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Abstract 

Wireless sensor network technology has recently been used for high spatial and temporal 

resolution soil water content measurements to facilitate better understanding of hydrological 

processes in catchment scale. Its performance strongly depends on the quality of the sensors 

and the number of sensor nodes. In the first paper, the newly developed SPADE soil water 

content sensor was calibrated using a two-step laboratory-based procedure using dielectric 

reference liquids. The sensor accuracy was evaluated in terms of sensor-to-sensor variability 

and temperature effect. Using sensor-specific calibration significantly improved the 

estimation of apparent dielectric permittivity as compared to using a universal calibration 

function. The transferability of the temperature correction function from reference liquids to 

soils was successful and has been verified with undisturbed soil samples. A site-specific 

petrophysical model (complex refraction index model, CRIM) was used to convert apparent 

dielectric permittivity into soil water content using 15 soil samples from the Rollesbroich 

catchment, with RMSE values of 0.028, 0.025, and 0.022 cm
3
cm

-3
 for 5, 20, and 50 cm, 

respectively. 

 

In the second paper, a two-year time series in-situ soil water content from a wireless sensor 

network deployed in the Rollesbroich catchment was analyzed in terms of spatial variability 

using the mean relative difference (MRD) of the soil water content and saturation degree. The 

MRDs were also used to explore the potential controls of hydraulic properties on the spatial 

variability of soil water content at the catchment scale. To this end, hydraulic properties were 

estimated by inverse modeling using the physically-based soil water model Hydrus-1D and 

the global optimization algorithm SCE. Correlations between van Genuchten-Mualem 

(VGM) parameters were used as prior information for the parameter optimization. These 

hydraulic properties were derived from texture information and the Rosetta pedotransfer 
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function. Soil texture was determined from soil samples taken in the Rollesbroich catchment 

using standard laboratory procedures. The inverse Hydrus-1D model was able to reproduce 

the observed time series of soil water content at 41 locations and three depths with RMSE 

smaller than 0.08 cm
3
cm

-3
 and R

2
 larger than 0.75. The MRDs of soil water content and 

saturation degree were found to be positively correlated with the VGM parameters θs and n, 

and to be negatively correlated with the VGM parameters α and Ks. 

 

In the third paper, a new closed-form expression of soil water variability was developed to 

explore the relationship between standard deviation (σθ) and mean of soil water content 

(<θ>). The novel closed-form expression is based on the VGM model and uses stochastic 

theory of 1D unsaturated gravitational water flow in soils. A sensitivity study of the closed-

form expression revealed that the n parameter has the strongest effect on the σθ(<θ>) 

relationship, followed by the parameters Ks, θs, and α. The closed-form expression was used 

to estimate σθ(<θ>) using information on percentages of sand, silt, and clay content, and bulk 

density from datasets of eight test sites with varying soil properties, vegetation, climate 

conditions and topographies. Six out of eight datasets showed good agreement between 

observed and predicted σθ(<θ>) with R
2
-values ranging between 0.55 and 0.84. Furthermore, 

The closed-form expression was successfully used to estimate the variability of hydraulic 

properties from observed σθ(<θ>) data, with R
2
-values ranging between 0.69 and 0.88. It is 

anticipated that an improved understanding of the σθ(<θ>) pattern provides better insight for 

an improved upscaling of point-scale information to scales required for climate or 

hydrological modeling. 
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Kurzzusammenfassung 

Funkbasierte Sensornetzwerke werden in jüngerer Zeit zur Messung des Bodenwassergehalts 

in hoher zeitlicher und räumlicher Auflösung verwendet, um zu einem verbesserten 

Verständnis von hydrologischen Prozessen auf der Einzugsgebietsskala zu gelangen. Die 

Effizienz von Sensornetzwerken hängt von der Qualität der verwendeten Sensoren und die 

Anzahl der Sensorknoten ab. In der ersten Veröffentlichung wurde der neu entwickelte 

SPADE Sensor mithilfe eines zweistufigen Verfahrens im Labor mittel dielektrischen 

Referenz-Flüssigkeiten kalibriert. Der Sensor wurde hinsichtlich der Sensor-zu-Sensor 

Variabilität und Temperatureffekte evaluiert. Es konnte gezeigt werden, dass eine Sensor-

spezifische Kalibration erhöhte deutliche die Messgenauigkeit bei der Bestimmung der 

dielektrischen Permittivität im Vergleich zu einer universellen Kalibrationsfunktion. Die 

Übertragung der Temperaturfunktion konnte erfolgreich von den Referenzflüssigkeiten auf 

Bodenmaterial übertragen werden. Das petrophysikalische Modell CRIM (complex refraction 

index model) wurde erfolgreich eingesetzt, um mit dem SPADE Sensor gemessene 

dielektrischen Permittivität in volumetrischen Wassergehalt umzurechnen (15 Bodenproben 

aus dem Rollesbroich Einzugsgebiet mit RMSE von 0.028, 0.025 und 0.022 cm
3
cm

-3
 für 

Bodentiefen von 5, 20 und 50cm. 

 

In der zweiten Veröffentlichung, wurde Bodenfeuchte-Zeitreihen gemessen mit einem 

Sensornetzwerk installiert in dem Rollesbroich Einzugsgebiet hinsichtlich der zeitlichen 

Stabilität untersucht. Hierzu wurden MRDs (mean relative difference) der Wassergehälter 

und der Sättigungsgrade ermittelt. Die MRDs wurden weiterhin dazu verwendet, die 

Einflüsse von hydraulischen Eigenschaften auf die räumliche Variabilität der Bodenfeuchte 

auf der Einzugsgebietsskala zu untersuchen. Hierzu wurde hydraulische Eigenschaften 
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mittels inverser Modellierung der Bodenfeuchtezeitreihen unter Verwendung des 

physikalisch basierten Bodenwassermodell Hydrus-1D und dem globalen Optimierungs-

Algorithmus SCE ermittelt. Die Korrelationen zwischen den Parametern des van Genuchten-

Mualem (VGM) Modells wurden als Vorabinformation für die Parameterschätzung 

verwendet. Diese hydraulischen Eigenschaften wurden zuvor aus Texturdaten mittels der 

Pedotranferfunktion Rosetta berechnet. Die Texturdaten wurden von Bodenproben aus dem 

Rollesbroich Einzugsgebiet mit standardisierten Labormethoden ermittelt. Das inverse 

Hydrus-1D Modell war in der Lage, die gemessenen Bodenfeuchtezeitreihen von 41 

Messstellen und drei Messtiefen mit einem RMSE kleiner als 0.08 cm
3
cm

-3
 und einem R

2
 

größer als 0.75 zu simulieren. Die MRDs der Bodenfeuchte und des Sättigungsgrads mit den 

VGM Parametern korreliert (positive Korrelation mit θs und n; negative Korrelation mit α 

and Ks). 

 

In der dritten Veröffentlichung wurde ein neues geschlossenes Gleichungssystem (closed-

form expression of soil water variability) zur Untersuchung der Beziehung zwischen der 

Standardabweichung (σθ) und mittlerer Bodenfeuchte (<θ>) entwickelt. Das geschlossene 

Gleichungssystem basiert auf das VGM Modell und der stochastischen Theorie of 1D 

ungesättigten gravitativen Wasserfluss im Boden. Eine Sensitivitätsanalyse des 

geschlossenen Gleichungssystems zeigte, dass der n Parameter den größten Einfluss auf die 

σθ(<θ>) Beziehung hat, gefolgt von Ks, θs, and α. Das geschlossene Gleichungssystem wurde 

dann dazu benutzt, um die σθ(<θ>) Beziehung aus Textur- und Bodendichteinformationen 

von acht Testgebieten mit unterschiedlichen Bodeneigenschaften, Vegetationsbedeckungen, 

klimatischen Bedingungen und topographischen Verhältnissen abzuschätzen. Sechs der acht 

Datensätze zeigten eine sehr gute Übereinstimmung mit beobachteter und vorhergesagter 

σθ(<θ>) (R
2
 zwischen 0.55 und 0.84). Weiterhin wurde das geschlossene Gleichungssystem 
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erfolgreich dazu benutzt, die Variabilität von hydraulischen Bodeneigenschaften aus 

beobachten σθ(<θ>) Daten zu schätzen (R
2
 zwischen 0.69 und 0.88). Es ist zu erwarten, dass 

dieses verbesserte Verständnis über die σθ(<θ>) Beziehung das Heraufskalieren von 

Punktinformation auf Skalen, die für die Modellierung von hydrologischen Systemen und 

Klima benötigt werden, unterstützen wird. 
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1 General Introduction 

Soil water content is fundamental importance to many hydrological, biological and 

biogeochemical processes (Bittelli, 2011; Robinson et al., 2008). It is the key state variable in 

the soil, vegetation and atmosphere continuum as it directly influences the exchange of water 

and energy between land surface and atmosphere through evaporation and plant transpiration. 

Regional soil water content patterns are influencing the generation of weather and 

precipitation patterns (Teuling and Troch, 2005). Moreover, knowledge about soil water 

content dynamics is valuable to a wide range of application, e.g. for government agencies and 

private companies concerned with weather and climate (Seneviratne et al., 2010), runoff and 

flood control (Castillo et al., 2003; Smith et al., 2002; Wang and Zhu, 2003), soil erosion and 

slope failure (Wang and Zhu, 2003), reservoir management (Eltahir, 1998), precision 

agriculture (Sudduth et al., 2001; Zhang et al., 2002), geotechnical engineering (Fredlund, 

2000), and water provision (Betts et al., 1996). 

 

There existing different measurement techniques to determine soil water content across a 

broad range of scale, e.g. from point scale to regional scale (Robinson et al., 2008; Vereecken 

et al., 2014; Western et al., 2002). The most commonly used techniques to measure soil water 

content at point scale were using gravimetric sampling, time domain reflectometry (TDR), 

capacitance sensors, and neutron probes (Qu et al., 2013; Robinson et al., 1999; Robinson et 

al., 2003; Rosenbaum et al., 2011). However, these ground based method are too labor 

intensive to remain feasible with increasing space/time sampling frequency. Remote sensing 

enables the measurement soil water content at large scales with a single instrument on a 

mobile platform and eliminates errors introduced by sensor-to-sensor variability (Montzka et 

al., 2011; Montzka et al., 2013). However, remote sensing technology is only sensitive to the 
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upper few centimeters of soil because the emitting depths penetration depth is approximately 

5 cm. In addition, it is more susceptible to the effects of vegetation and surface roughness 

(Robinson et al., 2008; Vereecken et al., 2008). Consequently, with the growing interest in 

watershed observations, we consider to measure spatial temporal soil water content and to 

describe soil water content patterns in catchment scale. Wireless sensor network technology 

is an ideally technique provides continuous measurements of soil water content with high 

spatial and temporal resolution at an intermediate scale (Bogena et al., 2010; Hübner et al., 

2009; Rosenbaum et al., 2012). 

 

Terrestrial Environmental Observation (TERENO) is the platform that establishes a 

structured network of hierarchically organized multi-compartments measurement and 

observation platforms that use state of the art observation and measurement technologies 

(Bogena et al., 2012; TERENO, 2012; Zacharias et al., 2011). The different spatial and 

temporal scales observation networks of TERENO aims at to detect and quantify both short 

and long term effects and impacts on the terrestrial systems. The intensive observation 

wireless sensor network allows us the real-time soil water content and temperature 

monitoring with a high spatial and temporal resolution for the observing hydrological 

processes in the catchment. 

 

The wireless sensor network technology uses the low-cost ZigBee radio network for 

communication and a hybrid topology with a mixture of underground end devices each wired 

to several soil sensors and aboveground router devices (Bogena et al., 2010; Bogena et al., 

2009; Bogena et al., 2007). It consists hundreds of soil water content sensors that transmit 

information to a main server with wireless communication technology (Bogena et al., 2010; 
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Hübner et al., 2009). The performance of a wireless soil water content sensor network 

strongly depends on the quality of the sensors in terms of measurement accuracy, the 

sensitivity of the sensor output to changes in temperature and the sensor-to-sensor variability 

of the empirical relationship between sensor output and soil water content (Robinson et al., 

2008; Robinson et al., 2003). In order to maximize the number of sensor nodes, the soil water 

content sensors should be as inexpensive as possible without compromising sensor accuracy 

too strongly. 

 

There are different kinds of electromagnetic probes available for the wireless sensor network 

(Hübner et al., 2009; Kelleners et al., 2005; Kizito et al., 2008; Qu et al., 2013; Robinson et 

al., 2005b; Ryu and Famiglietti, 2005). Time domain reflectometry (TDR) probe is one of the 

most well know soil water content sensors and has the advantage of being in-situ, real-time, 

and more accurate. In addition, TDR allows connecting with a multiplexer and 

simultaneously collect the soil water content in a number of locations (Blonquist et al., 

2005b; Noborio, 2001; Robinson et al., 2003). Despite all of its advantages, the cost of TDR 

and the level of ability required by the operator often place it beyond the means of growth. 

Capacitance and impedance probes have tended to fill the lower price market. These 

instruments tend to be limited to operating frequencies less than 150 MHz which is 

undesirable if the soil has dielectric dispersion in this frequency range (Kelleners et al., 2005; 

Kizito et al., 2008; Robinson et al., 2005b; Ryu and Famiglietti, 2005). Most of these 

instruments do not permit the measurement of bulk soil electrical conductivity, which can be 

useful for management purposes. However, many of the capacitance sensors are sensitive to 

interference from bulk soil electrical conductivity and while many will continue to operate, 

but the prediction of water content can be very poor. The design concept of a stand-alone 
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sensor should be of low cost, small size, high accuracy, and precision in the determination of 

permittivity that covers a representative sampling volume. Therefore, the new developed 

SPADE TDT sensors are currently considered to be one of the most appropriate probes for 

wireless soil water content sensor network (Hübner et al., 2009; Qu et al., 2013). The SPADE 

probe is based on a ring oscillator and the frequency of the oscillator is a function of the 

dielectric permittivity of the surrounding medium, which is strongly depended on the water 

content of the soil because of the high permittivity of water, i.e. 78.5 at 25°C (Weast, 1986), 

as compared to mineral soil solids range from 2 to 9 (Robinson and Friedman, 2003), and air 

is 1. 

 

There are two main ways to calibrate the electromagnetic sensor, i.e. the directly calibration 

or the two-step calibration procedure. Considering the number of sensors used for the 

wireless sensor network, directly calibration is time consuming and labor insensitive. The 

two-step calibration procedure in the laboratory experiments is more welcomed. In the first 

step, the sensor reading is related to permittivity using the standard sensor calibration 

methodology proposed by Jones et al. (2005). The electromagnetic measurement is sensitive 

to dielectric relaxation, electrical conductivity, and temperature (Pepin et al., 1995; Topp et 

al., 2000). To avoid unwanted noise due to these secondary factors as well as contact 

problems between medium and sensor in the calibration. The non-relaxing and non-

conducting liquids of 2-Isopropoxyethanol (i-C3E1) and 1,4-Dioxane (D) were used for this 

calibration suggested by Jones et al. (Jones et al., 2005) and Bogena et al. (2007). Several 

studies have carried out to test the plausibility of this methodology. Such as Bogena et al. 

(2007) have calibrated the EC-5 sensor with the reference liquids of Dioxane/water and 2-

isopropoxyethanol/water mixtures with a permittivity range from 2.2 to 41.3. Their results 
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showed that the standard method of the characterization of electromagnetic sensor is 

reproducible. The same method was successfully applied to calibrate the ECH2O, TE, and 

5TE sensors by Rosenbaum et al. (2010). In addition, Qu et al. (2013) also calibrated the 

newly developed SPADE TDT sensors using the standard reference liquids. In the second 

step, a site-specific calibration can be carried out to relate the permittivity with soil water 

content by using empirical models or semi-theoretical models, e.g. Topp model (Topp et al., 

1980), complex refraction index model (Birchak et al., 1974), and the two point-mixing 

model (Sakaki et al., 2008; Yu et al., 1997). An advantage of the two-step calibration method 

is that, assuming that the apparent permittivity and soil water content relationship in the 

second step is valid for the soils of interest, recalibration for all the sensors is not required 

when the sensors are installed in deferent soils. Otherwise, a recalibration for all the sensors 

would be needed in the direct approach. 

 

The Rollesbroich grassland catchment has been equipped with a wireless soil water content 

sensor network (SoilNet, 2012). The SPADE TDT soil water content probes (sceme.de 

GmbH i.G., Horn-Bad Meinberg, Germany) were calibrated using the two-step calibration 

procedure and were installed at different soil depth along a vertical profile. In order to 

increase the measurement volume and enable the examination of inconsistencies, two sensors 

were installed in each depth. The quality of long time series soil water content data observed 

by wireless sensor network can be checked with the method proposed by Dorigo et al. (2013). 

First to flag the extremely spikes beyond the physical plausibility range of soil water content. 

Then, they checked the suspicious observations based on the continuity of the time series data 

sequence. The unexpected soil water content caused by the failure of the measurement was 

flagged. Furthermore, they characterized each time step of soil water content with respect to a 
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local neighborhood of prior and subsequent observations. The soil water content was flagged 

if it exceeded the criterial values. Many other statistical filtering methods are available, such 

as the Savitzky-Golay filter, Relational Sequence filter, non-linear FIR filters (Pearson, 

2011). 

 

The high spatial and temporal soil water content data observed by wireless sensor network 

can be used to characterize and analyze spatial temporal variability of soil water content 

patterns. Different quantitative methods are available to analyze spatial temporal dynamics 

and patterns using statistical approaches, e.g. temporal stability analysis (Vachaud et al., 

1985; Vanderlinden et al., 2012) or the empirical orthogonal functions (Korres et al., 2010; 

Yoo and Kim, 2004). The empirical orthogonal function (EOF) analysis or principal 

component analysis (PCA) is a widely applied statistical method for analyzing large 

multidimensional datasets and for searching the dominant factors for the spatial temporal 

structure of soil water content, and how the dominancy is changed from one factor to another 

with time (Perry and Niemann, 2007; Yoo and Kim, 2004). EOF analysis partitions the 

observed variation into a series of time-invariant spatial patterns (in terms of EOFs) that can 

be multiplied by temporal varying (but spatially constant) coefficients and summed to 

reconstruct observed soil water content patterns. In addition, EOFs can be mapped and these 

maps can be compared with maps of various soil, landscape, and land use properties in search 

of similarities patterns in them(Jawson and Niemann, 2007; Korres et al., 2010; Perry and 

Niemann, 2007).  

 

Yet another most widely used method is the temporal stability analysis (Vachaud et al., 1985; 

Vanderlinden et al., 2012). Temporal stability has also been termed as rank stability temporal 
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persistence, or time-stable in describing the persistence of spatial patterns and characteristic 

behavior of soil water content (Pachepsky et al., 2005). Vachaud et al. (1985) first proposed 

the concept of temporal stability to determine representative locations within a field, thus 

improving sampling efficiency while maintaining accuracy to represent the mean of soil 

water content in the catchment. In addition, the temporal stability can be used to characterize 

the spatial pattern of soil water content with the mean relative difference (MRD). And studies 

have shown that the spatial pattern of soil water content does not change with time in a 

certain probability, this phenomenon was named as time stability, which was expressed as the 

standard deviation of the relative difference (SDRD) in the temporal stability analysis. 

 

Although a large number of publications on spatial variability of soil water content already 

exist (Jacobs et al., 2004; Martinez et al., 2014; Martinez et al., 2013; Mohanty and Skaggs, 

2001; Wang, 2014), the controlling factors are still not well understood. Previous studies 

have shown that multiple factors, such as climate (Martinez et al., 2014), topography (Biswas 

and Si, 2011; Hu et al., 2010a), soil properties (Martinez et al., 2013; Williams et al., 2009), 

and vegetation (Gomez-Plaza et al., 2001; Mohanty and Skaggs, 2001) affect the MRD of soil 

water content, and that these factors tend to interact (Baroni et al., 2013; Vanderlinden et al., 

2012). For instance, Jacobs et al. found that (2004) the sampling locations with relatively 

high sand content consistently have a low MRD of soil water content while those locations 

with relatively high clay content consistently have a high MRD of soil water content. 

Furthermore, with the numerical simulation study of the Hydrus 1D modeling, Martinez et al. 

(2013) quantified the impact of soil saturated hydraulic conductivity (Ks) on MRD of soil 

water content with the consideration of root water uptake, they found a negative linear 

relationship between the MRD of soil water content and logarithm of Ks. Continues to this 
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study, they also studied the impact of Ks on MRD of soil water content under different climate 

conditions (Martinez et al., 2014). The correlation between the MRD of soil water content 

and logarithm of Ks was similar with the previous study. For both studies, only a log-normal 

transformed Ks was considered for the spatial variability of hydraulic properties. However, 

the more complex covariance structures between Ks and other VGM parameters are ignored. 

The more recently simulation study of Wang (2014) has analyzed the relationship between 

the VGM parameters and the MRD of soil water content by considering the covariance 

structure between the VGM parameters in a semi-arid climate. He found that the residual soil 

water content (θr) was the primary control of MRD of soil water content; and they are 

strongly positively correlated with each other. Moreover, by fixing θr, a strong negative 

relationship was found between the VGM parameter of n and the MRD of soil water content. 

Moreover, Mohanty and Skaggs (2001) reported that the MRD of soil water content are 

negative correlated with the slope, the soil sampled located in the smaller slope always have a 

larger MRD of soil water content, however, the steep locations always have a smaller MRD of 

soil water content. However, all these studies are either only based on the short term 

campaign or based on synthetic modeling studies that difficult to transferred them into the 

field conditions. 

