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ABSTRACT 

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that are 

emerging as key regulators of neural (stem) cell properties. Due to their ability to 

regulate a broad repertoire of targets, they represent an exciting tool to modulate 

stem cell fate. Brain-enriched miR-9/9* has been described to enhance neural stem 

cell differentiation and impact on regionalization. Furthermore, it was suggested to 

interact with the Notch signaling pathway, which is well known to play a fundamental 

role in neural stem cell maintenance and differentiation.  

To investigate a potential miRNA-Notch-interplay, a Notch-dependent population of 

neuroepithelial stem cells derived from human embryonic stem (lt-NES) cells was 

chosen as a model system. In line with previous findings, ectopic expression of miR-

9/9* impaired self-renewal and promoted differentiation of lt-NES cells. Our analysis 

revealed that this impact of miR-9/9* is, at least in part, due to a feedback loop 

between miR-9/9* and Notch activity. Notch directly controls miR-9/9* expression on 

a transcriptional level, while miR-9/9* in turn regulates Notch signaling by targeting of 

HES1 and NOTCH2. However, elevated levels of individual miR-9 and miR-9* 

revealed a separate way of action. While miR-9 enhanced differentiation and targeted 

HES1 and NOTCH2, miR-9* enhanced differentiation, impaired self-renewal of lt-NES 

cells and was shown to target NOTCH2 and SOX2. 

Compared to other miRNAs identified in a miRNA expression profiling during lt-NES 

cell differentiation (i.e. miR-7, miR-128, and miR-130b), only elevated levels of miR-

9/9* induced significant changes in lt-NES proliferation and spontaneous 

differentiation. Nevertheless, long-term (15 days) lt-NES cell differentiation was 

enhanced by miR-9/9* as well as miR-7. Detailed analysis revealed that they even 

affect neuronal subtype specification. While the overall number of differentiated 

neurons increased, the generation of neurons positive for dopaminergic marker TH 

was impaired upon miR-9/9* and miR-7 overexpression. In line with this, miR-9, miR-

9*, and miR-7 were downregulated during the time course of a floor plate precursor 

based differentiation protocol for the generation of mesencephalic dopaminergic 

neurons from human pluripotent stem cells. Futhermore, overexpression of miR-9/9* 

and miR-7 reduced mRNA expression levels of EN2 and FOXA2, two additional 

dopaminergic markers. 
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Taken together, these results show that miRNAs can be used to modulate human 

neural stem cell maintenance, differentiation and subtype specification. Specifically, 

miR-9 and miR-9* act on human neural stem cell maintenance and spontaneous 

differentiation – to some extent by their interplay with the Notch signaling pathway. In 

addition, miR-9/9* as well as miR-7 impact on neural stem cell differentiation and 

lineage decision. 
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1. Introduction 

1.1 Human pluripotent stem cells 

The unique potential to self-renew and to differentiate into diverse cell types are 

hallmarks defining stem cells. In early mammalian development, a specific class of 

stem cells called pluripotent stem cells (PSCs) is able to give rise to cells of all three 

germ layers. These cells can be isolated from the inner cell mass (ICM) of a human 

blastocyst and expanded in cell culture maintaining their potential to proliferate and 

differentiate depending on the signals provided by their environment [1]. Once 

isolated and propagated in vitro, these pluripotent stem cells are called human 

embryonic stem cells (hESCs, Fig. 1.1). 

 
 
Fig. 1.1: Derivation of human embryonic stem cells. 
The isolated inner cell mass of a human blastocyst is cultured on a layer of mitotically inactivated 
mouse embryonic fibroblasts as hESCs. Under defined conditions, these hESCs are able to 
differentiate into tissues of all three embryonic germ layers. Image taken from [2]. 
 

Due to their ability of almost unlimited self-renewal hESCs can be used as a reliable 

cell source to gain insight into early processes of human development as well as to 

define signals for the derivation of specific somatic cell types. The access to many 
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human tissues is restricted due to obvious ethical reasons. Therefore, the generation 

of defined somatic cell types is of major importance for future drug screening and 

therapeutic cell replacement strategies [3]. 

In 2007, Takahashi and Yamanaka were able to identify four transcription factors that 

were sufficient to induce pluripotency in somatic cells. They showed that short-term 

overexpression of Oct4 (Octamer-binding transcription factor 4), Sox2 (Sex 

determining region Y-box 2), Klf4 (Krup̈pel-like factor 4) and c-Myc 

(myelocytomatosis viral oncogene homolog) in adult human fibroblasts induces a cell 

population capable of expansion and differentiation similar to hESCs. The cells 

resulting from this protocol are called induced pluripotent stem cells (iPSCs, [4], Fig. 

1.2). 

 
Fig. 1.2: Derivation of human induced pluripotent stem cells. 
Donor somatic cells can be reprogrammed into iPSCs by defined factors. From the resulting iPSCs 
desired functional cell types from all three germ layers could be derived. These cells could potentially 
be used for in vitro disease modeling and drug screening as well as autologous and allogeneic cell 
transplantation in combination with gene therapy. Image taken from [5]. 
 

Theoretically, both ESCs and iPSCs could be used to produce all cell types present 

in the human body (Fig. 1.1, Fig. 1.2). Most hESC/iPSC differentiation paradigms 

represent ʻʻrun-throughʼʼ procedures (reviewed in [3, 6]), which means that no stable 

intermediate cultures are generated. In these protocols, undifferentiated pluripotent 
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stem cells (PSCs) are exposed to complex differentiation protocols including addition 

of extrinsic factors or genetic modifications to achieve the desired cell types [7]. The 

outcome of these paradigms can be highly variable. Long term-expandable tissue-

specific stem cells derived from PSCs as an intermediate can be used to reduce this 

variability. Most expandable populations show a broad and stable differentiation 

potential into the desired cell types. Due to the limited regenerative capacity of the 

central nervous system (CNS) and the restricted access to primary human neural 

tissue there is an increased need to generate stably expandable neural stem cells of 

defined spatial and temporal identity. 

 

1.2 Long-term self-renewing neuroepithelial-like stem cells derived from 

human embryonic stem cells 

Many attempts have been made to generate neural stem cells from hESCs [8-10]. In 

2009, Koch et al. generated a long-term, self-renewing neuroepithelial stem cell 

population from hESCs (lt-NES cells), which can be expanded extensively in the 

presence of fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). 

Although in the phenotypic and regional identity of lt-NES cells is well defined, these 

cells maintain the ability to form neuroepithelial rosette architectures in vitro and 

express rosette-specific genes (Fig. 1.3, [7]). Even after long-term proliferation, they 

still remain responsive to extrinsic morphogens and retain sufficient plasticity to be 

recruited into different neural subtypes such as neurons and glial cell types in a 

controlled manner [7]. 

 
Fig. 1.3: Morphology of lt-NES cells. 
(A) Phase contrast pictures showing the homogenous, rosette-like morphology of lt-NES cells in high 
density cultures. (B,C) Representative immunostainings for neural stem cell markers NESTIN (B) and 
SOX2 (C) in proliferating lt-NES cells. DAPI (blue) stains nuclei. Scale bars indicate 100 µm.  
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Upon differentiation into neurons, lt-NES cells are able to form functional neuronal 

networks and undergo synaptic integration upon transplantation into the brain of 

immuno-deficient mice [7]. Taking this broad and stable neuronal differentiation 

potential into account lt-NES cells represent a suitable model system to study the 

biology of human neural stem cells. 

 

1.3 Notch signaling and neural stem cells 
Data from various model organisms showed that neural stem cells depend on Notch 

signaling for their maintenance and differentiation (reviewed in [11, 12]). In early 

mouse development, constitutive activation of Notch signaling inhibits neuronal 

differentiation [13] and maintains neural stem cells in a proliferative state [14]. 

Accordingly, inactivation of Notch receptor antagonist Numb delays cell cycle arrest, 

impairs differentiation and induces hyperproliferation in the developing mouse cortex 

[15]. 

Notch is a transmembrane receptor whose signaling is initiated by binding to its 

ligands (eg. Delta or Jagged) on a neighboring cell. In humans, four isoforms of the 

Notch receptor, namely NOTCH 1-4, can be found as well as three isoforms of Delta 

(DLL1, 3 and 4) and two isoforms of Jagged (JAG1 and JAG2) [16]. Canonical Notch 

signaling is mediated via sequential proteolytic cleavage carried out by ADAM 
protease (a disintegrin and metalloproteinase) and the γ-secretase complex (Fig. 

1.4). Thereby, the intracellular domain of Notch (NICD) is released and able to 

translocate into the nucleus. In the nucleus, cleaved NICD displaces the HDAc 

(histone deacetylase)-CoR (co-repressor) complex, which is bound to RBPj (DNA 

binding protein transcriptional regulator recombination signal binding protein for 

immunoglobulin kappa J region). Once NICD and RBPj form a complex, they recruit 

transcriptional coactivators like MAML (mastermind-like) and HAc (histone 

acetyltransferases). By binding to the RBPj motifs located in promoter regions, this 

complex promotes the transcription of Notch downstream targets like the HES (hairy 

and enhancer of split) and HEY (hairy/enhancer-of-split related with YRPW motif) [17] 

family (Fig. 1.4) as well as cell cycle regulators like Cyclin E1 (reviewed in [18]).  

However, the effect of Notch on proliferation and differentiation depends on its 

activation level [19]. Even though Notch signaling is needed for stem cell 
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maintenance and proliferation, it has been shown that its activation can also lead to 

quiescence in adult neural stem cells [20].  

 
Fig. 1.4: Core components of the canonical Notch signaling pathway. 
Notch signaling is activated by interaction of the Notch family receptors on one cell with ligands of the 
Jagged and Delta-like families on another cell. Subsequently the transmembrane receptor Notch is 
proteolytically cleaved freeing its intracellular domain. NICD translocates to the nucleus (blue), where 
it displaces the HDAc-CoR complex from the RBPj protein. NICD and RBPj form an activation complex 
recruiting MAML and HAc that triggers transcriptional activation of Notch target genes like the HEY 
and HES families. Image taken from [21]. 
 

In lt-NES cells, Notch contributes to the maintenance of a self-renewing 

undifferentiated state in part through its impact on G1/S-phase transition [22]. In line 

with this, Notch inhibition triggers an early onset of neuronal differentiation in lt-NES 

cells [22]. 

 

1.4 MiRNA biogenesis and mechanisms of action 
One mechanism potentially influencing neural stem cell behavior is post-

transcriptional regulation of genes involved in their maintenance and differentiation. 

In 1993 it was found that short non-coding RNAs are able to regulate gene activity in 

C. Elegans by binding to the 3´untranslated regions of genes [23]. This was the first 

discovery of RNA interference – a mechanism regulating global messenger RNA 
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(mRNA) levels. Since then, many classes of small regulatory RNAs were identified. 

MicroRNAs (miRNAs) present one endogenously expressed class and their mature 

form is of 21-25 nucleotides (nt) in length. About half of all known human miRNA 

genes are located in introns of protein-coding genes, while others are found in 

untranslated regions [24]. Their first transcript is called primary miRNA (pri-miRNA) 

and mainly produced by polymerase II [25]. Only a small subset of miRNAs located in 

repetitive regions of the genome is transcribed by polymerase III [26] (Fig. 1.5A). 

Fig. 1.5: MiRNA biogenesis and mechanism of action. 
(A) A pri-form of the miRNAs is transcribed from genomic loci by RNA polymerase II or III (B) and 
further processed by an enzymatic complex containing DGCR8 and Drosha. (C) The resulting pre-
form is exported to the cytosol and cleaved into the mature form by Dicer. (D) Mature miRNAs are 
incorporated into the miRISC complex and guide it to specific mRNAs. Once bound the miRISC 
complex triggers mRNA silencing. Image taken from [27]. 
 

The primary transcripts produced by the two polymerases form imperfect hairpin 

structures. These hairpins can encode either one single or a cluster of several mature 
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miRNAs. The „microprocessor“ protein complex containing a Drosha Type 3 RNase 

and cofactor DGCR8 recognizes and cleaves the hairpin structures (Fig. 1.5B) 

generating a second precursor form of the mature miRNA called pre-miRNA. This 

cleavage permits the export of the pre-miRNA into the cytoplasm through nuclear 

pore complexes [28-30]. In the cytoplasm, the pre-miRNA is further processed into its 

mature form by a protein complex including the Dicer type 3 RNase (Fig. 1.5C). This 

mature miRNA is then incorporated into the miRNA induced silencing complex 

(miRISC) guiding the complex to complementary or imperfectly complementary target 

mRNAs. The main binding to the mRNA target is carried out by a stretch of 7-8 

nucleotides located at the 5´end of the miRNA called the seed region. Once the 

mRNA is bound by the miRISC complex, silencing is carried out by an enclosed 

Argonaute protein (Ago) [31-33] (Fig. 1.5D). 

Binding of the miRISC complex can result in reduction of protein levels by either 

degradation or translational repression of the target mRNA [34-37]. The effects 

induced by modulation of a target mRNA differ due to cell type specific miRNA and 

mRNA expression profiles. The regulatory effect of miRNAs can be divided into three 

subgroups: (1) Switch interactions: the miRNA causes a drop of protein levels to 

amounts low enough to impair its function. An extreme case of switch interactions is 

called failsafe interaction. Here, the regulation by a miRNA is employed as a safety 

net. Target genes regulated by other repressors – even in absence of the specific 

miRNA – carry target sites for this miRNA to ensure additional translational 

repression of aberrant transcripts. (2) Tuning interactions: The miRNA reduces the 

protein produced to optimal, functional levels ensuring cell type-specific expression. 

(3) Neutral interactions: Even though the miRNA regulates protein levels, this 

modulation is tolerated by the cell or readjusted by feedback mechanisms (reviewed 

in [38]). 

MiRNAs can exhibit their function even in case of imperfect (bulged) binding, which 

enable them to modulate multiple targets at once [36, 39]. Therefore, these 

endogenous regulators provide elegant mechanisms to act on single targets as well 

as to control whole signaling cascades. 
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1.5 MiRNAs in neuronal development 
In neural development, post-transcriptional regulation by miRNAs is of major 

importance, which is reflected in the high enrichment of specific miRNAs in the CNS 

[40]. Approximately 70 percent of all known miRNAs are expressed in the brain, and 

expression levels of many amongst them change dramatically during brain 

development [41-43]. Their importance was underlined by Dicer knockout studies in 

mice [29, 44]. Ablation of Dicer induced an impairment of neuronal differentiation, 

neuronal cell death and, in some cases, embryonic lethality [45-48]. The phenotypes 

observed upon Dicer ablation have to be interpreted carefully though as they may not 

be solely due to miRNA depletion. First, the blockade of the downstream maturation 

may lead to an enrichment of precursor forms, which could also affect the behavior of 

the cells [49] (reviewed in [40]). Second, Dicer is also known to be needed for the 

maturation of other small RNA classes – like snoRNAs [50] and endo-si-RNAs [51]. 

However – at least in Zebrafish embryos – it has been shown that the severe defects 

in brain morphogenesis induced by the lack of Dicer can be rescued by reinjection of 

the miR-430 family pointing to a significant role of miRNAs in neural development 

[52]. Accordingly, several studies in various model organisms demonstrated critical 

roles for a number of miRNAs in neuronal function or development (reviewed in [40, 

53]). In mammals, miRNAs were found to play a role in neural tube closure [54], 

regulation of dendritic spine morphogenesis [55], terminal differentiation of olfactory 

precursors [56] and neural progenitor proliferation [57]. 

In addition to data obtained in model organisms, the participation of miRNAs in the 

control of neuronal differentiation is supported by results from studies in various cell 

culture models [58-62]. Their enormous impact on neuronal gene expression was 

illustrated by ectopic expression of miR-124 in HeLa cells, which switched the 

expression profile of this cervical tumor cell line towards neuron-specific gene sets 

[36]. Recently, elevated levels of miR-124 and miR-9/9* were even used to induce 

the conversion of fibroblasts into neurons [63], underlining the potential of specific 

miRNAs to define somatic cell types. 

In line with these findings, many neuronal subtypes have been shown to depend on 

miRNA expression (reviewed in [64]). For instance, miRNA depleted mouse ESCs 

failed to differentiate towards the dopaminergic phenotype, which was partially 

rescued by transfection of an embryonic mouse midbrain derived small RNA fraction 



   Introduction 

 9 
 

[65]. In the same study, miR-133b was identified as a specific inhibitor of 

dopaminergic differentiation [65]. However, this phenotype was not supported by data 

from a miR-133b knock out mouse model [17]. Further studies on the derivation of 

dopaminergic neurons revealed additional miRNAs involved in their specification. 

MiR-7 and miR-132 were shown to inhibit the generation of dopaminergic neurons in 

mice [66, 67] and, very recently, miR-181a and miR-125b were reported to enhance 

dopaminergic lineage choice in lt-NES cells [68]. 

To gain further insight into the specific regulation of miRNAs in human neural 

development, a miRNA expression profiling of hESCs, proliferating hESC-derived lt-

NES cells and their differentiated progeny obtained after 15 and 30 days of growth 

factor withdrawal was carried out [68]. In this profiling, the miRNAs were grouped in 

three categories according to their expression dynamic compared to hESCs. Group 

1: miRNAs up-regulated in lt-NES cells and upon induction of neural differentiation; 

Group 2: miRNAs down-regulated in lt-NES cells and upon induction of neural 

differentiation; Group 3: miRNAs specifically expressed in hESCs. Expression 

profiles in group 1 confirmed the upregulation of miRNAs known to be most highly 

and specifically expressed in the mammalian brain – including miR-124, miR-9/9*, 

miR-125b and miR-128 [69, 70]. In addition, it revealed increased expression of 

miRNAs less studied in the neural context – like miR-7, miR-130b, and miR-324 [68] 

– in the human system. 

 

1.6 Role of miR-9/9* in neuronal development 

Among the miRNAs up-regulated in the initial screening during neuronal ESC 

differentiation [68] miR-9 and miR-9* were particularly interesting (Tab. 1.1). These 

two miRNAs are derived from the same pri-miRNAs that are transcribed from 3 

different loci located on different chromosomes in mammals and show a distinct 

expression pattern in different organs (reviewed in [71]). MiR-9 was first identified in 

Drosophila [72], where it is called miR-9a. In developing flies, miR-9a is expressed in 

epithelial cells of the peripheral nervous system but not in mature neurons [73]. 

Although its sequence is highly conserved between mammals and flies, the 

expression patterns were found vary between these organisms (reviewed in [74]). In 

the mammalian brain, miR-9 is among the most highly expressed miRNAs and was 



   Introduction 

 10 
 

found to be heavily regulated during neuronal differentiation and highly expressed in 

mature neurons [41, 43, 70, 75]. 

Many studies in model organisms indicate a role for miR-9 in the proliferation and 

differentiation of neural stem cells. In mice, it is expressed in a reciprocal gradient 

with forkhead box protein G1 (FoxG1), a transcription factor that promotes 

proliferation of cortical progenitor cells [75]. Furthermore, miR-9 was found to 

enhance neural precursor differentiation by targeting tailless homologue (TLX), a 

nuclear receptor that is required for maintenance of adult neural precursor cell self-

renewal in the murine cortex [76]. In human neural precursors from an earlier 

developmental stage than lt-NES cells, miR-9 was reported to modulate migration 

and proliferation by targeting Stathmin (STMN1), a protein promoting microtubule 

instability [77]. Furthermore, miR-9 modulates regionalization within the CNS. In 

Zebrafish, it restricts the organizer activity at the midbrain-hindbrain boundary (MHB) 

by targeting several components of the fibroblast growth factor (FGF) pathway and 

promotes neurogenesis by repression of HES orthologs hairy-related 5 (Her5) and 

hairy-related 9 (Her9) [78]. Like in Zebrafish, Xenopus miR-9 is expressed in the 

neural tube and regions adjactant to the MHB but not in the spinal cord [79]. 

Knockdown of miR-9 using morpholinos leads to increased apoptosis in the Xenopus 

forebrain and reduced number of neurons produced in the Xenopus hindbrain region 

[79]. In addition, miR-9 regulates the specification and temporal identity of motor 

neurons and the columnar formation in the chick spinal cord [80, 81]. 

Like miR-9, miR-9* impacts on neuronal specification and triggers pro-neural gene 

expression. However, compared to miR-9, knowledge on miR-9* function in the brain 

is rather scarce. In mouse, miR-9* takes part in the switch from non-neuronal 

transcriptional regulator BAF53a (actin-like 6a) to BAF53b (proneural actin-like 6b) 

[57]. An interaction that may even contribute to the transdifferentiation of fibroblasts 

into functional neurons [63]. 

In addition, miR-9* and miR-9 cooperate to block transcription of non-neuronal genes 

by engaging into a feedback loop with the RE1 silencing transcription factor (REST). 

While miR-9 targets REST directly, miR-9* reduces levels of its co-factor CoREST. In 

turn, REST regulates expression of miR-9 and miR-9* by binding to their promoter 

regions [58]. Their role in neural development raised the question whether miR-9/9* 

impact on major developmental signaling pathways like Notch.  
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Table 1.1: Known targets and functions of miR-9 and miR-9* in the nervous system (adapted 

from [82]). 
miRNAs Functions Targets Organism Reference 

Restriction of the midbrain-
hindbrain boundary extent; 
promotion of neurogenesis 

Fgf8, Fgfr1, 
Canopy1; 
Her5, Her9 

Zebrafish [78] 

Regulation of timing of 
neurogenesis 

Her6, Zic5, 
Elavl3 

Zebrafish [83] 

Modulation of motor neuron 
subtype specification in the spinal 
cord 

FoxP1 Chicken [81] 

Specification of temporal motor 
neuron identity OC1 Chicken [80] 

Inhibition of neural progenitor 
proliferation and apoptosis; 
regulation of neural progenitor 
differentiation along the anterior-
posterior axis 

Hairy1 Xenopus [79] 

Opposing oscillation to control 
neural progenitor differentiation 

Hes1 Mouse [84, 85] 

Regulation of Cajal-Retzius cell 
differentiation during 
corticogenesis 

FoxG1 Mouse [75, 86] 

Promotion of differentiation and 
migration in adult neural stem 
cells 

TLX Mouse [76] 

Promotion of neuronal 
differentiation and reduction of 
glial differentiation 

STAT3 
phospho-
rylation 

Mouse [59] 

Derepression of proneuronal 
genes 

REST Human [87] 

 
 
 
 
 
miR-9 

Regulation of proliferation and 
migration of neural progenitors 

STMN1 Human [77] 

Derepression of proneuronal 
genes 

CoREST Human [87] miR-9* 

Regulation of activity-dependent 
dendritic growth in hippocampal 
neurons 

BAF53a Mouse [57] 

miR-9/9* Reprogramming of fibroblasts into 
neurons 

BAF53a Human [63] 

 

First evidence of a connection between miR-9 and the Notch signaling pathway was 

found in drosophila sensory organs. Here, miR-9a targets Notch downstream effector 

senseless, thereby controlling the number of neuronal precursors generated [73]. 

Most recently, an additional interaction of miR-9 with Notch downstream target Hes1 

was suggested in neural development of Xenopus [79], Zebrafish [83] and Mus 

Musculus [84]. Another study in mouse even indicated that miR-9 is needed for 
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proper Notch1 signaling [88]. Interestingly, Krichevsky et al. found a reduction of 
mature miR-9 in mice deficient for the γ-secretase complex member Presinilin1 but 

did not identify the mechanism leading to this reduction [41]. However, the 

conservation and relevance of these connections between miR-9 and Notch signaling 

found in model organisms is still to be explored in human neural stem cells.   

 
1.7 Aim of the thesis 
 

Many miRNAs are specifically and differentially expressed during brain development.  

However, studies addressing their role in human neural development are rather 

scarce due to the limited availability of primary material and the variable outcomes of 

human embryonic stem cell (hESC) based differentiation protocols. In order to 

address these issues and achieve standardized neuronal differentiation, a 

homogenous population of stable hESC-derived neural precursor cells, i.e. rosette-

type neural stem cells of ventral hindbrain identity (lt-NES cells), was chosen as a 

model system. An initial miRNA expression profiling covering the differentiation of 

hESCs into lt-NES cells and their neuronal progeny was employed to identify 

candidate miRNAs for further analysis of their role in neurogenesis. Compared to 

their levels in hESCs, miR-7, miR-9/9*, miR-128 and miR-130b were up-regulated 

during the course of this in vitro differentiation paradigm.  

