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Abstract 

Click chemistry has emerged as a powerful tool for the sensitive and specific labeling 

of biomolecules in various applications. For the design of lipid probes, a small and 

non-interfering tag is important to prevent substantial influence on the characteristics 

of the lipid. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) allows the 

bioorthogonal detection of alkyne lipids with azide bearing reporter molecules. 

In vitro enzymatic assays are a major source of information about the properties of 

enzymes and have so far been carried out mainly with radiolabeled or fluorescent 

probes. In this thesis, various click chemistry based in vitro enzymatic assays were 

established and the kinetic characteristics of alkyne lipid substrates were analyzed. 

All enzymes tested displayed the same affinity to alkyne lipids as to their natural or 

radiolabeled counterparts. Thus, alkyne lipids are versatile substrates for in vitro 

enzymatic assays. 

The demand to study the intracellular localization of lipids has led to recent progress 

in microscopy imaging of alkyne lipids. However, their detection is crucially 

dependent on the appropriate azide detection reagent. It should favor a fast and 

efficient click reaction and therefore a sensitive detection of the lipids. For this 

purpose, biotinylated azide reporters with different polyethylene spacer components 

were synthesized in this study and their suitability for lipid imaging in fixed cells was 

tested. The introduction of a copper-chelating picolyl moiety strongly increased the 

signal intensity derived from the alkyne lipids, allowing the highly sensitive imaging of 

the metabolites of alkyne-oleate, propargylcholine and alkyne-cholesterol.  

With the improved protocol, alkyne-cholesterol was detected at the endoplasmic 

reticulum (ER) and the surface of lipid droplets (LDs) in HuH7 hepatocarcinoma cells. 

Using stimulated emission depletion (STED) microscopy, alkyne-cholesterol positive 

membrane contacts between the two organelles were identified. Loading of the HuH7 

cells with unlabeled lipids affected the storage of esterified alkyne-cholesterol in LDs. 

The cholesterol esterification step inside hepatocytes might play an important role in 

the maintenance of hepatic cholesterol homeostasis and the prevention of 

hepatocellular lipotoxicity, and will be investigated further. 
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Zusammenfassung 

Alkinlipidsonden und Azidnachweisreagenzien für in vitro-
Enzymassays und die hochempfindliche Mikroskopie von Lipiden 

 

Die Click-Chemie hat sich zu einem wichtigen Werkzeug bei der sensitiven und 

spezifischen Markierung von Biomolekülen entwickelt. Für die Markierung von 

Lipiden sollten besonders kleine Markergruppen verwendet werden, die die 

Eigenschaften des Lipids möglichst wenig verändern. Die kupferkatalysierte 1,3-

Cycloaddition zwischen einem Azid und einem terminalen Alkin kann genutzt 

werden, um Alkinlipide mit azidmarkierten Nachweisreagenzien in einer 

bioorthogonalen Reaktion zu verknüpfen. 

In vitro-Enzymassays liefern wichtige Informationen über die Eigenschaften von 

Enzymen und wurden bisher häufig mit radioaktiv oder fluoreszenzmarkierten 

Lipidsonden durchgeführt. In der vorliegenden Arbeit wurden mehrere auf Click-

Chemie basierende in vitro-Enzymassays etabliert und die kinetischen 

Eigenschaften von Alkinlipidsubstraten untersucht. Alle getesteten Enzyme besaßen 

die gleiche Affinität zu Alkinlipiden wie zu den entsprechenden radioaktiv markierten 

oder unmarkierten Gegenstücken. Alkinlipide sind somit geeignete Substrate für in 

vitro-Enzymassays. 

