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Abstract

Plasmonic nanostructures are subwavelength sized metallic structures which interact with
electromagnetic waves, e.g., light, on the basis of frequency selective, collective oscillations
of the conduction electrons, the so-called plasmonic resonances. These resonances can be
tailored by engineering the size and shape of the metallic structures and lead to a strong
local intensity enhancement close to the metal structures for an incident electromagnetic
wave. Due to their tunable optical response, plasmonic nanostructures are frequently used
as the building blocks of metamaterials, which are man-made effective materials support-
ing unprecedented optical properties. One class of optical processes, which can be strongly
enhanced by both, optical resonances in matter and local intensity enhancements, are nonlin-
ear optical frequency conversion processes. The most prominent and also first demonstrated
among those is second harmonic generation, the instantaneous conversion of a strong electro-
magnetic wave into a new wave with twice the frequency inside a material lacking inversion
symmetry. In this thesis, second harmonic generation from plasmonic nanostructures and
metamaterials will be investigated.

In order to perform second harmonic generation spectroscopy on plasmonic nanostructures,
i.e., to analyse the second harmonic generation efficiency of these structures as a function
of the pump frequency, a novel light source for the generation of widely tunable ultrashort
laser pulses is developed. This light source is based on optical parametric generation and
amplification in a single macroscopic lithium niobate crystal. This process converts an
intense wave into two new waves, whereas the sum of the frequencies of the new waves has
to match the frequency of the original one. By this, femtosecond pulses generated by a
42 MHz repetition rate passively mode-locked Yb:KGW oscillator are converted into more
than two watts of tunable near-infrared radiation between 1370 nm and at least 1650 nm.
Beside its high average output power this device shows a high long term stability and allows
to achieve pulse durations down to below 200 fs. Thus it constitutes an ideal light source to
investigate second harmonic generation from plasmonic nanostructures.

To analyse the interplay between the local intensity enhancement, inherent to plasmonic
nanostructures, and the nonlinear optical response of dielectric matter, plasmonic nanoan-
tennas and nonlinear dielectric nanoparticles are combined in a two-stage electron-beam
lithography process. Second harmonic generation spectroscopy on the combined hybrid di-
electric/plasmonic nanoantennas as well as on the individual constituents shows, that second
harmonic generation from the bare gold nanoantennas, even though it should be forbidden
due to symmetry reasons, is several orders of magnitude larger than that of the bare dielec-
tric nanoparticles. As even stronger second harmonic signals are generated by the hybrid
dielectric/plasmonic nanoantennas, control experiments with nanoantennas containing linear
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dielectric nanoparticles are performed to study the origin of the second harmonic generation
enhancement. These experiments reveal that the increased second harmonic generation ef-
ficiency of the hybrid dielectric/plasmonic nanoantennas does not depend on the nonlinear
optical susceptibility of the dielectric nanoparticles, but is an effect of the modification of
the dielectric environment. Additional experiments show, that a simple combination of two
nanoantennas to a nanoantenna system, resonant for both, the incoming pump light field
and the generated light, provides not only a strong enhancement of the second harmonic
generation efficiency but also offers control over the polarization properties of the generated
second harmonic light.

Inspired by the results from double resonant nanoantenna systems, plasmonic nanostruct-
ures, which show only a resonance for the generated second harmonic light are investigated.
By comparing a series of nanoantenna arrays, owning spectral distinct plasmonic resonances,
it is shown, that the second harmonic generation efficiency of these structures is strongly
dependent and resonantly enhanced by these two-photon resonances. This result is qual-
itatively and in part also quantitatively explained in a metamaterial picture, connecting
the results of linear extinction spectroscopy with those of second harmonic spectroscopy
measurements via an anharmonic oscillator model. Furthermore noncentrosymmtric na-
nostructures resonant for the generated light are studied. This study indicates that the
general symmetry selection rules for second harmonic generation can be also applied to
plasmonic nanostructures. Through a comparison of noncentrosymmtric nanostructures ex-
hibiting strongly distinct linear extinction spectra the previous result is reinforced, that a
further enhancement of the second harmonic generation efficiency is possible by designing
nanostructures, which are not only resonant for either the pump or the generated second
harmonic light, but for both.

II



Contents

1 Introduction 1

2 Fundamentals 5

2.1 Maxwell’s equations and consequences . . . . . . . . . . . . . . . . . . . . . 5

2.2 Linear response of matter to electromagnetic waves . . . . . . . . . . . . . . 8

2.2.1 Dielectrics as harmonic oscillators . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Metals in the Drude model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Surface plasmon polaritons . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Nanoplasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Optical properties of metal nanoparticles . . . . . . . . . . . . . . . . 13

2.3.2 Nanoantennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 V-chaped nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 The metamaterial concept . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Nonlinear optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Nonlinear polarization and effects of second order . . . . . . . . . . . 24

2.4.2 Nonlinear susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Nonlinear response of plasmonic nanoparticles . . . . . . . . . . . . . 30

2.4.4 Wave description of nonlinear optics . . . . . . . . . . . . . . . . . . 32

2.4.5 Second harmonic generation . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.6 Optical parametric generation and amplification . . . . . . . . . . . . 39

3 Optical parametric generator 45

3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Pump power influence . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Wavelength tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III



CONTENTS

4 Nonlinear Plasmonics 53

4.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Electron-beam lithography . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Thin film deposition by thermal evaporation . . . . . . . . . . . . . . 56

4.2 Hybrid plasmonic/dielectric gap nanoantennas . . . . . . . . . . . . . . . . . 60

4.2.1 Investigated samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Influence of dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Double resonant gap nanoantenna systems . . . . . . . . . . . . . . . 69

4.3 Two-photon resonant metamaterials . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Materials and experimental methods . . . . . . . . . . . . . . . . . . 71

4.3.2 Two-photon resonant nanoantennas . . . . . . . . . . . . . . . . . . . 73

4.3.3 Noncentrosymmetric structures . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusions and Outlook 81

Literature 85

List of publications 95

Acknowledgements 97

IV



1

Introduction

...colours which appear through the prism are to be derived from the light of the white one...[1]

Sir I. Newton explained the appearance of the magnificent colours of the rainbow or flower
petals by proposing that the white sunlight, or that of any thermal light source, is actually
composed of all colours and can be separated into those [1]. He concluded that the rainbow
originates from a colour selective refraction of light and that the petal colour is due to a
colour selective absorption of light. This actually means, that the colour of light, or to use
a more mathematical language, its frequency, is not converted by light matter interactions.
Newton even gave a hint to the microscopic mechanism of the light matter interactions, as he
stated that, "... Light [acts] upon Bodies... putting their parts into a vibrating motion..." [1].
More than a hundred years later, H. A. Lorentz was able to completely explain those light
matter interactions, by describing this "vibrating motion" as an oscillation of electrons in
the harmonic potential of the atomic cores [2].

Like any oscillating or vibrating system those electrons bound to the atomic core will show
an inherent resonance. That means, if the system is periodically excited by an external force,
the amplitude of the oscillation will depend on the frequency of the excitation and will show
a maximum, when the excitation frequency matches the eigen- or resonance frequency of the
system. By accepting light to be an electromagnetic wave,1 which excites those oscillations, it
becomes evident, that light matter interactions are strongly frequency dependent. Hence, it
should be possible to engineer the optical response of matter by manipulating the resonance
frequency of its constituents, i.e., the atoms.

Very similar to atoms, subwavelength sized metallic structures respond frequency selec-
tive to an electromagnetic wave with a collective electron oscillation, called plasmonic reso-
nance [3–5]. But in contrast to atoms, the resonance of those plasmonic structures depends
on their geometry and can thus be engineered. By turning from optical to radiowave fre-
quencies one realizes that subwavelength metallic objects are a very common tool for the
manipulation of electromagnetic waves since the end of the nineteenth century. The anten-
nas used in the pioneering experiments of H. Hertz and G. Marconi [6, 7] and enabling our
modern ways of wireless communication, are also subwavelength metallic objects merely for
six orders of magnitude longer wavelengths. But it needed the development of high precision
nano-fabrication techniques in the last decades to controlled manufacture nanometer sized

1Actually Newton refused the theory of light being a wave, but that is another story.
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1. INTRODUCTION

metallic structures [8], which exhibit resonances in the near-infrared and even in the visible
spectral regime [9, 10]. This analogy between radiowave antennas and plasmonic nanostruct-
ures gives also an indication of an important property of the latter. When H. Hertz proved
the existence of electromagnetic waves, he used an antenna to convert a free propagating
wave with a wavelength of around one meter to a spark ignition in a micrometer gap [6].
This actually corresponds to focussing into a deep subwavelength volume, not possible with
classic refractive optics [11], resulting in an enormous local field enhancement.

Roughly twenty years ago Sir J. B. Pendry et al. came up with the concept of not using
matter composed of real atoms to influence light, but materials consisting of densely periodic
arranged, plasmonic structures, so-called metamaterials [12, 13]. The idea behind this con-
cept is, that the light does not resolve the response of the individual constituents, as they are
much smaller and denser packed than the wavelength of light, but experiences a collective
response of those. With the concept of metamaterials it was actually possible to realize light
matter interactions not encountered in nature, e.g., magnetism at optical frequencies [14–16],
a negative refractive index [17–19], or electromagnetic invisible cloaks [20–22].

In 1961, Newton’s finding, that the frequency of light is inalterable by light matter interac-
tions, was refuted. P. Franken et al. demonstrated, that the interaction between a wave with
high intensity and coherence, and a medium lacking inversion symmetry leads to the gener-
ation of a new wave with twice the frequency of the original one [23], i.e., second harmonic
generation. Even with the use of the only shortly before invented laser [24], representing
a monochromatic light source with an intensity and coherence not encountered in nature,
this effect was so weak, that the faint spot on the photoplate, resulting from the gener-
ated second harmonic light, was removed during the editorial process of the corresponding
publication [25]. Second harmonic generation was only the first observed nonlinear optical
process out of a plethora [26], but it is still very well suited to investigate the basic proper-
ties of nonlinear optical processes in general. By investigating second harmonic generation
it was for example shown, that the conversion efficiency of nonlinear processes is completely
determined by both, the magnitude of the (linear) optical response at the generated and the
original frequencies and that the employed material has to lack inversion symmetry to show
second harmonic generation [23, 27, 28].

The term nonlinear optics in contrast to the former discussed linear optics can be under-
stood from the microscopic origin. If the electron oscillation, responsible for the optical
response of matter, is excited by strong electric fields, its amplitude can get so strong, that
the atomic potential can not be modelled as harmonic any more. Instead an anharmonic
potential describing a restoring force with a nonlinear dependency on the electron displace-
ment has to be taken into account [29]. Therefore strong electric fields are mandatory to
observe nonlinear processes. By this it becomes evident, that due to their inherent local field
enhancement plasmonic nanostructures and metamaterials consisting of those are promising
candidates to enhance nonlinear light matter interactions [13] and also give rise to nonlinear
wave interactions themselves [30, 31]. This opened the very active research field of nonlinear
plasmonics. Here, several strategies to achieve high conversion efficiencies have been inves-
tigated e.g., the comparison of differently shaped nanostructures [32, 33], the combination
of metallic nanostructures and nonlinear dielectrics [34, 35], variation of the nanostructure
arrangement [36], or the combination of so called "acitve" and "passive" structures [37].
But several aspects are still topics of discussions, as for example how plasmonic nanostruct-
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ures interact with nanoscale nonlinear matter [38, 39] or how plasmonic resonances for the
generated frequency influence nonlinear processes in plasmonic nanostructures [40–42].

In the majority of the previous quoted studies the nonlinear interactions were analysed at
a fixed excitation frequency. This is somehow surprising, as the inherent local field en-
hancement of plasmonic nanostructures is a resonant effect and the basic idea behind these
structures is to obtain engineerable light matter interactions by tailoring their resonances.
Accordingly a strongly frequency dependent nonlinear response can be expected. To eluci-
date this connection, it is advisable to not only compare structures with distinct resonances,
but to study the linear as well as the nonlinear interactions as a function of frequency. This
technique is in general termed spectroscopy [43]. Indeed, the above mentioned discussions
arose from the results of nonlinear spectroscopic studies [39, 40], which are contradictory
to studies at fixed frequencies [38, 41]. In the case of linear interactions spectroscopy can
be conducted with thermal light sources or just the sun light, as in Newton’s studies [44].
But when it comes to nonlinear interactions a spectral intensity and coherence is needed to
observe these processes, which can be only achieved by lasers. As the tunability of lasers
is strongly limited by the gain bandwidth of the respective active material, a common ap-
proach is to convert the highly intense and coherent radiation of a laser to new frequencies.
In this thesis an optical parametric generator, based on a macroscopic bulk crystal, has
been designed and used to perform second harmonic generation spectroscopy of plasmonic
nanostructures.
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1. INTRODUCTION

Outline of this Thesis

This thesis deals with the spectroscopic investigation of second harmonic generation from
plasmonic nanostructures and metamaterials. In the first part of chapter 2 the linear in-
teraction mechanism between light and matter starting from Maxwell’s equations will be
reviewed. This paves the way to allow an understanding of the basic properties of plas-
monic nanostructures and metamaterials, summed up under the heading Nanoplasmonics,
discussed in the second part. In the last part of chapter 2 nonlinear optics of second order in
general will be reviewed for a deeper understanding of the experimental results in the later
chapters.

In chapter 3 the light source, which will be used for the later experiments will be presented.
Based on the process of optical parametric generation a novel frequency converter design
was implemented and analysed.

Chapter 4 will cover the linear and nonlinear spectroscopic investigation of plasmonic na-
nostructures and metamaterials. In the first part the technique used to fabricate those will
be explained in detail. In the second part the interplay of gap nanoantennas and dielectric
nanoparticles will be examined, with respect to their second harmonic generation efficiency.
Here, both dielectrics with and without nonlinear properties will be used to determine the
origin of the nonlinearity of the hybrid plasmonic dielectric nanostructures. In the last part,
second harmonic generation from metamaterials will be studied, which are composed of plas-
monic structures that only exhibit a two-photon resonance, i.e., a plasmonic resonance for
the generated light.

This thesis is finally concluded in chapter 5 and an outlook into possible future researches
is given.
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2

Fundamentals

In the following chapter the theoretical background of this thesis will be presented to the
reader. As this thesis deals with the interaction between electromagnetic waves and mat-
ter, both artificial and natural, this chapter will start with the most basic description of
electromagnetism, which is given by Maxwell’s equations. Based on these, microscopic phe-
nomenological models for dielectrics and metals will be presented in the first part of this
chapter to finally understand the linear interaction between electromagnetic waves and plas-
monic nanostructures or metamaterials. In the second part of this chapter the nonlinear
interaction between electromagnetic waves and matter will be discussed, which is the basis
of both the investigation of nonlinear plasmonics and the provision of a suitable light source
for this purpose.

2.1 Maxwell’s equations and consequences

The properties of electromagnetic fields in media are thoroughly described by a set of equa-
tions, derived by James Clark Maxwell in 1864. They read [45]:

∇ ·D(r,t) = ρ(r,t) (2.1)

∇ ·B(r,t) = 0 (2.2)

∇×E(r,t) = −∂B(r,t)

∂t
(2.3)

∇×H(r,t) = j(r,t) +
∂D(r,t)

∂t
(2.4)

here and throughout this thesis D(r,t) denotes the dielectric displacement, B(r,t) the mag-
netic induction, E(r,t) the electric field, H(r,t) the magnetic field, and ρ(r,t) and j(r,t)
the external charge and current densities. Internal charge separations and currents lead to a
macroscopic electric polarization P (r,t) and magnetization M (r,t), that can be connected
to the quantities mentioned before via the constitutive equations [11]:

D(r,t) = ǫ0E(r,t) + P (r,t) (2.5)

B(r,t) = µ0H(r,t) +M(r,t) (2.6)

5



2. FUNDAMENTALS

with ǫ0 = 8.85 × 10−12 F/m the permittivity in free space and µ0 = 4π × 10−7 N/A2 the
permeability in free space. These two natural constants can be connected to the speed of
light in vacuum c0 = 1/

√
µ0ǫ0.

By applying a rotation on equation (2.3) and combining equation (2.1) and (2.4) with the
constitutive equations (2.5) and (2.6) we achieve:

−∇2E(r,t) +
1

c20

∂2E(r,t)

∂t2
= − ∂

∂t

(

µ0j(r,t) + µ0
∂P (r,t)

∂t
+∇×M(r,t)

)

(2.7)

which is known as the inhomogeneous wave equation for the electric field. The left hand
side of equation (2.7) represents the homogeneous wave equation for the electric field in
vacuum. Whereas the terms on the right hand side act as source terms. From this we
can distinguish two types of sources: (i) the external source current density j(r,t) and

(ii) µ0
∂P (r,t)

∂t
and ∇×M(r,t) as polarization and magnetization current density, respectively.

The latter describe the interaction of electromagnetic radiation with matter. By restricting
ourselves to dielectric or metallic but nonmagnetic materials, the magnetization M(r,t) can
be neglected and is set equal to zero. If we assume a vanishing external charge density
ρ(r,t) and external current density j(r,t), i.e., all external sources which primary generate,
e.g., the incoming electromagnetic fields are located outside our considered spatial domain,
equation (2.7) further simplifies to:

∇2E(r,t)− 1

c20

∂2E(r,t)

∂t2
= µ0

∂2P (r,t)

∂t2
(2.8)

So far, the above derivation of the wave equation (2.8) in matter was carried out in the
spatial and the temporal domain. For the following considerations it is more convenient to
switch to a frequency domain description. Hence, we define the Fourier transform between
the temporal and the frequency domain for the electric field E(r,t) as [45]:

E(r,ω) =

∫ ∞

−∞
E(r,t)eıωtdt (2.9)

E(r,t) =
1

2π

∫ ∞

−∞
E(r,ω)eıωtdω (2.10)

With this we obtain the wave equation in matter in the frequency domain:

∇2E(r,ω) +
ω2

c20
E(r,ω) = −µ0ω

2P (r,ω) (2.11)

Obviously the polarization P (r,ω) in the medium is a function of the electric field E(r,ω)
and can therefore be written as a power series of the electric field E(r,ω) [29]. At first we
will only consider the case of low electric field amplitudes, where the term linear in E(r,ω) is
dominating, and all higher order contributions can be omitted. For strong field amplitudes
those higher order terms can of course not be neglected any more and will lead to several
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2.1. MAXWELL’S EQUATIONS AND CONSEQUENCES

interesting effects, which will be discussed in section 2.4 about nonlinear optics.1 Hence, in
the limiting case of linear optics the polarization P (r,ω) can be expressed by:

P (r,ω) = ǫ0χ
(1)(ω)E(r,ω) (2.12)

where χ(1)(ω) is the first order electric susceptibility. Here, a homogeneous, isotropic mate-
rial was assumed, which means that χ(1)(ω) is a (in our considered spatial domain) spatially
constant scalar function. For anisotropic materials the electric field E(r,ω) and the polar-
ization P (r,ω) are not necessarily parallel, in that case the electric susceptibility must then

be written as a tensor of second order: Pi = ǫ0
∑3

j=1 χ
(1)
ij Ej . We will limit the following

discussion to the case of homogeneous, isotropic materials. By inserting equation (2.12) into
the wave equation in frequency domain (2.11) we obtain the Helmholtz equation:

∇2E(r,ω) + (1 + χ(1)(ω))
ω2

c20
E(r,ω) = (2.13)

∇2E(r,ω) + ǫr(ω)
ω2

c20
E(r,ω) = (2.14)

∇2E(r,ω) +
ω2

c2
E(r,ω) = 0 (2.15)

where we defined the relative permittivity ǫr(ω) = (1 + χ(1)(ω)), which connects the di-
electric displacement with the electric field: D(r,ω)=ǫ0ǫrE(r,ω). With this the complex
refractive index ñ2(ω) = ǫr(ω), which defines the speed of light in matter c = c0/ñ, can be
defined. Analogous considerations starting from equation (2.4) lead to a wave equation for
the magnetic field, the magnetic susceptibility χm(ω) and the relative permeability µr(ω).
Even as magnetic materials will be not considered in this thesis (and therefore we assume
µr(ω) = 1 in the following), it is important to mention, that in general the refractive index
is defined as ñ2(ω) = ǫr(ω)µr(ω).

Equation (2.15) can be solved by:

E(r,ω) =
1

2

[
E0e

ı(k·r−ωt) + cc.
]

(2.16)

representing a plane wave oscillating in time with the frequency ω and propagating in the
direction of the wave vector k, cc. denotes the complex conjugate. Inserting the plane wave
solution into equation (2.15) leads to the dispersion relation of a free propagating wave:

ω2

|k|2 =
c20
ñ2

(2.17)

In general the refractive index and hence the relative permittivity ǫr(ω) are complex quan-
tities. Assuming a plane wave propagating in z-direction we obtain:

kz =
ω

c0
ñêz =

ω

c0
(n(ω) + ıκ(ω))êz (2.18)

1The term nonlinear optics originates in the nonlinear dependency of the polarization on the electric
field.
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2. FUNDAMENTALS

where êz denotes the unit vector in z-direction. With this the electric field of a plane wave
reads:

E(z,ω) = E0 · eı(
ω
c0

n(ω)z−ωt) · e−
ω
c0

κ(ω)z
(2.19)

The first exponential function describes an oscillation and thus, the propagation of the
wave through a medium is characterized by the real part n(ω) of the refractive index. The
second exponential function describes an exponential decay and thus, the attenuation of the
wave through a medium is associated with the imaginary part κ(ω) of the refractive index.
Therefore the term refractive index sometimes only refers to the real part n, whereas the
imaginary part κ is known as extinction coefficient [46].

2.2 Linear response of matter to electromagnetic

waves

As we have seen before, in the limiting case of linear optics the propagation of an electromag-
netic wave in a medium can be completely described by the complex refractive index ñ(ω),
which in turn is given by the electric susceptibility χ(1)(ω). Therefore the goal of the next
paragraphs is to derive models which provide the frequency dependent electric susceptibility
χ(1)(ω) for different classes of materials.

2.2.1 Dielectrics as harmonic oscillators

The classical response of atoms to electromagnetic waves can be described in a driven oscil-
lator picture, the so-called Lorentz model [2, 11]. Here, the atom is modelled as an electron
which is bound to the atomic core. Applying an oscillating electric field leads to an oscil-
lation of the electron around its rest position. For low light intensities, the electrons can
be regarded as bound in a harmonic potential. Therefore the equation of motion in one
dimension for a single electron driven by the electric field E0e

−ıωt is given by:

me
∂2x(t)

∂t2
+meγL

∂x(t)

∂t
+meω

2
0x(t) = −eE0e

−ıωt (2.20)

where x(t) is the displacement of the electron, γL the damping constant, ω0 the res-
onance frequency, e = 1.6 × 10−19 As the elementary charge and me = 9.1 × 10−31

kg the electron mass. Here, we assume the incident plane wave to be polarized in x-
direction: E(r,t) = êxE0e

ı(k·r−ωt). The steady state solution of equation (2.20) is given
by x(t) = a(ω)e−ıωt leading to the electric dipole moment of a harmonic oscillator:

p(t) = −ex(t) =
e2

me

1

(ω2
0 − ω2 − ıγLω)

E0e
−ıωt (2.21)

Thus, the electric dipole moment is proportional to the electric field. The proportionality
factor α(ω) is called polarizability. With a number of ne oscillating electrons per atom it

8



2.2. LINEAR RESPONSE OF MATTER TO ELECTROMAGNETIC WAVES

reads:

α(ω) =
nee

2

me

1

(ω2
0 − ω2 − ıγLω)

(2.22)

If we consider only atoms of the same type with polarizability α(ω), arranged with a con-
stant density na, we obtain with the electron number density Ne = ne · na the macroscopic
polarization P (ω):

P (ω) = naα(ω)E(ω) = ǫ0χ(ω)E(ω) (2.23)

In the case of a real dielectric we have to consider different types of atoms not necessarily
obeying the same microscopic polarizability α(ω). For an ordered crystal consisting of a
finite number N of types of atoms, the macroscopic polarization P (ω) can be written as:

P (ω) = E(ω)

N∑

ν=1

nee
2

me

fν
(ω2

0,ν − ω2 − ıγL,νω)
(2.24)

where the oscillator strength fν has to satisfy the sum rule
∑N

ν=1 fν = na. Here, we neglect
all modifications due to interaction between the atoms. This approximation holds true for
diluted gases but breaks down when the atoms are densely packed such that the electronic
wave functions overlap and form electronic bands. Nevertheless, even for this case we can
define a new effective polarizability of the same form leading to a qualitatively good descrip-
tion of the linear optical properties of nonmetallic solids. For this new effective polarizability,
coupled atomic potentials have to be taken into account and not isolated atoms.

