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Summary 
 
 
Mitochondrial genetics has been changing its focus during the last decade. Originally limited 

to describing effects of mutations of the mitochondrial DNA (mtDNA) research at present 

aims to understand circumstances of mutation generation and propagation in the context of 

mitochondrial genome maintenance. Key players of the mitochondrial DNA synthesis 

machinery have been thoroughly investigated by many research groups. However, little is 

known about the influence of other processes that are crucial for mtDNA maintenance. 

During my PhD study, I have been working on projects that seek to shed light on specific 

aspects of disturbances in mtDNA maintenance. (i) Investigating three families with an 

mtDNA maintenance disorder, we discovered a novel gene MGME1 that can process single 

stranded DNA molecules and flap structures, shows 5’-exonuclease activity, and probably 

plays a role in the process of replication and turn-over of replication intermediates, such as 

7S DNA. 

(ii) Different factors that affect mitochondrial biogenesis in general might also 

influence mtDNA maintenance. Mitofusin 2 is one of these factors playing a crucial role in 

fusion of mitochondria, and thus in achieving an appropriate balance of mitochondrial 

dynamics. Pathogenic mutations in the MFN2 gene lead to mitochondrial fragmentation. We 

were able to show that alteration of mitochondrial dynamic leads to respiratory deficiency 

through a disturbed mtDNA replication. 

(iii) Our group developed techniques to investigate complex mixtures of large mtDNA 

deletions that are known to be involved in several human diseases, such as Parkinson’s and 

Alzheimer’s, as well as, in normal aging. We demonstrate that TLE with AHS, a rather 

common neurological disorder, is also associated with pathological changes in the 

mitochondrial genome. Analyzing detailed spectra of deletions we are able to investigate 

alterations of deletion patterns that might provide hints about different mechanisms leading to 

deletion generation.  

 

 

 
 
 
 
 
 
 
 
 
 
 



List of Tables 
 

iv 

List of Tables: 

 

Table 1 Oligonucleotides for the nuclear gene Kir4.1 32 

Table 2 Oligonucleotides used for linker synthesis 32 

Table 3 mtDNA primers in the D-loop 33 

Table 4 Primers in the mtDNA coding region 34 

Table 5 Enzymes 35 

Table 6 Chemicals 36 

Table 7 Solutions 37 

Table 8 Kits 37 

Table 9 Equipment 38 

Table 10 Software 39 

Table 11 Mixture for PAGE gel 44 

Table 12 TaKaRa LA Taq (HS) and JumpStart AccuTaq LA LR PCR mixture 44 

Table 13 LR-PCR program 45 

Table 14 TaKaRa LA Taq (HS) smPCR mixture 45 

Table 15 Single-molecule PCR program 46 

Table 16 SYBR® Green qPCR mixture 49 

Table 17 SYBR Green qPCR program 49 

Table 18 TaqMann® qPCR mixture 50 

Table 19 Ranger qPCR mixture 52 

Table 20 Linker annealing mixture and conditionsл 53 

Table 21 Quick Blunting Kit treatment 53 

Table 22 Mung Bean Nuclease treatment 54 

Table 23 S1 nuclease treatment 54 

Table 24 Linker ligation 55 

Table 25 LM-PCR mixture 55 

Table 26 LM-PCR program 56 

Table 27 Single-molecule LM-PCR mixture 56 

Table 28 Program for single-molecule LM-PCR 56 

Table 29 TaKaRa LA Taq (HS) multiplex PCR mixture 57 

Table 30 PCR program for multiplex PCR 57 

Table 31 LongAmp PCR mixture 58 

Table 32 PCR program for sequencing PCR 58 

   



  List of Tables 

  v                                                                                           

Table 33 Amount of deletions in MGME1 muscle biopsy (MB) samples, control   

 muscle and POLG muscle (PG) 65 

Table 34 Small direct multimers in the D-loop of MGME1 patients 68 

Table 35 mtDNA copy numbers determined in four CMT2A patients,   

 one diseased control patient with CMT1A and controls 83 

Table 36 mtDNA deletions mapped by smPCR in H2O2 treated human fibroblasts 88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 
 

vi 

List of Figures: 

  PAGE 

Figure 1 Micrograph image of mitochondria from rat kidney 1 

Figure 2 Schematic representation of mitochondrial structure 3 

Figure 3 Anterograde and retrograde transport of mitochondria 6 

Figure 4 Mitochondrial fusion and fission 7 

Figure 5 Circular mitochondrial DNA molecule by atomic force microscopy 8 

Figure 6 Scheme of the human mitochondrial genome 9 

Figure 7 Asynchronous model of mtDNA replication 12 

Figure 8 Bidirectional model of mtDNA replication 15 

Figure 9 RITOLS model of mtDNA replication 16 

Figure 10 mtDNA replication scheme 19 

Figure 11 Slipped-strand mechanism of deletion formation 24 

Figure 12 Mechanism of deletion formation during DSBs repair 25 

Figure 13 Single-molecule PCR 47 

Figure 14 Pedigrees of MGME1 patients  61 

Figure 15 LR-PCR amplification of mtDNA from MGME1 patients 63 

Figure 16 mtDNA rearrangements in MGME1 and POLG patients 66 

Figure 17 Relative mtDNA copy numbers in muscle and fibroblasts   

 of MGME1 patients 69 

Figure 18 Relative mtDNA copy numbers, with eleven primer pairs outside   

 and inside the 7S DNA region 71 

Figure 19 mtDNA copy number in fibroblasts from P1976, transduced with   

 a viral construct overexpressing MGME1, compared to control   

 and POLG patients 72 

Figure 20 Changes in mtDNA copy numbers during induced mtDNA depletion   

 and repopulation of fibroblasts from P1976, P4052 and a control 73 

Figure 21 Schematic representation of LM-PCR for detection of free mtDNA ends 75 

Figure 22 LM-PCR visualization of the 5’ end of the 7S DNA 77 

Figure 23 LM-PCR after T4-polymerase (T4), Mung Bean nuclease (MuB) and S1  

 treatment of fibroblasts from patients with MGME1 mutation and controls 78 

Figure 24 7S DNA ends mapped by single-molecule LM-PCR 79 

Figure 25 LM-PCR showing free end at the OL of MGME1 patients 81 

Figure 26 Partial sequences representing MFN2 mutations in four patients with  

 CMT2A 82 



  List of Figures 

  vii                            

Figure 27 Deletions in CMT2A patients 85 

Figure 28 Mapped mtDNA deletion breakpoints in CMT2A patients 86 

Figure 29 mtDNA damage upon oxidative stress by H2O2 88 

Figure 30 LR-PCR and semiquantitative analysis of mtDNA deletions content in  

 TLE patients 90 

Figure 31 mtDNA deletion amounts in AHS and lesion patients, dependent on age 91 

Figure 32 Comparison of relative deletion percentage in AD region, in AHS   

 patients, with two different primer pairs 92 

Figure 33 Multiplex PCR of AHS and lesion TLE samples 93 

Figure 34 Structure of the D-loop containing the 7S DNA 96 

Figure 35 Proposed function of MGME1 in mtDNA maintenance 101 

Figure 36 Replication fork at the mtDNA 102 

Figure 37 Proposed involvement of MGME1 in different processes of mtDNA   

 maintenance, mtDNA replication and repair, and consequences from   

 its dysfunction 103 

Figure 38 mtDNA mutagenesis 108 

Figure 39 Overview of the accumulation of mutated mtDNA, respiratory failure,  

 and insufficient ATP supply leading to disease 109 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Abbreviations 
 

 viii 

List of Abbreviations: 

 

AD area dentate 
ADP adenosine diphosphate 
adPEO autosomal dominant progressive external 

ophthalmoplegia 
AHS  Ammon’s horn sclerosis 
ALS amyotrophic lateral sclerosis 
APS ammonium persulfate 
ATP adenosine-5’-triphosphate 
BER base excision repair 
BL blood 
BSA bovine serum albumin 
CA1 cornu Ammonis 1  
CA3 cornu Ammonis 3 
CCCs covalently closed circles 
CMT1A Charcot–Marie–Tooth Neuropathy Type 1A 
CMT2A Charcot–Marie–Tooth Neuropathy Type 2A 
CoA coenzyme A 
COX cytochrome c oxidase 
CPEO chronic progressive external ophthalmoplegia 
CRAC calsium release activated channel 
CSB conserved sequence blocks 
Ctmito Ct value of mtDNA fragment 
Ctnuc Ct value of reference gene 
CYTb cytochrome b 
ddC 2’, 3’-dideoxycytidine 
ddH2O double-distilled water 
D-loop displacement loop 
DMEM Dulbecco's Modified Eagle's Medium 
DMSO dimethyl sulfoxide 
DNA2 DNA replication helicase/nuclease 2 
dNTP deoxyribonucleotide triphosphate 
DR direct repeat 
dRP deoxyribose phosphate 
DRP1 dynamin related protein 1 
DSB double-strand break 
DSBR double-strand break repair 
dsDNA double-stranded DNA 
EDTA ethylenediaminetetraacetic acid 
EM electron microscopy 
ER endoplasmic reticulum 
EtBr ethidium bromide 
F forward primer 
FB fibroblasts 
FBS fetal bovine serum 
FEN1 flap structure specific endonuclease 1 
FIS1 fission 1 
FRDA Friedrich’s ataxia 
FW forward primer 
GTP guanosine-5’-triphosphate 
HEK human embryonic kidney 
HEPES hydroxyethyl piperazineethanesulfonic acid 
HMG-box  high mobility group box 



  List of Abbreviations 

                            ix 

HR2 domain heptad repeat domain 2 
HSP heavy strand promoter 
H-strand heavy strand 
IMM inner mitochondrial membrane 
IMS inner membrane space 
Kir4.1 ATP-sensitive inward rectifier potassium channel 10 
KSS Kearn-Sayre syndrome 
LHON Leber’s Hereditary Optic Neuropathy 
LIG3 ligase 3 
LMP ligation-mediated PCR primer 
LM-PCR Ligation-Mediated PCR 
LR-PCR Long-range PCR 
LP-BER long patch base excision repair 
LSP light strand promoter 
L-strand light strand 
M muscle 
MAP microtubule associated protein 
MB muscle biopsy 
MDS mtDNA depletion syndromes 
MEF  mouse embryonic fibroblasts 
MELAS mitochondrial encephalomyopathy, lactic acidosis and 

stroke like episodes 
MERRF myoclonic epilepsy and ragged red fibers 
MFN1  mitofusin 1 
MFN2 mitofusin 2 
MGME1 mitochondrial genome maintenance exonuclease 1 
MMD mtDNA maintenance disorders 
MMR mismatch repair 
MP morbus Parkinson 
mtDNA   mitochondrial DNA 
MTERF1 mitochondrial transcription termination factor 1 
mtSSB mitochondrial single strand DNA binding protein 
MuB Mung Bean nuclease  
NADH nicotinamide adenine nucleotide 
NARP neuropathy, ataxia, and retinitis pigmentosa 
ND nicotinamide adenine nucleotide dehydrogenase 
NHEJ non-homologous end-joining 
NTP nucleotide triphosphate 
OD optical density 
OH heavy strand origin of replication 
OL light strand origin of replication 
OMM outer mitochondrial membrane 
OPA1 optic atrophy 1 
OXPHOS oxidative phosphorylation system 
P patient 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PEO progressive external ophthalmoplegia 
PH parahippocampus 
POLG polymerase gamma 
POLRMT mitochondrial RNA polymerase  
PS Pearson syndrome 
QBK quick blunting kit 
qPCR quantitative Real-Time PCR 



List of Abbreviations 
 

 x 

R reverse primer 
RC respiratory control 
RITOLS ribonucleotide incorporation throughout the lagging 

strand 
Rnase H1 ribonuclease H1 
ROI region of interest 
ROS reactive oxygen species 
RRF ragged red fibers 
RW reverse primer 
SDH succinate dehydrogenase 
smLM-PCR single-molecule ligation-mediated PCR 
smPCR single-molecule PCR 
SN-BER single nucleotide base excision repair 
SPMS secondary progressive multiple sclerosis 
SSB single strand break 
ssDNA single stranded DNA 
STIM1 stromal interaction molecule 1 
T4 T4 polymerase  
TAS termination associated sequence 
TBE tris borate EDTA 
TCA cycle tricarboxylic acid cycle 
TE tris EDTA 
TEMED tetramethylethylenediamine 
TERM mitochondrial transcription termination sequence 
TFAM mitochondrial transcription factor A 
TK2 thymidine kinase 
TLE temporal lobe epilepsy 
TM TaqMann probe 
TPR tetratrico-peptide repeats 
TWINKLE T7-like mitochondrial DNA helicase 
UR urine sediment 
wt wild-type 
y years old 
 
 
 
 
 



Introduction 

                                                                                                                                                       1 

1. Introduction 

 

1. 1 Brief history of mitochondria 

 

Mitochondria were first described by Richard Altmann in 1890; he called them ‘bioblasts’ and 

assumed that they are ubiquitous ‘elementary organisms’ living inside the cells (Altmann, 

1890), having the properties of free-living microbes. The name ‘mitochondrion’ was given by 

Benda in 1898, based on their appearance during spermatogenesis, from the Greek ‘mitos’ 

(thread) and ‘chondros’ (granule) (Benda, 1898; Ernster and Schatz, 1981). In 1900, 

Michaelis has visualized mitochondria actively engaged in cellular respiration, by Janus 

Green B staining, which was the single method used to stain mitochondria until their first 

electron micrographs (Palade, 1952) (Figure 1). Fifty years after Michaelis finding, Lazarow 

and Cooperstein have proven that the Janus Green B staining is possible due to reoxidizing 

of the dye by mitochondrial cytochrome oxidase (Lazarow and Cooperstein, 1953). 

 

 

 

Figure 1   Micrograph image of mitochondria from rat kidney. Made by Palade in 1953 (adapted from 
Palade, 1953); ‘ep’, ellipsoidal profile; ‘fc’, free channel; ‘nc’ cristae showing three-layered structure; 
‘oc’, christae showing dimmed three-layered structure. The bar indicates 0.1µm. 
 

Since the mitochondria were discovered, there is a vivid dispute over their origin. The 

researches of the Russian botanist Konstantin Mereschkowsky (1905) and the previous 

discoveries of Sachs (Sachs, 1882) and Altmann (Altmann, 1890) have given rise to the 

“serial endosymbiotic theory” of repeated discrete endosymbiotic events which led to the 

formation of the eukaryotic cells.  Its recent active populizer was Lynn Margulis who was 

strongly criticized by the research community for standing against the basic assumptions 

about evolution. Together with Dorion Sagan they stated: “Life did not take over the globe by 

combat, but by networking. Life forms multiplied and complexified by co-opting others, not by 

killing them” (Margulis and Sagan, 2001). In 1927, Ivan Wallin broadened the serial 
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endosymbiotic theory to mitochondria. According to it, mitochondria are result of a symbiotic 

relationship between primitive prokaryotic cell, able to perform oxidative phosphorylation 

(proteobacteria and for chloroplasts, cyanobacteria) and a proto-eukaryotic cell (Scheffler, 

2008). And indeed, phylogenetic analyses have accumulated evidences suggesting that 

mitochondria share a common ancestor, the α-proteobacterium, with the obligate intracellular 

parasite Rickettsia prowazekii (Andersson et al., 1998; Andersson et al., 2003; Emelyanov, 

2003; Gray, 2001).  

Eukaryotes missing mitochondria (from the kingdom of Archezoa) (Cavalier-Smith, 

1981), such as trichomonads, cilliates and chytrid fungi (Embley et al., 2003, Broers et al. 

1993; Fenchel and Finlay 1995; Roger and Silberman 2002) were shown to contain ancestral 

mitochondria-like organelles such as hydrogenosomes and mitosomes, or remnant 

mitochondria (Müller, 1993; Williams et al., 2002; Tovar et al., 1999; Zubáčová et al., 2013; 

Hjort et al., 2010; Shiflett and Johnson, 2010).  These organelles are surrounded by a double 

membrane; in most cases they have lost their DNA and oxidative phosphorylation function, 

but have kept other biochemical functions of the mitochondria (Honigberg et al., 1984); 

for example, the hydrogenosomes can perform fermentative metabolism of pyruvate and 

ATP synthesis through substrate-level phosphorylation, creating molecular hydrogen as a  

by-product (Lindmark and Müller, 1973; Hjort et al., 2010).  

 

1. 2 Structure and morphology of mitochondria 

 

The structure of mitochondria can be observed in detail by electron microscopy (EM). A 

traditional view on the inner structure of mitochondria is shown on Figure 2. Each 

mitochondrion has two separate membranes, the outer membrane, which draws the smooth 

boundaries of the mitochondrion and the inner membrane, which forms many invaginations 

and tubes spanning the mitochondrial lumen, called cristae. The inner membrane and the 

lamellar structures are connected by narrow tube-like connections, called the cristae 

junctions (Scheffler, 2008). The inner and the outer membrane have completely different 

protein content and are functionally distinct (Lodish et al., 2012). The most abundant protein 

of the outer mitochondrial membrane (OMM) is the protein porin. Ions and small molecules 

can pass easily through the pore of this transmembrane channel protein (Benz, 1985; Benz, 

1990). Mitochondrial porins have size of 30 to 35 kDa. The maximal molecular weight of 

uncharged molecules which can pass through the OMM porins is about 5 kDa (Benz, 1985; 

Benz, 1990; Shoshan-Barmatz and Mizrachi, 2012). The inner mitochondrial membrane 

(IMM), which has 76% protein content, more than any other cellular membrane (Gohil and 

Greenberg, 2009; Lodish et al., 2012), is a tight permeability barrier, with functional 

consequences.  
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Figure 2   Schematic representation of mitochondrial structure (adapted from Nelson and Cox, 
Lehninger Principles of Biochemistry, 3rd edition, 2000). 
  

The space closed between the outer and the inner mitochondrial membrane is named 

intermembrane space and the mitochondrial matrix is the lumen of the mitochondria, 

surrounded by the inner membrane. Due to its cristae the IMM has much larger surface area 

in comparison to the outer membrane. The cristae are containing the adenosine-5’-

triphosphate (ATP) synthesis complexes, protruding from the inner membrane to the matrix. 

The cristae number and size varies between the cells, and it is thought to be dependent on 

the energy demand of the cell. The more surface area is formed by the cristae, the more ATP 

synthase complexes are present in the mitochondrion. For example, the inner membrane 

area of a muscle cell contains three times as many cristae as a liver cell, presumably due to 

the greater energy (ATP) demand of the cell (Lodish et al., 2012). 

 

1. 2. 1 Biochemical reactions in mitochondria 

 

The biochemical reactions taking place in mitochondria are part of many metabolic pathways, 

that play central role in the cellular function. For example, the fatty acid oxidation (Lehninger, 

1945) and the Krebs cycle, also known as the tricarboxylic acid cycle (TCA cycle) (Krebs and 

Johnson, 1937; Svirbely and Szent-Györgyi, 1933; Scheffler, 2008) are taking place in the 

mitochondria. The process of aerobic oxidation of glucose and fatty acids starts in the 

cytosol, where the glucose is being converted to pyruvate and the fatty acids to fatty acyl 
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coenzyme A (CoA). They then enter the mitochondrial matrix through the porin channels on 

the OMM and by transporters on the IMM. The pyruvate and the fatty acyl CoA are being 

converted to acetyl CoA and further oxidized until the release of CO2. Nine sequential 

oxidative reactions are turning the acetyl group of acetyl CoA into CO2, and they form the 

TCA cycle. The transfer of electrons from the coenzyme electron carriers to and between the 

complexes of the respiratory chain and the process of oxydative phosphorylation (OXPHOS) 

ends with reduction of O2 and release of water. The functional enzyme complexes of the 

OXPHOS system are NADH: ubiquinone oxidoreductase (Complex I), succinate: ubiquinone 

oxidoreductase (Complex II, succinate dehydrogenase, SDH), ubiquinol: cytochrome c 

oxidoreductase (Complex III, cytochrome bc1 complex), ferricytochrome c: oxygen 

oxidoreductase (Complex IV, COX) and the F1F0-ATPase (Complex V) (Chinnery and Schon, 

2003; Hatefi, 1985; Saraste, 1999). The transport of electrons through the electron transport 

chain is used to pump protons into the innermembrane space and out of the matrix, which 

consequently creates an electrochemical gradient or protonmotive force (Jastroch et al., 

2010) used from the F0F1 complex, called ATP synthase to produce ATP from ADP and 

inorganic phosphate (Pi). This theory of ATP synthesis was proposed by Peter Mitchell in 

1961 and is called the chemiosmotic theory (Mitchell P, 1961).  

Mitochondria are involved also in other major pathways such as the urea cycle in 

which ammonia (NH3) is converted to urea ((NH2)2CO) (Krebs and Henseleit, 1932 a, b, c); 

heme biosynthesis; partially, they participate in steroid, dolichol and ubiquitine biosynthesis, 

and in the synthesis of cardiolipin. Mitochondria are as well the origin of iron-sulphur (Fe-S) 

centers (Scheffler, 2008). They play a crucial role in maintenance of calcium homeostasis 

and programmed cellular death (Lee and Peng, 2008). 

 

1. 3 Distribution, motility and dynamics of mitochondria 

 

1. 3. 1 Mitochondrial distribution 

 

In the cellular cytosol mitochondria are forming networks, which depending on the 

mitochondrial number, size and position differ in the different cell lines and tissues. 

Generally, the mitochondria network is most dense around the nucleus and scatters to the  

periphery of the cell (Frazier et al., 2006). The cells can answer to their energy demands by 

inducing changes in mitochondria distribution. For example, mitochondria cluster in the 

presynaptic nerve terminal as result of local synaptogenic signals and play important role for 

the synapse formation by providing ATP needed for the actin cytoskeleton assembly of the 

presynapse (Lee and Peng, 2008; Peters et al., 1991). The correct positioning of the 

mitochondria is involved as well in the mobilization of the synaptic vesicles (Verstreken et al., 
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2005). Mitochondria were reported to be involved in the dendritic spine formation as well as 

in immunological response functions, such as podosome activations of the lymphocytes, and 

synapse formation in activated T-cells (Li et al., 2004; Sung et al., 2008; Campello et al., 

2006; Quintana et al., 2007). The local calcium concentration may depend on calcium uptake 

from the mitochondria; thereafter, mitochondria are distributed not only in subcellular regions 

with high metabolic requirements, but also at such with Ca2+ accumulation (Werth and 

Thayer, 1994; Zucker, 1999).  

 

1. 3. 2 Mitochondrial motility 

 

Organelles are often transported far away from the place of their biosynthesis in the 

cytoplasm reaching a goal location, for example, the nerve cell axons may be more then a 

meter in length. The well defined tracks on which the organelles slide to these locations are 

formed by microtubules, which can load different types of ‘cargo’. The microtubules are built 

up from αβ-tubulin dimers and are stabilized and aligned by different classes of microtubule 

associated proteins (MAPs). Such proteins characteristic for the neuronal cells are the tau 

protein and the MAP2 protein (Lodish et al., 2012). The transportation of different loads takes 

different time, from very slow as fraction of mm a day (microfilaments, metabolic enzymes, 

clathrin complex – 2 to 8 mm a day; neurofilaments and microtubules – 0.2 to 1 mm a day), 

to very fast as 200 to 400 mm a day (small vesiculotubular structures, neurotransmitters, 

membrane proteins and lipids). The mitochondria are trafficked at medium speed down the 

axons to the synapses with 50 to 100 mm a day (Morfini et al., 2012).  

There are two main motor protein families responsible for the transportation of the 

different ‘cargoes’ along the microtubules, the kinesins and dyneins. The transport 

proceeding from the cellular body to the axons and the synapses is named anterograde 

axonal transport (Lodish et al., 2012) and in the opposite direction, retrograde axonal 

transport (Figure 3). Along the microtubule network mitochondria are trafficked anterogradely 

by kinesin-1 (KIF5) or kinesin-3 (KIF1) (Nangaku et al., 1994; Tanaka et al., 1998) and 

retrogradely by cytoplasmic dynein, whose motor coordination is being supported by the 

binding of kinesin (Salinas et al., 2008) and microtubule associated protein 1B (MAP1B).  

Milton, Miro, syntabulin and a mitochondria specific isoforms of kinectin are protein 

adaptors serving as connection between mitochondria and kinesins (Salinas et al., 2008). 

The microtubule based transport is used for long-range movements and actin-based 

transport for short-range movements (Morris and Hollenbeck et al., 1995). Actin-based 

transport of mitochondria was suggested to participate in the docking of mitochondria (Sheng 

and Cai, 2012; Salinas et al., 2008).  
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Figure 3   Anterograde and retrograde transport of mitochondria (adapted from Salinas et al., 2008). 

 

The Miro protein family includes mitochondrial Rho GTPases participating in 

mitochondrial transport. In mammals there are two known proteins belonging to it, Miro-1 and 

Miro-2 (Liu and Hajnóczky, 2009). Cells lacking active Miro are having disrupted 

mitochondrial motility and networking, and higher apoptosis rates (Liu and Hajnóczky, 2009; 

Fransson et al., 2003). 

Milton 1 and 2 are proteins associated with mitochondrial motility in Drosophila 

melanogaster (Stowers et al., 2002). Their mammalian homologues are TRAK 1 and TRAK 2 

(Brickley and Stephenson, 2011). Miro interacts with Milton protein, which simultaneously 

binds to kinesin-1 and in this way this Miro-Milton interaction can affect the recruitment of 

Milton to mitochondria (Glater et al., 2006). 

The mitofusins MFN1 and MFN2, involved in mitochondrial fusion and fission, also 

were proven to interact with the Miro-Milton complex. Dysfunction of MFN2 leads to slower 

mitochondrial transport in both retrograde and anterograde directions, but does not affect the 

transport of other organelles. A dysfunction of the OPA1, protein also involved in the fusion 

of the IMM does not affect the motility of mitochondria, which points to MFN2 as specific part 

of the mitochondrial transport machinery (Misko et al., 2010). 
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1. 3. 3 Mitochondrial dynamics 

 

Beside their constant movement mitochondria are undergoing process of active fusion and 

fission (Figure 4) (Chan, 2006). Mitochondrial fusion is controlled by the mitofusins: mitofusin 

1 and mitofusin 2 (MFN1 and MFN2) for the OMM and by optic atrophy 1 protein (OPA1) 

involved in the IMM fusion (Hales and Fuller, 1997; Rojo et al., 2002). The mitofusins belong 

to the GTPase protein family (Hales and Fuller, 1997). MFN1 and MFN2 differ in their 

functions, for example, in their interactions with other proteins such as OPA1 (Cipolat et al., 

2004). In the absence of MFN2, MFN1 together with OPA1 are enough to mediate efficient 

fusion (Cipolat et al., 2004; Ishihara et al., 2004).  

Close to their N-terminal, the mitofusins have a GTPase domain and on their C-

terminal a coiled-coil domain facing the cytosol and followed by two transmembrane spans 

and another coiled-coil domain (Figure 4). During the process of fusion, two mitochondria 

dock through the mitofusins anchored into their OMM. The mitofusins bind to other mitofusin 

molecules in like-attract-like fashion on closely placed mitochondria and tether them. Once 

the mitofusins are bound to each other a GTP hydrolysis takes place. It is still unclear how 

this process changes the shape of membranes and provides their merging (Chen et al., 

2003; Hales and Fuller, 1997; Hermann et al., 1998) (Figure 4). MFN1 tethers more 

efficiently the mitochondrial membranes in comparison to MFN2 (Ishihara et al., 2004) and 

recently, it was suggested that only MFN2 is involved in endoplasmic reticulum (ER) 

tethering, but not MFN1 (de Brito and Scorrano, 2008). 

 

 

 

Figure 4   Mitochondrial fusion and fission (adapted from Youle and Karbowski, 2005). 
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The process of mitochondrial fission (Figure 4) is mediated by membrane-associated 

adaptor proteins fission 1 (FIS1), which recruits the large GTPase and dynamin homologue 

dynamin related protein 1 (DRP1) from the cytoplasm by using its tetratrico-peptide repeats 

(TPR). DRP1 participates at the final step of mitochondrial fission by forming spirals around 

constricted sites on mitochondria and pinching off the membrane stalk at the scission sites, 

between the two newly formed mitochondria (Youle and Karbowski, 2005; Koirala et al., 

2013). The mitochondria fission sites depend on the early interaction of mitochondria with the 

ER prior to DRP1 binding (Friedman et al., 2011).  

 

1. 4 Mitochondrial DNA 

 

1. 4. 1 Structure 

 

In 1963 Margit and Sylvan Nass have described for the first time the mitochondrial DNA 

(mtDNA) (Nass and Nass, 1963) and its circularity was discovered by electron microscope 

imaging by Nass, (1966). In mammals, mtDNA is a double-stranded circular molecule with 

size of approximately 16 kb (Figure 5), in human 16,569 base pairs (bp) (Anderson, 1981). 

On Figure 6 is shown the structure of the mtDNA. It has nucleotide composition with 44% 

(G+C) content. The mitochondrial strand with greater intrinsic buoyant density in alkaline 

cesium chloride gradients and respectively high content of guanine bases is called the heavy 

(H) strand (Figure 6, H-strand depicted in black) and its complementary strand, rich in 

cytosine is called the light (L) strand (Figure 6, L-strand depicted in gray) (Clayton, 1996).  