Der Bedarf an Erkenntnissen über die genaue Lokalisation von Lipiden innerhalb der 

Zelle treibt die Entwicklung der Mikroskopie von Alkinlipiden voran. Deren 

mikroskopischer Nachweis hängt jedoch entscheidend von einem geeigneten 

Azidnachweisreagenz ab, das eine schnelle und effiziente Click-Reaktion und damit 

einen sensitiven Lipidnachweis ermöglicht. Zu diesem Zweck wurden in der 

vorliegenden Arbeit mehrere biotinylierte Azidnachweisreagenzien synthetisiert, in 

denen Biotin und die Azidgruppe durch unterschiedliche polyethylenglykolbasierte 

Linker verbunden waren. Die Verwendung einer kupferchelierenden Picolylgruppe im 

Linker führte zu einem starken Anstieg der Signalintensität beim Nachweis von 

Alkinlipiden und ermöglichte so die hochempfindliche Mikroskopie der Metabolite von 

Alkinölsäure, Propargylcholin und Alkincholesterin. 
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Mit dem verbesserten Protokoll wurde Alkincholesterin im endoplasmatischen 

Retikulum und an der Oberfläche von Lipidtröpfchen in HuH7-Leberkarzinomzellen 

nachgewiesen. Unter dem hochauflösenden STED-Mikroskop wurden direkte 

Membrankontakte zwischen den beiden Organellen beobachtet. Das Beladen der 

Zellen mit unmarkierten Lipiden beeinflusste die Speicherung von 

Alkincholesterinestern in Lipidtröpfchen. Der Teilschritt der Veresterung von 

Cholesterin in Hepatozyten, der möglicherweise eine wichtige Rolle bei der 

Aufrechterhaltung der Cholesterinhomöostase in der Leber und bei der Vermeidung 

einer toxischen Wirkung von freiem Cholesterin spielt, wird Gegenstand 

weiterführender Versuche sein. 
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List of abbreviations 

3T3-L1 mouse fibroblast cell line 

A172 glioblastoma cell line 

ACAT  acyl-coenzyme A:cholesterol acyltransferase 

alkyne-1-OMAG 1-(nonadec-9-cis-en-18-ynoyl)-monoacylglycerol 

alkyne-cholesterol (25R)-25-ethinyl-26-nor-3β-hydroxycholest-5-en  
(structure see Fig. 16) 
 

alkyne-oleoyl-CoA nonadec-9-cis-en-18-ynoyl coenzyme A 

alkyne-OLPA 1-(nonadec-9-cis-en-18-ynoyl)-sn-glycero-3-phosphate 

alkyne-OLPC 1-(nonadec-9-cis-en-18-ynoyl)-sn-glycero-3-phosphocholine 

alkyne-OOPA 1,2-di-(nonadec-9-cis-en-18-ynoyl)-sn-glycero-3-phosphate 

alkyne-OOPC di-(nonadec-9-cis-en-18-ynoyl)-sn-glycero-3-phosphocholine 

alkyne-oleate nonadec-9-cis-en-18-ynoic acid 

alkyne-palmitate 16-heptadecynoic acid 

alkyne-PAPA 1-(16-heptadecanoyl)-2-((5Z,8Z,11Z,14Z)-5,8,11,14-
eicosatetraenoyl)-sn-glycero-3-phosphate 
 

alkyne-sphinganine (2S,3R)-2-aminooctadec-17-yn-1,3-diol 

ANOVA analysis of variance 

AP3Btn azido-PEG3-biotin (structure see Fig. 16) 

AP6Btn azido-PEG6-biotin (structure see Fig. 16) 

APpic2Btn azidopicolyl-PEG2-biotin (structure see Fig. 16) 

Arf1 ADP-ribosylation factor 1 

ASBDP 8-(5-azidopentyl)-4,4-difluor-1,3,5,7- tetramethyl-4-bora-3a,4a-s-
indacene-2,6-disulfonic acid disodium salt (structure see Fig. 16) 

azido-coumarin 3-azido-7-hydroxycoumarin  

BDP boron-dipyrromethene 

BMP bis-(monoacylglycerol)-phosphate 

Boc tert-butyloxycarbonyl protective group 

BSA bovine serum albumin 

Btn biotin 

CARS coherent anti-Stokes Raman scattering 

CCD charge-coupled device 

CDCl3 deuterated chloroform 
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CDI 1,1-carbonyldiimidazole 

CE cholesterol ester 

CerS ceramide synthase 

CGN cis-Golgi network 

Cideb cell death-inducing DFF45-like effector protein b 

CO cholesterol oxidase 

CoA coenzyme A 

COPI/II coat-protein complexes I/II 

CP-113,818 (-)-N-(2,4-bis(methylthio)-6-methylpyridin- 3-yl)-2-(hexylthio)decanoic 
amide  
 

