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„I will not live under a shadow of fear, 

never be crippled by chaos and doubt, 

fall prey to your madness. 

 

I am not shattered,  

out of the ashes I rise 

knowing that nothing is stronger than faith,  

finding hope in our hopeless lives.“ 

 

- John Petrucci - 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 
 

In the Western Alps of Switzerland and Italy, a stack of oceanic and continental units assembled 

during Late Cretaceous – Paleogene Alpine subduction, exhumation, and accretion. In the study area 

in the southern Valais and northern Aosta regions, oceanic units from the Piemont-Ligurian (South-

Penninic) domain, the Combin zone and Zermatt-Saas zone, and continental units from the Adriatic 

continental margin, the Dent Blanche nappe, represent the structurally highest units of this nappe pile. 

These are separated from each other by two major Alpine tectonic contacts, the Combin Fault and the 

Dent Blanche Basal Thrust (DBBT). Structural and petrological analyses of shear zones along the two 

contacts were performed to deduce the structural evolution of the tectonic units and the sequence of 

deformation in the tectonic context of the Western Alps. 

 

At Lago di Cignana in the western Valtournenche of Italy, (U)HP rocks of the upper Zermatt-Saas 

zone are exposed and overlain by greenschist-facies rocks of the Combin zone and the lower Dent 

Blanche nappe. Structural analyses revealed a progressive structural evolution from (U)HP to 

greenschist-facies conditions related to Paleogene syn- to post-exhumational deformation. Early 

exhumation of the Zermatt-Saas zone after the peak of (U)HP metamorphism at ca. 43 Ma occurred 

during normal-sense top-E shearing under eclogite- to upper greenschist-facies conditions. 

Exhumation to mid-crustal levels and juxtaposition with the overlying Combin zone occurred along 

greenschist-facies top-SE shear zones. Strain was mainly localized along the uppermost Zermatt-Saas 

zone and top-SE structures along the Combin Fault have been partly obliterated by subsequent 

deformation. Top-SE shearing was followed by a phase of pure shear deformation affecting units in 

the footwall and hanging wall of the Combin Fault. This phase was followed by top-NW shearing 

associated with renewed thrusting along the DBBT which continued until low-grade greenschist-facies 

conditions. A phase of dominant pure shear deformation after juxtaposition of the Combin and 

Zermatt-Saas zones may have led to the development of conjugate top-SE and top-NW shear zones on 

a regional scale within the Combin zone. This offers an explanation for contradicting views regarding 

the nature of the Combin Fault and the Combin zone, i.e. whether they represent thrust-related or 

normal-sense shear zones. 

 

Whereas deformation under (U)HP conditions can be well studied within rocks of the Zermatt-Saas 

zone, the overlying Combin zone and lower Dent Blanche nappe show a strong greenschist-facies 

overprint which largely obliterated early HP-related deformation and metamorphism. The Becca 

d’Aver continental sliver (BACS) in the western Valtournenche of Italy represents a continental 

fragment from the former Piemont-Ligurian/Adriatic ocean-continent transition and is structurally 

located at the Combin/Dent Blanche boundary. Prograde blueschist-facies assemblages are partly 

preserved within metasediments of the BACS and yield peak conditions around 1.7 GPa and 500° C. 

Petrological, microstructural, and thermodynamic investigations suggest that prograde metamorphism 

was linked to progressive breakdown of lawsonite, associated water release, and fluid-mediated 

element transfer and mineral growth. Kinematic indicators suggest top-NW shearing during prograde 

metamorphism and SE-directed subduction. Deformation structures within the BACS and the 

underlying Combin zone suggest a common structural evolution and complex kinematics on the 



retrograde path related to greenschist-facies top-(W)NW and top-(E)SE shearing. The last ductile 

deformation was related to top-NW shearing which evolved into brittle NW-SE extension. 

 

Most of the deformation observed in the study area occurred under greenschist-facies conditions and 

variably affected the northwestern and southeastern realms. The overall sequence of deformation and 

structural evolution of the tectonic units has been deduced from analyses of shear zones along the 

Combin Fault and DBBT and partly within the Combin zone. The main stage of nappe stacking and 

ductile top-(N)W shearing between ca. 48 and 44 Ma (D1) was related to exhumation of the Dent 

Blanche nappe and Combin zone, formation of greenschist-facies mylonites along the DBBT, and a 

pervasive greenschist-facies overprint. This phase was followed by transpressional to orogen-parallel 

top-(S)W shearing between ca. 43 and 40 Ma (D2). Top-(S)W shearing especially affected the 

northwestern Combin Fault and occurred during ongoing exhumation of the Combin zone. The DBBT 

was probably characterized by continuing top-W shearing during early stages of this phase. Normal-

sense top-SE shearing between ca. 39 and 37 Ma (D3) affected the northwestern Combin zone but 

only very locally the DBBT. Top-SE shear senses are subordinate in the southeastern realm and can 

locally be observed along the Combin Fault and at higher structural levels within the Combin zone. 

Top-SE shearing is held responsible for juxtaposition of the Combin zone and underlying (U)HP rocks 

of the Zermatt-Saas zone at crustal levels. It was followed by renewed top-NW shearing and folding 

from ca. 35 Ma onwards (D4) as a result of reactivation of the DBBT as out-of-sequence thrust. This 

phase was followed by brittle NW-SE extension after ca. 30 Ma (D5) due to updoming of the Vanzone 

antiform southeast of the study area. 

 

This study suggests that progressive orogenic deformation and metamorphism are recorded within 

shear zones along the Combin Fault and DBBT. However, early stages of the Alpine orogenic cycle 

have been largely obliterated by subsequent greenschist-facies deformation and retrogression. The 

proposed structural evolution suggests that the Combin zone and Dent Blanche nappe experienced a 

common retrograde evolution and penetrative top-(N)W shearing after an early blueschist-facies 

imprint and subduction-related top-NW shearing. Subsequent exhumation of the Zermatt-Saas zone 

from (U)HP depths occurred during normal-sense top-E shearing. Juxtaposition with the overlying 

Combin zone at crustal levels occurred along greenschist-facies top-SE shear zones. The relative 

chronology between greenschist-facies top-NW and top-SE shearing is often difficult to establish. 

Structural observations suggest that top-NW and top-SE shear zones may have partly overlapped in 

space and time due to a large pure shear component during greenschist-facies deformation, especially 

around 36 Ma during the transition from normal-sense shearing to renewed thrusting. A late phase of 

top-NW shearing due to out-of-sequence reactivation of the DBBT affected units in the study area 

before the onset of brittle deformation. 
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- CHAPTER 1 - 
 

Introduction 
 

1.1 Progressive deformation and metamorphism in Alpine-type orogens 

Alpine-type orogeny is the result of subduction of oceanic lithosphere underneath an active continental 

margin, subsequent subduction of continental crust, and final collision between two converging 

continental lithospheric plates. Growth of the orogen mostly occurs as a result of accretion of crustal 

or even lithospheric units to the active continental margin. These units may be detached from the 

downgoing plate at an early stage and immediately be accreted to the orogen or they may be subducted 

to great depths and experience metamorphism. Subduction zones are tectonic settings that are 

characterized by low geotherms and therefore (ultra)high-pressure ((U)HP) metamorphism (e.g. Agard 

et al., 2009; Fig. 1.1a). Subducted and exhumed units often experience clockwise pressure/temperature 

(PT) paths with blueschist- and eclogite-facies metamorphism on the prograde path during subduction 

and a retrograde path during exhumation which can either be cold, isothermal, or show further heating 

(Fig. 1.1b). An often discussed topic in the case of Alpine-type orogens is the exhumation of 

(ultra)high-pressure rocks, especially the mechanisms, rates, and kinematics of processes bringing 

deeply-subducted rocks back to the earth’s surface (e.g. Froitzheim et al., 2003; Yamato et al., 2008; 

Warren et al., 2008; Agard et al., 2009; Husson et al., 2009; Kylander-Clark et al., 2012). Progressive 

underthrusting of oceanic and continental units and contemporaneous exhumation and accretion along 

the active continental margin leads to stacking of tectonic units derived from different paleogeographic 

domains. Tectonic units which have been transported over long distances are called “nappes” in 

Alpine geology and are separated from each other by tectonic contacts. Orogenic deformation is 

therefore often localized along such tectonic boundaries so that ductile shear zones at deeper crustal 

and lithospheric levels form preferentially along first-order nappe boundaries. Tectonic contacts and 

associated shear zone may also be reactivated, overprinted, or cut by shear zones that form during 

subsequent deformational events. Deformation can thus occur during all stages of the orogenic cycle 

and can be associated with compressional, extensional, or strike-slip tectonics. Different geodynamic 

scenarios have been proposed for the spatial and temporal distribution of shortening and extension in 

orogens from crustal- to lithospheric scale deformation modes (e.g. Lister and Forster, 2009; Beltrando 

et al., 2007a) to buoyancy-driven relative movement of individual crustal units (e.g. Wheeler et al., 

2001; Froitzheim et al., 2003). The relationship between orogenic deformation and metamorphism can 

often be used to attribute deformational events to metamorphic conditions on the prograde or 

retrograde path. Late pervasive retrogression and deformation, however, can also obliterate earlier 

deformation phases and metamorphic stages so that reconstruction of the tectonic history may be 

hindered. 

 

Deformation along ductile shear zones results in the formation of planar (foliations) and linear 

(stretching lineations) fabric elements (e.g. Lister and Williams, 1979; Lloyd et al., 1992). Their 

formation, however, does not occur instantaneously but is usually the product of progressive 

deformation during prolonged shear zone activity or even subsequent deformation phases. Two 
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theoretical endmember geometries for two-dimensional flow in ductile shear zones exist. The first one, 

simple shear (Fig. 1.2a), is characterized by rotation of lines parallel to the principle strain axes, i.e. 

the principle stretching and shortening axes, away from their original position (Fossen, 2010). This 

mechanism is therefore also referred to as rotational or non-coaxial deformation. The second geometry, 

pure shear (Fig. 1.2b), is a perfect coaxial deformation and is characterized by constant parallelism 

between the principle strain axes and the original position of marker lines during all stages of 

progressive deformation (Fossen, 2010). Any mixture of the two geometries is called general shear or 

subsimple shear (Fig. 1.2c). 

 

 
Figure 1.1: a) Schematic cross-section through a subduction zone showing features like accretionary wedge formation, 

detachment of crustal slivers from the downgoing plate, fluid-release at depth, and arc magmatism; from Agard et al. (2009). 

b) Metamorphic facies diagram with an exemplary clockwise PT-path; DIA: Diagenesis, SGS: Sub-greenschist facies, LGS: 

lower greenschist facies, UGS: upper greenschist facies, HPGS: high-pressure greenschist facies, BS: blueschist facies, UBS: 

upper blueschist facies, BET: blueschist/eclogite facies transition, EC: eclogite facies, UHP: ultrahigh-pressure 

metamorphism, GAT: garnet amphibolite facies, AM: amphibolite facies, GRA: granulite facies; modified from Bousquet et 

al. (2008). 

 

An important step for the reconstruction of the structural evolution of tectonic units is the 

determination of the kinematics and the bulk shear sense along tectonic contacts and shear zones, i.e. 

the transport direction of a distinct unit. This direction, and therefore the vergence of shearing in 

ductile shear zones, can be inferred from kinematic indicators such as asymmetrically deformed 

minerals, shear bands, and oblique foliations (e.g. Platt and Vissers, 1980; Lister and Snoke, 1984; 

Passchier and Trouw, 2005). These are most abundant in simple shear zones since their formation 

largely depends on the degree of rotational (non-coaxial) deformation. The kinematics within pure 

shear zones on the other hand are more complicated and less well understood since they are by 

definition devoid of relative movement between adjacent blocks. Overall pure shear may, however, be 

localized into smaller conjugate simple shear zones. Pure shear deformation can be an important 

process leading to changes in shear zone or nappe geometry. The geometry of deformation within a 

particular shear zone, i.e. the degree of rotation, can be approximated by the relative abundance of 

asymmetric or symmetric deformation structures. More detailed information can often be obtained by 

texture analysis, i.e. the measurement of crystallographic preferred orientations, (e.g. Schmid and 

Casey, 1986; Leiss et al., 2000; Pleuger et al., 2009). Metamorphic conditions during deformation can 

be constrained by the occurrence of diagnostic minerals and assemblages which have grown, been 

deformed, or overprinted. Also, deformation mechanisms, recrystallization mechanisms of quartz (e.g. 
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Stipp et al., 2002), and the degree of ductility can be used to infer the metamorphic grade during 

shearing. Deformation can also increase and channelize fluid flow and thus trigger and enhance 

metamorphic reactions (e.g. Terry and Heidelbach, 2006; Konrad-Schmolke et al., 2011a). 

 

 
Figure 1.2: Principle geometries of progressive simple shear (a), pure shear (b), and general (subsimple) shear; from Fossen 

(2010). 

 

Analyses of the kinematics, geometry, and distribution of shear zones in Alpine-type orogens are 

necessary for reconstructing the structural evolution of tectonic units and the relative chronology of 

shearing events during progressive orogenic deformation. In the context of this thesis, the term 

“progressive orogenic deformation” means that deformation does not occur during a singular event but 

occurs and evolves progressively in the course of shear zone development and subsequent shearing 

events over the entire orogenic cycle. Information about the metamorphic evolution of tectonic units 

and the metamorphic grade of deformation structures and PT-conditions during shearing events can 

help to establish the sequence of deformation and reconstruct the tectonometamorphic evolution for 

tectonic units. 

 

1.2 The study area in the Swiss-Italian Western Alps 

The European Alps (Fig. 1.3) are the classic example for Alpine-type orogens and the result of 

subduction of oceanic basins and continental crust and subsequent collision of the European and 

Adriatic continental margins. The study area is located in the southern Valais and northern Aosta 

regions of Switzerland and Italy, respectively, roughly between the Rhône valley in the north and the 

Aosta valley in the south (Fig. 1.3). This area has been the site of many studies dealing with the 

structural, metamorphic, and geochronological evolution of the exposed tectonic units since the 

famous works of Argand (e.g. Argand, 1916). Often addressed topics are the geodynamic evolution, 

tectonic and paleogeographic reconstructions (e.g. Froitzheim et al., 1996; Marchant and Stampfli, 

1997; Dal Piaz, 1999; Rosenbaum and Lister, 2005; Beltrando et al., 2010a; Handy et al., 2010; Gasco 

et al., 2013) and the overall geometry and structure of the Western Alps (Escher et al., 1993; Escher & 

Beaumont, 1997; Schmid et al., 1996; Schmid and Kissling, 2000; Schmid et al., 2004). Other 

important topics include the grade and distribution of metamorphism in the Western Alps (e.g. 

Bousquet et al., 2004 and references therein; Bousquet et al., 2008), especially (U)HP-metamorphism 

(see Beltrando et al., 2010b for a review), the age of subduction-related metamorphism (see Berger 

and Bousquet, 2008 for a review), and the influence of rift-inheritance and pre-orogenic 

paleogeography on Alpine orogeny (e.g. Froitzheim and Manatschal, 1996; Beltrando et al., 2010c; 
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Beltrando et al., 2014). In this section, only a rough geological and tectonic overview is given. More 

detailed descriptions are given in chapters 2 – 4. 

 

 
Figure 1.3: Overview map of the European Alps with location of the study area in southern Switzerland (southern Valais 

region) and northern Italy (northern Aosta region). 

 

In the Western Alps, continental and oceanic units derived from different paleogeographic domains 

are exposed (Figs. 1.4 and 1.5). These were assembled during Late Cretaceous – Paleogene subduction, 

exhumation, and accretion along the Adriatic continental margin. Subsequent collision of the 

European and Adriatic plates and associated backfolding strongly modified the geometry of the nappe 

stack (e.g. Escher et al., 1993; Fig. 1.5a). The Late Cretaceous paleogeographic configuration before 

the onset of SE-directed Alpine subduction (Fig. 1.5c) was characterized from southeast to northwest 

by the Adriatic continental margin (Austroalpine domain), the Piemont-Ligurian ocean (South-

Penninic domain), the Briançonnais continental spur (Middle-Penninic domain), the Valais basin 

(North-Penninic domain), and the European continental margin (Sub-Penninic domain) (e.g. Stampfli 

et al., 2002; Schmid et al., 2004; Handy et al., 2010). 

 

In the study area, two major Alpine tectonic contacts, the Combin Fault and the Dent Blanche Basal 

Thrust (DBBT), are exposed (Figs. 1.5a and 1.6). The DBBT separates the continental Dent Blanche 

nappe in the hanging wall from the mainly ocean-derived Combin zone in the footwall. The Combin 

Fault separates the Combin zone from the continental St. Bernhard nappe system in the northwest and 

the ophiolitic Zermatt-Saas zone in the southeast. The Dent Blanche nappe is the structurally highest 

unit in the Western Alps together with the Sesia nappe from which it is separated by erosion. The Dent 

Blanche/Sesia nappe system is probably derived from one or more continental fragments which were 

separated from the Adriatic continental margin during Jurassic rifting (Froitzheim et al., 1996; Dal 

Piaz et al., 2001; Babist et al., 2006). The Dent Blanche/Sesia nappe system comprises several 

subunits consisting of Paleozoic basement and Permo-Mesozoic cover sequences (e.g. Gardien et al., 

1994; Monjoie et al., 2005; Babist et al., 2006; Manzotti, 2011). The Alpine metamorphic overprint 

increases from northwest to southeast so that the Dent Blanche nappe experienced Alpine blueschist-

facies metamorphism (e.g. Ballèvre et al., 1986; Manzotti et al., 2014) whereas rocks of the Sesia 

nappe display abundant eclogite-facies assemblages (e.g. Lardeaux and Spalla, 1991).  The peak of the 
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Alpine high-pressure imprint in the Sesia nappe has been dated at ca. 70 – 65 Ma (e.g. Inger et al., 

1996; Rubatto et al., 1999). The Dent Blanche nappe shows a strong pervasive greenschist-facies 

overprint, especially along shear zones (Oberhänsli and Bucher, 1987; Manzotti et al., 2014). 

 

 
Figure 1.4: Tectonic map of the Western Alps with location of the study area; modified from Beltrando et al. (2010a). 

 

The Combin zone in the footwall of the Dent Blanche nappe comprises the ophiolitic Tsaté nappe and 

the Cimes Blanches and Frilihorn nappes of continental affinity. The Tsaté nappe probably represents 

a former accretionary wedge at the Adriatic continental margin and consists of Jurassic to Cretaceous 

calcschists, metabasites, and serpentinites from the Piemont-Ligurian oceanic domain (Sartori, 1987; 

Marthaler and Stampfli, 1989). The Cimes Blanches and Frilihorn nappes consist of successions of 

Permo-Mesozoic sediments comprising conglomerates, quartzites, marbles, and dolomites which 

occur as thin dismembered sheets along the base and structurally higher up in the Combin zone 

(Sartori, 1987; Vannay and Allemann, 1990). They may represent sheared-off cover sequences from 

the Briançonnais continental spur or from more internal continental crust, e.g. the Dent Blanche/Sesia 

nappe system (Pleuger et al., 2007). The Combin zone reached greenschist- to blueschist-facies 

conditions during Alpine subduction and accretion (Kienast, 1973; Ballèvre and Merle, 1993; Reddy 
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et al., 1999; Bousquet, 2008) between ca. 62 – 48 Ma (Agard et al., 2002; Reddy et al., 2003) and 

experienced a pervasive greenschist-facies overprint (Ballèvre and Merle, 1993; Negro et al., 2013). 

 

 
Figure 1.5: a) Cross-section through the nappe stack of the Western Alps; after Escher et al. (1993); trace of cross-section is 

indicated in figure 1.6. b) Key with assumed paleogeographic affiliations of tectonic units; note that the paleogeographic 

origin of the Antrona and Balma ophiolites in contact with the Monte Rosa nappe as well as the Monte Rosa nappe itself is 

still a matter of discussion; participitation in that discussion is beyond the scope of this thesis. c) Schematic paleogeographic 

configuration during the Late Cretaceous before the onset of Alpine subduction. 

 

The Zermatt-Saas zone in the footwall of the southeastern segment of the Combin Fault is also derived 

from the Piemont-Ligurian oceanic domain and consists of metabasalts, metagabbros, metaultramafics, 

and metasediments. Metabasic rocks yield Jurassic protolith ages around ca. 164 Ma (Rubatto et al., 

1998). The Zermatt-Saas zone experienced Paleocene – Eocene (U)HP metamorphism with ages 

between ca. 54 – 41 Ma (Bowtell et al., 1994; Rubatto et al., 1998; Amato et al., 1999; Lapen et al., 

2003; Mahlen et al., 2005; De Meyer et al., 2014) and subsequent greenschist-facies retrogression 

between ca. 42 – 38 Ma (Amato et al., 1999; Cartwright and Barnicoat, 2002; De Meyer et al., 2014). 

Several continental fragments occur on top of the Zermatt-Saas zone which may represent continental 

outliers within the Piemont-Ligurian oceanic domain and also show an Alpine eclogite-facies imprint 

(Dal Piaz et al., 2001; Beltrando et al., 2010; Weber et al., accepted). The northwestern Combin zone 

is underlain by the continental St. Bernhard nappe system which is derived from Briançonnais 
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continental crust. It consists of Paleozoic basement and Mesozoic cover rocks which experienced an 

Alpine greenschist- to blueschist-facies overprint (Bearth, 1963; Sartori, 1990). 

The geometry of the internal part of the Paleogene nappe stack in the Swiss-Italian Western Alps has 

been strongly modified by collision-related backfolding and formation of the Vanzone antiform after 

ca. 32 Ma (Escher et al., 1993; Pettke et al., 1999; Fig. 1.5a). 

 

 
Figure 1.6: Tectonic map of the study area and adjacent areas; after Steck et al. (1999); the Dent Blanche Basal Thrust 

separates the Dent Blanche nappe in the hanging wall from the Combin zone in the footwall; the Combin Fault separates the 

Combin zone from the St.Bernhard nappe system in the northwest and the Zermatt-Saas zone in the southeast. 

 

1.3 Research question, methods, and organization of the thesis 

In this thesis, a structural model and sequence of deformation for the Swiss-Italian Western Alps is 

presented. This model is based on kinematic and geometric analyses of shear zones and deformation 

structures in outcrop and thin-section along two major Alpine tectonic contacts, the Combin Fault and 

the Dent Blanche Basal Thrust. Additional petrological investigations are used to constrain 

metamorphic conditions and processes during the structural evolution of the Combin zone and the 

Dent Blanche nappe. These new structural and metamorphic data are discussed in the context of the 

tectonic evolution of the Western Alps. The methods applied in this thesis include structural field work 

and collection of mostly oriented samples, analyses of microstructures in thin-section, measurement of 

quartz textures with x-ray texture goniometry, petrological and mineralogical investigations via 

electron microprobe analyses, x-ray fluorescence analysis (XRF), and thermodynamic modelling. 378 

samples were taken along the two boundary zones and within the Combin zone (see table of samples 

and map with sample locations in appendix). Oriented samples were cut parallel to the xz-plane of the 

finite strain ellipsoid for further microstructural analyses. Some samples were prepared for 
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petrological and mineralogical investigations. All electron microprobe analyses were carried out with 

the Jeol JXA-8200 superprobe at the Steinmann-Institut. X-ray texture goniometry on quartz 

mylonites was carried out at Geowissenschaftliches Zentrum, University of Göttingen. 

Thermodynamic modelling (equilibrium phase diagram modelling, pseudosection modelling) was 

performed with the THERIAK-DOMINO software package (De Capitani and Petrakakis, 2010) which 

uses minimization of the Gibbs free energy to calculate stable mineral assemblages and/or 

compositions for defined PT-conditions. 

 

The large difference in peak pressures between the eclogite-facies Zermatt-Saas zone in the footwall 

(ca. 2.3 – 3.0 GPa: Bucher et al., 2005; Angiboust et al., 2009) and the greenschist- to blueschist-facies 

Combin zone (ca. 1.2 GPa: Bousquet, 2008) in the hanging wall led many authors to suggest that the 

Combin Fault and the overlying Combin zone are large normal-sense shear zones accommodating 

exhumation of (U)HP rocks in its footwall (Ballèvre & Merle, 1993; Reddy et al., 1999; Wheeler et al., 

2001). However, this straight-forward interpretation has been questioned by several authors on the 

basis of structural observations which do not support a normal-sense shear zone character for the 

Combin zone in many places (Ring, 1995; Froitzheim et al., 2006; Pleuger et al., 2007). The difference 

in metamorphic grade is greatest at Lago di Cignana in the Western Valtournenche of Italy where 

UHP-rocks of the Zermatt-Saas zone, which experienced peak conditions of ≥ 3.2 GPa and ≤ 600° C 

(Reinecke, 1998; Groppo et al., 2009; Frezzotti et al., 2011), are exposed and overlain by strongly 

retrogressed rocks of the Combin zone and the Dent Blanche nappe. Therefore, this locality is ideal for 

studying the kinematics and geometry of shearing during and after exhumation of rocks from great 

depths. Chapter 2 of this thesis deals with the structural evolution of the Penninic units at Lago di 

Cignana and aims at constraining their progressive orogenic deformation from (U)HP to greenschist-

facies conditions. The Combin Fault and DBBT are well exposed in this area. Analyses of deformation 

structures in outcrop and thin-section are used to determine bulk shear senses and approximate 2D 

strain geometries, i.e. relative amounts of simple and pure shear.  Texture analysis on quartz mylonites 

is also used to infer the kinematics and geometry of deformation and to estimate temperature 

conditions during texture formation. A model is presented which explains the structural record in the 

context of syn- to post-exhumational orogenic deformation and the tectonic evolution of the Western 

Alps.  

 

The Combin zone and lower Dent Blanche nappe show a strong greenschist-facies overprint which has 

largely obliterated an earlier Alpine high-pressure imprint. Although blueschist-facies relics have been 

reported from the Combin zone, metamorphic conditions and the structural evolution during early 

subduction and accretion of this unit are poorly constrained. Especially units and lithological 

associations of the Piemont-Ligurian/Adriatic ocean-continent transition were involved in early 

subduction and experienced high-pressure metamorphism and associated deformation. Chapter 3 of 

this thesis focuses on the metamorphic and structural evolution of a continental fragment, the Becca 

d’Aver continental sliver (BACS) in the western Valtournenche of Italy, which is interpreted to be 

derived from this paleogeographic domain. The BACS is structurally located close to the 

Combin/Dent Blanche boundary, partly exhibits high-pressure metamorphic assemblages, and 

therefore holds crucial information about conditions and processes during subduction and exhumation 

of continental margin units. Petrographic and mineralogical analyses were performed on 
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metasediments from the BACS to gain information on mineral compositions of prograde and 

retrograde phases. Equilibrium phase diagram modelling and garnet isopleth thermobarometry are 

used to attribute mineral assemblages and compositions to specific PT-conditions on the prograde and 

retrograde path. Phase relations and inclusion patterns are studied in detail to gain information on the 

role of fluid-mediated mineral growth. (Micro)structural observations from the BACS and the 

underlying Combin zone are used to deduce kinematics during their tectonometamorphic evolution.    

 

Previously published works already suggested that the structural evolution of the Combin zone and the 

Dent Blanche nappe are closely related (Oberhänsli and Bucher, 1987; Pleuger et al., 2007). As 

mentioned before, contradicting views exist on the nature of the Combin Fault and the Combin zone 

whether they mainly represent normal-sense or thrust-related shear zones (e.g. Ring, 1995; Reddy et 

al., 1999; Froitzheim et al., 2003; Pleuger et al., 2007). Although the nature of the DBBT is less 

controversial in that it is generally interpreted as a major thrust (e.g. Mazurek, 1986; Wust and 

Silverberg, 1989; Pleuger et al., 2007), more comprehensive work on deformation and shearing events 

along the DBBT and its relationship with the underlying Combin zone is needed. The overall 

structural evolution of the Combin zone and Dent Blanche nappe as well as the sequence of 

deformation along the Combin Fault and DBBT is still not well-constrained. Chapter 4 of this thesis 

deals with the kinematics, geometry, and distribution of greenschist-facies shear zones along the 

Combin Fault and DBBT in the study area. The presented structural evolution contributes to the 

discussion on the nature of shear zones and the sequence of deformation and is discussed in the 

context of the tectonic evolution of the Western Alps. Deformation structures in outcrop and thin-

section from exemplary subareas along the two tectonic contacts and within the Combin zone give 

information on the vergence of shearing. Especially overprinting relations and correlations within and 

between subareas are used to deduce a relative chronology of shearing events. Conditions during 

shearing are approximated by the degree of ductility and quartz recrystallization mechanisms. 

Pseudosection modelling was performed for one mylonite sample from the northwestern DBBT to 

gain more detailed information on PT-conditions during retrograde shearing along the DBBT. Finally, 

structural observations and interpretations are used to constrain regional similarities and differences 

between fault segments and the geometry and distribution of greenschist-facies shear zones in the 

study area. The new findings are discussed in the context of previously published data and models to 

clarify some of the open questions regarding the tectonic evolution of the Swiss-Italian Western Alps. 

 

During my PhD project, I also worked on the following two topics which for the reasons outlined are 

not included in this thesis. 

To date, there are no protolith ages available for the Tsaté nappe north of the Aosta valley. 

Determination of such ages was originally part of this project. As such, metagabbroic rocks from two 

localities northwest of the Dent Blanche nappe, at Aiguilles Rouges d’Arolla and east of Val de Zinal, 

were collected. However, zircons of appropriate size could not be found within these rocks. Electron 

microprobe analyses of two metagabbro samples (FD306, FD377) can be found in the appendix. 

The Alpine tectonometamorphic evolution of the Etirol-Levaz slice in the western Valtournenche of 

Italy is still poorly constrained. The age of peak metamorphism has been dated at ca. 47 – 45 Ma with 

Rb-Sr and U-Pb geochronology (Dal Piaz et al., 2001; Beltrando et al., 2010). However, age 

constraints for the prograde path and therefore the early subduction history of this continental 
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fragment have not been determined yet. I collected several samples suitable for Lu-Hf garnet 

geochronology from within the Etirol-Levaz slice and helped characterize them via electron 

microprobe analyses, LA-ICPMS analyses, and thermodynamic modelling. Lu-Hf garnet dating was 

performed as part of a master project (Faßmer, 2014) and the results will be presented in a stand-alone 

paper. 

 

Chapters 2 – 4 of this thesis contain the aforementioned studies on the evolution of the tectonic units 

and contacts in the chosen areas. All chapters and sections were written by me. An earlier version of 

chapter 2 was revised by Thorsten Nagel (University of Bonn) and Bernd Leiss (University of 

Göttingen) who made suggestions regarding the content and language. Chapter 5 summarizes the key 

points of this thesis and contains a list of references used in this thesis as well as the 

acknowledgements and a short C.V.. The appendix contains a list of conference abstracts, electron 

microprobe analyses, a table of all samples taken in the field, and a map with sample locations. 
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- CHAPTER 2 - 
 

 

Structural evolution of the Penninic units at Lago di Cignana 

(Western Alps, Italy): constraining progressive orogenic 

deformation from (ultra)high-pressure to 

greenschist-facies conditions 
 

 

2.1 Abstract 

In the Western Alps, a stack of oceanic and continental units derived from different paleogeographic 

domains experienced progressive orogenic deformation during Alpine subduction, exhumation, and 

accretion. Structural analyses of the Penninic units at Lago di Cignana (Valtournenche, Italy) revealed a 

continuous evolution from (ultra)high-pressure to greenschist-facies conditions related to Paleogene, syn- 

to post-exhumational deformation. Early exhumation of the oceanic Zermatt-Saas zone following 

(ultra)high-pressure metamorphism at ca. 43 Ma occurred during dominant top-E shearing under eclogite- 

to upper greenschist-facies conditions. Subordinate conjugate top-W shear senses suggest internal 

deformation and differential exhumation of (ultra)high-pressure rocks. Exhumation to mid-crustal levels 

and juxtaposition with the overlying Combin zone occurred during greenschist-facies normal-sense top-

SE shearing. Strain was mainly localized along the uppermost Zermatt-Saas zone since top-SE shear 

senses are scarce in the hanging wall of the Combin Fault. Top-SE structures have also partly been 

obliterated by subsequent deformation. Top-SE shearing was followed by a phase of pure shear 

deformation affecting units in the footwall and hanging wall of the Combin Fault. Coaxial deformation is 

indicated by greenschist-facies symmetric fabrics, conjugate shear bands, boudinage, and orthorhombic 

quartz textures. It was followed by bulk top-NW shearing associated with renewed thrusting along the 

Dent Blanche Basal Thrust which continued until low-grade greenschist-facies conditions. 

2D kinematic and geometric analyses in the area around Lago di Cignana suggest that normal-sense top-

(S)E shearing along the top of the Zermatt-Saas zone accompanied exhumation of this unit from eclogite- 

to greenschist-facies conditions and was followed by a phase of dominant pure shear deformation partly 

obliterating exhumation-related deformation structures. On a regional scale, a significant pure shear 

component may have led to the development of conjugate top-SE and top-NW shear zones within the 

Combin zone which offers an explanation for contradicting views regarding the sequence of deformation 

and the nature of the Combin Fault and the Combin zone, i.e. whether they represent thrust-related or 

normal-sense shear zones. 
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2.2 Introduction 

Deformation in Alpine-type orogens results from cycles of subduction and accretion, exhumation, and 

continental collision. Continental and oceanic units can be subducted to and exhumed back from 

(ultra)high-pressure ((U)HP) depths. During subsequent nappe stacking, crustal units that experienced 

such extreme conditions are juxtaposed with lower-pressure units along major tectonic contacts and shear 

zones. Deformation structures associated with initial exhumation from (U)HP conditions are often 

obliterated by later deformation phases associated with nappe stacking and continental collision. 

Accordingly, it is often controversial whether observed structures resulted from exhumation-related 

deformation or merely represent younger deformation phases. A classic example for oceanic (U)HP 

conditions and the discussion of exhumation-related deformation is the Zermatt-Saas zone in the Swiss-

Italian Western Alps with its associated UHP sliver, the Lago di Cignana unit (e.g. Reinecke, 1991; 

Forster et al., 2004; Groppo et al., 2009). These units are derived from the oceanic South-Penninic 

paleogeographic domain (Fig. 2.1a) which experienced a Paleogene cycle of subduction, exhumation, and 

collision. The Zermatt-Saas zone is situated in the footwall of the Combin Fault, a major Alpine shear 

zone, the significance of which for the exhumation of the underlying (U)HP rocks has been 

controversially discussed in the literature. The large difference in metamorphic grade between the 

eclogite-facies Zermatt-Saas zone in the footwall and the greenschist- to blueschist-facies Combin zone in 

the hanging wall has led many authors to interpret the Combin Fault as a top-SE normal fault that 

accommodated exhumation of Zermatt-Saas (U)HP rocks (e.g. Ballèvre and Merle, 1993; Reddy et al., 

1999; Wheeler et al., 2001; Reddy et al., 2003). This interpretation has been questioned by several authors 

due to the occurrence of abundant greenschist-facies top-NW kinematic shear senses along the Combin 

Fault and within the Combin zone. Ballèvre and Merle (1993) suggested that a Combin normal fault was 

overprinted by post-exhumational top-NW thrusting erasing earlier top-SE structures which was then 

followed by late-stage top-SE backfolding. Ring (1995) proposed that the Combin Fault represents an 

Eocene out-of-sequence thrust also overprinted by later top-SE backshearing. Froitzheim et al. (2006) and 

Pleuger et al. (2007) interpreted the Combin Fault as an extraction fault that formed due to extraction and 

subsequent out-of-sequence thrusting of the Dent Blanche nappe. Reddy et al. (2003) proposed on the 

basis of synkinematic Ar-Ar and Rb-Sr ages that top-SE shearing within the Combin zone was dominant 

during exhumation of the Zermatt-Saas zone but also overlapped and was partly coeval with the activity 

of top-NW shear zones due to a significant pure shear component. Whereas the nature of the Combin 

Fault is still a matter of discussion, the Dent Blanche Basal Thrust (DBBT) separating the continental 

Dent Blanche nappe from the underlying Combin zone is considered to undoubtedly represent a major 

Alpine thrust of probably Eocene age (e.g. Mazurek, 1986; Oberhänsli and Bucher, 1987; Pleuger et al., 

2007). Both these major Alpine shear zones are exposed in the area around Lago di Cignana in the 

western Valtournenche of Italy. This locality has been the site of many studies since the first recognition 

of UHP metamorphism within oceanic rocks of the Zermatt-Saas zone (Reinecke, 1991). UHP conditions 

within metabasic and metasedimentary lithologies are evident from the occurrence of coesite (Reinecke, 

1991) and microdiamond (Frezzotti et al., 2011). Due to the rare opportunity to study UHP oceanic crust, 

numerous studies have been carried out on the petrological and geochronological evolution of these rocks. 
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Studies dealing with structural aspects of this area comprise the work of Van der Klauw et al. (1997) who 

linked deformation structures to the exhumation path and Ballèvre and Merle (1993), Ring (1995), and 

Reddy et al. (2003) who included the Lago di Cignana area in their regional studies.  

In this chapter, I present structural data from the Lago di Cignana area to reconstruct the structural 

evolution of the exposed tectonic units. I describe deformation structures from the upper Zermatt-Saas 

zone to the lower Dent Blanche nappe and especially focus on deformation along the Combin Fault to 

clarify its nature. My observations constrain the structural evolution of the Penninic units at Lago di 

Cignana during Paleogene progressive orogenic deformation from (U)HP to greenschist-facies conditions. 

Finally, I discuss their tectonic evolution in the framework of the Western Alps. 

 

 
Figure 2.1: a) Late Cretaceous paleogeography before the onset of Alpine subduction; the South-Penninic paleogeographic 

domain comprises the Piemont-Ligurian oceanic realm from which the Zermatt-Saas zone and Tsaté nappe are derived and 

continental fragments that later became the Dent Blanche/Sesia nappe system. b) Sketch map of the European Alps with location 

of the tectonic map. c) Tectonic map of the Penninic units in the Swiss-Italian Western Alps after Steck et al. (1999) and Pleuger 

et al. (2007) with location of the geological map in figure 2.2a. d) Schematic cross-section through the Western Alps; not to scale 

vertically or horizontally; after Escher et al. (1993) and Pleuger et al. (2007). 

 

2.3 Geological setting 

The Swiss-Italian Western Alps consist of a stack of continental and oceanic units derived from different 

paleogeographic domains (Fig. 2.1a). During the Late Cretaceous, before the onset of Alpine subduction, 

these included from northwest to southeast the European continental margin, the Valais oceanic basin 
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(North-Penninic units), the Briançonnais continental spur (Middle-Penninic units), the Piemont-Ligurian 

oceanic domain including several continental fragments (South-Penninic units and Dent Blanche/Sesia 

nappe system), and the Adriatic continental margin (Southern Alps). In the course of SE-directed 

subduction during the Late Cretaceous - Paleogene, crustal slices of these different paleogeographic units 

were progressively accreted to the Adriatic margin. 

The study area is located in the Italian Western Alps (Figs. 2.1b and c) where units of the South-Penninic 

paleogeographic domain are exposed. The structurally highest unit is the Dent Blanche/Sesia nappe 

system which is interpreted to originate from one or more continental fragments derived from the Adriatic 

continental margin and stranded inside the Piemont Ligurian oceanic domain during Jurassic rifting 

(Froitzheim et al., 1996; Dal Piaz et al., 2001; Babist et al., 2006). The Dent Blanche nappe in the 

northwest is separated from the Sesia nappe in the southeast by erosion. Both units consist of Paleozoic 

basement and remnants of Permo-Mesozoic cover sequences. The Dent Blanche nappe is subdivided into 

two pre-Alpine basement units, the Arolla and Valpelline series. The Arolla series consists of Permian 

granitoids and gabbros (Bussy et al., 1998; Monjoie et al., 2005) whereas the Valpelline series comprises 

pre-Alpine amphibolite- to granulite-facies metasediments (Gardien et al., 1994). Permo-Mesozoic cover 

rocks, often referred to as Roisan zone (Ballèvre and Kienast, 1987), comprise breccias, marbles, and 

quartzites. They occur on top of the Arolla series and along major shear zones (e.g. Manzotti, 2011). The 

Alpine overprint within the Dent Blanche/Sesia nappe system increases from northwest to southeast 

which is consistent with SE-directed subduction and accretion of the units. The Dent Blanche nappe 

reached blueschist-facies conditions of ca. 1.6 GPa and 520° C and shows a pervasive greenschist-facies 

overprint along shear zones (Ballèvre et al., 1986; Oberhänsli and Bucher, 1987; Manzotti et al., 2014). 

The Sesia nappe experienced eclogite-facies conditions around 2.0 GPa and 550° C (e.g. Lardeaux and 

Spalla, 1991; Regis et al., 2014). High-pressure metamorphism in the Sesia nappe occurred during the 

Late Cretaceous at ca. 70 – 65 Ma (e.g. Inger et al., 1996; Rubatto et al., 1999) but started as early as ca. 

85 Ma with several distinct pressure peaks (Rubatto et al., 2011; Regis et al., 2014). Babist et al. (2006) 

suggested that the Sesia nappe was mainly exhumed between 55 – 45 Ma. The basal tectonic contact of 

the Dent Blanche nappe towards the underlying Combin zone is the Dent Blanche Basal Thrust (DBBT). 

The Combin zone comprises (1) the Tsaté nappe, a mélange of Jurassic to Cretaceous calcschists, 

metabasites, and serpentinites derived from the Piemont-Ligurian oceanic domain, and (2) the Cimes 

Blanches and Frilihorn nappes which consist of successions of Permo-Mesozoic sediments with 

continental affinity comprising quartzites, meta-arkoses, marbles, and dolomites (Vannay and Allemann, 

1990). These sediments occur as thin dismembered sheets along the base (Cimes Blanches nappe) and 

structurally higher up (Frilihorn nappe) in the Combin zone. Their origin is still debated and they have 

been interpreted to represent sheared-off cover sequences of the St. Bernard nappe system (e.g. Vannay 

and Allemann, 1990) or the Dent Blanche/Sesia nappe system (Pleuger et al., 2007). The Combin zone 

reached Alpine greenschist- to blueschist-facies conditions (Reddy et al., 1999) with peak estimates 

around 1.2 GPa and 450° C (Bousquet, 2008) and has been interpreted as an accretionary wedge that 

formed at the Adriatic continental margin during Alpine subduction (Sartori, 1987; Marthaler and 

Stampfli, 1989). 
40

Ar/
39

Ar white mica ages obtained by Reddy et al. (2003) indicate that accretion took 
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place between 60 - 48 Ma which coincides with ages between 62 - 55 Ma obtained by Agard et al. (2002) 

from in-situ 
40

Ar/
39

Ar-dating of phengites within carpholite-bearing metasediments of the Schistes Lustrés 

complex south of the Aosta valley. The Combin zone is underlain by the Zermatt-Saas zone in the 

southeast and the St. Bernard nappe system in the northwest and its basal contact is the Combin Fault. 

The Zermatt-Saas zone is also derived from Piemont-Ligurian oceanic lithosphere and consists of Jurassic 

ophiolites (metabasalts, metagabbros, metaultramafics, and metasediments) which experienced high- to 

ultrahigh-pressure metamorphism in the Paleocene - Eocene. U-Pb geochronology on magmatic zircons 

from metagabbros yielded protolith ages around 164 Ma (Rubatto et al., 1998). A large spread of 

available HP ages between ca. 54 and 41 Ma (Bowtell et al., 1994; Amato et al., 1999; Lapen et al., 2003; 

Mahlen et al., 2005; De Meyer et al., 2014; Weber et al., accepted) suggests that the Zermatt-Saas zone 

consists of several ophiolite slivers that were assembled in a subduction channel. Peak metamorphic 

conditions commonly reached 2.5 – 3.0 GPa and 550° – 600° C (Bucher et al., 2005). Ultrahigh-pressure 

metamorphism has been reported for metasediments and eclogites at Lago di Cignana in the western 

Valtournenche of Italy (Reinecke, 1998; Groppo et al., 2009; Frezzotti et al., 2011). Peak metamorphic 

conditions for these rocks have been calculated at ≥ 3.2 GPa and ≤ 600° C (Groppo et al., 2009; Frezzotti 

et al., 2011) and the age of metamorphism has been dated with various geochronometers. U-Pb SHRIMP 

dating on whole zircons and zircon rims by Rubatto et al. (1998) yielded ages of 44.1 ± 0.7 Ma. Amato et 

al. (1999) reported a Sm-Nd garnet age of 40.6 ± 2.6 Ma for a UHP eclogite whereas Lapen et al. (2003) 

obtained a garnet-omphacite-whole rock isochron age of 48.8 ± 2.1 Ma with the Lu-Hf method for the 

same sample. Gouzu et al. (2006) reported an age of ca. 44 – 43 Ma for phengite inclusions in garnet 

dated with the 
40

Ar/
39

Ar step-heating method. I therefore consider the age of peak-metamorphism within 

UHP rocks at Lago di Cignana to have occurred around 43 Ma. The Zermatt-Saas zone partly shows a 

greenschist-facies overprint at the Lago di Cignana area which has been dated at 38 ± 2 Ma by Amato et 

al. (1999) with Rb-Sr whole rock-phengite chronometry. The Zermatt-Saas zone is folded around the 

underlying Monte Rosa nappe and, in the north, dips below the Mischabel fold, a large SE-closing 

antiform mostly affecting continental units of the St. Bernhard nappe system. The St. Bernhard nappe 

system is unanimously considered to be derived from the Briançonnais continental spur, an eastern 

prolongation of the Iberian plate located between the North- and South-Penninic oceanic basins (Schmid 

et al., 2004). The paleogeographic origin of the Monte Rosa nappe, however, is still controversial. 

According to some authors it represents Middle-Penninic continental crust (e.g. Escher et al., 1997; Keller 

and Schmid, 2001) whereas others attribute it to the European continental margin (e.g. Froitzheim, 2001; 

Pleuger et al., 2005). The geometry of the Paleogene nappe stack in the Swiss-Italian Western Alps has 

been largely modified by Oligocene - Miocene backfolding and formation of the Vanzone antiform after 

ca. 32 Ma (e.g. Pettke et al., 1999) as a result of collision between the European and Adriatic continental 

margins. 
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Figure 2.2: a) Geological sketch map of the Lago di Cignana area after Tamagno (2000), Forster et al. (2004), Groppo et al. 

(2009), Manzotti (2011), and own observations and interpretations. b) Cross-section with all units projected into the Monte 

Pancherot - Monte Seriola transect; shear senses are from this study. c) Stereoplots of stretching lineations as equal area 

projections in the lower hemisphere. 

 

2.4 Field relations 

The area around Lago di Cignana in the western Valtournenche of Italy displays a well-exposed cross-

section through the three uppermost tectonic units of the Western Alps which are from top to bottom the 

Dent Blanche nappe, the Combin zone, and the Zermatt-Saas zone (Fig. 2.2). All units had an originally 

SE-dipping orientation during and after the main phase of nappe stacking but have been rotated into a 

NW-dipping orientation due to formation of the Vanzone antiform in the southeast. In the Lago di 

Cignana area, foliations dip to the west to north. Stretching lineations in all units mostly plunge to the 

NW, except for lineations in Zermatt-Saas (U)HP rocks which predominantly trend E-W (Fig. 2.2c). 

Ultrahigh-pressure rocks of the Zermatt-Saas zone occur south of Lago di Cignana as three dismembered 
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slivers less than 100m in thickness (Forster et al., 2004). They consist of eclogites and their former 

pelagic sedimentary cover, now mainly represented by quartzitic (mica)schists. The UHP unit is 

surrounded by metabasic and metasedimentary rocks equilibrated at eclogite-facies conditions during 

peak metamorphism. For detailed petrographic and petrological descriptions of UHP and HP lithologies, 

the reader is referred to Groppo et al. (2009) and references therein. Serpentinite especially occurs along 

zones of high strain and as large bodies in the uppermost part of the Zermatt-Saas zone. A large 

serpentinite body builds the peak of Monte Pancherot east of the lake and then wedges out towards the 

west, another large body occurs south of the lake. Garnet-bearing and garnet-free calcschists of the 

Zermatt-Saas zone especially occur in the hanging wall of the UHP unit towards the Combin Fault. 

Metabasite bodies at this structural level often exhibit typical greenschist-facies mineral assemblages 

suggesting a progressively increasing overprint in the uppermost part of the Zermatt-Saas zone (Figs. 2.2a 

and b). Despite their overall retrogressed nature, these rocks are attributed to the Zermatt-Saas zone 

because of abundant HP relics and their structural position in the footwall of the Cimes Blanches nappe 

(Pleuger et al., 2007; Groppo et al., 2009). The different tectonic affiliations of calcschists in the footwall 

and hanging wall of the Cimes Blanches nappe is further supported by a difference in peak temperatures 

obtained with Raman spectroscopy thermometry by. Rocks of the Zermatt-Saas zone in the footwall of 

Cimes Blanches metasediments record temperatures between 498° and 532° C whereas the overlying 

Combin zone records peak temperatures of 455° - 475° C (Negro et al., 2013). Metasedimentary rocks of 

the Cimes Blanches nappe occur at the base of the Combin zone in the direct hanging wall of the Combin 

Fault as a large sliver north of Monte Pancherot wedging out towards the west and north and as small 

dismembered fragments southwest of the lake. North of Monte Pancherot and from bottom to top, the 

Cimes Blanches nappe comprises a succession of quartzites, cellular dolomites (Rauhwacke), and 

marbles. The Tsaté nappe builds up the main part of the Combin zone and consists mainly of calcschists 

with minor metabasite bodies. Its thickness has been highly reduced in the Lago di Cignana area with a 

minimum of ca. 100m west of the lake. In the western Valtournenche area, the Tsaté nappe has a general 

thickness around 2 km and reaches several kilometres northwest of the Dent Blanche nappe. The Dent 

Blanche nappe at Lago di Cignana comprises basement rocks of the Arolla and Valpelline series as well 

as slivers of the metasedimentary Roisan zone. Rocks of the Valpelline series crop out in the northern part 

of the study area, mainly around Monte Seriola in the northeast and north of the plains to the north of the 

lake. To the west, they are interfolded with Arolla gneisses which crop out in the western part of the study 

area. Metasedimentary rocks of the Roisan zone are intimately folded into Arolla gneisses on the western 

side of the lake and occur as several dismembered slivers. Despite regional-scale folding of tectonic 

contacts during the Vanzone phase, the Combin Fault and DBBT at Lago di Cignana are not folded on a 

local scale but are planar structures (sub)parallel to the main foliation of mylonites in their direct footwall 

and hanging wall. 

 

2.5 Deformation structures 

In this section, I describe macroscopic (Fig. 2.3) and microscopic (Figs. 2.4 and 2.6) deformation 

structures as well as quartz textures (Fig. 2.5) from the area around Lago di Cignana (Fig. 2.7) to 
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determine the shear sense and to gain information on the prevailing geometry of deformation, i.e. the 

amount of rotational (simple shear) and coaxial (pure shear) deformation. Shear senses in outcrop and 

thin-section were determined from kinematic indicators, mainly c’-type shear bands and subordinately 

grain shape preferred orientation (GSPO) of quartz grains and asymmetric porphyroblasts and –clasts. All 

samples used for kinematic analyses show well-developed foliations and stretching lineations whereas the 

latter are considered true elongation lineations that track the finite strain ellipsoid. Therefore, all 

microstructural analyses were made on lineation-parallel, foliation-perpendicular cuts. Fabric asymmetry 

is assessed by the relative abundance of kinematic indicators. Samples with more or less equally abundant 

top-(N)W and top-(S)E shear senses are considered symmetric whereas samples with a clear 

predominance of one shear direction over the other are classified as asymmetric. Asymmetric fabrics are 

regarded the result of dominant simple shear (rotational) deformation whereas symmetric fabrics are 

regarded the result of dominant pure shear (coaxial) deformation. Accordingly, the occurrence of 

asymmetric and symmetric fabrics in one locality without any overprinting relations suggests general 

shear deformation. 2D finite strain geometries for the units are approximately estimated based on the 

relative abundance of deformation structures related to rotational or coaxial shear. The assumption that 

2D kinematic and geometric analyses are able to sufficiently assess the structural evolution of tectonic 

units is justified by the prerequisite that most deformation in this area resulted from orogen-perpendicular, 

i.e. approximately NW-SE movement of tectonic units. Additional petrological observations are used to 

ascribe deformation structures to a metamorphic grade. The metamorphic conditions under which 

kinematic indicators formed have been estimated by the grade of the assemblage they are overprinting 

and by the presence or absence of diagnostic minerals within shear bands. A list of the samples used for 

thin-section analyses, the sample locations, and the approximate 2D strain geometries of the units are 

shown in figure 2.7. 

