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1 INTRODUCTION  

1.1 Stem cells 
Stem cells are characterized by their unique ability to self-renew and differentiation 

capabilities. These two properties enable them to repair the damaged tissue 

(reviewed by George Q. Daley. 2010).  Depending upon the differentiation potential, 

stem cells can be divided in three groups namely totipotent, pluripotent and 

multipotent stem cells. A totipotent cell can give rise to whole organism e.g. zygote, a 

pluripotent stem cell can give rise to all cells except extra embryonic tissue e.g. cells 

from inner cell mass. Other stem cells can be oligopotent, bipotent or unipotent 

depending on their ability to develop into few, two or one other cell type(s) (Winslow. 

2001). Stem cells have attracted attention of scientific community because of their 

regenerative capacity. First idea about therapeutic potential of stem cells came 

during early experiments with bone marrow transplants when Canadian scientists 

Ernest A McCulloch and James E Till described the self renewing properties of 

mouse bone marrow stem cells in 1963 (Becker et al., 1963), which initiated adult 

stem cell research. Further momentum in the stem cell research came with the 

discovery of pluripotent ES cells, when Martin et al showed successful isolation of 

mouse ES cells and their pluripotent potential (Martin et al., 1981). Major 

breakthrough in this field came in 1998 when James Thomson, a scientist at the 

University of Wisconsin-Madison, isolated cells from human embryo and grew them 

in culture (Thomson et al., 1998), these human ES cells had a normal karyotype and 

also showed the potential to develop into all three germ layers. Since then extensive 

research has been carried out in isolation, characterization and clinical application of 

human ES cells. However, it has provoked serious ethical debates with respect to 

the source of these cells, which is eight days old human embryo. This controversy 

had great impact on the flow and direction of stem cell research. Scientists started 

looking for alternative sources of stem cells. This lead to the emergence of 

reprogramming field, where somatic cells are dedifferentiated to primitive pluripotent 

stem cells with in vitro manipulation (Marc Lewitzky and Shinya Yamanaka. 2007). 

Earlier attempts in this direction were carried out by exposing somatic cells to the 

extracts from pluripotent stem cells or by fusing it with enucleated embryo thus 

forcing it to revert back to pluripotent state (Marc Lewitzky and Shinya Yamanaka. 

2007). However those approaches were extremely inefficient and practically 
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complicated. Nevertheless, these attempts shed light on the signaling pathways as 

well as transcription factors involved in pluripotency.   

1.2 Reprogramming somatic cells towards pluripotency by defined 
factors 
 

Advancement in the field of developmental biology and increased understanding 

about cellular signaling brought the idea of using defined factors for the direct 

reprogramming of somatic cells.  

1.2.1 Discovery of reprogramming factors and generation of induced 
pluripotent stem (iPS) cells  

Takahashi and Yamanaka did first successful reprogramming of mouse somatic cell 

in 2007 (Takahashi et al., 2006). 

 

 

 

 

 

 

 

 

 

Figure 1: Induction of pluripotency with defined factors. Generation of induced pluripotent stem 
(iPS) cells from differentiated fibroblasts using retroviral transduction of defined transcription factors 
namely Oct4, Sox2, Klf4, and c-Myc (modified from Takahashi et al., 2006). 

During the study their first objective was to find the combination of factors capable of 

reprogramming. For this purpose they used mouse embryonic fibroblasts (MEFs) 

and tail-tip fibroblasts (TTFs) of mice homozygous for a knock-in of a neomycin-

reporter cassette into promoter region of Fbx15 gene. Fbx15 expression is restricted 

to early embryonic development and ES cells but it is dispensable for mouse 

development and maintenance of pluripotency (Tokuzawa Y et al., 2003). Initially, 24 

potential reprogramming factors were retrovirally transduced into Fbx15-reporter-

fibroblasts. The rationale behind the experiment was: upon becoming pluripotent, 
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cells would express the neomycin resistance gene under control of the Fbx15 

promoter and thus become resistant to G418 selection. Indeed the G418 selected 

cells formed the ES-like colonies and termed induced pluripotent stem (iPS) cells 

(Figure 1). The experiment was repeated with stepwise reduction of each of the 24 

factors. Ultimately it was reduced to four factors namely Oct4, Sox2, Klf4 and c-Myc 

as described in figure 2. These results were also reproduced in the case of human 

by generating human iPS cells using similar reprogramming approach (Yu et al., 

2007).  iPS cells obtained were similar to ES cells with respect to pluripotency and 

differentiation potential with some minor differences in the gene expression patterns 

(Takahashi et al., 2006, Yu et al., 2007). Therefore, iPS cells offers suitable 

alternative to embryonic stem cells in terms of their applicability in medical research. 

1.2.2 Biomedical application of human iPS cells  

 Human iPS cells are immensely valuable in the field of biomedical research in terms 

of making relevant cellular platform from disease modeling, drug screening and 

toxicity studies (Figure 2). Patient specific iPS cells have been successfully utilized 

to assess disease phenotype in case of cardiac as well as neurological  
 

 

 

 

 

 

 

 

Figure 2: Biomedical application of human iPS cells. Human iPS cells can be used in several 
ways. a) Patients specific iPS cells can be differentiated into relevant cell types in order to establish 
cellular models for studying the disease mechanism. b) Cells derived from human iPS cells can be 
used for drug screening to evaluate its potency on targeted cell population. c) Toxic side effects of 
drugs can be evaluated on iPS cell derived cells before its clinical application (Bellin et al., 2012). 
disorders such as Long QT, Catecholaminergic Polymorphic Ventricular 

Tachycardia, Alzheime’s disease, Parkinson’s disease, Huntington’s disease etc 
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(Itzhaki et al., 2011; Itzhaki et al., 2012;	
  Egashira et al., 2012, Israel et al., 2012, 

Soldner et al., 2009, Park et al., 2008). Apart from disease modeling, iPS derived 

cells hold great potential for pharmaceutical industry by providing cellular platform for 

drug screening and identifying novel targets for therapy (Bellin et al., 2012). 

Moreover, toxic side effects of drugs can be evaluated directly on targeted cell types 

derived from iPS cells. Thus enabling focused development of drugs without toxic 

side effects. This is crucial as many drugs are removed from the market due to its 

unexpected toxicity on vital organs in humans. Such late phase removal of drug 

causes immense capital loss to the company (Braam et al., 2009). Therefore, pre-

testing of drug toxicity on human iPS derived cells could provide vital screening step 

during drug development. 

 

1.3 Derivation of transgene-free human iPS cells  

Initial reports for generating iPS cells involved retroviruses as a mode of transgene 

delivery (Takahashi et al., 2006). Although retroviruses are capable of 

reprogramming somatic cells to iPS cells, the clinical applicability of such iPS cells  

 

 

 

 

 

 

 

 

Figure 3: Summary of different methods for iPS cell induction. Overall methods are divided in 
three groups. Methods utilizing retroviruses result in iPS cells with integrated transgenes. Second 
group belongs to excisable vectors such as transposons and Cre excisable viral vectors. Third 
category includes the methods overcoming genomic modification by using proteins, chemicals, 
mRNA, non-integrating viruses and episomal plasmids (Wörsdorfer P, Thier M and Kadari A. 2013). 
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is limited due to the integrated transgenes carrying the risk of insertional 

mutagenesis (Mikkers H. & A. Berns, 2003) and tumor formation (Okita et al., 2007). 
Moreover, continuous expression of transgenes in iPS cells negatively affects the 

pluripotency (Kopp et al., 2008) and limits their differentiation potential. This has 

been shown by inability to yield live chimeric mice and diminished endodermal 

differentiation of iPS cells carrying transgenes (Sommer et al., 2009). Alternative 

approaches were explored to obtain iPS cells with higher efficiency with minimal 

genetic modifications of the cells. Various protocols circumventing viral vectors have 

been published, including the use of transposons (Kaji K et al., 2009) episomal 

plasmids (Chou et al., 2011, Valamehr et al., 2014), synthetic mRNA (Warren et al., 

2010), micro RNAs (Anokye-Danso et al., 2011), synthetic self-replicating RNAs 

(Yoshioka et al., 2013), sendai viruses (Fusaki et al., 2009, Ye et al., 2013) as well 

as protein transduction (Kim et al., 2009; Zhou et al., 2009) as summarized in figure 

3. Human iPS cells generated via above methods contain minimal or no genetic 

modifications and are generally more suitable for clinical applications than virus-

based protocols. However, still there is no gold standard of an iPS cell 

reprogramming strategy since these non-integrating approaches exhibit limitations 

such as low reprogramming efficiencies, slow reprogramming kinetics, narrow range 

of cell specificity, and poor reproducibility (Gonzalez et al., 2011; Wörsdörfer et al., 

2011, Lee et al., 2013). Thus, in terms of robustness and efficacy lentiviral system 

still represents the method of choice for iPS cell derivation.  

1.3.1 Polycistronic and Cre-excisable lentiviral vector systems 

As mentioned above, integrated transgenes harbor a risk of tumor formation due to 

insertional mutagenesis as well as reactivation of silenced oncogenic transcription 

factors. A first improvement in iPS cell generation was the usage of polycistronic 

vectors in order to reduce the number of integration sites. The core element of those 

vectors is a cassette coding for all four transcription factors, which are linked 

together via self cleaving peptide sequences such as the 2A peptide (Szymczak et 

al., 2004, Carey et al., 2009). This strategy allows translation of four separate 

polypeptides from a single mRNA strand. Thus, instead of different viruses, one 

construct is sufficient to induce epigenetic reprogramming, which decreases the 

number of inserted transgenes and therefore minimizes the risk of tumor formation 

(Okita et al., 2007). Subsequently, the polycistronic concept was combined with the 
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Cre/loxP-system (Sauer et al., 1989) to generate a lentiviral vector that integrates a 

polycistronic reprogramming cassette flanked by loxP sites. Hence, transgenes could 

be excised from iPS cells via transient expression of the DNA recombinase Cre 

(Soldner et al., 2009). Recently, a new loxP-modified polycistronic lentiviral vector 

system called stemcca was reported that allows efficient iPS induction of about 0.1-

1% reprogramming efficiency (Sommer at al., 2009). The cassette consists of the 

coding regions of Oct4 and Klf4, separated by a 2A peptide sequence, followed by 

an internal ribosomal entry site (IRES) (Pelletier et al., 1988) and the coding regions 

of Sox2 and c-Myc, also separated by a 2A sequence. The expression of the 

transgene is driven either by the human EF1α promoter or a Tet inducible minimal 

CMV promoter (Sommer et al., 2009, Somers et al., 2010). This structure leads to a 

strong transgene expression and increases the probability to obtain an appropriate 

stochiometry of ectopic transcription factors, which turned out to be important for 

efficient reprogramming (Papapetrou et al., 2009). In fact, this polycistronic 

reprogramming system proved to be functional even in peripheral blood cells that are 

usually quite resistant towards reprogramming (Staerk et al., 2010). Moreover, 

stemcca was also used recently in order to obtain transgene-free human iPS cells 

with putative clinical grade status (Awe et al., 2013). Similar approaches were 

published utilizing polycistronic construct in combination with application of lentiviral 

Cre vector in order to obtain transgene-free human iPS cells (Papapetrou et al., 

2011).  

1.4 Direct delivery of Cre protein 

Use of Cre recombinase in a protein form for transgene deletion promises clean way 

to remove transgenes, as it involves no genetic modifications of target cells. In order 

to directly deliver the Cre protein to the cells, it has been modified with the inclusion 

of protein transduction domain (PTD) and nucleus localization signals and resulting 

fusion protein is called TAT-Cre (Peiz et al., 2002). PTD confers the ability to pass 

through cell membrane and NLS allows the targeting of Cre protein to the nucleus 

(reviewed by Patch and Edenhofer. 2007). TAT-Cre has been used successfully for 

Cre mediated recombination in human ES cells (Nolden et al., 2006). Therefore TAT-

Cre offers robust alternative for Cre mediated transgene excision in case of human 

iPS cells. 
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1.4.1 Alternative ways of Cre mediated reprogramming construct excision 

The usage of polycistronic vectors harboring loxP sites allows transgene excision 

from iPS cells via transient expression of the Cre recombinase  (Soldner et al., 

2009). However, the reprogramming efficiency using these vectors was reported to 

be 0.01% only (Soldner et al., 2009). In 2009 Sommer et al reported the lentiviral 

vector to overcome this limitation by yielding a reprogramming efficiency of 0.1 to 

1.5% (Sommer et al., 2009). However, deletion of the loxP-modified transgene 

cassette requires introduction of Cre recombinase activity. This has been 

accomplished by either transfection of iPS cells with a Cre-encoding plasmid 

(Soldner et al., 2009; Somers et al., 2010) or using an adenoviral Cre construct (Awe 

et al., 2013; Sommer et al., 2010) and subsequent genetic identification of 

successfully recombined clones (figure 4). However the efficiency of transgene 

excision using those approaches were very low e.g Soldner et al showed successful 

deletion of 16 out of 180 analyzed clones (Soldner et al., 2009). 

 

 

 

 

 

 

 

 

 

Figure 4: Summary of different approaches for Cre mediated transgene deletion. Earlier 
attempts to excise reprogramming factors using Cre-coding plasmids, adenovirus and mRNA. 

More recently, transgene-free iPS cells were obtained by excising the transgene 

cassette by delivery of Cre mRNA (Loh et al., 2012) as described in figure 4. 

However, this protocol involves daily transfection of mRNA for a week to perform 

excision. Such repeated transfection could be stressful to the cells. This rather 

inefficient and laborious transfection and selection procedures make Cre/loxP-based 
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iPS cell derivation less appealing for obtaining transgene-free iPS cells. In fact, 

efficient and reliable induction of Cre recombinase activity in loxP-modified iPS cells 

and subsequent selection of cleaned clones represents a roadblock for the 

widespread use of Cre-deletable iPS cell systems. 