CuAAC copper-catalyzed azide-alkyne cycloaddition 

CuTFB tetrakis(acetonitrile)copper(I) fluoroborate 

DABCO 1,4-diazabicyclo[2.2.2]octane 

DAG diacylglycerol 

DAGL diacylglycerol lipase 

DAPI 4',6-diamidino-2-phenylindole 

DCC dicyclohexylcarbodiimide 

DCM dichloromethane 

dhCer dihydroceramide 

DHE dehydroergosterol 

DMAP 4-dimethylaminopyridine 

DMEM  Dulbecco‘s modified Eagle medium  

DMF dimethylformamide 

DMSO dimethylsulfoxide 

DPPC dipalmitoylphosphatidylcholine 

EGFP enhanced green fluorescent protein 

ER endoplasmic reticulum 

ERAD endoplasmic reticulum-associated protein degradation 

ERC endosomal recycling compartment 

ERGIC ER/Golgi intermediate compartment 

ESI electrospray ionization 

ESR electron spin resonance 

EtOH ethanol 

FAAH fatty acid amide hydrolase 

FCS fetal calf serum 
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FRET Förster resonance energy transfer 

FWHM full width at half maximum 

GFP green fluorescent protein 

HDL high-density lipoprotein 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMG-CoA 3-hydroxy-3-methylglutaryl-CoA 

HuH7 hepatocarcinoma cell line 

Km Michaelis-Menten constant 

LAL lysosomal acid lipase 

LB Luria broth 

LD lipid droplet 

LD540 4,4-difluoro-2.3,5.6-bis-tetramethylene-4-bora-3a,4a-diaza-s-
indacene  
 

LDL low density lipoprotein 

LPA lysophophatidic acid 

LPAAT lysophosphatidic acid acyltransferase 

LPC lysophosphatidylcholine 

LPCAT lysophosphatidylcholine acyltransferase 

LTP lipid transfer protein 

LUT lookup table 

MAGL monoacylglycerol lipase 

MeOH methanol 

MGAT monoacylglycerol acyltransferase 

MOPS 3-(N-morpholino)propansulfonic acid 

mRFP monomeric red fluorescent protein 

MS mass spectrometry 

MSI mass spectrometry imaging 

MTP microsomal triglyceride transfer protein 

NAAA acylethanolamine-hydrolyzing acid amidase 

NAFLD non-alcoholic fatty liver disease 

NASH non-alcoholic steatohepatitis 

NBD nitrobenzoxadiazole 

NCS N-chlorosuccinimide 

NHS N-hydroxysuccinimide 
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NMR nuclear magnetic resonance 

NPC 1/2 Niemann-Pick disease, type C protein 1/2 

NSDHL NAD(P) dependent steroid dehydrogenase-like protein 

O.D. optical density 

OLPA 1-oleoyl-lysophosphatidic acid 

PA phosphatidic acid 

PBS phosphate buffered saline 

PC phosphatidylcholine 

PC12 pheochromocytoma cell line 

PCR polymerase chain reaction  

PE phosphatidylethanolamine 

PEG polyethylene glycol 

PIPES piperazine-N,N′-bis(2-ethanesulfonic acid) 

PLIN1 perilipin 1 

PLPA 1-palmitoyl-lysophosphatidic acid 

PLpPC palmitoyl-lyso-propargyl-phosphatidylcholine 

PM plasma membrane 

pPC propargyl-phosphatidylcholine 

PCC pyridinium chlorochromate 

Rf retention factor 

ROI region of interest 

RPMI Roswell Park Memorial Institute cell culture medium 

RT room temperature 

SPAAC strain-promoted alkyne-azide cycloaddition 

SREBP sterol response element-binding protein 

SRS stimulated Raman scattering 

SSD sterol sensing domain 

STED stimulated emission depletion 

TAG triacylglycerol 

TBTA 1-(1-benzyltriazol-4-yl)-N,N-bis[(1-benzyltriazol-4-yl)methyl]-
methanamine 
 

TFA trifluoroacetic acid 

TGN trans-Golgi network 

THF tetrahydrofuran 

THG third-harmonic generation 
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TLC thin-layer chromatography 

TMR tetramethylrhodamine 

Tris tris(hydroxymethyl)aminomethane 

TsOH toluenesulfonic acid 

VLDL very-low-density lipoprotein 

Vmax maximum reaction rate 

YFP yellow fluorescent protein 
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1 Introduction 

Lipids are major constituents of membrane bilayers and energy storage depots in all 

cells. Their fundamental structural functions are intertwined with their multiple roles 

in membrane microdomain formation, shaping and fusion as well as transport and 

signaling processes (van Meer et al., 2008).  

