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ZUSAMMENFASSUNG

Die digitale Reproduktion des charakteristischen Erscheinungsbildes eines Ma-
terials ist von erheblicher Bedeutung für die Erzeugung von fotorealistischen
Bildern. Aufgrund der hohen Komplexität vieler realer Materialien ist ihre Model-
lierung jedoch ein schwieriges Problem. Daher wurde in den letzten Jahren viel
an datengetriebenen Techniken geforscht. Bei diesen Verfahren wird das optische
Erscheinungsbild einer realen Materialprobe vermessen. Dies ermöglicht deren
akkurate Wiedergabe und damit die Erzeugung von synthetischen Bildern, die
nur schwer von Fotografien des Materials zu unterscheiden sind. Dennoch haben
diese Verfahren noch keine breite Anwendung in der Praxis gefunden. Dies liegt
hauptsächlich daran, dass die Messungen nach wie vor aufwändig und teuer und
die resultierenden Datensätze groß und schwierig zu verarbeiten und editieren
sind. Diese Dissertation besteht aus zwei Teilen, die sich diesen Problemen durch
die Entwicklung von effizienten Repräsentationen und Interpolationstechniken für
optische Materialeigenschaften widmen.

Der erste Teil beschäftigt sich mit Repräsentationen für optische Materialeigen-
schaften und Techniken zur Rekonstruktion dieser Repräsentationen anhand von
Messungen. Zuerst wird dabei eine deutlich schnellere Kompression der klassi-
schen auf einer PCA basierenden Repräsentation für BTFs untersucht. Hierfür
wird eine GPU-beschleunigte Technik, um die PCA von großen Datenmatrizen
schnell zu berechnen, beschrieben. Weiterhin werden kompakte Repräsentationen
für BRDFs, basierende auf einer PARAFC Tensorfaktorisierung, und für BTFs,
basierend auf einer dünnbesetzten Tensorzerlegung, eingeführt. Schließlich wer-
den Techniken, um das Reflexionsverhalten eines Materials anhand einer dünnen
und unregelmäßig abgetasteten Messung zu rekonstruieren, entwickelt. Hierbei
werden sowohl eine Höhenkarte zusammen mit eine Mixtur analytischer BRDFs
als auch eine Summe separierbarer Funktionen als mögliche Repräsentationen
untersucht.

Im zweiten Teil werden Materialeditiertechniken, die auf der Interpolation zwi-
schen mehreren vermessenen Materialproben basieren, erforscht. Hierfür werden
datengetriebene Interpolationstechniken für BRDFs, Texturen und BTFs entwickelt.
Es wird gezeigt, dass es möglich ist, mit diesen Techniken plausible Interpola-
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ZUSAMMENFASSUNG

tionssequenzen zu erzeugen. Dies gelingt sogar für Materialien mit komplexer
Featuretopologie, räumlich variierendem Reflexionsverhalten und einer Mesostruk-
tur, die starke Parallaxen verursacht. Diese Techniken bilden die Grundlage für
intuitive und leistungsfähige Anwendungen zum Editieren von Materialien, wel-
che es einem Benutzer ermöglichen, neue Materialien zu designen, indem er die
Charakteristika mehrerer vermessener Proben kombiniert.
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ABSTRACT

Reproducing the characteristic appearance of materials digitally is of considerable
importance for the creation of photo-realistic images. However, due to the high
complexity of many real-world materials, modeling them accurately is a difficult
problem. Therefore, data-driven techniques have received considerable attention
in the last years. In these approaches, the optical material properties from actual
material samples are measured. This enables their faithful reproduction and the cre-
ation of synthetic images which are difficult to distinguish from actual photographs
of the material. Still, these techniques have not yet found wide-spread practical
application. This is mainly due to the fact that the measurement process is still
time-consuming and expensive and that the resulting datasets are large and difficult
to process and edit. This dissertation is split into two parts which address these
questions by providing more efficient representations and interpolation techniques
for optical material properties.

The first part is concerned with representations for optical material properties and
techniques to derive these representations from measurements. First, we investigate
considerable improvements of the compression speed of the classical PCA based
representation of BTFs. For this, we describe a GPU accelerated technique to
compute the PCA of very large data-matrices. Then, we introduce a compact
representation for BRDFs, based on a PARAFAC tensor decomposition, and for
BTFs, based on a sparse tensor decomposition. Finally, we develop techniques to
reconstruct the reflectance behavior of a material from a sparse and irregular input
sampling either using a representation via a heightfield and a mixture of analytical
BRDFs or by fitting a sum of separable functions to the sparse samples.

In the second part, we explore material editing approaches based on the interpola-
tion between measured exemplars. For this, we develop data-driven interpolation
techniques for BRDFs, textures and BTFs. We demonstrate that it is possible to
create believable interpolation sequences even for materials with complex feature
topology, spatially varying reflectance behavior and a meso-structure resulting in
strong parallaxes. These techniques provide the foundation for an intuitive and
powerful material editing approach, which gives the end user the ability to create a
new material by combining the characteristics of several measured samples.
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CHAPTER 1

INTRODUCTION

Due to the tremendous progress in computer graphics, today it is possible to create
renderings which are almost indistinguishable from photographs. However, with
advancements in rendering technology and the increasing fidelity of the created
images, content creation has become more and more demanding. Whereas for
the first computer generated renderings the scene description consisted only of
a few geometric primitives and material parameters, today objects are described
by millions of polygons and very sophisticated material descriptions are used.
For a truly photo-realistic image, an accurate description of all aspects of reality
which influence the final appearance would be required. Manually creating all the
input data at this level of detail is very labor-intensive and thus in practice often
infeasible.

To solve this problem, data-driven techniques have become ubiquitous. Instead
of creating the scene description manually, the necessary data is measured from
real-world counterparts and then integrated into the image creation process. This
paradigm finds application for nearly all types of input that are required. 3D-
scanning is used to acquire the geometry of objects, High Dynamic Range (HDR)
light probes allow to obtain the illumination conditions in a real-world scene,
motion capture from actors enables the realistic animation of characters and even
the distortion of lenses or the appearance of lens-flares are measured and integrated
into the rendering process.

Though this approach finds application in many areas, the focus of this thesis
will be on the representation of the reflectance properties of materials. Here, the
acquisition from real-world samples is also an established technique. Starting with
measurement of individual material parameters and the use of textures acquired
via photographs it culminated in sophisticated acquisition devices which provide
detailed measurements of the appearance of a material under a multitude of view
and illumination conditions.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Rendering of a selection of measured BTFs (using heightfields to
reproduce the silhouette as described in Chapter 10).

This effort is necessary due to the high complexity of an accurate description of a
material. The amount of light that is reflected by a surface towards an observer can
vary both with the light and the view direction. This reflectance behavior can also
exhibit a complex spatial variation and in many cases the appearance of a material
is actually characterized by small geometric features on the surface such as bumps,
ridges or scratches, which can result in complex interreflections, occlusions and
shadowing. Some materials also show strong sub-surface scattering increasing the
complexity even further.

As an example, Figure 1.1 shows a rendering of several material samples acquired
from real-world counterparts. To measure the reflectance behavior of these samples,
images under a large number of illumination and view directions were taken. This
approach enables the realistic reproduction of the appearance of a wide range of
materials, without the need to manually model each of them separately.

The efficient and accurate measurement is a challenging problem and an active
area of research in its own right. However, this thesis is mainly concerned with
processing, representing and editing the acquired data. Usually, the measured
data cannot be used directly for rendering. Instead, it is necessary to derive a
representation which has to solve a number of problems:

Compact Representation A material measurement can result in a very large
dataset, easily containing several hundred GBs of raw data. To allow for efficient
use in rendering applications, it is thus necessary to find a representation which is

2



1.1. THESIS OUTLINE AND MAIN CONTRIBUTIONS

far more compact. This representation should fulfill several requirements. Ideally,
it should accurately reproduce the measured data, be as compact as possible, allow
for efficient random access during rendering and last but not least it should be
possible to derive this representation with acceptable computational effort from the
measurement.

Incomplete Sampling The sampling provided by a measurement device will nec-
essarily be incomplete. Due to constrains on the complexity of the device and the
acceptable acquisition time, there will always be limitations in the resolution and
angular sampling a measurement can provide. Furthermore, when acquiring the
reflectance behavior of objects, for some parts on the surface there will be missing
data due to occlusions and shadows during the measurement process. When deriv-
ing a representation for later rendering, it is thus necessary to impute these missing
data in a reasonable way.

Material Editing In many use cases, the goal of computer graphics is not the
exact reproduction of the real world, but the creation of new content based on
the acquired data. Therefore, the chosen representation should offer the user the
possibility to edit the acquired data in a meaningful way. A very intuitive and
powerful approach for this is the use of interpolation techniques, which provide
the end user with the ability to create a material by combining the characteristics
of several measured samples. By interpolating between a number of acquired
samples, it is possible to create a ”material space” which can then be explored by
the user.

1.1 Thesis Outline and Main Contributions

This thesis is divided into two main parts, where the first part is concerned with
material representations (Chapters 3–7) and the second part describes material
interpolation techniques (Chapters 8–10). The main scientific contributions in
Part I are:

• Parallelized Matrix Factorization Over many years, the use of matrix fac-
torization techniques has proven to be one of the most successful approaches
to compress reflectance data. However, computing these factorizations for
the large datasets that result from measurements can be a very time consum-
ing process. In Chapter 3, we introduce a technique which subdivides the
matrix factorization into several independent sub-problems each of which
can be solved on a GPU. This provides a considerable speed-up compared to

3



CHAPTER 1. INTRODUCTION

a sequential CPU implementation and thus makes the use of factorization
based compression techniques feasible, even for very large datasets.

• BTF Compression via Sparse Tensor Decomposition Several tensor ap-
proximation based techniques for the compression of BTF datasets have been
proposed. However, these techniques suffer from the fact that random access
into the decomposed tensor is very expensive and thus these techniques are
not well-suited for rendering. In Chapter 4, we show that by utilizing a
decomposition of a tensor representing the BTF as several sparse tensors,
very high compression rates and at the same time a good decompression
performance can be achieved.

• Heightfield and SVBRDF Reconstruction Representing a material as a
heightfield and a spatially varying linear-combination of analytical basis
BRDFs provides a very compact material representation, which easily allows
for editing operations such as changes in color or specularity. However, de-
riving such a representation from measured data is a challenging problem. In
Chapter 5, we describe an optimization technique that combines photometric
and multi-view stereo to reconstruct an accurate heightfield and estimates
the parameters of the basis materials and their distribution. Additionally, it
performs simulations of the light exchange to compensate for the influence
of interreflections.

• PARAFAC based BRDF Representation Accurately representing a mea-
sured BRDF via an analytical model results in a very difficult optimization
problem. Data-driven representations on the other hand often require far
more storage space. In Chapter 6, we show that a homogeneous BRDF can
be represented very compactly via a PARAFAC tensor approximation. For
this, the data has to be represented via a half-angle/difference-angle param-
eterization and a suitable weighting to compensate for the large dynamic
range of BRDFs has to be applied.

• Surface Reflectance from Sparse and Irregular Samples The PARAFAC
based representation introduced in the previous chapter is only suitable for
homogeneous materials and requires a dense reflectance measurement as
input. In Chapter 7, we generalize this representation to spatially varying
materials and demonstrate a technique to reconstruct the representations
from a much sparser and irregularly sampled measurement. For this, we
introduce additional regularization constraints which enforce smoothness
and exploit spatial coherence.

4
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Part II introduces data-driven interpolation techniques for BRDFs, textures and
finally BTFs. Its main contributions are:

• BRDF Interpolation via Dynamic Time Warping While the proposed
PARAFAC based BRDF representation allows for a very compact storage and
accurate representation of the acquired materials, an intuitive editing is not
directly possible. A straightforward linear interpolation between measured
materials can result in unintuitive results. In Chapter 8, we introduce a
technique, which performs perceptually plausible interpolations by using
dynamic time warping to align BRDF features. Based on this approach, an
intuitive user interface for the interactive exploration of the space spanned
by a database of BRDFs becomes possible.

• Patch-based Texture Interpolation Interpolating between two textures is a
challenging problem. When the two textures have different feature topologies
it is not possible to bring these features into alignment and thus interpolation
via linear blending or warping is not possible. In Chapter 9, we introduce
a technique relying on patch-based texture synthesis to perform this in-
terpolation. Instead of aligning all features in the input images, we find
corresponding patches for which aligning the features is much easier. These
interpolated patches are then finally used to reassemble the interpolated
texture.

• BTF Interpolation The patch-based interpolation technique presented in
the previous chapter was limited to textures. In Chapter 10, we extend
this approach to the interpolation of measured BTFs. A straightforward
application of the algorithm would not be feasible due to the large size of
the BTFs. However, by taking advantage of a factorized representation
and utilizing a heightfield to compensate parallaxes, it is possible to create
plausible interpolations between a wide range of different materials.

In addition to these chapters, in Chapter 2, a short summary of the background,
important previous work and an overview of the utilized notations is provided. Part
III finally concludes the thesis and discusses remaining open questions and avenues
of future research.

5
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1.2 Publications

As is common in computer graphics, most of the work presented in this thesis
has previously been published. In particular, it is based on the following publica-
tions:

• Roland Ruiters, Martin Rump, and Reinhard Klein. Parallelized Matrix
Factorization for fast BTF Compression. In Eurographics Symposium on
Parallel Graphics and Visualization, pages 25–32, March 2009.

• Roland Ruiters and Reinhard Klein. Heightfield and spatially varying BRDF
Reconstruction for Materials with Interreflections. Computer Graphics
Forum (Proceedings of Eurographics), 28(2):513–522, April 2009.

• Roland Ruiters and Reinhard Klein. BTF Compression via Sparse Ten-
sor Decomposition. Computer Graphics Forum (Proceedings of EGSR),
28(4):1181–1188, July 2009.

• Roland Ruiters, Ruwen Schnabel, and Reinhard Klein. Patch-based Tex-
ture Interpolation. Computer Graphics Forum (Proceedings of EGSR),
29(4):1421–1429, June 2010.

• Roland Ruiters and Reinhard Klein. A compact and editable representation
for measured BRDFs. Technical Report CG-2010-1, University of Bonn,
December 2010.

• Roland Ruiters, Christopher Schwartz, and Reinhard Klein. Data Driven
Surface Reflectance from Sparse and Irregular Samples. Computer Graphics
Forum (Proceedings of Eurographics), 31(2):315–324, May 2012.

• Roland Ruiters, Christopher Schwartz, and Reinhard Klein. Example-based
Interpolation and Synthesis of Bidirectional Texture Functions. Computer
Graphics Forum (Proceedings of Eurographics), 32(2), 2013.

• Roland Ruiters and Reinhard Klein. BTF based Material Representations:
Current Challenges. In Eurographics Workshop on Material Appearance
Modeling: Issues and Acquisition, pages 17–20. Eurographics Association,
June 2013.

Parts of the work from Chapters 4, 6, and 7 have also been presented by the author
in a tutorial at the Eurographics 2013:

• Renato Pajarola, Susanne K. Suter, and Roland Ruiters. Tensor approx-
imation in visualization and computer graphics. In Eurographics 2013 -
Tutorials, number T6, May 2013.

The work in Chapter 7 and Chapter 10 is also partially based on techniques
described in the publications below. In these papers, however, the main focus is on
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the acquisition of geometry and reflectance of objects or streaming and rendering of
BTFs instead on material acquisition or editing and therefore they are not included
into this thesis.

• Michael Weinmann, Christopher Schwartz, Roland Ruiters, and Reinhard
Klein. A Multi-Camera, Multi-Projector Super-Resolution Framework for
Structured Light. In International Conference on 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), pages 397–404,
May 2011.

• Christopher Schwartz, Michael Weinmann, Roland Ruiters, and Reinhard
Klein. Integrated High-Quality Acquisition of Geometry and Appearance for
Cultural Heritage. In The 12th International Symposium on Virtual Reality,
Archeology and Cultural Heritage (VAST), pages 25–32, October 2011.

• Christopher Schwartz, Roland Ruiters, Michael Weinmann, and Reinhard
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CHAPTER 2

PRELIMINARIES

In every-day life, the term material is usually used to describe the substance an
object is made of. A large number of attributes are associated with this term, which
far surpass its optical appearance. Some examples are the haptic impression a
human has when touching the object, how hard or soft it is, whether it is elastic or
brittle, its thermal conductivity, or even the sounds generated when the material
collides with something else. Furthermore, the term material is actually strongly
dependent on the scale where the distinction between the actual geometry of the
object and its material takes place. For example, sand can be considered as the
material a sandcastle is made of, but it could also be described as granules made of
silica.

Computer graphics usually takes a far more limited view. Here, the term material
is used to describe the way incoming light interacts with an object of a given
geometry. Still, this can encompass a very wide range of interactions, ranging from
reflection, transmission or scattering to effects like fluorescence, phosphorescence
or even changes in polarization and phase. Again, what is considered as material
strongly depends on the scale. Generally speaking, every aspect influencing the
appearance of an object that is not explicitly modeled in the geometry has to be
represented in the material. However, it is important to keep in mind that this
distinction can be made at different scales depending on the stage of the image
creation process. For example, a displacement map might be considered as part
of a material by the artist, but would be handled as geometry by the rendering
system.

Though a wide range of different material descriptions exists in computer graphics,
most of them can be regarded as a function ρ which specifies the proportionality
between the incoming and outgoing light. The main difference between these
descriptions is on which parameters of the incoming and the outgoing light the
proportionality depends. A wide range of parameters, such as position on the
surface or in the volume, direction of the light, wavelength or color channel,
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polarization and point in time can be taken into account. Each of these parameters
can be specified both for the incoming and the outgoing light separately. With each
additional parameter, the dimensionality of ρ increases further, making a complete
characterization of the material increasingly difficult. This is especially the case if
the behavior has to be measured from a real-world sample. Apart from the effort for
the measurement and storage of this function, the rendering complexity also grows
exponentially with the number of parameters taken into account. According to the
superposition principle, the amount of outgoing light is determined by integrating
over all the parameters characterizing the incoming light. For these reasons, a wide
range of different material descriptions exists, each of which depends on a different
set of parameters and thus offers a different trade-off between complexity and the
range of materials that can be described this way.

In the scope of this thesis, we will mainly focus on Bidirectional Reflectance
Distribution Functions (BRDFs), Spatially Varying Bidirectional Reflectance Dis-
tribution Functions (SVBRDFs) and Bidirectional Texture Functions (BTFs). The
BRDF was introduced by Nicodemus [Nic65] and describes a homogeneous,
opaque surface. The BRDF can be considered as a statistical description of mi-
croscopic surface features, like tiny ridges or facets, which are so small that they
cannot be seen individually but which still influence the reflectance behavior.

The BRDF is a four-dimensional function ρ that depends on the direction of the
incoming light ωi and the direction of the reflected light ωo. It is defined as the ratio
between the radiance of the reflected light dLo [ W/( m2 sr)] and the irradiance of
the incoming light dEi [ W/m2]:

ρ(ωi, ωo) =
dLo(ωo)

dEi(ωi)
(2.1)

When the surface of an object is not homogeneous, it is necessary to store a
different BRDF for every point x on its surface. This results in the six-dimensional
SVBRDF ρ(x, ωi, ωo). The definitions of both the BRDF and the SVBRDF are
based on the assumption, that the surface is completely opaque and that the light is
therefore reflected at exactly the position where it hits the surface. Non-local light
interactions are not taken into account. To enforce physical correctness, the function
ρ thus has to be reciprocal (ρ(ωi, ωo) = ρ(ωo, ωi)) and energy conserving (∀ωo ∈
Ωo :

∫
Ωi
ρ(ωi, ωo) cos(θi), dωi < 1, where Ωi and Ωo denote the hemispheres of all

incoming and outgoing light directions respectively).

In contrast to the SVBRDF, which describes a physical model, the BTF, introduced
by Dana et al. [DvGNK97], is a data-driven representation. It is usually acquired
by a measurement from a real-world sample. For this, images of a material
sample are taken from multiple view directions and under multiple illumination
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directions. The BTF can thus be regarded as a view and light direction dependent
texture. Formally, it is also defined as a six-dimensional function ρ(x, ωi, ωo) but,
in contrast to an SVBRDF, reciprocity and energy conservation are not required
and thus non-local effects can be included exactly as they were observed during
the measurement.

For example, many materials have small-scale geometric features, which can still
be seen individually but are difficult to describe via geometry. These features are
often called meso-structure, as they lie in between the microscopic structure, that
is small enough to be described purely statistical via a BRDF, and the macroscopic
structure, that is described explicitly via the geometry. These features can introduce
a wide range of non-local effects into the BTF, where the emitted light at one point
is no longer strictly proportional to the incoming light at the same point but actually
depends on the light reaching the material at different points. For example, when
seen from different view directions, features will move in the image due to parallax
and some parts of the material might be occluded by others. When the light
direction changes, shadows can move and interreflections or sub-surface scattering
can result in a brightening of different parts of the material.

Since all of these effects are included in the measurement of the original material
sample, a BTF is able to preserve the distinctive appearance of a material very
faithfully. This is even possible for very complex materials for which an exact
simulation of these non-local effects would be very challenging. However, a correct
reproduction of the appearance of a surface is only achieved this way under the
assumption of homogeneous parallel incoming light. In practice, as long as the
scale of these non-local effects remains small compared to the variation of the light
in the scene it provides a good approximation of the actual appearance.

Since the amount of light that is reflected depends on the wavelength of the light,
it is additionally necessary to store BRDFs, SVBRDFs and BTFs in dependence
on the wavelength of the light. For a correct color reproduction, it would be
necessary to store multispectral or even hyperspectral datasets. However, in the
scope of this thesis, we will only consider RGB colors and thus only three color
channels are stored in all our datasets. We will also not consider fluorescence or
phosphorescence. Furthermore, we do only take sub-surface scattering implicitly
into account where it was captured within a BTF, but do not model it explicitly,
which would require the use of a Bidirectional Scattering-Surface Reflectance
Distribution Function (BSSRDF) [NRH∗77].
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2.1 Reflectance Acquisition

Since a large number of different devices for the acquisition of BRDFs, SVBRDF
and BTFs have been suggested and a full description is not possible within the
scope of this work, we refer to the following surveys [MMS∗04, WLL∗09, FH09].
However, all datasets used in this thesis were actually acquired with only four
different devices. In the following, we will provide a short description and the
most important specifications of these devices.

2.1.1 Gonioreflectometer at the University of Bonn

Figure 2.1: Gonioreflectometer-like setup at the University of Bonn for the acqui-
sition of BTFs

This BTF acquisition device, first described in [SSK03], is a gonioreflectometer-
like setup which allows to independently position both a camera (initially a Kodak
DCS 760 with 6 MP, later upgraded to a Kodak DCS Pro 14N with 16 MP) and a
light source (Hydrargyrum Medium Arc Length Iodide HMI lamp) with respect
to the material sample. For this, the sample is moved by a robot arm (Intellitek
SCORBOT-ER4u) and the camera is mounted on a rail with a radius of 170 cm.
Although this configuration allows for nearly arbitrary samplings of view and light
direction, all datasets used in this thesis use a sampling with all combinations of 81
view and 81 light directions distributed approximately uniformly on a hemisphere.
This results in a total of 6,561 images. These images were captured in LDR and
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had a spatial resolution of about 100 µm per pixel (for the top-view, the case where
the view direction is orthogonal to the sample). The maximum sample size is
10 cm× 10 cm. A measurement with the Kodak DCS Pro 14N of one material with
this setup takes about 14 h and results in about 77 GB of losslessly compressed raw
data. After post-processing, this results in a BTF dataset with a typical resolution
of 81 × 81 × 256 × 256 and thus an uncompressed size of about 2.5 GB. The
acquisition device has later been updated to capture spectral BTFs [RSK10b], but
for this thesis only RGB datasets are used.

2.1.2 MERL BRDF Database

Figure 2.2: Acquisition device that was used for the acquisition of the isotropic
MERL BRDF database (image from [MPBM03a])

A large database with 100 isotropic BRDFs has been made publicly available
for research purposes by the Mitsubishi Research Laboratories at http://www.
merl.com/brdf/. Details on the acquisition device and the processing of the
data can be found in [MPBM03a, MPBM03b, Mat03]. The device is based on
the setup first proposed in [MWLT00]. It consists of a fixed camera (QImaging
Retiga 1300, 1.3 MP, 10-bit, RGB) and a light source (Hamamatsu SQ Xenon
lamp) which can be rotated around the sample. By using a spherical, homogeneous
material sample this setup is capable of capturing a large number of BRDF samples
with each image. The measurement process then requires about four hours and
results in a total of 330 HDR images per sample. From these images, 20 − 30
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million BRDF samples are extracted and then resampled to a regular grid with
a resolution of 180 × 90 × 90. To increase the resolution at the highlight, the
parameterization [Rus98] via half-angle and difference-angle is employed and
additionally the square-root is applied to θh. When stored as uncompressed single
precision floating point values, one isotropic BRDF in this format requires about
16.7 MB.

2.1.3 Multi-View Dome at the University of Bonn

Figure 2.3: Massively parallel BTF acquisition setup at the University of Bonn

This massively parallel setup was built to improve the acquisition time of the
sequential gonioreflectometer setup and at the same time improve the angular
sampling. It was first described in [MMS∗04] (additional details are given in
[MBK05] and [RMS∗08]) and consists of 151 consumer cameras mounted on a
hemispherical gantry with a radius of approximately 80 cm. In the initial version,
Canon PowerShot A75s with 3.2 MP were used, which have later been upgraded
to Canon PowerShot G9s with 12 MP. The flashes in these cameras serve as
light sources to illuminate the sample. Thus a measurement contains a total of
151×151 = 22,801 images. The sample-holder has a size of 10cm×10cm giving
a resolution of approximately 50 µm per pixel. However, since the cameras are
equipped with a zoom optic, even higher resolution are possible for smaller samples.
By combining different flash intensity and camera sensitivity (ISO value) settings,
it is possible to capture HDR sequences with this setup. A full measurement with
four HDR shots takes about 2 h and generates about 290 GB of JPEG compressed
raw data. Depending on the sample size and selected resolution, this results in
datasets with sizes ranging from 151× 151× 128× 128 (uncompressed 2 GB) to
151× 151× 512× 512 (uncompressed 33 GB) after postprocessing.

This setup is also equipped with 8 LG HS200G projectors to enable structured
light geometry reconstructions. We developed a technique that takes advantage
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of the fact that the same sample is illuminated from several projectors to perform
projector-super-resolution [WSRK11]. This helps to offset the fact that due to the
construction of the setup only small projectors with a low resolution at a rather high
distance to the sample can be used. This technique allows us to acquire geometry
and reflectance of objects in one measurement [SWRK11]. However, this geometry
reconstruction can also be used to derive a heightfield of a planar material sample
(see Chapter 10 for more details). The geometry acquisition requires approximately
75 min.

2.1.4 Mobile Dome with Camera-Arc at the University of Bonn

Figure 2.4: Movable reflectance acquisition setup at the University of Bonn

As a compromise between the sequential gonioreflectometer and the massively-
parallel setup, an acquisition device consisting of 198 LED light sources placed
on a hemispherical gantry with a inner radius of about 1 m and 11 cameras (SVS-
Vistek svs4022COGE, 4 MP, 12-bit, RGB) arranged in an arc, has been built at
the University of Bonn. To compensate for the one-dimensional view sampling, a
turn-table is used to rotate the sample. This way, it is possible to use high-quality
cameras and lenses, which would be prohibitively costly in a fully parallel setup.
The cameras can be equipped either with 50 mm or 100 mm Zeiss lenses which
provide a resolution of 125.0 µm or 67 µm per pixel, respectively. HDR sequences
can be created by combining images with different exposure times. Since the
step-size of the turn-table settings can be chosen by the user and the number and
length of exposures required depends on the material, the measurement times with
this setup can vary considerably. We typically use 15◦ steps of the turn-table and
an exposure series with 3− 4 exposures between usually 3 ms and 3 s, depending
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on the dynamic range of the material. Measurement times between 4 h and 10 h
are required in these cases. When four exposures are taken, this results in 209,088
images with a losslessly compressed size of about 800 GB.

This setup is also equipped with four LG HS200G projectors to perform 3D re-
constructions. Similar to the reflectance acquisition, here also a varying number
of turn-table and exposure settings can be used. For the geometry acquisition, we
usually use 45◦ turn-table steps. Depending on the number of exposures, a total
geometry acquisition time between 1.5 h and 3 h is then required. In this setup,
a challenge arises due to the turn-table. Though it is possible to reconstruct one
independent geometry per turn-table setting and to join the individual measure-
ments afterwards, this prevents the use of super-resolution techniques like the one
we used for the massively-parallel setup. To improve upon this, we developed a
technique [WRO∗12] for this setup which combines structured light and Helmholtz
stereopsis and unites the information from all available turn-table settings in one
common optimization problem. Even though this setup can be used to create BTFs
from planar samples, in this thesis only datasets captured for 3D objects are used
in Chapter 7.

2.2 Reflectance Representations

In this section, we will shortly review existing work on representations for measured
surface reflectance. We will describe both techniques based on the fitting of
analytical models to measurements and data-driven representations which directly
use the measured data for rendering. For a more comprehensive overview, we refer
to recent surveys [MMS∗04, HF11].

2.2.1 Analytical BRDF Models

A very compact representation of a measured homogeneous BRDF can be obtained
by fitting an analytical BRDF model to the measured data. This results in a repre-
sentation which typical only requires a small number of parameters. Depending on
the utilized analytical model, there can be further advantages. Many models guar-
antee important physical properties such as conservation of energy and reciprocity
or provide analytic equations for importance sampling. A large number of different
analytical models exist, which all have distinctive advantages and disadvantages.
They vary on the one hand in the number and classes of materials that can be repre-
sented by a given model and on the other hand by the computational complexity of
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the model and the number of its parameters. For a very comprehensive survey, we
refer to [MSUA12].

Several of these models have been fitted to measured material samples (e.g. in
[HTSG91, War92, LFTG97, NDM05, WW07]). However, automatically fitting
the models to a BRDF measurement is a difficult problem. Since many models
are only suitable for a subset of all materials, one has first to decide on the correct
one. Once a model has been chosen, a non-linear optimization problem has to
be solved to find its parameters. This is prone to local minima, especially for
complex models [NDM05]. Since it is often not possible to perfectly represent the
measurement by a given model, the result may also strongly depend on the chosen
error metric.

For spatially varying BRDFs, the fitting process becomes even more difficult. Apart
from the quality of the individual fit, the spatial coherence between neighboring tex-
els is also an important aspect in this case. It is possible to estimate the parameters
for every texel independently [McA02, GTHD03, MK06]. However, depending
on the number and distribution of available samples, this can result in a noisy
SVBRDF, since each fit for an individual texel can have a different local minimum.
The problem gets even worse, when the sampling varies from texel to texel. For
example, when a SVBRDF is estimated for an object with a curved geometry, for
every point on the surface a different sampling is available, introducing a different
bias for each fit. This is especially a serious issue when estimating parameters such
as specularity or the strength of the Fresnel effect, for which a reliable estimate is
only possible when samples for the reflection direction or under grazing angles are
available. One way to cope with this problem is to assume that certain parameters
are constant on larger parts of the surface. This way, it is possible to estimate them
for each of the parts instead of each texel. This can for example be performed either
for the whole object [NZI01, Geo03, PCF05], for each surface patch [YDMH99]
or for clusters of texels [PCDS12]. In [SWI97], the specularity parameters are only
estimated at a sparse set of points, at which the conditions for the estimation of spec-
ular parameters are met, and then linearly interpolated in the spatial domain. An
alternative approach is to assume that the surface consists of linear combinations of
a small number of basis materials [LKG∗03, HS05, GCHS05, HLZ10]. This way,
the self-similarity of the material at different points on the surface can be exploited
to estimate a more complex BRDF from a smaller number of per-texel samples.
In [WDR11], a material is represented as a sparse combination of a large set of
analytical basis materials. To further improve the quality of the approximation, an
additional residual BTF is stored, that encodes the difference between the analytical
model and the measured data. An alternative to these approaches, where individual
point samples of the SVBRDF are measured using point-light sources, is the use of
more complex illumination settings, such as polarized light and gradient illumi-
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nation [MHP∗07, GCP∗09], a moving linear light source [GTHD03, WZT∗08], or
Gray code illumination [FCMB09].

A representation that is somewhere in between analytical BRDF models and
data-driven techniques is proposed in [APS00]. Here, a tabulated micro-facet
distribution is used. In [NDM05], this model is fitted to measured BRDFs. This
technique can also be used to represent spatially varying BRDFs. In [WZT∗08], a
texture synthesis based approach is used to fill holes in the micro-facet distributions,
whereas in [MG09] clustering is applied and for each cluster a common distribution
is estimated.

Since analytical BRDF models mostly fulfill the reciprocity, and energy con-
servation constraints of a BRDF, it is not possible to represent materials with
meso-structure using spatially varying BRDFs alone. Instead an additional geome-
try representation is necessary to encode these details. Many approaches utilize
either a triangle mesh [SWI97, YDMH99, NZI01, LKG∗03, HLZ10, PCDS12]
or a heightfield [GTHD03, Geo03, PCF05, HS05, MG09] to store an explicit ge-
ometry. Some techniques [GTHD03, LKG∗03, MHP∗07, GCP∗09] utilize normal
and possibly tangent maps (sometimes in conjunction with rough geometry). In
[WDR11], one normal is stored for each BRDF in the mixtures at a surface point.
This way, a more complex underlying meso-structure can be approximated. In
[MK06], a volumetric model is used. The material is represented as several slices,
storing at each point an attenuation coefficient and a local normal.

