t, 3J=6.6 Hz, 2H, SCH2CH2NH), 3.38 (t, 3J=6.6 Hz, 2H, SCH2CH2NH), 

3.70 (s, 3H, CH3OCONH), 3.92–3.93 (m, 2H, NHCH2CH=CH), 6.27 (dt, 3J=15.5 Hz, 

4J=1.6 Hz, 1H, NHCH2CH=CH), 6.90 (dt, 3J=15.5 Hz, 3J=4.7 Hz, 1H, NHCH2CH=CH); 13C 

NMR (75.4 M  , [D4]MeO ) δ 22.46 (N COCH3), 29.03 (SCH2CH2NH) 40.12 

(SCH2CH2NH), 42.32 (NHCH2CH=CH), 52.71 (CH3OCONH), 128.61 (NHCH2CH=CH), 

143.13 (NHCH2CH=CH), 159.44 (OCONH), 173.46 (NHCOCH3), 190.60 (CHCOS). LC-

MS(ESI) (90 % H2O to 100 % MeOH in 10 min, then 100 % MeOH to 20 min, DAD 

220.0–400.0 nm) tr=6.52, 97 % purity, m/z=261.34 ([M + H]+). 
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4 Results 

4.1 Corallopyronin A and its biosynthesis: An overview 

Corallopyronin A (scheme 4-1) is a myxobacterial compound which was isolated in the 

lab of Prof. Dr. König from the strain Corallococcus coralloides B035. Its potent 

antibacterial activity, e.g. against Staphylococcus aureus, including methicillin-

resistant strains was shown by MIC values of 0.25 µg/mL (Irschik et al., 1985; Jansen 

et al., 1985). Recently, it was shown that it possesses also superior in vivo 

antimicrobial activity against Wolbachia (Schäberle et al., 2014b; Schiefer et al., 

2012). Corallopyronin A is currently in the focus of a translational project, attempting 

to establish this molecule as a new antibiotic drug. 

Feeding experiments with 13C-labeled precursors resulted in the deduction of its 

biosynthetic building blocks and led to the conclusion that corallopyronin A originates 

from two separate chains. The western chain is solely PKS- and the eastern chain is 

PKS/NRPS derived. Both are interconnected by Claisen condensation and subsequent 

lactonisation, resulting in the characteristic pyrone ring (Erol et al., 2010; Kohl et al., 

1984) (scheme 4-1). The western side chain contains beside several double-bonds 

two acetate derived methyl groups (C-26 and C-21), one SAM derived methyl group 

(C-17), and one hydroxyl function. The biosynthetic origin of the latter is not proven, 

yet. Possibly, it is a result of a post-PKS modification with involvement of the putative 

cytochrome P450 acting protein CorO. Responsible for the incorporation of the 

methyl groups (C-26 and C-21) in the western chain is a β-branching cassette encoded 

in the gene cluster. Characteristics of the eastern chain are beside the SAM originated 

methyl group, the unusual vinyl carbamate functionality. Feeding studies with 13C 

labeled sodium bicarbonate gave the assumption that carbonic acid and SAM are 

constituent parts of that moiety (Erol et al., 2010). Further studies in our lab could 

prove hydrogen carbonate to be the starter unit in corallopyronin A biosynthesis. In 

vitro experiments with the heterologously expressed O-methyltransferase (CorH) 

showed that a hydrogen carbonate precursor was methylated SAM dependent. 

Further, this methylated hydrogen carbonate could be attached to the heterologously 

expressed first carrier protein CorI ACP1 of the loading module (Schäberle et al., 
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2013) (figure 4-1). Completion of the vinyl carbamate moiety takes place by the A-

domain mediated incorporation of the amino acid glycine. 

 

 

 

 

 

Scheme 4-1. Corallopyronin A. A myxobacterial compound derived from a PKS/NRPS 

machinery. Bold carbon bonds represent acetate units incorporated by feeding 13C-

labeled acetate. C-16 and C-21 were also acetate derived, since labelling occurred 

when 1,2-13C-acetate was fed. Feeding of methyl-13C-methionine resulted in the 13C 

marked methyl groups C-8, C-14 and C-17, indicating a SAM depended methylation. 

Feeding of 1-13C-glycine resulted in a labelled carbon C-11, whereas feeding of 2-13C, 

15N-glycine labelled C-12 and the adjacent amino group. 

 

 

 

 

 

 

 

 

 

Figure 4-1. Highlighted step in the biosynthesis of corallopyronin A. The O-

methyltransferase CorH catalysed the methylation of carbonate by SAM resulting 

methylated carbonate. Methylcarbonate acts as starter molecule in corallopyronin A 

biosynthesis and was loaded onto CorI ACP1 of the loading module of the trans-

PKS/NRPS assembly line (Schäberle et al., 2013). 
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Findings concerning the biosynthesis of corallopyronin A from feeding studies could 

be confirmed by in silico elucidation of the biosynthetic gene cluster. The latter also 

allowed to understand the biosynthetic process in more detail (Erol et al., 2010). The 

putative biosynthetic gene cluster is 65 kbp large and consists of the 16 open reading 

frames corA–corO, whereas one open reading frame (orf1) could not be attributed to 

a specific step in the biosynthesis. 

The cluster starts with corA encoding for a trans-acyltransferase (trans-AT) and a 

trans-enoylreductase (ER). The stand-alone domain trans-AT serves malonyl-CoA 

extender units to the ketosynthases (KS) of every module. Whereas the trans-ER 

stand-alone domain is responsible for the reduction of carbon-carbon double-bonds 

to single-bonds. Cis-acting ER domains are totally missing in this cluster. Another 

“stand-alone” protein is CorB, which has ketosynthase ( S) properties and seems to 

be involved in the final chain connection between the eastern and the western chain 

by a Claisen-type condensation. Further investigations in CorB are currently ongoing 

in our lab. The proteins encoded by the genes corCDEFG appear to form a functional 

unit containing an acyl-carrier protein (ACP), a KS, a HMG-CoA-synthase (HCS) and a 

decarboxylase (ECH) and an isomerase (ECH). That unit is named “β-branching 

cassette” because it mediates an aldol addition of an acetyl group onto a β-keto 

moiety of a growing PKS chain with subsequent dehydration and decarboxylation to 

give the methyl branches C-21 and C-26. Further downstream, corH encodes for the 

O-methyltransferase (O-MT) CorH, which was already mentioned in connection with 

the methylation of hydrogen bicarbonate to give the starter unit of the eastern chain 

of corallopyronin A (s.a.). Constitutive domains for the assembly of the eastern and 

the western chain are organized on six and seven modules, respectively, which are 

encoded by the genes corI, corJ and cork, corL. Finally CorM, CorN and CorO process 

the two chains in post-PKS modifications to gain corallopyronin A. CorM with its 

thioesterase activity likely acts in cooperation with CorB to form pre-corallopyonin A. 

CorN belongs to the crotonyl/enoyl CoA hydratase superfamily, which is also known 

to contain isomerases and may be involved in the double-bond shift from Δ24,25 to 

Δ25,27. CorO shows similarities to cytochrome P450 enzymes and may catalyze the 

final hydroxylation at C-24 and therewith complete the biosynthesis of corallopyronin 

A (figure 4-2) (Erol et al., 2010).  
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Figure 4-2. Complete corallopyronin A gene cluster and the hypothetical biosynthetic 

pathway. A: adenylation domain; ACP: acyl-carrier protein; AT: acyltransferase; DH: 

dehydratase domain; KR: ketoreductase domain; KS: ketosynthase domain; MT: 

methyltransferase domain. KS0: inactive KS; AT*, ACP* and KR* are presumably 

inactive due to mutations. DH*: putative “shift domain”. Methyl groups introduced by 

the β-branching cassette are marked with an asterisk. Figure is modified after Erol et 

al. 2010.  
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4.2 Attemps to prove the putative biosynthetic gene cluster of coralloyronin A 

In the beginning of this thesis in 2009 it was envisaged to prove the still putative 

biosynthetic gene cluster of corallopyronin A. To do this, two approaches were 

planned to be exploited: first, a knock-out or disruption of a gene related to the 

respective biosynthesis in the producer strain Corallococcus coralloides B035 and 

second, expression of parts of the gene cluster (corA–corJ) in the heterologous host 

Pseudomonas putida KT2440. The basis of these molecular biological strategies was a 

cosmid library of the genome of C. coralloides B035, which was established by Erol et 

al. during their investigation relating to the early work on the biosynthetic cluster of 

corallopyronin A. During the latter study they found cosmid FJ7 to contain 39 kbp 

sequence information putatively related to the biosynthesis of corallopyronin A, 

namely the genes corA–corJ (Erol et al., 2010).  

The first experiments aimed to disrupt the trans-acyltransferase (AT) coding 

sequences within the gene corA in the host strain C. coralloides B035. Therefore the 

gene sequence of the trans-AT was replaced by a streptomycin resistance cassette 

(aadA) in cosmid FJ7 using the lambda-red recombineering technique (figure 4-3 A, B) 

(Gust et al., 2003). Analogously the recombinant cosmid FJ7 AT::aac(3)IV containing 

an apramycin resistance cassette was prepared with the same purpose. Subsequently 

the producer strain C. coralloides B035 was transformed with the generated construct 

e.g. FJ7 AT::aadA with was inteneted to recombine homologously with the 

corallopyronin A gene cluster in the host strain (figure 4-3 B, C). A disruption of the 

trans-AT locus in corA in C. coralloides B035 would result in a mutated strain which 

could not produce corallopyronin A anymore. A lack of corallopyronin A production 

might have been detected via LCMS of the extracts of the bacterial cells. All efforts to 

gain a knock-out mutant of the producer strain, however, failed so far. The crucial 

point seemed to be the transformation of C. coralloides cells by electroporation, 

which has been described in literature as a successful method for transformation of 

myxobacteria (Magrini et al., 1998; Simunovic and Müller, 2007b). In the meantime, 

in 2013, Sucipto et al. published the evidence of the putative biosynthetic gene 

cluster of the antibiotic myxopyronin A, closely related to corallopyonin A, by gene 

deletion experiments in the producer strain Myxococcus fulvus Mx f50 (Sucipto et al., 

2013).  
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Figure 4-3. Strategy for the disruption of the trans-AT domain encoding sequence in 

corA in Corallococcus coralloides B038. A) A gene replacement cassette containing the 

streptomycin resistance gene aadA was amplified by PCR with primers containing 39-

nt 5’ homology extensions (marked orange) matching the sequence of the trans-AT 

sequence inside the target gene corA. The PCR fragment was used to transform E.coli 

BW25113/pIJ790 harbouring the cosmid FJ7. B) Streptomycin resistant transformants 

were selected and the recombinant cosmid FJ7 AT::aadA was identified via PCR and 

restriction analysis. C) C. coralloides B038 was transformed with cosmid FJ7 AT::aadA 

by electroporation. Homologous recombination should occur between cosmid and 

genomic DNA. Positive transformants would have been selected due to their 

streptomycin resistance. Primer sequences are depicted in the appendix (table 8-1). 
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As a second strategy it was envisaged to express the assembly line (corA-corJ) of the 

eastern chain of corallopyronin A in the heterologous host Pseudomonas putida 

KT2440. Therefore a construct based on the cosmid FJ7 was created. This construct 

was modified by insertion of a pm/xylS expression promoter system, a tetracycline-

resistance gene for selection of positive transformants of P. putida KT2440 and a DNA 

fragment derived from the chromosome of P. putida KT2440 to enable the integration 

of the whole cosmid construct into the heterologous genome by homologous 

recombination (Wenzel et al, 2005). Efforts to introduce the construct 

FJ7 pm/xylS/trpE (54 kb) via electroporation into the heterologous host have failed up 

to now (figure 4-4). 

