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Abstract

In harmonic analysis, there is a conjecture (attributed to Zygmund in [21]) stating that the di-

rectional maximal operator along a Lipschitz planar vector field (defined as in (1.0.6)) is weakly

bounded on L2(R2). In this thesis, we present some recent progress towards this conjecture and its

singular integral variant, which is that the directional Hilbert transform along a Lipschitz vector

field (defined as in (1.0.8)) is weakly bounded on L2(R2).

In Chapter 1 we will first state these two conjectures and explain some partial progress that has

been made. Afterwards we will state the main results of the present thesis.

In Chapter 2 we will prove the L2 boundedness of the directional Hilbert transform along planar

measurable vector fields which are constant along suitable Lipschitz curves. Jones’ beta numbers

will play a crucial role when handling vector fields of the critical Lipschitz regularity.

In Chapter 3 we will generalise the L2 bounds in Chapter 2 to Lp for all p > 3/2. To achieve

this, we need to study a new paraproduct, which is indeed a one-parameter family of paraproducts,

with each paraproduct living on one Lipschitz level curve of the vector field.

In Chapter 4, by using the techniques presented in Chapter 2 and 3, we will provide a geometric

proof of Bourgain’s L2 estimate of the maximal operator along analytic vector fields.
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Chapter 1

Introduction and statement of the main results

The classical Lebesgue differentiation theorem states that for any f ∈ L1
loc(Rn) we have

lim
ε→0

1

|Bε(x)|

∫
Bε(x)

f(z)dz = f(x), a.e. (1.0.1)

with Bε(x) denoting the ball of radius r centered at x. On the plane R2, instead of balls, taking

averages over lower dimensional submanifolds like spheres or parabolas also appear naturally in

harmonic analysis. A question I am interested in is the following: Suppose every point x ∈ R2 is

assigned a unit vector v(x), then given any f ∈ L2
loc(R2), does it hold true that

lim
ε→0

1

2ε

∫ ε

−ε
f(x+ tv(x))dt = f(x), a.e. ? (1.0.2)

If the vector field is too “rough”, the above pointwise convergence may fail almost everywhere. One

such example can be constructed basing on the so-called Nikodym set. In 1927, Nikodym constructed

a set N ⊂ [0, 1]× [0, 1] with the properties that |N | = 1, and that ∀x ∈ N , there exists a straight line

passing through x which meets N only at x. The associated vector field v is defined as follows: at a

point x ∈ N , let v(x) be the unit vector parallel to the line that passes through x in the Nikodym

set; at x /∈ N , let v(x) be any fixed unit vector, say (1, 0).

If we take the function f in (1.0.2) to be the characteristic function of the complement of the

Nikodym set in the unit square, i.e.

f := χ[0,1]×[0,1]\N , (1.0.3)

then we know that

f = 0, a.e. on R2 (1.0.4)
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by the properties of the Nikodym set. However, for all x ∈ N , it is also easy to see that

lim
ε→0

1

2ε

∫ ε

−ε
f(x+ tv(x))dt = 1. (1.0.5)

Hence (1.0.2) fails almost everywhere on the unit square.

The above example tells us that in order for the pointwise convergence in (1.0.2) to be true, the

vector field v has to have certain “regularity”. Indeed it is a long standing conjecture in harmonic

analysis (attributed to Zygmund in [21]) that (1.0.2) will hold true as long as we assume the vector

field to be Lipschitz continuous. To state this conjecture quantitatively, it is convenient to introduce

the following maximal function

Mv,ε0f(x) := sup
0<ε≤ε0

1

2ε

∫ ε

−ε
|f(x+ tv(x))|dt, (1.0.6)

where ε0 is some positive constant depending on v. By a standard argument, (1.0.2) follows from

the weak type estimate

sup
λ>0

λ2
∣∣{x ∈ R2 : Mv,ε0f(x) > λ}

∣∣ ≤ C‖f‖22, (1.0.7)

where C > 0 is some universal constant. Now we are ready to state

Conjecture 1 ([21]) There exists a universal constant κ > 0 such that for any unit Lipschitz vector

field v : R2 → S1, the estimate (1.0.7) holds true with ε0 := κ/‖v‖Lip.

Instead of the maximal operator (1.0.6), it is also very natural to consider its singular integral variant

Hv,ε0f(x) :=

∫ ε0

−ε0
f(x+ tv(x))

dt

t
(1.0.8)

as they share many features, in particular they have the same scaling and thus share the same

potential Lp bounds. Indeed, the following conjecture was stated and studied by Lacey and Li in

[21].

Conjecture 2 ([21]) There exists a universal constant κ > 0 such that for any unit Lipschitz

vector field v : R2 → S1, the operator Hv,ε0 with ε0 := κ/‖v‖Lip satisfies the following weak type

(2, 2) estimate:

sup
λ>0

λ2
∣∣{x ∈ R2 : Hv,ε0f(x) > λ}

∣∣ ≤ C‖f‖22, (1.0.9)

where C is a constant independent of f and v.
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The constant ε0 in the above Conjecture 1 and 2 is suggested by the isotropic scaling symmetry

x→ λx. (1.0.10)

Here we carry out the discussion by taking the example of the maximal operator. If we assume

that there exists a constant κ > 0 such that for all v with ‖v‖Lip ≤ 1, the truncated maximal

operator Mv,κ satisfies the weak type estimate (1.0.7), then for an arbitrary Lipschitz vector field v,

by choosing

λ =
1

‖v‖Lip
, (1.0.11)

and denoting vλ(·) = v(λ·), we obtain that

‖vλ(·)‖Lip = 1. (1.0.12)

Hence by our assumption, Mvλ,κ satisfies the weak type estimate (1.0.7). Next, if we denote fλ(·) :=

f(λ·), then by a simple change of variable, we observe that

Mvλ,κfλ(x) = sup
0<ε≤κ

1

2ε

∫ ε

−ε
|f(λx+ λtv(λx))|dt

= sup
0<ε≤λκ

1

2ε

∫ ε

−ε
|f(λx+ tv(λx))|dt = Mv,λκf(λx).

(1.0.13)

Hence Mv,λκ, which can also be written as Mv,κ/‖v‖Lip , satisfies the same weak type estimate as

(1.0.7).

So far we have seen that the truncation ε0 = κ/‖v‖Lip of the maximal operator (1.0.6) and the

Hilbert transform (1.0.8) appears naturally for Lipschitz vector fields. Next we will state several mo-

tivations of conjecturing the Lipschitz regularity. Still, we will take the maximal operator as example.

1.1 Motivation for Lipschitz regularity

From change of variables. Let v be a unit vector field such that ‖v‖Lip ≤ 1. For a small enough

κ and for any 0 < ε ≤ κ, we consider the average at the scale ε, which is defined by

Av,εf(x) :=
1

2ε

∫ ε

−ε
|f(x+ tv(x))|dt. (1.1.1)
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Notice that

Mv,ε0f(x) = sup
0<ε≤ε0

Av,εf(x). (1.1.2)

For any p ∈ (1,∞), by Minkowski’s inequality, we have

∥∥∥∥ 1

2ε

∫ ε

−ε
|f(x+ tv(x))|dt

∥∥∥∥
p

≤ 1

2ε

∫ ε

−ε
‖f(x+ tv(x)‖p dt. (1.1.3)

For any fixed t ∈ [−ε, ε], by the assumption that ‖v‖Lip ≤ 1 and a simple change of variables, it is

not difficult to see that

‖f(x+ tv(x)‖p ≤ C‖f‖p (1.1.4)

for some constant C > 0. Hence we obtain that

sup
0<ε≤ε0

‖Av,εf‖p ≤ C‖f‖p. (1.1.5)

Compared with (1.1.5), the estimate that Conjecture 1 aims at is

∥∥∥∥ sup
0<ε≤ε0

Av,εf

∥∥∥∥
p

≤ C‖f‖p, (1.1.6)

which is of a very similar form. Hence it is natural to conjecture that the above estimate (1.1.6)

also holds true.

The Knapp example. For any given α ∈ (0, 1), we will construct a counter example of Cα

vector field v, such that the associated maximal operator Mv,ε0 is not bounded on Lp for any p ≤ 2.

Before constructing this example, we should make clear the dependence of the truncation ε0 on the

Cα norm of the vector fields. By a similar scaling argument to (1.0.10)-(1.0.13), ε0 in the maximal

operator Mv,ε0 should be determined by

ε0 := κ/‖v‖1/αCα , (1.1.7)

for some small positive constant κ. Here we use ‖ · ‖Cα to denote the homogeneous Hölder norm,

which is

‖v‖Cα := sup
x 6=y

|v(x)− v(y)|
|x− y|α

, (1.1.8)

as we always consider unit vector fields.
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Now we proceed with the detailed construction of the counter example. For some small δ > 0,

in the first quadrant of the plane, define the vector field vδ by

vδ(x1, x2) :=


(1, δ) if x2 ≥ δ(x1 + 1);

(1, x2

1+x1
) else.

(1.1.9)

The following picture illustrates how the above vector field looks like in the first quadrant:

When calculating the Cα norm of the vector field vδ in the first quadrant, we observe that vδ changes

fastest along the Y -axis, hence we obtain that

‖vδ‖Cα = sup
0≤x2≤δ

x2

xα2
= δ1−α. (1.1.10)

Next it is not difficult to extend the definition of vδ to the whole plane satisfying the same bound

as above. Hence the truncation ε0 is given by

ε0 = δ−
1−α
α . (1.1.11)

Now we need to pick a “bad” function fδ corresponding to the vector field vδ. Denote

Rδ := [−1− δ,−1 + δ]× [−δ2, δ2], (1.1.12)

define

fδ := χRδ . (1.1.13)

The Lp norm of the function fδ is

‖fδ‖p = δ
3
p . (1.1.14)

5



Concerning the output of the operator Mvδ,ε0 : at the point (x1, x2) with

0 ≤ x1 ≤ δ−
1−α
α and 0 ≤ x2 ≤ δ(1 + x1), (1.1.15)

we have that

Mvδ,ε0fδ(x1, x2) ≥ δ

1 + x1
. (1.1.16)

Hence

‖Mvδ,ε0fδ‖pp ≥
∫ δ−

1−α
α

0

∫ δ(1+x1)

0

(
δ

1 + x1

)p
dx2dx1

≥
∫ δ−

1−α
α

0

δp+1(1 + x1)−p+1dx1

≥


Cp,αδ

p+1δ−
1−α
α ·(2−p) for p < 2.

C2,αδ
3 ln 1

δ for p = 2.

(1.1.17)

Here for p ≤ 2, Cp,α > 0 is a constant depending on p and α. From the above estimate we conclude

that for any p ≤ 2, the maximal operator Mvδ,ε0 is not bounded on Lp.

1.2 Partial progress towards Conjecture 1 and 2

In terms of regularity, the only known results concerning Conjecture 1 and 2 are for analytic vector

fields. Bourgain [7] proved that for any analytic vector field v, there exists ε0 depending on v such

that Mv,ε0 is bounded on L2. The Lp bounds for all p > 1 for both the maximal operator Mv,ε0

and the Hilbert transform Hv,ε0 were proved by Stein and Street [26]. Indeed, the results in [26] are

much more general (including the multi-parameter case), but not in terms of regularity.

For smooth vector fields, Christ, Nagel, Stein and Wainger [9] proved, under some extra curvature

conditions, that the associated maximal operator and singular integral operators are bounded on Lp

for p > 1.

There is an interesting connection between the Hilbert transform along vector fields and Car-

leson’s maximal operator, which was observed by Coifman and El Kohen, we review the discussion

as presented in [5]. Consider the case of the one-variable vector fields, i.e. vector fields of the form

v(x1, x2) = (1, u(x1)) for some measurable function u : R → R. Define the Hilbert transform along

6



the vector field v without cut-off by

(Hvf)(x1, x2) :=

∫
R
f(x1 − t, x2 − u(x1)t)

dt

t
. (1.2.1)

Denoting by f̂ the partial Fourier transform in the second variable we obtain formally

∫
f(x1 − t, x2 − u(x1)t)

dt

t
(1.2.2)

=

∫
eix2ξ2

∫
f̂(x1 − t, ξ2)e−iu(x1)tξ2

dt

t
dξ2.

By the Plancherel theorem, the L2 norm of this expression in the x1 and x2 variables is the same as

the L2 norm in the variables x1 and ξ2 of the expression

∫
f̂(x1 − t, ξ2)eiu(x1)tξ2

dt

t
.

For each fixed ξ2, we recognise this to essentially be the linearisation of Carleson’s maximal operator

(Cf)(x) := sup
N∈R

∣∣∣∣∫
R
f(x− t)eiNt dt

t

∣∣∣∣ . (1.2.3)

The use of Plancherel’s theorem makes this simple argument work only in L2. To go beyond L2,

we need to replace the Fourier transform by a Littlewood-Paley decomposition. Lacey and Li [20],

exploiting the connection between the Hilbert transform along vector fields and Lacey and Thiele’s

proof for the boundedness of the bilinear Hilbert transform [23] [24] and Carleson’s maximal operator

[25], proved that for any measurable vector field v, the operator HvPk, which is the composition of

the Hilbert transform along v with a Littlewood-Paley projection operator Pk for some fixed k, maps

L2 to weak L2, and Lp to Lp for p > 2, uniformly in k. Moreover, conditioning on the boundedness

of what they called the Lipschitz-Kakeya maximal operator, Lacey and Li [20] also proved that for

any C1+α vector field v with α > 0, the operator Hv,ε0 is bounded on L2 for some properly chosen

ε0.

Afterwards, Bateman verified the boundedness of the Lipschitz-Kakeya maximal operator for

the one-variable vector fields in [3]. On that basis Bateman [4], Bateman and Thiele [5] proved the

following

Theorem 1.1 ([4], [5]) For a one variable vector field v of the form v(x1, x2) = (1, u(x1)) for some

measurable function u, the associated Hilbert transform Hv defined as in (1.2.1) is bounded on Lp

7



for p ∈ (3/2,∞).

Remark 1.2 Here we make an observation that Bateman and Thiele’s result in [5] holds true for

all Hörmander-Mihlin kernels. Let K be a Calderon-Zygmund kernel with m := Ǩ satisfying the

Hörmander-Mihlin condition

|∂βm(ξ)| ≤ Cβ
|ξ|β

,∀ξ ∈ R \ {0} (1.2.4)

for sufficiently many β ∈ N, where Cβ > 0 is a constant depending only on β. For a one-variable

vector field v(x1, x2) = (1, u(x1)) for some measurable function u, similar to (1.2.1), define the

associated singular integral with kernel K along v by

HK
v f(x1, x2) :=

∫
R
f(x1 − t, x2 − u(x1)t)K(t)dt. (1.2.5)

Then for all p > 3/2, we claim that

‖HK
v f‖p ≤ Cp,K‖f‖p, (1.2.6)

with a constant Cp,K > 0 depending only on p and the kernel K. The estimate (1.2.6) follows from

Bateman and Thiele’s proof of Theorem 1.1 and the anisotropic scaling

x1 → x1, x2 → λx2. (1.2.7)

If we denote by Γ the cone {(x1, x2) : |x1| ≤ |x2|}, 1Γ the indicator function of the cone Γ, and ΠΓ

the frequency projection operator on the cone Γ, which is

ΠΓf := F−1(1Γ · Ff), (1.2.8)

where F denotes the Fourier transform and F−1 its inverse, then what Bateman and Thiele have

proven in [5] is

‖HK
v ΠΓf‖p ≤ Cp,K‖ΠΓf‖p, (1.2.9)

under the assumption that ‖u‖∞ ≤ 1. Notice that (1.2.7) and (1.2.9) imply that

‖HK
v ΠΓλf‖p ≤ Cp,K‖ΠΓλf‖p, (1.2.10)

for all λ ≥ 1, where Γλ denotes the cone {(x1, x2) : |x1| ≤ λ|x2|}. Hence by a limiting argument, we

8



obtain

‖HK
v f‖p ≤ Cp,K‖f‖p, (1.2.11)

under the assumption that ‖u‖∞ ≤ 1. Again by another limiting argument, we can get rid of the

restriction that ‖u‖∞ ≤ 1 and obtain the estimate (1.2.6).

Out of the same reasoning as in (1.2.1)-(1.2.3), the L2 boundedness in (1.2.6) is equivalent to

the L2 boundedness of Li and Muscalu’s generalised Carleson’s maximal operator in [22]:

sup
N∈R

∣∣∣∣∫
R
f(x− t)eiNtK(t)dt

∣∣∣∣ , (1.2.12)

where K is a kernel satisfying the Hörmander-Mihlin condition (1.2.4).

1.3 Statement of the main results

The first result I have obtained concerns a perturbation of Bateman and Thiele’s result [5] in the

critical Lipschitz regularity. This result is contained in my preprints [14] and [15].

Theorem 1.3 ([14], [15]) For any measurable vector field v0 satisfying the following two conditions

i) there exists a bi-Lipschitz map g0 : R2 → R2 s.t. for all x1 ∈ R

v0(g0(x1, x2)) is constant in x2, (1.3.1)

ii) there exists d0 > 0 s.t. for all x1 ∈ R

∠(∂2g0(x1, ·),±v0(g0(x1, ·))) ≥ d0 a.e. on R, (1.3.2)

the associated Hilbert transform, which is defined by

Hv0f(x) :=

∫
R
f(x− tv0(x))

dt

t
, (1.3.3)

is bounded on Lp for all p > 3/2. Moreover, the operator norm blows up when d0 → 0.

Remark 1.4 By taking g0 to be the identity map and applying the anisotropic scaling (1.2.7) cor-

respondingly, we recover the result of Bateman and Thiele [5].
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Remark 1.5 To our knowledge, this is the first result in the context of the Hilbert transform along

vector fields with a Lipschitz regularity in its hypothesis. Indeed, a structure theorem for Lipschitz

functions by Azzam and Schul [2] states that any Lipschitz function u0 : R2 → R (any Lipschitz unit

vector field v0 in our case) can be precomposed with a bi-Lipschitz function g0 : R2 → R2 such that

u0 ◦ g0, when restricted to a “large” portion of its domain, is Lipschitz in the first coordinate and

constant in the second coordinate.

