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1 Introduction 

1.1 G protein-coupled receptors 

For cells it is of great importance to adapt to their environment and therefore, they must 

be able to receive extracellular cues and elicit an appropriate intracellular response to 

those cues (Kimple et al., 2011). Although there are multiple receptor families, the 

superfamily of G protein-coupled receptors (GPCRs) represents the largest and most 

pharmacologically important receptor family. There are more than 800 GPCR 

sequences in the human genome and nearly a third of the pharmaceuticals currently on 

the market target one or more of these receptors (Fredriksson et al., 2003; Jacoby et al., 

2006; Lagerström and Schiöth, 2008). GPCRs have the ability to bind to a broad range 

of ligands such as small organic compounds, eicosanoids, peptides, proteins and even 

photons in the case of rhodopsin (Dixon et al., 1986; Masu et al., 1987; Kobilka et al., 

1987; Felder et al., 1993; Jacoby et al., 2006). With GPCR-directed drugs it is possible 

to cover a wide range of therapeutic indications like hypertension, asthma or cancer 

(Jacoby et al., 2006). 

GPCRs feature an extracellular amino terminus and an intracellular carboxyl terminus. 

They consist of seven α-helical transmembrane stretches that span the plasma 

membrane in a counter-clockwise manner and therefore, GPCRs can also be termed as 

seven transmembrane (7TM) receptors (Fredriksson et al., 2003). The greatest 

homology between GPCRs can be found within the transmembrane (TM) segments. 

The most variable structures among the family of GPCRs are the carboxyl terminus, the 

intracellular loop spanning TM5 and TM6, and the amino terminus. The greatest 

diversity is observed in the amino terminus (Kobilka, 2007). Based on sequence 

similarities within the 7TM segments GPCRs can be divided into five subfamilies 

named after their hallmark members: glutamate- (15 members), rhodopsin- (701 

members), adhesion- (24 members), frizzled- (24 members), and secretin-like receptors 

(15 members) (Fredriksson et al., 2003, Kobilka, 2007). The physiological function of a 

large fraction of GPCRs is still unknown and these receptors are referred to as orphan 

GPCRs (Kobilka, 2007).  

 

 

 



2 Introduction 

1.2 G proteins and GPCR signaling 

Heterotrimeric guanine nucleotide-binding proteins (G proteins) act as switches that 

regulate information processing circuits connecting GPCRs, which are expressed on the 

cell surface, to a variety of intracellular effectors (Simon et al., 1991). G proteins 

consist of three subunits: Gα, Gβ and Gγ. Human G proteins derive from 35 genes, 16 

encoding Gα subunits, five Gβ and 14 Gγ (Milligan and Kostenis, 2006). In the basal 

state, the GDP-bound Gα subunit is in complex with the Gβγ dimer. The nucleotide-

binding pocket of the Gα subunit is located between two distinct domains: (i) a Ras-like 

domain which is named due to its structural resemblance to the Ras superfamily of 

monomeric GTPases, and (ii) an additional α-helical domain composed of a structurally 

distinct six-helix bundle. Upon an agonist-induced conformational change, the GPCR 

acts as a guanine nucleotide exchange factor (GEF) resulting in the release of GDP and 

subsequent binding of GTP (Bohm et al., 1997; Wall et al., 1998; Johnston and 

Siderovski, 2007). Once GDP is released, a high-affinity complex is formed between 

the activated receptor and G protein (Rodbell et al., 1971; Emeis et al., 1982; Bornancin 

et al., 1989; Oldham and Hamm, 2008). This complex represents a short-lived 

intermediate in intact cells because high concentrations of guanine nucleotides are 

abundant, leading to a rapid exchange of GDP for GTP (Rodbell et al., 1971; Oldham 

and Hamm, 2008). Binding of GTP causes a structural rearrangement within three 

segments of Gα, called switch regions I-III, resulting from favorable interactions with 

the γ-phosphate of the newly bound GTP (Lambright et al., 1994; Wall et al., 1998). 

Switch I serves as one of two connections between the Ras-like and α-helical domains. 

Switch II assumes a partially helical conformation in the active state and affects many 

of the interactions of Gα with Gβγ, effectors, RGS proteins and other nucleotide-state-

selective binding partners (Kimple et al., 2002; Johnston et al., 2005; Johnston et al., 

2006). Switch III assumes a loop structure found ordered only in the active 

conformation of Gα. The structural conformations adopted by switches I-III upon GTP 

binding enable the Gα subunit to specifically recognize downstream effectors (Johnston 

and Siderovski, 2007). Thus, the binding of GTP leads to the dissociation of GTP-

bound Gα from Gβγ and both are able to interact with effectors such as adenylyl 

cyclase, phospholipase C isoforms, RhoGEFs and ion channels (Clapham and Neer, 

1997; Kozasa et al., 1998; Simonds, 1999; Lutz et al., 2007). Downstream effectors are 

activated until GTP is hydrolyzed by the intrinsic GTP hydrolysis activity of the Gα 

subunit. Upon hydrolysis of GTP, Gα rebinds Gβγ and the system returns to the inactive 
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state. Regulator of G protein signaling (RGS) proteins are able to dramatically enhance 

the rate of GTP hydrolysis as they function as GTPase-accelerating proteins (GAPs) in 

vitro and in vivo (Berman et al., 1996; Lambert et al., 2010) (Fig. 1).  

 

Figure 1: The G protein cycle. In the inactive state, G proteins are heterotrimers 
consisting of GDP-bound α, β- and γ-subunits. Upon agonist binding conformational 
changes of the receptor permit G protein binding and catalyze GDP release from Gα. 
After GDP release, a stable, high-affinity complex is formed between the activated 
receptor (R*) and G protein. Subsequent binding of GTP to Gα destabilizes this 
complex, allowing Gα(GTP) and Gβγ, to interact with downstream effector proteins 
The signal is terminated on hydrolysis of GTP to GDP by Gα, which may be catalyzed 
by RGS proteins (taken from Oldham and Hamm, 2008). 
 
 

G protein heterotrimers are typically divided into four main classes based on the 

primary sequence similarity of their Gα subunits: Gαs, Gαi/o, Gαq/11 and Gα12/13 (Simon 

et al., 1991, Offermanns, 2003) (Fig. 2). GPCRs have the ability to couple selectively to 

members of one or more of these G protein families, thus allowing selective modulation 

of signaling cascades by particular GPCR ligands (Johnston and Siderovski, 2007). 
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The Gαs subclass includes the Gαs and Gαolf isotype. Gαolf shows 88% amino acid 

sequence identity with Gαs and both proteins share the ability to activate adenylyl 

cyclase to increase intracellular cAMP levels. Gαs proteins are ubiquitously expressed 

but Gαolf expression is restricted to specific neural tissues and is enriched in neurons in 

the olfactory epithelium (Simon et al., 1991; Milligan and Kostenis, 2006). 

The Gαi/o subclass consists of the almost ubiquitously expressed Gαi1, Gαi2, Gαi3, GαoA 

and GαoB proteins as well as the brain- and platelet-specific Gαz and Gαt, Gαt2 and 

Gαgust which are expressed in the retina or in the taste buds (Simon et al., 1991; Milligan 

and Kostenis, 2006). Gαi/o proteins are able to inhibit adenylyl cyclase activity which 

results in reduced cAMP levels (Milligan and Kostenis, 2006).  

Gα proteins belonging to the Gαq/11 family activate phospholipase Cβ (PLCβ) isoforms. 

PLCβ hydrolyzes phosphatidylinositol bisphosphonate in the plasma membrane, 

generating inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 activates 

receptors in the endoplasmatic reticulum (ER) leading to a Ca2+ release from 

intracellular Ca2+ stores in the ER while DAG stimulates the protein kinase C (PKC) 

(Cockcroft and Gomperts, 1985; Milligan and Kostenis, 2006). This subclass includes 

Gαq, Gα11, Gα14, Gα15 and Gα16 proteins in which Gα15 only represents a murine 

orthologue of Gα16 (Kostenis et al., 2005). Gαq and Gα11 are widely distributed and the 

amino acid sequences of these isotypes differ from each other by less than 12%. Almost 

all changes are confined to the NH2-terminal region which may play an important role 

in determining the specificity of interaction with the βγ subunit and the relative rate of 

nucleotide exchange and hydrolysis. Both proteins are often found in the same cell 

which can be explained with the possibility to generate signals with different time 

constants (Simon et al., 1991). The three other isotypes of the Gαq family show 

restricted patterns of tissue specific expression. Gα14 is primarily found in stromal and 

epithelial cells while Gα15 and Gα16 are found in hematopoietic cells (Simon et al., 

1991; Milligan and Kostenis, 2006).  

Gα12 and Gα13 proteins form a separate family and they are expressed ubiquitously. 

Activation of Gα12 and Gα13 proteins cannot be associated with second-messenger 

production but with regulation of the activity of the small GTPase Rho through guanine 

nucleotide exchange factor (RhoGEF). These G proteins modulate various cellular 

responses such as cytoskeletal changes and cellular growth. A variety of other 

interaction partners for Gα12/13 proteins have also been reported. Gα12/13 proteins can 
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interfere with the function of cadherins radixin, A-kinase anchoring proteins, non-

receptor tyrosine kinases and protein phosphatases (Kurose 2003; Worzfeld et al., 

2008).  

 
Figure 2: Relationships among mammalian Gα subunits. The α subunits are divided 
into four main subclasses based on the primary amino acid sequence identity (taken 
from Simon et al., 1991). 

 

In addition to the signal generating process, the ligand-bound receptor initiates a second 

process which leads to receptor desensitization and occurs through receptor 

modification (Simon et al., 1991). Rapid dampening of receptor function is usually 

controlled by receptor phosphorylation which is mediated by second-messenger kinases 

(for example protein kinase A (PKA) and protein kinase C (PKC)), or by a distinct 

family of G protein-coupled receptor kinases (GRKs) (Pitcher et al., 1998). GRK 

phosphorylation promotes binding of a β-arrestin molecule to the receptor which 

sterically inhibits further interactions between the receptor and the G protein  

(Pierce et al., 2002). Arrestins can also bind to the coat structure of clathrin-coated pits, 

thereby promoting endocytosis of arrestin-bound receptors. After targeting to 

endosomal compartments, GPCRs can be rapidly de-phosphorylated and recycled back 
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to the plasma membrane or are delivered to lysosomal compartments for degradation 

(Hanyaloglu and von Zastrow, 2008).  

In addition to their role in receptor internalization, β-arrestins have the ability to serve 

as scaffolding proteins to promote G protein-independent signaling, thereby linking 

GPCRs to effectors such as mitogen-activated protein kinases (MAPK), including 

extracellular signal-regulated kinase1/2 (ERK1/2), p38 kinase and c-Jun N-terminal 

kinase 3 (JNK3), as well as protein kinase B (AKT) and phosphatidylinositol 3-kinase 

(PI3K) pathways (Pierce et al., 2002; Defea, 2008). 

 

1.3 Pathway modulators acting on Gα subunits 

GPCRs regulate a wide range of physiological and pathophysiological processes. Thus, 

selective pathway modulators acting on Gα subunits enable the investigation of the 

contribution of G protein signaling in physiology and disease (Smrcka, 2013). The 

following substances are prominent examples for such pathway modulators. 

Gαi/o proteins can be specifically inhibited with pertussis toxin (PTX). PTX represents a 

typical A-B toxin which is produced by the whooping cough-causing bacterium 

Bordetella pertussis (Pittman, 1979). The A-protomer exhibits ADP-ribosyltransferase 

activity while the B-oligomer can bind extracellular molecules that allow the toxin to 

enter the cells (Mangmool and Kurose, 2011). PTX catalyzes the ADP-ribosylation of a 

conserved cysteine residue located in the α subunits of the Gαi/o family (with the 

exception of Gαz), thereby preventing the G proteins from interacting with their cognate 

GPCRs (Burns, 1988). ADP-ribosylation of the α subunit of heterotrimeric Gαi/o 

proteins locks the α subunit in the inactive GDP-bound form and consequently, the Gαi/o 

protein is unable to inhibit adenylyl cyclase resulting in an enhanced accumulation of 

cAMP (Mangmool and Kurose, 2011). 

Another classic pathway modulator is cholera toxin (CTX), a pathologically active 

agent, which causes the severe watery diarrhea pathognomonic of cholera, is secreted 

by the bacterium Vibrio cholerae and can be used to explore Gαs-mediated signaling 

(De Haan and Hirst, 2004; Sack et al., 2004). The toxin has an AB5 arrangement of 

subunits. Five identical B subunits are responsible for binding the toxin to its cell-

surface receptor and have highest affinity to ganglioside GM1. The A subunit has been 

shown to possess enzymatic activity and is well known for generating the toxin-specific 
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biological response. It binds the host co-factor GTP-ARF6 and transfers ADP-ribose 

from NAD to the α subunit of the Gαs protein to activate Gαs, which in turn stimulates 

adenylyl cyclase causing a rise in cAMP concentration (Middelbrook and Dorland, 

1984; Miller et al., 2008; Guichard et al., 2013). Due to the high cAMP levels, further 

activation of Gαs proteins is no longer detectable. Thus, Gαs-mediated signaling is 

masked.  

Suramin, a symmetric polysulphonated naphtylaminebenzamide derivative, is described 

as a relatively specific inhibitor of Gαs proteins. It inhibits GDP release but in the 

absence of mutagenic mapping or structural data, the detailed molecular mechanism is 

still unknown (Freissmuth et al., 1996; Hohenegger et al., 1998). Due to its strong 

negative charge, Suramin cannot cross cell membranes, which limits its utility in cell-

based assay systems (Smrcka, 2013). 

The cyclic depsipeptide YM-254890, isolated from the fermentation broth of 

Chromobacterium sp. QS3666, is described as a specific inhibitor of Gαq, Gα11 and 

Gα14 proteins. YM-254890 binds directly to the Gα subunit and inhibits Gαq/11-mediated 

signaling by preventing GDP release (Takasaki et al., 2004). It represents the only 

inhibitor for which structural information is available, thus allowing the understanding 

of its mode of action at the atomic level. The compound binds in the hydrophobic cleft 

between two interdomain linkers connecting the GTPase and helical domains of the Gαq 

protein. This binding stabilizes the inactive GDP-bound state through direct interactions 

with switch I leading to a loss of linker flexibility (Nishimura et al., 2010).  

The depsipeptide FR900359 is isolated from a methanol extract of the whole plants of 

Ardisia crenata. The compound exhibits pharmacological activity as it inhibits platelet 

aggregation, decreases the blood pressure and is cytotoxic to cultured rat fibroblasts and 

myelocytic leukemia cells (Fujioka et al., 1988). The molecular structure of FR900359 

closely resembles that of the bacterial metabolite YM-254890. FR900359 inhibits IP1 

accumulation and Ca2+ release of the Gαq/11-coupled cholecystokinin receptor (CCK1) 

as well as GTP binding (Nesterov et al., 2010). Further details concerning its mode of 

action are lacking. 

The imidazo-pyrazine derivative BIM-46174 and its more stable, dimeric derivative 

BIM-46187 are reported to inhibit all G protein α subunit families equally, a feature 

referred to as pan-G protein inhibition. A pan-G protein inhibitor would be a promising 

tool to distinguish between G protein-dependent and G protein-independent signaling 
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pathways. BIM-46174 and BIM-46187 have been successfully analyzed in a large 

number of different cancer lines such as breast cancer MCF7 or melanoma A2058 cells. 

BIM inhibits critical functions involved in cancer progression: cell proliferation, 

survival and invasion. Therefore, BIM-46174 and BIM-46187 were suggested as 

experimental anticancer drugs (Prévost et al., 2006; Ayoub et al., 2009). The fact that 

monomeric BIM-46174 by itself is able to inhibit G protein signaling supports an active 

role for the free sulfhydryl form. A prodrug behavior has been suggested for dimeric 

BIM-46187 compared with the monomer (Ayoub et al., 2009). It was shown that both 

molecules bind directly to the Gα subunits thereby preventing the intrinsic or agonist-

promoted GDP/GTP exchange (Prévost et al., 2006; Ayoub et al., 2009; Smrcka, 2013). 

Within these publications it has not been clarified whether BIM-46187 prevents GDP 

release or GTP entry. 

 

1.4 Aim of this work 

In previous publications the synthetic small molecules BIM-46174 and BIM-46187 

were described to inhibit all Gα subfamilies equally. In these experiments BIM-46174 

and BIM-46187 were investigated using a number of different cancer cell lines and 

COS7 cells (Prévost et al., 2006; Ayoub et al., 2009). However, the ability to silence all 

G protein pathways in frequently used immortalized cell lines such as HEK293 or CHO 

has not yet been examined. Therefore, one aim of this work was to investigate the 

influence of both BIM molecules on Gαq/11-, Gαs-, Gαi/o- and Gα13-mediated signaling 

in a HEK and CHO background. As these experiments revealed that BIM preferentially 

silences Gαq signaling in these cellular backgrounds, a possible mechanistic link 

between sensitivity toward BIM inhibition and cellular context should be analyzed. 

Additionally, it was of interest to explore the molecular mechanism underlying BIM-

46187 action. 

Nesterov et al. reported FR900359 (in this thesis referred to as QIC) as a specific Gαq/11 

inhibitor but convincing data that prove specificity are lacking (Nesterov et al., 2010). 

Hence, a further aim was to interrogate the specificity of FR900359 for silencing Gαq/11-

mediated signaling in particular and G protein signaling in general in great detail. To 

this end, a broad panel of assays including but not limited to second-messenger assays 

and label-free holistic measurements, had to be performed. Furthermore, it should be 

clarified whether Gαq/11 inhibition caused by the depsipeptide FR900359 differs 
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mechanistically from that described for the structurally related Gαq/11-selective inhibitor 

YM-254890.  
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2 Material and methods 

2.1 Material 

2.1.1 Chemicals, enzymes and reagents 

Adenosine 5′-triphosphate disodium salt hydrate 
(ATP) 

Sigma, Taufkirchen, DE, # A2383 

Agar Fluka, Hamburg, DE, #05040 

Agarose UltraPure Invitrogen™, Darmstadt, DE, 
#15510-27 

Aluminium chloride ZVE, Bonn, DE, #125098 

Ampicillin sodium salt Roth, Karlsruhe, DE #K029.1 

BIM-dimer Synthesized by AG 
Holzgrabe/Gütschow, 

University of Würzburg/Bonn, DE 

BIM-monomer Synthesized by AG Holzgrabe 

University of Würzburg, DE 

Blasticidin InvivoGen, Toulouse, FR, #ant-bl-1 

Bovine serum albumin, fatty acid free Sigma, Taufkirchen, DE, #A6003 

Calcium chloride, dehydrate Sigma, Taufkirchen, DE, #C3306 

Carbachol Sigma, Taufkirchen, DE, #C4382 

Cholera toxin (CTX) Sigma, Taufkirchen, DE, #C8052 

Coelenterazine 400 a Gold Biotechnology, St. Louis, USA, 
#C-320-10 

Disodium hydrogen phosphate, dihydrate 

Dimethyl sulfoxide (DMSO) 

Roth, Karlsruhe, DE, #4984  

AppliChem, Darmstadt, DE # A1584 

  

DNA Ladder 1 kb New England BioLabs®, MA, US, 
#N3272 

DNA Ladder 100 bp New England BioLabs®, MA, US, 
#N3231 

Doxycycline hyclate Sigma, Taufkirchen, DE, #D9891 

Elacridar Kindly provided by Prof. Gütschow, 

University of Bonn, DE 

Ethanol KMF Optichem, Lohmar, DE, #08-
205 

Ethidiumbromide Roth, Karlsruhe, DE, #2218.1 
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Ethylenediaminetetraacetic acid, disodium salt 
dihydrate 

Roth, Karlsruhe, DE, #8040.3 

Fetal calf/bovine serum (FCS) Sigma, Taufkirchen, DE, #-0804 

Forskolin Tocris, Bristol, UK, #1099 

Gel loading dye, blue New England BioLabs®, MA, US,   
# B7021S 

D-(+)-glucose Sigma, Taufkirchen, DE #G7021 

Geneticin (G418) Gibco, Paisley, UK, #11811 

Glacial acetic acid 100% Merck Darmstadt, DE, # 00063.2511 

Glycerol Sigma, Taufkirchen, DE, #G2025 

HEPES AppliChem, Darmstadt, DE, 

#A1069.0500 

Hydrochloric acid Applichem, Darmstadt, DE #0659 

Hygromycin B Invivogen, Toulouse, FR, #ant-hm-1 

3-Isobutyl-1-methylxanthine (IBMX) Tocris, Bristol, UK, #2845 

Isopropanol Merck, Darmstadt, DE, #107022 

L161,982 Cayman, MI, US, #10011565 

Lysophosphatidyl inositol (LPI) Sigma, Taufkirchen, DE, #L7835 

Magnesium chloride, hexahydrate Fluka, Hamburg, DE, #63068 

Magnesium sulphate, hexahydrate Fluka Hamburg, DE, # 00627 

Manganese(II) chloride Roth Karlsruhe, DE, # T881.1 

MK571 Kindly provided by Prof. Gütschow, 

University of Bonn, DE 

(N-Morpholino)propanesulfonic acid Sigma, Taufkirchen, DE, #M-1254 

Orciprenaline Sigma, Taufkirchen, DE, # 32237 

Pertussis toxin (PTX) Sigma, Taufkirchen, DE, #2980 

Pme I New England BioLabs®, MA, US, 
#R0560S 

Poly-D-Lysin Sigma, Taufkirchen, DE, #P-6407 

Potassium acetate Merck Darmstadt, DE, # 

1.04820.1000 

Potassium chloride Fluka, Hamburg, DE, #60128 

Potassium dihydrogen phosphate ZVE, D-53121 Bonn; #234984 

13,14-Dihydro-15-keto-prostaglandin D2 

(DK-PGD2) 
Cayman, MI, US, #12610 

Prostaglandin E1 (PGE1) Cayman, MI, US, #13010 
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QIC Kindly provided by AG König, 

University of Bonn, DE 

QIC red Synthesized by AG Müller, 

University of Bonn, DE 

Rubidium chloride Merck, Darmstadt, DE, #107615 

Serotonin (5-HT) Sigma, Taufkirchen, DE, #H9523 

Sodium acetate Applichem, Darmstadt, DE, #4555 

Sodium chloride Fluka, Hamburg, DE, #71376 

Sodium fluoride ZVE, Bonn, DE, #125310 

Sodium dihydrogen phosphate Roth, Karlsruhe, DE, #T878.2 

Disodium hydrogen phosphate Roth, Karlsruhe, DE, #T876.2 

Sodium hydrogen carbonate Merck, Darmstadt, DE, 
#1.06323.2500 

Sodium hydroxide Fluka, Hamburg, DE, #71689 

Tris(hydroxymethyl)-aminomethane Roth, Karlsruhe, DE, #5426 

Tryptone Roth, Karlsruhe, DE, #8952.1 

TUG424 Kindly provided by Dr. Trond Ulven, 

University of Southern Denmark, DK 

Yeast extract Applichem, Darmstadt, DE, #3732 

 

 

 

2.1.2 Kits 

cAMP dynamic 2 HTRF® kit Cisbio Bioassays, BP 84175, France, 
#62AM4PEC 

IP-One HTRF® assay kit Cisbio Bioassays, BP 84175, France,  
# 62P1APEB 

NucleoBond® Xtra Maxi Macherey-Nagel, Düren, DE, 
#740414.50 

innuPREP Plasmid Mini Kit  Analytik Jena, Jena, DE,  
#845-KS-5040250 
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2.1.3 Devices 

Autoclave 3850 ELV, Systec Brunswick 
Scientific, NJ 08818-4005, USA 

Balances TE64, Sartorius, Göttingen, DE 
(precision balances)  

TE6101, Sartorius, Göttingen, DE 
(analytical balances) 

Cell counting chamber Neubauer, Brand, Wertheim, DE 

Centrifuges MiniSpin, Eppendorf, Hamburg, DE 

5810, Eppendorf, Hamburg, DE  

6K10, Sigma, Osterode, DE 

Dry block heater QBT2, Grant Instruments, Cambridge, 
UK 

Electroporation device Gene Pulser Xcell™, BioRad®, CA, 
US 

Electrophoresis chambers Mini-Sub® cell GT, Bio Rad, CA, 
USA  

Wide Mini-Sub® cell GT, Bio Rad, 
CA, USA 

Freezer (-80°C) Herafreeze, Heraeus, Hanau, DE 

Incubator/shaker (bacteria) HT-INFORS, Buch+Holm, CH 

Incubator (cell culture) HERAcell 240, Thermo Fisher, 
Dreieich, DE 

Liquid nitrogen tank MVE-Tec 3000, GermanCryo, Jüchen, 
DE 

Microbiological safety cabinets S@fe flow 1.2, Nunc™, NY, USA 

Mithras LB940 Multimode reader Berthold Technologies, Bad Wildbad, 
DE 

Microscope CKX31, Olympus, Hamburg, DE 

Microwave Microwave 800, Severin, Sundern, DE 

Pipettes  
0.5-10 µl; 10-100 µl; 20-200 µl; 
100-1000 µl 

Eppendorf, Hamburg, DE 

Pipettes (multichannel) Alpha, Genex, Torquay, UK 

Power supply Power Pac HC, BioRad®, CA, US 

pH meter SevenEasy, Mettler Toledo, Giessen, 
DE 
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Sterile bench (cell culture) HeraSafe, Thermo Fisher, Schwerte, 
DE 

Thermomixer Thermomixer® comfort, Eppendorf, 
Hamburg, DE 

Spectrophotometer Smart Spec Plus, BioRad®, CA, US 

Vortexer Reaxtop, Heidolph, Schwabach, DE 

Water purification system Milli Q® Water system, Millipore, 
MA, US 

 

2.1.4 Buffers and solutions 

2.1.4.1 Commercially available buffers and solutions 

 

DMEM Invitrogen™, Darmstadt, DE, 
#41965039 

Ham´s F-12 Nutrient Mixture GlutaMAXTM Invitrogen™, Darmstadt, DE, #21765 

HBSS buffer Invitrogen™, Darmstadt, DE, #14025 

Penicillin/streptomycin solution Invitrogen™, Darmstadt, DE, #15140 

Trypsin/EDTA 0.05/0.02% in PBS Pan Biotech GmbH, Aidenbach, DE, 
#P10-0231SP 

Ultra pure water Invitrogen™, Darmstadt, DE, 
#10977035 

 

2.1.4.2 Other buffers and solutions 

 

Aqua dem. was used as solvent unless otherwise stated. 