1.5 Advantages of transgene-free iPS cells 

Apart from earlier discussed advantages with respect to insertional mutagenesis and 

tumorogenesis, removal of transgenes enables iPS cells with putative clinical grade 

status (Awe et al., 2013). Moreover, there are several studies showing the improved 

differentiation potential as well as enhancement in the quality of iPS cells after the 

transgene removal (Soldner et al., 2009, Sommer et al., 2010). Sommer et al 

systematically showed the improvements of transgene-free iPS cell towards 

endodermal lineage as well as they could obtain live chimeras only with iPS cells 

devoid of transgenes thus showing enhancement their in vivo developmental 

potential (Sommer et al., 2010). There has been recent study showing successful 

transplantation of neuronal cells derived from transgene-free human iPS cells with 

improvement of disease phenotype without any signs of tumor formation in rodent 

model (Mohamad et al., 2014). Thus in order to make iPS based treatments routine 

practices in clinic, it would be of high importance to devise approaches to derive iPS 

cells devoid of integrated transgenes.  
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1.6 Cardiomyocyte differentiation  

Due to the immense potential of human iPS derived cardiomyocytes, it would be of 

great of value to devise robust approaches to obtain reprogramming-factor free iPS 

cells and their subsequent differentiation to cardiomyocytes. 

1.6.1 In vivo Cardiac development and regeneration 

Heart is the first organ to form during the mammalian development. Evidence 

gathered in rodent developmental models suggest that cardiovascular system is 

derived from mesoderm, which originates during gastrulation from the primitive 

streak population (Buckingham et al., 2005). Complex interplay amongst different 

developmental signals further specifies the cells from primitive steak into cardiac 

precursors states which forms first and second heart field. More than 70% of the 

heart is formed from second heart field and rest from first heart field population 

(Buckingham et al., 2005). Unlike in most of amphibians and fish, human 

myocardium is unable to repair itself after injuries. Studies utilizing genetic fate 

mapping and C14 incorporation assays have revealed that human myocardium 

renewal rate is approximately 1% during the early age (20 years), 0.4% during old 

age (75 years) (Laflamme and Murry et al. 2011). Such low regeneration capacity is 

not sufficient in the case cardiac injuries such as infarction where 25% of the cells 

are lost (Laflamme and Murry et al. 2011). 

1.6.2 Different stem cell sources for cardiac regeneration 

In spite of recent advances in medicine, cardiovascular disorders remain a major 

cause of mortality in the world (Lopez et, al 2006). Supply with human 

cardiomyocytes is generally limited due to lack of donors as well as restricted 

proliferation rate of adult cardiomyocytes. Thus, with respect to use of human 

cardiomyocytes for regenerative therapies and drug toxicity studies as well as 

disease modeling, alternative sources are highly desired. There were many attempts 

in this direction using adult stem cells such as bone marrow derived stem cells 

(BMSCs) (Orlic et al., 2001), mesenchymal stem cell (MSCs) (Calpan et al., 2006), 

c-kit and ISL1 positive cardiac stem cells (CSCs) (Zaruba et al., 2010, Laugwitz et 

al., 2005). However, there is little evidence that BMSCs and MSCs differentiate into 

cardioymocytes after transplantation, since positive effects observed using those 
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cells are mainly due to angiogenesis and paracrine effects (Choi et al., 2012). 

Although it has been shown that CSCs can be differentiated into all cardiovascular 

lineages in an animal model (Cai et al., 2003), there have been few studies in the 

case of human due to lack of donors, limited in vitro amplifications as well as 

complicated isolation procedures (Choi et al., 2012, Hou et al., 2013).  

1.6.3 Cardiac differentiation of human pluripotent stem cells 

Discovery of ES cells has pave new hopes in the field of regenerative medicine 

(Thomson et al., 1998). It holds great potential for providing unlimited source of 

cardiac cells. However, ethical concerns associated with use of human embryo have 

made it difficult to bring the technology further with respect to clinical research 

(Burridge et al., 2012). Recent iPS technology offers generation pluripotent stem 

cells from somatic cells.  

Evidence obtained from the studies involving mouse and human pluripotent stem 

cells suggest involvement of BMP, WNT and TGF-β signals to play critical role by 

blocking the ectodermal differentiation and promoting primitive steak-like population 

(Keller et al., 2005). 

1.6.3.1 Stages of cardiac differentiation of pluripotent stem cells  

            

 

 

 

 

 

 

 

 

Figure 5: Differentiation of ES cells towards mesendodermal lineages.  Overview of important 
cell signaling pathways specifying ES towards different lineages (modified from Keller et al., 2005). 

As described in figure 5, T (Brachyury) positive cells characterize first phase of 

cardiac differentiation, which comprises of mesendodermal precursor cells (Keller et 
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al., 2005). These early precursors are then further specified into respective cell type 

depending upon critical interplay of Nodal and WNT signals. 

 

 

 

 

Figure 6: Cardiac differentiation of pluripotent stem cells towards cardiomyocytes. Overview of 
different precursor populations arising during cardiac specification of pluripotent stem cells (modified 
from Gessert and Kühl. 2013). 

During cardiac specification, cells pass through a series of precursor states as 

described in the figure 6. First precursor cells in this series includes cardiovascular 

precursor cells (CVPCs), these cells expresses markers such as ISL1 and FLK1. 

CVPCs hold the potential to differentiate into the cardiac as well as vascular lineages 

(Zaruba et al., 2010, Laugwitz et al., 2005). Next step in specification leads to the 

cardiac precursors (CPCs) characterized by the expression of Nkx2.5, GATA-4 and 

Mef2c. These cells could give rise to first and second heart field derivatives (Gessert 

and Kühl. 2013). Evidence from several studies indicates that CVPCs and CPCs 

require WNT/β-catenin signal for their proliferation (Gessert and Kühl. 2013). 

1.6.3.2 Current state of cardiac differentiation of pluripotent stem cells 

Until recently human cardiomyocytes can only be isolated from heart biopsies, which 

is limited with respect to the availability of tissue. Moreover, obtained cardiomyocytes 

remain viable not more than a day. Hence obtaining functional cells in large 

quantities remains a major obstacle in making physiologically relevant cellular 

models (Rajala et al., 2011). Pluripotent stem cells offer an attractive option to obtain 

cardiomyocytes as they provide unlimited source of undifferentiated cells which has 

potential to differentiate into any cell type provided suitable media conditions are 

provided. Figure 7 describes recent systematic approaches for derivation of 

cardiomyocytes from pluripotent stem cells (Burridge et al., 2012, Mummery et al., 

2013). Following the heart development in vivo, there are three different approaches 

to direct the pluripotent stem cells towards cardiac lineages (see figure 7). The first 

approach involves formation of embryoid bodies (EBs) in the presence of growth 

factors known to be involved in cardiac development. Spontaneous differentiation of 
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these EBs in medium containing fetal bovine serum results in contracting areas 

having cardiomyocytes. However the efficiency of this approach remains very low (5 

to 20%) (Kehat et al., 2001). There have been improvements in efficiency by using a 

precise cell number for EB formation in a V-Shaped 96-well plate (Burridge et al., 

2007). Moreover, application of bone morphogenic protein 4 (BMP4) and Activin A 

further increases the efficiency of this protocol (Ng et al., 2005; Filipczyk et al., 

2007). The second approach uses the monolayer culture of pluripotent stem cells in 

the presence of cardiac-specific growth factors without going through EB formation. 

Several attempts have been published utilizing monolayer culture of cells in a serum-

free condition having growth factors such as BMP4, Activin A, FGF2, VEGF and 

small molecules in order to increase the efficiency while reducing the heterogeneity 

arising during EB based differentiation (Laflamme et al., 2007; Zhang et al., 2011; 

Uosaki et al., 2011, Hudson et al., 2011, Carpenter et al., 2013, Lian et al., 2013, 

Minami et al., 2013, Dambrot et al., 2014). However, optimum concentration of 

extrinsic factors varies among different iPS cell lines requiring the optimization of 

protocol for each cell line, which makes it laborious (Kattman et al., 2011, Buriddge 

et al., 2012). The third approach utilizes co-culture of END2 (visceral endoderm-like 

cells), where they instruct the pluripotent stem cells to differentiate towards 

cardiomyocytes by secreting cardio-inductive growth factors (Mummery et al., 2003).  

 

 

 

 

 

 

 

 

Figure 7:  Overview of different methods for cardiac differentiation of pluripotent stem cells. 
Summary of different approaches for cardiac differentiation of human pluripotent stem cells using 
EBs, END-2 co-culture and monolayer based methods (Modified from Mummery et al., 2013)   
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Recent advances in cell signaling studies have shed light on detailed signaling 

pathways involved during cardiac differentiation. It has been shown that WNT 

signaling plays very critical role during cardiogenesis (Marvin et al., 2001). It has 

been suggested that WNT signaling during the early differentiation is required for 

mesodermal induction, however later on during differentiation cardiac specification is 

hampered by WNT signaling and inhibition of WNT signal is absolutely essential for 

the formation of cardiomyocytes (Ueno et al., 2007). Recent studies have shown the 

use of WNT inhibiting small molecules for increasing the cardiomyocyte yield in the 

case of EB (Ren et al., 2011) as well as monolayer based protocols (Lian et al., 

2013, Minami et al., 2013).  Two recent studies by Cao et al. have shown importance 

of ascorbic acid in increasing the efficiency by affecting MEK/ERK pathway (Cao et 

al., 2011). Moreover, by combining the application BMP4, Chir99021 and ascorbic 

acid they were successful in isolation of cardiovascular precursors cells from human 

pluripotent stem cells (Cao et al., 2013). However the heterogeneity among the 

different lines still remains a major issue even in the case small molecules based 

protocols. Hence it is very important to devise simple and highly efficient new 

protocols combining the previous findings.  

Apart from differentiation of pluripotent stem cells, the new branch of trans 

differentiation is emerging where fibroblasts are directly converted into desired cell 

types via over expression of lineage-specific transcription factors. Recently, Ieda et 

al. have shown direct conversion of mouse fibroblasts to cardiomyocytes using 

defined transcription factors (Gata4, Mef2c, and Tbx5) (leda et al., 2010). Another 

group obtained cardiomyocytes by partially reprogramming somatic cells and then 

diverting them towards cardiac lineage by providing cardio-specific media conditions 

(Efe et al., 2011). However such a transdifferentiation approach has not yet been 

shown in the case of human cells. Hence it would be of high interest to devise direct 

transdifferentiation protocols to obtain human cardiomyocytes. 

1.7 Enrichment of human iPS derived cardiomyocytes 

iPS and ES cells provide unlimited source of cardiomyocytes, however, major 

applications of obtained cardiomyocytes will strictly require pure population of 

cardiomyocytes. There have been several attempts in order to enrich the cardiac 

population. Earlier attempts in this direction include genetic methods where the ES 
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cells having antibiotic resistance or fluorescent protein under the control of cardiac-

specific transcription factors were used for differentiation. Enrichment of cardiac 

populations can be achieved via antibiotic selection or by FACS analysis 

(Fijnvandraat et al., 2003; Gassanov et al., 2004; Hidaka et al., 2003). Major 

disadvantage of above methods include use of genetically modified cell lines, which 

limits its application. Hattori et al showed the successful isolation of more than 90% 

pure cardiac population using a non-genetic method utilizing mitochondrial specific 

dye. Since cardiomyocytes have higher number of mitochondria, they will absorb 

most of the dye and can be sorted out using FACS (Hattori et al., 2010). This 

approach is limited due to its purity as well as toxicity of dye and the requirement of 

FACS sorting. There have been several studies utilizing the cardiac-specific 

antibodies in order to isolate cardiac cells from mixed population of cells. Use of 

specific antibodies improved the purity of cardiomyocytes up to 99% but the wide 

application of such protocols is limited as they require FACS analysis (Dubois et al., 

2011; Uosaki et al., 2011). Recently Tohyama et al showed the successful 

purification of cardiomyocytes utilizing different metabolic requirements of 

cardiomyocytes. Their protocol uses the medium devoid of glucose and contains 

lactate as a main energy source. Since only fetal cardiomyocytes could utilize lactate 

as an energy source, unwanted cells die out due to lack of energy source  (Tohyama 

et al., 2013).  

1.8 Potential applications of human iPS derived cardiomyocytes 

1.8.1 Cellular models of disease pathophysiology and drug toxicity studies 

Until recently animals have been used as a model to uncover mechanism of disease 

progression, drug efficacy as well as toxicity studies (Goldsmith et al., 1975). 

Although animal models are helpful in many regards, there are fundamental 

differences compared to human physiology. In order to faithfully replicate the human 

cellular models, it is of great potential to use the cellular platform of human origin. 

Emergence of iPS technology has given immense momentum to the field of disease 

modeling. In spite of structural and functional immaturity there have been many 

studies showing the successful cellular models of cardiac diseases such as long QT 

(Moretti et al., 2010; Itzhaki et al., 2011; Itzhaki et al., 2012;	
  Egashira et al., 2012),	
  

and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) (Itzhaki et al., 
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2012; Jung et al., 2012; Kujala et al., 2012). These studies were extremely 

informative in terms of disease phenotype and its potential treatment. For example 

Itzhaki et al obtained the cardiomyocytes from LQTS-2 patients and showed the 

disease phenotype and using drug they achieved reversal of disease phenotype thus 

establishing reliable platform for drug efficacy screening (Itzhaki et al., 2011).  Jung 

et al obtained similar results in case of disease modeling of CPVT, where they could 

rescue the disease phenotype with the use of drug called dantrolene (Jung et al., 

2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Potential application of pluripotent stem cell derived cardiomyocytes. Overview of 
applications of human cardiomyocytes for pharmaceutical research and regenerative medicine 
(Braam et al., 2009) 
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Apart from disease modeling, iPS CMs offer unlimited source of cardiac cells for 

drug toxicity studies (Figure 8). Many drugs are removed from market due to their 

side effects causing fatal cardiac conditions (Lasser et al., 2002; Mandenius et al 

2010). Conventional methods for toxicity screening include cell lines from animal 

models as well as heterologous cell systems where cardiac channels are expressed 

in HEK (human Embryonic Kidney) or CHO (Chinese Hamster Ovary) cell lines (Lu 

et al., 2008). These methods are helpful however there are obvious limitations of 

such non-human cellular platforms. Recent studies have achieved the successful 

establishment of cardiac tissue from human ES and iPS cells derived 

cardiomyocytes, which could validate the toxic effects of drugs (Schaaf et al., 2012; 

Moya et al., 2013). Therefore iPS CMs hold the great potential as a platform for 

studying disease mechanism, pharmacology and drug screening studies provided 

the field evolves further with respect to differentiation efficiency and maturity of iPS 

CMs. 