The diverse functions of lipids are accomplished by a plethora of lipid species, which 

can be assigned to several lipid classes and sub-categories (Fahy et al., 2005; Fahy 

et al., 2009). Complexity in the pool of cellular lipids is generated by the action of 

enzymes that generate lipid molecules with a broad range of chemical connections 

and functionalities from a variety of building blocks. Distinct steric and 

physicochemical characteristics of the lipid category, but also the particular lipid 

species (e.g. phosphatidylcholine (PC) species with different fatty acids) arise. 

Structural diversity thus is created in a different way than for large biomolecules like 

proteins and nucleic acids, and the multi-faceted lipid-lipid and lipid-protein 

interactions largely depend on the fine-tuning of the lipid chemical structure. 

 

1.1 Lipid probes and their versatile applications 

1.1.1 Lipid labeling strategies 

The exploration of lipid-lipid and lipid-protein interactions, of lipid metabolism, 

intracellular localization and trafficking strongly relies on the use of labeled lipid 

analogues. Because lipids are small structures, the label should also be small and 

structurally non-interfering, i.e. the tag should not be bulky, neither too hydrophobic 

nor hydrophilic and should not alter the charge of the lipid. The prospective 

application of the probe also has to be taken into account for its design. For instance, 

the correct enzymatic affinities toward the labeled substrate or the prevention of 

background signal in microscopy need special consideration (see chapters 1.1.3 and 

1.1.4). Highly sensitive and fast detection as well as easy synthetic or commercial 

accessibility of the probe are also desirable. The requirement of specialized 

instrumentation or expert knowledge for its detection, or strict regulations for its use 

can hamper the wide-spread application of a probe. Lipids with defined molecular 
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structure are now readily accessible through a variety of synthetic routes, or through 

chemical or enzymatic modification of lipids from natural or synthetic sources (see 

for instance (D’Arrigo and Servi, 2010) for a review about (lyso)phospholipid 

synthesis). This has also enabled the synthesis of a great variety of functionalized 

lipids. 

Various modifications have been used as reporters in lipids to facilitate their 

detection. Labeling with radioactive isotopes (3H, 14C, 32P) preserves all the 

characteristics of the parent lipid and enables a sensitive detection of the probe. 

They are used since decades for in vitro and in vivo studies of lipid metabolism 

(Kornberg and Pricer, 1953). However, the handling and detection of radioactive 

probes requires special equipment and safety precautions. Strict regulations apply 

for the purchase of the substances and the disposal of waste. Altogether, this makes 

the method quite costly and laborious, which is why radiolabeling, after decades of 

inevitability, is now replaced in many applications by other labeling strategies.  

Fluorescent lipid probes provide a convenient alternative to radiolabeling in a variety 

of applications (Maier et al., 2002). They also enable the visualization of lipid 

dynamics (Sezgin and Schwille, 2011). Typically, the introduction of a fluorescent 

dye into the lipid structure allows its fast and sensitive detection, but it can have 

considerable impact on the probe’s characteristics. Compared to the small lipid 

structure, commonly used dyes based on structures like boron-dipyrromethene 

(BDP), rhodamine, nitrobenzoxidiazole (NBD) and coumarin are bulky and can 

influence or even dominate the properties of the labeled lipid. Consequently, the 

suitability of a probe has to be validated thoroughly for every application. Polyene 

lipids (Kuerschner et al., 2005) are fluorescent lipid probes with a particularly subtle 

alteration of the lipid structure obtained by introducing five conjugated double bonds 

into the hydrocarbon chain of a fatty acid. This label generates only minimal impact 

on the lipid properties and can be used for live cell imaging, although due to photo-

bleaching and low quantum yield it may require a more sophisticated microscopy 

setup than conventional fluorescent dyes. 

