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1. INTRODUCTION 

1.1 Schizophrenia 

Schizophrenia is a severe chronic neuropsychiatric disorder with a lifetime prevalence and 

lifetime morbid risk of 0.4% and 0.72%, respectively1. The manifestation of the disorder is 

typically characterized by an admixture of persistent positive and negative symptoms as well as 

cognitive and motor deficits which result in an impairment of emotional and social behaviour. 

Some of the symptoms include hallucinations and delusions, distorted perception, disorganized 

thinking and behaviour, apathy, excessive or slowed motor activity and deficits in different 

domains of cognition including episodic memory, verbal fluency, processing speed, attention 

and working memory2. The occurrence and severity of different symptoms changes across 

patients as well as throughout the course of their illness. In the majority of the cases, the onset 

of psychotic symptoms occurs during adolescence or in early adulthood with a well established 

earlier age of onset for males in comparison to females3. The sustained recovery is only 

experienced by a minority of the individuals diagnosed with schizophrenia; <14% within the 

first 5 years of the illness4 and another 16% later in the illness5. Schizophrenia is an incurable 

however a treatable illness but the current treatments suffer from limited efficacy with the 

majority of the patients experiencing multiple relapses4, 6. The treatment outcomes are 

extremely variable from case to case due to the high clinical heterogeneity of the illness that are 

influenced by inter-personal differences including age, gender, race, genetic constitution7. In 

addition, the antipsychotic drugs used in treatment of schizophrenia are known to cause several 

neurological, metabolic, cardiovascular, gastrointestinal, hematological, genito-urinary and 

musculoskeletal side effects7. Due to the unavailability of consistent and reliable biomarkers, 

the diagnosis of schizophrenia relies on phenomenology; mainly the symptoms, signs, and 

course of illness as guided by Diagnostic and Statistical Manual of Mental Disorders , fourth 

edition (DSM-IV) or International Classification of Diseases, tenth edition (ICD-10)8. 

The pathophysiology of schizophrenia is still not understood but there are widespread yet 

variable structural, functional and neurochemical alterations reported in the brains of 

schizophrenia patients. Reduction in grey matter volume at certain brain regions (e.g. cingulate 

cortex, insula, thalamus, frontal lobe gyri)9, enlargement of lateral and third ventricular spaces9, 

disrupted anatomical connectivity associated to white matter abnormalities10, inter-regional 

functional dysconnectivity11, 12, abnormal activation patterns in several brain regions during 

performance of executive tasks13-15 and abnormalities in several neurotransmitter systems (i.e. 

glutamatergic16-18, dopaminergic19, 20, GABAergic21, 22) can be listed among the repeatedly 

reported alterations in patients with schizophrenia. The existence of such widespread 

alterations can imply disparate pathophysiological models which can account for the well 
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known clinical heterogeneity in schizophrenia23. However it should also be acknowledged that 

these alterations are not always necessarily distinct entities and some can be linked and 

converge on a single pathophysiological mechanism such as an imbalance between excitatory 

and inhibitory neural systems due to glutamatergic and GABAergic dysfunction3. 

Schizophrenia is a multifactorial disorder (also commonly referred to as a “complex disorder”) 

with joint effects of genetic and environmental risk factors (e.g. urbanicity, cannabis use, 

developmental trauma, minority group position24) playing a role in its aetiology. The genetic 

component of the disease was demonstrated through family, twin and adoption studies which 

produced heritability estimates in the range of 64-81%25, 26. The disease recurrence risk in a 

family is known to exponentially increase with increased degree of relatedness to the affected 

individual where the risk reaches 50% for the monozygotic co-twin of a schizophrenia patient26.  

Schizophrenia does not have a Mendelian form with none of the schizophrenia associated 

mutations causing the disease per se27, 28. In fact there is a highly complex genetic architecture 

underlying the disease. All the schizophrenia associated variants identified up to date are falling 

into an effect size spectrum from small to large effect sizes27, 29 and even for the largest known 

genetic risk factor (i.e. a microdeletion in chromosomal region 22q11) the rate at which carriers 

develop the disease is 25–30%30. Among the robustly defined schizophrenia associated genetic 

variants are the several common single nucleotide polymorphisms (SNPs) with small effect 

sizes and rare large structural variants, namely copy number variants (CNVs) with intermediate 

to large effect sizes27, 29. The efforts to underpin the complete spectrum of genetic risk factors 

for schizophrenia are vigorously ongoing. The value of revealing the complete spectrum of 

disease associated loci and alleles lies in the better understanding of the disease 

pathophysiology. This is consequently expected to lead to development of more effective 

therapeutics targeting directly the pathophysiological mechanisms. The subsequent goals that 

are desired to be achieved are still distal but not completely unrealistic and include personally 

tailored medicine and the possibility of early intervention and prevention by predicting 

individuals at increased risk of disease29.  

1.2 Models proposed for the genetic architecture of schizophrenia 

The concept of ‘genetic architecture of a disease’ compromises 4 main components31: 

1. The number of risk alleles contributing to the disease in the population 

2. The individual frequencies of risk alleles in the population 

3. The individual effect sizes of the risk alleles  

4. The way the risk alleles act together (independently (additive) or inter-dependently 

(interacting)) 
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The genetic architecture of schizophrenia has been a major issue of debate initially dominated 

by two models32, 33 based on different hypotheses which are not mutually exclusive34. One of 

these is the common disease-common variant (CDCV)32 hypothesis and the other is the common 

disease-rare variant (CDRV) 33 hypothesis.  

1.2.1 Common disease-common variant model 

The original common disease-common variant (CDCV) hypothesis35, 36 which is today cited as 

the foundation of the CDCV model suggested that if a disease is common it would be likely that 

there is a disease causing allele which is much more common than all the other disease causing 

alleles at the same locus. The initial hypothesis was therefore not accounting for the total 

number of disease loci and risk variants, the allele frequency spectrum of risk variants in the 

genome or the effect sizes37. Today the CDCV hypothesis is used to define a genetic architecture 

where the disease is caused by inheritance of multiple relatively common variants each with 

small individual effect sizes and acting in concert to increase the disease risk29, 38. The CDCV 

hypothesis also fits into a polygenic disease model where a large number of disease relevant 

genetic loci and risk alleles are expected to be present in the genome39. Under this model the 

disease occurs when an individual harbours a substantial amount of risk alleles, in other words, 

when a certain threshold of genetic liability is passed31, 40. Incidence rates of schizophrenia 

remain to be persistent despite the deleterious nature of the disease to reproductive fitness41. 

Regarding this paradox, the polygenic model puts forward the argument of reduced visibility of 

each risk allele to negative selection due to their small individual effect sizes39.  

The first suggestion that a polygenic model can underlie the heritability of schizophrenia came 

from Gottesman and Shields in 196740. Today the latest evidence from assessment of genome-

wide SNP data supports the presence of a polygenic component in the genetic architecture of 

schizophrenia27, 39, 42. A substantial proportion of this polygenic architecture was shown to be 

attributable to common variants with small individual effect sizes as CDCV predicts, however 

the contribution of rare variants to schizophrenia is also acknowledged as they are also 

expected and shown to have a part in the allele frequency/effect size spectrum of a polygenic 

model39, 42. 

1.2.2 Common disease-rare variant model  

The CDCV model is challenged by the common disease-rare variant model (CDRV) which argues 

that recently arisen, rare, multiple variations are more likely to contribute to the common 

human disease43. In this framework, the disease is caused by different and very rare risk 

variants (might be even specific to a single case or a family) with large effect sizes each. This 

model is also referred to as the genetic heterogeneity model since it assumes that each case or 

family is explained by its own mutation and this must thus account for a huge number of risk 
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alleles and risk loci spread throughout the entire genome33. Genetic heterogeneity has been 

shown in some other common diseases such as breast cancer where more than thousand 

individually rare pathogenic mutations in the genes BRCA1 and BRCA2 were identified44. In the 

CDRV model the paradigm of high incidence rates of schizophrenia despite reduced fecundity is 

explained by the suggested continuous occurrences of de novo mutations (alterations in genome 

which are not present in the somatic cells of parents but only in the offspring as a result of a 

mutation either in a germ cell or in the fertilized egg itself) which are adding sporadic cases of 

schizophrenia to the population38. Supporters of this model in schizophrenia emphasize the 

association of increased paternal age with schizophrenia with relevance to increased de novo 

germline mutation rates in advanced paternal age33. Today it is known that rare structural 

variants (CNVs) with intermediate to large effect sizes are associated with schizophrenia and 

they cumulatively are suggested to be present in 1.25%45 to 2-3%46 of schizophrenia cases. 

However these rare variants are also carried by healthy individuals so the development of 

disease cannot be solely attributed to the carrier status.  

 

Based on the recent genetic findings in schizophrenia, it has become clearer that not one model 

alone describes the genetic architecture perfectly and that most individuals are rather to have a 

spectrum of common and rare susceptibility variants. 

1.3 Genetic studies of schizophrenia 

1.3.1 Early approaches and discoveries 

Early studies of schizophrenia genetics were restricted to the technological possibilities of their 

time and relied mainly on linkage studies, cytogenetic studies and candidate gene association 

studies.  

Linkage studies investigate the co-segregation of genetic markers with disease status in 

families where there are multiple affected individuals47. In other words, it assesses the identical 

chromosomal regions that are repeatedly shared between the affected individuals in a pedigree 

with the assumption that these regions would harbour the true disease relevant loci and 

variants that explain familial transmittance of a disease. Genome-wide linkage scans have been 

very successful in defining genetic loci underlying monogenic disorders48; however when 

applied to complex disorders like schizophrenia they yielded most of the time not replicable 

findings due to the underlying genetic heterogeneity and contribution of environmental factors 

to the occurrence of the disease. Up to date over 30 genome-wide linkage scans and a meta-

analysis of 32 independent genome-wide linkage scans of schizophrenia have been performed 

pointing to different large chromosomal regions spanning hundreds of genes49.  



1.INTRODUCTION  5 

 

Cytogenetic studies enable visualization of chromosomes in a eukaryotic cell and detection of 

microscopic alterations in chromosomes such as aneuploidies (abnormal number of 

chromosomes) or structural alterations like deletions, duplications, translocations and 

inversions. There have been several reports where chromosomal abnormalities were detected 

in individuals with schizophrenia; while some of these reports were single case studies with no 

direct evidence for a true causality, some were able to perform linkage analysis and show the 

co-segregation of the abnormality with psychiatric illness within the individual's family 50. In 

1990, St. Claire and colleagues identified a large Scottish pedigree of four generations where a 

balanced reciprocal translocation between chromosome 1 and chromosome 11 co-segregated 

with a range of psychiatric disorders (schizophrenia, bipolar disorder and recurrent major 

depression) in the pedigree. The translocation directly affected two brain expressed genes, 

DISC1 and DISC2 (disrupted in schizophrenia 1 and disrupted in schizophrenia 2 genes; the 

latter encoding for a non-coding RNA molecule which is antisense to DISC1) located at the 

breakpoint of chromosome 151. After this initial discovery many studies elucidating the 

biological function of DISC1 have shown that DISC1 indeed acts as a key protein during and after 

brain development; particularly in the cerebral cortex; by playing a role in multiple cellular 

processes52-54. Also it is the binding partner of many other proteins of importance to brain 

function and development, some of which have gained support as candidate risk genes (NDEL1, 

PCM1, PDE4B, NDE1) for psychiatric disorders from independent genetic studies55. Since the 

discovery of the Scottish pedigree, common and rare genetic variation at the locus has 

extensively been studied in schizophrenia, however apart from the original translocation event 

no other variant at this locus has gained consistent evidence for contribution to disease 

susceptibility29, 56. Cytogenetic studies in schizophrenia suggested other disease-predisposing 

mutations in NPAS357, GRIK458 and ABCA1359 genes. 

Another important discovery in early studies of schizophrenia genetics was the association of 

schizophrenia with rare recurrent microdeletions at chromosomal region 22q11.2. The 

microdeletions (either 3 Mb or 1.5 Mb in size) in this region were known to cause the 22q11.2 

deletion syndrome (22q11.2DS, also known as velocardiofacial syndrome or DiGeorge 

syndrome) which manifests itself with a wide range of phenotypes including craniofacial and 

cardiovascular anomalies, immunodeficiency, short stature, cognitive impairments and 

behavioural disturbances60. Importantly, up to one-third of deletion carriers develop 

schizophrenia or schizoaffective disorder at late adolescence or early adulthood61, 62. Based on 

these implications; in 199563 a sample of 100 schizophrenia patients were screened for 

interstitial deletions of chromosome 22q11 and 2 of them (2%) were identified to be carriers. 

This finding was repeatedly confirmed by following studies and it is now well established that 

rare, recurrent, de novo 22q11.2 microdeletions are the strongest genetic risk factor for 
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schizophrenia known to date and they account for up to 1-2% of all schizophrenia cases and 

have a major role in continuously introducing new sporadic cases to the population64, 65. It is 

also interesting that there are no major clinical differences between 22q11.2 microdeletion 

carrier and non-carrier schizophrenia patients with regards to their core schizophrenia 

phenotype66 and many 22q11.2 deletion carrier schizophrenia patients are reported to be 

indistinguishable from non-carrier schizophrenia patients since they have very subtle 

congenital anomalies and no intellectual disabilities60. The shorter and the longer forms of the 

deletion span, respectively, about 35 and 60 genes, most of which are expressed in brain; 

however it is not yet known precisely how many and which of these genes are the underlying 

risk genes for developing psychosis and whether they act in an independent or an interacting 

fashion. 

Genetic association studies compare frequencies of an allele of interest between affected and 

non-affected individuals where a significantly different allele frequency is suggestive of an 

etiological relevance of the particular SNP or its location to the disease. Early association studies 

in schizophrenia were performed for candidate genes whose candidature were based on i) 

localization in linkage or cytogenetic abnormality regions, ii) biological roles in central nervous 

system (CNS) and iii) psychopharmacological hypotheses29. Retrospectively, most of these 

studies had very limited power to detect risk variants of small effect size29. This was not 

recognized at that time because the effects of major risk genes were assumed to be larger than 

they actually appear to be. Consequently, these studies have yielded inconsistent findings not 

fulfilling the modern criteria for replication28, 67. 

1.3.2 Genome-wide association studies 

Genome-wide association studies (GWASs) refer to the simultaneous assessment of large 

numbers of genetic markers which are spread throughout the entire genome, in a cost-effective 

manner by use of high-throughput genotyping microarrays68. GWASs enable the identification of 

disease relevant common genetic variants throughout the entire genome without requiring an a 

priori hypothesis regarding their location. The hypothesis is that these genetic variants could be 

anywhere in the genome and that they can be identified by using a systematic strategy. It was 

the development of catalogues of common variants and their linkage disequilibrium (LD) 

structures in human populations69, 70 that enabled the conductance of GWASs. LD is a measure of 

non-random associations between alleles at different loci and defines the degree to which an 

allele of one SNP is inherited or correlated with an allele of another SNP68. Thus, SNPs on 

commercial microarrays which are referred to as ‘tagging SNPs’ are selected based on these LD 

structures and their capability of representing the genetic information from neighbouring 

markers68, 71. For example, 87% of the common variation (minor allele frequency >5%) in 
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European populations can be captured by using 4.3 million tagging SNPs spread throughout the 

genome (http://res.illumina.com/documents/products/datasheets/datasheet_omni5.pdf). In a 

GWAS, each genotyped SNP is tested for its association with the disease status making millions 

of simultaneously performed statistical comparisons. Therefore; it is necessary to account for 

laws of probability and adjust the results for eliminating false positive findings. This is achieved 

by application of stringent correction methods for multiple comparisons that eventually force a 

quite high genome-wide significance threshold (often taken as 5x10-8)72. GWASs are particularly 

valuable for diseases with unknown pathogenesis since each implicated gene holds the potential 

of shedding light onto the biological basis of disease. Up to date GWASs have been performed in 

several complex human diseases and traits and have generated very valuable information with 

considerable statistical confidence. Some of these examples include human height, body mass 

index, metabolic traits and disorders, autoimmune disorders and psychiatric disorders37, 73, 74.  

The first GWASs of schizophrenia have not succeeded in identification of risk alleles surpassing 

the modern standards for genome-wide significance. This was probably due to relatively small 

sample sizes that limited power to detect risk alleles of small effect29. The first most promising 

association in schizophrenia GWASs was received in 2008 from an intronic marker in ZNF804A 

gene which yielded an association signal (P=1.61x10-7) falling just below the genome-wide 

significance threshold75. Afterwards, the formation of large consortia by the psychiatric genetics 

community made a significant milestone in genetic research of schizophrenia. In 2009; three 

back to back major schizophrenia GWAS publications from the SGENE Consortium76, 

International Schizophrenia Consortium (ISC)39 and Molecular Genetics of Schizophrenia 

Consortium (MGS)77 reported genome-wide significant association signals implicating major 

histocompatibility complex (MHC) region (6p21.3-p22.1), neurogranin (NRGN) (11q24.2) and 

transcription factor 4 (TCF4) (18q21.2) genes. Genome-wide significance was achieved when 

independent meta-analyses were performed by exchange of top results among the three 

consortia. Up to date the most robust common variation association finding for schizophrenia is 

the MHC region which is highly polymorphic and gene dense harbouring many genes with a 

wide variety of biological functions including immunity, chromatin modification, transcriptional 

regulation, neurodevelopment and synaptic plasticity; which are biologically plausible for 

various aetiological models of schizophrenia78, 79. However as the MHC region is characterized 

by extensive LD, the causal variants and genes in the region are not underpinned up to date. 

NRGN gene is exclusively expressed in brain and particularly in regions important for cognitive 

functions and in hippocampus important for memory. The gene encodes for a postsynaptic 

calmodulin (CaM)-binding protein kinase substrate acting as a reservoir making CaM available 

for activation of postsynaptic calcium/calmodulin-dependent protein kinase II (CaMKII). 

CaMKII has a major role in synaptic plasticity and memory formation by mediating N-methyl-D-
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aspartate (NMDA) receptor signalling76. The TCF4 gene encodes for transcription factor 4 which 

has an essential role in brain development through its requirement in differentiation of a group 

of neural progenitor cells80. It was shown that mice overexpressing TCF4 in their forebrains 

exhibit cognitive impairments as well as pre-pulse inhibition typical of schizophrenia mouse 

models 81. In 2011, the previous MHC region, NRGN and TCF4 association signals from SGENE, 

ISC and MGS studies were replicated in a large follow-up sample (up to 10,260 cases and 23,500 

controls) which came up with two novel variants with genome-wide significance; one in the 

VRK2 gene encoding for the widely expressed vaccinia related kinase 2 and the other in the 

vicinity of TCF4 gene (between coiled-coiled domain containing 68; CCDC68 and TCF4)82 with an 

association signal independent from the previously reported variant. In 2011, the previously 

reported signal from the ZNF804 gene was followed-up in schizophrenia/schizoaffective 

disorder (18,945 cases and 38,675 controls) and schizophrenia plus bipolar disorder (21,274 

cases and 38,675 controls) sample sets83 and a signal for the same marker surpassing the 

genome-wide significance threshold by several orders of magnitude was identified for both 

sample sets (P=2.5x10-11 and P= 4.1x10-13, respectively) which confirmed the initial finding in 

200875 . Two non-western schizophrenia GWASs have recently been reported in Chinese 

populations. One of these was the study by Shi et al., who identified two novel loci in 8p12 

region implicating LSM1 and WHSC1L1 genes and in 1q24.2 region implicating BRP44 gene84. 

The other study by Yue et al., replicated the MHC region and identified a novel association signal 

from the 11p11.2 region implicating the TSPAN18 gene85. This region was also reported in 

another European schizophrenia GWAS which had identified a significant signal in 11p11.2 

region implicating AMBRA1, DGKZ, CHRM4 and MDK genes86 and the signal seemed to be 

independent from the association signal reported in Yue et al.85. One the of largest 

schizophrenia GWASs-also referred to as a mega analysis- was performed by the Schizophrenia 

Psychiatric Genome-Wide Association Study Consortium (PGC) which included 21856 

individuals of European ancestry in the initial discovery sample and 29839 independent 

individuals in the replication sample where top-ranked 81 SNPs from the discovery sample 

were followed-up87. The analyses of the initial discovery sample and/or the combined sample 

set with 51695 individuals identified significant association signals from a total of eight loci. 

Three of these loci were previously known including the MHC region in 6p21.3-p22.1, 18q21.2 

region implicating CCDC68 and TCF4 genes, and 11q24.2 region where a signal located ~0.85 

megabases (Mb) from NRGN gene was identified which was independent from the previously 

reported NRGN signal. Among the five novel loci the strongest signal with a p-value of 1.6x10-11, 

was received from an intronic SNP located at 1p23.3, within a putative primary transcript of 

microRNA 137 (miR-137). The other four novel loci were at 2q32.3, 8p23.3, 8q21.3, 10q24.32-

q24.33 regions implicating PCGEM1, CSMD1, MMP16 and CNNM2-NT5C2 genes, respectively. The 
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same study also performed a joint analysis of schizophrenia and bipolar disorder by 

employment of 16374 bipolar disorder patients and additional 14044 controls. In the joint 

analysis three loci at 3p21.1, 10q21.2 and 12p13.3 implicating ITIH3-ITIH4 region, ANK3 and 

CACNA1A genes, respectively, reached genome wide significance. The strongest finding for 

schizophrenia in this study, miR-137 is highly expressed in cortex and hippocampus synapses88 

and is a regulator of adult neurogenesis and neuronal maturation which are critical processes in 

brain development. Moreover, four genes (TCF4, CACNA1A, CSMD1 and C10orf26) located in 

regions (18q21.2 , 12p13.3 , 8p23.3 and 10q24.32, respectively) which have reached genome-

wide significance in the analysis of schizophrenia and/or joint schizophrenia bipolar samples 

are verified targets of miR-13789 suggesting a role for miR-137 mediated dysregulation in 

etiology of schizophrenia. The most recently published GWAS in schizophrenia describes a 

multi-stage GWAS analysis which involves i) a large Swedish case-control cohort of 11244 

individuals, ii) 20899 individuals from the previously described discovery sample of the PGC 

mega analysis87, and iii) independent replication samples (27175 case-control individuals and 

581 parent-offspring trios) for replication of SNPs in 168 genomic regions. The analysis 

revealed 22 genome-wide significant loci of which 13 were novel and 1 was previously 

implicated in bipolar disorder90. Examination of candidate genes at these genome-wide 

significant loci suggested that neuronal calcium signalling plays a role in the etiology of 

schizophrenia. The study also generated additional evidence supporting the involvement miR-

137 influenced pathways in the disease etiology. Finally the authors estimated 8,300 

independent, mostly common SNPs, to contribute to schizophrenia risk which can collectively 

account for at least 32% of the variance in liability to disease90. 

All together, up to date performed GWASs have been successful in identification of dozens of 

risk loci harbouring common disease associated variants (majority with a MAF>30%) with 

small effect sizes (odds ratios mostly <1.2)29, 90 and every single GWAS signal is valuable in 

terms of providing some insight into the putative pathophysiological pathways in schizophrenia 

such as in the case of miR-137.  

1.3.3 Copy number variation studies 

Until recently SNPs were believed to be the major components of variation between individual 

genomes. Today, we know that submicroscopic structural variants in the form of deleted or 

duplicated DNA segments are spread throughout the entire genome and they also contribute to 

genetic variation quite substantially91-93. These microdeletions and microduplications ranging 

from kilobase pairs90 to megabase pairs in size are referred to as copy number variants (CNVs) 

which could be common or rare, inherited or de novo occurring93, 94. Apart from contributing to 

the normal genetic variation it is established that CNVs are also major mutational events 
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causing or conferring relatively high risk to a range of neurodevelopmental disorders95, 96. A role 

for structural variants in schizophrenia was already appreciated through some cytogenetic 

studies as in the case of 22q11.2 microdeletions. However, since recent microarray based 

technologies enabled the systematic identification and investigation of CNVs in large sample 

sets, a large body of accumulating evidence has proven a major role for rare CNVs (some of 

which are de novo) in aetiology of schizophrenia as high risk conferring variants. Three main 

aspects were addressed in schizophrenia CNV studies; the overall burden of inherited and de 

novo CNVs in schizophrenia patients in comparison to controls, and identification of individual 

CNV loci associated with schizophrenia.  

Overall burden of CNVs and de novo CNVs in schizophrenia  

One of the early studies addressing the burden question in schizophrenia was performed by 

array comparative genomic hybridization in 150 schizophrenia cases and 268 controls. The 

authors reported a three-fold increased burden of novel microdeletions and microduplications 

(>100 kb in size) in schizophrenia cases in comparison to controls97. The study showed that the 

CNVs in cases disrupted disproportionally more often genes implicated in neurodevelopmental 

pathways. Studies with larger samples followed and one of them was by ISC which performed a 

genome-wide CNV survey in a sample of 3,391 schizophrenia cases and 3,181 controls by use of 

high-density SNP microarrays98. For rare CNVs larger than 100kb in size and observed in less 

than 1% in the sample, there was 1.15 fold increased burden in schizophrenia cases and CNVs 

observed in cases were shown to span 1.41 fold more genes in comparison to CNVs observed in 

controls. For ultra-rare CNVs observed only in 1 individual a 1.45 fold increased burden in 

cases, for deletions larger than 500 kb in size a 1.67 fold increased burden in cases and for CNVs 

observed in cases a 3.57 fold increase in gene count were reported by the authors. A similar 

increased burden only for gene spanning deletions (>100 kb and >1 Mb) and not duplications 

was also recently reported by a similar study45.  

Xu et al. performed a burden analysis of de novo CNVs in 359 trios (152 sporadic cases of 

schizophrenia, 48 familial cases of schizophrenia, 159 healthy controls and their biological 

parents)64 and identified that rare de novo CNVs were enriched only in the sporadic 

schizophrenia cases (~8 times more frequent than in healthy controls, P = 0.00078) and not in 

the familial ones. A complementary scan showed that only in familial cases and not in sporadic 

ones there was an enrichment of rare inherited CNVs (~2 times more frequent than in healthy 

controls, P = 0.01)  which might imply different genetic architectures underlying sporadic and 

familial cases of schizophrenia99. Recently published largest analysis of de novo CNVs in 

schizophrenia (662 schizophrenia cases, 2623 healthy controls and their biological parents) 

confirmed that de novo CNVs were significantly enriched in cases (5.1% of cases vs. 2.2% of 

controls, P=0.00015) and also reported that de novo CNVs in cases disrupted a highly significant 
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excess of postsynaptic density genes in comparison to the de novo CNVs in controls100 

implicating a role for abnormal function of postsynaptic signalling complexes in pathogenesis of 

schizophrenia.  

Identification of specific CNV loci associated with schizophrenia 

In 2008, several groups identified heterozygous deletions at 2p16.3 region in schizophrenia 

patients affecting the NRXN1 gene 97, 101, 102. A following study with 2977 schizophrenia patients 

and 33,746 control subjects established highly significant associations of these microdeletions 

with schizophrenia103 which was repeatedly confirmed by following studies104-107 which made 

NRXN1 one of the most robust schizophrenia risk loci45. The ISC study98 from 2008 reported 

novel specific CNV regions associated with schizophrenia at the 15q13.3 and 1q21.1 regions and 

confirmed the previously known 22q11.2 microdeletion region. A back to back published paper 

came from SGENE consortium also reporting these two novel regions and an additional one in 

15q11.2 region108. SGENE study started with the initial hypothesis of recurrently occurring de 

novo CNVs contributing to stable incidence rates of schizophrenia despite the reduced fecundity 

associated with disease. The first step was analysis of 9,878 parent-offspring transmissions in a 

population based discovery sample where they identified 66 de novo CNVs which they then 

tested in 1,433 patients with schizophrenia and related psychoses and 33,250 controls (phase I 

sample) for association. Three deletions at 1q21.1, 15q11.2 and 15q13.3 regions showed 

nominal association in the phase I sample, and were followed up in a larger sample of 3,285 

cases and 7,951 controls (phase II sample). In the combined sample all three deletions yielded 

significant association signals with schizophrenia and related psychoses (only 1q21.1 

microdeletion was significantly associated with schizophrenia alone). Among the three; 1q21.1 

microdeletion had the highest effect size (P=2.9x10-5, OR=14.83) and presented with one short 

(~1.35 Mb) and one large form (~2.19 Mb) with different putative breakpoints. The segment 

covered by the shorter form was also common to the longer form and it spanned ten protein 

coding RefSeq genes of which three fell either completely or partially into the flanking 

segmental duplications. The presence of these segmental duplications suggested non-allelic 

homologous recombination to be the likely mechanism responsible for the formation and 

recurrence of these de novo microdeletions108.  

Following these breakthrough CNV findings, further studies established additional 

microdeletions and microduplications to be genetic risk factors for schizophrenia. Among these 

are 1q21.145, 3q29109 7q36.345, 109, 16p11.2110, 16p13.1111 microduplications and 3q2945, 112, 

17p12105, 17q12113 microdeletions. Except for the microdeletions at 2p16.3 and 

microduplications at 7q36.3 which affect only the NRXN1 and VIPR2 genes, respectively, all of 

the schizophrenia associated CNVs span multiple genes. All together, currently there are several 
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rare (majority with a control MAF<0.05%) CNVs with intermediate to high effect sizes (odds 

ratios mostly >5) that are known to be risk factors for schizophrenia27, 29.  

1.3.4 Sequencing studies in schizophrenia 

While the large CNVs can be assessed and studied by the use of microarray based SNP data, the 

role of small rare or low-frequency sequence variants (single nucleotide variants, SNVs; small 

insertions and deletions, indels) in schizophrenia are addressed by sequencing approaches. The 

necessity of sequencing arises from the fact that the vast majority of these variants are not 

tagged in the customized SNP chips and are never likely to be completely catalogued as every 

individual exome/genome carries hundred/thousands of private variants114, 115. The sequencing 

studies in schizophrenia can mainly be divided between targeted sequencing efforts and exome 

sequencing efforts which are at their infancy.   

1.3.4.1 Region or gene targeted resequencing studies in schizophrenia 

Up to date, the vast majority of studies assessing the role of SNVs and indels in schizophrenia 

relied on targeted sequencing of candidate genes selected on the basis of 

psychopharmacological hypotheses or some evidence from cytogenetic abnormalities observed 

in patients and/or linkage analysis findings. The resequencing analysis of vesicular glutamate 

transporter genes VGLUT1116 and VGLUT2117 based on the glutamatergic hypothesis16-18 

revealed a significant collective overrepresentation of rare variants in schizophrenia patients in 

comparison to controls. Knight et al., resequenced the exons of the ABCA13 gene based on their 

discovery of a schizophrenia patient carrying a complex chromosomal rearrangement 

disrupting this gene59. Genotyping of the multiple rare coding ABCA13 variants showed their 

collective frequency to be significantly higher in schizophrenia as well as in bipolar patients 

compared to controls. The authors suggested a 2.2% and 4.0% population attributable risk for 

these mutations in schizophrenia and bipolar disorder, respectively. The authors further 

performed a linkage analysis in families of the mutation carrier individuals and identified co-

segregation of the rare variants with psychiatric phenotypes including schizophrenia, bipolar 

disorder, and major depression. A follow-up study of the ABCA13 gene from another group; 

however failed to report similar association findings for rare ABCA13 variants. In 2008, a study 

which resequenced DISC1 gene in 288 schizophrenia patients and 288 healthy controls has 

identified six patients which were heterozygous carries of 5 rare nonsynoymous variants that 

were not detected in any of the controls118. These variants were moreover absent in a pool of 

10000 unrelated control alleles and the authors suggested that ultrarare variants in DISC1 were 

associated with an attributed risk of 2% for schizophrenia118. A recent study has also identified 

rare coding DISC1 variants in 506 cases of schizoaffective spectrum which were absent in 1211 

controls119. Moens et al.120, performed a large scale mutation analysis of DISC1 and 10 of its 
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interaction partners in a case-control cohort (Ncases/Ncontrols=486/514). The authors stratified 

their analyses according to functional consequences of variants, minor allele frequencies and 

the disease onset of the patients and reported a significantly higher burden of rare (MAF <1%) 

missense variants only in patients with an early age of onset (≤20 age, P corrected = 0.0076). 