1.8.2 Cell therapy and tissue engineering 

Ultimate aim of stem cell field is to readily obtain the cells for regenerative therapy in 

order to replace dead or damaged tissue. iPS CMs are the most suitable candidates 

for cell replacement approaches for cardiac repair. However it is absolutely essential 

to provide the cardiomyocytes in a proper transplantable format as to enhance their 

functional integration into the host tissue (Braam et al., 2009). It is quite a 

challenging task as recent transplantation studies have shown the poor integration of 

transplanted cardiomyocytes can lead to fetal arrhythmia (Liao et al., 2011; Zhang et 

al., 2002). Hence it is important to merge the cardiac regeneration field with tissue 

engineering techniques, which deals with construction of 2D or 3D tissues in vitro.  

There are several recent attempts in this direction by constructing 3D tissue models 

using cardiomyocytes derived from pluripotent stem cells (Schaaf et al., 2012; Moya 

et al., 2013). Such 3D models resemble tissue in native form and have been 

successfully used for drug toxicity screens (Schaaf et al., 2012; Moya et al., 2013) as 

well as cell therapy in case of rodent models of myocardial infarction (Eschegen et 

al., 2002). In spite of recent success, the field remains in infancy as cell replacement 

studies were carried out in rodent models hence it is required to carry out similar 

studies in larger animal models. More improvements are needed in terms of 
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strategies to enhance the functional integration of cells as well as follow up methods 

for detection of functional improvement of heart after transplantation. Moreover it is 

of high interest to design more inert scaffolds assisting successful transplantation 

and minimizing adverse immune reaction.  

1.9 Functional properties of human iPS derived cardiomyocytes 

1.9.1 Structural features of human iPS derived cardiomyocytes 

Cardiac differentiation of human iPS cells is marked by spontaneous beating (Zhang 

J et al., 2009). Indeed human iPS derived cardiomyocytes have all the skeletal 

apparatus required for beating. Morphologically they are round or polygonal in shape 

and subtype wise are of mixed populations of ventricular, atrial and pacemaker like 

cells with 38 to 70% of ventricular like cells (Lee et al., 2011, Ma et al., 2011). There 

are some recent reports of obtaining subtype specific cardiomyocytes with inclusion 

of growth factors and small molecules (Karakikes et al., 2014, Zhanng et al., 2010). 

Ultra structure analysis using electron microscopy reveals the presence of 

sarcomeric structures. Although it is not as mature as found in their adult 

counterparts (Mummery et al., 2012). Characteristics proteins present in 

cardiomyocytes includes α-MHC, c-TNT, α-actinin which make up the contractile 

apparatus (Gupta et al., 2010). Moreover they have important proteins such as 

connexin 43, 40 and 45 for intracellular gap junction formation (Gupta et al., 2010, 

Saric T et al., 2014).  

1.9.2 Electrophysiological properties of cardiomyocytes 

Action potential 

Human iPS derived cardiomyocytes (CMs) exhibit action potential (AP), which is 

indicative of ventricular, atrial and nodal-like cells (Ma et al., 2011). AP recordings 

from iPS CMs are different from the adult CMs with respect to certain parameters 

such as maximum diastolic potential (MDP), Vmax and depolarization which is 

suggestive of immature fetal cardiomyocytes like phenotype. Generally MDP of 

human iPS CMs is positive, Vmax is lower and depolarization slightly delayed 

compared to adult CMS  (Saric T et al., 2014).  
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Ion channels  

As indicated in figure 9 human iPS CMs exhibits all major currents such as INa, ICa,L, 

Ito, IK1, IKr, IKs, IF  which differ in their properties compare to adult CMs resulting in 

immature fetal-like AP (Honda et la., 2011, Saric T et al., 2014). Frequencies of 

occurrence of certain ion channels varies due to differences in the culture conditions 

used to obtain CMs for example IKs and IK1 have been shown to present in some 

studies while completely absent in other reports (Lieu et al., 2013, Cordeiro et al., 

2013, Ma et al., 2011).  

 

 

 

 

 

 

 

Figure 9: Overview of different ionic currents contributing to the ventricular-like action 
potential in human iPS derived cardiomyocyte. Contribution of individual ion currents for the 
formation of different phases of action potential. Direction of arrow indicates the direction of ionic flux 
where upward represent outwards and downwards represents inwards ionic current flow (modified 
from Saric et al., 2014). 

Such variations observed in current profile of iPS CMs represent the major roadblock 

towards making reliable disease models involving disorder associated with those 

ionic channels. Hence further improvements are required in order to obtain more 

mature iPS CMs capable of providing robust platform for drug toxicity and disease 

modeling. 

Calcium handling  

Readily detectable beating in human iPS CMs implies functional excitation-

contraction coupling. Indeed there are recent studies indicating presence of all 

important calcium handling proteins such as Rynodine receptor protein (RyRs), 

SERCA, L-type calcium channel, inositol-1,4,5-trisphosphate receptors (IP3Rs), etc. 
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in human iPS CMs (Itzhaki et al., 2011, Li et al., 2013). Therefore iPS CMs are of 

great potential as a reliable model for calcium signaling and the disorders associated 

with calcium signaling.  
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1.10 AIM OF THE STUDY 

Aim of the present study was to obtain suitable human iPS cells free of 

reprogramming factors utilizing Cre excisable viral vectors. Further we checked 

enhancement of the quality of transgene excised iPS cells in terms of pluripotency as 

well as differentiation potential. The second objective of the study was the 

establishment of robust protocol to obtain cardiomyocytes from multiple human iPS 

lines. It was achieved with precise modulation of key signaling pathways as well as 

enrichment of cardiomyocytes based on their metabolic requirement to enhance the 

purity of obtained cells. Our next goal was to perform detailed characterization of 

obtained cardiomyocytes in order to validate their functional properties. Overall we 

intend to provide the robust basis for scale up production of human cardiomyocytes 

suitable for drug toxicity, disease modeling and cellular therapy. 
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2 MATERIAL AND METHODS 

2.1 Materials 

2.1.1 Instruments and technical equipments 
Autoclave (D-150, Systec) 

Block heater (Thermomixer compact, Eppendorf) 

Centrifuges and rotors (Megafuge 1.0R, Rotor #2704, Rotor BS4402/A, Heraeus) 

Counting chamber (Fuchs-Rosenthal, Faust) 

Fluorescence microscope (Axiovert 40 CFL, Carl Zeiss) 

Freezer -80°C (Hera freeze, Heraeus) 

Gel electrophoresis chamber (Agagel, Biometra) 

Gel electrophoresis documentation (GelDoc, BIO-RAD)  

Horizontal Hood (Hera guard, Hereaus) 

Incubator (HERAcell 150, Heraeus) 

Incubator Shaker (Innova 44, New Brunswick Scientific) 

Inverse light microscope (Axiovert 40C, Carl Zeiss) 

Liquid nitrogen store (MVE 611, Chart Industries) 

Microwave (Microwave 800, Severin) 

Microscope (Axiovert 200M Carl Zeiss) 

pH-Meter (HI 9321, HANNA Instruments) 

Power supply electrophoresis (Standard Power Pack P25, Biometra) 

Sterile laminar flow hood (HERAsafe, Heraeus)  

Table centrifuges (Centrifuge 5415R, BIOFUGEpico, Galaxy Mini, Eppendorf, 

Heraeus, VWR) 

Thermocycler (T3 Thermocycler, Biometra) 

Transmission electron microscope (TEM) (LEO AB 912, Zeiss NTC) 

Ultracentrifuge (Discovery 90SE, Sorval) 

 
2.1.2 Chemicals and biochemicals 
Activin A (Life technologies) 

Agar (Roth) 

Agarose (PEQLAB) 

Ampicillin (Sigma-Aldrich) 

Ascorbic acid (Sigma-Aldrich) 
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bFGF (Life tehnologies) 

BMP4 (Life technologies) 

BSA (Sigma-Aldrich) 

B-27 supplement (Life technologies) 

B-27 supplement minus insulin (Life technologies) 

Chir99021 (Sigma-Aldrich) 

DMEM high glucose (Sigma-Aldrich) 

DMSO (Sigma-Aldrich) 

DNA ladder (1kb) (New England Biolabs) 

DNA-loading buffer (10x) (New England Biolabs) 

2-mercaptoethanol (Life technologies) 

dNTPs (PEQLAB) 

EDTA (Sigma-Aldrich) 

Ethanol (Roth) 

Ethidium bromide (Sigma-Aldrich) 

EPC 10 amplifier (HEKA Electronics) 

FCS (PAN Biotech) 

Gelatin (Life technologies) 

Isopropanol (Roth) 

IWR1 (Sigma-Aldrich) 

Knockout-DMEM (Life technologies) 

L-Glutamine (Life technologies) 

mTESR1 (Stem cell technologies) 

Matrigel (Stem cell technologies) 

Non-essential amino acids (Life technologies) 

PBS (Life technologies) 

Polybrine (Merck Millipore) 

Poly-D-Lysine (Sigma-Aldrich) 

Serum replacement (Life technologies) 

Sodium pyruvate (Life technologies) 

Sodium-L-lactate (Sigma-Aldrich) 

Rock inhibitor Y27632 (Sigma-Aldrich) 

RPMI1640 (Life technologies) 

XAV939 (Sigma-Aldrich) 
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2.1.3 Buffers 
Gel loading Buffer 
    H2O    50%(V/V) 

 Glycerol     49%(V/V) 

Bromphenol 
blue 

   0.5%(V/V) 

Xylene Cyanol    0.5%(V/V) 
 
Cell lysis Buffer 

Tris 0.1 M 

EDTA 5 mM 

NaCl 0.2 M 

10%SDS 0.2%(V/V) 

Adjust PH to 8.5. 

 

2.1.4 Enzymes  
goTaq - Polymerase (Promega) 

Phusion™ Hot Start High-Fidelity DNA Polymerase (Finnzymes) 

T4 DNA Ligase (New England Biolabs) 

Collagenase (Sigma-Aldrich) 

Alphazyme (PAA) 

Accutase (PAA) 

DNase (Fermentas) 

 
2.1.5 Antibodies 

Oct4 (1:100; Santacruz)  

SSEA-4 (1:200; Millipore) 

ISL1 (1:200,Biorbyt) 

cTNT (1:100, abcam)  

alpha-actinin (1:400, Sigma-Aldrich) 

SMA (1:200, Santacruz)  

Alexa 555 and Alexa 488-cojuagted anti-mouse IgG (1:1000; Life technologies) 
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2.1.6 Kits 

Plasmid Maxi Prep (Life technologies) 

Plasmid Mini prep (Life technologies) 

PCR Purification / Gel Extraction (Promega) 

mRNA isolation kit (Macherey Nagel) 

Lenti-X-Concentration kit (Clontech) 

Letnti-X-GoSticks (Clontech) 

Reverse Transcriptase (BIO-RAD)  

 
2.1.7 Media for bacterial cultures 
     LB agar Amount 

Tryptone       10 g 

Yeast extract       5 g 

NaCl       5 g 

Agar      10 g 

H2O was added to 1L and the mixture 
was autoclaved and stored at 4°C  
       

 
 
 
 
 

SOC medium Amount 

Tryptone       20 g 

Yeast extract       5 g 

MgSO4 · 7 H2O       5 g 

NaCl       0.5 g 

KCl       0.19 g 

Glucose      20 mM 

H2O was added to 1L and the mixture 
was autoclaved and stored at -20°C  
 
 

LB medium Amount 

Tryptone       10 g 

Yeast extract       5 g 

NaCl       5 g 
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2.1.8 Cell culture reagents 
Cell culture media 
Freezing medium for fibroblasts and cardiomyocytes 

10% DMSO 
90% FCS 

Freezing medium for human iPS cells 

10% DMSO 

90% Knockout serum replacement 

	
  

Standard MEF medium Volume 

DMEM-high-glucose  500 ml 
 

Non-essential amino acids 5 ml 
 

Sodium pyruvate (100 mM) 5 ml 
 

L-Glutamine (200 mM) 
 

5 ml 
 

 

Standard human ES cell 
medium 

Volume 

DMEM/F12 400 ml 
 

Non-essential amino acid 
(100X) 

5 ml 
 

β-Mercaptoethanol (500X) 
 

1 ml 
 

L-Glutamine (200mM) 
 

2.4 ml 
 

Ascorbic acid 50 µg/ml 
 

Knock-Out serum replacement 100 ml 
 

bFGF 10 ng/ml 
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Cardiac differentiation basal medium Volume 

RPMI1640 with Glutamine 500 ml 

B-27 supplement (50X) with and without insulin 10 ml 

Penicillin/Streptomycin (100X) 5 ml 

 
Cell culture solutions 
 

 

         
 
 
 
 
 
 

Coatings 

Gelatin Conc. 

Gelatin 0.1%(V/V) 

 in dd H2O 
Incubation 20 minutes, 37°C 

 

 
 
 
 
 

 
 
	
  

	
  

1X Trypsin EDTA Conc. 
10x Trypsin EDTA 10%(V/V) 

PBS 
 

90%(V/V) 

2X HBS Buffer PH 7 Conc. 

10x Trypsin EDTA 10%(V/V) 

PBS 
 

90%(V/V) 

Matrigel Conc. 

