
Visual Prototyping of Cloth

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inf. Kai Michael Nikolai Schröder
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ZUSAMMENFASSUNG

Die realistische Visualisierung von Stoffen ist ein wichtiger Anwen-

dungsbereich der Computer Graphik. Eine aktuelle Fragestellung in

der Forschung ist, wie man am besten vermessbare Modelle für das

Aussehen von Stoffen beschreiben kann. Eine zusätzliche Schwierig-

keit tritt dann auf, wenn eine rechnergestützte Konstruktion ermöglicht

werden soll. Bisherige Verfahren können zwar dazu genutzt werden,

sehr realistische Bilder zu erzeugen, jedoch können die optischen

Eigenschaften entweder nur eingeschränkt verändert werden, oder

es müssen dafür vorher sehr große Materialdatenbanken vermessen

werden.

In dieser Arbeit wird eine computergestützte Pipeline für den Entwurf

von Stoffen vorgeschlagen, die direkt auf denjenigen Elementen ba-

siert, die bei der Produktion von Stoffen verändert werden können.

Zu diesen gehören die Arten von eingesetzten Fasern und deren op-

tische Eigenschaften, die geometrischen Eigenschaften von Garnen

und schließlich deren Zusammensetzung z.B. mittels eines Webmu-

sters.

Dabei schlagen wir ein geometrisches Garnmodell vor, das verschiede-

ne aktuelle Prinzipien aus der Textilienforschung integriert. Weiterhin

entwickeln wir ein Verfahren, welches dazu genutzt werden kann, die

Parameter dieses Modells anhand eines einzelnen Bildes zu schätzen.

Hierbei werden der Verlauf von Garnen, die Garnbreiten, deren Va-

riation und das Webmuster vollautomatisch analysiert. Anhand ver-

schiedener Beispiele demonstrieren wir, dass unser Verfahren in der
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ZUSAMMENFASSUNG

Lage ist, das Aussehen im Eingabebild nachzuempfinden. Die Eigen-

schaften eines so virtuell modellierten Stoffes können beliebig editiert

werden. Zum Beispiel kann simuliert werden, wie sich das Aussehen

des Stoffes verändert, wenn man andere Fasertypen verwendet, oder

die Verzwirnung von Garnen erhöht.

Explizite faser-basierte Modelle können genutzt werden, um eine opti-

sche Simulation für kleine Stoffproben vorzunehmen. Jedoch skalieren

Verfahren, die auf solchen Modellen beruhen, nicht für größere Proben

mit vielen Fasern.

Eine Materialdarstellung, welche in der letzten Zeit erfolgreich für das

Erzeugen von photo-realistischen Bildern von virtuellen Stoffen einge-

setzt wurde, ist die Bidirektionale Texturfunktion (BTF). Wir stellen

eine Methode vor, die die Flexibilität von expliziten Modellen der Mi-

krogeometrie mit der Effizienz von BTFs bei der Bilderstellung kombi-

niert. Wir schlagen einen neuen Ansatz für die Berechnung von synthe-

tischen BTFs aus Mikrogeometrie mittels Monte Carlo Pfadverfolgung

vor. Wir stellen fest, dass BTFs üblicherweise aus vielen ähnlichen

apparent bidirectional reflectance distribution functions (ABRDFs)

bestehen. Durch das Ausnutzen von strukturellen Selbstähnlichkeiten

können wir die Berechnungszeit um eine Größenordnung reduzieren.

Dies ist durch eine Technik möglich, die wir nicht-lokale Bildrekon-

struktion nennen, welche auf nicht-lokalen Mittelwerten (non-local

means) basiert.

Abschließend schlagen wir einen neuen generellen Ansatz für die phy-

sikalisch akkurate Bilderzeugung bei großen Stoffproben vor. Durch

das Nutzen eines statistischen volumetrischen Modells, welches die

Verteilung der Fasern beschreibt, können wir eine unerschwinglich

teure explizite Speicherung jeder einzelnen Faser vermeiden. Dadurch

ist es uns möglich, auch Proben darzustellen, die aus um mehrere

Größenordnungen mehr Fasern bestehen, als die größten Proben, die

wir auf aktueller Desktop-Hardware explizit beschreiben können. Da-

bei müssen wir kaum auf Flexibilität und Allgemeingültigkeit verzich-

ten.
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ABSTRACT

Realistic visualization of cloth has many applications in computer

graphics. An ongoing research problem is how to best represent and

capture appearance models of cloth, especially when considering

computer aided design of cloth. Previous methods can be used to

produce highly realistic images, however, possibilities for cloth-editing

are either restricted or require the measurement of large material

databases to capture all variations of cloth samples.

We propose a pipeline for designing the appearance of cloth directly

based on those elements that can be changed within the production

process. These are optical properties of fibers, geometrical properties

of yarns and compositional elements such as weave patterns.

We introduce a geometric yarn model, integrating state-of-the-art

textile research. We further present an approach to reverse engineer

cloth and estimate parameters for a procedural cloth model from single

images. This includes the automatic estimation of yarn paths, yarn

widths, their variation and a weave pattern. We demonstrate that we

are able to match the appearance of original cloth samples in an input

photograph for several examples. Parameters of our model are fully

editable, enabling intuitive appearance design.

Unfortunately, such explicit fiber-based models can only be used to

render small cloth samples, due to large storage requirements.

Recently, bidirectional texture functions (BTFs) have become popu-

lar for efficient photo-realistic rendering of materials. We present a

rendering approach combining the strength of a procedural model of
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ABSTRACT

micro-geometry with the efficiency of BTFs.

We propose a method for the computation of synthetic BTFs using

Monte Carlo path tracing of micro-geometry. We observe that BTFs

usually consist of many similar apparent bidirectional reflectance dis-

tribution functions (ABRDFs). By exploiting structural self-similarity,

we can reduce rendering times by one order of magnitude. This is

done in a process we call non-local image reconstruction, which has

been inspired by non-local means filtering. Our results indicate that

synthesizing BTFs is highly practical and may currently only take a

few minutes for small BTFs.

We finally propose a novel and general approach to physically accura-

te rendering of large cloth samples. By using a statistical volumetric

model, approximating the distribution of yarn fibers, a prohibitively

costly, explicit geometric representation is avoided. As a result, ac-

curate rendering of even large pieces of fabrics becomes practical

without sacrificing much generality compared to fiber-based techni-

ques.
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CHAPTER 1

INTRODUCTION

Cloth belongs to the oldest man-made materials that exist. It is

a ubiquitous part of our everyday life and used in a diverse set of

contexts ranging from articles of clothing to functional cloth applied

for example to furniture or car seats. Therefore, its design is of high

Figure 1.1: Several large pieces of cloth rendered with Monte Carlo path

tracing in less than 50 minutes (for a resolution of 1000×500 pixels with 2048

samples per pixel) using a physically-based volumetric approach presented

in this work. Three different materials are shown: A hard looking carpet, a

soft looking blanket and a translucent curtain. Material properties are linked

directly to optical properties of fibers, yarns and the weave pattern.
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CHAPTER 1. INTRODUCTION

importance. On the one hand, the fashion industry aims to create

new designs and trends every year. On the other hand, the automobile

industry wants to create innovative designs while establishing a certain

look and feel for their brand – the choice of cloth in car interiors can

make the difference whether a car is perceived as being elegant or

sporty.

Computer aided design (CAD) has been invented to improve the speed

of innovation and extend the realm of possible designs. Originally

used in mechanical engineering, its main goal was to enable the design

of the basic shape and form of objects. Visualizations were created

so that one could imagine the appearance of an object without having

to construct it. Originally, these virtual surrogates focused on basic

geometrical properties of objects. Later, important effects of lighting

were added to increase the realism. Nowadays, full optical simulations

can be computed, predicting the appearance of objects under arbitrary

lighting environments. This is possible due to efficient algorithms

that have been invented in the field of computer graphics to compute

light transport. Recently, even the fine visual details of materials

have gained much attention. If we are able to not only change the

shape of an object but can also design this fine visual detail, we have

full control over the appearance. We call a design process, where

we predict the appearance of virtual objects, visual prototyping. It

allows for applications far beyond mechanical engineering and the

approach can in principle be used to design almost any visual aspect

of an object.

An enormous effort is currently spent on the design of seat cushions

for cars by the automobile industry in a process requiring several

iterations. Different variations of a cloth sample are produced and

several of them are fully applied to a car seat until a final design

decision is found. One of our goals is to be able to replace some of

these iterations by the use of visual prototyping.

Ideally, one would like to be able to base editing operations directly

on aspects of the physical parameters, a designer of a real material

could adjust. These parameters are commonly domain specific and

4



require an understanding of the structure of the material in question.

When performing visual prototyping of textiles, we want to be able

to select different types of fibers such as synthetics or wool fibers;

different types of spun yarns should be available and compositional

elements such as weave-patterns should be editable.

To represent the fine visual detail, general appearance models have

been proposed that can describe the look of any type of material, invari-

ant to a specific lighting environment. In an ideal world, these models

would be directly related to shape and first principles of physics.

Even though highly desirable, such a representation is commonly

available only for few material types. The acquisition and represen-

tation of heterogeneous real world materials is still challenging and

often generic image-based techniques such as Bidirectional Texture

Functions (BTFs) [DvGNK97] are used to capture complex lighting

and shadowing effects. Essentially, a material is photographed many

times from different angles with light coming from varying directions.

While such measured data can be highly effective for reproducing the

appearance of existing material samples, physically plausible editing

of purely image-based representations is not easily possible. This is a

problem for appearance design and visual prototyping. By focusing

on a specific type of material we are able to find more expressive

models.

If we want to directly edit parameters for the three inherent scales

of cloth (fibers, yarns, compositions), these have to be somehow

represented explicitly. In contrast, when they are aggregated in a

unified, e.g. image-based, representation, editing can be restricted and

difficult.

However, predictive rendering of large cloth samples during the de-

sign process still remains a challenging task. Apart from geometri-

cal complexity, optical complexity presents complications as highly

anisotropic single and multiple scattering effects as well as self shad-

owing effects often dominate the appearance. Many types of fibers

are highly translucent and multiple scattering significantly influences

the observed color (see Figure 1.2). Since a cloth model may consist

5



CHAPTER 1. INTRODUCTION

of potentially hundreds of millions of fibers, finding a viable level

of geometrical abstraction is difficult. While explicit representations

work well, when designing details in a close-up view, it is difficult

to get an overall impression of a cloth sample as seen from typical

viewing distances. More efficient representations are highly desirable.

While state-of-the-art methods developed in the field of hair rendering

work well when rendering small samples that are explicitly modeled

as a fiber assembly, this approach does not scale. We discuss novel ap-

proaches for cloth rendering that can handle these challenges. Figure

1.1 shows an image of several large pieces of cloth, rendered using a

volumetric approach presented in this thesis.

Although rendering of cloth is a specialized area, we believe that

several of the general ideas that are developed in this thesis could be

extended to describe other materials with complex micro-geometry as

well.

Figure 1.2: Illustrating the effect of multiple scattering, simulated for

a simple cloth model. The lower left part of the image shows only local

illumination. The upper right part shows a full global illumination

solution. The final color is largely influenced by light scattering inside

the yarn.

6



1.1. CONTRIBUTIONS

1.1 Contributions

The main contributions in this thesis are as follows. We present a

pipeline for visual prototyping of woven cloth, in which we

• propose a geometric cloth model that can capture local irregular-

ities and characteristic variations such as local thickening and

thinning of yarns over large areas and includes subtle effects

such as fly-away hairiness fibers.

• employ a specific fiber scattering model that can be measured

for fibers independent from the specific cloth and therefore be

replaced for visual prototyping purposes.

• estimate the geometric parameters from one single image only,

avoiding the need for creating costly databases of Micro-CT

measurements as would be needed by other state-of-the-art

methods.

Our resulting model

• clearly separates the different scales of weave level, yarn level

and fiber level.

• allows for efficient editing by modifying the corresponding

parameters in a way similar to the real production process, in

which parameters can be influenced exactly on these levels.

• is able to reproduce the look and feel of the originally pho-

tographed material.

• utilizes a novel geometric yarn model that integrates state-of-the-

art principles from textile research literature that we introduce to

computer graphics, resulting in well-founded model parameters

and practical methods for characterizing and measuring these

quantities.

To be able to render large cloth models, we propose

• a novel volumetric rendering approach based on a statistical

description of micro-geometry.

7



CHAPTER 1. INTRODUCTION

• a method to efficiently create a synthetic BTF, introducing the

new concept of non-local image reconstruction, where path trac-

ing samples between different non-adjacent, non-local image

pixels are shared that have a similar appearance.

1.2 Outline

In Part I of this thesis, we give background information, discussing

related work and describing the structures that constitute the micro-

geometry of typical types of cloth and explain how fibers are combined

to form yarns and how yarns can be composed to form textiles.

In Part II, we present an approach to automatically reverse engineer

woven cloth at the yarn level [SZK15]. This includes the automatic

regularization of an input photograph, estimation of the weave pattern

and a full segmentation into individual yarns and background. At the

same time, we estimate deformation fields, capturing the characteristic

look and feel of a cloth sample.

In Part III, we introduce state-of-the-art principles in textile research

to computer graphics and propose a procedural cloth model that in-

cludes the natural variations of yarns captured from a given sample.

Parameters of this model are estimated based on results described in

Part I and compared to input photographs. The model is fully editable,

allowing for visual prototyping [SZK15].

In Part IV, we present methods for physically-based rendering of cloth

to overcome problems of explicitly modeling micro-geometry. We

combine the advantages of explicit and image-based representations in

a framework to synthesize BTFs. We simulate a virtual measurement

device, computing images using Monte Carlo rendering. As rendering

tens of thousands of images is costly, we propose a new way to accel-

erate computations [SMKZ11, SKZ13].

We further present a volumetric approach to render cloth using virtual

scattering events [SKZ11]: Instead of representing all fibers explicitly,

8



1.2. OUTLINE

only their statistical distribution is stored in a volume. Explicit inter-

section tests of rays with fiber geometry are replaced with a technique

that computes locations of intersections by sampling from this statis-

tical distribution. The approach permits using the same descriptions

for optical properties of individual fibers as one can use for explicitly

modeled micro-geometry. As optical fiber properties are separated

from geometric properties, they are independently editable. In this

context, we propose a solution for a general problem in volumetric

rendering that has not been discussed so far. We introduce the novel

concept of local and global visibility. Local visibility is represented

by a function we call Bidirectional Visibility Distribution Function

(BVDF).

Finally, in Part V we conclude and discuss future work.

9
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CHAPTER 2

BACKGROUND

In this chapter, we give an overview of related work in the context

of appearance modeling and we give background information on the

elements of cloth and how they are manufactured.

2.1 Related Work

In the following, we describe both general approaches to model the

appearance of materials as well as methods specialized to represent

cloth.

2.1.1 Appearance Modeling

Optical materials properties essentially describe the appearance of

a material under all possible lighting conditions for any arbitrary

observer. They are influenced largely by light scattering from micro-

geometry and first principles of physics such as absorption or index of

refraction. Different approaches exist for modeling optical material

properties. The choice of the most appropriate model for a certain

material can depend on many different aspects. These can include

direct properties of the material itself such as homogeneity, opacity,

amount of sub-surface scattering or anisotropy. Sometimes, prior

knowledge can be used to select a more efficient representation. This

11



CHAPTER 2. BACKGROUND

includes knowledge about a typical distance of an observer to the

material (scale) or information about the type of lighting, which can

for example be either diffuse or be made of strong isolated lights. One

can further distinguish between distant and near lights.

Surface Reflectance

Bidirectional Reflectance Distribution Functions (BRDFs) [oSN77]

describe how incoming irradiance for an infinitesimal surface patch

is transformed to outgoing radiance. For opaque and spatially uni-

form materials with no time dependency / no phosphorescence and

no fluorescence, this information is sufficient to describe light scat-

tering from the surface as long as all scattering happens locally; in

other words, when no subsurface-scattering occurs. Many BRDF

models have been proposed, starting with phenomenological models

[Pho75, Bli77] to others modeling certain physical aspects ([CT82],

[LFTG97]). While these models work well for the types of materials

they have been designed for, they cannot describe the appearance

of arbitrary materials accurately [NDM05]. Therefore, data-driven

descriptions [Mat03, RSK12] have been proposed as an alternative.

When fitting to measured datasets, these offer more degrees of free-

dom for describing reflectance at the cost of a possibly more complex

description and the danger of over-fitting, when only sparse measure-

ments are available.

To describe non-homogeneous materials, one can use spatially varying

BRDF (SVBRDF) descriptions. A problem of SVBRDFs is that they

are hard to measure directly as meso-scale surface detail commonly

leads to self-shadowing and self-occlusion effects, which – when

fitting a BRDF to it – may result in violations of basic assumptions

such as reciprocity and energy conservation. Functions that describe

such measured data directly at a certain spatial location, are called

apparent BRDFs (ABRDFs) [WHON97a]. When storing ABRDFs in

a spatially varying form, we call this a Bidirectional Texture Function

(BTF) [DVGNK99]. As BTFs are successfully used in many practical

12



2.1. RELATED WORK

applications and as we propose a method to create synthetic BTFs in

Chapter 10, we describe them in more detail.

Figure 2.1: 2-dimensional spatial slices through a BTF showing a ma-

terial sample under several viewing and lighting directions captured

using the camera dome of Bonn University.

Bidirectional Texture Functions (BTFs) BTFs are view- and light

dependent textures describing the appearance of a material. Monochro-

matic BTFs can be represented by a 6-dimensional function

ρ : (u, v, φi, θi, φo, θo) → R

where the angles (φi, θi) represent the direction of an infinitely far

away point light, (φo, θo) being the direction of outgoing radiance

for an infinitely far away viewer and spatial location (u, v) inside

the texture. For spectral rendering, the BTF is parameterized by an

additional dimension – the wavelength λ. Figure 2.1 shows spatial

slices through a BTF, each representing the appearance of a material

for a specific pair of viewing and lighting directions. See [MMS+05,

HF11] for excellent surveys on this topic. In the following, we give a

short overview:

BTF-measurement devices can capture the appearance of real existing

materials. Occlusion and parallax effects, micro-geometry-based self-

shadowing and global illumination effects, including local subsurface

13



CHAPTER 2. BACKGROUND

scattering, are incorporated naturally without the need for any explicit

knowledge about these phenomena. This makes BTFs especially

attractive if one wants to reproduce complex materials realistically

in a virtual setting. They are currently one of the best techniques for

reproducing the appearance of measured cloth samples.

BTFs are well suited for many rendering applications. They are known

to be efficiently compressible and under certain lighting conditions (i.e.

under a few point lights) they can be used for real-time graphics ren-

dering applications even on the web using WebGL [SRWK11].

Unfortunately, BTFs also have inherent limitations: Light diffusion is

not modeled properly (especially at shadow boundaries), regions of

high curvature are not represented correctly if the BTF is measured

with regard to a flat sample, and silhouette information is missing.

The quality of highlights strongly depends on the angular resolution

of the BTF. Finally, transparency is difficult to measure and rarely

considered. Figure 2.2 shows cloth renderings using BTFs.

Figure 2.2: Two renderings of BTFs under environment lighting. Left

taken from [MMSK03]. Right, image courtesy of Sensible Graphics

GmbH; Material sample by Volkswagen AG.

Capturing Translucency and Sub-Surface Scattering: The most

common use for the models described so far is to describe optical prop-

erties for opaque surfaces: light comes from a hemisphere centered

14
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around the normal of each point on a surface and is scattered back into

that same hemisphere. When we want to model translucency, we can

use the Bidirectional Transmittance Distribution Function (BTDF),

which describes how light coming from one hemisphere is scattered

into the other hemisphere. To describe all light transport for the full

sphere, BRDF and BTDF can be combined, giving us the Bidirectional

Scattering Distribution Function (BSDF). Extensions to spatially vary-

ing descriptions are straight forward, although complications may

arise in practice, when measuring such functions.

However, only a limited amount of translucent materials can be de-

scribed accurately this way as sub-surface scattering is only included in

an aggregated form. A more accurate representation can be important

in case of thick non-opaque materials such as cloth. The Bidirectional

Surface Scattering Distribution Function (BSSRDF) [JMLH01] can

describe sub-surface light transport accurately as well. For a pair of

points on the surface (pi, po), together with incoming and outgoing

direction, it describes the outgoing radiance at point po for incoming

radiance at point pi. While BTFs can already describe some amount

of local sub-surface scattering in case of infinitely far away directional

lighting, BSSRDFs can even model light bleeding if the surface is lit

by structured light. However, large storage requirements and compli-

cated measurement setups for BSSRDFs for complex heterogeneous

materials are challenging problems.

2.1.2 Cloth Rendering

A common way to render cloth is to use a triangle mesh as a base

mesh and model the interactions of light with fibers and yarns using

surface reflectance models. There are two main directions: The first

one uses heuristic methods or procedural modeling to create plausible

images. The second one is data-driven and directly based on optical

measurements.

Surface-Reflectance-Based Appearance Models for Cloth Daubert

et al. [DLH01] model yarns using implicit surfaces and generate a
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BTF-like data representation using hardware rendering. They compute

lighting using a geometrical model of a stitch. By sampling the stitch

regularly within a plane, a view-dependent texture with per-pixel nor-

mals and material properties is generated. Adabala et al. [AMTF03]

use a simple BRDF model for efficient cloth rendering. They interpret

the industry standard weave information file format (WIF) to generate

reflectance data for arbitrary woven patterns. The appearance of the

micro-geometry of spun yarn is visualized by creating a procedural

texture with parameters that capture the tightness of twisting and thick-

ness of the thread. An average bidirectional reflectance distribution

function (BRDF) is estimated using a micro-facet model which in-

corporates information from the WIF by analyzing the fraction of

the surface that is visible as warp or weft threads. The amount of

shadowing that a thread can cast onto neighboring thread facets is

captured by a horizon map.

