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Abstract

In this thesis, the solution of large-scale uncertainty quantification problems is considered.
Uncertainty quantification aims to extract stochastic (moment) information from processes
with uncertain input data. These processes are here identified with random partial differential
equations (PDEs). They have random input with respect to initial / boundary conditions,
forcing terms, coefficients or domains. Non-intrusive methods are studied, in order to reuse
existing PDE solvers. Applications are (elliptic) model problems and incompressible two-phase
flows. The main contribution of this thesis is a new framework to solve these problems in a high-
order convergent, scaling, parallel and optimal complexity fashion. To this end, the radial basis
function (RBF) kernel-based stochastic collocation method is introduced. It combines high-order
algebraic or even exponential convergence rates of spectral (sparse) tensor-product methods
with optimal preasymptotic convergence of kriging and the profound stochastic framework of
Gaussian process regression. The new method uses Lagrange bases from special reproducing
kernel Hilbert spaces for approximation. Those Hilbert spaces are constructed from RBFs.
Numerical results show up to exponential convergence for model problems with high smooth-

ness. For problems with low-smoothness, algebraic convergence rates are given. A small error in
the preasymptotic regime is always achieved. Convergence results of (quasi-)Monte Carlo and
(sparse) spectral tensor-product approaches are often clearly outperformed. An empirical error
coupling analysis describes the interplay of all approximations, including conditions to bal-
ance all error contributions. Runtime complexity is expressed for a target error. Performance
measurements show that a stochastic moment analysis for large-scale two-phase flow problems
can be solved within a few hours. This excellent preasymptotic runtime becomes possible by
parallelizing all relevant numerical methods, including a two-phase flow solver, iterative dense
linear algebra solvers and all parts of the stochastic collocation on graphics processing units
(GPUs). Most approaches scale across clusters of GPUs.
Optimal complexity and profound speedups are achieved by preconditioning of iterative

sparse and dense linear solvers. Dense linear systems from interpolation are preconditioned
with a localized restricted additive Schwarz method. Thereby, a new perfectly scalable pre-
conditioner on multi-GPU clusters is constructed. Elliptic problems are solved with a newly
implemented optimal Ruge-Stüben algebraic multigrid method. It uses CPU-based C/F split-
tings and parallelizes all remaining parts of the setup and solve phase on one GPU.
The curse of dimensionality is weakened or even broken for problems with fast decaying

output covariance spectrum. To this end, anisotropic RBF kernel-based stochastic collocation
is introduced. Optimal weights for two-phase flow problems are approximated by a Karhunen-
Loève expansion of the solution flow field, which requires to solve a large-scale dense eigenvalue
problem. Greedy optimization is used for optimal sampling in anisotropic space. Numerical
experiments give profound (pre-)asymptotic results for elliptic and two-phase flow problems.
Overall, a combined effort of optimal numerical methods and parallel implementations allows

to solve even large-scale uncertainty quantification problems in a small amount of time.
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1 Introduction

Robustness and safety are major concerns in many engineering fields. The influence of small
material defects on complex dynamical systems is studied in vehicle or architectural design.
Potential danger from toxic processes or waste has to be analyzed in environmental engineering.
Even more, the complicated interplay between industries and climate change with potential
global impact, is studied in climatology. All these missions have the common characteristics
that stochastic information is needed of processes, which are subject to uncertain or unreliable
data. This idea is recently summarized under the notion of uncertainty quantification (UQ) in
the fields of mathematics and engineering. More specifically, uncertainty quantification mainly
addresses numerical simulations of physical and engineering processes. The objective is thus
to get robust information and measurements for variations out of simulations.
From a mathematical point of view, the underlying task is to compute the solution of e.g. par-

tial differential equations (PDEs) with coefficients, initial and boundary conditions, domains
or forcing terms being dependent on some random input from a stochastic space (Ω,F , P ). In
this thesis, such problems will be called random PDE problems. With L an operator describing
a general PDE in space D̄ and time [0, T ], and a, b general space-time stochastic processes that
describe random parameters, random PDE problems have solutions u : Ω × D̄ × [0, T ] → Rr
such that almost surely

L(a(ω,x, t))u(ω,x, t) = f [b(ω,x, t)](ω,x, t) in Ω× D̄ × [0, T ] (1.1)

holds. Here, the general PDE operator is expected to encode initial and boundary conditions.
In uncertainty quantification, the objective is to evaluate statistical moments of the random
PDE solution with the most common examples of expectation value E [u] (x, t) and variance
Var [u] (x, t). In airplane design, this might be the mean velocity field and its variance. It is
often of further interest to compute moments of quantities of interest (QOI). These are derived
values from solution fields like extremal values or integrals of the velocity.
There are two major approaches to approximately solve random PDE problems, namely in-

trusive and non-intrusive methods. An intrusive technique simultaneously discretizes stochastic
and physical space with the classical example of stochastic Galerkin approaches [GS91, XK02,
BTZ04, FST05, SG11]. Even though this method delivers following [Xiu10, Section 7.4] favor-
able properties such as small errors with fewer number of equations and potentially small overall
run-time, it requires to re-discretize and re-implement existing deterministic PDE solvers which
might become rather involved because of the Galerkin reformulation. Non-intrusive techniques
(e.g. stochastic collocation) reuse existing PDE solvers and generate a series of deterministic
solutions which are used to approximate stochastic moments. It is thereby possible to perform
uncertainty quantification analysis even for very complex large-scale applications for which
a re-implementation of existing solvers is no option. However, this is connected to a higher
computational effort, with at least hundreds, thousands or even more deterministic problems
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2 1 Introduction

that have to be solved. Noting that a single high-resolution simulation often requires compu-
tational resources in the range of hours to days on a parallel computer, a moment analysis for
a large-scale random PDE problem then seems not to be tractable.
Important examples for large-scale PDE problems arise in the analysis of fluid dynamics.

Fluids are gases, liquids or plasmas. They play a key role in applications like vehicle design,
droplet and bubble dynamics or future nuclear fusion plants. Indicators for the complexity
of understanding and modeling their underlying continuous laws are e.g. the open questions
with regard to the existence and uniqueness of strong solutions of the three-dimensional tran-
sient Navier-Stokes equations, which are formulated as one of the Millennium Prize Problems
[CJW+06]. The Navier-Stokes equations are a mathematical model for the description of in-
compressible fluids in continuous space. They relate the velocity and pressure of a fluid to its
material parameters such as viscosity or density in presence of forces and boundary conditions.
While the exact mathematical properties of these and some related equations are still open,
their approximate numerical solution has become a main tool in the field of computational fluid
dynamics (CFD). Flow simulations, thus the numerical solution of the underlying equations,
replace real-world experiments in many cases.
In this thesis, uncertainty quantification shall be made feasible for large-scale complex ran-

dom PDE problems by means of non-intrusive uncertainty quantification. Besides of model
problems, large-scale complex uncertainty quantifications applications shall be exemplified by
two-phase flow simulations modeled by the three-dimensional two-phase incompressible Navier-
Stokes equations. They are given with i = 1, 2 as

ρi∂tui + ρi(ui · ∇)ui = ∇ · µi(∇ui + {∇ui}T )−∇pi + ρig in Di × [0, T ] ,
∇ · ui = 0 in Di × [0, T ] ,
u1 = u2 on �f × [0, T ] ,

[T] · n�f = σκn�f on �f × [0, T ] ,

skipping initial and boundary conditions. The two-phase Navier-Stokes equations describe the
interaction of two non-mixing fluids like water and oil or water and air (at low Mach numbers)
in domains D1 and D2 with important applications such as fluvial construction analysis or
bubble flows in chemical bubble reactors. Approximating a single two-phase flow problem is a
large computational effort. Here, the application of non-intrusive uncertainty quantification is
almost impossible without accomplishing the following tasks:

1. A non-intrusive uncertainty quantification method with high- to exponential-order
error convergence and excellent pre-asymptotic error behavior has to be found.

2. All numerical components including the stochastic part and PDE solvers have to be
constructed at optimal runtime complexity.

3. The numerical methods have to be optimized for small pre-asymptotic runtime.

4. To solve large-scale problems, a parallelization for distributed-memory parallel compute
clusters with optimal parallel scalability has to be made.

5. If the underlying problem exposes enough structure, the curse of dimensionality in
stochastic parameter space has to be broken or weakened.
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This is where this thesis starts. A multi-disciplinary approach is proposed, to solve all above
problems. It combines optimal numerical methods and empirical error analysis from mathemat-
ics with algorithmic developments from computer science and hardware-aware programming
from the field of high performance computing (HPC).

RBF kernel-based stochastic collocation for two-phase flows

As motivated before, the approximation of large-scale random PDE problems with existing
solver implementations requires non-intrusive uncertainty analysis. To achieve high conver-
gence rates and excellent preasymptotic behavior for uncertainty quantification, radial basis
function (RBF) kernel-based stochastic collocation is introduced. Starting from the general ran-
dom PDE problem (1.1), whose solutions are at least in the Bochner space L2(Ω; [0, T ];L2(D)),
the first important step towards a stochastic collocation approximation is the introduction of a
finite-dimensional noise assumption [BNT10]. This gives, after measure change, the problem
to find u : Γ×D × [0, T ]→ Rr such that

L(a(y,x, t))u(y,x, t) = f [b(y,x, t)](y,x, t) in Γ× D̄ × [0, T ] (1.2)

for all y ∈ Γ on (Γ,BNFN , ρdy). Here, Γ is a finite-dimensional (tensor-product) space, such
as [−r, r]NFN with stochastic dimension NFN . Solutions are in the Bochner space L2(Γ; [0, T ];
L2(D)). The connection between equations (1.1) and (1.2), thus the finite-dimensional noise as-
sumption, is often fulfilled by an approximation of the random input fields a, b by the Karhunen-
Loève expansion, e.g.

a(ω,x, t) ≈ aKL(Y a1 (ω), . . . , Y aNKL(ω),x, t) = E [a] (x, t) +
Na
KL∑

m=1

√
λamY

a
m(ω)ψam(x, t)

with aKL(y,x, t) ∼= aKL(Y a1 (ω), . . . , Y aNKL(ω),x, t). The function uKL ∈ L2(Γ; [0, T ];L2(D)) is
the solution of (1.2) for approximated input space-time stochastic processes aKL, bKL. By this
construction, we introduce a finite noise or Karhunen-Loève error. It depends on the truncation
error of the Karhunen-Loève expansion and is related to the correlation length or covariance
spectrum of the random input and the random PDE, cf. [ST06, Theorem 2.7]. In many cases,
it is necessary to keep several terms in the expansion. Each term introduces one stochastic
dimension, leading very often to a higher-dimensional problem in the stochastic parameter
y ∈ Γ ⊂ RNKL with the well-known curse of dimensionality [BG04] for approximation.
Many non-intrusive approaches have been proposed to solve the above random PDE problem.

These include, but are not limited to standard Monte Carlo sampling, quasi-Monte Carlo
based methods [GKN+11], multi-level Monte Carlo approaches [CGST11, BSZ11, DKS13],
(generalized) polynomial chaos [Sud08, Eld09, EMSU12] and stochastic collocation [NTW08b,
BNT10]. While Monte Carlo sampling leads to a dimension-independent convergence rate
of O(NΓ

−1/2) in stochastic space, quasi-Monte Carlo methods try to achieve rates of (NΓ
−1)

without dimension dependence. In contrast, multi-level Monte Carlo methods stick to standard
Monte Carlo sampling but try to reduce the overall computational complexity by using multiple
resolution levels in PDE space and stochastic space. Uncertainty quantification by polynomial
chaos uses polynomial expansions in stochastic space to approximate the underlying stochastic
process. It has close connections to similar stochastic collocation constructions. If applied
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to appropriately smooth problems, polynomial chaos expansion allows to achieve exponential
convergence. An in-depth discussion of these and other methods is well beyond the scope of this
thesis. More details on spectral methods are given in [LMK10], while [SG11] reviews some of
the methods with special focus on sparse tensor discretizations. In [Xiu09], a broader review is
given. As mentioned before, in this thesis, the very general framework of stochastic collocation
is used to solve random PDE problems. Therefore, this method is introduced in more detail.

Stochastic collocation In stochastic collocation, deterministic solutions of the (random) PDE
problem (1.2) for fixed samples or collocation points XΓ :=

{
y1, . . . ,yNΓ

}
⊂ Γ of the finite-

dimensional stochastic space Γ are computed. The collocation method uses a Lagrange basis
{Li}NΓ

i=1 ⊂ P(Γ) to interpolate in the full space Γ leading to approximations

uKL ≈ (INΓuKL) ∈ P(Γ)⊗ L2([0, T ];L2(D)), (INΓuKL)(y,x, t) =
NΓ∑
i=1
uKL(yi,x, t)Li(y)

with a stochastic collocation approximation error. Since we numerically solve (1.2) by dis-
cretization in space and time, we further introduce the PDE approximation

uKL ≈ DhD,δtuKL ,

with DhD,δt the operator to project on the finite-dimensional PDE solution space L2(Γ) ⊗
VhD,δt([0, T ] × D) and a PDE approximation error. Stochastic moments, e.g. the mean, are
approximated by applying quadrature with the approximation

E [uKL] (x, t) =
∫

Γ
uKL(y,x, t)ρ(y)dy ≈ (Ql,NKLuKL)(x, t)

with an additional quadrature error. In Section 4.6, the usual error splitting for the first
moment approximation of stationary space-dependent random PDE problems is discussed. It
has the structure∥∥∥E [u]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

≤ εKL + εhD + εNΓ + εQ (1.3)

with some Karhunen-Loève, PDE discretization, stochastic collocation and quadrature error
on the right-hand side.
This discussion motivates to handle the different approximations independently. Therefore,

it gives rise to a series of choices to be made for the construction of a stochastic collocation
method. Ignoring here the Karhunen-Loève approximation error, these choices are the stochas-
tic approximation space P(Γ) with collocation points XΓ, the quadrature method Ql,NKL to
evaluate moments and the PDE discretization approach.
The currently most widely used approach in stochastic collocation is to use a spectral tensor-

product approximation in the stochastic space Γ, thus the approximation space P(Γ) is the ten-
sor product space of polynomials. Increasing the number of collocation points is equivalent to
increasing the polynomial degree. Furthermore, collocation points are roots of orthogonal poly-
nomials that correspond to the given distribution. Classical results for this standard approach
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are discussed in [BNT10]. To overcome the curse of dimensionality stemming from the construc-
tion of a higher-dimensional tensor-product grid, sparse approximations by the Smolyak sparse
grid technique [BG04] have been introduced to stochastic collocation [NTW08b]. Some litera-
ture with comparisons to other methods is available [BNTT11, TPME11, CQR14]. Stochastic
collocation is applied to many applications, e.g. [MHZ05, MX09, SM11, BS13, ZLY+13]. More
background on this topic is given in overview literature like [LMK10] and recent publications
include, but are not limited to [NTW08a, JNX13, TJWG14, ES14].

Approximation in reproducing kernel Hilbert spaces In contrast to the classical spectral
stochastic collocation approaches, this thesis introduces reproducing kernel Hilbert spaces
(RKHS), cf. Section 4.2, as stochastic collocation approximation spaces with radial-symmetric
basis function (RBF) kernels k(y,y′) := ϕ(‖y − y′‖2). Note, that there is related recent work
on kernel-based collocation for the approximate solution of stochastic partial differential equa-
tions [CFY12, FY13b] and the special-case of an elliptic random PDE [FY13a]. However this
approach applies collocation in physical space and therefore is an intrusive method. Other
related work is [LWB07] which uses radial basis functions for interpolation in stochastic space
without a profound mathematical framework. Therefore, the here given approach is new.
Interpolation in reproducing kernel Hilbert spaces allows for an approximation of a given

function f ∈ F by

f(y) ≈ sf,X(y) :=
NΓ∑
j=1

αjk(y,yj), sf,X(yi) = f(yi) ∀i = 1, . . . , NΓ, XΓ =
{
yj

}NΓ

j=1

with XΓ the collocation points or centers, as before. To formally introduce an RBF kernel-
based stochastic collocation, the Lagrange basis in the so-called native space Nk(Γ) is used.
The native space is derived by completion of Fk(Γ) := span {k(·,y)|y ∈ Γ}. It is a reproducing
kernel Hilbert space. Throughout this thesis, the stochastic approximation space is

P(Γ) := Nk(Γ) ,

for changing strictly positive definite radial kernel functions k. Note that the interpolant sf,X
of a function f ∈ Nk(Γ) is always its best approximation in space Nk(Γ) with respect to the
native space (semi-)norm | · |Nk(Γ), cf. [Wen04, Chapter 13]. Furthermore, it minimizes this
norm for all functions in Nk(Γ) that interpolate f [Wen04, Chapter 13]. These optimality
results are not available in many of the standard collocation approaches. To exemplify this,
we can state the fact that the native spaces of e.g. Wendland and Matérn kernels are specific
Sobolev spaces. Consequently, kernel interpolation will lead to best-approximations with norm-
minimality properties in these Sobolev spaces.
Besides these optimality properties, the close relationship of kernel-based approximation to

kriging [Kri51, Mat63, Ste99, vK04] with its well-known behavior of low error for few collocation
points makes it an optimal candidate for the target application. Moreover, the given method
has similarities to Gaussian process regression [RW05] with a profound stochastic framework.
Depending on the smoothness of the approximated function f and the choice of kernel and

collocation points, there exist convergence results for kernel-based approximation with higher-
order algebraic rates or even exponential rates, cf. Section 4.3.2. Most of these convergence
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results rely on a very even distribution of the collocation points XΓ, which is e.g. given for
some quasi-Monte Carlo point sequences like the Halton sequence [Hal60]. Even though the
implementation of kernel-based stochastic collocation will allow for many samplings including
Monte Carlo, quasi-Monte Carlo, tensor product grids or sparse grids, the numerical results
will be mainly based on points sets XΓ constructed by a Halton sequence.
By that way, the existing theoretical results on kernel approximation convergence will be

carried over to the new kernel-based stochastic collocation method, allowing to outperform
low-order algebraic convergence rates from (quasi-)Monte Carlo techniques in asymptotic con-
vergence, in most cases. Even more, exponential convergence rates known from e.g. stochastic
collocation with tensor product or sparse-grid constructions of orthogonal polynomials will be
matched in asymptotic behavior and the error behavior is even outperformed in preasymptotics
for sufficiently smooth problems. Empirical results will show that kernel-based stochastic collo-
cation achieves higher convergence rates than classical spectral (sparse) tensor-product methods
for problems of finite, low smoothness. The mesh-less construction of RBF interpolants fur-
ther gives the advantage of approximation with arbitrary numbers of collocation points instead
of dyadic constructions known from tensor-product methods and sparse grids. This is very
important in the preasymptotic regime. Overall, RBF kernel-based stochastic collocation is a
perfect fit for the challenge to introduce a high- to exponential-order stochastic approximation
with excellent preasymptotic behavior.

Higher-dimensional quadrature Evaluating stochastic moments requires quadrature. It will
be possible to reduce the quadrature problem to a weight coefficient approximation requiring
only quadrature of kernel functions and products of kernel functions. Thereby, the major part
of the stochastic moment evaluation problem complexity is moved to the stochastic collocation
or interpolation.
The integrals that have to be approximated are higher-dimensional integrals with stochas-

tic dimension NKL. In some cases, solving these can be done by analytical means. How-
ever, usually numerical quadrature is preferred to get flexibility for arbitrary kernel functions.
A series of textbook quadrature rules for higher-dimensional problems ranging from (quasi-)
Monte Carlo integration [Caf98] up to Clenshaw-Curtis quadrature on sparse grids [GG98]
will be implemented. The univariate Clenshaw-Curtis quadrature rule will be implemented
with optimal O(n logn) complexity. Overall, sparse and full tensor-product quadrature with
Clenshaw-Curtis rules will be applied such that overall optimal high order convergence and
optimal complexity of is achieved.

Discretization of the two-phase Navier-Stokes equations As initially discussed, besides of
model problems, the target large-scale complex random PDE problem is the two-phase incom-
pressible Navier-Stokes equation system. It is discretized by finite differences / volumes on a
staggered discretization grid. Chorin’s projection approach [Cho67, Cho68] allows to solve the
equation system over time. Higher-order space (e.g. ENO, WENO, VONOS, QUICK) and time
(Runge-Kutta of third order, Adams-Bashforth) discretizations are applied. A level-set func-
tion [OS88] helps to distinguish the two flow phases [SSO94]. The existing flow solver package
NaSt3DGPF [DGN98, STCE06, CGS09] is applied, featuring these discretizations. It runs on
clusters of standard processors by a domain decomposition approach with the message passing
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interface (MPI). Many applications are covered by this flow solver, including river simulations
in presence of hydraulic constructions [STCE06], coating processes, bubble and droplet dynam-
ics [CGS09], porous media flows [VCG+08], rigid body interaction [Cro10], sediment transport
[BG13], non-Newtonian flows [Cla08, GR14], contact angle dynamics [GK14] and animation
[ZG11]. Other work on the numerical handling of incompressible two-phase flows is proposed
e.g. in [KFL00, SSH+07, GR11, TSLV11].

Parallel computing on graphics processing units Small pre-asymptotic runtime will be
achieved by implementing all relevant numerical methods on graphics processing units (GPUs).
This highly parallel hardware is very popular in high performance computing, cf. [OLG+07]
for an early review. Fully dedicated parallel processing GPU hardware is available with ap-
propriate programming languages (CUDA, OpenCL, . . . ) [SK10, Far11, MGM+11]. For those
algorithms that can be reformulated in a way that many similar instructions are executed on
structured data, GPUs tend to outperform equally-priced multi-core standard processors in
terms of runtime, because of higher memory bandwidth and peak performance, and in terms
of power consumption. This gives rise to the assumption that well-optimized implementations
on GPUs are a good choice for optimal performance of the underlying numerical algorithms.
Today, compute clusters equipped with GPUs are among the fastest compute systems in the
world [Str06]. They are further assumed to be a starting point for next-generation Exascale
parallel computing clusters with exaFLOP performance, thus 1018 floating point operations
per second (FLOPS). Adaptation and redesign of new algorithms for such systems is critical.
To summarize, the two major reasons to apply GPUs throughout this thesis are their high
performance and the requirement of new hardware-aware numerical methods which achieve
maximum performance on the next generation of HPC systems.

Parallelization for distributed memory parallel computers with GPUs While all relevant
numerical methods are parallelized to run on at least a single GPU, some parts are even
further parallelized to scale on a distributed memory compute cluster equipped with GPUs,
thus a multi-GPU cluster.
A central example is the two-phase flow solver. Its core components will be re-implemented

and parallelized on a multi-GPU cluster to solve largest-scale problems. Optimization tech-
niques for stencil computations and high multi-GPU scalability have to be discussed and ap-
plied. In terms of single-GPU performance, a factor three speedup on GPUs over equally priced
CPUs, i.e. standard processors, is shown. This is a decent result. Furthermore, improvements
in power consumption by a factor of two will be highlighted. A multi-GPU scalability analysis
will outline almost optimal weak scaling on up to 48 GPUs. Note that the results on multi-GPU
parallelization of NaSt3DGPF are already published by the author in [GZ10, ZG13]. At time
of publication, this was the first two-phase incompressible flow solver purely running on GPUs
and on multi-GPU clusters. Related work included [TS09, GBWT09, Mic09, Kel09, JTS10,
WA11, JS11, CL11, KCLL11]. The results of [GZ10, ZG13] are summarized in Chapter 5 with
some recent updates on technological advancements.
In addition to the multi-GPU parallel flow solver, large parts of the kernel-based stochastic

collocation method are parallelized for multi-GPU clusters and delivered as modular libraries.
As an example, the new multi-GPU parallel iterative solver library for the dense linear systems
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parla, used for kernel interpolation, is implemented. It will be shown to have almost optimal
parallel scalability on a GPU cluster.

Model-problems and real-world applications A series of moment convergence results with
respect to different problem classes and kernel functions with further comparisons to (sparse)
spectral tensor-product approximations are given. Model problems will range from problems
with a known analytic solution to elliptic partial differential equations with random coefficients
that are either modeled as piece-wise constant random fields or given by a Karhunen-Loève
expansion. A major focus is given to the random two-phase incompressible Navier-Stokes
equations. Note that there is a large body of literature on uncertainty quantification in com-
putational fluid dynamics with applications in e.g. groundwater flow [CL91, GKW+08], incom-
pressible flows [KL06, Wan11, LMK10, Sch11, PS12, BSS13, DV13, CDBC13, TLN14, SHL14],
compressible flows [LB08, BLMS13, CCGC13] and other applications [Roa97, MHZ05], to name
a few. However, to the authors knowledge, uncertainty quantification has never been applied
to the two-phase incompressible Navier-Stokes equations before.
Three important application problems which base on the random (two-phase) Navier-Stokes

equations will be analyzed. The first is the flow over a backward facing step, representing
applications in river construction design. It has a random inflow velocity, density and viscosity.
The objective is to find stochastic properties in the vortex reattachment length. As second
problem, a rising bubble simulation in presence of a domain-dependent random volume force
modeled by a Karhunen-Loève expansion is discussed. Finally, the real-world application of
stochastic homogenization for chemical bubble reactors is outlined. The last two test cases will
be considered large-scale problems. Their run-time per single deterministic solution is in the
range of several hours on a 12-core CPU system. Convergence studies would become unfeasible
for larger problem sizes.
By using GPU-based stochastic analysis and the multi-GPU parallel flow solver, it will be pos-

sible to perform the given studies in a fast and parallel scalable way with high- to exponential-
order convergence and excellent preasymptotics. Error convergence results of stochastic colloca-
tion by global (sparse) tensor-product approximations will be outperformed in the preasymp-
totic regime and matched in the asymptotics, in many cases. Higher convergence rates are
achieved by the kernel-based methods for random PDE problems of finite, low smoothness.

Empirical error coupling From (1.3), we know that the approximation of stochastic moments
of random PDE solutions involves a series of numerical approximation errors. One important
step will be to analyze these errors and their coupling, to give indicators for optimal error
balancing. In fact, we look for the a-priory unknown relationship between a given target
approximation error and the required minimum number of collocation points, quadrature points
and PDE discretization points to get below that error. In some applications, it is possible to
give some of the necessary error estimates by means of numerical analysis, cf. [GKW+08,
NTW08a, BNT10, BSZ11, BNTT14, ES14]. Then, with knowledge on all involved errors, a
balancing becomes possible. However, in this thesis, the true application problem are the
random three-dimensional two-phase incompressible Navier-Stokes equations in strong form.
Their deterministic counterpart has no solution theory. Furthermore, an analysis for coupled
stochastic influences in coefficients, boundary conditions and initial conditions is complicated
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anyway. This is why the error coupling analysis will be done in terms of empirical studies of the
different error parts, cf. Section 6.3. As a result, empirical conditions will be given, to achieve
a given fixed mean approximation error tolerance for the different discretization parameters.
Moreover, the computational complexity will be expressed in terms of that error tolerance.
Both results will be new in that field.

Parallel preconditioning in uncertainty quantification

In the first part of this thesis, asymptotic computational complexities of the overall stochastic
collocation method will be given. For elliptic model problems, we get a complexity of

O

(
NΓND

2 +NΓ
(
N l,1
Q logN l,1

Q

)NKL +NΓ
3
)
,

with NΓ the number of collocation points, ND the number of finite difference discretization
grid points, NQ the number of quadrature points per stochastic dimension and NKL the num-
ber of stochastic dimensions corresponding to the number of terms in the Karhunen-Loève
approximation. In the two-phase Navier-Stokes case, this extends to

O

(
NΓND

2NT +NΓ
(
N l,1
Q logN l,1

Q

)NKL +NΓ
3
)
.

NT is the number of time steps. The first term corresponds to the solution of the NΓ ran-
dom PDE problems, the second summand characterizes quadrature and the third part of the
estimate describes the computational complexity of solving the kernel approximation problem
for non-compactly supported kernels such as Gaussian or Matérn kernels. As we will see,
the quadrature problem might be solved by a widely problem-independent precomputing step
or even analytically. Therefore, it is not considered to be of dominant nature. Clenshaw-
Curtis quadrature is fast anyway. However, the computational complexity O(NΓND2) or
O(NΓND2NT ) of all PDE runs and the complexity O(NΓ

3) of kernel approximation has to
be reduced, solving the problem of getting an overall optimal complexity method. This is the
objective of the second part of this thesis. Both dominant complexities base on numerical linear
algebra. Iterative methods with efficient preconditioners will reduce these complexities.

Local preconditioning for kernel approximation Let us start here with the discussion of the
optimization for optimal complexity of kernel approximation. Interpolation by non-compactly
supported kernels requires to solve a dense linear system, with O(NΓ

3) complexity for both LU
factorizations and (unpreconditioned) iterative methods. This leads to prohibitive runtimes
with hundreds of thousands or even millions of collocation points. Also, with growing number
of points, the condition of these dense linear systems usually explodes leading to bad numerical
approximations even in case of direct solvers. Therefore, local kernel Lagrange basis functions
shall be introduced following [FHN+13]. They give rise to preconditioners for Krylov subspace
solvers with dense matrices. Local Lagrange basis functions

L̃i(y) =
{

1 if y = yi
0 if y ∈ X̃i \ yi

with L̃i(y) =
Ni∑
j=1

α̃ijk(y,yij ) .
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approximate standard Lagrange basis functions as they are constructed by using point-wise
local point neighborhoods X̃i instead of the full point set. In [FHN+13], it has been shown
that the resulting preconditioner for the linear system in a kernel interpolation problem, with
conditionally positive definite thin splines, is optimal for problems on a sphere, thus with-
out boundary. Optimal preconditioners in iterative solvers lead to problem-size independent
convergence. As we will see, the proposed preconditioner can also be identified as a special
restricted additive Schwarz [CS99] preconditioner.
In this thesis, this preconditioning together with a Krylov subspace iterative solver for dense

matrices is introduced to kernel-based stochastic collocation with strictly positive definite ker-
nels. It will be exemplified for Matérn kernels. As it turns out, applying the preconditioner
to approximation problems with boundary does only slightly increase the number of itera-
tions in the linear solver. Therefore, it is a strong preconditioner leading to a final com-
plexity of O(cNΓ

2) operations with a Krylov subspace solver for dense matrices. In fact,
following e.g. [BN92, BL97, BCM99, Yin06, Wen06, GD07], it might be even possible to re-
duce this complexity to O(cNΓ logNΓ) by replacing the dense matrix-vector product by a fast
multipole method. However, this is future work on GPUs in higher-dimensional spaces. In
[BCM99, BLB00, LK04], a domain decomposition method gives performance improvements.
Another preconditioning technique is used in [SCM12, Che13] with implementations for large
CPU clusters in [AS]. Further work on parallel scalable RBF interpolation is [YBK09]. Nev-
ertheless, to the authors knowledge, this thesis realizes the first multi-GPU parallel precondi-
tioned, almost optimal solver based on the local Lagrange approach. The application of this
technique in stochastic collocation is new, anyway.
The full preconditioned iterative method will be implemented on a multi-GPU cluster, as

said before. Note that the construction of the preconditioner involves to solve many small
and local interpolation problems. For this reason, it is an optimal candidate for Exascale
algorithms which shall be extremely parallel and local, in the best possible case. Due to the
iterative nature of the method, it is also error-resilient. It will be shown that an appropriate
domain-decomposition multi-GPU parallelization indeed shows optimal strong scaling results.
Because of the much better computational complexity, it will be possible to show scalability
in the problem size, thus kernel-based stochastic collocation in the range of million collocation
points will become feasible. This will be exemplified for an elliptic random PDE problem with
a higher-dimensional stochastic space. Overall, this work solves the problems of achieving
almost optimal complexity with low runtime at optimal parallel scalability for the stochastic
collocation analysis.

Algebraic multigrid for random PDE problems Solving the random PDE problems of this
thesis involves O(NΓND2NT ) operations for the two-phase Navier-Stokes equations and
O(NΓND2) operations for elliptic problems, as explained before. While the necessary number
of collocation points is related to the approximation of the stochastic collocation method, the
quadratic complexity in the number of grid points is due to the sparse Krylov subspace solvers
for the solution of discretized elliptic problems. These show up in the random elliptic PDEs
and in the pressure Poisson equation in Chorin’s projection approach to solve the two-phase
incompressible Navier-Stokes equations. In the first part of this dissertation, these problems
are solved with a Jacobi-preconditioned conjugate gradient (CG) solver with up to ND itera-
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tions and sparse matrix-vector products at O(ND) operations. It is well-known that multigrid
methods [TS01] allow to achieve optimal convergence rates independent of the mesh width
of the underlying discretization. By introducing a multigrid method to solve the respective
elliptic problems, it is thus expected to get a complexity of O(ND) operations for the iterative
solvers promising O(NΓNDNT ) or O(NΓND) operations for the solution all realizations of a
given random PDE problem.

Therefore, a GPU-parallel multigrid method for elliptic problems will be implemented. While
standard geometric multigrid methods often struggle with discretizations in complex geome-
tries, which are e.g. necessary for the two-phase flow solver, the algebraic multigrid method
(AMG) is able to handle this special case. In contrast to geometric multigrid methods, al-
gebraic multigrid methods build the multigrid hierarchy by a purely algebraic construction
involving only the entries of the underlying matrix. Probably the first implementation of
AMG on GPU was [PLW+07, HLDP10]. (Smoothed) aggregation type AMGs have also
been implemented for GPUs before, because of their rather simple algorithmic structure,
cf. [BDO12, Vra12, EL12, BCHZ13, Luk14]. Another approach is given in [WHCX13]. How-
ever, the robust classical Ruge-Stüben AMG [TS01, Appendix A] is hard to parallelize on
GPUs, due to the intrinsically sequential nature of the classification process between fine grid
and coarse grid points in the original algorithm. Nevertheless, two commercial, non-free im-
plementations with limited public access exist, namely GAMPACK [ENS12] and AmgX [Cor].
They use the PMIS (parallel maximum independent set) classification method [Yan06] requir-
ing time-consuming long-range interpolation. This approach is very parallel, but not always
robust, which can be overcome by investing a higher amount of computational work.

The objective of this thesis is to implement a robust classical AMG with only the coarse/fine
grid classification on CPU and the remaining part on GPU. It will be integrated in the existing
GPU linear iterative solver framework CUSP [BG12]. In previous published work on classical
AMG on GPU [KF12], only the application of the preconditioner was parallelized on GPU and
also used in a multi-GPU setting. Here, in difference, also the construction of interpolation and
restriction as well as smoothers is done on GPU, leaving only the coarse/fine grid point classifi-
cation on CPU. The new AMG solver runs on a single GPU together with one CPU core. It will
be shown for some cases that this hybrid approach outperforms the open parallel CPU alge-
braic multigrid implementation BoomerAMG [HY02], with a performance improvement of up
to 50 percent, on almost equally priced hardware, i.e. comparing one GPU to 8/12 CPU cores.
Some further performance comparison indicators are given with regard to the commercial GPU
AMG implementation GAMPACK [ENS12], which show impressive speedup factors of up to
2.5 on almost equally priced hardware. A comparison towards the parallel GPU AMG imple-
mentation AmgX [Cor] is hard, since technical reports are missing and reporting results from
the test version is not allowed to the authors knowledge and at the time of writing this thesis.
In addition to the very promising performance comparison towards a CPU implementation, the
method is also faster by a factor of two for an elliptic random PDE uncertainty quantification
problem, comparing to the previous GPU-based Jacobi-preconditioned CG solver. It will thus
be possible to get an optimal complexity method for the PDE solver part, which is also faster
and runs on GPUs. This concludes the second part of this thesis solving all but one problem.
The remaining problem is the curse of dimensionality.
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Approximation and empirical analysis of fast decaying random PDEs
We learned before that we have to solve NΓ deterministic PDE problem realizations. The RBF
kernel-based stochastic collocation is able to do this with algebraic to exponential convergence.
Standard error estimates in kernel approximation [Wen04] formulate such convergence rates in
terms of the fill distance hXΓ,Γ, which replaces the standard mesh width in meshless methods.
It is well known [Fas07, Chapter 14] that we have the relationship

NΓ ∼
(

1
hXΓ,Γ

)NKL
,

thus the number of collocation points to approximate e.g. the stochastic space Γ ⊂ RNKL with
the same mesh width grows exponentially in the dimension of that space. This is the curse of
dimensionality, as introduced before.
In the third part of this thesis, the curse of dimensionality will be weakened or broken for

problems with fast decaying spectrum of the random PDE solution covariance function. Indeed,
such problems are often represented in stochastic space by many stochastic dimensions NKL

whereas only few of these dimensions are dominant for a small overall error. The currently
existing standard approach in stochastic collocation to break the curse of dimensionality in
presence of a few dominant stochastic dimensions, thus a fast decay of the solution’s covariance
spectrum, is the anisotropic sparse grid stochastic collocation [NTW08a] with extensions to
dimension-adaptive methods in [JR13, ZLY+13, NJ14, SL14, KHRVed].
However, a suitable analogous technique maintaining all good convergence properties of the

RBF kernel-based approximation does not exist. Therefore, anisotropic RBF stochastic colloca-
tion with Matérn and Gaussian kernels will be introduced to approximate stochastic moments
at almost constant convergence rates in the number of collocation points while increasing the
stochastic dimension. This weakens or even breaks the curse of dimensionality. Two important
constructions lead to this numerical result. The first is an empirical study of the covariance
spectrum of the solution of a random PDE. The second is the anisotropic RBF kernel con-
struction with optimal sampling in the associated anisotropic native space.

A-posteriori Karhunen-Loève convariance spectrum decay analysis For some model prob-
lems, such as elliptic random PDEs or groundwater flows, it is possible to give information
on the relationship between the covariance spectrum of the random input and the covariance
spectrum of the random PDE solution, cf. [NTW08a, BNT10, BNTT14]. In those cases, a
fast decaying input covariance eigenmode structure often leads to a fast decay of the spectrum
of the solution or output covariance. Let us note here that the number of large eigenmodes
in the output covariance spectrum is closely related to the number of important stochastic
dimensions. With knowledge on the covariance input-output relationship, it is possible to give
a-priori estimates for the importance of a stochastic dimension. However, the lack of solution
theory for the three-dimensional two-phase incompressible Navier-Stokes equations in strong
formulation makes this theoretical analysis hard or even impossible. Therefore, a kernel-based
method to analyze the input-output behavior of covariance fields for the random two-phase in-
compressible Navier-Stokes equations is proposed. It will be a purely snapshot based numerical
approach to measure the solution covariance spectrum for a given random input. This is done
by approximating what will be called the a-posteriori or output Karhunen-Loève expansion.
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Let us assume a known covariance spectrum of the stochastic field a(ω,x), which describes
input parameters of a stationary stochastic parameter PDE problem. Therefore, we know the
truncated Karhunen-Loève expansion

a(ω,x) ≈ E [a] (x) +
Na
KL∑
k=1

√
λakY

a
k (ω)ψak (x)

with (λak , ψak ) the eigenpairs of a Fredholm integral equation of second kind with∫
D
Cov [a] (x,x′)ψak (x′)dx′ = λakψ

a
k (x) . (1.4)

Then, the truncated a-posteriori Karhunen-Loève expansion is

u(y,x) ≈ E [u] (x) +
Nu
KL∑
k=1

√
λukY

u
k (y)ψuk (x) .

with similar definitions for the eigenpairs (λuk , ψuk ). It contains all information of the covariance
structure of the solution random field. Recent results on the approximation of Karhunen-
Loève expansions are [ST06] with a fast multipole expansion, [EEU07] with H-matrices and
[HPS14] with low-rank approximations by the Pivoted Cholesky Decomposition. However, to
the authors knowledge, this has not been done for two-phase flow problems, so far. Furthermore,
a (multi-)GPU based approach is missing and the approximation of stochastic moments by RBF
kernel-based stochsastic collocation is new, anyway.
In this thesis, a Nyström discretization [Hac95] of the continuous solution covariance operator

is used to approximate the output Karhunen-Loève expansion based on moment approximations
by the RBF kernel-based stochastic collocation method. This leads to a large-scale eigenvalue
problem with dense square matrices in the range of tens to hundreds of thousands rows (thus
the number of grid points of the PDE problem). As e.g. proposed in [Kie08], this problem will
be efficiently solved by a Lanczos iterative method [Saa03]. In contrast to a direct eigenvalue
solver, this dense iterative approach reduces the computational time to compute the eigenmodes
to a very small fraction. It is further parallelized in a highly scalable way on multiple GPUs
achieving best possible performance. Remember that it is thus possible to approximate the
solution covariance spectrum even in those cases in which no theory is known. Note that the
output Karhunen-Loève expansion can be also used for model reduction. In fact, its truncated
versions are best Nu

KL-term approximations to the original continuous solution field in the
underlying stochastic space [ST06].

Anisotropic RBF stochastic collocation The a-posteriori Karhunen-Loève covariance decay
analysis is used as a tool to introduce anisotropic RBF stochastic collocation. This will give
an alternative to anisotropic full tensor-product or sparse grid constructions. Anisotropic RBF
stochastic collocation will follow ideas on anisotropic RBF interpolation [CMM07, BDL10,
FHW12, GLS13] and Gaussian process regression [RW05, Section 5.1] replacing the RBF ker-
nels k(y,y′) := ϕ(‖y − y′‖2) by anisotropic kernels with a weighted norm ‖ · ‖γ as
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kγ(y,y′) = ϕ(‖y − y′‖γ), with ‖y‖γ :=
(
y>diag(γ)2y

)1/2
, γ := (γ1, . . . , γNFN )> .

Vector γ will encode the anisotropy or importance of different stochastic dimensions. In fact,
it will be motivated to choose γi =

√
λui or to use a-priory estimates for γ as in [NTW08a].

This construction leads to a new stochastic collocation approximation with

u(y,x, t) ≈ (IγNΓ
u)(y,x, t) :=

NΓ∑
i=1
u(yi,x, t)L

γ
i (y)

that approximates in the weighted kernel native space N γ
k such that we get

IγNΓ
u ∈ N γ

k (Γ)⊗ L2([0, T ];L2(D)) .

While the classical sampling method for radial basis functions uses very regular collocation
point sets stemming e.g. from a quasi-Monte Carlo Halton sequence, optimal point sets for
anisotropic kernel-based stochastic collocation are unknown. To overcome this problem, a
greedy adaptive method for good point sets in anisotropic weighted native spaces is introduced.
It uses the algorithm proposed in [DMSW05]. This minimizes the power function

[Pk,X(y)]2 := Q[L(y)](y), Q[a](y) = k(y,y)− 2
N∑
j=1

ajk(y,yj) +
N∑
i=1

N∑
j=1

aiajk(yi,yj)

for which we know
|f(y)− sf,X(y)| ≤ Pk,X(y)‖f‖Nk(Γ)

for some classes of functions. By that way, a purely approximation space-dependent error
reducing point set is generated. It will turn out that such an almost optimal point set comes
close to an anisotropic tensor product grid [NTW08a] with arbitrary numbers of points, in
case of anisotropic Matérn kernels. Note that there are close connections between this optimal
point sampling with its generalized version in [Sch13], Adaptive Cross Approximation [Beb11,
BMS14], Leja and Fekete sequences [NJ14] and low-rank approximations by e.g. the pivoted
Cholesky decomposition [HPS12].

Optimal point sets will be precomputed in Matlab and used in a new anisotropic RBF
stochastic collocation GPU implementation. The approach is first tested with an elliptic
model problem and weights known from literature [NTW08a]. In the final two-phase bub-
ble flow application problem, weights are derived by an a-posteriori Karhunen-Loève analysis
for a low-resolution simulation of the same problem. Most numerical results will give hints
towards dimension-independent convergence rates for fixed fast-decaying covariance structure
problems, with clear error improvements in the pre-asymptotic regime. In some way, this work
complements non-constructive results for dimension-independent convergence for anisotropic
Gaussian kernels [FHW12]. Overall, the last part of this thesis gives hints towards the solution
of the remaining problem of weakening or even breaking the curse of dimensionality.
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Summary of own contributions
Numerical methods

• The RBF kernel-based stochastic collocation method is introduced. It is a framework
to solve random PDEs at high- to exponential error convergence order with excellent
pre-asymptotic error behavior, outperforming Monte Carlo and (sparse) spectral tensor-
product approximations in many important application cases.

• For the first time, stochastic collocation is applied to two-phase flow problems modeled
by the two-phase incompressible Navier-Stokes equations.

• An empirical error coupling analysis for this framework is outlined, giving indicators for
optimal error balancing between the different numerical approximations.

• Optimal computational complexity is achieved for the kernel based stochastic collocation
by the introduction of an local Lagrange basis preconditioner for kernel approximation. It
has an intrinsic perfect parallel scalability and optimal properties for Exascale computing.
This allows to solve stochastic collocation problems in the range of hundreds of thousands
to potentially millions of collocation points.

• All discussed deterministic realizations of random PDE problems can be solved at optimal
computational complexity by a classical Ruge-Stüben algebraic multigrid method.

• A Nyström-discretization based approximation of the a-posteriori Karhunen-Loève ex-
pansion, using kernel-based moment approximation, is introduced. This allows, for the
first time, to empirically analyze the solution covariance structure of the random two-
phase Navier-Stokes equations, for which no theory is known.

• The new asymptotic RBF kernel-based stochastic collocation approach is presented. It is
empirically shown that it weakens or breaks the curse of dimensionality for random PDE
problems with fast decay in the covariance spectrum of the random solution field. Lower
pre-asymptotic error is clearly achieved.

• A large number of numerical results for model problems and real-world applications are
given.

Software

• (Multi-)GPU based libraries for stochastic space sampling, higher-dimensional quadra-
ture, RBF kernel-based approximation and the new RBF kernel-based stochastic colloca-
tion are implemented with optimal runtime complexity and low preasymptotic runtime.

• Dense iterative linear solvers are implemented in the stand-alone multi-GPU parallel
library parla with almost optimal parallel scalability.

• All core components of the originally MPI-parallel CPU-based solver NaSt3DGPF for the
two-phase Navier-Stokes equations are parallelized to run on a multi-GPU cluster with
profound speedups and almost excellent weak scalability. This is the first multi-GPU
solver of this kind.
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• A multi-GPU parallel preconditioner for dense linear systems from kernel interpolation
with excellent strong scaling is implemented, resulting in the first iterative multi-GPU
solver with local Lagrange preconditioning for kernel problems.

• The classical algebraic multigrid method is implemented and parallelized in a hybrid
GPU version, including major parts of the setup phase on GPU delivering up to a 50
percent speedup over optimal multi-core CPU AMG implementations on almost equally
priced hardware and a two-fold speedup over naive GPU Jacobi-preconditioned solvers.
This is the first non-commercial code of this kind.

• Based on parla, the first multi-GPU iterative method for large-scale dense eigenvalue
problems with algorithms to compute the a-posteriori Karhunen-Loève expansion is de-
veloped.

• The isotropic RBF kernel-based approximation and isotropic stochastic collocation library
is extended to support the new anisotropic RBF approximation and new anisotropic
stochastic collocation in a (multi-)GPU fashion.

Outline

The remainder of this thesis is organized as follows. In the first part, the basic RBF kernel-
based stochastic collocation method with applications to two-phase flows is discussed. Therein,
Chapter 2 summarizes basic concepts of uncertainty quantification. Chapter 3 discusses the dif-
ferent model and application problems. Thereafter, Chapter 4 introduces the RBF kernel-based
stochastic collocation method. Some discretization details and the multi-GPU parallelization
with numerical results for the two-phase Navier-Stokes solver are given in Chapter 5. Chapter 6
concludes the first part of this thesis by numerical studies and empirical error coupling results.
In the second part, parallel preconditioning techniques are discussed with local preconditioning
for kernel approximation in Chapter 7 and algebraic multigrid in Chapter 8. The last part
is dedicated to the objective to break the curse of dimensionality in RBF-based stochastic
collocation. Here, Chapter 9 describes the numerical a-posteriori Karhunen-Loève expansion
analysis and Chapter 10 introduces the anisotropic RBF stochastic collocation with numerical
results. This thesis is concluded in Chapter 11 with a short summary and outlook.
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2 Uncertainty quantification

In this chapter, the mathematical framework to model and formulate uncertainty quantification
problems is considered. Solving these problems is the main objective of this thesis. Therefore,
this chapter forms the base of this thesis and also prepares for the subsequent chapter of model
and application problems.
Uncertainty quantification will be introduced as the evaluation of stochastic moments of

(derived quantities from) solutions of random PDE problems. Throughout this thesis, random
PDE problems are understood as partial differential equations which are parametrized by
stochastic parameters. This parametrization is not restricted to random coefficients. General
influences on initial and boundary conditions, forcing terms and the domain shape are also
possible. To achieve a maximum of flexibility, generic operator-type equations shall be used to
introduce random PDE problems. It will turn out that a technical assumption has to be made
to allow a numerical treatment of the described problems. This is the finite noise assumption
which can, e.g., be fulfilled by a truncated Karhunen-Loève expansion.
The chapter starts with a short review of some probability theory definitions and results.

Thereafter, general random PDE problems are derived from deterministic parametric problems.
It follows the introduction of the finite noise assumption by the Karhunen-Loève expansion or
piecewise constant random fields leading to a finite-dimensional reformulation of the random
PDE problem. Finally, basic terms in uncertainty quantification are discussed.

2.1 Primer on probability theory
In the following, to fix notation and to give a quick reminder, some basics in probability theory
are shortly reviewed. This overview is an excerpt from [LMK10, Appendix A] and [Gri02,
Chapter 2] with notation similar to [BNT10, NTW08b]. Note that some definitions contain
statements, which would require a proof. These can be found e.g. in [Gri02, Chapter 2] and
are not reproduced. The same holds for the proofs for all lemmata in this section.
Our discussion starts with the sample space Ω, which is the set of possible outcomes of a

random experiment. Its elements are often called ω. In the target application Ω is uncountable.
We can then introduce σ-fields by

Definition 2.1 (σ-field [Gri02, Section 2.2.2][LMK10, Appendix A.1.1]). Shall be F a non-
empty set of subsets of Ω. Then, F is called σ-field, if

1. ∅ ∈ F ,

2. A ∈ F ⇒ Ac ∈ F ,

3. Ai ∈ F , i ∈ I, I countable⇒ ⋃
i∈I Ai ∈ F ,

with Ac the complement of A.

21
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A special class of σ-fields are Borel σ-fields. They are generated by all open sets of a
topological set. Furthermore, B(Rd) = Bd is the Borel σ-field on Rd. In the special case of
d = 1, we have B = B1 = B(R) and B is the set of open intervals. We can now introduce
measurable spaces, measures and measure spaces in two definitions.

Definition 2.2 (Measurable space [Gri02, Section 2.2.2][LMK10, Appendix A.1.1]). With F
a σ-field, elements A ∈ F are called event or F-measurable and (Ω,F) is a measurable space.

Definition 2.3 (Measures and measure spaces [Gri02, Section 2.2.3][LMK10, Appendix A.1.2]).
A set function µ : F → [0,∞] is called measure on F if

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai), Ai ∈ F , Ai ∩Ai 6=j = ∅ ,

thus it is countably additive. Then (Ω,F , µ) is called measure space. A finite measure has to
fulfill µ(Ω) <∞.

Of important nature for this thesis are probability spaces given by

Definition 2.4 (Probability space [Gri02, Section 2.2.3][LMK10, Appendix A.1.3]). A proba-
bility measure or probability is a finite measure P with

1. P : F → [0, 1]

2. P (Ω) = 1

With the beforehand definitions, the triple (Ω,F , P ) is a probability space. Furthermore, it is
complete if for all A ⊂ B with B ∈ F and P (B) = 0, it holds A ∈ F which fulfills P (A) = 0.
In the following, all probability spaces are expected to be complete.

Lemma 2.1 (Properties of probability spaces [Gri02, Section 2.2.3][LMK10, Appendix A.1.3]).
Let (Ω,F , P ) be a probability space. For A,B ∈ F , it holds that

1. P (A) ≤ P (B), if A ⊆ B,

2. P (A) = 1− P (Ac),

3. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Next, we need to comment on functions and induced probabilities on measurable spaces which
eventually allow to introduce the important notions of random variables and random vectors.

Definition 2.5 (Measurable function [Gri02, Section 2.4][LMK10, Appendix A.2.1]). For two
measurable spaces (Ω,F) and (Ψ,G), a function h : Ω → Ψ is called measurable from (Ω,F)
to (Ψ,G) if it holds

h−1(B) = {ω : h(ω) ∈ B} ∈ F , ∀B ∈ G .
Definition 2.6 (Induced probability [Gri02, Section 2.4.1][LMK10, Appendix A.2.1]). Let
h : Ω → Ψ be measurable from (Ω,F) to (Ψ,G) and furthermore a probability P is given such
that we have a probability space (Ω,F , P ), then the function Q : G → [0, 1] with

Q(B) := P (h−1(B)), ∀B ∈ G ,
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is a probability measure on (ψ,G) which is called probability induced by h or distribution
of h.

Definition 2.7 (Random variables and vectors [Gri02, Section 2.4.2][LMK10, Appendix A.2.2]).
With (Ω,F , P ) a probability space, a function X : Ω→ R, which is measurable from (Ω,F) to
(R,B), is called R-valued random variable or simply random variable. The Rd-valued function
X : Ω→ Rd being measurable from (Ω,F) to (Rd,Bd) is a random vector, if all its coordinates
are random variables.

The R-valued random variable X : Ω → R is sometimes also denoted as X(ω). We can of
course also define the induced probability of a random vector X by

Definition 2.8 (Distribution [Gri02, Section 2.4.2][LMK10, Appendix A.2.2]). The distribu-
tion of a random vector X, given as before, is its induced probability, which is defined by

Q(B) := P (X−1(B)), ∀B ∈ Bd .

To define the expectation operator, the concept of integrals and integrability is necessary.
Avoiding an in-depth discussion of this wide topic, we restrict ourselves to the following simple
definition.

Definition 2.9 (Integrability [Gri02, Section 2.5.1][LMK10, Appendix A.3.1]). Let (Ω,F , P )
be a probability space and X a random variable measurable from (Ω,F) to (R,B), the integral
of X with respect to P over the event A ∈ F is∫

Ω
IA(ω)X(ω)dP (ω) =

∫
A
X(ω)dP (ω) ,

with IA the classic indicator function for A. X is called P -integrable over A, if the integral
exists and is finite.

This definition can be extended to random vectors X requiring that all components are
individually P -integrable over A. Following the lines of [LMK10], it can be then stated that
for A = Ω the above integral corresponds to the expectation operator E[·], thus it holds

E [X] =
∫

Ω
X(ω)dP (ω) .

We collect properties of this operator in

Lemma 2.2 (Properties of the expectation operator [Gri02, Section 2.5.2][LMK10, Appendix
A.3.2]). For X,Y R-valued random variables defined on the probability space (Ω,F , P ) and
P -integrable over Ω and assuming that the expectation operator exists and is finite, we have

1. E [aX + bY ] = aE [X] + bE [Y ] , ∀a, b ∈ R (linearity),

2. if X ≥ 0 holds almost surely, then E [X] ≥ 0,

3. if Y ≤ X holds almost surely, then E [Y ] ≤ E [X],

4. |E [X] | ≤ E [|X|].
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Note that a statement holds almost surely, if it has probability one. Now, it is possible to
introduce function spaces for random variables.

Definition 2.10 (Lq(Ω,F , P ) spaces [Gri02, Section 2.6][LMK10, Appendix A.3.3]). With
(Ω,F , P ) a probability space, the Lq(Ω,F , P ) space, q ≥ 1, is the set of random variables X
on that probability space, for which holds

E [|X|q] <∞ .

Those elements X are then denoted by X ∼ Lq(Ω,F , P ) and we have the abbreviation Lq for
Lq(Ω,F , P ).

Lemma 2.3 (L2 space [Gri02, Section 2.6][LMK10, Appendix A.3.3]). The L2(Ω,F , P ) space
or short L2 space is a vector space. With the inner product 〈X,Y 〉 = E [XY ] for elements
X,Y ∈ L2, L2 becomes a Hilbert space with norm ‖X‖L2 =

(
E
[
X2])1/2.

Another important concept are distribution functions for which the definition and some
properties are collected.

Definition 2.11 (Distribution function [Gri02, Section 2.10.1][LMK10, Appendix A.4.1]). Let
X be a random variable X : Ω → R as before. Its (cumulative) distribution function is given
as

F (x) := P (X−1((−∞, x])) = P ({ω : X(ω) ≤ x}) = P (X ≤ x) .

Lemma 2.4 (Properties of distribution functions [Gri02, Section 2.10.1][LMK10, Appendix
A.4.1]). For X a random variable and F its distribution function, we have

1. F is right-continuous, increasing and has the range [0, 1],

2. F can have a countable number of jump discontinuities,

3. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0,

4. P (a < X ≤ b) = F (b)− F (a) ≥ 0 for a ≤ b,

5. P (a ≤ X < b) = F (b)− F (a) + P (X = a)− P (X = b) for a ≤ b.

From distribution functions, we can derive density functions by

Definition 2.12 (Density function [Gri02, Section 2.10.2][LMK10, Appendix A.4.2]). With the
additional requirement to the distribution function F to be absolutely continuous in R, there is
an integrable function ρ, for which holds

F (b)− F (a) =
∫ b

a
ρ(x)dx, a ≤ b .