Matrigel According to manual 

 in  24 ml DMEM-F12  
Incubation overnight at 4°C  
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2.1.9 PCR Primers 
Purpose Primer 

 
Sequence 

 
Confirmation of 
excision of 
stemcca construct 

WPRE-Fw 5-ATCATGCTATTGCTTCCCGTATGGC 

WPRE-Rev 5- GGAGATCCGACTCGTCTGAGG 

β-actin-Fw 5-GGCTACAGCTTCACCACCAC 

β-actin-Rev 5- CCACCTTCCAGCAGATGTGG 

Cardiac 
differentiation 
follow up 
(Yang et al., 2008) 
 

RT Oct4 Fw 5-AACCTGGAGTTTGTGCCAGGGTTT 

RT Oct4 Rev 5-TGAACTTCACCTTCCCTCCAACCA 

RT T Fw 5-TGTCCCAGGTGGCTTACAGATGAA 

RT T Rev 5-GGTGTGCCAAAGTTGCCAATACAC 

RT ISL1 Fw 5-CACAAGCGTCTCGGGATTGTGTTT 

RT ISL1 Rev 5-AGTGGCAAGTCTTCCGACAA 

RT Nkx2.5 Fw 5-GCGATTATGCAGCGTGCAATGAGT 

RT Nkx2.5 Rev 5-AACATAAATACGGGTGGGTGCGTG 

RT cTNT Fw  5-TTCACCAAAGATCTGCTCCTCGCT 

RT cTNT Rev 5-TTATTACTGGTGTGGAGTGGGTGTGG 

RT β-actin Fw 5-TTTGAATGATGAGCCTTCGTCCCC 

RT β-actin Rev 5-GGTCTCAAGTCAGTGTACAGGTAAGC 
Table 1 Primer used during present study 

 
 
2.1.10 Plasmids 
 
stemcca lentiviral construct  
It is a lentiviral vector used for reprogramming purpose during the thesis work. It has 

Cre excisable polycistronic coding frame containing four stem cell factors (Oct4, 

Sox2, Klf4, c-Myc) linked with 2A peptides (Sommer et al., 2009). 

 
pMD2.G  
pMD2.G codes for a CMV-promoter driven VSV-G envelope protein used for 

lentivirus production (Addgene plasmid 12259 – D. Trono). 
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psPAX2  
Packaging plasmid coding for HIV-GAG, used for lentivirus production (Addgene 

plasmid 12260 – D. Trono). 

 
2.1.11 Cell lines 
 
293 T cells 
293 T cells are derived from human embryonic kidney cells grown in tissue culture 

(ATCC – Manassas, USA). They grow rapidly and can be very efficiently transfected 

by the calcium phosphate transfection. 

 

Human dermal fibroblasts (AR1034ZIMA)  

The human fibroblasts used in this study were obtained from a skin punch biopsy of 

a 24 year old male after getting informed consent and ethical clearance by the ethics 

committee of the University of Würzburg, Germany (ethical report no: 96/11 dated 

10.06.2011). 

 

Human cardiac fibroblasts  

Human cardiac fibroblasts were obtained from a myocardial biopsy with an informed 

consent and ethical clearance by the ethics committee of the University of Würzburg, 

Germany (ethical report no: 182/10 dated 04.04.2011). 

 

Feeder cells 
These are mitotically inactivated MEFs. It supports the growth of human iPS cells by 

secreting growth factor to the medium. 

 
Human iPS cell lines 
del-AR1034ZIMA 001 and fl-AR1034ZIMA 001 are lentiviral reprogramming derived 

iPS sister clones from human dermal fibroblasts (del: transgene excised, fl: 

transgene floxed. Human iPS cell line (k-hiPS) (Linta et al., 2012)  is a lentivirally 

derived iPS cell line from human keratinocytes kindly gifted by Dr. Stefan Liebau 

from University of Tübingen, Germany. Human iPS cell line iLB-C-50-s9 is a Sendai 
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virus derived iPS cell line from human cord blood cells. Human iPS cell line iLB-C1- 

30 m-r12 is a retroviral reprogramming derived iPS cell line from human dermal 

fibroblasts cells (Koch et al., 2011). 

 
AR1034ZIMA Cre reporter iPS cell line 
It is human iPS cell line (del-AR1034ZIMA 001) having a Cre reporter construct 

(modified from original construct (Russ et al., 2008) by replacing CMV promoter by 

EF1α promoter). Cre-mediated recombination induces the expression of GFP, by 

deleting the loxP-flanking RFP gene. This reporter line was used to check the 

efficiency of TAT-Cre mediated recombination.  

 
WNT reporter cell line  
It is the neural stem cell line (I3 lt-NES) carrying 7TGP WNT reporter construct 

developed by Fuerer et al., 2009. It was kindly gifted by Laura Stappert and 

Katharina Doll from University of Bonn, Bonn, Germany.  It was used to screen for 

the small molecules for WNT modulation. 

 

2.2 Methods 

2.2.1 Cell culture  
 
2.2.1.1 Maintenance and passaging of cells 
 
Pluripotent stem cells 
 
Human iPS and ES colonies were maintained on 6 well plates having mitotically 

inactivated feeder cells and 2 ml of standard HES medium having 10 ng/µl of basic 

FGF in each well. Cells were given fresh medium every day, every two days IPS 

colonies achieve the appropriate size and are ready for splitting. For this purpose 

medium was removed and colonies were treated with enzyme collagenase (1 mg/ml) 

for 1 hour at 37°C. Once colonies have detached from the bottom, 1 ml of medium 

was added to stop the collagenase action further. Now colonies from one well were 

taken into 15 ml falcon and centrifuged at 800 rpm for 3 minutes at 4°C. After 

centrifugation medium with collagenase was removed carefully without disturbing the 

pellet. Pellet was then resuspended in 1 ml of standard HES medium very carefully, 
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because it is very important that during resuspension colonies were shattered into 

appropriate size (not too big or not too small). After shattering the colonies, 2 ml of 

standard HES medium was added and this 3 ml of suspension was equally 

distributed over 6 wells of new 6 well plate.  

In order to have feeder free cultivation of pluripotent cells, cells were maintained in 

matrigel coated plates having m-TESR medium. Passaging of cells was achieved by 

obtaining single cell suspension using alphazyme or accutase (1 ml/well of 6-well 

plate) for 7 to 10 min at 37°C. Cell were then spllited (1:3) on new plates having m-

TESR medium with 10 µM Rock inhibitor, Y27632 to prevent the cell apoptosis.  

 
Somatic cells 
 
Human fibroblasts and 293T cells were maintained in MEF medium. Passaging of 

cells was achieved using trypsin (1ml/ well of 6-well plate) for 5 min at 37°C. Once 

cells have detached from the bottom, 1 ml of medium was added to stop the trypsin 

action. Cells were then centrifuged and distributed to new plates. Human 

cardiomyocytes were maintained in cardiac differentiation basal medium. Passaging 

was achieved using accutase (1ml/ well of 6-well plate) for 7 to 10 minutes at 37°C. 

Cell were then spllited (1:2) on new plates having cardiac differentiation basal 

medium. 
 
2.2.1.2 Freezing and thawing of cells 
 
Human pluripotent stem cells were cryopreserved by freezing approximately 2 million 

cells in 2 ml cryovials in a freezing medium (see material part). Vials were kept for 

one day in -80°C and next day transferred in liquid N2 tank. In order to thaw the 

cells, vials were kept in one to two mins in water bath at 37°C and resuspended in 

appropriate medium in 15 ml falcon tube. Cell were then centrifuged and 

redistributed to appropriate plates as described earlier. Freezing and thawing of 

somatic cells was achieved in a similar manner with only different freezing medium 

composition (see material part). 

 

 2.2.1.3 Virus production 

For lentivirus production 3 X 106 293T cells were grown on poly-D-lysine coated 10 

cm culture dishes having 12 ml of MEF medium. Cells were seeded 24 hours before 
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transfection during which they reached the confluency of 80 to 90%. 1 to 2 hours 

before transfection medium was changed to 2% Advanced MEF medium. The cells 

were co-transfected with a lentiviral constructs together with the envelope and 

packaging plasmids pMD2.G and psPAX2 (see materials part) using calcium 

phosphate precipitation protocol. According to this protocol 61.5µl of CaCl2, 37 µg 

lentivirus plasmid, 18.5 µg helper plasmid (psPAX2), 18.5 µg envelope plasmid 

(pMD2.G)  were mixed in cryovials and final volume was made to 600µl with ultra 

pure H2O and then 600µl of 2x HBS buffer (pH 7) was added and transfection mix 

was shaken vigorously and incubated for 15 minutes. During this time 25µM 

chloroquine was added to 293T cells. Transfection mix was then added drop wise to 

293T cells and was dispensed evenly by gentle shaking. Cells were then incubated 

at 37°C and 5% CO2 for 16-20 hours. Then medium was replaced with 12 ml of 5% 

advanced MEF medium and cells were incubated at 37°C and 5% CO2 for 24 hours. 

The virus containing supernatant was harvested 42 hours (first harvest) and 

optionally 66 hours (second harvest) after transfection and filtered through a 0.45 µm 

polysulfone filter into a 15 ml Falcon tube. Viral titer was measured using Lenti-X-

GoStix kit. 20 µl of viral harvest was applied to stripes provided in the kit according to 

manual instructions. After few minutes (5 to 10 minutes) of incubation band 

appeared with particular intensity which correlates to the viral titer. Viral titer could be 

estimated by comparing the intensity of band with that of control. In order to 

concentrate virus, Lenti-X concentration kit was used. Briefly filtered medium was 

mixed with Lenti-X-concentrator with 1 part Lenti-X-concentrator and 3 parts filtered 

medium. After gentle mixing, it was kept at 4°C for 30 minutes (overnight optional). 

Mixture was then centrifuged for 45 minutes at 2000 rpm in order to obtain pellet 

containing virus concentrate. Pellet was resuspended in an appropriate volume of 

medium as to obtain 10X concentration. 

 

2.2.1.4 Infection of fibroblasts with lentivirus 
100,000 to 200,000 cells were seeded in 6-well plates one day before virus infection. 

For infection, culture medium was removed and for each virus, 100 to 500 µl of 10X 

virus concentrate was diluted in fresh medium into final volume of 1ml containing 6 

µg/ml final concentration of polybrene. Incubation was performed over night. Next 

day, medium containing the virus was removed and fresh culture medium was 

added. 
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2.2.1.5 Picking of colonies 

Putative iPS colonies were picked in a tissue culture hood with outward pressure by 

gently scratching them from primary plate. After all desired colonies have been 

picked, it was transferred into 48-well plate coated with matrigel having mTESR 

medium with 10  µM Rock inhibitor. Once they have grown enough, they were 

transferred into 12-well plate and eventually to 6-well plate for further expansions. 

 

2.2.1.6 Reprogramming of human fibroblasts and maintenance of human iPS 

cells  

Human fibroblasts were infected with the Human stemcca Cre-excisable constitutive 

polycistronic (OKSM) lentiviral vector. Cells were kept for first two days in MEF 

medium and afterwards in reprogramming medium. Infected fibroblasts were allowed 

to grow up to 6 days (* infected cells can also be frozen down up to one year at this 

time point and reprogramming can be resumed at later time points). Afterwards cells 

were seeded on irradiated MEFs in a reprogramming medium consisting DMEM/F12 

with 20% KnockOut Serum Replacement, 1 mM non-animal L-glutamine, 0.1 mM β-

mercaptoethanol, 1% non-essential amino acids, 50 µg/ml ascorbic acid and 10 

ng/ml of FGF2.  After three to four weeks iPS-like colonies were picked, expanded 

on matrigel-coated dishes and characterized for pluripotency markers Oct4 and 

SSEA-4 antibodies. Human iPS cells were maintained on matrigel-coated dishes in 

mTeSR1 medium. 

2.2.1.7 TAT-Cre treatment of human iPS cells  

Human iPS colonies were treated with alphazyme or accutase (1 ml/well in 6-well 

plate) for 5 to 10 minutes to obtain single cells. 100,000 to 200,000 cells were 

seeded in each well of a 6-well plate having mTeSR1 medium with 10 µM Rock 

inhibitor, Y27632 to prevent the cell apoptosis. 24 hours later medium was changed 

to mTeSR1 containing TAT-Cre with different concentrations (0.5 µM, 1 µM and 2 

µM). Cells were incubated with TAT-Cre recombinant protein for 1 to 5 hours. Cells 

were grown for one week and colonies were expanded either monoclonally or 

polyclonaly and PCR was performed to assess transgene deletion. Transgene 

deleted clones were expanded and characterized further by immunostaining and 

differentiation. 



	
   41	
  

2.2.1.8 Generation of Cre reporter human iPS cell line 

Human iPS cell line del-AR1034ZIMA 001 were treated with alfazyme to obtain 

single cell suspension. 200,000 cells were seeded on one well of a 6-well plate in 

mTESR1 medium with 10µM Rock inhibitor. Next day cells were infected with 

lentivirus containing EF1α-Cre reporter-puromycin construct. 48 hours later medium 

was changed to mTESR1 with puromycin (1 µg/ml) for 5 days to obtain colonies with 

stably integrated Cre reporter construct.  

2.2.1.9 Cardiac differentiation of human iPS cells 
Human iPS cells were maintained on matrigel-coated plates in mTESR1 medium 

until they reached 80 to 90% confluency. Cardiac differentiation was induced by 

BMP4 (25 ng/ml) and Chir99021 (5 µM) in RPMI1640 medium containing B-27 and 

2mM glutamine and 50 µg/ml Ascorbic acid as a basal medium for 24 hours. 

Following 24 hours, cell were kept in same basal medium with only Chir (5 µM). Cells 

were then kept in RPMI basal medium with B-27 without insulin for next 24 hours 

and then medium was replaced with similar basal medium having WNT inhibitor 

either 10 µM of XAV939 or IWR1 for 96 hours. Once WNT inhibition is complete, 

cells were kept for 96 hours in basal medium (B-27 + insulin) and then medium was 

replaced with cardiac enrichment medium (RPMI 1640 without glucose + 4 mM 

Lactate). Cells were kept in enrichment medium for 4 to 5 days. In case cells were 

too dense, they were spillted (1:2) before starting with enrichment. 

2.2.2 Other methods 

2.2.2.1 Immunostaining 

For iPS cell characterization, immunostaining was performed using Oct4 and SSEA-

4 antibodies. Briefly, cells were washed with PBS, fixed with 4% paraformaldehyde 

(PFA) for 15 minutes and permeabilized in PBS containing 0.1% Triton X-100 and 

5% FCS for 30 minutes. Cells were then incubated overnight with the Oct4 and 

SSEA-4 antibodies. Next day, secondary antibodies Alexa 488 and Alexa 555 were 

used to detect and visualize the primary antibodies. All antibodies were diluted in 

blocking solution. Micrographs were taken with an Axiovert 200M microscope. The 

above immunostaining protocol was also performed to characterize cardiomyocytes 

using cTNT and alpha-actinin as a primary antibodies and Alexa 488-conjugated anti 
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mouse IgG as a secondary antibody. Similar protocol was also used for antibodies of 

ISL1 and SMA. 