 

In order to evaluate correlations between soil hydraulic properties and MRD of soil water 

content with the continuous time series observations from the wireless sensor network, 

hydraulic parameters need to be determined at each location where soil water content is 

measured using either direct or indirect methods. There are different methods to evaluate the 

hydraulic properties (Angulo-Jaramillo et al., 2000; Mermoud and Xu, 2006; Wessolek et al., 

1994). One common way is directly fitting the water retention curve and hydraulic 
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conductivity to experimental data obtained from soil cores in the laboratory (Mermoud and 

Xu, 2006; Ratliff et al., 1983). However, the use of such direct method in involves 

considerable uncertainty caused in part by the absence of collocation between measurements 

of soil hydraulic properties and soil water content. Alternatively, soil hydraulic properties can 

be estimated indirectly from basic soil information such as the sand, silt and clay fractions, 

bulk density and/or organic matter content using pedotransfer functions (Pachepsky et al., 

2006; Schaap and Leij, 1998; Schaap et al., 2001; Vereecken et al., 2010; Wosten et al., 

2001). Pedotransfer functions are often used to generate soil hydraulic properties in situations 

where measurements are too expensive, too cumbersome, or too difficult to carry out. 

However, there are many different types of pedotransfer functions in terms of input data, the 

predicted properties, mathematical structure and accuracy and it is often not clear which 

pedotransfer function is best selected for a particular case. To overcome these problems, a 

rapid, reliable, and cost-effective approach of inverse modeling can be used to estimate soil 

hydraulic parameters indirectly in case information on in-situ state variables (e.g. soil water 

content, matrix potential) is available (Duan et al., 1992; Mertens et al., 2004; Vandam et al., 

1994; Vrugt et al., 2004; Vrugt et al., 2008). This procedure has the advantage that the results 

are based on field observations under natural flow conditions. In addition, the parameter 

estimated from inverse modeling accommodates more flexible experimental conditions than 

typically utilized in laboratory experiments and facilitates estimating values of the hydraulic 

properties that pertain to the scale of interest (Vrugt et al., 2008). 

 

It is important to explore the potential correlations between soil hydraulic properties and its 

relation with MRD of soil water content with long time series observations from the field. 

The knowledge of such correlation can provide information for the design of wireless sensor 



Chapter 1 

10 

 

networks, e.g. using the pedotransfer function (Schaap et al., 2001; Vereecken et al., 2010; 

Wosten et al., 2001) to estimate the hydraulic properties with the basic soil information which 

can be easily get from the soil map, and find the representative locations using the correlation 

between hydraulic properties and MRD of soil water content. Furthermore, it will improve the 

performance of hydrologic models by considering the variability of soil hydraulic properties 

from the MRD of soil water content in the catchment.  

 

In order to further explore the limitations and potentials between the MRD of soil water 

content and soil hydraulic properties, a wide range of soil textural classes and climate 

conditions should be considered. Furthermore, the MRD of soil water content is known to be 

determined by a number of physiographic factors that affect the vertical and lateral 

redistribution of soil water. Although factors that influence vertical redistribution are 

understood relatively well, the factors that cause lateral redistribution are not yet well 

quantified. In future studies, the effect of topography on the MRD of soil water content and 

saturation degree should be considered in addition to the heterogeneity of soil hydraulic 

properties. 

 

Another important characteristic of the variability of soil water content expressed in terms of 

standard deviation of soil water content plays an essential role on the magnitude of land-

surface energy fluxes (Bonan et al., 1993; Hu and Islam, 1998; Ronda et al., 2002) and 

hydrologic fluxes such as runoff (Arora, 2001; Gedney and Cox, 2003). By combining the 

relationship between the standard deviation (σθ) and mean of soil water content (<θ>) with 

the integrating knowledge of remote sensing and hydrology models may finally lead to a 

better understanding and a more fundamental interpretation of the role of soil water content 
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variability in land surface processes across (Crow et al., 2005; Zijl, 1999). In addition, it is 

useful for improve the prediction accuracy of large-scale hydrologic, weather, and climate 

models (Teuling et al., 2007). Furthermore, it may also be useful for validation of large-scale 

remote sensing soil water content measurements (Famiglietti et al., 2008). 

 

Several field studies have been carried out to identify the relationship between standard 

deviation and mean of soil water content; however the results are not consistency. For 

example, several investigators found positive relationship between the standard deviation and 

mean of soil water content (Famiglietti et al., 1998; Oldak et al., 2002; Takagi and Lin, 

2011). In contrast to their studies, Famiglieittie et al. (1999), Hupet and Vanclooster (2002) 

and Western et al. (2004) observed negative correlations between the standard deviation and 

mean of soil water content. A more common saying is that there was a convex curve between 

the standard deviation and mean of soil water content, the standard peaked at the middle 

range of soil water content, and decreased in both wet and dry hand (Choi and Jacobs, 2007; 

Garcia-Estringana et al., 2013; Rosenbaum et al., 2012).  

 

The σθ(<θ>) relationship can be non-unique, with many control factors including spatial and 

temporal heterogeneous fluxes and the sink terms such as infiltration, evaporation, 

transpiration, and surface runoff (Albertson and Montaldo, 2003; Teuling and Troch, 2005). 

These terms depend on soil properties, vegetation, meteorological factors, groundwater, and 

topography (Famiglietti et al., 1998). It was reported that soil properties including soil texture 

and structure have (Hu and Islam, 1998; Vereecken et al., 2007) strongly affect the soil water 

variability by direct influence on the soil hydraulic. Under wet condition, the heterogeneity of 

soil porosity can lead a great impact on water movement, and thus soil water content 
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variability. When soil start to drain, the increasing variability of hydraulic properties lead to 

an increasing standard deviation of soil water content. After the soil water content decreases 

to a threshold soil water state (between wilting point and field capacity) the dominant flux 

switches from drainage to evapotranspiration, the impact of vegetation on the variability soil 

water content is considered to be major at this moment, and therefore the standard deviation 

of soil water content becomes less affected by the hydraulic properties. With further drying, 

the standard deviation of soil water content diminishes by evapotranspiration, which is only 

related to residual soil water content. 

 

The existing methods to investigate the control of the σθ(<θ>) pattern include numerical 

simulation of the soil water balance (Montaldo and Albertson, 2003; Roth, 1995) and first 

order stochastic analysis of unsaturated flow (Vereecken et al., 2007; Zhang et al., 1998). 

Albertson and Montaldo (2003) presented a theoretical framework to evaluate the variance of 

soil water content as a function of the variances of infiltration, drainage, evapotranspiration, 

and horizontal redistribution and their covariances. They found that according to the sign of 

the correlation between the flux and the state of soil water condition, covariances between 

soil water and land surface fluxes act to generate or destroy the variance of soil water content 

through time. Zhang et al. (1998) provided an analytic stochastic method to obtain the 

variance of effective soil water content for 1D vertical flow using the Brooks-Corey model 

and Gardner-Russo model. Based on the work of Zhang et al. (1998), Vereecken et al. (2007) 

predicted the σθ(<θ>) relationship with the stochastic results of the unsaturated Brooks-Corey 

modal, and they found that the hydraulic parameters of Brooks-Corey and their spatial 

variances determine to a large extent of the σθ(<θ>) shape, especially the parameter described 

as pore size distribution controls the maximum value of the standard deviation of soil water 
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content. These stochastic studies are based on the Brooks-Corey model due to its 

mathematical tractability. However, it is generally accepted that the more complex van 

Genuchten-Mualem (VGM) model may perform better in expressing experimental data than 

Brooks-Corey model. 

 

The stochastic approach of Zhang et al. (1998) to describe 1D unsaturated gravitational flow 

in a heterogeneous flow domain was used to derive a closed-form expression that describes 

σθ(<θ>) using the VGM model. The encouraging exploration presented in this thesis can be 

served for future large scale model applications. Because the basic assumptions underlying 

the stochastic theory are rarely in the real field conditions, the closed-form expression should 

be tested across a wide range of climatic conditions and soil texture classed. Future model 

developments are intended to consider meteorological forcing variability, and the topographic 

effects on the spatial distribution of soil water content. 

 

The present thesis is structured into three main parts. The objective of first part is the 

calibration of the newly developed SPADE soil water content sensor for wireless sensor 

network applications. To this end, a series of laboratory experiments were performed in order 

to explore sensor-to-sensor variability and temperature effects on dielectric permittivity 

measurements with both standard reference liquid and soil samples. In addition, a site 

specific calibration between the permittivity and soil water content was derived with the 

undisturbed soil samples took from the Rollesbroich catchment. The objective of the second 

part is to investigate the correlation between hydraulic properties and spatial variability of 

soil water content in catchment scale using a two-year time series soil water content data 

observed with wireless sensor network and an inverse modeling approach. Finally, the third 
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part derived a closed-form expression to describe the variability of soil water content using 

stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem 

(VGM) model. A sensitivity analysis was applied to check how the hydraulic properties 

affect the relationship between the standard deviation and mean of soil water content. 

Furthermore, the closed-form expression was verified using eight datasets span a wide range 

of soil texture classes and climate conditions. The results of this thesis are presented in three 

chapters which correspond to published or submitted publications in international peer-

reviewed journals. 

 

Chapter 2 Calibration of a novel low-cost soil water content sensor based on a ring oscillator. 

Chapter 3 Effects of soil hydraulic properties on the spatial variability of soil water content: 

evidence from sensor network data and inverse modeling. 

Chapter 4 Predicting sub-grid variability of soil water content from basic soil information. 

 

These chapters feature their own objectives, introductions, methods and materials since the 

different issues highlight aspects of the overall research question in a different manner. The 

results are concluded and a brief outlook for further research is given in Chapter 5. 
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2 Calibration of a novel low-cost soil water content sensor based on a ring oscillator 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, H. Vereecken. 

Calibration of a novel low-cost time domain transmission soil water content sensor. Vadose 

Zone Journal, 2013, 12(2). doi:10.2136/vzj2012.0139. 
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2.1 Objectives 

In this chapter, we focus on the calibration of sensor response to soil water content using a 

two-step calibration procedure. First step is to relate sensor response to apparent dielectric 

permittivity by using an empirical sensor response permittivity (SRP) model. The sensor 

accuracy is evaluated by the sensor-to-sensor variability and temperature effect with the 

reference standard liquids. In the second step, a site specific calibration between the apparent 

dielectric permittivity and soil water content using the petrophysical model of complex 

refraction index model (CRIM) is derived for Rollesbroich catchment (See Appendix A). 

 

2.2 Introduction 

Soil water content is a key variable in the soil, vegetation and atmosphere continuum. It plays 

an important role in weather and climate predictions because it directly influences the 

exchange of water and energy at soil surface. In addition, it also impacts crop growth and the 

fate of agricultural chemicals applied to soils. Multi-scale measurements of soil water content 

are required to improve understanding and modeling of soil hydrology. There is a wide range 

of methods for soil water content estimation (Robinson et al., 2008). The gravimetric method 

is the standard method and is typically used as a reference. However, the effort associated 

with soil sampling prohibits monitoring with a high temporal and spatial resolution. 

Electromagnetic soil water content sensors that measure the dielectric permittivity of the soil 

are now widely accepted for soil water content determination because these sensors allow 

continuous, fast, stable and non-destructive sensing of the spatial temporal dynamics of soil 

water content at the field scale (Robinson et al., 2003; Vereecken et al., 2008).  
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Wireless sensor network technology has recently been used for catchment scale 

measurements of soil water content with high spatial and temporal resolution to facilitate 

better understanding of hydrological processes (Bogena et al., 2010; Rosenbaum et al., 2012). 

Such large scale but highly resolved soil water content information is important for the 

calibration and validation of remote sensing data (Montzka et al., 2011; Montzka et al., 

2013). In the framework of the TERENO project (TERENO, 2012; Zacharias et al., 2011), 

the test site Rollesbroich in the Rur/Lower Rhine Valley Observatory has been equipped with 

a wireless soil water content sensor network. The performance of a wireless soil water 

content sensor network depends strongly on the quality of the sensors in terms of 

measurement accuracy, the sensitivity of the sensor output to changes in temperature and the 

sensor-to-sensor variability of the empirical relationship between sensor output and soil water 

content (Kaatze and Huebner, 2010). 

 

In previous wireless soil water content sensing networks, we have relied on the use of 

capacitance sensors, such as the EC-5 and ECH2O-TE sensor (Bogena et al., 2007; 

Rosenbaum et al., 2010). These capacitance sensors operate at a relatively low measurement 

frequency of 70 MHz, and the sensor output therefore depends to some extents on the 

electrical conductivity and imaginary dielectric permittivity of the soil (Kelleners et al., 2005; 

Kizito et al., 2008; Robinson et al., 2005b). Kizito et al. (2008) reported that the sensitivity to 

electrical conductivity decreased considerably using a higher operating frequency of 150 

MHz. Experimental results of Campbell (1990) suggested that the frequency should be higher 

than 50 MHz to avoid low frequency dielectric relaxation effects. However, Kelleners et al. 

(2005) found that the frequency must be above 500 MHz to obtain the most reliable estimates 

of the real part of the dielectric permittivity in conductive soils. 
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An alternative electromagnetic sensor design amendable to wireless sensing applications is 

the family of so-called time domain transmission (TDT) sensors. The general operating 

principle of these sensors is similar to that of the well-established time domain reflectometry 

(TDR) method, which estimates dielectric permittivity from the propagation velocity of an 

electromagnetic wave. It is important to realize that there are different approaches to 

determine this propagation velocity within the family of TDT sensors. Blonquist et al.(2005b) 

reported on the Acclima TDT, which employs a waveform interpretation process similar to 

those used by conventional TDR systems to find the propagation velocity. Most other 

available sensors in this family use the oscillation frequency of a ring oscillator to 

approximate propagation velocity (e.g. Gro-Point by ESI; SMRT-Y by Rain Bird; TDT 

Aquaflex by ADCON). A common feature of all these sensors is that all electronics are 

integrated in the head of the probe, which removes the need for long cables and multiplexers 

as with the TDR method. This makes these sensors suitable for wireless sensing applications. 

In addition, these sensors operate at higher frequencies than capacitance methods and are, 

therefore, expected to provide a higher measurement quality. 

 

Blonquist et al. (2005b) evaluated the Acclima TDT sensor (McCready et al., 2009) and 

reported that this sensor and reference TDR measurements operated within ±3 permittivity 

units of each other within a permittivity range of 9 to 80. Unfortunately, the current design of 

the Acclima TDT sensor as well as of the other aforementioned sensors using ring oscillators 

do not allow direct insertion in natural soils and their use is currently restricted to 

applications where the probe can be buried (mainly irrigation management in agricultural 

soils and turfgrass).  
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Recently, the SPADE sensor (sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) has 

become available (Hübner et al., 2009). This sensor also relies on a ring oscillator, but it 

allows direct insertion into natural soils. An additional benefit of the SPADE sensor within 

the context of wireless sensor networks is the very low power input (~ 50 mA). Since 

wireless sensor networks typically rely on batteries, very low power consumption is needed 

to keep the network operational for several years. A disadvantage of the SPADE probe design 

is that probe calibration is required to relate the sensor output to soil water content because 

the sensor waveguides are contained within an epoxy molding material for probe rigidity.  

 

There are two main strategies to calibrate sensor output to soil water content. The first 

strategy is to directly calibrate each sensor against soil water content. However, considering 

the high number of sensors normally used in wireless sensor networks, such a direct 

calibration is often too labor intensive and time consuming. Instead, we propose to use the 

two-step calibration procedure of Jones et al. (2005). The first step of this calibration 

procedure relies on measurements in reference liquids with a known apparent dielectric 

permittivity, which are used to obtain an empirical model that relates sensor output and 

apparent dielectric permittivity. Such an empirical model can either be derived for each 

individual sensor (i.e. a sensor-specific calibration), or a single ‘universal’ empirical model 

can be derived from a selection of sensors. In the second step, the apparent dielectric 

permittivity is related to soil water content using an empirical (Topp et al., 1980) or semi-

theoretical model (Birchak et al., 1974). An additional advantage of this method is that there 

is no need to recalibrate the sensors when they are installed in a different soil.  
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Recent studies have shown that all electromagnetic soil water content sensors are sensitive to 

temperature in some extent (Blonquist et al., 2005a; Pepin et al., 1995). Four types of 

temperature effects on dielectric permittivity measurements are important to consider. First, 

the influence of temperature on the apparent dielectric permittivity of water (εwater) needs to 

be considered, i.e. εwater approximately decreases with 0.7 % per °C (Weast, 1986). This 

decrease of εwater with increasing temperature explains why the bulk dielectric permittivity of 

sandy soils decreases with increasing temperature (Blonquist et al., 2005a; Pepin et al., 1995). 

Or and Wraith (1999) investigated how temperature affects the bulk dielectric permittivity of 

a range of soils and reported that the bulk dielectric permittivity can also increase with 

increasing temperature, in particular for wet soils with a high specific surface area. This 

increase of the dielectric permittivity with increasing temperature was attributed to the release 

of low-permittivity bound water from the electrical double layer that is formed near 

negatively charged solid surfaces. A third effect of temperature on the dielectric permittivity 

is through the temperature dependence of soil bulk electrical conductivity. The degree to 

which bulk electrical conductivity affects the measured permittivity depends of the frequency 

of the electromagnetic wave used to interrogate the soil. At higher frequencies (> 500 MHz), 

the effect on permittivity is much reduced (Schwartz et al., 2009). Finally, the sensor output 

from electromagnetic soil water content sensors is also directly influenced by temperature 

(Blonquist et al., 2005a; Rosenbaum et al., 2011). These competing effects explain why a 

wide range of temperature sensitivities have been observed for soil dielectric permittivity 

measurements. 
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2.3 Materials and Methods 

2.3.1 The SPADE sensor 

The propagation velocity (𝑣𝑝) of electromagnetic waves in soils is given by: 

𝑣𝑝 =
𝑐

√𝜇𝑟𝜀𝑟

 Eq. 2. 1 

where c is the speed of light in vacuum (3×10
8
 ms

-1
), μr and εr are the magnetic permeability 

and the dielectric permittivity of the medium relative to vacuum, respectively. As most soils 

are non-magnetic (Van Dam et al., 2002), μr is typically equal to 1 and the propagation 

velocity depends only on εr. Because of the large permittivity contrast between water (~ 80) 

and other soil constituents (air: 1; solid phase: 2-9), the soil bulk permittivity is well suited to 

sense soil water content (Topp et al., 1980). 

 

The SPADE sensor is a ring oscillator (Hübner et al., 2009). A line driver of an ECL logic 

family emits a steep pulse (< 300ps pulse rise and fall time). The pulse travels along an 

unshielded transmission line buried in soil, where the propagation velocity depends on the 

soil dielectric permittivity (Eq. 2. 1). The pulse is inverted before it is fed back to the input of 

the line driver. This results in an oscillation frequency, fosc, which depends on the following 

components: 

𝑓𝑜𝑠𝑐 =
1

𝑇𝜀𝑟
+ 𝑡𝑝𝑑 + 𝑡𝑟𝑓

∗
1

2
 Eq. 2. 2 

where 𝑇𝜀𝑟
 is the pulse travel time along the unshielded transmission line that depends on the 

soil dielectric permittivity, tpd is the propagation delay of the ECL gate (typically 250 ps), and 

trf expresses the influence of the pulse rise and fall time and the switching of the differential 
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input amplifier (e.g. the switching mechanism and thresholds). The factor 
1

2
 indicates that a 

logical 1 followed by a logical 0 (two travelling signal edges) make a full signal period. The 

oscillation frequency is approximately 150 MHz in water and 340 MHz in air. 

 

Figure 2. 1. (a) Block diagram and (b) the printed circuit board of the SPADE sensor, size: 20 

cm×3 cm×0.2 cm (Hübner et al., 2009). 

 

The design of the SPADE sensor is illustrated in Figure 2. 1. The transmission line consists of 

two copper strips embedded in a 4 layer epoxy printed circuit board (PCB). The PCB is 3 cm 

wide and the part forming the ring oscillator is 12 cm. The sensor head that contains the 

sensor is 8 cm long. The power requirement of the SPADE sensor is very low with about 50 

mA during the measurement time of about 50 ms. The SPADE sensor also determines 

temperature using a sensor with an accuracy of ±0.5 °C from -10 °C to 85 °C, which 

increases the total measurement time to ~1 cc. The sensor provides two analog output 

channels (0-2.8 V) or a digital interface (RS485). In this study, we used the analog output 

channels. 
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2.3.2 Reference liquids 

While assessing the sensor characteristics, it is important to realize that in addition to the 

dielectric permittivity, EM measurements are sensitive to dielectric relaxation, electrical 

conductivity, and temperature (Pepin et al., 1995; Topp et al., 2000). To avoid unwanted 

noise due to these secondary factors as well as contact problems between medium and sensor, 

liquids with known dielectric properties are used instead of soil for the calibration. As 

suggested by Jones et al. (Jones et al., 2005) and Bogena et al. (2007), we used 2-

Isopropoxyethanol (i-C3E1) and 1,4-Dioxane (D), which have been described in detail 

elsewhere (Kaatze et al., 1996; Schwank et al., 2006). Five reference liquids (pure Dioxane 

and four i-C3E1/water mixtures with a defined volume fraction of i-C3E1; denoted as M1 to 

M5) were selected from the reference liquids described by Bogena et al. (2007). These five 

reference liquids evenly cover the permittivity range from 2.2 to 34.8, which includes most of 

the dielectric permittivity values obtained in natural soils. The frequency-dependent complex 

dielectric permittivity of the four i-C3E1/water mixtures (M2 to M5) at 25 °C was measured in 

a frequency range from 0.5 to 10 GHz using a dielectric probe kit with a slim probe (Agilent 

85070E, Agilent Technologies) and a network analyzer (HP 8720A, Agilent Technologies) 

by Rosenbaum et al. (2010). The properties of M1 (pure Dioxane) were not measured because 

they are well documented (Schwank et al., 2006). The volume fractions and the reference 

dielectric permittivity of all five reference liquids are listed in Table 2. 1.  
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Table 2. 1. Dielectric permittivity of the reference liquids at 25 °C. Data were obtained by 

Rosenbaum et al. (2011). 