Although DISC1 locus has not gained any evidence for common variants (i.e. PGC schizophrenia 

GWASs), the resequencing studies suggest that rare SNVs in the locus might confer 

susceptibility to schizophrenia. Neverthless, further statistical evidence for rare, DISC1 and 

other candidate gene variants are still awaited to survive the modern standards of replication28. 

Recently resequencing studies following-up regions implicated by GWASs are emerging. Shen et 

al.121, performed resequencing analysis of the NRGN gene which is one of the earliest GWAS 

genes76, 82 and identified 5 rare variants observed only in patients (6 out of 346 patients) and 

not in any of the 345 controls. Functional assessment of the identified variants suggested a 

regulatory effect. Smith et al.122, also performed a mutation screening of NRGN in more than 

1000 individuals, identified only a singleton non-synonymous variant in the whole study sample 

and found no evidence for involvement of rare NRGN sequence variants in schizophrenia. Dwyer 

et al., performed a resequencing analysis of the ZNF804A gene followed-up by genotyping of the 

identified rare nonsynonymous variants123. The results showed none of the variants to be 

associated with disease neither when they were assessed individually nor collectively. The exon 

targeted mutation screening of the VAV3 gene which yielded one of the top association signals in 

a Japanese GWAS124, revealed the presence of 4 rare non-synonymous variants. One of the 

variants was significantly associated with schizophrenia in the follow-up analysis (P=0.02, OR = 

0.58) showing a protective effect125. The same group performed a similar analysis on two other 

genes (KALRN and EPHB1) also implicated by their prior GWAS124 and reported a significant 

association of rare missense variants in KALRN with schizophrenia both on a collective level and 

on individual level for one of the analyzed missense variants126. No significant associations were 

found for EPHB1.  

1.3.4.2 Exome sequencing studies in schizophrenia 

As recently advancing technologies are increasing the throughput while reducing the costs of 

next-generation sequencing127, there is major interest and promise in application of whole 

genome or exome sequencing based study designs to schizophrenia. However unlike its 

applicability and success in rare Mendelian disorders128-131, this new experimental paradigm 

faces some major challenges both in research and clinical translation when it comes to complex 

phenotypes132-134. These include the necessity of sequencing large case-control samples (on the 

orders of 10,000 or more individuals134) to distinguish the disease-relevant variants from the 

background excessive rare variation in the human genome115, 135 and the ultimate need for 
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development of comprehensive i) bioinformatical tools for correct annotation and effective 

prioritization of variants and ii) statistical methods for appropriate handling and interpretation 

of the vast quantities of data generated. Until now, due to these obstacles the applications of 

next generation sequencing in schizophrenia were mostly focused on addressing the role of de 

novo mutation in schizophrenia. The benefit of this approach is that less than one de novo 

missense or non-sense mutation is expected to be identified in a parent-offspring trio which is 

incomparably easier to handle and analyse than the thousands of inherited rare variants in the 

human exome136. Therefore observation of de novo mutations affecting the same gene in 

multiple unrelated affected individuals is very unlikely to occur by chance137 and when it 

happens the gene receives substantial support for a likely involvement in the phenotypes 

etiology138. A recent exome sequencing study by Girard et al.139, addressed the general role of de 

novo mutations in schizophrenia by exome sequencing of 14 parent-sporadic proband trios. The 

authors identified a significantly elevated de novo mutation rate in patients (2.59 × 10−8 

mutations per base per generation) in comparison to the theoretical expectations of de novo 

mutation rate in humans (~1.1 × 10−8 mutations per base per generation) reported by other 

studies (P=0.0025). Another study from Xu et al.140 published back to back with the Girard et 

al.139, sequenced the exomes of 53 parent-sporadic proband trios and 22 parent-healthy control 

trios. The authors did not identify a significant difference between the overall de novo mutation 

rates of the two groups; but reported a significant enrichment and a large excess of putatively 

functional de novo mutations in cases suggesting a substantial contribution of de novo protein-

altering mutations to sporadic incidences of schizophrenia. The inconsistent findings from 

Girard et al.139, and Xu et al.140, about the overall rate of de novo mutations in sporadic 

schizophrenia cases can be attributed to sampling effects and methodological differences 

between the two studies and put emphasis on the value of sequencing matched control 

samples141. Neither of these studies identified genes recurrently affected by mutations in 

unrelated probands. Xu et al., recently published their latest results from exome sequencing of 

231 parent-proband trios enriched for sporadic cases and 34 unaffected trios138. The authors 

again reported similar overall de novo mutation rates between patients and controls and also 

replicated their previous findings by identifying a similar excess of putatively functional de novo 

SNVs as well as a higher prevalence of gene-disruptive (frameshift, nonsense, canonical splice 

site) de novo mutations in cases relative to controls. In this study four genes (DPYD, TRRAP, 

VPS39, and LAMA2) were identified to be recurrently affected by two different de novo events in 

unrelated probands and the evaluation of the significance of this finding (P =0.002) suggested it 

to be very unlikely to have occurred by chance. The evidence from above described exome 

sequencing studies and others targeting particular regions/genes142-144 reveal a role for de novo 

variants in schizophrenia. However the theoretical calculations and empirical data suggest that 
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although the individual effect sizes of de novo variants can be large, their overall contribution to 

the disease liability is most likely to be minor141. Therefore the true value of these studies lies in 

the discovery of novel candidate genes implicating novel pathways or providing additional 

support to putative risk genes suggested by prior studies. Therefore it is necessary in the near 

future to extend the exome sequencing based study designs to investigation of the inherited 

rare and low-frequency variants in the human genome. Up to date only one such study has been 

published145. However in order to overcome the above described challenges in exome 

sequencing, the authors focused only on investigating if there is a role for the so-called 

‘goldilocks alleles’146 which are moderately rare (1-5% MAF) and have moderate to strong effect 

sizes (2>relative risk≥6) in schizophrenia. The authors conducted a 2-step approach where they 

exome sequenced a discovery cohort (Ncases/Ncontrols=166 /307) and followed up the variants 

they prioritized from the analysis of the discovery dataset (n=5155) by genotyping in an 

independent cohort (Ncases/Ncontrols=2617/1800). The authors did not identify any single variants 

showing a study-wide significant association with disease. The major implications of this study 

were that there is only a limited role for moderately rare risk variants with strong effects in 

schizophrenia and that that much rarer variants underlying an allelic heterogeneity are more 

likely to contribute to disease susceptibility. The authors also pointed out that both large sample 

sizes and use of gene-based association tests assessing the collective contribution of such rare 

variants should be necessary to establish significant associations with disease. 

Finally a recent exome sequencing study in schizophrenia was reported in multiplex families 

with several affected individuals147. The authors aimed at identifying protein-altering variants 

co-segregating with disease in these families implicating novel genes and pathways. Such 

variants were identified in a number of genes involved with glutamatergic neurotransmission in 

4 of the 5 families giving some support to the glutamatergic hypothesis in schizophrenia16-18. 

One of the genes (LRP1B) was recurrently affected by protein-altering mutations in 3 of the 5 

investigated pedigrees.  

1.4 The emerging genetic architecture of schizophrenia 

Based on the recent evidence from GWASs and CNV studies it is now well acknowledged that the 

genetic architecture of schizophrenia lies somewhere in between the CDCV and CDRV models. 

Common variants with modest effect sizes are excluded and completely penetrant mutations 

are also not expected27. At this point, dozens of common SNPs and several rare CNVs have been 

identified that are associated with schizophrenia having small and relatively large effect sizes, 

respectively27, 29. All these variants are supported by robust statistical evidence. It is expected 

that substantially larger GWASs will identify many more common risk variants and possibly also 

further CNVs. Recent exome sequencing studies also suggest a contribution of rare de novo point 
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mutations with possible intermediate to large effect sizes to schizophrenia risk. However none 

of these individual variants have been replicated or backed up by statistical support in analogy 

to the CNVs. The same applies to the rare SNVs emerging from candidate gene sequencing 

studies. Therefore further studies investigating the role of rare and low-frequency sequence 

variation in schizophrenia are warranted.  

1.5 Aims of the doctoral thesis 

Based on results from recent systematic, genome-wide association studies in large samples of 

patients with schizophrenia and controls it has become evident that the genetic variants 

conferring risk to developing the disease cover a spectrum of disease-associated variants, 

ranging from rare variants with relatively high penetrance to common variants with 

individually small genetic effect. It is expected that many more genetic risk variants for 

schizophrenia await identification. Aim of the present doctoral thesis was to contribute to the 

understanding of the genetic basis of schizophrenia by identifying more of these unknown 

susceptibility variants, in particular rare and low-frequency variants. To reach this aim, loci 

identified previously through either GWASs or CNV studies were planned to be resequenced 

with the underlying rationale that different types of genetic variations can contribute to disease 

susceptibility at an individual locus148, 149. A resequencing based genetic screening approach 

would be excepted to provide an overview of rare and low-frequency variants in that particular 

locus which fall below the resolution of array-based technologies. This information can 

subsequently be used to i) assess the contribution of rare and low-frequency variants to disease 

susceptibility, ii) define which parts of an associated region are responsible for the observed 

association and iii) identify potentially deleterious variants which can be subjected to functional 

assays to obtain insight into pathophysiology148.  

Specifically, the goal of the current thesis was i) to perform targeted sequencing in 3 different 

regions robustly associated with schizophrenia by multiple GWASs or CNV studies in 

schizophrenia in order to get a comprehensive picture of the low-frequency and rare sequence 

variation present at these loci; ii) to investigate the association of these low-frequency and rare 

sequence variants with schizophrenia by genotyping in large samples of patients and controls, 

and iii) to deliver schizophrenia-associated variants that can be subjected to functional studies 

in future for better understanding of the disease pathophysiology. 

Among the three regions studied were two regions that had emerged from CNV studies, the 

NRXN1 gene and the 1q21.1 microdeletion region, and one region that had emerged from 

GWASs, the TCF4 gene. In all of the three regions, discovery samples comprised of about 190 

individuals and follow-up samples ranging from about 2500 to 9000 individuals were used. 

Discovery samples were resequenced for the region of interest to discover rare and low-
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frequency variants and follow-up samples were used for genotyping of the identified variants. 

Various statistical tests were performed to test for the association of rare and low-frequency 

variants in each of these regions with schizophrenia. Complementary analyses like expression 

and splice site analyses were performed when applicable. 

The results of the NRXN1 study have already been published150 whereas the TCF4 study has 

recently been submitted (Basmanav et al., submitted to American Journal of Medical Genetics 

Part B: Neuropsychiatric Genetics) and the study on 1q21.1 microdeletion region is in 

preparation for submission (Basmanav et al., in preparation for submission to Schizophrenia 

Research) 
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2. MATERIALS AND METHODS 

2.1 Devices  

Autoclaves 
   - Systec D-150, Systec GmbH  
   - Varioklav® 135 S Dampfsterilisator, H+P Labortechnik GmbH  
Centrifuges  
   - Megafuge 1.0 R, Heraeus GmbH  
   - Biofuge fresco, Heraeus GmbH  
   - Biofuge pico, Heraeus GmbH  
   - neoLab Mini-Centrifuge Spectrafuge®, neoLab  
   - Concentrator Plus System, Eppendorf AG  
Concentration measurement devices 
   - BioAnalyzer 2100, Agilent Technologies Deutschland GmbH  
   - NanoDrop® 1000 Spectrophotometer, Peqlab Biotechnology GmbH  
   - NanoDrop® 8000 Spectrophotometer, Peqlab Biotechnology GmbH  
DNA storage systems 
   - 2D CYPHER Tubes, Thermo Fisher Scientific GmbH  
   - 2D CYPHER 1,2ml Cluster Tube Racks, Thermo Fisher Scientific GmbH  
   - SmartScan Solo™ 2D Barcode Reader, Thermo Fisher Scientific GmbH  
   - SmartScan 96 2D Barcode Reader, Thermo Fisher Scientific GmbH  
Drying chamber  
   - T 20 P, Heraeus GmbH  
Electrophoresis chambers  
   - WIDE MINI SUB CELL® GT, BioRad Laboratories GmbH  
   - Sub-Cell Model 96, BioRad Laboratories GmbH  
Gel documentation  
   - GelDoc™ XR System, BioRad Laboratories GmbH  
Genotyping systems  
   - iScan System, Illumina® Inc.  
   - MassARRAY™ Compact Analyzer, Bruker Daltonics Inc. for Sequenom® GmbH  
Ice machine  
   - AF100, Scotsman® Ice Systems  
Isolation of nucleic acids  
   - Magnetic Separation Module I, Perkin Elmer Chemagen Technologie GmbH  
Mix and stir devices  
   ‐ REAX 2 / TITRAMAX 101 / UNIMAX 1010, Heidolph Instruments GmbH & Co. KG 
   ‐ Thermomixer comfort, Eppendorf AG 
   ‐ Vortex Genie 2, Scientific Industries Inc. 
   - Vortex Mixer IKA MS2-S8, Agilent Technologies Deutschland GmbH  
Nanodispenser 
   - MassARRAY™ Nanodispenser, SAMSUNG Techwin Co. Ltd. for Sequenom® GmbH  
Pipettes  
   ‐ Research® variable pipette set (0.1‐2.5 μl, 0.5‐10 μl, 2.0‐20 μl, 10‐100 μl, 20‐200 

μl,(100‐1000 μl, 500‐5000 μl), Eppendorf GmbH 
   ‐ Eight channels pipettes (0.5‐10 μl, 10‐100 μl), Eppendorf GmbH 
   ‐ Finnpipette® 16 channels, VWR International GmbH 
   ‐ Multipette® plus, Eppendorf AG 
   - Transferpette®, BRAND GmbH & Co. KG  
   - Transferpette® S-8, BRAND GmbH & Co. KG  
   - Transferpette®-8/-12 electronic, BRAND GmbH & Co. KG  
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Pipette robot systems  
   ‐ Biomek® Laboratory Automation Workstations NX MC and NX S8G, Beckman Coulter GmbH 
Pipette support  
   - accu-jet® pro, BRAND GmbH & Co. KG  
   ‐ Cell Mate II, Matrix Technologies Corporation, Thermo Fisher Scientific Inc. 
   - Chip Priming Station, Agilent Technologies Deutschland GmbH 
Power supply  
   ‐ PowerPac Power Supplies, Bio‐Rad Laboratories GmbH 
Scales  
   ‐ TE3102S / TE3135‐DS, Sartorius AG 
Sequencing device  
   - 3130xl Genetic Analyzer, Life Technologies GmbH  
Sterile hood ‐ 
   - HERAsafe, Heraeus GmbH 
Thermal cycler  
   ‐ PTC‐200 and PTC‐100, MJ Research Inc. 
   - ABI Prism® 7900HT Fast Real-Time PCR System (TaqMan), Life Technologies GmbH  
Water purification system  
   - Milli-Q A10 Synthesis, Merck KGaA  

2.2 Chemicals, Reagents, Buffers and Solutions 

   - Agarose low EEO, AppliChem GmbH  
   - Alconox, Alconox Inc.  
   - Bromphenol Blue, Sigma-Aldrich Chemie GmbH  
   - Dimethyl sulfoxide; DMSO (C2H6SO), Sigma-Aldrich Chemie GmbH  
   - DNase I, Qiagen GmbH  
   - dNTPs [10mM], Labomedic GmbH  
   - Ethanol absolut; EtOH (C2H5OH), AppliChem GmbH  
   - EtOH 96%, WALTER CMP GmbH & Co. KG  
   - Ethidium Bromide; EtBr (C21H20N3Br) 1%, Merck KGaA  
   ‐ Fetal calf serum (FCS), Biochrom AG 
   - Ficoll 400, GE Healthcare GmbH  
   - Fungizone (250 μg/ml amphotericin B, 205 μg/ml sodium deoxycholate), Invitrogen Co. 
   - HotStar Taq DNA Polymerase [5 U/μl], Qiagen GmbH  
   - HPLC water, Merck KGaA  
   - Isopropanol (C3H8O), AppliChem GmbH  
   ‐ L‐Glutamine [200 mM], Biochrom AG 
   - Loading buffer: 10ml 10X TBE, 10ml 0,1%Bromphenol Blue, 40ml 20% Ficoll, 40ml dH2O 
   - Magnesium chloride (MgCl2) [25mM], Qiagen GmbH  
   - PCR Buffer (10X) with MgCl2 [15 mM], Qiagen GmbH  
   ‐ Penicillin/Streptomycin (Pen/Strep) (100 x), Invitrogen Co. 
   - Phytohemagglutinin L (PHA-L), Biochrom AG 
   - Proteinase K, Qiagen GmbH  
   - RNaseZap™-Solution, Ambion®, Life Technologies GmbH  
   - RPMI 1640 (2.0 g/l NaHCO3, without L‐Glutamine), Biochrom AG 
   - Sodium hypochlorite (NaOCl) (13%), AppliChem GmbH  
   - Sodium pyruvate, Life Technologies GmbH 
   - 0,4% Sodium hypochlorite solution: 15,4ml NaOCl, 484,6ml dH2O  
   - 10X TBE Buffer, Life Technologies GmbH  
   - Tris-BASE (NH2C(CH2OH)3) (Trizma), Sigma Aldrich Chemie GmbH  
   - Tris-Cl [10mM], pH 8,0: 0,6g Tris-BASE, 500ml dH2O.  
   - Tris-EDTA (TE-4): 0,1mM EDTA, 10mM Tris-Cl pH 8,0  
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   - VWR-Taq DNA-Polymerase [5U/μl], VWR International GmbH  

2.3 Commercial systems 

   - 5X Big Dye Terminator Cycle sequencing Kit 3.1, Life Technologies GmbH  
   - AMPureKit, Agencourt Bioscience Corp.  
   - AllPrep™ DNA/RNA Micro Kit, Qiagen GmbH  
   - Chemagic DNA Blood Kit special, Perkin Elmer Chemagen Technologie GmbH  
   - CleanSEQ Kit, Agencourt Bioscience Co.  
   - DNA Ladder (100bp, 1kb) AppliChem GmbH  
   - DNA Ladder 100bp, New England Biolabs Inc.  
   - Illumina® HT12-v3 Expression BeadChip Kit, Illumina® Inc.  
   - Illumina®TotalPrep™-96 RNA Amplification Kit, Ambion, Life Technologies GmbH  
   - iPLEX™ Gold Reagent Kit, Sequenom® GmbH  
   - RNA 6000 nano LabChip Kit, Agilent Technologies Deutschland GmbH  
   - RNase-free DNase Set, Qiagen GmbH  
   - RNeasy Micro Kit, Qiagen GmbH  
   - SpectroCHIP® Arrays & Clean Resin Kit, Sequenom® GmbH  
   - SuperScript III First-Strand Synthesis System for RT-PCR, Life Technologies GmbH  
   - TaqMan® Gene Expression Master Mix, Life Technologies GmbH  
   - TaqMan® Gene Expression Assay “Hs00188720_m1” (CHD1L), Life Technologies GmbH  
   - TaqMan® Endogenous Control Assay Human Cyc “4326316E” (Cyclophilin), Life 

Technologies GmbH 

2.4 Softwares and databases 

   - 1000Genomes Browser (http://browser.1000genomes.org/index.html)  
   - 2D CYPHER™ Pilot Databases, Thermo Fisher Scientific GmbH  
   - 3130xl DataCollection v3.0, Life Technologies GmbH  
   - Allen Brain Atlas (http://www.brain-map.org) 
   - Assay Design 3.1, Sequenom® GmbH  
   - BeadScan, Illumina® Inc.  
   - Bioconductor (www.bioconductor.org)  
   - Biomek® Software 3.2, Beckman-Coulter GmbH  
   - BrainSpan Atlas (http://www.brainspan.org/lcm/search/index.html) 
   - DNA Calculator (http://www.sigmaaldrich.com/life-science/custom-oligos/custom-

dna/learning-center/calculator.html) 
   - DomPred (http://bioinf.cs.ucl.ac.uk/dompred) 
   - ENSEMBL genome browser (http://www.ensembl.org/index.html)  
   - Expasy Prosite (http://prosite.expasy.org/) 
   - Expasy Translate (web.expasy.org/translate/) 
   - GenomeStudio™ v2011.1, Illumina® Inc.  
   - GWAS online catalog (http://www.genome.gov/gwastudies)  
   - HapMap genome browser (http://hapmap.ncbi.nlm.nih.gov)  
   - Human Splicing Finder (http://www.umd.be/HSF/) 
   - Jpred3 (http://www.compbio.dundee.ac.uk/www-jpred/) 
   - Mutation taster (http://mutationtaster.org/) 
   - MySequenom, Assay Design Suite (https://mysequenom.com/Home)  
   - NanoDrop® ND-100 v3.3.0, Peqlab Biotechnology GmbH  
   - NanoDrop® ND-8000 v2.2.1, Peqlab Biotechnology GmbH  
   - NCBI (http://www.ncbi.nlm.nih.gov)  
   - OMIM (http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim)  
   - Polyphen (http://genetics.bwh.harvard.edu/pph2/) 

http://www.compbio.dundee.ac.uk/www-jpred/
http://mutationtaster.org/
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   - Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/)  
   - PRINTS database (http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/index.php) 
   - R-Version 2.15.2 (http://www.r-project.org) 
   - RT-Workstation 3.3, Sequenom® GmbH  
   - SDS 2.2.2, Life Technologies GmbH  
   - SeqMan II Version 5.0, DNASTAR Inc. 
   - SIFT (http://sift.jcvi.org/) 
   - SMART (http://smart.embl-heidelberg.de/) 
   - SmartScan™ 96, Thermo Fisher Scientific GmbH  
   - SpectroAQUIRE, Version 3.3.1.2, Sequenom® GmbH  
   - SpectroPOINT, Sequenom® GmbH  
   - Typer 3.4/ 4.0, Sequenom® GmbH  
   - Uniprot (www.uniprot.org/) 
   - UCSC (http://genome.ucsc.edu/)  

2.5 Study Samples 

In this thesis 3 resequencing projects are described each having different work-flows. Cohorts 

of schizophrenia patients and healthy control individuals (ntotal=9055) have been recruited in 

Germany (n=4281), Denmark (n=3717) and the Netherlands (n=1057).  

German patients who were diagnosed according to DSM-IV criteria for schizophrenia 

(ntotal=2001) were recruited at i) Department of Genetic Epidemiology in Psychiatry, Central 

Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (n=842), 

ii) Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany (n=930) and iii) 

Department of Psychiatry, University of Bonn, Germany (n=229). Population based German 

controls (ntotal=2280) were screened for schizophrenia and not for other psychiatric phenotypes. 

A part of the controls were drawn (n=1113) from a large cohort collected in the context of the 

Heinz Nixdorf Recall Study, Germany151 and the remaining (n=1167) were collected at the 

Central Institute of Mental Health,Mannheim, Germany. 

DNA samples from schizophrenia patients diagnosed according to DSM-IV criteria (ntotal=646) 

and population based controls (unscreened for schizophrenia and other psyhiatric phenotypes) 

(ntotal=411) with Dutch origin were provided by the University Medical Center Utrecht, 

Department of Medical Genetics in Utrecht, Netherlands. 

DNA samples from schizophrenia patients diagnosed according to ICD-10 (1994–2005) criteria 

(ntotal=1871) and population based controls (ntotal=1846) with Danish origin were provided by 

the Statens Serum Institute, Section of Neonatal Screening and Hormones in Copenhagen, 

Denmark. None of the Danish controls had been assigned a diagnosis of schizophrenia at the 

time of recruitment according to Danish health registers152. 

Different combinations of individuals from these samples have been used in different steps of 

each project as described below.  
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NRXN1 project  

Resequencing sample for the NRXN1 gene consisted of 94 schizophrenia patients (49 male/45 

female) and 94 sex-matched controls (49 male/45 female) of German origin. The patients were 

drawn from the schizophrenia cohort recruited at the Central Institute of Mental Health, 

Mannheim and at the Department of Psychiatry of the University of Bonn, Germany, based on 

the criteria that parental DNA and genome wide genotype data were available to check for de 

novo events and to exclude the presence of copy number variants at the NRXN1 locus, 

respectively. Compatible with these criteria were only 89 patients derived from parent-

offspring trios. For the remaining 5 patients, parental DNA was available only from one parent. 

Thereby additional selection criteria, namely an early age of onset (≤21 years of age; defined by 

first occurrence of symptoms) and/or positive family history of schizophrenia (defined by 

affection of at least one first-degree relative) were used for these patients to increase the 

likelihood for identification of highly penetrant variants. The controls were a small subset of the 

population based control cohort recruited within the context of the Heinz Nixdorf Recall 

Study151. The mean age-at-recruitment for the controls was 47.9 years. All of the resequenced 

individuals were screened for the absence of copy number variants at the NRXN1 locus 

(chr2:50002456-51109064, NCBI build 36.1) based on their SNP intensity data from Illumina 

HumanHap550v3 and HumanHap610v1 BeadArrays using the QuantiSNP v1.1153 software.  

For the follow-up genotyping step a subset of the total German cohort was used which consisted 

of 1415 schizophrenia patients (818 male/597 female) and 1167 controls (569 male /598 

female).  

1q21.1 microdeletion region project  

1) The same resequencing sample (94 patients and 94 controls of German origin) defined in the 

NRXN1 project was used for the resequencing of the 7 genes in the 1q21.1 microdeletion region. 

This sample will be referred to as the “initial sequencing sample” in the context of this study. All 

of the individuals in this sample were screened for the absence of copy number variants at the 

1q21.1 microdeletion region (chr1:144943150-146293282, NCBI build 36.1) based on their 

SNP intensity data from Illumina HumanHap550v3 and HumanHap610v1 BeadArrays using the 

QuantiSNP v1.1153 software. In order to assess a potential unmasking of recessive variants, two 

female patients who were known to be 1q21.1 microdeletion carriers were additionally 

sequenced for the 7 genes. One of these patients was previously desribed108. 

2) A genotyping based follow-up step was performed using an independent German case-

control sample composed of 1900 schizophrenia patients (1142 male/758 female) and 2186 

control individuals (1056 male/1130 female). This sample will be referred to as “Genotyping-1 

sample”.  
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3) A secondary sequencing sample of 96 German patients (49 male/47 female) was used for 

extended sequencing of two prioritized genes in the region. This sample will be referred to as 

the “extended sequencing sample”. The extended sequencing sample was a part of the 

genotyping-1 sample and was drawn from the German schizophrenia cohort based on the 

presence of a positive family history of schizophrenia to increase the likelihood for 

identification of highly penetrant variants. The extended sequencing sample was also screened 

for the absence of copy number variants at the 1q21.1 microdeletion region. 

4) Another genotyping based follow-up step was performed using i) a German case-control 

sample composed of 1808 schizophrenia patients (1094 male/714 female) and 2186 control 

individuals (1056 male/1130 female). This sample represented the total of the available 

German case-control cohort excluding the initial and the extended sequencing samples and thus 

had a major overlap (~95%) with Genotyping-1 sample, ii) the Dutch cohort of 646 

schizophrenia patients (477 male/169 female) and 411 control individuals (213 male/198 

female) and iii) the Danish cohort of 1871 schizophrenia patients (1059 male/812 female) and 

1846 control individuals (1043 male/803 female). All together this genotyping sample 

consisted of 8768 individuals and will be referred to as “Genotyping-2 sample”.  

TCF4 project 

The resequencing efforts in the TCF4 gene were focused only on patients. A total of 190 

schizophrenia patients (96 male/94 female), majority of which (n=185) overlapped with the 

initial and extended resequencing samples of the 1q21.1 microdeletion region, were selected for 

resequencing of the TCF4 gene. The non-overlapping five patients were selected for a positive 

family history of schizophrenia from the German patient cohort. The variation in control 

populations in this region was accounted for by using the rare variant information from the 379 

European individuals of the 1000 Genomes Project. The European individuals defined in the 

1000 Genomes project emerge from 5 sub-populations which include Utah residents with 

Northern and Western European ancestry (CEU) (n=85), Toscani in Italia (TSI) (n=98), British 

from England and Scotland (GBR) (n=89), Finnish from Finland (FIN) (n=93) and Iberian 

populations in Spain (IBS) (n=14)154.  

For the genotyping step in this project a German case-control cohort composed of additional 

1808 schizophrenia patients (1095 male/713 female) and 2261 healthy control individuals 

(1096 male/1165 female) was used.  

To follow-up the molecular genetic findings two sample sets were used for functional analyses. 

Epstein–Barr virus (EBV)-transformed lymphoblastoid cell lines 

EBV-transformed lymphoblastoid cell lines from 20 individuals (7 males/13 females, mean 

agerecruitment=45.75) were used for RNA isolation and allele-specific expression analysis. These 
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individuals were drawn from a cohort of 280 individuals based on their genotype at 

rs36008075 located in the CHD1L gene in the 1q21.1 microdeletion region. The genotypes were 

determined by sequencing analysis of the whole cohort. The cohort consisted of Spanish 

individuals from whom both DNA samples and EBV-transformed lymphoblastoid cell lines were 

available. The individuals were diagnosed with bipolar spectrum disorder acccording to DSM-IV 

criteria.  

Pre-mortem hippocampus tissue samples  

Biopsy samples from patients with chronic pharmacoresistant temporal lobe epilepsy (n=148) 

were collected in the Epilepsy Surgery Program at Bonn University. Surgical removal was 

necessary for seizure control in all patients after standardized presurgical evaluation by 

combination of noninvasive and invasive procedures155. Fresh frozen pre-mortem human 

hippocampal segments were provided by the Bonn Tissue Bank. These samples were collected 

and processed in collaboration with Prof. Dr. med. Albert Becker from University of Bonn.  

 
The studies presented in this thesis were approved by the ethics committees of all study 

centers. Each participant provided written informed consent prior to inclusion, and all aspects 

of the study complied with the Declaration of Helsinki. 

2.6 Methods 

2.6.1 Isolation and management of nucleic acids  

Isolation of DNA from blood  

Total human DNA from lymphocytes was isolated using either salting-out method156 or a 

Chemagic Magnetic Separation Module I (Figure 2.1 a) and chemagic DNA blood kits according 

to the manufacturer’s instructions (http://www.chemagen.com/). The salting-out method relies 

on the initial lysis of the cells followed by Proteinase K digestion and precipitation of DNA with 

isopropanol.  

 

Figure 2.1 Isolation of DNA from blood samples. (a) Chemagic Magnetic Separation Module I (Taken from 
http://www.chemagen.com), (b) Interaction of DNA-bead complexes with magnetized and de-magnetized metal rods (Taken from 
http://www.abbis.de). 

http://www.chemagen.com/
http://www.abbis.de/
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The isolation by Chemagen relies on binding of the DNA molecules to magnetic poly-vinyl 

alcohol beads (M-PVA magnetic beads). Under an applied electromagnetic field; DNA-bound 

magnetic beads are attracted to metal rods which can transfer the DNA-bead complexes to 

several washing buffers. At the end of each transfer step, the electromagnetic field is switched 

off and magnetic rods start to rotate leading to re-suspension of the DNA-bead complexes 

(Figure 2.1 b). The final transfer is made into the elution buffer which elutes the DNA molecules 

from the magnetic beads.  

The native DNA stock solutions were stored at -80°C. The working dilutions of 100ng/µl and 

20ng/µl were prepared using the Abgene DNA storage system and stored at -20°C and 4°C for 

long or short-term storage, respectively. DNA samples were handled at room temperature (RT) 

during conductance of experiments as DNA has a relatively stable structure with only little 

susceptibility to spontaneous degradation by catalytic hydrolysis. All the pipette tips and 

reaction tubes were autoclaved prior to use to avoid contamination. 

Isolation of total RNA from immortalized cell lines  

RNA was isolated from EBV-transformed human lymphoblastoid cell lines which  were grown in 

RPMI 1640 medium containing fetal calf serum under optimum culture conditions (370C and 

5% CO2). Penicillin, streptomycin and amphotericin B were added into the culture medium to 

avoid bacterial and fungal contamination. RNA isolation was performed by use of the RNeasy 

Micro Kit according to manufacturer’s protocol (http://www.qiagen.com/ ). 