In this thesis, the expression levels of these candidate miRNAs picked from the 

screening will be validated and their impact on lt-NES cell proliferation and 

differentiation will be assessed. To that end, lentiviral constructs to modulate miRNA 

expression levels will be designed as stable overexpression of specific miRNAs can 

be used to explore their roles in neural stem cells and to identify targets underlying 

the observed effects. 

Furthermore, the connection between miR-9/9* and the Notch signaling pathway – 

one of the major pathways regulating neural stem cell properties – will be explored. 

Due to the dose-dependency of its action, a tight regulation of the Notch activation 

status is crucial for neural stem cell maintenance. Post-transcriptional regulation by 

miRNAs is a mechanism well suited to assure proper expression levels of a variety of 

target genes at once. To unravel a potential interplay between miR-9/9* and Notch, 

the gain and loss of function phenotypes of both will be compared. In addition, post-
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transcriptional regulation of the Notch pathway by miR-9/9* as well as potential 

Notch-dependent expression of miR-9/9* genomic loci will be analyzed. 

In addition to lt-NES cell self-renewal and spontaneous differentiation, another focus 

of this work lay on the role of specific miRNAs (i.e. miR-9/9* and miR-7) in long-term 

neuronal differentiation and the specification of neuronal subtypes as knowledge on 

their involvement may prove useful in directed differentiation of specific neuronal 

subtypes.  
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2. Material and Methods 

2.1 Material 

2.1.1 Technical equipment 

Appliance Name Manufacturer Registered Office 
Autoclave D-150 Systec Wettenberg, DE 
Balance LA310S Satorius Göttingen, DE 
Balance BL610 Satorius Göttingen, DE 
Block heater Thermomixer 

compact 
Eppendorf Hamburg, DE 

Cell culture centrifuge Megafuge 1.0R Kendro Hanau, DE 
Chemiluminometer ChemiDoc Bio-Rad Munich, DE 
Counting chamber Neubauer Roth Karlsruhe, DE 
Digital camera Canon Power Shot 

G5 
Canon Krefeld, DE 

Fluorescence lamp HAL100 Carl Zeiss Jena, DE 
Fluorescence 
microscope 

Axiovert 40 CFL Carl Zeiss Jena, DE 

Fluorescence 
microscope 

Axioskop 2 Carl Zeiss Jena, DE 

Freezer -80°C HERAfreeze Kendro Hanau, DE 
Gel electrophoresis 
chamber 

Agagel Biometra Göttingen, DE 

Gel documentation Geldoc2000 Bio-Rad Munich, DE 
Incubator HERAcell Kendro Hanau, DE 
Inverse light 
microscope 

Axiovert 25 Carl Zeiss Jena, DE 

Liquid nitrogen store MVE 611 Chart 
Industries 

Burnsville, US 

Luminometer Lumino2000 Bio-Rad Munich, DE 
Magnetic stirrer SB162 Bibby Stuart Staffordshire, UK 
Micropipette 2μl, 10μl, 20μl, 

100μl, 1000μl 
Eppendorf Hamburg, DE 

Micro Spectro-
photometer 

Nanodrop ND-1000 Peqlab Erlangen, DE 

pH-meter Microprocessor pH 
meter 

Hanna-
instruments 

Woonsocket, US 

Pipette-boy Accu-Jet 2 Brand Wertheim, DE 
Power supply (agarose 
electrophoresis) 

Standard Power 
Pack P25 

Biometra Göttingen, DE 

Power supply (PAGE 
electrophoresis) 

Powerpac 
Un2versal 500V 

Bio-Rad Munich, DE 

Real-Time PCR 
Detection system 

iCycler Bio-Rad Munich, DE 

Radiation cassette X-omatic casette Kodak Rochester, US 
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Appliance Name Manufacturer Registered Office 
Refrigerators 4°C/-20° 
-20°C 

G 2013 Comfort Liebherr Lindau, DE 

Hybridization oven OV3 Biometra Göttingen, DE 
Speedvac Concentrator 5301 Eppendorf Hamburg, DE 
Sterile laminar flow 
hood 

HERAsafe Kendro Hanau, DE 

Table centrifuge Centrifuge 5415R Eppendorf Hamburg, DE 
Thermocycler T3000 Biometra Göttingen, DE 
Ultrasonic 
Homogenizer 

Ultrasonic 1000 Bio-Rad Munich, DE 

UV Crosslinker Stratalinker 2400 Stratagene La Jolla, US 
Vacuum pump Vacuubrand Brand Wertheim, DE 
Vertical slab gel 
electrophoresis units 

SE 660 Amersham 
Biosciences 

Buckinghamshire, 
UK 

Vortexer Genie 2 Scientific 
Industries 

Bohemia, US 

Water bath 1008 GFL Burgwedel, DE 
X-ray developing 
machine 

XOMAT 1000 
processor 

Kodak Rochester, US 

 

2.1.2 Cell culture 

2.1.2.1 Plastic ware 

Product Manufacturer Registered Office 
Cryovials (1 ml, 1.8 ml) Nunc Wiesbaden, DE 
Falcon tubes 15 ml Greiner Bio One Frickenhausen, DE 
Falcon tubes 50 ml Greiner Bio One Frickenhausen, DE 
Multi Safe-Seal Tubes 
(0.65 ml, 1.7 ml, 2 ml) 

Peqlab Erlangen, DE 

Petridish (6 cm, 10 cm) Becton Dickinson Heidelberg, DE 
Serological pipettes 
(5 ml, 10 ml, 25 ml) 

Becton Dickinson Heidelberg, DE 

Tissue culture dishes 
(3.5 cm, 6 cm, 10 cm) 

Becton Dickinson Heidelberg, DE 

Tissue culture dishes 
(3.5 cm, 6 cm, 10 cm) 

PAA Laboratories Pasching, AT 

Tissue culture dishes 15 cm PAA Laboratories Pasching, AT 
 

2.1.2.2 Reagents, Media and Supplements 

Product Manufacturer Registered Office 
Accutase Invitrogen Karlsruhe, DE 
Alfazyme Invitrogen Karlsruhe, DE 
L-Ascorbic Acid Sigma-Aldrich Deisenhof, DE 
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Product Manufacturer Registered Office 
B27 supplement Invitrogen Karlsruhe, DE 
B27 supplement without vitamin A Invitrogen Karlsruhe, DE 
BDNF R&D systems Wiesbaden, DE 
BES Sigma-Aldrich Deisenhof, DE 
CHIR99021 Axon Medchem Groningen, NL 
Collagenase type IV Invitrogen Karlsruhe, DE 
cyclicAMP Sigma-Aldrich Deisenhof, DE 
DAPT Sigma-Aldrich Deisenhof, DE 
Dispase Invitrogen Karlsruhe, DE 
DMEM/F12 Invitrogen Karlsruhe, DE 
DMEM high glucose Invitrogen Karlsruhe, DE 
DMSO Sigma-Aldrich Deisenhof, DE 
Dorsomorphin R&D systems Wiesbaden, DE 
Doxycycline PAA Laboratories Pasching, AT 
DPBS Invitrogen Karlsruhe, DE 
EDTA Sigma-Aldrich Deisenhof, DE 
EGF Invitrogen Karlsruhe, DE 
FCS Invitrogen Karlsruhe, DE 
FGF2 R&D systems Wiesbaden, DE 
FGF8b R&D systems Wiesbaden, DE 
Fibronectin Invitrogen Karlsruhe, DE 
GDNF R&D systems Wiesbaden, DE 
Gelatine Invitrogen Karlsruhe, DE 
Gentamycine PAA Laboratories Pasching, AT 
D-Glucose Sigma-Aldrich Deisenhof, DE 
L-Glutamine Invitrogen Karlsruhe, DE 
GMEM medium Invitrogen Karlsruhe, DE 
HBSS Invitrogen Karlsruhe, DE 
Insulin Sigma-Aldrich Deisenhof, DE 
Knockout DMEM Invitrogen Karlsruhe, DE 
Knockout Serum Replacement Invitrogen Karlsruhe, DE 
Laminin Sigma-Aldrich Deisenhof, DE 
LDN193184 Axon Medchem Groningen, NL 
Lipofectamine 2000 Invitrogen Karlsruhe, DE 
Matrigel BD Bioscience Heidelberg, DE 
β-Mercaptoethanol Invitrogen Karlsruhe, DE 
mTESR Stem Cell Technologies Grenoble, FR 
N2 supplement (100x) Invitrogen Karlsruhe, DE 
Neurobasal medium Invitrogen Karlsruhe, DE 
NGS Sigma-Aldrich Deisenhof, DE 
Non-essential amino acids Invitrogen Karlsruhe, DE 
OptimemI medium Invitrogen Karlsruhe, DE 
Pen/Strep Invitrogen Karlsruhe, DE 
Polybrene Sigma-Aldrich Deisenhof, DE 
Poly-L-ornithine Sigma-Aldrich Deisenhof, DE 
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Product Manufacturer Registered Office 
Purmorphamine Merck Darmstadt, DE 
Puromycin PAA Laboratories Pasching, AT 
RPMI medium Invitrogen Karlsruhe, DE 
SB431542 Sigma-Aldrich Deisenhof, DE 
SHH-C225 R&D systems Wiesbaden, DE 
Sodium pyruvat Invitrogen Karlsruhe, DE 
TGFβ3 R&D systems Wiesbaden, DE 
Trypan blue Invitrogen Karlsruhe, DE 
Trypsin-EDTA (10x) Invitrogen Karlsruhe, DE 
Trypsin Inhibitor (Soybean, Powder) Invitrogen Karlsruhe, DE 

 

2.1.2.3 Cell lines 

293FT cells:  human embryonal kidney cell line 293FT 
H9.2 hESCs:  human embryonal stem cell line H9.2 
H9.2 lt-NES cells:  lt-NES cells derived from human embryonal stem cell line H9.2 
HepG2 cells:  human liver carcinoma cell line HepG2 
I3 hESCs:   human embryonal stem cell line I3 
I3 lt-NES cells:  lt-NES cells derived from human embryonal stem cell line I3 
iPS cells:   induced pluripotent stem cell line ILB-C-31F-R1 
U87 cells:   primary glioblastoma cell line U87 
 

2.1.2.4 Cell culture media 

Basal media were ordered from Invitrogen except mTESR, which was ordered ready 
to use from Stem Cell Technologies – see section 2.1.2.2 Reagents, Media and 
Supplements. All media mixtures were stored at 4°C and used within 4 weeks. 
GMEM medium 
87% GMEM, 10% KO-SR, 1% L-glutamine, 1% sodium pyruvat, 1% non-essential 
amino acids, 0.05% of β-mercaptoethanol 
MEF medium 
88% DMEM high glucose, 10% FCS, 1% Pen/Strep 
RPMI medium 
89% RPMI medium, 10% FCS, 1% Pen/Strep 
lt-NES maintenance medium (N2) 
96% DMEM-F12, 1% N2-Supplement, 1% Pen/Strep, 0.1% B27-supplement, 20 
µg/ml Insulin, 1.6 mg/m D-Glucose 
lt-NES differentiation medium (NgMc) 
49% N2 medium, 49% Neurobasal medium, 1% B27-supplement, 100 ng/ml cAMP, 
1% Pen/Strep 
hESC maintenance medium (KO-SR): 82.95% Knockout DMEM, 15% Knockout 
Serum Replacement, 1% L-glutamine, 1% NEAA, 0.05% of β-mercaptoethanol, 10 
ng/ml FGF 
Neuronal differentiation medium according to [89] 98% NeuroBasal, 2% B27 
supplement devoid of vitamin A (B27-RA), 20 ng/ml BDNF, 20 ng/ml GDNF, 200 µM 
AA, 0.5 mM dbcAMP, 1 ng/ml TGFβ3, 10 µM DAPT 
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2.1.2.5 Factors and coatings 

AA (L-Ascorbic acid, stock solution)  200 mM in ddH2O 
BDNF (stock solution)    10 µg/ml BDNF, 0.1% BSA in ddH2O 
cAMP (stock solution)    100 µg/ml cAMP in ddH2O 
CHIR99021 (stock solution)   10 mM CHIR99021 in DMSO 
DAPT (stock solution)    10 mM DAPT in DMSO 
dbcAMP (stock solution)   100 mM dbcAMP in ddH2O 
Dorsomorphin (stock solution)  1 mM in DMSO 
Doxycycline (stock solution)   10 mg/ml Doxycycline in ddH2O 
EGF (stock solution)    10 μg/ml EGF, 0.1 M Acetic acid, 0.1% BSA 
       in ddH2O 
FGF2 (stock solution)    10 μg/ml FGF2, 0.1% BSA in ddH2O 
FGF8b (stock solution)    100 µg/ml FGF8b, 0.1% BSA in ddH2O 
Fibronectin (FN)     1 µg/ml in DPBS 
GDNF (stock solution)    10 µg/ml GDNF, 0.1% BSA in ddH2O 
Gentamycine (stock solution)   200 mg/ml Gentamycine in ddH2O 
Gelatine      0.1% Gelatine Typ A in ddH2O, autoclaved 
Insulin (stock solution)    5 mg/ml Insulin, 10 mM NaOH in ddH2O 
Laminin (LN)     1 µg/ml in dPBS 
LDN193189 (stock solution)   200 µM in DMSO 
Matrigel [90]     33.3 µg/ml Matrigel in KO-DMEM 
Poly-L-ornithine (PO)    15 µg/ml in ddH2O, sterile-filtered 
Purmorphamine (stock solution)  10 mM Purmorphamine in DMSO 
Puromycine (stock solution)   10 mg/ml Puromycine in ddH2O 
SB431542 (stock solution)   50 mM SB431542 in DMSO 
SHH-C252 (stock solution)   100 µg/ml SHH-C252, 0.1% BSA in ddH2O 
TGFβ3 (stock solution)    2 µg/ml TGFβ3, 0.1% BSA in ddH2O 
Trypsin-EDTA     1:10 Trypsin-EDTA (10x) in DPBS 
Trypsin-Inhibitor 1x:    0.5 mg/ml Soybean Trypsin Inhibitor powder 
       in DPBS, sterile filtration 

 

2.1.2.6 miRNA mimics and inhibitors 

All miRNA mimics and inhibitors were purchased from Qiagen and transfected using 

Lipofectamine 2000 (Qiagen). 

Product Catalogue Number 
Syn-hsa-miR-9-5p miScript miRNA Mimic MSY0000441 
Syn-hsa-miR-9-3p miScript miRNA Mimic MSY0000442 
Syn-hsa-miR-7-5p miScript miRNA Mimic MSY0000252 
AllStars Negative Control siRNA 1027280 
Anti-hsa-miR-9-5p miScript miRNA Inhibitor MIN0000441 
Anti-hsa-miR-9-3p miScript miRNA Inhibitor MIN0000442 
Anti-hsa-miR-7-5p miScript miRNA Inhibitor MIN0000252 
miScript Inhibitor Negative Control 1027271 
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2.1.3 Molecular biology 

2.1.3.1 Consumables 

Product Manufacturer Registered Office 
Adhesive PCR film Peqlab Erlangen, DE 
CLXPosure film ThermoFischer 

Scientific 
Waltham, US 

Cryovials (1 ml, 1.8 ml) Nunc Wiesbaden, DE 
Falcon tubes 15 ml Greiner Bio One Frickenhausen, DE 
Falcon tubes 50 ml Greiner Bio One Frickenhausen, DE 
Multi Safe-Seal Tubes 
(0.65 ml, 1.7 ml, 2 ml) 

Peqlab Erlangen, DE 

Nitrocellulose membrane Roth Karlsruhe, DE 
Nylon membrane Roche Basel, CH 
Petridish (6 cm, 10 cm) Becton Dickinson Heidelberg, DE 
Semi-Skirted 96 Well PCR Plate Peqlab Erlangen, DE 
Serological pipettes 
(5 ml, 10 ml, 25 ml) 

Becton Dickinson Heidelberg, DE 

 

2.1.3.2 Chemicals and Reagents 

Product Manufacturer Registered Office 
β-Mercaptoethanol Invitrogen Karlsruhe, DE 
6x DNA loading buffer Fermentas St. Leon-Rot, DE 
Acetic acid Roth Karlsruhe, DE 
Acrylamide: Bisacrylamide (19:1) Sigma-Aldrich Deisenhof, DE 
Agarose PeqLab Erlangen, DE 
Ammonium acetate Sigma-Aldrich Deisenhof, DE 
APS Sigma-Aldrich Deisenhof, DE 
ATP Sigma-Aldrich Deisenhof, DE 
Boric acid Sigma-Aldrich Deisenhof, DE 
Bradford assay Sigma-Aldrich Deisenhof, DE 
Bromophenol blue Sigma-Aldrich Deisenhof, DE 
BES Sigma-Aldrich Deisenhof, DE 
CaCl Roth Karlsruhe, DE 
Chloroform Sigma-Aldrich Deisenhof, DE 
Coenzyme A Sigma-Aldrich Deisenhof, DE 
Colenterazine PJK Kleinblittersdorf, DE 
Complete protease inhibitor 
cocktail tablets 

Roche Applied Science Mannheim, DE 

Cyanocyanol blue Sigma-Aldrich Deisenhof, DE 
DAPI Sigma-Aldrich Deisenhof, DE 
Deoxycholic acid sodium salt Sigma-Aldrich Deisenhof, DE 
Deionized Formamide Applied Biosystems Foster City, US 
DEPC Sigma-Aldrich Deisenhof, DE 
DIG-11-UTP Roche Applied Science Mannheim, DE 
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Product Manufacturer Registered Office 
DMSO Sigma-Aldrich Deisenhof, DE 
DNA Ladder (100 bp) Peqlab Erlangen, DE 
DNA Ladder (1 kb) Peqlab Erlangen, DE 
DPBS Invitrogen Karlsruhe, DE 
DTT Sigma-Aldrich Deisenhof, DE 
EDTA Sigma-Aldrich Deisenhof, DE 
Ethanol for molecular biology Merck Darmstadt, DE 
Ethidium bromide Sigma-Aldrich Deisenhof, DE 
Human fetal brain RNA Stratagene La Jolla, US 
FCS Invitrogen Karlsruhe, DE 
Fluorescein calibration dye Bio-Rad Munich, DE 
Glycine Sigma-Aldrich Deisenhof, DE 
Glycerol Sigma-Aldrich Deisenhof, DE 
Glycogen Fermentas Ontario, Canada 
HBSS Invitrogen Karlsruhe, DE 
Hydrochloric acide (1 mol/l) Roth Karlsruhe, DE 
Igepal CA-630 Sigma-Aldrich Deisenhof, DE 
Lauryl sulfate sodium salt Sigma-Aldrich Deisenhof, DE 
Luciferin sodium salt PJK Kleinblittersdorf, DE 
Magnesium chloride Invitrogen Karlsruhe, DE 
Magnesium sulfate Roth Karlsruhe, DE 
Maleic acid Fluka Basel, CH 
Methanol Sigma-Aldrich Deisenhof, DE 
Methylene blue Sigma-Aldrich Deisenhof, DE 
Milk powder blotting grade Roth Karlsruhe, DE 
Mowiol 4-88 Merck Darmstadt, DE 
NaCl Roth Karlsruhe, DE 
N-laurolysarcosine Sigma-Aldrich Deisenhof, DE 
dNTPs Peqlab Erlangen, DE 
Paraformaldehyde Sigma-Aldrich Deisenhof, DE 
Passive lysis buffer 5x Promega Fitchburg, US 
Restriction endonucleases New England Biolabs Frankfurt a. M., DE 
RNA Ladder (Low Molecular 
Weight Marker 10-100nt) 

USB Cleveland, US 

RNAse Exitus Plus Applied Biosystems Foster City, US 
SDS Roth Karlsruhe, DE 
Sodium acetate Roth Karlsruhe, DE 
Sodium azide Merck Darmstadt, DE 
Sodium chloride Roth Karlsruhe, DE 
Sodium citrate Fluka Basel, CH 
Sodium hydrogen carbonate Merck Darmstadt, DE 
Sodium hydrogen phosphate Roth Karlsruhe, DE 
Sodium hydroxide (1 mol/l) Roth Karlsruhe, DE 
Sodium hydroxide pellets Merck Darmstadt, DE 
SYBR-green I nucleic acid gel stain 
(10.000x) 

Sigma-Aldrich Deisenhof, DE 
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Product Manufacturer Registered Office 
Taq DNA Polymerase Recombiant 
(5 U/μl) 

Invitrogen Karlsruhe, DE 

TEMED Sigma-Aldrich Deisenhof, DE 
Tricine Sigma-Aldrich Deisenhof, DE 
Triton-X100 Sigma-Aldrich Deisenhof, DE 
Trizma Base (Tris) Merck Darmstadt, DE 
Trizma Hydrochloride (Tris-HCl) Sigma-Aldrich Deisenhof, DE 
Trypan blue Invitrogen Karlsruhe, DE 
Tween 20 Sigma-Aldrich Deisenhof, DE 
Urea Roth Karlsruhe, DE 
Xylene cyanol Bio-Rad Munich, DE 
X-ray Developer Tetenal Norderstedt, DE 
X-ray Fixing Solution Tetenal Norderstedt, DE 

 

2.1.3.3 Kits and cloning material 

Product Manufacturer Registered Office 
DIG Luminescent Detection Kit Roche Applied Science Mannheim, DE 
DNaseI Invitrogen Karlsruhe, DE 
iScript Reverse Transcription Kit Bio-Rad Munich, DE 
Lenti-X™ Tet-On® Advanced 
Inducible Expression System 

Clontec Laboratories Mountain View, US 

Luminata Classico Western HRP 
substrate 

Merck Millipore Darmstadt, DE 

Luminata Forte Western HRP 
substrate 

Merck Millipore Darmstadt, DE 

Magna ChIP A/G Chromatin 
Immunoprecipitation Kit 

Merck Millipore Darmstadt, DE 

MAX Efficiency® Stbl2™ Competent 
Cells 

Invitrogen Karlsruhe, DE 

MAX Efficiency® Stbl3™ Competent 
Cells 

Invitrogen Karlsruhe, DE 

miScript Reverse Transcription Kit Qiagen Hilden, DE 
miScript SYBR Green PCR Kit Qiagen Hilden, DE 
mirVana Probe Construction Kit Applied Biosystems Foster City, US 
NucleoBond Xtra EF Maxiprep Kit Machery-Nagel Düren, DE 
PeqGOLD Miniprep Kit Peqlab Erlangen, DE 
PeqGOLD Trifast Peqlab Erlangen, DE 
psiCHECK™-2 Vector Promega Fitchburg, US 
Zymoclean™ Gel DNA Recovery Kit Zymo Research Orange, US 
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2.1.3.4 Oligonucleotides 