  Volume fraction  

Reference 

liquid 
Medium 

Dioxane 

/ i-C3E1* 

[-] 

Deionized 

Water 

[-] 

εref 

 

[-] 

M1 Dioxane 1 0 2.2 

M2 Dioxane 0.9 0.1 6.65 

M3 i-C3E1* 0.92 0.08 18.14 

M4 i-C3E1* 0.8 0.2 26.26 

M5 i-C3E1* 0.68 0.32 34.82 

* 2-Isopropoxyethanol 

 

2.3.3 Measurement set-up and sensor output determination 

The laboratory measurements made with the SPADE sensor use a stable 5 Voltage DC power 

supply (Agilent, E3646A, 60W dual output power supply), and a high precision digital 

multimeter (Escort 99 TRUE TMS, accuracy: 0.025 %) to determine the sensor output 

voltage (V). Several precautions were taken during the measurements. First, the liquids were 

thoroughly mixed using a magnetic stirrer. No effects of the stirring magnet on the sensor 

output were found. Second, the SPADE sensors were completely and centrally immersed in 

the large 5 liter cuboid bottle (length: 28 cm, diameter: 15.2 cm) to ensure that the sampling 

volume was contained within the bottle. Third, the 1.5 m long sensor cable was fixated with a 

Polyvinylchloride bar to reduce effects of cable movement and positioning on the 

measurements. Finally, possible degrading effects of reference liquids on the sensor epoxy 

resin body were minimized by carefully cleaning the sensor after each measurement and 

minimizing the contact time. This measurement set-up was used for all measurements in 

reference liquids described below. 
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2.3.4 Sensor-to-sensor variability 

To assess the sensor-to-sensor variability, we used five SPADE sensors in a replication 

experiment. In this experiment, we made five measurements with five SPADE sensors in 

reference liquid M5 with a dielectric permittivity of 34.82 at 25 °C (see Table 2. 1). For each 

measurement, the sensor was disconnected and the cable position was changed. 

 

2.3.5 Relating sensor output to dielectric permittivity 

The SPADE sensor internally converts the measured oscillation frequency into a voltage 

output, which has to be converted to an apparent dielectric permittivity, Ka, using an 

appropriate empirical function. We determined the sensor output of 60 SPADE sensors in all 

five reference liquids. We considered two empirical functions (Bogena et al., 2007; Jones et 

al., 2005): 

𝐾𝑎 = 𝛾𝑖 +
1

𝛼𝑖 +
𝛽𝑖

𝑣⁄
 

Eq. 2. 3 

𝐾𝑎 = (𝛼𝑖 ∗ 𝑣𝛽𝑖 + 𝛾𝑖)
2

 Eq. 2. 4 

where 𝑣 is the sensor output (voltage), and αi, βi, and γi are the fitting parameters. The root 

mean square error (RMSE) between the predicted Ka and the known reference permittivity 

(Table 2. 1) was used to quantify the accuracy of the empirical functions. 

 

2.3.6 Derivation of the temperature correction function  

In order to estimate how temperature directly affects the sensor output of the SPADE sensor, 

we determined the sensor output of six SPADE sensors in four reference liquids (M2 to M5; 
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M1 was excluded as the melting point is 11.8 °C). The temperature of these reference liquids 

was varied within a temperature range from 5 °C to 40 °C in steps of 5 °C using a circulating 

water bath controlled by a thermostat. A sensor-specific model was used to relate sensor 

output and dielectric permittivity for each sensor. The difference between the measured 

apparent dielectric permittivity (Ka,T) and the reference static permittivity (εref) is used to 

quantify the effect of temperature on the measured apparent dielectric permittivity: 

∆𝐾𝑎,𝑇 = 𝐾𝑎,𝑇 − 𝜀𝑟𝑒𝑓 Eq. 2. 5 

A positive value of ΔKa,T indicates an overestimation of the reference permittivity, while a 

negative value of ΔKa,T implies an underestimation of the reference permittivity. Following 

Rosenbaum et al. (2011), an empirical polynomial function was used to obtain a function that 

describes ΔKa,T as a function of T and Ka: 

∆𝐾𝑎,𝑇 = 𝑎 ∗ 𝐾𝑎
2 + 𝑏 ∗ 𝑇2 + 𝑐 ∗ 𝐾𝑎 + 𝑑 ∗ 𝑇 + 𝑒 ∗ 𝐾𝑎𝑇 + 𝑓 Eq. 2. 6 

where a to f are fitting parameters that were determined using a stepwise regression method 

in MATLAB (The MathWorks, Natick, MA). This fitted function was used to correct for 

temperature effects on the sensor output of the SPADE sensor. As outlined in the introduction, 

additional effects of temperature on soil dielectric permittivity are present in soil and these 

should also be accounted for in addition to the effect of temperature on the sensor output. 

 

2.3.7 Testing of the temperature correction function  

To illustrate the plausibility of the apparent dielectric permittivity obtained with the SPADE 

sensor after temperature correction, we determined how the corrected apparent dielectric 

permittivity of two soil samples (length: 27 cm, diameter: 15 cm) varied with temperature. 

The first soil sample was a packed coarse sand with a mean grain size of 0.024 cm (F36, 
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Quarzwerke Frechen, Germany), which was saturated with deionized water. The second soil 

sample was an undisturbed silt loam sample took from the Rollesbroich test site, Germany 

(Korres et al., 2010). In both samples, we installed two SPADE sensors and the entire sensor 

including the probe head was contained in the sample. A wireless sensor network unit was 

used to obtain the sensor output of the two SPADE sensors, which was converted to apparent 

dielectric permittivity using a sensor-specific calibration equation. We additionally installed a 

7.5 cm long CS 640-L 3-rod TDR probe attached to a TDR 100 cable tester (Campbell 

Scientific, Logan, UT). Temperature was varied from 5 °C to 40 °C in 5 °C temperature steps 

using a circulating water bath controlled by a thermostat (Figure 2. 2). The sides of the 

columns were isolated to avoid temperature gradients. In order to assess variability in sensor 

output, we repeated each experiment three times. 

 

To evaluate the experimental results for these soil samples, the change in the apparent 

dielectric permittivity with rising temperature was modeled using the CRIM model (Birchak 

et al., 1974):  

𝐾𝑎
𝛽 = (1 − ƞ) ∗ 𝐾𝑠𝑜𝑙𝑖𝑑

𝛽
+ (ƞ − 𝜃) ∗ 𝐾𝑎𝑖𝑟

𝛽
+ 𝜃 ∗ 𝐾𝑤𝑎𝑡𝑒𝑟

𝛽
 Eq. 2. 7 

where ƞ is the porosity of the soil, 1-ƞ is the solid fraction, ƞ-θ is the air fraction, β is a shape 

factor which is assumed to be 0.5 (Birchak et al., 1974), Ka is the apparent dielectric 

permittivity measured by the sensors, and Kwater, Ksolid, and Kair are the permittivity of water, 

solids, and air, respectively. The dielectric permittivity of air (Kair) is 1, and that of water 

(Kwater) is a function of temperature, and can be calculated by (Weast, 1986): 

Kwater = 78.5 ∗ [1 − 4.579 ∗ 10−3(T − 25) + 1.19 ∗ 10−5(T − 25)2 − 2.8 ∗ 10−8(T − 25)2 ] Eq. 2. 8 
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Figure 2. 2. (a) Vertical view of the soil container; the SPADE sensors and the TDR sensor 

were completely inserted in the soil; (b) schematic view of experimental setup using the 

saturated coarse sand and the undisturbed soil sample from the Rollesbroich test site. 

 

The permittivity of Ksolid was fitted. The porosity and soil water content of the samples were 

derived using the gravimetric method (oven drying at 105 °C, 24 hours). It is important to 

note here that this modeling approach assumes that the change in permittivity with changing 

temperature is solely related to the temperature sensitivity of the dielectric permittivity of 

water after correction for temperature effects on the sensor output. Although this is a 

reasonable approximation for the sand and soil sample used in this study, more complex 

modeling approaches such as those presented by Schwartz et al. (2009) and Wagner et al. 

(2011) should be considered for soils with a high surface area because bound water relaxation 

and bulk electrical conductivity effects on the dielectric permittivity are expected to be more 

important for such soils. 
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2.4 Results and Discussion 

2.4.1 Sensor-to-sensor variability 

The results of the replication experiment in M5 show that the repeat measurements with each 

of the five sensors were very close together (Figure 2. 3), which indicated that instrument 

noise was low and that the experimental procedure was repeatable. To test whether the sensor 

output was significantly different, an ANOVA was conducted. In this statistical analysis, the 

total variance is divided into two parts: the variance between sensors (sensor-to-sensor 

variability), which is due to the sensor production process; and the variance between 

replication measurements (noise), which is caused by the repeatability of the experimental 

procedure. The results of this ANOVA indicated that at least one of the SPADE sensors 

provided significantly different sensor output (F value of 83.1,Table 2. 2). The observed 

variability was slightly lower than observed for the EC-5 capacitance soil water content 

sensor (F value of 87.5), which was evaluated by (Rosenbaum et al., 2010) for sensor-to-

sensor variability analyze.  

Table 2. 2. ANOVA results of measurement in reference liquid M5 with five SPADE sensors 

and five replication measurements per sensor.  

Source of Variation SS df MS F P-value F critical 

Sensor to sensor variability 0.00331 4 0.00083 83.1 3.61E-12 2.87 

Noise 0.000199 20 9.94E-06    

Total 0.00350 24     
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Figure 2. 3. Replication experiments consisting of five replicate measurements with five 

SPADE sensors in reference liquid M5. 

 

2.4.2 Relating sensor output to dielectric permittivity 

The sensor output for all 60 SPADE sensors for each of the five reference liquids is presented 

in Figure 2. 4. With increasing permittivity, the sensor output voltages increased in a non-

linear way. It is also observed that the variation in measured sensor output increased with 

increasing permittivity, which is also confirmed by the standard deviation of the 

measurements which increases from 0.0074 to 0.0166 (Table 2. 3). The two empirical 

functions fitted to all of these measurements are also presented in Figure 2. 4. The best fitting 

parameters are presented in Table 2. 4. The RMSE of the sensor output for the first empirical 

function (Eq. 2. 3) was 0.0188, which was less than the RMSE of 0.0772 that was obtained 

for the second empirical function (Eq. 2. 4). Therefore, Eq. 2. 3 was selected to calibrate the 

SPADE sensors. Table 2. 5 provides the RMSE between measured and predicted Ka for each 

reference liquid for this ‘universal’ calibration. Clearly, the quality of the fit was lower for 
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higher permittivity, which was expected because of the observed sensor-to-sensor variability 

in reference liquid M5. The RMSE of Ka value was 0.75 for this ‘universal’ calibration was 

considerably lower than the RMSE obtained for the calibration of the EC-5 capacitance probe 

in Rosenbaum et al. (2010) because the sensor-to-sensor variability of the SPADE sensor was 

smaller. 

Table 2. 3. Statistical summary of the sensor output of 60 SPADE sensors in five reference 

liquids. 

 
Mean 

[V], [-] 

STD 

[V], [-] 

CV* 

[%] 

M1 0.6494 0.0074 1.14 

M2 1.2598 0.0100 0.79 

M3 1.7680 0.0124 0.70 

M4 1.9150 0.0139 0.72 

M5 1.9978 0.0166 0.83 

*CV is the coefficient of variation 

 

Table 2. 4. Fitting parameters of the ‘universal’ calibration curve of SPADE sensors and the 

RMSE between measured and predicted reference dielectric permittivity.  

 α β γ RMSE 

Eq.3 -0.1502 0.3612 -0.5199 0.0188 

Eq.4 -0.3589 3.5190 -1.5777 0.0772 
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Figure 2. 4. Sensor output of 60 SPADE sensors in five reference liquids. The two fitted 

‘universal’ calibration relationships are also presented. 

 

Table 2. 5. The RMSE between apparent dielectric permittivity Ka (determined using sensor-

specific and universal calibration) and the reference permittivity εref as well as the 

corresponding (equivalent) soil water content, θ, for measurements with 60 SPADE sensors 

in five reference liquids (M1-M5) at 25°C. 

Standard 

liquids 

Sensor-specific 

calibration 
Universal calibration 

RMSE Ka 

[-] 

RMSE θ* 

[cm
3
·cm

-3
] 

RMSE Ka 

[-] 

RMSE θ* 

[cm
3
·cm

-3
] 

M1 0.199 0.00535 0.543 0.00695 

M2 0.280 0.00624 0.804 0.00777 

M3 0.156 0.00210 0.581 0.00628 

M4 0.312 0.00290 0.893 0.00755 

M5 0.127 0.00830 1.156 0.00873 

all 0.226 0.00403 0.753 0.00750 

* Equivalent soil water content θ estimated by the polynomial empirical permittivity-soil 

water content relationship of Topp (1980). 
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To evaluate to what extent a sensor-specific calibration can remove the sensor-to-sensor 

variability, we compared the RMSE obtained with a sensor-specific and a single ‘universal’ 

calibration in each reference liquid (Table 2. 5). Clearly, the RMSE decreased with the use of 

a sensor-specific calibration for each reference liquid, which indicates that a sensor-specific 

calibration can further improve the accuracy of soil water content measurements with the 

SPADE sensor. Expressed in equivalent soil water content, the overall quality of the 

calibration between sensor output and apparent dielectric permittivity improved from 0.008 

cm
3
cm

-3
 to 0.004 cm

3
cm

-3
 using the sensor-specific calibration.  

 

2.4.3 Temperature correction function for sensor output 

The results from the temperature experiment are presented in Figure 2. 5. With increasing 

temperature, the reference permittivity εref decreased as already discussed by Rosenbaum et 

al. (2011). The temperature dependence of the dielectric permittivity of the reference liquids 

increased with increasing permittivity of the liquids because of the increasing volume fraction 

of water. Figure 2. 5 also shows that the mean temperature dependence of the apparent 

dielectric permittivity for the six SPADE sensors (error bars indicate the standard error of the 

mean). The apparent dielectric permittivity measured by the SPADE sensors showed the 

same tendency as the reference permittivity with respect to temperature. However, for 

temperature lower than 25°C the SPADE sensor underestimates the reference dielectric 

permittivity, while it overestimates the reference dielectric permittivity at higher temperature 

(> 25 °C). In addition, the deviations between measured apparent dielectric permittivity and 

reference permittivity increased with increasing permittivity (Figure 2. 5). 
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Figure 2. 5. The reference permittivity (solid line) and the apparent dielectric permittivity Ka,T 

for the SPADE sensors as a function of temperature. The temperature dependence of the 

reference permittivity for M2 to M5 was obtained from Rosenbaum et al. (2011). The error 

bars are the standard error of the mean estimated from six sensors. 

 

Figure 2. 5 exhibits the mean temperature effect (ΔKa,T) calculated according to Eq. 2. 5 for 

all reference liquids and temperatures. We observed that the ΔKa,T was close to but not equal 

to zero at 25 °C (also see Figure 2. 5). This is related to the accuracy of the sensor-specific 

calibrations used to convert sensor output to dielectric permittivity. Therefore, all data 

measured in each reference liquid were shifted to make ΔKa,T equal to zero at 25 °C. The 

largest deviations between measured and reference dielectric permittivity were found in M5 at 

5 °C (ΔKa,T = -2.85, equivalent to 0.031 cm
3
cm

-3
) and 40 °C (ΔKa,T = 1.73, equivalent to 

0.014 cm
3
cm

-3
). The observed deviations for the SPADE sensor were similar to those 

observed for the EC-5 capacitance probe evaluated by Rosenbaum et al. (2011). 
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Figure 2. 6. (a) Measured mean temperature effect ΔKa,T (marker) and predicted temperature 

effect using Eq. 2. 6 as a function of temperature; and (b) the modeled and measured mean 

temperature effect of ΔKa,T. 

 

Table 2. 6. Parameters of the empirical polynomial function describing the temperature effect 

on the SPADE sensor output determined by stepwise regression. The RMSE and R
2
 of the fit 

are also reported. 

a b* c d e f RMSE R
2
 

-0.00055 0 0.0043 -0.0906 -0.0176 0.4298 0.1489 0.9831 

 

The second order polynomial function relating ΔKa,T to T and Ka (Eq. 2. 6) fitted the 

measurements well (R
2
 = 0.9831, RMSE = 0.1489) (Figure 2. 6). The fitting parameters are 

provided in Table 2. 6. Only one regression parameter ‘b’ was removed in the stepwise 

regression procedure because it was insignificantly different from zero at a 95% confidence 

level. The good agreement is also evident from Figure 2. 6, where the measured and the 

modeled ΔKa,T were plotted against each other. 
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2.4.4 Testing the temperature correction function 

Figure 2. 7 shows the apparent dielectric permittivity measured with the SPADE sensor and 

TDR as a function of temperature for the coarse sand sample. The soil water content of this 

sample was 0.4114 cm
3
cm

-3
 and the porosity was 0.4129 cm

3
cm

-3
. It can be seen that the 

uncorrected apparent dielectric permittivity did not significantly change with temperature. 

However, the reference TDR measurements did show a decrease in apparent dielectric 

permittivity, which is not surprising because in coarse sand the permittivity of free water by 

far is the greatest influence on apparent permittivity and the permittivity of free water 

declines as temperature increases. In addition, it is well established that TDR measurements 

are less affected by temperature (Assouline et al., 2010; Blonquist et al., 2005b; Robinson et 

al., 2005a). We modeled the decrease of permittivity with increasing temperature assuming 

that the permittivity of water is the only contributing factor to the temperature dependency of 

the dielectric permittivity. After fitting the Ksolid of the CRIM model to the TDR 

measurements, the modeled temperature dependence fitted well with the TDR measurements 

with a RMSE of 0.1694. The fitted value of Ksolid was 5.75, which corresponds well to Ksolid 

values reported for quartz and other soil minerals (Robinson, 2004; Rosenbaum et al., 2011). 

After the application of the temperature correction function (Eq. 2. 6) to the SPADE 

measurements, the corrected apparent dielectric permittivity of the coarse sand decreased 

with increasing temperature. The corrected apparent dielectric permittivity fitted well with 

the reference TDR measurements. We also fitted the CRIM model to the temperature-

corrected SPADE measurements. This resulted in a RMSE of 0.1983, which was only slightly 

higher than the RMSE obtained for TDR. The fitted Ksolid was 5.81 for the corrected SPADE 
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sensor measurements, which was very close to the value obtained for TDR. These results 

indicated that our temperature correction function works well for saturated coarse sand. 

 

The same experiment was performed for an undisturbed soil sample took from the 

Rollesbroich test site (Figure 2. 7). The soil water content of this sample was 0.4225 cm
3
cm

-3
 

and the porosity of this sample was 0.4942 cm
3
cm

-3
. Again, the uncorrected apparent 

dielectric permittivity measurements with the SPADE sensor hardly decreased with 

temperature. In addition, the standard deviation of the three measurements for each 

temperature was higher as compared to the TDR and SPADE sensor measurements in the 

saturated coarse sand. As the permittivity of these two samples was similar, we can exclude 

that this is related to the increasing measurements noise that was observed with increasing 

permittivity. Instead, we attribute the larger standard deviation to limited soil water 

redistribution during the experiment because the silt loam sample was not saturated and not 

as homogeneous as the saturated coarse sand. 

 

After the application of the temperature correction function, the corrected apparent dielectric 

permittivity of the SPADE sensor matched well with the reference TDR measurements. The 

fitted Ksolid of 5.97 for the TDR measurements was again close to the Ksolid of 5.92 obtained 

for the corrected SPADE measurements, and the quality of the fitting was also very similar 

(an RMSE of 0.1446 for TDR and 0.1623 for SPADE sensor measurements). This good 

correspondence between measurements and modeling is an indication that bound water 

effects on the temperature sensitivity of the soil dielectric permittivity do not need to be 

considered at the Rollesbroich test site, despite the relatively fine silt loam texture. 
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Figure 2. 7. Temperature dependence of the apparent dielectric permittivity measured with 

TDR and SPADE sensors for (a) a packed saturated coarse sand and (b) an undisturbed silt 

loam. The black rectangles are the uncorrected apparent dielectric permittivity (Ka) obtained 

with the SPADE sensors, the gray crosses are temperature-corrected SPADE measurements, 

and the red dots are the reference TDR measurements. The black and red lines are modeling 

results for the CRIM model. The error bars indicate the standard deviation of three 

experiments. The temperature values of the uncorrected Ka and the temperature-corrected Ka 

are shifted by 1 and 0.5°C from the actual temperature to improve visibility. 

 

2.5 Conclusions 

In this paper, we evaluated the SPADE sensor with respect to sensor-to-sensor variability, 

accuracy of calibration between sensor output and dielectric permittivity, and the effect of 

temperature on the sensor output. A replication experiment shows that sensor-to-sensor 

variability was significant, and much larger than the measurement noise introduced by the 

instrumentation and our experimental procedures. We calibrated the sensor output of 60 
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SPADE sensors to permittivity using a standard procedure based on a reference liquids with a 

known dielectric permittivity (2.2 < εref < 34.8). Our results show that a sensor-specific 

calibration improved the accuracy of the calibration, although a single ‘universal’ calibration 

also provided a high accuracy. Sensor-specific calibration is associated with additional effort 

and the results presented here can be used to decide whether sensor-specific calibration is 

required given the accuracy requirements of a particular application.  