RNA samples were only stored at -80°C and were always handled on ice during conductance of 

experiments due to the more sensitive structure of single-stranded RNA. In order to avoid their 

spontaneous degradation by ubiquitously abundant RNAses157 all the equipments and the bench 

tops used during conductance of RNA experiments were kept RNAse-free by use of 

commercially available RNaseZapTM solution. RNAse free water was provided within 

commercial kits. All the pipette tips and reaction tubes were commercially provided as RNAse-

free.  

Isolation of DNA and RNA from hippocampus tissue 

Total DNA and RNA were extracted from fresh frozen pre-mortem human hippocampal 

segments provided as tissue-slices prepared via cryostat-conditions. The isolations were 

performed by using the AllPrep DNA/RNA Micro Kit following the manufacturer’s protocol 

(http://www.qiagen.com/).  

Quality control and quantification 

The concentration of DNA and RNA samples were measured by NanoDrop‐1000 or 

NanoDrop‐8000. The spectrophotometric concentration measurement relies on the linear 

correlation between the amount of the absorbed light and the concentration of the absorbing 

http://www.qiagen.com/Products/Catalog/Sample-Technologies/RNA-Sample-Technologies/Total-RNA/RNeasy-Micro-Kit#resources
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Components Volume per reaction (μl)

10x RT PCR buffer 2

MgCl2 [25 mM] 4

DTT  [0.1 M] 2

RNaseOUTTM [40U/µl] 1

SuperScriptTM III RT [200U/µl] 1

molecule predicted by the Beer Lambert law. The maximal absorption wavelength of nucleic 

acids is 260 nm. When the DNA or RNA samples are exposed to ultraviolet light at this 

wavelength they will absorb it and less light will be detected by the photodetector yielding a 

higher optical density (OD). One unit of OD corresponds to 50 ng/μl and 40 ng/μl of DNA and 

RNA, respectively. Proteins absorb light at 280 nm. The purity of samples is assessed by 

measurement of the ratio of absorbance at 260 and 280 nm (A260/280). An A260/280 value of 

1.8 and 2.0 were taken as the standards to validate the purity of DNA and RNA samples, 

respectively. 

2.6.2 Reverse transcription 

Total RNA samples were used for reverse transcription of messenger RNA (mRNA) to 

complementary DNA (cDNA) by using the ‘SuperScript III First‐Strand Synthesis System for RT-

PCR’ kit. Targeted reverse transcription of mRNA population from the total RNA relies on 

specific hybridization of oligo(dT) molecules to the poly(A)‐tail of mRNA molecules. This is 

followed by the synthesis of a cDNA strand with a retroviral reverse transcriptase which uses 

the Oligo(dT) primed RNA strand as the template. The following protocol was used for reverse 

transcription: 

1. The following RNA/primer mixture adding up to a total volume of 10 μl is prepared for 

each sample and incubated at 65oC for 5 minutes. 

- 1 μl oligo(dT) [50 μM] 

- 1 μl dNTP mix [10 mM] 

- 300 ng (x μl) total RNA  

- RNAse free water (8-x μl) 

2. The samples are placed on ice for at least 1 minute and the following cDNA synthesis 

mix is prepared for the total number of reactions to be performed. 

 

 
 
 
 
 
 
 
 

3. Each RNA/primer mixture is filled up with 10 μl of cDNA synthesis mix and incubated at 

50oC for 50 minutes for the cDNA synthesis to take place. 

4. Reactions are terminated by incubation at 85oC for 5 minutes and the tubes are chilled 

on ice. 
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5. For degradation of the residual RNA, 1 μl of RNase H is added to each tube and 

incubated at 37oC for 20 minutes. 

The cDNAs were either stored at -20 oC or used immediately. 

2.6.3 Real-Time Quantitative PCR 

Real-Time quantitative PCR (RT-qPCR) is a method used for quantification of gene expression. 

The method uses cDNA reverse transcribed from mRNA. However, in contrast to a normal PCR, 

the RT-qPCR allows real-time quantification of the DNA product at the end of every PCR cycle as 

the amplification reaction is ongoing. RT-qPCR can be applied for absolute quantification of the 

input template or its quantification relative to a reference sample. The method relies on 

quantification of fluorescence signal intensity which correlates with the amount of amplified 

product. For this purpose different fluorophores can be used either simultaneously with or 

attached to transcript specific probes. TaqMan probe–based chemistry is one of the 

conventional examples of the latter approach. A Taqman assay relies on the fluorescence 

resonance energy transfer (FRET)158 and the 5’‐3’ exonuclease activity of the Taq Polymerase 

enzyme (Figure 2.2) and it can be referred to as a 5’ nuclease assay. A transcript specific 

hybridization probe which is linked to a fluorescent reporter dye at its 5’ end and a non-

fluorescent quencher at its 3’ end is the essential component of the 5’ nuclease assays (Figure 

2.2 a). When the probe is intact and these two molecules are in close proximity, all the energy 

emitted from the florescent dye upon excitation is absorbed by the quencher molecule 

according to the FRET principle and no fluorescence signal can be detected. As the Taq 

Polymerase encounters the probe during the strand extension process, it performs strand 

displacement and cleaves the reporter dye by using its 5’‐3’ exonuclease activity (Figure 2.2 b, 

c). The cleavage of the reporter dye enables the release and detection of the fluorescence. The 

intensity of the detected signal is proportional to the amount of template present in the 

reaction. The polymerization of the strand continues as the rest of the probe is fragmented 

(Figure 2.2 d). The quantification is made by determination of a cycle threshold value (CT) for 

each sample which specifies the cycle number at which the amplification process is in an 

exponential phase and the generated fluorescence signal exceeds an automatically set detection 

threshold value common for all samples. In accordance, the higher the template abundance, the 

sooner (at an earlier cycle) a significant increase in fluorescence surpassing this threshold value 

will be observed. In order to correct for possible variation in input amounts and quality of 

templates across different samples, an assay targeting a reference gene, also referred to as an 

endogenous control is run simultaneously and the CT data from the endogenous control is used 

to normalize the quantitative data from the target gene. In this study quantitative Real-Time 

PCR was used for relative gene expression analysis. The aim was to determine allele specific 
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Components Volume per reaction (μl)

2x TaqMan® Gene Expression Master Mix 5

20x TaqMan® Gene Expression Assay (for target transcript) 0.5

20x TaqMan® Gene Expression Assay (for endogenous control) 0.5

dH2O 2

Template (cDNA) 2

10 min 95oC Initial denaturation

15 sec 95oC
1 min 60oC

Primer annealing                 

and extension
40 cycles

expressions of CHD1L gene at rs36008075. RT-qPCR was performed by using a Taqman assay 

which targeted the CHD1L gene (Hs00188720_m1). The reactions for each sample were run in 

quadruplicates with 2 μl of cDNA as template input.  

The reference gene used in this study was cyclophilin A and the assay (4326316E) was also 

commercially available from Applied Biosystems. 

 

 
Figure 2.2 Schematic representation of the TaqMan® 5’ nuclease assay chemistry. (a) Hybridization of the probe to the target 
region and initiation of polymerization (b) Strand displacement (c) Cleavage of the reporter molecule and fluorescence emmision 
(d) Completion of the polymerization. Created based on the illustration from Taqman® Gene Expression Assays Protocol. 
(http://tools.invitrogen.com/) 
 

The reactions were run in the Applied Biosystems 7900HT Fast Real-Time PCR System. The CT 

data was analyzed according to the ∆∆CT method159 and the expression levels were determined 

relative to the mean expression level of individuals homozygous for the wild type allele which 

was set to 100%. The following tables show the reaction mixture for a single reaction adding up 

to a total volume of 10 µl and the cycle set up, respectively.  
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2.6.4 Sanger sequencing 

Sanger sequencing is a method for defining the base-by-base sequence information of a genomic 

region by using dideoxynucleotide triphosphate (ddNTP) chain termination160.  

The method is mainly comprised of the following steps. Exponential amplification of the target 

region is the first step to enable extraction of the specific information of the targeted region 

from the whole genome and polymerase chain reaction (PCR) is the standard tool for this 

purpose161. For this reaction a heat stable DNA polymerase, deoxynucleotide triphosphates 

(dNTPs) and primers pairs designed specifically for the region of interest are used. A PCR 

functions by cyclic temperature changes allowing 1) denaturation of the double stranded DNA, 

2) annealing of the primer pairs to the target sequence and 3) DNA synthesis (elongation) in a 

cyclic manner. In order to confirm successful amplification of a target region, standard agarose 

gel electrophoresis is performed after each PCR. The main principle is the migration of 

negatively charged DNA molecules through a porous agarose matrix under the influence of an 

applied electric field. The products are controlled for their expected sizes with reference to DNA 

ladders co-loaded into the gel. Fluorescent dyes which can intercalate with nucleic acids are 

used to visualize DNA bands by fluorescing under ultraviolet light. Once the products are 

verified, they are cleaned from residual components of the PCR reaction by a cleaning step and 

then are subjected to cycle sequencing reaction. Cycle sequencing is similar to the first PCR step 

with regards to cyclic temperature changes moderating denaturation, primer annealing and 

elongation steps. However, in contrast only one primer molecule (forward or reverse) is used. 

In a cycle sequencing reaction, besides the normal dNTPs, fluorescently labeled ddNTPs are 

included in the reaction mixture160. Each of the ddNTP type (ddATP, ddTTP, ddCTP, ddGTP) is 

marked with a different fluorescent dye. As the elongation is ongoing, ddNTPs compete with the 

dNTPs. As soon as a ddNTP is incorporated into an extending DNA fragment, the reaction is 

terminated. Eventually when the reaction is over, DNA fragments of different lengths 

encompassing all possible fragment sizes in the targeted region are obtained, each of them 

ending with a fluorescently labeled ddNTP (Figure 2.3 a). After the cycle sequencing products 

are purified from residual components by a cleaning step they are subjected to capillary 

electrophoresis. The principle of capillary electrophoresis is the migration of DNA fragments 

through polymer filled capillaries in different speeds due to their different sizes. As fragments 

reach the end of the capillary from short to longer ones consecutively, they are excited by a laser 

beam and generate fluorescent signals which are detected and transformed into 

electropherograms yielding base-by-base sequence information (Figure 2.3 b). 
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Figure 2.3 Cycle sequencing and capillary electrophoresis (a) DNA fragments of different lengths each ending with a base-
specific fluorescent dye are obtained at the end of the cycle sequencing reaction (b) The products from cycle sequencing reaction 
are injected into a single capillary and are subjected to electrophoresis (bottom). As products of different lengths reach the end of 
the capillary at different time points, they are excited by a laser beam and generate fluorescent signals which are detected and 
transformed into electropherograms (top). Taken from Applied Biosystems Chemistry Guide, Second edition (tools.invitrogen.com/ 
content/sfs/manuals/cms_041003.pdf) 

 

Primer design  

Genomic DNA sequences of the targeted genes were obtained from the UCSC Genome Browser 

based on either NCBI 36.1/hg18 (NRXN1 gene and 1q21. microdeletion region) or 

GRCh37/hg19 (TCF4 gene) assemblies. Targeted regions were the exons and the flanking up- 

and downstream splice site sequences. A list of all targeted transcripts as well as primer pairs 

and the lenght of the amplicons they generate are provided in the Attachment I and III, 

respectively. Between each primer and the target sequence a minimal distance of 50 bp was 

maintained to guarantee high electropherogram qualities. The specificity of primers was 

validated against the human reference genome using BLAT tool in the UCSC Genome Browser. 

The anneling temperatures of the primer pairs were in the range of 55-680C and the allowed 

maximum difference between the annealing temperatures of reverse and forward primers of 

each primer pair was 30C. The GC content of  primers ranged between 40-60%. All these criteria 

were controlled by the online tool DNA calculator.  

Amplification 

The master mixture -with a 25 µl of total volume/per reaction- and the cycle set up used in the 

initial PCR are given in the following tables. To increase specificity and sensitivity touchdown 

PCR162 was used where annealing temperature was gradually decreased by 1OC in sequential 

cycles. 
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Components Volume 1x (µl)

dH2O 18.8

10x PCR buffer with MgCl2 [15 mM] 2.5

50x dNTP mixture [10 mM each] 0.5

Taq DNA polymerase [5U/µl] 0.2

Forward primer  [10 pmol/µl] 0.5

Reverse primer [10 pmol/µl] 0.5

DNA [20 ng/µl] 2

5 min 94oC Initial denaturation

30 sec 94oC Denaturation

30 sec 63-55oC* Primer annealing

1 min 72oC Elongation

5 min 72oC Final elongation

35 cycles

 

 

 

 

 

 

 

 

 

 

 

 

Product verification 

For the agarose gel electrophoresis 5 µl of DNA product was mixed with the same volume of 1x 

bromphenole blue to make the solution visible under natural light for easier tracking during 

loading and electrophoresis. 6 µl of Ethidium Bromide (EtBr) was incorporated into the 2% 

agarose gel for band visualization under ultraviolet light.  

AMPure cleaning 

AMPure Kit was used for the purification of the amplified product from the residual PCR 

components. The procedure is based on ‘Solid Phase Reversible Immobilization’ (SPRI) 

technology163 which relies on binding of negatively charged DNA molecules to paramagnetic 

beads. The DNA coupled beads were retained in the reaction wells by placing the reaction plate 

on a 96-well magnetic plate during the removal of the residual components. The AMPure 

cleaning was performed according to the following protocol: 

1. 36 µl of AMPure solution is added into each 20 µl of PCR mixture and pipette mixed 10 

times. 

2. The 96-well plate is placed on a magnetic plate and incubated for 10 minutes. 

3. The solution is discarded and 200 μl of 70% EtOH is added into each well and discarded 

after 30 seconds. The ethanol washing is performed twice. 

4. The DNA bounded magnetic beads are air-dried for 10 minutes. 

5. 40 µl of TE‐4 buffer is added into each well for elution and pipette mixed to ensure 

complete release of DNA molecules from the magnetic beads. 
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Components Volume 1x (µl)

dH2O 15.25

5x Big Dye Terminator v3.1 sequencing buffer 3.75

Big Dye ‐ ready reaction mix v3.1 0.25

Primer F (or R) [3.2 pmol/μl] 0.5

AmPure cleaned DNA template 0.25

1 min 96oC Initial denaturation

10 sec 96 oC Denaturation

5 sec 50 oC Primer annealing

4 min 60 oC Elongation

25 cycles

Cycle sequence reaction  

Cycle sequencing reactions were performed using the BigDye® Terminator v3.1 Cycle 

Sequencing Kit. The reaction mixture with a 20 µl of total volume/per reaction and the cycle set 

up were as below, respectively.  

 

 

 

 

 

 

 

 

 

 

CleanSeq cleaning 

This step was similar to the first AMPure cleaning and also employed the paramagnetic beads. 

The CleanSeq cleaning was performed according to the following protocol: 

1. 10 µl of CleanSeq solution and 62 µl of 85% EtOH are added into each cycle sequencing 

mixture and pipette mixed 7 times. 

2. The 96-well plate is placed on the magnetic plate and incubated for 3 minutes. 

3. The solution is discarded and 100 μl of 85% EtOH is added into each well and discarded 

after 30 seconds.  

4. The DNA bounded magnetic beads are air-dried for 10 minutes. 

5. 40 µl of dH2O is added into each well for elution and incubated for 5 minutes to ensure 

complete release of DNA molecules from the magnetic beads 

Capillary electrophresis and data assembly 

Applied Biosystems 3130xl 16-capillary Genetic Analyzer was the device used for 

electrophoresis and data generation. The electropherograms were visualized and analyzed by 

the Seqman II (DNA Star) software. 

2.6.5 Genotyping based on MassExtend Reaction (Sequenom®)  

Fine mapping or validation of candidate genes necessitates the genotyping of pre-selected 

groups of variants. MassExtend Reaction combined with matrix‐assisted laser 

desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF-MS)164, 165 by Sequenom is 

one of the state-of-art technologies for this purpose. This technology works with Sequenom’s 

iPLEX® Gold assay which allows simultaneous analysis of up to 40 variants in a single reaction 
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(plex). For this application 3 primers are designed per variant. The first two compose a standard 

primer pair (forward and reverse) for amplification of the targeted region which includes the 

polymorphic site of interest and flanking sequences (Figure 2.4 a). The third is called an 

unextended primer 20 and is designed to bind upstream of the polymorphic site with its last base 

being just adjacent to the polymorphic site (Figure 2.4 c). The initial step in this genotyping 

method is the amplification of all the targeted regions by PCR in a single plex by simultaneous 

use of all the standard primers (Figure 2.4 a). After the PCR, deactivation of residual dNTPs is 

necessary to prevent their incorporation during the single-base-extension (SBE) reaction. This 

is achieved by shrimp alkaline phosphatase (SAP) mediated dephosphorylation of the dNTPs 

(Figure 2.4 b). The following step is the SBE reaction where all UEP primers are employed 

simultaneously to bind upstream of and exactly adjacent to the targeted polymorphic sites. 

UEPs are then extended at the 3’ end by a single ddNTP complementary to the base at the point 

of variation (Figure 2.4 c). As the SBE reaction is terminated, extension products with allele-

specific differences in their masses are obtained. Therefore; when preparing a genotyping assay 

the primers for tagging a group of variants are so designed that each unextended primer 20 has a 

unique mass just like each extension product has a unique pre-calculated mass. This way; 

products with different masses can be detected by mass spectrometry and analyzed for 

assessment of genotypes (Figure 2.4 d). Resin purification is performed after the SBE reaction to 

remove the cationic molecules from the assay since the final analysis takes place in an electrical 

field. The reaction products (analytes) are spotted on a SpectroCHIP which is subjected to 

MALDI‐TOF-MS by the Sequenom MassARRAYTM Compact Analyzer system.  

 

Figure 2.4 Schematic representation of the 
genotyping protocol based on the 
MassExtend Reaction (Sequenom®). 
Amplification of the target region (a) is 
followed by shrimp alkaline phosphatase 
treatment for deactivation of residual dNTPs 
(b). Primers exactly adjacent to the 
polymorphic sites bind DNA and are extended 
at the 3’ end by a single ddNTP complementary 
to the base at the point of variation (c). When 
the single-base-extension (SBE) reaction is 
terminated, each unextended primer 20 and 
extension product has a unique mass which can 
be detected by mass spectrometry (d). 
Reproduced from the iPLEX® Gold Application 
Guide (www.sequenom.com) 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Components Volume 1x (µl)

dH2O 2.7

10 x PCR buffer, MgCl2 [15 mM] 0.625

dNTP mixture [10 mM each] 0.25

MgCl2 [25 mM] 0.325

Standard primer mixture [500 nM each] 1

Hot Star Taq Polymerase [5U/ µl] 0.1

The MALDI‐TOF-MS necessitates the application of a short laser impulse that leads to ionization 

of the analytes by the assistance of the chip matrix. This leads to their detachment 

(desorption/ionization) from the matrix. The ionized and matrix-detached molecules are then 

accelerated in the vacuum flight channel of the mass spectrometer under an electric field166, 167. 

Depending on their individual masses, it takes each analyte a different flight duration to reach 

the detector; hence the higher the mass of an analyte, the longer is the flight time. The time-of-

flight measurements are finally converted to mass information and thereafter to the genotype 

call information by the system’s analysis software. 

Primer Design 

The primers were designed either by the PreXTEND-Tool in the MySequenom homepage and 

the Assay Design 3.1 Software or directly by the Assay Design Suite in MySequenom homepage. 

In the former approach, the standard primer pairs and the UEPs were designed by the 

PreXTEND-Tool and the Assay Design 3.1 Software, respectively. To serve as input for the 

PreXTEND-Tool a file was used which consisted of 300 bp long sequences spanning point of 

variation and its flanking up- and downstream sequences for each variant. Primers were 

designed to yield amplicons of 80-120 bp in size. The output from the PreXTEND-Tools served 

as the input file for the Assay Design 3.1 Software for designing the UEP primers. In the latter 

approach all primers were designed by The Assay Design Suite. The input file was as defined for 

the PreXTEND-Tool and the amplicons were also designed to yield amplicons of 80-120 bp in 

size.  

Amplification 

The genotyping protocol was performed in 384-well plates by using a total of 15 ng dried DNA 

from each individual. A primer mix was prepared which compromised of 500 nM of each 

standard primer pair (forward and reverse) that were included in the assay. Beckman NX‐MC 

robot was used for the distribution of the master-mix solution into individual wells (5µl/well). 

The master-mix solution for a single PCR and the cycle set up were as below, respectively. 
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15 min 95oC Initial denaturation

20 sec 95oC Denaturation

30 sec 56 oC Primer annealing

1 min 72 oC Elongation

5 min 72 oC Final elongation

45 cycles

40 min 37oC      SAP digestion

5 min 85oC    SAP inactivation

Components Volume 1x (µl)

dH2O 1.53

10x SAP buffer 0.17

SAP enzyme [1U/ µl] 0.3

Components Volume 1x (µl)

dH2O 0.619

10x iPLEX Gold buffer 0.2

iPLEX Termination mix 0.2

UEP primer mixture 0.94

iPLEX Gold enzyme (sequenase) 0.041

30 sec 94oC Initial denaturation

5 sec 94oC Denaturation 1 x

5 sec 52 oC Primer annealing

5 sec 80 oC Primer extension

3 min 72 oC Final extension

40 cycles
5 cycles

 

 

 

 

Shrimp alkaline phosphatise digestion 

Beckman NX‐MC robot was used for the distribution of the SAP reaction mixture into individual 

wells (2µl/well). The SAP reaction mixture for a single reaction and the cycle set up were as 

below. 

 

 

 

 

Single base extension reaction  

As a prior step to SBE, an adjustment of the UEP primers was made to assure generation of 

signals with comparable intensities from low and high mass primers during the mass 

spectrometry. This adjustment divides primers into mass groups and ensures a higher 

concentration of high mass primers in the final UEP primer mixture. The primers used in this 

study were divided into 4 mass groups with the concentration adjustments as given in 

Attachment IV. Beckman NX‐MC robot was used for the distribution of the SBE reaction mixture 

into individual wells (2µl/well). The SBE reaction mixture for a single reaction and the cycle set 

up were as below, respectively. 

 
 
 
 

 

 

 

 

 

 

 

 

After SBE reaction, products were diluted by addition of 16 µl dH2O into each well and purified 

by mixing with an ion exchange resin. Resin was spread out on a 384-well dimple plate filling 
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each hole with about 6 mg of resin. Dimple plate was used to fill in the wells of the 384-well 

reaction plate. The reaction plate was rotated for 7 min with an overhead shaker to ensure 

complete purification and then centrifuged for 7 min at 4000 rpm. The reaction products were 

then spotted on a SpectroCHIP (Sequenom) by the use of the Nanodispenser device. The chip 

was placed into the Sequenom MassARRAYTM Compact Analyzer system and processed using the 

RT-workstation software 3.3. The genotype calls automatically generated by the system’s 

analysis software Typer 3.4 / 4.0 were always assessed and confirmed by manual inspection 

before exporting the final data. A representative genotype analysis is given for a low-frequency 

variant in the CHD1L gene in Figure 2.5. 

 
Figure 2.5 A representative genotype analysis with MassExtend technology (a) The cluster plot for rs4950394 in CHD1L gene 
showing individuals carrying the homozygous ‘TT’ genotype (green triangles), the heterozygous ‘GT’ genotype (yellow squares) and 
the homozygous ‘GG’ genotype (blue triangles). The red circles represent reaction wells where no genotype call was assigned. (b) 
Mass spectrum representing the masses measured from an individual carrying the heterozygous genotype for rs4950394. Peaks 
coinciding with the blue dashed lines represent the presence of the two alternative alleles which generated extension products with 
different masses. The red dashed line marks the specific mass of the UEP and the absence of a peak coinciding with it indicat es the 
complete conversion of all the UEP primers into extension products. The dashed grey lines represent masses of the UEP primers and 
the extension products from other variants included in the assay. (c) Mass spectrum representing the masses measured from an 
individual carrying the homozygous ‘GG’ genotype for rs4950394. Only a single peak coinciding with the specific mass of the ‘G’ 
allele containing extension product is observed.  

2.6.6 Genome-wide gene expression analysis 

Genome-wide gene expression by use of microarray technologies enables simultaneous 

assessment of the abundance of ten-thousands of transcripts from ten-thousands of genes 
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spread throughout the entire genome. This approach necessitates intact mRNAs isolated from 

tissue of interest.  

RNA integrity assurance by BioAnalyzer 

To guarantee a high quality of the total RNA isolated from the pre-mortem human hippocampal 

segments, the RNA samples were initially subjected to quality control by BioAnalyzer 2100 

measurements with the employment of RNA 6000 Nano LabChip® Kits according to the 

manufacturer’s protocol (http://www.chem.agilent.com). The measurement of RNA integrity is 

based on principles of gel electrophoresis and simultaneous fluorescence analysis applied to a 

lab-on-a-chip approach168, 169. The LabChip® allows parallel assessment of 12 samples loaded 

into the sample-wells of the LabChip which contains micro-channels pre-filled with polymer and 

a fluorescent dye. An RNA 6000 ladder standard containing different RNA fragments with a 

defined range of sizes is run in parallel to the samples to serve as a reference for data analysis. 

The electrophoresis enables size based separation of the ribosomal RNA (rRNA) species in the 

total RNA and detection of the bands corresponding to the predominant 28S and 18S rRNAs 

which is a standard method to assure that RNA has not been degraded by RNases during 

isolation or sample handling170. The intercalation of the dye into RNA molecules enables them to 

be detected by laser induced fluorescence. Besides the detection of peaks corresponding to the 

28S and 18S rRNAs, an RNA integrity number (RIN) is determined for each sample based on a 

software algorithm which takes into account the whole electrophoretic trace169. The RIN ranges 

from 1 to 10 where ‘1’ denotes highly degraded RNA and ‘10’ denotes very intact RNA. It was 

previously claimed that a RIN larger than 5 is necessary for an expression microarray study 171. 

The quality assessment by Bioanalyzer 2100 showed intact 28S and 18S ribosomal RNA signals 

for all used RNA samples as well as a RIN>7.9.  

Genome-wide expression analysis by Illumina Bead Technology 

All total RNA samples (n=148) were used for a systematic chip-based gene expression analysis 

by using the Illumina® HT12-v3 Expression BeadChips. Each BeadChip contains 12 microarrays 

enabling parallel analysis of 12 samples. Illumina® HT12-v3 expression microarrays target 

more than 25,000 annotated genes with more than 48,000 probes designed by using the RefSeq 

(Build 36.2, Rel 22) and the UniGene (Build 199) databases. Transcript tagging oligonucleotide 

probes are covalently attached to beads held in micro-wells on the surface of an array substrate. 

Hundreds of thousands of copies of a probe is attached to each bead type (Figure 2.6). A high 

level of bead redundancy (each bead type being represented on average 15 times) improves the 

data quality and reproducibility. The beads are randomly self-assembled into the micro-wells 

during manufacturing and owing to the presence of a 29-mer address sequence linked to each 



38  2. MATERIALS AND METHODS 
 

bead; their location can be determined by a hybridization based procedure allowing the 

mapping of the array. 

The workflow for chip-based gene expression analysis is mainly composed of the following 

stages; preparation and quantification of biotin-labeled cRNA from the total RNA, hybridization 

of the biotin-labeled cRNA to the BeadChip, immunohistochemical staining by Cy3-conjugated 

Streptavidin which has high affinity for biotin, laser scanning of the BeadChips leading to 

fluorescence emission from the Cy3 and determination of the signal intensity values for each 

bead type (Figure 2.6, top panel). The average signal intensity from each bead type is 

proportional to the quantity of the respective transcript in the original sample (Figure 2.6, 

bottom panel). 

 
Figure 2.6 Whole-Genome Gene Expression by Direct Hybridization Assay with Illumina BeadArray technology The 
workflow of the direct hybridization assay (top panel). Schematic representation of three bead types each containing copies o f an 
oliogonucleotide probe tagging a different transcript (bottom panel). For simplicity reasons only several copies of a probe is 
illustrated to be attached to each bead instead of the hundreds of thousands of copies in reality. The biotin-labeled cRNAs are 
hybridized to the probes with the amount of hybridization being dependent on the relative abundance of the respective cRNA 
molecule (bottom panel). Created based on the illustrations from Whole-Genome Gene Expression Direct Hybridization Assay Guide. 
(http://support.illumina.com). 
 

50 ng of total RNA from each sample was converted into biotin-UTP labelled cRNA by using the 

Illumina TotalPrep-96 RNA Amplification Kit according to manufacturer’s protocol 

(http://tools.lifetechnologies.com/). Labelled cRNA was hybridized to Illumina® HT12-v3 

expression beadchips according to the manufacturer’s protocol (http://support.illumina.com).  

All expression profiles were analyzed using the GenomeStudio software. Quality control and 

quantile normalization was performed using the R statistical software and packages from the 

Bioconductor project172, 173. The threshold for background signal intensity was calculated as 
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follows: First a linear regression model between normalized expression values and 

corresponding detection p-values was fitted. Then the estimated signal intensity at a detection 

p-value of 0.05 was used as the background threshold to distinguish between signals above and 

below the background signal. The expression analysis was performed in collaboration with Dr. 

Andrea Hofmann from the University of Bonn. 

2.6.7 Variant detection and bioinformatical analysis 

The generated sequence information was screened for any variation of hetero- or homozygous 

nature by comparing the data with the reference sequence in UCSC Genome Browser based on 

NCBI build 36.1/hg18 or GRCh37/hg19. For consistency purpose, the given genomic positions 

of all defined variants in this thesis are based on GRCh37/hg19. Reference SNP ID numbers 

(rs#) are based on dbSNP build 135 and variants which are not present in dbSNP 135 are 

designated as novel. RefSeq definition of all targeted transcripts in the 1q21.1 microdeletion 

region, NRXN1 gene and TCF4 gene and their respective proteins in Uniprot are given in 

Attachment I. In the 1q21.1 microdeletion region, 7 of the 10 genes spanned by the minimally 

deleted region were targeted and the remaining 3 which are lying in the segmental duplications 

could not be targeted by sequencing (Attachement II). 

In the 1q21.1 microdeletion region variants with a minor allele frequency (MAF) of <5% in the 

combined patient and control sample were defined as low-frequency variants whereas in the 

NRXN1 study, variants with a MAF<3% in the combined sample were considered. In the TCF4 

study, only schizophrenia patients were resequenced and the sequence information from 379 

European individuals from 1000 Genomes Project was used to account for rare variation in the 

control population154. The sequence variants observed in the 379 European individuals from the 

1000 Genomes Project were retrieved from the 1000 Genomes Browser by screening of the VCF 

files for the regions targeted and analyzed in the resequencing step (coding exons and 50 bp up- 

and down-stream flanking sequences of the TCF4 transcript variant 1, NM_001083962.1). 

Variants with a MAF<3% either in the patient sample or in the 379 European individuals of 

1000 Genomes Project were defined as low-frequency variants.   

All identified variants were primarily subjected to bioinformatical analysis by use of two main in 

silico tools: Mutation Taster; to assess whether they were leading to an amino acid substitution 

(missense variant) or a premature stop codon (non-sense variant) and Human Splicing Finder 

(HSF); to assess whether they were leading to an acceptor/donor site change (splice site 

variant). Expasy Translate tool was used for codon translation for assessment of the 

consequences of the splice site changes. Missense variants were further evaluated by PolyPhen-

2 and SIFT to assess their potential impact on protein function. Localization of missense 

variants in protein domains in 1q21.1 microdeletion region and NRXN1 were defined according 
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to Uniprot, Expasy and SMART tools. The locations of missense variants in TCF4 protein 

domains were defined based on a recent study by Sepp et al. where comprehensive structural 

and functional characterization of TCF4 isoforms was reported174. Secondary structure of all 

proteins was assessed by the Jpred3 and Dompred tools. All variants were assessed for 

evolutionary conservation at nucleotide level among human, chimp, rhesus, monkey, and dog 

and for localization within transcription factor binding sites by the ‘Vertebrate Multiz Alignment 

and Conservation’ and the ‘HMR Conserved Transcription Factor Binding Sites’ tracks of the 

UCSC Genome Browser, respectively. 