 

 

 

 

 

 

Figure 4-4. Cosmid construct FJ7 pm/xylS/trpE for heterologous expression of the 

eastern chain of corallopyronin A in the host P. putida KT2440. The biosynthetic genes 

of the corallopyronin A cluster are coloured in gray. The genes introduced into the 

cosmid backbone to prepare the cosmid for expression in the heterologous host are 

coloured in olive. Primer sequences are showm in the appendix (table 8-2). 
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4.3 Double-bond migration in corallopyronin A biosynthesis: investigation of the protein 

CorJ DH*2 

As already mentioned (4.1) corallopyronin A is a compound with an unusual 

biosynthetic pathway (figure 4-2). The focus of this study is on the biosynthetic origin 

of the carbon-carbon double-bond Δ11 which represents a rare β,γ pattern and does 

not match the classical co-linearity rule of PKS/NRPS assembling (Piel, 2010). 

In module two of the biosynthetic gene cluster of corallopyronin A glycine is 

incorporated whose carbonyl functionality is reduced to the corresponding D-hydroxy 

intermediate by the ketoreductase CorI KR. Subsequent dehydration of the D-hydroxy 

moiety occurs mediated by CorI DH and the localization of the resulting trans double-

bond is expected to be in α,β position (Δ10) according to usual PKS/NRPS machinery 

(Alhamadsheh et al., 2007; Wu et al., 2005) (figure 4-5). However, the respective 

double-bond Δ11 in corallopyronin A led to the assumption that the α,β double-bond 

(Δ10) was isomerised to the β,γ position (Δ11) (figure 4-5 and figure 4-6). CorJ DH* was 

supposed to mediate double-bond migration in corallopyronin A assembling and was 

thus termed “shift domain”. 

 

 

 

 

 

 

Figure 4-5. Trans double-bond formation in PKS biosynthesis and DH* mediated 

double-bond isomerisation from the α,β to the β,γ position. DH: dehydratase; DH*: 

shift domain, e.g. CorJ DH* in corallopyronin A biosynthesis. Reduction of D-hydroxy 

intermediates results in a trans double-bond (Wu et al., 2005).  

  

                                                           
2
 Results are published in Lohr et al., 2013; alpha, beta –> beta, gamma, bouble-bond migration in 

corallopyronin A biosynthesis. 
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To get more insights into the origin of the β,γ double-bond of corallopyronin A we 

investigated in the genetic and enzymatic background of the α,β (Δ10) to β,γ (Δ11) 

double-bond shift. Similar cases of shifted double-bonds are known from only a few 

other polyketides, e.g. ansamitocin (Taft et al., 2009), bacillaene (Moldenhauer et al., 

2007, 2010), and rhizoxin (Kusebauch et al., 2010) (scheme 4-2). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4-2. PKS derived compounds bearing α,β to β,γ shifted double-bonds: e.g. 

ansamitocin (Δ10,12 to Δ11,13), bacillaene (Δ2,4,6 to Δ3,5,7), and rhizoxin (Δ8,10 to Δ9,11). 

 

Concerning the polyketide ansamitocin an unusual but functional DH domain was 

assumed to place the conjugated double-bonds Δ10 and Δ11 in β,γ position (Δ11 and 

Δ12, respectively) (Kubota et al., 2006; Spiteller et al., 2003). Feeding the producer 

strain Actinosynnema pretiosum with SNAC esters, representing analogous of the 

respective PKS intermediates, led to conclude that the diene system in β,γ pattern is 

generated during processing of the polyketide chain. It was likewise proposed that 

the β,γ diene moiety occurs during the dehydration step DH mediated on module 3 by 

a vinylogous syn-elimination reaction (Taft et al., 2009). 

Moldenhauer et al. was able to gain the thioesterase (TE) deletion mutant JM1 

(Moldenhauer et al., 2007) of the bacillaene producer strain Bacillus 

amyloliquefaciens CH12 and could thereby analyze late-pathway intermediates of 
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bacillaene. It could be shown that the β,γ double-bond installation of the double-

bonds Δ3 and Δ5 was performed on the same modules that performed the elongation 

of the PKS chain (module 14 and 15, respectively). However, the origin of the third 

double-bond Δ7of the triene system, introduced on module 16, could not be figured 

out clearly. In that respect the authors consider a α,β to β,γ isomerisation by module 

16, including the shift domain BaeR DH*, as alternative to β,γ desaturation as 

demonstrated for module 14 and 15 (Moldenhauer et al., 2010). 

In the biosynthesis of the PKS/NRPS derived compound rhizoxin both mechanisms 

could be evidenced to give the β,γ diene moieties Δ11 and Δ9. The first unsaturation 

Δ11 is introduced simultaneously to the double-bond shift in module 7 of the 

biosynthetic gene cluster which corresponds to a formal β,γ dehydration. Regarding 

double-bond Δ9 it was shown that first elongation of the nascent polyketide chain 

takes place and second a distinct “shift module” (module 9) downstream mediates 

the double-bond migration resulting in a β,γ double-bond (Δ9). The corresponding 

shift domain appeared to be the protein RhiE DH* (Kusebauch et al., 2010). 

For the β,γ double-bond Δ11 in corallopyronin A we proposed a similar process as 

shown for double-bond Δ9 in the rhizoxin pathway. We proposed a distinct domain in 

the assembly line performing the double-bond shift. Therefore, this study mainly 

focuses on module 3 of the biosynthetic gene cluster of corallopyronin A which 

consists of a ketosynthase (CorI KS), an unusual dehydratase (CorJ DH*) and an acyl-

carrier protein (CorJ ACP) (figure 4-6). A peculiarity of module 3 is that it is encoded 

on two genes, subdividing the domains of one module from each other, and is 

therefore named “split module” (Silakowski et al., 2001). So that the KS domain is 

localized on the protein CorI and the domains DH* and ACP are part of the protein 

CorJ (figure 4-6). The ketosynthase CorI KS is assumed to be inactive, despite of the 

presence of a catalytic triad (Erol et al., 2010), that means no elongation occurs of the 

nascent PKS chain in module 3. The further investigations ignore the role of CorI KS 

and focus on the functional role of CorJ DH* and the corresponding carrier protein 

CorJ ACP. 
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Figure 4-6. Part of the corallopyronin A biosynthetic gene cluster with the focus on 

the double-bond shift performed by the “shift module” (marked in orange). Module 3 

consist of a ketosynthase (KS), a putative shift domain (DH*) and an acyl-carrier 

protein (ACP) encoded by the genes corI and corJ, respectively. 

 

Comparison of CorJ DH* to other shift domains (DH*) and to a dehydratase domain 

(DH). To classify the putative corallopyronin A shift domain (CorJ DH*) its protein 

sequence was compared with a classical dehydratase domain (EryAII DH) and with 

two known shift domains (RhiE DH*, BaeR-DH*) and with one suspected shift domain 

(DifK DH*). For bioinformatic analysis multiple sequence alignment using ClustalW 

was performed with the amino acid sequences of CorJ DH* (Erol et al., 2010), RhiE 

DH* (Kusebauch et al., 2010), BaeR-DH* (Moldenhauer et al., 2010) and DifK DH* 

(Chen et al., 2006). The isomerisation activity of RhiE DH* and BaeR DH* had been 

proven indirectly by knock-out experiments of the respective gene locus and 

subsequent analysis of the PKS intermediates of rhizoxin D and bacillaene, 

respectively (as described above) (Kusebauch et al., 2010; Moldenhauer et al., 2007). 

DifK DH* is suspected to be a similar shift domain but detailed insight referring its 

function as double-bond mediating enzyme have not been published, yet (Piel, 2010). 

To depict the differences between shift domains and a classical dehydratase domain 

(EryAII DH), the primary sequence of EryAII DH, derived from the erythromycin 

biosynthesis gene cluster, was included into the alignment (figure 4-7). The amino 

acid sequences compared in the alignment were extracted from the complete 
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proteins CorJ, RhiE, BaeR, DifK and EryAII, respectively (accession numbers see legend 

of figure 4-7). 

For classical DH domains two consensus sequences are reported, the first Hx3Gx4P 

and the second approximately 165 amino acids downstream DxxxQ/H (Akey et al., 

2010). Our alignment clearly showed the deviations of the shift domains RhiE DH*, 

BaeR DH*, DifK DH* and CorJ DH* from the classical DH domain EryAII DH and 

classified CorJ DH* as a putative shift domain. In all of the aligned amino acid 

sequences of the shift domains the second motif DxxxQ/H is missing, which is in 

agreement with the literature (Kusebauch et al., 2010). Additionally, in the case of 

CorJ DH*, the first conserved motif is mutated to Hx3Gx4L, i.e. an exchange of prolin 

(P) by leucin (L) occurred in position 56 compared to the corresponding motif in EryAII 

DH. In CorJ DH* the amino acid aspartat (D211) of the second motif DxxxQ/H is, 

deviating from the other shift domains, present but the whole motif is mutated to 

Dx3V, representing an exchange of histidine (H) or glycine (G) by valine (V215) 

compared to EryAII DH (figure 4-7). 

 

Figure 4-7. Multiple sequence alignment of the amino acid sequences of a 

dehydratase domain (DH) and of shift domains (DH*). The conserved catalytic 

residues for DH domains are highlighted in orange. The corresponding accession 

numbers are ADI59532.1 (CorJ), YP_003748161.1 (RhiE), ABS74065.1 (BaeR), 

CAJ57411.1 (DifK), AAV51821.1 (EryAII). Cons.=consensus sequence. The numbering is 

according to CorJ, RhiE, BaeR, DifK and EryAII. 
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4.4 In vitro assays envisaged to investigate the functional role of CorJ DH* 

To prove the functionality of CorJ DH* as a double-bond migration catalyzing protein, two 

enzyme assays were planned to be established by which the isomerisation of the respective 

carbon-carbon double-bond could be traced. The first assay (4.7.1) was to base on a mass 

spectrometric tracing of the CorJ DH* mediated double-bond shift of an ACP-bound 

substrate (2). The second assay (4.7.2) was to rely on a comparison between the NMR 

spectra of (i) the educt (substrate of CorJ DH*, 1), (ii) the reference compound 7 containing a 

double-bond in β,γ pattern and (iii) of the reaction product of the assay with CorJ DH* and 1. 

Both assays require the heterologously expressed proteins involved in the Δ10,11
Δ11,12 

double-bond shift in corallopyronin A biosynthesis: the suspected shift domain CorJ DH* and 

its corresponding carrier protein CorJ ACP. CorJ DH* and CorJ ACP were planned to be 

expressed as individual domains, as well as a didomain CorJ DH*-ACP which closely 

resembled the natural arrangement. The didomain CorJ DH*-ACP was envisaged to be 

expressed as well in its holo form (CorJ DH* holo-ACP) using E. coli Bap-1 cells as in its apo 

form (CorJ DH* apo-ACP) feasible due to expression in the standard expression host E. coli 

BL21. CorJ DH*holo-ACP should be applied in the first in vitro assay with subsequent mass 

spectroscopic analysis, whereas CorJ DH*apo-ACP thought to be used in the second in vitro 

assay followed by an NMR based analysis. 