 

Aluminium fluorid solution (AlF 4
-) 

A 1.2 mM AlF4
- solution was generated by mixing equal amounts of 2.4 mM AlCl3 and 

80 mM NaF, each solved in assay buffer. 

 

Assay buffer for DMR, Impedance and BRET assays  

20 mM HEPES in HBSS, pH 7.2.  
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CaCl2 solution for calcium phosphate transfection  

2 M CaCl2, filter-sterilized (0.2 µm).  

 

Coelenterazine stock solution  

1 mg Coelenterazine 400a resuspended in 2500 µl of 99.9% ethanol (final conc. 1 mM).  

 

Coelenterazine reagent  

Coelenterazine stock solution diluted in assay buffer containing 30% ethanol (final 

concentration 100 µM). 

 

Competent bacteria buffer 1  

30 mM CH3COOK, 50 mM MnCl2 x 4 H2O, 100 mM CaCl2 x 2 H2O, 15% glycerine, 

pH 5.8, filter-sterilized (0.2 µm).  

 

Competent bacteria buffer 2  

10 mM RbCl, 75 mM CaCl2 x 2 H2O, 10 mM MOPS, 15% glycerine, pH 6.8, filter-

sterilized (0.2 µm).  

 

Electroporation buffer (EB) (1x)  

50 mM K2HPO4, 20 mM CH3COOK, 20 mM KOH, pH 7.4 adjusted with acetic acid, 

filter-sterilized (0.2 µm).  

 

Electroporation buffer (EB) (5x)  

250 mM K2HPO4, 100 mM CH3COOK, 100 mM KOH, pH 7.4 adjusted with acetic 

acid, filter-sterilized (0.2 µm).  

 

HEPES solution (1 M)  

1 M HEPES, pH 7.2, filter-sterilized (0.2 µm).  

 

Hepes bufferd saline (HBS) (2x) for calcium phosphate transfection  

50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, pH 7.1, filter-sterilized (0.2 µm).  
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Luria Bertani (LB) medium  

1% bactotryptone, 0.5% yeast extract, 1% NaCl, pH adjusted to 7.4 with NaOH, 

sterilized by autoclaving. 

 

MgSO4 solution for electroporation  

1 M MgSO4 hexahydrate, filter-sterilized (0.2 µm). 

 

Phosphate buffered saline (PBS)  

150 mM NaCl, 2.5 mM KCl, 7.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2 adjusted with 

HCl, sterilized by autoclaving. 

 

Stimulation buffer for cAMP assays  

HBSS, 20 mM HEPES, 1 mM 3-isobutyl-1-methylxanthine (IBMX). 

 

Super optimal broth (SOB)  

2% Bactotryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, pH 7.4, sterilized by 

autoclaving at 121°C. After autoclaving 1 ml of sterile 1 M MgCl2 and 1 ml of sterile  

1 M MgSO4 were added to 100 ml media. 

 

Tris acetate EDTA (TAE) buffer (50x)  

40 mM Tris(hydroxymethyl)-aminomethane (Tris), 1 mM EDTA, 5.71% glacial acetic 

acid.  

 

Tris-EDTA (TE) buffer for calcium phosphate transfection 

10 mM Tris, 1 mM EDTA, pH 8.0 adjusted with HCl, filter-sterilized (0.2 µm). 
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2.1.5 Consumables 

CellKey 384-well biosensor cell assay 
microplate 

Molecular Devices, CA, US, 
#1030787 

Cryogenic vials 1.5 ml Nalgene, Thermo Fisher Scientific, 
NY, USA, #5012 

Dishes: 6, 10 and 15 cm Corning®, NY, US, #430161, 430167, 
430599 

Disposable filter unit 0.2 µl Whatman® 

Epic 384-well biosensor cell assay 
microplate, fibronectin-coated 

Corning®, NY, US, #5042 

Epic compound plate Corning®, NY, US, #3657 

Falcon tubes 15 and 50 ml Corning®, NY, US430791, 430829 

Flasks: 25, 75 and 175 cm2 Corning®, NY, US, #430168, 430720, 
431079 

Gene Pulser cuvette, 0.4cm, BioRad®, CA, US, #1652088 

384-well LIA-plate, white, TC, F-form, 
Greiner bio one 4550 

Greiner, Frickenhausen, DE, #632102 

Microtubes 1.5 and 2 ml  Labomedic, Bonn, DE, #115105, 

115106 

Optiplate, 96-well, flat bottom, white Perkin Elmer, Rodgau, DE, #6005500 

Pasteur pipettes, glass Labomedic, Bonn, DE, #447016 

Pipette tips: 
Oxygen crystal tips 10 µl 
Yellow 200 µl tips 
Blue 1000 µl tips 

 
Labomedic Bonn, DE, # 110727 
Greiner Frickenhausen, DE, #685290 
Greiner Frickenhausen, DE, # 686290 

Tiptrays 384 for Epic CyBio, Jena, DE, #3800-25-513-N 

Tiptrays 384 for CellKey Molecular Devices, CA, US, 

#1031046 

 

 

2.1.6 Software 

Citavi 3.0 Swiss Academic Software GmbH, 
Zürich, CH 

DeVision G v1.0 Decon Science Tec GmbH, 
Hohengandern, DE 

Office Excel® 2010 Microsoft Corporation, 
Unterschleißheim, DE 
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Office PowerPoint® 2010 Microsoft Corporation, 
Unterschleißheim, DE 

Office Word® 2010 Microsoft Corporation, 
Unterschleißheim, DE 

Prism® 5 GraphPad Software, Inc, CA, USA 

Microplate Analyzer v1.5 Corning® Incorporated, NY, USA 

MicroWin 2000 AdvII v4.41 Mikrotek Laborsysteme GmbH, 
Overath, DE 

 

2.1.7 Cell culture media 

HEK293 and COS7 Medium 

Constituent Volume [ml] Final Concentration 
Dulbecco’s Modified Eagle Medium 
(DMEM) 

500 - 

Fetal Bovine Serum 50 ~10% 

Penicillin-Streptomycin 5 ~ 100 U/ml Penicillin, 
0.1 mg/ml Streptomycin 

 

CRTH2-HEK and GPR55-HEK Medium 

Constituent Volume [ml] Final Concentration 
Dulbecco’s Modified Eagle Medium 
(DMEM) 

500 - 

Fetal Bovine Serum 50 ~10% 

Penicillin-Streptomycin 5 ~ 100 U/ml Penicillin, 
0.1 mg/ml Streptomycin 

G418 2 0.4 mg/ml 

 

FFA1-HEK Medium 

Constituent Volume [ml] Final Concentration 
Dulbecco’s Modified Eagle Medium 
(DMEM) 

500 - 

Fetal Bovine Serum 50 ~10% 

Penicillin-Streptomycin 5 ~ 100 U/ml Penicillin, 
0.1 mg/ml Streptomycin 

Blasticidin 0.75 15 µg/ml 

Hygromycin B 0.5 100 µg/ml 
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CHO-K1 Medium 

Constituent Volume [ml] Final Concentration 
Ham´s F-12 Nutrient Mix 
GlutaMAXTM 

500 - 

Fetal Bovine Serum 50 ~10% 

Penicillin-Streptomycin 5 ~ 100 U/ml Penicillin, 
0.1 mg/ml Streptomycin 

 

CHO-M1 Medium 

Constituent Volume [ml] Final Concentration 
Ham´s F-12 Nutrient Mix 
GlutaMAXTM 

500 - 

Fetal Bovine Serum 50 ~10% 

Penicillin-Streptomycin 5 ~ 100 U/ml Penicillin, 
0.1 mg/ml Streptomycin 

G418 1 0.2 mg/ml 

 

2.1.8 Sterilization method 

For molecular and cellular biological experiments all heat stable materials, equipments, 

solutions and media were autoclaved in a Varioklav® (H+P Labortechnik AG, 

Oberschleißheim) at 121°C and 1.2 bar for 21 min. Sterilization of heat sensitive 

solutions and buffers was accomplished by the use of sterile filters (pore wide 0.2 µm).  

 

 

2.1.9 Plasmids, bacterial strains and cell lines 

 

Vectors: 

 

pcDNA3.1+  

pcDNA3.1+ was purchased from InvitrogenTM, Darmstadt, DE, #V790-20 

 

hGPR55 in pcDNA3.1+ 

cDNA of hGPR55 was kindly provided by Dr. Maria Waldhoer, Institute for 

Experimental and Clinical Pharmacology, Medical University of Graz, Austria 
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hM3 in pcDNA3.1+ 

cDNA of human M3 receptor was kindly provided by the group of Prof. Dr. Klaus 

Mohr, University of Bonn, Germany. 

 

Gαq tagged with an internal hemagglutinin (HA)-epitope tag in pcDNA3.1+ 

Gαq tagged with an internal hemagglutinin (HA)-epitope tag in pcDNA3.1+ in the 

pcDNA3.1 expression vector was purchased from the UMR cDNA resource center 

(http://www.cdna.org). 

 

BRET constructs: 

Gα13-106RLuc8, Gαq-97RLuc8, Gγ2-GFP10, and unlabeled Gβ1 (all in pcDNA3.1) were 

kindly provided by Céline Galés, Université Toulouse, (Saulière et al., 2012). 

 

Bacteria: 

 

XL1-Blue 

This E.coli strain obtained from Agilent Technologies (200249) was used for the 

amplification of recombinant plasmids. 

 

Mammalian cell lines: 

 

HEK293 cells 

The used HEK293 cell line was from an internal source: research group of Prof. Dr. Evi 

Kostenis, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

 

HEK293 cells stably expressing CRTH2 (CRTH2-HEK)  

The HEK293 cell line stably expressing CRTH2 was from an internal source: research 

group of Prof. Dr. Evi Kostenis, Institute of Pharmaceutical Biology, University of 

Bonn, Germany. Cells include cDNA of CRTH2 (gene bank accession-number 

NM_004778) fused to a FLAG-tag at the N-terminus. Cells were selected by resistance 

towards geneticin (G418). 
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HEK293-Flp-In TM  T-RExTM  cells stably expressing FFA1 (FFA1-HEK) 

HEK293-Flp-InTM T-RExTM expressing FFA1 (FFA1-HEK) cells were from an internal 

source: research group of Prof. Dr. Evi Kostenis, Institute of Pharmaceutical Biology, 

University of Bonn, Germany. The cDNA of FFA1 (also referred to as FFAR1 or 

GPR40) corresponds to the gene bank accession-number NM_005303. Cells were 

selected by resistance towards blasticidin and hygromycin B. To induce receptor 

expression on demand, cells were treated with 1 µg/ml of doxycyline for 16 hours.  

 

AD-HEK cells stably expressing GPR55 (GPR55-HEK) 

AD-HEK cells stably expressing GPR55 (Henstridge, et al., 2009) were kindly provided 

by Prof. Dr. Andy Irving (University of Dundee, UK). 

 

CHO-K1 cells 

The used CHO-K1 cell line was from an internal source: research group of Prof. Dr. Evi 

Kostenis, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

 

CHO-K1 cells stably expressing muscarinic M1 receptor 

The used cell line was kindly provided by the group of Prof. Dr. Klaus Mohr University 

of Bonn, Germany. 

 

 

2.2 Methods 

2.2.1 Molecular biology methods 

2.2.1.1 Preparation of LB plates 

First LB medium was prepared as described in section 2.1.4.2 and 1.5% agar was added. 

The mixture was autoclaved and allowed to cool down to about 50°C prior to the 

addition of ampicillin (100 µg/ml). The mixture was slewed and approximately 25 ml 

were poured per 10 cm petri dish. The plates were cooled to room temperature and then 

stored at 4°C. 
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2.2.1.2 Preparation of rubidium chloride competent E.coli 

E. coli XL-blue cells were scratched out onto an LB plate in and incubated overnight at 

37°C. A single colony was inoculated into a 5 ml culture of SOB and incubated for 16 h 

at 37°C under vigorous shaking (220 rpm). The following day 1 ml of this preparatory 

culture was used to inoculate 100 ml SOB. The cell suspension was incubated at 37°C 

and 220 rpm until the optical density at 550 nm reached the value of 0.5. The culture 

was centrifuged in ice-cold falcons for 10 min at 4°C (3000 g). The supernatant was 

removed and pellet was resuspended in 25 ml ice-cold competent bacteria buffer 1 and 

the bacteria were centrifuged again for 10 min at 4°C (3000 g). Then cell pellet was 

resuspended in 8 ml competent bacteria buffer 2, bacteria were aliquoted (100 µl), 

frozen in liquid nitrogen and stored at -80°C. 

 

2.2.1.3 Transformation of chemically competent bacteria 

Competent bacteria (100 µl) were thawn on ice and 50 ng of plasmid DNA were added. 

Then cells were incubated on ice for 20 min. After that cells were subjected to a heat 

shock at 42°C for 90 seconds and returned on ice for 2 min. 500 µl of LB without 

antibiotic was added. 100 µl of the cell suspension was scratched out onto LB plates 

containing an appropriate selective antibiotic and plates were incubated overnight at 

37°C. 

 

2.2.1.4 Cryoconservation of bacterial strains 

A single colony of transformed E. coli cells grown on an LB plate was picked with a 

sterile pipette tip and 5 ml of LB media containing the appropriate antibiotic were 

inoculated. The cell suspension was incubated for 16-18 h at 37°C under vigorous 

shaking (220 rpm). 800 µl of the bacterial suspension were supplemented with 200 µl 

glycerol and stored in a cryovial at –80°C. 

 

2.2.1.5 Isolation of plasmid DNA 

2.2.1.5.1 Analytical plasmid preparation (mini-preparation) 

To analyze the plasmids for inserts by restriction analysis, the plasmid DNA was 

isolated on a small scale using innuPREP Plasmid Mini Kit. 2-10 colonies were picked 
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and cultured for 16-18 h at 37°C in 5 ml LB medium containing an appropriate selective 

antibiotic. 2 ml of the cell suspension were centrifuged and plasmid DNA was isolated 

according to the manufacturer´s instructions. The remaining bacteria suspension could 

be used to generate glycerol stocks (see 2.2.1.4). 

 

2.2.1.5.2 Preparative plasmid preparation (maxi-preparation) 

To obtain high-purity and high-concentration plasmid DNA for further transfection 

experiments plasmid DNA was isolated on a larger scale using a NucleoBond® Xtra 

Maxi kit according to the manufacturer’s instructions. In preparation 300 ml LB 

medium containing appropriate selective antibiotic were inoculated with the bacteria 

harboring the appropriate plasmid left over from the mini-preparation or from a glycerol 

stock. Then cell suspension was incubated for 16-18 h at 37°C with vigorous shaking 

(220 rpm).  

 

2.2.1.6 Restriction endonuclease digestion 

For restriction digests 500 ng DNA, 0.3 µl of the appropriate restriction enzyme, 2 µl of 

the appropriate buffer specified by the manufacturer, BSA, and purified water 

(UltraPure, Invitrogen®) were mixed in a total volume of 20 µl. Micro tubes were 

incubated at 37°C for 1 h and fragments were visualized by the use of agarose gel 

electrophoresis. 

 

2.2.1.7 Agarose gel electrophoresis 

DNA fragments were separated via agarose gel electrophoresis. Therefore 6-fold 

concentrated DNA loading buffer was added to digested samples and samples together 

with an 1 kb ladder were loaded on a 1% agarose gel which was prepared by mixing 

agarose with 1x TAE and boiling the solution in a microwave until the agarose was 

completely melted. The solution was cooled down to about 60°C before 0.5 µg/ml 

ethidium bromide was added. Electrophoresis was performed at a voltage of 100 V for 

30-45 min. The DNA fragments were detected using ultraviolet light and the size of 

each fragment was determined by comparison with 1 kb DNA ladder. Results were 

photographically recorded with the photo documentation system DeVision G v1.0. 
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2.2.1.8 Quantification of nucleic acid concentration 

Quantification of DNA samples were determined photometrically by examining the 

absorbance of the sample at 260 nm. Following equation was used for calculations: 

 

c [µg/ml] = OD260 x D x F 

 

c = concentration 

OD260 = optical density at 260 nm 

D = dilution factor 

F = multiplication factor (for DNA 50) 

 

The OD280 value of the sample was also determined to estimate the purity. A DNA 

solution with OD260/OD280 ratio between 1.7 and 2.0 was considered pure enough for 

transfections. 

 

2.2.2 Cell culture methods 

Cell lines were grown in an incubator at 37°C with an atmosphere of 5% CO2 and 96% 

humidity. Before use all cell culture solutions and media were prewarmed up to 37°C in 

a water bath.  

 

2.2.2.1 Passaging cell lines 

After cells were grown to confluence, media was removed and cells were washed with 

PBS. Then trypsin was added and cells were incubated until cells have detached (at 

37°C for CHO cells). Trypsinization was stopped by addition of medium, cells were 

resuspended and desired share of the suspension was transferred into new culture flasks 

or dishes filled with fresh cell medium. 
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2.2.2.2 Cryoconservation and thawing of cells 

For cryoconservation, cells were washed, detached, resuspended in medium and 

centrifuged (800 rpm, 4 min). The medium was removed and replaced by freezing 

medium (cell medium with 10% DMSO). 1 ml cell suspension (25 cm2 per aliquot) was 

transferred into each cryogenic vial and placed into a -80°C freezer for 24 h. After that 

cryogenic vials were transferred into a liquid nitrogen tank for long-term storage. 

Liquid nitrogen frozen cells were rapidly thawed and cells were immediately transferred 

to a 15 ml falcon containing 10 ml of pre-warmed medium. The cell suspension was 

centrifuged 800 rpm, 4 min), the supernatant was removed, cells were resuspended in 

fresh cell medium (without selective antibiotics for 24 h) and transferred to a 25 cm2 

culture flask. 

 

2.2.2.3 Counting cells 

10 µl cell suspension were pipetted between the surface of a Neubauer counting 

chamber and a cover slip. The cell number of one big square was counted. The cell 

density was determined by the following terms: Cell density [cells/ml] = counted cells x 

dilution factor x 104. 

 

2.2.2.4 Coating with Poly-D-lysine 

In order to avoid cell detachment in washing procedures, surfaces of CellKey plates 

were pretreated with poly-D-lysine. The desired amount of wells was completely 

covered with PDL solution (0.1 mg/ml, 12 µl per well) and incubated at 37°C for  

30 min. After that PDL was aspirated, wells were washed three times with PBS and then 

dried under laminar air flow.  

 

2.2.2.5 Transient calcium phosphate transfection of HEK293 cells 

For gene dosing experiments cells were seeded 24 hours prior to transfection at a 

density of 4.2x106 cells per 10 cm dish in DMEM with 10% FCS to achieve 50-60% 

confluence the next day. 20 µg of DNA (total amount, Gαq + pcDNA 3.1) were mixed 

in 500 µl TE buffer together with 60 µl 2 M CaCl2 solution and precipitates were 

formed via drop-by-drop addition of this DNA/CaCl2 solution into a round bottom 
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falcon filled with 500 µl 2xHBS at minimum speed vortexing the round bottom falcon. 

The suspension was incubated for 20 min at room temperature and then precipitates 

were added drop-by-drop into the cell medium. After 4-6 h incubation the medium was 

removed, cells were washed two times with PBS and fresh medium was added. 

Transiently transfected cell were used 48 h after transfection. 

 

2.2.2.6 Transient transfection of HEK293 cells via electroporation 

For BRET assays, 5x106 cells were resuspended in 30 µl EB (1x) and 50 µl of this 

suspension were added to a mixture of 20 µl EB (5x), 4 µl MgSO4 (1 M), 2 µg pcDNA 

3.1, 0.5 µg Gαq-RLuc8 or Gα13-Rluc8, 0.5 µg Gγ2-GFP10, 1 µg β1, 2 µg GPR55 or M3 

receptor DNA and filled up to 100 µl with H2O. After 15 min incubation at room 

temperature the transfection mix was transferred into a 0.4 cm electroporation cuvette 

and pulsed using the Gene Pulser Xcell with following settings: 

Program: exponential decay 

voltage: 250 (V) 

capacity: 500 (µF) 

resistance: ∞ (Ώ) 

cuvette: 4 (mm) 

After electroporation, cells were removed from the cuvette and resuspended in media 

without antibiotics. Cells were grown for 48 hours prior to the assay. 

 

2.2.3 Cell-based assays 

2.2.3.1 Homogenous time resolved fluorescence assays (cAMP and IP1) 

The HTRF cAMP and IP1 assay kits are based on time-resolved resonance energy 

transfer (HTRF) which demonstrates a competition immunoassay where cellular cAMP 

or IP1 competes with a labeled form of cAMP or IP1 for binding to an anti-cAMP or 

anti-IP1 antibody. The antibodies used as donor are labeled with europium cryptate, and 

cAMP or IP1 labeled with the dye d2 is used as acceptor. Light excitation (320 nm) at 

anti-cAMP or anti-IP1 conjugates leads to fluorescence caused emission of light  

(620 nm). When the cAMP-d2 or IP1-d2 molecule binds to the anti-cAMP or anti-IP1 
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conjugate, fluorescence resonance energy transfer (FRET) between the europium 

cryptate and the dye d2 occurs, resulting in fluorescence caused emission of light  

(655 nm). Results were calculated from the ratio of absorbance at 665 nm/620 nm. 

Obtained ratio values were corrected by a negative control, consisting of buffer and 

europium cryptate. Calculations were performed according to following formula:  

Delta F = [Ratiosample - Rationeg/ Rationeg] x 100 

Beacause of the inverse relationship between signal and cAMP or IP1 concentration, 

accumulation of cAMP or IP1 resulted in a decreased signal. 