The proof of Theorem 1.3 does not work for the maximal operator (1.0.6). Hence as part of

the enterprise to understand the difference between the singular integral operator (1.0.8) and the

maximal operator (1.0.6), we started to look at Bourgain’s result [7] on the L2 bounds of the maximal

operator along analytic vector fields. In the meantime, we observed that some of the techniques used

to prove Theorem 1.3 could be applied to provide a geometric proof of Bourgain’s result mentioned

above, which is

Theorem 1.6 ([7]) Let v be an analytic vector field on a bounded set Ω. Then for ε0 chosen small

enough, the associated maximal operator Mv,ε0 defined in (1.0.6) is bounded on L2.

The main tool that is used in the proof of Theorem 1.6 is the time-frequency decomposition

initiated by Lacey and Li in the setting of the Hilbert transform along vector fields in [20] and [21].

However, the proof is free of the time-frequency analysis techniques.

Notations: Throughout this thesis, we will write x� y to mean that x ≤ y/10, x . y to mean

that there exists a constant C s.t. x ≤ Cy, and x ∼ y to mean that x . y and y . x. 1E will always

denote the characteristic function of the set E.

10



Chapter 2

Hilbert transform along measurable vector fields constant on

Lipschitz curves: L2 boundedness

In this chapter, we will present the proof of Theorem 1.3 for the case p = 2. The content of this

chapter is essentially contained in my preprint [14]. Before starting the proof, we would like to look

at Bateman and Thiele’s result in [5] (Theorem 1.1) from another point of view.

On R2, a direction is given by vector v = (1, u), where u ∈ R. Consider the directional Hilbert

transform in the plane defined for a fixed direction v = (1, u) as

Hvf(x, y) :=

∫
R
f(x− t, y − ut)dt

t
(2.0.1)

for any test function f . Here we use (x, y) instead of (x1, x2) to denote one point in R2 as we want

to emphasis the bi-parameter structure of this operator. The bi-parameter structure arises since the

kernel is a tensor product between a Hilbert kernel in direction v and a Dirac delta distribution in

the perpendicular direction. By the dilation symmetry, the length of the vector v is irrelevant for

the value of Hv, which explains our normalisation of the first component.

By an application of Fubini’s theorem and the Lp bounds for the classical Hilbert transform

one obtains a priori Lp bounds for Hv. On the other hand, the corresponding maximal operator

supu |Hvf(x, y)| for varying directions is well known to not satisfy any a priori Lp bounds, see the

work of Karagulyan [17].

What Bateman and Thiele proved in [5] is

∥∥∥∥∫
R
f(x− t, y − u(x)t)

dt

t

∥∥∥∥
p

. ‖f‖p, (2.0.2)

where u : R → R is any measurable function and the constant depends only on p for p > 3/2. The
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estimate (2.0.2) can also be interpreted as

‖ sup
u∈R
‖Hvf(x, y)‖Lp(y)‖Lp(x) . ‖f‖p, (2.0.3)

as it is just a linearisation of the maximal operator in (2.0.3). The function u : R → R in (2.0.2)

will be called the linearising function. Note that the supremum falls between the computation of

the norm in y and in x, compared to being completely inside or outside as in our previous remarks.

The estimate (2.0.3) also highlights the bi-parameter structure of the directional Hilbert transform.

In the following, we will first formulate a generalisation of Bateman and Thiele’s result in the

form of (2.0.3), and then derive Theorem 1.3 as a corollary. To formulate such a result, we perturb

(2.0.3) by a bi-Lipschitz horizontal distortion, that is

(x, y)→ (g(x, y), y) (2.0.4)

with

(x′ − x)/a0 ≤ g(x′, y)− g(x, y)) ≤ a0(x′ − x) (2.0.5)

for every x < x′ and every y, such that the transformation (2.0.4) maps vertical lines to near vertical

Lipschitz curves:

|g(x, y)− g(x, y′)| ≤ b0|y′ − y| (2.0.6)

for all x, y, y′. These two conditions can be rephrased as

1/a0 ≤ ∂1g ≤ a0 and |∂2g| ≤ b0 a.e. (2.0.7)

Under these assumptions, Lp norms are distorted boundedly under the transformation (2.0.4).

Namely, (2.0.5) implies for every y that

a−1
0 ‖f(x, y)‖pLp(x) ≤ ‖f(g(x, y), y)‖pLp(x) ≤ a0‖f(x, y)‖pLp(x) (2.0.8)

and we may integrate this in y direction to obtain equivalence of Lp norms in the plane. Hence

the change of measure is not the main point of the following theorem, but rather the effect of the

transformation on the linearising function u, which is now constant along the family of Lipschitz

curves which are the images of the lines x = x0 under the map (2.0.4).
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Theorem 2.1 Let g : R2 → R satisfy assumption (2.0.5) for some a0 and assumption (2.0.6) for

some b0. Then for any c0 ∈ (0, 1), we have

‖ sup
|u|≤c0/b0

‖Hvf(g(x, y), y)‖L2(y)‖L2(x) ≤ C‖f‖2. (2.0.9)

Here C is a constant depending only on a0 and c0.

Remark 2.2 The constant C is independent of b0 due to the anisotropic scaling symmetry x →

x, y → λy.

The case p = 2 in Theorem 1.3 will be derived as a corollary of the above Theorem 2.1. We will

present the reduction in the following Section 2.1. Before doing that, we first comment on the proof

of Theorem 2.1.

To use the assumption that the linearising function v of (2.0.9) is constant along Lipschitz curves,

we apply an adapted Littlewood-Paley theory along the level lines of v. This is a refinement of the

analysis of Coifman and El Kohen who use a Fourier transform in the y variable and the analysis

of Bateman and Thiele who use a classical Littlewood-Paley theory in the y variable. This adapted

Littlewood-Paley theory is the main novelty of the proof. It is in the spirit of prior work on the

Cauchy integral on Lipschitz curves, for example [10] , but it differs from this classical theme in

that it is more of bi-parameter type as it is governed by a whole fibration into Lipschitz curves. We

crucially use Jones’ beta numbers as a tool to control the adapted Littlewood-Paley theory. To our

knowledge this is also the first use of Jones’ beta numbers in the context of the directional Hilbert

transform.

In this chapter we focus on the case L2, since our goal here is to highlight the use of the adapted

Littlewood-Paley theory and Jones’ beta numbers in the technically most simple case.

While Coifman and El Kohen use the difficult bounds on Carleson’s operator as a black box,

Bateman and Thiele have to unravel this black box following the work of Lacey and Li [20]-[21]

and use time-frequency analysis to prove bounds for a suitable generalisation of Carleson’s operator.

Luckily, in the proof of Theorem 1.3 we do not have to delve into time-frequency analysis as we can

largely recycle the work of Bateman and Thiele for this aspect of the argument.

An upper bound such as |u| ≤ c0/b0 is necessary in our theorem. By a limiting argument we

may recover the theorem of Bateman and Thiele, using the scaling to tighten the Lipschitz constant

b0 at the same time as relaxing the condition |u| ≤ c0/b0.

An interesting open question remains whether the same holds true for c0 = 1. We do not know
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of a soft argument to achieve this relaxation. Our estimate of the norms become unbounded as c0

approaches 1. This question suggests itself for further study.

Outline of chapter: in Section 2.1 we will prove the L2 bounds in Theorem 1.3 by reducing it

to Theorem 2.1. The reduction will also be used later in the proof of Theorem 2.1.

In Section 2.2 we will state the strategy of the proof for Theorem 2.1. As it appears that our

result is a Lipschitz perturbation of the one by Bateman and Thiele, this turns out also to be the

case for the proof: if we denote by Pk a Littlewood-Paley operator in the y-variable, the main

observation in Bateman and Thiele’s proof is that Hv (given by (1.2.1)) commutes with Pk. In our

case, this is no longer true. However, we can make use of an adapted version of the Littlewood-

Paley projection operator P̃k (see Definition 2.5) to partially recover the orthogonality. We split the

linearised operator Hv of the left hand side of (2.0.9) into a main term and a commutator term

∑
k∈Z

HvPk(f) =
∑
k∈Z

(HvPk(f)− P̃kHvPk(f) + P̃kHvPk(f)). (2.0.10)

The boundedness of the main term
∑
k∈Z P̃kHvPk(f) is essentially due to Lacey and Li [20], with

conditionality on certain maximal operator estimate. In Section 2.3 we modify Bateman’s argument

in [3] and [4] to the case of vector fields constant on Lipschitz curves and remove the conditionality

on that maximal operator.

The main novelty is the boundedness of the commutator term

∑
k∈Z

(HvPk(f)− P̃kHvPk(f)), (2.0.11)

which will be presented in Section 2.4. To achieve this, we will view Lipschitz curves as perturba-

tions of straight lines and use Jones’ beta number condition for Lipschitz curves and the Carleson

embedding theorem to control the commutator. Here we shall emphasis again that the commutator

estimate is free of time-frequency analysis.
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2.1 Proof of the L2 bounds in Theorem 1.3 by reducing to

Theorem 2.1

In this section we prove the L2 bounds in Theorem 1.3, by reducing it to Theorem 2.1. The reduction

is based on a cutting and pasting argument. Some parts of the reduction will also be used in the

proof of Theorem 2.1 in the rest of the chapter.

We first divide the unit circle S1 into N arcs of equal length, with the angle of each arc being

2π/N . Choose

N > 6π/d0 (2.1.1)

s.t. 2π/N < d0/3. Denote these arcs as Ω1,Ω2, ...,ΩN . For each Ωi, define

Hv0,Ωif(x, y) :=

 Hv0f(x, y) if v0(x, y) ∈ Ωi

0 else

where Hv0f is given by (1.3.3). If we were able to prove that ‖Hv0,Ωi‖2→2 is bounded by a constant

C which is independent of i ∈ {1, 2, ..., N}, then we conclude that

‖Hv0‖2→2 ≤ CN(d0). (2.1.2)

Now fix one Ωi, we want to show the boundedness of Hv0,Ωi . Choose a new coordinate such that

the x-axis passes through Ωi and bisects it. Then all the vectors in Ωi form an angle less than d0/6

with the x-axis. As we assume that

∠(∂2g0,±v0(g0)) ≥ d0 > 0, (2.1.3)

we see that the vector ∂2g0 forms an angle less than π−d0
2 with the y-axis.

Renormalise the unit vector v0 such that the first component is 1, i.e. write v0 = (1, u0), then

by the fact that v0 forms an angle less than d0/6 with the x-axis, we obtain

|u0| ≤ tan(d0/6). (2.1.4)

Next we construct the Lipschitz function g in Theorem 2.1 from the bi-Lipschitz map g0, and
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the coordinate we will use here is still the one associated to Ωi as above. Under this linear change of

variables, we know that g0 is still bi-Lipschitz. We renormalise the bi-Lipschitz map in such a way

that

g0(x, 0) = (x, 0),∀x ∈ R. (2.1.5)

Fix x ∈ R, the map g0, when restricted on the vertical line {(x, y) : y ∈ R}, is still bi-Lipschitz. We

denote by Γx the image of this bi-Lipschitz map, i.e.

Γx := {g0(x, y) : y ∈ R}. (2.1.6)

Define the function g by the following relation

(g(x, y), y) = g0(x, y′), (2.1.7)

for some y′. By the fact that g0 is bi-Lipschitz, we know that such y′ exists and is unique.

From the above construction and the fact that ∂2g0 forms an angle less than π−d0
2 with the

y-axis, we see easily that

|g(x, y1)− g(x, y2)| ≤ cot(d0/2)|y1 − y2|,∀x, y1, y2 ∈ R. (2.1.8)

Hence what is left is to show that condition (2.0.5) is also satisfied with a constant a0 depending

only on d0 and the bi-Lipschitz constant of g0. One side of the equivalence (x1−x2)/a0 ≤ g(x1, y)−

g(x2, y) is quite clear from the picture below: the bi-Lipschitz map g0 sends the points P,Q to

(g(x1, y), y), (g(x2, y), y) separately, then by definition of bi-Lipschitz map, there exists constant a0

s.t.

g(x1, y)− g(x2, y) ≥ 1

a0
|P −Q| ≥ 1

a0
(x1 − x2). (2.1.9)
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For the other side, we argue by contradiction. If for any M ∈ N large, there exists x1, x2, y ∈ R s.t.

g(x1, y)− g(x2, y) ≥M(x1 − x2), (2.1.10)

then together with (2.1.8), this implies that

dist(K,Γx1
) ≥M sin(d0/2)(x1 − x2). (2.1.11)

But this is not allowed as by the definition of the bi-Lipschitz map g0 and the Lipschitz function g,

dist(K,Γx1
) must be comparable to |x1 − x2|.

So far, we have verified all the conditions in Theorem 2.1 with

b0 = cot(d0/2) and c0 = tan(d0/6)/ cot(d0/2) < 1. (2.1.12)

Hence we can apply Theorem 2.1 to obtain the boundedness of Hv0,Ωi .

In the end, as claimed in Theorem 1.3, we still need to show that the operator norm in Lp

(∀p > 1) blows up without the assumption that d0 > 0. For the range p ≤ 2, the counter example is

simply a Knapp example: let B1(0) denote the ball of radius one centred at origin, take the function

f(x) = 1B1(0)(x), let Γ be the upper cone which forms an angle less than π
4 with the vertical axis.

First define the vector field v0(x) = x
|x| for x ∈ Γ \ B1(0), then extend the definition to the whole

plane properly such that v0 satisfies the condition (1.3.1). It is then easy to see that

|Hv0f(x)| ∼ 1

|x|
,∀x ∈ Γ \B1(0), (2.1.13)
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which does not belong to Lp(R2) for p ≤ 2. For the range p > 2, the counter example is given by the

standard Besicovitch-Kakeya set construction, which can be found in Page 1022 [4] and Page 7 [20].

2.2 Strategy of the proof of Theorem 2.1

If we linearise the maximal operator in Theorem 2.1, what we need to prove turns to be the following

‖
∫
R
f(g(x, y)− t, y − tu(x))dt/t‖2 . ‖f‖2, (2.2.1)

where u : R→ R is a measurable function such that ‖u‖∞ ≤ c0/b0. The change of coordinates

(x, y)→ (g(x, y), y) (2.2.2)

in (2.0.4) also changes the measure on the plane. However, we still want to use the original Lebesgue

measure for the Littlewood-Paley decomposition. Hence we invert (2.0.4) and denote the inversion

by

(x, y)→ (P (x, y), y), (2.2.3)

where “P” stands for “projection”. The following picture illustrates why we call the map (2.2.3) a

projection:

The change of coordinates in (2.2.3) turns the estimate (2.2.1) into the following equivalent form

‖
∫
R
f(x− t, y − tu(P (x, y)))dt/t‖2 . ‖f‖2. (2.2.4)
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Moreover, we will denote

Hvf(x, y) :=

∫
R
f(x− t, y − tu(P (x, y)))dt/t. (2.2.5)

In the rest of the paper, we want to make the convention that whenever Hv appears, it denotes

the Hilbert transform along the vector field v(x, y) = (1, u(P (x, y))), which is the above (2.2.5), to

distinguish it from the various Hv that have appeared previously in this chapter.

To prove the above estimate, we first make several reductions: by the anisotropic scaling

x→ x, y → λy, (2.2.6)

we can w.l.o.g. assume that b0 = 10−2. By a similar cutting and pasting argument to that in the

proof of Theorem 1.3, we can assume that c0 � 10−2, i.e. the vector field v is of the form (1, u)

with |u| � 1.

Now we start the proof. It was already observed in Bateman [4] (Page 1024) that under the

assumption |u| � 1, we can w.l.o.g. assume that supp f̂ lies in a two-ended cone which forms an

angle less than π/4 with the vertical axis, as for functions f with frequency supported on the cone

near the horizontal axis, we have that

Hvf(x, y) = H(1,0)f(x, y), (2.2.7)

which is the Hilbert transform along the constant vector field (1, 0). But H(1,0) is bounded by

Fubini’s theorem and the L2 boundedness of the Hilbert transform.

For the frequencies outside the cone near the horizontal axis, the proof consists of two steps.

In the first step we will prove the boundedness of Hv when acting on functions with frequency

supported in one single annulus. To be precise, let Γ be the cone which forms an angle less than

π/4 with the vertical axis, ΠΓ be the projection operator on Γ, i.e.

ΠΓf := F−1(1Γ · Ff), (2.2.8)

where F stands for the Fourier transform and F−1 the inverse transform. Let Pk be the k-th

Littlewood-Paley projection operator in the vertical direction, namely if we denote by ψ0 is a smooth
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function with support on [−5/2,−1/2] ∪ [1/2, 5/2] such that

∑
k∈Z

ψk(t) = 1,∀t 6= 0, (2.2.9)

with

ψk(t) := ψ0(2−kt), (2.2.10)

then

Pkf(x, y) :=

∫
R
f(x, y − y′)ψ̌k(y′)dy′. (2.2.11)

As we are always concerned with the frequency in Γ, later for simplicity we will just write Pk instead

of Pk ◦ΠΓ for short. Then what we will prove first is

Proposition 2.3 Under the same assumptions as in Theorem 2.1, we have for p ∈ (1,∞) that

‖HvPk(f)‖p . ‖Pk(f)‖p, (2.2.12)

with the constant being independent of k ∈ Z.

In order to prove the boundedness of Hv, we need to put all the frequency pieces together. In

the case of C1+α vector fields for any α > 0, Lacey and Li’s idea in [21] is to prove the almost

orthogonality between different frequency annuli. In the case where the vector field is constant

along vertical lines, an important observation in the paper of Bateman and Thiele is that Hv and

Pk commute, which then makes it possible to apply a Littlewood-Paley square function estimate.