 

2.5.1 Zermatt-Saas zone 

Pristine and only weakly retrogressed (U)HP rocks occur at lower structural levels of the Zermatt-Saas 

zone at Lago di Cignana. Stretching lineations within these rocks dominantly trend E-W. The (U)HP 

assemblage in eclogites consists of garnet, glaucophane, and omphacite (for microprobe analyses see 

sample FD244 in appendix). Metasediments of the UHP slice are usually quartz-rich and consist mainly 

of garnet, white mica, and quartz. At higher structural levels, calcschists become more abundant and 

sometimes contain garnet. They consist of white mica, quartz, feldspar, calcite, and, in more strongly 

retrogressed rocks, chlorite and epidote. The uppermost part of the Zermatt-Saas zone shows a strong 

greenschist-facies overprint. Stretching lineations within strongly retrogressed calcschists and 

greenschists dominantly trend NW-SE. The greenschists mainly consist of epidote, chlorite, and albite. 

Thirty-two thin-sections from different structural levels of the Zermatt-Saas zone exposed around the lake 

have been analysed. Twenty thin-sections were identified as fresh or weakly-retrogressed (U)HP rocks 

and 12 as strongly overprinted by greenschist-facies metamorphism. Mineral compositions of phases 

stable in shear bands within eclogites were measured using the Jeol JXA-8200 superprobe at Steinmann-

Institut, University of Bonn, to constrain conditions during shear band formation. 
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Figure 2.3: Macrostructures observed in outcrop. a) Quartz-rich metasediments of the UHP unit south of the lake showing top-E 

and subordinate top-W shear senses associated with asymmetric boudinage of a garnet-rich layer. b) Garnet-bearing 

metasediments of the Zermatt-Saas zone south of Monte Pancherot showing conjugate top-WNW and top-ESE shear senses. c) 

Serpentinite mélange zone of the Zermatt-Saas zone south of Monte Pancherot with metasediments in the footwall and 

metabasites in the hanging wall. d) Close-up of the serpentinite mélange showing boudinage of the layering and conjugate shear 

senses. e) Retrograde, garnet-free top-SE shear bands associated with NW-SE directed elongation and boudinage of the layering 

within metasediments of the Zermatt-Saas zone south of Monte Pancherot. f) Top-NW shear bands within garnet-free calcschists 

of the Zermatt-Saas zone south of Monte Pancherot associated with rootless tight to isoclinal, intrafolial folds within calcite 

layers. g) Calcschists of the Zermatt-Saas zone on the western side of the lake showing top-NW shear senses, small-scale 

boudinage of more competent layers, and a high-strain zone in the upper part. h) Folded quartzites of the Cimes Blanches nappe 

northeast of the lake with lineation-parallel, NNW-plunging fold axes. i) Top-NW shear bands within calcschists of the Combin 

zone west of the lake. j) Top-SE shear bands within calcschists at the base of the Combin zone on the eastern slope of Monte 

Saleron. k) Asymmetric, NW-vergent folds within Combin metasediments in the footwall of a top-NW shear band associated 

with boudinage of a competent layer. l) Semi-ductile top-NW shear bands within gneisses of the Arolla series at the base of the 

Dent Blanche nappe north of the lake. 
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Metabasites south of the lake display an eclogite-facies foliation mainly defined by omphacite and 

glaucophane which is often overprinted by top-E shear bands. Within shear bands, the eclogite-facies 

mineral assemblage is often preserved (Fig. 2.4a). In some cases, top-(S)E shear bands are associated with 

the growth of hornblende and albite indicating formation at lower amphibolite-facies to upper 

greenschist-facies conditions (Fig. 2.4b). Within metabasites, eclogite- to upper greenschist-facies shear 

senses are consistently top-(S)E (samples 1, 4, and 5). Metasediments of the UHP unit also display mostly 

top-E shear senses but subordinate top-W kinematic indicators can also be observed in outcrop and thin-

section. In outcrop, more competent (e.g. garnet-rich) layers are often boudinaged and dismembered into 

lenses and nodules (Fig. 2.3a). Top-E shear senses are more abundant in surrounding host-rocks whereas 

top-W shear bands are more discrete and seem to be restricted to the observed boudinage. One sample 

from this domain shows top-W shear senses in thin-section (sample 3) whereas the other 3 samples 

display top-E shear senses (samples 3, 9, and 10). Most of these kinematic indicators formed under (U)HP 

conditions, only one formed under greenschist-facies conditions (sample 9). An eclogite sample further 

south outside the UHP slice shows the aforementioned lower amphibolite-facies to upper greenschist-

facies top-E shear bands with hornblende and albite stable which cut the relatively fresh eclogite-facies 

assemblage (Fig. 2.4b; sample 1). Eclogite and metasediment samples to the west from within the UHP 

slice mainly show top-(S)E shear senses which partly formed under (U)HP (samples 4 and 6) and partly 

under greenschist-facies conditions (samples 5 and 7). Only one quartzitic sample shows greenschist-

facies top-NW shear senses as indicated by a slight grain shape preferred orientation (sample 8). Six 

eclogite samples were collected east of the UHP slice but did not yield any shear sense criteria (samples 

11 – 16). Metasediments become more abundant at higher structural levels within the Zermatt-Saas zone 

and can be well-observed south of Monte Pancherot in the footwall of the serpentinite body. Seven 

samples were collected in the transition zone between well-preserved HP rocks and pervasively 

retrogressed ones (samples 17 – 23). Three of these indicate top-(S)E shearing (samples 19, 21, and 23), 3 

of them indicate top-(N)W shearing (samples 17, 18, and 20), and one sample shows ambiguous shear 

senses in thin-section (sample 22). Top-(S)E and top-(N)W shear senses can also be observed in outcrop 

south of Monte Pancherot. In some cases, these opposing shear senses are distributed into several meters 

thick dominant simple shear zones showing consistent shear sense criteria and sometimes they are equally 

distributed so that they form conjugate sets of shear bands within zones of dominant pure shear. The latter 

case can be well-observed in an outcrop of HP metasediments south of Monte Pancherot shown in figure 

2.3b. Probable relics of the HP metamorphic stage in these rocks are large unaltered garnets visible in 

handspecimen. A bulk shear sense could not be unambiguously determined in outcrop. However, the two 

samples from this locality show bulk top-(N)W shear senses in thin-section formed under HP to 

greenschist-facies conditions (samples 17 and 18). Above these metasediments, a m-thick serpentinite 

mélange zone separates the metasediments in the footwall from a layer of metabasites in the hanging wall 

(Fig. 2.3c). Serpentinite layers are partly necked and boudinaged symmetrically. Shear bands and 

asymmetric flexure of the layering also indicate top-WNW and top-ESE shear senses (Fig. 2.3d). Further 

into the hanging wall, metasediments are cut by shallowly-dipping, garnet-free top-SE shear bands 

overprinting an earlier layer-parallel foliation (Fig. 2.3e). The compositional layering has been stretched 
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and boudinaged whereas no overprinting relations exist between shear bands and boudins. A sample taken 

close to this outcrop displays greenschist-facies top-S shear bands in thin-section (sample 21). Calcschists 

in the hanging wall show top-NW shear senses in outcrop (Fig. 2.3f). These metasediments are strongly 

retrogressed and do not contain any relic garnet. Rootless tight to isoclinal, intrafolial folds within calcite 

layers are sometimes associated with macroscopic top-NW shear bands. A garnet-free calcschist sample 

taken from an outcrop in the hanging wall, however, indicates retrograde top-SE shearing (sample 23). 

Pervasively retrogressed rocks of the uppermost Zermatt-Saas zone are also well-exposed on the western 

side of the lake where 9 samples were taken for thin-section analyses. All kinematic indicators observed 

in this area formed under greenschist-facies conditions based on the presence of synkinematic 

greenschist-facies mineral assemblages. Two samples show top-NW shear senses (samples 24 and 26) 

and 7 samples display strongly symmetric fabrics and conjugate sets of shear bands (samples 25, 27, and 

28 – 32). Relic garnet often occurs within retrogressed metagabbroic rocks and calcschists along the 

greenschist-facies shear zone southwest of the lake suggesting that these rocks should be still attributed to 

the Zermatt-Saas and not to the overlying Combin zone. A garnet micaschist sample (sample 25) from 

this locality shows conjugate sets of shear bands indicating top-NW (Fig. 2.4c) as well as top-SE shearing 

(Fig. 2.4d). Chlorite replaces white mica in sheared parts documenting the greenschist-facies character of 

shear bands. Two samples from nearby outcrops, a garnet-bearing calcschist (sample 24) and a garnet-free 

greenschist (Fig. 2.4e; sample 26) show dominant top-NW shear senses in thin-section. In the greenschist, 

domains with conjugate shear senses can also be observed. Further to the north, calcschists become 

progressively more retrogressed so that garnet is not preserved anymore. In one calcschist sample, both 

shear senses can be observed in thin-section (Figs. 2.4f and g; sample 27). However, chlorite is not only 

stable in shear bands but is part of the mylonitic foliation which has later been overprinted by shear band 

formation. Fabric formation must have therefore already occurred under greenschist-facies conditions. 

Top-SE shear senses often dip very shallowly and are subparallel to the mylonitic foliation (Fig. 2.4f) 

whereas top-NW shear bands cut the foliation at a relatively high angle (Fig. 2.4g). This may indicate that 

top-SE shearing within these rocks was more pronounced during earlier stages and main fabric formation. 

In outcrop, calcschists southwest of the lake often display top-NW shear bands but also often show signs 

of a coaxial deformation component which is evident from boudinaged competent layers (Fig. 2.3g). 

Further to the north, greenschists just below the Combin Fault (samples 28 – 31) show strongly 

symmetric fabrics in thin-section with no signs of a rotational deformation component (Figs. 2.4h and i). 

Albite blasts are poikiloblastic and inclusions consist of the matrix phases. They are aligned with the main 

foliation suggesting that they grew synkinematically during the main phase of greenschist-facies 

retrogression. In outcrop, asymmetrically sheared and sigmoidal shaped quartz layers within these 

greenschists occasionally indicate top-NW shearing.  

In summary, 2 samples of strongly retrogressed rocks show top-NW shear senses in thin-section (samples 

24 and 26), 2 show top-SE shear senses (samples 21 and 23), and 8 ambiguous shear senses and rather 

symmetric fabrics (samples 22, 25, 27, and 28 – 32). Kinematic indicators that formed under (U)HP 

conditions gave top-(S)E shear senses in 4 thin-sections (samples 2, 4, 6, and 10) and top-(N)W shear 

senses in 3 thin-sections (samples 3, 18, 20). Kinematic indicators that formed under greenschist-facies 
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conditions gave top-(S)E shear senses in 6 thin-sections (samples 1, 5, 7, 9, 19, and 21) and top-(N)W 

shear senses in 2 thin-sections (samples 8 and 17). Six eclogite samples do not display any kinematic 

indicators (samples 11 – 16). The Zermatt-Saas zone at Lago di Cignana shows dominant top-(S)E shear 

senses at lower structural levels formed under (U)HP to greenschist-facies conditions. Top-(N)W shear 

senses occur subordinately within fresh or only weakly retrogressed (U)HP rocks. At higher structural 

levels, top-(S)E and top-(N)W shear senses become more equally distributed within more strongly 

retrogressed lithologies and, in the direct footwall of the Combin Fault, calcschists and greenschists 

display strongly symmetric fabrics. 

 

 
Figure 2.4: Photomicrographs of rocks from the Zermatt-Saas zone. All thin-sections were cut parallel to the xz-plane of the 

finite strain ellipsoid. Pictures a), b), f), and g) were taken with parallel polarizers, the others with crossed polarizers. a) Sample 

4: eclogite from the UHP slice south of the lake showing top-E shear band with the UHP assemblage stable; for microprobe 

analyses of this sample see sample FD244 in appendix. b) Sample 1: partly retrogressed eclogite from an outcrop south of the 

lake with hornblende and albite stable in top-E shear band indicating formation at lower amphibolite-facies to upper greenschist-

facies conditions. c) Sample 25: garnet calcschist from the western side of the lake showing retrograde top-NW shear sense with 

chlorite stable. d) Sample 25: garnet calcschist, same sample as before showing retrograde top-SE shear sense with chlorite 

stable. e) Sample 26: greenschist from southwest of the lake showing top-NW shear bands overprinting an earlier symmetric 

fabric. f) Sample 27: garnet-free metasediment from southwest of the lake with shallowly-dipping top-SE shear bands cutting 

through chlorite-bearing mylonitic foliation. g) Sample 27: garnet-free metasediment, same sample as before but with more 

steeply dipping top-NW shear bands cutting through chlorite-bearing foliation. h) Sample 29: fine-grained greenschist with 

poikiloblastic albite from the western side of the lake showing strongly symmetric fabric. i) Sample 30: greenschist with 

poikiloblastic albite from the western side of the lake showing strongly symmetric fabric.  
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2.5.2 Combin zone 

2.5.2.1 Cimes Blanches nappe 

Northeast of Monte Pancherot the Cimes Blanches nappe comprises quartzites, cellular dolomites 

(Rauhwacke), and marbles. Quartzites close to the base of the Cimes Blanches nappe were used for 

microstructural and textural analyses (Fig. 2.5) to gain information on the kinematics and geometry of 

deformation in the direct hanging wall of the Combin Fault. Stretching lineations within these strongly 

sheared rocks plunge to the NNW to N. Four samples (samples 35 – 38) were analysed in detail with 

sample 35 being the one closest to the Combin Fault and sample 38 the one farthest away. The quartzites 

are mylonitic and display a tabular foliation defined by cm- to dm-thick quartz layers of white to greyish 

colour. These layers are sometimes deformed into folds with NNW-plunging axes parallel to the 

stretching lineation (Fig. 2.3h). They may have formed contemporaneously with the main stretching 

lineation or may represent earlier folds that were transposed into parallelism with the stretching direction. 

The stretching lineation is defined by elongated quartz aggregates and aligned white mica. Samples 36 - 

38 are mineralogically and texturally very similar. They consist of quartz with only minor amounts of 

white mica and feldspar and show only slight textural domains (Fig. 2.5). Sample 35 is relatively coarse-

grained, contains more white mica, and locally shows textural domains which consist of larger quartz 

grains showing incipient subgrain formation. A slight GSPO can be observed in sample 35 indicating top-

SSE as well as top-NNW transport in different domains. Rare shear bands and mica fish in samples 36 – 

38 indicate top-NNW transport. Shear bands in sample 35 are conjugate and show top-NNW and top-SSE 

shear senses (Figs. 2.6a and b). 

Textures of the four quartz mylonites were measured with the x-ray texture goniometer at 

Geowissenschaftliches Zentrum Universität Göttingen. Figure 2.5 depicts pole figures for [c]- and [a]-

axes as equal area projections in the lower hemisphere with isolines being multiples of random 

distribution. The xy-plane in the pole figures corresponds to the foliation measured in the field. The x-

direction is the stretching lineation measured in the field which plunges to the NNW in all quartz 

mylonites. All four samples show cross girdle type [c]-axis pole figures as a basis (e.g. Schmid and 

Casey, 1986). Rhomb <a> slip is dominant in all samples. Different contributions of basal <a> and prism 

<a> slip modify the basic cross girdles into partial cross girdles. The activity of these different slip 

systems and the absence of a single basal <a> maximum around the y-axis suggest texture formation at 

temperatures below 500° C (Stipp et al., 2002). C-axis opening angles in the pole figures are consistently 

around 50° suggesting temperatures of ca. 400 ± 50° C during texture formation (Kruhl, 1996; Law et al., 

2004). [c]- and [a]-axes distributions have orthorhombic symmetries suggesting dominant coaxial 

deformation. [a]-axes form small circles about 25° away from the x-direction. The distribution of [a]-axes 

maxima in samples 36 and 38 suggests slight dominance of the sinistral, i.e. NNW-directed slip system. 

The dextral slip system is slightly better developed in sample 37 suggesting more pronounced top-SSE 

deformation. The different intensities of the textures are probably an effect of strain localization with 

sample 37 representing a high-strain zone and 35 a zone of relatively low strain during coaxial 

deformation. The higher content of white mica in sample 35 may also have contributed to the lower 

intensities of this sample. 
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In summary, microstructural and textural analyses on quartzites suggest that the base of the Cimes 

Blanches nappe at Lago di Cignana is characterized by dominant coaxial deformation. Orthorhombic 

textures indicate only a weak rotational component and conjugate top-SSE and top-NNW kinematic 

indicators in thin-section also suggest dominant pure shear deformation. Top-NNW shear senses are 

slightly dominant over top-SSE shear senses in thin-section and may represent a late top-NW overprint 

along the Combin Fault. 

 

 
Figure 2.5: Pole figures of [c]- and [a]-axes distributions of quartzites from the Cimes Blanches nappe at the base of the Combin 

zone; equal are projections in the lower hemisphere; maxima of isolines being multiples of random distribution are indicated; the 

xy-plane in pole figures corresponds to the foliation and the x-direction to the stretching lineation measured in the field; pole 

figures are strongly orthorhombic and indicate dominant coaxial deformation under greenschist-facies conditions below 500° C 

(see text for further discussion); photomicrographs at the bottom correspond to the samples labeled above and were taken with 

gypsum plate inserted. 

 

2.5.2.2 Tsaté nappe 

The Tsaté nappe at Lago di Cignana comprises greenschist-facies calcschists and metabasites. No clear 

indicators of an earlier blueschist-facies imprint could be found. Calcschists are always garnet-free and 

consist of white mica, quartz, feldspar, calcite, chlorite, and epidote. They often show a strong 

metamorphic layering defined by ribbons of dominantly white mica and quartz, respectively. Chlorite 

often occurs as relatively large grains as part of the foliation indicating greenschist-facies conditions 

during formation. Metabasites display typical greenschist-facies assemblages consisting of epidote 
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(clinozoisite), actinolite, chlorite, and albite (for electron microprobe analyses see sample FD34 in 

appendix). Stretching lineations associated with penetrative fabrics mainly plunge to the NW. Thirteen 

samples were taken for thin-section analyses, most of them along the crest northeast of the lake between 

Monte Pancherot in the south and Monte Seriola in the north. 9 of them show top-NW shear senses 

(samples 33, 39 – 42, 44, 46 – 48), 2 show top-SE shear senses (samples 43 and 45), and 2 thin-sections 

display symmetric fabrics (samples 34 and 49). 

In most calcschists, the greenschist-facies foliation has been overprinted by discrete top-NW shear bands 

(Fig. 2.6c). Greenschists also often show localization of strain into top-NW shear bands. In a fine-grained 

sample, poikilobastic albite has a slight sigmoidal shape (Fig. 2.6d) suggesting ductile deformation at 

temperatures exceeding ca. 450° C (e.g. Pryer, 1993). Inclusions are elongated and aligned parallel to the 

surrounding matrix fabric suggesting that albite grew synkinematically. Two samples from the central 

part of the Tsaté nappe along the crest display top-SE and top-S shear senses (samples 43 and 45). 

Macroscopic shear bands within calcschists show almost exclusively top-NW shear senses along the crest 

and on the western side of the lake (Fig. 2.3i). A few top-SE shear senses can be observed above the 

Combin Fault southwest of the lake (Fig. 2.3j). No overprinting relations could be found between these 

opposing shear senses. In a nearby outcrop within heterogeneous metasediments, NW-vergent, 

asymmetric tight folds in the lower part occur together with boudinage and top-NW shear bands in the 

upper part (Fig. 2.3k). Asymmetry of boudins and shallowly-dipping shear bands indicate bulk top-NW 

shearing. No clear overprinting relations exist between folding and boudinage. Antiforms seem to 

coincide with and sometimes intrude into boudin-necks whereas synforms rather correlate with boudins. 

This suggests contemporaneous folding and boudinage and simultaneous formation of shortening and 

extensional structures during bulk top-NW shearing within these anisotropic rocks. The two calcschist 

samples taken from nearby outcrops show top-NW (sample 33) and conjugate (sample 34) shear senses, 

respectively. 

The Tsaté nappe at Lago di Cignana is characterized by dominant top-NW shearing which, however, 

often seems to postdate the pervasive greenschist-facies imprint observed in metasedimentary and 

metabasic rocks. These deformation structures suggest a significant rotational component during late 

greenschist-facies shearing. Deformation structures indicating a significant pure shear component or bulk 

top-SE shearing are subordinate within the Tsaté nappe.   

 

2.5.3 Dent Blanche nappe 

Rocks of the lower Dent Blanche nappe at Lago di Cignana often display greenschist-facies mylonitic 

fabrics with stretching lineations plunging to the NW. South of Monte Seriola, rocks of the Valpelline 

series are exposed in the hanging wall of Tsaté calcschists (samples 50 – 52). The mylonitic foliation 

consists of alternating layers of quartz + feldspar and white mica + epidote which are often overprinted by 

subsequent deformation. Small-scale, isoclinal, and recumbent folds affecting the original metamorphic 

layering are observed in one sample (Fig. 2.6e; sample 51). In the same sample, the metamorphic layering 

is cut by shallowly-dipping top-NW shear bands (Fig. 2.6f) which are interpreted to have formed during a 

relatively late stage and not contemporaneously with the mylonitic foliation. The metamorphic layering is 
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also cut by brittle, moderately- to steeply-dipping top-SE microfaults interpreted as late structures after 

cessation of ductile deformation within these rocks. In a quartzitic sample, quartz layers defined by 

different grain sizes have been folded into small-scale, asymmetric NW-facing folds. Quartz grains 

recrystallized dynamically during folding so that an axial surface foliation is defined by a GSPO which 

also indicates top-NW transport (Fig. 2.6g; sample 52). Dynamic recrystallization of quartz probably 

occurred mainly by sugrain rotation recrystallization (SGR) suggesting temperatures between ca. 400° 

and 500° C (Stipp et al., 2002). Epidote occurs along the boundaries of quartz layers. 

 

 
Figure 2.6: Photomicrographs of rocks from the Combin zone and Dent Blanche nappe. All thin-sections were cut parallel to the 

xz-plane of the finite strain ellipsoid. All pictures were taken with crossed polarizers. a) Sample 35: quartzite from the Cimes 

Blanches nappes indicating top-SSE as well as top-NNW shearing. b) Sample 35: quartzite from the Cimes Blanches nappe, same 

sample as before with necked muscovite indicating coaxial deformation; slight quartz GSPO indicates top-SSE shearing. c) 

Sample 40: calcschist from the Tsaté nappe displaying discrete top-NW shear bands; chlorite is stable as part of the mylonitic 

foliation and within shear bands. d) Sample 41: fine-grained greenschist from the Tsaté nappe with poikiloblastic albite; shear 

bands indicate top-NW shearing and ductiley deform albite. e) Sample 51: Valpelline series mylonite from the lowermost Dent 

Blanche nappe south of Monte Seriola; the greenschist-facies foliation has been folded into isoclinal recumbent folds. f) Sample 

51: Valpelline series mylonite, same sample as before with top-NW shear band cutting through the mylonitic foliation. g) Sample 

52: Valpelline series quartzitic mylonite from the lowermost Dent Blanche nappe south of Monte Seriola; quartz GSPO and 

vergence of asymmetric fold indicate top-NW transport. h) Sample 54: Arolla series gneiss from an outcrop northwest of the lake 

with top-NW shear band; associated patchy and undulose extinction of quartz indicate deformation around 300°C. i) Sample 53: 

Arolla series gneiss from the same outcrop as before with folded metamorphic layering which is cut by discrete top-NW shear 

bands; brittle offset of quartz layers indicates deformation below 300°C. 
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Mylonites of the Arolla series crop out along the plains north of the lake and also show deformation 

structures related to top-NW shearing. Macroscopic shear bands have a semi-ductile character suggesting 

that they formed during a relatively late stage of NW-directed shearing (Fig. 2.3l). In thin section, ductile 

top-NW shear bands are localized in domains of fine-grained intergrowths of white mica + epidote + 

chlorite (Fig. 2.6h; sample 54). They are associated with quartz grains showing a patchy and undulose 

extinction suggesting deformation between ca. 300° and 400° C (Stipp et al., 2002). In another sample, an 

older foliation defined by quartz ribbons in a matrix of white mica + epidote + chlorite has been folded 

into recumbent, open to tight folds (Fig. 2.6i; sample 53). Flattened and elongated quartz grains show a 

GSPO which again defines an axial surface cleavage. The folds have been cut by discrete top-NW shear 

bands that offset the folded quartz layers in a brittle manner and therefore indicate deformation below 

300°C. 

The lower Dent Blanche nappe at Lago di Cignana exhibits deformation structures that suggest several 

stages of top-NW shearing from highly ductile to low-grade and partly brittle greenschist-facies 

conditions. Some higher-grade top-NW structures probably predate pure shear-dominated deformation 

observed in other units whereas others most likely postdate this phase and therefore must be ascribed to a 

late stage of top-NW shearing. Deformation along the DBBT was strongly rotational without any signs of 

a pure shear component. 

 

2.6 Discussion 

2.6.1 Kinematics and geometry of deformation 

In the area around Lago di Cignana, a continuous structural evolution of the exposed units related to 

progressive deformation under (U)HP to greenschist-facies conditions can be observed. 2D strain 

geometries for the different units have been estimated from the observed deformation structures and are 

depicted in figure 2.7c. Different structural levels can be observed which are characterized by different 

bulk shear senses and varying amounts of simple and pure shear deformation (Fig. 2.7c). Lower structural 

levels of the Zermatt-Saas zone at Lago di Cignana experienced bulk top-(S)E shearing and subordinate 

coaxial deformation whereas the uppermost part is characterized by large amounts of coaxial deformation. 

The Cimes Blanches nappe experienced dominant pure shear deformation with a minor top-NW 

overprint. The observed greenschist-facies deformation within the Tsaté nappe is characterized by bulk 

top-NW general shear. Deformation along the DBBT was related to strongly rotational top-NW shearing 

according to the observed deformation structures. 

The majority of (U)HP rocks of the upper Zermatt-Saas zone shows top-E shear senses formed under 

eclogite- to upper greenschist-facies conditions. This suggests bulk top-E shear as dominant deformation 

mechanism in the upper Zermatt-Saas zone during main exhumation from (U)HP deths. Abundant 

conjugate top-W shear senses within (U)HP lithologies, however, suggest significant deviation from 

simple shear and significant amounts of coaxial deformation. This pure shear component is ascribed to 

internal deformation of the upper Zermatt-Saas zone possibly due to differential exhumation of distinct 

rock units and overall shortening perpendicular to tectonic boundaries during ascent. Greenschist-facies 

retrogression increases progressively into the hanging wall towards the Combin Fault. Some distinct 
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zones of dominant top-SE or top-NW shear can be observed in outcrop in the hanging wall of the UHP 

slice. In some outcrops and especially in thin-section, however, top-SE and top-NW shear bands are often 

closely associated without any overprinting relations. Opposing shear bands, however, often have 

different orientations with respect to the main fabric: While top-SE shear bands are sub-parallel to the 

foliation, top-NW shear bands cut it at high angles. This may indicate that the main stretching direction 

during coaxial deformation was not strictly parallel to an already existing fabric in these rocks. Both sets 

of shear bands are associated with partial replacement of white mica by chlorite along zones of high strain 

but they also affect pre-existing chlorite. I suggest that most of the observed conjugate top-SE and top-

NW shear senses in the uppermost Zermatt-Saas zone formed during a stage of dominant pure shear 

deformation. However, top-(S)E shearing may have been dominant during early stages of greenschist-

facies deformation based on geometric relations of top-SE shear bands with the main fabric and the 

occurrence of greenschist-facies shear bands within weakly retrogressed (U)HP rocks at lower structural 

levels. I interpret these observations to reflect bulk top-SE shearing during early greenschist-facies 

retrogression along the upper Zermatt-Saas zone most likely responsible for juxtaposition with the 

overlying Combin zone. Since top-SE structures are scarce within the Combin zone in the hanging wall of 

the Combin Fault, strain during exhumation of the Zermatt-Saas zone to mid-crustal levels is interpreted 

to have been localized along the uppermost Zermatt-Saas zone and to have been partly overprinted by 

subsequent deformation. The uppermost Zermatt-Saas zone in the direct footwall of the Combin Fault 

shows a pervasive greenschist-facies overprint mostly associated with symmetric fabrics in thin-section. 

This suggests dominant pure shear deformation during the main phase of low-pressure retrogression 

within these rocks. Close to the Combin Fault on the western side of the lake, macroscopic kinematic 

indicators in calcschists indicate top-NW shearing which overprints existing symmetric fabrics. My 

structural observations suggest that the Zermatt-Saas zone at Lago di Cignana experienced a progressive 

evolution from eclogite- to greenschist-facies bulk top-(S)E shearing to post-exhumational pure shear 

deformation with a minor top-NW overprint. Coaxial deformation can be traced across the Combin Fault 

into the lower Combin zone where it is preserved within quartzites of the Cimes Blanches nappe 

displaying orthorhombic textures and conjugate shear senses. Metasediments of the Tsaté nappe on the 

western side of the lake display abundant boudinage and top-NW structures and only subordinate top-SE 

shear senses close to the Combin Fault. The similar style and geometry of deformation in the immediate 

footwall and hanging wall of the Combin Fault suggests that the main phase of pure shear deformation 

postdates juxtaposition of the Zermatt-Saas and Combin zones. Considering the aforementioned structural 

evolution of the upper Zermatt-Saas zone and lowermost Combin zone, stacking of the two units most 

probably occurred along greenschist-facies bulk top-SE shear zones which are only scarcely preserved at 

Lago di Cignana due to subsequent coaxial deformation. Most of the observed large-scale boudinage of 

the UHP slice, serpentinites, and the Cimes Blanches nappe probably occurred under greenschist-facies 

conditions when strain became more localized into narrow shear zones during overall NW-SE directed 

crustal elongation. The Combin zone displays almost exclusively top-NW shear senses and only a few 

top-SE structures but may have experienced significant coaxial deformation after juxtaposition with the 

Zermatt-Saas zone as suggested by orthorhombic quartz textures and the strongly reduced thickness of the 
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Tsaté nappe in the Lago di Cignana area. Pure shear deformation occurred under medium-grade 

greenschist-facies conditions as suggested by temperature estimates from quartz textures and therefore 

most likely after retrograde peak temperatures. Temperatures further decreased when coaxial deformation 

evolved into bulk top-NW shearing as evident from low-grade top-NW shear senses along the DBBT. The 

Combin zone at Lago di Cignana mainly displays a progressive evolution from post-exhumational pure 

shear to subsequent top-NW general shear under decreasing greenschist-facies conditions. A progressive 

decrease in metamorphic grade from high- to low-grade greenschist-facies conditions can also be 

observed within Dent Blanche basal mylonites. Top-NW simple shear was the dominant deformation 

mechanism along the DBBT without any signs of pure shear or top-SE simple shear during ductile 

deformation. The decreasing metamorphic grade of kinematic indicators suggests that NW-vergent 

shearing occurred during several stages of the greenschist-facies evolution of the DBBT and underlying 

units. Late top-NW shearing along the Combin Fault and within the Tsaté nappe is attributed to renewed 

thrusting along the DBBT. The lowermost Dent Blanche nappe at Lago di Cignana shows a progressive 

evolution from upper to lower greenschist-facies conditions related to several stages of top-NW shearing. 

 

2.6.2 Previously published structural works 

Earlier structural works by different authors in the Lago di Cignana area are largely in agreement with my 

findings but also show some differences which should be discussed before further tectonic interpretation. 

Ballèvre and Merle (1993) reported equally top-E and top-W shear senses for Zermatt-Saas (U)HP rocks 

so that no bulk shear sense could be determined. Also Van der Klauw et al. (1997) reported rather 

conjugate sets of eclogite-facies shear bands and suggested that no appreciable deformation was localized 

into metabasites during exhumation from UHP depths. Although I confirm the existence of conjugate 

shear senses in (U)HP assemblages, I find a clear dominance of top-E shear criteria. My microstructural 

observations on (U)HP eclogites and metasediments, suggest that most of the deformation under eclogite-

facies conditions can be related to bulk top-E shearing. Structures associated with this early deformation 

phase can be especially well-studied within eclogites and metasediments south of the lake. Since the UHP 

rocks at Lago di Cignana exhibit the youngest available ages related to peak-pressure metamorphism for 

the Zermatt-Saas zone, the UHP unit must have been exhumed at much higher rates than surrounding HP 

rocks. Differential exhumation must have led to deformation along the interface between UHP and HP 

rocks and therefore to conjugate shear senses which would correspond to the observations of Ballèvre and 

Merle (1993) and Van der Klauw et al. (1997). The strong greenschist-facies overprint in the uppermost 

Zermatt-Saas zone has already been recognized by Van der Klauw et al. (1997) who reported dominant 

top-NW kinematic indicators within these rocks in good agreement with my observations. However, this 

study also shows that top-NW structures have been preceded and accompanied by a considerable portion 

of coaxial deformation indicating a dominant pure shear regime after juxtaposition of the Zermatt-Saas 

and Combin zones at crustal levels. 



 

- 30 - 

 

 

 
Figure 2.7: a) Simplified geological sketch map of the area around Lago di Cignana with sample locations. b) Table of samples taken for thin-section analyses with values for dip 

directions and angles of foliations, plunge directions and angles of stretching lineations, shear senses and metamorphic grade of kinematic indicators; HP: high-pressure conditions, 

GS: greenschist-facies conditions; names after sample numbers correspond to the original sample names given in the field. c) Approximate 2D strain geometries of units estimated 

from the observed deformation structures. 
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Groppo et al. (2009) also reported different metamorphic grades in the units above and below the UHP 

rocks which they attributed to the existence of three distinct tectonic elements, a lower and an upper HP 

unit with the UHP slice sandwiched in between. The described serpentinite mélange zone south of Monte 

Pancherot may indeed represent a contact between different tectonic elements. Also, calcschists only 

occur at higher structural levels in the uppermost Zermatt-Saas zone but are absent below the UHP unit 

which would support such an interpretation. In any case, the UHP unit was located at a structurally high 

position within the Zermatt-Saas zone during exhumation and subsequent retrogression and was therefore 

exposed to shearing along its upper boundary. My structural observations and interpretations are therefore 

not in conflict with the view that the Zermatt-Saas zone at Lago di Cignana comprises different tectonic 

elements. Reddy et al. (2003) reported abundant top-SE shear senses for the Cimes Blanches nappe at 

Lago di Cignana. This study revealed dominant orthorhombic quartz textures and microstructures that 

show top-SE as well as top-NW shear senses suggesting that the quartz mylonites recorded dominant pure 

shear deformation. 

My findings are largely in agreement with existing work in the Lago di Cignana area but some new 

aspects of my structural observations will contribute to a better understanding of the structural evolution 

of the exposed units. 

 

2.6.3 Structural and tectonic evolution 

In this section, I embed my structural observations and interpretations into the tectonic framework of the 

Western Alps and propose a post-UHP peak evolution for the Penninic units at Lago di Cignana between 

ca. 43 and 35 Ma (Fig. 2.8). Initial exhumation of the Zermatt-Saas zone after 43 Ma was probably 

triggered by buoyancy resulting from large portions of hydrated rock material (serpentinite, lawsonite 

eclogite) (Angiboust and Agard, 2010). Buoyant ascent, most likely in the footwall of the upper plate 

lithospheric mantle wedge and, at later stages, the Sesia nappe, produced eclogite- and greenschist-facies 

top-E shear along the upper Zermatt-Saas zone (Fig. 2.8a). Buoyancy of low-density quartz-rich 

metasedimentary material of the UHP slice compared to surrounding mafic material may have led to 

differential exhumation of UHP rocks and internal deformation of the Zermatt-Saas zone (Fig. 2.8a). 

The UHP unit reached greenschist-facies conditions around 38 Ma as suggested by Rb-Sr dating by 

Amato et al. (1999). This age has not been correlated with any kinematic data but may reflect the timing 

of retrograde top-SE shearing along the upper Zermatt-Saas zone (Fig. 2.8b) since greenschist-facies pure 

shear and top-NW deformation were localized at higher structural levels above the UHP unit. Constraints 

on the timing of top-SE shearing in the Zermatt-Saas zone are also given by the age of retrograde top-SE 

shear zones in the Täschalp area further to the northeast which formed between 42 – 37 Ma (Cartwright 

and Barnicoat, 2002). Formation of the Mischabel fold in the hanging wall of the northern Zermatt-Saas 

zone probably represents a late stage of SE-vergent shearing after juxtaposition of the Combin and 

Zermatt-Saas zones. Mischabel-phase folding may have occurred at ca. 37 Ma and is abundant in the 

Zermatt region (Sartori, 1987; Steck, 1989) but is scarce in the Valtournenche area. 
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Figure 2.8: Tectonic evolution of the Western Alps with detail sketches of UHP rocks and adjacent units; colour coding of the 

tectonic sketches is the same as in figure 2.1, colours of the detail sketches correspond to the ones in figure 2.2; SB: St. Bernhard 

nappe system; MR: Monte Rosa nappe; yellow star indicates location of Lago di Cignana UHP unit; red rectangles indicate areas 

within detailed kinematic sketches on the right; sketches are not to scale; see further discussion in the text. a) First stages of 

exhumation of the Zermatt-Saas zone from (U)HP conditions following the peak at ca. 43 Ma during dominant top-(S)E shearing 

along the upper boundary. Subordinate top-(N)W shearing due to differential exhumation of rock slivers, especially the UHP unit, 

and internal deformation of the Zermatt-Saas zone. b) Exhumation of the Zermatt-Saas zone to mid-crustal levels, juxtaposition 

with the overlying Combin zone along greenschist-facies top-SE shear zones, and beginning boudinage due to localized 

deformation. c) Phase of dominant pure shear deformation under greenschist-facies conditions, strong retrogression of the 

uppermost Zermatt-Saas zone, and formation of symmetric deformation structures. d) Bulk top-NW shearing due to renewed 

thrusting along the Dent Blanche Basal Thrust (DBBT) partly overprinting earlier deformation structures and also partly affecting 

the Combin zone, Combin Fault, and uppermost Zermatt-Saas zone. 
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The Combin zone in the western Valtournenche area is dominated by top-NW shear senses (Ring, 1995; 

Pleuger et al., 2007) whereas top-SE kinematic indicators become more abundant towards the SE in the 

Val Gressoney area (Reddy et al., 1999; Pleuger et al., 2007, Gasco and Gattiglio, 2011). Since all these 

structures formed under greenschist-facies conditions, it is difficult to establish a relative chronology of 

deformation. This led to contradicting views regarding the significance and timing of top-SE shearing 

within the Combin zone. On the basis of structural and geochronological data, some authors proposed 

top-SE normal faulting along the Combin Fault accompanying exhumation of the Zermatt-Saas zone 

(Ballèvre and Merle, 1993; Reddy et al., 1999; Wheeler et al., 2001) whereas others suggested top-NW 

thrusting in the hanging wall of the Combin Fault during extraction faulting (Froitzheim et al., 2006; 

Pleuger et al., 2007; Weber et al., accepted). In the light of my structural observations, these different 

views do not necessarily contradict each other on a regional scale. Reddy et al. (2003) already proposed 

on the basis of their geochronological data that top-SE and top-NW shear zones overlapped in space and 

time due to a significant pure shear component. I support the hypothesis that deformation may have been 

distributed into conjugate shear zones and that top-SE and top-NW shear zones were partly active 

contemporaneously during overall NW-SE directed crustal elongation. However, a cluster of ages 

between 39 and 36 Ma, which are related to domains of dominant top-SE shear close to the Combin Fault, 

has been reported by Reddy et al. (1999). Therefore, juxtaposition of the Zermatt-Saas and Combin zones 

along the southeastern segment of the Combin Fault during this period most likely occurred during 

dominant normal-sense top-SE shearing (Fig. 2.8b). This phase was followed by pure shear deformation 

along the Combin/Zermatt-Saas boundary at ca. 36 Ma which was probably triggered by renewed 

overthrusting of the Dent Blanche nappe along the DBBT (Fig. 2.8c). The possible geometric relations 

between conjugate top-SE and top-NW shear zones during this phase of dominant coaxial deformation are 

depicted in figure 2.9. The circles mark areas of dominant pure shear deformation as observed for 

example in the Lago di Cignana area. Large amounts of shortening perpendicular to nappe boundaries 

during this major phase of NW-SE directed crustal elongation are probably responsible for tectonic 

thinning of the Combin zone. Large coaxial strain along the Combin Fault and within the Combin zone 

has already been reported by Ring (1995) based on finite strain analyses and by Pleuger et al. (2007) on 

the basis of quartz texture analysis. Coaxial deformation subsequently developed into top-NW general 

shear which can be attributed to renewed thrusting at higher structural levels along the DBBT (Fig. 2.8d). 

Top-NW shearing probably occurred at several stages along the DBBT as suggested by non-coaxial top-

NW structures at Lago di Cignana and in the western Valtournenche (Mazurek, 1986; Ring, 1995). Post-

exhumational NW-vergent shearing in this area has already been suggested by Ballèvre and Merle (1993) 

to explain the dominance of top-NW shear senses and has been proposed by Van der Klauw et al. (1997) 

to reflect underthrusting of European continental units and the onset of continental collision. Several 

reasons may be responsible for the scarcity of normal-sense top-SE shear senses in the hanging wall of 

the Combin Fault at Lago di Cignana. Strain during exhumation of the Zermatt-Saas zone may have been 

localized in the footwall of the Combin Fault along the uppermost Zermatt-Saas zone as suggested by 

abundant eclogite- to greenschist-facies top-(S)E shear senses. The Combin Fault may therefore have 

acted as a discrete decoupling horizon, i.e. as a fault in a strict sense, during ascent of the Zermatt-Saas 
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zone. Top-SE structures have also probably been obliterated by subsequent pure shear and top-NW 

deformation which were both related to renewed thrusting along the DBBT (Figs. 2.8c, 2.8d, and 2.9) 

before the onset of Vanzone-phase folding after ca. 32 Ma (Pettke et al., 1999). Late low-grade top-NW 

shearing was probably restricted to higher structural levels but also affected the Combin Fault and 

uppermost Zermatt-Saas zone at Lago di Cignana due to the strongly reduced thickness of the Combin 

zone in this area. 

 

 
Figure 2.9: Possible geometric relations between conjugate top-SE and top-NW shear zones during dominant pure shear 

deformation which resulted in tectonic thinning of the Combin zone and was probably triggered by the onset of renewed 

overthrusting of the Dent Blanche nappe along the DBBT; circles mark areas of dominant pure shear deformation as observed in 

the Lago di Cignana (LdC) area. 

 

My structural observations and interpretations from the Lago di Cignana area in conjunction with 

previously published data suggest that pure shear deformation and resulting conjugate shear zones may be 

of greater significance for the structural evolution of tectonic units in the Western Alps than previously 

estimated. The different views on the character of the Combin Fault and the overlying Combin zone, 

whether they represent thrust-related or normal-sense shear zones, may become compatible under the 

hypothesis that large amounts of pure shear led to the development of opposing top-SE and top-NW shear 

zones overlapping in space and time and leading to regional differences in the distribution of shear senses 

within the Combin zone, e.g. in the western Valtournenche and the areas to the southeast (eastern 

Valtournenche, Val Gressoney). The described structural evolution of the Penninic units at Lago di 

Cignana suggests that top-(S)E shearing was dominant during exhumation of the (U)HP Zermatt-Saas 

zone and was followed by pure shear and top-NW deformation due to renewed thrusting along the DBBT. 

 

2.7 Conclusions 

Kinematic and geometric analyses of the Penninic units at Lago di Cignana in the western Valtournenche 

of Italy revealed a continuous structural evolution from (U)HP to greenschist-facies conditions during 

Paleogene progressive syn- to post-exhumational orogenic deformation. The following sequence of 

deformation was deduced from structural observations and interpretations: 
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 Main exhumation of the Zermatt-Saas zone after the peak of UHP metamorphism at ca. 43 Ma 

occurred during dominant top-E shearing under eclogite- to upper greenschist-facies conditions. 

Subordinate conjugate high-pressure top-W shear senses suggest differential exhumation of UHP 

rocks and internal deformation of the Zermatt-Saas zone during the early stages of exhumation. 

 Exhumation of the Zermatt-Saas zone to mid-crustal levels and juxtaposition with the Combin zone 

along the Combin Fault occurred during greenschist-facies normal-sense top-SE shearing. Strain was 

mainly localized along the uppermost Zermatt-Saas zone and top-SE structures along the Combin 

Fault have been partly obliterated by subsequent deformation. 

 Top-SE shearing evolved into a phase of dominant pure shear deformation as indicated by symmetric 

fabrics, conjugate shear bands, boudinage, and orthorhombic quartz textures. Coaxial deformation 

affected units in the footwall and hanging wall of the Combin Fault and is most likely responsible for 

tectonic thinning of the Combin zone. 

 Pure shear deformation was followed by top-NW shearing, especially at higher structural levels, due to 

renewed thrusting along the DBBT which continued until low-grade greenschist-facies conditions. 

The geometry of deformation and the decreasing metamorphic grade of kinematic indicators within the 

Zermatt-Saas zone, Combin zone, and Dent Blanche nappe at Lago di Cignana suggest that the change 

from syn-exhumational top-SE shearing to post-exhumational top-NW shearing occurred progressively 

over a phase of dominant pure shear deformation. On a regional scale, a significant pure shear component 

throughout the deformation history of the Combin zone may have led to the development of conjugate 

top-SE and top-NW shear zones overlapping in space and time which offers an explanation for 

contradicting views regarding the nature of the Combin Fault and the Combin zone, i.e. whether they 

represent thrust-related or normal-sense shear zones. 
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- CHAPTER 3 - 
 

 

Tectonometamorphic evolution of the Becca d’Aver continental 

sliver in the Western Alps (Valtournenche, Italy) 
 

 

3.1 Abstract 

The Becca d’Aver continental sliver (BACS) in the western Valtournenche of Italy represents a 

continental fragment from the former Piemont-Ligurian/Adriatic ocean-continent transition which 

experienced HP metamorphism during Paleogene Alpine subduction. It is now structurally located at the 

boundary between the continental Dent Blanche nappe in the hanging wall and the mainly oceanic 

Combin zone in the footwall. The BACS consists of gneissic and metasedimentary sequences and is 

underlain by a sole of serpentinite. Whereas the underlying Combin zone is characterized by a strong 

greenschist-facies overprint, prograde blueschist-facies assemblages are partly preserved within 

metasediments of the BACS. Petrological and mineralogical analyses of garnet-bearing metasedimentary 

sequences in conjunction with microstructural observations and thermodynamic modelling suggest that 

prograde metamorphism was linked to progressive breakdown of lawsonite, associated water release, 

fluid-mediated element transfer, and mineral growth. Spessartine-rich garnet often displays inclusion 

patterns and honeycomb- and cyclone-shaped intergrowths with quartz suggesting crystallization in the 

presence of a fluid phase. Garnet isopleth thermobarometry yields ca. 1.1 GPa and 390° C for core 

compositions and ca. 1.56 GPa and 450° C for the rims. Peak conditions were probably around 1.7 GPa 

and 500° C and are higher than previously reported PT-conditions for the Combin/Dent Blanche 

boundary. High-pressure shear bands and the sense of rotation in cyclone garnets indicate top-NW 

shearing on the prograde path which is consistent with deformation within a SE-dipping subduction zone. 

Perfect preservation of garnet growth zonations and absence of minerals like biotite and orthoclase 

suggest cold exhumation of the BACS. Deformation structures within the BACS and underlying Combin 

zone suggest a common structural evolution and complex kinematics on the retrograde path related to top-

(W)NW and top-(E)SE shearing. Top-(E)SE shearing occurred below ca. 1.0 GPa and 450° C and was 

followed by another phase of top-NW shearing which evolved into semi-ductile to brittle orogen-

perpendicular extension. 

 

3.2 Introduction 

Subduction zones and accretionary wedges are settings where units of continental and oceanic origin 

experience high- to ultrahigh-pressure ((U)HP) metamorphism. High-pressure metamorphism of deeply 

subducted units is closely related to dehydration of water-bearing minerals like chlorite, lawsonite, and 

amphibole and associated release of H2O-rich fluids. Prograde growth of minerals may therefore be 
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linked to the presence and availability of reaction-enhancing fluids. Whereas hydration of the overlying 

mantle wedge, resulting melting and arc volcanism, and element-transfer across the subduction-interface 

are often-addressed topics (Schmidt and Poli, 1998; Manning, 2004; Malaspina et al., 2008), little is 

known about in-situ effects and consequences of fluid-release, fluid-rock interactions, and fluid-mediated 

metamorphism. Often observed vein networks cutting through HP rocks may be obvious witnesses of 

fluid-mediated mineral precipitation from internally- or externally-derived fluids (e.g. Zack and John, 

2007; John et al., 2008; Spandler et al., 2011). On the other hand, host-rock “alteration” or 

autometasomatism by in-situ generated fluids due to prograde breakdown of hydrous minerals may be 

more subtle in influencing a rocks mineralogical and microstructural evolution (e.g. Konrad-Schmolke et 

al., 2008b). 

I investigate the metamorphic evolution of a continental sliver at Becca d’Aver in the western 

Valtournenche of Italy which has been subducted and incorporated into the accretionary wedge at the 

Adriatic continental margin during Paleogene Alpine subduction. The Becca d’Aver continental sliver 

(BACS) is located close to the boundary between the continental Dent Blanche nappe in the hanging wall 

and the mainly ocean-derived Combin zone in the footwall. It most likely represents a continental 

fragment or extensional allochthon along the ocean-continent transition at the southeastern border of the 

Piemont-Ligurian ocean. I describe garnet-bearing metasedimentary lithologies from the BACS in terms 

of their petrography, mineralogy, and microstructures. One sample in particular displays mineral 

compositions, microstructures, and inclusion patterns which suggest fluid-mediated prograde 

metamorphism. Calculated prograde and peak blueschist-facies PT-conditions for the same sample are the 

highest so far reported for the boundary between the Combin zone and Dent Blanche nappe north of the 

Aosta valley. The BACS thus holds crucial information about metamorphic conditions and processes 

which have been erased in units in the footwall and hanging wall due to a pervasive greenschist-facies 

overprint. I also use structural observations from the BACS and the underlying Combin zone to link 

kinematic information to PT-conditions and to constrain their structural evolution. The aim of this study 

is to infer metamorphic conditions during HP metamorphism associated with subduction and accretion, to 

explore possible mineralogical and microstructural effects of fluid-mediated prograde metamorphism, and 

to constrain the tectonometamorphic evolution of a subducted ocean-continent transition. 

 

3.3 Geological setting 

3.3.1 Regional geology 

In the Western Alps (Fig. 3.1a and b), a stack of continental and oceanic units is exposed which 

assembled during Late Cretaceous – Paleogene Alpine orogeny. Units derived from different 

paleogeographic domains were subducted in a SE-dipping subduction zone beneath the Adriatic 

continental margin, subsequently exhumed, and accreted to the growing orogen. In the Valtournenche 

area north of the Aosta valley in northern Italy, oceanic units derived from the Piemont-Ligurian ocean 

and continental units derived from the ocean-continent transition between the Piemont-Ligurian ocean in 

the northwest and the Adriatic continental margin in the southeast are exposed. 
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Figure 3.1: a) Sketch map of the European Alps with location of the tectonic map. b) Tectonic map of parts of the Swiss-Italian Western Alps; after Steck et al. (1999) and Pleuger 

et al. (2007); location of the geological map in figure 3.2c is indicated. c) Geological sketch map of the study area with trace of the cross-section in figure 3.2d. d) Schematic cross-

section through the study area according to field observations. e) Stereoplots of poles of foliations and stretching lineations as equal area projections in the lower hemisphere. 
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Some parts of Piemont-Ligurian oceanic lithosphere experienced (ultra)high-pressure metamorphism 

during the Paleogene and are now exposed in the Zermatt-Saas zone. Other parts were only subducted to 

greenschist- to blueschist-facies conditions and formed an accretionary wedge whose remnants are 

represented by the Combin zone. These two oceanic units are overlain by the Dent Blanche/Sesia nappe 

system which represents the structurally highest unit of the Western Alpine nappe stack and is probably 

derived from one or more continental fragments along the southeastern ocean-continent transition zone 

within the Alpine paleogeographic realm. In the Valtournenche area and to the southeast, continental units 

have been largely eroded so that the Dent Blanche nappe in the northwest is separated from the Sesia 

nappe in the southeast. The Dent Blanche/Sesia nappe system probably represents an assemblage of 

several subnappes that are derived from continental fragments and extensional allochthons. These 

fragments stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting (Froitzheim et al., 

1996; Dal Piaz et al., 2001; Babist et al., 2006) and experienced Late Cretaceous high-pressure 

metamorphism during early Alpine subduction. The metamorphic grade increases from northwest to 

southeast so that the Dent Blanche nappe reached Alpine greenschist- to blueschist-facies conditions up to 

1.6 GPa and 520° C (Manzotti et al., 2014) whereas the Sesia nappe experienced eclogite-facies 

conditions around 2.0 GPa and 550° C (e.g. Lardeaux and Spalla, 1991; Regis et al., 2014). The Dent 

Blanche/Sesia nappe system consists of Paleozoic basement and remnants of its Permo-Mesozoic cover. 