2.2.2.2 PCR to confirm the excision of reprogramming cassette 

To confirm the transgene deletion, genomic DNA from TAT-Cre treated subclones 

were isolated and PCR was performed with following conditions; 95°C for 2 minutes; 

followed by 33 cycles of 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 45 

seconds; followed by a single cycle of 72°C for 5 minutes using the primers 

described in Table 2. 

2.2.2.3 RT-PCR to follow up cardiomyocyte differentiation 

Total RNA was prepared with the NucleoSpin RNA kit and treated with DNase. RNA 

(1 µg) was reverse ranscribed into cDNA via Oligo (dT) with SuperScript III Reverse 

Transcriptase. PCR was performed using Go Taq polymerase kit with following 

conditions; 95°C for 2 minutes, followed by 34 cycles of 94°C for 30 seconds, 60°C 

for 30 seconds, 72°C for 45 seconds, followed by a single cycle of 72°C for 5 

minutes using the primers mentioned in table 2. 

2.2.2.4 Gene expression analysis 

RNA was isolated using the RNeasy-Kit. Expression analysis had been performed 

following the Illumina (Illumina Inc., San Diego, CA, USA) Whole-Genome Gene 

Expression Direct Hybridization Assay analysis pipeline. mRNA transcription levels 

were evaluated using the Human HT-12 (version 4 revision 2) array which consists 

of 47323 probes and described mRNA features. All samples were processed in at 

least duplicates to reduce signals arising from processing artifacts. Data processing 

was performed using the GenomeStudio suite version 2011.1 and the Gene 

expression module version 1.9.4 (both Illumina Inc., San Diego, CA, USA). Gene 

expression data analysis was carried out with R and Bioconductor packages and 

their intensities were quintile normalized. The differentially expressed genes were 

determined applying the empirical bayes test statistics and Benjamini-Hochberg false 

discovery method was used for multiple testing corrections. Genes with fold change 

greater than 2 and p-value less than or equal to 0.5 were considered differentially 

expressed and used for subsequent analysis. 
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2.2.2.5 Flow Cytometry   

1x106 cells were trypsinized and fixed with 4% PFA for 10 minutes. Cells were then 

washed with phosphate buffered saline (PBS), permeabilized in PBS containing 

0.1% Triton X-100 and 5% FCS for 30 minutes and incubated for 2 hours with cTNT 

antibody. No antibody was taken as a negative control. Cells were then washed once 

with PBS containing 0.1% Tween-20 and resuspended in PBS containing 0.1% 

Triton-X 100 and 5% FCS and secondary antibody Alexa 488 anti-mouse IgG for 1 

hour in dark. Finally, cells were washed again with PBS containing 0.1% Tween-20 

and measured for FACS analysis. Analysis was performed by Flow Jo program. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   44	
  

3 Results  

3.1 Derivation of human iPS cells free of reprogramming factors 

3.1.1 Generation of human iPS cells  

There are several ways of obtaining human iPS cells as described by earlier studies 

using retro- or lenti- or sendai-viruses, episomal plasmids, transposons, protein, 

mRNA etc (Takahashi et al., 2006, Soldner et al., 2009, Fusaki et al., 2009, Chou et 

al., 2011, Kim et al., 2009; Zhou et al., 2009, Warren et al., 2010). In order to generate 

human iPS cells for subsequent experiments, we decided to use the polycistronic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Generation of human iPS cell line fl-AR1034ZIMA 001. Appearance of iPS-like 
colonies two weeks after the initiation of stemcca induced reprogramming of AR1034ZIMA 
fibroblasts. 
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lentiviral vector stemcca due to its practical robustness (Sommer et al., 2010). 

Initial attempts of reprogramming failed either due to high titer of virus which 

appeared stressful to the cells or too less virus which resulted in less efficient 

infection. Therefore, we first optimized the viral preparation and infection 

paradigm by concentrating the virus using lentiviral concentration kit as 

described in method part. Moreover, we also included lentiviral titer check 

stripes, which gives approximation of viral titer (see the material part). Along 

with stemcca virus, we also included lentivirus called pSico expressing green 

fluorescent protein (Ventura et al., 2004) as a control virus in order to follow 

the infection process. After optimization of viral preparation, human fibroblasts 

obtained from the skin biopsy (see material part) were infected with stemcca 

vector and putative reprogrammed colonies approximately 30 to 40 appeared 

around day 25. 12 colonies were carefully picked and expanded as described 

in methods part (Figure 10). Pluripotency of 5 obtained clones were confirmed 

by staining the cells with pluripotency marker Oct4 and SSEA-4 (Figure 11) as 

well as microarray analysis (described later in the result part). During our 

transgene deletion studies, we used three lines fl-AR1034ZIMAiPS 001 (fl-

ARiPS cl1 hereafter), del-ARiPS cl1.2 and del-ARiPS cl1.4 (‘fl’ means 

AR1034ZIMA iPS 001 containing loxP flanked reprogramming cassette  ‘del’ 

means daughter clones after reprogramming cassette removal). 

 

 

 

 

 

 

 

Figure 11: Generation of human iPS cell line fl-AR1034ZIMA 001. Pluripotency analysis of 
fl-ARiPS clone1. Cells stained positive for pluripotency markers Oct4, SSEA-4. Scale bar: 40 
µm. 
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3.1.2 Removal of transgene cassette from human iPS cells 

After obtaining iPS cells, we aimed for excising the reprogramming cassette in order 

to obtain transgene-free iPS cells. It has been shown in earlier studies that 

transgene-free human iPS cells resemble more to human ES cells with respect to 

gene expression and exhibit better differentiation potential than iPS cells still 

harboring the integrated reprogramming factors (Sommer et al., 2009). Previous 

studies have shown successful derivation of transgene-free iPS cells by excising a 

loxP-flanked transgene cassette with Cre plasmid (Soldner et al., 2009, Somers et 

al., 2010), Adeno-Cre (Sommer et al., 2010, Awe et al 2013) or Cre mRNA (Loh et 

al., 2013). However these approaches have limitations such as low excision 

efficiency and thus laborious selection procedure. Moreover use of antibiotics 

appears stressful to the cells thus limiting its application to narrow range of the cells, 

 

 

 

 

  

 

 

 

 

 

 

Figure 12: TAT-Cre protein transduction to obtain transgene-free iPS cells. A) Schematic 
representation of TAT-Cre treatment to obtain transgene-free iPS cells. B) TAT-Cre treatment of fl-
ARiPS cells. iPS colonies were treated with alfazyme to obtain single cells. Cells were treated with 
different concentrations of TAT-Cre prorein 24 hours later. TAT-Cre treated colonies were obtained 
one week later.  

which could be manipulated (Moran et al., 2009). Moreover, there is the possibility 

that Cre-encoding plasmids or viral constructs integrate into the genome (Glover et 

al., 2005). Therefore we aimed at improving this approach by employing Cre protein 
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transduction to enhance the efficiency as well as to accelerate the process of 

obtaining transgene-free iPS cells. This protocol does not require repeated 

transfections or viral preparations (See schematic overview in Figure 12A).  As 

described in the scheme, we treated a single cell suspension of fl-ARiPS with a 

single shot application of TAT-Cre recombinant protein for 1 to 5 hours. TAT-Cre 

treated cells were expanded either monoclonally or polyclonally and analyzed further 

for transgene excision (Figure 12B).  

 3.1.3 Optimization of TAT-Cre mediated transgene deletion efficiency 

First, we used Cre protein transduction conditions that was elaborated for Cre-

mediated excision in human ES cells cultivated on mouse feeder cells (Nolden et al., 

2006). Moreover, in order to make it practically more feasible we adopted our iPS 

cell lines to feeder-free conditions, which we assume to result in higher transgene 

deletion efficiency with a lower concentration of TAT-Cre. In particular, we prepared 

single cell suspension of fl-ARiPS cells by treating them with alfazyme and seeded 

them on matrigel-coated plates. 24 hours later cells were treated with different 

concentrations (0.5 to 6 µM) of TAT-Cre for 1 to 5 hours. TAT-Cre treated fl-ARiPS 

monoclones were expanded and analyzed for transgene deletion. For the 

confirmation of transgene excision, PCR against the viral WPRE element was used 

(Figure 13A). All three monoclones treated with 2 µM TAT-Cre showed excision of 

the transgenes, while in the case of 0.5 and 1 µM TAT-Cre treatment, we observed 1 

and 2 deleted clones, respectively (Figure 13B). In order to explore the possibility of 

deletion and subsequent polyclonal cell expansion, we treated the fl-ARiPS cells with 

0.5, 1 and 2 µM TAT-Cre for 5 hours and expanded them polyclonally. Genomic 

PCR analysis revealed a faint band in the case 0.5 and 1 µM and no band was 

observed after treatment with 2 µM TAT-Cre, indicating a high excision efficiency 

which was consistent with the monoclonal analysis (Figure 13C) and previously 

reported results employing human ES cells (Nolden et al., 2006). In order to validate 

the PCR results, we mixed genomic DNA from fl-ARiPS 

and human ES clones I3 in a standardized manner representing deletion efficiencies 

of 0 to 99%. Where, 0% and 100% means only DNA from fl-ARiPS or HES I3 cells 

respectively. PCR analysis of this dilution series yielded a faint band even in the 

case of 99% mixture while no band was observed with 100% HES I3 DNA (Figure 

13D). Protein transduction was repeated with 7 monoclones treated with 1.5, 3 and 6 
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µM TAT-Cre in each case. As listed in figure 13E all clones analyzed showed the 

deletion of transgenes. Increasing concentrations of TAT-Cre beyond 3 µM resulted 

in significant cell death and affected the recovery of iPS colonies after the treatment 

(data not shown). Upon using higher concentrations of TAT-Cre, excessive cell 

death was prevented by shortening the time duration of TAT-Cre treatment (5 µM 

TAT-Cre for 1 hour) without compromising the recombination efficiency. We obtained 

7 transgene-free clones out of 12 clones tested (Figure 13E).  

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Optimization of TAT-Cre mediated transgene deletion efficiency. A) PCR strategy to 
screen for transgene-free iPS cells. B) Genomic PCR for the confirmation of transgene deletion. 
Individual clones were treated 0.5, 1 or 2 µM of TAT-Cre for 5 hours and PCR was performed using 
primers against WPRE and β-actin. fl: Floxed ARiPS cells clone 1, NC: water control, WPRE: Viral 
element, BA: β-actin. 1, 2 and 3 represents the fl-ARiPS cells subclones treated with 0.5, 1 and 2 µM 
of TAT-Cre. C) Genomic PCR for the confirmation of transgene deletion. fl-ARiPS cells were treated 
with 0.5, 1 or 2 µM of TAT-Cre for 5 hours. Cells were expanded polyclonally in each condition and 
PCR was performed using primers against WPRE and β-actin. D) Validation of genomic PCR. 
Genomic DNA from floxed and HES I3 cells were mixed to create defined solutions representing the 
deletion efficiency from 0 to 100%. E) Quantification of transgene deleted clones using different 
concentrations and time duration of TAT-Cre.  

To further confirm the efficiency of TAT-Cre, we monitored the recombination event 

by integrating a double fluorescence Cre reporter cassette through lentiviral 

transduction of fl-ARiPS cells. Where TAT-Cre mediated excision will delete the RFP 
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and put the EGFP construct under the control of EF1α promoter resulting in red to 

green switch. We observed more than 95% of cells showing GFP expression with 

2µM TAT-Cre for 5 hours (Figure 14) confirming the high recombination efficiency 

determined by PCR analyses. 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 14: Assessment of TAT-Cre mediated transgene deletion efficiency using Cre 
reporter line. ARiPS-Cre reporter cell line was treated with 2µM of Cre protein for 5 hours to 
validate recombination efficiency. Cre-mediated recombination induced the expression of 
GFP, by deleting the loxP-flanking RFP gene. Scale bar: 40µM 
 

3.1.4 Characterization of transgene-free iPS cells 

In order to assess the pluripotency status, transgene excised iPS clones del-AR1034 

ZIMA 001 (del-ARiPS cl1.4) were expanded until passage 15 and stained with 

pluripotency-associated markers Oct4 and SSEA-4. Cells stained positive for both, 

nuclear Oct4 and SSEA-4 at the cell surface (Figure 15).  
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Figure 15: Pluripotency analysis of transgene excised clones. Cells stained positive for 
pluripotency markers Oct4, SSEA-4 in the case of del-ARiPS cl1.4 cells. Scale bar: 40µM. 

Furthermore, we did detailed pluripotency analysis by performing genome-wide gene 

expression profiling on del-ARiPS cl1.2 and cl1.4 and fl-ARiPS cells. The gene 

expression datasets  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: PluriTest analysis of the human ES cells I3, fl-ARiPS cells, del-ARiPS cl1.2 and cl1.4 
cells and fibroblasts to assess pluripotency. Cells are distributed based on pluripotency and 
novelty scores as indicated by color density background. Red color indicates pluripotency and blue 
indicates non-pluripotency.  
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were subjected to the recently published bioinformatics assay, PluriTest (Muller et 

al., 2011) to assess the pluripotency status of reprogrammed cells. It is an easy 

substitute for time-consuming teratoma analysis and requires just input of a gene 

expression dataset of experimental samples, which are distributed according to their 

pluripotency. According to this analysis both, fl-ARiPS and del-ARiPS clones cluster 

with human ES cell line I3 in the red colored background indicating pluripotency, 

while fibroblasts are located in the blue region confirming their non-pluripotent nature 

(Figure 16). Notably, the del-ARiPS clones appear a bit more shifted to the human 

ES I3 cells as compared to fl-ARiPS. In fact, there were 63 differentially expressed 

genes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Gene expression analysis of transgene containing as well as transgene excised 
clones. A) Venn diagram showing differentially expressed genes. Comparison of differentially 
expressed genes amongst human ES cell I3, fl-ARiPS cells and del-ARIPS cells. B) Heatmap 
representation of pluripotency- and fibroblast-specific markers. Expression of pluripotency markers 
Oct4, Sox2, Rex1 and fibroblast markers Thy1 and Col5a2 in iPS cells and human ES cell used for 
this study. 
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between human ES cell I3 and del-ARiPS cl1.4 cells as compared to more than 130 

genes in the case of the parental fl-ARiPS clone (Figure 17A). Expression profiling of 

pluripotency-associated genes Oct4, Sox2, Rex1, as well as fibroblast genes Thy1 

and Col5a2 showed similar expression pattern across the iPS cells and human ES 

cells. Again del-ARiPS clones appears more similar to human ES I3 than fl-ARiPS 

(Figure 17B) 

3.1.5 Improved differentiation potential of transgene-free iPS cells 

In order to explore whether the deletion of transgenes results not only in genome-

wide transcriptional differences but also has functional consequences, we analyzed 

the differentiation potential by differentiation into the cardiac lineage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Cardiac differentiation of human iPS cells. A) Genomic PCR for the confirmation of 
transgene deletion. fl-ARiPS was treated with 2 µM of TAT-Cre for 5 hours and PCR was performed 
using primers against WPRE and β-actin. B) Cardiomyocyte differentiation of iPS cell lines. fl-ARiPS 
and its TAT-Cre treated polyclonal cell population were differentiated to cardiomyocytes using cardio-
inductive medium. Cells were stained with α-actinin antibody at day 15. Scale bar: 40µM. 