2.2.2 Data-driven Representations

An alternative to these model based approaches are data-driven techniques. These
are in principle capable of representing nearly arbitrary materials. Several of these
techniques develop a BRDF with respect to a given basis. When using Spherical
Harmonics [WAT92] or Zernike Polynomials [KDS96, LKK98] a large number of
coefficients is needed to represent materials containing high-frequency features
such as a strong narrow specular lobe, which makes the evaluation very expensive.
This can be avoided by using wavelets [SS95, LF97] which reduce the number of
evaluations by using a tree-structured encoding. A basis especially well-suited to
representing BRDFs can be computed via Principle Component Analysis (PCA)
from a database of materials [MPBM03a]. However, storing these basis functions
itself is still very expensive if no further compression is used. In [WWHL07],
a SVBRDF is represented via a linear combination of a small number of basis
materials, which themselves are combinations of either Radial Basis Functions
(RBF) or materials from the MERL BRDF database. This way, the SVBRDF can
be efficiently estimated from a rather small number of measured samples. However,
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since the space of materials that can be represented is restricted to the chosen
basis, all of these approaches have find a compromise between the generality of the
representation with the size of the basis and thus the number of measured samples
needed. In [DWT∗10], it is therefore proposed to obtain the basis-BRDFs for a
mixture based SVBRDF directly from the material sample by using an additional
specialized measurement device, which captures high-resolution measurements at
several sparsely sampled points on the surface.

A large number of representations are based on matrix decompositions of the
reflectance data. For this, it is necessary to obtain reflectance samples on a dense
and regular grid, either by directly measuring these samples or using resampling to
obtain the data from an irregular sampling. Once these are available, the dataset
can be represented as a matrix and then compressed by taking advantage of self-
similarities in the dataset. Several types of factorizations have already been used
to represent BRDFs in this way, including Singular Value Decomposition (SVD)
[Fou95, KM99], Homomorphic Factorization [MAA01] and Non-Negative Matrix
Factorization (NMF) [LRR04]. In [SBLD03], a Chained Matrix Factorization is
used, where the data matrix is factorized repeatedly using a different parameteriza-
tion each time.

Several compression techniques for BTFs are also based on Singular Value De-
compositions or the closely related Principal Component Analysis. The main
difference between these compression techniques lies in the question, how to ar-
range the reflectance data in one or several matrices which are then factorized.
Sattler et al. [SSK03] grouped all images for each view direction in one matrix and
then compressed these independent from each other. Müller et al. [MMK03] used
local PCA for BTF compression by employing spatial clustering and then applying
the PCA to each cluster. If instead the whole BTF data is represented as one matrix
[KM03, LHZ∗04], it is possible to exploit correlations throughout the full data
set. Thus, the compression ratio of a Full Matrix Factorization (FMF) approach
is superior to the other matrix factorization methods. The main problem here is
the sheer size of the matrix and the resulting processing times needed to factorize
this matrix. In [Mül08, GMSK09], the BTF is first decorrelated, e.g. by using a
suitable color space such as YUV, and then the color channels are compressed
independently from each other, each with a different number of components. This
way, one can take advantage of the fact that the intensity information is usually far
more complex than the color information. In [GMSK09], a perceptual weighting
is additionally applied prior to the PCA computation.

Since BRDFs are actually four-dimensional functions and SVBRDFs and BTFs
are even six-dimensional, a two-dimensional matrix is not their canonical represen-
tation. Instead, some of their dimensions have to be unfolded to represented these
datasets in this form. Correlations along these dimensions cannot be exploited by
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matrix factorizations any more. In contrast to this, tensor decompositions can take
advantage of these additional correlations. Several different approaches for the
decomposition of a tensor exist (for an overview we refer to [KB09]). For BRDFs,
both the Tucker Decomposition (also called Higher-Order SVD or N-mode SVD)
[SZC∗07] and the Parallel Factor Analysis (PARAFAC) (also called Canonical De-
composition (CANDECOMP)) [SKB10] have been applied. In [BÖK11], several
chained Tucker Decompositions, each with a 1× 1 core-tensor, are used, which
results in a decomposition very similar to a PARAFAC.

Several BTF compression techniques based on tensor factorization have been
proposed by now. In [FKIS02], a PARAFAC was used, whereas in [VT04] and
[WWS∗05] a Tucker Decomposition was used. However, compression techniques
which are based on Tucker Decompositions have several drawbacks when com-
pared to PCA-based representations of equal quality, as was reported by Müller in
[Mül08]. On the one hand, the compression times are quite long with only small or
no increase in compression ratio compared to matrix factorization based techniques.
On the other hand, the reconstruction speed is very slow if only one element of
the tensor is to be reconstructed, which is the standard case in BTF rendering.
Wu et al. [WXC∗08] use a hierarchical tensor decomposition, where first the whole
dataset is approximated by one Tucker Decomposition and then the residual is
subdivided into smaller blocks, which are again approximated by additional de-
compositions. This is then continued recursively. This way, the compression ratio
can be further improved. In [Tsa09], a Tucker factorization is combined with a
clustering step, which is applied along one of the tensors modes, to reduce the size
of the individual tensors and enable faster decompression. In [Tsa09, TS12], this
approach is extended by representing each entry along the clustered mode as a
combination of k factorized tensors. This approach achieves compression ratios
similar to the Tucker factorization while still providing an improvement in render-
ing performance. To find this representation, the authors suggest a generalization of
the K-SVD [AEB06] to tensors. In [LBAD∗06], a technique for the representation
of SVBRDFs closely related to the tensor-based approaches is suggested. It is
based on several repeated non-negative matrix factorizations, each applied after
unfolding the data along a different mode. This way, the SVBRDF is decomposed
into a Shade Tree.

However, all of these techniques require a dataset sampled on a regular grid
prior to compression. If only an irregular and sparse sampling is available, it
is possible to first resample these samples to regular grid [MBK05, SWRK11]
and then utilize one of the afore mentioned compression techniques. However,
if this approach is used, the required amount of storage during compression is
no longer determined by the number of input samples but the resolution of the
resampled dataset. Thus, high angular and spatial resolutions cannot be achieved,
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even if the compressed dataset would be small, due to the required memory during
compression. In [AZK08], this problem is circumvented by directly fitting a
factorization into bivariate basis BRDFs and maps describing their distribution
to the irregular samples. In [ZERB05], the scattered data are used directly for
rendering via an RBF interpolation. While this avoids the problems introduced
by a representation on a regular grid, it requires storing the input samples (though
only a subset is used) and performing the interpolation during rendering, which is
rather expensive.

2.3 Notation

Here, we will shortly introduce the notations we will use throughout this thesis.
We use bold face to represent vectors, matrices, and multi-indices. Lower-case
letters are used for vectors (e.g. v) and multi-indices (e.g. i), whereas upper-case
letters are used for matrices (e.g. M). For tensors, we use script, upper-case letters
(e.g. T ). In all cases, we use lower indices to denote individual elements, using
the respective convention for the sub-element (e.g. vi,mi,j, ti = ti1,...,iD). When
we have a collection of objects which require indices themselves, we use upper
indices in brackets to denote individual elements (e.g. M(i)).

We regard a tensor T ∈ RI1×I2×···×IN of order N as an N -way array of tabulated
data. We assume that tensors are represented in a fixed basis and do not distinguish
between contravariant and covariant indices by using upper and lower indices.
For tensor operations, we mostly follow the notation from [DL97]. To describe
fibers and slices of tensors, we replace some of the indices with a colon to denote
all elements of the corresponding mode (e.g. Ti,:,:,:,k would be the corresponding
mode-3 tensor). We also use this notation to denote rows and columns of matrices
(e.g. mi,:, m:,j for a matrix M). We use v(1) ◦ · · · ◦ v(D) for the outer product of
vectors v(d), T ×n M for the mode n product, ||T || for the Frobenius norm and
[T ]S to denote the sum over all entries of a tensor. For element-wise multiplication,
division, square, and inverse, we use A⊗ B, A� B, T 2, and T −1. Furthermore,
we use the notation T(I1I2...IM×IM+1...IN ) to describe the unfolding of a tensor into a
matrix. During this operation, the first M modes are mapped onto the rows of the
matrix and the remaining modes are mapped onto the columns of the matrix. This
results in a I1I2 · · · IM × IM+1 · · · IN matrix.

To write tensor decompositions, we also use the Einstein summation convention,
which states that repeated indices are implicitly summed over (e.g. aijbjk =
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∑
j aij · bjk). Using this convention, C = AijBjk is used to denote that C is a tensor

whose elements are given by the following expression:

Ci,k = (AijBjk)i,k =
∑
j

ai,j · bj,k.
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CHAPTER 3

PARALLELIZED MATRIX FACTORIZATION

Several techniques for the compression of reflectance datasets, discussed in Sec-
tion 2.2.2, rely on dimensionality reduction methods like Principal Component
Analysis and the closely related Singular Value Decomposition. These provide
very good compression ratios, and the resulting datasets are well-suited for real-
time rendering. However, for large datasets like BTFs, a serious drawback of
these methods is that their computation is very expensive because it requires the
factorization of large matrices. Another general issue is the huge data size which
makes out-of-core algorithms necessary. These are severely encumbered by IO
bottlenecks and thus can get nearly unusable for large BTF datasets even if their
in-core equivalents would suffice the needs.

Because of the comparatively long measurement times and the low-resolution of
older BTF acquisition setups, such as the sequential gonioreflectometer at the Uni-
versity of Bonn (see Section 2.1.1), the compression times of these techniques were
a less important question so far. Still often techniques which sacrifice compression
ratio for the ability to use faster in-core algorithms were applied. These subdivide
the whole BTF matrix into smaller blocks, which can be factorized independently.
However, the availability of high-resolution and lower cost digital cameras has
made the development of highly parallel BTF acquisition devices possible. Modern
devices, such as the ones described in Section 2.1.3 and Section 2.1.4, are able to
capture a material sample with high dynamic range, an angular resolution of more
than 100 view and light directions and a spatial resolution of several megapixels
in a few hours. This corresponds to data sizes of several hundreds of gigabytes.
Current techniques do not scale well to these large datasets. For example, with
non-parallelized methods the compression of a 512× 512× 95× 95 BTF using
an out-of-core PCA on the full BTF matrix takes about 13 hours on a Intel Q6600
with 8GB of RAM, which is in marked contrast to a few hours of measurement,
severely hampering the practical operation of a BTF acquisition setup. Thus,
the compression of high-resolution BTFs is still a challenging problem of high
practical relevance.
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In this chapter, we propose a method for the efficient and parallelizable factorization
of large matrices and show its application to BTF compression. The core operations
of the algorithm are performed on graphics hardware exploiting the massive parallel
computing power of modern GPUs. The algorithm is designed to use only existing
libraries for matrix operations and is thus very easy to implement. We achieve
speed gains of up to a factor of 35 compared to implementations on a single CPU
core.

Our basic idea is to subdivide the large BTF data matrix into several smaller blocks
that can be processed in-core and then to use eigenspace merging to obtain the
factorization of the complete matrix. We use the EM-PCA algorithm of Roweis
[Row97] for the factorization of the small blocks. The runtime of this iterative
algorithm is primarily dominated by matrix operations in its inner loop. By
performing most of these operations on the GPU, we are able to gain a massive
speed increase for the factorization of the individual matrix blocks.

This chapter corresponds to the paper "Parallelized Matrix Factorization for fast
BTF Compression" by Roland Ruiters, Martin Rump, and Reinhard Klein, pub-
lished in Eurographics Symposium on Parallel Graphics and Visualization, pages
25–32, March 2009.

3.1 Theory

Given a BTF ρ (x, ωi, ωo) as a six-dimensional table with an RGB-triple in every
entry, we can define a BTF data matrix MBTF by unfolding the color channels c
and the directions in one dimension as well as the spatial position x in the other
one by defining indexing operators i and j. We end up with the m × n matrix
MBTF (i(ωi, ωo, c), j(x)) = ρ (x, ωi, ωo) [c] withm as the number of light and view
direction combinations times the number of color channels and n as the number of
texels.

Given such a m × n BTF matrix MBTF , its PCA can be calculated by first de-
termining the column mean m of MBTF and then performing a Singular Value
Decomposition (SVD) of the matrix M obtained by subtracting this mean from
MBTF . The full SVD of M is a decomposition M = UfSfV

T
f , with orthogonal

matrices Uf and Vf and a diagonal matrix Sf containing the singular values sorted
in descending order. Here, Uf is a m×m and Vf is a n× n matrix, but for BTF
compression this representation is truncated, by only keeping the first k columns
of Uf and Vf corresponding to the first k largest singular values of Sf . In the
following, we will thus only consider the m× k matrix U, the k × k matrix S and
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the n× k matrix V obtained after this truncation. For most BTF materials, keeping
about 100 columns is sufficient for a very faithful reproduction.

It is possible to compute the SVD of M by calculating the eigenvectors and
eigenvalues of the matrix MMT . However, this is not the best approach with
regard to numerical precision and there exist algorithms that directly compute the
SVD from M for all singular vectors and values at the same time (see e.g. [GL96]).
Unfortunately, they require O (mn2 +m2n+ n3) time and are furthermore not
well-suited for out-of-core implementations.

Since for compression purposes only the first k eigenvalues and eigenvectors are
needed, performing a full factorization is not very efficient. To overcome this prob-
lem, several techniques have been proposed by now, which allow to calculate only
the k largest eigenvalues and corresponding eigenvectors in a considerably smaller
amount of time and which are also better suited to out-of-core implementation. In
the incremental SVD algorithm from Brand [Bra02] the data is processed column-
wise by updating the eigenspace as new columns are added. Its time complexity is
O (mnk). Roweis [Row97] proposed an iterative expectation-maximization (EM)
algorithm for PCA which also has a time complexity of O (mnk). A different
approach has been taken by Liu et al. [LWWT07]. They subdivided the data matrix
into several blocks, performed a traditional PCA on each block and then merged
the eigenspaces of the single blocks with the method of Skarbek [Ska03] to obtain
the eigenspace of the whole matrix.

Blockwise processing is also the basic idea behind our approach, as it allows to
parallelize the computation of the single blocks. Additionally, the blocks can be
chosen in such a way that they fit into the memory of a GPU and can therefore
be processed in-core. We decided to use the EM-PCA algorithm from Roweis for
these subproblems because it can process one block of data at once with only a few
matrix operations. In contrast to the incremental SVD method, where each column
must be added successively, this allows for easy GPU acceleration.

For this, the matrix M is first subdivided into N blocks M = [M1 · · · MN ] of the
respective sizesm×si. On each of these blocks, a SVD is performed independently
resulting in the matrices Ui,Si,Vi. This step thus can be easily performed in paral-
lel. The SVDs for these blocks are then merged to finally obtain the decomposition
of the complete matrix M. See Figure 3.1 for an illustration of this process. In our
implementation, we merge the matrices successively. Instead, the merging could
also be performed in a binary tree, as suggested by Liu et al. [LWWT07]. As the
results in their paper show, tree-structured merging does reduce the error, but only
by a small amount (below 1% in all examples given there). On the other hand,
when using tree-structured merging, it is necessary to store more intermediate
results, increasing the memory requirements.
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Figure 3.1: Illustration of our parallelized matrix factorization algorithm . The
matrix M is first divided into blocks M1, · · · ,MN . For each of the blocks, an
independent SVD is calculated via the EM-PCA algorithm to obtain Ui and Si.
Then, the individual decompositions are merged to obtain the final result U and S.

Since the matrix V contains the projection of M into the U-space, parts of the data
vectors orthogonal to this space are not represented. In each merge step, however,
the subspace spanned by the matrix U changes. Thus, if the vectors in V are
reprojected into this new U-space, only the part in the intersection of the old and
the new space can be represented and the orthogonal part is lost. This would lead to
an accumulation of errors during the merge steps. To avoid this accumulation, we
first compute only U. Instead of calculating and merging the individual matrices
Vi, we calculate V in an additional step by projecting the columns of M on the
subspace spanned by U. For the same reason, we also recalculate the singular
values in the final projection step, even though we have to update S during the
calculation of U since it is needed to perform the merge steps. In addition to the
improved accuracy, this reduces the complexity of the implementation as well as
the memory requirements. The drawback of this approach is that we must spend
additional IO time for this final step since we have to load the full matrix again.
Thus, for applications where speed is more important than precision, it might be
advantageous to instead update V together with U during the merge steps.
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In the following sections, we will give a short overview of the EM-PCA algorithm
we used for the factorization of the sub-problems and the technique we used to
merge the individual factorizations to obtain the full SVD.

3.1.1 EM-PCA

Instead of calculating an SVD of Mi directly, we approximate it by first using the
EM-PCA algorithm introduced in [Row97] to find the subspace spanned by the
first k principal components of Mi and then performing the SVD on the projection
of Mi into this subspace. This way, we only have to compute the SVD for a
(k+ 1)× si matrix, containing the data vectors projected into the subspace spanned
by the first k principal components and the mean direction of M. This factorization
can be done very fast for small k.

The EM-PCA algorithm is an expectation-maximization algorithm which allows to
find the subspace spanned by the first k principal components, without explicitly
calculating all principal components. After initializing the m× k output matrix C
with random values, it iterates between the following two steps:

E-step:
X = (CTC)−1CTMi

M-step:
Cnew = MiX

T (XXT )−1

Here, Mi is a m × si input matrix with zero mean and X is a k × si matrix of
unknown states. After the iteration has completed, the columns of C span the
principal subspace. As analyzed in [Row97], this EM algorithm always converges
and the number ni of necessary iterations is rather small and independent from the
size of Mi. In our experience, 15 iterations were sufficient for good compression
results.

Thus, only matrix multiplications and inversions are needed for the calculation of
the PCA. In practice, the runtime is dominated by the two multiplications with
the m × si matrix Mi, since these require O(kmsi) operations. The algorithm
is therefore practically linear in the size of the input data. This approach is thus
well-suited for GPU implementations, as the matrix multiplications are easily
parallelizable, especially for very large matrices like Mi. Matrix inversions have
a runtime which is cubic in the matrix dimension and are furthermore not easily
parallelizable. However, the contribution of the two inversions in this algorithm to
the total runtime is negligible for small k, because the matrices CTC and XXT

are both only of size k × k.
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When using EM-PCA to calculate the principle subspace for the matrices Mi, it is
important to keep in mind that, even though the mean has been subtracted from
the full matrix M, the individual block matrices can have non-zero mean and are
therefore not directly suited as input data for the EM-PCA. We thus calculate the
mean mi for each block matrix independently and subtract it from Mi to obtain
the matrix Mi which is then used for the calculation of the subspace. Afterwards,
we add the mean vector as an additional column to the matrix C, obtaining the
matrix Cm. This is necessary, since the component of the mean vector, which is
orthogonal to the determined subspace would otherwise be lost when projecting the
data points into the space spanned by C and thus neglected during the following
SVD.

The actual SVD calculation is then performed on a projection of Mi into the
subspace spanned by Cm. For this, Cm is first orthogonalized, obtaining the matrix
Co. The projection can then be calculated as P = CT

oMi. Since the columns of P
contain only k + 1 entries, the SVD UPSPV

T
P = P can be calculated efficiently.

To obtain the final result, we project the matrix UP back into the original space by
setting Ui = CoUP and Si = SP .

3.1.2 SVD Merging

Let U1S1V
T
1 and U2S2V

T
2 be two Singular Value Decompositions which have

been truncated after c1 and c2 singular values respectively and let M̃1 = U1S1V
T
1

and M̃2 = U2S2V
T
2 be the matrices reconstructed from these decompositions. We

have to find the Singular Value Decomposition USVT of the composed matrix
M̃ = [M̃1 M̃2]. For this, we generalized and adapted the update step of the
incremental SVD [Bra02] to the merging of the two SVDs. Similar eigenspace
merging techniques like the one in [HMM00] could however be used instead.

The merging of the two SVDs is performed by first constructing an orthogonal
space for the subspace spanned by both U1 and U2 and then performing the SVD
within this subspace.

For this, the Singular Value Decomposition of M̃2 is split into the part which lies
within the subspace spanned by U1 and the part orthogonal to this subspace. First,
U2 is projected into this space, resulting in L = UT

1 U2. Then, the orthogonal part
is computed as H = U2 −U1L. In the next step, an orthogonal basis Q for the
space spanned by H is determined. Now, H is projected into this space by setting
R = QTH. U′ = [U1 Q] is thus an orthogonal basis for the subspace spanned by
both U1 and U2.
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We can now consider the following identity:

M̃ = U′U′TM̃ (3.1)

=
[
U1 Q

] [U1
T

QT

] [
U1S1V

T
1 U2S2V

T
2

]
(3.2)

=
[
U1 Q

] [UT
1 U1S1 UT

1 U2S2

QTU1S1 QTU2S
T
2

] [
V1 0
0 V2

]T
(3.3)

=
[
U1 Q

]
︸ ︷︷ ︸

U′

[
S1 LS2

0 RS2

]
︸ ︷︷ ︸

C

[
V1 0
0 V2

]T
︸ ︷︷ ︸

V′T

(3.4)

In this identity, (3.4) is already of similar structure as an SVD of M̃ because U′

and V′ are orthogonal matrices. However, C is not a diagonal matrix. Therefore,
we have to perform a Singular Value Decomposition U′′S′′V′′T = C which is
computationally not very expensive in our case since C is a (c1 + c2)× (c1 + c2)
matrix and c1, c2 � m,n.

Since U′,U′′,V′,V′′ are orthogonal matrices and S′ is a diagonal matrix, set-
ting

U = U′U′′ S = S′ V = V′V′′ (3.5)

results in the Singular Value Decomposition of M̃:

M̃ = U′CV′T = U′U′′SV′′TV′T (3.6)

= USVT (3.7)

The calculation of the matrix U is thus possible from only U1,S1 and U2,S2.
Therefore, we do not need to calculate and update V during the calculation of U,
but can neglect it first and then obtain V afterwards by projecting the data on the
basis U.

After the merge step, the new SVD has c1 + c2 singular values and vectors. Since
we always merge a matrix with k + 1 columns to the already computed result this
would grow by k + 1 in each merge step. Therefore, it is necessary to truncate
after each merge step. To reduce the error introduced by this truncation, we simply
keep 2k singular values and vectors instead of only k during the calculation. In
our experiments, this was sufficient for good BTF compression results. However,
an approach to further reduce the error would be to instead use a threshold on the
singular values to decide where to truncate the decomposition, as done in [Bra02].
We avoid this, because the decomposition would continue to grow during the merge
operations, though to a lesser degree.
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Function: BlockSVD(M, m, ni, k)
// Subtract mean
ml := mean (M)
M := add-to-columns (M, −ml)

// EM-PCA
C := [k random unit column vectors]
foreach i ∈ {1, . . . , ni} do

X := (CTC)−1CTM
C := MXT (XXT )−1

end

// Perform SVD in subspace
md := ml −m
Co := orthogonalize ([C md])
M := add-to-columns (M, md)
U,S,V = svd (CT

oM)
return CoU,S

Function: MergeBlocks(U1,S1,U2,S2, k)
// Find orthogonal subspace for U2

L := UT
1 U2

H := U2 −U1L
Q := orthogonalize (H)
R := QTH

// Merge the SVDs

C :=
[
S1 LS2

0 RS2

]
U′′,S′′,V′′ := svd ( C )
U := [U1 Q]U′′

return U1:m,1:2k, S′′1:2k,1:2k
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Function: BlockwisePCA(M, k, ni)
m := mean (M);

// Calculate U
foreach i ∈ {1, . . . , N} do

Mi = LoadBlock (i);
U′,S′ = BlockSVD (Mi, m, ni, k);
if i = 1 then

U := U′;
S := S′;

else
U,S = MergeBlocks (U,S,U′,S′, k);

end
end

// Project M into subspace
// to get S and V
V := (UTM)T ;
S := Diag(ColumnNorms(V));
V := VS−1;

return U,S,V,m;

Pseudocode 3.1: Our factorization method

3.2 Implementation

As can be seen in Pseudocode 3.1, our algorithm is based on just a few basic matrix
operations, most of which can be easily parallelized on the GPU. For this, we use
the NVIDIA CUBLASTMlibrary (for more information see [NVI08]), which allows
to perform many basic linear algebra operations efficiently on the GPU. For our
algorithm, the most important of these operations are the matrix multiplications,
for which we use the cublasSgemm function. Similarly, we also calculate the
column means, using a matrix-vector product, and the mean subtraction, using the
rank-1 matrix update function cublasSger, with the CUBLASTMlibrary, though
none of these operations has a very high contribution to the total runtime. We also
accelerated the matrix orthogonalization on the GPU.

Thus, the only parts of the algorithm not accelerated on the GPU are operations
on the tiny matrices of size k × k and (3k + 1)× (3k + 1) respectively. For BTF
compression, k is chosen quite small and therefore these operations are mostly
irrelevant for the total runtime. Thus, a GPU implementation of these parts is
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not necessary, reducing the implementation complexity considerably, since CPU
implementations of these algorithms are readily available, for example in the
LAPACK library [ABD∗90].

The size of the individual matrices Mi should be chosen as large as the available
GPU memory allows, because each merge step introduces a certain error and we
should strive to minimize the number of merge steps. Since the matrix is processed
blockwise, the runtime can easily be further improved by performing the IO asyn-
chronously to the actual calculation. For this, we use an additional thread which
preloads the next block of the matrix while the current one is processed.

Using this technique, we can on the one hand directly perform a factorization
of the full BTF data matrices. However, we also applied our algorithm to the
LocalPCA BTF compression algorithm of Müller et al. [MMK03]. This algorithm
first performs a clustering step in the spatial dimension and then applies the PCA to
each cluster independently. The advantage of this method is, that a very low number
of components is sufficient to faithfully reproduce the data in the individual clusters.
Therefore, the decompression speed is considerably higher than for techniques
based on a Full Matrix Factorization. We use our method to accelerate both the
clustering and the final projection steps of this algorithm. Furthermore, we perform
the clustering within the projection of M into the U-space by first performing a
factorization of the full BTF matrix, as this further increases the performance by
reducing the time needed for the error calculations.

3.3 Results

To show the advantages of our parallelized factorization method in the context of
BTF compression, we applied it to full BTF matrices of several materials. For
the reconstruction, we used the first 120 principal components. We compare our
runtimes and reconstruction errors to an out-of-core implementation of the EM-
PCA algorithm performed on a single CPU core. For this, we simply used the
average ABRDF Root Mean Square Error (RMSE):

E =
1

n

n∑
i=1

√
‖m:,i − m̃:,i‖2

m
(3.8)

Here, m:,i is the i-th column of the BTF matrix and m̃:,i is the i-th column of the
reconstructed matrix. Table 3.1 shows timings and the achieved reconstruction
errors. All timings were measured on a computer with a Q6600 CPU, 8GB
of main memory and a GeForce 8800 GTX GPU with 768MB GPU memory.
Additionally we compared our extension of the LocalPCA compression method
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Material Resolution
Size

#Blocks
Block-PCA EM-PCA

Speedup Rel. error
[GB] Time[s] RMSE Time[s] RMSE increase

Leather1 2562x952 6.61 12 317 0.0236689 11659 0.0236529 36.78 0.068%

Leather1 5122x952 26.4 48 2398 0.078524 47019 0.0785006 19.61 0.030%

Leather2 1282x1512 4.17 11 280 0.0113223 7711 0.0113162 27.54 0.054%

Leather3 2562x812 4.81 9 261 0.0143584 8109 0.0143554 31.07 0.021%

Pulli 2562x812 4.81 9 266 0.0282213 8129 0.0282085 30.56 0.045%

Fabric 2562x812 4.81 9 223 0.0060206 8146 0.0060141 36.53 0.108%

LPCA with Block-PCA LPCA with EM-PCA

Time[s] RMSE Time[s] RMSE

Leather1 2562x952 6.61 12 858 0.0368971 19104 0.0370494 22.27 -0.41%

Pulli 2562x812 4.81 9 546 0.0374273 13573 0.0373398 24.86 0.23%

Table 3.1: Upper part: Comparison of runtime and reconstruction error between
our method and a non-parallel EM-PCA with k = 120. Lower part: Comparison
between our modified LocalPCA method and LocalPCA based on EM-PCA.

of Müller et al. [MMK03] to a CPU implementation of the LocalPCA algorithm
using the full data matrix and the EM-PCA method.

Our method achieves roughly a speed-up by a factor between 20 and 35. At the
same time the increase in reconstruction error does not exceed 0.11% for the Full
Matrix Factorization. The relative error is more unstable for the LocalPCA, but
this is mainly due to the jitter of the clustering step. In Figure 3.4 we compare
renderings of the materials compressed with both full matrix techniques and in
Figure 3.5 we make the same comparison for the two LocalPCA implementations.
There is no visible difference between the version compressed with our techniques
and the serial CPU implementations.

It should be noted, that the runtimes in Table 3.1 include the necessary IO times,
which dominate the runtime of our algorithm for large datasets since caching by
the operating system is no longer possible for them. For example, for the large
dataset Leather1 with 26 GB matrix size one complete IO pass required about
700 seconds. Thus, already more than half of the 2398 seconds runtime is spent on
read operations during the mean calculation and the final computation to determine
V. The block factorizations have small additional IO cost, because we perform the
IO asynchronously. Only the IO for the first block is performed synchronously, on
the 26 GB matrix it takes about 40 seconds. Except for the second block, where
still 10 additional IO seconds are needed, the IO for all further blocks is completely
asynchronous and only one second is required after the calculation step to fetch
the data for the next block.
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Figure 3.2: Runtime of our algorithm for different matrix sizes and k = 120
components. Runtime for the smaller matrices is heavily influenced by the caching
behavior of the operating system.

We investigated the runtime of our algorithm with increasing matrix size m×n and
increasing number of components k. As it can be seen in Figure 3.2, the runtime is
linear in m× n as expected. Figure 3.3 shows the runtime in dependence on k. We
performed cubic regression to determine the contribution of the O (k3) operations
to the total runtime. The coefficients for the quadratic and cubic part are very
low compared to the linear part. This shows that the matrix multiplications with
the large matrices dominate the total runtime of the algorithm as it was stated in
Section 3.1.

3.4 Conclusion

We presented a method which accelerates the factorization of large data matrices,
as they can be found in BTF compression, by exploiting the massive parallel
computing power offered by modern GPUs.

This is achieved by first subdividing the input matrix into blocks, which are
factorized independently using the EM-PCA algorithm, and then merging the
resulting eigenspaces to obtain the final result. This technique allows to process
matrices of nearly arbitrary size. We evaluated our technique by applying it to the
compression of full BTF matrices. Here, it achieves speed-ups between 20-35,
without increasing the reconstruction error by more than 0.11%, when compared to
an out-of-core CPU implementation of the EM-PCA algorithm. This considerable
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Figure 3.3: Runtime of our algorithm for increasing number of components k.

acceleration enables the practical processing of BTF datasets with high angular
and spatial resolution.

The computation time for each block is not dependent on the contained data and the
individual blocks can be processed independently and in arbitrary order. Therefore,
we think it will be quite easy to parallelize the algorithm to multiple GPUs, because
the load balancing between the execution threads should not be too complex.

The algorithm presented in this chapter has been used in our working group for the
compression of most BTFs we had to process since 2009 and has worked reliably
for even larger BTFs up to 151× 151× 2048× 2048. Though the technique has
originally been developed for the compression of BTFs, the factorization of big
matrices is a problem that arises in a large number of applications and thus the
algorithm can also be applied in these cases. For example, we used it to perform a
dimensionality reduction prior to the K-SVD computation described in Chapter 4
and prior to the nearest neighbor search for the texture synthesis algorithm used
in Chapter 9 and Chapter 10. Therefore, we made the source code available for
other researchers at http://cg.cs.uni-bonn.de/en/publications/
additional-material/blockpca-source-code/.

37

http://cg.cs.uni-bonn.de/en/publications/additional-material/blockpca-source-code/
http://cg.cs.uni-bonn.de/en/publications/additional-material/blockpca-source-code/


CHAPTER 3. PARALLELIZED MATRIX FACTORIZATION

Leather1

Leather2

Leather3

38



3.4. CONCLUSION

Fabric

Pulli

Figure 3.4: Visual comparison between our factorization method (left row) and
out-of-core EM-PCA (right row)
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Leather1

Pulli

Figure 3.5: Visual comparison between our modification of the LocalPCA method
(left) and the original algorithm (right).
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CHAPTER 4

BTF COMPRESSION VIA SPARSE TENSOR

DECOMPOSITION

To be of practical use, BTF compression techniques (see Section 2.2.2 for an
overview) have to fulfill two important requirements. On the one hand, they must
provide high compression ratios at an acceptable degradation in rendering quality.
On the other hand, since during rendering usually every rendered pixel corresponds
to a different texture position, and a different light and view direction, efficient
random access to the data is also necessary.

Many BTF compression techniques are based on matrix factorizations (e.g. [KM03,
LHZ∗04, SSK03]). However, these techniques can only exploit correlations be-
tween the columns of the matrix and thus do not take advantage of the higher-
dimensional structure of BTF datasets. To overcome this limitation, several ap-
proaches based on tensor decompositions have been proposed (e.g. [FKIS02, VT04,
WWS∗05, WXC∗08]). However, as these techniques are based either on Tucker
or PARAFAC decompositions, random access into the tensor is quite expensive
because the reconstruction of individual entries requires evaluating long sums with
many terms.

In [MMK03], the use of local PCA was proposed. This approach improves the
decompression performance by clustering the ABRDFs and then performing a PCA
on each cluster independently. Since the samples in each cluster are represented
in a different basis, only a smaller number of coefficients is needed. However, for
each cluster a set of basis vectors has to be stored which is not further compressed,
reducing the total compression ratio.

In this chapter, we propose a sparse BTF tensor decomposition which combines the
ability of tensor based techniques to exploit correlations in several dimensions with
a sparse representation that, similar to local PCA, reduces the number of terms that
have to be evaluated during decompression. This way, we achieve at the same time
very high compression ratios and a decompression performance which is at high
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compression ratios superior to the factorization of a matrix containing the whole
BTF.

For this, we use the K-SVD algorithm from Aharon et al. [AEB06] to split the
BTF tensor into a dictionary and two sparse tensors. By splitting the tensor along
two different modes, we can utilize correlations both in the spatial dimension and
between different view directions. Since the dictionary itself is very compact and
the two sparse tensors can also be stored efficiently, this approach achieves very
high compression ratios. In our experiments, we achieved compression ratios that
were better by a factor of three to four than those provided by current state-of-the
art methods.

This chapter corresponds to the paper "BTF Compression via Sparse Tensor Decom-
position" by Roland Ruiters and Reinhard Klein, published in Computer Graphics
Forum (Proc. of EGSR), 28(4):1181–1188, July 2009.