2.1.3.4.1 Primers used for Realtime PCR 

Gene Forward Primer Reverse Primer 
18S rRNA TTCCTTGGACCGGCGCAAG GCCGCATCGCCGGTCGG 
DLL1 GGAGAAGCATCTGAAAGAAAAAGG GGGAGTCTTGCCATCTCACTT 
DLL3 CCAATGGAGGCAGCTGTAGT GTTGAAGCAGGGTCCATCTG 
DLL4 GCAAACAGCAAAACCACACA TCCGACACTCTGGCTTTTCA 
EN2 CCAAAGAAGAAGAACCCGAAC ACCTGTTGGTCTGGAACTCG 
FOXA2 ACACCACTACGCCTTCAACC GCCTTGAGGTCCATTTTGTG 
HES1 AAGGCGGACATTCTGGAAAT GTCACCTCGTTCATGCACTC 
HES5 ACATCCTGGAGATGGCTGTC AGCAGCTTCATCTGCGTGT 
HEY1 CCGAGATCCTGCAGATGA GCTCAGATAACGCGCAACT 
HEY2 TGAAGATGCTTCAGGCAACA GCGCAACTTCTGTTAGGCACT 
JAGGED1 GTGGCTTGGATCTGTTGCTT TTGGTGGTGTTGTCCTCAGA 
JAGGED2 GACGCACCTGTGGTTGTTAGT CAGTGGAGAGATCGCTGGAG 
LIN28A CGGGCATCTGTAAGTGGTTC CTGATGCTCTGGCAGAAGTG 
LIN28B TCTTCCAAAGGCCTTGAGTC TCAAGGCCACCACAGTTGTA 
LMX1A CCATCGAGCAGAGTGTCTACAG GTCGTCGCTATCCAGGTCAT 
miR-7 ACAACAAAATCACTAGTCTTCCA Universal Primer (Qiagen) 
miR-9 TCATACAGCTAGATAACCAAAGA Universal Primer (Qiagen) 
miR-9* ACTTTCGGTTATCTAGCTTTAT Universal Primer (Qiagen) 
miR-16 CGCCAATATTTACGTGCTGCTA Universal Primer (Qiagen) 
miR-125b TCACAAGTTAGGGTCTCAGGGA Universal Primer (Qiagen) 
miR-128 AAAGAGACCGGTTCACTGTGA Universal Primer (Qiagen) 
miR-130b ATGCCCTTTCATCATTGCACTG Universal Primer (Qiagen) 
miR-133b TAGCTGGTTGAAGGGGACCAAA Universal Primer (Qiagen) 
MAML1 CAGCAACAGCAGTTCCTTCA GTGTCGGGTCTTGGTACTGG 
MAML3 CAGCAGCAGCAGCAGATTTT CTGCTGCACTGGGTATGGAT 
MSX1 AAGTTCCGCCAGAAGCAGTA TTCAGCTTCTCCAGCTCTGC 
NESTIN GGAGAAGGACCAAGAACTG ACCTCCTCTGTGGCATTC 
NEUROG2 CAGGCCAAAGTCACAGCAAC CCGAGCAGCACTAACACGTC 
NOTCH1 TGAAGAACGGGGCTAACAAA TCCATATGATCCGTGATGTCC 
NOTCH2 CTGCCCTTGGACCCATTTAT CCAGTGGCTGGATCAGTAGC 
NOTCH3 CCTCACTTCACTGCATTCCA CCCTAGTTCCCAAAGGGAGA 
NOTCH4 AGAACTGATTGCAGCCCAAG TGTCCTGGGCATCTTTATCG 
PAX6 AATAACCTGCCTATGCAACCC AACTTGAACTGGAACTGACACAC 
Pri-miR-9_2 CTTCGGTACTGCCAGAAAGG GCAACAACCCCTCTCAAGAC 
PSEN1 AAGACACTGTTGCAGAGAATG CCAGCGAGGATACTGCTGG 
SIRT1 CAGTGGCTGGAACAGTGAGA TATACCTCAGCGCCATGGAA 
SOX2 CACATGTCCCAGCACTACCA CTCCCATTTCCCTGGTTTTT 

 

2.1.3.4.2 Primers used for semiquantitative PCR 

Gene Forward Primer Reverse Primer 
18S rRNA TTCCTTGGACCGGCGCAAG GCCGCATCGCCGGTCGG 
EN2 CCAAAGAAGAAGAACCCGAAC ACCTGTTGGTCTGGAACTCG 
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Gene Forward Primer Reverse Primer 
FOXA2 ACACCACTACGCCTTCAACC GCCTTGAGGTCCATTTTGTG 
Pri-miR-9_1 TGTCCCTTCCCTCCTACTCC ATCCTCTGGTGCTGGTCAGT 
Pri-miR-9_2 CTTCGGTACTGCCAGAAAGG GCAACAACCCCTCTCAAGAC 
Pri-miR-9_3 GTGTCTGTCCATCCCCTCTG CTCGGCTCCTCTGGCTCT 
Pri-miR-7_1 CATTTCTCTGGTGAAAACTGCTG AATCGGACATTAGTAGAACAGAA

TTAAGA 
Pri-miR-7_2 TGAAGGAGCATCCAGACCG AGAACACGTGGAAGGATAGCC 
Pri-miR-7_3 ACTCAGGTGTCATAGCTTGGCTC GAAGCGATTCTTCCCCGA 
CHIP 9_1_1 TAGGAGCTGGGGGGAGAGA TGGGGACCCCCCTAAATCT 
CHIP 9_1_2 GGTGGAGACCAAAATTGGGA CCTCCATTAGATGGGTGTGAAG 
CHIP 9_1_3 TCCTACGGAAGGCCAGGA CACAGCCCAGCAGGCA 
CHIP 9_2_1 TAGAGTCTAGACCCGGCTGAGG GAGCCTCCGGTCTAACTTCTGA 
CHIP 9_2_2 TGGTAGTCTTGACTGTACTAGTGC

ACTG 
GGTTTGCCTGCTCATTCACTAATA 

CHIP 9_3_1 TGGGCAGCTCAGGCAG CTGTCTGCAGCCCCACAA 
CHIP 125b2 TCCCCAGTGCCTATGCC TGTACCATTTCACATTAGCTGCA 
CHIP HES1 CAAGACCAAAGCGGAAAGAA GGATCCTGTGTGATCCCTAGG 

2.1.3.4.3 Primers used for cloning 

Gene Forward Primer Reverse Primer 
Puro THM ATCGTTTAAACACCTGCAGCCCA

AGCTTACCAT 
TCAGACTAGTCATATGAGGTTGAT
TGTTCCAGACGCGC 

Pre-miR-
9_1 THM 

TCATACAGCTAGATAACCAAAGAC
CTGTCTC 

TCATACAGCTAGATAACCAAAGAT
TTTTCCTGTCTC 

Pre-miR-
7_1 THM 

TGTACAACGCGTTGGAAGAAGCC
TTAACCAAG 

TGGAATTCATCGATTCGGACATTA
GTAGAACAGAA 

Pre-miR-
128_1 THM 

TGTACAACGCGTTGACAAGTTTGT
AGCTTCACC 

TGGAATTCATCGATTCCCTATTTCT
GAGTATGATGC 

Pre-miR-
130b THM 

TGTACAACGCGTTCAGAGGGCAC
CCTTTCC 

TGGAATTCATCGATCCAGTCCAGC
TTCACATCTG 

Pre-miR-
9_1 LVX 

TAGGGATCCTGTCTCGGACTTCA
TTTCTCTCTT 

AGTGAATTCTGAAATGTCGCCCGA
ACCAGT 

Pre-miR-
7_1 LVX 

TAGGGATCCTGGAAGAAGCCTTA
ACCAAG 

AGTGAATTCATCGATTCGGACATT
AGTAGAACA 

GFP LVX AGTGCGGCCGCAAGCTTCGAATT
CTGCAGT 

ACTCACGCGTTTACTTGTACAGCT 

DN-MAML1 
LVX 

ACGAGCGGCCGCACGAGCGGCC
GCATGGCGCTGCCGCG 

ACTACGCGTTTACTTGTACAGCTC
GTCCAT 

NOTCH1-
ICD LVX 

TCAGCGGCCGCATGGCACGCAA
GCGCCGG 

TGAACGCGTACTTACTACTTATCGT
CGTCGTCC 

NOTCH2-
ICD LVX 

ACGAGCGGCCGCATGGCACGAA
AGCGTAAGCA 

ACTACGCGTTCACGCATAAACCTG
CATGTT 

NOTCH1 
3´UTR 

ACTCTCGAGACTACGGCGCGCCC
CAC 

GTACGGCGGCCGCCTGCAGCATC
TACAGTTCCTCATGTAGATCAC 

NOTCH2 
3´UTR 

ACTCTCGAGTGAGAGAGTCCACC
TCCAGTACTCTCGAGGAGAGTCC
ACCTCCAGTGTA 

GTACGGCGGCCGCCTGCAG 
GACTTATATCCCAGTTCCCAATTC 

HES1 
3´UTR 

ACTCTCGAGTCAGGCCACCCCTC
CTC 

GTACGGCGGCCGCCAAAAGAGTC
AATTCCTGAATTACCA 
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2.1.3.5 Solutions 

2.1.3.5.1 Western blot 

RIPA lysis buffer  50 mM Tris-HCl (pH=7.5), 1 mM EDTA;   
    0.5% Deoxycholic acid, sodium salt, 150 mM NaCl,  
    0.1% lauryl sulfate sodium salt and 1% Igepal in ddH2O, 
    mixed with 1:100 protease inhibitor cocktail (PI, Roche) 
2x Lämmli buffer  100 mM Tris-HCl (pH=6.8), 20% Glycerol, 4% SDS,  
    0.25% Bromphenolblau in ddH2O 
5x Running Buffer  25 mM Tris-Base; 965 mM Glycin; 0.5% SDS in ddH2O 
10x Transfer Buffer  250 mM Tris-Base; 1.95 M Glycin in ddH2O 
Transfer Buffer   100 ml 10x Transfer Buffer; 200 ml Methanol;   
    700 ml ddH2O; store at 4°C 
TBS-T    10 mM TRIS-HCl (ph 7,5), 150 mM NaCl, 0.05% Tween in 
    ddH2O 
Stripping buffer   2% SDS, 62.5 mM Tris-HCl (pH=6.7), 7 mM β-  
    Mercapthoethanol in ddH2O 
 

2.1.3.5.2 Northern blot 

Acetic acid 5%   5% acetic acid (v/v) in DEPC-H2O 
Blocking solution   10% Blocking Reagent of the DIG Luminescent Detection 
    Kit in Maleic acid buffer dissolved by stirring at 65°C,  
    autoclaved, stored at 2-8°C 
DEPC-H2O    1 ml DEPC in 1l ddH2O, incubate overnight while stirring in 
    the dark under the hood, lid open, autoclaved next day 
Destaining solution  0.2 x SSC, 1% SDS in DEPC-H2O 
FDE     10 ml deionized formamide, 200 μl EDTA (0.5 M EDTA), 
    10 mg Xylenecyanol, 10 mg Bromophenol blue in DEPC-
    H2O 
FLS     10 ml deionized formamide, 200 μl EDTA (0.5 M EDTA), 
    1 mg Xylenecyanol, 1 mg Bromophenol blue in DEPC-H2O 
Hybridization buffer  5 x SSC, 50% deionized formamide, 0.1% N-lauroly- 
    sarcosine, 0.02% SDS, 2% Blocking solution in DEPC-
    H2O 
Maleic acid buffer   0.1 M Maleic acid, 0.15 M NaCl in ddH2O, pH 7.5 
Methylene blue   0.02% (w/v) Methylene blue, 0.3 M sodium actetate in 
staining solution   ddH2O, pH 5.5 
 
Polyacrylamide-Urea 
Gel, 15% 
 
 
 
 
 
 
 

40 ml:  
Urea 20 g 
10x TBE 5 ml 
Acrylamide/Bis 19:1 15 ml 
DEPC-H2O 4 ml 
10% APS 240 μl 
TEMED 16 μl 
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20x SSC    3 M Sodium chloride, 0.3 M Sodium citrate in ddH20,  
    pH=7.0 
Stringency wash buffer  2 x SSC, 0.1% SDS in DEPC-H2O 
Stripping buffer   50% deioinized formamide, 5% SDS, 50 mM Tris-HCl 
    (pH=7.5) in DEPC-H2O 
10x TBE    0.9 M Tris-HCL, 0.9 M Boric acid, 0.02 M EDTA in DEPC-
    H2O 
 

2.1.3.5.3 Immunocytochemistry 

Blocking buffer   5% FCS, 0.1% Triton-X-100 in DPBS 
Borate buffer   10 mM sodium borate in ddH2O 
Mowiol    6 g Glycerol, 2.49 g Mowiol in 6 ml ddH2O + 12 ml 0.2 M 
    Tris-HCl (pH=8.5) 
NaHCO3 Buffer   10 mM NaHCO3 in ddH2O 
4% PFA    4% Paraformaldehyde in DPBS 
Sodium azide solution  1 mg/ml sodium azide in DPBS 
Triton-X-100 (1%)   10 mg/ml Triton-X-100 in DPBS 
 

2.1.3.5.4 Luciferase Assay 

Passive lysis buffer  1:5 Promega passive lysis buffer 5x in ddH2O 
Luciferin Solution  0.5 mM D-Luciferin Na salt, 30 mM Tricine (pH=7.8),  
    3.75 mM MgSO4, 0.75 mM ATP, 1.25 mM DTT,  
    67.5 µM Coenzyme A in ddH2O 
Colenterazine Solution  40 µM Colenterazine, 2% Methanol in ddH2O 
 

2.1.3.5.5 Others 

2x BBS buffer:   50 mM BES, 280 mM NaCl, 1.5 mM Na2HPO4 in ddH2O, 
    pH=6.95, sterilized by filtration, frozen at -20°C 
 

2.1.3.6 Antibodies 

2.1.3.6.1 Primary antibodies 

Target Host/Isotype Company Dilution 
BrdU mouse IgG Beckton Dickinson 1:50 
βIII tubulin mouse IgG Covance 1:2000 
FLAG-Tag mouse IgG Merck Millipore 1:100 
FOXA2 goat IgG R&D Systems 1:1000 
GABA rabbit IgG Sigma-Aldrich 1:500 
HES1 mouse IgG Sigma-Aldrich 1:500 
Histone 3 rabbit IgG Cell Signaling 1:100 
IgG control rabbit IgG Abcam 1:100 



   Material and Methods 

 26 
 

Target Host/Isotype Company Dilution 
LMX1A rabbit IgG Merck Millipore 1:1000 
NESTIN mouse IgG R&D Systems 1:1000 
NOTCH1 rat IgG DHSB 1:500 
NOTCH2 rat IgG DHSB 1:500 
RBPj rabbit IgG Abcam 1:100 
SOX2 mouse IgG R&D Systems 1:1000 
Serotonin rabbit IgG Sigma-Aldrich  1:1000 
TH mouse IgG Sigma-Aldrich  1:1000 

 

2.1.3.6.2 Secondary antibodies 

Target Host/Isotype Label Company Dilution 
Mouse IgG Goat Cy3 Jackson Immuno Research 1:250 
Mouse IgG Goat Alexa488 Invitrogen, Darmstadt 1:1000 
Rabbit IgG Goat Alexa488 Invitrogen, Darmstadt 1:1000 
Rabbit IgG Goat Alexa555 Invitrogen, Darmstadt 1:1000 
Rat IgG Mouse Peroxidase Jackson Immuno Research 1:1000 
Mouse IgG Rabbit Peroxidase Jackson Immuno Research 1:1000 

 

 

2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Culture of pluripotent stem cells 

The pluripotent stem cell lines used in this work are human embryonic stem cell lines 

I3 [91] and H9.2 [92] (kindly provided by Prof. J. Itskovitz-Eldor) and human iPS cell 

line ILB-C-31F-R1 (kindly provided by Matthias Brandt). Maintenance and 

differentiation followed established protocols. 

 

2.2.1.1.1 Maintenance of pluripotent stem cells 

For pluripotent stem cell propagation, cells were cultivated on MG-coated tissue 

culture (TC) dishes in mTESR medium. The medium was exchanged daily. Cells 

were split approximately every third day at a ratio of 1:10 treatment with alfazyme for 

5-10 min. Detached cells were transferred into a falcon tube and pelleted by 

centrifugation at 1000 rpm for 5 min. After resuspension in appropriate volume of 

fresh mTESR medium containing 10 nM Rock inhibitor, cells were plated on MG-

coated dishes. Medium was changed to fresh mTESR daily. 
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2.2.1.1.2 Differentiation of pluripotent cells into dopaminergic neurons 

For neuronal differentiation, pluripotent stem cells were plated onto MG-coated TC 

plates and cultivated in mTESR until the confluence reached approximately 90%. 

From this time point on, the cells were treated according to Kriks et al. [89]. They 

were cultured for one day (d0) in KO-SR medium containing 100 nM LDN193189 and 

10 μM SB431542 and for the next two days (d1-2) in KO-SR medium containing 100 

nM LDN193189, 100 ng/ml SHH, 100 ng/ml FGF8b and 2 μM Purmorphamine. On 

d3-4 additional 3 µM CHIR 99021 were added to the medium. From d5 on, the cells 

were slowly adapted to N2 medium, which is beneficial for expansion of neuronal 

precursors, by adding it in increasing amounts into the previously used KO-SR 

medium. Therefore, the medium used on days 5 and 6 was prepared to include 75% 

KO-SR medium and 25% N2 medium containing 100 nM LDN193189, 10 µM 

SB431542, 100 ng/ml SHH, 100 ng/ml FGF8b, 2 µM Purmorphamine and 3 µM 

CHIR99021. On days 7 and 8, 50% KO-SR medium and 50% N2 medium were used 

supplemented with 100 nM LDN193189 and 3 µM CHIR99021. On days 9 and 10, 

the medium was changed to 25% KO-SR medium and 75% N2 medium while the 

factors added remained the same. From day 11 on, the cells were switched to a 

neuronal differentiation medium (NeuroBasal containing 1x B27 supplement devoid 

of vitamin A (B27-RA), 20 ng/ml BDNF, 20 ng/ml GDNF, 200 µM AA, 0.5 mM 
dbcAMP, 1 ng/ml TGFβ3 and 10 µM DAPT) plus 3 µM CHIR99021. On day 13, the 

cultures were split by incubation with accutase for 45 min followed by a spindown in 

NeuroBasal containing 1x B27-RA at 1200 rpm for 4 min. Afterwards, the cells were 

resuspended in the neuronal differentiation medium and seeded onto polyornithine 

(PO)/laminin (LN)/fibronectin (FN)-coated dishes at a ratio of 1:1. The medium was 

changed to fresh neuronal differentiation medium every other day until day 20 when 

the cells were passaged again as described. This time the cells were counted, plated 

at a density of 400000 cells/cm2 on PO/LN/FN-coated TC dishes and kept in the 

differentiation medium until day 25 for final analysis. Data on the differentiation of 

pluripotent stem cells into dopaminergic neurons were generated in collaboration with 

Laura Stappert with equal contribution from both sides. 
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2.2.1.2. Culture of neural stem cells 

For this study, lt-NES cells derived from the parental human embryonic stem cell 

lines I3 and H9.2 were used. The cell lines used were derived as described in [7] 

(used for the experiments in Results sections 3.1, 3.2, 3.9 and 3.11) or according to a 

modified version of that protocol (used for the experiments in Results sections 3.3-

3.8, 3.10 and 3.12). For the modified version of the lt-NES cell derivation, hESCs 

were harvested as clumps with 1 mg/ml collagenase. These clumps were cultured in 

suspension on uncoated petridishes to form embryoid bodies in GMEM medium 

supplemented with 5 µM SB431542 and 1 µM dorsomorphin, which was changed 

every other day. After 6 - 14 days the formed embryoid bodies were plated on 

PO/LN-coated TC dishes in N2 medium with 10 ng/ml FGF2, 2 mg/ml fibronectin, 5 

µM SB431542 and 1 µM dorsomorphin. The next day, the medium was changed to 

N2 medium with 10 ng/ml FGF2 and renewed every second day. After 7 - 10 days in 

monolayer culture, neural rosettes formed and were selectively detached by addition 

of 0.15 mg/ml dispase for 3 - 10 min. The rosettes were carefully rinsed off the plate 

and maintained as spheres on uncoated petridishes in N2 medium containing 20 

ng/ml FGF2 for 3 days. Afterwards, the spheres were plated on PO/LN-coated TC 

dishes containing N2 medium supplemented with 1 µM purmorphamine and 10 ng/ml 

FGF2. After additional 5 - 7 days the purified rosettes were single cell-suspended 

with trypsin and plated in high density on PO/LN-coated TC dishes in N2 medium 

supplemented with 10 ng/ml FGF2 and 10 ng/ml EGF. Maintenance and 

differentiation followed established protocols [7]. Derivation procedure and validation 

of the modified protocol for lt-NES cell derivation were established by Johannes 

Jungverdorben based on [7] and carried out by Katja Hamann. 

2.2.1.2.1 Maintenance of neural stem cells 

Lt-NES cells were cultivated on PO/LN-coated TC dishes in N2 medium 

supplemented with growth factors (10 ng/ml of each EGF and FGF2). Growth factors 

were added daily, while medium was exchanged every second day. Cells were split 

approximately every third day at a ratio of 1:2 by trypsinisation. To this end, cells 

were removed from the culture dish surface with Trypsin/EDTA solution followed by 

neutralization with Trypsin inhibitor. Cells were transferred into a falcon tube and 

pelleted by centrifugation at 1000 rpm for 5 min. After resuspension in an appropriate 
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volume of fresh N2 medium including growth factors, the cells were plated on fresh 

PO/LN-coated TC dishes. 

 

2.2.1.2.2 Growth curve analysis of neural stem cells 

For growth curve analysis, 700000 lt-NES cells were seeded onto PO/LN-coated 3.5 

cm TC dishes in N2 medium containing 10 ng/ml of each EGF and FGF2. Three 

separate plates of cells were trypsinized and counted on each of the following 4 days 

for every condition. The counting was carried out in three independent experiments. 

 

2.2.1.2.3 Differentiation of lt-NES cells 

For neuronal differentiation, lt-NES cells were plated onto MG-coated TC plates and 

cultivated in N2 medium supplemented with 10 ng/ml EGF and 10 ng/ml FGF2 until 

confluence reached approximately 80%. At this time point, the used medium was 

switched to NGMC medium including 200 µM ascorbic acid (AA) and 20 ng/ml BDNF. 

NGMC medium was changed every other day. 

 

2.2.1.3. Culture of cancer cell lines 

The cell lines HepG2, U87 and 293FT were cultivated on non-coated TC dishes in 

RPMI (HepG2 cells) or MEF (U87 and 293FT cells) medium. The cultures were split 

approximately every third day at a ratio of 1:4 with Trypsin/EDTA. The detached cells 

were transferred into a falcon tube and pelleted by centrifugation at 1000 rpm for 5 

min. After resuspension in appropriate volume of fresh RPMI (HepG2 cells) or MEF 

(U87 and 293FT cells) medium, the cells were replated on non-coated dishes. 

 

2.2.2 RNA-based analysis methods 
2.2.2.1 RNA Isolation 

Total RNA used for PCR and Northern blot analyses was isolated using PeqGOLD 

Trifast. Before harvesting, the cells were washed once with DPBS. One 3.5 cm dish 

was harvested in 1 ml Trifast (the volume was increased according to the surface 

harvested) and stored at -80°C at least 24 hours. For extraction, the samples were 

thawed at room temperature (RT), mixed with 200 µl of chloroform and incubated for 

5-10 min at RT. After centrifugation at 13000 rpm for 5 min, the clear supernatant 
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was transferred to a fresh tube and mixed with 500 µl isopropanol. The RNA was 

pelleted at 13000 rpm and 4°C for 15 min, washed twice with 70% of ethanol and 

resuspended in DEPC-H2O. The resulting RNA was digested with DNaseI according 

to manufacturers protocol to avoid contamination. Final RNA concentration was 

determined by microspectrophotometer measurement. 

 

2.2.2.2 Quantitative real-time RT-PCR 

2.2.2.2.1 Quantitative real-time RT-PCR of small RNA (qRT-PCR) 

Reverse transcription of 250-500 ng of total RNA was carried out in a 10 µl reaction 

using the miScript reverse transcription kit which polyadenylates the RNA and then 

reverse transcribes it with a poly(T)-universal tag primer resulting in extended 

miRNA-cDNAs. 0.25 µl of the synthetized template cDNA was applied for each PCR 

reaction using the miScript SYBR Green PCR kit in combination with a miRNA-

specific forward primer and the sequence complementary to the poly(T) universal tag 

as the reverse primer (for primers see table in section 2.1.3.4.1 Primers used for 

Realtime PCR). 

The parameters used were: 

Step Temperature Time Cycles 
Denaturation 95°C 15 min 1 
Denaturation 95°C 30 s 
Annealing 55°C 30 s 
Elongation 72°C 30 s 

40 

Elongation 72°C 10 min 1 
 

All measurements were carried out in technical duplicates or triplicates. Data were 

normalized to miR-16 or snRNA RnuB5. Quantitative PCR was performed on an 

Eppendorf Realplex cycler system using the SYBR green method. The specificity of 

the PCR products was verified by melting curve analysis and gel electrophoresis. 
Data were analyzed using the δδCt method. 

 

2.2.2.2.2 Quantitative real-time RT-PCR of mRNA (qRT-PCR) 

The cDNA for mRNA based Real-Time PCR was synthesized in a volume of 20 µl 

from 1 µg total RNA using the iScript cDNA synthesis Kit following manufacturers 

protocol. For each PCR reaction, 0.1-0.5 µl of the synthetized cDNA were mixed with 

1xPCR Buffer, 3 mM MgCl2, 6 µM of each forward and reverse primer (for sequences 
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see table in section 2.1.3.4.1 Primers used for Realtime PCR), 200 µM of each 

dNTP, 1:2000000 SYBR Green, 10 µM Fluorescein and 0.75 U Taq-Polymerase in a 

total volume of 25 µl. The parameters used were: 

Step Temperature Time Cycles 
Denaturation 95°C 5 min 1 
Denaturation 95°C 15 s 
Annealing 60°C 15 s 
Elongation 72°C 30 s 

40 

Elongation 72°C 10 min 1 
 

All measurements were carried out in triplicates. Data were normalized to 18S 

reference levels. Quantitative PCR was performed on an Eppendorf Realplex cycler 

system using the SYBR green method. The specificity of the PCR products was 

verified by melting curve analysis and gel electrophoresis. Data were analyzed using 
the δδCt method. 