Ray-tracing based methods for modeling cloth at a fiber level have

been presented in several works [WAT92, VKKK97]. Their main

objective was to use micro-scale simulation to derive a BRDF/BSDF

model for a small patch of cloth.

A more sophisticated approach to model the appearance of woven

cloth using BRDF and BTF at yarn level was presented by Irawan et

al. [Ira07]. The resulting models, which are validated against mea-

surements, yield visually plausible results for a wide range of fabrics.

Unfortunately, some of the model parameters are based on ad-hoc as-

sumptions that cannot be directly inferred from optical fiber properties.

Sadeghi et al. [SBDDJ13] have proposed a specialized shading model

for cloth based on BRDF measurements. Similar to other shading

models, this approach cannot separate the optical properties of fibers

from other phenomena. Renderings of different surface-reflectance

models for cloth are shown in Figure 2.3.
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(a) [AMTF03] (b) [DLH01] (c) [Ira07]

Figure 2.3: Several methods for modeling surface reflectance.

Data-driven and Image-Based Techniques

Sattler et al. [SSK03] physically acquire a BTF from a rectangular

probe and generate a set of view-dependent texture-maps using a prin-

cipal component analysis of the original data. These maps can even

reproduce mesoscopic detail and can then be illuminated and rendered

in real-time on graphics hardware. Several variants of this technique

have been investigated for realistic cloth rendering [MTCK+04]. A

data driven micro-facet-based BRDF approach was taken by Wang et

al. [WZT+08]. Here, for each measured surface point, a normal den-

sity function model best fitting the observation, is used for rendering

anisotropic spatially-varying materials such as cloth.

Volumetric Approaches: Several volumetric techniques have been

proposed to represent and render cloth. Early approaches were able to

create good looking images of complex pieces of cloth. However, they

were not based on physical properties and could therefore not be used

for predictive rendering: A volumetric approach for modeling knitwear

was proposed by Gröller et al. [GRS95]. By measuring the cross-

sectional distribution of yarn fibers, a density field is created and swept

along a three dimensional curve to form the entire yarn. A similar

idea was presented by Xu et al. [XCL+01], where computations

revolve around a structure called lumislice, a light field of a yarn-

cross-section.
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(a) [GRS95] (b) [XCL+01]

Figure 2.4: Two images created using early volumetric rendering

techniques. While these methods can process complex pieces of cloth,

the realism of renderings is limited, since all scattering by fibers is

purely diffuse.

While previous volumetric methods for rendering cloth already deliver

a decent impression of cloth, they are not accurate enough for pre-

dictive rendering since the anisotropic nature of the micro-geometry

is not modeled properly. This can be seen in Figure 2.4. To over-

come this problem, Jakob et al. [JAM+10] recently devised an elegant

framework for volumetric modeling and rendering of materials with

anisotropic micro-structure. Here, the local aggregate optical behavior

of complex materials is modeled as a distribution of well-separated

non-spherical particles approximating the phase function of scattering

events on a per voxel level. The resulting volumetric representation is

then rendered by employing a novel anisotropic diffusion method. This

approach is very general and can describe many kinds of anisotropic

structures well. It integrates perfectly into modern physics-based ren-

dering systems.

To be of practical use in the context of predictive cloth rendering,

suitable particle models that efficiently pre-integrate to phase func-

tions are required. Unfortunately, deriving such models directly from

measured optical properties of the yarn fibers, i.e. the underlying fiber
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scattering functions, is very challenging – in particular in the presence

of multiple materials, e.g. different yarn colors or composite materials.

Furthermore, while desirable from a theoretical point of view, strictly

volumetric approaches, such as the one of Jakob et al. [JAM+10], gen-

erally suffer from issues related to high frequency volumetric detail.

Small scale structures in global illumination patterns or shadowing ar-

tifacts caused by discontinuities at interfaces between optically dense

and sparse regions, require a sufficiently high volumetric resolution to

model these effects accurately. Especially in woven cloth, yarns with

different materials are often located next to each other and therefore

high frequency details are common, leading to the necessity of very

high spatial resolution of a purely volumetric approach in order to

minimize bias.

In concurrent work, Zhao et al. [ZJMB11, ZJMB12] have presented a

framework to capture and synthesize cloth based on Micro-CT scans.

The aim of this work was to derive the parameters of a sophisticated

geometric and optic model for cloth from real measurements. They

first capture the geometrical information using Micro-CT scanners

and they automatically extract the weave pattern of a cloth sample

from volumetric data. Next, they estimate optical properties based on

photographs. Finally, they use structure-aware volumetric synthesis to

generate several different designs from a database of small measured

samples. This framework has produced the most detailed micro-

geometry of cloth so far. Unfortunately, Micro-CT scanners can only

scan small samples and measurements are time-consuming and costly.

Our approach, described in Chapter 8, instead uses one single image

only.

Light Scattering from Fibers

Light scattering from fibers can be described similarly to light scatter-

ing from surfaces by using a bidirectional scattering function. Optical

properties are mainly determined by absorption, refractive index (e.g.

index of refraction for wool 1.576, silk 1.35, polyester 1.53) and cross
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Figure 2.5: Electron micrograph of a hair fiber. Taken from [Rob94]

sectional shape (often close to circular e.g. for wool and many indus-

trial fibers) with diameters of 10–100µm (e.g. on average 17-42µm

for wool, 15µm for silk, 13µm for polyester) – values according to

[MH62]. The micro-geometry of fibers, e.g. the scales of wool hairs,

can also have a great effect on a rendered image, strongly affecting

scattering. Figure 2.5 shows scales of a human hair fiber in a close-up

view.

Marschner et al. [MJC+03] introduce a curve scattering function

that describes how light is reflected from such a human hair fiber.

Zinke and Weber [ZW07a] describe a complete framework for light

scattering from fibers, including the curve scattering function from

Marschner et al. [MJC+03] as a special case. They adapt the BSSRDF

to better match the properties of fibers. Instead of using a parametriza-

tion directly on the micro-geometry of a fiber, they propose the Bidirec-

tional Fiber Scattering Distribution Function (BFSDF), parametrized

locally by an infinite enclosing cylinder. This makes the BFSDF inde-

pendent of macroscopic effects such as curvature of fibers, allowing

for several simplifications. First, for fibers with homogeneous optical

properties, a dependence on the exact position along the fiber can be

neglected – alternatively, a relative distance of the pair of points con-

sidered is used. A further simplification is given by the Bidirectional

Curve Scattering Distribution Function (BCSDF) [ZW07a], for a dis-

tant observer and distant lights. Essentially, the contributions of light

scattering are averaged along the width of the fiber. As even individual
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fibers can often hardly be distinguished for common viewing distances

of cloth, the BCSDF makes a good compromise between compactness

of representation and accuracy. However, it also has limitations, as we

discuss in Chapter 13.

A three component BCSDF model relying on first principles of physics

such as absorption and refractive index has been proposed by Marschner

et al. [MJC+03], where it has been shown that scattering can be ap-

proximated well for hair by accounting for the three strongest scatter-

ing modes:

1. R-component describing direct surface reflection.

2. TT-component describing light that gets transmitted through the

fibers and is forward scattered.

3. TRT-component describing back-scattered light reflected inside

the fiber.

For all of these components, light is scattered to a cone centered around

the tangent direction. This effect causes the characteristic anisotropy

of cloth, in case of typical yarns with locally parallel fibers. In this

work, we use the model described by Zinke et al. 2007 [ZW07a],

whenever we represent the optical properties of fibers.

Rendering of Fiber Assemblies: Besides explicit path tracing meth-

ods that require each hair strand to be modeled [ZSW04], also very

efficient approximations regarding multiple scattering have been pre-

sented. All of these approximations rely on the fact that the multi-

ple scattering distribution in hair tends to be smooth with only little

high frequency detail [MM06, ZYWK08, MWM08]. Moon et al.

[MWM08] present an interesting idea for modeling micro-geometry

statistically, related to the cloth rendering approach we present in

Chapter 11.
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Figure 2.6: From left to right: Close up of a typical woven cloth.

(taken from [S.04]), cross-sectional view of ring spun stable fibers and

cross-sectional view of filament yarn (taken from [SB06]).

2.2 Elements of Cloth

In the following, we provide relevant background information on the

elements of cloth. Cloth consists of three natural scales: fibers, yarns

and yarn-compositions.

2.2.1 Fibers

The micro-structure of cloth is described by the geometric and optical

properties of the small dielectric fibers that constitute yarns. Different

types of fibers can be used, affecting both the appearance as well as

physical properties such as resistance to wear or heat insulation. Wool,

cotton, silk and synthetic fibers are common.

We have described how to represent optical properties of fibers in

Section 2.1.2.

2.2.2 Yarns

On the one hand, filament yarns are produced by grouping or twisting

a few hundred, long, continuous fibers. An example are fibers that are

taken from cocoons made by the larvae of the silkworm. These can be
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(a) Standard ply (b) Sewing thread (c) Voile yarn (d) Thick yarn

Figure 2.7: Illustration of several yarns created by different combina-

tions of S- and Z-twist (taken from [Kis12]). In the right-most image

you can see a photograph of a yarn made thicker by adding one more

layer of plies.

hundreds of meters long.

Spun staple yarn on the other hand is created by twisting hundreds

of thousands of short fibers together to form a cohesive thread (see

Figure 2.6 for close-up and cross-sectional views). This enables the

production of yarns of arbitrary length even though individual fibers

may be significantly shorter. For example cotton only has a typical

length of 2–3 cm. Smaller fibers typically result in more uneven

yarns [Sha02]. Even stronger yarns are made up of a number of plies,

where each ply is a single spun thread. Different variations exist,

concerning the direction in which fibers are twisted to form a ply and

the direction in which plies are twisted to form a yarn (Figure 2.7).

These directions are called S- and Z-twist. One can also add even more

levels of a twisting hierarchy (Figure 2.7(d)).

Usually small fibers protrude from a yarn – a property called hairiness.

Different techniques exist to reduce this often unwanted effect. One

of them is mercerization [Sha02]: Yarns created from cotton or hemp

are subjected to chemical treatment to reduce hairiness and increase

strength and luster. Apart from that, several different colorization pro-
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cedures and brighteners can be applied to significantly alter the optical

appearance of yarns. In the following we summarize the different

processes involved during industrial spinning.

Industrial Spinning (according to [Sha02]): Two main types of spin-

ning approaches exist. The simpler of the two is rotor (also called

open-end) spinning: Raw fiber material is put into a rotating drum;

when fibers are pulled out of the middle of this drum, they are twisted

and form a yarn. Rotor spun yarns have different qualities when

compared to ring spun yarns – they are ”weaker, more bulky, and

more extensible” [Lor71]. An alternative and more commonly used

approach is ring spinning.

This process in contrast is divided into several different stages. After

cleaning the raw fiber material (commonly done using air pressure in

the blow room), the first important process is carding. Here, carding

cloth, with needles sticking out in a regular pattern, is attached to

rotating cylinders and fiber bundles are pressed through the needles.

The main effects of this step are the isolation of individual fibers from

the bundle, giving fibers a common orientation and creating the sliver

– a thick strand of fibers. When desired, different types of fibers can

also be blended and mixed during carding. Common high-quality

yarn is then combed. This is mainly done to remove more of the

very short staple fibers (some of these were already removed during

carding). Additionally, fibers become more parallel. Overall, combing

increases the evenness and smoothness of yarns, greatly affecting the

appearance.

The combed sliver is then processed by the drawframe. Here, two

slivers are commonly blended into one to obtain a more homogeneous

strand. In roller drafting, this thicker sliver then glides over different

rollers one after another, each of them rotating faster then the previous

one. Fibers are pulled out, influenced by their friction on rollers, the

speed of rollers and friction with other fibers, creating a certain linear

density within the sliver after elongation. Fibers are further drafted

during roving. A small twist can be added and the resulting rove

is wound up onto bobbins for transportation. The final amount of

twist and fiber density is then defined during the actual ring spinning
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process. Again the rove is drafted running over rollers operating at

different speeds. It is then led through a traveler, moving fast on a

ring surrounding the spindle onto which the yarn is coiled upon. The

speed of the traveler defines the amount of twist that is added.

2.2.3 Composition

(a) Woven cloth1 (b) Knitwear2 (c) Felt3

Figure 2.8: Different types of cloth, characterized by different yarn

and fiber arrangements.

Many techniques have been developed to create pieces of cloth from

yarns and fibers. Here we describe three of the most common ones:

Woven cloth and two types of non-wovens called knitwear and felt.

Woven Cloth: To manufacture single layer woven fabrics (Figure

2.8(a)) one interlaces two orthogonal sets of parallel yarns, called

warp and weft yarns. Each set of yarns can have different properties

such as color and size. If yarns within one set have different colors,

this is called color effect.

In the normal direction of a flat single layer woven cloth, no more

than two yarns can be on top of each other, assuming a fabric that

1Woven-image: CC-BY 2.0 Scott Robinson
2Knit-image: CC-BY 2.0 Chris Phan
3Felt-image: CC-BY 2.0 Siona Karen
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Figure 2.9: Three common weave patterns are shown (illustration

taken from [IM06]).

does not fold onto itself. This allows for a simple representation

of the basic structure: We consider all positions in the projection

onto the main plane, where yarns cross. At each position, a binary

value describes, which yarn can be seen from above. If we arrange

these values in a matrix, we obtain the weave pattern matrix. While

alternative representations are often used to program looms, these can

be computed directly from this matrix. Depending on the setup, yarns

can have varying spacings between each other, locally affected by the

weave pattern.

Many fabrics consist of a small ever repeating pattern. A few famous

named patterns exist such as plain weave, satin weave, and twill weave

(Figure 2.9). However, in general, any binary matrix describes such a

pattern as long as yarns cross often enough to hold the cloth together.

Additionally, a color effect annotation is often used to create a more

interesting appearance (see Figure 2.10 for an example). Formal de-

scriptions for pattern and color effect can be used for catalogization

and – together with some more information about yarns and the spac-

ing between them – for manufacturing a piece of cloth. More complex

pieces of cloth can be created by using several layers as is common

for example for ties.
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Figure 2.10: Plain weave with color effect, captured using a flatbed

scanner. This cloth has been created by applying a 2× 2 plain weave

matrix
(

0 1
1 0

)

and using for both warp and weft yarns the color effect

description: [4× blue, 4×white]. This results in a repeating pattern

of 8× 8 yarns. 2× 3.5 repetitions of this pattern can be seen in the

image.

As our aim is to automatically analyze woven cloth samples, we give

a more detailed description of the weaving process as background

information:

Industrial Weaving / Looming according to [Sha07]:

To be able to use the spun yarns as warp yarns in a loom, they are

run through further processing steps. Yarns have to be prepared as

packages, re-winding them from spinning frames, so that sheets with

several hundreds of yarns can be wound onto a metal beam. These

steps are called beam preparation and warping. Two types of yarns

are found during the weaving process: Warp yarns are spun onto the

loom and weft yarns are interlaced with them.

The final process before the actual weaving on a loom is called sizing.

The main goals of this step are to strengthen the warp yarns and to

reduce the friction during weaving. Warp yarns are lubricated, e.g.

using wax, and are flattened using a squeezing roller, altering yarns’

cross-section shapes. In contrast, weft yarns are only slightly waxed

and wound onto cones.
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For weaving, beams of warp yarns are attached to the loom and the

yarn ends are drawn in so that every yarn follows a specific path

through different parts of the machine.

During shedding, warp yarns are raised or lowered so that fill yarn

can be pulled through them in specific configurations given by the

weave pattern. Different looms support different shedding motions.

The simplest one is the Tappet – with its 8 shafts, it can produce a

maximum weave repeat (weave pattern matrix size in weft direction)

equal to 8; only allowing for simple patterns. More complex patterns

can be realized by Dobby looms, allowing a weave repeat size of

28. In Jacquard looms, every warp yarn can be raised or lowered

individually, allowing the use of arbitrary weave pattern matrices. In

this work, we concentrate on repeating woven cloth created by Tappet

or Dobby looms. After a weft yarn has been inserted, the reed pushes

the new yarn against the end (fell) of the already woven part in a

process called beating up, reducing the spacing between yarns and

increasing the compactness of cloth.

Knitwear: In knitwear (Figure 2.8(b)), yarns are arranged in 3-

dimensional loops. Two basic stitch types are combined to create

different patterns (Figure 2.11). Starting with an initial row of loops,

the loops of the next row are created by pulling through the loops

of the upper row. One distinguishes between two types of stitches:

When the yarn is pulled through a loop from the previous row from

below, this is called a knit stitch. If it is pulled from above, it is called

a purl stitch. The three most common ways to combine these stitches

are

• the stockinette, which only consists of knit stitches.

• the garter where the two stitch types alternate row-by-row. This

is the most common type in hand-knitting – in practice one can

always use knit stitches, but then one has to reverse the cloth

sample after each row.
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• the 1-1 rib where the stitch types alternate within a row and

the 2-2 rib alternating between two knit stitches and two purl

stitches within a row.

Figure 2.11: Three standard knitting patterns are shown (illustration

taken from [KJM08]).

The direction along the length of a row is called the course direc-

tion. Orthogonal to that we have the stacking of rows in the whale

direction.

Felt: This is one of the few types of textiles where fibers are directly

combined instead of first creating yarns. As we have described in

Section 2.1.2, wool fibers consist of many scales. If many wool fibers

are moisturized and subjected to friction, these scales make the fibers

stick together. This results in a material of relatively homogeneous

density (Figure 2.8(c)). Other types of fibers can also be mixed into

the material as long as there are enough fibers with scales that stick to

each other.

Finally, textiles can be created by cutting and sewing of cloth samples

of various types. A description of that process is beyond the scope of

this work.
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CHAPTER 3

INTRODUCTION

In this chapter, we give an overview of major image segmentation ap-

proaches, related to our automatic pipeline for analyzing cloth, and we

discuss different capturing setups to be used for an automatic analysis

of cloth. Finally, we give an overview of our analysis pipeline.

3.1 Background: Statistical Image Segmen-

tation

The seminal work of Geman and Geman [GG84] introduced the prin-

ciples for statistical segmentation of images. We want to segment

an image I ⊂ Ω into a number of regions Ωi ⊂ I , separated by a

boundary Γ. This is done by applying Bayes’ rule:

p(Γ|I) = p(I|Γ)p(Γ)
p(I)

(3.1)

A segmentation is obtained by estimating a maximum a-posteriori

(MAP) solution for Γ. The prior p(Γ) restricts the curve to certain

shapes such as curves with minimum length; more complex shape

priors can also be used [CTWS02]. A segmentation can therefore be

computed by minimizing:

E(Γ) =
∑

i

∫

Ωi

− log p(I(x)|Ωi, x) dx+ νR(Γ) (3.2)
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where R(Γ) is the regularization based on the chosen shape prior

and ν controls the influence of that term. The value of p(I(x)|Ωi, x)
describes the probability that the intensity value I(x) belongs to the

i−th region Ωi – a common choice for p(I(x)|Ωi, x) is a Gaussian

distribution:

p(s|Ωi, x) =
1√
2πσi

exp(− (s− µi)
2

2σ2
i

) (3.3)

The µi are the means and the σi describe the standard deviations of

the intensity distributions of the regions.

As shown by Zhu and Yuille [ZY96], the statistical formulation using

a Gaussian intensity distribution is equivalent to the Mumford Shah

functional [MS88],[MS89] in the so called cartoon-limit (popularized

by Chan and Vese [CV01]).

E(ui,Γ) =
∑

i

∫

Ωi

‖ I(x)− µi ‖2 dx+ νR(Γ) (3.4)

In addition to the Gaussian model, several other probability densi-

ties for pixel intensities in regions have been proposed (i.e. Laplace

distributions [HS05] and non-parametric densities [KFIY+05]). Lo-

cal region models [BRW05],[LT08] not only describe the intensity

homogeneously for a full region but instead they obtain different dis-

tributions around each pixel inside local Gaussian windows. This

statistical formulation has been related to the full Mumford Shah

model by Brox et al. [BC07]. Another direction of research is to

frame image segmentation as a Markov Random Field (MRF) model.

Especially techniques based on graph cuts [BVZ01] have become

popular. Rother et al. [RKB04] alternate between updating statistics

of regions and a segmentation of the image based on these statistics

via graph cuts. This approach is conceptually somewhat related to

how we estimate the weave pattern.
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3.2 Capturing Setups

We have tested different setups to capture images of cloth for the auto-

matic analysis. In the following we describe some of their advantages

and disadvantages. Cloth can be easily put onto a flatbed scanner. This

allows us to capture high-resolution images for relatively large cloth

samples. However, especially for slightly thicker cloth samples, the

imaging system of the scanner, we have used, cannot perfectly focus

on the fibers. This leads to blurry images, where fibers can hardly be

resolved.

Another problem with this setup is caused by the anisotropic optical

properties of cloth and by highly specular fibers. A flatbed scanner

usually consists of a sensor bar located directly next to a bar of light.

This leads to strong highlights and strong intensity variations in the

image in areas where the yarn is tilted towards the light. These ef-

fects make the detection difficult as the intensity of a yarn can vary

much.

Alternatively one can use macro photography. Here one has to find a

compromise such that one can resolve individual fibers but still obtain

photos with a sufficient number of repetitions of the weave pattern.

We use a simple measurement setup with a single consumer camera

and smooth, indirect lighting to avoid strong regular highlights. The

camera is placed above the sample, whose weave pattern is roughly

aligned with the image axes.

A great advantage of this setup, when compared to the flatbed scanner,

is that we have much better control over the lighting environment.