In the previous discussion only the one dimensional case was considered, i.e., electrons oscil-
lating parallel to the applied electric field. As mentioned in section 2.1 both the macroscopic
polarization P (ω) and the applied electric field E(ω) have a vectorial character and there-
fore the macroscopic susceptibility has to be written as a tensor: Pi(ω) = ǫ0

∑3
j=1 χijEj(ω).

However, for isotropic media, e.g., ordered crystals consisting of finite types of atoms, there
is always a coordinate system, called the principal axis system, in which χ is diagonal.
With the use of this coordinate system the individual diagonal components χii can then be
evaluated analogously to the one dimensional case [47].

With the most simple approximation given by (2.22) and (2.23) we can calculate the real
and the imaginary part of the complex refractive index:

n(ω) = 1− 1

2

e2Ne

ǫ0me

ω2 − ω2
0

(ω2 − ω2
0)

2 + γ2
Lω

2
(2.25)

κ(ω) =
1

2

e2Ne

ǫ0me

γLω

(ω2 − ω2
0)

2 + γ2
Lω

2
(2.26)

For dielectric crystals modelled with a single Lorentz oscillator the resonance frequency ω0

can be identified with the band gap energy, which is typically located in the ultraviolet
(isolators) up to the near-infrared region (semi-conductors). If the frequency ω is increased
towards the resonance frequency ω0 we obviously get an overall increase of the susceptibility
and thus the complex refractive index, but this increase is connected to a strongly enhanced
absorption.

9



2. FUNDAMENTALS

2.2.2 Metals in the Drude model

In the case of metallic materials, in contrast to the previously discussed case of dielectric
materials, at least a part of the electrons is not bound to a specific atom. Therefore, these
so-called conduction electrons can be treated in a basic microscopic model of metals as
individual freely moving electrons. It is called the free electron model or the Drude model
of metals [48]. Of course, the conduction electrons are not perfectly free in a metal and
different scattering events, like scattering at lattice defects, electron-electron scattering or
electron-phonon scattering, lead to an effective damping of the freely moving electrons. In
the Drude model this damping is described by the damping parameter γD = 1/τ , where τ
describes the average time between two scattering events. The equation of motion for the
Drude model can be directly obtained from that for the Lorentz model (2.20). For this the
resonance frequency ω0 is set to zero, due to the lack of the restoring force resulting from
the binding to the atomic core:

me
∂2x(t)

∂t2
+meγD

∂x(t)

∂t
= −eE0e

−ıωt (2.27)

In analogy to the Lorentz oscillator model the electric susceptibility and the relative permit-
tivity ǫ(ω) of the Drude model can be derived:

χ(ω) = −
ω2
p

ω(ω + ıγD)
(2.28)

ǫ(ω) = 1−
ω2
p

ω(ω + ıγD)
(2.29)

Here, the bulk metal plasma frequency ωp =
√

e2Ne

ǫ0me
was introduced. Starting from equa-

tion (2.29) some basic properties for metals can be deduced. In the visible and near-infrared
spectral regime the frequency ω is much larger than the Drude damping constant γD, but
still smaller than the plasma frequency ωp [49]. Therefore, the imaginary part of ǫ(ω) can
be neglected and the real part becomes negative. Thus, the complex refractive index ñ(ω)
gets purely imaginary, meaning that no wave propagation but only evanescent waves are al-
lowed in the metal. Therefore, a plane wave gets fully reflected at the interface of the metal.
The 1/e decay length of the evanescent wave into the metal, called skin depth, defined via
equation (2.19) is for the discussed spectral regime in the order of some ten nanometers.

The Drude model is a fairly good description of the behaviour of metals at frequencies in
the near-infrared region. For shorter wavelengths (higher energies) one has to account for
excitations of electrons from lower bands into the conduction band, i.e., interband transi-
tions [50]. These interband transitions occur for example in gold at an energy of 2.38 eV
(522 nm), where an electron from the 5d-band (valence band) is excited into the 6s-band
(conduction band). To improve the description of the permittivity for shorter wavelengths,
a common ansatz is to combine the Drude model with Lorentz oscillators. The susceptibility
corresponding to these excitations is then just added to the Drude permittivity.

10



2.2. LINEAR RESPONSE OF MATTER TO ELECTROMAGNETIC WAVES

2.2.3 Surface plasmon polaritons

Up to now we have discussed free propagating waves. But for an interface between two
materials, with relative permittivities ǫ1 and ǫ2, lying in the xy-plane equation (2.14) can be
solved by an ansatz of the form [5]:

E = E0e
−i(kxx+kzz−ωt) (2.30)

The boundary conditions lead to

kz1
ǫ1

+
kz2
ǫ2

= 0 (2.31)

and

k2
x + k2

zi = ǫi

(
ω

c0

)2

i = 1,2 (2.32)

Solving these two equations, the dispersion relation is given by:

kx =
ω

c0

(
ǫ1ǫ2

ǫ1 + ǫ2

)1/2

(2.33)

kz,i = =
ω

c0

(
ǫ2i

ǫ1 + ǫ2

)1/2

i = 1,2 (2.34)

If we consider now a metal (i = 1) isolator (i = 2) interface in the visible spectral regime,
i.e., |ℑ[ǫ1(ω)]| ≪ |ℜ[ǫ1(ω)]|, ℜ[ǫ1(ω)] ≪ 0, ℑ[ǫ2(ω)] ≪ ℜ[ǫ2(ω)] and |ǫ1(ω)| ≫ |ǫ2(ω)|, we
obtain a propagation in x-direction and an evanescent decay in z-direction, as depicted in
Figure 2.1. Thus, we deal with a wave travelling along the interface with exponentially de-
caying fields into the metal and the isolator, the so-called surface plasmon polariton (SPP).

z

x

E

B

²1

²2 z

| |Ez

²1

²2
(a) (b)

Figure 2.1: (a) Schematic view of a surface plasmon polariton, bound to the interace between a
metal (ǫ1) and a dielectric (ǫ2). The charges (+/-) as well as the electromagnetic fields are shown
(red/green). (b) The perpendicular field |Ez| decays exponentially into the the metal and the
dielectric.
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Figure 2.2: The solid red line
represents the dispersion rela-
tion for a surface plasmon po-
lariton (SPP) traveling along
a Drude-metal-vacuum inter-
face. The blue line is the
light line, that is, the free-
space dispersion of electro-
magnetic waves. The dot-
ted red line corresponds to
the surface plasma (SP) fre-
quency.

In Figure 2.2 the dispersion relation of a SPP travelling along a metal-vacuum interface is
shown. Here we see, that for low frequencies the dispersion relation of a SPP converges
towards the free-space dispersion ω = ck of electromagnetic waves, while for high frequen-
cies it approaches a horizontal line, given by ωSP = ωpl/

√

(1 + ǫ2), the so-called surface
plasma (SP) frequency. While approaching towards the surface plasma frequency the imag-
inary part of the wavevector along the propagation direction ℑ[kx] strongly increases, thus
the SPP experiences higher losses for higher frequencies, additional to the effect that the
losses of metals in general are increased towards the plasma frequency [5, 49].

Two important features of SPPs occur if the propagation length and the skin (decay) length
into the metal and the dielectric are considered. The 1/e propagation length of a SPP
is just given by 1/ℑ[kx]. For a realistic gold vacuum interface at a wavelength of 633 nm
(ǫ1 = −11.6+ı1.2 and ǫ2 = 1 [49]) we obtain a propagation length of roughly 10 µm, which is
only an order of magnitude larger than the wavelength. Below the surface plasma frequency
the skin length 1/kz,i is given by equation (2.34) as kz is purely imaginary. For the same
situation as before this results in a decay length into the vacuum of approximately 330 nm
and in a decay length into the gold of 28 nm. Thus a SPP is strongly localized at the metal
dielectric interface, but can only propagate quite a short distance.
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2.3. NANOPLASMONICS

2.3 Nanoplasmonics

After the introduction to the optics of bulk metals in the last paragraph, we will now turn to
the optical properties of metal nanoparticles. Here, we will start with a brief overview of the
interaction of electromagnetic waves with metal nanoparticles in general, which will include
a derivation of the title of this section: Nanoplasmonics. This overview will help us to un-
derstand the optical properties of the specific geometries, which will be investigated in this
thesis. As it is not possible to solve Maxwell’s equations analytically for arbitrary nanopar-
ticle geometries, a non-commercial numerical program package,2 based on the discontinuous
Galerkin time domain method [51, 52] will be used to evaluate near-field distributions and
plasmonic resonances if necessary. However, due to the need of actual modelling the geome-
tries, these evaluations will only cover the limiting case of idealized geometries. Finally we
will treat the collective response of densely arranged metal particles, the so-called metama-
terials, to electromagnetic waves.

2.3.1 Optical properties of metal nanoparticles

As was seen before, an external electric field accelerates the conduction band electrons in
a metal in one direction. In a small metal particle, the free moving electrons thus travel
to one side of the particle and form a negative charge density. On the opposite side of
the particle the positive background remains and forms a positive charge density. This
charge separation gives rise to an electric field and a restoring force, like in a mass spring
system (see Figure 2.3), acting on the electrons, resulting in a coherent plasma oscillation [3]
comparable to that of electrons bound to a atom, which was discussed in section 2.2.1. Due
to the confinement to the metal particle, one refers to this oscillation as a particle plasmon
or a localized surface plasmon in analogy with the surface plasmon polariton [4]. Hereby it
becomes evident that the term Nanoplasmonics refers to the optics of metal nanoparticles
in general.

The simplest approximation of an arbitrary shaped nanoparticle is a small metal sphere
with radius a embedded in a dielectric medium with dielectric constant ǫm. If the size
of the considered metal particles is reduced drastically down below the wavelength of the
electromagnetic wave, the electric field interacting with a single particle becomes quasi-static.
Within the quasi static approximation, i.e., the electromagnetic wave has a constant spatial
phase along the particle, an analytical expression for the polarizability α(ω) is given by [4]:

α(ω) = 4πa3
ǫ(ω)− ǫm(ω)

ǫ(ω) + 2ǫm(ω)
(2.35)

where ǫ(ω) is the relative permittivity of the metal and ǫm(ω) that of the surrounding
dielectric. On the one hand, we can see that the polarizability is proportional to the third
power of the radius a and hence to the volume of the metal sphere. On the other hand, it is
proportional to a fractional term which contains the dielectric constants of the metal sphere
and the surrounding. This term can exhibit a resonance if the denominator becomes zero.

2Developed in the group of Prof. Dr. Kurt Busch at Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany.
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Figure 2.3: (Upper row)
Sketch of a metallic nanopar-
ticle whose electron cloud has
been displaced by ∆x, due to
an external oscillating electric
field, e.g., an electromagnetic
wave, giving rise to an inter-
nal electric field E. (Lower
row) Mechanical analogue of
a mass attached to affixed
spring. The restoring force
F corresponds to the internal
electric field E, and the mo-
mentum p to the electron cur-
rent j, respectively.

In the case of small damping in the metal, we can neglect for the moment the imaginary
part of the dielectric constant ǫ(ω) of the metal sphere. The resonance then appears for
ℜ[ǫ(ω)] = −2ǫm(ω) , which is called Fröhlich condition [4]. When we use a Drude model
for the dielectric constant of the metal, as introduced in paragraph 2.2.2, the resonance
frequency ω0 can be calculated for a sphere located in air (ǫm(ω) = 1) to ω0 = ωp/

√
3.

Within the quasi-static approximation, we can also deal with ellipsoidal particles with the
principal axes a, b, and c. In this formalism, the principal axes of the ellipsoids are rep-
resented by the normalized geometry parameters Fi, with i = 1, 2, and 3, and

∑

i Fi = 1.
Clearly, we obtain a tensorial polarizability leading to a vectorial equation for the polariza-
tion:





px
py
pz



 = ǫm(ω)





α1 0 0
0 α2 0
0 0 α3









E0,x

E0,y

E0,z



 (2.36)

Here, we assumed that the principal axes of the ellipsoidal particle are aligned along the unit
vectors of the Cartesian coordinate system. For the elements of the polarization tensor, we
obtain:

αi =
ǫ(ω)− ǫm(ω)

ǫm(ω) + (ǫ(ω)− ǫm(ω))Fi
Vellipsoid (2.37)

with Vellipsoid representing the volume of the ellipsoid. Here, the Fröhlich condition gives a
geometry dependent resonance frequency of the particle due to the geometry parameter Fi.

Another inherent feature connected with the plasmonic resonances of metal nanoparticles
is the enhancement of the near field around the particle. The intensity of the local field
Iloc ∝ |Eloc|2 compared to the incoming field I0 ∝ |E0|2 differs by the frequency dependent
enhancement factor L(ω) [4]:

Iloc = L(ω)I0 = LSP(ω)LLRI0 (2.38)
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2.3. NANOPLASMONICS

Two physical effects are responsible for the field enhancement. The so-called lightning rod
effect is responsible for the frequency independent contribution LLR and is strongly depend-
ing on the geometrical shape of the particle. The electric field on the surface of a perfect
conductor points perpendicular to the surfaces normal, therefore leading to a concentration
of the electromagnetic field to areas of sharp edges or tips. The frequency dependent part
L(ω)SP is due to the resonant excitation of localized surface plasmons in the structure and
essentially resembles the polarizability α(ω).

Additionally the efficiency of scattering and absorption of light by metal nanoparticles be-
comes resonantly enhanced. For small particles which are much smaller than the wave-
length λ of light, the scattering and absorption cross sections Csca and Cabs, defining the
extinction cross section Cext = Cabs + Csca, become [3, 4]:

Cabs =
k

ǫ0
ℑ(α) ∼ a3 (2.39)

Csca =
k4

6πǫ20
|α|2 ∼ a6 (2.40)

where k = |k| is the wavenumber. Due to the dependency of the particle size a we see, that
for very small particles the extinction is dominated by absorption.

Before we turn to the specific geometries, which will be investigated in this thesis, we shortly
want to recapitulate the results of this paragraph:

i An increase of ǫm(ω), i.e., of the refractive index of the surrounding medium, leads to
a decrease of the resonance frequency, i.e., a red-shift.

ii An elongation of the particle along the axis parallel to the incident polarisation leads
to a red-shift of the particle’s resonance.

iii An elongation of the particle along the axis perpendicular to the incident polarisation
leads to a blue-shift of the particle’s resonance.

iv A resonant excitation of the particle plasmon leads to a local field enhancement around
the particle.

v For very small particles the extinction cross section is dominated by absorption.

2.3.2 Nanoantennas

In general the term antenna refers to a device which can radiate and receive electromagnetic
radiation. In this thesis we will refer to antennas, or to be more specific to nanoantennas,
as wires with a finite length, and to gap nanoantennas as two finite wires separated by a
small gap. These nanoantennas can exhibit resonances in the visible or near-infrared spectral
regime. From the radio frequency (RF) regime it is well known, that an electromagnetic wave
impinging on a metal wire orientated parallel to the wave’s polarization leads to a charge
separation oscillating along the wire, like in the case of a metal nanoparticle discussed in
the previous section. A resonance in the excitation of those charge oscillations is observed,
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when the length of the wire L corresponds to half of the wavelength of the impinging wave
in vacuum: Lres = λvac/2. This linear scaling between the length of the antenna and its
resonance wavelength, resembles the finding of the previous section where a elongation of
metal particle along the axis parallel to the incident polarisation led to a red-shift of the
particle’s resonance. However, no absolute size scaling for the resonance wavelength was
provided by the quasi-static approximation.

Fabry-Perot model

In order to get an understanding of the resonances and eigenmodes of a nanoantenna and of
plasmonic nanostructures in general a Fabry-Perot like model will be presented, which will
also resemble the findings from the RF regime [10]. In paragraph 2.2.3 the basic properties
of surface plasmon polaritons, waves propagating along a metal dielectric surface, were
discussed. SPPs are not limited to planar surfaces but can be also found for metal stripes
or cylindrical wires. For an infinite long metal cylinder the basic properties of SPPs stay
qualitatively the same, thus presenting a kind of plasmonic waveguide. Especially if the
limiting case of a large cylinder diameter is considered, the dispersion relation, propagation
length and decay length approach the limiting values of a planar interface. But as the
diameter is decreased towards the skin length both the imaginary part and the real part of
the wavevector kSPPM

3 in propagation direction increase, which means that the propagation
length as well as the velocity become smaller. Furthermore it can be shown, that a decrease
of the diameter results in a larger confinement of the fields inside the metal wire and therefore
increases the losses due to Ohmic damping [53].

A single wire antenna of length L as illustrated in Figure 2.4 can be pictured as a finite piece
of such a wire waveguide. The two open ends represent mirror-like discontinuities with a
near unity reflection coefficient. In such an one-dimensional cavity, a standing wave builds
up once the accumulated phase per round trip equals an integer multiple of 2π, similar to
the case of mirror based Fabry-Perot resonator [46]. For plasmonic nanoantennas the fields
extend outside the physical boundaries of the metal structure, which results in a phase shift
φR upon reflection [54], that has the same effect as some additional length of propagation [55].
With this, the resonant antenna length Lres for the m-th order resonance can be connected
to the wavelength of the waveguide mode λSPPM = 2π/ℜ[kSPPM], via the simple relation:

Lres · ℜ[kSPPM] + φR = mπ (2.41)

As, following Figure 2.2, for low, e.g., RF frequencies the dispersion of a SPP approaches
that of vacuum, the above equation becomes Lres = mλvac/2, thus resembling the findings
from the RF regime. Here, we made the assumption kSPPM = kSPP, which is justified as for
typical RF wavelengths (∼ 1 m) the antenna diameter can be much larger than the skin
length still obeying a wire like shape. Additionally φR can be neglected compared the overall
antenna length at RF wavelengths [54].

However, for optical and near-infrared radiation the wavelength of the waveguide mode
λSPPM will be shorter than the wavelength in vacuum, as can be seen from Figure 2.2 and the

3In order to distinguish between a SPP on a planer surface and a SPP on guided a cylinder the abbre-
viation SPPM for surface plasmon polariton mode was introduced.
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Figure 2.4: Resonances of
a plasmonic nanoantenna.
(Upper picture) Sketch of
accumulated phase contribu-
tions upon propagation and
reflection in a truncated wire,
leading to Fabry-Perot reso-
nances, with γ = ℜ[kSPPM].
Adapted from [5]. (Lower
pictures) Plasmonic modes
(m = 1− 4) of a nanoan-
tenna. The grey arrows
indicate the direction of the
current, the black curves
indicate the current density
distribution and the charge
density maxima are indicated
by + and −.

above discussion. In order to keep an antenna like shape, i.e., a high aspect ratio between the
length and the diameter, nanoantennas will have diameters of some ten nanometers, which
is comparable with the skin length, thus λSPPM gets further decreased and φR can not be
neglected any more. In this thesis we will also not deal with free standing wires in vacuum,
but rather, as we will see in section 4.1, with highly curved nanocuboids lying on a glass
substrate. But nevertheless, the above presented model provides us with an understanding
of the linear connection between the resonant antenna length Lres and the wavelength and
explains the differences of nanoantennas compared to RF antennas.

In Figure 2.4 the first four plasmonic modes (m = 1− 4) of a nanoantenna are visualized in
terms of the charge distribution, the current direction and the current density distribution.
We see, that for even order modes the currents cancel each other out, while for odd order
modes a net current survives. By examining the charge distribution it becomes evident, that
odd order modes give rise to a dipole moment, but even order modes not. Therefore only
odd order modes can be excited by and interact with plane waves.

Gap nanoantennas

Next the case of a gap nanoantenna, i.e., two metallic wires arranged in a row divided by a gap
comparable to the wire diameter, will be discussed. For this purpose it is useful to consider
again the mechanical mass spring system analogue of a plasmonic resonance depicted in
Figure 2.3 [5, 57]. Here, each wire has to be considered as an individual mass spring system
with the same resonance frequency. Due to the interaction between the surface charges
on the ends of both wires an additional spring needs to be introduced to couple the two
systems, as depicted in Figure 2.5. As known from classical mechanics, the coupling of the
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Figure 2.5: Artistic representation of the evolution from two plasmonic nanoantennas with res-
onance frequency ω0 to a gap nanoantenna and the corresponding mechanical analogue. The
coupling between the two individual nanoantennas results in a mode splitting, giving rise to an in
phase dipolar oscillating mode at a lower frequency and an anti phase oscillating mode at a higher
frequency. Adapted from [56].

two mass spring systems (antenna wires) through a third spring (nanoantenna gap) results in
the appearance of two new eigenmodes [58]. One eigenmode exhibits an in phase oscillation
of the two springs, for which the interaction spring has a fixed length and therefore does
not exert any additional force on the masses. As can be seen in Figure 2.5, this eigenmode
is characterized by a dipole like charge oscillation, which allows for excitation by plane
wave illumination. The other eigenmode is characterized by an anti phase oscillation in
which the interaction spring shifts the resonance to higher frequencies. In contrast to the
first eigenmode, here, the two individual dipoles oscillate out of phase and therefore cancel
each other in the far field. For a complete description a reduced restoring force of the two
single particle springs has to be added to this model for the in phase eigenmode. Such a
weakened spring constant can be explained by a mutual induction of charges, which in the
coupled system are displaced toward the gap [57]. Thus the in phase eigenmode experiences
a red-shift compared to the uncoupled system.