 

 

 

Figure 5   Circular mitochondrial DNA molecules by atomic force microscopy (provided from 
collaborative study with Prof. Kotlyar, George S Wise Faculty of Life Sciences, Tel Aviv, Ramat Aviv, 
Israel). 
 

Animal mtDNA is intronless and most of the genes are located on the heavy strand. 

Altogether, it is encoding 37 genes, from which 13 are protein coding for respiratory chain  
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and ATPase subunits (Figure 6, in green), 22 transfer RNAs (tRNAs) (Figure 6, in blue, the 

letters stand for the corresponding amino acids) and two ribosomal RNAs (rRNAs) (Figure 6, 

in purple), all crucial for the process of oxidative phosphorylation (Shadel and Clayton, 1997). 

The two rRNAs, 12 mRNAs, and 14 tRNAs are encoded from the H-strand, whereas the L-

strand encodes one mRNA and eight tRNAs (Figure 6). The genetic code of the mtDNA is 

different to the one in the nuclear DNA and it also varies between species (Lodish et al., 

2012). The process of replication and transcription of mtDNA is regulated by nuclearly 

encoded factors. Polymerase gamma (POLG), the only known polymerase located in 

mitochondria (Graziewicz et al., 2004), is also encoded in the nucleus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6   Scheme of the human mitochondrial genome (adapted from Bestwick and Shadel, 2013). 
The heavy H-strand in black and the light L-strand in gray encode for rRNAs (purple), mRNAs (green), 
and tRNAs (blue, letters mark allied amino acids). The H-strand genes are indicated outside and the 
L-strand genes inside the circle. ND, NADH dehydrogenase; COX, cytochrome c oxidase; ATP, ATP-
synthase; CYTb, cytochrome b. 
 

Since only 13 of the estimated proteins are encoded by the mtDNA, mitochondria are 

relying on the permanent interplay between the mtDNA and the nuclear DNA (Thorsness and 
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Weber, 1996). All but one protein complexes for the respiratory chain are encoded by both 

nuclear and mtDNA. The only enzyme complex exclusively encoded by nuclear DNA is the 

Complex II (Smeitink et al., 2001). The mtDNA contains a D-loop region, which is non-coding 

and contains essential sites for replication and transcription initiation (Taylor and Turnbull, 

2005) (shown expanded on Figure 6). It is called a displacement loop (D-loop) as the two 

strands are separated from each other, in a small stretch, by a third strand complementary to 

the light strand, called the 7S DNA (Doda et al., 1981).  The replication origins of both 

mtDNA strands are OH and OL, respectively for the heavy and the light strand (Figure 6). 

The H-strand transcription initiates from H-strand promoter 1 (HSP1) and 2 (HSP2), 

with HSP1 transcripts terminating at a termination sequence (TERM), within the tRNA-Leu 

(UUR) gene, to which a mitochondrial termination factor (MTERF)1 binds. The TERM region 

is strongly protected from methylations assuring the frequent and highly specific binding of 

the MTERF1 (Rebelo et al., 2009). The HSP2 transcripts are almost full length polycistronic 

transcripts. The L-strand transcription starts from an L-strand promoter site (LSP) that also 

generates near full-length polycistronic transcripts. Both transcripts from the H and the L-

strand, and the tRNA are later on processed into mRNA (Bestwick and Shadel, 2013). 

Transcription initiated at the light strand promoter (LSP) is suggested to be responsible for 

the formation of the RNA primer needed for the heavy strand replication. One hypothesis is 

that the primers are formed by the action of RNA endonuclease, which is cleaving primary 

transcript starting from LSP (Lee and Clayton, 1997; 1998; Wanrooij et al., 2010). Both LSP 

and HSP sites are protected as well from methylation (Rebelo et al., 2009). Downstream of 

the LSP are located three conserved sequence blocks (CSB), that show low variability in 

mammals (CSB I, II, III), CSB II is considered to support the formation of RNA-DNA hybrids 

transition (Pham et al., 2006).  

The mtDNA is organized into protein-DNA complexes called nucleoids (the name is 

derived from the bacterial nucleoids, comprising their chromosomes) (Kukat and Larsson, 

2013). The nucleoids have uniform mean size of approximately 100 nm in mammals. They 

are histone-free formations, containing prevalently single copies mtDNA (average of 1.4 

mtDNA molecules per nucleoid). The nucleoids contain as well proteins of mtDNA replication 

and gene expression machinery, and the process of fission and new mitochondrial tubule 

formation occurs adjacent to the nucleoids (Figure 4) (Tauber et al., 2013; Bogenhagen, 

2012). It was suggested that the fission process helps to prevent the nucleoid clustering 

(Ban-Ishihara et al., 2013). 

The nucleoids are packed by the mitochondrial transcription factor A (TFAM), 

belonging to the family of architectural high mobility group (HMG)-box proteins, binding to 

DNA.  TFAM can bind, wrap and bend DNA without DNA sequence-specificity (Fisher et al., 

1992) and is fully coating the mtDNA in human (Alam et al., 2003). Therefore, TFAM plays 
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important role in the nucleoid formation and mtDNA maintenance (Kukat et al., 2011;  

Ngo et al., 2011). In vivo, it is providing bending and looping of the mtDNA, which is shaping 

the nucleoids in spherical structures (Kaufman et al., 2007). Crystallographic experiments 

suggest that TFAM induces a 180° U-turn of the mtDNA when bound to it (Ngo et al., 2011). 

Knockout of TFAM in mice causes severe mtDNA depletion and is lethal to the fetus 

(Larsson et al., 1998; Mao and Holt, 2009).  

The mtDNA is a multicopy genome and its number varies between cells and tissues, 

and is dependent on the energy demands of the cells (Moraes, 2001). Usually, there are 

102–104 copies of mtDNA per cell (Ruhanen et al., 2011). Due to its polyploid nature, the 

mitochondrial genome can be homoplasmic, when all mtDNA copies are identical and 

heteroplasmic when two or more variants of the mtDNA exist together. A single mutation 

which affects all mtDNA copies is a homoplasmic mutation, and when it affects some mtDNA 

molecules it is a heteroplasmic mutation (Taylor and Turnbull, 2005). In difference to the 

homoplasmic mutations, which are transferred to all maternal offspring the transmission of a 

heteroplasmic mutations is much more complicated and depends on the mutation type and 

its segregation within the maternal tissues (Taylor and Turnbull, 2005). 

 All mtDNA encoded proteins are synthesized on ribosomes unique for the 

mitochondria, mitoribosomes, which are located in the mitochondrial matrix (Taanman, 

1999). In rat hepatocytes there are less then 100 mitoribosomes per mitochondrion 

(Cantatore et al., 1987). The mitoribosomes differ from the cytosolic ones; they have lower 

sedimentation coefficient and have lower RNA content. Their 12S and 16S rRNAs are 

encoded as well from the mtDNA (Attardi and Ojala, 1971). The process of translation is 

supported by 22 tRNAs that are also mitochondria specific, different from the cytosolic ones 

and encoded by the mtDNA. The genes encoding the mito tRNAs are highly prone to 

mutations and often are reason for different diseases and mitochondrial dysfunction (Suzuki 

et al., 2011). The heavy strand tRNA loops share high sequence homology with the OL loop. 

There is a suggestion that tRNA loops may serve as alternative origins of replication over the 

mtDNA (Seligmann, 2009). 

 

1. 5 mtDNA replication 

 

In 1968 Kirschner et al., have proven for the first time that the mtDNA is self-replicating in the 

mitochondrion. The replication of mtDNA takes about one to two hours (Berk and Clayton, 

1974; Clayton, 1982), it is independent from the cell cycle phase (Clayton, 1996) and 

happens at lower level in postmitotic cells (Magnusson et al., 2003).  
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1. 5. 1 Strand displacement model of replication 

 

The classical mtDNA replication model described in the literature is the strand displacement 

model, or the asynchronous replication model (Robberson et al., 1972), (Figure 7). The 

model is called asynchronous as there is spatial and time asymmetric way of replication of 

both strands – the leading (H-strand) and lagging (L-strand) strand of replication (Brown and 

Clayton, 2006).   

           

 

Figure 7   Asynchronous model of mtDNA replication (modified from Kasiviswanathan et al., 2012). 

 

According to Clayton (1996, 1982) in this model the replication begins at the H-strand 

origin of replication (OH) and continues for about 450±80 nucleotides and stops (Kasamatsu 

et al., 1971). The formed nascent H-strand fragment remains single stranded, bound to the 

light strand and displaces the parental H-strand, forming the D-loop. This fragment has a 

sedimentation coefficient of 7S and thereafter is called the 7S DNA. In this model, when the 

replication is to continue, the single stranded daughter H-strand is being synthesized and it 

displaces the parental H-strand unidirectionally (Berk and Clayton, 1974; Robberson and 
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Clayton, 1972). The formation of the 7S DNA fragment is a matter of dispute, it was 

suggested as well that it is formed as an end-step of the H-strand replication by the 

termination of the replication at the termination associated sequence (TAS) region (Chang 

and Clayton, 1985; Doda et al., 1981; Berk and Clayton, 1974). 

The replication of the mtDNA is coupled with the process of transcription, which is 

initiated from a single promoter on the light strand – LSP (Figure 6). The synthesized 

transcript forms RNA-DNA hybrid. RNaseMRP is an enzyme which processes the hybrid, by 

cutting the RNA into pieces that afterwards are being used as replication primers at the OH, 

by POLG (Brown and Clayton, 2002; Shadel and Clayton, 1997).  

After the H-strand replication has proceeded to two thirds of its total length, the L-

origin of replication (OL) becomes exposed and the replication of the L-strand begins from it 

(Wanrooij and Falkenberg, 2010; Wong and Clayton, 1985). OL is approximately 30 

nucleotides in size, it is highly conserved in vertebrates (Wanrooij et al., 2012), it is flanked 

by tRNA genes and has the potential of forming a stable stem-loop structure when being 

single stranded (Fusté et al., 2010; Clayton, 1996). The OL is being exposed to the action of 

a mitochondrial RNA polymerase called POLRMT, able to recognize it and initiate priming 

from a poly-dT stretch in the single-stranded loop region and to begin DNA synthesis 

(Clayton, 1996; Fusté et al., 2010). The primer for L-strand replication is an RNA sequence 

complementary to the T-rich loop structure of the OL and the switch from RNA to DNA 

synthesis is happening after about 25 nt near the base of the stem (Fusté et al., 2010; Wong 

and Clayton, 1985). 

The asynchronous replication of the two mitochondrial strands leads to the synthesis 

of two daughter molecules (Berk and Clayton, 1974). The newly synthesized mtDNA 

daughter molecules are having relaxed shape for about an hour and afterwards they pass 

into a super-coiled state with approximately 100 negative super turns (Bogenhagen and 

Clayton, 1977). The synthesis of new D-loop completes the replication cycle (Clayton, 1996). 

It has been suggested that the 7S DNA serves to relax the super helical turns of the super 

coiled mtDNA and might have role in the exposure of the parental H-strand (Clayton, 2003; 

Tapper and Clayton, 1981; Kang et al., 1997; Kasamatsu et al., 1971). The turnover of the 

7S DNA is rapid, but the mechanism of its degradation is not known and its full function 

remains unclear (Clayton, 2003; Bogenhagen and Clayton, 1977). There is no confirmation if 

the existing 7S DNA fragments are being used for initiation (as primers) of the H-strand 

replication, and are being elongated, or a novel process of replication initiation occurs 

(Clayton, 2003; Clayton, 1996). However, as the nascent H-strands and the 7S DNA 

fragments are having the same 5’ end it seems that each newly synthesized strand becomes 

either 7S DNA strand or a nascent strand. Doda et al., in 1981, has proposed that the 

premature termination process of the nascent strand is a template-sequence-directed event, 
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at TAS. TAS is 15 bp long conserved sequence, which is a potential cis-acting sequence and 

is present in multiple copies, upstream from the termination site (Doda et al., 1981). Kai et 

al., in 1999, have used Ligation-Mediated PCR (LM-PCR) (Kang et al., 1997) and site-

specific primers, to distinguish the nascent H-strands leading to 7S DNA formation from the 

total nascent H-strands. They claim that the premature termination has regulatory role in 

mtDNA replication and some of the 7S DNA molecules are temporarily terminated and re-

elongated for successful replication. In an experiment with proliferation stimulated cells, the 

termination of the nascent strands simply decreases and in this way the replication gets up-

regulated (Kai et al., 1999). In depletion experiments, directly after applying ddC, the nascent 

strand termination gets down-regulated, and this effect is strongest after ddC removal; these 

experiments suggest that the release of the elongation and the control of termination at the 

D-loop, are crucial for mtDNA copy number maintenance and recovery of depleted mtDNA 

(Brown and Clayton, 2002). It has been estimated that around 95% from the leading strands 

get terminated prematurely and the cells are capable of much greater replication capacity 

then demanded under normal circumstances (Bogenhagen and Clayton, 1978; Brown and 

Clayton, 2002).  

 

1. 5. 2 Bidirectional replication model 

 

After electron microscopy of mtDNA from rat hepatocytes and HeLa cells, which revealed 

mtDNA duplex replication intermediates (Koike and Wolstenholme, 1974; Crews et al., 

1979), a hypothesis raised for coupled leading and lagging strand replication, in opposition to 

the asynchronous model (Figure 8) (Holt et al., 2000). In this mechanism the replication is 

symmetrical, with leading and lagging strand synthesis progressing from multiple 

bidirectional replication forks. The initiation zone (ori-Z) was proposed to be a broad zone 

covering several kilobases in solid tissues (Bowmaker et al., 2003) with multiple origins of 

replication, and smaller zone in the non-coding region in cultured cells (Yasukawa et al., 

2005).  

The later investigation proposed a bidirectional origin of replication close to the 5’ end 

of the non-coding region, a replication starting from that point would be terminated at the 

TAS region and would be effectively unidirectional for the most part (Yasukawa et al., 2005). 

In this model the lagging strand is being the result of maturation of Okazaki fragments, that 

are joined to create the novel nascent strand. Ruhanen et al., (2011) have suggested that 

Ribonuclease H1 (RNase H1) is responsible for the removal of RNA primers from the lagging 

strand and DNA ligase III is responsible for the ligation of the newly synthesized Okazaki 

fragments.  
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Figure 8   Bidirectional model of mtDNA replication (modified from Kasiviswanathan et al., 2012). 

 

In 2002, Yang et al. claimed that the strand-coupled mechanism is exclusively the 

replication mechanism existing in the mitochondria, and that the single stranded replication 

intermediates observed previously from Holt et al., 2000, are an artifact of DNA extraction, as 

the strand-coupled mechanism includes mostly double-stranded replication intermediates but 

contains widespread regions of RNA-DNA hybrids which are formed by incorporation of 

ribonucleotides on the light strand, that afterwards are converted to DNA; exactly these 

ribonucleotide-rich regions can be easily degraded during mtDNA extraction and can result in 

single stranded replication intermediates. In the experiments performed by Yang et al., 

(2002) by the usage of an RNase H they could show the formation of single stranded 

replication intermediates (Yang et al., 2002). Brown et al., (2005) have performed atomic 

force microscopy, and their findings pointed towards the orthodox strand-displacement model 

of replication, but interestingly, it showed the existence of alternative lagging strand 

replication origins, which is in consistance with the earlier investigations of Robberson et al., 

(1972); Koike and Wolstenholme, (1974); and Pikó et al., (1984). As the observed replication 

intermediates included also single stranded ones, which can only be products from 
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asymmetric replication, Holt et al., (2000) suggested that both models of replication exist 

simultaneously in the cell and the switch between the mechanisms depends on the needs of 

the cell.  

 

1. 5. 3 RITOLS 

 

In 2006, Yasukawa et al. described a novel model of replication, the ribonucleotide 

incorporation throughout the lagging strand (RITOLS) model. In that model newly 

synthesized RNA can cover the parental H-strand prior to lagging L-strand synthesis. The 

RNA may build up the whole lagging strand before it is converted to DNA. The synthesis of 

the RNA was suggested to be a result of the activity of a primase or alternatively, it is laid by 

pre-existing processed transcripts (Figure 9, panel 1), in that way the RNA fragments are 

being hybridized to the parental strand with the advancing of the replication fork (‘bootlace' 

mechanism, Reyes et al., 2013).  

 

 

 

Figure 9   RITOLS model of mtDNA replication. Red line, RNA primers; blue line, newly synthesized 

mtDNA strand (adapted from Yasukawa et al., 2006). 
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In 2008, Wanrooij et al. described the POLRMT that can act as a lagging strand 

primase. The enzyme was shown to be able to synthesize RNA primers with length from 25 

to 75 nucleotides on a single strand template in vitro. These primers can be then used by 

POLG to initiate the lagging strand synthesis (Wanrooij et al., 2008). The degradation of the 

RNA and its substitution with DNA happens in the maturation phase, where a putative RNase 

fragments it. They suggested that this function might be performed by RNase H1 

mitochondrial isoforms. The slow degradation of RNA into fragments may release exactly the 

needed RNA primers for the lagging strand synthesis (Yasukawa et al., 2006). 

In the RITOLS model, replication is initiated in a unidirectional manner at the 

replication origin OR. OR is located either at OH or at an alternative site present in the non-

coding region, several hundred nucleotides away from OH, around nucleotide position 

16,197, close to the TAS region (Yasukawa et al., 2006; Yasukawa et al., 2005). In some 

molecules, as mentioned above, the RNA is laid all over the parental strand prior to its 

converting into DNA (Figure 9, panel 2A), in other molecules the maturation starts already 

when the incorporation of RNA has proceeded until the OL (Figure 9, panel 2B) or at 

dispersed sites (Figure 9, panel 2C). Such a model can generate all replication intermediates 

described till now (Yasukawa et al., 2006).  

2D agarose gel electrophoresis (2D-IMAGE) of intact mitochondrial DNA, performed 

by Kolesar et al., (2013), revealed broad range of double-stranded forms of the mtDNA, such 

as super coiled molecules (covalently closed circles, CCCs), nicked circles and multiple 

catenated species, as well as single-stranded DNA structures, which they suggest to be 

replication intermediates (Kolesar et al., 2013). By ethidium bromide (EtBr) depletion the 

same group has observed accumulation of high molecular weight mtDNA (under strong 

depletion conditions), and after the release of the replication arrest, firstly covalently closed 

circles and head-to-tail circular dimer formations were detectable, and their intensity was 

diminishing after 6 hours of released replication, therefore, it is possible that different mtDNA 

templates are being used in different conditions, speaking of multiple mechanisms of 

replication dependent on the cell conditions (Kolesar et al., 2013), which was also proposed 

by Holt et al., in 2000.  

 

1. 5. 4 Main participants in the mtDNA replication 

 

All proteins involved in the mtDNA replication are nuclear encoded. The POLG gene 

encodes the catalytic subunit of the mitochondrial DNA polymerase gamma (POLG). For its 

function, POLG requires the full activity of its subunits – POLG A and POLG B (Ropp and 

Copeland, 1996). POLG A is the catalytic unit of the polymerase and POLG B is its 

processivity unit (Gray and Wong, 1992). For the successful replication of the mtDNA, POLG 
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needs a mitochondrial replicative DNA helicase called TWINKLE (Spelbrink et al., 2001), the 

mitochondrial single-stranded DNA-binding protein (mtSSB) (Tiranti et al., 1993), and the 

mitochondrial RNA polymerase (POLRMT) (Tiranti et al., 1997) (Figure 10), that constitute 

the minimal replication machinery in vitro, defined by Korhonen et al., 2004.  

The POLG holoenzyme contains single A and two B subunits and it is an asymmetric 

245 KDa heterotrimer (Yakubovskaya et al., 2006). POLG has 5’→3’ polymerase activity and 

3’→5’ exonuclease proofreading activity. Both functions are fulfilled by subunit A. Subunit B 

has accelerating function for the processivity of the holoenzyme and increases the affinity of 

the A subunit for the mtDNA (Wanrooij and Falkenberg, 2010). POLG has as well 5’ 

deoxyribose phosphate (dRP) lyase activity, which is important for its participation in the 

repair of oxidative base lesions (Graziewicz et al., 2006). The POLG holoenzyme functions 

cooperatively with the mitochondrial helicase TWINKLE and the mitochondrial single strand 

binding proteins. 

TWINKLE (T7 gp4-like protein with intramitochondrial nucleoid localization) was 

discovered in 2001 by Spelbrink et al. and it is the replicative helicase in mitochondria. It has 

double-strand DNA affinity (Farge et al., 2008) and it unwinds it in a nucleotide triphosphate 

(NTP) dependent manner; it functions in 5’→3' direction. It has been speculated that 

TWINKLE participates in recombination; moreover, its helicase domain contains the same 

conserved organization as RecA involved in homologous recombination in bacteria (Wanrooij 

and Falkenberg, 2010). 

The mtSSB has protective role over the single stranded mtDNA by stopping it from 

refolding and being degenerated by nucleases. The human mtSSB is similar to the one 

existing in Escherichia coli (Tiranti et al., 1993). The single stranded mtDNA is wrapping 

around the mtSSB in electropositive channels (Yang et al., 1997). It was proposed that 

TFAM and mtSSB can influence the D-loop turnover and that they play crucial role for the 

stabilization of the D-loop and the mitochondrial DNA overall (Takamatsu et al., 2002). The 

mtSSB is enhancing the primer recognition and the processivity of POLG (Williams and 

Kaguni, 1995). Only in its presence POLG is able to synthesize longer then 16,000 bp 

products (Korhonen et al., 2004; Wanrooij and Falkenberg, 2010). 

POLRMT was discovered in a human cell line by Tiranti et al., in 1997. POLRMT 

initiates transcription with the help of TFAM and transcription factor B2. It is responsible for 

the RNA primer synthesis needed for replication initiation of both leading and lagging strand. 

It synthesizes primers with length of about 25 bp (Wanrooij and Falkenberg, 2010). 
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1. 5. 5 mtDNA replication machinery 

 

All components of the replication fork are shown schematically on Figure 10. The TWINKLE 

helicase (shown in blue) slides over the mtDNA in 5’→3’ direction and unwinds it. Right away 

the mtSSB protein (dark green) binds the single stranded mtDNA and supports the affinity of 

the POLG holoenzyme (red and gray) to process the synthesis of mtDNA. POLRMT (light 

green) is responsible for the RNA priming (yellow line) on the lagging strand, once the 

unwinding has reached the light strand origin of replication (OL). The single stranded OL 

adopts a stem-loop structure, which prevents the binding of mtSSB and thus the POLRMT 

can initiate primer synthesis from a poly-dT stretch in the OL. After the primer synthesis has 

taken place POLG performs the lagging strand synthesis (red line) (Wanrooij and 

Falkenberg, 2010). 

 

 

 

Figure 10   mtDNA replication scheme (adapted from Wanrooij and Falkenberg, 2010). 

 

1. 6 mtDNA damage and repair 

 

mtDNA mutations can arise form different factors such as DNA polymerase errors during the 

process of replication, exposure to environmental mutagens (Shokolenko et al., 2009) or 

oxidative damage, with the lattermost, being the most well studied damage (Alexeyev et al., 

2013). Mitochondria are the main source of endogenous reactive oxygen species (ROS) 

produced by the partial reduction of oxygen during the process of oxidative phosphorylation. 

High production of ROS leads to oxidative stress, resulting from the incapability of the 

cellular antioxidant defense system to handle its excessive production (Ray et al., 2012). The 

mtDNA, specifically, is highly exposed to ROS damage, because of its endogenous 

formation during mitochondrial respiration and close proximity of the mtDNA to the 
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respiratory chains (Wiesner et al., 2006). It is broadly assumed that the damages to the 

mtDNA caused by ROS are reason for the process of mtDNA mutations accumulation and 

mitochondrial damage, leading to respiratory chain dysfunctions and consequent further 

increase in ROS production. This ‘vicious circle’ might lead to the general damage of the 

whole cellular function, aging and cell death (Shokolenko et al., 2009; Wiesner et al., 2006; 

Miquel, 1992). 

ROS induces DNA strand breaks, via lesion formation in the DNA backbone, or 

causes oxidation of bases. Complex I is considered as main site for (ROS) formation, due to 

possible leakage of electrons and easy interaction with oxygen molecules. Between 0.2 and 

1.5% of the electron transport in the mitochondrial respiratory chain is ending with the 

formation of superoxide anion. The formation of superoxide anion as side product of the 

respiratory chain function is a normal ongoing process in the mitochondria. The superoxide 

anion is being dismutated into hydrogen peroxide by Mn-superoxide dismutase, and later on 

the hydrogen peroxide is converted into water and oxygen, by enzymes as catalase and 

glutathione peroxidase (Kudin et al., 2004; Chance et al., 1979; Liu et al., 2002). The 

hydrogen peroxide is relatively stable and can diffuse through the membranes and can 

spread in the entire cell. Through Fenton reactions (in the presence of redox-active metal 

ions such as Fe2+) it can generate reactive hydroxyl radical that can cause effective damage, 

such as single-strand or double-strand DNA breaks (Alexeyev, 2009; 2013; Henle et al., 

1996; Kudin et al., 2004). In support to the ‘vicious circle’ theory, higher amounts of hydrogen 

peroxide cause local elevation of hydrogen peroxide production in rat brain mitochondria 

(Kudin et al., 2004). DNA pyrimidine damage leads to the formation of the low mutagenic 

thymine glycol, which causes damage due to inhibition of polymerase activity (Wang et al., 

1998; Hanes et al., 2006; Alexeyev et al., 2013). The purine damage results in the production 

of the highly mutagenic 8-dihydro-8-oxo-2’-deoxyguanosine (8-oxoG), responsible for the 

formation of G to T transversions (Alexeyev et al., 2013; Hanes et al., 2006; De Bont and van 

Larabeke, 2004; Wang et al., 1998). Excessive amounts of ROS cause oxidative stress and 

predispose to development of different pathological conditions; therefore, the right balance of 

ROS production and degradation is very important. For example, reduced levels of 

glutathione were found in substantia nigra pars compacta of patients with Parkinson’s 

disease (Sian et al., 1994; Dringen et al., 1999). The main reason for mtDNA mutation 

accumulation is the failure of the mtDNA repair machinery or the unsuccessful degradation of 

damaged mtDNA molecules (Shokolenko et al., 2009).  
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1. 6. 1 Single strand mtDNA break and repair 

 

A single strand break (SSB) occurs when only one of the two mtDNA strands is affected, by 

loss of single nucleotide and damage of the 5’ end, the 3’ end or both termini at the break 

site (Alexeyev et al., 2013); in this case its complementary strand can be used as a template 

to remove the break. SSB can be converted in double-strand break (DSB) by an approaching 

replication fork or if SSBs are located close on opposing DNA strands. There are SSB nicks 

resulting from oxidative attack directly on the DNA sugar backbone, but also SSB (gaps) can 

occur indirectly as a result of base excision repair (BER) after oxidative damage (Friedberg 

et al., 2006). It was proposed that in mitochondria the BER process is analogous to the 

nuclear BER. There are two different types of BER, a single nucleotide BER (SN-BER) and 

multinucleotide repair patch or long patch BER (LP-BER) (Liu et al., 2008; Szczesny et al., 

2008). In case of LP-BER, POLG performs a strand displacement synthesis that results in 

the frequent formation of 5’-single-strand DNA (5’-ssDNA) flaps. In the nucleus the 

processing of this flap structures is being performed by flap structure specific endonuclease 

1 (FEN1) and DNA replication helicase/nuclease 2 (DNA2) with endonuclease activity 

(Copeland and Longley, 2008). DNA2 cannot cleave overhangs at junction between ssDNA 

and dsDNA, thereafter, it would rather leave a 5’ overhang that can be processed by FEN1 

(Sykora et al., 2012). Even though the function of DNA2 and FEN1 in the nucleus is very well 

studied, their existence and function in mitochondria is not clear. 

Zheng et al., (2008) have demonstrated that DNA2 in humans localizes to 

mitochondria and forms a complex with POLG and stimulates its activity, in opposite to other 

species. DNA2 has important role for the stability and maintenance of the mtDNA replication. 

Its association with POLG might be due to its function in RNA primer removal during the 

process of replication (Zheng et al., 2008).  

The functionality of FEN1 in mitochondria is still a matter of dispute, but its existence 

would lead to faster removal of the RNA primers during replication (Budd and Campbell, 

1997; Zheng and Shen, 2011; Zheng et al., 2008). In 2013 Kazak et al., discribed a 

shortened form of FEN1, which is mitochondrially targeted and translated from internal start 

codon, a mitochondrial FEN1 isoform. They named it FENMIT and represented results 

showing that FENMIT has an R-loop substrate preference, observed frequently in the D-loop 

region where replication starts at GC-rich sequences promoting this R-loop formation 

(Aguilera and García-Muse, 2012; Kazak et al., 2013). FENMIT has role in stabilizing these 

structures and is imported in mitochondria upon accumulation of RNA-DNA hybrids near the 

origin of replication (Kazak et al., 2013). Most probably the truncated version of FEN1 

participates in the process of mtDNA repair by using the lagging RNA strand as a template to 

fix or bypass lesions on the leading DNA strand, which might be possible only by reverse 
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transcriptase activity in the mitochondria. FENMIT might also play role in processing 

mitochondrial polycistronic transcripts as this process is occurring while the DNA is still 

hybridized with RNA (Kazak et al., 2013; Carré and Atardi, 1978).  