 

cAMP assay protocol 

Changes of cAMP levels were monitored with the MithrasLB 940 multimode reader 

using the HTRF-cAMP dynamic kit according to the manufacturer’s instructions. For 

the assay, cells were resuspended in cAMP assay buffer (Hanks’ balanced salt solution, 

20 mM HEPES, 1 mM 3-isobutyl-1-methylxanthine), transferred to 384-well small 

volume microplates at a density of 50,000 cells/well in a volume of 5 µl (5,000 cell/well 

for COS7 cells) and settled by centrifugation (800 rpm, 10 sec). Plates were incubated 

for 15 min at 37°C before Gαq inhibitors or antagonists (2.5 µl, 3-fold concentrated) 

were added and incubated for 1 h at 37 C (2 h for BIM-monomer and BIM-dimer). Then 

compounds were added (2.5 µl, 4-fold concentrated), for inhibition approaches in the 

presence of indicated concentrations of forskolin. After further incubation for 30 min at 

37°C (10 min for CRTH2-HEK cells), the reactions were stopped by adding 5 µl of 

1.25% Triton X-100 containing HTRF reagents. Plates were then incubated for 60 min 

at room temperature, and time resolved FRET signals were measured.  

 

IP1 assay protocol 

The amount of intracellular IP1 was measured in a 384-well format using the HTRF-IP1 

kit as per manufacturer’s instructions. Therefore the cell suspension was dispensed with 

a density of 100,000 cells/well in volume of 7 µl in IP1 stimulation buffer containing  

50 mM LiCl. Then cells were centrifuged to settle down with 800 rpm for 10 sec. After 

20 min incubation at 37°C, 3.5 µl stimulation buffer containing Gαq inhibitors or 

multidrug transporter inhibitors (3-fold concentrated) was added and incubated for 1 h 

(2 h for BIM-monomer and BIM-dimer) at 37°C. Then 3.5 µl stimulation buffer 
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containing various concentrations of ligand (4-fold concentrated) was added. After 

further incubation at 37°C for 30 min, 3 µl IP1-d2 conjugate followed by 3 µl europium 

cryptate-labeled anti-IP1 antibody was added. Time-resolved fluorescence at 620 and 

665 nm was measured with the Mithras LB 940 multimode reader after incubation at 

room temperature for 60 min, and the ratios of the signals were calculated as described 

above. For the wash experiments, cells were preincubated with QIC or BIM-dimer in 

micro tubes. Then the cells were washed three times for five minutes with a volume of 

750 µl PBS. After that cells were resuspended in fresh stimulation buffer and seeded 

into a 384-well plate. 

 

2.2.3.2 BRET assay 

The principle of the bioluminescence resonance energy transfer (BRET) technology is 

based on an energy transfer between a bioluminescent donor, the enzyme Renilla 

luciferase, and a fluorescent acceptor, green fluorescent protein (GFP), which can be 

detected if donor and acceptor are in sufficiently proximity to each other. The 

experiments were performed with Rluc8 or RLucII which are mutant and more sensitive 

forms of Rluc (Loening et al., 2006; Breton et al., 2010). The Gαq or Gα13 subunit was 

labelled with the energy donor RLuc8 and Gγ2 was labelled with the energy acceptor 

GFP10. Addition of the substrate coelenterazine 400a (DeepBlueC), substrate of the 

luciferase, led to an oxidation of coelentarazine 400a and as a consequence blue light 

was emitted which overlapped with the excitation spectrum of GFP, which then 

produces green light. The BRET signal was determined with the Mithras LB 940 

multimode reader thereby determining the ratio of green light (515 nm) over blue light 

(410 nm). HEK293 cells were transiently transfected via electroporation to express Gαq-

RLuc8 or Gα13-RLuc8, Gγ2-GFP10, Gα12/13-sensitive GPR55 or Gαq-sensitive M3 

receptors along with unlabeled β1. On the day of the assay 180,000 cells per well (170 

µl) resuspended in assay buffer were seeded into a 96-well plate. Then 5 µl BIM-dimer 

or buffer was added and cells were incubated at 28°C on a plate shaker (300 rpm) for 2 

h. After that cells were challenged with 5 µl agonist and incubated for 5 min on a plate 

shaker (28°C) before 20 µl coelenterazine 400a (50 µM) were injected by the Mithras 

LB injector. After a short shaking process of 2 sec BRET ratios were determined. 

Pathway activation could be detected as a decrease in BRET because the Gα-helical 

domain was separated from the N terminus of Gγ. 



Material and methods 

 

29

2.2.3.3 DMR assay 

Dynamic mass redistribution (DMR) leads to changes in local optical density and 

therefore enables label-free monitoring of GPCR-mediated signaling. DMR was 

recorded with the Corning Epic biosensor. Cells were seeded into a 384-well 

fibronectin-coated biosensor cell plate 18-24 h before the assay (15,000 cells/well for 

HEK293 cells, 18,000 cells/well for CRTH2-HEK and FFA1-HEK cells, 12,500 

cells/well for CHO-M1 cells) and grown to confluence at 37°C. For GPR55-HEK 

12,000 cells/well were seeded 48 h before the assay and after 24 h cell culture media 

was replaced by assay buffer to obtain starvation conditions. In experiments with 

pertussis toxin (PTX) and cholera toxin (CTX) cells were preincubated with 50 ng/ml 

PTX or 100-200 ng/ml CTX for 16-18 h. On the day of experiment cells were washed 

twice with assay buffer and cells were allowed to rest at least 1 h at 28°C. In 

experiments with QIC or AlF4
- they were added after the washing procedure and 

incubated for 1 h (1.5 h for AlF4
-). After a baseline read of 300 s agonists were added 

and DMR responses were monitored at 28°C for at least 3600 s. If compounds were 

solubilized in dimethyl sulfoxide (DMSO), cells were washed in assay buffer containing 

the same percentage of DMSO as the later added compounds in order to avoid bulk 

refractive index differences. Data were evaluated using the Corning Microplate 

Analyzer v1. All optical DMR recordings were buffer corrected.  

 

2.2.3.4 Impedance assay 

Bioimpedance measures the electrical impedance of cell layers positioned over 

electrode arrays. The short-term effects of receptor activation, manifested as changes in 

cell adherence to their substrate, changes in cell volume and shape, and changes in cell–

cell interactions, are the focus of the CellKey system. In brief, the CellKey system 

measures a cell layer’s ability to impede the flow of electrical current to a greater or 

lesser extent as a result of receptor activation (McGuinness, 2007). One day before the 

assay cells were seeded at a density of 11,000 cells per well (13,000 cells/well for 

CRTH2-HEK and FFA1-HEK cells) on PDL-coated 384-well biosensor plates to obtain 

confluent monolayers. GPR55-HEK cells were seeded 48 h before the assay. After 24 h 

culture medium was removed and replaced by assay buffer for starvation (Hank's 

buffered salt solution (HBSS) with 20 mM HEPES). On the day of experiment cell 

culture medium or assay buffer was removed and cells were washed twice with assay 
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buffer and allowed to equilibrate at least for 1 h at 28°C. In experiments with PTX and 

CTX cells were preincubated with 50 ng/ml PTX or 100-200 ng/ml CTX for 16-18 h. 

QIC or AlF4
- were added after the washing procedure and incubated for 1 h (1.5 h for 

AlF4
-). Then the cell plate was transferred to the CellKey and a baseline read was 

recorded for 5 min before the compound addition. Bioimpedance changes were detected 

for 3600 s. If compounds were solubilized in dimethyl sulfoxide (DMSO), assay buffer 

for the washing procedure contained the same percentage of DMSO as the later added 

compounds. All impedance recordings were buffer corrected.  

 

2.2.4 Calculations and data analysis 

Results are expressed as mean values ± SEM and were analyzed using GraphPad Prism 

5.04 (Graph Pad). Concentration-response curves were fitted by non-linear sigmoidal 

regression. Pharmacological parameters of plotted sigmoidal concentration-response 

curves such as EC50 value and Emax value were calculated by the GraphPad Prism 

software.  

For the binding experiments data points from single experiments were either fitted to 

the four parameter logistic function or a two phase competition (membrane binding with 

carbachol) and inflection points were further transformed according to the Cheng-

Prusoff correction (Cheng and Prusoff ,1973) yielding (apparent) equilibrium binding 

affinity constants KD and Ki. 

Comparison between two experimental groups was based on a two-tailed student t-test. 

P values were considered as significant (*) if P<0.05, as very significant (**) if P<0.01 

and as extremely significant (***) if P<0.001. 
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3 Results 

3.1 BIM-46187: A pan-G protein inhibitor? 

The first part of this thesis deals with BIM-46187 (hereafter referred to as BIM-dimer) 

(Fig. 3), a compound which was published as a specific pan-G protein inhibitor (Ayoub 

et al., 2009). The goal of this work is to elucidate its inhibiting influence on G Protein-

dependent signaling in commonly used cellular backgrounds. 

 

 
Figure 3: Chemical structure of the BIM-dimer. 

 

 

3.1.1 Influence on cAMP accumulation in HEK293 and COS7 cells 

As a first approach it was of interest to test whether preincubation with BIM-dimer 

affects cAMP production mediated by the direct adenylyl cyclase activator forskolin 

(Fig. 4A). Therefore, HEK293 cells were pretreated with increasing amounts of BIM-

dimer (2.5 h) and then stimulated with 10 µM forskolin. The results show no reduction 

of cAMP accumulation provoked by BIM-dimer.  
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Figure 4: Effects of BIM-dimer on cellular cAMP levels in HEK293 and COS7 cell 
backgrounds. 
(A) Increasing concentrations of BIM-dimer did not lower forskolin-mediated cAMP 
production in HEK293 cells. Data were kindly provided by Stephanie Hennen, Institute 
for Pharmaceutical Biology, University of Bonn, Germany. 
(B) BIM-dimer was not able to silence cAMP signaling of the Gαs-sensitive EP2/4 
receptors in HEK293 cells. pEC50 (w/o) = 8.91 ± 0.07; pEC50 (30 µM BIM-dimer) = 
8.78 ± 0.04; pEC50 (100 µM BIM-dimer) = 8.29 ± 0.06. w/o, without.  
(C) BIM-dimer largely suppressed PGE1-mediated cAMP production in COS7 cells. 
pEC50/Emax (w/o) = 7.90 ± 0.08/97%; pEC50/Emax (30 µM BIM-dimer) = 7.47 ± 
0.12/80%; pEC50/Emax (100 µM BIM-dimer) = 6.90 ± 0.18/35%. 
(A)-(C) are mean values ± SEM of three to ten independent experiments, each 
performed in triplicate. 

 

Because BIM-dimer was published as a pan-G protein inhibitor (Ayoub et al., 2009) its 

effect on stimulating Gαs proteins was analyzed. Therefore, HEK293 cells 

endogenously expressing Gαs-linked EP2/4 receptors were preincubated with BIM-

dimer in two different concentrations (30 and 100 µM) and after stimulation with 

prostglandin E1 (PGE1) cAMP levels were determined. cAMP levels were nearly 

unaffected by BIM-dimer (Fig. 4B). Based on the results of Ayoub et al. the influence 

of BIM-dimer in a COS7 cell background was tested to find that however, BIM-dimer 

significantly dampened Gαs-coupled signaling via EP2/4 receptors in this cell line (Fig. 

4C). To exclude failures in the assay system, HEK293 cells were incubated in the 

presence of EP2/4 antagonists, which completely blunted cAMP production (Fig. 5). 

These findings confirmed proper functionality of our BIM-dimer and led to the 

conclusion that BIM-dimer might interfere with G protein signaling in a cell-type-

specific manner.  
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Figure 5: EP2/4 receptor antagonist L161,982 completely blunted PGE1-mediated 
cAMP production. HEK293 cells endogenously expressing the E prostanoid receptors 
EP2 and EP4 were pretreated for 30 min with the EP2/EP4 antagonist L161,982 and 
cAMP production was quantified. pIC50 = 4.44 ± 0.12. Data shown are mean values  
± SEM of four independent experiments, each performed in triplicate. 

 

To get further insight into this postulated mechanism the influence of BIM-dimer on 

Gαi-mediated signaling was investigated. Therefore, the free fatty acid receptors 2 

(FFA2) and 3 (FFA3) were chosen. The FFA2 receptor couples via Gαi and Gαq 

proteins and the FFA3 receptor is Gαi-sensitive (Brown et al., 2003; Le Poul et al., 

2003; Nilsson et al., 2003; Stoddart et al., 2008). HEK293-Flp-InTM T-RExTM cells 

stably transfected with FFA2 and FFA3 (FFA2-HEK and FFA3-HEK) were induced to 

express FFA2 and FFA3 by pretreatment with doxycycline (Fig. 6A-B). The receptors 

were activated with propionic acid and cAMP levels were measured. BIM-dimer was 

not able to silence Gαi-mediated signaling in this cellular background. To explore 

another Gαi-coupled receptor a HEK293 cell line stably expressing the receptor for  

5-oxo-eicosatetraenoic acid, OXE-R, as well as the promiscuous Gα subunit G16 (OXE-

HEK) was used (Fig. 6C). After pretreatment with BIM-dimer the OXE receptor was 

stimulated with its endogenous ligand 5-oxo-ETE. Again, the agonist induced cAMP 

reduction was hardly affected by BIM-dimer preincubation. 
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Figure 6: BIM-dimer was no silencer of Gαi signaling in HEK293 cells. 
(A) HEK293 cells stably transfected with FFA2 receptors were induced with 
doxycycline for 16-18 h and incubated with BIM-dimer for 2 h. After that the cells were 
stimulated with the agonist propionic acid in the presence of 0.1 µM forskolin. pEC50 
(w/o) = 5.08 ± 0.12; pEC50 (30 µM BIM-dimer) = 4.95 ± 0.10; pEC50 (100 µM BIM-
dimer) = 5.48 ± 0.19. Data were kindly provided by Manuel Grundmann, Institute for 
Pharmaceutical Biology, University of Bonn, Germany. 
(B) HEK293 cells were stably transfected to express FFA3 receptors. The cells were 
induced with doxycycline for 16-18 h and incubated with BIM-dimer for 2 h. Then the 
cells were stimulated with the agonist propionic acid in the presence of 3 µM forskolin. 
pEC50/Emax (w/o) = 5.42 ± 0.10/0%; pEC50/Emax (30 µM BIM-dimer) = 5.20 ± 0.09/0%; 
pEC50/Emax (100 µM BIM-dimer) = 5.00 ± 0.11/6%. Data were kindly provided by 
Manuel Grundmann, Institute for Pharmaceutical Biology, University of Bonn, 
Germany. 
(C) HEK293 cells stably expressing the OXE receptor and Gα16 were pretreated with 
BIM-dimer (2 h), stimulated with 5-oxo-ETE in the presence of 1 µM forskolin and 
then cAMP accumulation was measured. pEC50/Emax (w/o) = 6.38 ± 0.12/8%; 
pEC50/Emax (30 µM BIM-dimer) = 6.35 ± 0.08/7%; pEC50/Emax (100 µM BIM-dimer) = 
6.35 ± 0.10/40%. Data were kindly provided by Katrin Büllesbach, Institute for 
Pharmaceutical Biology, University of Bonn, Germany. 
(A)-(C) BIM-dimer hardly affected Gαi interaction of FFA2, FFA3 and OXE-R. 
Data shown are means ± SEM of three independent experiments, each conducted in 
triplicate. 

 

3.1.2 Exploring consequences on the Gαq pathway in HEK293 cells 

To explore the consequences of BIM-dimer exposure on Gαq-mediated signaling three 

different Gαq-linked receptors were analyzed by measuring IP1 accumulation. HEK293 

cells endogenously expressing the muscarinic M3 receptor (M3-HEK) were 

preincubated with BIM-dimer and then receptors were stimulated with increasing 

concentrations of carbachol, a synthetic muscarinic receptor agonist (Fig 7A). In this 

approach BIM-dimer completely silenced Gαq activation. Similar results were obtained 

investigating the influence of BIM-dimer on endogenously expressed P2Y receptors 

stimulated with ATP (Fig. 7B) and on HEK293 cells stably transfected with the FFA2 

receptor activated with its agonist propionic acid (Fig. 7C). In summary, it can be stated 
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that preincubation with 100 µM BIM-dimer completely abolished signaling of three 

independent Gαq-sensitive receptors in a HEK293 background. 

 

 
Figure 7: BIM-dimer interdicted G αq signaling in HEK cells. 
(A)-(C) In a concentration of 100 µM BIM-dimer silences Gαq activation induced by 
stimulation of three Gαq-sensitive receptors. 
(A) After pretreatment with BIM-dimer (2 h) HEK293 cells endogenously expressing 
the muscarinic M3 receptor were stimulated with increasing concentrations of 
carbachol. Data were normalized to the maximal concentration of carbachol (1 mM). 
pEC50 (w/o) = 4.80 ± 0.05; pEC50 (30 µM BIM-dimer) = 4.36 ± 0.11. 
(B) Endogenously expressed P2Y receptors in HEK293 cells were used to detect Gαq-
mediated IP1 production in the presence of BIM-dimer. P2Y receptors were activated 
with its agonist ATP. Data were normalized to a concentration of 100 µM ATP. pEC50 
(w/o) = 4.08 ± 0.25; pEC50 (30 µM BIM-dimer) = 4.36 ± 0.27. 
(C) HEK293 cells were induced with doxycycline (1 µg/ml for 16 h) to express the 
FFA2 receptor, preincubated with BIM-dimer and stimulated with increasing 
concentrations of propionic acid. The concentration effect curve was normalized to 10 
mM propionic acid. pEC50 (w/o) = 4.71 ± 0.07; pEC50 (30 µM BIM-dimer) = 3.98 ± 
0.09. Data were kindly provided by Manuel Grundmann, Institute for Pharmaceutical 
Biology, University of Bonn, Germany. 
(A)-(C) Data shown are means ± SEM of three independent experiments, each 
conducted in triplicate. 

 

3.1.3 Effect of BIM-dimer on Gα13 signaling 

Activation of the Gα13 pathway can be detected by bioluminescence resonance energy 

transfer (BRET) assays (Saulière et al., 2012). Therefore, the influence of 100 µM BIM-

dimer was analyzed using lysophosphatidylinositol (LPI) and its target receptor GPR55 

(Fig.8A) which represents a Gα13-sensitive receptor. It was possible to measure an 

agonist-promoted decrease in BRET in HEK293 cells coexpressing GPR55, along with 

the energy donor Gα13106RLuc8, the energy acceptor Gγ2-GFP10, and unlabeled Gβ1. 

The BRET decrease reflects the separation of the Gα-helical domain from the N 

terminus of Gγ which then enables GDP exit and GTP entry (Galés et al., 2006; Saulière 
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et al., 2012). Data in Figure 8A show that there was no significant difference in the 

BRET decrease in the presence or absence of BIM-dimer. Hence, pretreatment with 

BIM-dimer had no effect on GPR55-Gα13 activation. In order to validate our BRET 

approach Gαq signaling was examined using carbachol which stimulated the transiently 

expressed muscarinic M3 receptor (Fig. 8B). HEK293 cells were transfected to 

coexpress the energy donor Gαq97RLuc8, the energy acceptor Gγ2-GFP10, and unlabeled 

Gβ1. Pretreatment with 100 µM BIM-dimer significantly blunted activation of the Gαq-

β1γ2 heterotrimer thereby demonstrating that the BRET partners used were suitable for 

examining inhibition of G protein signaling by BIM-dimer. 

 

 
Figure 8: Gα13 signaling was not affected by BIM-dimer preincubation. 
(A) BIM-dimer did not block molecular rearrangement of activated Gα13. BRET 
decrease was measured after GPR55 activation in HEK293 cells transfected to express 
Gα13106RLuc8 + Gγ2-GFP10 and unlabeled Gβ1. n.s., not significant. 
(B) BIM-dimer efficiently dampened activation of the Gαq-BRET biosensor. Opening 
of the nucleotide binding pocket was detected as BRET decrease after muscarinic M3 
receptor activation in HEK293 cells transfected to express Gαq97RLuc8 + Gγ2-GFP10 
and unlabeled Gβ1. ***p < 0.001 
(A)-(B) Data are means + SEM of three to six independent experiments, each performed 
in triplicate.  

 

 

 

-40

-30

-20

-10

0

10

LPI 0.01 mM

BIM-dimer 0.1 mM

-- + +

-- -- +

n.s.

             GPR55-HEK
 Gα13-RLuc8 + Gγ2-GFP10

B
R

E
T

 R
at

io
 (m

B
R

E
T

)

-400

-300

-200

-100

0

100

carbachol  0.1 mM

BIM-dimer 0.1 mM

-- + +

-- -- +

***

                   M3-HEK
     Gαq-RLuc8 + Gγ2-GFP10

B
R

E
T

 R
at

io
 (m

B
R

E
T

)

A B



Results 

 

37

3.1.4 Analyzing BIM-dimer in a CHO cell background 

Concerning the fact that BIM-dimer did not function as a pan-G protein inhibitor in the 

HEK cell background, its G protein-mediated signaling inhibition profile should be 

investigated in another frequently used immortalized cell line. Therefore, the influence 

of BIM-dimer on second-messenger pathways was additionally analyzed in a CHO cell 

background.  

CHO cells stably transfected to express the muscarinic M1 receptor were chosen to 

study Gαq-mediated signaling (Fig. 9A). After preincubation with dimeric BIM, the 

cells were stimulated with carbachol and IP1 accumulation was detected. In the 

presence of 100 µM BIM-dimer, IP1 production was entirely blocked. CHO-K1 cells 

endogenously expressing EP2/4 receptors were used to evaluate the influence of BIM-

dimer on Gαs proteins by measuring cAMP accumulation (Fig. 9B). After an incubation 

of 2 h in the presence of BIM-dimer and a following stimulation with increasing 

concentrations of PGE1 there was still a strong cAMP accumulation detectable. 30 µM 

BIM-dimer showed almost no inhibitory effect on Gαs-mediated signaling whereas 

pretreatment with 100 µM BIM-dimer resulted in a decreased efficacy and a rightward 

shift of the logEC50 value. To explore the effect of BIM-dimer on Gαi proteins, CHO-

K1 cells endogenously expressing Gαi-sensitive serotonin receptors, were pretreated 

with dimeric BIM for 2 h and then stimulated with serotonin (5-HT). BIM-dimer did not 

block Gαi-mediated signaling (Fig. 9C). 

In summary, BIM-dimer did not display pan-G protein inhibitory activity in a CHO cell 

background, but showed a clear preference for inhibition of Gαq signaling. 
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Figure 9: BIM-dimer preferentially silenced Gαq signaling in a CHO cell 
background. 
(A) Dimeric BIM almost completely blunted Gαq signaling in CHO cells stably 
transfected to express the muscarinic M1 receptor. pEC50/Emax (w/o) = 5.67 ± 
0.10/100%; pEC50/Emax (30 µM BIM-dimer) = 5.30 ± 0.13/100%; pEC50/Emax (100 µM 
BIM-dimer) = 4.04 ± 0.43/11%. 
(B) cAMP accumulation via endogenously expressed EP2/4 receptors stimulated with 
increasing concentrations of PGE1 was nearly unaffected in the presence of 30 µM 
BIM-dimer. Pretreatment with 100 µM BIM-dimer decreased the efficacy and caused a 
rightward shift of the concentration response curve. EC50/Emax (w/o) = 7.30 ± 0.10/96%; 
pEC50/Emax (30 µM BIM-dimer) = 7.17 ± 0.16/85%; pEC50/Emax (100 µM BIM-dimer) = 
6.48 ± 0.19/59%.  
(C) Gαi signaling activated with endogenously expressed serotonin 5-HT receptors was 
not influenced by BIM-dimer preincubation. 
(A)-(C) Data are means ± SEM of at least three independent experiments, each 
performed in triplicate. 