 

Temperature has a significant influence on the sensor output of the SPADE sensor. The 

results show that the effect of temperature effect on the sensor output depends on the 

dielectric permittivity of the medium. The largest effect of temperature was found for high 

apparent dielectric permittivity, which means that the effect of temperature on the sensor 

output is larger in wet soil than in dry soil. A temperature correction function was derived 

and tested using two different soil samples. Both samples were exposed to temperature 

variations and the corrected apparent dielectric permittivity showed good agreement with 

reference TDR measurements and predicted changes in dielectric permittivity as a function of 

temperature that were obtained from the CRIM model. 

 

A site specific calibration between the permittivity and soil water content was derived using 

the CRIM model for different depths. Although by considering the spatial variability of soil 

properties at each sensor unit and soil depth will improve the model accuracy of soil water 

content predictions. The large effort required to obtain this additional soil information is too 

large considering the modest increase in accuracy of the soil water content measurements. 

We did not consider the CRIM model with spatial distributed porosity for the wireless sensor 

network. 
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In future, the accuracy of the SPADE sensor will be further tested in the field. Since we have 

already installed a wireless sensor network consisting of SPADE sensors at the Rollesbroich 

test site, the temperature correction function will be tested with continuous field 

measurements under natural conditions. The improved soil water content measurements at the 

catchment scale will be ultimately used to improve hydrological understanding of this small 

headwater catchment and to validate high resolution remote sensing soil water content 

products. 
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3 Effects of soil hydraulic properties on the spatial variability of soil water content: 

evidence from sensor network data and inverse modeling 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, G. Martinez, Y. A. 

Pachepsky, H. Vereecken. Effects of soil hydraulic properties on the spatial variability of soil 

water content: Evidence from sensor network data and inverse modeling. Vadose Zone 

Journal, 2014, 13(12). doi: 10.2136/vzj2014.07.0099. 
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3.1 Objectives 

The objective of this study was to analyze an extensive soil water content data set acquired 

with a wireless sensor network in the Rollesbroich catchment (Germany) in order to 

investigate whether spatial variability of soil water content is related to spatial variation in 

soil hydraulic properties. The soil hydraulic parameters were inversely estimated from 

measured soil water content time series using information on the distribution and correlation 

of hydraulic parameters derived from the Rosetta program. The spatial variation in inversely 

estimated hydraulic parameters was then compared to the spatial variation of soil water 

content and saturation degree as expressed by the MRD. 

 

3.2 Introduction 

Understanding spatial variation of soil water content is important in a multitude of 

hydrological and engineering applications (Bogena et al., 2010; Vereecken et al., 2007). 

However, characterizing the spatial variation of soil water content is challenging because it is 

affected by the heterogeneity of soil, atmospheric forcing, vegetation, and topography 

(Vanderlinden et al., 2012; Vereecken et al., 2008; Vereecken et al., 2014; Zhao et al., 2013). 

Nevertheless, accurate characterization of spatial behavior of soil water content is important, 

for data assimilation method in hydrological models (Heathman et al., 2003; Pan et al., 2012), 

calibration and validation of large scale remote sensing retrievals of soil water content (Choi 

and Jacobs, 2007; Famiglietti et al., 1999; Montzka et al., 2011), estimating uncertainty in 

hydrological predictions (Heuvelink and Webster, 2001), designing sensor networks and 

optimizing the number of sensors (Heathman et al., 2009; Mohanty and Skaggs, 2001), and 

upscaling and downscaling of soil water content information (Cosh et al., 2004; Cosh et al., 

2006; Jacobs et al., 2004). 
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One of the most widely used methods to investigate spatial behavior of soil water content is 

the statistical analysis of the MRD to characterize spatial variability in combination with the 

analysis of standard deviation of the relative differences (SDRD) to describe rank stability. 

This type of statistical analysis is commonly referred to as temporal stability analysis. The 

concept of temporal stability was first proposed by Vachaud et al. (1985) to determine 

representative locations within a field in order to improve sampling efficiency while 

maintaining accuracy. More recently, it has also been used to describe the persistence of 

spatial patterns and to characterize the behavior of soil water content variability (Pachepsky 

et al., 2005; Vanderlinden et al., 2012).  

 

The majority of studies dealing with the spatial variability of soil water content rely on few 

snapshots of soil water content variation in time that ideally include both wet and dry 

conditions (Avila et al., 2010; Brocca et al., 2009; Grayson and Western, 1998; Schneider et 

al., 2008b; Starks et al., 2006). Soil water content observations with high measurement 

frequency and over a large range of saturation conditions enable more comprehensive 

investigations of spatial behavior of soil water content (Cosh et al., 2008; Cosh et al., 2006; 

Mittelbach and Seneviratne, 2012). Wireless sensor network technology is ideally suited to 

provide such continuous measurements of soil water content at the catchment scale (Bogena 

et al., 2010; Qu et al., 2013). 

 

Although a large number of publications on spatial variability of soil water content already 

exist, the controlling factors are still not well understood. Previous studies have shown that 

multiple factors, such as climate (Martinez et al., 2014), topography (Biswas and Si, 2011; 
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Hu et al., 2010a), soil properties (Martinez et al., 2013; Williams et al., 2009), and vegetation 

(Gomez-Plaza et al., 2001; Mohanty and Skaggs, 2001) affect the MRD of soil water content, 

and that these factors tend to interact (Baroni et al., 2013; Vanderlinden et al., 2012). 

Vachaud et al. (1985) were the first to suggest that soil texture affects the temporal stability 

and this was confirmed by Hu et al. (2010a). Gomez-Plaza et al. (2001) also found that soil 

texture together with slope were the main factors controlling MRD of soil water content in a 

semi-arid catchment with sparse vegetation. Cosh et al. (2008) reported that dry bulk density, 

clay content and sand content explained nearly 50% of the temporal stability, and that 

topographical effects were less important in defining representativeness and stability. Since it 

is well established that soil texture is correlated with soil hydraulic properties (Schaap et al., 

2001; Vereecken et al., 2010; Wosten et al., 1999), it can also be expected that soil hydraulic 

properties affect spatial behavior of soil water content. 

 

Spatially distributed simulations have been used to investigate to what extent soil hydraulic 

properties affect the MRD of soil water content. For instance, Kim and Stricker (1996) used 

independent soil columns with spatially random fields of vertically uniform hydraulic 

characteristics and showed that the heterogeneity of soil hydraulic properties has a strong 

effect on the mean annual water budget. More recently, Martinez et al. (2013) presented a 

simulation study where a linear relationship between saturated soil hydraulic conductivity 

and the MRD of soil water content was found. However, this study relied on a simplified 

modeling approach based on a lognormal distribution of Ks, without considering relationships 

between Ks and other hydraulic parameters. Therefore, it remains unclear whether such 

correlations between MRD and soil hydraulic properties can also be expected for real-world 

conditions. 
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In order to explore potential correlations between soil hydraulic properties and the spatial 

variability of soil water content in the field, hydraulic parameters need to be determined at 

locations where soil water content is measured using either direct or indirect methods. In case 

of direct methods, the hydraulic parameters are estimated by fitting the water retention and 

unsaturated hydraulic conductivity curve to experimental data obtained from soil cores in the 

laboratory. However, such direct methods are labor intensive and time consuming. If 

measured time series of soil water content at several depths are available, inverse modeling 

may be an appropriate alternative to obtain in-situ soil hydraulic parameter estimates (Bauer 

et al., 2012; Ritter et al., 2003; Vrugt et al., 2003; Zhang et al., 2003). Previous inverse 

modeling studies that have attempted to estimate soil hydraulic parameters from measured 

time series of soil water content have shown that the consideration of information on 

correlations between soil hydraulic parameters was useful to retrieve realistic parameter 

combinations (Carsel and Parrish, 1988; Mertens et al., 2004; Scharnagl et al., 2011). Such 

information can be estimated from basic soil information such as the sand, silt and clay 

fractions, bulk density and/or organic matter content by using pedotransfer functions 

(Pachepsky et al., 2006; Vereecken et al., 2010; Wosten et al., 2001). 

 

3.3. Materials and Methods 

3.3.1 Site description 

The Rollesbroich catchment (50°37'27"N, 6°18'17"E) is located in the Eifel and covers an 

area of 27 ha with altitudes ranging from 474 to 518 m.a.s.l. Mean annual air temperature and 

precipitation are 7.7 °C and 103.3 cm, respectively. The dominant soils are Cambisols in the 

southern part and Stagnosols in the northern part of the catchment. The grassland vegetation 

is dominated by perennial ryegrass (Lolium perenne) and smooth meadow grass (Poa 
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pratensis). Our study was focused on the southern part of the catchment with relatively flat 

slopes (Figure 3. 1). The average slope of our test site is 1.63° (min.: 0.35°, max.: 3.12°). 

Therefore, we expect that lateral soil water redistribution is of minor importance. 

 

Figure 3. 1. The Rollesbroich catchment and the soil net locations (red dots), the soil sample 

locations (blue dots), the isolines of elevation at 2.5 m intervals (grey lines) and the climate 

station (blue triangular). 

 

3.3.2 Soil water content determination 

In the framework of the TERENO project (Bogena et al., 2012; Zacharias et al., 2011), the 

Rollesbroich catchment has been equipped with a wireless soil water content sensor network 

(SoilNet, 2012). The SPADE soil water content probes (sceme.de GmbH i.G., Horn-Bad 

Meinberg, Germany; (Hübner et al., 2009)) were installed at 5 cm, 20 cm and 50 cm depth 

along a vertical profile. In order to increase the measurement volume and enable the 

examination of inconsistencies (e.g. imperfect contact of sensors with the soil matrix), two 
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sensors were installed in each depth with a separation of ~8 cm. Sensor deployment followed 

careful installation procedures to reduce subsequent measurement errors (e.g. no sensors were 

inserted in direct proximity to worm holes, root holes, cracks, and stones). The SPADE probe 

is a ring oscillator and the frequency of the oscillator is a function of the dielectric 

permittivity of the surrounding medium, which is strongly depended on the water content of 

the soil because of the high permittivity of water (w≈80) as compared to mineral soil solids 

(s≈2-9), and air (a≈1). The SPADE probe was calibrated using a two-step calibration 

procedure proposed by Jones et al. (2005). In a first step, an empirical model was developed 

using laboratory measurements to relate the sensor response to the apparent dielectric 

permittivity (Qu et al., 2013). In the next step, the CRIM model proposed by Birchak et al. 

(1974) was used to relate apparent dielectric permittivity to soil water content. To adjust the 

CRIM model to the soils of the test site, fifteen undisturbed soil samples (length 7.7 cm, 

diameter 5.0 cm) were taken from three different depths, ranging from approximately 5 to 13 

cm, 20 to 28 cm, and 45 to 55 cm. The volumetric soil water content was determined 

gravimetrically and the apparent dielectric permittivity of each sample was determined from 

measurements with a CS 640-L 3-rod TDR probe attached to a TDR 100 device (Campbell 

Scientific, Logan, UT). The root mean square error (RMSE) associated with soil water 

content estimation with the SPADE probe was 0.026 cm
3
cm

-3
 after the calibration. 

 

After the deployment of the sensor network at the test site, we found that the sensor output 

showed pronounced diurnal variations related to temperature. Large differences between the 

two closely-spaced measurements at a single measuring point were also observed. After 

investigating this in detail, it was established that this behavior was related to the SPADE 

data acquisition where the first sensor reading was still affected by a charging capacitor 
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within the sensor. If multiple sensor readings were made sequentially without turning off the 

sensor, the stability of the measurement considerably improved and the temperature 

dependence of the measurements disappeared. To correct these temperature-dependent 

oscillations in sensor reading, two readings were sequentially made at each measurement 

time for a limited time period. We found that the difference between the first and second 

sensor reading was highly correlated with temperature and could be fitted with a sensor-

specific second-order polynomial function. After deriving these correction functions for all 

the sensors, we corrected the first measurement of the sensors to obtain consistent time series 

of soil water content for all locations. After correction, the measurements from the closely-

spaced sensors at a single measurement location agreed well with each other (see Appendix 

B). 

 

In this study, we used the time series of soil water content and soil temperature measured 

from 1
st
 May 2011 to 1

st
 March 2013. Soil samples were taken at the locations where the soil 

sensors are installed using COBRA cores (length: 100 cm, diameter 8 cm; Carl Hamm 

GmbH, Essen, Germany). In total, 273 soil samples were taken from three horizons of the 

soil profile. The textural composition, organic carbon content, and bulk density were 

determined using standard laboratory procedures (Table 3. 1). 
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Table 3. 1. Descriptive of statistics of soil properties for the 273 soil samples in Rollesbroich 

catchment. 

 
Clay 

% 

Sand 

% 

Silt 

% 

Bulk 

density 

(gcm
-3

) 

Carbon 

content 

(gkg
-1

) 

Porosity 

(cm
3
cm

-3
) 

5 cm 
mean 18.99 19.90 61.10 0.94 54.47 0.65 

std 2.00 3.82 3.79 0.12 15.82 0.05 

20 cm 
mean 18.03 20.76 61.20 1.28 34.08 0.52 

std 1.99 4.03 3.46 0.15 16.84 0.05 

50 cm 
mean 16.50 22.00 61.50 1.52 11.22 0.43 

std 2.40 5.68 4.53 0.16 6.01 0.06 

 

3.3.3 Temporal stability analysis 

Temporal stability analysis uses the mean and standard deviation of relative differences 

(RDs) expressed as MRD and SDRD of soil water content (Vachaud et al., 1985) to describe 

the spatial pattern of soil water content in the catchment. The RD of soil water content are 

computed from individual measurements of soil water content in location i at time j (θi,j) and 

the areal mean soil water content at a given time (𝜃𝑗). In particular, the relative difference for 

location i at time j is calculated by: 

𝑅𝐷𝑖,𝑗 =
𝜃𝑖,𝑗 − 𝜃𝑗

𝜃𝑗

 Eq. 3. 1 

where 𝜃𝑗 =
1

𝑁
∑ 𝜃𝑖,𝑗

𝑁
𝑖=1 , and N is the number of the measurement locations. The MRD for 

location i is calculated by: 

𝑀𝑅𝐷𝑖  =
1

𝑇
∑𝑅𝐷𝑖,𝑗

𝑇

𝑗=1

 Eq. 3. 2 

where T is the total number of measurements at each location. The SDRD for location i is 

calculated using: 
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𝑆𝐷𝑅𝐷𝑖 = √∑
(𝑅𝐷𝑖,𝑗 − 𝑀𝑅𝐷𝑖)

𝑇 − 1

𝑇

𝑗=1

2

 Eq. 3. 3 

The value of SDRD serves as a measure of the robustness of the temporal stability analysis. A 

measurement location with a MRD close to zero provides a good direct estimate of the areal 

average of soil water content throughout time, whereas a small SDRD indicates that the MRD 

was relatively constant in time. Cosh et al (2006) proposed that a location can be defined as 

temporally stable when it shows a SDRD less than 30 %. 

 

Spatial variation in soil water content pattern can be characterized by the standard deviation 

of the MRDs (SDMRD): 

𝑆𝐷𝑀𝑅𝐷 = √∑
(𝑀𝑅𝐷𝑖 −

1
𝑁

∑ 𝑀𝑅𝐷𝑖
𝑁
𝑖=1 )

2

(𝑁 − 1)

𝑁

𝑖=1

 Eq. 3. 4 

where 
1

𝑁
∑ 𝑀𝑅𝐷𝑖

𝑁
𝑖=1  is the mean MRD. 

 

Using the methods outlined above, we also applied the temporal stability analysis to the 

saturation degree of soil water content. The saturation degree (SD) is defined in Eq. 3. 5: 

𝑆𝐷 =
𝜃

𝜃𝑠
 Eq. 3. 5 

We assume that the highest measured soil water content at each location corresponds to the 

saturated water content (θs). This is reasonable given the long measurement time and the wet 

winter seasons in Rollesbroich catchment characterized by high precipitation and low 

evapotranspiration rates (see Figure 3. 2). 
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3.3.4 Hydrus-1D simulation 

We used a numerical solution of the one-dimensional Richards equation as implemented in 

the HYDRUS 1-D software (Simunek and van Genuchten, 2008; Simunek et al., 2008b) to 

simulate soil water dynamics for a 1D flow domain with a vertical length of 100 cm: 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾(ℎ)(

𝜕ℎ

𝜕𝑧
+ 1)) Eq. 3. 6 

where K (cm day
-1

) is the soil hydraulic conductivity, h (cm) is the pressure head, t (day) is 

time, and z (cm) is the vertical coordinate. The soil hydraulic conductivity is described by the 

van Genuchten-Mualem (VGM) model (van Genuchten, 1980): 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
0.5 [1 − (1 − 𝑆𝑒

1
𝑚⁄ )

𝑚

]
2

 Eq. 3. 7 

S𝑒(h) = {

𝜃−𝜃𝑟

𝜃𝑠 − 𝜃𝑟
= (1 + |𝛼ℎ|𝑛)−𝑚 , for h ≤ 0

                    1                         ,          for h > 0

 Eq. 3. 8 

where Ks is the saturated soil hydraulic conductivity (cm day
-1

), Se(h) is the effective 

saturation, θr and θs (cm
3
cm

-3
) are the residual and saturated soil water content, α (cm

-1
), n 

and m=1-1/n (dimensionless) are empirical shape parameters for fitting the soil water 

retention function.  

 

The simulation period was from 1
st
 January 2011 to 1

st
 March 2013. Since soil water content 

is generally high during the winter season in the Rollesbroich catchment, the initial soil 

profile for HYDRUS 1D was set to be saturated. We tested different spin-up periods and 

found that a 4-month period with actual meteorological data was sufficient long to prevent 

the model results being affected by the initial conditions. The reference potential 

evapotranspiration (ET0) was computed by the Penman-Monteith equation using global 

radiation, wind speed, relative humidity and air temperature (Jensen et al., 1997). These 
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variables were obtained from a nearby micrometeorological station. Potential evaporation (E) 

and transpiration (T) were separated based on the leaf area index (LAI) (Simunek et al., 

2008a): 

𝑇 = 𝐸𝑇0(1 − 𝑒−𝑘∗𝐿𝐴𝐼) Eq. 3. 9 

𝐸 = 𝐸𝑇0𝑒
−𝑘∗𝐿𝐴𝐼 Eq. 3. 10 

where k is a parameter (-) that governs the radiation extinction of the canopy, which depends 

on the sun angle, the distribution of plants, and the arrangement of leaves. Here, we use k = 

0.49 as a representative value for grassland (Simunek et al., 2008a). Time series of LAI were 

derived from RapidEye images using the NDVI approach (Myneni et al., 1997), detailed 

information about the procedure can be found in Ali et al (2013). The agricultural 

management of the different fields in the Rollesbroich catchment is very similar. 

Heterogeneity of the grass cover is mainly caused by different mowing times, which typically 

vary only by a few days. Therefore, we assume that the grass cover is homogeneous on the 

long-term in our catchment. 

 

Daily data on precipitation, evaporation, and transpiration were used to set the upper 

boundary condition for the HYDRUS-1D simulation. The lower boundary was set to be a 

seepage face since the relatively thin soil layer overlays a fractured solid bedrock containing 

water conducting fissures. The root density was set to decrease linearly from a maximum 

value at the soil surface to zero at 50 cm depth, and root water uptake was computed by the 

Feddes approach (Feddes et al., 1976) implemented in HYDRUS-1D. 
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3.3.5 Estimation of soil hydraulic parameters using inverse modeling  

Inverse modeling was used to estimate the effective VGM parameters from measured time 

series of soil water content at 5, 20, and 50 cm depth. For this, we coupled the SCE-UA 

algorithm of Duan et al. (1992) to HYDRUS-1D. The objective function that was minimized 

by the SCE-UA algorithm was computed as following: 

𝑂𝐹 = ∑ (�̃�𝑗 − 𝑦𝑗(𝑥))2

𝑇

𝑗=1

 Eq. 11 

where the vector �̃� = [�̃�𝟓𝐜𝐦, �̃�𝟐𝟎𝐜𝐦, �̃�𝟓𝟎𝒄𝒎] contains daily observations of soil water content, 

and the vector 𝐲 = [𝐲𝟓𝐜𝐦, 𝐲𝟐𝟎𝐜𝐦, 𝐲𝟓𝟎𝒄𝒎] contains daily HYDRUS-1D predictions of soil water 

content, x=(θr, α, n, Ks) is the vector containing the VGM parameters, j is the measurement 

time and T is the total number of measurements. θs is not part of vector x since it was 

estimated from the highest measured water content. This inverse modeling approach was 

used to estimate hydraulic parameters for each of the 41 SoilNet locations show in Figure 3. 1. 

