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Chapter 1.

Introduction
If you don’t know where you are going, you might wind up

someplace else.

(Yogi Berra)

In this thesis, we present a new method to calculate automorphic functions for finite
index subgroups of triangle groups. Since automorphic functions are holomorphic, it is
well known that the real and the imaginary part are both harmonic. The central idea
of my advisor Monien was to look at the two parts separately. We solve the Laplace
equation to find the real and imaginary part of an automorphic function. This solution
can be calculated using numerical methods.
Algorithm. For a finite index subgroup of a triangle group, find a fundamental domain
in the upper half plane. Solve the Laplace equation on this fundamental domain with
two different boundary conditions: Periodic boundary condition on the identified bound-
aries and Dirichlet boundary conditions to obtain the correct asymptotic behavior. The
Dirichlet boundary condition is different depending on whether we are calculating the
real or the imaginary part.

To each finite index subgroup of a triangle group we can associate a Bely̆ı function
and a dessin d’enfant. The zeros of this Bely̆ı function are the values of the automorphic
function we calculated at elliptic points. Hence, we can find an approximation for the
coefficients of the Bely̆ı function. The precision of this approximation is increased by the
use of Newton’s method. Once we have an approximation with high accuracy, we find
the correct algebraic number using the LLL algorithm. From the exact Bely̆ı function
we can reconstruct the exact automorphic function.

In order to handle finite index subgroups of triangle groups, we introduce the notion
of generalized Farey symbols. These symbols are a generalization of the classical Farey
symbols for the modular group. They are used to do efficient calculations with subgroups
of Hecke groups. Especially the generalized Farey symbols provide a method to find a
connected fundamental domain.

Outline of this work
In chapter 2 we give a quick overview of hyperbolic geometry and Fuchsian groups. The
model of hyperbolic geometry we are working with is the Poincaré half plane model. We
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Chapter 1. Introduction

state the main theorems of hyperbolic geometry which we need later. We define Fuchsian
groups and construct the corresponding Riemann surfaces. For a finite index subgroup
of a Fuchsian group we obtain a branched covering of Riemann surfaces. Alongside, we
introduce the notion of a covering and the monodromy operation.

Chapter 3 is dedicated to the concept of automorphic functions and automorphic
forms. We define them and present some examples. Using automorphic functions it is
possible to relate a finite index subgroup of a Fuchsian group to a rational covering.
This covering is defined over the projective line and branched over at most three points.

Triangle groups are the topic of the chapter 4. We define the notion of these groups
and calculate an embedding of the hyperbolic triangle groups in PSL2(R). The Hecke
groups are defined as a special case of triangle groups. Furthermore, we state and proof
a result about finitely presented groups: There is a relation between the finite index
subgroups of a given finitely presented group and certain permutation tuples. We will
use this theorem to describe subgroups of triangle groups. Since we embedded the
hyperbolic triangle group in PSL2(R), we need an algorithm to decide if a given matrix
is in a given subgroup of a triangle group. The algorithm which solves this problem
involves the solution of the word problem for triangle groups. Inspired by the classical
solution to the word problem of PSL2(Z), we present an algorithm to solve the word
problem for a general triangle group.

In chapter 5 we introduce Bely̆ı functions and dessins d’enfants. We give the definition
of these objects and their relation to each other. They are in a strong relation with
subgroups of triangle groups. We explain this relation. At the end of this chapter we
mention a method to calculate the Bely̆ı function of a given dessin.

To be able to handle finite index subgroups of Hecke groups, we introduce the concept
of generalized Farey symbols in chapter 6. Although we use these symbols mainly as a
technical tool to handle these subgroups, they have a rich structure themselves. As an
example, we present a generalization of the Stern-Brocot tree. Farey symbols work as
follows: To each subgroup, we can associate a certain fundamental domain – a special
polygon. These special polygons can be described by a sequence of algebraic numbers,
together with a pairing. It is used to calculate geometric invariants like the genus. In
this chapter, we define the notion of a generalized Farey symbol, present the algorithms
which we need later, and end with a detailed example.

Chapter 7 is about conformal mappings. We develop the theory of conformal map-
pings, the Schwarzian derivative, and calculate the hauptmodul with the help of the
Schwarzian derivative. Furthermore, we introduce the concept of the Picard-Fuchs equa-
tions. In the end of this chapter, we discuss an example that this theory does not suffice
to find the hauptmodul for an arbitrary Fuchsian group.

We present in chapter 8 numerical methods to find modular functions and modular
forms. In the first part of this chapter, we explain an approach using series expansion of
modular forms. These ideas are generalized to find an approximation of the hauptmodul.
In the second part we present a new method. Now, we want solve the Laplace equation
on a fundamental domain with certain boundary conditions. An approximation of this
solution is found using a finite element solver. The precision of the solution is improved
by Newton’s method – used on equations from the theory of dessin d’enfants. The exact

2



coefficients are found using continued fraction expansion or the LLL algorithm.
In chapter 9 we present some results which we calculated using the methods described

in the previous chapters. We analyze “Hsu’s examples” and the groups related to the
sporadic groups M12 and M11.

We finish the thesis in chapter 10 where we suggest further improvements of the
methods. We state some open questions and generalizations. Especially we sketch how
to generalize the notion of the Farey symbols to general triangle groups.

In the appendix we give some details on the implementations of the algorithms.

Notations and terminology
We denote by Z, Q, R, and C the integer, rational, reals, and the complex numbers. The
non-negative real numbers are denoted by

R≥0 := {x ∈ R |x ≥ 0} .

Analog to this we use Z<0 for negative integer numbers and analog constructions. With
Re and Im we denote the real and the imaginary part of a complex number or function.
The complex conjugated of a number z ∈ C is denoted by z̄.

For a field k the projective n-space is denoted by Pn(k). It is defined as the quotient
space of kn+1\{0} by the following equivalence relation:

(x0, . . . , xn) ∼ (y0, . . . , yn)⇔ ∃λ ∈ k× : ∀i : xi = λyi.

We write a representative of an equivalence class as homogenous coordinates: [x0 :
. . . : xn]. The projective line P1(C) will sometimes be written as C ∪ {∞} using the
identification:

[x0 : x1] =

x0
x1

if x1 6= 0
∞ if x1 = 0.

(1.1)

We use the same identification for P1(Q).
For a ring R we write R× for the unit group of R and Mn(R) for the set of all n× n

matrices with entries in R. Furthermore, we write

GLn(R) =
{
A ∈ Mn(R)

∣∣∣ det (A) ∈ R×
}
,

SLn(R) = {A ∈ Mn(R) | det (A) = 1} .

for the general and the special linear group. The trace of a matrix A is denoted by
tr (A) and the determinant by det (A). The projective special linear group PSLn(R) is
the quotient of SLn (R) by its center {± ( 1 0

0 1 )}.
For an element A ∈ PSLn(R) we usually write down an element A ∈ SLn(R), meaning

the equivalence class represented by A.
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Chapter 1. Introduction

If G is a group and g1, . . . , gn ∈ G are elements in the group, we denote by 〈g1, . . . , gn〉
the subgroup of G generated by these elements. For the symmetric group on n letters,
the full permutation group on n letters, we write Sn.

If A ⊆ X is a subset of a topological space X, we write the interior of the set A as
◦
A

and the closure as Ā. The boundary of A is denoted by ∂A.
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Chapter 2.

Hyperbolic geometry and Fuchsian
groups

He had said that the geometry of the dream-place he
saw was abnormal, non-Euclidean, and loathsomely redolent
of spheres and dimensions apart from ours.

(H. P. Lovecraft)

This chapter is about the basics of hyperbolic geometry and Fuchsian groups. It is based
on the books of Katok (Fuchsian groups [Kat92]), Maskit (Kleinian groups [Mas04]),
Beardon (The Geometry of Discrete Groups [Bea95]) and Ratcliffe (Foundations of Hy-
perbolic Manifolds [Rat05]). The model of hyperbolic geometry we are using is the
Poincaré upper half plane model. We state the necessary definitions and the central
theorems. Especially we present the group of automorphisms of the upper half plane
which is PSL2(R). Furthermore, we introduce the notion of a Fuchsian group as discrete
subgroup of PSL2(R) and their basic properties. For this we refer in addition to the
books by Ford (Automorphic forms [For51]) and Shimura (Introduction to the theory
of automorphic functions [Shi71]). As subgroups of the group of automorphism of the
upper half plane, Fuchsian groups operate on the upper half plane as well. Hence, we
look at the quotient of this operation. It turns out that this quotient is a Riemann
surface which we compactify if the group is a Fuchsian group of the first kind. For a
subgroup of finite index of a Fuchsian groups, we construct a branched covering of the
corresponding Riemann surfaces.

Introduction to hyperbolic geometry
The classical axioms of a geometry were first stated by Euclid in his famous book “Eu-
clid’s Elements”. He used five axioms to define the Euclidian geometry. One of these
axioms is the parallel postulate.

That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.” (Euclid, translated by Heath [Euc08, pp. 195-202]).
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Chapter 2. Hyperbolic geometry and Fuchsian groups

In the 19th century, mathematicians started to develop theories of geometry where all
axioms of the Euclidian geometry hold, but not the parallel postulate. Lobachevsky and
Bolyai developed independently a model of a non-Euclidian geometry. This geometry is
nowadays called “hyperbolic geometry”. They substituted the parallel postulate by the
following axiom.

For each line and for each point not on the line there are at least two different
lines through the point and not intersecting the line.

Figure 2.1.: “Parallel” lines in hyperbolic geometry

The model of the hyperbolic geometry we use in this thesis is called the Poincaré half
plane model. Together with the hyperbolic length (formula (2.1)) it is a two-dimensional
model of hyperbolic geometry. Other such models include the Poincaré disk model, the
Lorentz model [Kil80], and the Gans model [Gan66]. All of these models are isomorphic,
but for our purposes it turns out that the upper half plane model is the most useful. We
start with the definition of the upper half plane as well as its closure in P1 (C)

H := {z = x+ iy ∈ C |y > 0} ,
H := H ∪ P1(R) = {z = x+ iy ∈ C |y ≥ 0} ∪ {∞}.

We equip H with the metric

ds = ‖dz‖
Im (z) =

√
dx2 + dy2

y
.

We call this metric the hyperbolic metric on the upper half plane. For a piecewise
differentiable path γ : [0, 1] → H, t 7→ x(t) + iy(t), with x(t) the real and y(t) the
imaginary part, the hyperbolic length l (γ) is defined using the hyperbolic metric

l (γ) :=
∫ 1

0

√(
dx
dt

)2
+
(

dy
dt

)2
dt

y(t) . (2.1)
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We define the hyperbolic distance d (z1, z2) between two points z1, z2 ∈ H in the upper
half plane as the infimum over all curves joining z1 and z2 in H. We call a path in H
which actually taking this infimum a geodesic. A geodesic starting and ending in the
boundary P1 (R) = ∂H ⊆ H is called a complete geodesic. These geodesics are described
easily.

2.2 Theorem ([Kat92], Theorem 1.2.1). The complete geodesics in H̄ are semicircles
and straight lines orthogonal to the real axis R in the sense of the Euclidian geometry.

Proof. See [Kat92, Theorem 1.2.1].

This is used to calculate a formula for the hyperbolic distance between two points.

2.3 Theorem ([Kat92], Theorem 1.2.6, Part (ii)). Let z1 = x1 + iy2 ∈ H and z2 =
x2 + iy2 ∈ H two points in the upper half plane. Then, the hyperbolic distance is

d : H×H→ R≥0,

d(x1 + iy1, x2 + iy2) = arcosh
(

1 + (x2 − x1)2 + (y2 − y1)2

2y1y2

)
.

(2.4)

In addition, this extends to a distance on the closed upper half plane H: d : H × H →
R ∪ {∞}

Proof. See [Kat92, Theorem 1.2.6].

Note that the topology induced by the hyperbolic metric is the same as the topology
induced by the Euclidean metric on the upper half plane, see [Kat92, Theorem 1.3.3].

Hyperbolic trigonometry
A central object of our interest is the hyperbolic triangle. In chapter 4 we will look at a
tessellation by hyperbolic triangles of the upper half plane. The symmetry group of such
a tessellation is the main object of our interest. To construct the necessary triangles as
well as the symmetry operation, we need some hyperbolic geometry. In this subsection,
we collect the definitions and theorems we need for this.

Definition. A hyperbolic n-sided polygon is a closed set P ⊆ H, bounded by n geodesic
segments which intersect in at most one point and do not belong to the same complete
geodesic. We call these geodesic segments the edges of the polygon and if the intersection
of two edges belongs to the boundary ∂P , we call it a vertex of the polygon.

A hyperbolic 3-sided polygon is also called a hyperbolic triangle.

Example. In figure 2.2 we show a hyperbolic 6-sided polygon and in figure 2.3 a hy-
perbolic triangle.

2.5 Theorem. Let P be a hyperbolic triangle with angles α, β and γ. Let A be the length
of the edge opposite of α, B the length of the edge opposite of β, and the length of the
edge opposite γ is denoted by C. Then, the following holds.

7



Chapter 2. Hyperbolic geometry and Fuchsian groups
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Figure 2.2.: A hyperbolic 6-sided polygon

• The hyperbolic area of the triangle µ(P ) is
µ(P ) = π − α− β − γ.

• The sine rule holds
sinhA
sinα = sinhB

sin β = sinhC
sin γ .

• The two Cosine rules hold
coshC = coshA coshB − sinhA sinhB cos γ,

coshC = cosα cos β + cos γ
sinα sin β .

Proof. See [Kat92]: Theorem 1.4.2 and Theorem 1.5.2.

Isometries
The group GL2 (R) operates on the complex, projective line naturally as

GL2(R)× P1(C)→ P1(C),
(( a bc d ) , [x0 : x1]) 7→ [ax0 + bx1 : cx0 + dx1].

Using the identification P1(C) = C ∪ {∞}, this transformation become the famous
Möbius transformation

GL2(R)× (C ∪ {∞})→ (C ∪ {∞}) ,

(( a bc d ) , z) 7→ az + b

cz + d
.
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Figure 2.3.: A hyperbolic triangle

For a point z = x+ iy ∈ H on the upper half plane and a matrix ( a bc d ) ∈ GL2(R), we
calculate the real and the imaginary part of this operation.

a(x+ iy) + b

c(x+ iy) + d
= ac (x2 + y2) + 2adx+ bd− det(A)x

c2y2 + (cx+ d)2 + i · det (A) y
c2y2 + (cx+ d)2 .

If the determinant of the matrix A is greater than zero, this operation maps the closure
of the upper half plane to itself. Especially we obtain the Möbius transformation as an
operation of the special linear group on the closed upper half plane. Since the center
of SL2 (R) operates trivially, this operation descends to an operation of the projective
linear group PSL2 (R).

PSL2(R)×H→ H,

(A, τ) = (( a bc d ) , τ) 7→ A.τ := aτ + b

cτ + d
.

One can check that this is actually a group operation.
We extend the group PSL2(R) by the additional operation z 7→ (z̄)−1 and call the

resulting group the extended group of Möbius transformations PSL∗2(R).
An automorphism of the upper half plane (or more general of a Riemann surface)

is an holomorphic mapping from the surface to itself. An isometry of a metric space

9



Chapter 2. Hyperbolic geometry and Fuchsian groups

is a distance preserving mapping from the surface to itself. Such an isometry is not
necessary a holomorphic mapping. For example the complex conjugation z 7→ z̄ is
distance preserving, but anti-holomorphic.

2.6 Theorem.

(i) The group PSL2(R) operates transitively on the upper half plane.

(ii) The group of automorphisms of the upper half plane Aut(H) is isomorphic to
PSL2(R).

(iii) The group of isometries of the upper half plane Isom (H) is isomorphic to PSL∗2(R).

(iv) The operation of the group PSL2(R) on the upper half plane preserves the cross-
ratio (z1−z2)

(z2−z3) ·
(z3−z4)
(z1−z4) of four points z1, . . . , z4 ∈ H.

Proof. For the first part see [Miy06], Theorem 1.1.3. The statement is equivalent to the
statement that for every z = x + iy ∈ H, there is an α ∈ PSL2(R), such that αi = z.
We choose this α as follows.

α =
√y x√

y

0 1√
y

 .
We choose the positive roots in this matrix. Using this, a matrix that maps z1 =
x1 + iy1 ∈ H to z2 = x2 + iy2 ∈ H is given as follows √

y2
y1

x2y1−x1y2√
y1y2

0
√

y1
y2

 .
The second part is also [Miy06, theorem 1.1.3].

The third part is [Kat92, theorem 1.3.1]. The last part is proven by direct calculations.
For A = ( a bc d ) ∈ PSL2(R) and z1, . . . , z4 ∈ H we need do show

(A.z1 − A.z2)
(A.z2 − A.z3) ·

(A.z3 − A.z4)
(A.z1 − A.z4) = (z1 − z2)

(z2 − z3) ·
(z3 − z4)
(z1 − z4) .

Remark. To construct a Möbius map, which maps three given points x1, x2, x3 ∈ ∂H =
P1 (R) to another set of three points z1, z2, z3 ∈ ∂H, we use part (iv). Since Möbius map
f : H→ H, with f (xi) = zi, for i = 1, 2, 3 preserves the cross ratio, it needs to fulfill

(x1 − x2)
(x2 − x3) ·

(x3 − x)
(x1 − x) = (z1 − z2)

(z2 − z3) ·
(z3 − f(x))
(z1 − f(x)) .

We solve this equation for f (x) and obtain a Möbius transformation with the desired
properties.

In addition, this also works for general points in H, but the resulting Möbius trans-
formation can have complex coefficients in this case.
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Later, we will map hyperbolic triangles using Möbius transformations. Hence, we need
to know how geodesics and the hyperbolic area behaves under these transformations.

2.7 Theorem.

(i) Any map in PSL2(R) of the upper half plane maps geodesics into geodesics.

(ii) The hyperbolic area is invariant under all transformations in PSL2(R).

Proof. See [Kat92], Theorem 1.2.4 and Theorem 1.4.1.

Fuchsian groups
The main result of this thesis is to present an algorithm to calculate rational coverings
and modular functions for finite index subgroups of Hecke groups. To define the notion of
modular function of triangle groups, we introduce the more general concept of Fuchsian
groups. We will see in chapter 4 that the triangle groups – as well as the even more
special Hecke groups – are examples of Fuchsian groups. Also the next chapter, chapter
3, uses the more general notion of Fuchsian groups to define modular function. Starting
with chapter 4 we specialize on the triangle groups.

In this section we start with the following definition.

Definition. We call a discrete subgroup ∆ ⊆ PSL2(R) a Fuchsian group.

There is an equivalent definition of the notion of a Fuchsian group. This notion uses
the operation of the group PSL2(R), respectively its subgroups, on the upper half plane.
Note that subgroups of PSL2(R) act on the upper half plane in the same way on the
upper half plan as PSL2(R) does. To give the alternative description, we need the
following definition.

Definition. Let ∆ be a group acting on a topological space X. We call the group action
properly discontinuously if for any two points x, y ∈ X, there exist neighborhoods U of
x and V of y, such that the following set is finite

{g ∈ ∆|gU ∩ V 6= ∅} .

2.8 Theorem. A subgroup of PSL2(R) is a Fuchsian group if and only if it acts properly
discontinuously on the upper half plane.

Proof. See [Kat92, theorem 2.2.1] or [Miy06, theorem 1.5.2].

Example. The most famous examples is the modular group

PSL2(Z) := {( a bc d )| a, b, c, d ∈ Z, det (( a bc d )) = ad− bc = 1} / {± ( 1 0
0 1 )} .

This group is generated by the matrices

S =
(

0 −1
1 0

)
and R =

(
0 −1
1 −1

)
.

11



Chapter 2. Hyperbolic geometry and Fuchsian groups

The matrix S is of order two and R is of order three. One can also show that this
group is the free product Z/2Z ?Z/3Z of the cyclic group of order two and three. For a
more detailed discussion we refer to [Apo90, Section 2.2].

Furthermore, we give two examples from the book of Miyake [Miy06].

Γ1 =
〈(

1 1
0 1

)〉
=
{(

1 n
0 1

)∣∣∣∣∣n ∈ Z
}
, (2.9)

Γ2 =
〈(

cos π
3 sin π

3
− sin π

3 cos π
3

)〉
. (2.10)

Later we see that the modular group is different from the groups Γ1 and Γ2. The
groups Γ1 and Γ2 are Fuchsian groups of the second kind whereas the modular group is
a Fuchsian groups of the first kind.

The elements of a Fuchsian group are classified according to their trace.

Definition. Let g = ( a bc d ) ∈ PSL2(R). We call g

(i) elliptic if tr (g)2 < 4,

(ii) parabolic if tr (g)2 = 4, and

(iii) hyperbolic if tr (g)2 > 4.

Since the group PSL2(R) operates on the closed upper half plane via Möbius trans-
formations, the subgroups of PSL2(R) do as well. Hence, the Fuchsian group operate on
the upper half plane. We use the classification of elements of Fuchsian groups, to define
special points on the upper half plane.

Definition. Let ∆ be a Fuchsian group and z ∈ H be a point on the closed upper half
plane. We call z an elliptic, parabolic, or hyperbolic point for ∆ if it is the fix point of a
elliptic, non trivial parabolic or hyperbolic element of ∆.

Furthermore, we call a parabolic point in H a cusp. Two cusps p1, p2 ∈ H are equivalent
if there is an element γ ∈ ∆ such that p1 = γ.p2.

Example. As we have seen, the modular group PSL2(Z) is a Fuchsian group. The
generator R =

(
0 −1
1 −1

)
is an elliptic element, since the square of the trace is one. Solving

the equations z = R.z for z, we see that there are two fixed points in the complex plane:
z = 1

2 ±
√

3
2 i – one of the point is actually in the upper half plane. Hence, the point

1
2 +

√
3

2 i is an elliptic point for the modular group.
We claim that each rational point a

b
is a cusp for the modular group. A short calcu-

lation shows that the matrix

P =
(

1− ab a2

−b2 1 + ab

)

has the following properties. It has determinant one and trace two. Therefore, it is a
parabolic element of the modular group. The matrix P also maps the rational point a

b

to itself, making it a cusp.

12



When we construct the Riemann surface corresponding to a Fuchsian group in the
next section, we start by defining a non-compact Riemann surface which is compactified
by adding the cusps. For this, we need to know to possible positions of the cusps.

2.11 Theorem. Let A ∈ PSL2(R) be a non-trivial element. Then,

A is parabolic⇔ A has only one fixed point on P1 (R) .
A is elliptic⇔ A has one fixed point in H and one in the lower half plane.

A is hyperbolic⇔ A has two fixed points on P1 (R) .

Proof. See [Shi71, proposition 1.13].

2.12 Corollary. Let ∆ be a Fuchsian group and z ∈ H a cusp of ∆. Then, z lies in
P1(R).

Proof. If z ∈ H is a cusp, there is a parabolic matrix A ∈ ∆, such that A.z = z. From
the proposition we see that this fixed point need to lie in P1(R).

Fundamental domains and Riemann surfaces
To study a Fuchsian group ∆, we study the Riemann surface ∆\H and its compactifica-
tion. To describe this surface, we use the concept of the fundamental domain of a group
operation. In this section define the notion of a fundamental domain and construct a
compact Riemann surface for certain Fuchsian groups.

Fundamental domains
The concept of a fundamental domain works in the context of an arbitrary group oper-
ation on a topological space and we give the definition in this generality.

Definition. Let G be a group acting on a topological space X. We call a closed subset
F ⊆ X of X a fundamental domain for this group operation if

(i) X = ⋃
g∈G gF,

(ii) g
◦
F ∩

◦
F = ∅ for all g 6= 1.

Furthermore, we call the family {gF |g ∈ G} a tessellation of X.

In this definition there are some important subtleties concerning the boundary ∂F
of the fundamental domain. We do not require that the intersection of gF ∩ F, for all
g ∈ G\{1}, is the empty set. In fact, for the Fuchsian groups we are interested in, there
are elements of the group that map one part of the boundary of the fundamental domain
onto another.

The first part of the definition implies that for every point x ∈ X in the topological
space X, there is one g ∈ G, such that g−1x is in F. The second part of the definition
claims that this g is unique if g−1x ∈

◦
F.

13



Chapter 2. Hyperbolic geometry and Fuchsian groups

Example. Let G = D4 the dihedral group of order 8, the symmetry group of a square.
This group operates on a square. In figure 2.4 we give a fundamental domain of this
operation and in 2.5 the corresponding tessellation.

Figure 2.4.: Fundamental domain of a D4 Figure 2.5.: Tessellation of the square

Example. Another important example is the operation of the modular group PSL2(Z)
on the upper half plane. The corresponding tessellation is called the Dedekind tessella-
tion. A discussion of this example is in standard textbooks about modular forms – for
example [Apo90, section 2.3]. In figure 2.6 you find in red a fundamental domain. The

Figure 2.6.: The Dedekind tessellation of the upper half plane and a fundamental
domain (in red)

14



red part is the domain bounded by the following geodesics

B1 = {it |t ∈ [0, 1]} ,
B2 = {it |t ∈ [1,∞]} ,

B3 =
{
t+ i

√
1− (t− 1)2)

∣∣∣∣t ∈ [0, 1
2]
}
,

B4 =
{

1
2 + it

∣∣∣∣∣t ∈ [
√

3
2 ,∞]

}
.

As we mention before, there are elements in the group which map one part of the
boundary to another part. Here we explicitly give these elements. The matrix S = ( 0 −1

0 )
maps B1 to B2 and vice versa. The second generator R =

(
0 −1
1 −1

)
maps B4 to B3 and

its second power (or its inverse) R2 = R−1 maps B3 to B4.

A fundamental domain is neither unique, nor does it have a priori any nice properties.
For a Fuchsian group it is always possible to find a connected, polygonal fundamental
domain. In chapter 4 we construct such a domain for the triangle groups and in chapter
6 for subgroups of Hecke groups.

If we know a fundamental domain F ⊆ H for a Fuchsian group ∆, we construct a
fundamental domain for any finite index subgroup Γ ⊆ ∆ in the following way. Let
c1, . . . , cr be coset representatives of Γ\∆. Then, c−1

1 (F) ∪ . . . ∪ c−1
r (F) is a fundamental

domain for Γ. The sets c−1
i (F) are defined as follows c−1

i (F) =
{
c−1
i .z ∈ H |z ∈ F

}
. For

a proof, see [Kat92, Theorem 3.1.2]. The resulting domain depends of course on the
choice of the coset representatives. In the generic setting, it is not a connected domain.
In various settings it is possible to find coset representatives, such that the resulting
domain is actually connected. See for example for subgroups of the modular group
PSL2(Z) the fundamental domain drawer by Verrill [Ver] or in the more general context
of Shimura curves [KV03].

The Riemann surface for Fuchsian groups
In this section we use the theory of (compact) Riemann surfaces to study Fuchsian
groups. For the definition of a Riemann surface, we refer to the books by Springer
(Introduction to Riemann surfaces [Spr57]), Farkas and Kra (Riemann surfaces [FK80]),
and Jost (Compact Riemann surfaces [Jos97]). The Riemann surfaces we are interested
in, are the quotients of the upper half plane by a Fuchsian group.

Y (∆) := ∆\H.

This space is a Riemann surface. But in general it needs not to be compact. In fact,
if this surface Y (∆) is compact, then the group ∆ has no cusps – see [Miy06, Chapter
1.8].

To construct a compactification of this surface, we add the cusps. We denote with
P∆ ⊆ H the set of all cusps of ∆. Due to corollary 2.12, we know that all the cusps lie

15



Chapter 2. Hyperbolic geometry and Fuchsian groups

on the boundary of H. Hence, P∆ ⊆ P1 (R). We define the extended upper half plane.

H∗∆ = H∗ := H ∪ P∆ ⊆ H. (2.13)

The topology on H∗ is defined as follows: For every τ ∈ H we take as fundamental
set of open neighborhoods the usual one in H. For a fundamental system of open
neighborhoods for a cusp τ , we take the following sets:

{τ} ∪ {the interior of an area bounded by a geodesic inH with the center τ}

. With this extended plane, we define another Riemann surface

X(∆) := ∆\H∗∆.