Numerical case study

To illustrate the previous discussion and to get an idea of possible applications of nanoan-
tennas, numerical simulated extinction spectra and near field enhancement distributions for
a nanoantenna and a gap nanoantenna are shown in Figure 2.6. For the simulations the
more realistic case of a radiused nanocuboid lying on top of a glass surface was assumed
instead of a cylinder in vacuum. The individual gold nanoantennas were modelled to be
180 nm long, 36 nm wide and 40 nm high. The gap of the gap nanoantenna has a width
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Figure 2.6: Numerical sim-
ulated extinction (one mi-
nus transmission) spectra of
a nanoantenna (green) and a
gap nanoantenna (blue) ar-
ranged with the same pe-
riodicity. The inset shows
the simulated near fields |E|
normalized to the incident
field |E0| on an interpolated
colourspace.

of 40 nm and the nanoantennas are arranged in a lattice with a periodicity of 600 nm. The
excitation was linearly polarized along the antenna arms. The coupling of the two antennas
in the case of the gap nanoantenna results in a large near field enhancement which exceeds
the cumulative effect of the individual wires. Additionally, the extent of the enhancement
volume of the gap nanoantenna is increased compared to the nanoantenna. Thus the gap
nanoantenna geometry is an interesting candidate to enhance light matter interactions in
nanoscale volumes. Moreover, in the extinction spectra the previously discussed red-shift of
the gap nanoantenna compared to the single nanoantenna becomes obvious. This red-shift
may be obstructive, if a plasmonic nanostructure is needed which has a high aspect ratio but
a resonance at short wavelengths. The comparison of the extinction spectra also reveals a
broader full width at half maximum (FWHM) ∆λ in the case of the gap nanoantenna. This
quantity is linked to the quality (Q-)factor of a resonator via the relation Q = λ0

∆λ
[46]. The

Q-factor itself counts the number of oscillations required for an oscillating system’s energy
to fall off to 0.2 % and therefore measures the energy stored in a resonator. From Figure 2.6
a decrease of the Q-factor by nearly 35 % can be extracted. All in all, the gap nanoantenna
provides a better coupling between near and far field, but the single nanoantenna is obviously
the better resonator.

Light matter interaction

If gap nanoantennas should be used to enhance the interaction between light and nanoscale
matter via the intensity enhancement in the antenna gap, the influence of the nanoscale
matter on the optical properties of the combined system, i.e., nanoantenna and nanoparticle,
has to be taken into account. We have seen in paragraph 2.3.1 that an increase of the
refractive index of the medium surrounding a metallic nanoparticle leads to a decrease of
it’s resonance frequency. Similiar results can be obtained if not a metal vacuum interface
is assumed to calculate the dispersion relation of a SPP, but an arbitrary dielectric metal
interface. However, for several applications it will be more obvious to place nanoscale matter,
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Figure 2.7: Numerical simulated extinction (one minus transmission) spectra of gap nanoantennas
for the cases, that the gap is filled with vacuum (n = 1) (black), a nanoparticle with a refractive
index of n = 2.2 and a diameter smaller than the gap (blue), a nanoparticle with the same refractive
index but a diameter equal to the gap (red) and a nanoparticle with the same refractive index but
a diameter bigger than the gap (green). The insets show the simulated near fields |E| normalized
to the incident field |E0| on an interpolated colourspace. The perimeters of the nanoparticles are
highlighted with grey dashed lines.

e.g., nanoparticles or molecules, in the gap of the nanoantenna and not to embed it in matter.
In Figure 2.7 the extinction spectra and the near field distribution of a gap nanoantenna are
shown, for the cases that the gap is filled with: (black) vacuum (n = 1), (blue) a nanoparticle
with a refractive index of n = 2.2 and a diameter smaller than the gap, (red) a nanoparticle
with the same refractive index but a diameter equal to the gap, and (green) a nanoparticle
with the same refractive index but a diameter bigger than the gap. From an examination
of the extinction spectra we find, that a pronounced red-shift occurs if the nanoparticle
touches the nanoantenna arms, i.e., fills the gap. Therefore a local field enhancement inside
the nanoparticle can only be obtained, if the nanoparticle fills the gap completely. This
becomes even more evident by an inspection of the field distributions in Figure 2.7. Here we
see that for a nanoparticle smaller than the gap we get a strong field enhancement between
the nanoantenna’s tips and the particle but nearly no enhancement in the nanoparticle
itself. However the situation drastically changes when the gap is completely filled. From
this comparison we see that in order to get an enhanced light matter interaction via a gap
nanoantenna the matter has to fill up the gap completely, but an only partial filling of the
gap may be interesting to locally manipulate the antenna fields.
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2.3.3 V-chaped nanostructures

In this paragraph we will have a look on a more complex V-chaped or L-chaped plasmonic
nanostructure. At first sight this geometry can be seen as an antenna buckled in the middle.
The m = 1 mode still exhibits a dipolar charge distribution in horizontal direction, in other
words it can still interact with a horizontally polarized electromagnetic wave. Additionally
this mode gives rise to a magnetic dipole moment oriented perpendicular to the plane of
the V. However, the m = 2 mode now gives rise to a dipolar charge distribution in the
vertical direction, i.e., it can interact with a vertically polarized electromagnetic wave. This
occurrence of two modes at different energies and under different polarizations is also visible
in a numerical estimation of the extinction shown in Figure 2.8. But the model of a buckled
antenna does not involve a deviation of the change in the resonance frequencies, due to the
buckling. For this purpose on can look at a V-chaped structure as two identical, perpendic-
ular arranged, coupled antennas, where each antenna represents one arm of the V-chaped
structure [59]. As in the case of the gap nanoantenna we can explain this system in the mass
spring model giving rise to a set of equations of motions:

m
∂2x′(t)

∂t2
+mγ

∂x′(t)

∂t
+mω2

0x
′(t) + κ1y

′(t) = −qEx′e−ıωt (2.42)

m
∂2y′(t)

∂t2
+mγ

∂y′(t)

∂t
+mω2

0y
′(t) + κ2x

′(t) = −qEy′e
−ıωt (2.43)

where κi represents the coupling between the two antennas and x′ and y′ the direction
along those. For a perpendicular arrangement κ1 equals κ2. The solution of such a system
of coupled differential equations can be found by Fourier transformation to the frequency
domain and a coordinate transformation to the principal axis system, i.e., a coordinate
system where both equations are decoupled [60]. In so doing we obtain the new resonance
frequencies ωx =

√

ω2
0 − κ and ωy =

√

ω2
0 + κ, as well as the principle axis system defined

by the two eigenvectors êx = 1√
2
(êx′ − êy′) and êy = 1√

2
(êx′ + êy′). Hence the coordinate
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Figure 2.8: Numerical esti-
mated extinction (one minus
transmission) spectra of a V-
shaped plasmonic nanostruc-
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cident light (blue) and hori-
zontal polarized incident light
(red). The artistic represen-
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system is rotated by 45◦ and points along the horizontal and vertical direction as discussed
previously. Here, only the m = 1 mode of each antenna was regarded, but the coupling and
splitting can be described analogously for the higher order modes.

Obviously the V-shaped nanostructures will offer some properties not encountered by
nanoantennas. First, they posses two dipolar modes at distinct resonance frequencies and
polarizations. Second, they posses a mode giving rise to a magnetic dipole. And last but
not least they possess a lower symmetry than the nanoantennas, i.e., they do not possess
a horizontal mirror plane. Especially the last point will become important in section 2.4
about nonlinear optics.

2.3.4 The metamaterial concept

In paragraph 2.2.1 we have seen, that the macroscopic response of dielectric materials can be
described by the microscopic dipolar response of its building blocks, i.e., the atoms forming
the dielectric. This is due to the fact, that both the size of a single atom, as well as
the distance between the atoms in a crystal lattice are much smaller than the wavelength of
light. This suggests itself, that by tailoring the dipolar response of the atoms the macroscopic
response of materials could be tailored. We have seen in the previous paragraphs, that the
optical response, especially the resonance frequency of plasmonic nanostructures can be quite
easily tuned by adjusting their geometry. Thus, by arranging plasmonic nanostructures in a
periodic fashion with an inter particle distance below the wavelength of light one can achieve
an artificial material with a specific optical response, a so-called plasmonic metamaterial [13].
With this approach several fascinating features can be obtained like for example magnetism
at optical frequencies [14–16], a negative refractive index [17–19] or electromagnetic invisible
cloaks [20–22].

In this thesis the concept of plasmonic metamaterials will be used to obtain materials with
a specific dispersion of the susceptibility. A straight forward approach would be to investi-
gate isolated plasmonic nanostructures to choose a specific geometry as building block for a
metamaterial. However, it has been shown that the coupling between the individual nano-
structures in a metamaterial strongly influences the optical properties of the nanostructures
and thereby the effective optical response of a metamaterial [61–63]. Therefore it is more rea-
sonable to directly investigate metamaterials and to only deal with their effective response.
As we have seen before, the linear interaction between an electromagnetic wave and mat-
ter can be completely described with the help of the susceptibility. In order to determine
this quantity experimentally we have to turn to Lambert-Beer’s law, which describes the
attenuation of the intensity I(ω,z) = I0e

−β(ω)z of a plane wave with initial intensity I0 when
propagating in a medium [64]. With the well known relation between the electric field E and
the intensity I = cǫ0

2
|E|2 [46], we see that a frequency resolved measurement of the intensity

extinction provides us with the knowledge of the imaginary part of the susceptibility:

1− I(ω,z)

I0
≈ β(ω)z = 2

ω

c0
κ(ω)z ≈ ω

c0
ℑ[χ1(ω)]z (2.44)

This is of course not a specific result for metamaterials, but holds true for any kind of matter.
For simplicity we define the absolute extinction coefficient B(ω) = β(ω)z. In the following
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discussion we assume, that the constituting plasmonic nanostructures are all of the same
kind and exhibit a single Lorentzian shaped resonance, with a resonance frequency ω0 and
the damping γ.

χ(ω) =
na

ǫ0

nee
2

me

(ω2
0 − ω2) + ıγω

(ω2
0 − ω2)2 + γ2ω2

(2.45)

Now, the resonance frequency ω0 is not that of an isolated nanostructure, but accounts for
the shifted resonance due to inter particle coupling. Likewise the damping γ describes the
Ohmic and radiative losses of the particles theirselves, as well as the damping due to inter-
particle coupling. The number density of the atoms na now describes the number density of
the particles. In the following we will deal with a 2D metamaterial, i.e., plasmonic nanopar-
ticles arranged on lattice with interparticle distances dx and dy. The number density times
the propagation length z through the metamaterial is then just given by the interparticle
distances na · z = 1/(dx · dy). Hereby equation (2.44) and (2.45) can be rewritten to:

B(ω) =
ω

c0ǫ0

1

dxdy
A

γω

(ω2
0 − ω2)2 + γ2ω2

(2.46)

χ(ω) =
1

ǫ0

1

dxdyz
A

(ω2
0 − ω2) + ıγω

(ω2
0 − ω2)2 + γ2ω2

(2.47)

where A = nee2

me
describes the individual oscillator strength. Close to the resonance, i.e.,

ω ≈ ω0, we can approximate this to:

B(ω) =
1

c0ǫ0

1

dxdy
A
1

γ
=

1

c0ǫ0

1

dxdy
A
Q

ωo
(2.48)

χ(ω) =
1

ǫ0

1

dxdyz
A

ı

γω0
=

1

ǫ0

1

dxdyz
A
ıQ

ω2
0

(2.49)

Thus the susceptibility of a metamaterial can be estimated by a quite simple measurement.

By using Lambert-Beer’s law we assumed, that an electromagnetic wave propagating through
a metamaterial only experiences absorption, but no scattering by the plasmonic nanostruct-
ures. To justify this assumption one can also connect the total extinction of a 2D metamate-
rial to the individual extinction cross sections of the constituting plasmonic nanostructures
via their area density: 1 − T = Cext/(dx · dy). This approach will exactly reproduce the
result obtained above, if we use the outcome of the quasi-static approximation presented in
paragraph 2.3.1, that the absorption cross section dominates the extinction cross section.
However, even if the quasi-static approximation is not valid for the plasmonic nanostructures
constituting the metamaterial, we can at least assume for a given nanostructure geometry
in a limited spectral range, that the ratio of scattering and absorption is constant.
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2.4 Nonlinear optics

In the previous section we discussed linear interactions between light and matter. These in-
teractions are linear in the sense, that the response of matter, described by the polarization,
shows a linear dependence on the electric field. However, in general also nonlinear depen-
dencies can occur, giving rise to a hole variety of effects, from which two will be used and
investigated in this thesis: Second harmonic generation, which is the conversion of a wave
into a new wave with twice the frequency, and optical parametric generation, which is the
conversion of a wave into two new waves, whereas the sum of their frequencies corresponds
to the frequency of the original wave. Due to a superlinear dependency on the amplitudes of
the incident fields, those effects can only be observed in the presence of very intense optical
fields, not encountered in nature. Therefore nonlinear optical effects where not perceived
until the invention of the laser [23].

In this thesis second harmonic generation with plasmonic nanostructures and metamaterials
will be investigated. Therefore the properties of this effect will be evaluated in this section on
the basis of nonlinear light matter interaction in general. As shown in the previous section,
one interesting aspect of plasmonic nanostructures is the ability to engineer their dispersion
which will lead to a strongly frequency dependent nonlinear response. In order to investigate
this, a tunable light source will be designed and used in this thesis, based itself on optical
parametric generation, which will consequently be also discussed in this section.

2.4.1 Nonlinear polarization and effects of second order

From equation (2.8) it becomes evident, that the polarization P (t) of a medium is a function
of the electric field E(t) and can thus be written as a power series of the electric field:

P (t) = ǫ0χ
(1)E

︸ ︷︷ ︸

PL

+ ǫ0χ
(2)EE + ǫ0χ

(3)EEE + ...
︸ ︷︷ ︸

PNL

(2.50)

Here, the first term corresponds to the linear polarization P L(t), discussed in detail pre-
viously. The following terms, which are of higher order in E than the linear term, are
summarized in the nonlinear polarization P NL(t), where the proportionality constants χ(n)

are the susceptibilities of n-th order. As in the linear case, the susceptibilities of anisotropic
materials are in general tensors of the order (n+1). For isotropic materials, or when only one
tensorial component is of interest, the tensorial character can often be neglected. Putting the
sum of linear and nonlinear polarization into Maxwell’s equations (2.1-2.4) leads to a source
term in the wave equation (2.8). Now, the nonlinear wave equation in time and frequency
domain read [29]:

∇2E(r,t)− ǫ(ω)

c20

∂2E(r,t)

∂t2
=

1

ǫ0c
2
0

∂2P NL(r,t)

∂t2
(2.51)

∇2E(r,ω) +
ǫ(ω)ω2

c20
E(r,ω) = − ω2

ǫ0c20
P NL(r,ω) (2.52)

In this thesis only nonlinear processes of second order will be investigated, hence, equa-
tion (2.50) is truncated after the second summand. To derive the nonlinear processes of
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second order, a scalar description will be used for the moment. In general the second order
nonlinear polarization is not given by the electric field of an incoming wave squared, but by
two not necessarily identical waves, which can be represented in the form:

E(t) = E1e
−ıω1t + E2e

−ıω2t + c.c. (2.53)

With this approach we find that the nonlinear polarization is of the form:

PNL(t) = ǫ0χ
(2)[E2

1e
−ı2ω1t + E2

2e
−ı2ω2t + 2E1E2e

−ı(ω1+ω2)t (2.54)

+2E1E
∗
2e

−ı(ω1−ω2)t + c.c.] + 2ǫ0χ
(2)[E1E

∗
1 + E2E

∗
2 ] (2.55)

It is convenient to express the nonlinear polarization PNL(t) as a sum over its different
positive and negative frequency components

∑

n P (ωn)e
ıωnt, in order to sort the complex

amplitudes:

P (2ω1) = ǫ0χ
(2)E2

1 (2.56)

P (2ω2) = ǫ0χ
(2)E2

2 (2.57)

P (ω1 + ω2) = 2ǫ0χ
(2)E1E2 (2.58)

P (ω1 − ω2) = 2ǫ0χ
(2)E1E

∗
2 (2.59)

P (0) = 2ǫ0χ
(2)(E1E

∗
1 + E2E

∗
2) (2.60)

Additionally there is also a response at the negative of each of the nonzero frequencies, given
by the complex conjugate of the corresponding equation. Thus it becomes obvious that
due to a second order nonlinearity we obtain four different frequency conversion processes,
named after their resulting frequency ω:

ω = 2ωi second harmonic generation (SHG)
ω = ω1 + ω2 sum frequency generation (SFG)
ω = ω1 − ω2 difference frequency generation (DFG)

ω = 0 optical rectification (OR)

Surprisingly, not all of those frequency conversion processes lead to the generation of electro-
magnetic radiation, but there is also one process, optical rectification, which leads to a static
electric field. An intuitive picture of those processes is given in terms of the corresponding
photon energy-level diagrams presented in Figure 2.9. In the case of SHG and SFG two
photons are simultaneously absorbed by an atom, promoting it to a virtual, higher energy
level. This virtual level decays instantaneously back to the ground level by the emission of
a photon, whose frequency is the sum of the frequencies of the previously absorbed pho-
tons. Hence, SHG can be understand as degenerate SFG. In the case of DFG we see, that
the absorption of a photon at the frequency ω1 and one at ω2, resulting in the emission of
a photon at the frequency ω = ω1 − ω2, would violate the conservation of energy. Thus,
for every photon created at the difference frequency ω = ω1 − ω2 a photon at ω1 must be
absorbed and a photon at ω2 and ω must be emitted, giving rise to an amplification of the
input-field at ω2. Therefore, DFG is also known as optical parametric amplification. In
the photon energy-level description this corresponds to the absorption of a photon at the
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Figure 2.9: Photon energy-level diagram of second harmonic generation (SHG), sum frequency
generation (SFG), difference frequency generation (DFG), and optical rectification (OR). The solid
lines represent the energy ground-level, the dashed lines virtual energy levels, the thin arrows
incoming photons and the broad arrows (solid circle) the resulting photons.

frequency ω1, promoting the atom to a virtual, higher energy level. This virtual level decays
by a two photon emission process, stimulated by the presence of the input-field oscillating at
ω2. However, this two-photon emission can also occur spontaneously, without the presence of
a field at ω2, and is known as parametric fluorescence or optical parametric generation [65].

2.4.2 Nonlinear susceptibility

In the following we will take a closer look on the second order nonlinear susceptibility. Due
to the tensorial character of the susceptibility, the most general description for the nonlinear
polarization of second order is given by:

Pi(ω) = ǫ0
∑

jk

∑

nm

χ
(2)
ijk(ω,ωn,ωm)Ej(ωn)Ek(ωm) (2.61)

Here the indices i,j,k refer to the Cartesian components of the fields and the convenient
expression for the polarization and the electric fields is used:

P NL(t) =
∑

n

P (ωn)e
−ıωnt (2.62)

E(t) =
∑

n

E(ωn)e
−ıωnt (2.63)

As before, the summation extends over all positive and negative frequency field components.
Due to the previous survey we can restrict ourselves to the case of ω = ωn + ωm, which
means that the nonlinear susceptibility of second order is characterized by 12 tensors, which
accounts for 6 different three wave mixing possibilities, whereas additionally each frequency
can be replaced by its negative [29]. Furthermore each of these 12 tensors consists of 27
Cartesian components, thus the second order nonlinear susceptibility is determined by 324
components. In the following it will be shown, that this number can be strongly reduced.
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Properties of the nonlinear susceptibility

First of all the polarization as well as the electric fields represent physical measurable quan-
tities and therefore must be real, thus the positive and negative frequency components can
be related via [29]:

Pi(ω) = Pi(−ω)∗ (2.64)

Ej(ωn) = Ej(−ωn)
∗ (2.65)

Ek(ωm) = Ek(−ωm)
∗ (2.66)

leading to a relation for the tensor components of the form:

χ
(2)
ijk(ω,ωn,ωm) = χ

(2)
ijk(−ω,− ωn,− ωm)

∗ (2.67)

As the order of the electric fields in equation (2.61) is arbitrary, we can conclude that:

χ
(2)
ijk(ω,ωn,ωm) = χ

(2)
ikj(ω,ωm,ωn) (2.68)

This is known as intrinsic permutation symmetry. For example, for the case of SHG the
nonlinear polarization is thus given by:
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(2.69)

However, one can always move to a coordinate system in which one of the Cartesian coordi-
nates describes the propagation direction, thus only two Cartesian components of the fields
can be observed.

A very important feature of the second order nonlinear susceptibility arises, when the sym-
metry of the nonlinear medium (crystal) is taken into account. In a medium owing inversion
symmetry, an inversion of the Cartesian coordinates will change the sign of the field ampli-
tudes and the polarisation, e.g., Pi(−r) = −Pi(r) . For a nonlinear process of second order
this leads to [46]:

Pi(−r) = ǫ0χ
(2)
ijkEj(−r)Ek(−r) (2.70)

= ǫ0χ
(2)
ijk(−Ej(r))(−Ek(r)) (2.71)

= ǫ0χ
(2)
ijkEj(r)Ek(r) (2.72)

= Pi(r) (2.73)

This can only be fulfilled if χ
(2)
ijk = 0. Therefore, nonlinear optical effects of second order, or

more general of even order, can only be found in non inversion symmetric media, or to use
a crystallographic language, in noncentrosymmetric media.
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Let us, for example, consider a nonlinear material possessing a mirror symmetry in x-
direction, i.e., a mirror plane in yz-plane, and a mirror symmetry in z-direction, but no
mirror symmetry y-direction. These symmetries correspond for example to the V-shaped
structures depicted in Figure 2.8. If furthermore the incident light is propagating in the
z-direction, i.e., the electric field has only components in x- and y-direction, the nonlinear
polarization for SHG is reduced to:
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 =
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(2.74)

Thus, one only has to deal with five tensor elements, but two are not accessible in the
discussed situation.