Furthermore, there was the need of a suitable substrate for CorJ DH*. On the one 

hand it should be an analogue of the respective intermediate of corallopyronin A 

biosynthesis, and on the other hand it should be able to be transferrable to the 

phosphopantetheine residue of the CorJ holo-ACP domain. In order to fulfil the latter 

requirement a N-acetylcysteamine (SNAC) thioester analogue of the respective 

biosynthetic intermediate of corallopyronin A was synthesised (1; figure 4-14 and 

scheme 4-5). 
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4.5 Heterologous expression of CorJ DH*-ACP, CorJ DH* and CorJ ACP 

The DNA of cosmid FJ7 was used for amplification of the respective primary sequence 

of the proteins. The generation of the cosmid library of C. coralloides B035 is 

described in Erol et al., 2010. In order to obtain the expression construct for the CorJ 

DH*-ACP didomain a segment harbouring the start of corJ was amplified with the 

primer pair (8.1, table 8-3) CorJ_start/ corJ_end_ACP yielding a fragment of 1227 bp. 

The corresponding coding sequence of the CorJ ACP and of the single shift domain 

CorJ DH* were amplified as well. Here the primer pairs ACP_1_upstream/ 

corJ_end_ACP and corJ_start/ DH_shift_neu were used to obtain a fragment of 

309 bp and 736 bp, respectively. Each fragment was ligated into the cloning vector 

pGEM-T (Promega) and checked for identity by sequencing with standard primers 

(SP6 and T7). From this plasmid the desired fragment was cut out using the restriction 

sites EcoRI/HindIII, which were introduced beforehand by the primers used. The 

fragment was ligated in the likewise restricted expression vector pET28a which links 

the protein to an N-terminal 6x His-tag upon expression. After ligation E. coli XL1 Blue 

cells were transformed with the ligation mixture and plated on LB supplemented with 

kanamycin for selection. After identifying positive clones by plasmid isolation and test 

restriction the corresponding plasmid was isolated and transferred into the respective 

expression host. Cloning and transformation procedures were applied according to 

described methods (3.11.1) (figure 4-8). Respective protein sequences are depicted in 

the appendix 8.2. 
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Figure 4-8. Preparation of corJ DH*-ACP, corJ DH* and corJ ACP for heterologous 

expression in E. coli Bap-1. Comsid FJ7 served as template for amplification of 

respective DNA fragments which were ligated into pGEMT vector. Following 

restriction with EcoRI and HindIII allowed ligation into the pet28a vector. E. coli Bap-1 

cells were transformed with the pet28a constructs, respectively, for heterologous 

expression of the proteins CorJ DH*-ACP, CorJ DH* and CorJ ACP. 

 

The heterologous host. As heterologous host E. coli strains Bap-1 and BL21 were 

applied. Using the pre-engineered E. coli strain Bap-1 enabled the heterologous 

expression of the proteins CorJ (DH*-) ACP as holo-enzymes, since this strain carries a 

genomic copy of the Bacillus subtilis gene sfp, coding for a promiscuous 

phosphopantetheinyl transferase (figure 4-9) (Quadri et al., 1998). For the expression 
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of the single shift domain CorJ DH* and of the didomain CorJ DH*-ACP, 

predetermined for the NMR based assay, the standard expression strain E. coli BL21 

was chosen as heterologous host. 

 

 

 

 

 

 

 

 

 

 

Figure 4-9. Schematic representation of the phosphopantetheinylation of an acyl-

carrier protein (ACP) by the phosphopantetheine transferase (PPTase) Sfp. Modified 

after Quadri et al., 1998. 

 

Protein purification. The individual proteins CorJ DH*, CorJ ACP and the didomain 

CorJ DH*-ACP were purified based on their attached his-tags via affinity 

chromatography on Ni-NTA columns according to the described protocol (3.13.3). For 

elution of the protein from the Ni-NTA columns five elution steps with increasing 

imidazole concentrations were used. Figure 4-10 exemplary shows a SDS-page picture 

of the purified fractions of the heterolgously expressed CorJ DH*-ACP protein. Elution 

fractions 1–5 were pooled, concentrated, re-buffered in Tris buffer (pH8) and used for 

subsequent assays. Figure 4-11 presents the purified proteins CorJ ACP, CorJ DH*, and 

CorJ DH*-ACP on a SDS-page. The protein concentration was determined by UV 

spectroscopy in a nanodop spectrophotometer and gave the following 

concentrations: CorJ DH*: 4.35 µg/µL, CorJ ACP: 3.04 µg/µL, CorJ DH*holo-ACP: 

19.09 µg/µL and CorJ DH*apo-ACP: 19.73 µg/µL. 
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Figure 4-10. Purification of CorJ DH*holo-ACP (46.7 kDa) by affinity chromatography 

on Ni-NTA column. SDS gel shows the fractions of the purification steps: FT (flow 

through; W1 (wash 1, 20 mM imidazole); W2 (wash 2, 40 mM imidazole); E1–5 

(elution 1–5, 100–300 mM imidazole); M (size marker). 

 

 

 

 

 

 

 

 

Figure 4-11. SDS-page of the proteins A) CorJ ACP; B) CorJ DH*; C) CorI KS (not further 

mentioned in this study) and D) CorJ DH*holo-ACP; M (size marker). 
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4.5.1 Single amino acid exchange in the shift domain CorJ DH*  

An alignment of the primary sequence of shift domains CorJ DH*, RhiE DH*, Bae DH* 

and DifK DH* with the ordinary dehydratase domain EryAII DH (figure 4-7) showed 

that the histidine residue of the motife Hx3Gx4L is highly conserved within DH and 

DH* and seems to be part of the active site residue of these enzymes. The alignment 

revealed as well that the aspartic acid D211 of CorJ DH* of the motife Dx3Q/H is likely 

to be involved in the double-bond shift in corallopyronin A biosynthesis. Its potential 

role could be the accepting of the proton released from the γ-position. The respective 

motives in the protein sequence of the compared shift domains RhiE, BaeR and DifK 

showed the amino acid asparagine (N) instead of aspartic acid (D), which deviates 

from the motife Dx3Q/H found in the shift domain CorJ DH*. To prove the 

involvement of the conserved histidine residue (His47) in CorJ DH* a mutational 

exchange to alanine (CorJ DH*H47A) was performed. Likewise, to investigate the 

functional role of aspartic acid (D) and asparagine (N), a point mutational exchange of 

aspartic acid to asparagine was approached (CorJ DH*D211N). Both point mutants 

were expressed in E. coli Bap-1 cells as a didiomain containing the adjacent ACP in 

holo form. 

 

Heterologous expression of the active site mutants CorJ DH*H47A holo-ACP and 

CorJ DH*D211N holo-ACP. To achieve the envisaged amino acid exchanges in the 

active site of CorJ DH*, to give the active side mutants CorJ DH*H47A and CorJ 

DH*D211N, respective point mutations were introduced into the primary sequence 

coding for CorJ DH* by two-step sequential PCR (3.12.2). For each amino acid 

exchange (H47A and D211N) two primers were designed carrying the point mutation 

translated into its DNA code. In a first round the point mutation was introduced into 

the two amplified fragments using (i) the forward primer CorJ_start and the reverse 

primer carrying the sequence coding for the amino acid exchange (H47A_rev and 

D211N_rev, respectively), and (ii) the forward primer carrying the sequence coding 

for the amino acid exchange (H47A_for and D211N_for, respectively) and the reverse 

primer corJ_end_ACP (figure 4-12 A). The two fragments obtained by the first round 

of PCRs (160 bp and 1089 bp) served as templates for the second PCR (figure 4-12 B). 

First 10 cycles were performed without primers in the sample, then the primers 
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CorJ_start and corJ_end_ACP were added, and 20 further cycles were performed 

(figure 4-12 C). Primers used for the D211N exchange were D211N_for and 

D211N_rev, respectively; primers used for the H47A exchange were H47A_for and 

H47A_rev, respectively. The fragments (1227 bp) obtained by the second round of 

PCR were ligated into pGEMT vector, and the succesfull cloning was proven by 

sequencing. Restriction and ligation into the expression vector pET28a was performed 

as described above for the wild type protein (4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12. Principle of a sequential PCR procedure. A) two separate PCR reaction 

were performed with the primer pairs corJ_start/ H47A_rev and H47A_for/ 

corJ_end_ACP (analogously performed with primers D211N_rev and D211N_for). B) 

The resulted PCR fragments were purified, mixed and subjected to 10 PCR cycles 
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before the primer pair corJ_start/ corJ_end_ACP was added to the PCR reaction. 

Subsequent 20 PCR cylces yielded DNA fragments shown in C. Depending on which 

primer pair (H47A_rev/ H47A_for or D211N_rev/ D211N_for) was used in the first 

PCR either a point mutation encoding for the amino acid alanine (A) or asparagines 

(N) was introduced into the DNA fragment. Highlighted in yellow: site of point 

mutational modification. 

 

Likewise, E. coli Bap-1 was chosen as heterologous host for over-expression of the 

mutated didomains CorJ DH*H47A holo-ACP and CorJ DH*D211N holo-ACP. 

Conditions and purification procedures stayed the same as for the wild type proteins, 

decribed above. Figure 4-13 presents a picture of the SDS gel with the purified 

fractions of DH*H47A-ACP and CorJ DH*D211N-ACP. Elution fractions 1–5 were 

pooled, re-buffered into Tris (pH8) and assays were performed directly afterwards to 

avoid loss of activity. The protein concentration was determined using a nanodrop 

spectrophotometer and gave the following concentration: CorJ DH*H47A holo-ACP: 

8.42 µg/µL, CorJ DH*D211N holo-ACP: 8.73 µg/µL. 

 

 

 

 

 

 

 

Figure 4-13. Purification of CorJ DH*H47A holo-ACP and CorJ DH*D211N holo-ACP 

(46.7 kDa) by affinity chromatography on Ni-NTA column. SDS Gel shows fraction of 

purification steps: FT (flow through); W1 (wash 1, 20 mM imidazole); E1–5 (elution 1–

5, 100–300 mM imidazole); M (size marker).  



Results 

91 | 

4.6 Syntheses of the N-acetylcysteamine (SNAC) activated substrate for the shift domain 

CorJ DH* 

 

 

 

 

Figure 4-14. N-acetylcysteamine activated substrate 1 for the shift domain (CorJ DH*) 

and ACP-bound intermediate 2 of the corallopyronin A biosynthetic pathway.  

 

The substrate suitable for assaying the shift domain CorJ DH* should be an analogue 

to the corresponding molecule in the assembly line of corallopyronin A (figure 4-14). 

As well, the substrate was planned to be synthesized as an activated acyl-thioester to 

facilitate loading onto the phosphopantetheine (ppant) arm of the acyl-carrier protein 

(ACP). 

Polyketide synthases (PKS) normally utilize acyl-coenzmye A (CoA) precursors 

(Hertweck, 2009), but here we chose to use a shorter sulfhydryl substance such as N-

acetylcysteamine (SNAC), analogue to the acceptor terminal portion of CoASH (Arora 

et al., 2005). Acyl-SNAC substrates have been used successfully in several enzyme 

assays with the aim to elucidate dehydratase reactions, e.g. dehydratase domains of 

the ansamitocin, the borrelidin and the nachangmycin biosynthesis cluster (Guo et al., 

2010; Taft et al., 2009; Vergnolle et al., 2011). 
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4.6.1 Synthesis of compound 7 

The first approach to obtain 1 yielded in compound 7, which represents the isomer of 

1 with the double-bond in β,γ position (scheme 4-3). 