If this surface is compact, we call ∆ a Fuchsian group of the first kind. If X(∆) is
not compact, ∆ is a Fuchsian group of the second kind. From now on, whenever we talk
about a Fuchsian group, we always mean a Fuchsian group of the first kind.

We collect some facts about this Riemann surface X(∆) for a Fuchsian group ∆.
Most of this is contained in standard text books, like Miyake (Modular forms [Miy06])
or Shimura (Introduction to the arithmetic theory of automorphic functions [Shi71]).

First of all, we remark that the topological space X(∆) we constructed is actually a
compact Riemann surface and a locally compact Hausdorff space. There is a natural
projection map from the extended upper half plane to this surface

π = π∆ : H∗ → X(∆).

The definition of elliptic points and cusps is pushed foreword to describe special points
on the Riemann surface X(∆).

Definition. Let ∆ be a Fuchsian group and X(∆) the corresponding Riemann surface
as constructed above.

• A point z ∈ X(∆) is a cusp if there is a point x ∈ π−1 (z) ⊆ H∗ in the fiber such
that x is a cusp for ∆.

• A point z ∈ X(∆) is an elliptic point, if there is a point x ∈ π−1 (z) ⊆ H∗ in the
fiber such that x is an elliptic point for ∆.

• The genus of the Fuchsian group is the genus of the Riemann surface X(∆).

Remark. If one point in the fiber is a cusp, respectively an elliptic point, all points in
the fiber are. In fact, let x ∈ π−1(z) be a cusp which means there is a parabolic element
P ∈ ∆ fixing x = P.x. If y is another point in the fiber, there is an element D ∈ ∆
mapping x to y: D.x = y. Now, the element DPD−1 fixes y and is parabolic since the
trace in invariant under conjugation.
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Let ∆ be a Fuchsian group and F = F∆ ⊆ H∗ a fundamental domain for ∆. We
restrict the projection map to the fundamental domain,

π
∣∣∣
F

: F→ X(∆).

Due to the definition of F the map is still surjective. Furthermore, if we restrict this
map to the interior

◦
F, it is also injective. On the boundary, the fiber of a point can (and

in general will) contain more than one point. The quotient map identifies these points.
These identifications of the borders are called the side pairings. The following theorem
is crucial for chapter 6.

2.14 Theorem. Let ∆ be a Fuchsian group and F a fundamental domain of ∆, bounded
by geodesics. Then, the side pairings generate the group ∆.

Proof. See [Kat92], Section 3.2 to 3.5 – especially theorem 3.5.4 or [Bea95, theorem
9.2.7].

Coverings
We have seen that for a subgroup of finite index Γ ⊆ ∆ of a Fuchsian group, we can
construct a fundamental domain for Γ from a fundamental domain of ∆ using the cosets
of Γ\∆. In terms of the corresponding Riemann surfaces, we obtain a commutative
diagram.

Γ\H∗

ϕ

��

H∗

πΓ
;;

π∆ ##
∆\H∗

(2.15)

First of all, we must remark that H∗ = H∗∆ = H∗Γ. The two extensions of the upper
half plane coincide. This is due to the fact that the cusps of the finite index subgroup Γ
coincide with that of ∆ – see [Miy06, corollary 1.5.5]. Hence, the maps πΓ and π∆ are
the projections from the same extended upper half plane. The map ϕ maps a Γ-orbit
of a point z ∈ H∗ to the corresponding ∆-orbit. This map is well defined. If z′ ∈ H∗
is another point in H∗ representing the same orbit, there is a matrix γ ∈ Γ such that
z = γ.z′. Since Γ ⊆ ∆, the point z and z′ also represent the same ∆-orbit. The map ϕ
turns out to be a branched covering of Riemann surfaces. So we start with the definition
of a covering.

Definition. Let X be a topological space. A covering space of X is a topological space
E together with a continuous, surjective map p : E → X, such that for every point
x ∈ X, there is a neighborhood Ux of x, such that the inverse image p−1(Ux) of Ux is
isomorphic to a disjoint union of copies of Ux.
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Chapter 2. Hyperbolic geometry and Fuchsian groups

Remark. If the base space X is connected, locally path-connected and semi-locally
simply connected, it can be shown that there is always a simply connected covering.
This covering is called the universal covering. See [Hat01, p. 59] for the construction.

The map ϕ described in (2.15) not a covering according to the previous definition. If
we have for example an elliptic point on the Riemann surface X(∆), the fiber over this
point has a different cardinality than a generic point. Therefore, we need to loosen the
definition of the covering and introduce branched coverings.

Definition. We call a map f between Riemann surfaces f : X → Y a branched covering
if there is a finite set S ⊆ X, such that the map f

∣∣∣
X\S

: X\S → Y \f(S) is a covering.
If we choose S to be the minimal set with this property, we call a point in S singular
point and a point in f(S) ⊆ Y a branching point.

This definition fits our purposes and we show that the map we defined is such a
branched covering.

2.16 Lemma. Let ∆ be a Fuchsian group and Γ ⊆ ∆ a subgroup of finite index. Then,
we have an induced map on the quotients, respectively on the corresponding Riemann
surfaces

ϕ : X (Γ)→ X (∆) ,
Γz 7→ ∆z.

This map is a well defined, branched covering. It is branched over the elliptic and
parabolic points of ∆.

Proof. We already saw that the map is well defined. Using diagram (2.15), we calculate
the fibers of the map ϕ. We fix one point z ∈ H∗ on the extended upper half plane.

ϕ−1(∆z) = πΓ
(
π−1

∆ (z)
)

= πΓ ({δz| δ ∈ ∆})
= {Γδz| δ ∈ ∆} .

Two elements ΓAz and ΓA′z in this set are equal if and only if there is a γ ∈ Γ such that
Az = γA′z. If we now assume that z is neither an elliptic point nor a cusp, we obtain the
condition that there exists a γ ∈ Γ such that A = γA. Since this is the defining relation
for the cosets Γ\∆, we describe the fiber as follows. Let c1, . . . cr be coset representative
of Γ\∆, then

ϕ−1(∆z) = {Γc1z, . . . ,Γcrz} .

Since we assume that z is neither an elliptic point nor a cusp, all of these elements are
distinguished. Hence, the map ϕ is a covering with possible branching over the elliptic
point and the cusps.
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Later, we will define subgroups of certain Fuchsian groups, using the monodromy
representation. To understand this notion, we give the general definition of monodromy.
To do this, we start with the definition of the fundamental group of a topological space
– see also [Hat01, p.26f] or [For77, section 3.8]. For this definition, we need the unit
sphere, denoted by S1

S1 =
{

(x, y) ∈ R2
∣∣∣x2 + y2 = 1

}
⊆ R2.

We fix a point on the sphere which we call the north pole N = (0, 1).

Definition. Let X be a topological space, x0 ∈ X a point and the unit circle equipped
with the Euclidian topology. Then, we define the fundamental group as loops on the
point x0 up to homotopy

π1(X, x0) :=
{
f : X → S1 |f continuous and f(x0) = N

}
/ ∼ .

The equivalence relation ∼ is the homotopy. Two loops f and g are homotopy equiva-
lent if there is a homotopy H : [0, 1]×X 7→ S1, such that H is continuous, H(0, x) = f(x),
H(1, x) = g(x) and H(t, x0) = N for all t ∈ [0, 1].

We define on the set π1(X, x0) a group structure by the composition of loops.

Example. As before, we denote by S1 the unit circle. Then, one shows that for every
x0 ∈ S1 the following holds

π1
(
S1, x0

)
= Z.

This is proven for example in [Hat01, p.26ff].

It is possible to calculate the fundamental group of an arbitrary compact Riemann
surface. To do this, one should first see that any compact Riemann surface is homeo-
morphic to a sphere which g handles where g is the genus of the surface. Then, we can
proof the following theorem.

2.17 Theorem. Let X be a compact Riemann surface of genus g. Then, for any base
point x0, we have that the fundamental group π1(X, x0) is a free group on the generators
a1, b1, . . . ag, bg divided out by the subgroup generated by [a1, b1] · . . . · [ag, bg] where [·, ·] is
the commutator.

Proof. See [Jos97, theorem 2.4.3]. In this source, you also find a geometric interpretation
of the elements a1, . . . , ag, b1, . . . bg.

Since for a Fuchsian group ∆ the Riemann surface X (∆) is compact, we apply this
theorem and obtain its fundamental group.

Now, we introduce the monodromy. Therefore, we consider the following setting. Let
X be a topological space and p : E → X a covering. We fix a base point x0 ∈ X and
denote the fundamental group with π1(X, x0). There is an operation of this fundamental
group on the fiber p−1(x0), defined in the following way. Let e0 ∈ p−1(x0) be a point
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Chapter 2. Hyperbolic geometry and Fuchsian groups

in the fiber and γ ∈ π1(X, x0) a loop in X. This loop is lifted to a unique path in E
starting in e0. Denoting this path with γ̃e0 and the end point with e1 = γ̃e0(1) ∈ p−1(x0),
we obtain a permutation of the points in the fiber, via e0 7→ e1. Altogether, we have a
map with n the degree of the map p

π1(X, x0)→ Aut(p−1(x0)) ∼= Sn

γ 7→ (e0 7→ γ̃e0(1)).

We call the image of this homomorphism the monodromy group of the covering.
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Chapter 3.

Automorphic forms and functions
There are five elementary, arithmetical operations: addi-

tion, subtraction, multiplication, division, and ... modular
forms.

(Matrin Eichler)

Around 1750 Giulio Carlo Fagnano dei Toschi and Leonhard Euler looked at the problem
of calculating the circumference of an ellipse. The result is now known as the complete
elliptic integral of the second kind. They continued to calculate the arc length of an
ellipse. This is nowadays known as an incomplete elliptic integral. Several years later,
around 1825, Niels Henrik Abel had the idea of looking at the inverse functions of the
elliptic integral to get a better understanding of them. These functions are the elliptic
functions.

Another central contribution came from Karl Weierstrass by introducing the Weier-
strass’s elliptic function. All elliptic functions can be described using this function and
its derivative. Carl Gustav Jakob Jacobi improved this theory – he introduced the no-
tion of the theta functions. These theta functions and generalizations of them are still
under investigation and not yet fully understood.

In the book Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom
5ten Grade by Felix Klein [Kle84], he started to investigate the automorphic proper-
ties and set out a theory of automorphic forms. What now became important are the
transformation properties of the functions we mentioned before.

At this point the question arose, whether it is possible to calculate a function with a
given automorphic property. A partial answer gave Erich Hecke by introducing the con-
cept of Hecke operators ([Hec36] and [Hec37]). These operators operate on automorphic
forms and make it possible to actually find automorphic forms. Up to now, it was only
possible to find these Hecke operators for the congruence subgroups. Although it was
possible to calculate automorphic form for some special cases ([FHL+10], [LLY05a]), it
is still an open problem, how to calculate automorphic forms efficiently. There were
some attempts to write down Hecke operators for non-congruence subgroup, but these
definitions did not yield the desired results – see for example [Ber94]. For automorphic
functions we will give an algorithm how to solve this problem numerically.

In this chapter we introduce the concept of automorphic forms and automorphic func-
tions for a general Fuchsian group. Aside from the definitions, we state some examples
and formulate the central properties which we will need later. A priori these functions
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Chapter 3. Automorphic forms and functions

are functions on the upper half plane. Nevertheless, they can also be defined in terms
of the Riemann surface X (∆) for a Fuchsian group ∆. Finally, we use a special auto-
morphic function, the hauptmodul, to lift the branched covering (2.15) from the previous
chapter to a covering P1 (R) → P1 (R) which will be a rational function. It will be
necessary that the involved groups have genus zero.

As in the previous chapter, we continue to write Fuchsian group, whenever we mean
a Fuchsian group of the first kind.

Automorphic forms
An automorphic form is a function on the upper half plane, with a certain transformation
behavior under a given Fuchsian group. To describe this behavior we introduce the slash
operator.

Definition. Let Γ ⊆ PSL2(R) a Fuchsian group. We define a right action of Γ, the slash
operator of weight k, on the set of all functions f : H → C. For γ = ( a bc d ) ∈ PSL2 (R)
we let (

f
∣∣∣
k
γ
)

(z) := (cz + d)−kf (γz) .

This operation is actually a group operation [Miy06, p. 37]. It is also possible to
generalize this operation to an operation of the group GL+

2 (R), the group of invertible
matrices with positive determinant. For this group we introduce a factor on the right-
hand side (

f
∣∣∣
k
γ
)

(z) := det(γ) k2 (cz + d)−kf (γz) .

In the last chapter we have introduced the extended upper half plane H∗∆ for a Fuch-
sian group ∆ – equation (2.13). For automorphic forms we require in addition to the
transformation property a smoothness conditions.

Definition. Let ∆ be a Fuchsian group acting on the extended upper half plane H∗∆
and k ∈ Z. Then, we define

(i) The space of meromorphic, automorphic forms of weight k

Ak(∆) :=
{
f : H∗∆ → C

∣∣∣ f is meromorphic and ∀γ ∈ ∆ : f
∣∣∣
k
γ = f

}
.

A meromorphic, automorphic forms of weight 0 is also called an automorphic
function.

(ii) The space of automorphic forms of weight k

Gk(∆) :=
{
f : H∗∆ → C

∣∣∣ f is holomorphic and ∀γ ∈ ∆ : f
∣∣∣
k
γ = f

}
.
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(iii) The set of cusp forms of weight k

Sk(∆) :=
{
f : H∗∆ → C

∣∣∣ f is holomorphic, ∀γ ∈ ∆ : f
∣∣∣
k
γ = f and

f vanishes at all cusps
}
.

We define the space of all meromorphic, automorphic forms by

A(∆) :=
∞⊕

k=−∞
Ak(∆).

Analog to this, we define the space of all automorphic forms and all cusp forms in the
following way.

G(∆) :=
∞⊕

k=−∞
Gk(∆), S(∆) :=

∞⊕
k=−∞

Sk(∆).

We have the following inclusions of these spaces

Ak(∆) ⊇ Gk(∆) ⊇ Sk(∆).

3.1 Theorem. Let ∆ be a Fuchsian group. Then, the following holds.

(i) If ∆ has no cusps, than Gk(∆) = Sk(∆) for all k ∈ Z.

(ii) If k is odd, then Ak(∆) = {0}.

(iii) If f ∈ Ak(∆), then 1/f ∈ A−k(∆).

(iv) If f ∈ Ak(∆) and g ∈ Al(∆), then fg ∈ Ak+l(∆).

(v) If f ∈ Gk(∆) and g ∈ Gl(∆), then fg ∈ Gk+l(∆).

(vi) If f ∈ Gk(∆) and g ∈ Sl(∆), then fg ∈ Sk+l(∆).

(vii) The rings A(∆), G(∆), and S(∆) are graded rings.

Proof. See [Miy06, section 2.1].

This theorem shows that the space of automorphic functions A0(∆) is actually a field
under the multiplication of functions. From a geometric point of view this field can be
interpreted as follows. The condition for being an automorphic function is on the one
hand being meromorphic on the upper half plane and the cusps. On the other hand the
transformation condition needs to be satisfied.

j ∈ A0(∆)⇒∀γ ∈ ∆: ∀z ∈ H∗ :
(
f
∣∣∣
0
γ
)

(z) = j(z)
⇔∀γ ∈ ∆: ∀z ∈ H∗ : j (γz) = j (z) .
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Chapter 3. Automorphic forms and functions

The transformation condition for automorphic function is the condition that the func-
tion is invariant under the operation of the underlying Fuchsian group. Hence, this
function factors through a meromorphic function on the Riemann surface X (∆).

H∗ j //

π∆ ""

P1 (C)

X (∆)
f

::
(3.2)

Here, f is a meromorphic function on X(∆), an element of the function field K
(
X(∆)

)
.

Conversely, for such a function f in the function field, we lift f to a function j ∈ A0 (∆),
via j = f ◦ π∆. Hence, we have shown the following lemma.

3.3 Lemma. Let ∆ be a Fuchsian group. Then, the function field K
(
X(∆)

)
of X(∆) is

isomorphic to the ring of meromorphic functions A0 (∆), via the following isomorphism

K
(
X(∆)

)
→ A0 (∆) f 7→ j = f ◦ π∆.

To write down automorphic forms and functions we make the following remark, see
Shimura [Shi71, section 1.5 and 2.1]. Let ∆ be a Fuchsian group with a cusp p ∈ H∗∆.
We find a map R ∈ PSL2(R), such that R.p =∞: theorem 2.6, part (i). Then, we write
the stabilisator ∆p = {A ∈ ∆|A.p = p} as follows

R∆pR
−1 · {±1} = {± ( 1 w

0 1 )m|m ∈ Z} ,

where w = wp ∈ R>0 is a positive real number. We call w the cusp width of the cusp p.
Now let f ∈ Ak(∆) be a meromorphic, automorphic function. Due to the transformation
condition of f the function f

∣∣∣
k
R−1 is invariant under all A ∈ R∆pR

−1.

(
f
∣∣∣
k
R−1

) ∣∣∣
k
A = f

∣∣∣
k
R−1.

Since ( 1 w
0 1 ) ∈ R∆pR

−1, the function f
∣∣∣
k
R−1 is invariant under z 7→ z + w. Due to this

periodicity condition, we write the function f
∣∣∣
k
R−1 as follows.

f
∣∣∣
k
R−1 =

∑
n≥n0

cne
2πinτ/w =

∑
n≥n0

cnq
n. (3.4)

We call this the Fourier expansion of f at the cusp p and the numbers cn the Fourier
coefficients of f . We use the common abbreviation q = qw = exp (2πiτ/w). The
expansion (3.4) is sometimes also called the q-series of f at p. If we take about the
q-series, we mean the series at p =∞.
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Examples of automorphic forms and automorphic functions

The first examples that we give are from the article Elliptic modular forms and Their
Applications by Zagier [Zag08]. Starting with a vector space V with group operation
(of a finite group G) there is an elementary way of finding invariant vectors. For an
arbitrary vector v ∈ V we take the sum ∑

g∈G g.v, where g.v is the group operation.
If the vector v is already invariant under a subgroup H ⊆ G, it suffices to sum only
over a set of coset representatives H\G: ∑g∈H\G g.v. However, a Fuchsian group is not
finite, we still would like to use this. Here, the vector space is the of functions on H∗
and the group operation is the slash operator. This results in the Poincaré series -
see [Kol95, chapter 5].

To obtain a concrete example, we look at the modular group PSL2(Z). The subgroup
we choose to be the stabilisator of ∞: Γ∞ = 〈( 1 n

0 1 )〉. According to theorem 3.1, there
are no automorphic forms, if k odd. Hence, we assume k to be even. We calculate the
cosets of this subgroup. They are parameterized by the pairs (c, d) ∈ Z2 with (c, d)
coprime. For each such pair there is exactly one pair (a, b), such that ( a bc d ) ∈ PSL2(Z).
Using this, we introduce the Eisenstein series of weight k for PSL2(Z) for k ∈ Z> 2

Ek(z) =
∑

γ∈Γ∞\Γ
1
∣∣∣
k
γ = 1

2
∑

(c,d)∈Z2

(c,d)=1

1
(cz + d)k .

It is possible to calculate the q-series of the Eisenstein series.

3.1 Proposition. Let Ek(z) the Eisenstein series as defined before for k > 2 and ζ (s) =∑n
i=1

1
ns

the Riemann zeta function. We renormalize the Eisenstein series by

Ek(z) = (2πi)k
ζ(k)(k − 1)!Ek(z).

Then, the series Ek(z) has the following Fourier expansion.

Ek(z) = −Bk

2k +
∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number and σk−1(n) for n ∈ N denotes the sum of the
(k − 1)st power of the positive divisors of n.

Proof. See [Zag08, Proposition 5].

As an example of an automorphic function, we give the first terms of the q-series of
the modular invariant or Klein’s j-invariant.

j(z) = 1
q

+ 744 + 196884q + 21493760q2 + 864299970q3 + O(q4).

This function is an automorphic function for PSL2(Z) and every automorphic function
is a rational function of this function [Apo90, theorem 2.8]. Inspired by this example,
we define the notion of a hauptmodul.

25



Chapter 3. Automorphic forms and functions

Definition. Let ∆ be a Fuchsian group of genus zero and at least one cusp. Futhermore,
let the expansion parameter at the cusp infinity be q. We call an automorphic function
j : H∗ → P1 (C) a hauptmodul, if

(i) j = 1
q

+ O(q) and

(ii) the corresponding function in the function field K (X(∆)) generates the function
field.

Such a hauptmodul is unique: [CY95]. Sometimes we will also call the corresponding
function in the function field the hauptmodul of the Fuchsian group.

Dimension formulas
In this short passage, we cite the dimensions of the space of automorphic forms. We call
two elliptic point τ1, τ2 ∈ H equivalent under a Fuchsian group ∆, if there is a δ ∈ ∆,
such that τ1 = δ.τ2. These dimension formulas are deduced by using the Riemann-Roch
theorem. For detail we refer to the book by Shimura [Shi71]. In this reference you
also find the definition regular and irregular cusps, which are necessary to state these
theorems but we will not use them in this thesis later on.

3.5 Theorem. Let ∆ be a Fuchsian group of genus g. The number of inequivalent cusps
is m and e1, . . . , er the orders of the inequivalent elliptic elements of H∗.

(i) The dimension of the space of automorphic forms Gk(∆), for an even integer k, is

dimGk(∆) =



(k − 1)(g − 1) +mk
2 +∑r

i=1
k(ei−1)

2ei for k > 2,
g +m− 1 for k = 2, m > 0,
g for k = 2, m = 0,
1 for k = 0,
0 for k < 0.

(ii) Suppose that −1 /∈ ∆ and let u be the number of regular cusps and u′ the number
of irregular cusps. The dimension of the space of automorphic forms Gk(∆), for
an odd integer k, is

dimGk(∆) =
(k − 1)(g − 1) + uk2 + u′ k−1

2 +∑r
i=1

k(ei−1)
2ei for k ≥ 3,

0 for k < 0.

If we do not assume that −1 /∈ ∆ in part two of the theorem, we know from 3.1, part
2 that there are no forms. The second theorem is the analog theorem for cusp forms.

3.6 Theorem. Let ∆ be a Fuchsian group of genus g. The number of inequivalent cusps
is m and e1, . . . , er the orders of the inequivalent elliptic elements of H∗.
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(i) The dimension of the space of cusp forms Sk(∆), for an even integer k, is

dimSk(∆) =



(k − 1)(g − 1) +m(k2 − 1) +∑r
i=1

k(ei−1)
2ei , for k > 2,

g for k = 2,
1 for k = 0, m = 0,
0 for k = 0, m > 0,
0 for k < 0.

(ii) Suppose that −1 /∈ ∆ and let u be the number of regular cusps and u′ the number
of irregular cusps. The dimension of the space of cusp forms Sk(∆), for an odd
integer k, is

dimSk(∆) =
(k − 1)(g − 1) + uk−2

2 + u′ k−1
2 +∑r

i=1
k(ei−1)

2ei for k ≥ 3,
0 for k < 0.

The rational covering RΓ

We fix a Fuchsian group ∆ and a subgroup of finite index Γ – both of genus zero and
with at least one cusp. As we have seen, an automorphic function for the Fuchsian group
∆ is equivalent to an element of the function field of the corresponding Riemann surface
K(X(∆)). Hence, we find for the hauptmodul j∆ of ∆ a function f∆ : X(∆) → P1 (C)
(formula (3.2)). Analog for Γ we find a function fΓ : X(Γ) → P1 (C). For the Riemann
surfaces we calculated a covering ϕ : X (Γ)→ X (∆) (formula (2.15)). This covering lifts
to a branched covering RΓ : P1(C) → P1(C). It branches over the images of the elliptic
and parabolic points of X (Γ).

X (Γ)
fΓ

$$

ϕ

��

H∗

πΓ
<<

jΓ // P1(C)

RΓ

��

X (∆)
f∆

$$
H∗ j∆ //

π∆
<<

P1(C)

(3.7)

This function RΓ is a rational function in jΓ. In fact, j∆ is also invariant under Γ and
therefore, an element of the function field. The hauptmodul jΓ generates this function
field which implies that RΓ is a rational function since j∆ = RΓ (jΓ).
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Chapter 4.

Triangle groups
If people do not believe that mathematics is simple, it is

only because they do not realize how complicated life is.

(John von Neumann)

This chapter is about triangle groups and Hecke groups. We define them as finitely
presented groups and give a geometric interpretation of them as symmetry groups of a
triangle tessellation. Using this tessellation, we calculate an embedding of the hyperbolic
triangle groups into PSL2(R) making the Fuchsian groups. We classify the finite index
subgroups of the triangle groups and solve the word problem.

Introduction to triangle groups
Definition. Let a, b, c ∈ Z≥2 ∪ {∞} with a ≤ b ≤ c. The triangle group ∆(a, b, c) is the
following finitely presented group.

∆(a, b, c) :=
〈
δa, δb, δc

∣∣∣δaa = δbb = δcc = δaδbδc = 1
〉

∆(a, b) := ∆(a, b,∞) =
〈
δa, δb, δc

∣∣∣δaa = δbb = δaδbδc = 1
〉
.

We call the triangle group ∆(a, b, c)

(i) spherical if 1
a

+ 1
b

+ 1
c
> 1,

(ii) euclidian if 1
a

+ 1
b

+ 1
c

= 1,

(iii) hyperbolic if 1
a

+ 1
b

+ 1
c
< 1,

where we define 1
∞ to be zero. Furthermore, the Hecke groups are the triangle groups

∆n := ∆(2, n) = ∆(2, n,∞).

4.1 Proposition. The classification of the triangle groups is the following.

(i) The spherical groups are ∆(2, 3, 3), ∆(2, 3, 4), ∆(2, 3, 5), and ∆(2, 2, n) for 2 ≤
n <∞.

(ii) The Euclidian groups are ∆(2, 2,∞), ∆(2, 3, 6), ∆(2, 4, 4), and ∆(3, 3, 3).
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Chapter 4. Triangle groups

(iii) All other triangle groups are hyperbolic.

Proof. See for example Klug et. al [KMSV14] or [Rat05, Chapter 7.2].

Before we explain why these groups are called the triangle groups, we introduce the
extended triangle groups.

Definition. Let a, b, c ∈ Z≥2 ∪ {∞} with a ≤ b ≤ c. The extended triangle group
∆∗(a, b, c) is the following finitely presented group.

∆∗(a, b, c) :=
〈
τa, τb, τc

∣∣∣τ 2
a = τ 2

b = τ 2
c = (τcτb)a = (τaτc)b = (τbτa)c = (τcτbτa)2 = 1

〉
,

∆∗(a, b) := ∆∗(a, b,∞) =
〈
τa, τb, τc

∣∣∣τ 2
a = τ 2

b = τ 2
c = (τcτb)a = (τaτc)b = (τcτbτa)2 = 1

〉
,

∆∗n = ∆∗(2, n) = ∆∗(2, n,∞).

The triangle groups ∆(a, b, c) are subgroups of index 2 in the extended triangle groups
∆∗(a, b, c). We embed them via

∆(a, b, c)→ ∆∗(a, b, c), δa = τcτb, δb = τaτc, δc = τbτa. (4.1)

These groups have a nice geometric interpretation – see [Mag74]. Let F be a triangle
with angles π

a
, π
b
, and π

c
. We define the angle π

∞ to be zero. This triangle is spherical,
Euclidian, respectively hyperbolic, if the triangle group ∆(a, b, c) is spherical, Euclidian,
respectively hyperbolic. Then, the generators τa, τb, and τc of the extended triangle
group are reflections at the three sides of the triangle.

-1 1 2 3

1

2

3

4

5

za

zc

zb

F τa (F )τb (F )

τc (F )

τb τa

τc

Figure 4.1.: Reflections on a hyperbolic triangle with angles π
3 ,

π
5 , and 0

Note that these operations are anti-holomorphic and orientation-reversing. If we fix
such a triangle, we obtain a tessellation of the sphere for the spherical triangle groups,
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of the Euclidean plane for the Euclidean ones and for the upper half plane for the
hyperbolic groups. This tessellation of the underlying space will be drawn with gray
and white triangles. Each of those triangles is a fundamental domain for the extended
triangle group operating on this space. For a fundamental domain of the triangle group
we have to join exactly one white and one gray triangle.

Rotations of the triangles around the vertices generate the triangle group. These
rotations are products of two reflections.