2.6.8 Statistical analysis 

NRXN1 gene 

For the analysis of the sequence data from NRXN1 gene, a two-tailed Fisher’s Exact test was 

applied which was one of the state-of-the-art approaches by the time of this study. Fisher’s 

Exact test was applied to evaluate the overall burden of low-frequency sequence variants in 

patients and controls. The analysis was performed by collapsing the low-frequency variant 

information on individual level to compare the total number of patients carrying a low-

frequency variant with the total number of controls carrying a low-frequency variant. The 

analysis was applied on i) the entire variant set and ii) subsets of variants stratified by 

functionality (i.e. potentially functional -missense, splice site, non-sense- vs. nonfunctional -

intronic and synonymous- variants). The genotyping data was also analyzed by the Fisher’s 

Exact test for comparing the burden of individual variants or all of the genotyped variants in 

patients and controls.  

1q21.1 microdeletion region 

Several statistical methods developed for rare variant association testing in a genomic region 

were employed for the analysis of the data from initial sequencing sample and genotyping-1 

sample of the 1q21.1 microdeletion region. The rare variant association tests can mainly be 

divided into burden and non-burden tests. Burden tests collapse the information of rare 

variants in a genomic region into groups and then test the association of the phenotype with 

these collapsed groups of variants. Although the main logic in burden tests is similar, these tests 

differ from each other by incorporating other types of information or accounting for other 

criteria. Three burden tests were applied: 

-the Combined Multivariate and Collapsing approach by Li and Leal175 which collapses SNPs into 

subgroups and subsequently applies multivariate analysis; 

-the weighted-sum statistic test by Madsen and Browning176 which performs a rank-sum test on 

the individual weighted genotype scores; 
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-the burden test developed by Price et al.177 which can utilize external information on the rare 

variants such as their respective PolyPhen scores.  

More recently, several statistical tests differing from traditional burden tests by accounting for 

opposite effect directions (protective or risk) of variants have been proposed. From these 

classes of tests the following were applied: 

- the replication based strategy of Ioanita-Laza et al.178 which also pools variants together, 

however conditioned on the different sharing patterns of rare alleles between cases and 

controls;  

- SKAT by Wu et al.179 which is based on a kernel machine regression framework and assesses 

similarities between genotype patterns of individuals across multiple markers in a region of 

interest and tests whether there is a relation between genotypic similarities and phenotypic 

similarities; 

- the C-Alpha test by Neale et al.180 which analyzes the distribution of rare variants observed in 

cases versus controls; 

- the distance-based measure (DBM) method developed by Fier at al.181, which analyzes the 

differences in the spatial clustering of rare variants observed in cases and in controls. 

The described methods were applied on regional genotype data prepared as a matrix of allele 

counts across the region of interest (0=non-carrier, 1=heterozygous carrier, 2=homozygous 

carrier of the minor allele). In the regional analysis, individuals who yielded incomplete 

genotype matrices by failing a genotype call for at least one variant were excluded from the 

analysis. In the initial sequencing sample, 2 patients were excluded from the analysis based on 

this criterion, leaving a total of 92 patients and 94 controls which were included in the analysis 

of the resequencing data. In the genotyping-1 sample, 4 patients and 3 controls were excluded 

based on the same criterion leaving a total of 1896 patients and 2183 controls which were 

included in the analysis of the genotyping data. The analyses were performed at 1, 3 and 5% 

MAF cut-offs and applied on i) the total sample (resequencing and genotyping samples 

combined) and ii) only the genotyping sample. Significance was assessed empirically by using 

permutation. Briefly, the test statistics were first calculated for the original dataset, then the 

case-control status in the sample was randomly permutated 1000 times to re-calculate the test 

statistics for every permutated sample and finally empirical p-values were derived based on the 

generated distribution of the test statistics. The case/control ratio in the original dataset was 

kept constant across permutations. Whenever significant associations were detected (p<0.05); 

the analyses were re-ran with 10,000 permutations to confirm the signal. Single marker 

analyses were performed by Pearson’s Chi-square test to detect significant differences in the 

allele distributions of single markers for cases and controls. Significance was assessed 

empirically by application of 1000 permutations of the case-control status as described. 
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Whenever a significant p-value below 0.05 was detected the analysis was repeated by 10,000 

permutations.  

The association testing of prioritized variants (genotyping-2 sample) was performed by 

Pearson’s Chi-square test as described and also by logistic regression controlling for ancestry as 

the genotyping-2 sample was composed of different populations (i.e. German, Danish and 

Dutch). The empirical p-values for logistic regression analysis were derived from 1000 

permutations where the specific case/control ratios of every population were kept constant.  

All the analyses were performed in R software and in collaboration with Dr. Heide Fier from the 

University of Bonn.  

TCF4 gene  

The regional genotype data from TCF4 locus was analyzed by application of the same rare 

variant association tests described for the 1q21.1 microdeletion region. In the resequencing 

sample which constituted of 190 schizophrenia patients, all individuals yielded complete 

genotype matrices. In the genotyping sample 1 patient and 3 controls were excluded from the 

analysis due to incomplete genotype matrices leaving a total of 1807 patients and 2258 controls 

which were included in the analysis. The analyses were performed at 0.3, 1 and 3% MAF cut-offs 

and applied on i) the total sample (resequencing and genotyping samples combined) and ii) 

only the genotyping sample. In the total sample analysis the genotypes of the 379 European 

individuals from the 1000 Genomes database were not included to avoid any bias from 

population specific rare variant patterns. 
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3. RESULTS 

3.1 Resequencing of the NRXN1 gene 

By sequencing the coding exons and flanking sequences of the NRXN1 gene in 94 schizophrenia 

patients and 94 healthy controls about 10.9 kb genomic sequence per individual was generated 

and analyzed, totalling 2.05 Mb of sequence information in the whole sample. The resequencing 

analysis of NRXN1 revealed a total of 21 variants; all of which were single base exchanges. Five 

of the identified variants were denoted to be common (MAF≥3%) and all were previously 

annotated in the dbSNP database. The remaining 16 variants were denoted to be low frequency 

(MAF<3%) variants. Four of the low-frequency variants were leading to amino acid 

substitutions and they were classified as ‘potentially functional variants’ whereas the other 12 

were synonymous or intronic variants with no direct effect on primary protein structure (Table 

3.1).  

Table 3.1 Low-frequency variants observed in NRXN1 gene 

 

aAmino acid positions refer to the NRXN1 α2-isoform with 1547 residues except for G26G which refers to the β-isoform encoding 
442 residues. 
bEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
cVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency. The table is modified from Mühleisen et al., 2011150. 

 

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changesa Effect 

(SIFT/PolyPhen)
Conservationb MAF (≤)c Minor allele counts  

(n=patients/controls)

51254810 rs112934082 T>C exon 2 E210G tolerated/benign 5 0.01 1/0

51254577 rs111501521 G>A intron 2 - - 2 0.01 1/0

51153131 rs112297733 A>G intron 3 - - 5 0.01 1/0

50858257 rs113989332 T>G intron 5 - - 5 0.01 1/0

50850686 rs2303298 G>A exon 7 syn - 5 0.01 1/2

50848407 rs111648327 G>A intron 7 - - 5 0.01 2/1

50847195 rs78540316 G>A exon 9 P469S
tolerated/probably 

damaging
5 0.01 1/1

50847150 rs113028018 C>T intron 9 - - 3 0.01 1/0

50765412 rs56086732 G>T exon 11 L748I tolerated/benign 5 0.01 0/2

50758613 rs111940222 G>A intron 11 - - 5 0.01 1/0

50699598 rs112638127 T>C exon 17 I1068V tolerated/benign 5 0.01 1/0

50574010 rs113067443 G>T exon 1 (β) syn - 1 0.01 1/0

50573817 rs13023114 T>C intron 18 - - 4 0.03 1/3

50281894 rs74746635 A>G intron 21 - - 4 0.01 3/0

50149214 rs112536447 A>G exon 24 syn - 4 0.01 0/1

50149133 rs113380721 C>T exon 24 syn - 4 0.01 2/1
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Two of the missense variants (E201G and I1068V) were detected as singleton observations in 

patients and both were annotated to be benign by SIFT and PolyPhen tools. P469S was 

predicted to be tolerated and probably damaging by SIFT and PolyPhen, respectively, and was 

observed in a patient and a control individual. L748I was observed in two control individuals 

and was predicted to be benign by both tools. The localization of the missense variants on the 

NRXN1 protein domain structure is given in Figure 3.1. From the remaining 12 variants six 

intronic and one synonymous variant were observed only in patients, one synonymous variant 

was observed in a single control individual and four were shared by both groups.  

 
 
 
 
 
 

 
 
 
Figure 3.1 Protein domain structure of NRXN1 α2-isoform and localization of observed rare missense variants.  Numbers of 
observations in the total sample are given for patients and controls (npatients/ncontrols). TM, transmembrane domain; LamG, laminin G 
domain; EGF, epidermal growth factor-like domain; SP, signal peptide. The figure is modified from Mühleisen et al., 2011150.  
 

Fisher’s exact test was used to evaluate overall burden of low-frequency variants in patients and 

controls. When considered all together, the low-frequency variants were insignificantly 

overrepresented in patients compared to controls (18 patients/11 controls; P=0.23). The 

overrepresentation mainly arose from variants of no direct effect on primary protein structure 

(15 patients/8 controls; P=0.18) and the missense variants were equally observed in patients 

and controls in total (3 patients/3 controls; P=1.0).  

The potentially functional –missense- variants (E201G and I1068V) which exclusively were 

observed in patients were considered to be the most plausible candidates for moderate to high 

risk effects. Both of these substitutions were at highly conserved regions and both were located 

in different Laminin G domains (Figure 3.1).  

E201G was a non-conservative substitution of a polar glutamate to a neutral, non-polar glycine 

residue. The patient who carried the E201G substitution had an age of onset of seven years and 

she had a brother with a history of depression. Parental DNA was available only from the 

mother who did not carry the variant. No information was available concerning possible 

psychiatric disease in the father or paternal relatives. I1068V was a conservative substitution 

with no alterations in polarity or charge. I1068V was located in a beta sheet structure and the 

substitution did not lead to a change in the secondary structure. The patient who carried the 

I1068V had an age of onset of 20 years. Sequencing of parental DNA revealed that the variant 

was inherited from the unaffected father whose second degree relatives were also unaffected. 

These two missense variants were followed up by genotyping in an additional 1415 patients 
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and 1167 controls to investigate whether any of them were true individual risk variants. The 

genotyping revealed a control individual who carried E201G (0 patients/1 control, P=0.45). 

There were no additional individuals who carried I1068V. No evidence for overrepresentation 

of the potentially functional variants in patients or in controls was found when the discovery 

sample was also included in the analysis, neither when all the variants were considered 

together (2 patients/1 control, P=1) nor when they were analyzed individually (E201G: 1 

patient/1 control, P=1; I1068V: 1 patient/0 controls, P=1).  

3.2 Resequencing of the 1q21.1 microdeletion region 

By sequencing the coding exons and flanking sequences of the 7 genes in the 1q21.1 

microdeletion region in 92 schizophrenia patients and 94 healthy controls about 28.4 kb 

genomic sequence per individual was generated and analyzed, totalling 5.3 Mb of sequence 

information in the whole sample. Altogether, 87 sequence variants were identified in the whole 

region encompassing the exons and flanking sequences of the seven targeted genes. The 

majority of the detected DNA changes (n=79) were single base exchanges and the rest were 

indels (ndel = 6, nins=2) ranging in size from 1 to 4 basepairs. All of the indels were intronic with 

no potential functional consequences. Of the detected sequence variants, 32 were defined as 

common with a MAF≥5%. All of the common variants were previously annotated in dbSNP 

database. A total of 55 variants were defined as low-frequency variants with MAF<5%. Among 

the low-frequency variants, 46 had a MAF<3% and 34 had a MAF<1%. Of the 55 low-frequency 

variants, 32 were synonymous or intronic with no direct effect on primary protein sequence, 

one was an exonic variant predicted to create a new splice site by the Human Splicing Finder 

tool, 21 were missense variants leading to an amino acid substitution, and one was a non-sense 

variant leading to a premature stop codon. The number of variants (MAF<5%) observed in each 

gene and the potentially functional ones among them (missense, non-sense) are denoted in 

Table 3.2. 

Table 3.2 The gene-based distribution of low-frequency variants observed in 1q21.1 
microdeletion region 

*A variant which was predicted to lead to a splice site change by HSF was observed in CHD1L however it was not included in the 
functional variants counts before validation of the in silico predicted effect. AA, amino acid.  

 

 

PRKAB2 FMO5 CHD1L BCL9 ACP6 GJA5 GJA8

Length (AA) 272 533 897 1426 428 358 433

Variants 3 5 21 12 9 1 4

Functional 

variants
1 3 6* 5 4 0 3
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PRKAB2 

In the PRKAB2 gene, three variants were observed, one was a missense variant and two were 

synonymous or intronic variants (Table 3.3). The missense variant was observed in a single 

patient and was predicted to be damaging by both SIFT and PolyPhen. It was in a highly 

conserved region and was located at a transcription factor binding site for GATA-1. The 

substituted amino acid was located in a beta sheet structure and the substitution was not 

predicted to lead to a change in the secondary structure by in silico analysis. The synonymous 

and intronic variants were observed both in patients and controls and were in complete LD in 

the present sample. 

Table 3.3 Low-frequency variants observed in PRKAB2 gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency. 

 

FMO5 

In the FMO5 gene, five variants were observed. One of these was a non-sense variant, two were 

missense and two were intronic variants (Table 3.4). The non-sense variant (R485*) was 

detected in a single patient. It was located in a highly conserved region and led to a premature 

termination codon (PTC) in exon 9 of FMO5 which may result in production of a truncated 

protein. Non-sense mediated mRNA decay (NMD) might be avoided due to the location of the 

PCT in the terminal exon182-185. The predicted truncated protein lacks ~9.2% of the amino acid 

content which includes a hydrophobic segment at the C-terminal (PRINTs database accession 

number: PR01125, Motif IX) which had previously been suggested to be responsible from 

membrane anchorage of the enzyme186.  

Table 3.4 Low-frequency variants observed in FMO5 gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; n.a., not available; MAF, minor allele frequency. 

 

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)

146643580 rs34838459 G>A exon 2 syn - 3 0.05 7/8

146643495 rs72708505 C>A intron 2 - - 4 0.05 7/8

146639424 - C>T exon 3 R82H
damaging/probably 

damaging
5 0.01 1/0

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)

146684095 rs58351438 T>C exon 5 K166E
tolerated/probably 

damaging
5 0.03 3/1

146680394 rs6684454 C>T intron 6 - - 5 0.05 7/8

146672745 rs56134376 T>C exon 7 Q391R tolerated/benign 5 0.01 0/2

146661723 rs184393893 G>A intron 8 - - 4 0.01 1/1

146658628 - G>A exon 9 R485* n.a./n.a. 5 0.01 1/0
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One of the missense variants predicted to be benign by both PolyPhen and SIFT (Q391R) was 

located at an alpha-helix and was observed only in two controls. The other missense variant 

(K166E) was predicted to be probably damaging only by PolyPhen and was observed in three 

patients and a control individual. The substituted amino acid was the first residue of a sequence 

motif which was suggested to contribute to the NADPH binding of FMO5 and was expected to 

have an additional function as well187, 188. The intronic variants observed in FMO5 were carried 

both by patients and controls.  

CHD1L 

In the CHD1L gene, which is the second largest gene in the region, the highest number of 

variants (n=21) was observed (Table 3.5).  

Table 3.5 Low-frequency variants observed in CHD1L gene 

 
*The three variants are in complete LD and the low-frequency alleles for them are given in the reference sequence in human genome 
build 19. The high frequency alleles are given as the substituted residues and the low-frequency alleles are given as the substituting 
residues in the table for consistency with other variants. The same annotation applies to the amino acid changes. (e.g. For 
rs4950394, ‘G’ is the low-frequency allele and amino acid ‘A’ is encoded in the presence of G allele. The minor allele counts thus refer 
to the ‘G’ allele). aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the 
number of species where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). iFor the insertions the conservation 
scores of the residues preceeding and postceeding the insertion are given. *rs67589628 is treated as an insertion in the 
‘Conservation’ column although it is annotated as a deletion in the ‘Alteration’ column. This is because the reference sequence does 
not contain the ‘AT’ residues in the USCS Genome Browser (as described with *) and conservation can only be assessed by the 
preceeding and postceeding bases. bVariants are classified in the corresponding MAF categories based on their combined 
frequencies in cases and controls in the total sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency.  

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)

146736063 - T>C intron 6 - - 4 0.01 0/1

146736068 - TTAT>- intron 6 - - 5-5-3-5 0.01 0/1

146736137 rs36008075 A>G exon 7 - - 4 0.03 4/1

146737517 - ->T intron 7 - - 3-3i 0.01 1/0

146737540 rs140555192 C>T intron 7 - - 4 0.05 5/7

146740514 - G>A exon 10 syn - 4 0.01 1/1

146742648 rs144757186 G>A exon 11 D381N
damaging/probably 

damaging
5 0.01 1/0

146747069 rs2275250 T>C exon 13 syn - 4 0.01 1/0

146747965 rs185219867 C>T Intron 14 - - 4 0.03 3/2

146751782* rs7547279 C>A exon 15 syn - 1 0.03 2/7

146756234 - CAA>- intron 16 - - 3-2-3 0.01 1/0

146757032 - C>A exon 17 T629N tolerated/benign 4 0.01 0/1

146757132 rs142236750 G>A exon 17 syn - 5 0.01 2/0

146757200 - G>A intron 17 - - 4 0.01 1/0

146758054 rs139791996 G>A exon 17 G700R tolerated/benign 3 0.01 1/0

146759387 rs148289715 A>G exon 19 I765M tolerated/benign 5 0.01 1/1

146759428 rs144512908 G>A intron 19 - - 5 0.03 1/3

146765379 rs148434783 A>G exon 21 I827V tolerated/benign 5 0.01 1/0

146766070* rs67589628 AT>- intron 21 - - 4-1i 0.03 2/7

146766122 rs45563244 C>G exon 22 syn - 4 0.03 5/3

146767149* rs4950394 T>G exon 23 S885A tolerated/benign 1 0.03 2/7
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Six of the CHD1L variants were missense variants, one was predicted to lead to a splice site 

change by the HSF tool and 14 were synonymous or intronic variants. Of the six missense 

variants, three were observed only in patients (D381N, G700R, and I827V) as singleton 

observations. One of these missense variants was located in a highly conserved region (D381N) 

and was predicted to be damaging by both SIFT and PolyPhen. The substitution was located at 

an alpha-helix structure and affected the helicase superfamily c-terminal domain of the CHD1L 

protein (Figure 3.2). The second patient-specific nonsynonymous variant (G700R) was located 

in a low complexity region and it was the only non-synonymous rare variant (MAF<1%) with 

some evidence for segregation. It was carried by the index patient and a brother who was also 

affected by schizophrenia as well as their father who suffered from an antisocial personality 

disorder. The variant was predicted to be benign both by SIFT and PolyPhen. The third patient 

specific non-synonymous variant (I827V) was in a highly conserved region and was located at a 

transcription factor binding site for MEF-2A. The substitution was at an alpha-helix structure at 

the macro domain of CHD1L and was predicted to be benign by SIFT and PolyPhen. 

 

Figure 3.2 Protein domain structure of CHD1L and localization of observed rare missense variants. The protein domain structure is 
given for CHD1L isoform 1 composed of 897 amino acid residues. Numbers of observations in the total sample are given for patients 
and controls (npatients/ncontrols). NLS, nuclear localization signal. The domain information retrieved from http://prosite.expasy.org/ 
 

Of the remaining three missense variants, one was observed only in a single control individual 

(T629N) and two which were located at the macro domain were shared by patients and controls 

(I765M and S885A) (Figure 3.2). All three were predicted to be ‘benign’ by PolyPhen. Analysis 

by the HSF tool revealed that a synonymous A to G substitution in exon 7 of CHD1L 

(rs36008075) created a new acceptor site that had a higher consensus value (85.5) than the 

wild-type site (73.9)11. The new splice site lead to an in-frame deletion of 19 amino acids (amino 

acid residues 193-211) located at the helicase ATP-binding domain. From the remaining 14 

synonymous or intronic variants observed in CHD1L, five and two were detected only in 

patients and in controls, respectively and the others were shared between two groups.  

BCL9 

In the BCL9 gene which is the largest gene in the region, 12 variants were observed of which 5 

were missense and 7 were synonymous or intronic variants (Table 3.6). Two missense variants 

(P113S and N147H) were observed only in patients as singleton events. P113S was predicted to 

be benign by both SIFT and PolyPhen whereas N147H was predicted to be damaging by SIFT.  
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Table 3.6 Low-frequency variants observed in BCL9 gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency. 

 

One missense variant located at a low complexity region and predicted to be benign was 

observed only in a single control individual (R272C). Two missense variants (P332L and 

M1211I) were detected both in patients and controls and were predicted to be benign by both 

Polyphen and SIFT. Among the 7 synonymous or intronic variants, 2 and 1 were detected only in 

patients and in controls, respectively and the remaining were shared between two groups.  

ACP6 

In the ACP6 gene 9 variants were observed of which 4 were missense and 5 were synonymous 

or intronic variants (Table 3.7).  

Table 3.7 Low-frequency variants observed in ACP6 gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency. 

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)

147084965 rs41295833 C>T exon 5 P113S tolerated/benign 5 0.01 1/0

147086294 - A>C exon 6 N147H damaging/benign 5 0.01 1/0

147090614 - G>T intron 7 - - 4 0.01 0/1

147090775 rs143556015 C>T exon 8 R272C tolerated/benign 5 0.01 0/1

147090956 rs61751616 C>T exon 8 P332L tolerated/benign 5 0.01 1/2

147091005 rs61729410 C>T exon 8 syn - 4 0.01 2/0

147091416 rs80312516 G>A exon 8 syn - 5 0.03 1/5

147091689 rs61751617 G>A exon 8 syn - 3 0.05 8/9

147092112 rs61754125 G>A exon 8 syn - 5 0.05 9/8

147095577 - T>C intron 9 - - 5 0.01 1/0

147096112 rs61751618 G>A exon 10 M1211I tolerated/benign 5 0.03 5/3

147096505 rs77650336 C>T exon 10 syn - 4 0.05 7/5

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)

147131663 rs140662730 AAG>- intron 2 - - 5 0.01 1/2

147131553 rs143920833 T>C exon 3 D146G
tolerated/possibly 

damaging
5 0.01 2/0

147131103 rs11800736 C>T exon 4 syn - 5 0.05 11/6

147131025 rs41295837 G>A intron 4 - - 5 0.03 1/5

147126437 rs140566115 G>A exon 6 R218W
tolerated/probably 

damaging
5 0.03 4/4

147126416 - G>C exon 6 Q225E
tolerated/probably 

damaging
5 0.01 0/1

147121996 - C>T exon 8 syn - 4 0.01 1/0

147119397 - C>T intron 9 - - 4 0.01 1/1

147119257 rs137987097 T>A exon 10 T419S tolerated/benign 4 0.01 2/1
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The only non-synonymous patient specific variant carried by more than one patient was 

identified in the ACP6 gene. It was a missense variant (D146G) observed in 2 patients and 

predicted to be possibly damaging by PolyPhen. Two of the remaining missense variants 

predicted to be probably damaging (R218W) by PolyPhen only and benign (T419S) by both 

SIFT and PolyPhen were carried by both patients and controls. Finally a missense variant 

located at an alpha helix structure and predicted to be probably damaging (Q225E) by PolyPhen 

was observed in a single control individual. The majority of the synonymous or intronic variants 

were observed in both groups and only 1 synonymous variant was observed in a single patient. 

GJA5 and GJA8  

In the GJA5 gene only a single synonymous variant was discovered which was carried by 3 

control individuals (Table 3.8). In the GJA8 gene 3 missense variants and 1 synonymous variant 

were discovered (Table 3.8). Two of the missense variants (V129I, I247M) were observed in 

single patients each, the former was predicted to be benign by both tools and the latter was 

predicted to be possibly damaging by PolyPhen. The third missense variant (N220D) was 

shared by 2 control individuals and was predicted to be damaging by both of the tools. 

Mutations in GJA8 gene are known to be causative of zonular pulverulent cataract (CZP1; OMIM: 

116200) and cataract-microcornea syndrome (CAMIS; OMIM:116150]. One of the missense 

variants (I247V) identified in a patient in our sample was previously defined in a Russian 

mother and her son with zonular pulverulent cataract189. This mutation was suggested to be 

causative as it was absent in the unaffected family members. However, no phenotypic 

information from the schizophrenia patient who carried this variant in our sample was available 

to link the variant to a cataract phenotype. 

Table 3.8 Low-frequency variants observed in GJA5 and GJA8 genes 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined frequencies in cases and controls in the total 
sample. AA, amino acid; syn, synonymous; MAF, minor allele frequency. 

 

1q21.1 microdeletion carriers 

The targeted genes were also resequenced in two 1q21.1 microdeletion carriers in order to 

investigate the presence of recessive risk alleles on the non-deleted strand190; however no rare 

variants were identified to be carried by either of the two patients.  

Genomic 

position (hg19)
dbSNP ID Alteration Location AA changes

Effect 

(SIFT/PolyPhen)
Conservationa MAF (≤)b Minor allele counts  

(n=patients/controls)
Gene

147230978 rs2232191 G>A exon 2 syn - 4 0.01 0/3 GJA5

147380467 rs142415337 G>A exon 2 V129I tolerated/benign 3 0.01 1/0

147380740 rs138140155 A>G exon 2 N220D
damaging/probably 

damaging
5 0.01 0/2

147380823 rs80358202 T>G exon 2 I247M
tolerated/possibly 

damaging
4 0.01 1/0

147380886 rs3766503 C>T exon 2 syn - 3 0.05 6/8

GJA8

http://www.omim.org/entry/116200
http://www.omim.org/entry/116150
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Mendelian inheritance 

All truly rare potentially functional variants (missense or non-sense) in the 1q21.1 

microdeletion region with a MAF<1% detected in patients were tested for Mendelian 

inheritance when parental DNA was available. All variants were inherited with ~70% of them 

being transmitted from the father (P=0,087). Only three of the affected patients had a positive 

family history of schizophrenia and each of them was carrying a missense variant in the CHD1L 

gene. In two of these cases variants were inherited from unaffected parents and in one of the 

cases a partial segregation was identified as already described above.  

3.2.1 Microarray gene expression analysis of genes at the 1q21.1 

microdeletion region in human hippocampus 

In order to assess their biological plausibility as candidate schizophrenia genes, expression data 

of the 7 genes were retrieved from microarray based whole transcription analyses of pre-

mortem human hippocampus tissue samples. Whole transcription analyses with Illumina® 

HT12-v3 Expression BeadChips revealed that PRKAB2, CHD1L, BCL9 and ACP6 were definitely 

expressed in the human hippocampus (Fig. 3.3). BCL9 and PRKAB2 had the highest expression 

levels which were followed by CHD1L and ACP6 with relatively moderate expression levels. The 

signal intensities from remaining transcripts (FMO5=90.05, GJA5 transcript variant A and B= 

87.85 and 90.86, respectively, GJA8=85.19) were below the background signal intensity (96.94). 

BCL9 showed the highest expression with a mean signal intensity of 170.7 (min = 125.5 and max 

= 222.9) which was followed by PRKAB2 with a mean signal intensity of 141.1 (min = 113.3 and 

max = 253.5).  

 

 

 
 
 
 
 
 
                                                                                                                                                                                                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Microarray gene expression analyses of genes located in the 1q21.1 microdeletion region. Transcriptional 
expression analyses of PRKAB2, BCL9, CHD1L and ACP6 in human hippocampus tissue using Illumina® HT12-v3 expression 
beadchips (n = 148). The remaining genes are not depicted in the figure as their signal intensities fell below the background signal 
intensity (96.49) represented with the red line. 
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CHD1L and ACP6 were moderately expressed in the human hippocampus with mean signal 

intensities of 125.8 (min = 102.56 and max = 158.9) and 111.1 (min = 85.37 and max = 151.3), 

respectively. This data was also compared with the human brain hippocampus microarray data 

from the Allen Brain Atlas database. The genes identified to be definitely expressed in pre-

mortem hippocampus were also shown to be expressed in the Allen Brain Atlas database 

correlating with the relative expression levels identified in the present dataset (i.e. 

BCL9>PRKAB2>CHD1L>ACP6). Among the remaining genes for which expression could not be 

confirmed in the present dataset, GJA8 and FMO5 were shown to be expressed in human 

hippocampus with GJA8 having higher expression levels than FMO5. Indeed both GJA8 and FMO5 

had higher hippocampus expression levels than ACP6 in the Allen Brain Atlas database. GJA5 

gene yielded signal intensities far below the other genes in this database indicating it is either 

expressed at very low levels or not expressed at all in human hippocampus which correlates 

with our findings. Finally, the microarray data from the BrainSpan Atlas was also investigated to 

look for the expression of these genes in the developmental stages of human brain. This dataset 

showed the prominent hippocampal expression of BCL9, PRKAB2, CHD1L and GJA8 genes during 

the prenatal stages of brain development while the expression levels of ACP6, FMO5 and GJA5 

were shown to be lower. 

3.2.2 Association analysis of the resequencing data from 1q21.1 

microdeletion region 

In order to test association of low-frequency variants in the 1q21.1 microdeletion region several 

statistical tests developed for association testing of low-frequency variants were applied on the 

dataset. 1000 random permutations on the case-control status were performed by keeping the 

number of cases and controls constant to re-generate the test statistics and to derive empirical 

p-values based on the distribution of these test statistics. Whenever significant associations 

were detected (p<0.05); the analyses were re-ran with 10,000 permutations to confirm the 

signal. In the following, the method of Li and Leal is referred to as CMC175, the method of Madsen 

and Browning as WSS176, the method of Price et al. as RANK177, the method of Fier et al. as 

DBM181, the method of Ionita-Laza et al. as REP178, the method of Wu et al. as SKAT179 and the 

method of Neale et al. as C-ALPHA180. The initial association analysis; referred to as ‘whole 

region analysis’, was performed on the complete low-frequency variant dataset (n=55, 

MAF≤5%) based on the sequence information from seven genes. The empirical p-values were 

generated after application of the outlined rare variant association methods at different MAF 

cut-offs (1, 3 and 5%) as depicted in Table 3.9. The whole region analysis revealed a significant 

association of low-frequency variants with schizophrenia. 
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Table 3.9 Association analysis of low-frequency variants in the 1q21.1 region with schizophrenia 

The reported p-values for all test statistics are given for calculations based on 10000 permutations. Significant p-values below 5% 
significance level are given in bold. The better performing two- and one-sided test statistics for DBM and REP methods are given, 
respectively.  

 

The association signal was reported by the DBM method both at 3% (P=0.021) and 5% 

(P=0.039) MAF cut-offs (Table 3.9). An association below a significance level of 10% was also 

detected for the 1% MAF cut-off (P=0.086) by the DBM. 

In order to refine the association signal and identify the signal-driving gene/s in the region, the 

analysis was performed on single gene level (Table 3.10).  

Table 3.10 Association analysis of low-frequency variants in single genes with schizophrenia  

aIn the PRKAB2 gene only a single variant at the MAF cutoff of 1% was identified which was a singleton observation. The remaining 
variants at PRKAB2 belonged to the 5% MAF cutoff. In the GJA8 gene no variants in the MAF cutoff of 3% were observed.  
Analysis was not performed for GJA5 gene since there was only one control specific variant observed in this gene. 
The reported p-values for CHD1L are given for calculations based on 10000 permutations and for the other genes they are given for 
calculations based on 1000 permutations as the analyses were not re-ran with 10000 permutations in the absence of any significant 
p-values. Significant p-values below 5% significance level are given in bold.  
*All the reported p-values from the DBM and REP are given for the two- and one-sided test statistics, respectively, which have 
performed better in the CHD1L gene.  