 

3.1.5 Characterizing the influence of BIM-dimer in the patient-derived MZ7 cells 

Ayoub et al. demonstrated the pan-G protein inhibitory effect of BIM in COS7 cells and 

in different cancer cell lines (e.g. HCT8/S119). The first experiments of this thesis 

revealed that BIM-dimer interdicted Gαq-mediated signaling in a HEK293 and CHO 

cell background but Gαs, Gαi and Gα13 signaling was largely unaffected by pretreatment 

with BIM-dimer. Subsequently, BIM-dimer and its influence on G protein signaling was 

analyzed in the patient-derived MZ7 cell line to ascertain whether these findings differ 

from our results in the HEK293 and CHO cells. 
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Figure 10: Dimeric BIM inhibited second-messenger production in the patient 
derived MZ7 cancer cell background. 
(A) (i) untreated MZ7 cells responded to both the Gαq-stimulus endothelin 1 (ET-1) and 
thapsigargin (Thaps). (ii ) BIM-dimer completely blunted Ca2+ mobilization triggered 
with ET-1 but did not impair Thaps–induced release of Ca2+ from the endoplasmatic 
reticulum. (iii ) Quantification of Ca2+ traces in the absence and presence of BIM-dimer 
in single cells. Data in (i) and (ii) show representative traces, data in (iii) are means  
+ SEM of n=159 cells. sec, seconds. ***p < 0.001. Data were kindly provided by 
Daniela Wenzel, Institute of Physiology I, Life and Brain Center, University of Bonn, 
Germany. 
(B) BIM-dimer (100 µM) silenced Gαs-mediated cAMP production induced via ACTH 
and its cognate Gαs-linked and endogenously expressed MC1 receptor. pEC50/Emax 
(w/o) = 6.99 ± 0.21; pEC50/Emax (30 µM BIM-dimer) = 6.79 ± 0.27. 
(C) Dimeric BIM diminished Gαi coupling of endogenous ET-1 receptors. pEC50/Emax 
(w/o) = 7.26 ± 0.21/52%; pEC50/Emax (30 µM BIM-dimer) = 6.56 ± 0.31/45%; 
pEC50/Emax (100 µM BIM-dimer) = 6.08 ± 0.37/40%. 
(B)-(C) Data shown are means ± SEM of three to ten independent experiments, each 
conducted in triplicate. Data were kindly provided by Ramona Schrage, Pharmacology 
and Toxicology Section, Institute of Pharmacy, University of Bonn, Germany. 
 

To explore Gαq dependent signaling MZ7 cells were analyzed in single cell Ca2+ assays 

using endogenously expressed endothelin receptors (Fig 10A). Therefore, MZ7 cells 

were pretreated with 100 µM BIM-dimer, stimulated with endothelin 1 (ET-1) and the 

Ca2+ response was detected. Untreated MZ7 cells responded to both the Gαq stimulus 

ET-1 and thapsigargin (Thaps) (i). Prior addition of BIM-dimer completely blocked the 

ET-1-mediated response but not the thapsigargin-induced Ca2+ mobilization (ii ). These 
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findings were specifically caused at the level of the G proteins because BIM-dimer 

preincubation had no effect on the G protein-independent thapsigargin-induced Ca2+ 

mobilization from the endoplasmatic reticulum.  

The influence of BIM-dimer on the Gαs und Gαi pathway was investigated by 

determining changes in cAMP levels. MZ7 cells were stimulated with the 

adrenocorticotropic hormone (ACTH), an agonist for the Gαs-sensitive melanocortin1 

(MC1) receptor. 100 µM BIM-dimer completely prevented cAMP accumulation  

(Fig. 10B). BIM-dimer did not prevent cAMP production triggered with forskolin  

(Fig. 11) which underlined that BIM inhibition occurred specifically at the level of G 

proteins. BIM-dimer alone dampened the basal cAMP level which can be explained by 

its ability to silence Gαs-mediated signaling through constitutively active GPCRs 

endogenously expressed in MZ7 cells. Endogenous ET-1 receptors were stimulated with 

endothelin to verify the effect of BIM-dimer on Gαi dependent signaling (Fig 10C). The 

results indicate that BIM-dimer diminished Gαi coupling of ET-1 receptors in a MZ7 

cell background. In contrast to the results obtained in the HEK29 and CHO cell lines, 

BIM-dimer was able to silence all three second-messenger pathways in this cancer cell 

line. 

 

Figure 11: BIM-dimer did not lower cAMP production stimulated with the direct 
adenylyl cyclase activator forskolin in MZ7 cells. MZ7 skin cancer cells were 
pretreated for 2 h with the indicated concentrations of BIM-dimer prior to stimulation of 
cAMP synthesis with forskolin. Shown are mean values + SEM of three experiments, 
each performed in triplicate. Data were kindly provided by Ramona Schrage, 
Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 
Germany. 
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3.1.6 Mechanistic link between sensitivity toward BIM inhibition and cellular 

context 

The fact that BIM-dimer is able to silence only Gαq proteins in a HEK and CHO 

background led to the question whether these findings might have something to do with 

the level of expression of its target protein. Context-dependent pharmacology of GPCR 

ligands is a well-known phenomenon and could be due to the relative amount of 

signaling components or its stoichiometry to each other in different cell lines (Kenakin, 

2013). 

To study this hypothesis HEK293 cells were transfected (calcium phosphate 

precipitation) with increasing amounts of HA-tagged Gαq cDNA in a gene dosing 

approach. To ensure an appropriate, higher Gαq protein expression an immunoblot 

detection was conducted (Fig. 12A-B). In parallel, IP1 accumulation was detected 

utilizing the endogenously expressed muscarinic M3 receptor after stimulation with 

carbachol (Fig. 12C). A clear correlation between BIM inhibition and Gαq expression 

could be detected. BIM inhibition was reversed when the expression of Gαq proteins 

was raised. These data support the hypothesis of the existence of a link between the 

expression level of BIM target proteins and the extent of BIM inhibition.  
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Figure 12: Investigating context-dependent influence of BIM-dimer with a gene 
dosing approach. 
(A) Immunoblot detection of HEK293 lysates prepared after transfection with 
increasing amounts of HA-tagged Gαq cDNA. Membranes were reprobed for tubulin to 
ensure equal sample loading and transfer. Membranes were incubated in primary 
antibody solution (1:1000) containing anti-HA or anti-β-tubulin. Bound antibodies were 
detected with an anti-rabbit horseradish-peroxidase-conjugated secondary antibody 
(1:10,000). Shown is one representative experiment of four independent experiments.  
(B) Densitometric analysis of the immunoblot experiments depicted in (A). Shown are 
means ± SEM of four independent experiments. 
(B)-(C) Data were kindly provided by Julia Morschel, Institute for Pharmaceutical 
Biology, University of Bonn, Germany. 
(C) HEK293 cells were transfected with increasing amounts of Gαq(HA) cDNA and IP1 
accumulation was detected using the endogenously expressed muscarinic M3 receptor 
in the presence or absence of BIM-dimer. Enrichment with Gαq proteins was inversely 
related to BIM inhibition. Data are means ± SEM of four independent experiments. 
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The diverse G protein inhibition profiles between HEK293 and MZ7 cells might also be 

related to different levels of target proteins. Therefore, the expression levels of Gαq, Gαs 

and Gαi proteins were quantified in both cell lines (Fig. 13). The expression level of 

Gαq proteins was equal between both cell lines which fit well to the hypothesis seeing 

as BIM-dimer silenced Gαq-mediated signaling in both cellular backgrounds. For Gαs 

proteins immunoblot quantification revealed significantly lower expression levels in the 

MZ7 cells and these data also supported the mechanistic link between sensitivity 

towards BIM and Gα subunit expression. In contrast, expression levels of Gαi proteins 

in MZ7 cells were enhanced in comparison to HEK293 cells. These findings were not in 

line with the expected results that the expression of Gαi proteins would have been 

reduced in MZ7 cells because BIM-dimer diminished Gαi-dependent signaling in MZ7 

cells (Fig. 10C). Taken together, different intracellular levels of Gα proteins might be 

one aspect to explain the absence of pan-G protein inhibition across different cell lines 

but other considerations regarding the cell-type dependent pharmacology of BIM-dimer 

have to be taken into account. 

 

 

 



44 Results 

 

Figure 13: Quantification of Gα protein subunits in HEK293 versus MZ7 cells. 
(A) Immunoblot detection of lysates prepared from native HEK293 and MZ7 cells 
evaluating Gαq, Gαs and Gαi proteins. Membranes were reprobed for tubulin to ensure 
equal sample loading and transfer. Membranes were incubated in primary antibody 
solution (1:1000) containing: anti-Gαq/11, anti-Gαs, anti-Gαi3 or anti-β-tubulin, 
respectively. Bound antibodies were detected with an anti-rabbit horseradish-
peroxidase-conjugated secondary antibody (1:10,000). Shown is one representative 
experiment of three independent experiments. 
(B)-(C) Densitometric analysis of the experiments depicted in (A). Shown are means  
+ SEM of three independent experiments. 
(A)-(C) Data were kindly provided by Julia Morschel, Institute for Pharmaceutical 
Biology, University of Bonn, Germany. 

 

3.1.7 BIM-dimer: A substrate for multidrug transporters? 

Another explanation for the absence of pan-G protein inhibition in certain cell lines 

might be that BIM-dimer acts as a substrate for active outward transport via multidrug 

transporters. Therefore HEK293 cells, which endogenously express multidrug 
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muscarinic M3 receptors were stimulated with carbachol and the IP1 accumulation was 

detected. Elacridar inhibits P-glycoprotein (P-gp) and breast cancer resistance protein 
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(BCRP). P-gp transports hydrophobic compounds while BCRP prefers diverse and 

nonconjugated compounds (Ahmed-Belkacem et al., 2005). MK571 inhibits MRP1 and 

MRP2, two transporters that export hydrophilic molecules and GSH conjugates 

(Wortelboer et al., 2013, Leyers et al., 2008). Pretreatment with elacridar alone 

increased the pEC50 value. This effect was comparable to that mediated by pretreatment 

with 30 µM BIM-dimer. The combination of 30 µM BIM-dimer and elacridar shifted 

the pEC50 value in an additive manner. 100 µM BIM-dimer or the combination of  

100 µM BIM-dimer and elacridar completely inhibited IP1 accumulation (Fig. 14A). In 

the presence of the multidrug transporter MK571 alone (10 µM), the concentration 

response curve was unaltered concerning its potency and efficacy in comparison to no 

pretreatment. 30 µM BIM-dimer and the combination of 30 µM BIM-dimer and MK571 

shifted the pEC50 value to the right in the same range. 100 µM BIM-dimer alone and the 

combination of 100 µM BIM-dimer and MK571 completely blocked IP1 accumulation 

(Fig. 14B). Together, neither elacridar nor MK571 was able to improve the capacity of 

30 µM BIM-dimer to silence Gαq-mediated signaling. Based on these findings one 

could conclude that export of BIM-dimer via multidrug transporters had no influence on 

the cell-type specific differences between G protein inhibition profiles.  
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Figure 14: Inhibition of multidrug transporters did  not improve the capacity of 
BIM to silence Gαq signaling.  
(A)-(B) HEK293 cells endogenously expressing the Gαq-sensitive muscarinic M3 
receptor were pretreated with the indicated concentrations of BIM-dimer for 2 h in the 
absence or presence of the multidrug transport inhibitors elacridar (A) or MK571 (B) 
and inositol phosphate IP1 accumulation was quantified as a measure of M3 receptor 
activity. Shown are mean values ± SEM of three independent experiments, each 
performed in triplicate. 
(A) pEC50/Emax (w/o) = 4.82 ± 0.11/99%; pEC50/Emax (10 µM elacridar) = 4.15 ± 
0.12/93%; pEC50/Emax (30 µM BIM-dimer) = 4.15 ± 0.11/87%; pEC50/Emax (30 µM 
BIM-dimer + 10 µM elacridar) = 3.84 ± 0.13/87%.  
(B) pEC50/Emax (w/o) = 4.77 ± 0.08/99%; pEC50/Emax (10 µM MK571) = 4.71 ± 
0.07/97%; pEC50/Emax (30 µM BIM-dimer) = 4.03 ± 0.18/94%; pEC50/Emax (30 µM 
BIM-dimer + 10 µM MK571) = 3.84 ± 0.16/94%. 
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3.1.8 Analyzing BIM-dimer in radioligand competition bind ing assays 

The findings that BIM-dimer silenced Gαq signaling in different cellular environments 

led to the question whether BIM-dimer could interfere with the agonist binding. In a 

first experiment it was tested whether BIM-dimer had an influence on the antagonist 

recognition of the muscarinic M1 receptor (Fig. 15). The results depict that BIM-dimer 

did not interfere with antagonist recognition.  

 

Figure 15: Influence of BIM-dimer on antagonist recognition. CHO-M1 membranes 
were labelled with 0.2 nM [3H]NMS and homologous competition experiments were 
conducted after a preincubation with 100 µM BIM-dimer (2 h). Data are means ± SEM 
of 2-9 experiments performed in duplicates and were kindly provided by Ramona 
Schrage, Pharmacology and Toxicology Section, Institute of Pharmacy, University of 
Bonn, Germany. 

 

Next, whole CHO-M1 cells were investigated in radioligand competition assays using 

carbachol as a ligand (Fig 16A). BIM-dimer did not impair carbachol displacement of 

the radio-antagonist [3H]NMS but rather enhanced agonist binding. From these data it 

seems reasonable that the inhibition of Gαq-mediated signaling was not due to BIM 

interference with agonist binding but with agonist function. 
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Figure 16: Effect of BIM-dimer on carbachol recognition of the muscarinic M1 
receptor. 
(A) 100 µM BIM dimer enhanced carbachol affinity to muscarinic M1 receptors labeled 
with [3H]NMS in whole CHO-M1 cells: pKi (w/o) = 3.61 ± 0.08; pKi (BIM-dimer) = 
4.09 ± 0.09. 
(B) Carbachol competed for [3H]NMS sites with high and low affinity in membrane 
preparations from CHO-M1 cells. If 1 mM GTP were present, 49% of the high-affinity 
sites were converted to the low-affinity sites. 
(C) In CHO-M1 preparations 100 µM BIM-dimer did not impair formation of high-
affinity complexes. 
(D) BIM counteracted the effect of GTP on high-affinity agonist binding in membrane 
preparations from CHO cells stably expressing the muscarinic M1 receptor. pKihigh 
(w/o) = 6.02 ± 0.23; pKilow (w/o) = 3.75 ± 0.06, fraction (w/o) = 19% ± 3; pKi (GTP) = 
3.67 ± 0.10; pKi (GTP + BIM) = 4.34 ± 0.04. 
(A)-(D) Data are means ± SEM of at least three independent experiments, each 
conducted at least in duplicates and were kindly provided by Ramona Schrage, 
Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 
Germany. 
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FUB132. In all cases BIM-dimer blocked G protein activation and these data led to the 

hypothesis that BIM achieved its effect through direct interaction with the Gα protein 

(Ayoub et al., 2009). These findings did not clarify the mode of action and did not 

answer the question whether BIM affects GDP exit or GTP entry. To get further insight 

into the mechanism radio-ligand binding studies were performed with CHO-M1 cell 

membranes using [3H]NMS as radio-antagonist.  

CHO-M1 membranes were analyzed in competition binding assays in which 

membranes were labelled with 0.2 nM [3H]NMS and then increasing amounts of the M1 

agonist carbachol were added. With this approach it was possible to discriminate 

between the two possibilities for a mode of action of BIM: (1) BIM acts as guanine-

nucleotide dissociation inhibitor (GDI) or (2) BIM functions as GTP entry inhibitor. For 

the first postulated situation BIM would have inhibited high-affinity agonist binding 

which is a conformational receptor state that is stabilized by the nucleotide-free empty-

pocket G protein (De Lean et al., 1980; Oldham and Hamm, 2008; Rodbell et al., 1971). 

It is important to know that the high-affinity state is only detectable in the absence of 

guanine nucleotides and represents only a short-lived intermediate state in whole cells 

since guanine nucleotides are abundant (De Lean et al., 1980; Oldham and Hamm, 

2008; Rodbell et al. 1971). Figure 16B shows binding data generated in the presence 

and absence of 1 mM GTP. In the absence of GTP one could detect high-affinity 

binding of carbachol to coupled GPCRs and low-affinity binding to uncoupled M1 

receptors. If the cells were treated with GTP 49% of the high-affinity sites were 

converted to low-affinity sites (Tab. 1) because of a rapid exchange from GDP to GTP 

and thus the empty pocket conformation was no longer measureable. A preincubation 

with 100 µM BIM-dimer had no effect on the high-affinity sites (Fig. 16C, Tab. 1) 

meaning that BIM-dimer was not able to uncouple receptors from their G proteins. 

Based on the results in Fig. 16C one could conclude that GDP can exit. If BIM permits 

GDP exit but inhibits G protein function it consequently must function as GTP entry 

inhibitor. This postulated hypothesis was challenged with a further experiment, in which 

membranes were preincubated with a combination of BIM-dimer and GTP (Fig. 16D). 

In the presence of BIM-dimer and GTP, BIM-dimer counteracted the effect of GTP on 

high-affinity agonist binding. This indicates that GTP cannot enter and receptors are not 

uncoupled from their cognate G protein because BIM “freezes” Gαq in the empty pocket 

conformation. Thus, these data fit well to the postulated mode of action. 
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Condition 
log (Ki) 

high 
SEM 

log (Ki) 

low 
SEM fraction SEM n 

w/o -6.04 0.16 -3.54 0.02 0.51 0.05 4 

BIM-dimer  

100 µM 
-5.96 0.25 -3.96 0.12 0.49 0.01 3 

GTP 

1 mM 
-5.70 0.55 -3.66 0.09 0.26 0.08 4 

 
Table 1: Related to Figure 16. Binding affinities of carbachol to [3H]NMS-labelled 
CHO-M1 receptors as determined in membrane preparations in the absence or presence 
of 100 µM BIM or 1 mM GTP. Data were kindly provided by Ramona Schrage, 
Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 
Germany. 

 

3.1.9 Influence of BIM-dimer on GDP-dissociation 

To underpin the present findings BIM-dimer was investigated in [3H]GDP dissociation 

assays with purified recombinant Gαq proteins (Fig. 17). For this assay a recombinant 

Gαq, lacking the first 34 residues (Gαq∆34) was used. This protein was purified after 

expression from a pFastBacI vector in insect cells (Waldo et al., 2010). This construct 

was expressed as a chimera containing the first 28 residues of rat Gαi1 connected to 

mouse Gαq∆34. An intervening TEV cleavage site between the Gαi1 and Gαq sequences 

enables removal of the Gαi1 sequence by the use of TEV protease. Thus, it is possible to 

obtain soluble chimeric proteins that could be purified in sufficient amounts (Tesmer et 

al., 2005; Kreutz et al., 2006). Gαq-bound GDP dissociates very slowly (Chidiac et al., 

1999) and to avoid this problem the assays were performed in the presence of 750 mM 

(NH4)2SO4, a chemical substance which speeds up the dissociation process and thus 

enabled its visualization. After 120 min the dissociation process was complete but 

completely unaffected by the presence of BIM-dimer.  

These results were strongly in line with the hypothesis that BIM-dimer enables GDP 

exit but prevents GTP entry. 
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Figure 17: [3H]GDP dissociation from purified Gαq proteins. Gαq∆34 proteins were 
incubated with 1 µM [3H]GDP for 18 h and then dissociation was detected in the 
presence of 750 mM (NH4)2SO4. BIM-dimer had no effect on [3H]GDP dissociation. 
Data were kindly provided by Thomas Charpentier, Department of Pharmacology, 
School of Medicine, University of North Carolina, Chapel Hill, USA. Data are means  
± SEM of at least three experiments. 

 

3.1.10  Washing experiments 

These experiments were designed to investigate whether BIM-dimer irreversibly binds 

to the Gαq protein. HEK293 cells were analyzed in IP1 accumulation assays (Fig. 18) 

after preincubation with 100 µM BIM-dimer for 2 h. After the incubation cells were 

washed three times for 5 min with PBS and then stimulated with carbachol. In parallel 

the assay was performed without the washing procedure to exclude influences on the 

cells by the washing process itself. As depicted in Figure 16 the washing procedure had 

no effect on the concentration response curve in the absence of BIM-dimer. When the 

cells were washed in the presence of BIM-dimer the inhibitory effect on the Gαq 

pathway was strongly diminished. From these results one can conclude that BIM-dimer 

did not bind irreversibly to Gαq proteins because it was possible to wash out the Gαq-

inhibitory effect.  
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Figure 18: BIM effect showed no irreversibility in washing experiments. HEK293 
cells endogenously expressing muscarinic M3 receptors were preincubated with BIM-
dimer (100 µM) and subsequently washed three times for 5 minutes with PBS. Then 
cells were stimulated with the muscarinic agonist carbachol in increasing concentrations 
and IP1 accumulation was assessed. As a control IP1 accumulation was also determined 
without the washing procedure. pEC50/Emax (w/o) = 4.50 ± 0.12/100%; pEC50/Emax  
(100 µM BIM-dimer) = 4.10 ± 0.61/27%; pEC50/Emax (w/o washed) = 4.82 ± 0.08/99%; 
pEC50/Emax (100 µM BIM-dimer washed) = 4.52 ± 0.17/77%. Data shown are means  
± SEM of at least three independent experiments, each performed in triplicate. 

 

3.1.11 Stability analysis of BIM-monomer 

In 2006 Prévost et al. ascribed the properties of a pan-G protein inhibitor to a compound 

named BIM-46174 (hereafter referred to as BIM-monomer). Before analyzing its effect 

on Gα subunits it was necessary to investigate the stability of monomeric BIM. Based 

on the structure of BIM-monomer it was hypothesized that the free thiol group should 

be intrinsically sensitive to oxidation and therefore stability was investigated in aqueous 

solution (D2O) over time by nuclear magnetic resonance (NMR) spectroscopy (Fig. 19). 

The protons in position 2 and 16 were well suited to study stability and enabled the 

differentiation between BIM-monomer and BIM-dimer.  
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Figure 19: Structures of BIM-monomer and BIM-dimer and NMR analysis in 
aqueous solution. 1H-NMR of the BIM-monomer: The signals at δ = 7.4-7.8 ppm 
correlate to the protons of the aromatic moiety and the imidazole ring. The signal at δ = 
6.0 ppm corresponded to the proton in position 2 and the area from δ = 4.0-5.0 ppm 
compromised the protons of position 12, 13 and 15 partially overlayed by the residual 
solvent (DOH) signal. At about δ = 3 ppm, the diasterotopic methylene protons next to 
the thiol group resonate (position 16), followed by the DMSO signal and the high-field 
shifted protons of the cyclohexylmethyl group. Data were kindly provided by Georg 
Hiltensperger, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and 
Food Chemistry, University of Würzburg, Germany.  

 

NMR spectra were detected at different time points between 0 and 48 h (Fig. 20) and 

were clearly indicative of BIM-monomer oxidation in a time-dependent manner. After 

48 h BIM-monomer was no longer detectable. The integrated area of the signals  

(Tab. 2) correlated with the concentration of BIM-monomer and allowed for the 

deduction of a 11.4 h half-life for this first order reaction (Fig. 21). 
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Figure 20: NMR spectroscopy of BIM-monomer over time. The oxidation process 
could be observed using the protons in position 2 and 16. At t = 0 h, only the proton 
signals of BIM-monomer were observed. Within 48 h the integrated areas of the signal 
of the monomer protons decreased while the dimer signals increased until 100% dimer 
was observed at t = 48 h. Data were kindly provided by Georg Hiltensperger, 
Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, 
University of Würzburg, Germany.  
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Time [h] Integration area  
Concentration 

[mg/ml] 
Ln c 

0 0.99 2.50 0.92 

2 0.88 2.24 0.80 

3 0.84 2.13 0.76 

5 0.71 1.80 0.59 

7 0.62 1.57 0.45 

24 0.22 0.56 -0.58 

32 0.14 0.36 -1.03 

 
Table 2: Related to Figure 20. Decreasing integration areas (proton 2) and 
corresponding concentrations of BIM-monomer. Data were kindly provided by Georg 
Hiltensperger, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and 
Food Chemistry, University of Würzburg, Germany.  

