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Abstract

In the present work, we investigate the problem of many-body localization of strongly interacting
bosons in random lattices within the disordered Bose-Hubbard model. This involves treating
both the local Mott-Hubbard physics as well as the non-local quantum interference processes,
which give rise to the phenomenon of Anderson localization, within the same theory.

In order to determine the interaction induced transition to the Mott insulator phase, it is
necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field
approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem
of interacting bosons on a random lattice is reduced to a local problem of a single site coupled
to a particle bath, which has to be solved self-consistently. In accordance to previous works, we
find that a finite disorder width leads to a reduced size of the Mott insulating regions.

The transition from the superfluid phase to the Bose glass phase is driven by the non-local
effect of Anderson localization. In order to describe this transition, one needs to work within a
theory that is non-local as well. Therefore, here we introduce a new approach to the problem.
Based on the results for the local excitation spectrum obtained within the mean-field theory, we
reduce the full, interacting model to an effective, non-interacting model by applying a truncation
scheme to the Hilbert space. Evaluating the long-ranged current density within this approxima-
tion, we identify the transition from the Bose glass to the superfluid phase with the Anderson
transition of the effective model. Resolving this transition using the self-consistent theory of
localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the
regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we
find that the Mott insulator and the superfluid phase are always separated by the compressible,
but insulating Bose glass phase.
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CHAPTER 1

Introduction

The interplay of Coulomb interaction and Anderson localization represents one of the funda-
mental problems in the field of many-body and condensed matter theory. Initially, research on
this topic was motivated by the need to provide for a realistic description of transport in real
materials, and therefore, focused on investigating the problem for fermionic particles. Theoret-
ical research on bosonic particles in disordered environments was initiated by the fundamental
work of Fischer et al. [1] and has gained more and more interest since, also triggered, of course,
by the new possibilities for experimental testing of theoretical predictions that became available
with the development of optical lattices.

What separates the bosonic from the fermionic case is the absence of a Pauli principle, giving
rise to the phenomenon of Bose-Einstein condensation (BEC). Based on the work of Bose [2],
in 1925 Einstein [3] introduced the concept of a macroscopic occupation of the single-particle
ground state at low temperatures in an ideal Bose gas, i.e., the condensation of a macroscopic
fraction of the particle density into one single quantum state. It then took seventy years until
the first direct experimental observation of a BEC in ultracold gases of rubidium [4] and sodium
atoms [5] in 1995. Still, the first manifestation of the effect of BEC was already observed in
1938 in the form of the superfluidity (SF) of liquid 4He [6–8].

Due to the bosonic nature of 4He, the vicinity of the measured and predicted transition tem-
peratures to the SF and the BEC phase, respectively, as well as the absence of superfluidity in
the fermionic 3He in this temperature regime, this effect was immediately connected to the phe-
nomenon of Bose-Einstein condensation by London [9]. However, the strongly interacting 4He
is far away from being an ideal gas and this hypothesis remained controversial. A phenomeno-
logical explanation for the effect of superfluidity based on the linear dispersion of the low-lying
excitation spectrum of 4He was given by Landau [10]. A microscopical theory providing for a
connection between the excitation spectrum of a (weakly interacting) Bose gas and its Bose
condensed nature at low temperatures was later presented by Bogoliubov [11], which, in fact,
implied that the particle interaction plays an important role for the phenomenon of SF.

Interaction can also have quite the opposite effect in that it can give rise to an insulating
phase. One of the first to point out the possibility of a metal-insulator transition (MIT) in
crystalline structures driven by strong particle-particle interaction was Mott in 1961 [12]. This
led to the formulation of the Hubbard model [13], which could describe the formation of the
Mott-Hubbard gap and the incompressible Mott insulator (MI) phase. The bosonic version of
this model, the Bose-Hubbard model, exhibits a direct transition from the localized MI phase
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1 Introduction

to the extended SF phase [1, 14], which was experimentally observed in 2002 [15] for a gas of
ultracold rubidium atoms in a three-dimensional optical lattice.

However, the first experiments placing a SF inside structured systems were again performed
for 4He [16], which was subjected to various porous media. Depending on the properties of the
medium, the SF behavior of the 4He is changed, even with the possibility of a vanishing SF
current [17]. Due to the irregular character of these media, these experiments naturally lead to
the problem of disorder and the phenomenon of Anderson localization.

The theoretical research on disordered systems was initiated by the seminal work of An-
derson [18] published in 1958, in which he introduced the concept of spatial localization of
non-interacting particles in a disordered environment. He proposed that all particles would
be localized above some critical strength of disorder, leading to an absence of diffusion and
turning the system into an insulator. Later, the scaling theory of localization [19] shaped the
modern picture of disordered systems with the observation that (non-interacting) one- and two-
dimensional systems are always insulating in the thermodynamic limit, whereas a conducting
phase only exists in three dimensions. The first direct experimental observation of Anderson
localization was achieved in 2008, releasing an ultracold gas of (again) rubidium atoms into a
one-dimensional disordered optical potential [20].

Since in real-world materials one always has to deal with both effects, i.e., disorder and inter-
action, it is of great interest to investigate the combined problem of interaction and localization.
For fermions it is of special interest whether or not particle interaction can induce a metallic
phase in two dimensions, especially with experiments suggesting the possibility of an interaction-
driven MIT in quasi-two-dimensional systems [21].

In the bosonic case, the interesting question is, of course, what influence the disorder has on
the SF nature of the conducting phase and how the transition to the MI phase is affected. Based
on the work of Giamarchi and Schulz [22], in 1989 Fischer et al. [1] proposed the existence of
an additional, insulating phase emerging from the localizing effect of the disorder, which they
termed the Bose glass (BG) phase. They argued that this third phase always separates the
incompressible MI and the conducting SF phase and a direct transition would only be possible
in a pure system. Further works then established the quantitative shape of the MI phase [23]
and also the possibility of a direct transition from the SF to the MI phase seems to be ruled out
by the theorem of inclusions [24], fixing the qualitative shape of phase diagram of the disordered
Bose-Hubbard model. Nevertheless, it is still of great interest to resolve the phase boundary
between BG and SF also quantitatively.

In this thesis, we present an approximative method to describe the transition from the con-
ducting SF to the insulating BG phase by observing the long-ranged SF current. Motivated
by a previous work on the fermionic Anderson-Hubbard model [25, 26], we will first investigate
the system using a local mean-field (MF) approximation [27, 28]. Based on the results for the
local spectrum obtained thereby, we will introduce an approximative mapping of the interacting
disordered Bose-Hubbard model onto a non-interacting effective model by applying a truncation
scheme to the Hilbert space of the full problem. This allows us to calculate transport prop-
erties, such as, the diffusion and the localization length, within the well developed framework
for the problem of Anderson localization of non-interacting particles. In particular, we are able
to identify the Anderson transition of the effective model with the SF to BG transition of the
underlying disordered Bose-Hubbard model.

The thesis is organized as follows. In chapter 2, we will give a brief introduction to the
topic of bosons in disordered lattice systems in order to establish the basic concepts needed
at the later stages of this work. We will first review the formation of the MI and the SF
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phase in the pure Bose-Hubbard model. This is then followed by an introduction to the topic
of Anderson localization. Finally, we will discuss the properties of the combined problem of
interaction and disorder in the context of the disordered Bose-Hubbard model. In chapter 3, we
will give a detailed description of the aforementioned local MF approximation, applied to both
the pure and the disordered Bose-Hubbard model. We will present the numerical evaluation of
the theory and will discuss its shortcomings in resolving the transition to the MI phase as well
as its limitations with respect to the distinction between the SF and BG phase. In chapter 4, we
will finally introduce our proposed method to determine the SF to BG phase transition. First,
we will derive an expression for the long-ranged SF current in terms of single-particle Green’s
functions, which we will then expand using the local solutions of the MF approximation. This
will lead us to the formulation of a selection criterion that defines the truncation scheme and
determines the mapping of the full interacting problem onto the effective non-interacting one.
Afterward, we will explain the link between the Anderson transition of the effective model and
the SF to BG transition of the full problem. Finally, we will evaluate our effective theory
using the self-consistent theory of localization [29] and will be able to resolve the transition line
between SF and BG phase.
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CHAPTER 2

Interacting Bosons in Disordered Lattice
Systems

In this chapter, we want to introduce the basic properties of interacting bosons in disordered
lattice systems, which we will describe using the most basic model that includes all these effects,
i.e., the disordered Bose-Hubbard model. In order to properly establish all concepts needed in
later chapters of this work, we will first consider the problem of interaction in a translational
invariant lattice system (i.e., without disorder) by discussing the pure Bose-Hubbard model.
Afterward, we will focus on Anderson localization of non-interacting particles in disordered
systems in the context of the Anderson Hamiltonian. Finally, we will merge the two problems
and give a brief introduction to the disordered Bose-Hubbard model.

2.1 The Bose-Hubbard Model

2.1.1 The Hamiltonian

The Bose-Hubbard model for spinless bosons in the grand canonical ensemble is defined by the
following Hamiltonian,

ĤBH = Ĥloc + Ĥkin =
∑
i

[
(ε0 − µ)n̂i +

U

2
n̂i(n̂i − 1)

]
+
∑
i 6=j

Jij b̂
†
i b̂j , (2.1)

where b̂†i and b̂i are the creation and annihilation operators for a boson on site i, n̂i = b̂†i b̂i is
the occupation number operator, and the summations are taken over all lattice sites. The local
properties of the model are contained in the first part of the Hamiltonian, Ĥloc, with ε0 being the
energy of the local single-particle states, µ is the chemical potential, and U the strength of the
on-site repulsion. The second part of the Hamiltonian, Ĥkin, is the kinetic part, which describes
the tunneling (or hopping) processes from one site j to another site i with a corresponding
hopping amplitude Jij . For simplicity, we will restrict our analysis to the tight-binding version
of this model,

Jij =

{
−J if i, j are nearest neighbors,
0 otherwise. (2.2)
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2 Interacting Bosons in Disordered Lattice Systems

Whenever a summation is restricted to only nearest neighbor sites i, j, this will be indicated by
angle brackets, 〈i, j〉. Furthermore, we will only consider cubic lattices and will set the lattice
constant to one, a = 1. Hence, for the spatial coordinates of the lattice sites we have xi ∈ IN3.
In addition, throughout this thesis we will use natural units, i.e., ~ = c = 1.

There are two competing mechanisms in this model. On the one hand, the system can gain
energy via the kinetic term by letting its particles move through the system, favoring delocalized
particles. On the other hand, the on-site repulsion yields a penalty in energy when two particles
occupy the same lattice site. Thus, the system will also try to reduce the overlap of the single-
particle states, favoring localized particles. The ratio of U and J determines which of the two
mechanisms will be the dominant one. In order to get a first understanding of the interplay
of these two mechanisms, it is instructive to consider the two limiting cases of either vanishing
interaction or vanishing hopping amplitude.

In the first case, U = 0 and J > 0, the system becomes non-interacting and, assuming periodic
boundary conditions, can be solved by a Fourier transformation to momentum space,

b̂p =
1√
Ni

∑
i

eip·xi b̂i , (2.3)

where Ni is the total number of lattice sites and the values of the components of p are restricted
to an interval of length 2π. Since there is no Pauli principle limiting the number of particles
that can occupy the same state, it is not sensible to consider the system in the grand canonical
ensemble, but one should rather use the canonical ensemble with a fixed number of particles.
The Hamiltonian then takes the following form,

ĤBH =
∑
p

(ε0 + εp)b̂†pb̂p , (2.4)

where for the case of a d-dimensional cubic lattice the dispersion relation is given by

εp = −2J
d∑
a=1

cos pa . (2.5)

The multi-particle eigenstates are product states of the extended single-particle Bloch states
|p〉 = b̂†p|0〉, where |0〉 is the empty lattice. At zero temperature, T = 0, all bosons will occupy
the single-particle ground state. The system would then be described by one macroscopically
occupied quantum state, i.e., it would form a BEC.

In the second case, J = 0 and U > 0, which is also referred to as the atomic limit , the full
Hamiltonian reduces to its local part, ĤBH → Ĥloc, and all lattice sites are decoupled. The full
eigenstates of the system are then again product states, but now of the local eigenstates on every
site. Since the Hamiltonian commutes with the occupation number operators, [Ĥloc, n̂i] = 0, the
full eigenstates will be product states of local particle number eigenstates. Thus, in contrast to
the extended ground state in the non-interacting case, here each boson is localized on a single
site.

Due to the translational invariance, in the ground state all sites will be occupied by the same
number of particles, which is determined by minimizing the local potential

En = (ε0 − µ)n+
U

2
n(n− 1) (2.6)
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2.1 The Bose-Hubbard Model

for n ∈ IN. As shown later in section 3.1.2, this leads to the condition

µ− ε0

U
< ng <

µ− ε0

U
+ 1 (2.7)

for the ground state occupation number ng.
If we consider ng as a function of µ/U , we see that the ground state particle number is

constant within intervals of length one. The transition to a ground state with one additional
particle per site, ng → ng + 1, happens discontinuously when (µ− ε0)/U = ng. Here, the states
with ng and ng + 1 particles have the same energy, and hence, it does not cost energy to add or
remove a particle. Thus, at T = 0 the system is only compressible when the ratio (µ− ε0)/U is
an integer number, and incompressible otherwise.

These two limiting cases suggest that the properties of the model will be completely different,
depending on whether we are in the strongly correlated (J/U � 1) or the weakly correlated
regime (J/U � 1). In the following, we want to discuss the main characteristics of these two
cases.

2.1.2 The Strongly Correlated Regime: Mott Lobes

In the previous section, we have discussed that in the atomic limit, J = 0, particles are strictly
localized on single lattice sites. For finite hopping amplitude, J > 0, this strict localization
is lifted. However, in the strongly correlated regime, J/U � 1, the on-site repulsion can still
lead to a suppression of the particle transport, turning the system into an insulator. One of
the firsts who suggested the possibility of a metal-insulator transition driven by particle-particle
interaction was Mott in 1961 [12]. The underlying mechanism can be understood best by directly
considering the Bose-Hubbard model.

In the case of integer filling, ρ = N/Ni ∈ IN, i.e., when the total number of particles N is an
integer multiple of the number of lattice sites Ni, the local energy Ĥloc will be minimal for a
particle configuration with the same number of bosons on each site, ni = ρ for all i. If now a
boson tunnels from one site to another and the particle configuration is changed,

| . . . , ρ, ρ, . . .〉 → | . . . , ρ− 1, ρ+ 1, . . .〉 , (2.8)

the total local energy changes as well,

〈. . . , ρ− 1, ρ+ 1, . . . |Ĥloc| . . . , ρ− 1, ρ+ 1, . . .〉 − 〈. . . , ρ, ρ, . . . |Ĥloc| . . . , ρ, ρ, . . .〉

=
U

2

[
(ρ− 1)(ρ− 2) + (ρ+ 1)ρ − 2ρ(ρ− 1)

]
= U . (2.9)

Thus, each tunneling process away from the ideal configuration comes with a penalty in energy
of the size of the repulsion strength U . On the other hand, if the ground state is a linear
combination of different occupation number configurations, the total energy is reduced due to
the kinetic term of the Hamiltonian Ĥkin. Nevertheless, if the hopping amplitude is small
compared to the interaction strength, contributions away from the ideal configuration will be
suppressed. Hence, the particles are highly immobile and transport will vanish, i.e., the system
will be an insulator.

Now, suppose we want to add or remove a boson to or from a system with integer filling,
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2 Interacting Bosons in Disordered Lattice Systems

ρ ∈ IN. In the grand canonical ensemble, this is triggered by adjusting the chemical potential,
such that the ground state with one particle more or less becomes favorable in energy. Following
the argumentation in [30] by Freericks and Monien, we assume that the ground state with integer
filling is, to first approximation, well described by the atomic limit solution,

|ΨρNi〉 =

Ni∏
i=1

1√
ρ!

(
b̂†i
)ρ|0〉 = |ρ, ρ, . . . , ρ〉 , (2.10)

where |0〉 is the empty lattice. Furthermore, we assume that the ground states for the particle
number sectors N = ρNi ± 1 may be approximated by a single particle or hole on top of the
localized ρNi particles,

|ΨρNi+1〉 =
1√
ρ+ 1

Ni∑
i=1

f+
i b̂
†
i |ΨρNi〉 (2.11)

and

|ΨρNi−1〉 =
1√
ρ

Ni∑
i=1

f−i b̂i|ΨρNi〉 , (2.12)

with f±i being the expansion coefficients. This is again motivated by the fact that the creation
of additional particle-hole pairs comes with a penalty in energy, see equation (2.9). With this,
the energy differences between the ground states of the particle number sectors can be written
as

∆E+ = 〈ΨρNi+1|ĤBH |ΨρNi+1〉 − 〈ΨρNi |ĤBH |ΨρNi〉
= 〈ΨρNi+1|Ĥloc|ΨρNi+1〉+ 〈ΨρNi+1|Ĥkin|ΨρNi+1〉 − 〈ΨρNi |Ĥloc|ΨρNi〉

= U

(
ρ− µ− ε0

U
+

∆E+
kin

U

)
(2.13a)

and

∆E− = 〈ΨρNi |ĤBH |ΨρNi〉 − 〈ΨρNi−1|ĤBH |ΨρNi−1〉

= U

(
ρ− 1− µ− ε0

U
− ∆E−kin

U

)
, (2.13b)

where ∆E±kin = 〈ΨρNi±1|Ĥkin|ΨρNi±1〉 is the kinetic energy of the particle or hole state. The
transition from |ΨρNi−1〉 to |ΨρNi〉 happens when ∆E− vanishes, and the transition from |ΨρNi〉
to |ΨρNi+1〉 when ∆E+ vanishes. For the corresponding chemical potentials µ+ and µ−, with
∆E±(µ±) = 0, we obtain

µ+ − ε0

U
= ρ+

∆E+
kin

U
(2.14)

and
µ− − ε0

U
= ρ− 1− ∆E−kin

U
. (2.15)

From this, it follows that
µ+ − µ−

U
= 1 +

∆E+
kin + ∆E−kin

U
. (2.16)
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2.1 The Bose-Hubbard Model

Thus, if the kinetic energies are small against the repulsion strength, the states with a filling
smaller and larger than the integer filling are separated by a finite amount of energy. This gap
is known as the Mott-Hubbard gap. Within the gap, the particle number is constant, and thus,
the compressibility vanishes, κ = (dN/dµ) = 0. Such an insulator with an energy spectrum
that is gaped due to strong interactions is known as a Mott insulator (MI).

In order to determine ∆E±kin, one needs to calculate the expansion coefficients f±i . This can
be done by representing the full Hamiltonian ĤBH in the subspace of the local particle or hole
states,

|i+〉 =
1√
ρ+ 1

b̂†i |ΨρNi〉 and |i−〉 =
1√
ρ
b̂i|ΨρNi〉 , (2.17)

respectively. In doing so, one obtains

Ĥ±BH ≡
∑
i,j

|i±〉〈i±|ĤBH |j±〉〈j±| =
∑
i

E±0 |i±〉〈i±| − J±
∑
〈ij〉
|i±〉〈j±| , (2.18)

with E±0 = 〈ΨρNi±1|Ĥloc|ΨρNi±1〉, J+ = (ρ + 1)J and J− = ρJ . The ground state of Ĥ±BH
determines the coefficients f±i . Apparently, the particle and hole states are each described
by a non-interacting tight-binding Hamiltonian, which, as discussed in the previous section, is
diagonalized by performing a Fourier transformation to momentum space. The ground state is
given by the Bloch state with zero momentum, p = 0, leading to the following kinetic energies,

∆E+
kin = −2dJ(ρ+ 1) and ∆E−kin = −2dJρ , (2.19)

see also equation (2.5). With this, the size of the gap can be written as

µ+ − µ−
U

= 1− dJ

U
(4ρ+ 2) . (2.20)

Thus, from this first approximation we can estimate that the gap closes when dJ/U > 1/(4ρ+2).
Of course, the disappearance of the gap implies that the system is not in the strongly correlated
regime anymore, and thus, the approximations made might not necessarily be valid anymore.

This result allows us to draw a first phase diagram for the Bose-Hubbard model, where the
phase space is parametrized by µ/U and dJ/U , see figure (2.1a). For fixed chemical potential
µ/U /∈ IN, the transition from the compressible to the incompressible phase takes place at a
finite value J/U . For µ/U ∈ IN, the system is compressible even in the atomic limit, J/U → 0.
The incompressible regions with constant particle numbers are referred to as the Mott lobes.
As the first available states below and above the Mott-Hubbard gap are hole- and particle-like,
respectively, the shape of the Mott lobes is asymmetric. Furthermore, within this approximation,
the qualitative shape of the Mott lobes does not depend on the dimension of the system, which
only enters via the quantity dJ/U .

In [30], this strong coupling expansion was performed by taking into account terms up to
third order in J/U , yielding a modified form of the Mott lobes, see figure (2.1b). The higher
order terms introduce a direct dependence of the Mott lobes on the dimension d, leading to
slightly larger lobes in one dimension, d = 1, and smaller lobes in higher dimensions, d ≥ 2.
A comparison with previous results from quantum Monte Carlo (QMC) calculations for finite
systems [31, 32] showed very good agreement for d = 1. More recent QMC simulations (for
the first Mott lobe) [33] also find very good agreement for d = 3, except for the tip of the
lobe, where the strong-coupling expansion seems to overestimate the extent of the MI regions.
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2 Interacting Bosons in Disordered Lattice Systems
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(a) 1st order approximation
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Figure 2.1: (a) The boundary between the Mott insulating and the non-gaped phase. In each Mott
lobe, the compressibility vanishes and the particle number is constant. The solid blue curve shows the
phase boundary according to the simple expansion (first order in J/U) starting from the atomic limit.
The dashed red curve shows the phase boundary obtained from the MF/decoupling approximation [27].
(b) The phase boundary obtained from the strong-coupling expansion [30] for d = 1, 2, 3 (solid lines)
including terms up to third order in J/U . Again, the dashed red curve shows the MF phase boundary.
For both diagrams, the on-site energy was explicitly set to zero, ε0 = 0.

The strong-coupling expansion was later extended further [34], taking into account higher order
terms in J/U and yielding perfect agreement with direct numerical calculations, see for example
[35].

While the strong-coupling expansion proves to be a very good method to resolve the shape
of the Mott lobes, by design it cannot be used to investigate the regions in between the Mott
lobes. Another rather simple approach that can be applied also away from the MI regions comes
in the form of the decoupling approximation, which is a mean-field (MF) approximation for the
kinetic part of the Hamiltonian. As we will discuss this approach in full detail in chapter 3, here
we only want to mention its basic ideas.

In essence, the process of a boson tunneling between sites i and j is replaced by a hopping
from site i (and j) into and out of a particle bath, characterized by the mean-field parameter ψ,

b̂†i b̂j → b̂†i 〈b̂j〉+ 〈b̂†i 〉b̂j − 〈b̂
†
i 〉〈b̂j〉 ≡ ψ b̂

†
i + ψ∗b̂j − |ψ|2 . (2.21)

The above replacement defines the MF parameter as the ground state expectation value of
the bosonic operators b̂i, ψ = 〈b̂i〉, which is equal for all lattice sites due to the translational
invariance of the model. Applying this transformation to the Hamiltonian ĤBH yields

ĤBH → ĤMF =
∑
i

ĥi −
∑
〈ij〉
|ψ|2 (2.22)

10



2.1 The Bose-Hubbard Model

with the local MF Hamiltonian

ĥi = (ε0 − µ)n̂i +
U

2
n̂i(n̂i − 1)− zJ

(
ψ∗b̂i + ψ b̂†i

)
, (2.23)

where z = 2d is the number of nearest neighbors. Apparently, this approximation decouples the
lattice sites with respect to the bosonic operators. Thus, the eigenstates of ĤMF will be product
states of the local eigenstates of the ĥi. Due to the translational invariance, it is sufficient to
solve the problem for one arbitrary site i, which reduces the full lattice problem to a much
simpler local one.

The local ground state |Gi〉 of ĥi will depend on the MF parameter ψ, |Gi〉 = |Gi(ψ)〉. In
turn, ψ is determined by the local ground state, ψ = 〈b̂i〉 = 〈Gi(ψ)|b̂i|Gi(ψ)〉. This implies that
the problem has to be solved self-consistently.

The MF parameter is also referred to as the superfluid order parameter, as for the pure model
it determines the boundary between the gapless (and, as we will see in the next section, SF)
phase and the MI phase. It is easy to see that for ψ = 0, the MF Hamiltonian corresponds
to the atomic limit (J/U = 0) Hamiltonian with strictly localized particles. Thus, a vanishing
order parameter can be identified with the MI phase, while a finite ψ corresponds to the gapless
phase. The resulting phase boundary is plotted in figure 2.1a and 2.1b in comparison to the
results from the strong-coupling expansion. Again, the dimension only enters via the quantity
dJ/U and not directly. As it can be seen, the MF approach underestimates the extent of the
Mott lobes drastically in one dimension and a little less drastically in two and three dimensions.
Still, the basic characteristics of the phase diagram are captured qualitatively for larger hopping
amplitudes and also quantitatively for small hopping amplitudes.

In the context of the Bose-Hubbard model, the idea of decoupling the kinetic term by in-
troducing a complex field was first employed by Fisher et al. [1] for the case of infinite range
hopping, Jij = J/Ni, where this led to the definition of an effective action, from which a phase
diagram could be constructed. Motivated by this approach, in [36, 37] the idea of decoupling
the lattice sites was implemented for the tight-binding Bose-Hubbard model by treating the
problem using the Gutzwiller ansatz, i.e., assuming the full lattice states to factorize into local
states. The decoupling approximation was then further formalized by Sheshadri et al. [27],
resulting in the form of the theory as presented above.

The theory can also be applied to the case of on-site energies with a spatial dependence,
ε0 → εi, i.e., to a system without translational invariance. There, the model has to be treated
as a system of Ni local sites coupled via the order parameter, which is still much easier than the
full lattice problem. For example, in [38] this method was used to resolve the density distribution
of a cold bosonic atoms in a two-dimensional optical lattice superimposed with a harmonic trap.
Moreover, it can also be applied to the disordered Bose-Hubbard model, either by treating
the model on a decoupled lattice [39], or by accounting for the randomness by introducing a
probability distribution for the order parameter [28]. This will be discussed in detail in chapter
3.

An improvement over this static MF approximation comes in the form of the bosonic dynam-
ical mean-field theory (B-DMFT) [40], which applies the self-consistency condition to the local
Green’s function and, thereby, introduces a modified coupling of the local site to the particle
bath. The phase diagram obtained within the B-DMFT yields very good agreement with QMC
simulations, which, however, comes at the cost of being numerically much more demanding than
the static MF approach.
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2 Interacting Bosons in Disordered Lattice Systems

2.1.3 The Weakly Correlated Regime: Bogoliubov Excitations

In the previous section, we have discussed the Bose-Hubbard model near the MI phase, where
it is reasonable to expand the system in terms of local states. Far away from the Mott lobes,
however, this approach will not be justified anymore. In order to find a suitable description of
the problem, we will again introduce the MF parameter. However, this time we will, in addition,
consider the fluctuations from this mean field. Here, we will loosely follow the presentation in
[41] and [42], modified to the case of a discrete lattice.

We start by rewriting the bosonic operators as follows,

b̂i = 〈b̂i〉+
(
b̂i − 〈bi〉

)
≡ ψi + δ̂i , (2.24)

where δ̂i is the fluctuation operator and ψi the ground state expectation value of the bosonic
operator. The full Hamiltonian can then be expressed in terms of the ψi and δ̂i,

ĤBH = E0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 , (2.25a)

with
E0 =

∑
i

[
ε0 − µ+

U

2
|ψi|2

]
|ψi|2 − J

∑
〈ij〉

ψ∗i ψj (2.25b)

and
Ĥ1 =

∑
i

[
ε0 − µ+ U |ψi|2

](
ψ∗i δ̂i + ψiδ̂

†
i

)
− J

∑
〈ij〉

(
ψ∗i δ̂j + ψj δ̂

†
i

)
(2.25c)

and

Ĥ2 =
∑
i

[
ε0 − µ+ 2U |ψi|2

]
δ̂†i δ̂i +

∑
i

U

2

(
ψ∗i ψ

∗
i δ̂i δ̂i + ψiψiδ̂

†
i δ̂
†
i

)
− J

∑
〈ij〉

δ̂†i δ̂j . (2.25d)

The remaining terms Ĥ3 and Ĥ4 contain fluctuation operators in third and forth order, respec-
tively, and can be neglected, assuming the fluctuations are small. This turns the model into a
non-interacting one for the fluctuation operators.

Let us first investigate the term of zeroth order in the fluctuations, E0, which depends solely
on the mean field ψi. For small fluctuations, it will account for the major contribution to the
total energy, thus we assume that the mean field will adjust itself to minimize E0, leading to

∂E0

∂ψ∗i
=
[
ε0 − µ+ U |ψi|2

]
ψi − J

〈ij〉∑
j

ψj
!

= 0 . (2.26)

The above equation is known as the (time-independent) Gross-Pitaevskii equation (GPE), here
in its discrete form. We have already established in the previous section that for the pure system
we have ψi ≡ ψ. Choosing ψ ∈ R yields the two following solutions,

ψ0 = 0 and ψ1 =
√

(µ− ε0 + zJ)/U , (2.27)

where the non-trivial solution ψ1 only exists for µ− ε0 + zJ > 0. From

E0(ψ1) = −(µ− ε0 + zJ)2

2U
< 0 = E0(ψ0) (2.28)
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2.1 The Bose-Hubbard Model

we see that ψ1 is always the global minimum, i.e., the mean field is always finite for µ−ε0 +zJ >
0. In particular, the Mott lobes will not be resolved within this approach, implying that its
validity is restricted to the weakly correlated regime. In order to obtain the correct behavior in
the strongly correlated regime, the particle-particle interaction has to be treated exactly.

Next, we turn to the term linear in the fluctuations, Ĥ1. It is easy to see that

Ĥ1 =
∑
i

[
∂E0

∂ψ∗i
δ̂†i +

∂E0

∂ψi
δ̂i

]
. (2.29)

Thus, if the mean field is determined by the Gross-Pitaevskii equation (2.26), the contributions
linear in the fluctuations vanish, i.e., Ĥ1 = 0.

This leaves us with only one remaining term, namely Ĥ2. The difficulty of solving Ĥ2 lies in
its anomalous terms containing either only two creation or two annihilation operators, which
break the particle number conservation. In order to solve this problem, one introduces a new
set of bosonic operators, which are defined via the relation

δ̂i =
∑
j

[
uijα̂j − v∗ijα̂†j

]
. (2.30)

This transformation is known as the Bogoliubov transformation and the α-bosons as the Bo-
goliubov quasi-particles. One can show that this transformation diagonalizes the Hamiltonian
Ĥ2, if the coefficients uij and vij are the solutions to the so-called Bogoliubov - deGennes
equations (see [42] for the details).

Here, we want to restrict ourselves to a simpler version of this problem, i.e., the weakly cor-
related regime for N particles in the canonical ensemble. We know that for the non-interacting
case, U = 0, all bosons will occupy the Bloch state with zero momentum, p = 0. Now, we want
to investigate how this changes when we turn on the interaction. Therefore, we first perform a
Fourier transformation to momentum space,

ĤBH =
∑
p

εpb̂
†
pb̂p +

U

2Ni

∑
pp′q

b̂†p+qb̂
†
p′−qb̂pb̂p′ , (2.31)

where we have set ε0 = 0. For small U/J , it is still reasonable to assume that most particles
occupy the single-particle ground state, and thus, |p = 0〉 is still macroscopically occupied. We
therefore replace the corresponding operator by an amplitude, b̂0 → b0 =

√
N0, where N0 is

the number of bosons in the single-particle ground state. Note, that this replacement it slightly
different from the introduction of the mean field amplitude and ψ = 〈b̂i〉 6= 〈p = 0|b̂i|p = 0〉.

Applying this approximation to the Hamiltonian and neglecting direct interactions between
the non-condensed particles b̂p with p 6= 0 yields

ĤBH = εp=0N0 +
U

2Ni
N2

0 +
∑
p6=0

εpb̂
†
pb̂p +

U

2Ni
N0

∑
p6=0

(
4b̂†pb̂p + b̂pb̂−p + b̂†pb̂

†
−p
)
, (2.32)

which again introduces anomalous terms with only two creation or annihilation operators. Since
N0 is an unknown quantity, it has to be eliminated from the Hamiltonian using the identity
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Figure 2.2: The solid blue curve shows the dispersion Ep of the Bogoliubov quasi-particles for Uρ/zJ =
0.5, the dashed green curve the excitation energies Ep = εp − εp=0 of the non-interacting system.

N = N0 +
∑

p6=0 b̂
†
pb̂p for the total number of particles N . This yields

ĤBH = N

[
εp=0 +

Uρ

2

]
+
∑
p6=0

(εp − εp=0 + Uρ)b̂†pb̂p +
Uρ

2

∑
p6=0

(
b̂pb̂−p + b̂†pb̂

†
−p
)
, (2.33)

where we have again neglected all interaction terms between the non-condensed particles. In
order to diagonalize the Hamiltonian, we now perform the Bogoliubov transformation,

b̂p = upα̂p − v∗−pα̂†−p and b̂†p = u∗pα̂
†
p − v−pα̂−p , (2.34)

where one has to choose |up|2 − |v−p|2 = 1 in order to fulfill the permutation relations of the
initial boson operators. Plugging these definitions back into ĤBH , one obtains

ĤBH = N

[
εp=0 +

Uρ

2

]
+
∑
p

[
Epα̂

†
pα̂p +

Up

2
α̂pα̂−p +

U∗p
2
α̂†pα̂

†
−p + |vp|2 − upv∗p

]
, (2.35a)

where
Ep =

[
εp − εp=0 + Uρ

](
|up|2 + |vp|2

)
− Uρ

(
upv

∗
p + u∗pvp

)
(2.35b)

and
Up = Uρ

(
upu−p + vpv−p

)
−
[
εp − εp=0 + Uρ

](
upv−p + u−pvp

)
. (2.35c)

Apparently, the Hamiltonian is diagonal with respect to the quasi-particles if we demand Up = 0
for all p. Making the ansatz up = u−p ∈ R and vp = v−p ∈ R and using the condition Up = 0,
the quasi-particle energies can be written as

Ep =
[
εp − εp=0

](
up + vp

)2
, (2.36)
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2.1 The Bose-Hubbard Model

The coefficients up and vp can be expressed using the hyperbolic functions (see [42]), leading to

(
up + vp

)2
=

√
εp − εp=0 + 2Uρ

εp − εp=0
, (2.37)

and thus
Ep =

√
εp − εp=0

√
εp − εp=0 + 2Uρ . (2.38)

Figure 2.2 shows a plot of the above dispersion of the Bogoliubov quasi-particles in comparison
with the free lattice dispersion. For small momenta, the dispersion becomes linear,

Ep ≈
√

2zJUρ |p| , (2.39)

whereas for larger momenta it attains (very) roughly the form of the free lattice dispersion
shifted by an effective mass term due to the interaction with the condensate,

Ep ≈ εp − εp=0 + Uρ . (2.40)

2.1.4 Landau Criterion for Superfluidity

In section 2.1.2, we have established that the Bose-Hubbard model undergoes a phase transition
from a gaped to a gapless phase as a function of the ratio J/U , where the gaped phase was
identified as the MI phase. We want to conclude the brief introduction to the pure Bose-Hubbard
model by discussing the nature of the gapless phase, i.e., its SF nature.

Let us start by revisiting the Landau criterion for superfluidity [10], where we will again follow
the presentation in [42]. Suppose, our system is confined by walls in all but one spatial dimension
and the walls are movable along the axis of this free dimension. The system is supposed to be in
its equilibrium state in a rest frame R and the walls are moving with velocity −v along the free
axis. In its rest frame, the energy of the system is E = E0 and the total momentum vanishes by
definition, P = 0. If we perform a Galilean transformation into the rest frame R′ of the walls,
the system now moves with the velocity v. Accordingly, in this frame its energy is given by
E′ = E0 + 1

2Mv2 and its momentum by P′ = Mv, where M is the total mass of the system.
Now, suppose the walls can interact with our system via friction and can reduce the total

momentum P′ by inducing excitations in the system. These excitation, however, will only take
place, if they are energetically profitable, i.e., lower the total energy. Let us assume that one
excitation with momentum p was induced. This changes the energy and the momentum of the
system to E = E0 + Ep and P = p, respectively. In the moving frame R′, the new momentum
is P′ = p +Mv, and therefore, the new energy is given by

E′ = E0 + P′/2M ≈ E0 + Ep +
1

2
Mv2 + v · p , (2.41)

where we have assumed that M � p2. By changing the total momentum of the system,
its kinetic energy in the moving frame can be reduced. This, however, comes with the cost
of increasing the system’s internal energy by Ep. Thus, for this process to be profitable the
following inequality must be fulfilled,

Ep + v · p < 0 . (2.42)
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2 Interacting Bosons in Disordered Lattice Systems

The total momentum is reduced the most if v and p are antiparallel, which yields |v| > Ep/|p|.
If Ep was just the normal lattice dispersion εp, we would have |v| > Ep/|p| ∝ |p| for |p| � 1.
Thus, for any given v the condition would be fulfilled for small enough momenta p. However,
as we have found in the previous section the energy of the lowest excitations of the weakly
correlated Bose-Hubbard model goes linearly with the momentum, see (2.39). Therefore, we
have

|v| > Ep/|p| =
√

2zJUρ > 0 , (2.43)

which implies that there exists a minimal velocity below which the system is insensitive to
friction with the walls. In other words, it can move without friction along the walls, making it
a superfluid.

The dispersion relation giving rise to this behavior was derived based on the assumption
that almost all particles are condensed into the single-particle ground state. The system can
only reduce its kinetic energy by inducing elementary excitations, which for small momenta are
always more costly than the energy that can be gained from reducing the kinetic energy while
conserving the total momentum.

This argument, however, can only be made when it is possible to calculate the spectrum of
the elementary excitations. In the strongly correlated regime this will not be the case anymore.
Thus, if we want to continue to work with the picture of a mean field and quantum fluctua-
tions, we need to investigate how a Galilean transformation into a moving frame affects these
quantities, which will be the topic of the next section.

2.1.5 Mean Field Amplitude and Superfluid Velocity

In order to investigate how the order parameter behaves under a Galilean transformation, we
need to revisit the GPE in its time-dependent form. For simplicity, here we will use the descrip-
tion in terms of field operators,

Ψ̂(x) =
∑
i

〈x|i〉b̂i , (2.44)

where |i〉 is the local single-particle state corresponding to the operator b̂i. This allows us to
write the Hamiltonian (within the canonical ensemble) as

ĤBH =

∫
d3x Ψ̂†(x)

(−∇2

2m
+ V (x)

)
Ψ̂(x) +

1

2

∫
d3x d3x′ Ψ̂†(x)Ψ̂†(x′)U(x− x′)Ψ̂(x′)Ψ̂(x) ,

(2.45)
where m is the particle mass, V (x) the lattice potential, and U(x − x′) the two-particle in-
teraction term. The parameters of the Bose-Hubbard model are related to these quantities as
follows, ∫

d3x 〈i|x〉
(−∇2

2m
+ V (x)

)
〈x|j〉 =

{
ε0 for i = j,
−Jij for i 6= j,

(2.46a)

and ∫
d3x

∫
d3x′〈i|x〉〈j|x′〉U(x− x′)〈x′|k〉〈x|l〉 =

{
U for i = j = k = l,
0 otherwise. (2.46b)
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2.1 The Bose-Hubbard Model

The equation of motion for the field operator can be calculated using the Heisenberg equation
of motion, yielding

i
d

dt
Ψ̂(x, t) =

(−∇2

2m
+ V (x) +

∫
d3x′ Ψ̂†(x′, t)U(x− x′)Ψ̂(x′, t)

)
Ψ̂(x, t) . (2.47)

Writing Ψ̂(x, t) = ψ(x, t)+δΨ̂(x, t), with ψ(x, t) = 〈Ψ̂(x, t)〉 being the mean field amplitude (or
the order parameter) and δΨ̂(x, t) the fluctuations operator, one can derive the time-dependent
GPE for the mean field by omitting all fluctuation terms,

i
d

dt
ψ(x, t) =

(−∇2

2m
+ V (x) +

∫
d3x′ U(x− x′)|ψ(x′, t)|2

)
ψ(x, t) . (2.48)

Comparing this with the time-independent GPE (2.26) (which was derived in the grand canonical
ensemble), it follows that ψ(x, t) = ψ(x)e−iµt.

If we now, for simplicity, consider the free case, V (x) = 0, and perform a Galilean trans-
formation into a moving frame, Ψ̂(x, t) → Ψ̂′(x′, t) with x′ = x + vt, it is a straightforward
calculation to show that the relation

Ψ̂′(x′, t) = Ψ̂(x′ − vt, t)ei
(
mv·x′− 1

2
mv2t

)
(2.49)

must be fulfilled in order for Ψ̂′(x′, t) to be a solution of the equation of motion (2.47). For the
order parameter this implies

ψ′(x′, t) = ψ eiS(x′,t) , (2.50)

with the complex phase
S(x, t) = mv · x−

(m
2
v2 − µ

)
t , (2.51)

where we have assumed a uniform order parameter in the rest frame of the bosonic system,
ψ(x) = ψ. This means that the order parameter in the moving frame acquires a complex phase
that depends on the spatial coordinate and oscillates in time. On the other hand, if we consider
the moving frame to be at rest and the bosonic system to be in motion, it follows that the order
parameter of a uniformly moving bosonic system acquires a complex phase varying in space and
time. The velocity of the bosonic system is given by the gradient of the phase S(x, t),

v =
1

m
∇S(x, t) . (2.52)

In turn, this implies that a constant movement of the whole bosonic system can be induced by
imposing a phase gradient upon the order parameter. This can be done, for example, by fixing
the complex phase of ψ(x, t) on two opposite boundaries of the system to different values.

If the lattice potential is turned on, V (x) 6= 0, the situation immediately becomes more
complicated. The question one could ask then is whether the system as a whole or only a fraction
of it is transported by the current. According to the theory of the two-fluid hydrodynamics,
see, for example, [42], one can divide the total particle density ρ into a normal and a SF part,
ρ = ρn+ρs. At finite temperature, T > 0, both ρn and ρs will contribute to the total density ρ.
According to an argument by Leggett [14, 43], in the limit T → 0 the SF fraction of the density
will tend to unity for pure bosonic systems, ρs/ρ → 1. Thus, it is generally accepted that the
conducting phase of the pure Bose-Hubbard model is the SF phase [1].
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2 Interacting Bosons in Disordered Lattice Systems

This concludes this brief introduction to the pure Bose-Hubbard model. Before we move
on to discuss the disordered case, it is useful to first consider the characteristics of the non-
interacting disordered lattice model, i.e., the Anderson Hamiltonian and the phenomenon of
Anderson localization.

2.2 Anderson Localization

In the following section, we will review few of the most important cornerstones of the theory of
Anderson localization. As the theory was developed with the intention of describing conductance
in impure solids, it focuses on fermionic rather than bosonic particles.

2.2.1 Absence of Diffusion

In his seminal work Absence of Diffusion in Certain Random Lattices [18], Anderson investigated
the problem of a particle jumping through a random lattice. In order to start with the simplest
model possible, he considered the following discrete Schrödinger equation,

i
d

dt
ai = εiai +

k 6=i∑
k

Jikak , (2.53)

where ai is the probability amplitude for finding the particle on site i. The above equation of
motion corresponds to the well known Anderson Hamiltonian,

ĤA =
∑
i

εi b̂
†
i b̂i +

i 6=j∑
ij

Jij b̂
†
i b̂j , (2.54)

where now, in contrast to the Bose-Hubbard model, the on-site energies are not equal for all
lattice sites, but randomly distributed according to a probability distribution function Pε(ε).
which can be characterized by a widthW . This could be, for example, a simple box distribution,

Pε(ε) =

{
1/W if −W/2 < ε < +W/2 ,

0 otherwise. (2.55)

The question he posed was whether a particle initially located at some point in space would
diffuse away into the infinite system or not. If the particle diffuses into the infinite system, all
amplitudes will vanish for large times, limt→∞ ai(t) = 0 for all i. If the particle is localized
within a finite region in space, the amplitude will remain finite in that region, limt→∞ ai(t) 6= 0
for some i.