Another enzyme, EXOG, required for repairing of endogenous SSBs was shown to 

localize to the mitochondrial inner membrane space (IMS) and eventually plays similar role to 

FEN1 and DNA2 in LP-BER. EXOG has both exo and endonuclease activity and acts in 

5’→3’ direction (Cymerman et al., 2008). Its depletion leads to persistent SSBs 

accumulation, which is initiation signal for apoptosis. The mtDNA amplification is decreased 

when EXOG is depleted. EXOG precipitates together with POLG (Tann et al., 2011). 

Ligase 3 (LIG3) re-establishes the continuity of the mtDNA strand in both BER 

pathways. It has 5’-P to 3’-OH ligation activity as all other ligases in eukaryotes and is ATP 

dependent (Zheng et al., 2008; Stumpf and Copeland, 2011). LIG3 has putative zinc-finger 

motif (ZnF) which may help its attachment to DNA secondary structure elements, which can 

be met at sites of DNA damage (Martin and MacNeill, 2002). 

 

1. 6. 2 Double strand DNA break and repair 

 

Very hazardous is the situation in which both mtDNA strands are damaged and double-

strand breaks (DSBs) are formed and no intact complementary strand is available, because 

they can cause genome rearrangements (Watson et al., 2004). The DSBs can be result from 

ionizing radiation or the collapse of replication forks at a single strand break of the mtDNA. 

DSBs can occur also during replication, due to stalling of the POLG (in the coupled strand 

replication model). Prolonged formation of DSBs can lead to formation of multiple deletions 

and their accumulation, as well as to profound absence of full length mtDNA and mtDNA 

depletion (Song et al., 2011). The accumulation of damaged mtDNA leads to cellular 

heteroplasmy of the mtDNA pool, and when it reaches a threshold for deleted mtDNA 

molecules (Moraes et al., 1992; Mita et al., 1990; Greaves et al., 2012) and not enough 

functional mitochondria have remained the cell would fail maintaining the ATP production 

and the mitochondrial dysfunction might lead to cell death.  

DSBs can be repaired by homologous recombination (Krishnan et al., 2008) or 

nonhomologous end-joining (Graziewicz et al., 2006). The process of mtDNA homologous 

recombination in mammals is a matter of dispute and appears to be an event, detectable in 

mtDNA depletion models (D’Aurelio et al., 2004) and induction of multiple DSB (Bacman et 

al., 2009). Great number of mtDNA recombination junctions and catenation were described 

in adult heart mitochondria (Kajander et al., 2000); such formations seem to be missing in 

rodents and infant mitochondria (Pohjoismäki et al., 2009; 2010; Alexeyev et al., 2013). 
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Homologous recombination-dependent DNA repair was proposed to be involved in the 

formation of deletions with breakpoints flanked by direct repeats (Krishnan et al., 2008).  

 

1. 6. 3 mtDNA deletions 

 

According to the mitochondrial theory of aging, point mutations and deletions accumulate 

with age (Khrapko et al., 1999) and a single deletion can spread in the whole cell through its 

clonal expansion (Kowald et al., 2014). The clonal expansion is supported either by random 

genetic drift (Elson et al., 2001; Chinnery and Samuels, 1999) connected with random clonal 

expansion of mutations which occurred once in life, or because of the replicative advantage 

of the deleted molecule, as they are smaller in size (Diaz et al., 2002; Wallace, 1992b; Lee et 

al., 1998; Kowald et al., 2014). Simulation studies from Kowald et al., (2014) claimed that 

replication advantage due to smaller size is very unlikely to explain the clonal expansion of a 

single deleted mtDNA molecule, due to differences in the replication times and the half-life of 

the mtDNA. For example, a mutant which has lost 30% of its mtDNA would overtake the wild-

type mtDNA in 150 years.  

The formation of mtDNA deletions might result from failure in the function of mtDNA 

maintenance factors, maternal inheritance (generation in the mothers germ line) or stochastic 

formation. However, mtDNA deletetions are rarely inherited and are rather formed sporadicly 

(Fukui and Moraes, 2009). mtDNA deletions are being formed and accumulate naturally in 

the tissues during the process of aging (Wiesner et al., 2006). 

Many studies have shown that deletions often occur between direct repeats (DR) (up 

to 85% of the deletions (Bua et al., 2006; Samuels et al., 2004)) or stem-loop structures on 

the mtDNA (Lakshmanan et al., 2012; Solano et al., 2003) and appear mostly in the ‘major 

arc’ of the mtDNA (Kraytsberg et al., 2006). About 60% of the deletions are surrounded by 

perfect homologous direct repeats, forming Class I deletions. In approximately 30% of the 

deletions the flanking sequences are imperfect, imperfect repeats, and these deletions are 

classified as Class II. When formed between DRs, most of the deletions retain their 5’ end 

repeat (45% of the deletions in neurons and 75% of the deletions in muscle) (Samuels et al., 

2004; Krishnan et al., 2008).  Class III deletions represent 10% of the deletions and have no 

repeats (Samuels et al., 2004). Samuels et al., (2004) stated that there is no specific 

association between repeats and breakpoints distribution. All three classes of deletions share 

great similarity in the distribution of the breakpoints, which is pointing to a general underling 

deletion formation mechanism.  

Slip-replication (Shoffner et al., 1989), recombination (Schon et al., 1989; Mita et al., 

1990) and DSB repair (Krishnan  et al., 2008) are mechanisms associated with the deletion 

formation between DRs (Guo et al., 2010). The slipped-strand model of deletion formation 



Introduction 
 

 24 

(Figure 11) (Krishnan et al., 2008) proposes that an upstream DR on the H-strand binds to 

downstream DR on the L-strand, during lagging strand replication (Figure 11a and b) and 

forms a light strand loop. A POLG error in the downstream repeat or single strand break in 

the loop (Figure 11c) leads to its degradation till double-strand region is reached (Figure 

11d). Ligation of these free ends of the heavy strand, followed by continuation of the 

replication leads to the formation of one wild-type molecule and one deleted molecule (Figure 

11d–f) (Eimon et al., 1996; Schon et al., 1989). The slipped-strand mechanism of deletion 

formation is strongly associated with the strand asynchronous model of replication and would 

result in large-scale deletion formation in the mtDNA major arc (Shoffner et al., 1989; 

Krishnan et al., 2008).  

A study by Krishnan et al., (2008), showed that only 12% of repeats larger then 10 bp 

and 21% of repeats with size of 5 to 9 bp are present in the minor arc, which would suggest 

that formation of deletions in the major arc is simply due to lower number of deletion 

formation sites present in the minor arc and the limiting effects of the two origins of 

replication (Samuels et al., 2004). 

 

 

 

Figure 11   Slipped-strand mechanism of deletion formation (adapted from Krishnan et al., 2008). 

 

Therefore, the slipped-strand model of deletion formation cannot be defined as the 

major way in which large scale deletions are formed. Hence, Krishnan et al., (2008) 

suggested that deletions can occur during DSB repair (Figure 12). After DSB formation, 

when under exonuclease activity at the DSB (Figure 12a–c) or due to mistakes in the POLG 

3’→5’ exonuclease repair activity, single strands are formed (Figure 12d) and they can 

anneal to other homologous single stranded mtDNA regions or the D-loop; further repair, 
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ligation and degradation of the left over single strand pieces (Figure 12e–f) leads to the 

formation of intact deleted mtDNA molecules. 

Samuels et al., (2004) addressed another issue of OL being a limiting factor for the 5’ 

deletion breakpoint. According to their studies and previous findings, deletions removing the 

OL are detectable in low levels and are amplifiable by PCR in post-mitotic tissues  

(Baumer et al., 1994; Moslemi et al., 1997; Kajander et al., 2000; Marzuki et al., 1997), or in 

connection with mtDNA duplications (Manfredi et al., 1997; Dunbar et al., 1993; Miyabayashi 

et al., 1991), and can influence the possibility of propagation of the deletion to high level, but 

does not influence the formation of the deletions themselves. 

 

 

 

Figure 12   Mechanism of deletion formation during DSBs repair (adapted from Krishnan et al., 2008). 

 

The distribution of the deletional breakpoints is probably dependent of the mechanism 

by which the deletions are formed. The 3’ end of the deletions often is in the region between 

16,000 np and 16,100 np, (Samuels et al., 2004) and the 5’ breakpoints lay in the region 

between 7800 and 8600 np. No deletions exceeding np 16,268 have been described 

(Samuels et al., 2004) and only four deletions at position above 16,085 are listed in the 

literature (Kajander et al., 2000; Barrientos et al., 1996; Samuels et al., 2004). For example, 

hippocampal samples from temporal lobe epilepsy (TLE) patients with Ammon’s horn 

sclerosis (AHS) contain 10-fold more deletions than a normal hippocampus and these 

deletions are containing a double-strand breakpoint hotspot at position 16,070, that is 

suggested as hot spot to the action of ROS (Zeviani et al., 1989; Srivastava and Moraes, 

2005; Imlay and Linn, 1988; Guo et al., 2010). Another study suggests that at that position a 

replication fork arrest might occur and DSB formation can be accelerated (Wanrooij et al., 

2004), also due to the possible existence of a replication fork barrier (Bowmaker et al., 2003). 
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Krishnan et al., (2008) claims that this hotspot might be due to the single stranded nature of 

this region in the mtDNA and its participation in deletions formation through single strand 

homologous annealing in their model of deletion formation by DSBs repair (Figure 12). It 

seems that deletions carrying no or small repeats tend to cluster at that region (Samuels et 

al., 2004). The most frequently detected deletion in human, the ‘common deletion’, is also 

formed between 13 bp long perfect DRs (Schon et al., 1989). The common deletion removes 

4977 bp from the mtDNA between np 8482 and np 13,459 (Holt et al., 2007; Schon et al., 

1989) and it was shown that it accumulates with the age in post-mitotic tissues (Kukat and 

Trifunovic, 2009) and is indicative trait for elevated oxidative damage (Lee and Wei, 2007). 

Samuels et al., (2004) suggested that the 13 bp long repeats, characteristic for the common 

deletion, are basic factor for the formation of most deletions and the exact breakpoint 

location is probably influenced by local sequence features. Guo et al., (2010) have performed 

deletional spectra analysis and have stated that the deletion formation is dependent mostly 

on secondary structures, such as long regions of up to 50 nt length with partial homology, 

that bring together distant parts of the mtDNA and participate in the deletion formation 

(Shoffner et al., 1989; Mita et al., 1990; Guo et al., 2010). The possibility of formation of 

deletions between these long regions is higher then only between simple perfect repeats 

(Guo et al., 2010).  

In difference to the homologous recombination end joining repair, the non-

homologous end joining (NHEJ) repair of DSBs can be much more hazardous and it is the 

mechanism in which deletions absent of DRs are formed (Gredilla et al., 2012). After DSB 

formation, POLG can remove single strand ends formed during the DSB and these 

intermediates can undergo NHEJ in a stochastic manner (Fukui and Moraes, 2009). Knock 

out mice absent of POLG proofreading activity also tend to form large scale deletions without 

DRs (Vermulst et al., 2008; Fukui and Moraes, 2009).  Some of these deletions have very 

small nucleotide homologies at the breakpoint position, which has been detected in aging 

and disease (Krishnan et al., 2008). However, these types of deletions are rarely detectable 

in comparison to the deletions formed between DR (Krishnan et al., 2008).  

 

1. 7 Alterations of mtDNA in disease 

 

The mtDNA molecules in a single cell coexist in heteroplasmic state with the mutated ones 

(Bua et al., 2006). The accumulation of mutated mtDNA fraction by clonal expansion is 

leading to heteroplasmic drift reaching certain threshold at which a biochemical phenotype 

occurs (Rossignol et al., 2003). At that stage the physiology of the cell might be severely 

impaired. As each cell reaches this threshold at a different time, these different 

heteroplasmic mtDNA levels in the cells lead to the mosaic pattern of the tissue, when 
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stained for mitochondrial enzymes activity (Lane et al., 1996). Muscle containing 

dysfunctional mitochondria often displays mitochondrial proliferation, visualized by staining 

with modified Gomori trichrome. Muscle fibers representing such phenotype are ragged-red 

fibers (RRF). Depending on the distribution and proportions of wild-type and mutated mtDNA 

molecules in different tissues, the patholgical manifestation of the mitochondrial disease can 

have different organ and age onset (Debrosse and Parikh, 2012). Lactic acidosis, myopathy, 

neurodegeneration and peripheral neuropathy are some of the symptoms connected with 

mitochondrial disorders. 

Defects of the respiratory chain subunits and mitochondrial disorders affect 1 in 5000 

live births (Skladal et al., 2003; Vafai and Mootha, 2012). More then 200 mitochondrial 

diseases are associated either with point mutations in mtDNA encoded respiratory chain 

proteins and tRNAs or single clonally expanded deletions (Chabi et al., 2003). Leber’s 

Hereditary Optic Neuropathy (LHON) and the Leigh Syndrome are examples of mitochondrial 

disorders based on point mutations in the mtDNA. Mutations m.11,778G>A in the ND4 gene 

(Wallace et al., 1988), m.3460G>A in the ND1 gene (Huoponen et al., 1991), m.14,484T>C 

in ND6 gene (Johns et al., 1992) and m.14,495A>G also in the ND6 gene (Chinnery et al., 

2001) are the mutations found most frequently in LHON patients and all of them are affecting 

Complex I of the respiratory chain. Point mutations in the ATPase domains are associated 

with the Leigh Syndrome (m.8993T>G or m.8993T>C, mutations in the ATPase 6 gene; de 

Vries et al., 1993) or Subacute Necrotizing Encephalomyelopathy. Its milder form with lower 

heteroplasmy causes neuropathy, ataxia, and retinitis pigmentosa (NARP) (Debrosse and 

Parikh, 2012; Leigh, 1951; Rahman et al., 1996). The mitochondrial tRNA genes frequently 

are found to carry point mutations in mitochondrial disease and are related to diseases such 

as MELAS and MERFF (myoclonic epilepsy with ragged red fibers) (Suzuki et al., 2011). 

MELAS patients suffer from mitochondrial myopathy, encephalopathy, lactic acidosis and 

stroke-like episodes, which give name of the disease. For example, MELAS is associated 

with mutations located in the mtDNA encoding for the tRNA Leu (m.3243A>G) but other 

tRNA mutations also can manifest in a similar way. The epileptic seizures in these patients 

are based on metabolic strokes, which often lead to focal or generalized epilepsy (Vafai and 

Mootha, 2012; Debrosse and Parikh, 2012). MERFF patients with mutation in the tRNA Lys 

(m.8344A>G) develop ataxia, hearing loss and peripheral neuropathy; they may represent 

generalized seizures and myoclonic epilepsy (Debrosse and Parikh, 2012).  

Mitochondrial single deletion syndromes are asscociated with the formation of a 

single deletion and its clonal expansion. They are usually characterized by large scale 

deletions from to 2 to 10 kb. In the different syndromes different tissues are affected, 

thereafter, the phenotype varies (Debrosse and Parikh, 2012). Such single mitochondrial 

deletion syndromes are the Pearson Syndrome (PS) (Williams et al., 2012; Debrosse and 
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Parikh, 2012) and the Kearns-Sayre syndrome (KSS) (Debrosse and Parikh, 2012; Harvey 

and Barnett, 1992; Berenberg et al., 1977). One of the most frequent mitochondrial disorders 

caused by single or multiple mtDNA deletions is CPEO or chronic progressive external 

ophthalmoplegia. Very often CPEO is accompanying other diseases such as MELAS and 

mitochondrial maintenance disorders. PS, KSS and CPEO symptoms and pathology often 

overlap in different patients (Debrosse and Parikh, 2012; Berenberg et al., 1977). 

Defects in the replication machinery and repair are broadly connected with the 

formation of multiple mtDNA deletions leading to ‘multiple mtDNA deletion disorders’, or 

mtDNA depletion represented with reduction of the copy number of mtDNA molecules and 

‘mtDNA depletion syndromes’ (MDS). Both the clinical and genetical phenotypes of these 

two groups of syndromes often are overlapping in the patients; therefore, they are called 

collectively ‘mtDNA maintenance disorders’ (MMD). MMDs have broad pathological 

manifestation.  Their phenotype may affect multiple organs in early childhood or they can be 

tissue specific pathologies appearing in later age. 

MMDs are associated with mutations in nuclearly encoded genes all of them coding 

for proteins involved in mtDNA replication or repair, or involved in the mitochondrial salvage 

pathway of deoxyribonucloside-5’-triphosphates (Nishino et al., 1999, Kaukonen et al., 2000; 

Ostergaard et al., 2007). One of the most frequent example for defects in the mitochondrial 

replication machinery are mutations in the POLG gene. The POLG patients are characterized 

with great diversity of phenotypes, that can be explained with the different kinetic 

mechanisms and unique enzymatic activities involved in each disease caused by different 

mutation in the same gene (Sohl et al., 2013). Mutations in POLG2, encoding for the 

accessory subunit of the POLG holoenzyme (Yakubovskaya et al., 2006) and a missense 

mutation in it, c.1352G>A (G451E) were found to be cosegregating with autosomal dominant 

form of progressive external ophtalmoplegia (adPEO) (Longley et al., 2006) and a 

heterozygous 24 bp insertion in its exon 7 leads to missplicing, late-onset ptosis and 

myopathy (Walter et al., 2010).  

adPEO is mainly associated with mutations in the nuclear genes POLG, TWINKLE or 

adenine nucleotide translocator 1 (ANT1). The patients represent multiple deletions and 

accumulation of point mutations, they show ragged red fibers and lowered respiratory 

capacity in muscle (Graziewicz et al., 2006; Bohlega et al., 1996; Copeland, 2008; Van 

Goethem et al., 2001; Zeviani et al., 1989; Spinazzola and Zeviani, 2005). More then 40 

mutations in C10Orf2 (TWINKLE ) have been reported (Young et al., 2011). Missense 

mutations in it cosegregate with adPEO, hepatocerebral syndrome with mtDNA depletion 

syndrome, and infantile-onset spinocerebellar ataxia (Longley et al., 2010). 

The Alpers-Huttenlocher syndrome is another MMD inherited in autosomal recessive 

way, characterized by depletion of the mtDNA and based on mutations in POLG, but in 
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opposite to the adult-onset adPEO, it has early childhood-manifestation (Huttenlocher et al., 

1976; Sandbank and Lerman, 1972; Naviaux et al., 1999; Zsurka et al., 2008).  

Except the dysfunction of the replication machinery, dysfunction of the mitochondrial 

deoxynucleoside triphosphates metabolism also leads to mtDNA depletion and subsequent 

mitochondrial disease (Leanza et al., 2008). Eight genes have been described in the 

literature in connection with impaired deoxynucleoside triphosphates metabolism, 

mitochondrial dysfunction and MDS; this group of genes includes, for example, the thymidine 

kinase 2 (TK2), leading to myopathic MDS (Götz et al., 2008; Saada et al., 2001) and the 

mitochondrial inner membrane protein MPV17 associated with hepatocerebral MDS (Götz et 

al., 2008; Spinazzola et al., 2006). The mitochondrial dNTP pools disbalance can be 

mutagenic, causing replication errors as A � T → G � C transitions. Low mismatch repair 

activities in mitochondria accelerate the replication errors (Song, et al., 2005; Mathews, 

2006).  

Emerging evidence shows that MMDs are tightly connected also to the mitochondrial 

dynamics, and the processes of active fusion and fission of mitochondria are responsible not 

only for the mitochondrial morphology and number, but obviously are also involved in the 

mitochondrial mtDNA maintenance (Wang et al., 2009). For example, mutations in Mfn2, 

involved in the process of fusion of the mitochondrial outer membrane, were found to cause 

autosomal dominant neuropathy, Charcot–Marie–Tooth Neuropathy Type 2A (CMT2A), that 

affects the long axons of motor and sensory neurons (Züchner et al., 2004). Its phenotypes 

were associated with mtDNA instability, which was not observed in CMT2A patients until 

recently. Mutations in OPA1, responsible for the merging of the IMM during fusion, are 

associated with autosomal dominant optic atrophy ‘plus’ phenotypes such as ataxia, chronic 

progressive external ophtalmoplegia, mitochondrial myopathy etc., (Amati-Bonneau et al., 

2008). Rouzier et al., (2011) reported a large family carrying mutation in Mfn2, representing 

autosomal dominant optic atrophy ‘plus’ phenotype, a phenotype usually linked to mutations 

in OPA1. Mitochondrial DNA deletions, respiratory chain deficiencies in fibroblasts from the 

patients, mitochondrial network fragmentation and MFN2 depletion classify MFN2 and 

mitochondrial fusion as responsible for mtDNA stability (Rouzier et al., 2011). All these facts 

lead to the current assumption that impaired mitochondrial fusion leads to instability of the 

mitochondrial genome, insufficient mitochondrial content mixing and incapability for recovery 

after oxidative stress (Rouzier et al., 2011; Chen and Chan, 2010).  

Alterations in mitochondria, such as changes in their structure, decline in their 

respiratory function, mtDNA mutation accumulation and increasing oxidative stress, and 

subsequent oxidative damage are also signs of the ongoing process of aging. Multiple 

mitochondrial deletions are detectable in patients with idiopathic Parkinson’s disease. They 

are wide spread in the substantia nigra pars compacta. In consensus with the development 
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of Parkinson’s disease with advancing of the age, mitochondrial deletions are accumulating 

in the process of aging (Bender et al., 2006; Kraytsberg et al., 2006). The accumulated 

deletions in these neurons are triggering neuroprotective compensatory mechanisms in the 

mitochondria, leading to higher pathogenic threshold in the dopaminergic neurons (Perier et 

al., 2013). 

Swerdlow et al., (2004) proposed the Alzheimer's disease “mitochondrial cascade 

hypothesis” for its late onset. Alzheimer's disease is characterized by dementia, extracellular 

amyloid protein aggregations, and intracytoplasmic tau protein aggregations. Mitochondrial 

dysfunction, such as impaired energy metabolism, electron transport chain enzyme 

dysfunction and ROS production appear to be an early sign of Alzheimer's disease (Chen 

and Yan et al., 2010).  

Campbell et al., (2011) gave evidence that mitochondrial dysfunction is involved as 

well in multiple sclerosis and is part of the pathomechanism of the disease, plus the chronic 

inflammation in its progressive stages. In amyotrophic lateral sclerosis (ALS) mitochondrial 

transport in the axons was shown to be disrupted as well as the mitochondrial fission and 

fusion (Shi et al., 2010). Morphological changes in mitochondria were found in both humans 

and animal models of ALS. Patients with secondary progressive multiple sclerosis (SPMS) 

represent respiratory chain deficiency of complexes II and IV in comparison to aged controls. 

This pathology is result of the formation of clonally expanding multiple mitochondrial 

deletions inducible by inflammation and their impaired repair. The deletions have breakpoints 

in the major arc as in other neurodegenerative diseases (Campbell et al., 2011). 
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1. 8 Goals 

 

The focus of this PhD thesis was to gain insight into the different pathological mechanisms 

that lead to mitochondrial dysfunction through an impairment in mtDNA maintenance. (i) I 

was investigating the novel mitochondrial exonuclease MGME1 that we have discovered in 

three families with mtDNA maintenance disorder. Mutation in MGME1 leads to decreased 

mtDNA copy number and generation of unusual large rearrangments. The exact function and 

the molecular consequences of MGME1 deficiency has been investigated in detail. (ii) Defect 

of other genes, not directly involved in mtDNA replication, can also have an effect on mtDNA 

maintenance. Mitofusin 2 is known to play a crucial role in fusion of mitochondria. Proper 

mitochondrial dynamics are required for adequate content mixing, i.e. complementation of 

impaired proteins, RNA and DNA molecules through their healthy counterparts. We aimed to 

show that dysfunction of mitofusin 2 can lead to insufficient mtDNA replication and the 

formation of deletions. (iii) Alterations of the mitochondrial genome have been demonstrated 

in epilepsy, especially in the hippocampus, the seizure focus of temporal lobe epilepsy (TLE) 

patients with AHS. So far, it is not clear whether mtDNA damage and hippocampal 

neurodegeneration is a cause or result of the epilepsy. By investigating the complex mixture 

of multiple deletions in brain samples of patients having different forms of TLE, we aimed to 

identify specific mechanisms relevant for chronification of epilepsy.   
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2. Materials and Methods 

 

2. 1.  Synthetic oligonucleotides 

 

The following oligonucleotides used in different PCR reactions for the nuclear single copy 

gene Kir4.1, for the mitochondrial genome (mtDNA) and ligation-mediated PCR, were 

designed by using software ‘Primer’ and were purchased from Thermo Fisher Scientific 

GmbH (Ulm, Germany) and MWG Biotech AG (Ebersberg, Germany). They are listed in 

Tables 1, 2, 3 and 4. F, forward primer; R, reverse primer; TM, TaqMann probe; number in 

the name indicates the 5′ nucleotide of the primer. 

 

Locus Name Lenght Sequence 

Kir4.1 KIR835F 19 5’-GCGCAAAAGCCTCCTCATT-3’ 

Kir4.1 KIR857TM 27 5’-FAM-TGCCAGGTGAACAGGAAAACTG CTTCAG-TAMRA-3’     

Kir4.1 KIR903R 19 5’-CCTTCCTTGGTTTGGTGGG-3’ 

 

Table 1   Oligonucleotides for the nuclear gene Kir4.1. 

 

 

Locus Name Lenght Sequence 

synthetic sequence LMP25 25 5’-GCGGTGACCCGGGAGATCTGTATTC-3’ 

synthetic sequence LMP11 11 5’-GAATACAGATC-3’ 

 

Table 2   Oligonucleotides used for linker synthesis. 
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Locus          Name         Lenght   Sequence 

mtDNA       16,557TM 25 5’-FAM-AGACATCACGATGGATCACAGGTCT-TAMRA-3’ 

mtDNA 10F 30 5’- TCTATCACCCTATTAACCACTCACGGGAGC-3’ 

mtDNA 108F 22 5’-AGCACCCTATGTCGCAGTATCT-3’ 

mtDNA 174F 27 5’-CAATATTACAGGCGAACATACTTA CTA-3’ 

mtDNA  379F 25 5’-AGCCTAACCAGATTTCAAATTTTAT-3’ 

mtDNA 521F 21 5’-ACACCGCTGCTAACCCCATAC-3’ 

mtDNA 16,074F 23 5’-ATCAACAACCGCTATGTATTTCG-3’ 

mtDNA 16,099F 23 5’-CATTACTGCCAGCCACCATGA-3’ 

mtDNA 16,196F 23 5’-GCTTACAAGCAAGTACAGCAATC-3’ 

mtDNA 16,285F 25 5’-ACCTACCCACCCTTAACAGTACATA-3’ 

mtDNA 16,520F 24 5’-CATAAAGCCTAAATAGCCCACACG-3’ 

mtDNA 16,525F 21 5’-AGCCTAAATAGCCCACACGTT-3’ 

mtDNA  35R 24 5’-CCGTGAGTGGTTAATAGGGTGATA-3’ 

mtDNA 45R 22 5’-TGGAGAGCTCCCGTGAGTGGTT-3’ 

mtDNA 67R 21 5’-CCAGACGAAAATACCAAATGC-3’ 

mtDNA 136R 21 5’-CAAAGACAGATACTGCGACAT-3’ 

mtDNA 208R 26 5’-ACACACTTTAGTAAGTATGTTCGCCT-3’ 

mtDNA 288R 25 5’-TTTGTTATGATGTCTGTGTGGAAAG-3’ 

mtDNA 485R 25 5’-ATGAGATTAGTAGTATGGGAGTGGG-3’ 

mtDNA          16,075R 22 5’-ATGGGTGAGTCAATACTTGGGT-3’ 

mtDNA          16,115R 21 5’-GGTGGCTGGCAGTAATGTACG-3’ 

mtDNA          16,148R 25 5’-GGTCAAGTATTTATGGTACCGTACA-3’ 

mtDNA          16,185R 21 5’-GGTTTTGATGTGGATTGGGTT-3’ 

mtDNA         16,263R 18 5’-AGGGGTGGCTTTGGAGTT-3’ 

mtDNA          16,282R 21 5’-GTTGGTATCCTAGTGGGTGAG-3’ 

mtDNA         16,308R 24 5’-ATGTACTGTTAAGGGTGGGTAGGT-3’ 

mtDNA        16,413R 19 5’-ACGGAGGATGGTGGTCAAG-3’ 

mtDNA         16,496R 32 5’-CGGATACAGTTCACTTTAGCTACCCCC AAGTG-3’ 

mtDNA          16,503R 23 5’-CAGATGTCGGATACAGTTCACTT-3’ 

 

Table 3   mtDNA primers in the D-loop. 
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Locus                  Name         Lenght     Sequence 

mtDNA            1056F 22 5’-AGCTAAGACCCAAACTGGGATT-3’ 

mtDNA           2101F 22 5’CAAAGAGGAACAGCTCTTTGGA-3’ 

mtDNA           3137F 26 5’-GAGAAATAAGGCCTACTTCACAAAGC-3’ 

mtDNA           3150F 20 5’-TACTTCACAAAGCGCCTTCC-3’ 

mtDNA            3922F 25 5’-GAACTAGTCTCAGGCTTCAACATCG-3’ 

mtDNA           5462F 28 5’-CCTTACCACGCTACTCCTACCTATCTC C-3’ 

mtDNA           7027F 25 5’-CCCACTTCCACTATGTCCTATCAAT-3’ 

mtDNA           8282F 20 5’-CCCCTCTAGAGCCCACTGTA-3’ 

mtDNA           11,226F 20 5’-GCTCCCTTCCCCTACTCATC-3’ 

mtDNA           12,062F 21 5’-ACCCTCATGTTCATACACCTA-3’ 

mtDNA           14,588F 24 5’-CCCCCATAAATAGGAGAAGGCTTA-3’ 

mtDNA 15,081F 21 5’-CCTGAAACATCGGCATTATCC-3’ 

mtDNA 15,965F 25 5’-AAGTCTTTAACTCCAACCATTAGCAC-3’ 

mtDNA 15,974F 23 5’-ACTCCACCATTAGCACCCAAAGC-3’ 

mtDNA 638R 22 5’-GGTGATGTGAGCCCGTCTAAAC-3’ 

mtDNA 1144R 22 5’-AGTGTTCTGGCGAGCAGTTTTG-3’ 

mtDNA 2223R 22 5’-TAGTGGGTGTTGAGCTTGAACG-3’ 

mtDNA 3246R 22 5’-GGCTCTGCCATCTTAACAAACC-3’ 

mtDNA 4036R 26 5’-CTAGGAAGATTGTAGTGGTGAGGGTG-3’ 

mtDNA 4833R 24 5’-TGCCTTGGGTAACCTCTGGGACTC-3’ 

mtDNA 5985R 25 5’-CTCCAGCTCATGCGCCGAATAATAG-3’ 

mtDNA           12,135R 20 5’-GAGGAAAACCCGGTAATGAT-3’ 

mtDNA           13,684R 24 5’-GGGTGGGGTTATTTTCGTTAATGT-3’ 

mtDNA           14,695R 20 5’-GGTTGTAGTCCGTGCGAGAA-3’ 

mtDNA           15,180R 20 5’-ACTGTGGCCCCTCAGAATGA-3’ 

mtDNA         15,623R 20 5’-CAAGGACGCCTCCTAGTTTG-3’ 

 

Table 4   Primers in the mtDNA coding region. 
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2. 2 Enzymes, chemicals and solutions 

 

All enzymes were provided with their commercial reaction buffers.  