 

The parameter searching space of SCE-UA was constrained using a multivariate normal 

distribution of the VGM parameters that was derived using Rosetta (Schaap et al., 2001) from 

measured sand, silt, clay content, and dry bulk density for 273 soil samples taken in three 

depths (0-10 cm, 10-20 cm, and 20-40 cm) in the Rollesbroich catchment (Figure 3. 1). The 

mean, standard deviation, and correlation matrix that summarize this multivariate normal 

distribution of VGM parameters are shown in Table 3. 2. In order to consider this 

multivariate normal distribution in the inverse modeling, the SCE-UA algorithm was 

modified in two steps. First, the initial set of random parameters was drawn from the 

multivariate normal distribution summarized in Table 3. 2. Second, it was evaluated whether 

the intermediate parameter sets proposed by SCE-UA fall within the multivariate normal 
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distribution. This was achieved by using the Mahalanobis distance (Farber and Kadmon, 

2003): 

𝐷 = √(𝑌 − 𝜇)′𝑆−1(𝑌 − 𝜇) Eq. 12 

where D is the Mahalanobis distance, Y is a vector with the proposed parameter set, μ is a 

vector with the mean of the multivariate normal distribution (Table 3. 2), and S is the 

associated covariance matrix. Farber and Kadmon (2003) have shown that the Mahalanobis 

distance (D) of random draws from a multivariate normal distribution follows a 2
 

distribution with x-1 degrees of freedom (x is the number of variables). In our case, this 

means that parameter sets with Mahalanobis distances larger than 13.28 are unlikely to be 

associated with a draw from the multivariate normal distribution (p=0.01). Therefore, 

intermediate parameter sets with a Mahalanobis distances larger than 13.28 were discarded in 

SCE-UA and replaced with a new parameter set that was randomly drawn from the 

multivariate normal distribution summarized in Table 3. 2. It is important to realize that SCE 

works with a population of parameter sets and many different proposal points are generated. 

Therefore, the overall convergence of SCE is not jeopardized by our treatment of proposal 

points outside of the specified multivariate normal distribution. 

 

Table 3. 2. Mean values, standard deviations, and correlation coefficients of soil hydraulic 

parameters predicted by Rosetta using soil texture and bulk density from Rollesbroich 

catchment. 

    Correlation coefficients 

parameter unit mean std log10(Ks) θr log10(α) n 

log10(Ks) cm day
-1

 1.60 0.52 1    

θr cm
3
 cm

-3
 0.07 0.01 0.89 1   

log10(α) cm
-1

 -2.26 0.11 -0.63 -0.63 1  

n - 1.65 0.08 0.62 0.60 -0.98 1 
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3.4. Results and discussion 

3.4.1 Time series data of weather conditions and soil water content 

Time series of precipitation, evapotranspiration, mean and standard deviation of soil water 

content are presented in Figure 3. 2. During the observation period from 1
st
 May 2011 to 1

st
 

March 2013, total precipitation and potential evapotranspiration were 228.2 cm and 121.8 

cm, respectively. Overall, soil water content at 5 cm and 20 cm depth depended strongly on 

precipitation events. Especially in the top soil, a steep rise of soil water content can be 

observed after rainfall events, which was followed by a slow recession during periods without 

precipitation. For all depths, the lowest soil water contents were observed during May 2011, 

because precipitation was low (2.9 cm) and evapotranspiration was relatively high (9.5 cm). 

The soil water content was lowest near the surface in this time period, most likely because 

root water uptake is generally larger in topsoil than in subsoil, especially in the case of 

grassland which typically shows a very high root density near the surface. In December 2011, 

precipitation was relatively high (20.7 cm) and evapotranspiration was low (0.5 cm) leading 

to nearly saturated soils. Since electromagnetic sensors cannot determine soil water content in 

partly frozen soils, we excluded the period from 10
th

 January 2012 until 26
th

 February 2012 

from our analysis. 
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Figure 3. 2. Daily time series of precipitation, potential evapotranspiration (1
st
 January 2011 - 

1
st
 March 2013), spatial mean and standard deviation (std) of soil water content (SWC) at 5, 

20 and 50 cm depths (1
st
 May 2011 - 1

st
 March 2013), respectively. 

 

Spatial variability of measured soil water content was higher at 50 cm depth compared to 5 

cm and 20 cm depths as indicated by the temporal dynamics of the standard deviation of soil 

water content presented in Figure 3. 2 (bottom panel). We attribute this to the pedological 

situation (shallow soil above consolidated bedrock) in which the highly variable stone content 
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in the subsoil leads to considerable spatial variability of soil water content at 50 cm depth. A 

similar increase in standard deviation with depth has also been observed in the nearby forest 

test site in Wüstebach with a similar pedological situation (Rosenbaum et al., 2012). In 

contrast, the standard deviations at 5 cm and 20 cm depth are much smaller in Rollesbroich 

than those observed in the Wüstebach test site. One reason for the lower spatial soil water 

content variability at the Rollesbroich test site is the fact that the topsoil has become more 

homogeneous through former agricultural land use. In addition, the homogenous grass cover 

and the relatively flat slopes of the Rollesbroich site also lead to lower spatial variability in 

soil water content as compared to the Wüstebach site with its locally variable vegetation 

coverage and steeper slopes. Yet another reason is that the spatial variability of infiltration 

was larger in the Wüstebach test site because canopy interception and associated leaf drip 

lead to heterogeneous throughfall patterns in forests. 

 

3.4.2 Observed MRD and SDRD 

Figure 3. 3 shows the ranked MRDs and their variability for the 41 SoilNet locations. 

Similarly, the MRDs and their variability for saturation degree are shown in Figure 3. 4. All 

SDRDs values were smaller than 30 %, indicating temporal stability for all locations (Cosh et 

al., 2006). The SDRDs were lower at 20 and 50 cm than at 5 cm, indicating that the subsoil 

was more temporally stable than the topsoil. This result corresponds well with previous 

studies (Guber et al., 2008; Hu et al., 2010b; Starks et al., 2006). This decreasing SDRD with 

increasing soil depth was attributed to the decreasing impact of root water uptake of crops 

with depth, whereas pedogenetically derived variations in the deeper layers preserved a rather 

stable pattern of spatial variation through time. The range of MRDs of soil water content 

increased with depth, i.e. 0.65, 0.54 and 0.84 at depths of 5, 20, and 50 cm, respectively. 
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These results are consistent with the standard deviation of soil water content (Figure 3. 2), 

which already showed that the top soil is more homogeneous than the subsoil. In the 

Rollesbroich catchment, spatially variable soil layering probably leads to pronounced 

differences in soil water content at the same depth in different locations. An increase of 

SDMRD (i.e. 0.12, 0.12, and 0.22 at 5, 20, and 50 cm, respectively) with depth was observed 

in our study. Similarly, other studies found that the temporal stability of soil water storage 

was less pronounced in shallow soil layers (Cassel et al., 2000; Gao and Shao, 2012; Kamgar 

et al., 1993; Martinez et al., 2010).  

 

Figure 3. 3. Ranked MRDs (dots) and SDRDs (vertical bars) of soil water contents in 

Rollesbroich at 5, 20 and 50 cm depths, respectively.  
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Figure 3. 4. Ranked MRDs (dots) and SDRDs (vertical bars) of saturation degrees in 

Rollesbroich at 5, 20 and 50 cm depths, respectively. 

 

The MRDs of saturation degree showed the same tendency as the MRDs of soil water content, 

but the ranges of MRDs of saturation degree were less variable for different depths (0.31, 

0.37 and 0.41 at 5, 20, and 50 cm, respectively). The corresponding SDMRD of saturation 

degree were 0.08, 0.08 and 0.11 at 5, 20, and 50 cm, respectively. This indicates that the 

variability of saturation degree was lower in general and as a function of depth than that of 

soil water content. Moderate correlations were observed between the ranked MRDs of soil 

water content and saturation degree at 5, 20, and 50 cm depth with correlation coefficients of 

0.81, 0.66, and 0.72, respectively. 

 

-0.8

-0.4

0

0.4

0.8
M

R
D

 S
D

 5
cm

-0.8

-0.4

0

0.4

0.8

M
R

D
 S

D
 2

0
cm

-0.8

-0.4

0

0.4

0.8

M
R

D
 S

D
 5

0
cm



Chapter 3 

60 

 

3.4.3 Evaluation of estimated hydraulic parameters  

 

Figure 3. 5. Observed mean time series soil water contents of the 41 locations (solid lines); 

mean of inverse simulated soil water content (dashed lines) at 5, 20 and 50 cm depths, 

respectively. 

 

Modelled soil water content obtained using inversely estimated hydraulic parameters were in 

good agreement with the observed dynamics of soil water content. The mean simulated soil 

water content matched well with the mean observed soil water content (Figure 3. 5) as 

indicated by the RMSE of 0.037, 0.029, and 0.027 cm
3
cm

-3
 and the R

2
 of 0.922, 0.921, and 

0.894 for 5, 20, and 50 cm, respectively. When considering simulated and measured soil 

water content at all 41 locations, the RMSE was never higher than 0.08 cm
3
cm

-3
 and often 

 

 

01.01.2011 09.04.2011 17.07.2011 24.10.2011 31.01.2012 08.05.2012 15.08.2012 22.11.2012 01.03.2013
0

0.1

0.2

0.3

0.4

m
ea

n
 s

im
u

la
te

d
 a

n
d

 o
b

se
rv

ed
 S

W
C

, 
[c

m3
cm

-3
]

 

 

0

0.15

0.30

0.45

 

 

0

0.1

0.2

0.3

0.4

0.5

observation simulation

observation simulation

observation simulation

5cm

20cm

50cm



Chapter 3 

61 

 

much better, and the R
2
 was always larger than 0.75 (Figure 3. 6). The pairwise scatter plots 

of inversely estimated VGM parameters are shown in Figure 3. 7. The ellipses represent the 

multivariate normal distribution used to constrain the parameter search. The Mahalanobis 

distance of all inversely estimated VGM parameter sets was smaller than 13.28 as prescribed. 

 

Figure 3. 6. Empirical cumulative probability distributions of RMSE and R
2
 of inverse 

simulated and observed soil water content for three soil depths. 
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Figure 3. 7. Pairwise scatter plots of soil hydraulic parameters estimated by inverse. The blue 

ellipses approximately indicate parameter range of the multivariate distributions derived from 

the 273 soil samples (Figure 3. 1) from our field. The colored dots represent the estimated 

soil hydraulic parameters at 5 cm (blue), 20 cm (black), and 50 cm (red) depths for our 41 

SoilNet locations. 
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locations with low θs associated with lower soil water contents (Table 3. 3 and Figure 3. 8). 

Obviously, this reflects the direct link between θs and soil water storage capacity. Moreover, 

the MRDs of soil water content were positively correlated with the α parameter, and 

negatively correlated with the n parameter. That is because larger α parameters and smaller n 

parameters typically are associated with poorly draining soils, which consequently have 

higher soil water content. In agreement with Martinez et al. (2013), we also found a negative 

correlation between MRDs of soil water content and Ks. However, our correlation is much 

weaker. Correlations between MRDs of saturation degree and soil VGM parameters are 

presented in Table 3. 3 and Figure 3. 9. The obtained correlations between MRDs of 

saturation degree and VGM parameters were similar to the correlations obtained for soil 

water content (Figure 3. 8). However, the relationship between MRDs of saturation degree 

and θs was less pronounced, whereas the MRDs of saturation degree was correlated more 

strongly with the α and n parameters that determine the shape of the VGM model. 

 

Table 3. 3. Correlation coefficients between the MRDs of soil water content and saturation 

degree and VGM parameters obtained using inverse modeling. 

 5cm 20cm 50cm  5cm 20cm 50cm 

MRD(θ)- θr 0.03 0.42* 0.52* MRD(SD)- θr 0.06 0.20 0.47* 

MRD(θ)- θs 0.71* 0.76* 0.93* MRD(SD)- θs 0.16 0.14 0.69* 

MRD(θ)- α -0.45* -0.34* -0.56* MRD(SD)- α -0.47* -0.43* -0.61* 

MRD(θ)- n 0.46* 0.26* 0.51* MRD(SD)- n 0.47* 0.34* 0.56* 

MRD(θ)- Ks -0.24 -0.18 -0.17 MRD(SD)- Ks -0.16 -0.10 -0.13 

*Significant at p<0.05. 
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Figure 3. 8. Correlation between MRDs of soil water content and soil hydraulic parameters 

(θr, θs, log10(α), n, and log10(Ks)) at 5, 20 and 50 cm depths, respectively. 

 

 

Figure 3. 9. Correlation between MRDs of saturation degree and soil hydraulic parameters 

parameters (θr, θs, log10(α), n, and log10(Ks)) at 5, 20 and 50 cm depths, respectively. 
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The analysis presented here was inspired by Martinez et al. (2013) who found that MRDs of 

soil water content and log10(Ks) were strongly negatively related in a study using numerical 

simulations. In another synthetic study of Wang (2014), it was found that the MRDs of soil 

water content correlates with θr and with n for fixed θr under semi-arid climate conditions. 

However, our findings based on experimental data suggest that the results from synthetic 

studies cannot be transferred directly to real world conditions. In contrast, we found that also 

other VGM parameters are more or less correlated with the MRDs of soil water content and 

saturation degree. Our results indicate that θs and the parameters describing the shape of the 

water retention and hydraulic conductivity functions are more important than the value of Ks. 

This finding is also supported by the study of Vereecken et al. (2007), who demonstrated that 

the pore size distribution parameter n has the strongest effect on the spatial variability of soil 

water content. However, it should be kept in mind that this study is restricted to the silt loam 

textural class, and that other texture classes might lead to different relationships between 

MRD and soil hydraulic properties. 

 

3.5. Conclusions 

We analyzed the temporal stability of in-situ soil water content observed by a wireless sensor 

network at three depths at the TERENO test site Rollesbroich. Temporally stable 

characteristics were found both in soil water content and saturation degree. We suggest that 

both soil water content and saturation degree should be considered in future temporal stability 

studies when the porosity is known to vary considerably, as it is one of the most important 

factors that affect water storage and infiltration characteristics in soil.  
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Our inversely estimated VGM parameters were constrained by a multivariate normal 

distribution derived using pedotransfer functions from measured sand, silt, and clay content 

in addition to bulk density. Modelled soil water content agreed well with the observed soil 

water content dynamics in all soil depths. The corresponding RMSE was always smaller than 

0.08 cm
3
cm

-3
 and the R

2
 was always larger than 0.75 for the 41 SoilNet locations.  

 

The spatial variability of soil water content as expressed by the MRDs of soil water content 

and saturation degree were correlated with the spatial variation in hydraulic parameters in our 

catchment. We found strong positive correlations between MRDs of soil water content and 

the θs and n parameters of the VGM model for all three soil depths. Moreover, we found 

negative correlations between MRDs of soil water content and the soil hydraulic properties α 

and Ks. In addition, the MRDs of saturation are only strongly correlated with the soil 

hydraulic properties α and n parameter that determine the shape of the VGM model. 

 

In this study, we only analyzed soil water content dynamics and soil hydraulic parameters of 

silt loam soils. Future studies should extent our analysis to other soil textural classes and 

climate conditions in order to further explore the limitations and potentials of this approach. 

Furthermore, the MRD of soil water content and saturation degree is known to be determined 

by a number of physiographic factors that affect the vertical and lateral redistribution of soil 

water. Although factors that influence vertical redistribution are understood relatively well, 

the factors that cause lateral redistribution are not yet well quantified. In future studies, the 

effect of topography on the MRD of soil water content and saturation degree should be 

considered in addition to the heterogeneity of soil hydraulic properties. 
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4 Predicting sub-grid variability of soil water content from basic soil information 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, J. Vanderborght, M. 

Schuh, E. Priesack, H. Vereecken. Predicting subgrid variability of soil water content from 

basic soil information. Geophysical Research Letters, 2015, 42 (3). dio: 10.1002/2014GL 

062496 
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4.1 Objectives 

In this chapter, we first derive a closed-form expression for the σθ(<θ>) relationship using 

stochastic analysis of 1D unsaturated gravitational flow based on the VGM model. A 

sensitivity analysis is presented to identify the effect of VGM parameters on the σθ(<θ>) 

relationship. Next, the predictions of the novel closed-form expression for σθ(<θ>) are 

evaluated using eight datasets of observed σθ(<θ>) relationships obtained at test sites with a 

wide range of using VGM parameters as determined from pedotransfer functions that rely on 

available basic soil data. Finally, we inversely estimate the variability of hydraulic properties 

from observed σθ(<θ>) data. 

 

4.2 Introduction 

Sub-grid variability of soil water content is known to be an important control on the 

magnitude of land-surface energy fluxes (Bonan et al., 1993; Hu and Islam, 1998; Ronda et 

al., 2002) and hydrologic fluxes such as runoff (Arora, 2001; Gedney and Cox, 2003). An 

adequate representation of small-scale soil water content variability in large-scale hydrologic, 

weather, and climate models requires information on the relationship between sub-grid soil 

water content variability as expressed by the standard deviation (σθ) and mean soil water 

content (<θ>) (Teuling and Troch, 2005). Improved ability to predict this relationship from 

basic soil information may contribute to a more efficient representation of soil water content 

variability in large-scale models, and consequently in more accurate predictions of land 

surface processes (Vereecken et al., 2008). 
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Reynolds (1970) was the first to derive relationships between measured σθ and <θ> as well 

as other controlling factors, i.e. insolation and rainfall. Since then, numerous field studies 

have been carried out to identify factors that control the σθ(<θ>) relationship. Several studies 

found that σθ increased with increasing <θ> (Famiglietti et al., 1998; Oldak et al., 2002; 

Takagi and Lin, 2011), whereas Famiglietti et al. (1999), Hupet and Vanclooster (2002) and 

Western et al. (2004) observed the opposite behavior. Moreover, a convex parabolic shape of 

the σθ(<θ>) curve with a distinct maximum in the medium range of <θ> has been observed 

(Choi and Jacobs, 2007; Garcia-Estringana et al., 2013; Rosenbaum et al., 2012). 

 

Widely used methods to investigate the controls on the σθ(<θ>) relationship include virtual 

simulation experiments (Albertson and Montaldo, 2003) and stochastic analysis (Zhang et al., 

1998). Virtual experiments by Albertson and Montaldo (2003) and Teuling and Troch (2005) 

showed that the covariances between the soil water state and land surface fluxes (i.e. 

infiltration, drainage, evapotranspiration, and horizontal redistribution) act to generate or 

destroy spatial variability of soil water content through time. Zhang et al. (1998) used 

stochastic analysis to derive an analytical expression that describes the σθ(<θ>) relationship 

for 1D unsaturated gravitational flow using the Brooks-Corey and the Gardner-Russo models 

for water retention and hydraulic conductivity. Following Zhang et al. (1998), Vereecken et 

al. (2007) demonstrated that the shape of σθ(<θ>) can be explained to a large extent by the 

spatial variance of soil hydraulic properties, although a direct evaluation using measured 

σθ(<θ>) data and information on the spatial variation of hydraulic properties has not been 

presented yet. These previous stochastic studies relied on the use of Brooks-Corey or 

Gardner-Russo model because of their mathematical tractability. However, it is generally 
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accepted that the van Genuchten-Mualem (VGM) model (van Genuchten, 1980) is better 

suited to describe experimental soil water retention data. 

 

4.3 Model development 

The stochastic approach of Zhang et al. (1998) to describe 1D unsaturated gravitational flow 

in a heterogeneous flow domain was used to derive a closed-form expression that describes 

σθ(<θ>) as a function of the mean and standard deviation of the soil hydraulic parameters of 

the VGM model. The starting point of this derivation is the steady-state simplification of the 

Richards equation: 

𝜕

𝜕𝑥
[𝐾(ℎ)(

𝜕ℎ

𝜕𝑥
+ 1)] = 0 Eq. 4. 1 

where K(h) (cm d
-1

) is the unsaturated soil hydraulic conductivity, h (cm) is the pressure 

head, and x (cm) is the vertical coordinate. The VGM model to describe the soil water 

retention and hydraulic conductivity curves is given by: 

𝑆𝑒(ℎ) =
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
=

1

(1 + (𝛼|ℎ|)𝑛)𝑚
 , ℎ < 0 

𝑚 = 1 −
1

𝑛
 

Eq. 4. 2 

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒
0.5 [1 − (1 − 𝑆𝑒

1
𝑚⁄ )

𝑚

]
2

 , ℎ < 0 Eq. 4. 3 

For mathematical convenience, the log-transformed saturated hydraulic conductivity (ln(Ks)) 

is used in our study. In our analysis, residual soil water content (θr) is assumed to be constant. 