 

A significant association signal was detected only in the CHD1L gene at both 3 and 5% MAF cut-

offs by the DBM method with p-values (P=0.029 and 0.043, respectively) similar to what was 

obtained from the whole region analysis (Table 3.10). The analysis results of the remaining 

genes revealed no p-value below a significance threshold of 10% at none of the MAF cut-offs 

suggesting that CHD1L is the sole signal driving gene in the region. The significance in this 

dataset was reported by the two-sided test statistic of DBM which has a weighting scheme 

based on the allelic distribution of variants in the cases. In accordance, a denser spatial 

clustering can be seen for the variants detected in patients in comparison to the variants 

detected in controls in Figure 3.4. Although there should not necessarily be a single signal driver 

MAF CMC WSS RANK DBM* REP* SKAT C-alpha

0.01 0.616 0.396 0.138 0.086 0.104 0.361 1.000

0.03 0.883 0.717 0.216 0.021 0.279 0.131 0.154

0.05 1.000 0.824 0.226 0.039 0.496 0.333 0.834

CMC WSS RANK DBM* REP* SKAT C-alpha MAF

PRKAB2 a 1.000 0.874 0.713 0.507 0.729 0.887 0.768 0.05

1.000 0.674 0.870 NA 0.679 0.620 1.000 0.01

0.744 0.696 0.649 1.000 0.365 0.429 1.000 0.03

1.000 0.922 0.711 0.883 0.584 0.647 0.672 0.05

0.282 0.233 0.181 0.136 0.096 0.541 1.000 0.01

0.728 0.834 0.296 0.029 0.297 0.156 0.107 0.03

0.506 0.724 0.298 0.043 0.373 0.188 0.303 0.05

0.525 0.483 0.235 0.172 0.256 0.372 1.000 0.01

1.000 0.942 0.256 0.143 0.353 0.260 0.744 0.03

1.000 0.984 0.276 0.211 0.400 0.500 0.386 0.05

0.545 0.494 0.503 0.932 0.329 0.696 0.757 0.01

0.832 0.772 0.574 0.255 0.550 0.509 1.000 0.03

0.388 0.491 0.568 0.302 0.315 0.422 0.894 0.05

1.000 0.951 0.477 0.512 0.361 0.316 1.000 0.01

0.805 0.670 0.565 0.159 0.660 0.429 0.751 0.05

FMO5

CHD1L

BCL9

ACP6

GJA8 a
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cluster structure and none can be pinpointed by this method; there seems to be particular 

variant clusters around exons 10-14 and exons 16-19 in patients. The first cluster (exons 10-14) 

contains all the exons encoding for the Helicase C-terminal domain and second cluster (exons 

16-19) contains two exons (exons 18 and 19) encoding for parts of the macrodomain of CHD1L 

protein.  

 
Figure 3.4 Spatial distribution of low-frequeny variants observed in the CHD1L gene. The spatial distribution of observed 
variants in patients (blue) and controls (red) are given regardless of the number or alleles detected. The x-axis denotes the genomic 
locations of the observed variants. The exon/intron structure of the CHD1L transcript 1 (NM_004284.3) given above the x-axis starts 
from intron 2 and ends with the last exon of CHD1L (exon 23) (left to right). Variant clusters around exons 10-14 and exons 16-19 
are denoted with dashed lines. 
 

3.2.3 Follow-up analyses of CHD1L gene 

3.2.3.1 Genotyping and association analysis of the low-frequency CHD1L variants  

In order to confirm the association signal observed in the CHD1L gene the low-frequency CHD1L 

variants were genotyped in an independent, large follow-up patient-control cohort of German 

origin. Except for one intronic deletion (chr1: 146756234) which could not be assayed, all of the 

low-frequency variants in the CHD1L gene were genotyped in an additional 1900 patients and 

2186 controls of German origin (Genotyping-1 sample). In order to exclude that the 

ungenotyped variant was a significant driver of the initial association signal, the analysis of the 

resequencing data in CHD1L gene was repeated by removing this variant. The association signal 

remained robust (DBM, P=0.027 and 0.042 at MAF 3 and 5%, respectively, Attachment V). All of 

the genotyped variants yielded good quality cluster plots in the Sequenom genotyping assay. 

Sanger sequencing was performed for missing genotype calls to ensure that all the individuals 

have complete calls for the entire variant set. The analysis was performed by the application of 

146730000 146740000 146750000 146760000 146770000

Patients

Controls
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the outlined methods i) on the total sample (sequencing and genotyping samples together) and 

ii) only the genotyping sample, at the same MAF-cutoffs of 1, 3 and 5%. The results are depicted 

in Table 3.11. Although no significant association was observed by the DBM method, significant 

associations below 5% significance level were detected by the SKAT method at the 3% MAF cut-

off both in the total sample (P=0.021) and the genotyping sample (P=0.028). Association 

analysis at the higher MAF cut-off of 5% yielded p-values below 10% significance level by SKAT 

in the total sample (P=0.062) and the genotyping sample (P=0.095).  

Table 3.11 Association analysis of low-frequency variants in CHD1L gene from genotyping 

The reported p-values for all test statistics are given for calculations based on 10 000 permutations. Significant p-values below 5% 
significance level are given in bold. The better performing two- and one-sided test statistics for DBM and REP methods are given, 
respectively.  

 

Next, a single marker association analysis was performed in the CHD1L gene in order to assess 

whether there were variants individually associated to schizophrenia with a risk or protective 

effect direction. For this purpose, Pearson’s chi-square test was applied on individual variant 

data followed by random permutations on the case-control status to re-generate the test 

statistic for every permutated sample and to derive empirical p-values based on the generated 

distribution of the test statistics. The single marker analysis was applied both on the total 

sample and on only the genotyping sample (Attachment VI). The only variant which yielded a 

significant individual association to schizophrenia below 5% significance threshold was 

rs36008075 with an overrepresentation in patients (Ptotal=5x10-04). The significance remained 

when the analysis was performed only on the genotyping sample (Pgenotyping=9.5x10-04) and also 

even after correction for multiple testing both in the total sample and the genotyping sample 

(Ptotal=0.01 and Pgenotyping=0.02). A missense variant (I765M) located in the macro domain of 

CHD1L also yielded a nominal association below 10% significance threshold in the total and 

only genotyping samples (P= 0.080 and P=0.067, respectively). However, unlike rs36008075, 

this variant was overrepresented in control individuals implicating a protective effect direction.  

3.2.3.1.1 Functional assessment of rs36008075 

Splice site analysis 

The marker which showed per se significant association to schizophrenia was an exonic variant 

which was located 57 bp downstream of the wild acceptor site of exon 7. This variant was 

predicted to create an alternative acceptor site with a consensus value (85.5) higher than that of 

the original acceptor site (73.9) by the HSF (Figure 3.5). If the prediction was correct, it was 

MAF CMC WSS RANK DBM REP SKAT C-alpha

0.01 0.825 0.825 1.000 0.327 0.503 0.286 0.869

0.03 0.310 0.269 0.117 0.462 0.249 0.021 0.212

0.05 0.694 0.773 0.162 0.336 0.484 0.062 0.117

0.01 1.000 0.912 0.795 0.648 0.572 0.331 0.811

0.03 0.520 0.471 0.219 0.753 0.237 0.028 0.219

0.05 0.798 0.858 0.293 0.671 0.488 0.095 0.196

Genotyping 

sample

Total sample
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expected that 57 bp of sequence information would not be transcribed into mRNA leading to 

skipping of 19 amino acid residues. In order to assess whether the predicted effect was true, 

first a Sanger sequencing was performed on genomic DNA of 280 individuals from whom 

lymphoblastoid cell cultures were also available. 

 

Figure 3.5 Exonic variant predicted to create a cryptic splice site by in silico assessment with Human Splicing Finder The 
intronic and exonic sequences are given lower and upper cases, respectively. The altered base is given in red. The (a) wild and (b) 
alternative acceptor sites are marked with yellow boxes and the first exonic bases after the wild and alternative splice sites are 
denoted with arrows. The consensus value of the (a) wild acceptor site motif is 73.9 and the consensus value of the (b) alternative 
acceptor site motif is 85.5. The amino acids (n=19) skipped due to the new acceptor site are given in the figure. 
 

Data analysis identified five risk allele carrier individuals, all of which were heterozygous for 

the variant. As a next step, total RNA was isolated from the lymphoblastoid cell cultures of risk 

allele carriers (n=5) and individuals homozygous for the non-risk allele (n=15) to serve as 

controls. The mRNAs were reverse transcribed into cDNAs which then were Sanger sequenced 

for the region of interest (Figure 3.6). The analysis of the resequencing data revealed that the 

sequences which were predicted to have been skipped (57 bp) were indeed transcribed in the 

variant carrier individuals and that this variant did not lead to the predicted effect and the 

splicing occurred only at the true acceptor site (Figure 3.6). 

 

 
Figure 3.6 Electropherograms from cDNA sequencing in CHD1L gene. The electropherogram of an individual (a) homozygous 
for the non-risk allele and (b) heterozygous for rs36008075 are given where the point of variation is denoted with a red arrow. If 
the predicted splice site effect was true; two types of cDNA strands would have been available from a heterozygous rs36008075 
carrier. The cDNA strands carrying the variant would have been shorter than the strands not carrying the variant by 57 bp and this 
would have mimicked the appreance of a heterozygous deletion in the electropherograms, such as the example electropherogram 
from a heterozygous deletion in genomic DNA from another region of CHD1L gene (c). 
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In order to take tissue specific effects into account the same analysis was performed on the 

cDNA reverse transcribed from total mRNA isolated from pre-mortem hippocampus tissue. For 

this purpose cDNAs of two risk allele carrier individuals and two individuals homozygous for 

the non-risk allele were assessed. One of the risk allele carriers was homozygous and the other 

was heterozygous for the variant. The results remained the same indicating that the predicted 

splice site effect does not occur in the hippocampus tissue either. 

Expression analysis 

Considering a possible regulatory role for rs36008075, the relative abundance of CHD1L 

transcripts were investigated in five individuals heterozygous for the risk allele (mean 

agerecruitment=49.0) and 15 individuals homozygous (mean agerecruitment=44.67) for the non-risk 

allele. For this purpose quantitative real-time PCR was performed on cDNA from the 

lymphoblastoid cell lines (Figure 3.7).  

 

 

Figure 3.7 Boxplot for allele specific 

expression with respect to rs36008075. 

Boxplot for each genotype group (AA, n=15; AG, 

n=5) show the distribution of the expression 

values. The median values (middle black lines) 

and the quartiles (75%, top line; 25%, bottom 

line) are represented by the rectangles. The 

dashed vertical lines illustrate the distribution of 

the CHD1L expression levels. Outliers, showing 

more than 1.5 fold interquartile distance, are 

represented by a circle. The relative expression 

levels are calculated with reference to the mean 

expression value of non-risk allele carriers (AA) 

which is set as 100%. The relative mean 

expression value of risk allele carriers (AG) is 

94.26%. 

 

No significant difference between expression levels of risk allele carrier and non-carrier 

individuals was observed. However there was a non-significant reduction of CHD1L expression 

in risk allele carriers with about 5.7% difference in the mean expression values between the two 

groups (P=0.53, Welch two sample t-test) (Figure 3.7).  

3.2.3.2 Extended resequencing of CHD1L gene and follow-up of individual variants 

Extended resequencing of the CHD1L gene  

Based on the evidence for involvement of low-frequency CHD1L variants in schizophrenia, the 

CHD1L gene was resequenced in an additional 96 patients to increase the power to identify 
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additional variants of potentially high penetrance risk effects (non-sense, splice site, frameshift 

etc...) which could mimic the effects of the 1q21.1 microdeletion. A total of six variants which 

were not detected in the initial resequencing step were detected in the extended resequencing 

of the CHD1L gene (Table 3.12).  

Table 3.12 Low frequency variants identified in extended resequencing of CHD1L gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). AA, amino acid; ss, splice site variant  

 

Each of these variants was observed as a singleton event in different patients. Three of these 

were intronic variants (one known and two novel) with no direct effect on primary protein 

structure. The remaining three were defined as potentially functional variants. One of these was 

a non-sense variant and the other two were splice site variants located at essential acceptor and 

donor sites, respectively. The non-sense variant led to a premature stop codon in exon 8, at the 

amino acid position 261 (R261*) which is likely to lead to NMD although production of a 

truncated protein cannot be excluded (Figure 3.8)182, 191. One of the splice site variants 

(rs113139670) was located at the essential acceptor site of exon 14 and analysis by HSF 

suggested that the acceptor site is abolished by the consensus value changing from 88.3 to 59.35 

(Attachment VII-A(i)). Analysis by HSF revealed two alternative acceptor sites. One of these is 

located 45 bp upstream of the abolished site with a consensus value of 85.23 and in case it is 

used as an alternative acceptor site it leads to insertion of 16 amino acids coupled to a 

frameshift event at position 462 (Attachment VII-A(ii)). The frameshift leads to a premature 

stop codon at amino acid position 485. The other alternative acceptor site is located 77 bp 

downstream of the abolished site with a consensus value of 84.27 and in case it is used as an 

alternative acceptor site it leads to deletion of 26 amino acids leading to a frameshift event at at 

position 462(Attachment VII-A(iii)). The frameshift leads to a premature stop codon at amino 

acid position 466. The second splice site variant was located at the essential donor site of exon 

15 and was also suggested to lead to break down of the donor motif by the change of the 

consensus value from 87.66 to 60.83 (Attachment VII-B(i)). Analysis by the HSF revealed a 

cryptic donor site with a consensus value of 90.88 located 9 bp downstream of the broken site. 

If this cryptic donor site is used it leads to insertion of 4 amino acids coupled to a frameshift 

event at position 569 (Attachment VII-B(ii)). The frameshift eventually leads to a premature 

Genomic position 

(hg19)
dbSNP ID Alteration Location

AA 

changes
Conservationa Minor allele counts 

(n=patients)

146724404 rs143313938 C>T intron 2 - 2 1

146728227 - T>C intron 5 - 5 1

146731457 - A>C intron 5 - 4 1

146737632 rs144288940 C>T exon 8 R261* 5 1

146747766 rs113139670 A>G acceptor site/ exon 14 - 5 1

146751866 - T>G donor site/ exon 15 - 5 1
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stop codon at amino acid position 600. In both of the splice site variants exon skipping cannot 

be excluded either entirely or partially (affecting only some of the transcripts).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Non-sense variant observed in a schizophrenia patient in the CHD1L gene. The electropherogram of the wild type 
sequence (top) and the mutated sequence (bottom) are given. The triplet codons and the amino acids they encode are marked above 
and below of the wild and mutated sequences, respectively.  

Genotyping of potentially functional CHD1L variants  

As a next step the genetic association of individual CHD1L variants with schizophrenia was 

assessed by performing genotyping in a large patient-control cohort of German, Dutch and 

Danish origin (n=8768; Genotyping-2 sample). The aim was to target variants that are likely to 

have high penetrance effects contributing to increased disease risk. For this purpose potentially 

functional variants (missense, non-sense, splice site) identified in the initial or extended 

resequencing step which were observed in patients and in not more than one control individual 

were prioritized. From the total of seven low-frequency variants which fitted the selection 

criteria one failed (I827V) in the genotyping assay. Chi-square tests were applied followed by 

1000 random permutations of case control status to derive empirical p-values. The empirical p-

values were calculated both for the i) total sample (initial sequencing, extended sequencing and 

genotyping samples) and ii) the genotyping sample only (Table 3.13). The p-values were similar 

in both of the analyses and none of the individual markers yielded a significant association with 

schizophrenia in either of the analyses (Table 3.13). One of the splice site (rs113139670) 

variants and two missense variants (rs139791996, G700R; rs148289715, I765M) were equally 

distributed between patients and controls. The second splice site variant was not observed in 

additional patients but only in a single control individual. One patient specific missense variant 

from the initial resequencing sample (rs144757186, D381N) remained to be a singleton event 

after genotyping. The non-sense variant was observed in an additional four individuals. Three of 

these were patients of German (n=2) and Dutch (n=1) origin and one was a control individual of 

Danish origin leading to an overrepresentation in patients, yet not reaching statistical 

significance (Ptotal=0.138 and Pgenotyping = 0.245). 
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Table 3.13 Single marker association analysis of potentially functional variants in CHD1L gene 

Empirical p-values are calculated for the total (a) and follow-up (b) samples by 1000 times permutated case-control labels for 
Pearson’s chi-square test. Minor and total allele counts of each individual variant are given separately based on the respective 
genotype calls. 

 

The single marker analyses were also performed by application of logistic regression controlling 

for ethnicity (Attachment VIII). Empirical p-values were derived from 1000 permutations where 

the specific case/control ratios of every population were kept constant. No substantial 

differences between the p-values from Chi-square and logistic regression analyses were 

detected for any of the markers. 

3.2.4 Follow-up analyses of FMO5 gene 

Extended resequencing of the FMO5 gene 

Although no statistical support from the initial resequencing analysis was received for FMO5, 

the identification of the only non-sense variant at this gene made it a gene of interest as non-

sense variants are generally expected to have more deleterious effects and because this variant 

might have a similar functional effect as the 1q21.1 deletion. Therefore, first the FMO5 gene was 

resequenced gene in an additional 96 patients to identify additional variants of potential 

interest. A total of 2 variants which were not detected in the initial resequencing step were 

detected in the extended resequencing of the FMO5 gene (Table 3.14). Each of these variants 

was observed as a singleton event in different patients. One of these was a synonymous variant 

located at exon 2 with no direct effect on primary protein structure. The other variant was a 

missense variant leading to an arginine to glycine substititution (R319G) at a highly conserved 

region in exon 7, the substitution was predicted to be benign both by PolyPhen and SIFT. 

Table 3.14 Low frequency variants identified in extended resequencing of FMO5 gene 

 
aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of species 
where the nucleotide is conserved (e.g.  Score of 5 denotes full conservation). AA, amino acid; syn, synonymous  

 

Genotyping of potentially functional FMO5 variants  

As a next step, the functional variants identified in FMO5 (in the initial or extended 

resequencing step) which were observed at least in one patient and in not more than one 

control individual were genotyped in order to identify risk variants of relatively high 

146737632 rs144288940 R261* 4/1 9018/9072 0.138 3/1 8642/8884 0.245

146742648 rs144757186 D381N 1/0 8996/9052 0.245 0/0 8620/8864 -

146747766 rs113139670 splice site 20/19 9018/9068 0.798 19/19 8642/8880 0.935

146751866 - splice site 1/1 9026/9074 0.752 0/1 8650/8886 0.748

146758054 rs139791996 G700R 45/43 9014/9060 0.786 42/43 8638/8872 0.953

146759387 rs148289715 I765M 19/27 9024/9070 0.271 18/26 8648/8882 0.282

Total allele 

counts 

(npat/ncont)
b

Empirical               

P-valuea

Empirical               

P-valueb

Genomic 

position 

(hg19)

dbSNP ID Effect

Minor allele 

counts 

(npat/ncont)
a

Total allele 

counts 

(npat/ncont)
a

Minor allele 

counts 

(npat/ncont)
b

Genomic position 

(hg19)
dbSNP ID Alteration Location AA changes Conservationa Effect 

(SIFT/PolyPhen)

Minor allele counts 

(n=patients)

146696583 - C>G exon 2 syn - 2 1

146672962 rs142335408 T>C exon 7 R319G tolerated/benign 5 1
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penetrance. Genotyping was performed in the large patient-control cohort of German, Dutch 

and Danish origin (n=8768, Genotyping-2 sample). A total of 3 markers (missense and non-

sense) fitted the selection criteria for genotyping. Chi-square tests were applied followed by 

1000 random permutations of case control status to derive empirical p-values. The empirical p-

values were calculated both for the i) total sample (initial sequencing, extended sequencing and 

genotyping samples) and ii) the genotyping sample only (Table 3.15). The analysis showed that 

the missense variant (rs142335408, R319G) identified in the extended resequencing step was 

significantly overrepresented in patients both in the total (Ptotal=0.032) and the follow-up 

(Pgenotyping=0.048) samples (Table 3.15). The single marker analysis by logistic regression 

(controlling for the ethnicity) yielded similar p-values (Ptotal=0.032 and Pgenotyping=0.053) 

(Attachment IX). The other genotyped missense variant (rs58351438, K166E)  was non-

significantly overrepresented in controls (Ptotal=0.270 and Pgenotyping=0.167) and no additional 

individuals were identified to carry the non-sense variant (R485*) observed in a single patient 

in the initial resequencing step.  

Table 3.15 Single marker association analysis of potentially functional variants in FMO5 gene 

Empirical p-values are calculated for the total (a) and follow-up (b) samples by permutated case-control labels for Pearson’s chi-
square test. Significant p-values below 5% significance level are given in bold.The reported p-values for R319G are given for 
calculations based on 10000 permutations and for the other variants for calculations based on 1000 permutations as the analys es 
were re-ran with 10000 permutations only if significant p-values were derived from the initial analysis. Minor and total allele counts 
of each individual variant are given separately based on the respective genotype calls. 

3.3 Resequencing of the TCF4 gene 

Variants detected in German schizophrenia patients 

A total of about 7.2 kb genomic sequence per individual, totalling 1.37 Mb of sequence 

information in the whole sample was analyzed. The sequence analysis of TCF4 in 190 

schizophrenia patients revealed a total of 11 variants. Three of these were denoted as common 

(MAF≥5%) and eight were denoted as low-frequency (MAF<3%) variants. The frequencies of 

the common variants (rs1788027, rs6567210, rs8766) in the patients were not significantly 

different from their frequencies in the 379 European individuals of 1000 Genomes (P>0.05, data 

not shown). Among the eight low-frequency variants, three were defined as potentially 

functional (Table 3.16). Two of the potentially functional variants were novel missense variants 

(P156T, F211L) and one was a splice site variant (rs148658897). All of these variants were 

singleton observations in different patients. The missense variant leading to a Proline to 

Threonine substitution (P156T) was predicted to be damaging by SIFT with a low prediction 

confidence and possibly damaging by Polyphen. This variant was located at the N-terminal of 

146684095 rs58351438 K166E 63/76 9020/9072 0.270 58/75 8644/8884 0.167

146672962 rs142335408 R319G 17/7 9022/9068 0.032 16/7 8646/8880 0.048

146658628 - R485* 1/0 9024/9070 0.251 0/0 8648/8882 -

Empirical               

P-valueb

Genomic 

position 

(hg19)

dbSNP ID Effect

Minor allele 

counts 

(npat/ncont)
a

Total allele 

counts 

(npat/ncont)
a

Empirical               

P-valuea

Minor allele 

counts 

(npat/ncont)
b

Total allele 

counts 

(npat/ncont)
b
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the bipartite nuclear localization signal (NLS) of TCF4 defined by Sepp et al.174 (Figure 3.9). The 

other missense variant leading to a Phenylalanine to Leucine substitution (F211L) was 

predicted to be tolerated by SIFT and probably damaging by Polyphen. This variant was located 

between the AD1 and AD2 domains of TCF4 (Figure 3.9). The splice site variant (rs148658897) 

was located in the acceptor site of exon 3. The in silico analysis by HSF suggested an increased 

consensus value by ~9.2%, potentially leading to an increased splice site recognition. The 

remaining variants were synonymous or intronic variants with no direct effects on primary 

protein structure.  

Variants detected in 379 European individuals from 1000 Genomes Project 

The 1000 Genomes data from the 379 European individuals was analyzed for the same analysis 

frame used in the patients (18 coding exons and 50 bp up- and down-stream flanking intronic 

sequences). A total of 11 low-frequency variants (MAF<3%) were reported of which 3 were also 

detected in the present resequencing sample (rs35918540, rs143555588, rs76956936). Among 

the low-frequency variants from 1000 Genomes data, 2 were missense variants and the others 

were exonic or intronic synonymous variants with no direct effects on primary protein 

structure (Table 3.16). The missense variant leading to a Glycine to Arginine substitution 

(G452R) was predicted to be damaging by SIFT and probably damaging by Polyphen. The other 

missense variant leading to an Alanine to Valine substitution (A315V) was predicted to be 

damaging by SIFT and possibly damaging by Polyphen.  

3.3.1 Association analysis of low frequency variants in TCF4 gene 

All of the low-frequency variants identified in 190 German schizophrenia cases and in 379 

European individuals (n=16) were genotyped in an independent German cohort of ~1800 

patients and ~2250 controls. All of the variants yielded clearly distinguishable cluster plots for 

the genotypes. After genotyping, four variants remained to be patient-specific which were all 

initially detected in the patient resequencing sample. Among them, were the two novel missense 

variants P156T and F211L which remained to be singleton observations (Table 3.16). The 

patient carrying P156T had an age of onset of 16 years. The patient had a brother who carried 

the same mutation and was also diagnosed with schizophrenia. However, as DNA samples from 

other family members were not available, a complete segregation analysis could not be 

conducted. The patient who carried F211L had an age of onset of 15 years. No parental DNA was 

available for this individual. The two other patient-specific variants were the splice site variant 

(rs148658897) which was observed in an additional patient in the genotyping step and an 

intronic variant (rs144346949) which remained to be a singleton observation (Table 3.16). 
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Table 3.16 Low-frequency variants observed in TCF4 gene 

aEvolutionary conservation among human, chimp, rhesus, mouse and dog are presented as scores defining the number of spec ies 
where the nucleotide is conserved (e.g. Score of 5 denotes full conservation). 
bVariants are classified in the corresponding MAF categories based on their combined case/control frequencies in the total  sample.  
* Low prediction confidence was reported by SIFT for this variant. SS, splice site; Seq, resequencing sample; 1000 Gen, 1000 
Genomes sample; AA, amino acid; syn, synonymous; MAF, minor allele frequency. 

 

The patient who carried the splice site variant from the sequencing step had a disease age of 

onset at 18 years and had inherited the variant from the unaffected mother. No parental DNA 

was available for the second individual carrying the splice variant and the individual carrying 

the intronic variant. From the variants retrieved from the 1000 Genomes data, 3 were not 

observed in the present large German case-control sample including the missense variant 

G452R (rs138570124) (Table 3.16). The other missense variant reported in 1000 Genomes 

dataset (rs147445499, A315V) was identified both in patients and in controls of the German 

genotyping sample (Table 3.16). The missense variants observed in the German resequencing 

and/or genotyping samples and their localization on the protein domain structure of TCF4 are 

given in Figure 3.9.  

 
 
 
 
 
 
 
 
 

Sequencing Genotyping

53252586 rs148658897 A>G intron 2/ SS Seq - - 5/0.003 1 1/0

53018138 - G>T exon 7 Seq P156T
damaging*/possibly 

damaging
4/0.003 1 0/0

53017550 rs191953257 A>C intron 8 1000 Gen - - 5/- 0 0/0

52946804 - G>T exon 9 Seq F211L
tolerated/probably 

damaging
5/0.003 1 0/0

52942992 - G>A intron 9 1000 Gen - - 5/- 0 0/0

52942811 rs189454938 T>C intron 10 1000 Gen - - 5/0.003 0 2/2

52928807 rs35918540 C>T intron 11 Both - - 5/0.03 7 93/129

52928751 - G>A exon 12 Seq syn - 4/0.003 1 1/3

52928743 rs147445499 G>A exon 12 1000 Gen A315V
damaging/possibly 

damaging
5/0.003 0 9/7

52928685 rs144346949 A>G intron 12 Seq - - 5/0.003 1 0/0

52928669 - A>G intron 12 1000 Gen - - 4/0.003 0 3/1

52927150 rs143555588 T>C intron 13 Both - - 3/0.01 4 22/20

52901933 - C>T intron 15 1000 Gen - - 3/0.01 0 12/21

52901911 rs138570124 C>T exon 16 1000 Gen G452R
damaging/probably 

damaging
5/- 0 0/0

52901846 rs143944746 C>G exon 16 1000 Gen syn - 4/0.003 0 10/8

52895549 rs76956936 C>T exon 19 Both syn - 5/0.003 1 3/2

Minor allele counts 

(n=patients/controls)AA 

changes

Effect 

(SIFT/PolyPhen)

Conservationa/

MAFb

Genomic 

position 

(hg19)

dbSNP ID Alteration Location Source
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Figure 3.9 Protein domain structure of TCF4 and localization of observed rare missense variants. The protein domain 
structure is given for TCF4 isoform a (TCF4-B+) with 671 amino acid residues based on the study of Sepp et al.174. Only the variants 
which were observed in the German discovery and/or genotyping samples are depicted. Numbers of observations in the total 
sample are given for patients and controls (npatients/ncontrols). AD, transcription activation domain;  NLS, nuclear localization signal;  
bHLH, basic helix-loop-helix domain. 
 

The association analyses were performed by application of the CMC, WSS, RANK, DBM, REP, 

SKAT and C-alpha methods both on the total sample and only the genotyping sample at MAF 

cut-offs of 0.3, 1 and 3% (Table 3.17). The total sample consisted of the German patient 

discovery sample (n=190) and the independent German case-control cohort. It should be noted 

that the allele counts from 1000 Genomes individuals were not included in the total sample 

analysis to avoid introduction of possible sub-population specific rare variant patterns into the 

dataset (see section 2.6.8). The genotyping sample included only the independent German case-

control cohort.  

In the total sample analysis, when really rare variants with a MAF of <0.3% were considered, 

CMC, WSS, and REP revealed a significant association of TCF4 with schizophrenia (P=0.045, 

0.037 and 0.027, respectively) (Table 3.17).  

Table 3.17 Association analysis of rare TCF4 variants with schizophrenia 

The reported p-values for all test statistics are calculated based on 10000 permutations. Significant p-values below 5% significance 

level are given in bold. *The better performing one-sided test statistic is given for the replication based strategy of Ionita-Laza et 

al.178  

 
REP also reported a significant association at about the same level of significance for a MAF cut-

off of 1% (P=0.032). When the analysis was restricted to the genotyping sample, the association 

signal of the region weakened and the p-values of all tested methods increased compared to the 

total sample. For even rarer variants with a MAF<0.3%, WSS and REP reported an association of 

TCF4 region with schizophrenia below the 10% significance level (P=0.097 and 0.075, 

respectively), while the p-value from CMC was slightly above this level (P=0.120). For the higher 

MAF cut-off of 1%, REP revealed a p-value below the 10% significance level (P=0.094). 

 

MAF CMC WSS RANK DBM* REP* SKAT C-alpha

0.003 0.045 0.037 0.123 0.885 0.027 0.675 0.307

0.010 0.136 0.118 0.128 0.775 0.032 0.302 0.981

0.030 0.749 0.647 0.138 0.575 0.069 0.339 0.213

0.003 0.120 0.097 0.403 0.775 0.075 0.518 0.319

0.010 0.272 0.220 0.336 0.750 0.094 0.465 0.808

0.030 0.732 0.663 0.353 0.602 0.176 0.542 0.284

Total sample

Genotyping 

sample
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4. DISCUSSION 
 

Recent genetic evidence suggests that disease loci can harbour different types of genetic 

variations148, 149 ranging across the entire allele frequency/effect size spectrum. A plausible 

strategy for revealing the complete allelic disease spectrum is to resequence a locus identified 

previously through either GWASs or CNV studies since such an approach would capture rare 

and low-frequency sequence variants that are poorly represented on customized SNP chips. The 

generated sequencing data can then be utilized to assess the contribution of rare and low-

frequency variants to disease susceptibility. Apart from this, in larger genomic regions 

associated with the disease, the presence of disease-associated variants may help to narrow 

down the region of interest. Potentially deleterious variants can be subjected to functional 

assays to obtain insight into pathophysiology of the particular disease. Based on this, 

sequencing analyses were performed in three schizophrenia regions identified through CNV 

studies or GWASs. These regions comprised of the NRNX1 locus, 1q21.1 microdeletion region 

and the TCF4 locus. 

4.1 Rare genetic variation in the NRXN1 gene and schizophrenia 

Neurexins (NRXNs) are a family of presynaptic cell adhesion proteins encoded by three 

paralogous genes (NRXN1, NRXN2, NRXN3) each encoding a longer α-isoform and a shorter β-

isoform which share identical intracellular sequences and differ in their extracellular sequences. 

