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Zusammenfassung 
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Glycosphingolipide sind wichtige Bestandteile der Zellmembran. Glucosylceramid 

(GlcCer) ist das einfachste Glycosphingolipid und dient als Baustein für die Synthese 

von komplexen Glycosphingolipiden. Defekte in der lysosomalen beta-Glucosidase 1 

(GBA1), welche GlcCer zu Glucose und Ceramid spaltet, führt zu einer Anreicherung 

von GlcCer in den Lysosomen, wodurch das Gaucher-Syndrom, eine schwere Lipid-

Speicherkrankheit, entsteht. Knockout-Mäuse, in denen das Gen für die non-lysosomale 

beta-Glucosidase 2 (GBA2) ausgeschaltet wurde, häufen GlcCer außerhalb der 

Lysosomen an. Dadurch entsteht eine schwere männliche Fertilitätsstörung, die als 

Globozoospermie bezeichnet wird. Die molekularen Mechanismen der Entstehung 

dieser Fertilitätsstörung sind jedoch unbekannt. In meiner Doktorarbeit habe ich zum 

einen untersucht, wo GBA2 in der Zelle lokalisiert ist und zum anderen, warum das 

Fehlen von  GBA2 und damit die Anreicherung von GlcCer in GBA2 Knockout-Mäusen 

zu Globozoospermie führt. Meine Ergebnisse zeigen erstens, dass GBA2 an der 

zytosolischen Seite der Membranen des Golgi-Apparats und des Endoplasmatischen 

Retikulums (ER) assoziiert ist. Zweitens konnte ich zeigen, dass die Anreichung von 

non-lysosomalen GlcCer mit der Funktion des Mikrotubuli-, als auch des 

Aktin-Zytoskeletts interferiert: die Lebensdauer der Mikrotubuli sowie die Rate der 

Aktin-Polymerisation sind in GBA2 Knockout-Mäuse erhöht. Das betrifft v.a. die 

Zytoskelett-Strukturen im Hoden, die für die Ausbildung des Spermienkopfs 

verantwortlich sind: Mikrotubuli in der Spermien-Manschette sind deutlich länger als in 

Wildtyp-Mäusen und die Organisation des filamentösen F-Aktins  in der apikalen 

ectoplasmic specialisation (ES) ist gestört. Zusätzlich wird die Akrosombildung aufgrund 

eines Defekts in Vesikelfusionierung beeinträchtigt. In meiner Arbeit konnte ich zeigen, 

dass die Anreicherung von GlcCer außerhalb der Lysosomen die Lipidorganisation in 

der Plasmamembran erhöht, wodurch die Funktion von Proteinen in der Membran 

gestört wird. Dazu gehören vermutlich auch Proteine, die die Dynamik des Zytoskeletts 

regulieren. Meine Arbeit gibt zum einen Einblick darin, wie GlcCer Signalwege steuert. 

Zum anderen bieten die Ergebnisse meiner Doktorarbeit auch erste Erklärungsansätze 

dafür, wie eine Anreicherung von GlcCer die Spermienentwicklung beeinträchtigen und 

zu männlicher Unfruchtbarkeit führen kann. 
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Glycosphingolipids are important constituents of cellular membranes. 

Glucosylceramide (GlcCer) is the simplest glycosphingolipid and serves as a building 

block for the synthesis of higher-order glycosphingolipids. Defects in the lysosomal 

beta-glucosidase 1 (GBA1), which cleaves GlcCer to glucose and ceramide, causes 

accumulation of GlcCer in lysosomes and, thereby, the severe lipid-storage disorder 

Gaucher disease. Knockout-mice lacking the non-lysosomal beta-glucosidase 2 

(GBA2) accumulate GlcCer outside the lysosomes, resulting in globozoospermia – a 

severe male fertility defect. The molecular mechanisms underlying this fertility defect 

are unknown. In my PhD thesis, I (1) investigated the subcellular localization of GBA2 

and (2) analyzed how the lack of GBA2 causes globozoospermia in mice. First, I 

could demonstrate that GBA2 is attached to the cytosolic side of the endoplasmic 

reticulum (ER) and Golgi membranes. Second, my results revealed that accumulation 

of non-lysosomal GlcCer disrupts cytoskeletal dynamics, affecting both the 

microtubule and actin cytoskeleton: microtubule persistence and the rate of actin 

polymerization are increased in GBA2 knockout-mice. In particular, cytoskeletal 

structures in the testis that shape the sperm head are disturbed: the microtubule 

manchette in sperm of GBA2 knockout-mice persist longer and the F-actin 

organization in the apical ectoplasmic specialization (ES) is disrupted. In addition, 

acrosome formation is impaired due to a defect in vesicle fusion. My results indicate 

that accumulation of GlcCer outside the lysosomes increases lipid stacking in the 

plasma membrane, thereby, interfering with protein function, particularly with the 

function of proteins that control cytoskeletal dynamics. My work provides an insight 

into how GlcCer accumulation affects cellular signaling and, therefore, how the lack 

of GBA2 leads to a defect in male infertility. 
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1. Introduction  

1.1. Glycosphingolipids  

Glycosphingolipids are a class of lipids that can be found in all membranes 

from bacteria to men [1]. Glycosphingolipids control fundamental cellular processes 

such as growth, differentiation, cell-cell and cell-matrix interactions, migration, and 

morphogenesis [2]. They consist of a ceramide backbone and one or more 

carbohydrate head-groups. The ceramide consisting of a sphingosine and a fatty acid 

inserted into the membrane, while the sugar groups face the extracellular space [3]. 

Glucosylceramide (GlcCer) is the simplest glycosphingolipid and serves as a 

precursor for the synthesis of complex glycosphingolipids [4]. 

 

1.2. GlcCer synthesis and function 

Ceramide is synthesized in the endoplasmic reticulum (ER) and transported to 

the trans-Golgi by the ceramide transport protein (CERT) [5]. At the cytosolic side of 

trans-Golgi, GlcCer synthase converts ceramide to GlcCer [6]. GlcCer is transported 

into the Golgi lumen, where it is converted to lactosylceramide (LacCer) by the 

LacCer synthase (Figure 1) [7]. GlcCer can also be transported from the Golgi to the 

ER by the glycolipid transfer protein (GLTP) and/or the phosphoinositol 4-phosphate 

adaptor protein-2 (FAPP2) [8] [9]. LacCer is further converted to complex 

glycosphingolipids in the inner leaflet of the Golgi membrane [1]. GlcCer that is not 

converted to LacCer, functions as an intracellular messenger and controls different 

cellular functions. It has been shown to maintain the skin barrier, control the 

differentiation of keratinocytes [10] [11] [12], and induce axonal growth in 

hippocampal neurons [13] either by controlling the activity of the basic fibroblast 
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growth factor and laminin [14] or by regulating protein transport to the axonal 

membrane [15]. GlcCer has also been proposed to induce cell growth either by 

accelerating DNA synthesis via stimulating thymidine kinase-activity or by 

augmenting the activity of protein kinase C [16] [17]. Last but not least, GlcCer has 

been shown to control vesicular transport of lipids to the cell surface in highly 

polarized cells and cells with tight junctions [18] and to regulate lipid sorting at the 

trans-Golgi [19].  

 

1.3. GlcCer degradation  

GlcCer is degraded to glucose and ceramide by beta-glucosidases [20].  

Beta-glucosidases are glycosyl hydrolases that cleave the beta-1,4 glycosodic 

linkage between the terminal non-reducing residue (the glucose moiety) and the 

ceramide backbone [21]. Until now, three beta-glucosidases have been identified that 

degrade GlcCer: glucocerebrosidase 1 (GBA1), the non-lysosomal beta-glucosidase 

GBA2, and the cytosolic GBA3 (Figure 1) [22] [23] [24]. 

 

 

Figure 1. Synthesis and degradation of GlcCer. Ceramide is glycosylated by the GlcCer 

synthase to form GlcCer. GlcCer is converted to lactosylceramide (LacCer) by the LacCer 

synthase. LacCer is used as a building block to form higher order glycosphingolipids. GlcCer 
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is proteolytically cleaved to glucose and ceramide by the three beta-glucosidases: GBA1, 

GBA2, and GBA3.  

1.4. Beta-glucosidase 1 (GBA1) 

GBA1 is localized in the lysosomes and shows a maximum in enzymatic 

activity around pH 4.0, which can be completely blocked by conduritol B epoxide 

(CBE) [25] [26].  

Macromolecules such as complex lipids are constitutively degraded in the 

endosomes and lysosomes. Defects in this pathway result in debilitating lysosomal 

storage disorders [27]. Deficiencies in GBA1 result in Gaucher disease, the most 

prominent lysosomal storage disorder [28]. Gaucher disease is characterized by 

accumulation of GlcCer in tissue macrophages. Patients suffer from liver and spleen 

enlargement and, in the most severe cases, impairment of the central nervous 

system. Gaucher disease is clinically heterogenous. However, there is no clear 

genotype-phenotype correlation that allows to predict the severity of Gaucher 

disease-pathology [29].   

 

1.5. Beta-glucosidase 2 (GBA2)  

GBA2 is a non-lysosomal beta-glucosidase that shares no sequence 

homology with GBA1 [30]. GBA2 shows a maximum in enzymatic activity around pH 

6.0, which can be blocked by N-butyldeoxynojirimycin (NB-DNJ) [31] [26]. GBA2 has 

been proposed to be a transmembrane protein in the plasma membrane and the ER, 

with the N terminus and the catalytic domain being located on the extracellular side 

or in the lumen of the ER [32]. However, we have recently demonstrated that GBA2 

is not a transmembrane protein but rather membrane-associated at the ER and Golgi 
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with both the N and the C termini facing the cytoplasm [26]. This implies that the site 

for GBA2-mediated degradation of non-lysosomal GlcCer is cytosolic. 

GBA2 is ubiquitously expressed with highest expression levels in the testis 

and brain followed by liver, heart, spleen, and skin [30]. To study GBA2 function in 

vivo, a GBA2 knockout-mouse model was generated using a gene targeting 

approach that deleted exons 5 –10 [30]. In the absence of GBA2, GlcCer 

accumulated predominantly in tissues with high GBA2 expression levels, e.g. testis 

and brain. While female GBA2 knockout-mice appeared to be phenotypically normal, 

male GBA2 knockout-mice were sub-fertile due to a defect during spermatogenesis 

called globozoospermia [30]. A detailed description of this defect is the subject of 

chapter 1.7.  

Recently, it has been shown that GBA2 knockout-mice also display a liver 

phenotype: liver regeneration after partial hepatectomy was impaired and has been 

attributed to a defect in cytokine and growth factor-mediated signaling pathways [33]. 

Mutations in the GBA2 gene in humans have been associated with autosomal 

recessive cerebellar ataxia (ARCA) and hereditary spastic paraplegia (HSP) due to 

cerebellar atrophy, which are both characterized by lack of limb coordination [34] 

[35].  

Taken together, GBA2 seems to control different physiological functions. 

However, the underlying molecular mechanisms are ill defined.  

 

1.6. Spermatogenesis  

The primary phenotype of GBA2 knockout-mice is male sub-fertility [30]. Thus, 

it is important to investigate the role of GBA2 in spermatogenesis.  The testis consists 

of seminiferous tubules, where spermatogenesis occurs in waves (Figure 2a). In the 
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mouse, each wave lasts for about 35 days and is characterized by a sequence of 

developmental stages (I to XIV) [36]. The blood-testis barrier (BTB) divides the 

seminiferous tubule into a basal and an adluminal part (Figure 2d). The BTB, also 

called basal ectoplasmic specialization, is a specialized junction formed by Sertoli 

cells close to the basal membrane. They are characterized by actin filaments 

arranged perpendicular to the plasma membrane, which are sandwiched by the ER 

cisternae on one side and the plasma membrane of the Sertoli cells on the other side 

[37]. The BTB restricts the flow of molecules from the basal into to the adluminal 

compartments, thereby, creating a microenvironment that is conducive for the 

development of germ cells [38].  Furthermore, the BTB also acts as an immunological 

barrier by preventing entry of antibodies generated against proteins expressed on 

developing germ cells [39]. The BTB confers cell polarity in the seminiferous 

epithelium via the recruitment of polarity-complex proteins to the BTB, which is 

crucial for spermatogenesis [40]. At birth, spermatogenesis starts at the basal lamina 

of the seminiferous epithelium with diploid spermatogonia. Spermatogonia undergo 

mitotic divisions to form primary spermatocytes, which cross the BTB in the 

preleptotene phase of meiosis I. Upon reaching the adluminal compartment, primary 

spermatocytes complete meiosis I and II to form secondary spermatocytes, which 

differentiate into round spermatids at puberty. During spermiogenesis, the round 

haploid spermatids undergo dramatic morphological rearrangements to form 

elongated sperm (Figure 2d) [41]. The sperm head is connected to the Sertoli cell via 

another testis-specific junction, the apical ectoplasmic specialization (ES) [42]. The 

function of the ES in sperm development is described in chapter 1.8.  
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Figure 2. Spermatogenesis in the mouse.  (a) Schematic representation of mouse testis 

with longitudinally arranged seminiferous tubules. (b) Light microscopic view of a cross 

section through the testis. (c) Schematic diagram of a cross section through a single tubule, 

showing Sertoli cells (green), different stages of developing spermatogonia (light blue), the 

basal lamina (brown), and Leydig cells (dark blue) [43]. (d) Schematic representation of the 

first wave of spermatogenesis. It starts at birth (P0) and ends with the release of mature 

sperm (P34). At P5, diploid spermatogonia (light blue) undergo mitotic divisions to form 

primary spermatocytes (pink) followed by meiosis I to form secondary spermatocytes 

(orange). At puberty (P27 – P29), secondary spermatocytes undergo meiosis II to form round 

haploid spermatids (red). During spermiogenesis, round spermatids dramatically change 

their morphology to form elongated sperm. The position of the blood-testis barrier (BTB) and 

the apical ectoplasmic specialization (ES) is shown in red.  
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1.7. Globozoospermia  

Globozoospermia results from a defect during sperm development and is 

characterized by round-headed sperm with a severely deformed acrosome [44]. As 

mentioned above, GBA2 knockout-males are sub-fertile due to globozoospermia: the 

heads of wild-type sperm are sickle-shaped with a well-formed acrosome, whereas 

heads of GBA2 knockout-sperm are round, contain no or a malformed acrosome, and 

the mitochondria in the sperm flagellum are displaced (Figure 3) [30]. Recently, men 

with mutations in the GBA2 gene have been diagnosed with bilateral testicular 

hypotrophy and their sperm displayed severe head and acrosome deformation [35]. 

However, the molecular mechanisms underlying the defects in sperm development in 

the absence of GBA2 are not known.  

 

 

 

 

 

 

 

 

 

Figure 3. Wild-type and GBA2 knockout-sperm head morphology. Left: electron 

micrograph of sperm from a wild-type (+/+) mouse with a normal, sickle-shaped head. 

Right: electron micrograph of a GBA2 knockout-sperm (-/-) with a round-shaped head. The 

electron-dense region represents the sperm nucleus. Scale bars: 500 nm [30].  