In the first reaction step crotonic acid 3 was converted into the corresponding 4-

bromocrotonic acid 4 via a radical mechanism using the radical forming agent 

azobisisobutyronitrile (AIBN) and N-bromosuccinimide (NBS). After recrystallisation 

from a mixture of petroleum ether and ethylacetate compound 4 was obtained 

(43 %). In the following step the bromine residue was replaced by an amino moiety 

using aqueous ammonia to yield 10 % of 4-aminocrotonic acid (5) after purification 

using a cation exchange resin. The conversion of the amino functionality to a 

carbamate moiety was performed under basic conditions using methyl chloroformate 

to give 4-methoxycarbonylaminobut 2-enoic acid (6) in yields of about 74 %. The 

analytical data of the compounds 4 and 5 were in accordance with data from 

literature (Höfling et al., 2008). It has to be mentioned that compounds 3–6 are 

commercial available, however due to the need of greater amounts it was preferred 

to synthesise them by ourselves. Finally, a coupling of 6 with N-acetylcysteamine 

(SNAC) via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/4-

Dimethylaminopyridine (DMAP) standard procedure (Neises and Steglich, 1978) 

should have resulted in the desired substrate 1. However, a mixture of different 

products was obtained from which compound 7 was isolated. 
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Scheme 4-3. Synthesis of 7. Reagents and conditions: a) NBS, AIBN, CCl4, 95 °C; b) 

25 % aq. NH3, rt; c) ClCO2Me, dioxane/H2O, NaHCO3, rt; d) EDC, DMAP, 1 eq. N-

acetylcysteamine, DCM, rt. 

 

Isolation and identification of compound 7. The reaction mixture was purified by 

column chromatography on silica gel using ethyl acetate as eluent to obtain 7 (6 mg, 

1.7 %). A subsequent recorded LC-MS chromatogram showed two separated peaks 

with a retention time of 10.4 and 10.7 min and a mass to charge ratio of 261 (M+H) 

(LC-MS chromatogram and MS traces in appendix figure 8-6). According to that 

finding it was supposed to obtain compound 1 and 7 after separation on a HPLC 

column under analogous conditions. However, separation merely yielded compound 

7 (>1 mg) (column: Waters RP C18 Atlantis; solvent: linear gradient from 95 % water 

to 100 % ACN in 45 min, flow: 1 mL/min). 

1D and 2D NMR experiments were performed to elucidate the structure of the 

isolated compound. Characteristic resonances for a methoxy group at δ 3.73 ppm (C-

6’) and an acetyl methyl group at δ 1.95 ppm (C-4) could be detected in the 1H NMR. 

Also two proton resonances were found at δ 5.17 ppm (C-3’) and δ 6.62 ppm (C-4’), 

for which a coupling constant of 14.3 Hz suggested a trans configuration. 1H-1H COSY 

correlations between both H-4’ (δ=2.29) and H-3’(δ=5.17) with H-2’ (δ=3.27) 

confirmed the structure of the western part the molecule, whereas cross-coupling 
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between H-1 (δ=3.03) and H-2 (δ=3.35) verified the eastern part of the molecule, 

shown in scheme 4-3 compound 7 (table 4-1). Spectra shown in appendix figure 8-4 

and 8-5. 

 

Table 4-1. 1D and 2D NMR spectroscopic data of compound 7. a [D4]MeOH, 300 MHz 

Position δH
a (J in Hz) COSYa 

1 3.03 (2H, t, 6.6) 2 

2 3.35 (2H, t, 6.6) 1 

4 1.95 (3H, s)  

2’ 3.35 (2H, d, 7.3) 3´, 4´ 

3’ 5.17 (1H, dt, 14.3, 7.3) 4´, 2´ 

4’ 6.62 (1H, d, 14.3) 3´, 2´ 

6’ 3.73 (3H, s)  

 

 

4.6.2 Synthesis of compound 8 

In order to obtain compound 1 the same approach as described in 4.6.1 was applied 

using the double amount of SNAC. Thin layer chromatography was performed and 

again revealed a mixture of reaction products. Subsequent separation of the mixture 

was performed by HPLC (column: Waters C18 Atlantis; solvent: isocratic MeOH/H2O 

(80/20), flow: 1 mL/min, 60 min) and gave compound 8 (3 mg, 1.5 %). Other 

compounds could not be isolated and determined out of that mixture (scheme 4-4). 
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Scheme 4-4. Synthesis of 8. Reagents and conditions: a) NBS, AIBN, CCl4, 95 °C; b) 

25 % aq. NH3, rt; c) ClCO2Me, dioxane/H2O, NaHCO3, rt; d) EDC, DMAP, 2 eq. N-

acetylcysteamine, DCM, rt. 

 

Analytical characterization was done by LC-MS/ESI experiments (column: 

Phenomenex Luna® 3 µm C18(2); linear gradient from 90 % H2O to 100 % MeOH in 

10 min, then 100 % MeOH to 20 min, DAD 220.0–400.0 nm). In the positive mode a 

signal with the m/z 380 could be detected, which vanished in the negative mode 

where two signals with m/z 118 and m/z 259 occurred instead. The first signal 

matches with the mass of a SNAC ion and the latter to a fragment with the same mass 

to charge ratio as compound 1 or 7. Hence, the assumption came up that the isolated 

compound was the corresponding Michael adduct to the envisaged substrate 1 

(figure 4-15). 
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Figure 4-15. ESI-MS experiment of isolated compound 8. Positive mode (+Q): m/z 

380.2 ([M+H]+) representing the Michael adduct 8; Negative mode (-Q): m/z 118.1 

([M-H]-) and m/z 259.2 ([M-H]-) correlating with the fragmentation of 8 to N-

acetylsteamine (SNAC) and an ion with the same m/z value as compound 1 or 7. 

 

Further characterization of the obtained product was performed via 1D and 2D NMR 

experiments (table 4-2, spectra shown in appendix figure 8-7, 8-8, 8-9, 8-10, 8-11). 

The 1H NMR spectrum showed characteristic resonances for a methoxy group at δ 

3.68 ppm (C-1,) and two sharp signals at δ 1.96  and 1.98 ppm for two acetylic methyl 

groups (C-10 and C-14), the latter indicating a double addition of SNAC to the 

precursor molecule 6. In the 13C NMR spectrum resonances for 14 carbon were 
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present, which can be grouped into three methyl groups, six methylene groups, one 

methine and four quaternary carbons, as was deduced from distortionless 

enhancement by polarization transfer (DEPT) measurement. Two of the four 

quaternary carbons were attributed to be involved in carbonyl functional groups (C-9, 

δ=173.5 and C-13, δ=173.4). 13C NMR resonances for the other two quaternary 

carbons C-2 (δ=159.6) and C-6 (δ=198.3) indicated them to be involved in a 

carbamate functional group and in a thioester, respectively. Assignment of all protons 

to their directly bonded carbon atoms was done by 1H-13C HSQC data. The long range 

HMBC correlations between H-11 (δ=2.74) and C-4 (δ=43.2) and between H4 

(δ=3.28), H-5a/b (δ=2.29, δ=2.78) and H-7 (δ=3.07 ) and C-6 (δ=198.3) confirmed the 

already suspected addition of two SNAC residues to the double-bond of 6 to form 8. 

These findings were confirmed by 1H-1H COSY correlations between H-4 (δ=3.28) and 

H-5a/b (δ=2.29, δ=2.78), H-7 (δ=3.04) and  -8 (δ=3.38 ) and between H-11(δ=2.74) 

and H-12 (δ=3.39).  

 

Table 4-2. 1D and 2D NMR spectroscopic data of compound 8. a [D4]MeOH, 300 MHz. 

Position δC
a (mult.) δH

a (J in Hz) COSYa HMBCa 

1 52.6, (CH3) 3.68 (3H, s)  2 

2 159.6, (C)    

3 45.7, (CH2) a: 3.36 (1H, m) 
b: 3.27 (1H, m) 

 2 

4 43.2, (CH) 3.28 (1H, m) 5 2, 6 

5 47.9, (CH2) a: 2.29 (1H, dd, 4.8, 15.7) 
b: 2.78 (1H, dd, 8.0, 15.7) 
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1.96 (3H, s) 

 

 9 
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13 173.4, (C)    

14 22.6, (CH3) 1.98 (3H, s)  13 
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4.6.3 Abruzov and Horner-Wittig-Emmons reaction resulted in compound 1 

The synthesis approaches depicted in the chapter 4.6.1 and 4.6.2 were not successful 

in order to obtain the envisaged compound 1. The crucial point seemed to be the 

reactive double-bond in α,β position to the carbonyl moiety, acting as a Michael 

acceptor. Hence, it was planned to introduce the double-bond in the final reaction 

step. Therefore a synthetic route via Arbuzov and Horner-Wittig-Emmons (HWE) 

reactions was performed. 2-Bromoacetic acid 9 was converted into the SNAC 

thioester 10 and then treated with triethyl phosphite to form the corresponding 

Arbuzov product 11, which reacted under strong basic conditions in the presence of 

N-Boc-2-aminoacetaldehyde to form the HWE product 12 (scheme 4-5). Finally, the 

tert-butyloxycarbonyl protecting group was exchanged by a methoxycarbonyl moiety 

to receive the desired SNAC-activated substrate 1. Analytical data of compounds 10–

12 are presented in the appendix in figure 8-12, 8-13, 8-14. 

 

 

 

 

 

 

 

 

 

 

Scheme 4-5. Synthesis of compound 1 via Arbuzov and Horner-Wittig-Emmons 

reactions. Reagents and conditions: a) Et3N, N-acetylcysteamine, THF, rt; b) triethyl 

phosphite, THF, 130 °C, sealed tube; c) NaH, Boc-Gly-H, THF, -10 °C; d) TFA, CH2Cl2, 

0 °C; e) Et3N, ClCO2Me, THF, 0 °C. 

 

Isolation and identification of compound 1. The reaction process described above 

was monitored by TLC chromatography and showed the formation of a main product 

which could be isolated via silica column chromatography using ethylacetat as eluent 



Results 

99 | 

to give the oily compound 1 (15 mg, 0.68 % overall). LC-MS ESI experiments and 1D 

NMR spectroscopy (table 4-3, depicted in appendix figure 8-1 and 8-2) confirmed the 

molecular structure presented in scheme 4-5. 

The 1H NMR showed resonance signals for 14 protons which correlates with the 

molecular structure. The exchangeable protons attached to both nitrogen atoms were 

not detected. The spectrum exhibit a characteristic resonance for a methoxy group at 

δ 3.70 ppm (C-6’) and one sharp signal for the acetylic methyl group δ 1.96 ppm (C-4). 

Two resonance signals at δ 6.90 ppm (C-2’) and δ 6.27 ppm (C-3’) with a coupling 

constant of 15.5 Hz were detected in the 1H NMR spectrum, which indicated a trans 

double-bond in the molecule. Further, two resonance signals were found with a 

chemical shift of δ 3.11 ppm (C-1) and δ 3.38 ppm (C-2) and a coupling constant of 

6.6 Hz which allowed to be attributed to the two methylene moieties of the SNAC 

part of the molecule. The 13C NMR spectrum displayed 10 carbon resonances, which 

could be distinguished into three quaternary carbons, two methine, three methylene 

and two methyl groups. The quaternary carbons could be attributed according to 

their chemical shifts first to the carbonyl  atom C-5’of the urethane group (δ=159.4), 

second to the acetyl carbonyl-carbon C-3 (δ=173.56) and third to the carbonyl C-1’ 

which is part of the thioester (δ=190.6). Due to their characteristics 13C NMR chemical 

shifts both sp2 hybridized C atoms C-2’ (δ=143.1) and C-3’ (δ=128.6) were identified as 

associated with the single olefinic partial structure of the molecule 1 (table 4-3). 