The Dent Blanche nappe comprises two pre-Alpine basement units, the Arolla and Valpelline series. The 

Arolla series mainly consists of Permian granitoids and gabbros (Bussy et al., 1998; Monjoie et al., 2005) 

whereas the Valpelline series consists of pre-Alpine amphibolite- to granulite-facies metasediments 

(Gardien et al., 1994). The Dent Blanche nappe experienced a strong greenschist-facies overprint after the 

peak of Alpine metamorphism which can be especially observed along shear zones (Oberhänsli and 

Bucher, 1987; Manzotti et al., 2014). The timing of high-pressure metamorphism has not been determined 

for the Dent Blanche nappe yet but has been dated for the Sesia nappe at ca. 70 – 65 Ma (e.g. Inger et al., 

1996; Rubatto et al., 1999). Rubatto et al. (2011) and Regis et al. (2014) proposed that HP metamorphism 

started as early as ca. 85 Ma and was characterized by several distinct pressure peaks. The basal tectonic 

contact of the Dent Blanche nappe is the Dent Blanche Basal Thrust (DBBT) which separates it from the 

underlying Combin zone. The Combin zone is a composite unit that mainly consists of an ophiolitic 

mélange, the Tsaté nappe, and thin metasedimentary sequences of continental affinity, the Cimes 

Blanches and Frilihorn nappes. The Tsaté nappe comprises Jurassic to Cretaceous calcschists, 

metabasites, and serpentinites (Sartori, 1987; Marthaler and Stampfli, 1989). The Cimes Blanches and 

Frilihorn nappes consist of successions of Permo-Mesozoic continental margin sediments comprising 

conglomerates, quartzites, marbles, and dolomites (Sartori, 1987; Vannay and Allemann, 1990). They 

occur as thin dismembered sheets along the base and structurally higher up in the Combin zone. The 

Combin zone reached greenschist- to blueschist-facies conditions (Kienast, 1973; Ballèvre and Merle, 

1993; Reddy et al., 1999) with peak estimates around 1.2 GPa and 450° C (Bousquet, 2008) and 

experienced a pervasive greenschist-facies overprint (Ballèvre and Merle, 1993; Negro et al., 2013). 

Oceanic accretion along the active Adriatic margin mainly occurred between 60 and 48 Ma (Agard et al., 

2002; Reddy et al., 2003). The Zermatt-Saas zone in the footwall of the Combin zone is separated from it 



 

- 40 - 

 

by the Combin Fault. The Zermatt-Saas zone consists of Jurassic to Cretaceous metabasalts, metagabbros, 

metaultramafics, and metasediments. Protolith ages for metagabbros have been determined at ca. 164 Ma 

by Rubatto et al. (1998) using U-Pb zircon geochronology. Ophiolitic units of the Zermatt-Saas zone 

experienced Paleocene – Eocene (ultra)high-pressure metamorphism whereas a large spread in available 

prograde and peak metamorphic ages between ca. 54 – 41 Ma (Bowtell et al., 1994; Rubatto et al., 1998; 

Amato et al., 1999; Lapen et al., 2003; Mahlen et al., 2005; De Meyer et al., 2014) suggests that the 

Zermatt-Saas zone consists of several slivers that were assembled in a subduction channel. The Zermatt-

Saas zone generally reached eclogite-facies conditions of ca. 540° – 600° C and 2.3 – 3.0 GPa (Bucher et 

al., 2005; Angiboust et al., 2009) and peak conditions of ≥ 3.2 GPa and ≤ 600° C at the UHP locality at 

Lago di Cignana in the western Valtournenche (Reinecke, 1998; Groppo et al., 2009; Frezzotti et al., 

2011). The Zermatt-Saas zone is overlain by a number of continental fragments which also experienced 

Alpine echlogite-facies metamorphism during the Paleocene – Eocene (Dal Piaz et al., 2001; Beltrando et 

al., 2010c; Faßmer, 2014; Weber et al., accepted). They probably represent continental outliers or 

extensional allochthons within the Piemont-Ligurian oceanic domain derived from the Adriatic 

continental margin. 

 

3.3.2 Field relations 

The study area with the Becca d’Aver continental sliver (BACS) is located around the peak Becca d’Aver 

west of the village Torgnon in the western Valtournenche of Italy (Fig. 3.1b). Most samples were taken 

along the crest between Becca d’Aver in the south and Col Fenêtre in the north (Fig. 3.2a). The sliver 

occurs in a structurally high position within or on top of the Combin zone. It differs lithologically from 

the underlying Combin zone in that it comprises continental gneissic and heterogeneous metasedimentary 

sequences. Metasediments are usually quartz- and phengite-rich lithologies which often contain garnet. 

The BACS is therefore regarded as a distinct unit. Its structure is that of a S-closing synform as suggested 

by folding of a metamorphic layering within gneissic lithologies in the core of the sliver (Fig. 3.2b and c). 

These rocks often display L>S fabrics with stretching lineations parallel to fold axes (Fig. 3.2d). In most 

parts, the sliver is structurally underlain by a sole of serpentinite which has been folded around it (Fig. 

3.2e). The Combin zone in the footwall of the BACS consists of an association of greenschists, 

serpentinite (locally ophicalcite), and calcschists. Greenschists and large serpentinite bodies are 

predominant in the northern part of the study area whereas calcschists with minor lenses of greenschist 

and serpentinite (Fig. 3.2f) occur in the southern part. At Col Fenêtre in the northern part of the study 

area, serpentinites partly contain calcite veins and therefore can be characterized as ophicalcite (Fig. 

3.2g). North of the BACS, a succession of sediments with continental affinity occurs. These are foliated 

marbles (Fig. 3.2h) and cellular dolomite (“Rauhwacke”; Fig. 3.2i) and are similar to the ones typical of 

the Cimes Blanches and Frilihorn nappes. Foliations within all lithologies, except for massive 

serpentinites, dip to the south and stretching lineations consistently trend (W)NW-(E)SE (Fig. 3.1e). 
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Figure 3.2: Outcrops and field relations in the Becca d’Aver area. a) Panorama view of the crest between Becca d’Aver in the 

south and Col de Fenêtre in the north. b) Folds within gneissic lithologies on the eastern slope of Becca d’Aver suggesting that 

the BACS has been folded into a S-closing synform. c) Folds within gneissic lithologies on the eastern slope of Becca d’Aver. d) 

L>S tectonites within folded gneissic lithologies on the eastern slope of Becca d’Aver; marker lies parallel to the stretching 

lineation which plunges to the ESE and is parallel to fold axes. e) Folded contact between metasediments of the BACS and 

structurally lower serpentinites just west of Becca d’Aver; metasediments are capped by serpentinites in this outcrop due to 

folding of the BACS and its serpentinite sole. f) Serpentinite lense within calcschists of the Combin zone south of Becca d’Aver. 

g) Ophicalcite of the Combin zone at Col de Fenêtre; picture courtesy of Gerrit Obermüller. h) Foliated marble within the 

Combin zone north of Becca d’Aver. i) Cellular dolomit (Rauhwacke) within the Combin zone north of Becca d’Aver suggesting 

a continental paleogeographic environment. j) Semi-ductile to brittle, conjugate shear planes in an outcrop of metasediments 

close to the base of the BACS northeast of Becca d’Aver indicating late-stage orogen-perpendicular (NW-SE) extension; note 

that the foliation is deflected next to top-NW shear planes whereas top-SE shear planes appear rather brittle suggesting that top-

NW shearing was more pronounced at an earlier stage. 
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3.4 Sample description 

In the following, samples from the BACS are described in terms of their petrography and microstructures. 

Four metasediment samples were chosen for petrological and microstructural analyses. These are samples 

FD356, FD370, FD372, and FD374. A more detailed description of sample FD370 is given which is a 

garnet-bearing quartz-rich sample displaying various inclusion patterns. Sample FD356 stems from an 

outcrop on the northeastern slope of Becca d’Aver. Samples FD370 and FD372 were taken from outcrops 

close to the base of the sliver north of Becca d’Aver. FD374 stems from an outcrop west of the peak. All 

samples contain garnet which could not be found in lithologies of the underlying Combin zone. Several 

samples from the Combin zone were also analysed in thin-section to gain further information on the 

kinematic evolution in the area.  

 

 
Figure 3.3: Endmember compositions of garnet in metasediment samples FD356, FD370, FD372, and FD374; Almandine and 

pyrope were summed up due to generally low pyrope contents.  

 

3.4.1 Petrology and mineralogy 

Mineral compositions of the 4 garnet-bearing metasediment samples from the BACS were measured with 

the Jeol JXA-8200 superprobe at Steinmann-Institut, University of Bonn. Representative microprobe 

analyses of mineral compositions are shown in table 3.1. The whole rock composition of sample FD370 

was determined with XRF analysis also at Steinmann-Institut and is depicted in table 3.2. Garnet 

endmember compositions are shown in figure 3.3 and distribution maps of major bivalent cations are 

depicted in figure 3.4. Figure 3.5 shows two profiles across garnet in sample FD370. 
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FD356 

   

FD370 

      

FD372 

   

FD374 

    Grt Phg Chl Ab Grt Grt Grt Grt Phg Phg Chl Grt Grt Phg Amp Grt Phg Chl 

SiO2 37.35 53.09 24.64 68.45 37.13 36.91 37.66 37.86 54.01 52.36 27.18 36.74 36.74 53.99 54.19 37.10 53.39 24.04 

TiO2 0.10 0.14 0.02 0.01 0.28 0.16 0.12 0.04 0.18 0.13 0.14 0.25 0.20 0.16 0.04 0.08 0.17 0.07 

Al2O3 20.45 23.45 18.94 19.09 21.03 21.12 21.32 21.48 26.78 28.81 19.70 20.97 20.91 25.59 1.57 20.40 25.54 20.63 

FeO 28.36 5.90 35.01 0.18 11.34 11.74 21.08 23.88 3.40 2.22 21.73 11.02 11.29 3.89 12.36 23.67 4.49 35.18 

MnO 6.87 0.00 0.58 0.02 23.30 23.81 12.63 6.94 0.09 0.04 0.27 24.04 23.41 0.06 0.52 11.83 0.04 1.20 

MgO 0.52 2.79 8.32 0.00 0.20 0.24 0.43 0.80 3.27 3.19 18.29 0.20 0.22 3.37 15.67 0.28 2.66 6.04 

CaO 6.55 0.00 0.05 0.14 8.04 7.27 7.71 10.38 0.00 0.05 0.02 7.56 7.84 0.00 12.54 6.85 0.00 0.07 

Na2O 0.03 0.07 0.07 12.00 0.04 0.02 0.04 0.02 0.16 0.29 0.03 0.00 0.03 0.08 0.31 0.00 0.10 0.00 

K2O 0.00 10.69 0.04 0.06 0.00 0.00 0.01 0.01 9.81 9.99 0.01 0.01 0.02 9.92 0.05 0.01 10.62 0.35 

Cr2O3 0.05 0.00 0.02 0.00 0.03 0.04 0.04 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.59 0.00 0.41 

Sum 100.28 96.14 87.68 99.94 101.37 101.32 101.02 101.40 97.70 97.06 87.40 100.80 100.68 97.07 97.24 100.81 97.01 87.98 

Si 6.04 7.13 5.51 3.00 5.94 5.92 6.01 5.98 7.00 6.81 5.63 5.92 5.93 7.06 7.83 5.99 7.04 5.39 

Ti 0.01 0.01 0.00 0.00 0.03 0.02 0.01 0.01 0.02 0.01 0.02 0.03 0.02 0.02 0.00 0.01 0.02 0.01 

Al 3.90 3.71 5.00 0.99 3.96 3.99 4.01 4.00 4.09 4.42 4.81 3.98 3.98 3.95 0.27 3.88 3.97 5.45 

Fe 3.83 0.66 6.55 0.01 1.52 1.58 2.81 3.15 0.37 0.24 3.76 1.48 1.52 0.43 1.49 3.20 0.49 6.60 

Mn 0.94 0.00 0.11 0.00 3.16 3.24 1.71 0.93 0.01 0.00 0.05 3.28 3.20 0.01 0.06 1.62 0.00 0.23 

Mg 0.13 0.56 2.78 0.00 0.05 0.06 0.10 0.19 0.63 0.62 5.65 0.05 0.05 0.66 3.38 0.07 0.52 2.02 

Ca 1.14 0.00 0.01 0.01 1.38 1.25 1.32 1.76 0.00 0.01 0.00 1.31 1.35 0.00 1.94 1.18 0.00 0.02 

Na 0.01 0.02 0.03 1.02 0.01 0.01 0.01 0.01 0.04 0.07 0.01 0.00 0.01 0.02 0.09 0.00 0.03 0.00 

K 0.00 1.83 0.01 0.00 0.00 0.00 0.00 0.00 1.62 1.66 0.00 0.00 0.00 1.65 0.01 0.00 1.79 0.10 

Cr 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.07 

Sum 16.00 13.93 20.00 5.02 16.05 16.06 15.98 16.02 13.77 13.84 19.95 16.06 16.07 13.79 15.08 16.02 13.86 19.89 

O 24 22 28 16 24 24 24 24 22 22 28 24 24 22 23 24 22 28 

                   Table 3.1: Representative electron microprobe analyses of major phases for the 4 investigated metasediment samples; all Fe was measured as ferrous iron. 
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3.4.1.1 Sample FD356 

Sample FD356 consists of garnet + white mica + chlorite + albite + quartz + calcite. Hematite and pyrite 

occur as minor phases. Garnet is Fe-rich with ca. 65 mol% almandine component and contains up to 22 

mol% spessartine component (Fig. 3.3). The sample contains abundant chlorite and also garnet has often 

been replaced by chlorite which is therefore interpreted to have grown during greenschist-facies 

retrogression (Fig. 3.6a). White mica is phengitic with 3.21 – 3.64 Si p.f.u. and feldspar is almost pure 

albite. 

 

 
Figure 3.4: Distribution maps of major bivalent cations in garnet of samples FD370 and FD372 showing a prograde growth 

zonation with decreasing Mn and increasing Mg, Fe, and Ca from core to rim; garnet in sample FD370 usually displays a second 

growth generation close to the rims; note in map4 that the rims of quartz inclusions are parallel to the garnet growth zonation (see 

also figures 3.4a and b).   

 

3.4.1.2 Sample FD370 

Sample FD370 is a quartz- and calcite-rich metasediment consisting of garnet + phengite + 

epidote/allanite + quartz + calcite + chlorite + titanite. Garnet has a xenomorphic to hypidiomorphic 

shape and is Mn-rich with up to 54 mol% spessartine component in cores (Fig. 3.3). Distribution maps 

and profiles of major bivalent cations show a prograde growth zonation with decreasing Mn and 

increasing Mg, Fe, and Ca from core to rim (Figs. 3.4 and 3.5). Most garnet grains display a second 
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growth generation along the rims which is characterized by higher Mn- and Ca- values and lower Fe- and 

Mg-concentrations (Fig. 3.4). Aluminium-maps are homogeneous without any obvious zonation 

suggesting that no change in the amount of ferric iron incorporated into garnet and therefore the 

predominant oxidation state occurred during garnet growth. White mica is phengitic with 3.26 – 3.52 Si 

p.f.u. whereas most measurements give values around 3.5 Si p.f.u.. Most epidote grains have allanite-rich 

cores which show an oscillatory zonation. Chlorite occurs as retrograde phase in garnet cracks and partly 

replaces white mica. Calcite also occurs along cracks in fragmented garnet. According to XRF-analysis, 

the sample is rich in SiO2 with 68.28 wt% and also contains abundant CaO (9.27 wt%), and Al2O3 (7.39 

wt%). Smaller abundances of Fe2O3 (2.87 wt%), K2O (1.76 wt%), and MgO (1.35 wt%) occur in the 

sample and MnO (0.42 wt%) and TiO2 (0.29 wt%) are only minor constituents. The sample does not 

contain any Na2O according to the bulk rock analysis explaining the absence of albite. 

 

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O LOI Sum 

68.28 0.29 7.39 2.87 0.42 1.35 9.27 0.00 1.76 7.53 99.16 
 

Table 3.2: Whole rock composition of sample FD370 determined with XRF analysis. 

 

3.4.1.3 Sample FD372 

Sample FD372 consists mainly of garnet + white mica + actinolite + epidote with minor chlorite, quartz, 

calcite, and titanite. Garnet occurs as small hypidiomorphic to idiomorphic grains (Figs. 3.6c, d, and 3.8f) 

and is Mn-rich with up to 54.6 mol% spessartine component in cores (Fig. 3.3). Distribution maps again 

display a prograde growth zonation with decreasing Mn and increasing Mg, Fe, and Ca from core to rim 

(Fig. 3.4). A second growth zonation cannot be observed in this sample. Homogeneous Al-maps suggest 

constant amounts of ferric iron in garnet. Garnet occasionally contains circular inclusion trails of mostly 

epidote and allanite aligned parallel to the growth zonation (Figs. 3.6d and 3.4). Chlorite, quartz, calcite, 

titanite, and allanite occur as inclusions in garnet. White mica is phengitic with 3.42 – 3.54 Si p.f.u.. 

Allanite occurs in the cores of epidote grains. Epidote/allanite also occurs as inclusions in phengite. 

Chlorite is retrograde and occurs as intergrowths with white mica. 

 

3.4.1.4 Sample FD374 

Sample FD374 is a quartz-rich metasediment and consists mainly of garnet + white mica + quartz and 

minor chlorite and titanite. Garnet is Fe-rich with up to 69 mol% almandine component and contains up 

to 27 mol% spessartine component (Fig. 3.3). White mica is phengitic with 3.39 – 3.57 Si p.f.u. and is 

rich in chrome with up 1.27 wt%. Chlorite occurs together with quartz in cracks within garnet. 

 

3.4.2 Inclusion patterns 

Sample FD370 displays a variety of microstructural relations between garnet and other phases, especially 

quartz. Garnet is often highly poikiloblastic, contains large quartz inclusions, and often displays 

honeycomb-like intergrowths with quartz (Figs. 3.6f and g). Within “honeycomb garnets”, the 

garnet/quartz ratio is very small so that garnet often only appears along quartz grain boundaries. All 
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garnet grains, however, display a typical prograde growth zonation (Fig. 3.4). Garnet grains often exhibit 

quartz inclusion-free garnet cores which are surrounded by inclusion-rich growth rims (Figs. 3.6f and g). 

Some garnet grains display circular “cyclone-shaped” inclusion patterns suggesting rotation during 

formation (Figs. 3.6h and i). The rims of quartz inclusions sometimes mimic the idiomorphic garnet 

crystal shape (Figs. 3.7a and b) which is traced by the growth zonation (Fig. 3.4). The same pattern and 

alignment along the garnet crystal shape can be observed with titanite inclusions in garnet (Fig. 3.7b). 

Oriented titanite inclusions often occur together with allanite within garnet (Fig. 3.7c). Allanite can also 

be observed as inclusions within quartz inclusions inside garnet (Fig. 3.7d). Allanite occurs in the cores of 

epidote grains (Fig. 3.7e) and often shows an oscillatory zonation (Fig. 3.7f). Occasionally, honeycomb-

shaped intergrowths can also be observed between garnet and calcite (Fig. 3.7g). Besides the 

aforementioned phases, epidote and white mica occur as inclusions within garnet. Therefore, all matrix 

phases except for chlorite can be found as inclusions within garnet. 

 

 
Figure 3.5: Profiles of garnet endmember compositions in sample FD370 characterized by decreasing Mn and increasing Mg, Fe, 

and Ca from core to rim; note the high spessartine content of up to 54 mol% in the core of profile AA’; relatively low spessartine 

contents in profile BB‘ suggest that it probably does not run through the actual core of the garnet grain. 

 

3.4.3 Microstructures and kinematics 

In this section, I describe microstructures within rocks from the BACS and the underlying Combin zone 

to determine the kinematics during different stages of their structural evolution.  

Sample FD370 displays a foliation and contains foliation-parallel veins of quartz and calcite (Fig. 3.8a). 

Top-NW shear bands can be observed on a handspecimen-scale, in thin-section, and in BSE-images (Figs. 
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3.7h, i, and 3.8a). In some shear bands, phengite is stable and chlorite does not occur suggesting shear 

band formation at high-pressure conditions (Fig. 3.7h). Garnet often shows circular inclusion patterns 

with quartz (Figs. 3.6h and i). The sense of rotation in these “cyclone garnets” indicates top-NW 

movement during garnet growth and therefore on the prograde path. In BSE-images, top-NW shear senses 

cutting through and offsetting retrograde chlorite can also be identified (Fig. 3.7i). A sample (sample 

FD369) from the same outcrop as sample FD370, consisting of white mica, calcite, and quartz, shows 

similar top-NW shear bands which offset a pre-existing chlorite-bearing foliation (Fig. 3.8b and c). 

 

 
Figure 3.6: BSE images of metasediment samples FD356, FD370, and FD372. a) Sample FD356 showing greenschist-facies 

retrogression and top-ESE shear band; garnet and phengite have partly been replaced by chlorite. b) Sample FD356 with a close-

up of the top-ESE shear band; phengite and chlorite have been deformed ductiley whereas albite has been fragmented in a brittle 

manner suggesting temperatures below ca. 450° C. c) Sample FD372 showing a euhedral garnet crystal in a phengite-rich matrix. 

d) Sample FD372 showing a hypidiomorphic to idiomorphic garnet crystal in a phengite-rich matrix; epidote and actinolite can 

also be found in the matrix; garnet contains a circular inclusion trail of epidote/allanite. e) Sample FD370 showing garnet in a 

phengite- and quartz-rich matrix; garnet and quartz are partly intergrown; trace of garnet profile in figure 3.8 is indicated. f) 

Sample FD370 with garnet showing honeycomb-shaped intergrowths with quartz; note quartz inclusion-free core; inclusions in 

the core are calcite. g) Sample FD370 with garnet showing honeycomb-shaped intergrowths with quartz; note quartz inclusion-

free core; the trace of the foliation is visible and mainly marked by quartz and phengite. h) Sample FD370 with cyclone-shaped 

intergrowths of garnet and quartz; sense of rotation indicates top-NW transport. i) Sample FD370 with honeycomb- and cyclone-

shaped intergrowths of garnet and quartz; sense of rotation indicates top-NW transport. 
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Both samples stem from an outcrop on the eastern slope close to the base of the BACS where 

macroscopic semi-ductile to brittle conjugate shear planes can be observed (Fig. 3.2j). Top-NW shear 

bands, however, seem to have formed slightly earlier as suggested by partly ductile deflection of the 

foliation whereas top-SE shear bands appear rather brittle. Large amounts of chlorite in sample FD356 

and strongly chloritized garnet suggest a higher degree of retrogression in this sample. Ductile top-ESE 

shear bands can be observed in thin-section and BSE images (Figs. 3.6a, b, 3.8d, and e). Chlorite occurs 

as large grains in the matrix and has been partly deformed by shear bands suggesting pre- and 

synkinematic growth. The sample contains abundant albite which has been fragmented by brittle 

deformation within shear bands (Fig. 3.6b). This suggests that albite grew prekinematically and that 

temperatures during top-ESE deformation were most likely below ca. 450° C (e.g. Pryer, 1993). 

 

 
Figure 3.7: BSE images of metasediment sample FD370. a) Garnet partly intergrown with quartz; rims of quartz inclusions 

partly mimic the euhedral crystal shape; a top-NW shear band is visible on the right next to garnet; trace of garnet profile in 

figure 3.8 is indicated. b) Close-up view of the garnet in figure 3.4a; rims of quartz inclusions mimic the euhedral garnet shape; 

titanite inclusions are also aligned parallel to the crystal shape. c) Chlose-up view of a garnet with large quartz inclusions and 

smaller titanite and allanite inclusions; retrograde chlorite occurs in cracks. d) Close-up view of garnet with allanite inclusion 

within quartz inclusion. e) Epidote crystal with allanite in the core. f) Epidote with allanite in the core showing oscillatory 

zoning. g) Intergrowths of garnet, calcite, and quartz. h) Top-NW shear band with phengite stable indicating formation at high-

pressure conditions. i) Top-NW shear band cutting through and offsetting chlorite indicating formation at low-pressure conditions 

on the retrograde path. 
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Sample FD372 does not show any microstructures that can be used to infer the vergence of shearing (Fig. 

3.8f). In BSE-images, microfolding of phengite can be observed whereas no penetrative planar or linear 

fabric exists. In sample FD374, a NW-dipping compressional crenulation cleavage can be observed 

indicating NW-SE shortening (Figs. 3.8g and h). Garnet occasionally shows intergrowths with quartz 

defining an internal foliation which seems to have been slightly rotated (Fig. 3.8i). 

Shear senses are scarce within the Combin zone so that only a few thin-sections yielded unambiguous 

kinematic indicators. A schist from the Combin zone south of Becca d’Aver (sample FD359) consists of 

white mica, chlorite, quartz, and calcite and shows top-WNW shear senses as suggested by deflection of 

white mica (Figs. 3.8j and k). Chlorite is aligned parallel to the main fabric, has partly been affected by 

top-WNW shearing, and partly replaces sheared white mica. Top-WNW shearing is therefore interpreted 

to have occurred on the retrograde path at greenschist-facies conditions. An impure foliated siliceous 

marble (sample FD353) from the slope east of the crest between Becca d’Aver and Mont Fenêtre shows 

top-SE shear bands in thin-section (Figs. 3.8l and m). The sample consists of calcite, quartz, and feldspar 

and the metamorphic grade of shear bands is difficult to determine due to the lack of diagnostic minerals. 

A sample from greenschists between Mont Fenêtre and Col Fenêtre (sample FD363) consists of chlorite, 

actinolite, epidote, and albite (Figs. 3.8n and o). The sample displays a mylonitic fabric and micro-scale 

shear zones which indicate dominant top-E shearing during synkinematic growth of greenschist-facies 

phases. 

Microstructural observations suggest that an early top-NW shearing event on the prograde path was 

followed by penetrative top-WNW and top-ESE shearing on the retrograde path during greenschist-facies 

retrogression. A late phase of low-grade top-NW shearing was then followed by semi-ductile to brittle 

NW-SE extension. 

 

3.5 Thermodynamic modelling and PT conditions 

To constrain PT-conditions during the metamorphic history of sample FD370, thermodynamic modelling 

was performed with the THERIAK-DOMINO software package (De Capitani and Petrakakis, 2010) and 

the database JUN92.bs which is based on thermodynamic data by Berman (1988). Weight percent of 

oxides of the whole rock composition determined with XRF analysis were converted into mol% of 

elements and used as input for calculations. One equilibrium phase diagram (Fig. 3.9a) was calculated 

with additional oxygen to stabilize epidote at high-pressure conditions. Garnet isopleths (Fig. 3.9b) were 

calculated without additional oxygen. This is justified by the assumption that all ferric iron was 

incorporated into epidote and by the observation that no change in the ferrous/ferric iron content occurred 

during garnet growth as suggested by Al distribution maps. Additionally, pixelmaps of the total volume of 

lawsonite, free water, quartz, and the Si-content in white mica for the given bulk rock composition were 

calculated (Fig. 3.10) to gain further information on the 2D distribution of these contents. Garnet 

isopleths were calculated for specific core and rim compositions of Sps52 Alm25 Grs22 and Sps16 Alm52 

Grs29, respectively. 
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Figure 3.8: Photomicrographs of rocks from the BACS and the Combin zone; all thin-sections were cut parallel to the xz-plane 

of the finite strain ellipsoid; values of foliations (F) and stretching lineations (L) for each sample are given. a) Photograph of a 

thick-section of sample FD370; note foliation-parallel quartz/calcite vein and top-NW shear bands; F (356/02) L (304/01). b) 

Sample FD369 showing top-NW shear bands cutting through preexisting, chlorite-bearing foliation; crossed polarizers; F 

(203/38) L (138/15). c) Same section as 5b but with parallel polarizers. d) Partly retrogressed sample FD356 showing top-ESE 
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shear bands; crossed polarizers; F (187/22) L (118/07). e) Same section as 5d but with parallel polarizers. f) Sample FD372 with 

small hipidiomorphic to idiomorphic garnet in a phengite-rich matrix; parallel polarizers. g) Sample FD374 showing a NW-

dipping crenulation; crossed polarizers; F (181/37) L (129/25). h) Same section as 5g but with parallel polarizers. i) Sample 

FD374 showing garnet/quartz intergrowths similar to the ones observed in sample FD370; parallel polarizers. j) Sample FD359 

showing top-WNW shear senses as indicated by deflection of white mica; crossed polarizers; F (235/25) L (293/15). k) Same 

section as 5j but with parallel polarizers. l) Sample FD353 showing top-SE shear bands; crossed polarizers; F (183/15) L 

(137/07). m) Same section as 5l but with parallel polarizers. n) Sample FD363 showing asymmetric greenschist-facies fabric 

indicating top-E transport; crossed polarizers; F (184/31) L (100/02). o) Same section as 5o but with parallel polarizers. 

 

Garnet isopleth thermobarometry yields ca. 1.1 GPa and 390° C for the core and ca. 1.56 GPa and 450° C 

for the rim. The calculated intersects are also marked in the main phase diagram for construction of the 

prograde path. The calculated equilibrium phase diagram suggests that all observed phases are stable 

under high-pressure conditions. Only chlorite becomes unstable above conditions of ca. 1.2 GPa and 400° 

C. The prograde path, as defined by garnet compositions, starts within the chlorite stability field and then 

runs approximately parallel to the epidote-in and lawsonite-out curves. Initial garnet growth is therefore 

interpreted to have been coupled to incipient breakdown of chlorite. The modelled maximum content of 

lawsonite in the rock is ca. 8.5 vol%. It decomposes within the narrow zone between the epidote-in and 

lawsonite-out curves (Fig. 3.10a) according to the following breakdown reaction (Newton and Kennedy, 

1963): 

 

Lawsonite = (clino)zoisite + kyanite + quartz + vapour 

4 CaAl2Si2O8 x 2 H2O = 2 Ca2Al3Si3O12(OH) + Al2SiO5 + SiO2 + 7 H2O 

 

Kyanite cannot be observed in the sample so that Al2O3 and SiO2 are interpreted to have been 

incorporated into garnet as peraluminous phase. Also, modelling suggests that no significant increase in 

the amount of free quartz occurs along the lawsonite breakdown curve (Fig. 3.10b) so that released SiO2 

must have been incorporated into other silicates. The 3.4 Si p.f.u. in white mica isopleth runs subparallel 

to the lawsonite breakdown curve (Figs. 3.9a and 3.10c) which correlates well with the high Si-contents 

observed in the sample suggesting that phengite grew mostly on the prograde path. Lawsonite breakdown 

releases water which may have coexisted as a free phase as suggested by modelled amounts of water in 

the sample (Fig. 3.10d). Peak pressure conditions were probably not much higher than those calculated 

for garnet rim compositions and therefore most likely did not exceed 1.7 GPa (Fig. 3.9). The perfect 

preservation of the prograde garnet growth zonation and the absence of retrograde biotite and amphibole 

suggest cold exhumation of the sample. Textural relations suggest that chlorite in the sample is retrograde 

and becomes stable below ca. 1.0 GPa on the retrograde path which is a realistic upper boundary for high-

pressure greenschist-facies conditions.  

Thermodynamic modelling suggests prograde blueschist-facies metamorphism of sample FD370 along 

the lawsonite breakdown curve. Growth of garnet, epidote, and muscovite are therefore interpreted to be 

closely related to the breakdown of lawsonite and associated element- and water-release. This relationship 

also suggests that prograde mineral growth was probably assisted by the presence of an H2O-rich fluid 

phase. 
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Figure 3.9: Thermodynamic modelling performed for sample FD370 with the THERIAK-DOMINO software package (De 

Capitani and Petrakakis, 2010) and the database JUN92.bs which is based on thermodynamic data by Berman (1988). a) 

Equilibrium phase diagram; note that the prograde path as determined from garnet isopleth thermobarometry runs subparallel to 

the lawsonite breakdown curve; see text for discussion. b) Garnet isopleth thermobarometry; core composition (Sps52 Alm25 

Grs22) indicates ca. 1.1 GPa 390° C, rim composition (Sps16 Alm52 Grs29) indicates ca. 1.56 GPa and 450° C. 

 

3.6 Discussion 

The BACS at the Combin/Dent Blanche boundary partly consists of metasedimentary sequences which 

often display evidence of an Alpine HP imprint. A pre-Alpine formation of the observed assemblages 

seems very unlikely since prograde HP/LT growth zonations and (hyp)idiomorphic crystal shapes of 

garnet are well-preserved. Since the BACS is located at the boundary between continental units in the 

hanging wall and mainly ocean-derived lithologies in the footwall, the sliver is interpreted to represent a 

crustal fragment along the distal part of the ocean-continent transition between the Piemont-Ligurian 

ocean in the northwest and the Adriatic continental margin in the southeast (Fig. 3.11a). The timing of 

deposition of the metasediments is unknown. They may represent pre-rift sedimentary cover sequences of 

pre-Alpine continental crust or have been deposited during or after the main stage of passive margin 

formation. Larger fragments in a more proximal position with respect to the continent were represented 

by the later Dent Blanche/Sesia nappe system. The sole of serpentinite structurally underlying the BACS 

may represent its original post-rift substratum (Fig. 3.11a). This lithological association of rocks with 

continental affinity overlying serpentinized mantle is typical of extensional allochthons and also speaks 

for an ocean-continent transition origin (Mohn et al., 2011; Vitale Brovarone et al., 2011; Beltrando et al., 

2014). The hypothesis is further supported by the occurrence of marble and dolomite with continental 

affinity within the Combin zone in the footwall of the sliver. The occurrence and formation of ophicalcite 

within the Combin zone may be attributed to rifting processes, most likely in a more distal position within 

the Piemont-Ligurian oceanic domain as suggested by large amounts of metamafics at lower structural 

levels in the study area. 
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Figure 3.10: Pixelmaps calculated with the THERIAK-DOMINO software package showing the distribution of the volume of 

lawsonite (a), quartz (b), and water (d) and the amount of Si in white mica (c); see text for discussion. 

 

Pseudosection modelling and garnet isopleth thermobarometry of sample FD370 suggest that the BACS 

experienced prograde blueschist-facies metamorphism during Alpine subduction and accretion. Peak 

conditions were most likely around 1.7 GPa and 500° C which are remarkably higher than the 

metamorphic grade observed in underlying lithologies of the Combin zone. This difference, however, 

may be mainly due to a pervasive greenschist-facies overprint which affected the Combin zone but partly 

spared the BACS. The prograde path, which can be well-constrained from garnet isopleth 

thermobarometry, runs subparallel and close to the lawsonite breakdown curve. This suggests that 

prograde metamorphism and formation of high-pressure phases like garnet, phengite, and epidote were 

coupled to progressive breakdown of lawsonite and associated fluid-assisted element transfer. Lawsonite 

is one of the major hydrous minerals in subduction zones with ca. 12 wt% H2O bound in the crystal 

structure (Pawley, 1994; Schmidt and Poli, 1998; see Martin et al., 2014 for a review). It is rarely 

preserved as relic phase due to its water-dependent crystal structure which quickly becomes unstable 

during dehydration (Pawley, 1994). Pseudomorphs after lawsonite, however, are common features in 

mafic eclogites, also in the nearby Zermatt-Saas zone underlying the Combin zone, and often consist of 

fine-grained epidote and white mica (e.g. Angiboust and Agard, 2010) supporting the interpretation that 
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growth of these phases can be closely linked to lawsonite breakdown. A strong dependence of garnet 

growth and composition with breakdown of hydrous minerals, especially lawsonite at cooler geotherm 

tectonic settings, is suggested by several studies (e.g. Konrad-Schmolke et al., 2008a; 2008b; Baxter and 

Caddick, 2013). The lack of lawsonite pseudomorphs in sample FD370 can be explained by high element 

mobility due to the presence of a fluid phase. Fluid flow may have also been enhanced and partly 

channelized by deformation (Terry and Heidelbach, 2006; Konrad-Schmolke et al., 2011a) as suggested 

by foliation-parallel quartz/calcite veins. Lawsonite is a major carrier of light rare earth elements (LREE) 

(Hermann, 2000; Martin et al., 2014) which are mainly incorporated into allanite, and to a minor extent 

into titanite, during breakdown of lawsonite (e.g. Hickmott et al., 1992; Konrad-Schmolke et al., 2011a). 

Both phases occur abundantly as inclusions in the sample. Titanite occurs as oriented inclusions in garnet 

indicating contemporaneous crystallization of titanite and the garnet host. Allanite occurs as cores in 

epidote suggesting fluid-induced growth of epidote (Konrad-Schmolke et al., 2011b). The occurrence of 

allanite as inclusions within garnet and quartz suggests that crystallization and recrystallization, 

respectively, of these phases were also enhanced by the presence of a fluid. The consistently high Si-

content in white mica of ca. 3.5 Si p.f.u. can be correlated with phengite growth on the prograde path 

since isopleths also run subparallel to the lawsonite breakdown curve. Sample FD370 contains almost no 

Na according to XRF and microprobe analyses which may be a primary feature or a leaching effect 

caused by fluid-rock interactions. The second garnet growth generation, which can be often observed in 

sample FD370, may either be related to final breakdown of lawsonite due to a temperature increase or 

influx of an externally-derived fluid. Garnet often displays honeycomb-like intergrowths with quartz 

which may also be related to fluid-mediated crystal growth. Inclusion patterns of poikiloblastic garnet and 

intergrowths of garnet with other phases have been described by several authors (e.g. Schoneveld, 1977; 

Hawkins et al., 2007; Robyr et al., 2007; 2009). Hawkins et al. (2007) described very similar honeycomb 

garnet within rocks of the Tauern Window in the Eastern Alps and interpreted garnet and quartz as 

products of contemporaneous precipitation from a highly polymerized fluid under HP conditions. The 

occurrence of allanite inclusions in quartz included within garnet indeed supports such an interpretation. 

However, the calculated distribution of the amount of free quartz suggests that no significant increase was 

caused by the breakdown of lawsonite so that garnet/quartz intergrowths are interpreted to result from 

garnet growth and contemporaneous mobilization of SiO2 or recrystallization instead of newly formed 

quartz. Stöckhert et al. (1997) on the other hand explained similar poikiloblastic garnet within metapelites 

from the Tauern Window to result from garnet growth along grain boundaries of a preexisting quartz 

foam microstructure controlled by grain boundary free energy during low differential stress. Precipitation 

of garnet in quartz-rich domains may indeed have been favoured by fluid pathways along quartz grain 

boundaries (Kruhl et al., 2013). The occurrence of prograde top-NW shear bands and cyclone garnet, 

however, does not support the interpretation of a low-differential-stress environment during subduction. 

Observed cyclone garnets are interpreted as dynamic equivalents of honeycomb garnets formed during 

subduction-related shearing. The sense of rotation indicates top-NW transport during prograde garnet 

growth which is consistent with burial along a SE-dipping subduction zone. 
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Figure 3.11: a) Late Cretaceous paleogeography of the rifted Adriatic continental margin and the Piemont-Ligurian/Adriatic 

continent transition; colour coding corresponds to the ones in figure 3.1; greenschists in the study area represent oceanic crust; 

calcschists are Jurassic to Cretaceous syn- to post-rift sediments; marbles and dolomites in the study area may represent Triassic 

pre-rift sediments sheared off continental basement during subduction; the BACS may correspond to a former extensional 

allochthon resting on exhumed and serpentinized subcontinental lithospheric mantle. b) Tectonometamorphic evolution of the 

BACS and possibly the underlying Combin zone along the PT-path constructed from petrological, mineralogical, and 

(micro)structural observations as well as thermodynamic modelling. 

 

The presence or absence of rotated inclusion patterns can be explained by mechanical 

coupling/decoupling of garnet hosts from the local stress field due to the presence of a wetting fluid. The 

rims of quartz grains and titanite inclusions sometimes mimic the euhedral garnet crystal shape suggesting 

partly concomitant growth of inclusions and garnet hosts since it seems unlikely that quartz grains were 

arranged mechanically during garnet growth. In summary, I interpret garnet/quartz intergrowths to be the 
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result of precipitation of garnet and contemporaneous mobilization and recrystallization of SiO2 due to the 

presence of a fluid phase which strongly enhanced element transfer. I propose fluid-mediated growth or 

precipitation of garnet rather than purely diffusion-controlled solid-state crystal growth. Abundant calcite 

as inclusions within garnet and along cracks and foliation-parallel veins suggests that calcite also behaved 

particularly mobile and crystallized during all stages of the metamorphic history. Perfect preservation of 

the prograde garnet growth zonation in samples FD370 and FD372 and the absence of orthoclase and 

biotite in all samples suggest cold exhumation and that the BACS did not experience any significant 

heating after peak conditions which were around 1.7 GPa and 500° C according to pseudosection 

modelling of sample FD370. 

The tectonometamorphic evolution of the BACS and possibly the underlying Combin zone along the PT-

path can be constructed from petrological, mineralogical, and (micro)structural observations as well as 

thermodynamic modelling (Fig. 3.11b). Kinematics on the prograde path can be well-constrained so that 

the observed blueschist-facies imprint can unambiguously be related to top-NW shearing during burial in 

a SE-dipping subduction zone. Deformation on the retrograde path, on the other hand, is not as easy to 

interpret since top-(W)NW and top-(E)SE shear senses can be observed within rocks from the BACS and 

the underlying Combin zone. Overprinting relations between these opposing shear senses could not be 

observed. Both, top-(W)NW and top-(E)SE shearing, occurred under greenschist-facies conditions as 

suggested by partly synkinematic chlorite. An upper pressure limit of ca. 1.0 GPa for the stability of 

chlorite is suggested by pseudosection modelling of sample FD370. Top-ESE shear bands in sample 

FD356 deform albite in a brittle manner which suggests temperatures below ca. 450° C (Pryer, 1993). The 

observed folding in the central part of the BACS probably occurred during the main stage of 

approximately orogen-perpendicular, greenschist-facies shearing since stretching lineations, especially 

within L>S tectonites, are strictly parallel to fold axes. It, however, cannot be attributed to mainly top-

(W)NW or top-(E)SE shearing and may even represent a feature of strain accumulation. The overall 

synformal structure of the BACS and its serpentinite sole is probably also the result of the main stages of 

(W)NW-(E)SE elongation and associated orogen-parallel shortening. Folding and L>S tectonites cannot 

be observed within underlying calcschists of the Combin zone. These differences between the BACS and 

the Combin zone can be explained by rheology contrasts between more competent lithologies of the 

BACS and relatively incompetent calcschists of the Combin zone. The foliation within calcschists may in 

fact represent an axial surface foliation to the BACS synform which would support the assumption that 

folding and fabric formation occurred contemporaneously. The main stages of greenschist-facies 

deformation in the study area were followed by late top-NW shearing as suggested by low-grade shear 

bands in samples FD369 and FD370. This phase was followed by orogen-perpendicular extension as 

evident from macroscopic semi-ductile to brittle shear planes. 

 

The BACS is interpreted to represent a continental fragment along the former Piemont-Ligurian/Adriatic 

ocean-continent transition which was subducted during the Paleogene and experienced blueschist-facies 

metamorphism. Prograde metamorphism was most likely related to progressive breakdown of lawsonite 

and associated fluid-mediated element transfer and mineral growth as suggested by mineralogical and 
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microstructural observations as well as thermodynamic modelling. Although the timing of HP 

metamorphism within the BACS is unknown, it most likely postdates HP metamorphism in the overlying 

Dent Blanche/Sesia nappe system which has been dated at ca. 70 – 65 Ma (e.g. Inger et al., 1996; Rubatto 

et al., 1999). Further geochronological analyses on the investigated garnet-bearing metasediments may 

help to determine the timing of HP metamorphism in the BACS and therefore the age of accretionary 

wedge formation. 

 

3.7 Conclusions 

I investigated the metamorphic and structural evolution of the BACS in the western Valtournenche of 

Italy. The continental sliver is structurally located at the boundary between the continental Dent 

Blanche/Sesia nappe system in the hanging wall and the mainly ocean-derived Combin zone in the 

footwall. Field relations suggest that it represents a continental fragment or extensional allochthon from 

the Piemont-Ligurian/Adriatic ocean-continent transition. It partly consists of monocyclic garnet-bearing 

metasedimentary sequences which record HP metamorphism related to Paleogene Alpine subduction. 

Detailed petrological and mineralogical analyses as well as thermodynamic modelling of a metasediment 

sample revealed prograde blueschist-facies metamorphism closely related to progressive breakdown of 

lawsonite, associated fluid-mediated element mobilization and transfer, and mineral growth of garnet, 

epidote/allanite, and phengite. Spessartine-rich garnet often displays microstructures and inclusion 

patterns suggesting crystallization or precipitation in the presence of a fluid phase. Poikiloblastic 

honeycomb and cyclone garnets are interpreted as the result of partly contemporaneous crystallization and 

recrystallization, respectively, of garnet and quartz. Garnet isopleth thermobarometry yielded ca. 1.1 GPa 

/ 390° C and ca. 1.56 GPa / 450° C for core and rim compositions, respectively. Peak conditions were 

most likely around 1.7 GPa / 500° C and are higher than previously reported PT-conditions for the 

Combin/Dent Blanche boundary. Cold exhumation is suggested by perfect preservation of garnet growth 

zonations and absence of phases indicating higher temperatures, e.g. biotite and orthoclase. High-pressure 

shear bands and cyclone garnet indicate early top-NW shearing on the prograde path consistent with 

deformation in a SE-dipping subduction zone. Deformation on the retrograde path was more complex and 

related to top-(W)NW and top-(E)SE shearing as indicated by kinematic indicators within rocks from the 

BACS and the underlying Combin zone. Observed top-(E)SE shearing occurred below ca. 1.0 GPa and 

450° C as suggested by sheared chlorite and brittle deformation of albite. It was followed by another 

phase of top-NW shearing which evolved into semi-ductile to brittle orogen-perpendicular extension. 
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- CHAPTER 4 - 
 

 

Kinematics and geometry of shear zones along the Combin Fault 

and Dent Blanche Basal Thrust (Western Alps, Switzerland/Italy) 

during polyphase Alpine orogenic deformation 
 

 

4.1 Abstract 

The Combin Fault and Dent Blanche Basal Thrust (DBBT) in the Western Alps of Switzerland and Italy 

represent two major tectonic contacts which experienced polyphase deformation during Paleogene Alpine 

orogeny. Structural analyses of shear zones in the study area in the southern Valais and northern Aosta 

regions revealed a sequence of deformation that variably affected the northwestern and southeastern 

segments of the contacts. The main stage of nappe stacking and ductile top-(N)W shearing between ca. 48 

and 44 Ma (D1) was related to thrusting of the continental Dent Blanche nappe over the underlying 

composite Combin zone and to thrusting of these units over continental Briançonnais units. This phase 

was associated with exhumation of the Dent Blanche nappe and Combin zone, formation of greenschist-

facies mylonites along the DBBT, and a pervasive greenschist-facies overprint in the Combin zone. D1 

top-(N)W shearing was followed by transpressional to orogen-parallel top-(S)W shearing between ca. 43 

and 40 Ma (D2). Top-(S)W shearing especially affected the northwestern Combin Fault and occurred 

during ongoing exhumation of the Combin zone. The DBBT was probably characterized by continuing 

mylonitic top-W shearing during this phase. Top-SE normal-sense shearing between ca. 39 and 37 Ma 

(D3) affected the northwestern Combin zone along a NE-SW striking shear zone subparallel to nappe 

boundaries but only very locally the DBBT. Top-SE shear senses are subordinate in the southeastern 

realm and can locally be observed along the Combin Fault and at higher structural levels within the 

Combin zone. Top-SE shearing is held responsible for juxtaposition of the Combin zone and underlying 

(ultra)high-pressure rocks of the ophiolitic Zermatt-Saas zone at crustal levels. It was followed by 

renewed top-NW shearing and contemporaneous NW-SE shortening from ca. 35 Ma onwards (D4). This 

phase led to formation of folds and crenulation cleavages overprinting pre-existing greenschist-facies 

fabrics and to reactivation of the DBBT as an out-of-sequence thrust. It was followed by brittle NW-SE 

extension after ca. 30 Ma (D5) due to updoming of the Vanzone antiform southeast of the study area. 

Units in the southeastern realm of the study area were progressively rotated from a SE-dipping into a 

NW-dipping orientation which led to further exhumation and the synformal structure of the Dent Blanche 

nappe. 
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4.2 Introduction 

Orogenic deformation in Alpine-type mountain belts is usually expressed as a sequence of consecutive 

deformation phases. Such deformation sequences are usually determined from overprinting and cross-

cutting relations between deformation structures in combination with metamorphic and geochronological 

data. However, little attention is paid to regional or even local differences in the structural evolution of 

tectonic units. Especially post-nappe deformation after the main stage of juxtaposition of units derived 

from different paleogeographic domains may obliterate earlier deformation. Such deformation may also 

not be strictly parallel to first-order tectonic contacts and unequally distributed so that different contact 

segments may record different structural histories. Structural analyses of shear zones were performed 

along two major tectonic contacts, the Combin Fault and the Dent Blanche Basal Thrust (DBBT) in the 

southern Valais region of Switzerland and the northern Aosta region of Italy, to gain information on the 

dynamics and spatial and temporal variability of progressive orogenic deformation in the Swiss-Italian 

Western Alps. This area has been the site of extensive research and many controversies regarding the 

structural and tectonic evolution of units. The Western Alps exhibit a stack of tectonic units as the result 

of accretion of oceanic and continental units to the Adriatic continental margin during Late Cretaceous – 

Paleogene SE-directed subduction and subsequent continental collision between the European and 

Adriatic plates. The two uppermost tectonic units of this nappe pile are the continental Dent 

Blanche/Sesia nappe system in the hanging wall and the composite Combin zone in the footwall. The 

lower boundaries of these units are represented by the DBBT and the Combin Fault, respectively. The 

Combin Fault and overlying Combin zone have been the focus of several studies which reached 

contradictory conclusions regarding the contributions of orogen-perpendicular thrust-related top-NW and 

normal-sense top-SE shearing, i.e. whether the Combin Fault mainly represents a thrust or a normal fault 

(e.g. Ballèvre and Merle, 1993; Ring, 1995; Reddy et al., 1999; Froitzheim et al., 2006; Pleuger et al., 

2007). Especially the role and importance of extensional top-SE shearing for the exhumation of 

(ultra)high-pressure rocks of the ophiolitic Zermatt-Saas zone in the footwall of the southeastern Combin 

Fault is still a matter of discussion. The nature of the DBBT is less controversial in that it represents a 

major Alpine thrust (Ballèvre et al., 1986; Mazurek, 1986; Oberhänsli and Bucher, 1987; Wust and 

Silverberg, 1989; Pleuger et al., 2007). Large displacement and strain accumulation along the DBBT led 

to formation of strongly sheared rocks at the base of the Dent Blanche nappe. However, no systematic 

analysis of these basal mylonites has been performed so far. In this chapter, I present structural data from 

the Combin Fault to the northwest and southeast of the Dent Blanche nappe and the DBBT to investigate 

the structural evolution of the units and their basal tectonic contacts. Shearing directions and overprinting 

relations were determined in outcrop and thin-section. Oriented samples were taken for further 

microstructural analyses from the base of the Dent Blanche nappe, from within the Tsaté nappe, 

especially its upper and lower parts, and from the Cimes Blanches and Frilihorn nappes (see appendix for 

table of samples and map with sample locations). Eleven subareas have been chosen where representative 

deformation structures and overprinting relations can be well observed. I establish correlations between 

the subareas to constrain the distribution of deformation and the relative chronology of shearing events. I 

propose a sequence of deformation along the Combin Fault and DBBT from the main stage of nappe 
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stacking to post-nappe deformation and collision-related deformation. Finally, I discuss the proposed 

structural evolution in the tectonic context of the Western Alps.   