The indirect lighting produces images in which the color intensity

of single yarns varies much less than for direct illumination. This

allows us to more easily select a set of features that can be used for the

analysis. To be able to analyze structural details in bright areas as well

as in shadows and to be able to analyze both white and black yarns,

we make use of high dynamic range (HDR) photography. We take a

series of low dynamic range (LDR) images with varying exposure and

combine these to a single HDR image [MP94].
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3.3 Overview

Our goal for this part of the thesis is to automatically analyze cloth

at the yarn level. More precisely, we estimate the yarns’ centerlines,

widths and colors, the weave pattern as well as deformation fields

that will subsequently be applied to a procedural fiber-based cloth

model.

To the best of our knowledge there exists no other current approach

that fully reverse engineers woven cloth at this level. The analysis is

challenging on many different levels:

1. Cloth can be easily deformed in non-rigid ways due to stretch-

ing and shearing. To address this issue we propose a bi-scale

regularization framework to remove non-rigid cloth deforma-

tions; at the same time we estimate flow fields that give us the

characteristics of yarn deformation and yarn width over several

repetitions (Chapter 4). These flow fields will be applied during

synthesis to model the detailed variations of yarns.

2. As every yarn consists of numerous fibers, the appearance is

fuzzy (see Figure 3.1), and the fibers exhibit strong locally

varying highlights, even with relatively smooth lighting. Yarns

are often partly covered by protruding fibers of neighboring

yarns, making them hard to distinguish from each other in an

image (see Figure 3.1(b)).This problem is effectively solved

by exploiting self similarities and by warping, removing the

non-rigid deformation of the cloth sample. When averaging

over the regularized repeating pattern, we obtain a clear image

with salient yarn borders (Chapter 4).

3. Tracking of yarns in an image needs to account for occlusion

by other yarns – this in turn defines the weave pattern for sin-

gle layer cloth. Using a new graphical model, we are able to

automatically extract an underlying weave pattern for complex

woven structures (Chapter 5.3)

4. We present for the first time an automatic method to perform
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image segmentation of woven cloth into individual yarns, ex-

tracting yarn parameters such as their paths and widths (Chapter

5.4).

The following chapters in this part of the thesis are based on the work

we have presented in [SZK15].

37



CHAPTER 3. INTRODUCTION

(a) Input photo

(b) Closeup

Figure 3.1: Illustrating a typical input image and pattern repeat.

(a) shows woven cloth with a repeating pattern. Due to shearing,

internal non-rigid deformations and differences of e.g. yarn texture,

instances have varying outlines and structure. Two instances of the

repeating pattern are marked in white and are shown as a closeup in

(b). Some borders, especially between orange yarns, are completely

obscured. High frequency features complicate inference by means of

edge detection. Therefore, an automatic analysis is challenging.
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CHAPTER 4

BI-SCALE REGULARIZATION OF WOVEN

CLOTH

Due to assumptions of continuity and the Gestalt laws [Wer23], a

human can often infer the structure of an object with occluded parts

just from looking at it even if he has never seen such an object before.

The analysis of woven cloth by an untrained observer is a typical

example for this: it is usually clear to someone inspecting a cloth

sample, where an occluded yarn becomes visible again. Even though

humans can use subtle clues of shading and shadows to decide where

discontinuities in depth occur, looking only at the details is often

not sufficient: When boundaries between objects become blurred,

a correct segmentation cannot be decided by only looking at local

information. Instead, a more global view of the objects may be needed

to make a correct decision. As an example see Figure 4.1 (a), where

the individual yarns can hardly be distinguished locally, however the

structure becomes clearer if the surrounding context is analyzed as

well. An important clue can be the analysis of symmetries.

In the following, we focus on the common case of woven cloth with a

small repeating pattern as created by tappet or dobby looms. When a

photograph of a piece of cloth is taken, the repeating pattern manifests

as a small (almost) rectangular part of the image. This is repeated

several times following a translational symmetry. We present an

automatic method, exploiting these structural similarities, to create a
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

(a) Input image (cutout) (b) Computed regularized median

Figure 4.1: On the left you can see a cutout of an input image: Some

borders between yarns are completely obscured. Dark edges caused

by shadows of a yarn’s plys may be more salient than those between

yarns. On the right you can see the median prototype image (cloned

in a 2 × 2 grid) computed completely automatically from > 100
repetitions using our method – all individual yarns can be clearly

distinguished from each other.
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regularized version of the fabric image. In practice, symmetries are

imperfect because of global shearing and stretching of fabrics and

local irregularities. Even the same yarn looks different at varying

locations, because of the twisting of fibers and plies – these usually

do not repeat with the same frequency as the weave pattern does.

Fibers protruding from yarns, also called hairiness fibers, may cover

neighboring yarns at varying locations.

The problem of cloth regularization is related to the analysis of near

regular textures. Much work has gone into analyzing and character-

izing these textures. This includes the task of finding an underlying

deformed lattice of repeating structures. However, in addition to find-

ing such a lattice, we are also interested in deformations at a finer

scale. We not only want to compute an underlying deformed lattice,

describing a basic stretching in the context of cloth, but we also want

to estimate a fine deformation field, to faithfully capture curvy defor-

mations of individual yarns. For woven cloth for example, warp and

weft yarns move in two layers on top of each other. While they move

similar for coarse scales showing the basic deformation of the cloth,

yarns slide on top of each other in varying directions when looking at

local details.

Our contributions in this chapter are:

• We observe that the characteristics of cloth require different

types of regularization at different scales.

• We present a framework that can regularize the deformations of

cloth at a coarse and a fine scale.

• We generate a clear, noise-free template of the repeating pattern

in a process related to non-local filtering.

• We estimate deformation fields, representing coarse and fine

characteristics.

• We describe applications that can utilize the computed informa-

tion.
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

4.1 Related Work

Skew detection and corresponding image rectification is the basis of

several techniques for the analysis of fabrics [WZP06, Jeo08, PGZ08,

RWJ09, PG09]. Current approaches for skew rectification compute a

global linear or affine transformation that is applied to the whole image.

While this an effective coarse approximation to the problem at hand,

it neglects the fact that fabrics tend to also have both a smooth global

non-rigid deformation as well as local deformations of yarns.

Much work has been invested in finding techniques to handle repeat-

ing structures in images [LM96, SZ99]. Fabric images showing a

repeating structure can be regarded as instances of near-regular tex-

tures containing translational symmetries. Early approaches have

concentrated on estimating the generators of an underlying transla-

tional symmetry group [LC00], disallowing irregularities with respect

to deformations. In the following, we concentrate on approaches that

not only handle irregularities with respect to varying textures but can

also handle warpings of the repeated elements. Liu et al. [LC01]

also detect affine transformations for skewed symmetries. Later work

also allowed non-rigidly deformed lattices by performing user-guided

detection [LLH04]. Newer approaches compute a deformed lattice

completely automatically [PBCL09].

In concurrent work, Hilsmann et al. [HSE11] have also presented an

approach to regularize cloth by warping individual repetitions onto a

mean sample. However, their approach only analyses cloth at a single

coarse scale and does not estimate the fine variations of yarns.

4.2 Overview

Applying image segmentation algorithms on the input image directly

is difficult, because of the high-frequency details of fibers. Cloth is

easily deformed, complicating an automatic analysis. We want to

42



4.2. OVERVIEW

exploit self-similarities in the image to aid in reverse engineering cloth

in the presence of non-rigid deformations.

Our approach first regularizes non-rigidly deformed cloth. Locally,

yarns may not be clearly visible because they can be occluded by

fibers from neighboring yarns. However, when averaging over several

warped repetitions, the structure at a yarn level becomes clearly visible.

This can be seen in Fig. 4.1 (b). A segmentation of this image is much

easier when compared to segmenting the input image. The estimated

deformations will later be used to model the natural variations of

yarns.

Our main observation is that we have to solve the regularization prob-

lem at different scales. We first find a shearing transformation, re-

moving skew. Next, we estimate a flow field describing a smooth

deformation – applying this flow field to the sheared input photograph,

we obtain an image, where the individual repetitions are aligned as

a grid. Additionally, we compute a fine flow field, capturing the

variation of yarn deformation and yarn width – this information is es-

pecially important later-on during synthesis. While we have to strictly

avoid discontinuities in the smooth / coarse flow field to also avoid

discontinuities of yarns, we explicitly want these at a fine scale. Yarns

move on top of other yarns in two layers in varying directions. We

want to register individual yarns within each repeating pattern onto a

corresponding yarn in a median image of the repeating pattern. This

median image is not known in advance and is computed in a process

alternating between estimating the flow field and the median. In the

following we call this image regularized median M.

Implementation: First, we find the size of the repeating pattern by

the use of auto-correlation analysis [KKO99] and rectify the input

image using a linear geometric transformation, obtaining image I.

From this we compute an initial estimate of the repeating pattern by

computing the median of all repetitions. We tile the pattern in such a

way that we obtain an image of the size of the linearly transformed

image.

Second, we apply optical flow image registration [WBBP05, SRB10]
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

at a coarse scale to align the transformed image I ⊂ Ω and the tiled

image M:

F (u) =
∫

Ω
‖ I(x+ u(x))−M(x) ‖p dx

+λ
∫

Ω

∑N
d=1 ‖∇ud(x)‖p dx (4.1)

where u = u1, u2, ..., uN describes the N -dimensional flow field and

λ weights the regularization.

Coarse Regularization: Our goal is to register all weave pattern repe-

titions in the image I onto the regularized median image M to obtain

a smooth flow field u = uc without discontinuities. We compute the

coarse flow field by penalizing the L2 magnitude of image gradients

(p = 2 in Equation 4.1 [HS81] – utilizing the implementation of

[SRB10]). A large value is used for λ to enforce smoothness. The

algorithm consists of the following alternating steps (two iterations of

both steps were sufficient in practice):

1. Compute median image M for current image I
2. Estimate optical flow field using F and compute warped image

I ◦ u. Set it as new current image I
Fine Regularization: Finally, we run the same algorithm again but

this time we allow for discontinuities in the flow field (p = 1 in

Equation 4.1). We employ TV-L1 optical flow [PUZ+07], which is

ideal for capturing fine scale discontinuities and obtaining a highly

detailed flow field u = uf representing local variation such as yarn

deformation.

4.3 Results

To test the performance of the algorithm, we have acquired images

of woven textiles using a flatbed scanner. In Chapter 5, we will show

further examples using a camera-based setup. The textile is loosely

positioned in a way that yarns run parallel to the image axes.
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Figure 4.2: Cloth with non-standard weave pattern and 4 warp and 4

weft yarns in the rapport captured using a flatbed scanner. Note the

variation of intensity due to highlights – these are the reason, why we

focus on a camera setup with diffuse lighting in the following chapters.

From upper left to lower right: Auto-correlation image, Input image,

Coarse rectification, Fine rectification, Coarse tiled regularized me-

dian (cutout), Fine tiled regularized median (cutout), Coarse flow field

(not containing the previously applied linear transformation), Fine

flow field. Flow fields are visualized using the common approach of

describing the direction using the hue value and the flow intensity by

the color saturation.
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

Figure 4.3: More examples along the lines of figure 4.2. Upper

example: A piece of cloth with the same weave pattern as in figure 4.2

with differently colored warp and weft yarns. Lower example: a piece

of cloth with a complex weave pattern with color effect consisting of

10 warp and 10 weft yarns in the rapport.
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4.3. RESULTS

Figure 4.4: The upper example shows a failure case, violating the

assumptions. It does not purely consist of a repeating pattern. The

lower example is a corner case, consisting of special yarns that vary

in color. The approach still handles these cases reasonably well.
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

As a result of our method, we obtain the final regularized median

image and a set of repetitions registered onto it. Because fibers are

arranged in a slightly different way in every repetition of the pattern,

only the major shading of the yarn is left after median filtering and

all of the high frequency fiber structure is removed. Yarns look like

bent shaded cylinders in this regularized median image. Even if yarn

borders are not clearly visible in some of the individual repetitions,

they clearly emerge in the median of the aligned repetitions (Figure 4.1

demonstrates this in a closeup view). Figures 4.2 and 4.3 show major

steps of the registration pipeline for several examples. Figure 4.4

presents a failure case, which violates the assumption of a repeating

pattern.

4.4 Conclusions

We have presented a method to regularize the repeating structure of

woven cloth. We obtain a clear image with salient yarn borders that

can be used for further processing such as image segmentation as

described in the following chapter. While yarn borders already emerge

after the coarse regularization step, they show even more contrast

after fine regularization. Additionally, we obtain a set of repetitions,

registered against a common median image. This means we could

analyze corresponding pixel neighborhoods in each repetition and

therefore, features such as texture descriptors could be computed more

robustly over several repetitions avoiding problems of local defects

and blurring in a single repetition alone. While yarns do not look equal

in every repetition, their statistical properties should match.

We further estimate two flow fields that describe different properties of

the sample. A coarse field describes a smooth non-rigid deformation.

A fine flow field describes the variation of yarns. We will apply these

fields in Chapter 8 to a synthetic cloth model.

The filtering we obtain after bi-scale regularization could be regarded

as a structure-aware variant of non-local means (respectively median)
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filtering [BCM05]. In standard non-local means filtering, neighbor-

hoods are constructed based on the similarity of color distributions

surrounding pixels. In our approach, patches are first warped in a way

that minimizes the sum of squared intensity distances between them.

This aligns them in such a way that we obtain a near perfect transla-

tional symmetry of the features. Then, neighborhoods are constructed

according to corresponding elements in these symmetries. Although

this greatly reduces the amount of neighbors considered, when com-

pared to standard non-local means, the quality of the neighborhoods

are greatly increased, leading to a high-quality filtering.

4.5 Applications and Future Work

Our motivation to implement this method was driven by our goal to

completely analyze the structure of a piece of woven fabric as will

be discussed in the following chapters. However, there are also more

immediate applications for the approach. A common problem in

graphics is to create tileable textures. In case of woven cloth, discon-

tinuities of yarns can easily be spotted when the regular structure is

interrupted. After having regularized the piece of cloth, we can com-

pute an arbitrarily large tiled median image and then use constrained

texture synthesis to add the fine detail on top of it (see Figure 4.5). To

further improve synthesis results, one could also apply the estimated

deformation fields to model irregularities of yarns – we will do this in

Chapter 8, when we explicitly synthesize micro-geometry. Figure 4.6

shows how the decoupling of structures related to yarns and structures

related to fibers can be used for image-based editing by increasing or

reducing the perceived hairiness and roughness of a sample. Although

one could also use other filtering approaches instead, we believe that

the domain specific decoupling of structures increases the intuitiveness

of the editing process. Another important application related to our

approach for cloth regularization is that of defect detection for fabric

images (see [Kum08, NPY11] for recent surveys). Here, the basic
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

idea is to estimate the regularity of a sample to detect variations from

it. Current techniques do not explicitly take the non-rigid deforma-

tions of cloth into account in the way we do. Using our approach,

one can estimate repeating elements with the largest distance — for

example, simply using sums of squared distances of intensities — to

the regularized median. These are candidates for defective parts or

dirt on the sample.

Figure 4.4 presents an example where several small patterns are ar-

ranged to form the cloth. Instead of creating the median image by

tiling the same pattern for the whole image, one could create several

different representative prototype patterns and locally select the best

one using a clustering method.

Looking at a larger cutout of the cloth in Figure 4.4 would reveal

that it actually does contain a perfectly repeating pattern at a different

scale. A hierarchical approach could be used to detect all of these

patterns.

In the future, one could explore the use of the method for other types

of near-regular structures – a related application would for example

be the analysis of knitwear.

50
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(a) Input image (b) Naive tiling

(c) Naive synthesis (d) Constrained texture synthesis

Figure 4.5: (b) to (d) show different methods to generate a larger tex-

ture from the input image in (a). Even the small bending deformation

in (a), makes it difficult to find a solution without discontinuities when

naively applying texture synthesis without information about struc-

tures and features. The information about the repeating pattern allows

us to start with a perfectly repeating image and then only synthesize

the high frequency detail by applying constrained texture synthesis (as

can be seen in (d)) to avoid errors. A further improvement could be

obtained by utilizing the flow field information.
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CHAPTER 4. BI-SCALE REGULARIZATION OF WOVEN CLOTH

Figure 4.6: The decoupling of basic yarn shading and structure

captured in the median image and the high frequency details of fibers

in the residuum, allows us to perform image-based editing. The upper

left image shows the original photograph, and the other images show

the effect of adding the high-frequency residuum to the median image

with different intensities, creating different effects of roughness.
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CHAPTER 5

IMAGE-BASED ANALYSIS OF WOVEN

CLOTH AT THE YARN LEVEL

The visually complex characteristics of woven cloth make the auto-

matic detection of weave patterns a challenging task. In this chapter

we use the regularization method described in the previous chapter

and present the first method that completely segments the regularized

median image into individual yarns and background. This gives us

the paths of the yarns’ centerlines, the average width of yarns and

a labeling of regions showing the background. We further analyze

yarn occlusion, from which we obtain the binary weave pattern matrix.

Combined with information about the types of yarns that are used, this

gives us a reverse engineering of woven cloth, which could be used to

recreate the sample on a loom as long as we know the types of yarns

that have been used.

5.1 Related Work

Zhang et al. [ZXW13] give an overview of the extensive research

the textile research community has carried out within the last 30

years in the context of analyzing woven cloth. None of these works

obtain a full segmentation of an image into individual yarns and

background.

The related work for weave pattern detection splits into two main
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directions. The first one is to identify one of a few common weave

patterns in an image. The alternative is to directly estimate an arbitrary

weave pattern matrix.

5.1.1 Classification into Common Basic Weave Pat-

terns

Several papers concentrate on classifying fabrics into one of a few

basic weave types (i.e. plain, twill and satin weave): Huang et al.

[HLY00] locate areas where warp and weft yarns cross by analyzing

interstices of yarns. By summing gray-level values over all pixels of a

row they obtain an accumulated value for each column (and vice versa

for columns and rows). Minima of this function are assumed to be

taken at yarn borders because of shading effects. A grid is constructed

by placing lines in rows and columns where minima of these functions

occur. A decision tree is built to recognize warp and weft floats. Jeon

et al. [JBS03] train a neural network model on an estimated ratio

of horizontal and vertical distances of minimal gray values in the

input image. Kuo et al. [KT06] calculate texture characteristics by

computing the gray-level co-occurrence matrix and use learning vector

quantization networks to classify the fabric texture into three basic

weave types, single or double knitted fabrics or non-woven fabric.

Ben et al. [BN09] use a support vector machine classifier on different

texture features obtained using Gabor wavelets, local binary pattern

operators or co-occurrence matrices.

Cluster validity analysis can be used after fuzzy c-means (FCM)

clustering of yarns in HSL color space ([PGL09]) or CIE-L*A*B*

space([PGLW10a]) to obtain the number of yarn colors. Pan et al.

[PGL09] introduce a period extraction method based on an entity they

call ’Su index’ for detection of the color effect. In [PGL+10] they

enhance an image by blurring it in the direction of the skew angle

using steerable filters, before applying a variant of the gray-projection

method, assuming that yarns may be darker at borders. In [PGLW10b],
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Pan et al. correct the output of a faulty FCM algorithm by comparing

to the most similar weave pattern in a database.

In our approach, we can handle any weave pattern matrix.

5.1.2 Estimation of Binary Weave Matrix

Kang et al. [KKO99] use a special setup with light coming from

behind the surface to augment positions between yarns where the

light shines through. Bright pixels are connected to form a grid.

Crossed states are classified by analyzing the aspect ratio obtained

from minimum distances of local minima of vertical and horizontal

gray-level profiles at a crossing point. They quantize colors at crossing

points to obtain the colors for yarns. Kuo et al. [KSL04] create a grid

by using a similar method as in [HLY00]. Fuzzy c-means clustering

of color statistics in grid cells is used to distinguish between warp

and weft yarns. Wu et al. [WZPY05] analyze double layer woven

fabrics. They also construct the grid similar to [HLY00] – instead of

summing gray-level values directly, they sum gradient values. This is

done for obverse and reverse surface images of the sample manually

registered against each other to analyze both layers. In contrast to our

approach, current work based on clustering image features to obtain

regions belonging to warp and weft yarns cannot handle any pieces of

cloth with color effect.

Xin and Hu [XH09] propose an Active Grid Model in this context.

The grid is locally adapted to follow yarn borders based on local

gradient information. A neural network is finally trained to classify

yarns based on local boundary information. Unfortunately, research on

active contour models has shown [CV01] that relying on local image

intensity gradients only is commonly not robust. Further, a grid is not

a good model, if we want to fully segment an image into individual

yarns and background. To find initial locations of yarn borders, Xin

and Hu compare the Hausdorff distance of pixel locations as obtained

from a binary edge detector with the location of a binary template
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showing two orthogonal lines as yarn borders. We refine the idea of

template matching for estimating initial locations, utilizing more of

the available image information within our SANCC filter. Wang et

al. [WGP11] use a feature descriptor based on texture for clustering,

obtained using principal component analysis.

In comparison to our approach, none of these approaches includes

neighorhood information directly. Further, the full cloth segmentation

we obtain using our active yarn model, gives us a lot more geometric

information about a piece of cloth than is contained in the weave

pattern alone.

Apart from techniques that work on 2-dimensional images, Shino-

hara et al. trace yarns in 3-dimensional computer tomography data

([STOK04],[STOK06] [Shi07], [STOK09]). Zhao et al. [ZJMB12]

estimate the weave pattern from Micro-CT data of cloth.