Anharmonic oscillator model

In paragraph 2.2.1 the Lorentz model of an atom was used to describe linear response of
nonmetallic matter to an incident electromagnetic wave. In the following this model will
be extended by allowing a nonlinearity in the restoring force exerted on the electron. As
stated above, second order nonlinear optical effects can only occur in noncentrosymmetric
media. Due to the noncentrosymmetry, the equation of motion for an electron will take the
following form [47, 66]:

q̈i + γL,iq̇i + ω2
0,iqi +

∑

jk

aijkqjqk = − e

me
Ei(t) (2.75)

where qi is the displacement of the electron in the i-th direction, thus i,j,k account again for
the Cartesian coordinates, and aijk describes the asymmetry of the atomic potential. The
applied optical field has the same form as in equation (2.53). To solve equation (2.75) it is
convenient to use a perturbative ansatz, where E(t) is replaced by λE(t), with λ ranging
between zero and one. Now, one has to deal with:

q̈i + γL,iq̇i + ω2
0,iqi +

∑

jk

aijkqjqk = − e

me
λEi(t) (2.76)

which can be solved using a power series ansatz:

qi = λq
(1)
i + λ2q

(2)
i + λ3q

(3)
i + ... (2.77)

Insertion and sorting by powers of the expansion parameter results in the equations:

q̈
(1)
i + γL,iq̇

(1)
i + ω2

0,iq
(1)
i = − e

me
Ei(t) (2.78)

q̈
(2)
i + γL,iq̇

(2)
i + ω2

0,iq
(2)
i +

∑

jk

aijkq
(1)
j q

(1)
k = 0 (2.79)

etc. (2.80)
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The lowest order contribution q
(1)
i is obviously governed by the same equation as the linear

Lorentz model and is thus solved by:

q
(1)
i (t) = q

(1)
i (ω1)e

−ıω1t + q
(1)
i (ω2)e

−ıω2t + c.c. (2.81)

with the amplitudes:

q
(1)
i (ωα) = − e

me

Ei(ωα)

Di(ωα)
(2.82)

and the complex denominator Di(ωα) = ω2
0,i − ω2

α − ıωαγL,i. Hence, we can reproduce the
linear susceptibility:

χ
(1)
i (ωα) = Ne

e2

ǫ0me

1

Di(ωα)
(2.83)

where the principal axis coordinate system was assumed, i.e., χ
(1)
ij = δijχ

(1)
ii = δijχ

(1)
i . The

expression for q
(1)
i is then substituted into equation (2.79) giving rise to the frequencies

±2ω1, ± 2ω2, ± (ω1 + ω2), ± (ω1 − ω2), and 0. As example, the response at frequency 2ω1,
i.e., SHG will be determined. Hence,

q̈
(2)
i + γL,iq̇

(2)
i + ω2

0,iq
(2)
i = −

∑

jk

aijk

(
e

me

)2
Ej

Dj(ω1)

Ek

Dk(ω1)
e−ı2ω1t (2.84)

has to be solved, which can be done with the ansatz:

q
(2)
i (t) = q

(2)
i (2ω1)e

−ı2ω1t + c.c. (2.85)

leading to the result:

q
(2)
i (2ω1) = −

∑

jk

aijk
Di(2ω1)

(
e

me

)2
Ej

Dj(ω1)

Ek

Dk(ω1)
(2.86)

In analogy with the linear case, the second order nonlinear susceptibility for SHG can now
be written as:

χ
(2)
ijk(2ω1,ω1,ω1) =

aijkNee
3

ǫ0m2
eDi(2ω1)Dj(ω1)Dk(ω1)

(2.87)

Analogously the second order nonlinear susceptibilities at the other frequencies can be found.
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Miller’s law

A comparison of the resulting second order nonlinear susceptibility given by equation (2.87)
with the linear susceptibility given by equation (2.83) shows, that the second order nonlinear
susceptibility can be expressed with the help of the linear susceptibilities at the corresponding
frequencies:

χ
(2)
ijk(2ω1,ω1,ω1) =

ǫ20meaijk
N2

e e
3

χ
(1)
ii (2ω1)χ

(1)
jj (ω1)χ

(1)
kk (ω1) (2.88)

An interesting consequence of this correlation is an enhancement of the second order nonlin-
ear susceptibility in the case, that the linear susceptibility exhibits a resonance at either the
driving frequency (one-photon resonance) or at the second harmonic frequency (two-photon
resonance). Already in the earlier years of nonlinear optics R. Miller empirically showed
that the ratio:

χ
(2)
ijk(2ω1,ω1,ω1)

χ
(1)
ii (2ω1)χ

(1)
jj (ω1)χ

(1)
kk (ω1)

(2.89)

is nearly constant for all noncentrosymmetric crystals [27]. This corresponds to the fact that
the combination

ǫ20meaijk
N2

e e
3

(2.90)

is nearly constant. The parameters e,me and ǫ0 are of course fundamental constants. For
all condensed matter, the electron number density Ne is also nearly the same. Thus, aijk
should be the same for all condensed matter. C. Garret and F. Robinson gave the following
explanation to this [28]: (i) The linear and nonlinear contributions to the restoring force will
be same, if the displacement of the electrons due to a driving field becomes comparable to
the size of the atom. (ii) The size of the atom is in the order of the separation between the
atoms, given by the lattice constant d, thus meω

2
0d = mead

2. (iii) ω0 and d are roughly the
same for most solids.

2.4.3 Nonlinear response of plasmonic nanoparticles

Metallic nanoparticles can be used in at least two different ways for nonlinear frequency
conversion applications. The first method is to employ the dramatic near field enhancement
inherent to plasmonic nanoparticles in order to boost nonlinear processes [42, 67]. As the
nonlinear polarization of second order scales quadratically with the amplitude of the driv-
ing field, an enhancement of the amplitude will also quadratically enhance the nonlinear
polarization. This gives rise to the idea of placing a second order nonlinear material at a
position close to a plasmonic nanostructure, where the field is enhanced in order to boost the
response of the nonlinear material. Such a hybrid geometry could for example consist of a
gap nanoantenna, as presented in paragraph 2.3.2, whose gap is loaded with a second order
nonlinear dielectric nanostructure. But some care has to be taken with this approach. We
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have seen before, that the nonlinear response is anisotropic with respect to the driving field.
This indicates that the dielectric nanostructure, or to be more precise its crystallographic
axis, has to be aligned with respect to the local field components and depending on the exact
plasmonic geometry, only dielectrics with certain non vanishing elements of the nonlinear
susceptibility can be employed [68]. Furthermore, it was shown in paragraph 2.3.2 that at
least for gap nanoantennas a complete filling of the gap is necessary to obtain a significant
field enhancement in the dielectric.

In the presented concept a plasmonic nanostructure was used to enhance the nonlinear
response of a dielectric nanostructure, i.e., the plasmonic nanostructure acts as a passive
element. But plasmonic nanostructures can also give rise to an intrinsic second order non-
linear response [42, 69]. This might sound counterintuitive as the building materials for
plasmonic nanostructures, metals, show a inversion symmetric bulk atomic structure. How-
ever, on a surface inversion symmetry is obviously broken, giving rise to a second order
nonlinearity, especially as plasmonic nanostructures have a high surface to volume ratio due
to their overall size. In the previous section it was furthermore shown that the electric field
in plasmonic nanostructures is strongly confined to their surface. Additionally, when the
nonlinear response of subwavelength objects is studied, the symmetry of the object itself has
also to be taken into account [70, 71]. For example the V-chaped structures described in
paragraph 2.3.3 show a lower symmetry than the nanoantennas discussed in paragraph 2.3.2,
which is manifested in an several orders of magnitude stronger nonlinear response of the V-
chaped structures [37]. All in all, the possibility of influencing their symmetry and resonances
by means of geometry design, together with their strong coupling to free space radiation,
and their field enhancement abilities, have encouraged several studies on the nonlinear re-
sponse of plasmonic nanostructures leading to frequency conversion efficiencies beyond those
of dielectric materials [32].

In order to describe the nonlinear response of dielectrics the Lorentz model was just extended
to describe an anharmonic potential of the electrons. Unfortunately such an easy extension
can not be done for metallic matter, as the Drude model, describing linear response of metals,
depicts the electrons as unbound. However, a description of the free electron gas as a fluid
leads to nonlinear effects of arbitrary order similar to nonlinearities in hydro-dynamics [72].
In this approach not individual electrons are considered, but the free electron gas as a hole
is characterized by a number density ne(r,t) and a velocity field v(r,t), which gives rise to
a charge density ρ(r,t) and a current density j(r,t) [33]:

ρ(r,t) = e (n0 − ne(r,t)) (2.91)

j(r,t) = (ρ(r,t)− en0) v(r,t) (2.92)

Here n0 is the time independent number density of the positively charged background formed
by the ions of the metal. The time derivative of the current density ∂

∂t
j(r,t) representing a

source term in the inhomogeneous wave equation (2.7) can then be expressed as:

∂

∂t
j(r,t) = −ene

dv

dt
+
∑

k

∂

∂rk

(
jjk

eno − ρ

)

(2.93)

where the first term on the right hand side describes a force density based on the Lorentz
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force and can thus be related to:

−ene
dv

dt
=

−e

me

[(ρ− en0)E + j ×B] (2.94)

Thus one finally obtains, by adding a phenomenological term γj describing the losses, and
replacing the charge density via ρ = ǫ0∇E:

∂

∂t
j(r,t) =

e2n0

me

E − γj − e

me

[ǫ0(∇E)E + j ×B] +
∑

k

∂

∂rk

(
jjk

eno − ρ

)

(2.95)

The first two terms represent the linear oscillation of the electrons with respect to the
positive charged background, whereas the other describe the nonlinear sources. The three
different contributions can be accounted to different origins: (i) (∇E)E has only nonzero
contributions on the surface of the metal. (ii) j ×B has only nonzero contributions in the

volume of the metal. (iii)
∑

k
∂

∂rk

(
jjk

eno−ρ

)

has contributions from both the surface and the

volume of the metal. In order to use this model for bulk metals or to describe nonlinear
effects in metallic nanoparticles, it is sufficient to choose the number density ne(r,t) equal to
a constant > 0 inside the metal and ne(r,t = 0 outside the metal. Following this approach,
also the nonlinear response from metallic nanoparticles can be numerically calculated.

2.4.4 Wave description of nonlinear optics

To understand the evolution of electromagnetic waves in a nonlinear medium we will go back
to the nonlinear wave equations given by equation (2.51) and (2.52). We will again separate
the electric fields and the nonlinear polarization according to their frequency components,
but now also take their spatial dependence into account [46]:

P NL(r,t) =
∑

i

(
P i(r)e

−ıωit + P ∗
i (r)e

ıωit
)
/2 (2.96)

E(r,t) =
∑

i

(
Ei(r)e

−ıωit +E∗
i (r)e

ıωit
)
/2 (2.97)

with this the wave equation can be separated according to the different frequency compo-
nents:

(

∇2 +
ǫ(ω)ω2

i

c20

)

Ei(r) = − ω2
i

ǫ0c20
P i(r) (2.98)

Coupled wave equations

The above wave equation must hold for each frequency component and in particular for the
sum frequency component at ω3 = ω1 +ω2. Thus we can propose a plane wave at frequency
ω3 propagating in z-direction as solution. All fields will therefore be represented in the form:

Ei(z) = Aie
ikiz with ki =

niωi

c0
(2.99)
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The amplitude of the nonlinear polarization can now be written as:

P3e
−ık3z = 4ǫ0deffA1A2e

ı(k1+k2−k3)z (2.100)

P1e
−ık1z = 4ǫ0deffA3A

∗
2e

−ı(k1+k2−k3)z (2.101)

P2e
−ık2z = 4ǫ0deffA3A

∗
1e

−ı(k1+k2−k3)z (2.102)

where we introduced the effective nonlinear coefficient deff which can be used to simplify the
relation between the nonlinear polarization and the fundamental waves and is connected to
the nonlinear susceptibility via the general nonlinear coefficient dijk = 1

2
χ
(2)
ijk [73]. Plugging

this into the wave equation results in:
[
d2A3

dz2
+ 2ık3

dA3

dz
− k2

3A3 +
ǫ(ω3)ω

2
3A3

c20

]

eı(k3z−ω3t) + c.c. =

−4deffω
2
3

c20
A1A2e

ı([k1+k2]z−ω3t) + c.c.

(2.103)

and analogous equations for A1 and A2. By using the slowly varying amplitude approxima-
tion

∣
∣
∣
∣

∂2Ai

∂z2

∣
∣
∣
∣
≪ k

∣
∣
∣
∣

∂Ai

∂z

∣
∣
∣
∣

(2.104)

we can finally obtain the coupled wave equations, with the wavevector mismatch
∆k = k1 + k2 − k3:

dA3

dz
=

2ıdeffω
2
3

k3c20
A1A2e

ı∆kz (2.105)

dA1

dz
=

2ıdeffω
2
1

k1c
2
0

A3A
∗
2e

−ı∆kz (2.106)

dA2

dz
=

2ıdeffω
2
2

k2c20
A3A

∗
1e

−ı∆kz (2.107)

With these equations all nonlinear processes of second order can be described. However, it
is important to carefully consider the initial conditions. For example, if SHG in a nonlinear
crystal should be described the initial conditions will read A1,A2 6= 0, A3 = 0, but if a part
of the generated wave is coupled back to the medium via a cavity, the latter condition is not
fulfilled.

2.4.5 Second harmonic generation

Second harmonic generation was not only the first observed nonlinear optical process [23] but
can be also seen as the lowest order nonlinear optical process, as it requires only one input
wave interacting with itself creating a new wave with twice the frequency. Therefore SHG
has already been used in the pioneering days of nonlinear optics to study the fundamental
nonlinear properties of different kinds of media [27, 28, 74, 75]. Analogously SHG from
metamaterials and plasmonic nanostructures will be investigated in this thesis. For this
purpose, the principles of SHG will be presented in the following. Additionally SHG will be
used to present the effect of phase mismatch.
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SHG in bulk material

For SHG, the generated frequency is given by ω3 = ω1 +ω2 = 2ω and thus ω1 = ω2 = ω and
A1 = A2 = A(ω). Thereby the original three coupled wave equations are reduced to the first
two. We will make use of the undepleted pump approximation, i.e., A(ω) = const., and the
initial condition A(2ω,z = 0) = 0. For the case of ∆k 6= 0 the amplitude of the generated
wave after the conversion in a medium of length L is obtained by integrating equation (2.105)
from z = 0 to z = L. With the intensities Ii = 2niǫ0c0|Ai|2 the result reads:

I(2ω) = Γ2ω2I2(ω,z = 0)L2sinc2
(
∆kL

2

)

(2.108)

with Γ2 =
32d2

eff

n2(ω)n(2ω)ǫ0c2o
accounting for material specific parameters.

This expression predicts a dramatic decrease of the conversion efficiency, if the condition
of perfect phase matching, i.e., ∆k = 0, is not fulfilled. Depending on the magnitude of
∆k the intensity of the generated wave inside the nonlinear medium will show a oscillatory
behaviour reaching its maximum after Lcoh = ∆k/2, which is called the coherence length,
as can be seen in Figure 2.10. After the coherence length the generated wave and its
driving polarization are out of phase leading to a back conversion from the generated field
to the driving field. In order to avoid this behaviour several techniques are known. As
the coherence length in dielectric materials is typically in the order of some microns, one
possibility is to use nonlinear materials with much shorter lengths or even a singular spatial
expansion with respect to the propagation direction, as will be discussed later on. In the
following two possibilities of achieving phase matching with structured nonlinear materials
will be presented.

Quasi phase matching

The idea behind quasi phase matching (QPM) is to use a material, which is structured
in a way that the nonlinear coefficient changes its sign with the periodicity Λ, which is
called periodic poling.4 If Λ is chosen to be twice the coherence length, a phase jump in
the coupling of the generated and the driving field will occur, due to the sign change of
the nonlinear coefficient, each time the back conversion starts to take place. Thus, the
generated field will grow monotonically with the propagation. A mathematical description
of quasi phase matching can be obtained, by accounting for the periodic sing change of the
nonlinear coefficient via a Fourier series [76]:

d(z) = deff

∞∑

−∞

Gme
ikmz with Gm =

2

mπ
sin(mπl/Λ) (2.109)

Here, km = 2πm/Λ describes the reciprocal vectors of the resulting grating and l/Λ the
duty cycle of the two orientations. The coupled wave equations will now be modified by

4The term periodic poling results from the fact, that such a geometry can be fabricated by inverting the
spontaneous polarization of ferroelectric domains by applying a strong electric field.
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Figure 2.10: Effect of phase matching on the growth of second harmonic intensity with distance in
a nonlinear crystal. Green: perfect phase matching in a uniformly poled crystal; Blue: non phase
matched interaction; Red: first order QPM by flipping the sign of the spontaneous polarization
every coherence length of the interaction of the blue curve. Adapted from [76]

the substitution ∆k → ∆kQ = ∆k − km. It then can be shown that the highest conversion
efficiency is obtained by using the term for m = 1 and Λ = 2Lcoh. A nice feature of quasi
phase matching occurs if the temperature dependency of the refractive index is taken into
account. As the coherence length is frequency dependent, perfect quasi phase matching,
i.e. ∆kQ = 0, will only occur at a certain frequency (range) for a fixed periodicity. But
the coherence length will change with temperature, as it depends on the refractive indices.
Therefore the perfect quasi phase matching condition can be tuned to a certain frequency,
by leaving the periodicity fixed and changing the temperature of the structured material.

For second harmonic generation the resulting intensity as function of the length of the
nonlinear material is shown in Figure 2.10 for perfect phase matching (∆k = 0), perfect
quasi phase matching (∆kQ = 0) and imperfect phase matching (∆k = 2Lcoh). It can be
clearly seen, that for L ≪ Lcoh the effect of phase mismatch plays a minor role, but for
L ≫ Lcoh the generated wave can even vanish. In the case of perfect quasi phase matching
the resulting conversion efficiency is still weaker than in the case of perfect phase matching
but still grows quadratic with length of the employed material squared. This fact is usually
accounted by a reduced effective nonlinear coefficient [76].

Random quasi phase matching

In crystalline powders or polycrystalline materials the nonlinear coefficient is not changing
in a periodic fashion but rather randomly. At first sight one would expect no net conversion
in this situation as the contributions of the individual domains, e.g., the particles of the
powder or the crystallites of the polycrystalline material, to the average polarization should
obey a uniform phase distribution and therefore interfere destructively with each other. But,
by making the assumption that the individual domains obey a Gaussian size and orientation
distribution, whereas the mean value of the size is given by Λ, the following results can be
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obtained from the coupled wave equations [77, 78]: (i) The intensity of the wave generated
by the three-wave mixing process scales linear with the number of domains N , which is
correlated to the sample thickness L and the illuminated area A by N = LA/Λ3. (ii) The
intensity shows a resonance behaviour with respect to the grain size, owing its maximum
when the grain size equals the coherence length. (iii) The intensity scales quadratically with
the nonlinear coefficient averaged over all possible crystal orientations. (iv) The intensity of
the generated wave still scales linear with the individual intensities of both driving waves.

Even if the random quasi phase matching only shows a linear scaling with the length of the
employed crystal, and therefore is less efficient than perfect quasi phase matching or perfect
phase matching it shows some advantages. First of all polycrystalline thin films or crystals
can be fabricated quite easily as we will see later on, especially if it comes to nano or micro
structured films. As the nonlinear coefficient averaged over all possible crystal orientations
has to be taken into account, no care has to be taken for an alignment of the polarization of
the driving fields with respect to the orientation of the employed nonlinear material. Even
as random quasi phase matching shows a frequency dependence via the coherence length this
dependence is rather weak compared to other phase matching techniques, thus random quasi
phase matching is quite interesting for broadband frequency conversion applications [79, 80].

SHG at interfaces

In the paragraph 2.4.5 an analytic expression for SHG in bulk material was obtained by only
considering equation (2.52) in the medium. In a more detailed analysis also the interface of
the medium has to be taken into account. This can be done by postulating a general solution
consisting of any particular solution plus a solution to the homogeneous version of (2.52)
obtained by setting its right hand side to zero [29]. The continuity of the Maxwell equations
require the tangential components of E and H to be continuous, which can only be fulfilled
by the existence of a reflected second harmonic wave. A detailed analysis shows that the
second harmonic wave inside the medium grows not from zero, but from a boundary value,
i.e., a surface contribution, which is comparable to that of the bulk result for a thickness of
L = λ/4π. For the surface contribution propagation effects, in particular phase mismatch,
does not influence the amplitude of the aforementioned boundary value, which is equal
to that of the reflected second harmonic wave. This essentially means, that the reflected
second harmonic intensity will only show a spectral dependency with respect to the nonlinear
coefficient, which can be estimated by equation (2.88). Hence, surface SHG can be employed
as a reference to measure the spectral dependency of the SHG from a material of interest.

It is important to mention that the surface contribution to SHG does not only occur at
the interface of noncentrosymmetric materials, but also at the interface of centrosymmetric
materials. This can be understood by taking into account, that inversion symmetry is
intrinsically broken at an interface. In a phenomenological treatment this process can be
described by modelling the centrosymmetric medium as a thick slab consisting of a material
lacking any kind of second order nonlinearity with a nonlinear polarization sheet sitting on
its surface [81]. Within such a treatment it can be shown, that for a wave with frequency ω
and intensity Iin(ω) impinging perpendicular on that model geometry, the intensity of the
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generated wave at frequency 2ω transmitted through the geometry is given by:

Iout(2ω) = ηω2
∣
∣e(2ω) · χ(2)(2ω,ω,ω) : e(ω)e(ω)

∣
∣
2
I2in(ω) (2.110)

where η is just a proportionality constant, which can be obtained by taking the Fresnel
equations into account. In the above equation the polarization of the incident wave is
described by e(ω) and the polarization of the nonlinear polarization is described by e(2ω)
hence the tensorproduct e(2ω) · χ(2)(2ω,ω,ω) : e(ω)e(ω) can be evaluated according to
equation (2.69).

SHG from metamaterials

In paragraph 2.3.4 2D metamaterials were introduced and examined as plasmonic nanopar-
ticles arranged on lattice, giving rise to an effective, collective, linear response to incident
electromagnetic waves. Due to fabrication issues these metamaterials, or to be more precise
metasurfaces are lying on a substrate, made for example out of glass. The building blocks
of these materials, i.e., the plasmonic nanostructures, can give rise to second order nonlin-
ear optical processes, which includes SHG. Hence, like in the linear case, we can assign an
effective, collective, nonlinear response to a 2D metamaterial or metasurface. Obviously,
the just described geometry resembles the model geometry of the previous paragraph about
SHG at interfaces, if we restrict ourselves to a normal incident driving wave. Hence, we can
make use of equation (2.110) in order to approximate the intensity of the generated second
harmonic light from a metamaterial. For this purpose we first have to estimate the second
order nonlinear susceptibility of a given metamaterial.

As a result of paragraph 2.4.2 Miller’s law was obtained, which can be used to estimate the
second order nonlinear susceptibility from the linear susceptibility. By combining this with
the definition of the effective linear susceptibility of a metamaterial, given in equation (2.47),
we obtain:

χ
(2)
ijk(2ω,ω,ω) =̂ χSHG

ijk =
aijk
ǫ0

(
1

dxdyz

)

A
e

me

Dii(2ω)Djj(ω)Dkk(ω) (2.111)

with the resonance function:

Dii(ω) =
(ω2

i,0 − ω2) + ıγiω

(ω2
i,0 − ω2)2 + γ2

i ω
2

(2.112)

For a given metamaterial dx and dy are known quantities, A and Dii can be obtained by
measuring the absolute extinction B(ω) following paragraph 2.3.4, ǫ0, e, and me are natural
constants, and z describes the singular thickness of a 2D metamaterial. Hence, the second
order nonlinear susceptibility is completely determined except for aijk. It now appears
likely, to make use of the results obtained by R. Miller and assume aijk to be constant
or even to use the well-known values. But one has to keep in mind that the theoretical
justification of Miller’s law is based on specific properties of natural occurring crystals,
which are fulfilled by all noncentrosymmetric matter but not necessarily by metamaterials.
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However, for metamaterials whose source of the nonlinear polarization, i.e., the geometry of
the constituting nanostructures, is similar, aijk should be a constant quantity.

From the above equations one can picture, that the unique property of metamaterials, which
is the possibility to artificially tailor their linear dispersion, can be directly used to also tailor
their nonlinear response. The most often encountered situation for SHG from plasmonic
metamaterials is, that the driving field is in resonance with the metamaterial [37]. This is
due to the fact, that the strong near-field enhancement inherent to plasmonic nanostructures
is believed to be the source of their nonlinearity [42, 67, 69]. As in paragraph 2.3.4 we will now
briefly approximate the second order nonlinear susceptibility for this specific case. Under
the assumption Q = ω0

γ
≫ 1 the resonance functions at the frequencies of interest can be

approximated by:

Dii(ω0) =
ıQi

ω2
0,i

(2.113)

Dii(2ω0) ≅
−1

3ω2
0,i

(2.114)

Hence, the generated SHG intensity under this condition will scale with 4-th power of the
Q-factor, but only quadratically with the oscillator strength A and the density of the plas-
monic nanostructures. However, one should keep in mind that the density of the plasmonic
nanostructures can also influence the Q-factor via inter particle coupling.