 

Table 4-3. 1D NMR spectroscopic data of compound 1. a [D4]MeOH, 300 MHz 

Position δC
a (mult.) δH

a (J in Hz) 

1 29.0, (CH2) 3.11 (2H, t, 6.6) 

2 40.1, (CH2) 3.38 (2H, t, 6.6) 

3 173.5, (C)  

4 22.5, (CH3) 1.96 (3H, s) 

1’ 190.6, (C)  

2’ 143.1, (CH) 6.90 (1H, d, 15.5) 

3’ 128.6, (CH) 6.27 (1H, dt, 15.5) 

7.3) 4’ 42.3, (CH2) 3.93 (2H, m) 

5’ 159.4, (C)  

6’ 52.7, (CH3) 3.70 (3H, s) 
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4.7 In vitro assays to prove the functional role of CorJ DH* 

4.7.1 Phosphopantetheine (ppant) ejection assays 

General procedure of the ppant ejection assay and expected outcome. The 

intramolecular isomerisation of a double-bond does not result in a mass difference. 

To still enable the functional analysis of the putative shift domain CorJ DH* using 

mass spectral analysis the assay was performed in deuterated buffer. Immediately 

after heterologous expression of the didomain CorJ DH*holo-ACP the protein was 

incubated with the substrate 1 in deuterated assay buffer at room temperature 

(3.17.1). Substrate 1 was expected in the first reaction step to bind to the 

phosphopantetheine (ppant) residue of the holo-ACP moiety of the didomain CorJ 

DH*holo-ACP to give 2 (figure 4-16). To prove the successful linkage a separate 

experiment with the sole substrate loaded CorJ holo-ACP domain was planned to be 

performed (4.7.1.1). The second reaction step should be the isomerisation of the 

double-bond, performed by the shift domain CorJ DH*, whereby an incorporation of 

two deuterium atoms should occur, one in α-position and the other in γ-position 

(figure 4-17). After an incubation time of 1 h, 3 h and 20 h the reaction was envisaged 

to be stopped by injection onto an HPLC column and the purified and lyophilized 

protein sample would be prepared for mass spectroscopic experiments (3.17.1). The 

exchange of protons by deuterium atoms was envisaged to be traced via an increase 

in mass of the protein-bound substrate by a tandem mass analysis approach called 

phosphopantetheine (ppant) ejection assay. 
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Figure 4-16. Reaction of compound 1 with the phosphopantetheine residue of CorJ 

holo-ACP domain resulted in 2. 

 

 

 

 

 

 

Figure 4-17. Incorporation of two deuterium atoms due to CorJ DH* mediated 

double-bond migration. 

 

The “ppant ejection assay” is a “top-down” MSn spectrometric characterization of 

intermediates bound to thiotemplate carrier domains (like CorJ holo-ACP), utilizing a 

typical elimination reaction of the phosphopantetheine residue (ppant) of the carrier 

protein during the fragmentation process yielding in the ejection ion (pant) 

m/z 261.126, depicted in figure 4-18 A. PKS or NRPS biosynthetic intermediates are 

normally bound to the sulphur of the phosphopantetheine residue of a carrier protein 

and form a thioester linkage. The linked intermediate increases thereby the mass of 

the whole carrier protein, which can be detected by a tandem mass spectrometric 

analysis of the whole carrier protein. N. L.  elleher established the “ppant ejection 
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assay” for characteri ation of carrier bound intermediates without precedent trypsin 

digestion of the carrier protein (Kelleher et al., 1999). The “top down” approach was 

refined by P. C. Dorrestein and co-workers, who published twelve signature MS3 ions 

of the phosphopantetheine residue which were used as reference ions for the 

experiments in this study (Dorrestein et al., 2006; Meluzzi et al., 2008) (figure 4-18 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18. Principle of the ppant ejection assay. Elimination reaction of the 

phosphopantetheine residue of a holo-ACP. A) MS2 experiment on an holo-ACP 

domain releases a pantetheine (pant) ejection ion with the mass of 261.126 Da. B) 

MS3 experiment on the isolated pantetheine (pant) ejection ion gives 12 signature 

ions useful for characterization of thiotemplate bound intermediates. Masses of bold 

printed ions are independent of thiotemplate bound intermediates. Modified after 

Meluzzi et al., 2008. 
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4.7.1.1 Proof of the successful linkage of substrate 1 to the phosphopantethein (ppant) 

arm of CorJ holo-ACP 

Substrate 1 was incubated with the heterologously expressed protein CorJ holo-ACP 

under assay conditions to examine whether a successful linkage to the ppant moiety 

occurred under formation of 2 (figure 4-16). Electro spray ionisation of this protein 

sample with a mass of 14.5 kDa resulted in multiply charged ions of the substrate 

loaded protein CorJ holo-ACP figure 4-20 A. Calculations of the charge state of the 

ions were done with the help of formula 4-1. 

 

Formula 4-1:     
   

   
 

zx = (charge of ion x) 

x = (ion with m/z smaller than ion y), marked in figure 4-20 A 

y = (ion with m/z larger than ion x), marked in figure 4-20 A 

 

For the isolated charge state +17 (m/z 855.03, isolation width 7 m/z) ejection ions 

were obtained by applying normalized collision energy of 30–35 % in the linear ion 

trap, to result in MS2 ejection fragments, which are recorded in spectrogram B of 

figure 4-20. The ejection ion m/z 303.137 represented a pantetheine (pant) arm with 

an attached acetyl unit and was not further referred to in this study (figure 4-20). The 

corresponding ejection ion of 2 is compound 2a with a m/z of 402.169. The presence 

of this ion confirmed the successful binding of 10 to the phosphopantetheine residue 

of CorJ holo-ACP (figure 4-19). The fragment 2a (figure 4-19 and 4-20 C) was further 

fragmented and released the MS3 signature ions m/z 142. 050 (2b) and m/z 261.126 

(2c) (figure 4-19 and 4-20 D). The first ion (i.e. 2b, m/z 142. 050) was associated with 

a fragment of the substrate 1, without SNAC. The second ion (i.e. 2c, m/z 261.126) 

represented the unloaded pant ejection arm as shown in figure 4-18 A and 4-19.  
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Figure 4-19. Ions observed by MSn analysis (ppant ejection assay) of the substrate-

loaded CorJ holo-ACP domain 2. ESI (electrospray ionization), CID (collision-induced 

dissociation). 
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Figure 4-20. Overview for a ppant ejection experiment with the substrate-loaded CorJ 

holo-ACP. A) ESI spectrum of the substrate-loaded protein CorJ holo-ACP (2). State 

charges marked with x and y refer to formula 4-1. Charge state 17+ (highlighted in 

red) was isolated and fragmented. This resulted in spectrum B showing the ejection 

ions. The asterisk in B marks the ejection ion m/z 303.137 representing the 

phosphopantetheine arm plus an attached acetyl rest. The region of the MS2 ejection 
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ions of the substrate-loaded pant residues (here: from m/z 400–410) is magnified in 

C. Exemplarily, a single ejection ion was isolated (here 2a, m/z 402.169, highlighted in 

red) and subjected to a further round of fragmentation, yielding the respective MS3 

signature ions (Meluzzi et al., 2008) depicted in D. Fragmentation of the MS3 ion 

m/z 402.169 resulted in the peak m/z 261.126 representing the sole pant moiety 2c 

and in peak m/z 142.050 representing the substrate part 2b. 

 

4.7.1.2 Investigation of potential unspecific hydrogen/deuterium exchanges under assay 

conditions 

As outlined above the functional role of the shift domain CorJ DH* was planned to be 

proven by a hydrogen/deuterium (H/D) exchange due to the enzymatically catalyzed 

double-bond migration in a deuterated buffer system. To distinguish between 

enzymatically mediated and unspecific H/D exchange, the sole CorJ holo-ACP protein 

was loaded with substrate 1 under assay conditions for 20 h. Possible H/D exchanges 

in 2 were thought to be the acidic positively charged imine group, the amid functions 

and the hydroxyl moiety (scheme 4-6). MSn analysis of the substrate loaded protein in 

a ppant ejection experiment resulted in the MS2 ejection ions m/z 402.169, 403.175, 

404.180 and 405.187 which represented fragment 2a and the corresponding isotopes 

with maximum three incorporated deuterium atoms (scheme 4-6, table 4-4). 

Fragmentation of each ejection ion led to the MS3 signature ions m/z 261.126, 

262.132, 263.138 and 264.144, respectively, which correlate with the pant arm 2c 

(m/z 261.126) and its deuterated isotopes, respectively. In the same MS3 

fragmentation rounds signature ions occurred representing 2b (m/z 142.050) and the 

corresponding isotope containing one deuterium atom (m/z 143.056) (scheme 4-6, 

table 4-4). 
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Scheme 4-6. Potential unspecific H/D exchanges in 2a (highlighted in blue) and 

respective signature ions in a MS3 experiment. 

 

Table 4-4. MS2 and MS3 ions detected during tandem mass spectral analysis of 2a. 

MS2 ejections ions were isolated and subjected to a further round of fragmentation to 

result in MS3 signature ions (highlighted in blue). n.i. (not investigated) 
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4.7.1.3 Proof of the β,γ double-bond migration using the ppant ejection assay 

To prove the double-bond shift activity of CorJ DH*, the didomain CorJ DH*holo-ACP 

was loaded with substrate 1 and incubated in deuterated buffer at room temperature 

for 1 h, 3 h and 20 h. Due to a CorJ DH* mediated double-bond isomerisation an 

specific exchange of two hydrogen atoms by two deuterium atoms was expected. 

Electro spray ionization of the 47.2 kDa large substrate-loaded protein CorJ DH*holo-

ACP did not result in single charge states of the protein. Thus, MS2 ejection ions were 

obtained by in-source fragmentation, applying 50–65 V fragmentation energy. The 

mass of the non-deuterated form of ejection ion 2a (m/z 402.169) increased to 

403.175, 404.182, and surprisingly to 405.188, indicating the number of incorporated 

deuterium atoms (figure 4-21, table 4-5). MS3 fragmentation of each of these ejection 

ions yielded clear pant (i.e. 2c, m/z 261.126), pant+substrate (i.e. m/z 300.102, 

301.10, 302.114, 303.114) and substrate signature peaks (i.e. m/z 142.050, 143.056, 

144.062, 145.068), presenting a mass increase up to +3, respectively (figure 4-21). 

The substrate derived signature ions (i.e m/z 142.050, 143.056, 144.062, 145.068) 

were each subjected to a further round of fragmentation yielding in the 

corresponding MS4 fragments m/z 110.024, 111.030, 112.037, 113.043, respectively, 

as depicted in figure 4-21. The importance of the MS4 fragments is that all of their 

protons or deuterium atoms are bound to carbon atoms. Hence, observed mass 

increase due to deuterium incorporation can be correlated directly to the double-

bond shifting activity of CorJ DH* and a mass increase associated with an unspecific 

H/D exchange at the amide function, as depicted in scheme 4-6 can be excluded. 
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Figure 4-21. Representative pantetheine (pant) ejection ions and their fragmentations 

by MSn. The ejection ion m/z 402.169 (2a) arose from the substrate loaded holo-

enzyme CorJ DH*-ACP. The green colored deuterium atoms were supposed to be 

exchanged by the isomerisation activity of CorJ DH*, whereas the blue colored 

deuterium atoms resulted from non-enzymatic exchange. MS3 experiments resulted 

in signature ions of the pant arm (2c, m/z 261.126), of the pant arm with bound 

substrate (in italic), and of the substrate-derived fragment alone (in bold). MS4 of the 

substrate fragments yielded another series of corresponding signature ions 

(m/z 110.024 to 113.043) proving the presence of up to three deuterium atoms. The 

dashed arrow shows the fragmentation site of the ejection ion into a pant arm and a 

substrate part. The ejection ion m/z 406.194 (shaded in grey) represents an unspecific 

hydrogen/deuterium exchange at the pant arm, resulting in a mass increase to 

m/z 262.133 for the pant arm. The most likely structures of the MS4 fragments are 

shown here with all hydrogens/deuterium atoms attached to carbon atoms. 
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Table 4-5. MS2 and MS3 ions detected during tandem mass analysis of the substrate 

loaded CorJ DH*holo-ACP. MS2 ejections ions were isolated and subjected to a further 

round of fragmentation to result in MS3 signature ions. Highlighted in blue: m/z ratios 

related to an unspecific H/D exchange (check against table 4-4). Highlighted in green: 

masses correlating with a CorJ DH* mediated H/D exchange. n.d. (not detected) 

 

 

 

 

 

 

 

 

 

Assuming CorJ DH* catalyzed the incorporation of two deuteriums (figure 4-17), one 

at the α position and the other at the γ position, the appearance of the third 

incorporated deuterium can just be explained by considering the structure of the 

substrate. Thus, when the carbon-carbon double-bond in α,β position was shifted by 

CorJ D * to the β,γ position, enamine-imine tautomerism arises. This chemically 

feasible, but non-enzymatically caused double-bond shift resulted in the third H/D 

exchange at the carbon in β position, and indirectly proves the function of CorJ DH* 

(scheme 4-7). 
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Scheme 4-7. H/D exchange in the presence of CorJ DH*. A) Highlighted in green: 

exchange of protons in α and γ position correlates directly with the CorJ DH* shifting 

activity; Highlighted in blue:  /D exchange in β position is the result of an enamine-

imine tautomerism shown in B. 