All other variables and parameters, i.e. pressure head (h), soil water content (θ), hydraulic 

conductivity (K), effective saturation degree (Se), saturated soil water content (θs), saturated 

hydraulic conductivity (Ks), and the fitting parameters α and n of the VGM model are 

considered to be realizations of a second-order stationary stochastic process, which can be 

decomposed into their mean and perturbations. Following the stochastic analysis of Zhang et 
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al. (1998), we derived the expression of the mean and covariance of soil water content for 1D 

unsaturated gravitational flow in an infinitely long vertical profile using first-order Taylor 

expansions. In particular, we related the covariance of soil water content and pressure head to 

the variance and covariance of VGM parameters (Ks, θs, α, and n) using Eq. 4. (1) to (3). For 

a detailed derivation we refer to the Supplementary Information. The closed-form expression 

for σθ(<h>) is: 

𝜎𝜃
2 = 𝑏0

2 {𝑏1
2𝜎𝛼

2 + 𝑏2
2 [

𝜎𝑓
2𝜌𝑓

(1 + 𝑎2𝜌𝑓)𝑎2

+
𝑎1𝜎𝛼

2𝜌𝛼

(1 + 𝑎2𝜌𝛼)𝑎2
+

𝑎3𝜎𝑛
2𝜌𝑛

(1 + 𝑎2𝜌𝑛)𝑎2
]

+ 𝑏3
2𝜎𝑛

2 + 𝑏4
2𝜎𝜃𝑠

2 + 2𝑏1𝑏2 (−
𝑎1𝜎𝛼

2𝜌𝛼

1 + 𝑎2𝜌𝛼
)

+ 2𝑏2𝑏3 (−
𝑎3𝜎𝑛

2𝜌𝑛

1 + 𝑎2𝜌𝑛
)} 

Eq. 4. 4 

where 𝑏0 = (〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

[1+(〈𝛼〉〈ℎ〉)〈𝑛〉](〈𝛼〉〈ℎ〉)〈𝑛〉〈𝑛〉
); 

𝑏1 =
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉+1−〈𝑛〉

〈𝛼〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉+1](〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
; 

𝑏2 =
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉+1−〈𝑛〉

〈ℎ〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉+1](〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
; 

𝑏3 = −
1

〈𝑛〉
− 𝑙𝑛(〈𝛼〉〈ℎ〉) −

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉+1](〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉 𝑙𝑛(〈𝛼〉〈ℎ〉); 

𝑏4 = 〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1; 

𝑎1 =
(
5

2
−

1

2〈𝑛〉
)(〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
; 

𝑎2 =
(
5

2
−

1

2〈𝑛〉
)(〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
; 

𝑎3 =
(
5

2
−

1

2〈𝑛〉
)(〈𝛼〉〈ℎ〉)〈𝑛〉

1+(〈𝛼〉〈ℎ〉)〈𝑛〉 𝑙𝑛(〈𝛼〉〈ℎ〉) +
𝑙𝑛[1+(〈𝛼〉〈ℎ〉)〈𝑛〉]

2〈𝑛〉2
−

2

〈𝑛〉2−〈𝑛〉
; 

𝑓 = 𝑙n (𝐾𝑠). 
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This novel closed-form expression describes σθ(<h>) as a function of the mean (i.e. <θs>, 

<ln(Ks)>, <α>, and <n>), the standard deviation (i.e. σ(θs), σ(ln(Ks)), σ(α), and σ(n)), and the 

vertical correlation length (i.e. ρln(Ks), ρα, and ρn) of the VGM model parameters. Using the 

following equation, <h> can be transformed into <θ>: 

〈𝜃〉 = (〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
)(

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉
) + 𝜃𝑟 Eq. 4. 5 

In order to assess the importance of the pressure head fluctuations that result from flow in the 

heterogeneous soil profiles, we also calculated σθ(<θ>) for h'=0 (i.e. assuming that the system 

has the same pressure head everywhere) in the Supplementary Information. It is important to 

realize that the obtained σθ represents variability along a deep vertical profile. Since soil 

water content is assumed to be an ergodic second-order stationary stochastic variable, σθ in 

vertical direction corresponds with σθ at a certain depth (i.e. spatial variability) if sampling 

points are sufficiently far from each other (i.e. sampling points are independent when 

separation is more than the horizontal correlation length of the soil properties). It should also 

be noted that the vertical water flux is assumed to be identical at every location so that the 

effect of lateral water redistribution and variability in surface fluxes is not considered. 

 

4.4 Materials and Methods 

4.4.1 Site descriptions 

We used eight different datasets from five test sites to evaluate the ability of the closed-form 

expression (Eq. 4. 4) to describe observed σθ(<θ>) data. Detailed information about the test 

sites are given in Table 4. 1. Three datasets were obtained using wireless sensor networks 

deployed at the TERENO test sites Rollesbroich, Wüstebach, and Scheyern (TERENO, 

2012). For these three sites, hourly aggregated soil water content data measured at three 
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depths (5, 20, 50 cm for Rollesbroch and Wüstebach, and 10, 30, 50 cm for Scheyern) were 

used. In addition, we used datasets that originated from the Inner Mongolia Grassland 

Ecosystem Research Station (IMGERS, 1979). Here, water content of the top soil (0-6 cm) 

was measured in four experimental plots subjected to different grazing intensity, i.e. ungrazed 

since 1999 (ug99), ungrazed since 1979 (ug79), continuous grazing (cg), and heavy grazing 

(hg) (Schneider et al., 2008; Schneider et al., 2011). Finally, we used soil water content 

measurements (0-30 cm) from the Tarrawarra grassland test site (Australia) that were 

presented in detail by Western and Grayson (1998). 

 

Table 4. 1. Characteristics of TERENO (Rollesbroich, Wüstebach, and Scheyern), IMGERS 

(ug 99, ug 79, cg, and hg), and Tarrawarra test sites. 

 Rollesbroich Wüstebach Scheyern IMGERS Tarawarra 

Latitude 50°37' N 50°30' N 45°30' N 43°38' N 37°39' S 

Longitude 6°18' E 6° 19' E 11°45' E 116°42' E 145°26' E 

Altitude (m 

a.s.l.) 
515 605 470 1100 76 

Average slope  1.6 3.6 5.7 1.9 1.1 

Maximum slope  3.1 10.4 13.5 2.2 5.8 

Land use grassland forest grassland grassland grassland 

Area (ha) 13.5 27.0 5.3 1.8 10.8 

PAV (cm) 103 111 83 35 82 

TAV (°C) 7.7 7.0 7.4 2.3 12.0 

Start time 01.05 2011 01.07 2009 01.10 2012 2004 1995 

End time 01.05 2012 01.07 2012 01.10 2013 2006 1996 

Interval 15 min 15 min 15 min 6 days* ~monthly 

Number of soil 

samples  
273 34 54 

ug99 ug79 cg hg 
34 

50 55 88 98 

* It was irregularly measured from June to September during the vegetation period. 

*TAV: annual average temperature, PAV: annual cumulative precipitation. 
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4.4.2 Soil hydraulic parameter prediction 

We used Rosetta (Schaap et al., 2001) to estimate the mean and standard deviation of VGM 

parameters (Table 4. 2) from measured sand, silt, clay content, and bulk density obtained 

from in-situ samples taken at all test sites (Figure 4. 1). Although these soil samples were not 

always taken at the exact position where soil water content was measured, we assume that the 

ensemble mean and standard deviation adequately represent each test site. As σθ(<θ>) is 

typically not sensitive to the correlation length of ln(Ks), α, and n (Vereecken et al., 2007), 

we assumed a fixed correlation length of 10 cm in our study. 

 

Table 4. 2. Mean and standard deviations of VGM parameters predicted by Rosetta for the 

TERENO, IMGERS, and Tarrawarra test sites. 

 
<θr>     <θs> 

cm
3
cm

-3
 

<α> 

cm
-1

 

<n> 

- 

<ln(Ks)> 

cmd
-1

 
σ(θs) σ(α) σ(n) σ(ln(Ks)) 

Rollesbroich 

5 cm 0.06 0.54 0.006 1.65 3.70 0.05 0.002 0.08 1.21 

20 cm 0.06 0.44 0.005 1.67 3.50 0.04 0.001 0.04 0.70 

50 cm 0.05 0.38 0.007 1.58 2.52 0.04 0.003 0.10 0.70 

Wüstebach 

5 cm 0.12 0.77 0.010 1.40 4.14 0.08 0.003 0.16 0.70 

20 cm 0.10 0.70 0.010 1.40 4.17 0.10 0.003 0.16 0.70 

50 cm 0.10 0.66 0.010 1.40 4.14 0.20 0.003 0.16 0.70 

Scheyern 

5 cm 0.04 0.52 0.029 1.46 4.68 0.06 0.005 0.14 0.59 

20 cm 0.05 0.44 0.028 1.48 3.69 0.04 0.006 0.16 0.67 

50 cm 0.05 0.42 0.028 1.55 3.34 0.04 0.009 0.42 1.25 

IM
G

E
R

S
 

ug99 

6 cm 

0.00 0.48 0.010 1.53 4.50 0.04 0.003 0.04 0.40 

ug79 0.00 0.52 0.010 1.51 5.06 0.04 0.003 0.04 0.35 

cg 0.00 0.45 0.010 1.50 3.96 0.02 0.003 0.03 0.19 

hg 0.00 0.44 0.013 1.50 4.00 0.04 0.003 0.03 0.20 

Tarrawarra 30 cm 0.10 0.50 0.010 1.48 2.51 0.02 0.004 0.13 0.31 
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Figure 4. 1. USDA soil texture triangle displaying and soil texture distribution of samples 

taken from the three TERENO test sites (Rollesbroich, Wüstebach and Scheyern), the four 

IMGERS experimental test sites (ug99, ug79, cg, hg) and the Tarrawarra test site. 

 

4.5 Results and Discussion 

4.5.1 Sensitivity analysis of soil hydraulic parameters on σθ(<θ>) relationship 

Figure 4. 2 presents the sensitivity of the σθ(<θ>) relationship to changes in the variability of 

ln(Ks), θs, α, and n as expressed by the coefficient of variation (CV). The mean VGM 

parameters were taken from the Rollesbroich test site at 5 cm depth (Table 4. 2). This sensitivity 

analysis suggests that σθ(<θ>) is most sensitive to the n parameter, followed by ln(Ks), θs, 

and α, respectively. The results of the sensitivity analysis were similar for other soil textures, 

although the difference in sensitivity between the VGM parameters decreased with increasing 

sand content (results not shown). This finding is in good agreement with the results of 

Vereecken et al. (2007). They found that σθ(<θ>) was most sensitive to the λ parameter of the 

Brooks-Corey model, which is related to pore size distribution just as the n parameter of the 

VGM model. It has to be noted that the derived curves for different levels of variability in the 
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n parameter show a second increase of σθ for <θ> larger than 0.5, which becomes more 

distinctive with increasing CV. Such an increase is typically not observed in actual σθ(<θ>) 

data (e.g. Figure 4. 3). We attribute this model behavior to the first-order Taylor expansion 

approximation which was used to derive Eq. 4. . Consequently, the model results will be less 

reliable for high values of <θ>, especially in the case that the n parameter is highly variable. 

 

Figure 4. 2. The effect of variability of VGM parameters (ln(Ks), θs, α, and n) on σθ(<θ>) 

curve for silt loam soil using six different degrees of variability expressed as coefficient of 

variation.  

 

4.5.2 Prediction of the σθ(<θ>) relationship from soil texture data 

Figure 4. 3 shows the measured and predicted σθ(<θ>) relationships obtained using Eq. 4. 4 

with the mean and standard deviation of the VGM parameters estimated from Rosetta (Table 
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4. 2). Although the test sites span a wide range of climatic conditions and soil textures, the 

general behavior of σθ(<θ>) was well captured by the closed-form expression despite obvious 

simplifications in the model derivation. Predicted σθ(<θ>) at the Wüstebach test site was 

generally high because of the high values for <θs> and (n) (see Table 4. 2). A continuous 

increase of σθ(<θ>) without an obvious maximum at intermediate soil water content was 

observed at the Rollesbroich test site (5 cm), and this behavior was also predicted by our 

closed form-expression. This is related to the high predicted value of σ(ln(Ks)) (Table 4. 2) 

for this site. At the Scheyern test site, an abrupt increase in soil water content variability was 

observed at 50 cm depth as compared to the shallower soil depth, and this is also nicely 

captured by the closed-form expression. Table 4. 2 shows that this increase is caused by the 

high value of n at this depth. 

 

In order to assess the effect of the pressure head fluctuations on the predicted σθ(<θ>), we 

also calculated σθ(<θ>) neglecting variations in pressure head (h'=0). We found that σθ(<θ>) 

did not depend strongly on pressure head fluctuations in dry conditions (Figure 4. 4). This 

implies that variability in soil hydraulic properties dominates σθ in this soil water content 

range, and also explains the good fit to the observed data despite the fact that gravitational 

downward water flow is not likely to occur in the dry water content range. Pressure head 

fluctuations were more important in wet conditions, especially in soils with high sand content 

(Figure 4. 4). 
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Figure 4. 3. Field observed σθ(<θ>) data from the three TERENO test sites (Rollesbroich, 

Wüstebach and Scheyern), the four IMGERS experiment sites (ug99, ug79, cg and hg), and 

the Tarrawarra test site as well as the forward and inverse estimation results. 
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Figure 4. 4 The effect of variability of VGM parameters (α, n, ln(Ks), and θs, parameters are 

from Rosetta) on σθ(<θ>) curve for silt and sand using three different degrees of variability 

expressed as coefficient of variation. Solid lines indicate the original closed-form expression 

(ℎ′ ≠ 0) and dashed lines indicate the simplified version neglecting pressure head variation 

(ℎ′ = 0). 

 

Noticeable deviations between observed and predicted σθ(<θ>) can also be observed as well 

in Figure 4. 3. For example, σθ(<θ>) at 5 cm depth at the Wüstebach test site and σθ(<θ>) at 

20 and 50 cm depth in the Rollesbroich test site were clearly underestimated. This can be 

explained by several factors. First, both the soil hydraulic parameter estimates obtained from 

the pedotransfer functions and the closed-form expression are only approximations. Second, 

the σθ(<θ>) relationship is not only affected by soil hydraulic parameters but also by the 

interplay between evapotranspiration, interception, infiltration and lateral redistribution 

amongst other factors. 
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Compared to the other test sites, the IMGERS plots are considerably smaller and relatively 

homogeneous, which is reflected in the relatively small standard deviation of the VGM 

parameters (Table 4. 2). This results in comparably small predicted σθ(<θ>) values for the 

IMGERS plots, which is in good agreement with measured σθ(<θ>) values as indicated by the 

R
2
-values that ranged between 0.55 and 0.84, and root mean square error values ranged 

between 0.005 cm
3
cm

-3
 and 0.006 cm

3
cm

-3
 (Table 4. 2). The good match between 

observations and predictions at this test site is likely related to the lack of lateral water fluxes 

and the relatively homogeneous vegetation within each treatment, which suggests that σθ(<θ>) 

is likely dominated by the variability of the soil hydraulic properties. 

 

The soil texture at Tarrawarra covers several soil textural classes (Figure 4. 1). However, the 

predicted values for the hydraulic parameters and their variability are similar to those found 

for the IMGERS plots despite the considerably larger area of Tarrawarra, except for <ln(Ks)> 

which is not included in the closed-form expression (Eq. 4. 4). Therefore, the predicted 

σθ(<θ>) values at Tarrawarra are also relatively low compared to the TERENO test sites in 

Figure 4. 3. Interestingly, Tarrawarra is the only test site where the closed-form expression 

overestimates σθ(<θ>). This might be an indication for processes compensating soil water 

content variability (e.g. higher transpiration rates in wetter parts of the Tarrawarra site or 

lateral water redistribution during wet seasons). 

 

On the other hand, noticeable deviations can be observed as well in Figure 4. 3. For example, 

σθ(<θ>) at 5 cm depth at the Wüstebach test site and σθ(<θ>) at 20 and 50 cm depth in the 

Rollesbroich test site were clearly underestimated. This can be explained by several factors. 
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First, both the soil hydraulic parameter estimates obtained from the pedotransfer functions 

and the closed-form expression are only approximations. Second, the σθ(<θ>) relationship is 

not only affected by soil hydraulic parameters but also by the interplay between 

evapotranspiration, interception, infiltration and lateral redistribution amongst other factors. 

 

Table 4. 3. Correlation coefficients between observed and simulated σθ values. 

  Forward Inverse 

  R
2
 RMSE R

2
 RMSE 

Rollesbroich 

5 cm 0.76 0.007 0.79 0.007 

20 cm 0.08 0.019 - - 

50 cm 0.22 0.021 - - 

Wüstebach 

5 cm 0.55 0.020 0.77 0.014 

20 cm 0.64 0.006 - - 

50 cm 0.56 0.011 - - 

Scheyern 

10 cm 0.72 0.008 0.86 0.006 

20 cm 0.77 0.027 - - 

50 cm 0.43 0.014 - - 

IM
G

E
R

S
 

ug99 

0-6 cm 

0.55 0.007 0.72 0.006 

ug79 0.84 0.007 0.88 0.006 

cg 0.59 0.007 0.69 0.006 

hg 0.82 0.005 0.83 0.005 

Tarrawarra 0-30 cm 0.80 0.017 0.83 0.005 

 

Compared to the other test sites, the IMGERS plots are considerably smaller and relatively 

homogeneous, which is reflected in the relatively small standard deviation of the VGM 

parameters (Table 4. 2). This results in comparably small predicted σθ values for the 

IMGERS plots, which is in good agreement with measured σθ(<θ>) values as indicated by 

the R
2
-values that ranged between 0.55 and 0.84 (Table 4. 3). The good match between 
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observations and predictions at this test site is likely related to the lack of lateral water fluxes 

and the relatively homogeneous vegetation within each treatment, which suggests that 

σθ(<θ>) is likely dominated by the variability of the soil hydraulic properties. 

 

The soil texture at Tarrawarra covers several soil textural classes (Figure 4. 1). However, the 

predicted values for the hydraulic parameters and their variability are similar to those found 

for the IMGERS plots despite the considerably larger area of Tarrawarra, except for <ln(Ks)> 

which is not included in the closed-form expression (Eq. 4. ). Therefore, the predicted σθ 

values at Tarrawarra are also relatively low compared to the TERENO test sites in Figure 4. 3. 

Interestingly, Tarrawarra is the only test site where the closed-form expression overestimates 

σθ. This might be an indication for processes compensating soil water content variability (e.g. 

higher transpiration rates in wetter parts of the Tarrawarra site or lateral water redistribution 

during wet seasons). 

 

4.5.3 Inverse estimation of hydraulic parameter variability from observed σθ(<θ>) data 

We tested whether it is feasible to inversely estimate the variability of hydraulic parameters 

in Eq. 4.  using the observed σθ(<θ>) datasets described above. Estimating both the mean soil 

hydraulic parameters and their standard deviations in Eq. 4.  turned out not to be possible (not 

shown) as no unique solutions could be obtained. In order to better constrain parameter 

estimates, a wide range of <θ> is needed. Since the variation of <θ> was less pronounced in 

the subsoil, we only analyzed soil water content data measured in the topsoil. We used a 

Markov Chain Monte Carlo algorithm (Vrugt et al., 2009) to inversely estimate the standard 

deviations of soil hydraulic parameters from measured σθ(<θ>) data. We used wide parameter 

bounds to fully explore the parameter space (Table 4. 4). The generally high R
2
-values listed 
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in Table 4. 3 indicate that the inversely estimated variability of hydraulic parameters (Table 

4. 5) was able to capture the observed σθ(<θ>) better than the forward model (Figure 4. 3). 

The inverse modeling particularly captured the peak of the observed σθ(<θ>) at 5 cm depth 

much better (Figure 4. 3) than the forward estimation, leading to an increase of R
2
-value from 

0.23 to 0.77 at the Wüstebach test site. This is due to the higher standard deviation of n 

obtained in the inversion as compared to the estimate provided by the Rosetta pedotransfer 

function (i.e. σ(n) increased from 0.16 to 0.21). 

 

Table 4. 4. Lower and upper boundaries of hydraulic parameters for the inverse estimation. 

 log10(σ(θs)) log10(σ(α )) log10(σ(n)) log10(σ(ln(Ks))) 

Lower -2 -4 -2 -2 

Upper -0.7 -1.5 -0.3 0.2 

 

Table 4. 5. Results of the best fit parameter set from the inverse σθ(<θ>) model application 

for the TERENO, IMGERS, and Tarrawarra test sites. 

 σ(θs) σ(α) σ(n) σ(ln(Ks)) 

Rollesbroich (5 cm) 0.08 0.002 0.13 0.60 

Wüstebach (5 cm) 0.05 0.004 0.21 0.41 

Scheyern (10 cm) 0.02 0.013 0.15 0.10 

IM
G

E
R

S
 

ug99 

0-6 cm 

0.02 0.002 0.07 0.32 

ug79 0.02 0.002 0.06 0.08 

cg 0.02 0.001 0.06 0.74 

hg 0.02 0.003 0.05 0.49 

Tarrawarra (0-30 cm) 0.01 0.004 0.05 0.11 
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4.6 Conclusions 

We presented a new closed-form expression for σθ(<θ>) based on the VGM model to study 

the effect of soil hydraulic properties on σθ(<θ>). The sensitivity analysis showed that 

hydraulic parameters and their spatial variability affect σθ(<θ>) differently. The most 

sensitive VGM parameter is the n parameter, followed by ln(Ks), θs, and α, respectively. In a 

next step, we used basic soil properties (i.e. sand, silt, clay content, and bulk density) to 

predict σθ(<θ>) relationships for eight datasets with different soil texture and climate 

conditions using pedotransfer functions and our closed-form expression. In most cases, 

predicted σθ(<θ>) agreed well with observed σθ(<θ>). This indicates that soil hydraulic 

parameter variability is an important control on σθ(<θ>). In addition, we demonstrated that 

the variability of soil hydraulic parameters can be inversely estimated from observed σθ(<θ>) 

data. 

 

We propose that the closed-form expression should be used in combination with pedotransfer 

functions and global soil maps to estimate sub-grid variability of soil water content, which is 

useful to further improve prediction accuracy of large-scale hydrologic, weather, and climate 

models. In addition, information on sub-grid variability of soil water content may be useful 

for the estimation of the uncertainty of large-scale remote sensing measurements of soil water 

content provided by ASCAT, SMOS, and the upcoming SMAP mission. 
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5 Synthesis 

The wireless sensor network technology is ideally suited to provide long-term high spatial 

and temporal resolution soil water content measurements at catchment scale. The observed 

spatial variability of soil water content information is important in upscaling and improving 

hydrology models, weather prediction, and general circulation models. In addition, it is 

important for validation of large-scale remote sensing measurements of soil water content. 

This thesis firstly addressed the accuracy of newly developed SPADE TDT soil water content 

sensors used for the wireless sensor network application; secondly studied the relationship 

between soil hydraulic properties and spatial variability of soil water content using sensor 

network data and inverse modeling; furthermore, we predicted the sub-grid variability of soil 

water content from basic soil information. 