4.1 Theory

The use of sparse representations of signals has received considerable interest
in recent years and has been used in a wide range of applications like image
denoising, restoration, classification and compression. These techniques represent
a set of signals, given as the columns of the matrix Y, as a sparse combination
of the columns of a dictionary D: Y ≈ DX. For a fixed dictionary D, a sparse
representation X with at most k entries in each column can be found by solving
the following problem:

min
X
‖Y −DX‖2 subject to ∀i : ‖x:,i‖0 ≤ k. (4.1)

Here, ‖x:,i‖0 is the number of non-zero entries in column i of X. The exact solution
to this problem is NP-hard, but several pursuit algorithms exist which efficiently
approximate the solution, among them are Orthogonal Matching Pursuit (OMP)
[PRK93], Basis Pursuit (BP) [CDS98] and the Focal Undetermined System Solver
(FOCUSS) [GR97]. Though for many applications predefined dictionaries, like
wavelets or an overcomplete DCT dictionary, are used, it is also possible to learn a
dictionary from the samples. Here, the user only specifies the numberD of columns
in the dictionary matrix and the sparsity k. Then, D and X in Equation 4.1 are min-
imized together. Several algorithms to find approximate solutions to this problem
exist (e.g. [GR97], [LS00], [EAH00], [KDMR∗03]). Aharon et al. [AEB06] intro-
duced the K-SVD and reported superior results compared to the aforementioned
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(a) (b)

Figure 4.1: (a) The Matrix Y is approximated as a sparse combination of the
columns of D. (b) The mode-3 tensor T is approximated as a sparse combination
of mode-2 subtensors of D.

algorithms. It is a generalization of k-means clustering which iterates between a
sparse coding step, in which X is optimized using one of the pursuit algorithms,
and a codebook update step, in which D is optimized. This is done for each code-
book entry independently by performing an SVD on a residual matrix computed
without the entry itself and for only those samples which are represented by this
codebook entry.

4.1.1 Sparse Tensor Decomposition

A decomposition Y ≈ DX of a matrix Y into a dictionary D and a sparse matrix
X (see Figure 4.1a), can be regarded as approximating each of the columns of Y as
a linear combination of at most k atoms from a dictionary D. Here, Y is considered
as a set of vectors and D is a dictionary in which each column represents one
atom. X then consists of sparse vectors, each of which contains at most k non-zero
entries describing how one column of Y can be approximated as a combination of
the dictionary atoms.

This can easily be generalized to tensors. Y is actually a mode-2 tensor which we
regard as consisting of mode-1 subtensors, arranged in a mode-1 tensor. Similarly,
a mode-N tensor T can be regarded as a collection of mode-M subtensors, which
are then arranged in a mode-(N −M) tensor. Each of these mode-M subtensors
can then be approximated as a linear combination of at most k dictionary atoms.
Since each of these dictionary atoms is itself a mode-M tensor, the whole dictionary
D is a mode-(M + 1) tensor.

For each of the subtensors from T , a sparse vector is needed to describe which
of the dictionary atoms are used to approximate it. This can be represented as a
mode-(N −M + 1) tensor X , for which in one of the modes each fiber has at
most k non-zero entries. Figure 4.1b shows an illustration of this kind of tensor
decomposition for the case of a mode-3 tensor.
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Figure 4.2: Illustration of the computation of the sparse tensor decomposition for
a mode-3 input tensor.

Figure 4.3: Final Sparse Tensor Decomposition for a mode-3 input tensor.

We thus approximate a tensor T ∈ RI1×I2×···×IN as

T ≈ Di1···iM jXjiM+1···iN .

Here, D ∈ RI1×I2×···×IM×D is the dictionary tensor containing D atoms and
X ∈ RD×IM+1×···×IN is the tensor describing how the atoms from D are combined.
X is a sparse tensor in which each mode-1 fiber contains at most k non-zero
entries.

To obtain such a decomposition for a given tensor T , we first unfold the tensor
in such a way, that the M modes corresponding to the dictionary entries are
represented in one column of the resulting matrix. Then, we use the K-SVD
[AEB06] algorithm to find the decomposition

T(I1I2...IM×IM+1...IN ) ≈ DX

of this unfolded tensor. By assigning D(I1I2...IM×D) = D and X(D×IM+1...IN ) = X,
the unfolding is then reversed to obtain the actual tensor decomposition. See Figure
4.2 for an illustration.

This decomposition so far only utilizes correlations between the individual mode-
M subtensors but not correlations along other modes within each of the subtensors.
In contrast to matrix decompositions via SVD, the dictionary D is not orthogonal.
The atoms can therefore still exhibit correlations to each other. This can be used to
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further improve the compression by decomposing the dictionary D again, this time
using a different partitioning of the tensor modes. See Figure 4.3 for an illustration.
When repeated for all modes, this finally results in one dense mode-2 dictionary
tensor D, a set of sparse mode-3 tensors X (1), . . . ,X (N−1) and one sparse mode-2
tensor X (N), decomposing T in the following way:

T ≈ Di1j1X
(1)
j1i2j2
X (2)
j2i2j3

· · · X (N)
jN iN

.

4.1.2 BTF Compression

Prior to the BTF compression, we subtract the mean ABRDF from the dataset and
store it together with the decomposition. This is often done for BTF compression
because many materials have a characteristic mean ABRDF which contributes
strongly to nearly all samples. This way, we avoid storing coefficients at each
position for this ABRDF.

We then represent the seven-dimensional BTF dataset as a tensor B ∈ RC×L×V×P ,
in which the C = 3 color channels, the L light directions, the V view directions
and the P different spatial positions are each represented in one mode. On this
tensor, we then perform a decomposition

B ≈ LcljVjvkPkp

to obtain a dictionaryL ∈ RC×L×D1 whose atoms represent the color in dependence
on the light direction, a sparse tensor V ∈ RD1×V×D2 which gives for each view
direction a combination of dictionary atoms and finally a sparse tensor P ∈ RD2×P

which describes the spatial distribution of the ABRDFs.

We decided to perform no further subdivisions in more modes. Splitting the
dictionary L into its two modes is not necessary because L does not require much
storage and thus further compression would be of little use. The light or view
directions cannot be represented in more modes because they are usually sampled
in an irregular pattern which cannot easily be mapped onto two modes without
resampling the input data. It is possible to represent the position on the surface
in two modes, as it was done e.g. in [WWS∗05]. However, this would increase
the reconstruction costs further and strong correlations are only to be expected for
regular patterns.
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4.2 Implementation

4.2.1 Compression

Performing the K-SVD calculations directly on the full BTF dataset would be
prohibitively expensive. Furthermore, large datasets would require an out-of-
core implementation of the K-SVD, which would be even slower. Therefore, we
calculate the K-SVD not on the original dataset but on a projection into a lower-
dimensional subspace of the full BTF. For this, we first calculate a truncated SVD
B(C,L,V×P ) ≈ USVT . We keep a rather high number (e.g. 300) of singular values,
which on the one hand reduces the size of the dataset sufficiently to allow for
further processing but still retains most of the details in the input dataset. The SVD
can be calculated out-of-core on the GPU using the technique from Chapter 3,
which reduces the time for this preprocessing to a few minutes for small datasets
(e.g. 128× 128 spatial and 81× 81 angular resolution) and allows to preprocess
even very large datasets (e.g. 512× 512× 95× 95 ≈ 26GB) within less than an
hour. Once this preprocessing has been completed, even large datasets require
only a few hundred MB and thus all further processing can easily be performed
in-core.

To get the first decomposition B ≈ DlvkPkp, we apply the K-SVD to the matrix
SVT, resulting in the sparse tensor P and the dictionary matrix D, which is then
projected back into the higher-dimensional space. The corresponding dictionary
tensor is thus obtained by assigning D(C,L,V×D2) = UD. The second K-SVD
can then directly be performed on the unfolded tensor D(C,L×V,D2) because D is
already sufficiently small to allow for in-core processing. During this second
calculation, we perform an additional reweighting of D in which each atom of
the dictionary is multiplied with the norm of the corresponding row of P . This
step is performed to take the relative importance of the individual atoms during
the second K-SVD calculation into account. Atoms which contribute much to the
final result are this way given a higher importance than rarely used ones during the
second compression. However, in our experiments the K-SVD usually found very
balanced dictionaries, in which most atoms had a similar contribution to the result,
and thus we did not observe a big difference by this additional step.

Finding the best possible decomposition of datasets of this size is probably not fea-
sible as even the sparse coding step is already NP-hard. Furthermore, optimizations
like the use of a projection into a lower-dimensional subspace and performing the
two K-SVD calculations independent from each other, instead of simultaneously
optimizing the dictionary and both sparse tensors, are necessary to process these
large datasets. However, our results show (see Section 4.3), that the approximations
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we can find with this approach are sufficient to achieve very good compression
ratios.

The compression times range from about four hours for a BTF dataset with 128×
128 spatial and 151× 151 angular resolution (k1 = 7, k2 = 10) to about 18 hours
for a 14.77 GB dataset (335 × 346 × 151 × 152) compressed at a quite high
quality (k1 = 13, k2 = 13). These timings were performed on a computer with
a Q6600 CPU and 4GB RAM and include the parameter selection described in
the next section. For the K-SVD, we use the MATLAB implementation of the
algorithm from [AEB06], which the authors kindly made available on their website
http://www.cs.technion.ac.il/~elad/software/, using OMP as
pursuit algorithm.

4.2.2 Parameter Selection

For our compression technique, in total four parameters have to be chosen. The
dictionary sizes D1 and D2 for L and V and k1 and k2, the number of non-zero
entries in the mode-1 fibers of V and P . We currently use a fixed value of 256 for
both D1 and D2 because this is the largest dictionary size we can use when the
indices for the sparse tensors are represented as bytes.

k1 and k2 are then chosen in dependence on the desired compression ratio. Here, k2

primarily influences the quality of the spatial distribution, whereas the quality of the
angular approximation primarily depends on k1. However, because of parallax and
shadowing effects, there is no total decoupling between those two parameters. For
certain applications, a strategic dimensionality reduction, as suggested in [VT04],
can be desirable. However, we will focus on finding a parameter combination,
which achieves the best Root Means Square (RMS) error between the original
tensor T and the reconstructed one T ′, calculated as√

1

CLV P

∑
c,l,v,p

(tc,l,v,p − t′c,l,v,p)2.

For a user specified maximum file size, there are several possible combinations of
k1 and k2 which could be used. To select a combination which results in a small
RMS error, we would have to first compute the error for each. However, performing
the full K-SVD calculations for each combination is very expensive. Therefore,
we apply a heuristic instead. We observed that the final squared error can be
approximated very well by adding the squared errors that were obtained during the
first K-SVD and the weighted second one. We now assume that dictionaries for
different values of k1 and k2 are still similar to each other and then avoid performing
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the K-SVDs for all combinations by only calculating one decomposition with both
high k1 and k2. From this decomposition, we now estimate the errors that would
result during the two K-SVDs independent from each other keeping the dictionaries
fixed. With a fixed dictionary, it is still necessary to perform the pursuit calculations
for each value of k again. Instead, we simply greedily choose for each column of
the sparse matrices the k largest values from the result of the K-SVD and calculate
the error for this selection. When matching pursuit is used, this is actually the exact
result. For OMP, it is only an approximation, which could however be improved
by solving a linear system of equations for each column.

Because of the simplifications we have made, the errors estimated this way are only
very rough approximations. More precise estimates could be found by performing
for each value of k a few K-SVD iterations with the already found dictionary
as initialization. However, we found that the rough estimates are usually also
sufficient to find a combination of k1 and k2 with a small final error. The decompo-
sition is then finally repeated for these parameters, using the previously calculated
dictionaries as initialization to improve the convergence speed.

4.2.3 Rendering

During rendering, we have to reconstruct random samples from the tensor corre-
sponding to a given position on the surface and a view and light direction. For this,
we have to evaluate the sum

Tc,l,v,p =

D2∑
j=1

Pj,p
D1∑
i=1

Vi,v,jLc,l,i. (4.2)

This would require O(D1D2) operations. However, since P is a sparse tensor, the
term Pj,p is non-zero for only k2 entries and only for these entries it is necessary
to evaluate the second sum at all. Similarly, since V is sparse, for this sum only
k1 terms have to be evaluated, resulting in a total of O(k1k2) operations. Thus, by
using a sparse decomposition, the reconstruction cost can be considerably reduced
compared to classical tensor factorization techniques, which have to evaluate the
full sums (though with possibly smaller values for D1 and D2).

For most practical applications, it is furthermore necessary to interpolate both in
the angular and the spatial direction during reconstruction. We use bilinear filtering
for the spatial interpolation, and the angular filtering is performed by calculating
a Delaunay triangulation of the samples in the hemisphere and then interpolating
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Figure 4.4: Comparison of our approach (Sparse Tensor Decomposition) to cur-
rent BTF compression techniques. At the same RMS error, we achieve a compres-
sion ratio which is by a factor of 3 to 4 better than the PCA based compression.

within the resulting triangles. Thus, 4× 3× 3 = 36 entries from the tensor have to
be decoded to obtain one filtered sample.

For PCA based compression techniques, the interpolation can be performed in-
dependently in the angular domain (between 9 samples) and the spatial domain
(between 4 samples), considerably improving the performance. However, this is
not possible for our technique. For each spatial position at which Equation 4.2 is
evaluated, P has the non-zero entries at different positions. Since the inner loop
depends on the index of the non-zero element, it iterates for each position over a
different set of dictionary entries, for each of which the angular interpolation has
to be performed. Fortunately, adjacent points on the surface often have a similar
appearance and therefore also many of the non-zero entries in common. When
performing the bilinear interpolation, we first iterate over the four contributing
positions p, and compile a list of all indices j for which Pj,p is non-zero. Since we
store the indices for the sparse tensors as sorted lists, these can easily be merged
to get a list of all contributing indices. Then, the inner loop has to be evaluated
for each of these indices only once, eliminating repeated evaluations and consider-
ably improving the reconstruction speed. We observed a speed-up of two in our
experiments with this approach.
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Figure 4.5: Rendering time in dependence on the BTF quality (On a Q6600 CPU,
one core used).

4.3 Results

To evaluate our technique, we used a BTF of a knitted fabric because it has a
distinctive meso-structure creating both shadowing and occlusion effects. It has
a spatial resolution of 256 × 256 and contains all combinations of 81 view and
81 light directions. We store the data as 16 bit floating point values. Without
compression the dataset requires about 2.4 GB. On this dataset, we investigate
both the compression ratio and the rendering performance. We measure both in
dependence on the RMS error.

We compared our approach to the PCA based Full Matrix Factorization [KM03,
LHZ∗04], the Per Cluster Factorization (PCF) [MMK03] and a tensor factorization
similar to the one proposed in [WWS∗05]. For all compared approaches, we
unfolded the three color channels into the light directions to exploit correlations
between the three color channels. Alternatively, it would be possible to first
perform a color decoupling and then store the channels independently, using
different numbers of coefficients for the different channels as was proposed in
[Mül08].

For the Full Matrix Factorization results, we increased the number of components
in steps of 5 from 5 to 100. For the PCF compression, the graph in Figure 4.4 shows
results for two series, obtained by keeping the number of clusters fixed at 16 and
32 and then varying the number of components between 1 and 29 (for 16 cluster)
and between 1 and 19 (for 32 cluster). To perform the tensor factorization, we
used the tucker_als algorithm from the MATLAB Tensor Toolbox 2.2 [BK07].
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Original Sparse Tensor Decomposition PCA

Spatial: 256× 256 k1 = 9, k2 = 11 18 components

Angular: 81× 81, 2.4GB 3.0MB, RMS: 0.033 3.0MB, RMS: 0.041

N-Mode SVD PCF

12 view, 8 light coefficients 16 cluster, 4 components

3.1MB, RMS: 0.049 3.6MB, RMS: 0.040

Figure 4.6: Comparison of rendering quality at the same file size.
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Original Sparse Tensor
Decomposition PCA N-Mode SVD PCF

Spatial:128×128 k1 = 7, k2 = 10 9 components 32× 32 spatial 2 cluster,

Angular:151×151 40 view, 20 light 5 components

coefficients

2.1GB 1.6MB 1.6MB 1.6MB 1.7MB

RMS: 0.024 RMS: 0.034 RMS: 0.040 RMS: 0.036

Figure 4.7: Comparison of rendering quality at the same file size for an example
material with strong highlights. Our sparse tensor factorization conserves espe-
cially high-frequency components of the dataset considerably better than the other
compression techniques.

As was done in [WWS∗05], we compressed the spatial resolution to half of the
resolution of the input images. Then we calculated two series, one with the same
number of entries in the modes representing light and view direction, and one for
which we used twice as many entries to represent the view than for the light. For
our approach, we used the parameter selection technique from Section 4.2.2.

In Figure 4.4, the file sizes necessary to achieve a given RMS error are plotted.
Compared to the best of the other techniques, the PCA based Full Matrix Factoriza-
tion, our sparse tensor decomposition achieves compression ratios which are by a
factor of three to four higher at the same RMS error. In Figure 4.6, we show a direct
comparison between the quality of BTF datasets compressed with the different
techniques at about the same file size. Our approach preserves considerably more
high-frequency details. Especially in the protruding parts of the knitted fabric
at the center and the borders, which thus exhibit the strongest parallax effects,
more details are visible. Similarly, in the blue plastic sample shown in Figure 4.7
our technique preserves the specular highlights considerably better than the other
approaches. A result at a very high compression ratio for a large BTF dataset of
14.8 GB is show in Figure 4.8. Compared to the other techniques, our approach
preserves the structure of the fabric, shadows and occlusion effects better.

To compare the rendering performance of different compression techniques under
realistic conditions, we ray traced a small sample scene containing a sphere with
the knitted fabric. In Figure 4.5, we compare the total required rendering times. We
also performed measurements for BTF compression via N-mode SVD [WWS∗05].
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Here, the rendering time can be considerably accelerated by multiplying the tensor
with the matrices in the spatial dimensions in a preprocessing step, which increases
the required memory but eliminates the by far most expensive part during recon-
struction. However, even in this case the technique is still much slower than the
other approaches and thus the results are not included in the graph. A rendering
with a RMS of 0.035 required more than 3000 seconds.

For high compression ratios, our technique is faster than PCA, but for higher
qualities, it is necessary to increase both k1 and k2. While this increases the file
size only linearly, the rendering time growth with O(k1k2) and thus at a certain
point PCA based techniques become faster. However, at this point the rendering
quality is for many applications already sufficient. For example, the images in
Figure 4.6 are rendered at a RMS of 0.033, where our technique is about 25%
slower than the PCA based approach.

In parallel with the first publication of this work, a different approach which also
combines clustering and a tensor-approximation has been published in [Tsa09]
and in an extended version in [TS12]. The comparison in [TS12] shows that their
technique provides a superior rendering performance. However, as the comparison
in Figure 4.9 shows, the compression ratios achievable with this approach are
inferior to both PCA and the technique presented in this chapter.

Our technique is thus especially well-suited for applications where high compres-
sion is necessary because here it offers a combination of better quality together
with good reconstruction performance.

4.4 Conclusion

In this chapter, we presented a BTF compression technique based on a sparse tensor
decomposition. We use the K-SVD algorithm to decompose a tensor into a small
dictionary and two sparse tensors. This representation is very compact, allowing
for a compression ratio which is at the same RMS by a factor of three to four better
than a PCA based approach. At the same time, the approach is much faster than
other tensor decomposition based approaches, achieving a rendering performance
similar to matrix factorization based techniques.

In our current MATLAB implementation, the compression times are still quite
high. However, in [RZE08] a faster K-SVD techniques has recently been proposed,
which might considerably improve upon this. In the future, it would also be
interesting to investigate the use of our technique for real-time rendering. This is
still a challenging problem as the texture filtering hardware of current GPUs cannot
be utilized as it is possible for PCA based techniques. On the other hand, the small

53



CHAPTER 4. BTF COMPRESSION VIA SPARSE TENSOR DECOMPOSITION

memory footprint of our approach is especially for this type of application a very
important advantage.

For a similar decomposition of a tensor into a chained product of mode-2 and
mode-3 tensors, Oseledets and Tyrtyshnikov introduced the name tensor train
[OT10] or also TT-decomposition [OT09]. In contrast to our work, they do not
utilize a sparse decomposition. Our representation thus could be regarded as a
sparse tensor train. However, since their work was published only slightly before
our original publication (their first preprint was from January 2009), we were not
aware of these terms and thus did not use it in the original paper but instead called
it a Sparse Tensor Decomposition.
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Original Sparse Tensor
Decomposition

346× 335× 151× 151 k1 = 8, k2 = 8

14.77GB 3.9MB, RMS: 0.0058

PCA PCF

11 components 4 cluster, 4 components

4.0MB, RMS: 0.0074 3.6MB, RMS: 0.0082

Figure 4.8: Results at a very high compression ratio (≈ 1 : 3900) for a large BTF
dataset.
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Original Sparse Tensor
Decomposition PCA PARAFAC

Spatial: 128× 128 k1 = 28, k2 = 60 66 components 145 components

Angular: 81× 81 4.65MB, SER: 0.55% 4.58MB, SER: 0.64% 4.62MB, SER: 0.75%

0.6GB

N-mode SVD K-CTA CTA

28 view, 20 light Parameters from [Tsa09] Parameters from [Tsa09]

4.42MB, SER: 0.85% 4.60MB, SER: 0.89% 4.60MB, SER: 1.06%

Figure 4.9: Comparison of compression error at approximately the same file size
with the results from [Tsa09]. The results for K-CTA and CTA are taken directly
from [Tsa09], the N-mode SVD result was recomputed by us and gave the same
error as the result reported in [Tsa09]. The squared error ratio (SER) is computed
as the ratio of the mean of the squared errors to the mean of the squared values of
the input dataset. The difference images are scaled by a factor of 6.
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CHAPTER 5

HEIGHTFIELD AND SVBRDF RECONSTRUCTION

In the previous chapters, we have focused on techniques to compress BTFs. This
is a completely data-driven approach that works without any additional model
assumptions, apart from the assumption that the BTF matrix has a low-rank and
that the data is band-limited allowing for linear interpolation. However, for many
applications, a representation which includes additional model assumptions has
considerable advantages. In this chapter, we will therefore investigate the use
of a heightfield combined with a spatially varying BRDF. In contrast to BTFs,
this representation is far more compact and allows for much easier editing of the
acquired materials. However, deriving this representation from a measurement of a
material sample is a non-trivial problem.

A possible approach in this context would be to separate the geometry recon-
struction, using techniques like laser scanners or structured light, from the BRDF
acquisition. For example, in [WSRK11, WRO∗12], we describe techniques to
integrate structured light reconstructions into our BTF measurement setup and
how to improve the quality of the resulting geometry by using super-resolution
and additional Helmholtz normals. These approaches are capable to provide high-
quality geometry and we will therefore apply our approach from [WSRK11] in
Chapter 10. Still, the separated geometry acquisition increases the measurement
time and complexity of the measurement device and results in additional calibration
problems. All this contributes to higher measurement costs. Since digital images
of the sample are needed in any case for the SVBRDF reconstruction, it would
be desirable to reconstruct also the geometry from the same images and avoid the
additional acquisition steps. Unfortunately, reconstructing geometry and SVBRDF
together is a difficult problem, since both are mutually dependent.

In [GCHS05], an algorithm is proposed which alternates between SVBRDF and
geometry estimation. However, the use of photometric stereo limits this approach
to a single viewpoint. As a result, strongly view dependent BRDF effects, such
as the Fresnel effect, cannot be reconstructed correctly. An approach combining
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multiple-views with photometric stereo reconstruction to overcome this restriction
is proposed in [PCF05], but it is limited to a very restrictive BRDF model and
requires the manual selection of corresponding points in the images to combine
several view directions. A common problem of both techniques is that they estimate
a normal field and then perform an integration step to obtain geometry. This
is prone to low-frequency drifts as small errors in the estimated normals can
accumulate. Furthermore, the reconstructed normals can be inconsistent and thus
no corresponding geometry may exist.

To overcome these restrictions, we propose a new algorithm which combines multi-
view stereo and photometric stereo. It extracts both a heightfield and a spatially
varying BRDF from images taken under different view and light directions. In
contrast to the previous approaches, our objective function does not depend on
the normals, but instead directly on the 3D geometry of the reconstructed object.
This has several important advantages. We can reproject points on the surface
into the input images and thus optimize our objective function for all viewpoints
simultaneously. We do not need any additional integration steps and therefore do
not have to cope with inconsistent normals. Furthermore, shadowing and masking
effects can be included in the objective function in a straightforward manner and it
also becomes possible to take interreflections into account. Both the reconstructed
geometry and the recovered SVBRDF are highly accurate, resulting in a faithful
reproduction of the materials characteristic appearance, which is of paramount
importance in the context of material rendering.

As in [GCHS05], we iterate between geometry and SVBRDF reconstruction. In
contrast to photometric approaches, our new objective function can no longer be
optimized for each surface position independently, but has to be minimized for the
whole geometry at once. Since we are reconstructing materials, we can restrict
ourselves to the assumption of nearly planar surfaces, which can be represented
by a heightfield. In this case, the resulting optimization problem can be solved
efficiently with a local optimization algorithm by taking advantage of the sparsity
of the resulting Hessian matrix.

To cope with interreflections within the surface meso-structure, we perform an
additional step during the iterative optimization, in which the light exchange within
the surface geometry is approximated using the currently available heightfield and
spatially varying BRDF. For this calculation, an efficient GPU implementation is
used, as otherwise this step would be prohibitively expensive. With the estimate of
the light transport, we are able to remove the contribution of indirect light from
the input images. The resulting images can then be used to reconstruct better
heightfields and SVBRDFs. This way, we are able to obtain spatially varying
BRDFs which are no longer influenced by the indirect light, but instead faithfully
represent the actual material. This is especially important for editing applications,
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as here the interreflections have to be recalculated to be consistent with changes to
the geometry.

This chapter corresponds to the paper "Heightfield and spatially varying BRDF
Reconstruction for Materials with Interreflections" by Roland Ruiters and Reinhard
Klein, published in Computer Graphics Forum (Proc. of Eurographics), 28(2):513–
522, April 2009.

5.1 Previous Work

Though only a few works [Geo03, PCF05, GCHS05] describe techniques for the
simultaneous acquisition of spatially varying BRDFs and geometry from images
only, a lot of work has been done on the two problems individually. In Section
2.2, an overview over a wide range of techniques to acquire SVBRDFs under the
assumption of known geometry is given. We will therefore focus on the geometry
reconstruction from images in this section. This reconstruction is one of the central
topics in computer vision and a lot of work has been done in this area. We will
thus only give a short overview here. Most techniques can be classified into
photometric stereo techniques, which capture objects from a static viewpoint under
varying light, and binocular and multi-view stereo techniques, which use multiple
viewpoints.

Photometric stereo [Woo80] techniques observe a given object under different
illumination directions to reconstruct a normal map, which then can be integrated
to obtain the object’s geometry. While early work in this area assumed the ob-
ject to be lambertian and homogeneous, recent approaches overcome this lim-
itation either by using sample objects of the same materials and with known
geometry [HS03], by determining the direction of specular highlights to estimate
the normals [CGS06], or by iterating between SVBRDF and shape estimation
[Geo03, PCF05, GCHS05, HB08]. In [NRDR05], geometry obtained from a 3D
scanner is combined with photometric normals to obtain high-quality models
without low-frequency drift.

Binocular and multi-view stereo techniques determine the object shape either
by determining correspondences between pixels in images taken from different
viewpoints and then triangulating the position on the surface or by finding an
object shape that maximizes a photo-consistency metric. Though a lot of work has
been done in this area, establishing the correspondences between pixels remains a
difficult problem, especially when the objects have very homogeneous or specular
surfaces. Furthermore, these techniques are prone to noise. An evaluation of
several multi-view stereo techniques can be found in [SCD∗06].
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While the photometric stereo techniques often suffer from a low-frequency drift,
resulting from the accumulation of small errors in the estimated normals during
the integration step, multi-view stereo techniques tend to exhibit high-frequency
noise. For this reason, several combinations of the two techniques have been
proposed. In [NZG05], images taken under several light directions are combined
to obtain viewpoint robust features, which are then used for stereo reconstruction.
In [CLL07], a technique for the integration of several normal maps, reconstructed
from different points of view, is proposed. For this, a level set method is used
to reconstruct a surface which minimizes the error between the estimated normal
maps and the surface normals. Another approach is to alternate between the
photometric reconstruction of the surface and a parallax correction step. This step
uses the surface estimate to resolve the correspondences between the multiple
views improving the next photometric stereo reconstruction. In [LHYK05], this
technique is applied to lambertian objects and in [PCF05] a spatially varying
BRDF is additionally estimated. However, both techniques require knowledge
about corresponding pixels to combine images from different viewpoints, which
are either selected manually [PCF05] or obtained by tracking features in the images
[LHYK05]. In [JCYS04], [VHC06], and [EVC08] algorithms are proposed, which
alternate between the estimation of surface normals and the evolution of a mesh
which corresponds to these normals to resolve the parallaxes.

All of these techniques to combine photometric and multi-view stereo separate
the geometry reconstruction from the normal estimation. To cope with the afore-
mentioned ambiguous or inconsistent normals, a second optimization step has to be
conducted, which reconstructs the geometry by minimizing the normal error. This
increases the complexity of these algorithms considerably. To avoid these problems
we directly reconstruct the geometry. A similar approach is taken in [YXA04],
where a star-shaped polygonal mesh is directly optimized to correspond to the
input images. However, their technique is limited to homogeneous materials.

A technique for the reconstruction of surfaces in the presence of interreflections
is proposed in [NIK90]. As in our approach, the algorithm iteratively refines the
reconstructed surface by subtracting an approximation of the indirect light from the
measured intensity. This approximation is calculated from the currently available
surface geometry under the assumption of a lambertian object. There are also a
few methods to cope with the influence of indirect light during BRDF acquisition
from objects. In [YDMH99] a technique is described, which iterates between light
exchange simulation and BRDF estimation. In [WSL04] a set of homogeneous
BRDF parameters is determined with a simulated annealing algorithm. The fitting
error is calculated by rendering the object with a ray tracer and comparing the result
to the input image. This way, interreflections are taken into account. However,
both approaches require knowledge of the scene geometry. Direct and indirect
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Figure 5.1: Illustration of the capture setup for image Ii

illumination can also be separated by using polarization filters or with structured
light techniques, e.g. [NKGR06, CLFS07, CSL08]. However, these approaches
require special measurement setups.

5.2 Objective Function

We assume that a measurement as it is provided by a typical BTF acquisition
device, such as the ones described in Section 2.1, is available. We thus have a
set of images {Ii} as input each of which has been taken under illumination by
a single point-light source at position Li from camera position Ci. For this, we
require the necessary calibration to determine both the position of the camera and
light source as well as the intrinsic camera parameters. Additionally, we assume
that the sample is nearly planar and that a reference plane is available, which is
already quite close to the surface of the material. In the following, we will use a
coordinate system which is aligned to this reference plane, with its origin in one
corner of the material sample. We denote the bilinearly interpolated intensity at
the position x in the image Ii as Ii(x).

As in [GCHS05], the BRDF of the surface is modeled as a linear combination of
a set of basis BRDFs. Our objective is thus to find a heightfield h, a weight map
γ and a matrix of basis BRDF parameters α which describe the input images as
faithfully as possible. For the reconstruction, we assume the heightfield h to be
triangulated and the triangles ∆t to have consecutive indices t. For simplicity of
notation, henceforth we will identify the triangles by their indices. Therefore, the
normal of a triangle is given by nt and the local light and view directions from the
center of this triangle for the image Ii are denoted li,t and vi,t. Since the distance
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(a) Triangle normals (b) Vertex normals

Figure 5.2: Normals calculated either for each triangle, or for the vertices, by
averaging triangle normals

to both camera and light source is large when compared to the size of structures on
the surface, we approximated these directions using points on the reference plane
neglecting the heightfield value at that position. See Figure 5.1 for an illustration.
For each of these triangles, the reconstructed intensity when seen from Ci and
illuminated from Li is denoted by I ′(t,vi,t, li,t) and is modeled as a function of the
parameters h,γ, and α. We define the objective function as

E(h, γ, α) =
∑
t,i

χ(t,vi,t, li,t)‖Ii(Πi(t))− I ′(t,vi,t, li,t)‖2,

where χ takes care of ignoring samples which are masked and shadowed and the
function Πi(t) maps the center of the triangle ∆t into the input image Ii using the
interpolated heightfield value to obtain its 3D position. The actual reconstruction is
performed by minimizing this objective function. Each triangle in our heightfield
is smaller than one pixel in the input images, and thus it is sufficient to evaluate
one sample per triangle instead of integrating over the triangle surface. In the
following, we will describe the different components of the objective function in
more detail.

5.2.1 Geometry Model

We model the geometry of the surface as a triangulated heightfield, assuming a
constant normal and BRDF for each triangle. Since we choose our heightfield
resolution in such a way that it corresponds to the pixel size in the input images
with the highest resolution, this is a sufficiently precise approximation of the actual
appearance of the surface and allows us to evaluate the error using one sample
for each triangle. Note that it is important to model the surface with per-triangle
normals instead of interpolated vertex normals. If the intensity is evaluated at the
vertices instead, the normals of adjacent triangles have to be averaged to obtain
this normal. As illustrated in Figure 5.2b, the averaged normals can be smooth
even for very strongly oscillating heightfields and thus photometric methods cannot
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distinguish both cases. This results in additional degrees of freedom in our objective
function. For homogeneous materials, the multi-view reconstruction is also not
sufficient to resolve this ambiguity, and thus the algorithm can fit oscillating
heightfields to smooth surfaces, resulting in strong high-frequency artifacts.

5.2.2 Spatially Varying BRDF Model

We use the well-known Cook-Torrance reflectance model [CT82] with the Beck-
mann normal distribution function and the Schlick approximation for the Fresnel
term [Sch94], which is important in a multi-view setting. We have chosen this
model, since, as analyzed in [NDM05], it is able to represent most materials with
a single lobe quite faithfully and thus requires the estimation of just a rather low
number of parameters. However, other BRDF models could be used with our
technique, too. The basis BRDFs are described by a matrix of parameter values,
where αj,k gives the kth parameter of the jth basis BRDF. We will denote the vector
of parameters for the jth basis BRDF with αj . We use the function ρc(n, l,v, αj)
to denote the Cook-Torrance BRDF in dependence on this parameter vector αj and
the normal n, light direction l and view direction v.