That function ρ is called (probability) density function of X.

Lemma 2.5 (Properties of density functions [Gri02, Section 2.10.2][LMK10, Appendix A.4.2]).
A density function ρ, as before, has the properties
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1. ρ(x) = F ′(x) so that
∫ x
−∞ ρ(y)dy = F (x),

2. ρ ≥ 0,

3. ρ is no probability measure,

4.
∫∞
−∞ ρ(x)dx = 1.

For (Ω,F , P ) a probability space and X : Ω→ R a random variable on that space, we have
some well-known density functions with the

• normal or Gaussian density function: ρµ,σ2(x) = 1
σ
√

2πe
− (x−µ)2

2σ2 and the

• uniform density function: ρa,b =
{

1
b−a x ∈ [a, b]
0 otherwise .

Random variablesX with Gaussian or normal density functions are called Gaussian or normally
distributed random variables and are denoted by X ∼ N (µ, σ2). Moreover, random variables
X with uniform density function are called uniformly distributed random variables and are
denoted by X ∼ U(a, b).
For practical computations, it is desirable to express the evaluation of the expectation oper-

ator of a random variable as an integral over R. This can be realized by introducing measurable
transformations.

Definition 2.13 (Measurable transformations [Gri02, Section 2.4.3][LMK10, Appendix A.2.3]).
Let (Ω,F , P ) be a probability space with a random vector X, which is a measurable function
from (Ω,F) to (Rd,Bd). We call a measurable function g from (Rd,Bd) to (R,B) a transfor-
mation on the random variable.

It is possible to show that the composed mapping Y = g ◦X is a random variable which
is measurable from (Ω, σ) to (R,B), cf. [Gri02, Section 2.4.3],[LMK10, Appendix A.2.3]. This
allows to formulate

Lemma 2.6 (Expectation of transformed random variables [Gri02, Section 2.10.2][LMK10,
Appendix A.4.2]). With the random vector X for d = 1, thus the random variable X, and the
composed mapping Y = g ◦X both integrable and further Q(B) = P (X−1(B)), B ∈ B and F
the density function of X, we have

E [Y ] =
∫

Ω
Y (ω)dP (ω) =

∫
Ω
g(X(ω))dP (ω) and

E [Y ] =
∫
R
g(x)Q(dx) =

∫
R
g(x)dF (x) =

∫
R
g(x)ρ(x)dx .

Distribution and density functions can also be generalized to random vectors in

Definition 2.14 (Joint distribution and density functions [Gri02, Section 2.11.1][LMK10, Ap-
pendix A.5.1]). For random vectors X, the joint distribution function F : Rd → [0, 1] is given
by

F (x) = P
(
∩di=1{Xi ≤ xi}

)
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with x = (x1, . . . , xd) ∈ Rd. If it exists, the joint density function ρ : Rd → [0, 1] is given by

ρ(x) := ∂dF (x)
∂x1 · · · ∂xd

.

In many cases, independence of random variables allows to simplify the underlying compu-
tations. Therefore, we give

Definition 2.15 (Independence of random variables [Gri02, Sec. 2.7.1, Sec. 2.11.2][LMK10,
Appendix A.5.2]). Given a probability space (Ω,F , P ) and a collection of sub-σ-fields Fi, i ∈ I
of F , the sub-fields are called independent if

P (∩i∈IAi) =
∏
i∈I

P (Ai), ∀Ai ∈ Fi ,

in case of I being finite. For infinite I, the above equation has to hold for all finite subsets of
I. Having a family of random variables Xi, i ∈ I from the probability space with I finite or
infinite, the Xi are independent random variables, if the sigma-fields σ(Xi), generated by the
random variables, are independent.

Lemma 2.7 (Independence of random variables [Gri02, Sec. 2.7.1, Sec. 2.11.2][LMK10, Ap-
pendix A.5.2]). The above family of random variables Xi is independent if and only if for all
J ⊂ I finite, it holds

P (Xi ≤ xi, i ∈ J) =
∏
i∈J

P (Xi ≤ xi), xi ∈ R .

The desired quantities that shall be computed throughout this thesis are moments. We start
with their definition for random vectors.

Definition 2.16 (Moments of random vectors[Gri02, Section 2.11.4][LMK10, Appendix A.5.3]).
Let the probability space (Ω,F , P ) be given. The random vector X shall be defined on that
space. Furthermore, the function g(x) = ∏d

i=1 x
si
i with si ≥ 0 integers shall be given. Then

g(X) is a real-valued random variable. With the additional requirement of X ∼ Ls, thus for all
i = 1, . . . , d we have Xi ∼ Ls, it is possible to define the moments of order s of X, s = ∑d

i=1 si
by

µ(s1, . . . , sd) = E [g(X)] = E
[
d∏
i=1

Xsi
i

]
.

They exist and are finite. Corresponding choices of the si lead to the well-known moments

• Mean of Xi: µi = E [Xi],

• Correlation of (Xi, Xj): ri,j = E [XiXj ],

• Covariance of (Xi, Xj): ci,j = E [(Xi − µi)(Xj − µj)] = ri,j − µiµj,

• Variance of Xi: σ2
i = ci,i = E

[
(Xi − µi)2] = ri,i − µ2

i .

However, since we often want to analyze space- and time-dependent problems, further gener-
alizations of random variables are necessary. They are given by the following three definitions.
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Definition 2.17 (Stochastic process [Gri02, Section 3.2]). With (Ω,F , P ) a probability space,
X : Ω × I → Rd a two argument function and I ⊂ R or I = [0,∞), we call X an Rd-valued
stochastic process, if for each t ∈ I, X(t) is an Rd-valued random variable on (Ω,F , P ), thus
X(t) ∈ F .
Definition 2.18 (Random field [Gri02, Section 3.2]). With (Ω,F , P ) a probability space, X :
Ω × D → Rd a two argument function and D ⊂ Rq, q ≥ 1 integer, we call X an Rd-valued
random field, if for each x ∈ D, X(x) is an Rd-valued random variable on (Ω,F , P ), thus
X(x) ∈ F .
Definition 2.19 (Space-time stochastic process [Gri02, Section 3.1]). With (Ω,F , P ) a prob-
ability space and X : Ω × D × I → Rd a three argument function, D ⊂ Rq and I ⊂ R or
I = [0,∞), q ≥ 1 integer, we call X an Rd-valued space-time stochastic process, if for each
t ∈ I, X(·, t) is a random field and for each x ∈ D, X(x, ·) is a stochastic process.

Measurabilty extends naturally to these objects by

Definition 2.20 (Measurable stochastic processes and random fields [Gri02, Section 3.2]).
Using notation from Definitions 2.17 and 2.18, a stochastic process X(t) or random field X(x)
is measurable if the function X : Ω × I → Rd or X : Ω × D → Rd is measurable from
(Ω× I,F × B(I)) to (Rd,Bd) or from (Ω×D,F × B(D)) to (Rd,Bd).
An analogous definition holds for space-time stochastic processes. Finally, we can introduce

moments for stochastic processes and random fields. Their evaluation will be the main objective
application in this thesis.

Definition 2.21 (Moments of stochastic processes and random fields [Gri02, Section 3.7]).
For X an Rd-valued stochastic process or random field in L2(Ω,F , P ), it is possible to define
mean, correlation and covariance functions µ, r and c as

• µ(t) = E [X(t)] or µ(x) = E [X(x)],

• r(t, s) = E
[
X(t)X(s)>

]
or r(x,x′) = E

[
X(x)X(x)>

]
,

• c(t, s) = Cov [X] (t, s) = E
[
(X(t)− µ(t))(X(s)− µ(s))>

]
or

c(x,x′) = Cov [X] (x,x′) = E
[
(X(x)− µ(x))(X(x′)− µ(x′))>

]
.

We say that an Rd-valued stochastic process or random field X is in L2(Ω,F , P ), if X(t) ∈
L2(Ω,F , P ) (∀t) or X(x) ∈ L2(Ω,F , P ) (∀x).
Later, we will use the notion of correlation length. To exemplify it, we take exponential

kernel correlation functions: For some R-valued stochastic processes, the correlation function
is given by the exponential kernel [LMK10, Section 2.1.3], thus

r(t, s) = σ2e−
|t−s|
Lc ,

with σ2 the variance. Then, Lc is the so-called correlation length. In this context, the correlation
length implies that the smaller the correlation length the higher the correlation between close
values of t, s. In other words, the correlation length is a measure for the “distance” for which
the influence between t, s decreases.
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2.2 Random PDE problems
With the beforehand discussed basic terminology in probability theory, it is now the aim to
introduce the concept of random PDE problems. Starting from very general parametric PDE
problems, we will move over to parameter functions, which are random fields or space-time
stochastic processes. These ultimately lead to what will be called random PDE problems,
observing that the setting of standard random-coefficient PDE problems is not powerful enough
to describe all model and application problems in Chapter 3. Since this thesis is concerned
with several different random PDE problems, the intention is further to introduce a unifying
nomenclature for all problems using a rather generalized framework of operators.

2.2.1 Parametrized PDEs
Our starting point are general parametrized initial-boundary value problem PDEs of the form

L(a)u =f [b] in D̄ × [0, T ] (2.1)

with D ⊂ Rd, d ∈ N, the underlying domain, u : D̄ × [0, T ]→ Rr (r ∈ N, T ∈ R≥0) the space-
and time-dependent solution of the PDE problem, a : D̄ × [0, T ] → Rs1 , b : D̄ × [0, T ] → Rs2 ,
s1, s2 ∈ N some potentially time- and/or space-dependent parameter functions, L some PDE
operator including boundary and initial value handling and f the right-hand sides of the
PDE problem, the boundary conditions and the initial values. Note that, wherever it will
be necessary, this hand-waving notation will be more rigorously identified with mathematical
objects. However in many cases, this notation will be sufficient. As an example, we can set

T = 0, r = s1 = s2 = 1, D = [0, 1]2, a ≡ a(x), b ≡ 1,

L(a) :=
(
−∇ · a∇

γ

)
, f :=

(
0
b

)
,

with γ : u 7→ u|∂D the trace operator, to describe the elliptic problem

−∇ · a(x)∇u = 0 in D ,
u = 1 on ∂D .

Here, by T = 0, the problem becomes stationary, thus the time component is dropped. De-
scribing a full initial-boundary value problem is of course a bit more involved, but possible.
Also, the notation in (2.1) allows parametrizations in coefficients, boundary conditions and
even in domain shapes by appropriate choices of L and f .

2.2.2 Introducing randomness
To be able to transform the fully deterministic, but parametrized problem (2.1) to what will
be called random PDE, the parametrization has to be modified to a stochastic setting. Thus,
we replace the original parameter functions a and b by random fields or even space-time
stochastic processes. After fixing some stochastic space (Ω,F , P ), we hence introduce space-
time stochastic processes a : Ω× D̄ × [0, T ]→ Rs1 and b : Ω× D̄ × [0, T ]→ Rs2 which become
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the new parameters for the general PDE problem. As a consequence of introducing space-
time stochastic processes as parameters, the right-hand side f [b] and the solution u become
dependent on ω ∈ Ω, too. We especially have u : Ω× D̄ × [0, T ] → Rr. At the same time, we
require the operators L and f to remain identical to the classical parametrized PDE case.
Throughout this thesis, we moreover have to make the assumption on the solution u(ω,x, t)

to exist for all ω ∈ Ω and on the mapping g : (a, b) 7→ L(a)−1f [b] to be measurable on
the appropriate spaces. Then, the solution u itself is a space-time stochastic process and the
evaluation of e.g. stochastic moments of the solution becomes possible. Note however, that
these assumptions are not necessarily fulfilled for all to be discussed model and application
problems, since, e.g., the existence and uniqueness of strong solutions of the three-dimensional
Navier-Stokes equations is still an open question. To be prepared for stochastic collocation
techniques described in Section 4.1, we finally also require the solution u to be point evaluable
with respect to the stochastic parameter.
Overall we can now state the general random PDE problem by

Definition 2.22 (Random PDE problem). For a given stochastic space (Ω,F , P ) find a solu-
tion u : Ω× D̄ × [0, T ]→ Rr such that

L(a)u =f [b] in Ω× D̄ × [0, T ] (2.2)

holds almost surely. Here, we have D ⊂ Rd the domain, T ∈ R≥0 the end time, d, r, s1, s2 ∈ N+,
a : Ω× D̄ × [0, T ]→ Rs1, b : Ω× D̄ × [0, T ]→ Rs2 space-time stochastic processes on (Ω,F , P )
as parameters and L,f the general PDE and right-hand side operators including boundary and
initial condition handling from parametric PDEs, cf. Sec. 2.2.1. Furthermore the solution is
expected to exist for all ω ∈ Ω and to be point evaluable. The mapping g : (a, b) 7→ L(a)−1f [b]
from parameter space to the solutions has to be measurable.

Note once again that the above definition covers, as in the parametrized PDE case, much more
than pure random-coefficient PDE problems. Instead initial conditions, boundary conditions
and even the domain (by transformation) might be considered dependent on the space-time-
stochastic processes a and b. This is why the more general terminology of random PDEs is
used, covering all these cases. Throughout this thesis, this greater flexibility will be used to
define and solve highly complex PDE problems with stochastic influence.

2.3 Function spaces of random PDE solutions

In the following, function spaces for the solutions of random PDE problems are discussed. As
usual in the literature, cf. e.g. [Ruz04, Chapter 2], we introduce for a measure space (Σ,G, µ)
and a Banach space (X, ‖·‖X) the linear space Lp(Σ;X) (1 ≤ p <∞) of all strongly measurable
functions f : Ω→ X with finite integral

∫
Σ ‖f‖

p
Xdµ, thus

Lp(Σ;X) :=
{
f : Ω→ X

∣∣∣‖f‖Lp(Σ;X) <∞
}
, ‖f‖Lp(Σ;X) :=

(∫
Σ
‖f‖pXdµ

)1/p
.
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This function space is often called (Lebesgue-)Bochner space and is in fact a space of equivalence
classes of functions. For p =∞, we also get the space

L∞(Σ;X) :=
{
f : Ω→ X

∣∣∣‖f‖L∞(Σ;X) <∞
}
, ‖f‖L∞(Σ;X) := ess supσ∈Σ ‖f‖X <∞ .

Before we look at Bochner spaces, to describe the solutions of random PDEs, we should re-
member that we started from deterministic time-dependent PDE problems. We do not assume
strict regularity on these solutions. Furthermore, we express the deterministic solutions as
fields in D that are functions in time. Therefore, they are elements of a Bochner space

L2
(
[0, T ];L2(D)

)
:=
{
f : [0, T ]→ L2(D)

∣∣∣‖f‖L2([0,T ];L2(D)) <∞
}
,

‖f‖L2([0,T ];L2(D)) :=
(∫

[0,T ]
‖f‖2L2(D)dt

)1/2

.

In case of u : D × [0, T ] → Rr with r = 1, L2(D) is the usual (R-valued) Lebesgue function
space on domain D. However, for r > 1, the solution u would be Rr-valued, which requires to
introduce a vector-valued Lebesgue function space, which would be again some Bochner space

L2
(
D;L2(Rr)

)
:=
{
f : Ω→ Rr

∣∣∣‖f‖L2(D;L2(Rr)) <∞
}

‖f‖L2(D;L2(Rr)) :=
(∫
D
‖f‖2L2(Rr)dx

)1/2
.

To be concise, this technical detail is skipped, in the following. Wherever suitable, we assume
that

L2(D) := L2(D;L2(Rr)) .

Now, we move over to random PDE problems as given by Definition 2.22. Let us for now
ignore the time-dependence of the solutions, thus looking only at stationary random PDE
problems. Then we have a similar construction. With (Ω,F , P ) the underlying probability
space, the solution (Bochner) function space L2(Ω;L2(D)) is thus assumed to be

L2
(
Ω;L2(D)

)
:=
{
f : Ω→ L2(D)

∣∣∣‖f‖L2(Ω;L2(D)) <∞
}
,

‖f‖L2(Ω;L2(D)) :=
(∫

Ω
‖f‖2L2(D)dP (ω)

)1/2
.

A combination of the space L2([0, T ];L2(D)) for time dependent deterministic PDE solutions
and the space L2(Ω;L2(D)) of solutions of stationary random PDE problems, finally leads to
the function space of solutions to the random PDE problem given in Definition 2.22. In this
case, it is usual (cf. e.g. [BNT10, BSZ11]) to assume u ∈ L2(Ω; [0, T ];L2(D)), with

L2
(
Ω; [0, T ];L2(D)

)
:= L2

(
Ω;L2

(
[0, T ];L2(D)

))
,

L2
(
Ω;L2

(
[0, T ];L2(D)

))
:=
{
f : Ω→ L2

(
[0, T ];L2(D)

)∣∣∣‖f‖L2(Ω;[0,T ];L2(D)) <∞
}
,
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‖f‖L2(Ω;[0,T ];L2(D)) :=
(∫

Ω
‖f‖2L2([0,T ];L2(D))dP (ω)

)1/2
.

It is well-known that the Bochner space L2(Ω;L2(D)) is isometric isomorph to the space
L2(Ω) ⊗ L2(D). Also, the time-dependent random PDE problem solution space
L2(Ω; [0, T ];L2(D)) is isometric isomorph to L2(Ω)⊗ L2([0, T ];L2(D)).

2.4 Finite-dimensional noise assumption
Let us remember the problem statement from Definition 2.22, in which, given a probability
space (Ω,F , P ), one looks for a random function or more specifically for a space-time stochastic
process u : Ω× D̄ × [0, T ]→ Rr with D ⊂ Rd, such that almost surely it holds

L(a(ω,x, t))u(ω,x, t) = f [b(ω,x, t)](ω,x, t) in Ω× D̄ × [0, T ] . (2.3)

In this and the following chapters, the notation proposed in standard stochastic collocation
papers like [NTW08b, BNT10] is widely applied.
To be able to handle the above problem numerically, it is necessary to transform the infi-

nite dimensional stochastic variable ω to some finite-dimensional representation. The typical
approach e.g. in the above mentioned literature is to introduce a finite-dimensional noise as-
sumption, cf. [BNT10], for the stochastic parameter functions a and b. This basically assumes
the stochastic dependence of the parameter functions a, b to be represented by a finite num-
ber of NFN random variables {Ym(ω)}NFNm=1 on (Ω,F , P ) with Ym : Ω → R, E [Ym] = 0 and
Var [Ym] = 1. Thus we seek for approximations of the form

a(ω,x, t) ≈ aFN (Y1(ω), . . . , YNFN (ω),x, t) , (2.4)
b(ω,x, t) ≈ bFN (Y1(ω), . . . , YNFN (ω),x, t) . (2.5)

In the following paragraphs, the Karhunen-Loève expansion and finite-dimensional random
models are discussed motivating the above approximation. Thereafter, the operator equation
for the general random PDE problem (2.3) is adapted according to the finite noise assumption,
leading to a finite-dimensional random PDE problem, which can be solved numerically.

2.4.1 Karhunen-Loève expansion for stochastic parameter functions
One motivation for the finite-dimensional noise assumption typically comes from the Karhunen-
Loève decomposition [Loe78, Chapter XI], which gives a series expansion of a stochastic process
a(t) or a random field a(x) based on an eigenvalue decomposition of the associated covariance
function. We follow [ST06] with adapted notation and obtain for random fields

Theorem 2.1 (Karhunen-Loève expansion [ST06, Prop. 2.8],[Xiu10, Section 4.2.1],[LMK10,
Section 2.1.1]). Let (Ω,F , P ) be a probability space and a : Ω × D → R a random field with
a(·, ω) ∈ L2 for all ω ∈ Ω and a ∈ L2(Ω,F , P ), thus a ∈ L2(Ω × D). There exists a sequence
of random variables Ym ∈ L2(Ω,F , P ), m ≥ 1, with

E [Ym] =
∫

Ω
Ym(ω)dP (ω) = 0, E [YnYm] =

∫
Ω
Yn(ω)Ym(ω)dP (ω) = δnm, ∀n,m ≥ 1 ,
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such that we can describe the random field a in L2(Ω×D) by the Karhunen-Loève expansion

a(ω,x) = E [a] (x) +
∞∑
m=1

√
λmYm(ω)ψm(x) . (2.6)

Here, (λm, ψm), m ≥ 1 denotes the sequence of eigenvalues and eigenfunctions of the Carleman
operator

CCov[a] : L2(D)→ L2(D), CCov[a] : ψ 7→
∫
D
Cov [a] (·,x)ψ(x)dx, ∀ψ ∈ L2(D) ,

thus the (λm, ψm) pairs solve the integral equation∫
D
Cov [a] (x,x′)ψm(x′)dx′ = λmψm(x) ∀x ∈ D .

It further holds that the eigenvalues λm are non-negative with
∑
m≥1 λm

2 < +∞. The random
variables Ym are derived as

Ym(ω) := 1√
λm

∫
D

(a(ω,x)− E [a] (x))ψm(x)dx, ∀m ≥ 1 .

Proofs for this fundamental result can be found e.g. in [ST06] or [Loe78, Chapter XI]. Since
the eigenvalues λm are non-negative and obey the given finite summability condition, they have
to decay to zero for m → ∞. This motivates to truncate the expansion (2.6) after the first
NKL terms as

a(ω,x) ≈ aKL(ω,x) = E [a] (x) +
NKL∑
m=1

√
λmYm(ω)ψm(x) . (2.7)

Indeed, we know from [LMK10, Section 2.1.2] that the truncated Karhunen-Loève expansion
(2.7), is the best NKL-term approximation of the given random field with respect to the error
norm E

[‖ · ‖2D]1/2.
With obvious extensions to Rs-valued space-time stochastic processes, it is now possible to

introduce approximations to the parameter functions a, b by

a(ω,x, t) ≈ aKL(Y a1 (ω), . . . , Y aNa
KL

(ω),x, t) = E [a] (x, t) +
Na
KL∑

m=1

√
λamY

a
m(ω)ψam(x, t) ,

b(ω,x, t) ≈ bKL(Y b1 (ω), . . . , Y b
Nb
KL

(ω),x, t) = E [b] (x, t) +
Nb
KL∑

m=1

√
λbmY

a
m(ω)ψbm(x, t) .

To simplify notation, it is assumed to have a common sequence of random variables Ym with a
common truncation NKL for both a and b such that

a(ω,x, t) ≈ aKL(Y1(ω), . . . , YNKL(ω),x, t) ,
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b(ω,x, t) ≈ bKL(Y1(ω), . . . , YNKL(ω),x, t) ,

with E [Ym] = 0 and E [YmYn] = δmn as required by Theorem 2.1 and Var [Ym] = 1. This is
exactly what we are expecting in the finite noise assumption.

2.4.2 Finite-dimensional random models

The finite-dimensional noise assumption also holds for other examples. One of these is e.g. men-
tioned in [NTW08b], where a piecewise constant random field is assumed. In that case, a
random function

aN (ω,x) = amin +
NFN∑
i=1

σiYi(ω)1Di(x)

is the coefficient field in a general elliptic problem in which the physical domain D is the union of
non-overlapping subdomains Di and the σi are domain-dependent diffusion coefficients, which
are piecewise constant with stochastic dependence on random variables Yi with E [Yi] = 0 and
Var [Ym] = 1. Here, 1Di is the indicator function for subdomain Di.
Other constructions of this kind are also possible, e.g. if the stochastic dependence of a given

PDE coefficient is assumed to be very simple.

2.4.3 Finite-dimensional stochastic space in random PDEs

Using the finite-dimensional noise assumption, we can approximate the space-time stochastic
processes a, b which are parameter functions as

a(ω,x, t) ≈ aFN (Y1(ω), . . . , YNFN (ω),x, t) ,
b(ω,x, t) ≈ bFN (Y1(ω), . . . , YNFN (ω),x, t) .

Following the lines of [BNT10], we set the images of the Ym to be Γm ≡ Ym(Ω) ⊆ R and the
tensor product of these spaces is Γ := ∏NFN

m=1 Γm ⊆ RNFN . We further can define the joint
probability density function ρ : Γ→ R+ with ρ ∈ L∞(Γ) for the finite set of random variables
and usually assume the Ym to be independent. Then we have also ρ := ∏NFN

n=1 ρm with ρm the
density functions of the Ym.
With this in mind, we reformulate the random parameter functions to operate on the tensor

product space of images of the Ym(ω) as

âFN , b̂FN : Γ× D̄ × [0, T ]→ Rs1,s2 .

For y = (Y1(ω), . . . , YNFN (ω))>, we thus introduce the approximations

a(ω,x, t) ≈ âFN (y,x, t), b(ω,x, t) ≈ b̂FN (y,x, t) . (2.8)

It is then possible to rewrite the random PDE problem statement from Definition 2.22 as:
Find function ûNF : Γ× D̄ × [0, T ]→ Rr, such that it holds for each y ∈ Γ that

L (âFN (y,x, t)) ûFN (y,x, t) = f
[
b̂FN (y,x, t)

]
(y,x, t) in Γ× D̄ × [0, T ] . (2.9)
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In fact, the above problem is (after measure change) again a random PDE problem with the
stochastics-related parameter y. Following [BNT10], the technically correct formulation would
be to require (2.9) to hold ρ-almost-everywhere in Γ, noting that for fixed x ∈ D, t ∈ [0, T ] we
have that e.g. âFN (·,x, t) would be a random variable on (Γ,BNFN , ρ dy). But this technical
detail is skipped in the following.
The finite-dimensional formulation now allows for the use of standard numerical approxima-

tion techniques, avoiding the usual rather technically and notationally complex formulation of
the problems with respect to some probability space. However, it is necessary to understand
the implications of the evaluation of stochastic moments of quantities like the solution field
ûFN (y,x, t). In fact, these evaluations are still with respect to the original probability space
(Ω,F , P ). For the mean of e.g. u, we thus have by applying Lemma 2.6 and (2.8) that

E [u] (x, t) =
∫

Ω
u(ω,x, t)P (dω) (2.10)

≈
∫

Ω
ûFN

(
(Y1(ω), . . . , YNFN (ω))>,x, t

)
P (dω) (2.11)

=
∫

Γ
ûFN (y,x, t)ρ(y)dy , (2.12)

assuming all involved compound functions to be measurable.
To try to keep notation at a readable level, less strict formulations shall be used throughout

the rest of this thesis. Following similar approaches from [Xiu10, Section 4.3] or [BNT10],
the finite-dimensional problem formulation after the finite noise assumption will be taken as
standard without the additional indicators of the involved quantities to be approximations. We
thus seek for functions u : Γ× D̄ × [0, T ]→ Rr such that for each y ∈ Γ, it holds

L (a(y,x, t))u(y,x, t) = f [b(y,x, t)] (y,x, t) in Γ× D̄ × [0, T ] . (2.13)

As a side effect, a simplified notation for, e.g., the mean is

E [u] (x, t) :=
∫

Γ
u(y,x, t)ρ(y)dy .

Analogous abbreviations for correlation, covariance and variance will be used.

2.4.4 Solution function space

The beforehand construction leads to a different solution function space for the random PDE
problem. In fact, we now have for the probability space (Γ,BNFN , ρdy) the solution ûFN :
Γ×D × [0, T ]→ Rr, which is given in the Bochner function space L2(Γ; [0, T ];L2(D)), with

L2
(
Γ; [0, T ];L2(D)

)
:= L2

(
Γ;L2

(
[0, T ];L2(D)

))
,

L2
(
Γ;L2

(
[0, T ];L2(D)

))
:=
{
f : Γ→ L2([0, T ];L2(D))

∣∣∣‖f‖L2(Γ;[0,T ];L2(D)) <∞
}
,

‖f‖L2(Γ;[0,T ];L2(D)) :=
(∫

Γ
‖f‖2L2([0,T ];L2(D))ρ(y)dy

)1/2
.
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parameters
a(y,x, t)
b(y,x, t)

random
PDE

L(a)u = f [b]

solution
field

u(y,x, t)

quantity of
interest

π(u)(y,x, t)

moments
E [π(u)]
Var [π(u)]
Cov [π(u)]

g(a, b) := L(a)−1f [b]

response surface π

π ◦ g

Figure 2.1: Uncertainty quantification for random PDEs aims at evaluating stochastic moments
of quantities of interest, which are extracted from the random PDE solution field.

Moreover, it is well-known that we have the an isometric isomorphism

L2
(
Γ; [0, T ];L2(D)

) ∼= L2(Γ)⊗ L2
(
[0, T ];L2(D)

)
.

2.5 Uncertainty quantification for random PDEs

After having developed a formalism to describe random PDE problems in a finite-dimensional
setting, it is necessary to give an idea of the concepts of uncertainty quantification that shall
be discussed.
In this thesis, the quantification of uncertainties is understood to be the evaluation of stochas-

tic moments either of the solution of a random PDE problem or of some derived quantity of the
random PDE problem solution. Figure 2.1 outlines the basic idea. Starting from the (random)
input parameter fields, the random PDE problem (2.13) is solved. Its solution field u(y,x, t)
is still a space-time stochastic process. From a deterministic point of view, the solution is a
function g(a, b) of the input parameter fields thus,

u = g(a, b) := L(a)−1f [b] .

In the literature, the image of g is often called response surface and the function itself describes
the response of a system (here the random PDE) to some input. Usually, the response function
g is defined with respect to some input vector, which could be y ∈ Γ in this case. However,
the intention here is to stick to the formulation as some dependent function on a, b. This shall
underline that the parameter functions could contain hidden deterministic parameters which
are not subject to stochastic influence but for which it makes also sense to define a response
function.
The next step in uncertainty quantification for random PDEs, as discussed in this thesis,

cf. Figure 2.1, is the mapping of the solution field u to a quantity of interest (QOI). This is done
with the mapping function π. Very often, a quantity of interest is a single number describing
e.g. some averaged solution field property, a single value extracted from the solution field or
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extremal values. Also, more complex quantities, like forces or travel times, which might even
require the solution of another PDE, are possible. Of course, quantities of interest might also
be full vector fields, in which case the mapping function π picks a part of the solution field or
might be the identity. Overall, the definition of the mapping π is highly problem-specific.
In the final step of uncertainty quantification for random PDEs, stochastic moments of the

quantity of interest (with respect to the random input quantities) are evaluated. These give
important characterizations of the overall stochastic properties with a rather simple description
method. Even though Figure 2.1 suggests a sequential numerical treatment of the described
“steps”, this does not have to be the case.
Numerical methods to evaluate stochastic moments of random PDEs are usually divided in

two groups, intrusive and non-intrusive methods. Intrusive methods require to implement new
solvers which discretize physical space and stochastic space at the same time. A prominent
example for intrusive methods is the stochastic Galerkin approach [GS91],[LMK10, Chapter 4].
On the other hand, non-intrusive methods rely on (approximate) solutions from existing deter-
ministic PDE solvers. A standard example for non-intrusive methods is the stochastic colloca-
tion method [NTW08b, BNT10]. For a numerical comparison of both exemplified methods see
e.g. [BNTT11]. In this thesis, the non-intrusive approach is chosen, since the target applica-
tions are large-scale random PDE problems with existing (deterministic) solvers. To exemplify
this, the existing (multi-GPU ported) two-phase flow solver NaSt3DGPF will be used. An
in-depth discussion of the non-intrusive RBF kernel-based stochastic collocation method will
be given after having introduced the model and application problems in the next chapter.



3 Model and application problems

This chapter collects the model and application problems, which will be discussed through-
out this thesis. It starts by introducing two model problems, for which analytic solutions
are known. These will facilitate error measurements. The second pair of problems is used
to analyze and to compare the convergence properties of the applied kernel-based uncertainty
quantification method to well-known numerical results from the literature. Both problems are
random-coefficient elliptic problems with two space dimensions and several stochastic dimen-
sions. They are well-studied in the literature, cf. [BNT10, BNTT11, van14], and require some
computational effort. The third set of problems is based on a random version of the two-phase
incompressible Navier-Stokes equations. These problems will be the main objective applica-
tions in this thesis. They feature all the limitations of classical engineering-oriented problems in
this domain. These are high to extreme computational costs to evaluate a single deterministic
PDE, widely unknown mathematical properties and many parameters (initial values, physical
properties, domain shape, boundary conditions . . . ) which might be considered uncertain in
real-world.

3.1 Problems with analytic solution

Let us start by defining two model problems for which analytic solutions are known. The idea
is here, to have an optimal setting for empirical error measurements.

3.1.1 Random-coefficient elliptic problem with known solution

The first problem is a random PDE, which is motivated by an example proposed in [TPME11].
Given a complete probability space (Ω,F , P ), the objective is to find a random field u : Ω ×
[−0.5, 0.5]2 → R, such that

−∇ · (a(ω,x)∇u(ω,x)) = f(x) in Ω× (−0.5, 0.5)2 ,

u(ω,x) = 0 on Ω× ∂(−0.5, 0.5)2 .

holds almost surely. The finite noise assumption is fulfilled by introducing a one-term Karhunen-
Loève expansion of the diffusion coefficient a(ω,x) resulting in the finite-dimensional problem
to find u : Γ× [−0.5, 0.5]2 → R, such that

−∇ · (a(y,x)∇u(y,x)) = f(x) in Γ× (−0.5, 0.5)2 ,

u(y,x) = 0 on Γ× ∂(−0.5, 0.5)2 .

37
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with Γ ⊆ R and the random diffusion coefficient

a(y,x) = 1 + σ
1
π2 y1 cos

(
π

2
(
x2

1 + x2
2
))

,

thus we have y = y1. The right-hand side term is given as

f(y,x) =32
(

1 + σ +
y1 cos(1

2π(x2
1 + x2

2))
π2

)
e−y

2
1

(
x2

2 −
1
2 + x2

1

)
− 32

π
y sin

(1
2π(x2

1 + x2
2)
)(

x2
1e
−y2

1

(
x2

2 −
1
4

)
+ x2

2e
−y2

1

(
x2

1 −
1
4

))
.

With this construction, it is possible to derive an exact solution of the random PDE problem
as

u(y,x) = 16 e−y2
1

(
x2

1 −
1
4

)(
x2

2 −
1
4

)
.

According to [TPME11], this problem is only well-posed if |y1| < π2

σ . In difference to that
reference, the variable y1 shall here correspond to the random variable Y1(ω) ∼ U(−

√
3,
√

3),
thus we employ the density function ρ(y) = 1

2
√

3 . It is possible to derive the exact solution for
the first stochastic moment as

E [u] = 1
6 erf

(√
3
)√

3
√
π
(
16x2

1x
2
2 − 4x2

1 − 4x2
2 + 1

)
.

The exact solution for the second moment is also available. This easily allows an analysis of
the first and second moment of the quantity of interest π ≡ Id, thus e.g. E [π(u)] = E [u] shall
be approximated, cf. Section 2.5.

3.1.2 g function

To be able to asses the discussed numerical methods also for a higher-dimensional stochastic
space Γ, the second problem with analytic solution is a non-PDE test problem, the g function,
cf. [DR84]. It allows to validate the involved numerical methods without solving any equation.
Adapted to the notation of this thesis, it reads as

uNFN (y) =
NFN∏
m=1

|4ym − 2|+ am
1 + am

.

Following [SB13], we assume am = m−2
2 . It is well-known, that for ym corresponding to

independent random variables Ym(ω) ∼ U(0, 1), the mean is given by

E [uNFN ] = 1

for arbitrary dimension NFN ≥ 1 of the space Γ. The density function is ρ(y) = 1. Throughout
this thesis, the first stochastic moment of the g function with quantity of interest π ≡ Id is
studied. Note that the above problem has finite smoothness in stochastic space, because of the
absolute value operator.
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D1

D2 D3

D4

Figure 3.1: The two-dimensional elliptic model problem with piecewise constant random dif-
fusion field has four circle-shaped subdomains with constant random diffusion
coefficients.

3.2 Two-dimensional random-coefficient elliptic problems

The second set of model problems is probably the most studied problem in the field. It is the
random-coefficient elliptic problem, with domain D = [0, 1]2 and a complete probability space
(Ω,F , P ), as usual. The objective is to find a random field u : Ω × D̄ → R, such that almost
surely

−∇ · (a(ω,x)∇u(ω,x)) = f(x) in Ω×D ,
u(ω,x) = 0 on Ω× ∂D .

Here, f : D → R is some deterministic forcing term. Boundary conditions are also deterministic
with a homogeneous Dirichlet boundary.
After introducing the finite noise assumption with respect to a(ω,x), it is possible to reformu-

late the given problem in the finite-dimensional sense requiring to find a function u : Γ×D̄ → R,
such that

−∇ · (a(y,x)∇u(y,x)) = f(x) in Γ×D , (3.1)
u(y,x) = 0 on Γ× ∂D . (3.2)

Using that general random PDE, two sub-problems are defined to reflect different standard
constructions found in the literature.

3.2.1 Piecewise constant random diffusion field

In the first sub-problem, taken from [BNT10, BNTT11], the finite noise assumption is fulfilled
by a piecewise constant random field as motivated in Section 2.4.2. The domain-dependent
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diffusion coefficient is thus given as

a(y,x) = 1 +
4∑

m=1
λmymχm(x) ,

with χm the indicator function for the four circle-shaped subdomains D1, . . . ,D4 ⊂ D with
radius 0.13 each, cf. Figure 3.1. The centers of the subdomains are at coordinates (0.2, 0.2),
(0.2, 0.8), (0.8, 0.8) and (0.8, 0.2) and their parameters λm are given as

λ1 = 1.0, λ2 = 0.9, λ3 = 0.75, λ4 = 0.6 .

Furthermore, the ym correspond to random variables Ym(ω) ∼ U(−0.99, 0), thus ρ(y) =(
1

0.99

)4
, and f ≡ 1. The first stochastic moment shall be evaluated for the quantity of in-

terest π ≡ Id.

3.2.2 Karhunen-Loève expansion-based random diffusion field

The second sub-problem bases on [BNT10, van14]. It uses f ≡ 1 in equation (3.1). Here, the
diffusion coefficient a ≡ aNKL,Lc is given by a Karhunen-Loève expansion as

log (aNKL,Lc(y,x)− 0.5) = 1 + y1

(√
πLc
2

)1/2

+
NKL∑
m=2

λmφm(x1)ym ,

with the {ym}NKLm=1 corresponding to independent random variables {Ym(ω)}NKLm=1 with each
Ym ∼ U(−

√
3,
√

3), thus ρ(y) =
(

1
2
√

3

)NKL and

λm := (
√
πLc)1/2 exp

(
−(bm2 cπLc)2

8

)
, φm(x1) :=

{
sin(bm2 cπx1) if m even,
cos(bm2 cπx1) if m odd , m > 1

This construction approximates a one-dimensional random variable a with covariance

Cov [log(a− 0.5)] (x, x′) = e
− (x−x′)2

L2
c .

NKL is the number of terms of the Karhunen-Loève expansion. Furthermore, Lc is the corre-
lation length. Both parameters can be modified in the numerical experiments. The quantity
of interest π ≡ Id is again used and the first two stochastic moments shall be approximated.

3.3 Random two-phase incompressible Navier-Stokes equations
The major application problem motivating the work presented in this thesis is a random version
of the two-phase incompressible Navier-Stokes equations. They model the interaction of two
incompressible fluids which do not mix but remain disjoint with a common interface. Classical
examples for such fluid-fluid systems in real world are oil and water or water and air, noting
that it is usual in the field to assume air to be incompressible for the discussed test cases,
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D1

D2

�

�f

Figure 3.2: The domain D with boundary � is subdivided into two distinct fluid phase domains
D1 and D2 and the fluid-fluid interface �f in the two-phase Navier-Stokes equations.

cf. e.g. [SSH+07]. The deterministic two-phase Navier-Stokes equations are modeled similar to
e.g. [CGS09]. Further references are [SSO94, GR11, TSLV11].

3.3.1 Deterministic model

The deterministic two-phase Navier-Stokes equations are given in three dimensions, thus D ⊂
R3 with D a connected domain with � = ∂D its boundary. Two sub-domains D1,D2 identify the
two fluid phases. Technically, they are time-dependent and thus functions D1,D2 : [0, T ]→ 2D
with D1(t)∩D2(t) = ∅ for all t ∈ [0, T ] and T ∈ R+ the final simulation time. The full domain
D is covered by D1, D2 and the time-dependent fluid-fluid separation interface �f (t), thus
D = D1(t) ∪ D2(t) ∪ �f (t), cf. Figure 3.2. In each of the two sub-domains, thus i = 1, 2, the
deterministic system of the two-phase Navier-Stokes equations reads as

ρi∂tui + ρi(ui · ∇)ui = ∇ · µi(∇ui + {∇ui}T )−∇pi + ρig in Di × [0, T ] , (3.3)
∇ · ui = 0 in Di × [0, T ] , (3.4)

ui = u0i in Di × {0} , (3.5)
B[a�]ui = b� on �× [0, T ], (3.6)

∂pi
∂n�

= 0 on �× [0, T ] , (3.7)

u1 = u2 on �f × [0, T ] , (3.8)
[T] · n�f = σκn�f on �f × [0, T ] . (3.9)

It is solved for the velocity fields ui : Di×[0, T ]→ R3 [m/s] and pressure fields pi : Di×[0, T ]→
R [kg/(m·s2)] with given initial conditions for the velocity field by u0i : Di → R3 and boundary
conditions (3.6) and (3.7) for velocity and pressure. Velocity boundary conditions are for now
denoted by some general boundary operator B with parameter function a� : �×[0, T ]→ Rs and
the space-time-dependent right-hand side function b� : �× [0, T ]→ Rs, which will be replaced
by some more complex boundary domain dependent mixed-type boundary conditions in the
application examples. Equation (3.7) describes homogeneous Neumann boundary conditions
for the pressure field. The two important material properties for incompressible fluids are the
subdomain-wise constant densities ρi [kg/m3] and viscosities µi [kg/(m·s)]. Both fluids interact
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with respect to a volume force g ∈ R3, e.g. gravity. At the fluid-fluid interface �f , there exists
a jump condition (3.9) for the surface stress tensor T i := −piI + (∇ui + {∇ui}T ) ∈ R3 × R3,
with [T ] the jump (T 1 − T 2) across the interface. The other coupling condition between the
velocities u1 and u2 is given in (3.8). Finally, σ ∈ R is the surface tension coefficient, κ ∈ R is
curvature of �f and n�f ∈ R3 is the surface normal of the interface.
The main equations of the two-phase Navier-Stokes equations are the momentum equation

(3.3) and the continuity equation (3.4). While the first one models the major part of the
dynamics with the transport term ρi(ui ·∇)ui and the viscosity or diffusion term ∇·µi(∇ui+
{∇ui}T ), the second represents the incompressibility constraint for both fluids. Note that it is
common to have no initial conditions for the pressure, since the pressure is usually understood
as a Lagrange multiplier and the solution method applied in this thesis does not require initial
conditions for pressure, cf. Section 5.1.2.

3.3.2 Velocity field boundary conditions
Boundary conditions for the velocity field were given by some general operator B before. These
shall be replaced by a set of problem-dependent conditions. The full dynamics of transient flow
simulations is usually influenced by a series of boundary conditions and their combination on
different boundary subsets. The most important shall be shortly outlined here. Homogeneous
Dirichlet boundary conditions

ui|� =0 in [0, T ]

impose the artificial condition on the fluids to have no slip at the boundary and no mass
transport over the boundary interface. (Note, that we use here � to indicate some subset of
the full boundary, to shorten notation.) Changing the above boundary condition to infinite
slip at a non-penetrated boundary leads to mixed boundary conditions

(ui · n�)|
�

= 0, ∂(ui · s�)
∂n�

∣∣∣∣
�

= 0, ∂(ui · t�)
∂n�

∣∣∣∣
�

= 0 in [0, T ]

with (ui · n�) the velocity component normal to the boundary and (ui · s�), (ui · t�) the
two respective tangential velocity field components. Furthermore, mass transport over the
boundary can be implied by non-homogeneous Dirichlet boundary conditions

ui|� =u�i in [0, T ] .

Finally, Neumann-type boundary conditions in boundary normal direction, thus

∂ui
∂n�

∣∣∣∣
�

=0 in [0, T ]

impose a fluid behavior somewhat similar to the one expected at an open box boundary.
As it is possible to combine these boundary conditions in an arbitrary way, it is necessary

to respect the compatibility condition [CGS09]∫
�

u · n�ds = 0
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to have a total mass flux of zero over the boundary with respect to the combined velocity fields
u. For more information on the above types of boundary conditions, see also e.g. [DGN98].

3.3.3 Random model
The random model of the deterministic two-phase incompressible Navier-Stokes equations, as
proposed in this thesis, introduces uncertainties to a series of parameters. For a given proba-
bility space (Ω,F , P ) and i = 1, 2, one looks for the functions ui : Ω × D̄ × [0, T ] → R3 and
pi : Ω× D̄ × [0, T ]→ R such that it holds P -almost surely

ρi(ω)Dui
Dt

= ∇ · µi(ω)Si −∇pi + ρi(ω)g(ω,x) in Ω×Di(ω)× [0, T ], (3.10)

∇ · ui = 0 in Ω×Di(ω)× [0, T ], (3.11)
ui = u0i(ω,x) in Ω×Di(ω)× {0}, (3.12)

B[a�(ω)]ui = b�(ω,x) on Ω× �× [0, T ], (3.13)
∂pi
∂n�

= 0 on Ω× �× [0, T ] , (3.14)

u1 = u2 on Ω× �f (ω)× [0, T ], (3.15)
[T] · n = σκn on Ω× �f (ω)× [0, T ], (3.16)

with the abbreviations DuiDt := ∂tui+(ui·∇)ui and Si := (∇ui+{∇ui}T ). Note, that the above
notation shall highlight those parts of the two-phase Navier-Stokes equations, which might
become subject to stochastic influence. These are the densities, viscosities, domain-dependent
volume forces, velocity initial conditions, velocity boundary conditions and the distribution
of the two phases over the whole domain. Of course, the velocity fields, pressure fields and
derived quantities from the phase distribution become ω-dependent by this construction, too.
To avoid redundancies, modeling the ω-influence on the involved quantities will be done for
specific applications after introducing the finite noise assumption.
The model problem for two-phase flows can be transformed to a finite-dimensional model

by introducing Karhunen-Loève expansions for the involved random fields. By doing that, we
look for solution functions ui : Γ × D̄ × [0, T ] → R3 and pi : Γ × D̄ × [0, T ] → R such that it
holds for all y ∈ Γ that

ρi(y)Dui
Dt

= ∇ · µi(y)Si −∇pi + ρi(y)g(y,x) in Γ×Di(y)× [0, T ], (3.17)

∇ · ui = 0 in Γ×Di(y)× [0, T ], (3.18)
ui = u0i(y,x) in Γ×Di(y)× {0}, (3.19)

B[a�(y)]ui = b�(y,x) on Γ× �× [0, T ], (3.20)
∂pi
∂n�

= 0 on Γ× �× [0, T ] , (3.21)

u1 = u2 on Γ× �f (y)× [0, T ], (3.22)
[T] · n = σκn on Γ× �f (y)× [0, T ], (3.23)

with the same abbreviations and assumptions as above. For the given equation system, three
application problems will be defined.
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Figure 3.3: Two-dimensional side view of the three-dimensional backward facing step
application.

Flow over a backward-facing step

In the design of hydraulic constructions for river systems, e.g. bridges or dams, it is important
to know the structure of vortices that form close to these constructions, cf. [Dep13, EG13]. In
this thesis, vortex formation shall be studied for a simplified small-scale problem in presence of
uncertain inflow velocity, density and viscosity. The uncertainty might e.g. model the changing
river behavior over a year, in real world. This first Navier-Stokes application is a flow over a
backward-facing step. Figure 3.3 highlights the basic setup. The domain D̄ = [0, 20]× [0, 4]×
[0, 2] is chosen, with one meter as basic unit for length. Inflowing fluid passes over a step
with the sizes outlined in Figure 3.3 and usually forms a vortex behind that step. This is
done over a period of 10 seconds, thus T = 10. In this simplified application, only one fluid
phase is simulated. Due to D1(ω) = D, the sub-domains do not depend on any stochastic
influence and we have D2 = ∅. Also, one-phase flows do not require the coupling conditions
(3.22) and (3.23). Volume force g is set to gravity, thus g = (0,−9.81, 0)>. With u ≡ u1 and
�walls = �\(�in∪�out∪�step), cf. Figure 3.3, the velocity boundary conditions replacing (3.20)
are

u = u�in(y) on Γ× �in × [0, T ] ,
∂u

∂n�out
= 0 on Γ× �out × [0, T ] ,

u · n�step = 0 on Γ× �step × [0, T ] ,
∂(u · s�step)
∂n�step

= 0 on Γ× �step × [0, T ] ,

∂(u · t�step)
∂n�step

= 0 on Γ× �step × [0, T ] ,

u = 0 on Γ× �walls × [0, T ] ,

thus the inflow condition on the boundary part �in is under stochastic influence by the random
variable u�in : Γ→ R3. Furthermore, we have

u01 ≡ u�in(y)
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lreattachxstep xvortex

Figure 3.4: The reattachment length is the distance between the step and the end of the vortex,
here shown in the visualization of a velocity field.

for the initial condition, leading to an identical inflow and uniform initial condition for the
velocity field.
Finally, it is necessary to describe the random variables u�in(y), µ1(y) and ρ1(y). The

random inflow velocity is simplified by

u�in = (u�in(y), 0, 0)> .

Note that this construction differs from the one in the previous model problem in the way that
no longer one single parameter is under stochastic influence. However, we have to introduce a
Karhunen-Loève expansion for each of the three involved parameter functions. By truncating
these after the first stochastic term, we get

u�in(y) =0.55 + 0.45√
3
yu1 ,

µ1(y) =0.5005 + 0.4995√
3

yµ1 ,

ρ1(y) =750 + 250√
3
yρ1 .

Collecting all parameters under stochastic influence leads to y = (yu1 , y
µ
1 , y

ρ
1) and Γ ⊆ R3. Note

that truncation of the random parameters after the second stochastic term would e.g. result in
a six-dimensional stochastic parameter space Γ. All three variables yu1 , y

µ
1 , y

ρ
1 shall correspond

to independent random variables

Y u
1 (ω) ∼ U

(
−
√

3,
√

3
)
, Y µ

1 (ω) ∼ U
(
−
√

3,
√

3
)
, Y ρ

1 (ω) ∼ U
(
−
√

3,
√

3
)
,

thus the stochastic density function becomes ρ(y) =
(

1
2
√

3

)3
. Furthermore, we are either

interested in the quantity of interest π1
(
(u p)>

)
= u or in the vortex reattachment length π2 ≡

lreattach(y, t), cf. Figure 3.4. It can be formalized by assuming xstep to be the first component
of the end point coordinate of the step and xvor(y, t) the first component of the vortex’ end
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Figure 3.5: Two-dimensional side view of the three-dimensional rising bubble application setup.

point. The reattachment length lreattach is then given as lreattach(y, t) := xvor(y, t)− xstep. To
be more specific, xvor(y, t) shall be defined as the first component of the maximum coordinate
of a point on the zero level set of the first velocity field component,

xvor(y, t) = argmaxx∈R(y,t) x1, with R(y, t) =
{
x ∈ D|u1 = 0, (u1, u2, u3)T = u(y,x, t)

}
.

For π1
(
(u p)>

)
= u and π2 ≡ lreattach, first and second stochastic moments might be consid-

ered.

Karhunen-Loève based random volume force in bubble flow

The second application for the Navier-Stokes equations is a two-phase flow example, namely a
rising air bubble in water. To be able to study stochastic influence of a random input field with
known covariance spectrum, the volume force is assumed to be random. It is approximated
by a truncated Karhunen-Loève expansion. All other parameters remain deterministic. The
objective is to study the mean velocity field and the center of mass of the bubble after some
time.
Figure 3.5 outlines the basic setup of the two-phase flow problem. The domain is given as
D̄ = [0, 0.2]3 and the fluid flow is studied until T = 0.35 seconds. Since an air-water system
shall be analyzed, we have the densities ρ1 = 1000 and ρ2 = 1 and viscosities µ1 = 1.002 · 10−3

and µ2 = 1.72 ·10−5. The initial conditions are set to u0i = (0, 0, 0)>. Furthermore the surface
tension coefficient is set to the fixed amount of σ = 0.0728 which reflects the parameter of a
water-air interface. Boundary conditions of the velocity field are introduced by replacing (3.20)
with

u · n� = 0 on Γ× �× [0, T ] ,
∂(u · s�)
∂n�

= 0 on Γ× �× [0, T ] ,

∂(u · t�)
∂n�

= 0 on Γ× �× [0, T ] ,
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thus an infinite slip is assumed on the boundary. Furthermore, the initial position of the bubble
is xinit = (0.1, 0.06, 0.1)>. The phase-wise sub-domains D1,D2 are given by

Di(t) = Φ
[
D0
i

]
(t) .

Here, Φ describes the transformation of the initial domains D0
i := Di(t = 0) under fluid flow.

These initial domains are defined such that the gas phase is a sphere of radius 0.03m, thus

D0
1 := {x ∈ D|‖x− xinit‖ > 0.03} ,

D0
2 := {x ∈ D|‖x− xinit‖ < 0.03} .

The initial free surface is �f (t = 0) = D \ (D0
1 ∪ D0

2).

Modeling of the random volume force g(y,x) is done by a truncated Karhunen-Loève ex-
pansion. The volume force is set to

g(y,x) := (0, gNKL,Lc(y, x2), 0)> .

Then, similar to the elliptic problem with Karhunen-Loève based random coefficient field, we
assume gNKL,Lc to be the approximation of a random variable g with

Cov [log(g − (−9.81))] (x, x′) = e
− (x−x′)2

L2
c ,

leading to the truncated Karhunen-Loève expansion

log (gNKL,Lc(y,x) + 9.81) = 1 + y1

(√
πLc
2

)1/2

+
NKL∑
m=2

λmφm(x2)ym , (3.24)

with truncation after NKL expansion terms. The {ym}NKLm=1 correspond to independent random
variables {Ym(ω)}NKLm=1 with each Ym ∼ U(−

√
3,
√

3), thus ρ(y) =
(

1
2
√

3

)NKL . Furthermore, the
eigenvalues and eigenfunctions are given as

λm := (
√
πLc)1/2 exp

(
−(bm2 cπLc)2

8

)
, φm(x2) :=

{
sin(bm2 cπx2) if m even,
cos(bm2 cπx2) if m odd , m > 1 .

Usually, the correlation length is assumed to be Lc = 2.0.

As said before, the quantities of interest shall be π1
(
(u p)>

)
= u and the center of mass

of the air bubble at time t which is πcenter(t). Following [BS02, Section 3.1.2], with adapted
notation, we have

πcenter(t) := 1
Vol(D2(t))

∫
D2(t)

x dx .

First and second stochastic moments shall be determined.
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Stochastic homogenization for rising bubbles

The third application for the Navier-Stokes equations uses a very similar setup as the previous
flow example. It covers a rising air bubble in some liquid. However, now, the density, viscosity
and initial bubble position are under stochastic influence. Volume forces are deterministi-
cally given. The objective is to study the mean velocity field with applications in stochastic
homogenization of bubbles in a (chemical) bubble column reactor, cf. [KBU05, Jak08].
Remember that Figure 3.5 outlines the basic setup of this two-phase flow problem. The

domain is given as D̄ = [0, 0.2]3 and we have T = 0.35. Density ρ2 and viscosity µ2 of the gas
phase are constants set again to the properties of air, thus ρ2 = 1, µ2 = 1.72 · 10−5. Volume
force g is given as standard gravity. The initial conditions are also set to u0i = (0, 0, 0)>.
Furthermore, the surface tension coefficient is σ = 0.0728. The boundary conditions remain as
in the previous test case.
Since the initial position of the air bubble shall be a random quantity, the phase-wise sub-

domains D1,D2 have to be interpreted as 2D-valued stochastic processes. Therefore, these
domains are given for time t by Di(y, t) with

Di(y, t) = Φ[D0
i (y)](t), D0

i (y) := Di(y, 0), y ∈ Γ ,

where Φ again describes the transformation of the initial domains D0
i (y) under fluid flow. It

deterministically depends on the velocities u1,u2, but the initially given domains are subject
to random perturbations. We define the initial liquid and gas phase domains D0

1(y) and D0
2(y)

such that the gas phase domain is a sphere of radius 0.03m around some random initial center
xinit(y) at the beginning, thus

D0
1(y) := {x ∈ D|‖x− xinit(y)‖ > 0.03} ,

D0
2(y) := {x ∈ D|‖x− xinit(y)‖ < 0.03} .