In order to study this behavior, it us useful to take a look at the eigenstates of the system.
Let {|ψα〉} be the complete set of eigenstates with corresponding eigenenergies Eα. Then, the
local state |i〉 of site i can be expressed as follows,

|i〉 =
∑
α

〈ψα|i〉 |ψα〉 . (2.56)

If an eigenstate is extended, its overlap with site i scales with the system size, 〈i|ψα〉 ∼ 1/
√
Ni,

and vanishes in the thermodynamic limit, Ni → ∞. Only if a state is localized (or bound) in
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2.2 Anderson Localization

a region containing site i, the overlap remains finite for Ni → ∞. Now, we place a particle on
site i at t = 0 and study its evolution in time,

ai(t) = 〈i|i(t)〉 =
∑
α

〈ψα|i〉〈i|ψα(t)〉 =
∑
α

|〈ψα|i〉|2 e−iEαt . (2.57)

Due to the oscillating terms, ai(t) will fluctuate and at times may become zero even in the
localized regime. Therefore, it is more advisable to look at the temporal average of ai(t). We
can test whether state |i〉 on site i has a finite overlap with a localized state at energy E by
considering the following quantity,

lim
t→∞

1

t

∫ t

0
dt′eiEt′ai(t

′) =
∑
α

|〈ψα|i〉|2 lim
t→∞

1

t

∫ t

0
dt′ei(E−Eα)t′ =

∑
α

|〈ψα|i〉|2 δE,Eα . (2.58)

The above expression is only finite if there is a localized state with energy Eα = E, that has
a finite overlap with site i. However, the complete set of eigenstates of ĤA is, in general, hard
to obtain. Therefore, we will expand the above expression perturbatively using the Green’s
function formalism, see also appendices B.1 and B.2. The probability amplitudes are related to
the retarded single-particle Green’s functions as follows,

ak(t) = iGRki(t) for ak(0) = δk,i and t > 0 . (2.59)

The long-time average (2.58) can be expressed in terms of the Fourier transformed of the full
local Green’s function,

lim
t→∞

1

t

∫ t

0
dt′eiEt′ai(t

′) ∼ lim
η→0

iη Gii(E + iη) . (2.60)

with E ∈ R. In appendix B.2, it is shown that the full Green’s functions can be expanded in
terms of the locator functions,

Gij(E) = G0
i (E)δij +G0

i (E)

l 6=i∑
l

JilGlj(E) . (2.61)

with the locators
G0
i (E) =

1

E − εi
. (2.62)

By introducing the local self-energy Σii(E), the locator expansion can be written as

Gii(E) ≡ G0
i (E) +G0

i (E)Σii(E)Gii(E) =
1

E − εi − Σii(E)
. (2.63)

The self-energy consists of all hopping sequences (or paths) starting and ending at site i without
hopping onto the site in between (see [44], for example),

Σii(E) =
∑
k

JikG
0
k(E)Jki +

l 6=i∑
kl

JikG
0
k(E)JklG

0
l (E)Jli + . . . (2.64)

Anderson then investigated the convergence of the self-energy for a tight-binding version of the
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2 Interacting Bosons in Disordered Lattice Systems

model, Jik = −J for i, k nearest neighbors and Jik = 0 otherwise, and E = 0, i.e., the center of
the band. Since the on-site energies are random numbers, the self-energy has to be treated as a
random quantity as well. After a long derivation including certain approximations, it is found
that if the ratio of the width W and the hopping amplitude J is larger than some critical ratio,
(W/J) > (W/J)c, the expansion series of the self-energy will converge almost always (again, see
[44] for a more pedagogic presentation of Anderson’s original work [18]). From this result, it
was then concluded that the system is completely localized and no diffusion will take place. The
transition from a phase with both localized and extended states to a phase with a completely
localized spectrum is called the Anderson transition.

A rigorous proof for the existence of a critical disorder strength (W/J)c was later presented
in [45, 46], where it was shown that either for strong disorder or low energies the particles will
localize. Furthermore, in [47] it was shown that for one-dimensional systems (d = 1), the DOS
is discrete (or point-like) for any finite disorder width, and thus, all states are localized. In other
words, the critical disorder strength is zero, (W/J)c = 0 for d = 1.

2.2.2 The Localization Length

In the previous section, we have discussed that above a certain critical disorder strength (W/J)c,
no diffusion is taking place anymore and particles become localized in finite regions in space. We
have already concluded that this implies that the eigenstates of the system become localized as
well, see equation (2.58). In the following we want to discuss the character of these eigenstates.
Of course, since the random potential is always finite, the states cannot be bound in a strict
sense. Rather, they are exponentially localized,

|〈i|ψα〉| ∼ e−|xi−xα|/ξα for |xi − xα| → ∞ , (2.65)

that is, the envelope of the wave function decreases exponentially when moving away from a
certain point in space xα (see [48], for example). The decay is governed by the localization length
ξα. The larger ξα, the further the wave function spreads into the system. For an extended state
that scales with the system size, the localization length is infinitely large. The exact form of
each eigenstate depends on the realization of disorder (i.e., the actual values of the εi) and is
highly non-trivial.

This also means that in order to determine an average localization length, the eigenstates
would have to be calculated all over again for each new disorder realization. This appears to
be highly impractical and, as we will see later, it is possible to define the localization length in
terms of already disorder averaged quantities using the self-consistent theory of localization.

2.2.3 Lifshitz Tails

From [45], we already know that states far enough away from the center of the band (E = 0)
are localized, even if the disorder is below the critical value. This can be understood in a very
intuitive way using an argument made by Lifshitz [49].

Let us assume that the probability distribution Pε is only finite in the interval [−W/2,+W/2].
For a tight-binding hopping term and a d-dimensional cubic lattice, the density of states (DOS)
then stretches from Emin = −W/2 − 2Jd to Emax = +W/2 + 2Jd. The theoretical upper
and lower bounds correspond to a lattice with all on-site energies equal to +W/2 or −W/2,
respectively. In these cases, the eigenstates are given by Bloch states |p〉 ∼∑i e

−ip·xi |i〉, with
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2.2 Anderson Localization

corresponding eigenenergies

εp = ±W/2− 2J
d∑
a=1

cos pa with pa ∈ (−π,+π] . (2.66)

The two wave vectors yielding the highest and lowest energy are given by p+ = (π, . . . , π) and
p− = (0, . . . , 0), respectively. Of course, in the thermodynamic limit, Ni →∞, the probability
for such a realization would vanish. Nevertheless, the probability for finding a large but finite
region with on-site energies εi ≈ ±W/2 will still be finite. Eigenstates that have energies close
to the upper or lower boundary of the DOS must then be localized within such a region. If the
region is large enough, we can assume that the eigenstates are more or less identical to those
of the tight-binding model, with the condition that they must vanish on the boundaries since
they should be localized. Assuming the region to extend from 0 to L in each direction, the
eigenstates are given by |p〉 ∼∑i

∏d
a=1 sin(paxi,a)|i〉, where

pa =
π

L
n with n = 1, 2, 3, . . . , L− 1 . (2.67)

The eigenenergies are the same as for the Bloch states, see expression (2.66). However, due to
the boundary conditions the wave vectors p+ and p− are forbidden. Thus, for a large but finite
region of length L with εi = −W/2 for all i, the lowest possible energy is given by

Emin(L) = −W/2− 2J
d∑
a=1

cos(π/L) ≈ −W/2− 2Jd+
π2d

L2
, (2.68a)

whereas for a region with εi = +W/2 for all i, the highest possible energy is given by

Emax(L) = +W/2− 2J
d∑
a=1

cos(π(L− 1)/L) ≈ +W/2 + 2Jd− π2d

L2
. (2.68b)

This result can now be used to express the DOS. The probability for finding a state with energy
Emin(L) or Emax(L) is given by the probability of finding a corresponding region of length L.
This probability should be proportional to (1/W )L

d , with Ld being the number of sites in that
region. From the above equations we know that

Emin(L)− Emin = Emax − Emax(L) = π2d/L2 ∼ 1/L2. (2.69)

Thus, the DOS at the edges of the band falls off exponentially,

N(Emin/max ± E) ∼ e−C |Emin/max±E|−d/2 , (2.70)

where C is some positive constant. These exponential tails of the DOS are called Lifshitz tails.
They are very hard to resolve in a direct numerical approach, as one needs very large system
sizes and many disorder realizations in order to reproduce them. As we will see later, this is
also the main reason the stochastic mean-field theory does not yield the correct phase boundary
between compressible and incompressible phase, see section 3.2.4. In the following, we will refer
to the states contributing to the Lifshitz tails as the Lifshitz states.
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2 Interacting Bosons in Disordered Lattice Systems

2.2.4 Mobility Edges

In the previous section, we have established that states at the upper and lower edges of the DOS
are localized in large potential fluctuations. This implies that extended states, if present, have
to be located in the middle of the band. According to an argument by Mott [50], this goes even
further, in that localized and extended states are strictly separated in energy.

Suppose, there are two eigenstates of ĤA with the same energy E, one localized (|ψl〉) and one
extended (|ψe〉). If we change the on-site energy for a certain i infinitesimally, εi → εi + δ with
δ � 1, this will induce a coupling between the two states. The Hamiltonian in the subspace
spanned by the two states is given by

Ĥ =

(
E + δ|〈i|ψl〉|2 δ〈ψl|i〉〈i|ψe〉
δ〈ψe|i〉〈i|ψl〉 E + δ|〈i|ψe〉|2

)
(2.71)

As the extended state |ψe〉 has a finite amplitude 〈i|ψe〉 on every site i, we can choose i such
that 〈i|ψl〉 is finite as well. The new eigenstates are then given by

|ψ+〉 ∼ |ψl〉+
〈ψe|i〉
〈ψl|i〉

|ψe〉 and |ψ−〉 ∼ |ψl〉 −
〈i|ψl〉
〈i|ψe〉

|ψe〉 . (2.72)

Apparently, they do not depend on the perturbation parameter δ, which is due to the initial
degeneracy. Furthermore, since both new states contain admixtures of the extended state |ψe〉,
none of them is localized.

Mott argued that the density of states should not depend on such an infinitesimal pertur-
bation. Thus, the assumption that there was a localized and an extended state at the same
energy must have been wrong in the first place. From that, one can conclude that there is no
coexistence of extended and localized states at the same energy. The commonly accepted pic-
ture derived from this argument is that for (W/J) < (W/J)c, the energy regime of the localized
states extends from the Lifshitz tails to two certain points in energy, the so-called mobility edges,
see figure 2.3. In between the two mobility edges lies the regime of the extended states. If the
disorder strength W/J is increased, the mobility edges shift further towards the center of the
band, until both coincide and all states are localized. This should happen exactly at the critical
disorder strength, i.e., the Anderson transition.

2.2.5 Coherent Backscattering

The locator expansion used in the original article by Anderson [18] is a perturbation series in
powers of the hopping amplitude J . Thus, it is only applicable when J is small compared to the
other parameters of the system, i.e., in the case of strong disorder where W/J is large. In fact,
the Anderson transition was determined by the breakdown of the locator expansion. We already
know that for d = 1, systems are localized even for very small disorder. Here, the picture of
states bound in large potential fluctuations cannot be valid anymore. As also pointed out by
Anderson, the critical disorder strength found in [18] has to be understood as an upper bound
for the possibility of extended states.

The mechanism responsible for the localization of states even for small disorder strengths
is the coherent superposition of quantum waves. This can be understood quite intuitively by
considering the probability Pi→j for a particle to propagate from site i to site j. According to
equation (2.61), the probability amplitude can be written as a sum over the amplitudes ACij
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E

N(E)

Emin EmaxEc E′
c

Figure 2.3: A sketch of a typical density of states N(E) for a disordered system for (W/J) < (W/J)c,
ranging from Emin to Emax, with the Lifshitz tails and the two mobility edges Ec and E′c. The energy
regimes of the localized states are indicated by the red filling.

contributed by each path Cij , see also figure 2.4a. Thus, we have

Pi→j =
∣∣∣∑
Cij

ACij
∣∣∣2 =

∑
Cij

∣∣ACij ∣∣2 +
∑
Cij 6=C′ij

ACijA
∗
C′ij . (2.73)

The first term corresponds to the classical contribution and the second term to the corrections
due to quantum interferences between different paths. Because of the randomness of the on-site
energies, the complex phase accumulated along different paths will be a random quantity as
well. Thus, in general quantum corrections to the classical probability will be suppressed and
would vanish in a disorder average.

Now, if we specifically consider the probability for a particle returning to its initial site, Pi→i,
then for each path i → j1 → j2 → . . . → jn−1 → jn → i, there exists a time-reversed path
i → jn → jn−1 → . . . → j2 → j1 → i, see figure 2.4b. If the system is invariant under
time-reversal, which is the case for the Anderson Hamiltonian, then both paths yield the same
amplitude. In particular, they will have the same complex phase, i.e., they are phase coherent.
Thus, for the probability Pi→i we can write

Pi→i = 2
∑
Cii

∣∣ACii∣∣2 + incoherent contributions , (2.74)

i.e., the probability for a quantum mechanical particle to return to its initial site is twice as large
as it would be for a classical particle. This effect is called coherent backscattering. Furthermore,
as the total probability is a conserved quantity and is normalized to one,

∑
j Pi→j = 1, the

probability for the particle diffusing away into the infinite system must be reduced compared to
the classical case.

This intuitive picture carries on into the actual calculations of physical quantities, such as the
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i

j

(a) i→ j

i

(b) i→ i

Figure 2.4: (a) Two arbitrary paths from site i to site j. (b) Two paths starting and ending at the same
site i that are related by time-reversal symmetry.

conductivity. Within linear response theory (see [51], for example), one obtains the following
expression for the conductivity tensor in energy-momentum representation for T → 0,

σαβ(q, ω) =
e2

π

1

Ni

∑
pp′

pα
〈
GRp+p′+

(εF + ω)GAp′−p−
(εF )

〉
p′β , (2.75)

with q and ω being the wave vector and the frequency of the external field coupling to the
system, respectively, εF the Fermi energy, and p± = p±q/2. The integration kernel is actually
the disorder-averaged particle-hole propagator that is also at the core of the self-consistent
theory of localization, see appendix B.4.1. As explained there, the particle-hole propagator can
be expanded in terms of the disorder-averaged single-particle Green’s functions,

〈GR/Ap (E)〉 =
1

E − εp − Σ
R/A
p (E)± iη

, (2.76)

i.e., an expansion in terms of an extended state basis. Similar to the locator expansion, which
is reasonable in the strong disorder case where the true eigenstates are localized and J/W is
a small parameter, the extended state expansion is suitable for the opposite case, i.e., weak
disorder with W/J being the small parameter.

The largest contribution arises from the so called ladder diagrams, see figure 2.5a. They
correspond to the classical contribution in expression (2.73) and yield the Drude result for
conductivity in the static limit (see [51] for the derivation),

σ0 = lim
q,ω→0

σαα(q, ω) =
ne2τ

m
, (2.77)

where n is the particle density, m the particle mass, e the elementary charge, and τ the transport
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p′+ p+

p′− p−

(a) Ladder Diagram

p′+ p+

p′− p−

(b) Maximally Crossed Diagram

Figure 2.5: The two types of diagrams that lead to the largest contribution to the disorder-averaged
particle-hole propagator. The solid lines indicate the disorder-averaged particle (moving right-
wards/forward in time) or hole propagator (moving leftwards/backward in time). The dashed lines
indicate scattering processes at the same impurity. The ladder diagrams correspond to the classical
contribution, the maximally crossed diagrams to the contribution arising from coherent backscattering,
see also figure 2.4b.

relaxation time.
The next-to-leading order contributions come from the class of the maximally-crossed dia-

grams, see figure 2.5b. They are connected to the ladder diagrams by time-reversal of either the
particle or the hole propagator line, i.e., the diagrams that arise from coherent backscattering.
They yield a finite correction to the classical conductivity,

δσ(q = 0, ω) = −2e2

π

∫ 1/l

1/L

ddQ

(2π)d
1

−iω/D0 + Q2
, (2.78)

where the integration is taken over Q = p + p′ and has to be cut off at the inverse of the mean
free path l due to certain approximations made in the derivation of δσ. Furthermore, a finite
system size L sets a lower boundary on the possible momenta (again, see [51] for the derivation).

As one would expect from the considerations made at the beginning of this section, the
contributions from coherent backscattering are negative and lead to a decreased conductivity.
This result will be of importance in the next section. In the static limit, the above integral
yields

δσ = lim
ω→0

δσ(q = 0, ω) = −2e2

π

Ωd

(2π)d

∫ 1/l

1/L
dQQd−3 , (2.79)

where Ωd is the surface element in d dimensions. In one and two dimensions, the integral is
divergent in the thermodynamic limit, L→∞, for any value of l, i.e., for any disorder strength.
This implies a breakdown of the expansion series in terms of extended states, suggesting that in
the thermodynamic limit any small disorder leads to a complete localization not only for d = 1,
but for d = 2 as well.

In three dimensions, δσ is proportional to 1/l and, thus, gets larger the larger the disorder
strength becomes. This suggests, that in three dimensions the Anderson transition might be
triggered by the effect of coherent backscattering.
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2.2.6 Scaling Theory of Localization

We already mentioned that in one dimension any small amount of disorder immediately causes
all states to localize [47]. Although there exists no rigorous proof, it is generally agreed upon
that in three dimensions there is a coexistence of localized and extended states below a certain
critical disorder strength. This already implies that the localizing effect of disorder strongly
depends on the dimension of the system.

In 1979, Abrahams, Anderson, Licciardello, and Ramakrishnan introduced the scaling theory
of localization [19], which is fundamental to the modern picture of localization. Motivated
by previous works of Landauer [52], Thouless and co-workers [53–55], and Wegner [56], they
investigated the dependence of the (dimensionless) conductance g = σ/(e2)Ld−2 on the system
size. They made the assumption that for already large systems the scaling behavior is determined
by the conductance itself and does not depend on microscopic properties, such as, the realization
of disorder. For simplicity, let us consider a d-dimensional hypercube with Volume Ld. If the
length L is now scaled by a factor n, L→ nL, the new conductance g(nL) should only depend
on g(L) and n,

g(nL) = f
(
n, g(L)

)
, (2.80)

where f is the function that determines the scaling behavior. For the logarithmic derivative of
g(nL), one obtains

β ≡ d ln g(nL)

d lnnL
=

nL

g(nL)

dg(nL)

dnL
=

n

g(nL)

d

dn
f
(
n, g(L)

)
. (2.81)

If we set n = 1, we get

β =
d ln g(L)

d lnL
=

1

g(L)

d

dn
f
(
n, g(L)

)∣∣∣
n=1

= β
(
g(L)

)
. (2.82)

Apparently, the scaling function β depends only implicitly on the length L. In the limit of very
large conductance, Ohm’s law should be valid, i.e., g(L) ∼ Ld−2 for g � 1. In the localized
regime where g � 1, the scaling behavior should be determined by exponential decay of the
wave functions, and thus, g ∼ e−L/ξ, where ξ is the characteristic localization length of the
system. For the β-function we then obtain

β(g) =

{
d− 2 for g � 1,
ln g for g � 1.

(2.83)

According to the results by Wegner [56], the Anderson transition is a second order phase tran-
sition, i.e., the conductivity vanishes continuously at the transition from the conducting to the
insulating phase (which is in contrast to previous predictions of a minimal conductivity [57]),

σ ∼ (E − Ec)s . (2.84)

Therefore, it is assumed that β is a smooth and monotonous function of g. With this, one can
interpolate between the two limits, yielding a function as plotted in figure 2.6. From this we
can now obtain the scaling behavior for L→∞ of any system, if we only know its conductance
for a given size.

Let us start with the simplest case, d = 1. Here, the scaling function is always negative,
β(g) < 0 for any g. From this it follows that the conductance always decreases if the system
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ln g

β(g)

d = 3

d = 2

d = 1

+1

−1

gc

Figure 2.6: A qualitative plot of the scaling function β(g) for d = 1, 2, 3. The horizontal dashed lines
indicate the asymptotic behavior for g → ∞. The black dot indicates the critical conductance gc at
which the scaling function vanishes for d = 3.

size is increased,
dg

dL
=
g

L
β(g) < 0 . (2.85)

In accordance to the previous findings, a one-dimensional system always scales towards the
insulating phase in the thermodynamic limit, i.e., it is always completely localized.

For three dimensions, there exists a critical conductance gc where the scaling function becomes
zero. For all g < gc, β(g) is negative and thus scales to the insulating limit for L→∞. On the
other hand, for g > gc the scaling function is always positive and the system would flow towards
the metallic solution. Thus, in three dimensions the scaling theory predicts the existence of
both insulating or localized and conducting or non-localized systems.

For a given system size L, the conductance can be tuned by changing the disorder strength.
For example, if g(L,W/J) < gc, one could decrease the disorder strength until g(L,W/J) > gc,
thus turning a (in the thermodynamic limit) completely localized system into a system with
extended states, i.e., triggering the Anderson transition. The divergence of the localization
length when approaching the critical point from the localized regime is described by

ξ ∼ (Ec − E)−ν . (2.86)

The critical exponent ν is related to the one describing the behavior of the conductivity (see
equation (2.84)) as follows, s = ν.

For two dimensions, the situation is a little more complicated, as β(g) → 0 for g → ∞.
Without making further assumptions, it is not necessarily clear whether the limit is approached
from above or below. The former would imply that there is a critical conductance and, therefore,
also a transition from the localized to the extended phase in two dimensions. The latter implies,
that two-dimensional systems always scale towards zero conductance, i.e., there is no extended
phase in two dimensions. At this point we have to recall the results from perturbation theory
presented in the previous section. There, we found that the first quantum corrections to the
classical result were negative, see equation (2.78). This suggests that, in fact, the limit is
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approached from below and there is an absence of quantum diffusion in two dimensions.
The results of the scaling theory have been supported by further theoretical as well as numer-

ical analysis, see [48] for a review, [58], or [59] for a more recent numerical study. However, there
were doubts raised about the validity of the assumption of one single parameter determining
the scaling behavior. In [60], for example, it was suggested that instead of only looking at the
disorder-averaged conductance g, one rather has to observe the behavior of the probability dis-
tribution of the conductance, especially in the region near the critical conductance gc in d = 3,
where the distribution becomes very broad. Apart from that, the main results of the scaling
theory are widely accepted and it is viewed as a milestone in the theory of Anderson localization.

Lastly, it should be noted again that this main result of the scaling theory relies on the
time-invariance of the system. Hence, any mechanism that breaks this invariance, such as,
magnetic couplings, can alter the asymptotic behavior for g → ∞. Furthermore, no particle-
particle interactions were considered when deriving the expressions for the conductivity. Thus,
the result of the scaling theory is only valid for the non-interacting case and could change, once
interactions are taken into account.

2.2.7 Self-Consistent Theory of Localization

We want to conclude this brief introduction to the topic of Anderson localization by presenting
the method we will use to calculate transport properties later in this work, which is the self-
consistent theory of localization, introduced in 1980 by Vollhardt and Wölfle [29]. This section
will present the motivation that led to the formulation of the theory, as well as the most impor-
tant steps of its derivation. In appendix B.4, a more detailed introduction to the theory can be
found.

In section 2.2.5, we discussed that the most important quantum corrections to the classical
conductivity arise from the class of maximally crossed diagrams. We also found that these
corrections diverge in the thermodynamic limit for d = 1, 2 and can become very large for d = 3,
see equation (2.78). Since, of course, the conductivity cannot become negative, this implies that
the simple perturbation theory is invalid for these cases and additional contributions canceling
the divergent behavior need to be taken into account to obtain a valid result for the conductivity.

To circumvent this problem, one would like to find a quantity that actually diverges at the
phase transition. This quantity could then be calculated by taking into account only the most
divergent terms. Using the continuity equation, the conductivity (2.75) can be written in terms
of the density-response function χ(q, ω),

σ(q, ω) = −e
2

π

iω

q2
χ(q, ω) . (2.87)

In [29, 61], the density response is then expressed in terms of the density of states N(E) and
the density-density correlation function Φρρ,

χ(q, ω) = 2N(εF ) +
iω

π
Φρρ(εF ,q, ω) , (2.88)

where Φρρ is the momentum-integrated particle-hole propagator. It can be shown to have the
following form,

φρρ(E,q, ω) =
2πiN(E)

ω + iq2D(E,ω)
, (2.89)

28



2.2 Anderson Localization

with D(E,ω) being the generalized diffusion coefficient, see appendix B.4.1 for the definitions
and the derivation. Using expressions (2.88) and (2.89) and taking the limit q → 0, the conduc-
tivity can be expressed in terms of the diffusion,

σ(ω) = 2e2N(εF )D(εF , ω). (2.90)

Apparently, if the diffusion coefficient vanishes, the conductivity becomes zero as well, which
would mark the Anderson transition. The diffusion coefficient itself can be expressed in terms
of the so-called current relaxation kernel M(E,ω),

D(E,ω) ∼ 1

2 Im ΣA(E)− iω +M(E,ω)
. (2.91)

In the static limit, ω → 0, the relaxation kernel has to diverge for the diffusion coefficient to
vanish. Hence, M(E,ω) is the quantity that can be approximated by taking into account only
the most divergent contributions.

In [29, 61], all diagrams are then classified with respect to their contributions from maximally
crossed diagrams, leading to a relation between M(E,ω) and the density-density correlation
function Φρρ. As Φρρ in turn depends on the diffusion coefficient D(E,ω), this allows for a
self-consistent treatment of the problem, which leads to the following conditional equation,

D(E,ω) = D0(E) +
2 Im ΣA(E)

[πN(E)]2D0(E)

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp(E)〉〈GAp′(E)〉2

}
(p + p′)2 − iω/D(E,ω)

(vp′ · q̂) .

(2.92)
Again, see appendix B.4.1 for the derivation. In accordance to the results of the scaling theory,
the self-consistent theory finds complete localization for any small amount of disorder in d = 1, 2,
whereas in three dimensions it predicts a transition from the localized to the diffusive phase.
Moreover, in [62] it is shown that the self-consistent theory yields the same critical behavior as
predicted by the scaling approach. However, for the critical exponents it predicts ν = s = 1,
which deviates from the actual value, which is obtained numerical using finite-size scaling to
be rather ν = s ≈ 1.6 [58]. Thus, it is expected that the critical regime is not reproduced
quantitatively, but only qualitatively by the self-consistent theory.

Initially developed for weak disorder and a model of random impurities, the theory was
later generalized to the case of strong disorder modeled by the Anderson Hamiltonian [64–67].
Surprisingly, both approaches lead to the same final equation for the diffusion coefficient. A
numerical evaluation of the theory presented in [67] finds good quantitative agreement of both
the localization length in d = 1, 2, 3 as well as the position of the phase boundary in d = 3
when compared to results obtained from exact diagonalization and finite size scaling (see [68],
for example). This suggests that the regime where the self-consistent theory fails to describe the
correct behavior is rather small. Therefore, it represents a solid method to numerically resolve
the Anderson transition, especially when one wants to cover a wide range of parameters as it
will be the case in this work.

To conclude this section, in figure 2.7 we show the phase diagram for the Anderson Hamil-
tonian with a box shaped disorder distribution as obtained numerically from the self-consistent
theory. As explained in appendices B.3 and B.4, the theory is evaluated within the coherent
potential approximation (CPA). For fixed disorder width W/J , the mobility edge separates re-
gions with finite and vanishing diffusion, D(E,ω = 0) > 0 and D(E,ω = 0) = 0, respectively.
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D(E)=0 (localized regime)

D(E)>0 (diffusive regime)

Figure 2.7: The solid blue curve shows the mobility edge for the upper half of the spectrum as obtained
from the self-consistent theory of localization for a 3D cubic lattice and a box-shaped disorder distribution
with different ratiosW/J (the spectrum is mirror symmetric around E = 0). The mobility edge separates
regions with finite and zero diffusion in the static limit, D(E) = limω→0D(E,ω). The dashed red curve
shows the upper band edge Emax = W/2 + 2dJ , the green dashed curve the band edge obtained within
the CPA, see appendix B.3. The dots show numerical results taken from [63], which were calculated
using exact diagonalization and finite size scaling. Apparently, in the critical region of the Anderson
transition the results produced by the self-consistent theory differ from the numerical ones, as we would
expect.

The full Anderson transition is then determined by the ratio (W/J)c, above which the complete
spectrum is localized.

Comparing our results with those obtained by exact diagonalization in [63], we see that,
indeed, the self-consistent theory does not resolve the Anderson transition quantitatively, but
only qualitatively. The predicted critical disorder is (W/J)c ≈ 11.7, which is smaller than
the correct value (W/J)c ' 16.5 (see [59]). Moreover, the transition to the localized regime
at E = 0, i.e., in the center of the band, happens before all of the remaining spectrum is
localized, which contradicts the picture of the two mobility edges established in section 2.2.4.
The evaluation of the theory in [67] matches the numerical predictions much better, which must
be a consequence of certain approximations used there to perform the momentum integrations
in expression (2.92). However, our result for the mobility edge is in very good agreement with
the one presented in [69], which was also obtained from the self-consistent theory, but where a
different method of evaluation was used. Nevertheless, we need to keep in mind that this theory
only allows us to describe the Anderson transition on a qualitative level.

2.3 The Disordered Bose-Hubbard Model

In this final section of the introductory chapter, we want discuss the effect of disorder on a
bosonic lattice system. Therefore, we consider the disordered Bose-Hubbard model, which is
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defined by the following Hamiltonian,

Ĥ =
∑
i

(
(εi − µ)n̂i +

U

2
n̂i(n̂i − 1)

)
− J

∑
〈ij〉

b̂†i b̂j . (2.93)

The parameters are the same as for the pure Bose-Hubbard model (2.1), except for the on-site
energies, which are now randomly distributed like in the Anderson Hamiltonian (2.54), ε0 → εi,
again with a probability distribution Pε that is only finite in the interval [−W/2,+W/2]. The
above Hamiltonian can be viewed either as the pure Bose-Hubbard model extended by an on-site
disorder term, or the Anderson Hamiltonian with an additional on-site repulsion term.

Introducing disorder to the system will have a series of consequences, first of which is the
shrinking of the Mott lobes as a function of the disorder width W/U up to a point where
the MI regions completely vanish. Furthermore, for small hopping amplitudes one expects the
emergence of an additional phase separating the MI from the SF phase. Unlike the MI phase, it
is not gaped, but still insulating due to the localizing effect of the disorder. This third phase is
called the Bose glass (BG) phase and was first conjectured by Fisher et al. [1]. Finally, a more
subtle effect of the disorder is the reduction of the SF fraction in the conducting phase. Unlike
to the pure model, where at T = 0 the system as a whole is SF, here a finite fraction of the
system will not contribute to the SF motion.

In the following subsections, we want to address these topics in more detail, starting with the
effect of disorder on the shape of the Mott lobes.

2.3.1 Mott Lobes: Shifted Phase Boundaries

A good starting point to understand how the disorder affects the shape of the Mott lobes is
again the atomic limit, J/U = 0, where the full ground state factorizes into a product of local
particle number eigenstates.

For the pure case, see section 2.1, we found that for certain values of the chemical potential,
(µ− ε0)/U = ng ∈ IN, the local particle numbers ng and ng + 1 are degenerate in energy, Eng =
Eng+1. Hence, it does not cost any energy to add or remove a particle and the system becomes
compressible, κ ∼ ∂N/∂µ > 0. For intermediate values of µ, i.e., ng < (µ − ε0)/U < ng + 1,
this degeneracy is lifted and the local occupation number is fixed to ng particles. Thus, here
the system is incompressible, κ = 0.

In the disordered case, the on-site energies are distributed within an interval of finite widthW .
Thus, there may be a fraction of sites i with on-site energies εi such that (µ− εi)/U = ng ∈ IN,
while for other sites this ratio is not an integer. Hence, there can be a coexistence of compressible
and incompressible sites for one value of µ. The whole system, of course, is only incompressible
if all sites are incompressible. This implies that a system is compressible if

µ− ε
U

= ng ∈ IN for at least one ε ∈ [−W/2,+W/2] , (2.94)

which yields the following parameter ranges in which systems will be compressible,

ng −
W

2U
≤ µ/U ≤ ng +

W

2U
with ng = 0, 1, 2, 3 . . . (2.95)

Thus, in contrast to the pure case, where the system was compressible only for certain points of
µ/U , here the compressible phases extend over finite intervals on the µ/U -axis. Consequently,
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the incompressible regions with fixed local occupation numbers ng are now restricted to smaller
intervals,

ng − 1 +
W

2U
≤ µ/U ≤ ng −

W

2U
. (2.96)

Increasing the disorder strength W/U will further shrink the MI regions, until at some point
they vanish completely. This takes place when the lower and the upper boundaries of the regions
coincide,

ng − 1 +
W

2U
= ng −

W

2U
⇔ W/U = 1 . (2.97)

Thus, for large disorder, W/U ≥ 1, there will no longer be any Mott lobes.
Now, let us investigate what happens if we leave the atomic limit and consider finite hopping

amplitudes, J/U > 0, where we again follow the argumentation of [23]. In the pure case the
boundary to the Mott lobes was determined by the point where it became energetically favorable
to add a particle (or a hole) to the system, see section 2.1.2. On the one hand, adding a particle
increases the energy due to the interaction term, on the other hand the system can reduce the
total energy via the kinetic term. At some point, the gain from the kinetic term outweighs the
costs due to the interactions and the system becomes compressible. The kinetic energy was
estimated using the assumption that the added particle (or hole) could be treated like a single
boson moving on top of a localized particle background. It would then occupy the lowest lying
single-particle state available.

This argument can also be applied to the disordered case, with the only difference being that
the added particle will now move through a system with random on-site energies. The problem
of finding the lowest lying states of a disordered system was already discussed in section 2.2.3.
There, we found that the eigenstates of the Anderson Hamiltonian with very low or very high
energies are localized within rare regions with constant on-site energies εi ' ±W/2. They
contribute to the Lifshitz tails of the single-particle spectrum, which is exponentially decaying
towards its upper and lower boundaries Emax = 2dJ + W/2 and Emin = −(2dJ + W/2),
respectively. In the thermodynamic limit, Ni → ∞, one will be able to find such regions
of arbitrary large size, and thus, can approach the boundaries Emin and Emax to arbitrary
precision.

This will also apply to the particle/hole added on top of the Mott insulator, i.e., it will be
localized within a rare potential fluctuation and its energy will be shifted by −W/2 compared
to the pure case (see equation (2.19)). Consequently, the lower half of each Mott lobe will be
shifted upwards by W/2, whereas the upper half will be shifted downwards by −W/2. The
resulting phase diagram is plotted in figure 2.8a for two finite disorder strengths W/U = 0.5, 0.8
as well as for the pure case for comparison. Indeed, the Mott lobes shrink when the width of
the on-site energy distribution is increased.

The argument of the rare potential fluctuations can also be applied to the decoupling approx-
imation, which will be discussed later in detail in section 3.2.3. Also here, the disorder results
in a shift of the upper and lower parts of the Mott lobes by ∓W/2, see figure 2.8b.

2.3.2 Depletion of the Condensate and the Superfluid

In sections 2.1.4 and 2.1.5, we have discussed that for the pure Bose-Hubbard model at T = 0,
the whole density contributes to the SF motion, and thus, the SF density ρs equals the total
density ρ, i.e., ρ = ρs. We also saw in section 2.1.3, that due to the interaction not all particles
will be part of the condensate. This led to the introduction of the Bogoliubov quasi-particles.
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(a) Strong-coupling expansion
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(b) Decoupling approximation

Figure 2.8: The first three Mott lobes calculated within (a) the strong-coupling expansion [23] and (b)
the decoupling approximation [27], in each case for three different disorder strengths W/U .

From our review of the phenomenon of Anderson localization in section 2.2, we know that
as soon as disorder is introduced to a non-interacting system, states at the upper and lower
boundaries of the density of states will be localized in space. The extended states are found
in the middle of the band and are separated from the localized states by the mobility edges.
Therefore, it is reasonable to assume that due to the localization of the low lying part of the
single-particle spectrum, also in the interacting case a fraction of the total density will be
localized in space, and thus, cannot contribute to the SF motion, i.e., ρ 6= ρs for W > 0.

In the following we want to present some previous studies of this depletion of the condensate
and the SF fraction due to the disorder, starting with [70]. In this rather direct approach, the
Bose-Hubbard model is studied assuming a binary (or Bernoulli) distribution for the on-site
energies,

Pε(ε) = pδ(ε) + (1− p)δ(ε−W ) . (2.98)

They consider the time-independent GPE (2.26) and solve it for different disorder realizations
on a two-dimensional lattice of Ni = 32×32 sites, a particle number N = 104, and two different
disorder strength W/J = 5, 50 (note that the notation was adjusted to the one used in this
work). The SF fraction is extracted by applying complex boundary conditions to the mean field
amplitude in x-direction, ψi+L,j = eiΦψi,j . The energy shift (normalized by N) due to the phase
gradient is attributed to the kinetic energy of the SF fraction (see also [71]),

E(Φ)− E(0) = ρs
p2

2m
. (2.99)

Remembering equation (2.52), which provided a relation between the SF velocity and the phase
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gradient of ψi, one can write

p = ∇S(x, t) =
Φ

L
êx ⇒ ρs = 2mL2E(Φ)− E(0)

Φ2
. (2.100)

In doing so, they find that for strong interactions, U/J & 1, the SF fraction reaches one,
ρs → 1, i.e., the SF density approaches the total density. Reducing the interaction strength,
the condensate fraction decreases and finally vanishes for U/J → 0. For the larger disorder
strength, the fraction falls off more rapidly.

The reason for this is the localized nature of the low lying single-particle spectrum. The
mechanism preventing all bosons from occupying the single-particle ground state is the repulsive
interaction, serving as a substitute for the Pauli principle. Bosons occupying the same localized
single-particle state feel a greater repulsion than bosons in different states with a small overlap in
space. Therefore, the larger the interaction strength, the more the bosons will try to distribute
themselves on different states, eventually leading to the occupancy of extended states. On the
other hand, the smaller the repulsion, the more the particles will condense into the lowest-lying
states, i.e., those in the Lifshitz tails, leading to a localization of the total density. Therefore,
this regime is also referred to as the Lifshitz glass .

As the approach described above only solves the GPE, it neglects the fluctuations from the
mean field. In [72–74], the Bogoliubov theory as described in section 2.1.3 is generalized to
the disordered case using a perturbative approach to treat the disorder potential, which limits
this theory to small disorder strengths, but allows for an analytic treatment. In very good
agreement with previous numerical approaches to the problem [71], they find that the stronger
the disorder strength, the more the condensate is depleted, and provide the following intuitive
picture. In the pure case, the reason for the depletion of the condensate is the repulsive on-site
interaction between the particles. In the disordered case, the condensate will not be uniformly
distributed in space, but will be deformed with regions of higher as well as lower densities. In
the high-density regions, the effect of the interaction is enlarged, leading to an overall enhanced
depletion of the condensate.

Another way to approach the problem are QMC simulations, see, for example, [75] for d = 1,
[76, 77] for d = 2, and [24] for d = 3. Here, the SF fraction is calculated from the winding
number [78], which is again a measure for the response of the system to boundary conditions. It
should be noted, that these QMC approaches treat systems with small total number of lattice
sites, Ni < 1000, in order to be numerically feasible. The results for different finite sizes
are then extrapolated to the thermodynamic limit using finite size scaling. In all cases, it is
found that the smaller the hopping amplitude J and the larger the disorder strength W/J , the
smaller the SF fraction. Eventually, the SF fraction vanishes. However, this transition from
(partial) SF to non-SF takes place before the incompressible MI region is reached, i.e., there is
a phase separating the SF from the MI regime for disordered systems. This intermediate phase
is identified with the BG phase, which will be the topic of the next section.

2.3.3 The Bose Glass Phase and the Theorem of Inclusions

Inspired by the results of the renormalization group approach for one-dimensional interacting
systems with disorder by Giamarchi and Schulz [22], which implied the existence of two different
localized phases, one with spatially homogenous and one with spatially inhomogeneous particle
density, the existence of the BG phase was first conjectured by Fisher et al. in their fundamental
work [1] on the problem of interacting bosons in a disordered environment.
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W

ξi
Wc(ξi)

ξ̃i

SF Insulator

Figure 2.9: A sketch of the critical disorder widthWC against one microscopic parameter ξi characterizing
the disorder distribution. The blue line shows a phase boundary that is monotonous as a function of
ξi, the dashed green curve a boundary with an extremum at ξ̃i. The dashed red line shows a phase
boundary which is independent of ξi. The black dot marks the critical disorder width Wc(ξ̃i) at ξ̃i
(picture is reproduced from [79]).

A intuitive way of understanding the origin of this second phase can be obtained by again
starting from the MI regime and considering the nature of the particle density that is added
or removed when leaving the Mott lobes by increasing or decreasing the chemical potential,
respectively, for fixed hopping J/U (i.e., in vertical direction in figure 2.8). For the pure case,
see section 2.1.2, the wave function of the extra particle or hole is an extended Bloch state,
i.e., particle density is added to or removed from all lattice sites. Hence, the system becomes
globally compressible and is, therefore, not an insulator.

For the disordered case, see section 2.3.1, the first state available is a Lifshitz state, i.e., a
state exponentially localized in a rare potential fluctuation. Thus, the change in particle density
is limited to a finite region in space as well, leaving the residual lattice incompressible (in an
exponential sense). Moreover, the lowest lying Lifshitz states are localized on separate islands
and will have no spatial overlap, making the residual system insensitive to the added particle
density. Therefore, one can assume that this picture is not only valid for the very first added
particle/hole, but until a finite fraction of these lowest lying Lifshitz states are occupied. Thus,
in the vicinity of the Mott lobes, the system becomes only locally compressible, and therefore,
has to be an insulator globally.

When moving away from the Mott lobes, one has to leave this simple single-particle picture
and, in principle, needs to treat the full multi-particle localization problem. Due to the com-
plexity of this problem, this is something one usually tries to avoid, and one either has to rely
on approximations, see, for example, [28] (which we will discuss in detail in the next chapter),
or one needs to restrict the calculations to small system sizes, see previous section. Thus, in-
stead of investigating the BG phase itself, it is useful to consider the problem from the opposite
direction, i.e., coming from the SF phase.

This brings us to the so-called theorem of inclusions, which states that there is no direct
transition from the SF to the MI phase. Following the argument of Pollet et al. [24] and
Gurarie et al. [79], we consider the SF to insulator transition (or, more general, a transition
from a gapless phase to a second phase, which may or may not be gaped). The probability
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Figure 2.10: Qualitative phase diagram for the disordered Bose-Hubbard model. The red curves sepa-
rate the MI regions from the compressible BG phase, the blue curve indicates the transition from the
insulating BG to the SF phase.

distribution Pε shall be characterized by its finite width W as well as a set of parameters {ξi}
that determine the shape of the distribution, i.e., the distribution function is not limited to
box distributions. This is a crucial point for the proof of the theorem. An example for such a
parameter would be one of the moments of the distribution function.

Now, for a given set of {ξi}, there will be a critical disorder width at which the transition from
SF to insulator takes place, Wc({ξi}). Let us concentrate on one of the many parameters ξi and
observeWc(ξi) while keeping the remaining parameters fixed, see figure 2.9 for an illustration. If
W > Wc(ξ̃i), the system is an insulator for ξi = ξ̃i. Now, if we assume that Wc is a monotonous
function of ξi (blue line), then we can trigger the transition to the SF phase by changing the
parameter ξi while keeping W fixed as indicated by the arrow, i.e., ξ̃i → ξ̃i + δ. If W is very
close to Wc(ξ̃), only a very small δ is needed to trigger the transition. The argument now is the
following: suppose the disorder potential was modeled according to the distribution with ξi = ξ̃i.
In the thermodynamic limit, Ni →∞, and if δ is small enough, one will always be able to find
arbitrary large regions in space that could also correspond to the distribution with ξi = ξ̃i + δ.
This implies that the insulating phase includes arbitrarily large regions that are locally SF, and
therefore, compressible. Thus, the insulating phase itself has to be compressible and cannot
be the gaped MI phase. Consequently, there will always be a compressible, insulating phase in
between the SF and the MI phases and no direct transitions are possible.

Of course, this argument does not work if Wc is non-monotonous as a function of ξi (green
dashed curve in figure 2.9) for all parameters. However, this would mean that, for example, one
could trigger a transition from SF to BG by decreasing the second moment of the distribution
(i.e., its standard deviation from ε = 0), which does not appear to be reasonable.

Finally, one could ask the question of how a transition from a gapless to a gaped phase would
be possible at all according to this theorem. As we have discussed, the MI to gapless transition is
caused by the formation of locally gapless regions, which are (for fixed µ/U and J/U) induced by
increasing the widthW/U . Thus, this transition is independent from the specifics of the disorder
distribution and would correspond to a horizontal line in the phase diagram, see dashed red line
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in figure 2.9. In this case, one cannot reach the other phase by changing the parameter ξ, and
thus, the argument does not hold.