 

2.2.2.3 RT-PCR 

The cDNA for mRNA based RT-PCR was synthesized in a volume of 20 µl from 1 µg 

total RNA using the iScript cDNA synthesis Kit following manufacturers protocol. For 

each PCR reaction, 0.1 µl of the synthetized cDNA was amplified using Invitrogen 

Taq-DNA Polymerase according to manufacturers protocol. Primers used are listed in 

section 2.1.3.4.2 Primers used for semiquantitative PCR. 

The parameters used for cycling in a Biorad Thermocycler were: 

Step Temperature Time Cycles 
Denaturation 95°C 5 min 1 
Denaturation 95°C 15 s 
Annealing 60°C 15 s 
Elongation 72°C 30 s 

35 

 

For reference gene 18S, the cycle number was reduced to 20. Afterwards, the PCR 

products were analyzed by electrophoresis on a 1.5% agarose gel. 

 

2.2.2.4 Northern blotting of small RNAs 

2.2.2.4.1 miRNA oligonucleotides probes for Northern blots 

DIG-labeled RNA probes were synthesized by in vitro transcription using the mirVana 

miRNA Probe Construction Kit. Single-stranded DNA oligonucleotides were designed 
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according to manufacturers suggestions. For miRNA probes, the sequence of the 

mature miRNA according to their annotation in miRBase [93] was used (miR-9: UCU 

UUG GUU AUC UAG CUG UAU GA; miR-9*: AUA AAG CUA GAU AAC CGA AAG 

U; miR-125b: UCC CUG AGA CCC UAA CUU GUG A) while for loading control 

snRNA U6 a 21 nt sequence (AAT TCG TGA AGC GTT CCA TAT) was chosen. 

Furthermore, a sequence complementary to the T7 promoter (5ʼ-CCTGTCTC-3ʼ) was 

added to the 3´ end of sequences and annealed to a T7 promoter specific primer. 

Afterwards, the oligonucleotides were extended to generate double-stranded DNA 

templates using the Exo-Klenow polymerase. These templates were then in vitro 

transcribed by T7 phage RNA polymerase in presence of DIG-11-UTP to synthesize 

DIG-labeled small RNA transcripts. 

Unincorporated nucleotides were removed by ammonium acetate/ethanol 

precipitations. To this end, the reaction was filled up to 50 µl volume by adding 

nuclease-free water and mixed with 5 µl of 5 M ammonium acetate, 2 µl of glycogen 

and 3 volumes (150 µl) of 100% ethanol and stored at -20°C over night. The RNA 

was pelleted by centrifugation at 13000 rpm at 4°C for 30 min, washed two times with 

250 µl cold 75% ethanol and air-dried. The resulting pellet was dissolved in 50 µl 

nuclease-free water and the acetate/ethanol precipitation was repeated a second 

time. The amount of DIG-labeled RNA probe was quantified by 

microspectrophotometer measurement, aliquoted to 400 ng (miRNA) or 100 ng 

(snRNA) probe in 50 µl DEPC-H2O containing 10 µM EDTA and stored at -80°C. 

 

2.2.2.4.2 Northern Blotting 

Northern blot analysis was performed on 40 µg of total RNA isolated with PeqGOLD 

Trifast according to manufacturers protocol. The 15% acrylamide denaturing gel used 

was pre-run in 1xTBE at 400 mV for 1 hour (h). Before loading the RNA was mixed 

1:1 with FLS, denaturated at 65°C for 20 min and cooled on ice. A RNA low 

molecular weight marker was used as size control. The loaded gel was run at 400 

mV for 2-3 h. For visualization of the separated RNA, the gel was incubated for 10 

min in 1xTBE containing 1 µg/ml ethidium bromide, washed with 1xTBE two times 

and exposed to UV light in a chemiluminometer. After 20 min of equilibration in 

20xSSC, the gel was blotted on a nylon membrane using capillary forces created by 

a stack of paper and 20xSSC as transfer buffer at RT over night. Afterwards, the 
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membrane was washed with 2xSSC and cross-linked using a UV Hybridizor at 1200 

mJ/cm2. For visualization, the membrane was soaked in 5% acetic acid for 15 min at 

RT, stained for 5 min in methylene blue staining solution and rinsed several times 

with DEPC-H20. After photo-documentation, the membrane was washed with 

destaining solution for 15 min and equilibrated in 2xSSC. 

 

2.2.2.4.3 Northern blot detection 

The membrane was prehybridized in 10 ml hybridization buffer at 65°C for at least 1 

h. For each membrane an aliquot of 100 ng snRNA probe or 400 ng miRNA probe 

was denaturated at 95°C for 2 min, cooled on ice and mixed with 2 ml hybridization 

buffer. The membrane was hybridized with the DIG-labeled RNA-probes at RT over 

night. After hybridization, the membrane was rinsed in DEPC-H20 and washed in 5ml 

stringency buffer twice at RT for 5 min and once at 40°C for 15 min. The detection 

was performed using the DIG Luminescent Detection Kit according to manufacturers 

protocol. Accordingly, the signal was detected by exposure to a CL-XPosure film at 

-80°C over night and visualized on a X-ray developing machine. For reprobing, the 

membranes were stripped incubating them twice in 5 ml stripping buffer for 1 h at 

80°C followed by washing in 2xSSC for 5 min. Afterwards, the detection procedure 

for the new probe was started from the beginning as described above. 

 

2.2.3 Protein-based analysis methods 

2.2.3.1 Western blot 

2.2.3.1.1 Preparation of protein lysates 

For lysis, the cells were scraped of the plates in cold DPBS, pelleted at 3500 rpm for 

5 min and resuspended in RIPA buffer. After incubation on ice for 15 min, the 

supernatant was cleared by centrifugation for 15 min at 4°C and 13000 rpm. The 

collected supernatant was measured by Bradford assay according to manufacturers 

protocol. Afterwards, loading buffer was added, the mixture was boiled at 95°C for 10 

min, aliquoted, and stored at -20°C. 
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2.2.3.1.2 Gel electrophoresis and blotting 

A SDS PAGE gel in the desired percentage of acrylamide was prepared according to 

the tables below (separating gel: HES1/ FOXA2: 10%, NOTCH1/ NOTCH2: 8%). 

Separating gel 8% 10% Stacking gel  

ddH2O 
 

4.6 ml 4 ml ddH2O 
 

1.2 ml 

30% Acrylamide Mix 2.6 ml 3.4 ml 30% Acrylamide Mix 330 µl 

1.5M TrisHCl (pH=8.8) 2.6 ml 2.6 ml 0.5M TrisHCl (pH=6.8) 500 µl 

10% SDS 100 µl 100 µl 10% SDS 20 µl 

10% APS 100 µl 100 µl 10% APS 20 µl 

TEMED 6 µl 4 µl 

 

TEMED 2 µl 

 

40 µg of protein sample were loaded per lane. The gel was run in running buffer at 

100 V for 2 h. Afterwards, it was blotted onto a nitrocellulose membrane in blotting 

buffer with an ice pack at 70 V for 2 h. After blocking the membrane in 10% of milk 

powder in TBST at RT for 1 h, the first antibody was added in 5% milk powder in 

TBST at 4°C over night. The next day, the membrane was washed and the 

secondary antibody was added in 5% milk powder in TBST at RT for 1 h. For 

antibodies and dilutions see tables in section 2.1.3.6 Antibodies. The membrane was 

washed and detected with a chemiluminometer using Luminata Western HRP 

substrates. 

For reuse, the membrane was stripped in 10 ml of stripping buffer at 50°C for 30 min 

and washed afterwards. All washes were carried out in TBST by changing it three 

times after 5 min of incubation each. 

 

2.2.3.2 Chromatin immunoprecipitation 

Chromatin immunoprecipitation was carried out in triplicates with the Magna ChIP G 

Kit according to the manufacturers protocol. The antibodies against RPBj, Flag-Tag 

and Histone3 were used as well as an IgG control antibody. For antibodies and 

dilutions see tables in section 2.1.3.6 Antibodies. 

Subsequent RT-PCR analyses were carried out on 2 µl of sheared chromatin using 

Invitrogen Taq-DNA Polymerase according to the manufacturers protocol. Primers 
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used are listed in section 2.1.3.4.2 Primer used for semiquantitative PCR. 

Parameters used for the PCR reaction are described in section 2.2.2.3 RT-PCR. 

 

2.2.3.3 Immunofluorescence 

For immunofluorescence, the cells were washed, fixed with 4% PFA and washed 

again. For BrdU staining, the samples were prepared by 30 min of treatment with 

0.5% Triton in DPBS and subsequent washing followed by treatment with 2 M HCl for 

10 min. The acid was removed by washing and neutralized by treatment with Borane 

buffer for 10 min, which was washed out as well. For immunofluorescence analysis 

other than BrdU staining, the PFA fixed samples were used without further 

pretreatment. Fixed cells were treated with blocking solution at RT for 1 h and 

subsequently incubated with the first antibody diluted in blocking solution at RT over 

night. After washing, the secondary antibody was diluted in blocking solution and 

added to the cells at RT for 1 h. For antibodies and dilutions see tables in section 

2.1.3.6 Antibodies. After washing out the secondary antibody with DPBS, the 

samples were counterstained with DAPI and visualized at the fluorescence 

microscope. All washes were carried out in DPBS by changing it three times after 10 

min of incubation each. 

 

2.2.4 Lentivirus-based experiments 

2.2.4.1 Cloning of lentiviral constructs 

For Pol-III based miRNA overexpression the LVTHM plasmid ([94], kindly donated by 

Prof. D. Trono) was used. The miRNA genomic loci including the precursor and 

approximately 150 bp of its upstream and downstream regions were isolated by PCR 

on genomic DNA of lt-NES cells and cloned under the control of the H1 promoter 

using restriction endonucleases MluI and ClaI. As short scrambled RNA control the 

sequence from the pSilencer construct (Ambion, Life Technologies) was cloned using 

restriction endonucleases MluI and ClaI. For selection the GFP cassette was 

exchanged for puromycine, neomycine and hygromycine resistance using restriction 

endonucleases PmeI and SpeI. 

The pLVX-Tight-Puro plasmid (part of the Lenti-X™ Tet-On® Advanced Inducible 

Expression System) was used for Pol-II based ectopic expression of miRNAs. The 



   Material and Methods 

 36 
 

respective miRNA loci including the precursor and approximately 150 bp of its 

upstream and downstream regions amplified from genomic DNA of lt-NES cells and 

cloned under the control of the Tight promoter using restriction endonucleases 

BamH1 and EcoR1. For modulation of Notch signaling, human NOTCH1-ICD and 

NOTCH2-ICD constructs ([95], kindly donated by Prof. A. J. Capobianco), a DN-

MAML1-GFP fusion construct ([96], kindly donated by Prof. J. C. Aster) and eGFP 

(taken from the DN-MAML1-GFP fusion construct) were cloned under the control of 

the Tight promoter using restriction endonucleases NotI and MluI. To achieve 

doxycycline-based inducibility, the resulting vectors were combined with a modified 

pTet-ON advanced vector (part of the Lenti-X™ Tet-On® Advanced Inducible 
Expression System) carrying an EF1α promoter instead of the original CMV promotor 

as described in [97]. For primers used in the generation of the lentiviral vectors 

described see section 2.1.3.4.3 Primers used for cloning. 

 

2.2.4.2 Expansion of lentiviral constructs 

The cloned constructs were expanded in Stbl2, or Stbl3 E. Coli to assure minimum 

recombination events. For a mini preparation, the bacteria carrying the desired 

plasmid were expanded in 5 ml TB medium at 30°C, or 37°C respectively, and 225 

rpm over night. The DNA of 1.5 ml of the bacterial culture was prepared with 

PeqGold Miniprep Kit according to manufacturers protocol. 

For a maxi preparation, the bacteria carrying the desired plasmid were expanded in 

250 (high copy plasmids) to 400 ml (low copy plasmids) TB medium at 30°C, or 37°C 

respectively, and 225 rpm over night. The resulting bacteria were pelleted and 

treated according to the NucleoBond Xtra EF Maxiprep Kit guide. The amount of 

DNA prepared was measured with a microspectrophotometer and validated by 

endonuclease digestion. 

 
2.2.4.3 Production of lentiviral particles 

For each construct, 6-7 x 106 293FT cells were plated on a 15 cm TC dish on day 

one in MEF medium. The next day, calcium-phosphate precipitate (2.5 ml / 15 cm 

plate) was prepared by mixing 25 µg of the desired construct with 18.75 µg of the 

packaging plasmid, 6.75 µg of the envelope plasmid and 125 µl 2.5 M CaCl2. This 

mixture was filled up to 1.25 ml with water. Afterwards, 1.25 ml 2xBBS was added in 
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a dropwise fashion and incubated at room temperature for 20 - 25 min. The solution 

was mixed briefly, added dropwise on a plate and agitated gently. 16 hours later, the 

medium including the precipitate was removed and 15 ml of fresh MEF medium were 

added to the plate. The next two days, the supernatant was collected. The pooled 

supernatants of the two harvests were spun at 3000 g for 5 min, filtered through a 

0.45 µm syringe filter and concentrated by ultra centrifugation at 20000 g and 4°C for 

90 min. The resulting viral pellet dissolved in 1 ml of HBSS, aliquoted, and stored at 

-80°C. 

 

2.2.4.4 Transduction of lt-NES and HepG2 cells with lentiviral particles 

For viral transduction 800000 (lt-NES) or 400000 (HepG2) cells per 3.5 cm TC dish 

were seeded one day before to reach a start density of approximately 70%. The next 

day, the medium was changed to 900 µl culture medium including 4 ng/ml Polybrene 

and 50 µl of virus dissolved in HBSS. The cells were incubated for 16 hours at 37°C 

and 5% CO2. Afterwards, the medium was changed to normal culture medium. 72 

hours after transduction antibiotic selection was started. 

 

2.2.5 Transfection experiments 

The cells were seeded one day before transfection to reach a starting density of 

approximately 70% (65275 lt-NES cells/cm2 of a PO/LN coated TC dishes). One hour 

before transfection, the medium was changed to 100 µl Pen/Strep free medium per 

cm2. 13 µl Optimem (Gibco) per cm2 was mixed with either Lipofectamin 2000 (0.13 

µl per cm2) or the oligonucleotide of interest (10 nM for miRNA mimics, 100 nM for 

miRNA inhibitors or 10 ng/ml luciferase reporter plasmid). These two separate mixes 

were incubated at RT for 5 min, then pooled and incubated at RT for another 20 min. 

Afterwards, 26 µl of the mixture per cm2 was added. After four hours of incubation at 

5% CO2 and 37°C, the medium was changed to 52 µl of normal culture medium per 

cm2 and the cells were cultured at 5% CO2 and 37°C. 
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2.2.5.1 Modulation of miRNA levels 

The single-stranded, 2ʼOMe oligonucleotides used for transfection of cells were 

purchased from Qiagen and are listed in the table in section 2.1.2.6 miRNA mimics 

and inhibitors. Transfections were repeated every 48 hours. 

 

2.2.5.2 Luciferase reporter assays 

The plasmids used for transfection were derived from the psicheck2 vector by fusing 

the respective 3´UTRs of HES1, NOTCH1 and NOTCH2 amplified from lt-NES cell 

cDNA with the renilla luciferase cDNA using restriction endonucleases XhoI and NotI. 

The primers used are listed in section 2.1.3.4.3 Primers used for cloning. 24 h after 

transfection, the cells were harvested in 100 µl passive lysis buffer and frozen at 

-20°C for at least four hours. Afterwards, the lysate was harvested and 10 µl were 

measured with a luminometer in a 96 well plate upon separate addition of substrates 

for renilla and firefly luciferases. Each of the replicates of the described experiments 

was done in technical triplicates. 
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3. Results 

3.1 Assessment of endogenous miR-9/9* expression in differentiating lt-NES 

cells 
Proliferating lt-NES cells derived from the I3 hESC line are uniformly immunopositive 

for the neural stem cell markers SOX2 and NESTIN (Fig. 3.1A). As the self-renewal 

of lt-NES depends on the growth factors EGF and FGF2, their presence in the culture 

medium will be from now on referred to as self-renewing conditions. In turn, media 

devoid of growth factors induce neuronal differentiation of lt-NES cells and are 

therefore referred to as differentiating conditions. After 15 (ND15) and 30 (ND30) 

days of culture under these differentiating conditions, the number of neurons derived 
from lt-NES cells was assessed by staining for the pan-neuronal marker βIII tubulin. 

Already at day 15, up to 25% of neuronal differentiation could be observed (Fig. 

3.1A).  After additional 15 days of differentiation more than 50% of the cells stained 
positive for βIII tubulin (Fig. 3.1A). 

 
Fig. 3.1: Endogenous expression of miR-9/9* in self-renewing and differentiating lt-NES cells.   
(A) Representative immunostaining for neural stem cell markers SOX2 and NESTIN in proliferating lt-
NES cells (NES) and for pan-neuronal marker βIII tubulin in their differentiated progeny after 15 
(ND15) and 30 (ND30) days of growth factor withdrawal. DAPI (blue) stains nuclei. Scale bars = 100 
µm. (B, C) QRT-PCR analyses for relative expression of mature miR-9 (B) and miR-9* (C) in 
differentiated lt-NES cultures (ND15, ND30) compared to self-renewing lt-NES cells (NES, equal to 1). 
Data were normalized to miR-16 reference levels and presented as average changes + SEM (n = 5; 
Students t-test p-values: *, p ≤ 0.05; **, p ≤ 0.01). (D) Northern blot analyses of mature miR-9 and 
miR-9* in the conditions described above. U6 snRNA was used as loading control. 
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At the described time points RNA was collected to detect the expression of specific 

miRNAs. Quantitative realtime RT-PCR (qRT-PCR) revealed that expression levels of 

miR-9 (ND15: 30.68 ± 9.18 fold; ND30: 106.00 ± 16.40 fold) and miR-9* (ND15: 8.66 

± 2.62 fold; ND30: 21.57 ± 7.01 fold) increased significantly during neuronal 

differentiation of lt-NES cells (Fig. 3.1B, C). The expression patterns of miR-9 and 

miR-9* were confirmed by non-radioactive Northern blot using snRNA U6 as loading 

control (Fig. 3.1D). 

In humans, miR-9 and miR-9* are expressed from three different genomic loci (Tab. 

3.1). The expression of the pri-forms of miR-9/9* in lt-NES cells, glioblastoma cell line 

U87 as well as commercially available fetal brain RNA (FB) was analyzed by RT-

PCR to explore which of them are present in lt-NES cells. 

 
Table 3.1: Genomic loci from which miR-9 and miR-9* are expressed in humans. 

 

While in whole human fetal brain all three genomic loci coding for miR-9/9* are 

transcribed, in lt-NES and U87 cells only the miR-9_2 locus was detectable by 

semiquantitative RT-PCR (Fig. 3.2A). Interestingly, the expression of pri-miR-9_2 

found in neural stem cells was higher than that detected in the primary glioblastoma 

cell line U87. The lower expression of pri-miR-9_2 in a malignant, proliferating 

glioblastoma cell line and the dramatic rise of miR-9/9* expression during 

differentiation of neural stem cells pointed to a functional role of miR-9 and miR-9* in 

stem cell maintenance and differentiation. 

In order to analyze the effect of miR-9 and miR-9* by ectopic expression in lt-NES 

cells, lentivirus-based overexpression constructs were designed. As miR-9 and miR-

9* are produced from all three genomic loci, the miR-9_1 locus was chosen to be 

cloned under the control of the H1 polymerase III promoter in the LVTHM vector 

(LVTHM-miR-9/9*) [94]. Due to its lack in expression in lt-NES cells, the ectopically 

expressed pre-miR-9_1 was clearly distinguishable from the endogenous pre-miR-
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9_2. The vector was modified to carry a puromycin resistance cassette [98] to enable 

antibiotic selection (Fig. 3.2B). As control construct a hairpin structure carrying a 

small, scrambled RNA was cloned (LVTHM-ctrl). In lt-NES cells transduced with 
LVTHM-9/9*, a 48.30 ± 20.00 fold overexpression for miR-9 and 79.80 ± 47.31 fold 

overexpression for miR-9* were achieved compared to levels in LVTHM-ctrl 

transduced cells (Fig. 3.2C). Overexpression of miR-9 was additionally validated by 

Northern blot in the same conditions and compared to untreated lt-NES cells (Fig. 

3.2D). 

Fig. 3.2: Constitutive overexpression of pri-miR-9/9* in lt-NES cells. (A) Representative gels of 
RT-PCRs for pri-miR-9_1, -9_2 and -9_3 in proliferating lt-NES (NES) and glioblastoma (U87) cells 
compared to levels in fetal brain (FB) RNA. 18S rRNA was used as loading control (n=3). (B) Scheme 
of the LVTHM vector modified for overexpression of pre-miR-9_1 including flanking sequences [99]. 
(C) QRT-PCR analysis showing relative expression levels of mature miR-9 (9) and miR-9* (9*) in lt-
NES cells transduced with LVTHM-miR-9/9* (9/9*), compared to cells transduced with LVTHM-ctrl 
(ctrl, equal to 1). Data were normalized to miR-16 reference levels and presented as average changes 
+ SEM (n = 3). (D) Northern blot analysis of mature miR-9 in lt-NES cells untreated (un), and 
transduced with LVTHM-ctrl or LVTHM-miR-9/9*. U6 snRNA was used as loading control. 
 

3.2 Overexpression of miR-9/9* promotes neuronal differentiation and impairs 

self-renewal of lt-NES cells 

First, the impact of miR-9/9* overexpression on lt-NES cell maintenance was 

analyzed by growth curve and BrdU incorporation assays. Growth curve analyses 

showed a trend to reduced self-renewal in lt-NES cells overexpressing miR-9/9* 

compared to untreated cells and cells transduced with a scrambled control construct 
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(ctrl; Fig. 3.3A). In line with these data, elevated levels of miR-9 and miR-9* reduced 
the rate of BrdU incorporation significantly to 48.76 ± 2.67% compared to 59.58 ± 

1.82% and 58.92 ± 2.64% in untreated and control cultures, respectively (Fig. 3.3B, 

C). 

Fig. 3.3: MiR-9/9* overexpression impacts on lt-NES cell self-renewal. (A) Growth curve analysis 
of untreated lt-NES cells (un), lt-NES cells transduced with LVTHM-ctrl (ctrl) or LVTHM-miR-9/9* (9/9*) 
under self-renewing conditions. Data are presented as mean + SEM (n=3). (B) Quantification of the 
percentage of BrdU-positive cells in the cell lines described in (A) after 2 days under self-renewing 
conditions. Data were normalized to the total number of cells and presented as mean + SEM (n = 5). 
Students t-test p-values: **, p ≤ 0.01. (C) Immunostainings for BrdU in the conditions described in (B). 
DAPI labels nuclei. Scale bars = 100 µm. 
 

Staining for βIII tubulin in the conditions described revealed that spontaneous 

differentiation was enhanced significantly by overexpression of miR-9/9* after 4 days 
under self-renewing conditions. While 0.65 ± 0.10% of the untreated and 0.68 ± 

0.10% of the control overexpressing cultures stained positive for βIII tubulin, 3.18 ± 

0.06% were positive in lt-NES cells overexpressing miR-9/9* (Fig. 3.4A, B). 

Enhanced differentiation was further assessed by looking at neurite outgrowth using 

the NeuroJ PlugIn for ImageJ to measure their length in µM. Upon miR-9/9* 
overexpression the neurite length tended to be longer (215.90 ± 15.65 µm) compared 

to 174.00 ± 11.91 µm in LVTHM-ctrl expressing lt-NES cultures after 7 days under 
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differentiating conditions (Fig. 3.4C). The observed difference was, however, not 

significant. 

 

 
 

 
 
 
 
 

 
 

 

 

 

 

 

 

3.3 MiR-9 and miR-9* target components of the Notch pathway 
Similar to the impact of miR-9/9*, γ-secretase inhibitor DAPT has been shown to 

induce premature differentiation and reduce self-renewal of lt-NES cells [22]. These 

similarities suggested an interplay of miR-9/9* with the 

Notch signaling pathway. Indeed, target prediction 

algorithms [100] revealed miR-9 and miR-9* binding 

sites in the 3´UTRs of various components of the Notch 

pathway (Tab. 3.2) 

 
Tab. 3.2: Target prediction for members of the Notch pathway. 