The initial free surface is �f (y, 0) = D \ (D0
1(y) ∪ D0

2(y)). Moreover, the random parameter
functions xinit1 (y), xinit2 (y) and xinit3 (y) with xinit(y) =

(
xinit1 , xinit2 , xinit2

)
as well as the material

parameters for the liquid phase, µ1(y) and ρ1(y), are modeled by truncated Karhunen-Loève
expansions. Truncation is done after the first stochastic term. Overall, these functions are
given as

xinit1 (y) = 0.1 + 0.06√
3
yx1

1 (ω) ,

xinit2 (y) = 0.06 + 0.01√
3
yx2

1 (ω) ,

xinit3 (y) = 0.1 + 0.06√
3
yx3

1 (ω) ,

µ1(y) = 0.5005 + 0.4995√
3

yµ1
1 (ω) ,

ρ1(y) = 750 + 250√
3
yρ1

1 (ω) .
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All parameters are collected in the five-dimensional vector y as y = (yx1
1 , yx2

1 , yx3
1 , yµ1

1 , yρ1
1 )>

assuming them to correspond to independent random variables for which holds

Y x1
1 ∼ U

(
−
√

3,
√

3
)
, Y x2

1 ∼ U
(
−
√

3,
√

3
)
, Y x3

1 ∼ U
(
−
√

3,
√

3
)
,

Y µ1
1 ∼ U

(
−
√

3,
√

3
)
, Y ρ1

1 ∼ U
(
−
√

3,
√

3
)
.

Consequently, the density function becomes ρ(y) =
(

1
2
√

3

)5
. Here, the quantity of interest

is π
(
(u p)>

)
= u and we want to compute the first and second stochastic moment of that

output.





4 RBF kernel-based stochastic collocation

In this chapter, the numerical method to solve the given large-scale uncertainty quantification
problems is outlined. The method of choice in this thesis is non-intrusive stochastic colloca-
tion. Non-intrusive methods are designed to use deterministic PDE solvers as black-box to
approximate random PDE problems.
Stochastic collocation methods are optimal candidates to solve random PDE problems, if

the underlying deterministic PDE problem shall be accessed by point evaluations in stochastic
space only. They approximate the random solution field by Lagrange interpolation between
a set of deterministic solutions. In this thesis, stochastic collocation applies Lagrange bases
of a reproducing kernel Hilbert space which is constructed from radial-symmetric (kernel)
basis functions (RBF). Classical literature (e.g. [NTW08b, BNT10]) on stochastic collocation
methods assumes a very smooth dependence of the random PDE solution field in the stochastic
parameter space. In this case, RBF kernel methods with smooth kernels for interpolation
promise to achieve very small approximation errors with only few point evaluations, cf. kriging
[Mat63]. Keeping in mind that each point evaluation might be a full PDE solver run with
potentially millions of unknowns, this is exactly what we need to achieve.
In the following, we start by introducing the stochastic collocation method, which delivers

an approximation of the original stochastic problem by a set of deterministic problems. Since
radial-symmetric kernel functions are chosen as basis, we have a short look at the underlying re-
producing kernel Hilbert spaces and so-called native spaces in which we construct the Lagrange
basis functions. This construction and popular positive definite radial kernels with standard er-
ror estimates will be discussed. Afterwards, approximations for stochastic moments of random
PDE problems are derived for the new method. Collocation point sampling, quadrature and
linear solvers are important ingredients to compute these approximations. Therefore, several
quadrature methods including exponentially convergent tensor-product and sparse grid con-
structions and exact quadrature are investigated. Since quadrature methods already require
sampling methods for the stochastic space, only a brief summary will be given for possible
choices of collocation points. Note that by combining a given point choice with quadrature on
the kernel basis functions, new quadrature formulas are constructed. Also, linear iterative and
direct solvers applied to the kernel interpolation problem are considered. Since multi-GPU par-
allel numerical methods are important to achieve an efficient large-scale stochastic collocation
method, this chapter is concluded by these implementation details.

4.1 Stochastic collocation

In stochastic collocation, we seek to numerically solve the finite-dimensional random PDE
problem from (2.13). We thus look for u : Γ×D̄× [0, T ]→ Rr such that it holds for each y ∈ Γ

51
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that

L (a(y,x, t))u(y,x, t) = f [b(y,x, t)] (y,x, t) in Γ× D̄ × [0, T ] .

Following e.g. [BNT10], this is done in stochastic collocation by introducing a sampling of the
stochastic space Γ with a finite set of collocation points

XΓ :=
{
y1, . . . ,yNΓ

}
⊂ Γ .

For each of the collocation points yi, the deterministic solution u(yi,x, t) is evaluated, thus
we solve

L(a(yi,x, t))u(yi,x, t) = f(yi,x, t) in D̄ × [0, T ], ∀i = 1, . . . , NΓ . (4.1)

Then, the full solution u(y,x, t) is approximated by interpolating between the deterministic
solution fields u(yi,x, t) with a Lagrange basis

{Li}NΓ
i=1 , Li ∈ P(Γ), Li : Γ→ R, with Li(yj) =

{
1 i = j
0 i 6= j

associated to the collocation points yi. Therefore, we get

u(y,x, t) ≈ (INΓu) (y,x, t) :=
NΓ∑
i=1
u(yi,x, t)Li(y) ∀y ∈ Γ . (4.2)

The approximation space, thus the space P(Γ), in which the basis functions Li are given, will
be identified with the native space of some radial-symmetric kernel basis function. It will be
a reproducing kernel Hilbert space. Therefore, we have for the approximate solution INΓu of
stochastic collocation that

INΓu ∈ P(Γ)⊗ L2([0, T ];L2(D)) .

4.2 Reproducing kernel Hilbert spaces and native spaces

In order to understand the basic approximation properties of the kernel-based RBF stochastic
collocation method and the applied approximation space P(Γ), a brief introduction into repro-
ducing kernel Hilbert spaces is given. To do that, we will closely follow the lines of [Wen04]
and cite important definitions and results with an adapted notation
Theory of reproducing kernel Hilbert spaces starts with an underlying Hilbert space

F ⊆
{
f : Γ→ R

∣∣∣ ∅ 6= Γ ⊆ Rd
}

of functions that we like to approximate. We can define reproducing kernels by

Definition 4.1 (Reproducing kernels [Wen04, Definition 10.1]). Let F be a Hilbert space of
functions f : Γ→ R. A function k : Γ× Γ→ R is called reproducing kernel for F if
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1. k(·,y) ∈ F for all y ∈ Γ,

2. f(y) = (f, k(·,y))F for all f ∈ F and all y ∈ Γ.

The second requirement, the reproduction formula, tells us that all functions can be point-
wise evaluated by kernel k.

Definition 4.2 (Reproducing kernel Hilbert spaces). A Hilbert space F of functions f : Γ→ R
is called reproducing kernel Hilbert space if it has a reproducing kernel k : Γ× Γ→ R.

Next we have to understand the concept of positive definiteness for kernels, which is closely
related to the usual definition in the matrix case.

Definition 4.3 (Positive (semi-)definite kernels [Wen04, Definition 6.24]). A continuous kernel
k : Γ× Γ→ R is called positive semi-definite on Γ ⊆ Rd if for all N ∈ N, all pairwise distinct
X = {y1, . . . ,yN} ⊆ Γ, and all α ∈ RN \ {0} we have

N∑
j=1

N∑
k=1

αjαk k(yj ,yk) ≥ 0.

It is called positive definite if the left-hand side of the equation is additionally non-zero.

Until now, we only have very little information on the actual structure of the kernels to be
applied. However, it is desirable to have kernels with some invariance properties. As earlier
said, radial basis functions / radial kernels shall be applied here. They can be derived by a
simple construction outlined in [Wen04]. One starts by formally introducing the concept of
invariance.

Definition 4.4 ([Wen04, Definition 10.5]). Let T be a group of transformations T : Γ → Γ.
We say F is invariant under the group T if

1. f ◦ T ∈ F for all f ∈ F and T ∈ T ,

2. (f ◦ T, g ◦ T )F = (f, g)F for all f, g ∈ F and all T ∈ T .
Taking this definition, [Wen04] states the invariance property for the kernel in invariant

kernel Hilbert spaces as

Theorem 4.1 ([Wen04, Theorem 10.6]). Suppose that the reproducing kernel Hilbert function
space is invariant under the transformations of T , then the reproducing kernel k satisfies

k(Ty, Ty′) = k(y,y′)

for all y,y′ ∈ Γ and all T ∈ T .
The following example formally constructs appropriate radial kernels.

Example 4.1 (Radial kernels [Wen04, Section 10.1]). Let Γ = Rd and T is the set of transla-
tions and orthogonal transformations. Further, A ∈ Rd×d are orthogonal transformations such
that Aξ = ||ξ||2e1, ξ = y − y′, with e1 the first unit vector. With the above theorem, we get

k(y,y′) = k(Ay, Ay′) = k(0, A(y − y′)) =: k0(A(y − y′)) = k0(||y − y′||2e1) =: ϕ(||y − y′||2) .
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Thus, we can see that k is actually radial under the above assumptions.

Later on, one might use problem dependent norms instead of ||·||2, but the actual construction
will be the same. This motivates us to stick to this norm throughout this chapter. Note that
we have implicitly used the notion of a radial function which we can formalize in

Definition 4.5 (Radial function [Wen04, Definition 6.15]). A function Φ : Rd → R is said to
be radial if there exists a function ϕ : [0,∞)→ R such that Φ(y) = ϕ(‖y‖2) for all y ∈ Rd.

After having introduced reproducing kernel Hilbert spaces in general, we will now have
a look at the concept of so-called native spaces. In fact, we are looking for Hilbert spaces
that are constructed from the span of a kernel k function. It will turn out that these spaces
are again reproducing kernel Hilbert spaces and the natural choice of space to perform our
approximations in.
The starting point for the native space construction is a given symmetric, positive definite

kernel k : Γ× Γ for which we construct the pre-Hilbert space

Fk(Γ) := span {k(·,y) |y ∈ Γ}

with scalar product N∑
j=1

αj k(·,yj) ,
N∑
k=1

βk k(·,y′k)

k

:=
N∑
j=1

N∑
k=1

αjβk k(yj ,y′k)

as stated in the following theorem.

Theorem 4.2 ([Wen04, Theorem 10.7]). If k : Γ × Γ → R is a symmetric positive definite
kernel, then (·, ·)k defines an inner product on Fk(Γ). Furthermore, Fk(Γ) is a pre-Hilbert space
with reproducing kernel k.

Fk(Γ) can now be extended to a full Hilbert space Fk(Γ) as a completation of Fk(Γ) with
respect to the norm || · ||k induced by the given scalar product. For a formal evaluation of
function values even in the completion, a mapping

R : Fk(Γ)→ C(Γ) , R(f)(x) := (f, k(·,x))k

can be introduced. With that, we have everything to formally define a native space by

Definition 4.6 (Native space [Wen04, Definition 10.9]). The native Hilbert function space
corresponding to the symmetric positive definite kernel k : Γ× Γ→ R is defined by

Nk(Γ) := R(Fk(Γ)) .

It carries the inner product

(f, g)Nk(Γ) :=
(
R−1f,R−1g

)
k
.

As initially proposed, these native spaces are reproducing kernel Hilbert spaces with the
reproducing kernel from which they were generated:
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Theorem 4.3 ([Wen04, Theorem 10.10]). Suppose that k : Γ × Γ → R is a symmetric pos-
itive definite kernel. Then its associated native space Nk(Γ) is a Hilbert function space with
reproducing kernel k.

With these definitions and results at hand, will in the following require that the approxima-
tion space P(Γ) for the stochastic collocation approximation (4.2) is given as

P(Γ) := Nk(Γ) .

The kernel function k will be chosen appropriately. Remembering the stochastic collocation
problem from (4.1) with its general solution space P(Γ)⊗ L2([0, T ];L2(D)), we now choose to
compute approximations with respect to a kernel native space. Therefore, we get

INΓu ∈ Nk(Γ)⊗ L2([0, T ];L2(D)) .

4.3 Interpolation with kernels and error estimates
While we introduced some basic terminology for reproducing kernel Hilbert spaces, we did not
yet come to the main point of interest, which is the interpolation by kernel functions or by the
Lagrange basis. In the following, we will first investigate the idea of interpolation and then sum
up interpolation error results concerning kernel functions which are of interest for this thesis.

4.3.1 Interpolation in native spaces
Definition 4.7 (Interpolation with strictly positive definite kernel functions [Wen04, p. 64,82]).
Let a strictly positive definite kernel function k with its associated native space Nk(Γ) be given.
Furthermore, we have a function f : Γ→ R, from that native space, that is evaluated at a finite
set X of distinct collocation points such that

X := {y1, . . . ,yN} ⊂ Γ , fj := f(yj) ∀j = 1, . . . , NΓ .

Then, the interpolant sf,X ∈ Nk(Γ) is defined as

sf,X(y) :=
N∑
j=1

αjk(y,yj) ∀y ∈ Γ , (4.3)

with the interpolation condition to describe f exactly at the collocation points

sf,X(yj) = fj , 1 ≤ j ≤ N . (4.4)

Finding coefficients {αj}Nj=1 , αj ∈ R such that the interpolation condition (4.4) is fulfilled, is
the interpolation problem.
From a computational point of view, we can rewrite the interpolation condition such that

we have to solve a system of linear equations with

Ak,Xα = f , (4.5)

α := (α1 . . . αN )> , f := (f1 . . . fN )>
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and the Gram-type interpolation matrix

Ak,X :=

k(y1,y1) . . . k(y1,yN )
... . . . ...

k(yN ,y1) . . . k(yN ,yN )

 . (4.6)

Obviously, symmetric and radial kernel functions lead to symmetric matrices Ak,X and positive
definite kernels result in positive definite interpolation matrices.

Regularization
Depending on the applied kernels and the choice and quantity of collocation points, the inter-
polation matrix Ak,X may become very ill-conditioned. This might introduce large errors in the
interpolation even if direct linear solvers are used to solve the system. One approach to over-
come this issue is the introduction of a regularization. A standard technique in support vector
machine learning is the Tikhonov regularization [TA77], which is based on a minimization prob-
lem with regularization term and would require to solve a modified version of equation (4.5),

(Ak,X>Ak,X + εreg IN )α = Ak,X
>f ,

with I the identity matrix. However, since we here only discuss kernel functions with symmetric
positive definite interpolation matrices, the simplified Lavrentiev regularization [Lav67] can be
applied, which omits to square the interpolation matrix. It is enough to solve

(Ak,X + εreg IN )α = f , (4.7)

thus one adds a small constant value to the diagonal of the interpolation matrix. The resulting
equation (4.7) is no longer an interpolation problem, but a regression problem. To shorten the
discussion in [RZ09], this regularization reduces the condition number, but introduces a new
error in the order of the regularization parameter εreg.

Evaluation
The evaluation of the interpolant sf,X with

sf,X : y 7→
N∑
i=1

αik(y,yi)

at a set of points X ′ = {y′1, . . . ,y′N ′} can be translated to the linear algebra operation of
applying the matrix vector product

s = Ak,X′,X α

with s = (sf,X (y′1) . . . sf,X (y′N ′))
> and

Ak,X′,X :=

 k (y′1,y1) . . . k (y′1,yN )
... . . . ...

k (y′N ′ ,y1) . . . k (y′N ′ ,yN )

 ∈ RN
′×N .
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Lagrange basis

In Section 4.1 we discussed Lagrange basis functions

{Li}NΓ
i=1 , Li : Γ→ R, with Li(yj) =

{
1 i = j
0 i 6= j

(4.8)

and proposed to use radial kernels k to construct these functions. In fact, we want the Lagrange
basis functions to belong to the native space of some kernel k, thus

Li ∈ Nk(Γ) .

Therefore, the Lagrange basis functions can be expressed by

Li(y) =
NΓ∑
j=1

αijk(y,yj) ∀i = 1 . . . NΓ . (4.9)

To compute these, or especially the coefficients αij , we can proceed as before and solve an
interpolation problem with the interpolation condition

Li(yj) = δij ∀i, j = 1, . . . , NΓ ,

leading to the set of linear systems

Ak,XΓAL = INΓ (4.10)

with AL the matrix of coefficients AL :=
(
αij

)NΓ

j,i=1
and INΓ ∈ RNΓ×NΓ the identity matrix. From

(4.10), we learn that the coefficients αij can in fact be derived by inverting the interpolation
matrix Ak,XΓ .

4.3.2 Important kernel functions with error estimates
Next, we will discuss a series of kernel functions which will become important throughout this
thesis. To understand their approximation properties, estimates for interpolation errors

ef,X := ‖f − sf,X‖ (4.11)

in some appropriate norm are cited from the literature. But before we start, we have to intro-
duce a bit more terminology. The fill distance hX,Γ generalizes the typical mesh width h from
mesh based methods to general point sets. It is given in

Definition 4.8 (Fill distance [Wen04, p. 25]). For a set of points X = {y1, . . . ,yN} in a
bounded domain Γ ⊆ Rd the fill distance is defined to be

hX,Γ = sup
y∈Γ

min
1≤j≤N

‖y − yj‖2 .

Error estimates will usually be given for functions which are elements of the native space



58 4 RBF kernel-based stochastic collocation

of the kernel. The function’s native space norm is one ingredient for the upper bound of
the estimates. Even though we implicitly introduced the norm of the native space already in
Section 4.2 we will use the following definition to sum up the details:

Definition 4.9 (Norm of native space Nk(Γ)). Let the native space Nk(Γ) with kernel func-
tion k be given. Suppose we have for a function f ∈ Nk(Γ) the representation f(y) =∑Nf
j=1 αjk(y,yj). The native space norm of that function is then defined as

‖f‖Nk(Γ) :=
√

(f, f)Nk(Γ) :=

Nf∑
j=1

Nf∑
j′=1

αjαj′k(yj ,yj′)

1/2

.

Gaussian kernel

Definition 4.10 (Gaussian kernel [Wen04, Theorem 11.22, Section 11.4]). The Gaussian kernel
kε : Γ× Γ→ R is given by

kε(y,y′) := ϕε(‖y − y′‖) := e−ε
2‖y−y′‖2

with ε ∈ R+ a scaling parameter.

By construction, this kernel has no compact support. Note that kernel-based interpolation
with Gaussian kernels has a close relationship to kriging [Mat63] and Gaussian process regres-
sion [RW05]. Using [Wen04, Theorem 11.22, p. 190f] and the fact that Gaussian kernels are
positive definite, we get

Theorem 4.4 (Error estimate for Gaussian kernels). Let Γ be a cube in Rd. For the Gaussian
kernel kε(y,y′) := ϕε(‖y − y′‖) exists a constant c > 0 such that the error between a function
f ∈ Nkε(Γ) and its interpolant sf,X can be bounded by

‖f − sf,X‖L∞(Γ) ≤ ec log(hX,Γ)/hX,Γ‖f‖Nkε (Γ) ,

for hX,Γ sufficiently small.

In other words, Gaussian kernels achieve even a bit better than point-wise exponential con-
vergence if the function f stems from the kernel’s associated native space.

Wendland kernels

Wendland kernels are compactly supported functions with some minimality properties for the
degrees of the polynomials involved in their construction. They have been introduced in
[Wen95]. Also, [Wen04, Chapter 9] has an in-depth introduction. We stick here to a small
selection of Wendland kernels given in

Definition 4.11 (Wendland kernels [Wen04, Theorem 9.13, Corollary 9.14]). Wendland kernels
are given by

kd,k(y,y′) := ϕd,k(‖y − y′‖) ,
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where y,y′ ∈ Γ ⊆ Rd. The kd,k are positive definite and it holds ϕd,k ∈ C2k(R). For k =
0, 1, 2, 3 we have the explicit formulas

ϕd,0(r) = (1− r)bd/2c+1
+ ,

ϕd,1(r) = (1− r)`+1
+ [(`+ 1)r + 1] ,

ϕd,2(r) = (1− r)`+2
+ [(`2 + 4`+ 3)r2 + (3`+ 6)r + 3] ,

ϕd,3(r) = (1− r)`+3
+ [(`3 + 9`2 + 23`+ 15)r3 + (6`2 + 36`+ 45)r2 + (15`+ 45)r + 15] ,

with ` := bd/2c+ k + 1 and the notation

(r)+ =
{
r if r ≥ 0 ,
0 if r < 0 .

Due to their compact support, their interpolation matrix becomes sparse. This has some
advantages in terms of computational complexity. Again, we have an error estimate for inter-
polation of functions in the associated native space.

Theorem 4.5 (Error estimate for Wendland kernels [Wen04, Theorem 11.17]). For
kd,k(x,y) := ϕd,k(‖x − y‖2) with Γ ⊆ Rd bounded and satisfying an interior cone condition
and f ∈ Nkd,k(Γ), there exist constants C, h0 > 0 such that

|Dαf(y)−Dαsf,X(y)| ≤ Chk+1/2−|α|
X,Γ ‖f‖Nkd,k (Γ)

for arbitrary α ∈ Nd0 with |α| ≤ k and all y ∈ Γ, as long as hX,Γ ≤ h0.

Since we did not yet introduce the concept of an interior cone condition, we catch up on this
now by

Definition 4.12 (Interior cone condition [Wen04, Definition 3.6]). A set Γ ⊆ Rd is said to
satisfy an interior cone condition if there exists an angle θ ∈ (0, π/2) and a radius r > 0, such
that for every y ∈ Γ a unit vector ξ(y) exists, such that the cone

C(y, ξ(y), θ, r) :=
{
y + λy′ : y′ ∈ Rd, ‖y′‖2 = 1, y′>ξ(y) ≥ cos θ, λ ∈ [0, r]

}
is contained in Γ.

In the case of Wendland kernels, we also have a clear idea of how their associated native
spaces look like:

Theorem 4.6 ([Wen04, Theorem 10.35]). Let the Wendland kernels be defined as above. In
the case of k = 0, we assume to have d ≥ 3, otherwise there is no restriction. Then, the
corresponding native space is a Sobolev space. More precisely, it is

Nkd,k(Rd) = Hd/2+k+1/2(Rd) .

Consequently, the error estimate for Wendland kernels is a statement for functions f in some
Sobolev space.
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Matérn kernels

Other kernels which will be considered in this thesis are the Matérn kernels. They can be given
as follows:

Definition 4.13 (Matérn kernels [Fas07, Section 4.4]). Matérn kernels are defined as

kβ(y,y′) :=
Kβ− d2

(‖y − y′‖)‖y − y′‖β− d2
2β−1Γ(β) , β >

d

2 ,

where Kν is the modified Bessel function of the second kind of order ν and Γ the gamma
function.

These kernels are strictly positive definite as long as d < 2β. According to [Fas07, Sec-
tion 4.4], we have for special choices of parameter β, simplified representations of the Matérn
kernel function (up to a dimension-dependent scaling constant) as

k d+1
2

(y,y′) := e−‖y−y
′‖ ,

k d+3
2

(y,y′) :=
(
1 + ‖y − y′‖) e−‖y−y′‖ ,

k d+5
2

(y,y′) :=
(
3 + 3‖y − y′‖+ ‖y − y′‖2

)
e−‖y−y

′‖ .

For technical reasons, thus a missing optimized implementation of the modified Bessel function
of second kind on GPUs, the latter Matérn kernel functions will be used throughout this thesis.
As for the other kernel functions, we can have an error estimate in terms of the fill distance

and functions from native space. It reads as

Theorem 4.7 (Error estimate for Matérn kernels [Fas07, Theorem 14.5, Example 15.4]). Let
Γ ⊆ Rd be bounded satisfying an interior cone condition. There exist positive constants h0 and
C (independent of y and f) such that it holds for Matérn kernels kβ that

|Dαf(y)−Dαsf,X(y)| ≤ Chβ−d/2−|α|X,Γ ‖f‖Nkd,k (Γ)

as long as α ∈ Nd0, |α| ≤ β − dd+1
2 e, hX,Γ ≤ h0 and f ∈ Nkβ (Γ).

Here, again we can get some intuition on the native space, if we have a look at

Theorem 4.8 ([Fas07, p. 109]). Let be the Matérn kernels defined as above and β > d/2. With
Γ = Rd, the corresponding native space is a Sobolev space with

Nkβ (Rd) = W β,2(Rd) .

Note again that we always assume here that the interpolated function is in the native space
of the applied kernel basis function. However, this does not necessarily have to be true for the
response function of the model and application random PDE problems in this thesis. Moreover,
in case of the strong solution for the two-phase Navier-Stokes equations, no regularity theory
might exist at all. In some cases, it is possible to derive error estimates for functions which
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do not stem from the corresponding native space, cf. e.g. [Fas07, Section 15.3]. Nonetheless,
in this thesis, errors in the solution fields are usually analyzed by empirical means. The error
estimates given here, are used to get a rough idea of the potential approximation order of a
given kernel function.

4.4 Estimation of stochastic moments

Let us remember from Definition 2.21 two important stochastic moments for the random-
coefficient PDE problem, thus the expectation value

E [u] (x, t) :=
∫

Γ
u(y,x, t)ρ(y)dy

and the covariance, which can be expressed as

Cov [u] (x,x′, t) = E
[
u(·,x, t)u(·,x′, t)]− E [u(·,x, t)] E [u(·,x′, t)] . (4.12)

To estimate the first stochastic moment of the solution of a random PDE by stochastic collo-
cation, we remember equations (2.10) – (2.12) and the definition of the approximate solution
of the random PDE problem by the stochastic collocation method in equation (4.2). We get

E [u] (x, t) =
∫

Γ
u(y,x, t)ρ(y)dy

≈
∫

Γ
(INΓu)(y,x, t)ρ(y)dy

=
NΓ∑
i=1
u(yi,x, t)

∫
Γ
Li(y)ρ(y)dy

=
NΓ∑
i=1
u(yi,x, t)

NΓ∑
j=1

αij

∫
Γ
k(y,yj)ρ(y)dy

=
NΓ∑
i=1
u(yi,x, t)

NΓ∑
j=1

αijE
[
k(·,yj)

]
(yj) .

Here, we use linearity of the expectation value operator. The above formulation can be simpli-
fied, if we combine the second sum in the last equation into vector g ∈ RNΓ with

g = (g1 . . . gNΓ)> , gi :=
NΓ∑
j=1

αijE
[
k(·,yj)

]
(yj) .

From (4.9), we know that the αij ’s are the entries of matrix AL with Ak,XΓAL = IN , thus we
have

AL = Ak,XΓ
−1 .
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Algorithm 1 Estimation of first moment

Require: positive definite kernel k
1: function Expectation(x, t)
2: construct XΓ :=

{
y1, . . . ,yNΓ

}
3: for i = 1, 2, . . . , NΓ do
4: evaluate PDE for yi → u(yi,x, t)
5: estimate e = (ej)NΓ

j=1: ej = E
[
k(·,yj)

]
(yj)

6: solve Ak,XΓg = e, g = (gi)NΓ
i=1

7: return ∑NΓ
i=1 u(yi,x, t)gi

By introducing the vector of expectation values of the basis functions k(·,yj)

e = (e1 . . . eNΓ)> , ej := E
[
k(·,yj)

]
(yj) ,

we get g = Ak,XΓ
−1e and can approximate g by numerically solving the linear system

Ak,XΓg = e .

Therefore, the first stochastic moment is thereafter given by

E [u] (x, t) ≈
NΓ∑
i=1
u(yi,x, t)gi . (4.13)

Algorithm 1 sums up the necessary steps to estimate the first moment of a random-coefficient
PDE problem.
Analogously, we can construct the estimate for the covariance. Since we already know,

how to evaluate the expectation value, we only need to approximate the correlation, which is
E [u(·,x, t)u(·,x′, t)] (x,x′, t). By linearity, we get

E
[
u(·,x, t)u(·,x′, t)](x,x′, t) =

∫
Γ
u(y,x, t)u(y,x′, t)ρ(y)dy

≈
NΓ∑
i=1

NΓ∑
i′=1

u(yi,x, t)u(yi′ ,x′, t)
∫

Γ
Li(y)Li′(y)ρ(y)dy

≈
NΓ∑
i=1

NΓ∑
i′=1

u(yi,x, t)u(yi′ ,x′, t)
NΓ∑
j=1

NΓ∑
j′=1

αijα
i′
j′

∫
Γ
k(y,yj)k(y,yj′)ρ(y)dy

≈
NΓ∑
i=1

NΓ∑
i′=1

u(yi,x, t)u(yi′ ,x′, t)
NΓ∑
j=1

NΓ∑
j′=1

αijα
i′
j′E

[
k(·,yj)k(·,yj′)

]
(yj ,yj′) .

To write this result in terms of linear algebra operations, we introduce matrix E ∈ RNΓ×NΓ

with
E =

(
ejj′

)NΓ
j,j′=1 , ejj′ := E

[
k(·,yj)k(·,yj′)

]
(yj ,yj′) .
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Algorithm 2 Estimation of second moment

Require: positive definite kernel k
1: function Covariance(x,x′, t)
2: construct XΓ :=

{
y1, . . . ,yNΓ

}
3: for i = 1, 2, . . . , NΓ do
4: evaluate PDE for yi → u(yi,x, t)
5: estimate E =

(
ejj′

)NΓ
j,j′=1 : ejj′ := E

[
k(·,yj)k(·,yj′)

]
(yj ,yj′)

6: compute G = (Ak,XΓ)−>E (Ak,XΓ)−1 , G = (gii′)NΓ
i,i′=1

7: return
(∑NΓ

i=1
∑NΓ
i′=1 u(yi,x, t)u(yi′ ,x′, t) gii′

)
−
(

Expectation(x, t) ·Expectation(x′, t)
)

Matrix G ∈ RNΓ×NΓ encodes the last double sum

G = (gii′)NΓ
i,i′=1 , gii′ :=

NΓ∑
j=1

NΓ∑
j′=1

αijα
i′
j′E

[
k(·,yj)k(·,yj′)

]
(yj ,yj′)

and can be obviously calculated by the matrix triple product

G = (Ak,XΓ)−>E (Ak,XΓ)−1 .

Therefore, we have a short-hand notation for the approximation of the correlation of the random
PDE solution field, which is given as

E
[
u(·,x, t)u(·,x′, t)] (x,x′, t) ≈

NΓ∑
i=1

NΓ∑
i′=1

u(yi,x, t)u(yi′ ,x′, t) gii′ .

It gives rise to Algorithm 2 which outlines the important estimation steps for the full covariance
function. Note, that the evaluation of the covariance function according to (4.12) might result
in cancellation, in some cases. Other stochastic quantities like the second moment or the vari-
ance of a random PDE solution can be derived from the given approximations.

4.5 Auxiliary numerical methods
This section reviews the approximation of expectation values E [k(·,y)] and E [k(·,y)k(·,y′)],
sampling of the stochastic space and linear solvers for the interpolation problem.

4.5.1 Numerical quadrature
We start by investigating methods to approximate integrals of the form

E
[
k(·,yj)

]
(yj) =

∫
Γ
k(y,yj)ρ(y)dy ,

E
[
k(·,yj)k(·,yj′)

]
(yj ,yj′) =

∫
Γ
k(y,yj)k(y,yj′)ρ(y)dy .
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Since the discussion of random PDE problems is limited to cases with a finite noise assumption
with uniformly distributed random variables, we assume to have

Γ = Γ1 × . . .× Γd ⊆ Rd, Γi := [ai, bi] .

Otherwise, quadrature on the (unbounded) full spaces could be necessary. In the following, we
closely follow [GG98] to describe the general setting of numerical quadrature to approximate
the above integrals. Let us have the general quadrature problem

Idf :=
∫

Γ
f(y)dy .

Furthermore the function f (restricted to Γ) shall be given in some function space

F := {f | f : Γ→ R} .

In numerical quadrature, we are looking for quadrature formulas

Ql,df :=
N l,d
Q∑
i=1

wlif(qli) ,

with wli ∈ R quadrature weights, qli ∈ Γ abscissas or quadrature points, l ∈ N the quadrature
(resolution) level and N l,d

Q the number of abscissas for a given quadrature level and dimension
d. All quadrature points of a given level and dimensionality are collected in a set X l,d

Q with

X l,d
Q :=

{
qli : 1 ≤ i ≤ N l,d

Q

}
⊂ Γ .

We furthermore call abscissas on two subsequent levels nested if

X l,d
Q ⊂ X

l+1,d
Q .

The quadrature error el,dQ is obviously

el,dQ := |Idf −Ql,df | .

(Quasi-)Monte Carlo quadrature

Monte Carlo (MC) and quasi-Monte Carlo (QMC) quadrature methods are a robust way to
approximate (higher-dimensional) integrals. In the following [Caf98] and [DKS13] give rise to
a short overview of this class of methods.
The basic methodology of (Q)MC quadrature is to use identical quadrature weights

wli := Vol(Γ)
N l,d
QMC

= Vol(Γ)
N l,d
QQMC

,

where Vol(Γ) is the volume of the quadrature domain. In the setting described here, this is
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Vol(Γ) := ∏
i=1(bi − ai). The number of abscissas is given by N l

QMC
or N l

QQMC
, with

N l,d
QMC

= N l,d
QQMC

= 2l .

Note that the number of quadrature points is not coupled to the dimensionality of the stochastic
space Γ, here.

Monte Carlo In the pure Monte Carlo case, one uses N l,d
QMC

abscissas, which are i.i.d. (inde-
pendent and identically distributed) uniform random samples from Γ. By this construction,
the corresponding quadrature rule Ql,dMC is an empirical approximation to the expectation value
E [f ] :=

∫
Γ f(y)ρ(y)dy, where y is uniformly distributed over Γ. Due to the Strong Law of

Large Numbers [Gri02, Section 2.13], we have a probabilistic convergence statement of the form

lim
N l,d
QMC

→∞
Ql,dMCf = Idf, E

[
Ql,dMCf

]
= Idf .

For Γ = [0, 1]d, we have [Caf98, Theorem 2.1], which states for large numbers of abscissas that

el,dQMC
≈ σ

(
N l,d
QMC

)− 1
2 ν = O

(
(N l,d

QMC
)−

1
2
)

= O
(
2−

1
2 l
)
,

with σ = (Var [f ]) 1
2 and ν ∼ N (0, 1) thus a standard normal random variable. The big

advantage of pure Monte Carlo quadrature is its independence of the dimensionality of Γ due
to el,dQMC

= O
(
(N l,d

QMC
)− 1

2
)
. The downside of this method is its slow convergence rate of 1

2 which
requires to have huge numbers of abscissas to get a high probability of a low approximation
error.

Quasi-Monte Carlo Many techniques have been proposed to overcome this difficulty, see
e.g. [Caf98] for an overview. We here discuss the quasi-Monte Carlo approach because of its
ease of use and its good convergence properties. To do this, we first have to introduce the
concept of discrepancy. We give here the definition for Γ = [0, 1]d. Let for a set of points
Q := {q1, . . . , qN} be

RN (J) = 1
N

#{qi ∈ J} −Vol(J)

the error in the Monte Carlo approximation to the volume of J ⊆ [0, 1]d with Q. Following
[Caf98], we can now define discrepancy D∗N (Q) as

D∗N (Q) := sup
J∈E∗

|RN (J)| , (4.14)

where E∗ is the set of all rectangular subsets in [0, 1]d with one of the corners at the origin of
the domain at (0, . . . , 0)>. Discrepancy gives a measure for the uniformness of a point set.
The Koksma-Hlawka theorem [Caf98, Theorem 5.1] states that

el,dQMC
≤ V [f ]D∗N (Q) .
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V [f ] is the variation in the Hardy-Krause sense, cf. [Caf98], which is a constant depending on
f . The error el,dQMC

is here understood to be the Monte Carlo quadrature error with respect
to the point set Q. The rather obvious consequence of this inequality is that we are looking
for sequences of quadrature points with small discrepancy to minimize the error in Monte
Carlo-like quadrature formulas.
Quasi-random sequences XQQMC

:= {qi}Ni=1 are designed to have a small discrepancy. They
are constructed by deterministic algorithms. In [Caf98], these sequences have the requirement
of

DN (XQQMC
) ≤ c(log(N))kN−1 ,

with DN as in equation (4.14) but with the suprenum over all rectangular subsets of [0, 1]d.
The constants c and k do not depend on N but might depend on the dimension. Some existing
quasi-random sequences have k = d. We furthermore call a sequence uniformly distributed, if
limN→∞DN (XQQMC

) = 0. Eventually, quasi-Monte Carlo quadrature rules are Monte Carlo-
type quadrature rules with quasi-random sequences as abscissas.
Let us close this paragraph by giving two examples of quasi-random sequences leading to

corresponding quasi-Monte Carlo quadrature rules. The first one is the multi-dimensional
Halton sequence. The ith element of a d-dimensional Halton sequence in [0, 1]d is given as

qli = (ϕR1(i), ϕR2(i), . . . , ϕRd(i)),

ϕR(i) =
M∑
j=0

ijR
−j−1, with i ≡

M∑
j=0

ijR
j , M = [logRi]

with the quadrature point set X l,d
QQMCH

= {qli}i for a Halton-based QMC quadrature rule.
The idea is thus to represent the integer i dimension-wise with respect to different radices.
Furthermore, the digits ij are used as coefficient in a new basis representation. From [Caf98],
we know the discrepancy of the Halton sequence to be

DN (XQQMCH
) ≤ cd(logN)dN−1

with cd depending on d. By a modified version of the Koskma-Hlawka inequality, we have with
N := N l,d

QQMCH
= 2l,

el,dQQMCH
≤ c′dV [f ](logN)d (N)−1 = O

(
c′d(logN)d (N)−1

)
= O

(
c′d(l)d2−l

)
.

Consequently a quasi-Monte Carlo quadrature rule with the Halton series has almost first order
convergence in the number of quadrature points.
The second quasi-random sequence that shall be discussed due to its popularity in quasi-

Monte Carlo quadrature is the Sobol’ sequence introduced in [Sob67]. According to [MC94], it
is based on the idea to represent integers in a 2-adic expansion. Furthermore, following works of
Niederreiter [Nie87, Nie92], it is also an example of so-called (s, t)-nets. Morokoff and Caflisch
[MC94] state that the error behavior of the Sobol’ sequence applied to quadrature is equivalent
to the one of the Halton sequence with a much smaller constant. For further discussion on the
Sobol’ sequence, the interested reader should have a look at the original publication [Sob67].
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Figure 4.1: Sampling of 128 points in two dimensions by the Halton (left) and the Sobol’ (right)
sequence.

Figure 4.1 compares the point sampling in two dimensions for the Halton and the Sobol’
sequence.

Univariate quadrature

As we could see, most (quasi-)Monte Carlo quadrature rules are straight-forward to apply to
multivariate functions. Another classical approach for higher-dimensional problems is to use
univariate quadrature rules as starting point to set up multi-dimensional cubature. Therefore,
we now first have a look at some standard univariate quadrature methods which are then
generalized to higher dimensions.

Newton-Cotes rules Newton-Cotes quadrature rules approximate integrals by polynomial in-
terpolation on an equidistant set of points and analytic integration of the polynomials. We here
follow [Sto04, Chapter 3] and [GG98] with an adapted notation. While the original Newton-
Cotes formulas perform quadrature on as many abscissas as the underlying polynomial requires
to be uniquely determined, it is usual to apply so-called composite rules. These are quadrature
rules which use the Newton-Cotes formulas on subintervals of the full integration interval and
combine these results to a single solution. Consequently, one ends up with composite rules
with

N l,1
QNC

= 2l−1 + 1, l ≥ 2

quadratures points whose positions are given as

X l,d
QNC

:= {qli}
N l,1
QNC

i=1 , with qli = a1 + (i− 1) · h, h = b1 − a1

N l,1
QNC

− 1
.

Being based on linear interpolation, the composite trapezoidal rule QNC1 has coefficients
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wli :=
{

h
2 i = 1, N l,1

QNC
h otherwise

and for f ∈ C2([a1, b1]) there is a ξ ∈ (a1, b1) such that

el,1QNC1
= h2(b1 − a1)

12 f (2)(ξ) = O(h2) = O(2−2l) .

Using polynomial interpolation of degree two, we e.g. have the composite Simpsons rule QNC2

with coefficients

wli :=


h
3 i = 1, N l,1

QNC2
3h i odd
4
3h i even

,

keeping in mind that index i starts from 1 instead of 0 in difference to standard literature. We
can find for a given function f ∈ C4([a1, b1]) a ξ ∈ (a1, b1) with

el,1QNC2
= (b1 − a1)

180 h4f (2)(ξ) = O(h4) = O(2−4l) .

Clenshaw-Curtis quadrature The Clenshaw-Curtis quadrature goes back to [CC60]. We here
adapt the summary in [GG98]. Note that the usual formulation of this rule approximates
integration on the interval [−1, 1]. Thus a suitable implementation first performs a substitution
of the form ∫ b1

a1
f

(
2 t− a1
b1 − a1

− 1
) 2
b1 − a1

dt =
∫ 1

−1
f(y)dy

and then applies the usual Clenshaw-Curtis quadrature rule definitions for [−1, 1] which are as
follows: The number of abscissas for a given level is given as

N l,1
QCC

= 2l−1 + 1, l ≥ 2 ,

with the actual abscissas qli at non-equidistant points

X l,d
QCC

:= {qli}
N l,1
QCC

i=1 , with qli = − cos π(i− 1)
N l,1
QCC
− 1

and weight coefficients wli

wli :=


1

N l,1
QCC

(N l,1
QCC

−2)
i = 1, N l,1

QCC

2
N l,1
QCC

−1

(
1 +∑′(N l,1

QCC
−1)/2

j=1
1

1−4j2 · cos 2π(i−1)j
N l,1
QCC

−1

)
otherwise

,

with∑′ smaxs=1 as := 1
2asmax+∑smax−1

s=1 as, as usual in the literature. For functions f ∈ Cr([−1, 1])
we have with l→∞ an error bound

el,1QCC = O(2−lr) .
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Figure 4.2: The abscissas of the full tensor product quadrature in two dimensions for the uni-
variate composite Newton-Cotes formulas (left) and the Clenshaw-Curtis quadra-
ture rule (right) on level 6.

Full tensor product quadrature

As long as we can describe the integration domain as product of univariate intervals, we can
rather easily set up higher-dimensional quadrature rules by using tensor products of the already
described univariate quadrature methods Ql,1. Let us take here, again, the notation of [GG98].
With the definitions from above, we can introduce a d-dimensional full tensor product quadra-

ture rule Ql,dF as

Ql,dF f :=
(
Ql,1 ⊗ · · · ⊗Ql,1

)
f :=

N l,1
Q∑

i1=1
. . .

N l,1
Q∑

id=1
wli1 · · ·wlidf(qli1 , . . . , qlid) .

Obviously, this quadrature rule needs to have

N l,d
QF

=
(
N l,1
Q

)d
= (2l−1 + 1)d = O(2ld)

abscissas and function evaluations, which becomes rather prohibitive in runtime for higher
quadrature levels in high dimensions. The quadrature points are

X l,d
QF

:= {qli}
N l,d
QF

i=1 =
d∏
j=1

X l,1
Q .

Figure 4.2 shows abscissas of tensorized versions of the Newton-Cotes formulas and the
Clenshaw-Curtis quadrature in two dimensions. Following [DKS13, Section 2.1], we have the
error estimates for e.g. the tensorized Simpsons rule as

el,dQF = O
(
2
−4l
d

)
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and for the Clenshaw-Curtis quadrature as

el,dQF = O
(
2
−lr
d

)
,

for l → ∞. In both cases the smoothness requirements are equivalent to those of the applied
univariate quadrature rules, thus f ∈ C4(Γ) and f ∈ Cr(Γ).

Smolyak sparse grid quadrature

We had the requirement of f ∈ Cp(Γ), for the full tensor product quadrature rule, with
p ∈ {4, r} depending on the specific method. This smoothness requirement has to be sharp-
ened to introduce a multivariate quadrature rule by Smolyak [Smo63], which is also based on
univariate quadrature rules. The advantage are quadrature methods with small errors at a lot
less abscissas, even in high dimensions.
We again closely follow Griebel and Gerstner [GG98]. Note that the basic approach of

Smolyak presented here, has been generalized and extended by Bungartz, Griebel and collab-
orators, cf. e.g. [GG98, BG04]. They use the notion of sparse grids to describe their construc-
tions. Even though, it might not be correct in all cases, Smolyak construction and sparse grids
are used here equivalently, to ease formulation.
Multi-indices s ∈ Nd with s := (s1, . . . , sd)> generalize the concept of a vector to indices

and help to shorten the notation in many tensor product constructions. By using these with
the obvious definition of |s|1 := ∑d

i=1 si, we can introduce the function spaces involved in the
Smolyak quadrature by

Wp
d :=

{
f : Γ→ R

∣∣∣∣∣
∥∥∥∥∥ ∂|s|1f

∂ys11 . . . ∂ysdd

∥∥∥∥∥
∞
<∞, si ≤ p

}
,

thus we require f to have bounded mixed derivatives. Starting from a univariate quadrature
rule, we can first introduce difference quadrature rules

∆l,1f :=
(
Ql,1 −Ql−1,1

)
f := Ql,1f −Ql−1,1f ,

Q0,1f := 0, Q1,1 = (b− a)f
(
b− a

2

)
,

which describe the difference in quadrature on two subsequent levels of points. In the case
of nested quadrature rules Ql,1, the difference quadrature formula ∆l,1f is a weighted sum
over function evaluations at abscissas X l,1

Q , otherwise it uses the union of both subsequent
quadrature point levels X l−1,d

Q ∪ X l,1
Q . As one can see, the previously introduced full tensor

product quadrature formula Ql,dF would read in this notation as

Ql,dF f :=
∑
|k|∞≤l

(
∆k1,1 ⊗ · · · ⊗∆kd,1

)
f ,

where summation over a multi-index k ∈ Nd equals to d nested sums over the element-wise
indices of the multi-index and obviously |k|∞ := maxi{ki}.
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Figure 4.3: The abscissas of the Smolyak sparse grid quadrature in two dimensions for the uni-
variate composite Newton-Cotes formulas (left) and the Clenshaw-Curtis quadra-
ture rule (right) on level 6.

Smolyak introduced in [Smo63] the multi-variate quadrature rule

Ql,dS f :=
∑

|k|1≤l+d−1

(
∆k1,1 ⊗ · · · ⊗∆kd,1

)
f ,

for f ∈ Wp
d , k ∈ Nd and the level of quadrature l ∈ N. In Figure 4.3 the abscissas of

the Smolyak sparse grid quadrature rule are displayed in two dimensions for the univariate
composite Newton-Cotes and Clenshaw-Curtis quadrature rules. Furthermore, we have the
quadrature rule Ql,dC which only involves sums of full tensor product quadrature rules with
different levels of quadrature in each dimension.

Ql,dC f :=
∑

l≤|k|1≤l+d−1
(−1)l+d−|k|1−1

(
d− 1
|k|1 − l

)(
Qk1,1 ⊗ · · · ⊗Qkd,1

)
f . (4.15)

According to [GG98], this rule is equal to the Smolyak sparse grid quadrature. Since it combines
standard tensor product full grid quadrature rules to a sparse grid rule, it is often also called
sparse grid combination technique, cf. [GSZ92].

In the case of nested abscissas on subsequent quadrature levels and N l,1
Q = 2l−1 + 1, we can

take [BG04, Lemma 3.6] to see that the number of abscissas for the sparse grid quadrature is
approximately

N l,d
QS

= O(2lld−1) ,

for l→∞, which is a lot less than the amount of quadrature points involved in the full tensor
product quadrature. From [GG98], we also know that the asymptotic number of abscissas is
even for the non-nested case O(2lld−1) but it has a much higher constant. Based on the above
construction, the set of abscissas is always



72 4 RBF kernel-based stochastic collocation

X l,d
QS

=
⋃

l≤|k|1≤l+d−1

(
d∏
i=1

Xki,1
Q

)
.

Finally, [GG98] give an estimate for the Smolyak quadrature based on univariate Clenshaw-
Curtis quadrature rules. With N l,1

QCC
and f ∈ Wr

d , we have for l→∞,

el,dQS = O
(
2−lrl(d−1)(r+1)

)
.

Exact quadrature

Remember the objective to use quadrature methods to approximate integrals e.g. of the form∫
Γ k(y,yj)ρ(y)dy. We can sometimes evaluate these integrals analytically, at least for rather
simple cases of kernels and densities. Let us exemplify this for the case of a Gaussian kernel

kε(y,y′) := e−ε‖y−y
′‖22

and the density ρ a product of uniform densities

ρ(y) := ρ1(y1) · . . . · ρd(yd), ρi(yi) :=
{

1
bi−ai yi ∈ [ai, bi]

0 otherwise .

Then, we can use the error function

erf(y) = 2√
π

∫ t

0
e−t

2
dt

to express the analytic solutions of the targeted integrals with the notation yj :=
(
y1
j . . . y

d
j

)>
as ∫

Γ
kε(y,yj)ρ(y)dy =

d∏
i=1

π1/2(erf(ε1/2(bi − yij))− erf(ε1/2(ai − yij)))
2ε1/2(bi − ai)

,

∫
Γ
k(y,yj)k(y,yj′)ρ(y)dy =

d∏
i=1

π
1
2 e
− 1

2 ε
(
yij−yij′

)2

2
√

2 ε 1
2 (bi − ai)

(
erf
(
(ε/2)

1
2
(
2b1 − yij − yij′

))
− erf

(
(ε/2)

1
2
(
2a1 − yij − yij′

)))
.

Even though there is no closed solution of the error function, standard mathematical libraries
usually implement it with almost full machine precision by some internal approximation. It is
therefore rather easy to evaluate the above integrals with almost full machine precision.
The (almost) exact evaluation of the questioned integrals will sometimes allow to have faster

and more accurate approximations to stochastic moments. However, the general idea is to
stick to numerical quadrature in most of the cases, to be able to use arbitrary kernel functions,
which might not have a solution as simple to evaluate as seen above.
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sampling common name quad. pts. collocation points #points

X l,1
Γ,U uniform X l,1

QNC
yli = a1 + (i− 1) · b1−a1

N l,1
Γ,U−1

2l−1 + 1

X l,1
Γ,CC Clenshaw-Curtis X l,1

QCC
yli = − cos π(i−1)

N l,1
Γ,CC−1

2l−1 + 1

X l,d
Γ,MC Monte Carlo X l,d

QMC
yli ∈ Γ i.i.d. unif. rand. samples 2l

X l,d
Γ,QMCH Halton sequence X l,d

QQMCH
yli ∈ X l,d

Γ,QMCH , see Section 4.5.1 2l

X l,d
Γ,QMCS Sobol sequence X l,d

QQMCS
yli ∈ X l,d

Γ,QMCS , see Section 4.5.1 2l

X l,d
Γ,F full tensor prod. X l,d

QF
yli ∈

∏d
j=1X

l,1
Γ (2l−1 + 1)d

X l,d
Γ,S sparse grids X l,d

QS

⋃
l≤|k|1≤l+d−1

(∏d
i=1X

ki,1
Γ

)
O(2lld−1)

Table 4.1: Summary of the most important sampling methods with their equivalent abscissas
from quadrature and the number of points necessary to sample a given level l.

4.5.2 Stochastic space sampling

Let us now comment on methods to sample the stochastic space Γ, thus to find a finite subset
XΓ ⊂ Γ of collocation points with XΓ :=

{
y1, . . . ,yNΓ

}
. All samplings of interest were already

described as a byproduct of quadrature, sometimes with a slightly different terminology. Con-
sequently, only a tabular overview is given. Note that using the construction from Chapter 4,
the choice of collocation points is independent of the evaluation of integrals necessary for the
stochastic moment estimates. Therefore, using e.g. a quasi-Monte Carlo approach to sample
the stochastic space still allows to use sophisticated methods like sparse grid quadrature with
a Clenshaw-Curtis rule for quadrature of the basis functions’ moments. Table 4.1 summarizes
possible choices of collocation point sampling. In practice, the Halton sequence will be used in
all isotropic approximations.

4.5.3 Linear solvers

One important part of the algorithms to approximate the stochastic moments of a random-
coefficient PDE problem, is the solution of the interpolation problem, given as linear system

Ak,XΓg = e

for the first moment and the evaluation of

G = (Ak,XΓ)−>E (Ak,XΓ)−1

for the correlation, where Ak,XΓ ∈ RNΓ,NΓ is the kernel interpolation matrix. By construction,
we know that compactly supported radial basis function kernels like the Wendland kernel lead
to a sparse interpolation matrix while others like the Gaussian kernel or the Matérn kernel
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have a dense interpolation matrix Ak,XΓ . The two obvious choices to solve linear systems (or
equivalently to invert the matrix Ak,XΓ by solving Ak,ΓX = I with X = (Ak,XΓ)−1) are direct
linear solvers or iterative linear solvers. To avoid reproducing too much of the classic literature
on linear solvers (e.g. [TB97, Saa03]), the idea in the following is to briefly mention the most
important solver candidates with special focus on their advantages for the specific application.
In case of dense matrices, QR or LU decompositions are the usual choice, cf. [TB97]. The

number of operations involved to solve a dense linear system by these methods is in the order of
O(NΓ

3). In that sense, these approaches are independent of the potentially bad conditioning of
interpolation matrices. However, bad conditioning leads to big errors in the results, cf. [TB97].
Nevertheless, direct linear solvers are intensively applied to solve kernel interpolation problems
for dense matrices.
On the other hand, iterative methods are most of the time used to solve interpolation prob-

lems with matrices stemming back from compactly supported kernels. These matrices tend
to have O(NΓ) non-zero entries and allow for a O(NΓ)-operation matrix-vector product. In
case of strictly positive definite kernel functions, the sparse interpolation matrices Ak,XΓ are
also symmetric and positive definite. Thus, standard Krylov methods such as conjugate gra-
dient (CG) or GMRES [Saa03] are typically used. Moreover, iterative solvers tend to be a
good choice for dense interpolation matrices, too. Noting that e.g. an unpreconditioned CG
solver would still require O(NΓ) iterations of complexity O(NΓ

2) in the dense matrix case,
preconditioning, cf. Chapter 7 or [BCM99], might lead to a drastic reduction in the number
of iterations in an iterative Krylov method. Furthermore, fast multipole methods [BN92] or
other fast matrix-vector products might even allow to reduce the necessary dense matrix-vector
product from O(NΓ

2) operations to O(NΓ logNΓ) numerical instructions.
Overall, in this thesis, the objective is to use both approaches. As standard solution tech-

nique, a dense LU or QR decomposition is primarily used. This allows to have a universal
solution method, which is necessary in those cases, when a number of different reproducing
kernels (both compactly supported and global) are tested for their numerical convergence prop-
erties. In preparation for e.g. Chapter 7, thus for the solution of kernel interpolation problems
with hundreds of thousands or millions of unknowns, also a (parallel) preconditioned conju-
gate gradient method [Saa03] shall be used. Being an iterative method for symmetric positive
definite matrices, it also allows to use preconditioners and custom built matrix-vector product
applications, as it will be necessary later. Another advantage is the ease of parallelizing Krylov
subspace methods even on multiple GPUs.

4.6 Approximation errors

In the last sections, the different numerical methods to evaluate stochastic moments by radial
basis function kernel-based stochastic collocation have been discussed. This is now followed by
a short review of the overall approximation error. Here, we start with a summary of all involved
approximations. Afterwards the error splitting and some remarks on standard estimates are
given.
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4.6.1 Summary of approximations

Let us remember that in RBF kernel-based stochastic collocation, one is looking for solutions
u ∈ L2(Ω; [0, T ];L2(D)) for a general random PDE problem, which reads as: For a given
stochastic space (Ω,F , P ) find a solution u : Ω × D̄ × [0, T ] → Rr such that it holds almost
surely

L(a)u =f [b] in Ω× D̄ × [0, T ] ,

cf. Definition 2.22. Moreover, it is usually of high interest to evaluate stochastic moments of
these solutions, thus e.g. the first stochastic moment

E [u] =
∫

Ω
u dP (ω) .

To approximate E [u], a finite noise assumption was introduced, leading to some finite-
dimensional version of the original random PDE problem with solutions

uKL ∈ L2(Γ; [0, T ];L2(D)) .

Here, it is assumed that the finite noise assumption is fulfilled by replacing the random in-
put parameter fields by a truncated Karhunen-Loève series expansion. In the next step,
the stochastic collocation method introduces an approximation in stochastic space by a fi-
nite number of solution evaluations. The approximate solution by stochastic collocation is
(INΓuKL) ∈ P(Γ)⊗L2([0, T ];L2(D)), or more specifically for the RBF kernel-based stochastic
collocation

(INΓuKL) ∈ Nk(Γ)⊗ L2([0, T ];L2(D)) .

Note that we expect here the Lavrentiev regularization, cf. Section 4.3.1 to be part of the
stochastic collocation approximation. In most cases, evaluating the solution uKL(yi,x, t) an-
alytically is not possible. Therefore, some finite difference or finite element approximation is
necessary, before stochastic collocation can be applied. In this thesis, all approximate PDE
solutions will be derived by finite differences in space and time, cf. e.g. Section 5.1. Solutions
to finite difference approximations will be assumed to be given in some approximation space
VhD,δt([0, T ] × D) ⊂ L2([0, T ];L2(D)). We denote with DhD,δt the projection of a function
uKL ∈ L2(Γ; [0, T ];L2D) to the approximation space L2(Ω)⊗ VhD,δt([0, T ]×D), thus we have

DhD,δtuKL ∈ L2(Γ)⊗ VhD,δt([0, T ]×D) .

Combining the stochastic collocation approximation with the approximate PDE solution by
finite differences leads to a discrete solution

(INΓDhD,δtuKL) ∈ Nk(Γ)⊗ VhD,δt([0, T ]×D) .