The spatially varying weights for the basis BRDFs are represented by a vector γj(t)
which gives the weight for the contribution of the jth basis BRDF to the BRDF
of the triangle t. We assume, that two adjacent triangles, forming a square in the
height field, have the same BRDF and thus store only one weight for each of these,
allowing us to represent the weights in a 2D-map. We restrict our BRDF weights
to convex combinations, and thus all γj are non-negative and sum to one at every
position on the surface. The modeled intensity of a triangle is then given by:

I ′(t, l,v) =
∑
j

γj(t)ρc(nt, l,v, αj))(l · nt).

5.2.3 Shadow and Masking Model

We have to ignore samples which are either occluded or shadowed. This is done
by the term χ(t,v, l). It is composed of a term V (t,v) which is 1 if the triangle is
visible and otherwise 0, and a corresponding term S(t, l) for shadows. Furthermore,
it renormalizes the error by dividing through the total number of samples that have
been taken into account, as otherwise, increasing the number of masked or occluded
samples would decrease the reconstruction error. It is thus defined as follows:

χ(t,v, l) =
V (t,v)S(t, l)∑

t′,i′ V (t′,vi′)S(t′, li′)
.
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5.3 Optimization

The minimization of the objective function E(h, γ, α) requires solving a non-
linear optimization problem with a large number of unknowns. Therefore, a
direct optimization of all unknowns at the same time with a local optimization
algorithm easily gets stuck in a local minimum. However, due to the structure of
this problem, the use of global optimization algorithms is impractical. Therefore,
as in [GCHS05], we solve the problem by alternating between the optimization
of the basis BRDF parameters, the weight map parameters and the heightfield
until the error no longer decreases sufficiently. This way, we can use optimization
algorithms which are specially tailored to each of the subproblems.

5.3.1 Initialization

As all three optimization problems depend on each other, it is not clear which
initial values should be used. Our approach, which worked well in practice, is
to first estimate an averaged homogeneous BRDF by fitting a single basis BRDF
assuming a planar surface and a constant weight map. For the BRDF estimation,
we are using a genetic algorithm and thus do not need to specify a start value. In
the next step, this homogeneous BRDF is used to reconstruct a first estimate of
the heightfield. For this, the reference plane is used as initial geometry, which
means that we set all heightfield values to zero. In order to get a reasonable first
heightfield, we are only using view directions up to an angle of 30◦ relative to
the reference plane normal for the heightfield reconstruction. For these views,
parallax effects are rather small, and in our experiments this initialization resolves
the pixel correspondences to a sufficient degree for the stable convergence against
an initial heightfield. To further improve the stability of the optimization, during
both of these initial steps we average the colors of the input images and use only
the intensity during optimization.

Once we have found this initial estimate of the heightfield, we have to initialize
the weight maps γj . This is done by successively adding further basis BRDFs up
to a user specified total number. We thus start with two basis BRDFs. Since for
many materials a strong correlation between surface geometry and BRDF exists,
for these we use the heightfield to initialize the weight maps γ0 and γ1. This is
done by scaling and shifting the heightfield values in the range between 0 and 1 to
obtain the height h′(t) at the position of triangle t and then setting γ0(t) = h′(t)
and γ1(t) = 1 − h(t). Using these weight maps, the BRDF estimation is now
repeated for two basis BRDFs and then weight map and basis BRDF estimation are
alternated until the error no longer decreases sufficiently between two iterations.
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For materials which do not exhibit a strong correlation, the use of a clustering step,
like the one described in [GCHS05] may be better, though.

When more than these two BRDFs are to be used or for materials with no correlation
between meso-structure and BRDF, further basis BRDFs are added successively.
Based on the reasonable assumption that the error is especially high at places where
a further BRDF has a high contribution, the new weight map γj is initialized from
the error obtained during the previous optimization step at the position of the entry
γj . This error is scaled to 0 and 1, assigned to the new channel and then all basis
BRDF weights are rescaled to enforce the convex combination constraint on γ.
Now, BRDF and weight map estimation are again iterated and then this procedure
is repeated for the next BRDF.

5.3.2 Basis BRDF Optimization

As already noted in [NDM05], because of their non-linearity, the fitting of a
single BRDF model with local optimization algorithms is already very prone to
local minima. The simultaneous fitting of several basis BRDFs against samples
consisting of linear combinations of these BRDFs is even more difficult, as a higher
number of parameters has to be optimized at the same time, and a good initial
guess of the BRDF parameters is crucial. A manual selection as suggested in
[NDM05] is impractical for an iterative algorithm. In each iteration, the BRDF
optimization is once performed with the last values as initialization and once with
the initialization obtained from a genetic algorithm and then the better result is
kept. This way, a bad initialization from the genetic algorithm does not lead to an
increase in the error, but we are also able to leave a local minimum. We used the
GADemeGA algorithm from the GALib library [Wal96] with 30 populations each
having 30 individuals and a mutation probability of 10% and the Quasi-Newton
algorithm from [MOHW07] using analytically computed first derivatives of the
Cook-Torrance BRDFs.

Even with this initialization, the BRDF estimation was still prone to local minima
in our experiments. A further improvement can be made by reducing the dimen-
sionality of the optimization problems. To this end, we iterate between the solution
of different subsets of the parameter matrix α, keeping the remaining parameters
fixed. We thus first optimize the diffuse components of all BRDFs together. Then,
each of the basis BRDFs αj is optimized individually and finally the full matrix α
is optimized. To further reduce the number of parameters that have to be optimized,
this procedure is first performed for averaged colors and then repeated for color
BRDFs, initializing the diffuse and specular color with the gray-scale intensity
obtained in the previous step.
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5.3.3 Weight Map Optimization

Given a set of basis BRDFs and a heightfield, determining the weight map can
be performed independently for each entry of the weight map. The color of the
corresponding triangles under the different light and view directions is extracted
from the input images in a preprocessing step. Since we are considering linear
combinations of the basis BRDFs, determining the γj is a least squares problem.
However, it is necessary to enforce the non-negativity and the convex combination
of the γj during the optimization. Therefore, we perform this optimization also
with a Quasi-Newton optimizer.

5.3.4 Heightfield Optimization

The heightfield optimization is a non-linear problem. This results from the fact,
that changes in the heightfield alter the derived normals, which in turn result in
non-linear changes in the color because of the non-linearity of the BRDF model.
Furthermore, the problem cannot be solved for each heightfield entry independently,
as each entry depends on the neighboring entries through the derived normals.
Therefore, all entries in the heightfield are coupled to each other and the problem
has to be solved for the whole heightfield at once. Thus, e.g. for a 129 × 129
sized heightfield, an optimization problem with 16,641 unknowns has to be solved.
The Quasi-Newton optimization algorithm we used for the basis BRDFs and
weight maps cannot be used directly for problems of this size. However, the
Newton algorithm can be adapted to take advantage of the special structure of this
problem.

The gradients for the heightfield optimization can be calculated using finite differ-
ences. Note that each entry in the heightfield influences only six triangles. Thus, it
is only necessary to recalculate the error for these six triangles when calculating
the finite-difference derivative of one of the unknowns.

Standard Quasi-Newton methods cannot be used, because the size of the inverse of
the Hessian matrix, which is approximated by these algorithms, increases with the
square of the number of unknowns. However, for this special problem, the Hessian
matrix has a sparse structure. As only six terms in our objective function depend
on one heightfield entry, the first derivative of the sum only contains these terms,
which together depend on only seven heightfield entries. Each row of the Hessian
matrix of this problem thus contains just seven non-zero entries. See Figure 5.3
for an illustration. Therefore, it can be approximated with finite-differences in
linear time in the number of unknowns and it can be inverted efficiently using
the conjugated gradients method. We used the TN [Nas84] algorithm for this
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Figure 5.3: One entry in the heightfield (red) influences six adjacent triangles
(blue), which in turn depend on six additional entries of the heightfield (green).

minimization, which we modified to take advantage of the sparsity of the Hessian
matrix.

In the first optimization steps, the correspondences are only resolved correctly for
views close to the top-view and thus the algorithm can, like photometric techniques,
reconstruct a first estimate of the surface from these views, but it is more difficult
to determine the position of this surface relative to the reference plane. To find this
position we perform an additional optimization step, in which the whole heightfield
is shifted perpendicular to the reference plane and scaled uniformly. Afterwards,
most correspondences are already resolved correctly. Additionally, it is possible
to better compensate for large-scale drift by performing an optimization on a low
resolution grid (we use a resolution of 12 × 12) and then shift each pixel by the
bilinearly interpolated values from this grid.

We sometimes observed individual pixels or small groups of pixels (up to about
5 pixels) which got stuck in a local minimum. However, these minima could
be resolved by performing an additional step, which eliminates these outliers by
searching for entries with very high errors and setting these to the average of their
surrounding entries. If this step reduces the total error, the new values are kept,
otherwise the old ones are restored.

For most results shown in this chapter, this algorithm converged to reasonable
heightfields without obvious artifacts. However, in experiments on datasets with
large parallaxes the algorithm got stuck in a local minimum, which was visible as
discontinuities in the reconstruction. To resolve these, we utilize a multi-resolution
initialization scheme, where the optimization is first performed on subsampled
versions of the input images, where the parallaxes are smaller, and the results are
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(a) (b) (c) (d) (e)

Figure 5.4: Two images from a synthetic sample dataset, rendered (a) without and
(b) with interreflections. (c) shows the contribution of indirect light simulated with
the first reconstruction and (d) is the image then obtained by subtracting (c) from
(a). The remaining difference to the image without interreflections (b) is shown in
(e). (Both (c) and (e) are scaled by a factor of 10.)

then used to initialize the reconstruction on the next higher resolution. Furthermore,
we add a regularization to the objective function, which penalizes the square of the
first derivative of the heightfield. The strength of this regularization is successively
decreased during the optimization. This way, it helps to prevent local minima during
the initialization, but does not smooth out fine details in the final reconstruction.
These additional improvements were only used for the results shown in Figure
5.9.

The full optimization of all heightfield entries, the optimization of the offset and
scale, optimization on a low-resolution grid, and the elimination of outliers are
iterated until the error no longer decreases sufficiently between two iterations.

5.3.5 Acceleration

When a large number of input images has to be processed, an efficient implementa-
tion of the reconstruction algorithm is necessary. Since especially the evaluation of
the objective function is very expensive, we used several optimizations reducing
the runtime considerably.

The two slowest parts of the reconstruction algorithm are the genetic algorithm
for BRDF estimation and the heightfield optimization, as both require a very
high number of evaluations of the objective function. However, the evaluation
of the objective function is easily parallelizable and can thus be accelerated by
performing this calculation on a GPU. A straight-forward CUDA implementation
of the objective function evaluation accelerated the BRDF optimization by a factor
of about 5 and the heightfield optimization by a factor of about 20 when running
on a GeForce 8800 GTX compared to a moderately optimized parallelized version
running on a Q6600 quad-core CPU. Furthermore, we found that using rectangular
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facets with a constant normal instead of two triangles, neglecting the normal of
one of the triangles, to approximate the area in between four heightfield entries
is usually sufficient to reconstruct good heightfields and reduces the number of
samples that have to be evaluated and the storage needed on the GPU.

Instead of optimizing the BRDFs over the whole dataset, we instead just optimize
the BRDF for a subset of the full dataset. Typically, about 100,000 samples are
drawn, using a simple binning scheme on the weight map to ensure that all basis
BRDFs are represented sufficiently by the samples.

Even though during each optimization step the objective function always decreases,
it is not guaranteed that the algorithm converges when these optimizations are used.
This results from the fact, that we use different subsets of the whole dataset and
we thus do not optimize exactly the same objective function during each step. We
therefore simply iterate the algorithm until the weight map reconstruction error no
longer decreases.

5.4 Interreflections

Interreflections can result in wrong estimates of the heightfield and can disturb
the SVBRDF reconstruction. Since grooves in the surface are brightened by the
interreflections, the BRDFs estimated for these parts of the surface are also too
bright, when this effect is not considered during the reconstruction. In Figures 5.4a
and 5.4b an example for this effect is shown.

To remove this brightening of the SVBRDFs and to improve the quality of the
heightfields further, we first calculate the contribution of the indirect light to the
measured brightness of each pixel and then subtract it from the input images. To
get an estimate of this contribution, we simulate the light exchange within the
meso-structure, using our current estimates of the heightfield and the spatially
varying BRDF, for all combinations of light and view directions present in the
input dataset. After these simulations, we render views of the heightfield from the
camera viewpoints, in which only the contribution of the indirect light is present.
See Figure 5.4c for an example of such an image. These renderings are then
subtracted from the input images. By rendering the heightfield from the viewpoints
present in the input dataset we take care of parallax effects and occlusions.

Since we use our first erroneous BRDF estimate for the light exchange simulation,
we overestimate the contribution of the indirect light in the first step. When we
subtract these overestimated values, this results in the next step in BRDF estimates
which are too dark. However, as long as the contribution of indirect light is smaller
than the contribution of direct light, which can be assumed to be the case on nearly
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all surface which can be described by heightfields, this second estimate is still
better than the first one and thus this algorithm converges against the real BRDF.
In our experiments, even after the first iteration the estimates were very close to
the correct result. An example for this is shown in Figure 5.4d, which is obtained
by subtracting the interreflections estimated using the first reconstruction of the
heightfield and SVBRDF from the original image. As the difference image in
Figure 5.4e shows, this first step already removed nearly all interreflections.

5.4.1 Simulation of the Interreflections

The calculation of the interreflections is repeated several times during the iterative
reconstruction process and has to be performed for all input images. Therefore,
an efficient method to perform this simulation is needed. If a common path
tracer is used, the simulation would take several minutes for each image. We
thus implemented a path tracer on the GPU, using a technique similar to the one
proposed in [HDKS00]. For each point on the surface, we first precompute for
a fixed set of directions in which distance a ray originating from this point will
hit the heightfield again. This information can then be used to perform the whole
path-tracing algorithm in a pixel shader, as intersection tests can now be calculated
with a single texture look-up. We use a non-uniform sampling of the hemisphere, as
in the heightfields usually only rays reflected in very shallow angles hit the surface
again. Therefore, we scale the uniform sampling in such a way, that primarily these
rays are considered and adjust the probability distribution function accordingly to
compensate for the resulting bias. We performed our simulation with 128 rays for
each pixel and simulated up to three bounces. On a GeForce 8800, the algorithm
then simulated the light exchange within a 129x129 sized heightfield in about 3.5
seconds.

This technique can also be used to synthesize a new BTF with interreflections from
edited versions of the reconstructed representation, which can then again be used
during rendering. Furthermore, it is suitable for interactive preview during the
editing.

5.5 Evaluation

We evaluated our technique both on a synthetic dataset, which provides a ground
truth and thus allows for a direct comparison of the reconstructed heightfields,
weight maps and BRDFs, and on several real-world BTF datasets. To create the
synthetic dataset, we simulated the image acquisition process used for the real
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Figure 5.5: Evaluation on a synthetic dataset. In the first row, the reconstructed
heightfields are compared. The average errors compared to the ground truth are
given below the images, first the absolute error and then the error obtained by
aligning the heightfield to the original one by shifting it upwards/downwards to the
position minimizing this error. The next row shows the reconstructed weight maps
and gives their average difference to the original. The red channel describes the
contribution of the left BRDF and the green channel the contribution of the right
one. In the last row, the reconstructed basis BRDFs are shown. Here, the errors
are obtained by averaging the relative error over the whole BRDF.
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(a) Photometric Stereo (b) Our Technique

Figure 5.6: Comparison of resulting low-frequency drift

datasets with the Multi-View Dome setup (Section 2.1.3) as exactly as possible
using a path tracer. The dataset contained all combinations of 26 viewpoints and
26 light sources. Furthermore, the images were rendered in the same resolution
as the photographs taken by the cameras (3 Megapixel). To render the images, a
Monte-Carlo path tracer was used, which simulated the interreflections using 4,096
rays for each pixel. The heightfield was placed about 0.3 mm below the reference
plane to simulate the imprecise calibration of the reference plane usually obtained
in practice. In Figure 5.5, the reconstruction results obtained by either using
lambertian photometric stereo [BP03] to reconstruct the heightfield, by iterating
between SVBRDF estimation, normal reconstruction and integration, similar to
[GCHS05], and by using our algorithm are compared to the ground truth. For
all techniques, the same code was used to reconstruct the BRDFs and weight
maps. The errors for the heightfield are given in millimeters, using the size of the
real measurement setup as reference. The cameras were placed in about 60 cm
distance to the sample, which had a size of about 1.5× 1.5 cm and a resolution of
about 150 pixels in the top-view. Using the photometric techniques, the position
of the heightfield with respect to the reference plane cannot be determined, as
the reconstructed heightfield can be shifted along the z-axis without any change
to the normals. In order to compare to the original heightfield, we shifted the
reconstructed one along the z-axis in such a way that the mean error between
the two becomes minimal. For our technique, both the error for the absolute
reconstructed heightfield values and the error obtained by aligning the height fields
are shown. The algorithm reconstructed the position of the heightfield with respect
to the reference plane up to a precision of about 0.03 mm, which corresponds to a
parallax of about 0.15 pixel in the 30◦ views we used for the reconstruction. When
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the heightfields are aligned as for the photometric techniques, the actual surface
geometry is reconstructed up to a precision of 0.0069 mm, which is about 1.3% of
the total heightfield depth of about 0.55 mm.

The purely photometric techniques had considerably higher errors in the estimated
heightfield. This and the fact that only one view direction can be used result
in considerably worse BRDF estimates. Especially the lambertian photometric
stereo technique reconstructed a heightfield, which was too deep and thus in
consequence the BRDFs estimations based on this heightfield are very bad. Since
the heightfield estimated without considering interreflections was already quite
good, the correction for interreflections only improved the reconstruction of the
actual surface geometry by a small amount from 0.0080 mm to 0.0069 mm. On the
other hand, the reconstructed weight map and the BRDF in the cracks improved
considerably when the correction for interreflections was performed.

We found, that the use of several view directions eliminates most of the problems
with low-frequency drift that purely photometric techniques are prone to. In
Figure 5.6, a heightfield reconstructed from a real-world dataset with normal
estimation and integration and one obtained with our technique are compared. The
dataset contained all combinations 26 view and light directions, however, for the
photometric reconstruction only one view direction can be used. We assumed for
both reconstructions the same SVBRDF. Our technique removed nearly all low-
frequency drift, only in the boundary regions, where not enough correspondences
could be established, a small drift remained.

In Figure 5.7 and 5.8, we compare renderings of BTFs with our reconstructions to
show that we are able to reproduce the overall appearance faithfully. The BTFs
were captured with the gonioreflectometer setup (Section 2.1.1) or the Multi-View
Dome setup (Section 2.1.3). The reconstruction was performed with a subset of the
BTF datasets containing all combinations of 31 light and view directions.

To evaluate the precision of our heightfield estimation, we also compare in Figure
5.9 two of our reconstructions to heightfields reconstructed from structured light
measurements. For this, we have employed the technique from [WSRK11], where
first a point cloud is computed and then a surface is extracted via the Poisson
Surface Reconstruction [KBH06]. Our results clearly show even fine surface
details which are not present in the structured light reconstructions. This is the case
even though we accepted a rather high noise level for the structured light results to
avoid smoothing out the details in the Poisson reconstruction.

To evaluate the absolute error of our reconstruction, we show plots of the Haussdorff
distance between our reconstructions and the point clouds obtained via structured
light. Most parts of the two heightfields show a small error, however there is a
systematic drift of at most 0.25mm towards the border of the heightfields. 0.25mm
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(a) BTF

(b) Reconstruction

Figure 5.7: Comparison between renderings of the BTF and renderings of our
reconstructed heightfields and SVBRDFs for two leathers. Environment Map
courtesy of Paul Debevec (http://www.debevec.org/probes/).
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(a) BTF

(b) Reconstruction

Figure 5.8: Comparisons for two plastics with embossed patterns. Environment
Map courtesy of Paul Debevec (http://www.debevec.org/probes/).
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(a) Our Technique (b) Structured Light (c) Hausdorff Distance to point cloud

Figure 5.9: Comparison of our reconstruction technique with a heightmap recon-
structed from a structured light measurement [WSRK11].

height difference correspond to a parallax of approximately 2 px in the lowest
views used for the reconstruction (30◦ angle towards the normal direction). The
error at the border is higher, as the heightfields are only constrained towards one
side there. Furthermore, only a reduced number of view and light directions have
been available at the borders for reconstruction as many were occluded by an
adjacent sample during the capture (for this dataset always four material samples
were acquired simultaneously).

5.5.1 Timing

The full number of view directions was only used for the BRDF reconstruction, as
here shallow view angles are necessary to obtain a good estimate of the Fresnel
effect. In contrast, for the spatially varying heightfield and weight map estimation,
we limit ourselves to view angles up to 30◦ from the reference plane normal.

For the BRDF and SVBRDF estimation, the calculation of shadowing and masking
was performed before the actual optimization process, which is not possible for the
heightfield reconstruction. However, since we limit ourselves to view angles of 30◦,
the influence of these effects is small during this step. We performed experiments
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with a leather with considerable meso-structure and even there shadowing and
masking only occurred in the grazing angles. Thus, we did not include these terms
as it would slow down the heightfield optimization considerably.

For our tests with a synthetic dataset, carried out on a Q6600 quad-core with a
Geforce 8800 GTX, the BRDF reconstruction needs about 20 min, the estimation of
the weight map takes 5-10 min and about 1:15h is required for the first heightfield
optimization. In later iterations, the heightfield estimation is faster, requiring about
10-20 min as better initial values are already available. About 5 iterations of these
steps are performed to get the first estimated heightfield and SVBRDF, requiring
thus about 6 hours. The calculation of interreflections requires about 40 min and is
iterated 3 times with the reconstruction. As the reconstruction is faster for these
later iterations, the whole process requires about 13 hours.

5.6 Conclusion

We presented a new algorithm, which combines multi-view and photometric stereo
to directly recover heightfields without any intermediate normal integration steps
and takes interreflections into account. Our evaluation on synthetic datasets showed
that our algorithm is able to reconstruct the surface geometry considerably better
than purely photometric techniques and that the removal of indirect light results
in much better estimates of the spatially varying BRDF. Our results show, that
for materials like the tested leathers and plastics the reconstruction of a accurate
geometry and SVBRDF is possible, resulting in a quite faithful reproduction of
the materials characteristic appearance, which is of paramount importance in
the context of material rendering. However, for materials with more complex
reflectance behavior, which would require elaborate models with more parameters,
the resulting optimization problem would become even more challenging. For
this reason, in Chapter 10, we still utilize a heightfield but instead of a BRDF
model employ a BTF projected onto this heightfield for our work on material
interpolation.
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CHAPTER 6

PARAFAC BASED BRDF REPRESENTATION

In the previous chapter, we have used analytical BRDFs to describe the reflectance
behavior of measured material samples. The resulting optimization problem was
very challenging and prone to local minima, requiring the use of global optimization
algorithms such as the employed genetic algorithm. Especially, when a very
accurate representation even of fine details is desired, the use of analytical models
becomes very challenging. For example in Figure 6.1, a measured material and a
fitted Cook-Torrance model are compared. Though the model is able to reproduce
the overall shape of the BRDF, several differences remain. The width and intensity
of the lobe are chosen correctly, but the actual shape of the lobe, which depends
on the microscopic roughness, does not fit to the original material, being too wide
at the top and not wide enough at the bottom. This results in reflections which
look too sharp. The fall-off of the diffuse part for very low light directions is not
modeled correctly, resulting in a flat looking sphere. Furthermore, the Fresnel
effect is not reproduced exactly and thus the highlights at grazing angles are not
bright enough. Even though these effects seem to be only small deviations, each
one is still perceptually relevant and all have to be considered to obtain a faithful
rendering. To reproduce all these effects correctly, a very complex model with a
high number of parameters would be required. These, however, soon become very
difficult to handle because fitting becomes difficult for such complex models.

In this section, we will therefore focus on a data-driven representation instead. By
directly using a measured dataset for rendering, it is possible to represent a very
large space of materials of nearly arbitrary complexity very faithfully. However,
in this case, it is necessary to find a compact, yet accurate representation which
also allows for fast rendering. Several compression techniques have been proposed
(e.g. [Fou95, KM99, MAA01, SBLD03, LRR04, SZC∗07, SKB10, BÖK11]). For
good compression ratios, it is important to use a technique which is able to exploit
redundancies in the data as well as possible. However, it is equally important to
use a similarity measure which takes into account that all parts of the BRDF are
perceptually relevant. When, for example, an L2 distance is used, often the lobe is
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Figure 6.1: Result of fitting a Cook-Torrance model (right, blue) to the material
red phenolic from the isotropic MERL database (left, red). (The fourth root
was applied to the plot, which shows the BRDFs for θi = 0◦, 45◦, 80◦.)

reproduced well but the much smaller diffuse parts are not represented correctly.
Representations based on other distance measures have been proposed, such as
the L2 error in the logarithmic space [MAA01] or an error function based on the
Kullback–Leibler divergence [LRR04].

In this chapter, we will show that perceptually superior results can be obtained by
instead using a PARAFAC decomposition with a relative squared error as distance
measure. The PARAFAC decomposition of the BRDF tensor achieves very good
compression ratios as it can exploit correlations along all tensor modes. The relative
squared error allows for good approximations of all parts of the BRDF at the same
time, while it still can be minimized easily by choosing appropriate weights during
the computation of the PARAFAC decomposition.

The work presented in this chapter has already been published as part of the tech-
nical report "A compact and editable representation for measured BRDFs", by
Roland Ruiters and Reinhard Klein (Technical Report CG-2010-1, University of
Bonn, December 2010) and was also a part of the EG tutorial "Tensor Approxi-
mation in Visualization and Computer Graphics" by Renato Pajarola, Susanne K.
Suter, and Roland Ruiters (Eurographics Tutorials, number t6, May 2013).
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(a) Input data (b) PARAFAC approximation

(c) Original (d) In/Out (e) Half/Diff

Figure 6.2: Comparison of the effect of different parameterizations. We show a
slice through a BRDF dataset and the resulting approximation via a 6-component
PARAFAC (with relative L2 error). In the lower row, the resulting renderings are
depicted.

6.1 Representation

The canonical parameterization of a BRDF ρ(θi, φi, θo, φo, c), via the incoming
angle (θi, φi) and the outgoing angle (θo, φo) is useful for rendering, but not well-
suited for factorization based approaches. Instead, we use a parameterization
via the halfway vector (φh, θh) and a difference vector (φd, θd) as proposed in
[Rus98], which aligns features of typical BRDFs along the axes of the coordinate
system. In Figure 6.2, we show an example for the difference between the two
parameterizations. When utilizing the In/Out parameterization, the highlight results
in a diagonal structure in the parameter space. This is a disadvantageous case for
factorization based compression techniques. These techniques represent the data
as a sum of outer products and diagonal structures can only be created by summing
up a large number of terms. In contrast, when using a half/diff parameterization,
the highlight is aligned with the coordinate axis and thus the factorization results in
a considerably better approximation. Since we only consider isotropic BRDFs, this
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representation has the additional advantage that these BRDFs can be represented
via (θh, θd, φd) only. Furthermore, reciprocity can be enforced by storing only
samples for φd ∈ [0, π) and then setting ρ(θh, θd, φd + π, c) = ρ(θd, θh, φd, c).
As suggested in [MPBM03a], we increase the resolution of θh near the lobe by
parameterizing the BRDF over

√
θh instead of θh.

Since the function ρ depends on four parameters, a tabulated representation can be
stored in a mode-4 tensor B ∈ Rnθh×nθd×nφd×nc . By using a tensor decomposition,
it is then possible to take advantage of the fact that the parameterization via
(θh, θd, φd) leads to a very regular structure along all of the tensor’s modes.

As discussed in Chapter 4, a problem of these techniques is the slow decompres-
sion. This is especially true for the Tucker decomposition. Here, the dense core
tensor has to be multiplied with all factor matrices to reconstruct a single entry
of the tensor. This requires evaluating a sum with many terms. Therefore, this
representation is not well-suited for applications which need fast random access
into the tensor, such as real-time rendering of BRDFs. We thus decided to use the
PARAFAC decomposition of the tensor B instead. The PARAFAC decomposition
represents a tensor T ∈ Rn1×···×nm as a sum of outer products of vectors v

(j)
i :

T ≈
∑k

i=1 v
(1)
i ◦ · · · ◦ v

(m)
i . This representation can thus also be considered as

a Tucker decomposition with a diagonal core tensor and non-orthogonal factor
matrices. Since the core tensor only has entries on its diagonal, calculating an
entry of the tensor using this representation requires only O(k) operations. As we
will show in the next section, very good approximations of BRDFs can already be
achieved with a small value such as k = 8, which allows both for fast rendering
and a compact representation. Therefore, more complex techniques, such as the
sparse decompositions we used in Chapter 4, are not needed in this case and would
introduce additional problems such as a more complicated interpolation.

In contrast to the tabulated representation we used during the compression, we need
a continuous representation during rendering. Here, the use of a PARAFAC decom-
position has the additional advantage, that multi-dimensional interpolation within
the tabulated dataset can be performed by interpolating within the one-dimensional
vectors v(j)

i . This representation is the following sum of functions

ρ(θh, θd, φd, c) ≈
k∑
i=1

f
(1)
i (
√
θh)f

(2)
i (θd)f

(3)
i (φd), f

(4)
i (c) (6.1)

in which f (j)
i is the piece-wise linear function resulting from linear interpolation

between entries of the vector v(j)
i . This sum of separable functions is described in

more detail in [BGM09], where other representations for the individual functions
are considered. We will only use piece-wise linear functions in this work, as this
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can be regarded as the continuous analogue to the PARAFAC. However, other
representations of the functions, e.g. polynomials, and interpolation techniques are
in principle possible. k is also called separation rank in this case.

Usually, a PARAFAC decomposition of a tensor is obtained via an alternating least
squares (ALS) optimization. However, these minimize the L2 difference between
the tensor and its approximation, which is not well-suited for the compression
of BRDFs as BRDFs often have a very high dynamic range, with the lobe being
several orders of magnitude brighter than the diffuse parts of the BRDF.

Two different approaches can be taken to achieve good fits for both the diffuse parts
and the lobe of a material. On the one hand, a non-linear operation can be applied
to reduce the dynamic range of the data. The factorization is then performed on
the transformed data. For example, in [MPBM03a] the data was compressed by
calculating the SVD in log-space. Similarly in [BÖK11] a log transform was
utilized prior to a tensor factorization. However, when using this approach, not
the original data are compressed but the representation in this different space and
thus during rendering the mapping has to be reversed after the decompression,
increasing rendering costs. The resulting decomposition is also no longer linear in
the input data, which is important if linear transformations are to be applied. For
example, in [SZC∗07], the linearity of the a tensor decomposition of database of
BRDFs was utilized for PRT computations. Similarly, an importance sampling
approach such as the one suggested in [LRR04] might also be possible with the
tensor decomposition but would require a linear decomposition of the data.

The other approach is to use a different distance measure during the optimization.
This, however, requires solving a non-linear optimization problem to find the
decomposition. Considering the high number of unknowns, finding a good solution
efficiently is often a difficult problem. In contrast, a sum of squares objective
function has the advantage that the optimization problems that have to be solved
during the tensor decomposition are least squares problems for which very efficient
algorithms exist.

We therefore measure the difference D between the original tensor B and its
approximation B′ via the following function:

D(B,B′) =
∑

i1,i2,i3,i4

wi1,i2,i3,i4
(bi1,i2,i3,i4 − b′i1,i2,i3,i4)

2

max(bi1,i2,i3,i4 , ε)
.

We use a tensor W containing additional per element weights wi1,i2,i3,i4 . ε is a
small constant which is necessary to avoid divisions by zero if the original dataset
contains very small values. It should be chosen at about the size of the measurement
noise for very dark materials.
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(a) Original (b) Absolute L2 error (c) Relative L2 error

Figure 6.3: Comparison of absolute and relative L2 error. The dataset was
compressed with 6-components. No additional weights apart from the reciprocal
sample value were applied.

This distance measure thus consists of the squared distance in relation to the value
of the original dataset. Therefore, the dynamic range does no longer influence the
fitting results and each entry of the tensor has a similar importance in the final
fitting result. As Figure 6.3 shows, this metric provides perceptually much better
approximations for BRDFs with a high dynamic range. This choice is motivated
by the fact that the human perception depends on relative brightness. Weber’s
Law states that the just noticeable difference between a stimulus and a background
signal depends on the ratio of the difference to the intensity of the background and
not the absolute difference (see for example [Boo02]).

This choice of distance function has the important advantage that by combining
the tensorW and the term in the denominator into a new weight tensorW ′ the
problem can be formulated as a weighted least squares tensor approximation for
which existing and reasonably efficient algorithms can be used. The weight tensor
W serves two purposes. On the one hand, we use it to compensate for the irregular
sampling resulting from the use of a square root parameterization for θh. On
the other hand, we chooseW proportional to cos θi cos θo. In our opinion, these
additional weights did improve the perceptual quality of the resulting BRDFs. This
is probably the case because the datasets contain the most noise in regions where
both θi and θo are small. However, a more throughout evaluation in a perceptual
experiment might be an interesting avenue of further research.

One other important issue that has to be taken into account during the optimization
is the fact that sampling the parameters θh, θd, φd on a regular grid, as necessary
to store the resulting values in a tensor, results in many samples in which either
θi or θo is larger than 90◦. During rendering, samples with θo > 90◦ should
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never be visible and for samples with θi > 90◦ the light source should alway be
occluded. Selecting ρ(θh, θd, φd, c) = 0 for these cases would be a straightforward
choice, since at least for θi > 90◦ the corresponding pixels would appear black
during rendering. However, during compression this causes considerable problems,
since the boundary between valid and invalid samples runs diagonally through the
parameter space and thus cannot be represented well as a sum of outer products.
Instead, we treat these cases as missing values and allow the optimization algorithm
to impute values which allow for the best possible compression ratio.