The two right columns present the number of algorithms predicting 

binding of miR-9 or miR-9* to the 3´UTRs of the genes indicated. 

The analysis was done using the miRWALK algorithm [100]. 

 

An inducible system for overexpression of miR-9/9* was designed to validate a 

selection of the predicted targets in cell lines with defined overexpression levels. To 

Fig. 3.4: MiR-9/9* overexpression induces differentiation of lt-
NES cells. (A) Quantification of the percentage of βIII tubulin-positive 
cells in untransduced lt-NES cells (un), in lt-NES cells transduced 
with LVTHM-ctrl (ctrl) or LVTHM-miR-9/9* (9/9*) after 4 days under 
self-renewing conditions. Data are normalized to the total number of 
cells and presented as mean + SEM (n = 3). Students t-test p-values: 
**, p ≤ 0.01. (B) Immunostainings for βIII tubulin in the conditions 
described above. DAPI labels nuclei. Scale bars = 100 µm. (C) 
Quantification of neurite length using the NeuroJ plugin for ImageJ 
(n=3) in lt-NES cells transduced with LVTHM-ctrl and LVTHM-miR-
9/9* after 7 days under differentiating conditions.  
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that end, the genomic pre-miR-9_1 including flanking sequences or GFP as control 

were cloned under the doxycycline-inducible polymerase II promoter of the pTight 

vector for conditional overexpression (Fig. 3.5A). QRT-PCR analysis showed a 
robust overexpression of both miR-9 (111.30 ± 18.96 fold) and miR-9* (207.30 ± 

88.57 fold) upon doxycycline treatment of lt-NES cells transduced with Tight-miR-9/9* 

compared to lt-NES cells transduced with Tight-GFP (GFP, equal to 1; Fig. 3.5B, C). 
In contrast, levels of miR-125b (1.18 ± 0.55 fold), another brain-enriched miRNA, 

were not affected (Fig. 3.5D). 

Fig. 3.5: Conditional overexpression of miR-9/9* in lt-NES cells. 
(A) Scheme of the lentiviral vector for conditional overexpression of pre-miR-9_1 including flanking 
sequences [99] or GFP. (B-D) QRT-PCR analyses of miR-9 (B), miR-9* (C) and miR-125b (D) levels 
in lt-NES cells overexpressing miR-9/9* or GFP after 4 days of doxycycline treatment under self-
renewing conditions. Data are normalized to miR-16 reference levels and presented as average 
changes + SEM relative to GFP transduced lt-NES cells (GFP, equal to 1; n≥ 3; Students t-test p-
value: *, p ≤ 0.05). 
 

Next, the mRNA levels of Notch receptors NOTCH1 and NOTCH2 as well as 

downstream target HES1, which were predicted to be targeted by miR-9/9*, were 

assessed by qRT-PCR. These targets were chosen for initial analysis due to their 

known roles in neural development and high expression levels in lt-NES cells [22]. 

Although a binding site for miR-9 is predicted in its 3´UTR, NOTCH1 levels did not 
change (1.79 ± 1.01 fold). In contrast, NOTCH2 (0.47 ± 0.31 fold) and HES1 (0.43 ± 

0.11 fold) were down-regulated significantly upon miR-9/9* overexpression (Fig. 

3.6A-C). The miR-9/9*-induced downregulation of HES1 and NOTCH2 was also 

observed at the protein level by Western blotting (Fig. 3.6D-F). 
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Fig. 3.6: Impact of miR-9/9* overexpression on different members of the Notch signaling 
pathway. (A-C) QRT-PCR analysis of NOTCH1 (A), NOTCH2 (B) and HES1 (C) transcript levels in lt-
NES cells overexpressing miR-9/9* compared to GFP-overexpressing control cells. Data are 
normalized to 18S rRNA reference levels and presented as average changes + SEM relative to 
expression in GFP control cells (equal to 1; n= 6; Students t-test p-values: *, p ≤ 0.05; **, p ≤ 0.01). (D-
F) Representative Western blot analyses of NOTCH1 (D), NOTCH2 (E) and HES1 (F) in the 
conditions described above. β-ACTIN was used as loading control. 
 

To assess whether the impact of miR-9/9* on the protein and mRNA levels of 

NOTCH2 and HES1 was due to direct binding of the 3´UTRs of these targets, a 

double luciferase reporter construct was designed by fusing the 3´UTRs of NOTCH1, 

NOTCH2 or HES1 to the 3´end of the renilla luciferase cDNA. Unmodified firefly 

luciferase cDNA was used as normalizer (Fig. 3.7A). Lt-NES cells were transfected 

with either synthetic miR-9/9* mimics or a small scrambled control RNA. The next 

day, a second transfection with the designed dual luciferase constructs was 

performed. For analysis, data were normalized to the activity of the vectors in lt-NES 

cells transfected with scrambled control RNA (ctrl, equal to 1; Fig. 3.7B-D). Elevated 

miR-9/9* levels induced a significant downregulation of renilla luciferase activity for 

NOTCH2 (0.61 ± 0.08 fold) and HES1 (0.59 ± 0.15 fold) but not NOTCH1 constructs 

(0.82 ± 0.16 fold) thereby confirming direct binding to their 3´UTRs (Fig. 3.7B-D). 
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Fig. 3.7: Analysis of direct targeting of NOTCH1, NOTCH2 and HES1 3´UTRs by miR-9/9*. 
(A) Scheme of the dual luciferase reporter plasmid used. (B-D) Analysis of luciferase activity in lt-NES 
cells expressing the 3´UTRs of NOTCH1 (B), NOTCH2 (C) and HES1 (D) cloned downstream of 
renilla luciferase, and transfected with synthetic mimics for miR-9/9* (9/9*) or a scrambled control 
(ctrl). Data are normalized to firefly luciferase activity and presented as average changes + SEM 
relative to activity of a control vector (ctrl, equal to 1; n= 5; Students t-test p-value: *, p ≤ 0.05). 
 

In order to identify additional true targets of miR-9/9* within the NOTCH signaling 

cascade among those identified by in silico target prediction analysis (Tab. 3.2), 

further qRT-PCR analyses on lt-NES cell ectopically overexpressing miR-9/9* 

compared to GFP were performed. Out of 8 genes analyzed only transcript levels of 

HEY2 were found significantly reduced by 0.74 ± 0.08 fold (Fig. 3.8). 
Fig. 3.8: QRT-PCR analysis 
of transcript levels for 
additional predicted targets 
in the Notch signaling 
pathway. 
QRT-PCR analysis of mRNA 
levels of components of the 
Notch signaling pathway in lt-
NES cells overexpressing 
miR-9/9*. Data are 
normalized to 18S rRNA 
reference levels and 
presented as average 
changes + SEM relative to 
expression in lt-NES cells 
overexpressing GFP (equal to 
1; n= 3; Students t-test p-
value: *, p ≤ 0.05). 

 
Together, these data indicate that in lt-NES cells miR-9/9* affect Notch signaling by 

targeting of NOTCH2, HES1 and potentially HEY2, but not NOTCH1. 
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3.4 The impact of miR-9/9* on lt-NES cell differentiation can be abolished by 
modulation of Notch activity 

Notch signaling is an important player in lt-NES cell maintenance and its inhibition by 

DAPT induces premature lt-NES cell differentiation [22]. In a similar way, lentiviral-

based overexpression of miR-9/9* promoted differentiation of lt-NES cells even under 

self-renewing conditions (Fig. 3.4). In addition, Notch pathway components NOTCH2 

and HES1 are directly regulated by miR-9/9*. To address the biological relevance of 

the interaction between miR-9/9* and Notch in lt-NES cells, modulation of both miR-

9/9* and Notch activity was performed, followed by in vitro functional assays during lt-

NES differentiation. As expected, inhibition of miR-9/9* by transfection of synthetic 
inhibitors decreased the amount of βIII tubulin-positive cells significantly to 0.55 ± 

0.08 fold (Fig. 3.9). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

On the contrary, inhibition of Notch signaling via DAPT increased it significantly by 
3.21 ± 0.39 fold compared to ctrl cultures (Fig. 3.9). When these two conditions were 

combined, the amount of βIII tubulin-positive cells was still increased significantly by 

3.08 ± 0.19 fold (Fig. 3.9). These data indicate that the block of Notch cleavage 

Fig.3.9: Differentiation of lt-NES cells upon 
inhibition of miR-9/9* and Notch activity. 
Representative immunostainings (A) and 
corresponding quantifications (B) of βIII tubulin in lt-
NES cells transfected with synthetic inhibitors for 
miR-9/9* (Inh-9/9*) or a scrambled control (ctrl) and 
treated with DAPT or DMSO (vehicle control) after 7 
days under differentiating conditions. DAPI stains 
nuclei. Scale bars = 100 µm. Data are presented as 
mean + SEM (n= 3). Students t-test p-values: *, p ≤ 
0.05; **, p ≤ 0.01. 
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induced by DAPT, which results in a lack of NICDs, prevents the effect of miR-9/9* 

inhibition conducted via derepression of NOTCH2 and HES1. 

In turn, transfection of lt-NES cells with mimics of miR-9 and miR-9* led to a 1.86 ± 

0.20 fold increase of the number of βIII tubulin-positive cells in lt-NES cells 

overexpressing GFP. Conversely, constitutive activation of Notch signaling was 

achieved by ectopic expression of a NOTCH2-ICD. The pTight-NOTCH2-ICD 

construct used is not prone to miRNA-9/9* regulation as it lacks the NOTCH2 3´UTR, 

which harbors the miR-9 and miR-9* binding sites (N2ICD). Ectopic expression of this 
construct induced a reduction of the relative number of βIII tubulin-positive cells to 

0.27 ± 0.01 fold compared to lt-NES cells overexpressing GFP and transfected with a 

scrambled RNA control (Fig. 3.10). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Interestingly, additional administration of miR-9/9* mimics could not even partially 

rescue the impairment in differentiation induced by N2ICD overexpression (Fig.3.10; 
N2ICD + miR-9/9*: 0.27 ± 0.02 fold) indicating that the impact of miR-9/9* is indeed 

mediated through the Notch signaling pathway. 

Fig. 3.10: Differentiation of lt-NES cells upon 
induction of miR-9/9* and Notch activity. 
Representative immunostainings (A) and 
corresponding quantification (B) of the number of 
βIII tubulin-positive neurons in lt-NES cells 
transduced with lentiviral vectors overexpressing 
N2ICD or GFP control and transfected with 
synthetic mimics for miR-9/9* or a scrambled 
control after 7 days under differentiating conditions. 
DAPI stains nuclei. Scale bars indicate 100 µm. 
Data are presented as mean + SEM (n= 3). 
Students t-test p-values: *, p ≤ 0.05; ***, p ≤ 0.001. 
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Taken together, these functional data show that the Notch pathway is an important 

functional target of miR-9/9* in lt-NES cells and that its modulation accounts, at least 

in part, for the contribution of these miRNAs to lt-NES cell differentiation. 

 

3.5 Expression of miR-9/9* is decreased upon γ-secretase inhibition 

It has been shown that expression of miR-9 is decreased upon knockout of the γ-

secretase complex component Presinillin1 in mice [41]. As monitored by Northern 
blotting, treatment of self-renewing I3 lt-NES cell cultures with γ-secretase inhibitor 

DAPT for 12, 24 and 48 hours led to down-regulation of miR-9 expression, but not of 

an additional miRNA analyzed (i.e., miR-125b), compared to treatment with vehicle 

control (Fig. 3.11A, B). 

 
Fig. 3.11: Analysis of miR-9 and miR-125b expression in lt-NES cells treated with the γ-
secretase inhibitor DAPT. (A-D) Northern blot analyses showing the expression of miR-9 (A, C) and 
miR-125b (B, D) in lt-NES cells derived from I3 (A, B) or H9.2 (C, D) hESCs treated with DAPT (+) or 
DMSO (-, vehicle control) for 12, 24 and 48 hours. U6 snRNA was used as loading control. (E, F) 
QRT-PCR analyses monitoring mature miR-9 (E) and miR-125b (F) in the samples described in (A, B). 
Data are normalized to miR-16 reference levels and presented as average changes + SEM relative to 
expression in lt-NES cells treated with DMSO for 12 hours (equal to 1; n= 4). (G) QRT-PCR analysis 
monitoring HEY1 transcript levels in the samples described in (A, B). Data are normalized to 18S 
rRNA reference levels and presented as average changes + SEM relative to expression in lt-NES cells 
treated with DMSO for 12 hours (baseline, equal to 1; n= 6). Students t-test p-values: *, p ≤ 0.05; **, p 
≤ 0.01. 
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Similar results could be obtained in lt-NES cell cultures derived from H9.2 hESCs 

(Fig. 3.11C, D). The I3 derived lt-NES cell line was further assessed for miR-9 

expression by qRT-PCR analysis, which showed a significant down-regulation of 
miR-9 expression to 0.34 ± 0.09 fold after 12 hours of DAPT treatment, which was 

stable at 24 (0.36 ± 0.10 fold) and 48 hours (0.35 ± 0.19 fold; Fig. 3.11E).  In 

contrast, no significant difference was detected in expression levels of miR-125b (Fig. 
3.11F; 12h: 1.23 ± 0.29 fold; 24h: 0.88 ± 0.11 fold; 48h: 0.92 ± 0.19 fold) whereas 

known Notch target HEY1 showed an expression pattern similar to that of miR-9 (Fig. 
3.11G; 12h: 0.47 ± 0.10 fold; 24h: 0.33 ± 0.10 fold; 48h: 0.37 ± 0.08 fold) confirming 

the efficiency of the DAPT treatment. All data were compared to lt-NES cells treated 
with DMSO as vehicle control (Fig. 3.11E, F; 12h: equal to 1; miR-9: 24h: 0.94 ± 0.20 

fold; 48h: 2.19 ± 0.75 fold; miR-125: 24h: 1.18 ± 0.18 fold; 48h: 1.34 ± 0.44 fold; 

HEY1: 24h: 1.15 ± 0.14 fold; 48h: 1.00 ± 0.15 fold). 

In order to assess whether the impact of DAPT on miR-9 expression resulted in an 

impairment of miR-9 function in lt-NES cells, binding sites for miR-9 were fused to the 

renilla luciferase cDNA in a double luciferase vector (Fig. 3.12A).  

 

 

Lt-NES cells were pretreated with DAPT or DMSO or, to validate the sensitivity of the 

reporter system, transfected with either miR-9 mimic or inhibitor. The next day the 

luciferase reporter vector harboring binding sites for miR-9 was transfected into the 

pretreated cells. Changes in renilla luminescence detected were normalized to the 

activity of an unregulated firefly luciferase. While lt-NES cells transfected with a 

mimic of miR-9 exhibited a significant relative reduction of renilla luciferase activity to 
0.48 ± 0.15 fold, transfection of its inhibitor induced a slight, 1.20 ± 0.15 fold, increase 

Fig. 3.12: Impact of DAPT treatment on miR-9 
activity in lt-NES cells.  
(A) Scheme of the double luciferase construct designed 
carrying a binding site for miR-9 (BS-9). (B) Analysis of 
luciferase activity in lt-NES cells transfected with the 
depicted reporter construct and treated with DAPT or 
transfected with a synthetic mimic or inhibitor of miR-9. 
Data are normalized to firefly luciferase activity and 
presented as average changes + SEM relative to activity 
in mock transfected, DMSO treated lt-NES cells (DMSO, 
equal to 1; n= 4). Students t-test p-value: *, p ≤ 0.05. 
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(Fig. 3.12B), which was not significant. Modulation of mature miR-9 by DAPT, 
similarly to the transfection of miR-9 inhibitor, led to a slight, yet significant, 1.18 ± 

0.06 fold increase in luciferase activity (Fig. 3.12B) confirming that this regulation can 

cause a detectable difference in binding of miR-9 to its target sites. 

Pri-miR-9_2 is the only pri-form of miR-9/9* abundantly expressed in lt-NES cells 

(Fig. 3.2A). Pri-miR-9_2 expression levels in lt-NES cells treated with DAPT for 12, 

24, and 48 hours were analyzed to explore whether DAPT treatment impacts on miR-

9 at the level of its transcription. Indeed, similar to miR-9, pri-miR-9_2 was down-
regulated to 0.32 ± 0.10 fold after 12 hours of DAPT treatment, and its levels 

remained low after 24 (0.25 ± 0.01 fold) and 48 hours (0.37 ± 0.14 fold) compared to 

DMSO-treated samples (Fig. 3.13A; 12h: equal to 1; 24h: 1.27 ± 0.14 fold; 48h: 1.12 

± 0.10 fold). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
These results were confirmed also when using the alternative γ-secretase inhibitor 

compound E in lt-NES cells derived from a different hESC line, i.e. H9.2. As shown 

for DAPT treatment in I3 hESC derived lt-NES cells (Fig. 3.11G), treatment of H9.2 lt-

NES cells with compound E also reduced expression of the known Notch target gene 
HEY1 (12h: 0.46 ± 0.05 fold, 24h: 0.22 ± 0.04 fold and 48h: 0.38 ± 0.04 fold) 

Fig. 3.13: Analysis of pri-miR-9_2 expression in lt-NES 
cells treated with γ-secretase inhibitors.  
(A) QRT-PCR analyses of pri-miR-9_2 expression in I3 ES 
cell-derived lt-NES cells treated with DAPT (+) or DMSO (-, 
vehicle control) for 12, 24 and 48 hours (12h DMSO, equal 
to 1). (B, C) QRT-PCR analyses of H9.2 ES cell-derived lt-
NES cells treated with the γ-secretase inhibitor compound E 
or DMSO for 12, 24 and 48 hours for HEY1 (B) and pri-miR-
9_2 (C) expression. All data are normalized to 18S rRNA 
reference levels and presented as average changes + SEM 
(n= 3). Students t-test p-values:  *, p ≤  0.05; **, p ≤  0.01; 
***, p ≤ 0.001. 
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compared to treatment with DMSO (Fig. 3.13B; 12h: equal to 1; 24h: 1.07 ± 0.08 fold; 

48h: 1.27 ± 0.02 fold). The reduction in levels of pri-miR-9_2 could be recapitulated 

as well. While pri-miR-9_2 levels did not change upon treatment with DMSO (12h: 
equal to 1; 24h: 1.24 ± 0.28 fold; 48h: 1.54 ± 0.40 fold), compound E treatment 

reduced pri-miR-9_2 levels significantly to 0.17 ± 0.02 fold after 12 hours (Fig. 

3.13C). The observed reduction remained stable after 24 (0.10 ± 0.02 fold) and 48 

(0.16 ± 0.06 fold) hours (Fig. 3.13C). Taken together, the data collected indicate that 

the downregulation of mature miR-9 and its pri-form upon pharmacological γ-

secretase inhibition, recently reported in Zebrafish and mouse studies [83, 84], is 

conserved in human neural stem cells. 

 

3.6 Notch activity regulates expression of miR-9/9* 

In addition to the Notch receptors, the γ-secretase complex cleaves a number of 

other substrates including the amyloid precursor protein which is linked to the 

pathology of Alzheimer´s disease (reviewed in [101]). To confirm that the observed 
effects of γ-secretase inhibition on miR-9 transcriptional expression are mediated by 

Notch signaling, lentiviral constructs for conditional gain and loss of Notch activity in 

lt-NES cells were generated. More specifically, human NOTCH1-ICD (NICD), 

described in [95], or a dominant-negative form of the MAML1 (coactivator of 

transcription of the NICD-RBPj complex, here referred to as DN-MAML1), described 

in [96], and an eGFP control were cloned under the doxycycline-inducible promoter of 

the pTight vector (Fig. 3.14A). I3 hESC derived lt-NES cells were transduced with the 

designed lentiviral vectors and treated with doxycycline for 4 days under self-

renewing conditions. First, modulation of Notch signaling upon doxycycline-induced 

expression of these constructs was validated by qRT-PCR analysis of HEY1 mRNA. 
HEY1 transcript levels were reduced to 0.52 ± 0.09 fold upon overexpression of DN-

MAML1 (Fig. 3.14B). This reduction was comparable to that induced by DAPT (0.59 
± 0.06 fold; Fig. 3.14B). In turn, ectopic expression of NICD increased HEY1 levels 

19.36 ± 4.09 fold compared to levels in lt-NES cells transduced with Tight-GFP (GFP, 

equal to 1; Fig. 3.14B). 

Next, the expression of miR-9, miR-125 and miR-9* was assessed under the same 
conditions. Similarly to HEY1 mRNA, miR-9 showed a 12.18 ± 4.86 fold increase 
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upon NICD overexpression and a 0.36 ± 0.11 fold or 0.45 ± 0.12 fold decrease upon 

inhibition of Notch activity by expression of DN-MAML1 or treatment with DAPT, 

respectively (Fig. 3.14C). In contrast, miR-125b did not show this Notch-dependent 
behavior (Fig. 3.14D; DAPT: 1.06 ± 0.08 fold; DN-MAML1: 0.99 ± 0.12 fold; NICD: 

0.97 ± 0.21 fold). 

 
Fig. 3.14: Expression analysis of mature miR-9 and miR-9* as well as pri-miR-9/9* in lt-NES 
cells upon gain and loss of Notch activity. (A) Scheme of the lentiviral overexpression constructs 
used for Notch gain (NICD) and loss (DN-MAML1) of function or as control (GFP). (B, F) QRT-PCR 
analyses of HEY1 mRNA (B) and pri-miR-9_2 (pri-9_2, F) in lt-NES cells transduced with lentiviral 
vectors overexpressing in a doxycycline-dependent manner GFP, NICD or DN-MAML1, respectively, 
after 4 days of doxycycline treatment in presence or absence of DAPT. Data are normalized to 18S 
rRNA reference levels. (C-E) QRT-PCR analyses of miR-9 (C), miR-125b (D) and miR-9* (E) levels in 
the samples described above. Data are normalized to miR-16 reference levels. All qRT-PCR data are 
presented as average changes + SEM relative to expression in GFP-expressing lt-NES cells (GFP, 
equal to 1; n≥ 4). Students t-test p-values: *, p ≤ 0.05; **, p ≤ 0.01. 
 

As expected under these conditions, miR-9* showed a pattern of expression similar 

to that of its sister strand miR-9 (Fig. 3.14E; DAPT: 0.61 ± 0.06 fold; DN-MAML1: 

0.58 ± 0.13 fold; NICD: 9.42 ± 2.92 fold). Pri-miR-9_2 expression also showed a 

similar dependence on Notch activity (Fig. 3.14F; DAPT: 0.52 ± 0.12 fold; DN-

MAML1: 0.46 ± 0.07 fold; NICD: 21.44 ± 8.78 fold). This coinciding expression of pri-

miR-9-2 and its progeny further supports the hypothesis of a transcriptional regulation 

of the miR-9 genomic locus via Notch signaling. 
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Together, pharmacological inhibition as well as genetic gain and loss of Notch activity 

show that canonical Notch signaling is involved in the regulation of miR-9/9* 

transcription in human neural stem cells. 

 

3.7 The miR-9/9* genomic loci are direct transcriptional targets of Notch 
A prerequisite for direct regulation of a promoter by Notch transcriptional activity are 

binding sites for RBPj – the DNA binding component of the NICD/MAML1/RBPj 

transcriptional complex. Bioinformatic analysis revealed RBPj binding sites in the 

genomic regions 10 kb upstream of all three miR-9/9* genomic loci and also one site 

upstream of the miR-125b_2 locus. The number of predicted sites and their genomic 

location are depicted in the scheme in Fig. 3.15A. 

Fig. 3.15: Analysis of RBPj/NICD binding to genomic regions upstream of the loci encoding 
miR-9/9*. (A) Predicted binding sites for RBPj (strikes) in the genomic loci encoding for miR-9/9* and 
miR-125b including the region 10 kb upstream of the pre-miRNA. (B) Chromatin immunoprecipitation 
from cross-linked chromatin (Input) of I3 hESC derived lt-NES cells overexpressing a Flag-tagged 
NICD with antibodies against Flag, RBP-J, IgG (negative control) and H3 (positive control). 
Representative gel images of PCR analyses for the predicted RBPj binding sites in the genomic 
regions upstream of the miR-9/9* and miR-125b loci. Binding sites [102] are named after the pri-
miRNA or gene regulated (9_1; 9_2; 9_3; 125b_2, HES1) and numbered according to their order of 
appearance in the genome starting with the one farthest from gene of interest (scheme in A). 
 