 

 
Figure 4.1: a) Sketch map of the European Alps with location of the tectonic map in figure 4.2. b) Key to the 

paleogeographic/tectonic configuration in c) and the cross-section in d). c) Sketch of the Late Cretaceous 

paleogeographic/tectonic configuration before the onset of Alpine subduction. d) Cross-section through the Western Alps; after 

Escher et al. (1993); trace of cross-section is indicated in figure 4.2. 

 

4.3 Geological setting 

In the Western Alps of Switzerland and Italy (Fig. 4.1a), continental and oceanic units with different 

paleogeographic origins are exposed (Fig. 4.1b). The Late Cretaceous paleogeographic configuration (e.g. 

Stampfli et al., 2002; Schmid et al., 2004; Handy et al., 2010) was characterized by the continental 

margins of Adria (Austroalpine domain) and Europe (Sub-Penninic domain) in the southeast and 

northwest, respectively, and two oceanic basins, the Piemont-Ligurian ocean (South-Penninic domain) in 

the southeast and the Valais ocean (North-Penninic domain) in the northwest. These in turn were 
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separated by the Briançonnais continental spur (Middle-Penninic domain), an eastern prolongation of the 

Iberian plate. Crustal slices from these different domains were progressively accreted to the Adriatic 

continental margin during SE-directed subduction from the Late Cretaceous onwards. 

The study area is located in southern Switzerland (southern Valais region) and northern Italy (northern 

Aosta region) roughly between the Rhône valley in the north and the Aosta valley in the south (Fig. 4.1a 

and 2). Two major tectonic contacts are exposed in this area, the Combin Fault and the DBBT. The 

DBBT separates the continental Dent Blanche nappe in the hanging wall from the composite Combin 

zone in the footwall. The Combin Fault separates the Combin zone from the continental St. Bernhard 

nappe system in the northwest and the ophiolitic Zermatt-Saas zone in the southeast. The Dent Blanche 

nappe is the structurally highest unit in the Western Alps and is originally derived from the Adriatic 

continental margin. Its southeastern continuation is the Sesia nappe from which it is separated by erosion. 

The Dent Blanche/Sesia nappe system consists of several subnappes which probably originated from 

continental fragments stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting 

(Froitzheim et al., 1996; Dal Piaz et al., 2001; Babist et al., 2006). The Dent Blanche/Sesia nappes consist 

of Paleozoic basement units and Permo-Mesozoic cover sequences preferentially occuring along 

subnappe boundaries and shear zones (Babist et al., 2006; Manzotti, 2011). The Dent Blanche nappe 

comprises two pre-Alpine basement units, the Arolla and Valpelline series, which are different in terms of 

lithologies and their metamorphic evolutions. The Arolla series mainly comprises Permian granitoids and 

gabbros (Bussy et al., 1998; Monjoie et al., 2005) which experienced an Alpine metamorphic imprint. The 

Valpelline series consists of pre-Alpine amphibolite- to granulite-facies metasediments (Gardien et al., 

1994) that also experienced an Alpine overprint. The Dent Blanche nappe reached blueschist-facies 

conditions of ca. 1.6 GPa and 520° C during Alpine subduction (Manzotti et al., 2014). It usually shows a 

strong pervasive greenschist-facies overprint, especially along shear zones (Oberhänsli and Bucher, 1987; 

Manzotti, 2014). On a regional scale, the Alpine overprint within the Dent Blanche/Sesia nappe system 

increases from northwest to southeast due to SE-directed subduction of the units so that the Sesia nappe 

records eclogite-facies conditions around 2.0 GPa and 550° C (e.g. Lardeaux and Spalla, 1991; Regis et 

al., 2014). The age of this high-pressure imprint has been dated at ca. 70 – 65 Ma (e.g. Inger et al., 1996; 

Rubatto et al., 1999) but has been proposed to have started at ca. 85 with several distinct pressure peaks 

(Rubatto et al., 2011; Regis et al., 2014; Fig. 4.3). According to structural and geochronological 

investigations by Babist et al. (2006) the Sesia nappe was mainly exhumed before 45 Ma during 

transpressional shearing and, subsequently, in the footwall of the Ometto Shear Zone (Fig. 4.3). The 

Combin zone below the Dent Blanche nappe is a composite unit comprising the ophiolitic Tsaté nappe 

and thin metasedimentary sequences of continental affinity, the Cimes Blanches and Frilihorn nappes. 

The Tsaté nappe consists of a mélange of Jurassic to Cretaceous calcschists, metabasites, and 

serpentinites derived from the Piemont-Ligurian oceanic domain and probably represent a former 

accretionary wedge at the Adriatic continental margin (Sartori, 1987; Marthaler and Stampfli, 1989). The 

Cimes Blanches and Frilihorn nappes occur as thin dismembered sheets along the base and structurally 

higher up in the Combin zone and consist of successions of Permo-Mesozoic sediments comprising 

conglomerates, quartzites, marbles, and dolomites (Sartori, 1987; Vannay and Allemann, 1990). They 
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may represent sheared-off cover sequences from the internal part of the Briançonnais continental spur but 

also an origin from more internal continental crust, e.g. the Dent Blanche/Sesia nappe system (Pleuger et 

al., 2007), has been discussed. 

 

 
Figure 4.2: Tectonic map of the study area and adjacent areas; after Steck et al. (1999); the described subareas are indicated in 

grey ellipses and are numbered according to the order in the text; subareas “Becca d’Aver” and “Cignana” are described in detail 

in chapters 2 and 3, respectively. 

 

The Combin zone reached greenschist- to blueschist-facies conditions during Alpine subduction and 

accretion (Kienast, 1973; Ballèvre and Merle, 1993; Reddy et al., 1999) with peak estimates around 1.2 

GPa and 450° C (Bousquet, 2008) and experienced a pervasive greenschist-facies overprint (Ballèvre and 

Merle, 1993; Negro et al., 2013). Accretion at the southeastern Piemont-Ligurian active margin probably 

took place between 60 – 48 Ma as indicated by Ar/Ar white mica ages by Reddy et al. (2003) (Fig. 4.3). 

These are in agreement with ages between 62 – 55 Ma obtained by Agard et al. (2002) from in-situ Ar/Ar-

dating of phengites within HP metasediments of the Schistes Lustrés complex south of the Aosta valley 

(Fig. 4.3). Rb-Sr ages between 45 – 36 Ma by Reddy et al. (1999) probably reflect greenschist-facies 

recrystallization and reworking of accretion-related structures within the Combin zone (Fig. 4.3). One 

locality within the northwestern lower Combin zone has been dated by Markley et al. (1998) with the 

Ar/Ar method on white mica. The obtained age of 44.5 ± 0.6 Ma probably represents late stages of fabric 

formation and ductile deformation along the northwestern Combin Fault (Fig. 4.3). Protolith ages for the 

Combin zone have not been determined so far. However, U-Pb zircon and Ar/Ar amphibole dating of 
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gabbros from the Gets nappe in the French Prealps further northwest yielded ages around 166 ± 1 Ma 

(Bill et al., 1997). The Gets nappe has been interpreted as a mélange from a shallow and internal part of 

an accretionary prism at the active SE-margin of the Piemont-Ligurian ocean and is located in a similar 

structural position as the Tsaté nappe (Escher et al., 1997). The Combin zone is underlain by the Zermatt-

Saas zone in the southeast and the St. Bernhard nappe system in the northwest. The Zermatt-Saas zone is 

an ophiolitic unit consisting of metabasalts, metagabbros, metaultramafics, and metasediments which are 

derived from the Piemont-Ligurian oceanic domain. Protolith ages have been determined by Rubatto et al. 

(1998) using U-Pb geochronology on magmatic zircons from metagabbros and are around 164 Ma. The 

Zermatt-Saas zone experienced high- to ultrahigh-pressure metamorphism in the Paleocene – Eocene. A 

large spread in available prograde and peak metamorphic ages between ca. 54 – 41 Ma (Bowtell et al., 

1994; Rubatto et al., 1998; Amato et al., 1999; Lapen et al., 2003; Mahlen et al., 2005; De Meyer et al., 

2014; Fig. 4.3) suggests that the Zermatt-Saas zone experienced a prolonged history of HP metamorphism 

and possibly consists of several ophiolite slivers that were assembled in a subduction channel. Peak 

metamorphic conditions between ca. 540° – 600° C and 2.3 – 3.0 GPa have been reported for the Zermatt-

Saas zone in general (Bucher et al., 2005; Angiboust et al., 2009) whereas peak conditions for coesite-

bearing lithologies at the UHP locality at Lago di Cignana have been calculated at ≥ 3.2 GPa and ≤ 600° 

C (Reinecke, 1998; Groppo et al., 2009; Frezzotti et al., 2011). The timing of peak metamorphism within 

these rocks has been dated at ca. 44 – 43 Ma (Rubatto et al., 1998; Gouzu et al., 2006; Fig. 4.3). Dating of 

lower pressure retrogression within the Zermatt-Saas zone yielded ages between 42 – 38 Ma (Amato et 

al., 1999; Cartwright and Barnicoat, 2002; De Meyer et al., 2014; Fig. 4.3). At high structural levels and 

along the Combin Fault, several continental units occur within and on top of the Zermatt-Saas zone. The 

most prominent are the Monte Emilius klippe and Glacier Raffray slice south of the Aosta valley and the 

Etirol-Levaz slice in the western Valtournenche. These continental fragments also show an Alpine 

eclogite-facies imprint and probably represent continental outliers or extensional allochthons within the 

Piemont-Ligurian oceanic domain derived from the Adriatic continental margin (Dal Piaz et al., 2001; 

Beltrando et al., 2010c). Prograde metamorphism dated with Lu-Hf geochronology on eclogites from the 

Etirol-Levaz slice and another fragment near Zermatt yielded ages between 62 – 51 Ma confirming that 

these fragments are derived paleogeographically from a relatively internal position (Faßmer, 2014; Weber 

et al., accepted; Fig. 4.3). The peak of metamorphism in the Etirol-Levaz slice has been dated at ca. 47 – 

45 Ma (Dal Piaz et al., 2001; Beltrando et al., 2010c; Fig. 4.3) which is only slightly older than peak ages 

determined for underlying ophiolitic units. In the northwest, the Combin zone is underlain by the 

continental St. Bernhard nappe system which is derived from Briançonnais continental crust. It consists of 

Paleozoic basement and Mesozoic cover rocks which experienced an Alpine greenschist- to blueschist-

facies overprint (Bearth, 1963; Sartori, 1990). Ductile deformation has been dated by Markley et al. 

(1998) using Ar/Ar geochronology to have occurred between ca. 41 – 36 Ma (Fig. 4.3). Shear zones in the 

footwall limb of the Mischabel fold, a large southeast-closing antiform in the hanging wall of the northern 

Zermatt-Saas zone (e.g. Milnes et al., 1981), have been dated by Cartwright and Barnicoat (2002) with 

the Rb-Sr method at ca. 38 Ma (Fig. 4.3). 
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Figure 4.3: Compilation of metamorphic ages of some major tectonic units in the Swiss-Italian Western Alps. 

 

The paleogeographic origin of the Monte Rosa nappe below the Zermatt-Saas zone is still a matter of 

discussion. It may represent the eclogite-facies part of Briançonnais continental crust (e.g. Escher et al., 

1997; Keller and Schmid, 2001) but has alternatively been attributed to the European continental margin 

(e.g. Froitzheim, 2001; Pleuger et al., 2005) or a distinct continental fragment (Beltrando et al., 2007b). 

Peak pressure conditions reached ca. 2.4 – 2.7 GPa and 550° – 570° C (Gasco et al., 2011) which are very 

similar to general peak metamorphic conditions reported for the Zermatt-Saas zone. The timing of 

eclogite-facies metamorphism has been dated by Lapen et al. (2007) at 42.6 ± 0.6 Ma using U-Pb 

geochronology on rutile (Fig. 4.3). An age of 48 – 47 Ma for an eclogite-facies shear zone overprinting 

basement gneisses has been reported by Villa et al. (2014) supporting the hypothesis of a Briançonnais 

origin (Fig. 4.3). Thin ophiolitic sheets on top of the Monte Rosa nappe, the Balma unit, show Cretaceous 

magmatic zircon ages of 93.4 ± 1.7 Ma which would speak for a Valais origin of these units and therefore 

a more external origin and European affinity of the underlying Monte Rosa nappe (Liati and Froitzheim, 

2006; Herwartz et al., 2008). Cretaceous protolith ages are in conflict with Jurassic ages obtained for the 
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Antrona ophiolite between Monte Rosa and St. Bernhard continental units (Liati et al., 2005) so that the 

paleogeographic affiliations of these units and their relationship to the Zermatt-Saas zone remain 

questionable. Formation of the Vanzone antiform after ca. 32 Ma (Pettke et al., 1999) largely modified the 

geometry of the internal part of the Paleogene nappe stack in the Swiss-Italian Western Alps (Escher et 

al., 1993). 

 

4.4 Deformation structures 

In this section, I describe deformation structures in outcrop and thin-section from 11 exemplary and 

representative subareas along the Combin Fault and DBBT (Fig. 4.2). The areas around Lago di Cignana 

and Becca d’Aver have been described in detail in chapters 2 and 3, respectively. Most of the observed 

deformation in the 11 subareas occurred under greenschist-facies conditions so that the relative 

chronology of deformation is mainly deduced from overprinting relations and the degree of ductility of 

kinematic indicators. The study area has been subdivided into a northwestern and a southeastern realm 

which correspond to the areas to the northwest and southeast of the Dent Blanche nappe. All hand-

specimens and thin-sections were cut parallel to the xz-plane of the finite strain ellipsoid. Lower 

hemisphere stereoplots of the orientation of poles of foliations and stretching lineations for the Combin 

zone and Dent Blanche nappe in the two realms are depicted in figure 4.4. 

In the study area, the Combin zone comprises the ophiolitic Tsaté nappe and the Cimes Blanches and 

Frilihorn nappes which consist of successions of metasediments with continental affinity. The most 

common lithologies within the Tsaté nappe are calcschists and metabasites that experienced a strong 

greenschist-facies overprint. Calcschists in the studied areas consist of varying amounts of white mica, 

quartz, feldspar, calcite, chlorite, and epidote. They can be relatively undeformed but usually display a 

strong mylonitic foliation and metamorphic layering so that especially white mica and quartz occur as 

layers and ribbons. Metabasites usually occur as large bodies within calcschists and display typical 

greenschist-facies assemblages consisting of epidote, actinolite, chlorite, and albite. The Cimes Blanches 

and Frilihorn nappes mainly consist of continental margin sediments like marbles, dolomites, cellular 

dolomites (Rauhwacke), and quartzites. In the direct hanging wall of the DBBT, mostly rocks of the 

Arolla series are exposed. Valpelline series lithologies are exposed along the southeastern DBBT north of 

Lago di Cignana. Alpine deformation along the DBBT led to the development of strongly mylonitic 

fabrics formed under greenschist-facies conditions. Granitoid and gabbroic rocks of the Arolla series have 

often been altered along zones of high strain and as a result of increased deformation-induced fluid flow. 

Primary magmatic assemblages have been replaced by greenschist-facies phases and greater amounts of 

water-bearing minerals. Due to this strong alteration and a strong Alpine greenschist-facies overprint 

within Valpelline series rocks along the DBBT, mylonites of the two subunits have a similar appearance. 

Observed mylonitic foliations in Arolla and Valpelline series rocks often consist of alternating layers of 

quartz + feldspar and white mica + epidote + chlorite. These Alpine fabrics have often been overprinted 

by several stages of subsequent deformation along the DBBT. 
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Figure 4.4: Stereoplots of stretching lineations and poles of foliations as equal area projections in the lower hemisphere for the 

northwestern and southeastern realms; measurements were plotted with the OpenStereo software (Grohmann and Campanha, 

2010). 
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4.4.1 Northwestern realm 

Foliations within rocks of the northwestern Combin zone mainly dip moderately to the southeast. 

Stretching lineations plunge very shallowly and show a maximum to the southeast but also partly strike 

E-W to WSW-ENE. Foliations within the northwestern lower Dent Blanche nappe show a more irregular 

distribution with a main maximum of moderately NNW-dipping foliations and three other maxima 

dipping shallowly to the east, shallowly to moderately to the southwest, and steeply to the south. 

Stretching lineations plunge very shallowly and show two distinct maxima of orientations, a main one 

that strikes WNW-ESE and a second minor one that strikes NW-SE. 

 

4.4.1.1 Subarea 1 – Zinal 

The north easternmost Dent Blanche nappe east of Val de Zinal (Fig. 4.2) has been folded into a large 

NE-facing recumbent fold. Folds with SE-plunging fold axes can be observed in outcrop within quartzitic 

gneisses of the lowermost Dent Blanche nappe. Fold axes plunge shallowly to the southeast and are 

parallel stretching lineations. Fold axial surfaces dip to the southeast and L-tectonites can be observed in 

some spots. Foliations within structurally lower calcschists of the Tsaté nappe also dip to the southeast 

and therefore probably represent an axial surface cleavage to Dent Blanche nappe folds. Locally, these 

folds have been overprinted by top-SE shearing along shallowly-dipping shear planes (Fig. 4.5a). White 

mica is concentrated along these shear planes, has been deformed ductiley and partly replaced by chlorite 

(Figs. 4.6a and b). Associated stretching lineations plunge to the southeast. Top-SE shearing led to 

refolding and elongation of previously folded layers depending on their orientation to shear planes. 

Shallowly-dipping top-SE shear planes have locally been overprinted by steeper top-NW shear bands that 

can be observed in thin-section (Fig. 4.6b). In an outcrop in the footwall of the observed folds, 

macroscopic shear bands within heterogeneous metasediments of the Tsaté nappe mainly show top-SE 

shear senses (Fig. 4.5b). These extensional top-SE structures are sometimes associated with NW-vergent 

folds with SE-plunging fold axes. Sheared layers have been folded with limbs following earlier 

extensional shear bands. Offset along the lower limb of a drag fold indicates top-NW shearing whereas 

offset along its upper limb shows the opposite transport direction (Fig. 4.5c). Top-NW shearing seems to 

have mainly reactivated and overprinted earlier top-SE structures but also may have been partly coeval 

with and developed progressively from top-SE shearing since no clear crosscutting relations can be 

observed. Steeply-dipping and brittle top-SE shear planes cut the layering in the same outcrop suggesting 

late normal faulting after cessation of ductile deformation (Fig. 4.5d). Macroscopic top-SE shear senses 

can also often be observed within the Tsaté nappe in the eastern Val de Zinal near Lac d’Arpitetta. 

Calcschists of the upper Tsaté nappe show abundant ductile top-SE shear bands (Fig. 4.5e). 

In the upper Val de Zinal, the upper Tsaté nappe and lower Dent Blanche nappe show abundant top-SE 

shear senses overprinting the original basal thrust. Top-SE structures in turn seem to have been partly 

overprinted by a non-penetrative phase of top-NW shearing. Structures related to a brittle top-SE 

overprint can also be observed. 
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Figure 4.5: Deformation structures in outcrop in the northwestern realm. a) Sample FD311: hand-specimen of a quartz-rich 

gneiss from the lowermost Dent Blanche nappe east of Val de Zinal (subarea 1); preexisting folds with SE-plunging fold axes 

have been overprinted by top-SE shearing along shallowly-dipping shear planes; Fol (182/22) Lin (146/18). b) Heterogeneous 

metasediments of the upper Tsaté nappe east of Val de Zinal (subarea 1) showing ductile top-SE shear bands. c) Same outcrop as 

before (subarea 1) but the metasediments have additionally been affected by NW-vergent folding probably postdating the 
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aforementioned top-SE shearing; the lower limb of the drag fold indicates NW-directed shearing. d) Same outcrop as before 

(subarea 1); the metasediments are cut by more steeply dipping top-SE brittle shear planes indicating a late top-SE overprint. e) 

Calcschists of the upper Tsaté nappe in the eastern Val de Zinal near Lac d’Arpitetta (subarea 1) showing ductile top-SE shear 

bands. f) Calcschists of the lower Tsaté nappe on the eastern side of Lac de Moiry (subarea 2) showing moderately to steeply 

dipping top-SW shear bands.  g) Sheared quartz layer within silicious marbles of the Cimes Blanches nappe east of Lac de Moiry 

(subarea 2) indicating ductile top-SW shearing. h) Sample FD337: hand-specimen from the base of the Tsaté nappe east of Lac 

de Moiry (subarea 2) showing discrete shear bands within a quartz layer and surrounding calcschists indicating low-grade 

greenschist-facies top-W deformation; Fol (177/27) Lin (259/07). i) Sample FD280: sheared quartz lense in white mica-rich 

schist from the Cimes Blanches nappe west of Lac des Dix (subarea 4) indicating ductile top-WSW shearing; Fol (342/79) Lin 

(69/10). j) Sheared white quartz layer in a greyish quartzitic matrix at Col des Roux west of Lac des Dix (subarea 4) indicating 

ductile top-E shearing. k) Ductile to brittle top-SW shear bands within laminated marbles north of Lac de Mauvoisin in the Val 

de Bagnes (subarea 5). l) Ductile to brittle top-SW shear bands within laminated marbles north of Lac de Mauvoisin in the Val de 

Bagnes (subarea 5). m) Calcschists of the upper Tsaté nappe near the village Ollomont in the Valpelline (Subarea 6) showing 

ductile top-SE shear bands. n) Calcschists of the Tsaté nappe near the village Allein (subarea 7) showing mainly ductile top-SE 

shear bands but also anastomosing shear zones and subordinate top-SE brittle shear planes. o) Calcschists of the Tsaté nappe near 

Allein (subarea 7) showing ductile top-NW shear bands. 
 

4.4.1.2 Subarea 2 – Moiry 

At Lac de Moiry in the Val de Moiry (Fig. 4.2), foliations within rocks of the lower Combin zone dip to 

the south to southeast and stretching lineations approximately trend E-W. Close to the Combin Fault, 

kinematic indicators in outcrop and thin-section mostly give top-(W)SW shear senses as indicated by 

abundant shear bands. Top-SW shear bands can often be observed within calcschists and show different 

inclinations from moderately to steeply dipping (Fig. 4.5f) and a range from ductile to semi-ductile 

characters. In an outcrop east of the lake, a sheared quartz layer within silicious marbles shows a 

sigmoidal shape indicating highly ductile deformation due to SW-vergent shearing (Fig. 4.5g). In a 

sample from an outcrop in the footwall, a sheared quartz layer and shear bands within surrounding 

calcschists indicate top-W shearing (Fig. 4.5h). Strain was localized into discrete shear bands within 

quartz suggesting relatively low-grade greenschist-facies deformation. The same sample shows ductile 

shear bands within the calcite/white mica matrix but brittle microfracturing of feldspar in thin-section 

(Fig. 4.6c) suggesting temperatures below ca. 450° C during deformation (Passchier and Trouw, 2005). 

Antithetic `bookshelf´ microfracturing can sometimes be observed and also indicates low-grade 

conditions below ca. 450° C (Pryer, 1993). Microfractures are often filled with calcite. 

Along the eastern side moraine of the former Moiry glacier, a cross-section with calcschists in the 

footwall and metabasites in the hanging wall is exposed. Structurally lower calcschists often display steep 

top-SE shear zones cutting through the mylonitic foliation. Close to the DBBT, these calcschists are 

overlain by a nappe of folded greenschists. The northwestern exposure of these greenschists suggests a 

NW-closing sheath fold character of this subnappe, the formation of which was most likely related to 

NW-vergent shearing. Stretching lineations within the uppermost Tsaté nappe and lowermost Dent 

Blanche nappe trend NNW-SSE. No kinematic indicators could be found within gneisses of the Arolla 

series near the Cabane de Moiry. 

The lower Combin zone at Lac de Moiry is characterized by top-W and top-SW shear senses which 

probably formed under decreasing metamorphic conditions as suggested by different degrees of ductility. 

At structurally higher levels, deformation structures related to top-SE shearing within calcschists and top-

NW shearing within overlying metabasites can be observed. 
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4.4.1.3 Subarea 3 – Arolla 

In the area around and north of Arolla in the southern Val d’Hérens (Fig. 4.2), foliations within rocks of 

the Dent Blanche and Tsaté nappes mostly dip to the south to southeast, stretching lineations dominantly 

trend WNW-ESE. Mylonites in the hanging wall of the DBBT often give top-W shear senses as indicated 

for example by a grain shape preferred orientation within quartz layers (Fig. 4.6d). The Dent Blanche 

nappe has been folded into open folds with mostly NE- to E-plunging axes deforming older foliations and 

stretching lineations. As a result of this late folding, the mylonitic foliation has an often steep and 

overturned orientation. A crenulation cleavage with dominantly E-W trending axes can often be observed 

to overprint greenschist-facies foliations. A similar style of deformation can be observed within 

heterogeneous metasediments of the underlying Tsaté nappe along the road to Arolla which have also 

been folded into mainly open folds with E-W trending axes. An approximately E-W striking crenulation 

cleavage can also be observed to have formed within these rocks. Within Tsaté calcschists further north 

along the road, two different orientations of SE-plunging stretching lineations with an angle of ca. 20° in 

between can be observed. These calcschists are often strongly mylonitic but a bulk shear sense could not 

unambiguously be determined since top-NW and top-SE shear senses can be observed. Calcschists have 

sometimes been folded into SE-vergent folds. 

In the area around and north of Arolla, basal mylonites of the Dent Blanche nappe show top-W shear 

senses whereas calcschist mylonites of the Tsaté nappe show top-NW as well as top-SE shear senses. 

Both units have been folded and display crenulations due to late-stage compressional deformation. 

 

4.4.1.4 Subarea 4 – Dix 

West of Lac des Dix in the southern Val d’Héremence (Fig. 4.2), metasediments of the Cimes Blanches 

nappe are exposed. At the northern end of the lake, foliations dip moderately to steeply to the northwest. 

Exposed metasediments consist of quartz and white mica and have a schistose fabric. Stretching 

lineations approximately trend E-W whereas in some samples two distinct stretching lineations with an 

angle of ca. 25° in between can be distinguished. Kinematic indicators associated with these lineations 

indicate top-W (Fig. 4.6e) and top–WSW (Fig. 4.6f) shearing, respectively. Both shear directions show 

very similar microstructures. Quartz is usually very fine-grained within these schists indicating prolonged 

grain-size reduction during ongoing deformation and therefore large amounts of strain (Mitra, 1978). 

Shear bands in thin-section are sometimes associated with quartz ribbons showing bulging 

recrystallization, subgrain formation, and patchy undulose extinction (Fig. 4.6g) indicating temperatures 

of 300 – 400°C during ductile deformation (Stipp et al., 2002; Passchier and Trouw, 2005). Subordinate 

conjugate top-E shear bands suggest a minor pure shear component during bulk top-W shearing. On a 

hand-specimen scale, sheared quartz lenses within white mica-rich schists also indicate top-WSW 

shearing under ductile conditions (Fig. 4.5i). At Col des Roux further to the west, quartzitic rocks of the 

Cimes Blanches nappes are exposed. Foliations variably dip to the southeast to southwest and stretching 

lineations again trend E-W. In thin-section, a shear sense could not be determined. In outcrop, a sheared 

white quartz layer within a greyish quartzitic matrix indicates ductile top-E shearing (Fig. 4.5j). 
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Deformation structures within Cimes Blanches metasediments in the area west of Lac des Dix indicate 

ductile top-W and top-WSW shearing associated with two distinct stretching lineations. Subordinate, 

probably conjugate top-E shearing can also be observed. 

 

 
Figure 4.6: Photomicrographs of deformation structures from the northwestern realm; all thin-sections were cut parallel to the 

xz-plane of the finite strain ellipsoid; all pictures were taken with crossed polarizers; values for dip directions and angles of 

foliations as well as plunge directions and angles of stretching lineations are given. a) Sample FD311: quartz-rich gneiss from the 

lowermost Dent Blanche nappe east of Val de Zinal (subarea 1); same sample as in figure 4.5a; white mica is concentrated along 

shear planes between folded quartz-rich parts; asymmetry of larger white mica grains indicates top-SE shearing; Fol (182/22) Lin 

(146/18). b) Sample FD311: same sample as before (subarea 1) with folded quartz-rich layer in the upper part and white mica-

rich layer in the lower part which corresponds to shear planes in figures 4.5a and 4.6a; shear bands within mica-rich part indicate 

top-NW shearing. c) Sample FD337: calcschist from the lower Tsaté nappe east of Lac de Moiry (subarea 2) showing ductile top-

WSW shear bands within calcite and white mica-rich parts and brittle fracturing of feldspar clasts; Fol (177/27) Lin (259/07). d) 

FD118: orthogneiss from the base of the Dent Blanche nappe near Arolla (subarea 3); GSPO of quartz grains within quartz layer 

indicates top-W shearing; Fol (272/23) Lin (272/23). e) Sample FD281: metasediment from the Cimes Blanches nappe west of 

Lac des Dix (subarea 4) showing highly ductile top-W shear bands; quartz is very fine-grained indicating large amounts of strain; 

Fol (340/63) Lin (274/27). f) Sample FD280: metasediment from the same locality as the sample before (subarea 4) showing top-

WSW shear bands; Fol (342/74) Lin (69/10). g) Sample FD280: same sample as before (subarea 4) showing top-WSW shear 

bands; the quartz ribbon in the upper part of the section shows bulging recrystallization, subgrain formation, and patchy undulose 

extinction indicating temperatures of ca. 300 – 400° C during ductile deformation (Stipp et al., 2002; Passchier and Trouw, 

2005). h) Sample FD06: metasediment of the upper Tsaté nappe east of Ollomont in the Valpelline (subarea 6) showing a strong 

metamorphic layering and shallowly-dipping top-SE shear bands; Fol (128/20) Lin (128/20). i) Sample FD03: calcschist from the 

Tsaté nappe near Allein (subarea 7) showing ductile top-SE shear bands; associated quartz grains display undulose extinction, 

strong flattening, and rare bulging recrystallization indicating temperatures around or below 400° C during ductile deformation 

(Stipp et al., 2002); Fol (98/25) Lin (122/19). 
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4.4.1.5 Subarea 5 – Mauvoisin 

The Cimes Blanches nappe north of Lac de Mauvoisin in the Val de Bagnes (Fig. 4.2) mainly consists of 

massive, laminated, or foliated marbles. Foliations dip moderately to steeply to the northwest and 

stretching lineations plunge to the (W)SW. In outcrop, kinematic indicators consistently show top-SW 

shear senses. Ductile to brittle shear bands and faults within finely-laminated marbles/dolomites indicate 

SW-directed shearing (Figs. 4.5k and l). The varying degree of ductility along shear planes is probably 

due to different viscosities of the (sub)mm- to cm-thick layers which are most likely the result of varying 

degrees of dolomitization. Sigma-shaped calcite clasts can sometimes be observed within marbles and 

also indicate top-SW shearing. White calcite layers within rather massive grey marbles have sometimes 

been deformed into upright, tight to isoclinal folds. A weak foliation within host marbles represents an 

axial surface cleavage. 

North of Lac de Mauvoisin, the Cimes Blanches nappe is characterized by top-SW shearing within 

calcitic rocks. 

 

4.4.1.6 Subarea 6 – Ollomont 

Near the village Ollomont in the Valpelline (Fig. 4.2), strongly mylonitic rocks of the lowermost Dent 

Blanche nappe can be studied. Foliations within these rocks dip to the east. The Tsaté nappe in the 

footwall of the DBBT consists mainly of calcschists with minor greenschists and serpentinite. Foliations 

dip to the southeast. Stretching lineations in both units plunge shallowly to the (E)SE. SE-dipping shear 

bands can often be observed within Tsaté calcschists in outcrop. Quartz layers and ribbons within 

calcschists have occasionally been folded isoclinally and then overprinted by ductile top-SE shear bands 

(Fig. 4.5m). In some spots, SE-vergent folds and an associated crenulation cleavage with SW-plunging 

axes can be observed. In thin-section, schists of the Tsaté nappe often show a distinct metamorphic 

layering and exhibit top-SE shear senses as indicated by asymmetrically deformed white mica (Fig. 4.6h). 

In contrast, rocks of the Arolla series in the immediate hanging wall of the DBBT display top-WNW 

shear senses in thin-section (Fig. 4.7a). A crenulation cleavage with NE-plunging axes can often be 

observed to overprint the penetrative fabric in some parts. 

 

Ollomont mylonite 

In the following, I describe the structural and metamorphic evolution of one mylonite (“Ollomont 

mylonite”) from the lowermost Dent Blanche nappe. Mineral compositions were measured with the Jeol 

JXA-8200 superprobe at Steinmann-Institut, University of Bonn (see appendix for electron microprobe 

analyses). The whole rock chemistry, which was used as input for pseudosection modelling, was 

determined with XRF analysis at the Steinmann-Institut and is shown in table 4.1.  

The penetrative mylonitic foliation of the sample dips to the east. The stretching lineation is an aggregate 

lineation that plunges shallowly to the ESE. The mylonitic foliation has been overprinted in some parts by 

a SE-dipping crenulation cleavage with NE-plunging axes (Figs. 4.7b and d). The sample consists of 

quartz + albite + white mica + epidote + chlorite + titanite (+ rutile). The observed layering is due to 

different ratios of phases within layers whereas quartz has been completely segregated into 
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monomineralic layers and ribbons. Feldspar is almost pure albite (96.5 – 98.8 mol%). White mica is 

phengitic with 3.35 – 3.47 Si p.f.u.. Chlorite preferentially occurs as intergrowths with white mica. Most 

epidote grains display a distinct 4-phase zonation from core to rim with 1) allanite in the cores 2) Fe-rich, 

Al-poor epidote 3) Fe-poor, Al-rich epidote and 4) Fe-rich, Al-poor epidote (Fig. 4.7e). In some parts, a 

grain shape preferred orientation of quartz grains defines an oblique foliation indicating top-WNW 

shearing (Fig. 4.7a). Flattened quartz grains are also often parallel to crenulation planes and define an 

axial surface foliation to folds in microlithons. In one spot, the mylonitic foliation is cut by a shallow 

microthrust along a quartz layer slightly oblique to the main foliation (Fig. 4.7c). In the hanging wall of 

this microthrust, a crenulation cleavage formed due to shortening parallel to the transport direction 

whereas in the footwall, the primary foliation has been deformed into drag folds. The “drag” direction of 

folds indicates top-WNW movement along the thrust. The microthrust itself has partly been overprinted 

by the crenulation cleavage suggesting that thrust activity and formation of drag folds in the footwall 

partly predates formation of the compressional crenulation cleavage. 

 

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O LOI Sum 

59.01 0.70 17.67 5.16 0.09 2.11 6.71 3.29 1.47 1.96 98.62 

 

Table 4.1: Whole rock composition of the Ollomont mylonite determined with XRF analysis. 

 

To constrain PT-conditions for the observed deformation structures and the metamorphic evolution of the 

Ollomont mylonite, equilibrium phase diagrams were calculated with the THERIAK-DOMINO software 

package (De Capitani and Petrakakis, 2010) and the JUN92 database which is based on thermodynamic 

data by Berman (1988). Oxygen was added to the bulk composition to stabilize epidote which occurs as a 

major phase in the sample. The observed mineral assemblage quartz + albite + phengite + epidote + 

chlorite is stable over a wide range of PT conditions according to thermodynamic modelling and is 

bounded by the stability of biotite towards higher temperatures (Fig. 4.7f). The Si content in phengite and 

the albite content in plagioclase both decrease with increasing temperatures which restricts the PT path 

for the modelled mylonite to rather cold exhumation (Fig. 4.7f). Along the retrograde path, paragonite and 

pargasitic amphibole are also stable according to the modelling but cannot be observed in the mylonite. 

Chlorite is stable below ca. 0.45 GPa and 330° C along the assumed PT path. The modelled stability of 

epidote is characterized by a decreasing epidote component in zoisite and therefore the Fe-content with 

increasing temperatures and then another increase. In the phase diagram, the epidote component in zoisite 

is indicated by shadings of green with lighter green indicating lower epidote (Fe) contents. The observed 

4-stage zonation in epidote may be the result of progressive epidote growth along the retrograde path 

which runs through areas of higher and lower Fe contents (Fig. 4.7f). Allanite in cores also suggests that 

epidote growth was coupled to increased fluid mobility and/or fluid influx on the retrograde path 

(Konrad-Schmolke et al., 2011b). Partial replacement of white mica and the modelled low-grade stability 

suggest that chlorite grew relatively late on the retrograde path. However, there are no microstructural 

observations for post-kinematic growth of chlorite so that deformation, i.e. formation of the crenulation 

cleavage, is interpreted to have occurred under low-grade conditions.  
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Figure 4.7: Structures and metamorphism in a mylonite (“Ollomont mylonite”: samples FD07, FD349 – FD351) from east of the 

village Ollomont in the Valpelline of Italy (subarea 6). a) Photomicrograph showing a slight crenulation cleavage and a sheared 

quartz layer; GSPO of quartz grains indicates top-WNW shearing. b) Photomicrograph showing a more pronounced crenulation 

cleavage. c) Hand-specimen showing a small-scale thrust in the middle, a crenulation cleavage in the upper part, and drag folds 

directly below the microthrust. Drag direction of the folds indicates top-WNW shearing along the thrust. The microthrust itself 

has partly been overprinted by the crenulation cleavage suggesting that thrust activity and formation of drag folds in the footwall 

partly predates formation of the compressional crenulation cleavage. d) Hand-specimen showing a pronounced crenulation 

cleavage in its upper part and the primary mylonitic foliation in its lower part due to strong strain partitioning. e) BSE-picture of 

zoned epidote and microprobe analysis of each of the 4 zones; an allanite-rich core is surrounded by distinct zones of relatively 

Fe-rich, Fe-poor, and another Fe-rich epidote. f) Equilibrium phase diagram calculated with the THERIAK-DOMINO software 

package (De Capitani and Petrakakis, 2010) with excess water and additional O2; see text for discussion. 

 



 

- 75 - 

 

The observed quartz GSPO within monomineralic layers most likely formed contemporaneous with the 

greenschist-facies metamorphic layering and the penetrative mylonitic foliation and therefore on the 

retrograde path. Flattened quartz grains sometimes forming an axial surface cleavage to the crenulation 

indicate ductile quartz deformation during late-stage compression and therefore temperatures above ca. 

300° C (e.g. Stipp et al., 2002). Chlorite and quartz deformation together indicate formation of the 

crenulation cleavage between ca. 300 – 330° C. Formation of the crenulation cleavage was probably owed 

to differential slip along layers as suggested by strong strain partitioning observed on a hand-specimen 

scale (Fig. 4.7d). Late-stage shortening was most likely related to renewed thrusting under low-grade 

greenschist-facies conditions as suggested by microthrust activity. 

 

In the Ollomont mylonite, the observed deformation structures, mineral assemblage, and mineral 

compositions are the result of a structural and metamorphic evolution on the retrograde path, i.e. during 

exhumation of the Dent Blanche nappe. Exhumation along the DBBT occurred during thrusting and 

associated top-WNW shearing whereas mineral compositions suggest rather cold exhumation. A late 

stage of renewed thrusting and associated NW-SE shortening under low-grade greenschist-facies 

conditions affected the DBBT near Olloment. Whereas basal mylonites show top-WNW shearing, the 

underlying Tsaté nappe is characterized by dominant top-SE shearing. 

 

4.4.1.7 Subarea 7 – Allein 

In the area around the village Allein northwest of Aosta (Fig. 4.2), a cross-section from the Cimes 

Blanches nappe into the Dent Blanche nappe is exposed. The dip of foliations ranges from east- to south-

dipping whereas stretching lineations uniformly plunge to the southeast. The Cimes Blanches nappe near 

Allein mainly comprises marbles and metaconglomerates. Kinematic indicators within these rocks often 

indicate top-SE shearing in outcrop. Calcschists of the overlying Tsaté nappe also show dominantly top-

SE shear senses in outcrop (Fig. 4.5n) and only subordinate top-NW shear bands (Fig. 4.5o). Shear bands 

in outcrop partly appear as anastomosing shear zones and, in more competent layers, have an already 

semi-ductile to brittle character (Fig. 4.5n). In thin-section, top-SE shear bands within calcschists are 

associated with quartz grains showing undulose extinction, strong flattening, and occasionally bulging 

recrystallization indicating temperatures around or below 400° C during ductile deformation (Fig. 4.6i; 

Stipp et al., 2002). SE-vergent folds can often be observed within calcschists deforming an older fabric 

and stretching lineation and partly forming a crenulation cleavage. Along the DBBT, mylonitic 

greenschist-facies metagranites of the Arolla series as well as calcschists and greenschists of the Tsaté 

nappe are exposed. A crenulation cleavage with ENE – WSW trending axes can sometimes be observed 

within rocks of the Arolla series. Kinematic indicators could not be found within rocks of the lowermost 

Dent Blanche nappe. 

Rocks of the Combin zone near Allein show predominantly top-SE shear senses and subordinately top-

NW shear senses. 

 

 



 

- 76 - 

 

4.4.2 Southeastern realm 

Most foliations within rocks of the southeastern Combin zone dip shallowly to moderately to the 

southeast. Stretching lineations show a range of shallowly plunging orientations from southeast to north 

but most of them approximately trend NW-SE. Foliations within the southeastern lower Dent Blanche 

nappe mostly dip to the west at a shallow angle. Most stretching lineations trend NW-SE and plunge 

shallowly. 

 

 
Figure 4.8: Deformation structures in outcrop in the southeastern realm. a) Quartzitic schists of the Cimes Blanches nappe west 

of Gran Tournalin in the eastern Valtournenche (subarea 9) showing ductile top-SE shear bands. b) Same locality as before 

(subarea 9); sheared quartz clast within impure quartzitic schists of the Cimes Blanches nappe indicating ductile top-SE shearing. 

c) Sample FD270: greenschist-facies mylonite from the base of the Dent Blanche nappe southwest of Breuil (subarea 10); the 

mylonitic foliation has been folded into NW-vergent folds which subsequently have been cut by discrete top-NW shear bands; 
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ductile deformation of quartz ribbons suggests temperatures above ca. 300°C during formation of late top-NW shear bands; Fol 

(270/63) Lin (326/47). d) Greenschist-facies mylonite from the base of the Dent Blanche nappe north of Breuil (subarea 10); 

discrete semi-ductile to brittle top-NW shear planes cut the mylonitic foliation indicating late top-NW shearing through the 

ductile/brittle transition along the DBBT. e) Highly ductile top-NW shear bands within calcschists of the lower Tsaté nappe north 

of Breuil (subarea 10). f) More discrete top-NW shear bands within calcschists of the Tsaté nappe just below the DBBT north of 

Breuil (subarea 10). g) Foliated metabasites of the upper Tsaté nappe north of Breuil (subarea 10) folded into open to isoclinal 

folds with NW-plunging axes parallel to stretching lineations. h) Folded metasediments of the Tsaté nappe on the northern side of 

the Zmutt valley west of Zermatt (subarea 11); folds with SW-NE trending fold axes deform a preexisting foliation and stretching 

lineation and are associated with formation of a SW-NE trending crenulation. i) Exposed DBBT on the northern side of the Zmutt 

valley west of Zermatt (subarea 11) with metasediments of the Tsaté nappe in the footwall and mylonites of the Dent Blanche 

nappe in the hanging wall; the contact is not folded but has a planar character. j) Top-NW shear bands within calcschists of the 

Tsaté nappe on the southern side of the Zmutt valley (subarea 11). k) Quartzitic schists of the Cimes Blanches nappe northwest of 

Zermatt (subarea 11) showing semi-ductile top-NE shear bands. l) Folds with (W)SW-plunging fold axes within metasediments 

of the uppermost Tsaté nappe in the direct footwall of the DBBT northwest of Zermatt (subarea 11) deforming a preexisting 

foliation and stretching lineation; folding cannot be traced into the overlying Dent Blanche nappe.    

 

4.4.2.1 Subarea 8 – Trois Villes 

In the area near the village Trois Villes northeast of Aosta (Fig. 4.2), the Dent Blanche/Combin contact 

has been deformed on the map-scale into a tight to isoclinal fold. Foliations within Arolla gneisses near 

Trois Villes are corrugated so that they variably dip to the S to WNW. Stretching lineations dominantly 

trend W-E and subordinately NW-SE. The exposed rocks consist of white mica, quartz, and minor 

feldspar, chlorite, and epidote. Most samples show top-W to –NW shear bands in thin-section. These 

shear bands deform quartz and white mica in a ductile manner (Fig. 4.9a). Grain sizes are often strongly 

reduced within strained areas. Quartz grains show undulose extinction, deformation lamellae, and 

subgrain formation (Fig. 4.9b). The dominant recrystallization mechanism is bulging recrystallization. 

These microstructures indicate ductile deformation at temperatures below 400° C (Stipp et al., 2002; 

Passchier and Trouw, 2005).  

Mylonites from the base of the Dent Blanche nappe near Trois Villes record ductile top-(N)W 

deformation under low-grade greenschist-facies conditions. 

 

4.4.2.2 Subarea 9 – Tournalin 

In the area west of the peak Gran Tournalin in the eastern Valtournenche (Fig. 4.2), rocks of the Cimes 

Blanches and Tsaté nappes are exposed. The Cimes Blanches nappe mainly consists of marble and 

dolomite with quartzitic strata of several meters thickness. Quartzitic rocks contain varying amounts of 

white mica and display schistose to tabular fabrics. Foliations consistently dip to the east and stretching 

lineations plunge to the southeast. In outcrop, shear bands within foliated quartzitic rocks (Fig. 4.8a) and 

the sigmoidal shape of sheared quartz clasts within impure quartzites (Fig. 4.8b) indicate top-SE shearing. 

In thin-section, highly ductile top-SE shear bands within white mica-rich quartzites also indicate SE-

vergent shearing (Fig. 4.9c). Quartz is relatively coarse-grained in areas between shear bands, very fine-

grained in strained areas, and the dominant recrystallization mechanism is bulging recrystallization 

suggesting temperatures below ca. 400°C (Stipp et al., 2002). 

The overlying Tsaté nappe mainly consists of greenschists and minor serpentinite and calcschists. 

Foliations variably dip to the W, SW, and SSE suggesting large-scale folding of the Combin zone in this 

area. Stretching lineations dominantly trend NW-SE. Macroscopic kinematic indicators could not be 

observed within the Tsaté nappe. In thin-section, rare shear bands in greenschists indicate bulk top-NW 
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shearing. A sample from a foliation-parallel quartz layer within greenschists close to the crest between 

Gran and Petit Tournalin exhibits the same orientation of stretching lineation as surrounding greenschists. 

In thin-section, textural domains can be observed and the dominant recrystallization mechanism is 

bulging recrystallization (Fig. 4.9d). In one domain, larger grains also show patchy undulose extinction 

and subgrain formation (Fig. 4.9d). A weakly developed GSPO in this domain suggests top-NW transport 

and may indicate that subgrain rotation recrystallization was also active during dynamic recrystallization. 

All these microstructures together suggest ductile deformation at temperatures around ca. 400° C (Stipp et 

al. 2002). According to these observations, top-NW shearing may have occurred at slightly higher-grade 

conditions than top-SE shearing. It is, however, not trivial to deduce a sequence of deformation from the 

inferred temperature conditions since thrusting can place hotter rocks on top of colder ones.  

West of Gran Tournalin in the eastern Valtournenche, rocks of the Cimes Blanches nappes show ductile 

top-SE shear senses whereas rocks at higher structural levels within the Tsaté nappe dominantly show 

top-NW shear senses. Overprinting relations between these two opposing shear directions could not be 

observed. Quartz microstructures suggest that both, top-SE and top-NW shearing occurred at similar 

medium-grade greenschist-facies conditions. 

 

4.4.2.3 Subarea 10 – Breuil 

In the western upper Valtournenche near the town Breuil (Cervinia) (Fig. 4.2), the DBBT is well-exposed 

over a long-distance. In this area, rocks of the Arolla series crop out in the direct hanging wall of the 

contact. 

In the area southwest of Breuil, foliations within rocks of the lowermost Dent Blanche nappe dip to the 

west to northwest. Stretching lineations plunge to the NW. Kinematic indicators within these basal 

mylonites consistently indicate top-NW shearing. In thin-section, quartz grains show undulose extinction 

and subordinate bulging recrystallization suggesting low-grade conditions well below 400° C during 

deformation (Fig. 4.9e; Stipp et al., 2002). On a hand-specimen and thin-section scale, the preexisting 

greenschist-facies foliation and metamorphic layering has sometimes been folded into NW-vergent folds 

(Figs. 4.8c and 4.9f). These folds in turn are cut and offset by discrete top-NW shear bands. Within these 

shear bands, the grain size is often strongly reduced indicating large strains (Fig. 4.8f). Quartz ribbons are 

often still ductiley deformed along these shear bands (Fig. 4.8c) suggesting activity at temperatures still 

above ca. 300° C (Stipp et al., 2002). 

In the area north of Breuil, foliations within the Dent Blanche nappe dip to the northeast to east and, near 

Croce di Carrel, to the NW to N. Stretching lineations consistently trend NW-SE. Southwest of Croce di 

Carrel, semi-ductile to brittle shear planes cut through a greenschist-facies fabric and partly offset quartz 

layers in a brittle manner (Fig. 4.8d) indicating very low-grade conditions around and below ca. 300° C 

during NW-directed shearing. In thin-section, basal mylonites often show a metamorphic layering 

consisting of quartz + feldspar and white mica + epidote + chlorite. This fabric has often been overprinted 

by top-NW shear bands which often have a highly ductile character (Fig. 4.9g) but also offset more 

competent, e.g. epidote-rich layers in a rather semi-ductile manner (Fig. 4.9h). Conjugate top-NW and 

top-SE shear bands in one sample suggest a pure shear component during bulk top-NW shearing (Fig. 
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4.9i). Semi-ductile top-SE shear bands can be observed to cut through the greenschist-facies foliation in 

some samples. These structures suggest NW – SE directed crustal extension during a late stage of 

deformation along the DBBT. Top-NW shear senses can also be observed at all structural levels within 

the Combin zone north of Breuil in outcrop and thin-section. These have a ductile character at lower 

structural levels (Fig. 4.8e) but become more localized and discrete at higher structural levels (Fig. 4.8f). 

Foliated metabasites close to the DBBT near Croce di Carrel have been folded into open to isoclinal folds 

with NW-plunging axes parallel to stretching lineations (Fig. 4.8g). 

 

 
Figure 4.9: Photomicrographs of deformation structures from the southeastern realm; all thin-sections were cut parallel to the xz-

plane of the finite strain ellipsoid; all pictures were taken with crossed polarizers; values for dip directions and angles of 

foliations as well as plunge directions and angles of stretching lineations are given. a) Sample FD21: mylonite from the base of 
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the Dent Blanche nappe near the village Trois Villes (subarea 8) showing top-W shear bands; grain sizes are strongly reduced 

within strained areas; Fol (229/20) Lin (268/16). b) Sample FD21: same sample as before; quartz shows undulose extinction, 

deformation lamellae, subgrain formation, and bulging recrystallization indicating temperatures below 400° C (Stipp et al., 2002; 

Passchier and Trouw, 2005). c) Sample FD233: metasediment from the Cimes Blanches nappe west of Gran Tournalin in the 

eastern Valtournenche (subarea 9) consisting of quartz and white mica and showing ductile top-SE shear bands; the grain size is 

strongly reduced along shear bands and the dominant recrystallization mechanism is bulging recrystallization suggesting 

temperatures below 400° C (Stipp et al., 2002); Fol (102/19) Lin (144/21). d) Sample FD229: foliation-parallel quartz layer 

within greenschists close to the crest between Gran and Petit Tournalin (subarea 9); textural domain in the middle of the picture 

shows patchy undulose extinction, subgrain formation, and a weakly developed GSPO indicating top-NW transport; bulging 

recrystallization and possibly subgrain rotation recrystallization suggest temperatures around 400° C (Stipp et al., 2002); Fol 

(261/08) Lin (299/06). e) Sample FD272: mylonite from the base of the Dent Blanche nappe southwest of Breuil (subarea 10) 

showing ductile top-NW shear bands; undulose extinction and subordinate bulging recrystallization of quartz suggest 

temperatures well below 400° C; Fol (284/46) Lin (312/40). f) Sample FD270: mylonite from the base of the Dent Blanche nappe 

southwest of Breuil (subarea 10); a preexisting greenschist-facies foliation has been folded into NW-vergent folds which 

subsequently have been cut by discrete top-NW shear bands; the grain size is strongly reduced within shear bands indicating 

large amounts of strains; Fol (270/63) Lin (326/47). g) Sample FD317: mylonite from the base of the Dent Blanche nappe north 

of Breuil (subarea 10) showing ductile top-NW shear bands; Fol (36/13) Lin (306/01). h) Sample FD46: mylonite from the base 

of the Dent Blanche nappe showing semi-ductile top-NW offset of a more competent epidote-rich layers; Fol (245/09) Lin 

(320/02). i) Sample FD317: mylonite from the base of the Dent Blanche nappe north of Breuil (subarea 10) showing conjugate 

ductile top-NW and top-SE shear bands; Fol (36/13) Lin (306/01). j) Sample FD64: metasediment from the Cimes Blanches 

nappe northwest of Zermatt (subarea 11) consisting of quartz and white mica and showing ductile top-NE shear bands; Fol 

(292/19) Lin (224/10). k) Sample FD71: calcschist from the Tsaté nappe in the Trift valley northwest of Zermatt (subarea 11) 

showing top-N shear bands within white mica-rich layer; Fol (238/28) Lin (180/13). l) Sample 139: mylonite from the base of the 

Dent Blanche nappe northwest of Zermatt (subarea 11) showing top-NW shear bands associated with growth of chlorite; Fol 

(199/40) Lin (135/21). 