-1 1 2 3 4

1

2

3

4

5

za

zc

zb

F

δb (F )

δc (F )

δb (F )

δb

δc

δa

Figure 4.2.: Rotations on a hyperbolic triangle with angles π
3 ,

π
5 , and 0

Since there is just a finite number of Euclidean triangle groups, we present them in
figure 4.3 to 4.6. For the spherical groups, we give one example of the family ∆(2, 2, n),
figure 4.7 and ∆(2, 3, 4), figure 4.8.

Geometric realizations of the triangle groups
∆(a, b,∞)

We focus on the non-compact, hyperbolic triangle groups ∆(a, b,∞). We show that these
groups are actually Fuchsian groups by giving an explicit embedding into PSL2(R). We
start by constructing a triangle with given angles and use this to write down matrices
in PSL2(R) which represent the elements in the triangle group.

The construction of the triangle and the embedding of the triangle groups in PSL2(R)
are inspired by the article Numerical Calculation of three-point branched covers of the
projective line by Klug et. al [KMSV14]. In this article they did the analog construction
for the compact triangle groups ∆(a, b, c), where c <∞.

Let ∆(a, b) be a hyperbolic triangle group. Then, we define the angles α = π
a
, β = π

b
,
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Chapter 4. Triangle groups

Figure 4.3.: ∆(2, 2) Figure 4.4.: ∆(2, 3, 6)

Figure 4.5.: ∆(2, 4, 4) Figure 4.6.: ∆(3, 3, 3)

Figure 4.7.: ∆(2, 2, 6) Figure 4.8.: ∆(2, 3, 4)

and γ = π
∞ = 0. Recall that the hyperbolic distance in upper half plane H is (see (2.1))

d : H×H→ R≥0,

d(x1 + iy1, x2 + iy2) = arcosh
(

1 + (x2 − x2)2 + (y2 − y1)2

2y1y2

)
.

Due to the same arguments as in [KMSV14], we assume za = i and zc = µi for some
µ ∈ R>1∪{∞} and Re (zb) > 0. We start with any triangle and since PSL2(R) operates
transitive, we may choose za = i. Then, we rotate the triangle around i and may assume
zc = µi, for some µ ∈ R>1. Finally, we reflect the triangle at the imaginary axis and
assume Re (zc) > 0.

We find µ by using the law of cosines from hyperbolic geometry (2.5). Let B be the
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-0.5 0.5 1 1.5

1

2

3

4

5

za=i

zc

zb

π
a π

b

Figure 4.9.: Triangle with angles π
a
, π
b
, and π

∞ = 0

length of the side opposite the point zb.

cosh (B) =
cos π

a
cos π

c
+ cos π

b

sin π
a

sin π
c

=
cos π

a
cos π

c
+ cos π

b

sin π
a

sin π
c

−→∞ as c→ 0.

The formula for the hyperbolic distance (2.4) gives us

d(i, µi) = arcosh
(

(µ− 1)2

2µ + 1
)
.

To find a value of µ, such that this distance becomes infinitely large, we set the distance
equal to t ∈ R, solve the distance for µ and let t→∞.

t = d(i, µ(t)i) = arcosh
(

(µ(t) − 1)2

2µ(t) + 1
)
.

⇒ µ
(t)
1,2 = exp (±t)

lim
t→∞

µ
(t)
1 = lim

t→∞
exp (t) =∞

lim
t→∞

µ
(t)
2 = lim

t→∞
exp (−t) = 0.
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Chapter 4. Triangle groups

Hence, we have two choices for the triangle. Since we assumed µ > 1, we define
zc = i · ∞. Finding the point zb is more effort than in the compact case. Now, we need
to use the two angles π

a
and π

b
. We first calculate a geodesic going through the point

za = i, such that the angle between this geodesic and the line from i to i∞ is equal to
π
a
. Then, we have to find a point on this geodesic, such that the angle between the line
zb to i∞ and the geodesic is equal to π

b
. To perform the calculations, we use the fact

that geodesics in upper half plane model of hyperbolic geometry are actually circles in
Euclidian geometry with a real center. Hence, the first task – finding a geodesic through
za with a certain angle – is the same as to find a circle with this property. With x ∈ R
and y ∈ R≥0 we denote the coordinates in the upper half plane τ = x+ iy.

If r is the radius and m the (real) midpoint of the circle in question, we write it
as F (x, y) := (x − r)2 + y2 − r2 = 0. Asking for za to lie on the circle translates to
F (0, 1) = 0. This gives the following relation between r and m

0 = F (0, 1)
= 1 +m2 − r2

⇒ r =
√

1−m2.

We choose the positive root of this equation – the radius of the circle should be positive.
To adjust the midpoint of this circle to have the right angle at za we calculate the tangent
at the point. For this purpose we use the representation of the circle in parametric form

P (ϕ) :=
(√

1 +m2 cos (ϕ) +m√
1 +m2 sin (ϕ)

)
for ϕ ∈ [0, 2π].

The function P takes at ϕ0 = arccos
(
−m√
1+m2

)
the value (0, 1) which corresponds to i

in the upper half plane. Using the derivative of P and inserting ϕ0, we obtain the slope
in this point.

P ′ (ϕ0) =
(
−1
−m

)
.

Hence, the angle in question gives us the following condition which results in a formula
for the midpoint m

1
m

= tan π
a

⇒ m = cot π
a

⇒ r =
√

1 + cot2 π

a
= 1

sin π
a

= csc π
a
.

In the second step, we need to find a point (which will be zb) on this circle, such that
the angle between the line to infinity and this circle is π

b
. This point should have the

34



slope − tan
(
π
b

)
. We need the minus sign since we are now looking at the supplementary

angle.

P ′(ϕ) =
(
− csc π

a
sinϕ

csc π
a

cosϕ

)
= − tan π

b

⇒ ϕb = π

b

⇒ P (ϕb) = P
(
π

a

)
=
(

cot π
a

+ cos π
b

csc π
a

csc π
a

sin π
b

)

⇒ zb = cot π
a

+ cos π
b

csc π
a

+ i
(

csc π
a

sin π
b

)
.

We summerize the result of this calculations in the following lemma.

4.2 Lemma. The hyperbolic triangle with the edges

za = i,

zb = cot π
a

+ cos π
b

csc π
a

+ i
(

csc π
a

sin π
b

)
,

zc = i∞.

has the angles π
a

, π
b
, and 0.

Remark. For the modular group ∆(2, 3,∞) = PSL2(Z) we obtain the triangle in the
Dedekind tessellation with the edges {i, 1

2 + i
√

3
2 , i∞}.

Since we now have constructed a triangle which has the given angles, we write down
the generators of the extended triangle group τa, τb, and τc. For visualization we refer to
picture 4.1 earlier in this chapter. From the construction of the triangle F , we see that
τb is a reflection on the axes Re (z) = 0. Hence,

τb (z) = −z̄.

Let ξ = Re (zb) = cot π
a

+ cos π
b

csc π
a

the real part of the point zb. The map τa is a
reflection the line Re (z) = ξ

τa (z) = ξ − (z − ξ) = 2ξ − z̄ = 2
(

cot π
a

+ cos π
b

csc π
a

)
− z̄.

Finally, the map τc is a reflection at the circle going through za and zb. As we have seen
before, its midpoint is at m = cos π

a
and it has the radius r = csc π

a
. Therefore, we have

τc (z) = m+ r2

z̄ −m
=

1 + z̄ cot π
a

z̄ − cot π
a

.

These three maps generate the extended triangle group ∆∗(a, b).
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4.3 Lemma. The extended hyperbolic triangle groups ∆∗ (a, b) are realized as the fol-
lowing functions on H.

τa (z) = 2
(

cot π
a

+ cos π
b

csc π
a

)
− z̄,

τb (z) = −z̄,

τc (z) =
1 + z̄ cot π

a

z̄ − cot π
a

.

A fundamental domain of this operation on the upper half plane is the hyperbolic triangle
with edges za, zb, and zc as described in lemma 4.2.

In the beginning of this section we showed how the triangle groups ∆(a, b) are em-
bedded into the extended ones: formula (4.1). We use this, to construct an explicit
representation of the groups ∆ (a, b).

δa(z) := τc(τb(z)) =
−z cot π

a
+ 1

−z − cot π
a

=
z cos π

a
− sin π

a

z sin π
a

+ cos π
a

,

δb(z) := τa(τc(z)) = 2 csc π
a

(
cos π

a
+ cos π

b

)
+
z cot π

a
+ 1

z − cot π
a

=
z
(
cos π

a
+ 2 cos π

b

)
− 2 cot π

a

(
cos π

a
+ cos π

b

)
− sin π

a

z sin π
a
− cos π

a

,

δc(z) := τb(τa(z)) = z − 2
(

cos π
a

+ π

b

)
csc π

a
.

We see that the maps δa, δb, and δc are actually Möbius transformations. Therefore, we
write them as projective, real 2× 2 matrix. Note that we reduced the fractions in such
a way that the resulting matrices have determinant one. For a visualization see figure
4.2.
4.4 Theorem. Let ∆(a, b) be a hyperbolic triangle group. Then, we have an embedding

∆(a, b)→ PSL2(R),

δa 7→
(

cos π
a
− sin π

a

sin π
a

cos π
a

)
,

δb 7→
(

cos π
a

+ 2 cos π
b
−2

(
cos π

a
+ cos π

b

)
cot π

a
− sin π

a

sin π
a

− cos π
a

)
,

δc 7→
(

1 −2
(
cos π

a
+ cos π

b

)
csc π

a

0 1

)
.

The embedding actually maps into the group PSL2 (R), where R is the ring

Z
[
cos π

a
, sin π

a
, csc π

a
, 2 cos π

b

]
.
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A fundamental domain of this operation on the upper half plane is the union of the
triangle in lemma 4.2 and one image of this triangle under one arbitrary reflection of
lemma 4.3.

With this explicit description, we describe the Riemann surface X (∆ (a, b)) as we
constructed it in chapter 2 as follows. The fundamental domain for group operation
is, according to the theorem, the triangle described in lemma 4.2 together with the
image under one reflection. We use the reflection τc and obtain the quadrilateral with
the vertices i∞, i, cot

(
π
a

)
, and ρa,b. To obtain the Riemann surface, we identify the

following edges. The edges from i∞ to i with the edge from i to cot
(
π
a

)
using the map

δa and the edges from i∞ to ρa,b with the edge from ρa,b to cot
(
π
a

)
using δb. From this,

we see that the genus of the Riemann surface X (∆ (a, b)) is zero. Furthermore, this
surface has one cusp – the image under projection map π∆(a,b) of i∞ and two elliptic
points: The image of i with order a and the image of ρa,b of order b.

Notations and examples

For the use in the later chapters, we define some symbols. When we work with the
triangle groups, we often use the following generators.

S = Sa := δa =
(

cos π
a
− sin π

a

sin π
a

cos π
a

)
,

R = Ra,b := −δ−1
b =

(
cos π

a
−2

(
cos π

a
+ cos π

b

)
cot π

a
− sin π

a

sin π
a

− cos π
a
− 2 cos π

b

)
,

T = Ta,b := δ−1
c =

(
1 2

(
cos π

a
+ cos π

b

)
csc π

a

0 1

)
=
(

1 ω
0 1

)
.

(4.5)

The value ω := 2
(
cos π

a
+ cos π

b

)
csc π

a
is the cusp width of ∞ in the triangle group

∆ (a, b). The matrix S is of order a and the matrix R is of order b. Furthermore, T n = 1
if and only if n = 0. Note that the sign in the definition of R is actually irrelevant since
we are working in projective space. When we are working with the fundamental domain
of (extended) triangle groups, we refer to the vertex zb as ρ

ρ = ρa,b := zb = cot π
a

+ cos π
b

csc π
a

+ i
(

csc π
a

sin π
b

)
= csc π

a

(
cos π

a
+ ei

π
b

)
.

(4.6)

Example. The first example the modular group PSL2(Z). It is the triangle group for
a = 2 and b = 3. The underlying ring is Z, since cos π

2 = 0 and sin π
2 = csc π

2 = 2 cos π
3 =
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1. The matrices S,R, and T become

S =
(

0 −1
1 0

)
,

R =
(

0 −1
1 −1

)
,

T =
(

1 1
0 1

)
.

As we have seen in chapter 2, the matrices S and R generate the full modular group.
Hence, the modular group is isomorphic to the triangle group ∆(2, 3).
Later, we will focus on Hecke groups. The following matrices generate these groups.

S =
(

0 −1
1 0

)
,

Rn = R2,n =
(

0 −1
1 −2 cos

(
π
n

)) ,
Tn = T2,n =

(
1 2 cos

(
π
n

)
0 1

)
=
(

1 ωn
0 1

)
.

Again ωn = 2 cos
(
π
n

)
is the cusp width of ∞ in the Hecke group ∆n.

Subgroups and permutations
Up to now, we worked with the triangle groups themselves. In the next step, we start
working with finite index subgroups of triangle groups. The first question we will address
is how to describe or classify these subgroups. In this thesis we present two methods to
do this. In this section we classify them using finite groups or more precise, equivalence
classes of permutation tuples. The second description is the notion of the generalized
Farey symbols and we discuss it in detail in chapter 6. The idea of the classification
based on permutation tuples works more general in the context of finitely generated
groups. With Sµ we denote the symmetric group on µ letters. Furthermore, we mark
one letter and call it 1.

Definition. Let G =
〈
(xi)ni=1

∣∣∣(rj)sj=1

〉
be a finitely presented group with n generators

and s relations. Let σ = (σ1, . . . , σn) ∈ Sn
µ be a n-tuple of permutations, such that

〈σ1, . . . σn〉 is a transitive group. If the map

βσ : G→ Sµ,

xi 7→ σi.

satisfies βσ (rj) = 1 for all 1 ≤ s ≤ s, we call it a G-pairing. We define two G-pairings
βσ, βτ to be equivalent if there is an element π ∈ Sµ, such that π(1) = 1 and for all
π−1 · σiπ = τi for all i.
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We use these G-pairings to describe the subgroups of a finitely presented group.

4.7 Theorem. Let G =
〈
(xi)ni=1

∣∣∣(rj)sj=1

〉
be a finitely presented group. There is for

each subgroup a G-pairing and vice versa Γ ⊆ G
subgroup of

index µ

←→
 G− pairings

/equivalence.

Proof. Starting with a subgroup Γ ⊆ G of index µ:
Let Γc1, . . . ,Γcµ be coset representatives of Γ\∆. Then, we define the following per-

mutation representation.

β : G −→ Sµ,

β(g)(i) = j ⇐⇒ Γcig−1 = Γcj.

This map is actually a homomorphism, since

β (g1g2) (i) = j

⇔ Γci(g1g2)−1 = Γcj
⇔ Γcig−1

2 g−1
1 = Γcj

⇔ Γcig−1
2 = Γck and Γckg−1

1 = Γcj
⇔ β (g2) (i) = k and β (g1) (k) = j

⇔ β (g2) (β (g1)) (i) = j.

Using this map, we define the G-pairing as

σi := β (xi) ,

where xi are the generators of G. Being a homomorphism implies that β (ri) = 1 what
is required to be a pairing.

If we start with a pairing βσ:
We define a subgroup Γ of G as the stabilisator of 1

Γ :=
{
g ∈ G

∣∣∣βσ(g)(1) = 1
}
.

As a special case we obtain a classification of finite index subgroups of triangle groups.
This version can also be found in [KMSV14]. Since we used this frequently, we cite the
definition and the corresponding theorem for triangle groups. A first version of this for
the modular group is due to Millington [Mil69a], [Mil69b]. The version we cite now is
in [KMSV14].

Definition. Let X be a finite set of µ letters and x1 ∈ X a fixed element. A (a, b)-
pairing (σa, σb)x1 is an equivalence class of a pair of permutations of X with the following
properties.
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Chapter 4. Triangle groups

(i) σaa = σbb = 1.

(ii) The group G = 〈σa, σb〉 operates transitively on X.

The equivalence relation between two pairs is the “exchange of letters”. Formally,

(σa, σb)x1 ∼ (τa, τb)x1 ,

if and only if there exists a π ∈ SX such that
π−1σaπ = τa, π

−1σbπ = τb, π(x1) = x1.

We call this representation of a subgroup of finite index the monodromy representation.
We now explain where this name comes from. In the second chapter we constructed a
branched covering of Riemann surfaces. Let Γ ⊆ ∆ be a finite index subgroup of a
triangle group ∆ = ∆(a, b). Then, we have a commutative diagram.

H∗
πΓ

xx

π∆

''
X (Γ) = Γ\H∗ ϕ // X (∆) = ∆\H∗

Here, ϕ is a covering map, branched over the elliptic points and the cusps of ∆. In
the embedding we constructed, the point π∆ (i) is the only elliptic point of order a and
π∆(ρa,b) the only elliptic point of order b. There is exactly one cusp which is i∞. Apart
from these points, the map ϕ does not branched. We fix one point z̃ on the upper
half plane which is neither an elliptic point nor a cusp. Let c1, . . . , cr be a set of coset
representatives for the quotient Γ\∆. Then, the fiber of ϕ of a point z = π∆(z̃) ∈ X (∆)
is πΓ (c1.z̃) , . . . , πΓ (cr.z̃).

If we remove the points i, ρa,b, i∞, and their images under ∆ in the extended upper half
plane and map the result using π∆, we obtain topologically a sphere without three points.
The fundamental group of this is the finitely presented group 〈s0, s1, s2 |s0s1s2 = 1〉. The
loop s0 is a loop around the image of i, the loop s1 the loop around ρ and s2 around i∞.
This finitely presented group is isomorphic to the free group on two generators. From
the topology this can be seen as follows. A sphere without one point is homeomorphic
to a disc. Hence, a sphere without three points is homeomorphic to a disc without two
points. Since the fundamental group is invariant under homeomorphisms, we need to
calculate the fundamental group of a two punctured sphere, which is known to be the
free group on two generators. These two generators are loops around the images of i
and ρ. We obtain the two generators of the fundamental group of the Riemann surface
without three points.

Using this description, we find the monodromy of this covering. We defined the
monodromy as the operation of the fundamental group of ∆ on the fiber. We described
the points in the fiber as images under the cosets of z̃. Furthermore, the endpoints of a
loop corresponded to the operation using R, respectively S. Hence, the permutation of
the cosets induced by multiplication with R, respectively S is the monodromy.
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Membership test based on permutations
For a given matrix A ∈ ∆ ⊆ PSL2(R) we need to decide, if this matrix is in a subgroup
Γ ⊆ ∆ of a triangle group given by permutations. We now give an algorithm to check
this. We recall the map from the previous section

β(σa,σb) : ∆→ Sn, δi 7→ σi for i ∈ {a, b}.

Algorithm 1 (Membership test). Let Γ ⊆ ∆(a, b) a finite index subgroup of a triangle
group, defined by two permutations (σa, σb). For a matrix A ∈ ∆(a, b), the following
algorithm decides, whether A ∈ Γ.

(i) Solve the word problem for A in ∆(a, b) and write A = ∏
i∈I δi. Here, I ⊆ {a, b}s

for some s ∈ N.

(ii) Calculate β(σa,σb)(A) which is given by ∏i∈I σi =: σ.

(iii) The matrix A is in Γ if and only σ(1) = 1.
Proof. This works due to the description of the group as permutations. The subgroup
Γ consists exactly of those matrices which fix the 1 which is the coset of the neutral
element.

To implement this algorithm in a computer, we need to solve the word problem in the
triangle groups.

Solving the word problem
To implement algorithm 1 we have to solve the word problem for the triangle groups.
Inspired by the classical solution of the word problem for PSL2(Z), we give an algorithm
which solves this problem. We first recall the definitions from (4.5).

T =
(

1 2
(
cos

(
π
a

)
+ cos

(
π
b

))
csc

(
π
a

)
0 1

)
=
(

1 ω
0 1

)
,

S =
cos

(
π
a

)
− sin

(
π
a

)
sin

(
π
a

)
cos

(
π
a

)  .
Multiplying the µ-th power of the matrices with an arbitrary matrix does the following

T µ ·
(
x11 x12
x21 x22

)
=
(
x11 + x21 · µω x12 + x22 · µω

x21 x22

)
,

Sµ ·
(
x11 x12
x21 x22

)
=
x11 cos

(
µ · π

a

)
− x21 sin

(
µ · π

a

)
x12 cos

(
µ · π

a

)
− x22 sin

(
µ · π

a

)
x21 cos

(
µ · π

a

)
+ x11 sin

(
µ · π

a

)
x22 cos

(
µ · π

a

)
+ x12 sin

(
µ · π

a

) .
We now focus on the left column of the matrices. The matrix T adds x21 ·ω to the first

entry and S rotates the vector ( x11
x21 ). Now the idea is to decrease the absolute values of

x21 in every step. For a formal proof of the correctness of this algorithm, one looks at
the image of the point 2i ∈ H.
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Chapter 4. Triangle groups

Algorithm 2. Let A = ( x11 x12
x21 x22 ) ∈ ∆(a, b) be a matrix in a triangle group. The following

algorithm computes a decomposition into the generators S and T .

(i) While x21 6= 0 do:
a) While |x11| ≤ |ω · x21| do:

• If sgn (x11) = −sgn (x21) : A = T · A.
• If sgn (x11) = sgn (x21) : A = T−1 · A.

b) Find i, such that
∣∣∣(Si · A)2,1

∣∣∣ is minimal. Set A = Si · A.

(ii) After the previous step, we assume A = ( x11 x12
0 x22 ). We define p = x12

ωx22
. Then,

( 1 0
0 1 ) = T p · A.
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Chapter 5.

Dessins d’enfants
Als ich so alt war [wie diese Kinder], konnte ich malen wie

Raphael. Aber ich brauchte ein Leben lang um so zu malen wie
die Kinder.

(Pablo Picasso - Nachdem er eine Ausstellung mit
Kinderzeichnungen besucht hatte)

In this chapter we introduce the notion of dessins d’enfants. These are bipartite graphs
on Riemann surfaces and can be used to describe certain functions, the Bely̆ı functions.
Their first version appeared in the work of Hamilton [Ham56] and Felix Klein [Kle79].
In the year 1983, Grothendieck wrote a proposal (Esquisse d’un Programme, [Gro97])
in which he proposed these dessins d’enfants as a method to understand the absolute
Galois group Gal

(
Q/Q

)
. Sadly, this proposal got rejected – Le Bruyn called it the

best rejected proposal ever [Bru07]. These dessins are in a strong relation with the
subgroups of triangle groups. We use this relation to calculate hauptmoduls of finite
index subgroups of genus zero of triangle groups with a cusp.

Bely̆ı functions
In this section we present the notion of the Bely̆ı functions which we need to describe
dessins d’enfants. Wolfart has written some introductions to this topic: [Wol06] and
[Wol01], as well as Zvonkin [Zvo08], [LZ04]. Furthermore, one should mention the article
by Schneps [Sch94].

Definition. Let X be a Riemann surface. We call a non-constant mapping f : X →
P1(C), branched over at most three points, a Bely̆ı function.

For a Riemann surface X let f : X → P1 (C) be a Bely̆ı function which is branched
over the points x0, x1, and x2. Let ϕ : P1 (C)→ P1 (C) be a Möbius transformation which
maps the branching points x0, x1, and x2 to the points z1, z2, and z3. Such a map can
always be found – we described a method for this in the remark after theorem 2.6. The
composite map ϕ ◦ f is also a Bely̆ı function, but branched over z1, z2, and z3. Hence,
we can choose arbitrary three branching points. A common choice is z1 = 0, z2 = 1,
and z3 = ∞. For our application it turns out that z1 = 0 and z3 = ∞ are eligible.
We choose the third point different for each triangle group, for example for the modular
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Chapter 5. Dessins d’enfants

group ∆(2, 3) we will find z2 = 1728 to be eligible. This choice was already known to
Klein when he calculated his j-invariant.

One of the reasons why Bely̆ı functions are important is that they provide a relation
between algebraic curves and subgroups of finite index of triangle groups. Furthermore,
this connection can be extended to the notion of the dessin d’enfants.

5.1 Theorem (Bely̆ı’s theorem). Let X be a smooth algebraic curve in Pn(C). Then,
the following are equivalent.

(i) There exists a Bely̆ı function on X.

(ii) There is a subgroup Γ of finite index of a triangle group ∆, such that X ∼= Γ/H.

(iii) X is defined over a number field.

Proof. Bely̆ı gave the first proof in [Bel79] and improved it in [Bel02]. Parts of the proof
were also know to Grothendieck [Gro97]. A more elementary version is contained in the
article by Wolfart [Wol06] or the book by Girondo and González-Diez [GGD12].

Dessins d’enfants
Let X be a smooth algebraic curve defined over a number field and f : X → P1(C) a
Bely̆ı function on X which is branch over 0, 1, and ∞. Such a map exists due to Bely̆ı’s
theorem 5.1. We use this function to construct a bipartite graph on X. We define the
preimages of 0 as black vertices and the preimages of 1 as white vertices. The edges of
this graph are defined as the preimages of the interval [0, 1] and each edge connect a
black and a white vertex. This construction results in a graph on X. In this graph is the
branching behavior of the function f encoded. We call such a graph a dessin d’enfant.

Definition. We call a bipartite graph D on a connected Riemann surface X a dessin
d’enfants or sometimes a dessin if the complement X/D consists of finitely many simply
connected components.

To see some examples, we need a method to find the dessin for a given Bely̆ı function.
In the article [Sch94, Chapter II, §1], Schneps gives such a procedure. Furthermore, we
wrote a short Mathematica program which gives an approximation how the dessin looks.
In the appendix, section A, we give the source of this program. A similar program can
be found in the Wolfram demonstrations project, see [Goi].

Example. (i) f(z) = zn results in a star, figure 5.1.

(ii) The Chebyshev polynomials Tn(z) = cos (n arccos (x)) branch over {−1, 1∞} and
their dessin is a line with n+ 1 vertices, figure 5.2.

(iii) It is possible, to find Bely̆ı functions, such that the corresponding dessins are
platonic solids – see figure 5.3 to 5.5. These Bely̆ı functions are
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Figure 5.1.: The dessin for f(z) = z7

Figure 5.2.: The dessin for f(z) = 1
2(1 + T5(x))

a) for the tetrahedron −64z3 (z3 − 1)3

(8z3 + 1)3 ,

b) for the cube (z8 + 14z4 + 1)3

108z4 (z4 − 1)4 ,

c) for the dodecahedron (z20 + 228z15 + 494z10 − 228z5 + 1)3

1728z5 (z10 − 11z5 − 1)5 .

Figure 5.3.: Tetrahedron Figure 5.4.: Cube Figure 5.5.: Dodecahe-
dron

(iv) In the article [MZ00] of Magot and Zvonkin, they present some operations to
create new dessins out of old ones. These techniques are used to construct Bely̆ı
function which have the Archemedian solids as dessins. For example the map
ftruc(z) = −27 z2

(z−4)3 truncates the Dessin when composed with a Bely̆ı map.

(v) Similar to this, in the article [SZ94] Shabat and Zvonkin introduce a method to
compose certain Bely̆ı function and their dessins.
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Chapter 5. Dessins d’enfants

Permutations and dessins
Another way of describing dessins is the use of permutations. Each dessin corresponds
a triple of permutations of n letters where n is the number of edges of the graph. We
orient all edges of the graph from black to white vertices. Then, we label all edges
of the graph with consecutive numbers. This label is placed on the left of the edge,
with respect to the orientation. The first permutation consists of b cycles where b is
the number of black vertices. For each black vertex, we collect the labels of the edges
while going counterclockwise around this vertex. The product of all of these cycles is
the first permutation which we call σ0. The order of the cycles does not matter. The
cycles are disjoint since the graph is bipartite. By using the same method for the white
vertices we end up with another permutation σ1. To define the third permutation σ∞
we go counterclockwise around each face of the graph and collect all labels on the face.
Only every second edge is marked with a label, due to their placement. Note that going
around the outer face counterclockwise means going around the graph clockwise.

These three permutations have the property that σ0σ1σ∞ = 1. Therefore, it suffices
to calculate σ0 and σ1.