Stable isotopes (13C, 2H) are also used for lipid labeling, and can be detected by 

nuclear magnetic resonance (NMR, Ho et al., 2002) or mass spectrometry (MS, Li et 

al., 2013) for lipidomic studies, or used for Raman-based imaging (Matthäus et al., 

2012). Spin-labeling with nitroxide moieties introduces an unpaired electron into the 
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lipid structure which can be detected by electron spin resonance (ESR) 

spectroscopy. The technique has been applied to study membrane dynamics 

(Devaux et al., 2002). Gold is conjugated to lipids for detection in electron 

microscopy (Brewer et al., 2004). 

Although lipid probes with relatively spacious labels like fluorescent dyes have 

proven powerful tools in many studies, the interference of the tag with the lipid 

structure prohibits their use in other applications. In these cases, label free 

techniques should be taken into consideration, like MS to identify and quantify lipid 

species (Harkewicz and Dennis, 2011), solid-state nuclear magnetic resonance 

(NMR) to investigate lipid-protein interactions (Huster, 2014) or Raman spectroscopy 

based techniques for lipid imaging (Yu et al., 2014). In the last years, the advent of 

click labeling techniques has added further versatile methods of lipid labeling with 

small and non-interfering tags. 

 

1.1.2 Click chemistry and the impact of click labeling on lipid biology 

Click chemistry was postulated as a powerful concept for organic synthesis, to 

generate ”diverse chemical function from a few good reactions” by Sharpless, Kolb 

and Finn (Kolb et al., 2001). It describes that chemical syntheses, like for instance 

the construction of a large pool of drug candidates, can be facilitated by joining 

together smaller modules, similar to the synthesis of biomolecules in nature. The 

reactions used should fulfill criteria like modularity and wide scope, high 

thermodynamic driving force (“spring-loaded reactions”), high yields with only 

inoffensive byproducts, high atom economy, stereospecificity and simple reaction 

conditions. Reactions creating carbon-heteroatom bonds (e.g. cycloadditions, ring 

opening nucleophilic substitutions and thiol-ene reactions) tend to meet these 

principles better than carbon-carbon couplings. 

In addition to its widespread use in the synthesis of drug-like molecules, the concept 

and most notably one reaction have proven fruitful for a plethora of bioorthogonal 

applications (Best, 2009; Thirumurugan et al., 2013). The copper-catalyzed azide-

alkyne cycloaddition (CuAAC, Fig. 1A), often simply referred to as “the click 

reaction”, is the Cu(I)-catalyzed version of the long known Huisgen [3+2]-

cycloaddition. In the presence of Cu(I) ions, the reaction proceeds rapidly under 
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physiological conditions. It was discovered in 2002 independently by the groups of 

Sharpless (Rostovtsev et al., 2002) and Meldal (Tornoe et al., 2002). Recent studies 

on the mechanism of CuAAC (Worrell et al., 2013) demonstrated that it involves the 

formation of a σ-electron bound copper(I)-acetylide which binds a second copper by 

π-electrons (Fig. 1B, (1)), followed by the coordination of the azide to the complex. 

The nucleophilic attack of the carbon-bound nitrogen of the azide (2) initiates the 

cycloaddition reaction via an intermediate with two equivalent copper atoms (3) to 

regioselectively form a 1,4-substituted 1,2,3-triazole (4). 

Bioorthogonal reactions feature abiotic reagents and can proceed swiftly in biological 

environments, or even living cells and organisms, without the interference with or 

from the biological milieu (Boyce and Bertozzi, 2011). This allows the investigator to 

find the “needle in the haystack”, i.e. to react a probe to a detection reagent in a very 

complex environment (Fig. 1D). After the Staudinger reaction, the first example of a 

bioorthogonal reaction described by Bertozzi and colleagues (Saxon and Bertozzi, 

2000), several faster proceeding reactions were added to the concept, including 

CuAAC. 