Finally, stochastic moments are approximated by quadrature, giving e.g. for the first stochastic
moment the approximation

E [u] ≈ Ql,NKLINΓDhD,δtuKL .
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4.6.2 Error splitting

We would now like to analyze and identify the different error components involved in this
construction. Note that we restrict ourselves to the time-stationary setting and expect u to be
R-valued, thus u : Ω×D → R. Thus we have to approximate stochastic collocation solutions

(INΓDhDuKL) ∈ Nk(Γ)⊗ VhD(D) ,

with DhD the projection operator on the finite difference approximation space VhD . In case of
the first stochastic moment, we have the overall error εE, which is usually given by

εE :=
∥∥∥E [u]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

.

The first step will be to give an upper bound of this error by the sum over the error in the
Karhunen-Loève approximation εKL, the stochastic collocation and discretization error and
quadrature error εQ. We thus have∥∥∥E [u]− Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

(4.16)

≤ ‖E [u]− E [uKL]‖L2(D) +
∥∥∥E [uKL]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

(4.17)

≤ ‖E [u− uKL]‖L2(D) + ‖E [uKL]− E [INΓDhDuKL]‖L2(D) (4.18)

+
∥∥∥E [INΓDhDuKL]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)︸ ︷︷ ︸

=:εQ
= ‖E [u− uKL]‖L2(D) + ‖E [uKL − INΓDhDuKL]‖L2(D) + εQ (4.19)
≤ ‖u− uKL‖L2(Ω;L2(D))︸ ︷︷ ︸

=:εKL

+ ‖uKL − INΓDhDuKL‖L2(Ω;L2(D)) + εQ (4.20)

= εKL + ‖uKL − INΓDhDuKL‖L2(Γ;L2(D)) + εQ . (4.21)

In (4.20), a trivial conclusion of the Hölder inequality is used for the first term. Furthermore,
in the last equation, it was possible to apply by measure change

‖v‖L2(Ω;L2(D)) = ‖v̂‖L2(Γ;L2(D)) ,

where v is a random field for the stochastic space (Ω,F , P ) and v̂ is the same random field
with respect to the stochastic space (Γ,BNKL , ρdy). To be concise, uKL is used instead of ûKL
in (4.20).
A second step involves an estimate for the error in stochastic collocation and discretization,

which is most often discussed in the literature. Here, we can derive

‖uKL − INΓDhDuKL‖L2(Γ;L2(D)) ≤ ‖uKL −DhDuKL‖L2(Γ;L2(D))︸ ︷︷ ︸
=:εhD

+ ‖DhDuKL − INΓDhDuKL‖L2(Γ;L2(D))︸ ︷︷ ︸
=:εNΓ

,
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and get an upper bound by the sum over the finite difference discretization error εhD and the
stochastic collocation error εNΓ .
Overall, we thus end up having the following estimate for the approximation error of the

first stochastic moment:∥∥∥E [u]− Ql,NKLINΓDhDuKL
∥∥∥
L2(D)

≤ εKL + εhD + εNΓ + εQ (4.22)

= ‖u− uKL‖L2(Ω;L2(D)) + ‖uKL −DhDuKL‖L2(Γ;L2(D)) (4.23)
+ ‖DhDuKL − INΓDhDuKL‖L2(Γ;L2(D))

+
∥∥∥E [INΓDhDuKL]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

.

The first error term εKL strongly depends on the chosen random PDE problem and the covari-
ance structure of the input random field a(ω,x). For some random PDE problems, it has been
shown that the eigenmode decay of the input covariance leads to a similar decay in the covari-
ance spectrum of the solution field u(ω,x). In case of an input covariance with exponential
eigenvalue decay, this gives an exponential convergence in the solution uKL after Karhunen-
Loève expansion. Thus, in some cases, εKL can be expected to be exponentially convergent
for a growing number of collocation points NΓ. At the same time the PDE solution error
εhD is often assumed to have an algebraic convergence in the mesh width hD. The stochastic
collocation error εNΓ depends on the chosen kernel function and the smoothness of the solution
(DhDu)(y,x) with respect to its finite-dimensional stochastic dependence, cf. Section 4.3.2.
Exponential convergence is possible if the function (DhDu)(y, ·) is element of the native space
Nkε(Γ) of the Gaussian kernel. Finally, depending on the problem, the quadrature error might
decay exponentially by using e.g. tensorized or sparse grid versions of the Clenshaw-Curtis
quadrature rule.
Some of the above assumptions require a decent amount of analysis of the involved random

PDE problems and discretizations. In some cases, as the two-phase incompressible Navier-
Stokes equations (in strong formulation), this might even require to solve rather important
open problems, especially if the stochastic influence is no longer just in a coefficient but in
initial or boundary conditions or the computational domain. This is why the above error
components will be analyzed by empirical means in Section 6.3.

4.7 Computational complexities

Next, the computational cost of the approximation of first stochastic moments of a random
PDE problem by the RBF stochastic collocation method shall be discussed. Remember that
this approximation consists of the solution of deterministic PDE problems by finite differences,
numerical integration to derive the first moment of the RBF kernel basis functions and solution
of a kernel interpolation problem. Other parts of the mean approximation, such as the sampling
in stochastic space, are neglected due to minor complexity, cf. also Section 4.8.5.

Solution of deterministic PDEs Let us start with the computational costs of the finite differ-
ence approximation Dh of elliptic PDE problems. For a uniform two-dimensional discretization
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grid with ND grid points, we have the relationship

ND ∼
( 1
hD

)2

for the usual mesh width hD. The standard five-point finite difference discretization results
in a sparse linear system with O(ND) non-zero matrix entries. Solving this problem with an
iterative Krylov solver requires at most O(ND) iterations, with the dominating operation the
matrix-vector product. Preconditioning might improve on this, cf. Chapter 8. Nevertheless,
overall, the upper bound to the computational costs to solve the elliptic PDE, as discussed
before, is

CellipticD (ND) = O(ND2) or CellipticD (hD) = O

(( 1
hD

)4
)
.

An analogous discussion is possible for the discretization of the three-dimensional two-phase
Navier-Stokes equations. Their numerical treatment will be outlined in detail in Chapter 5.
However, short statement on the computational complexity can be done here, already. We will
see that a finite difference - based space discretization of the two-phase Navier-Stokes equations
requires

ND ∼
( 1
hD

)3

Furthermore, a discretization in time becomes necessary. For a simulated time T and a time
step size of δt, the number of time steps is

NT ∼
T

δt
.

Noting that the solution of a three-dimensional elliptic problem per time-step, cf. Section 5.1.2,
is the dominant part, the number of operations to solve the deterministic two-phase Navier-
Stokes equations is

CNavierD (ND, NT ) = O(ND2NT ) or CNavierD (hD, δt) = O

(( 1
hD

)6 1
δt

)
.

Quadrature The involved quadrature problem is often approximated by a tensorized Clen-
shaw-Curtis rule. In the univariate case, there is an efficient method ([Gen72]), to compute
Clenshaw-Curtis rules by O(N l,1

Q logN l,1
Q ) operations, with N l,1

Q the number of univariate ab-
scissas, cf. Section 4.5.1. For a stochastic space with NFN or NKL dimensions, sticking to full
tensor-product rules based on univariate Clenshaw-Curtis rules gives a runtime complexity of

CQ
(
N l,1
Q , NKL

)
= O

((
N l,1
Q logN l,1

Q

)NKL) or

CQ (lQ, NKL) = O

((
lQ 2lQ

)NKL)
.

RBF-based kernel interpolation To solve the RBF kernel stochastic collocation problem, a
kernel interpolation with a dense or sparse linear system has to be solved, cf. Section 4.5.3.
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Direct or unpreconditioned iterative solvers for a dense linear system require a cubic number
operations in the number of unknowns. The number of unknowns is equal to the number of
collocation points NΓ. As e.g. motivated in Section 4.3.2, we might also be interested to express
the number of collocation points in terms of the fill distance hXΓ,Γ. Here, the relationship is
very roughly

NΓ ∼
(

1
hXΓ,Γ

)NKL
.

Overall, we have the computational costs for the kernel interpolation given as

CS(NΓ) = O
(
NΓ

3
)

or CS(hXΓ,Γ) = O

( 1
hXΓ,Γ

)3NKL
 .

Approximation of the first stochastic moment The full approximation of a first stochastic
moment of a random PDE problem requires to solve – per collocation point – a quadrature
problem at cost CD and a deterministic PDE problem at complexity CQ. Moreover, the collo-
cation problem or kernel interpolation problem with cost CS has to be solved. Therefore, the
overall computational complexity for this method is in the elliptic random PDE problem case

Celliptic(NΓ, ND, N
l,1
Q , NKL) = NΓC

elliptic
D (ND) +NΓCQ

(
N l,1
Q , NKL

)
+ CS(NΓ) (4.24)

= O

(
NΓND

2 +NΓ
(
N l,1
Q logN l,1

Q

)NKL +NΓ
3
)

or

Celliptic(hXΓ,Γ, hD, lQ, NKL)

= (hXΓ,Γ)−NKL CellipticD (hD) + (hXΓ,Γ)−NKL CQ(lQ, NKL) + CS(hXΓ,Γ)

= O

(
(hXΓ,Γ)−NKL (hD)−4 + (hXΓ,Γ)−NKL

(
lQ 2lQ

)NKL + (hXΓ,Γ)−3NKL
)
.

Approximation of the first stochastic moment of the random two-phase Navier-Stokes equations
has a computational cost of

CNavier(NΓ, ND, NT , N
l,1
Q ,NKL) (4.25)

= NΓC
Navier
D (ND, NT ) +NΓCQ

(
N l,1
Q , NKL

)
+ CS(NΓ)

= O

(
NΓND

2NT +NΓ
(
N l,1
Q logN l,1

Q

)NKL +NΓ
3
)

or

CNavier(hXΓ,Γ, hD, δt, lQ, NKL)

= (hXΓ,Γ)−NKL CNavierD (hD, δt) + (hXΓ,Γ)−NKL CQ(lQ, NKL) + CS(hXΓ,Γ)

= O

(
(hXΓ,Γ)−NKL (hD)−6(δt)−1 + (hXΓ,Γ)−NKL

(
lQ 2lQ

)NKL + (hXΓ,Γ)−3NKL
)
.
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Note that the above formulation of complexity estimates requires knowledge on the specific
choice of all parameters NΓ, ND, NT , N

l,1
Q , NKL. In practice, we would rather want to express

complexities in terms of a given upper error bound to the approximation in the first stochastic
moment. This requires a careful error (coupling) analysis. We will postpone this analysis to
Section 6.3, where it will be given by empirical means.
Equations (4.24) and (4.25) clarify the influence of the three dominant computation parts.

Quadrature can usually be expected to have a minor influence on the overall method, due to
small constants, potential pre-computation of the integrals or even analytic formulas to evaluate
the integrals. However, quadratic and cubic complexities in the number of space discretiza-
tion points and collocation points have a huge impact on performance. These performance
limitations will be solved in Part II of this thesis.

4.8 Multi-GPU parallel implementation

Kernel-based moment estimation including stochastic collocation is implemented by several
numerical libraries. These are a set of templated C++ libraries for GPU parallel point sampling,
quadrature and (multi-)GPU parallel kernel-based interpolation and the C-based multi-GPU
parallel library parla for dense linear algebra routines. To avoid a strenuous review of the
libraries’ structure, the intention is to place a focus on important algorithmic and technical
details which allow for optimal performance on GPUs and best possible scalability in the multi-
GPU case. The discussion is structured by types of numerical methods, ignoring the potential
different ordering of code parts in the actually implemented codes. Before we come to the
implementation details, a short paragraph is dedicated to general remarks on the the way, the
code is implemented for GPUs. Two other paragraphs will cover data structures on single
GPUs and in the multi-GPU case.

4.8.1 General remarks

The implemented codes use CUDA [NVI14b] as C/C++ programming extension for (Nvidia)
GPUs. In the following, the reader is expected to know the basics of memory hierarchies
and the parallel programming model used in CUDA and on GPUs in general. An in-depth
introduction to this topic can be e.g. found in [SK10] with the official manuals in [NVI14b]. If
not otherwise stated, CUDA version 5.0 is used. Another important library which is applied
without further discussion is Thrust 1.5.3 [HB10], a C++ template library which mimics the
vector class of the C++ Standard Template Library together with a large set of algorithms
which are implemented for GPUs. This software is part of CUDA Software Development Kit
[NVI10]. It is expected that this library delivers good performance for the provided algorithms,
thus there is no special need to optimize these code parts. If possible, existing GPU libraries
are used for more complex operations. These are mentioned as necessary. GPU kernels are
only hand-implemented, if there is no library or it is possible to achieve higher performance
by self-implemented codes. Even though the implemented software can often handle single
and double precision operations and data structures, all numerical methods are carried out in
double precision.
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Figure 4.4: Column-major ordering of matrices and vectors in the single-GPU case (left) and

the domain decomposition case (right) for two GPUs. Vector x requires a global
communication before each multi-GPU parallel matrix-vector product.

4.8.2 Data structures on a single GPU
Matrices

Matrices are stored in column-major ordering in GPU and CPU memory with linearized in-
dex to be compatible with the applied dense linear algebra software libraries cuBLAS, which
is the GPU BLAS library delivered with the CUDA Toolkit [NVI10], and CULA [EM 13], a
commercial single-GPU LAPACK [ABB+99] implementation. Therefore, we have for an entry
aij of the matrix A ∈ Rm×n the mapping

aij −→ a[i+j*m] ,

cf. Figure 4.4. CUDA kernels that have to access all elements of a matrix, map one entry to one
thread and 512 threads are usually put together into a thread block. With GPUs of compute
capability less than 3.0 (cf. [NVI14b, Appendix G]), the indexing of thread blocks has also to
be split up in two index dimensions, since the first thread block index is limited to up to 65535
blocks, which does not allow to address the full memory by threads. Consequently, we have
for the evaluation of an element aij the thread index mapping

bs1 = 512, bs2 = bs3 = 1 ,

gs1 = 65535, gs2 = (((m · n+ bs1 − 1)/bs1) + 65534)/65535, gs3 = 1

idx = b2 · 65535 · bs1 + b1 · bs1 + t1 ,

aij → a[idx] ,

where gs is the grid size / number of blocks, b is the block index, bs is the block size and t is
the thread index, with all these quantities being defined in three dimensions. A closer look at
this indexing scheme shows that it results in a rather wasteful use of threads, which however
does not necessarily limit performance. Starting with Kepler GPUs, this limitation is removed,
leading to an indexing scheme of

bs1 = 512, bs2 = bs3 = 1 ,

gs1 = (m · n+ bs1 − 1)/bs1, gs2 = gs3 = 1

idx = b1 · bs1 + t1 .
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Figure 4.5: Multi-dimensional data is stored according to the structs of arrays principle with
a pointer array on CPU/GPU adressing contiguous GPU arrays per dimension.

Multi-dimensional data on GPUs

Collocation and quadrature points or more specifically their coordinates are stored in what
is usually called structs of arrays, cf. the corresponding literature, e.g. [Far11, Chapter 6].
Consequently, the coordinate entries are placed dimension-wise consecutively in memory. This
is the preferred way to store multi-dimensional data to be efficiently evaluated on GPUs. Since
the implemented code shall cover arbitrary finite dimensions in the stochastic space, a fixed
struct cannot be used to group together the elements. Instead a dynamically allocated array
of pointers is used. While it is obvious to store the arrays containing the tuple entries in GPU
memory, the array of pointers to these arrays might be placed in CPU or GPU memory. In
fact, both approaches are sometimes necessary depending on whether the list of points are
accessed from GPU kernels or by CPU-based commands like the memory copy operation of
CUDA cudaMemcpy.
Handling arbitrary-dimensional data causes some problems in the implementation of GPU

kernels which access all dimensions of an entry at once and have to create temporary memory
with that dimensionality. On CPUs, one would easily create dynamically allocated tempo-
rary memory. However, even though this language feature has been introduced with CUDA
3.2 within kernel calls, it is not supported for GPUs with compute capability 1.3, cf. [SK10].
Furthermore, even with the latest CUDA version and hardware, numerical tests with dynamic
memory allocations per GPU thread have shown to deliver very bad performance on the newer
2.0 compute capability GPUs and non-optimal performance even on the latest compute capa-
bility 3.5 (Kepler) GPUs. Therefore, it is prohibitive to use this feature in this case.
Pre-allocating temporary memory for each thread requires to have O(d · t) storage, where d

is the dimensionality and t is the number of threads on the GPU (which is usually as high as
the number of entries of the multi-dimensional array). In many applications, it is impossible
to allocate that additional amount of memory, especially when pushing GPUs to their limits.
A rather straight-forward idea would be to allocate O(d · p) storage, and couple the memory
to each multiprocessor. Here, p is the actual number of streaming processors or effectively
executed parallel threads on a GPU. Then, each processor would take that part of the storage
statically over time. However, this approach is not supported by the parallel programming
model exposed by CUDA.
The only option is thus to use a pre-defined fixed-size (constant memory or register-based)

array. Here, one can use the template C++ approach to introduce the dimension as template
parameter. This does not work for pure C codes and might also heavily impact the time to
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compile. A direct translation to C is to use a preprocessor directive to define a dimension.
Both approaches do not work, if the dimensionality is discovered at run-time, which shall be
done here. Therefore, in all implementations, there is a fixed upper limit of dimensions, which
is set, for now, to 20. Temporary memory with that fixed size is allocated and only the first d
entries are used. Even though this procedure wastes a bit of memory, it comes rather close to
an optimal O(d · p) storage approach.

4.8.3 Multi-GPU data structures

Matrices

Whenever dense matrices shall be distributed over several GPUs, the idea is to apply a decom-
position of the full matrix into blocks of rows as indicated in Figure 4.4, which is a classical
approach. Moreover, this technique allows to have a very simple per-GPU matrix-vector mul-
tiplication. Note that e.g. [Sør12] proposes to additionally decompose the matrix in blocks of
columns. This will be implemented as soon, as it turns out that the pure row decomposition
is a bottleneck for further scaling.

Vectors

Vectors are treated equivalently to matrices, in the multi-GPU case. Therefore, row vectors
are not decomposed, while column vectors are distributed across the GPUs. This requires a
global communication before each matrix-vector product, cf. Figure 4.4.

4.8.4 Kernel matrix setup

The setup of interpolation matrices Ak,X defined by (4.6) is done in a CUDA kernel with the
collocation points as input. Accessing the matrix entries is done as described in Section 4.8.2.
The generalized norm evaluation uses d-dimensional temporary memory which is implemented
as also discussed in Section 4.8.2. For small dimension numbers, the necessary reduction
operation over all dimensions (to compute the norm) is carried out in a sequential way, per
thread. This might become less performant in larger dimensions where a more complex shared
memory parallel reduction per matrix entry would be of interest. Classes for kernel functions,
including Gaussian, Wendland and Matérn kernels, are available and can be easily extended.
All arithmetic operations and special function evaluations are carried out by the CUDA Math
API.

4.8.5 Stochastic space sampling

Monte Carlo collocation points are created using the GPU random number generator library
cuRAND of the CUDA Programming Toolkit. Here, the default pseudo-random number gen-
erator XORWOW [Mar03] is used to generate uniformly distributed values within the interval
[0, 1]. By an appropriate transformation, they are mapped to the necessary stochastic do-
main Γ. There are no published estimates on the theoretical parallel computational complexity
of cuRAND, at least to the authors knowledge.
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Multi-dimensional Sobol’ quasi-Monte Carlo sequences are also generated by the cuRAND
library in a similar way. The Halton sequence is not available in cuRAND 5.0 and also not in
version 5.5. Therefore, it is generated using the GNU Scientific Library (GSL) [Gou09] and
copied to GPU.
Both univariate sequences, thus the uniform sequence and the Clenshaw-Curtis quadrature

point sequence, are easily created by their definitions from Section 4.5.2 and appropriate op-
erations from Thrust. The multivariate full tensor product of these points is generated by a
hand-written kernel which uses the univariate sequences as input.
Sparse grid points are for now constructed according to the formula in Table 4.1. First, the

multi-indices of the tensor product samplings are generated on GPU per subspace. Finally, all
points are unified by sorting and compacting the sequences. This is for sure not the fastest
possible approach, however it easily fits into the implemented modularized libraries. For fast
methods, one could e.g. have a look at [MWB+11], however sampling is usually no performance
bottleneck, anyway.

4.8.6 Quadrature methods

If not otherwise stated, the abscissas are generated as already described. (Quasi-)Monte Carlo
methods require a simple reduction operation with constant weights. For composite Newton-
Cotes formulas, custom weights have to be generated. In the Clenshaw-Curtis case this is
done with a GPU-based O(N l,1

QCC
log(N l,1

QCC
)) implementation using the Fast Fourier Transform

(FFT) from the cuFFT library of the CUDA Toolkit as e.g. proposed in [Gen72]. The current
implementation is based on [von05]. For the full tensor product quadrature, the GPU-computed
univariate quadrature weights and points are taken and tensorized in appropriate kernels.
Smolyak sparse grid quadrature is implemented with the combination technique [GSZ92,

GG98], thus by (4.15). Like in the sparse grid point sampling case, first the multi-indices of
the subspaces are computed sequentially. These are used to set up and solve the anisotropic
full tensor product quadrature problems on the GPU. All results are combined as in (4.15).
However, his approach does not turn out to deliver optimal performance. This is because
each of the sequentially started small quadrature problems uses only a fraction of the GPU
peak performance. An optimal implementation would schedule in parallel as many quadrature
problems as possible. This is future work.

4.8.7 Linear solvers

As motivated in Section 4.5.3, direct solvers are used in the single-GPU case and iterative
solvers in the multi-GPU case. The direct solver is the LU decomposition with partial pivoting
and row interchanges from the CULA library [EM 13].
In the parallel case, the intention is to have a library with dense iterative solvers, as pointed

out in Section 4.5.3. It is distributed memory multi-GPU parallel such that it can scale on a
cluster of GPUs connected by some fast network. To the authors knowledge, there are almost
no software libraries available, which support this. While PETSc [BAB+13] is one of the
most prominent software frameworks in this context, its only support for GPUs is based on an
interface to the sparse linear algebra library CUSP [BG12], to the authors knowledge. Thus,
there is no dense linear algebra for GPUs available in PETSc. Another prominent multi-GPU
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linear algebra library is MAGMA [TDB10] which has hybrid multi-GPU support for some of
its dense solvers. However, it is unclear whether it has an easily accessible multi-GPU parallel
dense matrix-vector product for an iterative solver and it has also the issue of being only
sparsely documented, at least for the multi-GPU part. The library LAMA [KFBS13] might
be the only software tool, which delivers the required BLAS dense linear algebra standard
routines for distributed memory multi-GPU clusters. Though, since some of the numerical
methods developed for this thesis require a high amount of problem-specific modifications, the
high-level structure of this library makes it a non-optimal candidate, here.
Therefore, the new, lightweight, distributed memory multi-GPU parallel library parla with

parallel standard BLAS linear algebra routines (like matrix-vector product, scalar product,
vector addition, . . . ) and a BLAS-like interface is developed and extended by the iterative
Krylov subspace methods of interest. The major building blocks of parla are cuBLAS and
the Message Passing Interface (MPI) [Mes94] for parallel communication between the GPUs.
Because of the described decomposition of matrices, cf. Section 4.8.3, a parallel matrix-vector
product requires only to communicate the vector, on which to apply the matrix. Product
evaluation and result stay local to the GPU. Furthermore, the overlapping communication
and computation technique [Mic09] can be used to start with computation on the part of the
vector, which is local to the GPU, while the other vector parts are exchanged over the network
in background. In the implementation, the so-called CUDA-aware OpenMPI 1.7.3 library for
parallel communication is used. It allows to pass GPU memory pointers to MPI commands.
The MPI implementation then takes care of using the fastest possible strategy to transfer
data from GPU memory over the network to a remote GPU. Taking overlapping and CUDA-
awareness together will allow to have perfect scale-up and good speed-up in all dense iterative
solvers. For more details on the underlying techniques, see also Section 5.3.2.
Besides of the matrix-vector product, the other routines are implemented rather straight-

forward by locally using cuBLAS methods and, if necessary, communicating the results by
MPI. The same holds for the implementation of the conjugate gradient method, which is done
according to standard textbooks [Saa03].

4.8.8 Stochastic collocation framework and coupling to flow solver

The implemented libraries for sampling, quadrature and kernel-based interpolation can be
easily combined to solve RBF kernel based stochastic collocation problems, delivering a general
framework for these kinds of problems. In the case of the model problems from Sections 3.1
and 3.2, convergence benchmark codes are implemented that contain both, the solvers for the
underlying PDE problems (by the sparse linear algebra framework CUSP) and the numerical
methods for stochastic collocation.
In case of (two-phase) flow simulations, cf. Chapter 5, stochastic collocation is built in a

separate software tool. Figure 4.6 illustrates this. Appropriate flow solver parameter files are
created by some Python code. For each collocation point, one flow simulation is executed, which
is a trivially parallel operation. Their results are written into VTK [SAH00] files. Afterwards,
the separate stochastic collocation software reads flow fields from the VTK files. Custom
methods for reading and writing files of this format to and from GPU memory have been
implemented. Finally the stochastic collocation problem and moment estimate is performed
on GPU as for the model problems. Moments of flow fields are written back to VTK files
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Figure 4.6: Stochastic collocation and moment approximations for two-phase flow problems
are computed with a loose coupling by VTK files between the flow solver and the
stochastic collocation software.

and visualized by Paraview [Hen07], if necessary. Note that it is also possible to extract
rather complicated quantities of interest of the generated flow fields in Paraview and estimate
stochastic moments of these quantities by the GPU-based stochastic tool.
All details about solving the (deterministic) two-phase incompressible Navier-Stokes equa-

tions including implementation and performance results on multi-GPU clusters, will be dis-
cussed in the next chapter.



5 Multi-GPU parallel solver for the two-phase
Navier-Stokes equations

While the previous chapters highlighted all information on a kernel-based stochastic collocation
method with high convergence order and low number of collocation points, this chapter is
involved with the efficient treatment of the deterministic PDE problem that has to be solved
within each stochastic collocation point of the random two-phase Navier-Stokes application
problem. Thus we seek for a fast and efficient solver for the equation system (3.3)–(3.9) or
(3.17)–(3.23) introduced in Section 3.3. The objective is to have a full multi-GPU parallel
solver for this problem, in order to have the best possible time-to-solution using the latest
available massively parallel compute hardware.

Base for all multi-GPU developments is the MPI-parallel two-phase fluid solver NaSt3DGPF
[STCE06, CGS09], which was shortly introduced in Chapter 1. This chapter thus primarily
addresses the multi-GPU parallelization of an existing research code up to a point in which
all main components are fully available on GPUs. It will be shown that it is possible to
achieve speedups on GPUs in contrast to CPUs which are in the range of a factor of tree, when
comparing equally priced hardware. Furthermore, it is possible to measure clear differences
in power consumption between the different kinds of processor architecture, leading to an
additional power consumption reduction of a factor of two by comparing the power consumed
by a single-GPU system with the power consumed by a multi-core CPU system. The additional
MPI parallelization of the overall flow solver allows to further scale on a cluster of GPUs
achieving a weak scaling efficiency larger than 90 percent. Overall, these achievements will
outline the clear necessity of optimally parallelized and hardware optimized PDE solvers in
frameworks of large scale uncertainty quantification analysis.

This chapter starts by giving a brief overview of the steps to remodel the two-phase Navier-
Stokes equations (3.3)–(3.9) to a jump-discontinuity free formulation and to discretize this
derived equation system. Thereafter, techniques to perform an efficient single-GPU paral-
lelization of a finite difference flow solver are outlined. These are followed by a discussion
of scalable multi-GPU parallelizations based on domain decomposition and MPI. Finally, an
in-depth performance analysis including single-GPU results, multi-GPU scalability and energy
consumption is presented.

The results outlined in this chapter have been previously published by the author in two
journal articles [GZ10, ZG13]. They will be summarized and put into a more complete back-
ground within this thesis. Also, a few updates on recent technology advancements are given.
Note that not all details of [GZ10, ZG13] are covered here and performance results mainly base
on [ZG13].
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5.1 Numerical treatment of the incompressible two-phase
Navier-Stokes equations

Let us start by remembering the two-phase incompressible Navier-Stokes equations as pre-
sented in Section 3.3. To be concise, we discuss here the original deterministic formulation from
equations (3.3)–(3.9) instead of the random version after finite noise assumption in equations
(3.17)–(3.23), which has no influence on the applied numerical techniques or the implementa-
tion. The two-phase Navier-Stokes equations are defined on a connected domain D ⊂ R3 with
boundary � over time t ∈ [0, T ]. To describe two interacting fluid phases, D is covered by the
non-overlapping, time-dependent sub-domains D1(t) and D2(t) with separation interface �f (t)
(thus D = D1(t)∪D2(t)∪�f (t)). Both domains D1 and D2 have their own material parameters
for density ρ1, ρ2 ∈ R and viscosity µ1, µ2 ∈ R. For i = 1, 2, the equation system is given by

ρi∂tui + ρi(ui · ∇)ui = ∇ · µi(∇ui + {∇ui}T )−∇pi + ρig in Di × [0, T ] , (5.1)
∇ · ui = 0 in Di × [0, T ] , (5.2)

ui = u0i in Di × {0} , (5.3)
B[a�]ui = b� on �× [0, T ] , (5.4)

∂pi
∂n�

= 0 on �× [0, T ] , (5.5)

u1 = u2 on �f × [0, T ] , (5.6)
[T] · n�f = σκn�f on �f × [0, T ] . (5.7)

and is solved for the velocities ui : Di × [0, T ] → R3 and pressures pi : Di × [0, T ] → R
in the respective subdomains with their appropriate couplings given in equations (5.6) and
(5.7). As already outlined in Section 3.3, we furthermore have the volume force g ∈ R3,
the surface tension coefficient σ ∈ R, the interface curvature κ ∈ R, the interface’s surface
normal n�f ∈ R3 and the stress tensor T i := −piI + (∇ui + {∇ui}T ) ∈ R3 × R3. The jump
(T 1 − T 2) along the interface �f is described by [T ]. In addition, the generalized boundary
conditions in equation (5.4) can be replaced by a more complicated set of domain-dependent
boundary conditions, cf. Section 3.3.2. For further details and related models, see for example
[SSO94, TSLV11, GR11] and [CGS09].
In the following, the above equation system is first modified in a way such that the sharp

interface jump condition in (5.7) is replaced by a volume force and densities and viscosities
become smooth parameters. Thereafter, the resulting PDE system needs a coupling between
the momentum equation and the continuity equation which is done by a classical pressure
correction method. Finally, discretization, the iterative solver for the (to be derived) pressure
Poisson problem and complex geometries are briefly discussed.

5.1.1 Continuous formulation using level-sets

We now follow the common approach to introduce a level-set function φ : D × [0, T ] → R,
which allows to distinguish the two fluid phases, cf. [CGS09]. Level-set techniques have been
introduced in [OS88] and early works in the context of two-phase flows are e.g. [SSO94, SF99].
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The level-set function φ is a signed distance function defining the two domains D1, D2 as

φ(x, t)


< 0 if x ∈ D1
= 0 if x ∈ �f
> 0 if x ∈ D2

.

Also, it obays the Eikonal equation
|∇φ| = 1 ,

which makes it a distance function. The free surface �f , thus the interface between both fluids
is given by

�f (t) = {x : φ(x, t) = 0} .
Based on the Continuum Surface Force scheme [BKZ92] it is possible to reformulate the discon-
tinuous equation system (5.1)-(5.7) into a continuous representation. This has been proposed
by [SSO94] for two-dimensional incompressible two-phase flows and extended in [CGS09] to
three dimensions. We follow here the latter work and introduce, by slightly abusing notation,
domain-dependent densities and viscosities

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ), µ(φ) := µ1 + (µ2 − µ1)H(φ)

with the Heaviside step function

H(φ) :=


0 if φ < 0
1
2 if φ = 0
1 if φ > 0

.

This function is smoothed out in ε-environment of the free surface leading to jump-free functions
Hε(φ), ρε(φ) and µε(φ), cf. [CGS09] for more details. It is then possible do derive the initial-
boundary value problem

ρε(φ)Du
Dt

= ∇ · (µε(φ)S)−∇p− σκ(φ)δε(φ)∇φ+ ρε(φ)g in D × [0, T ] , (5.8)

∇ · u = 0 in D × [0, T ] (5.9)
∂tφ+ u · ∇φ = 0 in D × [0, T ] , (5.10)

|∇φ| = 1 on �× [0, T ] , (5.11)
u = u0 in D × {0} , (5.12)

B[a�]u = b� on �× [0, T ] , (5.13)
∂p

∂n�
= 0 on �× [0, T ] , (5.14)

φ = φ0 in D × {0} , (5.15)
∂φ

∂n�
= 0 on �× [0, T ] , (5.16)

with u : D× [0, T ]→ R3 and p : D× [0, T ]→ R the velocity and pressure fields defined on the
full domain D. Above, the short-hand notations Du

Dt := ∂tu+(u ·∇)u and S := (∇u+{∇u}T )
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were used. It turns out that the jump condition for the stress tensor translates to the volume
force −σκε(φ)δε(φ)∇φ. In this case δε denotes a smoothed out Dirac functional and κ is the
curvature of the free surface which is given in the level-set case (cf. [OS88]) as

κ(φ) =∇ · ∇φ‖∇φ‖ on �f .

Equation (5.10) couples the transport of the level-set function to the velocity field and thus
allows to describe the evolution of the phase interface over time. The last five equations are
boundary and initial conditions for the velocity, pressure and level-set fields.

5.1.2 Pressure projection approach for two-phase flows

The solution method for the two-phase incompressible Navier-Stokes equations used here is
based on a pressure correction approach going back to the work [Cho68]. Following the lines
of [CGS09] it is assumed here to use a first-order time discretization with time step size δt.
Then the solution method starts by approximating an intermediate velocity field u? by the
momentum equation (5.8) without the pressure gradient relative to some time step tn, thus

u? − un
δt

= −(un · ∇)un + 1
ρε(φn) (∇ · (µε(φn)Sn)− σκ(φn)δε(φn)∇φn) + g ,

with un(x) := u(x, tn), φn(x) := φ(x, tn) and the obvious definition for Sn. In the classical
sense of a multi-step time integration method, it is then necessary to solve

un+1 − u?
δt

+ ∇pn+1

ρε(φn+1) = 0 , (5.17)

∇ · un+1 = 0 (5.18)

to approximate the Navier-Stokes equations (5.8)-(5.16) for a new time step tn+1 := tn + δt
ignoring for now the coupling and approximation of the level-set function. Superscripts n+ 1
indicate that the respective fields are given at the new time step. Taking the negative divergence
of (5.17) under assumptions of (5.18) leads to a Poisson equation

−∇ ·
(

δt

ρε(φn+1)∇p
n+1

)
= −∇ · u? (5.19)

for the pressure at the new time step with the previously imposed homogeneous Neumann
boundary condition

∂pn+1

∂n�

∣∣∣∣∣
�

= 0

and some compatibility condition for existence and some closure conditions for uniqueness
of solutions for (5.19), cf. [CGS09]. The pressure, which could also be seen as a Lagrange
multiplier to couple the momentum and continuity equation, is finally used as correction term
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Algorithm 3 Two-phase flow solver algorithm using pressure projection

1: for n = 1, 2, . . . do
2: set boundary conditions for un
3: compute intermediate velocity field u∗:

u∗ − un
δt

= −(un · ∇)un + 1
ρε(φn)∇ · (µ

ε(φn)Sn)

− 1
ρ(φn) σκ(φn)δε(φn)∇φn + g

4: apply boundary conditions and transport level-set function:

φ∗ = φn + δt (un · ∇φn)

5: reinitialize level-set function by solving

∂τd+ s̃ign(φ∗)(|∇d| − 1) = 0, d0 = φ∗

6: solve the pressure Poisson equation with φn+1 = d:

−∇ ·
(

δt

ρε(φn+1)∇p
n+1

)
= −∇ · u∗

∂pn+1

∂n�

∣∣∣∣∣
�

= 0

7: apply velocity correction:

un+1 = u∗ − δt

ρ(φn+1) ∇p
n+1

to derive a divergence-free velocity field un+1 as

un+1 = u∗ − δt

ρε(φn+1) ∇p
n+1 .

Applying higher-order time discretizations instead of first-order explicit Euler is also possible,
cf. [CGS09].
Until now, we did ignore the coupling between the momentum / continuity equation and

the level-set transport equation assuming to have a level-set field φn+1 at the new time step.
The solution Algorithm 3 for the two-phase Navier-Stokes equations now outlines this in more
detail. Herein, step four and five compute φn+1. The level-set transport in the fourth step uses
the old velocity field. Furthermore, the reinitialization process in the fifth step, which is an
initial value problem, makes sure that the level-set function approximately obeys the Eikonal
equation (5.11). Here, s̃ign is a regularized sign function. For more details on the level-set
reinitialization process see e.g. [SSO94, CGS09].
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5.1.3 Discretization, iterative solver and complex geometries

The flow solver NaSt3DGPF has a large variety of discretization schemes in space and time as
well as a series of solvers for the Poisson problem. However, the full multi-GPU implementation
discussed here is fixed to a single set of schemes and a single solver, which tend to be the classical
choices in standard applications. Therefore, we limit ourselves here to discuss this standard
set. More details can be found in [STCE06, CGS09].
Finite differences / volumes are used as discretization method in space with a classical

marker-and-cell (MAC) staggered uniform grid, cf. [HW65]. The velocity components are
therefore discretized on the centers of the cell faces whereas pressure and level-set function
are discretized on the centers of the cells themselves. Wherever it is necessary to evaluate
quantities e.g. from cell centers on the cell faces, higher-oder interpolation is used. Most
space derivative terms of the momentum equations are discretized by the fifth-order weighted
essentially non-oscillatory (WENO) scheme [LOC94]. Here, the diffusion term is computed
by second-order central differences. WENO is also applied to the gradient evaluation in the
reinitialization equation and to the transport term in the level-set advection. The pressure
Poisson equation is discretized with a standard seven-point second order stencil and solved
with a Jacobi-preconditioned conjugate gradient (CG) method. In the GPU flow solver, the
first-order explicit Euler scheme in Algorithm 3 is replaced by a second-order Adams-Bashforth
scheme. This is further optimized by an adaptive time step selection mechanism, cf. [DGN98],
which uses the Courant-Friedrichs-Lewy (CFL) condition [CFL67] to optimize for stable cal-
culations. Time discretization for the artificial time τ in the reinitialization is done using the
third-order Runge-Kutta scheme.
To include complex geometries in the flow solver, a flagging technique is used which goes

back to early work in CFD [HW65]. Cells representing solid obstacles are flagged appropriately
and are not considered in the PDE solution process. Additionally, boundary conditions have to
be imposed on solid obstacle cells interfacing standard fluid cells. Possible choices of boundary
conditions are described in Section 3.3.2.

5.2 Efficient GPU implementation

After having described the numerical model, the discretization and the solution method for
the two-phase Navier-Stokes equations, we will now put the focus on the efficient (single-)
GPU parallel implementation of the flow solver. Note again, that this is published work by
the author [GZ10, ZG13]. To be concise, the reader is expected to know the general technical
details of GPUs including especially thread management and memory hierarchies. Otherwise,
[SK10, KH10] are good information resources. In this section, the implementation details for
the code running on a single GPU are reported, whereas the next section will give details on
the implementation for a distributed-memory multi-GPU cluster.

5.2.1 Code design principles

The GPU-based flow solver is implemented with the C/C++ programming extension CUDA
[SK10, NVI14b], thus runs mainly on hardware designed by Nvidia Corporation. It is embedded
in the original CPU code, however the main loop is fully GPU based. This also includes all
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data fields, which are stored in GPU memory. The only points, where the CPU and its memory
is actively involved are the simulation setup, file / visualization input and output as well as
parallel communication.
There is an ongoing discussion about the ease and time of implementing numerical codes

compared to the performance that can be achieved. The presented work tries to balance this.
While the original CPU code is a classically grown research code and has been developed since
more than a decade, the presented GPU implementation reflects several man-months of work
with the intention to keep the code itself readable and simple. This effectively means that
most operations in the GPU code are done on global memory expecting to have more and
more effective automatic caching strategies on GPUs available. Only very few, very memory-
performance critical operations such as parallel reductions are performed in shared memory
for optimal performance. This might lead to an overall performance which does not hit peak
performance for a given GPU. However it turns out, that this programming approach leads to
performance scalability over subsequent GPU generations, which is a big advantage.
Another important design principle is to always stick to double precision. While single-

precision calculations would result in bad numerical approximations especially when going to
small scales in the flow solver, mixed-precision techniques could speed up some code parts.
However, again, this would lead to a more complicated code which would be highly tuned to
some specific single-vs.-double precision performance ratio. As long as performance scalability
in double precision is available with new hardware generations, it is therefore planned to stick
to this precision.

5.2.2 CPU-GPU porting process

The presented GPU-based two-phase flow solver has been built up by a continuous porting
process from the original code. Effectively, the code has been ported to CUDA separately for
each C/C++ function with data being copied back and forth between CPU and GPU before
and after each method. One usually starts porting the most time consuming routines and ends
up unifying all data on GPU, thus removing all data copy operations.
This contrasts other approaches, in which the full code is built up completely from scratch

ignoring existing implementations. The advantage of the continuous porting process lies in
the ease of validating newly ported parts. Possible errors can be checked method by method.
However a clean sheet implementation sometimes might allow for better final performance.
Due to usually limited time in numerics research to be spend on implementations as-well-as
the steadily increasing code performance results in a continuous porting process, this approach
has been used to construct the given GPU code.

5.2.3 Thread-data-work mapping

Regular grid based GPU codes with heavy use of stencil operations, like the presented one,
usually have a rather simple data layout and mapping between parallel threads, application
data and the actual compute work. The given code has a one-to-one mapping of parallel threads
to computational cells. Furthermore its original three-dimensional C++ grid data structure
is replaced by a linearly allocated and addressed array. In terms of the actual compute work,
the classical stencil operation loops are mapped to SIMT (single instruction multiple treads)
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Figure 5.1: Complex geometries and boundary cells in the finite difference scheme lead to ir-
regular data access patterns for data fields. In this 2D example, which includes
a discretized circular solid geometry, computations have only to be done for the
colored cells.

[NVI14b, Section 4.1] parallel kernel calls. Therein thread collaboration in terms of shared
memory use is largely avoided as noted above. This strategy also simplifies the choice of
the kernel execution configuration, thus the mapping of threads to symmetric multiprocessors.
Taking a high number of threads per multiprocessor often maximizes occupancy and also gives
very good throughput performance. For GT200 / GF100 GPUs usual numbers of threads per
symmetric multiprocessor / thread block are thus 256 or 512.
The stencil for loops in the sequential C/C++ flow code have a large number of condi-

tionals distinguishing domain boundaries, complex geometries and other special handlings,
cf. Figure 5.1. However, it is well-known for GPUs that conditionals might lead to so-called
branch divergence meaning that the GPU heavily sequentializes the different code execution
paths, resulting in bad performance, cf. [NVI14b, Section 12.1] for more details. To reduce
the impact of this technological limitation, access pattern data fields are precomputed for all
important stencil operations reducing the number of conditionals per GPU thread to exactly
one and adding one global memory read. This of course also decreases the available memory.
However, a gain in performance of 25% is seen in the modified compute kernel runs resulting
in a clear performance gain for the full application.

5.2.4 Large compute kernel handling

Some stencil operations require a rather high amount of compute instructions per computa-
tional cell leading to relatively large and complex GPU compute kernels. Early GPU hardware
generations and CUDA compilers had the strong issue of using excessive amounts of registers
per thread in cases of large compute kernels. Since these did no longer fit into hardware reg-
isters, the so-called register spilling moved many local variables from hardware registers to
special parts of the slow global memory, resulting in bad performance. Even though newer
hardware and compiler generations are able to better circumvent this issue, some performance
impact remains.
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A classical example for this kind of problem is the WENO stencil of fifth order which is
heavily used in the discussed flow solver. It computes a series of first-order forward differences
and combines these based on some smoothness indicator, cf. [LOC94]. Putting this in one kernel
results in very bad performance. A solution is to split up the GPU kernel in a precomputing
part, which evaluates the forward differences, and a post-processing part, which computes the
smoothness indicators and combines the forward differences. Measurements show, that this
approach triples performance for WENO evaluations, which is also partially due to reuse of
compute results.

5.2.5 Sparse matrix-vector product and parallel reduction
The preconditioned conjugate gradient solver requires to apply sparse matrix-vector products
and parallel reductions with the latter ones being also used in other parts of the code. Both
components are performance critical and thus have to be discussed here.
Two-phase incompressible flows have a continuously changing Poisson problem system matrix

due to the evolving free surface. Therefore, the matrix has to be constantly updated in each time
step. In the given implementation, this is done in a preprocessing step once before the iterative
solution process starts. Stencil coefficients are stored cell-wise which is almost equivalent to
some diagonal sparse matrix format. The matrix-vector product itself is realized in a hand-
coded, optimized GPU compute kernel, which includes the Neumann boundary conditions.
As previously discussed, shared memory accesses are largely avoided to reduce code com-

plexity. The important exception is the applied parallel reduction method. Parallel reductions
on GPUs following e.g. [Har07] perform sequential reductions in shared memory on each multi-
processor and combine the results in a tree-like structure. Using global memory here is no
option. The specific implementation used in the GPU flow solver stems from [NVI10].

5.3 Multi-GPU parallelization
To scale the flow solver to large distributed-memory compute clusters equipped with GPUs,
the MPI-based parallelization structure of the original CPU solver is adapted in a way that one
CPU process is mapped to one GPU. The CPU parallelization itself uses the so-called domain
decomposition technique which is also the base for the multi-GPU parallelization.

5.3.1 Domain decomposition on GPUs
Domain decomposition parallelization goes back to work of Schwarz [Sch90]. The idea is to
divide the original computational grid into optimally equally-sized subdomains, which are dis-
tributed to different parallel processes, cf. Figure 5.2. Each parallel process then computes
locally on its subset. Most PDE discretization schemes require stencil-like evaluations which
access information only from very close neighboring cells. Therefore, few computational cells
near to the inner subdomain boundaries lack information from their respective parallel neigh-
bor subdomain. To get around this, one or several layers of computational cells, also called
ghost or halo cells, are added at the inner boundaries. These contain copies of the respective
parallel neighbor cells which are appropriately updated. Each update requires a parallel data
exchange, as shown in Figure 5.2. NaSt3DGPF uses MPI for this parallel communication. The
GPU-based implementation handles each subdomain by one GPU instead of one CPU process.
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GPU GPU

GPU GPU

Figure 5.2: Domain decomposition is applied in the multi-GPU parallel code (left) which re-
quires data exchanges between ghost cells of neighboring processes (right).

In classical MPI parallel CPU codes, parallel communication of data fields involves moving
data from CPU memory to the network interface over the network and again from the receiving
network interface to the memory of the receiving CPU. This transfer pipeline gets more com-
plicated in the multi-GPU data transfer case because data is located in GPU instead of CPU
memory. It is therefore necessary to further copy data between GPU and CPU and vice versa
on the receiving side, requiring some additional time. Moreover, the higher memory and float-
ing point peak throughput performance on GPUs in contrast to the controlling CPU thread
results in a high imbalance of data processing capabilities. Thus, all interactions with the host
(i.e. CPU) side are a performance bottleneck in general. Consequently, it is well-known that
multi-GPU scalability is sometimes hard to achieve.
To get around this, a few technological and algorithmic optimizations for multi-GPU data

transfers have been introduced over the last years.

5.3.2 Optimization strategies

Overlapping computation and communication

One hardware- and software-based optimization is overlapping computation and communica-
tion [Mic09]. Starting with Tesla generation GPUs from Nvidia (e.g. Nvidia Tesla C1070), it
is possible to asynchronously launch GPU kernels while data transfers between CPU and GPU
(and vice versa) and CPU code execution are performed. Depending on the kind of computa-
tional problem, it is thus possible to hide major parts of the necessary parallel communication
time behind some long GPU kernel execution.
In the multi-GPU parallel version of the two-phase flow solver, this functionality has a major

impact on the parallel scalability of the Poisson solver. As proposed e.g. in [Mic09], the full
parallel data transfer can be hidden behind the application of the Poisson matrix stencil to the
inner cells of each parallel subdomain, see Figure 5.3. The only remaining operation that has
to be done after that concurrent work is the application of the Poisson matrix to the outer cells
that depend on the communicated data. This however, is only a small fraction of the original
matrix-vector product time.
Furthermore, data transfers between GPU and CPU are done from pinned CPU memory,
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matrix-vector product on inner cells

Ax
exchange boundary data

results
matrix-vector product on boundary cells

Ax
Figure 5.3: It is possible to overlap large parts of the matrix-vector product with the boundary

data exchange in the PCG solver. A small matrix subset is applied afterwards.

achieving better performance than classically allocated CPU memory, cf. [NVI14a]. Also,
optimized InfiniBand libraries and hardware supporting the technique sometimes referred as
GPUDirect 1.0 are used, removing one additional data copy on the CPU side, cf. [Tec10].

Data prepacking

The performance of data transfers between GPU and CPU memory becomes very bad for many
small subsequently transfered messages. This is a big issue when communicating slices from
the three-dimensional grid data, as necessary in the ghost cell exchange. Depending on the
orientation of the slice, data is highly scattered over memory. Having one transfer operation
for each individual data piece would therefore result in prohibitive performance.
To overcome this, all boundary data is packed together in one contiguous data block on

GPU before being transfered to CPU. Then, data is unpacked again and transfered by the
classical CPU MPI parallelization routines. The same behavior is mirrored on the receiver
side, cf. Figure 5.4. Note that unpacking and packing on CPU is also overlapped with GPU
computation as described before.

Recent developments

More recently, some effort has been spend on achieving more seamless integration of GPU cal-
culations into standard MPI parallel codes. There are now CUDA-aware MPI implementations
[PWB+12, BBR13] available, which allow to use a subset of the full MPI operation set directly
on GPU memory, taking care for transfers to / from CPU memory by themselves. The advan-
tage is better code readability and out-of-the-box optimizations inside the MPI library, such
as interleaved message transfers for smaller latency of big messages. Since it is not expected
to see significant speed-ups based on CUDA-aware MPI within the parallel communication of
this specific multi-GPU parallel flow solver, this new technology was not added after finalizing
the multi-GPU porting process.
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Figure 5.4: To overcome limitations of CPU-GPU data exchanges with respect to small mes-
sages, all boundary data is packed into a contiguous memory buffer as part of the
multi-GPU data exchange.

Another very recent development is the use of Remote Direct Memory Access (RDMA)
capabilities of the PCI Express bus. By combining new Kepler-generation GPUs and new
InfiniBand hardware, it is possible to use what is called GPUDirect RDMA [BBR13]. This
technology largely avoids data transfers through CPU memory by directly exchanging data
between GPUs in one system or between a GPU and an InfiniBand network controller over the
PCI Express bus, leading to a much better latency and sometimes to a better bandwidth. Due
to the lack of appropriate hardware, this approach is not further investigated.

5.4 Performance results

There is a two-fold motivation to use GPUs to solve the two-phase incompressible Navier-Stokes
equations as black-box problem inside a stochastic collocation method. On the one side, it is
necessary to evaluate new massive-parallel technologies to be prepared for future large-scale
compute clusters. On the other side, a clear performance gain compared to CPUs is expected.
In the following, an in-depth performance analysis will show some significant speed-ups while
maintaining good multi-GPU scalability.

5.4.1 Validation and best practice in GPU-CPU comparisons

Before we can discuss performance, we need to be sure to have a correct code. Validation
has been made throughout the full porting process of the GPU flow solver between GPU and
CPU implementation. Note that the CPU implementation has been already validated against
experimental results, cf. [CGS04]. It was possible to have a method-by-method comparison
of all simulation data fields between GPU and CPU. Since identical numerical techniques are
applied, the ported code has to create matching simulation results up to machine accuracy with
the only exception of parallel reductions in e.g. scalar products which have different summation
orders on GPU and CPU.
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In fact, equal results up to machine accuracy are observed for all routines not performing a
parallel reduction. Overall, GPU simulation results are equal to CPU results up to discretiza-
tion error and convergence order also including parallel reductions.
There is an ongoing discussion on best practice in GPU vs. CPU benchmarking. Comparing

one full GPU to a single CPU core results in large speed-up numbers but it is of course
unbalanced. Comparing a full CPU on a socket to one GPU is much better, but often does
not reflect price differences for both hardware. Therefore, a comparison of equally priced
hardware is preferred in the following. Noting that in a GPU-centric compute node design,
the CPU is only necessary as a controller with weak performance and neglectable price, price
comparison will be based on the GPU (without CPU) and multi-core/multi-socket CPUs only.
An additional GPU to CPU comparison will be highlighting power consumption of the full
GPU/CPU systems.

5.4.2 Benchmark setup

Overall three GPU configurations are used to perform the necessary benchmarks. The first
one is an eight-GPU cluster based on two Nvidia Tesla S1070 GPU systems with four GT200
Tesla GPUs which are equivalent to M1060 GPUs. Each S1070 is connected to a host system
with Intel Core i7-920 CPU at 2.66 GHz. The host systems are connected with a Mellanox
ConnectX QDR 40G InfiniBand interconnect. At the time of performing these benchmarks,
each M1060 GPU had an almost equal price to an Intel Xeon X5650 six-core CPU at 2.66 GHz.
Such a system is taken for the price-based performance comparison.
The second GPU configuration is a 1U compute node with a four-core Intel Xeon E5620

CPU at 2.40 GHz and an installed Nvidia Tesla C2050 GPU, thus a GF100 Fermi generation
processor. This GPU had more or less twice the price of one M1060 GPU when the benchmark
was performed. Therefore, it will be compared to a dual 6-core Intel Xeon X5650 CPU system
at 2.66 GHz each, thus to twelve CPU cores.
As common software framework for both GPU configurations Ubuntu Linux 10.04, Open-

MPI, GCC 4.4 and CUDA 3.2 are used. CPU code is compiled with optimization flags -O3
-march=native and GPU code is compiled with -O3 in general.
To test scalability over a larger number of GPUs, the GPU cluster of the Center for Com-

puting and Communication of the RWTH Aachen University, Germany was used over the
Ressourcenverbund – Nordrhein-Westfalen (RV-NRW) access scheme. This is the third GPU
configuration. Access was given to 48 Fermi-type GPUs, thus 48 Nvidia Quadro 6000 GPUs
installed in 24 dual Intel Xeon X5650 CPU systems with QDR InfiniBand interconnect. The
available software framework is composed of Scientific Linux 6.1, GCC 4.4.5, OpenMPI 1.5.3
and CUDA 4.0.17.
Table 5.1 highlights the benchmark flow problem applied for the simulation tests. It is a

rising bubble in water which reshapes over time, thus a real-world example representative for
our typical applications. All measured timings reflect CPU wall-clock times including all data
transfers between GPU and CPU (and vice versa). The run-times of a fixed number of twenty
simulation time steps is computed at the given resolutions to compare between GPU and CPU.
A resolution of 256×256×128 e.g. leads to a compute time of about 51 minutes on one six-core
Xeon X5650 processor using all cores.
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domain size: 20 cm× 20 cm× 20 cm
liquid phase: water at 20oC

gas phase: air at 20oC
volume forces: standard gravity

init. bubble radius: 3 cm
init. bubble center: (10 cm, 6 cm, 10 cm)

Table 5.1: The performance benchmark example is an air bubble rising in water, visualised on
the left according to [ZG11] with the picture taken from [ZG13]. Its paramters are
given on the right-hand side.

CPU/GPU type double-precision floating-
point peak performance

ratio peak memory
bandwidth

ratio

Intel Xeon X5650 ∼64 Gflops 32 GB/s
Nvidia M1060 (no ECC) 78 Gflops 1.2x 102 GB/s 3.2x
two Intel Xeon X5650s ∼128 Gflops 64 GB/s

Nvidia C2050 (no ECC) 515 Gflops 4x 148 GB/s 2.3x

Table 5.2: CPUs and GPUs have different performance characteristics. The ratios reflect the
speed-ups between the grouped CPUs and GPUs with respect to double-precision
floating-point performance and memory bandwidth. Gflops numbers for the CPUs
are accumulated values for the 6 / 12 physical cores and are extracted from the
Top500 list as of June 2011 [Top11].

5.4.3 Performance expectations

As outlined in the code design principles, cf. Section 5.2.1, we compare a grown, active research
code on the CPU side with a recently ported GPU version, which was not subject to excessive
micro-benchmarking. This should be rather fair in terms of achievable performance and similar
level of optimization.
Before we have a look at the actual performance measurements, we need to clarify what

we can expect from the given hardware. To get a first impression, one can compare peak
performance ratios for floating-point operations and memory bandwidth on the GPUs and
CPUs under discussion. Table 5.2 summarizes the results. Note that non-ECC protected
performance numbers are given for the GPUs with an expected further loss in performance of
8% when going to ECC corrected results. Comparing the GT200 GPU with the equivalently
priced CPU hardware gives only a speedup of 1.2x in terms of floating point performance but
more than a factor of three in memory bandwidth. Since the time-dominating part of the
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Figure 5.5: Left: Speed-ups of single GPUs are compared to similar-priced multi-core CPUs
for different resolutions and different GPU generations. Right: By fully porting the
fluid solver to the GPU we get more than a 30 percent improvement in runtime.

flow solver is the Poisson solver, which is largely memory bandwidth bound, the good memory
bandwidth ratio is expected to dominate here. In the case of the GF100 GPU, the floating
point performance ratio is a factor of four and the memory bandwidth ratio is a factor of
2.3. Therefore, it is expected to see speedups in the range of 2x to 3x for the price-based
performance comparison.