With this result, we can now draw a qualitative phase diagram for the disordered Bose-
Hubbard model, see figure 2.10. The Mott lobes are separated from the SF phase by the
compressible, but insulating BG phase. For small filling, µ/U → Emin/U (i.e., the lower band
edge of the single-particle Anderson Hamiltonian), one expects the BG phase (or the Lifshitz
Glass, see section 2.3.2) to extend to larger values of J/U as the bosons will occupy the localized
Lifshitz states first.

This concludes this brief introduction to the disordered Bose-Hubbard model. In the next
chapter, we will discuss the MF theory [27] (or decoupling approximation) for both the pure and
the disordered model, which will be used later as the foundation for the effective single-particle
approach we developed in order to resolve the SF to BG transition.
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CHAPTER 3

Mean-Field Theory for the Disordered
Bose-Hubbard Model

In section 2.1.2 we have already mentioned the MF or decoupling approximation, which was
introduced by Sheshadri et al. [27] in 1993. In the following, we will discuss its application to
both the pure and the disordered Bose-Hubbard model in detail.

3.1 Mean-Field Theory for the Bose-Hubbard Model

In the strongly correlated regime, the interaction energy will dominate over the kinetic energy.
Thus, if we want to describe the model in this regime using an approximative method, it
appears to be reasonable to apply the approximation to the kinetic term while treating the
interaction term exactly. This is the motivation for the decoupling approximation, which uses
a MF approach to reduce the full lattice problem to a local one.

The starting point is to define the MF parameter as ψi = 〈GS|b̂i|GS〉, with |GS〉 being the
ground state of the system. Note, that the Bose-Hubbard Hamiltonian conserves the total num-
ber of particles. Thus, the expectation value of a single annihilation (or creation) operator would
always yield zero. Therefore, the above definition of the MF parameter has to be understood
as an expectation value with respect to the ground state of the MF Hamiltonian we will define
below.

With this definition, the kinetic term Ĥkin is rewritten as follows,

Ĥkin = −J
∑
〈ij〉

(
b̂†i − ψ∗i︸ ︷︷ ︸
≡δ̂†i

+ψ∗i
)(
b̂j − ψj︸ ︷︷ ︸
≡δ̂j

+ψj
)

= −J
∑
〈ij〉

(
δ̂†i δ̂j + ψ∗i b̂j + ψj b̂

†
i − ψ∗i ψj

)
. (3.1)

Assuming the particle fluctuations to be small compared to the total particle number, we omit
terms quadratic in the δ̂i. This approximation will, of course, be good especially near the
transition, where fluctuations are suppressed due to the formation of the Mott-Hubbard gap.
Moving away from the phase transition, the fluctuations will become more important. Applying
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this approximation yields

Ĥkin ≈ ĤMF
kin = −J

∑
〈ij〉

(
ψ∗i b̂j + ψj b̂

†
i − ψ∗i ψj

)
. (3.2)

Defining the bath amplitude for site i as Ψi =
∑′

j ψj , where the summation is taken over all
neighboring sites of i, the MF Hamiltonian can be written as

ĤMF = Ĥloc + ĤMF
kin =

∑
i

(
(ε0− µ)n̂i +

U

2
n̂i(n̂i− 1)− J(Ψi b̂

†
i + Ψ∗i b̂i )

)
+ J

∑
〈ij〉

ψ∗i ψj . (3.3)

The hopping term of the above MF Hamiltonian now explicitly breaks particle conservation, as
the hopping from one site to a nearest neighbor site has been replaced by a hopping into and
out of a bath for each lattice site. Hence, the eigenstates of ĤMF will not be particle number
eigenstates. In particular, this is true for its ground state |GS〉, and thus, ψi = 〈GS|b̂i|GS〉 can
yield a finite number.

From the translation invariance of the Hamiltonian, it follows that all MF parameters have
to be the same,

ψi ≡ ψ for all sites i , (3.4)

and one can write
ĤMF =

∑
i

ĥi , (3.5)

with
ĥi ≡ (ε0 − µ)n̂i +

U

2
n̂i(n̂i − 1)− zJ (ψ∗b̂i + ψ b̂†i ) + zJ |ψ|2 , (3.6)

where z is the number of nearest neighbors. The MF approximation has decoupled the full
lattice Hamiltonian into a sum of independent, local Hamiltonians ĥi. As a consequence, the
ground state of ĤMF will be a product state of the local ground states |Gi〉 of the different ĥi,

|GS〉 = |G1〉 ⊗ |G2〉 ⊗ · · · ⊗ |GNi〉 , (3.7)

and it directly follows that
ψ = 〈GS|b̂i|GS〉 = 〈Gi|b̂i|Gi〉 . (3.8)

In other words, the MF parameter is also only a purely local quantity. Hence, it is sufficient to
solve the problem for each ĥi separately. Since they are all identical, we can restrict ourselves
to treating ĥi for one arbitrary lattice site and will drop the lattice index i in the following.

Moreover, by applying the global gauge transformation b̂ → b̂e−iϕ, where ϕ is the complex
phase of the order parameter, ψ = |ψ|eiϕ, the order parameter is rotated onto the real axis,
ψ → |ψ|. Hence, we can always assume the order parameter to be real and non-negative, ψ ≥ 0.

3.1.1 Direct Diagonalization

The ground state of ĥ depends on the MF parameter, |G〉 = |G(ψ)〉. The MF parameter, in turn,
is determined by the ground state |G〉. Thus, the problem has to be solved self-consistently.
For a given ψ, the ground state can be calculated by diagonalizing ĥ. From this, a new MF
parameter can be calculated via equation (3.8). Starting with an initial guess for ψ and then
iterating these two steps, the solution is obtained when the new ψ equals the one used as the
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input parameter, ψ = 〈G(ψ)|b̂|G(ψ)〉.
In order to actually perform the diagonalization, the local Hamiltonian is expressed in terms

of the local particle number eigenstates |n〉. With 1 =
∑∞

n=0 |n〉〈n|, b̂|n〉 =
√
n|n − 1〉, and

b̂†|n〉 =
√
n+ 1|n+ 1〉, one obtains

ĥ =
∑
mn

|m〉〈m|ĥ|n〉〈n|

=
∞∑
n=0

(
En|n〉〈n| − zJψ

√
n+ 1

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

))
+ zJψ2

1

=


E0 −zJψ 0

−zJψ E1 −
√

2zJψ 0

0 −
√

2zJψ E2 −
√

3zJψ 0

0 −
√

3zJψ E3 −
√

4zJψ 0
. . . . . . . . . . . . . . .

+ zJψ2
1 ,

(3.9)

where
En = (ε0 − µ)n− U

2
n(n− 1) . (3.10)

Figure 3.1 shows a sketch of the local potential En plotted against the particle number n. The
minimum of the potential is located at n0 = (µ− ε0)/U + 1

2 , which, of course, does not need to
be an integer number. Moving away from this minimum, the potential increases quadratically.

Consecutive particle numbers, for example, n and n+ 1, are coupled by a term proportional
to −
√
n+ 1zJψ. Thus, the larger the particle numbers, the stronger the coupling.

Finally, the term quadratic in ψ only adds a diagonal shift of the energies and does not affect
the eigenstates. As ψ is determined solely by the ground state |G〉, this quadratic term can be
neglected in the following.

As mentioned before, the on-site energy is set to zero, ε0 = 0. In the following, we will omit
it in our notation. Furthermore, we will measure the energy in units of the interaction strength,

ĥ → ĥ

U
= − µ

U
n̂+

1

2
n̂(n̂− 1)− zJ

U
ψ(b̂ + b̂†) (3.11)

Hence, there are only two independent parameters, µ/U and zJ/U . Moreover, this implies that
the results will only quantitatively depend on the spatial dimension of the system, d = z/2.
We restrict ourselves to treating the three dimensional case, z = 6. Results for one and two
dimension can be obtained by simply rescaling the hopping amplitude.

Diagonalizing the real matrix (3.9) will yield a ground state of the following form,

|G〉 =
∑
n

gn|n〉 with gn ∈ R , (3.12)
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Figure 3.1: The solid curves show the local potential En as a function of the particle number n for
different µ and with ε0 = 0 and U = 1. In addition, the dot-dashed curves show the ground state for
each µ and different hopping amplitudes J/U , where the ground state energy was used as an offset in
y-direction. The filling indicates that the ground state is an extended state in Fock space. If there is no
filling, but only one single dot, it means that the ground state is a particle number eigenstate.

which leads to the order parameter

ψ =
∑
nm

gngm〈n|b̂|m〉

=
∑
n

gngn+1

√
n+ 1 . (3.13)

In order to actually find |G〉 numerically, the infinite Fock space has to be truncated at some
finite particle number. For small hopping amplitudes and not too large µ, one finds that the
ground states are centered at the minimum n0 of the local potential En and decrease rather
rapidly when moving away from n0. We found that for our purposes it is more than sufficient
to choose the cutoff particle number to be nc = 30.

Moving on, from the above expression for ψ one can conclude that ψ gets larger if the particle
numbers n, which contribute the most to the ground state, get larger. Furthermore, since the
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coefficients gn of consecutive n are multiplied, ψ also gets larger if the ground state gets more
broadly distributed in Fock space. To see this, consider the simplified case of only three possible
particle numbers n, n+ 1 and n+ 2, which is a good approximation for small J . Using that the
eigenstates are normalized to one, we have

ψ = gngn+1

√
n+ 1 + gn+1gn+2

√
n+ 2

=
(
gn
√
n+ 1 + gn+2

√
n+ 2

)√
1− g2

n − g2
n+2 (3.14)

In order to find the maximal ψ, we have to differentiate with respect to gn and gn+2. This yields

√
n+ 1

√
1− g2

n − g2
n+2 − gn

gn
√
n+ 1 + gn+2

√
n+ 2√

1− g2
n − g2

n+2

= 0 (3.15a)

and

√
n+ 2

√
1− g2

n − g2
n+2 − gn+2

gn
√
n+ 1 + gn+2

√
n+ 2√

1− g2
n − g2

n+2

= 0 , (3.15b)

which leads to
(n+ 1)

(
g2
n − g2

n+2

)
+ 1− g2

n − 2g2
n+2 = 0 . (3.16)

This equation is solved by gn = gn+1 = gn+2 =
√

1/3 . Hence, ψ is maximal if the ground state
wave function is equally distributed in Fock space. Of course, the general case of an infinite
number of possible n is more complex, but in general it holds that the broader the ground state
wave function, the larger the order parameter.

Figure 3.1 shows the ground states for different chemical potentials and hopping amplitudes.
Figure 3.2a shows the corresponding MF parameters for the same µ as a function of J .

First, we note that the larger the hopping amplitude, the broader the ground state wave
function is distributed in Fock space. This is also reflected in a growth of the order parameter
ψ, which is to be expected as we argued above. Furthermore, particle numbers larger than n0

tend to get more populated than those smaller than n0. This can be seen best when n0 is integer
or half integer, that is, when En0+1 = En0−1 or En0+1/2 = En0−1/2, respectively. There, we find
that gn0+1 > gn0−1 and gn0+1/2 > gn0−1/2, respectively, which is a result of the fact that the
coupling between particle number sectors gets stronger for larger n.

Going into the opposite direction and decreasing the hopping amplitude, we find that for
small enough J the MF parameter vanishes for all µ, except for the special case of µ ∈ IN,
here µ = 3. For integer µ, the minimum n0 of the potential En is exactly in the middle of two
integer particle numbers n± = n0 ± 1/2. Hence, n+ and n− have the same potential energy,
En+ = En− , leading to a degenerate ground state for J = 0. Because of the degeneracy, the
order parameter is not well defined in this case. For finite J > 0, this degeneracy is lifted. Using
the approximation

|G〉 ≈ gn− |n−〉+ gn+ |n+〉 for J � 1, (3.17)
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Figure 3.2: The MF order parameter ψ plotted (a) as a function of J/U for different fixed chemical
potentials µ/U and (b) as a function of µ/U for different fixed hopping amplitudes J/U .

one easily finds that gn− = gn+ =
√

1/2 , which leads to the order parameter

lim
J→0

ψ =

√
n+

2
=

√
µ/U + 1

2
for µ ∈ IN. (3.18)

Hence, for µ ∈ IN and J > 0, one will always obtain a finite MF parameter ψ > 0.
In all other cases, that is, when µ /∈ IN, there is always a finite J0 > 0 with ψ = 0 for all

J < J0. This can be understood as follows. One particle number will always yield a minimal
energy En. Populating the particle number sectors away from this n therefore costs energy.
Hence, this can only happen if the kinetic term is able to compensate for these additional costs.
At a certain point, however, the hopping amplitude becomes too small for this, and the ground
state turns into a Fock state. Consequently, ψ is exactly zero in these cases.

Instead of looking at ψ as a function of the hopping amplitude, we can also consider the order
parameter as a function of µ/U for fixed J/U , which is shown in figure 3.2b. Here, the behavior
is a little more complex. It can be understood best by starting from the atomic limit, J/U = 0.
In that case, all eigenstates are also particle number eigenstates, and the ground state is given
by the particle number ng with the lowest En, |G〉 = |ng〉. As we discussed above, for µ/U ∈ IN
the ground state is degenerated and as a consequence, limJ→0 ψ(J/U) > 0, see equation (3.18).
For any other µ/U /∈ IN, ψ = 0 for J/U = 0.

From this, one would expect that for small but finite hopping amplitudes, J/U � 1, there
are islands around µ/U = 0, 1, 2 . . . with finite ψ. For µ/U close enough to the degenerated
case, the energies of ng and ng + 1 (or ng and ng − 1) are so close that already a small hopping
amplitude can compensate for the cost of occupying states away from the particle number ng.
Still, these regions will be separated by gaps in which ψ = 0.
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Figure 3.3: (a) The MF order parameter ψ as a function of J/U and µ/U . The white dashed curve
indicates the boundary between regions with finite and vanishing compressibility κ. (b) The average
particle number per site 〈n〉 as a function of J/U and µ/U . The white dashed curves indicate the
trajectories of constant lattice filling.

Upon increasing the hopping amplitude further, the regions with finite ψ should grow in size
as the kinetic energy gets larger. At some point, neighboring regions will overlap and the gaps
will be closed.

Furthermore, we already found that, in general, the order parameter gets larger for larger
particle numbers, which is also reflected in equation (3.18). As for larger ψ the coupling between
the Fock states gets larger as well, one would expect the islands of finite ψ around µ/U ∈ IN to
become larger for larger µ/U .

This is exactly the behavior one finds when numerically evaluating the MF formalism and
which is depicted in figure 3.2b. A density plot of ψ as a function of both J/U and µ/U is shown
in figure 3.3a, which gives a more complete overview on the behavior of ψ. In accordance with
the above considerations, the regions with vanishing order parameter reach up only to a finite
hopping amplitude J/U and get smaller for larger µ/U . Nevertheless, in the limit J/U → 0
they all extend from one integer µ/U ∈ IN to the next higher one, µ/U + 1.

Now, let us discuss the implications of a vanishing order parameter. First of all, when ψ = 0
there is no hopping into and out of the bath. Thus, each boson is strictly localized on a single,
fixed site. From this it directly follows that the system is an insulator, as no transport can take
place when all particles are localized.

Furthermore, as shown in appendix A.1 the zero-temperature compressibility vanishes if the
order parameter is zero,

lim
T→0

κ = 0 for ψ = 0. (3.19)

This means, that in the regions where the order parameter vanishes, the system is gaped. This
is consistent with the numerical results, see figure 3.4. For the smaller hopping amplitude,
J/U = 0.015, we see the system entering the first and also the second region where ψ = 0.
Within both regions, the particle number is constant, first at ng = 1 and then at ng = 2.
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Figure 3.4: The upper plots show the average local particle number and the lower plots the compress-
ibility, each as a function of the chemical potential µ/U for two fixed hopping amplitudes J/U = 0.015
and J/U = 0.03. For comparison, also the order parameter ψ is plotted.

Consequently, in these regions the compressibility vanishes, κ = 0.
For the larger hopping amplitude, J/U = 0.03, the system never enters the regions where

ψ = 0. Consequently, the compressibility is always finite and the system is never gaped.
In figure 3.3b, a complete parameter scan of the average particle number as a function of

both J/U and µ/U is shown. Again, we see that within the regions where ψ = 0, the average
particle number is an integer and the compressibility vanishes. Outside these regions, the particle
number varies continuously and the compressibility is finite.

These results imply that we can identify a system with a vanishing order parameter with a
Mott insulator. The regions where ψ = 0 correspond to the Mott lobes.

3.1.2 Perturbation Theory

In the following, we will discuss an alterative way to obtain the boundary between MI and
SF phase, which was introduced in [80] and can also be found in the textbook [81]. Here, the
phase boundary is calculated in perturbation theory, where one employs that the MF order
parameter vanishes at the phase transition. Hence, we can interpret the terms containing ψ as
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small perturbations to the local energies,

ĥ = ĥ0 − zJψ ĥ1 + zJψ2 (3.20a)

with
ĥ0 = (ε0 − µ)n̂+

U

2
n̂(n̂− 1) (3.20b)

and
ĥ1 = b̂† + b̂ . (3.20c)

The unperturbed ground state is given by |G(0)〉 = |ng〉, where ng ∈ IN is the particle number
with the smallest energy, Eng < En for all n 6= ng. For ng = 0, we find

E0 < E1 ⇔ (µ− ε0) < 0 = ng , (3.21)

and similar, for ng > 0 we have

Eng < Eng±1

⇔ 0 < Eng±1 − Eng
⇔ 0 < ±(ε0 − µ)± U

2
(2ng − 1± 1) . (3.22)

Both results lead to
µ− ε0

U
< ng <

µ− ε0

U
+ 1 . (3.23)

In other words, ng is the smallest integer larger than (µ − ε0)/U . Again, we note that for
(µ−ε0)/U ∈ IN the ground state for J = 0 and, hence, also the ground state of ĥ0 is degenerated,
and the MF theory as well as this perturbation theory are not well defined.

As shown in appendix A.2 the following expression for the ground state energy can be derived
in perturbation theory,

EG = Eng +
(
zJ∆

(2)
G + 1

)
zJψ2 + ∆

(4)
G (zJψ)4 +O

(
(zJψ)6

)
. (3.24)

The coefficients ∆
(2)
G < 0 and ∆

(4)
G > 0 are given in the appendix A.2. A plot of EG is shown in

figure 3.5a. The correct value for the order parameter is found by minimizing Eg as a function
of ψ. If the coefficient for the second order term is positive, i.e., zJ∆

(2)
G + 1 > 0, the minimum

is located at ψ = 0. When the coefficient is negative, i.e., zJ∆
(2)
G + 1 < 0, the energy Eg has

a Mexican hat shape with its minimum at a finite value of ψ. As we argued in the previous
section, the first case would correspond to a MI, the second case to a SF. Hence, the phase
boundary is given by the point where the coefficient vanishes,

0 = zJ∆
(2)
G + 1

⇔ 0 = zJng(Eng+1 − Eng) + zJ(ng + 1)(Eng−1 − Eng)− (Eng−1 − Eng)(Eng+1 − Eng)
= zJng(ε0 − µ+ Ung) + zJ(ng + 1)

(
µ− ε0 − U(ng − 1)

)
−
(
µ− ε0 − U(ng − 1)

)
(ε0 − µ+ Ung)

= (µ− ε0)2 −
(
U(2ng − 1)− zJ)

)
(µ− ε0) + U2ng(ng − 1) + UzJ . (3.25)
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Figure 3.5: (a) The ground state energy as derived in perturbation theory for µ/U = 1.6 and two values
for J . The first, J = 0.015, shows the characteristic form of EG for a system in the MI phase, with the
minimal energy at ψ = 0. The second curve for J = 0.020 shows the Mexican hat shape, resulting in a
finite ψ and putting the system into the SF phase. (b) Comparison of the phase boundary obtained by
diagonalization (blue dots) and perturbation theory (red curve).

which is solved by

µ− ε0

U
=

2ng − 1− zJ/U
2

±
√

(2ng − 1− zJ/U)2

4
− ng(ng − 1)− zJ/U . (3.26)

Figure 3.5b shows a plot of the above phase boundary in comparison with the one obtained by
diagonalization as described in the previous section. Apparently, the result from perturbation
theory matches the numerically exact result quite well.
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3.2 Stochastic Mean-Field Theory for the Disordered
Bose-Hubbard Model

In the following sections, we want to translate the MF theory, as it was described in the previous
section for the pure case, to the disordered Bose-Hubbard model. There exists a work by Bissbort
and Hofstetter [28], in which such a theory was already developed. Although the approach
presented here was started independently from this previous work, its implementation is more
or less the same and we arrive at the same results. The conclusion we draw from these results,
however, differ significantly from those made in [28].

3.2.1 Decoupling Approximation

Since the only terms that include the disorder are the on-site energies, the decoupling approxi-
mation for the hopping term can be conducted analogously to the pure case, yielding

ĤMF =
∑
i

ĥi + J
∑
〈ij〉

ψ∗i ψj , (3.27)

and
ĥi = (εi − µ)n̂i +

U

2
n̂i(n̂i − 1)− J(Ψi b̂

†
i + Ψ∗i b̂i ) . (3.28)

with the MF parameters ψi = 〈GS|b̂i|GS〉, |GS〉 being the ground state of ĤMF , and the bath
amplitude Ψi =

∑′
j ψj . Hence, the full ground state will again be a product state of the local

ground states |Gi〉, that is, |GS〉 = |G1〉 ⊗ |G2〉 ⊗ · · · ⊗ |GNi〉, with Ni being the number of
lattice sites. For the MF parameter, it again follows that ψi = 〈GS|b̂i|GS〉 = 〈Gi|b̂i|Gi〉.

Now, the first consequence of introducing disorder to the system is that the translational
invariance is broken. Since the local ground states |Gi〉 depend on the local on-site energies εi,
they will, in general, be different from site to site. Hence, we can also no longer assume all MF
parameters to have the same value, and in general, we have ψi 6= ψj for i 6= j. This means that
unlike to the ordered case, we cannot replace the bath amplitude Ψi, which is the sum of the
MF parameters on the neighboring sites of i, by the MF parameter of the site itself, Ψi 6= z ·ψi.

Furthermore, we cannot assign the energy correction terms ψ∗i ψj to specific ĥi. Fortunately,
these terms do not need to be taken into account in the following, since we will determine the
ground state of the local Hamiltonians by diagonalization in Fock space.

First, however, we want to place one further constraint on the ψi. Therefore, we consider the
total ground state energy. With

ĥ0
i = (εi − µ)n̂i +

U

2
n̂i(n̂i − 1) , (3.29)

we can write

EGS = 〈GS|ĤMF |GS〉 =
∑
i

〈Gi|ĥ0
i |Gi〉 − J

∑
〈ij〉

ψ∗i ψj , (3.30)

Now, we want to focus on site k and collect all terms that directly depend on the ground state
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of this site,

EGS = 〈Gk|ĥk|Gk〉+
∑
i 6=k
〈Gi|ĥ0

i |Gi〉 − J
i,j 6=k∑
〈ij〉

ψ∗i ψj , (3.31)

Expressing the local ground states in terms of the local Fock states, |Gk〉 =
∑

nk
gk,nk |nk〉, yields

〈Gk|ĥk|Gk〉 =
∑
nk

|gk,nk |2〈nk|ĥ0
i |nk〉 − 2J

∑
nk

Re
{

Ψkgk,nkg
∗
k,nk+1

}√
nk + 1

=
∑
nk

|gk,nk |2〈nk|ĥ0
i |nk〉

− 2J |Ψk|
∑
nk

|gk,nk ||gk,nk+1|
√
nk + 1 cos

(
φk − ϕk,nk+1 + ϕk,nk

)
, (3.32)

where φk and the ϕk,nk are the complex phases of the bath amplitude Ψk = |Ψk|eiφk and the
coefficients gk,nk = |gk,nk |eiϕk,nk , respectively. Apparently, the above matrix element and, thus,
also EGS are minimal when all cosines evaluate to one, which yields the condition

ϕk,nk+1 − ϕk,nk = φk for all k, nk. (3.33)

Plugging this into the expression for the MF parameter ψk, one obtains

ψk =
∑
nk

g∗k,nkgk,nk+1

√
nk + 1

=
∑
nk

|gk,nk ||gk,nk+1|ei(ϕk,nk+1−ϕk,nk )
√
nk + 1

= eiφk
∑
nk

|gk,nk ||gk,nk+1|
√
nk + 1 . (3.34)

In order to minimize EGS , the local MF parameter has to have the same complex phase as the
bath amplitude.

With this result, we now turn to the local Hamiltonians ĥi, which we want to solve for a given
Ψi. As from now on we will consider only a single-site, we again drop the index i. Analogously
to the non-disordered case, we expand ĥ in terms of the local Fock states |n〉,

ĥ =
∑
mn

|m〉〈m|ĥ|n〉〈n|

=

∞∑
n=0

(
En|n〉〈n| − J

√
n+ 1

(
Ψ∗|n〉〈n+ 1|+ Ψ|n+ 1〉〈n|

))
. (3.35)

Redefining the Fock states as |ñ〉 = einφ|n〉, we can transform the above complex matrix into a
real one,

ĥ =
∞∑
n=0

(
En|ñ〉〈ñ| − J |Ψ|

√
n+ 1

(
|ñ〉〈ñ+ 1|+ |ñ+ 1〉〈ñ|

))
, (3.36)
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where En = 〈n|ĥ0|n〉. The ground state then takes the following form,

|G〉 =
∑
n

g̃n|ñ〉 =
∑
n

g̃ne
inφ|n〉 !

=
∑
n

|gn|eiϕn |n〉 . (3.37)

First, this reproduces equation (3.33), that is, ϕn = nφ with the gauge ϕ0 = 0. Second, we see
that |gn| = g̃n. As g̃n does only depend on |Ψ|, we can conclude that the absolute values of
the expansion coefficients of the ground state in Fock space only depend on the absolute value
of the bath amplitude, and not on its complex phase. Consequently, the absolute value of ψ
only depends on |Ψ| and, as shown before, the complex phase of ψ is determined solely by the
complex phase φ of Ψ. Hence, both can be tuned independently.

With this result, we can make one further assumption. From equation (3.32) one can see
that the larger the absolute value of the bath amplitude, the smaller the total energy EGS .
Therefore,

|Ψ| =
∣∣∣ z∑
j=1

ψj

∣∣∣ =
∣∣∣ z∑
j=1

|ψj |eiφj
∣∣∣ (3.38)

has to be maximized in order to minimize the energy. Here, the summation is taken over all z
nearest neighbors of the considered site. Apparently, |Ψ| is the largest if all complex phases φj
are set to the same value, which is then, of course, also the complex phase of Ψ. Consequently,
the complex phase of ψ is the same as the one of the neighboring MF parameters ψj , and hence
all MF parameters have the same complex phase φ.

Knowing this, we can rotate all ψi onto the real, non-negative axis by the same global gauge
transformation as in the previous section, that is, b̂i → b̂ie

−iφ. With this, the local Hamiltonian
can finally be written as

ĥ =

∞∑
n=0

(
En|n〉〈n| − JΨ

√
n+ 1

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

))
. (3.39)

with Ψ =
∑z

j=1 ψj ≥ 0.

3.2.2 Self-Consistent Integral Equation

In the previous section, we showed how to arrive at the local Hamiltonian (3.39). As a conse-
quence of the decoupling approximation, the eigenstates of the full MF Hamiltonian factorize
into product states of the local eigenstates. This drastically simplifies the problem of finding
the ground state, as one now has to solve Ni local systems of dimension nc + 1, nc being the
cutoff particle number and Ni the number of lattice sites, instead of one non-local system of
dimension (nc + 1)Ni . However, in contrast to the case of the pure Bose-Hubbard model, here
the local Hamiltonians still contain parameters depending on their neighboring sites in form of
the bath amplitude. Thus, the problem still is a lattice problem and each local ground state
depends on all on-site energies,

|Gi〉 = |Gi(εi,Ψi)〉 =
∣∣Gi(εi,Σ′jψj(εj ,Ψj)

)〉
= · · · = |Gi(ε1, ε2, . . . , εNi)〉 . (3.40)

In principle, it can be solved for finite systems the same way it is done for the non-disordered
case in section 3.1.1, that is, by starting with an initial guess for each MF parameter ψi, finding
the ground states |Gi〉, calculating new MF parameters from these ground states, and then
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iterating these steps until convergence is achieved. The criterion for convergence now reads

ψi
!

= 〈Gi(Ψi)|b̂i|Gi(Ψi)〉 = 〈Gi(Σ′jψj)|b̂i|Gi(Σ′jψj)〉 for all i. (3.41)

In practice, this way of solving the problem still is limited to rather small systems. In a work
by Niederle and Rieger [39], this has actually been done for two dimensions and systems with
up to 100× 100 lattice sites. This would equate to only 33× 33× 33 sites in three dimension,
i.e., very small system sizes.

Note that on top of this, one has to take into account that the onsite energies are randomly
distributed. For a given realization of energies {ε1, ε2, . . . , εNi} one will obtain a certain set of
MF parameters {ψ1, ψ2, . . . , ψNi}. In order to find the probability P{ψi} for such a set {ψi}, one
has to integrate over all possible combinations of onsite energies and add up the contributions
corresponding to this specific set,

P{ψi}
(
ψ1, ψ2, . . . , ψNi

)
=

∫
dε1Pε(ε1)

∫
dε2Pε(ε2) . . .

∫
dεNiPε(εNi) δ

(
ψ1 −

〈
G1

(
{εj}

)∣∣ b̂1 ∣∣G1

(
{εj}

)〉)
× δ
(
ψ2 −

〈
G2

(
{εj}

)∣∣ b̂2 ∣∣G2

(
{εj}

)〉)
. . . δ

(
ψNi −

〈
GNi

(
{εj}

)∣∣ b̂Ni ∣∣GNi({εj})〉) . (3.42)

As it is not feasible to actually calculate the probability distribution for the full set of MF param-
eters, we will try to derive a distribution for the local parameters. The probability distribution
for one local MF parameter is obtained as follows,

Pψ(ψ) =

∫
dψ1

∫
dψ2 . . .

∫
dψNiP{ψi}

(
{ψi}

)
δ
(
ψ − ψ1

)
=

∫
dε1Pε(ε1)

∫
dε2Pε(ε2) . . .

∫
dεNiPε(εNi) δ

(
ψ −

〈
G1

(
{εj}

)∣∣ b̂1 ∣∣G1

(
{εj}

)〉)
,

(3.43)

where instead of i = 1, equally any other site could have been chosen. Since |G1〉 only implicitly
depends on the on-site energies εj for j 6= 1, we can write

Pψ(ψ) =

∫
dε1Pε(ε1)

∫
dε2Pε(ε2) . . .

∫
dεNiPε(εNi) δ

(
ψ −

〈
G1

(
ε1,Ψ1

)∣∣ b̂1 ∣∣G1

(
ε1,Ψ1

)〉)
=

∫
dεPε(ε)

∫
dΨ

∫
dε1

∫
dε2Pε(ε2) . . .

∫
dεNiPε(εNi) δ

(
Ψ−Ψ1

(
{εi}

))
δ(ε− ε1)︸ ︷︷ ︸

≡PΨ(Ψ| ε)

× δ
(
ψ −

〈
G1

(
ε,Ψ

)∣∣ b̂1 ∣∣G1

(
ε,Ψ

)〉)
=

∫
dεPε(ε)

∫
dΨPΨ(Ψ|ε) δ

(
ψ −

〈
G
(
ε,Ψ

)∣∣ b̂ ∣∣G(ε,Ψ)〉) . (3.44)

In the last step the index for the lattice site was dropped, reflecting that the matrix element does
depend only on the values for the onsite energy and the bath amplitude. Also, the conditional
probability PΨ(Ψ|ε) for the bath amplitude Ψ and a given onsite energy ε for the central site was
introduced. Writing the distribution function this way, the full lattice problem is now condensed
into one single probability function for the bath amplitude Ψ.
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Unfortunately, it is not possible to obtain this function, so at this point, we need to make one
further approximation: We will assume that the probability distribution for the full set of MF
parameters factorizes into the product of the probabilities of the local parameters,

P{ψi}
(
{ψi}

)
→
∏
i

Pψ(ψi) . (3.45)

First of all, this implies that the probability for the MF parameter on a certain site does not
depend on the values of the onsite energies on the neighboring sites. Consequently, we have

PΨ(Ψ|ε) → PΨ(Ψ) =

z∏
i=1

Pψ(ψi) , (3.46)

and therefore, the integral for the local probability distribution reads

Pψ(ψ) =

∫
dεPε(ε)

z∏
i=1

∫
dψiPψ(ψi) δ

(
ψ −

〈
G
(
ε,Σz

j=1ψj
)∣∣ b̂ ∣∣G(ε,Σz

j=1ψj
)〉)

. (3.47)

Second, we note that although the probabilities for the MF parameters are not correlated any-
more, the MF parameters themselves still depend on the bath amplitudes, and therefore, on the
values for the ψi on the neighboring sites.

To conclude this section, we note that the above equation is apparently a transient equation
and has to be solved self-consistently. This is done analogously to the non-disordered case by
taking an initial guess, however, this time not for the MF parameter ψ, but for its probability
distribution Pψ. Performing the integration, one obtains a new distribution, which is then
plugged back into the right site of equation (3.47). The integration has to be repeated until the
solution converges, that is, the distribution we use to evaluate the integral equals the one we
receive from performing the integration.

3.2.3 The Phase Boundary for the Disordered System

For the pure case, there were two characteristic behaviors when iterating the self-consistent
conditional equation for the order parameter,

ψ(s+1) = 〈G(ψ(s))|b̂|G(ψ(s))〉 −→
{
ψ = 0 MI Phase
ψ > 0 SF Phase for s→∞ , (3.48)

where ψ(s) is the order parameter after s iteration steps (which, of course, depends on the choice
for the starting value ψ(0)). For the disordered case, we have to solve the conditional equation
for the probability distribution,

P
(s+1)
ψ = F

[
P

(s)
ψ

]
−→ Pψ = ? for s→∞ , (3.49)
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ρ = ng + 1
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(a) No disorder: W = 0

J

µ̃1

µ̃2

µ̃3
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W/U = 0

W/U > 0

(b) Finite disorder: 0 < W < U

Figure 3.6: (a) A sketch of the phase diagram for zero disorder and fixed interaction U , focused on the
Mott lobe with filling ρ = ng. The blue curve shows the boundary between MI and SF phase. The
intersection points of the dashed red lines indicate the transition points for a fixed hopping J . (b) The
same plot, but now with finite disorder, W/U > 0, but still smaller than the atomic limit band gap,
W < U . The dashed blue line shows the phase boundary forW/U = 0 for comparison. The green arrows
indicate the shift by W/2 due to the disorder.

where F is the functional of Pψ given in equation (3.47) and P (s)
ψ the distribution after s iteration

steps. Apparently, Pψ(ψ) = δ(ψ) is always a solution to the conditional equation,

F [δ(ψ)] =

∫
dεPε(ε)

z∏
i=1

∫
dψiδ(ψi) δ

(
ψ −

〈
G
(
ε,Σz

j=1ψj
)∣∣ b̂ ∣∣G(ε,Σz

j=1ψj
)〉)

=

∫
dεPε(ε)︸ ︷︷ ︸
= 1

δ
(
ψ −

〈
G
(
ε, 0
)∣∣ b̂ ∣∣G(ε, 0)〉︸ ︷︷ ︸

=〈n0|b̂|n0〉=0

)
= δ(ψ) , (3.50)

where in the last step we have used that for a vanishing bath amplitude, Ψ = 0, the ground state
is a particle number eigenstate |n0〉, and thus, the MF parameter is zero for any ε. This solution
implies, that all MF parameters are zero. By the same arguments as for the non-disordered case,
this result corresponds to the MI phase, where each particle is localized on a single site.

By a simple consideration, we can already determine a situation which inevitably leads to this
solution. Therefore, we again consider the pure case εi = ε0 = 0 for all i, see figure 3.6a. When
we focus on the region around the Mott lobe with the filling factor ρ = ng, then for fixed J and
U there are four important values for the chemical potential. First, µ1 is the upper transition
point from the Mott lobe with filling ρ = ng − 1 to the SF phase, then µ2 and µ3 are the lower
and upper transition points for the Mott lobe with ρ = ng, and finally, µ4 marks the lower
transition to the Mott lobe with ρ = ng + 1. Consequently, for µ1 < µ < µ2 and µ3 < µ < µ4

the system is in the SF phase, whereas for µ2 < µ < µ3 the system is in the MI phase.
Now, if we allow for a finite onsite energy, the system can be pushed from the MI to the SF
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phase (and vice versa) for fixed µ. For µ2 < µ − ε0 < µ3, the system is still an insulator. We
will call sites with these onsite energies locally incompressible. For any positive input value, the
conditional equation (3.48) will always lead to a smaller MF parameter,

ψ(s) > ψ(s+1) = 〈G(ψ(s))|b̂|G(ψ(s))〉 → 0 for s→∞. (3.51)

However, if µ1 < µ− ε0 < µ2 or µ3 < µ− ε0 < µ4, the system is shifted into the SF phase. Sites
with such onsite energies will be called locally compressible. Depending on the input value, the
conditional equation leads to a smaller, equal or larger MF parameter,

ψ(s) > ψ(s+1) for ψ(s) > ψ,

ψ(s) = ψ(s+1) for ψ(s) = ψ, (3.52)

ψ(s) < ψ(s+1) for ψ(s) < ψ.

Without disorder, all onsite energies are the same, and thus, all sites are either compressible or
not. When the disorder is switched on and the onsite energies are randomly distributed, this
is not necessarily the case anymore. In addition to the above two cases, we now have a third
case where some sites are compressible and some are incompressible. To link these cases to the
non-disordered ones, we can make use of the fact that the only thing that changes for the local
Hamiltonians ĥi when switching on disorder is that the bath amplitude is not a multiple of the
local MF parameter anymore,

Ψ = zψ −→ Ψi =
∑′

j

ψj . (3.53)

Hence, for a fixed realization of disorder we can still use the same conditional equation (3.48),
but have to replace the input parameter as follows,

ψ
(s+1)
i = 〈G

(
1
zΣ′jψ

(s)
j

)
| b̂ |G

(
1
zΣ′jψ

(s)
j

)
〉 , (3.54)

where the summation is taken over all nearest neighbors of site i and s is again indicating the
iteration step.

Let us first consider the case of all sites being locally incompressible. Then, for all sites i
equation (3.51) holds true, and we have

ψ
(s+1)
i <

1

z

∑′

j

ψ
(s)
j , (3.55)

In other words, the MF parameter on every site i is smaller than the mean of the MF parameters
on its neighboring sites in the previous step. For the total mean value of the MF parameter, we
have

ψ(s+1) =
1

Ni

∑
i

ψ
(s+1)
i <

1

Ni

∑
i

1

z

〈ij〉∑
j

ψ
(s)
j =

1

Ni

∑
i

ψ
(s)
i = ψ(s) . (3.56)

No matter how small the ψ(s)
i , on average the ψ(s+1)

i are smaller. Thus, the only stable solution
is given by ψi = 0 for all sites i.

For the case of all sites being locally compressible, each onsite energy εi would lead to a finite
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MF parameter in the non-disordered case with ε0 = εi. The set of all these parameters has a
smallest element ψmin > 0. If we choose ψ(s)

i = ψmin for all sites i, then from (3.52) it follows
that

ψ
(s+1)
i ≥ 1

z

∑
j

′
ψ

(s)
k = ψmin (3.57)

for all sites i. Thus, ψmin represents a lower boundary for the MF parameters and the converged
solutions for the ψi will all be finite.

The above findings are not surprising, but exactly what one would expect. More interesting
now is the third case, where some fraction of sites is compressible and the other fraction in-
compressible. Following the argumentation of Freericks and Monien [23], in the thermodynamic
limit, Ni → ∞, one will always find arbitrarily large rare regions that only consist of com-
pressible sites. If we consider the extreme case where the MF parameter vanishes on all sites
surrounding these regions, they can be viewed as isolated systems of finite size. However, since
one can find regions like these of any size, there will also be systems large enough to neglect
boundary effects. Within these regions, the MF parameter and, therefore, also the compress-
ibility will be finite. Thus, if the probability distribution is such that a fraction of the energies
push the sites locally outside of the Mott lobes, the whole system is compressible and, therefore,
not a MI anymore.

If we consider a distribution function Pε that is only finite in the interval [−W/2,+W/2], then
for all chemical potentials µ with µ2 < µ < µ2 +W/2 and µ3 −W/2 < µ < µ3 one will always
find compressible sites. Thus, only for µ̃2 < µ < µ̃3, with µ̃2 = µ2 +W/2 and µ̃3 = µ3 −W/2,
the system is in the incompressible MI phase. Consequently, the lower boundary of each Mott
lobe is shifted upwards by W/2 and the upper boundary downwards by −W/2, see figure 3.6b.
This means that also for the disordered system, the phase boundary only quantitatively depends
on the dimensionality of the system within the MF approximation.

The width of the Mott lobe for the fixed hopping amplitude J is then given by µ̃3 − µ̃2 =
µ3 − µ2 −W . This value is the largest for J = 0, where µ2/U = ng − 1 and µ3/U = ng as
discussed earlier, and therefore, µ̃3− µ̃2 = U−W . This implies that atW = U , the width of the
Mott lobes becomes zero. Thus, for strong disorder, W/U ≥ 1, the Mott lobes will completely
vanish for any dimension.

3.2.4 Numerical Results for Three Dimensions

In the previous section, we have made considerations on how the boundary between the gaped
and the gapless phase should behave when disorder is introduced to the system. However, apart
from the trivial case, Pψ(ψ) = δ(ψ), we did not make any predictions for the shape of the actual
distribution functions. In this section, we will discuss the numeric results for the distribution
functions for the three-dimensional case and try to arrive at an intuitive understanding based
on the picture we have established in the previous section. For the distribution Pε of the onsite
energies, we use a simple box shaped function,

Pε(ε) =

{
1/W for ε ∈ [−W/2,+W/2],

0 else. (3.58)
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As the integration in the self-consistent equation (3.47) has the dimension 1 + z = 7, we use the
Monte-Carlo (MC) method to evaluate the integral,∫ ψmax

ψmin

dψf(ψ) −→ ψmax − ψmin
Ni

Ni∑
i=1

f(ψi) (3.59)

with randomly generated ψi ∈ [ψmin, ψmax]. Furthermore, the integrand itself contains a δ-
distribution whose argument is the result of a matrix diagonalization. Thus, we cannot predict
which integration points yield a finite contribution. Therefore, we will proceed as follows. First,
we generate a sufficiently large set of data points. Each data point i consists of the actual value
ψi = ψ(ε, ψ1, . . . , ψz) as well as the corresponding probability weight Wi = Pε(ε) · Pψ(ψ1) · . . . ·
Pψ(ψz) for randomly generated input parameters ε and ψ1, . . . , ψz. Then, we divide the value
range for ψ into intervals [ψs, ψs+1) and calculate the average probability for each interval via

Pψ

(ψs + ψs+1

2

)
=

1

(ψs+1 − ψs)
∑

iWi

∑
i

Wi θ(ψi − ψs)θ(ψs+1 − ψi) . (3.60)

Note that weighting factors that are the same for each data point can be neglected as they would
cancel due to the normalization by the total weight

∑
iWi. The values ψs are chosen such that

∆ψmin < ψs+1 − ψs < ∆ψmax (3.61)

and ∣∣∣∣Pψ(ψs + ψs+1

2

)
− Pψ

(ψs+1 + ψs+2

2

)∣∣∣∣ < ∆Pmax . (3.62)

This guarantees that the intervals do not get too small even in regions of large probability
weight while at the same time the function Pψ is well resolved. The parameters ∆ψmin/max and
∆Pmax are chosen such that we obtain optimal results. For the MC integration we use linear
interpolation to evaluate Pψ(ψ) for a given ψ. Furthermore, we take special care that single
probability weights Wi do not get too large, as this would introduce fluctuations for Pψ. To do
so, we define an integration grid ψt (with roughly the same number of points that are used to
resolve Pψ) such that Pψ integrated over each of the intervals [ψt, ψt+1) leads to the same total
probability weight. The integration over ψ is then split into integrations over these intervals,∫

dψ =
∑
t

∫ ψt+1

ψt

dψ . (3.63)

In principle, we now want to perform a MC integration for each interval. As this is not practical,
we do the following instead. To generate one ψ for the MC integration, first an interval is chosen
randomly, and then one ψ within this interval. This changes the probability of generating a
certain ψ as follows,

1

ψmax − ψmin
→ 1

Nt

1

ψt+1 − ψt
for ψ ∈ [ψt+1 − ψt) (3.64)

where Nt is the number of intervals. In order to compensate for this, we have to adjust each
weight as follows, Wi →Wi(ψt+1 − ψt) for ψi ∈ [ψt, ψt+1).