 

The prominent feature of globozoospermia is a defect in acrosome formation 

[45]. The acrosome is derived from the Golgi [46]. Vesicles emanate from the 

trans-Golgi and fuse with the nuclear membrane to form the acrosome at the anterior 

end of the sperm head [47]. A number of proteins have been identified that regulate 
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acrosome formation. They mainly control vesicle trafficking and fusion or anchoring of 

the acrosome to the nuclear membrane [46] [47] [48] [49] [50] [51]. Knockout mice for 

the underlying genes all display globozoospermia.  

The DPY19L2 protein is a transmembrane protein in the nuclear envelope. In 

DPY19L2 knockout-mice, the acrosome detaches from the nuclear membrane, 

whereby, shaping of the sperm head is abolished and acrosomal vesicles are 

eliminated [52].  

Hrb (HIV-1 Rev binding protein) is associated with the outer membrane of the 

proacrosomal vesicles emanating from the Golgi. In Hrb knockout-mice, vesicle 

fusion leading to acrosome formation is abolished, indicating that Hrb is important for 

vesicle docking and/or fusion [46]. 

GOPC (Golgi-associated PDZ and coiled coil motif containing protein) is 

localized at the trans-Golgi of developing sperm. GOPC knockout-sperm display a 

defect in proacrosomal vesicle fusion, nuclear shaping, and in the alignment of 

mitochondria along the flagellum [48]. A similar phenotype is observed in PICK1 

(protein interacting with C-kinase) knockout-mice [49]. PICK1 has been proposed to 

interact with GOPC and together, they seem to coordinate the formation of 

proacrosomal vesicles from the trans-Golgi [49].  

Vps54 is a vesicular protein that controls vesicular sorting [53]. Together with 

GARP (Golgi associated retrograde protein), it is involved in vesicle transport from 

the endosomes to the trans-Golgi [54].  Mutations in the Vps54 gene render 

proacrosomal vesicles incapable of fusing to form the acrosome [50].  

ZPBP1 (zona pellucida binding protein 1) is a protein associated with the inner 

acrosomal membrane that binds to the zona pellucida, the egg coat, during 

fertilization [55]. Mice lacking ZPBP1 fail to form a compact acrosomal structure, 
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resulting in a dilated acrosome overlying the sperm head. The dilated acrosome is 

fragmented and ingested by the Sertoli cells [51]. Thus, sperm heads are round, lack 

an acrosome, and are therefore, incapable of fertilizing an oocyte.  

 

1.8. The Cytoskeleton: machinery for sperm-head shaping 

 Globozoospermia not only involves a defect in acrosome formation. In many 

cases, the shaping of the sperm head is also affected, indicating that the two 

processes are linked. During spermatid elongation, the sperm head is shaped at the 

posterior end by a manchette of microtubules and at the anterior end by the apical 

ES (Figure 4) [56] [57]. The microtubule manchette consists of a perinuclear ring that 

is supported by numerous vertically arranged microtubules. The constrictive 

downward movement of the manchette shapes the postacrosomal region of the 

sperm head [58] [59]. The other cytoskeletal structure that shapes the sperm head is 

the apical ES, a testis-specific adherence junction between the developing spermatid 

head and the Sertoli cell (Figure 4). Similar to the BTB, this ES consists of F-actin 

supported by the endoplasmic reticulum and plasma membrane of the Sertoli 

cells [37]. F-actin at the ES forms bundles or hoops around the sperm head. Since 

F-actin in the ES is devoid of myosin, the ES cannot generate contractile forces [60]. 

However, the polymerization and depolymerization of F-actin, initiated by actin 

severing proteins like gelsolin [61] and proteins that facilitate polymerization like 

profilin-3 [62], causes tread milling of the F-actin containing hoops. Thereby, 

constriction forces are generated that shape the acrosomal region of the sperm 

head [57]. These forces are transduced to the spermatid head via the acrosplaxome, 

an F-actin/keratin 5 containing cytoskeletal plate that anchors the acrosome to the 

spermatid head [57]. Together, the microtubule manchette and the apical ES act as 

endogenous constrictors that steer spermatid elongation and shape the sperm 

head (Figure 4).  
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Figure 4. Schematic representation of the structural components that shape the sperm 

head. The elongated spermatid (blue) is attached to the Sertoli cell (brown) via the apical 

ectoplasmic specialization (ES). The F-actin hoops (orange) that form the ES act as a 

scaffold and contribute to the shaping of the acrosomal region of the spermatid head. The 

microtubules (purple) form a manchette, consisting of a perinuclear ring supported by 

longitudinal microtubules around the spermatid neck that shape the postacrosomal region of 

the sperm head. The acroplaxome (red) anchors the acrosome to the spermatid nucleus. 

The perinuclear ring of the manchette is separated from the acroplaxome by the belt groove. 

The spermatid flagellum is shown in green. Diagram adapted from [63] and [64].     
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Defects in the assembly and removal of the microtubule manchette have been 

shown to affect the morphology of the sperm head [63]. The p80 subunit of katanin, a 

microtubule-severing protein, controls the removal of the microtubule manchette. In 

katanin p80 knockout-mice, removal of the microtubule manchette is abolished, 

resulting in abnormal sperm-head morphology [63].  

Clip 170 is a microtubule plus-tip binding protein that is localized to the 

perinuclear ring of the microtubule manchette and maintains the structural integrity of 

the manchette [65]. In the absence of Clip 170, the microtubule manchette is 

misaligned, leading to a defect in sperm-head formation [65].   

Mutations in genes that control microtubule dynamics have also been shown 

to disrupt the microtubule network in Sertoli cells. A mutation in the KATNAL1 gene, 

which encodes a microtubule-severing protein, disrupts the microtubule dynamics in 

Sertoli cells, resulting in infertility due to premature release of spermatids from the 

seminiferous epithelium [66]. 

The apical ES contributes to the shaping of the spermatid head, but also 

assists in positioning and moving the developing sperm across the seminiferous 

epithelium, which prevents premature release of immature sperm [67]. Extensive 

research on the molecular composition of the ES has identified several actin binding 

and regulatory proteins.   

Chemical disruption of the actin cytoskeleton in the ES by cytochalasin D 

treatment has been shown to cause premature release of immature sperm, resulting 

in infertility [68].  

The junctional adhesion molecule-C (JAM-C) is a transmembrane protein 

expressed in spermatogenic cells. JAM-C interacts with JAM-B at the ES in Sertoli 

cells, thereby, controlling the communication between Sertoli and germ cells. JAM-C 
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is also responsible for recruiting the cell-polarity complex, Par6-Cdc-42-PKCλ, to the 

ES [69]. Spermatids from JAM-C knockout-mice lack cellular polarity, which is 

required for spermatid differentiation. As a consequence, these mice fail to produce 

mature sperm [69].  

Abnormal bundling of actin fibers at the apical ES has been shown to cause 

infertility due to malformations in the sperm head. Nectin-2 is exclusively expressed 

in Sertoli cells and is localized at the junctions between Sertoli cells and between 

Sertoli and germ cells. Nectin-2 recruits and/or maintains F-actin bundles at the ES. 

In the absence of nectin-2, the ES fails to form due to the lack of actin bundling. 

Consequently, sperm heads are deformed and are unable to fertilize the oocyte [70]. 

 

1.9. Aim of the thesis    

 The physiological function of the GBA2, a non-lysosomal beta-glucosidase, is 

ill-defined. Accumulation of GlcCer in GBA2 knockout-mice causes globozoospermia 

and, thereby, male infertility. However, the underlying molecular mechanism is not 

known. Thus, the aim of my PhD thesis is to investigate the molecular mechanisms 

underlying the development of globozoospermia in GBA2 knockout-mice. 
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2. Materials  

2.1. Antibodies  

2.1.1. Primary antibodies  

ANTIBODY ORIGIN 
DILUTION 

MANUFACTURER 
ICC WB 

Calnexin rb 1:100 1:20000 abcam 

GBA2-4A12 rt 1:50 1:20 E. Kremmer (HZ München) 

GBA2-4D7 rt 1:50 1:20 E. Kremmer (HZ München) 

GBA2-2F8 rt 1:50 1:20 E. Kremmer (HZ München) 

GBA2-5A8 rt 1:50 1:20 E. Kremmer (HZ München) 

Polyclonal GBA2 rb 1:1000 1:2000 Y. Yildiz (Yildiz et al., 2006) 

beta-tubulin-CY3 ms 1:500 - Sigma #C4585 

HA  1:1000 1:10,000 Roche #11867431001 

beta-tubulin III rb 1:500 1:1000 Covance #MRB-435P 

BrdU ms 1:200 - Invitrogen #MP35128 

GM-130 ms 1:100 - BD Transduction Labs #610822 

Giantin rb 1:1000 - Abcam #ab24586 

Lamp1 rb 1:200 - Abcam #ab24170 

Sox9 rb 1:1000 - Millipore #AB5535 

Cdc-42 rb - 1:1000 Abcam #ab64533 

Rac1 ms - 1:1000 Abcam #ab33186 

 

2.1.2. Secondary antibodies  

ANTIBODY ORIGIN 
DILUTION 

MANUFACTURER 
ICC WB 

d α rb Cy3 d 1:250 - Dianova 

d-α- rtCy3 d 1:250 - Dianova 

gt α ms Dylight 488 gt 1:100 - abcam 

d α rb IRDye680 d - 1:20000 LI-COR Bioscience 

gt α rt IRDye800 gt - 1:20000 LI-COR Bioscience 

d α ms IRDye800 d - 1:20000 LI-COR Bioscience 
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2.1.3. Dyes 

DYE 
DILUTION 

MANUFACTURER 
ICC WB 

Phalloidin  1:500 - Molecular Probes #A12379 

MitoTracker 0.5 µM - Molecular Probes #M22426 

Peanut lectin 1:100 - Sigma #7381 

DAPI 1:10,000 1:10,000 Molecular Probes #D1306 

2.2. Bacterial strains and Cell lines  

The Escherichia coli XL1-Blue (Bullock et al. 1987) was used to amplify 

plasmid DNA. 

2.3. Plasmids 

Lifeact-GFP and EB3-mCherry were kindly provided by Dr. Roland Wedlich-

Söldner and Dr. J.Victor Small, respectively.  

3. Methods  

GBA2 knockout-mice were generated as mentioned in [30]. All experiments 

performed with animals were in accordance with the relevant guidelines and 

regulations. The generation of antibodies and stable HEK293 cell lines is described 

in [26].  

3.1. Cell culture  

3.1.1. Isolation of sperm and male germ cells 

Sperm were isolated by incision of the cauda epididymis in modified TYH 

medium containing 138 mM NaCl, 4.8 mM KCl, 2 mM CaCl2, 1.2 mM KH2PO4, 1 mM 

MgSO4, 5.6 mM glucose, 0.5 mM sodium pyruvate, 10 mM L-lactate, pH 7.4.  
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For isolation of germ cells, testes were decapsulated and incubated in 1 ml 

Hank’s Balanced Salt Solution (HBSS) (20 mM HEPES, 137 mM NaCl, 5.4 mM KCl, 

0.3 mM Na2HPO4, 0.4 mM KH2PO4, 1.2 mM MgSO4, 1.3 mM CaCl2, 6.6 mM sodium 

pyruvate, 0.05% lactate, 5.6 mM glucose, pH 7.2) containing 0.5 mg/ml Collagenase 

type IA (Sigma) for 30 min at 32 °C. The dissociated interstitial cells were removed 

by two washing steps with HBSS. The seminiferous tubules were then incubated in 

1 ml HBSS containing 0.5 mg/ml Trypsin type XIII (Sigma) and 1 µg/ml DNaseI 

(Applichem) for 10 min at 32 °C. Cell aggregates were sheared gently with a Pasteur 

pipette. The dispersed seminiferous cells were washed twice by centrifugation at 

200 x g for 5 min at room temperature. The final cell pellet was resuspended in HBSS 

and filtered through a Nylon mesh (40 µm pore size). 

3.1.2. Isolation of P7 Sertoli cells  

Seminiferous tubules were isolated from testis of 7 days old mice (P7) by 

removal of the tunica albuginea. The tubules were treated with 1 mg/ml collagenase 

(Sigma) at 37°C in a shaker for 8 min. The digestion was stopped by addition of 

DMEM/GlutaMax medium (Invitrogen) containing 10% FCS (Biochrom). The cell 

suspension was centrifuged at 400 x g for 8 min, the pellet was re-suspended in 

DMEM/GlutaMax medium containing 10% FCS and 0.5 mg/ml trypsin (Sigma) and 

0.22 mg/ml EDTA (Sigma), and incubated in a shaker at 37°C for 5 min. The reaction 

was stopped by adding medium. The cell suspension was then treated with 1 µg/ml 

DNase I (Applichem) in a shaker at 37°C for 5 min. Afterwards, cells were centrifuged 

at 600 x g for 10 min, and re-suspended in medium containing 70 IU/ml penicillin, 

70 µg/ml streptomycin, 100 mM sodium pyruvate, and 200 mM L-glutamine (all Life 

technologies). Cells were seeded at a density of 5 x 104 cells/5 cm cell culture plate 

(Greiner bio-one) and used on the 5th day for experiments.  

In order to maintain the intercellular junctions of the isolate, the seminiferous 

tubules were treated with 1 mg/ml dispase (Stem cell technologies, #07923) instead 

of collagenase and trypsin in a shaker at 37°C for 30 min. After treatment the cells 

were centrifuged, re-suspended in fibroblast growth medium (see 3.1.3) and plated 

on poly-L-lysine coated glass coverslips.  
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3.1.3. Isolation of dermal fibroblasts 

Dermal fibroblasts were isolated from mouse tails using collagenase digestion. 

Tail pieces were incubated in fibroblast growth medium containing 0.1 mg/ml 

collagenase (Sigma) for 3h, 37 °C, and 5% CO2. After digestion, the supernatant was 

centrifuged for 5 min, 600 x g at room temperature. The cell pellet was re-suspended 

in fibroblast growth medium; cells were plated on cell culture plates, and cultured at 

37°C, 5% CO2. After 24 h, the medium was changed.  

Fibroblast growth 
medium 

DMEM/GlutaMax containing 10% FCS, 100 mM sodium 
pyruvate, 200 mM L-glutamine, 70 IU/ml penicillin, 70 µg/ml 

streptomycin. 

3.1.4. Immunocytochemistry (ICC)  

 Cells were fixed in 4% paraformaldehyde at room temperature for 10 min. To 

preserve the cytoskeleton, cells were fixed with PHEM for 15 min at RT. After 

washing with PBS (1.5 mM KH2PO4, 2.7 mM KCl, 6.5 mM Na2HPO4, 137 mM NaCl, 

pH 7.4), a quenching step was introduced by incubating the cells for 10 min in 25% 

glutaraldehyde and 50 mM NH4Cl in PBS at room temperature. Sperm were 

immobilized on microscope slides and fixed with 4% paraformaldehyde at room 

temperature for 10 min. Before blocking, all cells were washed 3 x with PBS.  To 

block unspecific binding sites, cells were incubated for 1 h with blocking buffer (0.5% 

Triton X 100 and 5% ChemiBLOCKER (Millipore) in 0.1 M phosphate buffer, pH 7.4). 