1

2

3

4

5

6

7

8

9

Figure 5.6.: A dessin d’enfant with labels

Example. We labeled the dessin in figure 5.6 according the to rules we used described.
It corresponds to the permutations

σ0 = (1 2 4 3) (5 6 8 7)(9),
σ1 = (1 2)(3 5)(4 6)(7)(8 9),
σ∞ = (1)(2 3 7 8 9 6)(4 5).

Subgroups of triangle groups
In this section, we take a look at the relation between dessin d’enfants and subgroups
of finite index of triangle groups. We fix a triangle group ∆ = ∆(a, b) and a subgroup
Γ ⊆ ∆ of finite index. We assume that Γ has genus zero. As we have seen in chapter
3, we obtain a rational covering RΓ : P1 (C) → P1 (C) branching over the elliptic and
parabolic points. Since the triangle groups have two elliptic points and one cusp, the map
RΓ branches over at most three points and is thereby a Bely̆ı function. The branching
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points depend on the normalization of the hauptmodul of the triangle group ∆. In
chapter 7 we will calculate a hauptmodul which maps the fundamental domain of the
extended triangle group to the upper half plane. This results in the branching points to
be ∞ (as the value at the cusp 0), 0 (as the value at the elliptic point zb of order b),
and some value η ∈ R (as the value at the elliptic point za of order a). The value of η
depends on the triangle group. We give the exact expression in chapter 7, formula (7.2).

From the subgroup Γ we directly compute the corresponding dessin. First note that
the interval [0, η] is mapped on the circle going through the elliptic points za and zb
on the upper half plane. We choose a connected fundamental domain for Γ composed
from copies of the fundamental of ∆ – see section Fundamental domains and Riemann
surfaces in chapter 2. The images of the two elliptic points and the images of the circle
connecting these two define a graph on the upper half plane. Identifying the points
elliptic points on the boundaries, using the side pairings, results in the dessin for the
Bely̆ı function RΓ.

Example. As an example we look at the following subgroup of the modular group
PSL2(Z).

Γ0(6) = {( a bc d ) ∈ PSL2(Z)| c ≡ 0 (mod 6)} .

We draw a fundamental domain, figure 5.7, and apply the procedure we described above,
figures 5.8 to 5.10 and the end of this chapter. If we apply the methods we will develop
later, we can also calculate the Bely̆ı function. This function is

RΓ0(6)(x) = (12x+ 1)3 (15552x3 + 3888x2 + 252x+ 1)3

x(8x+ 1)2(9x+ 1)3 .

This result coincide also with the result by other authors, see for example [Mai09].

The other direction is also possible. If we start with a dessin, we can build up a
fundamental domain using the dessin. From this fundamental domain, we can read off
the side pairings. As we have seen in chapter 2, these side pairings generate the group.
For a more detailed discussion for the modular group, see [Car09].

Computation of Bely̆ı functions
In this section, we will address the question how to compute equations, whose solution
determinate the Bely̆ı function of a given dessin. It turns out that the solution of this
problem is hard and no solution for large graphs in known. The article On computing
Bely̆ı maps, by Sijling and Voight [SV14], provides a good overview of the existing
methods. Furthermore, we like to mention the article Bely̆ı functions for hyperbolic
hypergeometric-to-Heun transformations, by van Hoeij and Vidunas [vHV12], provides
a large source of examples.

The methods, we present in this thesis to compute hauptmoduls for finite index sub-
groups of genus zero of Hecke groups, can be modified to calculate a Bely̆ı function for a
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given dessin d’enfants. First construct the corresponding subgroups and then construct
the rational covering.

To find the “general structure” of the Bely̆ı function, we do the following. It is a ratio-
nal function over C. Therefore, we can take about the numerator and the denominator.

We obtain the numerator in the following way. For each black vertex of valence ν we
take a factor (x− αi)ν with an unknown coefficient αi ∈ C. We obtain such a factor for
each black vertex, which a different αi. Multiplying all of these, yields the numerator.
To obtain a more “simple” result we do the following. If we have ni vertices of valence
i for i = 1, 2, . . . the numerator is as follows.

p(x) =
∏
i

pi(x)i,

with pi(x) =
ni∑
ν=0

aiνx
ν ,

and for all i : aini = 1.

Here, the aiν ∈ C are unknown coefficients which we have to determinate. Other nor-
malizations are also possible, for example we can ask for ai0 = 1. The coefficients aij
will satisfy certain algebraic equations. Hence, they are lying in a number field. In the
second approach, the degree of this number field is in general smaller than in the first
one.

Note that the permutation σ0 gives the natural number ni as the number of cycles of
length i. Hence, a factorisation of the the polynomial p(x) can be calculated just from
the knowledge of σ0.

To obtain the full Bely̆ı function we also need information on the denominator. The
denominator encodes the behavior at the singularities. The singularities in the dessin
correspond to the cycles of the graph. If there are mi circles of length 2i, we write down
exactly the same polynomial as in the numerator, but with different coefficients.

q(x) =
∏
i

qi(x)i,

with qi(x) =
mi∑
µ=0

biµx
µ,

and for all i : bimi = 1.

Again, the coefficients biν ∈ C are unknown and we have to determinate them. We can
extract the structure from the permutations, analog to the numerator, except we now
use the permutation σ∞. The resulting Bely̆ı function is p(x)/q(x).

To determinate the unknown coefficients of this function we need some more informa-
tion. Up to now, we just used the information coming from the black vertices and faces
of the graph. To calculate the Bely̆ı function, we also need to include the information
coming from the white vertices. We do this in the same way we did it with the black
vertices. We denote the number of vertices of valence i with ñi and obtain a polynomial
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with unknown coefficients ãiν ∈ C.

p̃(x) =
∏
i

p̃i(x)i,

with p̃i(x) =
ñi∑
ν=0

ãiνx
ν ,

and for all i : ãiñi = 1.

We treat the points at infinity in the same way. Hence, there is another Bely̆ı function
which is p̃(x)/q(x). This Bely̆ı function results in the same dessin as p(x)/q(x), but with
the black and white vertices exchanged.

This gives us a relation between these two functions. If we want the branching points
to lie over 0, η ∈ Q, and∞, we get the condition p(x)/q(x) = η+ p̃(x)/q(x) or equivalent

0 = η · q(x) + p̃(x)− p(x) =: G(x). (5.2)

The right-hand side is a polynomial in x of degree number of edges of the dessin. This
polynomial should vanish. Therefore, all coefficients must vanish. The coefficients of
G(x) are polynomial expression over Q in the unknowns aiν , ãiν , and biµ. This gives us a
system of algebraic equations. The solutions of this system results in the Bely̆ı function
and its Galois orbits. It is also possible to obtain so called “parasitic solutions”: These
are solutions to the equations, where the corresonding dessins do not have the correct
cycle type. The right Belyi function is found by calculating the dessin for each possible
result.

If the degree of this polynomial G(x) is small, the solution of this system can be
calculated by using methods like Gröbner bases. But for larger degree, this does not
work anymore. In the next chapters, we present a different approach to find a solution
of this system.
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Figure 5.7.: A fundamental
domain for Γ0 (6)

Figure 5.8.: A fundamental
domain with marked

points

Figure 5.9.: The dessin without
identification Figure 5.10.: The dessin for the Bely̆ı

function of Γ0(6)
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Chapter 6.

Generalized Farey symbols
Obsessed by a Farey tale, we spent our lives searching for

a magic door and a lost kingdom of peace.

(More or less Eugene O’Neill)

To describe a subgroup of a triangle group we presented in chapter 4 a method using
finite groups and permutations. In this chapter we present a different approach to this
classification for the Hecke groups ∆n. The advantage of this method is that it is possible
to calculate invariants of the subgroup, such as coset representatives, generators, genus,
etc efficiently.

In the year 1991, Kulkarni presented a powerful tool to study subgroups of the modular
group [Kul91]. Nowadays, we call this tool the Farey symbols. There are partial imple-
mentations of these methods in Sage [KL08], [Kur09], magma [MAG], and gap [GAP].
A complete and efficient implementation in C++, with an interface to interact with
Sage [SAG], became only recently available – published by Monien [Mon11].

The idea of Kulkarni is to describe a subgroup of the modular group by a certain
fundamental domain with additional information, a special polygon. These special poly-
gons are polygons in the hyperbolic plane with vertices in P1(Q). Furthermore, these
vertices form a sequence which satisfies a certain arithmetic property. It is a generalized
Farey sequence. We equipped this sequence with additional information from the special
polygon, the pairings. A Farey sequence equipped with pairings, is a Farey symbol.

In this chapter we generalize this concept to the Hecke groups. Lang, Lim, and
Tan [LLT95b] started to generalize this notion to the Hecke groups and introduced the
notion of a Hecke-Farey symbol. The ideas of Kulkarni also work in this more general
context, but with some differences. In the classical setting of the modular group, the
Farey sequence and the edges of the special polygon are rational numbers. For the
Hecke groups, we need to work over number fields. We present an approach which is
more general since Lang, Lim, and Tan focused on the Hecke groups ∆q where q prime.
In this more general setting, we need to generalize the notion of the pairings. Many of
the algorithms which where introduced by Kulkarni, work in this more general context
– for example the calculation of the genus or the cusps of the underlying group.

We give a short discussion about Farey symbols for general non-compact triangle
groups in chapter 10. Here, more work needs to be done.

We continue using the notion from chapter 4 and start by introducing the concept of
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the special polygons.

Special polygons
To define the notion of a special polygon, we need to name certain points and geodesics
on the upper half plane. The point ρ = ρa,b = csc π

a

(
cos π

a
+ ei

π
b

)
is the same as we

defined it in chapter 4.

Definition. Let ∆n be a hyperbolic Hecke group and ∆∗n the corresponding extended
triangle group. Then, we define

(i) The elements in the ∆∗n-orbit of i are called even vertices.

(ii) The elements in the ∆∗n-orbit of ρ are called odd vertices.

(iii) The elements in the ∆∗n-orbit of the edge joining ∞ and i are called even edges.

(iv) The elements in the ∆∗n-orbit of the edge joining ∞ and ρ are called odd edges.

(v) The elements in the ∆∗n-orbit of the edge joining i and ρ are called f-edges.

6.1 Theorem. Let ∆n be hyperbolic Hecke group. Then, if

(i) n is even:
a) The even edges come in pairs, each pair forming a complete hyperbolic arc.

Each geodesic contains one even vertex. The group ∆n acts transitive on
these geodesics.

b) The odd edges come in pairs, each pair forming a complete hyperbolic arc.
Each geodesic contains one odd vertex. The group ∆n acts transitive on these
geodesics.

c) The f -edges come in infinity families, each family forming a complete hyper-
bolic arc. Each geodesic contains a (naturally sorted) set of vertices. In this
natural ordering an even vertex follows an odd one and vice versa.

(ii) n is odd:
a) The even edges come in pairs, each pair forming a complete hyperbolic arc.

Each geodesic contains one even vertex. The group ∆n acts transitive on
these geodesics.

b) A pair of odd edges and a pair of f -edges form a complete hyperbolic geodesic.
The group ∆n acts transitive on these geodesics.

Proof. (i) Let n be even:
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a) Since the even edges are the images of the line from ∞ to i, each even edge
needs to end in an even vertex, e.g. the image of the point i. The other end
needs to be a image of∞ which in P1(R). Since n is even, through every even
vertex there are n

2 even lines passing. Hence, the even edges come in pairs
and from a complete hyperbolic geodesic.

b) Since the first parameter of the Hecke group, which is 2, is even, the same
argumentation holds as in part a.

c) We start in an arbitrary even or odd point. Without loss of generality, we
assume staring in an even point. Due to the construction, there are two
outgoing f -edges. We choose an arbitrary one and find an odd point at the
end of this line. Now, there are n outgoing f -edges attached to this point.
Since n is even, the continuation of the geodesic we came from is again a f
edge. We follow this new one and find another even point. Now we continue
with this process and find an infinite, naturally ordered family of f -edges
(if we also continue this process at the other edge going out of our starting
point). This procedure lasts infinitely long (in both directions): It ends, if
we come to a point, where we have no further (unused) outgoing edge or a
vertex opposite of the incoming one. There is one vertex with this property;
the one we started with. In this case, we produced a circle which is also not
possible.

(ii) If n is odd, a similar argument is possible. Although Kulkarni [Kul91] gave the
argument only for the modular group, the same argument holds for general Hecke
groups ∆n, if n is odd.

Example. As an example, we look at the triangle group ∆4. In figure 6.1 and 6.2 we
show a part of the tessellation, mark the even vertices respectively the even edges in
red and the odd vertices, respectively the odd edges in blue. The f -edges are shown in
green.

Definition. A (2, n)-special polygon (or n-special polygon for short) is a convex hyper-
bolic polygon P , such that the boundary ∂P is a union of even and odd edges, together
with a marking of its edges, the side-pairings. The following conditions must be satisfied:

S1) 0 and ∞ are vertices of the polygon P .

S2) The even edges in ∂P come in pairs, each pair forming a complete hyperbolic arc.

S3) The odd edges in ∂P come in pairs, each pair meets an odd vertex making an
internal angle of 2π

d
where d 6= 1 is a divisor of n.

The side pairing is a map from the set of edges to the set of edges, such that it fixes no
edge. The following should hold.

S4) An odd edge e paired with another odd edge f making an internal angle 2π
d

, where
d 6= 1 is a divisor of n.
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Chapter 6. Generalized Farey symbols

Figure 6.1.:
•: even vertex
•: odd vertex

Figure 6.2.:
— : even edge
— : odd edge
— : f -edge

S5) Let e, f be a pair of even edges. Then either e is paired to f or there is other
pairing e′, f ′ of even edges, such that e is paired the f ′ and f is paired with e′.

Before we give an example of the special polygon, we make some comments about the
definition.

Remark. (i) The notion of being a convex polygon is meant in the hyperbolic sense.
The polygons we are looking at, are not convex in the Euclidian sense.

(ii) Note that this definition is similar to the notion of a special polygon for PSL2(Z)
– see for example Kulkarni, Kurth or Lang, Lim, and Tang.
The main difference in this generalization is that there are more possible pairings
for the odd edges. There is one type for each divisor d 6= 1 of n. In the cited
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articles, the authors have been working with PSL2(Z) corresponding to n = 3.
Since this number is prime, there is only one divisor larger than 1. Hence, we have
only one type of odd pairing.

(iii) If we choose n to be a prime number, the odd edges can just be paired in one way,
such that they meet in internal angle of 2π

n
. Assuming this, the definition coincides

with the one by Lim, Lang, and Tam [LLT95b]. Due to the existence of elliptic
points of order d, where d is a divisor of n, we need to include these more general
pairings.

Examples of special polygons
In figure 6.3, we see a typical example of a 4-special polygon. The colors indicate the
pairings. Sides with the same color are paired with each other. If there is no color, we
identify the left part of the arc with the right part and vice versa. As we will see in

Figure 6.3.: Example of a 4-special polygon.

the next paragraph, each special polygon is the fundamental domain of a subgroup of a
triangle group. The subgroup which belongs to this special polygon has the monodromy
representation

σ2 = (1, 4)(2, 15)(3, 9)(5, 7)(8, 13)(11, 12) ∈ S15,

σ4 = (1, 13, 4, 11)(2, 15, 9, 5)(3, 10, 14, 12)(6, 8) ∈ S15

and is a subgroup of the triangle group ∆(2, 4).

Subgroups and special polygons
As we just mentioned, there is a connection between the subgroups of finite index of
the Hecke groups ∆n and n-special polygons. For each special polygon there is such a
subgroup which has this special polygon as a fundamental domain.
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Chapter 6. Generalized Farey symbols

Let P be a special polygon. Note that P is equipped with a canonical orientation,
by using the induced orientation from H. This gives a canonical orientation on each of
its sides. If e and f are two sides which are paired, then there is a unique element in
∆n which maps e into f in an orientation-reversing manner. We call the elements of ∆n

obtained in the way the side-pairing transformations of P .

Generalized Farey symbols
In this section we generalize the notion of the classical Farey symbols, introduced by
Kulkarni. These generalized Farey symbols allow us to do efficient calculations with
subgroups of the Hecke groups ∆n. For n = 3 the Farey symbols are based upon the
notion of Farey sequences. These are increasing sequences of rational numbers. For n = 3
the corresponding triangle group is PSL2(Z), a matrix group where the coefficients are
integer numbers. If we generalize this to higher triangle groups, we need to consider
more general rings.

(2, n)-Farey sequences
Definition. We call a sequence {−1

0 ,
a0
b0

= x0, . . . ,
aν
bν

= xν ,
1
0} in P1 (R) a complete

(2, n)-Farey sequence, if

(i) ai and bi are in the ring Z
[
2 cos

(
π
n

)]
,

(ii) the sequence is increasing,

(iii) for all i = 0, . . . , ν

g

(
ai
bi
,
ai+1

bi+1

)
= g (xi, xi+1) := |aibi+1 − ai+1bi| = 1. (6.2)

It will be convenient to set x−1 = −1
0 =∞ = 1

0 = xν+1 and consider the xi as forming a
cyclic order.

A sequence F = {−1
0 , x0 = a0

b0
, . . . , xν = aν

bν
, 1

0} is called a partial (2, n)-Farey sequence
or a just n-sequence, if it can be extended to a complete (2, n)-Farey sequence by inserting
no or d− 1 additional fractions between each two consecutive numbers in the sequence.
Here, d 6= n is a divisor of n and it varies for each insertion point. These points, where
we need to insert points to obtain a complete (2, n)-Farey sequence are called a hole in
the sequence. We call the divisor d the length of the hole and it can be computed from
the hole itself – see lemma 6.3.

Although we write the elements as fractions, it would be formally correct, to write
them as an ordered pair, since we do not allow the cancellation of a common factor of
the numerator and the denominator. The cancellation of such a factor modifies the third
condition of the definition.
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Examples and remarks

Before we equip these sequences with the additional structure needed to define the notion
of the generalized Farey symbols, let us take a look at this definition. We start with
some examples.
Example. The first examples we look at are the ones for n = 3. We obtain the classical
notion of a Farey symbol. It is not possible, to have a hole in the sequence, since 3 is a
prime number.

So the first new examples appear for n = 4. A typical sequence looks like this{
−1
0 ,

0
1 ,

1
2
√

2
,

√
2

3 ,
3

4
√

2
,

2
√

2
5 ,

1√
2
,

√
2

1 ,
1
0

}
.

This sequence is a complete (2, 4)-Farey sequence. We obtain a partial one by omitting
some of the terms. The possible divisor of 4 is 2, hence we omit 1 = 2− 1 term.{

0
1 ,

1
2
√

2
,

√
2

3 ,
3

4
√

2
,

1√
2
,

√
2

1

}
.

These sequences have properties which are similar to the ones from the original Farey
sequences. To give an idea, how the structure generalize to higher Farey sequences, we
introduce the insertion operators. Later we show how to calculate these operators – see
lemma 6.6.

Iµ(ai
bi
,
aj
bj

) :=
csc

(
π
n

) (
aj sin

(
µπ
n

)
+ ai sin

(
(1 + µ)π

n

))
csc

(
π
n

) (
bj sin

(
µπ
n

)
+ bi sin

(
(1 + µ)π

n

)) , µ = 0, . . . , n− 1.

Remark. Although it is possible to cancel out the term csc
(
π
n

)
, we must not do this

to obtain the right result.
The insertion operators work as follows. We start with a complete (2, n)-Farey se-

quence {−1
0 , x0 = a0

b0
, . . . , xν = aν

bν
, 1

0} and choose two consecutive numbers ai
bi

and ai+1
bi+1

.
Then, we apply the insertion operators Iµ

(
ai
bi
, ai+1
bi+1

)
for µ = 1, . . . , n − 2 and obtain a

new, extended n-Farey sequence.{
−1
0 ,

a0

b0
, . . . ,

ai
bi

= I0

(
ai
bi
,
ai+1

bi+1

)
, I1

(
ai
bi
,
ai+1

bi+1

)
, . . .

. . . , In−2

(
ai
bi
,
ai+1

bi+1

)
, In−1

(
ai
bi
,
ai+1

bi+1

)
= ai+1

bi+1
, . . . ,

aν
bν
,
1
0

}
.

A partial (2, n)-Farey sequence is obtained by omitting some insertion operators.
Starting again with the complete sequence {−1

0 , x0 = a0
b0
, . . . , xν = aν

bν
, 1

0}, we choose
two consecutive numbers ai

bi
and ai+1

bi+1
, where we want to insert a hole of length d. Now,

we do not apply all operators, only I1, . . . , In−d−1. We call the pair (xi, xj) the support
of the hole. We continue to extend this sequence by applying the procedure above (full
and partial insertion) but now we are not allowed inserting numbers in the hole, between
In−d−1 and xj = In−1.
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Chapter 6. Generalized Farey symbols

Example. Since the index of the insertion operators runs from 1 to n− 2, there are no
non-trivial operators for n ≤ 2. From a geometric point of view, n = 2 corresponds to
the Hecke group ∆2 which is not a hyperbolic but an Euclidian triangle group. Hence,
the first non-trivial insertion operator occurs for n = 3.

• n = 3: The non-trivial operator I1 is well known from the theory of Farey fractions

I1(ai
bi
,
aj
bj

) = ai + aj
bi + bj

.

• n = 4: Now, we have two non-trivial operators

I1(ai
bi
,
aj
bj

) = ai +
√

2aj
bi +
√

2bj
,

I2(ai
bi
,
aj
bj

) =
√

2ai + aj√
2bi + bj

.

• n = 6: There are 4 insertion operators, we just list the first two. The remaining
two operators are obtained by exchanging the role of ai and aj, respectively bi and
bj.

I1(ai
bi
,
aj
bj

) = ai +
√

3aj
bi +
√

3bj
,

I2(ai
bi
,
aj
bj

) =
√

3ai + 2aj√
3bi + 2bj

.

Using these operators, we construct a generalization of the Stern-Brocot tree. We
start with the fractions 0

1 and 1
0 . Then, we apply the insertion operators to obtain a

new level. For the classical Stern-Brocot tree, we insert exactly one fraction for each
level and every fraction is a rational number. In this generalization, we insert more than
one fraction for each level, n− 2 fractions. Furthermore, the resulting fractions are not
rational numbers anymore. As we see from the definition of the insertion operators, we
now have to work over number fields.
Example. n = 4:

0
1

1
0

0
1

1√
2

√
2

1
1
0

0
1

1
2
√

2

√
2

3
1√
2

2
√

2
3

3
2
√

2

√
2

1
3√
2

2
√

2
1

1
0
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In the light of these operators, we see that an actual hole in a sequence only appears,
if n is not a prime number. If n is a prime number, we only insert n−1−1 = n−2 points
to obtain a complete Farey sequence. Since we have seen that there are for each pair of
fractions n− 2 insertion operators, we end up again with a complete Farey sequence, if
we insert n− 2 fractions.

In the definition of a complete (2, n)-Farey sequence we asked for the determinant of
two consecutive number to be one. For a hole in the partial (2, n)-Farey sequence, this
does not hold. We use the insertion operators to calculate the determinant for a hole.

6.3 Lemma. If (xi,xi+1) is a hole in a (2, n)-Farey sequence, we have

g(xi, xi+1) =
sin

(
πd

n

)

sin
(
π

n

) .

Here, d is the length of the hole.

Proof. If (xi, xi+1) is a hole in a sequence, it is obtained by the use of the insertion
operators I1, . . . In−d−1 on the support of the hole. We define the fractions x̃i = ai

bi

and x̃j = aj
bj

to be this support. Hence, the hole appears between the operators xi =
In−d−1 (x̃i, x̃j) and xi+1 = In−1 (x̃i, x̃j). Therefore, we need to calculated the following
determinant

g

(
In−d−1

(
ai
bi
,
aj
bj

)
, In−1

(
ai
bi
,
aj
bj

))

= g

csc
(
π
n

) (
aj sin

(
dπ
n

)
+ ai sin

(
(1 + d)π

n

))
csc

(
π
n

) (
bj sin

(
dπ
n

)
+ bi sin

(
(1 + d)π

n

)) , aj
bj


=
∣∣∣∣∣csc

(
π

n

)
sin

(
dπ

n

)
aibj − csc

(
π

n

)
sin

(
dπ

n

)
ajbi

∣∣∣∣∣
= |aibj − ajbi|︸ ︷︷ ︸

=1

sin
(
πd
n

)
sin

(
π
n

) .

(2, n)-Farey symbols
Now, we equip the (2, n)-Farey sequences with additional information which we call
the pairings. This is the analog of the pairings in the special polygons. Inspired by
Kulkarni, we start with a special polygon P which has

{
0
1 , x0, x1, . . . , xν ,

1
0

}
as (2, n)-

sequence formed by its vertices.
If (xi, xi+1) is a hole in the sequence, we know that there are two paired odd edges,

one starting at xi and the other starting at xi+1, meeting at an internal angle 2π
d

where

59



Chapter 6. Generalized Farey symbols

d 6= 1 is a divisor of n. We call this a n/d-odd pairing and indicate this information by

xi

(n/d,n)

xi+1.

Remark. In figure 6.4 we see a part of a special polygon which corresponds to a n/d-odd
pairing. In this example, we have n = 6 and d = 3 resulting in a 2-odd pairing. Note
that at the elliptic point, n

d
triangle meet. The order of the stabilizer of this point is d.

0.2 0.3 0.4 0.5 0.6

-0.1

0

0.1

0.2

0.3

0.4

1

2
√

3

1√
3

Figure 6.4.: This is the following pairing

1
2
√

3
(2,6)

1√
3
.

If (xi, xi+1) is not a hole in the Farey sequence, there are three possibilities. The
complete hyperbolic arc from xi to xi+1 can be paired with itself. The first possibility
is a special case of the n/d-odd pairing, when d = n.

The second possibility is the even pairing – we indicate it with

xi
◦

xi+1.

The last possibility is that the complete hyperbolic arc from xi to xi+1 is a part of a
free pairing. There is a j 6= i, such that the arc xi to xi+1 is paired with the arc xj to
xj+1. We indicate this kind of pairings with

xi
a

xi+1 · · · xj
a

xj+1,
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where a is a positive integer number which is different for each different free pairing.

Definition. A generalized Farey symbol is a n-Farey sequence, such that every pair
(xi, xi+1) of consecutive numbers of the sequence is equipped with information we de-
scribed above.

Example. In the section about special polygons we presented a typical 4-special poly-
gon, figure 6.3. The corresponding (2, 4)-Farey symbol is the following

−1
0

1

0
1

◦

1
2
√

2
(2,4)

1√
2

1

√
2

1

(1,4)

5
2
√

2
2

4
√

2
3

2

3√
2

◦

2
√

2
1

◦

1
0 .

Algorithms for generalized Farey symbols
In this section we explain, how one does calculations using the generalized Farey symbols.
Most of the algorithms work similar to PSL2(Z) [Kul91], [Kur09]. Especially we show
that it is possible to construct a generalized Farey symbol for every subgroup of a Hecke
group of finite index.

Before we start with the actual algorithms, we introduce the standard maps which
help us to construct pairing matrices and coset representatives.

Definition. Let xi = ai
bi

and xj = aj
bj

be two real numbers, such that g(xi, xj) = 1.
Then, we define the standard map as follows

Λ(xi,xj) =
(
aj ai
bj bi

)
.

6.4 Lemma. Let xi = ai
bi

and xj = aj
bj

be two real numbers, such that g(xi, xj) = 1.
Then, the standard map Λ(xi,xj) has the following properties.

(i) det
(
Λ(xi,xj)

)
= 1.

(ii) Λ(xi,xj)(0) = xi.

(iii) Λ(xi,xj)(∞) = xj.

(iv) Λ(xi,xj)(ρn) =
aibi + ajbj + (ajbi + aibj) cos

(
π
n

)
2bibj cos

(
π
n

)
+ b2

i + b2
j

+ i ·
sin

(
π
n

)
2bibj cos

(
π
n

)
+ b2

i + b2
j

.

(v) Let ρ̃n = −ρ̄n = Sρn, with S = ( 0 −1
1 0 ). Then,

Λ(xi,xj)(ρ̃n) =
aibi + ajbj − (ajbi + aibj) cos

(
π
n

)
b2
i + b2

j − 2bibj cos
(
π
n

) + i ·
sin

(
π
n

)
b2
i + b2

j − 2bibj cos
(
π
n

) .
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Chapter 6. Generalized Farey symbols

(vi) The standard map Λ(xi,xj) maps the fundamental domain described in chapter 4,
lemma 4.2 of the triangle group ∆n to a hyperbolic triangle with edges given by
the formulas above. If (xi, xi+1) is a part of a complete (2, n)-Farey sequence, the
resulting triangle is a part of the corresponding tessellation of the upper half plane.
One edge coincides with the geodesic from xi to xi+1 and from the two possibilities
it is the one with the smaller imaginary part.