The α-neurexins are transcribed from a promoter upstream of exon 1 whereas the β -neurexins 

are transcribed from an intragenic downstream promoter192, 193. Besides the alternative 

promoter usage, NRXNs are subjected to extensive alternative splicing which leads to generation 

of thousands of different NRXN isoforms194. Accumulating evidence97, 98, 101, 103-107 has established 

large microdeletions disrupting the promoter region and the first exons of the NRXN1 gene as a 

robust genetic risk factor for schizophrenia with the latest meta-analysis from Levinson et al. 

yielding an odds ratio estimate in the range of 7.5-8.245. Common variants at the locus did not 

provide compelling evidence for association with schizophrenia in large GWASs published up to 

date27, 29. However, a putatively functional common variant was recently suggested to be 

associated with the response of European-American schizophrenia patients to clozapine; an 
atypical antipsychotic medication used in the treatment of schizophrenia195.  

Deletions at the NRXN1 locus are one of the two known schizophrenia-associated CNVs which 

affect one single gene yielding direct and robust evidence for its involvement in disease 

aetiology. NRXN1 is a biologically very plausible gene for schizophrenia as fundamental roles in 

synaptic differentiation, maturation and stabilization have been defined for the NRXN family 

both at inhibitory and excitatory synapses and mainly through their interaction with 
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postsynaptic neuroligins (NLGNs)192, 193, 196 which were also previously associated with 

schizophrenia197. Besides these fundamental roles NRXN1- α is also shown to be essential for 

functioning of cortical voltage-gated Ca2+ channels and calcium (Ca2+)-triggered 

neurotransmitter release198-200. Homozygous neurexin-1α knock-out mice have been shown to 

exhibit behavioural deficits analogous to schizophrenia as well as selective impairment of 

excitatory neurotransmission at hippocampus201.  

Although the association of NRXN1 microdeletions with schizophrenia is well-established, the 

possible contribution of rare NRXN1 sequence variants to schizophrenia awaited further 

exploration. For this purpose a resequencing approach in the current study was applied at the 

locus in a sample consisting of 94 schizophrenia patients and 94 controls. Majority of the 

schizophrenia-associated NRXN1 deletions affect the α-isoform and leave the β-isoform intact 

but some microdeletions affecting both isoforms have also been reported in schizophrenia 

patients45, 97, 107. Therefore the protein coding NRXN1 exons were targeted for both of the two 

major NRXN1 isoforms (α2 and β) to investigate a potential contribution of small DNA 

alterations at the locus to schizophrenia. A total of 16 variants were identified at the locus which 

collectively were overrepresented in patients without reaching statistical significance. Possible 

explanations for this observation include insufficient statistical power of the investigated 

sample to detect very rare risk variants at statistical significance, a true negative finding (i.e. the 

observed overrepresentation has occurred by chance) or complex patterns of disease-

associated and not associated variants at a locus that are difficult to dissect by a single statistical 

test. Statistical tests that show power advantages due to efficient combining of the signals of 

multiple rare variants across a genetic region for the association analysis of rare variants were 

either not available or were not conventionally in use by the time of the current study. 

Therefore the Fisher’s exact test was applied to analyze the data which was one of the state-of-

the-art methods by then202. However it is known that different statistical tests have variable 

sensitivies and powers to detect associations depending on the disease architectures at genetic 

loci134, 203.  

Among the 16 variants identified by resequencing, four were defined as potentially functional as 

they were leading to amino acid substitutions (E201G, P469S, L748I and I1068V). Two of these 

variants were exclusively observed in patients (E201G and I1068V) and they were followed up 

by genotyping to investigate potential high penetrance risk effects. No supportive evidence for 

such risk effects was found as one of these variants was identified in an additional control 

individual (E201G) and the other remained to be a singleton observation in the discovery 

patient (I1068V). The family data also did not yield any evidence for high penetrance effects. At 

the same time, it cannot be excluded that these are true risk variants for schizophrenia that are 

just very rare and thus difficult to detect reliably, even in relatively large sample sizes. 
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A number of independent publications have shown that NRXN1 deletions appear to have 

pleiotropic effects and they do not only predispose to schizophrenia but also to a large spectrum 

of other neurodevelopmental phenotypes including autism spectrum disorders (ASD)95, 196, 204-

210. The role of smaller NRXN1 aberrations in autism had been addressed by prior sequencing 

studies in ASD cohorts. Evidence for overrepresentation of ultra rare missense and splice site 

variants in NRXN1α211 as well as an overrepresentation of missense variants in NRXN1β212 in 

autism patients has been presented. Another group also reported some NRXN1 rare missense 

variants in their ASD cohort but did not find evidence for their overrepresentation in 

comparison to control cohorts207. Taking into account the possible pleiotropic effects of point 

NRXN1 mutations in analogy to the NRXN1 microdeletions, it was checked whether there was 

any overlap between the potentially functional variants identified in the current study and the 

ones reported by the aforementioned studies. Only the missense variant which was observed in 

2 control individuals (L748I) in the present study was reported in ASD patients and controls by 

Kim et al.207 and no supportive evidence was found for any of the two variants which were 

considered being most plausible for high penetrant risk effects (E201G and I1068V).  

By the time these results were published150 there was only one other study which had 

addressed the contribution of smaller rare variants in the NRXN1 gene to schizophrenia213. 

However, based on the observation that NRXN1 deletions mostly affect the promoter region and 

the first exons, the authors focused only on the promoter region which was not covered in our 

study. By resequencing the bidirectional NRXN1α promoter region in 170 patients and 160 

controls they discovered two patient specific rare variants213. The in silico analysis suggested 

that these variants could exert allele-specific changes in binding of several transcription factors 

with some connections relevant to neuropsychiatric disorders. The results were however 

inconclusive since no genetic or experimental follow-up was reported to establishe a significant 

link between these variants and schizophrenia.  

During the course of the present study, Gauthier et al., reported their findings from exon 

targeted resequencing of NRXN1, NRXN2 and NRXN3 genes in patients suffering from 

schizophrenia (n=143) and other neurodevelopmental phenotypes (ASD=142; non-syndromic 

intellectual disability=94)214. The authors described a number of missense mutations they 

identified in their patients. No observations of E201G and I1068V were reported in this study 

either. However, P469S was identified in 2 ASD patients, 2 schizophrenia patients and 1 patient 

with non-syndromic intellectual disability and in none of the 190 controls. In the current study, 

this variant was detected in a patient as well as a control individual and therefore was not 

followed up. Based on the apparent overrepresentation of this variant in patients with 

neurodevelopmental phenotypes in the study of Gauthier at al.214, it seems possible that this 

variant contributes to increased susceptibility to schizophrenia and/or other 
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neurodevelopmental diseases. Neverthless, genotyping in large samples would be necessary to 

establish these associations. Gauthier et al214 identified L748I both in patients and in controls 

similar to Kim et al.207 as described above. The combined evidence from us and the others 

therefore implicate no stronger risk or protective effect for this variant with regards to 

predisposition to neurodevelopmental phenotypes. 

Although the current study failed to identify any, NRXN1 point mutations of severe functional 

consequences and possible higher penetrance effects were reported in patients with 

schizophrenia by several studies which emerged after this study. The Gauthier et al.214 study 

was indeed one of these. Within their schizophrenia cohort enriched for sporadic cases, the 

authors identified a patient with no family history of mental illness who carried a de novo 

heterozygous frameshift mutation in the NRXN1 gene. The mutation led to a premature stop 

codon and a truncated protein which failed to localize at the cell surface, to promote synaptic 

differentiation and to bind two of its established postsynaptic binding partners. By exome 

sequencing Kong et al.,215 also identified a de novo stop-gain mutation in NRXN1 in a non-familial 

schizophrenic proband. Duong et al., described a family with mutations in the NRXN1 gene 

showing an intricate co-segregation with neurological, somatic and psychiatric disorders 

including schizophrenia216. The proband suffering from autism, non-syndromic intellectual 

disability and epilepsy was compound heterozygous for a 451 kb deletion affecting the 

promoter and the first four exons and a point mutation located at an essential splice site leading 

to a frameshift mutation and a premature stop codon. The deletion was inherited from a mother 

with sub-diagnostic autistic traits. The point mutation was inherited from the deceased father 

who was diagnosed with paranoid schizophrenia. The brother of the proband who suffered 

from psychotic disorder also carried only the point mutation. Interestingly all the above 

described point mutations observed in patients diagnosed with schizophrenia or psychotic 

disorder are leading to premature stop codons and therefore it is likely that they mimic the 

effects of NRXN1 microdeletions. In the light of these findings it seems that not only CNVs but 

also gene disrupting point mutations in the NRXN1 gene are predisposing to schizophrenia. 

Nevertheless, gene-based mining of large exome sequencing datasets in the near future are 

awaited to provide the complementary statistical support for the link between such point 

mutations and schizophrenia in analogy to the NRXN1 microdeletions.  

The current study failed to provide evidence for association of rare NRXN1 variants with 

schizophrenia however it should not be overlooked that the employed approach suffered from 

certain limitations. One of these was related to the discovery sample size which had limited 

power to detect rare variants associations. The reason for the limited sample size was that 

NRXN1 is one of the largest human genes217 and Sanger sequencing of the gene in 188 

individuals is a labour intensive and costly process even if only the coding sequences are 
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targeted. Secondly, for the discovery sample the aim was to select patients for whom parental 

DNA was available to check for de novo occurrence of an identified mutation and for co-

segregation analysis. This prerequisite limited the ability to enrich the sample for patients with 

a higher likelihood of having (stronger) genetic causes for disease (e.g. patients with an early 

age of onset and/or positive family history of disease218) Eventually a very small fraction of the 

patient discovery sample (5 out of 94 patients) had an early age of onset and/or positive family 

history of schizophrenia (see section 2.5) limiting the chances for identification of highly 

penetrant mutations. A final limitation of this study can be the follow-up strategy which was 

restricted to genotyping of only patient specific potentially functional variants in an 

independent case-control cohort. First of all, by applying patient exclusiveness as a selection 

criterion, disease associations of variants with smaller effect sizes (that are also more likely to 

be detected in controls) might have been overlooked. For example this might be relevant for the 

missense variant P469S which is discussed above. Secondly, the majority of the identified 

sequence variants in our discovery cohort (n=12/16) were assigned as ‘non-functional’ meaning 

that they reside in non-coding flanking sequences or are synonymous substitutions with no 

direct effect on primary protein structure. However; it is known that synonymous and intronic 

variants may also be associated with human disease219-223 and can exert functional 

consequences particularly on the regulatory level223. Interestingly, seven of the ‘non-functional’ 

variants in our study were exclusively observed in patients and one of them was even detected 

in three individuals. In comparison to this, there was only one control specific synonymous 

variant observed in a single individual. Therefore it is possible that some associations between 

these ‘non-functional’ variants and schizophrenia were overlooked by restricting the follow-up 

analysis only to the potentially functional variants. For example, one of the synonymous 

variants in our dataset which was not followed up was associated with autism in the Chinese 

Han population (rs2303298, p=3.45E-006; OR=2.152) following our study. This variant is a 

common variant in the Asian populations whereas it is rare in the European populations (1000 

Genomes Project: 12% vs. 0.04% MAF, respectively). Based on the evidence for shared genetic 

risk factors between autism and schizophrenia it remains plausible that this variant is also 

associated with increased schizophrenia risk.  

In conclusion, some protein truncating de novo or co-segregating point mutations in NRXN1 

have been identified in schizophrenia. Apart from them, no other low-frequency or rare variant 

with milder consequences has been defined to be associated with schizophrenia. However the 

lack of identification of such variants in NRXN1 does not necessarily implicate their absence. 

First of all only a limited number of studies have addressed the role of small sized aberrations in 

NRXN1 with relevance to schizophrenia one of which is our study150, 213, 214. Secondly none of 
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these studies –including ours- had sufficiently large sample sizes or more accurate 

methodologies (sample ascertainment, analysis method, follow-up, etc..) to generate statistical 

support for individual or collective disease association of such variants224. Therefore further 

research in this locus with relevance to low-frequency and rare variants is warranted. A next 

step might be the pooling of data from several resequencing studies on a collaborative basis to 

increase the sample size and thus the power to get a handle on the influence of rare variants at 

the NRXN1 gene in the development of schizophrenia. 

4.2 Rare genetic variation in the 1q21.1 microdeletion region and 
schizophrenia 

In large genome-wide surveys we and others had identified rare microdeletions on 

chromosome 1q21.1 as strong genetic risk factors for schizophrenia98, 108. The deletions were 

reported to be carried by 0.23% of the schizophrenia patients in comparison to 0.02% of the 

healthy individuals108. Since then, these associations have been replicated by several other 

studies45, 225, 226 and the latest meta-analysis from Levinson et al. yielded an odds ratio estimate 

in the range of 8.2-9.545. At the molecular level the reported microdeletion was identified in two 

different extents: a shorter form spanning 1.35 Mb and a larger form spanning about 2.19 Mb 

that contains the shorter form within its boundaries108. The shorter form represents the 

minimally deleted region which suggests that the genes relevant for the disease aetiology may 

lie among the 10 Refseq genes spanned by the 1.35 Mb large deletions. The larger and the 

shorter microdeletion regions are both flanked by tandem segmental duplications which 

suggest non-allelic homologous recombination may be the mechanism responsible from the 

formation of these microdeletions108. The role of common variants in this region has been 

addressed by analysis of SNP array data of the large sample in the SGENE study (4,718 

schizophrenia patients and 41,201 controls) to which we also contributed108 and no evidence 

was found for association of any of the tagged SNPs with schizophrenia. Also no evidence has 

emerged from the large schizophrenia GWAS datasets for common variants in this region27, 29. 

It remained to be determined i) whether the 1q21.1 region harbours other types of disease 

associated low-frequency or rare variants in addition to the reported CNVs and ii) which of the 

affected genes are responsible from the pathogenic effect of these microdeletions. To investigate 

these issues dissecting a greater fraction of genetic variation at this particular locus was 

necessary. Accordingly, in the current study a resequencing approach was carried out in 94 

schizophrenia patients and 94 healthy controls to discover small sized low-frequency variants 

below the resolution of array-based technologies. Only 7 of the 10 genes spanned by the shorter 

form of the microdeletion could be targeted and due to their location in segmental duplications 

it was not possible to target the remaining 3 genes (Attachment II). In order to investigate the 
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biological plausibility of the individual genes in the region, microarray based expression 

analysis was performed in pre-mortem human hippocampus tissue samples from epilepsy 

patients. Hippocampus is a relevant target tissue in schizophrenia as anatomical and functional 

alterations in patients with schizophrenia is well-established in this brain region227.  

In order to assess disease association of low-frequency and rare variants in the region, the 

sequencing data from schizophrenia patients and healthy controls was analyzed by application 

of statistical methods developed for locus based association analysis of rare variants. Several of 

the state-of-the-art association tests were applied simultaneously, as adviced203 and practiced228 

elsewhere. This is mainly because these methods are suggested to have different power 

advantages to detect associations depending on the underlying genetic architecture of a disease 

locus134, 203. Simulation studies203 have shown that different tests can outperform the others 

depending on interchangeable factors such as the proportion and number of causal and non-

causal variants, directionality of effects, differential effect sizes and variant frequencies in the 

region134. Our analysis revealed significant association of low-frequency variants with 

schizophrenia in the region as detected by the DBM method at 3% and 5% MAF cut-offs. DBM 

method was developed based on the evidence supported hypothesis that variants of shared 

effect directions may tend to cluster physically in the same genetic regions. For example 

variants located in close proximity in the DNA sequence could also be located in the same 

functional protein domains and have similar impact on disease risk181. Accordingly, deleterious 

rare variants and protective rare variants would be expected to cluster together in different 

genomic regions, whereas neutral variants would be expected to be sparsely distributed 

throughout the region181. DBM method assesses such spatial distribution patterns between 

variants observed in cases and controls and tests whether there are significant differences 

between these two groups. In this study such a significant difference was identified in the 

1q21.1 microdeletion region.  

The second major aim of the present study was to pinpoint the genes underlying the pathogenic 

effect of the microdeletions which could consequently implicate certain biological pathways 

involved in the disease pathophysiology. Therefore, the association signal was tried to be 

refined to one or few of the targeted genes by applying the same statistical methods to the data 

on gene level. By gene-based analysis CHD1L was identified as the sole signal driver gene in the 

region with significant DBM p-values very similar to those obtained from the whole region 

analysis. CHD1L was one of the genes for which a moderate expression in the hippocampus was 

confirmed by the microarray based expression analysis. With the aim of replicating this 

association signal an independent genotyping of the low-frequency variants in the CHD1L gene 

was performed in a case-control cohort of ~4000 German individuals. The association was 

replicated at 3% MAF cut-off with significant p-values from the SKAT but not the DBM method. 
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Of note, at the 3% MAF cut-off, SKAT was one of the two best performing tests after DBM in the 

association analysis of the initial sequence data. The other test was the C-alpha which is based 

on similar grounds with SKAT179. The lack of replication by the DBM method in the independent 

follow-up sample was not unexpected for a targeted genotyping based follow-up strategy. The 

DBM method is based on spatial information and a genotyping based follow-up fails to add any 

new location information to the dataset. The genotyping in reasonable sample sizes rather leads 

only to an increase in allele counts of pre-set variants and increases the odds that all or the vast 

majority of the variants would be observed at least once in each phenotype group (case vs. 

control). This is well anticipated in complex phenotypes since variants with full penetrance 

effects are not expected to be observed27, 229. Thus such a follow-up approach dilutes away 

patient and control specific spatial variant clusters leading to loss of an association signal 

detected by the DBM method applied on sequence data. The SKAT method assesses similarities 

between genotype patterns of individuals across multiple markers in a region of interest and 

tests whether there is a relation between genotypic similarities and phenotypic similarities (e.g. 

case-control status of individuals)179. Unlike the collapsing based burden tests  (CMC, WSS, 

RANK, etc.), genomic similarity based methods like SKAT are robust to variable effect 

magnitudes, to presence of neutral variants and variants of different effects (risk and 

protective) and they are indeed suggested to perform better than burden tests in the presence 

of such mixed effect directions and neutral variants179, 180, 203. Indeed by the single marker 

association testing in the genotyping sample, some evidence was observed for presence of both 

risk and protective variants in the CHD1L gene. The variant which was identified to have 

possible protective effect was a missense variant (I765M) and showed association below 10% 

significance level (P=0.067). This variant had a MAF below 0.3% suggesting that larger sample 

sizes may be required to establish more significant disease associations224. The presence of 

protective rare variants in disease loci has been shown in other complex phenotypes230, 231. 

However in the CHD1L gene the presence of opposite effect directions and proportion of rare 

and protective disease associated variants should be addressed further by additional genetic 

and functional studies to refine the disease architecture at this locus as the initial evidence from 

the current study for this type of architecture is not very strong. The variant which showed risk 

effect in the current study was a synonymous variant (rs36008075) and showed significant 

association with schizophrenia below 5% significance level (P=9.5x10-04). The functionality of 

this variant was investigated by i) testing in silico predicted splice site effect in lymphocytes and 

hippocampus and ii) assessing a possible regulatory role with allele specific expression analysis. 

While any splice site effects were ruled out, a non-significant decrease in CHD1L expression of 

individuals carrying the risk allele was observed. It should be kept in mind that only a small 

number of carrier individuals (n=5) could be included in the expression assay due to the rarity 
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of this variant. Therefore, it remains plausible that the observed decrease in expression in risk 

allele carriers is a true effect which cannot significantly be established with the small sample 

size employed. Assessment with larger samples is necessary in future. It is also possible that this 

variant has other functional consequences effecting mRNA stability, protein conformation and 

folding as such effects have been defined in some synonymous variants associated with human 

disease220.  

Two recent independent studies have reported on the effect of 1q21.1 copy number variants on 

the expression profiles of CNV spanned genes in i) EBV-transformed lymphoblastoid cell lines of 

individuals carrying 1q21.1 microdeletions or microduplications and showing a range of 

phenotypes including schizophrenia232, and ii) dorsolateral prefrontal cortex of a schizophrenia 

patient carrying the 1q21.1 microdeletion233. Both studies have shown positive correlations 

between the expression levels of the majority of the spanned genes and the number of genomic 

copies of the 1q21.1 region. Interestingly in these studies CHD1L was either the top affected 

gene232 or was one of the two top affected genes (with BCL9)233 among all the genes lying in the 

region.  

In order to identify additional mutations in the CHD1L gene with strong functional 

consequences, (e.g. a non-sense variant which can mimic the reduced expression effect of 

1q21.1 microdeletions on CHD1L) an extended sequencing of the gene in additional 96 patients 

was performed. Indeed a non-sense mutation was identified in a single patient located at exon 8 

(R261*). Although there are many exceptions it is generally anticipated that mRNAs harbouring 

PTCs located 50-55 bp upstream of the last exon-exon junction are subjected to degradation by 

NMD (50-55 nucleotide rule)182, 191, 234. Due to its position at an early exon it is therefore 

probable that R261* also leads to NMD. In the extended sequencing sample two splice site 

mutations in two different patients were identified which also might have strong functional 

consequences (i.e. leading to frameshift and PTCs as suggested by in silico analysis). As a next 

step, genotyping of several CHD1L variants was performed in a large case-control cohort of 

~9000 individuals of German, Dutch and Danish origin to assess their individual disease 

associations. For this purpose a set of variants were prioritized for cost effectiveness. Therefore, 

selection criteria were tailored which would enable assessment of variants that are likely to 

have high penetrance risk effects. In accordance missense, non-sense and splice site variants 

detected in the initial or extended sequencing steps in patients and in not more one control 

individual were targeted. The genotyping did not reveal any significant disease associations for 

any of the screened variants. However it should be noted that 3 of the 6 genotyped variants 

remained to be very rare including a missense variant, a splice site variant and the non-sense 

variant R261* (MAF=0.006%, 0.01%, 0.028%, respectively). Therefore it can be argued that the 

present sample could have had limited power to detect individual disease associations of these 
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ultra rare variants, despite the fact that it comprised of several thousand individuals224. 

Interestingly the non-sense variant R261* was identified in additional 3 patients and in only 1 

control individual. Taking that even the 1q21.1 microdeletions themselves are identified in 

healthy individuals it is well-anticipated that this variant also has incomplete penetrance76, 98. 

However the rarity of this variant necessitates the employment of even larger samples to obtain 

further genetic evidence and this might pose a significant challenge. One plausible approach is 

therefore to prove a biological outcome of this mutation that mimics the effects of the 1q21.1 

microdeletions on CHD1L232, 233. Further functional studies assessing the relevance of this 

mutation for schizophrenia can then also be performed by using animal models or human cells 

derived from mutation carrier patients148.  

CHD1L encodes for the chromodomain helicase DNA binding protein 1-like which belongs to the 

SNF2 (sucrose non-fermenting 2)-like subfamily of the SNF2 superfamily of ATPases235, 236. 

CHD1L was shown to play roles in DNA repair237, 238, chromatin remodelling237, 239, 240,  gene 

expression 241-243 and cell cycle235, 243, 244 regulation. It is also known as ALC1 (amplified in liver 

cancer 1) as it was originally identified as a candidate oncogene located in a human 1q21 region 

which is recurrently amplified in hepatocellular carcinomas244. Following reports firmly 

established the association between CHD1L and hepatocellular carcinoma241, 245, 246. Recently, 

CHD1L has also been implicated in congenital anomalies of the kidney and urinary tract247, 

ovarian carcinoma248 and colorectal carcinoma235. CHD1L is not the first cancer associated gene 

implicated in schizophrenia as several other ‘cancer genes’ have been related to schizophrenia 

in independent studies249, 250 (e.g. Adenomatous polyposis coli gene, APC,197; Neuregulin-1251; 

Protein kinase B252, etc..). In addition, a relationship between cancer and schizophrenia has been 

long recognized through epidemiological studies despite the presence of some contradictory 

reports 249, 250. One explanation is that some genes involved in cancer proliferation might confer 

protective advantage in biological processes such as proliferation, migration and apoptosis that 

could have detrimental effects on neurodevelopment if dysregulated249. In CHD1L-transgenic 

mice CHD1L has been shown to promote cell proliferation by enhancing the G1/S phase 

transition in the cell cycle via regulating the expression of some cell cycle proteins (i.e. Cyclin A, 

Cyclin D1, Cyclin E, CDK2, CDK4, p21, Rb, p27Kip1, and p53)243, 244. Some of these proteins (i.e. 

Cyclin A, Cyclin D1, Cyclin E, p21, p27Kip1) have also been shown to be dysregulated in neural 

progenitor cells253, 254, oligodendrocyte precursors255, post-mitotic oligodendrocytes256 and post-

mitotic GABA cells257 derived from schizophrenia patients and in some cases were shown to be 

accompanied by in vitro cell cycle abnormalities in patient derived cell cultures254. Alterations in 

cell cycle dynamics have been suggested to i) have downstream effects on neurogenesis if they 

affect neural progenitor cells254, 258, ii) lead to abnormal cell cycle re-entry, de-differentiation 

and/or apoptosis in post-mitotic neural cells256, 257. Therefore the normal regulation of cell cycle 
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seems to be a very important component in control and maintenance of temporal and spatial 

cascade of neurodevelopment. Compellingly some of the proteins regulated by CHD1L are 

known to have other biological functions in different aspects of neurodevelopment other than 

cell-cycle regulation (e.g. p27Kip1 and Rb in neuronal migration)259.  

CHD1L has also been shown to regulate ARHGEF9-mediated Cdc42 activation by up-regulating 

the expression of ARHGEF9242. Interestingly ARHGEF9 has been suggested as a candidate blood 

biomarker gene in schizophrenia based on increased expression levels during high 

hallucinations states260. ARHGEF9 encodes for collybistin, a guanine nucleotide exchange factor 

(GEF) which is most abundantly expressed in brain with up-regulated expression particularly 

during major neuronal differentiation and synaptogenesis times and it is suggested to play a 

role in postmitotic neurons261, 262. Collybistin selectively activates the small GTPase Cdc42263 

which plays a fundamental role in dendritic spine formation264-267. Cdc42 was associated with 

lower expression in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia patients and 

this was suggested to contribute to the observation of reduced dendritic spine density in the 

DLPFC of subjects with schizophrenia268, 269. Collybistin binds also gephyrin which is a 

scaffolding protein at GABAergic synapses. By regulating gephyrin clustering at GABAergic 

synapses; collybistin is known to play a pivotal role in formation and maintenance of 

postsynaptic GABAA receptor clusters270. Altered cortical GABA neurotransmission associated 

with cognitive deficits in schizophrenia is well documented by several lines of evidence 

including altered densities and activities of GABAA receptors21, 22. Just recently the GPHN gene 

encoding for gephyrin was implicated in schizophrenia based on discovery of rare exonic GPHN 

microdeletions in unrelated individuals with different neurodevelopmental phenotypes 

including ASD and schizophrenia271.  

CHD1L has also been the first cellular protein identified to bind Nur77 and inhibit Nur77-

mediated apoptosis272. Nur77 is an inducible transcription factor which belongs to the orphan 

NR4A subgroup of nuclear receptor superfamily273. The members of this subgroup are early 

response genes induced by various physiological stimuli (e.g. stress, cytokines, growth factors, 

neurotransmitters, physical stimuli, etc...) and involved in various biological processes including 

cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, 

carcinogenesis and atherogenesis273. In the CNS, NR4A genes including Nur77 are suggested to 

have important roles in regulation and modulation of the dopaminergic system and are 

implicated in psychiatric disorders including schizophrenia274 which has long been associated 

with imbalanced dopamine neurotransmission19, 20. Nur77 expression was shown to be reduced 

in the prefrontal cortex of schizophrenia patients275. Administration of antipsychotic drugs 

which block dopamine D2 receptors are known to induce expression of Nur77276, 277. Nur77 is 

suggested to regulate the expression of some dopamine neurotransmission genes278. Dopamine 
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neuron biochemical activity and dopamine turnover were shown to be altered in Nur77 

knockout mice279.  

Based on the presented findings from literatiure it is plausible that CHD1L contributes to the 

aetiology of schizophrenia through its contribution to several pathways implicated in 

neurodevelopment and brain functioning. However it should be noted that all the studies 

reporting the regulatory roles of CHD1L were conducted in the context of CHD1L’s 

tumorigenesis promoting activities and with cells or tissues outside of the CNS242-244, 272. As 

CHD1L is expressed in human brain, further studies are awaited to confirm that the regulatory 

roles of CHD1L in CNS are overlapping with those outside of CNS.  

The genetic overlap between schizophrenia and autism spectrum disorders is well established 

by the identification of pleiotropic CNVs95. Recent human genetic studies of autism have yielded 

some supportive evidence for the findings of the current work. First of all recurrent de novo 

mutations in autism have been identified in the chromodomain helicase binding protein 8 

(CHD8) gene 280-282 which is related to the CHD1L gene as it encodes for a member of the protein 

family CHD1L belongs to. Second supportive evidence came from the study of Girirajan et al. 283  

who performed a customized targeted microarray based CNV analysis in individuals with 

autism and healthy controls to refine the known ASD associated CNV regions to one or a few 

candidate genes. 1q21.1 region was also targeted in this study since 1q21.1 CNVs are among 

those which are predisposing both to schizophrenia and autism225, 284, 285. The authors identified 

a small atypical microdeletion spanning only the CHD1L gene in the 1q21.1 region in an 

individual with autism which was not observed in any of the controls283. Girirajan et al. 

therefore suggested CHD1L to be “a compelling candidate” gene for autism. 

Due to the significance of non-sense mutations as described above some of the follow-up efforts 

in this study were also focused on to the FMO5 gene which was the only gene where a non-sense 

mutation in a single patient from the discovery cohort was identified. The non-sense mutation 

was located at the terminal exon of FMO5 and therefore it is probable that a truncated protein is 

formed by avoiding the NMD182, 185, 191. Yet it cannot be excluded that other NMD mechanisms 

which act irrespective of the “50-55 nucleotide rule”234, such as non-sense mediated 

transcriptional gene silencing or non-sense mediated translational repression take place191 to 

avoid the production of a truncated protein. FMO5 was resequenced in an additional 96 patients 

in order to investigate whether the gene harboured more potentially functional risk variants, 

and data analysis revealed only another missense variant in this sample. Similar to the CHD1L 

gene, all the potentially functional FMO5 variants observed in patients and in not more than one 

control were genotyped in the large genotyping sample of individuals with German, Dutch and 

Danish origin. The non-sense variant remained to be a singleton observation in the discovery 

sample after genotyping. Therefore it can neither be confirmed nor excluded that some 
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contribution of this variant to schizophrenia susceptibility exists. Interestingly, the genotyping 

identified one missense variant which was significantly associated with schizophrenia. FMO5 

belongs to the family of flavin-containing monooxygenases (FMOs) which are microsomal 

enzymes responsible from oxygenative metabolism of several endogenous and exogenous 

chemicals286. Although the FMOs are primarily expressed in detoxication related tissues like 

liver, kidney and lung they were also shown to be expressed in mammalian brain287, 288. 

However the role of FMOs in CNS needs further exploration. In mice FMO5 was one of the 

highest expression showing FMOs in brain288, 289 and in humans FMO5 expression was primarily 

localized to spinal cord with low expression levels in the remaining regions of the CNS290.In the 

present study FMO5 was one of the genes which yielded signal intensities below the background 

signal threshold in microarray analysis from hippocampus tissues. However, in the Allen Human 

Brain Atlas FMO5 has been shown to be expressed in the human hippocampus. Therefore, it 

seems probable that low expression levels of FMO5 fell behind the detection sensitivity of our 

microarray assay or that some of the tagging probes have failed in the microarray291, 292. Recent 

studies have implicated FMOs in Amyotrophic Lateral Sclerosis (ALS); an adult-onset, 

progressive, and fatal neurodegenerative disease289, 290. The link between FMOs and ALS was the 

suggested role of FMOs in detoxication under oxidative stress conditions based on their 

involvement in metabolism of nitrogen- and sulfur-groups present in proteins or chemicals290. 

While the role of FMOs and particularly FMO5 in CNS awaits further exploration, accumulating 

evidence suggests that oxidative stress may be involved in pathophysiology of schizophrenia293. 

Interestingly common variation in FMO3 gene has recently been associated with the volume of 

lentiform nucleus; a bilateral structure in basal ganglia which is implicated in schizophrenia due 

to subtle volume alterations reported in schizophrenia and other psychiatric disorders294. 

However the extent of functional overlap between FMO3 and FMO5 is not yet clarified188, 295. 