The predicted binding sites were tested for direct interaction with the 

RBPj/MAML1/NICD complex by chromatin immunoprecipitation (ChIP). Specifically, 

I3 hESC derived lt-NES cells transduced with a construct for conditional 

overexpression of a Flag-tagged NICD (see scheme Fig. 3.14A) were treated with 

doxycycline for 4 days under self-renewing conditions. Afterwards, their chromatin 

was cross-linked to the proteins bound, sonicated, and immuno-precipitated using 

antibodies against Flag-Tag or RBPj to confirm the binding of the Notch-RBPj-
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complex in two independent immunoprecipitations. In addition, an unspecific IgG 

antibody was used as negative control and an antibody against Histone3 (H3), a 

protein involved in the chromatin structure, as positive control. PCR reactions on 

these precipitated samples were carried out with primers designed for the predicted 

RBPj binding sites (Fig. 3.15A). All primers worked in PCR on chromatin input as well 

as H3 precipitation, proving their functionality (Fig. 3.15B). The binding sites 

predicted in front of the three miR-9 loci were all enriched in PCR from 

immunoprecipitations performed using both anti-Flag (against NICD) and anti-RBPj 

antibodies when compared to IgG negative control (Fig. 3.15B). This pattern 

resembled the one found for the known RBPj-binding site in the HES1 promoter 

region [103] assessed as positive control. No enrichment could be observed for the 

binding site upstream of the miR-125b_2 locus. 

Overall, these results prove that the NICD-RBPj transcriptional complex directly binds 

genomic regions upstream of the miR-9/9* loci and that miR-9/9* (but not miR-125b) 

is a direct transcriptional target of Notch. 

 

3.8 Bifunctionality of miR-9/9* in lt-NES cells 

The data obtained so far clearly showed that overexpression of a pre-miRNA carrying 

miR-9 and miR-9* affects lt-NES cell self-renewal and differentiation. To assess the 

individual contributions of miR-9 and miR-9* to lt-NES cell behavior, the levels of 

each of these miRNAs were modulated separately. To that end, I3 hESC derived lt-

NES cells were transfected with synthetic mimics of either miR-9 or miR-9* or with a 

scrambled small RNA control (ctrl) every 48 hours. After 2 days under self-renewing 

conditions, the cells were analyzed for levels of miR-9 and miR-9* by qRT-PCR and 

after 4 days their differentiation was assessed by immunocytochemistry. 
MiRNA levels were found increased 372.60 ± 234.60 fold (miR-9, Fig. 3.16A) and 

518.20 ± 249.30 fold (miR-9*, Fig. 3.16B) when compared to levels in mock 

transfected cells. The intake of the synthetic mimics varied strongly, which led to non-

significant mean values. However, the overexpression of miR-9 or miR-9* was 

always higher than 200 fold, while levels in cells transfected with a scrambled control 

siRNA did only show mild changes (Fig. 3.16A, B; miR-9: 0.77 ± 0.25 fold; miR-9*: 

0.96 ± 0.03 fold). Transfection of each miRNA individually increased the number of 



Results 

 56 
 

differentiated lt-NES cells. Compared to 2.89 ± 0.11% of βIII tubulin-positive cells in 

mock control and 2.71 ± 0.04% in control transfected cultures, transfection of miR-9 

mimic raised the percentage to 5.13 ± 0.10% (Fig. 3.16C, E). Similarly, transfection of 

miR-9* increased the percentage of βIII tubulin-positive cells to 4.49 ± 0.9% 

compared to 1.68 ± 0.34% in mock and 1.67 ± 0.41% in control cultures (Fig. 3.16D, 

E). 

Fig. 3.16: Induced differentiation of lt-NES cells upon transfection of miR-9 or miR-9* mimics. 
(A,B) QRT-PCR analyses of mature miR-9 (A) and miR-9* (B) in lt-NES cells 48 hours after mimic 
transfection compared to scrambled control (ctrl) and mock-transfected cells (mock, equal to 1). Data 
are normalized to miR-16 reference levels and presented as average changes + SEM (n = 3). (C-E) 
Quantification of the percentage of βIII tubulin-positive cells (C, D) and corresponding 
immunostainings (E) in mock-transfected lt-NES cells and lt-NES cells transfected with scrambled 
control or mimic of miR-9 (C) or miR-9* (D) after 4 days under self-renewing conditions. Data are 
shown as percentage of total cell number and presented as mean + SEM (n = 3). Students t-test p-
values: *, p ≤ 0.05; **, p ≤ 0.01. DAPI labels nuclei. Scale bars = 100 µm. 
 

Interestingly, the rate of BrdU incorporation in lt-NES cell cultures was unaffected by 
miR-9 mimic transfection (Fig. 3.17A, C; un: 44.43 ± 2.64%; ctrl: 42.94 ± 3.32%; miR-

9: 42.62 ± 3.36%), whereas it was reduced upon miR-9* mimic transfection to 43.02 

± 2.25% compared to 50.95 ± 0.99% in untreated and 50.40 ± 0.86% in ctrl cultures 

(Fig. 3.17B, C). This slight impairment of BrdU incorporation was comparable to the 
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one previously shown to be induced by ectopic expression of pre-miR-9/9* (Fig. 3.3B, 

C). 

 
Fig. 3.17: BrdU incorporation rate of lt-NES cells transfected with mimics of miR-9 or miR-9*. 
Quantification (A, B) and corresponding immunostainings (C) of BrdU-positive cells in mock-
transfected lt-NES cells (mock) and lt-NES cells transfected with scrambled control (ctrl) or mimics of 
miR-9 (A) or miR-9* (B) after 2 days under self-renewing conditions. Data are shown as percentage of 
total cell number and presented as mean + SEM (n = 3). Students t-test p-value: *, p ≤ 0.05. DAPI 
labels nuclei. Scale bars = 100 µm. 
 

Remarkably, a comparison of the targets predicted for miR-9 and miR-9* revealed a 

very small overlap. Only 42 predicted targets out of 855 for miR-9 and 648 for miR-9* 

were common to the two miRNAs (Fig. 3.18) suggesting that the functions of miR-9 

and miR-9* could be exerted through different pathways. 

Some of the genes previously shown to be targeted by miR-9/9* overexpression in 

section 3.3 were further analyzed in an attempt to assess which of the two miRNAs is 

responsible for their downregulation. In addition, mRNA levels of the predicted miR-

9* target SOX2 were assessed (Fig. 3.18B). SOX2 is known to be important for 

neural stem cell maintenance (as reviewed in [104]) and has been shown to be 

regulated by miR-9* in glioblastoma cells [105]. In lt-NES cells, SOX2 levels are 
down-regulated to 0.59 ± 0.12 fold upon ectopic overexpression of pre-miR-9/9* 

compared to GFP overexpressing cultures (Fig. 3.18C). 
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Fig. 3.18: Analysis of SOX2, NOTCH1, NOTCH2 and HES1 mRNA levels upon transfection of 
miR-9 and miR-9* mimics (A) Venn diagram of the target predictions for miR-9 and miR-9* based on 
a list of targets annotated using the miRWALK algorithm [100]. (B) QRT-PCR analysis of SOX2 mRNA 
levels in lt-NES cells transduced with Tight-miR-9/9* (9/9*) relative to expression in lt-NES cells 
transduced with Tight-GFP (equal to 1; n= 3). (C-F) QRT-PCR analyses of SOX2 (C), NOTCH1 (D), 
NOTCH2 (E) and HES1 (F) transcript levels in I3 hESC derived lt-NES cells transfected with synthetic 
mimics for miR-9 (9), miR-9* (9*) or both (9/9*) compared to cells transfected with a small scrambled 
RNA (ctrl, equal to 1; n=3). Data are normalized to 18S rRNA reference levels and presented as 
average changes + SEM (Students t-test p-values: *, p ≤ 0.05; **, p ≤ 0.01). 
 

For individual modulation of the two miRNAs, I3 hESC derived lt-NES cells were 

transfected with mimics for miR-9, miR-9* or both or a scrambled control every other 

day. After 4 days under self-renewing conditions, mRNA levels of SOX2, NOTCH1, 

NOTCH2 and HES1 were assessed. Similarly to ectopic overexpression of pre-miR-

9/9*, simultaneous transfection of miR-9 and miR-9* mimics significantly reduced the 

mRNA levels of SOX2 to 0.23 ± 0.04 fold (Fig. 3.18C). Interestingly, transfection of 

miR-9 mimic alone did not regulate SOX2 significantly, while the transfection of miR-
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9* mimic induced a significant reduction of SOX2 levels to 0.46 ± 0.04 fold (Fig. 

3.18C, miR-9: 1,04 ± 0.03 fold). In turn, HES1 was regulated by miR-9 but not miR-9* 

(Fig. 3.18F, miR-9: 0.41 ± 0.04 fold; miR-9*: 1.01 ± 0.10 fold; miR-9/9*: 0.59 ± 0.03 

fold), while NOTCH2 was regulated by both miRNAs alone and in combination (Fig. 
3.18E, miR-9: 0.34 ± 0.10 fold; miR-9*: 0.29 ± 0.12 fold; miR-9/9*: 0.38 ± 0.14 fold). 

As expected from the previous data on miR-9/9* overexpression, NOTCH1 mRNA 

was not regulated significantly by miR-9 or miR-9* (Fig. 3.18D; NOTCH1: miR-9: 0.92 

± 0.05 fold; miR-9*:  0.78 ± 0.02 fold; miR-9/9*: 0.76 ± 0.09 fold). These data are in 

line with the binding sites for the individual miRNAs presented in Tab.3.2. The 3´UTR 

of NOTCH2 harbors binding sites for both miR-9 and miR-9*, while the HES1 is only 

predicted to be targeted by miR-9 and SOX2 only by miR-9*. 

The phenotypes caused by individual modulation of miR-9 and miR-9* suggest that 

both miRNAs regulate differentiation by targeting the Notch signaling pathway and 

that, in addition, miR-9* affects lt-NES cell maintenance by targeting SOX2. 

 

3.9 Analysis of miR-7, miR-128 and miR-130b in lt-NES cell self-renewal and 

differentiation 

In order to identify additional miRNAs affecting proliferation and differentiation of lt-

NES cells, other candidates were picked from group 1 (miRNAs up-regulated in lt-

NES cells and upon induction of neuronal differentiation) described in the initial 

miRNA expression profiling [68]. For validation of the profiling data, qRT-PCR 

analyses were carried out on lt-NES cells and their differentiated progeny (Fig. 

3.19A-C). 

Fig. 3.19: Endogenous expression of miR-7, miR-130b and miR-128 in proliferating and 
differentiating lt-NES cells. QRT-PCR analyses showing relative expression levels of mature miR-7 
(A), miR-130b (B), and miR-128 (C) in lt-NES cultures differentiated for 15 days (ND15) and 30 days 
(ND30) compared to self-renewing lt-NES cells (NES, equal to 1). Data are normalized to miR-16 
reference levels and presented as average changes + SEM (n = 3). 
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In contrast to the miRNA expression profiling data, none of the three miRNAs 

analyzed was up-regulated significantly. While levels of miR-128 (Fig. 3.19B; ND15: 

1.71 ± 0.47 fold; ND30: 1.62 ± 0.56 fold) and miR-130b (Fig. 3.19C; ND15: 1.41 ± 

0.32 fold; ND30: 1.05 ± 0.47 fold) did not change, miR-7 expression increased but its 

expression levels were highly variable (Fig. 3.19A; ND15: 72.29 ± 33.30 fold; ND30: 

75.79 ± 20.76 fold). 

In the human genome, miR-7 is expressed from three loci, miR-128 from two loci and 

miR-130b from one locus (Tab.3.3). Like the loci coding for miR-9/9*, the two 

genomic loci for miR-128 produce the same miRNA species. In contrast, the miRNAs 

produced from the miR-7 loci differ. Pri-miR-7_1 and pri-miR-7_2 do not only encode 

miR-7 but also specific miRNAs produced from the passenger strand called miR-7-1* 

and miR-7-2* (Tab.3.3). Therefore, the transcription of the genomic loci coding for 

miR-7 was analyzed in lt-NES cells to explore which miRNA species are expressed. 
 

Table 3.3: Genomic loci from which miR-7, miR-128 and miR-130b are expressed in human 

cells. 

 
In lt-NES cells, glioblastoma cell line U87 and cervical cancer cell line HeLa only 

expression of pri-miR-7_1 was detectable while all pri-miRNAs could be amplified 

from a mixed tissue positive control. In human fetal brain, expression of pri-miR-7_3 

was also detected but at a lower level (Fig. 3.20). 
Fig. 3.20: Pri-miR-7_1 is the only pri-form of 
miR-7 expressed in lt-NES cells. 
Representative gel images of RT-PCR for pri-miR-
7_1 (7_1), pri-miR-7_2 (7_2), and pri-miR-7_3 (7_3) 
in proliferating lt-NES (NES), glioblastoma (U87) 
and HeLa cells as well as fetal brain RNA (FB) and 
a mixed tissue positive control (PC). 18S rRNA was    
used as loading control (n=3). 
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For further analysis, pre-miR-7_1 was chosen to assess the function of the miRNA 

species endogenously present in lt-NES cells. Pre-miR-7_1 (miR-7) as well as pre-

miR-128_1 (miR-128) and pre-miR-130b (miR-130b) including flanking sequences 

were introduced into the LVTHM vector as described for pre-miR-9_1 (miR-9/9*; Fig. 

3.2B). Lt-NES cells were stably transduced with the designed constructs to assess 

whether elevated levels of these miRNAs impact on their homeostasis. After 4 days 
under self-renewing conditions, overexpression of miR-7 resulted in a 2.51 ± 0.67 

fold increase of βIII tubulin-positive cells compared to lt-NES cultures transduced with 

LVTHM-ctrl, while overexpression of miR-128 and miR-130b resulted in a 1.81 ± 0.31 

and 1.37 ± 0.30 fold change, respectively (Fig. 3.21A). Furthermore, relative BrdU 

incorporation was not affected significantly by any of these three overexpressed 
miRNAs (Fig. 3.21B; ctrl equal to 1; miR-9/9*: 0.81 ± 0.01 fold; miR-7: 1.24 ± 0.08 

fold; miR-128: 0.84 ± 0.12 fold; miR-130b: 1.05 ± 0.09 fold). 

Fig. 3.21: Impact of miR-7, miR-128 and miR-130b overexpression on lt-NES cell proliferation 
and differentiation. Quantification of the relative number of βIII tubulin-positive (A) and BrdU-positive 
(B) cells in lt-NES cultures after 4 (A) or 2 (B) days under self-renewing conditions. Cells transduced 
with LVTHM-miR-9/9* (9/9*), LVTHM-miR-7 (7), LVTHM-miR-128 (128) or LVTHM-miR-130b (130b) 
are compared to lt-NES cells transduced with LVTHM-ctrl (ctrl, equal to 1). Data are presented as 
mean + SEM (n= 3; Students t-test p-value: **, p ≤ 0.01). 
 

Under proliferating conditions none of the three candidate miRNAs selected impacted 

on lt-NES cell maintenance or differentiation. However, miR-7 was, due to its high 

levels in differentiated lt-NES cells, chosen to assess putative other roles in neural 

stem cell differentiation. 

 

3.10 Assessment of candidate targets of miR-7 and miR-9/9* 
Comparison of target prediction analyses for miR-9/9* and miR-7 revealed that 

NOTCH2 and HES 1, which are targeted by miR-9/9*, as well as NOTCH3 harbor 
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binding sites for miR-7 (Fig. 3.22A). In order to analyze if miR-7 impacts on Notch 

signaling, the genomic pre-miR-7_1 and its flanking sequences were cloned into the 

pTight vector for conditional overexpression as described for pre-miR-9_1 (Fig. 3.5A). 

Robust overexpression of miR-9/9* and miR-7 was detected in lt-NES cells 

transduced with Tight-miR-9/9* (9/9*) and Tight-miR-7 (7) compared to Tight-GFP as 

control after 4 days of doxycycline treatment under self-renewing conditions (Fig. 
3.22B; GFP, equal to 1; 9/9*: 66.01 ± 34.09 fold; 7: 268.69 ± 39.61 fold). 

The mRNA levels of potential targets NOTCH2, HES1 and NOTCH3 as well as 

NOTCH1 and HEY2 were assessed by qRT-PCR in RNA samples of lt-NES cells 

overexpressing miR-9/9*, miR-7 or GFP.  

 
Fig. 3.22: Analysis of predicted targets within the Notch signaling cascade upon miR-7 and 
miR-9/9* overexpression. (A) Target prediction for members of the Notch pathway. The three right 
columns present the number of algorithms predicting binding of miR-9, miR-9* or miR-7 to the 3´UTRs 
of the genes indicated. The analysis was conducted using the miRWALK algorithm [100]. (B) QRT-
PCR analyses of the expression levels of miR-9 and miR-7 in lt-NES cells transduced with pTight-9/9* 
(9/9*) or pTight-7 (7) compared to lt-NES cells transduced with pTight-GFP (GFP, equal to 1). Data are 
normalized to RnuA5 snRNA reference levels. (C) QRT-PCR analyses of transcript levels of predicted 
targets within the Notch signaling pathway in lt-NES cells transduced with pTight-9/9* (9/9*) or pTight-
7 (7) compared to lt-NES cells transduced with pTight-GFP (GFP, equal to 1). Data are normalized to 
18S rRNA reference levels and presented as average changes + SEM relative to expression in lt-NES 
cells overexpressing GFP (equal to 1; n= 3; Students t-test p-value: *, p ≤ 0.05). 
 

Regulation by miR-7 could not be identified for any of these predicted targets (Fig. 
3.22C; NOTCH1: 0.99 ± 0.13 fold; NOTCH2: 1.01 ± 0.06 fold; NOTCH3: 1.23 ± 0.10 
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fold; HES1: 1.04 ± 0.13 fold; HEY2: 0.94 ± 0.23 fold). However, the data confirmed 

the regulation of NOTCH2, HES1 and HEY2 but not NOTCH1 and NOTCH3 mRNA 
by miR-9/9* (Fig. 3.22C; NOTCH1: 1.04 ± 0.07 fold; NOTCH2: 0.65 ± 0.09 fold; 

NOTCH3: 1.06 ± 0.30 fold; HES1: 0.56 ± 0.13 fold; HEY2: 0.28 ± 0.15 fold). As miR-7 

did not impact on Notch signaling, additional potential targets were identified based 

on target prediction analyses and information from previous studies [66, 86, 105-

107]. Among the genes with binding sites for miR-9, miR-9* and miR-7 important 

determinants of stem cell maintenance like Sirtuin1 (SIRT1) and the human 

homologues of drosophila lin-28 (LIN28A, LIN28B) as well neural stem cell markers 

SOX2, paired box 6 (PAX6) and NESTIN could be found (Fig. 3.23A). 

SIRT1 is a member of the Sirtuin family, which is highly expressed in murine ESCs, 

subsequently down-regulated during differentiation and up-regulated during 

reprogramming of mouse embryonic fibroblasts into induced pluripotent stem cells 

[106]. This expression patterns suggest a role for SIRT1 in the maintenance of ESC 

stemness. The regulation of SIRT1 levels was shown to be mainly post-

transcriptional and carried out by several miRNAs, including miR-9 in mouse [106] 

and human [77]. Relative levels of SIRT1 were decreased in lt-NES cells upon miR-
9/9* (0.61 ± 0.12 fold) but not miR-7 overexpression (1.03 ± 0.19 fold) compared to 

overexpression of GFP (equal to 1, Fig. 3.23B). 

Like SIRT1, both LIN28A and LIN28B are highly expressed in ESCs and their levels 

decrease with progressing differentiation of several tissues (reviewed in [108]). In 

mouse ES cells and human cancer cell lines, LIN28 was found targeted by miR-9 and 

miR-125 [107]. Overexpression of miR-9/9* reduced mRNA levels of both LIN28A 
and LIN28B significantly in lt-NES cells (LIN28A: 0.72 ± 0.05 fold; LIN28B: 0.59 ± 

0.08 fold; Fig. 3.23B). Again, miR-7 overexpression did not impact on mRNA levels 
(LIN28A: 1.65 ± 0.45 fold; LIN28B: 1.29 ± 0.13 fold; Fig. 3.23B). 

In addition, NESTIN, another neural stem cell marker, harbors a miR-9 binding site in 

its 3´UTR as well. NESTIN is important for the survival and self-renewal of neuronal 

stem cells [109, 110]. However, neither miR-9/9* (1.30 ± 0.27 fold) nor miR-7 (1.21 ± 

0.36 fold) changed NESTIN mRNA levels significantly (Fig. 3.23B). NESTIN interacts 

with PAX6 to prevent precocious neuronal differentiation and maintain the progenitor 

pool (reviewed in [111]). The PAX6 3´UTR is predicted to be bound by miR-9/9* as 

well as miR-7 (Fig. 3.23A). Additionally, studies in mouse indicated that levels of 
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PAX6 are regulated by both miR-9/9* and miR-7 [66, 86]. However, neither miRNA 
induced a significant change of its mRNA levels in lt-NES cells (miR-9/9*: 0.84 ± 0.18 

fold; miR-7: 1.33 ± 0.30 fold; Fig. 3.23B). 

Fig. 3.23: Impact of miR-9/9* and miR-7 overexpression on predicted targets associated with 
neural stem cell proliferation and differentiation. (A) Target prediction for determinants affecting 
proliferation and differentiation. The three right columns present the number of algorithms predicting 
binding of miR-9 or miR-9* to the 3´UTRs of the genes indicated. The analysis was done using the 
miRWALK algorithm [100]. (B) QRT-PCR analyses of transcript levels of predicted targets in lt-NES 
cells transduced with pTight-9/9* (9/9*) or pTight-7 (7) compared to lt-NES cells transduced with 
pTight-GFP (GFP, equal to 1). Data were normalized to 18S rRNA reference levels. All qRT-PCR data 
are presented as average changes + SEM relative to expression in lt-NES cells overexpressing GFP 
(equal to 1; n= 3; Students t-test p-value: *, p ≤ 0.05). 
 

Although target sites were predicted in the 3´UTRs of SIRT1, PAX6 and LIN28A, 

overexpression of miR-7 did not induce a significant change in any of the mRNA 

levels analyzed. However, translational silencing of these mRNAs is still to be 

accessed by analyses of the resulting protein levels. In contrast, SIRT1, LIN28A and 

LIN28B mRNA levels are affected by miR-9/9*. Downregulation of these genes might 

add to the effects of Notch signaling and SOX2 to cause the reduced self-renewal 

and enhanced differentiation of lt-NES cells observed upon miR-9/9* overexpression. 

Future studies have to address whether the identified targets are directly modulated 

by miR-9, miR-9* or both and explore the impact of the induced reduction of SIRT1, 

LIN28A and LIN28B levels on human neural stem cell properties. 

 

3.11 Assessment of the impact of miR-9/9* and miR-7 on lt-NES cell-derived 

dopaminergic neurons 
Elevated levels of miR-9/9* were shown to significantly promote differentiation of lt-

NES cells under self-renewing conditions (Fig. 3.4). In line with this finding, 
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endogenous expression of miR-9 and miR-9* was dramatically up-regulated in lt-NES 

cells after 15 days under differentiating conditions (Fig. 3.1B, C). To explore whether, 

in addition to an overall enhanced differentiation, also the fate choice of the 

generated neurons is affected, long-term overexpression of miR-9/9* under 

differentiating conditions was further assessed to shed light on its impact on neuron 

subtype specification. For that purpose, I3 hESC derived lt-NES cells were 

transduced with the LVTHM vector carrying a GFP cassette as optical marker and 

pre-miR-9/9* or a scrambled control hairpin (ctrl; described in Fig. 3.2.B). To 

minimize the innate variability of cell culture, an in-dish control was established by 

mixing lt-NES cells constitutively overexpressing both GFP and miR-9/9* or GFP and 

control at a ratio of 1:1 with untransduced lt-NES cells. These mixtures of GFP-

labeled and wildtype lt-NES cells were cultured for 15 days under differentiating 

conditions. In line with the data gathered in the short-term studies, at day 15 of 
differentiation the number of βIII tubulin-positive cells was increased 1.76 ± 0.32 fold 

upon overexpression of miR-9/9*, compared to overexpression of a scrambled 

control (Fig. 3.24A, B). 

In addition to the general differentiation, the number of the dopaminergic neurons 

generated in these cultures was assessed by staining for tyrosin hydroxylase (TH) – 

a rate-limiting enzyme catalyzing the synthesis of dopamine precursor L-DOPA (L-

3,4-dihydroxyphenylalanine) [112]. Interestingly, although the overall number of 

neurons was increased, staining for the dopaminergic neuron marker (TH) was 

almost absent in the GFP positive population expressing miR-9/9*, while it could be 

detected in the co-cultured untransduced lt-NES cells.  