Proof. The proof of this is straight forward. A direct calculation confirms the points
(i) to (v). The last point works as follows. From (ii) and (iii) follows, using the fact
that Möbius transformations maps circles to circles, that the line from 0 to ∞ maps to
a hyperbolic arc from xi to xi+1. The standard map is a member in the triangle group.
Hence, it maps the fundamental domain to a part of the tessellation. Since there are
two triangles, with the line from xi to xi+1, we have to verify that it maps to the lower
one. We do this by comparing the imaginary parts of (iv) and (v).

Pairing matrices
Now, we write down the pairing matrices. The idea is that we pull the triangle in
question back to the standard fundamental domain, using the standard map. Then, we
apply the pairing matrix for this domain and push it back.
6.5 Lemma. Let Fn =

{
−1
0 , x0, x1, . . . xν ,

1
0

}
be a (2, n)-Farey symbol and P the corre-

sponding special polygon. Then, we have the following pairing matrices.
(i) For an even pairing

xi
◦

xi+1

we have the pairing matrix:

E(xi,xi+1) :=
(
aibi + ai+1bi+1 −a2

i − a2
i+1

b2
i + b2

i+1 −aibi − ai+1bi+1

)
.

(ii) For a n/d-odd pairing between x̃i and x̃i+1 with support (xi, xi+1)

x̃i

(n/d,n)

x̃i+1

we have the pairing matrix

O
(d)
(xi,xi+1) :=


−ai+1biSd−1 − aibiSd − ai+1bi+1Sd − aibi+1Sd+1

Sda
2
i + ξai+1Sdai + a2

i+1Sd

−ξbi+1Sdbi − b2
i+1Sd − b2

iSd
aibi+1Sd−1 + aibiSd + ai+1bi+1Sd + ai+1biSd+1

 ,

where Sd = 2
d
T ′n
(
ξ
2

)
. The Chebyshev polynomials are denoted by Tn and ξ =

2 cos π
n

.
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(iii) For a free pairing

xi
a

xi+1 . . . xj
a

xj+1

we have the pairing matrix

F(xi,xi+1,xj ,xj+1) :=
(
ajbi + aj+1bi+1 −aiaj − ai+1aj+1
bibj + bi+1bj+1 −aibj − ai+1bj+1

)
.

Proof. For all three pairings, we use the technique described above: We first use the
inverse standard map to map the geodesic from xi to xi+1 to the line 0 to ∞. Then, we
apply the map we need for the pairing and map it back to the right interval, again using
the standard map.

(i) For the even pairing, we first apply (as explained) the inverse standard map. Then,
we use the map S to exchange 0 and ∞. Then, we map back with the standard
map

Λ(xi,xi+1) · S · Λ−1
(xi,xi+1).

After some simplifications we obtain the result.

(ii) The odd pairing works analog to the even pairing – except we use Rn in the middle.

(iii) For the free pairing, we need to reverse the orientation of the hyperbolic arcs. We
need to map xi to xj+1 and vice versa. We achieve this by the following

Λ(xj ,xj+1) · S · Λ−1
(xi,xi+1).

We now derive the insertion operator which we already have introduced. From a
geometric point of view its purpose is to “insert the right fractions”. If we have a
part of a Farey sequence (xi, xi+1), we see the corresponding hyperbolic arc as an edge
of a special polygon. If we extend this special polygon, we need to introduce more
cusps. These cusps are obtained as follows. The hyperbolic arc xi,xi+1 has two adjacent
triangles which fit into the corresponding tessellation. The standard map gives us the
matrix which maps the fundamental domain to this triangle. We now rotate this triangle
around the elliptic point ρn, using the matrix Rn. This gives us a hyperbolic n-gon whose
vertices are exactly the points we need to insert into our original sequence. They are
calculated by letting the calculated matrices operate on the point xi

Iµ(xi, xj) = (Λ(xi,xj) ·Rµ
n · Λ−1

(xi,xj))(xi)
= (Λ(xi,xj) ·Rµ

n)(0).

To show that the two definitions of the insertion operator are equal, we need the powers
of Rn.
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0.1 0.2 0.3 0.4 0.5 0.6

-0.1

0.1

0.2

0.3

0
1
=I0

1

1 +
√

5
=I1

1
2
(1 +

√
5)

2 +
√

5
=I2

1
2
(1 +

√
5)

1
2
(5 +

√
5)

=I3
1

1
2
(1 +

√
5)

=I4

Figure 6.5.: Geometric interpretation of the insertion operators

6.6 Lemma. Let Rn = R =
( 0 −1

1 −2 cos(πn)
)
. Then,

Rµ =
 (−1)µ+1 csc

(
π
n

)
sin

(
(µ− 1)π

n

)
(−1)µ csc

(
π
n

)
sin

(
µπ
n

)
(−1)µ+1 csc

(
π
n

)
sin

(
µπ
n

)
(−1)µ csc

(
π
n

)
sin

(
(µ+ 1)π

n

)  .
Proof. We prove this lemma with a calculation. In a first step, we diagonalize the matrix
R = A ·D · A−1, where

A =
(
e−i

π
n ei

π
n

1 1

)
, D =

(
−eiπn 0

0 −e−iπn

)
.

Then, we have

Rµ =
(
A ·D · A−1

)µ
= A ·DµA−1

= A ·
(

(−1)µeiπn 0
0 (−1)µe−iπn

)
· A−1

=
(
eiπµ csc(π

n
) sin(π

n
− µπ

n
) eiπµ csc(π

n
) sin(µπ

n
)

−eiπµ csc(π
n
) sin(µπ

n
) eiπµ csc(π

n
) sin((µ+ 1)π

n
)

)
.
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This lemma is used to construct the insertion operators as follows. We first use the
powers of the matrix R and map it then, to an interval xi = ai

bi
, xj = aj

bj
, using again the

standard map. The images of 0 under the different powers of R, give the point of the
insertion operators

Iµ(ai
bi
,
aj
bj

) =
(
Λ(xi,xj) ·Rµ

)
(0)

=



eiπµ csc
(
π
n

) (
aj sin

(
π−πµ
n

)
− ai sin

(
πµ
n

))
eiπµ csc

(
π
n

) (
aj sin

(
πµ
n

)
+ ai sin

(
π(µ+1)

n

))
eiπµ csc

(
π
n

) (
bj sin

(
π−πµ
n

)
− bi sin

(
πµ
n

))
eiπµ csc

(
π
n

) (
bj sin

(
πµ
n

)
+ bi sin

(
π(µ+1)

n

))


(0)

=
eiπµ csc

(
π
n

) (
aj sin

(
πµ
n

)
+ ai sin

(
π(µ+1)

n

))
eiπµ csc

(
π
n

) (
bj sin

(
πµ
n

)
+ bi sin

(
π(µ+1)

n

)) .
In this formula we cancel the term eiπµ = ±1, since this is only a sign. This sign
corresponds in terms of matrices to the negative of the identity which is irrelevant since
we are working in PSL2(R).

Construction of a generalized Farey symbol

In this subsection, we construct a Farey symbol from a given subgroup of a Hecke group
∆n. We start with a certain (unfinished) Farey symbol, check whether we can pair
anything and if we cannot, we add more fractions, using the insertion operators.
Let Γ ⊆ ∆n be a subgroup of finite index. Then, the following algorithm produces a
generalized Farey symbol.

Algorithm 3. (i) Start with the unfinished Farey symbol

−1
0

0
1

1
0 .

(ii) For each unpaired side xi, xi+1 check if

• the even pairing matrix E(xi,xi+1),

• or any free pairing matrix F(xi,xi+1,xj ,xj+1) for any other side xj, xj+1,

is in the subgroup Γ. If this holds, assign that pairing.

(iii) For each unpaired side xi, xi+1 check if any n/d-odd pairing matrix O
(d)
(xi,xi+1), is

in the subgroup. If this holds, insert n/d − 1 points (on the left) and assign that
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Chapter 6. Generalized Farey symbols

pairing

xi xi+1

⇓

x̃i = xi x̃i+1 · · · x̃i+n/d−1

(n/d,n)

x̃i+n/d = xi+1.

(iv) If now all sides of the Farey symbol are paired, return this symbol and terminate.

(v) If there is an unpaired side xi, xi+1 apply the insertion operators Iµ(xi, xi+1) for
i = 1, . . . , n− 1 and go to step (ii) with this new unfinished symbol.

The first algorithms
Many algorithms used for the modular group generalize to the Hecke groups. The reason
is that those algorithms are just functions of the pairings. Although we have more kinds
of pairings, it is only the notion of the odd pairing which is extended. This pairing pairs
two edges which are next to each other. This is the same that the even pairing (and the
“classical” odd pairing) does. This applies for the algorithms of calculating the genus
and finding the cusps of the group. Since the calculation of the generators of the group
was derived by the theory of general Fuchsian groups by Kulkarni, we also “copy” his
algorithms. The generators of the group are the pairing matrices – a minimal set of
generators. The construction of the cosets of the subgroup is similar to the classical
Farey symbol. This is done in both cases by a geometric interpretation.

Cusp classes and cusps

We start with the calculation of the cusp classes. To each fraction, we associate a class
label.

(i) Find the most left fraction without a class label. If there is none, we are done.

(ii) Assign to this fraction a new class label and mark it as active.

(iii) Look at the pairing right next to the active fraction.
• If this pairing is even or odd, mark the next fraction to the right as active.
• If the pairing is free, find the corresponding partner and mark the right part

of this as active.

(iv) If the active fraction has already a class label, go to step (i).

(v) If the active fraction has no class label, assign the same number as the previous
one, and go to step (iii).
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From the class numbers we easily find a set of representative of the cusp-classes. Just
choose for each number an arbitrary fraction.

Furthermore, we calculate the cusp widths of the cusps. To each fraction we associate
an individual width. This is the number of cosets which have this fraction as an edge –
divided by two. Hence, this number needs not to be an integer. To get the actual cusp
widths, need to sum all cusp widths in a given class. This number of cosets is calculated
as follows. Let

· · · xi−1
pi−1

xi
pi

xi+1 · · ·

be a part of a (2, n)-Farey symbol. Then, we define

wi :=



g (xi−1, xi+1)
2 cos

(
π
n

) if pi−1 and pi are both free or even

g (xi−1, xi+1)
2 cos

(
π
n

) − 1
2 if pi−1 or pi is odd

g (xi−1, xi+1)
2 cos

(
π
n

) − 1 if pi−1 and pi are both odd.

Added up these numbers wi over all fractions ci in the cusp class gives the width.

Genus and index

For the genus and the index there are helpful formulas. First of all, we compute the
rank of π1 (Γ\H) which is the rank of the (un-compactified) modular curve. This rank
is equal to the number of free pairings which is determined by counting the number of
pairings greater than zero and dividing by two. Alternatively it is the largest pairing
number. This rank is also calculated as r = 2g + t− 1, where t is the number of cusps.
Hence, we have a formula for the genus

g = r − t+ 1
2 .

The index of the subgroup is calculated with the help of the formula for Hurwitz.

Coset representatives and a fundamental domain

The idea of calculating coset representatives works as follows. For each fraction we want
to “fan out” images of F . Here, F is the fundamental domain of the Hecke group ∆n,
see figure 6.6.

The endpoints of this fan are the neighbor fractions. From this, we find number of
parts the fan needs. We define for a fraction in a Farey symbol

· · · xi−1
pi−1

xi
pi

xi+1 · · ·
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Chapter 6. Generalized Farey symbols

Figure 6.6.: Fan out at 1√
3

the “fan width” as follows

ωi :=



g (xi−1, xi+1)
2 cos

(
π
n

) if pi−1 and pi are both free or even

g (xi−1, xi+1)
2 cos

(
π
n

) − 1 if pi is odd

g (xi−1, xi+1)
2 cos

(
π
n

) − 2 if pi−1 and pi are both odd.

The rest is similar to our standard techniques. As we know how to fan out at infinity,
using the matrix T = ( 1 1

0 1 ), we map this to the fraction in question. Hence, the coset
representatives are given via the following formulas

R =
n⋃
i=0

{
S · T j · Λ(xi−1,xi), 0 ≤ j < ωi

}
. (6.7)

An example of a (2, 4)-Farey symbol – discussed in
detail
We finish this chapter with a detailed example of a generalized Farey symbol. The
triangle group we are looking at is the group ∆(2, 4). The subgroup Γ we choose, is
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given by the monodromy of the alternating group of length 6. It is a group of order 360
and it is generated by the following two elements

σ2 = (1, 2)(3, 4) ∈ S6,

σ4 = (1, 6, 4, 2)(3, 5) ∈ S6.

In chapter 4 we presented an algorithm to check the membership of a group in ∆n to be
in a subgroup defined by permutations. To check, whether a matrix is in this subgroup,
we used algorithm 1 described in chapter 4.

The first part is to construct the Farey symbol. According to algorithm 3, we start
with

−1
0

0
1

1
0 .

The possible pairing matrices are

E( 0
1 ,

1
0 ) =

(
0 −1
1 0

)
/∈ Γ,

O
(1)
( 0

1 ,
1
0 ) =

(√
2 −1

1 0

)
/∈ Γ,

O
(2)
( 0

1 ,
1
0 ) =

(
−1

√
2

−
√

2 1

)
/∈ Γ.

No pairing is possible, so we have to introduce new fractions. For this, we use the
insertion operator I1

(
0
1 ,

1
0

)
= 1√

2 and I2
(

0
1 ,

1
0

)
=
√

2
1 , resulting in the new symbol

−1
0

0
1

1√
2

√
2

1
1
0 .

Now, we find sides which can be paired

E( 1
0 ,

1√
2

) =
(√

2 −1
3 −

√
2

)
∈ Γ,

F(−1
0 , 01 ,

√
2

1 , 10 ) =
(

1
√

2
0 1

)
∈ Γ,

O
(2)
( 1√

2
,
√

2
1 )

=
(
−7 5

√
2

−5
√

2 7

)
∈ Γ.

For the 4/2-pairing we need to insert another fraction I1
(

1√
2 ,
√

2
1

)
= 2

√
2

3 . We obtain the
following unfinished Farey symbol

−1
0

1

0
1

◦

1√
2

2
√

2
3

(2, 4)

√
2

1
1

1
0 .
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Chapter 6. Generalized Farey symbols

The last unpaired edge of the symbol is identified to be an even pairing

E( 1√
2
,
√

2
1

) =
(

7
√

2 −9
11 −7

√
2

)
∈ Γ.

This results in the Farey symbol

−1
0

1

0
1

◦

1√
2 ◦

2
√

2
3

(2, 4)

√
2

1
1

1
0 .

Figure 6.7.: The special polygon for this example

By looking at the pairing matrices, we find a minimal set of generators for our subgroup
- the pairing matrices

Γ =
〈(√

2 −1
3 −

√
2

)
,

(
1
√

2
0 1

)
,

(
−7 5

√
2

−5
√

2 7

)
,

(
7
√

2 −9
11 −7

√
2

)〉
.

The widths of the fractions are calculated with the formulas we presented.

70



xi wi Cusp class

x−1 = 1
0

g
(

0
1 ,
√

2
1

)
√

2
= 1 1

x0 = 0
1

g
(

1
0 ,

1√
2

)
√

2
= 1 2

x1 = 1√
2

g
(

0
1 ,

2
√

2
3

)
√

2
= 2 2

x2 = 2
√

2
3

g
(

1√
2 ,

3
2
√

2

)
√

2
− 1

2 = 1
2 2

x3 =
√

2
1

g
(

3
2
√

2 ,
1
0

)
√

2
− 1

2 = 3
2 2

The last row of the table was found using the algorithm to construct the cusp classes.
From this table, we see that our group has two inequivalent cusps. This first cusp is ∞
and has width 1 and the second one is represented by 0 and has width 1 + 2 + 1

2 + 3
2 = 5.

Genus and index are calculated in the usual way. We have one free pairing which
is also the rank of π1(Γ\H) and two cusps - which gives a genus of zero. The index is
calculated to be six.

We end the example by calculating the coset representatives. Following the algorithm,
we first need to find fan-widths for all fractions and then calculate the cosets using
formula (6.7).

xi ωi Coset representatives

x−1 = 1
0

g
(

0
1 ,
√

2
1

)
√

2
= 1 S · T 0 · Λ−1

( 1
0 ,
√

2
1 )

=
(

0 −1
1 −
√

2

)

x0 = 0
1

g
(

1
0 ,

1√
2

)
√

2
= 1 S · T 0 · Λ−1

(−1
0 , 01 ) = ( 1 0

0 1 )

x1 = 1√
2

g
(

0
1 ,

2
√

2
3

)
√

2
= 2 S · T 0 · Λ−1

( 0
1 ,

1√
2

) =
(√

2 −1
1 0

)

S · T 1 · Λ−1
( 0

1 ,
1√
2

) =
(√

2 −1
−1
√

2

)

x2 = 2
√

2
3

g
(

1√
2 ,

3
2
√

2

)
√

2
= 1 S · T 0 · Λ−1

( 1√
2
, 2
√

2
3 )

=
(

3 −2
√

2
−2
√

2 3

)

x3 =
√

2
1

g
(

3
2
√

2 ,
1
0

)
√

2
− 1 = 1 S · T 0 · Λ−1

( 3
2
√

2
,
√

2
1 )

=
(

1 −
√

2√
2 −1

)
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Chapter 7.

The Schwarzian derivative
You have the ring and I see your Schwar(t)z is as big as

mine. Now let’s see how well you handle it!

(Dark Helmet in Space Balls)

In this chapter we calculate the hauptmoduls for triangle groups. To do this, we map
the fundamental domain of these groups to the complex plane, respectively to the upper
half plane. Since we do this conformally, we need the theory of conformal mappings.
Especially we will use the Schwarzian derivative. Furthermore, we will explain how to
obtain the Picard-Fuchs equations for subgroups of a triangle group.

Introduction to the Schwarzian derivative
Definition. We define the Schwarzian derivative

S (f)(z) =
(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

= f ′′′(z)
f ′(z) −

3
2

(
f ′′(z)
f ′(z)

)2

.

Since we will do some calculations with this derivative, we collect some rules how to
handle it.

7.1 Lemma. For smooth functions f, g : C→ C the following holds.

(i) Chain rule: S (f ◦ g) = (S (f) ◦ g) (g′)2 + S (g).

(ii) Derivative of the inverse: S (f−1) = −S (f)◦f−1

(f ′(f−1))2 , if f−1 exists and is smooth.

(iii) Derivative of the reciprocal: S ( 1
f
) = S (f).

(iv) Invariant under Möbius transformations: Let ( a bc d ) ∈ PSL2(R) be a matrix and
F = A.f . Then S (f) (z) = S (F ) (z).

(v) The Schwarzian differential equation for the inverse function: If the inverse f−1

of the function f satisfies a Schwarzian DGL S (f−1)(t) − 2Q(t) = 0, then the
function f satisfies

S (f)(t) + 2Q(f) · (f)′(t)2 = 0.
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Chapter 7. The Schwarzian derivative

Proof. We prove this lemma by direct computations.

(i) Chain rule:

(f ◦ g)′ = (f ′ ◦ g) · g′

(f ◦ g)′′ = (f ′ ◦ g)′ · g′ + (f ′ ◦ g) · g′′

= (f ′′ ◦ g) · g′2 + (f ′ ◦ g) · g′′

(f ◦ g)′′
(f ◦ g)′ = f ′′(g)g′′

f ′(g) + g′′

g′
.

S (f ◦ g) (t) =
(
f(g)′′
f(g)′

)′
− 1

2

(
f(g)′′
f(g)′

)2

=
(
f ′′(g)g′
f ′(g) + g′′

g′

)′
− 1

2

(
f ′′(g)g′
f ′(g) + g′′

g′

)2

=
(
f ′′(g)g′
f ′(g)

)′
+
(
g′′

g′

)′
︸ ︷︷ ︸
→S (g)(t)

−1
2

(
f ′′(g)g′
f ′(t)

)2

− f ′′(g)g′′
f ′(g) −

1
2

(
g′′

g′

)2

︸ ︷︷ ︸
→S (g)(t)

= f ′′(g)
f ′(g) · g

′′

︸ ︷︷ ︸
���
1

+
(
f ′′(g)
f ′(g)

)′
g′2−f

′′(g)
f ′(g) g

′′

︸ ︷︷ ︸
���
1

−1
2

(
f ′′(g)
f ′(g)

)2

g′2 + S (g) (t)

= S (f) (g) · g′2 + S (g) (t) .

(ii) The derivative of the inverse follows from the first point. Let f be a smooth
function and f−1 its inverse, f ◦ f−1 = id and f−1 ◦ f = id. Since S (x) (x) = 0,
we have

0 = S
(
f−1 ◦ f

)
(t) = S

(
f−1

)
(f) · f ′2 + S (f) (t) ,

⇒ S
(
f−1

)
(f(t)) = −S (f) (t)

(f ′(t))2 .

Choosing t = f−1(z) yields the result.

(iii) We define r (x) = 1
x

and use again the first point.

S

(
1
f

)
(x) = S (r ◦ f) (x)

= (S (r) (x)︸ ︷︷ ︸
=0

◦f) · f ′2 + S (f) (x) .

It is also possible to derive this as special case of the next part.
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(iv) We define F = af+b
cf+d for constants a, b, c, and d, with the constraint ad − cb 6= 0.

The condition that the determinant is equal to one is not necessary. We have the
derivative of F

F ′ = ad− bd
(cf + d)2f

′

and for the logarithmic derivative of this

F ′′

F ′
= f ′′

f ′
− 2cf ′
cf + d

.

Hence, (
F ′′

F ′

)′
=
(
f ′′

f ′

)′
+ 2c2f ′2

(cf + d)2 −
2cf ′′
cf + d

,(
F ′′

F ′

)2

=
(
f ′′

f ′

)2

+ 4c2f ′2

(cf + d)2 = 2cf ′′
cf + d

.

Therefore, we obtain for the Schwarzian derivative

S (F ) (z) = S (f) (z) .

(v) This follows directly from the second part.

Conformal mappings
A conformal mapping is a map that preserves the angle between two differentiable arcs.
These maps are used for example to solve a partial differential equation in unusual
domains. We map the domain in question to the complex plane or a disc and solve the
partial differential equation there. Then we pull the solution back in the original domain
and obtain the solution. A good overview of this technique is the book of Driscoll and
Trefethen [DT02].

We follow in rough lines the book of Nehari [Neh52]. We work with the fundamental
domains of the triangle groups, as we described them in chapter 4. Since they are
bounded by geodesics in the hyperbolic geometry of the upper half plane, they fall in
the category of domains bounded by circular arcs. [Neh52, Chapter V, Section 7]

We start with a closed subset of the complex plane bounded by circular arcs. We
denote the edges of the polygon with zi and the angle by παi. Our goal is to construct a
map f which maps a given polygon to the upper half plane. The boundary of the polygon
should map to the real axis. We denote the images of the edges by ai = f (zi) ∈ R. This
will result in a differential equations of the form

S (f) (z) = Q(z).
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The geometry of the polygon determines the rational function Q(z). We give a rough
sketch how to construct this differential equation. The book of Nehari [Neh52] does this
construction in full detail.

Using the symmetry principle [Neh52, Chapter V, Section 5], we see that this map
is everywhere regular, except of the points a1, . . . , an. Hence, the derivative does not
vanish. By a suitable linear transformation, any one of the circular arcs bounding the
polygon, can be mapped onto a part of the real axis. If w → W is this linear transfor-
mation, we see that it does not change the Schwarzian derivative, by 7.1. Furthermore,
it can be shown that the Schwarzian derivative of the map we are looking for is real
at all point of the real axis, except a1, . . . , an. At these points the function will have
singularities. We look at the vertex aν with the angle παν and perform a linear transfor-
mation which transforms this singularity into the origin and transforms the two arcs into
straight lines with the angle παν . The Schwarzian derivative was not effected by this
transformation. Since the mapping is conformal, the angle of these two lines will still
be παν . The singularity of the function at z = aν is obtained from the assumption that
the function maps a piece of the real axis containing z = aν onto two linear segments
meeting at the origin with the angle παν . Such a function f(z) is of the form

f(z) = (z − aν)ανf1(z)

where f1(z) is regular at z = aν and f1(aν) 6= 0. Furthermore, f1(z) is real, if z is real.
We obtain

S (f) (z) = 1
2

1− α2
ν

(z − aν)2 + βν
(z − aν)

+ f2(z)

where f2(z) is a regular function at aν and βν = 1−α2
ν

αν

f ′1(aν)
f1(aν) is a real constant. These are

called the accessory parameters. By applying the same argument to all the points aν ,
we obtain that the expression

S (f) (z)−
n∑
ν=1

1
2

1− α2
ν

(z − aν)2 −
βν

z − aν

is regular at all points a1, . . . , an and therefore at all points at the real axis. Hence, we
have a function which is regular in the closure on the domain and real on the boundary
- this implies the function to be a constant which we denote by γ.

The function f(z), mapping the upper half plane H onto a curvilinear polygon, satisfies
the differential equation

S (f) (z) =
n∑
ν=1

1
2

1− α2
ν

(z − aν)2 + βν
z − aν

+ γ.

Here, β1, . . . βn, and γ are constants which have to be calculated. There are not inde-
pendent of each other. If none of the points a1, . . . , an coincide with the point at infinity,
the function f(z) must be regular at z =∞. The expansion at infinity has the form

f(z) = c0 + c1

z
+ c2

z2 + . . . .
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If we compute the Schwarzian derivative of this expansion, we see that the first term is
1
z4 . On the other hand, the first terms of the differential equation is

γ + 1
z

n∑
ν=1

βν

+ 1
z2

n∑
ν=1

(
aνβν + 1

2(1− αν)2
)

+ 1
z3

n∑
ν=1

(
βνa

2
ν + aν(1− α2

ν)
)

+ O
( 1
z4

)
.

From this, we obtain four conditions for the constants
0 = γ,

0 =
ν∑
ν=1

βν ,

0 =
n∑
ν=1

(
2aνβν + (1− αν)2

)
,

0 =
n∑
ν=1

(
βνa

2
ν + aν(1− α2

ν)
)
.

A curvilinear triangle
In this section, we calculate the mapping f from above for a curvilinear triangle. This is
needed for mapping the fundamental domain of a extended triangle group to the upper
half plane. In the end, this will result in the calculation of the hauptmodul for triangle
groups. This method was also use in the article [DGMS13].

After the discussion in the end of the last paragraph, we are now able to fully calculate
the case of an arbitrary curvilinear triangle. We will end with the task of solving a
Schwarzian differential equation. To solve this equation, we explain a helpful relation
to a second order differential equation. In our case, this is a hypergeometric differential
equation – which is well understood.

Again, the source is the book of Nehari, but now we will change the calculations. To get
rid of the indices, we first rename the angles of the triangle; α1 = α, α2 = β, and α3 = γ
and the points a1 = a, a2 = b, and a3 = c. We have seen that the following Schwarzian
differential equation describes a map from a curvilinear triangle to the complex plane.

S (f) (z) =
3∑

ν=1

1
2

1− α2
ν

(z − αν)2 + βν
z − αν

.

According to the last section, we have the following restrictions on the accessory param-
eters βν .

0 = β1 + β2 + β3,

α2 + β2 + γ2 − 3 = 2aβ1 + 2bβ2 + 2cβ3,

a(α2 − 1) + b(β2 − 1) + c(γ1 − 1) = a2β1 + b2β2 + c2β3.
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Solving for the unknown βν , we obtain

β1 = −b (α2 − β2 + γ2 − 1) + c (α2 + β2 − γ2 − 1)− 2a (α2 − 1)
2(a− b)(a− c) ,

β2 = a (−α2 + β2 + γ2 − 1) + c (α2 + β2 − γ2 − 1)− 2b (β2 − 1)
2(a− b)(b− c) ,

β3 = a (−α2 + β2 + γ2 − 1) + b (α2 − β2 + γ2 − 1)− 2c (γ2 − 1)
2(c− a)(b− c) .