 

 

 

Figure 21: A diagram of the natural logarithm of the concentration (ln c) of BIM-
monomer versus time. Since the integration area of the signals in Figure 18 correlated 
with concentration of the BIM-monomer, a half-life of 11.4 h is calculated for this first-
order reaction. Data were kindly provided by Georg Hiltensperger, Pharmaceutical and 
Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of 
Würzburg, Germany.  
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Due to the short preincubation time during the second-messenger assays (2 h), a half-

life of 11.4 h of monomeric BIM is sufficiently long to test its Gα subunit-inhibiting 

profile. Nonetheless it is important to remember that BIM-monomer might partially 

convert to BIM-dimer during the assay period although the greater portion will be 

present as monomeric BIM.  

 

3.1.12 Kinetic studies with BIM-monomer and BIM-dimer in a  HEK and a CHO 

cell background 

To compare BIM-monomer and BIM-dimer concerning their kinetic profiles IP1 

accumulation assays were performed. Therefore HEK293 (Fig. 22A) and CHO-M1 

(Fig. 22B) cells were preincubated with BIM-monomer or BIM-dimer for 0.5 to 3 h and 

IP1 levels were determined after the stimulation with carbachol. The findings within the 

different cellular backgrounds were very similar for both inhibitory compounds. The 

inhibitory effect increased with a longer preincubation time and had its maximum after 

three hours. Notably, after three hours preincubation the assay window was reduced, 

probably caused by lowered cell viability, and therefore it was decided that incubation 

for 2 h would be the best suitable duration for further experiments with BIM-monomer. 

In addition to this the results in Figure 22 show that dimeric BIM was superior to BIM-

monomer in its ability to silence Gαq-mediated signaling independently of the 

preincubation time. 
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Figure 22: Kinetic studies with BIM-monomer and BIM-dimer. 
(A) HEK293 cells endogenously expressing muscarinic M3 receptors were used to 
determine IP1 levels after different preincubation times for BIM-monomer and BIM-
dimer. The cells were stimulated with 1 mM carbachol.  
(B) IP1 accumulation was detected in CHO cells stably transfected to express the 
muscarinic M1 receptor. BIM-monomer and BIM-dimer were preincubated for 0.5-3 h 
and then receptors were stimulated with 1 mM carbachol. 
(A)-(B) Cch = carbachol. Data shown are means + SEM of at least three independent 
experiments. 
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3.1.13 Investigating monomeric BIM in HEK and CHO cell backgrounds 

The following experiments helped answer the question whether BIM-monomer shows a 

similar preference for inhibition of Gαq proteins in HEK and CHO cell backgrounds. 

Therefore, BIM-monomer was analyzed in second-messenger assays analogous to 

experiments conducted for BIM-dimer. As depicted in Figure 21 BIM-monomer 

partially silenced Gαq-mediated signaling (Fig. 23A) of the endogenously expressed 

muscarinic M3 receptor in HEK293 cells. However, Gαs signaling via endogenously 

expressed EP2/4 receptors (Fig 23B) and Gαi signaling via stably transfected CRTH2 

receptors (Fig. 23C) was completely unaffected.  

 

 

Figure 23: BIM-monomer preferentially silenced Gαq signaling in HEK cells. 
(A) In HEK293 cells IP1 levels were determined in the presence or absence of BIM-
monomer. Gαq signaling of the endogenously expressed M3 receptor was partially 
inhibited. pEC50/Emax (w/o) = 4.55 ± 0.10/104%; pEC50/Emax (30 µM BIM-monomer) = 
4.25 ± 0.11/104%; pEC50/Emax (100 µM BIM-monomer) = 3.72 ± 0.24/68%. 
(B) Signaling via Gαs proteins was detected with cAMP accumulation assays. BIM-
monomer showed no inhibitory effect on Gαs-sensitive EP2/4 receptors. pEC50/Emax 
(w/o) = 9.07 ± 0.03/98%; pEC50/Emax (30 µM BIM-monomer) = 8.93 ± 0.03/99%; 
pEC50/Emax (100 µM BIM-monomer) = 8.78 ± 0.05/98%. 
(C) Gαi-sensitive CRTH2 receptors were unaffected by BIM-monomer pretreatment. 
pEC50/Emax (w/o) = 7.90 ± 0.18/51%; pEC50/Emax (30 µM BIM-monomer) = 7.91 ± 
0.17/48%; pEC50/Emax (100 µM BIM-monomer) = 7.87 ± 0.17/47%. 

(A)-(C) Means ± SEM of at least three independent experiments are shown. 
 

 

Similar results were obtained in the CHO cell background: After a preincubation with 

BIM-monomer for 2 h IP1 production mediated via muscarinic M1 receptors was 

reduced (Fig. 24A). Gαs and Gαi signaling was determined using Gαs-sensitive EP2/4 

receptors (Fig. 24B) and Gαi-sensitive serotonin receptors (Fig. 24C) but cAMP 

production was unaffected by a preincubation with BIM-monomer. 
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Figure 24: BIM-monomer preferentially diminished Gαq signaling in a CHO 
background. 
(A) Gαq signaling of the muscarinic M1 receptor in CHO cells was partially silenced in 
IP1 accumulation assays. pEC50/Emax (w/o) = 5.51 ± 0.13/96%; pEC50/Emax (30 µM 
BIM-monomer) = 5.12 ± 0.13/94%; pEC50/Emax (100 µM BIM-monomer) = 4.47 ± 
0.19/58%. 
(B)-(C) cAMP levels were detected to analyze the influence of BIM-monomer on Gαs-
coupled EP2/4 receptors (pEC50/Emax (w/o) = 6.09 ± 0.13/98%; pEC50/Emax (30 µM 
BIM-monomer) = 5.63 ± 0.08/99%; pEC50/Emax (100 µM BIM-monomer) = 5.10 ± 
0.15/98%) (B) and Gαi-coupled serotonin (5-HT) receptors (C). BIM-monomer did not 
diminish signaling of these pathways.  
(A)-(C) Data shown are means ± SEM of at least three independent experiments, each 
performed in triplicates. 

 

In summary, monomeric BIM as well as BIM-dimer, had a clear preference for 

diminishing signaling via Gαq proteins. In a CHO and HEK cell background BIM-dimer 

was superior to BIM-monomer in its potential to silence Gαq-mediated signaling. From 

these data one can conclude that the cellular context-dependent inhibition of Gαq 

signaling was not related to the inability of the cells to convert BIM-dimer into BIM-

monomer or the different reductive potentials of the cells.  
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3.1.14 Screening of a substance library with BIM-dimer analogs 

In a large substance library of the working group of Prof. Gütschow (Pharmaceutical 

Chemistry I, Institute of Pharmacy, University of Bonn, Germany) several compounds 

with structural similarity to BIM-dimer were available (chemical structures see 

Appendix). All of them contained a disulfide structure and showed symmetry. The aim 

of this screening was to clarify whether the disulfide structure demonstrated an 

important element for the Gαq-inhibitory effect and to ascertain whether it would be 

possible to explore other structures which could potentially be applied at lower 

concentrations than 100 µM. To this end, IP1 assays were performed: The cells were 

preincubated with 30 or 100 µM of the potential inhibitors followed by stimulation of 

M1 receptors with 30 µM carbachol (Fig. 25). None of the screened compounds was 

able to silence Gαq-mediated signaling indicating that the disulfide structure alone could 

not be responsible for the inhibitory interaction with Gαq proteins.  

 

 

Figure 25: Screening of BIM-dimer analogs. CHO cells stably transfected to express 
muscarinic M1 receptors were used to test several substances for their ability to silence 
Gαq signaling in IP1 accumulation assays after 2 h preincubation. Each substance was 
tested in a concentration of 30 and 100 µM. BIM-dimer was used as a positive control. 
Inhibitory effects were not observed in any of the substances analyzed. Data are means 
+ SEM of one to three experiments, each conducted in triplicate.  
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3.2 QIC (FR900359) - a suitable tool to specifically silence Gαq 

signaling? 

The second part of this thesis deals with the depsipeptide FR900359 (hereafter referred 

to as QIC) which was described by Nesterov et al. as a specific Gαq protein inhibitor. 

The chemical structure (Fig. 26) is very similar to the structure of YM-254890 

(hereafter referred to as YM) a well-known selective Gαq silencer (Takasaki et al., 2004; 

Nishimura et al., 2010). With a great variety of assays QIC should be investigated in 

detail to examine its specificity to silence Gα subunits and its mode of action.  

 
Figure 26: Chemical structure of QIC and YM (modified from Nesterov et al., 
2010). QIC and YM are cyclic heptadepsipeptides with ester bonds via C-termini of 
amino acids with beta-hydroxy carbonic acids (e.g. Phenyllactic acid) or beta-hydroxy 
amino acids. They consist of six non-proteinogenic amino acids and two cis-peptide 
bonds. Structural differences are highlighted with red circles. 

 

3.2.1 Screening of Ardisia crenata extracts 

QIC was isolated from the leaves of the evergreen plant Ardisia crenata. The extraction 

was conducted by Dr. Stefan Kehraus (Institute for Pharmaceutical Biology, University 

of Bonn, Germany). Several extracts were tested in IP1 accumulation assays to detect 

QIC containing fractions. In a first step leaves were extracted with methanol (3-4 times) 

to obtain the primary leaf extract. This primary leaf extract was further fractionated via 

liquid-liquid distribution between water (extract E1) and butanol. Then the butanolic 

residuent was separated with liquid-liquid extraction between acetonitrile and hexane 
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obtaining extract E2 and E3. For the first approach three leaf extracts of Ardisia crenata 

were analyzed: E1 (H2O), E2 (acetonitrile) and E3 (hexane). These extracts were tested 

in a concentration of 0.3% (Fig. 27A) in CHO cells stably expressing the muscarinic 

M1 receptor which is coupling via Gαq proteins. The cells were stimulated with the 

synthetic muscarinic agonist carbachol. IP1 production was inhibited by extract E1 and 

E2. Two further assays were performed with lower concentrations of E1 to E3  

(Fig. 27B-C). Inhibitory activity was still detectable in E2 in a concentration of 0.03% 

while the other extracts lost their ability to silence Gαq signaling with further dilution.  

Based on these findings E2 was further separated via vacuum liquid chromatography 

(VLC) and five fractions F1 to F5 were obtained. These fractions were tested in a 

concentration of 1% (Fig 28A) and it seemed that the Gαq inhibitory compound was 

distributed over the whole eluate with the exception of fraction F2. To elucidate 

quantitative differences within the fractions further diluted concentrations were 

analyzed. An inhibitory effect was exclusively found in fraction F4 and F5 (Fig. 28B) 

but the Delta F levels were decreased in comparison to unfractionated extract E2 which 

could be explained with the enrichment of colored components interfering with FRET-

based IP detection. With further dilutions this effect was no longer detectable while the 

Gαq-inhibitory compound was still enriched enough to silence Gαq-mediated IP1 

production (Fig. 28C).  
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Figure 27: E2 leaf extract contained Gαq protein inhibitory compound. 
(A)-(C) CHO-M1 cells were preincubated with various concentrations of extracts E1 
(H2O), E2 (acetonitrile) and E3 (hexane) and IP1 levels were detected after stimulation 
with 30 µM carbachol. Data shown are means + SEM, experiments were performed in 
triplicate. 
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Figure 28: VLC Fraction F4 and F5 of the leaf extract were enriched with the Gαq 
protein inhibitory compound.  
(A)-(C) CHO-M1 cells were preincubated with various concentrations of VLC fractions 
F1 to F5 and IP1 levels were detected after stimulation with 30 µM carbachol. Data 
shown are means + SEM, experiments were performed in triplicate. 
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For the following experiments the primary shoot extract of Ardisia crenata was treated 

in the same way as leave extract ending up with three analogous secondary shoot 

extracts: E1 (H2O), E2 (acetonitrile) and E3 (hexane). Extract E2 was further separated 

via VLC and six fractions F1 to F6 were obtained. As expected from the leaf extract 

results, enrichment of the Gαq inhibitor could be detected in further fractions of extract 

E2 (Fig. 29A-B), namely in fraction F4-F6 which fitted to the results in leaf fractions. 

Extract E1 did not contain significant amounts of the Gαq inhibitor but extract E3 

seemed to contain inhibitory activity. Further dilution of fractions F4-F6 and E3 

revealed that the greatest portion of the Gαq inhibitor was enriched in fraction F4 and 

F5, with a slightly higher enrichment in fraction F5 (Fig. 29C). The amount of the Gαq-

inhibitory compound formerly detected in extract E3 and fraction F6 seemed to be 

negligible because further dilutions did not show an inhibition of IP1 production 

anymore.  

Based on these findings fraction F5 was further separated via high performance liquid 

chromatography (HPLC) ending up with 9 fractions HF0 to HF8. Fractions HF2, HF3 

and HF4 seemed to contain the Gαq-inhibitory compound (Fig. 30A). After a further 

dilution of HF2-HF4 the inhibitory effect was reduced for HF4 (Fig. 30B) and from 

dilutions up to 0.03% one could conclude that HF2 contained most of the Gαq inhibitor 

(Fig. 30C). Therefore fraction HF2 was selected for a further experiment in dynamic 

mass redistribution (DMR) assays. As depicted in Figure 31 a treatment with HF2 

alone as well as a treatment with QIC alone did not cause a cell response which was 

indicative that HF2 did not contain any activating components leading to changes in 

DMR. If CHO-M1 cells were stimulated with carbachol after pretreatment with HF2 or 

QIC the Gαq-mediated signal was completely silenced but a negative DMR response 

was detectable. This response could be explained with the ability of the M1 receptor to 

couple also via Gαs proteins (Burford and Nahorski, 1996) but in the absence of a Gαq-

inhibitory compound this signal is masked by the Gαq-mediated response. 

In summary, it was possible to work out fractions with a high enrichment of the Gαq-

inhibitory compound without major differences between extracts originating from leaf 

or shoot of Ardisia crenata. Due to the fact that it is much easier to prepare leaf extracts 

it was decided to work with leaf extracts in further approaches.  
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Figure 29: VLC Fraction F4 and F5 of the shoot extract were able to silence Gαq 
signaling. 
(A)-(C) CHO-M1 cells were preincubated with various concentrations of extract E1 and 
E3 or VLC fractions F1 to F6 and IP1 levels were detected after stimulation with 30 µM 
carbachol. Data shown are means + SEM, experiments were performed in triplicate. 

 

bu
ffe

r
-4

.5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buff
e r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buff
e r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buff
e r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

0

400

800

1200

1600

2000

2400

2800

E 3 F 4 F 5 F 6E 1 F 1 F 2 F 3

 667
µg/ml

 667
µg/ml

 100
µg/ml

 100
µg/ml

 100
µg/ml

 100
µg/ml

30
µg/ml

10
µg/ml

 100
µg/ml

30
µg/ml

10
µg/ml

 100
µg/ml

1 µM

QIC

carbachol (log M)

IP
1 

D
el

ta
 F

 (%
)

bu
ffe

r
-4

.5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buff
er -4

,5

buff
er -4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

0

400

800

1200

1600

2000

2400

E 3 F 4 F 5 F 6E 1 F 1 F 2 F 3 QIC

1 µM  667
µg/ml

  667
µg/ml

 100
µg/ml

carbachol (log M)

IP
1 

D
el

ta
 F

 (
%

)

bu
ffe

r
-4

.5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buffe
r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buffe
r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

buffe
r

-4
,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

bu
ffe

r
-4

,5

0

400

800

1200

1600

2000

2400

F 4 F 5 F6 E 3 QIC

3 µM  30
µg/ml

    9
µg/ml

 3
µg/ml

  30
µg/ml

    9
µg/ml

 3
µg/ml

  30
µg/ml

    9
µg/ml

 3
µg/ml

100
µg/ml

  30
µg/ml

10
µg/ml

3
µg/ml

carbachol (log M)

IP
1 

D
el

ta
 F

 (
%

)
A

B

C



Results 

 

67

 

Figure 30: HPLC fraction HF2 and to a minor extent HF3 and HF4 of the shoot 
extract contained the Gαq inhibitor. 
(A)-(C) CHO-M1 cells were preincubated with various concentrations of extract E1 and 
E3 or VLC fractions F1 to F6 and IP1 levels were detected after stimulation with 30 µM 
carbachol. Data shown are means + SEM, experiments were performed in triplicate. 
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Figure 31: DMR revealed that HPLC fraction HF2 contained the Gαq-inhibitory 
compound. CHO-M1 cells were pretreated with HF2 or QIC and wavelength shift was 
monitored as a measure of receptor activation. M1 receptors were stimulated with the 
synthetic agonist carbachol. Cch = carbachol. Shown are representative data means  
+ SEM. 

 

3.2.2 Stability test 

Due to the fact that it was planned to explore QIC effects in long-term assays the 

stability of QIC was analyzed with DMR and calcium mobilization assays. For the 

DMR assays QIC was solubilized in assay buffer (Hank's buffered salt solution (HBSS) 

with 20 mM HEPES) and stored for up to eight days at 37°C. As a control assay buffer 

alone was also stored for this time period. On the day of the assay CHO-M1 cells were 

preincubated with either the collected assay buffer (Fig. 32A) or the stored QIC 

solutions (Fig. 32B) and M1 receptors were stimulated with carbachol. The addition of 

carbachol caused a positive wavelength shift and preincubation with the collected assay 

buffer had no effect on the cell response (Fig. 32A). This preincubation served as a 

control to check whether there are artifacts caused by the incubation process itself. If the 

CHO-M1 cells were preincubated with the different QIC solutions a similar negative 

wavelength shift was detectable (Fig. 32B), indicating that QIC was unaffected by the 

storage conditions at 37°C. The negative cell response could be explained with the 

ability of the M1 receptor to couple also via Gαs proteins (Burford and Nahorski, 1996) 

which becomes visible through a negative wavelength shift in a CHO cell background 

(Schröder et al., 2010). In the absence of Gαq-inhibitory compounds this effect is 

superimposed by the positive Gαq-mediated signal, because the M1 receptor 

preferentially couples via Gαq proteins (Caulfield and Birdsall., 1998). 
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As depicted in Figure 32C-D CHO-M1 cells were also stimulated with forskolin, a 

direct activator of the adenylyl cyclase to analyze whether QIC preincubation or 

possibly existing degradation products influence receptor-independent signaling as well 

as cell viability. The negative DMR was enhanced in the presence of QIC. This 

phenomenon could be explained with the crosstalk between the Gαq and Gαs signaling 

pathway, an effect which is well-described in literature. In the absence of QIC, 

endogenously expressed and constitutively active Gαq-coupled receptors can cause a 

Ca2+ release and for calcium ions it is described that they can either activate or 

inactivate isoforms of adenylyl cyclase (Defer et al., 2000; Cordeaux and Hill, 2002). In 

this case calcium ions seem to show inhibitory effects on the adenylyl cyclase. QIC 

inhibits the Gαq-mediated signaling via constitutively active receptors. Therefore, in the 

presence of QIC Ca2+ release is suppressed and inhibitory effects on the adenylyl 

cyclase are reversed. 

Calcium mobilization assays were performed to detect whether QIC stability was 

influenced through the presence of adherent growing cells or media components. The 

assays were performed with (1) 1 µM QIC diluted in HEK-ratGPR17 media and stored 

for up to eight days in reaction tubes at 37°C and (2) 1 µM QIC diluted in HEK-

ratGPR17 media was given into a cell culture flask with splitted HEK-ratGPR17 cells 

and samples were collected for up to eight days from the cell supernatant. The presence 

of growing cells or media showed no negative impact on the stability of QIC (Fig. 32E) 

because calcium mobilization was completely blocked independently of their storage 

duration. 

From these findings one could conclude that the Gαq-inhibitory effect of QIC was stable 

for a term of at least eight days at 37°C and therefore it is seems to be unnecessary to 

repeatedly dispense QIC in long-term assays.  
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Figure 32: QIC activity was stable over a period of up to eight days in DMR and 
calcium mobilization assays. 
(A)+(C) CHO-M1 cells were preincubated with assay buffer collected from day zero to 
day eight. M1 receptors were activated with 30 µM carbachol (A) or the direct 
adenylylcyclase activator forskolin (C) and wavelength shift was detected over time.  
(B)+(D) CHO-M1 cells were pretreated with QIC solutions in assay buffer (final 
concentration1 µM) collected from day zero to day eight and stimulated with 
carbachol.(B) or forskolin (D). Wavelength shift was monitored as a measure of 
receptor activation. 
(A)-(D) Data are represented as means + SEM of one representative experiment. 
(E) HEK-ratGPR17 cells were preincubated with a QIC solution or QIC from cell 
supernatant, stimulated with the GPR17 agonist MDL29,951 (Hennen et al., 2013) and 
calcium mobilization was detected. Data shown are means + SEM of two independent 
experiments. Data were kindly provided by Dr. Stefanie Blättermann, Institute for 
Pharmaceutical Biology, University of Bonn, Germany. 
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3.2.3 Kinetic studies with QIC in a HEK and a CHO cell background 

To explore the kinetic profile of QIC IP1 accumulation assays were performed in two 

commonly used cell lines. HEK293 cells endogenously expressing the muscarinic M3 

receptor (Fig. 33A) and CHO cells stably transfected to express muscarinic M1 

receptors (Fig. 33B) were preincubated for five to 15 min and then cells were stimulated 

with carbachol. The inhibitory effect seemed to occur a little bit faster in the HEK cells, 

because already after five minutes preincubation time IP1 production was reduced by 

approximately 80% whereas in the CHO cells it was just 20%. After 15 min 

pretreatment with QIC in both cell lines the IP1 levels were decreased close to 0%. 

These data indicate that QIC reliably silenced Gαq-mediated signaling within 15 min in 

this second-messenger assay and therefore reached an inhibitory effect substantially 

faster than BIM-dimer and BIM-monomer (see chapter 3.1.12).  

In order to facilitate comparison between the different assays types it was decided to 

work with a preincubation of 1 h in further second-messenger experiments.  

 

 

 

 

 

 



72 Results 

 
Figure 33: Analyzing the kinetic profile of QIC. 
(A)-(B) HEK293 cells (A) and CHO-M1 cells (B) were pretreated with QIC (1 µM) for 
the indicated time periods. Then M3 or M1 receptors were stimulated with 1 mM 
carbachol and IP1 levels were determined. Data shown are means + SEM of at least 
three independent experiments, each conducted in triplicate. 
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3.2.4 Selectivity of QIC in second-messenger assays in a HEK cell background 

In order to explore whether QIC specifically silences Gαq-mediated signaling in second-

messenger assays IP1 and cAMP levels were determined in the presence or absence of 

QIC. HEK293 cells were preincubated with various concentrations of QIC and 

endogenously expressed M3 receptors were stimulated with the synthetic muscarinic 

agonist carbachol. As depicted in Figure 34A 300 nM and 1 µM QIC were sufficient to 

silence IP1 production completely. 0.1 nM and 1 nM had no impact on IP1 

accumulation and concentrations between 1 nM and 300 nM only partly affected the IP1 

levels. Notably, in a concentration-dependent manner QIC decreased basal IP1 

production which could be explained by the presence of constitutively active GPCRs in 

HEK293 cells coupling via Gαq proteins.  

The effect of QIC on stimulating Gαs proteins was analyzed in HEK293 cells 

endogenously expressing Gαs-linked EP2/4 receptors. Therefore, cells were 

preincubated with QIC in two different concentrations (0.3 µM and 1 µM) and after 

stimulation with prostglandin E1 (PGE1) cAMP levels were determined (Fig. 34B). 

cAMP production was completely unaffected by pretreatment with QIC. 