We used the PARAFAC implementation from the N-way Toolbox for MATLAB
[AB00], which directly supports solving the weighted least squares problem with
missing values. We furthermore constrained our decomposition to be non-negative,
as negative BRDFs could cause problems during rendering.

6.2 Evaluation

To evaluate our decomposition technique, we used 24 samples from the isotropic
MERL BRDF database (see Section 2.1.2), which were selected to be representative
for a quite large range of materials including very specular, glossy and diffuse
materials. These were already stored in a

√
θh, θd, φd parameterization with a 1◦

sampling resolution. Since 3 color channels are used, one BRDF thus contains
90× 90× 180× 3 = 4, 374, 000 values. In the following, we will give all sizes for
BRDFs under the assumption that the values are stored as double precision floats
since we performed most of our calculations in MATLAB using double values.
During rendering usually float or even half precision floats would certainly be
sufficient, reducing the sizes correspondingly. Stored as doubles, one BRDF thus
requires uncompressed about 33 MB.

To evaluate the performance, we compressed the same materials with several other
techniques. Since these techniques use several different distance measures to
compress the BRDFs, we consider directly calculating the differences between the
compressed and original BRDF not a fair comparison. Instead, we decided to use
the approach suggested in [NDM06] and rendered the materials under environment
illumination (Grace Cathedral, courtesy by Paul Debevec). To compare the result-
ing images, we then used a perceptual image difference, the Structural Similarity
Index [WBS∗04].

We computed our PARFAC decompositions with k = 8 terms, which was sufficient
to reproduce all materials with a good quality. For each material, (90 + 90 + 180 +
3) ∗ 8 = 2904 doubles and thus about 23 KB are needed. On a computer with
a Q6600 CPU and 4 GB RAM, the factorization requires about 15 minutes per
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Figure 6.4: Comparison of renderings of the uncompressed (top,red) and
PARAFAC compressed BRDFs (middle,blue) and the corresponding plots (bot-
tom) for the materials aluminium, gold metallic paint and blue
fabric. (The fourth root was applied to the plots, which show the BRDFs
for θi = 0◦, 45◦, 80◦.)

86



6.2. EVALUATION

material when using 100 ALS iterations. Apart from the results obtained with
the relative squared error, we also include results obtained with exactly the same
decomposition but with a simple L2 difference.

For the comparison, we used the Cook-Torrance model [CT82] with the Beck-
mann normal distribution function, the Schlick approximation for the Fresnel term
[Sch94] and one lobe, since this model achieved good results in [NDM05]. We
performed the fitting similar to the approach described in [NDM05], but we used
the same relative squared error as for the data-driven compression since the use of
similar distance functions allows for a more direct comparison of the results.

We also compared against both the homomorphic factorization from [MAA01] and
the non-negative matrix factorization [LRR04]. As suggested in [MAA01] we took
advantage of the isotropy of our BRDFs by storing for each color channel the two
rotationally symmetric results as 1D functions with a resolution of 256 entries each,
which results in a size of 12 KB. Though, higher resolutions for these functions
would be possible, this would not significantly improve the result. For many
materials, the approach achieved good results. However, effects which depend on
both view and light direction, like the Fresnel effect, cannot be reproduced because
of the selected parameterization. Adding further terms to the factorization might
improve upon this.

We decided, in contrast to [LRR04], to use the same parameterization for the
NMF based factorization as for our PARAFAC decomposition, to not include the
cosine term and to consider invalid view/light directions as missing values. These
decisions in the original paper were primarily motivated by the need for importance
sampling which we do not consider in this chapter and we obtained better results
this way. Still, we found that performing two independent factorizations causes
certain problems. During the second factorization, a different error is minimized as
in the first one. Especially when using missing values, this can cause problems as
during the second factorization all entries are considered to be of equal importance.
A weighted NMF algorithm might help with this. We used the same resolution as
for our factorization. During the first factorization, along the φd dimension, we kept
two components and during the second factorization we kept three components,
resulting in nearly exactly the same data size. For three representative materials, we
show renderings of the measured original data and of our compressed representa-
tions in Figure 6.4. Additionally, polar plots of the BRDFs in the plane of specular
reflection are shown for three representative incoming light directions.

In Figure 6.5, we compare the resulting image differences. As can be seen in the
plot, our PARAFAC based representation achieves the best quality for all materials.
Furthermore, the quality is very consistent without any large outliers. The graph
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Figure 6.5: Comparison of several BRDF representations (materials sorted by
error of our PARAFAC based representation)

also shows the importance of using a relative error function, since the PARAFAC
decomposition with L2 distance often gives quite bad results.

6.3 Conclusion

In this chapter, we have shown that by minimizing a relative squared error during
a PARAFAC decomposition it is possible to store an isotropic BRDF in a half-
angle/difference-angle parameterization very compactly and at the same time
accurately. This representation is well-suited for efficient real-time rendering. So
far, we only considered homogeneous BRDFs and assumed that a densely sampled
measurement on a regular grid and a high angular resolution is available.

After the development of the representation described in this chapter, a similar
approach was published in [BÖK11]. In contrast to the PARAFAC factorization
employed by us, they use repeated Tucker factorizations. However, since they
always use a core tensor of size 1, this results in effect in a greedy algorithm
to compute a PARAFAC factorization. Furthermore, in contrast to the relative
error metric employed by us, they use a logarithmic transformation prior to the
compression to reduce the dynamic range. This additional transformation might
be a disadvantage in cases where the linearity of the resulting representation is
required.

It would be an interesting question, whether our PARAFAC representation could
be used for importance sampling in a similar manner to the technique described
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in [LRR04]. However, this would require the use of a different parameterization
which might reduce the achievable compression ratio.
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CHAPTER 7

SURFACE REFLECTANCE FROM SPARSE AND

IRREGULAR SAMPLES

In the previous chapter, we have seen that it is possible to store isotropic BRDFs
very compactly and accurately using a PARAFAC based representation. In this
chapter, we will extend this approach to the acquisition of spatially varying BRDFs
on complicated geometries. In contrast to the densely and regularly sampled
datasets from the previous chapter, in this case the input data is considerably more
challenging. Again we will assume, that the reflectance of the objects has been
acquired with a device such as our Multi-View Dome (Section 2.1.3) or our Mobile
Dome (Section 2.1.4). These provide a large number of pictures from several
viewpoints and with varying light directions and additionally the geometry of the
object. A fundamental problem is that the number of view and light directions
is limited, either by the capture setup or by the available measuring time and
storage space. Therefore, only a coarse sampling of the angular domain is possible.
Furthermore, the sampling is irregular for curved geometries since the view and
light directions are different at each point as the local coordinate systems vary
over the object. Additionally, due to occlusions and shadowing, it might for some
surface points happen that there are holes in the angular sampling which have to be
filled.

Therefore, a scattered data interpolation problem has to be solved to find a seven-
dimensional function ρ(x, y, θi, φi, θo, φo, c) (two spatial dimensions (x, y), four
angular dimensions (θi, φi) and (θo, φo), and wavelength/color c) from a set of
irregularly sampled function values. In this general form, the problem is obviously
under-determined. To make it tractable, additional assumptions have to be made,
which impose further constraints on ρ. A common assumption is isotropy, which
specifies a symmetry in the angular dimensions, eliminating one of them com-
pletely. As we have discussed in Chapter 5, one possibility to tackle this problem is
the use of analytical BRDF models. Since a model specifies a large amount of prior
knowledge about the structure of BRDFs, these are able to provide reasonable re-
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sults even for very small numbers of samples. Furthermore, analytical models also
provide a very compact representation. However, this approach resulted in a very
difficult non-linear optimization problem, especially when an exact reproduction of
a given BRDF is desired. In contrast, as we have shown in Chapter 6, a data-driven
representation is in principle capable of very accurately and compactly representing
BRDFs. Several data-driven techniques (e.g. [FKIS02, MBK05, SWRK11]) to
capture the reflectance of objects have already been proposed. Here, the reflectance
is represented either as a tabulated spatially varying BRDF (SVBRDF) or as a
Bidirectional Texture Function (BTF). This way, nearly arbitrary materials can be
represented without the restrictions imposed by analytical models. To obtain such
a tabulated representation, the available scattered data points are usually resampled
to a regular grid and an interpolation has to be performed to fill holes in the dataset.
Both the use of a tabulated representation itself and the employed interpolation
and compression techniques are based on the assumption that the reflectance is a
locally smooth function.

Usually, it is additionally assumed that the material exhibits a strong self-similarity
in the spatial domain, which means that the reflectance behavior is similar at
different positions. More formally, this can be expressed as a constraint on the
separation rank C [BGM09] of ρ. That is, the reflectance can be approximated as
a sum of C separable functions

ρ(x, y, θi, φi, θo, φo, c) ≈
C∑
j=1

ρ
(j)
1 (x, y)ρ

(j)
2 (θi, φi, θo, φo, c).

Techniques based on analytical models often exploit this property by assuming
that the material is composed of several basis BRDFs, as we did in Chapter 5. In
contrast, data-driven techniques can exploit this fact during interpolation to perform
hole-filling (e.g. [SWRK11] and for the final compression step. This step is usually
based on a matrix or tensor factorization which is applied to the dense, interpolated
dataset. Unfortunately, for specular materials this process does not scale well.
Here, a dense measurement and a high angular resolution in the regular sampling
would be required to faithfully represent the highlights. However, working with
such a dataset is no longer feasible due to the data size. For example, for the
measurements from the MERL BRDF database (see Section 2.1.2) a 1◦ angular
sampling, resulting in 90×90×180 values, is used to store a single, homogeneous,
tabulated, isotropic, high-quality BRDF. A dataset using this angular resolution
and a spatial resolution of 256 × 256 would require about 1TB. In Figure 7.1c,
the problems both due to insufficient angular sampling during the measurement
and coarse angular resolution of the resampled dataset are illustrated for a BTF
measurement.
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(a) Photograph (b) BTF (c) Top-View

(d) Illustration of the BTF resampling

Figure 7.1: Problems due to insufficient sampling and angular resolution. These
images show a photograph (a) and a BTF rendering (b) of a specular billiard ball.
The drawing (d) illustrates the necessary resampling process. The hemisphere of
view and light directions of the BTF is parameterized within the local coordinate
frames. Therefore, at different positions on the surface, samples for different light
and view directions are stored (blue arrows). However, the measured directions
(which are determined by the positions of the light sources/cameras) do not corre-
spond exactly to the stored sample directions, and thus it is necessary to interpolate
the measurements during the resampling to create the idealized BTF with parallel
view and light directions (illustrated on the right). Unfortunately, for some points
on the surface, the directions corresponding to a highlight are not observed and
thus the interpolation cannot recreate these highlights. This problem is shown in
image (c) which depicts one slice from the BTF, with both light and view direction
exactly perpendicular to the surface. This slice should be uniformly white as the
material is mostly homogeneous, but instead for many points on the surface the
highlight has not been captured. Furthermore, even at points where the highlight
was observed, it is blurred as the coarse angular sampling of the BTF does not
allow for a faithful representation of the sharp highlight.
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We will therefore generalize the BRDF representation from the previous chapter
(Equation 6.1) to the case of spatially varying BRDF with irregular input samples.
We avoid to store the whole dataset on a regular grid, eliminating the consequential
interpolation and resampling step and memory requirements. For this, we directly
fit a representation of a SVBRDF as a sum of separable functions to irregular
reflectance samples. Since our representation is very compact and can also be used
directly for rendering, no additional compression steps are necessary. Using a sum
of separable functions inherently exploits the fact that typical reflectance datasets
exhibit a very low separation rank, both, due to spatial self-similarity and due to the
fact that BRDFs have a very regular structure when represented in a suitably param-
eterized space [Rus98]. Furthermore, we integrate regularization which enforces
local smoothness and spatial self-similarity both for filling holes in the dataset
and for allowing a reconstruction at a high angular resolution. Our approach is a
data-driven technique which replaces the hard constraints imposed by an analytical
model with a more flexible regularization. This way, we avoid the selection of a
suitable model and allow for good reconstructions from rather sparse samplings,
but, as the number of available samples increases, the amount of regularization can
be continuously reduced to obtain accurate approximations.

This chapter corresponds to the paper "Data Driven Surface Reflectance from
Sparse and Irregular Samples" by Roland Ruiters, Christopher Schwartz, and
Reinhard Klein published in Computer Graphics Forum (Proc. of Eurographics),
31(2):315–324, May 2012. Since the publication of the original paper, we have
added an additional regularization, described in Section 7.4. This increased the
robustness of the fitting and helped to prevent problems due to regularization bias in
the original datasets. Figure 7.8c and 7.8h therefore show novel results, computed
with the improved regularization.

7.1 Overview

We consider the problem of finding a compact approximation of an unknown
function F (x) = F (x1, . . . , xD) of D variables. Here, the function is described
by a set of N samples s(n) = F (p(n)), drawn at the irregular positions p(n) =

(p
(n)
1 , . . . , p

(n)
D ) for n ∈ {1, . . . , N}.

For this approximation, we use a sum of C separable functions, where C is called
the separation rank. This way, it is possible to avoid the curse of dimensionality
and represent even high-dimensional functions very compactly if they have a very
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regular structure in the chosen parameterization and thus a low separation rank.
The function F is then approximated in the following way:

F (x) ≈ F̃ (x) =
C∑
c=1

f (c)(x) =
C∑
c=1

D∏
d=1

f (c,d)(xd). (7.1)

The use of this representation for multivariate regression has recently been inves-
tigated in the context of machine learning. In [BGM09], a general framework
is introduced. An alternating least squares optimization algorithm for functions
representable within a linear function space is discussed. Although a regularization
approach is described, it is performed on each of the separated functions indepen-
dently instead of the final sum of products. In contrast, in [Gar10] the authors
discuss the use of global regularization. However, due to their choice of error
function, they have to solve a non-linear optimization problem for each of the
iterative updates. As was discussed in the previous chapter, this representation is
closely related to the PARAFAC decomposition of a tensor into a sum of outer
products.

We again use the parameterization via a half-angle and a difference-angle [Rus98]
discussed in the previous chapter to align typical features of BRDFs with the
axes of the coordinate system to get a representation with a low separation rank.
In addition, we limit ourselves to isotropic BRDFs, which can be represented
in this parameterization via (θh, θd, φd) only, reducing the dimensionality of the
problem by one. In contrast to the homogenous BRDF we approximated in
Equation (6.1), we now additionally have to consider the position p on the surface.
We thus have to find an approximation for the D = 5 dimensional function
F̃ (x) ≈ ρ(p, θh, φh, φd, c) from the set of measured samples.

Finding such a representation for a given set of samples s(n) can be achieved by
finding one-dimensional functions f (c,d), which minimize an energy functional
describing the distance between the model and the samples. However, for arbitrary
functions f (c,d) the problem is under-determined. Therefore, we need an additional
regularization term. We use for each of the D parameters a linear operator R(d)

describing the regularization within this dimension. For the spatial dimension,
we use an AppProp-inspired regularization described in Section 7.2.3. For the
remaining dimensions, we use a weighted second derivative R(d) = ∂2

d as regular-
ization. Minimizing this operator enforces local smoothness, a property commonly
assumed for BRDFs. However, other operators are applicable as well.

Both for the choice of the distance measure used to describe the quality of a
given approximation and for the regularization it is very important to recognize
that BRDFs exhibit a very high dynamic range. The intensity of the darkest
parts of a BRDF is easily several thousand times lower than in the highlight.
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Nonetheless, correctly approximating these parts of a material is perceptually
as important as representing the highlight correctly. In the final rendering, the
highlight often occupies just a few pixels, whereas the darker diffuse parts of the
material are visible everywhere else. Additionally, we need to reduce the amount
of regularization in the highlight, compared to diffuse parts, since the function
exhibits a much larger curvature here than in diffuse parts. Thus, we measure the
approximation error relative to the sample value and the regularization relative to
the function value at each position. This results in the following energy functional
describing the quality of a given approximation:

E(f (1,1), . . . , f (C,D)) =
N∑
n=1

(
v(n) s

(n) − F̃ (p(n))

s(n)

)2

+

D∑
d=1

λd

∫
V

(
w(x)

R(d)F̃ (x)

F̃ (x)

)2

dx

(7.2)

Here, v(n) represents a per-sample weight term and w(x) is a function controlling
the strength of the regularization in dependence on the coordinate x. For each of
the dimensions, λd controls the strength of the regularization. For simplicity of
notation, we will include λd into the operators R(d) from here on. V is the subspace
over which the function is defined.

7.2 Implementation

As suggested in [MPBM03a], we increase the resolution of θh near the lobe by
parameterizing the BRDF over

√
θh instead of θh. Instead of using two coordinates

for the spatial dimension, we combine them into a single coordinate p, since the
two spatial dimensions usually do not exhibit a low separation rank and thus a large
number of components would be needed to encode the complex spatial distribution
of a material. This assumption can only be made, once the spatial dimension
has been discretized. In the continuous setting we would have to use a bivariate
function f (c,d)(x, y).

To practically solve the continuous optimization problem given in Equation (7.2),
we represent each of the one-dimensional functions f (c,d) as a piece-wise linear
function defined by the vectors

f (c,d) =
(
f

(c,d)
1 = f (c,d)(t

(d)
1 ), . . . , f

(c,d)
Md

= f (c,d)(t
(d)
Md

)
)
,

which consist of the function values at Md support points t(d)
i . These support points

induce a regular grid, ti =
(
t
(1)
i1
, . . . , t

(D)
iD

)
, where i ∈ I = [1 : M1]×· · ·×[1 : MD]
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is a multi-index. Evaluation of the function F̃ at each of these grid points, leads
to a tensor F̃ , with f̃i = F̃ (ti) =

∑C
c=1

∏D
d=1 f

(c,d)
id

for all i ∈ I . Furthermore,
we approximate the differential operators R(d) using forward differences. Since
the regularization only operates within one dimension, it can be applied to each
of the mode-d fibers independently. This can be represented as a Md × Md

regularization matrix R(d), which, when multiplied with one mode-d fiber of the
tensor F , computes the regularization along dimension d for all entries of the
fiber simultaneously. For the φ angles, we assume a wrap-around, and for the θ
angles, a mirror symmetry to handle the boundary conditions was used for some
of the datasets. The color channel is not regularized at all, and for the spatial
dimension we use an AppProp-inspired regularization, which we are going to
discuss in Section 7.2.3. The integral is finally replaced by a finite sum over the
regularization evaluated at each of the grid points ti. This results in the following
discretized version of the continuous functional:

E(f (1,1), . . . , f (C,D)) =
N∑
n=1

(
v(n) s

(n) − F̃ (p(n))

s(n)

)2

+
D∑
d=1

||W ⊗ (F ×d R(d))� F̃||2
(7.3)

Here, the tensor W represents the weights w(x) evaluated at the grid positions
ti. The symbols ⊗ and � are used to denote element-wise multiplication and
division. The weights are chosen as 0 outside of the valid space V to make sure
that the regularization is only evaluated within the valid region. This is necessary,
since the parameterization via half-angle and difference-angle is only defined on
an irregularly shaped subspace. Therefore, the regularization is considered only
for V and furthermore the samples also lie within this subspace, even though the
approximation F̃ itself is defined over the full space.

To approach this optimization problem, we use iteratively reweighted alternating
least squares. By keeping the divisor F̃ in the regularization term constant, we can
combine it withW to obtain new weights w̃i = wi

fi
∈ W̃ , simplifying the remaining

problem considerably. Similarly, we define the weight ṽ(n) = v(n)

s(n)
.We then use

alternating least squares (ALS), iterating over the dimensions and successively
updating each dimension l individually by keeping the functions f (c,d) constant for
all other dimensions d 6= l. Once the ALS has converged, we update the weights
W̃ and iterate the whole process. Given noisy input data, better results might
be obtained by also updating the weights ṽ(n) using the function value from the
current estimate instead of the original samples values. Otherwise the noise can
result in overestimating the importance of small outliers. On the other hand, it is
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conceivable that this might reduce the stability and result in oscillations. We have
not yet evaluated this and use the original sample values in our experiments.

7.2.1 Quadratic Subproblem

In the following, we will thus discuss how to solve the remaining subproblem
under the assumption that the terms in the divisor are included in the weights, and
that only the functions f (c,l) for the dimension l are to be updated while all other
dimensions are considered constant.

Data Term

For a given sample point p(n), evaluating the functions f (c,d) is in fact a simple
linear interpolation between the values at two adjacent support points. In the
following, we will use the index j(n)

d and the weight α(n)
d to denote the parameters

for this interpolation in dimension d. The evaluation of the model is hence given
by:

F̃
(
p(n)

)
=

C∑
c=1

D∏
d=1

(1− α(n)
d )f

(c,d)

j
(n)
d

+ α
(n)
d f

(c,d)

j
(n)
d +1

When only dimension l is updated, all factors but one in the product are constant
and simply correspond to the evaluated function value f (c,d)(xd). Therefore, the
evaluation of the model is a linear operation:

F̃
(
p(n)

)
=

C∑
c=1

((1− α(n)
l )f

(c,l)

j
(n)
l

+ α
(n)
l f

(c,l)

j
(n)
l +1

)
D∏

d=1,d 6=l

f (c,d)(xd)︸ ︷︷ ︸
constant

This operation can be expressed for all samples simultaneously via the product
between a matrix S and a vector f (l), which contains a concatenation of all f (c,l).
The matrix S is extremely sparse, containing only 2C non-zero entries in each
row. Figure 7.2 illustrates this (under the assumption of sorted samples). When the
samples s(n) are concatenated into one vector s and the sample weights ṽ(n) are
stored in a diagonal matrix V, the data term is finally given as:∥∥Vs−VSf (l)

∥∥2
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S H(g), g 6= l H(g), g = l

Figure 7.2: Structure of the matrices S and H(g).

Regularization Term

The additional regularization term has to be considered for all dimensions g ∈
{1, . . . , D}. Since evaluating it requires summing over all entries of W̃⊗

(
F ×g R(g)

)
,

using this regularization with an arbitrary weight tensorW would be prohibitively
costly. In this case, the computation time lies inO(

∏D
d=1Md), which is not feasible

for larger datasets. However, under the assumption that a factorized representation
(with CW components) W̃2 ≈

∑CW
c=1 w

(c,1) ◦ · · · ◦w(c,D) is available, a much more
efficient computation is possible. In the following, we will additionally use W(c,d)

to denote a diagonal matrix with the elements of w(c,d) on the diagonal. In this
case, when computing the regularization for dimension g, the following equality
holds (a full derivation is given in Section 7.6):∥∥∥W̃ ⊗ (F ×g R(g)

)∥∥∥2

=
C∑

c1=1

C∑
c2=1

CW∑
c3=1

(
f (c1,g)

)T (
R(g)

)T
W(c3,g)R(g)f (c2,g)

D∏
d=1,d6=g

(f (c1,d))TW(c3,d)f (c2,d) =
(
f (l)
)T

H(g)f (l)

(7.4)

The regularization can thus be described by a quadratic form, with a sparse matrix
H(g). Here, we have to distinguish two cases. When g 6= l, the matrix H(g) consists
of C × C blocks, each containing weighted sums of the diagonal matrices W(c3,d)

and thus the matrix H(g) only has C non-zero entries in each row. Otherwise, each
block contains weighted sums of (R(g))TW(c3,g)R(g). Since we use a differential
operator for R(g), this matrix is also very sparse, as the regularization operator
itself is a band matrix in this case and thus (R(g))TW(c3,g)R(g) can be computed
in O (Mg). In Figure 7.2, the sparsity pattern is illustrated. The matrix H(g) is
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symmetric because the equation is symmetric under exchange of c1 and c2 and
each of the C ×C blocks itself is also symmetric. Furthermore, since the quadratic
form is equal to a non-negative number for each choice of f (l), H(g) is also positive
semi-definite.

The matrix H(g) can be computed efficiently, since the individual factors in the prod-
uct can be computed independently for each dimension and then multiplied instead
of computing the regularization for all

∏D
d=1Md entries of the high-dimensional ten-

sor. Thus, only O
(
C2CW

(∑D
d=1 Md

))
operations instead of O

(
C2
∏D

d=1 Md

)
operations are required.

Hence, the complete optimization problem has the following form:

arg min
f (l)

∥∥VSf (l) −Vs
∥∥2

+
D∑
g=1

(
f (l)
)T

H(g)f (l)

= arg min
f (l)

(
f (l)
)T (

STV2S +
D∑
g=1

H(g)

)
f (l) − 2sTV2Sf (l) + sTV2s

(7.5)

This is a sparse, positive semi-definite quadratic programming problem since both
STV2S and H(g) are positive semi-definite and sparse. In the absence of any further
constraints, it can be solved efficiently with a direct sparse linear solver.

7.2.2 Weight Updates

In each iteration of the optimization, we have to update the weights W̃ and possibly
also ṽ(n). We initialize ṽ(n) = v(n)

max(|s(n)|,ε) with the known sample values. If iterative
updates are used for ṽ(n), we update the weights during each iteration using the
current estimate of F̃ . It is important to clamp the weights to a minimal value ε to
avoid divisions by zero. Furthermore, it is possible to integrate a robust statistic
into these weight updates to remove outliers. Currently, we simply set the weight
to 0 for the 5% samples which have the largest error to remove outliers during the
optimization, but a more sophisticated approach, such as e.g. Huber weights, could
be employed.

In contrast to ṽ(n), the update of W̃ is not as straightforward. For the optimization,
we need a factorized representation of W̃2 = (W �F)2. Computing the update
on the dense representation first and subsequently converting the result into a
PARAFAC representation should be avoided, as this would require operating on all
entries of the tensor, which does not scale to higher-dimensional datasets. Instead,
we operate only on the factorized representations ofW and F .
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Computing the product (and thus also the square) of two tensors in PARAFAC rep-
resentation is straightforwardly possible by computing the element-wise products
of all pairwise combinations of the components of the two tensors. Computing
the element-wise inverse of F , however, is a more difficult task. Here, we use
ALS to solve the problem F ⊗ F−1 = 1, where 1 is a tensor containing 1 in each
entry. Since a factorized representation of F is already available, the ALS can be
computed very efficiently. It is important, though, to enforce the non-negativity of
the weights during this optimization, as otherwise H would no longer be positive
semi-definite. Instead of clamping the tensor at ε prior to inversion, we add a
penalty term for large values during the ALS, preventing instability for small tensor
entries. This approach has the advantage that it works well for datasets with a high
dynamic range since a relative error is optimized.

7.2.3 Spatial Regularization

So far, we have only considered derivative operators for the regularization to
enforce local smoothness. A similar operator, such as the square of the gradient
norm, could also be used for the spatial dimensions. However, this would result in
smoothed and unsharp textures. On the other hand, a spatial regularization is quite
useful since by exploiting the fact that many points on the surface have a similar
material, it is possible to reconstruct BRDFs with a high angular resolution from a
rather coarse sampling of view/light directions.

We therefore use an approach inspired by AppProp [AP08] to achieve a regular-
ization which is not based on spatial proximity but instead explicitly models for
all texels on the surface their pairwise similarity. For this, we use a symmetric,
completely positive matrix Z, where zi,j is a value between 0 and 1 describing the
similarity between the texels i and j. Assuming, for simplicity of notation, the
first mode of the tensor contains the spatial coordinates, we use the regularization
term

M1∑
i=1

M1∑
j=1

z2
i,j‖Wi,:,...,: ⊗ (F̃i,:,...,: − F̃j,:,...,:)‖2. (7.6)

This term could be described, like the other regularization operators, via a regular-
ization matrix R(1). This matrix would contain one row for each pair (i, j) with
the i-th entry set to zi,j and the j-th entry set to −zi,j . Unfortunately, this results
in unfeasibly large matrices. The resulting regularization matrix H(1) is a dense
CM1 × CM1 matrix. However,

(
R(1)

)T
R(1) is equal to D − Z, where D is a

diagonal matrix with di,i =
∑M1

j=1 z
2
i,j . If a suitable factorization Z = MTM is
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available, the resulting least squares problem (7.5) can be solved efficiently using
the Woodbury matrix formula [Hag89]

(A−UV)−1 = A−1 + A−1U
(
I−VA−1U

)−1
VA−1.

Setting A = D, U = MT , V = M we get the following identity, which is faster
if M has a small number of rows:

((
R(1)

)T
R(1)

)−1

=
(
D−MTM

)−1

= D−1 + D−1MT
(
I−MD−1MT

)−1
MD−1

However, we also have to take the weight matrices W(c,1) into account. For this,
it is necessary to find an orthogonal M1 × CS matrix U spanning a sub-space
with a low number CS of dimensions, in which the matrices W(i,1)M can be
approximated well for all c ∈ 1 . . . , CW . Once this orthogonal basis is available,
the matrix H can be approximated as ŨAŨT + B, where Ũ is a block-diagonal
matrix with C blocks, each containing U, A is a much smaller CCS ×CCS dense
matrix, which can be inverted directly, and B is a sparse matrix containing only
diagonal entries in each of the C × C blocks.

To obtain the matrix Z, we use a technique very similar to the one proposed in
[AP08]. For a randomly selected subset of the texels we compute the distance
to all other texels. We resample the irregular input data at each texel into a
common regular sampling and then compute the mean of the regular samples.
This way, we avoid a bias introduced by an uneven sampling. Then, we use the
difference between these means as distance measure. However, in the future, a
more sophisticated distance measure could be used here. Finally, we compute the
similarity by applying a Gaussian function to the computed distance. We compute
these pairwise distances only for a few randomly chosen points to obtain column
samples of the matrix Z, which are then used to find the low-rank factorization
Z = MTM. It is important that the factorized matrix MTM remains a completely
positive matrix as otherwise the quadratic optimization problem is no longer
positive definite and negative energies can occur during the optimization. We
use a NMF factorization to find M and U via alternating non-negative least
squares.

In Figure 7.3, we demonstrate the effect of this regularization. For this, we have
created a synthetic dataset, in which in a certain region (marked in green) all
samples with θh < 70◦ were removed, creating a large hole in the dataset. As
can be seen in Figure 7.3b, the local smoothness regularization is not sufficient to
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(a) Reference (b) Without spatial
regularization

(c) With spatial
regularization

Figure 7.3: Effect of spatial regularization for a dataset with insufficient samples
in the green regions.

reconstruct this area correctly, resulting in a noisy reconstruction with black spots.
When the spatial regularization (here, with the exact neighborhood matrix Z) is
additionally used, the holes in the sampling can be filled.

After a few iterations of our fitting algorithm, we update the regularization by using
our current fitting result. For this, we compute the exact pairwise distances between
the texels of our fitting result (which is efficiently possible for our factorized
representation) and compute a new factorization Z = MTM from these distances.
Our current result was obtained using both the previous regularization and the
available samples. We therefore expect that, at texels for which enough samples
are available, this provides a much better approximation of the correct pairwise
distance matrix than the original one obtained from mean colors. On the other
hand, when the number of samples is not sufficient, the fitted result should still
closely resemble the original distance matrix. Currently, for performance reasons,
we use just one update of Z. However, it might be worth further investigation
whether several iterated updates provide better results.

7.3 Results

To demonstrate that our fitting algorithm is generally capable of obtaining similar
results as the PARAFAC decomposition we employed in the previous chapter, we
again have evaluated our technique on several example materials from the MERL
BRDF database (see Section 2.1.2). These BRDFs have a dense, regular

√
θh, θd, φd

sampling of 90× 90× 180 and contain 3 color channels. From these datasets, we
have drawn samples at randomly chosen locations (obtained via linear interpolation
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Figure 7.4: Comparison of the original (top) BRDFs and results (middle)
obtained by fitting with our method against 100,000 samples drawn ran-
domly from the materials gold-metallic-paint, red-phenolic and
grease-covered-steel. The corresponding plots show that the reference
(red) is very accurately reproduced by our fit (blue). In green, a comparison to
a Cook-Torrance fit is shown (parameters for gold-metallic-paint and
red-phenolic are taken from [NDM05], grease-covered-steel was
fitted by us). The fourth root was applied to the plots, which show the BRDFs for
θi = 0◦, 30◦, 60◦.
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(a) Ground truth (b) Our technique (c) BTF

(d) Cook-Torrance
[NDM05]

(e) Cook-Torrance

Figure 7.5: Comparison for a synthetic ground truth dataset. This image compares
our technique with a BTF (c), a spatially varying linear combination (d) of the
Cook-Torrance fitting results reported in [NDM05] (using the original distribution
map), and a linear combination of eight Cook-Torrance basis-BRDFs in (e) fitted
against the same samples as our representation.

to get samples not lying on the grid of the original dataset), which were then used
to fit our model. For the approximation, we used C = 12 components and the same
angular resolution as the original dataset, resulting, when stored as single precision
floats, in a size of 12 · (90 + 90 + 180 + 3) · 4B ≈ 17KB, which corresponds
to a compression by a factor of about 1,000 compared to the 16.5MB needed for
the original dataset. The results in Figure 7.4 show that we still achieve a very
exact reproduction of the original BRDF. Even the irregular highlight shape of the
grease-covered-steel example, resulting in unevenly blurred highlights,
is well-preserved.

In Figure 7.5, we show an evaluation of our technique on a synthetic dataset. For
this, we created a realistic test case, closely resembling a real-world dataset while
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(a) 37× 37 = 1, 369 (b) 18× 18 = 324 (c) 9× 9 = 81

Figure 7.6: Results for coarser sets of input images covering fewer view and light
directions.

still fulfilling all assumptions of our approach. We used a scanned mesh from
the Buddha dataset provided in [SWRK11]. To obtain an SVBRDF, we derived a
distribution map from the color texture of the original dataset (with a resolution
of 128 × 128) and then used spatially varying linear combinations of measured
isotropic BRDFs (red-phenolic and gold-metallic-paint from the
MERL BRDF database). This way, we obtained a synthetic dataset, which looks
similar to the original one, but with perfectly isotropic, spatially varying BRDF.
We rendered synthetic images under point-light illumination, employing the same
imaging conditions as in the real-world setup, with the exception that only a subset
of 75× 75 = 5,625 view and light direction combinations is chosen. From these
images, we then extracted the input samples, discarding those which are invalid
due to occlusions and shadowing. The initialization for the neighborhood graph
was computed on all remaining samples. However, we only drew 150 samples for
each texel of the final texture randomly (using a simple binning to obtain uniformly
drawn samples) to reduce the computational load during the actual optimization.
We then used our technique to fit a 16,384× 90× 90× 180× 3 tensor with C = 32
components (16,384 entries for the 128× 128 spatial dimension, 90× 90× 180
for the angular dimensions

√
θh, θd, φd and 3 color channels). For this resolution,

the uncompressed dataset would already require about 267 GB when stored as
single precision floating point values, making techniques based on an explicit
representation of the whole dataset very impractical. In contrast, our compressed
representation requires only 32 · (180 + 90 + 90 + 16384 + 3) · 4B ≈ 2MB.