Primary antibodies were diluted in blocking buffer and incubated 1 h at room 

temperature. Fluorescent secondary antibodies were diluted in blocking buffer 

containing 0.5 µg/µl DAPI (Invitrogen) and incubated for 1 h in the dark. Pictures 

were taken on a confocal microscope (Olympus FV1000). For the analysis of 

cytoskeletal structures in dermal fibroblasts, cells were seeded on multi-pattern 

fibronectin coated CYTOO chips (#10-900-13-06, CYTOO Cell Architects). 

PHEM BUFFER STOCK (PH 7.0) 1X PHEM 

2 mM MgCl2 1x PHEM buffer 

10 mM EGTA 0.1 % (v/v) Triton X-100 (Roth) 

25 mM HEPES 0.25 % (w/v) glutaraldehyde (Sigma) 

60 mM PIPES 3.7 % (w/v) PFA/sucrose 
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3.1.5. Immunohistochemistry (IHC)  

Testes were fixed overnight with 4% paraformaldehyde/PBS, cryo-protected in 

10% and 30% sucrose, and afterwards embedded in TissueTec (Sakura Finetek). 

Thin cross-sections of (16 µm) thickness were made in a cryotome (Microm HM 560). 

Immunofluorescent labeling was performed as described above except that the 

primary antibody was incubated overnight in a humidified chamber at room 

temperature. 

3.1.6. Unroofing of HEK293 cells  

 HEK293 cells were transfected with a membrane-anchored GFP (CAAX). For 

unroofing 1 ml of stabilization buffer (30 mM HEPES pH 7.4, 70 mM KCl, 5 mM 

MgCl2, 3 mM EGTA, 1 mM DTT) was added and cells were sonicated once for 

0.1 sec with a pulse amplitude of 5% in a sonifier (Branson sonifier 450). Afterwards, 

cells were gently washed to remove debris and stained with antibodies.  

3.1.7. Fluorescence protease protection (FPP) assay  

The assay was performed as described in [71].  

3.1.8. Transfection of mouse fibroblasts 

1x106 mouse fibroblasts were resuspended in 100 µl transfection buffer (Neon 

transfection system, Life technologies) and 4 µg of plasmid DNA was added. Using a 

microporator mini (Digital Bio Technology, MP-100), 10 µl of the cell supsension were 

subjected to two pulses (20 ms each) of 1000 V and afterwards transferred to poly-L-

Lysine-coated glass-bottom dishes (Mat Tek, #P35G-1.5-20-C). A total of 30 µl of 

cells were electroporated. The cells were allowed to grow overnight at 37°C and 5% 

CO2 in medium.  
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3.1.9. Live-cell imaging 

Cells were imaged 24 h after transfection using the DeltaVision Core 

microscope (Applied Precision, Inc.). Images were acquired every 3 s with 

200-500 ms exposure time over 5 min. 

3.1.10. Analysis of microtubule dynamics  

Image analysis was performed using the track-points function of Metamorph 

(version 7.0, Molecular Devices Corporation). A microtubule track was followed from 

the first frame an EB3-labelled microtubule plus-tip appeared until the last frame, 

when the plus-tip was no longer visible. Data for velocity (microtubule advance-rate) 

and distance (microtubule persistence) were calculated. Per cell, a minimum of 10 

microtubule tracks and 7 cells per cell line were analyzed. In total, for each genotype, 

cells from 3 animals were analyzed.     

3.1.11. Measurement of microtubule manchette  

 Isolated germ and Sertoli cells were labeled with a beta-tubulin antibody to 

visualize the manchette and DAPI to label the DNA in the sperm head. Images were 

taken using an Olympus FV1000 confocal microscope and the length of individual 

sperm manchettes was measured using ImageJ (version 1.46m). A minimum of 7 

cells and three animals per genotype were analyzed.  

3.1.12. Analysis of actin structures 

Mouse fibroblasts were plated on CYTOO chips (CYTOO Cell Architects, 

#10 900-13-06) placed in a 35 mm cell culture plate and labeled with Phalloidin and 

DAPI. Images were taken using an Olympus FV1000 confocal microscope. Filopodia 

(slender actin-protrusions) and lamellipodia (wave-like actin extensions) structures 

were manually counted and expressed as number of filopodia or lamellipodia per cell.   
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3.1.13. Proliferation assay  

Fibroblasts were seeded at a density of 4x104 cells/well and allowed to grow 

overnight. Cells were labelled with BrdU (Invitrogen #00-0103, diluted 1:100 from 

concentrate of 10:1 5-bromo-2'-deoxyuridine and 5-fluoro-2'-deoxyuridine) in 

fibroblasts growth medium for 8 hours at 37°C, 5% CO2, and fixed with 70% ethanol 

for 10 min at room temperature. Before performing ICC using an anti-BrdU antibody 

cells were treated with 1.5 M HCl for 30 min. BrdU labeled nuclei were counted using 

the ImageJ (version 1.46m) cell counter plug-in. The proliferation rate was calculated 

by determining the ratio of proliferated cells to the total number of cells. Seven 

animals per genotype were analyzed. 

3.1.14. Wound-healing assay 

Silicone cell culture-inserts (Ibidi, #80209) with a defined cell-free gap 

(width = 500 µm) were placed in 35 mm cell culture dishes. 4 x 104 cells were 

transferred into each of the culture inserts and incubated at 37°C, 5% CO2 for 2 h. 

Afterwards, inserts were removed and cells were washed with PBS (1.5 mM KH2PO4, 

2.7 mM KCl, 6.5 mM Na2HPO4, 137 mM NaCl, pH 7.4). Fresh medium was added 

and a phase contrast image was taken (t = 0 h) using the Nikon eclipse (TE 2000-S) 

microscope.  An image of the same region was taken every 2 h (t = 2, 4, 6, 8 h). The 

area of the cell-free gap was measured using ImageJ (version 1.46m) and the speed 

of migration was calculated.  

3.1.15. Isolation of giant plasma-membrane vesicles (GPMVs) 

Giant plasma-membrane vesicles (GPMVs) have been isolated as described 

elsewhere [72]. In brief, dermal fibroblasts were incubated with GPMV buffer (10 mM 

HEPES, 150 mM NaCl, 2 mM CaCl2, pH 7.4) containing 2 mM NEM for 1-2 h at 

37°C, 5% CO2. The supernatant was centrifuged for 10 min at 2,000 x g and room 

temperature to pellet cell debris and intact cells. The resulting supernatant was 

subjected to high-speed centrifugation for 1 h at 45,000 x g and 4 °C to pellet the 

vesicles. The pellet was re-suspended in GPMV buffer.  



Materials and Methods 
 

20 | P a g e  
 

3.1.16. Fluorescence spectroscopy  

Measurements were performed in a quartz cuvette using the FluoroMax-3 

Spectrofluorometer (Horiba Jobin yvon). The emission spectrum was recorded from 

400 nm to 500 nm at 385 nm excitation to detect the lipid resonance-peak at 425 nm. 

All samples were normalized to the lipid resonance-peak for the GPMV buffer. 

GPMVs were labeled with 5 µM laurdan (6-Dodecanoyl-2-

Dimethylaminonaphthalene, Molecular Probes, #D250) for 20 min at 23 °C. 

Measurements were performed at 350 nm excitation and fluorescence emission was 

recorded from 400 to 600 nm. All measurements were done at 23 °C. GP value was 

calculated according to the following equation where  is the intensity of emitted light 

at wavelength x.  

 

3.2. mRNA expression analysis 

Total RNA isolation and reverse transcription to obtain cDNA was performed 

according to the manufacturer’s instructions (Nucleo-Spin RNA II: Macherey & Nagel, 

Düren, Germany; Superscript III: Invitrogen).  

3.2.1. Quantitative real-time PCR  

 

For qRT-PCR, two master mixes were prepared:   

MIX I MIX II 

 1 µl of a 5 µM dilution of each 
primer of one primer pair 
 

 12.5 µl SYBR Green Supermix 
(Biorad) 

 1 µl of the 1:5 cDNA 
dilution 
 

 10.5 µl H2O 
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qRT-PCR was performed for Cdc-42, Rac1, RhoA, Nectin2, and Vinculin, and 

for the housekeeping genes Tfrc and Gusb. Primers for qRT-PCR were tested for 

efficiency before use. Efficiency tests include dilution of template cDNA from 1:1 up 

to 1:1000. The slope obtained from plotting the individual CT values is used to 

calculate primer efficiency (E = 10
-1/slope). Primers used for real-time PCR showed at 

least 90% efficiency. Different annealing temperatures were used for the primers. 

 

PRIMER 
FORWARD 

PRIMER 
REVERSE 
PRIMER 

PRIMER 
NUMBER 

ANNEALING 
TEMPERATURE 

(°C) 

Cdc-42 
ACCCAACCATGC

GTCCCC 
GTCCTCAGCTTC

TCCGCC 
C2076/C

2077 
62 

Rac1 
TTTCCCCAGCTT

TGGGTGG 
TCCCACCACCAC

ACACTTG 
C2080/C

2081 
51 

RhoA 
CGTGGATGCGT

TCTTGAGC 
ATGGAGAGAACC

GACGGAG 
C2078/C

2079 
59 

Nectin2 
GAGAGGCCAAA

GATACTCAG 
CCAAGGTACCAG

TTGTCATC 
C1877/C

1878 
59 

Vinculin 
TGTTCAGACCAC

TGAGGATC 
TCAGCCTCATCG

AAGGTAAG 
C2082/C

2083 
59 

 

The reaction was set up in duplets for each gene and each template (mouse 

GBA2 wild-type and knockout testis cDNA). Additionally, a non-template control was 

set up for each primer pair. All qRT-PCR experiments were performed in the BioRad 

I-cycler with an IQ5 optical system. Data was analyzed using the BioRad IQ5 optical 

system software and calculated according to the delta-delta-CT method [73]. 

The following PCR program was used:  

 

 
CYCLE STEP 

TEMPERATURE 
(°C) 

TIME 
(SEC) 

Denaturation Step I 95 180 

Denaturation 
Annealing 
Extension 

(35X) 

Step I 95 10 

Step II see above 30 

Step III 72 30 

Denaturation Step I 95 60 

Melt curve 
Step I 55 60 

Step I 55 30 
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After running the cycles, a melt-curve analysis was performed to detect 

non-specifically amplified products. mRNA expression-levels for wild-type and 

knockout were normalized to the housekeeping genes. 

3.3. Biochemistry 

3.3.1. Protein preparation 

All steps were performed at 4 °C in the presence of mammalian protease 

inhibitor cocktail (mPIC, Sigma Aldrich). Tissues or cells were homogenized in a 10-

fold surplus (v/w) of hypotonic buffer (10 mM HEPES, 0.5 mM EDTA, pH 7.4) using 

an Ultra-thurrax (IKA) and three pulses (20 s each) of sonification (Branson sonifier). 

The suspension (total lysate) was centrifuged for 10 min at 1,000  g. The 

supernatant (PNS, post-nuclear supernatant) was used for activity assays.  For 

Western-blot analysis the tissue was homogenized in detergent containing buffer (10 

mM Tris/HCl pH 7.6, 140 mM NaCl, 1 mM EDTA, 1 % Triton X-100). After 30 min of 

incubation on ice, the suspension was centrifuged for 5 min at 10,000xg. The 

supernatant was used for experiments. The protein concentration was estimated 

using the bicinchoninic acid (BCA) test. Aa protein standard gamma-globulin protein 

was used. The absorbance of the protein of interest and the standards was 

measured at 570 nm in the Packrad Fusion Instrument plate reader. The protein 

concentration of the sample was calculated using the linear regression of the protein 

standard.     

3.3.2. SDS-PAGE and Western-blot analysis 

SDS-sample buffer (4x; 200 mM Tris/HCL pH 6.8, 0.04 % bromophenol blue, 4 

% beta-mercaptoethanol, 8 % SDS, 50 % glycerine) was added to all samples (final 

1x) and heated for 5 min at 95 °C prior to loading onto SDS-PAGE (sodium dodecyl 

sulfate polyacrylamide gel electrophoresis). The SDS-PAGE was performed in 

running buffer (final 1x; 10x: 250 mM Tris, 1.92 M glycine, 1 % SDS) at 180 V and 

120 mA. As protein standard the Novex prestained protein ladder (Invitrogen; 3.5–
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260 kDa) was used. For Western-blot analysis, proteins were transferred onto PVDF 

membranes (Immobilon-FL, Millipore), probed with antibodies, and analyzed using 

the Odyssey Imaging System (LI-COR). Quantification of the Western blots was done 

using ImageJ (version 1.46m).  

3.3.3. G-/F-Actin assay 

The assay was performed according to the manufacturer’s protocol (#BK037, 

Cytoskeleton).  

3.3.4. Fluorescence-based GBA activity assays 

The assay has been performed as described previously [26]. Briefly, cleavage 

of 4-MU-beta-D-glucopyranoside (Sigma Aldrich) was monitored in real-time in a 

Fluostar Omega reader (BMG labtech) at 29 °C using the filter pair 355 nm/460 nm 

for excitation and emission, respectively. The assays were performed in 384-well 

plates (Greiner) in the plate mode. Per well, 25 µl of lysate containing 20 µg of total 

protein were used. To discriminate between GBA1 and GBA2 activity, 30 µM CBE 

(Conduritol B epoxide, Sigma Aldrich), an inhibitor for GBA1, or 10 µM NB-DNJ (N-

butyldeoxynojirimycin, Sigma Aldrich), an inhibitor for GBA2, were included. The pH 

of the protein lysates and the 4-MU-beta-D-glucopyranoside solution were adjusted 

by diluting with McIlvaine buffer (0.1 M citric acid and 0.2 M Na2HPO4). The assay 

was initiated by adding 5 µl of 4-MU-beta-D-glucopyranoside (10 mM) resulting in a 

final concentration of 1.67 mM. The hydrolysis of 4-MU-beta-D-glucopyranoside was 

monitored and recorded as a change of relative fluorescence units (rfu) per minute. 

Each analysis was performed as a quadruplicate in parallel. Per genotype, tissues or 

cells from three animals were analyzed if not otherwise stated.  

3.4. Lipid analysis 

3.4.1. Lipid analysis using thin-layer chromatography (TLC) 

For lipid extraction, dermal fibroblasts from GBA2 wild-type (+/+) and 

knockout-mice (-/-) were grown until confluency, washed with PBS (1.5 mM KH2PO4, 
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2.7 mM KCl, 6.5 mM Na2HPO4, 137 mM NaCl, pH 7.4), and harvested using 

trypsin/EDTA in medium. Cells were pelleted for 7 min at 700 x g and room 

temperature. Afterwards, cells were lysed in 1 ml distilled water with three pulses (30 

s each) of sonification (Branson sonifier). Lipids were extracted for 24 h at 37 °C in 

chloroform/methanol/water (10/5/1, v/v/v). For a better analysis of glucosylceramide, 

glycerophospholipids were degraded by alkaline hydrolysis with 125 mM sodium 

hydroxide for 2 h at 37 °C. After neutralization with acetic acid, lipid extracts were 

desalted by reversed-phase chromatography and separated into acidic and neutral 

glycosphingolipids as described previously [74] [75]. 

For separation of neutral lipids by thin layer chromatography (TLC), 1 mg of 

total protein was applied to prewashed thin layer Silica Gel 60 (Merck, Darmstadt, 

Germany) and chromatograms were developed and quantified as described 

previously [75].  