 

Enzyme Company Headquater 

iTaq DNA polymerase BIO-RAD Hercules, California, U. S. 

JumpStart AccuTaq LA polymerase Sigma-Aldrich St. Louis, USA 

JumpStart Taq polymerase Sigma-Aldrich St. Louis, USA 

LongAmp Taq DNA polymerase New England Biolabs Ipswich, United Kingdo 

Ranger DNA polymerase BIOLINE GmbH  Berlin-Brandenburg, Germany 

TaKaRa LA Taq
 
HS TAKARA BIO INC Ōtsu, Shiga, Japan 

Mung Bean Nuclease New England Biolabs Ipswich, United Kingdo 

T4 DNA ligase New England Biolabs Ipswich, United Kingdo 

T4 DNA polymerase New England Biolabs Ipswich, United Kingdo 

Proteinase K QIAGEN N.V. Venlo, Netherlands 

Trypsin PAA Laboratories GmbH Pasching, Austria 

 

Table 5    Enzymes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 
 

 36 

Chemical Company Headquater 

Acrylamide/Bis Solution, 40%, 37.5:1 BIO-RAD Hercules, USA 

Agarose Sigma-Aldrich St. Louis, USA 

Ammonium persulfate Carl Roth GmbH & Co. KG Karlsruhe, Germany 

Bromophenol blue Sigma-Aldrich St. Louis, USA 

Bovine serum albumin Sigma-Aldrich St. Louis, USA 

2’-3’-dideoxycytidine Sigma-Aldrich St. Louis, USA 

Digitonin Serva Electrophoresis GmbH Heidelberg, Germany 

dNTPs Sigma-Aldrich St. Louis, USA 

DMSO Merck Darmstadt, Germany 

DMEM PAA Laboratories GmbH Pasching, Austria 

Double distilled water Sigma-Aldrich St. Louis, USA 

EDTA Sigma-Aldrich St. Louis, USA 

EGTA Sigma-Aldrich St. Louis, USA 

Ethidium bromide Sigma-Aldrich St. Louis, USA 

FBS Invitrogen Corporation Carlsbad, USA 

Glycerol Sigma-Aldrich St. Louis, USA 

HEPES Sigma-Aldrich St. Louis, USA 

Hydrogen peroxide solution Sigma-Aldrich St. Louis, USA 

Mannitol  Sigma-Aldrich St. Louis, USA 

MgCl2 Sigma-Aldrich St. Louis, USA 

Nagarse  Sigma-Aldrich St. Louis, USA 

N,N,N′,N′-Tetramethylethylenediamine Sigma-Aldrich St. Louis, USA 

PBS pH 7.4 Invitrogen Corporation Carlsbad, USA 

Penicillin Streptomycin  Invitrogen Corporation Carlsbad, USA 

ROX Reference Dye Invitrogen Corporation Carlsbad, USA 

Sucrose AppliChem GmbH Darmstadt, Germany 

SYBR Green I nucleic acid gel stain Sigma-Aldrich St. Louis, USA 

TBE Sigma-Aldrich St. Louis, USA 

Tris-EDTA buffer solution Sigma-Aldrich St. Louis, USA 

Uridine Sigma-Aldrich St. Louis, USA 

Xylene cyanol Merck Darmstadt, Germany 

1 kb DNA Ladder New England Biolabs Ipswich, United Kingdo 

2-Log DNA Ladder (0.1-10.0 kb) New England Biolabs Ipswich, United Kingdo 

25 bp DNA Ladder Invitrogen Corporation Carlsbad, USA 

 

Table 6   Chemicals. 
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Solution Ingredients 

Cell freezing media 90% [v/v] FBS, 10% [v/v] DMSO 

Fibroblasts media DMEM (4.5g/l glucose, GlutaMAXTM , 1mM sodium pyruvate),  

 10%[v/v] FBS, uridine (0,005g/l), penicillin (100 000 U/l),  

 Streptomycin (0.1g/l) 

Loading Dye 1×TBE buffer, 30% [v/v] glycerol, 0.04%  [w/v] bromphenol blue,  

 0.4% [w/v] xylene cyanol 

MSE solution 225 mm mannitol, 75 mm sucrose, 1 mm EGTA, 5 mm HEPES,  

 1 mg/ml BSA, pH 7.4 

MSE-nagarse solution 0.05% nagarse in MSE solution 

MSE-digitonin solution 0.02% digitonin in MSE solution 

 

Table 7   Solutions. 

 

2. 3 Kits 

 

Kit Company Headquater 

iQ™ SYBR® Green Supermix BIO-RAD Hercules, USA  

QIAamp DNA Mini Kit QIAGEN N.V. Venlo, Netherlands 

QIAquick Gel Extraction Kit QIAGEN N.V. Venlo, Netherlands 

QIAquick PCR Purification Kit QIAGEN N.V. Venlo, Netherlands 

Quick Blunting™ Kit New England Biolabs Ipswich, United Kingdo 

 

Table 8   Kits. 
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2. 4 Equipment and software 

 

Electronic equipment  Model Company Headquater 

Analytical balance TE214S Sartorius Elk Grove, USA 

Camera 3CCD Color  Sony Corporation Minato, Japan 

 Video Camera,   

 Model DXC-9100P   

Gel-electrophoresis chamber Sub-Cell GT BIO-RAD Hercules, USA 

 System   

Haemocytometer BLAUBRAND®, BRAND GMBH  Wertheim, Germany 

 Neubauer, IVD & Co K.G  

Phase contrast Axiovert 40C Carl Zeiss AG Jena, Germany 

microscope    

PCR thermocycler GeneAmp® Applied Carlsbad, USA 

 PCR system 9700 Biosystems  

PCR thermocycler MJ Research  GMI, Inc. Ramsey, USA 

 PTC-100   

PCR thermocycler MJ Research  GMI, Inc. Ramsey, USA 

Quantitative real time PCR iCycler iQ™ BIO-RAD Hercules, USA 

(qPCR) thermocycler cycler   

Spectrophotometer  Cary 50 scan Varian, Inc. Palo Alto, USA 

 PTC-200   

UV-illuminator GeldocTM XR BIO-RAD Hercules, USA 

 

Table 9   Equipment. 
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Application Software Company Headquater  

Vector graphic editing Corel Draw Corel Corporation Ottawa, Canada 

Image processing and analysis ImageJ Wayne Rasband NIH public domain 

Image acquisition Quantity One 1-D  BIO-RAD Hercules, USA 

 Analysis Software   

Plotting and data imaging Sigma Plot 2001 Sysat Software Inc. San Jose, USA 

Primer design  Primer   

qPCR MyiQ™ BIO-RAD Hercules, USA 

qPCR iQ5 BIO-RAD Hercules, USA 

Spectrophotometry CaryWinUV Varian, Inc. Palo Alto, USA 

Sequence analysis scftk  Dr. Zsurka in house  

 

Table 10   Software. 

  

2. 5 Patients and samples 

 

All experiments with human samples were performed according to the guidelines of the 

University Ethical Comission. All patients or their care attendants gave written informed 

consent for the scientific use of their anonymized data and samples. The clinical information 

needed was provided by the Departments of Epileptology and Neurology, University Bonn.  

All muscle samples were obtained after routine diagnostic skeletal muscle biopsy and 

all brain samples after therapeutical hippocampectomy of patients with drug resistant 

temporal lobe epilepsy. The samples were used either for direct DNA isolation and 

biochemical analysis, or were frozen in liquid nitrogen. When enough tissue material was 

available from the selected samples, they were used for mitochondrial purification and 

isolation of mitochondrial DNA enriched samples.  

When possible, DNA was isolated as well from urine, blood samples and skin 

fibroblast from the patients and their relatives. Aliquotes cultured skin fibroblasts were frozen 

in liquid nitrogen.  

All control samples used in this study were from age matched individuals without 

mitochondrial diseases.  
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2. 6 Cell culture 

 

Skin fibroblasts from control patients, patients with mitochondria maintenance disorders and 

Charcot–Marie–Tooth neuropathy were grown in cell culture. The fibroblast samples were 

stored in liquid nitrogen (at -195°C) in cryo reaction tubes. They were taken into culture, after 

quick thawing at 37°C. The cells were grown into tissue culture flasks (with size of 25 cm², 75 

cm² and 175 cm²) in high-glucose DMEM medium containing 10% FBS, 200 µM uridine and 

1% penicillin-streptomycin. After the cells have attached to the flask the medium was 

exchanged with fresh one. The cells were grown in humid CO2 incubator at 37°C and 5% 

CO2.  

 

2. 6. 1 Cell passaging 

 

By 95% density of the cells in the flask they were split for further breeding. The old fibroblast 

media was discarded by aspiration and the cells were washed with 1× PBS. To detach the 

cells from the 175 cm² flask 5 ml (1 ml for 25 cm² and 3 ml for 75 cm² flsks) of 2.5 mg/ml 

trypsin solution was used for 5 minutes at 37°C. The trypsinization was controlled under 

microscope. After the cells were detached, the activity of the trypsin was blocked with the 

addition of fibroblast media, and the cells were alliquoted into new tissue culture flasks with 

fresh media. 

 

2. 6. 2 Cell counting 

 

Detached cells resuspended in 20 µl medium were counted on Neubauer haemocytometer 

under light microscope. The counted cells from three repeats of eight type A squares of the 

haemocytometer, with volume 1 mm3 (or 1 µl = 0.001 ml) each, were averaged and the data 

was used to calculate the amount of cells with the formula:  

 

Concentration of cells/ml = (total cells counted/ # of squares used)(104 ×dilution factor) 

 

2. 6. 3 Freezing of cells 

 

Trypsinized cells resuspended in desired amount of media were centrifuged for 5 minutes at 

1000× g. The supernatant was discarded by aspiration and the cell pellet was resuspended 

in ice cold freezing media. The cells were alliquoted in cryo reaction tubes. At first they were 

stored at -20°C for an hour and subsequently at -80°C for 24 hours. Finally, the cells were 

transferred to liquid nitrogen.  
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2. 6. 4 Cell pelleting 

 

Cells were trypsinized as for passaging (2. 3. 1) and were transferred into a Falcon tube, and 

PBS was filled in up to 50 ml final volume. At this step the cells were checked for vitality and 

counted. After spinning the cells for 5 minutes at 3000 rpm, the pellet was resuspended in  

750 µl PBS and transferred to an Eppendorf tube to which PBS was added up to 

approximately 1500 µl. The tubes were centrifuged for 5 minutes at 3000 rpm and following 

50 seconds at 10,000 rpm. The supernatant was discarded by pipeting and the pellet was 

frozen directly at -20°C or was directly used for DNA extraction, or enzymatic measurements 

(Siddiqui et al., 2012). 

 

2. 7 Depletion and repopulation experiments 

 

The mtDNA depletion experiments were performed over 32 days. 16 flasks (75 cm²) derived 

from a single passage were used for the experiments. Samples were collected on the first 

day before depletion and afterwards every second day. The depletion was achieved by 

adding  

2’, 3’-dideoxycytidine (ddC) with final concentration of 20 µM. The ddC was exchanged with 

fresh one every second day. The ddC treatment continued 12 days for mtDNA depletion, on 

the 14th day the ddC containing medium was discarded and the cells were left for mtDNA 

recovery in fresh fibroblasts medium, which afterwards was exchanged every second day. 

Cells were counted every time when a sample was collected (Brown and Clayton, 2002). The 

cell pellets were frozen directly at -20°C for further DNA extraction.  

 

2. 8 Hydrogen peroxide treatment of fibroblasts 

 

To examine the effect of oxidative stress, hydrogen peroxide treatment experiments were 

carried on control fibroblast cell line. The cells were 70% confluent at the start of the 

experiments. After washing of the cells with PBS, medium containing the desired 

concentration of H2O2 (stock solution contains 30 wt. % in water) – 250 µM, 500 µM and 750 

µM, was added to the flasks. For each concentration of the H2O2 treatment there were three 

repeats, and a control flask, incubated only with medium. After 10 minutes incubation the 

medium was discarded and the cells were washed with PBS and trypsinized. The cells were 

pelleted as in 2. 3. 5 and the pellet was used for DNA isolation. 
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2. 9 Purification of mitochondria from human brain samples 

 

The protocol used for mitochondria purification is adapted from Kudin et al., 2004. The 

solutions used in this protocol are MSE solution, MSE-nagarse solution and MSE-digitonin 

solution; they were all chilled before the experiment. 

Fresh tissue sample was obtained after brain surgery of epileptic patients and the 

brain slice was immediately transferred into MSE solution. After mincing the brain with a 

sterile scalpel, ice-cold MSE-nagarse solution was added and the tissue was homogenized 

at 600 rpm by potter homogenizer. Nagarse is a protease having strong and unspecific 

proteolytic activity (Picard et al., 2011). As a next step 20 ml of ice-cold MSE solution was 

added to the homogenate and it was centrifuged for 4 minutes at 2000× g in order to remove 

the nuclei. The mitochondria rich supernatant was filtered through cheesecloth and 

centrifuged for 9 minutes at 12,000× g. The pellet was dissolved in 10 ml ice-cold MSE-

digitonin solution in order to permeabilize the synaptosomes. The prepared solution was 

homogenized 8 to 10 times in glass-homogenizer, until having homogenous suspension. As 

a final step it was centrifuged at 12,000× g for 11 min and the pellet was dissolved in 300 µl 

of MSE buffer. The suspension contained purified mitochondria, confirmed by biorespiration 

measurement of respiratory control (RC) value, performed by Dr. Kudin in our lab. 

The RC value is calculated as a ratio between state 3 of respiration of the 

mitochondria (triggered by addition of 250 µM ADP to the mitochondrial suspension) and 

resting state 4 of the mitochondria. The higher the RC value, the better the quality of the 

mitochondria in the suspension. Afterwards, the protein content was determined 

spectrophotometrically (about  

20 mg protein/ml), by Loury method (Kudin et al., 2004). The samples were directly used for 

mitochondrial DNA isolation or were stored in liquid nitrogen. The mtDNA enrichment 

obtained from isolated mitochondria has been checked by qPCR and was found to be at 

least 10 fold higher as compared to the total DNA.  

 

2. 10 Mitochondria purification from human muscle samples 

 

The purification of mitochondria from muscle was performed by Dr. Kudin in our laboratory, 

applying the protocol described by Kudin et al., 2005. 
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2. 11 DNA isolation with QIAamp DNA Mini Kit 

 

Column purification of DNA was performed as described in the manual of QIAamp DNA Mini 

Kit (QIAGEN N.V., Venlo, Netherlands). Each sample was eluted twice in 200 µl elution 

buffer provided with the kit and was stored without freezing at 4°C. 

 

2. 12 DNA concentration quantitation 

 

The concentration and purity of the isolated DNA were estimated by measurement of its 

optical density (OD) with a spectrophotometer. Double-stranded DNA shows ultraviolet light 

absorption maximum at wavelength λ = 260 nm, while the proteins absorption maximum is at 

wavelength 

λ = 280 nm. The DNA concentration (C) in ng/µl is calculated by the formula: 

 

C = [–36.0(OD280nm–OD320nm) + 62.9(OD260nm–OD320nm)] × dilution factor  

The total yield of the isolated DNA (µg) is calculated by multiplying the DNA 

concentration C by the purified sample volume (ml). The ratio OD260nm/OD280nm provides an 

estimate of the degree of purity of the DNA. The quality of the DNA was considered suitable 

when the ratio was between 1.8 and 2. The DNA purity can be estimated by correcting for 

impurities detected at λ = 320 nm, OD320nm  with the formula:  

 

DNA purity = (OD260nm– OD320nm)/(OD280nm–OD320nm) 

 

2. 13 Gel electrophoresis 

 

All PCR products with expected size bigger then 500 bp were visualized by agarose gel (1%) 

electrophoresis.  

PCR products smaller then 500 bp were electrophoretically separated by 

polyacrylamyde gel electrophoresis, PAGE. The PCR products from all primer pairs used in 

the qPCR were optimized and checked for purity and size on PAGE gels. Multiplex PCR 

products, with size smaller then 500 bp were loaded on 3% agarose gels.  
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Reagents Volume (ml) 

5× TBE 2 

Acrylamide 2.5 

10% APS 0.1 

TEMED 0.01 

dd water up to 10 ml  

 

Table 11   Mixture for PAGE gel. 

 

2. 14 Long-Range PCR (LR-PCR) 

 

LR-PCR was used for the amplification of large fragments of DNA, up to 27–30 kb. LR-PCR 

was performed with TaKaRa LA Taq Hot Start (HS) or JumpStart AccuTaq LA enzymes 

(Table 12). They contain LA TaqTM (LA, long and accurate) polymerase mixture constituted 

by a highly processive thermostable polymerase and second thermostable polymerase with 

3’→5’ exonuclease activity (proofreading activity), which leads to strong reduction of the 

misincorporation errors, and supports the production of longer PCR amplicons, with greater 

accuracy. The TAKARA LA Taq HS kit contains a monoclonal antibody specific for the  

LA TaqTM, which binds to it and inhibits the polymerase activity until the temperature 

escalates. In this way mis-priming and formation of primer dimmers during temperature 

elevation is being avoided. The antibody is being denatured in the first step of DNA 

denaturation. The PCR program (Table 13) and PCR mixtures (Table 12) were optimized by 

modifying the original protocols provided by the producer (TAKARA BIO INC and Sigma 

Aldrich). 

 

Reagent  Volume (µl) 

10× TaKaRa reaction buffer  2.5 

TaKaRa dNTPs (2.5 mM) 2.5 

FW primer (25 pmol/µl) 0.2 

RW primer (25 pmol/µl) 0.2 

TaKaRa LA Taq (HS) / AccuTaq LA 0.125 / 0.25 

DNA (2 ng/µl) 10 

ddH2O                                                           up to 25 µl 

 

Table 12   TaKaRa LA Taq (HS) and JumpStart AccuTaq LA LR PCR mixture. 
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PCR program  

1. 95°C, 2:30 min  

2. 92°C, 0:20 min 

3. 68°C, 14:00 min 

          
      10× 

4. 92°C, 0:25 min 

5. 68°C, 16:00 min 

            
      20× 

6. 72°C, 10:00 min  

7. 15°C for ever  

 

Table 13   LR-PCR program.   

 

5 µl of the PCR products with 5 µl loading buffer were mixed and loaded on 1% 

agarose gel, and 1 kb DNA ladder or 2-log ladder for band identification. After 

electrophoresis at 180V for 1h, of the gel picture was visualized and captured with 3CCD 

Video Camera with 4 megapixels resolution, with UV-illuminator GeldocTM XR with excitatory 

wavelength between 254 and 365 nm. Deleted molecules were detected as bands of 

decreased size.  

 

2. 15 Single-molecule PCR (smPCR) 

 

In order to avoid laborious cloning procedures and to capture and analyze single-molecules 

of DNA and map their deletions, I have established a modified version of the single-molecule 

PCR (smPCR) described by Kraytsberg et al., 2008 (Tables 14 and 15). 

 

Reagent  Volume (µl) 

10× TaKaRa reaction buffer  2.5 

TaKaRa dNTPs (2.5 mM) 2.5 

FW primer (50 pmol/µl) 0.1 

RW primer (50 pmol/µl) 0.1 

TaKaRa LA Taq (HS) 0.125  

Diluted DNA* 1 

ddH2O                                                             up to 25 µl 

*diluted 10×, 100×, 1000× etc. mtDNA 

Table 14   TaKaRa LA Taq (HS) smPCR mixture. 
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PCR program  

1. 95°C, 2:30 min  

2. 92°C, 0:20 min 

3. 68°C, 14:00 min 

          
      10× 

4. 92°C, 0:25 min 

5. 68°C, 16:00 min 

            
      32× 

6. 72°C, 10:00 min  

7. 15°C for ever  

 

Table 15   Single-molecule PCR program. 

 

 The DNA used in the smPCR is diluted to such an extent that in a set of repeats of 

the same sample only part of the repeat reactions would give a product. Firstly, a pilot 

experiment was performed for each analyzed sample (Figure 13a). The pilot experiment 

includes serial dilutions of the DNA in five repeats for each dilution, to adjust the right mtDNA 

concentration in order to detect single mtDNA molecules. On Figure 13a, a pilot experiment 

depicts the effect of serial mtDNA dilution and the decrease in the number of molecules 

detected in every step. For this sample at 1000× dilution there are still multiple bands in a 

single lane, therefore the right mtDNA single molecule concentration should be checked at 

even higher dilution (10,000×). For each gel electrophoresis a line with PCR product from 

undiluted mtDNA from the same sample was used as a PCR positive control (marked with C 

on Figure 13a). After determination of the right mtDNA dilution, a smPCR with a larger set of 

repeats (15–20) was performed (Figure 13b).   

After successful amplification of single-molecule amplicons, they were either cut out 

of the agarose gel (Figure 13, red rectangles), the DNA was purified with QIAquick Gel 

Extraction Kit and reamplified; or PCR product, 30 fold diluted in double distilled water, was 

used for the re-amplification. The primers used in the re-amplification PCR were located 

within the amplified region and by ‘walking’ from both ends in the amplified product with 

different primers we aimed flanking of each deletion as close as possible, to size not 

exceeding 1500 bp. The reamplified PCR products were purified with QIAquick PCR 

Purification Kit and the exact breakpoints were determined by sequencing.  

 

 

 

 



Materials and Methods 

                                                                                                                                                       47 

a 

 

 b 

 

 

Figure 13   Single-molecule PCR. (a) smPCR pilot experiment for adjusting the right concentration of 
the mtDNA, for capturing single molecules, (b) smPCR in a big set of 16 repeats with optimized 
mtDNA concentration; C, undiluted sample; w, water control; red box, gel cut outs used for 
sequencing.  
 
 

2. 15. 1 mtDNA deletions quantification by smPCR 

 

In order to estimate the amount of deletions in a sample, two smPCRs with two different 

primer combinations were performed. The first PCR primer pair is amplifying either almost 

the whole mtDNA genome (10F/16,496R) or just the mtDNA major arc (3137F/45R), that is 

prone to deletion formation. The second primer pair amplifies a shorter region of the small 

arc (16,520F/4833R), which usually does not contain deletions and should be giving an 

estimate of the total amount of wild-type molecules. The ratio of deletions is calculated by 
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comparison of the number of positive PCR reactions and the degree of dilution of the total 

and deleted mtDNA molecules (Zsurka et al., 2008; Vielhaber et al., 2013; Kornblum et al., 

2013). Both PCRs were performed with TaKaRa LA Taq (HS). The reaction mix and PCR 

program for total mtDNA estimation are the same as the ones used for the long product, but 

with 3 minutes elongation time (Table 14 and 15). 

 

2. 16 Long extension PCR 

 

Duplicated mtDNA molecules were detected by using a long extension PCR method modified 

from Williams et al., 2010. Primers 1057F and 1144R were used to amplify a short mtDNA 

fragment and additional extended elongation time enabled the polymerase to amplify 

fragments of several thousand base pairs in size. This kind of long molecules can be 

amplified along the short fragments, if more than one copies of the primer-binding region are 

present on some of the mtDNA molecules. The reaction mix and PCR program for long 

extension PCR are the same as the ones used for single-molecule PCR (2.12). All PCR 

products were analysed on agarose gel. 

 

2. 17 mtDNA copy number determination 

 

The mitochondrial DNA copy number was evaluated by quantitative Real-Time PCR (qPCR), 

a modified PCR method allowing the monitoring of targeted mtDNA amplification in status 

nascendi. For the detection of DNA products in qPCR either the fluorescent dye SYBR® 

Green I or sequence-specific DNA probes (oligonucleotides) labelled with a fluorescent 

reporter, such as TaqMan® Probe were used. In both cases the qPCR was performed with 

three different concentrations of the DNA sample – 5 ng/µl, 10 ng/µl or 20 ng/µl, with three 

repeats for each dilution. All primer pairs were optimized and checked by PAGE. 

 

2. 17. 1 SYBR® Green I qPCR 

 

The cyanine dye SYBR Green I binds preferentially to dsDNA and intercalates between the 

DNA strands and therefore stains the DNA in a not sequence specific way. The formed 

DNA/dye-complex absorbs blue light at λmax = 488 nm and emits green light at  

λmax = 522 nm. This increase in fluorescence intensity, which is measured at each PCR 

cycle, allows the DNA concentrations to be quantified. The primers used for total mtDNA 

determination were 3922F and 4036R. The primers used to detect the 7S DNA levels were 

16,520F and 35R.  
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Reagent  Volume (µl)  

iQ™ SYBR® Green Supermix 11.9 

FW / RW primer mix  (12.5 pmol/µl each ) 0.6 

DNA* (ng/µl) 12.5 

* 1.6 ng/µl, 0.8 ng/µl or 0.4 ng/µl   

 
Table 16   SYBR® Green qPCR mixture.  

 
In order to verify the specificity of the product, a melting curve analysis was 

performed at the end of the qPCR. During it the temperature increases constantly from 55°C 

to 95°C, leading to melting of the DNA. At a specific temperature the dsDNA denatures and 

at that point the SYBR Green I is set free leading to decrease in the fluorescence. In case 

the PCR is specific only one high fluorescence peak should be observed. In table 17 this 

analytical phase corresponds to step 6. 

 
PCR program  

1. 95°C, 7:00 min  

2. 95°C, 0:15 min 

3. **°C, 1:00 min 

          
      45× 

4. 95°C, 1:00 min 

5. 55°C, 1:00 min 

            
       

6. 55°C, 0:10 min 

    + 0.5°C per cycle 

        
      80× 

7. 15°C for ever  

** primer specific annealing temperature (in the range of 55°C to 70°C) 
 
Table 17 SYBR Green qPCR program. 
 
 
2. 17. 2 TaqMan® qPCR 

 

Specific probes as TaqMan® assure higher specificity of the method, as they permit 

detection only after hybridization of the probe with its complementary DNA target (Holland et 

al., 1991). The TaqMan probe has fluorescence reporter on one end and a quencher of 

fluorescence on the opposite end. The close proximity of the reporter to the quencher 

prevents the detection of fluorescence. The probe anneals to the complementary DNA strand 

and when the Taq Polymerase is synthesizing the new strand, it is fulfilling as well its 5’→3’ 

exonuclease activity and it breaks down the probe and the unquenched emission of 

fluorescence gets free. Due to breakdown of the probe and release of its reporter in every 

cycle of the PCR, the increase of the targeted product can be detected. 
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Reagent  Volume (µl)  

10× JumpStart reaction buffer 2.5 

containing 1.5% Triton X-100  

MgCl2 2.5 

DMSO 0.38 

dNTPs (25 mM) 0.2 

50× ROX reference dye 0.13 

FW primer (12.5 pmol/µl) 0.3 

RW primer (12.5 pmol/µl) 0.3 

TaqMann® Probe (12.5 pmol/µl) 0.2 

JumpStart Taq polymerase 0.13 

DNA* (ng/µl) 12 

ddH2O                                              up to 25 µl 

*1.6 ng/µl, 0.8 ng/µl, 0.4 ng/µl  

 

Table 18   TaqMann® qPCR mixture.  