 

5.1 Final Conclusions 

Chapter 2 addressed the evaluation of the newly developed SPADE sensor using the two-step 

calibration procedure in the laboratory. The replication experiment showed that sensor-to-

sensor variability was significant, and much larger than the measurement noise introduced by 

the instrumentation and our experimental procedures. The calibration of the 60 SPADE 

sensors showed that sensor-specific calibration by considering sensor-to-sensor variability 

significant improves the estimation of apparent dielectric permittivity as compared to a single 

universal calibration. Whether a sensor-specific calibration is worthwhile depends on the 

required accuracy of the wireless sensor network. A temperature correction function was 

derived in the reference liquids and successfully transferred into two different soil samples. 

The site specific complex refraction index model was used to convert the apparent dielectric 

permittivity to soil water content by using 15 soil samples in Rollesbroich catchment. 
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Considering the porosity and the physical realistic, the parameters of complex refraction 

index model were fitted for each depth, with a RMSE 0.028 at 5 cm, 0.025 at 20 cm, and 

0.022 at 50 cm, respectively. 

 

In Chapter 3 we analyzed the temporally stable characteristics both in soil water content and 

saturation degree. The range of MRD of soil water content and saturation degree show similar 

tendency that they are decreasing with the increasing of soil depth, these results are in 

consistent with the high standard deviation of soil water content value at deeper layer. The 

lower SDRD of soil water content and saturation degree at deeper layer indicates that the 

subsoil was more temporally stable than the topsoil. Our inverse estimated VGM parameters 

can reproduce the observed soil water content dynamics in all soil depths, with RMSE 

smaller than 0.08 cm
3
cm

-3
 and the R

2
 larger than 0.75 for the 41 SoilNet locations. Based on 

this information, we have explored the potential correlations between hydraulic properties 

and MRDs of soil water content and saturation degree. We found that the MRDs of soil water 

content were positively correlated with the θs and n parameters, and negatively correlated 

with the α and Ks parameters of the VGM model. Moreover, the MRDs of saturation degree 

were strongly correlated with the α and n parameters that determine the shape of the VGM 

model. 

 

Chapter 4 presents a new closed-form expression of soil water variability based on van 

Genuchten-Mualem model and a stochastic analysis of 1D unsaturated gravitational flow. 

The sensitively analysis showed that the n parameter strongly influenced the shape of σθ(<θ>) 

curve and specifically the magnitude of the maximum, in following are the parameter of 

In(Ks), θs, and α. We can reproduce the observed σθ(<θ>) patterns by combining our closed-
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form expression with the pedotransfer functions of Rosetta from basic soil information for 

eight datasets located in Germany, China and Australia. Furthermore, we demonstrated that 

by using soil map and pedotransfer function of Rosetta to estimate VGM parameters 

combining with our closed-form expression, the variability of soil hydraulic parameters can 

be inversely estimated with the field observed σθ(<θ>) data, with R
2
-values ranging between 

0.69 and 0.88. 

 

5.2 Outlook 

The two-step calibration procedure based on reference liquids and site specific soil samples 

provides promising accuracy of soil water content measurements. However, so far 

conductivity effects have not been accounted for. Thus, further research should be addressing 

the electrical conductivity correction function using dielectric liquids or porous media which 

are capable of covering the complete conductivity and permittivity ranges in nature soils. 

 

So far we only analyzed the silt loam soil texture class occurring in our test site Rollesbroich 

to enhance the understanding of the relationship between soil hydraulic parameters and 

temporal variability of soil water content. Therefore, we suggest to extent our analysis to 

other soil textural classes and climate conditions in order to further explore the limitations 

and potential of this approach. Moreover, the factors that cause lateral redistribution are not 

yet well quantified. In future studies, the effect of topography on the MRD of soil water 

content and saturation degree should be considered in addition to the heterogeneity of soil 

hydraulic properties. 
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We have qualitatively studied the effect of hydraulic properties on the σθ(<θ>) relationships 

with our novel closed-form expression. However, the factors that influence the σθ(<θ>) 

relationship are not only affected by soil hydraulic properties but also by the interplay 

between evapotranspiration, interception, infiltration and lateral redistribution amongst other 

factors. In future, also meteorological forcing variability and the topographic effects on soil 

water content spatial distributions of model developments should be considered. 

 

Finally, it can be concluded that the obtained data set provided by the wireless sensor 

network and the improved understanding of spatial temporal dynamics of soil water content 

can be used for data assimilation in hydrological models; calibration and validation of remote 

sensing retrievals of soil water content; estimating uncertainty in hydrological predictions; 

designing sensor networks and optimizing the number of sensors; and upscaling and 

downscaling of soil water content information. 
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Appendix A 

In this section the apparent dielectric permittivity is converted to soil water content for 

Rollesbroich test site. The 15 undisturbed samples (length =7.7 cm, diameter = 5 cm) were 

taken from the two main soil types in 5, 20 and 50 cm depth. There are empirical and semi-

theoretical models to solve the relationship between the apparent dielectric permittivity and 

the volume soil water content. Such as Topp model (Topp et al., 1980), which works well in 

sand soil; the two-point α-mixing model (Sakaki et al., 2008), just consider the air-dry and 

water-saturated conditions to set the model; and the petrophysical model of CRIM (Birchak 

et al., 1974), which has physical meaning, soil type and shape factor affect the soil water 

content. Here we use CRIM described in Eq. 2. 7 to convert apparent dielectric permittivity to 

soil water content with the site specific calibration.  

 

The petrophysical model of CRIM for Rollesbroich catchment is determined in the 

laboratory. First step is to saturate the samples with the deionized water. Then insert the CS 

640-L 3 –rod TDR100 probes in the middle of the sample to measure the permittivity of the 

samples (Figure A. 1). The MatLab algorithm which based on the travelling time analysis 

algorithm were used to analyze the TDR measurements (Heimovaara and Bouten, 1990) to 

estimate the apparent permittivity. Next, the samples were dried in room temperature, both 

the weight and the permittivities were determined in regular interval time. The volumetric 

soil water content were determined gravimetrically (soil samples were oven-dried at 105 °C 

for 24 hours). Because of the shrinkage of the samples caused by the gas and roots, the bad 

contract between the soils and the probes caused by the small stones, three samples which 

seemed to be unrepresented for the sampling location were deleted in later analyze. 
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Figure A. 1. Soil samples measurement and waveform of TDR100. 

 

Table A. 1. Parameters and the RMSE of the CRIM model for 5 cm, 20 cm, and 50 cm depth 

for our Rollesbroich catchment. 

 5cm 20cm 50cm 

Kwater 78.54 78.54 78.54 

Ksolid 2.08 3.78 4.40 

Kair 1.00 1.00 1.00 

β 0.50 0.50 0.50 

η 0.59 0.49 0.41 

RMSE 0.028 0.025 0.022 

 

The final dataset describing the relationship between apparent dielectric permittivity and soil 

water content using CRIM model are shown in Figure A. 2. Since the large different of 

porosity for different depths, three semi-theoretical models were fitted to the data and the 

performance of these models was judged by the RMSE for each depth (Table A. 1). It was 

found that three fitting methods performed equally well (Table A. 1) with a RMSE smaller 

than 0.028 cm
3
cm

-3
. The solid permittivity value was fitted and β was 0.5 as it is commonly 

used in the soil science literature (Birchak et al., 1974). At present, there is no method of 

measuring the permittivity of the solid mineral component of a granular material, the value of 
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the Ksolid remain essentially a fitting parameter and prevent the rigorous testing of dielectric 

mixing models. 

 

Because of the relatively high accuracy of Eq. 2. 7, we did not consider models with spatially 

variable porosity that would in principle allow more accurate soil water content predictions 

when the porosity at each sensor unit and soil depth is known for the wireless sensor network. 

The large effort required to obtain this additional soil information is too large considering the 

modest increase in accuracy of the soil water content measurements. 

 

Figure A. 2. Relationship between apparent dielectric permittivity and soil water content in 

Rollesbroich test site and the derived Ka-θ model. 
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Appendix B 

After the deployment of the sensor network at Rollesbroich test site, we found that the sensor 

output showed pronounced diurnal variations. Large differences between the two closely-

spaced measurements at a single measuring point were also observed. After investigating this 

in detail, it was established that this behavior was related to the SPADE data acquisition 

where the first reading result was still affected by charging capacitors within the sensor. If 

multiple sensor readings were made sequentially without turning off the sensor, the stability 

of the measurement considerably improved and the temperature dependence of the 

measurements disappeared.  

 

To correct these temperature-dependent oscillations effect in sensor reading, two reading 

results were sequentially made at each measurement time (Figure B. 1). We flashed the 

software to save two measurements each time from 5
th

 September 2012 to 3
th

 March 2013. 

After 3
th

 March 2013, we only save the correct measurement of our wireless sensor network. 

However, we need to correct the measurements from April 2011 to September 2012 for all 

the sensors.  

 

We found that the difference between the two sensor readings (Δv) is strongly correlated with 

soil temperature, and could be fitted with a sensor-specific second order empirical 

polynomial with a RMSE of 5.18 mV (Figure B. 2). It means that we can use the polynomial 

function and the measured soil temperature to calculate the difference between the 

temperature effected values and the true values. 
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Figure B. 1. Time series data of two measured voltages and temperature after flash, the first 

measurement is affected by the temperature effect of charging capacitors, the second 

measurement is the right value. 

 

 

Figure B. 2. Polyfit between soil temperature and the difference between the two 

measurements at the same time using the second order polynomial function. 
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Figure B. 3. Correct the voltage observed before flash using the second order polynomial 

function, the black lines are the corrected data, and the red lines are the uncorrected data. 

 

 

Figure B. 4. Cumulative distribution and the histogram of RMSE between the second order 

polynomial fitted Δv and measured Δv for all the sensors. 
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After the second order empirical polynomial function was derived (Figure B. 2), the 

temperature affected values can be corrected by deducing the Δv which was calibrated from 

the polynomial function and the soil temperature. And the uncorrected and corrected voltage, 

as well as soil water content is plotted in Figure B. 3. It is clearly to see that after the 

correlation for the measurements, the observed voltage before flash corresponds well to the 

second measurement after flash. In average, the temperature corrected soil water content is 

0.07 cm
3
cm

-3
 lower than the not corrected values. After flash the software, the second 

measurement of soil water content is lower than the first measurement, the difference is 0.17 

cm
3
cm

-3 
in the time period of after flash the software. 

 

Using the method mentioned above, we first derived the second order empirical polynomial 

functions for all sensors, with a RMSE of fitted Δv and sensor output Δv less than 10 mV 

(Figure B. 4). Then we corrected the first measurements of the sensors to obtain a consistent 

time series of soil water content for all locations. After correction, the measurements from the 

closely-spaced sensors at a single measurement location agreed well with each other with a 

RMSE that varied from 0.010 to 0.035 cm
3
 cm

-3
 between the two sensors installed at the 

same depths. 
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Appendix C 

In order to derive the statistical moments of pressure head (h) and soil water content (θ), the 

constitutive relationships between θ and h, and hydraulic conductivity (K) and h must be 

specified. Previous studies relied on the use of the Brooks-Corey or the Gardner-Russo model 

for these constitutive relationships because of their mathematical tractability. Here, we 

present a new derivation using the van Genuchten-Mualem (VGM) model [van Genuchten, 

1980], which is known to better describe experimental soil water retention data.  

 

For the derivation, we made use of the following expansions (Abramowitz and Stegun, 1970; 

Bansal, 2006): 

 (1 + 𝑥)𝑐 = 1 + 𝑐𝑥 + ⋯; Eq. C 1 

(𝑐)𝑥 = 1 + 𝑥𝑙𝑛(𝑐) + ⋯; Eq. C 2 

1

𝑥
=

1

𝑥0
−

1

𝑥0
2 (𝑥 − 𝑥0) + ⋯; Eq. C 3 

(𝑥𝑛 + 𝑦)
1

𝑛 = 𝑥 +
𝑦

𝑛𝑥𝑛−1
…. 

Eq. C 4 

 

We assume that the variables and parameters, i.e. pressure head (h), soil water content (θ), 

hydraulic conductivity (K), effective saturation degree (Se), saturated soil water content (θs), 

saturated hydraulic conductivity (Ks), and the fitting parameters α and n of the VGM model 

are realizations of a second-order stationary stochastic process and that they can be 

decomposed into their mean and perturbations. By applying the expansions from Eq. C 1 to 

Eq. C 4 to the VGM model and keeping the first-order terms only, a relationship that 

expresses the variance of soil water content as a function of the variance in VGM model 

parameters can be derived.  
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We start with decomposition of different parts of the water retention function of the VGM 

model. We first decomposed 𝛼ℎ as follows, 

𝛼ℎ = (〈𝛼〉 + 𝛼′)(〈ℎ〉 + ℎ′) Eq. C 5 

where 〈… 〉 indicates the mean value, and the prime indicates the perturbation. By writing out 

Eq. C 5 and neglecting small terms (i.e. α'h') we get: 

𝛼ℎ ≈ 〈𝛼〉〈ℎ〉 + 〈𝛼〉ℎ′ + 𝛼′〈ℎ〉 Eq. C 6 

Using the same approach, a decomposition of (𝛼ℎ)𝑛 can be obtained: 

 (𝛼ℎ)𝑛 = [(〈𝛼〉 + 𝛼′)(〈ℎ〉 + ℎ′)]〈𝑛〉+𝑛′
 

≈ [〈𝛼〉〈ℎ〉 + 〈𝛼〉ℎ′ + 𝛼′〈ℎ〉]〈𝑛〉 [〈𝛼〉〈ℎ〉 + 〈𝛼〉ℎ′ + 𝛼′〈ℎ〉]𝑛
′
                           

 ≈ (〈𝛼〉〈ℎ〉)〈𝑛〉 (1 +
〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
)

〈𝑛〉

 (〈𝛼〉〈ℎ〉)𝑛′
(1 +

〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
)

𝑛′

  

Eq. C 7 

By applying the expansion of Eq. C 1 to the second and fourth term of Eq. C 7 and keeping 

first-order only, Eq. C 7 can be approximated as follows: 

 (𝛼ℎ)𝑛 ≈ (〈𝛼〉〈ℎ〉)〈𝑛〉 (1 + 〈𝑛〉
〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
) (〈𝛼〉〈ℎ〉)𝑛′

(1 + 𝑛′
〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
) Eq. C 8 

The final term in Eq. C 8 is very close to 1. Therefore, A8 can be simplified to: 

 (𝛼ℎ)𝑛 ≈ (〈𝛼〉〈ℎ〉)〈𝑛〉 (1 + 〈𝑛〉
〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
) (〈𝛼〉〈ℎ〉)𝑛′

 Eq. C 9 

By applying the expansion of Eq. C 2 to the last term of Eq. C 9, the following approximation 

can be obtained: 

 (𝛼ℎ)𝑛 ≈ (〈𝛼〉〈ℎ〉)〈𝑛〉 (1 + 〈𝑛〉
〈𝛼〉ℎ′ + 𝛼′〈ℎ〉

〈𝛼〉〈ℎ〉
) [1 + 𝑛′𝑙𝑛(〈𝛼〉〈ℎ〉)] Eq. C 10 

By writing out Eq. C 10 and neglecting small terms, we finally derived an approximation for 

the decomposition of  (𝛼ℎ)𝑛: 
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 (𝛼ℎ)𝑛 ≈ (〈𝛼〉〈ℎ〉)〈𝑛〉 + (〈𝛼〉〈ℎ〉)〈𝑛〉 [
〈𝑛〉

〈𝛼〉
𝛼′ +

〈𝑛〉

〈ℎ〉
ℎ′ + 𝑛′𝑙𝑛(〈𝛼〉〈ℎ〉)] Eq. C 11 

Following the same steps as used in Eq. C 7 to Eq. C 11, an expression for the decomposition 

of  (𝛼ℎ)−𝑛 can be derived: 

 (𝛼ℎ)−𝑛 ≈ (〈𝛼〉〈ℎ〉)−〈𝑛〉 + (〈𝛼〉〈ℎ〉)−〈𝑛〉 [−
〈𝑛〉

〈𝛼〉
𝛼′ −

〈𝑛〉

〈ℎ〉
ℎ′ − 𝑛′𝑙𝑛(〈𝛼〉〈ℎ〉)] Eq. C 12 

By expanding 
1

(1+(𝑎ℎ)𝑛)
 at the mean value of (〈𝛼〉〈ℎ〉)〈𝑛〉 following Eq. C 3, we obtained: 

1

(1 + (𝑎ℎ)𝑛)
≈

1

(1 + (〈𝛼〉〈ℎ〉)〈𝑛〉)
−

(𝑎ℎ)𝑛 − (〈𝛼〉〈ℎ〉)〈𝑛〉

(1 + (〈𝛼〉〈ℎ〉)〈𝑛〉)2
 Eq. C 13 

Substituting Eq. C 11 into Eq. C 13 resulted in: 

1

1 + (𝑎ℎ)𝑛
≈

1

(1 + (〈𝛼〉〈ℎ〉)〈𝑛〉)

−
(〈𝛼〉〈ℎ〉)〈𝑛〉

(1 + (〈𝛼〉〈ℎ〉)〈𝑛〉)2
[
〈𝑛〉

〈𝛼〉
𝛼′ +

〈𝑛〉

〈ℎ〉
ℎ′ + 𝑛′𝑙𝑛(〈𝛼〉〈ℎ〉)] 

Eq. C 14 

By applying the expansion of Eq. C 4 to (1 + (𝑎ℎ)𝑛)
1

𝑛, we got: 

(1 + (𝑎ℎ)𝑛)
1
𝑛 ≈ 𝛼ℎ +

1

𝑛
(𝛼ℎ)−(𝑛−1) = 𝛼ℎ [1 +

1

𝑛
(𝛼ℎ)−𝑛] 

Eq. C  

15 

By substituting the expressions for 𝛼ℎ (Eq. C 6), (𝛼ℎ)−𝑛 (Eq. C 12), and using the expansion 

1

𝑛
=

1

〈𝑛〉
−

𝑛′

〈𝑛〉2
, Eq. C 15 can be rewritten as: 

(1 + (𝑎ℎ)𝑛)
1
𝑛 ≈ [〈𝛼〉〈ℎ〉 + 〈𝛼〉ℎ′ + 𝛼′〈ℎ〉] {1 + (

1

〈𝑛〉

−
𝑛′

〈𝑛〉2
)(〈𝛼〉〈ℎ〉)−〈𝑛〉 [1 − −

〈𝑛〉

〈𝛼〉
𝛼′ −

〈𝑛〉

〈ℎ〉
ℎ′ − 𝑛′𝑙𝑛(〈𝛼〉〈ℎ〉)]} 

Eq. C 16 

 

The VGM model can be written as: 

𝜃 = (𝜃𝑠 − 𝜃𝑟)
1

1 + (𝑎ℎ)𝑛
 (1 + (𝑎ℎ)𝑛)

1
𝑛 + 𝜃𝑟 Eq. C 17 
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After substituting the decompositions of 
1

1+(𝑎ℎ)𝑛
 (Eq. C 14) and (1 + (𝑎ℎ)𝑛)

1

𝑛 (Eq. 16), and 

decomposing θs into 〈𝜃𝑠〉 + 𝜃𝑠
′, we obtained an expression for the mean and perturbation of 

soil water content as a function of the VGM parameters. After rearranging and neglecting 

small terms, we obtained: 

〈𝜃〉 + 𝜃′ ≈ (〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
)(

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉
) + 𝜃𝑟 

+(〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

[1 + (〈𝛼〉〈ℎ〉)〈𝑛〉](〈𝛼〉〈ℎ〉)〈𝑛〉〈𝑛〉
) ∗ 

{[
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1 − 〈𝑛〉

〈𝛼〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
] 𝛼′ 

+[
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1 − 〈𝑛〉

〈ℎ〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
] ℎ′ 

+[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1]𝜃𝑠
′
 

+[−
1

〈𝑛〉
− 𝐼𝑛(〈𝛼〉〈ℎ〉) −

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
𝑙𝑛(〈𝛼〉〈ℎ〉)] 𝑛′} 

Eq. C 18 

From this expression, we can derive a first-order approximation of the mean of soil water 

content and its perturbation: 

〈𝜃〉 = (〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
)(

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1

〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉
) + 𝜃𝑟 Eq. C 19 

𝜃′ = 𝑏0[𝑏1𝛼
′ + 𝑏2ℎ

′ + 𝑏3𝑛
′ + 𝑏4𝜃𝑠

′] Eq. C 20 

where 

𝑏0 = (〈𝜃𝑠〉 − 𝜃𝑟) (
〈𝛼〉〈ℎ〉

[1 + (〈𝛼〉〈ℎ〉)〈𝑛〉](〈𝛼〉〈ℎ〉)〈𝑛〉〈𝑛〉
) Eq. C 21 

𝑏1 =
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1 − 〈𝑛〉

〈𝛼〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
 

Eq. C 22 

𝑏2 =
〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1 − 〈𝑛〉

〈ℎ〉
−

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
 

Eq. C 23 

𝑏3 = −
1

〈𝑛〉
− 𝑙𝑛(〈𝛼〉〈ℎ〉) −

[〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1](〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
𝑙𝑛(〈𝛼〉〈ℎ〉) 

Eq. C 24 

𝑏4 = 〈𝑛〉(〈𝛼〉〈ℎ〉)〈𝑛〉 + 1 Eq. C 25 
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Equation Eq. C 19 expresses the mean soil water content as a function of the mean VGM 

parameters and Eq. C 20 shows that the perturbation of soil water content is linearly related 

to the perturbation of the VGM parameters (α', n', and θs') and the pressure head (h'). 