3.4.2. Extraction and quantification of sphingolipids using mass 

spectrometry  

Sperm cells, testis, and Sertoli cells were frozen in liquid nitrogen and ground 

to a fine powder using the Precellys24 tissue homogenizer (PeqLab). Lipids were 

extracted and fractionated using solid-phase-extraction on silica columns [76]. Long 

chain bases, ceramides, and hexosylceramides were eluted with acetone/2-propanol 

(9:1, v/v) and sphingomyelin was eluted with methanol. The purified sphingolipids 

were analyzed via direct infusion nanospray mass-spectrometry using an Agilent 

6530 Accurate-Mass Q-TOF LC/MS device [76]. Sphingolipids were quantified after 

collision-induced dissociation by scanning for specific fragment ions: long chain 

bases, NL of 18. 0106; ceramides, EIC m/z 264. 2686 or m/z 262. 2493; 

hexosylceramides, EIC m/z 264.2686; sphingomyelin, 184. 0739. Internal standards 

were added for each sphingolipid class [77].  
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3.5. Identification of mGBA2 by mass spectrometry 

For LCMS, proteins of Sertoli cells, testis, and sperm were separated on SDS 

gels and stained with Coomassie. Per lane, 14-17 gel slices were excised, proteins 

were in-gel digested with trypsin (Promega), peptides were separated in a 90 or 

180 min gradient by a nanoAcquity LC System equipped with a HSS T3 analytical 

column (1.8 µm particle, 75 µm x 150 mm) (Waters), and analyzed by 

ESI-LC-MS/MS using an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). 

All database searches were performed using SEQUEST as well as MS Amanda 

(Mechtler lab, Vienna, Austria) algorithm, embedded in Proteome DiscovererTM (Rev. 

1.4, Thermo Electron© 2008-2011), with a NCBI protein database (mouse, accession 

number NP_766280.2, accessed June 13, 2013). Only fully tryptic peptides with up to 

two missed cleavages were accepted. Oxidation of methionine was permitted as 

variable modification. The mass tolerance for precursor ions was set to 10 ppm; the 

mass tolerance for fragment ions was set to 0.4 amu. To filter the results, a peptide 

FDR threshold of 0.01 (q-value) according to Percolator was set in Proteome 

Discoverer, two peptides per protein and peptides with search result rank 1 were 

required. 
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4. Results  

4.1. GBA2-specific antibodies  

 To investigate the intracellular localization of GBA2, monoclonal antibodies 

directed against four different peptide epitopes were generated (Table 1).  

 

 

 

 

 

 

 

 

 

Table 1. Monoclonal GBA2-specific antibodies. The position of the peptide epitope, the 

antibody label, and the species, in which the antibody has been generated are indicated. 

 

The peptides were chosen based on their antigenicity and position in the 

mouse GBA2 protein-sequence. In particular, epitopes located in the N and C 

terminus were chosen to reveal the subcellular localization of GBA2 and, thereby, 

solve the discrepancy in the literature about the subcellular localization of GBA2. 

Peptide 1 is located in the N terminus and peptide 4 in the C terminus. Peptide 2 is 

located in the catalytic beta-glucocerebrosidase domain, while peptide 3 is located 

downstream outside the catalytic domain (Figure 5a, 25). Furthermore, antibodies 

against peptides 2, 3, and 4 will allow to confirm the absence of GBA2 protein in 

GBA2-knockout mice.    

Peptide 

(epitope) 

Amino 

acids 

Antibody 

label 

Species 

1 36 – 50 4A12 Rat 

2 358 – 377 4D7 Rat 

3 505 – 529 2F8 Rat 

4 720 – 744 5A8 Rat 
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The specificity of the antibodies was evaluated using Western-blot analysis 

and immunocytochemistry. The monoclonal antibodies 4A12, 4D7, 2F8, and 5A8 

detected the heterologously expressed GBA2 protein in HEK293 cells at 110 kDa, 

which is also detected by the HA antibody (Figure 5b). Furthermore, the 4A12, 2F8, 

and 5A8 antibodies detected the endogenously expressed GBA2 in protein lysates 

from wild-type testis and did not show a specific band at the corresponding height in 

lysates from GBA2 knockout-testis (Figure 5b). The 4A12 antibody additionally 

recognized a band of larger molecular weight in both wild-type and GBA2 

knockout-testis (Figure 5b). Only the 4D7 antibody did not detect the endogenously 

expressed GBA2 protein, but the heterologously expressed protein in HEK293 cells. 

The specificity of the antibodies was confirmed by immunocytochemistry (Figure 5c). 

HEK293 cells were transfected with GFP-tagged GBA2 and the antibody staining 

co-localized with the GFP fluorescence. In line with the results from Western-blot 

analysis, the 4D7 antibody did not show GBA2-specific labelling (Figure 5c). 

In conclusion, the newly generated monoclonal peptide antibodies against 

GBA2 are a reliable tool to detect GBA2 using Western blot and 

immunocytochemistry [26].   
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Figure 5. GBA2-specific antibodies. (a) Schematic representation of the mouse GBA2 

protein-sequence showing the position of the different peptide epitopes (red). The region 

against which a polyclonal antibody was generated is indicated [30]. The catalytic domain 

(beta-glucocerebrosidase, green) and the region that is deleted in GBA2 knockout-mice are 

also shown. Amino-acid positions for the different regions are shown in brackets. (b) 

Western-blot analysis of total protein lysates from HEK293 wild-type (NT, control) cells, 

GBA2-HA over-expressing cells, and wild-type (+/+) and GBA2 knockout-testis (-/-). The blot 

was labeled with a HA antibody and the GBA2-specific antibodies 4A12 (top left), 4D7 (top 

right), 2F8 (bottom left), and 5A8 (bottom right). β-actin was used as a loading control.  (c) 

Immunocytochemical analysis of HEK293 cells expressing GBA2-GFP (green) labeled with 

the 4A12, 4D7, 2F8, and 5A8 (red) antibodies along with DAPI (blue) to stain the DNA. Non-

transfected HEK293 cells are shown on the right. Scale bar: 25 µm. 

 

4.2. Subcellular localization of GBA2 

To understand the function of GBA2, its subcellular localization was 

elucidated. Earlier reports proposed that GBA2 is an integral plasma-membrane 

protein with one transmembrane domain and the N terminus containing the catalytic 

domain facing the extracellular space [32]. However, GlcCer is incorporated in the 

inner leaflet of the plasma membrane [1] and would, therefore, not be accessible as a 

substrate for GBA2. To resolve this discrepancy, the subcellular localization of GBA2 

was studied using different techniques. First, it was tested whether the N terminus of 

GBA2 indeed faces the extracellular space. HEK293 cells over-expressing GBA2 

were labeled with the 4A12 antibody (against peptide 1 at the N terminus) with and 

without permeabilization of the cells by Triton X-100. As a control, cells were co-

transfected with GFP. Labelling of GBA2 was only observed when cells had been 

permeabilized, indicating that the N terminus of GBA2 does not face the extracellular 

space (Figure 6a).   
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This result was corroborated with a fluorescence protease-protection (FPP) 

assay. The assay is based on the accessibility of proteases versus their 

inaccessibility to polypeptides that are located in the lumen of organelles [71]. To 

determine the topology, the protein of interest is fused to a fluorescent protein. 

Trypsin treatment of permeabilized or non-permeabilized cells allows to determine 

the localization of the fluorescent tag relative to the membrane [71]. HEK293 cells 

expressing a N-terminally eGFP-tagged GBA2 were imaged before and after 

treatment with 4 mM trypsin (Figure 6b). As a control, HEK293 cells were transfected 

with a YFP-tagged GPI-anchored prion protein (YFP-PrP) with the YFP facing the 

extracellular space [78]. After trypsin treatment, the fluorescence of YFP-PrP was 

diminished, whereas the fluorescence in cells expressing the eGFP-tagged GBA2 

remained unchanged (Figure 6b). Thus, the N terminus of GBA2 is not accessible 

from the extracellular side.  

Experiments performed by Dr. Heinz-Gerd Körschen revealed that GBA2 is 

not a transmembrane but rather a membrane-associated protein [26]. To determine if 

GBA2 is associated with the plasma membrane, GBA2-expressing HEK293 cells 

were co-transfected with a GFP-tagged CAAX membrane anchor, which is 

incorporated into the plasma membrane via its lipid anchor. Transfected cells were 

subjected to unroofing by ultrasonification. This technique generates 

plasma-membrane sheets exposing the cytosolic side of the cell [79]. Membrane 

sheets were labeled with a GBA2-specific antibody and identified by GFP 

fluorescence (Figure 6c). However, GBA2 expression was absent in the membrane 

sheets, indicating that in HEK293 cells, GBA2 is not associated with the plasma 

membrane (Figure 6c).  
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Figure 6. GBA2 topology. (a) Non-permeabilized (left) and Triton X-100 permeabilized 

(right) HEK293 cells over-expressing GBA2 labeled with the 4A12 antibody (red). As a 

control, cells were transfected with CAAX-GFP (green). (b) HEK293 cells transfected with 

YFP-PrP (positive control; yellow; indicated by arrows) or eGFP-GBA2 (green). Cells were 

imaged before (control, left) and after treatment with 4 mM trypsin for 1 min (right). The 

YFP-PrP signals (yellow) at the membrane of control cells vanished after trypsin treatment, 

indicating proteolysis of extracellular proteins. However, the eGFP fluorescence (green) in 

GBA2-expressing HEK293 cells did not change, demonstrating that the N terminus is not 

facing the extracellular space. (c) GFP labeled-membrane sheets (green) of HEK293 cells 

over-expressing GBA2. Cells were transfected with GFP-tagged CAAX membrane anchor 

and unroofed by ultrasonification. GBA2 was detected by the 4A12 antibody (red). Scale 

bars: 25 µm. 
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To reveal where GBA2 is localized in the cell, the FPP assay was performed 

under permeabilizing conditions. Before trypsin treatment, cells were permeabilized 

with digitonin (20 µM) for 1 min, which allows trypsin to enter the cell. Thus, 

fluorescent moieties facing the cytoplasmic side will be degraded [71]. Cells were 

transfected with GBA2 with eGFP fused to either the N or C terminus and imaged 

before and after treatment with digitonin and trypsin (Figure 7a). As a control, 

HEK293 cells were co-transfected with CD3δ containing either a cytoplasmic 

C-terminal CFP-tag or a lumenal N-terminal YFP-tag [71]. After trypsin treatment, the 

YFP signal in CD3δ transfected cells remained unchanged, whereas the CFP signal 

in CD3δ transfected cells was diminished, demonstrating cytosolic protein 

degradation (Figure 7a). In eGFP-tagged GBA2-expressing HEK293 cells, the 

fluorescence was diminished for both constructs (Figure 7a). Thus, both the N and C 

terminus of GBA2 are accessible from the cytoplasmic side.     

To determine whether GBA2 is localized at specific organelles in the cell, 

co-localization studies using marker antibodies for the endoplasmic reticulum (ER), 

the Golgi, and the lysosomes were performed.  GBA2 is mainly expressed in the 

cytoplasm (Figure 7b). However, GBA2 expression also overlapped with calnexin, a 

marker for the ER, GM-130, a marker for the cis-Golgi, and giantin, a marker for the 

Golgi cisternae (Figure 7b), but not with Lamp 1, a marker for lysosomes. Since the 

localization of the over-expressed protein in HEK293 cells might differ from the 

endogenously expressed GBA2 protein, co-localization experiments were also 

performed in hippocampal neurons. GBA2 expression displayed a similar expression 

pattern in these cells, demonstrating that indeed GBA2 is localized at the ER and the 

Golgi [26]. 
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Figure 7. GBA2 is localized at the ER and Golgi with both N and C terminus facing the 

cytosol.  (a) HEK293 cells were transfected with eGFP-GBA2 or GBA2-eGFP (green). 

YFP-CD3δ (YFP facing the ER lumen; yellow) and CD3δ-CFP (CFP facing the cytosol; cyan) 

were used as controls. Cells were imaged before (left) and after treatment with 20 µm 

digitonin (middle) and 4 mM trypsin (right) for 1 min each. After trypsin treatment, the 

YFP-CD3δ signal remained unchanged, whereas the CFP-CD3δ signal decreased, indicating 

proteolysis of cytosolic proteins. However, in GBA2-expressing HEK293 cells, eGFP 

fluorescence (green) was diminished for both constructs, demonstrating that both the N and 

C terminus of GBA2 are accessible from the cytoplasmic side. Scale bar: 25 µm. (b) HEK293 

cells over-expressing GBA2 were labeled with the 4A12 (GBA2-specific; red), calnexin (ER; 

green), GM-130 (cis-Golgi; green), giantin (Golgi cisternae; green), and Lamp 1 (lysosomes; 

green) antibodies. DAPI was used to label the DNA (blue). Scale bar: 5 µm. 
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Taken together, GBA2 is a non-integral, membrane-associated protein at the 

ER and the Golgi with both the N and the C terminus facing the cytoplasm (Figure 8). 

  

 

 

 

 

 

 

 
Figure 8. Schematic representation of the topology and localization of GBA2. GBA2 

(red) is present at the ER (cyan) and the cis-Golgi (blue) with both the N and the C terminus 

facing the cytoplasm [26]. 

 

4.3. GBA2 is expressed in Sertoli cells  

GBA2 is highly expressed in the testis [30]; however, its precise localization 

within the testis is ill-defined. GBA2 has been proposed to be expressed in Sertoli 

cells [30], which are the only somatic cells in the seminiferous tubules and are 

important for spermatogenesis [43]. To investigate the expression pattern of GBA2 in 

the testis in more detail, testis cross-sections were labeled with GBA2-specific 

antibodies and an anti-tubulin III antibody, a marker for Sertoli cells [80] (Figure 9a). 

Indeed, GBA2 expression overlapped with tubulin III, demonstrating that GBA2 is 

expressed in Sertoli cells (Figure 9a). To verify this result, germ and Sertoli cells were 

isolated and the expression of GBA2 was analyzed by immunocytochemistry. Again, 

the expression pattern of GBA2 and tubulin III overlapped (Figure 9b), confirming that 

GBA2 is predominantly expressed in Sertoli cells. In adult testis, Sertoli cells only 
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account for 5-10% of the total cells [81]. However, 7 days after birth (P7), the majority 

of cells in the testis are Sertoli cells [82]. Thus, I isolated Sertoli cells at P7 and 

analyzed the expression of GBA2 by Western blot (Figure 9c). Indeed, GBA2 was 

expressed in Sertoli cells at P7. So far, there was no indication of GBA2 expression 

in germ cells. Therefore, I analyzed whether GBA2 is expressed in mature sperm. 