 

Time-dependency of the H/D exchange. In a time-course experiment the H/D 

exchange of CorJ holo-ACP with bound substrate was compared to that of CorJ DH* 

holo-ACP with bound substrate (figure 4-22). This revealed after prolonged incubation 

(20 h) for the merely ACP-bound substrate sample (CorJ holo-ACP-substrate) non-

enzymatic deuteration, yielding a m/z value of 403.176, corresponding to a single H/D 

exchange. This had to derive from a non-enzymatic exchange as already shown in 

scheme 4-6. Contrary to this the heavier ions i.e. 405.188 and 406.194 accumulated 

after prolonged (3-20 h) incubation of the substrate 1 with the CorJ DH*holo-ACP 

didomain. The latter is due to the incorporated deuterium atoms by the action of the 

shift domain CorJ DH* (figure 4-22). 
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Figure 4-22. Pant ejection ions (MS2) of the substrate bound to the single CorJ holo-

ACP domain or to the CorJ DH*holo-ACP didomain. The proteins with the bound 

substrate were incubated in deuterated buffer for 1, 3, and 20 hours (h). A time 

dependent increase of the heavier ions (with more incorporated deuterium atoms) 

was visible.  
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4.7.1.4 PPant ejection assay with the substrate-loaded active site mutant     

CorJ DH*H47A holo-ACP 

CorJ DH*H47A holo-ACP was likewise heterologously expressed and assayed as CorJ 

DH*holo-ACP (3.13.1). In MSn analysis the ejection ions m/z 402.172 (2a), 403.178 

and 404.183 could be recorded which represent the substrate loaded pant arm (2a) 

and its two heavier variants containing up to two incorporated deuterium atoms. 

Further fragmentation of each ejection ion gave the MS3 signature ions shown in 

table 4-6. Fragmentation of the ion m/z 402.172 resulted in the signature ions 

m/z 261.126 and m/z 142.050, presenting the pant arm (2c) and the substrate derived 

fragments 2b. Dissociation of the ejection ions m/z 403.178 and 404.183 gave the 

signature ion pairs m/z 261.126 and m/z 143.056 and m/z 262.132 and m/z 143.056, 

respectively. These data compared to the negative control reaction of the substrate 

loaded holo-ACP (table 4-4) and to the positive reaction with CorJ DH*holo-ACP (table 

4-5) led to the suggestion that just unspecific H/D exchange occurred and CorJ 

DH*H47A lost its catalytic activity regarding double-bond isomerisation. 

 

Table 4-6. MS2 and MS3 ions detected during tandem mass analysis of the substrate 

loaded CorJ DH*H47A holo-ACP. Highlighted in blue: masses connected with an 

unspecific H/D exchange (check against table 4-5). n.d. (not detected) 

 

 

 

 

 

 

 

 

 

  



Results 

114 | 

4.7.1.5 PPant ejection assay with the substrate-loaded active site mutant                        

CorJ DH*D211N holo-ACP 

The mutant CorJ DH*D211N holo-ACP was expressed and assayed as described in the 

general procedure in 3.13.1. In MSn measurements of the substrate loaded mutant, 

pant ejection ions from m/z 402.169 to 405.187 representing the substrate loaded 

pant arm 2a and its deuterated variants were detected. Further fragmentation of 

each ejection ion resulted in the signature ions depicted in table 4-7. Signature ions 

indicating an unspecific H/D exchange (table 4-7, highlighted in blue) could be 

observed as well as ions which correlate with an enzymatically mediated deuterium 

incorporation (table 4-7, highlighted in green). These results led to the assumption, 

that CorJ DH*D211N holo-ACP retained its shifting activity. 

 

Table 4-7. Observed m/z occurring through MS2 and MS3 fragmentation of the 

substrate loaded protein CorJ DH*holo-ACP. Highlighted in blue: potential unspecific 

H/D exchange (check against table 4-4 and 4-5). Highlighted in green: ejection ions 

which were only observed due to a CorJ DH* dependent deuterium incorporation, 

except m/z 262.132. n.d. (not detected) 
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4.7.2 Investigating CorJ DH* in an NMR based assay 

The ppant ejection assay (4.7.1.3) gave evidence for the CorJ DH* mediated double-

bond shift by mass spectroscopic observation of incorporation of deuterium atoms 

which was related to a double-bond isomerisation. Since non-enzymatic H/D 

exchange could not be excluded completely as reason of mass increase, it was 

envisaged to obtain a definitive proof of the double-bond migration mediated by CorJ 

DH*. Therefore, the reaction of CorJ DH* and its substrate 1 was monitored using 

NMR spectroscopy. For this purpose NMR spectra of the compounds 1 and 7 were 

used as reference spectra (see appendix figure 8-1, 8-4, 8-5) for evaluation of the 

outcome of the enzymatic reaction (figure 4-23). Compound 7 represented the 

aspired product with a double-bond locali ed in β,γ position, and 1 corresponded to 

the educt containing the double-bond in α,β position. 

 

 

 

 

Figure 4-23. CorJ DH* mediated double-bond isomerisation in compound 1 yielded 

compound 7. 

 

General procedure. The approach required the shift domain CorJ DH*, which was 

heterologously expressed as the didomain CorJ DH*-ACP in its apo form (4.5). The 

absence of the phosphopantetheine residue of the apo-ACP moiety prevented the 

linkage of substrate 1 to the carrier protein and led to a freely dissolved substrate 1 in 

the assay buffer. The ability of CorJ DH* acting on a non-carrier bound substrate was 

assumed due to analogous experiments published by (Vergnolle et al., 2011). The 

freshly purified protein CorJ DH*-ACP was incubated with compound 1 under assay 

conditions as reported in 3.17.2, for 20 h at room temperature. The enzyme reaction 

was stopped by addition of methanol. Subsequently, the mixture was purified by 

HPLC and prepared for NMR experiments by dissolving it in deuterated methanol. 
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Evidence gained by NMR experiments for the double-bond isomerisation activity of 

CorJ DH*. The results of the 1H NMR and the 1H/1H COSY 2D-NMR measurement of 

the reaction product (of CorJ DH* apo-ACP and substrate 1) were compared with the 

corresponding spectra obtained for compound 1 (i.e. the educt) and 7 (i.e. the 

expected product). The 1H NMR spectrum of the reaction product revealed a 

resonance signal at δH 6.62 corresponding to H-4´ of the β,γ shifted double-bond (as 

seen for compound 7) and lacked resonance signals at δH 6.27 and 

6.90 , corresponding to H-2´ and H-3´ of a α,β double-bond as seen for compound 1. 

These results evidenced a shift of the α,β double-bond to the β, position due to the 

activity of the shift domain CorJ DH* (figure 4-24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24. 1H/1H COSY 2D-NMR (600 MHz, [D4]MeOH) spectrum of enzyme reaction 

product of CorJ DH* apo-ACP and substrate 1. On the F1 and F2 axis, the 1H NMR 

spectrum (300 MHz, [D4]MeOH) of reference compound 7 is shown. Cross-peaks 

(highlighted in circles) prove the 1H/1H coupling between H-4´, H-3´ and H-2´ of the 

reaction product. 
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5 Conclusion 

5.1 Drug discovery from natural products 

Many of our most valuable drugs today derive from natural products, e.g. 

cyclosporine, lovastatine. Above all, antibiotic drug discovery is dependent on natural 

product research. This is even more true since the increasing emergence of bacteria 

resistant to antibiotics is a serious threat to modern medicine (Schäberle and Hack, 

2014). Already in the 1990s it became obvious that resistances of bacteria towards 

established antibiotic therapies were developing much faster than new antibiotics 

could be discovered. Thus, pharmaceutical industry altered its discovery approaches 

and used “high-tech” methods like genomics, combinatorial chemistry and high 

throughput screening (HTS) to identify new antibacterial compounds and targets 

unfortunately with little success, yet (Lewis, 2013). By now 14 antibiotic classes are 

known (Lewis, 2013) but the number of new antibiotically active drugs introduced 

into therapy is dramatically dwindling (Schäberle et al., 2014b). In the light of urgently 

needed new antibacterial lead structures a revival of natural product drug discovery is 

currently taking place, and the whole cell (i.e. agar diffusion assay) screening 

approach introduced by S. Waksman in the 1940s does appear modern again (Lewis, 

2013). There is, however, the need for innovative assays, e.g. using transgenic test 

organisms, and the discovery of novel natural product producer strains (Donadio et 

al., 2007). 

Traditional antibiotic producer strains are often members of the actinobacteria or 

bacilli. In the last two decades δ-proteobacteria, especially myxobacteria got into the 

focus as alternative providers of antimicrobial natural products. Myxobacteria have 

been shown to produce a wide range of secondary metabolites with unique structural 

features and rare or novel modes of action, which make them attractive for 

pharmaceutical research (Weissman and Müller, 2009). A broad overview of 

antibacterially active myxobacterial compounds is given in a recent review (Schäberle 

et al., 2014c) (see also introduction of this thesis). 

The observation of antimicrobially active compounds produced by myxobacteria 

started already in 1947 (Oxford, 1947). The compound, 1-hydroxy-6-

methoxyphenazine-N5,N10-dioxide (myxin) was reported as one of the first 
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antibiotically active compounds from a Sorangium species (Peterson et al., 1966), but 

proved to be toxic (Chowdhury et al., 2012). In 1962 Norén and Raper published that 

several myxobacteria secreted natural products able to inhibit the growth of Gram-

positive bacteria whereas none of the Gram-negative test organisms were found to 

be sensitive (Norén and Raper, 1962). This is still true today, even though very few 

myxobacterial metabolites being able to inhibit Gram-negatives were described. 

Corallopyronin A, the focus of this study, is a myxobacterial secondary metabolite 

whose rare mode of action as RNA-polymerase inhibitor, good antibacterial activity 

towards, e.g. MSRA and Wolbachia and low toxicity, qualify it as a promising 

candidate for pre-clinical evaluation (Erol et al., 2010; Schäberle et al., 2014b). 