We employed our protocol described in methods part for the cardiac differentiation of 

fl-ARiPS and a polyclonal TAT-Cre treated daughter cell population (2 µM TAT-Cre 
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for 5 hours) (Figure 18A and 18B). We decided to do polyclonal expansion in order 

to reduce the time duration of the entire procedure and check whether it is possible 

to see the overall enhancement in differentiation capacity of a polyclonal TAT-Cre 

treated population. Indeed, flow cytometry analysis using cardiac troponin T (cTNT) 

as a cardiomyocyte-specific marker indicates a strongly increased differentiation 

capability of polyclonal TAT-Cre treated daughter cell population. More than 55% of 

differentiated are cTNT-positive in the case of TAT-Cre treated cell population, 

whereas only 37% of the parental fl-ARiPS cells stained positive for cTNT (Figure 

19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Flow cytometry analysis of cardiac-specific troponin T staining at day 15 of cardiac 
differentiation. Cardiac differentiation showed an increase from 37 to 55% cTNT positive 
cardiomyocytes in the case of TAT-Cre treated cell populations. The experiment was repeated twice 
with similar results. Note:  Sharp boundaries in above flow cytometry results are due to set threshold 
value of FL1-H channel and gating of the cell population. 
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3.2 Cardiomyocytes differentiation of human iPS cells 

3.2.1 Optimization of cardiomyocytes differentiation 

In order to obtain cardiomyocytes for our subsequent experiments, we referred to the 

earlier studies showing successful cardiac differentiation of human pluripotent stem 

cells using EB based as well as monolayer approaches (Yang et al., 2008, Hudson 

et al., 2011,Carpenter et al., 2011). First we did the selection of basal medium by 

thoroughly comparing the medium described in earlier studies. After our literature 

findings, we decided for three mediums namely DMEM F/12, RPMI1640 and 

Stempro as a basis of our initial experiments in parallel. Moreover we always kept B-

27 supplement in order to replace serum. Ascorbic acid was also included in our 

formulation due to its positive effect on cardiomyocytes differentiation (Cao et al., 

2011). The first approach we tried involves formation of embryoid bodies (EBs) in the 

presence of growth factors known to be involved in cardiac development such as 

ActivinA, BMP4, FGF-2 and VEGF as well as DKK-1, which is a WNT inhibitor that 

directs the EB differentiation into cardiomyocytes lineage (Yang et al.2008). In spite 

of repeated attempts, we failed to obtain beating clusters (Figure 20). 

 

 

 

 

 

 

 

 

 

Figure 20: Cardiomyocytes differentiation of iLB-C-50-s9 cl1 using EB based approach. A) 
Scheme of cardiac differentiation of human iPS cells using EB formation B) Cardiac differentiation in 
the presence of growth factors resulted in non-beating cell clusters after plating of the EBs.   

Since EBs have complex microenvironments, we reasoned that it would be easy to 

manipulate the key signals in the monolayer based approach and hence we switched 
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to differentiation protocol utilizing monolayer of human iPS cells. During our first 

attempts in this direction includes the protocol described by Hudson et al (Hudson et 

al., 2011). We treated human iPS cells with BMP4 and Activin A in combination with 

WNT inhibitors IWR1 as described in the protocol (Figure 21A). In spite of several 

repetitions, we did not observe beating in the case of DMEM F/12 and Stempro 

medium but we got few beating patches in the case of RPMI1640 medium. Hence 

we could narrow down our selection to only RPMI1640 as a basal medium for 

subsequent attempts. In order to follow the differentiation, we did the gene 

expression analysis during different time points and stained the cells at the end of 

differentiation. During our analysis we observed early cardiovascular precursor 

marker ISL1 appeared from day 4 till day 10 of differentiation, while the cardiac 

specific marker Nkx2.5 was not expressed throughout differentiation (Figure 21B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Analysis of lineage specific marker expression during cardiomyocytes 
differentiation of iLB-C-50-s9 using monolayer based approach. A) Scheme of cardiac 
differentiation of human iPS cells using monolayer approach .B) Gene expression analysis at different 
time points during cardiac differentiation. C) Staining of SMA at day 14 of differentiation indicated 
majority of positively stained cells. Scale bar: 40 µM 

This observation led us to conclude that we could differentiate the cells till the early 

cardiovascular fate but they were not further specified in to cardiomyocytes instead 
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differentiated mostly into smooth muscle cells as indicated by smooth muscle actin 

(SMA) staining (Figure 21C). Based upon our initial attempts, we realized that 

cardiac specific growth factors alone are not sufficient to efficiently drive the cells into 

cardiomyocytes fate. Hence to achieve efficient cardiac differentiation we also 

focused on WNT signaling. Since cardiomyocyte differentiation critically depends 

upon WNT signaling as described in earlier studies (Cohen et al., 2008), our next 

step was to screen for the molecules with which one can tightly control WNT 

signaling. In order to assess the activity of WNT signaling, we used WNT reporter 

cell line where expression of GFP correlates to WNT activity (described in the 

materials and method part). We used previously described WNT modulators 

Chir99021 (designated as Chir hereafter), BIO, XAV939, KY02111 and WNT-C59 as 

a basis for our screening. During our analysis we found out that 5 µM Chir strongly 

activates WNT signaling as judged by GFP positive cells during FACS analysis and 

10µM XAV939 showed strongest WNT inhibition without causing excessive cell 

death, while KY0211 failed to suppress WNT activation (Figure 22) and WNT-C59 

and BIO appeared toxic to the cells. Hence we did the selection of Chir as WNT 

activator and XAV939 as WNT inhibitor during the subsequent experiments. 

 

 

 

 

 

 

 

Figure 22: Flow cytometry analysis of GFP expression after the treatment of WNT reporter 
line with WNT modulators. Cells showing GFP expression after treatment of WNT reporter 
lines with Chir, XAV939 and KY02111 respectively. 

After the selection of WNT modulators, we decided to formulate different 

combination of the previously tried out growth factors and small molecules in order to 

enhance cardiac differentiation. As a quick read out for cardiovascular induction we 
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decided to check the expression of T (Brachyury) and ISL1 at day two and five of 

differentiation respectively. After trying out different combinations and concentrations 

of small molecules and growth factors (Table 2 and 3), we found out that 

combination of BMP4 and Chir resulted in synchronously beating culture at the end 

of differentiation. In particular BMP4 (25 ng/ml) and Chir (5 µM) strongly enhanced 

expression of T (Brachyury) (Figure 23A) and cardiovascular marker ISL1 (Figure 

23B) and eventually beating of culture. Apart from concentration, time duration of 

treatment also appeared very critical e.g only 48 hours treatment of Chir was most 

effective. Similar was true for BMP4, only 24 hours treatment resulted in desired 

beating of culture. Rest all combinations either increasing or decreasing the time 

duration of treatment of Chir and BMP4 resulted in decrease of observed beating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Optimization of cardiac differentiation of iLB-C-50-s9 by varying concentration of Chir 
in combination with 25 ng/ml of BMP4. Here (-): no beating, (+): few beating patches, (+++): 
synchronous beating throughout well. All above combinations were tried in combination with WNT 
inhibition phase from Day 3 to 8 of cardiac differentiation.   
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Table 3: Optimization of cardiac differentiation of iLB-C-50-s9 by varying concentration of 
BMP4 in combination with 5 µM of Chir. Here (-): no beating, (+): few beating patches, (+++): 
synchronous beating throughout well. All above combinations were tried in combination with WNT 
inhibition phase from Day 3 to 8 of cardiac differentiation. 

In order to achieve proper cardiac specification of early cardiac mesoderm induced 

by BMP4 and Chir treatment, we used WNT inhibitor XAV939. During WNT reporter 

assay 10µM XAV939 was most effective, hence we used it in same concentration 

and applied it to different time points during our cardiac differentiation. In our 

analysis we found out that early time point application (Day 1 or 2 of cardiac 

differentiation) of WNT inhibition completely block the cardiac differentiation. While 

WNT inhibition from day 3 onwards resulted in appearance of beating, with day 3 to 

7 was most of effective time window for achieving efficient cardiac specification (see 

Table 4). We also used another WNT inhibitor IWR1 and obtained similar results as 

in case of XAV939. After several rounds of repetition, we could only get reproducible 

results in a basal medium devoid of insulin. Hence cardiac specification was always 

done in absence of insulin. Detailed reasons for insulin effect are explained in 

discussion part. 

 

 

 

 

 

Table 4: Optimization of cardiac differentiation of iLB-C-50-s9 by varying time window of WNT 
inhibition. Here (-): no beating, (+): few beating patches, (+++): synchronous beating throughout well. 
All above combinations were tried in combination with cardiac induction phase using 24hours BMP4 
and 48 hours Chir treatment during Day 1 to 3 of cardiac differentiation. 

Upon combining efficient cardiovascular induction with WNT inhibition (see Table 4) 

during late phase of differentiation using XAV939 or IWR1 (10µM), we achieved 
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synchronously beating cardiomyocytes up to 92% of purity at day 15 of differentiation 

as judged by flow cytometry analysis using cTNT specific staining (Figure 23). 

Removal of any compounds from the cocktail resulted in decrease of T (Brachyury), 

ISL1 and eventually cTNT positive cells (Figure 23 and 24). 

 

 

 

 

 

 

Figure 23: Optimization of cardiac differentiation of iLB-C-50-s9 A) RT PCR analysis to assess 
the expression of T (Brachyury) expression at day 2 of cardiac induction using different conditions 
namely Ch, B+Ch and A+B+Ch B) Immunostaining using cardiac precursors maker ISL1 at day 5 of 
cardiac differentiation using small molecule combination (B+Ch). Scale bar: 80 µM. Abbreviations, 
GFP: green fluorescent protein, Ch: Chir99021, B: BMP4, A: Activin A. 

 

 

 

 

 

 

 

Figure 24: Optimization of cardiac differentiation of iLB-C-50-s9 Flow cytometry analysis of 
cardiac-specific troponin T staining at day 15 of cardiac differentiation showed 21.4% cTNT positive 
cardiomyocytes in the case of a WNT activator Chir and 92.5% cTNT positive cardiomyocytes with 
combined application of BMP4 and Chir. 

We also performed RT-PCR analysis with cardiovascular and cardiac specific 

markers to follow the differentiation process. During the induction phase iPS cells 

were treated with our formulation (BMP4 and Chir) in a basal medium, which 

resulted in strong up regulation mesendodermal marker T (Brachyury) (Figure 25). 

Induction phase was followed by treatment with WNT inhibitors in a basal medium 
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devoid of insulin in order to achieve proper specification into cardiac mesoderm, 

which was confirmed by expression of early and late cardiac precursor markers ISL1 

and Nkx2.5 respectively (Figure 25). Cells then further matured into beating 

cardiomyocytes expressing specific marker cTNT (Figure 25).  

 

 

 

 

 

 

 

 

Figure 25: Gene expression analysis for cardiovascular and cardiac specific genes. mRNAs at 
different time points during the differentiation were isolated and RT-PCR analysis was performed 
showing the subsequent passage of cells though the mesendodermal, mesoderm and cardiac specific 
precursor state.  

 

3.2.2 Cardiac differentiation of multiple human iPS cell lines and subsequent 
enrichment of cardiomyocytes 

After optimization of cardiac differentiation of our standard iPS cell line (iLB-C-50-

s9), we checked the effectiveness of our devised protocol on multiple iPS cell lines 

representing different origin of cells (fibroblasts, keratinocyte and cord blood cells) as 

well as methods of reprogramming (retrovirus, lentivirus and sendai virus). Although 

this optimized protocol gave rise to high purity population of beating cells using our 

standard iPS cell line, the outcome with several other iPS cell lines varied 

substantially. In particular, we obtained the yield of cTNT-positive cells from 33.8% 

and 92.5% (Figure 26A). In order to bring purity of cardiomyocytes from different iPS 

cell lines to the same level, it was necessary to devise step where cardiomyocytes 

can be separated out from non-cardiac cells. There are several strategies published 

in order to achieve the enrichment such as FACS sorting using cardiac specific 

marker or dye (as described in introduction). Since such additional steps are time 
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consuming and stressful to the cells, we decided to apply lactate based cardiac 

enrichment (Tohyama et al., 2013) in the late phase of our protocol. This approach 

utilizes clever trick considering the different metabolic requirement of cardiac and 

non-cardiac cell. In particular cardiomyocytes can metabolize the lactate as a source 

of energy unlike non-cardiac cells, hence providing the basal medium having only 

lactate as a source of energy will result in cardiac enrichment as non-cardiac cells 

will die out due to lack of energy source. In order to achieve this, we switched the 

medium at day 12 of cardiac differentiation to basal medium without glucose but 

supplemented with 4mM lactate. In fact when we combined lactate enrichment, we 

could obtain 95% pure cTNT positive cardiomyocytes from the iPS cell lines iLB-C-

30-r12 which otherwise gave 62% positive cardiomyocytes. Similar enrichment was 

achieved in the case of fl-AR1034ZIMA 001 iPS cell line from 33 to 74% cTNT 

positive cells (Figure 26B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Enrichment of cardiomyocytes with sodium-L-lactate. A) Summary of cardiac 
differentiation of different human iPS cell lines using efficient cardiac differentiation followed by 
cardiac enrichment. B) Flow cytometry analysis of cardiac-specific troponin T staining at day 16 of 
cardiac differentiation showed about 62.8% cTNT positive cardiomyocytes without lactate enrichment 
and 95.5% cTNT positive cells after lactate enrichment. Note: Sharp boundaries in above flow 
cytometry results are due to set threshold value of FL1-H channel and gating of the cell population. 
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In conclusion, our optimized protocol consists of three phases namely cardiovascular 

induction, cardiac specification and cardiomyocyte enrichment as described in figure 

27 in order to achieve robust cardiac differentiation of human iPS cells. 