The assumption was tacitly made, that i = j = k, or at least ω0,i = ω0,j = ω0,k, which is not
necessarily fulfilled as seen in section 2.3. For a detailed analysis of the second order nonlinear
susceptibility the wave properties, or in more detail the polarization, of the driving wave(s)
and the nonlinear polarization can be taken into account. Let us assume only linear polarized
transverse electromagnetic waves as driving fields and restrict ourselves to the detection of
those waves for the generated field. We furthermore assume, that the nonlinear polarization
sheet representing the metamaterial lies in xy-plane and excitation and detection is done
perpendicular, i.e., a restriction to waves propagating in z-direction. For the case of a single
wave input, we can describe the driving field as E(z,ω) = E0e

ı(ωt−kz) [ex cos θ + ey sin θ],
with ex and ey being the unit vector in x- and y-direction and θ the polarization angle, i.e.
the angle between e(ω) and ex. Obviously equation (2.110) can be rewritten to:

ISHG(ω) = ηω2

∣
∣
∣
∣

P SHG(ω)

|E(ω)|

∣
∣
∣
∣

2

I2in(2ω) (2.115)

which under the previous explained condition becomes:

ISHG(ω) = ηω2
|P SHG

x (ω)|2 + |P SHG
y (ω)|2

|E(ω)|2 I2in(2ω) (2.116)

with:

|P SHG
x (ω)|
|E(ω)| =̂ P̂ SHG

x =
∣
∣χSHG

xxx cos2 θ + χSHG
xyy sin2 θ + χSHG

xxy sin 2θ
∣
∣ (2.117)

|P SHG
y (ω)|
|E(ω)| =̂ P̂ SHG

y =
∣
∣χSHG

yxx cos2 θ + χSHG
yyy sin2 θ + χSHG

yxy sin 2θ
∣
∣ (2.118)
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Evaluating this for the angles θ = 0, π/4, π/2 results in the following table:

θ 0 π/4 π/2

P̂ SHG
x χSHG

xxx 0,5χSHG
xxx + 0,5χSHG

xyy + χSHG
xxy χSHG

xyy

P̂ SHG
y χSHG

yxx 0,5χSHG
yxx + 0,5χSHG

yyy + χSHG
yxy χSHG

yyy

Thus, a polarization selective measurement of ISHG(ω) for a variation of the polarization of
the driving field, can be employed to evaluate the individual tensor elements of the second
order nonlinear susceptibility for second harmonic generation.

2.4.6 Optical parametric generation and amplification

Next difference frequency generation as depicted by the third diagram in Figure 2.9 will be
discussed. In this process two waves at frequencies ω1 and ω2 interact in a nonlinear medium
and generate a new output wave at ω = ω1 − ω2. In order to use the general formalism
obtained through equations (2.96)-(2.107) for sum frequency generation, i.e., ω3 = ω1 + ω2,
the index substitution 3 → p, 2 → s and 1 → i is performed. Under the assumption that
the higher energy wave is undepleted, i.e., Ap = const the coupled wave equations describing
the interaction can be written down:

dAi

dz
=

2ıdeffω
2
i

ki
ApA

∗
se

ı∆kz (2.119)

dAs

dz
= 2ıdeffω

2
s

ks
ApA

∗
i e

ı∆kz (2.120)

For the case of perfect phase matching, these equations can be solved by differentiating the
latter with respect to z and inserting the complex conjugate of the first leading to [29]:

d2As

dz2
=

4d2
eff

ω2
sω

2
i

kskic40
ApA

∗
pAs (2.121)

and a similar equation for Ai. A general solution of such a equation has the form:

As(z) = Csinh(
√

Ipκz) +Dcosh(
√

Ipκz) (2.122)

with the integration constant C and D, depending on the boundary conditions and:

κ2 =
8d2effω

2
sω

2
i

kskic
5
0ǫ0

(2.123)

By assuming the boundary condition Ai(0) = 0 and As(0) arbitrary (or the other way
around), the following result can be obtained:

As(z) = As(0)cosh(
√

Ipκz) (2.124)

Ai(z) = ı

√
nsωi

niωs

Ap

|Ap|
A∗

s(0)sinh(
√

Ipκz) (2.125)
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With a large gain approximation, i.e., κ
√

IpL ≫ 1 where L describes the length of the
employed nonlinear medium, the evolution of the intensities can be simplified to [82]:

Is(L) ≅
1

4
Is(0)e

(2κL
√

Ip) (2.126)

Ii(L) ≅
ωi

4ωs

Is(0)e
(2κL

√
Ip) (2.127)

Now we see that the process introduced as difference frequency generation at the beginning
of this chapter, does not only generate a new wave at the frequency ωi but also amplifies the
lower energy input wave at ωs. Therefore, this process is also known as optical parametric
amplification. Hence, p denotes the pump wave, s the amplified signal wave and i due to
historical reasons the idler wave. Interestingly the ratio of signal and idler intensities is such
that an equal number of signal and idler photons are generated, as predicted in the photon
picture at the beginning of this section. Surprisingly this process even works if no input
wave is explicitly present at the entrance of the nonlinear medium. In this situation which
is known as optical parametric generation, both the signal and the idler wave are seeded by
zero-point fluctuations [83].

In the case of amplification, the resulting frequency ωi is determined by the input frequencies
via the conservation of energy ωp = ωs + ωi, which explains the name parametric amplifica-
tion. But if the process is seeded by zero-point fluctuations, which is in principle broadband
noise, the resulting frequencies are not a priori determined. In this case also phase matching
has to be taken into account, which parametrizes the generation up to a certain bandwidth.
This bandwidth, called phase matching bandwidth can be treated, by adding a phase mis-
match ∆k = kp − ks − ki via the substitution Ipκ

2 → Ipκ
2 + (∆k/2)2 in the previous

equations [82, 84]. The FWHM of the conversion efficiency curve then corresponds to a
phase mismatch of ∆kL = 2.7831 rad. By now varying the signal frequency, while the pump
frequency is kept fixed, the phase mismatch is varied according to:

∂

∂ωs
∆k =

∂ks
∂ωs

− ∂ki
∂ωi

=
1

vg,s
− 1

vg,i
(2.128)

where the group velocity vg was introduced. With this the phase matching bandwidth results
in:

∆ω =
2.7831

∣
∣
∣

1
vg,s

− 1
vg,i

∣
∣
∣L

(2.129)

Thus optical parametric generation/amplification represents the basis of a light source whose
bandwidth and central output frequency is adjustable via the phase matching condition.

There are at least three different schemes, how an OPG process can be used to provide a
tunable light source [85, 86], which are depicted in Figure 2.11. The most wide spread is
the use of an optical cavity, which feeds back the generated signal and/or idler light to the
nonlinear crystal in order to further amplify it, as depicted in Figure 2.11(a). Depending
on the cavity, the signal and/or idler light get amplified in up to several hundreds of passes
through the nonlinear crystal, thus a strong net amplification can be achieved even with a

40



2.4. NONLINEAR OPTICS

Â(2)
!s

!i

!p !p

Â(2)
!s

!i

!p !p

!s

(a) (b) (c)

Â(2)
!s

!i

!p !p

!s

Figure 2.11: Frequency conversion schemes based on optical parametric generation: (a) Opti-
cal parametric oscillator (OPO), (b) Optical parametric amplifier (OPA), (c) Optical parametric
generator (OPG). The boxes represent a second order nonlinear crystal, whereas the grey bars
represent dichroic mirrors.

low gain per single pass through the nonlinear medium. Furthermore, the cavity can also be
used to manipulate the spectral and spatial properties of the generated light. Such devices
are called optical parametric oscillators (OPO). OPOs have proven their functionality and
reliability in research laboratories all over the world and are nowadays a standard tool for
physicists nearly as common as lasers [85, 87]. But the use of an optical cavity has also some
drawbacks. An instability of the cavity will obviously influence the stability of the OPO
process and depending on the needed cavity configuration, the setup of an OPO can get
quite complicated, unhandy and expensive. A common alternative are optical parametric
amplifiers (OPAs), as depicted in Figure 2.11(b). Here, a not too weak light source, operating
at the signal frequency, is seeded in the nonlinear crystal together with a very strong pump
source and gets amplified. But in such a setup the complexity of the cavity, in the case
of an OPO, is just transferred to the provision of a suitable seed source. However, some
research results suggest, that with a suitable pump source a high conversion efficiency can be
achieved without the use of a cavity or an external seed [88, 89], as depicted in Figure 2.11(c).
Such devices are known as optical parametric generators (OPG) and will be discussed in the
following.

By assuming that the OPG process is initiated by zero-point fluctuations, a strongly fluc-
tuating output, i.e., signal and idler intensities, can be expected. In contrast to this, the
output stabilizes when the OPG process is driven into saturated conversion [83]. In this
situation the main fraction of the pump light is converted into signal and idler light5 and
the conversion will stop, or even back conversion to the pump light can occur [90]. Thus the
process will stabilize itself to a certain output power regardless of the seeding power - in a
first approximation.

As the seeding power of zero-point fluctuations will be vanishingly small the OPG conversion
process of the pump light to the signal or idler light will inherently be very weak, which
is obviously undesirable especially if a strongly fluctuating output is not preferable. An
examination of equation (2.126) and (2.127) shows, that a high gain can be achieved by
the use of high pump intensities and/or long crystals. In principle, also the choice of the
nonlinear material has a strong influence via the factor κ, but unfortunately the choice
of nonlinear materials is rather limited, especially if periodic poling has to be taken into
account [91]. The use of very long crystals might be an option, but there will be definitely

5Obviously the assumption of undepleted pump intensity is not valid in this situation.
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a limit due to fabrication issues. So, a straight forward approach is the use of high intensity
lasers as a pump source. Here the limit is of course the onset of thermal damage of the
nonlinear materials, as all materials will show some kind of residual absorption. As the
thermal damage scales in a first approximation with the average power, a possibility to
overcome this limit is the use of a laser, which does not emit its power continuously in time,
but squeezed to short intervals in time - to ultrashort pulses [92]. For example, if a laser
system has an average output power of 10 W and emits, with a periodicity of 50 MHz,
pulses as short as 500 fs this would result in a peak power of 400 kW, which should increase
the efficiency of any nonlinear frequency conversion process tremendously while keeping the
heating due to absorption on the level of a 10 W laser.

In the following some basic properties of ultrashort laser pulses will be reviewed in order to
estimate how the use of those as pump source will influence an OPG. For this purpose, a
secant hyperbolic pulse shape will be assumed [93]:

I(t) = I0sech
2

(
1.76t

τp

)

(2.130)

Here τp is the pulse duration, accounting for the FWHM of the intensity profile. Such a
pulse form is typically achieved by passive mode locking in a laser resonator. By Fourier
transforming the corresponding electric field from the time domain to the frequency domain,
the spectral intensity profile can be obtained [93]:

I(ω) ∝ sech2

(
1.76ω

∆ω

)

(2.131)

Thus, a pulsed laser is not truly monochromatic but has a certain spectral width ∆ω. For
secant hyperbolic shaped pulses the dependency between pulse length and bandwidth is
given by the time bandwidth product (TBWP) ∆ωτp = 2π · ∆ντp ≥ 2π · 0.315, whereas
exact equality is obtained if the pulse is Fourier limited. This term describes the condition
of a frequency-independent spectral phase, i.e., all frequency components constituting the
spectral intensity profile show the same phase relationship. For a given spectral width ∆ω
this condition leads to the maximum possible peak power and is hence favourable.

In equation (2.129) a phase matching bandwidth with respect to the signal and idler frequen-
cies was defined. In a similar way an acceptance bandwidth for the pump pulse frequencies
can be defined. Thus the maximum usable length of the nonlinear material is limited. How-
ever, the length is usually much more limited by a phenomena called temporal walk off, which
is illustrated in the left part of Figure 2.12. Due dispersion, waves of different frequencies
propagate with different velocities inside a medium, which can be taken into account via the
group velocity vg(ω). A mismatch between the group velocities of the signal and idler wave
with respect to the pump wave, called group velocity mismatch (GVM), results in a temporal
and spatial separation of the pulses, while propagating through the nonlinear medium. As
this will obviously stop the nonlinear interaction the GVM defines a maximum interaction
length Lmax, which can be approximated via [82]:

Lmax ≈
τAC,pump

min[GVMj]
j = s,i (2.132)
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Figure 2.12: (Left) Illustration of the temporal walk off originated in the GVM of the signal (green)
and idler (red) light with respect to the pump (blue) light, for the case of sign[GVMs] 6= sign[GVMi]
without nonlinear trapping. (Right) Group velocity mismatch (GVM) of the signal (green) and
idler (red) light with respect to the pump light, as function of the signal wavelength for LiNbO3

pumped at 1030 nm. Data taken from [94].

With the GVM defined via GVMj = v−1
g,j − v−1

g,p, where j accounts for signal or idler.
By inspecting the exemplary presentation of the GVM for lithium niobate (LiNbO3) in
the right part of Figure 2.12, two different situations can be spotted. Both the signal
and the idler pulse can walk in the same direction with respect to the pump pulse, i.e.
sign[GVMs] = sign[GVMi], and they can both walk in opposite directions, i.e. sign[GVMs] 6=
sign[GVMi]. In the first case the nonlinear interaction will just stop after Lmax. If we betake
ourselves to the frame moving with the pump pulse, we see that, in the latter case, the
signal pulse runs away from the pump pulse, but generates, due to the interaction with the
pump pulse, idler light, which then runs from the signal pulse towards the pump pulse. And
the other way around does the idler pulse. This leads to a localization of the generated
pulses, referred to as nonlinear trapping, under the pump pulse, which strongly increases
the interaction length [83, 90].

Finally the goal of an OPG pumped by ultrashort pulses should be to generate tunable ultra-
short signal and idler pulses, in order to use them for an efficient spectroscopic investigation
of nonlinear processes. Therefore one has to find trade-off between a high gain due to a long
interaction length and a broad phase matching bandwidth due to small interaction lengths.
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Optical parametric generator

This chapter will deal with the provision of a light source, suitable to investigate the sec-
ond harmonic generation from plasmonic nanostructures and metamaterials and is closely
following [95]. In the previous chapter plasmonic nanostructures and metamaterials were in-
troduced as artificial objects, whose linear, and thereby also their nonlinear, spectral response
to electromagnetic radiation, e.g., visible or near-infrared light, can be tailored. Thus it is
advisable to investigate second harmonic generation from those spectrally resolved, therefore
a tunable light source is needed.

As the length of plasmonic nanostructures and metamaterials, which enters the SHG ef-
ficiency quadratically, will be vanishingly small one has to employ highest possible pump
intensities, to obtain a measurable nonlinear signal. But high average intensities would lead
to a melting after a short period of time, due to strong absorption in resonance. To reduce
the heat exposure it is possible to utilize laser pulses, which exhibit high intensities only
for a period of time in the range of several femtoseconds. If a time averaged detection is
used for the nonlinear signal, a pulsed excitation will result in a low signal-to-noise ratio.
A usual procedure to maximize the signal-to-noise ratio is to perform the excitation with a
high pulse repetition rate.

Following paragraph 2.4.6, the process of optical parametric generation and amplification
should be capable to achieve spectral tunable, ultrashort pulses. So far, the research activities
carried out on OPGs are mainly focused on picosecond pulse durations and/or kilohertz
repetition rates [96–102]. The reason for this is that OPGs need a high parametric gain, in
order to achieve a measurable output and to suppress intensity fluctuations [83, 88, 89, 102].
The high parametric gain is usually achieved by the use of an amplified laser system as a
pump source or rather long nonlinear crystals. However, long crystals are usually no option
for the generation of femtosecond pulses as discussed in paragraph 2.4.6.

The development of high average power passively mode-locked solid state and fiber lasers
[103–105] allowed for the realization of single pass optical parametric generators based on
rather short LiNbO3 and LiTaO3 crystals with repetition rates of several tens of megahertz
and pulse durations in the femtosecond regime [88, 89]. In these experiments the average
signal power and the conversion efficiency for long term operation was limited due to the
onset of laser damage inside the crystal after a few minutes.
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3. OPTICAL PARAMETRIC GENERATOR

One method which is known from the picosecond regime to increase the parametric gain
without using higher pump powers is to send the residual pump and the generated light
through the crystal a second time [100, 106, 107]. This doubles the effective crystal length,
but allows for tighter focusing compared to a longer crystal. Furthermore, such a double-
pass configuration allows for a simple compensation of the temporal walk off [100]. In the
following, a compact single crystal double-pass optical parametric generator configuration,
based on periodically poled MgO:LiNbO3, operating at 42 MHz repetition rate, tunable in
the near-infrared, will be presented.

3.1 Experimental setup

The scheme of the double-pass OPG is shown in Figure 3.1. The OPG is pumped by a solitary
mode-locked Yb:KGW oscillator1[104], delivering up to 8 W average power with a pulse
duration of 550 fs at a repetition rate of 42 MHz and a center wavelength of λp = 1031 nm.
A half-wave plate and a Faraday isolator are used together as a variable attenuator for the
pump beam. In order to achieve the optimal focusing condition derived by Boyd et al. [108]
the pump beam was focused to a diameter of 40 µm with a f = 200 mm lens (L1). A dichroic
mirror (DCM: Reflection band 920-1160 nm, transmission band 1240-1600 nm) reflects the
pump beam into the MgO:LiNbO3 crystal.2 The crystal is 10 mm long and 0.5 mm thick,
consists of 5% MgO-doped congruent LiNbO3 and has 9 different poling channels (poling
periods: Λ = 27.9-31.6 µm) with respect to the z-axis for quasi phase matching. The end

MgO:PPLN

Yb:KGW laser
8 W, 550 fs,
42 MHz, 1031 nm

HWP

FI

DM3

DM2

DM1

DCM DCM

L2 L4

L3

L1

F1 F2

λp

λs

λi

λp

λs

Figure 3.1: OPG scheme: HWP: half-wave plate, FI: Faraday isolator, DM: dielectric mirror, L:
lens, DCM: dichroic mirror, F: filter. The MgO:PPLN crystal can be translated with respect to
the nine different poling channels. The back reflecting mirror DM2 is mounted on a translation
stage to synchronize the pump and signal pulse in the second pass.

1Yb:KGW 1040-8, NT&C, Germany
2MOPO1-0.5-10, Covesion Ltd., United Kingdom
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3.1. EXPERIMENTAL SETUP

facets are broadband anti reflection coated (R<5%, 1000-5000 nm). The crystal is mounted
on an aluminum heat sink whose temperature is controllable from 30 ◦C up to 200 ◦C.
The crystal holder can be translated with respect to the different poling channels using a
computer controlled stage. After passing through the crystal the transmitted pump and
generated signal beam are separated by a second dichroic mirror (DCM).

For the second pass the signal beam is collimated by a lens (L2, f = 100 mm), back reflected by
a dielectric mirror (DM1: Reflection band 1300-1900 nm) and focused back into the crystal.
The transmitted pump beam is collimated by a lens (L3, f = 150 mm), back reflected by
a dielectric mirror (DM2: Reflection band 750-1100 nm) and focused back into the crystal.
The dielectric mirror (DM2) can be translated parallel to the pump beam to ensure the
temporal overlap of the signal and pump beam in the second pass.

After the second pass the signal beam passes the first dichroic mirror, is collected by a lens
(L4, f = 100 mm) and sent through two filters3,4 in order to suppress any parasitic generated
visible light and residual pump light. As all optics are made from BK-7 glass the idler light
will be absorbed.

The OPG itself (without the pump laser) has a footprint of only 30 cm × 30 cm. For
operation and wavelength tuning only the crystal’s position and temperature, the position of
DM2 and the input power has to be varied, which can in principle all be done automated. For
the use in this thesis, the control of the crystal’s position and temperature was automated.

To characterize the pulse length τp an intensity autocorrelator as depicted in Figure 3.2 is
employed. Here, a beam splitter creates two copies of the incoming pulses. These copies are
superimposed in a nonlinear medium, where they interact on the basis of SHG and SFG.
By introducing a spatial delay in one of the interferometer arms both copies interact time
delayed in the nonlinear medium. The resulting nonlinear signal as function of the delay
time τ is then proportional to the intensity autocorrelation function:

GI(τ) =

∫

I(t)I(t− τ)dt (3.1)

The FWHM of the autocorrelation trace τAC is then connected to the pulse duration via
τAC = 1.55τp, in the case of a secant hyperbolic shaped pulse.

¢s

¿

I t ¿( - )

I t( )

G ¿I( )

RR

BS

M

L

NLC
PD

Figure 3.2: BS: beamsplitter; RR: retrore-
flektor; M: mirror; L: lens; NLC: nonlinear
crystal, PD: photodiode. A BS creates two
copies of the incoming pulse, which are de-
layed in time against each other via a spatial
delay of the RR and afterwards focused into a
NLC. The created SHG signal gives the inten-
sity autocorrelation as function of the delay
time τ .

3Schott RG-1000, Edmund Optics GmbH, Germany
4OD 4.0 1100 nm High Performance Longpass Filter, Edmund Optics GmbH, Germany
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3. OPTICAL PARAMETRIC GENERATOR

3.2 Results and discussion

In this section the results of the characterization of the previously presented OPG setup will
be shown and discussed. In the first part the influence of the pump power on the conversion
efficiency and the signal output noise will be investigated for a fixed signal wavelength. In
the second part the spectral tunability and the resulting pulse shapes as well as the signal
power will be analysed and discussed.

3.2.1 Pump power influence

In Figure 3.3 the signal power and the conversion efficiency are shown as a function of the
incident pump power for the double-pass OPG. If not otherwise mentioned, it will be always
referred to average powers and pump-to-signal conversion efficiencies. These measurements
were done for a poling period of 27.9 µm at a temperature of 30 ◦C, which leads to a signal
wavelength of λs = 1372 nm. The signal power was measured using a thermal power meter5

and corrected for filter losses. The maximum achieved signal power was 2.5 W at 4.6 W
incident pump power, which corresponds to a conversion efficiency of nearly 55%. By using
the Manley-Rowe relations or assuming energy conservation, the generated idler radiation
can be calculated [109], corresponding to a photon conversion efficiency of 72%. Saturation
of the conversion efficiency seems to be reached at 4 W input power. Figure 3.3 suggests
that there is no optical parametric generation below 1.5 W input power, but with the help of
a LN2-cooled InGaAs-CCD coupled to a monochromator,6 parametric fluorescence at pump
powers below 100 µW could be recorded. For all data points shown the delay between the
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Figure 3.3: Average output power of the signal (left axis, black squares) and pump-to-signal
conversion efficiency (right axis, red triangles) versus incident average pump power.

5Thermopile sensor PM10 attached to power meter FieldMate, Coherent LaserSystems GmbH, Germany
6PyloN-IR attached to Acton SP 2300i, Princton Instruments, USA
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Figure 3.4: (Left) Power fluctuations of the signal output for different conversion efficiencies. Each
measurement point corresponds to a 15 minute measurement. (Right) Pulse-to-pulse fluctuations
of the OPG at 10% conversion efficiency (upper) and 55% conversion efficiency (lower).

pump and signal pulses in the second pass was optimized for maximum signal power by
translating DM2 (see Figure 3.1).