 

5.2 Biosynthesis of myxobacterial natural products focussing on corallopyronin A 

Understanding the biosynthetic process of bioactive natural products is of importance 

for their further development, e.g. sustaining their supply, bioengineering of 

derivatives. Myxobacterial secondary metabolites such as corallopyronin A are 

characterized by a high structural complexity including multiple chiral centres, ring 

formations and functional groups. The basic structure of most of these diverse 

compounds is synthesized by large multi enzymes, i.e. polyketide synthases (PKS), 

non-ribosomal peptide synthases (NRPS) and mixed-type PKS/NRPS systems (Wenzel 

and Müller, 2009). Post-NRPS or post-PKS enzymes like glycosyl transferases, 

methyltransferases, acylases, cyclases and oxidative enzymes further modify these 

basic structures (Staunton and Wilkinson, 1998). 

Corallopyronin A is the product of a type 1 PKS/NRPS, which produces pre-

corallopyronin A, while further enzymes perform post-PKS/NRPS reactions. The latter 

include, e.g. the isomerisation of the double-bond Δ26 to Δ25 putatively mediated by 

CorN and the incorporation of a hydroxyl moiety at C-25 probably catalyzed by the 

cytochrome P450 oxidase CorO (figure 4-1). 

In modular PKS and linear NRPS systems such as the one responsible for 

corallopyronin A biosynthesis a one-to-one correspondence between the architecture 

of the PKS or NRPS assembly line and the backbone of the assembled intermediate 

exists. This correlation is named “co-linearity rule” and in the case of corallopyronin A 

it helped in the identification and characterization of the biosynthetic gene cluster. 
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Corallopyronin A biosynthesis, however, also shows some non-canonical features, (i) 

the core structure is formed by head to head connection of two separate chains 

derived from a PKS and a NRPS/PKS system, respectively, (ii) two of the methyl groups 

are incorporated by a β-branching cassette, (iii) the ER functionality is encoded in 

trans-position as a bifunctional enzyme together with the trans-AT. Additionally, the 

starter unit was surprisingly shown to be hydrogen carbonate. Therefore, not all 

processes of this biosynthesis are easily predictable since the classical co-linearity rule 

does not apply (Piel, 2010). 

Such an exception to the co-linearity rule in corallopyronin A biosynthesis is the 

position of the C-11/C-12 carbon-carbon double-bond, representing a rare β,γ pattern 

(figure 4-6). The usual PKS-NRPS machinery places such double-bonds in α,β position 

by elimination of water from the respective β-hydroxy intermediate. Similar cases are 

exemplified in very few other polyketides, e.g. rhizoxin (Kusebauch et al., 2010), 

ansamitocin (Taft et al., 2009) and bacillaene (Moldenhauer et al., 2010). Concerning 

ansamitocin an unusual but functional DH domain was assumed to place the double-

bond in β,γ position (Taft et al., 2009). A yet different mechanism was recently found 

to occur in the biosynthesis of bacillaene and rhizoxin. By the construction of 

thioesterase knockout mutants, late-pathway intermediates had been identified in 

which double-bonds were present in α,β and in the shifted β,γ position (Kusebauch et 

al., 2010; Moldenhauer et al., 2010). These experiments showed that isomerisation is 

taking place during polyketide assembly, and due to the structure of the 

intermediates the timing of the isomerisation reaction was assigned to specific 

modules of the assembly line. Thus, for rhizoxin it was shown that the double-bond Δ8 

was shifted to Δ9 after elongation of the nascent polyketide chain by a downstream to 

the respective P S module encoded “shift module (including D *)” (Kusebauch et al., 

2010). We proposed a similar process for corallopyronin A biosynthesis and provide 

here evidence that a distinct domain of the respective assembly line is responsible for 

the double-bond shift. 

The current study describes two different in vitro assays to prove the functional role 

of the CorJ DH* domain within the respective shift module of the corallopyronin A 

biosynthesis cluster. For this purpose the respective protein domains (CorJ DH* and 

CorJ ACP, figure 4-11) involved in corallopyronin A biosynthesis were heterologously 
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expressed, and a suitable substrate 1 for the isomerization reaction was synthesized 

as an N-acetylcysteamine (SNAC) thioester derivative (figure 4-14). 

For the initial detection of a double-bond migration within the substrate the 

phosphopantetheine (PPant) ejection assay was used, which enables the analysis of 

carrier protein bound intermediates (Dorrestein et al., 2006; Meluzzi et al., 2008) 

(figure 4-18). To allow a mass spectroscopic monitoring of the CorJ DH* mediated 

double-bond shift the enzyme assay was performed in deuterated buffer to allow an 

H/D exchange correlating with the double-bond migration (figure 4-17). The 

corresponding increase in mass was observed by applying high resolution tandem MS 

technique. As expected a mass increase up to three could be observed in the 

obtained ions of the ACP-bound substrate and indicated thereby the catalytic activity 

of CorJ DH* (figure 4-21). However, non-enzymatical H/D exchange surely also 

occurred (scheme 4-6). Even though MS4 experiments clearly pointed out the 

enzymatic reaction, we sought additional evidence using NMR spectroscopy. 

For the NMR experiment the enzyme, i.e. CorJ DH* was incubated with substrate 1. 

1D and 2D NMR spectra, recorded of the educt of the enzyme-substrate reaction and 

of the product, clearly revealed that the double-bond had shifted to the β,γ position 

(figure 4-24). This provided a second proof of the double-bond isomerisation activity 

of CorJ DH*. 

In order to get insight into the mechanisms of this double-bond migration, the protein 

CorJ DH* was mutated. It was assumed that one of the active site residues of the 

enzyme is a histidine, which is highly conserved within DH and DH* domains (figure 4-

7). Both domain variants, i.e. DH and DH* have the same basic structure and the 

conserved residues in the same positions as was indicated by aligning and threading 

the sequences to the solved crystal structure of the DEBS DH (Keatinge-Clay, 2008; 

Kusebauch et al., 2010). To prove the involvement of the conserved histidine (H) 

residue a mutational exchange to alanine (A) was performed in CorJ DH* to give CorJ 

DH*H47A. This enzyme was likewise expressed and assayed as CorJ DH* using the 

masspectrometric assay. Indeed, the only H/D exchange which could be observed was 

unspecific and not at the site of the carbon double-bond (table 4-6). These results 

provided evidence that the histidine residue at position 47 is of major importance for 

the enzymatic reaction and possibly acts as a proton donor and acceptor in the course 
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of the back and forward isomerisation reaction. A further amino acid within the 

enzyme should function as a proton acceptor, i.e. it should be accepting the proton 

from the γ-position. We expected the conserved aspartic acid D211 in CorJ DH* to 

represent this proton acceptor, but the mutated enzyme containing an asparagine (N) 

instead of aspartic acid (D) CorJ DH*D211N retained the shifting activity (table 4-7). 

Our experiments clearly evidenced that under assay conditions the carbon-carbon 

double-bond migration is reversible and resembles the described mechanism for DH 

domains (Keatinge-Clay, 2008). In the case of the CorJ DH* domain H47 serves as 

proton donor and a still unknown residue as acceptor. This is in agreement with the 

mechanism postulated earlier by Hertweck and co-workers (Kusebauch et al., 2010). 

It is assumed that in PKS-systems KSs act as gatekeepers preventing incorporation of 

erroneous building blocks (Taft et al., 2009). This arrangement assures that only the 

correct substrate, in this case the rearranged β,γ double-bond, can be passed on for 

further processing. In line with this all corallopyronin-type molecules known to date 

possess the β,γ pattern. Only under in vitro conditions the isomerase-like CorJ DH* 

domain acts reversibly, since the equilibrium is not affected by further processing of 

the intermediates. 

 

5.3 Outlook 

In vitro analysis of the enzymatic activity of wild type and mutated variants of CorJ 

DH* encoded within the corallopyronin A cluster provides evidence that this domain 

is responsible for the unusual carbon-carbon double bond migration during  the 

biosynthesis of this antibiotic. Our experiments thus clarified the genetic and 

biochemical basis underlying double-bond isomerisations in polyketide biosynthesis. 

This will allow a better prediction of polyketide structures from DNA sequence 

information, which is of major importance considering the increasing number of 

sequenced microbial genomes and biosynthetic gene clusters, and will enlarge the 

tool box for the rational design of metabolites in genetic engineering. 

Future studies will focus on the crystallization of the respective proteins, which will 

aid to reveal the molecular basis for the double bond migration reaction, in particular 

the still unknown proton acceptor within the enzyme.  
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6 Summary 

Corallopyronin A is a myxobacterial compound, which was isolated in our lab from the 

strain Corallococcus coralloides B035. It is a potent in vivo active antibiotic, which is 

currently undergoing preclinical studies. Regarding its biosynthesis, corallopyronin A 

was found to originate from two chains, one being solely PKS- and the other 

NRPS/PKS dervived. 

 

 

 

 

Scheme 6-1. Corallopyronin A 

 

In polyketide biosynthesis the reduction of β-carbonyl groups to an alkene moiety 

usually results in a α,β positioned double-bond. However, in a few polyketides the 

rare case of such a carbon-carbon double-bond in β,γ position is depicted, e.g. in the 

biosynthesis of ansamitocin (Taft et al., 2009), bacillaene (Moldenhauer et al., 2010) 

and rhizoxin (Kusebauch et al., 2010). For rhizoxin it was shown that the respective 

double-bond (Δ8) was shifted to the β,γ position after elongation of the nascent 

polyketide chain by a distinct “shift module” including an unusual dehydratase-like 

domain (DH*) downstream in the PKS assembly line (Kusebauch et al., 2010). We 

proposed a similar process for the antibiotic corallopyronin A and provided here 

evidence that a distinct domain (CorJ DH*) catalyses the carbon-carbon double-bond 

shift from α,β to β,γ position during corallopyronin A biosynthesis. 
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Figure 6-1. Section of the corallopyronin A biosynthetic assembly line focussing on the 

“shift module” marked in orange. The shift domain CorJ D * catalyses the double-

bond migration from α,β  to β,γ position within the nascent polyketide backbone of 

corallopyronin A. 

 

In this study the in vitro analysis of the enzyme domain (CorJ DH*) responsible for this 

double-bond isomerisation was analysed. This “shift domain” was heterologously 

expressed and assayed with its acyl carrier protein bound substrate 2. To facilitate 

this analysis the biosynthetic corallopyronin A intermediate was chemically 

synthesized as a N-acetylcysteamine-thioester 1.  

 

 

 

 

Figure 6-2. N-acetylcysteamine activated substrate 1 for the shift domain (CorJ DH*) 

and ACP-bound intermediate 2 of the corallopyronin A biosynthetic pathway. 

 

Enzyme activity was analyzed by NMR and high-resolution MS measurements, the 

latter were possible by performing the assay in deuterated buffer, thereby observing 

a proton/deuterium exchange reaction. The here reported in vitro experiments clearly 

demonstrated that CorJ DH* acts as double-bond migrating enzyme in corallopyronin 
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A biosynthesis. Mutated enzyme variants (CorJ DH*H47A and CorJ DH*D211N) gave 

first experimental evidence for the essential amino acids involved in double-bond 

migration. It could be shown that the amino acid histidine in position 47 (H47) plays a 

major role in the double-bond isomerisation in that it serves as proton donor. A still 

unknown residue must function as acceptor, which is in agreement with the 

mechanism postulated earlier by Hertweck and co-workers (Kusebauch et al., 2010). 

These results provide evidence for the genetic and enzymatic basis of carbon-carbon 

double-bond migrations in polyketides. Furthermore, they support the partly still 

hypothetical corallopyronin A biosynthetic process, and widen the understanding of 

PKS systems in general as the tool box for the rational design of metabolites in 

genetic engineering (Lohr et al., 2013). 
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8 Appendix 

8.1 Primer sequences 

Table 8-1. Primers used for the knock-out approach of the trans-AT in the 

corallopyronin A gene cluster in Corallococcus coralloides B035. Template for λ_AT 

and λ_apra primers: DNA of plasmid pIJ773 and pIJ778 (Gust et al., 2003). Template 

for Δ_AT_Nachweis primers: DNA of cosmid FJF or genomic DNA of C. coralloides 

B035. 