We plug these into the Schwarzian differential equation and simplify the right-hand side
to

S (f) (z) = 1
(z − a)(z − b)(z − c)

(
(1− α2) (a− b)(a− c)

2(z − a) +

(1− β2) (b− a)(b− c)
2(z − b) + (1− γ2) (c− a)(c− b)

2(z − c)

)
.

Now, we choose special points for the points a, b, and c. The point b is moved to infinity
and the point a is set to zero. The choice for the point c is more complicated. For α = π

2 ,
which corresponds to the Hecke groups, we choose

c = η := exp
(
π sec π

n
+ 2Ψ (1)−Ψ

(
1− 1

2

( 1
n

+ 1
2

))
−Ψ

(
1 + 1

2

( 1
n
− 1

2

)))
. (7.2)

Here, Ψ(z) = Γ′(z)
Γ(z) is the logarithmic derivative of the Γ-function. The Γ-function is for

complex numbers with positive real part defined as Γ (z) =
∫∞

0 xt−1e−x dx. With this
choice of c, we obtain a map which maps exactly the fundamental domain of the triangle
groups we constructed in chapter 4 to the upper half plane. For the calculation of this
value, we refer to the work of Raleigh [Ral62, formula I], Carathéodory [Car54, §394],
the thesis by Leo [Leo08], or by Jermann [Jer13].

We obtain for the Schwarzian derivative

S (f) (z) = 1
2z(z − η)

(
η(α2 − 1)

z
+ (1− β2) + η(1− γ2)

z − η

)
. (7.3)

The next task is to solve this equation. One way to obtain the solution is by using
hypergeometric functions.
7.4 Lemma. Let u1(x) and u2(x) be two linear independent solutions of the linear
differential equation

u′′(z) + p(z)u(z) = 0.

Then, the function

w(z) = u1(z)
u2(z)

is a solution of the Schwarzian differential equation

S (w) (z) = 2p(z).
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Proof. The proof of this lemma is a calculation – the same as in the book of Nehari.
We have u2 = wu1 and plug it into the second order differential equation

0 = u′′1 + pu1

= (wu2)′′ + pwu2

= w′′u2 + w′u′2 + wu′′2 + pwu2

= w′′u2 + w′u′2 + w (u′′2 + pu2)︸ ︷︷ ︸
=0

= w′′u2 + w′u′2

⇒ w′′

w′
= −2u

′
2
u2
.

Thus,

S (w) (z) =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

= −2
(
u′2
u2

)′
− 2 (u′2u2)2

= −2u
′′
2
u2

= −2−pu2

u2
= 2p.

This lemma allows us to translate the Schwarzian differential equation into a second
order differential equation with three singularities. Such a differential equation is a
hypergeometric differential equation and it has hypergeometric functions as solutions.

We are more interested in finding the solution in the form of a q-series. In the next
section we construct such a solution.

The calculation of the hauptmodul for triangle
groups
In this section we calculate the hauptmodul of the triangle groups, using the theory
developed before. When we introduced the triangle groups and their operation on the
upper half plane, we also defined the extended triangle groups. Using these, we split
the fundamental domain of the triangle groups into two parts, each part is a possible
fundamental domain for the extended groups. We will assume that the hauptmodul
maps one of these fundamental domains to the upper half plane. This put us in the
position of finding a function which maps a curvilinear polygon to the upper half plane
H. We have discussed this problem in the last subsection in detail and is now used to
obtain the q-series of the hauptmodul of the triangle groups.

Previously we ended with a differential equation – the Schwarzian differential equation.
We now solve this equation in term of a q-series.
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Chapter 7. The Schwarzian derivative

Finding the hauptmodul ja,b(τ)
We start with the triangle group ∆(a, b). The fundamental domain is a triangle with
angles π

a
, π
b
, and π

∞ = 0 – we choose this triangle to have the edges i, ρa,b, and cot π
a
, as

we did in chapter 4. The inverse hauptmodul τ(j) should map this triangle to the upper
half plane. According to the last section, the inverse hauptmodul satisfies a Schwarzian

Figure 7.1.: Mapping property of the hauptmodul

differential equation

S (τ) (j) = 2Q (j) ,

with Q (z) = 1
4z(z−η)

(
η(α2−1)

z
+ (1− β2) + η(1−γ2)

z−η

)
as in the last section, formula (7.3).

From lemma 7.1, point we obtain an equation for the hauptmodul itself

S (j) (τ) + 2Q (j) (j′)2 = 0. (7.5)

Now, we make a general ansatz for the hauptmodul. We know that it behaves like 1
q

as
τ → ∞. The parameter q = exp (2πiτ/w) was introduced in chapter 3, formula (3.4).
Hence, we write j as a Fourier expansion with unknown coefficients

j (τ) = 1
q

+
∞∑
i=0

ciq
i = 1

q
+ c0 + c1 q + c2 q

2 + c3 q
3 +O

(
q4
)

and apply (7.5)

0 = S (j) (τ) + 2Q (j) (j′)2

=
(
η

2

(
1− 1

a2 −
1
b2

)
− c0

)
q

+
(1

2

(
3c2

0 + 3c0η
( 1
a2 −

1
b2 − 1

)
+ η2

(
− 2
a2 + 1

b2 + 2
)

+
)
− 8c1

)
q2

+ O
(
q3
)
.
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These equations must vanish for each power of q. We obtain a system of equations.
Although they are not linear equations, the highest Fourier coefficient appearing in the
nth equation is cn−1. This coefficient appears only linear. Hence, we solve this system by
solving the nth equation for cn−1 and use a backward substitution. The first coefficients
are following.

c0 = η (a2b2 + a2 − b2)
2a2b2 ,

c1 = η2 (5a4b4 − 2a4b2 − 3a4 − 2a2b4 + 6a2b2 − 3b4)
64a4b4 ,

c2 = −η
3 (2a6b4 − a6b2 − a6 − 2a4b6 + 3a4b2 + a2b6 − 3a2b4 + b6)

54a6b6 ,

c3 = − η4

32768a8b8

(
31a8b8 − 76a8b6 − 662a8b4 + 404a8b2 + 303a8 − 76a6b8

+ 1436a6b6 − 404a6b4 − 1212a6b2 − 662a4b8

−404a4b6 + 1818a4b4 + 404a2b8 − 1212a2b6 + 303b8
)
.

This gives us the q-expansion for the triangle groups. As similar result can be found
in [DGMS13].

The Picard-Fuchs equation
Once we calculated the hauptmodul for a finite index subgroup Γ ⊆ ∆, we can also
calculate the Picard-Fuchs equation. In the next chapter, we explain how one finds such
a hauptmodul for a subgroups of a triangle group. We know that the hauptmodul should
satisfy an equation of the following type

S (j) (z) + 2Q (j) · (j′(z))2 = 0

⇒ Q(j) = S (j) (z)
(j′(z))2

(7.6)

where, Q(z) is a rational function. We call (7.6) the Picard-Fuchs equation for the
subgroups Γ. If we assume, we calculated the q-series of the hauptmodul j, we use
this equation to find the rational function Q(z). We calculated the right-hand side by
plugging in the given q-series and obtain Q(j(τ)). Then, we plug in this result the
inverse series of 1/j. This result in a series for Q(1/t). We construct the exact function
Q(1/t) by using a Padé approximant.

(Not) finding the hauptmodul using conformal mappings
We constructed the hauptmodul of triangle groups by using the theory of conformal
mappings. The fundamental domain was mapped to the complex plane. One idea is to
calculate the Picard-Fuchs equation in the same way for subgroup of triangle groups.
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Chapter 7. The Schwarzian derivative

This idea does not work and we will give an example where it fails. In the theory we
presented, we do not map the complete triangle to the complete complex plane, but
“half” of the fundamental domain to the upper half plane. So we have to find a way to
cut the fundamental domain into two halves. In some examples, this subdivision looks
natural – for example for Γ0(2), see figure 7.2. In general, this division line need not

Figure 7.2.: The striped area is the fundamental domain and the blue area is where the
imaginary part of the hauptmodul take positive values.

to be a geodesic. Let us take a look at an example, where this happens. We define the
group with the monodromy representation.

S2 = (1, 4)(2, 6)(5, 7),
S3 = (1, 6, 4)(2, 5, 3).

These two permutations define a subgroup of the modular group. Its fundamental do-
main is figure 7.3 and the corresponding dessin d’enfants is figure 7.4 Using the methods
from chapter 5 or the next chapter, is it possible to extract the rational covering

RΓ (z) = 1
256923577521058878088611477224235621321607z ·(

3456 (249
√
−3 + 1763)z + 823543

)
·(

678223072849− 51230962944 (5
√
−3− 3272)z

− 644972544 (72061
√
−3− 2850105)z2

)3
.
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Figure 7.3.: The fundamental domain Figure 7.4.: The corresponding dessin

Plugging this into the equation J = RΓ(jΓ), we obtain the q-series of the hauptmodul for
this group. Then, we plot the area, where the imaginary part of this function is greater
than zero – figure 7.5. From this picture one sees that the partition of the fundamental
domain into a part which maps into the upper half plane and a part which maps into
the lower half plane need not to coincide with the Dedekind tessellation. It is not even
bounded by geodesics. To be sure that we do not see an artifact in plotting, we also
calculated an approximation for the point on the line with imaginary part 0.185, where
the hauptmodul has vanishing imaginary part. For this, we used a bisection method.
We found that at the point z0 = 0.466989452 + 0.185i the value of the hauptmodul
is 8.019477450 + 7.9 · 10−10. Furthermore, the exact point where the imaginary part
vanishes is within a range of 10−10 of z0. Especially, we see that this vanishing point
does not have real part 0.5.

83



Chapter 7. The Schwarzian derivative

Figure 7.5.: The striped area is the fundamental domain and the blue area is where the
imaginary part of the hauptmodul take positive values. In addition, we

plotted the Dedekind tessellation.
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Chapter 8.

Numerics
Any fool can write code that a computer can understand.

Good programmers write code that humans can understand.

(Martin Fowler)

In this chapter we present the numerical methods we used to calculate hauptmoduls
for finite index subgroups of triangle groups. The first method uses series expansion of
modular forms. It goes back to Hejhal [Hej99]. He used it to calculate Maass wave forms.
The second method is new and based on the idea of Monien that every holomorphic
function must obey a partial differential equation.

Series expansions
In this approach, we restrict ourselves to the calculation of the Fourier expansion of
modular forms and functions for finite index subgroups of the modular group. Never-
theless, it is also possible to use this method for general triangle groups as Hejhal did
it [Hej99], [Hej04], and Wang [Wan94]. Selander and Strömbergson [SS02], Strömberg
[Str02], Klug et. al [KMSV14], and Sijsling and Voight [SV14] also applied this method
successfully.

The Fourier coefficients of the modular forms we compute are determined by an inte-
gral along a line. This integral is discretized and shifted into the complex plane. Now,
we pull back each individual point into the fundamental domain, giving pull back maps
in the subgroup. From the transformation property, we derive a system of linear equa-
tions which an approximation of the coefficients must obey. Solving this system, gives
us the approximation we are looking for.

The main issue is the question: How much one should lift the line we are integrating
along into the complex plane? On the one hand, we need to pull it down to catch
enough different pull backs and on the other hand, one needs to pull it up to increase
the absolute value of q and therefore, improve the numerical stability.

To improve the precision of these calculations, one takes the other cusps into account.
This also improves the numerical stability. Selander and Strömbergson [SS02] as well as
Strömberg [Str02] did this. Here, the question of how much one should lift the line of
integration into the complex plane becomes a major problem. For each cusp, we obtain
a different expansion parameter with different areas of convergence.
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Chapter 8. Numerics

If we want to find modular functions, essentially the same procedure works. In addi-
tion, we need to control their behavior at infinity.

Modular forms
For the numerical calculation of cusp forms we follow the approach of Hejhal [Hej92] in
the version of Strömbergson and Selander [SS02]. First, we introduce some notations.
Let Γ ⊆ SL2(Z) a subgroup of finite index. We denote the representatives of the cusp
classes of this group by P1, . . . , Pt. Furthermore, we fix a connected fundamental domain
F for Γ. For each cusp P ∈ H∗, there is a map EP ∈ Γ, mapping P to a representative
Pj. We call this the reduction to an elementary cusp. Furthermore, we divide the
fundamental domain into sections, such that the points in each section are as close
as possible to a cusp in the fundamental domain. A point z ∈ F ⊆ H is in the section
corresponding to the cusp P ∈ F, if and only if P minimizes dist(P, z) among all possible
fractions P . Then, we define for each point in the upper half plane the maps Uz and
J(z) in the following ways.

If z is the section corresponding to the cusp P , we define Uz := EP . Furthermore, if
EP maps P to the elementary cusp Pi and we set J(z) = i.

Now, we describe the algorithm to calculate modular forms. Let F (z) ∈ Sk(Γ) be a
cusp form for Γ. We prefer to work with an automorphy factor of modulus one to make
the calculations more stable. Hence, we define f(z) := y

k
2F (z), with y = Im (z). Now,

we have the transformation property

[f |k ( a bc d )] (z) := |cz + d|k

(cz + d)k
f(az + b

cz + d
) = f(z)

for all ( a bc d ) ∈ Γ. For each cusp Pj, we define the normalizer of the cusp as a map
Nj ∈ PSL2(R), such that it maps the cusp to infinity Nj.cj = ∞ and the stabilizer of
the cusp is N−1

j · ( 1 1
0 1 ) ·Nj. We use this normalizer to pull back a cusp Pj to infinity and

calculate a Fourier expansion at infinity. This results in an expansion at the cusp Pj[
f |kN−1

j

]
(z) = y

k
2
∑
n≥1

a(j)
n e2πinz.

Now, we calculate the Fourier coefficients a(j)
n using a Fourier integral. This integral will

be discretized using the points zm := xm + iy := 1
2Q(m− 1

2) + iy, with a fixed y ∈ R and
a 2Q the number of discretization points.

y
k
2 a(j)

n =
∫ 1

0

[
f |kN−1

j

]
(z)e−2πinz dz

≈ 1
2Q

2Q∑
m=1

[
f |kN−1

j

]
(zm)e−2πinxme2πny.

The matrix Tmj ∈ Γ denotes the pullback of the pointN−1
j zm to the fundamental domain,

TmjN
−1
j zm = ẑmj ∈ F. Now, we deduce the system of linear equations which will allow
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us to compute the cusp forms.
[
f |kN−1

j

]
(zm) =

[[
f |kUẑmjTmj

]
|kN−1

j

]
(zm)

=
[[
f |kN−1

J(ẑmj)

]
|k NJ(ẑmj)UẑmjTmjN

−1
j︸ ︷︷ ︸

:=
(
∗ ∗
cmj dmj

)
]

(zm)

= |cmjzm + dmj|k

(cmjzm + dmj)k
[
f |kN−1

J(ẑmj)

]
(z∗mj)

≈ |cmjzm + dmj|k

(cmjzm + dmj)k

(y∗mj) k2 M0∑
l=1

a
(J(ẑmj))
l e2πilz∗mj

 .
Hence, we obtain the following system of equations

a(j)
n y

k
2 e−2πny =

t∑
j′=1

M0∑
l=1

a
(j′)
l V

(jj′)
nl .

The entries of the matrix V are as follows.

V
(jj′)
nl := 1

2Q

2Q∑∗

m=1

|cmjzm + dmj|k

(cmjzm + dmj)k
(y∗mj)

k
2 e2πilz∗mje−2πinxm .

Now, we solve these equations for example with a LU-decomposition [PTVF02, chapter
2.3]. There are also some techniques to further improve the accuracy for the higher
Fourier coefficients, see [Wan94].

With the help of this method, we were able to calculate cusp forms of weight 4 for
Hsu’s example of index 10. In chapter 9 we present the result of this calculation.

Modular functions

For calculating the hauptmodul, we use essentially the same approach as for cusp forms.
Here, we make the additional assumption that the group Γ ⊆ PSL2(Z) has genus zero.

We start with the Fourier series for the hauptmodul.

jΓ(τ) = 1
q

+
∑
n≥1

anq
n

= e2πye−2πix +
∑

ane
−2πnye2πixn.

Similar to the calculations for the modular forms, we write down the Fourier integral
and discretize it with the help of the points zj = xj + iy, where y is fixed and xj = j

2Q ,
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for j = 0, . . . 2Q. We define z∗j := P (N−1
∞ zj).

ane
−2πny =

∫ 1

0
jΓ(z)e−2πinx dz

≈ 1
2Q

2Q∑
j=1

j(zj)e−2πinxj

= 1
2Q

2Q∑
j=1

j(z∗j )e−2πinxj

= 1
2Q

2Q∑
j=1

e−2πilz∗j +
∑
l≥1

ale
2πilz∗j

 e−2πinxj

⇒ −1
2Q

2Q∑
j=1

e−2πiz∗j e−2πinxj

︸ ︷︷ ︸
=: bn

=
∑
l≥1

al


1

2Q

2Q∑
j=1

e2πilz∗j e−2πinxj + δn,le
−2πly

︸ ︷︷ ︸
=: Vn,l

 .

This is again a system of linear equations, but this time with a different left-hand side.
The solution is an approximation for the coefficients of the hauptmodul.

The FEM-method for the calculation of a
hauptmodul
In this section we describe a new method to efficiently calculate the hauptmodul of a
subgroup of a triangle group.

Let Γ ⊆ ∆n be a genus zero subgroup of finite index. We denote with J the haupt-
modul of the triangle group and the hauptmodul of a subgroup with jΓ. Take the
rational function as in chapter 3, denoted by RΓ. As we have seen, it has the property
J = RΓ(jΓ). The main goal is to find the rational function RΓ. We start with the
following observation. The values of the J function at the elliptic points are J(i) = η
and J(ρ) = 0. If we plug this into the definition of the rational function, we obtain

0 = J(ρ) = RΓ(jΓ(ρ)),
0 = η − J(i) = η −RΓ(jΓ(i)),

0 = 1
J(0) = 1

RΓ(jΓ(0)) .

From these calculations we see that the values of the hauptmodul jΓ at the elliptic points
of order n, respectively of order 2 are the zeros of the function RΓ respectively η − RΓ.
Furthermore, the values at the cusps are the singularities of the function RΓ.

Hence, we would like to calculate the value of the hauptmodul at certain points in the
fundamental domain. The hauptmodul is a holomorphic function on a Riemann surface.
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A holomorphic function has a harmonic real and imaginary part [HC64, Drittes Kapitel,
§7]. There are numerical methods to calculate harmonic functions. Hence, we find an
approximation for the real and the imaginary part by solving two partial differential
equations.

Let FΓ = F be the fundamental domain of the subgroup Γ. If a cusp in this domain is
equivalent to the cusp infinity, we cut it at a certain height h with a geodesic: For the
cusp infinity itself, we remove the part of the fundamental domain where the imaginary
part is larger than h. For the other cusps, we map the cusp to infinity – using the
pairings – and remove the area, where imaginary part of the image of this map is larger
than h. We triangulate the resulting subset. Then, we run a finite element solver on
this domain with the boundary conditions

(i) the pairings as periodic boundary conditions,

(ii) since jΓ = 1
q

+ O(q), we define on the cutting line the function 1
q

as Dirichlet
boundary condition.

With these boundary conditions we solve the Laplace equation. After the solution, we
evaluate the result at the elliptic points respectively the cusps and obtain an approxi-
mation for the zeros respectively the singularities of the function RΓ.

The complete algorithm

Let Γ ⊆ ∆ = ∆(2, n), with n ≥ 3 be a finite index subgroup and F = FΓ the
corresponding Farey symbol. The hyperbolic triangle with the vertices 0, i, and ρ =
ρ2,n = e

iπ
n is denoted by T0 and the hyperbolic triangle with vertices i∞, i and ρ is

denoted by T∞. In chapter 4 we introduced the map τc : H→ H, z 7→ (z̄)−1, see lemma
4.3 which maps T0 to T∞ and vice versa. It has the property that it fixes the points on
the circle with norm equal to one which is a border of both triangles.

Note that the union of T0 and T∞, denoted by T = T0 ∪ T∞, is the closure of a
fundamental domain of ∆.

If we remove the points with imaginary part greater than h, for some h > 1, from the
triangle T∞, we obtain a hyperbolic quadrilateral Th with the vertices i, ρ, cos

(
π
n

)
+ ih,

and ih, see figure 8.2.
We fix a height h and calculate a triangulation of the polygons T0 and Th. Since the

map τc fixes the arc from i to ρ, we choose the triangulation in such a way that the
border points on this arc of both triangles are the same. This choice allows us to glue
the two triangulations together. In chapter 6 we calculated a set of coset representatives
{c1, . . . , cr}, such that the set

F = {c−1
1 T , . . . , c−1

r T } = {c−1
1 T0, . . . , c

−1
r T0, c

−1
1 T∞, . . . , c

−1
r T∞}

is a connected fundamental domain of the operation of the group Γ on the extended
upper half plane H∗. Using this, we construct an approximation of the fundamental
domain in the following way.
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Figure 8.1.: The triangle T0 Figure 8.2.: The triangle T2

Algorithm 4.

(i) Start with the empty set F = {}.

(ii) For each coset c−1
i = ( a bc d ) do the following.

a) Check, if c−1
i maps the cusp ∞ to a cusp which is equivalent to ∞.

i. If it does, add c−1
i Th to F .

ii. If is does not, add (c−1
i ◦ τc)T0 to F .

b) Check, if c−1
i maps the cusp 0 to a cusp which is equivalent to ∞.

i. If it does, add
(
c−1
i ◦ τc

)
Th to F .

ii. If it does not, add c−1
i T0 to F .

8.1 Lemma. The resulting domain F from algorithm 4 has the following properties.

(i) It is a connected subset of H.

(ii) Any triangulation of the triangles T0 and Th which coincides on the hyperbolic arc
from i to ρ, induces a triangulation of F .

(iii) Any triangulation obtained from (ii) is compatible with the pairings. If a pairing
maps one side of F to another side, it also maps the border points of the triangu-
lation to each other.
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Figure 8.3.: A triangulation of T0 Figure 8.4.: A triangulation of T2

Example. As an example, we will look at the subgroup of ∆(2, 4) which has the mon-
odromy representation S2 = (1, 2)(3, 4)(5, 6) and S4 = (1, 2, 3, 5). It has the Farey
symbol

−∞
1

0
1

1

1√
2

(1, 4)

√
2

1
(1, 4)

∞.

and the generators are the matrices{(
1 0√
2 1

)
,

(
3
√

2 −5
5 −4

√
2

)
,

(√
2 −5

1 −2
√

2

)}
.

The index of this subgroup in ∆(2, 4) is six and the coset representatives we will be
using are{(

1 0
0 1

)
,

(
1
√

2
0 1

)
,

(
0 −1
1 −

√
2

)
,

(
1 −

√
2√

2 −1

)
,

(√
2 1

1
√

2

)
,

(√
2 −1

1 0

)}
.

From this, we find a fundamental domain. Using algorithm 4 above, we obtain a tri-
angulation of an approximation of the fundamental domain. We use the triangulations
of T0 and T2 in figure 8.3 and 8.4. From the generalized Farey symbol we read of the
cusps which are ∞ and 0. The other fractions 1√

2 and
√

2
1 are identified with ∞. We see

the different behavior in the triangulation at the fractions. While the point 0 is a part
of the domain, the fractions 1√

2 and
√

2
1 are spared out. In figure 8.7 you see this detail.
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0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8.5.: A fundamental domain

Figure 8.6.: The corresponding
triangulation

According to chapter 3 the hauptmodul jΓ of the subgroup has the following properties.
It is a holomorphic function on the Riemann surface X(Γ) and has the asymptotic
behavior jΓ(τ) = 1

q
+ O(q) for τ → i∞. As usual, we define q := e2πiτ/w where w is

the cusp width of infinity in ∆. Being a holomorphic function on the Riemann surface
contains actually two conditions. On the one hand it is a holomorphic function and on
the other hand it is a function on the Riemann surface. From standard arguments –
using the Cauchy-Riemann-Equations, see for example [Ahl53, chapter 1.2] – we know
that the real and the imaginary part are harmonic functions. Hence, we want to solve
the Laplace equation numerically.

The second part is that the function lives on a Riemann surface. This surface is well
known to us. A model for this surface is the fundamental domain, together with the
side identifications. We already constructed a triangulation of the fundamental domain
which respects the pairings – see lemma 8.1. This means that we need to solve the
Laplace equation on the fundamental domain with periodic boundary conditions where
the periodicity is given via the pairing matrices.

Up to now, a constant function solves this equation. We have the second condition
that jΓ(τ) = 1

q
+O(q) and a boundary where we have not apply any condition yet. This

boundary is the upper edge of the triangle Th and its images from algorithm 4. As we
have seen, this upper edge is going to i∞ as h goes to∞. Hence, the hauptmodul should
behave like 1

q
on this upper edge and its images from algorithm 4. A short calculation
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Figure 8.7.: Detail of the fundamental domain and the triangulation

gives us
1
q

= e−2πiz/w

= e−2πi(x+iy)/w

= cos (2πx/w) · e2πy/w − i sin (2πx/w) · e2πy/w.

Here, w denotes the cusp width of infinity of Γ. This gives us our second boundary
condition for the line from ih to ih+ cos

(
π
n

)
and its images. On the line connecting i ·h

and i · h+ cos
(
π
n

)
we apply the conditions

gr(x) = cos (2πx/w) · e2πh/w for the real part,
gi(x) = − sin (2πx/w) · e2πh/w for the imaginary part.

For the images of this line, we map these functions using the inverse cosets.
With these two boundary conditions, we let a finite element solver solve this problem

numerically. Then, we evaluate the result at the elliptic points and the cusps and get
approximations for the zeros and the singularities of the rational covering. From these
approximations we will need to reconstruct the exact values. We improve the accuracy
by Newton’s method. Before we explain how this works we will give some technical
remarks on our implementation.

Example. We continue with our example we started above. The subgroup Γ of ∆(2, 4)
which is given by the monodromy representation

S2 = (1, 2)(3, 4)(5, 6),
S4 = (1, 2, 3, 5).

Applying the boundary conditions on the mesh we constructed above and solving nu-
merically the Laplace equation results in the following figures: 8.8 for the real part and
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Figure 8.8.: The real part
of the solution

Figure 8.9.: The imaginary part
of the solution

8.9 for the imaginary part. One sees the Dirichlet boundary conditions at all cusps which
are equivalent to infinity.

The values at the points elliptic and parabolic points are in table 8.1. In this table
we used the abbreviation E(2) for an elliptic point of order 2, E(4) for an elliptic point of
order 4 in the interior and Eb

(4) for an elliptic point of order 4 on the boundary. A cusp
is denoted by C.

Remarks on the implementation

We implemented these algorithms mainly in Sage. Of course, we used the already
mentioned generalized Farey symbols. The choice of the finite element solver was a
difficult task, since most of the solvers we looked at where not able to handle this
kind of periodic boundary conditions. We decided to use FreeFem++ [Hec12]. Then,
we wrote a Sage script which takes the subgroup in the monodromy representation as
input. It generates, using the algorithms above, a FreeFem++ script and executes it.
This FreeFem++ script generates the mesh by glueing the coset tessellation together
and solves on this mesh the Laplace equation with the boundary conditions as described
above. We evaluate the solution at the elliptic points and the cusps. FreeFem++ writes
the results to a file which is then read by Sage.

Newton’s method to improve accuracy
In the last section we ended with an approximation for the values of the hauptmodul
at the elliptic points and the cusps. We have seen that the values at the elliptic points

94



Point z Kind of point values from FEM value from exact result error

i E(2) 2.3097− 0.0012i 2.3013 + 0.0000i 0.37%
√

2 + i E(2) −0.6520− 3.0844i −0.6506− 3.0937i 0.28%
2
3

√
2 + i

3 E(2) −0.6524 + 3.0832i −0.6506 + 3.0937i 0.31%
√

2
2 +

√
2

2 i E(4) 1.0040− 0.0008i 1.0000 + 0.0000i 0.40%
3
√

2
2 +

√
2i
2 Eb

(4) −1.0022− 3.9880i −1.0000− 4.0000i 0.27%
7
√

2
10 +

√
2

10 i Eb
(4) −1.0032 + 3.9869i −1.0000 + 4.0000i 0.29%

0 C 2.0075− 0.0010i 2.0000 + 0.0000i 0.37%

Table 8.1.: Values at special points

of order n resp. of order 2 are the zeros of the rational function RΓ(z), respectively
η +RΓ(z). The values at the cusps are points, where RΓ(z) has singularities. From the
chapter about dessin d’enfants we know even more. To each group corresponds a unique
dessin d’enfant and from this, we deduce the form of the rational function. Furthermore,
we have explained how to obtain a system of algebraic equations which the coefficients of
our rational function need to satisfy. Let Γ ⊂ ∆(2, n,∞) be a subgroup of finite index.
The system of algebraic equations which needs to be satisfied is G (c) = 0. It comes
from the theory of dessins d’enfants 5.2 in chapter 5. In this step, we use this function
G for Newton’s method, an iterative algorithm to find a zero of a function.