 

In the western upper Valtournenche, structures related to several stages of greenschist-facies deformation 

can be observed. Earlier foliations within Dent Blanche mylonites have been overprinted by NW-vergent 

folding and/or lower-grade top-NW shear bands through the ductile/brittle transition. Minor NW-SE 

extension within these rocks is evident from subordinate conjugate ductile shear bands, steep semi-ductile 

top-SE shear bands, and micro-scale necking. Top-NW shear bands within the Tsaté nappe also show an 

evolution from ductile to semi-ductile conditions. Folding of greenschist-facies foliations within Tsaté 

metabasites close to the DBBT with fold axes parallel to stretching lineations within surrounding Dent 

Blanche and Tsaté mylonitic rocks suggests formation of folds and stretching lineations in the course of a 

common progressive greenschist-facies deformation history. 

 

4.4.2.4 Subarea 11 – Zermatt 

West of Zermatt on the northern side of the Zmutt valley (Fig. 4.2), foliations within rocks of the upper 

Tsaté nappe and lower Dent Blanche nappe dip to the west to northwest. Stretching lineations mostly 

plunge to the northwest. The Tsaté nappe consists of successions of metasediments and metabasites. In an 

outcrop at Arben, these have been folded into open to tight, NW-vergent folds with SW-NE trending axes 

overprinting a preexisting foliation and stretching lineation (Fig. 4.8h). Folding also led to formation of a 

crenulation with SW-NE trending axes parallel to fold axes. Rocks in the immediate footwall and hanging 

wall of the DBBT and the contact itself, however, are not folded and foliations are strictly parallel to the 

contact (Fig. 4.8i). Kinematic indicators are not well developed within the exposed rocks so that a bulk 

shear sense could not be determined. However, abundant shear bands on the southern side of the Zmutt 

valley east of the Matterhorn consistently indicate top-NW shearing (Fig. 4.8j). 
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Northwest of Zermatt along the Trift valley (Fig. 4.2), a cross-section from the Cimes Blanches nappe 

into the Dent Blanche nappe is exposed. The Cimes Blanches nappe consists of heterogeneous 

successions of marbles, quartzites, quartzitic schists, and calcschists. Foliations dip to the west to 

northwest. Stretching lineations plunge to the southwest. In outcrop, semi-ductile shear bands within 

quartzitic schists indicate top-NE shearing (Fig. 4.8k). Top-NE shear bands can also be observed in thin-

section to ductiley deform quartz and white mica (Fig. 4.9j). At higher structural levels within the Tsaté 

nappe, stretching lineations dominantly plunge to the west to northwest. In one locality, tight folds with 

W-plunging axes overprint an earlier layering whereas the dominant foliation within (calc)schists 

represents an axial surface cleavage. Stretching lineations are parallel fold axes and associated kinematic 

indicators show top-W shear senses. Therefore, these folds probably formed during the main stage of 

fabric formation which can be related to top-W shearing. In the same locality, garnet could be found 

within a thin layer which might be a relic of an earlier high-pressure imprint. It also suggests that the 

observed fabrics and folding indeed formed during an early stage in the evolution of the Combin zone. 

Further into the hanging wall, stretching lineations plunge to the northwest to north. Rare shear criteria, 

mostly within calcschists, indicate top-N(W) shearing (Fig. 4.9k). In the direct footwall of the DBBT, 

rocks of the Tsaté nappe have been folded into open to tight folds with (W)SW-plunging fold axes (Fig. 

4.8l). Folding deforms preexisting foliations and stretching lineations and is associated with a crenulation 

cleavage with axes parallel to fold axes. This deformation cannot be observed in the overlying Dent 

Blanche nappe where the foliation is parallel to the contact. Basal mylonites from the lowermost Dent 

Blanche nappe show top-NW shear bands which overprint an earlier foliation and metamorphic layering 

and are associated with growth of chlorite (Fig. 4.9l). 

In the area west and northwest of Zermatt, top-NE shear senses can be observed within the Cimes 

Blanches nappe whereas top-NW shear senses dominate within the Tsaté and Dent Blanche nappes. Top-

W shear senses, possibly associated with an earlier deformation phase, could be observed in one locality. 

Late folding can often be observed within rocks of the Tsaté nappe but cannot be traced into the Dent 

Blanche nappe. 

 

4.5 Overprinting relations and correlations 

In this section, overprinting relations and correlations within and across subareas along the Combin Fault 

and DBBT are described. Based on structural observations and interpretations, a relative chronology of 

deformation is established. 

The observed large-scale folding of the northwestern DBBT in the upper Val de Zinal (subarea 1) is 

probably a feature acquired during the main stage of thrusting of the Dent Blanche nappe over the 

underlying Combin zone. Shear criteria associated with this, probably W- to NW-directed shearing event, 

however, cannot be observed within the lowermost Dent Blanche nappe and uppermost Tsaté nappe. 

Instead, top-SE shear senses are widespread in this area. Top-SE shear bands overprint folded quartzitic 

gneisses of the Dent Blanche nappe and are also abundant within underlying Tsaté metasediments. Top-

SE structures, in turn, have partly been reactivated and overprinted by a phase of non-penetrative top-NW 

shearing. Small-scale top-SE faults cutting through Tsaté metasediments are evidence of a late brittle 
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overprint. In the Val de Zinal area, an early, probably (N)W-directed thrust-related event was overprinted 

by penetrative top-SE shearing followed by minor top-NW shearing and a brittle top-SE overprint (Fig. 

4.10). 

Deformation structures in the Moiry area (subarea 2) suggest different structural evolutions of the Combin 

Fault and DBBT. The lower Combin zone is characterized by top-W to -SW shear senses which formed 

under decreasing metamorphic conditions as suggested by an observed decrease in the ductility of 

kinematic indicators. Towards the DBBT, top-SE shear bands can be observed within calcschists which 

are overlain by a NW-closing metabasite sheath fold nappe. It is difficult to establish a relative 

chronology between top-SE and top-NW structures. Since formation of the sheath fold calls for high 

strain, it may represent a feature of an early top-NW deformational event possibly associated with 

emplacement of the directly overlying Dent Blanche nappe. Since top-SE structures could not be found 

within the uppermost Tsaté nappe and overlying Dent Blanche nappe, top-SE shearing may have been 

partitioned into incompetent calcschists but may also have been postdated by renewed thrusting along the 

base of the metabasite nappe. The observed deformation structures in the Moiry area suggest that the 

Combin Fault experienced top-W to -SW shearing accompanying exhumation of the Combin zone 

whereas the upper Tsaté nappe experienced an early phase of NW-vergent shearing, subsequent top-SE 

shearing and possibly renewed top-NW shearing along preexisting thrust planes (Fig. 4.10). 

Top-(S)W shear senses can be traced along the Combin Fault to the southwest. At Lac des Dix (subarea 

4), two different stretching lineations within Cimes Blanches metasediments associated with top-WNW 

and top-WSW shear senses, respectively, suggest close spatial and temporal relations between thrust-

related and transpressional to orogen-parallel shearing. Bulging recrystallization of quartz associated with 

top-WSW structures suggests low-temperature conditions below ca. 400° C during deformation (Stipp et 

al., 2002). The Cimes Blanche nappe north of Lac de Mauvoisin (subarea 5) is characterized by semi-

ductile to brittle top-SW shearing within calcitic rocks. I therefore suggest that top-WNW shear senses 

represent remnants of an early thrusting event along the Combin Fault which was followed by 

transpressional to orogen-parallel top-(W)SW shearing under decreasing metamorphic conditions (Fig. 

4.10). The importance of observed top-E shear senses at Lac des Dix could not be clarified. Their ductile 

character suggests that they formed before low-grade top-SW shearing and probably represent conjugate 

shear senses to ductile top-W structures. 

Top-WNW to –WSW shear senses from the northwestern Combin Fault may be correlated with top-W 

shear senses within basal mylonites of the Dent Blanche nappe in the area around Arolla (subarea 3) (Fig. 

4.10). Lower-grade top-SW structures, however, could not be observed. Instead, the DBBT and 

underlying Tsaté nappe in this area are characterized by late folding overprinting earlier foliations and 

stretching lineations. Often observed crenulations with axes parallel to fold axes can also be ascribed to 

late compressional deformation (Fig. 4.10). Rare top-SE and top-NW shear senses within calcschists of 

the Tsaté nappe most likely formed before this late-stage compression due to their association with 

mylonitic fabrics. Top-SE shear senses may also be correlated with SE-vergent folds within calcschists, 

therefore representing rather late top-SE shearing postdating mylonitic top-NW shearing (Fig. 4.10). 
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Mylonites from the base of the Dent Blanche nappe near Ollomont (subarea 6) show a retrograde 

evolution from upper greenschist-facies top-WNW shearing to lower greenschist-facies NW-SE 

shortening. The underlying Tsaté nappe, however, is characterized by abundant top-SE shear criteria. 

Direct crosscutting relations between these opposing shear senses in the footwall and hanging wall of the 

DBBT could not be observed. Top-SE shearing may either predate top-WNW shearing or may postdate 

thrusting and have mainly been partitioned into Tsaté schists. The observed close relationship between 

lower greenschist-facies thrust-activity and formation of a crenulation cleavage in the Ollomont mylonite 

suggests that the DBBT in this area has indeed been partly reactivated as a thrust and contemporaneously 

and subsequently overprinted by orogen-perpendicular shortening. The observed mylonitic fabric itself, 

however, is probably the result of an earlier higher greenschist-facies WNW-directed shearing event 

which was followed by top-SE shearing localized within Tsaté metasediments. Therefore, a similar 

sequence of deformation as observed along the DBBT in the upper Val de Zinal can be deduced: Early 

thrust-related top-WNW shearing was followed by top-SE shearing which in turn was postdated by thrust 

reactivation and compression (Fig. 4.10). 

Top-SE structures within the Combin zone near Ollomont can be traced further southwest into the area 

around Allein (subarea 7). There, top-SE shearing has a ductile to partly brittle character and is therefore 

interpreted to postdate observed top-NW shearing (Fig. 4.10). However, anastomosing shear zones also 

suggest that top-SE and top-NW shear zones may have partly been active contemporaneously.   

In the southeastern realm near Trois Villes (subarea 8), top-(N)W shear senses can be observed within 

Dent Blanche basal mylonites. Highly ductile shear bands are associated with lower greenschist-facies 

quartz microstructures suggesting an evolution from higher- to lower-grade conditions during ductile 

deformation. Their relationship to mylonites from the northwestern DBBT or to mylonites from the 

DBBT further northeast is difficult to determine. Trois Villes mylonites represent a high-strain zone 

during prolonged top-W to –NW shearing under decreasing metamorphic conditions but before the onset 

of semi-ductile to brittle top-NW shearing as observed along the upper western Valtournenche (Fig. 4.10). 

West of Gran Tournalin on the eastern side of Valtournenche (subarea 9), highly ductile top-SE shear 

senses occur within Cimes Blanches metasediments in the hanging wall of the Combin Fault. These 

structures may represent the continuation of top-SE structures in the area around Allein (subarea 7) and 

therefore a deeper segment of an originally SE-dipping normal-sense shear zone. Top-NW shear senses at 

higher structural levels within the Tsaté nappe could not unambiguously be ascribed to an earlier or later 

deformation phase due to the absence of overprinting relations between these opposing shear directions. 

A comparison of quartz recrystallization mechanisms also suggests similar medium-grade greenschist-

facies conditions which may have been slightly higher during top-NW shearing. 

Mylonites from the base of the Dent Blanche nappe in the upper western Valtournenche near Breuil 

(subarea 10) show several stages of NW-directed shearing and a transition from ductile to brittle 

deformation. Folding of preexisting greenschist-facies mylonitic fabrics and a subsequent overprint by 

ductile to brittle shear bands suggest renewed top-NW shearing along the DBBT during exhumation of 

the Dent Blanche nappe through the ductile/brittle transition (Fig. 4.10). The observed penetrative fabrics 

most likely formed on the retrograde path similar to the ones observed within mylonites along the 
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northwestern DBBT near Ollomont. Subordinate conjugate shear bands, semi-ductile top-SE shear bands, 

and micro-scale necking of more competent layers within Dent Blanche mylonites suggest an evolution 

from purely thrust-related to extensional shearing during late stages of deformation along the DBBT. 

Prolonged top-NW shearing along the DBBT near Breuil led to folding of preexisting greenschist-facies 

foliations within Tsaté rocks near Croce di Carrel. A relationship between ductile top-NW deformation 

and the formation of folds is suggested by the parallel orientation of stretching lineations and fold axes 

(Fig. 4.10). 

 

 
Figure 4.10: Diagram depicting the structural observations and resulting sequence of deformation without late brittle NW-SE 

extension; based on the “tectonic sequence diagrams” by Forster and Lister (2008); references for time constraints: 1) Lapen et al. 

(2003); Mahlen et al. (2005); De Meyer et al. (2014); Faßmer (2014); Weber et al. (accepted) 2) Agard et al. (2002); Reddy et al. 

(2003) 3) Babist et al. (2006) 4) Lapen et al. (2007); Villa et al. (2014) 5) Rubatto et al. (1998); Amato et al. (1999); Gouzu et al. 

(2006) 6) Markley et al. (1998) 7) Reddy et al. (1999) 8) Amato et al. (1999); Reddy et al. (1999); Cartwright and Barnicoat 

(2002); De Meyer et al. (2014) 9) Markley et al. (1998); Cartwright and Barnicoat (2002) 10) Reddy et al. (1999); Agard et al. 

(2002) 11) Pettke et al. (1999); ZS: Zermatt-Saas zone; MR: Monte Rosa nappe; SL: Schistes Lustrés; see text for discussion. 

 

Folding of preexisting fabrics can also be observed in the areas to the west and northwest of Zermatt 

(subarea 11). This deformation cannot be traced into the overlying Dent Blanche nappe and the DBBT 

always appears as a planar surface. Kinematic indicators showing top-NW shear senses can be observed 

within the Tsaté nappe and along the DBBT and are associated with late growth of chlorite along the 

basal thrust suggesting late thrust reactivation (Fig. 4.10). In one locality in the Trift valley, folds with W-

plunging fold axes parallel to surrounding stretching lineations represent intrafolial folds to the main 

foliation within metasediments. Rare garnet occurs in nearby metasediments suggesting that folds and 

fabrics may have formed during an early high-pressure stage of the Tsaté nappe (Fig. 4.10). Cimes 
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Blanches metasediments in the direct hanging wall of the Combin Fault northwest of Zermatt display top-

NE shear senses. These cannot be correlated with other deformation structures in the southeastern realm 

and may represent a late stage of transpressional to orogen-parallel shearing along the Combin Fault in 

this area.  

 

Overprinting relations and correlations within and across subareas suggest polyphase deformation along 

the Combin Fault and DBBT in the study area. A first phase of thrust-related, penetrative top-(N)W 

shearing (D1) affected all units and is well preserved along the DBBT and partly within the Combin zone 

(Fig. 4.11). Subsequent transpressional to orogen-parallel top-(S)W shearing (D2) can be observed along 

the northwestern Combin Fault (Fig. 4.11). This phase was followed by normal-sense top-SE shearing 

(D3) which variably affected the Combin zone and, only to a minor extent, the DBBT (Fig. 4.11). A late 

phase of top-NW shearing (D4) led to reactivation of earlier structures, formation of low-grade 

greenschist-facies top-NW shear senses, and folding of preexisting fabrics, especially along the 

southeastern DBBT but also within the underlying Combin zone and in the northwestern realm (Fig. 

4.11). Brittle shear planes which sometimes overprint ductile deformation structures are attributed to a 

late phase of NW-SE directed extension (D5). 

 

4.6 Regional distribution of deformation 

The observed deformation structures, overprinting relations, and inferred correlations suggest that the 

northwestern and southeastern realms experienced structural evolutions which can be partly correlated but 

also show distinct differences. 

The southeastern DBBT shows deformation structures related to penetrative greenschist-facies top-(N)W 

shearing as well as top-NW mylonites displaying a decreasing ductility through the ductile/brittle 

transition. For the northwestern DBBT, structural and petrological observations suggest an evolution from 

retrograde top-(N)W shearing to renewed thrusting and shortening under low-grade greenschist-facies 

conditions. Folding and formation of crenulation cleavages are abundant in the footwall and hanging wall 

of the DBBT and also the contact itself has been folded. In the southeastern realm, shortening structures 

are restricted to the Combin zone below the DBBT and cannot be traced into the Dent Blanche nappe. 

Top-W thrusting along the DBBT can be correlated with top-W shearing along the northwestern Combin 

Fault but can only rarely be observed within the Combin zone in the western Valtournenche/Zermatt area 

where stretching lineations predominantly dip to the northwest. Top-W shearing along the northwestern 

Combin Fault was followed by orogen-parallel top-SW shearing. No evidence of penetrative top-SW 

shearing could be found in the western Valtournenche/Zermatt area suggesting that this deformation 

phase was either restricted to the northwestern Combin zone or has been overprinted by subsequent 

deformation. In the northwestern realm, top-SE shearing can be observed in the footwall of and along the 

DBBT east of Val de Zinal, in the area north of Arolla and within the southwestern Combin zone. This 

distribution suggests that a NE-SW striking normal-sense shear zone developed subparallel to the nappe 

boundaries after the main stage of nappe-stacking. In the southeastern realm, top-SE shear senses can be 

observed in the immediate hanging wall of the Combin Fault in the eastern Valtournenche, along the 
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Combin Fault at Lago di Cignana (see chapter 2), and at a high structural level within the Combin zone at 

Becca d’Aver (see chapter 3). The uneven distribution of top-SE shear senses in the study area suggests 

that top-SE shearing was probably distributed into several high-strain zones. The connection between top-

SE shear senses in the northwestern and southeastern realms is not clear due to insufficient exposure and 

obliteration by subsequent deformation. They may have been connected at depth as part of a larger 

normal-sense shear zone which was partly dismembered by subsequent deformation. A late phase of NW-

vergent shearing affected the southeastern DBBT and underlying Combin zone and can also partly be 

observed along the northwestern DBBT. Folds and crenulations within the northwestern and southeastern 

Combin zone, which deform preexisting greenschist-facies fabrics, are attributed to renewed top-NW 

shearing along the DBBT. 

 

 
Figure 4.11: Schematic tectonic map of the study area with transport directions during D1 to D4 ductile shearing according to 

structural observations in the subareas; transport directions in the Lago di Cignana and Becca d’Aver areas are depicted as well 

but see chapters 2 and 3 for detailed descriptions and discussions on the observed deformation in these areas. 
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4.7 Structural evolution 

In this section, I correlate the previously established relative chronology of deformation with available 

age data and propose a sequence of deformation and structural evolution for the Combin Fault and DBBT 

as well as associated tectonic units. 

 

4.7.1 D1 top-(N)W shearing 

D1 top-(N)W shearing represents the main stage of nappe-stacking and thrusting along the Combin Fault 

and DBBT and is preserved along northwestern and southeastern fault segments. It is held responsible for 

juxtaposition of the Dent Blanche nappe and the Combin zone and thrusting of these units over 

continental Briançonnais units in the northwest (Fig. 4.12a). Movement along basal thrusts probably 

started after subduction and accretion of the Dent Blanche nappe and Combin zone (Fig. 4.10). 

Subduction of continental Dent Blanche/Sesia units occurred in the Late Cretaceous (e.g. Inger et al., 

1996; Rubatto et al., 2011) with subsequent subduction of the Piemont-Ligurian ocean as indicated by the 

age of prograde metamorphism (Agard et al., 2002; Mahlen et al., 2005; Faßmer, 2014; Weber et al., 

accepted). Retrograde D1 thrusting along the DBBT most likely occurred during exhumation of the Dent 

Blanche/Sesia nappe system before ca. 45 Ma as suggested by the activity of the Ometto Shear Zone 

along the top of the Sesia nappe (Babist et al., 2006; Figs. 4.10 and 4.12a). Accretion of the Tsaté nappe 

occurred until ca. 48 Ma (Agard et al., 2002; Reddy et al., 2003). Subduction of Briançonnais units below 

accreted Piemont-Ligurian oceanic units probably started around 50 Ma as suggested by HP ages reported 

for the Monte Rosa nappe (Lapen et al., 2007; Villa et al., 2014). Underthrusting of continental units led 

to accretion of cover sequences to the basal part of the Tsaté nappe to form the Cimes Blanches and 

Frilihorn nappes. Structurally lower parts of the northwestern Combin zone were folded into underlying 

Briançonnais units (Fig. 4.12a). Early stages of Piemont-Ligurian subduction and accretion after the peak 

of HP metamorphism in the Sesia nappe were responsible for a first HP imprint within the Tsaté nappe. 

Deformation structures and mineral assemblages related to prograde high-pressure top-(N)W shearing 

along a SE-dipping subduction channel can only rarely be observed within the Tsaté nappe. These have 

been largely obliterated by subsequent greenschist-facies retrogression and deformation. D1 top-(N)W 

shearing and associated exhumation from blueschist-facies conditions is most likely responsible for the 

pervasive greenschist-facies overprint observed in the Combin zone and the formation of penetrative 

greenschist-facies fabrics within the Combin zone and along the DBBT. An Ar/Ar age of 44.5 ± 0.6 Ma 

by Markley et al. (1998) for a locality at Lac de Moiry close to the northwestern Combin Fault may 

reflect the timing of fabric formation or ductile deformation in this area which is characterized by top-W 

and subsequent top-SW shearing. This age is therefore interpreted to reflect late stages of thrusting and 

W-vergent shearing along the Combin Fault which may have occurred until ca. 44 Ma. D1 top-(N)W 

shearing is also interpreted to predate exhumation of the Zermatt-Saas zone in the footwall of the 

southeastern Combin Fault as suggested by the above-mentioned constraints on the timing of D1 

deformation along the Combin Fault and DBBT and the age of the peak of (U)HP metamorphism in the 

Zermatt-Saas zone at ca. 44 – 43 Ma (Rubatto et al., 1998; Gouzu et al., 2006). D1 top-(N)W shearing is 

therefore considered to have occurred between ca. 48 and 44 Ma as suggested by several time constraints.  
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Figure 4.12: Schematic structural evolution as block diagrams according to the sequence of deformation described and discussed 

in the text; only accreted and underthrust crustal units are depicted; lithospheric mantle and Adriatic upper plate are not shown; 

shear zones in red are the ones that were active during the respective deformation phase; inactive shear zones are depicted in 

black; lines correspond to zones of high strain; sketches are not to scale; green and blue colours in depth profiles on the right 

indicate approximate depth of greenschist- and blueschist-facies conditions, respectively; note that depth profiles on the right 

change  slightly throughout the structural evolution; colour coding of tectonic units is the same as in figure 4.1. a) Configuration 

at ca. 44 Ma after D1 top-(N)W shearing, the main stage of nappe stacking along the DBBT and Combin Fault; the Combin zone 

comprises the Tsaté nappe (green) and the Cimes Blanches nappe (red) at its base; top-(N)W led to exhumation of the Dent 

Blanche nappe and underlying Combin zone and to a pervasive greenschist-facies overprint along the DBBT and within the 

Combin zone; exhumation of the Dent Blanche/Sesia nappe system probably occurred in the footwall of the top-SE Ometto Shear 

Zone (see Babist et al., 2006). b) Configuration at ca. 41 Ma after D1 top-(S)W shearing which is well-preserved along the 

northwestern Combin Fault; the big arrow indicates the main shearing direction, the little arrow indicates the subordinate 

conjugate shearing direction. 

 

4.7.2 D2 top-(S)W shearing 

D2 top-(S)W shearing represents a phase of transpressional to orogen-parallel deformation which mainly 

affected or can be observed along the northwestern Combin Fault (Figs. 4.10 and 4.12b). Deformation 

structures associated with this deformation phase show a range of metamorphic conditions from highly 

ductile to semi-ductile and brittle conditions. This suggests ongoing exhumation of the Combin zone 

during transpressional deformation. SW-dipping shear planes are indeed often associated with E-W 

trending stretching lineations suggesting a thrust-component during early stages. Top-SW shear senses 

cannot be observed at higher structural levels within the Combin zone and are also absent along the 

DBBT. Top-W thrusting may, however, have continued along the DBBT during early stages of D2 as 

suggested by abundant top-W shear senses within Dent Blanche basal mylonites. Subordinate top-E shear 

senses observed along the northwestern Combin Fault in the Lac des Dix area may represent conjugate 
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shear zones during overall top-(S)W shearing (Fig. 4.12b). Since D2 top-(S)W shearing postdates D1 top-

(N)W shearing, it is interpreted to have occurred from ca. 43 Ma onwards. 

 

 

 
Figure 4.12 (continued): c) Configuration at ca. 38 Ma during D3 top-SE shearing which led to juxtaposition of the Combin and 

Zermatt-Saas zones at greenschist-facies conditions; strain was probably localized along the upper Zermatt-Saas zone as 

suggested by the scarcity of top-SE structures in the southeastern realm of the study area; top-SE shearing within the northern 

Combin zone was probably subparallel to nappe boundaries and only locally affected the DBBT. d) Configuration at ca. 37 Ma 

after D3 top-SE shearing and associated Mischabel-phase folding. 

 

4.7.3 D3 top-SE shearing 

D3 top-SE shearing represents a stage of normal-sense shearing which affected the northwestern Combin 

zone along a NE-SW striking shear zone subparallel to nappe boundaries (Fig. 4.12c). The DBBT largely 

escaped top-SE shearing and only locally shows top-SE shear senses along its northwestern segment but 

not its southeastern part (Fig. 4.10). Top-SE shear senses can also be observed in the Valtournenche area 

at low and high structural levels within the Combin zone. Retrograde greenschist-facies deformation in 

the Combin zone has been dated at ca. 45 – 36 Ma by Reddy et al. (1999) but cannot unambiguously be 

attributed to a kinematic event. A cluster of ages between 39 and 36 Ma, however, associated with 

domains of dominant top-SE shear close to the Combin Fault has been reported by these authors. High-

pressure conditions within the Zermatt-Saas zone have been proposed to have lasted until ca. 41 Ma and 

greenschist-facies retrogression has been dated at ca. 40 – 38 Ma (Amato et al., 1999; De Meyer et al., 

2014). Dating of retrograde top-SE shear zones within the Zermatt-Saas zone and St. Bernhard nappe 

system in the footwall of the Combin Fault by Cartwright and Barnicoat (2002) yielded ages between 42 
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– 37 Ma. Greenschist-facies top-SE shearing along the Combin Fault is therefore held responsible for 

juxtaposition of the Combin and Zermatt-Saas zones and is interpreted to have occurred between ca. 39 

and 37 Ma (Fig. 4.12c). Formation of the Mischabel fold above the northern Zermatt-Saas zone probably 

represents a relatively late and non-penetrative stage of SE-vergent shearing (Fig. 4.12d; e.g. Sartori, 

1987; Pleuger et al., 2007; Scheiber et al., 2013). Several circumstances may have contributed to the fact 

that ductile top-SE shear senses can only scarcely be observed in the western Valtournenche/Zermatt area. 

During exhumation of the Zermatt-Saas zone and juxtaposition with the Combin zone along the Combin 

Fault, strain may have been localized along the uppermost Zermatt-Saas zone and unevenly distributed in 

the hanging wall of the Combin Fault (Figs. 4.12c and d). Additionally, my structural observations 

suggest that top-SE shearing was postdated by renewed top-NW deformation which led to partial 

reworking and overprinting of earlier deformation structures. 

 

4.7.4 D4 top-NW shearing and NW-SE shortening 

D4 top-NW shearing affected the DBBT and partly the underlying Combin zone (Figs. 4.10 and 4.12e). 

This phase can be well-studied in the western Valtournenche/Zermatt area along the DBBT and at higher 

structural levels within the Combin zone but also partly along the northwestern segment of the DBBT. 

Renewed thrusting occurred under decreasing metamorphic conditions and is therefore interpreted to be 

related to further exhumation of the Dent Blanche nappe (Fig. 4.12e). Top-NW shearing probably led to 

folding within the underlying Combin zone which often cannot be traced into the overlying Dent Blanche 

nappe. Folds within the Combin zone, which deform a preexisting foliation and stretching lineation and 

are associated with formation of crenulation cleavages, are interpreted to have formed during late-stage 

top-NW shearing whereas folds with axes parallel to the main stretching lineation may already have 

formed during D1 top-(N)W shearing. The temporal relations between top-NW shearing and top-SE 

extensional shearing are often difficult to determine but overprinting relations at several localities and the 

often low metamorphic grade of top-NW structures strongly suggest that a distinct phase of top-NW 

shearing postdated top-SE shearing (Fig. 4.10). Renewed top-NW shearing is attributed to reactivation of 

the DBBT as an out-of-sequence thrust and probably started around ca. 35 Ma before the onset of 

Vanzone-phase folding. Folding of the northwestern DBBT is attributed to increased crustal shortening 

during a late stage of D4 and probably marks the cessation of thrust-related shearing (Fig. 4.12f). 

 

4.7.5 D5 NW-SE extension 

D5 NW-SE extension is interpreted to reflect upper-crustal brittle deformation in response to updoming of 

the Vanzone antiform from ca. 32 Ma onwards (Fig. 4.12g). The large-scale synformal structure of the 

Dent Blanche nappe is owed to this phase which also led to a brittle overprint of ductile structures in a 

graben-like manner, i.e. with mainly SE-dipping faults in the northwest and NW-dipping ones in the 

southeast (Fig. 4.12g) whereas also conjugate shear planes can be observed (see chapter 3). The transition 

from D4 top-NW thrusting to D5 top-NW normal faulting along the southeastern segment of the DBBT 

probably occurred progressively during rotation of the units in the southeastern realm into their current 

NW-dipping orientation. Early stages of Vanzone-phase updoming were probably still accompanied by 
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semi-ductile top-NW thrusting along the DBBT (Fig. 4.12f) so that orogen-perpendicular brittle extension 

is interpreted to have started around ca. 30 Ma after substantial uplift and exhumation of units on the 

northwestern limb of the Vanzone antiform (Fig. 4.12g). 

 

 

 

 
Figure 4.12 (continued): e) Configuration at ca. 34 Ma during D4 top-NW shearing; reactivation of the DBBT as an out-of-

sequence thrust led to formation of low-grade greenschist-facies top-NW shear senses along the DBBT and folding within the 

Combin zone in the footwall of the DBBT; note that the Combin zone has been tectonically thinned due to the activity of 

conjugate shear zones at ca. 36 Ma (see chapter 2). f) Configuration at ca. 32 Ma after D4 top-NW shearing; compression led to 

folding of the northwestern DBBT and formation of crenulation cleavages; transition from ductile to brittle top-NW shearing 

along the southeastern DBBT; note that the depth scale changed. g) Configuration at ca. 30 Ma during brittle NW-SE extension; 

upper-crustal, orogen-perpendicular extension in the study area was probably the result of an increased uplift of units due to 

updoming of the Monte Rosa nappe in a more internal position; units in the southeastern realm were progressively rotated into a 

NW-dipping orientation. 
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4.8 Discussion and tectonic evolution 

In the following, the tectonic evolution of the Western Alps is discussed on the basis of my own 

observations and interpretations as well as previously published data and models. 

 

4.8.1 Early accretion, thrusting, and orogen-parallel shearing 

The generally accepted Late Cretaceous paleogeographical configuration for the Western Alpine realm is 

based on geochronological constraints for subduction-related metamorphic events (Berger and Bousquet, 

2008 and references therein) and oceanic spreading (e.g. Rubatto et al., 1999; Liati et al., 2005) as well as 

geophysical data, retrodeformations, and stratigraphic evidence (e.g. Froitzheim et al., 1996; Stampfli et 

al., 2002; Schmid et al., 2004; Rosenbaum and Lister, 2005; Handy et al., 2010). The Piemont-Ligurian 

(South-Penninic) ocean in the southeast and the Valais (North-Penninic) basin in the northwest were 

separated by an eastern prolongation of the Iberian plate, the Briançonnais (Middle-Penninic) continental 

spur. Several more continental fragments and extensional allochthons may have existed along ocean-

continent transition zones that were later incorporated into the Alpine orogenic wedge (e.g. Beltrando et 

al., 2014). The Dent Blanche/Sesia nappe system, for example, may have originated from several 

continental fragments which were separated from the Adriatic continental margin during Jurassic rifting 

and stranded inside a domain characterized by extensive extension along the ocean-continent transition 

(e.g. Froitzheim and Manatschal, 1996; Beltrando et al., 2014). This configuration before the onset of 

Alpine subduction may have been a prerequisite for subduction of these units to eclogite-facies depths in 

that subduction was able to originate in a more internal position. In other interpretations, the Dent 

Blanche/Sesia system is viewed as a true microcontinent separated from the Adriatic continental margin 

by another oceanic spreading center (Froitzheim et al., 2006; Pleuger et al., 2007). Remnants of 

lithological associations reminiscent of oceanic crust have been reported from along the Canavese Line in 

a structural position above the Sesia nappe (Elter et al., 1966; Pleuger et al., 2007). These slivers were 

taken as possible evidence for the existence of an oceanic suture between the Sesia nappe and Southalpine 

units (e.g. Pleuger et al., 2007). However, there are no geochronological data so far, neither protolith nor 

metamorphic ages, which support the hypothesis of another spreading center to the southeast of the Dent 

Blanche/Sesia system. Subduction of continental units beneath the Adriatic margin may have started as 

early as 90 Ma as suggested by a HP age of 85 Ma reported by Regis et al. (2014) for the Sesia nappe. 

This age comes close to the timing of eclogite-facies metamorphism at ca. 90 Ma within Austroalpine 

units of the Eastern Alps (e.g. Thöni, 2006). (Ultra)high-pressure metamorphism in the Eastern Alps has 

been proposed to be the result of intracontinental subduction (e.g. Janák et al., 2004; Stüwe and Schuster, 

2010) which may therefore also account for the first stages of subduction along the Adriatic continental 

margin. Subduction and accretion of Piemont-Ligurian oceanic units in the course of one continuous 

lithospheric subduction is interpreted to have followed accretion of the Dent Blanche/Sesia nappe system 

at approximately 65 Ma as suggested by the age of peak metamorphism in the Sesia nappe and prograde 

metamorphism in continental outliers and the Zermatt-Saas zone (e.g. Inger et al., 1996; Faßmer, 2014). I 

interpret the Tsaté nappe to represent the lower-pressure equivalent of the Zermatt-Saas zone instead of 

attributing these units to distinctly different paleogeographic domains or even separate oceanic basins. 
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This interpretion is supported by overlapping ages for prograde metamorphism in the two units and 

almost identical protolith ages in high-pressure (Zermatt-Saas zone) and low-pressure (Gets nappe) 

ophiolitic units. Parts of the downgoing Piemont-Ligurian slab were therefore only subducted to 

blueschist-facies conditions, exhumed, and accreted (Tsaté nappe) whereas other parts reached eclogite-

facies conditions and only then were detached and exhumed (Zermatt-Saas zone). A complex 

paleogeographic configuration with continental fragments and extensional allochthons along the Piemont-

Ligurian/Adriatic ocean-continent transition may be responsible for the observed associations of ocean- 

and continent-derived units which were also partly subducted to blueschist-facies (e.g. Becca d’Aver 

continental sliver; see chapter 3) and partly to eclogite-facies conditions (e.g. Etirol-Levaz slice; e.g. see 

Dal Piaz et al., 2001). The Briançonnais continental spur followed the Piemont-Ligurian slab into the 

subduction zone from ca. 50 Ma onwards (Villa et al., 2014). According to the proposed structural 

evolution, detachment of parts of its sedimentary cover and accretion to the base of the overlying Tsaté 

nappe led to formation of the Cimes Blanches and Frilihorn nappes. At the time of Briançonnais 

subduction, exhumation of the Dent Blanche/Sesia nappe system already occurred as an extruding crustal 

wedge between the normal-sense Ometto Shear Zone in the hanging wall (Babist et al., 2006) and the 

DBBT in the footwall. This stage of (N)W-directed thrusting is interpreted to be responsible for most of 

the observed retrograde shearing along the DBBT and also for exhumation of more deeply subducted 

parts of the Combin zone from blueschist- to greenschist-facies conditions. The timing of thrusting of the 

Gets nappe, a possible low-pressure equivalent of the Tsaté nappe, over underlying units in the French 

Prealps from ca. 50 Ma onwards (Bill et al., 2001) also correlates well with the assumed main period of 

overthrusting of the Dent Blanche nappe and Combin zone between ca. 50 - 45 Ma, suggesting a link 

between foreland-directed thrusting within continental and underlying oceanic units. This stage of early 

thrusting was followed by transpressional to orogen-parallel top-(S)W shearing along the northwestern 

Combin Fault between ca. 43 and 40 Ma. The often close association of top-W and top-SW shear senses 

as well as SW-dipping shear bands and E-W trending stretching lineations suggest that top-W shearing 

progressively evolved into orogen-parallel top-SW shearing during later stages of this deformation phase. 

Top-W shearing along the DBBT may therefore also have partly continued during early stages of this 

phase. A dextral strike-slip component along the northwestern Combin Fault may have been related to 

eastward movement of the Briançonnais spur (Babist et al., 2006) and resulting oblique subduction. It is 

not clear whether the observed orogen-parallel top-SW shearing had a higher-grade equivalent at depth or 

was restricted to the northwestern Combin zone. Only a few SW-NE trending stretching lineations 

associated with top-NE shear senses were found near Zermatt which may therefore represent a late phase 

of orogen-parallel shearing. More penetrative top-SW shearing has been reported for the Monte Rosa 

nappe (Pleuger et al., 2008) and for the Sesia nappe (Babist et al., 2006) suggesting that orogen-parallel 

ductile shearing was active at different times during the structural evolution of the Western Alps. Top-SW 

shearing has also been reported by Scheiber et al. (2013) as part of the structural record within the St. 

Bernhard nappe system but has not been attributed to a distinct deformation phase but to an effect of 

strain-superposition between an early top-NW and a late top-SE shearing event. My structural 

observations, however, strongly suggest that transpressional to orogen-parallel shearing was penetrative 
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along the northwestern Combin Fault with formation of a stretching lineation that can be distinguished 

from D1 top-(N)W and D3 top-SE stretching lineations and therefore should be regarded as a distinct 

deformation phase. 

 

4.8.2 Exhumation and the role and importance of top-SE shearing 

In the study area, top-(S)W shearing was followed by top-SE shearing between ca. 39 and 37 Ma. The 

timing, distribution, and importance of top-SE shearing in the Western Alps are still a matter of 

discussion (Sartori, 1987; Ring, 1995; Reddy et al., 1999; Ganne et al., 2006; Pleuger et al., 2007; Gasco 

and Gattiglio, 2011). Especially its role for the exhumation of Zermatt-Saas (U)HP rocks in the footwall 

of the southeastern segment of the Combin Fault has been discussed by several authors (e.g. Reddy et al., 

1999; Wheeler et al., 2001; Froitzheim et al., 2006; Pleuger et al., 2007). Due to the large difference in 

peak pressures across the Combin Fault, it has often been interpreted as a major normal-sense shear zone 

accompanying juxtaposition of the Zermatt-Saas and Combin zones (e.g. Ballèvre and Merle, 1993). Such 

a scenario was also favoured by Reddy et al. (1999; 2003) and Wheeler et al. (2001) who proposed, based 

on structural and geochronological data, that exhumation of the Zermatt-Saas zone occurred in the 

footwall of a regional-scale top-SE shear zone, the Gressoney Shear Zone, comprising the entire Combin 

zone and lowermost Dent Blanche/Sesia nappes. In many places, however, the application of this model is 

complicated and seems inappropriate due to the scarcity of top-SE shear senses, which is the case for the 

western Valtournenche area. Ballèvre and Merle (1993) proposed a subsequent overprint due to renewed 

top-NW thrusting along the Combin Fault which was followed by another phase of top-SE backshearing 

and backfolding. The view that top-SE shearing represents the last deformation before Vanzone-phase 

folding and is related to late backshearing and –folding is shared by many authors (e.g. Mazurek, 1986; 

Sartori, 1987; Ring, 1995; Lebit et al., 2002; Pleuger et al., 2007; Scheiber et al., 2013). This may be true 

for many areas but, as suggested by the structural data presented in this study, regional differences should 

be taken into account. Froitzheim et al. (2006) and Pleuger et al. (2007) proposed a scenario in which the 

Combin Fault represents an extraction fault and the Dent Blanche/Sesia nappes were extracted from 

between the Combin and Zermatt-Saas zone and subsequently thrust out-of-sequence over the Combin 

zone to explain the structural record. In this model, top-SE exhumation of the Zermatt-Saas zone occured 

in the footwall of the extracting block whereas the Combin zone in the hanging wall of the Dent 

Blanche/Sesia nappes experienced top-NW shearing. This model has far-reaching consequences for the 

paleogeographical configuration and the structural and metamorphic evolution of these units. According 

to this scenario, the Tsaté nappe originated from an oceanic basin to the southeast of the Dent 

Blanche/Sesia continental fragment and the Cimes Blanches and Frilihorn nappes represent the sheared-

off sedimentary cover of the continental fragment (see Pleuger et al., 2007). Also, the Tsaté nappe would 

have experienced its blueschist-facies imprint before HP metamorphism in the Sesia nappe. Froitzheim et 

al. (2006) and Pleuger et al. (2007) argue that top-SE shearing postdates greenschist-facies top-NW 

shearing and therefore cannot be responsible for exhumation of (U)HP rocks in the footwall. The 

structural evolution envisaged in this thesis, however, suggests that the Combin zone was exhumed from 

blueschist- to greenschist-facies conditions and experienced its pervasive overprint before juxtaposition 
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with the Zermatt-Saas zone. According to this proposed sequence of deformation and exhumation, no 

other than greenschist-facies top-SE shear senses postdating greenschist-facies top-(N)W shearing would 

be expected. Weber et al. (accepted) proposed a refined version of the original extraction fault model in 

which the Dent Blanche/Sesia mantle wedge represents the extracting block. This model envisages 3 SE-

dipping subduction zones for the Western Alpine realm, one that subducts the Tsaté and Dent 

Blanche/Sesia units, one for the Zermatt-Saas and Briançonnais units, and one for the Valais basin and 

European units, with the Monte Rosa nappe representing European basement. The geometry of the 

northwestern subduction zone would be according to the slab extraction model proposed by Froitzheim et 

al. (2003) for the Central Alps in which exhumation of European continental units occurred by extraction 

of the overlying Briançonnais slab between ca. 37 and 35 Ma after HP metamorphism within continental 

units at ca. 38 – 37 Ma (Herwartz et al., 2011; Sandmann et al., subm.). Extraction of the Dent 

Blanche/Sesia mantle wedge could have only occurred after exhumation of the Zermatt-Saas zone to 

greenschist-facies conditions at ca. 38 Ma to prevent the overlying Combin zone from any exhumation-

related top-SE shearing. The model presented in Weber et al. (accepted) therefore calls for simultaneous 

extraction of two mantle slabs, the Dent Blanche/Sesia and Briançonnais slabs, after ca. 38 Ma. It is also 

questionable why the Dent Blanche/Sesia mantle wedge remained in its position for at least 27 Ma (ca. 65 

– 38 Ma) until after exhumation of the Zermatt-Saas zone but was extracted immediately afterwards 

whereas the Briançonnais slab was extracted only a few Ma after formation of the third subduction zone. 

Syn-exhumational top-SE shearing would be expected at the top of the Monte Rosa nappe for the period 

after ca. 38 – 37 Ma due to extraction of the overlying mantle slab. This contradicts the chronology 

presented by Pleuger et al. (2005; 2007; 2008) who proposed greenschist-facies top-NW shearing and a 

common structural evolution of the Zermatt-Saas zone and Monte Rosa nappe after ca. 40 Ma. So far, no 

geochronological data exist to support the hypothesis of two separate Zermatt-Saas and Tsaté oceanic 

basins or exhumation of the Dent Blanche/Sesia nappes only after 38 Ma. Also, available Ar/Ar-ages for 

phengites in metasediments from the Combin zone and Schistes Lustrés complex suggest HP 

metamorphism in these units to be largely contemporaneous with prograde metamorphism in the Zermatt-

Saas zone and continental outliers and not significantly older (Agard et al., 2002; Reddy et al., 2003; 

Lapen et al., 2003; Mahlen et al., 2005; Faßmer, 2014; Weber et al., accepted). Despite the 

aforementioned reasons which speak against extraction of the Dent Blanche/Sesia nappes, extraction 

faulting along the Combin Fault remains kinematically feasible. It may be possible that continental 

outliers at high structural levels of the Zermatt-Saas zone and along the Combin Fault represent remnants 

of an originally larger fragment that was partly extracted from between the Combin and Zermatt-Saas 

zone. A similar geometry and scenario in which the Combin and Zermatt-Saas zones were separated by 

continental units at depth has been proposed by Ring (1995) who interpreted the Combin Fault as an out-

of-sequence thrust responsible for stacking of the Combin zone on top of lower Austroalpine units (later 

being part of the Sesia nappe) and the Zermatt-Saas zone. Wheeler et al. (2001) proposed a model in 

which top-SE shearing in the Western Alps occurred in response to ascending and exhuming crustal 

wedges bounded by top-SE normal faults at the top and foreland-directed thrusts at the bottom (`pip 

geometry´). Rosenbaum and Lister (2005) and Groppo et al. (2009) suggested models in which periods of 
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major upper-plate extension were induced by lower-plate slab rollback and slab steepening, respectively, 

and therefore led to exhumation of rocks from (U)HP depths. 

The model presented in this study suggests that early stages of top-SE shearing along the Combin Fault 

accompanied juxtaposition of the Combin and Zermatt-Saas zones at crustal levels whereas late stages are 

responsible for the formation of SE-vergent folds within units and along contacts. The most prominent of 

these are the Mischabel fold deforming the St. Bernhard nappe system and the folded Zermatt-

Saas/Monte Rosa contact zone (e.g. Sartori, 1987; Pleuger et al., 2005). Whereas greenschist-facies top-

SE shear senses are scarce in the hanging wall of the southeastern Combin Fault in the study area, 

structural analyses in the Lago di Cignana area (see chapter 2) unambiguously showed that exhumation of 

the Zermatt-Saas zone from (U)HP to greenschist-facies conditions occurred during top-(S)E shearing 

along its upper boundary. Strain may therefore have been mainly localized along the top of the Zermatt-

Saas zone, i.e. in the footwall of the Combin Fault. Structural observations and the proposed sequence of 

deformation also suggest that greenschist-facies top-SE shearing was followed by a phase of dominant 

pure shear deformation at ca. 36 Ma and subsequently by renewed top-NW shearing after ca. 35 Ma 

which may have obliterated earlier top-SE structures. Even though the importance of top-SE shearing for 

juxtaposition of the Piemont-Ligurian units along the Combin Fault has been questioned by several 

authors (Sartori, 1987; Ring, 1995; Froitzheim et al., 2003; Pleuger et al., 2007), there is no conclusive 

evidence that speaks against juxtaposition of the Combin and Zermatt-Saas zones along greenschist-facies 

top-SE shear zones. My study, however, also suggests that the importance and regional extent of top-SE 

shearing may have been overestimated by some studies which suggest a regional top-SE shear zone 

comprising the entire Combin zone and the base of the Dent Blanche nappe (e.g. Reddy et al., 1999; 

Wheeler et al., 2001). The DBBT for example can only be interpreted as a major thrust which escaped 

any significant top-SE deformation. The structural evolution envisaged in this chapter probably comes 

closest to the kinematic and geometric model proposed by Wheeler et al. (2001) in which normal-sense 

shear zones form along the upper boundaries of ascending individual crustal units, in this case the 

Zermatt-Saas zone and probably also the St. Bernhard nappe system in the footwall of the Combin zone.   

 

4.8.3 Conjugate top-SE and top-NW shear zones? 

The temporal and spatial relations between greenschist-facies ductile top-NW and top-SE shear senses in 

the study area are often difficult to determine, for example in the areas around Becca d’Aver (see chapter 

3), Allein, and Gran Tournalin. Both shear directions show highly ductile to semi-ductile and sometimes 

brittle deformation structures suggesting either episodicity due to deformation mode switches (e.g. 

Beltrando et al., 2007a; Lister and Forster, 2009) or an overlap of top-NW and top-SE shear zones in 

space and time due to a large pure shear component during progressive orogenic deformation. Local and 

regional variations in the predominance of thrust-related or normal-sense deformation structures may 

therefore partly be explained by the existence of conjugate shear zones. Structural analyses in the Lago di 

Cignana area suggest that the transition from normal-sense top-SE shearing to renewed top-NW thrusting 

probably occurred over a period of dominant pure shear deformation (see chapter 2). This phase is 

therefore interpreted to have occurred around 36 Ma after the main stage of top-SE shearing. Coaxial 



 

- 97 - 

 

deformation may have been triggered by incipient overthrusting of the Dent Blanche nappe and most 

likely resulted in tectonic thinning of the Combin zone. Especially in the western Valtournenche area, the 

thickness of the Combin zone has been strongly reduced suggesting large amounts of shortening 

perpendicular to nappe boundaries. The western and eastern Valtournenche areas are characterized by 

different distributions of shear senses. In the western Valtournenche, top-NW shear senses are 

predominant (subareas 10 and 11) whereas top-SE shear senses can only be observed at high structural 

levels (see chapter 3). In the eastern Valtournenche, top-SE shear senses can be observed in the direct 

hanging wall of the Combin Fault whereas top-NW shear senses dominate at higher structural levels 

(subarea 9). Such a distribution of shear zones and strain can be explained by up-section and down-

section cutting conjugate shear zones (see fig. 2.9). Partly coeval activity of orogen-perpendicular shear 

zones in the period between ca. 45 and 36 Ma has been suggested by Reddy et al. (2003) based on 

overlapping Ar/Ar-ages between domains of dominant top-NW and top-SE shear. Significant deviation 

from simple shear during greenschist-facies deformation in this area is also suggested by other studies 

(Ring, 1995; Pleuger et al., 2007). Conjugate shear zones during late stages of ductile orogenic 

deformation in the Western Alps have been attributed to updoming of the Internal Crystalline Massifs, i.e. 

the Monte Rosa, Gran Paradiso, and Dora Maira Massifs, by Ganne et al. (2006) and Gasco et al. (2013). 

My structural observations, however, suggest late ductile to semi-ductile thrust-reactivation along the 

DBBT after ductile top-SE shearing and before the onset of orogen-perpendicular brittle extension. 

Ductile pure shear deformation is therefore interpreted to have linked these phases of normal-sense and 

thrust-related shearing and to have occurred before any significant updoming of the Monte Rosa nappe. 

During this phase, the Combin zone may have acted as ductile coupling between more competent, mostly 

continental units in the footwall and hanging wall (e.g. Escher and Beaumont, 1997). 