The increasing success of click labeling with CuAAC and alkyne lipids is based on its 

modularity and versatility due to the two-step labeling and detection process applied 

here (Fig. 1D), and generally in bioorthogonal labeling (Prescher and Bertozzi, 

2005): As the alkyne tag is small and non-perturbing in biological systems, alkyne 

lipids are very similar to the unlabeled parent lipids. They are taken up by living cells 

and undergo metabolism and trafficking. Subsequently to the events of interest and 

fixation of the sample, click labeling is performed. The azide reporter thus does not 

interfere with metabolism and localization of the probe. Furthermore, the modular 

labeling procedure allows for the characterization of lipid metabolism, of enzymatic 

activities and of intracellular localization with the same alkyne lipid probe. Hence, a 

direct correlation of key information from different experiment types, i.e. high-content 

data, can be obtained. 
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Fig. 1: The copper-catalyzed azide-alkyne cycloaddition and its use in bioorthogonal 
labeling. 

A: Reaction scheme of CuAAC. B: Reaction mechanism of CuAAC, as described in (Worrell et al., 
2013). The reaction involves the dinucleate copper intermediates (1), (2), and (3) and leads to the 
regioselective formation of a 1,4-substituted 1,2,3-triazole (4). The two copper atoms involved in the 
catalytic cycle are given in red and green, if distinct, or in blue, if equivalent. C: Reaction scheme of 
the strain-promoted alkyne-azide cycloaddition (SPAAC) involving a spring-loaded cyclooctyne. D: 
Bioorthogonal labeling, illustrated for click labeling in cells using CuAAC, alkyne lipids (blue sticks) 
and azide reporters (orange stars). Alkyne labels are inert in biological environments, like for 
instance living cells. They neither do react with the various functionalities present in biomolecules 
(colored ellipses), nor are they affected by oxygen or water. Thus, alkyne lipids can be administered 
to living cells and, due to the small label, are likely to undergo natural metabolism and trafficking. 
After fixation of the cells, click labeling with azide reporters using CuAAC, makes alkyne lipids 
detectable. Because of the post-fixation labeling, the characteristics of the azide reporter do not 
affect trafficking or lipid metabolism of the alkyne lipid probe. 

For the use in cellular extracts or fixed cells, CuAAC is regarded a bioorthogonal 

reaction, because neither alkynes nor azides are present in biological systems1 and 

                                            

1 This is not completely true for alkynes, which are found in some rare bioactive compounds from 
plants, insects, fungi and bacteria. The biosynthetic machinery present in bacteria for their production 
could potentially enable engineered biosynthesis of alkyne probes (Zhu et al., 2015). 



Introduction 

 
17 

 

in a cellular environment they only react with each other (Hang et al., 2011). 

However, in living cells or organisms, the use of CuAAC is limited by the toxicity of 

the copper catalyst. More biocompatible copper catalysts (Soriano Del Amo et al., 

2010) or ligands (Kennedy et al., 2011) and copper-free variants of the reaction, like 

SPAAC (Boyce and Bertozzi, 2011), have been developed for that purpose. SPAAC 

(Fig. 1C) involves cyclooctynes as spring-loaded variants of the alkyne reactant. 

SPAAC’s compatibility with living systems is better than that of CuAAC with non-

chelated copper ions, but not perfect (van Geel et al., 2012). Reaction rates of 

SPAAC with unmodified cyclooctynes are significantly slower than of CuAAC. The 

modification of cyclooctynes led to a significant increase in reaction rate, but the 

cyclooctyne-tagged probes are still laborious in synthesis (Sletten et al., 2014). In the 

special case of lipid modification it has to be noted that the cyclooctyne moiety, 

especially with additional modifications that enhance the reaction rate, is 

considerably bulkier and more prone to interfere with the structure of the lipid than 

the terminal alkyne.  

Using CuAAC, alkyne lipids can be detected with azide bearing reporters, or vice 

versa. Both strategies were applied successfully in many fields of lipid biology 

(reviewed in (Best, 2013)). This study focuses on the application of click labeling in 

enzymatic assays and lipid imaging (see chapters 1.1.3 and 1.1.4). In these 

applications alkyne lipids are more commonly used than azido-lipids, which might be 

due to a less interfering nature of alkyne compared to azide substitution at the 

terminal position of the hydrocarbon chain (Kuerschner and Thiele, 2014). Alkyne 

lipids have also been employed to study protein lipidation (Charron et al., 2009), 

lipid-protein interactions (Smith et al., 2009), and to trace fatty acid metabolism 

(Thiele et al., 2012). 