In our case Bateman and Thiele’s observation is no longer true. We need to take into account that

the vector field is constant along Lipschitz curves, which gives rise to an adapted Littlewood-Paley

projection operator (the following Definition 2.5).

Before defining this operator, we first need to make some preparation. Fix one x̃ ∈ R, take the

curve Γx̃ which passes through (x̃, 0), recall that Γx̃ is given by the set {(g(x̃, ỹ), ỹ) : ỹ ∈ R}, where

g is the Lipschitz function in Theorem 2.1. By the definition of the operator Hv we know that the

vector field v is equal to the constant vector (1, u(x̃)) along Γx̃. Change the coordinate s.t. the

horizontal x′-axis is parallel to (1, u(x̃)). The following lemma says that in the new coordinate, the

curve Γx̃ can still be realised as the graph of a Lipschitz function.

Lemma 2.4 For any fixed x̃ ∈ R, there exists a Lipschitz function x′ = gx̃(y′) s.t. Γx̃ can be

re-parametrised as {(gx̃(y′), y′) : y′ ∈ R}. Moreover, we have that ‖gx̃‖Lip ≤ 1+b0
1−b0 , where b0 is the
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constant in Theorem 2.1.

Proof of Lemma 2.4: denote by θ the angle between the vector (1, u(x̃)) and the x-axis as in the

picture below.

The new coordinate of the point (g(x̃, ỹ), ỹ) will be given by

(x′, y′) = (ỹ sin θ + g(x̃, ỹ)
1 + sin2 θ

cos θ
, ỹ cos θ − g(x̃, ỹ) sin θ). (2.2.13)

Look at the identity for the second component

y′ = ỹ cos θ − g(x̃, ỹ) sin θ, (2.2.14)

we want to solve ỹ by y′ by using the implicit function theorem. As

dy′

dỹ
= cos θ − ∂g

∂ỹ
sin θ, (2.2.15)

by the fact that |u| � 1 and |∂g∂ỹ | ≤ b0 ≤ 10−2, we obtain that

1− b0√
2
≤ dy′

dỹ
≤ 1 + b0√

2
, (2.2.16)

from which it is clear that the implicit function theorem is applicable.

After solving ỹ by y′, we just need to substitute ỹ into the identity for the first component in

(2.2.13), which is

x′ = ỹ sin θ + g(x̃, ỹ)
1 + sin2 θ

cos θ
, (2.2.17)

to get an implicit expression of x′ in terms of y′, which we will denote as x′ = gx̃(y′).

To estimate the Lipschitz norm of the function gx̃, we just need to observe that when doing the
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above change of variables, we have rotated the axis by an angle θ which satisfies |θ| ≤ π/4. Together

with the fact that |∂g∂ỹ | ≤ b0, we can then derive that

|∂gx̃
∂y′
| ≤ 1 + b0

1− b0
, (2.2.18)

which finishes the proof of Lemma 2.4. �

Definition 2.5 (adapted Littlewood-Paley projection) Select a Schwartz function ψ0 with support

on [ 1
2 ,

5
2 ] ∪ [− 5

2 ,−
1
2 ] such that ∑

k∈Z
ψ0(2−kt) = 1,∀t 6= 0. (2.2.19)

For f : R2 → R, for every fixed x̃ ∈ R, define the adapted (one dimensional) Littlewood-Paley

projection on Γx̃ by

P̃k(f)(x′, y′) :=

∫
R
f(gx̃(z), z)ψ̌k(y′ − z)dz = Pk(f̃)(y′), (2.2.20)

where (x′, y′) = (gx̃(y′), y′) denotes one point in Γx̃, ψk(·) := ψ0(2−k·) and we use f̃(·) to denote the

function f(gx̃(·), ·), and Pk the one dimensional Littlewood-Paley projection operator.

Now it is instructive to regard the Lipschitz curves as perturbation of the straight lines, or

equivalently, to think that HvPkf still has frequency supported near the k-th frequency band, which

has already been used by Lacey and Li in their almost orthogonality estimate for C1+α vector fields

in [21]. We then subtract the term P̃kHvPk(f) from HvPk(f), and estimate the commutator.

To be precise, we first write

∑
k

HvPk(f) =
∑
k

(HvPk(f)− P̃kHvPk(f) + P̃kHvPk(f)), (2.2.21)

then by the triangle inequality, we have

‖
∑
k

HvPk(f)‖2 . ‖
∑
k

(HvPk(f)− P̃kHvPk(f))‖2 + ‖
∑
k

P̃kHvPk(f)‖2. (2.2.22)

We call the second term the main term, and the first term the commutator term. The L2 boundedness

of the main term will follow from orthogonality argument, which is the following adapted Littlewood-

Paley theorem.
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Lemma 2.6 For p ∈ (1,+∞), we have the following variants of the Littlewood-Paley estimates:

‖(
∑
k∈Z
|P̃k(f)|2)1/2‖p ∼ ‖f‖p, (2.2.23)

‖(
∑
k∈Z
|P̃ ∗k (f)|2)1/2‖p ∼ ‖f‖p, (2.2.24)

with constants depending only on a0.

Proof of Lemma 2.6: In the above equation (2.0.8), we have already explained the following

co-area formula: ∫
R2

|f(x, y)|dxdy ∼
∫
R

[

∫
Γx̃

|f |dsx̃]dx̃. (2.2.25)

We apply this formula to the left hand side of (2.2.23) to obtain

‖(
∑
k∈Z
|P̃k(f)|2)1/2‖pp ∼

∫
R

∫
Γx̃

(
∑
k∈Z
|P̃k(f)|2)p/2dsx̃dx̃. (2.2.26)

For every fixed x̃, by Definition 2.5, the right hand side of (2.2.26) turns to

∫
R

[

∫
R

(
∑
k

|Pk(f̃x̃)(y′)|2)p/2dy′]dx̃, (2.2.27)

where f̃x̃(y′) = f(gx̃(y′), y′). Then the classical Littlewood-Paley theory applies and we can bound

the last expression by ∫
R
‖f‖pLp(Γx̃)dx̃ . ‖f‖

p
Lp . (2.2.28)

For the boundedness of the adjoint operator, it suffices to prove that

∑
k∈Z
〈P̃ ∗k (f), fk〉 . ‖f‖Lp‖(

∑
k∈Z
|fk|2)1/2‖Lp′ . (2.2.29)

First by linearity and Hölder’s inequality, we derive

∑
k∈Z
〈P̃ ∗k (f), fk〉 = 〈f,

∑
k∈Z

P̃k(fk)〉 . ‖f‖Lp‖
∑
k∈Z

P̃k(fk)‖Lp′ . (2.2.30)

Applying the co-area formula (2.2.25), we obtain

‖
∑
k∈Z

P̃k(fk)‖Lp′ ∼ (

∫
R

(

∫
Γx̃

|
∑
k∈Z

P̃k(fk)|p
′
dsx̃)dx̃)1/p′ . (2.2.31)
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By the Definition 2.5, for every fixed x̃ ∈ R, the inner integration in the last expression turns to

∫
R
|
∑
k∈Z

Pk(f̃k,x̃)(y′)|p
′
dy′, (2.2.32)

where f̃k,x̃(y′) := fk(gx̃(y′), y′). Now the classical Littlewood-Paley theory applies and we bound

the term in (2.2.32) by

∫
R

(
∑
k∈Z
|f̃k,x̃(y′)|2)p

′/2dy′ .
∫

Γx̃

(
∑
k∈Z
|fk|2)p

′/2dsx̃ . ‖(
∑
k∈Z
|fk|2)1/2‖p

′

Lp′ (Γx̃)
. (2.2.33)

Then to prove (2.2.29), we just need to integrate dx̃ in (2.2.33) and apply the co-area formula (2.2.25)

to derive

‖
∑
k∈Z

P̃k(fk)‖Lp′ . (

∫
R
‖(
∑
k∈Z
|fk|2)1/2‖p

′

Lp′ (Γx̃)
dx̃)1/p′

. ‖(
∑
k∈Z
|fk|2)1/2‖Lp′ .

Thus we have finished the proof of Lemma 2.6.�

Now we will show how to prove the L2 boundedness of the main term by Lemma 2.6 and Proposition

2.3: first by duality, we have

‖
∑
k

P̃kHvPk(f)‖2 = sup
‖g‖2=1

|〈
∑
k

P̃kHvPk(f), g〉|

= sup
‖g‖2=1

|〈
∑
k

HvPk(f), P̃ ∗k (g)〉|.

Applying the Cauchy-Schwartz inequality and Hölder’s inequality, we can bound the last term by

sup
‖g‖2=1

‖(
∑
k

|HvPk(f)|2)1/2‖2‖(
∑
k

|P̃ ∗k (g)|2)1/2‖2. (2.2.34)

For the former term, Proposition 2.3 implies that

‖(
∑
k

|HvPk(f)|2)1/2‖2 ≤ (
∑
k∈Z

‖HvPk(f)‖22)1/2

. (
∑
k∈Z
‖Pk(f)‖22)1/2 . ‖f‖2.
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For the latter term, Lemma 2.6 implies that

‖(
∑
k

|P̃ ∗k (g)|2)1/2‖2 . ‖g‖2. (2.2.35)

Thus we have proved the L2 boundedness the main term, modulo Proposition 2.3.

As the second step, we will prove the L2 boundedness of the commutator, which is

‖
∑
k

(HvPk(f)− P̃kHvPk(f))‖2 . ‖f‖2. (2.2.36)

To do this, we first split the operator Hv into a dyadic sum: select a Schwartz function ψ0 such that

ψ0 is supported on [ 1
2 ,

5
2 ], let

ψl(t) := ψ0(2−lt), (2.2.37)

by choosing ψ0 properly, we can construct a partition of unity for R+, i.e.

1(0,∞) =
∑
l∈Z

ψl. (2.2.38)

Let

Hlh(x, y) :=

∫
ψ̌l(t)h(x− t, y − tu(P (x, y)))dt, (2.2.39)

then the operator Hv can be decomposed into the sum

Hv = −1 + 2
∑
l∈Z

Hl. (2.2.40)

Hence to bound the commutator, it is equivalent to bound the following

∑
k∈Z

∑
l∈Z

(HlPkf − P̃kHlPkf). (2.2.41)

Notice that by definition, HlPkf vanishes for l > k, which simplifies the last expression to

∑
l≥0

∑
k∈Z

(Hk−lPkf − P̃kHk−lPkf). (2.2.42)

By the triangle inequality, it suffices to prove
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Proposition 2.7 Under the same assumption as in Theorem 2.1, there exists γ > 0 such that

‖
∑
k∈Z

(Hk−lPkf − P̃kHk−lPkf)‖2 . 2−γl‖f‖2, (2.2.43)

with the constant independent of l ∈ N.

So far, we have reduced the proof of the Main Theorem to that of Proposition 2.3 and Proposition

2.7, which we will present separately in the following sections.

2.3 Boundedness of the Lipschitz-Kakeya maximal function

and proof of Proposition 2.3

Lacey and Li in their prominent work [21] have reduced the L2 boundedness of the operator Hv,ε0

(given by (1.0.8)) to the boundedness of an operator they introduced, the so called Lipschitz-Kakeya

maximal operator. As soon as this operator is bounded, we can then repeat the argument in Chapter

4 [21] to obtain Proposition 2.3 as a corollary.

Here we follow [4], where a slightly different version of the Lipschitz-Kakeya maximal operator is

used, see the following Lemma 2.10. The only place in [4] where the one-variable vector field plays

a special role is Lemma 6.2 in page 1037. Hence to prove Proposition 2.3, we just need to replace

this lemma by Lemma 2.10, and leave the rest of the argument unchanged.

In this section we make an observation that both the boundedness of the Lipschitz-Kakeya max-

imal operator (Corollary 2.11) and its variant (Lemma 2.10) can be proved by adapting Bateman’s

argument in [3] to our case where the vector fields are constant only on Lipschitz curves.

Before defining the Lipschitz-Kakeya maximal operator, we first need to introduce several defi-

nitions.

Definition 2.8 (popularity) For a rectangle R ⊂ R2, with l(R) its length, w(R) its width, we define

its uncertainty interval EX(R) ⊂ R to be the interval of width w(R)/l(R) and centered at slope(R).

Then the popularity of the rectangle R is defined to be

popR := |{(x, y) ∈ R2 : u(P (x, y)) ∈ EX(R)}|/|R|. (2.3.1)

Definition 2.9 Given two rectangles R1 and R2 in R2, we write R1 ≤ R2 whenever R1 ⊂ CR2 and
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EX(R2) ⊂ EX(R1), where C is some properly chosen large constant, and CR2 is the rectangle with

the same center as R2 but dilated by the factor C.

Denote Rδ,ω := {R ∈ R : slope(R) ∈ [−1, 1], popR ≥ δ, w(R) = ω}, where R is the collection of

all the rectangles in R2. Then the Lipschitz-Kakeya maximal function is defined as

MRδ,ω (f)(x) := sup
x∈R∈Rδ,ω

1

|R|

∫
R

|f | (2.3.2)

Lemma 2.10 Let u and P be the functions given in the definition of the operator Hv in (2.2.5).

Suppose R0 is a collection of pairwise incomparable (under “≤”) rectangles of uniform width such

that for each R ∈ R0, we have

|(u ◦ P )−1(EX(R)) ∩R|
R

≥ δ, (i.e. popR ≥ δ) (2.3.3)

and

1

|R|

∫
R

1F ≥ λ. (2.3.4)

Then for each p > 1, ∑
R∈R0

|R| . |F |
δλp

. (2.3.5)

The same covering lemma argument as in Lemma 3.1 [3] shows the boundedness of Lacey and

Li’s Lipschitz-Kakeya maximal operator as a corollary of Lemma 2.10.

Corollary 2.11 For all p ∈ (1,∞) we have the following bound

‖MRδ,ω‖Lp→Lp ≤ C(p, a0)
1

δ
(2.3.6)

Proof of Lemma 2.10: The proof is essentially due to Bateman [3]. Most of the argument in [3]

remains, with just one minor modification in order to adapt to the family of Lipschitz curves on

which the vector field is constant.

Definition 2.12 (rectangles adapted to the vector field) For a rectangle R ∈ Rδ,ω, with its two long

sides lying on the parallel lines y = kx + b1 and y = kx + b2 for some k ∈ [−1, 1] and b1, b2 ∈ R,

define R̃ to be the adapted version of R, which is given by the set

{(x, y) : P (x, y) ∈ P (R)}
⋂
{(x, kx+ b) : x ∈ R, b ∈ [b1, b2]}, (2.3.7)
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where P is the projection operator in (2.2.3).

What we need to do is just to replace the rectangles R in [3] by R̃, and observe that the two key

quantities–length and popularity of rectangles– are both preserved under the projection operator P

up to a constant depending on the constant a0 in Theorem 2.1. Hence we leave out the details and

refer to [3].�

2.4 Boundedness of the commutator: Proof of Proposition

2.7

This section consists of three subsections. In the first subsection we will introduce some notations,

most of which we adopt from Bateman’s paper [4], with minor changes for our purpose. In the

second we will use Jones’ beta numbers and the Carleson embedding theorem to prove Proposition

2.7, modulo one crucial lemma which will be presented afterwards in the third subsection.

2.4.1 Time-frequency decomposition

The content of this subsection is basically taken from Bateman’s paper [4], with minor changes as

we are now dealing with all frequencies instead of one single frequency annulus.

Discretizing the functions: Fix l ≥ 0, we write Dl as the collection of the dyadic intervals of

length 2−l contained in [−2, 2]. Fix a smooth positive function β : R→ R s.t.

β(x) = 1,∀|x| ≤ 1;β(x) = 0,∀|x| ≥ 2. (2.4.1)

Also choose β such that
√
β is a smooth function. Then fix an integer c(whose exact value is

unimportant), for each ω ∈ Dl, define

βω(x) = β(2l+c(x− cω1
)), (2.4.2)

where ω1 is the right half of ω and cω1 is its center.

Define

βl(x) =
∑
ω∈Dl

βω(x), (2.4.3)
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note that

βl(x+ 2−l) = βl(x),∀x ∈ [−2, 2− 2−l]. (2.4.4)

Define

γl =
1

2

∫ 1

−1

βl(x+ t)dt, (2.4.5)

because of the above periodicity, we know that γl is constant for x ∈ [−1, 1], independent of l. Say

γl(x) = δ > 0, hence

1

δ
γl(x)1[−1,1](x) = 1[−1,1](x). (2.4.6)

Define another multiplier β̃ : R → R with support in [ 1
2 ,

5
2 ] and β̃(x) = 1 for x ∈ [1, 2]. We define

the corresponding multiplier on R2:

m̂k,ω(ξ, η) = β̃(2−kη)βω(
ξ

η
)

m̂k,l,t(ξ, η) = β̃(2−kη)βl(t+
ξ

η
)

m̂k,l(ξ, η) = β̃(2−kη)γl(
ξ

η
)

Then what we need to bound can be written as

‖
∑
k∈Z

∑
l∈Z

HlPk(f)‖p = ‖
∫ 1

−1

∑
k∈Z

∑
l≥0

Hk−l(
1

δ
mk,l ∗ f)dt‖p

≤
∫ 1

−1

‖
∑
k∈Z

∑
l≥0

Hk−l(
1

δ
mk,l,t ∗ f)‖pdt,

where the terms HlPk for l > k in the sum vanish as explained before.

So it suffices to prove a uniform bound on t ∈ [−1, 1], w.l.o.g. we will just consider the case

t = 0, which is ∑
k∈Z

∑
l≥0

Hk−l(mk,l,0 ∗ f) =
∑
k∈Z

∑
l≥0

Hk−l([β̃(2−kη)βl(
ξ

η
)] ∗ f). (2.4.7)

Constructing the tiles: For each k ∈ Z and ω ∈ Dl with l ≥ 0, let Uk,ω be a partition of R2 by

rectangles of width 2−k and length 2−k+l, whose long side has slope θ, where tan θ = −c(ω), which

is the center of the interval ω. If s ∈ Uk,ω, we will write ωs := ω, and ωs,1 to be the right half of ω,

ωs,2 the left half.