 

The PCR program used for Taqman qPCR is the same as for SYBR Green qPCR  

(Table 17). 

 
2. 17. 3 Analysis of qPCR data 

 

Data collected with qPCR were analyzed by SigmaPlot and were fitted with a sigmoidal 

regression curve, Chapman curve (Zhao and Fernald, 2005). The sigmoidal regression curve 

has four parameters – y0 , a, b and c,  determining its shape and the degree of exponential 

function. The parameters are provided by the software from the equation:  

 

y = y0+a(1-e-bx )c 

 

The Ct value is calculated at the inflection point of the fluorescence sigmoidal curve 

from the equation: 

 

Ct = ln(c)/b 

 

As each sample was in triplicate the standard deviation was calculated. The Ct values 

for Kir4.1 (reference gene), single nuclear gene, were used for calculation of the mtDNA 

copy number (Zsurka et al., 2008). Firstly, the cycle number difference was calculated by 

subtracting the Ct values of the mtDNA fragment (Ctmito) of interest from the Ct values of the 

reference gene (Ctnuc): Ctnuc–Ctmito. This value was used to calculate the mtDNA copy number 
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(CN). The relation between the diploid single nuclear gene and a mitochondrial sequence 

was calculated as follows:  

 

CN = 2×2 Ctnuc–Ctmito 

 

The serial dilution (three different concentrations) of the measured Ct values of each 

DNA sample was plotted against their initial concentration in a semilogaritmic scale. The total 

amount of DNA is being duplicated in each PCR reaction cycle if the efficiency of the process 

was 100%. The negative correlation slope and the intercept should have a value of -1 and 

the slope s and the efficiency E are related to each other as following: 

 

E = (1/s)(–100) 

 

2. 18 Evaluation of mtDNA integrity 

 

A qPCR-based method was used for detection of presence or absence of strand breaks 

between chosen primer positions, and evaluation of mtDNA integrity and quality. The method 

includes two PCRs performed on the same 96-well qPCR plate (assuring the same PCR 

conditions), for the same sample. Triplets of two different mtDNA dilutions, 20 ng and 10 ng 

DNA, were used. The first PCR amplifies a short product, flanked by primers 1057F and 

1144R, with size of 88 bp and the second PCR amplifies a long 5379 bp PCR product, 

amplified by primers 11,226F and 35R. The method compares the amplification of the big 

mtDNA fragment to that of the small fragment of the mtDNA, with the later representing the 

overall amount of mtDNA. Any damage in the mtDNA would prevent the polymerase to 

amplify a full-length product. The further away the primers, the higher the chance that 

blocking damage occurs between them. Cycle number differences between the two PCRs 

(dependent on the short and the long product quality) were measured in the qPCR reactions 

and the data from the control untreated samples was used as reference. For all samples, 

first, the relative amplifiability difference was calculated by subtracting the Ct values for the 

long product from the wild-type mtDNA Ct values. Then the control sample amplifiability was 

taken as reference, to which the treated samples were compared in a ratio. In this case the 

control sample represents a value of 1, all treated samples containing less intact mtDNA 

should show a value smaller than 1. The calculations are performed as described previously.  
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Reagent  Volume (µl)  

5× Ranger reaction buffer containing dNTPs 5 

50× ROX reference dye 0.128 

Ranger DNA polymerase 0.156 

FW/ RW primer mix (12.5 pmol/µl) 0.6 

500× diluted SYBR Green (in DMSO) 0.12 

DNA (1.6 ng/µl or 0.8 ng/µl) 12 

ddH2O 7 

 

Table 19    Ranger qPCR mixture.  

 
The PCR program for mtDNA integrity determination is the same as described 

previously in Table 17, with elongation time of 14 min, at step 3. 

 

2. 19 Ligation-Mediated PCR (LM-PCR) 

 

I have established a modified version of the ligation-mediated PCR (LM-PCR) described 

originally by Kang et al. (1997), for detection of free DNA ends. In opposite to the original 

paper, blunt ends required for linker ligation were created by treating the DNA samples with 

Quick Blunting Kit (NEB) or Mung Bean nuclease for detection of free 5’ or 3’ ends, 

accordingly.  

The Quick Blunting Kit contains T4 polymerase that is having 5’ to 3’ polymerase 

activity and 3’ to 5’ exonuclease activity. The kit contains T4 Polynucleotide Kinase for 

phosphorylation of the 5’ end of the blunted molecules and its subsequent ligation.  

The Mung Bean nuclease is a single-strand specific DNA endonuclease, which 

degrades all 3’ and 5’ single-stranded overhangs, leaving 5’-phosphorylated blunt ends.  

After filling in or removing overhangs, the molecules represent blunt ends that are 

ready to be ligated. The ligation was done by using a T4-ligase and a linker. The linker 

‘adaptor’ used in the LM-PCR has non-biological sequence and is prepared by the annealing 

of two complementary oligonucleotides, LMP25 and LMP11, with 25 bp and 11 bp length 

accordingly:  

 
5’–GCGGTGACCCGGGAGATCTGTATTC–3’ 
                                    3’–CTAGACATAAG–5’ 
 

The different length of the primers allows the formation of blunt end only on one side 

of the linker, which would prevent double sided ligation in the later steps (Kang et al., 1997).  
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Reagent  Final Concentration  PCR program  

LMP25  25 pmol/µl 1. 95°C x 3:00 min 

LMP11 25 pmol/µl 2. 95°C x 1:00 min         

      
       185× 
 

TE Buffer       -0.5°C per cycle   

 

Table 20   Linker annealing mixture and conditions. 

 

After ligation the reaction mix was used in blunt-end ligation-mediated PCR, to which I 

am going to refer to as LM-PCR, as in the original protocol by Kang et al., 1997; taking in 

account the introduced changes in the protocol. The LM-PCR reaction is using one primer 

complementary to the linker and a specific primer on the mtDNA for the 5’ end detection. For 

detection of the 3’ end the mtDNA primer should be a reverse one. The amplified products 

were purified and the free ends were determined by sequencing.  

 

2. 19. 1 T4 polymerase blunting of mtDNA 

 

Quick Blunting™ Kit was used to perform T4 polymerase blunting of mtDNA. The  

T4 DNA polymerase has both 3’→5’ exonuclease activity, removing 3’ overhangs and 5’→3’ 

polymerase activity, filling 5’ overhangs, in this way it creates blunt ends at the site of the 

original 5’ end of one strand. The kit contains a T4 polynucleotide kinase which provides a 

phosphorylation of the 5’ end, important for the following ligation of the linker ‘adaptor’. 

The Blunt Enzyme Mix is supplied from the company in: 100 mM KCl, 10 mM Tris-HCl 

(pH 7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 0.1% Triton X-100 and 50% Glycerol. The 1X 

Blunting Buffer contains: 100 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2, 0.025% Triton X-

100, and 5 mM dithiothreitol, with pH 7.5 at 25°C. 

 

Mix  Volume (µl) Incubation Inactivation 

DNA – 0.2 µg   

10× Blunting buffer 2.5  
 

1mM dNTPs 2.5 30 min at RT°C 10 min at 70°C 

Blunt Enzyme Mix 1   

ddH2O up to 25 µl   

   

Table 21   Quick Blunting Kit treatment.  
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2. 19. 2 Mung Bean Nuclease blunting of mtDNA 

 

The Mung Bean Nuclease removes single stranded ends in both orientations and leaves a 

phosphorylated 5’ end. The Mung Bean Nuclease Reaction Buffer contains: 30 mM NaCl, 50 

mM sodium acetate, 1 mM ZnSO4, with pH 5 at 25°C. 

 

Mix  Volume (µl) Incubation Inactivation 

DNA – 0.2 µg (in water) 30   

10× Mung Bean buffer 4 

Mung Bean Nuclease 0.2 
30 min at 30°C 

Purification with 
QIAamp DNA Mini Kit 

ddH2O up to 40 µl   

   

Table 22   Mung Bean Nuclease treatment. 

 

2. 19. 3 S1 nuclease treatment of mtDNA 

 
S1 nuclease degrades single stranded DNA and RNA and removes 3’ and 5’ overhangs, by 

leaving phosphorylated 5’ end. It recognizes nicks and single nucleotide lesions on the 

nucleic acids and cuts them.  

 

Mix  Volume (µl) Incubation Inactivation 

DNA – 0.2 µg (in water) 30  

10× S1 reaction buffer 4 

S1 nuclease 0.2 
30 min at 30°C 

ddH2O up to 40 µl  

Heat deactivation at  
70°C + 1 µl EDTA (optional); 
purification with 
QIAamp DNA Mini Kit 

 

Table 23   S1 nuclease treatment. 
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2. 19. 4 Ligation of linker 
 

The blunt-ended mtDNA samples were ligated with the linker ‘adaptor’ via T4 ligase in the 

following reaction: 

 

Mix  Volume (µl) Incubation Inactivation 

DNA – 0.2 µg blunted 50  

Linker 5 

10× T4 ligase buffer 6.2 
O/N at RT°C 

T4 ligase 1  

10 min at 65°C  

 

Table 24   Linker ligation.  

  

2. 19. 5 Amplification of linker ligated ends 
 

The blunt-end LM-PCR was performed always with LMP25 primer and a mitochondrial 

primer with specific location and orientation. 

 

Reagent  Volume (µl)  

5x Ranger Reaction buffer  5 

containing dNTPs  

LMP25 (25 pmol/µl) 0.3 

FW/RW primer (25 pmol/µl) 0.3 

Ligated DNA 1 

Ranger DNA Polymerase 0.156 

ddH2O up to 25µl 

  

Table 25   LM-PCR mixture.  
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PCR program  

1. 95°C, 2:30 min  

2. 92°C, 0:20 min 

3. 63°C, 1:00 min 

          
      10× 

4. 92°C, 0:25 min 

5. 68°C, 1:00 min 

            
      25× 

6. 72°C, 1:00 min  

7. 15°C for ever  

 

Table 26   LM-PCR program. 

 
2. 19. 6 Single-molecule LM-PCR 
 

In order to determine the ends of the detected molecules, a single-molecule LM-PCR was 

performed, following the same principles as in smPCR, but with linker specific primer in 

combination with mitochondria specific primer.  

 

Reagent  Volume (µl)  

5× Ranger Reaction buffer  5 

containing dNTPs  

LMP25 (50 pmol/µl) 0.6 

FW/RW primer (50 pmol/µl) 0.6 

Ligated DNA 1 

Ranger DNA Polymerase 0.3 

ddH2O up to 25 µl 

  

Table 27 Single-molecule LM-PCR mixture.  

 

PCR program  

1. 95°C, 2:30 min  

2. 92°C, 0:20 min 

3. 63°C, 1:00 min 

          
      10× 

4. 92°C, 0:25 min 

5. 68°C, 1:00 min 

            
      32× 

6. 72°C, 1:00 min  

7. 15°C for ever  

  
Table 28   Program for single-molecule LM-PCR.  
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The captured single molecules were cut out from the gel and were purified with 

QIAquick Gel Extraction Kit. Each purified PCR product was reamplified once with a LMP25 

and a different mitochondrial primer within the fragment, to assure the amplification of 

mitochondrial, but not nuclear PCR product. And second, the product was checked by 

reamplification with double amount of LMP25 primer, to exclude short non-mitochondrial 

fragments ligated with LMP25 on both of their ends. 

 

2. 20 Multiplex PCR   

 

Multiplex PCR was used for the detection of two different deletions (the common deletion 

and a deletion of interest, simultaneously), on 3% agarose gel. The acquired data images 

were analyzed by ImageJ (Chapter 2. 21). 

 

Reagent  Volume (µl)  

10× TaKaRa reaction buffer  2.5 

TaKaRa dNTPs (2.5mM) 2.5 

FW primer (25 pmol/µl) 0.8 

RW primer 1 (25 pmol/µl) 0.6 

RW primer 2 (25 pmol/µl) 0.2 

TaKaRa La Taq (HS) 0.125 

DNA (2 ng/µl) 10 

ddH2O up to 25 µl 

 

Table 29   TaKaRa LA Taq (HS) multiplex PCR mixture. 

 

PCR program  

1. 95°C, 2:30 min  

2. 94°C, 0:20 min 

3. 68°C, 3:00 min 

          
      10× 

4. 94°C, 0:20 min 

5. 68°C, 3:00 min 

            
      32× 

6. 72°C, 7:00 min  

7. 15°C for ever  

 

Table 30   PCR program for multiplex PCR. 
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2. 21 Sequencing PCR 

 

The PCR used for re-amplification of smPCR products was performed with LongAmp Taq 

DNA polymerase. 

 

Reagent  Volume (µl)  

5× LongAmp reaction buffer  5 

dNTPs (2.5 mM) 2.5 

FW primer (25 pmol/µl) 0.2 

RW primer (25 pmol/µl) 0.2 

LongAmp Taq 0.25 

DNA* 1 

ddH2O up to 25µl 

*1:30 diluted smPCR product or gel isolated smPCR product 

 

Table 31   LongAmp PCR mixture.  

 

PCR program  

1. 95°C, 2:30 min  

2. 94°C, 0:20 min 

3. 63°C, 2:50 min 

          
      10× 

4. 92°C, 0:25 min 

5. 68°C, 3:00 min 

            
      25× 

6. 72°C, 1:00 min  

7. 15°C for ever  

 

Table 32   PCR program for sequencing PCR.  

 

2. 22 PCR purification 

 

The PCR product column purification was performed according to the recomendation of the 

manufacturer (QIAquick PCR Purification Kit; QIAGEN N.V., Venlo, Netherlands). The PCR 

product purification after excision from agarose gel was performed as described in the 

manual of QIAquick Gel Extraction Kit (QIAGEN N.V., Venlo, Netherlands). 
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2. 23 Sequencing 
 

After PCR purification, the DNA concentration of the amplicons was estimated with 

spectrophotometer and the samples were send for sequencing, performed by a commercial 

sequencing service at Eurofins MWG / Operon, Ebersberg, Germany. The sequencing 

primers mainly were identical with the PCR primers. 

 

2. 24 ImageJ analysis 

 

Semiquantitative analysis for deletions was performed by using Java-based image 

processing program ImageJ. The region of interest (ROI) on each LR-PCR picture was 

selected for every sample. The ROI included the wild-type (wt) band and the region under it, 

containing deleted molecules, the same ROI was used for all samples. By using the plotting 

option of ImageJ a two-dimensional graph of the intensities of pixels along the ROI was 

displayed. The X-axis represents distance along the ROI and the Y-axis is the pixel intensity. 

The peak amplitude corresponds to the intensity of the bands in the ROI. In this case, the wt 

band has the highest peak of intensity. A ratio between the wt band peak and the summed 

deletion peaks was calculated, and used for semiquantitative measurement of the deletions 

present in each sample. The background intensity was subtracted in the calculations. The 

same method was used for analysis of the images obtained by multiplex PCR, but in this 

case the intensity for the common deletion was compared to the intensity of the deletion of 

interest. 

 
2. 24 Statistical analysis 
 

Microsoft Office Excel was used for applying the unpaired, two-sided student’s t-test in order 

to determine significant difference between pairs of data sets. It was used to calculate the 

probability of occurrence of a positive zero hypothesis, which is determined by the identity of 

two empirical determined mean values belonging to two sample populations. The level of 

significance was set to p<0.05 or smaller.  

One-way analysis of variance (ANOVA) was used to analyse differences between the 

mean values of multiple (more then two) groups of data sets. ANOVA is based as well on the 

null hypothesis; in case of null hypothesis, all samples are random samples of the same 

population. Once a group of samples was identified as not random, a Dunnett’s post-hoc test 

was applied to check which means differ. The ANOVA test and the Dunnett’s post-hoc test 

were performed by Dr. Zsurka. 
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3. Results 

 

3. 1 MGME1  

 

Multiple mitochondrial deletions and mtDNA depletion syndromes (MDS) constitute a group 

of diseases known as mtDNA maintenance disorders (Blakely, 2012). The pathological 

changes and clinical manifestations in these diseases may affect single tissues or the 

function of the whole organism. They appear in different ages and have diverse impact on 

the patients (El-Hattab, 2013). The pathologic mechanisms in this group of diseases affect 

either the salvage pathway of deoxyribonucleoside 5'-triphosphates for mtDNA synthesis or 

the mtDNA replication. Mutations in POLG, POLG2 and C10orf2 genes, all components of 

the replication machinery, were previously described to be involved in the disruption of the 

mtDNA replication and disease. Recently, DNA2 (Ronchi et al., 2013) and a truncated 

version of protein encoded from the nuclear FEN1 gene (FENMIT) (Kazak et al., 2013) have 

been added to the group of genes possibly involved in mitochondrial maintenance, by 

influencing its repair and replication. Nevertheless, many patients remain poorly diagnosed 

and problematic for treatment, as the exact molecular mechanisms and system damage are 

not clear (Kornblum et al., 2013).  

 

3. 1. 1 Patients with mtDNA maintenance disorders (MMDs) 

 

Respiratory chain deficiency is the main biochemical trait in mitochondrial disorders. As the 

muscle is very rich of mitochondria, it is commonly used in the diagnostics for checking the 

mitochondrial function. Muscle containing dysfunctional mitochondria often displays 

accumulation of highly proliferating mitochondria or so called ragged-red fibers (RRF). I was 

working with samples from a Lebanese family having three children affected by MMD 

(P1976, P2061 and P3737) and unknown cause of the disease. The three patients showed 

respiratory chain insufficiency, confirmed by skeletal muscle histochemical staining and by 

biochemical measurements in fibroblasts (data not shown), performed by Dr. Schoeler. All 

affected children have similar symptoms since early childhood and have multisystemic 

mitochondrial disorder. The clinical symptoms include ptosis and mild PEO, mental 

retardation, respiratory distress and skeletal muscle waste. The family pedigree is shown on 

Figure 14a. 
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a 

 
 

 

 

b 

 

 

Figure 14   Pedigrees of MGME1 patients. (a) Lebanese Family (Family I) carrying MGME1 mutation. 
This family carries c.456G>A (p.Trp152*) mutation in MGME1 gene; (b) Pedigree of Italian Family 
(Family II) carrying MGME1 mutation. This family carries c.456G>A (p.Trp152*) mutation in MGME1 
gene. Open symbols indicate healthy individuals; closed symbols indicate affected members of the 
family. Diagonal bar through the symbol denotes deceased individuals (Kornblum et al., 2013). 
 

Mutations in POLG, POLG2 and C10orf2, for the three patients, were excluded by 

Sanger sequencing, performed by Susanne Beyer, in our lab. As the patients did not carry 

any mutation in the well studied nuclear genes known to cause MMD, thereafter, in 

collaboration with the Institute of Human Genetics, in Munich, exome sequencing (Haack et 

al., 2012) of P1976 sample, was performed. 
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The results from the exome sequencing of P1976, assuming the autosomal recessive 

inheritance of the disease and the possible mitochondrial targeting of the protein, pointed 

towards two genes, SPTLC3 and C20orf72, as possible candidates. Both genes encode 

proteins targeted to mitochondria. Unlike SPTLC3, the C20orf72 gene revealed c.456G>A 

(p.Trp152*) nonsense mutation in P1976. Following Sanger sequencing of the C20orf72 

gene, in the affected siblings’ samples, confirmed the segregation of the mutation; all of them 

were carrying the c.456G>A (p.Trp152*) mutation in the gene. The healthy siblings were 

homozygous wild-type for the mutation and the parents were heterozygous carriers.  

By targeted MitoExome sequencing (Calvo et al., 2012) performed by our 

collaborators, another affected Italian family (P4050, P4052) carrying the same mutation and 

clinical manifestation (Figure 14b) was discovered. The list of samples with mutations in the 

C20orf72 gene was additionally extended with one sporadic patient from Germany (P931), 

which was added from our laboratory, by sequencing of the gene in a set of PEO samples, 

performed by Kerstin Hallman, MSc. Opposite to the other samples, this patient carried a 

different mutation, c.698A>G (p.Tyr233Cys) in the same gene.  

Investigation over the affected protein’s primary structure showed that it belongs to 

the PD-(D/E)XK nuclease super-family, whose members possess various nucleic acid 

cleavage activities. The c.456G>A (p.Trp152) mutation, discovered in the Lebanese and the 

Italian family, is placed before the PD-(D/E)XK motif, which would suggest non-functionality 

of the protein. The mutation discovered in the sporadic case from Germany affects a 

conservative amino acid residue.  

We have decided to rename the enzyme and call it MGME1, standing for 

mitochondrial genome maintenance exonuclease 1. 

 

3. 1. 2 In vivo consequences of MGME1 mutations 

 

To clarify the molecular consequences of mutation in the MGME1 gene, all muscle samples 

from the patients were analyzed by LR-PCR (Figure 15 lower panel). A second sample from 

patient P4052, taken one year after the first biopsy, was included in the set. One POLG 

muscle sample, carrying the homozygous mutation p.Ala467Thr in the POLG gene was 

included in the study, as a sample rich of mtDNA deletions. LR-PCR was performed also with 

urine sediment and blood DNA samples from the Lebanese family. Two blood samples from 

the unaffected father and sister from this family were also included in the panel of samples 

(Figure 15 upper panel).   The primers used for this experiment were primer pair 5462F/45R, 

amplifying a wild-type 11,153 bp product, covering the mtDNA major arc (Figure 15 upper 

panel), and primer pair 15,974F/15,623R, amplifying 16,219 bp product, which covers almost 

the entire mtDNA (16,569 bp) (Figure 15 lower panel).   
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Figure 15   LR-PCR amplification of mtDNA from MGME1 patients. Upper panel, LR-PCR (primer pair 
5462F/45R; 11,153 bp wt product) of blood (BL) and urine sediment (UR) samples from Family I. 
Blood samples from unaffected father and sister from the family were also included in the set. Lower 
panel, LR-PCR (primer pair 15,974F/15,623R; 16,219 bp wt product) of mtDNA isolated from muscle 
biopsy (MB) from all affected MGME1 patients included in this study. PG, POLG patient (carrying the 
homozygous mutation p.Ala467Thr in the POLG gene); C, control muscle (30 years old); wt, wild-type 
sized amplicon; del, deletion-specific PCR products. Thick line unclosed circle (close to the panels) 
indicates the PCR amplified region of the mtDNA (thin line closed circle). All samples from affected 
MGME1 patients contain apparent unusually large mtDNA rearrangments. The PG patient shows 
typical range of deletions. All unaffected members of the family and the controls show only wild-type 
molecules (Kornblum et al., 2013).  
 

Both LR-PCRs detected an increased amount of rearrangements in different tissues 

from the MGME1 patients. In comparison to the POLG patient (PG) sample, in which most of 

the deletions were small and visible as high smear, close to the wild-type molecules, the 

MGME1 samples showed much shorter bands, representing specific pattern for the disease 

(Figure 15). In the MGME1 patients, the PCR products were small and were lacking most of 

the mtDNA.  
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The muscle from P931 carried very high amount of rearrangements, which is in 

correlation with the most advanced age of that patient at the time of biopsy, compared to the 

rest of the patients (Table 33).  

The quantity of the rearranged mtDNA molecules was estimated by using a modified 

version of smPCR. In the smPCR the primers 10F and 16,496R were used to amplify a big 

mtDNA fragment, which amplifies almost the entire mtDNA. Simultaneously, a second 

smPCR for total mtDNA amount was performed, to amplify part of the minor arc of the 

mtDNA lying between primers 16,520F and 4833R. In both PCRs the DNA was diluted to 

such extent that a PCR product would be a result from the amplification of a single molecule. 

In successful case, half of the repeats would be positive. Most of the samples were screened 

for deletion amount also by using primer pair 3137F/45R (Table 33). 

To calculate the rearrangements amount, the dilution used for getting single 

molecules was used to calculate the number of single molecules detected for both fragments 

at the same DNA concentration, and a ratio between the two was calculated. For example, if 

a sample shows 8 positive PCR bands out of 16 repeats for the wild-type mtDNA fragment at 

dilution 10-4, at the starting concentration the sample shall contain 8×10,000 or 80,000 PCR 

products in 16 repeats. If the same sample, for the larger PCR product shows 7 

rearrangements out of 16 repeats, at concentration 10-1, the non diluted sample should 

contain 7×10 bands or 70 bands, and the ratio 70/80,000 would give a result of 0.000875 or 

0.0875% deletions.  

The quantification showed increased amount of rearrangements in the MGME1 

patients, in the range from 0.4% to 1.5% (Table 33). The amount of rearrangements is 

comparable to the amount of deletions detected in the POLG patient. In MGME1 patients the 

rearrangements load was much higher when the quantification was performed with the 

primer pair amplifying almost the entire mtDNA. Thereafter, the observed MGME1 

rearrangements are present all over the mtDNA. P931 had the highest amount of deletions, 

confirming the results from the LR-PCR pictures and this can be explained with the advanced 

age of the patient and the accumulation of deletions due to aging. 

Amplified products from single rearranged mtDNA molecules were mapped and their 

breakpoints were determined by sequencing. Detected breakpoints are shown schematically 

on Figure 16a, and a list with the exact breakpoints can be found in Appendix I. As 

comparison,  

I determined additionally deletion breakpoints in the POLG patient, Figure 16b (the exact 

breakpoints can be found in Appendix II). The POLG patient was having deletions affecting 

predominantly the major arc of the mtDNA and these rearrangements are visibly shorter then 

the ones observed in MGME1 patients.  
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Apart from the bigger size of the rearrangements in the MGME1 patients, many of the 

molecules did not contain their light strand promoter (LSP) or have lost their light or heavy 

strand replication origin (OL or OH) and were missing more then 2/3 of the mitochondrial 

genome.  

 

Patients Primer pairs 

Samples Age at biopsy 3137F/45R 10F/16496R 

MB 1976 10 n.d 4.4 × 10-4 ± 1.9 × 10-4 

MB 3737 23 5.0 × 10-4 ± 5.0 × 10-5 4.7 × 10-3 ± 2.0 × 10-4 

MB 2061 17 7.5 × 10-5 ± 1.5 × 10-5 3.7 × 10-4 ± 3.5 × 10-5 

MB 931 57 1.5 × 10-3 ± 7.9 × 10-4 1.5 × 10-2 ± 1.0 × 10-3 

MB 4050 31 3.7 × 10-4 ± 1.9 × 10-4 2.6 × 10-3 ± 1.4 × 10-3 

MB 4052 36 5.9 × 10-4 ± 4.2 × 10-4 3.7 × 10-3 ± 2.3 × 10-3 

MB 4052a 37 1.4 × 10-3 ± 1.0 × 10-4 3.8 × 10-3 ± 1.2 × 10-3 

MB PG 19 n.d 4.8 × 10-4 ± 0.9 × 10-5 

MB Control 30 9.0 × 10-7 ± 0.0 × 10-7 4.2 × 10-5 ± 2.6 × 10-5 

 

Table 33   Amount of deletions in MGME1 muscle biopsy (MB) samples, control muscle and POLG 
muscle (PG). The quantification was performed by smPCR. All MGME1 patients showed higher 
amounts of mtDNA rearrangments, in comparison to the control MB. In MGME1 patients the amount 
of rearrnagments was approximately 10 fold higher when the deletions were estimated with the primer 
pair covering the entire mtDNA, which confirms the existence of apparent large deletions longer then 
the major arc.  
 

Out of the 131 detected breakpoints in MGME1 patients, only one was having both 

breakpoints into the major arc, where most of the deletions are expected. The end positions 

of the detected rearrangements were laying between 13,000 and 16,000 bp position, as most 

described classical deletions, but their starting point was located in the minor arc, between 

the heavy strand origin of replication (OH) and the heavy strand promoter (HSP), in the 12S 

ribosomal RNA gene; or downstream of the transcription termination factor mTERF1 binding 

site (Terzioglu et al., 2013). As the OL is important for the mtDNA maintenance and 

molecules that are not having it are supposed to be incapable of replicating (Wanrooij et al., 

2012). However, almost all affected individuals had specific breakpoint detected repeatedly, 

which would suggest their clonal propagation.  
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Figure 16   mtDNA rearrangements in MGME1 and POLG patients. Arcs represent retained parts of 
the mitochondrial genome. (a) mtDNA rearrangements in MGME1 patients. In red are marked 
deletions which are having at least one of the breakpoints between the light strand promoter (LSP) 
and termination-associated sequence (TAS); (b) mapped deletions in POLG patient. OH, heavy strand 
replication origin; OL, light strand replication origin.  
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Figure 16   (c) Partially duplicated mtDNA molecules in skeletal muscle of MGME1 patients as 
detected by long extension PCR. Bands at the bottom represent the short PCR fragment. If a second 
copy of the corresponding region is present on the same molecule, longer PCR products are 
additionally observed. The upper bands, bigger then 10 kb, picture complete duplications and partial 
duplications are visible as lower bands under them. In healthy controls C1 and C2 and in samples with 
pathogenic POLG mutations (PG) no mtDNA rearrangements were detectable (Nichols et al., in 
preparation). 
 