5.2 Notation
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Figure 5.1: Illustrating symbols used in this chapter.

Having extracted the regularized median image M in region Ω ⊂ R
2
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in the previous chapter, showing a single repetition, we now want to

compute a maximum a-posteriori (MAP) estimate for yarn widths,

centerlines and weave pattern. Please see Figure 5.1, for an illustration

of the notation. We assume that Ω lies on a torus (coordinates wrap

around image boundaries). We mark properties belonging to horizon-

tally running yarns with a bar (as in Ȳi) and vertically running yarns

with a hat (Ŷj). If we leave out the mark and use k as an index, (as in

Yk) we mean either type of yarn. We define the positions where the

yarns’ centerlines cross in the image as points cij ∈ R
2. We define

each yarn Yk as a tuple (Sk, wk) where Sk is a spline with control

points in {cij} and wk is the average yarn width. Additionally, we

want to estimate the weave pattern matrix L = (Li,j) describing pair-

wise, which horizontal yarn occludes which vertical yarn: Li,j = 1 if

the horizontally or Li,j = 0 if the vertically running yarn is visible

at crossing point cij . We define Ωk as the union of all image regions

showing yarn Yk. These regions are commonly disconnected due to

occlusion by other yarns. Finally, we define regions around each cij
as: Rij = Ω̄i ∩ Ω̂j , where Φ̄i and Φ̂j are the extension of regions

Ω̄i and Ω̂j to those image regions, where the corresponding yarns are

occluded by other yarns. We define the background image region as

ΩB := Ω \ (⋃i Ωk). We now want to segment the image into yarns

and background to find the projected geometry of yarns.

5.3 Weave Pattern Estimation

In this section, we propose a novel method to detect a weave pattern

by using a Markov Random Field to not only cluster yarns using

features such as colors but also taking local yarn neighborhoods into

account. An asymmetric pair-wise prior is introduced that respects

the structure of single layer woven cloth. To obtain the number of

yarns, find initial locations for the later optimization procedure and as

a feature to distinguish horizontally and vertically running yarns, we

use the output of a specialized normalized cross correlation.

57



CHAPTER 5. IMAGE-BASED ANALYSIS OF WOVEN CLOTH AT THE YARN LEVEL

Symmetry-Aware Normalized Cross Correlation (SANCC): With

nearly diffuse lighting, yarns are brightest along centerlines. The

intensity gradually falls off going outwards towards each yarn’s bor-

ders, showing a local mirror symmetry across the width. While this

assumption may not be strictly valid for an individual repetition, it can

clearly be observed in the regularized median image.

We use cylindrical templates that are either tuned to detect elongated

horizontal or vertical structures. During normalized cross correla-

tion, we emphasize the response on symmetric structures by only

considering the minimum response of the two symmetric slopes of the

template.

Let Xy be the result of filtering with the template detecting vertical

structures. Specifically, we define SANCC operator Xm
y based on

normalized cross correlation, emphasizing mirror-symmetries along

y-axis:

Xm
y (u, v) = max(0, X̄m

y ) (5.1)

X̄m
y =

1

nσGσt

m
∑

y=−m

(

h(0, y) +

m
∑

x=1

2min(h(x, y), h(−x, y))
)

with h(x, y) = (G(u+ x, v + y)−Gu,v)(t(x, y)− t)

where G is a gray scale intensity image, computed from regularized

median image M . Template t has size (2m+ 1)× (2m+ 1) and we

define that the middle of the template has coordinate (0, 0). t is the

mean of the template and Gu,v is the mean of G, restricted to a window

of the template size around location (u, v); σt and σG describe the

standard deviation of template and image under the current window.

We sum over x,y under this window, utilizing at boundaries that we

observe a repeating structure. As we have a template that shows a

mirror symmetry along the y-axis, we can penalize non-symmetric

locations in the image by taking the minimum of values at x and

−x. We further clamp the value as we are only interested in positive

correlations. One can define the corresponding operator Xx(u, v),
which mirrors along the x-axis, analogously. The normalization makes
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the filter relatively independent of the yarns’ intensity / colors. We

assume that cloth samples are captured in a way to have a known yarn

width and use a fixed value for m. However, the output of SANCC is

not too sensitive with respect to filter width. To find the initial locations

of yarns, we sum Xy along the x-Axis: ly(x) =
∑

y(1−Xy(x, y)).
Local minima of ly(x) give us the initial locations of vertically running

yarns (analogously for Xx, lx(y)).

Graphical Model: Based on the previous step we now estimate the

binary labeling for the weave pattern matrix L. A challenge is that we

have to locally identify yarns as warp or weft yarns, even though both

may show the same color, as for example in Figure 5.2 and especially

in Figure 5.5. The SANCC described in the previous section not

only gives us an initial estimate for the locations of yarns but also

hints about the direction (vertical or horizontal) a yarn is running

along. However, this information is not reliable, particularly at yarn

crossings. For that reason, we use a graphical model to combine

different domain specific features that we solve using max-product

belief propagation. The graphical model G = (V, E) consists of nodes

V = (1, 1), ..., (m,n) associated with crossing points cij and regions

Rij . Edges E are given by the edges within the grid of crossing

points such that each node has a four-connected neighborhood. The

corresponding energy function EL consists of a pairwise term W
on neighboring regions and a data term D that compares feature

distributions of regions (colors) with those of yarns: EL(L) = D(L)+
W (L).
As we do not know the properties of yarns in advance, we estimate

them iteratively in an expectation maximization framework. After each

step of calculating belief propagation, we use max-product marginals

to re-estimate properties, specifically colors, of yarns by taking a

weighted average of corresponding regions.
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5.3.1 Implementation

Pairwise Boundary Term:

Let us consider two horizontally neighboring regions: They likely

have the same labeling if first, there is no border between them and

second, they both are labeled to show a horizontally running yarn.

For all other labellings (both are labeled to run vertically or they

are labeled differently) they are likely separated by a visible image

boundary. A related argument holds for two vertically neighboring

regions. We penalize boundaries using:

W (L) =
∑

i,j

∑

i∗,j∗

exp
(

A(Lij , Li∗j∗) g(cij , ci∗j∗)
)

(5.2)

with (i∗, j∗) ∈ {(i−1, j), (i, j−1)}. The asymmetric prior A(Lij , Li∗j∗)
describes for what labellings we want to penalize boundaries in which

direction:

A(Lij , Li∗j∗) =











1 if(Lij = Li∗j∗ = 1) ∧ (j∗ = j − 1)

1 if(Lij = Li∗j∗ = 0) ∧ (i∗ = i− 1)

−1 otherwise

(5.3)

Boundary detector: We estimate the existence of a boundary be-

tween regions based on the color distance of their mean color and

based on SANCC. For two neighboring regions R = Rij and above

of it Rup = Ri−1,j , we define

gup(i, j) = λc ‖ M(R)−M(Rup) ‖ +λy|Xy(R) ∗Xy(Rup)|
+ λx|(1−Xx(R)) ∗ (1−Xx(Rup))|
+ λxy|Xy(R) ∗ (1−Xx(Rup))| (5.4)

where e.g. M(R) describes the average of M under region R. gleft
is defined in the same way, switching roles of Xx and Xy. We set

g = gup for vertically and g = gleft for horizontally neighboring

regions.
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5.3. WEAVE PATTERN ESTIMATION

Data Term:

As we do not know yarn colors in advance we estimate them iter-

atively using a process based on deterministic annealing. We alter-

nate between the estimation of the unobserved labeling L and the

computation of the unknown colors of yarns based on the current

labeling.

We compute yarn features based on weights:

wij =
w

(1)
ij

w
(1)
ij + w

(2)
ij

(5.5)

with

w
(1)
ij = e

−Pij

T

w
(2)
ij = e

−(1−Pij)

T

and temperature T , given Pij describing the probability that region

Rij shows a horizontally running yarn as obtained from the max-

product marginals (this means 1−Pij is the probability that a vertically

running yarn is visible). We simply initialize wij to 0.5 for the first

iteration. In every iteration we recompute the colors of yarns as

C̄i =
∑

j Ī(Rij)wij , Ĉj =
∑

i Ī(Rij)(1 − wij) and then reduce

T with T = αT and α = 0.9 for our results. We define the data

term:

D(L) =
∑

i,j

Pijdf (Rij , Ȳi) + (1− Pij)df (Rij , Ŷj) (5.6)

where df (·, ·) describes the similarity of region Rij with yarn Ȳi,

respectively Ŷj . In practice we simply use the L
2 distance of mean

colors.

The results of this step are a binary matrix, and for each yarn we obtain

a color Ck.
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5.4 Cloth Segmentation Using an Active Yarn

Model

We present for the first time a method to automatically fully segment

an image of woven cloth, obtaining the paths of yarns and their widths,

given weave pattern L and given color features Ck of yarns, as ob-

tained from regions Rij in the previous section. We further obtain

image regions where the background is visible, giving us the spacing

between yarns – an important clue for the transparency of a piece

of cloth. We represent each yarn as a tube with width wk around its

center-path spline Sk. The spline Sk : [0, 1] → Ω ⊂ R
2 has boundary

condition: Sk(0) = Sk(1); please note that Ω is assumed to lie on a

torus. For each tube we subtract all tubes, for which their correspond-

ing yarns occlude the current yarn given the weave pattern. We use

the rough location estimate obtained by SANCC to initialize all Sk.

In the following, EM gives the inverted output of an edge detector (e.g.

Sobel) for M and Γ(Ωk) describes the boundary of Ωk. We segment

the image by minimizing:

E({cij}, {wk}|I, L, Ck) = λEM

∑

k

∑

x∈Γ(Ωk)

EM (x) (5.7)

+ λB
1

|Ω|
∑

x∈ΩB

‖ CB − I(x) ‖ (5.8)

+ λR

∑

i,j

1

|Rij |
∑

x∈Rij

(Lij ‖ C̄i − I(x) ‖ +(1− Lij) ‖ Ĉj − I(x) ‖)

(5.9)

+ λY

∑

k

1

|Ωk \⋃Rij |
∑

x∈Ωk\
⋃

Rij

‖ Ck − I(x) ‖ (5.10)

+ λX

(

∑

i

∑

p∈tb(S̄i)

(1−Xx(p)) +
∑

j

∑

p∈tb(Ŝj)

(1−Xy(p))
)

(5.11)

+RSn +RSh (5.12)
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5.4. CLOTH SEGMENTATION USING AN ACTIVE YARN MODEL

The boundary of the tube should be located at yarn borders, as found

by an edge detector (5.7). The background region ΩB should be small

and similar to a predefined color CB depending on the capturing setup

– black in case of the photos we have taken (5.8). Regions Rij should

have a mean color corresponding to color Ck of the yarn they are

associated with given weave pattern L (5.9). The remaining visible

part of the tube for yarn Yk, excluding regions Rij directly around a

crossing point, should also have a mean color similar to Ck (5.10).

This part consists of all yarn regions where the yarn is not above any

other yarn but only above the background. With p ∈ tb(Sk), we mean

all pixels under a small tube around Sk. These tubes are 3 pixels

wide in our implementation, and they should show a low value (high

correlation) for the corresponding filtered images Xx or Xy (5.11).

Values for the different λ∗ were found through experimentation. We

use the classic regularization term for snakes [KWT88] for all curves

as Rsn and we regularize shearing of cloth similar to spring-based

cloth simulation using Rsh (5.12).

We further avoid overlapping of yarns using linear inequality con-

straints, comparing the distance of control points for neighboring

yarns with the width of corresponding yarns.

In the following, we describe the terms used to regularize the active

yarn model in more detail:

RSn(S) =
∑

k

(
∫ 1

0

‖ S
′

k(s) ‖2 ds+ κ

∫ 1

0

‖ S
′′

k (s) ‖2 ds

)

(5.13)

κ controls the influence of the rigidity and, as is commonly done

[CKS97], we have set κ = 0 for all the results presented in this work.

We also want to regularize shearing of cloth. Therefore, to keep

diagonals short in the grid of crossing points we add:

RSh(ci,j) =
∑

i,j

‖ ci+1,j+1− ci,j ‖2 + ‖ ci+1,j − ci,j+1 ‖2 (5.14)

for i+ 1 in the residue class modulo n: i+ 1 ∈ Zn (similarly j + 1 ∈
Zm).
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We perform constraint optimization using linear inequality constraints.

Yarn width should be greater than zero: ∀k = 1...m+n : wk > 0. We

avoid overlapping of yarns, constraining the distance of control points

for neighboring yarns under the width of corresponding yarns:

∀i = 2...n+1 : cyi,j − cyi−1,j >
1
2 (w̄i + w̄i−1)

with cyn+1,j := cy1,j + p (5.15)

∀j = 2...m+1 : cxi,j − cxi,j−1 > 1
2 (ŵj + ŵj−1)

with cxi,m+1 := cxi,1 + q (5.16)

within an image M of size p× q where ci,j = (cxi,j , c
y
i,j).

As a numerical solver we use an interior point method (Matlab’s

[MAT11] function fmincon).

5.5 Results

The effectiveness of our pipeline is demonstrated on four different

examples showing different weave patterns. These have been selected

to represent a large variety of different types of single layer woven

cloth: A 2× 2 plain weave pattern in Figure 5.4), a non-standard 4× 4
weave pattern (Figure 5.3), an 8 × 8 plain weave with color effect

where warp and weft yarns with the same color cross (Figure 5.5) and

a complex 10× 10 weave pattern with several different colors (Figure

5.2). The examples show different amounts of initial deformation.

For all of these examples, we are able to correctly estimate the weave

patterns and perform an image segmentation into individual yarns

fully automatically using a single set of parameters.

5.6 Conclusions

We have demonstrated the successful recognition of the underlying

pattern of several samples of woven cloth, together with a full seg-
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mentation of the image into individual yarns – all using a single set of

parameters.

Although our segmentation method works well in practice for the

examples we have tested, there is the danger of running into local min-

ima. Other strategies instead of the combination of belief propagation

with an interior point method could be explored. For small patterns

even the exact junction tree algorithm [LS88],[JLO90] may be an

option instead of using loopy belief propagation. For the active yarn

model it would be interesting to evaluate if one could use techniques

such as convex relaxation or graduated non-convexity.

So far we only estimate the mean color of regions in the data-term

within the active yarn model. Several improvements could be made

to better identify regions with yarns. Different probability densities

for pixel intensities in regions have been proposed (i.e. Laplace dis-

tributions [HS05] and non-parametric densities [KFIY+05]). Local

region models [BRW05],[LT08] obtain different parameters for Gaus-

sian distributions around each pixel inside local Gaussian windows.

This statistical formulation has been related to the full Mumford Shah

model by Brox et al. [BC07]. It would fit well to the smoothly varying

gradients in our median prototype image.

We could also extract texture information from the aligned repetitions

and use this to further guide the labeling, especially during weave

pattern estimation. The mean orientation of fibers can give a further

indication of yarn directionality. However, depending on the capturing

setup and the fineness of yarns, individual fibers, producing the texture,

may not be distinguishable in the input image. In case of flatbed

scanners one can hardly avoid this. In case of macro-photography we

have more control over the capturing setup; however being able to see

more details commonly comes at the cost of being able to capture less

repetitions; unless stitching of several images is performed. Sharpness

can vary in different regions due to focus effects. Even if fibers are

visible, their orientations may vary strongly due to hairiness fibers.

To avoid such problems, one could average texture features over all

repetitions aligned with the warped median image. The fine flow field
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may have to be adapted in a way that it does not suppress the details

at the fiber level. Giving a higher weighting to the regularization in

TV-L1 optical flow may be sufficient.

Instead of using a capturing setup with indirect lighting only, one could

capture the sample under varying lighting orientations. While we have

mentioned that the anisotropic shading effects can be a problem in case

of using a flatbed scanner, we could also use them to our advantage.

Shading variation could be used as an indicator for yarn orientation and

twisting angle. Stereo photography, photometric stereo or structured

light could further be used to also estimate depth and the 3D-structure

of cloth.
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(a) Original

(b) Coarse Flow (c) Fine Flow

(d) Reg. Median (e) Segmentation

Figure 5.2: Showing analysis steps for 10× 10 weave with complex

weave pattern and color effect.
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(a) Original

(b) Coarse Flow (c) Fine Flow

(d) Reg. Median (e) Segmentation

Figure 5.3: Non-standard 4× 4 weave pattern. Note how the cloth is

bend in the original input image.
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(a) Original

(b) Coarse Flow (c) Fine Flow

(d) Reg. Median (e) Segmentation

Figure 5.4: 2× 2 plain weave
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(a) Original

(b) Coarse Flow (c) Fine Flow

(d) Reg. Median (e) Segmentation

Figure 5.5: 8× 8 plain weave with color effect, captured on a flatbed

scanner. While this setup is more challenging than a camera setup

with diffuse lighting, as specular fibers lead to highlights, our method

was still able to automatically segment the image.



Part III

Visual Prototyping of

Woven Cloth
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CHAPTER 6

VISUAL PROTOTYPING OF CLOTH:

OVERVIEW

The acquisition and representation of heterogeneous real world ma-

terials is challenging. Often, generic image-based techniques such

as Bidirectional Texture Functions (BTFs) are used to capture com-

plex lighting and shadowing effects. While measured data can be

highly effective for reproducing the look of existing material samples,

physically plausible editing of purely image-based representations is

not easily possible – i.e. one cannot change the weave pattern. This

is a problem for appearance design and visual prototyping. Ideally,

one would like to be able to base editing operations directly on the

elements of cloth.

To be able to realistically reproduce cloth, we not only have to repro-

duce its basic structured texture, but also its characteristic variations

created during the many stages of yarn processing (see Chapter 2.2).

These introduce local irregularities influencing texture and shading.

A complete physically-based simulation of these processes would be

costly.

Recently, Zhao et al. [ZJMB11, ZJMB12] have presented an elegant

framework for computer aided design of cloth (discussed in Chapter

2.1.2). Unfortunately, Micro-CT scanners can only scan small samples

and measurements are time-consuming and costly.
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In the previous chapters, we have discussed how to estimate the prop-

erties of woven cloth at the yarn level from one single image only. We

would now like to extend this captured information to a full renderable

model. What is missing, is a representation of individual yarns at the

fiber level, incorporating the effects of spinning. In the following, we

propose a yarn model based on state-of-the-art textile research (Chap-

ter 7). In Chapter 8, we combine this model with the results from

our automatic analysis, obtaining a pipeline for visual prototyping of

woven cloth. Figure 6.1 gives an overview of all steps. Using this

pipeline we can not only reproduce the appearance of existing cloth

samples, but we can also intuitively edit their properties. Part III is

based on our publication [SZK15].
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Figure 6.1: Illustrating all major steps in our pipeline for visual pro-

totyping of cloth. Only a cutout of the images is shown. From left to

right, top to bottom: Input image / Coarse optical-flow field describing

a smooth deformation and corresponding regularized image / Fine

flow field describing local yarn deformations and corresponding regu-

larized image / Visualization of the output of SANCC, demonstrating

that we can effectively estimate initial center lines of yarns / Output of

segmentation using active yarn model after automatic weave pattern

segmentation / Rendering of reverse engineered model with manu-

ally set parameters for fiber distribution within yarns and for fiber

materials / Example edit, changing weave pattern and color effect.
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CHAPTER 7

A PROCEDURAL YARN MODEL

Our goal is to create a pipeline for visual prototyping of cloth based

on representing the micro-geometry as a procedural model of a fiber

assembly whose parameters are based directly on the elements of

cloth and their properties. Therefore, we need to be able to model the

properties of yarns. As we have discussed in Chapter 2.2.3, spinning

and weaving consist of several complex mechanical processes. In

the context of graphics, it is important that a realistic cloth model

can capture all major effects that directly affect the appearance. In

the textile research literature, properties of yarns have been analyzed

and different models have been proposed. At a high-level, our goal

within this chapter is to model each yarn as a fiber assembly, where

each fiber is associated with a BCSDF [ZW07b]. We combine the

basic principles from the models of Sreprateep et al. [SB06], who

describe a fiber-based yarn model for single ply yarn; Keefe et al.

[Kee94] and Grishanov et al. [GLH+97, GSC11a], incorporating their

work on strand compression addressing effects of tension in double

rove (two-ply) yarn and finally, we formulate a generative model for

hairiness, loosely based on the model of Voborova et al. [VGNI04].

The resulting model looks plausible even in extreme closeup views and

in contrast to existing data-driven approaches, we can easily synthesize

yarns of arbitrary length, avoiding discontinuities of fibers.
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CHAPTER 7. A PROCEDURAL YARN MODEL

Cross-Sectional Fiber Distribution: Regarding the fiber distribution

within cross-section shape, it was observed [GLH+97] that fibers

typically lie denser in the middle of yarns and become more coarse

with increasing radius. Morris et al. [MMR99] have proposed the

following distribution describing the probability of the existence of a

fiber at radius R:

p(R) = (1− 2ǫ)
{e− eR/Rmax

e− 1

}β

+ ǫ (7.1)

The function is parametrized by Rmax, describing the maximum

radius, where a fiber is observed and values ǫ, β controlling the density.

It includes the uniform distribution as a special case (ǫ = β = 0). We

define βi, ǫi and Ri
max for each ply i.

To avoid the intersection of different fibers, it is common [SB06,

SGCB09] to divide the cross-section of yarns into a discrete number

of virtual locations. Intersections can thus be avoided by making sure

that each of these only contains a single fiber. However, as long as

only the appearance of yarns is of concern, we have found the problem

of fiber intersections to be of minor importance even in close-up views.

This can be seen in the results, where hardly any fiber intersections

are visible. Therefore, we simply use uniform sampling with rejection

sampling to sample from the distribution in Equation 7.1.

Early work has described the twist of fibers in yarns using a coaxial

helix model [Law03]:

x(θ) = R(θ) cos(θ), y(θ) = R(θ) sin(θ), z(θ) =
α

2π
θ (7.2)

where R(θ) = R is constant and equal to the distance of a fiber to

the yarn center in the initial cross-section defined by Equation 7.1; α
describes the length of one turn. When creating a thicker yarn from

two spun threads / plies, we use this model when combining plies. In

contrast, at the fiber level, we use a different approach:

Fiber Migration: Later, it was discovered that fibers do not al-

ways stay at a constant distance (radius) from the yarn center [Tre65,

Law03] and also that the length of a turn can vary. Staple fibers mi-

grate and can take a cone-like form along yarn length – long filament
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fibers instead behave more similar to a perfect helix. This was found

to be an important factor for yarn appearance (especially visible for

melange yarns, where fibers in a single yarn can have different col-

ors [SGCB09]). While Siewe et al. [SGCB09] and Grishanov et al.