Therefore, although our findings may implicate a possible contribution of rare FMO5 variants to 

schizophrenia, their replication and further assessment of this gene are necessary since the 

overall functional evidence linkinging FMO5 to disease pathophysiology is currently weak.  

It should be emphasized that our findings do not exclude the presence of other schizophrenia 

risk genes in the 1q21.1 region. Although no support for common variants in the region has 

emerged from large schizophrenia GWAS datasets, some independent studies reported 

association of common variants in GJA8 and BCL9 genes with schizophrenia. GJA5 and GJA8 

encode for connexion 40 and connexion 50, respectively, which are subunits of gap junctions. 

Gap junctions are responsible from contacting plasma membranes by forming channel 

structures and are involved in direct metabolic and electrical communication among various 

cell types found in the mammalian brain296. They are also reported to be play crucial roles 

mammalian neural development296, 297. Prior to the discovery of the 1q21.1 microdeletions, the 
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chromosome 1q298-300 and more specifically the 1q21‐q22 region301 had been implicated in 

schizophrenia by linkage analysis reports. Based on the their biological plausibility and their 

chromosomal location at the 1q21 region the role of GJA5 and GJA8 genes in schizophrenia had 

been addressed in a previous study before the discovery of the 1q21.1 microdeletions. The 

authors performed an association analysis of four polymorphisms for each of the two connexin 

genes in a sample of 190 schizophrenia patients and 190 controls of Caucasian origin. While the 

analysis revealed no association in the GJA5 gene, a significant association between 

schizophrenia and a haplotype in the GJA8 gene was identified. However no further reports 

linking the GJA8 gene to schizophrenia have emerged since then, neither for common or rare 

variants. The current study also did not find any evidence for involvement of low-frequency or 

rare GJA8 variants in schizophrenia. Moreover it is known that mutations in GJA8 gene are 

causative of zonular pulverulent cataract (CZP1; OMIM: 116200) and cataract-microcornea 

syndrome (CAMIS; OMIM:116150]. Indeed one of the missense variants (I247V) identified in a 

patient in the present study sample was previously defined in a Russian mother and her son 

with zonular pulverulent cataract189. In the light of these the contribution of GJA8 varians to 

schizophrenia remains to be a controversial issue. BCL9 has a critical role in the Wnt signal 

transduction cascade by promoting the transcriptional activity and nuclear retention of beta-

catenin (β-catenin) 302-304. The Wnt/ β-catenin signalling pathway has significant roles in various 

neurobiological domains both in developing and adult cental nervous system and converging 

evidence is supporting a role of this pathway in pathophysiology of several neuropsychiatric 

disorders including schizophrenia305-308. In addition a number of genes encoding components of 

Wnt signalling pathway have been associated with schizophrenia susceptibility251, 309-312. Due to 

its role in Wnt signalling pathway and its location in the 1q21.1 microdeletion region a previous 

study has investigated the role of common BCL9 polymorphisms in schizophrenia in Chinese 

Han population and identified several SNPs significantly associated with the disease313. 

However due to the known genetic heterogeneity of schizophrenia susceptibility loci across 

different ethnic populations314, the reported associations await replication in European 

populations by fine mapping of the locus. Yet BCL9 gained some additional support from a 

recent report of a European-American GWAS meta-analysis on negative symptoms of 

schizophrenia315. Although no genome-wide significant hits were identified, a number of SNPs 

showed association with negative symptoms of schizophrenia at p<5×10−5 and the study-wide 

top association signal originated from an intronic SNP in the BCL9 gene (rs583583, 

P=6.00×10−7). It should be noted that in the study of Ye et al., BCL9 was the second top down-

regulated gene with CHD1L in the dorsolateral prefrontal cortex of a schizophrenia patient 

carrying the 1q21.1 microdeletion233. Although BCL9 was shown to be expressed in 

hippocampus by the microarray analysis, no evidence for the schizophrenia association of low-

http://www.omim.org/entry/116200
http://www.omim.org/entry/116150
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frequency BCL9 variants was found in the current study. Therefore it could be hypothesized that 

in the case the gene is a true schizophrenia risk gene, the allelic spectrum of disease in the locus 

may be restricted to only common variants. Finally it is noteworthy to re-mention that the 

GPR89B, GPR89C and NBPF11 genes lying also in the minimally deleted 1q21.1 region could not 

be targeted by sequencing due to the technical limitations. Therefore it cannot formally be 

excluded that other disease related variants are present in these genes. However, based on 

empirical evidence from this study CHD1L, and from other studies BCL9, appear to be the most 

compelling candidates in the 1q21.1 microdeletion region so far.  

In the current study, resequencing of the targeted genes was also performed in two 1q21.1 

microdeletion carrier schizophrenia patients in order to explore the potential mechanism of 

1q21.1 microdeletions in exerting their pathogenic effects. However resequencing data from 

these 2 patients did not provide evidence for an unmasking of recessive variants as no rare 

alteration of a potential functional relevance was found in them190.  

The majority of the schizophrenia associated CNVs span multiple genes27. The attempts to pin-

point true disease relevant genes in these regions by targeted sequencing have been limited to 

prioritized gene screening as labour intensive and financially demanding efforts are required to 

screen complete gene sets. One example is the study by Carroll et al.316 where they prioritized 

two genes (PAK2, and DLG1) in the 3q29 microdeletion region which is also associated with 

schizophrenia and performed a sequencing analysis in patients and controls316. The authors did 

not find any evidence for association of rare variants in these genes with schizophrenia. To the 

best of our knowledge; this is the first study that systematically and in unbiased approach 

screened all the targetable genes in a multiple gene spanning, schizophrenia associated CNV 

region. By the systematic analysis of low-frequency variants in the 1q21.1 microdeletion region 

and the follow-up replication steps it was discovered that low-frequency variants in the CHD1L 

gene contribute to the allelic spectrum of schizophrenia which presents CHD1L as a novel 

candidate gene in schizophrenia.  

4.3 Rare genetic variation in the TCF4 gene and schizophrenia 

TCF4 at chromosome 18q21.2 was one of the first loci that surpassed the genome-wide 

significance threshold in the first wave of GWASs that emerged from collaborative efforts of big 

consortia76. The signal originating from a common SNP (rs9960767) located in an intron of the 

TCF4 gene76 was followed by an independent second association signal captured from two 

intergenic SNPs (rs430948282, rs1296654787) in perfect LD with each other and located 

between the coiled-coil domain containing 68 (CCDC68) gene and the TCF4 gene. Finally another 

association signal from an intronic common SNP in moderate LD with rs9960767 was also 

reported in the recent PGC study87. The repeatedly reported association of common variants at 
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the locus with schizophrenia has thus made TCF4 one of the most robust schizophrenia risk 

genes.  

The TCF4 gene encodes for transcription factor 4 which is a member of the class I basic helix-

loop-helix (bHLH) protein family. This family is known to recognize and bind the Ephrussi-box 

(“E-box”) motif on the DNA. Homodimerization as well as its heterodimerization with other 

molecules are necessary for DNA binding properties of TCF4. Interestingly some of the binding 

partners of TCF4 -such as HASH1, Math1 and neuroD2- are known to have fundamental roles in 

neurodevelopment80, 317, 318. TCF4 itself is also a very plausible gene for schizophrenia based on 

several lines of evidence. It has been shown that TCF4 is important for neurodevelopment 

through its role in maturation of oligodendrocyte progenitor cells319 . TCF4 is widely expressed 

in adult as well as in developing human central nervous system with particularly higher 

expression levels reported in some tissues such as hippocampus and neocortex known to be 

relevant for development of schizophrenia320. Previously it was shown that mice over 

expressing TCF4 in their forebrains exhibit cognitive impairments and pre-pulse inhibition 

which are analogous to deficits in schizophrenia patients81. Accordingly a recent study has 

shown significantly increased levels of TCF4 expression in patients diagnosed with a spectrum 

of psychotic disorders including schizophrenia and bipolar disorder321. The same study 

reported the association of a set of common TCF4 variants with negative symptoms, cognitive 

impairments and cerebellar volume in schizophrenia patients. TCF4 is also a validated target 

gene of miR-137 which yielded the top association signal in the recent PGC schizophrenia GWAS 

meta-analysis87, 322.  

Despite the repetitive evidence linking common variation at TCF4 to schizophrenia, the possible 

influence of rare TCF4 sequence variants on schizophrenia susceptibility remained to be further 

explored. In order to address this issue exon-targeted resequencing of TCF4 in 190 German 

schizophrenia patients was performed. To account for the genetic variation at the locus in 

control populations the variant data from 379 European individuals of 1000 Genomes Project 

was used. Using the data of 1000 Genomes Project instead of resequencing ethnically matched 

German controls was an approach undertaken due to its cost effectiveness. However one should 

be aware that the employment of publicly available datasets in rare variant studies should 

always be considered with caution since rare variants typically exhibit different and stronger 

stratification than common variants and many are expected to be population specific 323-325. In 

other words, it remains unknown how accurately the rare genetic variance at a locus in a 

specific population represents the rare genetic variance at the locus in a different population. 

For example the 1000 Genomes dataset includes 5 different populations within the European 

sample (CEU, GBR, FIN, TSI, IBS) and substantially different rare variant patterns were shown 

even in these closely related populations (e.g. IBS and FIN populations carried excesses of rare 
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variants)154. Accordingly the rare variants retrieved from 1000 Genomes are not likely to 

precisely represent the variance at the TCF4 locus in the German population. Therefore based 

on the argument that the use of rare variant information from geographically or ancestrally 

unmatched control individuals could introduce certain bias to the datasets180, 324, an association 

analysis was not applied on the German patient discovery set and the 1000 Genomes discovery 

set180, 324. Rather an approach was undertaken where all the variants (n=16) defined in either of 

the two datasets were genotyped in an additional independent case-control sample of German 

origin. The genotyping revealed that although a substantial proportion of the 1000 Genomes 

variants (n=8/11) in the TCF4 locus were observed in the German population some were not 

represented at all (n=3/11). This could mean that these variants are either population specific 

rare variants or are private mutations which are not mutually exclusive.  

The association analyses were performed on i) the total sample composed of the genotyping 

sample and the discovery sample of 190 schizophrenia patients and ii) only the independent 

case-control genotyping sample. In the total sample analysis the allele counts from the 1000 

Genomes individuals were not included based on the same rationale introduced for not 

performing an association analysis among the discovery samples.  

In the total sample analysis three different rare variant association methods reported 

association of rare TCF4 variants (MAF≤0.3%) with schizophrenia below the 5% significance 

level. However it is possible that these results were affected by type I error based on the 

possible bias introduced to the analysis by inclusion of genotypes of only the patient discovery 

sample. The same bias had previously been argued to be negligible in the case of a negative 

association report as described in the study of Dwyer et al., where mutation screening followed 

by association analysis of rare sequence variants in the ZNF804A gene was performed123. 

However this argument does not apply to the current study where significant disease 

associations were observed and therefore one should be cautious with interpretation of the 

strong association signal observed in the total sample analysis. Yet, the analysis of only the 

genotyping sample which is free of this bias also revealed some evidence for association of rare 

TCF4 sequence variants with schizophrenia. The association was observed with p-values below 

10% significance level yielding a weaker signal from that observed in the total sample analysis. 

The weakening of the association was an outcome of the exclusion of allele counts from i) three 

patient-specific variants (P156T, F211L, rs144346949) which were observed only in the 

discovery sample; and ii) two other variants (rs148658897, rs76956936) for which patient 

allele counts were disproportionally higher in the smaller discovery sample. Observation of 

some association even after the loss of the contribution of these variants suggests that rare 

genetic variation at the TCF4 locus might contribute to the allelic spectrum of schizophrenia 

risk. Just recently and after the completion of the current study Hu et al. reported deep 
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sequencing results from a number of schizophrenia genes identified through GWASs and 

showed an increased frequency of rare variants in cases compared with controls within a 

number of genes, one of which was the TCF4 gene326. This finding is in line with the findings of 

the current study and when taken together it could be proposed that only common but also rare 

genetic variation at the TCF4 locus may be involved in genetic susceptibility to schizophrenia. 

In the present work, data analysis was performed by application of several methods from 

classes of statistical tests that can be roughly divided into collapsing and non-collapsing based 

association tests. All three methods which reported an association signal from the TCF4 locus 

were collapsing based which is indicative of a shared effect direction by the majority of the 

causal variants in this study179, 180, 203. The REP method which always yielded the lowest p-values 

calculates two one-sided test statistics assessing risk and protective effects individually178. Since 

association signals were received from the one-sided test statistic of REP accounting for risk 

effects, it can be concluded that the major association signal in this region comes from risk 

variants. It should also be noted that the association signals were obtained at the lowest MAF 

cut-off of 0.3%. Recently Need et al. published their findings from exome sequencing of a 

schizophrenia case-control sample followed up by large scale genotyping of prioritized 

variants145. The major implication of this study is that there is a limited role for moderately rare 

risk variants (MAF=0.01-0.05) with moderate effect sizes and the contribution of rare variants 

to schizophrenia is more likely to arise from allelic heterogeneity with multiple variants of  

much lower frequencies145. The results of the current study are therefore in line with this 

proposition considering the TCF4 locus where only truly rare variants (MAF<0.3%) seem to 

yield an association signal. However one cannot extend this interpretation to other disease loci 

as moderately rare variants with mild effect sizes can still be present and establishment of the 

disease associations of these variants would require much larger sample sizes and/or 

application of methodologies (e.g. collapsing based association tests) other than those employed 

in the Need et al.145 study. 

One of the schizophrenia GWAS signals implicating TCF4 was located in an intergenic region 

between the TCF4 and the CCDC68 genes82, 87. TCF4 was mostly assumed as the signal driving 

gene in the region based on the location of the other schizophrenia associated SNPs in the TCF4 

locus76, 87, 320. Yet this assumption awaited further genetic evidence for confirmation. Our 

findings might also serve this purpose as identification of locus specific disease associated rare 

variants is a plausible strategy for fine mapping of GWAS signals. This is mainly because the 

SNPs in commercial microarrays represent the genetic information from neighbouring markers 

due to LD structures that can span even several genes and therefore the disease associated 

common variants from GWASs are not necessarily the causal variants71.  
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In the current study two novel patient-specific missense variants were identified which might 

play a substantial role in disease etiology. It is known that in addition to nonsense mutations 

and deletions leading to haploinsufficieny, there are a number of missense variants in the TCF4 

gene which are causative of Pitt Hopkins syndrome (PTHS; OMIM: 610954). PTHS is a severe 

neurodevelopmental disorder characterized by intellectual disability, facial dysmorphisms, 

breathing problems, postnatal microcephaly and epileptic seizures327. Apart from two 

exceptional variants located in the AD2 domain and between the bHLH and AD2 domains, all of 

the PTHS causative missense variants are accumulated at the bHLH domain responsible for DNA 

binding as well as homo- and heterodimerization properties of TCF4328. On the contrary, all of 

the missense variants observed in this study were located upstream of AD2 domain and are 

quite distant to the bHLH domain (Figure 3.9). Hu et al. reported the same observation, and 

found that in contrast to the PTHS mutations congregating in the C-terminal domains, the 

functional mutations identified in their cohorts were located principally in the N-terminal 

domains326. The distinctive spatial distribution of the missense variants in the present study 

might indicate different and possibly less severe functional consequences in comparison to the 

PTHS mutations. This would be in line with some previous arguments that while variants 

leading to severe TCF4 dysfunction could be causative of PTHS, variants with more subtle 

consequences could predispose to neuropsychiatric disorders by leading to alterations in 

several neuronal networks related to neurodevelopment (e.g. cognition, behavior, brain imaging 

endophenotypes)81, 95, 321, 329. Given previous reports of increased TCF4 expression in 

schizophrenia patients321 and schizophrenia-like deficits in transgenic mice with TCF4 

overexpression in the brain81, a plausible hypothesis is that the missense mutations identified in 

the present and previous studies 326 of schizophrenia are gain-of-function mutations which lead 

to functionally similar effects with increased TCF4 expression levels. This hypothesis is 

supported by several reports of gain-of-function mutations in transcription factors associated 

with other human diseases330-332. The different spatial distribution patterns of PTHS-causative 

and schizophrenia associated TCF4 variants is an intriguing subject which warrants further 

investigation in functional studies. Such studies may elucidate the individual role of these 

missense variants and explore the relationship between the mutational TCF4 spectrum and 

distinct neurobiological disorders. 

As the effective application of exome or whole genome sequencing based study designs in 

complex phenotypes is still challenged by analytical and technical limitations115, 134 one 

plausible approach is to follow up risk genes from GWASs by targeted sequencing. This 

approach has revealed the collective contribution of rare and common variants at individual loci 

to disease risk in other complex phenotypes228, 230, 333, 334 and in some cases yielded important 

functional evidence. In the case of schizophrenia a handful of similar studies can be 
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mentioned121, 123, 126, 335 and to the best of our knowledge the current study is one of the few to 

yield suggestive evidence with some statistical support that not only common but also multiple 

rare SNVs could be associated with schizophrenia at the same locus. Yet, one should be aware 

that these findings await confirmation mainly due to the limitation arising from the lack of rare 

variance information at the TCF4 locus in an ethnically matched control sample. For this 

purpose, the best approach would be mining of large ethnically matched case-control datasets 

from next generation sequencing studies. This would also enable i) further exploration of the 

extent of contribution of rare variation at the locus to schizophrenia susceptibility and ii) 

assessment of possible interactive effects between rare and common TCF4 risk variants.  

To conclude, the better delineation of allelic mutation spectrum of schizophrenia in pre-defined 

GWAS loci would not only help filling in the missing heritability gaps, but would also lead to 

identification of rare disease associated variants of functional significance such as the missense 

variants discovered in this study. This would enable us to design functional studies which would 

provide insight into the specific alterations in molecular pathways leading to the development 

of schizophrenia. 
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Schizophrenia is a highly heritable, multifactorial mental disorder. Up to date, a number of 

common SNPs with low penetrance and large rare structural variants (CNVs) with higher 

penetrance have been identified to contribute to schizophrenia susceptibility27, 29. The existence 

of highly penetrant rare CNVs demonstrates that rare variants account for part of the genetic 

background of schizophrenia27. This is also in accordance with a polygenic disease model that 

has been postulated for schizophrenia and which consists of risk variants ranging across the 

entire allele frequency/effect size spectrum39. The risk variants identified so far explain only 

part of the observed heritability, suggesting that many susceptibility variants, both common and 

rare, still await identification. Substantial efforts are currently made to find these risk variants 

in order to gain a more comprehensive understanding of the biological processes underlying 

schizophrenia. One promising strategy to identify so far unknown risk variants is to resequence 

genomic regions or genes that have already been highlighted through the identification of 

common risk SNPs228, 230, 333, 334 or rare risk CNVs148. The underlying rationale is that different 

types of genetic variations can contribute to disease susceptibility at an individual locus 148, 149.  

In the present doctoral thesis, sequencing analyses in three schizophrenia regions identified 

through CNV analyses or GWASs are described. One of these regions is located at 2p16.3 and 

contains the NRXN1 gene. CNVs (in particular microdeletions) of different size affecting NRXN1 

had previously been identified at much higher frequency in schizophrenia patients than in 

controls45. Resequencing the coding exons and flanking splice sites of NRXN1 in 94 

schizophrenia patients and 94 controls revealed several low-frequency variants. However, data 

analysis did not identify a collective overrepresentation of these variants in schizophrenia 

patients. The functional variants that were exclusively observed in patients in this sample were 

then genetically followed up by genotyping in a larger case-control cohort. Analysis of the data 

did not identify any evidence for the individual or collective contribution of the genotyped 

variants to schizophrenia susceptibility either. In conclusion, the results of the described study 

did not generate any supportive evidence for the presence of schizophrenia associated rare and 

low-frequency variants in the NRXN1 locus.  

The second project described in this thesis was focused on the resequencing analysis of seven 

genes comprised in a microdeletion in 1q21.1 which had previously been described to confer a 

relatively high risk of developing schizophrenia108. By sequencing 94 schizophrenia patients and 

94 controls, a total of 55 low-frequency variants in the 7 targeted genes were identified. 

Analysis of the data by several statistical tests revealed a significant overrepresentation of  low-

frequency variants (MAF<3%) in schizophrenia patients in comparison to healthy controls (P= 

0.021). This suggests that not only the previously described risk CNV but also rare small sized 
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sequence variants in this region contribute to schizophrenia susceptibility. Another aim of this 

study was to further characterize the distribution and location of rare risk variants within the 

genomic region covered by the microdeletion to find out the gene/genes that are most likely to 

be the disease-relevant ones within the region. For this purpose the same statistical tests were 

applied on the sequencing data at the individual gene level. The results of this analysis identified 

CHD1L as the sole signal driver gene in the region (P=0.029, MAF<3%). In order to replicate the 

association finding in this gene all of the CHD1L variants were genotyped in a case-control 

cohort of 4086 German individuals. Analysis of the genotyping data confirmed the association 

between the low-frequency CHD1L variants and schizophrenia (P= 0.028, MAF<3%). Single 

marker analysis of the genotyped variants revealed one synonymous variant which was alone 

associated with disease in the genotyping sample (rs36008075, P=9.5x10-04). A regulatory effect 

for rs36008075 could neither be confirmed nor excluded by quantitative expression analysis, 

mainly due to the small sample size dictated by the low frequency of the minor allele. The 

mechanism through which rs36008075 contributes to disease susceptibility therefore awaits 

further identification. As a next step, extended sequencing of CHD1L was performed in 

additional 96 schizophrenia patients to search for variants of likely functional relevance that 

can mimic the 1q21.1 microdeletions. Data analysis revealed a non-sense mutation 

(rs144288940, R261*) which was further detected in 3 additional patients and in a single 

control individual by genotyping in a sample of 8768 individuals (P=0.245). The frequency of 

R261* needs to be monitored now in large samples of patients and controls to confirm its 

influence on disease susceptibility.  

The biological plausibility of CHD1L as a schizophrenia susceptibility gene was supported by the 

gene expression analysis performed in pre-mortem human hippocampus tissue samples which 

demonstrated that CHD1L is expressed in human hippocampus, a brain region known to be 

affected in schizophrenia patients. In addition, literature mining revealed several studies 

describing the biological roles of CHD1L that could be relevant for schizophrenia and others 

suggesting CHD1L as a potential candidate gene for autism which is known to share a genetic 

overlap with schizophrenia. Taken together the results obtained in the course of this thesis 

strongly suggest that CHD1L is the most plausible risk gene for schizophrenia among the genes 

located in the microdeletion region.  

The last project described in this thesis was focused on the TCF4 gene which harbours 

schizophrenia-associated common variants. Resequencing of the TCF4 gene in a total of 190 

schizophrenia patients revealed 8 low-frequency variants (MAF<3%). In order to account for 

the genetic variation in control individuals, the low-frequency variant information at the TCF4 

locus was retrieved from 379 European individuals of the 1000 Genomes project. All of the 

variants identified in either of these datasets were then genotyped in a case-control cohort of 
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4069 German individuals. Application of several statistical analysis methods to analyze the data 

revealed a non-significant trend towards association (P=0.075, MAF<0.3%) suggesting that rare 

variants in this locus might contribute to disease susceptibility. Interestingly, in this study two 

ultra-rare, patient specific, novel missense variants were identified which could be the target of 

functional studies for better understanding of pathophysiological mechanisms underlying 

schizophrenia. 

All together the studies described in this thesis show that different types of genetic variation 

can contribute to disease susceptibility at an individual locus and that targeted sequencing 

strategies in previously defined disease loci can lead to a better delineation of the allelic 

mutation spectrum of schizophrenia as well as to identification of the putative disease-

associated genes in genomic candidate regions containing several genes. These investigations 

represent important steps on the long way from identifying disease-associated risk variants 

(SNPs, CNVs) towards understanding the underlying biological processes they are tagging. 
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The present thesis describes the resequencing analyses in three genomic regions that had 

previously been implicated in schizophrenia by multiple GWASs or CNV studies. The targeted 

sequencing of the selected regions was performed by Sanger sequencing since this was the 

standard technology by the start and during the course of the hereby described studies. With 

the continuously ongoing technological improvements, Sanger sequencing as a relatively 

expensive and slow technology is currently being replaced by the new generation sequencing 

technologies. These technologies enable much faster sequencing of many more patients only at 

a fraction of the costs for Sanger sequencing. The ability to sequence larger number of 

individuals in turn leads to increased power for detection of rare variants. Another asset of new 

generation sequencing technologies is that they would allow the complete coverage of larger 

candidate regions, such as the complete 1q21.1 microdeletion region (~1.35 Mb) or the 

complete genomic region spanned by the NRXN1 gene (~1.1 Mb). This will not only provide 

insights into rare variants that are located in exonic and splice consensus sites but also to those 

located at the intons or at regulatory gene regions. The necessity for assessment of such 

variants in terms of contribution to disease susceptibility is a very valid argument as results 

from GWASs in common diseases have shown that the disease-associated SNPs are more likely 

to be located in regulatory regions of genes223.  

Besides benefiting from the new generation sequencing technologies, it would be necessary in 

the near future to establish collaborations with other research groups for sharing of the 

sequencing data to further increase the samples sizes and thus the statistical power to detect 

rare variant associations. This has been successfully performed over the past few years by the 

Psychiatric Genomics Consortium with GWAS data sets for psychiatric disorders from dozens of 

research groups world-wide.  

One of the major goals of sequencing studies is to deliver rare variants which are naturally 

expected to have a higher penetrance and thus more easily demonstrable functional 

consequences. Such variants can be assessed by functional assays for a better understing of the 

specific molecular alterations involved in the pathopyhsiology of schizophrenia, but functional 

investigation is complex and requires very specialized expertise depending on the nature and 

location of the associated variants. A closer collaboration between genetics research groups and 

groups who have an expertise in characterization of the functional outcomes of genetic 

variations by the use of cell culture and animal models is clearly warranted. Currently some 

collaborative attempts are ongoing regarding a selection of the rare potentially functional 

variants discovered in this thesis.  
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To conclude, a comprehensive understanding of the influence of rare variants to the overall 

heritability of schizophrenia and the exact nature of these variants will have profound effects on 

the understanding of the biology of this disease and may open avenues for new therapies. It is 

therefore of utmost importance that the strategy employed in the current thesis is further 

developed by all the aforementioned means  
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9. ATTACHMENTS 
 

I. List of genes that were investigated in the current thesis. RefSeq IDs of the targeted 

transcripts and Uniprot IDs for their respective proteins are given for the NRXN1 gene, 7 genes 

in the 1q21.1 microdeletion region (PRKAB2, FMO5, CHD1L; BCL9, ACP6, GJA5, and GJA8) and the 

TCF4 gene.  

 

 

 

II. Genomic view of the 1q21.1 microdeletion region. Overview of the short form of the 

1q21.1 microdeletion region (~1.35 Mb) was obtained from the UCSC Genome Browser. The 

microdeletion spans ten protein coding RefSeq genes. Three of these genes, namely GPR89B; 

GPR89C and NBPF11, are located in the flanking segmental duplications (SD).  

 

 

Gene RefSeq ID Uniprot ID Length (AA)

NRXN1α2 NM_001135659 Q9ULB1-3 (NRX1A_HUMAN) 1547

NRXN1β NM_138735 P58400 (NRX1B_HUMAN) 442

PRKAB2 NM_005399.3 O43741 (AAKB2_HUMAN) 272

FMO5 NM_001461.2 P49326 (FMO5_HUMAN) 533

CHD1L NM_004284.3 Q86WJ1 (CHD1L_HUMAN) 897

BCL9 NM_004326.2 O00512 (BCL9_HUMAN) 1426

ACP6 NM_016361.3 Q9NPH0 (PPA6_HUMAN) 428

GJA5 NM_005266.5 P36382 (CXA5_HUMAN) 358

GJA8 NM_005267.4 P48165 (CXA8_HUMAN) 433

TCF4 NM_001083962.1 P15884-3 (ITF2_HUMAN) 671
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III. Primers used for resequencing of the targeted genes. 25 primer pairs were designed 

targeting 24 coding exons of the NRXN1 gene. 67 primer pairs were designed targeting in total 

57 coding exons of the PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5 and GJA8 genes located in the 

1q21.1 microdeletion region. 18 primer pairs were designed targeting 18 protein coding exons 

of the TCF4 gene. A single primer pair spanning exons 4-10 was designed for CHD1L cDNA 

sequencing. 

 

 

  

NRXN1 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 2 GGGAGTAGTGTTGGTAGAAAGGTC GAACTAGATAAAGGAGGGCACATC 1175

Exon 3 GTTGATTGCCTTGCTTTGAC GTTCTTGGGGCTTAAAACAGTG 266

Exon 4 GGGTTGAGAATGTATGTGTTCTG ATGATGTGTTTGGTGCCTTG 294

Exon 5 GCAGCCATATAATTTGCAAGC CTGTCACTGAACATTTTTGTCACC 228

Exon 6 CTTATTTGCCACGAACTGTG GCTGCAGAACAAGAGAAGTTAG 196

Exon 7 GGAGCCCTGTATCATGTTGTTAG CTATTGTTTCTGTTAAGACCTGCTG 475

Exon 8 AAGAGTACCAACCGCAGTTC GTTTCATTCTACTAACCGTTACCTG 282

Exon 9 GTGCTTTCATGCTGGATCTG CAGGCATATCCCAGGATTACAG 303

Exon 10 TGAAACAGAAGCAATATCAGGC TCGTTGAAAGTTACATGAGCTG 672

Exon 11 AGTGCAGGTTTGAGGTCAAC CATCAAGCAGACGAAAGAGAG 542

Exon 12 CAAACAGGCTACTTGATCAATG TACTGTGACTTCTCTTTCCAGC 467

Exon 13 AGTGGGAAAGTCTTCAGCTGTAC TGGCCATATTTGCATGTGTC 332

Exon 14 ATTTCAAGTTGTGTACCAGCC CCCTTGTCTCTTTCTCTCACTC 310

Exon 15 GAGCCAGTATGTTCTTCTTAGTG GAGTACCAAGGAGGGATTTG 593

Exon 16 CTTTGCAGAAGGTACAAACACAC ACTTCTAGTAAGGATGGAACCACC 405

Exon 17 GGGTATTTGACCAGTTATCAG TTTCTCCATCCTACTGTGTG 351

Exon 18 TTCTATGGGTTATGACAGTTCG GCAACTACTACATGTGATCTAGCTC 332

Exon1(β) GTCTTCAAAGAGATAAGTGGCTCG CCGCACACAAAGCTAAATGG 886

Exon 19 GAAGGAAGCATCCAAGAAGC TGGTCCACTTTCTTGAGCAC 433

Exon 20 ACAATTTGGTGAAACGGATG GGAGGAAAGCAGCTGTTGTC 376

Exon 21 GTTAATGCTTGCTGTGAGTACC ATCATGTGGCAACTGTATAGCTC 481

Exon 22 AGACGCATATGCAGAAAAGC ATGCATTTCATGGACACCTC 563

Exon 23 AGGAGGGTAGCCTTCTATACATG GGATCTAAAATGTAAGCTCTGTGTC 345

Exon 24 TTTCCTTCCTGATTGCATTC TTAGTAACCATGAGGCAAAGG 598

PRKAB2 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 8 ATCAGCCTTCCAGTCTCAGG TGACTGTGAAGGACTGATGACTG 252

Exon 7 TAGCAGAGAAAGTAACCACTGAG CTGAGGAAGAGTAAGCTGTTTG 240

Exon 6 TCAACACACCTCTGTAGTAATCC AGCTGCCATGTATTGATAGC 318

Exon 5 AACTGGCAGGATTAAGATGG CACTGGAGGATTTCTCTCTTG 666

Exon 4 TCTCTTCCATCCAACCTTCC CAGGGGATACAATGGCTTAGG 398

Exon 3 GTCCAGCTGGGTCTCTCTTC GCCTAGCACCCTTCTCTATCCTA 341

Exon 2 CGGCACTTCAAGAGGAATTATC GATAGCGGGTTTCCTGAGC 555



9. ATTACHMENTS  117 
 

 

III. Primers used for the resequencing of targeted genes -cont'd. 

 

 
 
 

 

 

 

 

 

 

FMO5 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 9 AGAGTCAATCTCGTCAGATTCTG GTCTGATATTGAGCCAATAGCAG 524

Exon 8 CCTTAAGCTAACATGAGGCAG CCTGTATTTCTTTGAATTCTCC 227

Exon 7 AAACAAGTACCTAAACAGAGG ATTCTGTTTACCTCCACC 516

Exon 6 TTAATGTATGGGTAGAGGTGGC GCCTGAAATGATTCTTGAAGAA 389

Exon 5 AGGTATCCCTATTCTCTGTTGG ACAAATGACTTGACAAATGATATC 308

Exon 4 CCAAAGTAGGAATTACTCAGACC GATAGTGCCTGTGATATCAGC 350

Exon 3 CCAATCTTTAGAAGTAAACATAGG CTTTTTCAGATGTCTATTGGC 363

Exon 2 GCCACCTGACACTGTTAAGAT AAATGTTAACCGATGTGTGC 307

CHD1L Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 1 AAGCACGACTGGTGAGAACTG CGCTGATCTCACCACGTTTC 644

Exon 2 CAAACTCTTAGAACATTGCCTC AGGGACATTTGTGAAACTGAG 300

Exon 3 TGAGGCTTACATGATTTCGC TTACTACAAACGATTGCTGACC 512

Exon 4 TTCCAGATATGCACATCCTG CTGATGAAGGTAGACTCCCTG 313

Exon 5 AATCACGTCTGTTACTGGAG ACCAGACATGCCAGGAGAGG 421

Exon 6 ACATGTAGCCTCTCAGGAAG GTGAAGCTGTACAAGTGTGG 416

Exon 7 GTGTGGGTAAAGGTTGTGAT TTCTACCTATAACCATTATGCATG 325

Exon 8 AGCTGTTATGCTGATCAATG TAAGATGCTCTGCCACAGTC 623

Exon 9 TTGAAATGATTAAGGTTACTTG GAAGAATTTTGGTATGATTTG 266

Exon 10 TGATGAGCTTTTGGCTTCTC GGAATTGGCCTGAACAACTC 280

Exon 11 ATTGTTTGGTAAATTTTGCC TTCATGGACCTATCTGGACT 225

Exon 12 AAATTGGCCTTTGGTTTTGG AAAGTGTACTAACCGTTGGGATG 282

Exon 13 TGACCCACTCTAGCCTTGTG GGACTGTCACCAGGACTATATTC 284

Exon 14 CTCAGGACCAAATGAACCAATC AGCACTGTGGCAGGTGTGAG 447

Exon 15 TGTGCCTGGTGTCGTTAATC CAGAGAGCAGCATCCAAAAC 351

Exon 16 ATAGGCTGTTCTCCTGTCCAC GTCATCATTACCAACAGCAGG 567

Exon 17 TTCCGTACAGTGTGTGTTAGG TGATATTCAACTGTGGTCTCAC 323

Exon 18 GCAGATATTGTTTGTGAACAGC TACAATACTACACTGGGACCACC 405

Exon 19 CCAACCTGTGATATTCCTAGGAG GTAACCCTCACGATACAGTCTTAGG 330

Exon 20 CAACTGAATTTGAAGAGGGCG GGCAGGGGACACTTCAAGAG 233

Exon 21 GCATCCGAAAGAGACAGAGC GGGATCTTGACATTTCTTACCTCC 333

Exon 22 CTTGTAGGTCCTTGTGTTCAACAG GGAAAGTAAAGACTGTGGCAGG 414

Exon 23 CTTAGAGAAGCCAGCTTTTATGTG GAAATACTCTATTGCAGTACCTCTGG 389
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III. Primers used for the resequencing of targeted genes -cont'd. 