 

4.8.4 Out-of-sequence thrusting and orogen-perpendicular extension 

Out-of-sequence thrusting along the DBBT, shearing and folding within the Combin zone, as well as 

folding of the northwestern DBBT occurred from ca. 35 Ma onwards and can most likely be ascribed to 

increased collision-related deformation. In the Western Alps, continental collision ultimately led to 

formation of the Vanzone antiform which largely modified the geometry of the internal part of the nappe 

stack. Since late stages of greenschist-facies ductile deformation within the Combin zone have been 

proposed to have occurred around ca. 35 Ma (Reddy et al., 1999; Agard et al., 2002), renewed top-NW 

shearing is interpreted to have commenced at ca. 35 Ma. Late top-NW shearing in the study area is related 

to out-of-sequence reactivation of the DBBT and can therefore be well-observed along the Combin/Dent 

Banche contact and at high structural levels within the Combin zone but becomes less pronounced into 

the footwall. Low-grade greenschist-facies top-NW shear senses are often closely associated with 

shortening structures like folds and crenulation cleavages suggesting increasing amounts of orogen-

perpendicular shortening. The decreasing ductility of top-NW kinematic indicators along the DBBT 

suggests that late top-NW shearing was associated with exhumation of the Dent Blanche nappe through 

the ductile/brittle transition. Incipient updoming of the Monte Rosa nappe most likely supported 

exhumation of units in its hanging wall from mid- to upper-crustal levels. The transition from out-of-
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sequence thrusting and associated shortening to Vanzone-phase folding from ca. 32 Ma onwards may in 

fact have occurred gradually so that units in the southeastern realm of the study area were progressively 

rotated from a SE- into a NW-dipping orientation which led to the current synformal structure of the Dent 

Blanche nappe. A similar geometry and relationship between updoming of deep-crustal continental units 

and continuing thrusting along the DBBT at higher structural levels has been described by Le Bayon and 

Ballèvre (2006) for the Gran Paradiso transect south of the Aosta valley. Thrust-related top-NW shearing 

may have progressively evolved into normal-sense top-NW movements during continuing updoming 

southeast of the study area. Further uplift of the units due to increasing updoming of the Monte Rosa 

nappe subsequently led to upper-crustal, orogen-perpendicular extension (e.g. Gasco et al., 2013) and a 

brittle overprint in the southeastern and northwestern realms. A similar evolution has already been 

proposed by Manzotti et al. (2014) who reported low-angle and low-grade top-NW shearing followed by 

high-angle brittle faulting within the southeastern Dent Blanche nappe. 

 

4.9 Conclusions 

Structural analysis of shear zones along the Combin Fault and DBBT in the Swiss-Italian Western Alps 

(southern Valais and northern Aosta regions) revealed a polyphase structural evolution of these major 

tectonic contacts during Paleogene Alpine orogenic deformation. The following sequence of deformation 

has been deduced from deformation structures in outcrop and thin-section, overprinting relations, and 

correlations: 

 D1 top-(N)W shearing between ca. 48 and 44 Ma can be ascribed to the main stage of nappe 

stacking and thrusting along the DBBT and Combin Fault. Top-(N)W shearing occurred during 

exhumation of the Dent Blanche nappe and underlying Combin zone and is held responsible for 

pervasive greenschist-facies retrogression within the Combin zone and the formation of greenschist-

facies mylonites along the DBBT. Underthrusting of continental Briançonnais units led to accretion 

of the Cimes Blanches and Frilihorn nappes to the base of the Tsaté nappe. 

 Transpressional to orogen-parallel D2 top-(S)W shearing between ca. 43 and 40 Ma affected the 

northwestern realm, especially the northwestern segment of the Combin Fault, and occurred under 

still decreasing metamorphic conditions during ongoing exhumation of the Combin zone. The DBBT 

was probably characterized by continuing W-vergent shearing during early stages of this phase. 

 D3 top-SE normal-sense shearing between ca. 39 and 37 Ma affected the northwestern realm 

along a NE-SW striking shear zone subparallel to nappe boundaries. The DBBT largely escaped 

extensional top-SE shearing. In the southeastern realm, top-SE structures are subordinate but can be 

observed along the Combin Fault and at higher structural levels within the Combin zone. 

Greenschist-facies top-SE shearing accompanied the late stages of exhumation of the (U)HP 

Zermatt-Saas zone to crustal levels and is therefore held responsible for juxtaposition of the Combin 

and Zermatt-Saas zones. 

 D4 top-NW shearing and NW-SE shortening after ca. 35 Ma resulted from reactivation of the 

DBBT as an out-of-sequence thrust and especially affected the southeastern realm and partly the 

northwestern DBBT. Renewed thrusting also led to the formation of folds and crenulation cleavages 
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and occurred during ongoing exhumation of the Dent Blanche nappe. The close association of top-

NW shear senses with folds and crenulation cleavages suggests increasing influence of orogen-

perpendicular shortening before the onset of Vanzone-phase folding from ca. 32 Ma onwards. 

 Late top-NW shearing and shortening was followed by brittle D5 NW-SE extension after ca. 30 Ma 

due to updoming of the Vanzone antiform southeast of the study area. Units in the southeastern 

realm were progressively rotated from a SE-dipping into a NW-dipping orientation leading to further 

exhumation and the synformal structure of the Dent Blanche nappe. 

My structural observations and interpretations from shear zones along the Combin Fault and DBBT 

suggest that the northwestern and southeastern segments of these major tectonic contacts record different 

stages of a polyphase structural evolution during progressive orogenic deformation. The described 

shearing events variably affected the northwestern and southeastern realms hindering assessment of the 

regional extent of deformation phases but also enabling reconstruction of a continuous sequence of 

deformation from the main stage of nappe stacking to post-nappe deformation. 
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- CHAPTER 5 - 
 

Conclusions 
 

The aim of this study was to reconstruct the structural evolution of the tectonic units in the study area 

and to deduce the sequence of deformation along two major Alpine tectonic contacts, the Combin 

Fault and the Dent Blanche Basal Thrust. For this purpose, structural and petrological investigations 

were performed in the study area in the southern Valais and northern Aosta regions of Switzerland and 

Italy, respectively. Most deformation observed in the field and in thin-section occurred under 

greenschist-facies conditions. Deformation under (U)HP conditions can be observed and studied in the 

two areas around Lago di Cignana and Becca d’Aver in the western Valtournenche of Italy. The 

observations and models presented for these areas and the whole study area are compatible and in 

good agreement with each other. They allow reconstruction of a comprehensive evolution and 

sequence of deformation in conjunction with published age constraints for the timing of deformation. 

The following general evolution can be deduced from the observations and interpretations presented in 

this thesis. 

 

 Before ca. 48 Ma: HP metamorphism of the Dent Blanche nappe and Combin zone during 

subduction and accretion and associated top-NW shearing. 

 Ca. 48 – 44 Ma: Top-(N)W shearing associated with the main stage of nappe stacking, 

exhumation, and greenschist-facies retrogression of the Dent Blanche nappe and Combin zone. 

 Ca. 43 – 40 Ma: Transpressional to orogen-parallel top-(S)W shearing in the northwestern realm 

of the study area, especially along the northwestern Combin Fault during continuing exhumation 

of the Combin zone, and incipient exhumation of the Zermatt-Saas zone from (U)HP depths 

during normal-sense top-(S)E shearing along its upper boundary. 

 Ca. 39 – 37 Ma: Top-SE shearing within the Combin zone and along the Combin Fault and 

juxtaposition of the Combin and Zermatt-Saas zones at crustal depths. 

 At ca. 36 Ma: Phase of dominant pure shear deformation along the Combin Fault and within the 

Combin zone during the transition from normal-sense top-SE to thrust-related top-NW shearing. 

 After ca. 35 Ma: Renewed top-NW shearing and associated NW-SE shortening as a result of 

reactivation of the DBBT as out-of-sequence thrust. 

 After ca. 30 Ma: Brittle NW-SE extension due to updoming of the Vanzone antiform southeast 

of the study area. 

 

The proposed evolution and sequence of deformation suggests that the Dent Blanche nappe and 

Combin zone experienced a common retrograde evolution and greenschist-facies overprint during top-

(N)W shearing between ca. 48 and 44 Ma. Abundant mylonitic rocks along the base of the Dent 

Blanche nappe suggest that the DBBT represented a high-strain zone during this main stage of 

exhumation from blueschist-facies conditions. Evidence of early subduction- and accretion-related 

deformation and metamorphism is scarce within the Combin zone and along the Combin/Dent 

Blanche boundary. This “gap” could be filled by observations from the Becca d’Aver area where HP 
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deformation structures and mineral assemblages are partly preserved within metasediments of the 

Becca d’Aver continental sliver (BACS). Petrological and microstructural investigations on these 

rocks revealed prograde blueschist-facies metamorphism associated with fluid-mediated mineral 

growth and element transfer during top-NW shearing. Peak metamorphic conditions reached ca. 1.7 

GPa and 500° C and are higher than previously reported PT conditions for the Combin/Dent Blanche 

boundary. The age of the HP imprint within the Dent Blanche nappe and Combin zone is not well 

constrained but is interpreted to have occurred after peak metamorphism in the Sesia nappe at ca. 70 – 

65 Ma (Inger et al., 1996; Rubatto et al., 1999) but before the peak in the Zermatt-Saas zone at ca. 44 - 

43 Ma (Rubatto et al., 1998; Gouzu et al., 2006). Dating the prograde metamorphism observed within 

BACS metasediments, e.g. with Lu-Hf garnet geochronology, might contribute significantly to 

constraining the timing of HP metamorphism along the Combin/Dent Blanche boundary and is 

therefore considered for future studies. There are also no reliable ages for the timing of retrograde 

shearing along the DBBT which is interpreted to have occurred after accretion of the Combin zone 

until ca. 48 Ma (Reddy et al., 2003) and mainly before the onset of exhumation of the (U)HP Zermatt-

Saas zone after ca. 43 Ma but may have continued until ca. 40 Ma during transpressional deformation. 

Dating of synkinematic phases within basal mylonites, e.g. white mica with Ar/Ar geochronology, 

might therefore be an important step to constrain the timing of greenschist-facies mylonitic top-(N)W 

shearing. According to the model presented in this thesis, the early retrograde evolution of the Combin 

zone was closely related to the overlying Dent Blanche nappe in that the two units were exhumed and 

overprinted together. After the main stage of greenschist-facies top-(N)W shearing and overthrusting 

of the Combin zone and Dent Blanche nappe over continental Briançonnais units, the Combin zone 

experienced greenschist-facies post-nappe deformation which only locally affected the DBBT and 

variably affected the northwestern and southeastern realms of the study area. Top-(N)W shearing was 

followed by transpressional to orogen-parallel top-(S)W shearing between ca. 43 and 40 Ma which 

especially affected the northwestern Combin Fault and occurred during ongoing exhumation of the 

Combin zone. Especially the extent of orogen-parallel shearing and its role in deeper crustal 

deformation needs further clarification. Top-(S)W shearing has been reported from adjacent areas (e.g. 

Mancktelow, 1985; Pleuger et al., 2007; Scheiber et al., 2013) but has been ascribed to different 

periods and events. According to the proposed model, transpressional to orogen-parallel shearing may 

have been the result of a dextral strike-slip component along the Briançonnais/Combin boundary due 

to oblique subduction. Top-(S)W shearing was followed by a phase of normal-sense top-SE shearing 

within the Combin zone and along the Combin Fault between ca. 39 and 37 Ma. Structural analyses in 

the Lago di Cignana area showed that exhumation of the Zermatt-Saas zone from (U)HP to crustal 

levels after ca. 43 Ma also occurred during top-(S)E shearing along its upper boundary. Top-SE 

normal-sense shearing is therefore interpreted to be responsible for juxtaposition of the Combin and 

Zermatt-Saas zones at greenschist-facies conditions. Top-SE structures are, however, scarce in the 

hanging wall of the southeastern Combin Fault in the study area which may be due to several reasons: 

(1) Strain may have been mainly localized along the top of the Zermatt-Saas zone and in the footwall 

of the Combin Fault. (2) The sequence of deformation presented in this thesis also envisages that top-

SE shearing was followed by a phase of dominant pure shear deformation at ca. 36 Ma and 

subsequently by renewed top-NW shearing after ca. 35 Ma which may have obliterated earlier top-SE 

structures. Structural observations in the Lago di Cignana area showed that pure shear deformation 

affected units in the footwall and hanging wall of the Combin Fault after juxtaposition of the Combin 
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and Zermatt-Saas zones. On a regional scale, a large pure shear component during post-exhumational, 

greenschist-facies deformation may have led to partly contemporaneous activity of top-SE and top-

NW shear zones and tectonic thinning of the Combin zone. Whereas the relative chronology between 

greenschist-facies top-NW and top-SE shear senses is often difficult to determine, structural 

observations from the Lago di Cignana and Becca d’Aver areas as well as many other localities in the 

study area strongly suggest that tectonic units were affected by a late phase of top-NW shearing before 

the onset of brittle deformation. This phase of renewed top-NW shearing and associated NW-SE 

shortening is ascribed to reactivation of the DBBT as out-of-sequence thrust which also affected the 

underlying Combin zone. This late top-NW shearing event can be inferred from overprinting relations, 

late folding, and the decreasing and often low-grade metamorphic grade of top-NW structures along 

the DBBT which unambiguously often postdate observed ductile top-SE shear senses at lower 

structural levels. The last distinguishable deformation phase was orogen-perpendicular brittle 

extension after ca. 30 Ma which can be observed as brittle top-SE and top-NW shear planes 

overprinting earlier ductile structures. This phase is attributed to updoming of the Vanzone antiform 

southeast of the study area which led to increased exhumation and modification of overall nappe 

geometries. 

 

The DBBT in the Swiss-Italian Western Alps represents an important Alpine greenschist-facies shear 

zone which was active during several stages of top-(N)W shearing under generally decreasing 

metamorphic conditions. The early retrograde evolution of the Combin Fault and overlying Combin 

zone was closely related to the overlying Dent Blanche nappe but shows a more complex structural 

evolution during subsequent shearing events. Post-nappe deformation variably affected the 

northwestern and southeastern realms of the study area and was, in most cases, not strictly parallel to 

previously established nappe boundaries. Whereas exhumation of the Combin zone and Dent Blanche 

nappe and the main stage of nappe-stacking can be attributed to thrust-related top-(N)W shearing, 

exhumation of the Zermatt-Saas zone from (U)HP depths and juxtaposition with the overlying Combin 

zone at greenschist-facies conditions occurred during normal-sense top-(S)E shearing. Renewed top-

NW shearing and NW-SE shortening due to out-of-sequence thrusting along the DBBT was the last 

ductile deformation in the study area before the onset of orogen-perpendicular brittle extension. 
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Electron microprobe analyses 
 

Sample FD34 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD34_m1  39.54 32.17 0.00 1.19 25.09 0.09 0.14 0.01 0.00 0.03   98.26 

FD34_m2  68.90 19.71 0.00 0.02 0.06 0.00 0.00 11.51 0.06 0.00   100.26 

FD34_m3  56.14 1.51 20.44 5.22 12.54 0.15 0.00 0.60 0.07 0.02   96.69 

FD34_m4  50.95 30.07 3.63 1.56 0.03 0.02 0.19 0.20 10.86 0.04   97.55 

FD34_m5  39.70 32.17 0.04 1.77 25.13 0.07 0.05 0.01 0.00 0.00   98.95 

FD34_m6  27.84 21.79 25.75 10.06 0.03 0.23 0.00 0.00 0.02 0.16   85.87 

FD34_m7  39.74 32.09 0.01 1.58 25.00 0.06 0.11 0.04 0.00 0.06   98.66 

FD34_m8  56.13 1.34 20.21 5.66 12.20 0.25 0.01 0.66 0.08 0.00   96.53 

FD34_m9  68.38 19.62 0.00 0.04 0.03 0.00 0.02 11.63 0.09 0.00   99.82 

FD34_m10  28.75 21.92 25.85 9.84 0.11 0.19 0.01 0.02 0.02 0.07   86.77 

FD34_m11  53.00 28.36 3.66 1.09 0.02 0.00 0.15 0.37 10.38 0.21   97.23 

FD34_m12  53.02 26.71 4.15 1.29 0.00 0.07 0.10 0.15 10.70 0.76   96.93 

FD34_m13  56.07 0.61 22.11 3.79 13.27 0.10 0.04 0.22 0.04 0.00   96.25 

FD34_m14  28.74 19.94 26.87 9.97 0.00 0.19 0.04 0.02 0.00 0.15   85.93 

FD34_m15  39.47 32.36 0.00 0.88 25.31 0.00 0.06 0.00 0.01 0.19   98.28 

FD34_m16  67.33 19.74 0.00 0.02 0.12 0.03 0.03 11.53 0.08 0.03   98.91 

FD34_m17  68.44 19.79 0.00 0.03 0.04 0.01 0.00 11.72 0.06 0.02   100.10 

FD34_m18  52.50 27.48 3.94 1.07 0.04 0.00 0.14 0.17 11.11 0.94   97.38 

FD34_m19  38.64 32.49 0.00 0.96 25.12 0.01 0.07 0.02 0.00 0.23   97.53 

FD34_m20  52.17 27.79 3.80 1.08 0.07 0.02 0.12 0.25 10.58 0.45   96.32 

FD34_m21  56.34 0.72 20.68 5.10 13.06 0.09 0.01 0.27 0.00 0.08   96.35 

FD34_m22  38.78 32.53 0.01 1.15 25.19 0.00 0.05 0.02 0.00 0.04   97.76 

FD34_m23  55.96 1.46 20.28 5.05 12.68 0.21 0.00 0.55 0.04 0.04   96.27 

FD34_m24  56.02 0.84 21.68 4.58 13.61 0.15 0.00 0.11 0.00 0.06   97.04 

FD34_m25  28.07 21.57 26.06 9.78 0.04 0.19 0.02 0.02 0.00 0.04   85.79 

FD34_m26  54.98 2.09 20.74 4.86 13.34 0.13 0.04 0.28 0.05 0.00   96.52 

FD34_m27  28.40 21.20 25.95 9.46 0.13 0.13 0.00 0.00 0.00 0.06   85.34 

FD34_m28  39.25 33.17 0.00 0.57 24.97 0.08 0.14 0.02 0.01 0.05   98.26 

FD34_m29  38.96 32.10 0.05 1.83 24.83 0.06 0.09 0.00 0.01 0.04   97.98 

FD34_m30  56.51 0.92 20.78 5.01 12.87 0.18 0.02 0.40 0.03 0.04   96.77 

FD34_m31  56.21 0.74 21.14 4.89 13.11 0.11 0.00 0.25 0.02 0.00   96.48 

FD34_m32  53.51 27.10 3.99 1.33 0.00 0.07 0.13 0.19 10.13 1.21   97.66 

FD34_m33  28.08 21.81 26.33 9.49 0.04 0.18 0.02 0.00 0.01 0.00   85.96 

FD34_m34  38.75 32.35 0.02 1.14 25.09 0.08 0.02 0.00 0.00 0.09   97.54 

FD34_m35  39.00 31.78 0.00 2.12 24.87 0.07 0.01 0.00 0.01 0.03   97.89 

FD34_m36  51.92 27.87 3.52 1.20 0.01 0.00 0.15 0.42 9.80 0.89   95.77 

FD34_m37  57.17 0.88 21.17 4.25 13.08 0.13 0.00 0.29 0.03 0.06   97.06 

             

             Sample FD244 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD244_m1  38.86 30.11 0.08 3.95 24.45 0.07 0.07 0.04 0.00 0.04   97.67 

FD244_m2  38.16 28.37 0.06 6.15 24.23 0.03 0.07 0.00 0.03 0.01   97.10 

FD244_m3  47.55 40.53 0.09 0.33 0.17 0.02 0.06 7.10 0.54 0.02   96.39 

FD244_m4  46.85 39.30 0.11 0.35 0.21 0.05 0.04 6.48 0.65 0.05   94.09 

FD244_m5  57.88 11.67 11.98 7.07 0.89 0.06 0.00 7.10 0.04 0.02   96.71 

FD244_m6  51.40 28.76 3.12 1.70 0.04 0.03 0.22 0.69 9.72 0.00   95.68 

FD244_m7  51.56 7.98 14.12 9.88 8.59 0.18 0.11 3.21 0.18 0.03   95.84 
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FD244_m8  57.53 11.33 12.24 7.57 1.04 0.04 0.01 6.96 0.01 0.00   96.71 

FD244_m9  48.40 10.41 12.34 12.83 8.64 0.14 0.21 3.61 0.26 0.03   96.85 

FD244_m10  37.90 21.66 5.00 27.49 7.86 0.44 0.07 0.10 0.01 0.00   100.54 

FD244_m11  37.67 21.73 4.35 27.30 8.51 0.45 0.09 0.14 0.02 0.02   100.25 

FD244_m12  51.41 7.63 13.67 11.67 8.44 0.14 0.04 3.32 0.14 0.01   96.46 

FD244_m13  57.26 11.01 12.55 7.17 1.13 0.00 0.00 6.91 0.03 0.03   96.09 

FD244_m14  0.00 0.02 17.48 6.76 28.27 0.33 0.00 0.04 0.01 0.00   52.91 

FD244_m15  67.68 20.21 0.12 0.28 0.59 0.07 0.04 11.01 0.06 0.00   100.06 

FD244_m16  38.52 29.70 0.06 4.62 24.39 0.10 0.09 0.00 0.00 0.04   97.50 

FD244_m17  38.17 28.38 0.06 6.38 24.01 0.08 0.10 0.00 0.00 0.04   97.22 

FD244_m18  49.98 29.07 2.95 2.28 0.16 0.00 0.17 0.72 10.01 0.05   95.40 

FD244_m19  39.03 32.13 0.05 1.79 24.52 0.00 0.07 0.04 0.00 0.04   97.66 

FD244_m20  46.49 39.22 0.13 0.29 0.18 0.05 0.10 6.84 0.71 0.04   94.05 

FD244_m21  94.82 0.00 0.00 0.03 0.01 0.00 0.01 0.02 0.00 0.01   94.89 

FD244_m22  58.29 11.64 11.99 7.36 0.64 0.00 0.02 7.09 0.03 0.06   97.11 

FD244_m23  56.56 11.82 10.27 9.52 1.34 0.11 0.06 7.12 0.01 0.00   96.80 

FD244_m24  47.24 11.48 12.10 13.32 8.88 0.28 0.07 3.56 0.31 0.00   97.23 

FD244_m25  58.11 11.35 12.46 6.76 0.89 0.04 0.00 6.99 0.01 0.11   96.72 

FD244_m26  57.00 11.13 12.23 7.33 0.83 0.05 0.00 6.87 0.00 0.06   95.48 

FD244_m27  67.99 19.52 0.02 0.32 0.27 0.00 0.00 11.26 0.02 0.02   99.42 

Line 1  39.33 22.51 9.42 24.26 4.75 0.67 0.00 0.00 0.01 0.02   100.97 

Line 2  39.34 22.54 8.41 25.28 4.89 0.20 0.03 0.00 0.00 0.01   100.70 

Line 3  38.74 19.47 8.42 25.44 4.99 0.33 0.03 0.04 0.04 0.04   97.53 

Line 4  39.40 22.11 7.98 25.89 5.28 0.30 0.02 0.03 0.01 0.01   101.02 

Line 5  39.13 22.37 7.79 26.13 5.28 0.30 0.05 0.00 0.00 0.02   101.07 

Line 6 38.48 22.97 7.39 26.73 5.21 0.27 0.01 0.04 0.00 0.00   101.08 

Line 7  39.13 22.37 7.13 26.99 5.60 0.30 0.00 0.03 0.00 0.03   101.58 

Line 8 39.18 22.03 6.55 28.04 5.61 0.32 0.05 0.00 0.01 0.00   101.78 

Line 9  39.02 21.88 6.27 27.65 6.00 0.24 0.00 0.03 0.01 0.03   101.12 

Line 10  38.66 22.17 5.74 27.77 6.20 0.32 0.04 0.06 0.00 0.00   100.96 

Line 11  38.83 21.79 5.53 28.23 6.23 0.32 0.01 0.03 0.00 0.02   100.97 

Line 12  38.80 21.96 5.14 29.44 6.48 0.26 0.00 0.03 0.00 0.04   102.14 

Line 13  38.59 21.53 4.50 28.79 6.86 0.38 0.04 0.02 0.01 0.05   100.77 

Line 14  38.27 21.64 4.03 29.79 7.24 0.51 0.07 0.01 0.00 0.03   101.58 

Line 15  38.27 21.69 3.98 29.76 7.32 0.69 0.02 0.04 0.00 0.04   101.81 

Line 16  38.25 21.63 3.72 29.39 7.80 0.71 0.06 0.05 0.01 0.00   101.62 

Line 17 38.37 21.52 3.72 29.26 8.06 0.75 0.19 0.01 0.01 0.03   101.92 

Line 18  38.16 21.83 3.34 28.89 8.01 0.79 0.20 0.00 0.01 0.05   101.28 

Line 19 38.17 21.41 2.92 28.69 9.02 0.79 0.09 0.05 0.02 0.00   101.17 

Line 20  27.08 24.91 1.68 27.68 8.62 0.82 0.05 0.00 0.00 0.04   90.88 

Line 21 37.89 21.67 2.72 28.85 8.96 0.84 0.07 0.04 0.00 0.00   101.03 

Line 22 38.12 21.57 2.68 28.67 9.20 0.88 0.13 0.02 0.00 0.01   101.27 

Line 23  38.26 21.54 2.91 28.60 8.65 0.92 0.08 0.03 0.00 0.02   101.02 

Line 24  91.30 0.82 0.05 1.05 0.37 0.09 0.04 0.00 0.00 0.01   93.73 

Line 25  38.45 21.15 2.65 27.48 10.14 0.71 0.25 0.05 0.00 0.06   100.93 

Line 26 38.43 21.45 3.05 27.61 9.49 0.74 0.08 0.05 0.00 0.02   100.91 

Line 27 60.60 8.95 6.75 7.00 10.84 0.08 0.03 6.02 0.02 0.02   100.30 

Line 28 37.90 21.44 2.61 27.54 9.83 0.82 0.12 0.00 0.00 0.00   100.27 

Line 29 37.91 21.33 2.88 28.51 8.95 0.78 0.10 0.00 0.00 0.02   100.49 

Line 30  37.92 21.14 3.00 28.60 9.00 0.69 0.08 0.03 0.00 0.05   100.51 

Line 31  38.71 21.51 3.66 28.50 8.45 0.71 0.03 0.13 0.01 0.02   101.71 

Line 32  46.49 12.30 6.32 16.37 11.24 0.11 0.20 5.76 0.34 0.03   99.17 

Line 33 38.18 21.32 3.60 29.31 7.87 0.80 0.11 0.05 0.00 0.06   101.30 

Line 34 54.91 8.20 8.15 8.10 13.20 0.04 0.03 6.85 0.02 0.03   99.53 

Line 35  38.11 21.72 3.77 29.13 7.64 0.72 0.05 0.02 0.00 0.01   101.17 
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Line 36  38.06 21.78 4.22 28.66 7.49 0.59 0.03 0.03 0.00 0.01   100.86 

Line 37  38.08 22.27 4.45 29.29 7.01 0.41 0.06 0.01 0.00 0.02   101.60 

Line 38 38.69 22.01 5.62 28.16 6.59 0.29 0.05 0.00 0.00 0.04   101.45 

Line 39  38.77 22.19 6.66 27.78 5.87 0.31 0.00 0.04 0.02 0.07   101.70 

Line 40 39.04 22.35 7.49 27.43 5.38 0.27 0.04 0.01 0.01 0.03   102.04 

FD244_m28  38.42 21.71 4.38 29.18 6.94 0.54 0.01 0.03 0.02 0.04   101.26 

             

             Sample FD306 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD306_m1  51.31 2.98 14.20 7.61 22.08 0.26 0.90 0.47 0.00 0.09   99.91 

FD306_m2  49.91 6.15 14.84 12.38 12.06 0.20 0.65 1.76 0.06 0.04   98.03 

FD306_m3  38.59 25.40 0.00 9.78 23.62 0.09 0.13 0.00 0.01 0.00   97.63 

FD306_m4 38.70 27.70 0.01 7.40 24.27 0.02 0.08 0.04 0.00 0.02   98.23 

FD306_m5 38.28 26.27 3.33 2.74 22.28 0.20 0.03 0.14 0.02 0.04   93.33 

FD306_m6 56.91 0.59 18.91 8.33 13.07 0.09 0.02 0.28 0.02 0.00   98.23 

FD306_m7 56.16 0.89 19.04 7.87 13.20 0.20 0.01 0.29 0.04 0.01   97.71 

FD306_m8 38.02 25.97 3.40 2.68 22.44 0.31 0.11 0.16 0.00 0.06   93.15 

FD306_m9 56.32 0.69 18.47 9.04 12.92 0.03 0.00 0.38 0.01 0.02   97.87 

FD306_m10 27.84 20.17 20.77 16.59 0.27 0.23 0.09 0.00 0.03 0.21   86.20 

FD306_m11 69.35 20.47 0.01 0.05 0.07 0.07 0.00 11.42 0.02 0.00   101.45 

FD306_m12 69.72 20.04 0.02 0.09 0.10 0.00 0.02 12.77 0.03 0.00   102.77 

FD306_m13 69.45 19.91 0.00 0.09 0.03 0.04 0.05 11.88 0.02 0.00   101.47 

FD306_m14 38.47 25.64 0.03 9.86 24.01 0.06 0.03 0.00 0.00 0.00   98.09 

FD306_m15 38.27 25.70 3.26 3.18 22.28 0.21 0.17 0.14 0.01 0.03   93.25 

FD306_m16 39.16 28.27 0.03 6.56 24.35 0.00 0.11 0.03 0.00 0.00   98.50 

FD306_m17 38.22 25.25 0.00 10.86 23.65 0.03 0.03 0.03 0.01 0.02   98.10 

FD306_m18 38.48 26.94 0.01 8.12 23.95 0.10 0.05 0.02 0.00 0.00   97.67 

FD306_m19 38.06 26.08 3.34 2.90 22.49 0.20 0.12 0.14 0.01 0.00   93.34 

FD306_m20 68.54 19.95 0.02 0.11 0.04 0.00 0.03 11.60 0.02 0.03   100.33 

FD306_m21 27.49 19.91 20.92 16.16 0.12 0.19 0.01 0.04 0.01 0.02   84.87 

FD306_m22 68.28 20.18 0.01 0.10 0.07 0.00 0.02 11.88 0.04 0.00   100.57 

FD306_m23 38.29 25.81 0.00 9.45 23.83 0.05 0.12 0.02 0.01 0.00   97.59 

FD306_m24 38.70 26.18 3.73 1.60 21.90 0.19 0.08 0.16 0.01 0.03   92.58 

FD306_m25 37.96 26.00 3.42 2.63 22.26 0.18 0.05 0.10 0.00 0.00   92.61 

FD306_m26 68.76 19.95 0.00 0.29 0.18 0.00 0.01 11.73 0.04 0.00   100.95 

FD306_m27 38.39 25.84 0.01 9.67 23.89 0.08 0.04 0.00 0.01 0.01   97.95 

FD306_m28 40.63 27.50 0.02 5.66 23.66 0.10 0.06 0.44 0.00 0.00   98.06 

FD306_m29 27.87 20.14 20.74 18.31 0.08 0.19 0.02 0.01 0.01 0.00   87.35 

FD306_m30 51.47 2.72 13.94 9.28 20.93 0.29 0.94 0.59 0.03 0.01   100.20 

FD306_m31 51.04 2.80 14.08 8.59 21.28 0.25 0.85 0.49 0.01 0.06   99.46 

FD306_m32 28.11 19.62 20.51 18.97 0.03 0.15 0.00 0.01 0.02 0.00   87.41 

FD306_m33 52.71 3.10 18.00 9.06 12.71 0.17 0.30 0.93 0.03 0.05   97.05 

FD306_m34 51.84 1.88 14.77 8.47 21.61 0.28 0.52 0.44 0.01 0.01   99.82 

FD306_m35 56.18 0.51 18.41 9.22 12.83 0.13 0.00 0.22 0.03 0.00   97.52 

FD306_m36 28.02 20.34 21.49 17.68 0.09 0.22 0.05 0.03 0.01 0.03   87.97 

FD306_m37 42.66 11.96 13.07 13.16 11.04 0.11 3.70 3.10 0.16 0.07   99.03 

FD306_m38 28.40 19.94 21.56 17.89 0.02 0.16 0.01 0.02 0.02 0.04   88.04 

FD306_m39 69.31 20.15 0.00 0.23 0.05 0.02 0.02 11.88 0.04 0.02   101.71 

FD306_m40 38.19 25.06 0.00 10.35 23.54 0.03 0.00 0.00 0.01 0.01   97.19 

FD306_m41 55.75 0.73 18.66 9.07 12.88 0.16 0.00 0.34 0.01 0.00   97.60 

FD306_m42 68.17 20.33 0.05 0.07 0.54 0.04 0.00 11.41 0.04 0.00   100.65 

FD306_m43 37.85 26.04 3.52 2.41 22.46 0.09 0.01 0.11 0.01 0.00   92.51 

FD306_m44 29.03 20.71 24.64 13.13 0.07 0.25 0.01 0.02 0.01 0.04   87.89 
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             Sample FD351 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD351_m1  52.80 27.31 3.28 3.83 0.04 0.00 0.14 0.19 9.61 0.00   97.21 

FD351_m2  45.11 25.50 6.58 5.73 0.04 0.09 0.24 0.10 8.68 0.03   92.10 

FD351_m3  52.24 29.41 2.70 3.13 0.02 0.04 0.12 0.12 10.24 0.00   98.01 

FD351_m4  38.11 24.76 0.01 10.55 23.46 0.15 0.05 0.00 0.04 0.05   97.17 

FD351_m5  69.40 19.91 0.02 0.26 0.32 0.02 0.54 11.65 0.06 0.00   102.18 

FD351_m6  68.36 19.51 0.00 0.40 0.08 0.02 0.06 12.15 0.04 0.00   100.62 

FD351_m7  38.16 23.66 13.54 11.08 0.03 0.19 0.06 0.09 3.95 0.00   90.75 

FD351_m8  50.85 28.95 2.55 2.65 0.05 0.09 0.11 0.08 10.28 0.04   95.66 

FD351_m9  27.20 21.58 20.23 17.05 0.16 0.49 0.15 0.00 0.01 0.05   86.91 

FD351_m10  51.13 28.80 2.76 2.47 0.06 0.00 0.16 0.18 9.83 0.00   95.39 

FD351_m11  53.55 26.84 3.04 3.92 0.06 0.02 0.22 0.17 10.43 0.00   98.24 

FD351_m12  51.73 28.48 2.70 3.13 0.03 0.00 0.14 0.15 10.32 0.01   96.70 

FD351_m13  38.78 28.34 0.00 6.24 24.02 0.09 0.18 0.00 0.01 0.00   97.66 

FD351_m14  38.43 27.07 0.28 7.88 23.66 0.22 0.09 0.03 0.01 0.08   97.75 

FD351_m15  27.39 20.85 20.48 16.78 0.10 0.41 0.03 0.00 0.01 0.04   86.10 

FD351_m16  69.74 19.80 0.00 0.08 0.10 0.03 0.02 11.79 0.04 0.02   101.63 

FD351_m17  68.54 19.88 0.01 0.18 0.06 0.00 0.00 11.74 0.05 0.05   100.52 

FD351_m18  27.49 21.06 20.28 17.27 0.12 0.42 0.10 0.00 0.03 0.02   86.77 

FD351_m19  52.50 27.07 3.07 3.24 0.02 0.05 0.16 0.54 10.44 0.04   97.14 

FD351_m20  69.39 19.77 0.00 0.16 0.14 0.03 0.09 11.68 0.03 0.01   101.30 

FD351_m21  37.44 23.15 0.00 12.55 23.47 0.20 0.07 0.03 0.01 0.00   96.91 

FD351_m22  3.21 0.87 0.00 0.34 52.73 0.06 0.09 0.19 0.00 0.00   57.49 

FD351_m23  30.50 1.35 0.03 0.48 28.19 0.02 76.81 0.02 0.01 0.06   137.46 

FD351_m24  26.87 21.40 20.42 17.11 0.19 0.37 0.46 0.00 0.04 0.00   86.86 

FD351_m25  27.40 21.01 20.18 16.95 0.11 0.40 0.14 0.04 0.06 0.00   86.29 

FD351_m26  38.07 24.89 0.00 10.40 23.70 0.33 0.13 0.01 0.00 0.01   97.53 

FD351_m27  97.58 0.00 0.00 0.15 0.05 0.00 0.22 0.02 0.00 0.06   98.07 

FD351_m28  27.34 21.27 20.22 16.65 0.18 0.43 0.65 0.00 0.01 0.00   86.75 

FD351_m29  96.23 0.00 0.00 0.03 0.06 0.05 0.07 0.01 0.00 0.00   96.44 

FD351_m30  27.81 20.57 20.88 16.85 0.17 0.42 0.11 0.00 0.02 0.03   86.85 

FD351_m31  26.97 21.54 20.16 17.42 0.12 0.40 0.16 0.03 0.04 0.00   86.83 

FD351_m32  27.13 21.49 20.35 17.15 0.08 0.30 0.01 0.02 0.01 0.00   86.54 

FD351_m33  34.97 21.47 0.09 10.82 19.83 0.31 3.82 0.00 0.01 0.00   91.32 

FD351_m34  37.89 24.51 0.00 10.84 23.36 0.28 0.31 0.00 0.00 0.00   97.19 

FD351_m35  38.62 27.70 0.01 6.77 23.82 0.08 0.12 0.00 0.02 0.08   97.22 

FD351_m36  37.91 23.28 0.00 11.90 23.37 0.23 0.03 0.03 0.00 0.00   96.75 

FD351_m37  27.56 21.07 20.89 15.76 0.14 0.31 0.19 0.03 0.02 0.02   85.98 

FD351_m38  96.66 0.00 0.00 0.23 0.04 0.00 0.06 0.00 0.01 0.02   97.02 

FD351_m39  26.91 21.49 19.90 17.64 0.10 0.33 0.08 0.01 0.01 0.00   86.48 

FD351_m40  27.40 20.84 21.21 16.24 0.10 0.45 0.07 0.04 0.00 0.07   86.43 

FD351_m41  51.73 27.18 3.07 3.52 0.09 0.08 0.14 0.19 10.01 0.02   96.02 

FD351_m42  27.26 21.03 21.07 16.57 0.02 0.49 0.06 0.01 0.02 0.01   86.53 

FD351_m43  52.06 27.77 3.29 3.11 0.05 0.00 0.15 0.16 10.24 0.04   96.87 

FD351_m44  68.90 19.88 0.00 0.18 0.06 0.00 0.09 11.87 0.07 0.01   101.06 

FD351_m45  47.46 26.49 5.13 4.49 0.03 0.00 0.16 0.12 8.81 0.03   92.72 

FD351_m46  52.68 27.85 2.89 2.73 0.03 0.08 0.12 0.13 10.71 0.00   97.20 

FD351_m47  96.68 0.00 0.00 0.06 0.00 0.03 0.00 0.02 0.02 0.00   96.81 

FD351_m48  27.55 20.78 20.07 17.77 0.01 0.37 0.12 0.02 0.00 0.01   86.69 

FD351_m49  34.21 20.15 0.25 10.91 18.92 0.33 0.19 0.00 0.00 0.00   84.96 

FD351_m50  30.57 1.85 0.00 0.67 28.38 0.00 70.46 0.01 0.01 0.03   131.96 
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FD351_m51  30.31 1.55 0.07 0.62 28.65 0.07 37.62 0.00 0.01 0.11   99.00 

FD351_m52  35.09 23.42 16.36 13.87 0.08 0.30 0.04 0.12 2.39 0.00   91.65 

FD351_m53  46.28 26.44 6.60 5.01 0.05 0.02 0.04 0.12 7.45 0.01   92.02 

FD351_m54  31.62 23.31 18.65 15.00 0.07 0.26 0.07 0.07 1.49 0.02   90.54 

FD351_m55  29.51 22.73 20.61 16.02 0.06 0.39 0.00 0.02 0.55 0.00   89.90 

FD351_m56  39.03 27.86 0.02 7.07 23.97 0.19 0.12 0.01 0.02 0.00   98.30 

FD351_m57  38.82 27.89 0.01 7.22 24.07 0.16 0.05 0.00 0.04 0.00   98.25 

FD351_m58  51.91 29.87 3.06 2.75 0.02 0.06 0.09 0.09 10.34 0.02   98.20 

FD351_m59  38.21 26.48 0.03 8.80 23.70 0.29 0.05 0.00 0.12 0.01   97.68 

FD351_m60  37.66 23.86 0.01 12.18 23.10 0.31 0.04 0.01 0.09 0.00   97.26 

FD351_m61  51.88 28.52 3.12 3.39 0.12 0.00 0.10 0.29 9.56 0.02   96.98 

FD351_m62  70.01 20.50 0.00 0.06 0.04 0.04 0.07 11.85 0.02 0.01   102.61 

FD351_m63  29.83 0.69 0.00 0.10 28.72 0.01 41.70 0.04 0.01 0.00   101.10 

FD351_m64  69.37 20.18 0.00 0.15 0.05 0.00 0.02 11.95 0.04 0.00   101.76 

FD351_m65  97.09 0.01 0.00 0.13 0.01 0.00 0.07 0.01 0.01 0.00   97.33 

FD351_m66  51.98 29.24 3.10 3.23 0.05 0.09 0.10 0.16 10.20 0.02   98.16 

FD351_m67  52.41 27.38 3.30 3.43 0.10 0.07 0.09 0.24 10.14 0.03   97.17 

FD351_m68  52.30 30.25 2.65 2.78 0.08 0.06 0.07 0.08 10.37 0.02   98.66 

FD351_m69  70.09 20.52 0.00 0.20 0.09 0.00 0.00 11.50 0.05 0.03   102.47 

FD351_m70  95.83 0.01 0.00 0.14 0.04 0.00 0.00 0.00 0.02 0.00   96.03 

FD351_m71  95.33 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00   95.37 

FD351_m72  27.17 21.70 19.59 19.11 0.00 0.47 0.06 0.00 0.01 0.00   88.11 

FD351_m73  27.01 21.16 19.03 20.61 0.00 0.46 0.07 0.00 0.01 0.00   88.34 

FD351_m74  47.11 21.68 0.09 10.70 21.09 0.20 0.05 0.01 0.01 0.00   100.94 

FD351_m75  96.19 0.08 0.02 0.25 0.01 0.01 0.02 0.03 0.00 0.00   96.61 

FD351_m76  27.58 21.53 21.11 16.99 0.05 0.35 0.00 0.04 0.02 0.01   87.67 

FD351_m77  39.13 28.39 0.00 6.10 24.03 0.09 0.10 0.03 0.00 0.00   97.87 

FD351_m78  38.49 27.13 0.04 7.78 23.85 0.17 0.05 0.01 0.00 0.00   97.51 

FD351_m79  37.93 23.77 0.03 11.72 23.28 0.21 0.02 0.02 0.00 0.00   96.99 

FD351_m80  27.71 22.26 21.22 16.64 0.01 0.44 0.04 0.01 0.00 0.00   88.33 

FD351_m81  27.26 22.13 19.83 17.72 0.00 0.49 0.02 0.02 0.02 0.01   87.50 

             

             Sample FD356 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD356_m1  23.20 20.81 7.84 35.02 0.00 0.67 0.03 0.03 0.00 0.03   87.63 

FD356_m2  24.64 18.94 8.32 35.01 0.05 0.58 0.02 0.07 0.04 0.02   87.68 

FD356_m3  52.36 25.89 2.38 6.41 0.00 0.00 0.14 0.09 10.83 0.05   98.15 

FD356_m4 48.18 31.72 1.00 4.64 0.00 0.00 0.06 0.46 10.23 0.06   96.34 

FD356_m5 51.80 24.74 2.71 5.74 0.00 0.02 0.16 0.08 10.52 0.00   95.76 

FD356_m6 51.81 24.86 2.67 5.98 0.00 0.02 0.19 0.03 10.82 0.02   96.39 

FD356_m7 52.22 24.84 2.61 6.37 0.00 0.08 0.19 0.05 10.62 0.04   97.03 

FD356_m8 51.49 25.78 2.38 6.65 0.00 0.03 0.16 0.12 10.62 0.05   97.30 

FD356_m9 48.69 28.63 1.27 5.93 0.00 0.05 0.09 0.53 9.55 0.03   94.76 

FD356_m10 67.70 19.37 0.00 0.01 0.03 0.00 0.01 12.34 0.03 0.00   99.49 

FD356_m11 69.76 19.98 0.00 0.02 0.06 0.01 0.06 11.42 0.03 0.00   101.34 

FD356_m12 67.85 19.79 0.00 0.02 0.11 0.00 0.02 12.18 0.03 0.06   100.06 

FD356_m13 47.56 30.93 1.03 4.68 0.00 0.02 0.00 0.57 9.88 0.03   94.70 

FD356_m14 49.25 30.37 1.26 5.48 0.00 0.03 0.14 0.27 10.69 0.03   97.52 

FD356_m15 37.00 20.53 0.49 25.02 6.79 9.63 0.14 0.01 0.00 0.00   99.60 

FD356_m16 37.13 20.58 0.53 27.00 6.74 8.46 0.15 0.00 0.00 0.00   100.58 

FD356_m17 0.04 0.07 0.00 92.55 0.02 0.06 0.08 0.00 0.00 0.02   92.84 

FD356_m18 50.28 23.71 2.36 6.88 0.00 0.00 0.16 0.07 10.72 0.01   94.19 

FD356_m19 51.14 24.13 2.23 6.95 0.00 0.01 0.20 0.11 10.34 0.10   95.19 
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FD356_m20 36.20 32.93 7.83 4.60 0.39 0.00 0.36 2.02 0.06 0.07   84.46 

FD356_m21 34.79 28.03 4.29 13.73 0.06 0.05 1.18 2.99 0.09 0.07   85.26 

FD356_m22 0.02 0.00 0.01 0.06 54.31 0.09 0.05 0.01 0.01 0.00   54.56 

FD356_m23 51.19 23.45 2.62 6.44 0.01 0.07 0.12 0.06 10.28 0.00   94.23 

FD356_m24 52.32 24.42 2.54 6.22 0.00 0.01 0.20 0.07 10.44 0.02   96.23 

FD356_m25 23.68 20.04 6.98 35.42 0.03 0.64 0.04 0.05 0.07 0.00   86.94 

FD356_m26 23.74 19.44 7.05 35.50 0.03 0.67 0.12 0.00 0.00 0.00   86.55 

FD356_m27 37.35 20.45 0.52 28.36 6.55 6.87 0.10 0.03 0.00 0.05   100.28 

FD356_m28 37.53 20.76 0.55 30.09 5.23 7.20 0.05 0.00 0.00 0.00   101.41 

FD356_m29 37.74 20.70 0.55 29.57 5.71 7.35 0.06 0.03 0.02 0.01   101.72 

FD356_m30 23.86 20.70 7.11 35.64 0.01 0.79 0.07 0.00 0.04 0.00   88.21 

FD356_m31 0.22 0.15 0.01 92.11 0.01 0.08 0.03 0.01 0.00 0.22   92.83 

FD356_m32 51.29 26.33 2.00 5.57 0.02 0.04 0.18 0.14 10.21 0.02   95.80 

FD356_m33 68.89 19.52 0.00 0.05 0.07 0.00 0.00 12.34 0.04 0.04   100.95 

FD356_m34 23.89 20.75 7.20 35.31 0.01 0.69 0.04 0.00 0.01 0.02   87.92 

FD356_m35 48.12 28.55 1.37 5.33 0.02 0.03 0.23 0.28 10.41 0.05   94.38 

FD356_m36 23.90 20.22 7.51 35.39 0.01 0.78 0.06 0.00 0.03 0.00   87.90 

FD356_m37 68.55 19.39 0.00 0.18 0.03 0.00 0.00 12.35 0.05 0.01   100.57 

FD356_m38 24.72 21.60 6.50 33.32 0.01 0.66 0.05 0.05 0.50 0.01   87.41 

FD356_m39 97.48 0.03 0.00 0.31 0.00 0.00 0.01 0.00 0.00 0.00   97.82 

FD356_m40 23.63 21.06 7.03 34.99 0.00 0.67 0.09 0.01 0.02 0.03   87.52 

FD356_m41 50.82 25.84 2.25 5.86 0.00 0.00 0.22 0.18 10.78 0.04   95.98 

FD356_m42 50.86 25.03 2.42 6.22 0.00 0.00 0.24 0.12 10.82 0.04   95.73 

FD356_m43 23.36 20.45 7.11 35.24 0.03 0.67 0.09 0.07 0.03 0.01   87.04 

FD356_m44 51.84 23.96 2.29 6.81 0.00 0.04 0.16 0.10 10.94 0.00   96.14 

FD356_m45 23.67 20.27 7.30 35.07 0.00 0.71 0.07 0.00 0.02 0.02   87.13 

FD356_m46 48.74 29.11 1.33 5.37 0.01 0.05 0.00 0.42 10.13 0.00   95.16 

FD356_m47 48.24 29.84 1.00 5.31 0.00 0.00 0.09 0.41 10.46 0.05   95.39 

FD356_m48 23.74 20.22 7.15 35.31 0.00 0.64 0.07 0.00 0.03 0.04   87.19 

FD356_m49 47.71 29.91 1.02 5.57 0.02 0.01 0.20 0.32 10.79 0.03   95.56 

FD356_m50 23.90 20.09 7.48 35.44 0.01 0.66 0.05 0.00 0.02 0.00   87.66 

FD356_m51 23.58 20.24 7.15 35.97 0.01 0.70 0.10 0.00 0.03 0.00   87.78 

FD356_m52 23.91 20.73 7.31 35.25 0.03 0.75 0.08 0.01 0.03 0.04   88.13 

FD356_m53 23.49 20.82 7.18 35.94 0.00 0.60 0.04 0.03 0.01 0.01   88.12 

FD356_m54 23.71 20.58 7.14 34.92 0.01 0.63 0.12 0.06 0.06 0.01   87.23 

FD356_m55 24.93 19.47 7.37 35.22 0.05 0.48 0.09 0.02 0.12 0.00   87.75 

FD356_m56 24.83 18.83 7.40 35.96 0.03 0.67 0.01 0.00 0.05 0.00   87.77 

FD356_m57 23.70 20.52 7.19 35.62 0.03 0.68 0.09 0.03 0.03 0.00   87.89 

FD356_m58 23.87 20.45 7.38 34.82 0.03 0.48 0.07 0.06 0.05 0.00   87.20 

FD356_m59 97.25 0.06 0.03 0.42 0.00 0.08 0.03 0.02 0.03 0.04   97.95 

FD356_m60 48.02 29.31 1.08 5.86 0.01 0.02 0.31 0.25 10.92 0.05   95.83 

FD356_m61 47.93 28.25 1.31 6.05 0.00 0.08 0.24 0.25 10.90 0.02   95.02 

FD356_m62 47.44 29.12 1.22 6.07 0.01 0.00 0.26 0.22 10.92 0.01   95.27 

FD356_m63 24.12 20.35 7.29 35.32 0.03 0.74 0.02 0.03 0.05 0.00   87.95 

FD356_m64 68.45 19.09 0.00 0.18 0.14 0.02 0.01 12.00 0.06 0.00   99.94 

FD356_m65 23.54 20.82 7.39 35.56 0.04 0.59 0.10 0.00 0.04 0.02   88.10 

FD356_m66 23.43 20.76 7.19 35.29 0.02 0.65 0.10 0.00 0.04 0.02   87.50 

FD356_m67 50.16 25.74 2.24 5.85 0.01 0.08 0.23 0.08 10.21 0.03   94.62 

FD356_m68 51.67 23.77 2.48 6.82 0.01 0.00 0.13 0.06 10.59 0.04   95.56 

FD356_m69 51.91 24.13 2.61 6.47 0.02 0.03 0.18 0.09 10.34 0.06   95.84 

FD356_m70 47.77 29.46 1.10 6.20 0.01 0.00 0.21 0.75 9.94 0.00   95.44 

FD356_m71 97.21 0.05 0.01 0.43 0.00 0.00 0.01 0.00 0.01 0.00   97.71 

FD356_m72 49.00 25.91 2.30 5.74 0.13 0.12 0.14 0.06 8.66 0.02   92.08 

FD356_m73 23.55 21.04 7.02 35.39 0.02 0.75 0.09 0.07 0.04 0.02   87.98 

FD356_m74 23.53 20.20 7.15 35.40 0.01 0.54 0.11 0.02 0.05 0.01   87.02 
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FD356_m75 23.58 20.25 7.06 35.74 0.00 0.60 0.03 0.00 0.01 0.01   87.28 