An element of Uk,ω for some ω ∈ Dl is called a “tile”. Define ϕk,ω such that

|ϕ̂k,ω|2 = m̂k,ω, (2.4.8)
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then ϕk,ω is smooth by our assumption on β mentioned above.

For a tile s ∈ Uk,ω, define

ϕs(p) :=
√
|s|ϕk,ω(p− c(s)), (2.4.9)

where c(s) is the center of s. Notice that

‖ϕs‖22 =

∫
R2

|s|ϕ2
k,ω = |s|

∫
R2

m̂k,ω = 1, (2.4.10)

i.e. ϕs is L2 normalised.

The constructing of the tiles above by uncertainty principle is to localise the function further in

space, which is realised through

Lemma 2.13 (Page 1030 [4]) Under the above notations, for the frequency localised function f ∗

mk,ω, we have the following representation:

f ∗mk,ω(x) = lim
N→∞

1

4N2

∫
[−N,N ]2

∑
s∈Uk,ω

〈f, ϕs(p+ ·)〉ϕs(p+ x)dp (2.4.11)

The above lemma allows us to pass to the model sum

∑
k∈Z

∑
l≥0

Hk−l(f ∗mk,l,0) =
∑
k∈Z

∑
l≥0

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉Hk−l(ϕs),

define

ψs = ψ− log(length(s)), (2.4.12)

and

φs(x, y) :=

∫
ψ̌s(t)ϕs(x− t, y − tu(P (x, y)))dt, (2.4.13)

then the model sum turns to ∑
k∈Z

∑
l≥0

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉φs (2.4.14)

Lemma 2.14 We have that φs(x, y) = 0 unless −u(P (x, y)) ∈ ωs,2.

The proof of Lemma 2.14 is by the Plancherel theorem, we just need to observe that the frequency

support of ψs and ϕ̂s will be disjoint at the point (x, y) unless −u(P (x, y)) ∈ ωs,2.

30



2.4.2 Proof of Proposition 2.7

This subsection is devoted to the proof of Proposition 2.7, which is largely motivated by the proof

of the T (b) theorem and the boundedness of the paraproduct, see [1] and [10] for example.

In our case, unlike Bateman and Thiele’s proof for the one-variable vector fields, it’s no longer

true that HvPkf still has frequency in the k-th annulus. In order to get enough orthogonality for the

term HvPkf to apply the Littlewood-Paley theory, we need to subtract the term HvPkf− P̃kHvPkf ,

which should be viewed as a family of paraproducts.

We proceed with the details of the proof. If we expand the summation on the left hand side of

Proposition 2.7 with (2.4.14), what we need to bound can be rewritten as

‖
∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)‖2 . 2−γl‖f‖2. (2.4.15)

In order to use the orthogonality of different wave packets, we will prove the L2 bound for the

dual operator, which is ∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉ϕs. (2.4.16)

Notice that for s1 ∈ Uk1,ω1
and s2 ∈ Uk2,ω2

with (k1, ω1) 6= (k1, ω2), we have

〈ϕs1 , ϕs2〉 = 0 (2.4.17)

by the definition of the wavelet function ϕs in (2.4.9). Also if we know that s1, s2 are in the same

Uk,ω, for some k and ω, then we can find m0, n0 ∈ Z s.t.

c(s2) = c(s1) + (m0 · l(s1), n0 · w(s1)) (2.4.18)

where c(s) is the center of the tile s, l(s) its length and w(s) its width. Then by the non-stationary

phase method we know for any N ∈ N, there exists a constant CN depending only on N s.t.

|〈ϕs1 , ϕs2〉| ≤
CN

(|m0|+ |n0|+ 1)N
. (2.4.19)

Here we want to make a remark that the exact value of N is not important, it just denotes some

large number which might vary from line to line if we use the same notation later.
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Applying the above two estimates (2.4.17) (2.4.19), we obtain

‖
∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉ϕs‖22

=
∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

∑
s2∈Uk,ω

〈h, φs1 − P̃kφs1〉〈ϕs1 , ϕs2〉〈h, φs2 − P̃kφs2〉.

As we know for any s1, s2 ∈ Uk,ω there exists m0, n0 ∈ Z s.t.

c(s2) = c(s1) + (m0 · l(s1), n0 · w(s1)), (2.4.20)

the above sum can be rewritten as

∑
m0,n0∈Z

∑
k∈Z

∑
ω∈Dl

∑
s1∈Uk,ω

〈h, φs1 − P̃kφs1〉〈ϕs1 , ϕs2〉〈h, φs2 − P̃kφs2〉 (2.4.21)

with s1, s2 satisfying the relation (2.4.20).

Now fix m0, n0 ∈ Z, by the estimate in (2.4.19), we know that

∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

|〈h, φs1 − P̃kφs1〉〈ϕs1 , ϕs2〉〈h, φs2 − P̃kφs2〉|

.
1

(|m0|+ |n0|+ 1)N

∑
k

∑
ω∈Dl

∑
s1∈Uk,ω

|〈h, φs1 − P̃kφs1〉〈h, φs2 − P̃kφs2〉|,

by the Cauchy-Schwartz inequality, the last term is bounded by

1

(|m0|+ |n0|+ 1)N

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|2, (2.4.22)

then it suffices to prove that

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

〈h, φs − P̃kφs〉2 . 2−γl‖h‖22. (2.4.23)

First to estimate every single term 〈h, φs − P̃kφs〉 for a fixed tile s: denote sm,n to be the shift

of s by (m,n) units, i.e.

sm,n := {(x, y) ∈ R2 : (x−m · l(s), y − n · w(s)) ∈ s}, (2.4.24)
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then by the triangle inequality we know that

|〈h, φs − P̃kφs〉| ≤
∑
m,n∈Z

|
∫
sm,n

h · (φs − P̃kφs)dydx|. (2.4.25)

Recall that in Definition 2.12 we use R̃ to denote the adapted version of the rectangle R to the

family of Lipschitz curves, then clearly s̃m,n ⊃ sm,n. Thus

|〈h, φs − P̃kφs〉| ≤
∑
m,n∈Z

|
∫
s̃m,n

h · (φs − P̃kφs)dydx|. (2.4.26)

By the co-area formula (2.2.25), we obtain

|〈h, φs − P̃kφs〉| ≤
∑
m,n∈Z

|
∫
s̃m,n

h · (φs − P̃kφs)dydx|

.
∑
m,n∈Z

∫
P (sm,n)

∫
Γx∩s̃m,n

|h · (φs − P̃kφs)|dsxdx,

where dsx stands for the arc length measure of the Lipschitz curve Γx.

Now for the inner integration along the curve Γx, we do the same change of coordinates and the

same parametrisation of Γx as in Definition 2.5, i.e. we choose the coordinates s.t. the horizontal

axis is parallel to (1, u(x)), and represent the curve Γx by the Lipschitz function gx(·). If we let

J(x, sm,n) denote the projection of Γx ∩ s̃m,n on the new vertical axis, the last expression becomes

∑
m,n∈Z

∫
P (sm,n)

∫
J(x,sm,n)

|h(gx(y), y)(φs(gx(y), y)− Pk[φs(gx(y), y)])|dydx. (2.4.27)

To bound the above term, Jones’ beta number will play a crucial role.

Definition 2.15 ([16]) For a Lipschitz function A : R→ R, we first take the Calderón decomposi-

tion of a(x) = A′(x), which yields the representation

a(x) =
∑

I dyadic

aIψI(x), (2.4.28)

where ψI is some mean zero function supported on 3I, |ψ′I(x)| ≤ |I|−1. For each dyadic interval I,

let

αI =
∑
|J|≥|I|

aIψJ(cI), (2.4.29)

where cI stands for the center of I, denote the “average slope” of the Lipschitz curve near I, and
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define the beta number

β0(I) := sup
x∈3I

|A(x)−A(cI)− αI(x− cI)|
|I|

, (2.4.30)

and the j0-th beta number

βj0(I) := sup
x∈3j0I

|A(x)−A(cI)− αI(x− cI)|
|I|

. (2.4.31)

For beta numbers, we have the following Carleson condition.

Lemma 2.16 ([16]) For any Lipschitz function A, we have

sup
J

1

|J |
∑
I⊂J

β2
0(I)|I| . ‖A‖2Lip, (2.4.32)

and also for any j0 ∈ N

sup
J

1

|J |
∑
I⊂J

β2
j0(I)|I| . j3

0‖A‖2Lip. (2.4.33)

After introducing Jones’ beta number, we are ready to state

Lemma 2.17 for x ∈ P (sm,n), we have the following estimate:

∫
J(x,sm,n)

|h(gx(y), y)(φs(gx(y), y)− Pk[φs(gx(y), y)])|dy

.
∑
j0∈N

2−3l/2

(|j0|+ |m|+ |n|+ 1)N
βj0(x, sm,n)[h]x,sm,n1{−u(x)∈ωs,2}(x)

where βj0(x, sm,n) is the j0-th beta number for the Lipschitz curve gx(·) on the interval J(x, sm,n),

[h]x,sm,n is the average of the function h on the interval J(x, sm,n), i.e.

[h]x,sm,n :=
1

w(s)

∫
J(x,sm,n)

|h(gx(y), y)|dy. (2.4.34)

The proof of Lemma 2.17 will be postponed to the next subsection. Substitute the estimate in

Lemma 2.17 into the estimate for the term 〈h, φs − P̃kφs〉, we then have that

|〈h, φs − P̃kφs〉|

.
∑
m,n

∫
P (sm,n)

∫
J(x,sm,n)

|h(gx(y), y)(φs(gx(y), y)− Pk[φs(gx(y), y)])|dydx

.
∑
m,n

∫
P (sm,n)

∑
j0∈N

2−3l/2

(|j0|+ |m|+ |n|+ 1)N
βj0(x, sm,n)[h]x,sm,n1{−u(x)∈ωs,2}(x)dx
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hence

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|2

.
∑
k

∑
ω∈Dl

∑
s∈Uk,ω

∑
m,n,j0

2−3l

(|j0|+ |m|+ |n|+ 1)N
...

...|
∫
P (sm,n)

βj0(x, sm,n)[h]x,sm,n1{−u(x)∈ωs,2}(x)dx|2

.
∑
m,n,j0

2−2l

(|j0|+ |m|+ |n|+ 1)N
...

...
∑
k

∑
ω∈Dl

∑
s∈Uk,ω

w(s)

∫
P (sm,n)

β2
j0(x, sm,n)[h]2x,sm,n1{−u(x)∈ωs,2}(x)dx

Lemma 2.18 for any fixed x, fixed m,n, j0,

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

w(s)1P (sm,n)(x)β2
j0(x, sm,n)[h]2x,sm,n1{−u(x)∈ωs,2}(x) . j3

0‖h‖2L2(Γx) (2.4.35)

Proof of Lemma 2.18: this lemma is akin to the Carleson embedding theorem, as we have the

following Carleson type condition

sup
sm,n

1

|J(x, sm,n)|
∑

s′m,n:J(x,s′m,n)⊂J(x,sm,n)

β2
j0(J(x, s′m,n))w(s′m,n) . j3

0Lip
2(Γx), (2.4.36)

where the term 1{−u(x)∈ωs,2} plays such a role that, originally there are 2l groups of dyadic rectangles

⋃
k

⋃
ω∈Dl

⋃
s∈Uk,ω

{sm,n} (2.4.37)

in the summation
∑
k

∑
ω∈Dl

∑
s∈Uk,ω , which means that there are also 2l groups of dyadic intervals

⋃
k

⋃
ω∈Dl

⋃
s∈Uk,ω

{J(x, sm,n)} (2.4.38)

which are the projections of the intersection of the dyadic rectangles with Γx on the vertical axis,

the term 1{−u(x)∈ωs,2} just guarantees that there is just one such collection which has contribution,

i.e. which has the right orientation in the sense of Lemma 2.14.

Then the desired estimate will just follow from the Carleson embedding theorem, which we refer

to Lemma 5.1 in [1].�
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Continue the calculation before the above lemma:

∑
k

∑
ω∈Dl

∑
s∈Uk,ω

|〈h, φs − P̃kφs〉|2

.
∑
m,n,j0

2−2lj3
0

(|j0|+ |m|+ |n|+ 1)N

∫
R
‖h‖2L2(Γx)dx . 2−2l‖h‖22.

This finishes the proof for (2.4.23) and then Proposition 2.7 modulo Lemma 2.17, which we will

present in the following subsection.

2.4.3 Proof of Lemma 2.17

We assume that −u(x) ∈ ωs,2, which means the vector (1, u(x)) is roughly parallel to the long side

of sm,n, otherwise the left hand side in Lemma 2.17 will also vanish due to Lemma 2.14. After the

change of variables in (2.4.27), the vector (1, u(x)) turns to (1, 0).

Proof by ignoring the tails: In order to explain how Jones’ β-number appears, we first sketch

the proof by ignoring the tails of the wavelet functions and the tail of the kernel of the Littlewood-

Paley projection operator Pk.

By the above simplification, we only need to consider the case m = n = 0. What we need to

“prove” becomes

∫
J(x,s)

|h(gx(y), y)(φs(gx(y), y)− Pk[φs(gx(y), y)])|dy . 2−3l/2β0(J(x, s))[h]x,s. (2.4.39)

For fixed x, we denote by τx,sy+ b the line of “average slope” we picked in the definition of the beta

number for the Lipschitz curve gx(·) on the interval J(x, s), for the sake of simplicity we assume

b = 0. Moreover, as both x and s are fixed, we will also just write τ instead of τx,s. Then we make

the crucial observation that

Pk[φxs (τy, y)] = φxs (τy, y), (2.4.40)

where

φxs (τy, y) :=

∫
R
ψ̌s(t)ϕs(τy − t, y)dt, (2.4.41)

due to the fact that for any function ϕs with frequency supported on the k-th annulus, if we restrict

the function to a straight line, it will still have frequency supported on the k-th annulus (with one

dimension less).
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In comparison with the definition of φs in (2.4.13), φxs (τy, y) is defined as the Hilbert transform

along the vector (1, u(x)) (which is (1, 0) after the change of the variables we made in Lemma 2.4

and in the expression (2.4.27)) instead of the direction of the vector field v at the point (τy, y).

Hence from the identity in (2.4.40) we obtain

φs(gx(y), y)− Pk[φs(gx(y), y)]

= φs(gx(y), y)− Pk[φs(gx(y), y)− φxs (τy, y) + φxs (τy, y)]

= φs(gx(y), y)− φxs (τy, y)− Pk[φs(gx(y), y)− φxs (τy, y)].

(2.4.42)

As we have also ignored the tails of the kernel of Pk, it is easy to see that the former and the latter

terms in the last expression can essentially be handled in the same way. Hence in the following we

will only consider the former term, which corresponds to the term

∫
J(x,s)

|h(gx(y), y)(φs(gx(y), y)− φxs (τy, y))|dy. (2.4.43)

By the definitions of φs and φxs , we have

|φs(gx(y), y)− φxs (τy, y)|

= |
∫
R
ψ̌k−l(t)ϕs(gx(y)− t, y)dt−

∫
R
ψ̌k−l(t)ϕs(τy − t, y)dt|

= 2k−l|
∫
R
ψ̌0(2k−lt)ϕs(gx(y)− t, z)dt−

∫
R
ψ̌0(2k−lt)ϕs(τy − t, y)dt|

= 2k−l|
∫
R
[ψ̌0(2k−l(t+ gx(y)− τy))− ψ̌0(2k−lt)]ϕs(τy − t, z)dt|.

(2.4.44)

By the definition of the beta numbers, we have that

|gx(y)− τy| . β0(x, s)2−k, (2.4.45)

which implies that

|ψ̌0(2k−l(t+ gx(y)− τy))− ψ̌0(2k−lt)| . 2−lβ0(x, s) (2.4.46)

by the fundamental theorem of calculus. In the end, by substituting the above estimate into (2.4.44)

and (2.4.43) we obtain the desired estimate (2.4.39).

The full proof: The main idea is still the same, and the difference is that we need to be more

careful with the tails of the wavelet functions and the kernel of Pk.
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For fixed x, fixed m and n, denote τ(x, sm,n)y+ b as the line of “average slope” for the Lipschitz

curve gx(·) on the interval J(x, sm,n), for the sake of simplicity we assume b = 0. Then the crucial

observation (2.4.40) becomes

Pk[φxs (τ(x, sm,n)y, y)] = φxs (τ(x, sm,n)y, y). (2.4.47)

Hence similar to (2.4.42), we obtain from (2.4.47) that

φs(gx(y), y)− Pk[φs(gx(y), y)]

= φs(gx(y), y)− φxs (τ(x, sm,n)y, y)− Pk[φs(gx(y), y)− φxs (τ(x, sm,n)y, y)].

Denote

Ism,n = |
∫
J(x,sm,n)

h(gx(y), y) · (φs(gx(y), y)− φxs (τ(x, sm,n)y, y))dy| (2.4.48)

and also

IIsm,n = |
∫
J(x,sm,n)

h(gx(y), y) · Pk[φs(gx(y), y)− φxs (τ(x, sm,n)y, y)]dy|. (2.4.49)

Lemma 2.19 Under the above notations, for z ∈ J(x, sm,n) + j02−k with j0 ∈ Z, we have the

pointwise estimate

|φs(gx(z), z)− φxs (τ(x, sm,n)z, z)| .
β|j0|(x, sm,n)2k2−3l/2

(min{|m|+ |n|, |m|+ |n| − |j0|}+ 1)N
. (2.4.50)

Let us first continue the proof of Lemma 2.17: for the first term Ism,n , we take j0 in Lemma 2.19

to be zero, then

|φs(gx(z), z)− φxs (τ(x, sm,n)z, z)| . β0(x, sm,n)2k2−3l/2

(|m|+ |n|+ 1)N
, (2.4.51)

which implies that

Ism,n .
2−3l/2

(|m|+ |n|+ 1)N
β0(x, sm,n)[h]x,sm,n . (2.4.52)
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For the second term IIsm,n , by the definition of Pk,

|Pk[φs(gx(y), y)− φxs (τ(x, sm,n)y, y)]|

= |
∫
R

(φs(gx(z), z)− φxs (τ(x, sm,n)z, z))2kψ̌0(2k(y − z))dz|

≤ |
∑
j0∈Z

∫
J(x,sm,n)+j02−k

(φs(gx(z), z)− φxs (τ(x, sm,n)z, z))2kψ̌0(2k(y − z))dz|.