In Figure 7.5b, we show that using our technique a nearly exact fit to the ground
truth data (Figure 7.5a) can be obtained. The result of resampling the input-data to
a BTF representation with a direction sampling of 151× 151 (using the technique
from [SWRK11]) is demonstrated in Figure 7.5c. Even though the dataset is shown
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without any compression, the resampling itself already introduced considerable
errors. Especially the highlights in the face could not be resolved by the available
angular resolution and thus were lost during the resampling. Still, the dataset
already requires 128× 128× 151× 151× 3× 4B ≈ 4GB when stored as single
precision floats and would grow considerably, if higher angular resolutions were
to be used. In Figure 7.5d, we show the result of approximating the ground-truth
dataset as good as possible via a Cook-Torrance model. For this, we used the
original distribution map with two Cook-Torrance basis-materials which were
fitted directly against the original MERL BRDF data (the parameters were taken
from the supplementary material of [NDM05]). Even in this idealized setting, an
exact reproduction was not possible. In Figure 7.5e, we show a result of fitting
a linear combination of eight Cook-Torrance BRDFs against the same samples
used for our approximation. We initialized the Cook-Torrance fitting by clustering
the mean colors we used for creating our neighborhood graph. We then iterated
between optimizing the BRDF parameters and the distribution maps using an
similar approach as in [LKG∗03].

In Figure 7.6, the effect of a reduction of the angular sampling of the input images
is shown. While a very good reconstruction is still possible with 37× 37 = 1, 369
input images, the highlights get blurred when only 18 × 18 = 324 images are
used. With only 9 × 9 = 81 images, artifacts (black spots in the highlights)
become visible. We think that the main reason for the unsharp highlights is the
neighborhood regularization and expect that a more sophisticated approach for its
extraction might improve the results. The black spots in the highlights occur when
the sampling in the highlight region gets too sparse.

To evaluate our technique on real-world datasets, we use three different datasets.
The results are shown in Figure 7.6. The first one is the Buddha dataset from
[SWRK11], which has been captured with our Multi-View Dome (see Section
2.1.3). It consists of a quite accurate geometry and a total of 151× 151 = 22,801
images. We used the same fitting approach as for the synthetic dataset, but this time
a spatial resolution of 256×256 was employed. This is a challenging example, since
this dataset does not fully comply with our assumptions: First, the reconstructed
geometry and camera calibration is not completely accurate. Second, due to the
scratches on the surface the material is not perfectly isotropic. Third, the object
exhibits considerable interreflections and there are still many surface details finer
than the resolution of our texture and geometry. Still, our reconstruction provides a
good approximation and is capable of reproducing the sharp highlights. The other
two datasets use a sampling of 264× 198 = 52,272 view and light directions and
have been captured with our Mobile Dome (see Section 2.1.4). The red billiard
ball demonstrates that our technique can cope with very specular materials. In
contrast to the BTF, which does not have a sufficiently high angular resolution, we
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(a) Input image (b) Low-Res input image (c) Our technique

(d) BTF (e) Cook-Torrance

(f) Input image (g) Low-Res input image (h) Our technique

(i) BTF (j) Cook-Torrance
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(k) Input image (l) Low-Res input image (m) Our technique

(n) BTF (o) Cook-Torrance

Figure 7.6: Comparison for real-word datasets. Here, we evaluate our technique
using real-world datasets. (a),(f),(k) show each one of the original input images and
(b),(g),(l) are lower resolution version of these images to remove high-frequency
details which are not represented due to the used texture resolution. We compare
this to our technique (c),(h),(m), a BTF approximation (d),(i),(n) and a spatially
varying linear combination of eight (three with ideal distribution map for the
billiard ball) Cook-Torrance Basis-BRDFs (e),(j),(o).
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are able to reproduce the shape of the highlight. Unfortunately, its intensity is still
underestimated, which is visible in the close-up of the billiard ball with different
tonemapping. This could probably be improved by a more thorough calibration of
the measurement setup and using a better sampling strategy to get more samples in
the highlight. The last example uses a higher spatial resolution of 512× 512 and
demonstrates the performance of our approach for objects with several materials.
All materials are reproduced well, apart from the few sparsely distributed spots of
very specular gold paint.

Due to the nature of the alternating least squares optimization, the algorithm is not
guaranteed to find a global minimum. However, as our results demonstrate, when
a sufficient number of samples is given, a good fit can be obtained robustly (we
initialized with random values and did not use any repeated fitting). The interior
optimization without weight updates always converges as each of the individual
least squares problems is globally optimally solved and thus can never increase
the error. For the outer weight update loop, a convergence cannot be guaranteed,
since each time the weights are updated, the error might increase again. Still,
we nearly always observed a strictly decreasing error, when comparing the errors
after each of the weight update steps. For the synthetic and real-world Buddha
dataset, we used 20 iterations for the inner update loops and eight iterations for
the outer ones (including one update of the spatial regularization). The use of a
convergence threshold, however, might further improve the computation times.
As a preprocessing step we need 3h for the 128× 128 texture resolution and 12h
for the 256× 256 dataset to extract the samples from the input images (including
shadowing/occlusion calculation and resampling for the mean colors). With these
settings, fitting the 32 component SVBRDF against the approximately 1, 200, 000
samples for the 128× 128 dataset requires about 4h (and about 3GB RAM) and
about 16h (and about 9 GB RAM) are needed for the about 5,000,000 Samples of
the 256× 256 dataset (150 Samples per texel for a texture atlas with an occupancy
of about 50%). The timings were obtained on an Intel I7 950 CPU with 3.07Ghz
and 12GB of RAM. The algorithm was mainly implemented in MATLAB, using
moderately optimized C++ to compute S and parts of H. With a Geforce GTX
580, the largest dataset can be rendered under a point-light with at least 80 FPS at
a resolution of 1900× 1000.

7.4 Limitations and Future Work

Since our approach is completely data-driven and does, apart from the regulariza-
tion, not utilize any prior knowledge about SVBRDFs, it is not applicable if an
extremely coarse angular sampling is available. In these cases, very implausible
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results are possible and analytical models should be preferred, as they specify more
prior knowledge and thus can cope with smaller numbers of samples.

One of the main problems with the sample density are black artifacts in the highlight
regions. This effect is probably due to a bias in the utilized regularization. Since
we punish the second derivative along all of the coordinate axes, it is advantageous
during the optimization to draw the factorized function for one of the modes
towards 0 to reduce the price of the regularization along the other modes. The
problem is especially worsened by the

√
θh parameterization, which reduces the

sample density in parameter space near the highlight. For the few support points
nearest to θh = 0, there were often no samples available at all, even in the datasets
with denser angular input samplings. Since we cannot use a wrap-around for the
regularization of this mode, the function is only constrained by the smoothness
regularization between the smallest input sample and θh = 0, which leaves it free
to diverge against 0 at the boundary. We found that it helps to add an additional
regularization which punishes the gradients of the functions f (c,d) of the θh mode
for the few support points which are smaller than the smallest available sample to
prevent these functions from diverging towards the highlight.

In the future, a solution which solves the underlying problem would be desirable.
Either a different regularization without this bias would have to be applied or
additional regularizations which constrain the functions better in sparsely sampled
regions should be included. For example, in 3D reconstruction sometimes a
ballooning term is added to counteract the shrinkage bias of the minimum surface
regularization (e.g. [VTC05]). Though a ballooning term is probably not desirable
for BRDFs, it might be possible to find a suitable additional regularization.

We investigated only isotropic SVBRDF datasets so far, but we expect that our
representation could be extended by an additional dimension and used to also
represent anisotropic materials efficiently. The main problem here is that suitable
tangent directions are needed to compress and fit these anisotropic BRDFs. This
could probably be tackled by integrating an additional step which optimizes the
tangent directions into the iterative optimization algorithm.

7.5 Conclusion

We have presented an algorithm for fitting a spatially varying BRDF represented
as a sum of separable functions to a set of irregularly sampled data points obtained
from input images taken under varying view and light directions. As we have
demonstrated, this representation is very compact, well-suited for real-time render-
ing and capable of representing spatially varying BRDFs very accurately. By using
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a regularization which favors locally smooth and spatially coherent solutions, the
representation can be fitted even when only a rather small number of samples is
available, e.g. due to a coarse angular sampling of the input images. The fitting
algorithm is very efficient both in terms of memory requirements and runtime
performance, as it does not require at any time to compute the fully decompressed
dataset but instead only operates on the factorized representations.

7.6 Derivation of the regularization energy

Here, we give the full derivation of the quadratic form for the regularization energy
(Equation 7.4).∥∥∥W̃ ⊗ (F ×g R(g)

)∥∥∥2

=
[
W̃2 ⊗

(
F ×g R(g)

)
⊗
(
F ×g R(g)

)]
S

=

[(
CW∑
c=1

w(c,1) ◦ · · · ◦w(c,D)

)
⊗((

C∑
c1=1

f (c1,1) ◦ · · · ◦ f (c1,D)

)
×g R(g)

)
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Material Interpolation
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CHAPTER 8

BRDF INTERPOLATION

In Chapter 6, we have shown that a PARAFAC based representation allows for a
very accurate and compact representation of a wide range of measured BRDFs.
However, editing such a data-driven representation is much more difficult than
model based ones. For the latter, several techniques for the intuitive editing have
been proposed. For example, in [PFG00] the Ward model is reparameterized
perceptually to achieve a more intuitive selection of the parameters, in [CPK06,
NSRS13] the user can paint the lobes of a BRDF directly or in [NDM06] the
parameters are chosen by repeatedly selecting materials from a set of example
images.

It would be desirable to perform similar edits for data-driven BRDF representations
as is possible for model based ones, such as changing the shape, width and intensity
of the lobe and the diffuse color of the material. One approach for this is the use of
a factorization into a small number of terms, that are presented as curves which can
then be edited (e.g. [LBAD∗06, BAOR06]). However, this is not a very intuitive
interface, and the small number of factors limits the complexity of the BRDFs
that can be edited this way. An alternative approach is to select several samples
from a database of measured materials and then to interpolate between them to
change the desired characteristics. For example, in [WAKB09], the BRDFs from
the MERL BRDF database are arranged perceptually uniformly in two dimensions
via multi-dimensional scaling and then barycentric interpolation in a Delaunay
triangulation is used to create new BRDFs.

However, the barycentric interpolation results in a linear blending between BRDFs,
which can produce rather unintuitive results. It does not create intermediate lobe
shapes, as for example interpolations between the parameters of model based
representations would do. Instead, the width of the lobes does not change con-
tinuously, but only the intensity of the two blended lobes changes during the
interpolation.
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Figure 8.1: Linear interpolation between Dark Red Paint and Red
Phenolic

An example for this limitation is shown in Figure 8.1, where we perform an
interpolation between a very specular and a diffuse material. This does not produce
materials with varying microscopic roughness, resulting in different lobe shapes,
but instead only the intensity of the specular lobe changes.

Matusik et al. [MPBM03a] proposed to use a non-linear embedding of the space
spanned by the samples in a database into a lower-dimensional space. This space
is then parameterized according to perceptual traits like redness or roughness.
However, this approach requires enough intermediate samples to perform a smooth
interpolation between materials with different lobe shapes and thus needs a quite
large database. Furthermore, for each trait used during the editing a perceptual
annotation of this database is necessary.

In this chapter, we follow a different approach, which can interpolate the lobe shape
even when only two materials are given. Extending upon this, we are also able
to interpolate between several materials. Our technique uses continuous dynamic
time warping to first align the lobe shapes of two BRDFs with each other and
then performs an interpolation. This way, we achieve smooth transitions between
different lobe shapes. By precalculating these warpings and taking advantage of
our compact PARAFAC representation, real-time rendering of interpolated BRDFs
is possible. This way, we can offer the user an interactive graphical user interface,
which allows for a very intuitive exploration of the space spanned by a set of
BRDFs.

The work presented in this chapter has already been published as part of the
technical report "A compact and editable representation for measured brdfs", by
Roland Ruiters and Reinhard Klein (Technical Report CG-2010-1, University of
Bonn, December 2010).

8.1 Interpolation

In order to allow for a transition between different lobe shapes, we perform an
additional warping of the BRDFs prior to the interpolation, which aligns the
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shape of the two BRDFs with each other. If we would allow an arbitrary warping
transform, this would itself be a high-dimensional function which would have to
be stored in an efficient way. Instead, we decided to use warping transformations
along the coordinate axes, which can then be stored and accessed in a very efficient
way. This is achieved by introducing a set of coordinate transformation functions
m

(i)

A
α→B

(x). Each of these functions remaps the coordinate i in dependence on
the interpolation parameter α during an interpolation operation from BRDF A to
BRDF B. Using these mappings a warped BRDF is thus given by

ρ
A
α→B(θh, θd, φd, c) = ρA(m

(1)

A
α→B

(θh),m
(2)

A
α→B

(θd),m
(3)

A
α→B

(φd), c).

By warping the BRDF A by α towards the BRDF B and by warping B by 1− α
towards A, we get two BRDFs with aligned features. The final interpolated BRDF
is then obtained by interpolating between the two warped BRDFs. We found that
because of the large dynamic range of the BRDFs a linear interpolation does not
lead to good perceptual results here. The lobe of a specular material is often by
several orders of magnitude larger than the diffuse parts of a BRDF. When the
warping enlarges the size of this lobe, performing a linear blending results in
materials with unrealistically bright lobes. Instead, we decided to interpolate in log-
space, which is, similar to the difference function from Chapter 6, again motivated
by the Weber-Fechner law, from which follows that the intensity perception is
better described by a logarithmic relationship than a linear one.

We thus obtain the following interpolated BRDF ρ′:

ρ′(θh, θd, φd, c) = exp[(1− α) log ρ
A
α→B(θh, θd, φd, c)

+α log ρ
B

1−α→ A
(θh, θd, φd, c)]

Using linear blending would have had the advantage, that the resulting inter-
polated BRDF could directly be represented as a PARAFAC decomposition by
warping and scaling the functions f (j)

i of the two BRDFs and then combining
these into a new PARAFAC decomposition. When using non-linear blending, an
additional recompression step is necessary to represent the interpolated BRDF
in the same PARAFAC decomposition we use for the materials in the database.
This interpolation technique could generally be applied to interpolate any kind
of multi-dimensional data. However, since the warping is performed for each of
the coordinates independently, this approach is obviously heavily dependent on
the parameterization. The warping is only possible when the parameterization is
chosen in such a way that the coordinate axes are mostly independent from each
other. This is similar to the requirements for good compression results via a tensor
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Figure 8.2: Example of our interpolation technique. Warped path (red), path for
interpolation with α = 0.5 (green) and unwarped path (blue) are shown in the
main area. The corresponding warped functions are given at the bottom.

factorization. Therefore, the half-diff parameterization, which aligns typical BRDF
features with the coordinate system, gives also good results here.

8.1.1 Coordinate Transformation Functions

To find the coordinate transformation functions m(i)

A
α→B

(x) we use dynamic time
warping. Dynamic time warping is a technique which uses dynamic programming
to find the best alignment between two sequences of time data in a way that min-
imizes a given error function. First used for speech recognition (e.g. [SC78]),
it has since found many applications in pattern recognition and information re-
trieval. Given two sequences A(t) and B(t) and a function d(x, y) measuring the
difference between two sequences, it finds two functions p1(t) and p2(t) which
minimize d(A(p1(t)), B(p2(t))), usually under the constraint that p1 and p2 are
monotonous.

To apply this technique to higher-dimensional datasets, such as tensors representing
BRDFs, we perform the warping along each mode independently, while keeping
all other modes fixed. Since the warping along one mode can influence the result
of the warping operations along other modes, we iterate this process several times.
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For each mode i, the current warping functions along all the other modes are
applied to the tensor and then the warping functions p(i)

1 and p(i)
2 are updated. For

this, the two tensors A and B which are to be aligned are unfolded along mode
i and the resulting matrices are considered as two vector-valued functions ai(x)
and bi(x). For these functions, the one-dimensional dynamic time warping can
then be performed. For the dynamic time warping, we do not use the full color
BRDFs but instead only the luminance, since we want the calculated warpings to
be independent from the color of the two materials.

Once the warping path given by p(i)
1 and p(i)

2 has been calculated, the mapping
between coordinates is obtained by first projecting the coordinate x′ onto the

warping path by using the inverse of p(i)
2 : t =

(
p

(i)
2

)−1

(x′). Then the coordinate is

projected from there back onto the parameter space by calculating x = p
(i)
1 (t) (see

Figure 8.2 for an illustration).

So far, the warping path only warps the BRDF A onto B. To instead smoothly in-
terpolate between the two BRDFs we define an interpolation function I(f, x, α) =
(1−α)x+αf(x), which performs a linear interpolation between the identity func-
tion, representing an unwarped path, and the function f representing the warped
path.

The interpolated mapping is then obtained by applying this interpolation function
to both mapping steps. We thus define

m
(i)

A
α→B

(x) = I

(
p

(i)
1 , I

((
p

(i)
2

)−1

, x, α

)
, α

)
.

This choice of the mapping function is motivated by the necessity to perform the
interpolation efficiently with two lookups, as it allows to precalculate and store the

inverted function
(
p

(i)
2

)−1

.

8.1.2 Continuous Dynamic Time Warping

When the warping functions and the sequences are defined for discrete values t and
the distance function d is defined as a sum over the element-wise difference at each
of these values, the problem can efficiently be solved using dynamic programming.
However, we found that a discrete solution is often not sufficient to perform the
mapping between two BRDFs. Even though we represent the BRDF as a tensor,
during the rendering it is interpreted as a piece-wise linear function and not a set
of tabulated values. This is a problem since the lobe for very specular materials
often has a steep slope and thus the whole lobe is represented by just a few samples.
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When performing the warping only on these discrete samples instead of taking
the fact into account that we perform a linear interpolation between the samples,
the resulting BRDFs contain step-like artifacts, which can clearly be seen in the
renderings.

One way to overcome this limitation would be to oversample the tensor. By
increasing the resolution before the time warping is performed, these problems can
be reduced. However, because of the steep lobes, the resolution has to be increased
considerably to obtain good results. Since the runtime complexity of dynamic
time warping is O(n2) in the resolution this can become quite expensive. This
could probably be overcome by using an adaptive refinement scheme. However,
since this would also further increase the complexity of the algorithm and the
results would always only remain an approximation to the correct warping path,
we decided to apply the continuous dynamic time warping algorithm from [MP99]
instead.

This algorithm matches two curves, each given as a set of samples, onto each
other. For each of the discrete points in both curves, a corresponding point in
the other curve is searched. But in contrast to the discrete dynamic time warping,
this point is allowed to lie in between two points, assuming a piece-wise linear
curve. Thus, for each discrete value of t only one of the two functions p1 and p2

has an integral value, while the other value describes a point obtained by linearly
interpolating between two points of the curve. A second difference to dynamic
time warping is that the two curves are compared in a translation invariant manner,
by calculating the difference d not using the absolute values but instead relative
differences between two points on the curve.

The algorithm in [MP99] is only given for two-dimensional curves, but it can be
straightforwardly extended to curves in a high-dimensional space, such as our
unfolded tensors. Furthermore, analogous to the compression we had to introduce
an additional weight term w(x, y) to compensate for the large dynamic range of
the BRDFs. w(x, y) gives a weight for the error when a point between ai(x− 1)
and ai(x) is warped onto a point between bi(y − 1) and bi(y).

With these adaptions, the algorithm thus minimizes the cost function

D(ai,bi) =
T∑
t=2

w(
⌈
p

(i)
1 (t)

⌉
,
⌈
p

(i)
2 (t)

⌉
)2∗

‖(ai(p(i)
1 (t))− ai(p

(i)
1 (t− 1)))−

(bi(p
(i)
2 (t))− bi(p

(i)
2 (t− 1))‖2

2.

Here, the weights should again be selected in such a way that the error function is
evaluated relative to the original value. Thus, when x were the reference value the
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Figure 8.3: Example interpolation sequences with our technique
(from top to bottom Dark Red Paint→Red Phenolic, Orange
Paint→Fruitwood-241, Gold Metallic Paint→Yellow Matte
Plastic). In contrast to the linear blending, the shape of the lobe changes
during the interpolation.

weight would have to be chosen as x−
1
2 . However, in contrast to the compression,

we do not have one fixed reference value but instead four in relation to which
the error could be considered. We found that setting w(x, y) to the mean of
ai(x)−

1
2 ,ai(x− 1)−

1
2 , bi(y)−

1
2 and bi(y − 1)−

1
2 gives reasonable results.

The continuous dynamic time warping minimizes an error consisting of the differ-
ences between elements adjacent along the currently processed mode. Therefore,
each time it is applied to a different mode of the tensor, the algorithm minimizes
a different error function. Thus, it is not guaranteed that iterating this algorithm
does converge. In most cases, we found that usually after a very small number of
iterations (usually less than three iterations) the algorithm had converged to a local
minimum. However, sometimes it oscillated between two solutions, in which case
we simply aborted after a fixed number of iterations. When using four iterations
usually between one and four minutes are required on a computer with a Q6600
CPU and 4 GB RAM to compute the warping between two BRDFs.

8.1.3 Results

A few interpolation sequences obtained with our approach are shown in Figure 8.3.
Note that, in contrast to the linear interpolation in Figure 8.1, here the interpolation
between a diffuse and specular material results in intermediate images with varying
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Figure 8.4: A case in which a non-plausible intermediate BRDF (blue) is generated.
Instead of becoming more diffuse, the material is even more specular than the
original one.

glossiness. We found that for most material combinations our technique resulted in
plausible interpolation sequences. However, there are some combinations for which
the warping created non-plausible results (such an example is shown in Figure
8.4). Furthermore, we cannot guarantee energy preservation for intermediate
BRDFs.

8.2 Real-Time Rendering

Though the calculation of the warping paths p(i)
1 and p(i)

2 is rather expensive, they
can be precomputed. The interpolation itself can then be performed for an arbitrary
α in a shader. This shader first computes the half vector and the difference vector
from the light and view direction. The warping can then be performed by evaluating
the coordinate transformation functions m(i)

A
α→B

(x) for both participating BRDFs to
obtain the warped parameter sets. These are then used to evaluate the two BRDFs
and the results are finally interpolated.

We represent the BRDFs using the tensor decomposition from Chapter 6, which
allows for a very accurate representation, requires only a small amount of memory
and can be evaluated efficiently in the shader. However, since the warping and
interpolation are only performed before and after the evaluation of the BRDF, this
technique could be combined with an arbitrary BRDF representation. Even the use
of two different representations for the BRDFs participating in the interpolation
would be possible.
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So far, we have only considered the interpolation between two BRDFs. To obtain a
space of BRDFs which can be explored by the user, it is necessary to interpolate
between more than two BRDFs. First, the pairwise warping paths for all participat-
ing BRDFs have to be precomputed. We then consider the interpolation between a
set of BRDFs {Bi}i∈{1...N}, each of which has a weight βi with

∑
i βi = 1.

During the interpolation, we have to compute for each BRDF Bi warped coordi-
nates which take all other participating BRDFs into account. For this, we first
consider for each Bi pairwise interpolations towards all the remaining BRDFs Bj .
For each of them, we calculate the warping parameter αi,j as αi,j = βi

βi+βj
and

then determine the corresponding warped coordinates. Once this has been done for
all other Bj , the following weighted sum is evaluated to combine these pairwise
coordinates into the final coordinates for an interpolation between Bi and all the
other BRDFs {Bj}:

m
(l)

Bi
{βj}→ {Bj}

(x) =
∑

j∈{1..N}\i

βj
1− βi

m
(l)

Bi
αi,j→ Bj

(x)

Once the final coordinates have been calculated for allBi, these are used to evaluate
the BRDFs and then the actual interpolation between the BRDFs is performed in
log–space.

8.3 Interactive Exploration of the BRDF Space

When a database of measured materials, such as the isotropic MERL BRDF
database (see Section 2.1.2), is available, a high-dimensional space of materials is
spanned by interpolating between these BRDFs. However, each additional BRDF
added to the interpolation increases the dimension of the space. Specifying the
interpolation weights directly in such a way that a BRDF with a desired appearance
is obtained is therefore very difficult.

To allow for a more intuitive selection of the interpolation weights, we suggest an
interactive graphical user interface (shown in Figure 8.5). The user is presented
with the BRDFs available in the database on the right side of the screen. From
this database, she can select a number of BRDFs which are similar to the desired
material and place these on the surface in the center of the screen. The placement
of these BRDFs specifies then for each point of the surface a set of interpolation
weights. When the BRDFs Bi are placed at the coordinates xi the interpolation
weights at a point y are given by

αi(y) =
‖xi − y‖−E2∑N
j=1 ‖xj − y‖−E2

,
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Figure 8.5: Graphical user interface for the interactive exploration of a space
spanned by BRDFs

where E is a user selected exponent, which describes whether the interpolation is
rather local or if BRDFs also influence distant points strongly. Thus by moving
the placed BRDFs the user changes interactively the interpolation weights at each
point of the surface simultaneously.

Once the warping paths have been precomputed, our technique allows to evaluate
the interpolated BRDF model completely within the pixel shader. We are therefore
able to render interpolated BRDFs interactively and thus give the user an instant
feedback how the BRDFs would look like at all points on the surface at once. To
help the user judge the BRDFs, we render the background with a bump mapped
pattern (in our case small half spheres). Instead of using just one preview image,
showing the current selection, the user thus gets an overview over a large number
of different BRDFs and can interactively explore the possible combinations by
moving the selected BRDFs around. A BRDF is then selected by moving a small
sphere over the surface. Here again, the user is given instant feedback in a preview
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window on the left, where she can directly see how this BRDF would look like
when applied to the object she is currently working with.

Since the shader has to perform the lookup of the warped coordinates for each
pair of the interpolated materials, the runtime of the shader is actually O(n2) in
the number of materials. Thus, this technique is not suited to interpolate between
a very large number of materials at the same time. However, on a computer
with a Q6600 CPU, 4 GB RAM and a GeForce 8800 GTX we can render the
editing surface (which has a size of about 800x900 pixels) at 18-19 FPS while
interpolating between six materials. Since a higher number of materials is probably
seldom required, this should be sufficient for interactive editing in many practical
cases.

8.4 Conclusion

In this chapter, we demonstrated how dynamic time warping can be used to in-
terpolate between BRDFs and how this interpolation allows for an intuitive and
interactive exploration of the space spanned by a database of BRDFs.

BRDFs often are extremely non-linear in their parameters. Thus, even when the
warping itself is linear with α in the parameter space, it still results in a perceptually
non-linear interpolation speed between the two materials. This might be improved
by introducing an additional mapping for the parameter α, similar to the approach
described in [NDM06].
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CHAPTER 9

TEXTURE INTERPOLATION

In the previous chapter, we have considered the interpolation of homogeneous
materials. However, the characteristic appearance of many materials cannot be
captured by a BRDF but is also dependent on the spatial variation of the reflectance
behavior. In this chapter, we will therefore try to develop a similar data-driven
interpolation technique for textures. This will provide the foundation for the
interpolation technique for BTFs described in the next chapter. However, since
textures are probably the most widely used material representation in computer
graphics, the interpolation of textures is an interesting topic in itself.

Manually designing textures - procedurally or painted - is extremely time consum-
ing, while relying on photographs limits the designer to available material samples.
Moreover, data acquisition from real-world samples often requires tedious manual
postprocessing and editing to achieve the desired appearance. Thus, a data-driven
interpolation technique which allows the designer to create new textures by inter-
polating between a few captured samples would be one possibility to overcome
these problems. A second important application for texture interpolation is the
creation of spatially varying textures. Many objects show continuous transitions
between two textures, either naturally occurring, like for example natural variations
in fur or leather, or caused by wear or weathering. To create such effects, it is not
sufficient to only create an interpolated material, but a smooth transition between
two materials is also necessary.

However, creating meaningful interpolations for textures is a difficult problem.
A simple linear interpolation between textures usually does not give reasonable
results, as is illustrated in Figure 9.1a. Blending only works satisfactory when
features, like for example edges, ridges or cracks, in both textures are aligned to
each other. In [MZD05], it was therefore proposed to solve this problem by first
computing a global warping field, which aligns corresponding features in the two
texture samples, and then interpolating between the warped images. However, this
approach suffers from two problems: First, the amount of deformation has to be

129



CHAPTER 9. TEXTURE INTERPOLATION

(a) Linear Blending (b) Warping

(c) Linear patch
blending

(d) Warped patches
(our technique)

Figure 9.1: Comparison of different texture interpolation approaches. The top left
image is the final result, the top right demonstrates the feature alignment obtained
by the techniques. The bottom row shows input images after warping/synthesis but
prior to blending. Note: For our technique these are only shown for demonstration
purposes. The technique interpolates the neighborhoods prior to the synthesis
and performs the synthesis with the blended patches. Therefore these images are
usually not created. The images correspond to an interpolation amount of 0.4.
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kept low, as otherwise the appearance of the texture changes considerably and
artifacts occur in strongly warped regions. Thus, a strong regularization must to be
added to penalize strong warping. As a result of this, not all features can be brought
into exact alignment. Second, this approach can only be used if a continuous
warping field can be found. If there are large topological differences between the
layout of features in the two images, this is not possible since the topology of the
features cannot be changed by applying a continuous mapping. Figure 9.1b shows
an example where, due to these reasons, it was not possible to bring all features
into alignment.

Based on the assumption that a texture can be modeled as a Markov-Random-
Field (MRF), which is characterized by a collection of local image neighborhoods
only, we propose to overcome these drawbacks by performing the interpolation
directly on these local neighborhoods. We first find corresponding neighborhoods
with similar feature topology, and then warp and blend these patches to create
a new set of neighborhoods defining the MRF of the interpolated texture. In
the next step, we use texture optimization [KEBK05] to synthesize a new image
from this interpolated MRF. In contrast to approaches finding one global warping
transform, our local approach requires less deformation on the patch level, since
corresponding patches are chosen to have a similar feature layout and topology.
Moreover, topology changes are resolved during the texture optimization which
reassembles different patches in a suitable manner. Finally, we combine the patch-
based synthesis technique with statistical texture synthesis [PS00] to preserve
high-frequency features, which would otherwise be lost because of the patch
blending and resampling necessary for warping.

As shown in Figure 9.1d, using this approach, a texture with very exact feature
alignment and an intuitive looking and consistent overall structure can be synthe-
sized. Note, that it is not sufficient to only linearly blend patches with similar
topology, as this way it is not possible to bring the features in good alignment
(Figure 9.1c). Furthermore, the overall structure of the resulting texture is still
dominated by the right angles in the brick texture, even though the interpolation
amount is set to 0.4 and thus the result should be closer to the leather.

Using our approach, interpolation is thus possible for a large class of materials,
even when dealing with considerable topological differences in the layout of the
features in the two textures.

This chapter corresponds to the paper "Patch-based Texture Interpolation" by
Roland Ruiters, Ruwen Schnabel, and Reinhard Klein, published in Computer
Graphics Forum (Proc. of EGSR), 29(4):1421–1429, June 2010.
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9.1 Previous Work

9.1.1 Texture Interpolation

Existing approaches to texture interpolation can roughly be grouped in three
classes.

One approach is to compute a warping field which maps one texture onto the other
to align features in the two images and then blend between the two warped images.
In [LLSY02], manually specified feature correspondences are used to create the
warping field, whereas in [MZD05] the warping is computed using an automatically
extracted feature channel. In [LW07], a similar warping technique is used to create
smooth transitions in synthesized video sequences of natural phenomena such as
water, clouds and fire. However, computing one warping transformation for the
whole image is only possible when the images are topologically similar and the
features are distributed in such a way that unique correspondences and a continuous
warping field can be found.

A second class of techniques is based on texture synthesis. In [Wei02], textures are
interpolated by minimizing an energy function, which contains a weighted sum of
the differences to the nearest patch in each of the input images. To improve the
stability of the synthesis, an additional user defined feature channel is used. In
[ZZV∗03], a binary texton map is used instead of the feature channel. To interpolate
two textures, first an intermediate texton map is created. Then, constrained texture
synthesis is used to synthesize from the input textures two textures with aligned
features which are finally blended. The interpolated texton mask can be obtained via
linear blending [ZZV∗03, TW04]. Recently, it was instead suggested [RLW∗09] to
use advection to create the interpolated mask. However, all of the approaches based
on texton masks suffer from the problem, that the texton masks are interpolated
globally. The alignment of the features is either – in the case of linear blending –
not taken into account, or can only be corrected locally via the advection performed
in [RLW∗09].

Approaches which first warp an input image and then perform texture synthesis
to restore details lost by the warping have also been proposed. In [FH07], a user
specified warping is used, whereas in [LMWY09] a similar approach is used to
create an image mixing the appearance of one texture with the feature distribution
of a different texture.

A third class of techniques [HB95, PS00, BJEYLW01] is based on the extraction
and interpolation of image statistics. From these interpolated statistics a new image
can then be synthesized. However, for many complex images, statistical synthesis
alone does not provide very satisfactory results. These techniques can also be
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combined with other synthesis techniques to help to preserve image details, which
would otherwise be lost [MZD05].

9.1.2 Texture Synthesis

Given a small exemplar image, texture synthesis techniques create a larger texture
with a similar visual appearance. In the last years, texture synthesis has received
much attention and a considerable amount of work in this area has been published.
We will therefore only cite those works directly related to our technique and
refer the reader to a state-of-the-art report [WLKT09] for a more comprehensive
overview.