To measure the noise characteristics of the OPG, the signal power fluctuations for different
conversion efficiencies, employing the 27.9 µm poling period, were evaluated. Each individual
measurement was carried out over 15 minutes and for high conversion efficiencies the results
were double-checked by an one hour measurement. In addition the pulse-to-pulse fluctuation
of the OPG signal in the case of low and high conversion efficiency were recorded. The noise
measurements of the OPG are shown in Figure 3.4. As expected, a high noise level in the case
of low conversion efficiency and a drastic decay down to 1.4% rms (long term) respectively
10.3% rms pulse-to-pulse with increasing conversion efficiency can be observed. In addition
long time measurement (one hour) of the spectral stability of the OPG were performed,
which showed a fluctuation of the center wavelength of only 97 pm and a fluctuation of the
spectral FWHM of 71 pm.
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3.2.2 Wavelength tuning

Signal spectra and output power for the different poling periods between 27.9 µm and
30.5 µm, measured at 30 ◦C and 4 W input power are depicted in the upper part of Figure 3.5
and the corresponding intensity autocorrelations in the lower part. The input power was
restricted to 4 W to stay well below the damage threshold of the longer poling periods, which
should be significantly lower than that of the shorter ones [88]. The spectral positions are
in reasonable agreement with numerical values achieved for perfect quasi phase matching,
taking into account the temperature dependent Sellmeier equations [110] and assuming that
the temperature inside the crystal should be somewhat higher than on the surface. The
broadening of the spectra originates from an increase in the phase matching bandwidth for
higher signal wavelengths. Also over one watt signal power were measured for the 31 µm
poling period. The central wavelength should be approximately 1750 nm, but accurate spec-
tra can not be presented as the responsivity of the used spectrometer6 strongly decreases
at around 1650 nm. This fact might also disturb the measurement of the spectrum for the
30.5 µm poling period.

The autocorrelations of the signal pulses can be fitted well assuming a secant hyperbolic pulse
shape for poling periods up to 29.5 µm. With increasing poling period/signal wavelength a
broadening of the side wings appears, which is especially visible for the 30 µm and 30.5 µm
poling period. The pulse duration decreases monotonically from 345 fs down to 190 fs with
increasing signal wavelength, assuming a secant hyperbolic pulse shape. The pulses created
with the 30.5 µm poling period have an even smaller FWHM, but this value is obviously
not a good figure of merit in the case of such strongly distorted pulses. The time bandwidth
product for all poling periods except 30.5 µm is in the range of 0.44-0.53, which is close to
the Fourier limit for a secant hyperbolic pulse. As can be seen in the upper part of Figure
3.5, the signal power is maximal at around 1380 nm signal wavelength and decreases for
larger signal wavelengths.

The distortion of the pulse shape and the decrease of the conversion efficiency can be both
attributed to effects originated in the GVM between the pump, signal and idler pulses
discussed in paragraph 2.4.6. Up to 1450 nm signal wavelength the GVM of the signal and
the idler pulses with respect to the pump pulse have different signs and furthermore the
same absolute value at around 1380 nm signal wavelength, as can be seen in Figure 2.12.
This leads to a trapping of the generated signal and idler pulses under the pump pulse.
As a consequence the signal pulses are nearly transform limited and the length on which
conversion takes place is increased. With increasing signal wavelength this trapping effect
vanishes and therefore the conversion efficiency decreases and the signal pulses get distorted.
This effect was minimized by optimizing the delay between the pump and signal pulses in
the second pass to achieve the shortest possible pulse widths and smooth autocorrelations.
A subsequent compression of the pulses with the help of a SF-10 prism sequence was also
tested, but this approach gave no satisfying results. This additionally suggests, that the
deviation from the Fourier limit is due to the nonlinear pulse interaction and not due to
dispersion in the employed optics. Of course, more elaborate compression techniques might
be used.

50



3.2. RESULTS AND DISCUSSION

N
o
rm

.
a
u
to

co
rr

el
a
ti

o
n

si
g
n
a
l

Delay [ps]

30.5 m¹
30.0 m¹
29.5 m¹
29.0 m¹
28.7 m¹
28.3 m¹
27.9 m¹

0.0

0.5

1.0

-2 -1 0 1 2

N
o
rm

. 
sp

ec
tr

a
l 
in

te
n
si

ty

Wavelength [nm]

A
v
era

g
e sig

n
a
l p

o
w

er [W
]

30.5 m¹
30.0 m¹
29.5 m¹
29.0 m¹
28.7 m¹
28.3 m¹
27.9 m¹

signal
power

1400 1500 1600 1700
0.0

0.5

1.0

1.4

1.6

1.8

2.0

2.2

0.53 0.46 0.4 0.38 0.33 0.3 0.18

Figure 3.5: (Upper) Measured normalized signal spectra for different poling periods. The grey
dots show the measured average signal power, the grey line is a guide to the eye. (Lower) Inten-
sity autocorrelations for different poling periods with FWHM values in ps (grey numbers). All
measurements were taken at 30 ◦C and an average input power of 4 W.
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Figure 3.6: Maxima of the measured signal spectra as function of the temperature of the heat
sink for the poling periods of 27.9 µm (�), 28.3 µm (•), 28.7 µm (N), 29.0 µm (H), 29.5 µm (�),
30.0 µm (◭), and 30.5 µm (◮). The continuous lines, coloured with respect to the poling periods,
depict numerical values archived with [94].

Additionally to the discrete tuning of the signal wavelength by a variation of the poling
period, a continuous tuning is achieved by changing the crystal temperature as discussed
in paragraph 2.4.5. The maxima of the measured signal spectra for the different poling
periods are depicted in Figure 3.6 as function of the temperature. The temperature was
measured/adjusted in the heat sink, on which the crystal is mounted, a few millimeters be-
low the crystal. The symbols depict the actual measurement values, whereas the continuous
lines are numerical values achieved with with the help of [94], based on the temperature
dependent Sellmeier equations [110]. For lower temperatures the numerical values and the
actual measurements are in good agreement. For higher temperatures (> 170◦C) the mea-
sured signal wavelength is consistently lower than the expected value. This discrepancy
most likely results from an insufficient thermal contact between the heat sink and the crys-
tal. In the case of the longest poling periods (30.0 µm and 30.5 µm), this discrepancy is
more pronounced and becomes also evident at lower temperatures. For longer poling periods
the perfect quasi phase matching condition shows a stronger temperature dependency, as
can be seen in the numerically achieved curves. Thus deviations between the actual and the
assumed temperature of the crystal will become more pronounced. Additionally, it is not
possible to measure accurate spectra at wavelengths above 1600 nm with the used equipment
as discussed before.
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Nonlinear Plasmonics

In this chapter the nonlinear response of plasmonic nanostructures and metamaterials will be
investigated by means of linear spectroscopy and second harmonic generation spectroscopy.
In the first section the methods used in this thesis to fabricate plasmonic nanostructures
and metamaterials will be introduced. In the second section the experiments carried out on
hybrid plasmonic/dielectric nanostructures will be presented and the corresponding results
will be discussed. The last section will deal with second harmonic generation from two-
photon resonant metamaterials, i.e., metamaterials composed of nanostructures which only
show a plasmonic resonance for the generated second harmonic field, but not for the driving
field.

4.1 Sample fabrication

In this section the methods used to fabricate plasmonic nanostructures and metamaterials
will be discussed. In the first paragraph the principle fabrication scheme based on electron-
beam lithography will be presented step by step, whereas the second paragraph focusses
on thin film deposition by thermal evaporation which is used for the material deposition
involved in the fabrication process.

4.1.1 Electron-beam lithography

In Figure 4.1 the essential fabrication steps of a double-stage electron-beam lithography
process are shown. As electron-beam lithography cannot provide levitating nanostructures,
the first step (indicated in (a)) is the provision of a substrate, suitable for both, the further
experiments and the fabrication process. For the optical experiments the substrate has to
be transparent in the visible and near-infrared spectral range and a low refractive index is
desirable. As the goal is the fabrication of structures with submicron dimensions the sub-
strate has obviously to be as smooth and clean as possible. For the fabrication process the
substrate has to be chemically inert to organic solvents and resistant to heat treatments.
These properties can be fulfilled by borosilicate glass. However electron-beam lithography
also requires a conducting substrate or at least a conducting layer on top of it to avoid
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 4.1: Artists representation of a double-stage electron beam lithography process: (a) Starting
with the provision of a borosilicate glass substrate (greyish transparent) covered with 10 nm ITO
(blue), (b) followed by spin coating of PMMA (green) and (c) electron beam (deep blue) exposure
with subsequent development resulting in a negative mask. (d) A 40 nm thin gold film is then
evaporated on top and afterwards (e) a lift-off process is performed to remove the remaining PMMA
with the surplus gold on top of it. (f) Next, the sample is again spin coated with PMMA. (g) Prior
to the second electron exposure (h) the markers fabricated together with nanostructures in the first
run are located to read in the local coordinate system of the first exposure, which allows a precise
second exposure (h) relative to the first one. (i) After the development of the second exposure a
60 nm thin dielectric film is evaporated on top and afterwards (e) a lift-off process is performed
analogously to the first step.
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charge accumulation. In order to obtain a large amount of substrates with identical prop-
erties a permanent, 10 nm thin indium tin oxide (ITO) layer is deposited via electron beam
evaporation (see paragraph 4.1.2) on a complete 4 inch wafer of borosilicate glass,1 which is
subsequently cut into pieces with a size of 10 mm × 10 mm. ITO is one of the few materials
which is transparent in the optical and near-infrared range, but has a high DC-conductivity.
After the cutting, the substrate(s) is cleaned via mechanically polishing and a more than one
hour ultrasonic bath with acetone and isopropyl alcohol subsequently and finally thoroughly
blown dry with clean nitrogen.

Directly afterwards the electron beam resist is applied to the substrate by spin coating
(indicated in (b)). As electron beam resist PMMA with a molecular weight of 950 k diluted
to 4 % in anisole, is used.2 The spin coating is done in the following steps: (i) The substrate
is rotated at 500 rpm for 5 s in order to dispense 50 µl of the PMMA/anisole solution over
the substrate, (ii) and then rotated at 4000 rpm for 90 s in order to obtain an approximately
200 nm thick film. (iii) At last the substrate is baked for 45 minutes at 175 ◦C in a convection
oven to remove the residual solvent and to smooth the PMMA film.

The substrate is then transferred to a scanning electron microscope3 (SEM) equipped with
a fast electrostatic beam blanker and an external scan control and pattern generator.4 This
system allows for a controlled selective exposure (see (c)) of the PMMA film, defining the
cross sections of the desired structures. For the exposure an acceleration voltage of 20 kV,
an aperture size of 10 µm and a working distance of 8 mm, resulting in a current of 40 pA,
was used. Due to the electron bombardment the molecular chains of the PMMA get reduced
to smaller chains, which are less resistive to organic solvents. Thus, after the exposure,
the PMMA is developed by swivelling the substrate for 45 seconds in a 8 ◦C cold, 1:3
methyl isobutyl ketone to isopropyl alcohol mixture with 1.5 vol-% butanone, resulting in
the negative PMMA mask depicted in (c). The development is stopped by blowing dry the
substrate with clean nitrogen.

On top of the negative mask a 40 nm thin gold film (depicted in (d)) is thermally evaporated
(see paragraph 4.1.2). Afterwards a lift-off process is performed, in which the hole substrate
is soaked in 60 ◦C hot N-methyl-2-pyrrolidone in order to dissolve the remaining PMMA.
After 3 hours the softened PMMA and the surplus gold on top of it are washed away,
by carefully spraying the substrate with N-methyl-2-pyrrolidone. In order to obtain clean
samples and nanostructures, as depicted in (e), the substrate is afterwards rinsed in acetone,
isopropyl alcohol and distilled water, baked for 45 minutes at 175 ◦C in a convection oven,
and finally exposed for 1 hour to an Ar/O2-plasma.

If only gold nanostructures are desired the sample is now finished. For several purposes
the combination of nanostructures consisting of different materials is needed, for example
the combination of plasmonic nanostructures with dielectrics. To fabricate those a second
electron-beam lithography run is applied to the previously fabricated sample. The sample is
again spin coated with PMMA (depicted in (f)), but this time with a double layer. The first
layer consists of 600 k PMMA spun with 4000 rpm and the second layer consists of 950 k

1Supplied by Plan Optik AG, Germany
2Supplied by micro resist technology GmbH, Germany
3Type Sigma, Carl Zeiss Microscopy GmbH, Germany
4Type ELPHY Plus, Raith GmbH, Germany
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PMMA spun at 6000 rpm. Between the two spin coating steps, an intermediate baking
is performed for 10 minutes on a hot plate at 175 ◦C. The lower, thicker layer, consisting
of PMMA with a lower molecular weight is more sensitive to electron exposure, than the
upper, thinner layer. Thus an electron exposure and subsequent development results in a
PMMA cross section profile with a deep undercut, which makes the lift-off easier in the case
of structures with a bigger height. Prior to the second exposure, the exact coordinate system
of the first exposure has to be retrieved. For this purpose, not only the desired nanostructures
were fabricated in the first electron-beam lithography run, but also three cross like markers
around the nanostructure arrays. By selectively scanning those makers, the coordinate
system of the first exposure can be determined (see (g)). Thus the cross sections of the second
set of nanostructures can be exposed with a high precision relative to the nanostructures
fabricated in the first run (see (h)). For the scanning of the markers and the subsequent
exposure an acceleration voltage of 30 kV, an aperture size of 15 µm and a working distance
of 13 mm is used, resulting in a current of 130 pA. These parameters, different from those
used in the first exposure, are used, as the PMMA appears more transparent at 30 kV and
the higher current provides a better contrast, thus the makers can be read in more precisely.
After the second exposure the sample is developed analogously to the first exposure. This
time a 60 nm thin dielectric film is thermally evaporated on the obtained hole mask (see
(i)). Last but not least the same lift-off procedure as before is performed, resulting in the
hybrid metallic/dielectric nanostructures depicted in (j). However, the baking and plasma
cleaning are left out, as these might damage the dielectric nanostructures.

The artists representation of the above explained process in Figure 4.1 might suggest, that
only a single array of nanostructures per substrate is fabricated. In reality both, the fabri-
cation of the metallic nanostructure geometries and the relative positioning of the dielectric
nanostructures is not as reproducible as desired. Therefore several arrays are fabricated on
a single substrate, with variations of both parameters form array to array. The maximum
deflection of the electron beam limits the area, which can be exposed to 100 µm × 100 µm.
Therefore the retrieval of the original coordinate system has to be done for each array of
nanostructures individually, which is a quite time consuming and wearing process. Hence, an
automatization of this step was implemented in the process. By this the number of nanos-
tructure arrays per substrate is only limited by the substrate size resulting in maximum
number of areas per substrate of roughly 600.

4.1.2 Thin film deposition by thermal evaporation

In the previous paragraph the deposition of thin films consisting of three different inorganic
materials was mentioned: gold, ITO, and not yet specified dielectrics. While there are
several possible methods for thin film deposition, in this thesis thermal evaporation under
high vacuum is solely used and will be shortly reviewed in the following. A schematic sketch
of an evaporation plant is shown in Figure 4.2(a). In the evaporation process the starting
material (target material) is heated slightly above its boiling or sublimation point in a high
vacuum chamber.5 This leads to the liberation of atoms, atomic clusters or molecules,
i.e., evaporation, from the target material. These will then travel undirected away from

5Typical pressures are below 10−6 mbar.
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the hot target material due to thermal diffusion, until they hit a cold surface where they
condensate and form a film [111]. The reason to perform the heating under vacuum is,
that the evaporated material would react with residual gas particles otherwise leading to a
contamination of the fabricated film and furthermore, the lower pressure leads to a lower
boiling or sublimation point. In a typical geometry the substrate is mounted several tens of
centimeters above the target material with the surface to coat pointing towards the target
material. If the evaporation is undirected, a bigger distance between the target material
and the substrate leads to a lower rate of evaporated material hitting the substrate, whereas
a smaller distance leads to an increased heat up of the substrate. The thickness of the
evaporated thin film and the evaporation rate is measured in situ with a quartz microbalance
and the knowledge of the target material’s volumetric mass density.

The heating of the target material is, in this thesis, done via: (i) Ohmic or resistive heating,
i.e. the target material is placed on a metal foil, formed like a boat (depicted in Fig-
ure 4.2(b)), which is heated by the passage of a high current through itself. As materials
for the metal foils tungsten, tantalum or molybdenum are usually used due to their high
melting point. The electrodes connected to the metal foil are usually cooled, in order to
only heat up the metal foil. (ii) Electron beam heating, i.e., a high energy electron beam
is guided and focussed on the target material. The electrons transfer their kinetic energy
due to inelastic scattering to the target material and thus heat it up. The target material is
usually placed in a water cooled crucible, which leads to a selective heating of the material
at the position of the electron impact.

Both methods have several advantages and disadvantages. First of all the equipment needed
for Ohmic heating is less complicated than that for electron beam heating. But in the
case of Ohmic heating the target material gets heated mainly at the contact points to the

To vacuum
pump

Heated target
material

Substrate Quartz
microbalance

Evaporated target
material

Vacuum chamber(a) (b)

(c)

Heated target
material

Metal foil

Heated target
material

Metal foil

Figure 4.2: (a) Schematic sketch of a vacuum chamber used for thin film deposition via ther-
mal evaporation. (b) Sketch a boat-type evaporation source. (c) Cross section of a baffled box
evaporation source.
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metal foil, which are not pointing towards the substrate, and only partially by radiative
heating. This results in a not uniformly heated target material and in a slow response to a
change of the temperature of the metal foil. Thus the evaporation rate, which is determined
by the temperature, is quite complicated to control. These problems can be overcome by
using only materials, whose melting point is below their sublimation or boiling point, at
the pressure were the deposition is performed. The target material will then melt before
evaporation sets in and thus forming a good thermal contact. Unfortunately there are only
a few materials, which fulfil this criteria under high vacuum conditions, but one of them is
gold. Alternatively to boat like metal foils, box like heaters can be used, which represent
a kind of thermal radiation cavity where the target material can be placed in. There are
also quite elaborate forms of these boxes (see Figure 4.2(c)), where the evaporated material
is redirected through several baffles, leading to an uniform thermal distribution [112]. And
finally only those materials can be evaporated, whose sublimation point is reasonably below
that of the metal foil.

Electron beam evaporation does not show all these disadvantages, and as the evaporation
rate is governed by the energy of the electron beam it allows also for a very fine tuning of the
rate. However, some tests suggest, that a part of the electrons hitting the target material are
reflected by it towards the substrate. If the substrate is coated with PMMA, as in the case
of electron beam lithography, the PMMA will get modified by the electron bombardment
hindering a lift-off process [113]. Thus electron beam evaporation is used to deposit the
ITO, as an accurate rate control will be needed to fabricate a uniform 10 nm thin film on a
complete wafer, but for gold and the dielectrics Ohmic heating is the method of choice.

During evaporation the target material decomposes into atoms, atomic clusters or molecules
(in the following called particles), which condensate again when they hit the cold substrate.
Thus the resulting film will be polycrystalline or amorphous. If we think of multielement
materials this may also lead to non stoichiometric films. It was stated that the particles
directly condensate or to be more precise stick to the surface of the substrate when they hit
it. But in detail, a particle hitting the surface can still move over the surface for a finite time
or even reevaporate. This time is proportional to the substrate temperature and the kinetic

Material Evaporation source Evaporation rate Substrate tem-
perature during
evaporation

Annealing

Au Tungsten boat 0.2 nm/s ambient 175◦C for 45 min

ITO Electron beam 0.1 nm/s ambient 400◦C for 4 h

LaF3 Tantalum baffled box 1 nm/s ambient non

ZnS Tantalum baffled box 5 nm/s 100◦C non

Table 4.1: Materials deposited via thermal evaporation and the corresponding process pa-
rameters.
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energy of the incoming particle [114]. If this time is sufficiently long for another particle to
collide with it these particle can interact and form a compound. Hence, a higher substrate
temperature and evaporation rate will in general lead to a more crystalline film [115]. In
some cases the evaporated films can be also improved by a heat treatment following the
evaporation. For example in the case of gold, the melting point will strongly decrease with
decreasing particle size, thus a heat treatment can lead to a smoothing of the evaporated
films [116]. In the case of oxides, evaporated films usually show a lack of oxide. This can
be also overcome by just annealing those films under normal air, as they will oxidise [117].
Indeed, it is even possible to obtain thin metal oxide films by evaporating thin metal films
and a subsequent oxidation procedure [118].

Finally, the appropriate parameters for the film deposition via thermal evaporation have
to be determined empirically and matched to the demands on the films to fabricate and
the available equipment. The relevant parameters for the deposition used in this thesis are
given in the following Table 4.1.
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4.2 Hybrid plasmonic/dielectric gap nanoantennas

In several experiments on second harmonic generation [35, 119, 120] and third harmonic
generation [38, 39] from hybrid plasmonic/dielectric nanostructures an enhancement of the
nonlinear efficiency of the hybrid dielectric/plasmonic nanoantennas compared to that of
the corresponding bare nonlinear dielectric nanocrystals was observed. These findings ap-
parently support the idea, that the nonlinear signal of a dielectric particle with a large
nonlinear susceptibility can be increased by employing the local field enhancement inherent
to plasmonic nanostructures. However, a recent experimental study on third harmonic gen-
eration from gap nanoantennas containing ITO nanoparticles casts serious doubts on this
interpretation [39]. A strong indication was found that the nonlinear enhancement of the
investigated hybrid plasmonic/dielectric nanoantennas is mainly related to changes in the
linear optical properties of the gap nanoantenna resonances due to the presence of the ITO
nanoparticles and not to the third order nonlinearity of the nanoparticles.

In this section, which is closely following [121], the origin of the second harmonic generation
from hybrid plasmonic/dielectric gap nanoantennas will be studied. For this purpose, gap
nanoantennas made of gold are combined either with nonlinear zinc sulphide (ZnS) nanopar-
ticles or linear (in this context linear means that the second order nonlinear susceptibility
vanishes due to symmetry reasons) lanthanum fluoride (LaF3) nanoparticles. Additionally,
the combination of two plasmonic gap nanoantennas will be studied, where one gap nanoan-
tenna is resonant for the pump field while the second gap nanoantenna is resonant for the
generated second harmonic light.

4.2.1 Investigated samples

In Figure 4.3 SEM micrographs of the investigated (a) bare gold gap nanoantennas,
(b) gap nanoantennas with ZnS nanoparticles, (c) gap nanoantennas with LaF3 nanoparti-
cles, (d) ZnS nanostructures, and (e) double resonant gap nanoantenna systems with ZnS
nanoparticles are shown. The preparation of all nanostructures is done by a double-stage
electron-beam lithography process (see section 4.1). For the experiments a gap nanoantenna
design was chosen, which is known to exhibit only a weak intrinsic SHG efficiency [122–124].
The gap nanoantennas have a width and a height of 40 nm, a gap width of 50 nm, and are
arranged on a 900 nm × 600 nm lattice with a size of 40 µm × 40 µm. Several arrays with
different antenna arm lengths were fabricated, whereas the arm length was varied around
300 nm. Out of these, the antennas in Figure 4.3 were chosen such, that the linear extinction
has a maximum at around 1500 nm wavelength. In order to compensate the red-shift asso-
ciated with the incorporation of a dielectric in the nanoantenna’s gap (see paragraph 2.3.2),
hybrid gap nanoantennas were chosen for comparison, which are approximately ten percent
shorter than the bare gold gap nanoantennas. Additionally dielectric nanoparticles arranged
on a 900 nm × 600 nm lattice without antennas but with a comparable size to those located
in the nanoantenna gaps, and 60 nm thin dielectric films were fabricated in the second litho-
graphy stage. For one sample (sample 1) ZnS, which is a wide band gap noncentrosymmetric
semiconductor, was used as dielectric, whereas for a second sample (sample 2) LaF3, which
has a comparable refractive index to ZnS but a centrosymmetric crystal structure, was used
instead. The SEM micrographs indicate that the ZnS is in a crystalline state.
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Figure 4.3: Top-view SEM micrographs of the investigated (a) bare gold gap nanoantennas, (b)
gap nanoantennas with ZnS nanoparticles, (c) gap nanoantennas with LaF3 nanoparticles, (d) ZnS
nanostructures and (e) double resonant gap nanoantenna systems with ZnS nanoparticles. The
white scale bars represent 200 nm and the red arrows the used coordinate system.