Technically, this has the effect that we choose more points from regions with high probability
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density. Each of these points, however, has an effectively reduced probability weight, which
eliminates outliers and fluctuations.

For the MC integration, we use the MT19937 (pseudo) random number generator provided by
the GNU Scientific Library [82]. Furthermore, all matrix diagonalizations are performed using
the LAPACK package [83].

Let us now start by investigating the dependence of Pψ on the hopping amplitude J/U .
From the findings in the previous section, we can deduce that there are two distinct cases. For
J/U → 0, the system can either be gaped or not. In the first case one approaches the atomic
limit from above a Mott lobe, in the second case from in between two Mott lobes.

The Dependence of Pψ on J/U Between the Mott-Lobes

We first consider the non-gaped case, µ/U ∈ [ng −W/2U, ng + W/2U ] with ng ∈ IN. In figure
3.7, the numeric results for Pψ for W/U = 0.6 and three such µ with ng = 1 are shown. While
the distribution functions differ quantitatively for different µ/U , the qualitative behavior is the
same in all three instances. For large J/U , the distribution function is non-zero only in a finite
region well above ψ = 0. To determine the theoretical upper and lower boundaries for ψ, we
can again use the argument of the rare large regions with constant on-site energies. There will
be one on-site energy that leads to the lowest and one that leads to the highest MF parameter.
For J/U = 0.03, the MF parameter is finite for any µ/U , see figure (3.2b). The following table
compares the theoretically predicted and the numerically obtained upper and lower boundaries
for ψ:

µ/U 0.75 1.00 1.25
Theoretical Range for ψ at J/U = 0.03 0.30 . . . 0.97 0.70 . . . 0.993 0.939 . . . 1.06

Numerically Obtained Range 0.53 . . . 0.96 0.76 . . . 0.987 0.944 . . . 1.05

Apparently, the numerically obtained range does not equal the predicted one. Still, the numerical
range always lies within the predicted range. For µ/U = 1.00 and µ/U = 1.25, the span of
possible values for ψ is relatively small. As a consequence, the deviation of the obtained range
from the predicted one is also rather small. However, for µ/U = 0.75, the predicted range is quite
large and the deviation from that range clearly lies above the numerical precision (which in this
case is ∼ 0.005 for the lower boundary). This implies that the rare regions are not reproduced
by our approach. Moreover, since the deviation is so large it means that the stochastic MF
approach underestimates not only the rare regions, but in general regions with MF parameters
differing too much from the typical values. This can be understood as follows.

When we went from the pure to the disordered case, the only additional approximation
we made was the assumption that the MF parameters on different sites are not correlated,
P{ψ}({ψi}) →

∏
i Pψ(ψi), see section 3.2.2. Let us consider a simplified case with only two

possible onsite energies energies ε1 and ε2. They are chosen such that in the pure case ε1 would
lead to a smaller MF parameter than ε2, ψε0 = ε1) < ψ(ε0 = ε2). Thus, regions with onsite
energies mostly equal to ε1 also have smaller MF parameters than regions with onsite energies
mostly equal to ε2. Also, the few sites with energies ε2 within such an ε1-region will not be
able to establish a large MF parameter since they are coupled to a small bath amplitude. The
equivalent holds true for the opposite case. Thus, within these regions the MF parameters are
strongly correlated and the assumption we have made for the distribution function is not well
justified. The occurrence of such regions is underestimated in favor of regions with a more
balanced mix of the two energies. As a result, the probability density at the outer boundaries
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Figure 3.7: The distribution function Pψ(ψ) for fixed µ/U and different values of J/U as given in the
legend at the top. The disorder width is set to W/U = 0.6. The plots on the left use a linear scale
and the ones on the right a logarithmic scale. The values for µ/U are chosen such that the system is
compressible in the atomic limit.
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(a) 1D Chain with µ/U = 0.5 and fixed ψ1 ≡ 1
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Figure 3.8: (a) The exponential decay of the MF parameter on a 1D chain. Site i = 1 has a fixed MF
parameter, ψ1 ≡ 1, and is coupled to a chain of incompressible sites (µ/U = 0.5 and εi = 0 for i > 1).
(b) Comparison of the decay for different dimensions. For two dimensions, we consider a chain of sites
with fixed MF parameter, ψ1 ≡ 1, in one direction. This chain is coupled to layers of incompressible
sites in the other direction. The index i enumerates the layers. For three dimensions, we do the same
thing, but now for layers of coupled planes. Numerically, this is realized by setting the bath amplitude
on layer i to Ψi = ψi−1 + (z − 2)ψi + ψi+1, where z − 2 is the number of nearest neighbors on the same
layer.

for ψ will be reduced. This effect can be quite drastic as we have seen in figure 3.7a and will
also be effecting the form of the phase boundary, which we will see later.

Now, when the hopping amplitude is decreased, the distribution also moves towards smaller
ψ. Let us again compare the numerically obtained boundaries of Pψ with the expected ones for
J/U = 0.009 (green curves in figure 3.7):

µ/U 0.75 1.00 1.25
Theoretical Range for ψ at J/U = 0.009 0.0 . . . 0.79 0.0 . . . 0.79 0.0 . . . 0.79

Numerically Obtained Range 0.009 . . . 0.76 0.068 . . . 0.77 0.047 . . . 0.77

Apparently, in this regime the system consists of both locally compressible and incompressible
sites, as the expected lower boundary for ψ is zero and the upper boundary is finite. Again, the
calculated distribution functions lie within the predicted boundaries. For all three values of µ/U ,
one finds the same characteristic shape, which is made out of two peaks, each of which is located
at one end of the function. The upper peak arises from sites that are locally compressible, the
lower peak from sites that are incompressible. The existence of the compressible sites prevents
the incompressible ones from establishing a zero MF parameter. Thus, the lower peak is always
located at a small, but finite value of ψ. Towards zero, ψ → 0, the distribution functions fall off
very rapidly.

Upon decreasing the hopping amplitude further, the lower peak becomes more and the upper
peak less pronounced. The general shape of the function, however, does not change. Here,
one might ask the question whether it is possible for the MF parameter to become exactly
zero on some sites when there are still compressible sites i with finite ψi > 0. This is related
to the question of how fast the MF parameter decays when going from a compressible to an
incompressible region on the lattice.
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In figure 3.8a a one-dimensional chain of sites is shown. The MF parameter on the first site
to the left is fixed to one, ψ1 ≡ 1. The system parameters are chosen such that the other sites
are locally incompressible. Still, as they are coupled to the finite MF parameter ψ1 they will
yield a finite MF parameter as well, ψi > 0 for all i. The further away in space we move from
the first site i = 1, the smaller the MF parameter gets. In fact, it decays exponentially with
distance. Extending this to two- and three-dimensional chains, see figure 3.8b, we see that the
decay is less rapid the larger the dimension, but still exponential.

This implies that, although the MF parameter decays exponentially, it only vanishes in the
limit of infinitely large incompressible regions. Thus, when there is a fraction of compressible
sites in the system, the MF parameter can become very small, but never exactly zero. Adding
disorder to the system will not change this behavior.

In between the Mott lobes, there is always a fraction of sites with energies εi such that
(µ − εi)/U = ng ∈ IN. In the atomic limit, these sites will have a degenerated ground state,
compare with section 3.1.1 and equation (3.18). For any small hopping, they will yield a finite
MF parameter ψi > 0 with

lim
t→0

ψi =

√
ng + 1

2
(3.65)

Thus, in between the Mott lobes one will always find sites with finite ψi.
Summarizing the above, the distribution function moves towards very small but finite values

of ψ when the hopping is decreased. The existence of compressible sites leads to the occurrence
of a small fraction of large ψ. This prevents the MF parameter from becoming exactly zero on
any site. Furthermore, since we are neglecting correlations between MF parameters on different
sites, the correct upper and lower boundaries for ψ are not reproduced.

The Dependence of Pψ on J/U Above the Mott-Lobes

Next, we want to investigate the behavior of the distribution function when we approach the
atomic limit from above a Mott lobe, µ/U ∈ [ng − 1 +W/2U, ng −W/2U ] with ng ∈ IN. In this
case, there is a transition to the incompressible phase at finite hopping. Figure 3.9 shows the
distribution functions for three such µ/U with ng = 2, i.e., above the second Mott lobe. The
disorder width is again chosen to be W/U = 0.6.

As one would expect, also here the distribution functions move towards smaller values of ψ
when the hopping amplitude is decreased. However, there is one important difference compared
to the behavior between the Mott lobes. For larger hopping, for example J/U = 0.0180, one
can still see the two-peak-structure of the distribution function. When decreasing J/U , at some
point the upper peak completely vanishes and the whole distribution moves towards ψ = 0.
This can be seen best in the logarithmic plots of figure 3.9. For each µ/U , the curve for the
smallest plotted hopping amplitude falls off faster than exponentially.

This can be understood as follows. In the above section, we argued that the upper peak
was due to the sites that are compressible in the limit J/U → 0. Here, however, all sites are
incompressible in the atomic limit. On each site the MF parameter goes to zero if we decrease
the hopping amplitude. Thus, the distribution moves to zero as a whole without forming an
upper peak.

As we have discussed in section 3.2.3, at some point all sites become incompressible. This
point should mark the transition from the compressible to the incompressible MI phase. We
already found out that the stochastic MF formalism underestimates the probability for finding
rare regions. When approaching the phase boundary, most of the sites will have a small MF
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Figure 3.9: The distribution function Pψ(ψ) for fixed µ/U and different values of J/U , as given in the
legend at the top. The disorder width is set to W/U = 0.6. The plots on the left use a linear scale and
the ones on the right a logarithmic scale. The values for µ/U are chosen such that the system would be
gaped in the atomic limit. The selected values for J/U differ for each µ/U . This is due to the fact that
the phase transition takes place at different hopping amplitudes. When approaching the phase boundary,
(J/U) → (J/U)c, we have used a step size of ∆(J/U) = 1

100 (J/U)max, starting at (J/U)max = 0.03.
For each µ/U , the smallest plotted value of J/U corresponds to the last point above the transition to
the MI phase that is resolved by this step size.
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parameter. Fewer and fewer sites will be able to sustain a large ψi. These few sites are resopon-
sible for stabilizing the lower peak of the distribution and preventing a vanishing MF parameter.
Since the probability for these sites is underestimated by this formalism, we expect it to yield
a phase boundary at hopping amplitudes larger than predicted in section 3.2.3.

Average Quantities and the Phase Boundary

Previously, we have discussed the results for the two typical cases for the probability distribution
Pψ. In order to obtain an overview of the parameter space, we now turn to disorder averaged
quantities. Once the probability distribution Pψ is found, the average A of a local observable
A is easily obtained as follows,

A ≡ 〈Â〉disorder =

∫
dεPε(ε)

z∏
i=1

∫
dψiPψ(ψi)

〈
G
(
ε,Σz

j=1ψj
)∣∣ Â ∣∣G(ε,Σz

j=1ψj
)〉
. (3.66)

Note that within the stochastic MF approximation, local observables on different sites are un-
correlated,

AiBj = Ai Bj for i 6= j. (3.67)

Let us first consider the behavior of the average MF parameter, Â = b̂. The above integration
then simplifies to

ψ =

∫
dψPψ(ψ)ψ . (3.68)

Figure 3.10 shows the dependence of ψ on the hopping amplitude for different fixed chemical
potentials. All curves show that the average MF parameter decreases if the hopping amplitude
is decreased. However, in accordance to the previous findings, the behavior differs when ap-
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(b) Between Mott lobes

Figure 3.10: The solid lines show the disorder averaged MF parameter ψ as a function of J/U for different
µ/U and W/U = 0.6. The dashed lines show the upper and lower boundaries of the corresponding
distribution functions Pψ. Note, that the dashed curves in (b) stop at a finite J/U > 0. At these points
the numerical evaluation had to be stopped as the lower boundary fell below the numerical precision.
However, it is apparent that the upper boundary will approach a finite value in the atomic limit, which
is in accordance with our previous considerations.
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Figure 3.11: The disorder averaged MF parameter ψ for different disorder widthsW/U . For each disorder
width, both a density plot and a 3D plot of a set of curves is shown, where each curve corresponds to
a fixed chemical potential. All curves stop at finite J/U , indicating a breakdown of the numerical
evaluation. For comparison, the pure model’s Mott lobes are indicated by the white dashed lines.
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proaching the atomic limit either from above a Mott lobe or in between two Mott lobes. In the
first case, see figure 3.10a, both the upper and lower boundary of the distribution go to zero
at a finite J/U . Consequently, also the average MF parameter will vanish at finite J/U . In
the second case, see figure 3.10b, the lower boundary goes to zero while the upper boundary
approaches a finite value. Thus, for J/U > 0 the average MF parameter will always remain
finite.

In figure 3.11, the average MF parameter is shown for different disorder widths W/U , now as
a function of both J/U and µ/U . We see that the results are qualitatively in accordance with
the predictions made in section 3.2.3. For W/U < 1, the phase diagram still consists of the
Mott lobes centered around half integer values of µ/U . The sizes of the MI regions are smaller
compared to the pure case and decrease when the disorder is increased. When disorder is equal
to or larger than the interaction strength, W/U ≥ 1, the Mott lobes vanish completely.

A problem one runs into when trying to identify the MI regions arises from the fact that
we cannot reach the atomic limit numerically. For each µ/U , the MF routine breaks down at
some finite hopping amplitude J/U > 0. Consequently, close to the atomic limit we cannot
distinguish between the MI regions, where Pψ(ψ) = δ(ψ), and the regions where Pψ(ψ) ≈ δ(ψ).
Thus, we need to consider another quantity, which is the average particle number n̄ (Â = n̂ in
equation (3.66)). The compressibility is obtained via κ = dn̄/dµ.

Figure 3.12 shows both quantities as a function of µ/U for W/U = 0.6 and two different
hopping amplitudes. For J/U = 0.015, the µ-scan crosses the first Mott lobe, where n̄ = 1 and
both ψ and κ vanish. For larger µ, the system is well above the MI regions and both ψ and κ
remain finite.

For J/U = 0.003, the system is very close to the atomic limit and all of the three lowest
Mott lobes are crossed. As expected, the width of the Mott lobes is roughly 1 −W/U = 0.4.
Furthermore, for µ/U . 0.7 we encounter the situation described above. Due to the numerical
limitations we cannot distinguish between ψ = 0 (MI) and 0 < ψ � 1 (no MI). In order to
identify the MI region, we have to use the compressibility κ.

As the actual distribution function is not known for these cases, we use Pψ(ψ) ≈ δ(ψ) in order
to perform the numerical calculations. This, of course, implies that the values obtained for n̄
and κ will be the same as in the atomic limit.

Finally, we want to compare the phase boundary obtained via the stochastic MF formalism
with the one predicted in section 3.2.3. As a reminder, the argument used there was that if the
probability distribution Pε allows for locally compressible sites, one will always find arbitrary
large regions of compressible sites in the thermodynamic limit. If these regions are large enough
that boundary effects can be neglected, they will be compressible on their own. This immediately
makes the whole system compressible. This results in a shift of the upper and the lower boundary
of each Mott lobe by −W/U or +W/U , respectively, compared to the pure case, see also figure
3.6.

Figure 3.13 shows a comparison of this predicted phase boundary and the one actually ob-
tained with the stochastic MF formalism for two disorder strengths. As can be seen, the de-
viations are quite large. While in the atomic limit the same phase boundaries are obtained
by construction, the larger the hopping amplitude, the more the two boundaries differ. For
W/U = 0.8, the calculated Mott lobes are nearly twice as large as the ones predicted.

As mentioned before when discussing the results for Pψ, these deviations originate from the
fact that the stochastic MF approach neglects correlations between MF parameters on different
sites. Thus, one could not expect a match between the predicted and the calculated boundaries.
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Figure 3.12: The upper plots show the disorder averaged local particle number and the lower plots the
compressibility, each as a function of the chemical potential µ/U for fixed hopping amplitude J/U = 0.012
and disorder width W/U = 0.6. For comparison, also the average MF parameter ψ is plotted.

Still, the deviations are surprisingly large.

3.2.5 Conclusions

In this chapter we have presented a MF formalism (or decoupling approximation) that can be
applied to both the pure and the disordered Bose-Hubbard model. It allows us to reduce the
full problem of interacting bosons on a lattice to a set of local problems of coupled local particle
number eigenstates. For the pure case, one was able to use the translational invariance to further
reduce the problem to a single site . Depending on whether the MF parameter ψ was zero or
finite, we identified the system to be either in the MI or the SF phase.

Introducing disorder broke the translational invariance and we had to apply one additional
approximation, which was neglecting the correlations between MF parameters on different sites.
In doing so, the problem again became local. However, instead of one single MF parameter
ψ, we now had to determine the probability distribution function Pψ(ψ). Again, this function
determined whether a system was in the MI phase or not. If the only solution we find is given
by Pψ(ψ) = δ(ψ), the system is incompressible. Only when in addition a non-trivial solution is
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Figure 3.13: The boundary between compressible and incompressible phase for two disorder strengths.
The dashed green curves show the phase boundary (PB) as predicted using the argument of the rare
Lifshitz regions. The blue curves show the boundary obtained numerically with the stochastic MF
formalism.

found, the system is not in the MI phase.
The interesting question now is how to determine the transition from the BG to the SF phase.

In [28] by Bissbort and Hofstetter, it is proposed that one can identify this phase boundary by
combining the results for ψ and κ obtained from the stochastic MF approach. The three different
phases are defined as follows:

ψ = 0 ψ > 0

κ = 0 MI -
κ > 0 BG SF

According to this definition, the two compressible phases are distinguished using the averaged
MF parameter ψ . This does not concur with our own findings. In appendix A.1, we have shown
that a globally vanishing MF parameter implies that the system is incompressible. Thus, the
combination ψ = 0 and κ > 0 should not be possible.

Also in our numerical evaluation, we found no indication that the MF parameter can vanish
within the compressible phase. On the contrary, we argued that while ψ can become very small,
it will always stay finite due to the existence of what we called locally compressible sites.

Moreover, using this definition one finds a direct transition from the MI to the SF phase,
which is contradictory to the theorem of inclusions.

Another work we have already mentioned is the one by Niederle and Rieger [39], where the MF
formalism was applied to two-dimensional systems. By restricting themselves to finite system
sizes and using finite size scaling, they were able to include correlations between the ψi on
different sites. In order to resolve the MI to SF transition, they define MI and SF sites using
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the local expectation value of the particle number,

〈n̂i〉 ∈ [I − γ, I + γ] for one I ∈ IN → MI site
else → SF site (3.69)

The parameter γ was chosen to be γ ≤ 5 × 10−3 for numerical reasons. In other words, if the
average particle number of a site is within a sharp interval of width 10−2 around an integer
value, it is considered to be a MI site. Otherwise, it is a SF site. The system is in the MI or the
SF phase, if all sites are either MI or SF sites. If the system consists of both MI and SF sites,
it is in the BG phase.

This approach finds the correct shape of the Mott lobes, since it takes into account correlations
between different sites. The Mott lobes and the SF region are separated by the BG phase
according to their definition. There is no direct transition from MI to SF phase, which is in
accordance with the theorem of inclusions.

Now, the problem with this definition is that it is not unambiguous. The parameter γ is
chosen freely and does not follow from any physical considerations. Thus, the phase boundary
they find depends on a free parameter. For γ → 0 the BG phase will become arbitrarily small
as the definition for the MI sites will include fewer and fewer sites. Thus, the phase boundary
obtained this cannot be the actual phase boundary.

But how should one then determine the transition between the BG and the SF phase? We
believe that it is not possible to answer this question within this MF theory. The driving
mechanism of this transition should be the localizing effect of the disorder potential, i.e., the
phenomenon of Anderson localization. The localizing effect is a consequence of coherent, non-
local quantum interference processes. However, by introducing the decoupling approximation we
exclude all coherent transport across the lattice. It is replaced by bosons tunneling into and out
of a bath. Thus, by construction the effect of Anderson localization cannot be resolved within
the local MF theory. Distinguishing between BG and SF phase on the ground of local quantities
obtained by an approach that neglects the most important mechanism for this transition does
not appear to be very reasonable.

Hence, one might think that the whole approach of treating the disorder Bose-Hubbard model
within the stochastic MF theory is to some extent pointless. The effect of the disorder on the
shape of the Mott lobes can be determined from the solution to the pure model without making
any additional calculations, as we have discussed in section 3.2.3. Thus, no progress in finding
either of the two phase boundaries was made.

What one does gain, however, is information about the local physics of the system. In
principle, we can calculate the full local spectrum and all corresponding local quantities for any
given site. All we need to do now is to find a way to put this information to good use.

What makes the disordered Bose-Hubbard model so difficult to treat is the fact that it com-
bines two problems that are already rather complicated on their own: localization and inter-
action. This was the reason why we have introduced the MF approximation in the first place.
As the transition to the MI phase is driven by the onsite interaction, it was only reasonable
to treat the interaction exactly while approximating the kinetic term. In order to describe the
transition from BG to SF phase, the transport properties of the system will play the pivotal
role. Thus, the approximation we need to apply there should work just the other way around,
that is, compromising on the local term in order to treat the kinetic term exactly. In order to
find a good approximation for the local properties of the system, we will use the results from
the stochastic MF routine.
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In the next chapter, we will first introduce an appropriate quantity to determine the transition
between BG and SF phase, which will be the superfluid current. Afterward, we will introduce
an approximation that maps the full interacting model onto an effective non-interacting one.
We will argue that a long-range superfluid current can only be finite when the effective model is
not completely localized. Thus, the phase boundary from BG to SF will be determined by the
transition of the effective model from the localized to the extended regime. In order to resolve
this transition, we will make use of the already developed self-consistent theory of localization
by Vollhardt and Woelfle [29, 61, 62] applied to the strongly disordered lattice problem [64–67].

69





CHAPTER 4

Transport Theory for the Disordered
Bose-Hubbard Model

4.1 The Superfluid Current

In the following section, we want to derive a method to calculate the superfluid current, that is, a
current not induced by an applied voltage, but a phase gradient, for the disordered Bose-Hubbard
model. First, we will define a general expression for a non-local current density operator.
Afterward, we will express the expectation value of the current in terms of the retarded and
advanced Green’s functions. Finally, we will introduce an approximation that reduces the
interacting problem to an effective non-interacting one using the local solutions obtained by
the stochastic MF theory.

4.1.1 The Current Density Operator

The current density is defined via the continuity equation, which is given by

d

dt
ρ+∇ · j = 0 , (4.1)

where ρ is the particle density and j the current density. The corresponding density operator on
the lattice is defined as ρ̂(xi) ≡ ρ̂i = b̂†i b̂i . Here and in the following, all operators are assumed
to be in the Heisenberg representation. Hence, the evolution in time of ρ̂ is governed by the
Heisenberg equation. Using the explicit form of the disordered Bose-Hubbard Hamiltonian, one
obtains

d

dt
ρ̂k = i

[
Ĥ, ρ̂k

]
= −iJ

∑
〈ij〉

[
b̂†i b̂j , b̂

†
k b̂k
]

= −iJ
∑
〈ij〉

(
b̂†i
[
b̂j , b̂

†
k

]
b̂k + b̂†k

[
b̂†i , b̂k

]
b̂j

)
= −iJ

〈ik〉∑
i

(
b̂†i b̂k − b̂

†
k b̂i

)
. (4.2)
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On the other hand, the divergence on a lattice is defined via the difference quotient,

∇ · j =
d∑

α=1

jα(xi + a êα)− jα(xi)(
xi + a êα − xi

)
α

, (4.3)

where the summation is taken over all spatial dimensions, a is the lattice spacing, and êα is
the unit vector in α-direction. Inserting the expressions (4.2) and (4.3) into equation (4.1) and
setting a = 1 yields

d∑
α=1

(
ji+α − ji

)
α

= iJ

〈ij〉∑
j

(
b̂†j b̂i − b̂

†
i b̂j

)
= iJ

d∑
α=1

(
b̂†i+αb̂i − b̂

†
i b̂i+α + b̂†i−αb̂i − b̂

†
i b̂i−α

)
, (4.4)

where we have introduced the shorthand notation j = i± α corresponding to xj = xi ± êα and
in addition used that we only consider cubic lattices. The above equation is solved by(

ji
)
α

= iJ
(
b̂†i b̂i−α − b̂

†
i−αb̂i

)
(4.5)

Note, that this definition is not unique. Equally, we could have defined the difference quotient
as

∇ · j =

d∑
α=1

jα(xi − a êα)− jα(xi)(
xi − a êα − xi

)
α

, (4.6)

which leads to the following expression for the current density operator,(
ji
)
α

= iJ
(
b̂†i+αb̂i − b̂

†
i b̂i+α

)
. (4.7)

The reason for this is, of course, that on the discrete lattice we cannot take the limit α→ 0.
Hence, the current density operator has to be understood as being attached to the bond con-
necting two neighboring sites. This is also consistent with the continuity equation in discrete
form (4.4), where the change of local particle density on a certain site is linked to the current
densities on all bonds connected to the local site.

Whether one uses definition (4.5) or (4.7) is only a matter of convention, that is, how to label
the bonds. Alternatively, one could immediately label the current density in terms of the two
sites forming the bond,

ĵij = iJ
(
b̂†i b̂j − b̂

†
j b̂i
)
. (4.8)

The above definition has the advantage that it can be generalized from pairs of neighboring
sites to sites spatially separated from each other. This is specifically interesting when we want
to study the localizing effect of disorder to a system. As localization induced by disorder is a
quantum interference effect, it is generically non-local, in contrast to the localization of particles
forced by the Mott-Hubbard physics. In order to study the transition to the MI phase, it was
justified to reduce the full lattice problem to a single-site problem. Here, however, we have to
consider non-local quantities in order to find an appropriate description.
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4.1.2 Expectation Value of the Current Density Operator

The expectation value of the non-local current density operator can be rewritten as follows,

Jij(t) =
1

Z
Tr
{
e−βĤ ĵij(t)

}
≡ iJ

[
〈b̂†i (t)b̂j(t)〉 − 〈b̂

†
j(t)b̂i (t)〉

]
= J

[
G<ij(t, t)−G<ji(t, t)

]
= J

[
G<ij(t, t) +

(
G<ij(t, t)

)∗ ]
= 2J Re

{
G<ij(t, t)

}
, (4.9)

with β = 1/(kbT ), kB being the Boltzmann constant, and Z = Tr
{
e−βĤ

}
being the grand

canonical partition function. Furthermore, we have introduced the lesser Green’s function G<.
Since in the Heisenberg equation all operators are at equal times, also the operators in the
definitions of the local current (4.5) and (4.7) have to be at equal times, as these definitions
were derived from the Heisenberg equation. Now, when defining the non-local current density
operator (4.8), one is in principle not bound to this restriction. Still, we are interested in exactly
this case, that is, an instantaneous current, and thus, all operators are chosen to be at equal
times.

In equilibrium, the expectation value of the current density operator is usually vanishing. In
order to induce a normal current, the system has to be driven out of equilibrium, for example
by switching on a voltage. However, as we will see in the following, it is possible to find an
equilibrium state that is carrying a current by introducing a phase gradient.

Now, assuming the system is in equilibrium, the Green’s functions only depend on the relative
time t− t′ and we can perfom a Fourier transformation,

G<ij(E) =

∫ +∞

−∞
dt eiEtG<ij(t, 0) (4.10)

and

G<ij(t, 0) =

∫ +∞

−∞

dE

2π
e−iEtG<ij(E) . (4.11)

With this, we can write the current density as an integral over all energies,

Jij = 2J

∫ +∞

−∞

dE

2π
Re
{
G<ij(E)

}
. (4.12)

As shown in appendix B.1, the lesser function can be expressed in terms of the retarded and
advanced Green’s functions as follows,

G<ij(E) = b(E)
(
GAij(E)−GRij(E)

)
, (4.13)

where b(E) = 1/(eβE − 1) is the Bose distribution function. Inserting this into equation (4.12)
yields

Jij = 2J

∫ +∞

−∞

dE

2π
b(E) Re

{
GAij(E)−GRij(E)

}
. (4.14)
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The Green’s functions can be transformed as follows,

G
R/A
ij (E) =

∫ +∞

−∞
dt ei(E±iη)tG

R/A
ij (t)

= − i

Z

∫ ±∞
0

dt ei(E±iη)t Tr
{
e−βĤ

[
eiĤtb̂ie

−iĤt, b̂†j
]}

= − i

Z

∫ ±∞
0

dt ei(E±iη)t
∑
n,m

[
〈Ψn|e−βĤeiĤtb̂ie

−iĤt|Ψm〉〈Ψm|b̂†j |Ψn〉

− 〈Ψm|e−βĤ b̂†j |Ψn〉〈Ψn|eiĤtb̂ie
−iĤt|Ψm〉

]

= − i

Z

∫ ±∞
0

dt ei(E±iη)t
∑
n,m

(
e−βEn − e−βEm

)
ei(En−Em)t〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉

=
1

Z

∑
n,m

(
e−βEn − e−βEm

)〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉
E + En − Em ± iη

, (4.15)

where the summation is taken over the eigenstates |Ψn〉 of Ĥ with corresponding eigenenergies
En. For the difference between the retarded and the advanced Green’s function, one obtains

GAij(E)−GRij(E) =
1

Z

∑
n,m

(
e−βEn − e−βEm

)2iη〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉
(E + En − Em)2 + η2

=
2iπ

Z

∑
n,m

(
e−βEn − e−βEm

)
〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉δ(E + En − Em) . (4.16)

In order for the real part of the above expression to be finite, the matrix elements

〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉 (4.17)

have to be complex numbers. However, Ĥ is real and symmetric and thus, its eigenstates will
also be real. Therefore, the matrix elements will be real numbers as well. Consequently, the
current density should vanish.

Still, in section 2.1.5 we have found that by applying a gradient to the complex phase of the
MF parameter of the boson field, a current can be induced if the system is a superfluid. The
phase gradient can be realized by imposing complex boundary conditions to the system and we
need to determine how this will affect the eigenstates and, thereby, the single-particle Green’s
functions GR/Aij .

Moreover, we need to find a way to actually calculate GR/Aij in the limit |xi−xj | → ∞, which
is a very difficult task as we have to deal with both disorder and particle-particle interaction at
the same time. To do so, inevitably we will have to introduce approximations. Inspired by a
previous approach [25, 26] for the fermionic version of this model, we will try to find an effective
non-interacting description for the full interacting problem. In the process, we will make use of
the results obtained within the MF theory. This will allow us to make a connection to the MF
parameter and, thereby, include its phase gradient to the effective non-interacting theory.

In the following, we will restrict ourselves to the limit T → 0, where the Bose distribution
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restricts the integration in expression (4.14) to negative energies,

Jij = 2J

∫ 0

−∞

dE

2π
Re
{
GRij(E)−GAij(E)

}
, (4.18)

4.2 Effective Non-Interacting Model

For the original Anderson Hamiltonian without interactions,

ĤA =
∑
i

εin̂i − J
∑
〈ij〉

b̂†i b̂j , (4.19)

the full single-particle Green’s function Gij can be expanded in terms of the local Green’s
functions Gi as follows,

Gij(E) = G0
i (E)δij −G0

i (E)J

〈il〉∑
l

Glj(E) , (4.20)

with the locator functions
G0
i (E) =

1

E − εi
. (4.21)

and E ∈ C. This expansion is known as the locator expansion, see appendix B.2 for a derivation
and also section 2.2.1 for a discussion in the context of Anderson’s original work [18]. Interpreting
Gij and G0

ij = G0
i δij as the components of matrices G and G0, respectively, equation (4.20) can

also be written as a matrix equation,

G(E) = G0(E) +G0(E)HJG(E) , (4.22)

with (HJ)ij = −J for i, j nearest neighbors and (HJ)ij = 0 otherwise. As we will see in the next
section, for the Bose-Hubbard model such an expansion only in terms of single-particle Green’s
functions is not possible and higher Green’s functions will appear due to the on-site interaction
term. Finally, however, we want to reduce this much more complicated expansion to the simple
locator expansion of the non-interacting case. Finding a way to do so will be the topic of the
next sections.

4.2.1 Locator Expansion of the Interacting Green’s Function

Let us start by deriving the equation of motion of the single-particle Green’s function for the
disordered Bose-Hubbard model,

Ĥ =
∑
i

(
(εi − µ)n̂i +

U

2
n̂i(n̂i − 1)

)
− J

∑
〈ij〉

b̂†i b̂j . (4.23)

This works completely analogously to the non-interacting case, see appendix B.2, and one ob-
tains

i
d

dt
G
R/A
ij (t) = δijδ(t) + (εi − µ)G

R/A
ij (t)− J

〈il〉∑
l

G
R/A
lj (t) + UΓ

R/A
ij (t) , (4.24)
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where now Γ
R/A
ij is a higher Green’s function,

Γ
R/A
ij (t) = ∓ i

2
θ(±t)〈

[
[n̂i (t)(n̂i (t)− 1), b̂i (t)], b̂

†
j

]
〉 = ∓iθ(±t)〈[n̂i (t)b̂i (t), b̂

†
j ]〉 . (4.25)

Again, we can perform a Fourier transformation for the equation of motion (4.24),

EGij(E) = δij + (εi − µ)Gij(E)− J
〈il〉∑
l

Glj(E) + UΓij(E) , (4.26)

with
Gij(E ± iη) = G

R/A
ij (E) =

∫
dt ei(E±iη)tG

R/A
ij (t) (4.27)

and
Γij(E ± iη) = Γ

R/A
ij (E) =

∫
dt ei(E±iη)tΓ

R/A
ij (t) . (4.28)

The problem with the equation of motion for the interacting Green’s function is that it contains
an additional unknown quantity in form of the higher Green’s function. In principle, one would
have to find Γij first before trying to obtain Gij . However, the equation of motion for Γij
contains even more complicated terms. Hence, this direct approach is not feasible and one has to
introduce certain approximations. One way would be to define the self energy, UΓij =

∑
l Σ

U
ilGlj ,

which can be expanded in a perturbation series. Still, here in addition one has to deal with the
on-site disorder, which by itself poses a serious challenge.

In order to overcome this problem, we want to make use of the fact that we already solved
the interacting problem locally within the MF approximation. Thus, we again introduce the
decoupling approximation. This time, however, we will treat the term including the δ̂-operators
as a perturbation to the unperturbed or free MF Hamiltonian. Let us start by dividing the full
Bose-Hubbard Hamiltonian into the MF part and the δ-terms,

Ĥ = ĤMF + δĤ , (4.29)

with
ĤMF =

∑
i

ĥi , (4.30)

where ĥi is the local MF Hamiltonian for site i as defined in equations (3.27) and (3.28).
Furthermore, the fluctuations term is given by

δĤ = −J
∑
〈ij〉

δ̂†i δ̂j = −J
∑
〈ij〉

(
b̂†i − ψ∗i

)(
b̂j − ψj

)
. (4.31)

Analogously to the non-interacting case, we can define the resolvent of Ĥ as

(E − Ĥ)Ĝ(E) = 1 . (4.32)

and then evaluate the full resolvent in terms of the MF one,

Ĝ(E) = ĜMF(E) + ĜMF(E) δĤ Ĝ(E) , (4.33)
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where ĜMF(E) = (E − ĤMF )−1. The above equation has the same structure as the locator
expansion (4.22) in the previous section, but instead of matrices in position space, here its
constituents are operators acting on the Hilbert space. The question now is how to relate the
quantity Ĝ to the single-particle Green’s function Gij we are interested in. Therefore, we return
to the spectral representation (4.15) of the Green’s function,

Gij(E ± iη) = G
R/A
ij (E) =

1

Z

∑
n,m

(
e−βEn − e−βEm

)〈Ψn|b̂i |Ψm〉〈Ψm|b̂†j |Ψn〉
E + En − Em ± iη

. (4.34)

In the limit T → 0, only the ground state |Ψ0〉 contributes to the thermal average,

1

Z
e−βEn −→ δn,0 , (4.35)

and the expression for the Green’s function simplifies as follows,

Gij(E) =
∑
n

[
〈Ψ0|b̂i |Ψn〉〈Ψn|b̂†j |Ψ0〉

E + E0 − En
−
〈Ψn|b̂i |Ψ0〉〈Ψ0|b̂†j |Ψn〉

E + En − E0

]

=
∑
n

[〈
Ψ0

∣∣∣b̂i 1

E + E0 − Ĥ

∣∣∣Ψn

〉
〈Ψn|b̂†j |Ψ0〉 −

〈
Ψ0

∣∣∣b̂†j 1

E + Ĥ − E0

∣∣∣Ψn

〉
〈Ψn|b̂i |Ψ0〉

]

= 〈Ψ0|b̂i Ĝ(E0 + E)b̂†j |Ψ0〉+ 〈Ψ0|b̂†jĜ(E0 − E)b̂i |Ψ0〉 , (4.36)

where now E ∈ C. The propagator Ĝ can then be expanded in terms of the MF locator ĜMF

using relation (4.33). In order to make ĜMF an actual free, non-interacting Green’s function,
we will have to apply certain approximations. Therefore, in the next section we will investigate
the structure of ĜMF and δĤ within the MF eigenbasis.

4.2.2 The Eigenbasis of the Mean-Field Hamiltonian

In the following we want to derive an approximation for the propagator Ĝ, such that it can
be written as a matrix equation in position space analogously to equation (4.22) in the non-
interacting case. Therefore, we turn back to equation (4.33), which by iteratively reinserting it
into itself can be brought into the following form,

Ĝ(E) =

∞∑
l=0

Ĝ(l)(E) , (4.37)

with

Ĝ(l)(E) = ĜMF(E) δĤ ĜMF(E) . . . ĜMF(E) δĤ ĜMF(E)︸ ︷︷ ︸
l-th order in δĤ

= ĜMF(E)
[
δĤ ĜMF(E)

]l
. (4.38)

As mentioned before, splitting the full Hamiltonian into the MF Hamiltonian and the remaining
part containing the δ-operators is motivated by the fact that, in principle, we have already found
the solution to ĤMF . Since the MF Hamiltonian contains the full particle-particle interaction,
this should prevent us from having to introduce higher Green’s functions like the one in equation
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(4.24). The obvious choice for representing the above operators is the eigenbasis of ĤMF . Before
evaluating the full expression (4.38), we first want to examine the form of its constituents, ĜMF

and δĤ, within this basis. For the local MF Green’s function, we find that it becomes diagonal,

〈Φα|ĜMF (E)|Φβ〉 =
〈

Φα

∣∣∣ 1

E − ĤMF

∣∣∣Φβ

〉
=

δαβ
E − EMF

α

, (4.39)

where |Φα〉 and |Φβ〉 are eigenstates of ĤMF with corresponding eigenenergies EMF
α and EMF

β ,
respectively. Hence, it is justified to interpret ĜMF as the analogon to the locator for the non-
interacting Anderson Hamiltonian. The perturbation term δĤ is, of course, not diagonal in this
basis. Still, we can make use of the fact that the MF eigenstates are product states of the local
MF eigenstates,

〈Φα|δĤ|Φβ〉 = −J
∑
〈ij〉
〈Φα|δ̂†i δ̂j |Φβ〉

= −J
∑
〈ij〉

[
〈ϕi,αi |δ̂

†
i |ϕi,βi〉〈ϕj,αj |δ̂j |ϕj,βj 〉

∏
k 6=i,j

δαkβk

]
, (4.40)

where |Φα〉 =
∏
i |ϕi,αi〉 and |Φβ〉 =

∏
i |ϕi,βi〉, with |ϕi,αi〉 and |ϕi,βi〉 being eigenstates of the

local MF Hamiltonian ĥi with eigenenergies εi,αi and εi,βi , respectively,

ĥi|ϕi,αi〉 = εi,αi |ϕi,αi〉 , (4.41)

and EMF
α =

∑
i εi,αi .

Note that we use a different notation for the eigenstates as in the previous chapter, where the
MF formalism was introduced. This is due to the fact that now we have to take into account
not only the ground states, but the excited states as well. For the total MF ground state, the
notation is changed as |GS〉 → |Φ0〉, and for for the local ground states, we have |Gi〉 → |ϕi,0〉.

Moving on, for the matrix elements of the δ-operators one finds that

〈ϕi,αi |δ̂i|ϕi,βi〉 = 〈ϕi,αi |b̂i|ϕi,βi〉 − ψiδαiβi =


0 for αi = βi = 0,

〈ϕi,αi |b̂i|ϕi,αi〉 − ψi for αi = βi 6= 0,

〈ϕi,αi |b̂i|ϕi,βi〉 for αi 6= βi.

(4.42)

First of all, this means that the δ-term cannot induce a transition from ground state to ground
state. This is not surprising, as the MF approach was specifically designed this way.

Furthermore, we can conclude that the matrix element (4.40) is only non-vanishing for three
distinct cases, the first of which being the one where |Φα〉 = |Φβ〉, with at least two neighboring
sites i and j not in their local MF ground states, αi 6= 0 and αj 6= 0. This contribution is
an energy correction, which accounts for the fact that the bath amplitude for a certain site is
changed when one (or more) of its neighboring sites is not in the MF ground state.

The second case is non-diagonal and takes place when αk = βk for all k 6= i and at least
one nearest neighbor j of i is not in the MF ground state, αj 6= 0. Then, δĤ can induce
transitions between all local MF eigenstates |ϕi,αi〉 of site i. Again, the intuitive picture here is
that the particle bath surrounding site i is in an excited state, thus perturbing the states that
were obtained with respect to the ground state bath amplitude.
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Finally, δĤ can induce a simultaneous transition on two neighboring sites i and j, αi 6= βi
and αj 6= βj , with the rest of the lattice remaining in the initial state, αk = βk for k 6= i, j.
Combining all cases, we can write

〈Φα|δĤ|Φβ〉 =



−J∑〈ij〉〈ϕi,αi |δ̂†i |ϕi,αi〉〈ϕj,αj |δ̂j |ϕj,αj 〉 if αi = βi for all i,

−J
[
〈ϕi,αi |b̂

†
i |ϕi,βi〉

∑〈ij〉
j 〈ϕj,αj |δ̂j |ϕj,αj 〉

+ 〈ϕi,αi |b̂i |ϕi,βi〉
∑〈ij〉

j 〈ϕj,αj |δ̂
†
j |ϕj,αj 〉

] if αi 6= βi
and αk = βk for k 6= i, j

−J
[
〈ϕi,αi |b̂

†
i |ϕi,βi〉〈ϕj,αj |b̂j |ϕj,βj 〉

+ 〈ϕi,αi |b̂i |ϕi,βi〉〈ϕj,αj |b̂
†
j |ϕj,βj 〉

] if αi 6= βi, αj 6= βj ,
and αk = βk for k 6= i, j,

0 else.
(4.43)

In order to get a better overview of all the possible transitions, it is useful to consider δĤ for
a two-site cluster. For simplicity, we will use the following notation for the MF eigenstates,
|Φα〉 = |ϕ1,α1

ϕ2,α2
〉 ≡ |α1α2〉. Doing so, we obtain

δĤ =

∞∑
α1,α2,β1,β2=0

|α1α2〉〈α1α2|δĤ|β1β2〉〈β1β2|

=

〈00| 〈10| 〈01| 〈11| 〈20| 〈02| 〈12| 〈21| 〈22| . . .

|00〉
|10〉
|01〉
|11〉
|20〉
|02〉
|12〉
|21〉
|22〉
...



0 0 0 T00;11 0 0 T00;12 T00;21 T00;22 . . .
0 0 T10;01 T10;11 0 T10;02 T10;12 T10;21 T10;22

0 T01;10 0 T01;11 T01;20 0 T01;12 T01;21 T01;22

T11;00 T11;10 T11;01 δE11 T11;20 T11;02 T11;12 T11;21 T11;22

0 0 T20;01 T20;11 0 T20;02 T20;12 T20;21 T20;22

0 T02;10 0 T02;11 T02;20 0 T02;12 T02;21 T02;22

T12;00 T12;10 T12;01 T12;11 T12;20 T12;02 δE12 T12;21 T12;22

T21;00 T21;10 T21;01 T21;11 T21;20 T21;02 T21;12 δE21 T21;22

T22;00 T22;10 T22;01 T22;11 T22;20 T22;02 T22;12 T22;21 δE22
...

. . .


(4.44)

In order to avoid the long expressions of (4.43), we have used the shorthand notation δEα1α2 =
〈α1α2|δĤ|α1α2〉 and Tα1α2;β1β2 = 〈α1α2|δĤ|β1β2〉. The ket- and bra-vectors to the left of and
above the matrix are shown to help identifying the rows and columns.