Let c0 be a starting value. In general it is difficult to find a reasonable value for c0.
But in our case we calculate a starting value using the approximation from the last step.
Then, we perform the following iteration.

xn+1 = xn − (J (G)(xn))−1G (xn)

The matrix J (G) is the Jacobian matrix of G. In practice, solve the linear equation

J (G)(xn)δn = −G(xn)

and find the next step via

xn+1 = xn + δn.

If our starting value is close enough to the exact value, we use this iteration to improve
our approximation to arbitrary precision. Since we want to find the exact values, we
reconstruct them from the approximation.

Reconstruction of algebraic numbers from an approximation
Given an approximation of an algebraic number z ∈ C, we find the exact values using
the LLL algorithm - see [Coh93, 2.7.2]. This algorithm gives a polynomial p(x) =
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a0 + · · · + anx
n ∈ Z[x] such that |p(z)| is minimal. The degree n of the polynomial

is fixed before. After calculating this polynomial, we solve the equation p(x) = 0 and
choose the root, which is closest to the approximation.

In the setting of calculating the rational covering, we do this for every coefficient and
obtain a rational function in Q(x). To check, if we calculated the right algebraic number,
we just need to check, whether the equations coming from the dessin d’enfants hold.

Example. We finish this chapter by finishing the example, we have been looking at.
In the last section, we gave the results of the finite element solver. We used Newton’s
method to improve the accuracy and identified the number as we just described. The
resulting rational covering is

RΓ (z) = (z + 1)4(z2 + 6z + 25)
z

.

Using this, we calculate the first terms of the q-series of the hauptmodul

jΓ (τ) = 1
q
− 2− 3q + 6q2 + 2q3 + 2q4 − 5q5 − 16q6 + 12q7 + O

(
q8
)
.

Since the cusp width of ∞ is 5
√

2, we define q = exp
(

2πiτ
5
√

2

)
. Further numerical experi-

ments suggest that this series is actually be written as a product.

Conjecture.

jΓ (τ) = (η̃(q)η̃(q2))2

(η̃(q5)η̃(q10))2 ,

where η̃(q) = q1/24∏∞
n=1(1− qn).

Furthermore, if we choose η̃ as the Dedekind eta function η(τ) = q̃1/24∏∞
n=1(1 − q̃n)

with q̃ = exp (2πiτ), this series corresponds to the McKay-Thompson series for the class
10C of the monster [FMN94].
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Chapter 9.

Results
In theory there is no difference between theory and prac-

tice. In practice there is.

(Yogi Berra)

In this chapter we present some examples we calculated using the methods described in
the previous chapters. We start with examples of finite index subgroups of the modular
group. One calls a subgroup Γ of the modular group a congruence subgroup if there is a
N ∈ N, such that

Γ(N) := {( a bc d ) ∈ PSL2(Z) |( a bc d ) ≡ ( 1 0
0 1 ) (mod N)} ⊆ Γ.

These congruence subgroups are handled very well, by using the theory of the Hecke
operators. But for non-congruence subgroups, not much is known. Hence, our examples
are non-congruence subgroups of the modular group.

Non-congruence subgroups of the modular group

Hsu’s example of index 10
In the article of Hsu [Hsu96], the author presents a non-congruence subgroup of index
10 and level 30a. He describes it by the monodromy representation

S2 = (1 2)(3 4)(5 6)(7 8)(9 10),
S3 = (1 8 3)(2 4 6)(5 7 6).

It is a non-congruence subgroup of genus 0, generated by{(
1 2
0 1

)
,

(
−2 1
−7 3

)
,

(
4 −3
3 −2

)}
.

It has the cusps

{0, 1,∞} .
aHsu defined the level to be the order of the matrix ( 1 1

0 1 ) in the subgroup
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The coset representatives calculated by the Farey symbols are{(
1 0
0 1

)(
1 −1
0 1

)
,

(
2 −1
1 0

)
,

(
1 −1
1 0

)
,

(
1 −1
2 −1

)
,

(
−1 0
2 −1

)
,(

1 −2
1 −1

)
,

(
0 −1
1 −1

)
,

(
−1 0
1 −1

)
,

(
0 −1
1 −2

)}
.

From the cosets is it possible to construct a fundamental domain of the subgroup, as we
described it in chapter 2. We draw the result for this example with the help of Sage in
figure 9.1.
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Figure 9.1.: A fundamental domain of Hsu’s Example of index 10

In chapter 3, diagram 3.7, we introduced a covering RΓ : P1 (C)→ P1 (C). We calcu-
lated this covering using the methods described in the previous chapters and obtained
the following rational function

RΓ (z) =

(
16z + 5

√
5
) (

1048576z3 + 163840
√

5z2 + 16000z + 625
√

5
)3

78125
√

5z2
(
512z + 25

√
5
)3 .

To obtain this result, our Sage program took about 4 seconds of CPU-time on a standard
desktop computer.

As we have seen, from the knowledge of the rational covering, we calculate the q-
series of the hauptmodul. Since the cusp ∞ as width 2, we choose q := exp (2πiτ/2)
and obtain for the first coefficients of the Fourier expansion of the hauptmodul

1
q

+ 3796
625 q −

131072
15625

√
5
q2 − 5076598

1953125q
3

+ 6649020416
244140625

√
5
q4 − 51910860648

6103515625 q
5 − 4489710403584

152587890625
√

5
q6 +O

(
q7
)
.

It was also possible to obtain the Picard-Fuchs equation. As we have seen, this equation
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is of the form S (τ) (jΓ) = QΓ (jΓ), where QΓ(z) is the following

QΓ(z) = 1
2z2 + 18625

√
5

7776
(
25z + 16

√
5
) + 2500

9
(
25z + 16

√
5
)2 + 484375

√
5

124416
(
125z + 512

√
5
)

+ 15625
2
(
125z + 512

√
5
)2 −

65
√

5
512z .

Furthermore, we were also able to find the first coefficients of the cusp form of weight 4.
Note that for this group the space of cusp forms of weight 4 is one dimensional. Hence,
all cusp forms of this weight are linear dependent on the given one.

f(τ) = q + 1
23/5 q

2 − 41
821/5 q

3 + 33
4 24/5 q

4 − 625
64 22/5 q

5 − 2269
640 q

6 + 953
2560 23/5 q

7 + O
(
q8
)
.

Some notes on the uniqueness

The rational covering, the hauptmodul, and the Picard-Fuchs equation need not to be
unique. For example the rational function RΓ is only unique up to a Möbius transfor-
mation. To calculate the hauptmodul from this rational function, we need the function
to have a singularity at t = 0. Since there are three singularities, we have three different
choices. Each of these corresponds to an expansion at a different cusp. In this example,
we transform the covering via x 7→ x− 125

512
√

5 and obtain

R̃Γ(z) = RΓ(z − 125
512
√

5
) =(

512
√

5z + 675
) (

134217728
√

5z3 + 6553600z2 − 3392000
√

5z + 75937
)3

67108864000000000
√

5
(
25
√

5− 512z
)2
z3

.

This results in a different expansion, with q = exp (2πiτ/3)

1
q1 + 33 · 21/3

5 52/3 + 2619
200 · 101/3 q

1 + 74323
20000q

2 − 18080901
1600000 · 102/3 q

3

− 10933939251
400000000 · 101/3 q

4 +O
(
q5
)
,

and in a different Picard-Fuchs equation

1
2t2 −

5
√

5
64t + 2318625

√
5

32768
(
675t+ 512

√
5
) + 202500(

675t+ 512
√

5
)2

− 109375
32768

(
25
√

5t− 512
) + 3125

2
(
25
√

5t− 512
)2 .
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Hsu’s example of index 18
In the same article [Hsu96], he also presents a second non-congruence subgroup which
is of index 18 and level 24.

S2 = (1 5)(2 11)(3 10)(4 15)(6 18)(7 12)(8 14)(9 16)(13 17),
S3 = (1 7 11)(2 18 5)(3 9 15)(4 14 10)(6 17 12)(8 13 16).

It is again a non-congruence subgroup of genus 0, generated by{(
1 2
0 1

)
,

(
5 −2
3 −1

)
,

(
11 −6
13 −7

)
,

(
25 −18
32 −23

)
,

(
−1 0
0 −1

)}
.

It has the cusps {
0, 1

2 ,
2
3 ,

3
4 ,∞

}
.

The coset representatives are{(
1 0
0 1

)
,

(
1 −1
0 1

)
,

(
2 −1
1 0

)
,

(
1 −1
1 0

)
,

(
3 −2
2 −1

)
,

(
1 −1
2 −1

)
,(

4 −3
3 −2

)
,

(
1 −1
3 −2

)
,

(
5 −4
4 −3

)
,

(
1 −1
4 −3

)
,

(
1 −1
5 −4

)
,

(
1 −2
1 −1

)
,(

0 −1
1 −1

)
,

(
−1 0
1 −1

)
,

(
−2 1
1 −1

)
,

(
−3 2
1 −1

)
,

(
−4 3
1 −1

)
,

(
0 −1
1 −2

)}
.

The fundamental domain constructed from the cosets is figure 9.2.
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Figure 9.2.: A fundamental domain of Hsu’s Example of index 18
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Analog Hsu’s example of index 10, we calculate the rational covering. This calculation
needed around 40 seconds of CPU-time on our desktop computer.

RΓ(z) =
(

729(4782969z6 + 51018336z5 + 1243335744z4 + 11448262656z3

+42672697344z2 + 67278864384z + 35071459328)3
)

/(
((729z2 − 1296z − 11712)3(27z + 104)8(27z + 88)2)

)
.

The first coefficients of the expansion of the hauptmodul are as follows.

jΓ(τ) = 1
√
q

+ 104
27 + 4340

729 q
1/2 + 81920

19683q −
1746014
531441 q

3/2 +O
(
q2
)
.

Again, we defined q := exp (2πiτ).
The Q-term of the Picard-Fuchs equation is

Q (z) = 1
2z2 + 27

32z + 729
2(27z − 16)2 + 8019

32(27z − 16)

+ 17915904
(729z2 − 6912z + 4096)2 −

6561(9z − 80)
8 (729z2 − 6912z + 4096) .

Sporadic groups
The next groups are examples suggested by Monien.

The sporadic group M12

S2 = (1 2)(3 9)(4 5)(6 7)(8 12)(10 11),
S3 = (1 10 2)(3 8 11)(4 9 6).

The group generated by S2 and S3 is the Mathieu group M12 [WWT+]. This group
is a sporadic group of order 95040. For a discussion for which sporadic group this
construction is possible see the article by Magaard [Mag93].

The Mathieu groups have lately drawn attention to themselves since the discovery
of the Mathieu or umbral moonshine ([EOT11], [CDH12], [DGO15]). Similar to the
“classical” monstrous moonshine ([CN79], [Bor92]) there is a connection between certain
(mock) modular forms and representations of the Mathieu group (or in the classical case,
the monster group).

If we use M12 as monodromy, obtain a non-congruence subgroup of index 12 of
PSL2(Z). Its level is 11 and its genus zero. The generators are{(

1 1
0 1

)
,

(
−3 1
−13 4

)
,

(
−7 3
−19 8

)
,

(
−4 3
−7 5

)}
,
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it has the cusps
{0,∞}

and a set of coset representatives is{(
1 0
0 1

)
,

(
3 −1
1 0

)
,

(
2 −1
1 0

)
,

(
1 −1
1 0

)
,

(
2 −1
3 −1

)
,

(
−1 0
3 −1

)
,

(
1 −1
2 −1

)
,(

−1 0
2 −1

)
,

(
−3 1
2 −1

)
,

(
0 −1
1 −1

)
,

(
−1 0
1 −1

)
,

(
−2 1
1 −1

)}
.

The fundamental domain is figure 9.3. Using the methods we described in this thesis,
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Figure 9.3.: A fundamental domain for M12

we calculate the rational covering in about 6 seconds of CPU-time. We abbreviate
ω =
√
−11.

RΓ(z) = 1
55788550416 ·

(
15251194969974z3 − 2324522934(−1210ω − 17651)z2

−118098(−369427399ω − 1131975836)z + 50817103760819ω − 108237990465161
)

(
15251194969974z3 − 2324522934(−3146ω − 1557547)z2

−354294(−4936057181ω − 66065392948)z

+12153453472899035ω + 15941668103377087
)3

/(
6561z + 968ω − 17372

)11
.
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The sporadic group M11

To given an example which is not a subgroup of the modular group, we choose the group
generated by the following two permutations.

S2 = (1 9)(3 10)(4 11)(5 6),
S4 = (1 8 10 7)(2 9 6 11).

This results in the Mathieu group M11. The Fuchsian group define by these permutations
is a subgroup of the triangle group ∆(2, 4). It has index 11 and genus zero. The
generators are {(

−2
√

2 −5
1

√
2

)
,

(
−4
√

2 −5
5 3

√
2

)
,

(
−
√

2 −1
3

√
2

)
,(√

2 −1
3 −

√
2

)
,

(
3
√

2 −5
5 −4

√
2

)
,

(√
2 −3

1 −
√

2

)}

and a set of coset representatives is{(
1 0
0 1

)
,

(
1 −

√
2

0 1

)
,

(
−
√

2 −1
1 0

)
,

(
−
√

2 1
1 −

√
2

)
,

(
−1 −

√
2√

2 1

)
,

(
−1 0√

2 −1

)
,(

0 −1
1 0

)
,

(
0 −1
1 −

√
2

)
,

(
1 −

√
2√

2 −1

)
,

(√
2 1

1
√

2

)
,

(√
2 −1

1 0

)
.

}

A fundamental domain is figure 9.4. We also calculated the rational function.
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Figure 9.4.: A fundamental domain for M11

RΓ(z) =
(
z2 + a1z + a2

)4
·
(
z3 + a3z

2 + a4z + a5
)

∼=
(
z2 − (0.3113 + 0.2519i)z + (−1.828− 0.922i)

)4
·(

z3 + (1.245 + 1.008i)z2 − (5.113 + 3.146i)z + (−4.165− 11.867i)
)
.
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The coefficients a1, . . . , a5 are given as follows:

a1 − (−1)3/11 11

√
− 51109

3321506250 −
39677

√
−11

3321506250 ,

a2 = −
22
√
−1

(
−51109− 39677

√
−11

)2/11 (
3
√

11 + 8i
)

9 · 510/11 · 62/11 ,

a3 = −4 · a1,

a4 = 1
978

(
2857 + 73

√
−11

)
· a2,

a5 = −
2(−1)5/11 11

√
−1348402095065702− 632453541676781

√
−11

38/11 · 54/11 .

The roots are choosen according to the numerical values.
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Perspectives
Nos mathematici sumus isti veri poetae sed quod fingimus

nos et probare decet.
(We as mathematicians are the true poets, except we have to
prove what our fantasy creates.)

(Leopold Kronecker)

Based on the idea of Monien, we presented a new technique to calculate hauptmoduls
of finite index subgroups of the modular groups and of triangle groups. This method
was used to calculate rational coverings given by a dessin d’enfants. We calculated
numerically an approximation of the hauptmodul, by solving the Laplace equation on
a certain Riemann surface. We represented this surface as a subset of the extended
upper half plane together with the identification of the boundary. These identifications
of the boundaries were interpreted as periodic boundary conditions. Together with
the condition that the function behaves like 1

q
for a suitable q, we obtained a partial

differential equation which was solved using the finite element method. Combining this
with the theory of dessin d’enfants and Newton’s algorithm it was possible to improve
the accuracy up to an arbitrary level. Using the LLL algorithm we identified from this
approximation the exact numbers and verified their correctness using again the theory
of the dessins.

To properly handle the subgroups of the triangle groups, we generalized the theory
of Farey symbols to general Hecke groups. The main differences to the classical Farey
symbols was the possible existence of holes in the sequence. These holes corresponded
to certain elliptic points for the Hecke groups which can only occur if the parameter n
of the Hecke group ∆n is not a prime number.

Possible improvements
One of the first possible improvements is a proper implementation of the notion of tri-
angle groups and generalized Farey symbols in Sage. A guiding example of such an
implementation should be the existing classical Farey symbols. For reasons of perfor-
mance one should implement the Farey symbols in C++ with an interface to Sage.
Here, a technical issue appears. In the classical setting, the relevant matrices are integer
matrices and there are good implementations of these like GMP [GMP]. For general
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triangle groups, we need number fields and up to now there is no suitable and fast
implementation of these.

If we are working with groups of large index, like the Janko group J2 of index 100,
we can calculate the Farey symbol (figure 10.1) and an approximation of the haupt-
modul. But the precision of this approximation is not enough that Newton’s method
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Figure 10.1.: Fundamental domain for the Janko group J2

is converging. Hence, we need to have a finite element solver which works with higher
precision.

Modular forms
Since we are now able to find modular functions for finite index subgroups of genus zero
of Hecke groups, the next step is to find modular forms. In the article Automorphic
forms for triangle groups [DGMS13] the authors claim that it is possible to calculate all
automorphic forms for a genus zero Fuchsian group from the hauptmodul. This can be
used to develop a program to calculate all automorphic forms for a given finite index
subgroup of a Hecke group of genus zero. From this point, we have a gigantic pool of
examples to look at. For example we can collect data for the Atkin-Swinnerton-Dyer
conjecture [ASD71]. This is a conjecture about congruence relations on the Fourier
coefficients of modular forms. Although there is some numerical data, cf. [LLY05b],
[Lon08] etc., we can use this program for a more systematic search.

Further perspectives

Generalized Farey symbols
In this thesis we presented a generalization of the Farey symbols as a tool to handle the
Hecke groups. Further developments are still possible. As a persective, we show some
approaches.

(i) There are many well known algorithms for the classical Farey symbols. For ex-
ample, there is an algorithm using the Farey symbols to decide whether a given
matrix is in a subgroup ([LLT95a], [LLT95b]). These algorithms should be gener-
alized such that they can be applied on the n-Farey symbols.

(ii) Furthermore, it should be possible to generalize the notion of the Farey symbols to
subgroups of general non-compact triangle groups. As we have seen, for the Hecke
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groups ∆(2, n) we needed n − 2 insertation operators. In the general context of
a triangle group ∆(a, b), we need two “types” of insertation operators I(a) and
I(b) which are applied alternating. Similar to the Hecke groups, there are a − 2
operators of type I(a) and b− 2 operators of type I(b). Looking at the special case
of a = 2, we see that there are no operators of type I(a).

(iii) For the classical Farey sequences, we know a lot. Which theorems do generalize
to n-Farey sequences or even (a, b)-Farey sequences? Although it should not be to
hard to proof, we state the following conjecture as an example.
Conjecture. Let Fν =

{
a1
b1
, . . . , amν

bmν

}
be a complete n-Farey sequence. Then,

mν∑
i=1

1
aibi

= ν.

First numerical evidence suggests that this conjecture holds.
Another fascinating fact about classical Farey sequences is the following. Let
Fn = {x0,n, . . . , xmn,n} be the nth-Farey sequence and En = {y0,n, . . . , ymn,n} with
yi,n = i

mn−1 equidistantly distributed points on the interval [0, 1]. The difference
between these two sequences is defined as dk,n = xk,n − yk,n.
10.1 Theorem (Franel [Fra24] and Landau [Lan24]). The following statements
are equivalent:

a)
mn∑
k=1

dk,n = O (nr) ∀r > −1,

b)
mn∑
k=1

dk,n = O (nr) ∀r > 1
2 ,

c) The Riemann hypothesis.
Does this theorem generalize to n-Farey sequences?

The generalized Farey sequences seem to have fascinating properties and a deep arith-
metic structure. Although it seems that they inherit most of the characteristics from
the classical Farey sequnces, they also could contain nice and new structures, which are
worthwhile to discover.
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Appendix A.

Selected Mathematica programs
In this chapter we present the source code of some selected Mathematica programs
[WR14].

Finding the dessin for a given Bely̆ı function
For a Bely̆ı function f we like to know how the corresponding dessin looks like. For this
purpose, we wrote a function which produces the dessin. It works as follows. Since the
dessin is the pre-image of the interval [0, c] for some c ∈ R, we discretize this interval
and solve the equation f(ti) = xi, for xi the discrete points on the interval. Then, we
plot all solutions ti.

Dessin[f_, pts_:10, white_:False, black_:True, cut_:0.02, scale_:1728]:=
Block[{L, XL, R0, R1, g, g0, g1},

L = Table[scale (n/pts)ˆ2,{n,0,pts}];
XL = {Re[#],Im[#]}&/@ Flatten[x/.Table[NSolve[f[x]==L[[i]],x],

{i,Length[L]}]];
R0 = {Re[#],Im[#]}&/@ Flatten[x/.NSolve[f[x]==L[[ 1]],x]];
R1 = {Re[#],Im[#]}&/@ Flatten[x/.NSolve[f[x]==L[[-1]],x]];
g = ListPlot[XL,

PlotRange->{{Min[XL\[Transpose][[1]]] - cut,
Max[XL\[Transpose][[1]]] + cut },

{Min[XL\[Transpose][[2]]] - cut,
Max[XL\[Transpose][[2]]] + cut}}

];
If[black,

g0 = ListPlot[R0, PlotStyle->{Black,PointSize[Large]}],
g0 = Graphics[]

];
If[white,

g1 = ListPlot[R1, PlotStyle->{Red,PointSize[Large]}],
g1 = Graphics[]

];
Show[g, g0, g1, AspectRatio->Automatic]

]
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Sample output

As an example, we calculate the dessin for the tedrahedron, see chapter 5, figure 5.3.
Note that we specified the Bely̆ı function, such that it branches over 0, 1, and ∞. Here,
we use a modification such that it branches over 0, 1728, and ∞. The function is now

f(z) = −172864z3 (z3 − 1)3

(8z3 + 1)3 .

f[z_] = -1728 (64 zˆ3 (zˆ3 - 1)ˆ3)/(8 zˆ3 + 1)ˆ3

Dessin[f, 25, True, True]

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure A.1.: Sample output for a dessin in Mathematica

Calculating the hauptmodul from a rational
covering and vice versa
Let Γ ⊆ ∆ be a subgroup of finite index of a triangle group ∆. Furthermore, let J be the
hauptmodul for ∆. In chapter 3, we explained how we calculate the hauptmodul for the
subgroup, if we know the rational covering R̃Γ. This covering has the property that J =
R̃Γ(jΓ). We actually prefer to work with a covering which has the property J = RΓ

(
1
jΓ

)
.

In a first step, we will expand the function RΓ(x) in a series. RΓ(x) = a
xw

+O (1), where
a ∈ R is some constant and w the cusp width. As an element of the ring of Laurent
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series, this element is not invertible. The reciprocal 1
RΓ

(x) = xw

a
+ O (xw+1) is actually

invertible. Hence, we do the following short calculation

J = RΓ

(
1
jΓ

)

⇒ 1
J

= 1
RΓ

(
1
jΓ

)

⇒
( 1
RΓ

)−1 ( 1
J

)
= 1
jΓ

⇒ 1
/( 1

RΓ

)−1 ( 1
J

)
= jΓ.

We use this formula to calculate the q-expansion of the hauptmodul.

ToHauptmodul[f_, n_:32] : =
1 / (Normal[InverseSeries[1/Series[f[q], {q, 0, n}]]]

/. q -> 1/J[n]) + O[q]ˆn

The other direction works similar

J = RΓ

(
1
jΓ

)

⇒ J

( 1
jΓ

)−1
 = RΓ.

This results in the series expansion for the covering RΓ. From the general theory we
know that this series is actually a rational function. To obtain the rational function, we
calculate a Padé approximant.

ToRationalFunction[hauptmodul_,numdeg_:12,denomdeg_:8] :=
Factor[
PadeApproximant[

(Normal[J] /. q -> InverseSeries[1/hauptmodul]),
{q, 0, {numdeg, denomdeg}}
]

]
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FreeFem++

The reason why we decided to use FreeFem++ [Hec12], is the way boundary conditions
are handled. The requirement was that we needed a solver for partial differential equa-
tions which is able to handle arbitrary boundary conditions. We will explain how this
is done. This construction is based on an example which can be found in the wiki for
the software FreeFem++: [FB]. We continue to use the notation from chapter 8. The
example we look at in this chapter corresponds to the subgroup Γ0 (2) of the modular
group PSL2(Z) = ∆(2, 3).

First of all, we start to define the height h of the triangles and a discretization pa-
rameter n which controls the number of triangulation.

real h = 3.00000000000000;
int n = 25;

Then, we define the boundaries of the triangles and construct an area out of this.

border L1(t=1.0,0.0) {
x = 0.0;
y = t;
label = 1;

}

border bow(t=1.0,0.0) {
x = 1.0 + cos(pi/3.0*(t+2.0));
y = sin(pi/3.0*(t+2.0));
label = 2;

}

border topbow(t=2./3.,1.0) {
x = cos(pi/2.*t);
y = sin(pi/2.*t);
label = 3;

}

mesh Th1 = buildmesh(L1(n)+bow(n)+topbow(n/2),fixeborder=true);

This constructs the triangle which we called T0. Analog to this, we define the triangle
Th. Note that each boundary has an individual label. To convince ourselves that these
triangles are correct we plot them, see figure B.1 and B.2.
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plot(Th1);
plot(Th2);

Figure B.1.: The plot of Th1 Figure B.2.: The plot of Th2

Following algorithm 4 from chapter 8, we now construct the fundamental domain due to
certain condition on the cusps∞ and 0. For each coset, we map one of the triangles and
add it to the fundamental domain. As an example, we look at the coset for c1 = ( 1 −1

1 0 ).
Then, we have

c−1
1 (x+ iy) = x+ iy − 1

x+ iy

= − x− 1
x2 + y2 − 2x+ 1 + i

y

x2 + y2 − 2x+ 1 .

Now, we map the triangle Th1 with this map to obtain a new triangle which will be
added to the fundamental domain. In FreeFem++ we do it as follows.

mesh T1c1 = movemesh(Th1,[-(x - 1)/(xˆ2 + yˆ2 - 2*x + 1), y/(xˆ2 + yˆ2 -
2*x + 1)]);

This constructs a new mesh which is mapped in the right place. Running over all
cosets using algorithm 4, we obtain a set of unrelated discretized triangles. Due to the
construction, the boundaries of these triangles are compatible. The discretization points
on boundary coincide, if the boundaries do. This allows us to define a new mesh.

mesh T = T1c0 + T2c0 + T1c1 + T2c1 + T1c2 + T2c2 ;

Next, we take care of the boundary conditions. Lemma 8.1 asserts that the mesh is
compatible with the periodic boundary conditions which are the pairings. To handle the
pairings, we use the labels of the boundary. To make them individually accessible, we
rename them.
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Figure B.3.: The plot of T1c1

r1 =[1,11];
T1c1 = change(T1c1,label=r1);

These labels are now used to define the periodic boundary conditions.

func pairing = [[10,y],[13,y],
[11,x],[12,(2*xˆ2 + 2*yˆ2 - 3*x + 1)/(4*xˆ2 + 4*yˆ2 - 4*x + 1)]];

The rest is straight forward. We construct a space of finite elements with periodic
boundary conditions, write down the Laplace equation in variational formulation, and
the boundary condition for z →∞.

fespace Vh(T,P2,periodic=pairing);
Vh phi, psi, w;

solve LaplaceRe(phi,w, solver=LU) =
int2d(T)(dx(phi)*dx(w)+dy(phi)*dy(w))+on(7,phi= cos(2.*pi*x/1.0)*exp

(2.*pi*h/1.00000000000000));

Then, the resulting function is evaluated at the elliptic points and the result is written
in a file. The complete code for Γ0(2) looks a follows.