FD356_m76 37.86 20.14 0.54 28.75 6.90 6.87 0.15 0.04 0.01 0.00   101.25 

FD356_m77 24.08 20.54 6.85 35.91 0.04 0.81 0.05 0.00 0.23 0.01   88.51 

FD356_m78 23.77 21.23 6.78 36.02 0.03 0.74 0.04 0.00 0.10 0.05   88.76 

FD356_m79 37.49 20.89 0.57 29.88 5.86 6.47 0.13 0.00 0.01 0.00   101.29 

FD356_m80 37.41 20.62 0.53 30.82 4.54 7.14 0.05 0.04 0.02 0.03   101.20 

FD356_m81 24.21 20.90 7.55 35.53 0.01 0.63 0.06 0.00 0.02 0.08   88.99 

FD356_m82 37.66 20.48 0.54 30.02 5.50 7.03 0.07 0.00 0.00 0.01   101.30 

FD356_m83 24.33 19.55 7.67 35.66 0.04 0.82 0.09 0.00 0.04 0.01   88.20 

FD356_m84 37.39 20.61 0.50 29.24 5.85 6.97 0.06 0.04 0.01 0.07   100.74 

FD356_m85 24.21 19.75 7.09 35.33 0.07 0.78 0.03 0.04 0.14 0.00   87.44 

FD356_m86 37.32 20.53 0.50 29.55 5.90 6.98 0.11 0.03 0.01 0.02   100.93 

FD356_m87 23.71 20.74 7.32 35.50 0.01 0.94 0.05 0.04 0.03 0.02   88.34 

FD356_m88 37.28 20.86 0.60 29.53 5.76 6.83 0.12 0.01 0.01 0.03   101.01 

FD356_m89 24.15 20.40 6.88 35.28 0.03 0.79 0.06 0.02 0.22 0.02   87.85 

FD356_m90 37.62 20.84 0.54 29.50 5.61 6.60 0.05 0.03 0.01 0.07   100.87 

FD356_m91 24.38 20.79 7.13 36.17 0.04 0.79 0.14 0.03 0.12 0.01   89.61 

FD356_m92 23.82 19.90 7.07 35.12 0.11 0.88 0.02 0.01 0.03 0.01   86.97 

FD356_m93 37.74 21.00 0.56 29.99 5.38 6.70 0.04 0.05 0.01 0.00   101.46 

FD356_m94 23.95 20.72 6.87 36.24 0.01 0.92 0.00 0.00 0.09 0.01   88.82 

FD356_m95 37.71 20.89 0.56 30.14 5.21 7.19 0.00 0.00 0.02 0.03   101.75 

FD356_m96 24.35 38.33 1.35 26.34 0.02 0.78 0.00 0.00 0.00 0.04   91.22 

FD356_m97 24.46 37.87 1.19 27.22 0.02 0.79 0.02 0.00 0.02 0.02   91.61 

FD356_m98 36.32 29.65 5.00 12.18 0.05 0.26 0.07 2.84 0.01 0.02   86.40 

FD356_m99 24.39 38.43 1.32 27.23 0.02 0.77 0.00 0.00 0.00 0.06   92.23 

FD356_m100 37.67 20.84 0.55 29.52 5.17 7.13 0.00 0.02 0.00 0.05   100.96 

FD356_m101 37.87 20.67 0.54 29.02 6.20 6.75 0.09 0.04 0.03 0.00   101.19 

FD356_m102 24.28 38.68 1.19 27.43 0.03 0.75 0.00 0.04 0.01 0.10   92.50 

FD356_m103 37.90 20.98 0.61 30.20 5.04 7.27 0.10 0.02 0.00 0.06   102.16 

FD356_m104 24.29 38.67 1.27 26.46 0.03 1.10 0.05 0.03 0.00 0.02   91.93 

FD356_m105 37.51 20.66 0.59 29.80 5.39 6.89 0.07 0.00 0.00 0.03   100.95 

FD356_m106 48.02 33.79 0.75 3.29 0.00 0.05 0.04 0.24 10.88 0.01   97.07 

FD356_m107 69.03 19.32 0.00 0.05 0.09 0.00 0.00 12.41 0.05 0.03   100.99 

FD356_m108 23.75 20.47 7.32 35.62 0.03 0.74 0.04 0.01 0.04 0.00   88.02 

FD356_m109 37.65 20.57 0.54 28.87 6.12 6.99 0.16 0.02 0.02 0.04   100.96 

FD356_m110 24.41 38.96 1.46 25.92 0.00 0.95 0.00 0.00 0.00 0.05   91.74 

FD356_m111 23.82 20.74 7.05 35.56 0.01 0.64 0.10 0.02 0.03 0.04   88.01 

FD356_m112 49.12 28.08 1.55 5.61 0.00 0.07 0.23 0.55 10.15 0.04   95.40 

FD356_m113 53.09 23.45 2.79 5.90 0.00 0.00 0.14 0.07 10.69 0.06   96.20 

FD356_m114 23.38 19.54 7.28 34.12 0.01 0.58 0.05 0.04 0.02 0.00   85.02 

FD356_m115 5.50 5.57 1.80 77.49 0.00 0.22 0.16 0.00 0.01 0.00   90.75 

FD356_m116 97.00 0.01 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.04   97.14 

FD356_m117 69.23 19.44 0.00 0.02 0.11 0.00 0.00 12.16 0.04 0.02   101.01 

             

             Sample FD370 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD370_m1  37.08 21.79 0.44 19.99 8.36 14.49 0.24 0.02 0.01 0.08   102.49 

FD370_m2  37.94 29.97 0.03 4.93 23.63 0.31 0.23 0.02 0.01 0.02   97.08 

FD370_m3  52.35 29.35 3.30 2.25 0.01 0.03 0.18 0.14 10.57 0.02   98.20 

FD370_m4  37.25 21.54 0.71 23.20 10.07 8.00 0.10 0.03 0.01 0.03   100.93 

FD370_m5  51.95 29.51 2.99 2.16 0.00 0.08 0.06 0.41 10.05 0.00   97.21 

FD370_m6  0.02 0.02 0.33 0.56 53.71 0.36 0.00 0.00 0.00 0.05   55.05 

FD370_m7  95.97 0.00 0.00 0.03 0.01 0.06 0.07 0.01 0.00 0.00   96.14 
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FD370_m8  52.81 28.66 3.53 2.26 0.00 0.03 0.07 0.15 10.49 0.02   98.02 

FD370_m9  52.73 29.15 3.18 1.90 0.00 0.00 0.12 0.19 10.56 0.00   97.82 

FD370_m10  37.26 21.07 0.42 20.08 8.02 14.62 0.06 0.00 0.01 0.00   101.54 

FD370_m11  37.54 21.28 0.40 21.12 8.52 12.87 0.11 0.00 0.00 0.08   101.93 

Line 1  37.63 21.46 0.73 19.64 12.01 8.91 0.19 0.05 0.01 0.02   100.62 

Line 2  37.47 21.08 0.60 18.60 11.51 10.85 0.24 0.02 0.00 0.06   100.43 

Line 3  37.77 21.36 0.81 20.62 10.82 9.60 0.14 0.03 0.00 0.00   101.16 

Line 4  51.36 16.95 0.64 18.44 7.38 5.77 0.09 0.12 0.02 0.01   100.77 

Line 5  37.39 21.06 0.68 23.07 9.97 8.14 0.14 0.00 0.03 0.00   100.47 

Line 6  89.17 0.86 0.00 1.08 0.46 0.44 0.02 0.05 0.00 0.07   92.15 

Line 7  37.28 21.57 0.58 23.03 9.26 9.16 0.01 0.05 0.00 0.00   100.93 

Line 8  29.10 14.89 0.66 19.89 14.09 8.04 0.13 0.09 0.02 0.04   86.93 

Line 9  35.48 18.26 0.43 19.49 12.62 8.69 6.05 0.02 0.00 0.01   101.04 

Line 10  29.01 16.35 9.94 23.85 3.38 4.98 0.10 0.11 0.03 0.00   87.75 

Line 11  37.23 21.19 0.40 21.27 8.53 11.53 0.18 0.03 0.00 0.00   100.36 

Line 12  37.29 21.19 0.43 20.45 9.02 12.21 0.18 0.01 0.00 0.07   100.83 

Line 13  36.56 20.75 0.37 19.58 8.50 14.10 0.16 0.00 0.00 0.00   100.02 

Line 14  12.77 7.55 0.16 7.10 38.44 5.54 0.00 0.00 0.00 0.00   71.57 

Line 15  37.40 21.12 0.34 18.77 8.55 15.07 0.18 0.04 0.01 0.05   101.54 

Line 16  37.13 20.86 0.33 17.52 8.76 15.56 0.88 0.02 0.01 0.01   101.06 

Line 17  36.93 21.17 0.29 18.11 7.63 16.58 0.06 0.06 0.01 0.00   100.85 

Line 18  37.17 21.21 0.35 18.03 7.59 16.42 0.07 0.02 0.00 0.10   100.96 

Line 19  35.86 20.56 0.30 18.06 8.33 15.44 0.34 0.06 0.01 0.00   98.97 

Line 20  37.29 21.19 0.36 18.81 7.84 14.73 0.16 0.05 0.00 0.00   100.42 

Line 21  37.48 21.28 0.38 19.02 8.00 14.49 0.13 0.00 0.00 0.00   100.79 

Line 22  37.28 20.78 0.32 19.02 8.71 13.72 0.18 0.05 0.02 0.00   100.09 

Line 23  37.24 21.40 0.42 19.49 8.67 13.56 0.13 0.01 0.01 0.09   101.02 

Line 24  97.09 0.01 0.01 0.35 0.02 0.13 0.00 0.01 0.00 0.01   97.64 

Line 25  37.88 21.28 0.50 22.19 8.86 11.04 0.27 0.06 0.00 0.06   102.14 

Line 26  37.80 21.45 0.59 22.63 9.22 9.29 0.16 0.01 0.00 0.00   101.15 

Line 27  38.02 21.21 0.60 23.28 9.45 9.25 0.16 0.02 0.02 0.10   102.10 

Line 28  37.70 21.23 0.70 22.81 9.49 8.51 0.13 0.02 0.01 0.03   100.62 

Line 29  37.81 21.11 0.63 22.93 10.20 8.05 0.18 0.03 0.00 0.00   100.94 

Line 30  37.95 21.31 0.77 23.39 9.72 7.88 0.06 0.00 0.00 0.00   101.10 

FD370_m12  96.69 0.00 0.00 0.05 0.02 0.00 0.00 0.01 0.00 0.00   96.78 

FD370_m13  36.61 27.59 0.05 4.29 20.79 0.21 0.16 0.04 0.04 0.09   89.86 

FD370_m14  0.02 0.01 0.20 0.53 57.59 0.14 0.00 0.04 0.02 0.05   58.60 

FD370_m15  54.23 26.54 3.43 3.25 0.03 0.01 0.15 0.17 10.31 0.02   98.14 

FD370_m16  54.01 26.78 3.27 3.40 0.00 0.09 0.18 0.16 9.81 0.06   97.76 

FD370_m17  96.23 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00   96.26 

FD370_m18  26.78 21.16 16.35 22.56 0.07 0.90 0.08 0.05 0.02 0.00   87.96 

FD370_m19  26.65 20.74 16.61 22.95 0.04 0.40 0.00 0.00 0.00 0.00   87.38 

FD370_m20  52.53 29.63 2.95 2.39 0.00 0.02 0.17 0.15 10.30 0.00   98.14 

FD370_m21  0.02 0.03 0.25 0.87 55.04 1.18 0.05 0.04 0.00 0.00   57.47 

FD370_m22  0.01 0.00 0.00 0.25 55.12 0.18 0.00 0.05 0.00 0.02   55.64 

FD370_m23  36.07 20.76 0.29 17.82 9.62 11.34 0.08 0.06 0.01 0.03   96.08 

FD370_m24  0.00 0.00 0.15 0.29 56.87 0.78 0.08 0.01 0.00 0.03   58.22 

FD370_m25  38.14 28.40 0.04 6.45 23.91 0.21 0.16 0.00 0.00 0.03   97.34 

FD370_m26  51.45 28.91 3.10 2.11 0.10 0.01 0.13 0.26 10.02 0.00   96.08 

FD370_m27  96.23 0.00 0.00 0.04 0.01 0.01 0.00 0.00 0.01 0.00   96.30 

FD370_m28  37.63 21.32 0.62 19.60 11.00 11.05 0.28 0.00 0.01 0.02   101.52 

FD370_m29  0.02 0.00 0.01 0.29 54.77 0.11 0.00 0.00 0.01 0.00   55.20 

FD370_m30  37.45 21.35 0.50 22.84 9.10 9.73 0.22 0.00 0.00 0.07   101.26 

FD370_m31  37.61 21.71 0.59 24.11 9.49 8.73 0.19 0.00 0.00 0.00   102.44 

FD370_m32  37.54 21.06 0.61 18.69 11.30 10.97 0.23 0.00 0.00 0.02   100.41 
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FD370_m33  0.04 0.03 0.07 0.64 56.87 0.96 0.00 0.00 0.02 0.03   58.66 

FD370_m34  26.37 21.11 17.50 21.80 0.01 0.46 0.06 0.01 0.01 0.04   87.37 

FD370_m35  27.18 19.70 18.29 21.73 0.02 0.27 0.14 0.03 0.01 0.02   87.40 

FD370_m36  96.26 0.00 0.00 0.31 0.03 0.02 0.04 0.00 0.01 0.00   96.67 

FD370_m37  30.64 2.42 0.03 0.57 28.77 0.00 38.05 0.06 0.16 0.00   100.69 

FD370_m38  38.50 28.55 0.02 6.52 23.94 0.20 0.13 0.00 0.02 0.10   97.97 

FD370_test  36.67 21.59 0.24 13.18 7.57 21.34 0.25 0.05 0.00 0.00   100.90 

FD370_test  37.70 21.62 0.89 22.60 10.96 6.54 0.00 0.03 0.00 0.03   100.37 

FD370_test  53.81 26.36 3.48 3.36 0.00 0.00 0.19 0.15 10.48 0.00   97.81 

Line 1 WM 50.21 31.15 2.57 2.73 0.03 0.17 0.18 0.23 10.81 0.00   98.07 

Line 2 WM 50.44 31.15 2.72 2.57 0.00 0.03 0.20 0.19 10.87 0.02   98.16 

Line 3 WM 51.61 29.85 2.99 2.70 0.00 0.06 0.22 0.25 10.83 0.02   98.52 

Line 4 WM  51.97 29.51 3.16 2.66 0.01 0.04 0.14 0.26 10.66 0.04   98.44 

Line 5 WM  52.36 28.81 3.19 2.22 0.05 0.04 0.13 0.29 9.99 0.04   97.11 

Line 6 WM  51.84 28.95 3.28 2.51 0.00 0.06 0.19 0.29 10.78 0.01   97.90 

Line 7 WM  51.92 28.75 3.25 2.42 0.02 0.00 0.19 0.26 10.61 0.04   97.47 

Line 8 WM 52.65 28.28 3.23 2.28 0.00 0.01 0.10 0.22 10.76 0.01   97.53 

Line 9 WM  52.34 28.55 3.33 2.51 0.02 0.04 0.12 0.23 10.38 0.06   97.57 

Line 10 WM  52.62 28.64 3.29 2.24 0.00 0.04 0.16 0.24 10.61 0.08   97.91 

Line 11 WM  52.61 28.60 3.39 2.08 0.00 0.00 0.09 0.20 10.65 0.02   97.64 

Line 12 WM  53.51 28.09 3.44 2.14 0.00 0.10 0.09 0.19 10.77 0.00   98.32 

Line 13 WM  53.06 28.37 3.40 2.08 0.00 0.05 0.14 0.12 10.92 0.02   98.15 

Line 14 WM  52.83 28.81 3.31 2.27 0.01 0.00 0.16 0.19 10.70 0.04   98.33 

Line 15 WM 53.05 27.80 3.35 2.54 0.00 0.03 0.22 0.20 10.54 0.04   97.76 

Line 16 WM  53.41 26.55 3.75 2.73 0.00 0.01 0.18 0.14 10.69 0.07   97.52 

Line 17 WM  53.81 26.43 3.54 3.18 0.00 0.03 0.19 0.11 10.79 0.03   98.12 

Line 18 WM  53.70 26.48 3.40 3.12 0.00 0.00 0.16 0.20 10.87 0.06   97.99 

Line 19 WM  53.81 26.32 3.44 3.21 0.00 0.06 0.15 0.13 10.89 0.02   98.03 

Line 20 WM  53.61 26.45 3.46 3.24 0.02 0.09 0.16 0.16 10.72 0.06   97.96 

Line 21 WM  53.52 26.17 3.43 3.33 0.00 0.00 0.16 0.14 10.82 0.06   97.62 

Line 22 WM  53.95 26.60 3.48 3.27 0.00 0.04 0.14 0.17 10.67 0.00   98.32 

Line 23 WM  54.20 26.34 3.46 3.32 0.00 0.00 0.14 0.19 10.81 0.03   98.49 

Line 24 WM  53.33 26.94 3.32 3.27 0.00 0.04 0.08 0.14 10.93 0.03   98.08 

Line 25 WM  53.83 26.93 3.34 3.30 0.00 0.03 0.20 0.14 10.87 0.03   98.67 

Line 26 WM  53.14 26.48 3.26 3.13 0.01 0.04 0.12 0.14 10.78 0.02   97.12 

Line 27 WM 52.93 26.58 3.27 3.04 0.02 0.00 0.19 0.22 10.46 0.00   96.71 

Line 28 WM  53.40 26.76 3.40 3.24 0.00 0.00 0.19 0.15 10.88 0.00   98.03 

Line 29 WM  53.93 26.78 3.45 3.36 0.00 0.05 0.17 0.22 10.68 0.03   98.65 

Line 30 WM  54.26 25.35 3.43 2.87 0.05 0.00 0.14 0.26 10.20 0.02   96.59 

FD370_m39  37.12 21.55 0.30 17.05 7.85 16.85 0.17 0.03 0.00 0.03   100.94 

FD370_m40  37.34 21.39 0.28 18.28 7.56 16.17 0.13 0.05 0.01 0.04   101.24 

FD370_m41  37.25 21.25 0.38 18.44 8.03 15.36 0.17 0.06 0.00 0.05   101.00 

FD370_m42  37.25 21.39 0.36 19.37 7.91 14.93 0.14 0.00 0.00 0.05   101.40 

FD370_m43  37.05 21.49 0.42 20.52 8.85 12.57 0.14 0.00 0.00 0.05   101.09 

FD370_m44  37.08 21.45 0.41 19.54 7.74 14.67 0.13 0.01 0.00 0.03   101.07 

FD370_m45  36.81 21.56 0.39 21.11 7.89 12.57 0.06 0.00 0.00 0.01   100.40 

FD370_m46  37.08 21.66 0.49 21.87 8.72 11.14 0.16 0.00 0.00 0.00   101.11 

FD370_m47  37.10 21.64 0.60 23.45 9.31 8.71 0.15 0.04 0.00 0.02   101.00 

FD370_m48  37.35 21.51 0.77 23.33 10.43 7.49 0.16 0.03 0.00 0.00   101.06 

FD370_m49  37.37 21.37 0.58 19.55 11.33 10.34 0.21 0.03 0.00 0.03   100.82 

FD370_m50  37.44 21.54 0.70 23.94 8.79 8.92 0.03 0.04 0.00 0.03   101.45 

FD370_m51  37.45 21.67 0.73 23.47 10.27 7.31 0.08 0.02 0.00 0.01   100.99 

FD370_m52  37.41 21.36 0.71 22.86 10.89 7.28 0.12 0.05 0.00 0.03   100.72 

FD370_m53  36.89 21.39 0.21 12.60 7.70 22.32 0.18 0.03 0.00 0.02   101.34 

FD370_m54  36.88 21.19 0.26 13.44 8.16 21.18 0.23 0.04 0.01 0.02   101.39 
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FD370_m55  36.74 21.67 0.26 13.24 7.94 21.12 0.17 0.07 0.00 0.05   101.26 

FD370_m56  36.90 21.32 0.30 14.24 7.59 20.29 0.15 0.02 0.00 0.04   100.84 

FD370_m57  37.16 21.50 0.25 15.14 7.58 20.12 0.28 0.01 0.01 0.00   102.05 

FD370_m58  37.19 21.33 0.29 17.29 7.85 16.63 0.26 0.01 0.01 0.06   100.90 

FD370_m59  37.29 21.30 0.31 17.77 7.32 16.73 0.08 0.07 0.00 0.05   100.93 

FD370_m60  36.87 21.32 0.34 17.92 7.48 16.22 0.16 0.02 0.00 0.02   100.35 

FD370_m61  36.97 21.40 0.53 20.18 7.69 13.39 0.13 0.04 0.00 0.00   100.33 

FD370_m62  37.55 21.49 0.53 22.20 8.12 11.55 0.08 0.08 0.02 0.00   101.60 

FD370_m63  37.54 21.36 0.65 23.88 7.92 9.63 0.01 0.00 0.01 0.00   101.00 

FD370_m64  37.34 21.53 0.71 23.37 10.14 7.21 0.20 0.01 0.03 0.03   100.56 

FD370_m65  37.27 21.31 0.44 20.95 8.74 12.42 0.22 0.01 0.01 0.02   101.38 

FD370_m66  37.44 21.36 0.36 19.12 9.02 13.95 0.14 0.00 0.00 0.01   101.40 

FD370_m67  37.21 21.64 0.22 11.50 7.72 23.15 0.17 0.00 0.01 0.01   101.62 

FD370_m68  37.34 21.16 0.23 11.78 7.88 22.59 0.35 0.00 0.02 0.05   101.38 

FD370_m69  37.09 21.38 0.49 22.83 8.88 10.28 0.17 0.00 0.00 0.00   101.13 

FD370_m70  32.20 19.12 0.01 11.07 15.54 0.68 0.04 0.00 0.01 0.00   78.67 

FD370_m71  35.43 24.14 0.12 8.83 20.25 0.24 0.03 0.00 0.00 0.01   89.03 

FD370_m72  38.49 28.39 0.03 6.11 23.62 0.28 0.16 0.03 0.02 0.02   97.14 

FD370_m73  37.25 21.18 0.44 20.57 8.29 12.19 0.11 0.00 0.02 0.01   100.05 

FD370_m74  37.51 21.17 0.66 23.19 9.67 9.02 0.08 0.02 0.01 0.00   101.34 

FD370_m75  37.03 21.42 0.26 11.69 7.85 23.00 0.18 0.03 0.01 0.00   101.46 

FD370_m76  0.05 0.01 0.01 0.22 53.82 0.28 0.00 0.00 0.01 0.00   54.39 

FD370_m77  0.06 0.01 0.02 0.41 53.88 0.63 0.00 0.00 0.00 0.01   55.02 

FD370_m78  0.02 0.02 0.03 0.20 56.15 0.30 0.02 0.02 0.00 0.00   56.77 

FD370_m79  33.12 20.83 0.10 10.81 16.98 1.14 0.12 0.01 0.00 0.04   83.14 

FD370_m80  37.56 21.37 0.92 21.90 12.21 6.45 0.05 0.00 0.01 0.04   100.50 

FD370_m81  37.87 21.50 0.83 22.06 12.49 6.00 0.09 0.02 0.00 0.08   100.93 

FD370_m82  37.63 21.57 0.85 22.62 11.70 6.15 0.11 0.08 0.00 0.00   100.70 

FD370_m83  37.83 21.59 0.92 22.32 11.77 6.62 0.08 0.03 0.01 0.00   101.17 

FD370_m84  37.48 21.64 0.89 21.57 11.57 7.08 0.08 0.01 0.02 0.03   100.37 

FD370_m85  37.69 21.53 0.72 19.50 12.15 9.52 0.15 0.00 0.00 0.02   101.27 

FD370_m86  37.62 21.44 0.85 20.04 10.76 10.65 0.10 0.00 0.01 0.02   101.49 

FD370_m87  37.66 21.27 0.68 19.94 9.76 11.47 0.13 0.04 0.00 0.02   100.97 

FD370_m88  37.21 21.35 0.70 20.86 8.56 11.74 0.10 0.04 0.00 0.02   100.58 

FD370_m89  37.15 21.10 0.60 19.35 9.42 12.46 0.24 0.04 0.00 0.02   100.38 

FD370_m90  37.48 21.18 0.73 19.67 12.23 8.49 0.12 0.00 0.01 0.04   99.95 

FD370_m91  37.76 21.62 0.83 19.12 11.27 9.93 0.13 0.00 0.00 0.04   100.69 

FD370_m92  37.66 21.46 0.82 22.67 9.44 8.39 0.05 0.04 0.00 0.00   100.53 

FD370_m93  37.59 21.25 0.72 22.91 9.74 7.98 0.08 0.00 0.00 0.04   100.30 

FD370_m94  37.71 21.25 0.73 23.34 9.48 8.37 0.09 0.03 0.00 0.02   101.03 

FD370_m95  37.37 21.41 0.66 22.94 9.16 8.62 0.02 0.02 0.00 0.00   100.21 

FD370_m96  37.47 21.37 0.59 21.73 10.01 8.55 0.09 0.03 0.01 0.00   99.85 

FD370_m97  37.46 21.16 0.61 22.04 9.96 8.57 0.15 0.00 0.01 0.01   99.95 

FD370_m98  37.57 21.05 0.57 22.23 9.93 9.09 0.17 0.02 0.00 0.00   100.62 

FD370_m99  37.52 21.34 0.58 22.58 9.48 9.50 0.10 0.00 0.00 0.01   101.10 

FD370_m100  37.06 21.35 0.56 22.72 8.43 9.81 0.06 0.00 0.00 0.00   99.99 

FD370_m101  37.38 21.15 0.48 21.81 8.77 10.73 0.14 0.00 0.00 0.00   100.46 

FD370_m102  36.99 21.25 0.46 20.94 8.81 11.12 0.11 0.03 0.00 0.03   99.72 

FD370_m103  37.02 21.16 0.48 20.58 8.78 11.25 0.15 0.02 0.00 0.03   99.48 

FD370_m104  37.44 21.13 0.52 20.97 8.78 10.72 0.14 0.02 0.00 0.00   99.70 

FD370_m105  37.16 21.34 0.41 20.58 8.46 12.71 0.11 0.07 0.00 0.00   100.83 

FD370_m106  37.23 21.19 0.38 19.98 8.65 13.20 0.18 0.07 0.00 0.03   100.89 

FD370_m107  36.99 21.38 0.40 20.36 8.53 12.37 0.15 0.03 0.01 0.00   100.22 

FD370_m108  37.00 21.40 0.45 20.76 8.54 12.67 0.11 0.02 0.01 0.03   100.99 

FD370_m109  37.26 21.43 0.46 20.83 8.86 11.80 0.11 0.00 0.00 0.03   100.78 
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FD370_m110  94.06 0.07 0.01 0.39 0.04 0.30 0.00 0.01 0.01 0.02   94.90 

FD370_m111  36.91 21.40 0.39 20.29 8.25 13.79 0.17 0.06 0.01 0.02   101.27 

FD370_m112  37.26 21.29 0.39 20.01 8.56 13.24 0.13 0.07 0.00 0.02   100.97 

FD370_m113  37.31 21.33 0.41 20.69 8.98 13.04 0.15 0.00 0.02 0.00   101.91 

FD370_m114  37.25 21.21 0.40 19.20 8.19 14.62 0.13 0.01 0.00 0.02   101.03 

FD370_m115  37.19 21.49 0.47 19.42 7.77 14.44 0.09 0.05 0.00 0.00   100.92 

FD370_m116  37.77 21.26 0.50 19.27 8.13 14.09 0.12 0.02 0.01 0.01   101.17 

FD370_m117  37.23 21.22 0.34 18.77 7.85 15.97 0.11 0.04 0.01 0.02   101.55 

FD370_m118  37.22 21.52 0.35 18.31 7.19 15.73 0.09 0.03 0.00 0.00   100.45 

FD370_m119  37.59 21.35 0.41 18.08 7.67 15.55 0.12 0.00 0.00 0.00   100.76 

FD370_m120  37.37 21.29 0.35 17.63 7.55 16.36 0.19 0.02 0.01 0.04   100.81 

FD370_m121  36.95 21.10 0.32 17.41 7.53 16.54 0.16 0.00 0.01 0.01   100.04 

FD370_m122  37.49 21.52 0.30 15.34 7.92 18.69 0.15 0.00 0.01 0.02   101.44 

FD370_m123  37.32 21.06 0.24 13.73 8.61 20.40 0.22 0.02 0.00 0.00   101.59 

FD370_m124  37.34 21.34 0.30 14.48 8.60 19.23 0.20 0.04 0.00 0.02   101.55 

FD370_m125  37.30 21.39 0.29 13.14 8.40 21.31 0.23 0.00 0.00 0.00   102.05 

FD370_m126  37.30 21.51 0.28 13.76 8.08 20.77 0.23 0.07 0.00 0.02   102.01 

FD370_m127  37.13 21.28 0.23 12.45 8.39 21.03 0.22 0.00 0.01 0.00   100.73 

FD370_m128  37.22 21.25 0.24 12.20 8.58 21.51 0.19 0.04 0.00 0.06   101.26 

FD370_m129  37.33 21.16 0.21 11.74 8.44 22.60 0.16 0.02 0.00 0.05   101.71 

FD370_m130  37.23 21.30 0.23 11.28 7.93 23.21 0.17 0.03 0.00 0.03   101.40 

FD370_m131  37.06 21.19 0.21 11.68 7.77 22.78 0.22 0.01 0.00 0.05   100.96 

FD370_m132  37.69 21.19 0.23 11.61 8.15 22.27 0.20 0.05 0.02 0.02   101.42 

FD370_m133  37.20 21.02 0.23 11.79 8.07 22.13 0.29 0.02 0.00 0.01   100.77 

FD370_m134  0.00 0.01 0.30 0.58 56.87 0.71 0.00 0.00 0.04 0.01   58.54 

FD370_m135  52.29 27.16 3.36 2.71 0.10 0.00 0.12 0.18 9.74 0.07   95.73 

FD370_m136  38.29 27.94 0.01 6.31 23.83 0.15 0.11 0.01 0.03 0.03   96.72 

FD370_m137  37.10 25.57 0.06 7.60 21.95 0.35 0.12 0.00 0.00 0.01   92.74 

FD370_m138  32.11 19.35 0.09 10.96 15.35 0.93 0.01 0.04 0.02 0.02   78.90 

FD370_m139  35.38 23.58 0.07 9.38 20.51 0.35 0.13 0.00 0.02 0.00   89.42 

FD370_m140  36.45 25.54 0.08 7.86 21.95 0.20 0.07 0.04 0.03 0.09   92.31 

FD370_m141  64.54 0.08 0.03 0.16 0.12 0.11 0.01 0.00 0.05 0.00   65.09 

FD370_m142  0.00 0.00 0.30 0.51 54.92 0.88 0.02 0.00 0.00 0.03   56.64 

FD370_m143  38.34 28.12 0.02 6.19 24.00 0.14 0.12 0.00 0.01 0.04   96.98 

FD370_m144  25.66 22.01 16.37 21.67 0.12 0.67 0.02 0.04 0.00 0.01   86.57 

FD370_m145  53.91 27.03 3.52 2.60 0.19 0.10 0.12 0.25 9.80 0.01   97.52 

FD370_m146  0.00 0.00 0.24 0.50 55.79 0.80 0.00 0.00 0.01 0.00   57.33 

FD370_m147  95.83 0.00 0.01 0.10 0.04 0.00 0.01 0.00 0.00 0.02   96.00 

FD370_m148  26.89 20.27 18.13 21.13 0.07 0.45 0.09 0.08 0.01 0.05   87.15 

FD370_m149  37.65 17.72 0.07 11.32 14.02 0.99 0.00 0.07 0.00 0.00   81.83 

FD370_m150  32.13 19.31 0.07 11.46 15.02 1.62 0.02 0.01 0.00 0.00   79.66 

FD370_m151  31.22 17.94 0.15 12.13 11.87 1.89 0.07 0.09 0.00 0.00   75.36 

FD370_m152  30.19 4.05 0.00 0.94 27.78 0.27 30.48 0.06 0.00 0.00   93.78 

FD370_m153  26.19 20.62 13.13 22.78 1.43 1.68 0.05 0.08 0.01 0.03   85.98 

FD370_m154  0.11 0.03 0.00 0.67 54.86 0.31 0.01 0.00 0.00 0.00   55.98 

FD370_m155  33.86 19.58 0.19 14.01 13.37 4.60 0.07 0.04 0.02 0.00   85.73 

FD370_m156  0.00 0.00 0.29 0.46 55.81 0.68 0.02 0.01 0.00 0.00   57.26 

FD370_m157  0.01 0.00 0.30 0.09 57.08 0.03 0.03 0.01 0.00 0.00   57.54 

Line 1 Grt2  38.04 21.41 0.97 22.15 11.53 6.01 0.06 0.01 0.03 0.07   100.27 

Line 2 Grt2  37.74 21.38 0.78 20.29 12.14 7.88 0.17 0.01 0.00 0.01   100.40 

Line 3 Grt2  38.08 21.21 0.74 19.53 12.07 9.03 0.16 0.03 0.01 0.01   100.88 

Line 4 Grt2  38.04 21.35 0.62 18.84 11.44 10.63 0.26 0.05 0.00 0.01   101.26 

Line 5 Grt2  38.12 21.18 0.53 17.70 11.94 11.90 0.20 0.02 0.01 0.07   101.67 

Line 6 Grt2  38.08 20.76 0.54 18.41 12.00 11.53 0.18 0.02 0.00 0.00   101.52 

Line 7 Grt2 38.01 21.18 0.79 19.24 12.59 8.48 0.15 0.02 0.00 0.00   100.45 
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Line 8 Grt2  37.92 21.10 0.73 22.06 10.25 8.23 0.08 0.02 0.00 0.00   100.38 

Line 9 Grt2  38.03 21.14 0.76 22.24 10.73 7.92 0.09 0.00 0.00 0.00   100.90 

Line 10 Grt2  92.66 1.07 0.04 1.57 0.50 0.38 0.00 0.01 0.01 0.01   96.24 

Line 11 Grt2  59.27 11.46 8.25 13.91 0.63 0.99 0.04 0.06 0.00 0.00   94.61 

Line 12 Grt2  37.80 21.29 0.73 23.31 9.88 8.05 0.05 0.00 0.02 0.00   101.14 

Line 13 Grt2  97.82 0.16 0.00 0.49 0.10 0.19 0.01 0.00 0.00 0.00   98.77 

Line 14 Grt2  72.28 9.71 0.26 11.55 4.72 4.61 0.02 0.07 0.00 0.00   103.22 

Line 15 Grt2  98.34 0.00 0.00 0.35 0.03 0.21 0.02 0.00 0.01 0.00   98.96 

Line 16 Grt2  37.69 21.08 0.64 22.08 9.98 9.06 0.10 0.01 0.00 0.00   100.64 

Line 17 Grt2  30.53 16.26 0.50 18.25 18.44 7.28 0.06 0.00 0.01 0.00   91.32 

Line 18 Grt2  36.74 21.30 0.47 21.12 10.93 7.80 0.14 0.03 0.01 0.00   98.55 

Line 19 Grt2  37.59 21.33 0.56 22.66 9.45 9.36 0.16 0.01 0.00 0.00   101.11 

Line 20 Grt2  32.14 15.47 10.30 23.04 3.66 4.39 0.06 0.11 0.01 0.04   89.22 

Line 21 Grt2  37.13 21.18 0.51 21.53 9.17 10.75 0.12 0.02 0.01 0.02   100.44 

Line 22 Grt2  37.11 21.30 0.47 21.50 8.73 11.58 0.09 0.00 0.01 0.03   100.81 

Line 23 Grt2  37.83 21.11 0.53 21.50 8.65 11.80 0.13 0.00 0.01 0.05   101.60 

Line 24 Grt2  0.01 0.02 0.00 0.24 54.08 0.28 0.02 0.00 0.00 0.00   54.65 

Line 25 Grt2 0.01 0.02 0.00 0.35 54.07 0.21 0.00 0.05 0.00 0.03   54.74 

Line 26 Grt2 37.49 21.33 0.43 20.74 8.42 12.84 0.14 0.03 0.00 0.01   101.42 

Line 27 Grt2  29.29 13.94 12.84 15.96 7.06 1.16 7.84 0.16 0.14 0.00   88.37 

Line 28 Grt2 38.09 20.96 0.65 19.95 8.60 13.08 0.14 0.03 0.00 0.01   101.50 

Line 29 Grt2  16.21 9.51 0.24 9.85 32.40 7.29 0.06 0.06 0.00 0.01   75.61 

Line 30 Grt2  37.57 21.01 0.39 19.62 8.06 14.53 0.14 0.02 0.02 0.01   101.35 

Line 31 Grt2  35.98 22.80 0.38 19.14 8.14 14.31 0.14 0.02 0.01 0.04   100.96 

Line 32 Grt2  35.70 22.23 0.37 18.79 8.11 14.21 0.13 0.08 0.01 0.00   99.62 

Line 33 Grt2  36.48 20.99 1.45 19.70 7.94 13.38 0.14 0.03 0.03 0.06   100.19 

Line 34 Grt2  37.66 21.01 0.36 19.57 8.58 13.88 0.12 0.00 0.00 0.00   101.18 

Line 35 Grt2  37.77 21.28 0.39 19.77 8.81 13.08 0.18 0.05 0.01 0.04   101.38 

Line 36 Grt2  36.75 18.87 0.38 17.70 11.10 11.47 3.93 0.03 0.01 0.00   100.25 

Line 37 Grt2  40.09 18.36 0.90 19.90 8.24 12.28 0.33 0.12 0.00 0.02   100.23 

Line 38 Grt2  37.64 21.18 0.45 20.08 8.67 12.83 0.18 0.04 0.02 0.04   101.13 

Line 39 Grt2  37.43 21.31 0.39 20.43 8.25 12.98 0.11 0.04 0.00 0.01   100.96 

Line 40 Grt2  37.63 21.20 0.43 20.87 8.26 13.13 0.19 0.00 0.00 0.00   101.70 

Line 41 Grt2  37.42 21.29 0.44 20.49 8.68 12.32 0.08 0.03 0.00 0.01   100.77 

Line 42 Grt2  37.51 21.18 0.45 21.08 8.47 12.28 0.15 0.02 0.01 0.04   101.20 

Line 43 Grt2  37.47 19.75 0.49 20.13 9.87 10.98 2.43 0.04 0.00 0.00   101.15 

Line 44 Grt2  33.10 21.81 0.42 22.54 8.93 10.53 0.11 0.04 0.01 0.05   97.53 

Line 45 Grt2  36.34 17.68 0.41 18.75 12.63 7.89 5.61 0.02 0.00 0.00   99.30 

Line 46 Grt2  31.30 18.21 8.50 21.88 4.99 5.51 0.07 0.12 0.03 0.03   90.63 

Line 47 Grt2  37.73 21.20 0.69 23.10 9.27 9.01 0.11 0.03 0.01 0.03   101.16 

Line 48 Grt2  27.13 20.28 2.06 21.22 7.37 6.88 0.14 0.35 0.03 0.03   85.49 

Line 49 Grt2 37.29 21.43 0.73 23.45 9.96 8.33 0.09 0.00 0.00 0.00   101.28 

Line 50 Grt2  37.58 21.19 0.76 23.26 10.09 7.65 0.09 0.00 0.00 0.05   100.67 

Line 51 Grt2  37.54 21.11 0.76 22.96 10.23 7.88 0.16 0.00 0.00 0.02   100.65 

Line 52 Grt2  37.51 21.19 0.78 22.19 10.39 8.19 0.09 0.00 0.00 0.01   100.34 

Line 53 Grt2  37.90 21.48 0.82 22.71 9.81 8.08 0.08 0.02 0.00 0.00   100.91 

Line 54 Grt2  35.75 20.95 1.13 19.86 10.45 9.45 0.18 0.06 0.00 0.00   97.84 

Line 55 Grt2  37.51 21.11 0.55 19.39 11.04 11.31 0.19 0.08 0.00 0.02   101.20 

Line 56 Grt2  37.39 21.03 0.52 17.89 11.76 11.60 0.24 0.00 0.00 0.06   100.49 

Line 57 Grt2  37.95 21.45 0.65 19.10 11.11 10.89 0.14 0.09 0.00 0.01   101.40 

Line 58 Grt2  37.91 21.46 0.71 19.48 11.48 10.47 0.17 0.03 0.00 0.07   101.78 

Line 59 Grt2  98.64 0.04 0.01 0.44 0.08 0.15 0.00 0.02 0.01 0.04   99.43 

Line 60 Grt2  38.27 21.76 0.85 22.30 12.23 6.22 0.06 0.01 0.00 0.00   101.69 

FD370_m158  26.47 20.26 18.27 20.95 0.05 0.51 0.03 0.06 0.00 0.00   86.59 

FD370_m159  37.52 21.46 0.33 17.20 7.88 16.67 0.15 0.00 0.00 0.00   101.21 
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FD370_m160  49.31 27.86 3.01 2.29 0.00 0.00 0.14 0.17 11.20 0.07   94.05 

FD370_m161  37.34 21.23 0.35 18.45 7.66 15.61 0.24 0.03 0.00 0.02   100.92 

FD370_m162  37.13 21.03 0.20 11.34 8.04 23.30 0.28 0.04 0.00 0.03   101.37 

FD370_m163  37.00 21.31 0.28 14.81 8.09 18.78 0.19 0.00 0.01 0.01   100.49 

FD370_m164  0.02 0.01 0.17 0.61 56.17 0.37 0.03 0.00 0.01 0.04   57.43 

FD370_m165  36.55 21.20 0.27 12.22 7.69 22.31 0.21 0.05 0.00 0.00   100.48 

FD370_m166  36.64 21.21 0.25 11.87 7.63 22.79 0.30 0.02 0.01 0.03   100.72 

FD370_m167  36.52 15.65 0.23 9.13 6.21 17.84 0.34 0.00 0.01 0.07   86.01 

Line 1 AB2  37.90 21.18 0.89 20.50 10.67 9.72 0.12 0.03 0.01 0.00   101.01 

Line 2 AB2  37.78 21.58 0.79 20.05 10.80 10.59 0.19 0.01 0.00 0.06   101.83 

Line 3 AB2  37.50 20.88 0.54 18.84 11.26 11.07 0.21 0.00 0.00 0.01   100.33 

Line 4 AB2  37.96 21.04 0.60 19.64 11.55 10.52 0.19 0.01 0.00 0.01   101.52 

Line 5 AB2  37.83 21.19 0.79 22.39 10.37 8.01 0.10 0.02 0.01 0.00   100.70 

Line 6 AB2  37.63 21.50 0.71 22.50 10.99 7.94 0.09 0.04 0.00 0.04   101.43 

Line 7 AB2  37.44 21.30 0.76 22.75 10.24 7.76 0.06 0.02 0.02 0.01   100.36 

Line 8 AB2  37.67 21.26 0.70 23.09 9.91 7.85 0.05 0.01 0.01 0.00   100.52 

Line 9 AB2  37.68 21.39 0.77 23.63 9.91 7.83 0.10 0.02 0.01 0.04   101.38 

Line 10 AB2  85.97 2.78 0.07 2.46 1.08 0.74 0.00 0.00 0.00 0.02   93.12 

Line 11 AB2  37.47 21.49 0.70 23.37 9.90 8.34 0.14 0.00 0.00 0.04   101.45 

Line 12 AB2  37.51 21.29 0.68 23.13 9.87 8.60 0.15 0.00 0.01 0.04   101.27 

Line 13 AB2  37.62 21.23 0.61 22.96 9.95 8.86 0.09 0.02 0.02 0.01   101.36 

Line 14 AB2  37.56 21.28 0.63 22.60 9.87 9.27 0.12 0.00 0.00 0.03   101.36 

Line 15 AB2  37.85 21.34 0.63 23.47 9.02 8.96 0.09 0.00 0.00 0.02   101.39 

Line 16 AB2  37.76 21.25 0.62 22.83 9.41 8.96 0.15 0.02 0.00 0.01   101.02 

Line 17 AB2  24.29 20.81 12.28 22.09 1.70 2.21 0.07 0.13 0.01 0.00   83.61 

Line 18 AB2  37.50 21.05 0.63 23.24 9.11 9.02 0.20 0.02 0.00 0.02   100.78 

Line 19 AB2  37.92 21.18 0.58 23.26 9.36 9.41 0.13 0.02 0.00 0.01   101.86 

Line 20 AB2  37.72 21.18 0.57 22.78 9.27 9.85 0.15 0.05 0.01 0.00   101.58 

Line 21 AB2  37.87 21.26 0.47 22.44 9.28 9.94 0.22 0.00 0.00 0.02   101.52 

Line 22 AB2  37.58 21.35 0.47 21.90 9.02 10.88 0.12 0.02 0.00 0.01   101.34 

Line 23 AB2  37.46 21.37 0.47 22.30 8.44 11.21 0.13 0.00 0.00 0.03   101.41 

Line 24 AB2  37.28 21.29 0.44 21.53 8.79 11.49 0.12 0.03 0.00 0.02   100.98 

Line 25 AB2  37.73 21.02 0.45 21.45 8.75 11.52 0.10 0.00 0.00 0.03   101.03 

Line 26 AB2  37.72 21.07 0.52 21.10 8.67 12.02 0.10 0.00 0.00 0.02   101.23 

Line 27 AB2  31.94 16.63 10.80 21.50 3.30 5.82 0.02 0.11 0.01 0.00   90.12 

Line 28 AB2  24.14 18.93 3.93 20.12 7.64 8.52 0.11 0.17 0.01 0.02   83.58 

Line 29 AB2  37.65 21.46 0.47 20.93 8.40 12.65 0.11 0.01 0.01 0.04   101.73 

Line 30 AB2  30.47 1.89 0.00 0.98 27.90 0.55 33.67 0.05 0.01 0.00   95.51 

Line 31 AB2  37.50 21.37 0.46 19.96 8.40 13.36 0.15 0.00 0.00 0.03   101.21 

Line 32 AB2  37.79 20.98 0.45 20.04 8.53 12.80 0.09 0.05 0.00 0.04   100.78 

Line 33 AB2  37.47 21.34 0.42 20.06 8.95 13.10 0.12 0.00 0.02 0.00   101.46 

Line 34 AB2  37.88 21.13 0.43 20.25 8.74 12.53 0.31 0.05 0.00 0.03   101.36 

Line 35 AB2  37.34 21.69 0.44 20.65 8.52 12.97 0.11 0.00 0.01 0.00   101.74 

Line 36 AB2  38.91 21.30 0.47 20.46 8.30 12.81 0.19 0.05 0.00 0.03   102.51 

Line 37 AB2  37.91 20.31 0.66 19.58 9.39 12.86 1.26 0.01 0.00 0.01   101.99 

Line 38 AB2  37.31 20.95 0.48 20.40 8.59 12.82 0.14 0.00 0.00 0.00   100.69 

Line 39 AB2  37.70 21.06 0.44 20.32 8.56 12.39 0.17 0.01 0.00 0.00   100.66 

Line 40 AB2  37.63 21.10 0.42 20.49 8.52 12.51 0.12 0.00 0.00 0.03   100.83 

Line 41 AB2  37.61 21.14 0.46 20.80 8.05 12.24 0.16 0.03 0.00 0.00   100.48 

Line 42 AB2  37.64 21.50 0.46 20.87 8.48 12.59 0.13 0.05 0.01 0.00   101.72 

Line 43 AB2  38.63 20.96 0.52 21.59 8.69 11.39 0.26 0.01 0.00 0.01   102.05 

Line 44 AB2  33.08 11.22 0.75 21.81 7.11 10.73 0.12 0.04 0.00 0.00   84.84 

Line 45 AB2  37.42 21.20 0.59 22.61 8.99 9.56 0.13 0.04 0.00 0.04   100.58 

Line 46 AB2  31.57 20.94 5.97 20.82 5.72 5.98 0.14 0.21 0.01 0.00   91.37 

Line 47 AB2  37.42 21.50 0.68 22.92 9.37 8.80 0.11 0.00 0.02 0.00   100.81 
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Line 48 AB2  34.69 18.39 2.59 22.51 8.73 7.91 0.06 0.09 0.02 0.02   95.02 

Line 49 AB2  37.62 21.40 0.78 23.15 9.67 8.08 0.13 0.01 0.00 0.00   100.82 

Line 50 AB2  37.51 21.26 0.79 23.45 10.00 7.74 0.15 0.00 0.00 0.04   100.93 

Line 51 AB2  37.78 21.45 0.76 22.98 10.14 7.86 0.04 0.04 0.02 0.01   101.08 

Line 52 AB2  37.72 21.40 0.73 22.16 10.27 7.68 0.13 0.00 0.00 0.03   100.11 

Line 53 AB2  37.93 21.47 0.81 21.59 11.14 8.34 0.09 0.03 0.01 0.01   101.42 

Line 54 AB2  44.90 19.21 0.50 16.93 11.05 10.58 0.28 0.00 0.00 0.04   103.50 

Line 55 AB2  38.12 20.07 0.53 18.05 12.01 11.19 0.23 0.05 0.01 0.05   100.31 

Line 56 AB2  37.47 21.34 0.59 18.32 11.87 10.79 0.20 0.02 0.00 0.00   100.59 

Line 57 AB2  36.70 16.68 0.63 18.38 11.27 10.72 0.17 0.09 0.00 0.02   94.66 

Line 58 AB2  37.73 21.71 0.92 20.49 11.14 9.38 0.11 0.03 0.01 0.00   101.52 

Line 59 AB2  37.67 21.50 0.75 20.06 12.90 7.70 0.09 0.05 0.00 0.02   100.74 

Line 60 AB2  37.61 21.82 0.98 22.27 11.25 6.24 0.07 0.03 0.00 0.00   100.27 

FD370_m168  96.25 0.02 0.00 0.12 0.09 0.00 0.00 0.02 0.00 0.04   96.55 

FD370_m169  38.09 28.56 0.02 5.94 24.08 0.18 0.10 0.02 0.03 0.04   97.06 

FD370_m170  26.38 21.20 17.60 20.20 0.11 0.49 0.05 0.01 0.14 0.01   86.19 

FD370_m171  30.70 27.47 0.46 7.21 15.79 0.69 0.12 0.11 2.21 0.01   84.76 

FD370_m172  52.67 25.76 3.46 2.63 0.23 0.07 0.14 0.19 9.83 0.00   94.97 

FD370_m173  29.82 1.67 0.03 0.24 28.66 0.09 33.21 0.03 0.13 0.00   93.88 

FD370_m174  0.02 0.00 0.27 0.55 55.23 0.77 0.00 0.00 0.00 0.03   56.86 

FD370_m175 38.69 28.44 0.02 5.75 24.07 0.20 0.14 0.00 0.08 0.04   97.42 

FD370_m176 52.27 26.08 3.54 2.48 0.05 0.00 0.13 0.22 9.46 0.04   94.26 

FD370_m177 26.31 20.80 18.57 19.62 0.18 0.26 0.01 0.10 0.03 0.02   85.91 

FD370_m178 49.48 30.49 2.57 2.50 0.01 0.06 0.11 0.25 10.98 0.07   96.51 

FD370_m179 36.17 24.75 0.09 8.03 20.74 0.32 0.08 0.00 0.07 0.00   90.26 

FD370_m180 38.01 27.30 0.03 6.76 23.64 0.22 0.08 0.06 0.01 0.03   96.14 

FD370_m181 0.01 0.02 0.28 0.45 58.21 1.18 0.01 0.00 0.01 0.00   60.17 

FD370_m182 95.09 0.01 0.00 0.02 0.04 0.02 0.03 0.00 0.02 0.01   95.24 

FD370_m183 38.47 27.63 0.04 6.54 23.02 0.39 0.08 0.00 0.00 0.03   96.20 

FD370_m184 52.95 25.11 3.57 3.49 0.01 0.00 0.15 0.15 10.78 0.01   96.20 

FD370_m185 37.12 21.20 0.22 11.52 7.55 23.14 0.17 0.06 0.00 0.00   100.98 

FD370_m186 37.03 21.38 0.27 14.75 7.35 20.46 0.13 0.05 0.01 0.02   101.46 

FD370_m187 37.04 20.20 0.22 11.58 8.64 22.52 1.94 0.00 0.01 0.00   102.15 

FD370_m188 30.02 1.24 0.00 0.80 28.38 0.34 33.81 0.00 0.00 0.01   94.61 

FD370_m189 53.06 26.38 3.39 3.25 0.00 0.05 0.12 0.18 10.85 0.03   97.29 

FD370_m190 53.41 26.79 3.51 3.25 0.00 0.01 0.11 0.17 10.56 0.02   97.84 

FD370_m191 53.23 27.22 3.55 3.24 0.00 0.02 0.17 0.05 10.59 0.00   98.08 

FD370_m192 53.80 26.50 3.62 3.35 0.00 0.07 0.16 0.16 10.50 0.00   98.17 

FD370_m193 50.70 27.01 3.24 2.60 0.00 0.00 0.20 0.22 11.10 0.06   95.12 

FD370_m194 53.07 26.22 3.47 3.27 0.00 0.04 0.13 0.18 11.01 0.03   97.42 

Line 1 AB3  38.90 21.13 0.79 20.64 10.14 8.91 0.02 0.06 0.00 0.00   100.58 

Line 2 AB3  37.19 21.24 0.73 23.13 10.29 7.72 0.13 0.00 0.01 0.00   100.44 

Line 3 AB3  37.86 21.48 0.80 23.88 10.38 6.94 0.04 0.02 0.01 0.00   101.40 

Line 4 AB3  37.37 21.36 0.61 22.28 10.00 8.55 0.09 0.00 0.00 0.00   100.26 

Line 5 AB3  36.87 21.66 0.48 21.84 8.77 10.90 0.11 0.00 0.01 0.00   100.65 

Line 6 AB3  38.14 20.70 0.59 23.11 8.97 9.50 0.07 0.03 0.01 0.05   101.16 

Line 7 AB3  37.55 21.34 0.49 21.09 9.18 11.69 0.21 0.02 0.00 0.04   101.61 

Line 8 AB3  37.28 21.27 0.46 21.38 9.02 11.56 0.13 0.00 0.01 0.06   101.17 

Line 9 AB3  37.56 21.02 0.42 20.61 9.30 12.15 0.12 0.00 0.01 0.04   101.23 

Line 10 AB3  37.66 21.32 0.43 21.08 7.71 12.63 0.12 0.04 0.01 0.04   101.02 

Line 11 AB3  37.86 21.30 0.42 21.02 7.90 12.89 0.06 0.03 0.00 0.00   101.46 

Line 12 AB3  36.15 16.66 0.61 18.04 6.97 11.83 0.23 0.06 0.03 0.02   90.60 

Line 13 AB3  36.51 22.19 0.37 19.84 8.77 12.91 0.19 0.00 0.00 0.02   100.80 

Line 14 AB3  36.73 21.03 0.41 19.97 8.03 13.99 0.16 0.01 0.01 0.01   100.34 

Line 15 AB3  37.16 20.90 0.38 19.47 8.10 14.74 0.20 0.06 0.00 0.02   101.01 
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Line 16 AB3  37.45 21.33 0.37 19.06 9.12 14.07 0.20 0.01 0.00 0.02   101.63 