First of all, since all transitions due to the perturbation δĤ have at most two neighboring
sites involved, the above matrix includes all possible types of processes induced by δĤ. Second,
we see that there are no direct transitions from the MF ground state |00〉 to the sector with only
one excited state, for example, T00;01 = 0 and T00;20 = 0. Such a transition can only happen as
a second (or higher) order process, where the system goes, for example, first from |00〉 to |11〉
and then to |01〉. If exciting two states is energetically unfavorable, the single-excitation sector
can be considered to be relatively stable.
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Third, within the single-excitation sector the only process that can take place is the tunneling
of the excitation from its current to a neighboring site, corresponding to the transition amplitude
Tα10;0β2 6= 0. On-site transitions to different excited states are not possible, Tα10;β10 = 0.

Finally, once two or more neighboring sites are in excited states, transitions to all other states
can take place. From this we can take that the case of one single excitation is a special one,
as it is protected from directly decaying to the ground state, which can be interpreted as a
kind of conservation of the excitations. Furthermore, the perturbation term can induce nearest
neighbor hopping processes, much like in the case of the original bosons, also conserving the
number of excitations. Exciting more than one site comes with additional costs in energy, which,
depending on the actual situation, might suppress these kinds of events, and thus, again force
the number of excitations to be conserved

With the above findings and considerations, one might be intrigued to treat the single exci-
tation as an effective particle. In order to do so, we have to make a couple of approximations,
which will be discussed in the next section, where we investigate the structure of the expansion
series of Ĝ in terms of the MF locator within the MF eigenbasis.

4.2.3 Representing the Propagator Using the Mean-Field Eigenbasis

With the results of the previous section, we can now turn to the expansion of Ĝ, where we have
to evaluate expressions of the form

〈Φα|Ĝ(l)|Φβ〉 =
∑
µ...ν

〈Φα|ĜMF |Φα〉〈Φα|δĤ|Φµ〉〈Φµ|ĜMF |Φµ〉 . . .

. . . 〈Φν |ĜMF |Φν〉〈Φν |δĤ|Φβ〉〈Φβ|ĜMF |Φβ〉

≡
∑
µ...ν

GMF
α TαµG

MF
µ . . . GMF

ν Tνβ G
MF
β . (4.45)

Each summation is taken over the complete MF eigenbasis. However, due to the restrictions on
the possible transitions induced by δĤ, only certain states can be connected by the perturbation
term. In the above case, for example, the states |Φα〉 and |Φµ〉 (or |Φβ〉 and |Φν〉) have to be
equal on all but two neighboring sites. Otherwise, the transition amplitude Tαµ (or Tνβ) would
vanish.

Still, the summation is far from the case of the original locator expansion (4.22), where only
sequences of neighboring sites are contributing. But we can put further restrictions on it by
considering the expression for the single-particle Green’s function,

Gij(E) = 〈Ψ0|b̂i Ĝ(E0 + E)b̂†j |Ψ0〉+ 〈Ψ0|b̂†jĜ(E0 − E)b̂i |Ψ0〉 (4.46)

Note, that |Ψ0〉 is the ground state with respect to the full Hamiltonian Ĥ, which in general is
an unknown quantity. Still, in order to evaluate the above expression as planned, we need to
know the expansion of |Ψ0〉 with one particle added or removed at a certain site i in terms of
the MF eigenstates. To overcome this problem, we have to introduce an approximation,

Gij(E) ≈ 〈Φ0|b̂i Ĝ(EMF
0 + E)b̂†j |Φ0〉+ 〈Φ0|b̂†jĜ

(
EMF

0 − E
)
b̂i |Φ0〉 , (4.47)

where the unknown exact ground state |Ψ0〉 and its energy E0 have been replaced by the known
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MF ground state |Φ0〉 and the MF ground state energy EMF
0 .

Note that this approximation is different from the method of adiabatically switching on and
off the perturbation term used in standard perturbation theory. As the MF approximation
breaks a symmetry of the original Hamiltonian, that is, particle conservation, the ground states
of Ĥ and ĤMF will be fundamentally different. Thus, one cannot expect the Gell-Mann-Low
theorem to be valid in this case.

The motivation to still approximate the exact ground state by the MF one is that we believe
the MF theory to capture the local physics quite well. In the following, we will show that it
is possible to write down the non-local single-particle Green’s function in terms of only local
quantities. This approximation then assumes that the local physics of the system are well
described by the MF ground state and that changes induced by local operators, such as, b̂i and
b̂†i , are well resolved by transitions of the local MF eigenstates.

The ground state with one particle added or removed can then be expanded as follows,

b̂i |Ψ0〉 ≈ b̂i |Φ0〉 =
∑
α

〈Φα|b̂i |Φ0〉 |Φα〉 (4.48a)

and
b̂†i |Ψ0〉 ≈ b̂†i |Φ0〉 =

∑
α

〈Φα|b̂†i |Φ0〉 |Φα〉 , (4.48b)

where, in principle, each expansion can be evaluated using the results from the previous chapter.
The first thing we note is that, apart from the MF ground state |Φ0〉, only states from the single-
excitation sector contribute within this approximation, to be specific, states that have a local
excitation on site i,

〈Φα|b̂(†)i |Φ0〉 = 〈ϕi,αi |b̂
(†)
i |ϕi,0〉

∏
k 6=i

δαk,0 (4.49)

Thus, the summation over the complete MF eigenbasis reduces to a summation over all local
MF states on site i,

b̂i |Ψ0〉 ≈
∑
αi

〈ϕi,αi |b̂i |ϕi,0〉 |ϕ1,0ϕ2,0 . . . ϕi,αi . . . ϕNi,0〉 ≡
∑
αi

〈αi|b̂i|0〉 |αi〉 (4.50a)

and

b̂†i |Ψ0〉 ≈
∑
αi

〈ϕi,αi |b̂
†
i |ϕi,0〉 |ϕ1,0ϕ2,0 . . . ϕi,αi . . . ϕNi,0〉 ≡

∑
αi

〈αi |b̂
†
i |0〉 |αi 〉 . (4.50b)

Here, we have introduced a shortened notation for the states of the single-excitation sector,
where it is implied that all sites but site i are in the ground state. Furthermore, since for the
exact ground state we have 〈Ψ0|b̂i|Ψ0〉 = 0 due to particle conservation, we assume the MF
ground state not to contribute in this expansion, although 〈Φ0|b̂i|Φ0〉 = ψi 6= 0 outside the
MI phase. Thus, in the following all summations taken over the local eigenstates exclude the
ground state, αi = 0.

With this, the two terms in (4.47) can be written as

〈Φ0|b̂i Ĝ(E0 + E)b̂†j |Φ0〉 ≈
∑
αiβj

〈0|b̂i |αi〉〈αi|Ĝ
(
EMF

0 + E
)
|βj〉〈βj |b̂†j |0〉 (4.51a)
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and
〈Φ0|b̂†jĜ(E0 − E)b̂i |Φ0〉 ≈

∑
αjβi

〈0|b̂†j |αj〉〈αj |Ĝ
(
EMF

0 − E
)
|βi〉〈βi|b̂i |0〉 . (4.51b)

Going back to the expansion of Ĝ given in equation (4.45), we can simplify the expression as
follows using the above results,

〈αi|Ĝ(l)|βj〉 =
∑
µ...ν

GMF
αi TαiµG

MF
µ . . . GMF

ν Tνβj G
MF
βj

, (4.52)

where now the outer states |αi〉 and |βj〉 are from the single-excitation sector, the summations,
however, are still taken over the complete MF eigenbasis. In order to put a restriction on these
summations, let us take a closer look at the first three terms,

GMF
αi

(
EMF

0 ± E
)
TαiµG

MF
µ

(
EMF

0 ± E
)

=
1

EMF
0 ± E − EMF

αi

Tαiµ
1

EMF
0 ± E − EMF

µ

=
1

±E −∆EMF
αi

〈αi|δĤ|Φµ〉
1

±E −∆EMF
µ

, (4.53)

where we have defined the excitation energy

∆EMF
µ = EMF

µ − EMF
0 =

∑
i

(
εi,µi − εi,0

)
, (4.54)

with εi,µi being the eigenenergy of the eigenstate |ϕi,µi〉 of the local Hamiltonian ĥi. For a state
with only one single excitation on site i, this is a local quantity,

∆EMF
µ = εi,µi − εi,0 ≡ ∆εµi if µk = 0 for k 6= i. (4.55)

Again, we use a shortened notation where it is implied that ∆εµi is the excitation energy of
state |µi〉. With this, equation (4.53) can be written as

GMF
αi

(
EMF

0 ± E
)
TαiµG

MF
µ

(
EMF

0 ± E
)

=
1

±E −∆εαi
〈αi|δĤ|Φµ〉

1

±E −∆EMF
µ

. (4.56)

The perturbation δĤ can now couple the state |αi〉 to several states |Φµ〉. With the consid-
erations made in the previous section, we can conclude that |Φµ〉 is either a single-, two-, or
three-excitations state,

|Φµ〉 =


|µj〉 with j being a nearest neighbor of i,
|µiµj〉 with j being a nearest neighbor of i,
|αiµjµk〉 with j and k being nearest neighbors and µi

!
= αi,

(4.57)

where for |µiµj〉 and |αiµjµk〉 all sites but i, j and i, j, k are in the ground state, analogously
to the definition of the single-excitation states |αi〉. Since the single-excitation sector does not
couple directly to the ground state, |Φµ〉 = |Φ0〉 is not possible.

In order to reduce the number of possible states |Φµ〉, we will now make some drastic ap-
proximations, where we will only consider those states that lead to the highest contribution
to the total sum in (4.52). That means that we will choose states based on their excitation
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energy, which needs to be close to ±E, and their coupling amplitude, which should be as large
as possible.

Now, let us assume that the state |αi〉 was chosen because it met these criteria. Then, we can
assume that ∆εαi is close to ±E. In order to go from the single- to the three-excitations sector,
we need to add two more excitations, which comes at the cost of two additional local excitation
energies, ∆EMF

µ = ∆εαi + ∆εµj + ∆εµk . Thus, transitions to states with three excitations will
be suppressed.

The same argument can be made for transitions to states with two excitations, but only if site
i remains in its initial state, µi = αi. Otherwise, it would be possible for site i to go into a state
with lower energy, which would then make up for the cost of exciting the neighboring site j,
∆εαi ≈ ∆εµi + ∆εµj . However, as we will see later the important energy regime will be the one
where |αi〉 is a low-lying excitation. Thus, we will also neglect transitions to the two-excitations
sector.

Finally, we are left with only one type of transition, namely that of an excitation hopping
from one site to a neighboring site. With |Φµ〉 = |µj〉, expression (4.56) takes the following
form,

GMF
αi

(
EMF

0 ± E
)
Tαiµj G

MF
µj

(
EMF

0 ± E
)

=
1

±E −∆εαi
〈αi|δĤ|µj〉

1

±E −∆εµj
. (4.58)

Of course, the same arguments can be applied to all subsequent transitions, and we can write
the l-th order of the propagator, given in equation (4.52), as a sum over all possible sequences
of hopping processes from site j to site i,

〈αi|Ĝ(l)|βj〉 = GMF
αi

〈im〉∑
µm

Tαiµm G
MF
µm

〈mn〉∑
νn

Tµmνn G
MF
νn . . . GMF

ρr

〈rsj〉∑
σs

Tρrσs G
MF
σs Tσsβj G

MF
βj

,

(4.59)
where we have introduced the shortened notation for a sequence of three nearest neighbors,
〈rsj〉=̂〈rs〉&〈sj〉. The summation is taken over all sets of l − 1 sites (m,n, . . . , r, s) connecting
initial and final site j and i, and for each site m over all local MF excitations µm.

This already looks very much like the locator expansion. However, there are still different
excited states available on every site. In some instances, the first and the second excited state
will be close in energy. In order to choose one state over the other in these cases, we have to
take into account an additional factor, which is the coupling strength. The problem now is
that the transition amplitude Tµiνj depends on two sites, which implies that we cannot choose
the right state for site i without taking into account all its neighboring sites. Thus, before
selecting the state for site i, we would need to know which states to select on its neighboring
sites. This, however, will again depend on the state we would select on site i as well as on
all other neighboring sites. Hence, finding the optimal states that lead to the largest coupling
immediately becomes a lattice problem.

Fortunately, the nature of the local MF eigenstates will point to one obvious truncation scheme
for the state space, which will make these considerations unnecessary. Therefore, in the next
section we will examine the local spectrum of the MF model.
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Figure 4.1: The solid blue curves show the local potential En as a function of the local particle number
n for different values of µ and W/U = 0. The dashed curves show the four lowest MF eigenstates for
J/U = 0.02, scaled by a factor of 0.2. For each state, its eigenenergy is used as an offset in y-direction
(in figure 4.1e and 4.1f, the third excited state is not shown).
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4.2.4 Local Spectrum and Transition Amplitudes

In order to investigate the local spectrum, we expand the eigenstates |νi〉 of the Hamiltonian ĥi
in terms of the local particle number eigenstates |ni〉,

|νi〉 =
∞∑
ni=0

〈ni|νi〉 |ni〉 , (4.60)

just like it was done for the ground state in chapter 3. In figure 4.1, the low-lying spectrum of
ĥi is plotted for different values of µ. For simplicity, the disorder is set to zero, W/U = 0, and
the hopping amplitude is fixed to J/U = 0.02, such that the system is not in the MI phase.
Also, the index i for the specific site has been dropped for readability.

As a reminder, the local potential is given by En = −µn+U/2 (n− 1)n (with ε0 set to zero)
and its minimum is located at n0 = µ/U +1/2. The properties of the ground state were already
discussed in section 3.1.1.

Figure 4.1a shows the special case where the minimum of En is located at a half integer,
n0 = 2.5, just in between two integer particle numbers. Therefore, certain Fock states are
degenerated in energy, En+ = En− for n± = n0 ± (n + 1/2). As a consequence, the lowest
two eigenstates are both centered around n0 − 1/2 = 3 and n0 + 1/2 = 4, and the next two at
n0 − 3/2 = 2 and n0 + 3/2 = 5.

A similar situation is found for µ/U = 2.5, see figure 4.1f, where the minimum is located at
an integer, n0, and we have En+ = En− for n± = n0 ± n. While the ground state is peaked at
n0 = 3, the largest contributions to the first and the second excited state stem from the particle
numbers n0 − 1 = 2 and n0 + 1 = 4.

For the intermediate cases, see figure 4.1b - 4.1e, this degeneracy is broken, En 6= En′ for
n 6= n′, and the excited states are all more or less strongly peaked at a certain particle number.

Now, let us turn to the corresponding transition amplitudes coupling the excitations on neigh-
boring sites, for which some general properties were already discussed in section 4.2.2. In ac-
cordance to equation (4.42), for a transition of the excitation |µj〉 on site j to |νi〉 on site i, we
have

Tνiµj = 〈νi|δĤ|µj〉
= −J〈νi|

(
b̂†i b̂j + b̂†j b̂i

)
|µj〉

= −J
(
〈νi|b̂†i |0〉〈0|b̂j |µj〉+ 〈νi|b̂i |0〉〈0|b̂

†
j |µj〉

)
≡ −J

(
ψνi0ψ

∗
µj0 + ψ∗0νiψ0µj

)
, (4.61)

where in the last step we have defined the transition parameters ψαiβi = 〈αi|b̂i|βi〉 in analogy to
the MF parameter ψi, which would correspond to |αi〉 = |βi〉 = |0〉. They are calculated using
the expansion (4.60) for the eigenstates,

ψαiβi =

∞∑
nimi=0

〈αi|ni〉〈ni|b̂i|mi〉〈mi|βi〉

=

∞∑
ni=0

√
ni + 1 〈αi|ni〉 〈ni + 1|βi〉 . (4.62)
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µ/U = 2.0

νi 1 2 3 4 5 6 7
ψ0νi -0.973 0.812 -0.754 0.105 -0.105 0.00648 0.000140
ψνi0 0.836 0.519 0.477 0.0300 0.0300 7× 10−13 −3× 10−19

µ/U = 2.1

νi 1 2 3 4 5 6 7
ψ0νi -0.854 1.24 -0.0255 0.197 −2× 10−6 0.00956 0.000223
ψνi0 0.975 0.0736 0.584 6× 10−6 0.0305 4× 10−12 −2× 10−18

µ/U = 2.2

νi 1 2 3 4 5 6 7
ψ0νi -0.774 1.33 -0.00737 0.252 −4× 10−7 0.0134 0.000332
ψνi0 1.09 0.0896 0.478 0.0000132 0.0213 2× 10−11 −8× 10−18

µ/U = 2.3

νi 1 2 3 4 5 6 7
ψ0νi -0.770 1.37 -0.00330 0.314 −1× 10−7 0.0183 0.000480
ψνi0 1.18 0.153 0.384 0.0000408 0.0147 1× 10−10 −4× 10−17

µ/U = 2.4

νi 1 2 3 4 5 6 7
ψ0νi -0.918 1.28 -0.00244 0.388 −7× 10−8 0.0251 0.000709
ψνi0 1.20 0.325 0.307 0.000200 0.0103 1× 10−9 −2× 10−16

µ/U = 2.5

νi 1 2 3 4 5 6 7
ψ0νi -1.27 0.903 -0.340 0.338 -0.0251 0.0251 0.00110
ψνi0 1.05 0.704 0.175 0.174 0.00527 0.00527 −1× 10−15

Table 4.1: The transition parameters ψ0νi or ψνi0 for W/U = 0, J/U = 0.02 and different values of µ/U .

Similar to the calculation of the MF parameter ψi, we have to multiply the expansion coefficients
of consecutive Fock states |ni〉 and |ni + 1〉. Thus, the absolute values of ψ0νi and ψνi0 should
be the largest for the state |νi〉 that has roughly one particle more or less than the ground state,
respectively. This implies that, in general, it is not possible to find one single excited state that
maximizes both ψ0νi and ψνi0.

In table 4.1, the values for the transition parameters for the first seven excited states are
listed, again for no disorder, J/U = 0.02, and µ/U ranging from 2.0 to 2.5. As one can see, the
parameters are the largest for the first two excited states. From there on, the further away one
moves from the ground state in energy, the further away one also moves in Fock space. Thus,
in general, it holds that the higher the excitation energy, the smaller the transition parameter.

However, for each of the first three or four excited states, νi . 4, at least one of the two
amplitudes ψ0νi and ψνi0 is roughly of the same order of magnitude as the maximal amplitude.
Thus, depending on the actual value of E and the energy denominator of the MF locator
GMF
νi (E0 ± E) = (±E −∆εµi)

−1, either of these states might be eligible.
An important point, which simplifies the problem of selecting the optimal states, is now given
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by the relative sign of ψ0νi and ψνi0. From table 4.1, it can be seen that for the first excitation,
there is a relative minus sign, whereas for the second excited state both parameters have the
same algebraic sign. This alternating behavior continues for the higher excitation states. The
reason for this is the number of nodes of the eigenstates, i.e., the number of times the expansion
coefficients changes its algebraic sign. The ground state has zero nodes, the first excited states
one node, the second two nodes, and so on. The reason for this can be seen when applying ĥi
to the eigenstate |νi〉,

ĥi|νi〉 =
∑
ni

[
Eni〈ni|νi〉 − JΨi

(√
ni〈ni − 1|νi〉+

√
ni + 1〈ni + 1|νi〉

)]
|nk〉 !

= Eνi |νi〉 , (4.63)

leading to (
Eνi − Eni

)
〈ni|νi〉+ JΨi

(√
ni〈ni − 1|νi〉+

√
ni + 1〈ni + 1|νi〉

)
!

= 0 , (4.64)

for each ni. Using that the bath amplitude Ψi is always positive, for the ground state |νi = 0〉
it follows that all coefficients 〈ni|νi〉 have the same sign since its energy Eνi is always smaller
than the Fock state energies Eni . We can thus choose the ground state to have only positive
coefficients, 〈ni|νi〉 > 0 for |νi = 0〉.

For the first excited state |νi = 1〉 the eigenenergy Eνi is smaller than all Eni , except for the
lowest lying Fock state. Therefore, the coefficients need to change their sign once in order to
fulfill equation (4.64), yielding one node. For the second excited state, there are two Fock states
with lower energies, leading to two sign changes of the coefficients and, therefore, two nodes.
This scheme continues for higher excitations.

As a result of these nodes, the parameter pairs ψνi0 and ψ0νi obtain this alternating behavior
with respect to their relative algebraic sign. This has now an important consequence for the
transition amplitudes,

Tνiµj = −J
(
ψνi0ψ

∗
µj0 + ψ∗0νiψ0µj

)
. (4.65)

If the transition parameter pairs of |νi〉 and |µj〉 both have the same relative sign, then the two
products in the above expression will have the same algebraic sign, i.e., two either negative or
positive quantities are being added. However, if only one parameter pair has a relative minus
sign, then also the two products will have a relative minus sign and one would add a positive and
a negative quantity, yielding a smaller absolute value. This implies, that the transitions between
the first and the second (or the second and the third) exited state are suppressed compared to
transitions from first to first and second to second excited state.

Thus, the selection criterion becomes very simple: We either pick always only the first excited
states or always only the second excited states. Couplings from the first to the third, for example,
are neglected since these states are always well separated in energy. With this restriction to one
excitation band, we can always choose the excited states such that both ψνi0ψ

∗
µj0

and ψ∗0νiψ0µj
are positive numbers.

Later, we will compare both cases to each other. Higher excitation bands might also be of
interest, but will not be investigated in the present work.
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4.2.5 Defining the Effective Model

Having reduced the number of excitations to one per site, we can simplify our notation for the
single-excitation states,

|νi〉 → |i〉 . (4.66)

For the MF ground state, we continue to use the notation |Φ0〉 = |0〉. This will not conflict with
the above notation for the single-excitation states, as the enumeration of the lattice sites starts
at one, i = 1, 2, 3, . . . Ni.

Accordingly, the notation for the MF locator is changed as follows,

GMF
νi (EMF

0 ± E) −→ GMF
i (±E) =

1

±E −∆εi
, (4.67)

with ∆ενi → ∆εi, where we keep the ∆ as a reminder that the energies are excitation energies
measured with respect to the ground state energy. Similar, for the transition amplitudes we
have

Tµiνj −→ Tij . (4.68)

Expression (4.47) for the single-particle Green’s function can then be rewritten as

Gij(E) = 〈0|b̂i |i〉〈i|Ĝ(+E)|j〉〈 j|b̂†j |0〉+ 〈0|b̂†j |j〉〈 j|Ĝ(−E)|i〉〈i|b̂i |0〉 , (4.69)

where we have dropped the MF ground state energy EMF
0 from the notation in accordance

to the new notation for the locator (4.67). If we now go back to the initial definition of the
propagator Ĝ, see equation (4.33), its matrix elements can be expressed as

〈i|Ĝ(E)|j〉 = 〈i|ĜMF(E)|j〉+ 〈i|ĜMF(E)δĤĜ(E)|j〉

= GMF
i (E)δij +GMF

i (E)

〈ik〉∑
k

Tik〈k|Ĝ(E)|j〉 (4.70)

where we have used the completeness of the single-excitation states with respect to the truncated
state space, ∑

k

|k〉〈k| = 1 , (4.71)

and

〈i|δĤ|k〉 =

{
Tik for i, k nearest neighbors,
0 otherwise. (4.72)

Apparently, equation (4.70) has the same structure as the locator expansion for the non-
interacting Anderson Hamiltonian, see equation 4.20. The idea now is that we define a single-
particle Hamiltonian that has the same propagator as our truncated single-excitation model.

Comparing the MF locator (4.67) with the original locator (4.21), we find that the excitation
energies ∆εi will serve as the onsite energies of the effective model. Furthermore, the bare
hopping amplitude J has to be replaced by the transition amplitudes Tij . The resulting effective
Hamiltonian for the single-excitation states is then given by

Ĥex =
∑
i

∆εi|i〉〈i|+
〈ij〉∑
ij

Tij |i〉〈j| . (4.73)
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In order to avoid any confusion with the creation and annihilation operators of the initial Bose-
Hubbard model, we will not use second quantization to express the effective Hamiltonian. This
should also stress the point that the excitations are not completely behaving like actual bosonic
particles, but like hard-core bosons. For example, multiple occupation of the same state |i〉
would be unphysical and is, therefore, not allowed. Furthermore, as we have discussed in section
4.2.2, having more than just one excitation in the system will allow for additional transitions
which are not compatible with the idea of the excitation as an effective particle. Therefore, the
identification of the local excitations with single particles is only valid when restricting ourselves
to the single-particle, or rather single-excitation sector.

4.2.6 Summary

The derivation of the effective model stretched across several sections and might appear a bit
unclear at first. Therefore, in this section we want to summarize how we arrived at Hamiltonian
(4.73) and repeat the most important steps. The starting point was that we wanted to calculate
the single-particle Green’s function for the disordered Bose-Hubbard model. In section 4.2.1 we
showed that the Fourier transformed Green’s function (at zero temperature) can be expressed
as

Gij(E) = 〈Ψ0|b̂i Ĝ(E0 + E)b̂†j |Ψ0〉+ 〈Ψ0|b̂†jĜ(E0 − E)b̂i |Ψ0〉 , (4.74)

where |Ψ0〉 is the ground state and E0 its eigenenergy. Furthermore, this equation introduced
the propagator Ĝ,

Ĝ(E) =
(
E − Ĥ

)−1
. (4.75)

The argument of the propagator in equation (4.74) implies that all energies are measured with
respect to the ground state energy, Ĝ(E0 ± E) =

(
± E − (Ĥ − E0)

)−1. By separating the full
Hamiltonian into the decoupled MF Hamiltonian ĤMF and the remaining term containing the
fluctuations from the mean field,

Ĥ = ĤMF + δĤ , (4.76)

this propagator could be expanded as follows

Ĝ(E) = ĜMF(E) + ĜMF(E)δĤĜ(E) , (4.77)

where, in analogy to the original locator expansion for the Anderson Hamiltonian, the MF
locator was introduced,

ĜMF(E) =
(
E − ĤMF

)−1
. (4.78)

The next step, see section 4.2.2, was to use the MF eigenbasis in order to represent the locator
expansion of the propagator (4.77),

〈Φα|Ĝ|Φβ〉 = 〈Φα|ĜMF |Φβ〉+ 〈Φα|ĜMFδĤĜ|Φβ〉
= GMF

α δαβ +GMF
α

∑
γ

Tαγ〈Φγ |Ĝ|Φβ〉 , (4.79)

where |Φα〉, |Φβ〉, and |Φγ〉 are eigenstates of ĤMF and Tαγ = 〈Φα|δĤ|Φγ〉. In addition, we
have used that the locator is diagonal in this representation, 〈Φα|ĜMF |Φβ〉 = GMF

α δαβ .
In order to reduce the number of states we have to take into account for the above expansion,

in section 4.2.3 we applied a series of approximations. First, we went back to expression (4.74)
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for the single-particle Green’s function, where we noted that the states |Φα〉 and |Φβ〉 in equation
(4.79) need to have a finite overlap with either b̂i |Ψ0〉 or b̂†i |Ψ0〉 in order to contribute. Since
we do not know the exact form of the full ground state, we made the assumption that the local
transition induced by the creation or annihilation operators is well resolved by the MF ground
state |Φ0〉,

〈Φα|b̂i |Ψ0〉 ≈ 〈Φα|b̂i |Φ0〉 (4.80a)

and
〈Φα|b̂†i |Ψ0〉 ≈ 〈Φα|b̂†i |Φ0〉 . (4.80b)

From this, it directly followed that |Φα〉 (and |Φβ〉) is a single-excitation state, see equations
(4.50) for the definition. We introduced the short-hand notation |Ψα〉 ≡ |αi〉 for these states,
where it is understood that all sites are in their local MF ground state, except for site i which
is in the excited state αi.

Furthermore, we argued that transitions from these single-excitation states to MF eigenstates
with multiple excitations are suppressed, as for each excitation an additional excitation energy
has to be paid. Thus, if we restrict ourselves to the low-energy regime, we can also restrict the
state space to the single-excitation sector and the expansion (4.79) can be rewritten as

〈αi|Ĝ|βj〉 = GMF
αi δαiβj +GMF

αi

〈ik〉∑
γk

Tαiγk〈γk|Ĝ|βj〉 . (4.81a)

with the transition amplitudes

Tαiγk = 〈αi|δĤ|γk〉 =

{
−J〈αi|

(
b̂†i b̂k + b̂†k b̂i

)
|γk〉 for i, k nearest neighbors,

0 otherwise.
(4.81b)

According to equation 4.74, the propagator has to be evaluated for the two arguments E0 ±E,
for which the locator takes the following form,

GMF
αi (±E) =

1

±E −∆εαi
, (4.82)

with ∆εαi being the excitation energy for the local MF eigenstate αi. This expansion corresponds
to a non-interacting tight-binding model with multiple orbitals per site.

In order to map this problem onto Anderson’s original locator expansion, we needed to move
to a single-orbital model, i.e., restrict the number of excitations to one per site. In section 4.2.4
we therefore investigated the local spectrum of the MF Hamiltonian ĥi. For the transition of
an excitation from site j to site i we wrote

Tνiµj = −J
(
ψνi0ψ

∗
µj0 + ψ∗0νiψ0µj

)
, (4.83)

with the transition parameters ψαiβi = 〈αi|b̂i|βi〉. We found that due to different relative
algebraic signs, the transition from a first to a second excited state was suppressed compared
to a transition from first to first or second to second excited state. This led us to the decision
to define separate effective models for the first and the second excited states, i.e., for one model
all states are either the first or the second excited states.

With this we have reduced the state space to one excitation per site. Thus, each state is
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unambiguously determined by the index of excited site. In section 4.2.5 we therefore have
introduced a simplified notation, |νi〉 → |i〉, ∆ενi → ∆εi, Tνiµj → Tij , and GMF

νi → GMF
i . The

single-particle Green’s function can then be written as

Gij(E) = 〈0|b̂i |i〉〈i|Ĝ(+E)|j〉〈j|b̂†j |0〉+ 〈0|b̂†j |j〉〈j|Ĝ(−E)|i〉〈i|b̂i |0〉 , (4.84)

where the propagator is expanded as follows,

〈i|Ĝ(E)|j〉 = GMF
i (E)δij +GMF

i (E)

〈ik〉∑
k

Tik〈k|Ĝ(E)|j〉 . (4.85)

with the MF locator
GMF
i (E) =

1

E −∆εi
. (4.86)

This expansion of the propagator in terms of the MF locators has the exact same form as
the locator expansion for the original Anderson Hamiltonian and we can define the following
effective, non-interacting model,

Ĥex =
∑
i

∆εi|i〉〈i|+
∑
〈ij〉

Tij |i〉〈j| . (4.87)

If we now calculate the single-particle Green’s function for this effective Hamiltonian, we will
obtain the propagator for the interacting Bose-Hubbard model as a result. Of course, this is
only valid within the truncated state space that is restricted to the single-excitation states.

This concludes the derivation of the effective model. In the next section we will see how we
can make use of it in order to calculate the current density.

4.3 The Current Density Within the Single-Excitation
Approximation

In section 4.1.2, we arrived at the following expression for the current density at zero tempera-
ture, T = 0,

Jij = 2J

∫ 0

−∞

dE

2π
Re
{
GRij(E)−GAij(E)

}
, (4.88)

where the integration is restricted to negative energies, E ≤ 0. This allows us to simplify
expression (4.84) for the single-particle Green’s function. The excitation energies in the denom-
inator of the MF locator (4.86) are, by definition, all positive, ∆εi > 0 for all i, and will be
distributed within some interval [∆εmin,∆εmax] with ∆εmin,∆εmax > 0. Consequently, also all
on-site energies of the effective model (4.87) will be distributed within this interval. The first
term in (4.84), which corresponds to particle transport, is evaluated at +E < 0, i.e., outside of
the energy interval of the effective Hamiltonian. As we will see later, in the parameter region of
interest the density of states will vanish for negative energies, N(E) = 0 for E < 0, and thus,
the particle contribution to the transport can be neglected.

The second term in (4.84), which corresponds to hole transport, is evaluated at positive
energies, −E > 0, and will probe the system in regions with finite density of states. Thus,
it can yield a finite contribution to the current density and we can reduce the single-particle
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Green’s function to its hole contribution,

Gij(E) ≈ 〈0|b̂†j |j〉〈j|Ĝ(−E)|i〉〈i|b̂i |0〉 . (4.89)

Moving on, in section 4.1.2 we also found that the current density in equilibrium usually vanishes
as the integrand is purely imaginary. We concluded that a complex phase must be introduced
via the MF parameters. In order to see how this works out, let us again consider the MF locator
expansion of the single-particle Green’s function, where we concentrate on a certain hopping
path Cji from i to j,

GMF
j TjnG

MF
n TnmG

MF
m TmlG

MF
l . . . GMF

k TkiG
MF
i . (4.90)

For the sake of argument, let us now assume that the transition elements have a complex phase,

Tkl = |Tkl|eiϕkl . (4.91)

Then, expression (4.90) can be rewritten as

eiφ(Cji) GMF
j |Tjn|GMF

n |Tnm|GMF
m |Tml|GMF

l . . . GMF
k |Tki|GMF

i , (4.92)

where we have extracted the phase factor accumulated along the path Cij ,

φ(Cji) ≡
∑

(rs)∈Cji
ϕrs = ϕjn + ϕnm + ϕml + . . .+ ϕki . (4.93)

If the phase factor does not depend on the specific path Cji, but only on the initial and the final
site,

φ(Cji)→ φji , (4.94)

it will be the same for every path contributing to the Green’s functions. Thus, this phase factor
can be extracted from the Green’s functions themselves,

G
R/A
ij = eiφij G̃

R/A
ij , (4.95)

where the newly defined Green’s functions G̃R/Aij correspond to the model with real hopping
amplitudes,

Ĥex =
∑
i

∆εi|i〉〈i|+
∑
〈ij〉
|Tij | |i〉〈j| , (4.96)

for which it follows that
Re G̃Rij = Re G̃Aij (4.97a)

and
Im G̃Rij = − Im G̃Aij . (4.97b)
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With this, the current density can be transformed as follows,

Jij = 2J

∫ 0

−∞

dE

2π
Re
{
eiφij

[
G̃Rij(E)− G̃Aij(E)

]}
= 2J

∫ 0

−∞

dE

2π
Re
{(

cosφij + i sinφij
)

2i Im G̃Rij(E)
}

= 4J sinφij

∫ 0

−∞

dE

2π
Im G̃Aij(E) . (4.98)

Thus, if there is a finite phase factor φji 6= 0, a finite current density between sites i and j
is possible, even though no voltage is applied. Still, also the integral itself needs to be finite.
If we consider the long range limit, |xi − xj | → ∞, this will only be the case if the system
is in the extended phase. In the Anderson localized phase, the density correlations will fall
off exponentially as a function of distance, resulting in a vanishing long range current density.
Within the effective single-excitation model (4.96), we can employ already established techniques
for the Anderson Hamiltonian to determine whether the system is localized or not. This implies
that in order to find the transition from SF to BG, it will not be necessary to actually evaluate
the integral in (4.98). In order to check whether the current density can be finite or not, we
only need to find the Anderson transition for the effective Anderson Hamiltonian (4.96).

As we will see in the following sections, unfortunately the assumption (4.94) is not fulfilled
for the disordered model (or at least, it is not apparent). Thus, in the end we will consider
equation (4.98) in the limit φji → 0, where we have sinφji ≈ φji and

lim
φij→0

Jij = 4J

∫ 0

−∞

dE

2π
ImGAij(E)

∣∣∣∣
φij=0

× lim
φij→0

φij . (4.99)

In other words, we will assume that for small phases φij the integral can be evaluated for φij = 0.
If we recall equation (2.52), which provided a relation between the phase gradient of the mean
field ψ(x, t) = |ψ|eiS(x,t) and the velocity v of the superfluid for the ordered and continuous
case,

v =
1

m
∇S(x, t) , (4.100)

we can identify φji → 0 with the limit of very small velocities, |v| → 0. To make the connection
between expressions (4.99) and (4.100), we can use that in the localized regime the Green’s
function will fall off exponentially, whereas in the extended regime it will scale with the system
size,

G
A/R
ij ∼

{
e−|xi−xj |/ξ in the localized regime,

1
|xi−xj | in the extended regime, (4.101)

and we get

Jij ∼ ρsv ∼
{
φije

−|xi−xj |/ξ in the localized regime,
φij

|xi−xj | in the extended regime. (4.102)

Thus, in the localized regime the current density will fall off exponentially and there will be
no superfluid density ρs in the thermodynamic limit. In the extended regime, we get a term
proportional to the phase gradient between sites i and j in accordance to equation (4.100).
While it should be clear that this theory cannot describe the system quantitatively (like, for
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example, predicting the superfluid density ρs), it still is consistent with the general picture of
superfluidity on a qualitative level.

In the next sections, we want to investigate how complex boundary conditions will affect the
MF parameters and, thereby, the parameters of our effective Hamiltonian, eventually leading to
a non-vanishing current density.

4.3.1 Boundary Conditions for the Order Parameter

In this section we want to examine the transition amplitudes in more detail and want to find out
how they can obtain a complex phase. We have seen in section 3.2 that in order to minimize the
energy, the MF parameters will align their phases. Thus, by a global gauge transformation all
MF parameters could be rotated to the positive real axis. Subsequently, also all coefficients of
the MF eigenstates turned out to be real numbers which, in the end, would yield real transition
amplitudes Tlm.

In order to make these amplitudes complex numbers, it is necessary to apply boundary
conditions. For simplicity, we consider the case where i and j are separated in x-direction,
xi − xj = (xi − xj) êx. In the y-z-plane of i and j the complex phase of the MF parameters
shall now be fixed to φi and φj , respectively. Then, in between the two planes the phase has to
change from φi to φj , such that the ground state energy is minimized. Furthermore, in the limit
of |xi−xj | → ∞ it is safe to assume that the phase changes infinitesimally between neighboring
sites. Thus, the effect of the boundary conditions on the absolute values of the MF parameters
is negligible.

In section 3.2.1 we found that the energy is minimized when for all sites k the quantity

Re
{

Ψkψ
∗
k

}
(4.103)

gets maximized. As a reminder, Ψk is the bath amplitude for site k. We already discussed
that for a given bath amplitude, the local MF parameter will adjust to the phase of the bath
amplitude. In the following, we want to discuss how this relates the complex phases ϕk of
ψk = |ψk|eiϕk on neighboring sites.

For the pure case, we can make the ansatz that the complex phases are constant within each
y-z-plane, which yields

Ψkψ
∗
k = (ψk−x + ψk+x)ψ∗k +

∣∣Ψ(y−z)
k

∣∣|ψk| (4.104)

where xk±x = x± êx and Ψ
(y−z)
k are the contributions from the y-z-plane to the bath amplitude.

Maximizing this expression as a function of ϕk leads to the condition

|ψk+x| cos(ϕk+x − ϕk) + |ψk−x| cos(ϕk−x − ϕk) !
= max

⇔ |ψk+x| sin(ϕk+x − ϕk) + |ψk−x| sin(ϕk−x − ϕk) = 0 . (4.105)

With |ψk+x| = |ψk−x|, it immediately follows that ϕk+x − ϕk = ϕk − ϕk−x, and thus,

ϕk = 1
2(ϕk+x + ϕk−x) . (4.106)
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Hence, for a pure system the phase will change linearly from plane i to j,

ϕl =
ϕj − ϕi
xj − xi

(xl − xi) + ϕi (4.107)

where xi, xj , and xl are the x-coordinates of the planes i, j, and l, respectively.
For the disordered case, the above ansatz for Ψ

(y−z)
k is, of course, not valid anymore. Trying to

find the phase field that minimizes the total energy becomes a full lattice problem again, which
is something we want to avoid. If we make the reasonable assumption that the phases do not
differ significantly on one z-y-plane, then the behavior of the phase field is still mainly governed
by equation (4.105). From that, we can at least conclude that the phase field is monotonic,

ϕk−x < ϕk ⇔ ϕk < ϕk+x (4.108a)

and
ϕk−x > ϕk ⇔ ϕk > ϕk+x . (4.108b)

Furthermore, full rotations of the phase by 2π in between i and j can be excluded as they do
not minimize the energy.

Now, let us examine the effect of the complex MF parameters on the MF eigenstates. Letting
the local Hamiltonian ĥk (now with a complex Ψk = |Ψk|eiϕk) act on an eigenstate |νk〉 yields

ĥk|νk〉 =
∑
nk

[
Enk〈nk|νk〉 − JΨk

√
nk〈nk − 1|νk〉 − JΨ∗k

√
nk + 1〈nk + 1|νk〉

]
|nk〉 !

= Eνk |νk〉

(4.109)
leading to(

Enk − Eνk
)
〈nk|νk〉 − JΨk

√
nk〈nk − 1|νk〉 − JΨ∗k

√
nk + 1〈nk + 1|νk〉 !

= 0 . (4.110)

Since the term Enk − Eνk is real and finite, we have the condition

Ψk〈nk − 1|νk〉+ Ψ∗k〈nk + 1|νk〉
〈nk|νk〉

= Enk − Eνk
!∈ R , (4.111)

which is solved by
〈nk|νk〉 = 〈nk|ν̃k〉eiϕknk+iϕνk for all nk , (4.112)

where |ν̃k〉 is the eigenstate for ϕk = 0, see also equation (4.64). The additional phase ϕνk is a
free parameter and can be absorbed in a redefinition of |νk〉. Hence, we can set ϕνk = 0. Now,
for any transition parameter ψµiνi it follows that

ψµkνk = 〈µk|b̂k|νk〉

=

∞∑
nk=0

√
nk + 1 〈µk|nk〉〈nk + 1|νk〉

=
∞∑

nk=0

√
nk + 1 〈µ̃k|nk〉 〈nk + 1|ν̃k〉 eiϕk(nk+1−nk)

≡ ψ̃µkνkeiϕk , (4.113)
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where ψ̃µkνk ∈ R is the transition parameter of the system without boundary conditions. This
means that the transition parameters will have the same complex phase as the MF parameter.
Applying a phase gradient to the ψi therefore directly induces a phase gradient for the transition
parameters. With this result, we can now study the transition amplitudes, which is done in the
next section.

4.3.2 Complex Transition Amplitudes

Let us start with the general expression for the transition amplitudes,

Tkl = −J
(
ψαk0ψ

∗
αl0

+ ψ∗0αkψ0αl

)
,

= −J
[
ψ̃αk0ψ̃αl0 e

i(ϕk−ϕl) + ψ̃0αk ψ̃0αl e
−i(ϕk−ϕl)

]
. (4.114)

For very small phase differences, |ϕk − ϕl| � 1, we can write

Tkl = −J
[(
ψ̃αk0ψ̃αl0 + ψ̃0αk ψ̃0αl

)
cos(ϕk − ϕl) + i

(
ψ̃αk0ψ̃αl0 − ψ̃0αk ψ̃0αl

)
sin(ϕk − ϕl)

]
≈ −J

[(
ψ̃αk0ψ̃αl0 + ψ̃0αk ψ̃0αl

)
+ i
(
ψ̃αk0ψ̃αl0 − ψ̃0αk ψ̃0αl

)
(ϕk − ϕl)

]
≈ −J

(
ψ̃αk0ψ̃αl0 + ψ̃0αk ψ̃0αl

)
ei∆ij(ϕk−ϕl) (4.115)

≡ T̃klei∆ij(ϕk−ϕl) (4.116)

with T̃kl being the transition amplitude for zero phase gradient and

∆kl =
ψ̃αk0ψ̃αl0 − ψ̃0αk ψ̃0αl

ψ̃αk0ψ̃αl0 + ψ̃0αk ψ̃0αl

≤ 1 , (4.117)

where only terms up to first order in ϕk−ϕl were considered. For the ordered case, W = 0, the
transition elements are the same on each site and it follows that

Tkl = T̃ ei∆·(ϕk−ϕl) , (4.118)

where we have omitted the lattice index for all quantities that do not depend on the actual sites.
Furthermore, in the previous section we have found that we can choose the boundary conditions
such that the phase changes only in one direction, e.g., the x-direction, see equation (4.107).
Therefore, the phase φ(Cij) of a certain path Cij from site j to site i, see equation (4.92), only
depends on the distance in x-direction The contributions to the phase (not the absolute value)
from sections going back and forth in x-direction will cancel each other, while movement in y-
and z-direction will not yield any contribution to the complex phase at all. Thus, we get

φ(Cji) = ∆ · ϕj − ϕi
xj − xi

(xj − xi) = ∆ · (ϕj − ϕi) (4.119)
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for each path from i to j. Hence, the phase factor only depends on the phases on the initial and
the final site. For the single-particle Green’s function we can write

Gij(E) = 〈0|b̂†j |j〉〈j|Ĝ(−E)|i〉〈i|b̂i |0〉

= 〈0|b̂†j |j〉〈j|Ĝ(−E)|i〉〈i|b̂i |0〉
∣∣∣∣
ϕi=ϕj=0

× ei(1−∆)(ϕi−ϕj)

= G̃ij(E)× ei(1−∆)(ϕi−ϕj) , (4.120)

i.e., we can extract the phase factor and evaluate the Green’s function for ϕi = ϕj = 0 and
real transition amplitudes T̃ . Note that compared to our initial considerations at the beginning
of section 4.3, which led to expression (4.95), in addition to the phase factor coming from the
propagator 〈j|Ĝ|i〉 here we now have contributions from the two outer matrix elements. The
total phase factor is then

φij = (1−∆)(ϕi − ϕj) =
2
(
ψ̃0α

)2(
ψ̃α0

)2
+
(
ψ̃0α

)2 (ϕi − ϕj) , (4.121)

where we have again omitted lattice indices for the translational invariant quantities. This
expression tells us how the boundary conditions applied to the actual model translate to our
effective single-excitation model. Apparently, the effective phase gets larger if ψ̃0α = 〈0|b̂i|αi〉
gets larger as well, i.e., the more particle-like the excitations are. On the other hand, it gets
smaller for larger ψ̃α0 = 〈αi|b̂i|0〉, i.e., the more hole-like the excitations are. Moreover, if
there was only hole-like transport, ψ̃0α = 0, the complex phase factor would vanish completely.
This implies that, although we are calculating the hole contribution to the Green’s function,
the particle transport is still important. This stresses the point that the effective model is not
a single-particle model, but a single-excitation model, which still contains the multi-particle
nature of the underlying Bose-Hubbard model.