//File for Belyi(Congruence Subgroup Gamma0(2))

verbosity = 0;

real h = 3.00000000000000;
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int n = 25;

border L1(t=1.0,0.0) {
x = 0.0;
y = t;
label = 1;

}

border bow(t=1.0,0.0) {
x = 1.0 + cos(pi/3.0*(t+2.0));
y = sin(pi/3.0*(t+2.0));
label = 3;

}

border topbow(t=2./3.,1.0) {
x = cos(pi/2.*t);
y = sin(pi/2.*t);
label = 2;

}

border L2(t=1.0,0.0) {
x = 0.0;
y = (h-1.)*t+1;
label = 4;

}

border topbowinv(t=1.,2./3.) {
x = cos(pi/2.*t);
y = sin(pi/2.*t);
label = 5;

}

border R(t=(sqrt(3.0)/2.0/h)ˆ(1.0/1.0),1.0) {
x = 0.5;
y = h*t;
label =6;

}

border Top(t=0.5,0.0) {
x = t;
y = h;
label = 7;

}

mesh Th1 = buildmesh(L1(n)+bow(n)+topbow(n/2),fixeborder=true);
mesh Th2 = buildmesh(L2(n)+topbowinv(n/2)+R(n)+Top(n),fixeborder=true);
int[int] r1;

mesh T1c0 = movemesh(Th1,[x, y]);
mesh T2c0 = movemesh(Th2,[x, y]);

r1 =[1,10];
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T1c0 = change(T1c0,label=r1);
r1 =[4,10];
T2c0 = change(T2c0,label=r1);

mesh T1c1 = movemesh(Th1,[-(x - 1)/(xˆ2 + yˆ2 - 2*x + 1), y/(xˆ2 + yˆ2 -
2*x + 1)]);

mesh T2c1 = movemesh(Th1,[(xˆ2 + yˆ2 - x)/(xˆ2 + yˆ2 - 2*x + 1), y/(xˆ2 +
yˆ2 - 2*x + 1)]);

r1 =[1,11];
T1c1 = change(T1c1,label=r1);
r1 =[1,12];
T2c1 = change(T2c1,label=r1);

mesh T1c2 = movemesh(Th2,[-x + 1, y]);
mesh T2c2 = movemesh(Th1,[-x + 1, y]);

r1 =[4,13];
T1c2 = change(T1c2,label=r1);
r1 =[1,13];
T2c2 = change(T2c2,label=r1);

mesh T = T1c0 + T2c0 + T1c1 + T2c1 + T1c2 + T2c2 ;

func pairing = [[10,y],[13,y],
[11,x],[12,(2*xˆ2 + 2*yˆ2 - 3*x + 1)/(4*xˆ2 + 4*yˆ2 - 4*x + 1)]];

fespace Vh(T,P2,periodic=pairing);
Vh phi, psi, w;

solve LaplaceRe(phi,w, solver=LU) =
int2d(T)(dx(phi)*dx(w)+dy(phi)*dy(w))+on(7,phi= cos(2.*pi*x/1.0)*exp

(2.*pi*h/1.00000000000000));

solve LaplaceIm(psi,w, solver=LU) =
int2d(T)(dx(psi)*dx(w)+dy(psi)*dy(w))+on(7,psi=-sin(2.*pi*x/1.0)*exp

(2.*pi*h/1.00000000000000));

ofstream out("fem_resultsNaB9GP.sage");
out << "w21 = [";
out << "CC(" << phi(0.500000000000000,0.500000000000000) << ", " << psi

(0.500000000000000,0.500000000000000)<<"),";
out << "]" << endl;

out << "w22 = [";
out << "CC(" << phi(0.000000000000000,1.00000000000000) << ", " << psi

(0.000000000000000,1.00000000000000)<<"),";
out << "]" << endl;
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out << "w31 = [";
out << "]" << endl;

out << "w33 = [";
out << "CC(" << phi(0.500000000000000,0.866025403784439) << ", " << psi

(0.500000000000000,0.866025403784439)<<"),";
out << "]" << endl;

out << "wc = [";
out << "CC(" << phi(0.000000000000000,0) << ", " << psi

(0.000000000000000,0)<<"),";
out << "]" << endl;
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The software system Sage
“Sage [SAG] is a free open-source mathematics software system licensed under the GPL.
It builds on top of many existing open-source packages: NumPy, SciPy, matplotlib,
Sympy, Maxima, GAP, FLINT, R and many more.”

Good introductions are on the home page of Sage. The founder of Sage, William
Stein, also provides some good introductions – for example [Ste12] or [Ste07].

Our computer programs are mainly based on Sage. In this appendix we outline the
way we used Sage to obtain our results.

For the modular group, Monien implemented the notion of the classical Farey symbols
in C++ and provided an interface to sage [Mon11]. As already mentioned in the outlook
in chapter 10, a long term goal is to provide similar implementation for the generalized
Farey symbols.

For the implementation of the Farey symbols, we first need a way to handle sub-
groups of triangle groups. For this we have implemented two classes which we called
triangle group 2noo and subgroup of triangle group. The first class de-
scribes a triangle group ∆n = ∆(2, n,∞) and the second one a subgroup of it.

The class triangle group 2noo

This class is initialized with one integer parameter n which corresponds to the order of
the second generator. Then, some characteristic values are calculated, like the points
za, zb, and the generators of the group δa, etc.

class triangle_group_2noo:
def __init__(self,_n,):

if( _n <= 2 ):
print ’This is an Euclidian triple’
print ’Not implemented’

self.a = 2
self.b = _n
a = self.a
b = self.b

self.za = I.n()
self.zb = (cot(pi/2)+csc(pi/2)*cos(pi/b)+I*csc(pi/2)*sin(pi/b)).n

()
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self.zc = 2442.*I.n()
self.zcg= (1/tan(pi/2)).n()

V = MatrixSpace(SR,2,2)
self.da = V([cos(pi/2),-sin(pi/2),sin(pi/2),cos(pi/2)])
self.dai= (self.da)ˆ-1
[ ... ]
self.S = self.da
self.T = self.dbi*self.da
[ ... ]

def __repr__(self):
return ’TriangleGroup(2,%s,oo)’ % self.b

To visualize the operation on the upper half plane we implement a function to plot the
fundamental domain.

def fundamental_domain(self):
g = Graphics()
g += hyperbolic_triangle(self.za,self.zb,self.zc,\

fill=true,color=’lightgrey’)
g += hyperbolic_triangle(self.za,self.zb,self.zcg,\

fill=true,color=’white’)
g += hyperbolic_arc(self.za,self.zc,color=’grey’)
g += hyperbolic_arc(self.zc,self.zb,color=’grey’)
g += hyperbolic_arc(self.zb,self.zcg,color=’grey’)
g += hyperbolic_arc(self.zcg,self.za,color=’grey’)
d = g.get_minmax_data()
g.set_axes_range(d[’xmin’], d[’xmax’], 0, 2)
return g

A sample output of this function can be seen in the figure C.1. Furthermore, we imple-
ment the algorithm to solve the word problem which we described in chapter 4, algorithm
2.

def word_problem(self,A,readable=false):
ergread=[]
erg = []
T=self.T
S=self.S
Ti=self.Ti
counter = 0
while A[1,0] !=0 and counter < 50:

counter += 1
while abs(A[0,0].n()) >= abs(A[1,0].n()):

if sgn(A[0,0]) == sgn(A[1,0]):
ergread.append("T")
erg.append(1)
A=Ti*A

else:
ergread.append("Ti")
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Figure C.1.: Fundamental domain for ∆5

erg.append(-1)
A=T*A

ergread.append("S")
erg.append(0)
A=S*A

p = A[0,1]/A[0,0]/(self.T[0,1])
if p < 0:

for i in range(-p):
ergread.append("Ti")
erg.append(-1)

else:
for i in range(p):

ergread.append("T")
erg.append(1)

if(readable):
return ergread

else:
return erg

def expand_word(self,word):
X = matrix(2,2,[1,0,0,1])
for x in word:

if x == 0 or x ==’S’:
X = X*self.S

if x == 1 or x == ’T’:
X = X*self.T

if x ==-1 or x == ’Ti’:
X = X*self.Ti

return X
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The class subgroup of triangle group

This class is initialized with two permutations σ0 and σ1. To define a subgroup of the
triangle group ∆(2, n,∞), the order of σ0 must be two and the order of σ1 must equal
n. Furthermore, the group 〈σ0, σ1〉 generated by σ0 and σ1 must be transitive.

class subgroup_of_triangle_group:
def __init__(self,_s0,_s1):

if(not _s0 == _s0.inverse() ):
print ’ERROR in __init__’
print ’The first permutation (_s0 = %s) needs to be of order 2

’\
%_s0

raise AttributeError(’s0 not of order 2’)
return None

if(not PermutationGroup([_s0,_s1]).is_transitive() ):
print ’ERROR in __init__’
print ’The group generated by %s and %s is not a transitive

group’\
% (_s0,_s1)

raise AttributeError(’Group not transitiv’)
return None

self.s1 = PermutationGroupElement(_s1)
self.s0 = PermutationGroupElement(_s0)
self.sinf = (self.s1*self.s0).inverse()
self.a = 2
self.b = self.s1.order()
self.c = self.sinf.order()
self.T = triangle_group_2noo(self.b)
self.d = max(self.s0.domain())
if( max(self.s1.domain()) > self.d ):

self.d = max(self.s1.domain())

The most important part is to be able to check, if a given matrix is a member of this
subgroup. We use the algorithm 1 of chapter 4. We solve the word problem, map the
letters to the corresponding permutations, and check if the resulting permutation leaves
the 1 invariant.

def __contains__(self,M):
word = self.T.word_problem(M)
p = Permutation(range(1,1+len(self.cosets)))
pS = Permutation(self.s0)
pT = (Permutation(self.s1).inverse())*pS
pTi= pT.inverse()
for l in word:
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if( l == 0 ):
p = p*pS

if( l == 1 ):
p = p*pT

if( l ==-1 ):
p = p*pTi

return (p(1) == 1)

The class gFareySymbol
Now, we present a short overview of the implementation of the generalized Farey sym-
bols. We store the actually Farey symbol in three different arrays. One is for the
nominators of the fractions, one for the denominators, and one for the pairings. The
free pairings are marked with increasing integer numbers. The even pairings with −1
and the n/d with −d · 10. As we explained in the chapter about the generalized Farey
symbols, we are not allowed canceling a common term of a fraction. Hence, it seems
more reasonable to store numerator as well as the denominator separately.

We initialize the Farey symbol with a subgroup of a triangle group G. As explained in
the chapter about Farey symbols, we start with the unfinished symbol

−1
0

0
1

1
0 .

The actual construction is done in the function init pairings(). After calculating
the Farey symbol itself, we also calculate the properties we are interested in, like the
coset representatives, the cusps, etc.

class gFareySymbol:
def __init__(self,G):

self.a = [SR(-1), SR(0), SR(1)]
self.b = [SR( 0), SR(1), SR(0)]
self.pairing = [0, 0]
[ ... ]
self.pairing_max = 0
self.init_pairing()

self.x = [self.a[i]/self.b[i] for i in range(1,len(self.a)-1)]
[ ... ]
self.cosets = self.init_cosets()
self.cusp_classes = self.init_cusp_classes()
self.cusps = self.init_cusps()
[ ... ]

def init_pairing(self):
tmp = self.check_pair(1)
if tmp == -1 or self.pairing[-1] == -10:

self.add_term(1)
i = self.find_max_unpaired()
while i >= 0:
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if self.check_pair(i) == -1:
self.add_term(i)

i = self.find_max_unpaired()

The function check pair checks, if it is possible to assign a pairing. If it is possible,
it returns the possible pairing. In addition, if the pairing is a n/d-odd pairing, it also
inserts the necessary points. The rest of this class is a straight foreword implementation
of the algorithms described in chapter 6.

The class Belyi
Before we start with the explanation of the class Belyi, we present an auxiliary class
which turns out to be useful.

class VariableGenerator(object):
def __init__(self, prefix):

self.__prefix = prefix
@cached_method
def __getitem__(self, key):

return SR.var("%s%s"%(self.__prefix,key))

If we now define a variable using x = VariableGenerator(’x’), we obtain a class
which returns the variable x3 if one calls x[3]. Since we sum over an a priori unknown
number of variables, we use this class to generate the necessary variables. The idea
comes from [Gro].

In the class Belyi we collect all the information about the Bely̆ı function and the
dessin. It is initialized using a (generalized) Farey symbol.

class Belyi(group):
def __init__(self, group):

self.group = group
FareySymbol.__init__(self, group)

def __repr__(self):
if hasattr(self.group, "_repr_"):

return "Belyi(%s)" % self.group._repr_()
elif hasattr(self.group, "__repr__"):

return "Belyi(%s)" % self.group.__repr__()
else:

return "Belyi(?)"

We added functions to calculate the dessin from the permutations as well as the structure
of the corresponding Bely̆ı function.

def dessin(self):
e2 = list(Set([w.real()+I*w.imag() for w in \

[(SL2Z(1)/w).acton(I) for w in self.coset_reps()]]))
graph= Graph(multiedges=True);
liste = []
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for i in range(len(e2)):
if( len(e2) == 0 ):

break
images = [p.acton(e2[0]) for p in self.pairing_matrices()]
tmp = list(Set(images).intersection(Set(e2)))
tmp.append(e2[0])
tmp = list(Set(tmp))
[e2.remove(r) for r in tmp]
liste.append(tmp)

for c in self.coset_reps():
p0=(SL2Z(1)/c).acton((1+I*sqrt(3))/2)
p0=p0.real()+I*p0.imag()
p1=(SL2Z(1)/c).acton(I)
p1=p1.real()+I*p1.imag()
i=0
for x in liste:

if( p1 in x ):
break

i=i+1
graph.add_edge((p0,liste[i][0]))

return graph
def function(self):

from sage.misc.flatten import flatten
G=self.dessin()
black = list(G.bipartite_sets()[1])
white = list(G.bipartite_sets()[0])
blackdegree = flatten([G.degree([x]) for x in black])
whitedegree = flatten([G.degree([x]) for x in white])
if( max(blackdegree) < 3):

tmp = white
white = black
black=tmp
tmp = whitedegree
whitedegree = blackdegree
blackdegree=tmp

bd1 = blackdegree.count(1)
bd3 = blackdegree.count(3)
if( len(blackdegree ) != bd1+bd3 ):

print "Error in Belyi.function"
return -1

x = VariableGenerator(’x’)
z = SR.var(’z’)
cw=self.cusp_widths()
term1 =[x[i]*z**i for i in range(bd3)]
term1.append(z**bd3)
term1 = sum(term1)**3
term2 = [x[i]*z**(i-bd3) for i in range(bd3,bd3+bd1)]
term2.append(z**bd1)
term2 = sum(term2)
term3 = [(z+x[i+bd3+bd1])**(cw[i]) for i in range(len(cw)-1)]
tmp = 1
for x in term3:
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tmp = tmp*x
return term1*term2/tmp

Note that this method of finding the structure of the Belyi function is quite inefficient.
There are better and faster methods by using directly the permutations. From the result
for the method function, we extract the coefficients of the resulting rational function
and obtain the algebraic equations we need.

The function rational function

We end with the function rational function. This function is called with a sub-
group of finite index of a triangle group. It first constructs an instance of a class Belyi,
calculates a starting value using the FEM method, and runs Newton’s method. From
the result we extract algebraic expressions.

def rational_function(group, steps=15, prec=256, verbose=0):
# This calculates a numerical approximation for the rational function
f = Belyi(group)
if( verbose > 0 ):

print ’Starting with FEM && Newton’

# Use the starting vector from FEM with Newton
coef = f.newton(get_start_vector(f), steps, prec, verbose)
if( verbose > 0 ):

print ’Newton Done!’
print ’Starting algdep for %s coefficients’ %ZZ(len(coef))

z = SR.var(’z’)
for c in range(len(coef)):

if( verbose > 0 ):
print ’Starting the %s th coefficient’ %ZZ(c)

try:
coef[c] = algebraic_approximation(coef[c], prec=prec)

except:
print ’could not find an algebraic expression for %s\n’ % coef

[c]
if new:

bf = f.belyi_function()
bf = bf[0]

else:
bf = f.function_with_coef()

x = VariableGenerator(’x’)
Dic = dict([x[i], coef[i]] for i in range(len(coef)))

return bf.substitute(Dic)

The implementation of Newton’s method is straight foreword and well known. The
function special values of hauptmodul, which is the FEM part, is worth a closer
look. This function generates the FreeFem++ script, runs it, and evaluated the result.
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We start with the header of the FreeFem++ file which is the construction of the
triangle Th1 and Th2 from appendix B. All results are written into a file, whose name
is dynamically generated by Sage.

def specical_values_of_hauptmodul(f,n=25):
# This function generates a file for FreeFem++ and evaluates it
# The result is the values of the hauptmodul at the elliptic points of
# the Farey-Symbol f - the first parameter. The second parameter
# controls the number of triangles used in FreeFem++

header = """
verbosity = 0;

real h = %s;
int n = %s;

border L1(t=1.0,0.0) {
x = 0.0;
y = t;
label = 1;

}
[ ... ]
border Top(t=0.5,0.0) {

x = t;
y = h;
label = 7;

}

mesh Th1 = buildmesh(L1(n)+bow(n)+topbow(n/2),fixeborder=true);
mesh Th2 = buildmesh(L2(n)+topbowinv(n/2)+R(n)+Top(n),fixeborder=true);
"""

# The file ’fem_filename’ will be given to FreeFem++
try:

fem_filename = tmp_filename(’group’, ’.edp’)
print "generating FreeFem++ file ", fem_filename
fem = open(fem_filename, ’w’)

except IOError:
print ’Cannot create a file called "group.edp" here.’
print ’Stopping now.’
return

# In the first line you read the name of the group
fem.write(’//File for ’ + str(f).replace(’\n’,’\n//’) + ’\n’)

# real h is the height of the fundamental domain
# It is chosen as 3*cusp_width(oo)
# n it the number of points on the border of the standard triangle

fem.write(header%(RR(f.cusp_widths()[-1]*3.),ZZ(n)))
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In the next part, we run over the cosets and map them according to algorithm 4. In this
loop, we also rename the edges of the triangles.

cc = 0 # cosetcounter
for c in f.coset_reps():

# BEGIN: Build the mesh
# Has the first triangle infty as a vertex?
if( c.a() == 0 ):

tmp = (SL2Z(1)/c).acton(1/conjugate(z))
fem.write(’mesh T1c%s = movemesh(Th2,’%cc)
fem.write(str([tmp.real().factor(),tmp.imag().factor()])+’);\n

’)
lab1 = 4

else:
[ ... ]

Then, we generate the mesh, insert the pairing functions, and solve the Laplace equations
for real and imaginary part.

# Generate the mesh for FEM
fem.write(’\n\nmesh T =’)
tmp =’’;
for j in range(cc):

tmp+=’ T1c%s + T2c%s +’%(j,j)
fem.write(tmp[0:-1])
fem.write(’;\n\n’)
# fem.write(’;\n\nplot(T);\n\n\n’)

# BEGIN: Construct pairing for periodic boundary conditions
# Assumption: The left and the right border are identified.
pairtext = ’func pairing = [[10,y],[%s,y],\n[’%(10+len(frac)+f.nu2()+f

.nu3())
i=1
ellpt = 0
# insert the pairing function
for p in pairs[1:-1]:

if( -3 == p ): # odd pairing
[ ... ]

if( -2 == p ): # even pairing
[ ... ]

if ( 0 < p ): #free pairing
if( i != pairs.index(p)):

pairtext += ’%s,x],[’%(10 + pairs.index(p)+ellpt)
tmp = f.pairing_matrices()[i].acton(z)
tmp = tmp.real().factor();
pairtext += ’%s,%s],\n[’%(i+10+ellpt,tmp)

i+=1
fem.write(pairtext[0:-3]+’];\n\n\n’)
# END: Construct pairing for periodic boundary conditions

# Generate FEM-Space
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fem.write(’fespace Vh(T,P2,periodic=pairing);\nVh phi, psi, w;\n\n’)

# Solve for the real part
fem.write(’solve LaplaceRe(phi,w, solver=LU) = \n’)
fem.write(’ int2d(T)(dx(phi)*dx(w)+dy(phi)*dy(w))+on(7,phi= cos(2.*

pi*x/’)
fem.write(str(float(f.cusp_widths()[-1])))
fem.write(’)*exp(2.*pi*h/%s));\n\n’%RR(f.cusp_widths()[-1]))
[ ... ]

Then, we tell FreeFem++ to evaluate the result at the elliptic points.

# SUBBEGIN: Find identifications of e2 => Result in ’liste’
[ ... ]
# SUBEND: Find identifications of e2

# all elliptic points of order 2
e2 = [w.real()+I*w.imag() for w in \

[(SL2Z(1)/w).acton(I) for w in f.coset_reps()]]
# dict of the identifications
Dic=dict([x[0],x[1]] for x in liste if len(x) ==2)
tmp = [e.substitute(Dic) for e in e2]
# e21: elliptic points on the boundary appear only once.
e21 = [x for x in tmp if tmp.count(x) == 1]
# e22: elliptic point in the middle appear exacty twice.
e22 = [x for x in tmp if tmp.count(x) == 2]
e22 = list(Set(e22))
# all elliptic points of order 3
[ ... ]
fem_outfile = tmp_filename(’fem_results’, ’.sage’)
fem.write(’ofstream out("%s");\n’ % fem_outfile)

# ell pt of order 2 on border
fem.write(’ out << "w21 = [";\n’)
for e in e21:

fem.write(’ out << "CC(" << phi(%s,%s) << ", " << psi(%s,%s)<<")
,";\n’\

%(RR(e.real()),RR(e.imag()),RR(e.real()),RR(e.imag()
)))

fem.write(’ out << "]" << endl;\n\n’)
[ ... ]

Finally, we run FreeFem++ and get the values at the critical points

# Let FreeFem run and grab the result!
os.system(’FreeFem++-cli -nw %s > /dev/null’ % fem_filename)
load(fem_outfile)

return [[w33,w31],[w22,w21],[wc]]

With the help of this function, we are able to get good starting values for Newton’s
method. To obtain these, we calculate approximations of the coefficients of the polyno-
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mial we are interested in from the zeros and singularizes. This is done in the following
function.

def get_start_vector(f):
# This function produces a starting vector for the Newton-Algorithm
[[w33,w31],[w22,w21],[wc]] = specical_values_of_hauptmodul(f)
x = SR.var(’x’)

# append w33
tmp = prod([(x-w) for w in w33])
result = [t[0] for t in tmp.coefficients(x)][0:-1]

# append w31
for w in w31:

result.append(-w)

# append w22
tmp = prod([(x-w) for w in w22])
tmp = [t[0] for t in tmp.coefficients(x)][0:-1]
result.append(tmp)
result = flatten(result)

# append w21
for w in w21:

result.append(-w)

# append wc
for w in wc:

result.append(-w)

return result

Combining all of these, we are able to produce the results form chapter 9.
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[Jos97] Jürgen Jost. Compact Riemann Surfaces: An Introducation to Contemporary
Mathematics (Universitext). Springer, 1997.

[Kat92] Svetlana Katok. Fuchsian Groups (Chicago Lectures in Mathematics). Uni-
versity Of Chicago Press, 1. edition, 1992.

[Kil80] Wilhelm Killing. Die Rechnung in Nicht-Euclidischen Raumformen. Journal
für die reine und angewandte Mathematik, 89:265 – 287, 1880.

[KL08] Chris A. Kurth and Ling Long. Computations with finite index subgroups
of PSL2(Z) using Farey Symbols. In Advances in algebra and combinatorics,
Proceedings of the second International Congress in Algebra and Combina-
torics, World Scientific, pages 225 – 242, 2008.
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Journal de Théorie des Nombres de Bordeaux, 15:205 – 222, 2003.

[Lan24] Edmund Landau. Bemerkungen zu der vorstehenden Abhandlung von Herrn
Franel. Nachrichten von der Königlichen Gesellschaft der Wissenschaften
und der Georg-Augusts-Universität zu Göttingen, pages 202 – 206, 1924.

[Leo08] John Garrett Leo. Fourier Coefficients of Triangle Functions. PhD thesis,
University of California, 2008.

[LLT95a] Mong-Lung Lang, Chong-Hai Lim, and Ser-Peow Tan. An algorithm for
determining if a subgroup of the modular group is congruence. Journal of
the London Mathematical Society, 51 (3):491 – 502, 1995.

[LLT95b] Mong-Lung Lang, Chong-Hai Lim, and Ser-Peow Tan. Independent genera-
tors for congruence subgroups of Hecke groups. Mathematische Zeitschrift,
220 (4):569 – 594, 1995.

[LLY05a] Wen-Ching Winni Li, Ling Long, and Zifeng Yang. Modular forms for non-
congruence subgroups. Quarterly Journal of Pure and Applied Mathematics,
1(1):205 – 221, 2005.

[LLY05b] Wen-Ching Winni Li, Ling Long, and Zifeng Yang. On Atkin-Swinnerton-
Dyer congruence relations. Journal of Number Theory, 113(1):117 – 148,
2005.

[Lon08] Ling Long. On Atkin-Swinnerton-Dyer congruence relations 3. Journal of
Number Theory, 128(8):2413 – 2429, 2008.

[LZ04] Sergei K. Lando and Alexander K. Zvonkin. Graphs on surfaces and Their
Applications. Springer, 2004.

[MAG] Magma computational algebra system. http://magma.maths.usyd.
edu.au/. [Acccessed: 20th March 2015].

[Mag74] Wilhelm Magnus. Noneuclidean Tesselations and Their Groups (Pure and
Applied Mathematics, Volume 61). Academic Press, 1974.

[Mag93] Kay Magaard. Monodromy and sporadic groups. Communications in Alge-
bra, 21(12):4271 – 4297, Jan 1993.

[Mai09] Robert S. Maier. On rationally parametrized modular equations. Journal of
the Ramanujan Mathematical Society, 24:1 – 73, 2009.

[Mas04] Bernard Maskit. Kleinian Groups (Grundlehren der mathematischen Wis-
senschaften) (v. 287). Springer, 1988 edition, 3 2004.

[Mil69a] M. H. Millington. On Cycloidal subgroups of the modular group. Proceedings
of the London Mathematical Society, 19(3):164 – 176, 1969.

135

http://magma.maths.usyd.edu.au/
http://magma.maths.usyd.edu.au/


Bibliography

[Mil69b] M. H. Millington. Subgroups of the classical modular group. Journal of the
London Mathematical Society, 1(2):351 – 357, 1969.

[Miy06] Toshitsune Miyake. Modular Forms (Springer Monographs in Mathematics).
Springer, 2006.

[Mon11] Hartmut Monien. Farey symbol for arithmetic subgroups. sagemath.org,
2011. [Acccessed: 20th March 2015].

[MZ00] Nicolas Magot and Alexander Zvonkin. Belyi functions for Archimedean
Solids. Discrete Mathematics, 217:249 – 271, 2000.

[Neh52] Zeev Nehari. Conformal mapping. McGraw-Hill Book Company, Inc., 1952.

[PTVF02] William H. Press, Saul A. Teukolsky, William T. Vettering, and Brian P.
Flannery. Numerical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, February 2002.

[Ral62] J. Raleigh. On the Fourier coefficients of triangle functions. Acta Arithmetica,
8(1):107 – 111, 1962.

[Rat05] John G. Ratcliffe. Foundations of Hyperbolic Manifolds. Springer, 2005.

[SAG] Sage. http://www.sagemath.org/. [Acccessed: 20th March 2015].

[Sch94] Leila Schneps. Dessins d’enfants on the Riemann sphere. In Cambridge Uni-
versity Press, editor, The Grothendieck Theory of Dessins d’Enfants. London
Mathematical Society Lecture Notes 200, 1994.

[Shi71] Goro Shimura. Introduction to the Arithmetic Theory of Automorphic Func-
tions. Princeton University Press, 1971.

[Spr57] George Springer. Introduction to Riemann surfaces. Addison-Wesley Pub-
lishing Company, Inc., 1957.

[SS02] Björn Selander and Andreas Strömbergsson. Sextic coverings of genus
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