 

 

 

 

 
 

 

Figure 27: Optimized protocol for cardiac differentiation of human iPS cells. Scheme of efficient 
cardiac differentiation of human iPS cells with combination of strong cardiac induction in early phase 
and cardiac enrichment in late phase 
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3.3 Characterization of human iPS derived cardiomyocytes 

3.3.1 Structural features of human iPS-CM 

After obtaining cardiomyocytes using optimized protocol, we performed standard 

immunohistochemical stainings as well as electron microscopy to study structural 

characteristics. Obtained cardiomyocytes showed strong cardiac specific alpha-

actinin staining with typical striation pattern as well as cTNT staining (Figure 28). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Characterization of human iPS-CMs by immunostainings of cytoskeleton proteins. 
Immunohistochemical characterization of human iPS (del-AR1034ZIMA 001) derived cardiomyocytes 
using antibody against alpha-actinin (top) and cardiac troponin T (bottom). Scale bar: 40 µm 

In order to study the maturation state of iPS-derived cardiomyocytes, we performed 

ultra-structural analysis employing TEM of 21 day old cardiomyocytes. Many cells 

show nascent parallel arrays of myofilament bundles anchored at Z-band like 

electron dense structures. They show different spatial orientation within the same 

cell as well as branching. Moreover, we observed sarcomer-like organization of  
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Figure 29: Ultrastructural analysis of 21-day old human iPS-CMs (del-AR1034ZIMA 001). A) Two 
cells in close contact displaying sarcomer-like organization of contractile filaments. Scale bar: 1000nm 
B-C) Higher magnification showing the presence of fascia adherens-like and gap-junctions like 
cellular contacts and initial sarcomeric organisation of actin and myosin filaments. Scale bar: (B) 
1000nm, (C) 250nm.  D) iPS cell-derived cardiomyocyte-like cells show sarcomer organization of 
contractile filaments with already identifiable A-, I-, Z- and H-bands. Abbrevations: m: mitochondria; N: 
Nucleus; FA-lS: Fascia adherens-like structure; GJ-lS: Gap junctions-like structure; Z: Z-band; H: H-
band. Scale Bar: 250nm. (* These results were obtained with help of Subbarao Mekkala, Nicole 
Wagner and Süleyman Ergün from University of Würzburg) 

contractile filaments (Figure 29A). Additionally, fascia adherens-like and gap-

junctions-like cellular contacts as well as initial sarcomeric organisation of actin and 

myosin filaments were detected. The sarcomeric structures of contractile filaments 

exhibited already identifiable A-, I-, Z- and H-bands (Figure 29B-D). 
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3.3.2 Electrophysiological properties of human iPS-CMs 

It is essential to obtain cardiomyocytes exhibiting characteristics electrical activities 

for their future applications. Therefore we carried out detailed electrophysiological 

analysis using standard patch-clamp methods. Action potential recordings on single 

beating cardiomyocytes showed typical spontaneous action potentials (Figure 30A), 

with atrial (n=2) or ventricular (n=4)-like morphology as well as characteristic voltage 

dependent inward and outward currents using voltage ramps (Figure 30B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Electrophysiological characterization of human iPS-CMs (del-AR1034ZIMA 001). A) 
Action potential recorded from a ventricular like cardiomyocyte. B) Typical activation of voltage 
dependent inward and outward currents following a ramp protocol in voltage clamp (-100 to +60 in 
250ms). (* These results were obtained with help of Daniela Malan and Philipp Sasse from 
University of Bonn) 

In order to check for calcium current activity, we performed whole cell calcium 

currents recording. L-type Ca2+ currents carried by cardiac CaV1.2 (Figure 31A) 

showed a half-maximum activation at -13.69±0.97 mV, reached a maximum current 
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density of -11.55±1.6 pA/pF at 0 mV and inactivated nearly completely during 150 

ms of depolarization (n=4) (Figure 31B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Electrophysiological characterization of human iPS-CMs (del-AR1034ZIMA 001). A) 
Representative whole cell calcium current recording (2 mM extracellular Ca2+). Cells were depolarized 
from a holding potential of -80 mV to -40 mV for 45 ms in order to inactivate sodium channels. This 
prepulse was followed by test voltages ranging from -40 to +50 mV in 10 mV steps (pulse duration 
150 ms). B) Whole cell calcium current density-voltage relationship (n=4). (* These results were 
obtained with help of Jessica Köth and Jan Matthes from University of Cologne) 
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4 Discussion 

Our aim during the present study was to establish a robust strategy to obtain 

transgene-free human iPS cells. Excision of reprogramming cassette was achieved 

by optimizing direct delivery of TAT-Cre protein. We also performed the detailed 

pluripotency and differentiation analysis to assess the quality of iPS cells after 

removal of reprogramming factors. Second part of the study describes in detail 

optimization of cardiomyocytes differentiation with modulation of WNT and BMP 

signaling as well as devising enrichment step based on energy supply. During the 

last phase of study, we did in depth characterization of cardiomyocytes by 

performing immunostainings, ultra structural analysis and electrophysiological 

analysis for the validation of their functionality. By doing this, we tried to develop a 

methodology providing an unlimited source of cardiomyocytes for various biomedical 

applications. 

4.1 Generation of reprogramming factor-free human iPS cells 

4.1.1 Reprogramming of human fibroblasts 

First step towards our aim was to reprogram human fibroblasts to obtain suitable iPS 

cells for further differentiation study. It was a critical step to decide which 

methodology to adopt as there were several reprogramming approaches available 

employing retro- or lenti- or sendai-viruses, episomes, synthetic mRNA, microRNA, 

transposons, recombinant proteins (Takahashi et al., 2006; Soldner et al., 2009; 

Fusaki et al., 2009; Chou et al., 2011; Kim et al., 2009; Zhou et al., 2009; Warren et 

al., 2010). Each protocol has its advantages and disadvantages as described in the 

introduction chapter. We decided to use Cre-excisable lentiviral construct stemcca 

for our study due to its efficiency and possibility of removing reprogramming cassette 

using Cre recombination (Sommer et al., 2009). Initial attempts of reprogramming 

were unsuccessful due to non-optimized viral preparation. During our analysis we 

found that the viral titer plays a critical role in success of reprogramming. We 

observed that too much of virus appears toxic to the cells and too less results in less 

efficient infection. Once we were successful in controlling the number of virus particle 

for the infection that it became relatively easy to reproducibly reprogram human 

fibroblasts used for the study. We always kept the MOI (multiplicity of infection) 
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between 0.1 and 1. Virus concentration out of the stated limits results in less efficient 

reprogramming either due to less virus generating few colonies or too much virus, 

which is toxic to the cells. Moreover, it is also very important to apply regulated 

number of viral particle in order to control the number of viral integration. Study by 

Somers et al showed that viral titer with MOI of 0.1 to 1 results in only single 

integration of stemcca construct with 94% of probability (Somers et al., 2010). 

Overall we were successful in generating five human iPS lines using lentiviral 

stemcca as confirmed by standard pluripotency characterizations in the result part.  

4.1.2 Transgene deletion using TAT-Cre 

After performing systemic optimization of TAT-Cre mediated transgene deletion 

using genomic PCR and Cre-reporter cell line, we found out that 2 µM of TAT-Cre for 

5 hours is the optimal combination to achieve efficient transgene deletion. In contrast 

to earlier study by Nolden et al where they used 6 µM of TAT-Cre for 24 hours, we 

achieved the same transgene excision efficiency up to 90% using less concentration 

of TAT-Cre. The reason of efficient transgene deletion using less concentration of 

TAT-Cre presumably is feeder-free cultivation of iPS cells. Due to high transgene 

deletion efficiency, it is also possible to expand transgene-excised clones 

polyclonally. Decreasing or increasing TAT-Cre concentration and time window of its 

application resulted in less efficient transgene excision. We used the genomic PCR 

and Cre-reporter iPS lines for assessing transgene deletion instead of southern blot 

analysis. We did the optimization of genomic PCR by mixing genomic DNA from 

human ES and transgene containing iPS cells to ensure that appearance of no band 

correlates to complete excision. Taking into consideration the results from genomic 

PCR together with Cre reporter iPS lines, one can reasonably assume our transgene 

deletion assessment to be equivalent to that of southern blot analysis. As described 

in the introduction part, transgene-free iPS cells are of better quality in terms of 

pluripotency and differentiation potential. Due to their better differentiation 

propensity, we argue that they are better pluripotent stem cells candidate as a 

source of obtaining desired cells, in our case cardiomyocytes. Earlier studies have 

reported the deletion of transgenes by delivering Cre as a plasmid, Adeno-Cre, or by 

mRNA transfection (Soldner et al., 2009, Somers et al., 2010; Sommer et al., 2009, 

Awe et al., 2013, Loh et al., 2012). The protocol elaborated by Soldner et al yielded 

only 16 transgene-deleted clones out of 180 analyzed after transfecting iPS cells 
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with a Cre-encoding plasmid and subsequent selection either with GFP fluorescence 

or puromycin (Soldner et al., 2009). The relatively low efficiency might be due to the 

transient transfection of Cre, which is limiting intracellular DNA recombinase activity. 

Sommer et al and Somers et al used Adeno-Cre and Cre-IRES-Puro constructs 

respectively to achieve higher excision efficiencies (Somers et al., 2010; Sommer et 

al., 2009). A more recent study by Awe et al demonstrate transgene excision in iPS 

clones with putative clinical grade status using Adeno-Cre mediated transgene 

deletion. During their transgene excision analysis they obtained only one transgene-

excised subclone out of six Adeno-Cre treated clones (Awe et al., 2013). 

Furthermore, deletion approaches using Cre plasmids or Adeno-Cre constructs 

require transfection and subsequent selection of cells with Cre recombinase activity 

either by flow cytometry sorting or antibiotic selection. Such relatively complicated 

steps are undesirable as it might be stressful to the cells (Moran et al., 2009) and 

time-consuming thus costly. Moreover, there is possibility that Cre-encoding 

plasmids or viral constructs integrate into the genome (Glover et al., 2005). More 

recently, the group of George Daley has reported transgene excision by transfecting 

loxP-modified iPS cells with Cre-encoding mRNA (Loh et al., 2012). Notably, this 

procedure involves daily transfections of Cre mRNA for 4 hours up to 7 days, which 

again represents a complicated and stressful procedure for the cells. Overall protocol 

developed in our study, in contrast to previous Cre recombinase based approaches 

requires just a single shot application of TAT-Cre recombinant protein for 5 hours 

due to its high recombination efficiency. By this, the use of TAT-Cre accelerates the 

process of obtaining transgene-free iPS cells with minimal technical complexity.  

Other reprogramming methods utilizing non-integrating approach such m-RNAs, 

Sendai viruses, episomes and proteins are more suitable compared Cre excisable 

methods for generating clinically safe iPS cells. However these methods are limited 

with respect to practical robustness and reproducibility (Gonzalez et al., 2011; 

Wörsdörfer et al., 2011, Lee et al., 2013). Moreover not all biomedical applications 

strictly require iPS cells completely devoid of transgenes such as disease modeling 

and differentiation studies. Hence for such purpose our protocol provides easier way 

to efficiently obtained transgene-free iPS cells. Although Cre mediated excision 

removes the transgenes cassette, one loxP site together with LTR remains 

integrated. Hence detailed sequence analysis is necessary in order to map the 

precise integration to ensure safety before clinical applications.  
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4.1.3 Effect of transgene excision on pluripotency and differentiation potential 
of human iPS cells 

After achieving successful deletion of transgenes from human iPS cells, it was 

important to check for negative as well as positive effect of TAT-Cre mediated 

excision on pluripotency characteristics of resulting iPS cells. During our analysis 

transgene-free iPS cells remain pluripotent and did not show any alteration with 

respect to pluripotency, which is in consistent with earlier studies showing transgene 

excision without causing any abnormalities to the iPS cells (Soldner et al., 2009, 

Somers et al., 2010; Sommer et al., 2009, Awe et al., 2013, Loh et al., 2012). In 

contrast, microarray analysis indicates enhancement in the quality of iPS cells, as 

transgene-excised iPS cells appeared more similar to human ES cells with respect to 

gene expression profiling confirming previous studies (Soldner et al., 2009). In fact, it 

has been reported that transgene-free iPS cells exhibit an improved differentiation 

potential by showing enhanced endodermal differentiation of transgene excised iPS 

cells (Sommer et al., 2010). In our study, we show enhanced cardiac differentiation 

of TAT-Cre treated polyclonal iPS cells. By this we show an improvement in 

differentiation capacity of a polyclonal cell population after the removal of transgenes 

by Cre-mediated recombination. This makes TAT-Cre protein an attractive tool to 

obtain transgene-free iPS cells even in a polyclonal manner as recently suggested 

(Willmann et al., 2013) circumventing the laborious selection procedure of 

transgene-excised clones. In conclusion, our study provides a simple, rapid and 

robust protocol for the generation of superior transgene-free iPS cells suitable for 

disease modeling and drug toxicity screening.  
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4.2 Cardiomyocyte differentiation of human iPS cells 

4.2.1 Optimization of cardiomyocyte differentiation paradigm using gene 
expression analysis of cardiac specific markers  

Our study reports a novel strategy to obtain cardiomyocytes from diverse human iPS 

cell lines using an optimal combination of well-orchestrated extrinsic stimuli such as 

BMP4 and Chir followed by WNT inhibition using XAV939 or IWR1 and enrichment 

of cardiomyocytes by supplying lactate as an energy source.  In order to establish it, 

we started with protocols published in earlier reports employing EBs as well as a 

monolayer based approach (Yang et al., 2008, Hudson et al., 2011).  We realized 

the practical issues, which need to be addressed in order to achieve efficient 

differentiation. During our study we were not successful in differentiating human iPS 

cell lines into cardiomyocytes using the EB based approach. One explanation for this 

could be the complex microenvironments within EBs, which makes hard to modulate 

key signals (Mummery et al., 2013). Hence we switched to monolayer culture of 

differentiation to make them more accessible to extrinsic signals applied during the 

differentiation. Although initial attempts were unsuccessful but it gave us clues about 

critical signaling pathways. In particular analysis of markers such as T (Brachyury), 

ISL1 as well as Nkx2.5 was an essential part of the optimization process. T 

(Brachyury) is a marker for mesendodermal population, which is expected to appear 

during the cardiac differentiation of human ES and iPS cells around day 3 (Osafune 

et al., 2008). Therefore we used it as a quick read out to check the efficacy of our 

growth factors formulations. We used different combinations of growth factors as well 

as small molecules for the modulation of Nodal, FGF and WNT signaling pathways. 