Similar results were obtained in assays which detect the influence on Gαi proteins  

(Fig. 34C). In these assays HEK cells stably transfected to express Gαi-sensitive 

CRTH2 receptors (CRTH2-HEK) were pretreated with QIC for 1 h and then stimulated 

with increasing concentrations of DK-PGD2. There was still a strong cAMP reduction 

detectable indicating that QIC was not able to inhibit Gαi-mediated signaling.  
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Figure 34: QIC exclusively inhibited signaling via Gαq proteins. 
(A) HEK293 cells endogenously expressing Gαq-mediated muscarinic M3 receptors 
were pretreated with increasing concentrations of QIC and concentration-response-
curves were recorded after stimulation with carbachol. In higher concentrations QIC 
completely silenced signaling via Gαq proteins. pEC50/Emax (w/o) = 5.18 ± 0.05/99%; 
pEC50/Emax (0.1 nM QIC) = 5.05 ± 0.13/99%; pEC50/Emax (1 nM QIC) = 5.02 ± 
0.14/101%; pEC50/Emax (10 nM QIC) = 4.95 ± 0.12/103%; pEC50/Emax (30 nM QIC) = 
4.95 ± 0.10/103%; pEC50/Emax (100 nM QIC) = 4.95 ± 0.50/37%; pEC50/Emax (178 nM 
QIC) = 5.19 ± 0.57/21%. 
(B) QIC was not able to silence cAMP signaling of the Gαs-sensitive EP2/4 receptors in 
HEK293 cells. pEC50 (w/o) = 8.25 ± 0.05; pEC50 (0.3 µM QIC) = 8.34 ± 0.03; pEC50  
(1 µM QIC) = 8.28 ± 0.04. 
(C) Signaling via Gαi proteins was detected with cAMP accumulation assays and QIC 
showed no inhibitory effect on Gαi-sensitive CRTH2 receptors. pEC50 (w/o) = 7.99 ± 
0.21; pEC50 (0.3 µM QIC) = 7.73 ± 0.21; pEC50 (1 µM QIC) = 7.69 ± 0.17. 
(A)-(C) All data are means ± SEM of three to eight independent experiments, each 
conducted in triplicate. 

 

3.2.5 BRET assays revealed QIC as selective inhibitor of Gαq and Gα11 proteins 

With the following experiments it was analyzed whether QIC was specific to silence 

Gαq subunits in bioluminescence energy transfer (BRET) assays. In a first approach 

logIC50 value of QIC for this assay system was determined (Fig. 35). Therefore 

HEK293 cells were transfected to coexpress h-Flag-AT1 receptor, the energy donor 

Gαq-RLucII and the energy acceptor Gγ1-GFP10. AT1 receptors were stimulated with 

angiotensin II (5 min) after a preincubation with increasing concentrations of QIC  

(30 min). With low QIC concentrations up to 0.1 nM a substantial agonist-promoted 

decrease in BRET was recorded which was completely blunted at a concentration of 0.1 

µM QIC (pIC50 = 8.50 ± 0.09). This BRET decrease reflected the separation of the Gα-

helical domain from the N terminus of Gγ which then enables GDP exit and GTP entry 

(Galés et al., 2006; Saulière et al., 2012) and was blocked concentration-dependent due 
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to pretreatment with QIC. Based on these findings further BRET experiments were 

performed after preincubation with 0.1 µM QIC for 30 min.  

 
Figure 35: QIC blunted AT1-mediated BRET decrease in a concentration-
dependent manner. 
HEK293 cells transiently expressed h-Flag-AT1 receptor, Gαq-RLucII and Gγ1-GFP10 
and opening of the nucleotide binding pocket could be detected as BRET decrease after 
receptor activation (5 min, 1 µM angiotensin II) but was blocked after pretreatment with 
QIC for 30 min (pIC50 8.50 ± 0.09). Presented data are means ± SEM of seven 
independent experiments. Data were kindly provided by Sylvain Armando, Division of 
Endocrinology and Metabolism, Department of Medicine, Montreal, Canada. 

 

As depicted in Figure 36 the inhibitory effect of QIC was investigated using several Gα 

subunits. First, two members of the Gαq family, Gαq (Fig. 36A) and Gα11 (Fig. 36B), 

were investigated. Therefore, HEK293 cells were forced to express transiently AT1 

receptor, energy donor Gαq-RLucII (Fig. 36A) or Gα11-RLuc8 (Fig. 36B) and energy 

acceptor Gγ1-GFP10 or Gγ2-GFP10. Preincubation with QIC blunted AT1-mediated 

BRET decrease via Gαq and Gα11 subunits. Gαs signaling was analyzed expressing the 

Gαs-RLucII sensor as energy donor, Gγ1-GFP10 as energy acceptor (Fig. 36C). Human 

vasopressin2 (V2) receptors were stimulated with vasopressin (AVP) and concentration-

dependent BRET decrease was detectable which was regardless of QIC pretreatment. 

The three Gα subunits Gαi1, Gαi2 and Gαi3 were studied by transfecting Gαi1-RLucII 

(Fig. 36D), Gαi2-RLucII (Fig. 36E) or Gαi3-RLucII (Fig. 36F) as energy donor together 

with Gγ2-GFP10 as energy acceptor. Gαi signaling was recorded using angiotensin II and 

its transiently expressed target receptor AT1 but pretreatment with QIC did not inhibit 

AT1-Gαi activation. GαoA-RLuc8 (Fig. 36G) and GαoB-RLuc8 (Fig. 36H) were used as 

energy donors to explore Myc-α2c-mediated BRET decrease triggered with UK-14304 

as an agonist and Gγ2-GFP10 as energy acceptor but BRET decrease was insensitive to 
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QIC pretreatment. It was possible to record an angiotensin II-promoted decrease in 

BRET in cells transiently expressing AT1 receptor, Gα12-RLucII as energy donor and 

Gγ1-GFP10 as energy acceptor (Fig. 36I) which was unaltered after preincubation with 

QIC. Gα13 signaling was analyzed expressing the Gα13-RLuc8 sensor as energy donor, 

Gγ2-GFP10 as energy acceptor (Fig. 36J). Thromboxane TPα receptors were stimulated 

with its ligand U-46619 and concentration-dependent BRET decrease was detectable 

which was regardless of QIC pretreatment. 

In summary, QIC selectively silenced ligand promoted BRET via Gαq and Gα11 proteins 

which was also in line with the findings for YM of Nishimura et al in 2010 because they 

found out that Gα residues directly interacting with the inhibitor YM were completely 

conserved in Gαq, Gα11 and Gα14 proteins but not in other Gα members. The BRET 

assays were performed to gain a deeper insight into the specificity of QIC within the 

family members of the four main G protein subclasses. Nishimura et al. investigated the 

selectivity of QIC with [35S]GTPγS binding assays using purified Gαq, Gαs, Gαi1, Gαo 

and Gα13 proteins (Nishimura et al., 2010). The BRET constructs enabled exploring of 

inhibitory effects on further members of the G protein subclasses. Thus, it was possible 

to distinguish between Gαq and Gα11-mediated signaling and it could be clearly shown 

that QIC inhibits both Gα subunits equally. Experiments with Gαi2, Gαi3 and Gα12 

proteins were lacking and their investigation in BRET assays revealed that QIC does not 

interfere with these Gα subunits. 
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Figure 36: BRET assays revealed QIC as selective inhibitor of G αq and Gα11 
proteins. 
(A)-(B) HEK293 cells were transiently transfected to coexpress Gαq-RLucII + 
 Gγ1-GFP10 (pEC50 (w/o) = 8.79 ± 0.14) (A) or Gα11-RLuc8 + Gγ2-GFP10 (pEC50 (w/o) 
= 8.94) (B) and AT1 receptor. Opening of the nucleotide binding pocket was detected as 
BRET decrease which was completely blocked after QIC pretreatment. 
(C) Gαs-RLucII + Gγ1-GFP10 were expressed together with the Gαs-sensitive V2 
receptor and recorded BRET decrease was unaffected by QIC preincubation. pEC50 
(w/o) = 9.09 ± 0.29; pEC50 (0.1 µM QIC) = 8.79 ± 0.38. 
(D)-(F) BRET between Gαi1-, Gαi2, Gαi3-RLucII and Gγ2-GFP10 was determined using 
angiotensin II with its target receptor AT1 and was insensitive to QIC pretreatment. 
pEC50 (w/o) = 8.42 ± 0.41; pEC50 (0.1 µM QIC) = 8.39 ± 0.37 (D). pEC50 (w/o) = 8.50 
± 0.44; pEC50 (0.1 µM QIC) = 8.65 ± 0.42 (E). pEC50 (w/o) = 8.56 ± 0.29; pEC50  
(0.1 µM QIC) = 8.63 ± 0.27 (F). 
(G)-(H) QIC did not block molecular rearrangement of activated GαoA or GαoB. BRET 
decrease was measured after α2c activation in HEK293 cells transfected to express 
GαoARLuc8 + Gγ2-GFP10 or GαoB-RLuc8 + Gγ2-GFP10. pEC50 (w/o) = 8.77 ± 0.20; 
pEC50 (0.1 µM QIC) = 8.92 ± 0.15 (G). pEC50 (w/o) = 8.84 ± 0.17; pEC50 (0.1 µM QIC) 
= 8.74 ± 0.11 (H).  
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(I ) HEK293 cells were transiently transfected to coexpress Gα12-RLucII + 
 Gγ1-GFP10 and as well as AT1 receptor. Opening of the nucleotide binding pocket was 
detected as BRET decrease which was unaltered after QIC pretreatment. pEC50 (w/o) = 
8.09 ± 0.13; pEC50 (0.1 µM QIC) = 8.28 ± 0.17. 
(J) Gα13-RLuc8 + Gγ2-GFP10 were expressed together with the Gα13-sensitive TP α 
receptor. The recorded BRET decrease was unaffected by QIC preincubation. pEC50 
(w/o) = 8.27 ± 0.14; pEC50 (0.1 µM QIC) = 8.29 ± 0.13. 
(A)-(J) Data shown are means ± SEM of at least three independent experiments. Data 
were kindly provided by Sylvain Armando (A), (C)-(F), (I ), Division of Endocrinology 
and Metabolism, Department of Medicine, Montreal, Canada and Ségolène Galandrin 
(B), (G)+(H), (J), Institut des Maladies Métaboliques et Cardiovasculaires, Institut 
National de la Santé et de la Recherche Médicale, Université Toulouse III, France. 

3.2.6 Analyzing the inhibitory profile of QIC in label-fr ee assays 

Since QIC exclusively silenced signaling via Gαq (and Gα11, a member of the Gq-

family) in second-messenger and BRET studies it was the aim to analyze the effect of 

QIC on the four main Gα protein subclasses in two label-free assay systems: Dynamic 

mass redistribution and impedance. 

 

3.2.6.1 Dynamic mass redistribution 

QIC was analyzed according to its ability to influence Gαs, Gαi, dual Gαq/i and Gα12/13-

mediated signaling in dynamic mass redistribution (DMR) assays using the Epic 

system. Therefore HEK293 cells endogenously expressing EP2/4 receptors were chosen 

to study the influence of QIC on signaling via Gαs proteins (Fig. 37A). Prior to the 

assay cells were seeded into biosensor microplates as described in section 2.2.3.3. Cells 

were preincubated with 0.3 µM or 1 µM QIC for 1 h and challenged with 100 nM PGE1 

and the DMR response was recorded. The results show that the PGE1-mediated cell 

response was not affected by QIC pretreatment but a preincubation with cholera toxin 

(CTX) (16-20 h) to mask Gαs signaling was able to inhibit signaling of the Gαs-sensitive 

EP2/4 receptors. Gαi signaling was investigated using HEK cells stably transfected to 

express CRTH2 receptors which are coupling via Gαi proteins (Fig. 37B). Cells were 

pretreated with QIC or the Gαi inhibitor pertussis toxin (PTX) (16-18 h) and challenged 

with the CRTH2 agonist DK-PGD2 (100 nM). PTX inhibited signaling of the Gαi-

sensitive CRTH2 receptor but the cell response was completely unaffected by QIC 

pretreatment. Next, FFA1-HEK cells stably transfected to express the FFA1 receptor, a 

dual Gαq/i coupling receptor, were analyzed (Fig. 37C). Cells were preincubated with 

QIC, PTX or a combination of both before cells were challenged with the FFA1 agonist 
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TUG424 (3 µM) (Schmidt et al., 2011). PTX reduced the cell response from 300 pm to 

about 200 pm, QIC decreased the wavelength shift from 300 pm to about 50 pm but a 

combination of PTX and QIC completely blocked dual FFA1-mediated signaling. To 

explore the influence of QIC on the signaling of the fourth Gα family member Gα12/13, 

HEK cells stably transfected to express GPR55, a GPCR with exclusive bias toward the 

Gα12/13 pathway (Ryberg et al., 2007; Henstridge et al., 2009; Ross, 2009), were 

challenged with lysophosphatidylinositol (LPI) after pretreatment with QIC (Fig 37D). 

Due to the fact that a specific Gα12/13 inhibitor is not available to date cells were 

pretreated with the pan-G protein activator aluminum fluoride (AlF4
-) to underline that 

the GPR55 trace was mediated via G proteins. The GPR55-mediated cell response was 

insensitive to a QIC pretreatment but was silenced after a preincubation with AlF4
-. 
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Figure 37: Dynamic mass redistribution revealed QIC as selective inhibitor of Gαq 
signaling. 
(A) HEK293 cells endogenously expressing EP2/4 receptors were challenged with  
100 nM PGE1. Pretreatment of cells with CTX (200 ng/ml) inhibited signaling of the 
Gαs-sensitive EP2/4 receptors whereas wavelength shift was unaffected by pretreatment 
with QIC.  
(B) HEK293 cells stably expressing CRTH2 were treated with the agonist DK-PGD2 to 
visualize Gαi-mediated signaling. Pretreatment with QIC showed no inhibitory effect 
but PTX (50 ng/ml) silenced Gαi signaling. 
(C) The cell response obtained with the FFA1 agonist TUG424 in stable FFA1-HEK 
cells was partly sensitive to PTX (50 ng/ml) or QIC pretreatment but completely 
silenced in the presence of a combination of PTX and QIC. For receptor expression 
cells were treated with 1 µg/ml doxycycline (16 h). 
(D) Stable GPR55-HEK cells were challenged with the GPR55 agonist LPI. LPI-
mediated wavelength shift was not blunted by pretreatment with QIC but was sensitive 
to preincubation with the pan-G protein activator AlF4

- (300 µM). 
(A)-(D) Data shown are representative data (means + SEM) of at least three 
independent experiments, each performed in triplicate.  
 

With further experiments it should be investigated whether QIC was functional on every 

cell line analyzed in Figure 37 and whether PTX and CTX were specific to silence Gαi 

or Gαs proteins, respectively. Therefore HEK293 (Fig 38A) and CRTH2-HEK  

(Fig. 38B) cells were challenged with ATP to stimulate Gαq-sensitive P2Y receptors. 
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with CTX had no effect on the Gαq-mediated trace. These findings underlined that QIC 

was a selective inhibitor for the Gαq pathway with a proper functionality in both cell 

lines and PTX exclusively silenced Gαi proteins and did not affect cell viability. In 

FFA1-HEK cells the functionality of QIC and PTX was already proven with the 

experiments in Figure 38C but it should be analyzed whether QIC and PTX were 

specific to silence Gαq and Gαi proteins in this cell line without a negative influence on 

cell viability. Therefore, Gαs-mediated signaling via endogenously expressed EP2/4 

receptors (Fig. 38C) was investigated. GPR55-HEK cells endogenously expressing 

muscarinic M3 receptors were treated with carbachol after a preincubation with QIC or 

AlF4
- (Fig. 38D). Also in this cell line QIC was functional to silence Gαq signaling and 

pretreatment with AlF4
- showed that the detected cell response was mediated via G 

proteins. 

In summary, QIC selectively silenced signaling via Gαq proteins in DMR comparable to 

the well-known Gαq inhibitor YM (Schröder et al., 2010). 
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Figure 38: Gαq signaling was selectively blocked after QIC preincubation and PTX 
or CTX pretreatment was specific for Gαi or Gαs, respectively.  
(A)-(B) HEK293 and CRTH2-HEK cells endogenously expressing Gαq-sensitive P2Y 
receptors were challenged with ATP. Pretreatment with QIC blocked Gαq signaling but 
CTX had no effect on the cell response. 
(C) FFA1-HEK cells endogenously expressing Gαs-sensitive EP2/4 receptors were 
challenged with PGE1. Cell responses were insensitive to QIC, PTX or a combination of 
QIC and PTX. 
(D) GPR55-HEK cells endogenously expressing M3 receptors were stimulated with 
carbachol. Wavelength shift was silenced by QIC and pan-G protein activator AlF4

- 
pretreatment. 
(A)-(D) Data shown are representative data (means + SEM) of at least three 
independent experiments, each performed in triplicate.  
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3.2.6.2  Impedance 

QIC was analyzed according to its ability to influence Gαs, Gαi, dual Gαq/i and Gα12/13-

mediated signaling with a second label-free technology, detecting changes in impedance 

assays with the CellKey system. HEK293 cells endogenously expressing Gαs-sensitive 

EP2/4 receptors were challenged with PGE1 after a preincubation with QIC or CTX 

(Fig. 39A). PGE1-triggerd cell response was blocked by CTX but was insensitive to 

QIC pretreatment. To study the effect of QIC on the Gαi pathway CRTH2-HEK cells 

were treated with the specific agonist DK-PGD2 (Fig. 39B). The detected wavelength 

shift could be silenced with a PTX pretreatment but was unaffected by QIC 

preincubation. Next, HEK cells stably transfected to express the FFA1 receptor (FFA1-

HEK), a receptor with dual Gαq/i protein coupling, were investigated (Fig. 39C). Cells 

were preincubated with QIC, PTX or a combination of both before cells were 

challenged with the FFA1 agonist TUG424 (3 µM). PTX or QIC alone only diminished 

the cell response but a combination of PTX and QIC completely blocked dual FFA1-

mediated signaling.  
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Figure 39: Impedance measurements revealed QIC as a selective inhibitor of Gαq 
signaling. 
(A) HEK293 cells endogenously expressing EP2/4 receptors were challenged with  
100 nM PGE1. Pretreatment of cells with CTX (100 ng/ml) inhibited signaling of the 
Gαs-sensitive EP2/4 receptors whereas changes in impedance were unaffected by 
pretreatment with QIC.  
(B) HEK293 cells stably expressing CRTH2 were treated with the agonist DK-PGD2 to 
visualize Gαi-mediated signaling. Pretreatment with QIC showed no inhibitory effect 
but PTX (50 ng/ml) silenced Gαi signaling. 
(C) The cell response obtained with the FFA1 agonist TUG424 in stable FFA1-HEK 
cells was partly sensitive to PTX (50 ng/ml) or QIC pretreatment but completely 
silenced in the presence of a combination of PTX and QIC. For receptor expression 
cells were treated with 1 µg/ml doxycycline for 16 h. 
(D) Stable GPR55-HEK cells were challenged with the GPR55 agonist LPI. LPI-
mediated changes in impedance were not blunted by pretreatment with QIC but were 
sensitive to preincubation with the pan-G protein activator AlF4

- (300 µM). 
(A)-(D) Data shown are representative data (means + SEM) of at least three 
independent experiments, each performed in triplicate.  
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With the following experiments it should be investigated whether QIC was functional 

on every cell line analyzed in Figure 39 and whether PTX and CTX were specific to 

silence Gαi or Gαs proteins, respectively. Therefore HEK293 (Fig 40A) and CRTH2-

HEK (Fig. 40B) cells were challenged with carbachol to stimulate Gαq-sensitive M3 

receptors. Pretreatment with QIC completely blocked the cell response whereas 

preincubation with CTX had no effect on the Gαq-mediated trace. These findings 

underline that QIC is a selective inhibitor for the Gαq pathway with a proper 

functionality in both cell lines and CTX exclusively masked Gαs proteins without a 

negative effect on cell viability. In FFA1-HEK cells the functionality of QIC and PTX 

was already proven with the experiments in Figure 39C but it should be analyzed 

whether QIC and PTX were specific to silence Gαq and Gαi proteins in this cell line and 

that detected effects were not due to negative effects on cell viability. Gαs-mediated 

signaling via endogenously expressed β2 receptors (Fig. 40C) was detected and the cell 

response was comparable between different pretreatments. GPR55-HEK cells 

endogenously expressing muscarinic M3 receptors were treated with carbachol after a 

preincubation with QIC or AlF4
- (Fig. 40D). QIC was functional in this cell line to 

silence Gαq signaling and pretreatment with AlF4
- revealed that the detected cell 

response was mediated via G proteins. 

Taken together, experiments determining changes in impedance revealed QIC as a 

selective Gαq inhibitor equivalent to the results obtained in DMR assays (see chapter 

3.2.6.1). These data were very valuable because both label-free technologies detect an 

overall cellular response capturing cellular events downstream of the GPCR (Kenakin, 

2009, Fang et al., 2006; Fang et al., 2007) whereas traditional second-messenger assays 

only partially determine the overall response (Schröder et al., 2010). 
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Figure 40: QIC showed functionality on all utilized cell lines and PTX or CTX 
pretreatment was specific for Gαi or Gαs, respectively.  
(A)-(B) HEK293 and CRTH2-HEK cells endogenously expressing Gαq-sensitive M3 
receptors were challenged with carbachol. Pretreatment with QIC blocked Gαq signaling 
but CTX had no effect on the cell response. 
(C) FFA1-HEK cells endogenously expressing Gαs-sensitive β2 receptors were 
challenged with orciprenaline (100 µM). Cell responses were insensitive to 
preincubation with QIC, PTX or a combination of QIC and PTX. 
(D) GPR55-HEK cells endogenously expressing M3 receptors were stimulated with 
carbachol. Wavelength shift was silenced by QIC and pan-G protein activator AlF4

- 
pretreatment. 
(A)-(D) Presented data are representative data (means + SEM) of at least three 
independent experiments, each performed in triplicate.  
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3.2.7 Characterizing the influence of QIC in the patient-derived MZ7 cells 

Due to the fact that BIM-dimer worked as selective Gαq inhibitor in a HEK cell 

background but silenced Gαq, Gαs and Gαi proteins in the patient-derived cancer cell 

line MZ7 it was also of interest to analyze QIC in this melanoma cell line. 

 

 
Figure 41: QIC exclusively inhibited Gαq-mediated IP1 production in MZ7 cells. 
(A) QIC completely blunted IP1 accumulation triggered with ET-1 via endogenously 
expressed endothelin receptors. pEC50 (w/o) = 7.21 ± 0.31. 
(B) Gαs-mediated cAMP production induced via ACTH and its cognate Gαs-linked and 
endogenously expressed MC1 receptor was insensitive to QIC pretreatment. pEC50 
(w/o) = 6.99 ± 0.21; pEC50 (QIC) = 6.68 ± 0.15. 
(C) cAMP reduction via endogenously expressed endothelin receptors using Gαi 
proteins was unaffected by QIC preincubation. pEC50 (w/o) = 7.26 ± 0.21; pEC50 (QIC) 
= 7.28 ± 0.25. 
(A)-(C) Data shown are means ± SEM of at least three independent experiments, each 
conducted in triplicate. Data were kindly provided by Ramona Schrage, Pharmacology 
and Toxicology Section, Institute of Pharmacy, University of Bonn, Germany. 
 

 

To explore Gαq dependent signaling IP1 accumulation was determined in the presence 

or absence of QIC using endogenously expressed endothelin receptors (Fig. 41A). ET-

1-mediated IP1 production was completely silenced after preincubation with 1 µM QIC. 

Furthermore, QIC pretreatment prevented IP1 production triggered with the pan-G 

protein activator AlF4
- (Fig 42) which underlined that QIC inhibition occurred 

specifically at the level of G proteins.  

The influence of QIC on the Gαs und Gαi pathway was investigated by determining 

changes in cAMP levels. After a preincubation with QIC MZ7 cells were stimulated 

with the adrenocorticotropic hormone (ACTH), an agonist for the Gαs-sensitive 

melanocortin1 (MC1) receptor. cAMP accumulation was unaffected by QIC 
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pretreatment (Fig. 41B). Endogenous ET-1 receptors were stimulated with endothelin to 

verify the effect of QIC on Gαi dependent signaling (Fig 41C). The results indicate that 

Gαi coupling of ET-1 receptors in a MZ7 cell background was insensitive to QIC. 