4.2.2 Experimental setup

Two separate experimental setups are used to investigate the previously introduced na-
nostructures and will be presented in detail in the following. A white light transmission
spectroscopy setup is used to measure the linear extinction of the plasmonic nanostruct-
ures in the visible and near-infrared spectral range, whereas a second setup, employing the
double-pass optical parametric generator presented in chapter 3 is used to perform second
harmonic generation spectroscopy.

White light transmission spectroscopy

The home-built white light transmission spectroscopy setup for visible and near-infrared
wavelengths (500-1700 nm) is schematically shown in Figure 4.4. In order to have a good
approximation to a point-like light source, the light emitted by a halogen bulb is focussed (L1)
into an optical multi mode fiber (OF1) whose end acts almost as a point emitter. The light
emerging from the fiber end is collimated by a lens (L2) and sent into the optical setup, where
it first passes a Glan-Thompson polarizer6 (P) in order to obtain linearly polarized light. A
microscope objective7 (O1) with a numerical aperture of 0.25 is used to focus the light on the
sample and a second microscope objective8 (O2) with a numerical aperture of 0.4 collimates
the beam again. The sample is mounted on a computer controlled 3D translation stage
with nanometer resolution in order to precisely address different positions on the sample.
An intermediate image is produced (L3) and the light is collimated (L4) again. Within the

6Glan-Thompson Polarizer 3PTO001, Melles Griot, USA
7Plan N 10x/0.25, Olympus GmbH, Germany
8Plan Apo NIR 20x/0.40, Mitutoyo GmbH, Germany
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Figure 4.4: White light transmission spectroscopy scheme: L: lens, OF: optical fiber, P: polarizer,
O: objective, sample: sample with plasmonic nanostructures mounted on a computer controlled 3D
translation stage, KA: adjustable rectangular knife edge aperture, RM: removable mirror, OSA:
optical spectrum analyser.

intermediate image plane an adjustable rectangular knife edge aperture (KA) is placed, to
select only the relevant part of the sample for detection. The light transmitted through the
selected area of the sample is guided (L5, OF2) to an optical spectrum analyser realized
by a dual band Si/InGaAs photodiode attached to a grating monochromator.9 With the
optical spectrum analyser the transmitted intensity can be measured wavelength resolved.
All transmittance spectra are normalised with respect to the transmittance right beside the
gap nanoantenna array, i.e., with respect to the transmittance of the bare glass substrate
with the ITO layer. Alternatively the light can be redirected using a removable mirror (RM)
to produce with a long focal length lens (L6) an image of the sample and the aperture on a
CMOS camera,10 in order to adjust the sample or the aperture.

Nonlinear spectroscopy

The setup used for the second harmonic generation spectroscopy measurements is schemat-
ically shown in Figure 4.5. As pump source the double-pass optical parametric generator
(OPG) described in chapter 3 is employed. The average power of the pump beam was
attenuated to below 10 mW in order to stay well below the damage threshold of the nano-
structures, which was determined in preceding tests. The linear polarization in x-direction
(see coordinate system in Figure 4.3) of the pump beam is controlled by the combination
of a polarizer (P) and an achromatic half-wave plate (AHWP). The pump light is focused
down (L1) to approximately 30 µm spot diameter under normal incidence (z-direction) on
the sample, corresponding to a peak intensity of approximately 170 MW/cm2. The sample
is mounted on a computer controlled 3D translation stage with nanometer resolution to
precisely address different positions on the sample. The surface of the sample containing
the nanostructures is pointing oppositely to the propagation direction of the pump beam.

9Acton SP2150, Princton Instruments, USA
10DCC1545M, Thorlabs GmbH, Germany
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Figure 4.5: SHG spectroscopy scheme: P: polarizer, AHWP: achromatic half-wave plate, L: lens,
sample: sample with plasmonic nanostructures mounted on a computer controlled 3D translation
stage, RM: removable mirror, RP: removable polarizer, DM: dichroic mirror.

The second harmonic light emerging from the sample is collimated (L2), separated from the
residual pump light by a dichroic mirror (DM) and focussed (L3) onto the entrance slit of a
CCD spectrometer.11 The SHG signal is recorded for different pump wavelengths in steps
of approximately 20 nm. In order to eliminate any parasitic effects due to changes in the
pulse shape and beam divergence when tuning the OPG, the SHG signals from the nano-
structures are spectrally integrated and referenced to the weak SHG signal obtained from
the ITO covered substrate surface. Additionally a removable polarizer (RP) can be used
to characterize the polarization of the generated second harmonic light. If not mentioned
otherwise the SHG signal is always recorded polarization unselective, in order to maximize
the signal-to-noise ratio. With the help of a removable mirror (RM) and a long focal length
lens (L4) the beam/sample position can be monitored and adjusted on a CMOS camera.10

For this purpose the OPG can be also exchanged by a white light source. Despite the fact
that the camera is silicon based, it can detect the pump beam due to strong multiphoton
interactions emerging at high peak powers.

11USB4000, Ocean Optics Inc., USA
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4.2.3 Influence of dielectrics

To first assess the nonlinear properties of the thermal evaporated dielectrics, the SHG ef-
ficiency of the nanoparticle arrays and the 60 nm thin films made from ZnS and LaF3 is
compared with the SHG efficiency of the underlying ITO covered substrate surface at a fixed
wavelength of 1480 nm and constant pump intensity. The results are shown in Figure 4.6
in terms of the frequency doubled spectra. In the case of the LaF3 nanoparticle array the
SHG efficiency is slightly weaker than that of the underlying ITO surface. The most likely
reason for this observation is scattering of the incoming pump light. Consistently, the SHG
efficiency is even more dim, if the substrate is covered with a thin film of LaF3, leading
to reflection of the incoming pump light. In case of the ZnS nanoparticle array the SHG
efficiency is larger by a factor of 1.4 than that of the underlying ITO surface and by a factor
of 115 larger in the case of a thin film of ZnS. The ratio between the SHG efficiency of the
ZnS nanoparticle array and the thin film corresponds to the volume ratio between them.
This observation is in excellent agreement with the theories for random quasi phase match-
ing, discussed in paragraph 2.4.5. Therefore this preliminary experiment indicates that the
ZnS nanoparticles are in a polycrystalline state and therefore indeed show a second order
nonlinear response whereas no second order nonlinear effects can be observed from LaF3

nanoparticles as expected.

Next, the SHG efficiency of a gap nanoantenna array with ZnS nanoparticles (connected red
data points in Figure 4.7) is compared with that of an array of bare ZnS nanoparticles. At
the center wavelength of the plasmonic resonance of the gap nanoantennas, the SHG signal
of the hybrid plasmonic/dielectric nanoantenna array is by a factor of 500 000 larger than
that of the ZnS nanoparticle array. This seems to suggest, that the SHG efficiency of the
ZnS nanoparticles is indeed enhanced by the plasmonic field-enhancement.
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Figure 4.6: Frequency doubled spectra of the pump beam at 1480 nm wavelengths and constant
pump intensity, obtained form a thin film of ZnS (red), a ZnS nanoparticle array (blue), the ITO
covered substrate surface (black), a LaF3 nanoparticle array (green), and a thin film of LaF3 (dark
yellow).
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Figure 4.7: Normal-incidence optical extinction (one minus the measured intensity transmission)
spectra for x-polarized light (left axis, continuous lines) as well as the SHG intensity (right axis,
connected data points) for an array of bare gold gap nanoantennas (dark yellow) and an array of
gap nanoantennas with ZnS nanoparticles (red), both located on sample 1. The SHG intensity
spectra are both referenced to that of an array of ZnS nanoparticles located on the same sample.

In order to determine the main source of the nonlinear signal of the hybrid plas-
monic/dielectric gap nanoantennas the linear and nonlinear spectra of an array of bare
gold gap nanoantennas are compared with that of an array of gap nanoantennas with ZnS
nanoparticles, both located on sample 1. The corresponding extinction (one minus measured
transmission) spectra for x-polarized normal incident light are shown as continuous lines in
Figure 4.7. The connected symbols represent the measured SHG spectra referenced to that
of an array of ZnS nanoparticles located on the same sample. For both antenna arrays the
SHG efficiency is closely following the linear extinction, which shows that the SHG is gov-
erned by the plasmonic resonance of the gap nanoantennas. A close examination of the linear
extinction spectra reveals a slightly broader line width of the resonance in the case of the
bare gold gap nanoantennas. A comparison of the SHG efficiencies of both antenna arrays
shows a doubling of the SHG efficiency of the gap nanoantennas due to the incorporation of
the ZnS nanoparticles.

To test whether the increased SHG efficiency really stems from the nonlinear properties of
the ZnS, an array of bare gold gap nanoantennas and a gap nanoantenna array with LaF3

nanoparticles, both located on sample 2, are compared in the same way as before (Figure 4.8).
Again a doubling of the SHG efficiency due to the incorporation of a dielectric is observed,
even as the bare LaF3 nanoparticles did not show SHG in the preliminary experiment. A
slight narrowing of the resonance line width of the hybrid antennas relative to the bare gold
antennas is observed again.

To rule out any experimental artefacts, numerical calculations using the discontinuous
Galerkin time-domain method [51, 125] for the bare gold gap nanoantenna arrays and gap
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Figure 4.8: Normal-incidence optical extinction (one minus the measured intensity transmission)
spectra for x-polarized light (left axis, continuous lines) as well as the SHG intensity (right axis,
connected data points) for an array of bare gold gap nanoantennas (dark yellow) and an array of
gap nanoantennas with LaF3 nanoparticles (blue), both located on sample 2. The SHG intensity
spectrum is normalized to the maxima of the corresponding bare gold gap nanoantenna array.

nanoantenna arrays with a linear dielectric were performed.12 This method self-consistently
takes the light propagation at the second harmonic frequency into account and therefore
includes SHG reabsorption, emission shaping and the near to far field transition. The
optical response of the metal is described by the state-of-the-art hydrodynamic Maxwell-
Vlasov theory [33, 126], whose principle features are outlined in paragraph 2.4.3. Its
linear limit corresponds to the Drude free-electron model, for which a plasma frequency
ωpl = 1.33 × 1016 rad/s, a collision frequency ωcol = 8 × 1013 rad/s, and a background di-
electric constant of ǫ∞ = 9.84 was chosen. The refractive index of the glass substrate is
taken as n = 1.46. The geometric parameters of the gap nanoantennas were adapted from
the SEM micrographs shown in Figure 4.3(a) and (b), respectively. The length of the gap
nanoantennas is 350 nm per arm in the case of the bare gold gap nanoantennas and 325 nm
in the case of the hybrid gap nanoantennas. The width and the height are approximately
40 nm. The gap has a width of 50 nm and the size of the dielectric nanoparticles was chosen
such that they scarcely touch the nanoantenna arms. The antennas as well as the dielectric
nanoparticles were modelled with a surface roughness of around 3 nm r.m.s., by a random
displacement of the vertices defining the surfaces of the geometries in the meshes, used for
discretization. This mimics the experimental conditions and resulting in the observed sig-
nificant SHG signal. The refractive index of the dielectric nanoparticles was varied in order
to obtain overlapping resonances between the hybrid and the bare gold nanoantennas, re-
sulting in a refractive index of n = 3. The deviations from the geometry parameters of the
actual samples presented in paragraph 4.2.1 results from the fact, that both the antennas

12The calculations and modelling were performed by Dr. Yevgen Grynko, member of the research group
for theoretical electrical engineering at the university of Paderborn, employing the Paderborn Center for
Parallel Computing (PC2).
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Figure 4.9: Numerically calculated normal-incidence optical extinction (one minus the simulated
intensity transmission) spectra for x-polarized light (left axis, continuous lines) as well as the SHG
intensity (right axis, connected data points) for an array of bare gold gap nanoantennas (dark
yellow) and an array of gap nanoantennas with linear dielectric nanoparticles (blue). The SHG
intensity spectrum is normalized to the maxima of the corresponding bare gold gap nanoantenna
array.

and the dielectric nanoparticles were modelled with a surface roughness. Thus, they are not
in contact with each other and the substrate surface over a large area, but only at singular
points.

In order to verify the influence of a change of the dielectric environment of the gap nanoanten-
nas on their SHG efficiency, the second order nonlinear coefficient of the dielectric nanopar-
ticles was set equal to zero. The linear extinction calculations as well as the nonlinear SHG
simulations are presented in Figure 4.9 in the same way as before the experimental results.
Within the experimental as well as the numerical uncertainties the doubling of the SHG
efficiency due to the incorporation of a dielectric is reproduced, as well as the line width
narrowing.

A survey of the presented experimental and numerical results allows to draw several conclu-
sions:

(i) The same efficiency enhancement is obtained, regardless whether linear LaF3, arbitrary
linear dielectric (numerical study), or nonlinear ZnS nanoparticles are used. It can thus
be concluded, that the SHG efficiency enhancement of the plasmonic gap nanoantennas
due to the incorporation of dielectric nanoparticles does not originate from an interplay
between the plasmonic field-enhancement effect and the nonlinear optical properties
of the dielectric nanoparticle.

(ii) The dominant source of the SHG signal are the gold gap nanoantennas, as the LaF3

nanoparticles show no measurable second order nonlinearity and no nonlinearity of the
nanoparticles was assumed in the simulation.
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Figure 4.10: Simulated local intensity distribution (|E|2) at a wavelength of 1450 nm, on a logarith-
mic colour scale of the bare gold gap nanoantenna model (left) and the model of a gap nanoantenna
with a dielectric nanoparticle (right), which are used for the simulation presented in the right part
of Figure 4.8. The marked gap region is magnified for better visibility.

(iii) Even as the idealized geometry of the investigated gap nanoantennas is centrosym-
metric they give rise to a SHG efficiency, which exceeds that of the nonlinear ZnS
nanoparticles and thin films by many orders of magnitude.

(iv) The SHG efficiency of plasmonic gap nanoantennas can be increased by a modification
of the dielectric environment and the overall geometry.

The modification of the dielectric environment and the overall geometry leads to the follow-
ing phenomenon. First, a small but measurable narrowing of the resonance line width of
the hybrid antennas relative to the bare gold antennas, can be seen in both sets of experi-
ments and in the numerical simulation. This is synonymous with an increase of the quality
factor Q, which is known to have a strong effect on the nonlinear performance of plasmonic
nanostructures [36, 39], as can be seen from the survey in paragraph 2.4.5. Second, the
modification of the overall geometry leads to a local change of the intensity distribution of
the pump field as can be seen in Figure 4.10. Here, the intensity in the tips of the antenna
arms is slightly but visibly higher in the case of the hybrid system, compared to the bare
gold antenna.
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4.2.4 Double resonant gap nanoantenna systems

In the following double resonant nanoantenna systems consisting of two gap nanoantennas
oriented perpendicular to each other (see Figure 4.3(e)) are studied. One gap nanoantenna
is designed to be resonant to the pump field (long horizontal orientated gap nanoantenna)
and the other gap nanoantenna is designed to be resonant to the generated second harmonic
light (short vertical orientated gap nanoantenna). The idea behind this design is, that the
pump resonant antenna locally enhances the pump light field, in order to obtain efficient
second harmonic generation, whereas the second antenna provides a resonant feedback of
the generated second harmonic light and also mediates the coupling to the far field [68, 127].
In a classical resonator picture this geometry can be seen as a miniaturized version a double
resonant cavity used for intracavity SHG, which is known to show higher conversion effi-
ciencies than the case where only the pump light or the generated second harmonic light is
resonantly enhanced [128, 129].

Linear extinction and SHG spectroscopy measurements are performed on an array of double
resonant nanoantenna systems with ZnS nanoparticles. For reference an array of only pump
resonant gap nanoantennas with ZnS nanoparticles is used (see Figure 4.11). Both, the pump
resonant gap nanoantennas and the long nanoantennas of the double resonant nanoantenna
systems, have nominally the same length. In the case of the double resonant nanoantenna
systems a resonance in the extinction spectrum at approximately 780 nm wavelength for
y-polarized incident light is observed, due to the presence of the short nanoantennas, which
is absent in the case of the only pump resonant nanoantennas. The resonance of the long
nanoantennas, which is only visible for x-polarized incident light, is slightly red-shifted and
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Figure 4.11: (a) Normal-incidence optical extinction (one minus the measured intensity transmis-
sion) spectra for x-polarization (left axis, continuous lines) and y-polarization (left axis, dashed
lines), and the SHG intensity (right axis, connected data points) for an array of ZnS gap nanoan-
tennas with ZnS nanoparticles (red) and an array of double resonant gap nanoantenna systems
with ZnS nanoparticles (green). The SHG intensity spectra are both referenced to that of an array
of ZnS nanoparticles located on the same sample.
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Figure 4.12: Polar diagrams of the polarization state of the generated second harmonic light from
an array of gap nanoantennas with ZnS nanoparticles (left diagram) and an array of double resonant
gap nanoantenna systems with ZnS nanoparticles (right diagram). In both cases the pump light
was x-polarized. All data points are normalized to the maxima of the corresponding data set.

its line width is marginally increased in the case of the double resonant systems compared
to the only pump resonant gap nanoantennas. The red-shift and the line width increase
originate from a coupling between the short and the long antennas. Investigation of the linear
extinction spectra of several different double resonant gap nanoantenna systems revealed the
red-shift and the line width increase to be independent of the actual nanoantenna lengths
(not shown). By comparing the SHG spectroscopy data of both structures (see Figure 4.11)
it can be seen, that the feedback provided by the additional short nanoantennas strongly
enhances the SHG efficiency of the hybrid nanoantenna systems, even as the previously
mentioned increase of the line width should act counterproductive.

The additional short nanoantenna in the case of the double resonant gap nanoantenna sys-
tems does not only enhance the SHG efficiency, but it also mediates the coupling to the
far field of the generated second harmonic light. This becomes evident by examining the
polarization properties of the second harmonic light generated by the only pump resonant
gap nanoantennas with ZnS nanoparticles and the double resonant gap nanoantenna sys-
tems with ZnS nanoparticles. The results are shown in polar diagrams in Figure 4.12. In
the case of the only pump resonant nanoantennas the second harmonic light is weakly po-
larized along the long nanoantenna axis (x-polarized), whereas significant larger degree of
polarization is obtained in the case of the double resonant nanoantenna systems, this time
along the axis of the short nanoantennas (y-polarized). These results indicate, that double
resonant nanoantenna systems offer the opportunity to influence the far field properties of
the generated second harmonic light.

For the sake of completeness the SHG efficiency of both antenna geometries was checked for
y-polarized pump light. However, in both cases no SHG signal could be measured within
the measurement resolution.
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4.3. TWO-PHOTON RESONANT METAMATERIALS

4.3 Two-photon resonant metamaterials

It was shown in the previous section, that the SHG efficiency of plasmonic nanostructures,
which are resonant for both the pump light (one-photon resonant) and for the generated
second harmonic light (two-photon resonant), exceeds that of only one-photon resonant na-
nostructures. In the case of antenna like structures this result is in agreement with previous
studies [41], but for more complex nanostructures evidence was found, that two-photon res-
onances act as a loss channel [40]. In all these investigations the second harmonic generation
is attributed to the strong near field enhancement of the pump wave, whereas the additional
two-photon resonances are believed to provide a feedback, scatter, or absorb the generated
second harmonic light, thus representing a "passive component". In contrast to this, in
an earlier study on SHG from silver nanoisland films with varying volumes using a fixed
pump frequency evidence was found that an enhancement due to a two-photon resonance is
achievable [130].

For dielectric materials an enhancement of the SHG efficiency, or at least the second order
nonlinear susceptibility, due to two-photon resonances is a quite usual phenomenon. It can
be observed for example in semiconductors, when the band gap energy is approximately two
times the photon energy of the incident pump light [74, 131]. Indeed, this phenomenon in
general is a direct consequence of Miller’s law, presented in paragraph 2.4.2, which predicts
two-, as well as one-photon resonances for the nonlinear susceptibility for second harmonic
generation.

In this section, which is closely following [132], second harmonic generation from plasmonic
nanostructures, which only exhibit a two-photon resonance, will be investigated. Specifically,
SHG spectroscopy measurements will be analysed in the framework of a metamaterial picture
presented in paragraphs 2.3.4 and 2.4.5, based on an anharmonic oscillator model.

4.3.1 Materials and experimental methods

To study the influence of the two-photon resonance on the SHG efficiency of plasmonic nanos-
trucutres, a series of arrays of centrosymmetric gold nanoantennas is examined. Within this
series the length of the antennas increases from 100 nm to 135 nm in 5 nm steps (SEM

y

x

xy

300 nm

300 n
m

Figure 4.13: Top-view SEM micrographs of selected gold nanostructures presenting the extremal
investigated antennas and the two different V-shaped structures. The red arrows indicate the
different incident linear polarizations used in the following. The white scalebars represent 100 nm.
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micrographs of the extremal antennas are shown in Figure 4.13). In addition noncentrosym-
metric V-shaped gold nanostructures with two different arm lengths of 90 nm and 140 nm,
respectively will be investigated. All nanostructures have an arm width and height of 40 nm
and are arranged on a 300 nm x 300 nm square lattice with a footprint of 70 µm x 70 µm.
The gold nanostructures were fabricated by standard electron-beam lithography and lift-
off techniques as presented in section 4.1. As the nanostructures consist of gold only, the
fabrication scheme is truncated after step (e) of Figure 4.1.

To measure the linear response of the nanostructure arrays the same white-light transmis-
sion spectroscopy setup as depicted in Figure 4.4 and explained in paragraph 4.2.2 will be
used. As the goal of this section is to analyse the influence of the linear spectral response of
plasmonic nanostructures on their SHG efficiency, i.e., to measure the frequency dependency
of this nonlinear process, the resolution of the SHG spectroscopy setup/measurement com-
pared to section 4.2 has to be improved. One possible reason for the slightly noisy results
presented in section 4.2 might be the use of the SHG signal obtained from the ITO covered
substrate surface as reference to eliminate parasitic effects associated with the detuning of
the OPG. First the SHG signal from ITO covered surface in general is very weak as can be
seen by comparing Figures 4.6 and 4.7, resulting in a low signal-to-noise ratio. Second, the
second harmonic generation from ITO films is not studied in detail yet, thus an unknown
spectral dependency of this process might also disturb the measurements [133, 134].