5.4.4 Single-GPU performance analysis

All results of the price based single-GPU performance comparison are summarized in the left
part of Figure 5.5. Both GPU generations, Tesla and Fermi, show the performance character-
istics of growing speed-up for growing problem size until the implementation- and hardware-
dependent peak performance is hit. Larger problem sizes lead to higher speed-ups e.g. due to
better latency hiding for memory fetches.
There is a large variety of execution configuration choices with respect to maximum register

count per kernel on GT200 GPUs and furthermore concerning compute architecture and cache
configuration on GF100 GPUs. For more details on their impact on the presented GPU code,
the interested reader is asked to refer to [ZG13, Section 4.4]. Here, results are only discussed
for the best possible per GPU kernel configuration parameter choices.
Comparing the older GT200 GPU to a 6-core CPU at an equal price point, a speed-up of

more than a factor of two is achieved. This is what could be expected. Moving over to the
newer hardware, i.e. GF100 GPUs, results in speed-ups of a factor of three, comparing that
single GPU to a parallel run on a 12-core CPU system. Without memory error checking and
correction this speed-up is even higher. These impressive performance results are at the upper
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Figure 5.6: Strong scaling (i.e. speed-up) results (left) and weak scaling (i.e. scale-up) efficiency
results (right) relative to one GPU on the GT200-based GPU cluster with and
without overlapping of computation and communication.

limit of what could be expected. Here, clearly, the automatic caching of Fermi GPUs is a big
advantage. Finally, we can also state that the Fermi GPU is almost a factor of three faster
than the Tesla GPU because of higher floating-point and memory throughput performance and
caches.
It is also important to discuss the improvement of fully porting a code to GPU instead of

acceleration on GPU, cf. the right-hand side part of Figure 5.5. In [GZ10], an acceleration of
NaSt3DGPF, by porting a large part of the Poisson solver and the level-set reinitialization to
GPUs, is outlined. Comparing execution times of this code with the fully ported GPU code
as documented in [ZG13], one can see more than a 30% percent performance gain. A reason
for this is that the accelerated Poisson solver already had a rather dominant performance gain.
Other, more performance-wise balanced codes, might see a higher impact from full GPU ports.

5.4.5 Multi-GPU parallel scalability
After having discussed single-GPU speed-ups, now multi-GPU parallelization benchmark stud-
ies are outlined. Let us start with the Tesla-generation cluster with eight GPUs. The moth-
erboards of the two host CPU systems have up to 48 PCI Express 2.0 lanes connected to one
chipset. Obviously, running several GPUs connected to one CPU chipset might harm perfor-
mance. To keep this performance limitation balanced, an equal number of GPUs is used on
each machine, if possible. Therefore, in the two GPU case, each host system controls one GPU
and in the four GPU case, each host system controls two GPUs.
Figure 5.6, on the left-hand side, outlines strong scaling or speed-up results comparing the

runtime on several GPUs to the respective time on one GPU. The grid size of the benchmark
flow simulation problem is 2563. Results with and without the overlapping computation and
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communication technique, cf. Section 5.3.2, are shown, knowing that it can only be applied
effectively for the Poisson solver. Due to the overlapping technique, it is possible to achieve a
rather linear scaling up to eight GPUs with a maximum speed-up of 6.59. This is equivalent
to a parallel strong scaling efficiency of above 82%, which is a decent result. Without overlap-
ping, the speed-up on eight GPUs drops to 5.78 equivalent to only 72% parallel strong scaling
efficiency.
Next, the same hardware is considered in a weak scaling / scale-up analysis, again for the full

flow solver. In this setting, the number of grid points is fixed per GPU and the overall problem
size is increased with growing GPU number. Figure 5.6, on the right-hand side, gives results
for the per-GPU resolutions of 2562× 128 and 2563 each time with and without overlapping in
the Poisson solver. Both studies show an almost excellent weak scaling behavior on up to eight
GPUs with roughly 90% parallel weak scaling efficiency when using the overlapping strategy.
The drop in performance by not overlapping gets more pronounced for larger GPU counts.
In the 2562 × 128 case, one can observe an unexpected performance increase up to 107.51%
parallel efficiency. This behavior is often due to array alignment effects.
The second multi-GPU test system features newer hardware and larger GPU counts. In the

strong scaling analysis, cf. Figure 5.7 on the left-hand side, almost identical speed-ups as on
the smaller GPU cluster can be observed for up to eight GPUs, noting that overlapping of
computation and communication is applied in this test case. For higher GPU counts, there is
a more pronounced drop in parallel strong scaling scalability. This is a well-known behavior
that can be easily understood by reconsidering the left-hand side of Figure 5.5. Larger GPU
counts lead to smaller per-GPU problem sizes with much worse performance. Nevertheless, it
is still possible to achieve more than 40% strong scaling parallel efficiency on 48 GPUs.
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In the final multi-GPU result, weak scaling efficiency with overlapping of computation is
presented for a per-GPU problem size of 2563 grid cells, cf. the right-hand side of Figure 5.7.
It is rather impressive to observe an always above 91% parallel weak scaling efficiency for up
to 48 GPUs. Clearly, a higher per-GPU PCI Express lane count and InfiniBand bandwidth
lead to this kind of result compared to the eight GPU cluster. Fluctuation in the results is due
to different cluster loads and array alignments. Note again, that this almost perfect scalability
results is achieved on the newer GPU hardware generation and on more GPUs.

5.4.6 Power consumption

As last benchmark, the necessary energy consumption for a simulation problem with fixed size,
thus again the first 20 time steps of the 256 × 256 × 128 resolution benchmark simulation, is
measured. Since energy monitoring of a single hardware component is rather involving, power
consumption is measured from the full test systems. Figure 5.8 gives results of this study.
The 12-core CPU system has the largest power consumption even when using all twelve cores.
Surprisingly, the full eight GPU cluster already has a much better power consumption for a
fixed problem size. Best results are achieved on Fermi generation GPUs. Here ECC-protected
calculations are about a factor of 2.3 more power-efficient than CPU calculations, which is a
quite impressive result. Without ECC protection, these results are even a bit better.

5.4.7 Performance summary and discussion

The performance analysis given before clearly outlines that GPUs in that given configuration
outperform CPUs even in an equally priced hardware comparison. Here, for Fermi-generation
GPUs, a speed-up of a factor of three is seen. At the same time, it is possible to achieve almost
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optimal parallel scale-up results even on a larger number of GPUs. Together with the more
than halved energy consumption, theses numbers give a clear hint that GPUs and GPU-like
hardware architectures form a good base for future hardware generations. Programmability is
also acceptable if code optimization and performance expectations are balanced appropriately.
Overall, the best possible performance base is given for the stochastic moment approximation
in two-phase flows.





6 Numerical studies and empirical error
coupling

This chapter concludes the first part of this thesis by giving numerical results for the proposed
new method. We start by addressing numerical convergence studies and performance results for
model and large-scale application problems. This is followed by a section on the convergence
comparison to classical sparse and full tensor product methods in the field of uncertainty
quantification. Finally, the topic of empirical error coupling is addressed.
The first section follows the model and application problems as introduced in Chapter 3.

Error behavior of the stochastic moment approximation by the RBF kernel-based stochastic
collocation method with respect to a growing number of collocation points will be studied.
These results will allow to identify the strength of the proposed method. Note that there
will be a series of real-world applications with respect to the random two-phase incompress-
ible Navier-Stokes equations. Since most of the real-world problems are heavily limited by
computational time, efficient implementations are of high interest. Therefore, all large-scale
problem convergence results will be accompanied with performance results of the implemented
numerical algorithms.
Afterwards, comparisons with standard numerical techniques in the field will be given. These

will be the (generalized) Polynomial Chaos Expansion (PCE) [GS91] and stochastic collocation
[NTW08b, BNT10] both by full and sparse spectral tensor product constructions. The state-of-
the art uncertainty quantification framework Dakota [ABB+09a] will be applied as comparison
base for some of the model and application problems. It will turn out that kernel-based stochas-
tic collocation is able to outperform full tensor product and even sparse grid-based methods in
the preasymptotic regime in many cases. Furthermore, the proposed method achieves better
convergence rates for problems, which have limited smoothness in the stochastic parameters.
The final part of this chapter highlights an empirical error coupling analysis of the given

numerical method for a random elliptic and a random two-phase Navier-Stokes problem. This
analysis will outline the dependence of the numerical error on the different approximations.
Based on this, all involved errors will be balanced with respect to a fixed overall error tolerance.
By that way, the complexity analysis of Section 4.7 can be further refined such that empirical
complexity results with respect to a given error tolerance can be given. These will again
motivate the work on preconditioning techniques in the second part of this thesis.

6.1 Convergence and performance studies

This section follows the model and application problems outlined in Chapter 3 to show numer-
ical convergence results. Before we discuss the results, it is necessary to define the framework
for the numerical tests.

107
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6.1.1 Benchmark setup

All numerical studies for the RBF kernel stochastic collocation methods are carried out with
the implemented GPU-based numerical software as described in Section 4.8.

Space discretization The two-dimensional random-coefficient elliptic problems, cf. Sec-
tion 3.2, are discretized on a uniform grid by a standard five-point finite difference stencil
with domain- and stochastics-dependent coefficients. To solve the resulting linear system, a
GPU-based Jacobi-preconditioned conjugate gradient solver is used from the linear solvers
framework CUSP, cf. Section 4.8. The iterative solver stops if the absolute residual r norm
drops below ‖r‖2 = 10−15. If not stated otherwise, the number of degrees of freedom per
coordinate direction is 512, thus we have to solve for ND = 5122 unknowns.
Details on discretization in the multi-GPU based incompressible two-phase Navier-Stokes

solver are already discussed in Chapter 5. Problem-specific information, such as space grid
resolution, is given together with the corresponding numerical results.

Stochastic approximation Approximation in stochastic space is done by the RBF kernel-
based stochastic collocation method. If not stated otherwise, the applied kernel functions are
the Gaussian kernel kε with scaling parameter ε = 1.0, compactly supported Wendland kernels
kNFN ,k with smoothness parameters k = 0, 1, 2, 3 and appropriate dimensionality NFN and
the Matérn kernel kβ with parameter β = NNF+3

2 . Remember that we call the dimension
of the stochastic space NFN , thus Γ ⊂ RNFN . However, if the random input is modeled
by a Karhunen-Loève expansion, we use the parameter NKL, instead, leading to Γ ⊂ RNKL .
Regularization parameter εreg, cf. Section 4.3.1, is set to

εreg = 10−12 .

The kernel interpolation problem is solved by direct LU factorization, cf. Section 4.5.3. Radial
basis functions are isotropic, by standard, thus the norm involved in their construction is the
(scaled) Euclidean distance ‖ ·‖ := σ‖ ·‖2, with a default of σ = 1.0. The NΓ collocation points
are generated from a Halton sequence, cf. Section 4.5.2, of appropriate dimension. Furthermore,
quadrature is carried out by a full tensor product rule Q

lq ,NFN
F constructed by univariate

Clenshaw-Curtis quadrature rules Qlq ,1CC , cf. Section 4.5.1, if not indicated differently. The
quadrature-level per dimension is usually lq = 7. Sparse grid quadrature rules Qlq ,NFNS are used
whenever the dimensionality of the stochastic space would lead to prohibitive computational
run-times and memory requirements.

Error measurements The reference solution will be defined separately for each model and
application problem. Analytic solutions or so-called overkill solutions, thus approximate solu-
tions with a reasonable level of convergence, will be taken. In cases, in which the quantity of
interest is a single number, relative errors, thus

εrel := |vsol − vref ||vref |
,
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for vsol the approximate solution and vref the reference solution, are computed. If stochastic
moments of space-dependent, discretized random fields are evaluated, the error norm is the
discrete analogon of the L2 norm, which we call (slightly abusing the usual terminology) l2
norm and define it by

‖v‖l2 :=

 1
ND

ND∑
i=1

vi
2

 1
2

, ∀v = (v1, . . . , vND)> ∈ RND .

We then define the (absolute) error by

εabs := ‖vsol − vref‖l2 .

Convergence analysis structure The convergence studies per model and application problem
have a similar structure. They start by a convergence comparison of the kernel-based method
for different kernels. All convergence plots are given with respect to the number of collocation
points, since this is the only important quantity in most real-world applications in which each
solution of the underlying deterministic PDE is in the range of hours of compute time. In those
cases, where the dimension of the stochastic space Γ is not fixed by construction, very often, a
further convergence study is made. It shows the dependence of the kernel-based method on the
dimension of the underlying problem. These studies are often followed up by a second moment
convergence analysis, thus fields E

[
u2] are approximated.

Performance measurements All flow problems are additionally analyzed with respect to
their performance on GPU hardware. The reference hardware is a GPU cluster consisting of
up to 36 nodes each equipped with a four-core Intel Xeon E5620 CPU at 2.4 GHz, 12 GB
DDR3 RAM, an Nvidia Tesla M2090 card with 6 GB DDR5 RAM and Mellanox ConnectX-2
QDR InfiniBand 40Gbps interconnect. The operating system is Ubuntu 12.04. Furthermore,
CUDA 5.0, CULA R16a and OpenMPI 1.7.5 are in use. The stochastic collocation GPU code
is compiled with optimization parameters -O3 -arch sm_20 and runs here on a single GPU.
Compilation optimization of the flow solver is discussed in Section 5.4.2.
Runtime measurements of the stochastic collocation code includes the full code runtime

(with file I/O) measured by the command time. An average out of three code runs is taken.
Timings of the flow solver are measured by the application itself with appropriate MPI calls.
To account for the large measurement variations, due to phases of high GPU cluster load, flow
solver runtimes are averaged throughout all realizations leading to an idealized fixed runtime
per solution realization.

6.1.2 Problems with analytic solution

One-dimensional random-coefficient elliptic problem

This simple model problem is defined in Section 3.1.1. To avoid the influence of any approxi-
mative PDE solution method, the exactly known solution is taken as response surface function,
thus no PDE solver is involved at all. The discretization grid is a 512× 512 uniform grid.
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Figure 6.1: Error behavior of the expected solution field (left) and the second moment of the
solution field (right) in case of the random-coefficient Poisson problem with analytic
solution.

The convergence study for the mean solution field is presented in Figure 6.1 on the left-hand
side. It shows the l2 error with respect to the exactly known solution. The regularization
parameter εreg is set to 10−15 for the Gaussian kernel. All other parameters remain at the
defined standard. Approximation with the Gaussian kernel leads to a solution at machine
precision with only four collocation points. This highlights the exponential convergence by
using Gaussian kernels, if the response function is smooth enough. All other kernels have
algebraic convergence rates with measured approximate orders 2, 3, 4 and 5 for Wendland
kernels with k = 0, 1, 2, 3 and third-order convergence for that specific choice of a Matérn
kernel. Convergence saturates between machine accuracy and the regularization, remembering
that the regularization is set to εreg = 10−12 for these kernels, in contrast to the Gaussian.
This is textbook-convergence.
The second moment of the one-dimensional random Poisson problem can be computed ex-

actly from the known analytic solution. Figure 6.1 gives on the right-hand side convergence
results with respect to the second moment. The error convergence rates are almost the same
as in the study for the mean. However the error decay stagnates earlier at about 10−9 due to
the fixed quadrature level.

g function

This second study with analytic solution is described further in Section 3.1.2. Its advantage is
the ease of setting up problems with higher stochastic dimension. Note that the problem has
limited smoothness in the stochastic parameter due to the absolute value operator. Relative
(scalar) error is used in all numerical tests. The scaling of the Gaussian kernel is set to ε = 2.0
in contrast to the defined standard. Furthermore the approximation by the Gaussian kernel is
regularized with a regularization parameter εreg = 10−8.
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Figure 6.2: Error behavior of the mean of the g function using different kernels and stochastic
dimension NFN = 3 (left) and error behavior for changing dimension (right).

For the first kernel comparison study, the stochastic dimension is set to NFN = 3. Figure 6.2
shows on the left-hand side the error behavior of the mean of this model problem for different
kernels. The results do not show clear convergence rates, probably due to missing regularity of
the g function. Nevertheless, we would like to understand, whether the measured results comply
with knowledge on dimension-dependence from theory. When it comes to Wendland kernels,
Theorem 4.5 in Section 4.3.2 suggests dimension-independent convergence rates with respect to
the fill distance hX,Ω, if the function that shall be interpolated is in the respective native kernel
space. We have to keep in mind that, due to the quasi-uniform distribution of Halton points,
the very rough guess of hX,Ω ∼ NΓ

−1/NFN is possible, cf. [Wen04, Section 14.1]. Therefore, we
should expect to see convergence rates, which are multiples of the inverse stochastic dimension.
Combining this knowledge with the results from the first convergence studies, Wendland kernels
are expected to show convergence rates (in the number of collocation points) ranging from 2

3
to 5

3 . This is compatible with the presented results.
In addition to the general kernel comparison for stochastic dimension NFN = 3, Figure 6.2

outlines on the right-hand side further convergence results for dimensions NFN = 5 and NFN =
11. Note that this study is computationally challenging, since the tensor product quadrature
shows an exponential increase in the number of quadrature points with respect to the dimension.
Due to computational runtime restrictions, the quadrature level is reduced to lq = 4 in the five
dimensional case and the eleven-dimensional case is computed by the sparse grid combination
technique quadratureQlq ,NFNC constructed by univariate Clenshaw-Curtis quadrature rulesQlq ,1CC

with quadrature level lq = 4, cf. Section 4.5.1. To be concise, Matérn kernels are not considered.
For NFN = 5, the Wendland kernel shows a convergence rate of roughly 4

5 , which fits into the
dimension-dependence, and first indicators of higher-order to exponential convergence for the
Gaussian kernel. The problem with eleven dimensions is more involved. Here, the Gaussian
and Wendland kernel are still in the preasymptotic regime.
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Figure 6.3: Mean solution field (left) and error behavior of the expected solution field of the
two-dimensional random elliptic problem with piecewise constant random diffusion
field for fixed stochastic dimension NFN = 4 and growing number of collocation
points based on a Halton sequence (right).

6.1.3 Two-dimensional random-coefficient elliptic problems

The next set of model problems is often investigated in papers on uncertainty quantification for
elliptic PDE problems with random coefficients, cf. [NTW08b, NTW08a, BNT10, BNTT11].
They are more computationally challenging than the previous problems since a PDE has to
be solved for each collocation point. Also, in general, there is no analytically known solution,
thus overkill solutions have to be used throughout these studies.

Piecewise constant random diffusion field

Remembering the definition of this model problem in Section 3.2.1, it is generated by a finite
noise assumption without Karhunen-Loève expansion. Here, the diffusion coefficient field is
piecewise constant, with four regions of stochastically disturbed coefficients leading to a con-
stant stochastic dimension of NFN = 4. Quadrature to compute the coefficients is done by full
tensor-product quadrature on level lq = 5.
The comparison of mean solution field convergence for different kernel functions with the RBF

kernel stochastic collocation framework is outlined in Figure 6.3 on the right-hand side. As
reference solution, the solution field for a Wendland kernel k4,3 at NΓ = 214 collocation points
is used and visualized on the left-hand side of Figure 6.3. Error is computed as the l2 residual
between the reference solution mean field and the solution mean field under investigation. The
results show a convergence rate of around 5

4 for the highest-order Wendland kernels. In this
case, the Gaussian kernel seems to be still in the preasymptotic regime. The Matérn kernel
has a better constant than the Wendland kernels.
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Figure 6.4: Results of the mean approximation of the Karhunen-Loève expansion based two-
dimensional random elliptic problem at fixed stochastic dimension NKL = 3 with
a visualization of the mean solution field (left) and error convergence results for
different kernels (right).

Karhunen-Loève expansion-based random diffusion field
The second random-coefficient elliptic problem has a random diffusion field given by a Karhunen-
Loève expansion of the initially given infinite-dimensional random field. This problem is in-
troduced in Section 3.2.2. A correlation length of Lc = 1

16 is used in the following empirical
analysis. On the right-hand side of Figure 6.4, results of the convergence analysis for different
kernel functions with stochastic dimension NKL = 3 are given. The reference solution is the
mean solution field computed with the Wendland kernel k3,3 for NΓ = 214 collocation points.
This solution is visualized on the left-hand side of Figure 6.4. Kernels with algebraic con-
vergence show convergence rates of 2

3 to 5
3 after some preasymptotic behavior. The Gaussian

kernel starts to show exponential convergence.
Two further convergence studies shall highlight the influence of the dimensionality of the

problem (thus the number of Karhunen-Loève terms) on the convergence rates with respect
to the mean of the solution field. For stochastic dimensions one and three, the quadrature
level is still lq = 7. Dimension five, thus NKL = 5 is approximated with lq = 5 and the same
problem with NKL = 11 is computed with lq = 2, due to runtime and memory restrictions.
Reference solutions are the solution for the Wendland kernel k1,2 with NΓ = 214 collocation
points in dimension NKL = 1, the solution for the Gaussian kernel with NΓ = 214 collocation
points in dimension NKL = 5 and the solution for the Wendland kernel k11,2 with NΓ = 214

collocation points in dimension NKL = 11. Indeed, different kernels are used to construct a
reference solution in different stochastic dimensions. This is due to the fact that those solutions
are chosen as reference solution which showed smallest errors on level 14 comparing subsequent
approximation levels. In that sense, these overkill solutions converged to a fix-point. However,
this criterion to choose a reference solution is not necessarily uniform for growing dimensions.
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Figure 6.5: Error behavior of the mean of the solution field of the Karhunen-Loève expansion
based two-dimensional random elliptic problem for a growing number of Karhunen-
Loève terms with kernel-based stochastic collocation using Gaussian kernels (left)
and Wendland kernels (right).

On the left-hand side of Figure 6.5, the convergence behavior of the Gaussian kernel for
increasing stochastic dimension is shown. Exponential convergence is always achieved, with a
longer preasymptotic regime in higher dimensions. This is a well-known behavior. Furthermore,
we observe the necessary convergence stagnation due to regularization. The right-hand side
plot of Figure 6.5 outlines the same study for the Wendland kernel kNKL,2. All convergence
graphs seem to follow asymptotically rates of roughly 4

NKL
with potentially preasymptotic

results for NKL = 5, 11. In the one-dimensional case, regularization again leads to convergence
stagnation.
Figure 6.6 gives results for the approximation of the second moment of the random-coefficient

elliptic problem with NKL = 3. Tensor-product quadrature of level lq = 7 is used in all cases.
The reference solution is based on an approximation by Wendland kernels k3,0 and NΓ = 28

collocation points, cf. Figure 6.6 on the left-hand side. Similar convergence rates as in the
mean approximation in three stochastic dimensions are achieved.

6.1.4 Random two-phase incompressible Navier-Stokes equations

The following application problems require the solution of the (two-phase) incompressible
Navier-Stokes equations, which is a computational intensive task. Furthermore, due to missing
solution theory for the strong formulation of these equations in three dimensions, theoretical
results on the smoothness in stochastic space are not available.
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Figure 6.6: Second moment analysis results for the Karhunen-Loève based random elliptic prob-
lem at NKL = 3 with a visualization of the second moment of the solution field
(left) and convergence results for different kernel functions (right).

Flow over a backward-facing step

In the first flow problem, a classical backward-facing step simulation is considered, cf. Sec-
tion 3.3.3. It is well-known that a vortex forms behind such as step. The approximation of
the mean velocity field and the second moment of the velocity field at time t = 10.0 seconds is
considered. Note that the mean of the so-called reattachment length, cf. Section 3.3.3, will be
approximated in Section 6.2.6. All simulation results discussed here, have a space discretiza-
tion of ND = 50 × 40 × 3 grid points. Discretization in time is done with the second-order
Adams-Bashforth method and adaptive time stepping, cf. Section 5.1.3.
Remember that we defined random input fields u�in(y), µ1(y) and ρ1(y) in Section 3.3.3,

with y ∈ Γ = [−
√

3,
√

3]3. Stochastic approximation is now done with respect to the image of
these input fields, thus the stochastic variable y′ ∈ Γ′ = [0.1, 1] × [0.001, 1] × [500, 1000] with

Figure 6.7: Streamline visualization of solution realizations of the backward facing step problem
with stochastic parameters y′15 ≈ (0.94, 0.26, 560)>, y′20 ≈ (0.24, 0.74, 580)> and
y′32 ≈ (0.11, 0.79, 724)> (from left to right).
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Figure 6.8: Results of the backward facing step model problem with a streamline visualization
of a subset of the mean velocity field colored by the velocity magnitude (left) and
error convergence results in the first component of the mean velocity field (right).

y′ = (u�in , µ1, ρ1)>. To get a uniform approximation, we employ

‖y′‖ :=
∥∥∥∥(u�in , µ1, 10−3ρ1

)>∥∥∥∥
2

in the radial basis function construction. It maps the stochastic variable to the unit cube. All
other parameters in stochastic collocation remain as introduced in Section 6.1.1. Examples of
three flow field realizations at t = 10.0 seconds are given in Figure 6.7.
Figure 6.8 shows results of the mean approximation of the velocity field. The reference

solution is computed by a Gaussian kernel and NΓ′ = 210 = 1024 Halton collocation points.
A streamline visualization of the resulting mean solution field is given on the left-hand side of
Figure 6.8. The right-hand side shows error convergence results in the first component of the
velocity field for different kernel functions and a growing number of collocation points. While
Wendland kernels of order zero and one achieve smaller convergence rates, all other kernels give
rise to an almost identical (measured) convergence rate of 1.4. This fixed maximum convergence
rate suggests a finite smoothness in stochastic space. Overall, Matérn and Gaussian kernels
have a smaller preasymptotic error, such that an approximation error of less than εabs = 10−3

is possible by solving 32 flow problems.
Results for the second moment analysis of the velocity field are given in Figure 6.9. The

reference solution is computed with the Matérn kernel k 3+3
2

and NΓ′ = 1024 collocation points.
This solution is shown on the left-hand side of Figure 6.9. The right-hand side of the same
figure gives error convergence results. Measured error convergence rates are in the range of
1.5 for the Matérn kernel and higher-order Wendland kernels. The Gaussian kernel runs into
conditioning issues beyond 32 collocation points.
Summarizing the results of this study, we get a convergence rate between 1.4 and 1.5 to
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Figure 6.9: Second moment analysis results for the backward facing step model problem with
a visualization of a subset of the second moment of the first velocity component
colored by the magnitude (left) and error convergence results in the first component
of the second moment velocity field (right).

approximate the mean and the second moment of the velocity field of this problem. This
rate clearly outperforms the robust Monte-Carlo and current Quasi-Monte-Carlo methods. A
comparison to the Polynomial Chaos Expansion (PCE) [GS91] and (sparse) spectral tensor-
product approximations [NTW08b, BNT10] will be given in Section 6.2.

Performance results To approximate mean or second moment flow fields in the backward
facing step problem, approximately 50 GB of data are generated (including intermediate time
steps). The average runtime to compute each PDE realization is about 5.33 minutes. Fig-
ure 6.10 outlines on the left-hand side the time required to approximate the mean velocity
field up to a fixed error tolerance of εabs < 10−3. The given timings include the time to
compute the PDE solutions on a 32 GPU cluster, with assumed optimal scaling due to the
independence of each flow realization. Furthermore, runtime measurements of the stochastic
collocation method are included. Approximation by Gaussian and Matérn kernels is by far the
fastest approach here, with a total runtime of about 5.5 minutes on a 32 GPU cluster. Due to
a higher preasymptotic error, approximation by the the other kernel functions (with fixed error
tolerance), is orders of magnitude slower. The right-hand side of Figure 6.10 further gives an
indicator on the composition of the full approximation runtime. Note that this diagram has
a logarithmic vertical axis. It becomes obvious that the runtime of the stochastic collocation
method is only a small fraction of the total runtime. Between 7 and 13 seconds are measured
in the three shown examples. These timings do not show a clear dependence on the number of
collocation points, since timings are largely dominated by file read and write operations with
fluctuating response time on an actively used GPU cluster.
Overall, the achieved approximation error of less than 10−3 within only 5.5 minutes on a
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Figure 6.10: Runtime results on 32 GPUs to approximate the mean velocity field of the back-
ward facing step problem at t = 10 seconds up to an error threshold of εabs < 10−3,
including PDE solution time for all kernels (left) and with a decomposition on the
different algorithmic parts for several kernels and logarithmic scale (right).

32 GPU cluster is an optimal result, showing that uncertainty quantification for smaller flow
problems can now be done in an almost interactive way.

Bubble flow with random volume force modeled by Karhunen-Loève expansion

The second flow problem is a two-phase flow problem, which is discretized in space by a mesh
of ND = 1003 grid points. Time discretization is done with a second-order Adams-Bashforth
method and adaptive time step size control. The problem is discussed in Section 3.3.3, in detail.
A stochastic influence is introduced by a random volume force in which the infinite-dimensional
stochastic parameter is approximated by a truncated Karhunen-Loève expansion of NKL = 3
terms. The correlation length is set to Lc = 2.0. Figure 6.11 shows visualizations of four
solution realizations at t = 0.2 seconds. The bubble is shown by extracting the iso-surface of
the level-set function for a value of zero. Furthermore, a slice of the velocity field with coloring
by the magnitude and velocity field streamlines are visualized.
We first consider the mean approximation. Quadrature follows the default of tensor-product

quadrature with an approximation level of lq = 7. The norm in the radial basis function con-
struction is ‖ · ‖ := σ‖ · ‖2, with σ = 0.1 for the Gaussian kernel and all Wendland kernels and
σ = 1.0 for the Matérn kernel. The approximation of the mean velocity field by the Gaussian
kernel with NΓ = 1024 collocation points is considered as reference solution. Its visualization
by a two-dimensional slice of streamlines is given in Figure 6.12 on the left-hand side. The
right-hand side diagram outlines error convergence results for different kernel functions with
respect to the reference solution. Measured convergence rates in the range of 0.75 are achieved
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Figure 6.11: Visualizations of flow field solutions of the bubble flow with random volume
force and NKL = 3 at t = 0.2 seconds for stochastic parameters y1 ≈
(0.0,−0.58,−1.04)>, y12 ≈ (−1.08,−1.22,−0.07)>, y19 ≈ (0.97,−0.32, 1.45)>
and y411 ≈ (1.21,−0.93,−0.72)> (from left to right).
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Figure 6.12: Streamline slice visualization of the mean velocity field with color-coded velocity
magnitude in the bubble flow problem with random volume forces (left) and error
convergence results for the first component of the same mean velocity field (right).
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Figure 6.13: Results of the second moment analysis of the bubble flow problem with random
volume forces with a logarithmic color-coded slice visualization of the second mo-
ment velocity field magnitude (left) and error convergence results for the first
component of the full second moment velocity field (right).

by Wendland and Matérn kernels. There is a slight reduction in convergence rate for higher
smoothness Wendland kernels. A potential explanation is a lower robustness with respect to nu-
merical outliers in the PDE approximation for higher smoothness kernels. Convergence results,
obtained by the Gaussian kernel, tend towards higher-order or even exponential convergence.
This might suggest a very smooth dependence of the solution field on the random input.
Approximation of the second moment is also studied. Here, the solution by the Wendland

kernel k3,0 with NΓ = 256 is taken as reference solution. All other parameters remain identical
to the mean approximation. A visualization of the magnitude of the second moment velocity
field by a colored two-dimensional slice is given on the left-hand side of Figure 6.13. Note that
the coloring is chosen with a logarithmic scale, such that details of the second moment field
become visible. An empirical error convergence study is given on the right-hand side of the
same figure. Results computed with Wendland kernels of order zero and one and the Matérn
kernel are shown. The empirical convergence rate is in the range of 0.5. However, this seems
to be a preasymptotic result. Furthermore, results of Gaussian and higher-order Wendland
kernels are not shown due to a clearly preasymptotic behavior.
Overall, the given rates for mean approximation clearly outperform Monte Carlo methods.

A convergence comparison to PCE or (sparse) spectral tensor-product methods is given in
Section 6.2.7.

Performance results To approximate the mean of the velocity field by NΓ = 512 collocation
points at time t = 0.2 seconds, a total of about of one terabyte of simulation data is generated.
These numbers are based on the assumption that a simulation time slice is written each 0.005
seconds of simulated time. The average runtime to compute a single flow realization on one
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Figure 6.14: Runtime results on 32 GPUs to approximate the mean velocity field of the bubble
flow with random volume force at t = 0.2 seconds up to an error threshold of εabs <
10−3 including PDE solution time for all kernels (left) and with a decomposition
on the different algorithmic parts for several kernels and logarithmic scale (right).

GPU is 2.11 hours. Remember, that this is about three times faster than approximation on
equally priced CPUs. Based on these numbers and additional measurements of the time to
solve the stochastic collocation problem, we can give idealized measurements for the time that
is necessary to get the mean approximation error below a threshold of εabs = 10−3. Figure 6.14
summarizes these results with the assumption that all independent flow simulations can be run
in parallel on a 32 GPU cluster. It turns out that the Gaussian kernel, the Matérn kernel and
lower-order Wendland kernels achieve the best possible runtime of about 16.88 hours on a 32
GPU cluster. The right-hand side diagram in Figure 6.14 clearly indicates that the stochastic
space approximation needs only a very small fraction of the full computational runtime with
about 20 seconds. Overall, it is possible to achieve mean approximations with an error of
εabs = 10−3 within much less than a day of compute time. This is a profound result for such
a large-scale problem, which is clearly improved by the GPU parallelization of the flow solver.

Stochastic homogenization for rising bubbles

The last large-scale flow problem is stochastic homogenization for rising bubbles, cf. Sec-
tion 3.3.3. It is discretized by a ND = 1003 grid point finite-difference discretization in space
and by a second-order Adams-Bashforth method with adaptive time-stepping in time. A total
of NFN = 5 stochastic dimensions are considered, which include a random three-dimensional
initial bubble position random viscosity and density in the liquid phase. Randomness in all
quantities is introduced by Karhunen-Loève expansions, truncated after the first term.
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Figure 6.15: Flow field and bubble visualization of solution realizations of the bubble homoge-
nization problem with stochastic parameters y′8 ≈ (0.05, 0.07, 0.12, 0.02, 863.64)>,
y′6 ≈ (0.09, 0.05, 0.07, 0.09, 772.73)>, y′33 ≈ (0.1, 0.05, 0.12, 0.08, 512.4)> and y′27 ≈
(0.14, 0.05, 0.09, 0.09, 735.54)> (from left to right).

For technical reasons, we again apply the stochastic approximation in the image of the
five random input fields, thus a stochastic space Γ′ = [0.04, 0.16] × [0.05, 0.07] × [0.04, 0.16] ×
[0.001, 0.1]× [500, 1000] is considered. To approximate that space uniformly, the norm∥∥y′∥∥ := σ

∥∥∥(5xinit1 , 5xinit2 , 5xinit3 , µ1, 103ρ1)
∥∥∥

2

is used in the construction of the radial basis functions. Approximation by Gaussian kernels is
done with σ = 0.1, while all other kernels have σ = 1.0. All other approximation parameters
are set as in Section 6.1.1. Four flow field realizations at t = 0.2 s are shown in Figure 6.15.
Approximation results for the mean of the velocity field at t = 0.2 s are given in Figure 6.16.

The left-hand side image shows a streamline slice visualization of the reference solution, which is
approximated by the Gaussian kernel withNΓ′ = 512 collocation points. On the right-hand side
diagram, error convergence in the first component of the velocity field with respect to different
kernel functions is given. Lower-order Wendland kernels have a measured convergence rate
of about 0.7, while the use of higher-order Wendland kernels leads to empirical convergence
rates of about 0.6. The highest convergence rates are achieved by the Gaussian and the Matérn
kernel with about 0.8. It is interesting to see that increased smoothness of the Wendland kernel
gives decreased convergence rates. This might be related to noise in the solution realizations
due to numerical errors in the approximation of the two-phase Navier-Stokes equations. In
that sense, lower-order methods might be more robust.
The same numerical experiment is carried out for the second moment of the solution velocity

field. The reference solution approximated by the Wendland kernel k5,0 with NΓ′ = 256 collo-
cation points is given in Figure 6.17 on the left-hand side. Here, the magnitude of the second
moment velocity field is visualized in a two-dimensional slice with logarithmic color mapping.
The error convergence diagram, on the right-hand side of the same figure, shows results for
the first component of the second moment velocity field. A similar convergence behavior as in
the mean case is achieved. The Matérn kernel gives the highest convergence rate of about 0.8.
Lower-smoothness Wendland kernels lead to convergence rates of about 0.6. Rates are further
decreased for the higher-order Wendland kernels. Convergence results for the Gaussian kernel
are still in the preasymptotic range. They are skipped here.
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Figure 6.16: Results of the bubble flow stochastic homogenization problem with a streamline
slice visualization of the mean velocity field and color-coded velocity magnitude
(left) and error convergence results for the first component of the mean velocity
field (right).
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Figure 6.17: Logarithmic color-coded slice visualization of the second moment velocity field
magnitude (left) and error convergence results for the first component of the full
second moment velocity field (right) in the bubble flow homogenization test case.
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Figure 6.18: Runtime results on 32 GPUs to approximate the mean velocity field of the ho-
mogenized bubble flow at t = 0.2 seconds up to an error threshold of εabs < 10−2

including PDE solution time for all kernels (left) and with a decomposition on the
different algorithmic parts for several kernels and logarithmic scale (right).

To summarize, we observe convergence rates of up to 0.8 for a large-scale stochastic collo-
cation problem with a five-dimensional stochastic space with potential low smoothness. Note
furthermore that noise due to numerical errors in the domain space might be available. This
is a profound result clearly outperforming Monte Carlo methods.

Performance results We conclude this section, by giving performance results for the appli-
cation problem of bubble homogenization. To compute up to 512 flow field solutions with
solution snapshots every 0.005 seconds of simulated time, about one terabyte of simulation
data is generated. On a single GPU, the average computation time to compute the flow fields
takes about 2.67 hours, due to the efficient GPU parallelization of the flow solver. This leads
to idealized total runtimes on 32 GPUs, which are given in Figure 6.18. On the left-hand side,
the total runtime to achieve a mean approximation error of at least εabs ≤ 10−2 is given. Here,
the averaged runtime of each flow field realization approximation and measured compute times
of the stochastic collocatiom method are taken into account. Approximation by the Matérn
kernel and all Wendland kernels leads to the lowest runtime of about 2.675 hours on 32 GPUs.
The right-hand side of Figure 6.18 compares the runtime of the flow solver to the runtime of
the stochastic collocation method in a logarithmically scaled diagram. The stochastic colloca-
tion method that runs here on a single GPU, takes only about 20 to 30 seconds, which is a
neglectable fraction of the total solution time. Overall, it is possible to approximate the mean
solution field of this highly complex application problem, up to two valid digits, in less than
three hours on 32 GPUs.
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6.1.5 Conclusions

The non-intrusive radial basis function kernel-based stochastic collocation method allows to
approximate stochastic moments of random PDEs. Up to exponential convergence order is
possible for appropriately smooth problems. For the discussed large-scale flow problems, at
least algebraic convergence rates are possible, which clearly outperform Monte Carlo methods.
Mean approximation of computational intensive two-phase problems with up to a few valid
digits is possible at total runtimes between a few hours and less than a day. This is due to the
GPU-based high code performance and low preasymtotic errors of the collocation method. By
that way, uncertainty quantification becomes practical for real-world applications with strong
time limitations.

6.2 Comparison to (sparse) spectral tensor product approximations
In this section, the proposed kernel-based stochastic collocation method is compared to stan-
dard full tensor-product and sparse grid approximations. Stochastic collocation with tensorized
global Lagrange polynomials and the (generalized) Polynomial Chaos Expansion (PCE) are
considered. Due to prohibitive overall computational runtimes, only a subset of the model and
application problems from Chapter 3 are discussed.

6.2.1 Benchmark setup

The numerical studies for the RBF kernel-based stochastic collocation method are evaluated
using the GPU-based numerical software from Section 4.5. Discretization in space is identical
to Section 6.1

RBF-based stochastic collocation Gaussian kernels with scaling parameter ε = 1, Wendland
kernels of second order and/or Matérn kernels with β = NKL+3

2 are applied as standard. The
norm in the radial basis function construction is ‖ · ‖ := σ‖ · ‖2 with σ = 1, if not stated
otherwise. Regularization is usually set to εreg = 10−12. The default quadrature level is
lq = 7 with tensor-product Clenshaw-Curtis quadrature. Collocation points are sampled from
a Halton sequence of appropriate dimension.

Stochastic approximation by Dakota Approximations by the kernel-based method shall be
compared to results from existing numerical techniques in uncertainty quantification. To this
end, model and application problems are solved with the kernel-based method and with the
Dakota framework [ABB+09a]. Dakota is a parallel software framework developed by the San-
dia National Laboratories. It allows e.g. to apply optimization and uncertainty quantification
for black-box solvers. Numerical techniques for uncertainty quantification in Dakota, which
are of main interest here, are (generalized) Polynomial Chaos Expansion and tensor-product
stochastic collocation methods. Dakota features both methods with full tensor product con-
structions and sparse (grid) constructions, where the latter ones are known to overcome the
curse of dimensionality for important model problems.
An introduction to PCE is given in [GS91]. Following [ABB+09a], Dakota implements gen-

eralized PCE using the Askey scheme [XK02]. Approximations are made using Legendre or-
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Listing 6.1 The part of the Dakota input file, which configures the PCE method.
method

polynomial_chaos
quadrature_order = <order>

# sparse_grid_level = <level>
dimension_preference = <N_KL>*1
samples = 10000 seed = 12347 rng rnum2
output silent

Listing 6.2 Configuration for the stochastic collocation method in Dakota.
method

stoch_collocation
quadrature_order = <order>

# sparse_grid_level = <level>
dimension_preference = <N_KL>*1
samples = 10000 seed = 12347 rng rnum2
output silent

thogonal polynomials, since we consider uniform random input variables. To be concise, the
interested reader is referred to the technical documentation [ABB+09b] for details of the ap-
plied method. We summarize the important numerical methods-related part of the applied
Dakota configuration file in Listing 6.1. In case of full tensor product approximations, <order>
is replaced by the target approximation order for the univariate polynomials. Alternatively, the
key word sparse_grid_level indicates the use of sparse approximations with <level> being
replaced by the sparse grid level. Moreover, <N_KL> is filled with the dimension in stochastic
space.
Classical stochastic collocation uses univariate Lagrange polynomials as Lagrange basis func-

tions [NTW08b, BNT10]. These are collocated in appropriate Gauss points and perform inter-
polation for function values given in these collocation points. For multi-variate interpolation,
thus higher dimensions in stochastic space, either a full tensor product of the univariate La-
grange polynomials or a Smolyak sparse grid construction [Smo63] is used. More details are
given in [ABB+09a, ABB+09b]. The standard parameters for stochastic collocation bench-
marks are given in Listing 6.2. It turns out that both sets of parameters lead, for fixed level
or order and sparsity, to the same numerical results, cf. [ABB+09a, Section 5.4]. Nevertheless,
both approximations are computed for the less computational expensive problems, while only
(sparse grid) stochastic collocation is used for problems of high computational intensity.
In both approaches, classical stochastic collocation and PCE, it is further possible to define

weights for the different stochastic dimensions by dimension_preference, leading to weighted
approximation spaces, thus e.g. anisotropic sparse grids [NTW08a]. Note that this option is
not used here, because the RBF kernel-based stochastic collocation is also discussed without
any directional preference. However, the topic of dimension-wise weighting will be outlined in
Chapter 10 for kernel-based methods.
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Approximation of the mean of quantities of interest A limitation of the Dakota frame-
work with loosely coupled black-box PDE solvers is the lack of a mechanism to address full
(discretized) solution fields as quantities of interest in an efficient way. Therefore, in contrast
to the previous section, the subsequent convergence studies compare kernel-based results and
Dakota-based results only using a single-valued quantity of interest. To be more specific, in
those cases, where the only quantity of interest defined in Chapter 3 is a field, e.g. u(y,x), we
move over to the integral over this quantity, which is replaced by the Monte-Carlo estimator
using the discretization points, thus

π(u(y, ·)) := 1
ND

ND∑
i=1
u(·,xi) .

As long as a constant number of grid points is used in the convergence studies, this construction
is expected to have a limited influence on the error behavior, cf. Section 6.3.1 for an in-depth
analysis of related approximations.

Implementation In case of full random PDE problems without analytic solution, the corre-
sponding PDE solvers for elliptic and two-phase Navier-Stokes problems are implemented on
GPUs with discretization parameters as discussed in the last section, cf. Section 6.1.1. This
also holds for the Dakota benchmarks, in which the GPU codes are called from the CPU-based
Dakota control program. Quantities of interest in the flow examples are extracted using the
Python interface of Paraview, which might introduce additional approximation errors.

Error analysis structure The structure of the convergence studies will be similar to the previ-
ous section. Comparisons between kernel-based results and Dakota-based results are presented
for the first stochastic moment. Reference solutions will be defined separately for each model
and application problem. Either exact or so-called overkill reference solutions will be used. We
compute relative errors

εrel := |vsol − vref ||vref |
,

with vsol the approximate solution and vref the reference solution. This is trivially possible,
since the quantity of interest is always a single number. Convergence plots are given with
respect to the number of collocation points, because this is the only relevant quantity in most
real-world applications in which each PDE solve is in the range of hours of compute time.

6.2.2 One-dimensional random-coefficient elliptic problem

This model problem is an elliptic random-coefficient problem with one-dimensional stochastic
space. As introduced in Section 3.1.1, it has a well-known analytic solution.
Figure 6.19 presents the comparison between kernel-based stochastic collocation and PCE

or stochastic collocation in Dakota. The Gaussian kernel is used with regularization parameter
εreg = 10−15, while the Wendland kernel k1,2 uses the standard of εreg = 10−12. Since there
is just one stochastic dimension, only full tensor-product (TP) constructions are considered.
As motivated in the benchmark setup description, the quantity of interest π(u(y, ·)) is taken.
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Figure 6.19: Comparison between kernel-based and tensor product-based approximations for
the mean of the defined quantity of interest with respect to the random-coefficient
Poisson problem with one-dimensional stochastic space.

Due to linearity of the mean operator and the linear quantity of interest operator, the exact
solution field can be used as reference solution with uref := π(E [uexact] (x)). The analysis shows
that both Dakota-based tensor-product methods show exponential convergence in this simple
model problem. Note that both methods produce exactly the same solutions, here, leading two
identical graphs in the figure. These results overcome the algebraic convergence rate of the
Wendland kernel. However, the Gaussian kernel clearly outperforms PCE and tensor-product
stochastic collocation. While it has the same exponential convergence, it converges with only
four collocation points up to machine precision. This is an impressive result, underlining the
excellent asymptotic and pre-asymptotic properties of the method.

6.2.3 g function

This study with variable stochastic dimension and analytic solution follows Section 3.1.2. Note
that this problem does not fulfill the smoothness requirements of e.g. Smolyak sparse grid
constructions [Smo63]. It therefore is representative for problems with limited smoothness.
Comparisons between the kernel-based method and (sparse) tensor-product based methods

are given in Figure 6.20 for NFN = 5 (left) and NFN = 11 (right). In the kernel-based approx-
imation by the Gaussian kernel kε, the scaling parameter is set to ε = 2.0, in contrast to the
defined standard. Furthermore, the approximation by the Gaussian kernel is regularized with a
regularization parameter εreg = 10−8, which is slightly stricter than the defined standard. Also,
the kernel-based method uses tensor-product quadrature with lq = 4 in the five dimensional
case and sparse grid quadrature with the same level as in the eleven-dimensional case.
It is obvious that the kernel-based stochastic collocation by Gaussian kernels clearly out-

performs both tensor-product (TP) and even both sparse grid-based (SG) methods in the
five-dimensional case. Exponential rates are not visible for stochastic collocation by global
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Figure 6.20: Convergence study of the mean of the g function for stochastic dimensions NFN =
5 (left) and NFN = 11 (right) with respect to different numerical methods.

polynomials and for the Polynomial Chaos Expansion. Gaussian kernels have a much bet-
ter preasymptotic behavior and even a better convergence rate. This is probably due to the
limited smoothness of the problem. This is a profound result, indicating the advantage of
kernel-based methods for problems with limited smoothness. In the eleven-dimensional case all
methods have similar, low convergence rates. However, the Wendland kernel still has a better
preasymptotic behavior.

6.2.4 Elliptic problem with piecewise constant random diffusion field

Remember from Section 3.2 that this model with piecewise constant coefficient diffusion field
and four stochastic dimensions has no analytical solution. Therefore an overkill solution is
considered. The reference solution will be an approximation by stochastic collocation with
sparse grids on level 15. In all results, a finite-difference approximation with ND = 5122 points
is used. For kernel-based approximation, Gaussian kernels with ε = 0.5 are taken. Full tensor
product quadrature on level lq = 5 is applied. All remaining parameters are left as discussed
in Section 6.2.1.
Convergence results are given on the left-hand side of Figure 6.21. The Wendland kernel

shows algebraic convergence. Gaussian kernels lead to high-order algebraic convergence or
even exponential convergence, noting one outlier in the convergence plot. Full tensor-product-
based stochastic collocation (TP) outperforms convergence results of the Wendland kernel in
the preasymptotic regime. It is well-known that tensor-product stochastic collocation shows
exponential convergence for this model problem. Consequently, the given results are still in
the preasymptotics.
Exponential convergence is also expected for the sparse approximation method (SG). Since

a higher interest is put on convergence results with up to thousands of collocation points, it
is not possible to show this exponential result here. Nevertheless, further convergence studies
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Figure 6.21: Error behavior comparison of the mean of quantity of interest in the two-
dimensional piecewise constant random-coefficient Poisson problem (left) and the
Karhunen-Loève expansion based random-coefficient elliptic problem (right).

(not shown here) confirm an exponential error drop with several levels of intermediate error
stagnation, for the sparse-grid method. Given the results presented in Figure 6.21, on the
left hand side, kernel-based stochastic collocation with Gaussians and sparse tensor-product
approximation have results in the same error range. Note that Polynomial Chaos Expansion
results are given, as well. However, they are identical to results from tensor-product stochastic
collocation.

6.2.5 Elliptic problem with Karhunen-Loève expansion-based random diffusion

Next, we consider the two-dimensional elliptic problem with a random diffusion field, which is
approximated by a Karhunen-Loève expansion. This expansion is truncated after five terms,
thus we have a stochastic dimension of NKL = 5. The correlation length is Lc = 1

16 . Further
discussion of the problem is given in Section 3.2. As before, we have to compute an overkill
solution as reference. An approximation with the sparse grid stochastic collocation method on
level seven is used, since a fix-point is reached at this level. In the kernel-based method, radial
basis functions are constructed with standard RBF norm and a scaling factor of σ = 0.005.
In contrast to the standard, quadrature is done using full tensor-product quadrature with
univariate Clenshaw-Curtis rules on level lq = 5.
Figure 6.21 displays convergence results for this study, on the right-hand side. The Gaussian

and Wendland kernel show similar convergence results for the chosen scaling. Sparse and full
tensor-product stochastic collocation approaches clearly outperform kernel-based approxima-
tion with exponential convergence rates. Nevertheless, the error level seems to be similar on up
to 100 collocation points for all methods. Notice here that the shown problem is the standard
example for good convergence of both tensor product stochastic collocation methods.
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Figure 6.22: Kernel-based approximation of the mean vortex reattachment length for flows
over a backward-facing step outperforms classic sparse grid-based stochastic
collocation.

6.2.6 Vortex reattachment length in flows over a backward-facing step

In this study, we consider the medium-scale time-dependent flow problem from Section 3.3.3.
The quantity of interest is the vortex reattachment length at a physical time of t = 10 seconds.
Discretization of the Navier-Stokes equations is done with a space grid resolution of ND =
50× 40× 3. Velocity boundary conditions, density and viscosity are the three random inputs.
Remember that they are each modeled by a one-term Karhunen-Loève expansion. We then
consider a tensor product of these inputs. Therefore, we have a stochastic dimension of NFN =
3. Kernel-based approximation with Gaussian kernels and NΓ′ = 210 = 1024 collocation points
is defined as reference overkill solution. This choice is made, since this solution is converged
out well, in a reasonable way. Note that another reference solution might give different results.
In contrast to the previous experiments, approximations from Dakota were not chosen, since
they did not clearly converge to a fix-point. Higher orders or levels of approximation could not
solve this issue.
Kernel-based approximation uses tensor-product quadrature of level lq = 9. As in Sec-

tion 6.1.4, the image space Γ′ of the random input fields is considered for kernel-based approx-
imation and Dakota. The Gaussian kernel is applied with standard scaling σ = ε = 1.0, while
Wendland and Gaussian kernels have a scaling of σ = 0.1 in the RBF norm, which is further
defined as ‖y′‖ :=

∥∥∥(u�in , µ1, 10−3ρ1
)>∥∥∥

2
.

Figure 6.22 shows convergence graphs for this comparison study. Due to high computational
times, only sparse grid (SG) stochastic collocation is considered. Gaussian, Wendland and
Matérn kernels show higher-order algebraic convergence rates. For this reason, they clearly
outperform the sparse approximation method, which shows (preasymptotic) lower-order alge-
braic rates. In terms of error with respect to the number of collocation points, Wendland and
Matérn kernels have at least the same preasymptotic error (besides one outlier for NΓ = 64).
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Figure 6.23: The large-scale two-phase flow problem with rising bubbles and the approximation
of the mean bubble center position is clearly better solved by the kernel-based
stochastic collocation approach.

Beyond approximately 200 collocation points, all kernel-based methods outperform the sparse
grid-based method, which is a profound result.

6.2.7 Bubble center in flows with Karhunen-Loève based random volume force

We finally consider the problem of a rising gas bubble in water which is subject to a random
volume force, cf. Section 3.3.3. Random input is modeled by a Karhunen-Loève expansion
which is truncated after the third term, thus we have NKL = 3 stochastic dimensions. A
correlation length of Lc = 2.0 is used. The quantity of interest is the bubble’s center position
at a physical time of t = 0.2 seconds. As in the previous example, the reference solution is the
mean, approximated by a Gaussian kernel, here with NΓ = 512 collocation points. Stochastic
collocation by sparse tensor product constructions, did not seem to be close to a fix-point
solution for a reasonable amount of solution realizations.
In case of kernel-based approximation, the standard RBF norm ‖ · ‖ := σ‖ · ‖2 with a

modified scaling of σ = 0.1 is taken. Quadrature is full tensor-product quadrature on level
lq = 9. Results computed with the Gaussian kernel are regularized with εreg = 10−6 while
Matérn kernel results are regularized with εreg = 10−5.
In Figure 6.23, convergence results are collected for a mean approximation by Gaussian

kernels, Matérn kernels and stochastic collocation by sparse grids (SG). It becomes evident
that both kernel-based methods show better convergence than the sparse grid-based method.
Higher-order algebraic rates are achieved by both kernel methods. Furthermore, errors are
always below the results of the classic stochastic collocation method. Remember here that a
very computationally challenging problem is considered. Achieving an error with almost four
valid digits with only 256 simulations is an impressive result for such a challenging problem.



6.3 Empirical error coupling analysis 133

6.2.8 Conclusions

Classical methods in uncertainty quantification such as Polynomial Chaos Expansion or sto-
chastic collocation on sparse and full tensor product constructions show asymptotically expo-
nential convergence rates on sufficiently smooth problems. Nevertheless, in many large-scale
uncertainty quantification problems, the quantity of interest has either limited smoothness
with respect to the random input or low preasymptotic errors are of higher importance. This
is where kernel-based stochastic collocation has its main advantage. In that sense, the pro-
posed method does not replace classical methods, but gives an additional benefit for specific
large-scale random PDE problems.

6.3 Empirical error coupling analysis

In Section 6.1, we studied the convergence properties of the RBF kernel stochastic collocation
with a main focus on the convergence of stochastic moment estimates with respect to the num-
ber of collocation points and different RBF kernel functions. In the presented results, quadra-
ture and finite difference discretization were chosen as accurate as possible. Furthermore, the
number of Karhunen-Loève expansion terms were understood to be fixed, thus approximation
was not investigated with respect to the limit case NKL →∞.
However, now, the different error couplings between the Karhunen-Loève approximation,

finite difference approximation, collocation approximation and quadrature approximation shall
be investigated. The ultimate goal will thus be to find conditions, such that all involved
approximations have a total error below a fixed error tolerance. This will also allow to give
(empirical) computational complexities in terms of the error tolerance. Furthermore, relations
between approximation parameters are considered.
Remember that we discussed in Section 4.6.2 the error splitting for the evaluation of the

first stochastic moment by the proposed kernel-based stochastic collocation method for time-
stationary problems. We have the splitting∥∥∥E [u]− Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

≤ εKL + εhD + εNΓ + εQ (6.1)

= ‖u− uKL‖L2(Ω;L2(D)) + ‖uKL −DhDuKL‖L2(Γ;L2(D))

+ ‖DhDuKL − INΓDhDuKL‖L2(Γ;L2(D))

+
∥∥∥E [INΓDhDuKL]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

.