Labelling of mouse sperm with GBA2-specific antibodies did not reveal a specific 

staining for GBA2 (data not shown). In Western-blot analysis, a weak band at 110 

kDa was detected in total lysates from mouse sperm that was absent in lysates from 

GBA2 knockout-sperm (Figure 9d). To unequivocally reveal whether GBA2 is only 

expressed in Sertoli cells or also in sperm, mass spectrometric analysis of proteins 

from testis, Sertoli cells, and sperm was performed (Figure 24 in appendix).  Unique 

peptides for GBA2 were only identified in testis and Sertoli cells, but not in sperm, 

demonstrating that GBA2 is only expressed in Sertoli cells.  
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Figure 9. GBA2 is expressed in Sertoli cells. (a) Testis cross-sections were labeled with 

the polyclonal anti-GBA2 antibody (red) and an anti-tubulin III antibody (green). DAPI was 

(blue) used as a DNA marker to label the nuclei. Top: wild-type, +/+; bottom: GBA2 knockout, 

-/-. Scale bar: 50 µm. (b) See (a) for isolated and labeled germ and Sertoli cells. Scale bar: 

100 µm. (c) Western-blot analysis using total protein lysates from P7 Sertoli cells. The blot 

has been labeled with the GBA2-specific 2F8 antibody; beta-tubulin has been used as a 

loading control. Wild-type: +/+, GBA2 knockout: -/-, HEK293 cells expressing GBA2-HA: 

GBA2-HA. (d) See (c) for mature sperm. 

4.4. GBA2 expression during sperm development  

To unravel the function of GBA2 during spermatogenesis, its expression and 

enzymatic activity was analyzed during the first spermatogenic wave. Only the first 

wave is synchronized and allows correlating protein expression and activity with 

specific stages during sperm development. In the adult testis, spermatogenic waves 

are no longer synchronized, making it difficult to investigate protein function at a 

particular developmental stage. I focused on two different time points in the first 

wave: pre-puberty (P7) and early puberty (P21), and compared them to adult animals 

(≥ 25 weeks old).  

During the first spermatogenic wave, GBA2 followed the expression pattern of 

the Sertoli cell marker tubulin III (Figure 10a). Normalizing GBA2 expression to the 

expression level of tubulin III using Western-blot analysis revealed that GBA2 

expression increased from P7 to P21 and decreased in the adult state (Figure 10b, 

c). Similarly, GBA2 activity increased from P7 to P21 and decreased from P21 to 

adult (Figure 10d) (enzyme activity measurements were performed by Sophie 

Schonauer, caesar). These results suggest that GBA2 function is particularly 

important at the onset of puberty in the first spermatogenic wave. 
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Figure 10. GBA2 expression and activity during the first spermatogenic wave. 

(a) Testis cross-sections from P7 (top), P21 (middle), and adult (bottom) testis were labeled 

with the polyclonal anti-GBA2 (red), and the tubulin III (green) antibody. DAPI (blue) was 

used to visualize DNA. Scale bar: 50 µm. (b) Western-blot analysis using total protein lysates 

from P7, P21, and adult testis. Protein lysates of HEK293 cells expressing GBA2-HA (HA) 

were used as a positive control. The blot has been labeled with the GBA2-specific 2F8 

antibody and tubulin III (TubIII) as a marker for Sertoli cells. Calnexin (Cal) served as a 

loading control. Protein lysates from wild-type (+/+) and GBA2 knockout-brain (-/-) have been 

used as controls. (c) Quantification of GBA2 protein expression. GBA2 expression levels 

have been normalized to the expression level of tubulin III. (d) Fluorescence-based 

beta-glucosidase activity measured at pH 6 in protein lysates from P7, P21, and adult 

wild-type testes. Data are presented as mean ± S.D.; n numbers and p values determined 

using One-way ANOVA are indicated.  

 

4.5. Lack of GBA2 leads to accumulation of GlcCer in testis and 

sperm  

Sertoli cells and germ cells contain a different repertoire of glycosphingolipids. 

While Sertoli cells mainly contain sphingolipids with saturated long-chain fatty 

acids (≥C18), germ cells show a stage-specific increase in neutral fucosylated 

glycosphingolipids during spermatogenesis [83] [84] [85]. Developing germ cells have 

been shown to contain very long-chain (C28, C30, and C32) polyunsaturated fatty 

acids [86]. Also associated with differentiating germ cells are ceramides, 

sphingomyelins, and gangliosides [85]. We set out to determine, which 

glycosphingolipids accumulate in the different cell types during spermatogenesis.  

Quantitative analysis of sphingolipid content in adult testis, P7 Sertoli cells, 

and sperm was performed using mass spectrometry (in collaboration with the group 

of Prof. Peter Dörmann, Molecular Biotechnology, University of Bonn). In detail, we 

determined the total mass of long chain bases (LCB; C18), saturated and unsaturated 
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ceramides (Cer; C16 – C26), hexocylceramides (HexCer; C14 – C24; both GlcCer and 

galactosylceramide (GalCer)), and sphingomyelin (SM; C14 – C26). In GBA2 

knockout-testis, LCB, Cer, and SM levels did not change, whereas HexCer levels 

were dramatically increased (Figure 11a). Similarly, GBA2 knockout-sperm showed 

an increase in HexCer levels, but levels of LCB, Cer, and SM remained unchanged 

(Figure 11b). In both GBA2 knockout-testis and sperm, levels of saturated C16, C18, 

C22, and C24 HexCer were increased. However, the levels of C28 HexCer were 

elevated only in GBA2 knockout-testis, but not in GBA2 knockout-sperm 

(Figure 11d, e). Since it is not possible to distinguish between GlcCer and GalCer 

using mass spectrometry, we performed thin-layer chromatography (TLC). GalCer 

levels did not change in GBA2 knockout-testis (data not shown), indicating that the 

changes observed in the HexCer levels represent changes in GlcCer levels. In P7 

Sertoli cells, no change in any of the lipids was observed between wild-type and 

GBA2 knockout-mice (Figure 11c). 

Thus, in the absence of GBA2, a plethora of GlcCer species with different 

chain lengths accumulate in testis and sperm, but not in P7 Sertoli cells. In adult 

testis, it is not possible to quantitatively separate Sertoli cells from germ cells, which 

makes it difficult to analyze glycosphingolipid levels exclusively in Sertoli cells. 

However, increased levels of saturated long chain GlcCer (C28) in GBA2 knockout-

testis, but not sperm, might indicate accumulation of GlcCer in adult Sertoli cells, 

which predominantly contain saturated long-chain sphingolipids. These results 

demonstrate that the lack of GBA2 also alters the levels of GlcCer in germ cells and 

sperm, although GBA2 is not expressed in these cell types, at least not in detectable 

amounts.  
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Figure 11. Quantitative analysis of lipid content. (a) Quantitative mass spectrometric analysis of long-chain bases (LCB), 

ceramides (Cer), hexosylceramides (HexCer), and sphingomyelin (SM) in wild-type (+/+) and GBA2 knockout (-/-) testis. (b) See 

(a) for sperm. (c) See (a) for P7 Sertoli cells. (d) Quantitative lipid profiles of HexCer with different chain lengths from wild-type 

(+/+) and GBA2 knockout-testis (-/-). (e) See (d) for sperm. Data are presented as mean ± S.D.; n numbers and p values 

determined using One-way ANOVA are indicated. 
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4.6. Loss of GBA2 causes cytoskeletal defects in testis  

Sperm from GBA2 knockout-mice display globozoospermia [30]. However, the 

molecular mechanism underlying this defect is not known. Shaping of the sperm 

head depends on cytoskeletal rearrangements in Sertoli cells and developing 

spermatids [64]. To investigate whether defects in the cytoskeleton underlie defects 

in sperm-head formation, I analyzed the actin and tubulin cytoskeleton in wild-type 

and GBA2 knockout-testis using fluorescently-tagged phalloidin and an anti-tubulin 

antibody (Figure 12a). While the organization of actin bundles around the sperm 

heads in wild-type testis followed a clear sickle shape, the F-actin labeling in GBA2 

knockout-testis appeared augmented and the actin bundles around sperm heads 

were severely disorganized (Figure 12a).  

To determine the cellular origin of this defect, germ and Sertoli cells were 

isolated from adult wild-type and GBA2 knockout-testis. To distinguish between 

Sertoli cells and germ cells, the Sertoli cell-specific marker tubulin III was used. 

Immunocytochemistry revealed that both the actin and tubulin network was more 

extensive in Sertoli cells from GBA2 knockout-testis (Figure 12b).  
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Figure 12. Cytoskeletal defects in adult GBA2 knockout-testis. (a) Testis cross-sections 

of adult wild-type (+/+) and GBA2 knockout-mice (-/-) labeled with a beta-tubulin antibody 

(red), phalloidin (green) to visualize F-actin, and DAPI (blue) to label the DNA. The ES is 

indicated by arrows. Scale bars: overview: 50 µm, zoom-in: 10 µm. (b) Germ and Sertoli cells 

isolated from wild-type (+/+) and GBA2 knockout-mice (-/-) labeled with an anti-tubulin III 

(red) antibody, phalloidin (green), and DAPI (blue). Scale bars: overview: 50 µm, zoom-in: 

10 µm. 
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4.7. Cytoskeletal defects develop in the first spermatogenic wave 

According to its expression and activity, GBA2 is particularly important during 

the first spermatogenic wave (Figure 10). Thus, I analyzed whether the cytoskeletal 

defects already develop in the first spermatogenic wave. To compare the first 

spermatogenic wave between wild-type and GBA2 knockout-mice, four different time 

points were analyzed: P7, P21, P23, and P34 (Figure 13).   

Immunohistochemical analysis of F-actin and microtubules in testis 

cross-sections did not show a difference between wild-type and GBA2 knockout-

testis at P7 (P7, Figure 13). At P21, in wild-type testis, F-actin was mainly present at 

the blood-testis barrier and at the junctions between Sertoli cells and germ cells 

(P21, Figure 13). However, in GBA2 knockout-testis, only the F-actin structures lining 

the blood-testis barrier were formed, but those around the junctions appeared 

disturbed (P21, Figure 13). This defect was even more pronounced at P23 (P23, 

Figure 13). At P34, in wild-type testis, F-actin forms the ectoplasmic specialization 

(ES) embracing the sickle-shaped sperm heads. However, in GBA2 knockout-testis, 

distinct F-actin-based structures surrounding the sperm heads were absent and the 

sperm heads appeared deformed (P34, Figure 13).  

These results show that during the first spermatogenic wave, defects in the 

actin cytoskeleton first appear at P21, which correlates with the peak in GBA2 

expression and activity around puberty (Figure 10c, d). 
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Figure 13. Analysis of cytoskeletal defects in the first wave of spermatogenesis. Testis 

cross-sections from P7, P21, P23, and P34 wild-type (+/+) and GBA2 knockout-mice (-/-) 

stained with phalloidin to visualize F-actin (green), a beta-tubulin antibody (red), and DAPI to 

label the DNA (blue). F-actin at the blood-testis barrier, junctions between Sertoli-Sertoli and 

Sertoli-germ cells, and the ectoplasmic specialization (ES) are indicated by arrows. Scale 

bar: overview: 50 µm; zoom-in: 20 µm. 
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4.8. GBA2 knockout-spermatids contain longer microtubule 

manchettes  

Immunohistochemical analysis of individual spermatid microtubule structures 

in testis-sections is difficult, because the developing sperm are tightly packed within 

seminiferous tubules (Figure 13). To analyze microtubule structures in more detail, 

germ cells were isolated and microtubules were immunocytochemically analyzed 

(Figure 14b). During spermatid elongation, the microtubule cytoskeleton forms a 

manchette around the neck of the sperm head just below the acrosome [56] [64]. 

Movement of the manchette towards the flagellum generates forces sufficient to 

shape the post-acrosomal region of the sperm head (Figure 14a) [58] [59]. Thus, I 

compared the development of the manchette in wild-type and GBA2 knockout-mice 

(Figure 14b). Wild-type spermatids developed a symmetric, conical-shaped 

manchette that regressed with the progression of spermatogenesis (Figure 14b). 

However, in GBA2-knockout spermatids, microtubules of the manchette persisted 

and did not regress even at stage XIV of spermatogenesis (Figure 14b). When the 

length of the microtubule manchettes between stages IX – XIV of spermatogenesis 

was measured, GBA2-knockout spermatids displayed significantly longer manchettes 

than wild-type spermatids (wild-type: 5.2 ± 0.6 µm vs. GBA2 knockout: 11.2 ± 0.9 µm; 

Figure 14c).  Thus, accumulation of GlcCer in the absence of GBA2 seems to affect 

the actin cytoskeleton in Sertoli cells and the microtubule cytoskeleton in germ cells.  
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Figure 14. Development of the sperm manchette in wild-type and GBA2 

knockout-mice. (a) The manchette consists of a perinuclear ring attached to several vertical 

microtubules (red) around the spermatid head (blue). The downward motion of the 

manchette is responsible for shaping the post-acrosomal region of the sperm head [59]. A 

schematic representation of the sperm manchette is shown for stages IX to XIV of 

spermatogenesis. (b) Germ cells isolated from wild-type (+/+) and GBA2 knockout-mice (-/-) 

were stained with an anti-beta tubulin antibody (red) and DAPI to label the DNA (blue). 

Stages VIII, IX, XI-XII, and XIV of spermatogenesis are shown. Scale bars are indicated. (c) 

Mean length of microtubule manchettes measured in wild-type (+/+) and GBA2 

knockout-spermatids (-/-). Data is presented as mean ± S.D.; n numbers and the p value 

determined using One-way ANOVA is indicated.  
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4.9. A defect in acrosome formation during the first spermatogenic 

wave results in globozoospermia in GBA2 knockout-mice  

Globozoospermia is the main phenotypic defect in GBA2 knockout-mice [30]. 

The hallmark of globozoospermia is a malformed acrosome [45]. To test whether 

sperm of the first spermatogenic wave from GBA2 knockout-mice already display a 

defect in acrosome formation, I analyzed sperm from wild-type and GBA2 knockout-

mice at P34 using immunocytochemistry. Indeed, GBA2 knockout-sperm showed a 

severely deformed acrosome (Figure 15a).  

To test whether the defect in acrosome formation develops due to the 

cytoskeletal, I analyzed acrosome formation in wild-type and GBA2 knockout-mice 

during the first spermatogenic wave (Figure 15c). Acrosome formation is 

characterized by three major phases: the Golgi phase, the cap phase, and the 

acrosome phase (Figure 15b).  

I followed acrosome formation immunohistochemically using 

fluorescently-tagged lectin from peanut. Peanut lectin binds carbohydrate moieties on 

the outer membrane of the acrosome [87]. In the Golgi phase of wild-type testis, 

proacrosomal vesicles had already fused to form the acrosomal vesicle. However, in 

GBA2 knockout-testis, proacrosomal vesicles remained dispersed (P21, Figure 15c). 

Furthermore, in the cap phase of wild-type testis, the acrosomal vesicle formed a 

cap-like structure around the nucleus. However, in GBA2 knockout-testis, formation 

of the cap-like structure was incomplete (P23, Figure 15c). Finally, in the acrosome 

phase, well defined, sickle-shaped acrosomes were formed around the spermatid 

heads in wild-type testis, whereas in GBA2 knockout-testis, many spermatids lacked 

an acrosome and only a few contained acrosome-like structures (P34, Figure 15c). 

Thus, the defects in acrosome formation and the cytoskeleton in GBA2 

knockout-mice are evident at the same time-point during the first spermatogenic 

wave and correlate with the peak in GBA2 expression and activity in wild-type mice.  
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Figure 15. Acrosome formation. (a) P34 Wild-type (+/+) and GBA2 knockout-sperm (-/-) 

isolated from P34 mice labeled with FITC tagged-peanut lectin (green) to visualize the 

acrosome, mitotracker (red) to label the mitochondria, and DAPI (blue) to label the DNA. 