[GSC11b] again use the concept of virtual locations to avoid intersec-

tions, we follow the approach from Tao et al. [Tao96] (as in [SB06])

and simply modulate the helix radius per fiber using the following

function for R(θ):

R(θ) = ρiminr +
ρimaxr − ρiminr

2

(

cos siθ + 1
)

(7.3)

parametrized by ρimin, ρ
i
max ∈ R scaling the initial radius r (as sam-

pled from Equation 7.1) of the current fiber and si represents the speed

of fiber migration for each ply i. si has originally [Tao96] been split

into migration height h and wavelength λ: si =
h

2πλ , but we treat it

as a single parameter per ply in our model. These parameters can be

measured for real yarns (e.g. using a method similar to [HKR01]).

Typical values can be found in Figure 7.1.

Two-Ply Yarns / Strand Compression: A naive approach to com-

puting two-ply yarns works as follows: We can first compute a path

for a ply’s center by following the path of the yarn at some distance

and at the same time rotating around it. We then evaluate Equation

7.1 for each ply, obtaining fibers within the ply’s cross-section. These

fibers then follow paths rotating around the ply’s center path. However,

this looks unnatural – in reality the strands push against each other

and compress due to the tension from drafting and twisting. This

effect has been modeled by Keefe et al. [Kee94] by representing the

strands as ellipses where a line along the shorter diameter points to

the yarn’s center. Grishanov et al. [GLH+97] refine this for the case

of double rove yarn using a more physically-based approach where

strands flatten at contact. While our model for strand compression is

based on the one from Keefe et al., we incorporate the idea of strand

flattening, by not only allowing the ellipses to touch each other (as in

[Kee94]), but instead we allow them to intersect – it is hardly visible

from outside if true flattening is computed (see Figure 7.1(d)). We
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scale all cross-sectional positions by di along the axis defined by the

line going through the ply’s center and the yarn’s center for the cur-

rent cross-section. ei gives the initial radius – respectively the other

radius of the ellipsis. The index i again identifies the ply. In all of our

examples, all plies of a yarn have equal properties.

Hairiness: The final part of a realistic yarn model is defined by the

small fibers protruding from the yarn, called hairiness. Different types

of hairiness exist [VGNI04]. One type is created by fibers leaving a

yarn’s body and then reentering it at another position forming loops.

These commonly still follow the main orientation of the yarn. This

type of hairiness is addressed to some extent by isolated fibers created

when sampling from Equation 7.1 and especially by setting ρmax > 1
for fiber migration.

Another important type of hairiness is given by fibers that fly away

from the main body in various directions. Voborova et al. [VGNI04]

describe an analytical stochastic model of yarn hairiness and an au-

tomatic method to derive model parameters from yarn images. They

estimate the packing density of hairiness fibers on the main yarn body

and for cylinders at greater radii. This gives a distribution describing

at what distances from the body fibers end. We formulate a genera-

tive model based on these concepts and model hairiness fibers using

particle simulations. We randomly select fiber vertices uniformly and

let hairiness fibers grow, following the tangential direction. Fibers are

terminated using Russian Roulette, evaluating a normal distribution

N (µi, σi) for mean fiber length µi and standard deviation σi for ply i.
As a rough approximation to modeling crimp (fiber waviness / sudden

orientation changes), we let a 3D Perlin noise [Per85] force field act

on the fibers, with manually set parameters. Table 7.1 summarizes how

common properties of yarns relate to parameters in our model.
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2D Yarn mechanics Section 3

Linear density Fiber-count / -radius

Twist levels si, α
Tension ei, di, α

Diameters of strands di
Cross-sectional fiber distribution βi, ǫi, R

i
max

Hairiness (loops) βi, ǫi, R
i
max, ρmax

Hairiness (fly,protruding) µi, σi

Crimp of hairiness fibers Perlin noise

Weave yarn compression γ

Table 7.1: Associating common properties of yarns with parameters

in our model.

7.1 Results

Figure 7.1 shows renderings of our yarn model. Rendered with a

BCSDF, the results look photo-realistic and natural. The figure illus-

trates the effect of varying the different parameters. One can see that

we can model both dense tightly twisted yarns, common for industrial

woven cloth, as well as fluffy yarns, common especially in the context

of knitwear. In the following chapter, we will describe a model for

woven cloth that makes use of this yarn model.

81



CHAPTER 7. A PROCEDURAL YARN MODEL

(a) Varying ǫ, β (b) Varying fiber migration

(c) Varying tension (d) 2-Ply Cross-Section

Figure 7.1: Renderings of our procedural yarn model, illustrat-

ing the effects of different parameters. (a-c): Varying different

parameters of the procedural yarn model from left to right (a):

ǫ = 0, β = 0, Rmax = 100% / ǫ = 0.03, β = 0.7, Rmax = 115%
/ ǫ = 0.01, β = 1.2, Rmax = 135%. Shadows between plies be-

come less pronounced and individual fibers start to become visible

at yarn silhouettes (no fiber migration used for illustration of the

effect, 250 fibers per ply). (b): no fiber migration / si = 0.7, ρmin =
0.2, ρmax = 1.2 / si = 1.2, ρmin = 0.2, ρmax = 1.2 – other param-

eters: 250 fibers per ply, β = 1.0, ǫ = 0.03 (c): Increasing twist

and reducing shorter radius of ellipses to simulate increasing tension.

Note how yarn silhouettes become flat due to the flat ellipses of plies.

(d): Cross-sectional shape of double rove yarn (taken from [GLH+97],

overlaid with illustration for our model). Comparing measured fiber

locations using unfilled circles for the first ply and filled circles for the

second one in cross-section with the model from [GLH+97] (black

line) and theoretical boundary for our approximation (red dashed

line). In practice we synthesize a fiber based model so that the bound-

aries of the ellipses are not well defined; in this case ellipses naturally

intersect each other to some extent – the right most yarn in (c) uses a

distribution comparable to this one.



CHAPTER 8

VISUAL PROTOTYPING OF WOVEN CLOTH

FROM A SINGLE IMAGE

In this chapter, we combine results of the previous chapters to propose

a full pipeline for visual prototyping of woven cloth. We describe

a woven cloth model that makes use of the automatic analysis from

Chapters 4 and 5 to create a model that can not only capture the

basic structure of a given cloth sample, but also contains its natural

variations, creating its specific look and feel.

Combined, we obtain a full procedural model of micro-geometry for

a photographed cloth sample. Parameters for the yarn-model are set

manually, using a few well defined parameters. It is very common that

only two different types of yarns – e.g. having different colors for warp

and weft yarns – are given, making this highly practical. To describe

optical fiber properties, we manually set parameters for bidirectional

curve scattering distribution function (BCSDF) [ZW07b]. We concen-

trate on geometric aspects in this part, because we believe that such

fiber scattering functions will be provided by yarn manufacturers in

the future, making an automatic analysis of the basic cloth structure

an even more important part of a cloth design pipeline.

Once we have obtained parameters of the model, we can not only

match the appearance of an acquired cloth sample in the input image,

but we can also intuitively edit it by changing e.g. the weave pattern,

the color effect (fiber material) or geometric yarn properties.
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8.1 Woven Cloth Model

To model woven cloth, we let all yarns follow the paths, extracted

from the image segmentation process interpolated using B-splines.

To some extent, this lets us incorporate the mechanical properties of

yarns. However, it does not give us the 3-dimensional shape of yarns.

Due to sizing (see Chapter 2.2.2) and weaving, yarns are compressed –

especially along the normal direction of a flat cloth sample. In practice,

the amount of compression changes depending on bending and contact

with neighboring yarns. Gong et al. [GOS09] compare an elliptical

fit of the cross-sectional shape of yarns with x-ray scans of yarns in

plain-woven fabric. They found an ellipsis to be a suitable model, and

they create a yarn model by connecting consecutive variable cross-

sections. An alternative is to perform physically-based simulations

and finite element analysis [VBP10].

In this work we approximate compression as follows: We create

cloth with yarns of circular cross-section in case of single-ply yarns;

for two-ply yarns the cross-section consists of the two ellipses as

described above. We scale all vertices by amount γ along the main

normal direction of the flat sample. The basic up-down movement

of yarns is given by the weave pattern. At cross-section cij , we

create 3D control points for yarns Ȳi and Ŷj from cij = (cx, cy):
p̄ij = (cx, cy, (−1+2Lij)0.5w̄i) and p̂ij = (cx, cy, (1−2Lij)0.5ŵj).
To avoid yarn intersections, we add additional spline control points

for Ȳi: for all i, j and p̄ = p̄ij we add points (p̄x − ωw̄i, p̄y, p̄z) and

(p̄x + ωw̄i, p̄y, p̄z) (similar for y-coordinates and Ŷj). For all results,

we choose ω = 0.5γ.

We compute reverse flow fields for the fields computed in Chapter

4 using cubic interpolation. These can then be applied to obtain the

effects of both the low-frequency cloth deformation and the local

changes of yarn paths and yarn widths.
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8.1. WOVEN CLOTH MODEL

(a) Photo (b) Rendering of reverse engineered

model

(c) Photo (d) Rendering of reverse engineered

model

(e) Photo (f) Rendering of reverse engineered

model

Figure 8.1: Comparing photos (after shearing) with our synthetic

model. Note that colors and lighting setup have been matched manu-

ally. Our model is able to capture the basic appearance of all of these

types of cloth. Except for small differences in intensity and contrast,

resulting from the manual modeling of lighting and optical properties,

the fine visual detail of yarns is captured well.
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(a) Edit of 4× 4 cloth (b) Edit of 10× 10 cloth

Figure 8.2: This figure shows two edits of samples, we have reverse

engineered.

8.2 Results

We present synthesis results for all cloth samples presented in Chapter

5. During the synthesis step, the procedural model combines the au-

tomatically extracted yarn level information, taking the deformation

field as input. We have set parameters for the geometric yarn model

(twist, hairiness, cross-sectional fiber distribution / density, fiber mi-

gration, tension and fiber radius) as well as optical fiber properties

(BCSDF) manually. Parameter selection was performed using an in-

teractive user interface, taking only a few minutes.

Renderings of our model using Monte Carlo path tracing of a fiber

assembly are compared to input images in Figure 8.1. The basic char-

acteristics of the samples are well matched when compared to the

input images. The remaining difference is to some degree related to

having to match both lighting and optical fiber properties manually.

Figure 8.3 compares our full approach with first, a simple procedural

yarn model and second, with our yarn model but not using the yarn

variation obtained from deformation fields. One can see that our full

approach looks most natural.

Moreover, Figure 8.2 and Figure 8.4 (b) and (c), show drastic edits of

the estimated cloth models.

86



8.3. LIMITATIONS

8.3 Limitations

A major limitation of our approach is that parts of the synthesis

pipeline still rely on the manual selection of model parameters. While

being an advantage for editing, finding suitable values for reproducing

a desired appearance will require a certain amount of user experi-

ence.

While estimating the reverse flow fields is a good first step to modeling

deformations of yarn geometry, these cannot directly be used to exactly

infer the width variation of yarns. The main reason is that different

effects leading to width variation (twisting, perspective effects and

yarn unevenness) cannot be separated. In addition, the inverse flow

field applied to the cloth model is only capturing 2D deformation

in the image plane. While this may be a reasonable approximation

as stretching & shearing mostly matters in the tangent plane, some

information gets lost. Further, the procedural yarn model itself exhibits

a width variation, which would have to be taken into account.

When changing the weave pattern, we currently only change the values

of matrix L. However, in reality also the distances between yarns can

change. If two yarns next to each other follow the exact up/down

rhythm as given by the weave pattern, there does not have to be

any spacing between them as no orthogonally running yarn has to

fit between them. This is why twill weave cloth can have a higher

yarn count, having more yarns per area, than for example plain weave

[Sha07].

8.4 Conclusions and Future Work

In this section, a pipeline for analysis and synthesis of woven cloth

based on a single image has been presented. By combining research

on fiber-based yarn models (Chapter 7) with an automatic approach

to analyze the structure of cloth at the yarn level (Chapters 4 and
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(a) Photo (b) Simple yarn model

(c) No warping (d) Rendering of our full approach

Figure 8.3: Demonstrating the effects of a complex yarn model and

deformation fields. From left to right, top to bottom: Input photo

(cutout) / Using a standard procedural single helix yarn model / Our

yarn model, but no application of deformation fields / Our full ap-

proach. As our approach also captures the typical noisy deformations,

the variation of yarn widths and the characteristics of yarn geometry,

it looks more natural than simple procedural models.
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5), we were able to model the appearance of several existing cloth

samples, closely matching the input image. This model could then

be used as a starting point for editing operations, allowing for much

faster iterations in textile design when compared to the still dominant

practice of explicitly manufacturing cloth prototypes.

In computer graphics, there is a large body of physical cloth simulation,

which at best deals with simulation at a yarn level [KJM08, YKJM12]

that could help to further improve physical plausibility. Also the be-

havior of yarn cross sections during the weaving process could be

based on a physical simulation (as in [LZS+12]). To synthesize geom-

etry of arbitrary size using the current system, one has to synthesize

larger flow fields. This can be easily done by applying constrained

texture synthesis to the fine flow field in a way similar to Figure

4.5(d), where we have synthesized fine detail of fibers onto the median

image. The smooth coarse flow field could be extrapolated. An alter-

native approach to representing yarn variation would be to estimate

parameters of a noise model describing changes in yarn widths and

locations.

Because the described problem is already very challenging, we have

for now concentrated on flat samples – this has the additional advan-

tage that we can e.g. put them onto a flatbed scanner. It will be interest-

ing to combine the presented approach with cloth simulation and sur-

face flattening [ABW94],[ADBW96],[ABW01],[WTY05], [WT07]

in the future.

Instead of measuring a database of woven cloth samples using Micro-

CT scanning (as in [ZJMB11]), one could create a database of individ-

ual yarns with different properties using Micro-CT scanners and use

this to estimate parameters for the procedural model. Compared to

[ZJMB11] this would have the advantage that not all pair-wise combi-

nations of yarns next to each other with varying weave patterns have to

be captured and that closeup views would still look plausible as no dis-

continuities occur as for volumetric patch based synthesis, where often

not all fibers are exactly continued in a neighboring patch.
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(a) Original Design

(b) Changed Weave Pattern

(c) Changed Color Effect and Yarn Geometry

Figure 8.4: Example for visual prototyping of cloth using our frame-

work. Starting with an input photo, we synthesize and render cloth

based on a physically-plausible procedural model (a). Our framework

allows for intuitive editing (b),(c).



Part IV

Physically-Based Cloth

Rendering
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CHAPTER 9

CHALLENGES IN PHYSICALLY-BASED

CLOTH RENDERING

Predictive rendering of cloth is a challenging task. As already dis-

cussed, geometrical complexity and optical complexity have to be

handled. Highly anisotropic single and multiple scattering effects, as

well as self shadowing effects, dominate the appearance. As many

types of fibers are highly translucent, multiple scattering significantly

influences the observed color. This is especially true for light-colored

fibers with low absorption.

As a cloth model may consist of potentially hundreds of millions of

fibers, finding a viable level of geometrical abstraction is challenging.

When designing a physically-based cloth rendering solution in this

work, we have two main applications in mind: The first one is to

design a piece of cloth virtually using visual prototyping and being

able do interactively change the appearance. The second one is to

efficiently render images of a given piece of cloth with fixed proper-

ties. We use different material representations for these tasks. For

visual prototyping on the one hand, we want to be able to edit and,

therefore, represent the three main entities / scales 1 of cloth individ-

1optical fiber properties, yarn geometry and compositional structures
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ually. For pure rendering applications of cloth with fixed material

properties on the other hand, more computationally efficient aggregate

representations can be used.

In the previous chapter, we have presented an approach to obtain a

cloth model as an explictly represented fiber assembly.

Explicit methods If we have obtained a fiber-based model with

associated material information, e.g. in the form of a Bidirectional

Curve Scattering Distribution Function (BCSDF), a straight forward

idea is to use Monte Carlo path tracing for the explicit model, as used

in the previous chapter. While this can be done relatively efficiently,

within the limits of path tracing based solutions, the approach does

not scale to rendering large pieces of cloth. Even small patches with

50 warp and 50 weft yarns easily take up dozens of gigabytes of

memory. Depending on the application, geometry instancing could be

imagined as a work around. However, this approach has limitations.

Even if a repeating weave pattern is observed, which is not always

the case, the geometry of spun yarns commonly does not repeat with

the same frequency. This is due to the fact that cloth is a soft material

that can be drastically deformed resulting in stretching and squeezing

of yarns. Furthermore, fancy yarns may include spatial variations

themselves along their length, leading to the specific look and feel

of a cloth sample. Even if we assume a repeating pattern and ignore

spatial variations, instancing is non-trivial because the geometry will

be different everywhere due to bending.

Image-based techniques such as BTFs are a common approach to

render measured cloth samples. As light transport within the material

is captured in the images, the fibers do not have to be represented ex-

plicitly and also multiple scattering between fibers does not have to be

calculated when rendering with BTFs. This makes BTFs efficient for

rendering on graphics hardware, allowing for real-time rasterization in

case of simple lighting setups, while modeling many important effects.

However, BTFs cannot easily be edited.
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In Chapter 10, we present an approach combining the advantages

of micro-geometry based rendering with those of image based ap-

proaches, by creating a virtual gonio-reflectometer setup to capture

synthetic BTFs. To make this practical, we present a method that

employs self-similarity to accelerate the computation.

A different rendering approach is presented in Chapter 11. It allows

us to render large pieces of cloth even if they cannot be represented by

a repeating pattern. We present a framework for volumetric rendering

of cloth based on a statistical description of micro-geometry. It uses

the same fiber scattering models we have applied to fully explicit

models. The approach allows us to interactively change the properties

of individual fibers and simulate a change in cloth appearance.
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CHAPTER 10

NON-LOCAL IMAGE RECONSTRUCTION FOR

EFFICIENT COMPUTATION OF SYNTHETIC

BIDIRECTIONAL TEXTURE FUNCTIONS

While explicit representations of micro-geometry work well when

designing a material in a close-up view as presented in Chapter 8, they

may easily become too costly in terms of both memory consumption

and rendering times, when applied to whole objects and large scenes.

In this chapter, we propose an efficient method to synthesize BTFs

based on known micro-geometry, combining the strengths of both

approaches. During the design phase, the micro-geometry can be

rendered explicitly for a small patch and afterwards a BTF can be

synthesized for interactive inspection.

To compute a BTF, a virtual gonio-reflectometer setup can be con-

structed, which computes the angular reflectance data for a virtual

material sample. Essentially, light transport has to be simulated for

thousands of viewing and lighting directions. A straight forward solu-

tion is to build a virtual half-dome multi-view multi-light measurement

device and render e.g. 70×70 images (”BTF-slices”) of a flat material

sample for 70 viewing and 70 lighting directions.

Unfortunately, physically-based rendering of thousands of images,

commonly done using a path tracing approach, is extremely costly.

Similarly, the acquisition of BTFs of real materials, where samples are
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usually photographed under several viewing and lighting directions, is

time consuming.

As BTFs contain much redundant information, a natural question that

arises is, whether all view and light directions have to be captured with

equal quality. For a real measurement device, quality and measurement

time can be controlled by e.g. setting the exposure time. This controls

the amount of photons that hit the sensor, resulting in different noise

levels. Similarly, for a virtual setup, the amount of computed samples

per pixel controls both the quality and computation time. In this

chapter, we use directions captured with high-quality to improve

images for directions captured with a lower quality.

Recent work in the image filtering literature has shown that internal

Figure 10.1: A couch textured with a repeating BTF pattern, illus-

trating BTF synthesis results. From left to right: Our method using 1

sample per pixel (spp) and non-local image reconstruction for BTF

generation; unbiased Monte Carlo reference with 128 spp; unbiased

Monte Carlo path tracing result with 1 spp. Synthesizing the full BTFs

took 8 minutes, 320 minutes and 7 minutes respectively on an Intel

Core i7 CPU 950 (only counting the time for rendering the BTFs and

not for rendering the images of the couch). The remaining variance in

our BTF reduces to imperceptible levels with 2 to 4 spp.
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image statistics can be a powerful prior for image denoising. The

repetitions in an image often contain more information about image

patches than data obtained from large external image databases [ZI10].

This property is used in the popular non-local means (NL-means)

[BCM05] filtering technique. Here, the original value of a pixel is

replaced by a weighted average of all pixels in the image showing

a similar intensity distribution of surrounding pixels. Unfortunately,

the technique breaks down for renderings with a very low signal-to-

noise ratio. We were the first to adapt this general idea to accelerate

rendering [SMKZ11, SKZ13]. Similar in spirit to NL-means, we take

advantage of the fact that BTFs tend to contain many very similar

apparent bidirectional reflectance distribution functions (ABRDFs

[WHON97b]). Exploiting this property, we reduce variance by sharing

radiance samples across different BTF texels. Essentially, we build a

neighborhood graph in appearance space, connecting texels of similar

appearance, and averaging image samples among them.

10.1 Related Work

In the context of animation rendering, different techniques have been

proposed to reuse computed light paths for neighboring pixels, which

are spatially or spatio-temporally close to each other [MFSS06, SC04,

CS10, HDMS03]. Although we do not need any explicit handling of

light paths in our algorithm, our approach shares some conceptual

similarity to these techniques. However, the proposed solution is even

simpler as we do not need to store information about paths.