Here, u is the exact solution of a random PDE problem, uKL is its solution for random input
fields that are approximated by a Karhunen-Loève expansion, Dh is the projection on the finite
difference approximation space, INΓ is the stochastic collocation approximation operator and
Ql,NKL is the quadrature operator.
The additive nature of the involved approximation errors motivates to study the influence

of these errors independently. That is, the empirical error coupling analysis will discuss con-
vergence for the Karhunen-Loève expansion approximation error εKL, the finite difference
discretization error εhD , the stochastic collocation error εNΓ and the quadrature error εQ sep-
arately. Since it is impossible for non-trivial random PDE problems to eliminate all but one
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approximation error, the main approach will be, to fix all but one approximation error at a
reasonably high level and analyze the convergence behavior with respect to the remaining ap-
proximation. This, of course, cannot replace a full error analysis. However, it gives rise to a
rough empirical relationship between all involved errors. Furthermore, it might be the only
way to investigate the error behavior for a rather complex coupled problem without solution
theory (in strong formulation) like the two-phase Navier-Stokes equations.

6.3.1 Error measurements in discrete norms

Before we come to the empirical analysis of all involved errors, we have a second look at the
above error splitting. All described errors are measured in some continuous norm. To be able
to give empirical upper bounds to the moment approximation error, we need two ingredients.
The first ingredient are discrete error norms that will approximate the Bochner and Lebesgue
norms which are used for continuous functions. The second ingredient are estimates relating
the continuous norms to the discrete norms, in terms of error bounds. Combining both, will
help to understand the relationship between measured errors and theoretical upper bounds to
the error.
Let us start by introducing suitable discrete error norms. The first norm will be a discrete

version of the L2(D) norm, which will be called `2(D) norm. It shall be defined for functions
u ∈ L2(D) ∩ C(D) and reads as

‖u‖`2(D) :=

 1
ND

ND∑
i=1

((EhDu)i)2

1/2

=

 1
ND

ND∑
i=1

(u(xi))2

1/2

.

The operator EhD samples the function u at the ND finite difference discretization grid points
XD,ND = {xi}NDi=1, thus is a mapping EhD : L2(D) ∩ C(D) → RND . In fact, for uniform finite
difference grids, the `2(D) norm is a rectangular quadrature rule approximating the full L2(D)
norm with respect to abscissas chosen identical to the finite difference grid points.
The second norm shall be defined for functions u ∈ L2(Γ) ∩ C(Γ), with

‖u‖`2MC(Γ) :=

Vol(Γ)
NMC

NMC∑
j=1

(u(ξj))2ρ(ξj)

1/2

,
(
ξj

)NMC

j=1
uniform i.i.d. samples, ξi ∈ Γ .

It is the standard Monte-Carlo estimator for the L2(Γ) norm. Note that the ξj are not iden-
tical to the collocation points yj . By combining both norms, it is possible to introduce
the discrete version of the L2(Γ;L2(D)) norm, namely the `2(Γ; `2(D)) norm for functions
u ∈ L2(Γ;L2(D)) ∩ C(Γ;C(D)), as

‖u‖`2(Γ;`2(D)) :=

Vol(Γ)
NMC

1
ND

NMC∑
j=1

ND∑
i=1

(
u(ξj ,xi)

)2
ρ(ξj)

1/2

and the ξi as before. Next, we want to understand the discrete norm `2(Γ; `2(D)) as a numerical
approximation to the continuous norm L2(Γ;L2(D)). This will allow to relate both norms to
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each other. With the additional requirement of u(·,x) ∈ C2(D) and a uniform finite difference
grid, we can estimate with high probability

‖u‖2L2(Γ;L2(D)) =
∫

Γ

∫
D

(u(y,x))2 dxρ(y)dy (6.2)

≤
∫

Γ

 1
ND

ND∑
i=1

(u(y,xi))2 + c1(y)h2
D‖u(y, ·)‖C2(D)

 ρ(y)dy (6.3)

=
∫

Γ

1
ND

ND∑
i=1

(u(y,xi))2 ρ(y)dy +
∫

Γ
c1(y)h2

D‖u(y, ·)‖C2(D)ρ(y)dy (6.4)

≤ Vol(Γ)
NΓ

1
ND

NMC∑
j=1

ND∑
i=1

(
u(ξj ,xi)

)2
+ c2N

−1/2
MC

ND∑
i=1

σ
(
(u(y,xi))2

)
(6.5)

+
∫

Γ
c1(y)h2

D‖u(y, ·)‖C2(D)ρ(y)dy

= ‖u‖2`2(Γ,`2(D)) + c2N
−1/2
MC

ND∑
i=1

σ
(
(u(y,xi))2

)
(6.6)

+ h2
D

∫
Γ
c1(y)‖u(y, ·)‖C2(D)ρ(y)dy .

In (6.3) a tensor product quadrature with a univariate rectangle rule and with second-order
convergence is introduced by adding a zero. This of course might require some additional
smoothness. Remember that we have Γ ⊂ RNKL . The point-wise given constant c1(y) is the
usual constant of that quadrature rule. Afterwards, (6.5) introduces a Monte-Carlo quadrature
rule in stochastic space. Following [Caf98, Theorem 2.1], the statement in (6.5) has to be
understood probabilistically. We furthermore have for f ∈ L2(Γ) the variance of f given as

(σ(f))2 := 1
Vol(Γ)

∫
Γ

(
f(y)−

∫
Γ
f(y′)dy′

)2
dy .

Overall, we get with the abbreviations

c′(u) :=
(∫

Γ
c1(y)‖u(y, ·)‖C2(D)ρ(y)dy

)1/2
and c′′(u) :=

c2

ND∑
i=1

σ
(
(u(y,xi))2

)1/2

the approximation estimate for the continuous norm by

‖u‖L2(Γ;L2(D)) ≤ ‖u‖`2(Γ,`2(D)) + c′(u)N−1/4
MC + c′′(u)hD . (6.7)

While classical literature sometimes uses error measurement norms like ‖ · ‖`2(Γ;`2(D)), the
above estimate clearly shows that these measurements might be strongly overlaid by some not
necessarily fast decaying error. Very often, there is no other way to measure errors in numerical
studies, however it should be kept in mind that an error measured in a discrete norm does not
necessarily reflect the error in the original continuous norm.
We finally apply the above result to the error estimates for the first stochastic moment in
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equations (4.22) and (4.23). By doing that, we get with the abbreviation uhD := DhDuKL and
using linearity of integration and of the first stochastic moment∥∥∥E [u]− Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

(6.8)

(6.1)
≤ ‖u− uKL‖L2(Ω;L2(D)) + ‖uKL −DhDuKL‖L2(Γ;L2(D)) (6.9)
+ ‖DhDuKL − INΓDhDuKL‖L2(Γ;L2(D))

+
∥∥∥E [INΓDhDuKL]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

≤ ‖u− uKL‖L2(Ω;L2(D)) + ‖uKL − uhD‖`2(Γ;`2(D)) (6.10)

+ ‖uhD − INΓuhD‖`2(Γ;`2(D)) +
∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
`2(D)

+ c′ (uKL − uhD)N−1/4
MC + c′′ (uKL − uhD)hD

+ c′ (uhD − INΓuhD)N−1/4
MC + c′′ (uhD − INΓuhD)hD

+ c′′′
∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
C2(D)

hD .

In (6.10), an additional approximation by a quadrature rule in space D is introduced, with a
constant c′′′. The first four terms will be the errors under consideration in the next paragraphs.
Note that the error in the Karhunen-Loève expansion is still given in its corresponding natural
norm ‖ · ‖L2(Ω;L2(D)). This will be discussed in Section 6.3.3.

6.3.2 Benchmark setup

In the following paragraphs, numerical estimates for the different discretized error terms will
be given. This is done with respect to two model problems.
The first model problem is the random-coefficient elliptic problem in which the random input

field is approximated by a Karhunen-Loève expansion, cf. Section 3.2.2. Discretization in space
is done with finite differences on a uniform grid with ND = 5122 unknowns. The solution is
approximated by a Jacobi-preconditioned CG solver, which is said to have converged if the
norm of the residual drops below 10−15. The quantity of interest is the full solution field.
As second model problem, the two-phase Navier-Stokes equations with random forcing term

are solved. Random volume forces are modeled by a truncated Karhunen-Loève expansion,
cf. Section 3.3.3. Correlation length Lc = 2.0 is assumed. A uniform grid with ND = 1003

unknowns is used in space discretization. Time discretization is done by a second-order Adams-
Bashforth method with adaptive time-stepping. Other involved discretization methods follow
Section 5.1. As proposed in Section 3.3.3, the quantity of interest is the bubble position at
time t = 0.2. It is evaluated by Paraview.
All error measurements are performed with the GPU-based framework introduced in Sec-

tion 4.8. Also, if not stated otherwise, we use NKL = 3 for both model problems.
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Figure 6.24: Measurement of the Karhunen-Loève expansion error for the elliptic random PDE
problem (left) and for the random two-phase Navier-Stokes problem (right).

6.3.3 Karhunen-Loève expansion error

While some of the other errors are often discussed by numerical means in classical literature, the
Karhunen-Loève expansion error is usually neglected, already expecting a finite-dimensional
description of the random PDE problem. For many model problems, it is well-known from
theory, cf. [BNT10], that the solution error decay in the number of Karhunen-Loève terms is
exponential, if the input random field is modeled by an exponentially convergent Karhunen-
Loève expansion. An empirical estimate of the Karhunen-Loève expansion error thus seems to
be of moderate importance. However, if non-linear problems with little to no knowledge on
solvability, such as the two-phase Navier-Stokes equations, come into play, theoretical results
do not exist. Therefore, empirical studies become the only way to understand the properties
of the involved equations (see also Part III of this thesis).
Due to missing similar empirical studies in the literature, it is not obvious, how to measure the

Karhunen-Loève expansion error with respect to a random input approximated by a Karhunen-
Loève expansion. Also, from a theoretical point of view, it is not clear, how to relate the
error norm L2(Ω;L2(D)) to some easily computable discrete analogue. In the following, the
Karhunen-Loève expansion error will be evaluated in terms of the approximation of the first
moment. Therefore the original error ‖u− uKL‖L2(Ω;L2(D)) is replaced by∥∥∥Ql,NKLINΓDhD (u− uKL)

∥∥∥
`2(D)

with suitable modifications to the involved operators to be defined on the infinite-dimensional
solution u.
On the left-hand side of Figure 6.24, a convergence study of the above defined Karhunen-

Loève expansion error is given for the elliptic problem with a growing number of expansion
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terms, i.e. stochastic dimensions, in the input. The Wendland kernel kNKL,2 is used for approx-
imation with NΓ = 210 collocation points, regularization εreg = 10−12, Clenshaw-Curtis sparse
grid quadrature at level lq = 9 and a dimension-dependent norm in the kernel construction
with ‖ · ‖ := 0.5

√
0.1NKL‖ · ‖2. Displayed error results reflect the differences in l2(D) norm

between consecutive approximation levels. The convergence graph suggests exponential error
decay in the early asymptotic regime. Notice however that e.g. the collocation error might
become dominant with growing dimension.
A second study is given for the random two-phase Navier-Stokes equations. Here, a Gaussian

kernel kε with ε = 0.5
√

0.1NKL , the standard Euclidean norm in kernel construction, approxi-
mation with NΓ = 28 collocation points, regularization εreg = 10−8 and Clenshaw-Curtis sparse
grid quadrature at level lq = 5 is used. The error in the quantity of interest is computed with
respect to the solution for NKL = 5. A convergence graph is given on the right-hand side of
Figure 6.24. This error result might be overlaid by the stochastic collocation or interpolation
error, cf. Section 6.3.5. Note that there is even a small increase in error for two Karhunen-Loève
terms. Nevertheless, there seem to be two error levels for approximation with one or two terms
and approximation with three or more terms. The error drop might be caused by the rather
large correlation length in the studied problem. Convergence stagnation could be related to
dominant auxiliary errors in higher dimensions. However, this is clearly a preasymptotic result.
Overall, showing convergence with respect to a growing number of terms in the Karhunen-

Loève expansion of the input random field is challenging. Dominant approximation errors in
higher dimensions might influence the given results. Nevertheless, one can expect an exponen-
tial Karhunen-Loève error decay for the elliptic problem and potentially similar behavior for
the Navier-Stokes case leading to

‖u− uKL‖L2(Ω;L2(D)) . c e−cKL(u)NKL νKL(‖u‖) ,

where c is always a generic constant. The symbol . shall indicate that the above result is only
given by empirical means, at least for the Navier-Stokes equations. Measurements do not allow
to quantify a suitable norm-dependence on the right-hand side. This (unknown) dependence
is described by the term νKL(‖u‖). Moreover, cKL(u) models problem-dependent convergence
speed.

6.3.4 Finite difference approximation error

To be concise, the finite difference approximation error will not be evaluated here. In case
of constant-coefficient Poisson problems with Dirichlet boundary condition and the standard
five point stencil, classical literature gives an estimate for the error between the exact solution
v ∈ C4(D̄), D = (0, 1)2 and the finite difference approximation vh as

|v(x)− vh(x)| ≤ c hD ‖v‖C4(D̄) ∀x ∈ XD,ND .

Here, a numerical analysis would need to discuss exactly the given (parametrized) problem.
Obviously, requirements on finite upper bounds of the solution with respect to the parametric
input would be necessary. This is future work. However, from practice, we know that upper
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bounds might be expressed like

‖uKL − uhD‖`2(Γ;`2(D)) . c cD(uKL)hD2 νD(‖uKL‖) .

The term cD(uKL) shall hide the potentially difficult dependence on the parametrized input
and on e.g. discretization parameters, while νD(‖uKL‖) models norm-dependence of the upper
bound. The operator . highlights that this result is only based on empirical knowledge.
Experimental studies in e.g. [CGS09] further suggest finite difference approximation error

bounds of the form

‖uKL − uhD‖`2(Γ;`2(D)) . c cD(uKL)hDpD νD(‖uKL‖), pD ∈ [1, 2]

for the velocity field of stationary random two-phase Navier-Stokes problems discretized as in
Section 5.1, with the same restrictions as before. Both above empirical estimates will be used
in the final error coupling.

6.3.5 Stochastic collocation approximation error

Next, the stochastic collocation approximation error, thus the term

‖uhD − INΓuhD‖`2(Γ;`2(D))

is evaluated. This is again done for the two Karhunen-Loève based random PDE problems.
Convergence is compared for the Gaussian kernel kε with ε = 1, the Wendland kernels kNKL,1
and kNKL,2 and the Matérn kernel kβ with β = NKL+3

2 . The kernel norm is a scaled Euclidean
norm ‖ · ‖ := σ‖ · ‖2. Kernel regularization is set to εreg = 10−12. The evaluation of the
`2(Γ; `2(D)) norm involves the computation of solutions of the random PDE as deterministic
parametric problem and samplings of the response surface of the full random PDE, which is
computed by the kernel-based stochastic collocation method. The sampling is done by NMC

appropriately distributed Monte Carlo samples ξj ∈ Γ.
The elliptic random PDE problem is considered first. Remember that a stochastic dimension

of NKL = 3 is fixed and we set σ = 1 and NMC = 1024. The results of this study are given on
the left-hand side of Figure 6.25. As expected, Wendland and Matérn kernels give algebraic
convergence rates. Exponential convergence can be achieved by the Gaussian kernel, due to
the high regularity of the elliptic random PDE problem. We can conclude to have

‖uhD − INΓuhD‖`2(Γ;`2(D)) . c e−cΓ(uhD )NΓ νΓ(‖uhD‖)

for the elliptic problem and Gaussian kernels, with cΓ(uhD) problem- and (stochastic) dimen-
sion-dependent convergence speed and νΓ(‖uhD‖) some general norm term. Note again that
this is no real upper bound, but a rough empirical estimate.
The second problem under consideration is the random two-phase Navier-Stokes problem.

Stochastic dimension is set to NKL = 3. A scaling of σ = 0.1 is applied. Due to the extreme
computational effort, only NMC = 27 Monte Carlo samples are used to evaluate the norm. On
the right-hand side of Figure 6.25, the convergence results for the different kernel choices are
given. These results suggest a limited regularity of the mapping between the stochastic space
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Figure 6.25: The stochastic collocation approximation error for the elliptic problem (left) de-
pends on the applied kernel function, while the error decay is fixed to a slow
algebraic rate for all kernels in the Navier-Stokes case (right), due to limited
regularity.

and the quantity of interest of the solution of the two-phase Navier-Stokes equations. In fact,
all kernel functions show a similar, low algebraic convergence rate, with some stability issues
for the Gaussian kernel. Therefore, we get for the Navier-Stokes case an empirical stochastic
collocation error estimate of the form

‖uhD − INΓuhD‖`2(Γ;`2(D)) . cNΓ
−pΓ(uhD ) νΓ(‖uhD‖) ,

with pΓ(uhD) a potentially complicated term with describes a dimension-, discretization- and
problem-dependence algebraic convergence rate in stochastic space. Also, some solution norm
term on the right-hand side is formally given by νΓ(‖uhD‖). However, its structure cannot be
measured here.

6.3.6 Quadrature error

Finally, we have a look at the quadrature error∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
`2(D)

.

Both random PDE problems are solved with a Gaussian kernel kε, ε = 1.0 and the standard
Euclidean kernel norm. Regularization is set to εreg = 10−12. Since we have analytic formulas
(in terms of the error function) to evaluate the mean of Gaussian kernels, cf. Section 4.5.1, the
above error can be evaluated up to (almost) machine precision.
For the elliptic problem with NKL = 3, stochastic collocation is done with NΓ = 210 collo-

cation points. Figure 6.26 gives on the left-hand side the error decay for full tensor-product
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Figure 6.26: The error in the full tensor-product and sparse grid quadrature based on univariate
Clenshaw-Curtis quadrature rules shows similar behavior for the elliptic problem
(left) and the two-phase Navier-Stokes problem (right).

and sparse grid quadrature using univariate Clenshaw-Curtis rules with growing levels lq. In
both cases, exponential convergence is achieved. Since a rather low-dimensional problem is
investigated, the full tensor-product quadrature rule still outperforms the sparse grid method,
with error stagnation at machine precision. Obviously, this will not hold for high dimensions
in stochastic space.
The same study is repeated for the flow problem, again with NKL = 3, thus a three-

dimensional stochastic space. Stochastic collocation is done with NΓ = 29. In Figure 6.26,
on the right-hand side, an almost identical error convergence behavior can be observed, com-
pared to the elliptic case. The only difference is an offset in the overall error level, since no
relative error measure is used. This result suggests that the convergence in quadrature is in-
dependent of the underlying PDE problem. For both applied quadrature techniques, it reads
as ∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
`2(D)

. c e−cQ(INΓuhD ) lq νQ(‖INΓuhD‖) ,

with cQ(INΓuhD) a dimension-, method- and solution-dependent constant and νQ(‖INΓuhD‖)
some norm term, which both cannot be quantified or identified by the presented empirical
convergence study. Again, the operator . stresses that this is no upper bound in terms of nu-
merical analysis, but a rough empirical guess for the dependence of the error on the quadrature
level lq.

6.3.7 Empirical error estimate and coupling

We now have all information to give empirical error estimates for the approximation of mean
solutions or the means of a quantity of interest in the random elliptic and random two-phase
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Navier-Stokes case. Let us remember that we had in Section 6.3.1 the estimate∥∥∥E [u]− Ql,NKLINΓDhDuKL
∥∥∥
L2(D)

(6.10)
≤ ‖u− uKL‖L2(Ω;L2(D)) + ‖uKL − uhD‖`2(Γ;`2(D))

+ ‖uhD − INΓuhD‖`2(Γ;`2(D)) +
∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
`2(D)

+ c′ (uKL − uhD)N−1/4
MC + c′′ (uKL − uhD)hD

+ c′ (uhD − INΓuhD)N−1/4
MC + c′′ (uhD − INΓuhD)hD

+ c′′′
∥∥∥E [INΓuhD ]−Ql,NKLINΓuhD

∥∥∥
C2(D)

hD .

To be able to use discrete error measurements as rough empirical upper bounds to the full
approximation error, we would normally need to do a rigorous analysis of the last five terms,
to show that they are small and bounded from above. However, this is future work and they
are expected to be neglectable. Moreover, we introduce abbreviations

cKL := cKL(u), cD := cD(uKL), cΓ := cΓ(uhD), cQ := cQ(INΓuhD), pΓ := pΓ(uhD)

and expect to have for all norm terms νKL(‖u‖), νD(‖uKL‖), νΓ(‖uhD‖) and νQ(‖INΓuhD‖) a
common upper bound of ν(‖u‖).

Random-coefficient elliptic problem

In the elliptic case, we collect the measured results and get the purely empirical error estimate∥∥∥E [u]−Ql,NKLINΓDhDuKL
∥∥∥
L2(D)

. c
(
e−cKLNKL + cDhD2 + e−cΓNΓ + e−cQlq

)
ν(‖u‖) .

(6.11)

Assuming an identical contribution of all measured approximation errors, we can now give
conditions under which the upper bound for the approximation error in the elliptic case on the
right-hand side of (6.11) drops below a given tolerance εtol. These read as

NKL & − 1
cKL

ln
( 1

4 c ν(‖u‖)εtol
)
, (6.12)

hD .
( 1

4 c cD ν(‖u‖)εtol
)1/2

⇔ ND & 4 c cD ν(‖u‖)εtol−1 , (6.13)

NΓ & − 1
cΓ

ln
( 1

4 c ν(‖u‖)εtol
)

and lq & −
1
cQ

ln
( 1

4 c ν(‖u‖)εtol
)
. (6.14)

The modified inequality operators again indicate that these results stem back from a purely
empirical analysis.
Remember that a complexity analysis for the full stochastic collocation method was given

in Section 4.7. However, this analysis could not show a complexity estimate in the achievable
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upper error bound εtol. This is now possible by combining conditions (6.12) to (6.14) with

Celliptic(NΓ, ND, lq, NKL) = O

(
NΓND

2 +NΓ
(
lq2lq

)NKL +NΓ
3
)
,

leading for εtol → 0 to

Celliptic(εtol) (6.15)

u O

− 1
cΓ

ln(εtol)εtol−2 − 1
cΓ

ln(εtol)
(
− 1
cQ

ln(εtol)εtol
− 1
cQ

)− ln(εtol)

− 1
cΓ3 ln(εtol)3

 .
Notice that the terms cΓ and cQ are kept in the estimate, since they depend on the stochastic
dimension NKL, thus their complexity depends on − ln(εtol). Other, still (at least) problem
dependent (norm) constants were dropped, due to the asymptotic nature of this statement. All
results are given on an empirical base, which is underlined by u.
The first term in (6.15) stands for the solution of the deterministic elliptic problems, the

second term describes quadrature and the last term is the complexity in the solution of the
kernel interpolation problem. Based on previously given results, the complexity in quadrature is
usually small or can even be neglected, due to exact quadrature evaluation formulas. However,
the first and last complexity terms are dominant.
Therefore, besides of giving conditions on the different approximations to achieve a fixed

total error tolerance, another interest in error coupling is the relationship between the PDE
discretization parameter hD and the required number NΓ of collocation points to achieve a
balanced total error. Revisiting the error estimate (6.11), a purely empirically motivated error
balance between collocation error and PDE error is achieved for

NΓ u O

(
− 1
cΓ

ln
(
cD hD2

))
.

This empirically suggests that an algebraic reduction in PDE error only requires a logarithmic
increase of the number of collocation points to achieve an overall balanced error.

Two-phase Navier-Stokes equations with random forces

We can do the same analysis for the two-phase Navier-Stokes case. With respect to the discussed
quantity of interest, the purely empirical error estimate is∥∥∥E [u]−Ql,NKLINΓDhDuKL

∥∥∥
L2(D)

. c
(
e−cKLNKL + cDhDpD +N−pΓ

Γ + e−cQlq
)
ν(‖u‖) .

(6.16)
The right-hand side of this empirical error shall now be bounded from above by εtol. Assuming
identical contributions of all error parts gives conditions

NKL & − 1
cKL

ln
( 1

4c ν(‖u‖)εtol
)
, (6.17)
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hD .
( 1

4c cD ν(‖u‖)εtol
)1/pD

⇔ ND &
( 1

4c cD ν(‖u‖)εtol
)−3/pD

, (6.18)

NΓ &
( 1

4c ν(‖u‖)εtol
)−1/pΓ

and lq & −
1
cQ

ln
( 1

4c ν(‖u‖)εtol
)
, (6.19)

to achieve the empirical upper error bound of εtol. Combining these conditions with our
knowledge on the overall complexity of the stochastic collocation method to solve the random
Navier-Stokes equations

CNavier(NΓ, ND, NT , lq, NKL) = O

(
NΓND

2NT +NΓ
(
lq2lq

)NKL +NΓ
3
)
,

leads to an empirical computational complexity estimate for a fixed target tolerance with
εtol → 0 as

CNavier(εtol, NT ) (6.20)

u O

εtol− 1
pΓ
− 6
pDNT + ε

− 1
pΓ

(
− 1
cQ

ln(εtol)εtol
− 1
cQ

)− ln(εtol)

− εtol−
3
pΓ

 .

Here, NT is the required number of time steps. The convergence rate pΓ and the constant
cQ depend on the stochastic dimension NKL and thus asymptotically on − ln(εtol). Due to
the asymptotic nature of this complexity estimate, the problem-dependent term cD, which is
connected to the finite difference discretization, and the norm term ν(‖u‖) are dropped.
As in the elliptic case, the second term, i.e. the complexity in the quadrature, is usually not

dominant or can be sometimes evaluated up to machine precision by exact formulas. Therefore,
the first and last term, which are the computational complexity in the solution of deterministic
PDEs and the complexity of kernel approximation are of dominant nature. We can relate their
corresponding parameters hD and NΓ in terms of a purely empirical error balance by

NΓ u O

(
cD
− 1
pΓ hD

− pD
pΓ

)
As a result, the two-phase Navier-Stokes problem empirically requires a polynomial increase in
the number of collocation points if the error in the PDE approximation is reduced.

Conclusion

The empirical error analysis allows to give rough error estimates for the kernel-base stochastic
collocation approximation of the mean in case of elliptic and two-phase Navier-Stokes problems.
Classical estimates for the random two-phase Navier-Stokes equations are currently impossible
due to open questions with regard to existence and uniqueness of solutions of their deter-
ministic counterparts. A measurement-based error coupling analysis allows to give empirical
computational complexity estimates in terms of a fixed objective error and gives hints on the
balanced choice of discretization parameters in practical applications. Note however that these
relationships and results are only given in an asymptotic sense and are subject to many simpli-
fications. Derived knowledge on the relation of stochastic and PDE approximation might give
rise to some multi-level approximation scheme. However, this is future work.
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Even though the previously given analysis allows to have an improved approximation pa-
rameter choice, it does not overcome the problem of high computational complexity for the
solution of all deterministic PDE realizations and of the kernel approximation. This issue will
be solved in the next part of this thesis. The exponential increase of the number of collocation
points for growing dimension in stochastic space will be addressed in Part III.





Part II

Parallel preconditioning in uncertainty
quantification
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7 Local preconditioning for kernel
approximation

In this chapter, preconditioning strategies for kernel-based interpolation and collocation will
be discussed. Solving the interpolation or stochastic collocation problem with general positive
definite kernels, thus not necessarily compactly supported kernels, usually requires the solution
of dense linear systems with the number of unknowns equal to the number of collocation
points. Naive approaches use some direct factorization method such as LU decomposition
with O(N3

Γ) computational complexity to achieve this. This certainly leads to prohibitive
run-times for hundreds of thousands or millions of collocation points (even on larger HPC
clusters). However, such amounts of points arise in many large-scale interpolation problems.
But they are also necessary for highly resolved (higher-dimensional) stochastic collocation
problems with short correlation lengths, thus several dominant stochastic dimensions. The
objective is to reduce the computational complexity to O(N2

Γ) operations by the introduction
of an effectively preconditioned iterative Krylov subspace method for dense matrices. To this
end, a preconditioner for kernel interpolation is necessary.
A suitable preconditioner will be constructed by the use of approximate Lagrange basis

functions, cf. [Wen04, Fas07, FHN+13]. In [FHN+13], kernel interpolation problems on spheres
are solved in terms of Lagrange interpolation. For special conditionally positive definite kernels,
i.e. thin plate splines, it is possible to introduce locally constructed Lagrange basis functions
as approximations to standard Lagrange basis functions. On the sphere, i.e. for boundary-free
interpolation problems, a proof of convergence with the same convergence rate for the localized
interpolation as for standard interpolation is available. Interestingly, these local Lagrange
bases allow to construct powerful preconditioners for iterative Krylov subspace solvers, which
require an optimal, problem-size independent number of iterations for the boundary-free case
[FHN+13]. By that way, kernel interpolation with quadratic costs becomes possible.
This approach shall be carried over to special strictly positive definite kernel functions,

namely Matérn kernels. It will be shown empirically that the optimal preconditioning prop-
erty still holds for these kernel functions, as long as interpolation is done on a sphere. Fur-
thermore, numerical results will outline that the presence of a boundary does not affect the
preconditioning too much. Since the given approach shall be applied to higher-dimensional
problems, some numerical studies will allow to analyze the dimension-influence on the pre-
conditioner. These promising preliminary results will motivate to apply the proposed numer-
ical approach to higher-dimensional RBF kernel-based stochastic collocation problems with
large point counts. Therefore, a multi-GPU implementation of the preconditioner and solver
is given. It will allow to solve collocation problems with hundreds of thousands to millions
of collocation points with almost optimal complexity O(N2

Γ). Note that it is even possi-
ble to get a O(NΓ logNΓ) solution method by introducing fast multipole or tree algorithms,
cf. e.g. [BN92, BL97, BCM99, Yin06, Wen06, GD07]. However, this is future work for higher-
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dimensional problems in the multi-GPU context. An alternative approach for preconditioning
is discussed in [SCM12, Che13].
This chapter starts with the introduction of local Lagrange bases for interpolation. There-

after, the application in context of preconditioning is outlined. Furthermore, this kind pre-
conditioning is reinterpreted as a special kind of restricted additive Schwarz preconditioner.
Numerical results underlining optimal preconditioning for Matérn kernels on spheres and al-
most optimal preconditioning in presence of boundaries and in higher dimensions are given.
Details on a full multi-GPU parallel implementation of both the Krylov solver and the precon-
ditioner are discussed. Finally it will be shown that this implementation has almost perfect
multi-GPU strong scaling in large-scale RBF kernel-based stochastic collocation problems.

7.1 Quasi-interpolation by local Lagrange bases

Let us introduce the basic methodology of interpolation by local Lagrange basis functions based
on standard textbooks [Fas07, Wen04]. Note that the whole framework is described for strictly
positive definite kernel functions, in contrast to [FHN+13], which also covers conditionally
positive definite kernels.
In Section 4.3, we discussed the interpolation problem to find for a given function f : Ω→ R

and a set of points
X := {y1, . . . ,yN} ⊂ Ω

the interpolant sf,X(y) with

sf,X(y) :=
N∑
j=1

αjk(y,yj) ∀y ∈ Ω, s.th. sf,X(yj) = f(yj) 1 ≤ j ≤ N . (7.1)

In terms of Lagrange interpolation, cf. Section 4.3, this reads as

sf,X(y) :=
N∑
i=1

f(yi)Li(y) with Li(y) =
N∑
j=1

αijk(y,yj) ∀i = 1 . . . N (7.2)

the Lagrange basis of the native space of kernel k. We will now formalize the concepts of
approximate Lagrange basis functions L̃i and a quasi interpolants s̃f,X which become the local
Lagrange basis functions and the respective interpolants for special point choices.

Definition 7.1 (Approximate Lagrange basis and quasi interpolant). Let be a kernel inter-
polation problem given as in Definition 4.7 with the alternative Lagrange basis formulation
from (7.2). For each i ∈ {1, . . . , NΓ} and collocation points X := {y1, . . . ,yNΓ}, we introduce
subsets

X̃i ⊆ X, Ni := |X̃i|, X̃i := {yi1 , . . . ,yiNi}, s.th. yi ∈ X̃i .
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The approximate Lagrange basis
{
L̃i
}N
i=1

, L̃i ∈ Nk(Γ) has to fulfill

L̃i(y) =
{

1 if y = yi
0 if y ∈ X̃i \ yi

with L̃i(y) =
Ni∑
j=1

α̃ijk(y,yij ) . (7.3)

Furthermore, the quasi interpolant s̃f,X is given as

s̃f,X(y) :=
N∑
i=1

f(yi)L̃i(y) .

It is obvious that such Lagrange bases and quasi interpolants exist, if their counterparts Li
and sf,X exist. According to the above definition, approximate Lagrange basis functions are
each constructed on subsets of the full collocation or interpolation point set. Each subset is
chosen such that it contains at least the interpolation point yi associated to the corresponding
Lagrange basis L̃i.
To introduce a localization and thus local Lagrange bases, [FHN+13] propose two different

approaches. In the first approach, locality of the approximate Lagrange basis functions is
introduced by fixing a radius in which neighboring collocation points are included into the
local approximation. In that case, we have

X̃i := {y ∈ X | ‖y − yi‖ ≤ KhX,Γ| log hX,Γ|} ,

with hX,Γ the fill distance, cf. Definition 4.8. Another locality measure can be given by taking
a fixed number of nearest neighbor nodes. Following [FHN+13], in case of interpolation on a
three-dimensional sphere and sufficiently well distributed collocation points, a point neighbor-
hood of radiusKhX,Γ| log hX,Γ| is filled by roughlyK2(log(NΓ))2 equally distributed collocation
points with fill distance hX,Γ. A similar argument leads to the upper bound of Kd| log hX,Γ|d
collocation points in a ball of radius KhX,Γ| log hX,Γ| within a d-dimensional tensor-product
domain Γ. This motivates to define a local Lagrange basis and a localized interpolant as follows.

Definition 7.2 (Local Lagrange basis and localized interpolant). With the requirements and
nomenclature of Definition 7.1, the local Lagrange basis

{
Lloci

}N
i=1

, Lloci ∈ Nk(Γ), Γ ⊂ Rd is
an approximated Lagrange basis with the subsets

X loc
i := argminX′⊂X,|X′|=N loc

∑
y∈X′

‖y − yi‖2 with N loc := Kd| log hX,Γ|d .

With that, we get the localized interpolant slocf,X as as

slocf,X(y) :=
N∑
i=1

f(yi)Lloci (y) .

Figure 7.1 visualizes the proposed (not necessarily uniquely determined) construction for two
collocation points yi, yj and their respective neighborhoods X loc

i , X loc
j .
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X loc
i

X loc
j

yj

yi

Figure 7.1: Local Lagrange basis functions at collocation points yi and yj are constructed based
on overlapping local neighborhoods X loc

i (ruled from left to right) and X loc
j (ruled

from right to left), here exemplified for N loc = 21.

7.2 Preconditioning using local Lagrange bases

Krylov subspace solvers for kernel interpolation systems shall be preconditioned using the
approximate or local Lagrange bases. While some of the literature in kernel-based methods
motivates this from an approximation or interpolation perspective, which will be outlined
first, it will also be shown that the proposed method is a special restricted additive Schwarz
preconditioner.

7.2.1 Motivation by improved basis functions

In [FHN+13], the authors motivate the introduction of the local Lagrange basis as a right-
preconditioner by observing that the standard kernel basis is often not the best possible basis
in terms of conditioning of the resulting linear system. Instead, they propose to use the local
Lagrange basis to replace the standard kernel basis resulting in a new interpolation problem of
the form: Find interpolant ŝ(y), such that

ŝ(yk) :=
N∑
i=1

µiL
loc
i (yk) = f(yk) ∀k = 1, . . . , N .

With the definition of the local Lagrange basis, we get for all k = 1, . . . , N

N∑
i=1

µiL
loc
i (yk) =

N∑
i=1

Ni∑
j=1

µiα
loc,i
j k(yk,yij ) =

Ni∑
j=1

N∑
i=1

k(yk,yij )
(
αloc,ij µi

)
= f(yk) . (7.4)
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Let now ALloc be the matrix which represents the coefficients αloc,ij in the defining equation
(7.3) for approximate Lagrange basis functions. Formally, matrix ALloc is of the form

ALloc := (aik)Ni,k=1 , with ai,k :=
{
αloc,ij if k = ij

0 otherwise
. (7.5)

It is thus the row-wise concatenation of the coefficients related to the approximate basis func-
tions. Rewriting (7.4) in matrix notation with µ = (µi)Ni=1 and f = (f(yk))Nk=1 finally leads to
the linear system

Ak,X(ALloc)>µ = f . (7.6)

The resulting coefficients µ have to be transfered back to the coefficients α of the linear system
(4.5). We therefore need

α = (ALloc)>µ . (7.7)

Equations (7.6) and (7.7) taken together, are exactly the definition of a right-preconditioner
(ALloc)> for the interpolation problem linear system.
Instead of using (ALloc)> as a right-preconditioner, we can also use ALloc as a left-precon-

ditioner. This can be easily seen by the spectrum of the right-preconditioned linear system (7.6).
There, we have by standard linear algebra arguments and knowing that Ak,X is symmetric,

σ
(
Ak,X(ALloc)>

)
= σ

((
ALloc(Ak,X)>

)>)
= σ

(
ALloc(Ak,X)>

)
= σ (ALlocAk,X) .

Hence, the spectra of Ak,X(ALloc)> and ALlocAk,X are identical. The left-preconditioned inter-
polation problem

ALlocAk,Xα = ALlocf

should therefore have similar properties. In the following, the left-preconditioner is applied
which is more usual in classical numerical linear algebra.

7.2.2 Relations to the restricted additive Schwarz method

Until now, preconditioning by local Lagrange basis functions has been mainly motivated by
arguments stemming from approximation or interpolation. However, it is also possible to
reinterpretate the given method in terms of Schwarz domain decomposition methods [Sch90,
SBG96], which are more closely related to classical preconditioner constructions in numerical
linear algebra. As it turns out, the local Lagrange preconditioning approach discussed above,
is a special form of a restricted additive Schwarz (RAS) method [CS99].
Let us make the argument more specific by briefly introducing the restricted additive Schwarz

method following [CS99]. Further information is given in [SBG96]. With the linear system of
equations

Ak,Xα = f ,

given, thus the classic interpolation problem as discussed before, we can introduce non-over-
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lapping subsets X 0
i , such that

X 0
i ⊂ X ∀i = 1, . . . , NX , and X =

NX⋃
i=1
X 0
i ,

NX⋂
i=1
X 0
i = ∅ .

Furthermore, we can define subsets X δi with X 0
i ⊂ X δi , which also cover the full domain, but

have some overlap with “neighboring” subsets and further all have the same size. Modifying
the notation of [CS99], restriction matrices Rδi ∈ RNXi×N with

Rδi =
(
ri,0jk

)
j,k
, ri,0jk =

{
1 if yk ∈ X δi , j = υi(k)
0 else

are constructed. The function υi is a mapping of the indices in the full point set X to the
indices in subset X δi .
An analogous definition is given for restriction matrices R0

i only covering the non-overlapping
point sets. Finally, matrices

Ai = RδiAk,X(Rδi )>

are introduced. Based on this notation, it is then possible to introduce the classical additive
Schwarz preconditioner PAS ≈ A−1

k,X as

PAS =
∑

(Rδi )>A−1
i Rδi .

Applying the preconditioner thus corresponds to restricting the original linear problem to the
subspace belonging to each subset. There, the (smaller) problem is solved with matrix Ai and
projected back onto the full problem. Partial solutions for all subsets are finally added up. The
restricted additive Schwarz preconditioner PRAS is given as

PRAS =
∑

(R0
i )>A−1

i Rδi .

It thus only applies corrections from each subset X δi to the inner variables or points X 0
i .

Therefore, each overlap X δi \ X 0
i remains untouched.

Let us now set
X 0
i = {yi}, X δi = X loc

i ∀i = 1, . . . , N , (7.8)

i.e. the subsets X 0
i are the collocation points and subsets with overlap are the local regions X loc

i .
It is trivial to see that the resulting restricted additive Schwarz preconditioner is identical to the
local Lagrange preconditioner defined in (7.5). Consequently, the local Lagrange preconditioner
is a special restricted additive Schwarz preconditioner.

7.2.3 Properties of local Lagrange bases for Matérn kernels

In this chapter, preconditioning shall be investigated for Matérn kernel functions

kβ(y,y′) :=
Kβ− d2

(‖y − y′‖)‖y − y′‖β− d2
2β−1Γ(β) , β >

d

2 ,
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Figure 7.2: A full Lagrange basis function for Matérn kernels at an inner collocation point (left)
looks almost identical as the corresponding local Lagrange basis function (middle)
with a very low error (right).
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Figure 7.3: The approximation error of a local Lagrange basis function using Matérn kernels
at inner collocation points becomes smaller for growing subset size parameters K2.

cf. Section 4.3.2. The local Lagrange preconditioner is strong, if the local Lagrange functions
are a decent approximation for the Lagrange functions derived by solving the full interpolation
problem. Figure 7.2 shows on the left-hand side a Lagrange function for Matérn kernels with
parameters d = 2, β = 3.5 and ‖ · ‖ := 8‖ · ‖2, constructed by solving the full interpolation
problem. This specific Lagrange function is centered far away from the boundary of domain
Γ = [0, 1]2. In the middle of Figure 7.2, the corresponding local Lagrange function is plotted
for N loc := K2|log(N)|2 and K2 = 3. A difference to the standard Lagrange basis function is
hardly visible. The error between the localized and the global Lagrange function is given on
the right-hand side of the same figure. The `∞ error is in the range of 10−3, indicating that the
overall approximation quality of the preconditioner for Matérn kernels should be very good.
An important quantity in the local Lagrange preconditioning approach is the size of the local

neighborhood of each local Lagrange basis or equivalently the overlap size in the restricted
additive Schwarz preconditioner. Figure 7.3 highlights the influence of the local neighborhood
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Figure 7.4: A local Lagrange function (middle) close to the domain boundary introduces an
additional error (right) in contrast to the full Lagrange basis function (left).

size on the approximation quality of the local Lagrange basis. Analogously to the results on
the right-hand side of Figure 7.2, we show Lagrange basis function approximation errors for
subset size parameters K2 = 1, K2 = 3 and K2 = 5 (from left to right). It becomes evident
that – as expected – larger subset sizes lead to much smaller errors. In fact, if the subset size
is equal to the full collocation point set, the local Lagrange preconditioner is identical to the
inverse interpolation matrix Ak,X−1.
A known issue (cf. [BCM99]) of local Lagrange functions is an increased approximation

error close to the boundary. This becomes evident in Figure 7.4. Here, the numerical study
from Figure 7.2 is repeated for a Lagrange function close to the boundary. Obviously, there
is a much larger approximation error of the Lagrange function. The impact of this issue on
preconditioning will be reviewed in Section 7.4.

7.3 Multi-GPU parallel implementation

To solve large- to extreme-scale kernel interpolation and stochastic collocation problems, a
multi-GPU parallel implementation of the preconditioner setup and the preconditioned iterative
solver is done. In the following, the most important technical details of this implementation
are given.

7.3.1 Domain decomposition

A distributed memory multi-GPU parallelization requires a domain decomposition of the col-
location point set. Each processor shall handle point subsets of similar size with a minimum
of neighborhood communication for an optimal load balancing. Also, similar to the finite dif-
ference case, cf. Section 5.3, a layer of ghost or halo points is needed, since the computation of
local Lagrange basis functions requires local point neighborhoods defined by the subsets X loc

i .
Figure 7.5 illustrates this. Here, the point set belonging to processor P1 has an additional ghost
point layer, which is indicated by the ruled circles.
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X loc
i

yi

P1

P2

Figure 7.5: Local Lagrange basis functions that are computed on a given processor P1 require
a collocation point neighborhood from adjacent processors. This ghost point layer
(ruled) has the size or radius of the local Lagrange subsets.

Note that generating domain decompositions of given arbitrary point sets in higher dimen-
sions with an optimal load balancing is a research topic on its own. This shall not be solved
here. Therefore, domain decomposition is considered as a pre-processing step, which is per-
formed by a simplistic CPU implementation. It uses the machine learning library MLPACK
[CCS+13]. To be more specific, the assignment of collocation points to processors is done by
k-means clustering [Llo82] applied to the point locations with the number of clusters equal
to the number of processors. Furthermore, ghost point layers are obtained by a k-nearest-
neighborhood search. Overall, this approach results in similar-sized point subsets that are
suitable for the given application. Figure 7.6 presents an example of domain decomposition for
a spherical point set.

7.3.2 Preconditioner setup

To construct the preconditioning matrix, it is necessary to solve for each local Lagrange basis
function Lloci a linear system of the form

Ak,Xloc
i
αloc,i = ei ∀i = 1 . . . N ,

with ei ∈ RN loc the ith unit vector and Ak,Xloc
i

the kernel interpolation matrix restricted to
the local interpolation point subset. If we assume, as above, to have a fixed subset size N loc,
we have to solve N dense linear systems of size N loc × N loc with an overall computational
complexity of O(N · (N loc)3).
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Figure 7.6: The multi-GPU implementation needs a domain decomposition of the given point
cloud, here exemplified for a point set on a sphere and different colors for the four
processor subdomains.

Due to the domain decomposition approach described before and the structure of the pre-
conditioning matrix – thus it is the row-wise concatenation of the coefficients corresponding to
the local Lagrange basis functions – it is possible to fully decouple the construction of the pre-
conditioner for each subset. In the multi-GPU implementation, the coefficients for each local
Lagrange basis function are independently approximated by an LU factorization given by the
GPU library CULA. The subsets themselves are for now located by a GPU-based brute-force
neighborhood search within each processor point subset. To the author’s knowledge and at
the time of writing this thesis, there is no GPU-based k-nearest-neighborhood search library
available, which runs on higher-dimensional point sets and which could replace this approach.
Implementing such a method is future work. Instead of constructing the full preconditioning
matrix, only the local Lagrange basis coefficients are stored, resulting in a storage complexity
of O(N ·N loc) instead of O(N2).

7.3.3 Preconditioned Krylov subspace solver

In Section 4.5.3, we discussed Krylov iterative linear solvers for the solution of kernel interpo-
lation systems with symmetric kernel matrices. The symmetry of the interpolation matrices
stemmed back from strictly positive definite kernels. However, if we apply a non-symmetric
preconditioner, as the proposed one, it is necessary to move over to a Krylov subspace method
for non-symmetric problems. The preconditioned conjugate gradient squared (CGS) method
[Son89] is chosen for this application, since, in contrast to the classical bi-conjugate gradient
(BiCG) method [BBC+94], it does not require the transposition of the preconditioning matrix.
Transposing this matrix, or implementing the application of its transpose, would destroy the
decoupling of the preconditioning for each subdomain.
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The implementation of the multi-GPU parallel preconditioned CGS method follows the ideas
described in Section 4.8. It is again based on the newly implemented multi-GPU parallel
iterative dense linear algebra library parla. A naive application of the full preconditioning
matrix would require O(N2) operations. This can be circumvented by a problem-specific
matrix-vector implementation, which uses the structure of the preconditioning matrix. A
combination of gathering and scalar product operations delivered by the GPU library thrust,
allows the local application of each of the preconditioner’s matrix rows. Thereby, the cost of
each preconditioning step is reduced to O(N ·N loc) operations.
Performing the interpolation matrix dense matrix-vector product costs O(N2) operations,

as long as no fast matrix-vector product implementations are used, cf. [BN92, BL97, Yin06,
Wen06]. While computing O(N2)-matrix-vector-products is still feasible for hundreds of thou-
sands to millions of collocation points on multiple GPUs, storing those matrices is impossible.
Therefore, a GPU matrix-vector product with O(N) storage complexity is used. To achieve
this, small subsets of the dense interpolation matrix are constructed on-the-fly and in parallel
in shared-memory of each GPU multi-processor. The application of these matrix sub-blocks to
the vector is done immediately on the device by a shared-memory reduction algorithm made
available in the GPU device code library CUB [Mer]. Afterwards, the old sub-block is discarded
and a new sub-block is considered, within the same kernel. By that way, storing the full matrix
is no longer necessary.

7.3.4 Complexities and efficiency

To summarize, the current implementation uses a preconditioner construction or setup with a
theoretical O(N ·(N loc)3) computational complexity and O(N ·N loc) storage complexity, noting
that the local subset search is still a brute-force method that has to be replaced. Furthermore
the preconditioned Krylov subspace solver is expected to have an almost constant number of
iterations with O(N2 + N · N loc) = O(N2) operations per iteration. The O(N2) complexity
of the dense matrix-vector product, might be replaced by a O(N logN) method in the future.
Candidates for this are the fast multipole method or tree algorithms [BN92, BL97, Yin06,
Wen06].
The resulting numerical method for solving kernel interpolation or stochastic collocation

problems will be of optimal computational complexity. However, it is crucial to note that
the subset size N loc might represent a quite large fraction of the overall collocation point
count, in the pre-asymptotic regime. This leads to a potentially non-optimal method for small
kernel interpolation problems. Efficiency, i.e. low overall runtime at optimal complexity, is
only possible if the subset size is a small fraction of the overall problem size. Furthermore,
the computation time for the initial preconditioner setup and the subsequent preconditioner
applications in each iteration, has to be significantly smaller than the time spend for the
additional iterations in the non-preconditioned iterative solver. Results, showing efficiency and
parallel scalability for the given implementation, will be outlined in Section 7.4.

7.3.5 Properties for Exascale

As mentioned in Chapter 1, an important research topic in high performance computing is the
discovery of numerical methods, which are well-designed for future Exascale parallel comput-
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Figure 7.7: The test function for interpolation on a sphere is given on a cut surface through a
tensor product of trigonometric polynomials.

ing platforms. It turns out that the proposed preconditioned kernel interpolation method is an
optimal candidate in this field. The preconditioner setup completely decouples into compute-
intensive, local problems, knowing that locality and an increase of compute-intensity are some
of the important challenges in future Exascale clusters. Preconditioner setup and application
is a massively parallel operation, which is a further important requirement for future par-
allel systems. Finally, the iterative nature of the proposed method gives error-resilience by
construction, which is crucial due to increased expected error rates on Exascale machines.
Note that this approach can be also extended to a much broader range of applications such

as high-order quadrature or PDE solvers.

7.4 Numerical results and scalability

In the following a series of numerical studies are given to analyze the convergence properties
of the proposed preconditioner. For the Matlab-based studies, the Matérn kernel function

kβ(y,y′) :=
Kβ− d2

(‖y − y′‖)‖y − y′‖β− d2
2β−1Γ(β) , β >

d

2 ,

is applied. Since the modified Bessel function of second kind is singular in the origin,Kβ− d2
(‖y−

y′‖ + εm) is evaluated instead of the original Bessel function, with εm the machine precision.
Due to a missing modified Bessel function of second kind on GPUs, the special case of a Matérn
kernel for β = d+3

2 , thus

k d+3
2

(y,y′) :=
(
1 + ‖y − y′‖) e−‖y−y′‖
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Figure 7.8: The application of a local Lagrange preconditioner allows to solve the given inter-
polation problem on a sphere with optimal iteration count (left) and at unchanged
interpolation convergence rates (right) for K2 ≥ 3.

is applied on GPUs. Note that both kernels are identical up to a (dimension-dependent) con-
stant scaling factor. Furthermore, depending on the problem, a uniform scaling is introduced
to the kernel by defining the above given general norm as ‖ · ‖ := σ‖ · ‖2

7.4.1 Preconditioning on a sphere

The first numerical results shall underline the optimality of the proposed preconditioner in case
of interpolation on spheres. Here, the results are obtained with a simple Matlab implementa-
tion. We use d = 2, β = 3.5 and σ = 8. The test function, which is interpolated, is defined on
the unit sphere S2 =

{
y ∈ R3∣∣‖y‖2 = 1

}
by

f : S2 → R
y 7→ sin(2πy1) sin(2πy2) sin(2πy3)

Figure 7.7 displays the resulting function. The collocation point set on the sphere is generated
by the Matlab function RandSampleSphere with stratified sampling. This function is provided
in [Sem12] and bases on [SB96].
Figure 7.8 shows on the left-hand side the number of iterations the CGS solver needs to

solve the preconditioned linear system for a growing number of collocation points. CGS is
said to have converged, if the relative residual drops below 10−8. As initial solution guess,
the zeros vector in R3 is used. Results are given for growing values of K2, i.e. growing local
neighborhoods, and for the unpreconditioned solution process. For K2 ≥ 2, the preconditioner
becomes effective. Starting from K2 = 3 with subset size N loc = 244 for N = 8192, it stabilizes
such that less than 10 iterations are required to solve the interpolation problem. This is an
optimal result, noting that an unpreconditioned CGS solver requires 13688 iterations, to solve
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Figure 7.9: A two-dimensional interpolation problem with boundary can be efficiently precondi-
tioned with (almost) constant iteration counts for appropriately sized subsets (left)
and with constant convergence rates for K2 ≥ 2 (right).

the linear system for the sameN = 8192 collocation points. On the right-hand side of Figure 7.8
the l2 error for interpolation of the test function is given. The error is evaluated by sampling at
a point set of 213 points generated by RandSampleSphere. However, here, uniform sampling
is used, cf. [Sem12], to get different evaluation points. A convergence rate of 3.5 in the number
of collocation points is achieved.

7.4.2 Parameter- and dimension-dependence for problems with boundaries

Next, preconditioning for an interpolation problem on domain Γ = [0, 1]d for growing dimen-
sions d is discussed based on the Matlab implementation. This problem has a boundary. The
test function is

fd(y) =
d∏
i=1

sin(2πyi) .

Parameters for the CGS solver are chosen as before. Collocation points are now elements of
a d-dimensional Halton sequence, while error evaluation is done at 214 random d-dimensional
points generated by the Matlab command rand with no further options.
The first results are given for d = 2 in Figure 7.9. A Matérn kernel with d = 2, β = 3.5 and

σ = 40 is applied. The diagram on the left-hand side gives very similar results as in the case of
interpolation on a sphere. Thus, an optimal preconditioning is achieved in the two-dimensional
case, starting from K2 = 4 and a subset size of N loc = 325 for N = 8192. The constant error
convergence rate of 1.7 is usually not affected by the preconditioner. Only in case of K2 = 1
and N = 8192 convergence breaks down, due to a too small neighborhood size. Convergence
results are summarized on the right-hand side of Figure 7.9.



7.4 Numerical results and scalability 163

103 104

101

102

103

# collocation points

#
ite

ra
tio

ns

no precond.

K2 = 1

K2 = 2

K2 = 3

K2 = 4

103 104

100

101

0.85

# collocation points
l 2

er
ro

r

no precond.

K2 = 1

K2 = 2

K2 = 3

K2 = 4

Figure 7.10: Preconditioning the interpolation problem in four-dimensional space gets weaker
due to a higher boundary influence (left). Textbook convergence rates are still
achieved for K2 ≥ 2 (right).

Next, the same study is carried out for a four-dimensional problem, thus d = 4. In this case
the Matérn kernel with d = 4, β = 4.5 and σ = 20 is applied. To keep the size of the subsets
small, i.e. to construct an efficient preconditioner, we choose

X loc
i := argminX′⊂X,|X′|=N loc

∑
y∈X′

‖y − yi‖2 with N loc := K2| log hX,Γ|2 .

This is the same number of collocation points per subset as for the two-dimensional case. With
this modification, the preconditioner becomes a bit weaker, as shown on the left-hand side of
Figure 7.10. However, the preconditioned method is still in the range of 20 iterations for 213

collocation points, K2 = 3 and a subset size of N loc = 243 for e.g. N = 8192, while the un-
preconditioned CGS solver requires 224 iterations for the same problem size. The convergence
order is reduced to 0.85 due to the increased dimension, cf. Section 4.3.2.
Finally, Figure 7.11 gives results for a six-dimensional test case, thus d = 6, with the Matérn

kernel for d = 6, β = 5.5 and σ = 10. As before, subsets of size N loc := K2| log hX,Γ|2 are
applied. While the error convergence rate on the right-hand side still follows textbook results,
the preconditioning fails because of the increased boundary influence in higher dimensions, if
the preconditioner still uses the same subset sizes as before. However, by introducing larger
subsets sizes, some of the preconditioning capabilities can be recovered. This can be observed
in Figure 7.12, where the left-hand diagram shows iteration count results for K2 ≥ 5. In
case the subset parameter K2 = 10 applied, thus subsets of size N loc = 812 for problems of
size N = 8192 are used, the approximated solution is attained with 20 preconditioned CGS
iterations, while the unpreconditioned solution method requires 171 iterations. An optimal
constant number of iterations for growing problem size could be achieved for subset size N loc :=
K6| log hX,Γ|6, based on the upper bound on the number of collocation points in a d-dimensional
ball. However, in that case, preconditioning would not be computationally efficient.
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Figure 7.11: The local Lagrange preconditioner fails in case of the six-dimensional problem,
if the same subset sizes are taken as in the two- or four-dimensional case (left).
However convergence in the interpolation error is still achieved (right).
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dimensional problem (left) with correct convergence rates (right). A constant
number of iterations can be expected for large subsets of size N loc := K6| logN |6.
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Figure 7.13: Iteration counts (left) and error convergence (right) for the elliptic random PDE
test problem.