As the detected rearrangments were missing important for their replication origins, 

alternatively, we assume that these breakpoints might be result from the detection of 

complex structures of partial duplications or concatamers. To address the issue whether 

breakpoints in the MGME1 patients could represent partial duplications instead of true 

deletions, long extension PCR was performed. This experiment showed that in addition to 

the expected short PCR product, with size of 88 bp, additional large products were also 

detectable in skeletal muscle samples of MGME1 patients (Figure 16c). Therefore, the short 

primer-binding region was present at least twice on the same mtDNA molecule, which is a 

hallmark of duplications and multiplications. In control skeletal muscle samples or in POLG 

samples rich of deletions no such products were detectable (Figure 16c).  

Additionally, sequencing of the mtDNA of P931 revealed presence of insertions of 

small D-loop multimers in that patient (Table 34).  

As patient P931 has different mutation than all the other MGME1 patients it was of 

interest to check if any of the other patients contains such multimers. Indeed, in P3737 such 

multimers appeared to be detectable. Such structures were previously described in humans 

(Wei et al., 1996) and in POLG mouse model (Williams et al., 2010), but the duplications 

described in that papers were much longer (150 to 880 bp), then the ones observed in the 

two MGME1 patients, between 13 and 200 base pairs. 
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Sample FW primer RW primer Breakpoints (indicated by slash) 

M3737 16,099F 136R –16,122/16,070–16,125/16,267–16,553/29– 

M3737 16,099F 136R –16,245/16,083–16,132/16,348– 

M931 3137F 45R –3272/16,072–16,137/16,069–16,336/16,311– 

M931 3137F 45R –3272/16,072–16,137/16,069–16,336/16,311– 

M931 3137F 45R –3272/16,072–16,137/16,069– 

M931 3137F 45R –3272/16,072–16,137/16,069– 

M931 3137F 45R –3265/16,079–16,134/16,084– 

M931 3137F 45R –3610/16,077–16,151/16,074– 

M931 10F 16,496R –898/16,116–16,149/16,075– 

M931 10F 16,496R –898/16,080–16,117/16,082– 

M931 10F 16,496R –898/16,116–16,128/16,082– 

 

Table 34   Small direct multimers in the D-loop of MGME1 patients. Highest number were detected in 
the sporadic case M931 that carries mutation c.698A>G (p.Tyr233Cys) in a conservative domain of 
the MGME1 and carries highest amount of mtDNA rearrangments in comparison to the other patients. 
With appropriate primers the repeats were detected also in M3737.  
 

3. 1. 3 mtDNA depletion in MGME1 patients 

 

Patients with MMD are characterized by mtDNA rearrangments accumulation or mtDNA 

depletion, or both simultaneously. As in MGME1 patients the amount of detected 

rearrangments present in muscle samples is insufficient to explain the mitochondrial 

dysfunction, it was essential to find out if the patients suffer from mtDNA depletion as well. 

To this end, the mtDNA copy number was determined by qPCR in the muscle samples. The 

copy number values were normalized to control value, obtained from eleven healthy control 

muscles of age of 18 to 33 years. All MGME1 patients showed depletion of the mtDNA in 

comparison to controls, with exception of P1976 (Figure 17a, grey bars). The observed 

normal copy numbers in that patient can be explained with the early age at which the sample 

was obtained (10 years old); at this age the patient also represented only mild clinical 

symptoms. 

While performing the qPCRs for copy number determination I noticed difference in the 

copy numbers detected when using primers placed inside or outside of the D-loop region of 

the mtDNA (Figure 17). This phenomenon was detectable only in the MGME1 patients and 

was not visible to such extent in none of the control patients.  
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Figure 17   Relative mtDNA copy numbers in muscle and fibroblasts of MGME1 patients. (a) Relative 
mtDNA copy numbers in muscle, the data is result from three independent qPCR reactions and is 
normalized to a control value, which on the graph appears as 1. The control value was obtained from 
eleven control patient muscle samples in the age from 18 to 33. The control samples show 8146–
11,416 mtDNA molecules per nucleus (Kornblum et al., 2013). (b) Relative mtDNA copy number in 
fibroblast sample from P1976 in comparison to control fibroblast cell line. The data is normalized to the 
control value, which on the graph appears as 1. Grey bars display the mtDNA relative copy number 
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outside the 7S DNA; black bars represent the relative copy number in the 7S DNA region; error bars 
are indicating the SD(+); * indicates the significance of the experiment; *p<0,05, ***p<0,001; two-tailed 
Student’s t test (Kornblum et al., 2013). 
 

7S DNA is a single stranded DNA belonging to the D-loop. It is proposed that the 7S 

DNA is a prematurely terminated product from mtDNA replication of the H-strand. The ratios 

of the 7S DNA to the total amount of mtDNA were different between the patients but varied 

between twofold and eightfold increase (Figure 17a black bars). A 1,5 fold increase is 

accepted as maximal theorethical accumulation of 7S DNA in healthy cells, if 100% of the 

mtDNA has 7S DNA. This finding suggests that MGME1 might participate in the turnover of 

7S DNA.  

In conclusion, the mtDNA in muscle from MGME1 patients is depleted and contains 

highly increased amounts of 7S DNA. If we assume that the 7S DNA accumulation is a result 

of prematurely terminated replication, its accumulation in these patients would suggest the 

direct involvement of MGME1 in mtDNA replication and its control of the 7S DNA turnover. 

To find out if this 7S DNA accumulation is present also in other tissues than muscle, 

qPCRs were performed also with fibroblast sample from P1976 with the same primer pairs. 

The 7S DNA effect was clearly visible in the fibroblasts from P1976 in comparison to control 

(Figure 17b). The values are normalized to the control sample.  

To confirm that blood is also a good source for detection of the 7S DNA effects, 

qPCRs were performed in the same conditions as in the previous experiments on blood 

samples from P2061 and P3737. The 7S DNA increase was also significant in both blood 

samples, which may be important for non invasive diagnostics. In consistence with the 

literature, the muscle contained the highest amount of total mtDNA, then the fibroblast and 

the mtDNA content was lowest in the blood.  

In order to confirm that the copy number increase is detectable in the entire 7S DNA 

region, I optimized fourteen different primer pairs with SybrGreen qPCR, by which I could 

display the changes in the mtDNA copy numbers inside and outside the 7S DNA. As the 7S 

DNA increase was detectable in blood samples, the PCRs were performed with blood DNA 

from P1976, P2061 and P3737, as well as with one control blood sample (Figure 18).  

All three samples showed similar pattern of high copy numbers in the entire 7S DNA 

region between np191 and 16,106, with strongest 7S DNA effect in P3737.  
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Figure 18   Relative mtDNA copy numbers, with eleven primer pairs outside and inside the 7S DNA 
region. Blood samples (BL) from three affected members from the Lebanese family, and a control 
sample were included in the experiment. The 7S DNA region starts from np 191 to np 16,106. The 
values are normalized to the BL control. All samples from affected members of the Lebanese family 
show elevated levels of 7S DNA in comparison to the control BL sample.  
 

3. 1. 4 Overexpression of wild-type MGME1  

 

Our collaborators in Munich have transfected fibroblast from P1976 with lentiviral wild-type 

MGME1 expression construct, in order to examine whether rescue experiment would 

compensate the lack of MGME1. I used isolated DNA from that cell line to detect the 7S DNA 

levels and the total mtDNA amount. A possible compensatory effect would confirm the 

causative role of the MGME1.  

Two weeks expression of the wild-type MGME1 had decreased significantly the 7S 

DNA amount in the fibroblast from P1976 (Figure 19). Overxpression of MGME1 led to 

decrease in the overall amount of the mtDNA in the transfected cells, in comparison to 

controls and the non-transduced P1976 fibroblasts. Simillar effect on the 7S DNA and the 

overall amount of mtDNA was visible as well in the control cell line, after transduction with 

the wild-type construct (Figure 19a). This experiment is in line with the suggested 

exonuclease activity of the enzyme and its direct effect on the 7S DNA turnover.  

To check the total mtDNA and 7S DNA decrease in the complemented cells, in 

comparison to the non-transduced P1976 fibroblasts, I have detected by qPCR the variation 

in the copy number inside and outside the 7S DNA with eleven primer pairs, as already 

shown for the blood samples of the MGME1 patients. The decrease in the 7S DNA was 

clearly visible and getting stronger with the increase of the lentivirus titer applied (Figure 

19b).  
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Figure 19   mtDNA copy number in fibroblasts from P1976, transduced with a viral construct 
overexpressing MGME1, compared to control and POLG patients. (a) mtDNA copy number in 
fibroblast sample from P1976 (FB1976) with and without overexpression of wild-type MGME1, in 
comparison to control fibroblast cell line. Grey bars represent the mtDNA relative copy number outside 
the 7S DNA; black bars represent the relative copy number within the 7S DNA region; error bars are 
indicating the SD (+); * indicates significance difference, *p<0,05, **p<0,01; two-tailed Student’s t test 
(Kornblum et al., 2013). (b) Copy number representations with eleven primer pairs outside and inside 
the 7S DNA region in fibroblast samples from one control (FB Control), P1976 (FB 1976) with and 
without transduction with wild-type MGME1 and one POLG patient (PG). The 7S DNA region spans 
from np 191 to np 16,106. +, fibroblast transduced with low titer of lentivirus; +++, fibroblast 
transduced with high titer of lentivirus.  
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The depletion of the mtDNA due to the overexpression of the wild-type gene is also 

visible on Figure 19b. The cells treated with higher titer of the lentivirus are almost loosing 

their 7S DNA, the experiment was confirmed as well by Southern blot by our collaborators in 

Cambridge.  

 

3. 1. 5 mtDNA depletion and repopulation of MGME1 fibroblasts 

 

To investigate the influence of mutated MGME1 on mtDNA replication, mtDNA ddC depletion 

and repopulation experiments were performed in fibroblast cell cultures from patient P1976 

(Kornblum et al., 2013), the Italian patient P4052 and controls (Figure 20). ddC acts as 

competitive inhibitor of POLG and as a terminator of nascent strand elongation (Stewart et 

al., 2011). 12 days treatment of control and patient fibroblasts with the nucleotide equivalent 

ddC, led to mtDNA depleteion with mtDNA falling to less then 10% of the untreated steady 

state level. The results from the ddC treatment experiment revealed severely impaired 

mtDNA repopulation in MGME1 mutated cells. Only 8% of control mtDNA copy number in 

P1976 was reached after 16 days of repopulation without ddC. This demonstrates perturbed 

mtDNA replication, akin to the one observed in POLG patients (Wanrooij et al., 2007). In 

P4052 after withdrawal of ddC, the copy numbers reached 55% of the control copy numbers, 

but still could not recover completely. Both patients showed inability to recover their mtDNA 

levels after mtDNA depletion. 

 

 

Figure 20   Changes in mtDNA copy numbers during induced mtDNA depletion and repopulation of 
fibroblasts from P1976, P4052 and a control. Arrow indicates the withdrawal of ddC. The mtDNA copy 
numbers were determined by qPCR. The data point for mtDNA copy numbers in the control is 
considered as 100% and the rest of the data points are normalized to it. The qPCR was performed by 
using the mitochondrial primers 3922F and 4036R.  
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3. 1. 6 Detection of 7S DNA ends in MGME1 patients 

 

Our collaborators in Cambridge performed series of experiments confirming the function of 

MGME1 and its exonuclease activity (Kornblum et al., 2013). MGME1 showed 5’ end 

exonuclease activity, it prefers single stranded DNA substrates, and can process flap 

structures, that may also contain RNA on their 5’ end. Its 3’ end processing activity is weak. 

As it is dysfunctional in MGME1 patients, and the patients show high amount of 7S DNA, it 

was interesting to check for free ends of the 7S DNA, and determine them in MGME1 

patients, and preferentially the 5’ end.  

In order to detect single stranded free ends, without the need of radioactive labeling, I 

established a modified version of the ligation-mediated PCR (LM-PCR) described originally 

by Kang et al. in 1997. The method is simple enough to be used for screening of large 

numbers of samples and can successfully detect free 5’ ends and 3’ ends (Figure 21). 

In order to visualize the 5’ end of the 7S DNA, first, the DNA sample was treated with 

Quick Blunting Kit (NEB), containing T4 polymerase, having 5’ to 3’ polymerase activity and 

3’ to 5’ exonuclease activity. The 5’ end in this reaction does not lose any nucleotides. The kit 

contains dNTPs and T4 Polynucleotide Kinase for phosphorylation of the 5’ end of the 

blunted molecules and its subsequent ligation.  

Although, the 3’ processing activity of MGME1 is weak, in vitro, I have checked for 

alterations also of the 3’-end of the 7S DNA. To this end the mtDNA was treated with Mung 

Bean nuclease (Figure 21), which is a single-strand specific DNA endonuclease, which 

degrades all 3’ and 5’ single stranded overhangs and leaving 5’-phosphorylated blunt ends.  

After filling in or cutting out the overhangs, the molecules should have blunt ends 

suitable for ligation to the blunt-end linker. The linker serves as adaptor; it has a non-

biological sequence consisting of two complementary primers LMP25 and LMP11, which 

form a blunt end only on one side of the adaptor. As the primers used for the linker synthesis 

are not phosphorylated but contain only a hydroxyl group at both ends, only one of the two 

strands will be ligated. Through the asymmetry of the linker, it will be ligated only 

unidirectionally to a free double-stranded blunt end, by the available 5’ phosphate on the 7S 

DNA  and the 3’ hydroxyl group on the primer. The LM-PCR reaction is performed with the 

LMP25 primer used for the synthesis of the linker and a specific primer on the mtDNA for the 

5’-end detection. For detection of the 3’ end of the 7S DNA the mtDNA primer should be a 

reverse one.  
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Figure 21   Schematic representation of LM-PCR for detection of free mtDNA ends. 
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At first, to test the specificity of the technique I performed LM-PCR with LMP25 primer 

annealing to the linker and five different forward primers annealing to the 7S DNA. There 

were prominent PCR products with the expected size, amplifying the 5’ end of the 7S DNA 

(Figure 22a). On the gel picture one can notice that the products in the fibroblasts sample 

from P1976 are slightly longer then the ones in the control. To be sure that there were no 

PCR artifacts due to the ligation and the nuclease treatment of the DNA, I performed ligation 

incubations without adding linker or T4 ligase, and in both cases the PCRs did not amplify a 

product (Figure 22b). Additionally, I performed ligation of the DNA from P1976 and a control 

with only one primer (LMP25) (data not shown). There was no detectable PCR product, 

which confirmed that the observed reactions are amplifying mitochondrial blunt end 

molecules.  

In MGME1 patients, for detection of the 5’ 7S DNA end with nucleotide position 191 

(Clayton, 1996), a linker primer LMP25 and mitochondrial primer 10F ware used, in LM-PCR 

(Figure 23 upper panel). If the 5’ end of the 7S DNA is at np 191, the LM-PCR would give a 

product of 181 bp, which is indeed the observed PCR product in the fibroblast controls 1 and 

2 (Figure 23). In both MGME1 patients the LM-PCR resulted in slightly longer products. 

For detection of the 3’ 7S DNA end at position 16,104–16,106 (Clayton, 1996) a linker 

primer LMP25 and mito primer 16,413R ware used in LM-PCR (Figure 23 middle panel). If 

the 3’ end of the 7S DNA is at np 16,106, the LM-PCR would give a product of 307 bp, which 

was the observed PCR product in both MGME1 patients and controls. No changes in the 3’ 

7S DNA end were observed in MGME1 patients in comparison to controls. To confirm my 

results, I have treated the mtDNA from P1976 with S1 nuclease. It has single strand 

nuclease activity and also leaves phosphorylated 5’ ends, but opposite to Mung Bean 

nuclease it cuts the DNA in single-stranded regions caused by a nick, gap, mismatch or loop. 

The results from the LM-PCR were the same as those with Mung Bean treatment and it was 

confirmed as well by sequencing (Figure 23 lower panel). 
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Figure 22   LM-PCR visualization of the 5’ end of the 7S DNA. (a) Determination of 5’ 7S DNA end 
with linker primer LMP25 and seven different forward primers in fibroblasts from P1976 (FB 1976) and 
a control (FB Control). (b) LM-PCR with mtDNA from human muscle mitochondria, and primers 
LMP25T7/108F, when either the linker or the T4-ligase is missing the reaction does not amplify a 
product.  
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Figure 23   LM-PCR after T4-polymerase (T4), Mung Bean nuclease (MuB) and S1 treatment of 
fibroblasts from patients with MGME1 mutation and controls. The 5’ 7S DNA end in the MGME1 
patients (FB 1976 and FB 4052) is slightly longer then the one detected in controls (C1 and C2). The 
3’ 7S DNA end seems unaltered in both controls and MGME1 patients.  
 

To detect the exact ends of the 7S DNA, I have performed a smPCR with the ligated 

mtDNA. For the 5’ end, I have used the T4 polymerase treated DNA and for the 3’end the 

Mung Bean nuclease treated DNA. By Sanger sequencing, the sequence of the linker can be 

easily recognized from the mtDNA fragment and the exact nucleotide position of the 7S DNA 

end can be detected. To assure the amplification of mitochondrial DNA and also to exclude 

the sequencing of short non-mitochondrial ligated on their both ends fragments, each 

detected single molecule was re-amplified with the linker primer and another mitochondrial 

primer inside the amplified molecule. In this way I screened the fibroblasts sample from 

P1976 and one control fibroblasts cell line. The result revealed various 5’ ends, which were 

longer in the MGME1 patient in comparison to the known size of the 7S DNA (Figure 24).  
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a 
Sample 5’ end (QBK) 3’ end (MuB) 

P1976 170; 183; 186; 191; 194; 197; 16,106 

 200; 204; 205; 206; 207; 215 

 229; 238; 298; 301 
 

FB Control 151; 191 16,104 

 

b 

 

 

Figure 24   7S DNA ends mapped by single-molecule LM-PCR. (a) Free 7S DNA ends detected in 
fibroblast from P1976 and fibroblasts control cell line (FB Control). The 5’ ends were detected after 
Quick blunting kit (QBK) treatment of the mtDNA, LM-PCR and sequencing. The 3’ ends were 
detected after Mung Bean (MuB) nuclease treatment, LM-PCR and sequencing. In red are marked the 
7S DNA ends known from the literature. (b) Example of six detected by smLM-PCR ends in fibroblasts 
from P1976. The linker is marked in red and the arrows indicate the free 5’ and 3’ end point. 
 

The results in the control fibroblasts are in consistence with previous findings. The 5’ 

end of the 7S DNA is at np 191 (Clayton, 1996) and the 3’ end is at np 16,104. Several 5’ 

ends have been described and they are all extending up to 191 np, for example, in controls 
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one of these ends was detected, at position 151. In opposite to controls, in the MGME1 

patient P1976 there were many and various 5’ ends of the 7S DNA, which were with ends 

predominantly above np 191. A scheme of some of the mapped free ends is shown in Figure 

24b.  

According to Clayton the 3’ end of the 7S DNA is at positions 16,104 to 16,106. The 

3’ end of the 7S DNA seems to be unaltered in patients with MGME1 mutation. The 3’ 7S 

DNA end in P4052 was also checked with Mung Bean treatment and represented the same 

end point of 16,104–16,106. 

 

3. 1. 6. 1 Light strand origin of replication and free ends 

 

As the ligation-mediated method is detecting free DNA ends, it should be able to detect any 

kind of double-stranded free ends and not exclusively only the 7S DNA ends. Therefore, I 

performed screening for free ends over the entire mitochondrial genome of P1976 fibroblasts 

sample and one control sample. I used thirteen different reverse mtDNA primers and the 

linker primer LMP25. In P1976 the LM-PCR with primer 5985R has amplified a free end, 

which is localized at the origin of replication of the light strand (OL) and was not detectable in 

the controls. As OL is covering a region from np 5721 till 5798, by using reverse primer at 

position 5985, a free end at OL shall give a product with size between 212–289 bp (between 

the LMP25 and 5985R) (Figure 25).  

The free OL end was confirmed by sequencing of smLM-PCR products, the exact np 

position of the free end is 5771–5772, within OL. The same free end was detectable as well 

in the Italian patient P4052. Therefore, it appears that loss of MGME1 causes accumulation 

of free double-stranded ends around the light strand replication origin or accumulation of 

patient specific linear fragments. The data was confirmed also by Southern blot (experiment 

provided by our collaborators in Cambridge).  
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Figure 25   LM-PCR showing free end at the OL of MGME1 patients. LMP25 and 5985R primer 
amplify a short product signifying free end around the origin of replication of the light strand (OL). The 
product has size of 213–214 bp. Equal amounts of DNA were used for the reaction. The exact 
breakpoints were determined by single-molecule LM-PCR (Nicholls et al., in preparation). 
 
 
3. 2 Mitofusin 2 and Charcot–Marie–Tooth neuropathy 

 

One of the most common neuropathies, affecting the peripheral nerves and associated with 

mitochondrial dysfunction, is Charcot–Marie–Tooth neuropathy (CMT). CMT type 2A 

(CMT2A) is an autosomal dominant disease, found to be associated with mutations in the 

nuclear gene encoding for mitofusin 2 (MFN2). MFN2 is targeted to mitochondria and 

belongs to the family of dynamin GTPases and plays crucial role in the process of outer 

mitochondrial membrane tethering during fusion of mitochondria (Koshiba, 2004). In this part 

of my doctoral work I investigated the functional effects of different MFN2 mutations on 

mtDNA stability and maintenance, in skeletal muscle and fibroblasts samples from four 

different patients. 

 

3. 2. 1 Patients  

 

Four patients were diagnosed for CMT2A by direct sequencing of the MFN2 gene. The 

sequencing was performed by Susanne Beyer in our lab, and in the lab of Dr. Vielhaber in 

Magdeburg. Each of the four patients (Patient 1 to Patient 4) carried different mutation in the 

MFN2 gene, all affecting different protein domains (Figure 26). Patient 1 harbored a 

heterozygous single nucleotide substitution in exon 11 of the MFN2 gene – c.1126A>G. The 

mutation affects highly conserved amino acid of the protein, in undescribed till now domain. 

As the patient was adopted at newborn age no investigation could be performed in the 
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parents. Patient 2 carried a heterozygous mutation in exon 18 of the gene – c.2120G>C, also 

affecting a conservative region of the MFN2 gene in the HR2 domain. The parents of the 

patient did not show the mutation; therefore, it is a result of de novo mutational event. 

Patients 3 revealed a heterozygous in-frame deletion c.677_688del12 in exon 2 of the MFN2 

gene, encoding for the GTPase domain of the protein. Other affected relatives in the family 

carried the same heterozygous mutation. Patient 4 carried a heterozygous mutation in exon 

4 – c.221A>G, at the P-loop nucleoside triphosphate hydrolase domain, not detectable in the 

mother and the brother of the patient. The mutations in P3 and P4 have not been described 

until now. The mutation in P2, has been recently published (Sitarz et al., 2012).  

 

 

 

Figure 26   Partial sequences representing MFN2 mutations in four patients with CMT2A. Patient 1 (a) 
(reverse sequence), Patient 2 (b), Patient 3 (c) and Patient 4 (d) (reverse sequence); arrow is 
indicating the mutation in each sequence (Vielhaber et al., 2013). 
 

Skeletal muscle biopsies from Patient 1 and Patient 3 were investigated for COX 

activity. Due to strong fatty muscle degeneration, the skeletal muscle of Patient 2 was 

unsuitable for histological examination, and no muscle sample was available from P4. The 

histological investigation from Patient 1 and Patient 3, performed by our collaborators 

(Vielhaber et al., 2013), revealed mild changes and although no COX-negative fibers were 

visible, the mitochondria had an abnormal distribution in the fibers.  

As a disease control patient, a sample from Charcot–Marie–Tooth type 1A (CMT1A) 

neuropathy patient was used. In this case the cause of the disease is a mutation in the gene 

a b 

d c 
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PMP22 causing subsequent demyelination of neurons, thereafter any changes in skeletal 

muscle in this form of the disease are consequences of neurogenic atrophy. As CMT2A is 

caused by a primary mitochondrial dysfunction, all alterations of mitochondrial function are 

expected to be specific, apart from signs of neurogenic atrophy. The appearance of the 

mitochondria in the CMT2A patients under electron microscopy (performed by our 

collaborators, Vielhaber et al., 2013) was very different than the one in the disease control 

patient. The mitochondria appeared swollen, with smaller sizes and visible paucity. The 

results from the histological analysis suggested respiratory disturbances due to the changes 

in the mitochondria. Biochemical analysis in the fibroblasts and muscle from the patients 

performed by Dr. Schoeler showed only increased sensitivity of the respiration to COX 

inhibitor azide (data not shown). The MFN2 mutations appeared to have only mild effect on 

the respiration rate in the samples (data not shown). To elucidate the question how disturbed 

fusion of the mitochondria can affect the phenotype in these patients, I have performed 

genetic investigations of their mtDNA.  

 

3. 2. 2 Copy number determination 

 

The copy number of the mtDNA was measured by qPCR and the samples showed reduced 

copy number of the mtDNA in comparison to the healthy and the diseased controls (Table 

35). 

 

Sample Skeletal muscle Fibroblasts 

Controls 
16,045±8817 

n=15 
1297±188 

n=8 

CMT1A disease control 9116±891 942±87 

CMT2A Patient 1 6211±571* 411±19** 

CMT2A Patient 2 654 ±44* 889±73** 

CMT2A Patient 3 11,440±632 798±64** 

CMT2A Patient 4 no data 633±103** 

 

Table 35   mtDNA copy numbers determined in four CMT2A patients, one diseased control patient 
with CMT1A and controls. The copy numbers were measured in fibroblasts and muscle DNA samples. 
The values were normalized to the values for the single nuclear gene Kir4.1. Standard deviation was 
calculated from three separate experiments. *p<0.05; **p<0.001; Student’s t-test; n, number of 
samples. 
 
 

The absolute copy numbers in tissue samples from all CMT2A patients showed a 

significant, almost twofold decrease, in comparison to both controls. Only Patient 3 had an 

insignificant decrease in the copy number. The highly reduced values in muscle sample from 
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Patient 2 can be explained with the fatty muscle substitution in that sample. As mtDNA 

depletion is often caused by mutations in the POLG gene, all patients were checked for 

mutation in it and all were negative (experiment performed by Susanne Bayer). As mtDNA 

depletion was not observed in the CMT1A disease control patient, the depletion was not 

result of neurogenic degradation, and this reveals new insight into the pathological effect of 

MFN2 mutations and might point to a potential causative role of mtDNA depletion in CMT2A 

neuropathy. To confirm that, a fibroblasts mtDNA depletion experiment with ethidium 

bromide, a strong mtDNA replication inhibitor, was performed by Dr. Schoeler and the data 

showed linear correlation between the reduction of mtDNA copy number and lower 

respiration (Vielhaber et al., 2013). Altered mitochondrial dynamics lead to disturbed mtDNA 

maintenance.  

 

3. 2. 3 mtDNA deletions in CMT2A neuropathy 

 

To investigate the deletion load in MFN2 patients, I performed a common LR-PCR with 

primers 7027F and 45R. All samples showed accumulation of multiple deletions (Figure 27a). 

Deletion quantification was performed in skeletal muscle and fibroblasts from the patients by 

using smPCR. All samples showed accumulation of deletions (Figure 27b and c). 

Particularly, the skeletal muscle from Patient 3 had significantly increased amounts of 

deletions in comparison to controls. This patient showed previously less pronounced 

depletion in comparison to the other patients with CMT2A. Patient 3 is also the only one who 

has a deletion in the MFN2 gene, affecting the GTPase domain of the protein; which might 

be relevant to the slightly different mtDNA status in comparison to the other patients. From 

this result it was evident that MFN2 mutations not only influence the copy number, but also 

cause accumulation of mtDNA deletions. 

The deletion quantification showed approximately 8-fold more deletions in CMT2A 

skeletal muscle and 15-fold more deletions in CMT2A fibroblasts (Figure 27b) in comparison 

to age matched controls. The total level of deletions between 0.0006 and 0.0012 %, was only 

about 0.001 % of total mtDNA (Figure 27b), and therefore, the deletions were unlikely to 

explain the marked decrease of in vivo COX activity.  
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Figure 27   Deletions in CMT2A patients. (a) LR-PCR with CMT2A fibroblast (F) and muscle (M) 
samples from Patients 1 to 4 (P1–P4) and a control sample. Wt, wild-type amplicon; del, deletion 
specific PCR products. Deletion quantification in CMT2A muscle (b) and fibroblast (c) samples (P1–
P4), as well as in one diseased control patient with CMT1A (CX) and a control patient (C). Error bars 
show the SEM from two independent experiments; the significance level was *p<0.05 or **p<0.005 
(Vielhaber et al., 2013). 
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a 

 

b 

 

 

Figure 28   Mapped mtDNA deletion breakpoints in CMT2A patients. On the figure are shown retained 
mtDNA regions. (a) Mapped deletions in the major arc of CMT2A. The graph shows the amplified 
deleted molecules, missing parts of their major arc. In red are shown deletions which are missing their 
OL or are spanning the TAS region of the mtDNA. (b) The graph represents the amplified deleted 
molecules missing parts of their minor arc. In red are shown deletions missing their LSP or OH.  
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All single molecules amplified during the quantification were sequenced and their 

deletion breakpoints were determined (Appendix III). Surprisingly, there were deletion 

species lacking the heavy strand origin of replication (OH), the light strand promoter (LSP), or 

their 3’ breakpoint was spanning over the TAS region (Figure 28). These molecules probably 

cannot replicate and are unlikely to propagate by clonal expansion. They are most probably 

resulting from ongoing mtDNA mutagenesis. This is supporting also the finding that most of 

the mapped deletions were detectable only once and most likely are not clonally proliferating. 