For y ∈ J(x, sm,n) and z ∈ J(x, sm,n) + j02−k, by the non-stationary phase method, we have that

|ψ̌0(2k(y − z))| . 1

(j0 + 1)N
, (2.4.53)

together with the estimate in Lemma 2.19, we arrive at

|Pk[φs(gx(y), y)− φxs (τ(x, sm,n)y, y)]|

.
∑
j0∈Z

β|j0|(x, sm,n)2k2−3l/2

(min{|m|+ |n|, |m|+ |n| − |j0|}+ 1)N
1

(j0 + 1)N

.
∑
j0∈Z

β|j0|(x, sm,n)2k2−3l/2

(|m|+ |n|+ |j0|+ 1)N
.

Substitute the last expression into the estimate for IIsm,n , we get the desired estimate. So far we

have finished the proof of Lemma 2.17 except the Lemma 2.19, which we will do now.

Proof of Lemma 2.19: As x and sm,n are fixed now, later for simplicity we will just write τ instead

of τx,sm,n . Notice that in the new coordinate we chose for Γx, the vector field along Γx points in the

direction of (1, 0). Then by the definition of φs and φxs , we have

|φs(gx(z), z)− φxs (τz, z)|

= 2k−l|
∫
R

[ψ̌0(2k−l(t+ gx(z)− τz))− ψ̌0(2k−lt)]ϕs(τz − t, z)dt|.

By the definition of the beta numbers, we have that

|gx(z)− τz| . β|j0|(x, sm,n)2−k, (2.4.54)
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which implies that

|ψ̌0(2k−l(t+ gx(z)− τz))− ψ̌0(2k−lt)| . 2−lβ|j0|(x, sm,n) (2.4.55)

by the fundamental theorem of calculus. In the end, non-stationary phase method leads to the final

estimate:

2k−l|
∫
R

[ψ̌0(2k−l(t+ gx(z)− τz))− ψ̌0(2k−lt)]ϕs(τz − t, z)dt|

.
2−lβ|j0|(x, sm,n)2

k
2 2

k−l
2

(min{|m|+ |n|, |m|+ |n| − |j0|}+ 1)N
.

Thus we have finished the proof of Lemma 2.19 and hence Lemma 2.17.
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Chapter 3

Hilbert transform along measurable vector fields constant on

Lipschitz curves: Lp boundedness

In this chapter, we will present the proof of Theorem 1.3 for the case p > 3/2. Recall that in the last

chapter, we have reduced the L2 estimate in Theorem 1.3 to the estimate (2.0.9) in Theorem 2.1.

To prove the Lp estimate in Theorem 1.3, we could do the same reduction. However, here we will

formulate Theorem 2.1 in a slightly different (but equivalent) way, such that it is more consistent

with the language we will be using to carry out its proof. This language is the so-called δ-calculus,

which has been used intensively in the Fourier restriction estimates, see [18], [13] and [8] for example.

There are significant advantages of using δ-calculus, which will be explained after stating the main

theorem (Theorem 3.1 below) of this chapter.

Theorem 3.1 For vector fields v : R2 → R2 of the form (1, u(h)) where h : R2 → R is a Lipschitz

function such that

‖∇h− (1, 0)‖∞ ≤ ε0 � 1, (3.0.1)

and u : R→ R is a measurable function such that

‖u‖∞ ≤ 1, (3.0.2)

the associated Hilbert transform, which is defined as

Hvf(x) :=

∫
R
f(x− tv(x))dt/t, (3.0.3)

is bounded on Lp for all p > 3/2.
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Clearly the above result is a Lipschitz perturbation of the result Theorem 1.1 by Bateman and

Thiele [5]: if we take h(x1, x2) = x1, then the vector field becomes (1, u(h(x1, x2))) = (1, u(x1)),

which is a one-variable vector field. However, we have one more assumption that ‖u‖∞ ≤ 1. To

recover the result in Theorem 1.1, we just need to apply the following anisotropic scaling

x1 → x1, x2 → λx2, (3.0.4)

and a simple limiting argument.

Let us mention the new ingredients that will be used to extend the L2 bounds in the last

chapter. Recall that in the L2 case, the crucial ingredients are Jones’ beta numbers and the adapted

L2-Littlewood-Paley theory, which is in the spirit of the work on the Cauchy integral on Lipschitz

curves (for example see [10]). The techniques used in the proof of the L2 bounds are the Hilbert

space techniques as we need to use some facts like taking L2 norm works trivially with certain square

functions. Out of this reason, only L2 bounds are obtained.

In the Lp case for p other than 2, one novelty is that we discovered a new paraproduct, which is

indeed a one-parameter family of paraproducts, with each paraproduct living on one Lipschitz level

curve of the vector field v. To prove the Lp bounds for the one-parameter family of paraproducts,

the difficulty is how to embed each paraproduct into two dimensions without losing orthogonality.

To overcome this difficulty, we need to develop an adapted Lp-Littlewood-Paley theory, which again

requires a new square function as an intermediate step. This new two dimensional square func-

tion shares some common features with the bi-parameter square function. See the following crucial

Lemma 3.13 and Claim 3.18.

Another difference from the L2 case is that we will write the proof by using δ-calculus. One

significant advantage of the δ-calculus, which we will see shortly in the proof, is that it allows us

to express everything in terms of the function h from Theorem 3.1, instead of going back and forth

between h and its inverse as in the last chapter. For example, this can be seen by comparing the

crucial definition of the adapted Littlewood-Paley operator associated to the vector fields, namely

by comparing Definition 2.5 in the last chapter with Definition 3.5 in the current chapter.

Organisation of chapter: In Section 3.1 we will state the strategy of the proof for Theorem

3.1. If we denote by Pk a Littlewood-Paley operator in the second variable, the main observation in
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Bateman and Thiele’s proof for the one-variable vector fields is that Hv commutes with Pk. In our

case, this is no longer true. To recover the orthogonality, an adapted Littlewood-Paley operator was

introduced in the previous chapter (see Definition 2.5 or the following Definition 3.5), which allows

to split the operator Hv into a main term and a commutator term

∑
k∈Z

HvPk(f) =
∑
k∈Z

(HvPk(f)− P̃kHvPk(f) + P̃kHvPk(f)). (3.0.5)

The Lp (p > 3/2) bounds of the main term
∑
k∈Z P̃kHvPk(f) can be proved essentially by the

same argument as in Bateman and Thiele [5], with just minor modifications that we will state in

Section 3.2.

The main novelty is the Lp boundedness of the commutator term

∑
k∈Z

(HvPk(f)− P̃kHvPk(f)). (3.0.6)

To achieve this, we will use the same time-frequency decomposition as in Subsection 2.4.1 in the

previous chapter, and then prove in Section 3.3 that (3.0.6) is bounded on Lp for all p > 1.

3.1 Strategy of the proof of Theorem 3.1

We recall that if we denote by Γ the two-ended cone which forms an angle less than π/4 with the

vertical axis, then by the assumption that |u| ≤ 1, we can w.l.o.g. assume that

supp f̂ ⊂ Γ, (3.1.1)

as for functions f with frequency supported on R2 \ Γ, we have that

Hvf(x) = H(1,0)f(x), (3.1.2)

which is the Hilbert transform along the constant vector field (1, 0). But H(1,0) is bounded by Fu-

bini’s theorem and the L2 boundedness of the Hilbert transform.

The rest of the proof consists of two relatively independent steps. The first step will just be an

adaption of Bateman and Thiele’s argument in [5] to our case. Our key observation is that both
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covering lemmas used there (Lemma 7 and Lemma 8) indeed hold true in our setting, from which

we can derive the following proposition as a corollary by repeating the rest of the argument in [5].

Proposition 3.2 Under the same assumptions as in Theorem 3.1, we have the following square

function estimate ∥∥∥∥∥∥
(∑
k∈Z

(HvPk(f))2

)1/2
∥∥∥∥∥∥
p

. ‖f‖p,∀p > 3/2, (3.1.3)

where Pk is the k-th Littlewood-Paley projection operator in the vertical direction defined by (2.2.11).

For the one-variable vector fields, i.e. vector fields of the form v(x, y) = (1, u(x)) for some

measurable function u, Bateman and Thiele in [5] used (3.1.3) and the crucial observation that

HvPk = PkHv (3.1.4)

to conclude the boundedness of Hv. In our case, the identity (3.1.4) is no longer true, i.e. the

orthogonality between HvPkf for different k ∈ Z is missing.

To recover the orthogonality, an adapted Littlewood-Paley operator along the level curves of the

vector field was introduced in the previous chapter. This operator is in the spirit of prior work on

the Cauchy integral on Lipschitz curves, but more of a bi-parameter type as we have one-parameter

family of level curves.

Here we give an equivalent definition of the operator P̃k by using the language of δ-calculus. The

advantage of this new definition is, compared with the one in the previous chapter, that it does not

necessitate neither the change of coordinates nor the parametrisation of the Lipschitz curves, both

of which can be replaced by introducing the following auxiliary function. To do this, we need several

notations: for t ∈ R we define

Γt := {x ∈ R2 : h(x) = t}. (3.1.5)

Moreover, we denote by vt the value of the vector field v, which is a constant along Γt.

Definition 3.3 (Auxiliary Function) For every t ∈ R, we define a new function ht : R2 → R in

such a way that, if for some y ∈ Γt, we have

z − y = d · vt (3.1.6)

for some d ∈ R, then we set ht(z) = d.
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Remark 3.4 It is not difficult to see that

|∇ht| ∼ 1, a.e. in R2, (3.1.7)

where the constant is independent of t ∈ R.

Definition 3.5 (Adapted Littlewood-Paley Operator) For x ∈ R2, we denote t = h(x). We

then define the adapted Littlewood-Paley projection operator P̃k restricted on the curve Γt by

P̃kf(x) :=

∫
R2

δ(ht(y))f(y)ψ̌k((x− y) · v⊥t )dy, (3.1.8)

where ψk(·) is given by (2.2.10).

Remark 3.6 We show that the above Definition 3.5 is equivalent with the Definition 2.5 in the

previous chapter. To do this, we start from the new definition (3.1.8): for a fixed t ∈ R, the two

vectors vt and v⊥t form a orthogonal coordinate system of the plane. Write y ∈ R2 in this new system

as

y = y1vt + y2v
⊥
t , (3.1.9)

and for the sake of simplicity we will still use the notation y = (y1, y2). This changes the expression

in (3.1.8) to

∫
R2

f(y1, y2)δ(ht(y1, y2))ψ̌k(x2 − y2)dy

=

∫
R

(∫
R
f(y1, y2)δ(ht(y1, y2))dy1

)
ψ̌k(x2 − y2)dy2.

(3.1.10)

Hence if we use the same parametrisation as the one in Definition 2.5, which is

Γt = {y2v
⊥
t + gt(y2)vt|y2 ∈ R}, (3.1.11)

then by the definition of the function ht in Definition 3.5, which implies

∫
R
δ(ht(x))dx1 = 1, (3.1.12)

the right hand side of (3.1.10) will equal

∫
R
f(gt(y2), y2)ψ̌k(x2 − y2)dy2, (3.1.13)
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which is exactly the one given by the Definition 2.5.

Lemma 3.7 (Adapted Littlewood-Paley Theory) For p ∈ (1,∞), we have the following vari-

ants of the Littlewood-Paley theorem:

‖(
∑
k∈Z
|P̃kf |2)1/2‖p ∼ ‖f‖p, (3.1.14)

‖(
∑
k∈Z
|P̃ ∗k f |2)1/2‖p ∼ ‖f‖p. (3.1.15)

Proof of Lemma 3.7: This Lemma is exactly the same as Lemma 2.6 in the previous chapter.

However in the following we will provide a proof by using the language of δ-calculus. By the Fubini

theorem, we obtain

∫
R2

(∑
k∈Z
|P̃kf |2

)p/2
=

∫
R

∫
R2

(∑
k∈Z
|P̃kf |2

)p/2
δ(h(x)− t)dxdt. (3.1.16)

When integrating against dx, by doing the change of variables h(x) − t → ht(x), we can write the

right hand side of the above expression as

∫
R

∫
R2

(∑
k∈Z
|P̃kf |2

)p/2
δ(ht(x))

|∇ht(x)|
|∇h(x)|

dxdt. (3.1.17)

By the bound on ∇ht in (3.1.7) and our assumption on ∇h in (3.0.1) that

|∇h| ∼ 1, a.e. in R2, (3.1.18)

it suffices to show that

∫
R2

(∑
k∈Z
|P̃kf |2

)p/2
δ(ht(x))dx .

∫
R2

|f(x)|pδ(ht(x))dx, (3.1.19)

with a bound being independent of t ∈ R.

We substitute the definition of P̃k into the left hand side of the last expression to obtain

∫
R2

(∑
k∈Z

∣∣∣∣∫
R2

δ(ht(y))f(y)ψ̌k((x− y) · v⊥t )dy

∣∣∣∣2
)p/2

δ(ht(x))dx. (3.1.20)

The above expression can be viewed as a two dimensional Littlewood-Paley operator with the singular
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measure δ(ht(·)), hence heuristically it is bounded by

∫
R2

|f(x)|pδ(ht(x))dx. (3.1.21)

To make the above argument rigorous, we introduce the change of variables

x→ x1vt + x2v
⊥
t , y → y1vt + y2v

⊥
t . (3.1.22)

For the sake of simplicity, after the change of variables, we will still write x = (x1, x2) and y = (y1, y2).

The expression in (3.1.20) hence becomes

∫
R2

(∑
k∈Z

∣∣∣∣∫
R2

δ(ht(y))f(y)ψ̌k(x2 − y2)dy

∣∣∣∣2
)p/2

δ(ht(x))dx

=

∫
R2

(∑
k∈Z

∣∣∣∣∫
R

(∫
R
δ(ht(y))f(y)dy1

)
ψ̌k(x2 − y2)dy2

∣∣∣∣2
)p/2

δ(ht(x))dx.

(3.1.23)

Notice that for any x2 ∈ R, we have

∫
R
δ(ht(x))dx1 = 1. (3.1.24)

Hence the right hand side of the last display becomes

∫
R

(∑
k∈Z

∣∣∣∣∫
R

(∫
R
δ(ht(y))f(y)dy1

)
ψ̌k(x2 − y2)dy2

∣∣∣∣2
)p/2

dx2. (3.1.25)

It is not difficult to see that the above is just a one-dimensional Littlewood-Paley square function

for the function ∫
R
δ(ht(y))f(y)dy1, (3.1.26)

hence it can be bounded by

∫
R

∣∣∣∣∫
R
δ(ht(y))f(y)dy1

∣∣∣∣p dy2 =

∫
R2

δ(ht(x))|f(x)|pdx. (3.1.27)

So far we have finished the proof of (3.1.19), thus (3.1.14). For the second equivalence relation

(3.1.15), the proof is similar, hence we leave it out. �

To proceed, we follow the same idea as in (2.2.21) in the L2 case and split the operator into two

47



terms, ∑
k∈Z

HvPk(f) =
∑
k∈Z

(HvPk(f)− P̃kHvPk(f) + P̃kHvPk(f)). (3.1.28)

Then by the triangle inequality, we have

‖
∑
k∈Z

HvPk(f)‖p . ‖
∑
k∈Z

(HvPk(f)− P̃kHvPk(f))‖p + ‖
∑
k∈Z

P̃kHvPk(f)‖p. (3.1.29)

We call the second term the main term, and the first term the commutator term.

To bound the main term, we first use duality to write the Lp norm into

‖
∑
k∈Z

P̃kHvPk(f)‖p = sup
‖g‖p′=1

|〈
∑
k∈Z

P̃kHvPk(f), g〉|

= sup
‖g‖p′=1

|
∑
k∈Z
〈HvPk(f), P̃ ∗k (g)〉|.

Then by Cauchy-Schwartz and Hölder’s inequality, we bound the right hand side by

sup
‖g‖p′=1

∫
(
∑
k∈Z
|HvPk(f)|2)1/2(

∑
k∈Z
|P̃ ∗k (g)|2)1/2

. sup
‖g‖p′=1

‖(
∑
k∈Z
|HvPk(f)|2)1/2‖p‖(

∑
k∈Z
|P̃ ∗k (g)|2)1/2‖p′ .

(3.1.30)

In the end, by applying Proposition 3.2 to the former term in the last expression and Lemma 3.7 to

the latter term, we get the desired bound

(3.1.30) . sup
‖g‖p′=1

‖f‖p‖g‖p′ = ‖f‖p. (3.1.31)

Now we turn to the commutator term. Before explaining the idea of estimating the commutator

term, we recall some notations from the previous chapter. Select a Schwartz function ψ0 such that

ψ0 is supported on [ 1
2 ,

5
2 ], let

ψl(t) := ψ0(2−lt). (3.1.32)

By choosing ψ0 properly, we can construct a partition of unity for R+, i.e.