Texture synthesis approaches can be classified into techniques based on image
statistics and neighborhood-based approaches. The first neighborhood-based tech-
niques [EL99, WL00] synthesize the image by sequentially selecting the color for
each pixel from the best corresponding neighborhood in the input images. An
alternative approach is used by patch-based techniques (e.g. [PFH00, LLX∗01,
EF01, KSE∗03]), which work by copying larger patches into the synthesized tex-
ture. In [WY04], the individual patches are warped by aligning a binary feature
map via a thin plate spline transformation to ensure pattern continuity during
patch assembly. This approach is similar to our warping technique, but only used
during synthesis and not for texture interpolation. Texture optimization techniques
[KEBK05, HZW∗06, KFCO∗07] combine pixel- and patch-based approaches by
considering texture synthesis as an optimization problem, which is solved by min-
imizing an energy function. A different approach is used by techniques, which
decompose the image into several subbands and then enforce statistics like color
histograms [HB95] and cross-correlation between subbands [PS00].

9.2 Overview

Given two images I1 and I2 which are samples of textures T1 and T2 respectively,
we want to synthesize a new image I ′ of arbitrary dimensions sampled from a
texture T ′ which perceptually lies between T1 and T2. This is controlled by a
user specified interpolation amount α ∈ [0, 1], where 0 corresponds to T1 and
1 to T2. Based on the common assumption that a texture can be modeled as
a Markov-Random-Field, it is possible to synthesize a new texture only from a
collectionN = {Nj}j=1...M of local neighborhoods extracted from the input image.
Since these local neighborhoods characterize a texture completely, interpolation
between textures can also be regarded as the creation of a new interpolated set of
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Function: TextureInterpolation(I1, I2, F1, F2, α )

Add distance channel to I1 and I2

Initialize image I with noise
foreach resolution r and neighborhood size s do
N ′ = InterpolateNeighborhoods(I1, I2, F1, F2, α,r,s)
for i = 1...N do

Find nearest neighbors in N ′ for patches in I
Update neighborhood centers via relaxation
Update pixel colors in I via Mean-Shift
Perform statistical synthesis

end
return I;

end

Function: InterpolateNeighborhoods(I1, I2, F1, F2, α, r, s )

foreach l = {1, 2} do Nl = ExtractNeighborhoods(Il, r, s)

foreach l = {1, 2} do
l̂ = 3− l
foreach N (l)

j ∈ Nl do

Find k nearest neighbors N (l̂)

c(l)(j,1)
, · · · , N (l̂)

c(l)(j,k)
of N (l)

j

foreach i = 1 · · · k do
Find warping W between N (l)

j and N (l̂)

c(l)(j,i)

Create interpolated patch N ′

N ′ = N ′ ∪ {N ′}
end

end
return N ′

end

Pseudocode 9.1: Our texture interpolation algorithm

neighborhoods. To interpolate between textures T1 and T2, we thus first extract
the neighborhood sets N1 and N2 from I1 and I2. Based on these, a new set
of interpolated neighborhoods N ′ is computed which is then used to synthesize
I ′.

In Pseudocode 9.1, an overview of the different steps of our algorithm is given.
More details on the individual steps are then given in the following sections.
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To obtain N ′, we search for each N ∈ Nl, l ∈ {1, 2}, k corresponding neighbor-
hoods in the other set Nl̂, with l̂ = 3− l. The interpolated neighborhoods are then
created using a warping transformation to first align features between N and these
k corresponding neighborhoods and then linearly blending the patches. For this,
we use binary feature maps F1 and F2 marking the positions of relevant features in
both input images which should be aligned during the interpolation.

Our texture synthesis is based on the texture optimization algorithm of Kwa-
tra et al. [KEBK05]. The texture is synthesized in multiple steps from coarse to
fine with successively increasing image resolution and decreasing patch size to
allow the algorithm to synthesize textures with features at different scales. For
each combination of resolution and patch size, we create the set of interpolated
neighborhoods N ′ from the input textures. Compared to ordinary texture synthe-
sis, the set N ′ is less consistent due to the warping of the individual patches. In
particular, it is no longer guaranteed that for each patch neighboring patches which
are identical in the region of overlap exist. To compensate for this, we therefore
do not employ a regular grid of patches during the synthesis, but allow for a more
irregular distribution of the pasted neighborhoods. In addition, a relaxation step
moves the pasted neighborhoods in such a way that the error between overlapping
neighborhoods is minimized. Finally, to preserve high-frequency details, we per-
form an additional statistical synthesis step based on the technique described in
[PS00] in each iteration of the algorithm.

9.3 Neighborhood Interpolation

The patch interpolation creates an interpolated set N ′ of neighborhoods by find-
ing corresponding neighborhoods in the two input textures I1 and I2 and then
interpolating between them.

9.3.1 Correspondence Search

First, the sets N1 and N2 of all possible neighborhoods of the desired size are
extracted from I1 and I2. To find corresponding patches, we then search for each
N

(l)
j ∈ Nl, l ∈ {1, 2}, the nearest k corresponding neighborhoods in the other

set l̂: N (l̂)

c(l)(j,1)
, . . . , N

(l̂)

c(l)(j,k)
∈ Nl̂, where c(l)(j, i) is the index of the i-th nearest

neighbor of N (l)
j in N (l̂). For this, we use two binary feature maps F1 and F2.

These maps could be generated automatically using a feature detector. However,
depending on the input images very different elements might constitute features.
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We tried both the compass operator [RT99], which was suggested in [MZD05]
for this purpose, as well as several edge detectors. Still, for many images the
results were not very satisfactory and thus we so far use manually created feature
maps.

Ideally, we would like to find corresponding neighborhoods which have features
that can be aligned under minimal deformation. For instance, a good distance
measure would probably be the warping error DW given in Equation (9.1). How-
ever, computing all pairwise warpings is prohibitively expensive and cannot be
performed in reasonable time. A faster alternative is to compute the difference
of the binary feature channels. However, this results in large errors even for only
slightly misaligned features. Thus, as was suggested in [LH06], we perform a
distance transform to add an additional distance channel to the neighborhoods, in
which for each point the distance to the nearest feature point is stored. The L2 error
in this distance channel is a considerably better measure of how well the features in
the two images correspond to each other. We use the metric ‖WC • (N

(1)
i −N

(2)
j )‖2

to compute the distance between two neighborhoods N (1)
i and N (2)

j . Here, WC

specifies weights for the channels of the neighborhood. We thus include both the
color and distance channels during the search to prefer warpings between patches
with similar color and feature distribution. Using this distance measure, the k
nearest patches can easily be found via PCA accelerated KD-tree search and thus a
very fast lookup becomes possible.

It is important to perform these searches for the neighborhoods in both textures,
first using N1 as input and searching in N2 and then the other way around. If the
searches are not performed symmetrically it may be that many neighborhoods in
the second image are not nearest neighbor to any of the neighborhoods from the
first texture and would not be taken into account at all. This is a problem, since we
want to ensure that the extracted patches are not only similar to the input images
but also complete in the sense that everything visible in the two input images is also
represented in the extracted patch set. In [WHZ∗08] and [SCSI08], this problem is
described in more detail in the context of the creation of image compactions.

9.3.2 Patch Interpolation

Once two corresponding neighborhoods N (l)
j and N (l̂)

c(l)(j,i)
have been found, we

perform a color adjustment. To this end, the mean and variance of the color channels
in both input textures are computed, and then linearly interpolated according
to α. The color values of the two neighborhoods are then shifted and scaled
accordingly.
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(a) input patches (b) features (c) warped patches (d) blended

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) interpolation sequence

Figure 9.2: Illustration of the patch interpolation. The two input patches are
shown in (a). In (b), the feature maps of the two patches are shown overlaid
before and after the warping for α = 0.5. The resulting warped patches are shown
individually in (c) and then after blending in (d). The full interpolation sequence is
shown in (e).

The interpolation is then performed by first warping the patches and then blending
the warped images to obtain the interpolated result. This is illustrated in Figure 9.2.
To compute the feature aligning warping, we search for a thin-plate spline (TPS)
transform θ [Duc77] that maps the features in one neighborhood onto features in
the other neighborhood. We create two point sets P (1) and P (2) from the sections
of the two feature maps F1 and F2 which correspond to the currently processed
neighborhoods. For this, we store the coordinate of each non-zero pixel in the
point sets (P (i) = {(x, y)|Fi(x, y) 6= 0}). We then use the algorithm of Chui and
Rangarajan [CR00], which uses deterministic annealing to simultaneously find the
correspondence between P (1) and P (2) and the aligning transform.

The algorithm iterates between updating the correspondences between points and
calculating a new TPS according to the found correspondences. It is based on soft
assignments, captured in a matrix M. Each entry mij of M gives the probability
that the pair of points P (1)

i , P
(2)
j correspond to each other. The algorithm thus

minimizes the error function

DW (M, θ) =
∑
i

∑
j

mij‖θ(P (1)
i )− P (2)

j ‖2 +R(θ), (9.1)

where R is a regularization term penalizing strong deformations. During the an-
nealing, as the temperature parameter is decreased, the soft assignments in M
become successively more distinct until they finally converge against one-to-one
correspondences. This technique allows to find the correspondences in a consid-
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erably more robust way than algorithms such as iterated closest points [BM92],
which are based on hard assignments only. To obtain the interpolated patches, we
compute both TPS transformations, θ1,2 mapping P1 to P2 and θ2,1 mapping P2

to P1, during the point matching algorithm, using the same correspondences for
both. The interpolated transforms are given by interpolating the identity transform
and the TPS, i.e. θ′1,2 = (1− α)θ1,2 + αI and θ′2,1 = αθ2,1 + (1− α)I. These two
transformations are then used to warp one patch by α and the other patch by 1− α
to align the features and the following blended patch is added to N ′:

N ′(x) = (1− α)N1(θ′2,1(x)) + αN2(θ′1,2(x))

Even though we only consider patches, especially for larger neighborhood sizes it is
still possible that one patch has features that cannot be mapped onto any feature in
the other patch. Thus, we need a robust handling of outliers during the computation
of the TPS. We slightly modified the original algorithm by assigning outlier points
to a point at their own position during the last iteration for the computation of the
TPS. This adds a certain inertia to the iteration, avoiding large deformations that
align outliers with very distant features. In our experiments, this improved the
robustness of the point matching.

We only want to use those neighborhoods during the synthesis which achieve
a good alignment of the warped feature maps and for which the actual images
fit well to each other. Thus, we compute the similarity between the two warped
neighborhoods and only keep those where the similarity is above a certain threshold.
For this similarity, we combine the difference of the two warped distance channels
and the normalized cross correlation of the color channels. The relative weight
of distance channel and color channels is a user selectable parameter controlling
the importance of the feature channel in relation to the images themselves. Since
it is rather difficult to decide in advance on a similarity threshold, we instead use
a certain percentile of the similarities of all patches as threshold. To improve
the quality of the results, it is possible to choose a high value of k, to create
a large number of candidate neighborhoods, and then use a small percentile to
keep only the best ones. However, we found that it is usually sufficient to use
only one neighborhood (k = 1) and then keep the better 50% of the generated
neighborhoods. All images shown in this thesis were generated this way.

9.4 Texture Synthesis

The interpolated patches are then reassembled via texture synthesis. For this, a
neighborhood-based synthesis approach and a statistical texture synthesis approach
are combined.
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9.4.1 Neighborhood-based Synthesis

Since we perform the actual interpolation of the image on the neighborhoods N1

and N2, any synthesis algorithm which works with a collection of neighborhoods
N ′ as input could be used together with our interpolation technique. We decided
to use texture optimization [KEBK05] since it achieves high-quality results and
iteratively optimizes the whole texture to avoid the accumulation of errors. This is
especially important in our case, since the input might contain incoherent neighbor-
hoods which cannot be combined with any other neighborhood in a sensible way.
When no interpolation is performed, all possible neighborhoods are extracted from
the input image. This means, that the input patches can be consistently overlapped.
However, when interpolation is used, this is not necessarily the case. When two
neighborhoods, which are overlapping in one image, are warped against different
patches in the other image the resulting patches are no longer consistent. Therefore,
a rather tolerant synthesis algorithm, which can compensate for these patches, is
needed.

The texture optimization algorithm iterates over different combinations (r, s) of
image resolutions, obtained by downsampling the input images I1 and I2 by the
factor r, and neighborhood sizes s to be able to synthesize features on different
size scales. For each of these combinations, we independently create a new set
of interpolated neighborhoods N ′. Depending on the size of features in the input
images, different choices of r and s might be necessary. We usually perform the
synthesis in three steps with (r = 2, s = 33), (r = 2, s = 17), (r = 1, s = 17).
Only for images with very large and regular features, we use an additional iteration
with (r = 2, s = 49).

For a given combination (r, s), an image is synthesized by repeatedly choosing
matching neighborhoods from N ′ for a set of center points in the current synthesis
result I . Then I is updated by pasting the matching patches into I while averaging
their contributions in the respective regions of overlap. In the original algorithm,
the matching is performed for neighborhoods centered around points located
in a regular sparse grid, in such a way that for each pixel several overlapping
neighborhoods are available. However, using a regular grid does not give good
results in our case. In traditional texture syntheses, all possible neighborhoods are
extracted from the input image. This means, that input neighborhoods are available
for all possible positions of a patch center. However, when using the interpolated
neighborhoods, it might happen that a good patch is available for one center point,
but not for the center directly adjacent to this point. When this is not taken into
account during the synthesis, the synthesized images become blurred and only a
small subset of the available neighborhoods is used, resulting in repetitive images.
Thus, we do not search for neighborhoods centered around points on a regular grid,
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r=2,s=33 r=2,s=17 r=1,s=17

Figure 9.3: Difference between neighborhoods aligned to a regular grid (top)
and using irregular neighborhood centers (bottom) after each of the synthesis
iterations.

but instead use an irregular distribution. Within each cell of the original grid, we
search the one neighborhood center Ci which results in the lowest error and then
use this point instead. This way, we can ensure that each pixel is overlapped by
enough neighborhoods, but on the other hand allow for a more flexible placement
of the neighborhoods. Unfortunately, this slows down the synthesis, as a higher
number of neighborhood searches is needed. Still, as can be seen in Figure 9.3, it
improves the quality of the synthesized result considerably.

To improve the coherence between the available neighborhoods in N ′, we also
looked into enforcing spatial coherence during the interpolation by assigning
neighborhoods adjacent in one image to neighborhoods adjacent in the other image
and using similar warpings for both. However, we did not notice a considerable
difference in the resulting textures.

After the selection of the neighborhood centers Ci and the corresponding patches,
we perform an additional relaxation step. Here, the matched neighborhood patches
are shifted relative to each other in such a way, that the difference between overlap-
ping parts is minimized. For this, for each neighborhood center the optimal position
within a small search radius of a few pixels is searched and each neighborhood
is shifted to this new position. To prevent the centers from moving too far apart,
we add an additional spring term which penalizes deviations from the old position
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Figure 9.4: Improvements obtained via relaxation (center) and additional sta-
tistical synthesis (bottom) compared to the result (top) without these additional
steps.

relative to the neighbor patches. This process is repeated until a local minimum
is reached for all centers. This relaxation process improves the alignment of the
patches, especially when there are regular structures in the texture (see Figure
9.4, central image). Though the relaxation step helps, the synthesis result still
sometimes show discontinuities.

In the next step, the synthesized image is updated by averaging the pixel value of
the overlapping neighborhoods. Here, we use iteratively reweighted least squares
to obtain weights for the neighborhoods, as was suggested in [KEBK05]. Instead
of averaging the colors, we perform an additional Mean Shift clustering [CM02]
for each pixel to find the dominant mode and use the center of this mode as new
color, as was suggested in [KFCO∗07]. This helps to obtain sharper images and to
cope better with incoherent patches.
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9.4.2 Statistical Synthesis

Finally, we perform a statistical synthesis step, which helps to preserve high-
frequency details, which are otherwise easily lost during the patch interpolation.
For this, we use the synthesis algorithm from [PS00] which works by enforc-
ing image statistics and cross correlations between bands of a steerable pyra-
mid decomposition of the input image. For each iteration of our synthesis loop,
we perform one iteration of the statistical synthesis algorithm, using the imple-
mentation kindly made available by Portilla and Simoncelli on their homepage
http://www.cns.nyu.edu/~lcv/texture/. We slightly extended the
original implementation, which only works for greyscale images, by adding an
additional cross correlation between the three color channels for each band of the
pyramid. This correlation is then also enforced during the synthesis. Currently, we
use linear interpolation to obtain the image statistics. A simple linear interpolation
was already described in [PS00] and often resulted in rather unsatisfactory results
when used directly for texture synthesis. Thus, further research on how the image
statistics should be interpolated correctly is certainly necessary. Still, as shown in
Figure 9.4, when used together with our neighborhood-based synthesis result as ini-
tialization, the additional statistical synthesis step helps to preserve high-frequency
details in the interpolated textures.

9.4.3 Spatially Varying Interpolations

To create spatially varying interpolations, we create interpolated patches for several
different interpolation amounts α (we use 20 equidistantly spaced steps). We
then encode the α values in an additional channel of the patches and use all
patches together during the synthesis. By enforcing this channel during synthesis
to resemble the user-supplied distribution mask, we then generate the spatially
varying textures. The weight for this channel controls during synthesis whether the
distribution mask is represented exactly, or whether smooth transitions and better
synthesis results should be favored by the algorithm.

We currently perform the statistical synthesis independently for several equidis-
tantly sampled values of α, each time only on the relevant parts of the image
according to the distribution map. Then, the results are blended using blending
weights derived from α. This approach is rather slow, but worked quite well
in our experiments and did not require large changes to the original synthesis
algorithm.
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Figure 9.5: Proposed chaining of warping transformations. Instead of directly
computing all pairwise warpings (a), we only compute warpings between neigh-
boring patches and create missing warpings by concatenating the transformations
(b).

9.5 Multi-Material Interpolation

So far we have only considered the interpolation between two textures. To allow for
a real texture design, it is necessary to enable the interpolation between k different
texture samples. For this, we search for k-tuples of patches that are corresponding
in all k input textures. All input patches in one tuple are then warped and blended
to form one interpolated patch. However, the straight forward extension to compute
all pairwise warpings to register the patches to each other would not be efficient.
Instead, we only use an approximation. First, we arrange the materials and then
sequentially compute the warping transformations only between direct neighbors.
The transformations between all pairs of patches in a tuple are then obtained
by chaining the computed warpings (see Figure 9.5). To create the interpolated
patch, the resulting warping transformations are linearly combined according to the
interpolation weights and then applied to the k input patches. Finally, the warped
patches are blended together.

When creating textures with spatially varying interpolation weights, a further
adaption is necessary for the statistical synthesis. When only two textures have
to be interpolated, we perform the statistical synthesis independently for several
equidistantly sampled values of α and used linear blending between the resulting
images to obtain the final image. However, this would not scale well to the
interpolation between several materials, as sampling the higher-dimensional space
of interpolation weights equidistantly would be very expensive. Instead, we utilize
clustering on the input image with the spatially varying weights to find a smaller
set of representative weights. For each of those clusters, the statistical synthesis
is performed. Finally the results of this synthesis are blended. The blending
weights are obtained by computing a Delaunay triangulation and then using the
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Figure 9.6: Interpolation between three textures according to a complex spatially
varying distribution map. The input images and the color coded distribution map
are shown in the bottom row.
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(a) Without scale compensation (b) With scale compensation (c) [RLW∗09]

Figure 9.7: Comparison between our results without and with scale compensation
and those from [RLW∗09].

barycentric weights in the corresponding simplex. Figure 9.6 shows an example of
the interpolation between three textures.

9.6 Compensation for Different Feature Scales

A limitation of the approach described so far is the interpolation between materials
with large differences in feature scale. Since the computed warping transformation
is as rigid as possible, an enlargement or shrinking of features does not take place.
To achieve this effect, we additionally compute one global scaling factor for each
of the participating materials. This factor is derived from the average value of the
channel containing the distance to the feature map and can then be used to bring the
different image scales into alignment. During the interpolation, we determine the
scale of an interpolated patch by weighting the scales of the input patches according
to the interpolation weights. Prior to the computation of the warping transform and
blending, all input patches are then scaled to correspond to this interpolated scale.
Similarly, prior to the computation of the image statistics during the statistical
synthesis, the input images are also scaled to this interpolated scale.

In Figure 9.7, we show one of the examples from [RLW∗09] which has a con-
siderable difference in the feature scales of the two input images. Without the
scale compensation, our interpolation produces rather unintuitive results since the
features cannot be brought into good alignment. In contrast, when additionally
scaling the patches prior to interpolation, the size of the features continuously
increases during the interpolation sequence and the feature can be brought into
good alignment.
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9.7 Results

In Figure 9.8, we show several examples of texture interpolation sequences obtained
with our algorithm. The corresponding input images and feature maps are shown
together with the results. As can be seen, the algorithm is able to create seamless
transitions, which remain sharp and detailed during the whole sequence, for a
wide range of different materials. Even when there are considerable differences
in the topology and structure of the features, such as for example in the transition
between the leather and the brick wall, a continuous and plausible interpolation is
obtained.

In Figure 9.9, we show several materials designed by interpolating between two
samples of one material class. Apart from the failure case in the lower right, the
algorithm is able to create plausibly looking materials, which perceptually lie in
between the input textures. Both the feature structure as well as the material details
are interpolated.

In Figure 9.7 and 9.10, we directly compare our results with those reported in
[RLW∗09], a recently published texture interpolation technique based on texton
masks. Our algorithm is able to create smooth and detailed interpolation sequences,
in which there is a continuous and seamless transition between the structures of
the two materials. The advection algorithm from [RLW∗09] interpolates the whole
texton mask, which results in completely new structures not present in either of the
input images. In contrast, our approach works on a more local level and creates a
more direct transition with intermediate images which adhere considerably more
to the input textures.

In Figure 9.11, we show an example for a spatially varying texture with a more
complex distribution map. It can be seen, that not only the color and fine-structure
of the material is varied spatially, but also the feature shape, which is interpolated
from a irregular elongated pattern to a more regular triangular one. Furthermore,
discontinuities are handled plausibly, with features continuing over the discontinu-
ities.

Since we perform the warping and interpolation on the individual patches, our
technique is mainly suited for materials with regular or semi-regular structures,
which can be characterized by these patches and for which an alignment of cor-
responding features is possible. For materials with large-scale structures or with
purely stochastic behavior, different techniques are probably better suited. Fur-
thermore, it is required that the material can be characterized via the feature mask.
The interpolation between two wood samples in Figure 9.9 shows a case where the
feature map does not characterize the material well and where the structure of the
features is very different for the two samples.

146



9.7. RESULTS

Figure 9.8: Sample interpolation sequences that were created with our technique.
Input textures and feature maps are shown.
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Figure 9.9: Several new materials designed by interpolating between two texture
samples (All images are for α = 0.5). The lower right image shows a failure-case
for a material which cannot be characterized well by line features.
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[RLW∗09] Our technique

Figure 9.10: Comparison of interpolation results from [RLW∗09] with our results.

After the initial publication of this work, two other techniques for texture inter-
polation have been published in [KPRN11] and [DSB∗12]. The authors of these
works compared their results with ours. In Figure 9.12, we include some of the
comparisons from these papers. In contrast to our method, their techniques do not
need a feature map. However, as the comparison shows, with a feature map our
techniques is able to preserve the feature structure better and to create smoother
interpolation sequences.

Using a Q6600 CPU, the computation of one of the sequences in Figure 9.8 (in a
resolution of 1024x256 pixels) requires about 3.5 hours, using 10 iterations for each
resolution and patch size. About 20 minutes are needed for the patch interpolation,
which is already optimized moderately, being implemented in C++ and parallelized
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Figure 9.11: Spatially-varying texture created by interpolating between the two
shown material samples using a grayscale image of a Cornell Box as distribution
map controlling the interpolation amount α.

on 4 cores. In contrast, large parts of the synthesis code were not parallelized and a
MATLAB implementation of the statistical synthesis was employed.

9.8 Conclusion

In this chapter, we presented a novel texture interpolation algorithm, which locally
warps and blends individual neighborhoods of the input textures and then reassem-
bles the image using the texture optimization algorithm. In contrast to techniques
based purely on warping, we can create consistent images this way, even when it is
not possible to continuously warp one input image onto the other. By combining
this algorithm with statistical texture synthesis we are furthermore able to preserve
high-frequency details.

A interesting avenue of research would be a perceptual reparameterization of the
resulting interpolation sequences. Often, the sequences do not seem to linearly
interpolate between the two materials, but instead keep the characteristics of one
of the two materials for a rather long time. A perceptual study investigating these
effects might lead to techniques that reparameterize α in a way which allows for
more linear transitions.
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Our technique [KPRN11]

Our technique

[DSB∗12]

Figure 9.12: Comparison with the results from [KPRN11] and [DSB∗12].

151



CHAPTER 9. TEXTURE INTERPOLATION

152



CHAPTER 10

BTF INTERPOLATION

Figure 10.1: Example BTF interpolation sequence

In this chapter, we will extend the texture interpolation approach from the previous
chapter to enable the interpolation of BTFs. In contrast to textures and even
SVBRDFs, BTFs are far more complex datasets. This is due to the fact that
BTFs are capable of representing effects arising from the inherently contained
light interaction with the surface geometry, such as parallax, shadowing, masking,
rotated lobes attributable to normal variations, interreflections and sub-surface
scattering. These effects can be non-local, i.e. the appearance at one point on the
surface is influenced by other parts of the material.

To describe the dependence of the appearance on the underlying material surface,
we distinguish three major scales. First, there are the clearly dominant material
features, such as the year-rings in wood, bumps in leather or contours in stones,
ranging over several texels of a surface texture. Second, there are the micro-
geometry scattering effects, i.e. reflection properties. These correspond to a feature
size far below the size of one texel and are commonly described by their statistical
properties, e.g. a BRDF. Last but not least, there are other fine geometric details in
the size just below a fraction of a texel but still clearly recognizable as individual
features. Examples are small fibers in wool yarn or small holes in the surface
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of an eggshell, leading to its cavernous appearance. These are called meso-scale
effects.

Due to this inherent complexity of the material surface, BTFs are usually not
modeled explicitly but instead measured from real-world samples, which is a time
consuming and expensive process that requires specialized hardware equipment,
such as the devices described in Section 2.1. To overcome the restriction to mea-
sured BTFs, several methods have been devised to edit and manipulate BTFs in
recent years allowing for impressive material edits. Despite this progress in BTF
editing, there are currently still no methods that allow interpolating between given
BTFs on all three different scales in a consistent way. An adaption of the texture
interpolation approach from Chapter 9 to BTFs, could lead to similar intuitive
schemes for the creation of new content based on exemplars as we demonstrated
in Chapter 8 and as those presented for BRDFs and textures in the works by
Matusik et al. [MPBM03a, MZD05]. These techniques allow a user to navigate
the space of materials spanned by a few measured exemplars. This paradigm is
desirable, as it simplifies the design process of new materials significantly. The user
can manipulate the whole material appearance at once according to intuitive, pre-
dictable and possibly semantically meaningful directions in this space (e.g. "more
similar to this leather"). This is in contrast to other editing techniques where one is
concerned with individual aspects such as changing parameters (e.g. specularity,
roughness, Fresnel effect) or rearranging the distribution of features.

Even though a BTF can be regarded as a large collection of textures which depict
the appearance of a surface under a set of different view and light directions, the
interpolation of all aspects of the material appearance is a more complex task than
texture interpolation. This is due to three reasons: First, with the BTFs showing
different reflectance characteristics over the surface, an implicitly contained meso-
scale geometry and different spatial distributions of material features, it is necessary
to interpolate all of these in a consistent manner. Second, the representation
contains many complex non-local effects as well as effects due to the implicitly
captured geometry, which explicitly have to be taken into account during the
interpolation process. Finally, the sheer amount of data that is stored in a BTF
presents a technical challenge of its own.

In this chapter, we present a novel technique which allows a continuous interpola-
tion between multiple BTFs such as the one shown in Figure 10.1, simultaneously
interpolating all aspects of the material appearance. To the best of the authors’
knowledge, there is only one publication [MSK07] tackling a similar problem.
However, this approach is not able to interpolate material features but uses a pro-
cedural model for leathers to generate interpolants. We propose the separation of
the BTF into a heightfield and a parallax-compensated BTF that is parameterized
over the heightfield, removing parallax and shadows and bringing local frames
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into alignment. In this fashion, problems during synthesis caused by non-local and
geometry effects are vastly reduced. The representation has the additional advan-
tage that the silhouettes of objects are depicted in a more realistic way (compare
Figure 10.6). Further, to cope with the large amount of data, all computations are
performed within a factorized representation of the parallax-compensated BTF. We
then utilize our texture interpolation algorithm from Chapter 9 to enable the simul-
taneous interpolation of reflectance, meso-scale geometry and material features.
Since this algorithm is based on texture synthesis, it also has the ability to generate
seamlessly tileable BTFs.

With these techniques at hand, we explore several applications such as the design of
new materials by interpolation of measured BTFs, continuously spatially varying
interpolation sequences between multiple materials, complex spatially varying
interpolation patterns as well as separating the interpolation of material features
from the interpolation of reflectance and fine meso-scale details. The effectiveness
of our approach is demonstrated on a range of different material classes.

This chapter corresponds to the paper "Example-based Interpolation and Synthesis
of Bidirectional Texture Functions" by Roland Ruiters, Christopher Schwartz,
and Reinhard Klein, published in Computer Graphics Forum (Proceedings of
Eurographics), 32(2), 2013.

10.1 Previous Work

Several techniques for the editing of BTFs have been proposed. One class of
techniques is based on analytic BRDF models that are fitted to the measured data,
using either heightfields as in our approach described in Chapter 5 and in [MG09]
or rotated local frames [WDR11] to approximate the underlying geometry. These
BRDFs are then subject to editing operations that change reflectance characteristics
like color, Fresnel effect or specularity, eventually editing the appearance of the
fitted material. For SVBRDFs, similar edits have also been performed via a non-
negative factorization [LBAD∗06], which allows editing of a material via changes
to 1D curves, characterizing its reflectance behavior. Alternatively, a completely
data-driven approach [KBD07, XWT∗09] uses image processing operations to
enable edits such as color changes, making a material rougher or softer, changing
specularity, warping or removal of shadows. These operations mainly influence
the reflectance behavior or local aspects like roughness and shadows, but do not
affect large-scale structures in the material. Another class of techniques that is
capable of changing the spatial layout of the material features is based on the
assumption that one input sample either consists of a composition of overlapping
layers [LL11] or exhibits multiple weathering states [WTL∗06]. The different
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features are identified by user-scribbles. The new material is then generated by
redistributing these features along a user-provided map and using texture synthesis
to fill in gaps.

Our approach also relates to several techniques for BTF synthesis. These are con-
cerned with the creation of larger or tiling-free BTFs from small exemplars. Many
existing approaches are based on textons [LM01, TZL∗02, LHZ∗04] or texture
quilting [KM03, HH05, ZDW∗05, KSOF05, LPF∗07]. We refer to the compre-
hensive overview by Haindl and Filip [HF11] for more details. These techniques
thus only rearrange the texels of the input BTF. This means, that the same trans-
formation is applied to all view directions simultaneously, without compensation
for view dependent parallax effects. If the BTF synthesis is performed for each
view independently, it is necessary to enforce consistency between the views.
Liu et al. [LYS01] do this by constraining the synthesis to a rendered heightfield,
while Neubeck et al. [NZG04] utilize a firstly synthesized support-view to constrain
the texture synthesis for all other views. However, performing a separate synthesis
for each view is rather inefficient.

Mueller et al. [MSK07] synthesize two BTFs by re-ordering the texels according to
a common heightfield-derived appearance space, but disregarding parallaxes. Once
their features are aligned by the synthesis, the two materials are linearly blended
to create an interpolated result. Here, the heightfield of the interpolated material
needs to be known prior to the interpolation itself and is either user-specified or
created with a procedural leather model.

None of these techniques provides a direct and automatic interpolation between
two or more materials taking both the reflectance characteristics and the spatial
structure of the material into account.

10.2 Approach

Since all the individual textures of the BTF depict the same surface from different
view and light directions they are heavily interdependent. Applying an independent
interpolation to each texture can lead to incorrect results. Therefore, a consistent
interpolation of the textures is mandatory. Only if all images are interpolated
consistently, a meaningful interpolation of the reflectance behavior is performed
at the same time. One way to achieve this is to perform the synthesis on all
images simultaneously. In theory, this would be possible with any available texture
interpolation algorithm by considering the BTF as one image with an extremely
large number of channels (many tens of thousands). In practice, such an approach
would not be feasible because of the extremely large amounts of data that would
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have to be processed in this case. Instead, it is desirable to operate on a more
compact representation.

A common technique for the compression of BTFs is a factorization via Singular
Value Decomposition (SVD), (see Chapter 3 for a more detailed description). It
takes advantage of the fact that a BTF can be represented compactly via a low-rank
approximation. The function values are written as a matrix Mi,j , where the row
indices i encode the combination of view/light direction and color whereas the
column indices j specify the position on the surface. For compression, a truncated
SVD M ≈ UΣVT is computed, where the matrices U and V each contain only c
columns. The columns of U are called Eigen-ABRDFs and represent the angular
reflectance behavior of the BTF and the columns of V are called Eigen-Textures
and describe the spatial distribution of the reflectance. Koudelka et al. [KM03]
observed that this representation can also be utilized for BTF synthesis and quilting
was used to synthesize new Eigen-Textures.

We consider the matrix V′ = VΣ, representing the spatial distribution of the
reflectance as an image with c channels which serves as input for a texture in-
terpolation algorithm. However, it is not a priori clear, whether performing an
interpolation in this representation is valid. Fortunately, the SVD factorization
has three important properties that potentially enable this approach: First, it pre-
serves scalar products and thus distances under the L2 norm. When a truncated
SVD is used, distances are obviously not preserved exactly, but according to the
Eckart-Young Theorem a truncated SVD is the best rank-c approximation of a
matrix under the L2 norm and thus the computed distances are good approxima-
tions. Second, a linear transformation which only affects the spatial domain can be
applied directly to the matrix V′. These transformations can be represented as a
matrix T, which is right-multiplied with the BTF matrix MT = UΣVTT. The
third important property is that linear combinations of two materials represented
in the same basis can also be applied directly to the spatial distribution map, i.e.
λ1UV′1

T + λ2UV′2
T = U · (λ1V

′
1
T + λ2V

′
2
T ).