Now that we have discussed the pure case, let us turn to the disordered case with W > 0.
Here, the factor ∆kl in equation (4.116) will depend on the lattice sites k and l and will fluctuate
randomly as a function of the on-site energies εk and εl. Furthermore, the complex phases ϕk
and ϕl will fluctuate as well. Still, in the previous section we have argued that one can at least
assume the phases to change monotonically from ϕi to ϕj between the boundary planes i and
j, see equation (4.108). If we make the assumption that, on average, the phase changes linearly
like in the pure case and that, in addition, the fluctuations from this linear behavior are small
when we take the limit |ϕi − ϕj | → 0, we can write

φ(Cji) =
∑

(k,l)∈Cji
∆kl · (ϕk − ϕl)

≈
∑

(k,l)∈Cji
∆kl

ϕj − ϕi
xj − xi

(xk − xl)

=

[
1

xj − xi
∑

(k,l)∈Cji
∆kl · (xk − xl)

]
· (ϕj − ϕi)

≈ ∆avg · (ϕj − ϕi) , (4.122)
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where in the last step we have assumed that the summation over all ∆kl can be replaced by
the disorder-averaged ∆avg, Since we neglected fluctuations from the linear behavior, again
only hopping events in x-direction can contribute to the total phase factor. Furthermore, the
contributions to the total phase from going back and forth in x-direction, which can be finite
due to the random ∆kl, are also neglected. Within this approximation, the total phase has the
same form as in the pure case,

φij = (1−∆avg)(ϕi − ϕj) , (4.123)

with ∆avg now being a disorder-averaged quantity. This, of course, does not represent a thorough
derivation, but should only serve as a motivation for approximating the current density according
to equation (4.99) in the limit of a small phase difference, |ϕi − ϕj | → 0.

4.3.3 Summary

The central quantity of interest is the current density,

Jij = 2J

∫ 0

−∞

dE

2π
Re
{
GRij(E)−GAij(E)

}
, (4.124)

which we want to evaluate within the single-excitation approximation. We have found that
in order for the integrand in the above expression to be finite, we need to apply boundary
conditions which fix the complex phase of the MF parameters on two boundary planes i and j
of the system to different values ϕi and ϕj . These boundary conditions will result in a finite
gradient of the complex phase, which is related to the superfluid velocity, see equation (4.100).
In sections 4.3.1 and 4.3.2, we have argued that for a very small phase difference, |ϕi−ϕj | � 1,
the gradient can be assumed to be constant (or, equivalently, the slope of the phase field is
assumed to be linear), which allowed us to extract the phase factor from the single particle
Green’s functions,

Gij(E) = G̃ij(E)× ei(1−∆avg)(ϕi−ϕj) , (4.125)

where G̃ij corresponds to the case without boundary conditions, where ϕi = ϕj = 0. Further-
more, ∆avg is a quantity that depends on the nature of the excitations, see equation (4.117).
With this, the expression for the current density can be rewritten as follows,

Jij = 4J sinφij

∫ 0

−∞

dE

2π
Im G̃Aij(E) , (4.126)

with φij = (1−∆avg)(ϕi − ϕj). As we have discussed in the beginning of section 4.3, whether
or not the current density is finite is now determined by the mobility edge of the effective
single-excitation model. If its spectrum is completely localized, the Green’s function will fall off
exponentially for all energies E, and the integral will vanish in the limit |xi−xj | → ∞. If there
is, however, an interval with extended states, the integral will be finite and will scale with the
system size, see also expressions (4.101) and (4.102). In this case, one finds that the current
density is proportional to the gradient of the phase field, as one would expect.

Thus, we now have a recipe to find the boundary between SF and BG phase, which, for a
fixed µ/U , is given by the hopping amplitude J/U at which the effective model undergoes the
Anderson transition, i.e., when its spectrum becomes completely localized. This concludes this
section and we now turn to the numerical evaluation of the theory.
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4.4 Numerical Evaluation and Results for Three Dimensions

In this section, we will present all individual steps of the procedure that lets us finally resolve
the BG to SF transition. All calculations are performed for three spatial dimensions, d = 3.
The starting point will be to determine the parameters of the effective Hamiltonian.

4.4.1 Parameters of the Effective Model

The effective single-excitation Hamiltonian was determined to have the following form,

Ĥex =
∑
i

∆εi|i〉〈i|+
∑
〈ij〉

Tij |i〉〈j| (4.127)

where the parameters are determined by the local excitations |i〉 and the ground state |0〉,

∆εi = 〈i|ĥi|i〉 − 〈0|ĥi|0〉 and Tij = 〈i|δĤ|j〉 . (4.128)

Thus, in order to calculate the parameters of the model, we first need to determine the excited
states of the local Hamiltonians ĥi. In section 4.2.4 we have discussed that we will restrict our-
selves to the case where we either select only the first excitations or only the second excitations,
which we will label by α = 1 and α = 2, respectively.

Since the on-site energies εi of the disordered Bose-Hubbard model are randomly distributed
by a distribution function Pε, the parameters of the effective model will also be randomly dis-
tributed. Furthermore, since the excitation energies and the transition elements both depend
on the excited state, there will be a correlation between these three quantities. Therefore, in
principle one would have to deal with a joint probability distribution P

(
∆ε, ψ0α, ψα0

)
. However,

while it is possible to extend the CPA formalism to models with random hopping amplitudes
[84], which is also referred to as off-diagonal disorder (ODD), the self-consistent theory of local-
ization was only derived for the case of random on-site energies, i.e., diagonal disorder without
ODD. Without going into detail, as a result of the ODD the self-energy will not be local any-
more. This feature, however, was used in the derivation of the self-consistent equation that
determines the diffusion coefficient. Hence, in order to include ODD a proper rederivation of
the theory is needed. This turns out to be extremely difficult and would eventually require
further approximations. Instead, we will introduce an approximation right away that directly
allows us to use the self-consistent theory as is. To do so, we will replace the random hopping
amplitudes Tij by their disorder-averaged value Tavg. This approximation is only justified in
the regime of strong disorder where the ratio W/J is large. There, the width of the ODD will
be small compared to the width of the diagonal disorder due to the J in expression (4.83) for
the effective hopping amplitudes.

Within this approximation, we only need to determine the probability distribution for the
excitation energies. Formally we can write

P∆ε(∆ε) =

∫
dεPε(ε)

∫
dψ1Pψ(ψ1) . . .

∫
dψzPψ(ψz)δ

(
∆ε−∆ε(ε, ψ1, . . . , ψz)

)
, (4.129)

where we have used that the local spectrum is determined solely by the local Hamiltonian,
which depends on the on-site energy ε and the MF parameters ψi on the z nearest neighbor
sites. The MF problem was already solved in chapter 3, which provided us with the probability
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Figure 4.2: The excitation energy distribution for α = 1 in the atomic limit, J/U = 0, for W/U = 0.6
(solid blue curve) and W/U = 0.8 (dashed red curve).
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distribution Pψ for the MF parameters. Furthermore, the function ∆ε(ε, ψ1, . . . , ψz) gives the
excitation energy of the state that was chosen according to the selection criterion for given on-
site energy and MF parameters. This, of course, involves diagonalizing the local Hamiltonian,
which implies that the probability distribution P∆ε has to be determined numerically. Here, we
employ the same techniques we already used to determine the MF parameter distribution Pψ,
see also section 3.2.4.

Similar, the disorder-averaged hopping amplitude can be written as

Tavg = J
(
ψ∗0αiψ0αj + ψαi0ψ

∗
αj0

)
.

= J
(
ψ∗0αi ψ0αj + ψαi0 ψ

∗
αj0

)
.

≡ J
((
ψ0α

)2
+
(
ψα0

)2)
, (4.130)

with the disorder-averaged transition parameters

ψ0α =

∫
dεPε(ε)

∫
dψ1Pψ(ψ1) . . .

∫
dψzPψ(ψz) ψ0α(ε, ψ1, . . . , ψz) (4.131)

and
ψα0 =

∫
dεPε(ε)

∫
dψ1Pψ(ψ1) . . .

∫
dψzPψ(ψz) ψα0(ε, ψ1, . . . , ψz) , (4.132)

where we have used that expectation values of observables from different lattice sites factor-
ize within the MF theory, see also section 3.2.4. Again, the functions ψ0α(ε, ψ1, . . . , ψz) and
ψα0(ε, ψ1, . . . , ψz) give the transition elements for the excited state |α〉 that was chosen accord-
ing to the selection criterion (i.e., either always the first or the second excited state) for given
input parameters ε and ψ1, . . . , ψz. Also, the excited states are fixed such that the transition
parameters all have the same algebraic sign, which is possible as we have discussed in section
4.2.4.

It is useful to first consider the atomic limit, J/U = 0. Here, the distribution P∆ε can be
derived analytically. By comparing the Fock state energies En, we already found that the ground
state occupation number ng is determined by

ng < (µ− ε)/U < ng + 1 , (4.133)

see also section 3.1.2. Similar, one finds that for (µ − ε)/U ∈ (ng, ng + 1/2) the first excited
state is given by |ng − 1〉, whereas for (µ − ε)/U ∈ (ng + 1/2, ng + 1) it is given by |ng + 1〉.
Accounting for all possible cases and considering that for ng = 0 only the state |ng + 1〉 exists,
one finds

P∆ε(∆ε) =
1

W

[
θ
(
∆ε
)
θ
(
W/2− µ−∆ε

)
+
∞∑
n=1

(
θ
(
∆ε−max[0, µ−W/2− n]

)
θ
(

min[1/2, µ+W/2− n]−∆ε
)

+ θ
(
∆ε−max[0, n+ 1− µ−W/2]

)
θ
(

min[1/2, n+ 1− µ+W/2]−∆ε
))]

.

(4.134)

Let us concentrate on the case W/U < 1 and µ/U > 0. Here, the atomic limit distributions are
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Figure 4.3: The left column shows the distribution of the MF parameter, the right column the dis-
tribution of the excitation energies for the first excited states, for different values of µ/U , J/U
and fixed disorder W/U = 0.6. All distribution functions are normalized to their maximal value,
P̂x(x) = Px(x)/max{Px(x)}.
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Figure 4.4: The same plots as in figure 4.3, but now for a different disorder W/U = 0.8.
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restricted to the energy interval ∆ε ∈ [0, 1/2] and are invariant under a shift of the chemical
potential by the interaction strength, µ/U → µ/U + 1.0. Hence, we can restrict ourselves to
considering the distribution for µ/U ∈ [1.0, 2.0], see figure 4.2. For µ/U = 1.0 and µ/U = 1.5,
P∆ε has a width of W/2. For the intermediate cases, the width varies between W/2 and 1/2.
Furthermore, the effective distribution is always broader for the larger initial disorder width
W/U . With this, we can now turn to the general case, J/U > 0.

Figures 4.3 and 4.4 show the numeric results for the distribution function P∆ε for different
values of µ/U , J/U , andW/U for the first excitation band. Also, the corresponding distribution
functions Pψ for the MF parameter are depicted, which were calculated previously and are used
to evaluate the integration in (4.129). As always, the on-sites energies εi of the initial model
are distributed uniformly in the interval [−W/2,+W/2].

The first thing one notices is that the larger the hopping amplitude, the more the excitation
energies are shifted towards higher energies. Furthermore, if the average MF parameter ψ gets
small, P∆ε approaches the box-like shape of the atomic limit distributions. For larger J/U and
ψ , this box-like shape gets more and more washed out and at the same time the width of the
distribution decreases.

Comparing µ/U = 1.0 and µ = 2.0, we see that the width of the effective distribution is smaller
for the larger chemical potential. Furthermore, at µ/U = 1.5, i.e., above the second Mott lobe,
the width is increased compared to the two other cases, where the system is in between two
Mott lobes. This tells us that the actual shape of the effective distribution depends on the
properties of the system in a rather non-trivial way. For example, larger MF parameters can
lead to a smaller width of P∆ε, but do not necessarily need to. Finally, comparing the results
for W/U = 0.6 and W/U = 0.8 in figure 4.3 and 4.4, respectively, we again see that, in general,
the larger disorder width leads to a larger width of the effective distribution P∆ε, as one would
expect from the atomic limit results,

Next, in figure 4.5 the distributions for the first and the second excited states are compared
for different model parameters. We see that the distribution function for the second excitation
band is, in general, more box-like. Again, this can be understood by looking at the eigenstates
and the local Fock energies En, see figure 4.1. The energies En increase quadratically with
n when going away from the minimum of the potential. The coupling between the particle
numbers, however, increases only with the square root of n, which is therefore suppressed. As
a consequence, the higher the excitation, the more it will approach the form of a Fock state.
Thus, the effective distributions P∆ε for the higher excited states will tend to look more like
they would in the atomic limit, i.e., like a composite of boxes.

Furthermore, we see that the energies of the first and the second excitation band are separated.
One might think that due to the random on-site energies, there can be second excitations that
have a lower excitation energy than first excitations on other sites. However, this is obviously
not the case and can be understood best when going again to the atomic limit, J/U = 0. Since
the on-site energy effectively acts as a local shift of the chemical potential, we can consider
the ordered case with ε0 = 0 for variable µ/U . Again, the ground state particle number ng is
determined by

µ/U < ng < µ/U + 1 . (4.135)

For the adjacent particle numbers, we have

Eng+1 − Eng = −µ+ ngU > 0 and Eng−1 − Eng = µ− (ng − 1)U > 0 . (4.136)

104



4.4 Numerical Evaluation and Results for Three Dimensions

∆ǫ/U

P̂∆ǫ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

(a) µ/U = 1.0, J/U = 0.01

∆ǫ/U

P̂∆ǫ

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

(b) µ/U = 1.0, J/U = 0.02

α
1

2

∆ǫ/U

P̂∆ǫ

0.2 0.4 0.6 0.8
0.0

0.5

1.0

(c) µ/U = 1.5 J/U = 0.015

∆ǫ/U

P̂∆ǫ

0.3 0.5 0.7 0.9
0.0

0.5

1.0

(d) µ/U = 1.5 J/U = 0.02

α
1

2

Figure 4.5: Comparison between the effective distributions for the first (blue curve) and the second
excitation band (red curve) forW/U = 0.6 and different values of µ/U and J/U . Again, the distributions
are normalized to their maximal value.

The excitation energies are exactly the same when µ/U = ng − 1/2, i.e., when the minimum of
En is located at integer n = ng,

Eng+1 − Eng = Eng−1 − Eng = U/2 . (4.137)

Going away from this point, one gets

Eng±1 − Eng = U/2∓ (µ/U − ng + 1/2)U . (4.138)

Thus, away from the degenerated point the first excited state always has an excitation energy
smaller than U/2 and the second excited state an excitation energy larger than U/2.

When the hopping is switched on, J/U > 0, the coupling between the particle numbers will
result in a repulsion of the energy levels, yielding a larger gap between the first and the second
excitations. This can be seen best in figure 4.5c and 4.5d. For smaller hopping, when the system
is in the vicinity of the second Mott lobe, the two distributions are very close in energy, whereas
for the larger hopping they start to separate. Hence, it is justified to categorize the excitations
into two bands within the MF theory or, equivalently, the atomic limit of our effective model,
i.e., Tavg = 0.
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Figure 4.6: The standard deviation σ(x) of the transition parameters x = ψ0α, ψα0 for W/U = 0.6 and
α = 1 as a function of the hopping amplitude J/U . The dashed curves show the corresponding relative
error, σ(x)/x̄.

Now, let us investigate the behavior of the average hopping amplitude. In figure 4.6 the
standard deviation σ(x) =

(
x2−x̄2

)1/2 for x = ψ0α, ψα0 is plotted for µ/U = 1.0 and µ/U = 2.5,
i.e., once between two Mott lobes and once above one Mott lobe. In principle, both cases show
the same behavior, that is, the standard deviation gets larger for smaller J/U . For µ/U = 2.5,
the values remain constant once the system enters the Mott lobe at J/U ' 0.01. Within a Mott
lobe, the local Hamiltonian ĥi is independent of the hopping amplitude and diagonalization will
always yield the atomic limit result.

Concerning the validity of our theory, these are actually good news. The error we make by
averaging over the hopping amplitudes will be the largest when the hopping is small and the
diagonal disorder is the dominating term. For larger hopping, when the kinetic terms becomes
more and more important, the error we make by neglecting the ODD gets smaller. Still, the
relative error becomes quite large for small J/U and reaches one in the atomic limit. However,
this is an approximation we have to make in order to be able to continue with this theory.
In figure 4.7 the effective hopping Tavg is shown as a function of the initial or bare hopping
amplitude J/U for various different parameters. For α = 1, the effective hopping increases
when the bare hopping is increased. Also, in principle Tavg is larger for larger µ/U , as a larger
chemical potential implies higher filling ρ, see figures 4.7a and 4.7b. However, this is not always
the case as can be seen when comparing the curves for µ/U = 1.2 and µ/U = 1.4 in figure 4.7c.
Here, the larger chemical potential puts the system above the second Mott lobe, which leads to
a reduced effective hopping. Furthermore, in figure 4.7b we can see that the slope of Tavg as a
function of J/U is slightly increased once the system leaves the MI phase. Within the MI phase,
the filling of the lattice is constant, and therefore, Tavg increases linearly with J/U . Outside
the Mott lobes, the filling (in general) increases with J/U for constant µ/U , see also figure 3.12,
leading to a non-trivial dependence of Tavg on J/U and an increased slope.

For α = 2, shown in figure 4.7d, the behavior is quite different as at some point the growth
of the effective hopping Tavg is slowed down. Eventually, Tavg even decreases slightly when J/U
is increased. As we will see later, this will have a rather drastic effect on the behavior of the
mobility edges for α = 2 as compared to α = 1.
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Figure 4.7: The disorder-averaged effective hopping amplitude Tavg as a function of J/U for different
values of W/U , µ/U , and α. Tavg is always given in units of the repulsion strength U . The gray dashed
line gives the bare hopping, Tavg = J/U .

107



4 Transport Theory for the Disordered Bose-Hubbard Model

Finally, in figures 4.7e and 4.7f we compare Tavg for two different disorder strengths,W/U = 0.6
and W/U = 0.8. For µ/U = 0.4, both systems are in the MI phase for small hopping, and the
curves for Tavg are practically the same. The system with the larger disorder width leaves the
MI phase at smaller hopping, J/U ' 0.020, see also figure 3.13. At this point, the two curves
separate and the effective hopping becomes larger for larger W/U . At J/U ' 0.024 also the
other system leaves the MI phase and the two curves approach each other again.

For µ/U = 1.2, the situation is first reversed with Tavg being larger for the smaller W/U . At
some point, J/U ' 0.02, the two curves intersect and Tavg is again larger for the larger disorder
width.

To sum up the above, the behavior of both P∆ε and Tavg is rather complex and varies from
parameter set to parameter set. The properties of the effective model will depend on the
interplay of the two quantities. In order to avoid getting lost in the details, at this point we
stop the discussion and will now move on with the numerical evaluation.
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Figure 4.8: The CPA DOS N(E) (solid curve) and the underlying energy distribution P∆ε (dashed curve)
of the first excitation band, for W/U = 0.6, µ/U = 1.0, and different hopping amplitudes.
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4.4.2 Density of States within the Coherent Potential Approximation

In order to use the self-consistent theory of localization, one first needs to determine the disorder-
averaged single-particle Green’s function. As already mentioned several times, this will be done
employing the coherent potential approximation (CPA). In appendix B.3, starting from the
Anderson Hamiltonian the following CPA conditional equation is derived,∫

dεPε(ε)
ε− Σ(E)

1− 〈G(E)〉
(
ε− Σ(E)

) !
= 0 , (4.139)

with the disorder-averaged local Green’s functions 〈G(E)〉 = 〈Gii(E)〉 and the self-energy Σ(E).
The local Green’s function is calculated from the disorder-averaged Green’s functions in mo-
mentum space,

〈G(E)〉 =
1

Ni

∑
p

〈Gp(E)〉 , (4.140)

with
〈Gp(E)〉 =

1

E − εp − Σ(E)
(4.141)

and the free lattice dispersion εp = −2J
∑d

a=1 cos pa. To apply the CPA formalism to our
effective Hamiltonian, we only need to replace Pε → P∆ε and J → Tavg. Equation (4.139) is
then solved self-consistently as outlined at the end of appendix B.3.

Once the self-energy ΣR/A(E) = Σ(E ± iη) is determined for a given energy E ∈ R, one can
calculate the density of states (DOS)

N(E) = ∓ 1

π
Im〈GR/A(E)〉 = ∓ 1

π
Im〈G(E ± iη)〉 . (4.142)

Figure 4.8 shows a comparison of the CPA DOS and the corresponding effective disorder dis-
tribution P∆ε for fixed W/U = 0.6, µ/U = 1.0 and different hopping amplitudes. For small
J/U , N(E) has more or less the same shape as P∆ε. This is to be expected, as a small hopping
implies a small effective hopping Tavg, and for Tavg = 0 the density of states equals the disor-
der distribution. However, due to the finite hopping, the DOS is broadened compared to the
disorder distribution.

When J/U is increased, the DOS gets broader and broader and the features of the underlying
disorder distribution start to disappear. For J/U = 0.03, the DOS has almost completely taken
the form of the bare DOS for a pure lattice system. The disorder width is roughly ∼ 0.2,
whereas the bare DOS would have a width of ∼ 4dJ = 0.36 (see section 2.1.1), assuming the
transition amplitudes being of the order O(1). This is already the regime where the kinetic term
is dominating the disorder term of our effective model and where the approximation Tij → Tavg
is not really justified anymore. However, we will see later that the mobility edge is located at
smaller hopping, i.e., where the approximation is still applicable.

Figure 4.9 now shows the CPA DOS for both the first and the second excitation band. For
µ/U = 1.0, we see that the effect of the hopping is much smaller for the higher band. Further-
more, they remain well separated, unlike for µ/U = 1.5, where the DOS of both bands overlap,
i.e., one cannot identify two single bands anymore. At this point, one might question the validity
of the selection scheme, which strictly separates the first and the second excited states.

Finally, we want to point out one feature of the CPA that is apparent in all plots of the DOS.
When performing the calculations, we scan over all energies E within the true upper and lower
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Figure 4.9: The CPA DOS N(E) (solid curves) of the first (α = 1) and second (α = 2) excitation band,
for W/U = 0.6, and different values for µ/U and J/U . The dashed curves show the corresponding
disorder distributions P∆ε, see also figure 4.5.

boundaries of the DOS, i.e. E ∈ [Emin, Emax] with Emin/max = ∆εmin/max ∓ 2d Tavg (see also
section 2.2.3). The CPA DOS, however, is only finite within a smaller interval and vanishes
before reaching Emin and Emax. This is a result of the single-site approximation used for the
CPA, which basically neglects correlations between different sites, see appendix B.3. Therefore,
the CPA is not capable of resolving the highly correlated Lifshitz regions and thus, also not the
Lifshitz tails of the true DOS. For the problem of finding the Anderson transition, however, this
will not matter as the Lifshitz tails are always localized, see also figure 2.7 in section 2.2.7.

4.4.3 The Diffusion Coefficient and the Localization Length

In section 2.2.7 as well as in appendix B.4, the self-consistent theory of localization was intro-
duced as an approximative method that allows for the calculation of disorder-averaged correla-
tion functions. The theory leads to the definition of a generalized diffusion coefficient D(E,ω),
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which is determined by the self-consistent equation

lim
ω→0

D(E,ω) = D0(E) +
2 Im ΣA(E)

[πN(E)]2D0(E)

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp(E)〉〈GAp′(E)〉2

}
(p + p′)2 + 1/ξ(E)2

(vp′ · q̂) ,

(4.143)
and is related to the localization length ξ(E) via

ξ(E) = lim
ω→0

√
−D(E,ω)

iω
. (4.144)

In the localized regime, the localization length is finite and the diffusion vanishes, ξ(E) <∞ and
D(E) ≡ limω→0D(E,ω) = 0, whereas in the extended regime one has ξ(E) =∞ and D(E) > 0.
The method we use to evaluate conditional equation (4.143) is presented in appendix B.4.2.

In figure 4.10 both D(E) and ξ(E) are plotted for different J/U , fixed W/U = 0.6 and
µ/U = 1.0, each time for the first excitation band. The corresponding CPA DOS can be found
in figure 4.8.

For J/U = 0.01 in figure 4.10a, the diffusion coefficient vanishes across the whole band, and
consequently, the localization length stays finite for all energies. Thus, the effective model is
in the localized regime. This implies that the disordered Bose-Hubbard model is in the BG
phase and no long-range SF current is possible. Moreover, with a maximal localization length
of ξ ' 1.5, the system is deeply localized and the current decays very rapidly. Note that the
localization length has two peaks, one at each end of the spectrum, which is plotted in figure
4.8a. The lower peak is more pronounced, which is a consequence of the larger DOS for these
energies. This is actually in accordance with results for the original Anderson Hamiltonian with
a box distribution [63], which show a similar profile for ξ as a function of the energy.

In figure 4.10b, the same quantities are shown for a larger hopping J/U = 0.015. Here,
we observe a region in energy with finite diffusion and infinitely large ξ, bound by the two
mobility edges. Outside this region, the diffusion vanishes and the localization length is finite,
ξ <∞. When approaching the mobility edges from within the localized regions, the localization
length diverges, ξ → ∞. Similar, the diffusion vanishes when approaching the mobility edges
from within the diffusive (or extended) region. Since the spectrum is not completely localized,
long-ranged current is possible and the system is in the SF phase.

Finally, in figure 4.10c the results for even larger hopping is shown, J/U = 0.02, where almost
the entire spectrum (excluding the Lifshitz tails) is in the diffusive regime, D(E) > 0. The
upper mobility edge is very close to the upper boundary of the CPA DOS and the divergence
of the localization length happens within a very small region in energy. Moreover, the lower
mobility edge coincides with the lower boundary of the CPA DOS, i.e., the lower localized region
is not resolved.

Now that we have discussed some typical cases for the localization length and the diffusion
coefficient for fixed parameters, we will move on to investigate the dependence of these quantities
on the parameters of the disorder Bose-Hubbard model. As the Anderson transition can be
described either by D(E) or ξ(E) alone, it is sufficient to take only one of them into account.
We will restrict ourselves to the diffusion coefficient in the following sections, as it is easier to
calculate than the localization length.
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Figure 4.10: The localization length ξ(E) and the diffusion coefficient D(E) (normalized by the bare
diffusion D0(E)), shown for W/U = 0.6, µ/U = 1.0, and different hopping amplitudes J/U . The dashed
red lines show the mobility edges (M.E.) of the spectrum. All plots are for the first excitation band,
α = 1. See figure 4.8 for the corresponding CPA DOS.
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4.4.4 Density of States and Diffusion as Functions of the Hopping Amplitude

As discussed in section 2.3.3, the SF to BG transition will be triggered by increasing the strength
of the disorder. If the width of the disorder distribution W/U is kept constant, the parameter
that has to be varied is the hopping amplitude J/U . For each value of the chemical potential
we will then find one critical hopping amplitude at which the effective model undergoes the
Anderson transition, i.e., from D(E) = 0 for all E to D(E) > 0 for some E as shown in figures
4.10a and 4.10b, respectively. This implies that, in principle, for each J/U one has to take into
account the full spectrum of the effective model. Before searching for this transition across the
whole parameter space of the Bose-Hubbard model, we first will investigate the behavior of the
CPA DOS and the diffusion coefficient as functions of J/U for some typical cases of µ/U .

Figure 4.11 shows both quantities for W/U = 0.6 and different values of µ/U for the first
excitation band, α = 1. For µ/U = 1.0 and µ/U = 2.0, i.e., between two Mott lobes, the CPA
DOS N(E) first narrows and then broadens again when the hopping amplitude is increased.
This is a result of two competing mechanisms. On the one hand, in section 4.4.1 we have seen
that the width of the effective energy distribution P∆ε gets smaller when J/U is increased. On
the other hand, the width of the free lattice DOS increases linearly with J/U . At some point,
the broadening due to the kinetic part of the Hamiltonian becomes dominant over the narrowing
due to the decreasing width of the disorder distribution.

Furthermore, the lower boundary of N(E) is shifted towards higher energies E when J/U is
increased. When J/U is increased, the coupling between the local Fock states in Hamiltonian ĥi
is increased as well, see expression (3.39). As a result, the splitting of the local levels increases,
leading to a larger gap between the ground state and the excited states.

For µ/U = 1.5, i.e., above the second Mott lobe, the behavior is a bit different. For
J/U . 0.014, the system is in the MI phase (according to the stochastic MF theory, see section
3.2.3). Consequently, all MF parameters vanish, Pψ(ψ) = δ(ψ), and the equation (4.129) for
P∆ε always yields the atomic limit result, independent of the actual J/U . When the hopping is
increased, P∆ε remains the same and only Tavg is increased. Consequently, the width of N(E)
increases monotonically and the lower boundary first shifts towards smaller E. Once the system
has left the MI phase, the gap begins to grow due to the same mechanisms as described above.

At this point one might ask why the MI phase is considered at all when determining the BG
to SF transition. An integral step for deriving the SF current was applying a gradient to the
complex phase of the MF parameters via boundary conditions, see section 4.3.1. In MI phase,
where all ψ vanish, this is, of course, not possible, and thus, no finite SF current is possible.
Therefore, by construction the transition to the SF phase will take place outside the Mott lobes.

Still, the effective model can also be defined within the MI phase. Of course, here the approx-
imation of averaging over the transition amplitudes, Tij → Tavg is not a very good one anymore.
The simple reason for this is that the excitations can be either |ng + 1〉 or |ng − 1〉, with ng
being the ground state particle number. These states are completely decoupled, Tij = 0 for
|i〉 = |ng± 1〉 and |j〉 = |ng∓ 1〉. The first excitation band (as well as the second) will consist of
both types of states. By replacing the hopping amplitudes with the disorder-average, we couple
states that are actually decoupled.

However, as we have discussed in section 3.2.3, the stochastic MF theory is not capable of
resolving the true shape of the Mott lobes as it cannot reproduce the rare Lifshitz regions. As
a result, numerically we obtain Pψ(ψ) = δ(ψ) already before the system actually enters the
MI phase. In order to take this Lifshitz regime also into account, we extend the numerical
calculations to these regions, where we approximate the real MF parameter distribution by the
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Figure 4.11: Density plots of the CPA DOS N(E) (left column) and the diffusion coefficient D(E) (right
column) for fixed W/U = 0.6 and three different values of µ/U . Each plot shows the behavior of the full
spectrum as a function of the hopping amplitude J/U . For each value of J/U , the plots of N(E) and
D(E) range from the lower to the upper true boundaries of the DOS. The white curves in the diffusion
plots show the trajectory of the mobility edges. All plots are for the first excitation band, α = 1.
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Figure 4.12: The same plots as in figure 4.11, again for W/U = 0.6, but now for the second excitation
band, α = 2.
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numerically obtained δ-distribution. Moreover, in case we find the Anderson transition of the
effective model to be located within the actual Mott lobes, it will allow us to draw conclusion
about the shortcomings of our theory.

Now, let us turn to the diffusion coefficient D(E). As one would expect, in general the
diffusion increases when J/U is increased. As at the same time the band is shifted towards
higher E, at the lower boundary of the spectrum the diffusion may also get smaller for fixed E.

Going into the opposite direction, J/U → 0, the regions with vanishing D(E) at the edges
of the spectrum start to spread towards the center of the band. Upon further decreasing J/U ,
at some value of the hopping the diffusion vanishes for all E. This point marks the Anderson
transition.

For both µ/U = 1.0 and µ/U = 2.0, the trajectories of the mobility edges exhibit a nose at
lower energies E. This is due to the increased DOS at the lower boundary of the spectrum, see
also figure 4.8. For µ/U = 1.5, we observe the formation of two noses, i.e., four mobility edges.
As the DOS does not show any significant features, see also figures 4.9c and 4.9d, this must be
an artifact of the self-consistent theory of localization. In fact, the same unexpected behavior
can be observed in the phase diagram of the original Anderson Hamiltonian, see discussion in
section 2.2.7.

Between the Mott lobes, µ/U = 1.0 and µ/U = 2.0, the Anderson transition takes place at
smaller J/U for the larger chemical potential. This is to be expected since the effective hopping
is larger for larger filling. For µ/U = 1.5, the transition is pushed towards larger J/U due to
the effect of the Mott lobes on both the excitation spectrum as well as the effective hopping,
which we have discussed in section 4.4.1.

In figure 4.12 the same plots are shown, but now for the second excitation band, α = 2. It can
be seen that the critical J/U , at which the Anderson transition takes place, varies on a much
larger scale for different µ/U as compared to the first band.

For µ/U = 1.0 and µ/U = 2.0, the Anderson transition takes place at much higher values
of J/U than for α = 1. Thus, for finding the BG to SF transition, they can be neglected. For
µ/U = 1.5, however, the transition takes place in the same J/U regime as for α = 1. Still, here
the first excitation band undergoes the transition for smaller J/U than the second band and the
BG to SF transition is determined by the first excitations. However, there will be cases where
this order is reversed as we will see in the next section.

4.4.5 Trajectory of the Anderson Transition

In the previous section we have seen that for fixed µ/U , the spectrum of the effective model
undergoes the Anderson transition at a certain critical hopping amplitude. According to our
theory, this point then also corresponds to the SF to BG transition of the disordered Bose-
Hubbard model. In order to resolve the boundary between the SF and the BG phase in the
µ/U −J/U parameter space, we need to determine the trajectory of the Anderson transition as
a function of µ/U .

In order to find the critical hopping for a given µ/U , we will start by scanning the spectrum
for a fixed J/U . Depending on whether we find a completely localized spectrum or not, we will
continue to scan the spectrum for a larger or a smaller J/U , respectively. This way, we eventually
pinpoint the Anderson transition (with the maximal uncertainty chosen to be 0.03/1000) without
having to perform the full scans that were shown in figures 4.11 and 4.12. For each J/U , this
involves solving the MF problem and determining the distribution Pψ, from which we can derive
P∆ε and Tavg. Then, we use the CPA to calculate the disorder-averaged single-particle (or,
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Figure 4.13: The trajectories of the Anderson transition for W/U = 0.6 and W/U = 0.8, each time
for both the first and second excitations, α = 1 and α = 2, respectively. The inset in (b) shows a
magnification of the region where the curves for the two bands almost touch. The dashed red curves
indicate the corresponding first three Mott lobes (ML).

rather, single-excitation) quantities and, finally, calculate the diffusion within the self-consistent
theory of localization for all energies E of the excitation spectrum.

The results for W/U = 0.6 and W/U = 0.8 and α = 1, 2 are shown in figure 4.13. First
we note that no Anderson transition trajectory crosses the MI phase. Overall, the trajectories
move towards smaller J/U for larger µ/U due to the increased filling and the larger Tavg. For
α = 1, the Mott lobes push the trajectory towards larger J/U .

As already noted in the previous section, the curve for α = 2 varies on a much larger scale
than the curve for α = 1. At the lower ends of each Mott lobe, µ/U ' n + W/2 with n ∈ IN,
the two trajectories get very close. As soon as roughly the middle of the Mott lobe is crossed,
µ/U & n+ 1/2, the curve for α = 2 rapidly shifts towards larger J/U and reaches its maximum
at around µ/U ' n+ 0.75.

This behavior can be understood best when considering the local MF spectrum for the ordered
case. For integer µ/U , there are two particle numbers n and n + 1 yielding the lowest energy,
En = En+1. As a reminder, this leads to the finite compressibility in the atomic limit. Hence,
the ground state and the first excited state will be rather close in energy, while the second excited
state is at higher energies, see also figures 4.1. For half-integer µ/U , the particle numbers ng±1
yield the same energy, Eng+1 = Eng−1, with ng being the atomic limit ground state occupation
number. Thus, here the first and the second excited state will be close in energy and will also
have a similar shape. As a result, in the vicinity of integer µ/U the trajectories for α = 1 and
α = 2 will be separated the most, whereas for half-integer µ/U they approach each other.

For W/U = 0.8, the Anderson transition for α = 1 always takes place at smaller J/U than
for α = 2, see also the inset. Thus, here the SF to BG transition is solely determined by the
first excitations. However, for W/U = 0.6 and certain µ/U , the second excitations delocalize

117



4 Transport Theory for the Disordered Bose-Hubbard Model

J/U

µ/U

0.00 0.01 0.02 0.03 0.04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W/U = 0.6

W/U = 0.8

(a) α = 1

J/U

µ/U

0.00 0.04 0.08 0.12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W/U = 0.6

W/U = 0.8

(b) α = 2

Figure 4.14: The trajectories of the Anderson transition for (a) the first and (b) the second excitations,
each time for W/U = 0.6 and W/U = 0.8. The dashed curves indicate the corresponding first three
Mott lobes.

at smaller hopping than the first excitations. This happens in the above described regions near
the lower ends of the Mott lobes. Therefore, here the second excitations will play a role in
determining the BG to SF transition.

Next, let us consider figure 4.14, where for each α the results for W/U = 0.6 and W/U = 0.8
are compared. As one would expect, in general the increased width of the disorder distribution
leads to a shift of the Anderson transition to larger hopping amplitudes. However, this is not
the case for all µ/U .

For α = 1, see figure 4.14a, near the lower ends of the Mott lobes, µ/U ' n + W/2 with
n ∈ IN, the Anderson transition takes place at smaller hopping for the larger distribution width
W/U . In figure 4.15, the diffusion coefficient for one of these cases, µ/U = 1.275, is plotted for
both W/U . As can be seen, there is no unusual behavior directly causing this effect. In fact,
the profile of the diffusion appears to be more or less the same for both distribution widths,
with the only difference that for W/U = 0.8 the transition takes place at J/U ' 0.015 and for
W/U = 0.6 at a slightly larger hopping, J/U ' 0.016.

At first this seems counterintuitive, as a largerW/U will lead to a larger width of the effective
distribution P∆ε. However, in section 4.4.1 we already found that the effective hopping Tavg
can be larger for the larger disorder width, see figure 4.7e As a reminder, the reason for this
was that enlarging the disorder width W/U reduces the size of the Mott lobes. The Anderson
transition will depend on the interplay of both quantities, and apparently, in some regions of
the parameter space this leads to a transition at smaller J/U for larger W/U .

Note, that also at the upper ends of the Mott lobes, µ/U ' n+W/2, the two trajectories get
very close, however, here they do not intersect. The mechanism is the same, i.e., the Mott lobe
is smaller for the larger W/U , which shifts the trajectory towards smaller J/U .

For the second excitations, see figure 4.14b, the picture is more or less the same, with the
larger W/U leading, in general, to an Anderson transition at larger J/U . At the upper and
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Figure 4.15: The diffusion coefficient for µ/U = 1.275 and two disorder widths, W/U = 0.6 and
W/U = 0.8, where for fixed J/U the plot ranges from the lower to the upper true boundary of the
DOS. The white curves show the trajectories of the mobility edges. The dashed red lines indicate the
Anderson transition.

lower ends of the Mott lobes, µ/U = n∓W/2, the two trajectories approach each other and, in
some cases, intersect.

4.4.6 Summary and Complete Phase Diagram

To conclude section 4.4, we want to give a brief summary of all the steps that were necessary
to finally obtain the trajectory of the Anderson transition for the effective model. The starting
point was the effective single-excitation Hamiltonian

Ĥex =
∑
i

∆εi|i〉〈i|+
∑
〈ij〉

Tij |i〉〈j| (4.145)

with its parameters being determined by the solutions of the local MF Hamiltonians ĥi and the
MF parameter distribution Pψ, which we studied for the first two excitation bands, α = 1, 2.
In order to later use the self-consistent theory of localization, it was necessary to eliminate the
ODD in Ĥex by replacing the random transition amplitudes with the disorder-averaged effective
hopping, Tij → Tavg. Judging from the standard deviations of the involved quantities, this
approximation is not very good for small hopping amplitudes J/U , but gets better for larger
J/U . We justified making this replacement with the argument that for small hopping, the
properties of the system should mainly be determined by the diagonal disorder, which is an
order of magnitude larger than the ODD if we restrict ourselves to the strong disorder regime,
J �W < U .

With this, the disorder is restricted to the excitation energies ∆ε and the corresponding
probability distribution P∆ε can be calculated from the MF parameter distribution Pψ. We
found that, in general, the width of P∆ε is large for small average MF parameters ψ and
decreases when ψ is increased. This implies that the distribution width gets smaller for larger
J/U and overall also for larger µ/U , where for the latter one has to take into account the
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effect of the Mott lobes. Furthermore, the larger the width W/U of the initial on-site energy
distribution Pε, the larger the width of P∆ε in the atomic limit. As a result, the width of P∆ε is,
in general, larger for larger W/U . For the effective hopping amplitude Tavg, we found a rather
varying behavior. For α = 1, Tavg is in principle (but not always, due to the Mott lobes) larger
for larger J/U and µ/U . For α = 2, however, the behavior was quite different, with Tavg even
getting smaller for larger J/U .

Having determined the parameters of the effective Hamiltonian, in subsections 4.4.2 to 4.4.4
we went on to first calculate the CPA DOS and, from that, the diffusion coefficient D(E) as
well as the localization length ξ(E). We found that for fixed µ/U the system undergoes the
Anderson transition from D(E) > 0 for some E to D(E) = 0 for all E at a certain J/U .

In subsection 4.4.5, we then mapped out the trajectory of this transition point as a function
of µ/U for W/U = 0.6 and W/U = 0.8 and α = 1, 2. We found that most of the time the first
excitation band undergoes the Anderson transition at smaller J/U . However, for W/U = 0.6
there were some regions on the µ/U -axis where this order was reversed and the second excitations
delocalize at smaller hopping amplitudes.

Furthermore, comparing the results for the two disorder width revealed a non-trivial depen-
dence onW/U , which could be explained as follows. On the one hand, the largerW/U in general
leads to a larger width of P∆ε, which implies that the system with the larger W/U undergoes
the transition, in general, at a larger J/U . On the other hand, the Mott lobes are smaller for
larger W/U , implying that the system with the larger W/U can leave the atomic limit regime
(ψ = 0) at smaller J/U . We already found that larger MF parameters lead to a smaller width
of the effective distribution as well as a larger effective hopping amplitude. In that sense, the
system with the larger W/U gets a head start for certain µ/U , which can cancel the fact that
in the atomic limit it has a broader effective distribution.

As a result, the trajectories for the two different W/U approach each other in the vicinity
of the upper and lower ends of the Mott lobes and can even cross, leading to an Anderson
transition at smaller J/U for larger W/U . One should again note that this result was obtained
while neglecting the ODD. This approximation becomes rather uncontrolled for small hopping,
specifically in the vicinity of the Mott lobes.