Together, QIC was specific to silence Gαq proteins in this cancer cell line. 

 

 
Figure 42: QIC blocked AlF4

- triggered IP1 accumulation in MZ7 cells. 
MZ7 cells were stimulated with the pan-G protein activator AlF4

- and in the presence of 
QIC IP1 accumulation was completely blocked. Data shown are means + SEM of at 
least three independent experiments, each conducted in triplicate. Data were kindly 
provided by Ramona Schrage, Pharmacology and Toxicology Section, Institute of 
Pharmacy, University of Bonn, Germany. 
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3.2.8 Selectivity of QIC in second-messenger assays in CHO cells 

A large number of different experiments performed in HEK and MZ7 cells revealed 

QIC as a selective tool to silence Gαq-mediated signaling. Regarding the fact that CHO 

cells represent a commonly used cell line together with the plan to perform radioligand 

competition binding studies in this cellular background the selectivity of QIC should be 

additionally analyzed in CHO cells. After a preincubation with QIC for 1 h IP1 

production mediated via stably expressed muscarinic M1 receptors was completely 

blocked (Fig. 43A). Gαs and Gαi signaling was determined using endogenously 

expressed Gαs-sensitive EP2/4 receptors (Fig. 43B) and Gαi-sensitive serotonin 

receptors (Fig. 43C) but cAMP production was unaffected by a preincubation with QIC. 

These results were in line with the findings in other cellular backgrounds and therefore 

CHO cells were a suitable cell line for binding experiments. 

 

 
Figure 43: QIC exclusively inhibited signaling via Gαq proteins in CHO cells 
(A) QIC blunted Gαq signaling of the muscarinic M1 receptor stably transfected in CHO 
cells in IP1 accumulation assays. pEC50 (w/o) = 5.58 ± 0.07. 
(B) cAMP levels were detected to analyze the influence of QIC on endogenous Gαs-
coupled EP2/4 receptors. QIC did not diminish signaling of this pathway. pEC50 (w/o) = 
6.44 ± 0.09; pEC50 (1 µM QIC) = 6.11 ± 0.07 
(C) To explore the effect of QIC on Gαi proteins, endogenous Gαi-coupled serotonin  
(5-HT) receptors were stimulated with serotonin in the presence or absence of QIC. QIC 
showed no inhibitory effect on the Gαi pathway. 
(A)-(C) Presented data are means ± SEM of at least three independent experiments, 
each performed in triplicate. 
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3.2.9 Analyzing QIC in radioligand competition binding assays 

QIC silenced Gαq signaling in different cellular environments and it should be 

investigated whether QIC could interfere with the agonist binding. In a control 

experiment it was tested whether QIC had an influence on the antagonist recognition of 

the muscarinic M1 receptor (Fig. 44A). The results depict that QIC did not interfere 

with antagonist recognition. Next, whole CHO-M1 cells were analyzed in radioligand 

competition assays using carbachol as a ligand (Fig. 44B). QIC did not impair carbachol 

displacement of the radio-antagonist [3H]NMS. From these data one could conclude that 

the inhibition of Gαq-mediated signaling was not due to QIC interference with agonist 

binding but with agonist function. 

Due to the fact that the structure of QIC is quite similar to the structure of the well-

known selective Gαq inhibitor YM one could assume the same mode of action. YM was 

recently described as a Gαq-specific guanine nucleotide dissociation inhibitor (GDI) 

(Nishimura et al., 2010) in contrast to BIM-dimer which allowed GDP dissociation but 

prevented GTP entry (see chapter 3.1.8). Therefore, QIC was analyzed in radioligand 

binding studies with CHO-M1 cell membranes using [3H]NMS as radio-antagonist to 

distinguish between these two mode of actions. CHO-M1 membranes were labelled 

with 0.2 nM [3H]NMS and then increasing amounts of the M1 agonist carbachol were 

added. If QIC functions as GDI, it would disrupt the high-affinity agonist binding. 

Figure 44C shows binding data generated in the presence and absence of 1 µM QIC. In 

the absence of QIC one could detect high-affinity binding (51%) of carbachol to G 

protein-coupled GPCRs and low-affinity binding to uncoupled M1 receptors. If the cells 

were treated with QIC 35% of the high-affinity sites were converted to low-affinity sites 

(Tab. 3). Thus, QIC interferes with the high-affinity agonist binding but still 33% of the 

receptors remained in the high-affinity binding fraction. Based on these findings it is 

likely that QIC has the same mode of action as it was described for YM. 
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Figure 44: Effect of QIC on carbachol recognition of the muscarinic M1 receptor. 
(A) CHO-M1 membranes were labelled with 0.2 nM [3H]NMS and homologous 
competition experiments were conducted after a preincubation with 1 µM QIC (1 h). 
pKD (w/o) = 9.45 ± 0.07; pKD (QIC) = 9.52 ± 0.08. 
(B) CHO-M1 cells were analyzed in whole cell radioligand competition assays using 
carbachol as ligand. Displacement of the radio-antagonist [3H]NMS was insensitive to 
QIC preincubation. pKD (w/o) = 3.61 ± 0.08; pKD (QIC) = 3.50 ± 0.23. 
(C) Carbachol competed [3H]NMS sites with high and low affinity in membrane 
preparations from CHO-M1 cells. If 1 µM QIC was present, 35 % of the high-affinity 
sites were converted to the low-affinity sites. 
(A)-(C) Data are means ± SEM of three to six independent experiments, each conducted 
at least in duplicates and were kindly provided by Ramona Schrage, Pharmacology and 
Toxicology Section, Institute of Pharmacy, University of Bonn, Germany. 
 

 

Condition 
log (Ki) 

high 
SEM 

log (Ki) 

low 
SEM fraction SEM n 

w/o -6.04 0.16 -3.54 0.02 0.51 0.05 4 

QIC 1 µM -5.85 0.24 -3.73 0.19 0.33 0.07 4 

 
Table 3: Related to Figure 44. Binding affinities of carbachol to [3H]NMS-labelled 
CHO-M1 receptors as determined in membrane preparations in the absence or presence 
of 1 µM QIC. Data were kindly provided by Ramona Schrage, Pharmacology and 
Toxicology Section, Institute of Pharmacy, University of Bonn, Germany. 
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3.2.10 Co-incubation of HEK293 cells with QIC and BIM-dimer 

As depicted in chapter 3.2.9 QIC exhibited another mode of action as BIM-dimer. For 

further modelling investigations it was of interest whether QIC and BIM could bind on 

similar regions of the Gαq protein. Therefore, IP1 levels were determined in HEK293 

cells co-incubated with BIM-dimer and QIC in concentrations which alone were not 

sufficient to silence Gαq signaling but led to a rightward shift of the concentration 

response curve (Fig. 45). Following scenarios were imaginable (1) QIC and BIM-dimer 

used similar binding regions interfering with each other, (2) they use different binding 

regions resulting in a synergistic effect or (3) in an additive mechanism. The results 

show that co-incubation with BIM-dimer and QIC led to a rightward shift in an additive 

manner (addition of logEC50 shift of BIM-dimer and QIC alone amounted 0.898, 

combination of BIM-dimer and QIC revealed a rightward shift of 0.839) indicating that 

QIC and BIM-dimer probably do not share the same target structure within the Gαq 

protein. 

 
Figure 45: Inhibitory effects of BIM-dimer and QIC were additive. 
HEK293 cells endogenously expressing muscarinic M3 receptors were pretreated with 
BIM-dimer (30 µM: pEC50 4.95), QIC (10 nM: pEC50 4.77) or a combination of both 
(pEC50 4.47) and IP1 accumulation was determined (w/o: pEC50 5.31). pEC50 values 
were shifted in an additive manner (Shifting of pEC50 values, BIM-dimer: 0.36, QIC: 
0.54, BIM-dimer + QIC: 0.84). Data shown were means ± SEM of at least three 
independent experiments, each conducted in triplicate.  
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3.2.11 Characterizing QIC red, a hydrogenated derivative of QIC 

As it was recently described for YM (Taniguchi et al., 2004) the chemical structure of 

QIC was modified to obtain semisynthetic hydrogenated QIC hereafter referred to as 

QIC red (Fig. 46).  

 
Figure 46: Chemical structure of hydrogenated QIC (QIC red) 
The structure was synthesized and purified by Anne Stößel and Marion Schneider 
Pharmaceutical Chemistry, Institute of Pharmacy, University of Bonn, Germany. 
 

In a first approach the inhibitory activity of QIC red should be evaluated in comparison 

to QIC by determining IP1 levels after preincubation with increasing concentrations of 

QIC or QIC red, respectively (Fig. 47). The inhibitory activity of QIC red was reduced 

and the logIC50 value was rightward shifted by about half a decade (QIC logIC50:  

-6.58; QIC red log EC50: -6.05) compared to QIC. The activity of the semisynthetic 

analogues in Tangiuchi et al revealed great differences within the two diastereomers, 

one derivative showed nearly the same inhibitory activity as YM, but the other 

diasteromer exhibited significantly less activity. Our semisynthetic derivative consisted 

of a mixture of two diastereomers which could explain reduced activity in comparison 

to QIC.  
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Figure 47: Determining inhibitory activity of QIC r ed. 
CHO cells stably transfected to express muscarinic M1 receptors were preincubated 
with increasing concentrations QIC (pIC50 6.58 ± 0.05) or QIC red (pIC50 6.05 ± 0.06), 
stimulated with carbachol (30 µM) and IP1 accumulation was determined. QIC red 
exhibited less activity to silence Gαq-mediated signaling than QIC. Data shown are 
means ± SEM of at least three independent experiments. 
 

With further experiments it should be analyzed whether the effect of QIC red was 

selective for inhibition of Gαq proteins. Therefore IP1 and cAMP accumulation was 

detected in the presence or absence of 5 µM QIC red. Pretreatment with QIC red 

completely silenced IP1 production mediated via stably expressed M1 receptors in CHO 

cells (Fig. 48A) but cAMP production triggered via Gαs-sensitive endogenously 

expressed EP2/4 receptors (Fig. 48B) or Gαi-sensitive endogenous serotonin receptors 

(Fig. 48C) in CHO cells was completely unaffected by preincubation with QIC red. 

Together, second-messenger assays revealed QIC red as selective Gαq-inhibitory 

compound.  

 

 

 

-8 -7 -6 -5 -4

-50

0

50

100

150

QIC
QIC red

log M

IP
1 

(%
 o

f 3
0 

µ
M

 c
ar

ba
ch

ol
)



Results 

 

95

 
Figure 48: QIC red selectively silenced Gαq-mediated signaling in CHO cells. 
(A) CHO cells stably transfected to express M1 receptors were pretreated with QIC red, 
stimulated with carbachol and IP1 accumulation was detected. pEC50 (w/o) = 5.58 ± 
0.07 
(B)-(C) cAMP levels were detected to analyze the influence of QIC red on endogenous 
Gαs-coupled EP2/4 receptors (pEC50 (w/o) = 6.44 ± 0.09; pEC50 (QIC red) = 6.03 ± 
0.14) (B) and endogenous Gαi-coupled serotonin (5-HT) receptors (C). Both pathways 
were insensitive to QIC red pretreatment. 
(A)-(C) Presented data are means ± SEM of at least three independent experiments, 
each performed in triplicate.  

 

To explore structure-activity relationship of QIC and QIC red washing experiments 

were performed. HEK293 cells were analyzed in an IP1 accumulation assay and 

therefore preincubated with 1 µM QIC (Fig. 49A) or 5 µM QIC red (Fig. 49B) for 1 h. 

After the incubation cells were washed three times for 5 min with PBS and then 

stimulated with carbachol. In parallel the assay was performed without the washing 

procedure to check for influences on the cells by the washing process itself. As depicted 

in Figure 49 the washing procedure had no effect on the concentration response curve 

in the absence of QIC or QIC red, respectively. If the cells were washed in the presence 

of QIC or QIC red the inhibitory effect on the Gαq pathway was nearly unaltered. From 

these results one could conclude that QIC did not interact with the Gαq protein via 

Michael addition which was also described for YM recently (Taniguchi et al., 2004). It 

was imaginable that QIC inhibitory effect would be caused due to a Michael addition of 

a nucleophilic residue in the Gαq protein (Taniguchi et al., 2004). This hypothesis could 

not be confirmed because it was also impossible to remove the inhibitory effect of 

hydrogenated QIC with washing procedures although the chemical structure of QIC red 

did not reveal structural conditions for Michael addition. 
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Figure 49: QIC and QIC red inhibitory effect was still detectable after washing 
procedure. HEK293 cells endogenously expressing muscarinic M3 receptors were 
preincubated with QIC (1 µM) or QIC red (5 µM) and after that cells were washed three 
times for 5 minutes with 750 µl PBS. Then cells were stimulated with the muscarinic 
agonist carbachol in increasing concentrations und IP1 accumulation was detected. As a 
control IP1 accumulation was also determined without the washing procedure. pEC50 
(w/o) = 4.50 ± 0.12; pEC50 (w/o washed) = 4.82 ± 0.08. Data shown are means ± SEM 
of at least three independent experiments, each performed in triplicate. 
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3.2.12 Screening of QIC-derivatives 

The working group of Prof. Imhof (Pharmaceutical Chemistry I, Institute of Pharmacy, 

University of Bonn, Germany) synthesized compounds which resemble the chemical 

structure of QIC. C-terminally amidated decapeptide CCAP-vill (hereafter referred to as 

CCAP) (Fig. 50A), originally discovered in the marine cone snail Conus villepinii, was 

originally synthesized for experiments for another publication of their working group 

(Miloslavina et al., 2010) but was still available and should be tested because ring size 

shows similarity to the chemical structure of QIC. EK2 cyclo (Fig. 50B) and EK2 linear 

(Fig. 50C) were synthesized on basis of recently published X-ray crystal structure 

analysis of the Gαqβγ-YM complex (Nishimura et al., 2010). QIC-derivatives were 

synthesized to become independent from plant material, to identify the pharmacophore 

and to get a possibility to develop specific inhibitory compounds for other Gα subunits. 

Nishimura et al. identified aromatic phenyl group of YM as an important structure 

because this group can dock into a small hydrophobic pocket and forms contacts with 

residues from Switch I which stabilize Switch I in the inactive GDP-bound 

conformation. It is important to know that each Gα subunit preserves such an 

interdomain cleft but with different surface shapes and properties which could be used 

as basis for the development of specific inhibitors for other Gα subunits (Nishimura et 

al., 2010)  
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Figure 50: Chemical structures of QIC derivatives. The compounds were kindly 
provided by the working group of Prof. Imhof, Pharmaceutical Chemistry I, Institute of 
Pharmacy, University of Bonn, Germany. 

 

All of the three synthesized QIC analogs exhibit an aromatic phenyl group and the 

depsipeptide structure is lacking. The amino acid sequence of EK2 linear and EK2 

cyclo resembled QIC but were partially modified due to increased complexity of 

peptide production. Their ability to silence Gαq-mediated signaling was analyzed in IP1 

accumulation assays. Therefore CHO M1 cells were preincubated for 2 h with CCAP 

(Fig. 51A), EK2 linear (Fig. 51B) or EK2 cyclo (Fig. 51C) in increasing 

concentrations. Signaling via Gαq proteins was silenced after pretreatment with QIC but 

was completely unaffected by preincubation with CCAP, EK2 linear or EK2 cyclo, 

respectively. Based on these findings one could conclude that structural similarities 

were not sufficient enough to blunt Gαq signaling.  
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Figure 51: Testing of QIC analogs in IP1 accumulation assays.  
(A)-(C) CHO cells stably transfected to express muscarinic M1 receptors were used to 
screen CCAP (A), EK2 linear (B) or EK2 cyclo (C) on their ability to silence Gαq 
signaling after preincubation for 2 h in IP1 accumulation assays. Each substance was 
tested in a concentration of 0.1, 0.3, 1, 3, 10, 30 and 100 µM. QIC (1 µM) was used as 
positive control. Gαq-mediated signaling was insensitive to pretreatment with CCAP, 
EK2 linear or EK2 cyclo, respectively. Data are means + SEM of at least three 
independet experiments, each conducted in triplicate. Data were generated by Tigisti 
Beraki-Schauff as part of her Master´s thesis, Institute for Pharmaceutical Biology, 
University of Bonn, Germany. 
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With further experiments it should be analyzed whether EK2 linear and EK2 show 

inhibitory effects on Gαi or Gαs proteins. cAMP levels were determined in the presence 

or absence of 100 µM EK2 linear or EK2 cyclo (Fig. 52) in CHO cells stably 

transfected to express GPR17. It was possible to analyze Gαi and Gαs signaling 

simultaneously because by application of higher MDL29,951 concentrations stimulatory 

signaling cascade predominated the inhibitory effect resulting in a bell-shaped 

concentration response curve. This was a major advantage due to the fact that QIC 

analogues were available in limited quantities. CCAP had already been used up in IP1 

accumulation assays and could not be analyzed in experiments determining cAMP 

levels. As depicted in Figure 52 GPR17-mediated cAMP production was unaltered 

after preincubation with EK2 linear or EK2 cyclo. 

Together, signaling via Gαq, Gαi and Gαs proteins was insensitive to pretreatment with 

synthesized QIC analogs indicating that performed changes in the chemical structure of 

QIC destroyed its ability to silence Gαq proteins but also did not lead to inhibitory 

effects on Gαi or Gαs proteins. 

 
Figure 52: Testing of QIC analogs in cAMP accumulation assays.  
CHO cells stably transfected to express GPR17 were used to test EK2 linear or EK2 
cyclo on their ability to silence Gαi or Gαs signaling after preincubation for 2 h in cAMP 
accumulation assays. Both compounds were tested in a concentration of 100 µM. Gαs- 
and Gαi-mediated signaling was insensitive to pretreatment with EK2 linear or EK2 
cyclo, respectively. For receptor expression CHO-GPR17 cells were treated with  
1 µg/ml doxycycline for 16 h. Data are means ± SEM al least three independent 
experiments, each conducted in triplicate. Data were generated by Tigisti Beraki-
Schauff as part of her Master´s thesis, Institute for Pharmaceutical Biology, University 
of Bonn, Germany. 
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4 Discussion 

4.1 Advantages of small molecule G protein inhibitors vs siRNA 
Small molecule inhibitors like BIM and QIC represent an important approach for 

selective inhibition of Gα subunits. The pharmacological manipulation of G protein 

signaling with small molecules has many specific advantages against knockdown 

strategies such as small interfering RNA (siRNA) for the application in cell-based test 

systems as well as for use as potential drugs (Weiss et al., 2007). Typically, small 

molecules are able to cross cell membranes and therefore, it is imaginable that they can 

be used as orally active drug. In contrast to siRNA they can be easily applied in cell-

based assays without transfection procedures. Based on this fact, small molecules show 

a rapid onset of action while knockdown is typically observed 24-48 h after transfection 

(Weiss et al., 2007). In case that small molecules reversibly bind to their target protein 

the inhibitory effects can be rapidly removed which is not possible after siRNA 

application. Additionally, small molecules allow performing titration experiments and 

therefore, one can use concentrations ranging from complete inhibition to only slight 

effects. This feature could be exploited for co-incubation experiments described in 

chapter 3.2.10. In this setting it was possible to explore the inhibitory effect after a co-

incubation with BIM-dimer and QIC to find out whether these two compounds interfere 

with each other. To this end, it was of great importance to work with concentrations 

which cause only a rightward shift of the concentration-response curve but are not 

sufficient for complete inhibition. The extent of inhibitory effects after siRNA 

application is likely to vary due to different transfection efficiencies. It should be noted 

that siRNA molecules can be obtained quickly whereas the generation of selective small 

molecule inhibitors can be a long-term process (Weiss et al., 2007). 

 

4.2 Context-dependent pharmacology of BIM 
This thesis reveals an inhibition profile for the BIM-dimer ranging from selective Gαq 

protein inhibition to pan-G protein inhibition in a cell-type-specific manner which is in 

apparent contrast to the findings of Ayoub et al.. They recently described BIM-dimer 

acting as a specific pan-G protein inhibitor in various cancer cell lines and in COS7 

cells (Ayoub et al., 2009). However, in the commonly used HEK293 and CHO cell 

background BIM-dimer as well as the BIM-monomer specifically silenced signaling via 

Gαq proteins but acted as a pan-G protein inhibitor in COS7 cells and in the patient-
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derived melanoma MZ7 cells. Regarding the fact that context-dependent pharmacology 

represents a well-described phenomenon which can often be explained by differences in 

the relative amount or stoichiometry of signaling components (Kenakin and 

Christopoulos, 2013) the mechanistic link between sensitivity toward BIM-dimer 

inhibition and the level of expression of BIM target proteins was investigated. In 

HEK293 cells BIM-dimer functioned as specific Gαq inhibitor and it was hypothesized 

that this effect could be caused by a lower expression level of Gαq proteins in 

comparison to Gαi and Gαs proteins. Indeed, enrichment with increasing amounts of 

Gαq proteins led to a reduced inhibitory effect of BIM-dimer on the Gαq pathway. From 

these data it was imaginable that differing endogenous expression levels of Gα subunits 

might contribute to the cell-type-dependent inhibitory profile of BIM-dimer. Many 

recent publications suggest that G proteins can interact with receptors before agonist 

binding, an effect which is called precoupling or preassembly. One opposing model to 

this is represented by the collision coupling model which assumes that an agonist binds 

to the free receptor, activates it and then the agonist-bound receptor collides with free G 

proteins as a result of free lateral diffusion within the plasma membrane. The literature 

gives accumulating evidence for both, collision coupling and precoupling model (Qin et 

al., 2011; Oldham & Hamm, 2008; Jakubik et al., 2011). The precoupling model can 

account for the rapid intracellular response of G protein-mediated signaling (Oldham 

and Hamm, 2008). Therefore, it is imaginable that enrichment of HEK cells with Gαq 

leads to an increase in the number of preassembled, GPCR-Gαq protein complexes. This 

phenomenon is expected to increase the likelihood that cellular signaling via preformed 

BIM-free Gαq-GPCR complexes would be enhanced, because in our experiments 

receptor amounts were kept constant but Gαq levels varied. Immunoblot detection of 

endogenous expression levels of Gα subunits of HEK293 and MZ7 cells revealed equal 

amounts for the expression of Gαq proteins which is compatible with the postulated 

mechanistic link we observed as BIM-dimer was able to silence Gαq-mediated signaling 

in both cellular backgrounds. Significantly lower expression of Gαs proteins in MZ7 

cells additionally supports the hypothesis because in HEK293 cells Gαs signaling was 

unaffected by BIM-dimer preincubation. This can be explained by a higher expression 

level of Gαs subunits in a HEK293 cell background compared to MZ7 cells. 

Immunoblot quantification of Gαi proteins revealed a higher expression level in MZ7 

cells which is incompatible with the postulated hypothesis. Taken together, different 

expression levels of Gα subunits may serve as explanation approach for cell-type-
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dependent pharmacology of BIM-dimer but are not sufficient to explain Gαq selective 

inhibition in some cells and pan-G protein inhibition in other cellular backgrounds. 

Pan-G protein inhibition represents an interesting approach for the treatment of 

malignant diseases because GPCRs are described as crucial players in tumor growth and 

metastasis (Dorsam and Gutkind, 2007; Smrcka, 2013). Prévost et al. recently described 

monomeric BIM as a compound with promising antitumor activity (Prévost et. al., 

2006). Regarding the fact, that depending on the type of cancer different Gα subunits 

may be affected by mutations it is important to pay particular attention to the cell-type-

dependent inhibitory profile. For example Gαs mutations have been found in pancreatic 

cancers or Gαs upregulation in ovarian and breast cancers (Kan et al, 2010) while 

mutations in Gαq or Gα11 were found to be prevalent in certain types of melanomas 

(Van Raamsdonk et al., 2009; Van Raamsdonk et al. 2010). It is likely that additional 

cell lines exist, in which BIM does not function as a pan-G protein inhibitor. Therefore, 

it will be of great importance to determine the selectivity profile of BIM for every 

cellular background used. 