After performing smPCR and detecting the deletions’ breakpoints, it appeared that all 

samples contain deletions also in the small arc of the mtDNA (Figure 28b).  

These non-conventional deletions in the mtDNA minor arc as well as deletions 

removing regions crutial for mtDNA replication might be related to elevated oxidative damage 

and double-strand breakage. To check if such deletions are detectable in samples exposed 

to high oxidative stress, I performed hydrogen peroxide (H2O2) treatment of healthy human 

fibroblast (Spitz, 2010). In order to detect the proportion of damaged mtDNA molecules 

correlating to the increase of oxidative stress caused by the treatment of the cells with H2O2, 

I established a qPCR method, for mtDNA integrity estimation (Figure 29). The method 

combines two PCRs, the first PCR amplifies a short product, flanked by primers 1057F and 

1144R. The lenght of this PCR product is 88 bp and the probability of detecting a breakpoint 

in such small amplicon would be very low, therefore, the detected Ct value would show the 

total amount of mtDNA molecules. The second PCR amplifies a long 5379 bp PCR product, 

amplified by primers 11,226F and 35R. The difference between the two PCR Ct values would 

delineate the intactness of the mtDNA, by comparison of the short and the long PCR product 

amplifiability, which depends on the mtDNA quality. Cycle number differences between the 

two PCRs were measured in the qPCR reactions and the data from the control untreated 

samples were used as reference. For all samples, first, the Ct values for the long product 

were subtracted from the wild-type mtDNA Ct values. Then the control sample Ct difference 

was taken as reference, to which the treated samples were compared in a ratio. In this case 

the control sample represents a value of 1, all treated samples containing less intact mtDNA 

should give a value smaller than 1 (Figure 29).  
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Figure 29   mtDNA damage upon oxidative stress by H2O2. The mtDNA damage is increasing in  
correlation with increase in the oxidative stress, by treatment with different concentrations of H2O2. 
The error bars indicate SEM (+) from three independent experiments. 
 

Multiple deletions in the hydrogen peroxide treated samples were detected by 

smPCR. Breakpoints mapping unveiled that indeed deletions in the minor arc were 

detectable in H2O2 treated fibroblasts and some of them were removing the replication origin 

for the heavy strand at position 191 (Table 36). In the H2O2 treated fibroblasts, I detected as 

well deletions spanning the classical 3’ deletion breakpoint at 16,000–16,100 np and entering 

into the 7S DNA (Table 36).  

 

Deletions in H2O2 -treated fibroblasts 

Minor arc deletions    Major arc deletions 

129–4306 
980–4646 
674–4147 
24–2760 
129–3922 
333–4216 

 

7486–16,247 
6248–16,046 
8104–16,319 
6297–16,192 

 

 
Table 36   mtDNA deletions mapped by smPCR in H2O2 treated human fibroblasts. The deletions 
marked in red in the minor arc are removing the origin of H-strand replication. The deletions in red in 
the major arc are spanning the 16,070–16,090 region of the mtDNA, and are non-conventional 
deletions. 
 

 These non-conventional deletions detected in MFN2 patients and in H2O2-treated 

fibroblasts, cannot replicate and expand clonally due to the missing replication origins and 
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are most probably created de novo. In conclusion, higher oxidative stress might contribute to 

the elevated deletion formation in MFN2 patients. 

 

3. 3 mtDNA deletions in Ammon’s horn sclerosis 

 

ROS production and oxidative stress are implicated as well in the pathology of TLE and 

mitochondrial dysfunction is suggested to play an important pathogenic role in the seizure 

generation and epilepsy. To characterize the dysfunction of mitochondria in temporal lobe 

epilepsy (TLE), I explored the mtDNA from 18 hippocampal brain samples, from patients with 

Ammon’s horn sclerosis (AHS). AHS is characterized with extensive loss of neurons in the 

CA1 and CA3 regions of the hippocampus, and less damage in the AD and the PH regions 

(Margerison and Corsellis, 1966). As a control group, I selected 5 TLE brain samples, with no 

hippocampal sclerosis, and close brain lesion or tumor to the temporal lobe as primary cause 

of the epilepsy (lesion control group). It is known that deletions in the mtDNA accumulate 

with age (Linnane et al., 1989; Bua et al., 2006); therefore, in this study the age of the 

patients was limited between 20 and 40 years, and the detection of high levels of deletions 

due to advanced age was excluded. All samples were obtained from surgery of the 

hippocampus in pharmacologically intractable form of the disease. mtDNA from four different 

regions of the hippocampus – CA1, CA3, AD and PH were checked for deletions by LR-PCR. 

The primers used to perform the LR-PCR amplify large part of the major arc of the mtDNA, 

which is known to be highly prone to deletion formation in different pathological conditions 

(Shoffner, 1989). I used primer pair 5462F/16,115R, which amplifies a wild-type product with 

size 10,654 bp. Mutated molecules containing deletions appear as bands or smear under the 

wild-type sized molecules (Figure 30). All samples were semiquantitatively analyzed for 

deletions content by using ImageJ processing and analysis of the gel pictures. A ratio 

between the wild-type band peak and the summed deletion peaks was calculated, and used 

for semiquantitative measurement of the deletions present in each sample. The background 

intensity was subtracted in the calculations. 

From the LR-PCR reactions of all the 18 AHS patients it was visible that the patients 

with hippocampal sclerosis show higher overall amount of deletions in the hippocampus in 

comparison to the lesion control patients (Figure 30a).  
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a         

 

 

b 

 

Figure 30   LR-PCR and semiquantitative analysis of mtDNA deletions content in TLE patients. (a) 
LR-PCR with mtDNA from CA3 hippocampal region from five AHS and five lesion samples, with primer 
pair 5462F/16,115R; left panel, AHS patients; right panel, lesion patients; C, blood control negative for 
deletions. The group of AHS samples shows higher amount of deletions in comparison to the lesion 
group of samples. (b) mtDNA deletion percentage in four different regions of the hippocampus of AHS 
and lesion patients with TLE. Primers used in the LR-PCR: 5462F/16,115R; AD, area dentate; CA1, 
cornu Ammonis 1; CA3, cornu Ammonis 3; PH, parahippocampus. Error bars indicate SEM (+). 
Standard student’s t-test was used to indicate significant difference; * indicates p< 0.005. There is a 
significantly higher amount of deletions present in AD and CA3 regions of AHS patients in comparison 
to lesion patients. 
 

The group of AHS patients showed accumulation in the CA3 region of the 

hippocampus, whereas the lesion controls had no detectable deletion. Furthermore, in 

comparison to the lesion TLE patients almost twelve fold higher amount of deletions was 

detected in the AD region of the AHS patients  (p<0.005, a standard student’s t-test was 
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used to test the significance of the difference) (Figure 30b). In the CA1 region both groups 

showed almost equal amounts of deletions. In the PH region the amount of deletions was 

very low in the AHS group and not detectable in the lesion TLE patients. This finding 

demonstrates that in difference to lesion TLE patients, significant amount of mtDNA deletions 

are accumulating in AD and CA3 regions of the hippocampus in AHS patients. 

Both groups of patients suffer from TLE, but only the AHS group shows specific 

accumulation of higher amount of deletions in the most affected by the disease region CA3, 

this fact points to the causative function of the mtDNA deletions in TLE with AHS.  

I compared the mtDNA deletion accumulation in four different hippocampal regions in 

11 AHS samples in the age of 20–30 years and a control group of 3 lesion samples in the 

same age (Figure 31). 

 

 

Figure 31   mtDNA deletion amounts in AHS and lesion patients, dependent on age. Primers used in 
the PCR, 5462F/16,115R; AD, area dentate; CA1, cornu Ammonis 1; CA3, cornu Ammonis 3; PH, 
parahippocampus. Error bars indicate SEM (+). Standard student’s t-test was used to indicate 
significant difference; * indicates p< 0.005 between the two marked groups. There is high amount of 
deletions in the AD region of AHS patients, detectable in early age. There are significantly more 
deletions in AD region of AHS patients in comparison to lesion patients in the same age group (20–
30).  
 

Comparison between AHS and lesion patients at the age between 20 and 30 years, 

showed significant difference (p< 0.005) with 21% of deletions in AD region of AHS patients 

vs. 1.3 % deletions in lesion patients (Figure 31). This result demonstrates that specifically in 

AD regions of AHS patients high amount of deletions can be detected in very early stage of 

life.  
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3. 3. 1 Breakpoint ‘hotspot’ for TLE patients with AHS 

  

In AHS patients, classical deletions of the mtDNA tend to have their 3’ end breakpoint at 

nucleotide position 16,070–16,090 (Zeviani, 1989; Guo, 2010). These deletions are 

suggested to result from the attack of reactive oxygen species, due to impaired function of 

the mitochondrial respiratory chain (Baron, 2007; Imlay, 1988). To check if these deletions 

are the main fraction of deletions in AHS patients I performed screening for deletion content 

of the same set of patients with primer pair 5462F/15,623R, in the AD region. The location of 

the reverse primer is excluding the 16,070–16,090 region covered with the previously used 

primer 16,115R.  

 

 

Figure 32   Comparison of relative deletion percentage in AD region, in AHS patients, with two 
different primer pairs. 5462/16,115, including the 16,070–16,090 region and 5462/15,623 excluding it. 
Error bars indicate SEM (+). Standard student’s t-test was used to indicate significant difference; * 
indicates p< 0.005 between the two marked groups. 
 

 The change in the primer pair influenced the amount of detectable deletions in the 

AD region of AHS patients (Figure 32). In AHS patients, a great amount of the deletions 

seem to be deletions with 3’ breakpoints in the 16,070–16,090 region. Change of the primer 

in lesion patients had no effect on the deletion / wild-type ratio. Overall, these results suggest 

a different pathological mechanism leading to deletions in AHS patients in comparison to 

lesion patients.    

Previous single-molecule PCRs of AHS samples, performed in our lab have 

frequently detected one specific species of large scale deletion with np 8649–16,084 deleting 

a 7436 bp (7.4 kb) long part of the mtDNA, flanked by two 12 nt of long perfect direct 



Results 
 

 93 

repeats. This deletion, with 3’ breakpoint in the 16,070–16,090 region, has been described in 

different diseases such as cancer, endocrine disorders, and chronic disorders (Nicolino, 

1997; Yamamoto, 1992) and its detection can be relevant indicator for underlying processes 

specific for AHS. Therefore, I checked its distribution among 66 AHS samples and 22 lesion 

TLE samples. All mtDNA samples were isolated from the CA3 region of the hippocampus. As 

a reference I amplified the ubiquitous ‘common deletion’ – 4977 bp, found to be surrounded 

by 13 nt direct repeats, and have compared its intensity with the intensity of the 7.4 kb  

deletion by ImageJ evaluation. The common deletion is frequently used as a biological 

marker for aging and has been used since long time as an indicator of ongoing mutagenesis 

of the mtDNA (Shoffner et al., 1989; Berneburg et al., 1999). 

I detected the 7.4 kb deletion by using primers 8282F and 16,115R that flank the 

deletional breakpoints, when the deletion is present the amplified product has size of 398 bp. 

The ‘common deletion’ has breakpoints at 8482 and 13,459 bp position and is 4977 bp long. 

For its detection I have used primers: 8282F and 13,684R, when the deletion is present the 

PCR product has size of 426 bp. I set up a multiplex PCR, which can detect both deletions 

simultaneously (Figure 33). It is a PCR containing all three primers 8282F:13,684R:16,115R 

in ratio 4:3:1, optimized to increase the specificity of the PCR, assuring the detection of the 

common deletion even at lower levels. The PCR products of both deletions appear as two 

close bands, from which the upper band is the common deletion and the lower band is the 

specific deletion.  After acquiring the images they were evaluated with ImageJ and ratio 

between the intensities of the two deletions was calculated. When the intensity ratio between 

the specific and the common deletion was higher then zero the sample was considered 

positive for the 7.4 kb deletion. 

 

 

Figure 33   Multiplex PCR of AHS and lesion TLE samples. The upper panel includes 15 AHS 
samples and the lower panel 15 lesion  samples, from the hippocampal CA3 region. Reaction 
products were loaded on 3% agarose gel. The upper 426 bp band represents the common deletion, 
4977 bp; the lower 398 bp band represents the 7436 bp deletion (7.4 kb deletion); (++) positive control 
for both deletions.  
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In the experiment I included double positive brain sample, that reproducibly showed 

the same pattern. The positive sample was checked by sequencing of DNA extracted from 

excised from the gel product. 

The analysis of the CA3 region of all 66 AHS samples and 22 lesion samples 

revealed that 63% of the AHS samples contained both the common deletion and the 7.4 kb 

deletion, in comparison to 9% of the lesion samples. This result confirms that deletion 8649–

16,084 is more often detectable in AHS samples and is more specific for TLE with 

hippocampal sclerosis then lesion based TLE. 86% of the lesion samples contained only the 

common deletion, which confirms it as one of the most often described deletions in 

degenerative tissues. There was no sample containing only the specific deletion, neither in 

the AHS nor in the lesion group of patients. 

After confirming the 7.4 kb deletion as one prominent deletion species from the 

16,070–16,090 cluster, typical for CA3 region of AHS samples, it was interesting to find out if 

it is characteristic for other hippocampal regions of the AHS patients. I performed a screening 

of another 121 AHS samples, from which 25 samples from CA3, 46 samples from PH, 30 

samples from CA1 and 20 samples from AD region. In the lesion group I checked 31 new 

samples, from which 7 samples from CA3, 12 samples from PH, 9 samples from CA1 and 3 

samples from AD region. The result showed very high frequency of the 7.4 kb deletion in 

AHS samples in comparison to lesion samples. The deletion is characteristic for all brain 

regions in AHS samples with lowest frequency in the PH region, which is comparable to the 

lesion group of patients. Above 70% of the samples from CA1, AD and CA3 region were 

positive for the deletion. This result confirms the importance of 7.4 kb deletion and raises the 

question for its frequency and plausible function in seizure development or degeneration of 

the hippocampus in AHS patients.  

AHS brain sample sequenced by Next Generation Sequencing in our group 

demonstrated plenty of classical deleted molecules carrying 5’ breakpoint at position 5786 

and 3’ breakpoint at position 16,078, also layng in the hotspot region of 16,070–16,090 np. 

To check its segregation in other AHS samples I optimized a multiplex PCR for its detection, 

by using primers 5462F and 16,503R. I checked for the frequency of that deletion in 24 AHS 

and 16 lesion brain samples. 62.5% of the AHS samples were positive in comparison to 

12.5% in the lesion samples. This result again points at the specificity of clonally expanding 

deletions in AHS brain. The absence of these types of deletions in lesion patients confirms 

the theory that clonally expanding deletions are having pathologic role in TLE with AHS and 

these deletions described above might be as well hotspots for deletion formation in TLE 

patients with AHS. 
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4. Discussion 

 

4. 1 Exonucleases in mtDNA replication, repair and recombination 

 

The processes of replication, repair and recombination rely, among others, on the activity of 

nucleases. Very little is known about the nucleases localized to mitochondria that act on the 

mtDNA. In humans, helicase/nuclease DNA2 was suggested to localize both to the nucleus 

and the mitochondria (Duxin et al., 2009) and recently, another endonuclease FENMIT, a 

mitochondria localized truncated isoform of FEN1 was described in humans (Kazak et al., 

2013). FENMIT binds preferentially to flap structures containing 5' RNA flap and is recruited 

to RNA-DNA hybrids in conditions of inhibited replication. FEN1 is a 5'-flap endonuclease 

and 5'→3' exonuclease known to function together with DNA2 in the nucleus (Budd and 

Campbell, 1977). Similar to the function of DNA2 and FEN1 in the nucleus, it was suggested 

that in mitochondria they participate in the processing of flap structures and forked substrates 

in mtDNA repair through LP-BER and in mtDNA replication. Nevertheless, the knock down 

neither of FEN1 nor DNA2 disturbs the process of mtDNA replication (Ruhanen et al., 2011). 

Apart from FEN1 and DNA2, which have double localization, a third unique 5′-

exo/endonuclease EXOG was also found to function in mtDNA repair. The involvement in 

mtDNA replication of FEN1, DNA2 and EXOG is not clear. Altogether, the knowledge over 

the mitochondrial nucleases is very poor and probably many nucleases are yet to be 

discovered. For example, the turnover of the mitochondrial 7S DNA molecule is very fast, but 

the enzyme involved in its degradation is unknown. Recently, we identified a novel 5’-

exonuclease, MGME1 that might be involved directly in the processing of the 7S DNA 

molecule and its degradation.  

MGME1 was shown to localize to mitochondria via immunohistochemical subcellular 

localization, by GFP-tagging and cell fractionation, performed by our collaborators in 

Cambridge (Kornblum et al., 2013). They performed detailed investigation of the enzymatic 

properties of MGME1, which revealed that it cleaves ssDNA, but not ssRNA or RNA-DNA 

hybrids. It has strong preference for ssDNA over dsDNA, and processes more efficiently 5’ 

DNA ends then 3’ ends (Kornblum et al., 2013). Such single stranded DNA is the 7S DNA, 

that can be substrate of MGME1. 

There are several theories over the formation of the 7S DNA and its function. It was 

suggested that the 7S DNA participates in the priming of the heavy strand replication of the 

mtDNA and if it is true, its level has to be kept high in order to respond fast to the needs of 

the cell; or it is a result of replication stalling at the TAS region (Doda et al., 1981). On the 

other hand, in the strand-displacement model of replication, the formation of the 7S DNA 

fragment is being suggested to be the last step of the H-strand replication and formed by its 
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termination at the TAS region (Berk and Clayton, 1974) Another theory claims that 7S DNA is 

needed for maintaining the dNTPs pools, as with the increase of the dNTPs the 7S DNA 

levels as well elevate, but the mtDNA copy number does not change. Thus, the 7S DNA 

levels are changing in the different phases of the cell cycle in response to the needs of the 

cell (Antes et al., 2010). However, its generation, function and turnover are a matter of 

dispute.  

Samples from MGME1 patients appeared to contain a huge amount of 7S DNA 

(Figure 17 black bars, Figure 18), far exceeding the broadly accepted 1.1 fold 7S DNA 

accumulation detected in healthy individuals. If 100% of the mtDNA molecules contain  

7S DNA, the maximal theoretical accumulation of 7S DNA should not exceed 1.5 folds. In 

muscle from the MGME1 patients, the ratios of 7S DNA to the total amount of mtDNA were 

two to eight folds higher then in age matched controls, in five of the six investigated patients 

(Figure 17a). High 7S DNA level was detectable as well in the fibroblasts from the patients 

and was missing in the control fibroblasts cell line (Figure 17b). Blood samples and cells with 

MGME1 function down-regulated by siRNA (experiment provided by our collaborators in 

Cambridge) showed as well 7S DNA accumulation (Kornblum et al., 2013). In blood samples 

the elevated amount of 7S DNA was confirmed by qPCRs with different primers spanning the 

whole 7S DNA region (Figure 18).  The accumulation of 7S DNA in MGME1 deficient 

samples, would suggest that MGME1 participates in the turnover of the 7S DNA. In support 

to that hypothesis, 7S DNA had elongated half life under mtDNA replication inhibition 

(performed by our collaborators in Cambridge) with fibroblasts from MGME1 patients. 

However, one should mention that strong MGME1 overexpression leads not only to 7S DNA 

degradation but also to overall mtDNA depletion, in MGME1 patients and in controls (Figure 

19).  

 

 

 
Figure 34   Structure of the D-loop containing the 7S DNA. In green is shown the 7S DNA; L, light;  
H, heavy; LSP, light strand promoter; HSP, heavy strand promoter; CSB, conserved sequence block; 
OH, heavy strand origin of replication; TAS, termination associated sequence (modified according to 
Zhang and Pommier et al., 2008 and from our paper in preparation Nicholls et al.). 
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It has been shown that there are several types of 7S DNA (Figure 34), which differ in 

length, with 191 as the longest 5’ end reported in the literature, defining as well the H-strand 

origin of replication (Clayton, 1996; Bogenhagen and Clayton, 1977). This fact might be 

related to the theory of 7S DNA playing priming role in H-strand replication. 

Additionally to 191, np 168, 151 and 110 are the only identified 5’ end positions listed 

in the literature until now (Crews et al., 1979; Kang et al., 1997; Pham et al., 2006). 

According to the literature the 3’ end of the 7S DNA is at position 16,104–16,106, and it 

contains the termination associated sequence TAS (16,157–16,172). No variations were 

registered until now at the 3’ end of the 7S DNA molecule (Clayton, 1996; Doda et al., 1981). 

As MGME1 is involved in the turnover of 7S DNA and it is a 5’-exonuclease 

processing single stranded DNA, a question raised if MGME1 performs processing of the 5’ 

end of the 7S DNA molecule, and if so, how does this end look like in MGME1 deficiency. 

One has to remember that MGME1 activity on 7S DNA is possible only if the 7S DNA 

molecules are not completely annealed to the template DNA and a free 5’ end is available 

(based on the in vitro data). The exact state of annealing of the 7S DNA was not studied until 

now. The formation of such 5’ flap end close to the 191 np can be result of replication 

termination of the heavy strand of the mtDNA, which when fully replicated would displace the 

7S DNA and create the 5’ end flap. The formation of 5’ 7S DNA flap end might as well occur 

due to the formation of secondary structures in the D-loop. It was suggested that the 

sequence of the D-loop at its 5’ end allows the formation of a cloverleaf-like structure, which 

when folding would incorporate the CSB1 sequence and all major 5’ 7S DNA ends. If this 

cloverleaf-like structure forms in the template L-strand subsequent to D-loop synthesis, the 

7S DNA will not be able to anneal and will retain 5’ free end, in the form a large flap (Brown 

et al., 1986). 

By establishing a single-molecule blunt-end ligation-mediated PCR technique (Figure 

21), using T4 polymerase blunting for detection of the 5’ end of the 7S DNA and Mung Bean 

nuclease blunting for the 3’ end, I confirmed the expected nucleotide positions, 191 (and 

shorter) and 16,104 for both ends of the 7S DNA in controls. In opposite to controls, MGME1 

fibroblasts from P1976 had varying 5’ 7S DNA ends, often exceeding position 191, and an 

unchanged 3’ end (Figure 24). Most molecules detected in the MGME1 patients revealed 

longer 5’ end of the 7S DNA. This result is in consensus with the impaired 5’-exonuclease 

activity of MGME1 in the patients. Thus, we conclude that the mutation in the MGME1 gene 

led to accumulation of 7S DNA molecules inefficiently processed at their 5’ end. One 

possibility is that the longer 7S DNA molecules can be a result from aberrant RNA-DNA 

transitions. The longest detected 5’ 7S DNA end is at position 301, which is close to the 

beginning of the CSB2 (299–315) (Figure 34), and the site of transcription termination and 

primer formation of the mtDNA (Pham et al., 2006). However, as shown by our collaborators 
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in Cambridge, treatment with RNase did not change the detectable 7S DNA ends; therefore, 

the RNA-DNA transitions are not affected in MGME1-null cells. In this case in the next step 

after the RNA-DNA transitions at the CSBs, the 5’ DNA end of the 7S DNA precursor 

molecules has to be processed additionally by MGME1 to the known positions of the 7S DNA 

(191 and shorter) (Nicholls et al., paper in preparation). These findings are very important, as 

previously, it was not clear that the 5’ end of the 7S DNA has to be processed, apart from 

removing the RNA primers. However, in MGME1 patients, this process is disrupted, which 

would explain the accumulation of longer 7S DNA molecules in these patients. In agreement 

with this, longer 7S DNA molecules were found to have greater stability and longest half-lives 

in mouse models for D-loop synthesis kinetics determination (Bogenhagen and Clayton, 

1978), which might explain the accumulation of 7S DNA in MGME1 patients, eventually 

based on its slower degradation.  

LM-PCR is a very powerful technique to detect free DNA ends; therefore, I checked 

the entire mtDNA genome for such free ends in controls and MGME1 fibroblasts. 

Surprisingly, in addition to the 7S DNA ends one other free end species was visible in the 

MGME1 patients and sequencing revealed a free end of a patient-specific linear mtDNA 

fragment at position 5771 and 5772. This position is located within the light strand origin of 

replication. Another free dsDNA end was as well detected at the OH, by native DNA ligation 

(data not shown). Such free ends were not present in controls (Figure 25). A linear product 

with these ends would have size of around 11-kb and would include the entire mtDNA major 

arc. The formation of such 11-kb molecule between the two origins of replication was 

described in the POLG-deficient ‘mutator mouse’. It was suggested that such fragments are 

being formed by spontaneous nicking of single stranded DNA at arrested replication forks 

near OH and OL (Bailey et al., 2009). S1 treatment, as well, can generate these fragments, as 

the junctions near the origins of replication are very prone to nicking (Bailey et al., 2009). A 

chromosome breakage of a theta replication intermediate with ends at both replication origins 

might generate also such linear fragments. This is the first time that such DNA linear 

molecules are described in human mitochondrial pathology. As MGME1 acts preferentially 

on ssDNA in vitro, its putative role in the degradation of this blunt-end double-stranded 

mtDNA fragment is less probable; therefore, these molecules might be indeed product of 

replication stalling or a product of replication pausing at the origins of replication, providing a 

checkpoint of the replication process. Indeed, the restart of a stalled replication is known to 

be bound to the function of 5’→3’ exonucleases, therefore, MGME1 might support the 

replication fork to pass the replication checkpoint; in such scenario, MGME1 absence would 

lead to lasting stuck replication and eventually to chromosomal breakage.  

In this study, I showed that dysfunction of MGME1 protein leads also to the 

accumulation of mtDNA rearrangements, detectable with long-range PCRs in muscle 
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biopsies, blood and urine samples from all the affected patients (Figure 15). The 

rearrangements in the MMD patients were very big and atypical for other mitochondrial 

diseases, for example in comparison to the deletions observed in a POLG patient, which 

might be important for the easier diagnostics of MMD patients’ carring MGME1 mutation 

(Figure 15). The amount of mtDNA rearrangements in MGME1 patients was in the range 

from 0.4% to 1.5% (Table 33). The amount of rearrangements detected in the MGME1 

patients was higher in comparison to age matched controls and comparable to the amount of 

deletions detected in a POLG patient harboring a p.Ala467Thr mutation in the POLG gene. 

P931 showed the highest amount of rearrangements, which can be explained with the 

advanced age (57 years) at the time of biopsy in comparison to the other patients (10–37 

years).  

As the amount of deletions in POLG and rearrangements in MGME1 patients was 

similar, but the pattern of MGME1 rearrangements was very distinct, it was important to 

characterize and compare the breakpoints spectra in both pathological conditions. POLG 

patients showed mostly deletions affecting the mtDNA major arc between the two replication 

origins (Figure 16). MGME1 patients were missing the classical major arc deletions and the 

starting positions of the detected breakpoints were clustered in the minor arc around the 

tRNAPhe gene, in the 12S ribosomal RNA gene and near to the tRNALeuUUR gene. In 

difference to the POLG patients MGME1 patients harbored multiple rearrangements erasing 

2/3 of the mtDNA molecule, including the light strand origin of replication (Figure 16). The 

absence of light strand origin of replication makes these molecules unable to propagate. 

However, many of them were detectable repeatedly in the individual patients. One possible 

explanation could be, if the detected breakpoints are not actual deletions, but complex 

structures, such as partial duplications. Detailed analysis revealed that the detected 

breakpoints indeed originated mainly from partial duplications (Figure 16c). This finding can 

explain the clonality of these rearranged molecules missing apperantly their light strand 

origin of replication. In support to that finding, sequencing of the mtDNA of P931 and P3737 

revealed presence of insertions of small D-loop multimers in these two patients (Table 34) 

and they can be result from the detection of more perplexing structures of the mtDNA. Such 

multimers were observed in the ‘mutator mouse’ (Williams et al., 2010) and it was suggested 

that they might indicate the ineffective replication termination, which needs the exonuclease 

activity of POLG (Brown et al., 2005; Williams et al., 2010). In this case, our results would 

point out to the additional involvement of MGME1 in replication termination.  

The 11-kb fragment might play role in the generation of these non-standard 

rearrangements, as free ends are widely accepted as precursors for deletion formation. Such 

precursors can be formed after double-strand break (DSB) at replication stalling sites. The 

repair of these DSBs is based on the mechanism of homologous recombination. However, 
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breakpoints close to the OL were missing, therefore, the linear fragment detected with  

LM-PCR does not participate in recombination, or the mechanism of homologous 

recombination is not functioning properly, which actually can explain the missing major arc 

deletions, in MGME1 patients. These assumptions would suggest, that MGME1 is needed for 

the process of homologous recombination. 