One can further observe that the number of iterations drops in the unpreconditioned case for
fixed N and growing dimension. This is a dimensionality phenomenon: In higher dimensions,
a much higher collocation point count is necessary to decrease the fill distance. Therefore, we
have a bigger fill distance at fixed problem size. The fill distance, on the other hand, influences
the condition of the interpolation problem matrix. A bigger fill distance then results in a
lower condition number and thus lower iteration counts. Overall, this phenomenon leads to a
reduced (relative) preconditioning efficiency in the pre-asymptotic sense for higher-dimensional
problems.

7.4.3 Parallel multi-GPU solution of a large-scale RBF kernel-based stochastic
collocation problem

The beforehand discussed preconditioning approach is finally applied to a large-scale kernel-
based stochastic collocation problem based on a multi-GPU parallel implementation. Here,
mean approximation for the elliptic problem with piecewise constant random diffusion field,
stochastic dimension NFN = 4 and the quantity of interest π(u(y, x)) := 1

ND

∑ND
i=1 u(y,xi) is

used, cf. Section 3.2.1. The model problem under consideration represents uncertainty quan-
tification problems with a dominant computational time for kernel interpolation due to a high
necessary collocation point count and small PDE solution times. Beside of error convergence
results, a parallel scalability analysis shall exemplify the almost perfect parallel scaling of the
proposed method. The paragraph is closed by remarks on the efficiency of the preconditioner.
To approximate the given random PDE problem, the Matérn kernel with parameter β =

NFN+3
2 = 3.5 and σ = 20 is applied. Clenshaw-Curtis tensor product quadrature with quadra-

ture level lq = 6 is used to compute the mean of the kernel functions centered at the collocation
points. Furthermore a weak kernel interpolation regularization with parameter εreg = 10−13 is
applied. Each realization of the elliptic problem is solved by finite differences with a resolution
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timings in seconds
NΓ #GPUs std. solver precond. setup precond. solver PDE solutions quadrature

215 1 234.7 2663.6 15.3 72089.6 1245.0
215 2 116.1 1327.6 7.9 36044.8 622.5
215 4 58.2 662.0 4.0 18022.4 311.2
215 8 29.5 329.8 2.0 9011.2 155.6
215 16 16.4 126.5 1.1 4505.6 77.8
215 32 9.3 61.7 0.6 2252.8 38.9
217 4 3312.2 4195.6 943.0 288358.4 1245.0
217 8 1526.4 2078.8 47.1 144179.2 622.5
217 16 862.9 775.1 25.8 72089.6 311.2
217 32 464.1 460.7 14.1 36044.8 155.6
218 32 3189.4 1183.8 112.6 18022.4 311.2
219 32 20191.2 2767.5 1098.5 36044.8 622.5

Table 7.1: Runtime results for the solution of the elliptic random PDE problem for grow-
ing problems sizes and GPU counts without and with preconditioning. The term
std. solver stands for the unpreconditioned iterative CGS solver.

of ND = 512 × 512. As usual, collocation points to solve the random PDE are given by a
Halton sequence of appropriate dimensionality. The subset size in the preconditioner is fixed
to N loc = 20|log(NΓ)|2. This choice balances the cost of the preconditioner with its effectivity,
noting that it does not necessarily lead to an optimal preconditioning method in sense of fixed
iteration counts. Problem sizes of NΓ = 215, 216,217, 218, 219 will be considered, thus collocation
problems with up to 524288 collocation points, will be solved. The corresponding subset sizes
are N loc = 2162, 2460, 2777, 3113, 3469. The underlying preconditioned Krylov subspace solver,
namely CGS, is said to have converged if the l2 norm of the residual drops below 10−8.
Figure 7.13 gives iteration counts on the left-hand side and error convergence on the right-

hand side, as in the previous examples. Remember here that a non-optimal subset size has
been chosen. This is why the number of iterations in the preconditioned case still grows
with the number of collocation points. Nevertheless, by applying the discussed preconditioner,
the number of iterations is reduced by more than an order of magnitude, which is a rather
impressive result. For the largest problem size of NΓ = 219, the preconditioned CGS solver
needs 57 iterations, while the unpreconditioned solver needs 1199 iterations. Convergence
results on the right-hand side of Figure 7.13 are based on error measurements with respect to
the overkill solution at NΓ = 219. The achieved rate is in the range of 1.5. It is obvious that
the convergence is not affected by preconditioning.
After considering the convergence properties of the preconditioned kernel-based stochastic

collocation method, we now turn towards the discussion of scalability and quality of the parallel
preconditioner for this large-scale problem. Remember that the largest problem size is NΓ =
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Figure 7.14: The construction of the stochastic collocation preconditioner has perfect linear
strong scaling or speed-up, even with super-linear parallel scalability due to prob-
lem size effects.

219 = 524288, thus in the range of more than halve a million collocation points. Solving the
kernel interpolation problem with non-compactly supported Matérn kernels and direct solvers
is almost infeasible in a reasonable amount of time, even on larger HPC clusters.
Throughout this paragraph, runtime results for the preconditioned approach are averages

over three measurements, while results for the unpreconditioned approach are based on a single
measurement, due to excessive runtimes. Each measurement takes the minimum runtime for
the respective measured component over all involved parallel processes. Timings are given in
seconds and represent wall-clock times delivered by the gettimeofday method. All experiments
are carried out on a GPU cluster consisting of up to 36 nodes equipped each with a four-core
Intel Xeon E5620 CPU at 2.4 GHz, 12 GB DDR3 RAM, an Nvidia Tesla M2090 card with 6 GB
DDR5 RAM and Mellanox ConnectX-2 QDR InfiniBand 40Gbps interconnect. The operating
system is Ubuntu 12.04. Furthermore, CUDA 5.0, CULA R16a and OpenMPI 1.7.5 are in use.
Table 7.1 gives timing results for the various parts of the solution process at growing problem

size and changing GPU count. To avoid the recalculation of quadrature and all PDE realiza-
tions, these are precomputed once on 32 GPUs. Runtimes for the PDE solution are based
on a Jacobi-preconditioned CG solver converged to a residual norm of 10−15 and up to 4000
iterations. In average, the solution process per PDE takes about 2.2 seconds. This number
is extrapolated to the values given in Table 7.1 expecting perfect scalability for the decoupled
problems. Quadrature timings are also extrapolated from the 32 GPU run. Instead of dis-
cussing all results of Table 7.1, a focus will be set on a strong scaling or speed-up analysis and
an assessment of the quality of the preconditioner.
Figure 7.14 gives strong scaling or speedup results for the preconditioner setup for different

problem sizes. In case a problem does not fit in GPU memory for a low GPU count, perfect
scalability is assumed until the first existing result. As said before, the construction of the
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Figure 7.15: Strong scaling results for the (preconditioned) iterative CGS solver (left) and the
pure preconditioner application (right) in the elliptic random PDE model problem.

local Lagrange preconditioner is a completely decoupled process, after domain decomposition.
This is why perfect strong scaling is expected. Figure 7.14 confirms this excellent behavior. In
fact, there is even a super-linear scaling in the number of processors. This effect might be due
to per-GPU problem sizes which are more favorable for caches and memory accesses, in case
of growing GPU counts.
The scalability of the preconditioned solution process is studied in Figure 7.15. On the left-

hand side, strong scaling results are given for different problem sizes. Beyond 8 GPUs, there
is a drop in strong scaling efficiency to about 78%. Note that this is still an almost excellent
result, knowing that strong scaling parallel scalability is usually a hard problem for GPU-based
codes. To rule out that the drop in performance is caused by the preconditioner, the left-hand
diagram also shows a strong scaling result for the unpreconditioned case. It has the same
scaling behavior as the preconditioned results. Furthermore, the right-hand side diagram of
Figure 7.15, shows strong scaling results for the pure preconditioner application within the
iterative method. As in the preconditioner setup, this part of the numerical method shows
excellent parallel scalability, with super-linear speed-ups. It is future work, to further increase
parallel scalability of the whole method.
Finally, we would like to have a look at the quality and effectivity of the preconditioner

and its relation to the full solution method of the uncertainty quantification problem. This is
exemplified for the case NΓ = 219 on 32 GPUs. On the left-hand side of Figure 7.16, runtimes
are compared between the unpreconditioned iterative and the preconditioned approach. The
preconditioned method has a solution process of 1098.5 seconds and a setup time of 2767.5
seconds, cf. Table 7.1, being more than five times faster than the unpreconditioned method
with 209191.2 seconds. This is an excellent result which underlines the quality and effectivity
of the preconditioner. The preconditioner is also effective for NΓ = 218, cf. Table 7.1, and
would be effective for smaller problem sizes after adaption of the subset sizes.
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Figure 7.16: The preconditioner is highly effective for the large-scale stochastic collocation
problem with NΓ = 219 (left) and reduces the relative computing time of the
kernel interpolation from more than 33% to less than 7%.

On the right-hand side of Figure 7.16, runtimes of all parts of the solution process of the
elliptic random PDE problem are compared. While quadrature is comparably cheep, the solu-
tion of the kernel interpolation problem requires more than one third of the total processing
time without preconditioner. Due to the preconditioner, this is impressively reduced to less
than 7 percent. Now, the solution of the PDE realization again dominates the whole approach.
This problem will be solved in the next chapter.





8 Algebraic multigrid for random PDE
problems

In this chapter, we discuss how to achieve optimal complexity of PDE solvers for the uncertainty
analysis. Since some of the involved model problems are elliptic problems, cf. Section 3.2, and
the two-phase Navier-Stokes solver has its non-linear complexity part in a variable-coefficient
Poisson problem with large coefficient jumps, cf. Section 5.1.2, there is a clear need for a
fast linear solver for symmetric positive definite linear systems. Multigrid methods [TS01] are
used intensively, to achieve optimal complexity for these kinds of elliptic problems. This class
of iterative methods can be either used as preconditioner or as solver for linear systems. The
algorithm starts with an grid-based approximate solution of some (elliptic) PDE problem whose
high-frequency residual error is smoothed to some extend by e.g. a Gauss-Seidel relaxation. The
residual (error) can be transfered to a coarser grid level on which it becomes a high-frequency
error again. After solving the coarse grid problem, its solution is transfered back to the fine
level where it corrects the fine grid solution. This approach can be repeated in a recursive
fashion. Using that strategy, it is often possible to achieve a constant amount of iterations of
the iterative solver with respect to the mesh width of the underlying elliptic problem. This is
an optimality result which is highly desirable for an overall optimal complexity of the proposed
uncertainty analysis. In fact, this kind of result allows to reduce the complexity of the PDE
problems outlined in Chapter 3 from O(NΓNtND2) to O(NΓNtND) in the Navier-Stokes case
and from O(NΓND2) to O(NΓND) in the elliptic case, cf. Section 4.7.
The standard approach to construct multigrid methods is to apply information from the

known geometry of the problem and is called geometric multigrid, cf. [TS01]. It is rather easy
to implement and has provable convergence rates. However, geometric multigrid methods tend
to struggle for e.g. elliptic PDE problems on complex geometries. In this case and also in
many applications with the need for a black-box–like multigrid method, the so-called algebraic
multigrid is (AMG) preferred. Instead of using geometric information from the PDE problem,
algebraic multigrid relies purely on the matrix entries to define the coarse level linear problems.
The drawback of this approach is a more complicated algorithm and largely missing convergence
theory.
Our intention is now to have an algebraic multigrid method available on GPUs, to be able to

achieve optimal convergence even on this massively parallel type of hardware. One distinguishes
classical (Ruge-Stüben) AMG [TS01, Appendix A] and aggregation-type AMG (e.g. smoothed
or unsmoothed aggregation) [TS01, Appendix A.9]. Aggregation-type AMG for GPUs has been
studied before [BDO12, BCHZ13, Vra12, Luk14], showing clear performance improvements
over CPUs due to its rather simple construction method. Classical AMG on the other hand
has some purely sequential construction part which is hard to parallelize on many threads
[CFH+99, Yan06]. Nevertheless, this approach is well-known to be more robust than smoothed
aggregation AMG versions. Due to its complex algorithmic structure, there is only very limited

171



172 8 Algebraic multigrid for random PDE problems

literature and results available for purely classical AMG on GPUs [HLDP10, ENS12, KF12].
Moreover, at least to the authors knowledge, there is no freely availably implementation of
classical AMG for GPUs, at the point of writing this thesis.
Therefore, in the following, an almost fully GPU-parallelized classical AMG method is pro-

posed. Contrasting e.g. [KF12], almost the full setup phase, thus the part of the algorithm in
which the multigrid hierarchy is constructed, is parallelized on GPUs. Only the purely sequen-
tial part of the the coarse/fine splitting remains on CPU until an appropriate truly parallel and
fast replacement is found. The solve phase is also parallelized, as usual. Note that recently,
two fully GPU-based commercial classical AMG implementations became available. These are
AmgX [Cor] and GAMPACK [ENS12]. Even though AmgX can be downloaded as registered
Nvidia developer (as a binary version), self-measured performance results are subject to a non-
disclosure agreement. On the other hand, the authors of GAMPACK have published some
of their performance results [ENS12]. Towards the end of this chapter, a rough comparison
against this second product is given.
We start this chapter by introducing the overall idea of algebraic multigrid without further

discussion of aggregation-type AMG. Subsequently, some basic terminology, thus coarsening,
interpolation and smoothing is introduced. Here, the clear focus is on the algorithmic part. The
important theory for this topic has been intensively discussed in e.g. [TS01, Appendix A]. In the
implementation section, all important constructions for GPUs are discussed. This is followed
by numerical results and performance results for model problems. Performance results will be
compared to the state-of-the-art (CPU-)parallel AMG library BoomerAMG [HY02] which is
available in hypre-2.9.0b. Furthermore the performance comparison framework for GAMPACK
in [ENS12] is duplicated based on hypre-2.8.0b. A special paragraph is dedicated to runtime
improvements for the elliptic random PDE problems from Section 3.2.

8.1 Algebraic multigrid overview

In the following, we will closely follow [TS01, Appendix A] to give a short overview of classical
AMG. Notation from [TS01] will be partially adapted for improved readability.
We want to solve linear systems

Ax = b (8.1)

with A ∈ RN×N a sparse symmetric M-matrix, thus a symmetric positive definite matrix with
non-positive off-diagonal entries, cf. [TS01, Sec. A.2.2], and x, b ∈ RN . These linear problems
arise e.g. in some of the model elliptic problems and in the pressure correction of the two-phase
Navier-Stokes solver.

8.1.1 Two-level method

Let us repeat the basic idea of an (algebraic) multigrid method from the introduction. We
start with the original linear system on what we call the fine level or fine grid. Therefore, we
rewrite our original problem (8.1) as

Afx
f = bf ⇔

∑
j∈Df

afijx
f
j = bfi ∀i ∈ Df ,
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with Nf := N , Af := A, xf := x, bf := b and Df := {1, . . . , Nf}. On the fine grid, we
introduce the smoother Sf ∈ RNf×Nf . The overall idea of the smoother is to remove all
highly oscillatory modes from the error ef := xfapprox−xfexact. Starting from an approximation
P ≈ A−1

f to the inverse of the system matrix and the usual iterative method

xi+1 = xi + P (b−Axi) ,

the smoothing operator becomes (with If the identity matrix)

Sf := (If − PfAf )

and one step of the smoother generates from xf a smoothed x̄f with

x̄f := Sfx
f + (If − Sf )A−1

f b
f ⇔ x̄f := xf + Pf (bf −Afxf ) . (8.2)

Examples for smoothers are a Jacobi-smoother with P := D−1
f (Df is the diagonal of Af ) and

a Gauss-Seidel relaxation with Pf := L−1
f (L−1

f is the lower triangular part of Af including all
diagonal entries).

Having damped away all highly oscillatory error modes on the fine grid, it is then necessary
to construct a coarse level or coarse grid. In classical AMG, the variables are split up in coarse
grid variables (which are used on the coarse and the fine grid) and pure fine grid variables.
Therefore, we introduce index sets C and F with Df = C∪F , C∩F = ∅. Using this definition,
we can now define the coarse grid problem as

Acx
c = bc ⇔

∑
j∈Dc

acijx
c
j = bci ∀i ∈ Dc , (8.3)

with the obvious choice of Dc := C and we have with Nc := |C| that Ac ∈ RNc×Nc , xc, bc ∈ RNc .

The right-hand side of the coarse grid problem will be the restriction of the residual of the fine
grid problem to the coarse grid. To formulate this, we need a way to transfer solutions between
the different levels. Consequently, an interpolation operator Ifc ∈ RNf×Nc is introduced. It is
often also called prolongation operator. The opposite mapping is done by a restriction operator
Icf ∈ RNc×Nf . Together, they allow to define the coarse grid system matrix Ac as

Ac := IcfAfI
f
c ,

which we call the Galerkin operator. Furthermore, we usually set

Icf := (Ifc )> ,

thus once we have defined how to perform interpolation, we know how to do the restriction
operation. The restriction of the fine grid residual to construct the right-hand side of the coarse
grid problem now reads as

bc := Icf (bf −Afxf ) .

In a pure two-level method, the coarse-level problem is solved directly. Its solution is transfered
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Algorithm 4 Two-level algorithm

Require: A ∈ RN×N symmetric M matrix
1: function TwoLevel(A, b)
2: Af := A, bf := b,xf0 := 0,Df = {1, . . . , N}
3: C ·∪F = Df . C/F splitting
4: construct Ifc , Icf := (Ifc )> . transfer operators
5: Ac := IcfAfI

f
c . Galerkin operator

6: construct Sf . smoother
7: for n = 0, 1, . . . do
8: for s = 1, . . . , ν1 do
9: xfn = Sf (xfn, bf ) . pre-smoothing

10: bcn = Icf (bf −Afxfn) . residual restriction
11: solve Acxcn = bcn . coarse grid solve
12: xfn+1 = xfn + Ifc x

c
n . update solution

13: for s = 1, . . . , ν2 do
14: xfn+1 = Sf (xfn+1, b

f ) . post-smoothing
15: return xfn+1

back to the fine grid by the coarse grid correction

xf = xf + Ifc x
c

and another smoothing step is applied. By iterating this approach, one gets an iterative linear
two-level solver as stated in Algorithm 4. In the algorithm, the smoother application formula
from (8.2) is replaced by a short functional representation which can be repeated ν1 or ν2 times,
respectively. The algorithm furthermore exposes some structure, which is usual in algebraic
multigrid. Lines 3 to 6 are pre-processing operations while the remaining part is an iterative
algorithm. In AMG methods we call the pre-processing part setup phase and the remaining
part solve phase. It will turn out, that the setup phase is actually the algorithmically more
challenging part.

8.1.2 Multigrid

By carefully choosing all numeric ingredients it is possible to have linear complexity in the
degrees of freedom for all operations on the fine grid during one iteration of the solve phase,
cf. [TS01, Appendix A] for more details. However, directly solving the coarse problem (8.3)
still has a computational complexity of O(Nc

3). Keeping in mind that the number of unknowns
on the coarse grid is usually not much less than Nf/4, this results in a non-optimal method.
To get around this, the algorithmic idea of the two-level algorithm can be applied recursively

to construct a multigrid method. To do that, we introduce levels l = 0, 1, . . . , lmax with nested
sets of variables D0 ⊂ D1 ⊂ . . . ⊂ Dlmax , and level lmax is what we had as finest level Df
before. Analogously we introduce per-level coarse/fine grid sets C l/F l, matrices Al, vectors xl,
bl, smoothers Sl, interpolation operators I l+1

l and restriction operators I ll+1. The construction
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Algorithm 5 Recursive multigrid algorithm (V-cycle)

Require: complete multigrid hierarchy already set up
1: function AMG(l, xl, bl)
2: if l>0 then . finer levels
3: for s = 1, . . . , ν1 do
4: xl = Sl(xl, bl) . pre-smoothing
5: bl−1 = I l−1

l (bl −Alxl) . residual restriction
6: xl−1 = 0
7: AMG(l − 1, xl−1, bl−1) . solve on coarse grid
8: xl = xl + I ll−1x

l−1 . update solution
9: for s = 1, . . . , ν2 do

10: xl = Sl(xl, bl) . post-smoothing
11: return xl
12: else . coarsest level
13: x0 = A−1

0 b0 . direct solve
14: return x0

of coarser levels is usually stopped as soon as the number of variables per level goes below a
certain threshold and the coarsest grid is solved directly.
Algorithms 5 and 6 sum up the multigrid method. The first one highlights one step of the

resulting iterative method. Critical is the difference in step 7, in which the algorithm is called
recursively instead of solving the coarse grid problem directly. This version of the multigrid
construction is also called V-cycle. Note that in practice, there are two ways, to use a multigrid
V-cycle in iterative linear solvers. The first approach is highlighted in Algorithm 6. After the
setup phase in lines 2–7, a single iterative application of the V-cycle solves the linear system
up to some residual error εres. Another approach is to run the setup phase, as before, and
then to apply the V-cycle as preconditioner in e.g. a conjugate gradient method. The second
approach is often preferred due to higher robustness.
In the next sections, we will shortly discuss the way of choosing the C/F splitting, the

interpolation and the smoothers.

8.2 Coarsening, interpolation and smoothing

8.2.1 Coarsening

The crucial sequential part of the classical AMG method is the choice of coarse and fine grid
points (C-/F-points), also called C/F splitting. To explain the underlying algorithm we need
a bit of notation closely following [TS01], as before. Note that it is usual in AMG methods to
identify a variable with a node or point in a graph. Connections between nodes exist if there
is a non-zero non-diagonal entry in the system matrix A relating one variable to the other.
This gives rise to the equivalent description of a linear system by a graph with weighted edges
having as edge weights the non-diagonal entries of the matrix. Due to this point of view, the
usual notation in AMG is closely related to typical notation used in graph theory.
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Algorithm 6 Iterative algebraic multigrid solver

Require: A ∈ RN×N symmetric M matrix
1: function AMGsolver(A, b, εres)
2: Almax := A,Dlmax := {1, . . . , N}
3: for l = lmax, . . . , 1 do . multigrid hierarchy setup
4: C l ·∪F l = Dl, Dl−1 := C l . C/F splitting
5: construct I ll−1, I

l−1
l := (I ll−1)> . transfer operators

6: Al−1 := I l−1
l AlI

l
l−1 . Galerkin operator

7: construct Sl . smoother
8: x0 := 0, n := 0
9: repeat . iterative solution

10: xn+1 = AMG(lmax,xn, b) . multigrid cycle
11: rn+1 = b−Axn+1
12: until ‖rn+1‖2 ≤ εres
13: return xn+1

Let us now start by introducing neighboring variables or points. Thus, the neighborhood of
a point i ∈ Dl is

N l
i :=

{
j ∈ Dl

∣∣∣j 6= i, alij 6= 0
}
.

We say that a variable i is strongly negatively coupled to variable j if for a fixed 0 < εstr < 1

−alij ≥ εstr max
al
ik
<0
|alik| .

All strong negative couplings of a variable i can be denoted by the set

Sli =
{
j ∈ N l

i

∣∣∣i strongly negatively coupled to j
}
.

Furthermore, we also need somewhat the transpose of this, thus the set of all variables j which
are strongly coupled to i. It is

Sli
> :=

{
j ∈ Dl

∣∣∣i ∈ Slj} .
According to [TS01, Section A.7.1], “an important objective [in coarsening] is to create C/F-
splittings which are as uniform as possible with F-variables being surrounded by C-variables to
interpolate from.” We get better convergence if we have strong couplings from fine grid points
to coarse grid points. In [TS01, Section A.7.1.1] the “preliminary C-point choice” algorithm
from [RS] is taken as rough idea of a coarsening method. It repeats the choice of a coarse grid
point with the definition of all neighboring points which are strongly coupled to the the coarse
point as fine grid points until all points are chosen as fine or coarse grid points.
What is called the standard coarsening algorithm in the literature [TS01, Section A.7.1.1],

is stated in Algorithm 7. This method also introduces sets of undecided variables U l and
importance measures λli. It results in a rather evenly distributed set of coarse grid points due
to the indirectly imposed ordering by the weights λli.
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Algorithm 7 Standard coarsening algorithm

Require: level l
1: function AMGstandardCoarsening
2: F l := ∅, C l := ∅, U l := Dl
3: for i ∈ U l do
4: λli :=

∣∣∣Sli> ∩ U l∣∣∣+ 2
∣∣∣Sli> ∩ F l∣∣∣

5: while ∃i s.th. λli 6= 0 do
6: find imax := argmaxi λli
7: C l := C l ∪ {imax}
8: U l := U l \ {imax}
9: for j ∈ (Sli

> ∩ U l) do
10: F l := F l ∪ {j}
11: U l := U l \ {j}
12: for i ∈ U l do
13: λi :=

∣∣∣Sli> ∩ U l∣∣∣+ 2
∣∣∣Sli> ∩ F l∣∣∣

14: return C l, F l

Besides of standard coarsening, there exists also aggressive coarsening, which basically defines
strong couplings based on paths of strongly coupled variables and thus allows to introduce a
much sparser coarse point set. However, it also requires stronger smoothing. Overall, AMG
with aggressive coarsening is a research topic by its own and shall not be discussed further.
Also, there is a large set of parallel algorithms to define the C/F splitting, cf. [Yan06,

GMOS06]. By construction, most of them are designed for parallelism known from distributed
memory CPU clusters. Thus they usually construct splittings on subdomains of a domain
decomposition by the serial standard coarsening algorithm and try to connect these parts with
some clever routine. However, most of these methods are not designed for the massive thread-
parallelism known from GPUs. One exception is parallel maximal independent set (PMIS)
[Yan06], which is e.g. used in GAMPACK. Since PMIS tends to have robustness issues, it
usually needs stronger interpolation methods. As a results, in this thesis, the objective is to
keep the very robust sequential standard coarsening on CPU and port all other parts to GPU.

8.2.2 Interpolation

While the coarsening defines a set of variables which will be used as coarse grid variables, the
interpolation defines the relation between the different levels in AMG. As previously stated, the
interpolation operator I l+1

l transfers solutions on the coarse level to the next finer level. Since
we use the transpose of the interpolation operator matrix as restriction matrix, it is enough
to describe the interpolation operation and operator construction. This is again done closely
following [TS01, Appendix A].
We start by introducing some additional notation with

C li := C l ∩N l
i , F li := F l ∩N l

i , C̄ li := C l ∩ Sli, F̄ li := F l ∩ Sli .
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Let us now have a look at some of the usual techniques used, to perform interpolation.

Direct interpolation

This type of interpolation uses only the strongly coupled coarse grid points to interpolate a
given fine grid point. Thus, for each i ∈ F l we use the set of so-called interpolatory variables
P li = C̄ li and interpolate a given fine grid variable eli by

eli =
∑
k∈P li

wlike
l
k, wlik = −αli

alik
alii
, αli =

∑
j∈N l

i
alij∑

k∈P li a
l
ik

.

We still assume here the system matrix to be an M-matrix. Therefore, we can neglect the
handling of positive non-diagonal entries.

Standard interpolation

A much better convergence can be achieved by standard interpolation. It not only considers
strongly connected coarse grid nodes but also includes strong connections between fine grid
nodes. In order to describe this process, let us have a look at a fine grid point i ∈ F l. The
application of its corresponding matrix row to a vector e reads as

aliie
l
i +

∑
j∈N l

i

alije
l
j .

To apply standard interpolation, we introduce a modified system matrix. There, we replace
in those rows that are associated with a fine grid point i ∈ F l, as above, the variables ej with
j ∈ F̄ li , thus the strongly coupled fine grid points, as

ej −→ −
∑
k∈N l

j

aljke
l
k/a

l
jj .

The newly generated matrix Âl has entries âlij and possesses new neigborhood sets N̂ l
i . By

further setting for all i ∈ F l that P̂ li = C̄ li ∪ (⋃j∈F̄ li C̄ lj), we can define standard interpolation
analogously to direct interpolation as

eli =
∑
k∈P̂ li

âlike
l
k, ŵlik = −α̂li

âlik
âlii
, α̂li =

∑
j∈N̂ l

i
alij∑

k∈P̂ li
âlik

.

This basically means that we expand direct interpolation to include the neighborhood of the
strongly connected fine grid points.

Jacobi interpolation

A way to improve the quality of an existing interpolation is the application of one or more
Jacobi relaxation steps. Analogously to the standard interpolation, we increase the set of
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variables that interpolate a given fine grid variable. However, Jacobi interpolation does this in
much broader sense. Let us assume to have a given system matrix A(µ−1)

l to which we already
applied µ − 1 times the Jacobi interpolation. Then for all variables i ∈ F l we find the j ∈ F li
and replace in the equation associated to the variable i

elj −→
∑
k∈P lj

w
(µ−1)
jk elk ,

resulting in a new system matrix A(µ)
l . Finally we replace the interpolatory variables P li by

P lj := C li ∪
(⋃

j∈F li P
l
j

)
and construct the interpolation as for standard interpolation. By

increasing the interpolation quality with Jacobi relaxation steps, we however also run into
complexity issues, which might be overcome with truncation.

Truncation

The more connections between variables are taken into account when constructing the in-
terpolation operator, the better the interpolation. However, too many connections lead to
rather densely populated interpolation operator matrices and thus to denser system matrices
on coarser levels. This in turn might heavily affect the overall complexity of the multigrid
method.
Therefore, it is often necessary to introduce a truncation of the interpolation. One thus

drops all entries related to connections with a strength smaller than the largest entry scaled
by a threshold εtr. The resulting entries finally have to be rescaled accordingly.

8.2.3 Standard smoothers

We already introduced smoothers Sl ∈ RNl×Nl to be the crucial numerical tool on a given level
of the algebraic multigrid method. For Pl ≈ A−1

l one has the smoothing operator

Sl := (Il − PlAl)

and the smoothing reads as

x̄l := Slx
l + (Il − Sl)A−1

l b
l ⇔ x̄l := xl + Pl(bl −Alxl) . (8.4)

Jacobi smoother

For P := D−1
l , Dl = diag(Al) we get the Jacobi smoother SJl := Il−D−1

l Al. For a given point
i its application thus reads as

x̄i = 1
aii

bi −∑
j 6=i

aijxj

 .

Due to its trivial nature it can be very easily applied in parallel, even on GPUs. Furthermore,
we can introduce a relaxed Jacobi iteration with the parameter ω ∈ R and P := ωD−1

l , thus
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SωJl := Il − ωD−1
l Al resulting in the iteration

x̄i = ω

aii

bi −∑
j 6=i

aijxj

+ (1− ω)xi .

By a proper choice of the relaxation parameter, the smoothing can be improved a lot.

Gauss-Seidel smoother

A stronger smoother than Jacobi is the Gauss-Seidel method with Pl := L−1
l and L−1

l the lower
triangular part of Al including all diagonal entries. It results in the smoother SGSl = Il−L−1

l Al
which has the iteration rule

x̄i = 1
aii

bi − i−1∑
j=1

aij x̄j −
N∑

j=i+1
aijxj

 . (8.5)

Again, we can introduce relaxation leading to a method called successive overrelaxation,
cf. [Saa03, Section 4.1] with the iteration rule

x̄i = ω

aii

bi − i−1∑
j=1

aij x̄j −
N∑

j=i+1
aijxj

+ (1− ω)xi .

By iteration rule (8.5) we can already see that this smoother is purely sequential. A way to
overcome this is to introduce a coloring [Luk12, Section 3.6.3] for the variables of the linear
system, decoupling subsets of the variables which can be then treated in a parallel way. For
more details on coloring for iterative linear solvers, see e.g. [Saa03, Section 12.4]. Note however,
that colored Gauss-Seidel versions are not used in this thesis.

8.3 GPU-parallel implementation

The implementation of algebraic multigrid for a single GPU is based on the sparse linear algebra
library CUSP [BG12] in version 0.4.0. This library provides a set of linear algebra primitives,
iterative solvers and preconditioners for sparse matrices of different sparse matrix formats.
Compressed sparse row (CSR) [BG09] is the matrix format, which is mainly used throughout
the implementation of AMG on top of CUSP. The implemented code integrates withing the
CUSP framework, thus the new Ruge-Stüben classical AMG can be used as preconditioner for
the standard CUSP solvers. It can be furthermore applied as stand-alone solver.
Due to the available linear algebra primitives, the implementation of a V-cycle in CUSP is

straight-forward. The simple structure of the smoother allows for an easy GPU parallelization,
too, thus does not need to be further discussed. Applying the restriction and interpolation
operator is also done with the existing framework by a sparse matrix-vector product. The
construction of the coarse grid operator by the matrix triple product

Al−1 := I l−1
l AlI

l
l−1
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is done with the matrix-matrix operations delivered with CUSP. Note that a more efficient code
might be achieved by implementing a dedicated triple product for the well-known structure of
these matrices. However this is not done for the sake of usability and simplicity of the resulting
code. Finally, the (usually direct) solve on the coarsest level is achieved by a CUSP-based
Jacobi-preconditioned CG solver iterated to an absolute residual norm of 10−20. All other
components, namely all different types of interpolation operator construction and the hybrid
GPU splitting between coarse and fine grid nodes are discussed in the following. Note that
the described algorithms heavily make use of graph / matrix traversals. For GPUs, this is
an important research topic by its own, cf. [MGG12]. Though, the realized graph traversal
implementations might not achieve the best possible performance.

8.3.1 Hybrid C/F splitting

The coarsening algorithm is the only part of the code which is only partially implemented
on GPU. It follows Algorithm 7. Steps three and four of the algorithm compute the strong
influence weights λli for the current level. The weights are computed on GPU. Here, the first
necessary step is to pre-compute the maximum (negative) non-diagonal entry for each matrix
row, thus, maxal

ik
<0 |alik|. This can be efficiently done by parallelizing on GPU over each row

and traversing the CSR matrix data structure. Using these maxima, it is possible to identify
strongly coupled nodes in an algorithm for evaluating the λli. The weight evaluation algorithm
again traverses the system matrix in parallel for each row on GPU. Adding another node to the
strong influence weights, thus increasing one of the λli by one is done with atomic operations.
The remaining part of Algorithm 7 is implemented on CPU with the necessary copy opera-

tions between CPU and GPU. To achieve an optimal computational complexity, the lookup of
the largest weight λli in step 6 of the algorithm is performed with a priority queue data struc-
ture [CLRS01, Section 6.5], which is added to the CUSP framework. Since e.g. the STL-based
implementation of a priority queue does not allow to have a constant-complexity maximum-
find and -removal operation (in fact that implementation has a logarithmic complexity in that
case), the data structure is hand-implemented. The proposed implementation uses bucket sort
[CLRS01, Section 8.4] as base algorithm and allows to achieve the designated constant com-
plexity removal operation with a linear-complexity data structure setup time. Overall this
keeps a linear complexity for the standard coarsening algorithm.
Finally, while skipped in Algorithm 7, it is necessary to identify the mapping between the

newly found coarse grid points on the next grid level and their position in the current grid
level. This is again done on GPU. Results are stored in a constant-complexity lookup table.

8.3.2 Interpolation operator construction

Interpolation operators are represented by a matrix. Therefore, it is necessary for all types of
interpolation operators to construct new sparse matrices. Due to the inefficiency of dynamic
memory allocation on GPUs, new sparse matrices have to be generated in two phases. The first
phase mimics the matrix construction, only counting the number of (later) generated entries in
each row. Afterwards, memory for the to be constructed matrix is allocated. Eventually, the
second phase fills the allocated memory with matrix entries. In fact, this often requires twice
the amount of compute operations. However, there is no obvious way to avoid this approach.



182 8 Algebraic multigrid for random PDE problems

Direct interpolation

The GPU implementation of direct interpolation starts by precomputing the intermediate co-
efficients

αli =
∑
j∈N l

i
alij∑

k∈P li a
l
ik

.

Thereafter, the sparse interpolation matrix is build as sketched before. All traversal operations
are parallelized over the matrix rows. Thus, each GPU thread starts traversing the system ma-
trix from another row. The positions of the interpolation coefficients in the finally constructed
matrix I l+1

l are determined by the lookup table created at the end of the C/F splitting as
outlined in Section 8.3.1.

Standard interpolation

Implementation of standard interpolation is more complicated. Here, the algorithm starts by
finding the set of interpolatory variables P li = C̄ li for direct interpolation. Since this is necessary
for each row, a sparse matrix is constructed to store this information. It reuses the existing
data structure of the sparse system matrix and replaces the array of non-zeros by boolean
indicator values. These indicate whether a given neighbor node is part of the interpolatory set
or not. Next, the original system matrix is modified such that strongly coupled fine grid points
are expanded as

ej −→ −
∑
k∈N l

j

aljke
l
k/a

l
jj .

Note, that this construction is rather compute intensive and might be replaced by a more
sophisticate method in the future. It requires e.g. to implement a sparse matrix row addition.
The new set P̂ li = C̄ li ∪ (⋃j∈F̄ li C̄ lj) of interpolatory variables is computed, as well. Finally
the algorithm reproduces the direct interpolation implementation, which is possible since the
interpolatory nodes are are known.

Jacobi interpolation and truncation

Jacobi-interpolation is implemented, too, to be able to approach some system matrices which
struggle with direct or standard interpolation. It is possible to reformulate the Jacobi inter-
polation application in terms of products and sums of some specifically constructed matrices.
This allows to express the algorithm mostly in terms of CUSP linear algebra operations.
Truncation is also implemented on GPU. This is usually done within the construction algo-

rithm for interpolation matrices, to avoid building new sparse matrices. However, this algorithm
is also available as stand-alone method.

8.4 Numerical results

In the following, a series of convergence results will be presented and discussed to analyse the
quality and to assure the correctness of the implemented algebraic multigrid method. We first
have to fix a set of parameters for the setup and the solve phase. The splitting of coarse and fine
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grid points is performed as presented in Section 8.2.1, thus standard coarsening is used. Both,
direct and standard interpolation are investigated with the strength parameter εstr = 0.25
as usual in the literature [TS01, Appendix A]. In case of standard interpolation, truncation
is applied with the standard parameter εtr = 0.2, cf. Section 8.2.2. New coarser levels are
generated until less than a fixed, problem-independent number of 100 equations remain for the
new level. The smoother is a relaxed Jacobi iteration with relaxation parameter ω = 0.8, which
is applied twice as pre-smoother and twice as post-smoother. It is part of a standard V-cycle.
To measure the convergence quality, the convergence factor

ρ =
(‖rilast‖
‖r1‖

)1/ilast

is computed, with r the residual and ilast the index of the iteration in which the method
converges. AMG is either applied directly as solver or as preconditioner for a conjugate gradient
method.
The first analysis is based on a standard two-dimensional Poisson problem with homogeneous

Dirichlet boundary conditions,

−∆u = f on D ,
u = 0 on ∂D .

Its underlying domain is the unit square D = (0, 1)2. Here, u : D → R is the solution and
f : D → R is the right-hand side with

f(x, y) = 8π2 sin(2πx) sin(2πy) ,

such that the analytic solution

u(x, y) = sin(2πx) sin(2πy)

is known. This problem is discretized with a standard second-order five-point finite difference
stencil. The iterative linear solver is said to have converged, if the initial residual is reduced
by a factor of 10−12. A random vector is taken as initial guess for the solution.
Figure 8.1 displays on the left-hand side the convergence factors achieved by the AMG

method directly used as iterative solver. Problem size N1
D is always defined as the number

unknowns in each of the coordinate directions in the discretization, thus N1
D ∼ 1

h , with h the
mesh width. Keeping in mind that smaller convergence factors are better, direct interpolation
performs here a bit better than standard interpolation. However, this result will not hold for
more complex problems. Overall these are textbook convergence rates. Furthermore, the error
of the discrete solution has been calculated to make sure that not only the residual converges,
but the solution is actually the solution of the original problem. The results on the right-hand
side of Figure 8.1 thus show the expected second order convergence with errors evaluated by
the discrete maximum norm. Note that direct and standard interpolation result in almost the
same result, therefore the line plotted for direct interpolation in the results figure is hardly
visible.
Next, we have a series of rather generic convergence studies for two- and three-dimensional
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Figure 8.1: Convergence factors (left) and PDE solution error (right) for a 2D Poisson problem
with right-hand side given for a known analytic solution, solved with AMG as solver.

Poisson problems with homogeneous Dirichlet boundary, which are discretized by second-order
finite differences on a uniform grid. In two dimensions, the standard five point stencil is applied,
while in three dimensions the standard seven point finite difference stencil will be used. The
right-hand side of the linear system is a zero-component vector. This is done, in order to discuss
the same model problems as in the next section. Also, convergence is said to be achieved if the
absolute residual reaches a threshold of 10−15.
Figure 8.2 gives results for the two-dimensional test case. The plots on the left-hand side

present convergence factors for growing problem sizes with AMG as a pure solver, cf. Al-
gorithm 6. For the smaller problem sizes, direct interpolation again outperforms standard
interpolation, however, for growing problem sizes the convergence factor will probably not be
asymptotically constant. On the other hand, standard interpolation has a more robust con-
vergence behavior, which is what is expected. The results on the right-hand side of the same
figure outline convergence for AMG as preconditioner for a CG method. Although the behav-
ior of both interpolation schemes is identical, a considerably smaller convergence factor, thus
a smaller numer of iterations, is achieved.
This is why the test case for a three-dimensional Poisson problem is only discussed for the

preconditioned CG case. These results are presented on the left-hand side of Figure 8.3. Here,
the strength of standard interpolation becomes evident. Direct interpolation is no longer able
to achieve the asymtotically constant convergence factor while standard interpolation achieves
the expected rates. Due to the additional amount of memory required on a GPU to set up
standard interpolation, it was not possible to perform a test run with 1283 unknowns.
We conclude this section by a very tough numerical test case which is driven by our applica-

tion of two-phase flows. In Section 5.1.2 we introduced the three-dimensional Poisson problem
for pressure correction in Chorin’s projection approach to solve the two-phase Navier-Stokes
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Figure 8.2: Convergence factors for standard 2D Poisson problem solved with AMG as solver
(left) and AMG as preconditioner for a CG solver (right).
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Figure 8.3: Convergence factors for a standard 3D Poisson problem solved with AMG as pre-
conditioner for a CG solver (left) and for a non-constant coefficient Poisson problem
from two-phase flow simulation with AMG as solver (right).
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equations. The resulting linear system after discretization is badly conditioned in case of a high
jump in the density between the two involved fluid phases. This test case has been extracted
from a simulation of a large rising gas bubble with a density of ρg = 1.0 and a viscosity of
µg = 0.1 in a liquid with density ρl = 1000.0 and viscosity µl = 10 contained in a box of size
1m× 1m× 1m. The bubble is initially of spherical shape with a diameter of 0.5m and is cen-
tered in the box, which has homogeneous Dirichlet boundary conditions for the velocity field
in normal and tangential direction of all boundaries. Standard gravity is applied as volume
force. The linear system is finally extracted from the first time step with the right-hand as in
the solver. As initial guess, a random vector is used. Like in the first test case, the norm of
the initial residual is reduced by a factor of 10−12 to achieve convergence.
The results, presented on the right-hand side of Figure 8.3 reflect convergence factors for

AMG as solver and discretization grid sizes 32×32×32, 64×32×32, 64×64×32, 64×64×64,
128×64×64 and 128×128×64. Besides of the very large density coefficient jump, this choice of
mesh sizes imposes an anisotropic discretization leading to degraded convergence. The achieved
convergence factors underline the complexity of the problem. Direct interpolation fails. Some
of the problems even did not converge within 100 iterations. In case of standard interpolation,
convergence is always achieved, but the rates are still rather bad. One reason for this is for
sure the weak smoother. In standard CPU implementations Gauss-Seidel-type smoothers are
expected to perform better. Also, we could achive better convergence by increasing the number
of smoother sweeps. This is not done here, to keep the results comparable with all other results.
As in the previous three dimensional test case, standard interpolation can also not be applied
in the 1283 problem size due to memory limitations.

8.5 Performance results
In this section, some of the previously introduced test cases are used to measure the perfor-
mance of the implemented method. Even though the hybrid GPU implementation has been
constructed starting from a full CPU implementation, the intention here is to compare the
hybrid GPU results not with that potentially low-performance pure CPU implementation, but
with a standard open-source CPU AMG library, namely BoomerAMG [HY02], which is con-
tained in the solver package Hypre [FY02]. Overall, two CPU AMG configurations will be
considered. The first is based on the (at time of writing this thesis) latest available state-of-
the-art version of BoomerAMG, which is contained in hypre-2.9.0b. The second study tries to
give a relative comparison to GAMPACK [ENS12]. Since GAMPACK is not publicly available,
we do not compare results directly. However, we contrast performance results of our hybrid
GPU implementation with the CPU comparison base presented in performance results [ENS12]
for GAMPACK. This comparison base is hypre-2.8.0b with specific parameters presented later.

8.5.1 Benchmark setup
The GPU benchmark system consists of a quad-core Intel Xeon E5620 2.40 GHz CPU with 12
GB DDR3 ECC RAM and an Nvidia Tesla M2090 GPU. As CPU system, a dual six-core Intel
Xeon X5650 2.667 GHz machine with 24 GB RAM is used. The two six-core CPUs together
were almost similar priced as the GPU when they arrived on the market. Therefore it should
be balanced to compare the performance of AMG on the one GPU with its performance on
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these 12 CPU cores. Furthermore, the C/F splitting of the hybrid GPU implementation will
run a little bit slower on the GPU benchmark machine due to its slower CPU. On both systems,
Ubuntu Linux 12.04 (64 bit) is installed as operating system.
The hybrid GPU code is compiled with nvcc from the CUDA 5.5 toolkit and GCC 4.6.3 with

optimization parameters -arch sm_20 -O3. hypre 2.9.0b is compiled by the same GCC com-
piler with the optimization flag -O3 and OpenMPI 1.3 to perform a multi-core parallelization.
OpenMP is not used. Moreover, the GAMPACK-related comparison uses a purely OpenMP
parallelized hypre-2.8.0b. Hypre expects to use the Intel compiler in the OpenMP mode, for
which version 13.0.1 was applied. Due to some problems with the configuration script, only an
optimization with -O2 is possible in this case.
All timings on CPU and GPU are wall clock times. The GPU AMG implementation is not

intended to be an accelerated part of an existing CPU code but a solver within a full GPU code.
This is why, in the hybrid GPU case, it is expected, that the system matrix, righ-hand side
and initial guess are already availably in GPU memory. However, all transfer times between
CPU and GPU memory as well as the full CPU and GPU compute time are included for the
hybrid GPU setup/solver test runs.
To perform time measurements with BoomerAMG / hypre-2.9.0b on CPU, numerical param-

eters were choosen different to the GPU implementation, since e.g. standard interpolation with
a Jacobi smoother is clearly not the most performant way to apply AMG on CPUs. Instead,
the test application new_ij delivered with the Hypre framework is used as test base with the
same convergence criterion as in the GPU case. All other parameters are left as the default
proposed by that application, in the hope to give the best possible parameter set for the CPU
benchmark counterpart, at least for Poisson-like problems. BoomerAMG timings are reported
as given by new_ij. The numerical parameters of hypre-2.8.0b, in the GAMPACK-related
benchmark, are chosen as close as possible to the parameters proposed in [ENS12]. Thus, stan-
dard interpolation and C/F splitting by PMIS are selected as parameters. All other parameter
choices (including the smoother) are left to the default of new_ij.

8.5.2 Two-dimensional Poisson problem

The performance discussion starts with the standard two-dimensional Poisson problem as used
for the convergence results in Figure 8.2 from the last section. In Figure 8.4 on the left-hand
side, the runtimes for the hybrid GPU/CPU setup phase are presented. As expected, direct
interpolation is faster due to its simpler structure. In the solve phase, cf. Figure 8.4 on the
right-hand side, the overall runtime for both direct interpolation and standard interpolation is
very similar, even though convergence rates for direct interpolation were slightly better, in this
case.
Figure 8.5 gives the performance results for the latest BoomerAMG version. Note that it

was not possible to get the test application new_ij running on all the 12 CPU cores of the CPU
test machine for the MPI-parallelized Hypre version. Here, eight cores, were the maximum.
Increasing the number of applied CPU cores improves performance. However, a clear strong
scaling is not available. This becomes even more evident for the performance comparison
baseline with regard to GAMPACK [ENS12]. When using the older Hypre/BoomerAMG
version with different C/F splitting and OpenMP parallelization, cf. Figure 8.6, speed-ups
stagnate starting with eight cores.
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Figure 8.4: Timings of the full AMG setup phase (left) and solve phase (right) for a 2D Poisson
problem (including CPU and GPU computations).
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Figure 8.5: Time required in the setup phase (left) and the solve phase with AMG as solver
(right) for the 2D Poisson problem computed with the BoomerAMG/Hypre CPU
library (at different CPU core counts).
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Figure 8.6: Time required in the setup phase (left) and the solve phase with AMG as solver
(right) for the 2D Poisson problem computed with the BoomerAMG/Hypre CPU
library (at different CPU core counts) with settings similar to those used in [ENS12].
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Figure 8.8: Time required in the full setup phase (left) and the solve phase with AMG as
preconditioner for a CG solver (right) for the 3D Poisson problem

We finally compare all three test cases for the two-dimensional Poisson problem in Figure 8.7,
taking the best available results in each case. For the setup phase, the hybrid GPU approach
has similar performance as the GAMPACK-related test case. However, the latest BoomerAMG
version is faster. In the solve phase, we observe tht the GPU code is always faster. This
becomes rather significant for hypre-2.8.0b in the discussed configuration, with more than a
factor of three of speedup on almost equally priced hardware. In terms of total solution time,
the proposed implementation clearly outperforms hypre-2.8.0b and is only a bit slower than
the latest BoomerAMG version, comparing one GPU with a 12-core CPU system for the two-
dimensional Poisson problem.

8.5.3 Three-dimensional Poisson problem

Next, we discuss performance measurements for the three-dimensional Poisson problem test
case, which was earlier analyzed for convergence on the left-hand side of Figure 8.3. Results
for the hybrid GPU implementation are outlined in Figure 8.8. The 1283 test case is only
computable with direct interpolation, due to memory limitations. As in the two-dimensional
case, the setup phase takes longer for standard interpolation, while the solve phase has a very
similar runtime for both interpolation techniques.
Figures 8.9 and 8.10 collect runtimes for the solution by BoomerAMG in hypre-2.9.0b and

hypre-2.8.0b, respectively. Similar parallel scalability is observed as in the two-dimensional case.
A comparison of all three test cases is given in Figure 8.11. As before, the lowest runtimes are
collected for each method. We here focus on runtimes for 643 unknowns. In the setup phase, the
hybrid GPU AMG implementation is 60% faster than the state-of-the-art CPU AMG running
on a 12-core system. This is a decent result. Furthermore, it is an impressive factor of 2.5
faster than the GAMPACK-related hypre-2.8.0b AMG. For the solve phase, we observe a 20%
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Figure 8.9: Time required in the setup phase (left) and the solve phase with AMG as solver
(right) for the 3D Poisson problem computed with the BoomerAMG/Hypre CPU
library (at different CPU core counts).
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Figure 8.10: Time required in the setup phase (left) and the solve phase with AMG as solver
(right) for the 3D Poisson problem computed with the BoomerAMG/Hypre CPU
library (at different CPU core counts) with settings similar to those used in
[ENS12].
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Figure 8.11: The hybrid GPU AMG implementation clearly outperforms both CPU AMG im-
plementations on similar priced hardware, in case of the three-dimensional Poisson
problem with a grid of 643 points.

performance improvement over hypre-2.9.0b and a speedup by a factor of roughly 2.4 over
hypre-2.8.0b. In total, the full solution process bt the hybrid AMG implementation is about
50% faster than the state-of-the-art AMG and about 2.5 times faster than hypre-2.8.0b with
PMIS for a three-dimensional Poisson problem. This is a rather impressive result, remembering
that these measurements compare almost equally priced hardware.
Summarizing the results presented in this section, it becomes clear that large performance

gains for AMG implementations on GPU require a considerable effort in optimization. As
already mentioned in Section 8.3, it was not intended overoptimize the constructed hybrid
GPU AMG implementation. Instead, a robust AMG implementation, with speedup on GPUs,
even with respect to almost equally priced hardware, is constructed. The implemented code is
always clearly faster than hypre-2.8.0 with C/F splitting by PMIS and is in total 50% faster
than the state-of-the-art version of BoomerAMG for the three-dimensional Poisson problem.

8.6 Application to random PDE problems

This chapter shall be finished by outlining that the application of the implemented algebraic
multigrid method to random PDE problems gives not only an asymptotic complexity improve-
ment, but results in an actual reduction in runtime. To show this, the two elliptic random
PDE problems from Section 3.2 are solved again. This time, however, the implemented al-
gebraic multigrid with standard coarsening and the already introduced default parameters is
used as preconditioner for the conjugate gradient solver. As described in Section 6.1.1 for
the Jacobi-preconditioned case, the iterative solver is stopped at an absolute residual norm of
10−15. All other parameters are also identical to that section. The number of collocation points
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preconditioned conjugate gradient solver to solve the piecewise constant (left)
and the Karhunen-Loève based (right) random coefficient elliptic problems for 212

stochastic realizations.

is NΓ = 212. Furthermore, the Karhunen-Loève based random coefficient elliptic problem is
solved for a stochastic dimension of NKL = 5.
Figure 8.12 outlines the results of this runtime comparison study, which runs fully on a GPU.

On the left-hand side, results for the elliptic problem with piecewise constant coefficients are
presented. The given timings represent the accumulated runtimes over all 212 linear problems
for the setup phase, the solution phase and the sum of both. Even though the time invested
in the setup phase for AMG is quite significant, this pays off in the solve phase. Overall, the
AMG-preconditioned CG solver is about a factor of two faster (including setup). This is a
rather impressive result which would be even more pronounced for discretizations with more
than ND = 5122 grid points. On the right-hand side of Figure 8.12, the timings for the five-
dimensional Karhunen-Loève based elliptic problem are given. Here, using AMG still gives a
decent performance improvement of about 50 percent. Note that recycling the AMG setup
phase for many stochastic realizations might even give a much higher performance improve-
ment. However, this shall not be investigated further. Altogether, the presented numerical
and runtime results underline that using AMG does not just allow to have a complexity of
O(NΓNtND) or O(NΓND) for the PDE solution part of the stochastic collocation method. It
even allows to achieve strong performance improvements.
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9 A-posteriori Karhunen-Loève covariance
spectrum decay analysis

It is often assumed that random PDEs map a fast decay in the covariance spectrum of the ran-
dom input parameter field a(y,x) to a fast decaying spectrum in the covariance Cov [u] (x,x′)
of the random PDE solution. This allows to apply numerical methods such as anisotropic sparse
grid stochastic collocation with improved convergence. Even though this relationship might
be obvious for simpler PDEs with stochastic coefficients, the covariance spectrum behavior of
the output of a non-linear PDE with many random input parameters might be far away from
this assumption. On example for such a PDE are the two-phase Navier-Stokes equations. It is
therefore of high interest to perform such a spectrum analysis by numerical means. This can
be achieved by a Karhunen-Loève decomposition of the solution field u(y,x), which will be
called a-posteriori Karhunen-Loève decomposition, in the following. Note here the difference to
the classic application of the Karhunen-Loève expansion in stochastic collocation to approxi-
mate a given random input parameter field. We thus want to approximate a Karhunen-Loève
expansion of a numerically approximated random solution field.
In the context of reduced order models we know from e.g. [Loe78, GH14, ST06] that a

Karhunen-Loève expansion truncated after the NKLth term delivers a best NKL-term approx-
imation in L2-sense. Thus, by approximating an a-posteriori Karhunen-Loève expansion, we
can also construct a reduced order model with fast or even exponential convergence. This is
of high interest for those problems which require a high amount of computational work for a
single evaluation, as in the case of the Navier-Stokes equations.
While the theoretical properties of the Karhunen-Loève expansion have been studied in a

profound way, the effective evaluation for large-scale three-dimensional PDE problems with
potentially millions of unknowns is still a very computationally expensive problem. Here, it is
important to know that the a-posteriori Karhunen-Loève expansion requires an approximation
of the eigenvalue decomposition of an extremely large dense matrix after discretization. This
problem will be tackled by the use of an iterative Lanczos eigenvalue solver, cf. [Saa03], which
approximates the most important eigenvalues and eigenvectors in a few iterations. The whole
method is implemented to run on an HPC cluster equipped with GPUs to overcome the high
computational costs. Note that e.g. [ST06] proposes an alternative efficient Karhunen-Loève
approximation approach, using a fast multipole expansion.
This chapter starts by the discretization of the underlying continuous eigenvalue problem

of a Fredholm integral equation of second kind by the Nyström method. Then, the Lanczos
iterative method is reviewed. After a few remarks on the multi-GPU parallel implementation,
numerical results with performance measurements for different random (two-phase) Navier-
Stokes problems are given.
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9.1 Discretization by the Nyström method

We can formulate the truncated (a-posteriori) Karhunen-Loève decomposition for random PDE
solutions as

u(y,x) ≈ E [u] (x) +
Nu
KL∑
k=1

√
λkYk(y)ψk(x) (9.1)

with
Yk(y) := 1√

λk

∫
D

(u(y,x)− E [u] (x))ψk(x)dx ,

cf. Section 2.4.1. Note that Nu
KL is the truncation parameter for the output which is different

to the input truncation NKL. To be concise, time-dependence is omitted here, even though
the application problems will have a time component. However, in terms of a snap-shotting
technique, time is assumed to be a constant parameter. Moreover, the construction is outlined
for scalar-valued solutions u(y,x) only. From the literature (e.g. [LMK10, ST06]) we know
that ψk are the eigenfunctions and λk the eigenvalues of the operator

CCov[u] : L2(D)→ L2(D) , f 7→
∫
D
Cov [u] (·,x)f(x)dx .