 
 

 
 

 
 

  

BCL9 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 4 TGCAACCCGAGAGGAACT TGTTCATGGTGTGCCTATGG 181

Exon 5 CCAATAGAAACTGCCTCTCTC TGTCTGATATTAGGCTCTCTGG 496

Exon 6 AATTCTCAAGGTGGGTTTGTG GATCAATCTGCAATGGGAATAAG 362

Exon 7 TCCCTTACAAGTTTATTGTGTG CCATCAAGACTACCTTCCTATC 297

Exon 8_1 TATGTGCCTGGGGACAATTC TCCAGCTGCTCCTGAGATAG 509

Exon 8_2 TACTGGGCCCAACTCAACTC TCACTAGGGGTCATCTGGTATG 666

Exon 8_3 GATAGCGTGGCTGAAACTGC TCCTGTTCATCTCCATGCTG 575

Exon 8_4 GGTCTTTCTGGAGTCAGTTGG TTCTCTGAGATTCCGCAAGC 651

Exon 8_5 AGGAGATGCTGAAATTACGC CAGGAAGTGATGGAGACTTG 549

Exon 8_6 GGAAGCCCTTGGATATATCTGTG CCACAAATATGGCCATTTCAAC 509

Exon 9 CTCATTCCTGGCCTTGCTAG CCTATTCAGGTGTATAGCCATTGA 451

Exon 10_1 CTTATTGATGGCAGGGATTG CAGGACAGTGAAGGAGTCAG 607

Exon 10_2 AGGTTCCATTCCCTCACAATG AGATTGTGCTGGTGACATCATC 569

Exon 10_3 CAGAATGGGACTAGCATTACC TAGTAAGTACTCCTGGAACTGCC 524

ACP6 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 10 TGCTCTCTCCTCTTCCCAAAC GGATGTAACTCGACTCTTTCTTCC 469

Exon 9 AGAGAGCTGACTGTGCCAAG GTCTTACGTAAAGGAGGCAGG 373

Exon 8 CCTGGTTCTTGCCTCACTAAG CTGTCTGGACTCATGAGGTCC 288

Exon 7 ATCAGCTGTCAGGTGTGAGTGG AGATGGGCTCCTGCAGGTTC 295

Exon 6 GAGGCCTCCACCCACTTCTC ATCCCAAATGATAACCCAAGTGTG 312

Exon 5 CCTCAGTATAGACAGAGTTCTGC CTCTGCTCCATCTCTGTAGAC 266

Exon 4 TGCTGTGGATTATCACCAAG CTCCTTATGTACTCTTGAAAGACC 587

Exon 3-2 TGAGAGACTCGAAGTGCAATG GATTCCAGCCATGTGTTCTG 675

Exon 1 GCGAGTAAAGCTCTGAAGATGTG CGCAGAAGACTTGTGTTTGC 375

GJA5 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 2_1 AGCATCAGTTCAGAAGGGAC CTTAGCCTGGCTGAACTCTAC 499

Exon 2_2 CTCCAGGCACTGATTAAAGTCG TGGCAGAGAAGGCAGAACTG 437

Exon 2_3 GATTCCGTAGATGAAGTACTGG CAGACCTTCACAGAACATCC 621

GJA8 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 2_1 AGATATTGACTCAGGGTTGCATTG AGCGGTACAGAGGCAGGATC 620

Exon 2_2 GGCAGCAAAGGCACTAAGAAG CTCGCCCTCCACTTCTTGTG 603

Exon 2_3 GGGCTATCAGCTCCTAGAAGAAG GTTGGCACCTTTTCCTTTCATC 581
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III. Primers used for the resequencing of targeted genes -cont'd. 

 

 

 

 

 

  

TCF4 Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exon 19 AGCAATGTGGCAACTTGGAC GGTCAGACACGCAAGAAGAG 437

Exon 18 GCTTGAAAGTCTACTGTCTGCC TGTATTGTGAACTGTCAAAGCC 519

Exon 17 AGTTTCTTCCCGTTCTGTTC AGTATGAATTGTCTGCTGGC 330

Exon 16 GAGGCTGGGTATCAACACTGG CCAGCCTTCATCAGGTCCTC 294

Exon 15 GGCTCATCGTATGTTAAGTG GGCAGTACCGTATATAGCAC 609

Exon 14 TCTTGGAGAGTAAAGGAGACTGAAC ATCATTGCCATTGCCATTTC 256

Exon 13 GAGTTTCCACCTACAAAATCAGG GAATTGCGTTGACAACTTCG 254

Exon 12 ATTGAGTGCAGCTTAGTACC GAGTAAATGGACCAGGAATAG 370

Exon 11 TGGTTATGCTCAAGCCAGTG TTGCCATTATATCCCTCCACAG 540

Exon 10 GCTGACATTGTGATAAAGAAGGC CTTGGGAAGAAATGATGACTGTC 550

Exon 9 CATCGGCTCTAAGTGAAGCAGATC AAGGGCACTGTTTCTAGGGTTTG 503

Exon 8 GCAATTAATCACTCCAATGTGG CGTGGTAACTACAGTTTGCTAAGG 362

Exon 7 AGTTCTGCTACCATAAGCTG TACTAACAATCAGTTGGGAGG 400

Exon 6 CAGCAGCGATCTAAAGATGAG GAGCAGTAGATGTCTGTTACCTG 342

Exon 5 AACACAGACTGCCAATCCTC TTGGTAGTGGAGCTATGTTTG 336

Exon 4 GTCAAGCTGATCCTCATTAAAC AGCCACTATCATCATGGTAG 408

Exon 3 CAATAACCGTATGATTACAGGC GTACTGCTTGGCCATCTAATG 443

Exon 2 CCTACTGGTTTCTAGCTGAAGTG CCAGTCTCCAAAAATCCGATTG 254

CHD1L 

(cDNA)
Forward (5´-3´) Reverse (5´-3´) Size (bp)

Exons 4-10 GCGACAAGGAGGAAAGAGCCTGC AAAGGCTCCGGCTCCACACCA 625
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IV. Primers used in mass extension based genotyping. A total of 4 assays were used for 

genotyping of the variants selected for the follow-up of the NRXN1, TCF4 and the 1q21.1 

microdeletion loci. For each variant 3 primers were designed. 1st and 2nd primers were used 

for the amplification of the target region. UEP primers with their respective volume adjustments 

were used for the single base extension reaction in the iPLEX Gold Assay of Sequenom. 

 

 

V. Association analysis of CHD1L gene exluding the single ungenotyped variant.  

 
The reported p-values are given for calculations based on 10000 permutations. Significant p-values below 5% significance level are 

given in bold. The better performing two- and one-sided test statistics for DBM and REP methods are given, respectively.   

Assay Variant ID Gene 1st  primer  (5´-3´) 2nd primer (5´-3´) UEP primer (5´-3´)

UEP 

conc. 

(μM)

1 rs45563244 CHD1L ACGTTGGATGCATAATAGCAAGTGTTCATC ACGTTGGATGCGAATAAGTCGCTCAGTACC CCCACGTATTGGACATGC 7

1 18:52901933 TCF4 ACGTTGGATGGCCATCTTCACGATGGGTC ACGTTGGATGTCTGGAAATAGCTGTCGCAC TAAAGGGCGAGAGGAA 7

1 18:53018138 TCF4 ACGTTGGATGTACCTTACCCATGGCACTAC ACGTTGGATGACCTGGTTCCCAGTACTATC GGAGGCCTCCTTCGGG 7

1 18:52928751 TCF4 ACGTTGGATGGCCTGGTTTTCATATTCTGC ACGTTGGATGTTTCCCCAGAGCATCTCCAG TTTGCAGCAAATAGAGGAAG 9,13

1 18:52946804 TCF4 ACGTTGGATGAGCAGCAGCATCTTACCTTG ACGTTGGATGCGACTACAATAGGGACTCGC CATGAAGAAGGAGCTAGG 9,13

1 rs143555588 TCF4 ACGTTGGATGTCCATCTCTCTCAGGTAGTG ACGTTGGATGCCACCTACAAAATCAGGAAG TTCAAATCCCATTTCATCAT 9,13

1 rs144346949 TCF4 ACGTTGGATGCTTCTGATTAAAGTTCACCC ACGTTGGATGAAAGCACTTGCTTCGGTGAG TATATGGAGTCCAAAGTCA 9,13

1 rs189454938 TCF4 ACGTTGGATGATGGAAAGACAGAGGACGAG ACGTTGGATGTGGTAAGGCAGACATACACG GGACGAGGTTTAATCAAC 9,13

1 1:146740514 CHD1L ACGTTGGATGACCACCTACCCAGAATACAG ACGTTGGATGTTGGAGACCACCTGACTGAG CCAGAATACAGGAATGCTAGTAG 11,6

1 1:146757200 CHD1L ACGTTGGATGTGTCTGCGTTAACCAAGCTG ACGTTGGATGGTGGTCTCACTATACAATAG AAAACAGCTGGCGGCCACAGTT 11,6

1 rs140555192 CHD1L ACGTTGGATGGGCCTAGAATGCAAAATAAG ACGTTGGATGGAAGTGTGGGACAAAAGTAG TTAAGTTCTCTAGGGTTCATTG 11,6

1 rs76956936 TCF4 ACGTTGGATGAAAGCTGCGTGTCTGAAAAG ACGTTGGATGATGCGTCTCCCATTCCAGG ATGCGTGTCTGAAAAGAAGGGA 11,6

1 1:146736063 CHD1L ACGTTGGATGCCTTGCATTCCAGTGTTATG ACGTTGGATGATGGGAGTTCCGGTCAACAG TCCAGTGTTATGGAATTTTTATTTTA 14

1 1:146757032 CHD1L ACGTTGGATGCCTGGTGATGGATCTTGTTC ACGTTGGATGTCTTCTGGACTCAGAACCCG GGGTCCAGGCCTTGTGGAGGGATCTA 14

1 rs142236750 CHD1L ACGTTGGATGGAGAAGGAGACTCATAGAGG ACGTTGGATGCTTGGTTAACGCAGACATAC GGGCGACTCATAGAGGAGAAGAA 14

1 rs148434783 CHD1L ACGTTGGATGCTGTCTGGCATTAAGATGGC ACGTTGGATGGGTGGAAGAGCTTACCTTTC GAAGAGAAGAGGGCCTGAAGAAG 14

1 18:52942992 TCF4 ACGTTGGATGGCCTCAGAAAGTCATGGTTG ACGTTGGATGCATAGCCAGGCTGATTCATC ATCATAAAGTCATGGTTGTCTTTGT 14

1 rs148658897 TCF4 ACGTTGGATGTTTTTCCCACTGCTCACAGG ACGTTGGATGTCTTTGAGGAGCTCTGAAGG GGGATCACAGGAGGTGAAAACATCT 14

1 rs191953257 TCF4 ACGTTGGATGTCCAGGTTTGCCATCTTCAG ACGTTGGATGACTTCTATCTCCTTCCCATC TTCTGCTTTGTATATTGCTTATTT 14

2 rs138570124 TCF4 ACGTTGGATGGCCACGCCATCTTCACGAT ACGTTGGATGTCTGGAAATAGCTGTCGCAC TCTTCACGATGGGTCC 7

2 rs35918540 TCF4 ACGTTGGATGGCAGAATATGAAAACCAGGC ACGTTGGATGTTGTGAGTAAATGGACCAGG AACCAGGCAGTGAGA 7

2 rs144512908 CHD1L ACGTTGGATGCCTCACGATACAGTCTTAGG ACGTTGGATGATGAGCTGGCTGGGAAAATG CACCCTTAACCTTTCCCT 9,13

2 rs4950394 CHD1L ACGTTGGATGTCCTAGAAGCAAGTCTGCTG ACGTTGGATGTGGGCCAATTCTTAAGGCAC AGTCTGCTGTCCTTCAT 9,13

2 rs143944746 TCF4 ACGTTGGATGCTACCTCTGTAAGGGTCCTG ACGTTGGATGCCATTCTCTTCTGCCAAACC GACAGGAAGCTGTGGAAC 9,13

2 rs147445499 TCF4 ACGTTGGATGTCACCGAAGCAAGTGCTTTC ACGTTGGATGTGCAGCAAATAGAGGAAGCG ACGTCTGGGAGCTGCCG 9,13

2 rs36008075 CHD1L ACGTTGGATGTCTTCAGTCTCCTGTTGACC ACGTTGGATGGAGATCAGGCTCCACAAAAC CCCATCCAGAACAGCCTCCA 11,6

2 rs7547279 CHD1L ACGTTGGATGTTGGATAAACTGCTGGCCTC ACGTTGGATGACCCACTGGCCATCTTTTGT CCAGAGACCTGGAGTCCAT 11,6

2 18:52928669 TCF4 ACGTTGGATGCTTCTGATTAAAGTTCACCC ACGTTGGATGAAAGCACTTGCTTCGGTGAG TCACCCTTTACAATGGTACAT 11,6

2 rs71083827 CHD1L ACGTTGGATGCCCATGTGTATTTTATACCC ACGTTGGATGCGTGGAAGATGAACACTTGC TCAATTTTTGATGAGTGAAGAC 14

2 1:146736068 CHD1L ACGTTGGATGATGGGAGTTCCGGTCAACAG ACGTTGGATGCCTTGCATTCCAGTGTTATG CCTGAGAACTCAAATACATAAATAAA 14

2 1:146737517 CHD1L ACGTTGGATGAGAACCAAGGCAATGAACCC ACGTTGGATGATCATACTGGCCTAGAATGC ATGAACCCTAGAGAACTTAAA 14

2 rs185219867 CHD1L ACGTTGGATGTGACCTCCAGGTATGATATG ACGTTGGATGGAGTGCTGGTTCTTTTCATT CTTCACTTTGGAATATACCAATA 14

2 rs2275250 CHD1L ACGTTGGATGGCTTGCAAGTCATTCTGAGG ACGTTGGATGTGTTTTCAGGTGGAGTTGGC CAAGTCATTCTGAGGATTAAAGTC 14

3 rs148289715 CHD1L ACGTTGGATGCCTTTCATTTTCCCAGCCAG ACGTTGGATGTTTACAGCTCTGGAAAAGCG CCCAGCCAGCTCATA 7

3 rs142335408 FMO5 ACGTTGGATGGACAGCTGCCATATTTGAGG ACGTTGGATGGTCAAAGCTATAGCCTGTGG ATTTGAGGATGGCTCC 7

3 rs58351438 FMO5 ACGTTGGATGCCCTCTGGGTTCTTATAGTC ACGTTGGATGTATTTTCCCTTCTCTTGCAG GTACTGCCCTTTGAACT 9,13

3 rs139791996 CHD1L ACGTTGGATGAGAGCGAGCCAGAGGACCTT ACGTTGGATGGAAGTAGCATCTGGGTCTTG CAGAGGACCTTGAGAAT 9,13

3 1:146751866 CHD1L ACGTTGGATGCCATTTGCTCTGCTCTAACC ACGTTGGATGATGCCTTGCCTGCAGCAGAA CTGCTCTAACCTCCAACTT 9,13

3 rs113139670 CHD1L ACGTTGGATGACAGTGTCTCGACCAATCAG ACGTTGGATGACCCTTATAGCACACTACCC CCGAATAACTTTAACAGACC 11,6

3 rs144757186 CHD1L ACGTTGGATGTGTAGTGGCCAAAAGGTGTC ACGTTGGATGTCTCCCAAATGACCCAGATG CACCTCTGTAATCCATATAGT 11,6

3 1:146658628 FMO5 ACGTTGGATGTGATGCGATCATCTGTGGTG ACGTTGGATGATCCACTATCGTGTACAGGG TCTGTGGTGAGGATAGCTTTTC 14

3 rs144288940 CHD1L ACGTTGGATGCTTCTTGGGAAGCTCTGTAG ACGTTGGATGCAAGTGAACTGCACAAACTC TCTGTAGCTACCTCAGCTTTCACTC 14

4 rs112934082 NRXN1 ACGTTGGATGTTGGGCGGCTCATCGTCCAG ACGTTGGATGTTCGTGACGTGAGGGTCAAC GCCCGTGGACAGCGGCG 9,13

4 rs112638127 NRXN1 ACGTTGGATGTTGATCTTCTTGCAGGTGAC ACGTTGGATGGGCATGTACAAGTTTTGGTA TCTTTAGCTACTCCTCCTA 9,13

CMC WSS RANK DBM* REP* SKAT C-alpha MAF
0.279 0.242 0.232 0.255 0.132 0.528 1.000 0.01
0.725 0.868 0.351 0.027 0.337 0.167 0.108 0.03
0.511 0.746 0.346 0.042 0.421 0.198 0.297 0.05

CHD1L
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VI. Single marker analysis of CHD1L gene in the German sample. Empirical p-values are 

derived for the total (a) and the genotyping (b) samples by 1000 times permutated case-control 

labels for Pearson’s chi-square test. The total sample includes the resequencing sample and the 

independent genotyping sample. The total allele counts for the total sample are 3976/4554 

(patient alleles/control alleles). The total allele counts for the independent genotyping sample 

are 3792/4366 (patient alleles/control alleles). Variants are classified in the corresponding 

MAF categories based on their combined case/control frequencies in the combined sample. 

*The p-values are based on 10,000 permutations as the variants which yielded significant p-

values below 10% significance level (p<0.1) in the initial analysis were re-analyzed with 10,000 

times permutated case-control labels. MAF, minor allele frequency; syn, synonymous. 

 

 

VII. In silico analysis of splice site variants observed in CHD1L gene. 

A) The  splice site variation at chr1:146747766 effecting the acceptor site of exon 14 

i) Wild type acceptor site 

AGgtggagttggcatgaacttaacagcagcagatactgtgatttttgttgacagtgactttaatcctcagaatgacttgcaagcagctgcca

gggctcatcgcattggccaaaacaaGTA................TACTTTTGCCCAGCTTTGCACACCCTTATAGCACACTACCC

TTGTTTGACTTATGTCCAGgtctgttaaagttattcggctgattggtcgagacactgtggaagaaatagtctataggaaagcagcc

tccaaactgcagctcaccaacatgatcatagaaggaggccattttactctgggagcccagaaacccgctgccgatgctgacctccagGT 

ii)  Upstream alternative acceptor site  

AGgtggagttggcatgaacttaacagcagcagatactgtgatttttgttgacagtgactttaatcctcagaatgacttgcaagcagctgcca

gggctcatcgcattggccaaaacaaGTA................TACTTTTGCCCAGCTTTGCACACCCTTATAGCACACTACC

CTTGTTTGACTTATGTCCGGgtctgttaaagttattcggctgattggtcgagacactgtggaagaaatagtctataggaaagca

gcctccaaactgcagctcaccaacatgatcatagaaggaggccattttactctgggagcccagaaacccgctgccgatgctgacctccagG

T 

Genomic position 

(hg 19)
dbSNP ID Effect MAF

Minor allele counts 

(patients/controls)a

Empirical 

p-value

Minor allele counts 

(patients/controls)b

Empirical 

p-value

146736063 - - 0.01 0/1 0.750 0/0 -

146736068 - - 0.01 0/1 0.725 0/0 -

146736137 rs36008075 - 0.03 89/56 5.00E-04* 85/55 0.00095*

146737517 - - 0.01 3/1 0.229 2/1 0.451

146737540 rs140555192 - 0.03 76/88 0.984 71/81 0.946

146740514 - syn 0.01 4/5 0.865 3/4 0.868

146742648 rs144757186 D381N 0.01 1/0 0.252 0/0 -

146747069 rs2275250 syn 0.01 5/6 0.886 4/6 0.656

146747965 rs185219867 - 0.03 40/57 0.298 37/55 0.218

146751782 rs7547279 syn 0.05 120/156 0.384 118/149 0.542

146757032 - T629N 0.01 0/2 0.367 0/1 0.732

146757132 rs142236750 syn 0.01 27/28 0.746 25/28 0.953

146757200 - - 0.01 10/6 0.170 9/6 0.258

146758054 rs139791996 G700R 0.01 27/20 0.104 26/20 0.155

146759387 rs148289715 I765M 0.01 9/20 0.080* 8/19 0.067*

146759428 rs144512908 - 0.03 49/59 0.794 48/56 0.966

146765379 rs148434783 I827V 0.01 11/16 0.494 10/16 0.366

146766070 rs67589628 - 0.05 119/150 0.542 117/143 0.699

146766122 rs45563244 syn 0.03 113/134 0.880 108/131 0.908

146767149 rs4950394 S885A 0.05 118/150 0.506 116/143 0.675
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VII. In silico analysis of splice site variants observed in CHD1L gene-cont'd. 

iii) Downstream alternative acceptor site 

AGgtggagttggcatgaacttaacagcagcagatactgtgatttttgttgacagtgactttaatcctcagaatgacttgcaagcagctgcca

gggctcatcgcattggccaaaacaaGTA................TACTTTTGCCCAGCTTTGCACACCCTTATAGCACACTACCC

TTGTTTGACTTATGTCCGGgtctgttaaagttattcggctgattggtcgagacactgtggaagaaatagtctataggaaag

cagcctccaaactgcagctcaccaacatgatcatagaaggaggccattttactctgggagcccagaaacccgctgccgatgctgacctcc

agGT 

Exonic and intronic sequences are are given in lower and upper cases, respectively and they are always defined 

according to the wild type (i) splice site usage.  The first and the second exons given in the figure are exon 13 and 14, 

respectively. The codons are denoted as alternating grey shaded and unshaded units. A phase 2 intron interrupts the 

reading frame between the second and third nucleotides of the codon depicted in red (i). This codon encodes the 

462nd amino acid residue. i) The wild type donor site (GT) of exon 13 and the wild type acceptor (AG) site of exon 14 

are shaded with yellow, ii) The wild type donor site (GT) of exon 13 and the alternative acceptor (AG) site of exon 14 

located 45 bp upstream of the wild type acceptor site are shaded with yellow. The alternative acceptor site has a 

consensus value of 85.23 according to HSF. Alternative acceptor site usage leads to a frameshift event corresponding 

to amino acid position 462 (depicted in red letters) and leads to insertion of 16 amino acids encoded by the codons 

given in bold. The pre-mature stop codon corresponding to amino acid position 485 is shaded with green, iii) The 

wild type donor site (GT) of exon 13 and the alternative acceptor (AG) site of exon 14 located 77 bp downstream of 

the wild type acceptor site are shaded with yellow. The alternative acceptor site has a consensus value of 84.27 

according to HSF. The sequences given in bold are skipped due to alternative splice site usage which leads to deletion 

of 26 amino acids. A frameshift event occurs at amino acid position 462 (depicted in red letters) and leads to a pre -

mature stop codon shaded with green and corresponding to amino acid position 466. 

B) The splice site variation at the at chr1: 146751866 effecting the donor site of exon 15 

i) Wild type donor site 

AGttgagtgagatactcaaatttggtttggataaactgctggcctctgaggggagcaccatggatgaaatagacctggagtccatactggg

agaaacaaaagatggccagtgggtctctgatgccttgcctgcagcagaaggagggagcagagatcaagaggaaggaaGTAAGTTG

GAGGT…………TAGaaaatcatatgtacttatttgaaggtaaagattattctaaagagcccagtaaggaagacagaaaatcatttgaa

caactggtaaaccttcagaaaacccttttggagaaagctagtcaagagggccgatcactccgaaataaaggcagtGT 

ii) Downstream alternative donor site 

AGttgagtgagatactcaaatttggtttggataaactgctggcctctgaggggagcaccatggatgaaatagacctggagtccatactggg

agaaacaaaagatggccagtgggtctctgatgccttgcctgcagcagaaggagggagcagagatcaagaggaaggaaGGAAGTTG

GAGGT…………TAGaaaatcatatgtacttatttgaaggtaaagattattctaaagagcccagtaaggaagacagaaaatcatttgaa

caactggtaaaccttcagaaaacccttttggagaaagctagtcaagagggccgatcactccgaaataaaggcagtGT 

Exonic and intronic sequences are are given in lower and upper cases, respectively and they are always defined 

according to the wild type splice site usage (i).  The first and the second exons given in the figure are exon 15 and 16, 

respectively. The codons are denoted as alternating grey shaded and unshaded units. A phase 1 intron interrupts the 

reading frame between the first and second nucleotides of the codon depicted in red (i). This codon encodes the 

569th amino acid residue. i) The wild type donor site (GT) of exon 15 and the wild type acceptor (AG) site of exon 16 

are shaded with yellow, ii) The alternative donor site (GT) of exon 15 located 9 bp downstream of the wild type donor 

site and the wild type acceptor (AG) site of exon 16 are shaded with yellow. The alternative donor site has a 

consensus value of 90.88 according to HSF. Alternative donor site usage leads to a frameshift at amino acid position 

569 (given in red) and to insertion of 4 amino acid encoded by the codons given in bold. The pre -mature stop codon 

corresponding to amino acid position 600 is shaded with green. 
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AVIII. Logistic regression analysis for the individual CHD1L variants.The genotyping is 

performed in a large case-control cohort composed of individuals of German, Dutch and Danish 

origin. The logistic regression analysis was performed to control for different ethnicities. The 

empirical p-values were calculated both for the total sample (a) where the initial and extended 

discovery samples were included and the independent genotyping sample (b). Empirical p-values 

were derived from 1000 permutations of case-control status where the specific case/control 

ratios of each population were kept constant. Minor and total allele counts of variants are given 

separately for each population based on the respective post QC- genotype calls of each 

individual variant; (npat/ncont)G= Germany, (npat/ncont)D= Denmark, (npat/ncont)N= the 

Netherlands. 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

Genomic 

position 

(hg19)

dbSNP ID Effect

Minor allele 

countsa 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Total allele 

Countsa 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Empirical 

p-value

Minor allele 

countsb 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Total allele 

Countsb 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Empirical 

p-value

3/0 3992/4560 2/0 3616/4372

0/1 3734/3692 0/1 3734/3692

1/0 1292/820 1/0 1292/820

1/0 3992/4560 0/0 3616/4372

0/0 3734/3692 0/0 3734/3692

0/0 1292/818 0/0 1292/818

7/7 3992/4560 6/7 3616/4372

8/8 3734/3688 8/8 3734/3688

5/4 1292/820 5/4 1292/820

1/1 3992/4560 0/1 3616/4372

0/0 3742/3692 0/0 3742/3692

0/0 1292/822 0/0 1292/822

27/20 3990/4560 24/20 3614/4372

14/20 3732/3688 14/20 3732/3688

4/3 1292/812 4/3 1292/812

10/20 3992/4560 9/19 3616/4372

6/5 3740/3688 6/5 3740/3688

3/2 1292/822 3/2 1292/822

146758054 rs139791996 G700R 0.715 0.871

146759387 rs148289715 I765M 0.262 0.308

146747766 rs113139670 splice site 0.946 0.933

146751866 - splice site 0.372 0.756

0.195 0.402

146742648 rs144757186 D381N 0.374 -

146737632 rs144288940 R261*
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AIX. Logistic regression analysis for the individual FMO5 variants. The genotyping is 

performed in a large case-control cohort composed of individuals of German, Dutch and Danish 

origin. The logistic regression analysis was performed to control for different ethnicities. The 

empirical p-values were calculated both for the total sample (a) where the initial and extended 

discovery samples were included and the independent genotyping sample (b). Empirical p-values 

were derived from permutations of case-control status where the specific case/control ratios of 

each population were kept constant. Significant p-values below 5% significance level are given 

in bold. The reported p-values for R319G are given for calculations based on 10000 

permutations and for the other variants for calculations based on 1000 permutations as the 

analyses were re-ran with 10000 permutations only if significant p-values were derived from 

the initial analysis. Minor and total allele counts of variants are given separately for each 

population based on the respective post QC- genotype calls of each individual variant;  

(npat/ncont)G= Germany, (npat/ncont)D= Denmark, (npat/ncont)N= the Netherlands. 

 

Genomic 

position 

(hg19)

dbSNP ID Effect

Minor allele 

countsa 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Total allele 

Countsa 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Empirical 

p-value

Minor allele 

countsb 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Total allele 

Countsb 

(npat/ncont)G 

(npat/ncont)D 

(npat/ncont)N

Empirical 

p-value

23/33 3992/4560 18/32 3616/4372

28/36 3736/3690 28/36 3736/3690

12/7 1292/822 12/7 1292/822

11/5 3990/4560 10/5 3614/4372

4/1 3740/3690 4/1 3740/3690

2/1 1292/818 2/1 1292/818

1/0 3992/4560 0/0 3616/4368

0/0 3740/3692 0/0 3740/3692

0/0 1292/822 0/0 1292/822

146672962 rs142335408 R319G 0.024 0.053

146684095 rs58351438 K166E 0.262 0.149

146658628 - R485* 0.438
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