10.2.1 Interpolation Algorithm

Following these considerations, one could choose any texture interpolation al-
gorithm that is based on operations utilizing scalar products, L2 norms, linear
transformations in spatial dimensions and linear combinations. We will utilize our
texture interpolation algorithm from Chapter 9. As was described in the previous
chapter in more detail, the algorithm performs the following operations: First,
the input textures are cut into small patches which are then brought into corre-
spondence, warped and blended. To determine the correspondences, hand-drawn
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(a) input materials (b) alpha
blending

(c) synthesis

Figure 10.2: Comparison of 50% interpolation results with simple alpha blending
(b) and our material synthesis approach (c). All figures show a cut-out of the BTF
with light and view from directly above. The upper row shows that our approach
aligns the features of the input materials and creates a meaningful interpolation
result. Even in the second case, which does not exhibit such clear features, our
synthesis approach creates a much sharper result.

binary feature maps are employed. The interpolation result is then generated by
re-assembling the blended patches. Finally, a statistical synthesis step is performed
to enforce interpolated image statistics of the input exemplars. Figure 10.2 shows
that this interpolation technique, in contrast to linear blending, preserves features
and even gives better results on unstructured materials e.g. sand.

Almost all parts of our algorithm are based on the set of operations allowed by the
properties of the SVD. To determine the correspondences, similarity between the
input patches under the L2 norm is employed. During a warping transformation a
warped image is created as a bi-linear interpolation of the pixel values of the original
image. When the discrete values of the original image are unfolded into a row-
vector this operation can be expressed as a multiplication with a matrix T, which
contains the four interpolation weights for one result pixel in the corresponding
column. As argued in Section 10.2, it is valid to apply a matrix T to the factorized
representation V to apply the warping to all BTF textures simultaneously. During
the re-assembly of the blended patches, the L2 distance is employed to find suitable
overlapping patches. These are then again blended to create the final image. To this
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end, a mean-shift based clustering is used which is also based on the L2 distance
between the cluster center and the input pixels.

The only operation that cannot be transferred equivalently to the factorized repre-
sentation is the final statistical synthesis step, based on [PS00]. This step restores
certain image statistics of the input exemplars, such as pixel statistics and auto-
and inter-channel correlations. However, it is a reasonable assumption that the
statistics within the Eigen-Textures of the input data should also be present in the
Eigen-Textures of the interpolated materials. Furthermore, the statistical synthesis
tries to preserve the linear correlation between the channels. Thus, applying the
statistical synthesis directly on the Eigen-Textures should also give reasonable
results.

To enable the utilized linear combinations, it is mandatory that all BTFs partic-
ipating in the interpolation are represented in the same Eigen-ABRDF basis U.
One way, this can be achieved is to compress all input exemplars with one SVD.
However, it is also possible to compute a combined basis for several factorized
BTFs and re-project the data into this basis without the need for re-compression.
For more details on the merging of several SVDs, we refer to Section 3.1.2.

Please note that in this chapter, we do not directly use RGB values as input. Instead,
we first apply the logarithm to our measured reflectance values prior to the SVD
compression, as proposed by Matusik et al. [MPBM03a]. Accordingly, we apply
the inverse operation after decompression. This has the advantages that it reduces
problems with the dynamic range of the input dataset, which can be quite large
for specular materials. Additionally, the non-negativity of the result is ensured.
Furthermore, this way the interpolation follows the human brightness perception,
which is according to the Weber-Fechner law logarithmic. However, in many
cases this is not sufficient to obtain a perceptually linear interpolation of the whole
material appearance. This is a very complex problem, even for a single material
parameter, such as gloss [WAKB09], and even more difficult for materials with
distinctly visible material features and thus should be further explored by future
work.

10.2.2 Parallax Compensation

In most current approaches, BTFs are measured from planar samples and the data
is then rectified by projecting it on a plane of reference. However, those parts of the
material that significantly protrude from the reference plane will cause a parallax
induced disparity in the textures (see Figure 10.3b). This means that the same texel
represents different points on the implicitly captured surface geometry for different
view directions. As long as these interdependencies between neighboring texels
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(a) 0◦ view (b) 60◦ view, uncor-
rected

(c) 60◦ view, corrected (d) 60◦ view, resampled

Figure 10.3: Effects of parallax correction illustrated by a clay pebbles sample
(feature height: 4.8 mm). (a) displays the material as seen from above. (b), (c)
show the same region at 60◦ declination. (b) illustrates the result without parallax
compensation: Although a plane of reference that minimizes the disparity was
chosen, features on the pebbles (yellow arrows) are not aligned with the ones in
(a). (c) demonstrates the improved results obtained when using a proxy geometry
(occluded, shadowed or back-facing pixels are masked), (d) finally shows the
corrected content after resampling and hole-filling.

are correctly preserved, e.g. during rendering, this is no problem. However, in the
case of texture interpolation, the result is created by dividing the input image into
small patches, which are warped, rearranged and finally blended, and thus these
interdependencies are not necessarily preserved. As a consequence, the algorithm
applies exactly the same warping and reordering operations to images depicting
the material from all view directions. However, if these images contain strong
parallaxes, material features in different view directions are not aligned with each
other (see Figure 10.4). Therefore, a different transformation would be needed
for each view in order to create a consistent result. Performing independent but
constrained synthesis steps for each view (e.g. [LYS01]) would tackle this problem
but prevent the use of a factorized representation and thus be far more expensive.
Instead, we propose to compensate the parallaxes prior to the synthesis by re-
projecting the BTF onto a proxy geometry and resampling it into local coordinate
systems.

Using a non-planar reference-geometry yields a couple of technical obstacles
that need to be overcome. First, it is necessary to represent the BTF in the local
coordinate systems of the reference-geometry. For this, an angular resampling of
the reflectance values needs to be performed. Otherwise, the blending of different
patches would linearly interpolate between ABRDFs with different local coordinate
systems. Furthermore, since a new geometry is created during the interpolation,
the resulting BTFs would no longer be consistent with the local frames of the
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feature-maps 0◦ view
60◦ view,
uncorrected

60◦ view,
resampled

material 1

blended

material 2

Figure 10.4: Effects of parallax correction for blending two corresponding warped
material-patches (top,bottom). The central row shows the blending between the
patches. From the feature-map it becomes apparent that the automatic correspon-
dence search and the warping manage to bring the features into alignment. The
3rd and 4th columns show that the uncorrected 60◦ views cannot be blended in a
feature-preserving manner, but the resampled can. See Figure 10.6 for a rendering
of the interpolated materials.

generated geometry. Second, it is necessary to remove shadows from the input
dataset and synthesize them based on the new geometry. Finally, holes in the
re-projected images, resulting from occlusion and the shadow removal, have to be
filled-in, based on information imputed from other parts of the measured data. For
more details on these projection, resampling, shadow removal and hole filling steps
we refer to our corresponding publication [SWRK11].

It is important to note that the result of this operation is not an SVBRDF (such as the
one we created in Chapter 5 or was used in [MG09]), but a BTF parameterized over
a different reference-geometry. Contrary to SVBRDFs, the reflectance functions
in our proposed representation remain data-driven ABRDFs. This still enables
the reproduction of non-local effects as well as meso-scale geometry that is not
resolved by the reference-geometry. For the latter case, the re-projection removes
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Figure 10.5: Example for the heightfield correction. The top-left plot shows the
heightfield of a leather material exhibiting large-scale height variations. The plots
at the bottom show the height profiles for one slice (dashed lines in top figures). The
dashed green line indicates the underlying low-frequency variation. The figures
on the right illustrate the corrected heightfield. The low-frequent drift is removed
while the height variations of local features are faithfully preserved.

the major parallaxes and the small remaining disparities pose no serious obstacle
for the synthesis.

For the interpolation of materials it is necessary to use a geometry representation
that allows for interpolation in conjunction with the BTF, creating a consistent new
synthesis result. We therefore use heightfields, since they can be easily included
into the multi-channel images used during the synthesis.

While there are several techniques to extract heightfields directly from BTFs (e.g.
[NZG05, MG09] or our approach from Chapter 5), for the examples used in this
chapter we directly acquired them during the measurement via our structured
light super-resolution approach [WSRK11], as this techniques is very robust and
works for a wide range of materials. For this, we employed the Multi-View Dome
described in Section 2.1.3. This approach allowed us to obtain sufficiently accurate
geometry of the materials surface, allowing a high-quality parallax compensa-
tion.

To evaluate the influence of the quality of the heightfield onto the interpolation
results, we provide a comparison of results from different heightfield reconstruction
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techniques in Figure 10.5. In each case, we show the interpolation result and for
both input materials the reconstructed heightfields and a single image from the
resampled BTF (view and light direction exactly perpendicular to the sample).
In the first example, we have performed no parallax correction at all. Then,
we have used a low-quality heightfield reconstructed with the multiview-stereo
reconstruction webservice ARC3D (www.arc3d.be). Next, we show the result
for our heightfields obtained via structured light. Finally, we have used a very
detailed heightmap reconstructed with our technique from Chapter 5.

The BTF images show that with increasing heightfield quality less and less of
the meso-structure has to be encoded in the BTF. Furthermore, without parallax
correction, the interpolation resulted in a blurred image with few details and a very
regular feature structure. In contrast, when a heightfield was utilized, more details
were preserved and a more complex feature structure was generated. Even the
low-quality heightfield from ARC3D improved the quality considerably.

Many real material samples contain low-frequency large-scale height variation,
such as bulges or waves, that are not considered part of the material features.
Such large-scale changes in the input data violate the fundamental assumption
of stationarity made in texture synthesis. Having these effects in the heightfield
would impede the synthesis process: Synthesizing torroidal textures is impaired
and also for the non-torroidal case, corresponding features at different surface
positions could lie at different height levels and would thus not be matched. For
these reasons, we remove low-frequency components from the heightfields prior
to synthesis. We achieve this by solving a constrained least squares optimization,
penalizing deviations of the surface normals while enforcing a maximal total
height difference. The bound is chosen to still allow the natural height variation
found within the material features by taking the 90% percentile of the maximum
height-differences in all local neighborhoods. The neighborhood size is material
dependent and was manually selected in our examples. For an example, please
refer to Figure 10.5.

Some results of the parallax correction for the synthesis are shown in Figure
10.6. There, we compare an interpolation performed on BTFs that were rectified
using a reference-plane and BTFs that were re-projected onto a heightfield. The
interpolation result from rectified BTFs (Figure 10.6b) shows a blurred appearance
for the parts of the surface that protrude from the reference plane. In contrast, when
the parallaxes are corrected prior to the interpolation, a considerably sharper and
more detailed result (Figure 10.6a) is obtained.

The final interpolation result consisting of the new heightfield and Eigen-textures
can directly be used for rendering. In addition to the synthesized BTF, which is
in compressed form and can be evaluated by following the approach by Koudelka
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(a) No parallax correction (planar heightmap)

(b) Heightmap reconstructed with ARC3D (www.arc3d.be)
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(c) Heightmap from structured light measurement [WSRK11]

(d) Heightmap reconstructed with technique from Chapter 5

Figure 10.5: Results with different heightmap reconstruction techniques
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(a) With parallax correction (b) Without parallax correction

Figure 10.6: Comparison of interpolation results with and without parallax cor-
rection. Without the correction, the result is blurred and fine details are lost during
the synthesis.

and Magda [KM03], the heightfield needs to be taken into account as well. For
fast rendering we therefore use OpenGL tessellation and geometry shaders to
perform displacement mapping directly on the GPU, whereas our high-quality
still renderings presented in this thesis are created with mental-ray, which also
supports displacement mapping. Using displacement mapping holds the additional
advantages that the silhouettes of the materials (see Figure 10.7 for examples)
are reproduced and that considerably fewer SVD components are needed for the
compression due to the reduced parallax.

10.3 Results

We evaluate our approach on real-world data coming from a number of material
samples from multiple material classes. To show the flexibility and usefulness of
the system, we investigate several different application scenarios. All timings are
given for a system with two Intel Xeon E5645 at 2.4 GHz (12 cores total), 144 GB
of RAM and a GeForce GTX 570 GPU.

As input for all results presented in this chapter, we use BTF measurements
captured with our Multi-View Dome (see Section 2.1.3). These have a texture
resolution of 512× 512 texels, covering 4.65 cm× 4.65 cm at 280 DPI, captured
under a full sampling of 151 × 151 view and light directions. Additionally, for
each of them, a registered heightfield at the same resolution was captured via
structured-light. The parallax correction from Section 10.2.2 was then computed
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Figure 10.7: Example interpolations between measured materials. The horizontal
cylinder shows a continuous interpolation sequence between the materials. The
vertical cylinders each feature a synthesis result at one discrete interpolation step.
The images are generated using monte-carlo path tracing with an environment-
illumination and an additional point-light source to emphasize highlights. Further
results are shown in Figure 10.8.
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Figure 10.8: Additional interpolation results. The two sponges show a failure case
in which the assumptions of our algorithm were no longer fully satisfied. Although
the algorithm manages to reproduce the appearance of the individual sponges (left
and rightmost cylinders), the intermediate interpolants are not convincing.

once as a preprocessing step. Preprocessing the data took about 5.5 hours per input
sample. We also created hand-drawn binary feature images to mark the parts which
should be aligned during synthesis. Due to the parallax correction, the features in
all of the input images and the heightfield are in alignment, and thus the feature
maps can be created using any of these input images as reference. This simplifies
the creation of the feature maps, as it depends strongly on the utilized material,
whether the features can be easier recognized in the heightfield or in the images,
and which view and light direction is best suited in the latter case.

For each synthesis, all participating BTFs were converted into one common basis
containing c = 16 Eigen-components. This rather low number in comparison to
ordinary BTF compression is possible due to the parallax correction and represents
a compromise between quality and synthesis time. The reported timings were
achieved using a moderately optimized and mostly parallelized C++ implementa-
tion of the algorithm (with some parts in MATLAB). Due to the quite large amount
of memory required for the candidate patches, up to tens of GB, we compute the
PCA on the GPU with the technique presented in Chapter 3. Furthermore, we also
accelerated the statistical synthesis utilizing CUDA.
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Material Design

By mixing two or more input materials with user-specified blending amounts, it is
possible to create a smooth sequence of all intermediate materials between the input
exemplar. In Figures 10.1, 10.7 and 10.8, we demonstrate that for a wide range
of different material classes, this enables the creation of perceptually plausible
intermediate materials. This allows a designer to create new materials by exploring
the space of many possible interpolations between a small set of measured BTFs.
The creation of one interpolated result at a resolution of 512 × 512 pixels takes
less than 1 hour. The synthesis results are seamlessly tileable and can directly be
rendered on arbitrary scenes under any illumination.

Spatially Varying Interpolation

The continuous sequences in Figure 10.7 and the more complex spatial interpo-
lations in Figure 10.9, demonstrate the use of our technique for the creation of
complex spatially varying interpolated materials. In each of the cases, the user
specified the distribution of interpolation ratios of the different participating ma-
terials as an input. The algorithm then creates interpolated patches according to
the given ratios, following the description in Section 9.5. This allows the creation
of complex new BTFs exhibiting both smooth and hard material transitions, with
material-features, such as leather bumps or tree rings, continuing in a meaningful
way throughout the whole image. The creation of a 1024×1024pixel interpolation
sequence with three different input materials takes about 4 hours and 15 minutes.

Separation of Feature Interpolation and Blending Factor

The described interpolation algorithm creates results in which the overall structure
of the material features, resulting from the distribution of the individual patches, is
always interpolated together with the blending of the reflectance values and meso-
scale effects. It is desirable to separate these two aspects to give the designer more
creative leeway. One could thus create a material with the features interpolated
according to one mixture of samples but the reflectance characteristics coming from
a different combination. In Figure 10.10, we illustrate this concept by performing
the material feature interpolation along the horizontal axis and then the blending of
reflectance and meso-scale effects along the vertical axis.

In order to do this, we want to generate intermediate results which follow the
feature topology of one interpolation but still maintain their original reflectance
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(a) 3 material interpolation (b) complex spatial distribution (gravel)

(c) complex spatial distribution (leather) (d) complex spatial distribution (stones)

Figure 10.9: Interpolations of multiple materials. Figure (a) shows path traced
renderings of a smooth interpolation between three leathers. In Figures (b), (c)
and (d), three materials are interpolated following a complex distribution pattern.
For both cases, the distribution map is given in the inset.

170



10.3. RESULTS

(a) input (b) basic interpolation (c) reassembled
input

(d) independent interpolation

Figure 10.10: Independent material feature and reflectance characteristics in-
terpolation. The basic algorithm is used to interpolate the input materials (a)
along the horizontal-axis resulting in (b). The operations during patch warping
and assembly are tracked and applied to the input materials individually to create
intermediate materials (c) that follow the interpolated material features but each
exhibit the reflectance values of only one of the leathers. The result (d) is obtained
by blending the reflectance and meso-structure of the intermediate materials along
the vertical-axis and applying a statistical synthesis.

characteristics and meso-structure (see Figure 10.10c). The latter can then be
independently interpolated in a consecutive step. Arising from the nature of the
basic interpolation algorithm, the distribution of the patches in the synthesized
result is strongly influenced by the blending ratio during the patch combination: In
dependence on the blending weights, features from one material or the other are
more dominant in the patch assembly. To obtain the desired interpolated feature
topology, it is thus necessary to use blended patches throughout the synthesis.

However, by keeping track of the warping and assembling operations during
synthesis, it is possible to apply the same operations to the input materials to
reassemble them into the same spatial layout separately (see Figure 10.10c). These
reassembled intermediate materials are then linearly blended according to different
weights than used for the synthesis. The statistical synthesis is then also performed
according to the reflectance blending weights since it mostly influences reflectance
and meso-scale structures. As Figure 10.10d demonstrates, it is possible to create
a wide range of interesting material variations from just two input samples. The
synthesis of this 1024× 1024 pixel BTF required about 3.5 hours.
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10.4 Limitations and Future Work

Our technique only makes sense for opaque materials for which the large-scale
features can be represented as a heightfield. If the material has a very complex self-
overlapping structure or exhibits considerable sub-surface scattering, this represen-
tation will no longer give satisfactory results. In the case of sub-surface scattering,
the reconstruction of the previously removed shadows from the heightfield results
in an unnaturally hard appearance, especially under point-light illumination. Fur-
thermore, when the meso-structure is very complex the heightfield might no longer
be able to fully resolve the parallaxes, resulting in problems during the interpola-
tion. Figure 10.8, shows such a case where we attempted to interpolate between
two sponges which both exhibit a very complex meso-structure and considerable
sub-surface scattering. Especially, the intermediate results are no longer capable of
consistently reproducing the larger holes and structures. Currently, we also do not
take interreflections into account. As this is also a geometry-dependent non-local
effect, they should also be corrected prior to the patch assembly step. This might
be possible with a technique similar to the one discussed in Chapter 5.

Furthermore, by blending the Eigen-textures linearly, a logarithmic interpolation
between the ABRDFs is performed due to the dynamic range reduction. However,
this approach would not give very intuitive results when blending two materials
with very different lobe sizes. It might be possible to integrate an approach
similar to the one we proposed in Chapter 8 into the patch merging steps of the
texture synthesis. However, it would be necessary to reproject the result of this
interpolation into the ABRDF basis as otherwise the synthesis could no longer
be performed on the factorized representation. If this reprojection is not possible
without acceptable losses in quality, suitable basis-extensions would have to be
performed additionally.

A further aspect to be considered is the fact that the warping operation we apply
to the Eigen-Textures is only an approximation. The ABRDFs of a BTF are
relative to the local tangent frame and when the spatial arrangement is rotated or
warped, it would be necessary to apply the same rotation also to the ABRDFs.
Instead, we only apply the transformation to the distribution maps, discarding the
transformation of the reflectance behavior. For strongly anisotropic materials, this
would cause problems. Fortunately, for many materials this effect is negligible,
since the amount of warping allowed during the patch blending is limited by
the utilized regularization and we eliminate much of the anisotropy in a BTF by
resampling it into local coordinate systems of the heightfield. In our experiments,
we did not directly observe any serious problems, although the failure of the
sponge dataset might partially be coming from this effect. One could consider
precomputing rotated versions for each of the Eigen-ABRDFs, again represented in
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the factorized basis. This allows expressing the change under rotation as a matrix
which can be multiplied to the spatial distribution coefficients during warping.
However, when a truncated basis is used, this operation will eventually result in
loss of information as the rotated Eigen-ABRDFs can only be approximated.

We restrict ourselves to the interpolation of BTFs, since it is possible to represent
a large class of materials with this representation and, as we show, it is also well-
suited for the proposed material interpolation. However, there is a wide range
of different material representations which can be derived from measured data,
such as spatially varying mixtures of analytical BRDFs, analytical BRDFs with
spatially varying parameters, non-negative factorizations or mixture models (see
Section 2.2 for an overview), each of them with applications of their own. It
might be worth investigating whether similar interpolation techniques could also
be applied there. However, in some cases a straightforward transfer might not
be possible. For example, when using spatially varying linear combinations of
analytical basis BRDFs as we did in Chapter 5, both input materials might have
a different set of basis BRDFs and it is not clear a priori how to bring them into
correspondence.

For the examples presented in this thesis, we used hand-drawn feature maps. As the
identification of features usually requires a semantic understanding, the creation of
these maps is a non-trivial problem and we doubt that there will be a fully automatic
technique that will work for every material. However, since our approach builds
on heightfields, which provide semantically more meaningful information than
textures, BTFs or SVBRDFs alone, it might be possible to automatically derive
such feature-maps for a wider range of materials.

Finally, with our current not fully optimized implementation the computation time
is too high to allow the envisaged application of an interactive exploration of the
material space. The runtime is mainly dominated by two aspects: The creation
of interpolated patches and the texture synthesis step. Apart from low-level opti-
mizations, the computational demand of the algorithm could further be reduced by
algorithmic improvements. For the patch-creation, the patch-correspondences and
warping transformations could be precomputed for a given set of input materials.
For the texture synthesis, a texture optimization algorithm [KEBK05] has been
chosen because of the high-quality it provides. Possibly a faster texture synthesis
algorithm would also suffice.
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10.5 Conclusion

We have presented a technique to interpolate between several measured BTFs. The
interpolation is performed on an SVD factorized representation of the input BTFs.
To cope with parallaxes and self-shadowing, we project the BTFs onto a heightfield,
remove shadows and resample the reflectance behavior into the local coordinate
systems. Using this approach, it is possible to interpolate between a wide range of
different input materials and to create complex spatially varying materials.
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CHAPTER 11

CONCLUSIONS AND FUTURE RESEARCH

Figure 11.1: Rendering of objects with measured BTFs

During the last 15 years, the progress in data-driven techniques in computer graph-
ics has enabled very faithful reproductions of a large range of different materials.
For many materials and objects, it is possible to acquire their characteristic appear-
ance from a real-world counterpart and to reproduce it faithfully in a high-quality
rendering, which is hard to distinguish from an actual photograph (e.g. Figure
11.1). Still, these techniques have no yet found wide-spread use in practical ap-
plications. This is mainly due to two important reasons. On the one hand, the
acquisition of the datasets remains challenging. Even though the measurement
devices have improved considerably, as the devices built by our working group
during the last 10 years described in Section 2.1 illustrate, the requirements in
regard to quality and resolution have also risen. Thus, the acquisition is still too
costly and time-consuming for many practical application, the size of the resulting
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datasets remains a challenge even for current computers and especially for specular
materials the available angular resolutions are still not sufficient. On the other hand,
the lack of suitable techniques to edit the resulting datasets has limited their applica-
tion. Though the data-driven approaches are well suited for the exact reproduction
of real-world exemplars, editing the resulting dataset is very challenging due to
their size and complexity. Still in many applications an exact reproduction is not
sufficient and techniques for the creative editing of the datasets are desired. This
ranges from the generation of tileable materials without clearly visible repetitions,
over the creation of spatially varying materials to the actual process of designing
completely new materials based on the available measurements.

In this thesis, we have addressed these questions by developing techniques which
allow for the more efficient compression of BTFs (Chapter 3), a more compact
representation of reflectance datasets (Chapters 4, 5, 6, 7), the reconstruction of
reflectance from sparser measurements (Chapters 5, 7) and interpolation techniques
for BRDFs, textures and BTFs (Chapters 8,9,10). However, as always, a large
number of open questions and possibilities for future research and improvement
remain.

Parts of this conclusion have been published in the position paper "BTF based
Material Representations: Current Challenges" by Roland Ruiters, and Reinhard
Klein, at the Eurographics Workshop on Material Appearance Modeling: Issues
and Acquisition, pages 17–20, June 2013.

11.1 Material Representations

Representations for materials can be roughly classified along the spectrum from
model based approaches, which describe reality with an elaborate model and
(ideally) a small number of parameters, to data-driven approaches, which make
nearly no prior assumptions but instead use a comprehensive measurement. It is
possible to derive both types of representations from real-world samples of the
material. For model based approaches, the challenge is mainly in the development
of suitable models and the fitting of the model, whereas for data-driven techniques
the cost of the measurement and the compression of the resulting datasets are the
main challenges. The representations used in this thesis span a wide range on
this spectrum. They range from a nearly completely model based approach which
represents a material as a heightfield and analytical BRDFs, over mostly data-driven
approaches with additional model assumptions, such as the self-similarity, half/diff
parameterization and regularization utilized for the tensor based SVBRDFs or the
additional heightfield necessary for the BTF interpolation, to nearly completely
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data-driven compression techniques such as the compression based on a Sparse
Tensor Decomposition.

Each of these techniques has its own distinctive set of advantages and disadvantages
and makes different trade-offs. Therefore, it is not to be expected that a single
approach can solve all problems. However, even the question where the "local
optima" along this spectrum are has not yet been finally answered and provides a lot
of space for future research. Due to the enormous complexity of many real-world
materials, highly accurate simulations would require sophisticated models which
are difficult to fit against measurements. On the other hand, there is a large demand
for cheaper and simpler measurements, which stands in contrast to the high angular
samplings that would be necessary to fully resolve high-frequent effects, such as
specular highlights. Therefore, purely data-driven approaches are probably also
not the ideal solution in many cases.

Figure 11.2: Comparison of a photo-
graph (left, background masked out) with
a rendering (right) of an object with an
acquired BTF.

In Figure 11.2, a comparison between a
photograph and a rendering of an object
with a measured BTF is shown, which
demonstrates the limitations of the
purely data-driven acquisition. Most
of the object is reproduced quite ac-
curately, but the angular resolution is
not sufficient to resolve the specular
highlights correctly. As described in
Chapter 7, this is due to limitations of
both the utilized measurement setup,
and the selected representation. It hap-
pens even though a large number (198)
of illumination directions has been ac-
quired and the resulting dataset requires
already 165 GB of storage. Further in-
creasing the angular resolution both of
the dataset and measurement-device would therefore be very costly. Acquiring the
reflectance of challenging objects, such as this example, in a way that at the same
time is inexpensive and allows for a faithful reproduction, will thus require both
progress with regard to the utilized measurement approaches as well as the applied
representation.

Cost-efficient measurements of complex objects or materials will probably necessi-
tate the utilization of some kind of prior. However, an open question is whether
typical assumptions such as analytical BRDF models, smoothness, low-rank etc.
provide the best priors or whether data-driven priors are a superior approach. Given
a suitably large set of high-quality measurements, these could provide the necessary
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prior to reconstruct new materials successfully from a much sparser measurement
without explicitly making model assumptions. This idea has already been applied
to reconstruct BRDFs [MPBM03b] or SVBRDFs [WWHL07] from a small num-
ber of samples and a database of isotropic BRDF measurements. This principle
could be extended to a database containing spatially varying reflectance data in
the form of BTFs as this would provide additional information in the form of
local neighborhoods. In the area of image processing, this approach has already
been successfully applied. In a recent example [SH12], that is very similar to our
case, super-resolution is performed by first identifying images showing a similar
context in a large database and then synthesizing a high-resolution image from
them using the captured low-resolution image as a constraint. Similarly, it might
be possible to identify measurements of similar materials in a database and then
use constrained synthesis algorithms to create a plausible reconstruction of the
presented sample.

In many cases, the selected representation serves at the same time as a prior during
the reconstruction, for example when using analytical BRDF models, a heightfield
or a low-rank representation. When using a data-driven prior, these two aspects
should be decoupled. However, it is not be possible to separate the reconstruction
process completely from the utilized representation. Due to the necessary resolution
to resolve specular highlights, using a tabulated representation of the full dataset is
infeasible. Therefore, the common approach of first performing a measurement
or reconstruction and then a subsequent compression step does not scale well.
Instead, a representation which is at the same time sufficiently compact, capable of
reproducing the appearance of a wide range of materials faithfully, allows for the
integration of a suitable prior and is directly applicable during the reconstruction
process is required. Our work on the reconstruction of a material’s reflectance
behavior directly in a tensor based SVBRDF representation is a first step into this
direction. However, currently the range of materials that can be represented this
way is limited to isotropic SVBRDFs. It is still lacking the ability of a BTF to
reproduce the characteristic appearance of more complex materials with a complex
meso-structure.

Though the actual measurement process was not the focus of this thesis, as existing
measurement devices were utilized to provide the input data, it remains an important
question whether alternative measurement approaches should be utilized instead.
In most of the current approaches, the continuous reflectance function is sampled
at discrete points (or more precisely in small regions, if considering that a pixel is
actually an integral in the spatial domain and the entrance pupil of the camera and
the extent of the light source result in an integral in the angular domain). However,
it is very difficult to scale this approach to the angular resolutions necessary to
resolve highly specular objects, as these exhibit a very high-frequent reflectance
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behavior and one is thus fundamentally limited by the Nyquist criterion. The
approach we utilized in Chapter 7 is limited to objects which exhibit a sufficient
degree of self-similarity to provide an adequate sampling of all materials the object
is composed of. One alternative might be to measure weighted integrals of the
reflectance function. Area light sources or pattern-based or gradient illumination
can be used to perform those measurements. Again, given a suitable prior, it
should be possible to reconstruct the reflectance behavior from these measurements.
First techniques reconstructing analytical SVBRDFs utilizing spherical gradient
illumination [GCP∗09], Gray-Codes [FCMB09] or Spherical Harmonics [TFG∗13]
have already been proposed. Similar approaches have received much attention
lately in the context of compressive sensing, where the measurement is specified
in the form of a random measurement basis and the prior as a second basis in
which the signal can be represented sparsely. Currently, it is not clear whether
the mathematical framework of compressive sensing can be directly applied to
the measurement of BTFs. However, even if not, the general idea of performing
measurements in a different basis than the currently employed Dirac delta functions
and then utilizing a suitable prior to reconstruct the reflectance behavior might be
an interesting avenue of future research.

11.2 Material Interpolation

The work in this thesis shows that it is possible to compute plausibly looking
interpolations between measured materials. This is possible even for materials
with complex feature topology, spatially varying reflectance behavior and a meso-
structure resulting in strong parallaxes. This provides the necessary foundation for
and demonstrates the general possibility of a data-driven material design approach.
However, for a practical application of this design paradigm a lot of further ques-
tions have to be resolved. On the one hand, a lot of technical challenges remain,
such as the necessity for a considerable speed-up to allow for interactive design, the
question whether the feature maps can be generated automatically, the synthesis of
large and repetition-free materials and the creation of seamless and distortion-free
materials on the surface of an object. On the other hand, the question how the
currently available material interpolation technology is best utilized to enable an
intuitive and efficient material design process is still open.

Especially an efficient synthesis is of considerable practical importance. Our
contact to practitioners has shown that this is currently one of the limiting factors.
A texture artist, we were in contact with, would have been very interested in the
texture interpolation technique, but only if he could use it interactively without
having to wait hours for a result. Similarly, designers from the automobile industry
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would have liked to use synthesis techniques to create surface textures for car
interiors but the required resolutions and sample sizes could not yet be realized with
our approach. It remains an open question whether existing more efficient texture
synthesis approaches could be combined with our patch interpolation technique or
whether the fact that the resulting patches are less consistent than uninterpolated
ones results in unsatisfactory results. Furthermore, either more efficient techniques
to compute the interpolated patches or a suitable precomputation approach should
be developed.

The question how the material interpolation technology can be best utilized for a
practical material design also strongly depends on the availability of interactive
synthesis. It is still unclear, which type of user interface and which design paradigm
allows for the most intuitive and efficient design process. It might be that an
approach such as the one we presented in Chapter 8 for BRDFs, where the designer
is given an intuitive interface to directly interpolate between the measured materials,
is sufficient. On the other hand, it might be that a more indirect approach, such
as the one proposed by Matusik [MPBM03a] for BRDFs, in which the actually
measured samples are abstracted and the user instead navigates a material space
along perceptual traits, is more intuitive.

A more fundamental but nonetheless very important question for material design is
the possibility of a perceptual metric for materials. Is it possible to quantify the
perceptual distance between two materials? This would allow for a perceptually
uniform movement in the material space and thus also for the creation of perceptu-
ally uniform interpolation sequences. However, this question is far more general as
such a metric would enable practical material retrieval and material recognition.
This in turn could provide a connection between the virtual material design and
reality. It might become possible to find a material in the databases from suppliers,
to provide quality control or even to guide production processes based on a material
description resulting from the material design process.
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DATA SOURCES

The following data sets used in this thesis have been taken from external sources.
We would like to thank the authors for making them available to us.

Dragon Model
c© 2007 UTIA, Academy of Sciences of

the Czech Republic, and CGG, Czech
Technical University in Prague
http://dcgi.felk.cvut.cz/
cgg/eg07/index.php?page=
dragon

Kitchen and Grace Cathedral Light
Probes
c© 1999 Paul Debevec
http://www.debevec.org/
Probes/

MERL BRDF Database
c© 2007 Mitsubishi Electric Research

Laboratories
http://www.merl.com/brdf/

Texture Samples
c© CGTextures
http://www.cgtextures.com
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