Scale bar: 20 µm. (b) At P21, in the Golgi phase, vesicles from the trans-Golgi network fuse 

at one pole of the nucleus (blue) to form a single large vesicle that attaches to the nucleus. 

At P23, in the cap phase, the acrosomal vesicle flattens over the nuclear membrane, forming 

a semi-circular cap-like structure around the spermatid head. At P34, in the acrosome phase, 

the cap-like structure stretches over the spermatid [47] [88]. (c) Testis cross-sections from 

P21, P23, and P34 wild-type (+/+) and GBA2 knockout-mice (-/-) labeled with peanut-lectin to 

label the acrosome (green), an anti-beta tubulin antibody (red), and DAPI to visualize DNA 

(blue). Scale bar: overview: 50 µm; zoom-in: 20 µm.  

 



Results 
 

50 | P a g e  
 

 

In summary, accumulation of GlcCer in Sertoli and germ cells in the absence 

of GBA2 disturbs cytoskeletal structures during sperm development. In turn, this 

seems to impair acrosome and sperm-head formation resulting in globozoospermia.   

 

4.10. Dermal fibroblasts as a model system 

Next, I wanted to investigate the molecular mechanisms underlying the 

cytoskeletal defects during accumulation of GlcCer. However, isolated germ and 

Sertoli cells are difficult to culture and manipulate, rendering a detailed analysis of 

cytoskeletal dynamics difficult. However, GBA2 is also expressed in the skin [30], and 

dermal fibroblasts from adult mice are easy to maintain and manipulate in culture. 

Therefore, I tested whether dermal fibroblasts could be used as a model system to 

study cytoskeletal dynamics.  

Western-blot analysis of protein lysates from wild-type fibroblasts showed a 

GBA2-specific band, which was absent in protein lysates from GBA2 

knockout-fibroblasts, demonstrating that GBA2 is expressed in dermal fibroblasts 

(Figure 16a). Using thin layer chromatography (TLC) (conducted by Sophie 

Schonauer, caesar), we could demonstrate that GlcCer accumulated in GBA2 

knockout-fibroblasts (Figure 16b, c). Most importantly, GBA2 knockout-fibroblasts 

also displayed cytoskeletal defects: organization of the microtubule and actin 

cytoskeleton was dramatically altered, resulting in a change in morphology compared 

to wild-type fibroblasts (Figure 16d). Thus, dermal fibroblasts from adult mice qualify 

as a good model system to study the effects of GlcCer accumulation on cytoskeletal 

dynamics. 
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Figure 16. Mouse dermal fibroblasts as a model system. (a) Western-blot analysis of 

wild-type (+/+) and GBA2 knockout-fibroblasts (-/-). The blot was probed with the 

GBA2-specific 2F8 antibody. Protein lysates from HEK293 cells expressing GBA2-HA (HA) 

were used as a positive control and calnexin (Cal) served as a loading control. (b) Thin layer 

chromatograph of wild-type (+/+) and GBA2 knockout-fibroblasts (-/-). Levels of 

glucosylceramide (GlcCer), lactosylceramide (LacCer), and sphingomyelin (SM) have been 

analyzed. (c) Left: quantification of GlcCer in wild-type (+/+) and GBA2 
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knockout-fibroblasts (-/-). Right: relative change in GlcCer levels in GBA2 knockout 

compared to wild-type fibroblasts (indicated by the dotted line). (d) Fluorescent labeling of 

the cytoskeleton in dermal fibroblasts isolated from wild-type (+/+) and GBA2 knockout-mice 

(-/-). Cells were transfected with lifeact-GFP (green) to label actin and EB3-mcherry (red) to 

label the plus-tips of microtubules. Scale bar: 20 µm. All data are presented as mean ± S.D.; 

n numbers and p values calculated using One-way ANOVA are indicated. 

4.11. GlcCer accumulation in the absence of GBA2 affects actin 

dynamics 

To analyze how accumulation of GlcCer in the absence of GBA2 affects 

cytoskeletal dynamics, I first analyzed the actin dynamics. Since dermal fibroblasts in 

culture are morphologically heterogeneous, comparative analysis of their 

cytoskeleton is difficult. Therefore, wild-type and GBA2 knockout-fibroblasts were 

forced to acquire a specific morphology by seeding them onto glass-slides with 

fibronectin-coated micro-patterns. Four different shapes of micro-patterns were used: 

disc, cross-bow, dumb-bell, and Y (Figure 17a).  

Immunofluorescent labelling of F-actin revealed dramatic differences: the 

F-actin network in GBA2 knockout-fibroblasts was more extensive and showed 

protruding F-actin structures (filopodia and lamellipodia) at the periphery. This effect 

was more pronounced on the cross-bow and disc micro-patterns (Figure 17a).  

Quantification of filopodia and lamellipodia revealed that GBA2 knockout-fibroblasts 

contain more filopodia and lamellipodia per cell compared to the wild-type fibroblasts. 

While wild-type fibroblasts contained 0.99 ± 0.3 filopodia and 1.76 ± 0.41 lamellipodia 

per cell, GBA2 knockout-fibroblasts contained 1.62 ± 0.47 filopodia and 3.08 ± 0.20 

lamellipodia per cell (Figure 17b). 

The formation of filopodia and lamellipodia depends upon actin 

polymerization [89] [90]. Therefore, the turnover rate of G-actin to F-actin in wild-type 

and GBA2 knockout-fibroblasts was determined as a measure of actin 
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polymerization. The ratio of F-actin to G-actin was higher in GBA2 

knockout-fibroblasts (Figure 17c), indicating that an increase in actin polymerization 

underlies the increase in filopodia and lamellipodia formation. In principle, this assay 

can be applied to every cell type or tissue. Thus, I tested whether a difference in actin 

polymerization also underlies the cytoskeletal defects observed in GBA2 

knockout-testis. However, the ratio of G-actin to F-actin was not different between 

wild-type and GBA2 knockout-testis, which could be due to the cellular heterogeneity 

in testis (Figure 17d).     

Members of the Rho family of GTPases have been shown to be crucial for 

controlling actin dynamics. Cdc-42 and Rac1 regulate the formation of filopodia and 

lamellipodia, respectively [91] [92] [93] [94].  To investigate if a change in the 

expression level of Cdc42 or Rac1 underlies the increase in filopodia and 

lamellipodia formation observed in GBA2 knockout-fibroblasts, I first determined their 

mRNA expression levels using quantitative real-time PCR. The mRNA levels for both 

Cdc-42 and Rac1 were increased in GBA2 knockout compared to wild-type 

fibroblasts (Cdc-42: 1.24 ± 0.15; Rac1: 1.22 ± 0.11) (Figure 17e).  However, this 

change was not translated to a change in protein expression - Cdc-42 and Rac1 

protein expression-levels were similar between wild-type and GBA2 

knockout-fibroblasts (Figure 17g, h). Hence, a change in protein expression of the 

key regulators, the Rho GTPases Cdc-42 and Rac1, does not seem to underlie the 

increase in filopodia and lamellipodia formation in GBA2 knockout-fibroblasts. 

In testis, Rho GTPases regulate the cytoskeletal dynamics at the ectoplasmic 

specialization [95]. In GBA2 knockout-mice, formation of the apical ectoplasmic 

specialization is impaired (Figure 12a). Thus, I also analyzed mRNA expression 

levels of Cdc-42 and Rac1 in testis. However, no change in the expression of Cdc-42 

and Rac1 was observed in GBA2 knockout compared to wild-type mice (Figure 17f). 

Nectin 2 has also been shown to control actin dynamics at the ectoplasmic 

specialization [70]. However, its mRNA expression level was also not different 

between wild-type and GBA2 knockout-testis (Figure 17f). Thus, changes in 
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expression of Cdc-42, Rac1 or nectin 2 do not seem to underlie the defects in the 

actin cytoskeleton of GBA2 knockout-testis.  
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Figure 17. Analysis of the molecular mechanism underlying the defects in the actin 

cytoskeleton in GBA2 knockout-mice. (a) Immunofluorescent labeling of F-actin using 

phalloidin (green) in wild-type (+/+) and GBA2 knockout-fibroblasts (-/-) seeded on disc, 

crossbow, dumb-bell, and Y-shaped micropatterns coated with fluorescently-labeled 

fibronectin (purple). The DNA has been labeled using DAPI (blue). Scale bar: 20 µm. (b) 

Average numbers of filopodia and lamellipodia per cell in wild-type (+/+) and GBA2 knockout-

fibroblasts (-/-). (c) Quantification of G-actin to F-actin turnover in wild-type (+/+) and GBA2 

knockout-fibroblasts (-/-) by Western-blot analysis. (d) See (c) for testis. (e) mRNA 

expression levels of Cdc-42 and Rac1 in GBA2 knockout-fibroblasts relative to wild-type 

fibroblasts (indicated by black dotted line). (f) mRNA expression levels of Cdc-42, Rac1, and 

Nectin 2 in GBA2 knockout-testis relative to wild-type testis (indicated by black dotted line). 

(g) Protein expression-levels of Cdc-42 and Rac1 in wild-type (+/+) and GBA2 

knockout-fibroblasts (-/-) using Western-blot analysis. Calnexin (Cal) was used as a loading 

control. (h) Quantification of protein expression-levels of Cdc-42 and Rac1 in GBA2 

knockout-fibroblasts relative to wild-type fibroblasts (indicated by black dotted line). All data 

are represented as mean ± S.D. ‘n’ numbers and p values determined using One-way 

ANOVA are indicated. 

 

4.12. GlcCer accumulation in the absence of GBA2 affects 

microtubule dynamics 

Since microtubules in the sperm manchette of GBA2 knockout-mice persisted 

longer than in wild-type mice (Figure 18b, c), the microtubule dynamics of wild-type 

and GBA2 knockout-fibroblasts were studied in greater detail using live-cell imaging. 

To visualize growing microtubules, fibroblasts were transfected with a 

fluorescently-tagged EB3 probe. EB3 binds to the plus-ends of growing microtubules, 

which allows to determine the growth rate and persistence of microtubules using the 

Metamorph image-analysis software [96] (Figure 18a). While the microtubule 

growth-rate was similar between wild-type and GBA2 knockout-fibroblasts 
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(+/+: 16.4 ± 6.3 µm/min; -/-: 19.7 ± 6.9 µm/min), microtubule persistence in GBA2 

knockout-fibroblasts was increased (+/+: 13.3 ± 5.6 µm; -/-: 16.1 ± 6.9 µm) 

(Figure 18b, c). These results indicate that accumulation of GlcCer in the absence of 

GBA2 prolongs the persistence of microtubules in dermal fibroblasts.  

 

 
Figure 18. Microtubule dynamics in GBA2 knockout-fibroblasts. (a) Expression of 

mcherry-tagged EB3 (red) in wild-type (+/+) and GBA2 knockout-fibroblasts (-/-). EB3 labels 

the plus-tips of growing microtubules. Representative microtubule tracks (red) that were used 

to quantify microtubule dynamics are marked. Scale bar: 30 µm (b) Quantification of 

microtubule growth rate in wild-type (+/+) and GBA2 knockout-fibroblasts (-/-). Per genotype, 

3 animals were used and at least 7 cells per animal were analyzed. (c) See (b) for 

microtubule persistence. All data are represented as mean ± S.D. n numbers and p values 

determined using One-way ANOVA are indicated. 
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4.13. GlcCer accumulation augments lipid stacking in the 

plasma membrane 

 Glycosphingolipids in the membrane are organized in microdomains that 

possess specialized signaling functions [97] [98]. GlcCer is incorporated into the 

inner leaflet of the plasma membrane [99]. I hypothesized that in the absence of 

GBA2, accumulation of GlcCer alters the stacking of lipids in the plasma membrane, 

thereby affecting the function of proteins that control cytoskeletal dynamics. To 

analyze lipid stacking, giant plasma-membrane vesicles (GPMV) were isolated from 

wild-type and GBA2 knockout-fibroblasts and the phase separation was 

spectrophotometrically measured using Laurdan. Laurdan is a fluorescent membrane 

dye that displays spectral sensitivity to solvent relaxation effects [100]. A red shift in 

the emission spectrum occurs when the membrane has a liquid-crystalline 

(disordered) phase, whereas the emission is shifted to the blue range when the 

membrane has a gel-like (ordered) phase (Figure 19a) [101]. GPMVs isolated from 

wild-type fibroblasts displayed a laurdan emission peak at 460 nm, whereas GPMVs 

from GBA2 knockout-fibroblasts showed an emission peak around 440 nm 

(Figure 19b). Changes in the emission spectrum can be quantified by the generalized 

polarization (GP) index [102]. The GP value for GBA2 knockout-fibroblasts was 

significantly higher than for wild-type fibroblasts (+/+: 0.12 ± 0.03; -/-: 0.24 ± 0.03; 

Figure 19c). These observations demonstrate that the accumulation of GlcCer in 

GBA2 knockout-fibroblasts results in a highly ordered lipid stacking in the plasma 

membrane. This, in turn, could affect the function of proteins in the plasma 

membrane, e.g. of proteins that control cytoskeletal dynamics.   
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Figure 19. GlcCer accumulation leads to a highly ordered lipid stacking in the plasma 

membrane. (a) Schematic representation of the fluorescence properties of Laurdan. The dye 

is excited at 350 nm (indicated by the green line), and emission peaks at around 450 nm 

(blue), when residing in the ordered phospholipid phase and shifts to around 500 nm (red) 

when the dye resides in a more disordered phospholipid phase [103]. (b) Representative 

emission spectra of Laurdan measured in GPMVs isolated from wild-type (+/+; green) and 

GBA2 knockout-fibroblasts (-/-; purple). (c) Generalized polarization index calculated from 

Laurdan measurements presented in (b); wild-type: +/+; green, GBA2 

knockout-fibroblasts: -/-; purple. Individual data points are represented along with the 

mean ± S.D.; n numbers and p value determined by One-way ANOVA are also indicated. 
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4.14. GlcCer accumulation in the absence of GBA2 alters cellular 

behavior  

Changes in the cytoskeleton affect cellular physiology. GlcCer has been 

proposed to induce proliferation [104].  Thus, I analyzed the proliferation rate of 

fibroblasts using bromodeoxyuridine (BrdU). BrdU is a thymidine analogue, which is 

incorporated into newly synthesized DNA strands of proliferating cells [105]. 

Fibroblasts were labeled with an anti-BrdU antibody and the rate of proliferation was 

determined by calculating the ratio of proliferating cells over the total number of cells 

(Figure 20a). The rate of BrdU incorporation was not significantly different between 

wild-type and GBA2 knockout-fibroblasts, indicating that increased GlcCer levels in 

GBA2 knockout-fibroblasts do not alter cellular proliferation (Figure 20b). 

GBA2 knockout-fibroblasts display a higher number of lamellipodia 

(Figure 17b). Lamellipodia formation is a hallmark of migrating cells [106]. Thus, I 

analyzed cell migration of wild-type and GBA2 knockout-fibroblasts using a simple 

wound-healing assay (Figure 20c) [107]. The assay revealed that GBA2 

knockout-cells migrated faster than wild-type fibroblasts, especially between 2-4 

hours after starting the assay (Figure 20d).     