To overcome this a reference arm is added to the previously used setup as schematically
shown in Figure 4.14. In the reference arm, which is accessed by a removable mirror (RM1),

double-pass
OPG

RM1 DM
L1 L2

sample
L4

L5

Quartz

L3

RDM

CCD
spectrometer

CMOS
camera

RM2

L6

P RPAHWP

Figure 4.14: SHG spectroscopy scheme: P: polarizer, RM: removable mirror, AHWP: achromatic
half-wave plate, L: lens, sample: sample with plasmonic nanostructures mounted on a computer
controlled 3D translation stage, RP: removable polarizer, DM: dichroic mirror, RDM: removable
dichroic mirror.
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the horizontal polarized (x-direction) pump beam coming from the OPG is focused (L4) on
the surface of a z-cut quartz plate under 45◦ incidence. The second harmonic light generated
at the surface of the quartz plate is collimated (L5) and coupled (RDM, L3) into the CCD
spectrometer. An aperture between the quartz plate and the collimating lens (L5) is used
to block the second harmonic light emerging from the quartz plate volume and reflection
at its back side. The optics used in the reference arm are similar to those used in the
measurement arm, thus the SHG signal obtained from the plasmonic nanostructures can not
only be referenced but also compared to that of the quartz surface. A quartz surface is used as
reference sample, as surface second harmonic generation does not suffer from phase-matching
effects as explained in paragraph 2.4.5. Furthermore, the band gap of quartz is located below
200 nm, therefore its linear spectral response in the visible and near-infrared spectral range
is remarkable flat [135], which will lead to a wavelength independent nonlinear response in
this spectral range, as can be seen from equation (2.88). To further increase the signal-
to-noise ratio the average pump power is increased to 50 mW, as preceding tests showed,
that the damage threshold of plasmonic nanostructures lacking a one-photon resonance is
considerably higher than that of plasmonic nanostructures owning a one-photon resonance.

4.3.2 Two-photon resonant nanoantennas

Figure 4.15 depicts the measured linear optical extinction (one minus the measured intensity
transmission) spectra versus the antenna length for x-polarization (see Figure. 4.13), pre-
sented as an interpolated contour plot. The maxima of the measured spectra are marked as
circles and connected as guide to the eye. Obviously, the plasmonic resonances of nanoan-
tennas can be very finely tuned through the second harmonic range of the employed pump
source (700 nm to 830 nm), by only slight variations of the antenna lengths. Furthermore,
the investigated nanoantennas exhibit only a single plasmonic mode in the spectral range
relevant for this work (700 nm to 1680 nm), as can be seen in the inset showing the complete
extinction spectra of the longest investigated antennas for both x- and y-polarization.

Due to the lack of a one-photon resonance it is not a priori clear whether these nanoantennas
will show second harmonic generation or not. As the nanoantennas are centrosymmetric it
is also not possible to predict which component of the nonlinear susceptibility tensor is non
vanishing, except for the fact that the used setup only allows for normal incidence measure-
ments. Thus, a measurement of the SHG efficiency of the longest investigated antennas for
different polarization angles of the pump beam in steps of 10◦ is done first. For this mea-
surement a fixed wavelength of 1640 nm, corresponding to a two-photon resonant excitation
is used. The results are illustrated in the left graph of Figure 4.16. One can clearly see that
the SHG for y-polarized pump light is vanishingly small compared to the case of x-polarized
pump light. This finding can be qualitatively explained as follows. For x-polarized light
the antennas exhibit a pronounced resonance at around 800 nm wavelengths, whereas the
plasmonic resonance for y-polarized light at around 500 nm is weak and strongly damped
(see inset of Figure 4.15). In terms of a simple harmonic oscillator model one expects that
the strong resonance for x-polarization gives rise to a stronger contribution to the linear
susceptibility at the pump wavelength, than the weak resonance for y-polarization. This
explains the dependence of the SHG signal on the polarization of the pump beam.

73



4. NONLINEAR PLASMONICS

800 1200 1600
0

0.75

Wavelength [nm]

1
-T

500

1-T x-pol.
1-T y-pol.

700 720 740 760 780 800
100

105

110

115

120

125

130

135
A

n
te

n
n
a
 l
en

g
th

 [
n
m

]

820

In
creasin

g an
ten

n
a len

gth

940840 860 880 900 920 960

0 0.25 0.5 0.75
1-Transmission

Wavelength [nm]

Figure 4.15: Normal-incidence optical extinction (one minus the measured intensity transmission)
spectra of the antenna arrays versus the antenna length for x-polarized light, presented as an inter-
polated contour plot. The maxima of the actual data-points are marked as circles and connected as
guide to the eye. The inset shows the spectra for the longest antennas for x- (—) and y-polarization
(· · · ·), the grey area illustrates the wavelength range of the contour plot. The SEM micrographs
(200 nm × 100 nm) on the right depict the extremal antenna lengths.

The right part of Figure 4.16 shows the polarization of the generated second harmonic
light for x-polarized pump light. Here, it becomes evident, that the SHG signal is clearly
polarized along the antenna axis (x-axis). This finding is consistent with equation (2.88),
as χxx(2ω) ≫ χyy(2ω), which can be evaluated by equations (2.46) and (2.47) from the
linear extinction measurements. Thus, only the χSHG

xxx element of the second order nonlinear
susceptibility tensor is non vanishing in the case of two-photon resonant nanoantennas.

Based on the polarization measurements, SHG spectroscopy measurements are performed
with x-polarized pump light and polarization unselective detection for all nanoantenna ar-
rays. In Figure 4.17 the referenced SHG signal is depicted as function of the second harmonic
wavelength and the antenna length. The maxima of the measured SHG spectra are marked
as black circles and connected as guide to the eye. For direct comparison, the maxima of
the measured linear extinction spectra are also plotted as grey connected circles. Obviously,
the spectral maximum of the SHG signal is closely following the linear resonance of the
antennas.

According to the anharmonic oscillator model, presented in paragraphs 2.4.2 and 2.4.2, the
second order nonlinear susceptibility for SHG χSHG

ijk can be expressed by the linear suscepti-
bilities χii at the frequencies ω and 2ω. The analysis of polarization measurements presented
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Figure 4.16: (Left) Normalized total SHG signal of the longest antennas as function of the angle
of polarization of the linearly polarized incident pump beam. (Right) Corresponding normalized
SHG signal as function of the linear output polarizer. The red vertical lines indicate the fixed
linear polarization of the respective pump light. All data points are normalized to the maximum
of the individual measurement and connected as guide to the eye. The SEM micrographs show a
275 nm x 275 nm section of the investigated arrays.

in Figure 4.16 revealed, that both the pump light and the generated second harmonic light
address the same plasmonic mode, in the case of second harmonic generation from the
nanoantennas. Therefore the linear susceptibilities have not to be evaluated explicitly to
obtain χSHG

xxx . Instead, the measured extinction spectra have been fitted to a Lorentzian line
shape, regarding equation (2.46), to obtain χSHG

xxx with the help of equation (2.111). The
thickness z of the metamaterial composed by the antennas, the factor axxx describing the
nonlinear restoring force, and the nonlinear susceptibility and the proportionality constant
η in the case of the reference measurements, i.e., the overall proportionality between the
generated second harmonic intensity and the pump intensity for the reference, are still un-
known. We note that z is, due to the used fabrication method, the same for all nanoantenna
arrays and the proportionality factor to the quartz reference is wavelength independent.
In the spirit of R. Miller’s findings for solid state matter (see paragraph 2.4.2), it will be
assumed in the following that axxx is constant for a specific metamaterial design, i.e., for
the investigated nanoantenna arrays. Thus, the discussed factors can be combined and ob-
tained by first evaluating the spectral dependency of second harmonic generation from a
single nanoantenna array through the linear extinction measurement and second, comparing
this result to the referenced SHG spectrum, measured for that nanoantenna array. Finally,
the SHG spectra of all other nanoantenna arrays can then be predicted from their linear
extinction spectra.

In the right part of Figure 4.17 the referenced SHG signals calculated with the above dis-
cussed method from the linear extinction measurements and the SHG spectrum of the
nanoantennas with a length of 115 nm are presented in the same way as the actual mea-
surements. The spectral positions of the maxima of the SHG signal from the measurements
and the calculations are in good agreement (compare black circles in the left part of Fig-
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Figure 4.17: (Left) Measured SHG signal referenced to the surface SHG signal of a quartz plate
as function of the second harmonic (SH) wavelength versus the antenna length. (Right) SHG
signal calculated from the extinction spectra and normalized for an antenna length of 115 nm. The
maxima of the actual data-points are marked as black circles and connected as guide to the eye.
The connected grey circles depict the maxima of the linear extinction. All measurements were
taken with x-polarized incident light. The SEM micrographs (200 nm × 100 nm) on the right
depict the extremal antenna lengths.

ure 4.17 with those in the right part). Since the antenna arrays exhibit only a plasmonic
resonance at the second harmonic frequency (see inset of Figure 4.15), this clearly shows that
the SHG efficiency of metamaterials can be significantly enhanced by utilizing a two-photon
resonance. In the actual measurement as well as the calculation, the spectral maxima of
the SHG signals are slightly blue shifted with respect to spectral positions of the maxima of
the linear extinction measurements (compare black and grey circles in Figure 4.17). This is
due to the fact, that the plasmonic resonance of the nanoantennas does not show an exact
Lorentzian line shape but is slightly deformed for lower wavelength due to the increasing
intrinsic absorption of the gold. A slight deviation between absolute values of the max-
ima (marked as black circles) in both parts of Figure 4.17 can be observed. However the
overall good agreement between experimental data and calculations justifies a posteriori the
assumption of a constant axxx for the investigated antennas.
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4.3.3 Noncentrosymmetric structures

Next, second harmonic generation from noncentrosymmmetric V-shaped structures with
two different sizes will be investigated. Under the assumption, that the symmetry forbidden
contributions to SHG are much weaker than the contributions arising from the symmetry
breaking of the underlying geometry, the second-order nonlinear susceptibility for normal
incidence should be dominated by the four elements χSHG

xxy = χSHG
xyx , χSHG

yxx , and χSHG
yyy (see

paragraphs 2.4.2 and 2.4.5). To test the contributions of the different elements, the SHG
polarization properties of the V-shaped structures at the respective two-photon resonance
(pump wavelengths 1600 nm and 1500 nm) were measured, in the same way as for the
nanoantennas in the previous paragraph. In the case of the smaller Vs, a strong SHG signal
is obtained for xy-polarized pump light only (see upper left part of Figure 4.18), resulting
in x-polarized second harmonic light as shown in the upper right part Figure 4.18. These
observations identify the element χSHG

xxy as the dominant source of the SHG signal. The slight
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Figure 4.18: Normalized total SHG signal of the small V-shaped (upper left), and the large V-
shaped (lower left) structures as function of the angle of polarization of the linearly polarized
incident pump beam. The SEM micrographs show a 275 nm x 275 nm section of the investigated
arrays. (Upper right), (lower right), Corresponding normalized SHG signal as function of the linear
output polarizer. The red vertical lines indicate the fixed linear polarization of the respective
pump light. All data points are normalized to the maximum of each individual measurement and
connected as guide to the eye.
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second harmonic wavelength. (Bottom) Experimental results represented as in the top graph for
the large V-shaped structures. This time the pump light for the SHG experiments was x-polarized.
The SEM micrographs show a 400 nm × 400 nm section of the investigated arrays, wherein the
red arrows indicate the linear polarization of the respective pump light.

asymmetry between 45◦ and 135◦ can be probably explained by fabrication imperfections. In
contrast, for the bigger Vs (lower part of Figure 4.18) the strongest SHG signal is observed
for x-polarized pump light, resulting in y-polarized SH light. Thus, χSHG

yxx is the dominant
contribution in the case of the bigger Vs.

To understand why for both sizes of the Vs only one, but not the same, element of the χSHG

tensor dominates, one has to look at the linear optical extinction spectra and the nonlinear
spectroscopy data presented in Figure 4.19. In the case of the small Vs a strong resonance
can be observed in the extinction for x-polarized light centred at around 800 nm wavelength,
whereas no resonance for y-polarized light can be observed within the relevant spectral range.
As a result, the generation of x-polarized second harmonic light is enhanced by a two-photon
resonance, which can be clearly observed in the SHG spectrum (see top of Figure 4.19). The
only symmetry allowed tensor element for the generation of x-polarized SH light is χSHG

xxy

which demands xy-polarized pump light as observed in the upper left part of Figure 4.18. In
the case of the bigger Vs (bottom of Figure 4.19) a resonance in the linear extinction centred
at around 740 nm wavelength can be observed for y-polarized light and a second resonance
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centred at 1100 nm wavelength for x-polarized light. The extinction-resonance at 740 nm
gives rise to a two-photon resonance for both the χSHG

yxx and the χSHG
yyy element. However, the

linear extinction-resonance at 1100 nm has a non-negligible overlap with the pump light for
x-polarization. Since χxx(ω) enters quadratically in χSHG

yxx but not in χSHG
yyy , one finds that

χSHG
yxx ≫ χSHG

yyy .

Inspection of Figure 4.19 shows that the maximum SHG signal of the large Vs is approx-
imately two orders of magnitude larger than that of the small Vs. This can not only be
explained by the larger amount of gold, which enters equations (2.88) and (2.111) via the
electron number density. Rather, one has to keep in mind, that the large Vs represent a
double resonant plasmonic nanostructure, as discussed above, while in the case of the small
Vs the second order nonlinear susceptibility is only two-photon resonant. In contrast to the
results of paragraph 4.2.4 and earlier studies on second harmonic generation from double
resonant plasmonic nanostructures [40, 41, 136] this result clearly demonstrates the construc-
tive influence of a two-photon resonance on the SHG efficiency, as the spectral evolution of
the SHG signal is governed by the two-photon resonance and is not superimposed by a strong
one-photon resonance.

It is also interesting to compare the maximal obtained SHG signal from the small Vs to that
of the measurements on the antennas. Even as both geometries exhibit comparable linear
extinction spectra, a 30 times stronger SHG signal is observed from the noncentrosymmetric
Vs. This shows that the symmetry selection rules for the second order nonlinear suscepti-
bility tensor elements play, as expected, a dominant role for metamaterials. However, the
observed ratio is significant smaller than those presented in comparisons on one-photon res-
onant centro- and noncentrosymmetric plasmonic nanostructures [32, 33, 37], where ratios
of more than 100 are reported. This is quite surprising as the dependency of the nonlinear
susceptibility on the resonance frequency and on the symmetry of the electron potential, ac-
counted by aijk in equation (2.88), are segregated in the anharmonic oscillator model. This
discrepancy is more likely due to the fact, that deviations from the idealized geometry and
symmetry of plasmonic nanostructures, originated in fabrication method associated issues,
are more pronounced for small structures, which give rise to two-photon resonances, than
for large structures which give rise to one-photon resonances.
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Conclusions

In this thesis second harmonic generation (SHG) from plasmonic nanostructures and meta-
materials composed of those have been experimentally investigated with spectroscopic meth-
ods. The experimental findings are furthermore supported by either numerical or analytical
calculations. The main results of this thesis are: (i) The design, implementation and charac-
terization of a frequency tunable, high intensity light source, suitable for the spectroscopic
investigation of nonlinear processes; (ii) the clarification of the origin of the nonlinear re-
sponse of hybrid plasmonic/dielectric nanoantennas; (iii) the exposition of the influence of
two-photon resonances, i.e., resonances for the generated second harmonic light, on the spec-
tral dependency and the efficiency of SHG from plasmonic nanostructures and metamaterials
composed of those.

For the SHG spectroscopy experiments conducted in this thesis, a high power double-pass
femtosecond optical parametric generator (OPG) operating with long term stability at a
repetition rate of 42 MHz has been designed and demonstrated. A signal output of more
than two watts average power and nearly 55% pump to signal conversion efficiency has been
obtained by pumping the setup based on a magnesium oxide doped periodically poled lithium
niobate crystal directly with an Yb:KGW laser oscillator, without any further amplification.
The signal is tunable from 1370 nm to at least 1650 nm and pulse durations below 200 fs
were achieved without further compression techniques. The setup consists completely of
commercial of the shelf available parts, which had not to be optimized for ultra short pulse
applications, resulting in a very cost effective system. Compared to alternative frequency
tunable short pulse systems, i.e., commercial optical parametric oscillators and amplifiers,
the presented OPG is also very compact and insensitive to external perturbations and thus
an interesting alternative to those. Finally this system proofed its usability and reliability
in the experiments conducted in this thesis, far more than in the actual characterization.

Prior to the actual experiments on plasmonic nanostructures a fabrication method based on
electron beam lithography and thin film deposition by thermal evaporation was developed,
which allows to combine different metallic and dielectric nanostructures with nanometer
precision. Due to a high degree of automation and parallelization the used method allows
the reproducible fabrication of samples, also for further research projects. Furthermore it is
applicable for a large variety of materials.
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5. CONCLUSIONS AND OUTLOOK

To analyse the interplay between the plasmonic field-enhancement effect, inherent to plas-
monic nanostructures, and the nonlinear optical properties of dielectric nanoparticles a com-
parison of the SHG efficiency of nonlinear dielectric nanoparticles with bare gold nanoan-
tennas, and hybrid dielectric/plasmonic nanoantennas containing either linear or nonlinear
dielectric nanoparticles was conducted. By combining the results of linear extinction mea-
surements and SHG spectroscopy it was shown, that an increase of the SHG efficiency of
plasmonic nanoantennas, obtained by filling their feed gaps with dielectric nanoparticles,
is independent of the nonlinear properties of the dielectric. This experimental result was
also supported by numerical simulations. Furthermore these experiments showed that the
SHG efficiency of plasmonic nanoantennas is several orders of magnitude higher than that
of the used nonlinear dielectric nanoparticles. Additional experiments showed, that a simple
combination of two nanoantennas to a double resonant nanoantenna system provides not
only a strong enhancement of the SHG efficiency but also offers control over the polarization
properties of the generated second harmonic light.

Inspired by the results from double resonant nanoantenna systems, plasmonic nanostruct-
ures were investigated which show only a resonance for the generated second harmonic light.
With the help of linear and SHG spectroscopy on a rather large series of nanoantenna arrays,
exhibiting spectral distinct plasmonic resonances, it was shown, that these two-photon res-
onances enhance the SHG efficiency. Furthermore two-photon resonant noncentrosymmtric
nanostructures with and without a weak one-photon resonance were studied. This study
proofed the validity of the general symmetry selection rules for SHG in the case of plas-
monic nanostructures. It allowed also to analyse the spectral influence of a two-photon
resonance in the case of a double resonant plasmonic system without the interference of a
strong one-photon resonance for the pump light. With this, the previous result, that a fur-
ther enhancement of the SHG efficiency is possible by designing nanostructures, which are
not only resonant for either the pump or the generated second harmonic light, but for both,
is reinforced. Finally the results were qualitatively and in part also quantitatively explained
in a metamaterial picture, connecting the results of the linear extinction spectra with those
of the SHG spectroscopy measurements via an anharmonic oscillator model.
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Outlook

The presented double-pass OPG showed a superior performance, but is still a prototype. A
possibility to decrease the size of the system would be to replace all lenses by curved mirrors.
With this upgrade also changes of the beam divergence occurring when the signal wavelength
is detuned would be diminished. As part of a complete automation of the system it would
be also interesting to replace the nonlinear crystal equipped with discrete poling periods by
a crystal with a so called fan out poling design. In such a design the poling period is not
changed in discrete steps but continuously over the crystal. With such a crystal a continuous
tuning could be achieved avoiding a temperature control of the crystal. A combination of
these improvements would also allow to directly integrate the OPG in the housing of the
pump laser. For several applications it would be also interesting to change the setup in a way
that the idler light can be used. For this purpose optics could be employed which are non
absorptive in the wavelength range from 2000 nm to 4500 nm, but it is questionable whether
dichroic mirrors can be fabricated, which work over the combined signal and idler wavelength
range. Furthermore the feedback for the signal and idler light has to be separated due to
their unequal group velocities, which would make the system more complicated. The main
advantage of the double-pass OPG compared to optical parametric oscillators and amplifiers
operating in the femto- and picosecond regime is, that it does not need to be synchronised
to the pump or seed source. Therefore it would be highly interesting to test this setup with
other pump sources. Several industrial grade high average power femtosecond lasers with
a central wavelength of 1030 nm and 1040 nm work at repetition rates of several MHz and
not several tens of MHz. The peak intensity of these lasers is accordingly higher, thus the
OPG should work without any changes. The main disadvantage of the OPG compared to
an optical parametric oscillator are the pulse to pulse fluctuations as well in the intensity,
as in time. To overcome this, the double-pass optical parametric generator could be used as
an optical parametric amplifier seeded by a tunable continuous wave external cavity diode
laser, to start the parametric amplification not from vacuum noise, but from a well defined
constant intensity. This approach would also increase the conversion efficiency and/or lower
the operation threshold. Thereby it might be possible to use shorter nonlinear crystals
and in turn to use compact fiber lasers operating with lower average output powers, higher
repetition rates and shorter pulse length than the used Yb:KGW oscillator.

The idea of enhancing the nonlinear conversion efficiency of nonlinear dielectric nanostruct-
ures by combining them with plasmonic nanostructures did not work out in the presented
studies. But the situation might be different, if nonlinear dielectrics possessing higher second
order nonlinear coefficients could be employed. For example zinc selenide or gallium arsenide
would be interesting candidates, as they posses a 10/100 times higher second order nonlinear
coefficient and are compatible with the used fabrication scheme. But within this work it
was abstained from their usage, as both materials are rather hazardous. Furthermore their
higher nonlinear coefficient is accompanied by a strong absorption for at least the generated
second harmonic light, which could act counterproductive. Another alternative could be the
use of monocrystalline nonlinear dielectrics with their crystal axis aligned with respect to
the local field distributions. However this approach would be extremely demanding from the
fabrication point of view. Finally one should keep in mind that it was shown in this work,
that noncentrosymmetric bare plasmonic nanostructures show an orders of magnitude higher
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5. CONCLUSIONS AND OUTLOOK

conversion efficiency and the effort to fabricate hybrid structures is similar to the effort for
fabricating multilayer metamaterials with a double-stage electron beam lithography process.

Even as it was not explicitly measured in this thesis it is reasonable to assume that two-
photon resonant plasmonic nanostructures show a weaker second harmonic generation effi-
ciency than one-photon resonant structures, due to the structure of the nonlinear suscep-
tibility. But one-photon resonances also lead to a strong suppression of the pump light,
additional to the actual depletion by conversion. There might be applications, for example
in integrated optical networks, where (i) small SHG signals are sufficient and (ii) the residual
pump light has to be used for additional purposes in the network. In such a scenario a strong
suppression of the pump light additional to the actual conversion is undesirable, therefore
two-photon resonant plasmonic nanostructures represent a promising opportunity.

An interesting property of two-photon resonant plasmonic nanostructures and metamaterials
composed of those, is their ability to influence the far field properties of the generated second
harmonic light, which was partially shown by controlling its polarization. In the light of these
results one could also think about directional emission of the generated second harmonic light
by fabricating a Yagi-Uda like nanostructure system. Such a system is composed of three
antennas aligned parallel to each other, where the middle antenna is resonant for the light
field to emit, the resonance of one of the other antennas is slightly red-shifted, acting as
reflector, and the resonance of the last antenna is slightly blue-shifted acting as director.
Such a system could be also composed of V-shaped structures, for example. Or one could
think of a metamaterial which focusses the generated light to a specific position, like it is
done for radio frequencies with a phased-array radar.

Last but not least the research on multiresonant plasmonic nanostructures for nonlinear
frequency conversion processes is very promising, as it was shown in this thesis that their
performance exceeds that of single resonant structures. If this approach can be combined
with noncentrosymmetric nanostructures one cane hope for large conversion efficiencies. This
could for example be done by varying the opening angel of the V-shaped structures or by
combining two differently sized types of Vs in a metamaterial. This approach can then be
also combined with the concept of directionality. If these attempts work out, one could finally
try to reverse the process of second harmonic generation and to perform optical parametric
generation, amplification and oscillation with plasmonic nanostructures and metamaterials.
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