Quantification of cell numbers revealed a significant difference in distribution of TH 

positivity between untransduced lt-NES cells (GFP negative) and those with elevated 
miR-9/9* levels (GFP positive). Only 0.53 ± 0.53% of overall TH-positive cells were 

also GFP positive, while 99.47 ± 0.53% of them were found in the GFP negative cell 

population (Fig. 3.24C, D). This indicates that overexpression of miR-9/9* impairs the 

generation of TH-positive cells, as corresponding control cultures did not show a 

significant difference in the distribution of TH positivity between cells overexpressing 

the control construct (GFP positive) and untransduced cells (Fig. 3.24C, D; TH+ GFP+ 
cells: 75.61 ± 13.68%; TH+ GFP- cells: 24.39 ± 13.68%). 
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Fig. 3.24: Neuronal differentiation and generation of TH-positive neurons from lt-NES cells 
upon overexpression of miR-9/9*. (A) Representative immunostaining and quantification (B) of βIII 
tubulin in lt-NES cells transduced with LVTHM-GFP-9/9* (miR-9/9*) or LVTHM-GFP-ctrl (ctrl) after 15 
days of differentiation. DAPI labels nuclei. Scale bars = 100 µm. Data are shown relative to ctrl 
transduced lt-NES cells + SEM (n=3). (C) Representative immunostaining and quantification (D) for TH 
[113] in lt-NES cells transduced with LVTHM-GFP-9/9* (miR-9/9*) or LVTHM-GFP-ctrl (ctrl) after 15 
days of differentiation. DAPI labels nuclei. Scale bars = 100 µm. (D) Relative distribution of TH-positive 
neurons in mixed cultures of untreated lt-NES cells (gray) and lt-NES cells transduced with either miR-
9/9* or scrambled control (green) + SEM (n=3; Students t-test p-value: **, p ≤0.01). 
 

Similarly to miR-9/9*, miR-7, too, tends to be up-regulated in lt-NES cells after 15 

days under differentiating conditions and its overexpression slightly increased the 

rate of lt-NES cell differentiation under self-renewing conditions. However, these data 

were too variable to be significant. In order to investigate whether miR-7 

overexpression impacts on neuronal subtype specification, I3 hESCs derived lt-NES 

cells were transduced with the LVTHM vector carrying pre-miR-7_1 or a scrambled 

control hairpin (ctrl) as well as a puromycin resistance gene and assessed by 

immunostaining. Specifically, after antibiotic selection cultures enriched in transduced 
cells were differentiated for 15 days and subsequently stained for βIII tubulin and TH. 

The obtained results were similar to those for miR-9/9* overexpression (Fig. 3.25). 
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Fig. 3.25: Neuronal differentiation and generation of TH-positive neurons from lt-NES cells 
upon overexpression of miR-7. (A) Representative immunostainings for βIII tubulin (green) and TH 
[113] in lt-NES cells transduced with LVTHM-miR-7 (miR-7) or LVTHM-ctrl (ctrl) after 15 days of 
differentiation in medium devoid of growth factors. DAPI labels nuclei. Scale bars = 100 µm. (B, C) 
Quantification of βIII tubulin-positive (B) and TH-positive (C) cells in the immunostainings described. 
Data are shown relative to ctrl transduced lt-NES cells + SEM (n=3). Students t-test p-value: **, p 
≤0.01. 
 
In cultures overexpressing miR-7, the number of βIII tubulin-positive cells increased 

significantly by 1.63 ± 0.06 fold in comparison to control transduced cultures (Fig. 

3.25B), while the percentage of TH-positive neurons was significantly decreased from 
7.37 ± 0.27% of overall cells (in ctrl cultures) down to 1.93 ± 0.24% (Fig. 3.25C). 

Therefore, both miR-9/9* and miR-7 enhanced overall differentiation but impaired the 

generation of TH-positive neurons from lt-NES cells. 

 

3.12 MiR-9/9* and miR-7 target determinants of dopaminergic lineage 

development 

In order to identify genes regulated by miR-9/9* and miR-7 that may underlie their 

impact on dopaminergic lineage choice, the miRWALK algorithm [100] was used to 

predict potential targets. Putative binding sites for miR-9/9* and miR-7 were found in 
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the 3´UTRs of the dopaminergic determinants Engrailed 2 (EN2), FOXA2 and LMX1A 

(Tab. 3.4). 
 
Table 3.4: Target prediction for dopaminergic 
determinants. The three right columns present the 
number of algorithms predicting binding of miR-9, miR-
9* or miR-7 to the 3´UTRs of the genes indicated. 
Analysis was done using the miRWALK algorithm 
[100]. 
 

First, a suitable model to monitor mRNA levels of FOXA2, LMX1A and EN2 had to be 

identified as lt-NES cells may not express detectable levels of transcription factors 

involved in dopaminergic lineage choice. In addition to lt-NES cells, liver cell line 

HepG2, which is known to express FOXA2 [114], and, as positive control, 

commercially available human fetal brain RNA (FB) were used. While LMX1A could 

not be amplified from any sample analyzed, EN2 was expressed in proliferating lt-

NES cells and at low levels in FB and HepG2 cells. FOXA2 mRNA was detectable in 

HepG2 cells but not lt-NES cells and very weakly expressed in FB (Fig. 3.26A). 

When looking at transcript levels of EN2 in lt-NES cells overexpressing miR-9/9*, 
miR-7 or GFP (Fig. 3.8C), a significant down-regulation (0.58 ± 0.13 fold) was 

observed upon miR-9/9* overexpression compared to lt-NES cells overexpressing 
GFP, while miR-7 overexpression did not induce a significant change (1.07 ± 0.24 

fold) (Fig. 3.26B). As FOXA2 was solely detectable in HepG2 cells (Fig. 3.26A) these 

cells were transduced with the Tight-GFP, Tight-miR-9/9* and Tight-miR-7 

constructs. After 4 days of doxycycline treatment miR-9 expression was induced 5.67 
± 0.83 fold, miR-9* expression 93406.38 ± 9062.98 fold and miR-7 expression 

1127.21 ± 96.87 fold, compared to cells overexpressing GFP (Fig. 3.26C). In these 

samples, FOXA2 mRNA expression was slightly down-regulated to 0.75 ± 0.16 fold 

upon overexpression of miR-9/9* and significantly reduced to 0.67 ± 0.07 fold by 

miR-7 overexpression, compared to cells overexpressing GFP (Fig. 3.26D). The 

changes observed were even stronger when looking at FOXA2 protein levels by 

Western blot analysis (Fig. 3.26E). 
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Fig. 3.26: Monitoring the impact of miR-9/9* and miR-7 overexpression on the dopaminergic 
determinants EN2 and FOXA2. (A) Representative gel images of RT-PCR analyses for FOXA2 and 
EN2 from proliferating lt-NES cells (NES), fetal brain RNA (FB) and liver cell line HepG2 (HepG2). 18S 
rRNA was used as loading control (n=3). (B) QRT-PCR analysis of EN2 transcript levels in lt-NES 
cells overexpressing miR-9/9* or miR-7 compared to GFP control (n=5). (C) QRT-PCR analysis 
monitoring induced expression of miR-9, miR-9* and miR-7 in HepG2 cells upon miR-9/9* or miR-7 
overexpression, compared to GFP control. Data are normalized to snRNA RnuB5 reference levels and 
presented as average changes + SEM relative to expression in cells overexpressing GFP (equal to 1; 
n=3). (D) QRT-PCR analysis of FOXA2 transcript levels in the HepG2 cells decribed above (n=3). 
(B+D) Data are normalized to 18S rRNA reference levels and presented as average changes + SEM 
relative to expression in cells overexpressing GFP (equal to 1). (E) Representative Western blot 
analysis of FOXA2 in the HepG2 cells decribed above. β-ACTIN was used as loading control. (F) 
Quantification of FOXA2 protein expression from Western blot analysis. Data are shown as average 
changes + SEM relative to cells overexpressing GFP and normalized to β-ACTIN (n=3). (B, D, F) 
Students t-test p-value: *, p ≤ 0.05. 
 

Quantification of three independent blots revealed a significant reduction of FOXA2 
protein to 0.48 ± 0.05 fold upon miR-9/9* overexpression and to 0.53 ± 0.20 fold upon 

miR-7 overexpression, compared to GFP overexpressing cultures (Fig. 3.26F). 

These results on post-transcriptional regulation of FOXA2 and EN2 by miR-9/9* and 

miR-7 are in line with their antagonistic role in dopaminergic differentiation of lt-NES 

cells. 
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3.13 Analysis of miR-9/9* and miR-7 expression during the differentiation of 
human pluripotent stem cells towards the midbrain dopaminergic lineage 

The overall yield of TH-positive neurons in differentiating lt-NES cell cultures is rather 

low (Fig. 3.25C). In order to monitor endogenous expression of miR-9, miR-9* and 

miR-7 during dopaminergic specification and to further assess their impact on the 

generation of midbrain dopamine neurons, a different cell culture system specifically 

designed to enrich these medically relevant neurons was employed. It was recently 

shown that a high yield of midbrain dopaminergic neurons is achieved when 

pluripotent stem cells are patterned into floorplate precursors and then further 

differentiated into neurons. I3 hESCs and ILB-C-31F-R1 hiPSCs were used to 

implement a protocol described by Kriks et al. [89] which follows this line of 

differentiation. Expression levels of dopaminergic and neuronal determinants were 

analyzed at every other of the first 13 days of in vitro differentiation to monitor proper 

regionalization and maturation (Fig. 3.27A). 

 
Fig. 3.27: Expression of dopaminergic determinants during the time course of midbrain 
dopamine neuron induction. (A) Scheme of the induction protocol according to Kriks et al. [89]. (B, 
C) QRT-PCR analysis of FOXA2 (red), LMX1A (blue), MSX1 (orange), PAX6 (green), and NEUROG2 
(light blue) expression in I3 hESCs (B) and ILB-C-31F-R1 hiPSCs (C) during the time course of 
floorplate and dopaminergic precursor induction, compared to expression at day 0 (d0; equal to 1, n = 
3). Data are normalized to 18S rRNA reference levels and presented as average changes ± SEM. 
Data obtained in cooperation with Laura Stappert and Beatrice Weykopf. 
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Already after 3 days of floor plate induction, qRT-PCR analyses confirmed the up-

regulation of the dopaminergic transcription factors FOXA2 and LMX1A in both 

hESCs and hiPSCs (Fig. 3.27 B, C). Two days later, the expression of MSX1 (MSH 

homeobox protein 1) started to rise as well. The neural stem cell marker PAX6 and 

the neuronal marker NEUROG2 (Neurogenin 2) were up-regulated from day 3 on. 

However, while PAX6 levels remained relatively stable during the first 13 days of the 

differentiation paradigm, NEUROG2 expression showed a constant increase 

reflecting the differentiation of these neurogenic cultures (Fig. 3.27 B, C). 

At day 25 of differentiation, cultures originating from I3 hESCs were chosen for 

immunofluorescence analysis and stained for the dopaminergic determinants FOXA2 
and LMX1A, as well as for TH and βIII tubulin (Fig. 3.28). The majority of βIII tubulin-

positive cells were found also positive for TH, FOXA2 and LMX1A (Fig. 3.28) as 

expected for dopamine neurons from the midbrain region [89]. 

 
Fig. 3.28: Expression of dopaminergic markers after differentiation of hESC. Representative 
immunostainings for βIII tubulin, TH, FOXA2 and LMX1A at day 25 of I3 hESC differentiation 
according to the Kriks et al. protocol (n=3). DAPI labels nuclei. Scale bars = 100 µm. Data obtained in 
cooperation with Laura Stappert and Beatrice Weykopf. 
 

Once the dopaminergic phenotype of the obtained neuronal cultures was confirmed 

on transcriptional and immunofluorescent levels, expression of miR-9, miR-9*, miR-7 

and miR-133b – a miRNA shown to be expressed in dopaminergic neuron 



Results 

 72 
 

progenitors [65] – were analyzed by qRT-PCR (Fig. 3.29). In contrast to miR-133b 

levels, that did not clearly change upon induction of a floorplate and later on a 

dopaminergic fate, levels of miR-9* and miR-7 were found to gradually decrease 

parallel to the floorplate induction as indicated by the mean expression of LMX1A 

(Fig. 3.29). MiR-9 expression slightly down-regulated as well; however, this effect 

was not as distinct (Fig. 3.29 C). Once neuronal differentiation was induced (day 11), 

levels of miR-7, miR-9 and miR-9* started to rise again, reminiscent of their 

expression profile in differentiating lt-NES cells. 

 

Fig. 3.29: Expression of selected miRNAs during the time course of dopamine neuron lineage 
induction. QRT-PCR analysis of miR-133b (A), miR-7 (B), miR-9 (C), and miR-9* (D) expression 
levels during the time course of induction of floorplate precursor and dopaminergic progenitors from I3 
hESCs and ILB-C-31F-R1 iPSCs compared to expression levels at day 0 of the induction protocol (d0; 
equal to 1, n=3). Data are normalized to RnuA5 snRNA reference levels and presented as average 
changes + SEM. Solid lines indicate the levels of miR expression and dashed lines the mean level of 
LMX1A expression (blue: I3 hESCs; orange: ILB-C-31F-R1 iPSCs). Data obtained in cooperation with 
Laura Stappert and Beatrice Weykopf. 
 

Taken together, these data show that miR-9/9* and miR-7, which impair 

dopaminergic differentiation of lt-NES cells, are down-regulated during the induction 

of floor plate progenitors that later give rise to mesenchephalic dopaminergic 

neurons. The opposed expression pattern of these miRNAs (Fig. 3.29) and FOXA2 

(Fig. 3.27) mRNA observed during the time course of the floor plate induction 
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protocol is in line with the data gathered in HepG2 cells indicating targeting of the 

FOXA2 mRNA by miR-9/9* and miR-7. Taken together, the data presented indicate 

an antagonistic role for miR-9/9* and miR-7 in the specification of dopaminergic fate 

that may – at least in part – be due to targeting of EN2 and FOXA2. 
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4. Discussion 

In the last years, miRNAs emerged as potential new regulators in neuronal 

differentiation [53, 115, 116]. They are abundantly expressed in the nervous system, 

and nearly 50 percent of the known species can be detected in the human brain 

[117]. To analyze their impact on the human neural system a robust cell culture 

model is needed since access to primary human material is rather scarce. For this 

purpose, a homogeneous population of long-term self-renewing neuroepithelial-like 

stem cells from human ES (lt-NES) cells was employed in this study [7]. The 

maintenance and differentiation of these neural stem cells into distinct neuronal 

subtypes depends on highly orchestrated programs of developmental signals that 

have to be under tight spatial and temporal control. Knowledge on the impact of post-

transcriptional regulation by specific miRNAs, like e.g. miR-9/9*, on human neural 

stem cell behavior is still rather limited. Therefore, the focus of this work was to 

analyze the role of miRNAs in the maintenance and differentiation of lt-NES cells. 
 

4.1 Modulation of the switch from neural stem cell self-renewal to 

differentiation by specific miRNAs 

The analysis of the expression pattern of a miRNA during a biological process like 

differentiation is a prerequisite for understanding its function. Although there are 

available data from other mammalian species like mouse [41], miRNA expression 

may differ among species. For instance, even though the sequence between 

Drosophila miR-9a and mammalian miR-9 is strongly conserved (reviewed in [71]), 

their transcriptional regulation differs. While miR-9 is strongly enriched in the 

mammalian brain (reviewed in [74]), Drosophila miR-9a only shows little expression 

in the nervous system of developing embryos and is highly expressed in ectodermal 

epithelial cells and in wing disc cells but not in sensory organ precursor cells [73, 

118]. Therefore, this work is based on data from an expression profiling comparing 

levels of miRNAs in hESCs to derived neural stem cells and their differentiated 

progeny. Five candidate miRNAs up-regulated during this differentiation paradigm, 

namely miR-7, miR-9, miR-9*, miR-128, and miR-130b, were chosen for further 

analysis due to their expression pattern and an initial target prediction that revealed 

potential target genes involved in neural differentiation (data not shown). The 

increase detected for miR-7, miR-9, miR-9* and miR-128 in the screening resembled 
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their expression patterns during mouse brain development [41, 42], while expression 

of miR-130b was not addressed in these studies. 

4.1.1 Dependence of miR-7, miR-128 and miR-130b action on spatial and 
temporal cell identity  
Data on the role of the three selected candidate miRNAs (i.e. miR-7, miR-128, miR-

130b) in the nervous system are rather scarce. The best-studied one is miR-7, which 

is expressed moderately in the human brain, while other organs only show sporadic 

expression [43]. The role of miR-7 in neuronal differentiation is not clear from the 

studies published so far. Data gathered in neuroblastoma cells suggested a down-

regulation of miR-7 expression upon retinoic acid induced differentiation and a 

reduced neurite outgrowth upon miR-7 overexpression. However, the same study 

showed that in primary mouse cortical neurons miR-7 is up-regulated during 

differentiation [119]. Conversely and in line with miR-7 expression in neuronal 

differentiation of lt-NES cells, data gained from a run-through protocol for short-term 

differentiation of mouse ESCs did not show a significant regulation [119].  

In lt-NES cells, miR-7 expression is mainly due to transcription of the 7_1 genomic 

locus, whose promoter is predicted to be bound by neural stem cell marker PAX6 

[120]. Interestingly, data from the mouse forebrain and pancreas indicate that miR-7 

directly targets Pax6 mRNA [66, 119] pointing to a potential feedback loop between 

miR-7 and PAX6. Although the miR-7 binding sites are conserved in human, PAX6 

mRNA levels were not regulated by miR-7 in lt-NES cells. However, in the human 

system, miR-7 binding to the PAX6 mRNA may not induce degradation but 

translational silencing. Therefore, detail analyses of PAX6 protein levels as well as a 

3´UTR luciferase assays are still to be done. 

MiR-128 is highly expressed in the adult brain and enriched in murine neurons similar 

to well known neuronal miRNAs – like miR-124 and miR-137 [61]. In addition, it was 

reported to act on neural stem cell self-renewal by targeting Bmi1 [121]. A role for 

miR-7 and miR-128 in stem cell maintenance is also indicated by their significant 

downregulation in malignantly proliferating glioblastoma samples [102, 121]. 

However, there is little knowledge on their role and regulation during the development 

of the central nervous system. MiR-130b is even less studied in this context. 

Interestingly, miR-130b is down-regulated in various cancer cell types which might 
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point to a role in the regulation of proliferatory mechanisms [122-124]. Although the 

screening for miRNA expression in lt-NES cells and their differentiatied progeny [68] 

suggested an up-regulation of miR-7, miR-128 and miR-130b during differentiation, 

these changes could not be validated in our differentiation paradigm. 

In addition, elevated levels of miR-7, miR-128 and miR-130b did not impact 

significantly on lt-NES cell self-renewal and spontaneous differentiation. This lack in 

regulation and impact of miR-7, miR-128 and miR-130b on lt-NES cells may be due 

to the developmental stage and regionalization these cells represent. The increase in 

miR-128 expression found during mouse development does not start before E18, 

while other brain-enriched miRNAs like miR-9 and miR-9* are already expressed at 

earlier time points [41]. This indicates a role for miR-128 at developmental stages 

later than the ones represented by lt-NES cells. The effects of miR-7 might depend 

on the temporal identity of the neural stem cells analyzed as well, as it was shown 

that – at least in the rat and human fetal cortex as well as mouse spinal cord – neural 

stem cells mainly depend on FGF signaling for their propagation at certain 

developmental stages [125-127]. MiR-7, on the other hand, was found to reduce the 

stemness of glioblastoma cells by targeting the EGF receptor (EGFR) and its down 

stream targets [102]. In Drosophila, miR-7 employs this regulation of EGF signaling 

to stimulate the differentiation of photoreceptors [128]. However, in neural stem cells 

miR-7 overexpression did not induce a reduced self-renewing capacity. Although an 

expression profiling showed that lt-NES cells express the EGFR on mRNA level 

[129], the functional relevance of EGF signaling in lt-NES cell maintenance is still to 

be addressed. As growth factors EGF and FGF2 are both present in the media used 

for maintenance of lt-NES cells, the effect of miR-7 overexpression on EGF signaling 

might be masked by the strong induction of proliferation by FGF2. 

It is important to note that most of the evidence for roles of miR-128, miR-130b and 

miR-7 in the nervous system was gathered in cell lines derived from malignantly 

transformed adult cells like glioblastoma or neuroblastoma cell lines. Further detailed 

analysis of miR-128, miR-130b and miR-7 in other cell types may shed light on their 

putative roles in human neurogenesis and homeostasis of the adult nervous system. 



Discussion 

 77 
 

4.1.2 MiR-9/9* and its influence on neural stem cell properties 

Of all five miRNAs tested, elevated levels of miR-9/9* induced the strongest 

enhancement of differentiation. Concordantly, in neural precursors derived from 

mouse ES cells elevated levels of miR-9 shifted the ratio of cells positive for glial cell 
marker GFAP (glial fibrillary acidic protein) and pan-neuronal marker βIII tubulin in 

favor of neuronal cells [59]. Accordingly, double-knockout mice for the miR-9_2 and 

miR-9_3 loci showed a decreased number of early neurons in the cortical region [86] 

underlining the importance of miR-9 in neuronal differentiation. 

Out of the miRNAs tested, miR-9/9* was the only one that additionally reduced the 

self-renewing capacity of lt-NES cells. This is in contrast to data Delaloy et al. 

gathered in hESC derived neural precursors from the neurosphere stage. They 

showed that miR-9 is needed for the proliferation of neuronal precursor cells and 

impairs their migration by targeting microtubuli destabilizing protein STMN1 [77]. 

However, the neural precursors gained from the neurosphere stage used by Delaloy 

et al. result from a variable run-trough protocol starting from hESCs. Therefore, their 

regional identity and the purity of the population are not clearly defined. In contrast, 

the lt-NES cells used here exhibit a stable regionalization marker profile 

corresponding to a ventral anterior hindbrain identity and represent a stable and pure 

population of neural stem cells [7]. This difference in regional identity, as well as the 

presumably earlier developmental stage of the used lt-NES cells, may cause the 

different phenotypes induced by modulation of miR-9 levels. For instance, the 

phenotype induced through targeting of HES1 homologue Hairy1 by miR-9 in 

Xenopus neural precursors differs in forebrain versus hindbrain areas [79]. While 

miR-9 was crucial for cell-cycle exit throughout the regions analyzed, only Xenopus 

forebrain progenitors depended on miR-9 for their survival [79]. A similar regional 

importance of Stathmin (STMN1) targeting by miR-9 might explain the reduced 

expansion of neurospheres Delaloy et al. observed upon miR-9 inhibition [77]. 

4.1.3 Targets of miR-9/9* in the Notch signaling cascade 

Like observed in the Xenopus hindbrain by Bonev et al. [79], elevated miR-9/9* levels 

impaired self-renewal and promoted differentiation of the human neural stem cells 

analyzed here. In addition, modulation of Hairy1 partially rescued a lack of miR-9 in 

Xenopus neurogenesis [79]. Accordingly, the phenotype induced by miR-9/9* 
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overexpression resembled what was known from pharmacological inhibition of the 

Notch signaling cascade in morphology, differentiation enhancement, and impaired 

self-renewal of lt-NES cells [22]. Therefore, the potential interplay between miR-9/9* 

and the Notch signaling pathway was further investigated. While this work was 

prepared, studies in various model organisms further underlined the importance of an 

interaction between miR-9/9* and Notch [79, 83, 84, 130]. 

Data from these studies showed that homologues of HES1 are targeted by miR-9/9* 

in frog [79], fish [83] as well as mouse [79]. HES1 is a downstream effector of the 

Notch signaling pathway that has been shown to inhibit neuronal differentiation and 

sustain neural stem cell fate (reviewed in [131, 132]). In mouse neuroepithelial cells 

as well as in lt-NES cells, HES1 does not show robust dependency on Notch 

signaling modulation ([22, 133]; reviewed in [132]) indicating additional transcriptional 

regulation by other signaling pathways, such as Sonic hedgehog [134], c-Jun N-

terminal kinase [135] and FGF [136] in various cell types. In addition, post-

transcriptional regulation might contribute to the fluctuating levels of HES1 as shown 

for mouse neural precursors [84]. Data from lt-NES cells validated the targeting of 

HES1 by miR-9 in the human system. 