 

The covariance of soil water content can be derived as follows, 

𝐶𝑜𝑣𝜃(𝑟) = 𝐶𝑜𝑣(𝜃𝛼, 𝜃𝛽) = 〈(𝜃𝛼 − 〈𝜃𝛼〉)(𝜃𝛽 − 〈𝜃𝛽〉)〉 = 𝜃𝛼
′ ∗ 𝜃𝛽

′  

= 𝑏0[𝑏1𝛼𝛼
′ + 𝑏2ℎ𝛼

′ + 𝑏3𝑛𝛼
′ + 𝑏4𝜃𝑠𝛼

′ ] ∗ 𝑏0[𝑏1𝛼𝛼
′ + 𝑏2ℎ𝛼

′ + 𝑏3𝑛𝛼
′ + 𝑏4𝜃𝑠𝛼

′ ] 

=𝑏0
2

[
 
 
 
 
 
𝑏1

2(𝛼𝛼
′ 𝛼𝛽

′ ) + 𝑏2
2(ℎ𝛼

′ ℎ𝛽
′ ) + 𝑏3

2(𝑛𝛼
′ 𝑛𝛽

′ ) + 𝑏4
2(𝜃𝑠𝛼

′ 𝜃𝑠𝛽
′ )

+𝑏1𝑏2(𝛼𝛼
′ ℎ𝛽

′ + ℎ𝛼
′ 𝛼𝛽

′ ) + 𝑏1𝑏3(𝛼𝛼
′ 𝑛𝛽

′ + 𝑛𝛼
′ 𝛼𝛽

′ )      

+𝑏1𝑏4(𝛼𝛼
′ 𝜃𝑠𝛽

′ + 𝜃𝑠𝛼
′ 𝛼𝛽

′ ) + 𝑏2𝑏3(ℎ𝛼
′ 𝑛𝛽

′ + 𝑛𝛼
′ ℎ𝛽

′ )   

+𝑏2𝑏4(ℎ𝛼
′ 𝜃𝑠𝛽

′ + 𝜃𝑠𝛼
′ ℎ𝛽

′ ) + 𝑏3𝑏4(𝑛𝛼
′ 𝜃𝑠𝛽

′ + 𝜃𝑠𝛼
′ 𝑛𝛽

′ ) ]
 
 
 
 
 

 

= 𝑏0
2{𝑏1

2𝐶𝑜𝑣𝛼(𝒓) + 𝑏2
2𝐶𝑜𝑣ℎ(𝒓) + 𝑏3

2𝐶𝑜𝑣𝑛(𝒓) + 𝑏4
2𝐶𝑜𝑣𝜃𝑠

(𝒓) 

            +𝑏1𝑏2[𝐶𝑜𝑣𝛼ℎ(𝒓) + 𝐶𝑜𝑣𝛼ℎ(−𝒓)] + 𝑏1𝑏3[𝐶𝑜𝑣𝛼𝑛(𝒓) + 𝐶𝑜𝑣𝛼𝑛(−𝒓)] 

            +𝑏1𝑏4[𝐶𝑜𝑣𝛼𝜃𝑠
(𝒓) + 𝐶𝑜𝑣𝛼𝜃𝑠

(−𝒓)] + 𝑏2𝑏3[𝐶𝑜𝑣𝑛ℎ(𝒓) + 𝐶𝑜𝑣𝑛ℎ(−𝒓)] 

            +𝑏2𝑏4[𝐶𝑜𝑣ℎ𝜃𝑠
(𝒓) + 𝐶𝑜𝑣ℎ𝜃𝑠

(−𝒓)] + 𝑏3𝑏4[𝐶𝑜𝑣𝑛𝜃𝑠
(𝒓) + 𝐶𝑜𝑣𝑛𝜃𝑠

(−𝒓)]} 

Eq. C 26 

where r is a vector (r = α-β, and -r = β-α), α and β are positions within the soil profile, and b0 

to b4 are as defined above (Eq. C 21 to Eq. C 25). This equation shows that the covariance of 

soil water content is only related to the covariances of the VGM parameters and pressure 

head. We explain the positive (r) and negative (-r) covariances shown in Eq. C 26 with the 

example covariance between αα and hβ: 

𝐶𝑜𝑣𝛼ℎ(𝒓) = 𝐶𝑜𝑣(𝛼𝛼, ℎ𝛽) = 〈(𝛼𝛼 − 〈𝛼𝛼〉)(ℎ𝛽 − 〈ℎ𝛽〉)〉 = 𝛼𝛼
′ ∗ ℎ𝛽

′  Eq. C 27 

𝐶𝑜𝑣𝛼ℎ(−𝒓) = 𝐶𝑜𝑣(𝛼𝛽 , ℎ𝛼) = 〈(𝛼𝛽 − 〈𝛼𝛽〉)(ℎ𝛼 − 〈ℎ𝛼〉)〉 = 𝛼𝛽
′ ∗ ℎ𝛼

′  Eq. C 28 

The other covariances in Eq. C 26 can be expressed in a similar manner.  

 

In a next step, we derive the covariance between the VGM model parameters and the pressure 

head, which involves a first-order approximation of the hydraulic conductivity function of the 
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VGM model. For mathematical convenience, we used a natural logarithm transformation of 

hydraulic conductivity, i.e. Y=ln(K), f=ln(Ks). The hydraulic conductivity of VGM model 

can be written as: 

𝑌 = 𝑓 +
1

2
𝑙𝑛(

1

1 + (𝑎ℎ)𝑛
)𝑚 + 2𝑙𝑛 {1 − [1 − (

1

(1 + (𝑎ℎ)𝑛)𝑚
)

1
𝑚

]

𝑚

} Eq. C 29 

where 𝑚 = 1 −
1

𝑛
. 

Writing out the last term of Eq. C 29 and replacing m with 1 −
1

𝑛
 resulted in: 

1 − [1 − (
1

(1 + (𝑎ℎ)𝑛)𝑚
)

1
𝑚

]

𝑚

= 1 − (𝑎ℎ)𝑛 [
1

1 + (𝑎ℎ)𝑛
]

1

𝑎ℎ
[1 + (𝑎ℎ)𝑛]

1
𝑛 Eq. C 30 

By applying the expansion of Eq. C 4 to [1 + (𝑎ℎ)𝑛]
1

𝑛, we obtained: 

1 − [1 − (
1

(1 + (𝑎ℎ)𝑛)𝑚
)

1
𝑚

]

𝑚

≈ 1 − (𝑎ℎ)𝑛 [
1

1 + (𝑎ℎ)𝑛
]

1

𝑎ℎ
[𝑎ℎ +

1

𝑛(𝑎ℎ)𝑛−1
] Eq. C 31 

By rewriting the right side of Eq. C 31, we obtained: 

1 − [1 − (
1

(1 + (𝑎ℎ)𝑛)𝑚
)

1
𝑚

]

𝑚

≈
1

1 + (𝑎ℎ)𝑛
(1 −

1

𝑛
) Eq. C 32 

By substituting Eq. C 32 into Eq. C 29, we obtained: 

𝑌 ≈ 𝑓 +
1

2
(1 −

1

𝑛
) 𝑙𝑛 [

1

1 + (𝑎ℎ)𝑛
] + 2𝑙𝑛 [

1

1 + (𝑎ℎ)𝑛
] + 𝑙𝑛 (1 −

1

𝑛
) Eq. C 33 

Inserting Eq. C 3 and Eq. C 14 into Eq. C  33, and decomposing f into <f>+f' resulted in: 

〈𝑌〉 + 𝑌′ ≈ 〈𝑓〉 + 2𝑙𝑛 (1 −
1

〈𝑛〉
) + (

5

2
−

1

2〈𝑛〉
) 𝑙𝑛 (

1

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
) 

+𝑓′ − {[
(
5
2 −

1
2〈𝑛〉

)(〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
] 𝛼′ 

Eq. C 34 
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−[
(
5
2 −

1
2〈𝑛〉

)(〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
] ℎ′ 

−[
(
5
2 −

1
2〈𝑛〉

) (〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
𝑙𝑛(〈𝛼〉〈ℎ〉) +

𝑙𝑛[1 + (〈𝛼〉〈ℎ〉)〈𝑛〉]

2〈𝑛〉2
−

2

〈𝑛〉2 − 〈𝑛〉
] 𝑛′} 

 

After rearranging, the following first-order approximations for the hydraulic conductivity and 

its perturbation are obtained: 

〈𝑌〉 = 〈𝑓〉 + 2𝑙𝑛 (1 −
1

〈𝑛〉
) + (

5

2
−

1

2〈𝑛〉
) 𝑙𝑛 (

1

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
) Eq. C 35 

𝑌′ = 𝑓′ − 𝑎1𝛼
′ − 𝑎2ℎ

′ − 𝑎3𝑛′ Eq. C 36 

where  

𝑎1 =
(
5
2 −

1
2〈𝑛〉

)(〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈𝛼〉
 

Eq. C 37 

𝑎2 =
(
5
2 −

1
2〈𝑛〉

)(〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉

〈𝑛〉

〈ℎ〉
 

Eq. C 38 

𝑎3 =
(
5
2 −

1
2〈𝑛〉

) (〈𝛼〉〈ℎ〉)〈𝑛〉

1 + (〈𝛼〉〈ℎ〉)〈𝑛〉
𝑙𝑛(〈𝛼〉〈ℎ〉) +

𝑙𝑛[1 + (〈𝛼〉〈ℎ〉)〈𝑛〉]

2〈𝑛〉2
−

2

〈𝑛〉2 − 〈𝑛〉
 

Eq. C 39 

 

For reasons of mathematical tractability, we only consider gravity-dominated flow. 

Therefore, we substituted the pressure head ℎ(𝑥) = 〈ℎ〉 + ℎ′ and log-transformed hydraulic 

conductivity 𝑌(𝑥) = 〈𝑌(𝑥)〉 + 𝑌′ into the steady-state simplification of the Richards equation 

(
𝜕

𝜕𝑥
[𝐾(ℎ)(

𝜕ℎ

𝜕𝑥
+ 1)] = 0). The perturbation of pressure head can be expressed as:  

(〈𝑌〉 + 𝑌′ )
𝜕2〈ℎ(𝑥)〉

𝜕𝑥2
+ (〈𝑌〉 + 𝑌′ )

𝜕2ℎ(𝑥)′

𝜕𝑥2
+

𝜕〈ℎ(𝑥)〉

𝜕𝑥

𝜕〈𝑌(𝑥)〉

𝜕𝑥
+

𝜕〈𝑌(𝑥)〉

𝜕𝑥

𝜕ℎ(𝑥)′

𝜕𝑥

+
𝜕〈ℎ(𝑥)〉

𝜕𝑥

𝜕𝑌(𝑥)′

𝜕𝑥
+

𝜕ℎ(𝑥)′

𝜕𝑥

𝜕𝑌(𝑥)′

𝜕𝑥
+

𝜕〈𝑌(𝑥)〉

𝜕𝑥
+

𝜕𝑌(𝑥)′

𝜕𝑥
= 0 

Eq. C 40 
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The covariance between pressure head and hydraulic conductivity was already derived by 

Zhang et al. [1998], so here we just briefly reiterate the fundamental steps of this derivation. 

Since 〈ℎ(𝑥)〉 and 〈𝑌(𝑥)〉 are constant and by neglecting higher-order terms, the following 

expression can be obtained from Eq. C 40: 

𝜕2ℎ(𝑥)′

𝜕𝑥2
+

𝜕𝑌(𝑥)′

𝜕𝑥
= 0 Eq. C 41 

By substituting Eq. C 36 into Eq. C 41, we obtained the following equation: 

𝜕2ℎ(𝑥)′

𝜕𝑥2
− 𝑎2

𝜕ℎ(𝑥)′

𝜕𝑥
= −

𝜕𝑓′

𝜕𝑥
+ 𝑎1

𝜕𝛼′

𝜕𝑥
+ 𝑎3

𝜕𝑛′

𝜕𝑥
 Eq. C 42 

By multiplying Eq. C 42 with the head fluctuations at a different location and taking the 

ensemble mean, we obtained the following expression for the covariance of pressure head: 

𝜕2𝐶𝑜𝑣ℎ(𝒓)

𝜕𝒓2
− 𝑎2

𝜕𝐶𝑜𝑣ℎ(𝒓)

𝜕𝒓
= −

𝜕𝐶𝑜𝑣𝑓ℎ(𝒓)

𝜕𝒓
+ 𝑎1

𝜕𝐶𝑜𝑣𝛼ℎ(𝒓)

𝜕𝒓
+ 𝑎3

𝜕𝐶𝑜𝑣𝑛ℎ(𝒓)

𝜕𝒓
 Eq. C 43 

Using the same method, we derived the following three equations for the covariance between 

the hydraulic parameters of the VGM model: 

𝜕𝐶𝑜𝑣𝑓ℎ(𝒓)

𝜕𝒓2
− 𝑎2

𝜕𝐶𝑜𝑣𝑓ℎ(𝒓)

𝜕𝒓
=

𝜕𝐶𝑜𝑣𝑓(𝒓)

𝜕𝒓
− 𝑎1

𝜕𝐶𝑜𝑣𝑓𝛼(𝒓)

𝜕𝒓
− 𝑎3

𝜕𝐶𝑜𝑣𝑓𝑛(𝒓)

𝜕𝑟
 Eq. C 44 

𝜕𝐶𝑜𝑣𝛼ℎ(𝒓)

𝜕𝒓2
− 𝑎2

𝜕𝐶𝑜𝑣𝛼ℎ(𝒓)

𝜕𝒓
=

𝜕𝐶𝑜𝑣𝑓𝛼(−𝒓)

𝜕𝒓
− 𝑎1

𝜕𝐶𝑜𝑣𝛼(𝒓)

𝜕𝒓
− 𝑎3

𝜕𝐶𝑜𝑣𝛼𝑛(𝒓)

𝜕𝒓
 Eq. C 45 

𝜕𝐶𝑜𝑣𝑛ℎ(𝒓)

𝜕𝒓2
− 𝑎2

𝜕𝐶𝑜𝑣𝑛ℎ(𝒓)

𝜕𝒓
= −

𝜕𝐶𝑜𝑣𝑓𝑛(−𝒓)

𝜕𝒓
− 𝑎1

𝜕𝐶𝑜𝑣𝛼𝑛(−𝒓)

𝜕𝒓
− 𝑎3

𝜕𝐶𝑜𝑣𝑛(𝒓)

𝜕𝒓
 Eq. C 46 

 

We assume that the hydraulic parameters can be described as a second-order stationary 

random variable using an exponential function: 

𝐶𝑜𝑣𝑉(𝒓) = 𝜎𝑉
2exp (−

|𝒓|

𝜌𝑉
) Eq. C 47 

where V signifies one of the hydraulic parameters (i.e. θs, α, n, and Y=ln(Ks)), 𝜎𝑉
2 is the 

variance, and 𝜌𝑉 is the correlation length. We only considered a vertical domain, and to keep 
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things simple, we assumed that the VGM parameters are uncorrelated. This strongly 

simplifies Eqs. A44 to A46. By using the fact that 𝐶𝑜𝑣𝑓ℎ(𝒓) = 0 when r is close to ∞ or -∞, 

and integrating Eq. C 43 to Eq. C 46 using Eq. C 47, the following expressions were derived 

by Zhang et al. [1998]: 

𝐶𝑜𝑣𝑓ℎ(𝒓) =
𝜎𝑓

2𝜌𝑓

1 − 𝑎2
2𝜌𝑓

2
{2𝐻(𝒓) exp(−𝑎2|𝒓|) − [2𝐻(𝒓) − 1 + 𝑎2𝜌𝑓]exp (−

|𝒓|

𝜌𝑓
)} Eq. C 48 

𝐶𝑜𝑣𝛼ℎ(𝒓) =
𝑎1𝜎𝛼

2𝜌𝛼

1 − 𝑎2
2𝜌𝛼

2
{2𝐻(𝒓) exp(−𝑎2|𝒓|)

− [2𝐻(𝒓) − 1 + 𝑎2𝜌𝛼]exp (−
|𝒓|

𝜌𝛼
)} 

Eq. C 49 

𝐶𝑜𝑣𝑛ℎ(𝒓) =
𝑎3𝜎𝑛

2𝜌𝑛

1 − 𝑎2
2𝜌𝑛

2
{2𝐻(𝒓) exp(−𝑎2|𝒓|)

− [2𝐻(𝒓) − 1 + 𝑎2𝜌𝑛]exp (−
|𝒓|

𝜌𝑛
)} 

Eq. C 50 

𝐶𝑜𝑣ℎ(𝒓) =
𝜎𝑓

2𝜌𝑓

1 − 𝑎2
2𝜌𝑓

2
[exp (−

𝑎2|𝒓|

𝑎2
) − 𝜌𝑓 exp (−

|𝒓|

𝜌𝑓
)]

+
𝑎1𝜎𝛼

2𝜌𝛼

1 − 𝑎2
2𝜌𝛼

2
[exp (−

𝑎2|𝒓|

𝑎2
) − 𝜌𝛼 exp (−

|𝒓|

𝜌𝛼
)]

+
𝑎3𝜎𝑛

2𝜌𝑛

1 − 𝑎2
2𝜌𝑛

2
[exp (−

𝑎2|𝒓|

𝑎2
) − 𝜌𝑛 exp (−

|𝒓|

𝜌𝑛
)] 

Eq. C 51 

where 𝐻(𝒓) is the Heaviside function: 𝐻(𝒓) = {
0,    𝒓 < 0
1,   𝒓 ≥ 0

, and a1 to a3 are as defined above 

(Eq. C 48 to Eq. C 50). By substituting the covariance of pressure head and the hydraulic 

parameters expressed in Eq. C 48 to Eq. C 50 into Eq. C 26 and setting 𝒓 = 0, an expression 

can be derived for the variance of soil water content (𝜎𝜃
2):  

𝜎𝜃
2 = 𝑏0

2 {𝑏1
2𝜎𝛼

2 + 𝑏2
2 [

𝜎𝑓
2𝜌𝑓

(1 + 𝑎2𝜌𝑓)𝑎2

+
𝑎1𝜎𝛼

2𝜌𝛼

(1 + 𝑎2𝜌𝛼)𝑎2
+

𝑎3𝜎𝑛
2𝜌𝑛

(1 + 𝑎2𝜌𝑛)𝑎2
]

+ 𝑏3
2𝜎𝑛

2 + 𝑏4
2𝜎𝜃𝑠

2 + 2𝑏1𝑏2 (−
𝑎1𝜎𝛼

2𝜌𝛼

1 + 𝑎2𝜌𝛼
)

+ 2𝑏2𝑏3 (−
𝑎3𝜎𝑛

2𝜌𝑛

1 + 𝑎2𝜌𝑛
)} 

Eq. C 52 
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where b0 to b4 are as defined above (Eq. C 21 to Eq. C 25), and a1 to a3 are as defined above 

(Eq. C 37 to Eq. C 39). This closed-form expression for 𝜎𝜃
2(〈ℎ〉) shows that the variance of 

soil water content is a function of the mean (i.e. <θs>, <ln(Ks)>, <α>, and <n>), the standard 

deviation (i.e. σ(θs), σ(ln(Ks)), σ(α), and σ(n)), and the vertical correlation length (i.e. ρln(Ks), 

ρα, and ρn) of the VGM model parameters. 

In order to assess the importance of the pressure head fluctuations that result from flow in the 

heterogeneous soil profiles, we also calculated σθ for h'=0 (i.e. assuming that the system has 

the same pressure head everywhere). We start this derivation from Eq. C 16 by setting h'=0. 

This results in: 

𝜃′ = 𝑏0[𝑏1𝛼
′ + 𝑏3𝑛

′ + 𝑏4𝜃𝑠
′] Eq. C 53 

where b0 to b4 are as defined above (Eq. C 21 to Eq. C 25). Following the same method as 

used to derive Eq. C 26, the covariance between θα and θβ can now be expressed as: 

𝐶𝑜𝑣𝜃(𝑟) = 𝑏0
2{𝑏1

2𝐶𝑜𝑣𝛼(𝒓) + 𝑏3
2𝐶𝑜𝑣𝑛(𝒓)

+ 𝑏4
2𝐶𝑜𝑣𝜃𝑠

(𝒓)+𝑏1𝑏3[𝐶𝑜𝑣𝛼𝑛(𝒓) + 𝐶𝑜𝑣𝛼𝑛(−𝒓)] 

                           +𝑏1𝑏4[𝐶𝑜𝑣𝛼𝜃𝑠
(𝒓) + 𝐶𝑜𝑣𝛼𝜃𝑠

(−𝒓)] 

      
 

                      +𝑏3𝑏4[𝐶𝑜𝑣𝑛𝜃𝑠
(𝒓) + 𝐶𝑜𝑣𝛼𝑛(−𝒓)]} 

Eq. C 54 

By assuming that the VGM parameters are uncorrelated and setting r=0, 𝜎𝜃𝑒

2  can be expressed 

as follows when h'=0:  

𝜎𝜃
2 = 𝑏0

2{𝑏1
2𝜎𝛼

2 + 𝑏3
2𝜎𝑛

2 + 𝑏4
2𝜎𝜃𝑠

2 } Eq. C 55 

where b0 to b4 are as defined above (Eq. C 21 to Eq. C 25). This equation shows that the 

variance of soil water content is only related to the variance of VGM parameters (α, n, and θs) 

if we ignore the effect of perturbation of pressure head (h'=0).  
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