Much work has been invested in finding methods for variance reduc-

tion of path tracing solutions. Several authors have proposed different

local filtering techniques [RW94, JC95, McC99, XP05].

Variance reduction for Monte Carlo path tracing is also similar to de-

noising of natural images. A major difference is the type of noise dis-

tribution commonly observed. Classical image denoising techniques

such as bilateral filtering [TM98] can directly be applied. Nearby

99



CHAPTER 10. BTF SYNTHESIS USING NON-LOCAL IMAGE RECONSTRUCTION

pixels are averaged if and only if they have a similar color. Different

variants of bilateral filtering have been applied to variance reduction

[WKB+02, SIMP06, LSK+07].

Cross-bilateral filtering attempts to identify similar pixels by not

only using the color of a pixel but also by using information of e.g.

other sensors, which can be related to pixels in the original image

[PSA+04, ED08]. In the context of rendering, this can be information

from a computed normal map or depth buffer ([DSHL10, BEM11] use

a similar idea). Recently, Sen and Darabi [SD12] have presented an

algorithm for denoising rendered images that estimates local weights

for a given set of features by using knowledge about the random num-

ber generation process of the Monte Carlo path tracer. Lehtinen et

al. [LAC+11] have developed a special reconstruction filter to reduce

the variance for effects such as depth-of-field and motion blur. An-

other method loosely related to our work was proposed by Hašan et

al. [HPB07] to speed up rendering in the context of the many light

problem.

Previous work has used appearance similarity based clustering in

the context of BTFs and spatially varying BRDFs. Suykens et al.

[SvBLD03] synthesize BTFs by rendering micro-geometry and af-

terwards they cluster ABRDFs to obtain prototypes that form a com-

pact representation of BTFs for hardware rendering. We instead use

the similarity of ABRDFs directly during BTF synthesis. Zickler et

al. [ZREB06] combine BRDFs measured for different spatial loca-

tions to obtain a higher reflectance sampling in the angular domain.

They assume smooth spatial variation and angular compressibility of

BRDFs to be able to recover dense reflectance data from sparse angu-

lar samplings. In contrast, we do not assume any spatial smoothness

and we use angular compressibility only to be able to identify similar

ABRDFs, while the angular variation of ABRDFs themselves is just

restricted by the discrete sampling.

Another strategy for variance reduction is to automatically find image

parts with high variance and adaptively shoot more rays to these

locations [Pur87, Mit87, TJ97, Mac02, RFS03, HJW+08, ODR09,
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RKZ11]. Our method is orthogonal and could be combined with

adaptive sampling.

BTF synthesis by rendering of micro-structure could also be regarded

as an instance of precomputed radiance transfer (PRT) (see [KSL05]

for a survey).

None of the above techniques exploits non-local information in a way

we do.

10.1.1 Non-Local Means Filtering

The aim of the non-local means algorithm [BCM05] is to compute

an estimate NL(I ′) ∈ Ω ⊂ R
2 of an original image I ∈ Ω for which

a noisy measurement I ′ ∈ Ω has been observed. This is done by

combining intensity values at arbitrary image regions that show simi-

lar structures. Appearance similarity is measured by comparing the

intensity values of neighborhoods (patches P ) around pixels.

NL(I ′p′) =
∑

p∈Ω

w (d(Pp′ , Pp)) Ip
∑

p̂∈Ω w (d(Pp′ , Pp̂))
(10.1)

Here, d is a distance measure of patch similarity, computed as sums

of squared differences, weighted by the distance to the center pixel p,

respectively p′:

d(Pp′ , Pp) =
∑

i∈N

Gh(‖ p− p′ ‖) (Ip′(i) − Ip(i))
2

(10.2)

where N is a (patch) neighborhood of pixels p, p′ and Gh is a Gaussian

with variance h.

In the classic non-local means algorithm the existence of additive

white Gaussian noise with zero mean is assumed [BCM05]: I ′p =
Ip +Gp.

The noise generated by Monte Carlo path tracing in our application

has a very different characteristic, including salt and pepper noise and
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may show extremely low SNR, particularly in the presence of a high

dynamic intensity range. Different techniques have been proposed to

handle various noise distributions in the non-local means framework.

In Equation 10.1, w is a Gaussian filter function with a manually

selected variance σ: w(x) = e
−x2

2σ

Every pixel in the denoised image I is formed by a combination

of all pixels in the observed image I ′ weighted by w. To reduce

higher amounts of noise, larger values for σ have to be used. This

increases the chance that less similar patches are averaged. To min-

imize this effect, several authors [GLPP08, PGM10] have explored

the use of different robust functions instead of the Gaussian filter.

Another variant of NL-means uses adaptive dictionaries in a Bayesian

framework [KBC07]. This formulation can be used to handle speckle

noise [CHKB08]. Other variants of the approach work on patches of

pixels to both speed-up computations and find better neighborhoods

[DFKE06].

Non-local means filtering has originally been inspired by texture

synthesis by non-parametric sampling [EL99]. In this work, we apply

the concept of sharing information non-locally to a different type

of texture synthesis, namely synthesis by rendering micro-geometry.

Related problems can be found in the field of inpainting, being even

more challenging because there is no information available at all for

some image regions. Information from probably disconnected image

regions can be combined to fill the unknown regions with plausible

content (see e.g. [WSI07]).

10.2 BTF Synthesis Using Non-Local Image

Reconstruction

Our goal is to reduce the computational effort for synthesizing a

BTF by reusing samples gathered during Monte Carlo simulation in a

non-local fashion. More precisely, we wish to exploit structural self-
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similarity in the BTF domain. In the general case, this would mean a

sharing of samples in the 6D spatio-angular space. However, to reduce

complexity, we consider 2D-subspaces, given by spatial slices for fixed

viewing and lighting direction pairs. Despite the fact that this is a quite

natural choice inspired by the way BTFs are commonly measured, this

particular choice has several advantages. Neglecting global effects and

assuming a flat sample, this intuitively means that similar materials

show a similar appearance. Thus, if two ABRDFs behave comparably

for certain viewing/lighting directions, this will increase the chance

that they behave comparably in general. Note that being able to

identify such similarity based on a sparse set of appearance samples is

of fundamental importance to our approach.

In the following, we describe how thousands of images, representing

ABRDF slices, can be rendered efficiently in a path tracing framework,

using an approach, we call non-local image reconstruction. Here, every

radiance sample contributes to several pixels at completely different

locations in an image (see Figure 10.2). We exploit redundancies in

the spatial domain, in the spirit of non-local means, minimizing the

required sampling rates for generating high-quality BTFs. For every

pixel, we compute a set of k nearest neighbors according to similarity

of appearance. Every radiance sample that is computed for an image

pixel also contributes to all of its neighbors.

While standard non-local means filtering cannot know the correct

neighborhood in appearance space and patch similarity is used to

establish correspondences for noisy data, we have the possibility to

estimate neighbors more reliably by using the assumption of compress-

ibility of ABRDFs in the angular domain. Essentially, we compute

noise free feature vectors – to make this computationally feasible we

only compute them for a sparse angular sampling. Therefore, we

replace the search for appearance neighbors in a set of noisy sam-

ples with a search for neighbors in a sparse but (almost) noise-free

approximation of the original data and therefore, we become indepen-

dent of the underlying noise distribution of images rendered with low

sampling rates when finding neighbors.
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Figure 10.2: Every pixel is connected to a number of similar pixels in

a graph. In the image we show two such pixels. During rendering, we

compute different radiance samples for each of them. By distributing

samples of one pixel to the other one, we essentially get a higher

number of spp.
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10.2.1 Non-Local Image Reconstruction

To generate a slice, we shoot rays into the scene, returning n radiance

values Li. In the following, Ωv,l ⊂ R
2 is the image space of a spatial

slice Av,l through the 6D BTF, depending on light direction l and

viewing direction v. Reconstructing a single pixel of a slice can be

done as usual by averaging radiance values Li, multiplied by a value

of a function Fi that depends both on the pixel location p and on the

location of the current sample i:

∀p ∈ Ωv,l : Av,l(p) =

n
∑

i=1

LiFi(p) (10.3)

Raytracing renderers commonly use a local image reconstruction filter

Fi := FL
i that computes the contribution of the i-th sample to pixel

p, normalized by the contributions of all samples with respect to a

possibly unnormalized filter fi:

Fi(p) := F L
i (p) =

fi(p)
∑n

j=1 fj(p)
(10.4)

In practice, most samples do not contribute to a certain pixel because

common filter functions such as box filters, cropped Gaussian filters

or the Mitchell filter [MN88] have finite support. To further reduce

variance, we instead define a non-local image reconstruction function

Fi := FNL
i , associated with local filter function fi, where each

sample contributes to several pixels connected by a k-nearest neighbor

graph:

Fi(p) := FNL
i (p) =

∑

p′∈Ω w(p, p′)fi(p
′)

∑n
j=1

∑

p∗∈Ω w(p, p∗)fj(p∗)
(10.5)

with weights:

w(p, p′) =

{

0 if p′ 6∈ Np

e−d(Vp,Vp′ )
2/2σ if otherwise

(10.6)
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where Np = {p′ | p′ ∈ k-nearest neighbors of p}. The distance

d(Vp, Vp′) computes the similarity of feature vectors belonging to

pixel p and pixel p′. In the following section, we discuss these features

in more detail.

10.2.2 Appearance Space Similarity

To compute the set of neighbors in appearance space, we first compute

high-quality, sparsely sampled ABRDFs — full spatial slices for a

small set of fixed viewing and lighting directions. These will be called

N-slices in the following. This is achieved by rendering the material

sample using Monte Carlo path tracing at a high sampling rate. The

exact choice of this rate highly depends on the observed material and

the rendering system – in all of our examples we use 256 spp. The

directions have to be selected in such a way that they provide the

discriminative power to robustly identify similar ABRDFs. Finding

an optimal set of directions is challenging. On the one hand, these

should include a low amount of redundant information. On the other

hand, they should reveal the distinctive ABRDF features. Practically,

we have selected five (figures 1 to 6) or nine (for the more challenging

examples in figures 7 to 13) different direction pairs: The normal view

with coaligned lighting, a pair of directions that capture scattering

along the specular direction, e.g. hold θ = θ∗ fixed for both view

and light direction and choose a pair of φ∗ and φ∗ + π for the other

angle. Further pairs are distributed over the hemisphere capturing

off-specular scattering. Generally, we choose more angles with small

θ to obtain a better result for non-grazing angles.

This results in a feature vector Vp for each texel at a position p. Dis-

tances d(Vp, Vp′) between two feature vectors are simply computed

as Euclidean distances. The overhead introduced by rendering the

high-quality slices is low when compared to the computation time for

the full BTF, consisting of several thousands of slices.

Next, taking these ABRDF samples of a BTF texel as a feature vector,

we search for the k nearest neighbors using approximate nearest neigh-
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bor search in a kd-tree. Using this information, we build a k-nearest

neighbor graph connecting similar texels.

As known from probability density estimation, the k-nearest neighbor

search we employ, automatically adapts to the density (in our case of

ABRDFs in appearance space), whereas the classical non-local means

computes a Parzen window estimate with a fixed kernel size, which

may work poorly in areas of low density. This is why some research

has gone into adaptive selection of the kernel width.

Note that the ABRDFs are influenced by near geometry via self oc-

clusion effects, shadowing and inter-reflections. Therefore, although

we do not explicitly make use of spatial neighborhoods, as patch

based similarity measures do, our feature set does include some of

that information implicitly. Once the neighborhood graph has been

constructed, it can be used to reduce variance when rendering a full

BTF, as described in the previous section.

In practice, we use the k-nearest neighbor graph during rendering and

immediately update the pixels of all neighbors once a new radiance

sample has been estimated. The computational overhead that is intro-

duced by this modified image reconstruction algorithm is negligible,

assuming the support of the associated local reconstruction filter fi
is not much larger than the area of a pixel and when using moderate

neighborhood sizes such as e.g. 48 neighbors.

10.3 Results

We made both visual and numerical tests to evaluate the effectiveness

of our approach.

Visual Analysis: In Figures 10.1, 10.10 and 10.5, we compare our

non-local image reconstruction to unbiased path tracing results for

selected, challenging examples. As can be seen, the technique is quite

effective for variance reduction and shows a substantially better rate

of convergence. A speed-up of about one order of magnitude can
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Figure 10.3: Comparing rate of convergence: Sum of squared differ-

ences (SSD) error for our approach and unbiased path tracing (blue

curve) against a 2048spp reference for the example shown in Figure

10.5 for different sampling rates and different numbers of nearest

neighbors (NNs).
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be achieved for optically complex materials; disregarding the time

needed for disk-IO, speed scales linear with the sampling rate.

Figure 10.4: Real-time rendering of a synthesized skin BTF on a

cylinder under a point light after compression using full matrix factor-

ization.

For Figures 10.1 and 10.10, a BTF of size 128 × 128 pixels with

an angular sampling of 70× 70 viewing and lighting directions has

been synthesized. For all other examples, BTFs of size 256 × 256
pixels with an angular sampling of 81 × 81 directions have been

computed.

Figure 10.5 and 10.4 show a complex skin material, including volumet-

ric subsurface scattering effects. It indicates that our approach can be

effective even in case of non-exact repetitions and can handle a variety

of different lighting effects such as highlights and light angle depen-

dent color changes (see Figure 10.4 for a real-time rendering of the

synthesized skin texture, illustrating the complexity of the computed

and captured light transport). Please note how well local landmarks

such as moles or wrinkles are preserved using non-local image recon-

struction. Figure 10.5 also shows that naive application of non-local

means filtering is not able to remove all noise, even in a configuration

where most details are already blurred. Additionally, the figure shows

two sets of neighborhoods that have been automatically chosen by the

algorithm, indicating that the algorithm chooses sensible locations for

the neighboring pixels.

A closeup is given in Figure 10.6, where different challenging com-
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(a) 4 spp (b) 2 spp (c) 1 spp

(d) 1024 spp (e) NL 2 spp (f) NL 1 spp

(g) NL-means (h) Neighbors (i) Neighbors

Figure 10.5: Comparing a single spatial BTF slice synthesized using

our approach with 48 neighbors per pixel (e-f) against unbiased path

tracing (a-c) and reference image (d) for a complex skin material

including volumetric subsurface scattering. Our result is already visu-

ally pleasing with 1 spp and looks very similar to a converged solution

with 2 spp. (h) and (i) show two sets of neighbors (white pixels),

belonging to the green cross in each image. (g) shows the result of the

application of the classical non-local means image filtering algorithm

to the tonemapped 1 spp image. All images in this figure show spatial

slices that were not included in the set of slices, used for estimating

neighborhoods.
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binations of viewing and lighting directions for a piece of cloth with

highly specular fibers are shown. All fibers use a bidirectional curve

scattering distribution function (BCSDF) decribed in [ZW07a] as ma-

terial. The BTF slices illustrate the effects of different issues such

as self-shadowing, highlights and self occlusion effects. Differences

in color between different rows are largely the result of the cosine

weighting based on the angle between surface normal and light direc-

tion.

For the top view in the first row of the figure, NL-reconstruction

produces a result close to the reference even with only 1 spp. At 1 spp,

the standard approach of path tracing with a Gaussian reconstruction

filter cannot reproduce the shape of highlights of yellow yarns in the

second row of the figure. They are reproduced well using our approach

while only having a small amount of noise left. The reproduction

of shadows and highlights is still acceptable even for grazing light

angles θl in row three — however, the image starts to loose some

contrast.

Self occlusion and shadows are not captured perfectly by NL-reconstruction

with the chosen set of N-slices for the grazing angles in the last row;

however the overall appearance is still relatively closely matching

the reference. Please note that — when rendering with BTF — this

extreme view projects to a relatively small area on screen.

Intuitively, increasing the number of neighbors used for non-local

filtering should behave similarly to increasing the sampling rate. In

reality, the convergence behaviour strongly depends on the quality of

the neighborhoods. For an example we refer to Figure 10.7. Here,

as the neighborhood grows, more details get recovered. However,

at some point blurring is introduced by neighbors that do not match

close enough. The same material is also depicted in Figure 10.11,

showing again that materials containing only statistical repetitions

and no exactly repeating pattern can be handled. Figure 10.9 shows a

comparison for synthesized BTFs under image-based lighting – hardly

any difference is visible between our result and a reference.
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(a) 1 spp (b) NL 1 spp (c) Reference

(d) 1 spp (e) NL 1 spp (f) Reference

(g) 1 spp (h) NL 1 spp (i) Reference

(j) 1 spp (k) NL 1 spp (l) Reference

Figure 10.6: Different challenging slices for a piece of cloth with

highly specular fibers. 1st row: viewing direction with inclination

θv = 0◦, azimuth φv = 0◦, and light directions θl = 0◦, φl = 0◦.

2nd row: θv = 45◦, φv = 100◦, θl = 30◦, φl = 0◦. 3rd row: θv =
30◦, φv = 90◦, θl = 75◦, φl = 240◦. 4th row: θv = 75◦, φv =
315◦, θl = 75◦, φl = 240◦.
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(a) 1 spp (b) 2 spp (c) 4 spp (d) 64 spp (f) Refer-

ence

(g) 1 NN (h) 2 NN (i) 4 NN (j) 64 NN (k) 1024 NN (l) Refer-

ence

Figure 10.7: Comparison of the convergence for an increasing

amount of samples per pixel without non-local reconstruction (upper

row) and for an increasing number of neighbors (NN) while holding

the sampling rate constant at only 1 spp (lower row). The example

shows synthetic plastic with subsurface scattering for a viewing di-

rection of inclination θv = 30◦, azimuth φv = 290.00◦ and lighting

direction θl = 75◦, φl = 95◦. 1 NN equals 1 spp, hence (a) and (g)

are identical. Differences in computation time for (g) to (j) are low. (j)

has been created only from noisy samples in (g) and neigborhoods.
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(a) (b)

Figure 10.8: Correlating similarity of pixel distances measured be-

tween two sets of BTF slices. Pairs of pixels have been selected and

their L2 distances (stacking color channels of slices) have been plotted

for a set of random slices for the example in Figure 10.6 against a)

the set of slices used for learning the neighborhood and b) another set

of random slices.

Numerical Analysis. The graph in Figure 10.3 demonstrates that our

approach is very close to convergence even after 1 spp for the example

shown in Figure 10.5. The more neighbors are used, the better is

the result for low sampling rates. However, one can also see that for

higher sampling rates, the result with more neighbors saturates.

Generally, quality strongly depends on parameter settings (i.e. the

size k of the neighborhood and σ controlling neighborhood weights).

However, as indicated by Figure 10.3, there is a wide sweet spot with

respect to k. As can be seen, the rate of convergence does improve

only gradually after k = 16 and the bias introduced by our filtering

approaches a nearly constant level. It should be noted, however, that

this bias manifests commonly as smoothing. Similarly, fixed large

values for σ for a given number of N-slices gave satisfying results for

all of our examples.

Essentially, by considering only a few N-slices, our assumption is that
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a correlation of ABRDFs in this subspace also induces correlation

for the full BTF. To test the validity of this assumption, we carried

out tests, relating normalized error with respect to the subspace to

the error of randomly selected slices. A typical result is given in

Figure 10.8 a. As can be seen, low distances for N-slices rarely result

in high distances in the other slices. If, on the other hand, distances

for N-slices become larger, the error in other slices increases as well.

In a second test (Figure 10.8 b) we repeat the experiment, but with

another set of N-slices not suitable for characterizing appearance

well. In this case, as expected, no such correlation is visible, clearly

indicating the importance of choosing N-slices right.

For materials with quasi-random structure, in particular in combination

with substantial parallax, our method is likely to fail as our assump-

tions are no longer valid. For an example see Figure 10.12.

10.4 Limitations

The choice of the feature vector Vp is the most crucial step in our

method. Failing to discriminate different ABRDFs, will most likely

increase bias. For low sampling rates, this might be still acceptable if

this results in a reduced variance of the Monte Carlo estimate.

BTFs can include completely different materials inside a single texel

due to parallax effects. Especially for low camera viewing angles, the

appearance of some texels may change drastically when compared to

a view from above. For these texels, only very few good neighbors can

be found globally. Depending on the value of σ in Equation 10.6, these

texels either do not get denoised at all or they become blurred. Some

blurriness may, however, be acceptable as texels are blurred anyway

due to effects of camera projection for low viewing angles.

A major limitation of the current approach is that parallax effects re-

duce the amount of “good” neighbors one can find – however parallax

effects are a general source of problems when handling BTFs also e.g.

in the context of compression.
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(a) NL 1 spp (b) Reference 64 spp

(c) NL 1 spp (d) Reference 64 spp

Figure 10.9: Comparing our approach against a reference for two

cloth BTFs using an image-based lighting setup.
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(a) 128 spp (b) 8 spp (c) 2 spp (d) 1 spp

(e) NL 128 spp (f) NL 8 spp (g) NL 2 spp (h) NL 1 spp

Figure 10.10: The images show a synthetic piece of cloth in front of a

black background. A comparison of a reference solution is given for a

fixed viewing and lighting direction (a-d), to our solution (e-h) using

non-local (NL) image reconstruction. Even using only 1 spp (h), we

can achieve a reasonable quality – at 8 spp (f) hardly any difference is

visible to the reference in (a). In (c) and (d) some rays have not hit any

fiber; here the background shows through, resulting in black spots that

the used Gaussian image reconstruction filter cannot remove (except

for settings that result in excessive blurring).
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(a) NL 1 spp (b) Reference 512 spp

Figure 10.11: Renderings of full BTFs under image-based lighting

showing the same material as the slices in Figure 10.7. Note that the

color of the material is the result of a complex subsurface scattering

process.