Line 17 AB3  37.89 21.13 0.34 18.98 8.55 14.65 0.15 0.00 0.01 0.00   101.69 

Line 18 AB3  37.26 21.18 0.38 19.21 7.99 15.11 0.17 0.03 0.00 0.00   101.32 

Line 19 AB3  37.42 21.25 0.35 18.90 8.21 14.70 0.18 0.00 0.01 0.06   101.08 

Line 20 AB3  20.71 23.33 0.10 18.06 8.22 15.23 0.14 0.07 0.01 0.03   85.89 

Line 21 AB3  34.11 23.80 0.31 17.71 8.25 14.98 0.13 0.03 0.01 0.02   99.35 

Line 22 AB3  37.27 21.38 0.35 18.02 7.40 16.79 0.11 0.01 0.00 0.02   101.35 

Line 23 AB3  37.05 21.98 0.28 16.49 8.12 17.54 0.10 0.04 0.01 0.00   101.60 

Line 24 AB3  36.55 20.50 0.26 13.11 7.44 21.21 0.23 0.06 0.00 0.00   99.37 

Line 25 AB3  36.91 21.12 0.24 11.74 7.27 23.81 0.16 0.02 0.00 0.04   101.32 

Line 1 AB4  36.89 20.95 0.23 11.77 7.66 22.70 0.32 0.02 0.00 0.00   100.53 

Line 2 AB4  36.77 21.24 0.25 13.15 7.45 22.11 0.33 0.05 0.00 0.01   101.35 

Line 3 AB4  37.18 21.82 0.30 18.35 8.13 15.90 0.14 0.05 0.01 0.03   101.91 

Line 4 AB4  37.37 21.33 0.35 18.95 7.22 16.46 0.14 0.00 0.00 0.00   101.82 

Line 5 AB4  36.91 20.07 0.32 17.59 9.15 15.05 1.89 0.04 0.00 0.17   101.19 

Line 6 AB4  10.80 18.66 1.31 18.73 5.17 8.76 0.07 0.12 0.04 0.01   63.67 

Line 7 AB4  36.71 21.39 2.64 19.56 7.29 13.81 0.17 0.00 0.00 0.03   101.59 

Line 8 AB4  36.86 21.07 0.39 19.11 8.18 14.55 0.22 0.02 0.00 0.00   100.39 

Line 9 AB4  42.98 12.34 1.52 11.46 10.62 6.96 8.56 0.04 0.02 0.02   94.51 

Line 10 AB4  37.34 21.51 0.41 20.00 8.24 13.85 0.14 0.02 0.00 0.01   101.52 

Line 11 AB4  94.18 0.26 0.00 0.53 0.12 0.37 0.00 0.00 0.00 0.04   95.51 

Line 12 AB4  35.10 13.93 0.39 20.35 8.50 12.92 0.15 0.02 0.00 0.02   91.38 

Line 13 AB4  37.34 21.41 0.45 20.92 8.45 12.60 0.12 0.03 0.00 0.00   101.32 

Line 14 AB4  94.63 0.03 0.00 0.47 0.03 0.16 0.01 0.00 0.01 0.03   95.37 

Line 15 AB4  94.02 0.00 0.00 0.38 0.04 0.15 0.00 0.00 0.00 0.00   94.59 

Line 16 AB4  93.70 0.06 0.01 0.33 0.06 0.14 0.03 0.00 0.01 0.00   94.36 

Line 17 AB4  34.07 23.69 0.60 21.75 9.53 8.68 0.16 0.13 0.01 0.00   98.62 

Line 18 AB4  36.52 20.52 0.62 22.41 10.00 8.59 0.12 0.00 0.00 0.00   98.77 

Line 19 AB4  37.15 21.65 0.64 23.41 9.84 8.11 0.16 0.00 0.00 0.01   100.97 

Line 20 AB4  37.00 18.03 0.74 23.00 10.10 7.87 0.30 0.06 0.00 0.02   97.11 

Line 21 AB4  37.42 21.12 0.70 22.71 10.54 7.76 0.12 0.00 0.00 0.01   100.37 

Line 22 AB4  38.06 21.34 0.77 22.95 10.33 7.77 0.07 0.00 0.00 0.05   101.34 

Line 23 AB4  95.04 0.03 0.00 0.29 0.05 0.14 0.01 0.00 0.00 0.00   95.54 

Line 24 AB4  87.31 2.60 0.08 1.89 1.30 1.21 0.01 0.02 0.02 0.00   94.43 

Line 25 AB4  37.57 21.01 0.78 19.55 12.04 9.30 0.21 0.01 0.01 0.04   100.50 

             

             Sample FD372 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD372_m1  37.85 21.47 0.78 26.75 9.29 4.65 0.08 0.00 0.01 0.03   100.91 

FD372_m2  37.16 20.97 0.45 22.81 7.42 10.72 0.12 0.03 0.02 0.07   99.76 

FD372_m3  53.06 26.72 3.45 2.98 0.00 0.05 0.18 0.12 9.69 0.00   96.26 

FD372_m4  53.25 26.15 3.21 3.80 0.01 0.01 0.14 0.14 9.53 0.00   96.22 

FD372_m5  51.99 25.13 3.08 3.77 0.00 0.00 0.16 0.18 9.57 0.10   93.96 

FD372_m6  53.62 2.55 15.77 11.34 12.27 0.32 0.06 0.38 0.13 0.00   96.45 

FD372_m7  52.26 2.41 12.96 15.13 10.96 0.74 0.07 0.74 0.12 0.00   95.40 

FD372_m8  52.57 28.12 3.20 2.49 0.06 0.03 0.24 0.10 9.78 0.01   96.60 

FD372_m9  30.27 1.81 0.02 0.46 28.48 0.08 37.54 0.00 0.11 0.08   98.84 

FD372_m10  96.08 0.02 0.01 0.15 0.00 0.04 0.05 0.00 0.01 0.00   96.37 

FD372_m11  53.70 2.28 15.99 10.90 12.36 0.40 0.00 0.49 0.09 0.00   96.22 

FD372_m12  53.53 1.73 14.18 14.58 11.73 0.67 0.01 0.48 0.10 0.00   96.99 

FD372_m13  54.70 2.30 16.32 10.87 12.14 0.38 0.03 0.57 0.07 0.04   97.41 

FD372_m14  50.45 25.70 3.40 2.61 0.08 0.06 0.14 0.17 8.77 0.02   91.40 

FD372_m15  96.43 0.01 0.00 0.15 0.01 0.01 0.00 0.00 0.02 0.00   96.62 



 

- 133 - 

 

FD372_m16  53.99 25.59 3.37 3.89 0.00 0.06 0.16 0.08 9.92 0.11   97.18 

FD372_m17  53.62 26.60 3.21 3.59 0.00 0.04 0.17 0.18 9.42 0.00   96.83 

FD372_m18  37.28 21.00 0.28 14.49 8.13 19.45 0.28 0.03 0.00 0.03   100.97 

FD372_m19  37.63 21.55 0.91 27.60 8.64 4.40 0.11 0.06 0.02 0.00   100.94 

FD372_m20  52.89 26.12 3.15 3.68 0.00 0.00 0.16 0.19 9.64 0.00   95.83 

FD372_m21  51.40 3.23 11.84 17.04 10.32 0.73 0.11 1.10 0.17 0.03   95.96 

FD372_m22  53.88 2.03 16.77 10.64 12.23 0.25 0.03 0.41 0.09 0.00   96.32 

FD372_m23  51.22 25.69 3.25 3.88 0.00 0.00 0.19 0.17 10.86 0.01   95.26 

FD372_m24  50.59 24.69 3.33 3.56 0.03 0.03 0.21 0.37 10.54 0.01   93.35 

FD372_m25  37.92 27.82 0.03 7.15 23.97 0.24 0.06 0.02 0.11 0.00   97.31 

FD372_m26  35.92 23.28 0.06 10.34 21.19 0.20 0.06 0.01 0.04 0.00   91.08 

FD372_m27  33.43 20.17 0.14 11.62 17.38 0.31 0.01 0.03 0.05 0.01   83.15 

FD372_m28  37.94 29.20 0.06 4.68 23.98 0.19 0.27 0.02 0.01 0.02   96.36 

FD372_m29  33.82 20.35 0.16 11.49 17.56 0.30 0.02 0.07 0.05 0.02   83.83 

FD372_m30  36.74 20.91 0.22 11.29 7.84 23.41 0.20 0.03 0.02 0.02   100.68 

FD372_m31  37.11 21.03 0.34 17.77 7.80 16.31 0.13 0.00 0.00 0.00   100.49 

FD372_m32  32.80 0.19 0.02 1.30 0.33 0.35 0.32 0.00 0.04 0.03   35.38 

FD372_m33  30.08 1.62 0.01 1.07 28.10 0.33 33.15 0.01 0.01 0.01   94.38 

FD372_m34  96.33 0.09 0.00 0.68 0.06 0.29 0.03 0.02 0.00 0.01   97.50 

FD372_m35  36.86 20.94 0.19 10.77 7.74 24.02 0.19 0.01 0.01 0.02   100.75 

FD372_m36  36.74 20.97 0.20 11.02 7.56 24.04 0.25 0.00 0.01 0.02   100.80 

FD372_m37  36.86 20.86 0.23 12.08 8.09 22.61 0.23 0.02 0.01 0.02   101.00 

FD372_m38  36.95 20.92 0.25 12.96 8.21 21.39 0.26 0.02 0.00 0.01   100.97 

FD372_m39  36.69 21.00 0.28 14.51 8.67 19.59 0.20 0.04 0.02 0.05   101.02 

FD372_m40  36.98 20.92 0.34 16.15 8.08 18.97 0.20 0.04 0.00 0.00   101.69 

FD372_m41  37.22 21.03 0.41 21.23 7.33 13.78 0.11 0.00 0.01 0.06   101.17 

FD372_m42  36.98 20.92 0.54 23.66 7.50 10.46 0.29 0.08 0.01 0.03   100.46 

FD372_m43  37.43 20.96 0.72 26.84 7.96 6.86 0.14 0.01 0.01 0.02   100.93 

FD372_m44  37.67 21.32 0.94 28.26 8.37 4.59 0.10 0.01 0.01 0.00   101.27 

FD372_m45  37.84 20.99 0.92 26.41 10.01 4.39 0.07 0.05 0.02 0.00   100.69 

FD372_m46  52.34 28.03 3.23 2.72 0.01 0.00 0.14 0.10 9.90 0.01   96.47 

FD372_m47  95.46 0.00 0.00 0.06 0.00 0.01 0.02 0.00 0.01 0.00   95.57 

FD372_m48  38.73 28.13 0.05 6.42 23.76 0.22 0.14 0.01 0.00 0.04   97.50 

FD372_m49  54.19 1.57 15.67 12.36 12.54 0.52 0.04 0.31 0.05 0.00   97.24 

FD372_m50  0.00 0.00 0.02 0.17 54.62 0.15 0.01 0.00 0.01 0.00   54.97 

FD372_m51  30.11 0.96 0.00 0.85 28.50 0.41 34.45 0.02 0.01 0.05   95.35 

FD372_m52  26.76 20.48 17.02 21.07 0.11 1.52 0.04 0.00 0.00 0.01   87.01 

             

             Sample FD374 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD374_m1  37.47 20.55 0.45 27.76 6.91 7.60 0.12 0.00 0.00 0.49   101.35 

FD374_m2  52.47 24.13 2.54 5.00 0.03 0.11 0.14 0.05 9.36 1.04   94.88 

FD374_m3  95.86 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.03   95.96 

FD374_m4  50.54 23.92 2.64 4.62 0.14 0.08 0.21 0.05 8.24 0.77   91.20 

FD374_m5 24.04 20.63 6.04 35.18 0.07 1.20 0.07 0.00 0.35 0.41   87.98 

FD374_m6 24.11 20.32 5.03 37.55 0.08 1.27 0.03 0.08 0.15 0.53   89.15 

FD374_m7 96.99 0.09 0.01 0.68 0.03 0.08 0.00 0.01 0.00 0.04   97.93 

FD374_m8 37.15 20.29 0.41 26.22 6.99 8.77 0.11 0.02 0.01 0.60   100.57 

FD374_m9 37.01 20.71 0.35 23.77 7.92 10.63 0.16 0.00 0.01 0.65   101.19 

FD374_m10 37.10 20.40 0.28 23.67 6.85 11.83 0.08 0.00 0.01 0.59   100.81 

FD374_m11 52.56 24.39 2.61 5.05 0.10 0.05 0.11 0.07 8.98 0.75   94.67 

FD374_m12 48.64 22.53 2.63 4.49 0.00 0.03 0.14 0.06 10.31 0.93   89.76 

FD374_m13 51.95 23.96 2.92 4.91 0.23 0.27 0.11 0.08 7.87 0.57   92.85 
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FD374_m14 52.91 24.61 2.55 4.77 0.04 0.13 0.18 0.04 9.74 1.10   96.07 

FD374_m15 37.51 20.70 0.57 30.55 5.93 5.07 0.04 0.00 0.00 0.45   100.84 

FD374_m16 37.44 20.85 0.65 29.95 6.24 5.44 0.14 0.05 0.01 0.54   101.30 

FD374_m17 23.86 19.10 8.21 31.62 0.05 0.62 0.08 0.00 0.10 0.27   83.90 

FD374_m18 23.53 18.98 8.17 32.62 0.06 0.69 0.13 0.05 0.13 0.23   84.58 

FD374_m19 96.73 0.00 0.00 0.37 0.00 0.03 0.01 0.00 0.01 0.05   97.20 

FD374_m20 51.35 28.22 2.28 3.85 0.00 0.00 0.23 0.47 10.28 0.10   96.79 

FD374_m21 53.39 25.54 2.66 4.49 0.00 0.04 0.17 0.10 10.62 0.91   97.91 

FD374_m22 0.00 0.02 0.01 39.34 0.01 8.25 54.37 0.02 0.06 0.02   102.08 

FD374_m23 51.52 24.05 2.51 4.51 0.00 0.02 0.09 0.07 10.82 1.30   94.88 

FD374_m24 53.78 24.67 2.58 4.86 0.00 0.01 0.08 0.07 10.70 0.81   97.56 

FD374_m25 24.45 19.48 8.47 31.49 0.07 0.45 0.08 0.06 0.08 0.14   84.76 

FD374_m26 53.49 24.89 2.82 4.86 0.53 0.21 0.13 0.08 7.32 0.05   94.37 

             

             Sample FD377 
           

             Measurement SiO2 Al2O3 MgO FeO CaO MnO TiO2 Na2O K2O Cr2O3   Sum 

FD377_m1  30.32 20.70 26.46 9.99 0.02 0.12 0.00 0.02 0.01 0.16   87.79 

FD377_m2  57.13 0.40 21.32 4.36 13.43 0.08 0.00 0.21 0.01 0.07   97.02 

FD377_m3  38.13 27.28 2.42 2.51 22.36 0.11 0.03 0.06 0.00 0.04   92.95 

FD377_m4 39.25 29.57 0.03 5.65 24.30 0.09 0.02 0.01 0.00 0.01   98.93 

FD377_m5 44.94 11.51 16.26 8.42 12.06 0.07 2.30 2.43 0.29 0.09   98.36 

FD377_m6 70.71 20.38 0.00 0.12 0.09 0.00 0.00 11.94 0.03 0.01   103.28 

FD377_m7 70.86 20.39 0.00 0.14 0.10 0.02 0.00 12.69 0.03 0.00   104.23 

FD377_m8 29.98 19.20 27.17 10.21 0.06 0.09 0.03 0.02 0.00 0.15   86.91 

FD377_m9 57.61 0.71 21.11 4.61 13.72 0.06 0.00 0.05 0.01 0.01   97.90 

FD377_m10 39.32 30.63 0.02 3.84 24.45 0.06 0.04 0.12 0.01 0.00   98.49 

FD377_m11 39.59 30.28 0.03 4.59 24.55 0.02 0.09 0.02 0.01 0.12   99.27 

FD377_m12 70.42 20.68 0.06 0.20 0.48 0.00 0.00 11.64 0.04 0.01   103.52 

FD377_m13 31.61 21.33 25.33 9.68 0.31 0.16 0.03 0.07 0.00 0.03   88.55 

FD377_m14 39.12 27.58 3.20 1.60 21.48 0.17 0.10 0.28 0.00 0.00   93.50 

FD377_m15 69.45 20.19 0.00 0.09 0.11 0.03 0.00 11.75 0.03 0.00   101.64 

FD377_m16 58.21 0.41 21.65 4.68 13.37 0.10 0.03 0.07 0.00 0.05   98.57 

FD377_m17 28.59 21.72 25.74 11.08 0.03 0.10 0.01 0.03 0.01 0.08   87.39 

FD377_m18 55.03 30.66 3.23 0.70 0.03 0.00 0.07 0.33 9.97 0.01   100.03 

FD377_m19 69.87 20.37 0.00 0.14 0.13 0.01 0.00 12.24 0.03 0.00   102.77 

FD377_m20 53.58 30.30 3.23 0.78 0.08 0.00 0.05 0.53 9.26 0.00   97.80 

FD377_m21 39.25 27.38 3.21 1.68 21.99 0.17 0.08 0.08 0.02 0.00   93.87 

FD377_m22 38.78 28.07 0.00 7.50 23.84 0.02 0.05 0.03 0.01 0.00   98.29 

FD377_m23 38.10 27.05 3.28 1.38 22.29 0.15 0.04 0.08 0.03 0.00   92.39 

FD377_m18b  53.50 31.01 3.48 0.83 0.03 0.00 0.08 0.09 10.12 0.05   99.17 

FD377_m18b  53.43 31.01 3.23 0.73 0.04 0.00 0.06 0.25 9.76 0.03   98.53 

FD377_m24  42.52 12.17 15.54 8.97 11.86 0.04 3.07 2.51 0.26 0.14   97.09 

FD377_m25  29.61 19.80 26.21 10.27 0.03 0.08 0.00 0.00 0.01 0.19   86.21 

FD377_m26 29.57 19.40 25.94 10.47 0.07 0.09 0.01 0.03 0.00 0.22   85.80 

FD377_m27 57.76 0.40 21.80 4.58 13.51 0.12 0.00 0.03 0.00 0.07   98.25 

FD377_m28 57.35 0.38 21.22 4.91 13.31 0.10 0.01 0.17 0.03 0.12   97.59 

FD377_m29 43.93 11.78 15.82 8.65 11.85 0.11 2.95 2.70 0.30 0.13   98.21 

FD377_m30 43.62 12.12 15.50 8.68 11.90 0.15 3.26 2.67 0.28 0.17   98.34 

FD377_m31 43.84 12.02 15.68 8.27 11.95 0.11 2.91 2.44 0.31 0.09   97.62 

FD377_m32 57.64 0.63 21.37 4.78 13.32 0.04 0.05 0.18 0.00 0.07   98.09 

FD377_m33 57.49 0.46 21.45 4.27 13.41 0.18 0.00 0.02 0.01 0.02   97.30 

FD377_m34 48.59 8.57 24.26 2.80 5.36 0.02 0.02 0.07 0.00 0.04   89.72 

FD377_m35 38.18 27.25 3.72 1.33 22.31 0.23 0.03 0.13 0.03 0.02   93.23 
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FD377_m36 39.25 30.19 0.05 5.13 24.33 0.05 0.09 0.03 0.02 0.02   99.15 

FD377_m37 55.28 25.87 5.09 1.64 0.20 0.01 0.03 3.95 5.78 0.01   97.85 

FD377_m38 53.71 28.14 4.53 1.17 0.13 0.03 0.04 0.63 10.09 0.00   98.47 

FD377_m39 54.99 29.27 3.89 1.23 0.19 0.03 0.06 0.20 9.58 0.10   99.54 

FD377_m39b  54.36 30.72 3.65 0.97 0.55 0.04 0.05 0.30 9.55 0.05   100.23 

FD377_m40  68.85 20.22 0.00 0.13 0.14 0.02 0.00 11.37 0.02 0.03   100.77 

FD377_m41  69.62 20.09 0.01 0.15 0.13 0.00 0.02 11.32 0.02 0.01   101.38 

FD377_m42  68.38 20.27 0.00 0.12 0.15 0.03 0.01 11.49 0.02 0.00   100.47 
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Table of samples 
 

 

 
Sample Lithology Unit Area Foliation Lineation 

 
FD01 Gneiss Dent Blanche Allein 186/30 219/20 

 
FD02 Calcschist Tsaté Allein 120/28 134/28 

 
FD03 Calcschist Cimes Blanches Allein 98/25 122/19 

 
FD04 Greenschist Tsaté Allein 47/23 

 

 
FD05 Calcschist Tsaté Allein 346/15 346/15 

 
FD06 Calcschist Tsaté Ollomont 128/20 128/20 

 
FD07 Mylonite Dent Blanche Ollomont 77/25 114/22 

 
FD08 Metapegmatite Dent Blanche Ollomont 123/66 218/19 

 
FD09 Greenschist Tsaté Aosta 54/50 68/12; 106/23 

 
FD10 Calcschist Tsaté Aosta 137/50 104/44 

 
FD11 Calcschist Tsaté Aosta 140/26 115/24 

 
FD12 Calcschist Tsaté Aosta 132/21 132/21 

 
FD13 Calcschist Tsaté Aosta 20/37 75/24 

 
FD14 Greenschist Tsaté Aosta 178/06 81/01 

 
FD15 Calcschist Tsaté Barthelemy 323/45 295/44 

 
FD16 Mylonite Dent Blanche Barthelemy 264/10 284/13 

 
FD17 Mylonite Dent Blanche Barthelemy 166/09 106/04 

 
FD18 Mylonite Dent Blanche Barthelemy 56/21 82/16 

 
FD19 Mylonite Dent Blanche Trois Ville 188/22 124/05 

 
FD20 Mylonite Dent Blanche Trois Ville 290/34 278/30 

 
FD21 Mylonite Dent Blanche Trois Ville 229/20 268/16 

 
FD22 Calcschist Tsaté Cignana 291/31 316/28 

 
FD23 Calcschist Tsaté Cignana 322/21 0/23 

 
FD24 Calcschist Zermatt-Saas Cignana 330/39 312/37 

 
FD25 Quartzite Cimes Blanches Cignana 319/10 336/10 

 
FD26 Quartzite Cimes Blanches Cignana 269/10 331/08 

 
FD27 Quartzite Cimes Blanches Cignana 295/21 335/18 

 
FD28 Quartzite Cimes Blanches Cignana 278/20 327/12 

 
FD29 Marble Cimes Blanches Cignana 352/14 352/14 

 
FD30 Quartz vein Tsaté Cignana 322/44 289/36 

 
FD31 Calcschist Tsaté Cignana 288/24 341/14 

 
FD32 Greenschist Tsaté Cignana 325/20 315/20 

 
FD33 Greenschist Tsaté Cignana 08/08 303/06 

 
FD34 Greenschist Tsaté Cignana 66/15 332/02 

 
FD35 Greenschist Tsaté Cignana 338/29 296/25 

 
FD36 Calcschist Tsaté Cignana 342/24 300/12 

 
FD37 Calcschist Tsaté Cignana 274/27 313/21 

 
FD38 Calcschist Tsaté Cignana 296/09 293/09 

 
FD39 Calcschist Tsaté Cignana 296/29 311/02 

 
FD40 Mylonite Dent Blanche Cignana 254/35 304/27 

 
FD41 Mylonite Dent Blanche Cignana 244/22 312/16 

 
FD42 Mylonite Dent Blanche Cignana 276/21 318/11 
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FD43 Mylonite Dent Blanche Breuil 198/08 142/05 

 
FD44 Mylonite Dent Blanche Breuil 199/10 131/02 

 
FD45 Mylonite Dent Blanche Breuil 215/10 136/03 

 
FD46 Mylonite Dent Blanche Breuil 245/09 320/02 

 
FD47 Calcschist Tsaté Breuil 300/29 340/21 

 
FD48 Mylonite Dent Blanche Breuil 222/03 312/00 

 
FD49 Greenschist Tsaté Zermatt 331/39 252/03; 310/28 

 
FD50 Metasediment Cimes Blanches Zermatt 251/19 221/19 

 
FD51 Quartzite Cimes Blanches Zermatt 338/19 359/17; 276/14 

 
FD52 Calcschist Tsaté Zermatt 00/30 09/28 

 
FD53 Marble Tsaté Zermatt 340/20 00/18 

 
FD54 Calcschist Tsaté Zermatt 342/22 302/22 

 
FD55 Greenschist Tsaté Zermatt 322/39 343/34 

 
FD56 Calcschist Tsaté Zermatt 326/13 320/15 

 
FD57 Calcschist Tsaté Zermatt 338/15 326/23 

 
FD58 Calcschist Tsaté Zermatt 311/28 280/25; 326/27 

 
FD59 Metabasite Zermatt-Saas Zermatt 303/41 259/31 

 
FD60 Metabasite Zermatt-Saas Zermatt 289/36 260/30 

 
FD61 Metabasite Zermatt-Saas Zermatt 

  

 
FD62 Metabasite Zermatt-Saas Zermatt 309/28 245/14 

 
FD63 Metasediment Cimes Blanches Zermatt 303/25 268/14 

 
FD64 Metasediment Cimes Blanches Zermatt 292/19 224/10 

 
FD65 Calcschist Cimes Blanches Zermatt 278/17 278/17; 218/10 

 
FD66 Calcschist Cimes Blanches Zermatt 300/33 258/25; 324/28 

 
FD67 Metabasite Zermatt-Saas Zermatt 

  

 
FD68 Metabasite Zermatt-Saas Zermatt 271/37 239/34 

 
FD69 Calcschist Tsaté Zermatt 265/27 265/27 

 
FD70 Calcschist Tsaté Zermatt 263/27 244/25 

 
FD71 Calcschist Tsaté Zermatt 238/28 180/13 

 
FD72 Calcschist Tsaté Zermatt 288/18 319/20 

 
FD73 Calcschist Tsaté Zermatt 333/36 346/35 

 
FD74 Calcschist Tsaté Zermatt 334/12 334/12 

 
FD75 Metasediment Cimes Blanches Zermatt 284/12 276/13 

 
FD76 Metasediment Cimes Blanches Zermatt 284/27 278/18 

 
FD77 Metasediment Cimes Blanches Zermatt 277/19 299/17 

 
FD78 Calcschist Tsaté Zermatt 349/23 285/12 

 
FD79 Calcschist Tsaté Zermatt 06/15 293/08; 30/24 

 
FD80 Quartzite Cimes Blanches Zermatt 316/18 312/17; 02/12 

 
FD81 Metasediment Cimes Blanches Zermatt 264/21 299/16; 264/21 

 
FD82 Metabasite Zermatt-Saas Zermatt 326/49 247/09; 259/25 

 
FD83 Calcschist Cimes Blanches Zermatt 279/15 252/13 

 
FD84 Calcschist Frilihorn Zermatt 272/23 276/21 

 
FD85 Metasediment Frilihorn Zermatt 

  

 
FD86 Calcschist Frilihorn Zermatt 289/29 249/14 

 
FD87 Greenschist Tsaté Zermatt 316/30 304/29; 234/05 

 
FD88 Calcschist Tsaté Zermatt 276/23 287/22 

 
FD89 Calcschist Tsaté Zermatt 302/17 324/20 
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FD90 Calcschist Tsaté Zermatt 333/18 303/17 

 
FD91 Calcschist Tsaté Zermatt 267/22 329/08 

 
FD92 Gneiss Dent Blanche Arolla 318/34 292/31; 279/31 

 
FD93 Gneiss Dent Blanche Arolla 302/43 302/43 

 
FD94 Gneiss Dent Blanche Arolla 300/32 276/24 

 
FD95 Quartzite Dent Blanche Arolla 346/40 281/18 

 
FD96 Gneiss Dent Blanche Arolla 335/31 291/23; 326/34 

 
FD97 Gneiss Dent Blanche Arolla 318/38 284/36 

 
FD98 Gneiss Dent Blanche Arolla 257/19 257/19 

 
FD99 Gneiss Dent Blanche Arolla 285/49 235/30 

 
FD100 Metasediment Tsaté Arolla 146/77 63/41 

 
FD101 Gneiss Dent Blanche Arolla 266/28 286/18 

 
FD102 Calcschist Tsaté Arolla 222/35 146/08; 166/16 

 
FD103 Calcschist Tsaté Arolla 193/32 129/22; 108/08 

 
FD104 Calcschist Tsaté Arolla 152/13 115/12 

 
FD105 Calcschist Tsaté Arolla 136/30 161/24 

 
FD106 Metasediment Tsaté Arolla 185/49 156/52 

 
FD107 Metasediment Tsaté Arolla 40/22 03/18 

 
FD108 Metasediment Tsaté Arolla 53/16 16/16 

 
FD109 Metasediment Tsaté Arolla 

  

 
FD110 Gneiss Dent Blanche Arolla 106/30 178/14; 72/27 

 
FD111 Gneiss Dent Blanche Arolla 306/23 256/11 

 
FD112 Gneiss Dent Blanche Arolla 316/62 252/19 

 
FD113 Gneiss Dent Blanche Arolla 333/22 317/22 

 
FD114 Gneiss Dent Blanche Arolla 317/17 308/15; 357/13 

 
FD115 Gneiss Dent Blanche Arolla 64/18 54/19 

 
FD116 Greenschist Tsaté Arolla 110/37 107/35 

 
FD117 Gneiss Dent Blanche Arolla 279/41 223/33 

 
FD118 Gneiss Dent Blanche Arolla 272/23 272/23 

 
FD119 Gneiss Dent Blanche Arolla 330/36 299/30; 239/05 

 
FD120 Gneiss Dent Blanche Arolla 329/39 274/23 

 
FD121 Gneiss Dent Blanche Arolla 303/71 301/70 

 
FD122 Greenschist Tsaté Arolla 109/33 135/27 

 
FD123 Gneiss Dent Blanche Arolla 94/22 127/19 

 
FD124 Gneiss Dent Blanche Arolla 49/24 24/22; 330/05 

 
FD125 Calcschist Tsaté Arolla 316/26 316/26 

 
FD126 Greenschist Tsaté Arolla 177/17 249/06; 142/17 

 
FD127 Greenschist Tsaté Arolla 158/46 146/45 

 
FD128 Calcschist Tsaté Arolla 167/28 148/26 

 
FD129 Gneiss Dent Blanche Arolla 180/61 273/05 

 
FD130 Gneiss Dent Blanche Arolla 204/56 281/13 

 
FD131 Gneiss Dent Blanche Arolla 182/55 272/00 

 
FD132 Gneiss Dent Blanche Arolla 178/59 264/08 

 
FD133 Gneiss Dent Blanche Arolla 184/63 272/10 

 
FD134 Gneiss Dent Blanche Arolla 179/60 268/06 

 
FD135 Calcschist Tsaté Zermatt 256/34 254/33 

 
FD136 Marble Frilihorn Zermatt 266/34 237/29 
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FD137 Greenschist Tsaté Zermatt 221/22 248/19; 175/14 

 
FD138 Greenschist Tsaté Zermatt 285/40 314/36 

 
FD139 Mylonite Dent Blanche Zermatt 199/40 135/21 

 
FD140 Mylonite Dent Blanche Zermatt 188/37 123/21 

 
FD141 Mylonite Dent Blanche Zermatt 186/30 235/19 

 
FD142 Mylonite Dent Blanche Zermatt 174/37 226/33; 125/24 

 
FD143 Mylonite Dent Blanche Zermatt 226/31 173/20 

 
FD144 Eclogite Zermatt-Saas Zermatt 

  

 
FD145 Metasediment Tsaté Zermatt 311/43 06/26 

 
FD146 Mylonite Dent Blanche Zermatt 282/31 293/29 

 
FD147 Mylonite Dent Blanche Zermatt 308/29 325/26 

 
FD148 Mylonite Dent Blanche Zermatt 298/20 332/16 

 
FD149 Mylonite Dent Blanche Zermatt 262/19 312/12 

 
FD150 Mylonite Dent Blanche Zermatt 274/26 339/12 

 
FD151 Metabasite Zermatt-Saas Zermatt 272/43 242/41 

 
FD152 Metasediment Zermatt-Saas Zermatt 306/59 255/46 

 
FD153 Metabasite Zermatt-Saas Zermatt 298/46 249/31 

 
FD154 Metabasite Tsaté Zermatt 312/52 314/46 

 
FD155 Calcschist Tsaté Zermatt 326/17 311/22 

 
FD156 Calcschist Tsaté Zermatt 352/23 330/21 

 
FD157 Metasediment Tsaté Zermatt 128/57 128/57 

 
FD158 Metasediment Tsaté Zermatt 281/47 330/34 

 
FD159 Mylonite Dent Blanche Zermatt 333/08 330/04 

 
FD160 Mylonite Dent Blanche Zermatt 316/20 41/03; 312/25 

 
FD161 Mylonite Dent Blanche Zermatt 354/18 39/09 

 
FD162 Mylonite Dent Blanche Zermatt 307/05 307/05 

 
FD163 Mylonite Dent Blanche Zermatt 268/20 303/15; 241/16 

 
FD164 Metasediment Cimes Blanches Zermatt 327/31 250/09; 00/25 

 
FD165 Metasediment Cimes Blanches Zermatt 270/43 225/33 

 
FD166 Metasediment Cimes Blanches Zermatt 265/44 290/42 

 
FD167 Metasediment Cimes Blanches Zermatt 

  

 
FD168 Metasediment Cimes Blanches Zermatt 

  

 
FD169 Garnet calcschist Zermatt-Saas Zermatt 

  

 
FD170 Garnet calcschist Zermatt-Saas Zermatt 

  

 
FD171 Calcschist Tsaté Zermatt 284/32 314/30 

 
FD172 Quartzite Cimes Blanches Zermatt 284/31 284/31 

 
FD173 Metabasite Zermatt-Saas Zermatt 294/30 249/20; 313/26 

 
FD174 Metabasite Tsaté Zermatt 259/24 212/16 

 
FD175 Garnet calcschist Zermatt-Saas Zermatt 278/30 206/16 

 
FD176 Garnet calcschist Zermatt-Saas Zermatt 242/35 188/25 

 
FD177 Eclogite Zermatt-Saas Cignana 274/33 260/32 

 
FD178 Metasediment Zermatt-Saas Cignana 297/39 266/38 

 
FD179 Metasediment Zermatt-Saas Cignana 344/37 281/26 

 
FD180 Eclogite Zermatt-Saas Cignana 334/29 274/17 

 
FD181 Serpentinite Zermatt-Saas Torgnon 256/15 253/15 

 
FD182 Quartzite Etirol-Levaz Torgnon 349/34 64/06 

 
FD183 Gneiss Etirol-Levaz Torgnon 332/39 44/14 
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FD184 Gneiss Etirol-Levaz Torgnon 330/33 277/20 

 
FD185 Eclogite Etirol-Levaz Torgnon 

  

 
FD186 Eclogite Zermatt-Saas Cignana 284/31 271/24 

 
FD187 Quartzite Cimes Blanches Cignana 343/55 282/38; 352/53 

 
FD188 Quartzite Cimes Blanches Cignana 330/44 333/44 

 
FD189 Quartzite Cimes Blanches Cignana 346/55 336/44 

 
FD190 Eclogite Zermatt-Saas Cignana 264/34 306/22 

 
FD191 Eclogite Zermatt-Saas Cignana 263/32 246/30 

 
FD192 Eclogite Zermatt-Saas Cignana 188/39 262/12 

 
FD193 Metasediment Zermatt-Saas Cignana 04/38 302/22 

 
FD194 Metasediment Zermatt-Saas Cignana 04/29 294/26 

 
FD195 Gneiss Dent Blanche Cignana 288/12 330/10 

 
FD196 Gneiss Dent Blanche Cignana 314/02 322/02 

 
FD197 Gneiss Etirol-Levaz Torgnon 202/43 252/31 

 
FD198 Gneiss Etirol-Levaz Torgnon 199/48 117/09 

 
FD199 Gneiss Etirol-Levaz Torgnon 212/40 283/15 

 
FD200 Gneiss Etirol-Levaz Torgnon 126/35 151/37 

 
FD201 Gneiss Etirol-Levaz Torgnon 

  

 
FD202 Gneiss Etirol-Levaz Torgnon 

  

 
FD203 Eclogite Etirol-Levaz Torgnon 

  

 
FD204 Gneiss Etirol-Levaz Torgnon 250/24 208/25 

 
FD205 Gneiss Etirol-Levaz Torgnon 215/35 286/12 

 
FD206 Gneiss Dent Blanche Moiry 253/51 344/01 

 
FD207 Gneiss Dent Blanche Moiry 163/42 181/46 

 
FD208 Gneiss Dent Blanche Moiry 170/61 170/61 

 
FD209 Calcschist Tsaté Zinal 112/30 146/28 

 
FD210 Calcschist Tsaté Zinal 112/30 156/23 

 
FD211 Gneiss Dent Blanche Zinal 207/38 272/33 

 
FD212 Gneiss Dent Blanche Zinal 206/46 289/07 

 
FD213 Gneiss Dent Blanche Zinal 210/57 289/16 

 
FD214 Gneiss Dent Blanche Zinal 186/46 160/43 

 
FD215 Gneiss Dent Blanche Zinal 243/42 312/22 

 
FD216 Gneiss Dent Blanche Zinal 260/22 319/12 

 
FD217 Gneiss Dent Blanche Zinal 226/24 151/06 

 
FD218 Gneiss Dent Blanche Zinal 233/18 159/04 

 
FD219 Gneiss Dent Blanche Zinal 269/35 341/13 

 
FD220 Quartzite Dent Blanche Zinal 259/38 

 

 
FD221 Gneiss Dent Blanche Zinal 246/41 186/23 

 
FD222 Gneiss Dent Blanche Zinal 260/18 198/20 

 
FD223 Gneiss Dent Blanche Zinal 238/41 320/07 

 
FD224 Gneiss Dent Blanche Zinal 246/40 322/12 

 
FD225 Gneiss Dent Blanche Zinal 230/31 149/03; 212/30 

 
FD226 Greenschist Tsaté Tournalin 271/16 336/04 

 
FD227 Greenschist Tsaté Tournalin 168/26 117/18 

 
FD228 Greenschist Tsaté Tournalin 249/13 300/08 

 
FD229 Quartz layer Tsaté Tournalin 261/08 299/06 

 
FD230 Calcschist Tsaté Tournalin 118/14 130/13 
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FD231 Metasediment Cimes Blanches Tournalin 74/18 141/07 

 
FD232 Metasediment Cimes Blanches Tournalin 112/22 148/16 

 
FD233 Metasediment Cimes Blanches Tournalin 102/19 144/21 

 
FD234 Gneiss Etirol-Levaz Torgnon 09/49 286/08 

 
FD235 Greenschist Tsaté Torgnon 346/53 340/53 

 
FD236 Gneiss Etirol-Levaz Torgnon 285/13 277/11 

 
FD237 Gneiss Etirol-Levaz Torgnon 279/32 254/29 

 
FD238 Gneiss Etirol-Levaz Torgnon 256/29 268/27 

 
FD239 Gneiss Etirol-Levaz Torgnon 308/21 240/08 

 
FD240 Gneiss Etirol-Levaz Torgnon 192/38 110/06 

 
FD241 Eclogite Zermatt-Saas Cignana 319/40 265/20 

 
FD242 Metasediment Zermatt-Saas Cignana 163/48 80/14 

 
FD243 Metasediment Zermatt-Saas Cignana 68/17 96/14 

 
FD244 Eclogite Zermatt-Saas Cignana 318/22 269/16 

 
FD245 Greenschist Zermatt-Saas Cignana 217/12 155/08 

 
FD246 Calcschist Zermatt-Saas Cignana 92/39 328/33 

 
FD247 Metagabbro Etirol-Levaz Torgnon 321/30 262/09 

 
FD248 Metabasite Etirol-Levaz Torgnon 244/69 312/12 

 
FD249 Metabasite Etirol-Levaz Torgnon 239/32 300/22 

 
FD250 Eclogite Zermatt-Saas Cignana 324/52 324/52 

 
FD251 Quartz layer Zermatt-Saas Cignana 315/19 292/17 

 
FD252 Quartz layer Zermatt-Saas Cignana 256/23 289/18 

 
FD253 Metasediment Zermatt-Saas Cignana 69/13 121/13 

 
FD254 Greenschist Zermatt-Saas Cignana 208/32 142/09 

 
FD255 Greenschist Zermatt-Saas Cignana 244/04 293/02 

 
FD256 Greenschist Zermatt-Saas Cignana 64/16 68/15 

 
FD257 Greenschist Zermatt-Saas Cignana 81/13 89/11 

 
FD258 Gneiss Etirol-Levaz Torgnon 291/25 283/25 

 
FD259 Gneiss Etirol-Levaz Torgnon 270/30 279/28 

 
FD260 Gneiss Etirol-Levaz Torgnon 

  

 
FD261 Metabasite Etirol-Levaz Torgnon 

  

 
FD262 Metabasite Etirol-Levaz Torgnon 

  

 
FD263 Metasediment Zermatt-Saas Cignana 02/32 274/04 

 
FD264 Metasediment Zermatt-Saas Cignana 313/27 300/25 

 
FD265 Metasediment Zermatt-Saas Cignana 350/35 356/28 

 
FD266 Calcschist Zermatt-Saas Cignana 356/31 304/18 

 
FD267 Calcschist Zermatt-Saas Cignana 337/28 320/24 

 
FD268 Gneiss Dent Blanche Breuil 306/31 306/31 

 
FD269 Gneiss Dent Blanche Breuil 256/33 304/25 

 
FD270 Gneiss Dent Blanche Breuil 270/63 326/47 

 
FD271 Gneiss Dent Blanche Breuil 279/51 330/37 

 
FD272 Gneiss Dent Blanche Breuil 284/46 312/40 

 
FD273 Gneiss Dent Blanche Breuil 268/46 320/32 

 
FD274 Garnet calcschist Zermatt-Saas Cignana 323/50 304/46 

 
FD275 Garnet calcschist Zermatt-Saas Cignana 318/46 332/44 

 
FD276 Greenschist Zermatt-Saas Cignana 306/35 322/32 

 
FD277 Calcschist Tsaté Cignana 247/16 199/11 



 

- 142 - 

 

 
FD278 Calcschist Tsaté Cignana 248/10 326/02 

 
FD279 Metasediment Cimes Blanches Dix 356/59 88/01 

 
FD280 Metasediment Cimes Blanches Dix 342/79 69/10 

 
FD281 Metasediment Cimes Blanches Dix 340/63 274/27 

 
FD282 Quartzite Cimes Blanches Dix 201/08 286/01 

 
FD283 Quartzite Cimes Blanches Dix 226/16 270/12 

 
FD284 Quartzite Cimes Blanches Dix 149/47 101/36 

 
FD285 Quartzite Cimes Blanches Dix 162/48 94/18 

 
FD286 Quartzite Cimes Blanches Dix 161/33 98/16 

 
FD287 Gneiss Dent Blanche Arolla 353/25 288/11 

 
FD288 Gneiss Dent Blanche Arolla 344/38 281/20 

 
FD289 Gneiss Dent Blanche Arolla 325/42 274/18 

 
FD290 Gneiss Dent Blanche Arolla 354/40 288/04 

 
FD291 Greenschist Tsaté Arolla 13/40 96/06 

 
FD292 Gneiss Dent Blanche Arolla 336/43 272/19 

 
FD293 Gneiss Dent Blanche Arolla 336/41 285/26 

 
FD294 Gneiss Dent Blanche Arolla 303/21 284/16 

 
FD295 Gneiss Dent Blanche Arolla 347/46 285/26 

 
FD296 Gneiss Dent Blanche Arolla 350/55 60/26 

 
FD297 Gneiss Dent Blanche Arolla 352/56 75/10 

 
FD298 Gneiss Dent Blanche Arolla 342/60 57/24 

 
FD299 Gneiss Dent Blanche Arolla 04/20 98/04 

 
FD300 Metagabbro Tsaté Arolla 

  

 
FD301 Metagabbro Tsaté Arolla 

  

 
FD302 Metagabbro Tsaté Arolla 

  

 
FD303 Metagabbro Tsaté Arolla 

  

 
FD304 Metagabbro Tsaté Arolla 

  

 
FD305 Metagabbro Tsaté Arolla 

  

 
FD306 Metagabbro Tsaté Arolla 

  

 
FD307 Gneiss Dent Blanche Zinal 125/12 135/11 

 
FD308 Gneiss Dent Blanche Zinal 105/13 139/07 

 
FD309 Gneiss Dent Blanche Zinal 48/65 326/08 

 
FD310 Gneiss Dent Blanche Zinal 214/43 128/12 

 
FD311 Gneiss Dent Blanche Zinal 182/22 146/18 

 
FD312 Gneiss Dent Blanche Zinal 231/15 151/03 

 
FD313 Gneiss Dent Blanche Zinal 202/82 288/18 

 
FD314 Metagabbro Tsaté Zinal 

  

 
FD315 Metagabbro Tsaté Zinal 

  

 
FD316 Metagabbro Tsaté Zinal 

  

 
FD317 Mylonite Dent Blanche Breuil 36/13 306/01 

 
FD318 Mylonite Dent Blanche Breuil 46/11 133/01 

 
FD319 Mylonite Dent Blanche Breuil 86/09 120/09 

 
FD320 Mylonite Dent Blanche Breuil 98/12 119/16 

 
FD321 Mylonite Dent Blanche Breuil 95/14 

 

 
FD322 Calcschist Tsaté Breuil 256/13 311/09 

 
FD323 Greenschist Tsaté Breuil 13/24 310/12 

 
FD324 Greenschist Tsaté Breuil 339/04 314/01 
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FD325 Mylonite Dent Blanche Breuil 05/13 318/06 

 
FD326 Mylonite Dent Blanche Breuil 296/11 317/08 

 
FD327 Mylonite Dent Blanche Breuil 359/16 311/10 

 
FD328 Eclogite Etirol-Levaz Torgnon 

  

 
FD329 Eclogite Etirol-Levaz Torgnon 

  

 
FD330 Gneiss Dent Blanche Torgnon 340/23 318/21 

 
FD331 Gneiss Dent Blanche Torgnon 257/17 317/04 

 
FD332 Marble Cimes Blanches Bonatchiesse 329/52 240/02 

 
FD333 Quartzite Cimes Blanches Bonatchiesse 314/38 238/12 

 
FD334 Marble Cimes Blanches Bonatchiesse 320/38 242/12 

 
FD335 Calcschist Tsaté Moiry 154/25 91/13 

 
FD336 Quartz layer Tsaté Moiry 194/13 267/04 

 
FD337 Quartz layer Tsaté Moiry 177/27 259/07 

 
FD338 Quartzite Cimes Blanches Moiry 172/18 117/09 

 
FD339 Quartzite Cimes Blanches Moiry 155/34 110/25 

 
FD340 Metabasite Etirol-Levaz Torgnon 

  

 
FD341 Metabasite Etirol-Levaz Torgnon 

  

 
FD342 Garnet micaschist Etirol-Levaz Torgnon 

  

 
FD343 Eclogite Etirol-Levaz Torgnon 

  

 
FD345 Eclogite Etirol-Levaz Torgnon 

  

 
FD346 Calcschist Tsaté Becca d'Aver 

  

 
FD347 Calcschist Tsaté Becca d'Aver 180/12 116/11 

 
FD348 Serpentinite Tsaté Becca d'Aver 

  

 
FD349 Mylonite Dent Blanche Ollomont 97/18 117/25 

 
FD350 Mylonite Dent Blanche Ollomont 91/25 118/22 

 
FD351 Mylonite Dent Blanche Ollomont 86/22 123/17 

 
FD352 Calcschist Tsaté Becca d'Aver 136/17 122/17 

 
FD353 Marble Frilihorn Becca d'Aver 183/15 137/07 

 
FD354 Marble Frilihorn Becca d'Aver 165/28 124/25 

 
FD355 Metasediment BACS Becca d'Aver 

  

 
FD356 Metasediment BACS Becca d'Aver 187/22 118/07 

 
FD357 Metasediment BACS Becca d'Aver 152/13 96/15 

 
FD358 Metasediment BACS Becca d'Aver 236/16 316/03; 282/11 

 
FD359 Metasediment Tsaté Becca d'Aver 235/25 293/15 

 
FD360 Calcschist Tsaté Becca d'Aver 246/28 314/08 

 
FD361 Metasediment BACS Becca d'Aver 164/27 106/15 

 
FD362 Metasediment BACS Becca d'Aver 201/35 201/30 

 
FD363 Greenschist Tsaté Becca d'Aver 184/31 100/02 

 
FD364 Calcschist Tsaté Becca d'Aver 204/34 118/02 

 
FD365 Calcschist Tsaté Becca d'Aver 194/33 124/13 

 
FD366 Calcschist Tsaté Becca d'Aver 173/28 136/23 

 
FD367 Calcschist BACS Becca d'Aver 166/23 131/18 

 
FD368 Calcschist BACS Becca d'Aver 145/28 118/29 

 
FD369 Calcschist BACS Becca d'Aver 203/38 138/15 

 
FD370 Metasediment BACS Becca d'Aver 356/02 304/01 

 
FD371 Metasediment BACS Becca d'Aver 205/17 109/03 

 
FD372 Metasediment BACS Becca d'Aver 
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FD373 Metasediment BACS Becca d'Aver 161/30 106/22 

 
FD374 Metasediment BACS Becca d'Aver 181/37 129/25 

 
FD375 Metagabbro Tsaté Arolla 

  

 
FD376 Metagabbro Tsaté Arolla 

  

 
FD377 Metagabbro Tsaté Arolla 

  

 
FD378 Metagabbro Tsaté Arolla 

  

 
FD379 Metagabbro Tsaté Arolla 
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Sample locations 
 

 
Map with approximate locations of samples taken for further microstructural and petrological investigations. 

Note that locations of samples FD164 – FD176 are outside the depicted area east of Zermatt near Oberrothorn. 