Although there is no evidence for direct targeting of Notch1 by miR-9 from model 

organisms so far, it was found in mouse that upon upregulation of miR-9 Notch1 is 

down-regulated [88]. Furthermore, there were hints towards a potential connection 

between functional Notch signaling and miR-9 [137]. Even though target prediction 

revealed a binding site for miR-9 in the 3´UTR of human NOTCH1, an interaction 

could not be observed, as NOTCH1 mRNA levels did not change significantly upon 

miR-9/9* overexpression in lt-NES cells. 

4.1.4 Direct regulation of NOTCH2 by miR-9/9* 

In contrast to NOTCH1, NOTCH2, another member of the Notch receptor family, is 

regulated by miR-9/9*. While it had not been analyzed as a target of miR-9/9* so far, 

many algorithms predict target sites for miR-9 and miR-9* in the 3´UTR of NOTCH2. 

In addition, NOTCH2 was recently predicted to be part of a regulatory loop with miR-
9 in glioblastoma cells [138]. The 3`UTR of NOTCH2 consists of ∼4 kb compared to 

∼1kb for NOTCH1 and HES1. Within this long sequence many miRNA target sites 

are predicted indicating heavy post-transcriptional regulation. Additionally, some 
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functions of NOTCH2 are opposing the ones of miR-9/9*. While the role of miR-9 in 

tumor tissue remains a topic of ongoing discussion, it has been found to limit 

expansion of neural precursors (reviewed in [71]). N2ICD expression on the other 

hand is not sufficient to induce tumors but leads to a prominent expansion of the 

neurogenic niche [139]. Furthermore, N2ICD expression in cultured NSCs promotes 

astrocyte differentiation at the expense of neuronal and oligodendrocyte 

differentiation [139], while miR-9 overexpression leads to a reduction in GFAP 

positive cells [59]. These functional connections might all be due to direct targeting of 

NOTCH2 by miR-9/9*, which was shown here for the first time. 

 

4.2 A feedback loop between miR-9/9* and Notch regulating lt-NES cell 

behavior 

4.2.1 MiR-9/9* as a target of Notch transcriptional activity 

Endogenous RNA interference is an elegant mechanism to control the homeostasis 

of major signaling pathways like Notch. In many cases, this regulation is part of a 

feedback loop to ensure tight regulation. In model organisms, γ-secretase inhibition 

had been shown to reduce levels of miR-9 [41, 83]. Pharmacological inhibition of 

Notch signaling as well as genetic gain and loss of function revealed that indeed miR-

9/9* expression depends on Notch activity in lt-NES cells. The data presented 

showed for the first time, that in human neural stem cells the regulation of miR-9/9* 

expression is carried out by canonical Notch signaling and is due to direct binding of 

the NICD recruited transcriptional complex to miR-9/9* promoter regions. 

4.2.2 Reciprocal interaction between Notch signaling and miR-9 in neural stem 

cells 

Based on the data gathered in lt-NES cells, this work proposes the model of a Notch-

miR-9/9*-feedback loop. While expression of miR-9/9* is directly regulated by the 

transcriptional complex downstream of Notch, levels of Notch signaling are fine-tuned 

by miR-9/9*. Therefore, miR-9 and miR-9* regulate different stages of the Notch 

signaling cascade by targeting Notch receptor NOTCH2 and Notch downstream 

target HES1 (Fig. 4.1). This hypothesis is supported and complemented by studies in 

Zebrafish and mouse, suggesting that additionally HES1 feedbacks on miR-9 



Discussion 

 80 
 

expression [83, 84] (Fig. 4.1). 

 
Fig. 4.1: Reciprocal interaction between miR-9/9* and the Notch pathway. Proposed model for 
the identified interaction between miR-9/9* and the Notch pathway in human neural stem cells, 
combined with recent findings in other model systems. Dashed lines indicate information integrated 
from other studies (Zebrafish [83] , Mus Musculus [84, 140]). 
 

As the dashed lines in the scheme (Fig. 4.1) indicate, HES1 – also found to be 

targeted by miR-9 in lt-NES cells – was shown to repress miR-9 expression in mouse 

neural precursors [83]. Although this repression has not been characterized yet in the 

human system it adds a further layer of complexity to the interplay between Notch 

and miR-9/9* described here and is to be assessed in future work. 

Regulatory mechanisms ensuring tight regulation of Notch activity are crucial for 

neural stem cell homeostasis. While overactivation of Notch can lead to 

overproliferation or quiescence [19, 20, 139, 141], too little Notch signaling primes 

stem cells to differentiate [22]. In granule neuron precursors it was shown that 

overexpression of NOTCH2 and HES1 blocked the progression to differentiation 

[141]. This is in agreement with the data obtained from our in vitro differentiation 

studies. Even though elevated levels of miR-9/9* enhanced the differentiation of lt-

NES cells this effect is completely suppressed by N2ICD overexpression. In turn, the 

impairment of lt-NES cell differentiation induced by miR-9/9* inhibition was abolished 

by blockade of Notch signaling. 
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The data informing the presented feedback network, in which miR-9/9* and Notch 

signaling interact at several stages, also indicate that the impact of miR-9/9* on lt-

NES cell maintenance is – at least in part – due to targeting of the Notch pathway. In 

addition to its role in neural stem cell maintenance, reciprocal interaction with miR-

9/9* may also buffer the activity of Notch in other cellular systems. For instance, 

sophisticated control of Notch signaling is needed to avoid pathological cell behavior, 

since deregulated Notch can lead to tumorigenesis [139, 142-144]. The feedback 

loop described here might be involved in the neoplastic context as the levels of pri-

miR-9_2 detected in the glioblastoma cell line U87 were dramatically lower than in lt-

NES cells and miR-9* has already been shown to reduce stemness of glioma cells 

[105]. The miR-9/9* network regulating neoplastic cells might even expand to other 

signaling pathways as studies in glioblastoma cells showed that overexpression of 

miR-9 decreases the levels of Janus kinase 1/3 (JAK1/3) protein levels, the 

phosphorylation of signal-transducer and activator of transcription protein 3 (STAT3) 

and expression of the STAT3 downstream target CCAAT/enhancer binding protein 
(CEBP-β), which interfere with proliferation of glioblastoma cancer stem cells [145]. It 

has to be explored whether the feedback mechanism described here is part of a 

bigger regulatory network that includes e.g. the JAK-STAT pathway for regulating 

self-renewal in a cell type and stage dependent manner. Given its role in the 

regulation of Notch signaling, its ability to impair neural stem cell proliferation and 

targeting of JAK-STAT pathway components, one could envision the possibility of 

manipulating miR-9/9* levels in order to impact on proliferation of cancer cells. 

Taken together, the network of miR-9-Notch feedback interactions described may 

prove as the key-finding of this work as it may be crucial for the regulation of the 

switch between self-renewal and differentiation of human neural stem cells as well as 

– potentially – other cell types. 

 

4.3 A network of targets underlies the impact of miR-9/9* 

The feedback loop with Notch is not the only mechanism underlying regulation of 

neural stem cell behavior by miR-9/9*. Data from many studies suggest additional 

targets for miR-9/9* establishing a network of determinants and regulatory 

mechanisms that assure proper development of the central nervous system. In 
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human neural precursors, knowledge on the components of this network is rather 

scarce. Besides the previously discussed STMN1, there is only one other 

determinant carefully analyzed in human neural stem cells – REST. REST represses 

the transcription of pro-neural genes and engages in a feedback loop with miR-9/9* 

similar to that described for Notch [58]. 

In an attempt to identify additional genes relevant in the human system, candidate 

genes targeted by miR-9/9* in model organisms were analyzed for their behavior in lt-

NES cells. However, similar phenotypes do not guarantee conservation of targets 

between species or even different somatic cell types of the same species. This can 

be due to different reasons. First, variation in the 3´UTR of homologue genes 

between species may eliminate the underlying miRNA binding sites. For example, 

parallel to the antiapoptotic effect of miR-9 via the p53 pathway found in the Xenopus 

forebrain [79] its Drosophila homologue miR-9a was shown to prevent apoptosis in 

the development of wings by targeting beadex (dLMO) [146]. Although miR-9 has 

been shown to regulate apoptosis in both systems, the target site found in Drosophila 

dLMO is neither conserved in Xenopus nor in mammalian homologues. Second, the 

expression of the target mRNAs can differ among the cell types analyzed. In mouse 

neural progenitors, TLX has been shown to regulate proliferation in a feedback loop 

with miR-9 [76], which itself is even regulated by another miRNA, let-7d [147]. 

However, in lt-NES cells TLX is not detectable by qPCR (data not shown) suggesting 

that other targets underlie the impaired self-renewal and enhanced differentiation of 

lt-NES cells. Furthermore, TLX regulates the expression of pri-miR-9_1 [76] which is 

not detectable in lt-NES cells. Expression of pri-miR-9_2, the form dominantly 

expressed in lt-NES cells, was not significantly changed in TLX -/- mice [76]. Thus, 

targets and phenotypes known from model organisms or human cell types other than 

neural stem cells cannot easily be translated to the human nervous system. 

As expected, not all candidates picked from literature or target prediction algorithms 

were targeted by miR-9/9*. As NESTIN is important for survival and self-renewal of 

neural stem cells [109, 110] and down-regulated upon induction of neurogenesis 

[148], it was likely to be under the control of brain-enriched miRNAs. Prediction 

algorithms revealed putative binding sites for miR-9 its 3´UTR, which however were 

not sufficient to modulate its mRNA levels in lt-NES cell. A recent study showed that 

post-transcriptional regulation of Nestin is carried out by miR-125b in mice [149]. In lt-
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NES cells, brain-enriched miR-125b is up-regulated during differentiation as well [68] 

and may in part be responsible for the regulation of NESTIN during neuronal 

differentiation [73]. 

NESTIN interacts with PAX6 preventing precocious neuronal differentiation to 

maintain the progenitor pool (reviewed in [111]). Surprisingly, elevated miR-9 levels 

did not affect PAX6 expression in lt-NES cells. This is in contrast to data from the 

developing mouse telencephalon, which indicate that Pax6 mRNA levels are 

regulated indirectly by miR-9 through Meis2 [86]. However, data of an expression 

profiling revealed that MEIS2 is expressed in lt-NES cells [129]. The reasons 

underlying this lack of regulation have to be assessed carefully in future work as the 

regulation of PAX6 by MEIS2 may not be conserved in human cells. 

While mRNA levels of NESTIN and PAX6 were not affected, targeting of other 

important regulators in lt-NES cells was validated. Three of them – SIRT1, LIN28A 

and LIN28B – are known to be involved in stem cell maintenance and down-

regulated upon induction of differentiation [106, 108]. As their dynamic expression 

across differentiation is inversely correlated to that of miR-9/9*, which promote 

differentiation, they are likely targets. Indeed, levels of SIRT1 as well as LIN28 were 

found to be modulated by miR-9 in various murine and human tissues [107]. Analysis 

of their mRNA levels revealed that they are expressed and affected by miR-9/9* in lt-

NES cells as well. Due to their roles in stem cell maintenance, they may contribute to 

the network of miR-9/9* targets orchestrating human neural stem cell behavior. 

LIN28A and LIN28B may even regulate miR-9/9* expression indirectly as they form a 

reciprocal gradient with the differentiation-promoting miRNA let-7 (reviewed in [108]). 

In mouse, let-7d has been shown to derepress miR-9 expression by downregulation 

of TLX levels [147]. However, the relevance of this interaction has still to be 

addressed in human cells other than lt-NES cells due to their lack in TLX expression. 

In addition, LIN28A and LIN28B have been shown to be under the control of several 

miRNAs enriched during brain development (i.e. miR-9, miR-125b, miR-30, miR-181 

and let-7) and to regulate the processing of at least let-7 and miR-181 in turn [107, 

150]. Therefore, the LIN28 family may present an intersection integrating several 

post-transcriptional regulatory mechanisms impacting on stem cell maintenance. 

The decrease of mRNA levels observed upon miR-9/9* overexpression added SIRT1, 

LIN28A and LIN28B to the network of miR-9/9* targets regulating human neural stem 
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cell maintenance (summarized in Fig. 4.2). However, the impact of these targets on 

the behavior of lt-NES cells is still to be addressed by modulation of their levels and 

identification of the mechanisms underlying their regulation by miR-9/9*. 

4.4 Bifunctionality of miR-9 and miR-9* 
Although miR-9 and miR-9* are produced from the same precursor and, therefore, 

under the same transcriptional control, they differ in their sequence and are predicted 

to target mostly different gene sets. Also their impact on lt-NES cells differs. While 

overexpression of miR-9* impairs proliferation and promotes differentiation, miR-9 

overexpression enhances differentiation but does not affect proliferation. Delaloy et al 

showed that in neural stem cells originating from the neurosphere stage of a different 

hESC differentiation paradigm, miR-9 is even required for proper expansion of neural 

progenitors [77]. Target prediction analysis for the validated components of the Notch 

signaling pathway revealed that miR-9 alone targets both NOTCH2 and HES1 while 

miR-9* solely targets NOTCH2. Given that only miR-9* impairs self-renewal of lt-NES 

cells, this is very likely to be due to regulation of targets differing to the ones affected 

by miR-9. Indeed, the overlap between putative targets for miR-9 and miR-9* is very 

small and there are many genes whose modulation could account for the specific 

effect of miR-9* on lt-NES cell self-renewal.  

One of these potential candidates is SOX2 which has been implicated in neural stem 

cell maintenance [104]. Its constitutive activation maintains neural stem cell 

characteristics and inhibits neuronal differentiation while its inhibition leads to 

precocious neuronal differentiation [151, 152]. In glioma cell lines, SOX2 was 

identified as a direct target of miR-9*, and its expression is in turn derepressed by 

ID4-mediated transcriptional repression of miR-9* [105]. The finding that only miR-9* 

and not miR-9 regulates mRNA levels of SOX2 supports the hypothesis that miR-9* 

might act on lt-NES cell self-renewal by targeting, among other genes, SOX2 (Fig. 

4.2). A similar mechanism was recently described for the interaction of Sox2 and the 

miR-200 family in mouse neural progenitors. The authors showed that reduction of 

Sox2 levels by the miR-200 family promotes the transition from proliferation to 

differentiation [153]. This may likely be the case for reduction of SOX2 by miR-9* in 

neural stem cells. These data indicate that SOX2 is one of the specific miR-9* targets 

affecting lt-NES cell self-renewal which is not under the control of miR-9. 



Discussion 

 85 
 

Fig. 4.2: Potential network underlying the role of miR-9/9* in neural stem cell proliferation and 
differentiation. Schematic summary of the phenotypes induced by miR-9 and miR-9* and potential 
underlying targets analyzed in lt-NES cells. Colors indicate direct targets of miR-9 (orange), miR-9* 
(blue) or both (yellow) validated on protein and mRNA level. Gray indicates targets of miR-9/9* that 
were solely assessed at mRNA level. 
 

4.5 Derivation of specific neuronal subtypes by miRNA modulation 

4.5.1 Modulation of lineage choice by miR-9/9* and miR-7 

In addition to its impact on self-renewal and differentiation under proliferating 

conditions, elevated levels of miR-9/9* further increase the yield of neurons 

generated after induction of neurogenesis by growth factor withdrawal. The beneficial 

effect on the overall generation of neurons observed is in accordance with data 

gained from the murine telencephalon and Zebrafish hindbrain where miR-9 has 

been shown to promote differentiation of newly born neurons [78, 86]. In addition, the 

potential interplay of the JAK-STAT pathway with miR-9/9* and Notch signaling 

discussed before may not only be important in cancer cells. For instance, it is known 

that JAK-STAT and Notch signaling cooperate to induce astrocytic fate [154]. 

Furthermore, miR-9 has the potential to act on neuronal lineage choice as it induces 

a switch in the subtypes of motor neurons generated by targeting FoxP1 in the chick 

spinal cord [81] and helps to define the midbrain-hindbrain boundary in Zebrafish 

[78]. 
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Although overexpression of miR-7 did not impact significantly on lt-NES cell 

maintenance or differentiation in cell culture media containing EGF and FGF, it 

significantly affected the generation of neuronal cells once differentiation was induced 

by their withdrawal. The significant enhancement of neuronal generation by miR-7 

induction in lt-NES cells observed only at later time points of in vitro differentiation 

supports the hypothesis that miR-7 may be involved at later stages of neural 

development. This is in line with the described neuroprotective role of miR-7 in 

defending mature neurons against oxidative stress by targeting α-synuclein mRNA 

[155] and its impact on the generation forebrain dopaminergic neurons in mouse [66]. 

 

4.5.2 MicroRNA-based regulation of dopaminergic fate specification 

The promoting effect of miR-9/9* and miR-7 on neuronal differentiation and their 

known influence on neuronal subtype specification called for analysis of the neuronal 

cultures generated upon their overexpression. Upon induction of differentiation, lt-

NES cells give mostly rise to glutamatergic and in small amounts dopaminergic and 

serotonergic neurons [3]. This work focused on the impact of miR-9/9* and miR-7 on 

the derivation of dopaminergic neurons. This specific neuronal subtype is very 

promising for neural replacement since dopaminergic neurons are lost from the 

substantia nigra pars compacta and consequentially the innervation in the striatum of 

patients suffering from Parkinson´s disease. Their loss accounts for motor symptoms 

including rigidity, akinesia, postural instability and tremor which are hallmarks of 

Parkinson´s disease (reviewed in [156]). 

In lt-NES cells, overexpression of miR-9/9* as well as miR-7 led to a reduction of 

neurons of dopaminergic fate as assessed by staining for tyrosine hydroxylase (TH). 

This finding is supported by the recent data from the murine forebrain suggesting that 

miR-7a reduces the number of dopaminergic neurons generated [66]. However, data 

from the forebrain may not reflect the generation of the dopaminergic neurons lost in 

Parkinson´s disease, as these originate from the midbrain. Therefore, a detailed 

analysis of miR-9/9* and miR-7 during dopaminergic lineage choice may help to 

understand their role. As differentiation of lt-NES cells gives rise to only a small 

number of TH-positive neurons, another cellular system had to be used. Recently, it 

was shown that mesenchephalic dopaminergic neurons originate from 
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mesenchephalic floor plate cells, which represent a specialized cell population that 

organizes neural tube patterning and axon guidance [157, 158]. This finding was 

used by Kriks et al. to devise a protocol for derivation of dopaminergic neurons from 

human pluripotent stem cells via induction of floor plate precursor cells [89]. 

Expression analyses of miR-9, miR-9*, and miR-7 as well as known dopaminergic 

determinants were performed during the time course of this differentiation paradigm. 

These data showed that miR-9, miR-9* and miR-7 are down-regulated, while 

expression of dopaminergic markers like FOXA2, LMX1A, and MSX1 as well as 

neural stem cell marker PAX6 dramatically increase with progressing differentiation. 

Both miR-9/9* and miR-7 have been described to target Pax6. MiR-7 reduced the 

number of mouse forebrain dopaminergic neurons by direct interaction with Pax6 

[66], while miR-9 inhibited Pax6 expression indirectly by suppressing Meis2 in the 

mouse telenchephalon [86]. These data strongly suggested that miR-7 and miR-9/9* 

converge to regulate the generation of dopaminergic neurons by reducing PAX6 

levels. However, as previously discussed, data gained in lt-NES cells did not confirm 

the impact of miR-9/9* and miR-7 on PAX6 in human neural stem cells.  

Other candidates highly expressed in midbrain dopaminergic cells and important for 

their specification are FOXA2, LMX1A and EN2 [159] which all harbor binding sites 

for miR-9/9* and miR-7 in their 3´UTRs. Regulation of EN2 mRNA levels by miR- 9/9* 

in lt-NES cells and FOXA2 mRNA and protein level in HepG2 cells by miR-9/9* and 

miR-7 could be shown here. Future work has to prove direct binding of miR-9/9* and 

miR-7 to the mRNAs of EN2 and FOXA2 as well as the predicted regulation of 

LMX1A und its functional relevance in dopaminergic fate choice. However, the data 

gathered strongly suggest targeting of EN2 and FOXA2 which may explain, to a 

certain extent, the impact of miR-9/9* and miR-7 on dopaminergic differentiation. 

Interestingly, the observed changes in dopaminergic specification could potentially 

represent an additional connection to the Notch signaling pathway, as Hes1 was 

indicated to regulate density and location of mouse mesDA neurons [160]. Therefore, 

the regulation of human HES1 by miR-9/9* described here might further contribute to 

the impact of these miRNAs on the generation of dopaminergic neurons. 

The targeting of dopaminergic fate determinants together with the impaired 

generation of TH-positive cells from lt-NES cells upon overexpression of miR-9/9* or 

miR-7 as well as expression patterns of miR-9, miR-9*, and miR-7 during the time 
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course of mesechephalic dopaminergic precursor induction point to an inhibitory 

function of these three miRNAs in dopaminergic lineage choice. The absent 

expression of miR-9 in mouse floor plate cells as shown in [130] further supports the 

hypothesis of an inhibitory impact of this miRNA on the generation of mesDA neurons 

also in vivo.  

 

4.6 Conclusion 
Altogether, the data presented indicate that - in human neural stem cells - miR-9/9* 

act on the balance between proliferation and differentiation. Interestingly, miR-9 and 

miR-9* enhanced differentiation, while only miR-9* impaired proliferation (published 

in [82]). This may be due to the individual targets of the two sister miRNAs. For 

instance, neural stem cell regulator SOX2 was found to be targeted by miR-9* only. 

However, the data gathered show that both miRNAs target Notch signaling as it was 

discovered here that miR-9 as well as miR-9* regulate NOTCH2 levels and direct 

transcriptional regulation of HES1 by miR-9 could be shown. This interaction was 

found to be part of a novel feedback loop, in which miR-9/9* expression is under the 

transcriptional control of Notch signaling in turn. The Notch-miR-9/9* axis described 

here seems to be part of a bigger network regulating stem cell maintenance. As the 

role of Notch signaling is not restricted to the neural system, the described interaction 

may prove to have similar functions in other cellular systems as well. 

In addition to its role in proliferating lt-NES cells, miR-9/9* – along with miR-7 – were 

found to enhance induced differentiation while impairing dopaminergic lineage 

choice. Modulation of these inhibitory as well as miRNAs known to be beneficial to 

dopaminergic differentiaton (like miR-181a [68]) may proof useful to increase the 

yield or accelerate the generation of mesenchephalic dopaminergic neurons from the 

differentiation paradigms devised so far. 

 

4.7 Outlook 
The data presented in this thesis provide new insights on miRNA-based regulation of 

neural stem cell differentiation and neuron subtype specification. Neurons derived 

from lt-NES cells may be potentially suitable for high throughput applications, 

pharmaceutical compound screenings, drug discovery, and neurotoxiticity studies 
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[129]. In order to shed light on the molecular mechanisms underlying the impact of 

miR-9/9* on human neural stem cells, the role of transcriptional miR-9/9* repression 

by HES1 in lt-NES cell maintenance would be interesting to analyze. This interaction 

might add a second feedback loop to the regulatory role of the NOTCH2-miR-9/9*-

axis described. A network that could be further unraveled by validation of direct 

targeting of HEY2 by miR-9/9*. Parallel to the knowledge gained on NOTCH2, the 

impact of miR-9/9* targets HES1 and HEY2 could be specifically addressed by 

modulating them separately. Furthermore, potential interactions with other important 

signaling pathways like JAK-STAT could be analyzed and the relevance of the 

observed transcriptional network could be assessed in cell types other than lt-NES 

cells (e.g. cells with other regional identities like cortical progenitors). 

As Notch signaling is known to impact on specification of neuronal versus glial cells 

dependent on dosage and timing of activation, its interplay with miR-9/9* in lineage 

decision could be investigated. Furthermore, the effect of miR-7 and miR-9/9* in the 

specification of neuronal subtypes has to be studied in more detail. These issues 

could not be addressed in lt-NES cells as the percentage of dopaminergic cells 

generated upon their differentiation is very small. Therefore, protocols specifically 

devised to generate mesenchephalic dopaminergic neurons (as described in [89, 

161]) might prove useful to follow up on the effect of miR-7 and miR-9/9* 

overexpression on dopaminergic fate in lt-NES cells. Hence, direct binding of miR-

9/9* and miR-7 to the 3´UTRs of FOXA2 and EN2 as well as other potential targets 

involved in dopaminergic fate like LMX1A has to be assessed to get an insight into 

the underlying mechanisms. In addition, the analysis on lineage decision could be 

expanded to other neuronal subtypes like serotonergic and GABAergic neurons. 

The knowledge obtained in these experiments should inform future studies on the 

generation of defined neural cell types for biomedical applications. 
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