10.5 Conclusion and Future Work

We have presented a method to efficiently synthesize BTFs from

known micro-geometry. While our approach may leave room for

improvement, we believe that its simplicity and effectiveness makes

it attractive for practical application. However, further research is

required to investigate the impact of user adjustable parameters, i.e.

the size of a neighborhood vs. the number of samples per pixel. For

results presented in this chapter, we have chosen σ large enough

such that it has little effect. Because of this, choosing too many

neighbors immediately leads to blurring. It would be interesting to

further investigate the effects of different values of σ. We believe that

information theoretic approaches could even render manual parameter

tuning unnecessary. A next interesting step would be to apply the

algorithm in the context of a real measurement device and see how

one could lower measurement times by taking the photographs for

different light directions with different exposure times.
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In the future, we would like to extend the basic approach in several

ways:

To reduce problems related to parallax effects, different solutions are

thinkable. As long as a setup similar to a camera dome is simulated or

if a real camera setup would be used, one can imagine to estimate warp

fields compensating for shifting effects due to parallax. For purely

virtual setups, however, other sampling schemes could completely

avoid such artifacts.

We would also like to be able to control the bias caused by our tech-

nique. Moreover, we hope to make our method more effective by

dynamically updating the neighborhood graph during the rendering

process. Undersampling issues that may occur in case of small texel

neighborhoods could be reduced by adapting the sampling rate locally.

We could shoot more rays until a certain amount of virtual samples

has been reached for all pixels, counting all samples that contribute to

a certain pixel either directly or via neighbors.

In addition to adapting the sampling rate spatially, one could adapt the

sampling rate angularly. It would be beneficial to have a finer angular

sampling around highlights, to capture these faithfully. Combined

with scattered data interpolation this could lead to efficient sampling

schemes. Evaluating such BTFs during rendering would be more

complex, though.

In our current system, the nearest neighbor graph is based on simple

color similarities. In the future, more advanced sampling and similarity

search algorithms in spatio-angular domain (6D) could be explored.

Even more redundant information could be exploited, however, at the

cost of a more complex algorithm.

For now, we have only handled repeating structures in the special con-

text of BTF generation. However, we believe that using image-internal

statistical information about repeating structures is a powerful way

to reduce variance of Monte Carlo renderings in general. Especially

for progressive rendering of scenes, early images could gain much

perceived quality.
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Finally, our method could be used for pre-filtering of surface shading

in the presence of small scale detail [BN12].

10.6 Recently Published Related Work

In this section we summarize recent advances in research related to

this chapter that have been made after the publication of our works

[SMKZ11, SKZ13]. Rousselle et al. [RKZ12] propose a method to

use non-local means filtering for accelerating adaptive rendering in

general. To find neighborhoods, they first separate samples into two

different buffers. They find neighborhoods in one buffer and use these

to filter pixels in the other buffer using non-local means. They iterate

this process several times, while switching the roles of both buffers

after each iteration. While this approach works well and could also be

explored in the context of BTF synthesis, performing non-local means

several times on every image also comes with high computational cost

and it would have to be evaluated if this strategy is effective, when

compared to our approach. Rousselle et al. extend their approach

[RMZ13] to combine color and feature buffers, based on e.g. textures

or normals, using a SURE-based error estimate.

120



10.6. RECENTLY PUBLISHED RELATED WORK

(a) 1 spp (b) NL 1 spp (c) Reference

(d) 1 spp (e) NL 1 spp (f) Reference

(g)

Figure 10.12: Failure case example with randomly oriented particles

(sand). (a-f): Each row shows a different BTF slice comparing our

method rendered with 1 spp to both a reference and the standard

approach. Due to the quasi-random characteristic of this material our

results do not closely match the reference, in particular for grazing

angles (2nd row). (g): Correlating error along the lines of Fig. 10.8.
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CHAPTER 11

VOLUMETRIC CLOTH RENDERING

While rendering cloth using synthetic BTFs, as discussed in the pre-

vious chapter, can be quite efficient, the approach also has drawbacks.

Due to high memory requirements, BTFs can currently still only cap-

ture relatively small repeating patterns. Furthermore, BTFs also have

Figure 11.1: Closeup view of Figure 1.1 with different lighting. A

fiber-based model representing each yarn geometrically would be-

come prohibitively costly as billions of line primitives are required to

represent this model explicitly. Instead of needing terra-bytes of mem-

ory as required by an explicit representation, our proposed volumetric

data structure easily fits into the RAM of current desktop hardware.
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several limitations by definition: Light diffusion is not modeled prop-

erly, especially at shadow boundaries; regions of high curvature are

not represented correctly if the BTF is measured with regard to a

flat sample and silhouette information is missing. Handling of trans-

parency is difficult and rarely considered. Moreover, when creating

synthetic BTFs, the interactive design process can be only performed

based on the small sample that can be represented explicitly. However,

to get a better impression of a cloth material, it is desirable to visualize

it on a larger object already during the design phase. In this chapter,

we describe a volumetric approach to cloth rendering, based on our

work [SKZ11], that can be used for this task.

To overcome problems of exactly modeling the underlying micro-

scale geometry, different solutions have been suggested, among them

volumetric methods. We refer to Chapter 2.1.2 for an overview. In the

context of hair rendering, Moon et al. [MWM08] have developed a

hybrid approach to speed up multiple scattering computations. Instead

of using the common volumetric rendering approach of using phase

functions, they approximate geometry volumetrically using a statistical

description and use the BCSDF of the individual fibers to model

optical material properties. The hair geometry is first voxelized in a

preprocessing step and relevant fiber properties are stored in a uniform

grid data structure. These are the scattering coefficient, the average

tangent of hair strands intersecting a voxel and the standard deviation

of hair orientations with respect to this tangent. They are used in

a subsequent light tracing phase to approximate multiply scattered

light by spherical harmonics. This statistical model is only used to

accelerate the computation of multiple scattering while for single

scattering the complete micro-geometry is still needed. Therefore, the

geometrical complexity remains high.

Since micro-geometry of cloth is much more complex than the one

of human hair, the simple statistical model introduced by Moon et al.

is not sufficient for predictive cloth rendering. The tangent direction

of spun fibers varies significantly over small distances and nearby

yarns may have completely different material parameters. While
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it is reasonable to assume that the distribution of fiber directions is

homogeneous inside a voxel, when modeling hair and can be described

by a normal distribution, this does not hold for cloth. Additionally,

due to the homogeneous structure of hair, a loose approximation of

the fiber density already leads to pleasant results. For cloth, however,

this density has to be estimated much more accurately as fibers may

be highly curved even inside a single voxel. A major challenge is to

still be able to predict the correct color of yarns caused by multiple-

scattering of light between fibers without representing these fibers

explicitly.

Nevertheless, the idea of statistically modeling the micro-geometry

while keeping the material properties of the individual fibers is very

appealing. It first offers the possibility to use optical material proper-

ties of individual fibers, which are either provided by manufacturers

or can be measured efficiently [ZLHA+09], and second it delivers a

possibility to deal with the inherent complexity of the micro-geometry

of cloth. Therefore, we have incorporated this general idea into our ap-

proach. We have developed a statistical model for the micro-geometry

of cloth that is used for both single and multiple scattering. Our main

contributions in the context of volumetric cloth rendering are:

• the use of a Gaussian mixture model to model the fiber distribu-

tion in cloth.

• the simulation of single as well as multiple scattering using the

statistical model.

• the introduction of a novel approach to compute a so called

effective fiber density, allowing for highly accurate renderings.

• a solution to a general shadowing problem, inherent to any

discrete volumetric representation rendered with path tracing,

introducing the concept of local visibility for self-shadowing

and modeling it as a new material parameter – the Bidirectional

Visibility Distribution Function (BVDF).

Using our new approach, we can handle large pieces of cloth with

orders of magnitude more fibers than methods representing fibers
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geometrically. Besides drastically reducing the memory requirements

when comparing to an explicit representation, the rendering times

decrease by a factor. We are able to render pieces of cloth with a visual

quality comparable to fiber-based reference solutions while employing

a completely generic method for modeling fibers without limitations.

Our approach allows us to use state-of-the-art fiber scattering models

that are essential to obtain accurate results. As our approach relies on

virtual scattering events that account for multiple scattering effects

inside a voxel, and because local shadowing is modeled separately

by the BVDF, we can handle high frequency detail in both multiple

scattering and shadowing. To demonstrate the effectiveness of our

method, we compare renderings of the statistical model against ground

truth reference solutions. For a discussion of related work in the

context of cloth and fiber rendering, we refer to Chapter 2.

11.1 Overview

Figure 11.2 illustrates our pipeline for volumetric cloth rendering.

The proposed method takes its advantage mainly from avoiding an

explicit representation of individual yarn fibers, using less extensive

volumetric statistical models.

To this end, the original cloth model is first voxelized. In a subsequent

step, this volumetric representation is then rendered using Monte Carlo

path tracing.

During voxelization, local statistics, modeling the distribution of yarns

fibers, are stored in an octree, also serving as an efficient acceleration

data structure for subsequent rendering. For each octree cell, we

store information about the directional distribution of yarn fibers as

a Gaussian mixture model. Each component of the mixture model

represents the main direction and standard deviation of fibers of a

single yarn inside a cell and is attributed with information about

local fiber density and a material index. Moreover, the Bidirectional

Visibility Distribution Function (BVDF), a property characterizing
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Figure 11.2: Illustrating the pipeline, progressing from the input data

on the left, over computation of voxelization and BVDF to the renderer

on the right.

the local visibility inside voxels near the surface, is precomputed.

When rendering using Monte Carlo path tracing, virtual scattering

events are generated. By sampling the statistical model, we obtain

the positions of ray/cloth intersections as random variables. At each

virtual intersection, a fiber with an associated material is hypothesized.

Scattering at a fiber level is fully described by a BCSDF.

The whole process can be seen as sampling a voxels phase function,

which stays implicit, “on the fly”. Shadowing artifacts in case of direct

illumination are avoided by employing information captured by the

BVDF.

11.2 Statistical Volumetric Modeling of Cloth

For comparison purposes, we first generate the cloth geometry ex-

plicitly in a representation our fiber based path tracing reference
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implementation can render. Then we directly infer the volumetric

representation from this geometry. For each voxel cell, we describe

the distribution of fibers using a statistical model.

11.2.1 Input Data

In theory, our volumetric representation for a piece of cloth can be

generated from different kinds of input data. One can either use

the procedural cloth model we have presented in Chapter 8, but one

could also estimate volumetric statistics based on Micro CT data. The

only requirements are that the distribution of fibers can somehow be

measured inside a voxel and that local visibility information can be

estimated (see Section 11.2.3).

11.2.2 Voxelization

The explicit cloth model is voxelized using an octree data structure

that is also used for rendering. The tree is generated top down by

propagating cylinder segments intersecting a voxel to its children.

Finally, for each leaf voxel cell containing cloth, a Gaussian mixture

model representing local fiber distribution is created according to

Section 11.2.3. In our current implementation, the maximum octree-

level is set manually and all leaf voxels have that same level. For

timings regarding the construction we refer to Table 11.1. As can be

seen, voxelization is extremely fast and does not constitute a bottleneck

when compared to the generation of acceleration data structures for

explicit geometry. Construction time could be greatly reduced if we

would directly generate statistics from the procedural cloth model,

instead of first constructing the geometry explicitly. However, in

this work, we are interested in the explicit geometry as a reference

anyway.
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11.2.3 The Statistical Model

Given a set of n yarns, each consisting of several hundreds of fibers, we

compute the statistical volumetric representation as follows: For the

i-th yarn intersecting a voxel cell V , a tuple gi representing Gaussian

directionality, density and material properties is created:

gi = {Ni(mi, s
2
i ), ρ

i,BCSDFi}. (11.1)

Besides the average tangent direction mi and its associated stan-

dard deviation si, forming a Gaussian Ni(mi, s
2
i ), a material index

BCSDFi is stored. In addition, the mean free path length inside a

voxel, represented by the effective fiber density ρi, is required to

model fibers statistically. All Ni of a voxel cell, constitute compo-

nents of a Gaussian mixture model. For the sake of simplicity, we

will in the following refer to the whole tuple gi as a component of

a mixture model GV = {g1, ..., gn} where n equals the number of

yarns inside voxel V . To minimize memory requirements, a compact

representation was chosen to encode a Gaussian yarn model: Each

mixture component is represented by as few as 13 bytes (16 bits for

each of the 4 angles required for tangent direction and normal, 20 bits

for the weight, 12 bits for sigma, 1 byte for a material index).

Fiber Density: The mean free path length is calculated based on

the perpendicular attenuation coefficient σ⊥ = 2rfρ with fiber radius

rf . Existing approaches developed for hair rendering that attempt to

estimate the density ρ by ad-hoc methods, being based on counting

fibers in a sphere volume, enclosing a voxel, are not suitable for cloth.

As the length of lines covered inside a voxel is not properly taken into

account, they fall short in case of highly curved fibers, as for spun

yarn and in case of fibers that barely intersect the volume of interest.

In the following, we will assume that a set of n line segments {Lj |j =
[1..n]} is used to represent the cloth. To avoid the limitations of the
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(a) Reference (b) Filtered fiber counting (c) Our method

Figure 11.3: Comparison of the effects of our effective fiber density

to the fiber counting method presented in Moon et al. [MWM08].

Note that this is a very challenging setup, showing a combination

of directional and isotropic illumination with light falling through

the cloth. Note that this example only compares different ways to

obtain the required information for the effective scattering coefficient

– rendering is perfomed using the exact same approach. In this setup

our method not only shows less blurring but can also reproduce the

color, resulting from multiple scattering of light, much better. Note the

light blue in image (b) compared to the dark blue in images (a) and

(c).

fiber counting approach we introduce the concept of effective fiber

density ρ.

Let’s consider a spherical volume, similar to the search distance used

by [MWM08], for density estimation. Then the average length of a

line intersecting a sphere with radius r equals l̄R = l̄sphere = 4·r
3 .

The projected area of the sphere along the tangent direction equals

AR = Asphere = π r2. Based on these properties, the effective fiber

density for a spherical region then writes as

ρsphere =
ltotal
l̄R AR

= N/AR (11.2)

with ltotal =
∑

j=1..n lj denoting the total summed up intersection
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length lj of all line segments with the sphere.

Intuitively, this can be seen as computing an effective fiber count N ,

the number of infinite spatially uniformly distributed fibers intersecting

R, which would yield exactly the same density.

Of course the concept of effective fiber density may be generalized to

arbitrarily shaped regions. As the cloth model is discretized by voxels,

undesirable spatial blurring occurs if spheres were used to estimate ρ.

This blurring not only smooths out details but also affects the amount

of multiple scattered light, relevant for the appearance of cloth.

However, if using voxels, the angular variation of l̄R and AR need

to be considered. The effective fiber density can be computed by

summing over all line segments intersecting a given voxel:

ρvoxel =
∑

j

lj
l̄j(tj)Avoxel(tj)

. (11.3)

Here, Avoxel(tj) denotes the area of a voxel projected onto a plane

perpendicular to the tangent direction tj of a given line segment and

l̄j is the expectation of intersection length (the average) for tj .

To speed up computations, tabulated values of Avoxel(tj) and l̄j are

used during voxelization. In Figure 11.3, a comparison between our

method and the method proposed by Moon et al. [MWM08] is given

for a challenging closeup example. An alternative to dividing by l̄j(tj)
would be to divide by the intersection length of a line obtained by

extending the segment lj . While the computational cost would be

higher, as this length cannot be precomputed, the resulting density

would be more exact.

The Effective Scattering Coefficient: As very briefly discussed by

Moon et al. [MWM08], the effective scattering coefficient not only

depends on fiber density but also on tangent direction tj . For a single

fiber indexed by j, the effective scattering coefficient σj
single with

respect to a given direction d computes as:

σj
single(αj) = 2rf ρ

j
single sin(αj) (11.4)
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where ρjsingle means the fiber density induced by the (single) fiber of

radius rf and αj = ∠(d, tj).

Now let gi be the i-th Gaussian mixture component, representing a

bundle of ni fibers. Then the total scattering coefficient σi for the

Gaussian Ni may be computed by summing over the contributions of

the individual fibers:

σi =
∑

j=1..ni

σj
single(αj). (11.5)

Finally, assuming Ni with average tangent direction mi and a standard

deviation si, σi may be approximated based on the fiber density

ρi:

σi(βi, si) ≈ 2 rf ρ
i

∫

sin(α)Ni(mi, s
2
i )(α) dα

where βi = ∠(d,mi). To avoid computationally costly integration

during rendering, we follow Moon et al. [MWM08] and precompute

the integral. The time required for such pre-computation is negligible.

11.3 Monte Carlo Path Tracing with Virtual

Scattering Events

We take a Monte Carlo path tracing approach to render the voxelized

cloth. In contrast to participating media or highly scattering materials,

such as skin, path tracing is effective in our case as, due to absorption

inside the fibers, energy quickly decays to zero after a few scattering

events.

Because of the volumetric representation of geometry, discrete scatter-

ing events along ray paths need to be synthesized stochastically based

on the statistical information stored in the octree.
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Let x be the position of the last vertex of a ray path and d denote the

direction of the associated outgoing ray R. Then the next vertex of

the light path is computed based on virtual scattering events by the

following steps (see Figure 11.4 Left):

• Step 1: Compute the voxel V that includes x.

• Step 2: Compute the position of a new potential virtual scatter-

ing event along d according to the total scattering coefficient

(related to mean free path length) associated to V . This virtual

scattering event is rejected if it lies outside the boundaries of

V . In this case no scattering occurs and R advances to the next

intersecting voxel.

• Step 3: Otherwise, a Gaussian mixture component of V is

chosen and the ray gets scattered and attenuated according to

the BCSDF.

11.3.1 Virtual Scattering Events

Once the current voxel V , including the last scattering event, has been

computed, a new virtual scattering event needs to be created based

on the Gaussian mixture components G = {g1, .., gn} associated to

V . Let δV be the distance at which the associated outgoing ray R is

leaving (intersecting the boundary of) V . Then the probability p for

being scattered inside V is given by Beer-Lambert’s law as:

p(δV ) = 1− T (δV ) = 1− eδV σs , (11.6)

where T is the transmittance and σs is denoting the total scattering

coefficient of V . To obtain the combined scattering probability for all

mixture components, σs is computed by summing over all scattering

coefficients: σs =
∑

i σ
i
s. Based on the above, the virtual scattering

event is stochastically computed using four uniformly distributed

random numbers ξ1..4 ∈ (0, 1].
First, the distance δ of the virtual scattering event along the ray R is
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Figure 11.4: Left: Path tracing with virtual scattering events. The

last virtual scattering event was created in voxel V at position x.

The scattered ray is leaving x to direction d. The probability of

being scattered in V along the ray is computed based on δV and total

scattering coefficient σs. Right: Illustrating the shadowing issues

when representing a yarn’s cross section volumetrically – each circle

represents a single fiber. Yellow lines represent eye-rays – for each eye

ray, 4 exemplary configurations of light-rays are shown. Green light-

rays are never blocked, blue ones occasionally – pink and red ones

illustrate cases of light coming from behind the cloth – the former are

blocked locally in Voxel 1, whereas the latter are only blocked globally

in Voxel 2 and are, therefore, regarded as not being blocked for the

BVDF. In the volumetric case, all light-rays have a probability > 0
of being blocked inside voxel 1. To approximate shadowing correctly,

these directional effect are modeled by the BVDF. Note that the voxels

shown have twice the size (per dimension) of the voxels used for the

statistical model (see Section 11.3.2).
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found by inverting transmittance T :

δ = − log(ξ1)

σs
. (11.7)

If δ > δV this scattering event is rejected, as it lies outside the voxel

V .

Second, if scattering takes place, the new i∗-th Gaussian mixture

component gi∗ is randomly selected with a probability proportional to

its density:

i∗ = argmin
k∈{1,..,n}

(ξ2 ≤
k

∑

j=1

wj) (11.8)

with wj =
ρj

∑
i
ρi . Finally, based on ξ3 and ξ4, we choose a fiber direc-

tion determined by average tangent direction and standard deviation

of gi∗ and eventually scatter according to the fiber scattering model

BCSDFi∗ .

11.3.2 Direct Lighting and Self-Shadowing

Taking a volumetric approach to model cloth statistically, self-shadowing

details below the scale of a single voxel cannot be captured.

In particular the directionality of local self-shadowing gets lost unless

a prohibitively fine voxelization is employed. However, this effect is

critical for the appearance, especially for direct illumination. Consider

the following example: A head light is located at the same position as

the camera – all points visible from the camera should also be lit by

the light. As there is a non-vanishing probability for virtual scattering

events along the shadow ray for any voxel containing fibers, shadow-

ing is significantly overestimated. Moreover, as for any volumetric

model, discontinuities at interfaces between optically dense and sparse

regions are not well approximated (see Figure 11.4 Right). This is

in particular true for densely woven cloth (the common case) that

behaves optically very similar to a solid model with a well-defined
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boundary.

To compensate for the above limitation of purely density-based rep-

resentations, statistics for angularly dependent occlusion in case of

direct illumination are used for approximating self-shadowing at a

local level. Noting that these two kinds of bias are affecting shadow-

ing within at least two adjacent voxels, statistics — we denote the

Bidirectional Visibility Distribution Function — are computed at a

resolution twice the desired size of a leaf voxel.

Bidirectional Visibility Distribution Function (BVDF): We pro-

pose to model the correlation between eye-rays from direction ωo

and shadow-rays into direction ωi by introducing the concept of local

visibility.

The fiber scattering equation for direct lighting is given by:

Lo,d(x, ωo) =

∫

S2

f(x, ωi, ωo)Ld(x, ωi)V (x, ωi, ωo)sin(α)dωi

with BCSDF f , scattered radiance Lo,d, incident radiance distribution

Ld due to direct lighting, visibility V and α = ∠(ωi, t) for fiber

tangent t. V is split into a local part Vl, which accounts for shadowing

due to occlusion inside a voxel cell and a global term Vg , which models

occlusion outside that cell:

V (x, ωi, ωo) = Vl(x, ωi, ωo)Vg(x, ωi, ωo)

Generally, Vl is a spatially varying quantity. However, we will see

that it can be reasonable to consider it as a material property of yarns.