To conclude this chapter, we can now finally draw the full phase diagram of the disordered
Bose-Hubbard model. As argued in section 4.1.2, the BG to SF transition is equivalent to
the Anderson transition of the excitation spectrum. Here, we use the transition trajectory of
either the first or the second excitations, depending for which type the transition happens at
smaller J/U , see also figure 4.13 for comparison. The MI to BG transition can be obtained by
shifting the upper and lower halfs of each Mott lobe obtained for the pure system by ∓W/2 in
µ/U -direction, respectively, as it was explained in section 3.2.3.

Figure 4.16 shows the resulting phase diagram as well as the underlying disorder-averaged
MF parameter ψ , as always for W/U = 0.6 and W/U = 0.8. Again, we see that the stochastic
MF theory overestimates the size of the Mott lobes. Therefore, the regions outside the actual
MI phase, for which we still obtain ψ = 0, can (to some extend) be identified with the Lifshitz
regime, where most of the system is locally in the gaped MI phase and only rare isles of gapless
regions exist (which are not resolved by the stochastic MF theory).

The BG to SF transition always takes place at some distance from the Mott lobes and also
almost always outside the Lifshitz regime. For W/U = 0.6, the transition line approaches the
Lifshitz regime quite closely and also enters it once at the lower half of the first Mott lobe, where
the second excitations determine the phase boundary. Again, this is a region in parameter space
where neglecting the ODD is not really justified anymore. For W/U = 0.8, the transition line
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4.4 Numerical Evaluation and Results for Three Dimensions
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Figure 4.16: The complete phase diagram of the Bose-Hubbard model for W/U = 0.6 and W/U = 0.8.
The density plot shows the disorder-averaged MF parameter ψ . The dashed white curves show the first
three Mott lobes with uniform occupation number n = 1, 2, 3, respectively. The solid white curve shows
the boundary between the localized (D = 0) and the diffusive regime (D > 0) of the effective model,
i.e., between BG and SF phase.
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always stays well above the Lifshitz regime and is always determined by the first excitations.
In general, the phase boundary moves to smaller J/U when µ/U is increased. The Mott

lobes, however, interrupt this behavior by pushing the phase boundary towards higher J/U
again. This is exactly the behavior one would expect and with this final result, we conclude the
numerical investigation and discussion of the effective single-excitation approach to the disorder
Bose-Hubbard model.
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CHAPTER 5

Conclusion

In this work we have studied the disordered Bose-Hubbard model in the regime of both strong
interactions and strong disorder. In chapter 3, we discussed a generalization of a MF theory,
which was initially developed to describe the MI to SF phase transition in the pure Bose-Hubbard
model [27], to the disordered case. Instead of treating the particle-particle interaction in MF,
which is suitable in the weakly interacting regime, here the MF approximation is applied to the
kinetic term, which replaces the hopping process from one to another lattice site by a tunneling
process into and out of a particle bath. Thereby, the lattice sites are decoupled with respect to
the bosonic operators, but remain coupled via the bath amplitudes, which can be characterized
by the MF parameter. The full lattice problem is reduced to a set of local problems. As the
interaction term is treated exactly, this approximation is suitable to describe the transition to
the MI phase.

For the pure model, it is possible to employ the translational invariance of the system to further
simplify the problem to a single-site one, within which the MF parameter can be determined
self-consistently. One finds that a vanishing parameter is equivalent to an incompressible and
insulating system, whereas a finite parameter implies finite compressibility. Therefore, the MF
parameter functions as an order parameter, which can be used to describe the transition from
the gapless SF phase to the gaped MI phase. In doing so, one can derive a qualitatively correct
phase diagram of the Bose-Hubbard model with its characteristic Mott lobes.

In the disordered case, the system is not translational invariant anymore and the MF param-
eter obtains a spatial dependency. In principle, one would have to solve the set of coupled local
problems explicitly for a given disorder realization. This was actually done for two dimensions
in [39], for the three-dimensional case, however, this is only feasible for rather small system
sizes. Therefore, here one introduces one further approximation, which is to neglect spatial cor-
relations between MF parameters. This allows us to decouple the joint probability distribution
of all parameters into a product of probability distributions for each single parameter. Thereby,
one again arrives at a single-site problem, however, now one has to determine the probability
distribution self-consistently. Therefore, this theory is also called the stochastic MF theory [28].
Like in the ordered case, a globally vanishing MF parameter corresponds to the gaped MI phase,
whereas finite MF parameters imply a compressible and gapless system. Thus, the theory can
describe the transition to the MI phase also for the disordered Bose-Hubbard model.

Evaluating the theory numerically, we found that the disorder leads to a reduction of the
size of the MI phase as compared to the pure model. The larger the width W of the disorder
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distribution, the more the size of the Mott lobes is reduced, until the MI phase disappears
completely when the disorder width becomes dominant over the Coulomb repulsion strength,
W > U . This result is in accordance with theoretical predictions [1]. However, the actual shape
of the Mott lobes of the disordered system can also be obtained by simply shifting the upper
and lower halves of the lobes of the pure system [23], which allows us to test the validity of the
results. We found that the stochastic MF theory fails to predict the correct shape of the Mott
lobes. The reason for this is that the theory does not take into account spatial correlations
between the MF parameters. The actual shape of the Mott lobes, however, stems from the
existence of the rare Lifshitz regions, which are highly correlated in space. The stochastic MF
theory cannot resolve these regions and, as a result, yields Mott lobes that are too large.

Moreover, we argued that it is not possible to make predictions about the phase transition
from the insulating BG to the conducting SF phase based on the stochastic MF theory. The
MF parameter can only distinguish between gaped and gapless systems. The BG and the SF
phase, however, are both gapless, i.e., the MF parameter will be non-vanishing in both phases.
The quantity that separates the two phases is, in fact, the SF density and the corresponding
SF current, which is finite in the SF and zero in the BG phase. The underlying mechanism
that leads to a vanishing SF current is the localizing effect of the disorder. Although Anderson
localization means the phenomenon of particles being confined within finite regions in space as
a result of a disorder potential, it is still a non-local effect that is driven by coherent particle
interference processes. In particular, the Anderson transition from the localized to the diffusive
regime cannot be resolved within a purely local theory, such as, the stochastic MF theory.

In chapter 4 we, therefore, introduced a different approach to the disordered Bose-Hubbard
model. Because of the complexity of the problem of multi-particle localization, one inevitably
has to introduce some kind of approximation in order to obtain any results. One way is to
solve the problem only for finite-sized systems using (more or less) exact methods and then
scale the results to the thermodynamic limit. This method is numerically very extensive, which
puts restrictions on the parameter range one can investigate, and also comes with the risk of
neglecting features that would only arise for very large system sizes. Another way would be to
treat the Coulomb interaction within a MF approximation. This, however, is not appropriate in
this case as the boundary between BG and SF phase is expected to be located in the strongly
correlated regime. The approach we took here is therefore a different one, in that we applied
an approximation to the Hilbert space by only taking into account those states that are most
important for the problem. This eventually allowed us to describe the full interacting problem
in terms of a non-interacting effective model.

We first derived an expression for the long-ranged current density in terms of the non-local
single-particle Green’s function. We then divided the full Hamiltonian into the MF term and
the fluctuations from the MF. The fluctuations term was treated as a perturbation to the
unperturbed MF Hamiltonian, for which the solution was already determined in the previous
chapter 3. This led to the expansion of the full single-particle Green’s function in terms of an
unperturbed Green’s function corresponding to the MF Hamiltonian. As the stochastic MF
theory treats the Coulomb interaction exactly and approximates only the kinetic part of the
Hamiltonian, the perturbation term is also solely kinetic in nature. Therefore, this expansion
is structurally similar to the locator expansion of the original Anderson Hamiltonian. The idea
now was to subsequently reduce the state space such that, within the truncated state space, this
expansion of the single-particle Green’s function of the interacting disordered Bose-Hubbard
model is identical to the locator expansion of the non-interacting Anderson Hamiltonian.

The natural choice for a representation is given by the complete eigenbasis of the MF Hamil-
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tonian, within which the unperturbed Green’s function is, by construction, diagonal. The
perturbation term then introduces transitions between the MF eigenstates, which can be local
transitions as well as nearest neighbor transitions. Furthermore, it can yield an energy correc-
tion for certain states, which is a consequence of fluctuations of the particle bath. We found
that each term of the expansion series for the Green’s function always starts and ends in the
single-excitation sector, i.e., the subspace of the Hilbert space in which all sites but one are de-
scribed by their local MF ground state. With the argument that additional local excitations are
suppressed due to the additional costs in energy, we restricted ourselves to this single-excitation
sector. This approximation reduces the multi-particle problem effectively to a single-particle
one, however, with multiple orbitals. To complete the mapping onto the Anderson Hamilto-
nian, we needed to restrict the number of local excitations on each site to just one. In order to
do so, we had to find a selection criterion.

The two quantities determining the contribution of a certain excitation to the expansion of the
Green’s function were determined to be the coupling strength of this excitation to the ground
state as well as its excitation energy. We found that the higher the excitation, the smaller the
coupling strength, from which we concluded that the Anderson transition would take place first
at low excitation energies. Therefore, we further restricted our investigations to the regime of
small excitation energies and only took into account the first and second excited states in the
following. This concluded the derivation of the effective non-interacting Hamiltonian for the
single-excitation sector.

We then moved on to investigate the current density within this effective model. We found
that in order to obtain a non-vanishing current density, one needs to impose a gradient upon the
complex phases of the MF parameters. In the limit of small phase differences, which corresponds
to the limit of a small SF velocity, it was possible to condense the effect of the phase gradient
on the single-particle Green’s function into a single phase factor. This factor could then be
extracted from the Green’s function, allowing us to identify the vanishing of the SF current
density with the Anderson transition of the effective single-excitation model. When the spectrum
of the effective model is completely localized, the current density will decay exponentially in
space. A finite long-ranged SF current is only possible if the effective model is in the diffusive
regime. Therefore, the Anderson transition of the effective model coincides with the BG to SF
transition of the disordered Bose-Hubbard model. This essentially restricts the applicability of
this theory to the case of three spatial dimensions, as for one and two dimensions the effective
non-interacting model would always be localized.

In the final section, we then evaluated the theory numerically in order to resolve this transition
in three dimensions. Based upon the results the stochastic MF theory, we derived the parameters
of the single-excitation model and determined the excitation spectrum within the CPA as a
function of the parameters of the underlying disordered Bose-Hubbard model. Here we had to
apply one further approximation in that we neglect the ODD and restrict the disorder to the
diagonal part of the effective Hamiltonian. This limits the parameter space we can describe
to the strongly disordered regime. In order to describe also the regime of weaker (not weak)
disorder, one would have to take into account the ODD. We then used the self-consistent theory
of localization to further calculate the localization length and the diffusion coefficient for each
excitation spectrum. Monitoring the mobility edges for a fixed chemical potential as a function
of the hopping amplitude, we found that the effective model always undergoes the Anderson
transition at a certain critical hopping amplitude.

We found that, in general, the effective disorder is stronger for a stronger initial disorder.
Furthermore, the effective disorder gets smaller when the MF parameters get larger. As a result,
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the Anderson transition, overall, takes place at smaller hopping for either a larger chemical
potential or a smaller initial disorder. However, each Mott lobe pushes the transition to larger
hopping for the corresponding chemical potentials. As the Mott lobes are smaller for the system
with the larger disorder width, this introduced the surprising behavior that at the edges of the
Mott lobes the Anderson transition can take place at smaller hopping for a larger initial disorder
width.

Resolving this transition as a function of the chemical potential, we obtained the trajectory
of the Anderson transition in the parameter space. This transition curve corresponds to the
boundary between the localized BG and the conducting SF phase. In accordance to the theorem
of inclusions [24], we found that there is always a localized phase separating the MI from the
SF phase. This represents our final result and concludes the present work.
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APPENDIX A

Mean-Field Theory for the Bose-Hubbard
Model

A.1 Compressibility and the Mean-Field Parameter

In this section we want to investigate the relationship between the MF parameter ψ and the com-
pressibility κ. We show that a vanishing parameter is equivalent to a vanishing compressibility.
On the other hand, a finite compressibility implies finite MF parameters.

The compressibility κT for constant temperature T and particle number N is defined as

κT = − 1

V

(
∂V

∂p

)
T,N

=
V

N2

(
∂N

∂µ

)
T,V

. (A.1)

In thermodynamics, it describes the relative change of the volume V of a system when the
pressure p is varied, thus the name compressibility. Via the Maxwell relations, it can be related
to the change of the total particle number when the chemical potential is varied. This is the
quantity we are actually interested in, as it tells us whether the system is gaped or not at a
certain energy. To keep it simple, we define our compressibility as the change of the total particle
number per site when µ is varied,

κ =
1

Ni

(
∂N

∂µ

)
T,V

, (A.2)

where the system size is kept constant as well as the temperature, since later we want to take
the limit T → 0.

The average particle number N is defined via the thermal average with respect to the grand
canonical Hamiltonian, in our case the pure and the disordered Bose-Hubbard Hamiltonians,

N = 〈N̂〉 =
1

Z
Tr
{
e−βĤN̂

}
= kBT

∂

∂µ
logZ , (A.3)

where Z = Tr{e−βĤ} is the grand canonical partition function and kB the Boltzmann constant.
For the second step, we have used that ∂Ĥ/∂µ = −N̂ . Inserting the thermal average into the
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definition of κ yields

κ =
kBT

Ni

∂2

∂µ2
logZ

=
kBT

Ni

[
1

Z

∂2Z

∂µ2
− 1

Z2

(
∂Z

∂µ

)2
]

=
1

kBTNi

[
〈N̂2〉 − 〈N̂〉2

]
. (A.4)

The problem with this expression is that 〈N̂2〉 → 〈N̂〉2 for T → 0. Thus, it cannot be directly
evaluated at T = 0, but we have to take the limit T → 0. In order to do so, in principle we
would need to know the eigenstates and eigenenergies of Ĥ. However, as we cannot compute
the exact values, we apply the decoupling approximation to the Hamiltonian and calculate the
average particle number with respect to the MF Hamiltonian ĤMF =

∑
i ĥi + t

∑
〈ij〉 ψiψj ,

N ≈ 1

ZMF
Tr
{
e−βĤ

MF
N̂
}

=
∑
i

1

Zi
Tr
{
e−βĥi n̂i

}
≡
∑
i

〈n̂i〉 , (A.5)

with N̂ =
∑

i n̂i, Z
MF = Tr{e−βĤMF }, and Zi = Tr{e−βĥi}. Thus, the compressibility is given

by

κ =
1

Ni

∑
i

∂〈n̂i〉
∂µ

=
1

kBTNi

∑
i

[
〈∂ĥi/∂µ〉〈n̂i〉 − 〈n̂i∂ĥi/∂µ〉

]
. (A.6)

Now, when evaluating the partial derivative, we have to take into account that the order pa-
rameters depend on the chemical potential,

∂ĥi
∂µ

= −n̂i − t(b̂i + b̂†i )
∂Ψi

∂µ
. (A.7)

Thus, we have

κ =
1

kBTNi

∑
i

[
〈n̂2
i 〉 − 〈n̂i〉2 + t

∂Ψi

∂µ

(
〈n̂ib̂i〉+ 〈n̂i b̂

†
i 〉 −

(
〈bi〉+ 〈b̂†i 〉

)
〈ni〉

)]
(A.8)

First we note that when ψi = 0 for all i, the terms proportional to t vanish since all eigenstates
are particle number eigenstates. For the remaining term we have

lim
T→0

(
〈n̂2
i 〉 − 〈n̂i〉2

)
= lim

T→0

[∑
n

e−β
(
Ei,n−Ei,ng

)
n2 −

[∑
n

e−β
(
Ei,n−Ei,ng

)
n

]2
]

= lim
T→0

∑
n

e−β
(
Ei,n−Ei,ng

)
n

[
n−

∑
m

e−β
(
Ei,m−Ei,ng

)
m

]
= lim

T→0

∑
n

e−β
(
Ei,n−Ei,ng

)
n(n− ng) , (A.9)

where Ei,n is the eigenenergy for particle number n on site i and ng is the ground state particle
number. These terms vanish exponentially and cancel the diverging prefactor in κ. Thus, we
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have
lim
T→0

κ→ 0 if all ψi = 0. (A.10)

In other words, if the order parameter vanishes globally, the system is gaped.
Furthermore, this means that if the compressibility is finite, limT→0 κ 6= 0, there have to be

finite ψi as well. Apart from that, it is difficult to make predictions for the compressibility and
we will have to rely on calculating κ numerically.

A.2 Perturbation Theory

In this section, we will derive an expression for the MF ground state energy using standard
perturbation theory, as it can be found, for example, in the textbook on quantum mechanics by
J.J. Sakurai [85]. However, we will change the notation to fit our problem. This approach was
first presented in [80].

Again, the MF Hamiltonian is given by

ĥ = ĥ0 − tzψ ĥ1 + tzψ2 , (A.11a)

with
ĥ0 = (ε0 − µ)n̂+

U

2
n̂(n̂− 1) (A.11b)

and
ĥ1 = b̂† + b̂ . (A.11c)

As pointed out in section 3.1.2, the eigenstates of ĥ0 are given by the particle number eigenstates
|n〉. We will label the unperturbed ground state by |ng〉. The full MF ground state can then be
written as

|G̃〉 = |ng〉+
∑
n 6=ng

g̃n|n〉 , (A.12)

where the normalization is chosen such that 〈ng|G̃〉 = 1. It follows that

(ĥ− Eng)|G̃〉 = (ĥ0 − Eng)
∑
n6=ng

g̃n|n〉+ (−tzψ ĥ1 + tzψ2)|G̃〉

⇔
∑
n6=ng

g̃n|n〉 = (ĥ0 − Eng)−1
(
tzψ ĥ1 + (EG − Eng − tzψ2)︸ ︷︷ ︸

≡∆G

)
|G̃〉

⇒ gn =
1

En − Eng
〈n|(tzψ ĥ1 + ∆G)|G̃〉 for n 6= ng , (A.13)

where EG is the ground state energy for the full Hamiltonian ĥ. Plugging this result back into
the definition of the ground state yields

|G̃〉 = |ng〉+
∑
n6=ng

|n〉〈n| 1

En − Eng
(tzψ ĥ1 + ∆G)|G̃〉

= |ng〉+ P̂ (ĥ0 − Eng)−1(tzψ ĥ1 + ∆G)|G̃〉 , (A.14)

with the projection operator P̂ = 1−|ng〉〈ng|. Now, one has to be careful when evaluating ∆G,
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Figure A.1: The fourth order correction ∆
(4)
G to the ground state energy as a function of µ/U for ε0 = 0.

as it contains the exact ground state energy, which is not known. In order to find a perturbation
series for ∆G, we consider the following matrix element,

〈ng|(tzψ ĥ1 + ∆G)|G̃〉 = 〈ng|(tzψ ĥ1 + EG − Eng − tzψ2)|G̃〉
= 〈ng|(tzψ ĥ1 + ĥ− ĥ0 − tzψ2)|G̃〉
= 〈ng|(ĥ− ĥ)|G̃〉 = 0 , (A.15)

and thus,
∆G = −tzψ〈ng|ĥ1|G̃〉 . (A.16)

With this, equation (A.14) can be rewritten as

|G̃〉 = |ng〉+ tzψ P̂ (ĥ0 − Eng)−1
(
ĥ1 − 〈ng|ĥ1|G̃〉

)
|G̃〉 ≡

∞∑
k=0

(tzψ)k|G̃(k)〉 (A.17)

and

∆G = −
∞∑
k=1

(tzψ)k〈ng|ĥ1|G̃(k−1)〉 ≡
∞∑
k=1

(tzψ)k∆
(k)
G , (A.18)

which now can be solved iteratively. Evaluating the series up to forth order in ψ yields
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|G̃(0)〉 = |ng〉 (A.19a)

∆
(1)
G = − 〈ng|ĥ1|G̃(0)〉 = 0 (A.19b)

|G̃(1)〉 = P̂ (ĥ0 − Eng)−1
(
ĥ1 + ∆

(1)
G

)
|G̃(0)〉

=

√
ng

Eng−1 − Eng
|ng − 1〉+

√
ng + 1

Eng+1 − Eng
|ng + 1〉 (A.19c)

∆
(2)
G = − 〈ng|ĥ1|G̃(1)〉 = − ng

Eng−1 − Eng
− ng + 1

Eng+1 − Eng
(A.19d)

|G̃(2)〉 = P̂ (ĥ0 − Eng)−1
[(
ĥ1 + ∆

(1)
G

)
|G̃(1)〉+ ∆

(2)
G |G̃(0)〉

]
=

√
ng

Eng−1 − Eng

√
ng − 1

Eng−2 − Eng
|ng − 2〉+

√
ng + 1

Eng+1 − Eng

√
ng + 2

Eng+2 − Eng
|ng + 2〉 (A.19e)

∆
(3)
G = − 〈ng|ĥ1|G̃(2)〉 = 0 (A.19f)

|G̃(3)〉 = P̂ (ĥ0 − Eng)−1
[(
ĥ1 + ∆

(1)
G

)
|G̃(2)〉+ ∆

(2)
G |G̃(1)〉+ ∆

(3)
G |G̃(0)〉

]
= P̂ (ĥ0 − Eng)−1

[
ĥ1|G̃(2)〉+ ∆

(2)
G |G̃(1)〉

]
and finally,

∆
(4)
G = −〈ng|ĥ1|G̃(3)〉

= −
[ √

ng

Eng−1 − Eng
〈ng − 1|+

√
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Eng+1 − Eng
〈ng + 1|

][
ĥ1|G̃(2)〉+ ∆

(2)
G |G̃(1)〉

]
= −

√
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Eng−1 − Eng

( √
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Eng+1 − Eng
ng + 2

Eng+2 − Eng
+ ∆

(2)
G

√
ng + 1

Eng+1 − Eng

)
=

ng
(Eng−1 − Eng)2

(
ng

Eng−1 − Eng
+

ng + 1

Eng+1 − Eng
− ng − 1

Eng−2 − Eng

)
ng + 1

(Eng+1 − Eng)2

(
ng

Eng−1 − Eng
+

ng + 1

Eng+1 − Eng
− ng + 2

Eng+2 − Eng

)
.

With this, the ground state energy can be written as

EG = Eng +
(

∆
(2)
G + 1/tz

)
(tzψ)2 + ∆

(4)
G (tzψ)4 +O

(
(tzψ)6

)
. (A.20)

The expansion parameter ∆
(2)
G is obviously always negative and ∆

(4)
G is always positive, which

is not so obvious, but can be seen in figure A.1. Hence, the ground state energy as a function
of the order parameter ψ is bound from below and, thus, well defined.
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APPENDIX B

Transport Theory for the Disordered
Bose-Hubbard Model

B.1 Relations for the Green’s Functions

When evaluating the current density (4.9), expectation values of the form 〈b̂†j(t)b̂i (t)〉 have to be
calculated. These expressions can be related to the well known retarded and advanced Green’s
functions, for which then the already established Green’s function formalism can be employed.
Following the description in [86], we first define the greater Green’s function,

G>ij(t, t
′) = −i〈b̂i (t)b̂

†
j(t
′)〉 , (B.1)

and the lesser Green’s function,

G<ij(t, t
′) = −i〈b̂†j(t′)b̂i (t)〉 . (B.2)

These two quantities appear in the Keldysh formalism for non-equilibrium physics, where the
greater and lesser signs refer to the position of the two time arguments on a time-contour. Since
we are interested in equilibrium physics, we do not need to go into detail here, but will just use
the definitions.

The retarded and advanced Green’s functions can be expressed in terms of the greater and
lesser functions as follows

GRij(t, t
′) = −iθ(t− t′)〈[b̂i (t), b̂

†
j(t
′)]〉 = +θ(t− t′)

[
G>ij(t, t

′)−G<ij(t, t′)
]

(B.3)

and
GAij(t, t

′) = +iθ(t′ − t)〈[b̂i (t), b̂
†
j(t
′)]〉 = −θ(t′ − t)

[
G>ij(t, t

′)−G<ij(t, t′)
]
. (B.4)

Combining the above two equations yields one further relation,

GRij(t, t
′)−GAij(t, t′) = G>ij(t, t

′)−G<ij(t, t′) . (B.5)

With this, we already have established a link between both types of Green’s functions. In the
expression for the current density, however, only the lesser function appears. Thus, we need to
eliminate the greater function from equation (B.5).

133



B Transport Theory for the Disordered Bose-Hubbard Model

The first step is to Fourier transform into frequency space. For the lesser function we obtain

G<ij(E) =

∫ ∞
−∞

dt eiEtG<ij(t, 0)

= −i

∫ ∞
−∞

dt eiEt〈b̂†j(0)b̂i (t)〉

= − i

Z

∫ ∞
−∞

dt eiEt
∑
n,m

e−βEn〈n|b̂†j |m〉〈m|eiĤtb̂ie
−iĤt|n〉

= −2πi

Z

∑
n,m

δ(E − En + Em) e−βEn〈n|b̂†j |m〉〈m|b̂i |n〉 ,

where the summations are taken over the eigenbasis of the grand-canonical Hamiltonian Ĥ and
Z = Tr{e−βĤ} is the grand-canonical partition function. Similar, for the greater function one
can derive

G>ij(E) = −2πi

Z

∑
n,m

δ(E + En − Em) e−βEn〈n|b̂i |m〉〈m|b̂
†
j |n〉

= −2πi

Z

∑
n,m

δ(E − En + Em) e−βEneβ(En−Em)〈n|b̂†j |m〉〈m|b̂i |n〉

= eβEG<ij(E) , (B.6)

where in the last step we have used the difference En−Em is fixed by the δ-function. Inserting
this result into equation (B.5), we finally have a relation between the lesser function and the
advanced and retarded Green’s functions,

G<ij(E) = b(E)
[
GAij(E)−GRij(E)

]
, (B.7)

where b(E) = 1/(eβE − 1) is the Bose distribution.

B.2 Locator Expansion

In this section, we want to derive a perturbative expansion of the single-particle Green’s function
for the Anderson Hamiltonian

ĤA =
∑
i

εib̂
†
i b̂i +

i 6=j∑
ij

Jij b̂
†
i b̂j . (B.8)

The evolution in time of the Green’s functions is determined by the Heisenberg equation,

i
d

dt
G
R/A
ij (t− t′) = δijδ(t− t′)∓ iθ

(
± (t− t′)

)
〈
[
[b̂i (t), Ĥ], b̂†j(t

′)
]
〉

= δijδ(t− t′) + εiG
R/A
ij (t− t′) +

l 6=i∑
l

JilG
R/A
lj (t− t′) . (B.9)

134



B.2 Locator Expansion

Defining the Fourier transformed Green’s functions as

Gij(E ± iη) = G
R/A
ij (E) =

∫
dt ei(E±iη)tG

R/A
ij (t) , (B.10)

where we have chosen t′ = 0, we can write∫
dt ei(E±iη)t

[
i

d

dt
G
R/A
ij (t)

]
=

∫
dt ei(E±iη)t

[
δijδ(t) + εiG

R/A
ij (t) +

l 6=i∑
l

JilG
R/A
lj (t)

]

⇔ −
∫

dt
[
i

d

dt
ei(E±iη)t

]
G
R/A
ij (t) = δij + εiGij(E ± iη) +

l 6=i∑
l

JilGlj(E ± iη) ,

where we have performed a partial integration on the left hand side and used that either the
Green’s function or the exponential function vanishes at the boundaries. Taking out the re-
maining integral, we finally obtain

EGij(E) = δij + εiGij(E) +

l 6=i∑
l

JilGlj(E) . (B.11)

where now E ∈ C. Identifying Gij as the components of the Green’s function matrix G, the
above equation can be rewritten as

(E −Hε −HJ)G(E) = 1 , (B.12)

with the diagonal matrix Hε containing the onsite energies, (Hε)ij = εiδij , and the hopping
matrix HJ , with (HJ)ij = Jij . The equation is formally solved by matrix inversion,

G(E) = (E −Hε −HJ)−1 . (B.13)

Interpreting the hopping matrix as a perturbation term, we define the unperturbed Green’s
function as

G0(E) = (E −Hε)
−1 , (B.14)

which is diagonal and has the components

G0
ij(E) =

δij
E − εi

≡ δijG0
i (E) . (B.15)

G0
i (E) is also referred to as the locator, in contrast to the full Green’s function acting as the

propagator. Rearranging the terms in equation (B.12) and inserting the definition of the locator
yields

G(E) = G0(E) +G0(E)HJG(E) , (B.16)

or, in terms of the components,

Gij(E) = G0
i (E)δij +G0

i (E)

l 6=i∑
l

JilGlj(E) . (B.17)
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B Transport Theory for the Disordered Bose-Hubbard Model

The above equation can be solved iteratively by inserting the expression on the right back into
itself. This expansion of the full propagator in terms of the local Green’s functions is known as
the locator expansion.

B.3 Coherent Potential Approximation

For calculating the diffusion integral of the self-consistent theory of localization, one needs the
disorder averaged single-particle Green’s function,

〈Gij(E)〉 ≡
∫

dε1Pε(ε1)

∫
dε2Pε(ε2) . . .

∫
dεNiPε(εNi)Gij(E) , (B.18)

In this section, we will present an approximative method to obtain this quantity, known as the
coherent potential approximation (CPA), which was introduced by Soven in 1967 [87].

We have already shown in section B.2 that the Green’s function can be written as

G(E) =
(
E −HA

)−1
, (B.19)

where G(E) is a matrix in the discrete lattice space with its elements being the single-particle
Green’s functions, (G)ij = Gij . Furthermore, HA = Hε−µ1+HJ is the Anderson Hamiltonian
in matrix form, with (Hε)ij = εiδij and

(HJ)ij =

{
−J for i, j nearest neighbors,
0 otherwise. (B.20)

Now, instead of expanding the full Green’s function in terms of the locator functions and treat-
ing the kinetic term as a perturbation, one can also approach the problem from the opposite
direction. Therefore, we define the free Green’s function as

G0(E) =
(
E −HJ

)−1
, (B.21)

which, unlike the locator, is not diagonal in position space, but can be easily evaluated by
transforming to reciprocal space. Equation (B.19) can then be rewritten as

G(E) = G0(E) +G0(E)HεG(E) . (B.22)

Performing a disorder average on this equation yields

〈G(E)〉 = G0(E) +G0(E)〈HεG(E)〉 , (B.23)

where it was used that G0 does only depend on the translational invariant kinetic term and is,
therefore, unaffected by the averaging process. By introducing the self-energy Σ(E), we can
formally solve the above equation,

〈G(E)〉 = G0(E) +G0(E)Σ(E)〈G(E)〉

=
(
E −HJ − Σ(E)

)−1
. (B.24)

Note that at this point the self-energy is an unknown matrix and we will only find out later
that it is actually a scalar quantity within the CPA. Now, with this definition we go back to
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B.3 Coherent Potential Approximation

expression (B.19) for the Green’s function, which can be transformed as follows,

G(E) =
(
E −HJ −Hε

)−1

=
(
E −HJ − Σ(E)−

(
Hε − Σ(E)

)︸ ︷︷ ︸
≡V (E)

)−1

= 〈G(E)〉+ 〈G(E)〉V (E)G(E) . (B.25)

In other words, we want to expand the full Green’s function in terms of the disorder averaged
one. The scattering potential V (E) is known as the effective medium. If we define the transport
matrix T as

T = V G〈G〉−1 , (B.26)

we can write
G = 〈G〉+ 〈G〉T 〈G〉 , (B.27)

where we have dropped the frequency E from our notation for readability. Performing a disorder
average on above equation yields

〈G〉 = 〈G〉+ 〈G〉〈T 〉〈G〉 , (B.28)

which leads to the conditional equation

〈T 〉 !
= 0 . (B.29)

Combining equations (B.26) and (B.27), we can evaluate the transport matrix in terms of the
disorder averaged Green’s function,

T = V + V 〈G〉V + V 〈G〉V 〈G〉V + V 〈G〉V 〈G〉V 〈G〉V + . . . , (B.30)

or in terms of its components,

Tij = Vij +
∑
kl

Vik〈Gkl〉Vlj +
∑
klmn

Vik〈Gkl〉Vlm〈Gmn〉Vnj + . . . , (B.31)

with Vij = εiδij − Σij . If we now want to impose conditional equation (B.29) on the above
expression, we have to take into account that a particle can scatter multiple times off the same
potential Vij . This leads to multiple occurrences of the same Vij in one term. When performing
the disorder average, they cannot be treated independently. Therefore, we want to collect
repeated scattering events off the same potential Vij and merge them into one single quantity.
For each scattering potential, we define a new T -matrix,

tij = Vij + Vij〈Gji〉Vij + Vij〈Gji〉Vij〈Gji〉Vij + . . .

= Vij

∞∑
α=0

(
〈Gji〉Vij

)α
=

Vij
1− 〈Gji〉Vij

. (B.32)
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With this, we can rewrite equation (B.31) as follows,

Tij = tij +

(i,k)6=(l,j)∑
kl

tik〈Gkl〉tlj +

(i,k) 6=(l,m) 6=(n,j)∑
klmn

tik〈Gkl〉tlm〈Gmn〉tnj + . . . . (B.33)

Now, the disorder average can be performed independently for different tij . Moreover, only the
diagonal tij , i.e., where i = j, contain the on-site energies εi. Thus, the tij with i 6= j are
already disorder averaged quantities.

This implies that an arbitrary sequence of T -matrices factorizes under disorder averaging if
all diagonal tij are distinct,〈

tik〈Gkl〉tlm〈Gmn〉 . . . 〈Gpq〉tqr〈Grs〉tsj
〉

= 〈tik〉〈Gkl〉〈tlm〉〈Gmn〉 . . . 〈Gpq〉〈tqr〉〈Grs〉〈tsj〉
(B.34)

Still, the summations in equation (B.33) will also contain terms where this is not the case. In
order to circumvent the difficulties of having to perform disorder averages of correlated tii we
introduce the so-called single-site approximation. Within this approximation, it is assumed that
a particle never returns to scatter off a certain site a second time if it has scattered off other
sites in between. Thus, we can always assume the disorder average to factorize as shown in
equation (B.34). Imposing conditional equation (B.29) on equation (B.33) then yields

〈Tij〉 = 〈tij〉+

(i,k)6=(l,j)∑
kl

〈tik〉〈Gkl〉〈tlj〉+

(i,k)6=(l,m)6=(n,j)∑
klmn

〈tik〉〈Gkl〉〈tlm〉〈Gmn〉〈tnj〉+ . . .
!

= 0 .

(B.35)
Apparently, this condition is fulfilled if for each tij we have

〈tij〉 !
= 0 . (B.36)

This has two consequences. First of all, for i 6= j we get

〈tij〉 =
−Σij

1 + 〈Gji〉Σij

!
= 0 , (B.37)

from which it immediately follows that Σij = 0 for i 6= j. In other words, the self-energy is
diagonal in position space, i.e, it is local.

Second, for the diagonal elements, i = j, it follows that

〈tii〉 =

∫
dεiPε(εi)

εi − Σii

1− 〈Gii〉
(
εi − Σii

) !
= 0 . (B.38)

Since the disorder averaged local Green’s function is translational invariant, 〈Gii〉 = 〈Gjj〉 for
all i, j, the local self-energy is also translational invariant, Σii = Σjj for all i, j. Thus we can
drop the lattice site index from our notation and write∫

dεPε(ε)
ε− Σ(E)

1− 〈G(E)〉
(
ε− Σ(E)

) !
= 0 , (B.39)

where it should be understood that 〈G〉 = 〈Gii〉 is the disorder averaged local Green’s function.
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Furthermore, since 〈G〉 = 〈G(E)〉 ∈ C, the self-energy will also depend on E and will be a
complex number, Σ = Σ(E) ∈ C.

To conclude this section, we will briefly sketch how to actually solve the conditional equation
in order to obtain Σ(E). Therefore, we rearrange the equation as follows,

Σ =
I1(Σ)

I2(Σ)
(B.40)

with
I1(Σ) =

∫
dεPε(ε)

ε

1− 〈G〉
(
ε− Σ

) (B.41)

and
I2(Σ) =

∫
dεPε(ε)

1

1− 〈G〉
(
ε− Σ

) . (B.42)

This allows us to solve the equation iteratively. Starting with an initial guess for the self-energy,
Σ(0), we first calculate the local Green’s function 〈G(E)〉 using equation (B.24) with Σ = Σ(0).
Next, we evaluate the above two integrals I1 and I2 and use equation (B.40) to calculate Σ(1).
This procedure is then iterated, Σ(s+1) = I1(Σ(s))/I2(Σ(s)), until the desired numerical accuracy
is achieved, |Σ(s+1) − Σ(s)| < threshold.

B.4 Self-Consistent Theory of Anderson Localization

In section 2.2.7 we already explained the motivation for developing the self-consistent theory
of Anderson localization and stated the most important steps made in its derivation. Here,
we want give a brief summary of the derivation, where we will follow the presentation in [67].
A complete and detailed version of the derivation can be found, for example, in the textbook
Quantum Transport Theory by Rammer [51].

Finally, we will present a method to evaluate the diffusion integral that includes the periodicity
of the dispersion relation for lattice models. This method was first introduced by Henseler et
al. [26] and we will follow its presentation in [88].

B.4.1 Derivation of the Diffusion

The starting point for deriving the diffusion integral is the disorder averaged particle-hole prop-
agator,

ΦRA
pp′(E,ω,q) =

〈
GRp+p′+

(E + ω)GAp′−p−
(E)
〉

with p± = p± q/2 , (B.43)

with the Fourier transformed G
R/A
pp′ (E) of the single-particle Green’s functions in reciprocal

lattice (or momentum) space,

G
R/A
pp′ (t) = ∓iθ(±t)〈[b̂p(t), b̂†p′(0)]〉 . (B.44)

Here, we are interested in the limits |q| → 0 and ω → 0, which correspond to long-range
behavior, |xi − xj | → ∞, in the limit of infinitely large times, t→∞ (see [69], for example).

We already found out that calculating the disorder averaged Green’s function is only possible
by applying certain approximations, see section B.3. Here, we now have to evaluate the average
of a product of two Green’s functions. The idea will be to use the results from the CPA and try
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to expand the particle-hole propagator in terms of the averaged single-particle Green’s functions.
This leads to the formulation of the Bethe-Salpeter equation

ΦRA
pp′(E,ω,q) =〈GRp+

(E + ω)〉 〈GAp−(E)〉δpp′

+ 〈GRp+
(E + ω)〉 〈GAp−(E)〉 1

Ni

∑
p′′

URApp′′(E,ω,q) ΦRA
p′′p′(E,ω,q) , (B.45)

where URApp′′ is the irreducible particle-hole vertex. Note that the disorder averaged Green’s

functions are diagonal in momentum space, 〈GR/App′ 〉 ≡ 〈G
R/A
p 〉δpp′ .

The structure of the Bethe-Salpeter equation can be understood best if we first divide all
scattering events of the particle and the hole propagators GRp+p′+

and GAp−p′−
into correlated

and uncorrelated events, i.e., scattering events at the same and at different impurity potentials
Vij (see section B.3 for definition).

If the events are uncorrelated, the disorder average can be performed independently for each
Green’s function. Only if they scatter off the same impurity one needs to average over both
propagators at the same time. The summation of all uncorrelated events taking place in between
correlated scatterings leads to the disorder averaged single-particle propagators.

The particle-hole vertex URApp′′ contains all correlated scattering events that are irreducible
with respect to cutting one particle and one hole propagator line (i.e., two lines in total in
contrast to just one line for the usual definition of irreducible diagrams). All series of scattering
events can then be represented in terms of irreducible vertices connected by the independently
averaged particle and hole propagators, yielding the Bethe-Salpeter equation (B.45).

Furthermore, the irreducible particle-hole vertex is connected to the single-particle self-energy
Σ
R/A
p by a Ward identity,

ΣR
p+

(E + ω)− ΣA
p−(E) =

1

Ni

∑
p′

URApp′ (E,ω,q)
[
〈GRp′+(E + ω)〉 − 〈GAp′−(E)〉

]
. (B.46)

For an intuitive understanding, consider the following. By connecting the particle and the hole
line with an additional propagator line at either of the ends of the particle-hole vertex, a new
set of diagrams is constructed. The so formed class of diagrams is irreducible with respect to
cutting a single propagator line and corresponds to self-energy diagrams. A careful analysis
(which can be found chapter 8.8 of [51], for example) leads to the above identity.

Using the Ward identity, we can eliminate the particle-hole vertex from the Bethe-Salpeter
equation (B.45). However, we need to make some transformations first (where we drop the
function arguments for readability),

ΦRA
pp′ = 〈GRp+

〉 〈GAp−〉
(
δpp′ +

1

Ni

∑
p′′

URApp′′ ΦRA
p′′p′

)
⇔

[(
〈GRp+

〉
)−1 −

(
〈GAp−〉

)−1
]

︸ ︷︷ ︸
=ω−εp++εp−−ΣRp+

+ΣAp−

ΦRA
pp′ =

[
〈GAp−〉 − 〈GRp+

〉
](
δpp′ +

1

Ni

∑
p′′

URApp′′ ΦRA
p′′p′

)

⇒
[
ω − q(vp · q̂)− ΣR

p+
+ ΣA

p−

] 1

Ni

∑
p′

ΦRA
pp′ =

[
〈GAp−〉 − 〈GRp+

〉
](

1 +
1

(Ni)2

∑
p′p′′

URApp′′ ΦRA
p′′p′

)
,

(B.47)

140



B.4 Self-Consistent Theory of Anderson Localization

where εp+ − εp− = (∇εp · q) ≡ q(vp · q̂) with q̂ = q/|q| and q = |q| was used, assuming the
limit q → 0.

Replacing the self-energies using the Ward identity and summing over p, the irreducible vertex
cancels out and in the limit ω, q → 0 we have

ωΦρρ(E,ω,q)− qΦjρ(E,ω,q) = 2πiN(E) , (B.48)

where we have defined the density-density correlation function

Φρρ(E,ω,q) ≡ 1

(Ni)2

∑
pp′

ΦRA
pp′(E,ω,q) (B.49)

and the current-density correlation function

Φjρ(E,ω,q) ≡ 1

(Ni)2

∑
pp′

(vp · q̂)ΦRA
pp′(E,ω,q) . (B.50)

Furthermore, impurity averaged density of states were introduced as

N(E) ≡ 1

π
Im
{
〈GA0 (E)〉

}
=

1

Ni

∑
p

1

π
Im
{
〈GAp (E)〉

}
. (B.51)

Equation (B.48) can be viewed as a continuity equation for the correlation functions, relating
the current and the density correlations with the density of states taking the role of a source
term. However, since we do know neither of the two correlation functions, we need a second
conditional equation in order to find a solution.

Therefore, we rewrite equation (B.47) as follows,[
ω − q(vp · q̂) + 2i Im

{
ΣA
p

}]
Φp = 2i Im

{
〈GAp 〉

}(
1 +

1

Ni

∑
p′′

URApp′′ Φp′′

)
, (B.52)

where we have introduced the correlation function integrated over the incoming momentum p′

Φp =
1

Ni

∑
p′

ΦRA
pp′ . (B.53)

At this point, we have to introduce the first major assumption of this theory, which is twofold.
First, we assume that Φp can be expanded in terms of Φρρ and Φjρ for ω, q → 0,

Φp ≈ ApΦρρ +BpΦjρ + "less divergent terms" . (B.54)

Second, we assume that all critical behavior is contained in the correlation functions and the
coefficients Ap and Bp behave uncritical. Thus, they can be fitted by using the simple lad-
der approximation for the Bethe-Salpeter equation (B.45), by which Φp, Φρρ and Φjρ can be
calculated directly.

By inserting approximation (B.54) into equation (B.52), the summation on the right-hand
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side can be decoupled from the correlation functions,

1

Ni

∑
p′′

URApp′′ Φp′′ ≈
(

1

Ni

∑
p′′

URApp′′ Ap′′

)
Φρρ +

(
1

Ni

∑
p′′

URApp′′ Bp′′

)
Φjρ . (B.55)

Using the explicit results for Ap and Bp from the ladder approximation, one obtains a second
conditional equation for Φρρ and Φjρ (see [67] for the details). Combining the two conditional
equations, one obtains the density correlation function (valid in the limit ω, q → 0),

Φρρ(E,ω, q) =
2πiN(E)− q2 R(E)

ω+2iΣA(E)+iM(E,ω)

ω + iq2D(E,ω)
, (B.56a)

with
R(E) =

1

2Ni

∑
p

(vp · q̂)2
[
〈GAp (E)〉2 + 〈GRp (E)〉2

]
, (B.56b)

the current relaxation kernel

M(E,ω) =
−2

πN(E)D0(E)

1

(Ni)2

∑
pp′

(vp·q̂) Im
{
〈GAp (E)〉

}
URApp′ (E,ω, q)

(
Im
{
〈GAp′(E)〉

})2
(vp′ ·q̂) ,

(B.56c)
the generalized diffusion coefficient

D(E,ω) =
D0(E)

1 + −iω+M(E,ω)
2 Im ΣA(E)

, (B.56d)

and the bare diffusion coefficient

D0(E) =
1

πN(E)

1

Ni

∑
p

(vp · q̂)2
(

Im
{
〈GAp (E)〉

})2
. (B.56e)

which originates from the solution in ladder approximation, thus the term bare diffusion in
contrast to the generalized diffusion.