These results indicate that the accumulation of GlcCer in the absence of 

GBA2 changes cellular cytoskeletal dynamics, and, thereby, cell behavior, as shown 

by an increase in cell migration. 
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Figure 20. Analysis of cell proliferation and migration. (a) Wild-type (+/+) and GBA2 

knockout-fibroblasts (-/-) were treated with BrdU for 8 hours and were labeled with an 

anti-BrdU antibody (red). Scale bar: 200 µm. (b) Quantification of cellular proliferation 

determined by the rate of BrdU incorporation. The proliferation rate has been normalized to 

wild-type (indicated by black dotted line). (c) Representative images of wild-type (+/+) and 

GBA2 knockout-fibroblasts (-/-) in the wound-healing assay. (d) Quantification of migration 

rates of wild-type (+/+) and GBA2 knockout-fibroblasts (-/-) at the indicated time points. All 

data are represented as mean ± S.D. n numbers and p values determined using One-way 

ANOVA are indicated. 
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4.15. NB-DNJ-mediated inhibition of GBA2 activity induces a similar 

cellular phenotype as observed in GBA2 knockout-fibroblasts 

To verify whether the cellular defects observed in GBA2 knockout-fibroblasts 

are solely due to the loss of GBA2 and the consequent accumulation of GlcCer, the 

contribution of GBA2 in controlling cytoskeletal dynamics was independently 

assessed using N-butyldeoxynojirimycin (NB-DNJ), a blocker for GBA2 [108]. 

Wild-type fibroblasts were treated with 2 µM NB-DNJ for 48 hours. Analysis of the 

enzyme activity showed that this treatment completely inhibited GBA2 activity, while 

the activity of GBA1 remained unchanged (Figure 21a). TLC analysis revealed that 

NB-DNJ treatment resulted in the accumulation of GlcCer (Figure 21a, b; 

experiments performed by Sophie Schonauer, caesar). Immunofluorescent labeling 

of the actin cytoskeleton demonstrated that the treated cells, similar to GBA2 

knockout-fibroblasts, contained more actin protrusions compared to untreated 

wild-type cells (Figure 21c). Furthermore, NB-DNJ-treated fibroblasts also migrated 

faster than the untreated cells (Figure 21d). To determine if the NB-DNJ treatment 

also altered the plasma membrane stacking, Laurdan spectra were measured and 

GP values were calculated from GPMVs isolated from control and NB-DNJ-treated 

wild-type cells. The shift in the Laurdan spectrum of treated cells was similar to the 

shift in GBA2 knockout-fibroblasts. While the GP value for the untreated controls was 

0.15 ± 0.06, the treated wild-type cells displayed a GP value of 0.26 ± 0.07 

(Figure 21e). 

These results demonstrate that inhibition of GBA2 activity by NB-DNJ results 

in a similar cellular phenotype as observed in GBA2 knockout-fibroblasts. This 

emphasizes my earlier finding that loss of GBA2 leading to accumulation of GlcCer 

alters cytoskeletal dynamics in fibroblasts.  
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Figure 21. NB-DNJ treated wild-type fibroblasts display a GBA2 knockout-phenotype. 

(a) Beta-glucocerebrosidase activity of GBA1 (pH 4.0) and GBA2 (pH 6.0) in wild-type 

fibroblasts treated with 2 µM NB-DNJ for 48 hours and untreated control cells. (b) Left: 

thin-layer chromatograph of wild-type fibroblasts treated with 2 µM NB-DNJ (+) and the 

corresponding untreated controls (-). Levels of sphingomyelin (SM), lactosylceramide 

(LacCer), and glucosylceramide (GlcCer) have been analyzed. Right: quantification of 

GlcCer from left. (c) Immunofluorescent labeling of F-actin (phalloidin, green) and DNA 

(DAPI, blue) in untreated and NB-DNJ-treated (2 µM) wild-type fibroblasts. Scale bar: 5 µm. 

(d) Quantification of migration rates of NB-DNJ-treated wild-type fibroblasts (2 µM; NB-DNJ) 

and untreated controls (+/+) at different time points in wound-healing assay. (e) Generalized 

polarization index calculated from laurdan emission spectra of wild-type fibroblasts treated 

with 2 µM NB-DNJ for 48 hours: + NB-DNJ, untreated control fibroblasts: - NB-DNJ. 

Individual data points are represented along with the mean ± S.D.; ‘n’ numbers and p values 

determined by One-way ANOVA are indicated.  

 

In summary, my results demonstrate that GBA2 is expressed in Sertoli cells. In 

the absence of GBA2, GlcCer accumulates in Sertoli cells, germ cells, and sperm. 

This alters the cytoskeletal dynamics of F-actin at the apical ES in Sertoli cells and 

the microtubule manchette in spermatids. Furthermore, using dermal fibroblasts as a 

model system, my results provide a mechanistic insight into how accumulation of 

non-lysosomal GlcCer in the absence of GBA2 affects cytoskeletal dynamics. 

Accumulation of GlcCer leads to a highly ordered lipid packaging in the plasma 

membrane, which could influence protein function in the plasma membrane. In 

particular, proteins controlling cytoskeletal dynamics seem to be sensitive to this 

change in the lipid environment, resulting in a defect in the actin and microtubule 

cytoskeleton. This could also feed-back on vesicle fusion in developing germ cells, 

leading to deformed acrosomes responsible for globozoospermia in GBA2 

knockout-mice.  
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5. Discussion  

My work demonstrates that in the absence of GBA2, GlcCer accumulates 

leading to a highly ordered lipid stacking in the plasma membrane. This in turn seems 

to affect the function of membrane proteins that regulate cytoskeletal dynamics. This 

effect is most prominent in the testis of GBA2 knockout-mice, where the cytoskeletal 

structures that shape the sperm head are disturbed causing globozoospermia and, 

thereby, a defect in fertility.  

 

5.1. Implications of the subcellular localization of GBA2 and GlcCer 

To understand the physiological function of GBA2, it is important to analyze its 

subcellular localization. Our results demonstrate that GBA2 is not a transmembrane 

protein, but rather associated with the Golgi and the ER membrane from the cytosolic 

side [26]. What is the impact of this localization for GBA2 function? GlcCer is 

synthesized at the cytosolic side of the cis-Golgi and transported to the Golgi lumen 

and ER by GLTP/FAPP2 [8] [9]. Within the Golgi lumen, GlcCer is converted to 

LacCer and consequently to higher order glycosphingolipids [8]. The localization of 

GBA2 at the cytosolic side of the Golgi implies that GlcCer is degraded close to 

where it is synthesized. Hence, GBA2 could function as a fine tuner to regulate the 

level of GlcCer that is available for higher order glycosphingolipid synthesis.  

An interesting observation is that in both GBA2 knockout-mice and mice 

treated with NB-DNJ the levels of sphingomyelin, LacCer, and higher order 

glycosphingolipids were not altered – only GlcCer levels were increased [30] [109]. 

Moreover, our lipid analyses underlined these results and revealed that also the 

levels of ceramide in GBA2 knockout-mice remained unchanged. Thus, an increase 

in GlcCer level does not change the levels of other glycosphingolipids or ceramide 
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although GlcCer serves as one of the main building blocks for higher order 

glycosphingolipids. These results suggest that lipid synthesis remains constant 

independent of the substrate availability. However, it could also mean that GlcCer, 

when it is accumulating, is not transported to the side of glycosphingolipid synthesis. 

Therefore, it is important to analyze where GlcCer accumulates in the cell. Does it 

accumulate at the place of degradation or is it transported to the plasma membrane 

and accumulate there? My results indicate that GlcCer accumulation in GBA2 

knockout-cells causes a more ordered lipid stacking in the plasma membrane. This 

implies that GlcCer is incorporated into the plasma membrane. Using two-photon 

imaging, our lab is currently setting-up a technique to visualize, whether the change 

in lipid stacking occurs uniformly within the plasma membrane or if micro domains 

are formed. Furthermore, this imaging technique will also allow us to analyze, 

whether lipid stacking of intracellular membranes is also affected by accumulation of 

GlcCer. In addition, we are studying the subcellular localization of GlcCer 

accumulation in GBA2 knockout-cells using immunogold-labelling in combination with 

electron microscopy [110] [111] [112]. Our final goal is to visualize GlcCer 

accumulation and the changes in the membrane composition not only in single cells, 

but also in testis sections. This will allow us to further determine how GlcCer controls 

cellular function.  
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5.2. How does GlcCer accumulation in GBA2 knockout-mice lead to 

globozoospermia?  

 One of the main questions that I wanted to answer during my PhD thesis was 

how GlcCer accumulation affects cytoskeletal dynamics, in particular in the testis. 

Does the altered lipid stacking at the plasma membrane directly influence the 

underlying cytoskeleton or does it disturb signaling cascades controlling cytoskeletal 

dynamics? The assembly, stability, and function of membrane proteins relies on 

protein-lipid interactions in the bilayer. The chain length of the lipids in the bilayer and 

the density of their packing controls the activity of membrane proteins [113]. This has 

been shown for different proteins. Activity of the Ca2+-ATPase, a calcium pump in 

skeletal muscle cells that transports Ca2+ ions across the ER membrane upon ATP 

hydrolysis, was low when the fatty acid acyl chains of the phospholipids surrounding 

the purified protein were shorter (C14) or longer (C20) than C16 – C18, the required 

chain length for optimal activity [114]. Furthermore, the activity was highest in the 

ordered phase of phospholipid packing and lower in the disordered phase [114]. The 

function of certain membrane proteins can be stimulated or inhibited by lipids acting 

as cofactors [115]. For the Ca2+-ATPase, binding of phosphatidylinositol-4-phosphate 

to the inner region of the transmembrane domain results in doubling of the ATPase 

activity [116], whereas binding of phosphatidylserine inhibits the ATPase 

activity [117].   

Glycosphingolipids have a propensity to form micro domains, which function 

as specialized signaling platforms [3]. The lipid raft hypothesis was proposed to 

explain the preferential segregation of glycosphingolipids to the apical region in 

polarized cells [18]. Lipid rafts are formed by the non-random assembly of membrane 

components such as cholesterol, proteins, and sphingolipids to form dynamic clusters 

also known as micro domains (Figure 22). Lipid rafts have been proposed to 

determine cell polarity, regulate signal transduction, sorting and trafficking of proteins 

through the secretory and endosomal pathway, to form platforms for adhesion of the 
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extracellular matrix and tethering of intracellular cytoskeletal proteins to the plasma 

membrane, and they also serve as entry points for viruses, bacteria, toxins, 

etc. [118] [119].  

 

 

Figure 22. Lipid-raft formation. Schematic representation of a lipid-bilayer membrane. The 

lipid raft domains contain tightly packed glycerophospholipids (GPL), glycosphingolipids 

(GSL), sphingomyelin (SM), membrane-anchored proteins, and transmembrane proteins 

(TM). The formation and maintenance of the rafts is also supported by the underlying actin 

cytoskeleton. Image taken from [120].  

 

How do glycosphingolipids control membrane-protein function? The activation 

of rafts for signal transduction involves protein-lipid interactions and a change in the 

membrane order within the lipid rafts (Figure 22) [120]. The function of growth factor 

receptor-associated protein kinases is modulated by gangliosides, complex 

glycosphingolipids that form a part of the rafts [121]. It has been shown that a change 

in membrane-lipid packing causes a direct interaction of the neuraminic acid in the 
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head group of the ganglioside GM3 (monosialodihexosylganglioside) with the 

membrane-proximal lysine of the epidermal growth factor (EGF) receptor kinase 

domain, thereby, inhibiting autophosphorylation of the intracellular tyrosine residues 

of the EGF receptor. This prevents receptor dimerization, rendering it inactive, 

thereby, attenuating uncontrolled signaling in the absence of the ligand. In contrast, 

the EGF receptor can be activated by autophosphorylation when cholesterol is 

depleted from the membrane [122]. Furthermore, in B16 mouse melanoma cells, 

increasing GM3 levels augments the activity of the focal adhesion kinase (FAK) and 

binding of GTP to Rho and Ras signaling molecules. As a consequence, B16 

melanoma cells spread and migrate faster [123]. Hence, the lipid environment plays a 

significant role in the regulation of membrane protein-function.  

How do membrane lipids and the cytoskeleton communicate? It is known that 

actin filaments can be directly bound to the plasma membrane via proteins like ERM 

(ezrin, radixin, and moesin) proteins, cellular prion protein, CIP4 (Cdc-42 interacting 

protein-4), IRSp53 (insulin receptor substrate protein-53kDa), caveolin-1, and 

filamin A [124] [125] [126] [119].  Furthermore, flotillin/reggie and TSPN7 

(tetraspannin-7) recruit actin-binding proteins to the plasma membrane that bind to 

the plasma membrane and also interact with the actin cytoskeleton [127] [119]. A 

prominent example for how changes in the lipid composition of the plasma 

membrane control cell function through the cytoskeleton is the activation and 

migration of T lymphocytes. Upon antigen binding to the T cell receptors, lipids in the 

membrane reorganize and lead to clustering of the receptors with cholesterol and 

glycosphingolipids, thereby forming part of the immunological synapse [128]. In turn, 

adhesion molecules and junctional proteins are recruited to the synapse, including 

proteins that control the actin cytoskeleton such as talin, vinculin, and ERM proteins. 

This initiates lymphocyte migration [128] [119]. Reciprocally, the actin cytoskeleton 

assists in reorganizing membrane lipids. The actin-binding protein filamin A which is 

also recruited to the immunological synapse controls reorganization of membrane 

lipids [129]. Hence, there seems to be a cross-talk between the lipids and proteins in 

membrane rafts and the cytoskeleton.  
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The actin cytoskeleton responds to stimuli by localized polymerization or 

depolymerization [126]. Actin is a globular protein (G-actin) with an ATP binding-site 

in the center of the molecule [130]. Dimerization or trimerization of G-actin serves as 

a site for nucleation and growth of the actin filament [131]. Actin filaments polymerize 

at the plus-end whereas depolymerization occurs at the minus end [131], a process 

known as actin treadmilling. Several classes of actin-binding proteins control the 

polymerization and depolymerization of F-actin. For example, profilin is a promoter of 

actin polymerization. It binds to G-actin, thereby, attracting more G-actin monomers 

and accelerating nucleation [132]. In contrast, actin-severing proteins, such as 

gelsolin and cofilin, clip existing F-actin filaments, causing depolymerization of actin 

filaments to regulate their length [133] [134]. Actin capping-proteins bind to the free 

ends of F-actin filaments to protect them from depolymerization [135]. Hence, actin 

dynamics are controlled via the activity of actin binding-proteins.  

  But how does GlcCer control actin dynamics? Which signaling pathways are 

affected by accumulation of GlcCer? Lipidomics revealed that in GBA2 

knockout-mice, glycosphingolipids with the C16 carbon-chain length were more 

abundant (Figure 11d, e). C16 ceramide has been shown to increase cell migration in 

embryonic stem cells by increasing actin polymerization [136]. C16 ceramide 

regulates PKC-dependent phosphorylation of FAK and paxillin, which leads to 

complex formation of Cdc-42, neural Wiskott-Aldrich syndrome protein (N-WASP), 

and the actin-related protein (ARP 2/3). This complex increases the interaction of the 

actin polymerizing proteins cofilin-1 and alpha-actinin-1/-4 with F-actin, thereby, 

facilitating F-actin elongation [136]. However, the authors did not examine whether 

the increase in C16 ceramide levels also increased the intracellular levels of GlcCer. 