Assuming voxels with an extent in the order of the size of a yarn’s

cross section, local visibility is modeled by the Bidirectional Visibility

Distribution Function Vbvdf given by averaging Vl inside a voxel

cell:

V (x, ωi, ωo) = Vbvdf (ωi, ωo)Vg(x, ωi, ωo)

Note that Vl and Vg are binary, whereas Vbvdf ∈ [0, 1]. In contrast

to Vg, that is estimated using conventional shadow rays with virtual
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scattering events (see Section 11.3.1), tabulated values are used for

Vbvdf . To this end the average visibility inside a voxel is computed

for multiple viewing and lighting direction pairs in a pre-processing

pass: A small planar patch of cloth is generated, using the given yarn

properties. We divide the space into cells of twice the size we plan to

use for octree leaf voxels of the whole piece of cloth. The proportion

of local shadowing is then computed using a fiber based rendering

system for all cells hit by eye-rays. The resulting smooth function is

stored by a 4D table (with 32 ∗ 643 bins in our case). Due to the small

size of the sample, containing just a few yarns, this pre-computation is

no bottleneck of our method and typically takes less than two minutes

to compute for each yarn type.

To transfer the visibility information to a bend piece of cloth, we store

inside each octree leaf cell a surface-normal of the underlying locally

planar base mesh used for cloth synthesis. wo and wi are expressed in

a local coordinate frame spun by this normal and the tangent direction

of the last virtual scattering event. The general structure of BVDFs

always looks similar: When light and camera position are next to each

other (green rays in Figure 11.4), Vbvdf ≈ 1, conversely when light and

camera are on opposing sides of the cloth (black rays), Vbvdf is small.

Moderate deviations in cross section shapes and densities of yarns

only result in subtle changes. This observation is supported by the

testing results summarized in Figure 11.5. Figure 11.6 shows several

examples of BVDFs. Each small square shows the effect of varying

direction θo of the eye-ray and direction θi of shadow-rays for a fixed

combination of φo (always = 0 for the presented subset of the BVDF)

and φi. When both light direction and viewing direction are parallel

to the surface-normal pointing towards the sample (θo = θi = 0),

no shadowing occurs as expected – conversely, when the light comes

from behind the cloth (θi > π/2) shadowing occurs.

The BVDF is used only in case of direct illumination to avoid dis-

tracting shadowing artifacts that otherwise would occur. Its effect

is illustrated in Figure 11.7, comparing renderings with and with-

out BVDF. For all other shadow-rays, calculated during multiple-
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Figure 11.5: Local visibility for two different cloth samples (~400K

voxel examples / middle column of Figures 11.8 and 11.10) with

varying numbers of fibers per yarn: For illustrational purposes only

the relative angle between light and view direction is considered.

Visibility almost only depends on yarn properties, independent of the

weave pattern (at this scale). Despite the large amount of change in

fiber density, visibility only changes moderately. Even for solid pieces

of cloth, it will not reach 0 (fully occluded) for 180◦, where light and

view direction oppose each other, as a significant amount of occlusion

is modeled by the global factor.
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Figure 11.6: Comparison of a subset of a BVDF with fixed azimuthal

camera direction φo = 0 for several cloth examples. White means

no shadowing and black means that every shadow-ray shot into that

direction hits a fiber. One can see that the BVDF is mainly a material

property of the yarn. ”Blue cloth” and ”colorful cloth” have almost

the same BVDF as they use the same yarn geometry, whereas ”black

and white cloth” with its fewer fibers is somewhat lighter (for low an-

gles of φi) – although still very similar as the same spinning technique

has been used. The BVDF for lower octree levels mainly shows more

shadowing but is in its essence comparable to the next higher level.
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(a) Reference (b) Volumetric (c) Our method

(d) Difference: Volumetric (e) Difference: Our method

Figure 11.7: Closeup comparison of the reference solution (a) to

naive handling of shadowing by using the volumetric information only

(b) and to our method using the BVDF for local visibility estimation

(c). The scene is lit using a single point light – the fibers in this im-

age exert a significant amount of absorption and specular highlights

dominate the appearance. Incorrect handling of shadowing results in

darkening and an incorrect output color for the purely volumetric tech-

nique. (d) and (e) show Delta-E difference images for the volumetric

technique and our method. Apart from general variance, our method

shows most differences near yarn borders (caused by the discrete

voxelization), whereas the purely volumetric method overestimates

shadowing everywhere. Note that the method is not intended for such

a closeup view.
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METHOD MEM IBL POINT CONST.

reference (20M lines) 10GB 07:32m 03:16m 7:20m

level 9 (2.5M voxels) 177MB 02:27m 01:19m 1:28m

level 8 (400k voxels) 30MB 02:18m 01:15m 0:54m

level 7 (75k voxels) 5.6MB 02:12m 01:12m 0:45m

level 6 (13k voxels) 1.1MB 02:09m 01:10m 0:36m

Table 11.1: Comparing average rendering times for image based

lighting (IBL) using an environment map and for a single point light

located at the camera position and comparing memory consumption

for different octree resolutions. Times for constructing the kD-tree

and for voxelization are noted under the name ”CONSTR.”. All times

were taken on a Core i7 CPU operating at 3.07 Ghz, rendering images

of size 300x210 with 512 samples per pixel. Note that although the

kD-tree implementation is generally very efficient, its construction

process has not been parallelized.

scattering, occlusion is computed based on virtual scattering events

along the ray according to Section 11.3.1. Once rays have entered

the cloth, the actual shadowing is less critical and may be computed

using the statistical model. A valuable side effect of using the BVDF

is that rendering times reduce since less costly shadow-rays need to

be evaluated.

11.4 Results

We have tested our approach with synthetic cloth models with varying weave

patterns (see Figures 11.8 to 11.12), different types of yarn geometry and

realistic and at the same time challenging BCSDFs matching glossy dielectric

fibers. To better identify potential weaknesses, cloth was coiled around

a cylinder. For the same reason, we have selected examples with a very

regular fiber structure: a single-ply coaxial helix model with a uniform fiber

distribution within the cross-section with no fiber migration.
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The geometric complexity of the models was taken such that a fiber based

reference rendering could be created on a computer with 12GB RAM. Fibers

of all presented cloth samples have a fixed index of refraction (1.5) and varying

absorption coefficients using the BCSDF model of [ZW07a].

All images have been simulated with full global illumination based on Monte

Carlo path tracing. As can be seen from the closeups in Figure 11.10, the

colors of i.e. the red yarns are largely determined by the multiple scattering

component – therefore, correct reproduction of this color is far from being

trivial. For other yarns like the green ones with higher absorption values,

multiple scattering is less prominent.

The results given in Figures 11.8 to 11.12 indicate that for the highest octree

level, with 2.5 million voxels, the volumetric approach delivers results that are

visually next to identical to the reference solution, while already needing much

less memory. Levels 8 (~400k voxels) and 7 (~100k voxels) only show some

(expected) blurring caused by the discretization, but the overall appearance

is captured faithfully and consistently across different voxel resolutions. For

level 7, the cross section of a yarn is covered by only slightly more than a

single voxel. In this figure, voxels are projected to several pixels to make

the artifacts introduced by the discretization visible – in practice one would

choose a level where the voxel size is selected in such a way that voxels are

projected to no more than (for example) a single pixel. At Level 6 (~10k

voxels), the length of a voxel edge is slightly larger than the yarn diameter.

Artifacts are introduced because the separation of yarns cannot be resolved

correctly: for example yarns below another one show through and their distri-

butions are mixed.

Although we have mainly included this level for illustrational purposes in

the figure, even this coarse representation might sometimes be sufficient for

images of distant clothes as the overall color impression is still reproduced.

In addition to the cylinder images, we have simulated BRDFs for the refer-

ence technique as well as for our approximation based on a small patch of

cloth. Two exemplary results for fixed lighting directions are illustrated in

Figure 11.13: Reference and approximation match well, regardless of the

viewing direction.

Note that the difference in memory and computational costs is even more

dramatic for more complex dense models. Assuming a fixed spatial resolution,

the costs for the novel method are bound by the number of voxel cells.,The

explicit model, instead, requires memory at least linear in the size of the
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fiber primitives and costly acceleration data structures (such as a kD-tree)

for rendering. For example for staple yarns, made from several plies, the

memory savings could still be much higher. Please note that the comparison

of rendering times may be biased in favor of the explicit technique: it already

becomes completely unusable, due to excessive memory requirements, for

geometries that can still be regarded as trivial for the volumetric case. It

should also be noted that the octree has been optimized for size (i.e. no voxel

coordinates are stored explicitly), whereas the kD-tree has been optimized

for speed (and e.g. stores bounding box coordinates). Several examples of

large pieces of cloth are presented in Figure 11.1. These are — in contrast to

the volumetric method — prohibitively costly to render with the fiber based

approach. The curtain in the background also serves as an example for a

transparent piece of cloth.

11.5 Limitations

Due to the assumptions made, our approach has limitations when compared to

methods that explicitly model individual yarn fibers. First of all, only effects

on a scale bigger than the size of a voxel can be resolved properly. Thus, if the

voxel’s extent is not chosen appropriately, bias occurs, which causes spatial

and angular blurring, as well as shadowing artifacts. Naturally, artifacts

become more evident in case of extremely curved yarns, very directional

lighting and for very specular fibers. However, it is important to recognize

that these are the practical limitations of any approach not explicitly modeling

fine scale geometry.

Our method is not effective in case of extreme closeups where individual

yarn fibers become visible, as a prohibitively high spatial resolution would

be required to resolve such fine geometric detail. The BVDF, as formulated

above, only describes visibility for points hit by eye-rays – although this

is not unreasonable, as mainly effects at the surface are described, a bias,

which mostly results in darkening, is introduced in case of multiple scattering.

Shadow-rays shot during multiple scattering that have an origin near the

surface might profit from a BVDF representation as well.
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11.6 Conclusion and Future Work

In this chapter, we have presented a physically-based alternative to fiber based

rendering of fabrics. As for methods using an explicit representation of fiber

geometry, our approach allows to simulate light scattering based on small scale

optical properties of yarn fibers. By taking a statistical model, the memory as

well as computational costs were greatly reduced. We are convinced that our

approach will be valuable for applications such as virtual prototyping of cloth,

where a high degree of realism is desirable but fiber-based simulations are not

practical.

We believe that there is still potential for increasing the efficiency of the

method in several different ways: First of all, as some types of cloth exhibit a

repetitive weave pattern, Gaussian mixture components could be computed

only once per pattern and referenced accordingly. Moreover, radiance caching

techniques could be applied, that first store average radiance values in the

voxel and then attempt to decrease variance by combining results across

similar repetitions of a weave pattern. Two straight forward extensions would

be the use of an adaptive octree, which tries to keep yarns in separate voxels

and at the same time approximates the silhouette to some specified degree,

using as few voxels as possible. One could also utilize the hierarchical

structure for level of detail by not only storing Gaussian mixtures in leaf

voxels but also for lower levels. It would be interesting to investigate what

other acceleration data-structures could be applied: The reference technique

actually does not perform that much slower in our examples, although it

has to perform intersection test calculations. These are a lot more costly

in comparison to sampling our statistical model – this is mainly due to the

efficiency of the kD-tree when compared to the octree.

Cloth can include other effects like dirt, brighteners or a piece of cloth could

simply be wet. While these can be modeled to some degree by altering the

BCSDF, future work could go into modeling these effects volumetrically as

well.

Due to modeling constraints, most presented images contain repeating struc-

tures. However, this is no limitation of our volumetric representation, which

can handle arbitrary fiber based input data. For some types of fancy yarns,

a spatially varying BVDF could actually be required. As the BVDF varies

smoothly with respect to yarn properties (see Figure 11.6), interpolation

between a few basis BVDFs could be applied.

144



11.7. RECENTLY PUBLISHED RELATED WORK

We have shown in Chapter 8 that we can model the appearance of real cloth

samples well with fiber-based models. So far, we have demonstrated the

effectiveness of our method only by comparing it to synthetic reference images.

While we believe that this comparison is fair as it reflects the current state-

of-the-art in the field, measuring real cloth samples under different viewing

and lighting directions and using this information for further validation, will

be an interesting topic of future research. One might also consider using

the technique for other materials for which a similar statistical model of

micro-geometry could be appropriate.

11.7 Recently Published Related Work

Recently, Zhao et al. [ZHRB13] have proposed an interesting approach,

utilizing the fact that cloth commonly consists of repeating structures, to

accelerate rendering. This shares some conceptual similarity with the approach

presented in the previous chapter. Instead of making use of repeating structures

in the image domain, as we do, they use repeating structures in the volume.

Cloth is synthesized based on a number of exemplar blocks and light transport

is pre-computed for these blocks, allowing for efficient rendering.
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Figure 11.8: Effect of changing octree resolution: The sample is lit using a point

light from camera direction (1st two rows), a white dome light (middle) and a sunny

outdoor environment (bottom). For each condition from upper left to lower right:

closeup (upper right within image: multiple scattering, lower left: single scattering),

reference (19M line segments), octree 2M Voxels, and below ~400K, ~80K, ~10K. For a

better comparison, the image resolution is kept constant across different resolutions.

Variance is comparable for reference images and the volumetric method.
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Figure 11.9: Comparison for Blue Cloth along the lines of figure 11.8
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Figure 11.10: Comparison for Colorful Cloth along the lines of figure

11.8
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Figure 11.11: Comparison for Twill Cloth along the lines of figure

11.8
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Figure 11.12: Comparison for Black and White Cloth along the lines

of figure 11.8
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Figure 11.13: Simulated reflectance fields (slices of the BRDF) of a

quadratic piece of cloth, consisting of 30 warp and 30 weft yarns for two

fixed lighting directions showing ”green cloth”, ”blue cloth”, ”colorful cloth”

and ”black and white cloth”. Direction is parametrized by spherical angles

0 < φ < 2π and 0 < θ < π

2
. Incident light direction is φ = θ = 0

for (a),(b),(e),(f) and φ = θ =
π

4
for (c),(d),(g),(h). Reference (~7M line

segments) on the left of each pair / Volumetric (~400K voxels) on the right.
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CHAPTER 12

CONCLUSION

We have presented a pipeline for visual prototyping of cloth consisting of

three main aspects:

First, to be able to design a virtual cloth representation, we need an appro-

priate appearance model. For intuitive design it should contain the three

major elements of cloth as editable parameters: optical properties of fibers,

geometrical properties of yarns and compositional elements such as a weave

pattern. We have presented a procedural fiber-based yarn model, incorporating

principles of textile research, combined with a state-of-the-art fiber scattering

model.

Second, to be able to model existing samples, methods are required to

obtain parameters of the model. We have presented an approach to semi-

automatically obtain a procedural cloth model using a simple image-based

capturing setup. Our approach automatically finds the repeating pattern, reg-

ularizes non-rigid deformations and detects the paths of yarns, the weave

pattern and variations of local deformations at the yarn level. Renderings of

our model match the appearance of an input image.

Third, we have presented methods to efficiently compute predictive renderings

of cloth based on these elements. The choice of the most efficient representa-

tion for rendering, in the context of computer aided design of cloth appearance,

largely depends on the scale we are interested in and the editing flexibility we

want to have:

A general concept used to efficiently represent the appearance of materials, we

also employ within this thesis, is to describe structure at some scale explicitly

while storing finer structure in another, probably aggregated, form.
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The cloth model can be represented by a fiber assembly with associated BCS-

DFs, and Monte Carlo path tracing can be used to estimate the appearance.

The basic shape of fibers can be described by curves. However, details of

the internal structure of individual fibers and their exact shape are only rep-

resented indirectly by modeling the effects they have on the appearance as

seen from a distance. This is a reasonable simplification for most applications

as the geometric details of fibers used for cloth can only be seen under a

microscope. During rendering, light transport within the fiber does not have

to be computed explicitly, as it can be efficiently represented by a BCSDF.

In the context of CAD, fibers are commonly selected from a given set of types.

Therefore, it seems practical to create a database of fibers with associated

BCSDFs. Combined with our procedural model, this allows for high flex-

ibility. However, modeling all fibers explicitly does not scale, as memory

requirements become prohibitive for cloth samples larger than a few squared

centimeters.

Assuming a viewing distance at a yarn scale, we can e.g. use BTFs with a

spatial resolution not resolving individual fibers. Similar to how the BCSDF

aggregates light scattering within a fiber, the BTF additionally aggregates

light scattering among fibers and between yarns. To use the benefits of BTFs

in terms of efficient rendering, while still allowing for editing based on the ele-

ments of cloth, we have presented an approach to create synthetic bidirectional

texture functions by means of path tracing. Cloth design is performed on a

small explicitly modeled repeatable sample and a novel technique, we call

non-local image reconstruction, has allowed us to perform a fast computation

of a BTF showing the sample.

Finally, we have presented a method using a statistical volumetric representa-

tion of the fiber-geometry, allowing us to perform visual prototyping of even

large samples, consisting of billions of fibers. Optical properties are directly

linked to BCSDFs of fibers, while their arrangement is stored as a volumetric

representation created using e.g. a fiber-based model. A comparison with

reference renderings has shown that our approach is able to simulate the same

color appearance, resulting from multiple scattering of light, we obtain for a

direct rendering of an explicitly modeled fiber-based representation.
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FUTURE WORK

Our pipeline for visual prototyping of cloth could be improved in different

ways. A potential direction of future research would be to make the estimation

of parameters for the procedural model fully automatic. This could include

the estimation of BCSDF parameters directly from the cloth input images. A

technique along the line of Zinke et al. [ZLHA+09] is thinkable. Also param-

eters such as fiber density and optical fiber parameters could be estimated in

an analysis by synthesis framework. However, the task of estimating both

geometrical and optical parameters at the same time will be challenging, as

both of them affect the observed color.

So far, we have mainly concentrated on woven cloth models. It would be

interesting to extend the pipeline to also support other types of fabrics. While

our rendering methods are relatively independent of the specific type of

fabric, our analysis uses the domain specific properties of single layer woven

cloth.

The creation of synthetic BTFs is a generic method, which works fine for any

material as long as a repeatable structure can be stored in a rectangular texture

and the material can be well represented using a BTF.

Our volumetric rendering method can be used for any yarn-based cloth rep-

resentation. For non-wovens, such as felt, where fibers are more randomly

oriented, a different statistical model may be needed.

Many of the ideas presented in this work, related to an automatic analysis of

cloth, could probably be adapted to the task of analyzing knitwear as well.

Knitwear also contains translational symmetries and one could find regions of

homogeneous stitch types and apply our bi-scale regularization framework.
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Instead of using the symmetry-aware cross correlation operator one could

apply a matching of templates that characterize the features of stitch types.

This could then be used to estimate initial yarn locations, which could be

further refined using an active yarn model.

An important future step is a further validation of our pipeline, when compared

to real samples so that it can be used for predictive rendering. So far, we have

only compared renderings of our procedural cloth model with the single input

image directly. In the future, one should validate the results and estimate the

appearance based on more view and light directions.

The employed fiber scattering model has been evaluated for hair and synthetic

fibers [ZW07b]. Animal hair (wool) behaves reasonably similar. For certain

fiber types, however, appearance cannot be effectively modeled without chang-

ing the BCSDF model.

BCSDFs are only accurate up to a certain curvature of fibers, especially in case

of low absorption. Also the far field assumption is not fully accurate in case of

multiple scattering for dense fiber assemblies. While major effects of forward

and backward scattering, as well as locations of highlights, can be assumed

to be modeled reasonably well, a further evaluation is needed. An interest-

ing direction of future research would be to evaluate how well the proposed

model can match the appearance of real yarns. To validate the accuracy of

the fiber scattering model, one could for example track fibers for a Micro-CT

measurement of a yarn. Then one could independently measure a BCSDF for

fibers, for example using the method of Zinke et al. [ZLHA+09] and finally,

compare the appearance of the real yarn with a simulated one.

Micro-CT scans could also be used to directly estimate parameters of the

procedural yarn model. Additionally, one could think of adding physically-

based simulation at the yarn and fiber level to aid the modeling and analysis

process. Moreover, dyes, dirt or water could change the interface properties

and therefore the optical appearance. To some extent, these effects can be

modeled by adapting the properties of BCSDFs, however other, for example

volumetric, representations could be investigated as well.

While we have concentrated on applications relevant to computer graphics,

we believe that methods developed in this thesis have applications in textile

research as well. The analysis procedure can be useful for automatic quality

control, defect detection or reverse engineering of woven cloth.
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A successful strategy used within this thesis has been to use domain specific

knowledge about structures:

By combining information about translational symmetries with an effective

way to handle non-rigid deformations, we were able to design a structure-

aware regularization and filtering approach. We have used this to separate

structures of yarns from structures at the fiber level. A similar approach could

be useful for any kind of material with symmetrical parts.

By separating cloth into its basic elements, we were able to use different

abstractions at different scales: BCSDFs for the optical properties of fibers,

a procedural model as well as a volumetric statistical description for the ge-

ometry of yarns and finally a method to combine yarns using a description

of the weave pattern. While we are not able to measure a full BSSRDF of

a cloth material with current measurement setups, the properties of all indi-

vidual elements can be measured in isolation. In combination with predictive

rendering approaches, this allows us in principle to obtain a representation

with the expressiveness of a BSSRDF, while being more practical.

Although further validation is needed, also in case of cloth, this general ap-

proach could be useful for other materials as well. One example for this could

be sand, where we could model individual particles using a representation

similar to a BCSDF, parameterized with respect to a sphere around the particle

instead of a local cylinder, while modeling the distribution of particles in

volumetric statistical ways.
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