1(0,∞) =
∑
l∈Z

ψl. (3.1.33)
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Let

Hlf(x) :=

∫
ψ̌l(t)f(x− tv(x))dt. (3.1.34)

Then the operator Hv can be decomposed into the sum

Hv = −1 + 2
∑
l∈Z

Hl. (3.1.35)

We continue to explain the strategy of proving the Lp boundedness of the commutator term,

which is

‖
∑
k∈Z

(HvPk(f)− P̃kHvPk(f))‖p . ‖f‖p. (3.1.36)

By the dyadic decomposition in (3.1.35), this is equivalent to bound the following

∑
k∈Z

∑
l∈Z

(HlPkf − P̃kHlPkf). (3.1.37)

Notice that by definition, HlPkf vanishes for l > k, which simplifies the last expression to

∑
l≥0

∑
k∈Z

(Hk−lPkf − P̃kHk−lPkf). (3.1.38)

So by the triangle inequality it suffices to prove

Proposition 3.8 Under the same assumptions as in Theorem 3.1, for any p ∈ (1,∞), there exists

a constant γp > 0 such that

‖
∑
k∈Z

(Hk−lPk(f)− P̃kHk−lPk(f))‖p . 2−γpl‖f‖p, (3.1.39)

with the constant being independent of l ∈ N.

The idea of proving endpoint estimates like the L∞ → BMO estimate will probably not work as

the output of the operator Hv is so rough that it is only measurable across the family of Lipschitz

level curves, in another word, the orthogonality between different tiles is missing.

To recover the orthogonality at the level of the L2 estimate, the argument in the previous chapter

relies heavily on the fact that taking L2 norm works perfectly (also trivially) with the square function.

Hence we could expand certain square summation and apply Hölder’s inequality to turn the problem

to the analysis on every single Lipschitz curve.

However, in the Lp estimate for p 6= 2, this strategy does not work, and instead we will invoke a
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new square function as an intermediate step. This square function is similar to the square function

in the product space R× R.

Remark 3.9 Although the endpoint L∞ → BMO estimate might not work for (3.1.39) with the

classical BMO space, we still hope that there would be some variants, possibly similar to the fiber-

wise Hardy and BMO spaces in [6] and [19], which will act as the right substitutes for the endpoint

theory.

Remark 3.10 For the one-variable vector fields v(x1, x2) = (1, u(x2)), it was proved in [11], under

some convexity and curvature assumptions on the function u : R → R, that the associated Hilbert

transform and maximal function map H1
prod(R×R) to L1, where H1

prod(R×R) denotes the product

Hardy space.

However, it was also pointed out that this might not be the right endpoint theory, and some new

underlying Calderon-Zygmund theory is to be expected. See Remark (iii) in Page 597 in [11].

3.2 Boundedness of the main term: Proof of Proposition 3.2

The goal of this section is to make an observation that Bateman and Thiele’s square function estimate

(see (2.1) in [5]) for the one-variable vector fields, which is

‖(
∑
k∈Z

(HvPk(f))2)1/2‖p . ‖f‖p,∀p > 3/2, (3.2.1)

works equally well for our case, with just minor modifications. Indeed, the proof of the estimate

(3.2.1) is reduced by Bateman and Thiele in [5] to three covering lemmas (Lemma 7 and Lemma 8

in [5], Lemma 6.2 in [4]), and our observation is that all these covering lemmas still hold true for

the case where the vector fields are constant only on Lipschitz curves instead of vertical lines.

Before stating the covering lemmas and the modification that we will make in the proof, we first

recall several notations from Definition 2.8 and Definition 2.9.

For a rectangle R ⊂ R2, with lR its length, wR its width, we define its uncertainty interval

EX(R) ⊂ R to be the interval of width wR/lR and centered at slope(R). Denote by E(R) the

collection of the points x ∈ R s.t. the vector v(x) = (1, u(h(x))) points roughly in the same

direction as the long side of R:

E(R) = {x ∈ R : u(h(x)) ∈ EX(R)}. (3.2.2)
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Then the popularity of the rectangle R is defined to be

popR := |E(R)|/|R|. (3.2.3)

Here u and h are the two functions in Theorem 3.1.

Now we are ready to state the key covering lemmas:

Lemma 3.11 (Lemma 7 in [5]) Under the same assumptions as in Theorem 3.1, let δ > 0 and

q > 1, let G ⊂ R2 be a measurable set and R be a finite collection of rectangles such that

|E(R) ∩G| ≥ δ|G| (3.2.4)

for each R ∈ R. Then

|
⋃
R∈R

R| . δ−q|G|. (3.2.5)

Lemma 3.12 (Lemma 8 in [5]) Under the same assumptions as in Theorem 3.1, let 0 < σ, δ ≤ 1,

let H be a measurable set, and let R be a finite collection of rectangles such that for each R ∈ R we

have

popR ≥ σ, |H ∩R| ≥ δ|R|. (3.2.6)

Then

|
⋃
R∈R

R| . σ−1δ−2|H|. (3.2.7)

To prove these covering lemmas, similar to the proof of Lemma 2.10, one just need to replace

the usual rectangles by the “rectangles” adapted to the vector fields, which are given in Definition

2.12, and run the same argument as in Bateman and Thiele in [5].

These two lemmas were used to give an upper bound on the size of the exceptional sets around

which the rectangles have either large size or large density. After excluding the exceptional sets, the

argument in [5], together with [4](which also works equally well for our case as has been pointed out

in section 2.3), will lead to the square function estimate, i.e. Proposition 3.2.
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3.3 Boundedness of the commutator term: Proof of Propo-

sition 3.8

In this section we intend to prove that for any p > 1, there exists γp > 0 such that

∥∥∥∥∥∑
k∈Z

(
Hv,k−lPk(f)− P̃kHv,k−lPk(f)

)∥∥∥∥∥
p

. 2−γpl‖f‖p. (3.3.1)

If we expand the left hand side of the last expression to a model sum by the notations in Subsection

2.4.1, (3.3.1) becomes

∥∥∥∥∥∥
∑
k∈Z

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)

∥∥∥∥∥∥
p

. 2−γpl‖f‖p. (3.3.2)

Observe that for a fixed point x ∈ R2, by Lemma 2.14, the expression

∑
k∈Z

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)(x) (3.3.3)

can be non-zero for at most one ω ∈ Dl, which implies that

∥∥∥∥∥∥
∑
k∈Z

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)

∥∥∥∥∥∥
p

.

∑
ω∈Dl

∫
R2

∣∣∣∣∣∣
∑
k∈Z

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)

∣∣∣∣∣∣
p1/p

(3.3.4)

From the right hand side of the above inequality, we see that (3.3.2) is reduced to separate ω ∈ Dl.

Hence we just need to do the estimate for each ω separately. To be precise, we will prove

Lemma 3.13 Under the above notations, we have

∥∥∥∥∥∥
∑
k∈Z

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)

∥∥∥∥∥∥
p

. 2−l‖Pωf‖p, (3.3.5)

where Pω is the frequency projection operator given by

FPωf(ξ1, ξ2) = βω(
ξ1
ξ2

)Ff(ξ1, ξ2), (3.3.6)
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and the constant in (3.3.5) is independent of ω ∈ Dl.

Lemma 3.14 We have the following bounds for the multiplier βω:

‖Pωf‖p . ‖f‖p, (3.3.7)

for all p ∈ (1,∞), with the constant being independent of ω.

Finishing the proof of Proposition 3.8: we substitute the estimates in Lemma 3.13 and Lemma

3.14 into (3.3.4) to obtain

∥∥∥∥∥∥
∑
k∈Z

∑
ω∈Dl

∑
s∈Uk,ω

〈f, ϕs〉(φs − P̃kφs)

∥∥∥∥∥∥
p

.

(∑
ω∈Dl

2−pl‖Pωf‖pp

)1/p

. 2−
p−1
p ·l‖f‖p,

(3.3.8)

which finishes the proof of Proposition 3.8.�

Remark 3.15 It has been proved by Demeter and Di Plinio in [12] that

(∑
ω∈Dl

‖Pωf‖pp

)1/p

. ‖f‖p, (3.3.9)

for p ≥ 2, with the constant being independent of l ∈ N. This will provide a better exponential decay

in l in the last inequality in (3.3.8). However, here we do not need such orthogonality estimate but

simply a triangle inequality.

3.3.1 Proof of Lemma 3.14

We first reduce the estimate to one single ω ∈ Dl by applying the shearing transform (the following

(3.3.10)). Suppose for the moment that we have proved (3.3.5) for ω = [0, 2−l], by doing the following

change of variables

x1 → x1, x2 → x2 + λx1, (3.3.10)

for the function f , the frequency variables are transformed into

ξ1 → ξ1 − λξ2, ξ2 → ξ2. (3.3.11)
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This linear change of variables turns

Pω′f(ξ1, ξ2) = F−1

(
βω′(

ξ1
ξ2

)f̂(ξ1, ξ2)

)
, (3.3.12)

which is the term on the left hand side of (3.3.7), into

F−1

(
βω′(

ξ1
ξ2

)f̂(ξ1 − λξ2, ξ2)

)
. (3.3.13)

If we denote

ξ̃1 := ξ1 − λξ2, ξ̃2 := ξ2, (3.3.14)

the multiplier in (3.3.13) turns to

βω′(
ξ̃1 + λξ̃2

ξ̃2
) = β(2l+c

ξ̃1

ξ̃2
+ λ2l+c − 2l+ccω′1). (3.3.15)

So far it becomes clear that by taking λ in (3.3.15) properly, we can apply the change of variables

(3.3.10) to turn the projection operator Pω′f for an arbitrary ω ∈ Dl to Pωf , where ω = [0, 2−l].

Next, we will reduce the estimate for all l ∈ N to the one simply for l = 0. This can be done by

applying the following anisotropic scaling symmetry:

x1 → λx1, x2 → x2, (3.3.16)

for the function f . Under the above change of variables, the Fourier transform of f is transformed

from f̂(ξ1, ξ2) to

1

λ
f̂(
ξ1
λ
, ξ2). (3.3.17)

Correspondingly, the function Pωf is changed to

∫
βω(

ξ1
ξ2

)
1

λ
f̂(
ξ1
λ
, ξ2)eix1ξ1+ix2ξ2dξ1dξ2

=

∫
βω(

λξ1
ξ2

)f̂(ξ1, ξ2)eiλx1ξ1+ix2ξ2dξ1dξ2.

(3.3.18)

Hence the multiplier βω(ξ1/ξ2) has the same Lp norm with βω(λξ1/ξ2). However, by the definition

of βω, we have

βω(
λξ1
ξ2

) = β(
2l+cλξ1
ξ2

− 2l+ccω1), (3.3.19)

54



which means that if we take λ = 2−l, the right hand side of the last expression becomes βω0(ξ1/ξ2)

where ω0 = [0, 1].

After the above reductions, we just need to prove (3.3.7) with ω0 = [0, 1]. For p = 2, the estimate

is trivial due to Plancherel’s theorem. For p 6= 2, if we denote by Pk a Littlewood-Paley projection

operator in the second variable, then by the Littlewood-Paley theory, we obtain

‖Pω0
f‖p .

∥∥∥∥∥∥
(∑

k

|PkPω0
f |2
)1/2

∥∥∥∥∥∥
p

. (3.3.20)

By the classical Calderon-Zygmund theory, it is not difficult to prove that

∥∥∥∥∥∥
(∑

k

|PkPω0
f |2
)1/2

∥∥∥∥∥∥
BMO

. ‖f‖∞, (3.3.21)

and ∥∥∥∥∥∥
(∑

k

|PkPω0f |
2

)1/2
∥∥∥∥∥∥

1

. ‖f‖H1 . (3.3.22)

Hence by interpolation, we obtain the desired estimate for all p ∈ (1,∞). So far we have finished

the proof of Lemma 3.14. �

3.3.2 Proof of Lemma 3.13

By the same shearing transform as in (3.3.10), we can reduce the estimate (3.3.5) for different ω to

the one for a fixed ω, say ω = [0, 2−l]. To prove (3.3.5), by invoking duality, it is equivalent to prove

that ∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|
∣∣∣(φs − P̃kφs) · g∣∣∣ . 2−l‖f‖p, (3.3.23)

where the function g satisfies ‖g‖p′ ≤ 1. By the Fubini theorem, the left hand side of (3.3.23) is

equal to

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|
∣∣∣(φs(x)− P̃kφs(x)

)
· g(x)

∣∣∣ δ(h(x)− t)dxdt

=

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|
∣∣∣(φs(x)− P̃kφs(x)

)
· g(x)

∣∣∣ δ(ht(x))
|∇ht(x)|
|∇h(x)|

dxdt.

(3.3.24)
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By the bound on ∇ht in (3.1.7) and our assumption on ∇h in Theorem 3.1, the right hand side of

(3.3.24) can be bounded by

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|
∣∣∣(φs(x)− P̃kφs(x)

)
· g(x)

∣∣∣ δ(ht(x))dxdt. (3.3.25)

If we denote by sm,n the translation of the tile s by (m,n) units, which is

sm,n := s− (m · ls, n · ws), (3.3.26)

then the above (3.3.25) is equal to

∑
m,n

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|1sm,n(x)
∣∣∣(φs(x)− P̃kφs(x)

)
· g(x)

∣∣∣ δ(ht(x))dxdt. (3.3.27)

By the notion of the adapted rectangles in Definition 2.12, we can replace sm,n by the slightly

enlarged “rectangle” s̃m,n as from the definition it is clear that s̃m,n ⊃ sm,n. Moreover, in the

following, we will only focus on the term m = n = 0, as the other terms appear as the tail terms by

the non-stationary phase method.

The pointwise estimate in the following Lemma 3.16 (which has been essentially contained in

Lemma 2.17) will play a crucial role in the forthcoming calculation. To state this estimate, we need

to make some preparations: for a fix t ∈ R, we use the new coordinates system given by (vt, v
⊥
t ). For

a tile s, we use J(t, s) to denote the projection of Γt ∩ s̃ on the new vertical axis v⊥t . Moreover for

the interval J(t, s), we let JD(t, s) denote one of the dyadic intervals (at most two) on the vertical

axis such that

|JD(t, s)| ∈ (8 · |J(t, s)|, 16 · |J(t, s)|] (3.3.28)

and

|JD(t, s) ∩ J(t, s)| ≥ |J(t, s)|/2. (3.3.29)

For the dyadic interval JD(t, s), we let ΦJD(t,s) denote the associated L2 normalised Haar function.

Lemma 3.16 Fix t ∈ R and s ∈ Uk,ω for some ω ∈ Dl, for x ∈ Γt ∩ s̃, we have the pointwise

estimate

|φs(x)− P̃kφs(x)| .
∑
j0∈N

2−3l/22kβj0(JD(t, s))

(j0 + 1)N
, (3.3.30)
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where βj0(JD(t, s)) denotes the j0-th beta number of Γt near the dyadic interval JD(t, s).

Remark 3.17 The proof of the above Lemma 3.16 has been covered by the proof of Lemma 2.17.

However, the argument there relies on those unnecessary parameters and auxiliary functions that

we want to avoid by doing δ-calculus. As we have promised in the beginning of this chapter that we

will carry out the whole argument in the language of δ-calculus completely, we should also be able to

prove Lemma 3.16 by doing so. This is postponed to the next subsection.

Substitute the above estimate into the right hand side of (3.3.27) with m = n = 0, we obtain

∑
j0

2−l

(j0 + 1)N

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2k2−l/21s̃(x)βj0(JD(t, s)) · |g(x)|δ(ht(x))dxdt. (3.3.31)

To proceed, we need the following

Claim 3.18 Fix t ∈ R, we have the following estimate

∫
R2

∑
k∈Z

∑
s∈Uk,ω

2k2−l/2|〈f, ϕs〉|1s̃(x)βj0(JD(t, s))

 g(x)δ(ht(x))dx

. j3/2
0

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x)

p/2

δ(ht(x))dx


1/p(∫

R2

|g(x)|p
′
δ(ht(x))dx

)1/p′

,

where for x = (x1, x2),

χs(x1, x2) :=
|s|−1/2

(1 + (
x1−cs,1

ls
)2 + (

x2−cs,2
ws

)2)5
, (3.3.32)

with cs = (cs,1, cs,2) denoting the center of s, ls = 2−k+l the length and ws = 2−k the width.

We postpone the proof of the Claim 3.18 till the end of this subsection and continue with the

estimate of the term (3.3.31). By Claim (3.18) and by applying Hölder’s inequality to
∫
R dt, the

expression in (3.3.31) can be bounded by

∑
j0

j
3/2
0 · 2−l

< j0 >N

∫
R

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x)

p/2

δ(ht(x))dxdt


1/p

. 2−l ·

∥∥∥∥∥∥∥
∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x)

1/2
∥∥∥∥∥∥∥
p

.

(3.3.33)

To bound the last expression, we need the following
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Lemma 3.19 We have the following variant of the square function estimate

∥∥∥∥∥∥∥
∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x)

1/2
∥∥∥∥∥∥∥
p

. ‖f‖p. (3.3.34)

Finishing the proof of Lemma 3.13: it is straightforward that, combined with (3.3.33), Lemma

3.19 finishes the estimate of the expression (3.3.31), thus the proof of Lemma 3.13. �

Proof of Lemma 3.19: recall that in the estimate (3.3.34), we have ω = [0, 2−l]. Now we want to

reduce the estimate to the case ω0 = [0, 1] by applying the anisotropic scaling

x1 → 2lx1, x2 → x2. (3.3.35)

Under the above change of variables, as has been explained in the proof of Lemma 3.14, ϕs for some

s ∈ Uk,ω is changed to ϕs′ for the corresponding s′ ∈ Uk,ω0
with ω0 = [0, 1]. Moreover, the function

χs will also behave in the same way:

χs(2
lx1, x2) =

|s|−1/2

(1 + (
2lx1−cs,1

ls
)2 + (

x2−cs,2
ws

)2)5

=
|s|−1/2

(1 + (
x1−2−lcs,1

2−lls
)2 + (

x2−cs,2
ws

)2)5
.

(3.3.36)

Recall that ls = 2lws, hence the right hand side of (3.3.36) becomes a bump function with main

support on a cube of side length ws, which means that χs(2
lx1, x2) is equal to χs′ for some s′ ∈ Uk,ω0

up to a normalisation factor.