Thus, these effects could also be due to an increase in C16 GlcCer levels. My results 

demonstrate that in particular the C16 GlcCer levels are increased in GBA2 

knockout-mice and that fibroblasts from GBA2 knockout-mice migrate faster. Thus, 

future studies will show, whether FAK activity and complex formation of N-WASP, 

Cdc-42, and ARP 2/3 is affected in GBA2 knockout-mice. Indeed, I have shown that 
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actin polymerization in GBA2 knockout-fibroblasts is increased, leading to the 

formation of filopodia and lamellipodia.  

The formation of filopodia and lamellipodia is controlled by the Rho GTPases 

Cdc-42 and Rac1, respectively, which locally activate actin polymerization [137] [91]. 

Filopodia are important for sensing the environment, axon guidance, and the 

formation of epithelial cell–cell contacts [138]. As described above Cdc-42 induces 

actin polymerization via N-WASP/ARP 2/3 complex formation [137]. However, 

Cdc-42 also induces actin polymerization via mDia2 (mammalian diaphanous 

protein 2), a member of the formin protein family [139]. Independent of Cdc-42 and 

Rac1, bundling of polymerized F-actin to form filopodia is mediated by fascin, an 

actin cross-linking protein [126]. Lamellipodia form the leading edge of migrating cells 

and actin polymerization at the lamellipodium is thought to drive membrane 

protrusion [140]. Rac1 mediates lamellipodia formation by inducing ARP 2/3 complex 

formation via WAVE (WASP-family verprolin-homologous protein) or mDia [91]. Rac 

proteins also regulate actin polymerization by increasing the availability of free 

F-actin ends either by removing the capping proteins or by severing actin filaments 

via cofilin and gelsolin [141]. Regulation of cofilin levels also replenishes the supply 

of actin monomers, thereby, facilitating actin polymerization [142]. Therefore, the 

temporal and spatial regulation of Rho GTPase activity is crucial for actin dynamics. 

In addition, it has been shown that effectors of Rho GTPases such as mDia stabilize 

microtubules in the leading edge of migrating cells [143]. Hence, interfering with the 

actin cytoskeleton can also have an impact on the microtubule cytoskeleton.  

Lipids have been shown to regulate Rho GTPase signaling [119]. Stimulation 

of dendritic cells with lipopolysaccharide (LPS) reorganizes the plasma membrane, 

thereby, recruiting Rac1 to lipid rafts [144]. Similarly, Cdc-42 is recruited to lipid rafts 

resulting in a rearrangement of the actin cytoskeleton, which controls cellular 

morphology and conditions dendritic cells to efficiently stimulate CD8+ receptors on T 

cells [144]. Also, it is known that phosphatidylinositol (3,4,5)-triphosphate (PIP3) 

generated by phosphoinositide 3-kinase (PI3K) activates Rac1 via Rac-GEFs [145] 
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and phosphatidylinositol (4,5)-diphosphate (PIP2) directly interacts with Cdc-42 and 

RhoA to stimulate the release of GDP [146].  My results indicate that the more 

ordered lipid packaging in the plasma membrane influences the activity of signaling 

molecules that regulate cytoskeletal dynamics. However, further experiments need to 

be performed to elucidate, whether the activity of Rho GTPases is affected in GBA2 

knockout-mice.  

Depending on the cell type, cytoskeletal defects in GBA2 knockout-mice have 

a different impact on cell function. Whereas in GBA2 knockout-fibroblasts, 

augmented actin polymerization and a higher microtubule persistence results in 

faster cell migration, in GBA2 knockout-testis, sperm-head formation is disturbed, 

reducing fertility. Sertoli and germ cells lack structures like lamellipodia and 

filopodia [95] [147] [148] [149]. However, during sperm development, the developing 

germ cells are transported towards the lumen of the seminiferous tubule with the help 

of Sertoli cells [150]. Here, the cytoskeleton plays an important role. The first check 

point is the BTB, a tight junction set up by adjacent Sertoli cells consisting of a 

dynamic network of actin filaments that undergo rapid bundling and debundling to 

facilitate the ‘opening’ and ‘closing’ of the BTB. Thus, spermatocytes can pass and 

are transported towards the lumen [151] [152]. The next check point is the apical ES, 

an adherence junction which has a slightly different protein composition compared to 

the BTB [40] [151] [153]. It has been proposed that the regulation of actin dynamics 

at the BTB and the apical ES relies on the activation of Rac1 and Cdc-42 [154]. 

Furthermore, Cdc-42 and Rac1 together with the N-cadherin-beta-catenin complex 

maintain the integrity of the adherence junction [113] [155]. Germ cell release from 

Sertoli cells into the lumen is initiated by the activation of RhoB GTPase through 

integrins at the apical ES. The following downstream activation of ROCK1 

(Rho-associated protein kinase 1), LIMK1 (LIM kinase 1), and cofilin disrupts the 

actin cytoskeleton at the apical ES resulting in germ cell release [95]. It has been 

shown that the function of integrins is different in ordered and disordered membrane 

phases [156]. Furthermore, changes in lipid environment also prevented formation of 
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the cadherin-catenin complex, compromising the function of the adherence 

junction [157].  

My results demonstrate that BTB integrity and function in GBA2 knockout-mice 

is not affected because germ cells are not prematurely released into the lumen. 

Rather the structure of the apical ES is severely compromised (Figure 13). We have 

shown that GBA2 is attached to the membranes of the ER, which in the Sertoli cells, 

forms a part of the apical ES [57]. Thus, GBA2 could regulate GlcCer levels at the 

interface between Sertoli and germ cells. In turn, in GBA2 knockout-mice, GlcCer 

might accumulate in the membranes at the ES, causing a more ordered lipid stacking 

and, thereby, affecting signaling in the ES, e.g. the function of Rho GTPases or the 

N-cadherin-beta-catenin complex (to mention a few examples). Consequently, the 

tightly regulated process of recruitment and activation of actin-binding proteins at the 

ES is impaired, resulting in misalignment of actin filaments around the sperm heads. 

This would explain how actin dynamics at the ES are altered when GlcCer 

accumulates. 

Furthermore, in the sperm manchette of GBA2 knockout-mice microtubule 

persistence is augmented. This could be due to a mis-regulation of the signaling 

molecules that control both the actin and microtubule cytoskeleton. GlcCer has also 

been shown to control vesicle transport and fusion [18]. My results underline this 

finding, demonstrating that accumulation of GlcCer during spermatogenesis hinders 

vesicle fusion and, thereby, acrosome formation, generating sperm with a round head 

and devoid of a well-formed acrosome (Figure 23). Future experiments will reveal, 

which signaling molecules are affected by GlcCer.  
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Figure 23. Sperm-head shaping in wild-type and GBA2 knockout-mice. Left: Schematic 

representation of the apical junction (ES) between a wild-type sperm head and a Sertoli cell. 

F-actin at the apical ES (green) from the Sertoli cell and the microtubule manchette (red) 

from the spermatid jointly shape the sperm head. As a result, sperm heads are sickle-shaped 

with a well formed acrosome (orange). The nucleus and the flagellum are indicated in grey 

and brown respectively. Right: see left for GBA2 knockout-sperm. Accumulation of GlcCer 

levels alters the lipid stacking at the ES (purple) which disrupts F-actin alignment and 

renders the microtubules of the manchette more persistent. Thereby, the sperm head is 

deformed causing globozoospermia.  

 

5.3. Novel role for GlcCer 

Apart from the known functions of GlcCer mentioned in chapter 1.2, my work 

demonstrates for the first time that GlcCer controls cytoskeletal dynamics and, 

thereby regulates, spermatogenesis in mice. Recently, it was reported that patients 

carrying a mutations in the GBA2 gene are infertile due to bilateral testicular 

hypertrophy with severe sperm-head deformation and motility defects [35]. However, 

the main clinical symptoms of these patients were cerebellar ataxia and severe 

hereditary spastic paraplegia with varying degrees of cerebellar and corpus callosum 

atrophies [158] [35]. So far we have not observed major neurological defects in GBA2 
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knockout-mice, although GBA2 is highly expressed in the brain. Studies performed 

by a master student in our lab revealed that the mutations found in patients with 

cerebellar ataxia and severe hereditary spastic paraplegia are dead mutants (Master 

thesis, Carina Marx). Thus, we analyzed locomotor function of GBA2 knockout-mice 

in more detail using behavioral studies. Preliminary results suggest that muscle 

strength in GBA2 knockout-mice is severely impaired (Master thesis, Carina Marx). 

Similarly, a study in zebrafish demonstrated that down-regulation of GBA2 

expression affected locomotion and reduced axon outgrowth of motor neurons [35]. 

Axon growth crucially relies on actin and microtubule function [159]. In future studies, 

we will investigate if GlcCer also accumulates in motor neurons of GBA2 

knockout-mice, thereby, affecting cytoskeletal dynamics and axon growth. 
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7. Appendix   
 

 

     1   M V T C V P A S E Q V G C A E R D S Q V Y C E D T G G T E A V R V T D C G S P E D S G P Q D E P S 

Y 

    51   C N S E D S G Q L M A S Y E G K A R G Y Q V P P F G W R I C L A H E F A E K R R P F Q A N N I S L 

S 

   101   N L V K H L G M G L R Y L K W W Y R K T H V E K K T P F I D M L N S L P L R Q I Y G C P L G G I G 

G 

   151   G T I T R G W R G Q F C R W Q L N P G M Y Q H Q T V I A D Q F I V C L R R D G R T V Y Q Q V L S L 

E 

   201   L P N V L R S W N W G L C G Y F A F Y H A L Y P R A W T V Y Q L P G Q N V T L T C R Q V T P I L P 

H 

   251   D Y Q D S S L P V G V F V W D V E N E G D E T L D V S I T F S M R N G L G G E D D A A G S L W N E 

P 

   301   F R L E Q G G T T V Q G L L L H H P T P P N P Y T M A V A A R C T A D T T V T H T T A F D P N G T 

G 

   351   Q Q V W Q D L L Q D G Q L D S P A G Q S T P T Q K G E G I A G A V C V S S K L L P R S R C C L E F 

S 

   401   L A W D M P K I M F G A K S Q V H Y R R Y T R F F G S D G D V A P A L S H Y A L C H Y A D W E D R 

I 

   451   S A W Q N P V L D D R T L P A W Y K S A L F N E L Y F L A D G G T V W L E V P A D S L P E G L G G 

S 

   501   M R Q L R S T L Q D Y G R F G Y L E G Q E Y R M Y N T Y D V H F Y A S F A L V M L W P K L E L S L 

Q 

   551   Y D M A L A T L K E D L T R R R Y L M S G V V A P V K R R N V I P H D I G D P D D E P W L R V N A 

Y 

   601   L I H D T A D W K D L N L K F V L Q I Y R D Y Y L T G D Q G F L E D M W P V C L A V M E S E M K F 

D 

   651   K D Q D G L I E N G G Y A D Q T Y D A W V T T G P S A Y C G G L W L A A V A V M V Q M A V L C G A 

Q 

   701   D V Q E R F A S I L C R G R E A Y E R L L W N G R Y Y N Y D S S S H P Q S R S I M S D Q C A G Q W 

F 

   751   L R A C G L G E G D T E V F P T L H V V R A L Q T I F E L N V Q A F A G G A M G A V N G M H P H G 

V 

   801   P D R S S V Q S D E V W V G V V Y G L A A T M I Q E G L T W E G F R T A E G C Y R T V W E R L G L 

A 

   851   F Q T P E A Y C Q Q Q V F R S L A Y M R P L S I W A M Q L A L Q Q Q Q H K K S R R P S V T Q G T G 

L 

   901   S T Q P E C G P K R S L A N L N S E 

Figure 24. Mass spectrometric detection of GBA2 in testis of mouse. Five 

different peptides from the GBA2 protein-sequence were chosen and using mass 

spectrometry their presence in the testis and Sertoli cells was detected. Four of the 

chosen peptides were present in testis (indicated in blue) and 2 peptides appeared in 

the Sertoli cells. However, 1 peptide was present in both testis and Sertoli cells 

(indicated in red and blue).    

 

               Peptide 1 
1   MVTCVPASEQVGCAERDSQVYC-EDTGGTEAVRVTDCGSPEDSGPQDEPSYCNSEDSGQL 59 

 

60  MASYEGKARGYQVPPFGWRICLAHEFAEKRRPFQANNISLSNLVKHLGMGLRYLKWWYRK 119 

 

120 THVEKKTPFIDMLNSLPLRQIYGCPLGGIGGGTITRGWRGQFCRWQLNPGMYQHQTVIAD 179 

 

180 QFIVCLRRDGRTVYQQVLSLELPNVLRSWNWGLCGYFAFYHALYPRAWTVYQLPGQNVTL 239 

 

240 TCRQVTPILPHDYQDSSLPVGVFVWDVENEGDETLDVSITFSMRNGLGGEDDAAGSLWNE 299 
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300 PFRLEQGGTTVQGLLLHHPTPPNPYTMAVAARCTADTTVTHTTAFDPNGTGQQVWQDLLQ 359 

          Peptide 2 
360 DGQLDSPAGQSTPTQKGEGIAGAVCVSSKLLPRSRCCLEFSLAWDMPKIMFGAKSQVHYR 419 

 

420 RYTRFFGSDGDVAPALSHYALCHYADWEDRISAWQNPVLDDRTLPAWYKSALFNELYFLA 479                     

        Peptide 3 
480 DGGTVWLEVPADSLPEGLGGSMRQLRSTLQDYGRFGYLEGQEYRMYNTYDVHFYASFALV 539 

 

540 MLWPKLELSLQYDMALATLKEDLTRRRYLMSGVVAPVKRRNVIPHDIGDPDDEPWLRVNA 599 

 

600 YLIHDTADWKDLNLKFVLQIYRDYYLTGDQGFLEDMWPVCLAVMESEMKFDKDQDGLIEN 659 

 

660 GGYADQTYDAWVTTGPSAYCGGLWLAAVAVMVQMAVLCGAQDVQERFASILCRGREAYER 719 

             Peptide 4 
720 LLWNGRYYNYDSSSHPQSRSIMSDQCAGQWFLRACGLGEGDTEVFPTLHVVRALQTIFEL 779 

 

780 NVQAFAGGAMGAVNGMHPHGVPDRSSVQSDEVWVGVVYGLAATMIQEGLTWEGFRTAEGC 839 

                                                    
840 YRTVWERLGLAFQTPEAYCQQQVFRSLAYMRPLSIWAMQLALQQQQHKKSRRPSVTQGTG 899 

 

900 LSTQPECGPKRSLANLNSE  918 

 

 

Figure 25. Mouse GBA2 protein-sequence with epitopes for the generation of 

antibodies indicated. The four peptides that were used to generate monoclonal 

antibodies are indicated in red and the epitope used to generate a polyclonal 

antibody is indicated in black.  
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