It is noteworthy that Prévost et al. determined the antiproliferative activity of BIM-

monomer on HEK293 cells to have an IC50 value of 7.8 µM (Prévost et al., 2006). BIM-

monomer showed antiproliferative activity inspite of the fact that this thesis revealed 

monomeric BIM to preferentially silence Gαq proteins in HEK293 cells. This implies 

that pan-G protein inhibition does not seem to be necessary for antiproliferative activity 

and indicates that inhibition of Gαq proteins might be sufficient to achieve 

antiproliferative activity, at least in this cellular background. With regard to the 

application of small molecules as anticancer agents, it would be of great benefit to 

silence only as many Gα subunits as necessary to reduce toxic and side effects. The IC50 

value of BIM-monomer on cell growth is lower than concentrations needed to block  

G protein-activated second-messenger accumulation (Prévost et al., 2006) which was 

also confirmed in cell growth experiments performed in MZ7 cells as described 

previously (Schmitz et al., 2014). Inhibition of cell growth by BIM-dimer reached its 

maximum at 10 µM but a 10-fold increase of BIM concentration was required to silence 

signaling via Gαq, Gαs and Gαi proteins (Schmitz et al., 2014). This discrepancy can be 

explained by short (second-messenger assays, 2 h) versus long (cell growth assays, 72 

h) BIM preincubation times and/or abrogation of ligand-stimulated signaling (second-

messenger assays) versus endogenous receptor signaling (cell growth assays) (Prévost 

et al., 2006; Schmitz et al, 2014).  
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4.3 BIM-dimer functions as GTP entry inhibitor 
Further studies identified BIM to completely prevent G protein activation in 

[35S]GTPγS binding assays independent if activation was obtained with a ligand-

occupied GPCR, either the Gαi mimetic FUB132, or the direct G protein activators 

AlF4
- or mastoparan (Prévost et al., 2006; Ayoub et al., 2009). These findings underline 

a direct action of BIM on the Gα protein but leave the question whether BIM prevents 

GDP dissociation or GTP entry. Prior to investigations concerning the mode of action, 

the influence of BIM on agonist recognition of the muscarinic M1 receptor was 

analyzed. BIM did not impair but rather enhanced carbachol displacement of the radio-

antagonist [3H]NMS confirming that agonist binding is unaffected by BIM 

pretreatment. It was possible to explore the mode of action with the use of radioligand 

binding assays in which one can visualize nucleotide-sensitive binding states of GPCRs. 

Agonist binding to GPCRs triggers GDP release from the Gα subunit and until GTP 

binds, a high-affinity complex is formed between the receptor and G protein (Oldham 

and Hamm, 2008). These nucleotide-free G proteins stabilize the agonist-bound active 

state of the receptor. They can only be visualized in the absence of guanine nucleotides 

and are transient conformational intermediates in intact cells where guanine nucleotides 

are richly available (Rodbell et al., 1971, De Lean et al., 1980, Seifert et al., 1999). This 

phenomenon was used to study the mechanism of interference of BIM for the 

nucleotide-bound state of Gα. The high-affinity binding can be disrupted with high 

concentrations of guanine nucleotides such as GTP. High concentrations of GTP force 

to a rapid exchange of GDP for GTP and therefore the empty-pocket conformation is no 

longer detectable. The high-affinity sites induced by the empty-pocket conformation are 

converted to low-affinity sites (De Lean et al., 1980). Additionally, molecules which 

stabilize GDP-bound Gα, so called guanine nucleotide dissociation inhibitors (GDIs) 

would prohibit the empty-pocket conformation resulting in a similar loss of high-

affinity sites. Assuming that BIM would act as guanine nucleotide dissociation inhibitor 

high-affinity agonist sites would have been converted to low-affinity sites after 

preincubation with BIM-dimer. Inhibition of heterotrimer signaling can only be 

achieved with compounds precluding nucleotide exchange. Due to the fact that in the 

presence of BIM high-affinity agonist binding was unaffected it must consequently 

allow GDP exit but prevent GTP entry. This postulated mode of action is entirely new 

and has not been described for any other small molecule G protein α subunit inhibitor to 

date (Fig. 51).  
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Figure 53: Mechanism of action of BIM-dimer. Upon receptor stimulation, 
conformational changes trigger the release of GDP. The subsequent binding of GTP is 
blocked because BIM-dimer traps Gαq in the empty pocket conformation. 
 

All previously developed small molecule Gα subunit inhibitors have common 

mechanism of action. They bind to G protein α subunits where they prevent intrinsic 

and receptor-stimulated GDP release (Smrcka, 2013). Only the Gαq-selective inhibitor 

YM warrants a credible mechanism for inhibition of GDP exit by virtue of the 

mechanistic details available at the structural level (Nishiumura et al., 2010). A similar 

mode of action has been described for suramin which represents a relatively specific 

inhibitor of GDP release on the Gs family G protein α subunits, but the utility of 

suramin in cell-based assays or as drug is limited because it cannot cross cell 

membranes due to its strong negative charge (Smrcka, 2013; Hohenegger et al., 1998). 

Further experiments investigating GDP dissociation from purified Gαq proteins 

confirmed the hypothesis that BIM-dimer permits GDP exit because GDP dissociation 

remained uninfluenced by pretreatment with BIM-dimer.  

Binding experiments in which membranes were preincubated with a combination of 

BIM and GTP prove that BIM prevents GTP entry because BIM counteracts the effect 

of GTP on the high-affinity agonist binding. Additionally, it would be possible to check 

this hypothesis by the use of [35S]GTPγS assays with purified Gαq proteins. This setting 

could detect spontaneous GTPγS binding to Gαq in the presence and absence of BIM 
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and one would expect that BIM does not permit GTPγS binding (Nishimura et al., 

2010). 

This unique mode of action also explains why carbachol binding to whole CHO-M1 

cells was enhanced in the presence of BIM, because a GTP entry inhibitor prolongs the 

lifetime of active-state complexes.  

Additionally, this mechanism elucidates the fact that BIM-dimer was incapable of 

completely preventing the opening of the nucleotide binding pocket of activated Gαq-βγ 

proteins in the BRET assays. In this approach HEK293 cells were transfected to express 

Gαq-RLuc as energy donor together with Gγ2-GFP10 as energy acceptor. M3 receptor 

activation resulted in a negative BRET which illustrates the separation of the Gα helical 

domain from the N terminus of Gγ. This process demonstrates opening of the nucleotide 

binding pocket, enabling GDP dissociation followed by GTP entry (Galés et al., 2006; 

Saulière et al., 2012). Receptor antagonists or inhibitors of G protein function acting as 

GDIs, for example pertussis toxin, were able to completely prevent agonist-mediated 

BRET decrease (Galés et al., 2006). In contrast, BIM significantly reduced agonist-

mediated BRET decrease but did not completely abrogate opening of the nucleotide 

binding pocket which indicates rearrangements between Gα and Gγ that allow GDP 

exit.  

Based on the results generated in HEK293 and CHO cells, BIM was identified as a Gαq-

specific GTP entry inhibitor in this cellular background which represents a new and 

unique molecular mechanism not yet assigned to any other small molecule Gα inhibitor 

to date. The structure of BIM might be a suitable starting point for development of more 

potent, cell permeable and highly specific inhibitors for Gαq and/or the remaining Gα 

subfamilies. Furthermore, this new molecular mechanism could be exploited to gain 

deeper insight into the empty pocket conformation of Gα proteins by the use of 

cocrystallization experiments. 

 

4.4 Mode of action and structure activity relationship of QIC 
The chemical structure of QIC shows high similarity to that of YM and features a 

unique amino acid composition, including the uncommon amino acid N-

methyldehydroalanine and the novel amino acid N,O-dimethylthreonine (Nesterov et 

al., 2010). Several assays, ranging from second-messenger assays to whole cell label-

free analyses, were performed in the commonly used HEK293 and CHO cell 
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background which all revealed QIC as a selective Gαq/11 inhibitor. Due to the fact that 

BIM-dimer preferentially silences Gαq proteins in HEK293 and CHO cells but functions 

as pan-G protein inhibitor in the skin cancer cell line MZ7 the inhibitory profile of QIC 

was also analyzed in MZ7 cells. In contrast to BIM, QIC specifically silences Gαq-

mediated signaling in MZ7 cells as well as in HEK and CHO cells. For YM, complex 

structural information is available which allows for the understanding of its mode of 

action on an atomic level, providing a plausible mechanism for inhibiting GDP release 

(Nishimura et al., 2010; Smrcka, 2013). Because of the high structural similarity 

between QIC and YM it is likely that QIC silences Gαq proteins according to a 

mechanism that is identical to that of YM. Nesterov et al. investigated QIC for its ability 

to prevent GTP binding. Their experiments revealed that QIC inhibited CCK-induced 

GDP for GTP exchange (Nesterov et al., 2010). From these experiments it is not 

possible to conclude whether GDP dissociation was blocked or whether Gαq was 

“frozen” in the high-affinity empty pocket conformation. To discriminate between these 

possibilities, radioligand binding studies on CHO-M1 membranes were performed in 

the same way when tested with BIM. In the absence of QIC, active-state ternary 

complexes could be observed, but in the presence of QIC 35% of them were converted 

to low-affinity agonist sites indicating that QIC interferes with GDP exit and thereby 

decreases the high-affinity fraction. In binding experiments performed in the presence 

of 1 mM GTP 49% of the high-affinity sites were converted to low-affinity sites (see 

chapter 3.1.8). Thus, in comparison to GTP, QIC only partially converts the high-

affinity sites to low-affinity sites. This fact does not refute the hypothesis that QIC 

might function as GDI but gives rise to the question which could be the reason for the 

different conversion rates observed upon GTP and QIC pretreatment, respectively. 

According to the literature, muscarinic M1 receptors preferentially activate Gαq/11 

proteins but they can also couple via Gαi/o and Gαs proteins (Offermanns et al., 1994; 

Burford and Nahorski, 1996; Akam et al., 2001). In DMR experiments, performed in 

CHO-M1 cells, a negative DMR response was detectable after pretreatment with QIC 

and stimulation with carbachol (see chapter 3.2.1 and 3.2.2). This negative cell response 

likely indicates the ability of the M1 receptor to couple via Gαs proteins. In the absence 

of a Gαq-inhibitory compound this signal is masked by the positive Gαq-mediated 

wavelength shift. Therefore, it is imaginable that the remaining high-affinity fraction is 

due to ternary complexes between M1 receptor and Gαi/o or Gαs proteins. In order to 

check this hypothesis, one could repeat the experiments with membranes which are 
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pretreated with PTX and QIC, CTX and QIC or a combination of PTX, CTX and QIC. 

This setting would be useful to grasp the contribution of Gαi/o and Gαs proteins to high 

affinity agonist binding. 

In order to substantiate the hypothesis that QIC functions as GDI, one could perform 

[3H]GDP dissociation assays on purified Gαq proteins. In this setting, a GDI would 

prevent GDP dissociation and it would enable exploring the mode of action in isolated 

Gαq proteins. Thus, confounding effects of other Gα subunits can be excluded. 

Based on the chemical structure of YM it is imaginable that the Gαq/11 inhibitory 

activity might be caused by Michael addition of a nucleophilic residue of the Gαq/11 

protein to the N-methyldehydroalanine residue of YM. With this in mind, YM was 

hydrogenated to provide two diastereomers which have lost the structural requirement 

for Michael addition (Taniguchi et al., 2004). One of the diastereomers showed almost 

the same IC50 value as YM, thereby negating the hypothesis that YM interacts with the 

Gαq/11 protein by covalent Michael addition (Taniguchi et al., 2004). The other 

diastereomer had significantly reduced activity which might be explained by 

conformational differences between both diastereomers. The conformation of YM and 

the more active diastereomer were similar while the less active diastereomer revealed a 

different conformation (Taniguchi et al., 2004). As the selective Gαq inhibitor QIC also 

shows the N-methyldehydroalanine structure, it was hydrogenated analogously to YM 

to examine whether QIC interacts with the Gαq protein via Michael addition. The 

resulting QIC red could not be further separated into its two diastereomers because of 

an insufficient yield of the chemical reaction. This could be an explanation for the fact 

that the inhibitory activity of hydrogenated QIC was reduced compared to QIC. The 

mixture of the two diastereomers in comparison to QIC was analyzed concerning its 

inhibitory effect after washing procedures followed by an IP1 accumulation assay. In a 

first step it was investigated whether it is possible to remove the inhibitory effect of QIC 

by washing procedures. These experiments revealed that QIC cannot be washed out and 

the reason for this could be a covalent modification via Michael addition. To verify this 

hypothesis it was analyzed whether QIC red, which has lost the structural requirement 

for Michael addition, was removable by washing procedures. Regarding the fact that it 

was also impossible to remove the inhibitory effect of QIC red, it must, consequently, 

be concluded that QIC as well as YM interact with the Gαq/11 protein without covalent 

modification by Michael addition.  
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4.5 Gαq-selective inhibitors: an important tool to study G protein 

signaling pathways and a promising approach for cancer treatment  
Heterotrimeric G proteins are central to G protein-coupled receptor signal transduction, 

and as such, are involved in nearly every physiological pathway and organ system. Of 

the four families of heterotrimeric G proteins, the Gαi/o family can be silenced with the 

specific inhibitor PTX, which provides an enormous benefit as it allows the unraveling 

of the contribution of Gαi/o signaling to complex cellular responses. Until quite recently, 

no selective inhibitors were available for the remaining Gα families with the exception 

of YM, a cyclic depsipeptide isolated from Chromobacterium sp. QS3666 and described 

as selective tool to specifically silence Gαq signaling. It has the disadvantage that it is 

not commercially available, and only accessible to very few research laboratories. YM 

binding to Gαq is the only example of a small molecule-G protein complex for which 

structural information is available and therefore, allows understanding its mode of 

action on an atomic level (Smrcka, 2013). X-ray crystal structure analysis revealed that 

YM binds at the hydrophobic cleft between two interdomain linkers connecting the 

GTPase and helical domains of the Gαq protein. Each Gα subunit preserves such an 

interdomain cleft, which is similar to that of Gαq but displays unique surface shapes and 

properties. This observation suggests that YM derivatives could be developed for the 

specific inhibition of each Gα subunit (Nishimura et al., 2010). Based on the fact that 

the chemical structure of QIC shows high similarity to the chemical structure of YM 

and additionally, an identical selective inhibitory profile, the structure of QIC could 

similarly be exploited as a lead structure for the development of Gα protein subfamily 

selective inhibitors. The key benefit is that QIC is accessible to research groups 

worldwide and therefore, it could also be used as starting point for the generation of 

semi-synthetic derivatives.  

As only few cell permeable Gα inhibitors are in existence, it is of great relevance that 

this thesis identified BIM-dimer as a selective Gαq inhibitor in mammalian HEK293 and 

CHO cells, two cell lines commonly used to examine signaling of recombinant or 

endogenous GPCRs. In these cellular backgrounds, BIM-dimer blocks Gαq-mediated 

signaling by exhibiting a unique mechanism, not yet described for any small molecule 

inhibitor of Gαβγ heterotrimers to date. Therefore, BIM molecules could serve as lead 

structures for the development of inhibitors for the other G protein α subunit family 

members. It is of great advantage that BIM molecules can be manufactured through 

chemical synthesis which prevents dependency on plant material. 
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An interesting potential application of G protein inhibitors would be the treatment of 

malignant diseases which are under the control of a complex array of GPCR ligands 

regulating multiple steps in the development of primary tumors and metastasis. (Dorsam 

and Gutkind, 2007; Lappano and Maggiolini, 2011). Therefore, manipulating one 

receptor may not be sufficient for an effective treatment (Smrcka, 2013). Remarkably, 

Prévost et al reported antiproliferative effects in HEK293 cells after a pretreatment with 

BIM-monomer although this thesis revealed a preference for inhibition of Gαq signaling. 

Thus, it can be assumed that pan-G protein inhibition is not responsible for the 

antiproliferative effects in a HEK293 background and inhibition of Gαq-mediated events 

may be sufficient to cause these effects. Cell growth experiments in the patient derived 

MZ7 cell line showed that BIM-dimer induced cell death, but in this cell line BIM-

dimer also dampened cellular signaling via Gαq, Gαs and Gαi pathways, which can be 

referred to as pan-G protein inhibition (Schmitz et al., 2014). Consequently, it would be 

of great interest to investigate the effect of a selective Gαq inhibitor on MZ7 cells in cell 

growth experiments to decipher whether silencing Gαq proteins would also be sufficient 

for antiproliferative effects in this cell line. To implement these experiments, it is of 

high importance that a selective Gαq inhibitor such as QIC is available for research. 

The literature describes a constitutively active form of Gαq which was found in ocular 

melanoma of the uvea. This mutations affects the glutamine at codon 209 (Q209) in the 

GNAQ and GNA11 gene (van Raamsdonk et al., 2010). Takasaki et al. investigated the 

effect of YM on the active Gαq mutant GαqQ209L (Takasaki et al., 2004). In the Q209L 

mutant glutamine is replaced by leucine. The glutamine at codon 209 lies within the ras-

like domain of GNAQ and is essential for GTP hydrolysis. As a consequence, 

GαqQ209L shows deficient GTPase activity (van Raamsdonk et al., 2009). Takasaki et 

al. performed serum response element (SRE) luciferase gene reporter assays with YM. 

They found out that YM had only a modest effect on the constitutive activity of 

GαqQ209L. In a further experiment they co-transfected HEK293 cells with Gαq-I, a 

minigene corresponding to the C-terminal peptide sequence of Gαq which can 

selectively inhibit the receptor-Gαq interaction. Notably, the serum response factor 

(SRF)-mediated gene transcription induced by Q209L could not be prevented by co-

transfection of the Gαq-I minigene. Based on these findings they conclude that Q209L 

activation occurred independently of receptor stimulation but was generated after 

translation in cytoplasm in a receptor-independent manner. This could be explained 

with a higher affinity for GTP than for GDP (Takasaki et al., 2004). In this context, it 
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would be of great interest to explore the effect of BIM on this constitutively active 

mutant. Due to the mode of action of BIM it would be imaginable that the initial GTP 

entry after translation could be blocked. In the gene reporter assays of Takasaki et al. 

YM was added directly after transfection and then incubated for 18 h. It could be 

difficult to perform such assays with BIM in HEK293 cells because within this time 

period cell-toxic effects can already be observed. To investigate whether BIM in 

principle can prevent GTP entry into the constitutive active GαqQ209L one could 

perform [35S]GTPγS assays with purified GαqQ209L proteins analogous to the 

experiments suggested in chapter 4.3 (Nishimura et al., 2010). Since there is not yet any 

inhibitor for the constitutive GαqQ209L mutant available it would be a great benefit to 

discover an inhibitor having this property.  
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5 Summary 

Selective silencing of Gα protein subfamilies by small molecules is of great value to 

explore the contribution of G protein signaling in physiology and disease. It also 

represents a new opportunity to treat diseases, such as cancer, in which multiple 

receptors are involved. Consequently, signaling of a large number of receptors could be 

silenced with a single tool. Only few small cell-permeable molecules acting as  

Gα-selective inhibitors have been reported to date. 

The present thesis classifies BIM-46187, previously reported as pan-G protein inhibitor, 

as a compound which preferentially silences Gαq-mediated signaling in a cellular 

context-dependent manner. In particular, BIM functions as selective Gαq inhibitor in 

HEK and CHO cells but silences Gαq, Gαi and Gαs proteins in the human skin cancer 

cell line MZ7. Cell-context pharmacology might be explained with differences in the 

relative amount or stoichiometry of signaling components. Gene dosing experiments 

revealed a correlation between BIM inhibition and Gαq expression. However, 

immunoblot detection, which compared expression levels of Gαq, Gαs and Gαi proteins 

in HEK and MZ7 cells, indicated that different Gα expression levels cannot exclusively 

account for cell-type-dependent pharmacology of BIM. Investigations concerning the 

mode of action uncovered an entirely new molecular mechanism: BIM permits GDP 

exit but precludes GTP entry thereby “freezing” the Gαq protein in the empty pocket 

conformation.  

The second part of this thesis uncovers the cyclic depsipeptide FR900359 as a suitable 

tool for selective silencing of Gαq/11 proteins. A great variety of assays, such as classical 

second-messenger assays, BRET assays and label-free methods, demonstrate the 

selectivity of FR900359. Experiments in the commonly used HEK and CHO 

backgrounds, as well as in the human skin cancer cell line MZ7, reveal its utility in  

cell-based assays. FR900359 does not compromise agonist binding but interacts with 

agonist function. Based on radioligand competition experiments, it can be assumed that 

FR900359 functions as a guanine-nucleotide dissociation inhibitor as it impairs the 

formation of the high-affinity agonist binding.  
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6 Abbreviations 

AC adenylyl cyclase 

ADP adenosine 5’-diphosphate 

ATP adenosine 5’-triphosphate 

BIM-dimer BIM-46187 

BIM-monomer BIM-46174 

bp base pairs 

BRET bioluminescence resonance energy transfer 

BSA bovine serum albumin 

cAMP cyclic adenosine monophosphate 

cDNA complementary DNA 

°C Celsius 

CHO chinese hamster ovary 

CTX cholera toxin 

CRTH2 chemo attractant receptor homologous molecule expressed on T-
helper type 2 cells 

DAG diacylglycerol 

DMEM Dulbecco´s modified eagle medium 

DMR dynamic mass redistribution 

DMSO dimethyl sulfoxid 

DNA deoxyribonucleic acid 

E.coli Escherichia coli 

EC50 concentration of half maximum effect 

EDTA ethylene diamine tetraacetic acid 

EP E-prostanoid receptor 

ERK extracellular-signal regulated kinase 

FCS fetal calf serum 

FFA1 free fatty acid receptor 1 

FFA2 free fatty acid receptor 2 

FFA3 free fatty acid receptor 3 

FRET fluorescence resonance energy transfer 

Fsk forskolin 

g acceleration by gravity; gram 

G418 geneticin 

GDP guanosine 5′-diphosphate 

GEF guanine nucleotide exchange factor 
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GFP green fluorescent protein 

GPCR G protein-coupled receptor 

G protein guanine nucleotide-binding protein 

GRK G protein-coupled receptor kinases 

GTP guanosine 5′-triphosphate 

h hour(s), human 

HA haemagglutinin 

HBSS Hank´s balanced salt solution 

HEK human embryonic kidney 

HEPES N-(2-Hydroxyethyl)piperazine-N-ethanesulforinic acid 

5-HT 5-hydroxytryptamine, serotonin 

HTRF homogeneous time resolved fluorescence 

IBMX 3-isobutyl-1-methylxanthine 

IC50 concentration of half maximum inhibition 

IP1 inositol 4-phosphate 

IP3 inositol 1,3,4-triphosphate 

JNK c-Jun N-terminal kinase 

kb kilo base(s) 

LB-medium Luria Bertani medium 

l liter 

log M logarithm of molar concentration to base 10 

M molar concentration (mol/liter) 

MAPK mitogen-activated protein kinase 

mBRET milliBRET 

min minute(s) 

ml milliliter 

ms millisecond 

M1 muscarinic receptor 1 

M3 muscarinic receptor 3 

µl microliter 

µM micromolar 

n number 

nm nanometer 

nM nanomolar 

NMS N-methylscopolamine 

ns non-significant 
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N-terminus amino terminus 

OD optical density 

PKA protein kinase A 

PKC protein kinase C 

PLC phospholipase C 

PBS phosphate buffered saline 

PTX pertussis toxin 

QIC FR900359 

RhoA Ras homolog gene family, member A 

RLuc Renilla luciferase 

RNA ribonucleic acid 

rpm rounds per minute 

RPMI Roswell Park Memorial Institute 

RT room temperature 

sec second(s) 

s second(s) 

SEM standard error of mean 

TE Tris EDTA 

TM transmembrane 

Tris Tris(hydroxymethyl)aminomethane 

U unit 

UV ultraviolet 

V volt 

w/o without 

YM YM-254890 
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8 Appendix 

Chemical structures of BIM-dimer analogs tested in CHO-M1 cells (see chapter 3.1.14). 
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