After the above reduction, we just need to prove (3.3.34) for ω = [0, 1]. For the case p = 2, by

the orthogonality of the wavelet functions, we obtain

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s

1/2

. ‖f‖2. (3.3.37)

Moreover, by the classical Calderon-Zygmund theory, it is not difficult to prove the following endpoint
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estimates ∥∥∥∥∥∥∥
∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s

1/2
∥∥∥∥∥∥∥
BMO

. ‖f‖∞, (3.3.38)

and ∥∥∥∥∥∥∥
∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s

1/2
∥∥∥∥∥∥∥

1

. ‖f‖H1 . (3.3.39)

Hence by interpolation, we can obtain all the expected Lp estimate for (3.3.34) in the above Lemma

3.19. �

Proof of Claim 3.18: For a fixed t ∈ R, for the summation on the left hand side of the estimate

in Claim 3.18, we observe that ∑
k∈Z

∑
s∈Uk,ω

=
∑

s:s∩Γt 6=∅

, (3.3.40)

as the term 1s̃(x) will vanish if s ∩ Γt = ∅. We use the new coordinate system (vt, v
⊥
t ), and write

x = x1vt + x2v
⊥
t , which will still be denoted as x = (x1, x2) for the sake of simplicity. This turns

the left hand side of the estimate in Claim 3.18 into

∫
R

∫
R

 ∑
s:s∩Γt 6=∅

|〈f, ϕs〉|1s̃(x1, x2)βj0(JD(t, s))2k2−l/2

 g(x1, x2)δ(ht(x1, x2))dx1dx2

=
∑

s:s∩Γt 6=∅

2k2−l/2|〈f, ϕs〉|βj0(JD(t, s))

∫
R

∫
R
g(x1, x2)1s̃(x1, x2)δ(ht(x1, x2))dx1dx2

(3.3.41)

Notice that the integration on the right hand side of (3.3.41) can be estimated in the following way

∣∣∣∣∫
R

∫
R
g(x1, x2)1s̃(x1, x2)δ(ht(x1, x2))dx1dx2

∣∣∣∣
. 2−k

[∫
R
g(x1, ·)δ(ht(x1, ·))dx1

]
2JD(t,s)

,

where for a function G : R→ R, [G(·)]J denotes the average of the function G on the interval J ⊂ R.

Substitute the above bound into the right hand side of (3.3.41), we obtain the following bound

∑
s:s∩Γt 6=∅

2−l/2|〈f, ϕs〉|βj0(JD(t, s))

[∫
R
g(x1, ·)δ(ht(x1, ·))dx1

]
2JD(t,s)

.

To proceed, the idea is to view the above expression as a paraproduct. To do this, we need to

find the right function such that it has the wavelet coefficient 2−l/2|〈f, ϕs〉|w−1/2
s , where ws = 2−k
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denotes the width of the tile s. This can be achieved by defining a function Ft : R→ R such that

Ft(x2) =
∑

s:s∩Γt 6=∅

2−l/2w−1/2
s 〈f, ϕs〉ΦJD(t,s)(x2), (3.3.42)

where ΦJD(t,s) denotes the L2 normalised Haar function associated to the dyadic interval JD(t, s).

By the Lp boundedness of the paraproduct (see [1] for example) and Jones’ beta number condition

that

sup
s

1

|JD(t, s)|
∑

s′:JD(t,s′)⊂JD(t,s)

β2
j0(JD(t, s′))ws . j

3
0 , (3.3.43)

we obtain for any fixed t ∈ R that

∑
s:s∩Γt 6=∅

2−l/2|〈f, ϕs〉|βj0(JD(t, s))

[∫
R
g(x1, ·)δ(ht(x1, ·))dx1

]
2JD(t,s)

=
∑

s:s∩Γt 6=∅

2−l/2w−1/2
s |〈f, ϕs〉|βj0(JD(x, s))w1/2

s

[∫
R
g(x1, ·)δ(ht(x1, ·))dx1

]
2JD(t,s)

. j3/2
0 ‖Ft(·)‖p

∥∥∥∥∫
R
g(x1, ·)δ(ht(x1, ·))dx1

∥∥∥∥
p′

. j3/2
0 ‖Ft(·)‖p

(∫
R2

|g(x)|p
′
δ(ht(x))dx

)1/p′

(3.3.44)

Hence what remains is to prove the following

Claim 3.20 Under the above notations, we have

‖Ft(·)‖p .

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x)

p/2

δ(ht(x))dx


1/p

. (3.3.45)

Proof of Claim 3.20: By the square function estimate, we obtain

‖Ft‖p .

∥∥∥∥∥∥∥
 ∑
s:s∩Γt 6=∅

2−lw−2
s 〈f, ϕs〉21JD(t,s)(·)

1/2
∥∥∥∥∥∥∥
p

. (3.3.46)

For the right hand side of (3.3.45), again we use the new coordinate system (vt, v
⊥
t ) and denote

x = x1vt + x2v
⊥
t as x = (x1, x2) for the sake of simplicity. Then the right hand side of (3.3.45)
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becomes

∫
R2

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x1, x2)

p/2

δ(ht(x1, x2))dx1dx2


1/p

=

∫
R

∫
R

∑
k∈Z

∑
s∈Uk,ω

|〈f, ϕs〉|2χ2
s(x1, x2)δ(ht(x1, x2))dx1

p/2

dx2


1/p

.

(3.3.47)

If we compare the right hand side of (3.3.46) and (3.3.47), we observe that the following pointwise

estimate in x2 will finish the proof of the claim: for any x2 ∈ R and any tile s such that s ∩ Γt 6= ∅,

we have

2−lw−2
s 〈f, ϕs〉21JD(t,s)(x2) .

∫
R
|〈f, ϕs〉|2χ2

s(x1, x2)δ(ht(x1, x2))dx1. (3.3.48)

But this follows easily from the definition of the function χs. Thus we have finished the proof of

Claim 3.20. �

3.3.3 Proof of Lemma 3.16

As we are fixing t and trying to prove pointwise estimate for x ∈ Γt, we could always pretend that

the vector field is constantly equal to vt on the whole plane. That is to say, if we define

φts(x) :=

∫
R
ϕs(x− tvt)ψ̌k−l(t)dt,∀x ∈ R2, (3.3.49)

we will have

φts(x) = φs(x),∀x ∈ Γt, (3.3.50)

and the advantage is that the vector field becomes the constant vector field vt. In the following, we

will stick to φts instead of φs.

For a tile s of dimension ws × ls with

ls = 2l · ws, (3.3.51)

for a point x ∈ Γt ∩ s with

v⊥t ∈ ωs,2, (3.3.52)
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we want to show that

|φts(x)− P̃kφts(x)| .
∑
j0∈N

2−3l/2 · w−1
s βj0(JD(t, s))

< j0 >N
. (3.3.53)

To proceed, we again turn to the new coordinate system (vt, v
⊥
t ), and write

x→ x1vt + x2v
⊥
t . (3.3.54)

By the definition of the operator P̃k, the left hand side of (3.3.53) is equal to

φts(x1, x2)−
∫
R

[∫
R
φts(y1, y2)δ(ht(y1, y2))dy1

]
ψk(x2 − y2)dy2. (3.3.55)

We approximate Γt ∩ s by the line of the “average slope” in the definition of Jones’ β-number, and

call it ls,t. Moreover, we define another auxiliary function Ls,t associated to the line ls,t in a similar

way to ht:

If for some y ∈ Γt we have z − y = d · vt, then we set Ls,t(z) = d. (3.3.56)

The crucial observation is that∫
R

[∫
R
φts(y1, y2)δ(Ls,t(y1, y2))dy1

]
ψk(x2 − y2)dy2

=

∫
R
φts(y1, x2)δ(Ls,t(y1, x2))dy1.

(3.3.57)

Substitute the above identity into (3.3.55) to obtain

φts(x1, x2)−
∫
R
φts(y1, x2)δ(Ls,t(y1, x2))dy1...

...−
∫
R

[∫
R
φts(y1, y2) (δ(ht(y1, y2))− δ(Ls,t(y1, y2))) dy1

]
ψk(x2 − y2)dy2.

(3.3.58)

Notice that for x = (x1, x2) ∈ Γt, we have

φts(x1, x2) =

∫
R
φts(y1, x2)δ(ht(y1, x2))dy1, (3.3.59)
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by substituting which into (3.3.58) we obtain

∫
R
φts(y1, x2) [δ(ht(y1, x2))− δ(Ls,t(y1, x2))] dy1...

...−
∫
R

[∫
R
φts(y1, y2) (δ(ht(y1, y2))− δ(Ls,t(y1, y2))) dy1

]
ψk(x2 − y2)dy2.

(3.3.60)

Observe that the latter term in the above expression is just a Littlewood-Paley projection of the

former term, hence it should be expected that these two terms can be handled in a similar way. In

Subsection 2.4.3 it has indeed been shown to be this case, hence in the following we will focus on

the former term of (3.3.60).

By the definition of φts in (3.3.49), we obtain

∫
R
φts(y1, x2) [δ(ht(y1, x2))− δ(Ls,t(y1, x2))] dy1

=

∫
R

∫
R
ϕs(y1 − t, x2)ψ̌k−l(t)dt [δ(ht(y1, x2))− δ(Ls,t(y1, x2))] dy1.

(3.3.61)

If we denote

d := ht(y1, x2)− Ls,t(y1, x2), (3.3.62)

then the right hand side of (3.3.61) turns to

∫
R

∫
R

(ϕs(y1 − t, x2)− ϕs(y1 + d− t, x2)) ψ̌k−l(t)dtδ(ht(y1, x2))dy1

=

∫
R

∫
R
ϕs(y1 − t, x2)

(
ψ̌k−l(t)− ψ̌k−l(t+ d)

)
dtδ(ht(y1, x2))dy1.

(3.3.63)

Hence by the definition of Jones’ beta numbers that

|d| . ws · β0(JD(t, s)), (3.3.64)

and by applying the fundamental theorem of calculus to ψ̌k−l, we conclude the desired estimate in

Lemma 3.16. �
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Chapter 4

A geometric proof of Bourgain’s L2 estimate of the maximal

operator along analytic vector fields

In this chapter we present a geometric proof of Bourgain’s L2 bounds of the maximal operator along

analytic vector fields, which is Theorem 1.6. Recall that for a unit vector field v : R2 → S1, for a

small constant ε0 > 0, the maximal operator associated to v and truncated at ε0 is defined by

Mv,ε0f(x) := sup
0<ε≤ε0

1

2ε

∫ ε

−ε
|f(x+ tv(x))|dt. (4.0.1)

It is a result due to Bourgain [7] that for every analytic vector field v, there exists ε0 depending on v

such that Mv,ε0 is bounded on L2(R2). As we are doing a truncation in the definition of the maximal

operator (4.0.1), it suffices to prove that for any bounded open set Ω ⊂ R2, Mv,ε0 is bounded on

L2(Ω).

To prove Theorem 1.6, Bourgain reduced the analyticity assumption on the vector field to the

following geometric one: for x ∈ Ω and t small enough, define the function

ωx(t) = |det[v(x+ tv(x)), v(x)]| . (4.0.2)

We assume that ∣∣∣∣{t ∈ [−ε, ε] : ωx(t) < τ sup
−ε≤s≤ε

ωx(s)}
∣∣∣∣ ≤ C0τ

c0ε, (4.0.3)

for all 0 < τ < 1, 0 < ε ≤ ε0, where 0 < c0, C0 <∞ are constants independent of the point x ∈ Ω.

It is shown in [7] that Theorem 1.6 can be reduced to the following

Theorem 4.1 ([7]) If v is C1 and satisfies the condition (4.0.3), then Mv,ε0 is bounded on L2(Ω).
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Bourgain’s proof for Theorem 4.1 is not entirely geometric, particularly the key Lemma 3.28,

where he used the polar coordinates and applied Schur’s Lemma to get the desired L2 bounds.

The goal of this chapter is to give a geometric proof of Theorem 4.1. The idea is to use the time-

frequency decomposition initiated by Lacey and Li in the setting of the Hilbert transform along

vector fields in [20] and [21], and further developed by Bateman in [4], Bateman and Thiele in [5].

However, the proof below is free of the time-frequency analysis techniques.

4.1 Reduction to a smooth cut-off

By a renormalisation, we assume further that ‖v‖C1 ≤ 1, and Ω = Bε0(0), which is the ball of

radius ε0 � 1 centered at origin. Moreover, as we are only concerned with the truncated maximal

operator, we can w.l.o.g. assume that the vector field is periodic in both horizontal and vertical

directions with each periodicity being 3 · ε0, and that the vector field always points in the two-ended

cone which forms an angle less than π/10 with the horizontal axis. In the following, we will denote

this cone by Γ0.

Choose α : R → R to be a proper smooth bump function such that the support of α̂ lies on

[−1, 1]. For 0 < ε ≤ ε0, define

Aεf(x) :=

∫
R
f(x+ εtv(x))α(t)dt. (4.1.1)

It is not difficult to see that the operator Mv,ε0 is essentially equivalent to

sup
j∈N,2−j≤ε0

|A2−jf(x)| , (4.1.2)

which will still be called Mv,ε0 . Moreover we will write Aj to stand for A2−j for the sake of simplicity.

Hence in the rest of the paper, we will focus on the following operator

Mv,ε0f(x) := sup
j∈N,2−j≤ε0

|Ajf(x)|. (4.1.3)

In the end, we just need to observe that to prove (4.1.3), it suffices to prove the following spatially

localised version:

‖Mv,ε0f‖L2(Bε0 (0)) . ‖f‖L2 , (4.1.4)
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due to the fact that we are truncating the maximal operator at the scale ε0.

4.2 Bourgain’s high-low frequency decomposition

We linearise the maximal operator in (4.1.3): take a measurable function J : R2 → N such that

Mv,ε0f(x) ∼
∣∣∣AJ(x)f(x)

∣∣∣ . (4.2.1)

For a point x ∈ Ω = Bε0(0), let Rx,j be the rectangle with center x, orientation v(x), length 2−j

in direction v(x) and width

δ(Rx,ε) = 2−j · sup
|t|<2−j

ωx(t). (4.2.2)

Especially we denote

δ(x) := 2−J(x) · sup
|t|<2−J(x)

ωx(t). (4.2.3)

Choose a measurable function K : R2 → N such that

δ(x) ∼ 2−K(x),∀x ∈ R2. (4.2.4)

Do an isotropic Littlewood-Paley decomposition for the function f , and write

f =
∑
k∈Z

Pkf. (4.2.5)

This turns the operator into ∑
k∈Z

AJ(x)Pkf(x). (4.2.6)

Bourgain’s idea is to split the function into two parts, the high frequency part and the low frequency

part, in the following way:

∑
k∈Z

AJ(x)Pkf(x) =
∑

k∈Z,k≥K(x)

AJ(x)Pkf(x) +
∑

k∈Z,k<K(x)

AJ(x)Pkf(x). (4.2.7)

For the latter part, i.e. the low frequency part, Bourgain’s proof is already geometric, see Lemma

4.12 and Lemma 5.7 in [7]. Hence the main task for us is to bound the former part, i.e. the high

frequency part, by a geometric argument.

Remark 4.2 The estimate of the above high frequency part is done in Lemma 3.28 in [7] by analytic
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methods.

We proceed with the estimate of the high frequency part: First we write

∑
k∈Z,k≥K(x)

AJ(x)Pkf(x) =
∑
l∈N0

AJ(x)PK(x)+lf(x). (4.2.8)

Then by the triangle inequality, it suffices to prove that

‖AJ(x)PK(x)+lf(x)‖2 . 2−µl‖f‖2, (4.2.9)

for some µ > 0, with constant being independent of l ∈ N.

Notice that the above estimate is still of maximal type, and we want to get rid of the linearisation

by replacing the l∞ norm by an l2 norm. To do this, we need to introduce several notations. For

j, k ∈ N, define

Ωj,k := {x ∈ Ω|2−j · sup
|t|<2−j

ωx(t) ∼ 2−k}. (4.2.10)

For a real analytic vector field, either the integral curves are straight lines, or for each j ∈ N, the

complement of the set ∪kΩj,k has measure zero. Hence it is no restriction to assume for each j ∈ N

that

Ω =
⋃
k∈N

Ωj,k. (4.2.11)

It is also clear that for a fixed k ∈ N, the Ωj,k for different j are essentially disjoint.

Hence for a fixed x,

|AJ(x)PK(x)+lf(x)| . sup
j∈N

(∑
k∈N

∣∣AjPk+lf
∣∣2 1Ωj,k

)1/2

. (4.2.12)

We replace the sup norm by the l2 norm to obtain

|AJ(x)PK(x)+lf(x)| .

∑
j∈N

∑
k∈N

∣∣AjPk+lf
∣∣2 1Ωj,k

1/2

. (4.2.13)
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Taking the L2 norm of (4.2.13), we obtain

∑
j∈N

∑
k∈N

∫ ∣∣AjPk+lf
∣∣2 1Ωj,k . (4.2.14)

Recall that Rx,j denotes the rectangle with center x, length 2−j and width

δ(Rx,j) := 2−j sup
|t|<2−j

ωx(t). (4.2.15)

In the following we will cover Ωj,k with rectangles {Rm = Rxm,j}m∈N satisfying the following

two conditions

(i) δ(Rm) = 2−k;

(ii) the center of Rm does not belong to R1 ∪ ... ∪Rm−1.

(4.2.16)

Hence for fixed j and k,

∫ ∣∣AjPk+lf
∣∣2 1Ωj,k .

∑
m∈N

∫ ∣∣AjPk+lf
∣∣2 1Rm . (4.2.17)

Indeed, the above covering of Ωj,k is a “valid” covering, i.e. a covering without much overlapping.