There are several studies reporting the importance of each of these pathways for 

efficient cardiogenesis as described in introduction chapter. According to our 

analysis T (Brachyury) was strongly induced using combination of BMP4 and Chir. 

Hence we used this combination as rapid induction for early mesoderm. In order to 

follow the further specification of early mesoderm towards cardiac fate, we checked 

the expression of ISL1. Expression of ISL1 marks the entry of differentiating cells 

towards cardiac fate (Laugwitz et al., 2005, Cai et al., 2003). It was also used as 

basis of cardiac precursor isolation and their subsequent differentiation into  

cardiovascular linkages (Zaruba et al., 2010, Laugwitz et al., 2005). During our initial 
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experiments we observed a strong induction of ISL1 from day 4 of differentiation that 

remained constantly upregulated through the differentiation till day 10. This 

observation was critical in many respects. First of all it indicated that we were able to 

differentiate the cells towards cardiovascular fate and second constant upregulation 

of ISL1 indicated improper specification towards cardiac fate. Earlier studies 

describing efficient cardiac differentiation of human iPS cells showed that ISL1 

expression peaked at day 4 and slowly decreased around day 7 of differentiation 

(Lian et al., 2013). Decrease of ISL1 expression was accompanied with up regulation 

of cardiac marker such as Nkx2.5, hence indicating proper cardiac specification (Lian 

et al., 2013). Taking into consideration the fact that we obtained SMA positive cells 

led us to conclude that we were differentiating the cells towards vascular fate due the 

lack of signals which could further specify cardiovascular cells into cardiac fate. Thus 

we also included Nkx2.5 marker analysis during differentiation. It marks the entry of 

cardiac precursors into the cardiomyocyte lineage (Lyons et al., 1995, Terami et al., 

2004). It was also used as selection marker for cardiac cells in earlier studies (Elliott 

et al., 2011). Absence of Nkx2.5 marker during our earlier attempts gave us an idea 

about the problem of lack of specification towards cardiomyocytes lineage.  

4.2.2 Optimization of cardiac specification with WNT modulation 

Repeated failure of differentiation led us to include molecules for modulation of WNT 

signaling. It has been reported that WNT signal plays crucial role in cardiogenesis in 

vivo as well as during cardiac differentiation of ES cells. It plays biphasic role during 

cardiac differentiation with early WNT activation and late inhibition seems essential 

for proper cardiac induction and specification (Cohen et al., 2008). We used 

previously described molecules as basis of our screening for WNT modulators and 

performed the WNT reporter analysis as described in result part. After performing 

WNT reporter assay, we decided for Chir, XAV939 and IWR-1 as WNT modulators. 

In order to confirm the finding from WNT reporter assay, we performed systematic 

comparative cardiac differentiation using all small molecules in combination with 

growth factors as described in result part (Table 2, 3 and 4). The outcome was 

indeed diverse, we only obtained synchroneously beating cultures using Chir and 

XAV939 as WNT modulators. We obtained similar result in terms cardiomyocytes 

yield by replacing XAV939 with IWR1 as WNT inhibitor. All other known molecules 

we tried failed to support cardiac differentiation. Thus our comprehensive analysis 
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revealed that efficient cardiac differentiation of human iPS cell requires combination 

growth factors with WNT modulators. In particular, we achieved potent formulation of 

BMP4 and Chir in combination with XAV939 or IWR1 generating robust 

cardiomyocytes up to 90% as described in the result part. We observed that cardiac 

differentiation to be very sensitive to the proper concentration as well as time window 

of growth factor BMP4 and small molecules Chir, XAV939 and IWR1. 

4.2.3 Significance of insulin for cardiac differentiation 

During our earlier attempts, we faced the problem of reproducibility using similar 

conditions with the same human iPS cell line (iLB-C-50-s9). Our first step toward 

solving this problem was to use fresh medium components and avoid repeated 

freezing and thawing of growth factors and small molecules. However, it did not 

solve the problem, hence we did literature research in order to find out the reason for 

non-reproducibility. It was reported in several studies that insulin plays critical role 

during cardiac differentiation. In case of mouse pluripotent stem cells it supports 

(Naito et al., 2005) while in human pluripotent stem cells it negatively influences 

cardiomyocytes formation (Xu et al., 2008). Therefore, recent studies have used 

insulin-free medium during cardiac differentiation (Lian et al., 2012). Since we also 

had insulin as one of the component of B-27 supplement that we were using, we 

switched to B-27 supplement without insulin. However using basal medium without 

insulin appeared stressful to the cells and many cells died in the beginning of 

differentiation. In order to avoid cell death, we kept basal medium with insulin for first 

two days and then switched to the insulin free medium during specification phase. In 

fact we found recent study to support our insulin switch. It has been described 

systematically by Lian et al that insulin does not inhibit the formation T (Brachyury) 

positive cells but it interferes with the specification of early mesendodermal 

population towards cardiac fate (Lian et al., 2013). Hence it was a reasonable to 

keep the insulin for initial two days during which cells are converted into 

mesendodermal precursors and remove it during the specification phase. Indeed by 

doing so we now achieved reproducible results in terms of robust cardiac 

differentiation using the cardiac differentiation scheme shown in figure 27 (see result 

part).  
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Although we found out effective formulation in order to efficiently obtain 

cardiomyocytes from iPS lines, we still could not effectively differentiate all the iPS 

lines that we used for our studies. Very important trend that we observed was 

reprogramming factor-free iPS lines showed high propensity of cardiac differentiation 

up to 90% than iPS lines still having reprogramming factors (see figure 26). Thus it 

further strengthens our claim for using transgene-free human iPS cells for 

differentiation study. However we still do not exclude the possibility that our 

formulation would not work robustly on all iPS cell line as different iPS lines might 

respond to different concentration of Chir and BMP4. Hence it is advisable to 

optimize the concentration of BMP4 and Chir in case given the iPS line does not 

respond to the concentration that we used in our studies. Nevertheless, the overall 

approach that we have devised in our study would help the scientific community to 

further enhance the protocols for iPS based cardiomyocytes derivation. Moreover, 

systematic analysis of cardiac precursor markers during the cardiac differentiation 

offers the possibility of devising a protocol for isolating cardiac precursors. Such 

precursors cell would be of high interest as they can be expanded and differentiated 

to cardiovascular cell types when needed. 

4.3 Enrichment of cardiomyocytes 

We observed different cardiac differentiation efficiencies from 33 to 92% in multiple 

iPS cell lines presumably due to the complexity of the signals, which is in 

accordance with recent studies (Kaichi et al., 2010, Ohno et al., 2013). We therefore 

elaborated further purification steps to improve the yield of cardiomyocytes with 

reduced line-to-line variability. Various studies have shown successful purification of 

cardiomyocytes from heterogeneous cell populations using antibodies or a dyes 

specific to cardiomyocytes (Hattori et la., 2010, Dubois et al., 2011). We decided to 

assess the potential of lactate enrichment of cardiomyocytes, since it has bee shown 

that cardiomyocyte culture can be enriched by supplying only lactate as a source of 

energy (Tohyama et al., 2013). Indeed, we show a substantial cardiac enrichment of 

our two iPS cell lines (iLB-C-30-r12 and fl-AR1034ZIMA 001) that exhibited relatively 

poor cardiomyocytes yield using our optimized chemical cocktail only. We were 

successful in enriching cardiac population from 62 till 95% in case of iLB-C-30-r12 

and from 33 till 74% in case of fl-AR1034ZIMA 001 PS line. By that we demonstrate 
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that the combination of extrinsically induced differentiation stimuli together with 

metabolic enrichment is an efficient means to overcome line-to-line variability of 

cardiomyocytes differentiation. We observed the cell density affects the enrichment, 

if the cells are too dense (more than 90% confluent) than it is difficult to achieve 

proper enrichment. Therefore before enrichment it is advisable to split the cells with 

a ratio of 1:2 into new plates and then begin with the enrichment. Apart from that it is 

also helpful to change medium everyday during enrichment process to remove dead 

cells.  

4.4 Characterization of human iPS derived cardiomyocytes 

4.4.1 Structural characteristics 

Differentiated cells showed synchronous spontaneous beating and remain beating till 

day 150 to 200. Obtained cardiomyocytes had limited proliferation rate with 

maximum cell division observed till two passages. In order to study detailed 

structural features, we performed immunostainings as well as TEM. Cells stained 

positive for cTNT and alpha-actinin with typical striation pattern as described in 

earlier studies (Mummery et al., 2013). Ultra structure analysis using TEM showed 

well-organized sarcomeric structures in 21 day old cardiomyocytes with distinct Z-, 

H-, I- and A-bands. Different degrees of myofibril organizations were seen in different 

areas of cells, which is indicative of fetal cardiomyocytes-like phenotype (Minami et 

al., 2012, Mummery et al., 2012). Moreover cells appear to be coupled with each 

other by gap junction complexes as well as facia adherence-like structures. Overall 

obtained results are indicative of functional cardiomyocytes with typical fetal-like 

features. 

4.4.2 Electrophysiological characteristics 

Obtained cardiomyocytes were beating spontaneously thus indicating the functional 

excitation-contraction coupling with functional calcium handling as seen in the case 

of cardiomyocytes obtained from pluripotent stem cells (Itzhaki et al., 2011, Li et al., 

2013). In depth analysis was carried out using patch-camp methods measuring 

action potential and ionic currents. Spontaneous action potentials of differentiated 

cells showed typical cardiomyocyte pattern and we identified both ventricular and 

atrial-like shapes. Out of 6 analyzed cells 4 showed ventricular- and 2 showed atrial-



	
   76	
  

like phenotypes. Hence we obtained heterogeneous cell populations with respect to 

cardiac subtype. Voltage ramps identified fast sodium, calcium as well as potassium 

currents. Characteristics of Ca2+ currents obtained from iPS-derived cardiomyocytes 

were similar to those recently obtained from murine ventricular cardiomyocytes 

(Beetz et al., 2009). I-V relationship furthermore perfectly correlate with data from 

HEK293 cells expressing recombinant human L-type Ca2+-channels suggesting that 

indeed iPS-derived cells express cardiac-like channel complexes consisting of a 

pore-forming and auxiliary subunits (Jangsangthong et al., 2010). 

4.4.3 Outlook 

Invention of iPS cell technology has pave new hopes in the field of regenerative 

therapies. It offers the possibility of autologous transplantation without any ethical 

constraints. Considering new developments in the field, the ultimate goal to 

effectively treat disorders with cell replacement therapy appears in the reach in near 

future. Many countries have already started with iPS cell banking in order to supply 

unlimited cell sources for regenerative therapies. It is an exciting time not only for the 

scientists but also for the general public with possibility of having better treatments. 

However still there are several critical refinements in terms of efficiency, safety as 

well as cost of iPS cell derivation need to be addressed in order to make it routine 

practices in clinics. Various differentiation protocols are available for generation of 

cardiomyocytes from human iPS cell lines. However, varied differentiation 

propensities of multiple pluripotent stem cell lines to a particular protocol require 

more alternative approaches. Hence, still it is highly desired to devise simple and 

efficient new protocols to achieve high robustness and efficacy. Moreover, it is of 

great importance to obtain homogenous cell population of cardiomyocyte subtypes in 

terms of establishing reliable platforms for disease modeling and differentiation 

studies. Latest research showing the modulation of key signals using chemicals will 

provide better control over differentiation process. Hence the iPS generation and 

their differentiation research hold the great potential for drug discovery and 

regenerative medicine. 
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5 Summary 

Reprogramming of somatic cells to iPS cells represents promising way towards 

regenerative therapy. However, several refinements in iPS technology are needed in 

terms of efficiency and clinical safety. Classical protocols of iPS cells generation 

harness infection by retro- or lenti-viruses. Although such integrating viruses 

represent robust tools for reprogramming, the presence of viral transgenes in iPS 

cells is deleterious as it holds the risk of insertional mutagenesis leading to malignant 

transformation. Moreover, remaining reprogramming transgenes have been shown 

to affect the differentiation potential of iPS cells. Alternative protocols have been 

explored to derive transgene-free iPS cells. However, the utility of such protocols 

remains limited due to low efficiency and narrow range of cell specificity. During first 

part of our study, we set out towards efficient derivation of factor-free human iPS cell 

line using a lentiviral polycistronic vector and TAT–Cre protein transduction. We 

have shown enhancement in the quality of transgene-free iPS using microarray 

analysis and cardiac differentiation. Moreover, we show polyclonal expansion of 

transgene-deleted clones, which circumvents laborious selection procedures, and 

time-consuming analysis of subclones.  

Second part of the study deals with the systematic optimization of cardiac 

differentiation of human iPS cells by extrinsic stimuli in monolayer culture. Protocol 

developed herein divides the whole differentiation process into three phases, namely 

cardiovascular induction, cardiac specification and cardiomyocyte enrichment. Our 

analysis revealed that efficient cardiac induction requires precise concentrations of 

extrinsic instructors such as BMP4, WNT modulators Chir and XAV939 as well as 

determination of effective time window for application of each growth factor or small 

molecule. We observed different cardiac differentiation efficiencies in multiple human 

iPS lines and elaborated further purification steps to improve the purity up to 90% of 

cardiomyocytes. We demonstrate that the combination of extrinsically induced 

differentiation stimuli together with metabolic enrichment is an efficient means to 

overcome line-to-line variability of cardiomyocyte differentiation. Furthermore, we did 

detailed functional validation of cardiomyocytes using immunostaining, 

electrophysiology as well as ultra-structural analysis. We conclude that 
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cardiomyocytes obtained using our protocol have the potential for drug toxicity as 

well as disease modeling studies.  
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