Having derived the general form of the density correlation function, the full particle-hole
vertex will now be approximated by its most divergent contributions. In [29, 61] (or also in the
textbook [51]) it shown that these are given by the maximally crossed diagrams. As they are
connected to the ladder diagrams by time-reversal, they be directly obtained from the ladder
approximation solution. Classifying all diagrams in terms of the maximally crossed ones and
again only keeping the most divergent contributions (see [67], for example), one finds that the
full particle-hole vertex is proportional to the density-density correlation function,

URApp′ (E,ω, q) ≈
(
URA0 (E,ω)

)2
Φρρ(E,ω,p + p′) , (B.57)

where URA0 is the single-site vertex from ladder approximation (which is the analogon to the
T -matrix in single-site approximation used in CPA),

URA0 (E,ω) =
ΣA(E)− ΣR(E + ω)

〈GA(E)〉 − 〈GR(E + ω)〉 . (B.58)
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Comparing equations (B.56) and (B.57), we see that Φρρ is at the core of the current relaxation
kernel M(E,ω), which in turn determines Φρρ. Thus, these equations have to be solved self-
consistently, and hence, the name self-consistent theory of Anderson localization.

Furthermore, expression (B.56d) for the diffusion coefficient can be transformed as follows,

D(ω)(1− iω/2 Im ΣA) = D0 −
D(ω)M(ω)

2 Im ΣA

= D0 +
D(ω)

2 Im ΣA

2

πN(E)D0

1

(Ni)2

∑
pp′

(vp · q̂) Im
{
〈GAp 〉

}
URApp′ (ω, q)

(
Im
{
〈GAp′〉

})2
(vp′ · q̂)

≈ D0 +
2 Im ΣA

[πN(E)]2D0

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp 〉

}(
Im
{
〈GAp′〉

})2
(p + p′)2 − iω/D(ω)

(vp′ · q̂) , (B.59)

where in the last step we have replaced the full vertex by its most divergent contributions, see
equation (B.57), and dropped the term proportional to q in the numerator of Φρρ.

In the localized regime, the diffusion vanishes linearly as a function of the frequency ω,

lim
ω→0

D(E,ω)→ −iω ξ2(E) +O(ω2) , (B.60)

where ξ can be identified as the localization length, see [51] for example. Thus, in the localized
regime equation (B.59) becomes

Iξ ≡ D0 +
2 Im ΣA

[πN(E)]2D0

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp 〉

}(
Im
{
〈GAp′〉

})2
(p + p′)2 − 1/ξ2

(vp′ · q̂)
!

= 0 . (B.61)

Finding the root of Iξ as a function of ξ yields the localization length.
The transition from localized to extended regime is characterized by a diverging localization

length, ξ →∞, and the transition from the opposite direction by a vanishing diffusion coefficient,
D → 0. The exact point of the Anderson transition is thus characterized by D = 0 and 1/ξ2 = 0,
yielding the following conditional equation,

I∞ ≡ D0 +
2 Im ΣA

[πN(E)]2D0

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp 〉

}(
Im
{
〈GAp′〉

})2
(p + p′)2

(vp′ · q̂)
!

= 0 . (B.62)

Thus, here we have to find the root of I∞ as a function of the system parameters.

B.4.2 Evaluation of the Diffusion Integral for a Periodic Dispersion Relation

In the previous section we have derived a self-consistent method to calculate the density corre-
lations of a disordered system. An integral part of the derivation was the restriction to small
momenta, q → 0. For the free dispersion, εp = p2/2m, one can use this to rewrite the energy
difference as follows,

εp+ − εp− =

d∑
i=1

qi
εpi+qi/2 − εpi−qi/2

qi
= (q · ∇εp) = q(vq · q̂) for q → 0 . (B.63)
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This made it possible to take the limit q → 0 independently from the momenta p and p′.
However, here we are interested in describing a lattice system, which has a different dispersion
relation, εp = −2J

∑d
i=1 cos pi. In this case, we have

εp+ − εp− = −2J

d∑
i=1

[
cos(pi + qi/2)− cos(pi − qi/2)

]
= −2J

d∑
i=1

[
− 2 sin(pi) sin(qi/2)

]
= 2 sin(q/2)(vq · q̂) , (B.64)

where for simplicity we have assumed that q points along one of the coordinate axes, q̂ = êi
with i = 1, 2, or 3. In the limit q → 0, this again yields expression (B.63). We have to be careful,
though, when using approximation (B.57) for the particle-hole vertex, where the replacement
q→ p + p′ is made.

First of all, this tells us that the vertex approximation may only be used for |p + p′| � 1,
i.e., p ≈ −p′. These are essentially the contributions arising from coherent backscattering.

Second, we have to take into account that the Bloch states are invariant under a shift of the
wave vector by 2π. This restricts the components of the wave vectors to values within an interval
of width 2π (i.e., one single Brillouin zone), where one usually chooses either [−π, π] or [0, 2π].
Thus, the maximal momentum difference is given by 2π. Due to the periodicity, however, this
difference is actually zero, and in fact, the sine in (B.64) would take care of this unambiguity.

Here, we are using the theory as it was implemented in [26, 88], where this problem is cir-
cumvented by restricting the values of q to the interval [−π, π]. This allows to safely take the
limit limq→0 2 sin(q/2) = q. Nevertheless, it might be interesting to investigate how the results
change if one does not make this approximation. This, however, is not within the scope of this
work.

Restricting q to [−π, π] implies that also the components of p + p′ are confined to this
interval. With this information we can now try to evaluate the momentum integration in the
self-consistent equation (B.61) for the diffusion,

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp 〉

}(
Im
{
〈GAp′〉

})2
(p + p′)2 + 1/ξ2

(vp′ · q̂) . (B.65)

The difficulty of evaluating above integral is that it is 2d-dimensional, i.e. 6-dimensional for
3 spatial dimensions. The integrations are coupled by the term (p + p′)2 in the denominator.
However, we can make use of the fact that all quantities of the integrand are periodic with
respect to the momenta. By performing a Fourier transformation back into real space, we can
decouple the two momentum integrals.

Since there is no preferred direction of transport in the Anderson model, without loss of
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generality we can choose q̂ = êx. The Fourier transform of the velocity term is then given by

v(x) ≡ 1

Ni

∑
p

(vp · q̂)e−ip·x

=
1

Ni

∑
p

(−2J sin px)e−ip·x

= iJ
1

Ni

∑
p

(
e+ip·ex − e−ip·ex

)
e−ip·x

= iJ
(
δ

(d)
x,êx
− δ(d)

x,−êx
)

(B.66)

where we have used that
1

Ni

∑
p

e−ip·(x−x′) = δ
(d)
x,x′ (B.67)

with the Kronecker-δ in d dimensions,

δdx,x′ =

d∏
i=1

δxi,x′i . (B.68)

For the remaining terms of the integrand we define

g(x) ≡ 1

Ni

∑
p

Im
{
〈GAp 〉

}
e−ip·x =

∫ π

−π

ddp

(2π)d
Im
{
〈GAp 〉

} d∏
i=1

cos(pixi) , (B.69)

g2(x) ≡ 1

Ni

∑
p

(
Im
{
〈GAp 〉

})2
e−ip·x =

∫ π

−π

ddp

(2π)d
(

Im
{
〈GAp 〉

})2 d∏
i=1

cos(pixi) , (B.70)

C(x) ≡ 1

Ni

∑
p

1

p2 + 1/ξ2
e−ip·x =

∫ π

−π

ddp

(2π)d
1

p2 + 1/ξ2

d∏
i=1

cos(pixi) , (B.71)

where we have replaced the summation by an integration in the limit Ni → ∞ and have used
that 〈GAp 〉 and p2 are invariant under the transformation p → −p. From the above form
of the Fourier transforms we can also conclude that g(x), g2(x), and C(x) are invariant under
permutation of the components of x, i.e., xi ↔ xj , as well as under the transformation xi → −xi.

With these definitions we can rewrite the momentum integral (B.65) as follows,

1

(Ni)2

∑
pp′

(vp · q̂)
Im
{
〈GAp 〉

}(
Im
{
〈GAp′〉

})2
(p + p′)2 + 1/ξ2

(vp′ · q̂)

=
1

(Ni)2

∑
pp′

∑
x1...x5

v(x1)g(x2)C(x3)g2(x4)v(x5)eip·(x1+x2+x3)eip′·(x3+x4+x5)

=
∑

x1...x5

v(x1)g(x2)C(x3)g2(x4)v(x5) δ
(d)
x1+x2,−x3

δ
(d)
x4+x5,−x3

=
∑

x1x2x4x5

v(x1)g(x2)C(−x1 − x2)g2(x4)v(x5) δ
(d)
x1+x2,x4+x5
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= − J2
∑

x1x2x4x5

(
δ

(d)
x1,êx

− δ(d)
x1,−êx

)(
δ

(d)
x5,êx

− δ(d)
x5,−êx

)
g(x2)C(x1 + x2)g2(x4) δ

(d)
x1+x2,x4+x5

= − J2
∑
x2x4

g(x2)g2(x4)
[
C(x2 + êx)

(
δ

(d)
x2+êx,x4+êx

− δ(d)
x2+êx,x4−êx

)
− C(x2 − êx)

(
δ

(d)
x2−êx,x4+êx

− δ(d)
x2−êx,x4−êx

)]
= − J2

∑
x2

g(x2)
[
C(x2 + êx)

(
g2(x2)− g2(x2 + 2êx)

)
− C(x2 − êx)

(
g2(x2 − 2êx)− g2(x2)

)]
= − J2

∑
x

C(x)
[
g(x− êx)− g(x + êx)

][
g2(x− êx)− g2(x + êx)

]
. (B.72)

In this expression, only C(x) depends on ξ. Thus, when iteratively determining the localization
length, only this function has to be calculated for each iteration step, g(x) and g2(x) only need
to be evaluated once at the beginning of the procedure.

On the other hand, when calculating I∞ in order to find the Anderson transition, C(x) is
independent of the system parameters and, thus, only needs to be evaluated once.

One can make further use of the invariance of the Fourier transforms under parity transfor-
mation, xi ↔ −xi, and (for d = 3) xi ↔ xj , leading to the following expressions,

d = 1 :

Iξ = D0 −
4J2 Im ΣA

[πN(E)]2D0

∞∑
x=1

C(x)
[
g(x+ 1)− g(x− 1)

][
g2(x+ 1)− g2(x− 1)

]
(B.73a)

d = 2 :

Iξ = D0 −
8J2 Im ΣA

[πN(E)]2D0

∞∑
x=1

∞∑
y=0

C(x)
[
g(x− êx)− g(x + êx)

][
g2(x− êx)− g2(x + êx)

]
× (1− 1

2δy,0) (B.73b)
d = 3 :

Iξ = D0 −
32J2 Im ΣA

[πN(E)]2D0

∞∑
x=1

∞∑
y=0

∞∑
z=0

C(x)
[
g(x− êx)− g(x + êx)

][
g2(x− êx)− g2(x + êx)

]
×
(
1− 1

2δy,0
)(

1− 1
2δz,0

)(
1− 1

2δy,z
)

(B.73c)

For readability, we have changed the notation of the spatial coordinates from x = (x1, x2, x3)
to x = (x, y, z).

146



Bibliography

[1] M. P. A. Fisher et al., “Boson localization and the superfluid-insulator transition,”
Phys. Rev. B 40 (1989) 546–570, doi: 10.1103/PhysRevB.40.546,
url: http://link.aps.org/doi/10.1103/PhysRevB.40.546.

[2] S. N. Bose, “Plancks Gesetz und Lichtquantenhypothese,”
Zeitschrift für Physik 26.1 (1924) 178–181, doi: 10.1007/BF01327326,
url: http://dx.doi.org/10.1007/BF01327326.

[3] A. Einstein, “Quantentheorie des einatomigen idealen Gases,”
Sitzungsberichte der Königlichen Preussischen Akademie der Wissenschaften 3 (1925).

[4] M. H. Anderson et al.,
“Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,”
Science 269.5221 (1995) 198–201, doi: 10.1126/science.269.5221.198,
url: http://www.sciencemag.org/content/269/5221/198.abstract.

[5] K. Davis et al., “Bose-Einstein Condensation in a Gas of Sodium Atoms,”
Phys. Rev. Lett. 75 (1995) 3969–3973, doi: 10.1103/PhysRevLett.75.3969,
url: http://link.aps.org/doi/10.1103/PhysRevLett.75.3969.

[6] P. Kapitza, “Viscosity of Liquid Helium below the λ-Point,” Nature 141.3558 (1938) 74,
doi: 10.1038/141074a0.

[7] J. F. Allen and H. Jones, “New Phenomena Connected with Heat Flow in Helium II,”
Nature 141.3562 (1938) 243–244, doi: 10.1038/141243a0.

[8] J. G. Daunt and K. Mendelssohn, “Transfer of Helium II on Glass,”
Nature 141 (1938) 911–912, doi: 10.1038/141911a0.

[9] F. London, “The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy,”
Nature 141 (1938) 643–644, doi: 10.1038/141643a0.

[10] L. D. Landau, “The Theory of Superfluidity of Helium II,” J. Phys 5.1 (1941) 71–90.

[11] N. N. Bogoliubov, J. Phys USSR 11.23 (1947).

[12] N. F. Mott, “The transition to the metallic state,”
Philosophical Magazine 6.62 (1961) 287–309, doi: 10.1080/14786436108243318,
url: http://dx.doi.org/10.1080/14786436108243318.

[13] J. Hubbard, “Electron Correlations in Narrow Energy Bands,”
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 276.1365 (1963) 238–257, doi: 10.1098/rspa.1963.0204,
url: http://rspa.royalsocietypublishing.org/content/276/1365/238.abstract.

147

http://dx.doi.org/10.1103/PhysRevB.40.546
http://link.aps.org/doi/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1007/BF01327326
http://dx.doi.org/10.1007/BF01327326
http://dx.doi.org/10.1126/science.269.5221.198
http://www.sciencemag.org/content/269/5221/198.abstract
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://link.aps.org/doi/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1038/141074a0
http://dx.doi.org/10.1038/141243a0
http://dx.doi.org/10.1038/141911a0
http://dx.doi.org/10.1038/141643a0
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1098/rspa.1963.0204
http://rspa.royalsocietypublishing.org/content/276/1365/238.abstract


Bibliography

[14] A. J. Leggett, “Topics in the Theory of Helium,” Physica Fennica 8 (1973) 125–170.

[15] M. Greiner et al., “Quantum phase transition from a superfluid to a Mott insulator in a
gas of ultracold atoms,” Nature 415.6867 (2002) 39–44.

[16] J. Reppy, “Superfluid helium in porous media,”
Journal of Low Temperature Physics 87.3-4 (1992) 205–245, doi: 10.1007/BF00114905,
url: http://dx.doi.org/10.1007/BF00114905.

[17] B. C. Crooker et al., “Superfluidity in a Dilute Bose Gas,”
Phys. Rev. Lett. 51 (1983) 666–669, doi: 10.1103/PhysRevLett.51.666,
url: http://link.aps.org/doi/10.1103/PhysRevLett.51.666.

[18] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,”
Phys. Rev. 109 (1958) 1492–1505, doi: 10.1103/PhysRev.109.1492,
url: http://link.aps.org/doi/10.1103/PhysRev.109.1492.

[19] E. Abrahams et al.,
“Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions,”
Phys. Rev. Lett. 42 (1979) 673–676, doi: 10.1103/PhysRevLett.42.673,
url: http://link.aps.org/doi/10.1103/PhysRevLett.42.673.

[20] J. Billy et al.,
“Direct observation of Anderson localization of matter waves in a controlled disorder,”
Nature 453.7197 (2008) 891–894.

[21] S. Kravchenko et al., “Possible metal-insulator transition at B=0 in two dimensions,”
Phys. Rev. B 50 (1994) 8039–8042, doi: 10.1103/PhysRevB.50.8039,
url: http://link.aps.org/doi/10.1103/PhysRevB.50.8039.

[22] T. Giamarchi and H. J. Schulz,
“Localization and Interaction in One-Dimensional Quantum Fluids,”
EPL (Europhysics Letters) 3.12 (1987) 1287,
url: http://stacks.iop.org/0295-5075/3/i=12/a=007.

[23] J. K. Freericks and H. Monien,
“Strong-coupling expansions for the pure and disordered Bose-Hubbard model,”
Phys. Rev. B 53 (1996) 2691–2700, doi: 10.1103/PhysRevB.53.2691,
url: http://link.aps.org/doi/10.1103/PhysRevB.53.2691.

[24] L. Pollet et al., “Absence of a Direct Superfluid to Mott Insulator Transition in
Disordered Bose Systems,” Phys. Rev. Lett. 103 (2009) 140402,
doi: 10.1103/PhysRevLett.103.140402,
url: http://link.aps.org/doi/10.1103/PhysRevLett.103.140402.

[25] P. Henseler, J. Kroha, and B. Shapiro,
“Static screening and delocalization effects in the Hubbard-Anderson model,”
Phys. Rev. B 77 (2008) 075101, doi: 10.1103/PhysRevB.77.075101,
url: http://link.aps.org/doi/10.1103/PhysRevB.77.075101.

[26] P. Henseler, J. Kroha, and B. Shapiro, “Self-consistent study of Anderson localization in
the Anderson-Hubbard model in two and three dimensions,”
Phys. Rev. B 78 (2008) 235116, doi: 10.1103/PhysRevB.78.235116,
url: http://link.aps.org/doi/10.1103/PhysRevB.78.235116.

148

http://dx.doi.org/10.1007/BF00114905
http://dx.doi.org/10.1007/BF00114905
http://dx.doi.org/10.1103/PhysRevLett.51.666
http://link.aps.org/doi/10.1103/PhysRevLett.51.666
http://dx.doi.org/10.1103/PhysRev.109.1492
http://link.aps.org/doi/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://link.aps.org/doi/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://link.aps.org/doi/10.1103/PhysRevB.50.8039
http://stacks.iop.org/0295-5075/3/i=12/a=007
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://link.aps.org/doi/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevLett.103.140402
http://link.aps.org/doi/10.1103/PhysRevLett.103.140402
http://dx.doi.org/10.1103/PhysRevB.77.075101
http://link.aps.org/doi/10.1103/PhysRevB.77.075101
http://dx.doi.org/10.1103/PhysRevB.78.235116
http://link.aps.org/doi/10.1103/PhysRevB.78.235116


Bibliography

[27] K. Sheshadri et al., “Superfluid and Insulating Phases in an Interacting-Boson Model:
Mean-Field Theory and the RPA,” EPL (Europhysics Letters) 22.4 (1993) 257,
url: http://stacks.iop.org/0295-5075/22/i=4/a=004.

[28] U. Bissbort and W. Hofstetter,
“Stochastic mean-field theory for the disordered Bose-Hubbard model,”
EPL (Europhysics Letters) 86.5 (2009) 50007,
url: http://stacks.iop.org/0295-5075/86/i=5/a=50007.

[29] D. Vollhardt and P. Wölfle,
“Anderson Localization in d . 2 Dimensions: A Self-Consistent Diagrammatic Theory,”
Phys. Rev. Lett. 45 (1980) 842–846, doi: 10.1103/PhysRevLett.45.842,
url: http://link.aps.org/doi/10.1103/PhysRevLett.45.842.

[30] J. K. Freericks and H. Monien, “Phase diagram of the Bose-Hubbard Model,”
EPL (Europhysics Letters) 26.7 (1994) 545,
url: http://stacks.iop.org/0295-5075/26/i=7/a=012.

[31] R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi,
“Localization in interacting, disordered, Bose systems,”
Phys. Rev. Lett. 66 (1991) 3144–3147, doi: 10.1103/PhysRevLett.66.3144,
url: http://link.aps.org/doi/10.1103/PhysRevLett.66.3144.

[32] G. G. Batrouni and R. T. Scalettar,
“World-line quantum Monte Carlo algorithm for a one-dimensional Bose model,”
Phys. Rev. B 46 (1992) 9051–9062, doi: 10.1103/PhysRevB.46.9051,
url: http://link.aps.org/doi/10.1103/PhysRevB.46.9051.

[33] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
“Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model,”
Phys. Rev. B 75 (2007) 134302, doi: 10.1103/PhysRevB.75.134302,
url: http://link.aps.org/doi/10.1103/PhysRevB.75.134302.

[34] N. Elstner and H. Monien,
“Dynamics and thermodynamics of the Bose-Hubbard model,”
Phys. Rev. B 59 (1999) 12184–12187, doi: 10.1103/PhysRevB.59.12184,
url: http://link.aps.org/doi/10.1103/PhysRevB.59.12184.

[35] B. Capogrosso-Sansone et al.,
“Monte Carlo study of the two-dimensional Bose-Hubbard model,”
Phys. Rev. A 77 (2008) 015602, doi: 10.1103/PhysRevA.77.015602,
url: http://link.aps.org/doi/10.1103/PhysRevA.77.015602.

[36] D. S. Rokhsar and B. G. Kotliar, “Gutzwiller projection for bosons,”
Phys. Rev. B 44 (1991) 10328–10332, doi: 10.1103/PhysRevB.44.10328,
url: http://link.aps.org/doi/10.1103/PhysRevB.44.10328.

[37] W. Krauth, M. Caffarel, and J.-P. Bouchaud,
“Gutzwiller wave function for a model of strongly interacting bosons,”
Phys. Rev. B 45 (1992) 3137–3140, doi: 10.1103/PhysRevB.45.3137,
url: http://link.aps.org/doi/10.1103/PhysRevB.45.3137.

[38] D. Jaksch et al., “Cold Bosonic Atoms in Optical Lattices,”
Phys. Rev. Lett. 81 (1998) 3108–3111, doi: 10.1103/PhysRevLett.81.3108,
url: http://link.aps.org/doi/10.1103/PhysRevLett.81.3108.

149

http://stacks.iop.org/0295-5075/22/i=4/a=004
http://stacks.iop.org/0295-5075/86/i=5/a=50007
http://dx.doi.org/10.1103/PhysRevLett.45.842
http://link.aps.org/doi/10.1103/PhysRevLett.45.842
http://stacks.iop.org/0295-5075/26/i=7/a=012
http://dx.doi.org/10.1103/PhysRevLett.66.3144
http://link.aps.org/doi/10.1103/PhysRevLett.66.3144
http://dx.doi.org/10.1103/PhysRevB.46.9051
http://link.aps.org/doi/10.1103/PhysRevB.46.9051
http://dx.doi.org/10.1103/PhysRevB.75.134302
http://link.aps.org/doi/10.1103/PhysRevB.75.134302
http://dx.doi.org/10.1103/PhysRevB.59.12184
http://link.aps.org/doi/10.1103/PhysRevB.59.12184
http://dx.doi.org/10.1103/PhysRevA.77.015602
http://link.aps.org/doi/10.1103/PhysRevA.77.015602
http://dx.doi.org/10.1103/PhysRevB.44.10328
http://link.aps.org/doi/10.1103/PhysRevB.44.10328
http://dx.doi.org/10.1103/PhysRevB.45.3137
http://link.aps.org/doi/10.1103/PhysRevB.45.3137
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://link.aps.org/doi/10.1103/PhysRevLett.81.3108


Bibliography

[39] A. E. Niederle and H. Rieger, “Superfluid clusters, percolation and phase transitions in
the disordered, two-dimensional Bose–Hubbard model,”
New Journal of Physics 15.7 (2013) 075029,
url: http://stacks.iop.org/1367-2630/15/i=7/a=075029.

[40] P. Anders et al., “Dynamical Mean Field Solution of the Bose-Hubbard Model,”
Phys. Rev. Lett. 105 (2010) 096402, doi: 10.1103/PhysRevLett.105.096402,
url: http://link.aps.org/doi/10.1103/PhysRevLett.105.096402.

[41] D. A. W. Hutchinson, Excitations in Bose-Einstein Condensates, Lecture Notes, 2012.

[42] L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation, Internat. Ser. Mono. Phys.
Oxford: Clarendon Press, 2003.

[43] A. Leggett, “On the Superfluid Fraction of an Arbitrary Many-Body System at T=0,”
Journal of Statistical Physics 93.3-4 (1998) 927–941,
doi: 10.1023/B:JOSS.0000033170.38619.6c,
url: http://dx.doi.org/10.1023/B%3AJOSS.0000033170.38619.6c.

[44] A. Shalgi and Y. Imry, “Localization in Disordered Systems,”
Les Houches 1994: Mesoscopic Quantum Physics, ed. by E. Akkermans et al.,
Amsterdam: North-Holland, 1995.

[45] J. Fröhlich and T. Spencer, “Absence of diffusion in the Anderson tight binding model
for large disorder or low energy,”
Communications in Mathematical Physics 88.2 (1983) 151–184,
doi: 10.1007/BF01209475, url: http://dx.doi.org/10.1007/BF01209475.

[46] J. Fröhlich and T. Spencer, “A rigorous approach to Anderson localization,”
Physics Reports 103.1–4 (1984) 9 –25,
doi: http://dx.doi.org/10.1016/0370-1573(84)90061-9,
url: http://www.sciencedirect.com/science/article/pii/0370157384900619.

[47] I. Y. Gol’dshtein, S. A. Molchanov, and L. A. Pastur,
“A pure point spectrum of the stochastic one-dimensional schrödinger operator,”
Functional Analysis and Its Applications 11.1 (1977) 1–8, doi: 10.1007/BF01135526,
url: http://dx.doi.org/10.1007/BF01135526.

[48] B. Kramer and A. MacKinnon, “Localization: theory and experiment,”
Reports on Progress in Physics 56.12 (1993) 1469,
url: http://stacks.iop.org/0034-4885/56/i=12/a=001.

[49] I. M. Lifshitz, “The energy spectrum of disordered systems,”
Advances in Physics 13.52 (1964) 483–536, doi: 10.1080/00018736400101061,
url: http://dx.doi.org/10.1080/00018736400101061.

[50] N. F. Mott, “Electrons in disordered structures,” Advances in Physics 16 (1967) 49–144.

[51] J. Rammer, Quantum Transport Theory, Frontiers in Physics,
Reading, MA: Westview Press, 2004.

[52] R. Landauer, “Electrical resistance of disordered one-dimensional lattices,”
Philosophical Magazine 21.172 (1970) 863–867, doi: 10.1080/14786437008238472,
url: http://dx.doi.org/10.1080/14786437008238472.

150

http://stacks.iop.org/1367-2630/15/i=7/a=075029
http://dx.doi.org/10.1103/PhysRevLett.105.096402
http://link.aps.org/doi/10.1103/PhysRevLett.105.096402
http://dx.doi.org/10.1023/B:JOSS.0000033170.38619.6c
http://dx.doi.org/10.1023/B%3AJOSS.0000033170.38619.6c
http://dx.doi.org/10.1007/BF01209475
http://dx.doi.org/10.1007/BF01209475
http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(84)90061-9
http://www.sciencedirect.com/science/article/pii/0370157384900619
http://dx.doi.org/10.1007/BF01135526
http://dx.doi.org/10.1007/BF01135526
http://stacks.iop.org/0034-4885/56/i=12/a=001
http://dx.doi.org/10.1080/00018736400101061
http://dx.doi.org/10.1080/00018736400101061
http://dx.doi.org/10.1080/14786437008238472
http://dx.doi.org/10.1080/14786437008238472


Bibliography

[53] J. T. Edwards and D. J. Thouless,
“Numerical studies of localization in disordered systems,”
Journal of Physics C: Solid State Physics 5.8 (1972) 807,
url: http://stacks.iop.org/0022-3719/5/i=8/a=007.

[54] D. C. Licciardello and D. J. Thouless,
“Constancy of Minimum Metallic Conductivity in Two Dimensions,”
Phys. Rev. Lett. 35 (1975) 1475–1478, doi: 10.1103/PhysRevLett.35.1475,
url: http://link.aps.org/doi/10.1103/PhysRevLett.35.1475.

[55] D. C. Licciardello and D. J. Thouless,
“Conductivity and mobility edges for two-dimensional disordered systems,”
Journal of Physics C: Solid State Physics 8.24 (1975) 4157,
url: http://stacks.iop.org/0022-3719/8/i=24/a=009.

[56] F. Wegner, “Electrons in disordered systems. Scaling near the mobility edge,”
Zeitschrift für Physik B Condensed Matter 25.4 (1976) 327–337,
doi: 10.1007/BF01315248, url: http://dx.doi.org/10.1007/BF01315248.

[57] N. F. Mott,
“Conduction in non-crystalline systems IX. the minimum metallic conductivity,”
Philosophical Magazine 26.4 (1972) 1015–1026, doi: 10.1080/14786437208226973,
url: http://dx.doi.org/10.1080/14786437208226973.

[58] K. Slevin and T. Ohtsuki,
“Numerical verification of universality for the Anderson transition,”
Phys. Rev. B 63 (2001) 045108, doi: 10.1103/PhysRevB.63.045108,
url: http://link.aps.org/doi/10.1103/PhysRevB.63.045108.

[59] A. Eilmes, A. M. Fischer, and R. A. Römer, “Critical parameters for the
disorder-induced metal-insulator transition in fcc and bcc lattices,”
Phys. Rev. B 77 (2008) 245117, doi: 10.1103/PhysRevB.77.245117,
url: http://link.aps.org/doi/10.1103/PhysRevB.77.245117.

[60] A. Cohen, Y. Roth, and B. Shapiro,
“Universal distributions and scaling in disordered systems,”
Phys. Rev. B 38 (1988) 12125–12132, doi: 10.1103/PhysRevB.38.12125,
url: http://link.aps.org/doi/10.1103/PhysRevB.38.12125.

[61] D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the Anderson
localization problem in d . 2 dimensions,” Phys. Rev. B 22 (1980) 4666–4679,
doi: 10.1103/PhysRevB.22.4666,
url: http://link.aps.org/doi/10.1103/PhysRevB.22.4666.

[62] D. Vollhardt and P. Wölfle,
“Scaling Equations from a Self-Consistent Theory of Anderson Localization,”
Phys. Rev. Lett. 48 (1982) 699–702, doi: 10.1103/PhysRevLett.48.699,
url: http://link.aps.org/doi/10.1103/PhysRevLett.48.699.

[63] A. D. Zdetsis et al.,
“Localization in two- and three-dimensional systems away from the band center,”
Phys. Rev. B 32 (1985) 7811–7816, doi: 10.1103/PhysRevB.32.7811,
url: http://link.aps.org/doi/10.1103/PhysRevB.32.7811.

151

http://stacks.iop.org/0022-3719/5/i=8/a=007
http://dx.doi.org/10.1103/PhysRevLett.35.1475
http://link.aps.org/doi/10.1103/PhysRevLett.35.1475
http://stacks.iop.org/0022-3719/8/i=24/a=009
http://dx.doi.org/10.1007/BF01315248
http://dx.doi.org/10.1007/BF01315248
http://dx.doi.org/10.1080/14786437208226973
http://dx.doi.org/10.1080/14786437208226973
http://dx.doi.org/10.1103/PhysRevB.63.045108
http://link.aps.org/doi/10.1103/PhysRevB.63.045108
http://dx.doi.org/10.1103/PhysRevB.77.245117
http://link.aps.org/doi/10.1103/PhysRevB.77.245117
http://dx.doi.org/10.1103/PhysRevB.38.12125
http://link.aps.org/doi/10.1103/PhysRevB.38.12125
http://dx.doi.org/10.1103/PhysRevB.22.4666
http://link.aps.org/doi/10.1103/PhysRevB.22.4666
http://dx.doi.org/10.1103/PhysRevLett.48.699
http://link.aps.org/doi/10.1103/PhysRevLett.48.699
http://dx.doi.org/10.1103/PhysRevB.32.7811
http://link.aps.org/doi/10.1103/PhysRevB.32.7811


Bibliography

[64] T. Kopp, “A diagrammatic two-particle locator theory for disordered systems. I. General
formulation,” Journal of Physics C: Solid State Physics 17.11 (1984) 1897,
url: http://stacks.iop.org/0022-3719/17/i=11/a=011.

[65] T. Kopp, “A diagrammatic two-particle locator theory for disordered systems. II.
Self-consistent treatment of the Anderson transition and the role of hopping processes,”
Journal of Physics C: Solid State Physics 17.11 (1984) 1919,
url: http://stacks.iop.org/0022-3719/17/i=11/a=012.

[66] J. Kroha, T. Kopp, and P. Wölfle, “Self-consistent theory of Anderson localization for
the tight-binding model with site-diagonal disorder,” Phys. Rev. B 41 (1990) 888–891,
doi: 10.1103/PhysRevB.41.888,
url: http://link.aps.org/doi/10.1103/PhysRevB.41.888.

[67] J. Kroha, “Diagrammatic self-consistent theory of anderson localization for the
tight-binding model,”
Physica A: Statistical Mechanics and its Applications 167.1 (1990) 231 –252,
doi: 10.1016/0378-4371(90)90055-W,
url: http://www.sciencedirect.com/science/article/pii/037843719090055W.

[68] B. Bulka, M. Schreiber, and B. Kramer,
“Localization, quantum interference, and the metal-insulator transition,”
Zeitschrift für Physik B Condensed Matter 66.1 (1987) 21–30,
doi: 10.1007/BF01312758, url: http://dx.doi.org/10.1007/BF01312758.

[69] P. Sheng,
Introduction to Wave Scattering, Localization and Mesoscopic Phenomena; 2nd ed.
Dordrecht: Springer, 2006.

[70] J. Stasińska et al., “The glass to superfluid transition in dirty bosons on a lattice,”
New Journal of Physics 14.4 (2012) 043043,
url: http://stacks.iop.org/1367-2630/14/i=4/a=043043.

[71] K. G. Singh and D. S. Rokhsar, “Disordered bosons: Condensate and excitations,”
Phys. Rev. B 49 (1994) 9013–9023, doi: 10.1103/PhysRevB.49.9013,
url: http://link.aps.org/doi/10.1103/PhysRevB.49.9013.

[72] C. Gaul and C. A. Müller,
“Bogoliubov excitations of disordered Bose-Einstein condensates,”
Phys. Rev. A 83 (2011) 063629, doi: 10.1103/PhysRevA.83.063629,
url: http://link.aps.org/doi/10.1103/PhysRevA.83.063629.

[73] C. Gaul and C. A. Müller, “Bogoliubov theory on the disordered lattice,”
The European Physical Journal Special Topics 217.1 (2013) 69–78,
doi: 10.1140/epjst/e2013-01755-9,
url: http://dx.doi.org/10.1140/epjst/e2013-01755-9.

[74] C. Gaul and C. A. Müller, “A grand-canonical approach to the disordered Bose gas,”
Applied Physics B 117.3 (2014) 775–784, doi: 10.1007/s00340-014-5805-2,
url: http://dx.doi.org/10.1007/s00340-014-5805-2.

[75] H. Gimperlein et al.,
“Ultracold Atoms in Optical Lattices with Random On-Site Interactions,”
Phys. Rev. Lett. 95 (2005) 170401, doi: 10.1103/PhysRevLett.95.170401,
url: http://link.aps.org/doi/10.1103/PhysRevLett.95.170401.

152

http://stacks.iop.org/0022-3719/17/i=11/a=011
http://stacks.iop.org/0022-3719/17/i=11/a=012
http://dx.doi.org/10.1103/PhysRevB.41.888
http://link.aps.org/doi/10.1103/PhysRevB.41.888
http://dx.doi.org/10.1016/0378-4371(90)90055-W
http://www.sciencedirect.com/science/article/pii/037843719090055W
http://dx.doi.org/10.1007/BF01312758
http://dx.doi.org/10.1007/BF01312758
http://stacks.iop.org/1367-2630/14/i=4/a=043043
http://dx.doi.org/10.1103/PhysRevB.49.9013
http://link.aps.org/doi/10.1103/PhysRevB.49.9013
http://dx.doi.org/10.1103/PhysRevA.83.063629
http://link.aps.org/doi/10.1103/PhysRevA.83.063629
http://dx.doi.org/10.1140/epjst/e2013-01755-9
http://dx.doi.org/10.1140/epjst/e2013-01755-9
http://dx.doi.org/10.1007/s00340-014-5805-2
http://dx.doi.org/10.1007/s00340-014-5805-2
http://dx.doi.org/10.1103/PhysRevLett.95.170401
http://link.aps.org/doi/10.1103/PhysRevLett.95.170401


Bibliography

[76] F. Lin, E. S. Sørensen, and D. M. Ceperley,
“Superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model,”
Phys. Rev. B 84 (2011) 094507, doi: 10.1103/PhysRevB.84.094507,
url: http://link.aps.org/doi/10.1103/PhysRevB.84.094507.

[77] Ş. G. Söyler et al., “Phase Diagram of the Commensurate Two-Dimensional Disordered
Bose-Hubbard Model,” Phys. Rev. Lett. 107 (2011) 185301,
doi: 10.1103/PhysRevLett.107.185301,
url: http://link.aps.org/doi/10.1103/PhysRevLett.107.185301.

[78] E. L. Pollock and D. M. Ceperley, “Path-integral computation of superfluid densities,”
Phys. Rev. B 36 (1987) 8343–8352, doi: 10.1103/PhysRevB.36.8343,
url: http://link.aps.org/doi/10.1103/PhysRevB.36.8343.

[79] V. Gurarie et al., “Phase diagram of the disordered Bose-Hubbard model,”
Phys. Rev. B 80 (2009) 214519, doi: 10.1103/PhysRevB.80.214519,
url: http://link.aps.org/doi/10.1103/PhysRevB.80.214519.

[80] D. van Oosten, P. van der Straten, and H. T. C. Stoof,
“Quantum phases in an optical lattice,” Phys. Rev. A 63 (2001) 053601,
doi: 10.1103/PhysRevA.63.053601,
url: http://link.aps.org/doi/10.1103/PhysRevA.63.053601.

[81] H. T. C. Stoof, D. B. M. Dickerscheid, and K. Gubbels, Ultracold quantum fields,
Berlin: Springer, 2009.

[82] B. Gough, GNU Scientific Library Reference Manual - Third Edition, 3rd,
Network Theory Ltd., 2009.

[83] E. Anderson et al., LAPACK Users’ Guide, Third,
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.

[84] A. Gonis and J. Garland,
“Rederivation and proof of analyticity of the Blackman-Esterling-Berk approximation,”
Phys. Rev. B 16 (1977) 1495–1502, doi: 10.1103/PhysRevB.16.1495,
url: http://link.aps.org/doi/10.1103/PhysRevB.16.1495.

[85] J. J. Sakurai, Modern Quantum Mechanics (Revised Edition), 1st ed.,
Addison Wesley, 1993.

[86] H. Haug and A. Jauho,
Quantum kinetics in transport and optics of semincionductors; 2nd ed.
Berlin: Springer, 2008.

[87] P. Soven, “Coherent-Potential Model of Substitutional Disordered Alloys,”
Phys. Rev. 156 (1967) 809–813, doi: 10.1103/PhysRev.156.809,
url: http://link.aps.org/doi/10.1103/PhysRev.156.809.

[88] P. Henseler,
“Interplay of Anderson Localization and Strong Interactions in Disordered Systems,”
PhD thesis: Universität Bonn, 2010,
url: http://hss.ulb.uni-bonn.de/2010/2040/2040.htm.

153

http://dx.doi.org/10.1103/PhysRevB.84.094507
http://link.aps.org/doi/10.1103/PhysRevB.84.094507
http://dx.doi.org/10.1103/PhysRevLett.107.185301
http://link.aps.org/doi/10.1103/PhysRevLett.107.185301
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://link.aps.org/doi/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevB.80.214519
http://link.aps.org/doi/10.1103/PhysRevB.80.214519
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://link.aps.org/doi/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevB.16.1495
http://link.aps.org/doi/10.1103/PhysRevB.16.1495
http://dx.doi.org/10.1103/PhysRev.156.809
http://link.aps.org/doi/10.1103/PhysRev.156.809
http://hss.ulb.uni-bonn.de/2010/2040/2040.htm




Danksagung

Zum Abschluss dieser Arbeit möchte ich mich bei allen bedanken, die mich während der Zeit
meiner Promotion unterstützt haben. Zuallererst wäre da mein Doktorvater Hans Kroha, der es
mir ermöglicht hat, an diesem interessanten Thema zu arbeiten, und mit mir in vielen und meist
auch langen Diskussionen das Projekt vorangetrieben hat. Darüber hinaus hatte ich durch ihn die
Gelegenheit zu zwei Forschungsaufenthalten in Singapur, für die ich ihm sehr dankbar bin. Hier
muss ich mich natürlich auch bei Cord Müller für die Einladungen nach Singapur bedanken.
Während der beiden Aufenthalte hat er mir geholfen, grundlegende Ideen dieser Arbeit zu
entwickeln, und war auch anschließend durch eine Vielzahl an Gesprächen direkt am Gelingen
der Arbeit beteiligt. Weiterhin bin ich Corinna Kollath dankbar, die sich die Zeit genommen
hat, meine Arbeit zu begutachten, und mir einige hilfreiche Hinweise gegeben hat. Danke an
alle Mitglieder meiner Arbeitsgruppe für die schöne Zeit und besonderen Dank an Kati, Mauro
und Lai, denen die unangenehme Aufgabe zufiel, alle Rechtschreib- und Grammatikfehler der
Rohfassung in roter Farbe zu unterstreichen. Danke an (in alphabetischer Reihenfolge) Christa,
Dagmar, Patricia und Petra für ihre Geduld mit mir. Danke an Andreas und Hartmut für die
abendlichen Unterhaltungen an der Espressomaschine. Danke an Freunde und Familie.
So, und jetzt bin ich schon weg. Ciao... Arrivederci... Goodbye. – Gordon Shumway


	Introduction
	Interacting Bosons in Disordered Lattice Systems
	The Bose-Hubbard Model
	The Hamiltonian
	The Strongly Correlated Regime: Mott Lobes
	The Weakly Correlated Regime: Bogoliubov Excitations
	Landau Criterion for Superfluidity
	Mean Field Amplitude and Superfluid Velocity

	Anderson Localization
	Absence of Diffusion
	The Localization Length
	Lifshitz Tails
	Mobility Edges
	Coherent Backscattering
	Scaling Theory of Localization
	Self-Consistent Theory of Localization

	The Disordered Bose-Hubbard Model
	Mott Lobes: Shifted Phase Boundaries
	Depletion of the Condensate and the Superfluid
	The Bose Glass Phase and the Theorem of Inclusions


	Mean-Field Theory for the Disordered Bose-Hubbard Model
	Mean-Field Theory for the Bose-Hubbard Model
	Direct Diagonalization
	Perturbation Theory

	Stochastic Mean-Field Theory for the Disordered Bose-Hubbard Model
	Decoupling Approximation
	Self-Consistent Integral Equation
	The Phase Boundary for the Disordered System
	Numerical Results for Three Dimensions
	Conclusions


	Transport Theory for the Disordered Bose-Hubbard Model
	The Superfluid Current
	The Current Density Operator
	Expectation Value of the Current Density Operator

	Effective Non-Interacting Model
	Locator Expansion of the Interacting Green's Function
	The Eigenbasis of the Mean-Field Hamiltonian
	Representing the Propagator Using the Mean-Field Eigenbasis
	Local Spectrum and Transition Amplitudes
	Defining the Effective Model
	Summary

	The Current Density Within the Single-Excitation Approximation
	Boundary Conditions for the Order Parameter
	Complex Transition Amplitudes
	Summary

	Numerical Evaluation and Results for Three Dimensions
	Parameters of the Effective Model
	Density of States within the Coherent Potential Approximation
	The Diffusion Coefficient and the Localization Length
	Density of States and Diffusion as Functions of the Hopping Amplitude
	Trajectory of the Anderson Transition
	Summary and Complete Phase Diagram


	Conclusion
	Mean-Field Theory for the Bose-Hubbard Model
	Compressibility and the Mean-Field Parameter
	Perturbation Theory

	Transport Theory for the Disordered Bose-Hubbard Model
	Relations for the Green's Functions
	Locator Expansion
	Coherent Potential Approximation
	Self-Consistent Theory of Anderson Localization
	Derivation of the Diffusion
	Evaluation of the Diffusion Integral for a Periodic Dispersion Relation


	Bibliography
	Danksagung