To be precise, if we define

Ω′j,k :=
⋃

x∈Ωj,k

2 ·Rx,j , (4.2.18)

then it has been proved by Bourgain in [7] (see the following Lemma 4.7) that

‖
∑
j

1Ω′j,k
‖∞ . 1. (4.2.19)

In the following, when estimating the right hand side of (4.2.17), we will need several other

geometric properties like (4.2.19). Hence we organise all them together in the next section.

4.3 Geometric properties of the rectangles

Lemma 4.3 (Lemma 4.1 in [7]) Let x′ be in the rectangle Rx,j, then

δ(Rx,j) ∼ δ(Rx′,j), (4.3.1)
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and Rx,j is contained in a multiple of Rx′,j and vice versa.

Lemma 4.4 (Lemma 4.6 in [7]) Assume

2 ·Rx,j ∩ 2 ·Rx′,j′ 6= ∅, (4.3.2)

and 2−j
′
. 2−j. Then

Rx′,j′ ⊂ 4 ·Rx,j (4.3.3)

and

δ(Rx,j)

2−j
&
δ(Rx′,j′)

2−j′
, (4.3.4)

i.e. larger rectangle has larger eccentricity.

Lemma 4.5 Assume that

Rx,j ∩Rx′,j+j0 6= ∅, (4.3.5)

for some j0 ∈ N0. Then there exists a constant a0 > 1 such that

δ(Rx,j)

2−j
. (2j0)a0 · δ(Rx

′,j+j0)

2−j−j0
. (4.3.6)

Remark 4.6 Compared with Lemma 4.4, this lemma says that the growth of the eccentricity of the

rectangle with respect to the length can only be polynomial.

Proof of Lemma 4.5: this follows easily from Lemma 4.3 and the following doubling estimate

(3.20) in [7]

δ(Rx,j)

2−j
≤ C · δ(Rx

′,j+1)

2−j−1
, (4.3.7)

for some constant C > 0. �

Lemma 4.7 (Lemma 4.7 in [7]) Let {Rxi,ji}i∈N0
be a sequence of rectangles and δ > 0 such that

(i) δ(Rxi,ji) ∼ δ;

(ii) xi+1 does not belong to Rx0,j0 ∪ ... ∪Rxi,ji ,∀i.
(4.3.8)

Then

‖
∑
i∈N0

12·Rxi,ji‖∞ . 1. (4.3.9)

We will also need the following generalised version of the above lemma.
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Lemma 4.8 Under the same assumptions as in Lemma 4.7, there exists a constant b0 > 0 such

that for any N ∈ N0, we have

‖
∑
i∈N0

1Rp,qxi,ji
‖∞ . (p+ q + 1)b0 ,∀p, q ∈ N, (4.3.10)

where Rp,qxi,ji is obtained by dilating the length of Rxi,ji to p times, and the width to q times.

Remark 4.9 The above lemma says that when we enlarge the rectangles Rxi,ji , the overlapping can

only be polynomially growing.

Proof of Lemma 4.8: Denote

q̃ := max{q, pa0+1}, (4.3.11)

where a0 is the constant in (4.3.6).For the rectangle Rp,qxi,ji , we further enlarge it to be of width q̃ · δ.

Next, we will dilate the length to p̃i · 2−ji such that

sup
|t|≤p̃i·2−ji

ωxi(t) ∼
q̃

p̃i
· δ

2−ji
. (4.3.12)

By Lemma 4.4, it is not difficult to see that

p̃i ≤ q̃ . p̃a0+1
i , (4.3.13)

uniformly in i.

Our goal now is to show that

‖
∑
i

1
R
p̃i,q̃

xi,ji

‖∞ . q̃b0 , (4.3.14)

for some b0 to be determined later. Suppose that the L∞ norm on the left hand side of the above

expression is attained at the point O. Moreover, letRO denote the collection of rectangles containing

the point O, and w.l.o.g. we assume that

RO = {Rp̃i,q̃xi,ji
}0≤i≤N , (4.3.15)

for some N ∈ N0. Then (4.3.14) is equivalent to proving

N . q̃b0 . (4.3.16)
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By the definition of the rectangles Rp̃i,q̃xi,ji
and Lemma 4.3, it is not difficult to see that all the

rectangles in RO have comparable lengths. Indeed, up to a constant dilation factor, any of these

rectangles is contained in another. Hence

⋃
0≤i≤N

Rp̃i,q̃xi,ji
⊂ 4Rp̃0,q̃x0,j0

. (4.3.17)

Moreover, by the upper bound on p̃i in (4.3.13), we can also obtain that

l(Rxi,ji) & l(R
p̃0,q̃
x0,j0

)/q̃, (4.3.18)

where for some rectangle R, l(R) is used to denote its length. Hence by the assumption that the

center xi of Rxi,ji is not contained in

Rx0,j0 ∪ ... ∪Rxi−1,ji−1
(4.3.19)

for all i, we obtain easily the estimate (4.3.16) for some constant b0 depending only on a0. So far

we have finished the proof of Lemma 4.8. �

4.4 Estimate on each rectangle

In this section, we will give an estimate of each single term from the summation on the right hand

side of (4.2.17), i.e. ∫
|AjPk+lf |21Rm , (4.4.1)

for a fixed Rm = Rxm,j . Recall that we have assumed that the vector field points in the cone Γ0,

which is the two-ended cone forming an angle less than π/10 with the horizontal axis. If we denote

by PΓ0 the frequency projection operator for the cone Γ0 (as in (2.2.8)), it is not difficult to see that

AjPk+lPΓ0
f ≡ 0. (4.4.2)

Hence in the following we will only be concerned with the frequency in the cone Γc0. Moreover, for

the sake of simplicity, we will always identify Pk+l with Pk+lPΓc0
.

Now we use the time-frequency decomposition from Section 2.4 to write the function AjPk+l into
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a model sum. For fixed j, k and l, we will denote

θ := k + l − j. (4.4.3)

By using the notations from (2.4.1) to (2.4.13), the frequency localised function AjPk+lf can be

passed to the model sum

∑
ω∈Dθ

∑
s∈Uk+l,ω

〈f, ϕs〉Ajϕs.

Hence to bound the expression (4.4.1), it suffices to bound

∫ ∣∣∣∣∣∣
∑
ω∈Dθ

∑
s∈Uk+l,ω

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm . (4.4.4)

By Lemma 2.14, we have that the last expression is equal to

∑
ω∈Dθ

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm . (4.4.5)

We will focus on (4.4.5) in the following two subsections.

4.4.1 Estimate on each rectangle by ignoring the tails of the wavelet

functions

In this part, we will only show the idea of how to bound the term (4.4.5), or in another word, we

will ignore the tails of the wavelet functions and the function α in the definition of Aj in (4.1.1),

and always assume that they have compact support in both space and frequency.

Under the above simplification, the expression in (4.4.5) turns to

∑
ω∈Dθ

∑
s∈Uk+l,ω

|〈f, ϕs〉|2
∫ ∣∣Ajϕs∣∣2 1Rm . (4.4.6)

Take a point x ∈ Rm, for a tile s ∈ Uk+l,ω for some ω ∈ Dθ, we observe that in order for Ajϕs(x)

not to vanish, we must have ω ⊂ 3 · EX(Rm) as by Lemma 4.3 we know that v(x) ∈ 2 · EX(Rm)

for any x ∈ Rm. Here EX(Rm) is the uncertainty interval of the rectangle Rm given in Definition
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2.8. This, together with the fact that both Rm and s have length 2−j , implies that

s ⊂ 4 ·Rm, (4.4.7)

for those tiles s such that Ajϕs is not identically zero.

Claim 4.10 There exists µ > 0 such that

∫ ∣∣Ajϕs∣∣2 1Rm . 2−µl, (4.4.8)

with the constant being independent of s.

By the above claim, the expression in (4.4.6) can be further bounded by

∑
ω∈Dθ

∑
s∈Uk+l,ω,s⊂4·Rm

2−µl · |〈f, ϕs〉|2 . 2−µl‖1Rm · Pk+lf‖22. (4.4.9)

The next step is to sum over m, j and k:

∑
j,k

∑
m

‖1Rm · Pk+lf‖22 . 2−µl
∑
j,k

‖1Ω′j,k
· Pk+lf‖22

. 2−µl
∑
k

‖Pk+lf‖22 . 2−µl‖f‖22,
(4.4.10)

where we have used the disjointness property (4.2.19). Hence for the model problem, what remains is

“Proof” of Claim 4.10: We can w.l.o.g. assume that there exists a point x0 ∈ s such that

v(x0) ∈ ωs, (4.4.11)

as otherwise Ajϕs will be identically zero. By a proper translation and rotation, we can assume

that x0 = (0, 0) and v(x0) = (1, 0).

Now we look at the direction of the vector field for the points on the line segment

{(x1, x2) : x2 = 0} ∩ s. (4.4.12)
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By the assumption on the rectangle Rm we know that

sup
|t|≤2−j

wx0(t) = sup
|t|≤2−j

|det[v(x0 + tv(x0)), v(x0)]| ∼ 2−k+j . (4.4.13)

Notice that |ωs| = 2−k−l+j , hence in order for Ajϕs not to vanish at a point x ∈ s∩{(x1, x2) : x2 =

0}, we must have

|det[v(x), v(x0)]| = wx0(x · v(x0)) . 2−k−l+j . (4.4.14)

By taking τ = 2−l in the condition (4.0.3) we obtain

∣∣∣∣∣t ∈ [−2−j , 2−j ] : wx0
(t) < 2−l sup

|t|≤2−j
wx0

(t)

∣∣∣∣∣ ≤ C02−c0l · 2−j , (4.4.15)

which further implies that

∣∣{(x1, 0) ∈ s : Ajϕs(x1, 0) 6= 0)}
∣∣ . 2−c0l · 2−j . (4.4.16)

So far we have proved that on one line segment, the non-vanishing output has relatively small

measure. In the next, we want to show that this indeed holds true for all the points in the tile s,

namely

|{x ∈ s : Ajϕs(x) 6= 0}| . 2−c0l|s|. (4.4.17)

This, combined with the trivial estimate

‖Ajϕs‖∞ . |s|−1/2, (4.4.18)

concludes the proof of Claim 4.10.

We turn to the proof of (4.4.17): for |x2| ≤ 2−k−l+2, consider the line segment

Lx2 := {(0, x2) + t · v(0, x2) : |t| ≤ 2−j+2}. (4.4.19)

First by the C1 assumption on the vector field, we know that

v(0, x2) ∈ 2 · ωs,∀|x2| ≤ 2−k−l+2. (4.4.20)
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Then by the same argument as before, we obtain that

|{x ∈ Lx2 : Ajϕs(x) 6= 0}| . 2−c0l · 2−j , (4.4.21)

for each |x2| ≤ 2−k−l+2. Hence by Fubini’s theorem (which can be applied due to the C1 assumption

on the vector field), we obtain

|{x ∈ s : Ajϕs(x) 6= 0}|

=

∫ 2−k−l+2

−2−k−l+2

|{x ∈ Lx2 : Ajϕs(x) 6= 0}|dx2 . 2−c0l · 2−k−l−j .
(4.4.22)

Hence we have finished the proof of (4.4.17).

4.4.2 The full estimate on each rectangle

In this part, we will make the above heuristic argument rigorous, i.e. we will also take care of the

tails of the wavelet functions. For fixed j, k, l and m, we want to bound the following

∫ ∣∣AjPk+lf
∣∣2 1Rm =

∑
ω∈Dθ

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm . (4.4.23)

For p, q ∈ Z, we denote by ~Rp,qm the translation of the rectangle Rm by (p, q) units, i.e.

~Rp,qm = Rm + p · 2−jv(xm) + q · 2−kv⊥(xm), (4.4.24)

where xm denotes the center of Rm and v(xm) is the value of the vector field at the point xm which

is parallel to the long side of Rm.

Hence for one fixed ω ∈ θ, we have

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm =

∫ ∣∣∣∣∣∣
∑
p,q∈Z

∑
s∈Uk+l,ω,s⊂~Rp,qm

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm . (4.4.25)

By Minkowski’s inequality, the right hand side of the above display can be bounded by

∑
p,q∈Z

∫
∣∣∣∣∣∣

∑
s∈Uk+l,ω,s⊂~Rp,qm

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm


1/2


2

. (4.4.26)
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Lemma 4.11 For any large M ∈ N0, there exists a constant CM such that

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω,s⊂~Rp,qm

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm .
2−µl

(|p|+ |q|+ 1)M

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2, (4.4.27)

where µ is the same as the one in Claim 4.10.

We substitute the estimate in Lemma 4.11 into (4.4.26) to obtain

∑
p,q∈Z

 2−µl

(|p|+ |q|+ 1)M

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2
1/2


2

.
∑
p,q∈Z

2−µl

(|p|+ |q|+ 1)M

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2,

(4.4.28)

where the exact value of M might vary from line to line. Hence we have obtained

∫ ∣∣AjPk+lf
∣∣2 1Rm . ∑

ω∈Dθ

∑
p,q∈Z

2−µl

(|p|+ |q|+ 1)M

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2, (4.4.29)

which is the estimate on one single rectangle that we are aiming at.

Proof of Lemma 4.11: we will only consider the case p = q = 0, and the decay in p and q

in the other case will simply follow from the non-stationary phase method. Hence what we need to

prove becomes

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω,s⊂Rm

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm . 2−µl
∑

s∈Uk+l,ω,s⊂Rm

|〈f, ϕs〉|2. (4.4.30)

Recall that each tile s has width 2−k−l, however the rectangle Rm has width 2−k. This suggests

that we should do a further partition of Rm into smaller rectangles which will be of the same scale

as s.

We enumerate the tiles s ⊂ Rm from above to below by s1, s2, ..., sm′ ..., where m′ . 2l. Notice

that

Rm ⊂
⋃
m′

2 · sm′ . (4.4.31)
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Hence

∫ ∣∣∣∣∣∣
∑

s∈Uk+l,ω,s⊂Rm

〈f, ϕs〉Ajϕs

∣∣∣∣∣∣
2

1Rm .
∑
m′

∫ ∣∣∣∣∣∣
∑
m′′

〈f, ϕs
m
′′ 〉Ajϕs

m
′′

∣∣∣∣∣∣
2

12·sm′ . (4.4.32)

By the Cauchy-Schwartz inequality, we bound the right hand side of the above expression by

∑
m′

∫ ∑
m′′

∣∣∣〈f, ϕs
m
′′ 〉Ajϕs

m
′′

∣∣∣2 (|m′ −m
′′
|+ 1)M12·sm′ , (4.4.33)

for some large constant M . By the same argument as in the proof of Claim 4.10, we obtain

|{x ∈ 2 · sm′ : Ajϕs
m
′′ 6= 0}| . 2−c0l|sm′ |. (4.4.34)

This, together with the trivial bound

‖Ajϕs
m
′′ ‖L∞(sm′ )

.
|sm′′ |1/2

(|m′ −m′′ |+ 1)M
, (4.4.35)

implies that ∫ ∣∣∣〈f, ϕs
m
′′ 〉Ajϕs

m
′′

∣∣∣2 12·sm′ .
2−c0l

(|m′ −m′′ |+ 1)2M
|〈f, ϕs

m
′′ 〉|2. (4.4.36)

We substitute the above estimate into (4.4.33) to obtain

∑
m′

∑
m′′

2−c0l

(|m′ −m′′ |+ 1)M
|〈f, ϕs

m
′′ 〉|2 .

∑
m′′

|〈f, ϕs
m
′′ 〉|2. (4.4.37)

So far we have finished the proof of Lemma 4.11, hence the estimate on each rectangle, which is

(4.4.29).

4.5 Organising all the rectangles together to finish the proof

In this part, we will organise the estimates on all the rectangles together, i.e. to finish the proof of

the following estimate ∑
j,k

∑
m

∫ ∣∣AjPk+lf
∣∣2 1Rm . 2−µl‖f‖22, (4.5.1)
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for some µ > 0. To do this, we substitute the estimate (4.4.29) into the left hand side of the above

expression to obtain

∑
k,j

∑
m

∑
ω∈Dθ

∑
p,q∈Z

2−µl

(|p|+ |q|+ 1)M

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2, (4.5.2)

where we are still using the notation θ = k+ l− j. Hence it suffices to prove that for fixed p, q ∈ Z,

we have ∑
k,j

∑
m

∑
ω∈Dθ

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2 . (|p|+ |q|+ 1)b0‖f‖22, (4.5.3)

where b0 is the constant in Lemma 4.8.

Proof of the estimate (4.5.3): We first fix k. For the case p = q = 0, for two tiles s′ and s
′′

in the following collection ⋃
j

⋃
ω∈Dθ

⋃
m

{s : s ∈ Uk+l,ω, s ⊂ Rm}, (4.5.4)

we either have

ωs′ ∩ ωs′′ = ∅, (4.5.5)

or

s′ ∩ s
′′

= ∅. (4.5.6)

Hence by the (almost) orthogonality, we obtain that

∑
j

∑
m

∑
ω∈Dθ

∑
s∈Uk+l,ω,s⊂Rm

|〈f, ϕs〉|2 . ‖Pk+lf‖22. (4.5.7)

By summing over k, we get the desired estimate (4.5.3) for the case p = q = 0.

For the general p, q ∈ Z, we no longer have (4.5.6) due to the simple fact that for two disjoint

rectangles (of different scales), they might intersect after being translated by (p, q) units separately.

Fortunately, Lemma 4.8 says that the intersection caused by translation can only grow polynomially

in p and q.

Hence by essentially the same idea as above and by losing a factor of (|p|+ |q|+ 1)b0 , we obtain

∑
j

∑
m

∑
ω∈Dθ

∑
s∈Uk+l,ω,s⊂~Rp,qm

|〈f, ϕs〉|2 . (|p|+ |q|+ 1)b0‖Pk+lf‖22. (4.5.8)
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Summing over k, we get the estimate (4.5.3). So far we have finished the proof of (4.5.1), hence the

geometric proof of Theorem 4.1.
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