Three-dimensional modeling of the MGME1 active site and alignment comparison 

performed by our collaborators, showed high homology of MGME1 with the RecB catalytic 

residues of the RecBCD enzyme of E. Coli (Kornblum et al., 2013). Homology modeling of 

MGME1 active site based on the crystal structure of RecB in E. coli revealed very similar 

structure of the key catalytic residues of MGME1 (Kornblum et al., 2013). RecB is involved in 

end-processing in the process of recombination, which might be the case as well for 

MGME1. The homology of MGME1 to RecB is another confirmation of its function as an 

exonuclease that might be involved in recombination, and would turn MGME1 into the first 

described mitochondrial exonuclease directly involved in the processes of replication and 

recombination. The non-standard breakpoints detected in the MGME1 patients might occur 

by alternative forms of single-strand generation, in the absence of MGME1, in order 

homologous recombination to take place. The clustering of two of the breakpoints hotspots 

close to the D-loop might be explained by the higher probability for that region to be in a 

single-stranded state. And the third hotspot at tRNALeuUUR is a mitochondrial transcription 

termination factor (mTERF1) binding site, which might lead as well to the formation of single-

stranded regions, required during homologous recombination.  

Analysis of the breakpoints detected in the MGME1 patients showed equal amount of 

both type of rearrangements, with and without direct repeats (with minimal length of 5 nt) 

(Appendix I), similarly to the analyzed deletions in the POLG patient (Appendix II), which 

does not point to a specific mechanism of the breakpoints formation in POLG and in MGME1 

patients. 

Besides mtDNA rearrangements, mtDNA depletion is common feature for MMD 

patients, it was interesting to find out weather this is the case in MGME1 patients. Substantial 

depletion was observed in all affected patients (Figure 17 grey bars), except in muscle from 

P1976, which might be in connection with the fact that the muscle biopsy was taken at the 

age of 10 and at that time the patient was mildly symptomatic. The fact that the MGME1 

patients carry multiple mtDNA rearrangements and represent mtDNA depletion suggests that 

the primary cause of the disease in MGME1 patients is mtDNA maintenance perturbation 

and points to the importance of MGME1 in mtDNA maintenance.  

In mtDNA depletion and repopulation experiments in fibroblast cell lines from patients 

P1976 and P4052 and a control fibroblasts cell line, we used 2’-3’-dideoxycytidine (ddC) that 

competes with the natural substrate deoxycytidine for DNA incorporation (Waqar et al., 1984) 
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and causes replication termination due to missing 3’-oxygen of the ddC (Mitsuya et al., 

1987). Polymerase alpha, which is the main nuclear active polymerase, has low affinity to 

ddC which insures the low cytotoxicity of the method, whereas polymerase gamma in the 

mitochondria can use it as a substrate. In this way, only the replication in mitochondria is 

being specifically affected (Lee et al., 2009). 12 days treatment of control and patient 

fibroblasts with ddC, followed by 16 days of repopulation without ddC, led to recovery of only 

5% of control mtDNA copy numbers in P1976 and 55% in P4052 (Figure 20). These results 

revealed severely impaired mtDNA repopulation in MGME1 mutated cells.  

Figure 35 depicts our hypothesis over the function of MGME1 in mtDNA 

maintenance. 

 

 

Figure 35   Proposed function of MGME1 in mtDNA maintenance (adapted from Kornblum et al., 
2013). Replication intermediates are accumulating due to mutation in MGME1 or siRNA, which leads 
to mtDNA depletion and 7S DNA accumulation (right black arrow up). Overexpression of MGME1 
leads to 7S DNA degradation and overall mtDNA depletion (right black arrow down). 

 

Shortly after our publication, Szczesny et al. (2013) have described the same 

nuclease, and they have called it Ddk1 based on its predicted catalytic residues. They have 

shown that Ddk1 is metal-dependent nuclease, targeted to mitochondria, involved in the 

regulation of 7S DNA turnover, with single DNA strand affinity, and requiring free ends to 

fulfill its function. In contrast to our findings, the authors claimed that Ddk1 had a putative 

3’→5' exonuclease function, which was not supported by later findings. In consensus with 

our findings, Ddk1 binds to the free end of a substrate and moves along it until hydrolysable 

site is reached, in this way it differs from all other DNAases described until now. This ability 
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of the enzyme to slide over RNA, might suggest involvement of Ddk1 in other mtDNA 

transactions (Szczesny et al., 2013). 

In conclusion, we have discovered a novel gene encoding for the protein MGME1, a 

5’-exonuclease located to mitochondria. Its loss of function leads to the formation and 

accumulation of unusually large partial duplications. mtDNA depletion and accumulation of 

replication intermediates, such as the 7S DNA. It is the first dedicated mitochondrial 

exonuclease proven to be directly involved with the process of mtDNA replication. MGME1 is 

able to process DNA flap structures, as well as flap structures containing RNA at their 5’ end. 

Nucleases described until now that function in mitochondria FEN1, DNA2 and ExoG have 

functions more focused on repair of the mtDNA, but their involvement in replication was not 

reported, and MGME1 seems a good candidate for flap processing of intermediates during 

mtDNA replication, for example of displaced DNA containing Okazaki fragments during 

lagging strand synthesis or in LP-BER (Kornblum et al., 2013). 

Figure 36 sums up our knowledge for mtDNA replication; and in Figure 37 are 

summarized all findings over the dysfunction of MGME1 and its hypothetical involvement in 

replication and repair, as well as description of the possible 5’ flap ends formations, which 

are substrates for its function. 

 

 
Figure 36   Replication fork at the mtDNA (adapted from nuclear replisome by Burgers and Seo, 

2006). 
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4. 2 Mitochondria dynamics and mtDNA maintenance 

 

Impairment of mitochondrial dynamics due to mutations in nuclear genes encoding for 

proteins participating in the processes of fusion and fission, is leading to different 

mitochondrial disorders with unclear molecular pathologic mechanisms. Such disease is 

Charcot–Marie–Tooth neuropathy type 2A (CMT2A). CMT2A is an autosomal dominant 

axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), 

which encodes a mitochondrial outer membrane GTPase protein that promotes mitochondrial 

fusion (Züchner, 2004). 

Neurodegeneration appears to be common phenotype in mice with targeted mutation 

in MFN2 and cells lacking mitochondrial fusion show severe defect in their respiratory 

capacity (Chen, 2005). MFN-null mice for either of the mitofusins die during the embryonic 

development due to placenta defects, and show fragmented mitochondria in fibroblast (Chen 

et al., 2003). MFN2 deletion mutant missing two transmembrane spans blocks mitochondrial 

fusion and represents phenotype as a dominant-negative mutant. Its overexpression leads to 

loss of membrane potential, which suggests function of MFN2 in maintaining it (Honda et al., 

2005). Knock out of MFN2 increases the distance between mitochondria and ER. In MEF 

and HEK cells, depolarization of the inner mitochondrial membrane, through protein junction 

transduces a signal to the outer membrane which is being bridged by MFN2 to the STIM1 

protein (dynamic calcium signal transducer) and leads to activation of the CRAC channels  

(calcium release activated channels) responsible for the replenish of calcium into the ER. 

Disrupted connection between ER and mitochondria is found to be relevant in heart failure 

and heart myocites damage (Dorn and Maack, 2013). Dysfunction of the mitofusins (MFN1 

and MFN2) leads to disruption of the mitochondrial network and the process of mitochondrial 

fusion. 

An interesting hypothesis claims that by fusion and fission the process of effective 

complementation between the mutated mtDNA molecules, proteins and RNA allows the cell 

to tolerate higher levels of pathogenic mtDNA (Chen, 2010). In support to that studies 

showed that the process of mitochondrial fusion seems to be up-regulated in the presence of 

oxidated gluthation in the cells, which is a main oxidative stress indicator, and most probably 

the mitochondrial fusion is coupled as well to cellular stress response (Shutt et al., 2012). All 

these studies show the importance of mitochondrial dynamics for their proper function, but 

until now, it remains unclear how the mitochondrial fusion dynamics affects the mitochondrial 

function. 

Big part of my PhD work was devoted to characterization of the mitochondrial 

phenotype in CMT2A patients carrying mutations in Mfn2 in order to shed a light on the 

pathomechanism leading to disease. Our study included four CMT2A patients caring four 
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different mutations localized in different domains of the MFN2 gene, two of which were not 

described before (Figure 26). We investigated the mutation effect on mitochondrial function 

in skeletal muscle and cultured fibroblasts. As CMT2A is caused by a primary mitochondrial 

dysfunction, all alterations of mitochondrial function would be expected to be specific for 

CMT2A, when different to signs of neurogenic atrophy. Therefore, a disease control patient 

sample from Charcot–Marie–Tooth type 1A (CMT1A) was included in the study, as all 

changes in the muscle and mitochondria in this patient are consequences of neurogenic 

atrophy, the potential mitochondrial alterations would be secondary. 

In mice, the complete loss of function of both mitofusins led to severe respiratory 

deficiency in brain and muscle, while knocking out of only one of the mitofusins resulted in no 

specific phenotype (Chen et al., 2005; 2007; 2010). All of the patients in our study carry a 

missense mutation on only one allele of MFN2, which would suggest that humans are much 

more sensitive to mild impairment in the mitochondrial dynamics or dominant negative effect 

of the mutations. Until now, oxidative phosphorylation impairment has been investigated only 

in fibroblasts from CMT2A and the results were very contradicting. Although one study on 

patients caring a mutation in the GTPase domain did not show any respiratory dysfunction 

(Amiott et al., 2008), a complex IV deficiency was detected in fibroblasts from patients with 

an unusual for MFN2 mutation phenotype (Rouzier et al., 2012).  

In our study, skeletal muscle histology analysis of two of the patients revealed 

abnormal mitochondrial distribution within the type 2A skeletal muscle fibers. Cytochrome c 

oxidase staining showed paucity of intermyofibrillar mitochondria that was confirmed by 

electron microscopy (from our collaborators in Magdeburg). The mitochondria were having 

reduced size and number, with abnormal slightly swollen appearance (Vielhaber et al., 

2013). The cristae in the mitochondria were resembling reduced folding and empty 

appearance. The affected mitochondrial distribution and morphology is in consensus with 

previous studies in mice lacking both mitofusins (Chen et al., 2010).  

Our data provided direct evidence for the functional impairment of oxidative 

phosphorylation in skeletal muscle and fibroblasts of CMT2A patients harboring different 

mutations in the MFN2 gene. Mitochondrial respiration measurements and enzymatic activity 

determination in muscle and fibroblasts from all four patients revealed slightly reduced 

maximal respiration rate and increased respiration sensitivity to azide treatment, with 

consequent decrease of cytochrome c activity in the mitochondria (all the data was provided 

by Dr. Schöler). The only patient without respiratory chain function impairment was carrying 

mutation in the GTPase domain of MFN2, which was in accordance with the results of Amiott 

et al., (2008). Our data revealed that a potential reason for the observed decreased 

cytochrome c oxidase activity is a twofold decrease in mtDNA copy number (Table 35). 

mtDNA copy number determination in muscle and fibroblast from the patients showed that 
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the absolute copy numbers were two-fold reduced in the CMT2A patients in comparison to 

controls. Only one of the patients had non-significant decrease in the copy number, but was 

showing high accumulation of deletions (Table 35 and Figure 27). The observed depletion of 

mtDNA might be due to impaired mtDNA replication as it has been observed in patients 

carrying mutations in the OPA1 gene (Amati-Bonneau et al., 2008). It was previously 

described that the rate of oxidative phosphorylation is in linear connection to the mtDNA total 

amount (Kudin et al., 2002; Rocher et al., 2008). Thereafter, the mtDNA depletion is 

sufficient to explain the observed mitochondrial dysfunction. 

The impaired content mixing would suggest accumulation of mtDNA deletions, due to 

impaired functional complementation of the heteroplasmic molecules (Nakada et al., 2009); 

indeed, muscle and fibroblast samples from all four MFN2 patients show multiple deletions 

(Figure 27). Although, the deletion amount was higher then in age matched controls, their 

level was not as high to be responsible for the impaired mitochondrial function (not higher 

then 0.2 %). However, the patient who did not show mtDNA depletion was harboring 0.18% 

of deletions and was the only patient caring a deletion in the GTPase domain of MFN2. Our 

result is in apparent contrast with another study performed by Rouzier et al., 2012, where 

they have detected 49% deletions in skeletal muscle of one patient. This difference between 

the results can be due to the advanced age of the patient used in the Rouzier et al. study. 

These results demonstrate the diversity in mitochondrial functional alterations due to different 

mutations in the MFN2 gene, which can explain the diversity in the results from previous 

studies. 

The breakpoint analysis by smPCR revealed that some of the deletions observed in 

the patients were untypical; lacking the heavy strand replication origin or the light strand 

promoter, or their 3’ end breakpoint spans the replication termination site. 13 deletions of that 

type were detected (Figure 28). Until now deletions erasing DNA above 16,268 np were not 

described in the literature and only 4 deletions were registered to span the 16,085 np 

(Samuels et al., 2004). This kind of deletions lack parts of the mtDNA that are important for 

replication initiation. Accordingly, they cannot be result of clonal expansion, but rather a 

result from ongoing mutagenesis and impaired mtDNA repair. Out of the 69 mapped 

deletions, 56 were detected only once in the smPCR reactions, which is in consensus with 

the absence of clonality. In the MFN2 patients I detected deletions in the small arc of the 

mtDNA, which might be disease specific (Figure 28). Some of the deletions were spanning 

the np 16,100 going over the TAS region into the 7S (Figure 28). Deletions expanding over 

the 16,100 np are rarely described in the literature. To confirm the formation of these 

deletions, exceeding the TAS region, I checked for the presence of such deletions in 

fibroblasts treated with high doses of hydrogen peroxide. To follow the impairment of the 

mtDNA with the increase of hydrogen peroxide dose, I optimized a qPCR which can be used 



Discussion 
 

 107 

for determination of the relative amplifiability of the mtDNA and evaluation of its integrity 

(Figure 29). By applying this method I could confirm the progressive mtDNA damage in linear 

dependence from the H2O2 treatment with increasing concentrations. In the H2O2 treated 

fibroblasts I detected deletions spanning the classical 3’ deletion breakpoint at 16,000–

16,100 np and entering into the 7S as well as small arc deletions (Table 36), as the ones 

observed in MFN2 patients. The appearance of such deletions due to oxidative stress, might 

point to ongoing oxidative stress in MFN2 patients. Furthermore, the impaired content 

mixing, might explain the absence of clonally expanding deletions and the accumulation of 

de novo mutations. 

Impaired mtDNA replication and mtDNA maintenance are most likely the reason for 

lowered mtDNA content and accumulation of multiple mtDNA deletions in CMT2A patients, 

with imparied mitochondrial dynamics. The insufficient content mixing would lead as well to 

insufficient substrates for efficient mtDNA replication and repair of ongoing mtDNA injury.  

 

4. 3 mtDNA deletions in TLE 

 

mtDNA polymerase errors, replication machinery failure and replication fork stalling during 

the process of mtDNA synthesis can lead to the formation of mtDNA mutations. mtDNA 

damage can arise as well form different factors such as exposure to environmental mutagens 

and specifically high vulnerability to ROS activity, due to its endogenous formation during 

mitochondrial respiration (Shokolenko et al., 2009) (Figure 38). The fate of the damaged 

mtDNA molecules (marked with a star on Figure 38) is crucial for the fate of the mitochondria 

and the cell itself. Damaged mtDNA molecules can either undergo repair or be degraded. 

The repair might end with the complete restoration of the mtDNA in its original state or might 

end in the formation of stable molecules with altered information, mutant molecules. Mutated 

molecules that are not missing parts of the DNA important for mtDNA replication can expand 

clonally, and because of their smaller size they might replicate faster than the wild-type 

mtDNA molecules. Mutation segregation and clonal expansion lead to the development of a 

pathological phenotype. However, as mitochondria are very dynamic organelles constantly 

involved in processes of fusion and fission and balanced mitochondrial content mixing, the 

damaged or mutated mtDNA is constantly complemented; therefore, the accumulation of 

deleted mtDNA molecules must reach certain threshold in order to cause pathological 

changes in the cells.  
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Figure 38   mtDNA mutagenesis. BER, base excision repair; MMR, mismatch repair; DSBR, double-
strand break repair; ROS, reactive oxygen species; *, damaged mtDNA molecules, (adapted from 
Zsurka and Kunz, 2013). 
 

As mitochondria are the main source of ATP in the neurons, failure of their respiratory 

chain function would lead to neuronal dysfunction and eventually to cell death. Most probably 

the local insufficiency of ATP in the neurons, for example, in the presynaptic terminal, is 

causative for the neuronal dysfunction rather then a general energy drop in the cell (Zsurka 

and Kunz, 2013). Mitochondria were shown to participate in modulating the neuronal 

excitability and the synaptic transmission (Tang and Zucker, 1997). 

Most likely, the local ATP shortage in combination with clonally expanding somatic 

mtDNA deletions leads to the slow progression of the disease (Zsurka and Kunz, 2013). This 

mitochondrial dysfunction was shown to play important pathogenic role in the seizure 

generation and epilepsy, and particularly in temporal lobe epilepsy (TLE) with Ammon’s horn 

sclerosis (AHS) (Kudin et al., 2009, Guo et al., 2010). mtDNA depletion and accumulation of 

mtDNA deletions through clonal expansion were described in TLE with AHS (Guo et al., 

2010). Neuronal cells, such as the interneurons or the pyramidal cells, containing more 

mitochondria are more prone to damage due to ATP shortage, in comparison to other 

neuronal cell types, such as the hippocampal granule cells, that have lower amounts of 

mitochondria (Gulyás et al., 2006, Zsurka and Kunz, 2013). These cells being rich of 

mitochondria are also more vulnerable to injury, due to their dependence on the ATP 
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production. The hippocampus is having lower seizure threshold and patients with TLE with 

AHS show segmental neuronal cell loss of pyramidal neurons in the CA1, CA3 and CA4 

regions of the hippocampus and almost no injury in the granular cell layer. This cell loss 

accumulates during the years and is considered as causative for the medicamentation 

resistance of patients suffering from seizures generated in the temporal lobes and for their 

severe memory impairment (Kudin et al., 2009). Figure 39 shows schematic overview of the 

pathological mechanisms and a postulated “vicious circle” of mitochondria damage, leading 

to epilepsy.  

 

 

 

Figure 39   Overview of the accumulation of mutated mtDNA, respiratory failure, and insufficient ATP 
supply leading to disease (adapted from Zsurka and Kunz, 2013).  
 

Comparison of the amounts of mtDNA rearrangements in the hippocampal brain 

regions CA1, CA3, AD and PH in samples from TLE patients with AHS, demonstrated that 

AHS patients show overall higher accumulation of deletions in all four investigated brain 

regions in comparison to hippocampal brain samples from the same regions in patients with 

TLE, resulting form brain lesion and with no hippocampal sclerosis, (Figure 30). Significant 

difference between the two sets of samples, with p<0.005 was detected in the CA3 and the 
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AD hippocampal regions. This finding is in consensus with the literature, as in the AHS 

pathology the CA3 region is one of the most affected brain regions. In the AD region the 

differences between the AHS and lesion groups was even more dramatic, with the AHS 

patients showing 12 fold higher level of deletion accumulation in comparison to the lesion 

group. The involvement of the AD region in the epileptogenesis is a matter of dispute and our 

finding of increased amount of deletions in this region in AHS patients might be relevant. It 

was shown that the AD region is involved in the first steps of the development of the epileptic 

seizure, by receiving synchronous discharges released due to neuronal cell loss in the 

cortex, in patients with injury-associated hippocampal epileptogenesis (Sloviter et al., 2012). 

Eventually, the longer survival of the granule cells in the AD region, that are not so prone to 

the seizure effects might explain the even higher amount of deletions in comparison to the 

CA3 region (Figure 30). Granule cell dispersion and changes in dendritic orientation and 

spine distribution were registered in patients with AHS (Freiman et al., 2011). Another study 

from Buckmaster and Dudek in 1997, showed functional abnormalities in the AD region of 

epileptic kainate-treated rats.  

It is not clear whether the hippocampal mtDNA deletions detected in TLE patients 

with AHS participate in the pathomechanism of the disease, or they are result from it. Our 

findings showed accumulation of deletions in all regions of the AHS brain samples in 20–30 

year old patients (Figure 31), in opposite to aged matched TLE lesion disease controls. 

Therefore, it is more likely that the mtDNA rearrangements in the AHS hippocampus are not 

age related and are causative for the disease rather then a consequence of it. These results 

suggest a different pathological mechanism leading to TLE in AHS patients, and dramatic 

and fast accumulation of deletions. In young AHS patients, the highest amount of the 

deletions was detectable in the AD region, whilst the CA3 region deletions accumulation was 

not significant. Thus, mtDNA perturbations in the AD region might be essential for the early 

stages of the disease.  

Oxidative stress and ROS production are involved in the processes of mtDNA 

damage and double-strand DNA breakage. Recently, it was suggested that DSB are 

important for the process of deletion formation (Krishnan et al., 2008).  They proposed that 

the 3’→5’ activity of an exonuclease, leads to the exposure of single stranded regions of 

mtDNA that sustain homologous binding to regions of the mtDNA with direct repeats. 

However, this model is valid only in homologous recombination. In 2009 Fukui and Moraes, 

have described a novel mouse model, in which they could trigger generation of deletions as 

consequence of DSB induction at a fixed position on the mtDNA. The model resulted in the 

formation of various in size deletions, with and without repeats, generated by homologous 

and non-homologous recombination and representing the situation in aging tissue.  It is 

known that in AHS patients, the 3’-end breakpoints of the deletions cluster at nucleotide 
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position (np) 16,070–16,090 (Zeviani, 1989; Guo, 2010), that was described as a hotspot for 

ROS activity (Zeviani et al., 1989; Srivastava and Moraes, 2005) and DSB formation 

(Bacman et al., 2009), which would suggest that this region might be the ‘fixed position’ of 

DSB occurance according to the model proposed from Fukui and Moraes, 2009. In other 

studies, the DSB generation at that region was described as result from replication fork arrest 

(Wanrooij et al., 2004) or due to its participation in homologous annealing, based on the 

single strand nature of the region (Krishnan et al., 2008). 

In order to check if deletions with 3’ breakpoints within the 16,070–16,090 region, are 

indeed present in samples included in this study, I performed comparative analysis of the 

detectable deletions amounts with primer pairs either including or excluding the  

16,070–16,090 region. The result showed that in AHS patients, great amount of the deletions 

seem to have their 3’ breakpoints within the 16,070–16,090 region (Figure 32). This result 

might signify increased ROS production as a causative feature in AHS patients with TLE. 

The presence of two specific deletions, with 3’ end within the 16,070–16,090 region, 

8649–16,084 (7.4 kb) and 5786–16,078 (10.3 kb), was examined in AHS and lesion TLE 

patients, by applying multiplex PCR. As a reference, the ubiquitous ‘common deletion’ (4977 

bp) was amplified together with the deletions of interest. According to the literatue the 4977 

bp deletion is a hallmark of degenerative phenotype, it accumulates with age in normal 

tissues and is detected at higher frequency in tissues with higher metabolic rate, such as 

brain and heart tissues (Wallace, 1992a; Bogliolo et al., 1999). In the CA3 region, more then 

60% of the AHS samples contained both the 7.4 kb and the 10.3 kb deletions. All samples 

positive for these specific deletions were containing the common deletion, too. In the lesion 

set, in 86% of the samples the common deletion was detectable, but in the absence of the 

two specific deletions. However, the two deletions of 7.4 kb and the 10.3 kb were detectable 

not only in the CA3 region, but in all four investigated brain regions of the AHS samples, with 

lowest frequency in the PH region. The detection of these two prominent deletional species 

in AHS patients supports the hypothesis of deletion formation based on the occurance of 

DSB at the 16,070–16,090 region.   
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Appendix I   
 
mtDNA deletions in skeletal muscle biopsies, fibroblasts and urine samples of MGME1 
patients. 
     

Sample Del Start Del Stop Repeat length Count 

M2061 262 16,069  2 
 461 13,522   
 529 14,382   
 3285 16,069   
 3959 15,737 7 4 
 3615 12,986 11 1 
M3737 315 16,193 10  
 499 15,028   
 508 14,808   
 512 13,925 6  
 535 14,119   
 873 15,539  5 
 886 15,972  4 
 3231 13,472   
 3296 16,034  4 
 3558 14,816  2 
 3578 14,813 8 1 
 3743 15,636  3 
 4514 14,310  4 
 5438 13,792   
 14,287 16,264 7  
M1976 3258 16,070  3 
 3846 14,701   
 4490 11,905   
 5240 13,812   
FB1976 84 16,094   
 168 16,222   
 196 15,195   
 399 16,061   
UR1976 3248 15,972   
 3272 15,541   
 3321 15,965  2 
 3346 15,971   
 3460 14,389   
 3615 12,986 11 2 
 4902 15,848 7  

 8649 16,084 12  
M931 115 12,304   
 308 13,786 5  
 310 15,539   
 462 13,788 6  
 482 14,142 6  
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continued     
     

Sample Del Start Del Stop Repeat length Count 

M931 499 14,517  2 
 506 14,346 6  
 540 4352   
 541 14,396   
 561 13,785  3 
 562 13,462  2 
 791 15,515  2 
 887 16,079   
 899 16,115 11 2 
 3266 16,078   
 3273 16,071  5 
 3280 16,032  3 
 3572 14,812   
 3578 15,546 10 1 
 3586 15,641   
 3603 14,801   
 3611 16,076  2 
 3614 14,068   
 4228 14,832   
M4050 539 14,393 10  
 561 15,529 6 5 
 1228 14,532   
 3529 15,749   
 4468 14,824   
 5742 14,586   
FB4050 971 15,212   
M4052 453 15,197  5 
 461 14,429  4 
 482 13,775   
 515 12,562 7  
 899 16,079   
 3333 14,138 9  
 3475 13,626   
 3496 13,039   
 3602 15,272 5  
 3615 12,986 11 1 
 3721 15,945  2 
 3959 15,737 7 1 
 4773 16,320   
FB4052 316 16,193   
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Appendix II 
 
mtDNA deletions in skeletal muscle biopsy of a POLG patient carrying the homozygous 
mutation p.Ala467Thr in the POLG gene. 
 

POLG muscle     

Del Start Del Stop Repeat length Count 

5477 11,061 5 2 
5484 11,056 7 2 
5491 11,061  2 
5623 13,000 11  
5788 13,922   
5788 13,067  2 
5789 13,922   
5790 13,922   
5796 13,922   
5830 13,922   
5841 13,649  2 
5841 13,923   
5842 13,922   
5918 13,344   
6135 12,302   
6219 15,538 6  
6342 14,004 11  
6366 13,635 5 2 
6440 13,841   
6544 13,843 8  
6640 13,240   
6789 14,098   
6930 13,563 10  
7132 14,533 7 2 
7515 14,594   
7516 13,799   
7695 15,386   
7752 13,346  2 
7818 16,071  2 
7819 16,070 6  
7922 16,071   
7946 15,539   
7986 16,072   
8029 15,541 5  
8498 15,612 13  
8533 12,766   
8766 16,068  2 
8929 14,530 4  
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continued    

   

Start Stop Repeat length Count 

9233 15,572   

9233 15,760   

9399 14,603   

9505 14,155   

9582 14,498 6  

9598 15,267 8  

10,292 16,070   

10,477 15,556  2 

10,874 15,572   

11,432 16,072   
11,725 15,443 5  
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Appendix III  
 
mtDNA deletions in skeletal muscle biopsies and fibroblasts of CMT2A patients. 
 
 

Sample Start Stop 

Patient 1 muscle 192 4,195 
 502* 3,498* 
 1,238* 3,601* 
 5,314 16,462 
 6,485 15,458 
 7,617 14,947 
 8,299 15,588 
 8,483 13,459 
 8,624 15,662 
 8,642 16,142 
 8,663  16,071 
 10,952 15,371 
Patient 1 fibroblasts 383 2,989 
 6,589  15,799 
 10,292 13,632 
Patient 2 muscle 464  3,575* 
 465 3,802 
 5,600 15,851 
 5,793 14,599 
 6,486 14,500 
 6,924* 14,280* 
 7,300 14,857 
 8,031* 16,069* 
 9,891 15,266 
 12,134 16,298 
Patient 2 fibroblasts 491 4,246 
 3,767 15,862 
 6,114 15,513 
 6,143 15,866 
 7,153 15,768 
 7,863 14,597 
 8,451 16,158 
 9,507 16,294 
Patient 3 muscle 220 4,570 
 561 3,896 
 548 4,442 
 556 4,001 
 790 4,527 
 985 4,739 
 1,847 4,256 
 6,326 11,683 
 6,427 11,679 
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continued   

Sample Start Stop 

Patient 3 muscle 6,541 11,603 
 7,815 12,231 
 9,033 14,056 
 9,098 15,438 
 9,450* 14,443* 
 9,651* 14,602* 
 10,962 15,845 
 10,985 16,071 
 11,715 15,434 
Patient 3 fibroblasts 746 3,290 
 694 4,134 
 3,578* 15,546* 
 3,941 12,886 
 6,031* 16,071* 
 6,330 13,993 
 6,713 12,755 
 8,483* 13,459* 
 8,900 16,071 
Patient 4 fibroblasts 175 3,622 
 3,496 16,384 
 4,217 15,956 
 4,437 16,514 
 5,750* 15,613* 
 6,231* 15,434* 
 6,535* 15,397* 
 7,055 16,129 
 8,032 16,355 

 
 
 
*Repeatedly detected deletion species 
 
In red are listed deletion breakpoints lacking the replication origin OH or the L-strand promoter  
(5’-breakpoint below position 441) or with 3’-breakpoint located deep in the replication termination 
region beyond position 16,100. 
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