These can be found by solving the associated eigenvalue problem of a Fredholm integral equa-
tion of second kind with ∫

D
Cov [u] (x,x′)ψk(x′)dx′ = λkψk(x) . (9.2)

We will now follow the lines of [Hac95] and apply the Nyström method to discretize the integral
equation. While some literature on the Karhunen-Loève decomposition (e.g. [GH14]) uses
Galerkin projection for approximation, we choose the Nyström method since it fits well into
our finite difference / finite volume framework with functions discretized by point evaluations.
The basic idea of the Nyström method is to approximate the integral in (9.2) by a quadrature

rule

QNNY (f) =
NNY∑
j=1

wjf(qj) ,

with qj ∈ D the quadrature points and wj ∈ R quadrature weights. Using this idea, we derive
a semi-discrete formulation of the integral equation (9.2) as

NNY∑
j=1

wjCov [u] (x, qj)ψk(qj) = λkψk(x) ∀x ∈ D .

To derive a fully discrete problem, the x ∈ D are also restricted to the same quadrature points
qj . We thus get

NNY∑
j=1

wjCov [u] (qi, qj)ψk(qj) = λkψk(qi) i = 1, . . . , NNY , (9.3)
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which is our fully discrete problem. To shorthand the notation, we now set ψi,k := ψk(qi) and
βi,j := wjCov [u] (qi, qj) to get

ψNNYk :=

 ψ1,k
...

ψNNY ,k

 and B :=


β1,1

... β1,NNY
... . . . ...

βNNY ,1
... βNNY ,NNY

 ,

which gives us a short formulation of the discrete equation system (9.3) as

(λkI −B)ψNNYk = 0 . (9.4)

To evaluate the originally continuous eigenfunctions ψk(x), ∀x ∈ D, the Nyström interpolation

ψk(x) = 1
λk

NNY∑
j=1

wjCov [u] (x, qj)ψj,k


can be used. In the following, the quadrature rule QNNY is restricted to constant-weight rules
with weights wj = 1

NNY
. This choice transforms the short-hand equation (9.4) of the discrete

system to (
λ̃kI − C

)
ψNNYk = 0 . (9.5)

The matrix C ∈ RNNY ×RNNY is the simple structured discrete covariance matrix with entries
ci,j = Cov [u] (qi, qj) evaluated at the quadrature points and λ̃k = NNY λk. Note here that the
introduction of more complex quadrature rules might lead to methods with higher convergence
rates. However, this is future work.
In summary, the solution of the eigenvalue problem for the Fredholm integral equation (9.2)

is done here by computing the eigenvalues of the discrete covariance matrix with point sampling
at quadrature points. The eigenvalues λk are eventually given as λk = 1

NNY
λ̃k. Related theory

for the discussed method is found in [RBDV10]. Note that we will later-on identify the abscissas
qi with all (finite difference) grid-points of the discrete solution of the two-phase Navier-Stokes
equations. This leads to a quadratic (dense) matrix C with at least tens to hundreds of
thousands of rows.

9.2 Lanczos method for eigenvalue decomposition
Now that we have reduced the integral equation eigenvalue problem (9.2) to the task of finding
the eigenvalues and eigenvectors of the discretely sampled symmetric positive definite covari-
ance matrix C, it is necessary to apply an efficient eigenvalue solver.
The Lanczos method will be used to approximate the most important eigenvalues and eigen-

vectors of the covariance matrix. Lanczos’ algorithm is a Krylov subspace method which
specializes the Arnoldi iterative method to hermitian matrices. It iteratively constructs a tridi-
agonal matrix with a subset of the eigenvalues of the original matrix. Usually, tridiagonal QR
eigenvalue solvers are used to extract all eigenvalues of the reduced matrix in a very efficient
way.
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Algorithm 8 Lanczos iterative method

Require: C symmetric positive definite
1: function Lanczos(C, `)
2: β0 = 0, k0 = 0, b = arbitrary, k1 = b

||b||
3: for n = 1, 2, . . . , ` do
4: v = Ckn
5: αn = kTnv
6: v = v − βn−1kn−1 − αnkn
7: βn = ||v||
8: kn+1 = v/βn

9: return {kn}n, {αn}n, {βn}n

It is important to know that extremal eigenvalues of the input matrix C can be identified
with very few iterations, since the iterative Lanczos process tends to find extremal eigenvalues
first. Together with the potentially fast decay of the covariance matrix spectrum, it is expected
to get a very efficient covariance spectrum approximation, cf. [Kie08].
Lanczos’ method is well documented in standard textbooks for numerics. We follow e.g.

[SB02, Saa03] for a very brief review. The method is described in Algorithm 8. Even though
it is allowed to use arbitrary hermitian matrices as input, only the case of symmetric positive
definite matrices is considered here. Thus for the symmetric positive definite covariance matrix
C ∈ RNNY × RNNY the Lanczos method constructs after ` iterations a tridiagonal symmetric
matrix C` ∈ R` × R` with

C` =


α1 β1
β1 α2 β2

. . . . . . . . .
β`−2 α`−1 β`−1

β`−1 α`

 .

Here, the total number of iterations ` is either a fixed quantity, which corresponds to the
number of eigenvalues that shall be approximated, or the iteration process can be stopped for
small absolute values βn in terms of a classical error-based stopping criterion.
During the Lanczos process, orthonormal Krylov vectors k1, . . . ,k` ∈ RNNY are built. It

holds
C` = KT

` CK`

for the matrix K` ∈ RNNY ×`, which is given as the column-wise concatenation of the Krylov
vectors

K` =

 k1 k2 . . . k`

 .
The computational complexity of the Lanczos method for dense input matrices is O(NNY

2 · `).
Furthermore, the QR method for tridiagonal systems is used to evaluate the eigenvalue, eigen-
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Algorithm 9 Iterative eigenvalue decomposition

Require: C hermitian
1: function IterativeEigenvalueSolver(C, `)
2: ({kn}n=1...`, {αn}n=1...`, {βn}n=1...`) ← Lanczos(C, `)
3: C` ← {αn}n=1...`, {βn}n=1...`
4: (λn(C`), en(C`))n=1,...,` ← TridiagonalEigenvalueSolver(C`)
5: for n = 1, 2, . . . , ` do
6: en` = K`en(C`)
7: λn` = λn(C`)
8: return {en`}n`=1...`, {λn`}n`=1...`

vector pairs
(
λ̃n(C`), en(C`)

)
n=1,...,`

. It can be implemented with a computational complexity
of O(`) operations. As the computed eigenvalues λ̃n(C`) are approximations to a subset of the
eigenvalues λ̃n`(C) of matrix C, it is left to approximate the eigenvectors ψNNYn`

of the matrix
C by multiplication with the transformation matrix

ψNNYn`
≈ K`en(C`) ∀n = 1, . . . , ` .

which requires to store the Krylov vectors kn. The index n`, ` ≤ NNY , shall indicate the
mapping of the computed eigenvalue subset from the reduced matrix C` to the eigenvalues of
the matrix C. Altogether we end up with the iterative eigenvalue decomposition method with
O(` ·ND2) operations which is presented in a slightly more general form in Algorithm 9.

9.3 Multi-GPU parallel implementation

In the multi-GPU implementation, we have three important algorithmic steps. These are
the approximation of the covariance matrix C, the derivation of Karhunen-Loève expansion
coefficients λk and the evaluation of the truncated a-posteriori Karhunen-Loève expansion from
(9.1). The implementation extends the existing numerical framework from Chapter 4.
The first step, thus the approximation of the covariance matrix C involves the numerical

evaluation of Cov [u] (xi,xj), with xi,xj the finite difference discretization points. Here, the
dominant computational task is the evaluation of NΓ

2 quadrature problems associated to the
means of the multiplied kernels, E

[
k(·,yj)k(·,yj′)

]
(yj ,yj′), cf. Section 4.4. This evaluation is

parallelized on multiple GPUs. Results are collected via MPI.
To approximate the Karhunen-Loève expansion coefficients, which is the second step, we

have to find the eigenvalues of C. As mentioned before, this is done by a newly implemented
multi-GPU parallel Lanczos method with full reorthogonalization. The Lanczos method allows
for a straight-forward (parallel) decomposition of the O(NNY

2) storage matrix C over many
GPUs, since only matrix-vector and vector-vector operations have to be performed. This opens
the door for the use of a parallel multi-GPU cluster. Note that it might even be possible to
perform the full matrix-vector product without storing it, in terms of an in-place method. The
actual implementation is performed by extending the self-implemented multi-GPU parallel
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Figure 9.1: Covariance estimate error with Gaussian kernel for explicitly known solution and
different numbers of collocation points.

linear algebra library parla, cf. Section 4.8 by the Lanczos algorithm. Extracting eigenvalues
from the tridiagonal matrix C` is done on a single GPU with the tridiagonal eigenvalue solver
delivered by the CULA library. Eigenvectors are constructed in a multi-GPU fashion.
Eventually, truncated versions of the a-posteriori Karhunen-Loève expansion are evaluated

as third step. This is done on GPUs by appropriate kernels. Resulting approximated flow fields
are again, cf. Section 4.8.8, written to VTK files.

9.4 Numerical results and performance measurements

In the following, we study convergence and approximation results for different random (two-
phase) Navier-Stokes equation problems. If not otherwise stated, the discretization parameters
for the Navier-Stokes equations in space and time are chosen identical to Section 6.1 and full
tensor-product Clenshaw-Curtis rules are used for quadrature.

9.4.1 Flow over a backward-facing step

Since the flow over a backward-facing step with random inflow velocity, density and viscosity,
cf. Section 3.3, is fast to compute, we perform a series of comparative studies for this example.
We start with the error in the evaluation of the covariance field. In order to have an exact

reference solution, the first component of the velocity field at t = 0, thus π ≡ u1(y,x, 0), is
used as quantity of interest. We measure the error in the diagonal entries of the covariance
matrix, compared to the analytically known solution. Figures 9.1 and 9.2 display convergence
results for different kernels, thus the Gaussian kernel kε, ε = 1.0 and Wendland kernels of first
and third order, in presence of different levels of quadrature and collocation points. In contrast
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Figure 9.2: Covariance estimate error with Wendland kernel of order 1 (left) and order 3 (right)
for explicitly known solution.

to previous convergence studies of this kind, the results present the relative error with respect
to a growing number of quadrature points instead of collocation points, because the quadrature
error is the dominating error for these kinds of approximations.
The Gaussian kernel gives in Figure 9.1 almost the same results, for all collocation levels,

up to a quadrature level of lq = 6. This is where the quadrature error starts to be resolved.
For collocation point counts NΓ = 25, 26, 27 one gets a further decrease in error, as long as one
applies a rather strict regularization of εreg = 10−7. However for a collocation level of 8, thus
256 realizations, the error goes up again due to conditioning issues.
On the other hand, in Figure 9.2 on the left-hand side, the robust first-order Wendland

kernel k3,1 shows the classically expected convergence result with a stagnating error depending
on the collocation point level. In fact, the stagnating error level corresponds to the stochastic
collocation error. However, the third order Wendland kernel k3,3 covariance estimates again
suffer from conditioning problems, cf. Figure 9.2 on the right-hand side. Here, the original
kernel k3,3(y,y′) := ϕ3,3(‖y − y′‖) is replaced by ϕ3,3(1

4‖y − y′‖) and a regularization of
εreg = 10−8 is applied.
We now like to discuss approximations to the spectrum of the covariance matrix and the

reconstruction error of the Karhunen-Loève series. Our major interest for this test case is the
first component of the velocity field for the backward facing step simulation at t = 10.0s, thus
π ≡ u1(y,x, 10). All remaining tests use Wendland kernels of first order, thus k3,1.
Figure 9.3 shows on the left-hand side the decay of the covariance spectrum for a fixed

quadrature level and different numbers of collocation points. With growing number of col-
location points, a wider range of the actual continuous spectrum is approximated. A similar
result holds for the case of a fixed collocation level and growing number of quadrature points as
presented on the right-hand side of the same figure. Here, the spectrum is almost identical for
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Figure 9.3: Covariance spectrum decay for fixed quadrature level lq = 8 and different collocation
levels (left) and the same spectrum decay for a fixed collocation point countNΓ = 26

and different quadrature levels lq, both computed with Wendland kernels of first
order
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solution.
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Figure 9.5: Left: Covariance spectrum decay for the two-phase bubble flow problem at t = 0.2 s
with quadrature level lq = 6 and a growing number of collocation points. Right:
The spectrum changes over time, here approximated with NΓ = 27 collocation
points at different time steps.

quadrature levels q = 7 and q = 8, indicating that the collocation error dominates the results
starting from these levels.
The Karhunen-Loève expansion is also used to reconstruct a known, deterministically com-

puted stochastic realization. The result of this error analysis is given in Figure 9.4 for the
specific case of a Wendland kernel k3,1 with NΓ = 64 collocation points, quadrature level
lq = 7, a regularization of εreg = 10−13 and the quantity of interest π ≡ u1(y,x, 10). As
expected, the error decay behaves similar to the covariance spectrum decay. Note that we use
here an `∞ error. It is possible to see that with only 20 terms of the Karhunen-Loève expansion,
an error in the range of 10−4 is achieve, cf. Figure 9.4. This might be already enough accuracy
for many engineering applications.

9.4.2 Two-phase Navier-Stokes problem with random volume forces

After having discussed a series of results based on the first small-scale test case, we now move
forward to a two-phase flow example. Let us mention here that evaluating the following results
imposes a huge computational effort and was only possible by applying up to 32 GPUs at the
same time on a single problem.
The specific application problem is a bubble flow with random volume forces that are modeled

by a Karhunen-Loève expansion, cf. Section 3.3, with the quantity of interest π = u1(y,x, t).
This application problem is discretized in physical space by ND = 483 grid points and solved
over time with adaptive time-stepping, cf. Section 3.3. Random volume forces from (3.24)
are modeled with a correlation length of Lc = 2.0. The input Karhunen-Loève expansion is
truncated with NKL = 3. Numerical quadrature in stochastic space uses full tensor product
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Figure 9.6: The first four eigenvectors ψi(x, t), of the output covariance for the two-phase
bubble flow problem, here visualized along a slice with x3 = 0.1 and t = 0.2.

Clenshaw-Curtis rules with a quadrature level of lq = 6, thus 274625 abscissas. We have to
evaluate up to (28)2 = 65536 of these quadrature problems. In the RBF stochastic collocation
method, we apply the robust first-order Wendland kernels k3,1 with regularization εreg = 10−13.
Note that we construct a covariance matrix with (483)2, thus roughly 12 billion entries, in a
multi-GPU fashion. This matrix fills 91.125 GB of distributed GPU memory. It takes only
about 4.5 seconds to approximate 128 eigenvalues and eigenvectors (including the tridiagonal
QR solve) on 32 GPUs. Some results on parallel scalability of the underlying dense linear
algebra library parla were already presented in Section 7.4.3.
Figure 9.5 shows on the left-hand side the computed covariance spectrum Cov [u1] for differ-

ent numbers of collocation points at t = 0.2 seconds. Eigenvalues of absolute value smaller than
10−15 are skipped. We observe a strong covariance spectrum decay within the first few eigen-
values. The spectrum levels out depending on the number of collocation points used for the
approximation of the covariance. Eigenvectors corresponding to the first four eigenvalues and
NΓ = 27 are displayed in Figure 9.6. A slice with x3 = 0.1 is used to display the eigenvectors
ψi which are scalar fields in three space dimensions.
To highlight the time-dependence of the covariance spectrum, finally a second covariance
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spectrum study is given. Figure 9.6 shows on the right-hand side, for NΓ = 27 collocation
points and all other parameters fixed to the previous settings, a changing spectrum over time.
Even though there is an initially fast decay for all four time steps, the decay slows down in
the upper part of the spectrum for increased time. This might give an indicator for a loss
of smoothness in the response surface function of the two-phase Navier-Stokes equations for
growing time.





10 Anisotropic RBF kernel-based stochastic
collocation

Most random PDE problems have random input parameter fields, which can be approxi-
mated by Karhunen-Loève expansions. A fast decay in the covariance spectrum of the exact
random input parameter field leads to a fast convergence of its Karhunen-Loève expansion.
From e.g. [BNT10], we know further that the fast to exponential decay of the input random
parameter field does very often map to a similar decay of the covariance spectrum of the out-
put of the random PDE problem. The previous chapter highlighted a numerical study of this
input-output relationship. In the literature on e.g. sparse-grid based stochastic collocation
methods, problem-specific knowledge is used to construct anisotropic stochastic collocation ap-
proximations, cf. [NTW08a], which sometimes allows to break the curse of dimensionality for
an increasing number of Karhunen-Loève terms, thus stochastic dimensions.
In this chapter, an anisotropic construction for radial basis function kernel-based stochastic

collocation is introduced and applied with Gaussian and Matérn kernels. It combines the
advantages of purely isotropic kernel-based methods with the improved convergence rates of
e.g. anisotropic sparse grid constructions for random PDE problems with a fast decay of the
covariance spectrum. Based on previous work on anisotropic RBF interpolation in [CMM07,
BDL10, FHW12, GLS13] and motivated by similar constructions in the field of Gaussian process
regression, cf. [RW05, Section 5.1], anisotropic RBF kernels are introduced by using a weighted
norm in the RBF construction with decaying weights either derived by a-priori knowledge or
derived based on the first few eigenvalues of the output covariance operator, cf. Chapter 9.
This construction leads to a weighted native kernel function space.
Following error estimates for anisotropic RBF interpolation in [BDL10], the new approach

is at least expected to feature convergence improvements by constant factors for Gaussian
and Matérn kernels in case of optimal weight choice. This leads to clearly improved conver-
gence results in the pre-asymptotic regime, which is of high importance for large-scale appli-
cations. Furthermore, for Gaussian kernels, the proposed method is identical to interpolation
by weighted tensor-product kernels. Therefore, the proposed anisotropic method complements
research results from [FHW12], in which non-constructive dimension-independence results for
tensor-products of Gaussian kernels are given. These results suggest to expect dimension-
independence of the nominal stochastic dimension in case of a fast decaying output covariance
spectrum.
One missing ingredient towards constructive results in [FHW12] is the lack of optimal col-

location points, i.e., an optimal design, for anisotropic interpolation for arbitrarily sized point
sets. In other words, given an anisotropic RBF kernel, the optimal choice of collocation points
in the corresponding anisotropic native spaces does not seem to be obvious, especially when no
tensor-product grid shall be used. To overcome this difficulty, a greedy adaptive method, pro-
posed in [DMSW05], is used to construct almost optimal collocation points with respect to the

209
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worst-case error. Here, the numerical tool is the power function of a reproducing kernel Hilbert
space. For appropriately smooth, strictly positive definite radial-symmetric kernel functions, it
is possible to give upper bounds to the kernel interpolation error of functions in the respective
native space in terms of a product of the power function and the function’s native space norm
[Sch95]. This estimate motivates to use a greedy method that finds point sets, which minimize
the power function, to achieve a small overall error. Note that, in contrast to classical adap-
tive methods, this approach does not involve any function evaluations, thus deterministic PDE
solves. It purely depends on the characteristics of the underlying native space. Combining
interpolation by anisotropic kernels with collocation points generated by the greedy adaptive
method for the respective native space leads to the proposed anisotropic stochastic collocation
method.
This chapter starts by introducing anisotropic RBF kernel functions leading to a weighted

native space. An appropriate choice of weights for anisotropic stochastic collocation is dis-
cussed. Thereafter, the power function of a reproducing kernel-Hilbert space with the greedy
adaptive method are under consideration. By combining both techniques, it will be possible to
show clearly improved convergence results for random PDE problems with fast covariance spec-
trum decay. Numerical results even suggest dimension-independent convergence in some cases.
Together with an efficient GPU parallel implementation this leads to an optimal anisotropic
kernel method which is not only optimal in terms of convergence rate but which is also fast.

10.1 Anisotropic RBF kernel interpolation

Classical interpolation with RBF kernels uses kernel functions of the form

k(y,y′) = ϕ(‖y − y′‖2) ,

for y,y′ ∈ Γ, cf. Section 4.2. The Eucledian distance metric imposes an isotropic handling of
all directions in the sampled space Γ ⊂ RNFN . To introduce an anisotropic behavior, [RW05,
Section 5.1] and others propose to introduce a generalized norm

‖y‖M :=
(
y>My

)1/2
,

with M ∈ RNFN×NFN a symmetric positive (semi-)definite matrix. This norm would allow to
model a non-axis aligned anisotropic behavior. However, we are here only interested in axis
aligned anisotropies, thus we can set

M := diag(γ)2

and γ := (γ1, . . . , γNFN ) is a weight vector. We are now able to formally introduce anisotropic
RBF kernels as

kγ(y,y′) = ϕ(‖y − y′‖γ), with ‖y‖γ :=
(
y>diag(γ)2y

)1/2
.

In Figure 10.1, as an example, the isotropic and one anisotropic Matérn kernel are com-
pared. The anisotropic kernel interpolation problem looks, given an anisotropic kernel func-
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Figure 10.1: By replacing the isotropic Matérn kernel (left) with an anisotropic Matérn kernel
(right), it is possible to introduce directional dependence into kernel interpolation
problems.

tion kγ : Γ × Γ → R and function evaluations f = (f1, . . . , fNΓ), fi = f(yi) at data sites
XΓ := {y1, . . . ,yNΓ}, for a set of coefficients αγ ∈ RNFN such that

NΓ∑
i=1

αγi k
γ(yj ,yi) = fj ∀j = 1, . . . , NΓ

and we have the interpolant sγXΓ,f
with

f(y) ≈ sγXΓ,f
(y) =

NΓ∑
i=1

αγi k
γ(y,yi) .

Obviously the anisotropic Lagrange basis functions for the data sites XΓ are given as

Lγi (yj) =
{

1 i = j
0 i 6= j

with Lγi ∈ span {kγ(·,y)|y ∈ Γ} .

with the native space
N γ
k (Γ) := span{kγ(·,y)|y ∈ Γ} .

In fact, the equivalence of such anisotropic native spaces for standard kernel functions to some
Sobolev space as well as convergence results are subject to current research, cf. [Fas12]. Recent
results include non-constructive tractability results in [FHW12] and error bounds in terms of
a growth function in [BDL10].
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10.2 Weighting in anisotropic RBF stochastic collocation

Using the basic terminology from the last chapter, we can now formulate the anisotropic RBF
stochastic collocation approximation for the full random PDE after finite noise assumption as

u(y,x, t) ≈ (IγNΓ
u)(y,x, t) :=

NΓ∑
i=1
u(yi,x, t)L

γ
i (y) .

Furthermore, we have IγNΓ
u ∈ Pγ(Γ)⊗L2([0, T ];L2(D)) with Pγ(Γ) a weighted approximation

space. For anisotropic RBF stochastic collocation, we thus have

IγNΓ
u ∈ N γ

k (Γ)⊗ L2([0, T ];L2(D)) .

In style of [NTW08a], more collocation points shall be spend in those directions of the
stochastic space Γ, in which convergence is assumed to be slower. These directions are assumed
to be more important. Note that the norm ‖ · ‖γ has already been defined such that larger
values for the weights γi correspond to higher importance in the respective direction. That is,
the coefficients in the norm are the squares of the weights γi.
One possible choice for weights γ is to use results from the literature for a given model

problem. The Karhunen-Loève expansion-based random-coefficient elliptic problem from Sec-
tion 3.2.2 is well-studied in [NTW08a], where a-priori estimates result in weight values

g(n) =


1
2 log

(
1 +

√
1

24
√
πLc

)
for n = 1 ,

1
2

(
1 +

√
1

48
√
πLc

exp
(
bn2 c2π2Lc2

8

))
for n > 1 ,

(10.1)

and we set

γi = 1
g(i) i = 1, . . . , NKL . (10.2)

Another approach is to use a-posteriori information, which becomes especially attractive for
coupled engineering problems with little theoretic knowledge on the structure of the response
surface, as in the two-phase Navier-Stokes case. In that case, an a-posteriori Karhunen-Loève
expansion

u(y,x, t) ≈ E [u] (x) +
Nu
KL∑
k=1

√
λkYk(y)ψk(x, t)

can be estimated, as outlined in Chapter 9. The Karhunen-Loève coefficients
√
λk in that

expansion are good to optimal weights for an anisotropic RBF collocation method, thus we
should set

γi =
√
λi i = 1, . . . , NKL .

Some ideas to make this whole approach efficient, will be outlined in Section 10.5. Note that
[NTW08a] propose, as an alternative approach, to estimate the weights γi by investigating
dimension-wise error decay of the stochastic collocation method. This idea is not considered
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here. Next, we move over to the optimal sampling for a given weighting γ and start with
the necessary information on power functions to understand the later-on introduced greedy
method.

10.3 Power function and approximation estimate
The power function is introduced and discussed in e.g. [WS92, Sch95]. According to [Fas11], it
is further discussed in stochastics literature as kriging variance. In [BDL10], the same results
are formulated for anisotropic kernel interpolation. However, no proof is given. To avoid the
technical details of conditionally positive definite kernels, the power function and its associated
estimates are introduced here for strictly positive definite kernels, following the lines of [Fas07,
Section 14.3] adapted to the notation of this thesis. Furthermore we skip the index γ in this
section, since these results apply to isotropic and anisotropic RBF kernels. We start with
definition of the Power function for general kernel native spaces.

Definition 10.1 (Power function [Fas07, Definition 14.1]). Let be Γ ⊆ Rd. With k : Γ ×
Γ → R a strictly positive definite (anisotropic) kernel function with k ∈ C(Γ × Γ) and X :=
{y1, . . . ,yN} ⊆ Γ a finite set of distinct collocation points, we can introduce the quadratic form

Q[a](y) = k(y,y)− 2
N∑
j=1

ajk(y,yj) +
N∑
i=1

N∑
j=1

aiajk(yi,yj)

for a given vector a ∈ Rd. Shall further be {Li}NΓ
i=1 the Lagrange basis of the corresponding

native space Nk(Γ), cf. Section 4.1. Then, the power function is defined as

[Pk,X(y)]2 := Q[L(y)](y)

with L(y) := (L1(y) . . . LN (y))>.

In [Fas07, Section 14.3], there are some further remarks on the numerical evaluation of the
power function which are collected here in a short Lemma on numerical evaluation. We state

Lemma 10.1 (Numerical evaluation of the power function [Fas07, Section 14.3]). Let Γ, k and
X be given as in Definition 10.1. Using the notation of Section 4.3, we can also evaluate the
power function Pk,X(y) as

Pk,X(y) =
√
k(y,y)− (Ak,X,{y})>(Ak,X,X)−1Ak,X,{y} .

This Lemma is derived in [Fas07, Section 14.3]. It will be needed to implement the greedy
adaptive algorithm. The main result, on which the adaptive method will be based, is the
following theorem on the point-wise interpolation error for functions in a native space.

Theorem 10.1 (Power function interpolation error estimate [Fas07, Theorem 14.2]). With Γ,
k, X as before, we consider a function f ∈ Nk(Γ). Their kernel (Lagrange) interpolant on X
shall be sf,X . For all y ∈ Γ we have the estimate

|f(y)− sf,X(y)| ≤ Pk,X(y)‖f‖Nk(Γ) .
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The proof is given in [Fas07]. Theorem 10.1 basically states that we can give an upper bound
for the interpolation error which decouples in a product of the norm of the function and a term
only depending on the kernel and the collocation points.

10.4 Greedy adaptive method for optimal collocation points
Using the mathematical tools from the last section, we now want to construct a greedy method
to find almost optimal collocation point sets for approximation in the weighted native space
N γ
k (Γ). Thus, for a given function f ∈ N γ

k (Γ), we seek for a finite set X ′ of distinct collocation
points, such that

X ′ = argminX⊂Γ

∥∥∥f − sγf,X∥∥∥L∞(Γ)

subject to |X| ≤ NΓ, y ∈ X pairwise distinct .
(10.3)

Besides of the data-independent greedy method, described later, there are a few data-dependent
approaches to approximate (10.3) in the isotropic case. One of them is proposed in [SW00].
Here, the authors suggest to use a greedy one-point algorithm to approximate the interpolant
(instead of the function itself), by a stepwise minimization of the residual. This however,
requires to explicitly evaluate the residual, which is hardly feasible for stochastic collocation
problems in which a single function evaluation requires to solve a full time-dependent three-
dimensional flow problem. Other approaches with the same problem have been proposed e.g. in
[LS09, WH13].
The intention here is thus to rely on the power function estimate from the last section

only. Consequently, native space dependent but data-independent collocation points with good
approximation properties are constructed. This approach goes back to [DMSW05] and is
shortly reviewed (with skipped γ).
In [DMSW05], the authors start stating that the power function monotonically decreases by

increasing the number of distinct collocation points. Without proof, this reads as

Lemma 10.2. [DMSW05] Let be Γ ⊆ Rd compact satisfying an interior cone condition, cf. Def-
inition 4.12. Shall be k : Γ → R strictly positive definite and X ′, X ′′ ⊆ Γ a finite distinct
collocation point sets with X ′ ⊆ X ′′. With the power function from Definition 10.1, we have
for all y ∈ Γ that

Pk,X′(y) ≥ Pk,X′′(y), ∀y ∈ Γ .

We see that adding more collocation points will never increase the power function. Together
with Theorem 10.1 this gives a first indicator for convergence of the point-wise error |f(y) −
sf,X(y)|. However, one should keep in mind that adding more points also affects the native
space norm and thus might affect the native space norm of the function to be interpolated on
the right-hand side of the inequality in Theorem 10.1.
In Algorithm 10, the greedy (data-independent) algorithm from [DMSW05] is summarized.

The authors suggest to maximize the power function over a very large discrete subset of
the space Γ. They are able to prove a theorem on convergence of this method in terms of
limj→∞ ‖Pk,Xj‖L∞(Γ) = 0. It is given here with adapted notation and without proof as
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Algorithm 10 Greedy data-independent collocation point construction [DMSW05]

Require: Γ ⊆ Rd compact, sat. interior cone condition, k : Γ×Γ→ R strictly positive definite
1: function GreedyPointGenerator(Γ, k)
2: X1 = {y1}, y1 ∈ Γ arbitrarily chosen
3: for j = 2, 3, . . . , N do
4: yj = argmaxΓ\Xj−1 ‖Pk,Xj−1‖L∞(Γ)
5: Xj = Xj−1 ∪ {yj}
6: return XN

Theorem 10.2. [DMSW05, Theorem 4.3] With Γ as in Lemma 10.2 and k ∈ C2(Γ1 × Γ1)
strictly positive definite and defined on a convex and compact domain Γ with Γ1 ⊇ Γ, Algo-
rithm 10 converges at least like

‖Pk,Xj‖L∞(Γ) ≤ Cj−1/d ,

with C > 0 a constant.

In this thesis, in difference to [DMSW05], the maximization shall not be done by maximizing
over a large point set, but by numerical optimization, as outlined in the next section.

10.5 Implementation

The greedy adaptive sampling Algorithm 10 is currently implemented in Matlab, since it is a
pre-processing step and thus not performance-critical for the overall method. As said before,
the original publication [DMSW05] implements step four of Algorithm 10 by a maximization
over a large set of sampling points in stochastic space. In difference to this, the proposed
implementation uses the interior-point method [BV04, Chapter 11] for constraint maximization
of the norm of the power function by the fmincon command. Constraints are the boundaries of
the stochastic domain Γ. The power function for anisotropic kernels is evaluated as proposed
in Lemma 10.1. Here, the inverse of the interpolation matrix can be precomputed at the
beginning of each iteration. Due to cancellation effects, the squared power function sometimes
becomes negative. To achieve a stable evaluation even in those cases, the real part of the
power function is considered only. Note that the minimization process always depends on the
initial guess of a new collocation point. To reduce this dependence, each iteration of the greedy
adaptive algorithm performs nrep optimizations with different (uniformly random sampled)
initial guesses and takes the best result.
Before constructing the optimal anisotropic collocation points, it might also be necessary to

compute an a-posteriori Karhunen-Loève expansion to get optimal weights γ. This is done
as proposed in Chapter 9. To make this overall approach efficient, the a-posteriori Karhunen-
Loève expansion should only be approximated by a few stochastic collocation points and lower
PDE space discretization resolution ND to get a rough estimate for the covariance spectrum
decay. Thereafter, many collocation points can be spend on the anisotropic approximation.
Note that it is even possible to reuse the previously calculated stochastic realizations in the
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final anisotropic method by replacing the initial collocation point set X1 in Algorithm 10 by
the isotropic point set used in the a-posteriori Karhunen-Loève analysis.
With given weights and collocation points, the standard RBF stochastic collocation imple-

mentation with a different norm in the RBF approximation can be used. Here, the GPU-based
code from Section 4.8 is applied.

10.6 Numerical results

In the following, numerical results for the proposed anisotropic RBF collocation method are
presented. This starts with a discussion of expected convergence results and examples of
optimized anisotropic collocation point sets. Afterwards numerical studies for the random-
coefficient elliptic problem from Section 3.2.2 and for the two-phase Navier-Stokes equation
test case, with rising bubble and Karhunen-Loève based random volume force from Section 3.3,
are presented.

10.6.1 Kernels and convergence expectations

The proposed anisotropic RBF-based stochastic collocation will be applied with Gaussian and
Matérn kernels, cf. Section 4.3.2. In [BDL10], error estimates in terms of a growth function
are given for anisotropic RBF-based interpolation. An example therein suggests that the
application of appropriate anisotropic interpolation improves the upper bound to the error at
least by a constant factor over the pure isotropic case. Therefore, it is expected to see an error
improvement by anisotropy, at least in the pre-asymptotic regime for Matérn and Gaussian
kernels.
Further, non-constructive tractability results in [FHW12] give worst-case error estimates for

isotropic and anisotropic interpolation with Gaussians with respect to the corresponding native
space. In the case of interpolation or approximation by function values only, a dimension-
independent convergence rate α in the number of collocation points is given as

α := −max

 r(γ)
1 + 1

2r(γ)
,
1
4

 , with r(γ) = sup
{
β > 0

∣∣∣∣∣
∞∑
i=1

γi
1/β <∞

}
.

Here, the γi are the decaying anisotropy weights given as before. This says that a given decay
in the weights of an anisotropic interpolation problem corresponds to a fixed convergence rate
independent of the stochastic dimension NKL.
As a consequence, one might hope to break the curse of dimensionality in case of approxi-

mation by anisotropic Gaussian kernels. Nevertheless, it is important to notice that already in
the isotropic case interpolation by Gaussians does often result in exponential rates on arbitrar-
ily smooth functions, which might make it impossible to see the dimension-independence in
practice. Also, interpolation with Gaussians tends to lead to extremely bad conditioned prob-
lems for larger collocation point counts. Therefore, asymptotic convergence rates for Gaussian
kernels might be hardly visible. On the other hand, there are no published results on dimension-
independence for anisotropic Matérn kernels, at least to the authors knowledge.
Overall it is expected that anisotropic RBF-based stochastic collocation outperforms the
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Figure 10.2: The greedy adaptive method constructs almost optimal anisotropic colloca-
tion point sets, here, for anisotropic Matérn kernels and the Karhunen-Loève
based elliptic problem and different correlation lengths, with weights γ follow-
ing [NTW08a].

isotropic approach at least in the pre-asymptotic regime with some indications towards dimen-
sion independence.

10.6.2 Collocation point sets for anisotropic RBF stochastic collocation

To get an example for optimal collocation point sets in anisotropic RBF collocation, a two-
dimensional stochastic space Γ = [−

√
3,
√

3]2 is considered. The weights are computed accord-
ing to the a-priori weight estimates in (10.1) and (10.2). Figure 10.2 presents collocation point
sets for different correlation lengths Lc repeating the optimization process nrep = 32 times.
Here, a scaled Matérn kernel kβ with β = d+3

2 = 2.5 is used. For a correlation length Lc = 1
16 ,

an almost regular isotropic grid is constructed. Correlation length Lc = 1 corresponds to a weak
anisotropy of roughly 2:1. Finally Lc = 2 leads to a very anisotropic problem with a point set
largely limited to two boundaries. Anisotropic point sets stemming from the Greedy-adaptive
method for Gaussian kernels have similar structure. However, the optimization process tends
to break down for large collocation point counts and Gaussian kernels due to conditioning
issues. Appropriate regularization or preconditioning is subject to future research.
Even though the collocation points in Figure 10.2 seem to have a very regular structure,

there is no obvious way to construct them for arbitrary number of points and arbitrary kernel
functions, in an a-priori fashion. Therefore, the greedy optimization process is currently the
method of choice for construction.

10.6.3 Karhunen-Loève based random coefficient elliptic problem

The first numerical results for mean approximation by anisotropic RBF stochastic collocation
are given for the Karhunen-Loève based random-coefficient elliptic problem from Section 3.2.2.
The PDE was discretized in space by finite differences and ND = 5122 grid points and solved



218 10 Anisotropic RBF kernel-based stochastic collocation

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

# collocation points

ab
so

lu
te

er
ro

r

isotropic Gaussian
anisotropic Gaussian

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

# collocation points

ab
so

lu
te

er
ro

r

isotropic Gaussian
anisotropic Gaussian

Figure 10.3: Comparison of convergence results for isotropic and anisotropic RBF-based
stochastic collocation with Gaussian kernels in case of the Karhunen-Loève based
elliptic model problem, correlation length Lc = 2.0 and stochastic dimensions
NKL = 3 (left) and NKL = 5 (right).

by the algebraic multigrid method from Chapter 8. The objective is to approximate

E

 1
ND

ND∑
i=1

u(·,xi)
 .

Errors will be computed by taking the absolute value of the difference between two approxima-
tion levels. For problems with stochastic dimension 3 and 5, tensor-product Clenshaw-Curtis
quadrature with levels lq = 7 and lq = 5 is used. In higher dimensions, sparse grid quadrature
of level 4 is applied, due to limited computational resources. The number of repetitions in the
greedy method is nrep = 32. Kernel regularization is set to εreg = 10−12.
We start with numerical results for anisotropic stochastic collocation with Gaussian kernels

and a correlation length of Lc = 2 corresponding to a strong anisotropy in the first stochastic
dimension. Weights γ are chosen according to equations (10.1) and (10.2). Figure 10.3 gives
numerical results for stochastic dimensions NKL = 3 on the left-hand side and NKL = 5 on the
right-hand side with convergence graphs for the isotropic and anisotropic case. The Gaussian
kernel kε is applied with ε = 0.2. Anisotropic stochastic collocation clearly outperforms the
isotropic approach. Due to conditioning issues and the randomized nature of the point opti-
mization process, the error decay is not as stable for the anisotropic case as for the isotropic case.
These additional errors make it difficult to give clear statements on dimension-independence.
In a second study, the anisotropic stochastic collocation method with Gaussian kernels and

ε = 0.1 is applied to the same random PDE with a smaller correlation length of Lc = 1.0 and
at least three dominant stochastic dimensions. In Figure 10.4 on the left-hand side, numeri-
cal results are given for the classical isotropic stochastic collocation approach and stochastic
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Figure 10.4: The Karhunen-Loève based elliptic random PDE problem is also studied for a
smaller correlation length Lc = 1.0, Gaussian kernels, higher dimensions and with
isotropic (left) and anisotropic (right) convergence results.

dimensions NKL = 5, 9, 11. A dimension-dependence becomes evident. The right-hand side of
the same figure outlines results for anisotropic stochastic collocation and the same stochastic
dimensions. The results seem to indicate a more robust behavior towards the stochastic dimen-
sion. Overall, for stochastic dimensions NKL = 9, 11, the anisotropic method outperforms the
classical method. In dimension NKL = 5, the isotropic approach has a lower error, maybe due
to the fact that the decaying weights for Lc = 1.0 are not sufficiently resolved by five stochastic
dimensions.
The same model problems are again approximated with (an)isotropic Matérn kernels kβ and

β = NKL+3
2 , thus

kNKL+3
2

=
(
1 + σ‖y − y′‖) e−σ‖y−y′‖ . (10.4)

Parameter σ allows to introduce an additional scaling. Figure 10.5 presents convergence results
for the Lc = 2.0 test case with NKL = 3 on the left-hand side and NKL = 5 on the right hand
side. In the presented results, a scaling of σ = 1

16 is used in the anisotropic three-dimensional
case and and σ = 1

20 for all other tests. Anisotropy leads to both, higher convergence rates and
pre-asymptotic lower errors. In some cases, the error is smaller by impressive several orders of
magnitude.
Finally, the study for correlation length Lc = 1.0 is repeated for the Matérn kernel case.

Figure 10.6 presents the results with convergence graphs for isotropic approximation on the
left-hand side and anisotropic approximation on the right-hand side. The scaling parameter is
set to σ = 1

20 for the five-dimensional problem while we have σ = 1
16 for NKL = 9, 11. Similar

to the Gaussian kernel case, the isotropic approximation is dimension-dependent in its conver-
gence properties. On the other hand, the anisotropic approximation is almost identical in error
decay for all involved dimensions, giving hints towards a dimension-independent convergence
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Figure 10.5: Convergence of the mean for the Karhunen-Loève based random coefficient el-
liptic problem at correlation length Lc = 2.0 approximated with isotropic and
anisotropic RBF stochastic collocation and stochastic dimensions NKL = 3 (left)
and NKL = 5 (right) in case of Matérn kernels.

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

# collocation points

ab
so

lu
te

er
ro

r

NKL = 5
NKL = 9

NKL = 11

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

# collocation points

ab
so

lu
te

er
ro

r

NKL = 5
NKL = 9

NKL = 11

Figure 10.6: The comparison of convergence results for the isotropic (left) and anisotropic
(right) Matérn kernel gives hints towards dimension-independent convergence for
the anisotropically approximated elliptic problem and an appropriate choice of
weights γ, which have to correspond to the given correlation length Lc = 1.0.
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y1 ≈ (0.0,−0.58,−1.04)> y3 ≈ (0.87,−1.35, 0.35)> y7 ≈ (1.3, 0.19,−0.21)>

Figure 10.7: Flow field realizations of the bubble flow experiment with volume forces modeled
by a truncated Karhunen-Loève expansion, for different parameters yi at t = 0.2 s.

behavior even though this is not necessarily supported by appropriate theory. Convergence
of the anisotropic method levels out for more than 32 collocation points. At the same level,
the optimization process for optimal point construction did break down due to conditioning
problems. This again suggests, that appropriate regularization or preconditioning might im-
prove the presented results even more. However, this is future work. Nevertheless, anisotropic
stochastic collocation gives a clear improvement in the error for the discussed model problem.

10.6.4 Two-phase Navier-Stokes problem with random volume forces

To exemplify the optimality of anisotropic RBF stochastic collocation for a highly complex
engineering problem, a convergence study for the two-phase Navier-Stokes problem with a rising
bubble is discussed next. Randomness is introduced by a random volume force field g(y,x),
cf. Section 3.3, which is approximated by a Karhunen-Loève expansion, truncated such that
the stochastic dimension is NKL = 3. The covariance of the approximated random field has a
correlation length of Lc = 2.0. This corresponds to a single strongly anisotropic dimension in
stochastic space. Figure 10.7 gives three typical flow field realizations for this random Navier-
Stokes problem. Here, the free surface is visualized by an iso-surface. Furthermore, a cut-plane
through the velocity field displays vector glyphs for the velocities and colors their magnitude.
In difference to the elliptic random PDE problem, there is no theory on the properties of the

response surface mapping of this random two-phase Navier-Stokes problem. Therefore, there is
little or no knowledge on the covariance structure of the solution of the random PDE problem.
This holds even more for the derived quantity of interest πcenter(t) from Section 3.3, thus the
bubble center position, for t = 0.2, for which the expectation value shall be approximated in
the following. Consequently, choosing appropriate weights γ is no obvious operation. The aim
is to try first the analytically given weights, cf. equations (10.1) and (10.2), from the random
elliptic PDE problem. This might be a good choice since the same input covariance structure
is used in both problems. Afterwards, as discussed in Section 10.2, almost optimal weighting
based on an a-posteriori Karhunen-Loève expansion will be used.
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Figure 10.8: Convergence of the mean bubble center at t = 0.2 in the rising bubble flow two-
phase Navier-Stokes problem with Karhunen-Loève based random volume forces
at correlation length Lc = 2.0 and NKL = 3 stochastic dimensions, approximated
with isotropic and anisotropic RBF kernel-based stochastic collocation using Gaus-
sian (left) and Matérn (right) kernels.

To approximate the mean bubble center at t = 0.2 seconds, a series of two-phase Navier-
Stokes problems has to be solved. These are discretized in space by a uniform grid with ND =
1003 unknowns. Note that solving the problem for one single collocation point or realization
up to a physical time of t = 0.2 seconds takes approximately more than two hours of compute
time on a GPU, thus this is a rather computationally challenging problem. Consequently, the
construction of a true overkill solution is not feasible. Therefore, the error will be computed
as the norm of the difference between two subsequent solutions. Throughout the numerical
experiments, regularization is set to εreg = 10−12 and quadrature is performed with tensor
product Clenshaw-Curtis rules at level lq = 7. As for the previous numerical studies, Gaussian
and Matérn kernel results are discussed.
Figure 10.8 displays convergence results for isotropic stochastic collocation and anisotropic

stochastic collocation using analytically given weights and weights computed by the a-posteriori
Karhunen-Loève expansion from Section 9.4.2. Results for Gaussian kernel are given on the
left-hand side of Figure 10.8 while results for the Matérn kernel are on the right-hand side of
the same figure. The isotropic approximation by the Gaussian kernel kε is done for scaling
parameter ε = 0.5. In the anisotropic case with analytic weights, a scaling of ε = 0.1 is used,
while the measured weights are applied together with a scaling of ε = 0.5. Note that scaling
parameters are usually chosen such that best possible convergence is achieved. Applying a
Gaussian kernel to approximate the random two-phase Navier-Stokes problem leads to serious
conditioning problems. Therefore, all results show a rather unstable convergence behavior.
The lowest error is achieved with the measured weights, as assumed.
Approximation by Matérn kernels is clearly outperforming the Gaussian case. The scaling
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parameter in the Matérn kernel function given in (10.4) is set to σ = 1
20 for isotropic approxima-

tion and to σ = 1
12 for both anisotropic approximations. Linear regression shows that isotropic

approximation has an algebraic rate of 0.9. By applying analytic weights, an improved rate
of 1.2 is achieved. However, the best result stems back from the use of measured weights,
derived in Chapter 9. With only 16 collocation points an error in the range of 10−6 is achieved.
Measuring the convergence rate by linear regression, gives a rate of 2.9. This error behavior is
a pretty impressive optimal result, underlining the great advantage of the proposed anisotropic
method with measured weights.

The above numerical results clearly show that anisotropic RBF-based stochastic collocation
almost always outperforms the classical isotropic approach. Some numerical results give hints
towards confirming theoretic dimension-independence results for anisotropic Gaussian kernels,
though pre-asymptotic behavior and bad conditioning makes this analysis challenging. Appro-
priate regularization and preconditioning methods are subject to future research.
However, anisotropic stochastic collocation with Matérn kernels is robust, both in the elliptic

random PDE test case and the very challenging large-scale random two-phase Navier-Stokes
problem. Using a-priori predicted analytic weights for the elliptic and the flow problem gives
always improvements in the error. These improvements are significant for the elliptic case.
For the Navier-Stokes case, the use of measured weights, which have been approximated by
a lower-resolution a-posteriori Karhunen-Loève expansion, leads to optimal approximation re-
sults. Overall, the proposed anisotropic approach considerably reduces the error at least in the
pre-asymptotic regime, which is of extreme importance for large-scale random PDE problems,
and gives hints towards weakening or breaking the curse of dimensionality.
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Summary

In this thesis, the application of uncertainty quantification to large-scale problems has been
considered, thus stochastic moments of solutions of random partial differential equations were
computed. Large-scale problems require the use of non-intrusive methods, since a complete
redevelopment of corresponding solvers is out of question. The main contribution of this
thesis is therefore the establishment of a numerical framework for the optimal solution of
large-scale complex random PDE problems by the newly developed non-intrusive RBF kernel-
based stochastic collocation method. Apart from elliptic model problems, the target application
were the two-phase incompressible Navier-Stokes equations. It could be demonstrated that
a previously computationally almost intractable problem can now be solved in a high-order
convergent, scaling, parallel and computational optimal fashion within just a few hours of
runtime.

High- to exponential-order convergence with low preasymptotic error After discretization
in stochastic space, non-intrusive uncertainty quantification methods require to solve for each
stochastic sample a single, potentially very computationally challenging PDE. Given a fixed
target error tolerance, it is therefore indispensable to keep the number of discretization points
in stochastic space as low as possible. The obvious way to overcome this issue is to introduce
an approximation method in stochastic space, which has high or even exponential conver-
gence orders with a very small pre-asymptotic error. This has been achieved in this thesis by
the introduction of the RBF kernel-based stochastic collocation method. It combines ideas
from classical stochastic collocation methods based on spectral (sparse) tensor-product approx-
imations with optimal pre-asymptotic convergence from kriging and the profound stochastic
framework from Gaussian process regression. The key idea is to use interpolation in reproduc-
ing kernel Hilbert spaces to approximate in stochastic space. Interpolation is done by Lagrange
basis functions which are collocated in a set of mesh-free points, sampled from a quasi-Monte
Carlo - type Halton sequence. The Lagrange basis is constructed in the so-called native space
of (strictly positive definite) radial kernel basis functions. From theory, we know that function
approximation in those native spaces shows some best-approximation properties.
Numerical results were given that underline the excellent properties of the method. For

problems with (known) high smoothness in stochastic space, up to exponential convergence has
been achieved. In cases of low smoothness in stochastic space, algebraic convergence rates were
shown. A small error in the pre-asymptotic regime was almost always present. These results
clearly outperformed well-known established methods such as (quasi-)Monte Carlo, (sparse)
spectral tensor-product stochastic collocation or Polynomial Chaos expansion, in important
application problems. This new result is fundamental for practical applications.
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Optimal empirical error balance Due to missing solution theory, a profound analysis of the
full stochastic approximation method is currently impossible for problems, which involve the
two-phase incompressible Navier-Stokes equations in strong formulation. Therefore, an empir-
ical error balance analysis has been done for these equations, as well as for an elliptic model
problem. To this end, suitable discrete approximations error norms in Bochner spaces were
introduced and related to continuous norms. It then became possible to numerically measure
the partial error terms of the (additive) upper error bound in mean approximation of stationary
random PDE problems. These experiments allowed to give a rough, empirical estimate of the
asymptotic behavior of the involved errors. It was consequential possible to formulate empir-
ical asymptotic conditions on all discretization parameters, such as quadrature level, number
of collocation points or PDE discretization level, to achieve a total mean solution approxima-
tion error below a given threshold. Even more, these results allowed to give a computational
complexity estimate for the proposed method, which was formulated in terms of the achieved
error. This is new in the field.

Fast approximation and optimal scalability Even highly complicated random three-dimen-
sional two-phase Navier-Stokes problems could be solved within a few hours. This became
possible by parallelizing all relevant numerical methods on GPUs. The key component here
was the two-phase incompressible flow solver NaSt3DGPF, which was reimplemented in all
core components on GPUs, with a factor of three of speedup over equally priced standard CPU
hardware and a reduced power consumption by a factor of two. The solver was further paral-
lelized to scale on a multi-GPU cluster with almost optimal weak scaling efficiency on up to 48
GPUs. Multi-GPU parallel libraries for the iterative solution of dense linear algebra problems
were furthermore developed, with applications in kernel interpolation and eigenvalue approxi-
mation. Moreover, sampling, quadrature and stochastic collocation were also implemented on
GPUs. (Multi-)GPU codes for the corresponding problems were not available before.

Optimal preconditioning Preconditioning techniques were applied to iterative sparse and
dense linear solvers, to achieve (almost) problem independent iteration counts. In case of
the solution of the dense linear system in interpolation by non-compactly supported kernel
functions, preconditioning by so-called local Lagrange bases was used. This special kind of
restricted additive Schwarz method is constructed by solving many small dense linear algebra
problems. Together with a multi-GPU implementation, a perfectly scaling preconditioner has
been implemented which leads to optimal problem-size independent convergence for boundary-
free problems and almost optimal convergence in case of the presence of boundaries. More
than a factor of five in performance improvement could be shown for model problems. The
approach is new on GPUs and for the discussed problem class.
To overcome the complexity bottleneck of solving discretized elliptic equations in model

and application problems, a robust hybrid Ruge-Stüben algebraic multigrid method has been
implemented for single-GPU applications. It uses a hybrid CPU-based coarse/fine grid point
classification and parallelizes all remaining parts of the setup phase and the solve phase on
a GPU. Existing state-of-the-art CPU implementations could be outperformed by up to 50
percent in runtime on almost equally priced hardware. Moreover, the time-to-solution for
elliptic problems in uncertainty quantification could be halved in contrast to the application of
standard GPU-based, preconditioned iterative methods.
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Weakening or breaking the curse of dimensionality Finally, the intrinsic dependence on the
stochastic dimension, with exponential increase in the number of collocation points for growing
dimension, was weakened or even removed for random PDE problems with fast decaying output
covariance spectrum. The crucial idea was the introduction of an anisotropic weighting in the
underlying radial basis functions. While there is knowledge on optimal weighting of elliptic
model problems with random coefficients, theory is not available for the two-phase Navier-
Stokes equations. This is why a tool to analyze their output covariance spectrum had to be
developed. It approximates the Karhunen-Loève expansion of the solution field of the random
PDE, by solving a large-scale dense eigenvalue problem on multi-GPU clusters. Coefficients in
the Karhunen-Loève expansion are optimal weights for the proposed weighted approximation
method. The newly developed anisotropic RBF stochastic collocation method required good
to optimal problem-specific sampling in stochastic space. This was made possible by a Greedy
optimization process, which minimizes the power function of the corresponding anisotropic ker-
nel function native space. Numerical experiments gave clear indicators towards the weakening
or even breaking of the curse of dimensionality in elliptic model problems and two-phase flow
problems. A lower pre-asymptotic error over isotropic calculations has been always achieved.
This is a fundamental and new result for the given numerical method and the discussed prob-
lems.

Overall, the proposed methodology clearly showed that a combined effort of optimal numerical
methods and scalable, parallel implementations is necessary to solve large-scale real-world prob-
lems in uncertainty quantification. Here, (anisotropic) RBF kernel-based stochastic collocation
is a new technique which outperforms existing methods for many important problems.

Outlook
The proposed new framework based on RBF kernel-based stochastic collocation, gives many
opportunities for future research. While this thesis clearly targets real-world engineering prob-
lems with largely unknown theory, numerical analysis has to be performed for model problems,
to get provable convergence and error balance results. Certainly, an important contribution
would be to enrich asymptotic results by profound knowledge on the involved constants. These
are of crucial importance in real applications. An increased knowledge on error balance, would
further allow to design new multi-level schemes which take into account the interplay between
PDE discretization error and stochastic discretization error. This could again lead to a decrease
in total compute time with high impact on large-scale problems.
An important component of such multi-level schemes would be the proposed anisotropic

method in stochastic space. Here future research is indispensable. The given empirical studies
towards dimension-independent convergence gave clear hints towards a complex interaction be-
tween conditioning in the Greedy sampling method and robustness in the shown results. Here,
convergence theory and knowledge on error propagation has to be established. Anisotropic
regularization seems to be a valuable approach for future developments. While the proposed
anisotropic method is favorable for problems of known structure or for cases in which we can
compute empirical estimates on optimal weights, a general-purpose approach should include
adaptivity towards the different stochastic dimensions. Developments of cheap a-priori error
estimators will be important. This might be closely connected to model reduction.
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Even more, local adaptivity in (stochastic) space is a considerable research topic. High
impact of such adaptivity is expected for the field of failure probability prediction, thus a
different class of problems in uncertainty quantification. Remembering that failure probability
prediction is identical to the evaluation of the mean of a characteristic function applied to the
random PDE solution, adaptivity will be the method of choice for optimal approximation of the
jump in this quantity of interest. As a result, the proposed multi-purpose framework would be
able to approximate stochastic moments and failure probabilities. Obviously, the methodology
is not limited to elliptic problems or computational fluid dynamics. Therefore, other fields of
applications should be addressed, too.

Finally, the applied highly scalable preconditioning for kernel-based interpolation might be one
important building block for future Exascale numerical algorithms. After the implementation
of appropriate tree or multipole methods, an extremely scalable iterative, thus fault-tolerant,
O(cNΓ logNΓ) complexity technique for mesh-free methods would be available. It would be
local, would have a high instruction throughput and could be optimal in terms of problem-
size independent convergence. Fields of application would be scalable, mesh-free integration
and quadrature as well as the solution of partial differential equations by collocation methods.
This could be a new algorithmic design pattern for future scalable, error-resilient and optimal
numerical methods.
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