Primer Sequence (5’–3’) Amplification 
product 

λ_AT_for 
 
λ_AT_rev 

AGTGCGCTGTCCTACCTGAAGAGTCAGG 
AGGCGGGCGTGACTAGTAAAATGCCGGCCTTTGAATG 
CATTTCCATGCTCCGGACAGGAAAAGACA 
CTGCTTAAACACTAGTAAATGTAGGCTGGAGCTGCTTC 

aadA 

λ_apra_for2 
 
λ_apra_rev2 

AGTGCGCTGTCCTACCTGAAGAGTCAGGA 
GGCGGGCGTGGCCGTATTTGCAGTACC 
CATTTCCATGCTCCGGACAGGAAAAGACA 
CTGCTTAAACCCGGGCTGCAGGAATTCG 

aac(3)IV 

Δ_AT_Nachweis_for 
Δ_AT_Nachweis_rev 

CAGGGAGCCCAATCGAAAGG 
CCGGAGGCAGGTCGTATTTC 

corA AT locus 
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Table 8-2. Primers used for the heterologous expression approach of the eastern 

chain of corallopyronin A in Pseudomonas putida KT2440. Template for λ_EcoRV_3 

and λ_SpeI_3 primers: DNA of plasmid pIJ778 (Gust et al., 2003). Amplification 

product aadA_EcoRV/SpeI was used to be integrated into cosmid FJ7 by Lamda Red 

recombineering. Template for Apra_SpeI and Pm_EcoRV primers: DNA of the 

construct pIB861_apra. Amplification product pm/xylS/aac(3)IV_EcoRV/SpeI was used 

to be integrated into the restricted cosmid FJ7_aadA_EcoRV/SpeI by ligation. 

Template for λ_for_tet_3 and λ_for_trpE_3 primers: DNA of the cloning construct 

pGEMT_trpE_tetA. Amplification product tetA/trpE was used to be integrated into the 

recombinant construct FJ7_pm/xylS by Lamda Red recombineering to give the 

finished construct FJ7_pm/xylS/trpE (54 kb). 

Primer Sequence (5’–3’) Amplification 
product 

λ_EcoRV_3 
 
λ_SpeI_3 

TGACTCTTCAGGTAGGACAGCGCACTGAC 
GACGTACAGCGATATCTGGCGAGCGGCATCTTATTTG 
CGCGATTGACATGTTCACTGGCGGTCAGT 
ATGGATTGCGACTAGTGACGCCGTTGGATACACCAAGG 

aadA 

Apra_SpeI_for 
Pm_EcoRV_rev 

ACTAGTTACGGCCCACAGAATG 
GATATCGCCGCAATTCACATGTTC 

pm/xylS/ 
aac(3)IV 

λ_for_tet_3 
 
λ_rev_trpE_3 
 

ATGATTGAACAAGATGGATTGCACGCAG 
GTTCTCCGGCCGCTTGGCGCCAAGCTATTTAGGTG 
TCAGAAGAACTCGTCAAGAAGGCGATAG 
AAGGCGATGCGCTGCGAATCACTATAGGGCGAATTGGG 

tetA/trpE 
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Table 8-3. Primers used for amplification of the sequences encoding for the proteins 

CorJ DH*ACP, CorJ ACP, CorJ DH*, CorJ DH*H47A ACP, CorJ DH* D211N ACP. 

Template: DNA of cosmid FJ7. 

Primer Sequence (5’–3’) Amplification 
product 

corJ_start 
corJ_end_ACP 

TAGAATTCATGACCGTGGAGTCCGACAAGG 
ATAAGCTTTAATGCGGGAGGGAGGGCGCGAA 

corJ DH*ACP 

ACP_1_upstream 
corJ_end_ACP 

TAGAATTCCCGGTTGCACCGCTCTC 
ATAAGCTTTAATGCGGGAGGGAGGGCGCGAA 

corJ ACP 

corJ_start 
DH_shift_neu 

TAGAATTCATGACCGTGGAGTCCGACAAGG 
GAAGCTTAATGCACCACGATGCGCTCCAC 

corJ DH* 

corJ_start 
H47A_rev 

TAGAATTCATGACCGTGGAGTCCGACAAGG 
CCGAGGACGGTGGCGTCCCTCAG 

corJ DH*H47A ACP 
(sequential PCR 1a) 

corJ_end_ACP 
H47A_for_neu 

ATAAGCTTTAATGCGGGAGGGAGGGCGCGAA 
CTGAGGGACCACACCGTCCTCGG 

corJ DH*H47A ACP 
(sequential PCR 1b) 

corJ_start 
DtoN1 

TAGAATTCATGACCGTGGAGTCCGACAAGG 
CCTCCAGCGCTCCTGAACGGCGTCATCGTCG 

corJ DH*D211N ACP 
(sequential PCR 1a) 

corJ_end_ACP 
DtoN2 

ATAAGCTTTAATGCGGGAGGGAGGGCGCGAA 
CGACGATGACGCCGTTCAGGAGCGCTGGAGG 

corJ DH*D211N ACP 
(sequential PCR 1b) 

 

 

8.2 Protein sequences  

8.2.1 Protein sequence of CorJ ACP 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFPVAPLSAGDEVARGVERRLRERVAA

KLGVSVEQVDPARTFMEAGLSSVALVELMTALGTELGAALSPTLVFEFQSPRALALHLAREHAPA

FAPSLP 

 

8.2.2 Protein sequence of CorJ DH* 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMTVESDKVTTVSSSPGGLLTRRALR

VVGARREDGFTLTHDDPALRDHTVLGQRVLLGVTYASWVLEAGRRHFQDRPPVGLRDLLFHQP

LVLGPGEAARVTVSVRDASFEVSFQLGADAPPVRCATGTFLFDAGAGPTPATLDVARFQREAAR

TTDGVRVYERMRQVAVAYGPALFTVQRTFHRDGEVLGELAVAEEASVGSDWLVPPALLNGVIV

AGAFEPLAARGRPCIPMFVERIVVHQAPGPRCLASSRVRLSNDEVLVLDARLHDASGRTLVELTG

VTLKNVPALGNPFSSSAVAAPPPARAPVAPLSAGDEVARGVERRLRERVAAKLGVSVEQVDPAR

TFMEAGLSSVALVELMTALGTELGAALSPTLVFEFQSPRALALHLAREHAPAFAPSLPH 
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8.2.3 Protein sequence of CorJ DH*ACP 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMTVESDKVTTVSSSPGGLLTRRALR

VVGARREDGFTLTHDDPALRDHTVLGQRVLLGVTYASWVLEAGRRHFQDRPPVGLRDLLFHQP

LVLGPGEAARVTVSVRDASFEVSFQLGADAPPVRCATGTFLFDAGAGPTPATLDVARFQREAAR

TTDGVRVYERMRQVAVAYGPALFTVQRTFHRDGEVLGELAVAEEASVGSDWLVPPALLDGVIV

AGAFEPLAARGRPCIPMFVERIVVHQAPGPRCLASSRVRLSNDEVLVLDARLHDASGRTLVELTG

VTLKNVPALGNPFSSSAVAAPPPARAPVAPLSAGDEVARGVERRLRERVAAKLGVSVEQVDPAR

TFMEAGLSSVALVELMTALGTELGAALSPTLVFEFQSPRALALHLAREHAPAFAPSLPH 

 

8.2.4 Protein sequence of CorJ DH*H47A ACP 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMTVESDKVTTVSSSPGGLLTRRALR

VVGARREDGFTLTHDDPALRDATVLGQRVLLGVTYASWVLEAGRRHFQDRPPVGLRDLLFHQPL

VLGPGEAARVTVSVRDASFEVSFQLGADAPPVRCATGTFLFDAGAGPTPATLDVARFQREAART

TDGVRVYERMRQVAVAYGPALFTVQRTFHRDGEVLGELAVAEEASVGSDWLVPPALLDGVIVA

GAFEPLAARGRPCIPMFVERIVVHQAPGPRCLASSRVRLSNDEVLVLDARLHDASGRTLVELTGV

TLKNVPALGNPFSSSAVAAPPPARAPVAPLSAGDEVARGVERRLRERVAAKLGVSVEQVDPARTF

MEAGLSSVALVELMTALGTELGAALSPTLVFEFQSPRALALHLAREHAPAFAPSLP 

 

8.2.5 Protein sequence of CorJ DH*D211N ACP 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMTVESDKVTTVSSSPGGLLTRRALR

VVGARREDGFTLTHDDPALRDHTVLGQRVLLGVTYASWVLEAGRRHFQDRPPVGLRDLLFHQP

LVLGPGEAARVTVSVRDASFEVSFQLGADAPPVRCATGTFLFDAGAGPTPATLDVARFQREAAR

TTDGVRVYERMRQVAVAYGPALFTVQRTFHRDGEVLGELAVAEEASVGSDWLVPPALLNGVIV

AGAFEPLAARGRPCIPMFVERIVVHQAPGPRCLASSRVRLSNDEVLVLDARLHDASGRTLVELTG

VTLKNVPALGNPFSSSAVAAPPPARAPVAPLSAGDEVARGVERRLRERVAAKLGVSVEQVDPAR

TFMEAGLSSVALVELMTALGTELGAALSPTLVFEFQSPRALALHLAREHAPAFAPSLPH 
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8.3 Analytical data of compounds 1, 6, 7, 8, 10, 11 and 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1. 1H and 13C NMR spectra of (E)-S-2-Acetamidoethyl 4-

(methoxycarbonylamino)but-2-enethioate (1).  
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Figure 8-2. Compound 1, LC-MS(ESI) (90 % H2O to 100 % MeOH in 10 min, then 100% 

MeOH to 20 min, DAD 220.0– 400.0 nm). 
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Figure 8-3. 1H and 13C NMR spectra of (E)-4-Methoxycarbonylaminobut 2-enoic acid 

(6) ([D4]MeOH, 500 MHz).  
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Figure 8-4. 1H spectrum of (E)-S-2-Acetamidoethyl 4-(methoxycarbonylamino)but-3-

enethioate (7). ([D4]MeOH, 300 MHz). 

  



Appendix 

151 | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5. Compound 7, 1H-1H COSY measurement. ([D4]MeOH, 300 MHz). 
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Figure 8-6. LC-MS (ESI) of compound 7. Column: Phenomenex Luna® 3 µm C18(2); 

linear gradient from 90 % H2O to 100 % MeOH in 10 min, then 100 % MeOH to 

20 min. 
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Figure 8-7. 1H and spectrum of 8. ([D4]MeOH, 300 MHz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-8. Compound 8, 13C NMR and Dept-135 NMR measurement. 

([D4]MeOH, 300 MHz). Numbers 1–14 represent the carbon atoms in molecule 8.   
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Figure 8-9. Compound 8, 1H-13C HSQC measurement. ([D4]MeOH, 300 MHz). 
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Figure 8-10. Compound 8, 1H-1H COSY measurement. ([D4]MeOH, 300 MHz). 
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Figure 8-11. Compound 8, 1H-13C HMBC measurement. ([D4]MeOH, 300 MHz). 
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Figure 8-12. 1H and 13C NMR spectra of S-2-Acetamidoethyl 2-bromoethanethioate 

(10). 
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Figure 8-13. 1H and 13C NMR spectra of S-2-Acetamidoethyl 2-

(diethoxyphosphoryl)ethanethioate (11). 
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Figure 8-14. 1H and 13C NMR spectra of (E)-S-2-Acetamidoethyl 4-(tert-butyloxycarbonylamino)but-2-

enethioate (12). 
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