Dual labeling of biomolecules with CuAAC and a second reaction (bioorthogonal, 

and orthogonal to CuAAC) has been demonstrated with photoinitialized thiol-ene 

reactions (Mahmoud et al., 2011). This strategy using mutually bioorthogonal 

reactions will hopefully enable the simultaneous detection of multiple lipid species in 

the future. 

Unlike radiolabeling of lipids, the synthetic introduction of the small alkyne moiety 

into the lipid structure can be performed rather easily. For a sensitive and convenient 

detection of alkyne probes, the development of individual labeling protocols with the 
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appropriate azide reporters, copper catalysts and, in several cases, chelating ligands 

to accelerate the reaction, is also necessary and has been achieved for many 

applications in the last years. For example, click labeling of lipids for detection after 

their chromatographic separation, has benefitted strongly from the use of fluorogenic 

azide reporters (Sivakumar et al., 2004; Thiele et al., 2012). In lipid imaging, the 

feasibility of click labeling inside biological membranes has implications on the 

design of the detection reagents (see chapter 1.1.4). 

 

1.1.3 In vitro enzymatic assays to study enzymes of lipid metabolism 

For the understanding of lipid metabolism, knowledge about the enzymes involved is 

crucial. In vitro enzymatic assays provide information about the functional 

parameters of enzymatic reactions in well-defined systems. The determination of 

properties like substrate affinities and turnover of these enzymes sharpen our view 

on lipid metabolism. The description of these properties was made possible by the 

development of mathematical relations for enzyme kinetics, of which the model of 

Michaelis and Menten (Michaelis and Menten, 1913) is probably the best-known and 

still widely applied. It assumes the formation of a complex of the enzyme and the 

substrate prior to the formation of the product, and a constant concentration of this 

complex in a steady-state equilibrium. The kinetic constants associated with the 

concept are Vmax, the maximum reaction rate of the system, and Km, the substrate 

concentration at half of Vmax, also called the Michaelis-Menten constant.  

To obtain accurate measurements of kinetic parameters, the choice of the assay 

conditions is crucial, as is the use of the right lipid substrates. Since label-free 

detection of the product lipids is often laborious, labeled lipids are applied frequently. 

Radiolabeled substrates (Weiss et al., 1960) are still appreciated for their perfect 

representation of the natural lipids, but assays with fluorescent reporters are often 

more convenient and less expensive. However, the suitability of these substrates 

especially for enzymatic assays needs to be evaluated thoroughly. For example, 

Bandhuvula and colleagues used NBD- and BDP-labeled sphingosine-1-phosphate 

for a sphingosine-1-phosphate lyase assay (Bandhuvula et al., 2007; Bandhuvula et 

al., 2009). Their results showed that the BDP probe was more photostable and less 

polar than the NBD substrate, however its Km was elevated compared to the natural 
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or NBD substrate. The higher Km of the enzyme to the BDP probe may be tolerable 

in some applications, but not in others, where concentrations or kinetic parameters 

are measured. 

To overcome the cumbersome handling of radioactivity on one hand and the 

limitations of fluorescent probes on the other hand, a small, non-radioactive tag that 

is universally applicable is desirable. Therefore, in this study (chapter 3), the 

feasibility of a click-based method using alkyne lipids for in vitro enzymatic assays of 

lipid modifying enzymes from the families of lysophosphatidic acid acyltransferases 

(LPAATs), lysophosphatidylcholine acyltransferases (LPCATs), ceramide synthases 

(CerSs) and cholesterol oxidases (CO) was tested. 

 

1.1.4 Probes and detection reagents in click labeling for lipid imaging 

Microscopy imaging provides valuable information about the complex processes on 

the subcellular level and has greatly contributed to our understanding of the 

physiology of cells and organisms. Despite the advances in microscopy and the 

labeling of biomolecules, observing the intracellular localization and spatiotemporal 

dynamics of lipids remains a technical challenge. Due to the small and hydrophobic 

nature of their structure, the development of probes for lipid imaging is particularly 

difficult. Meticulous care has to be taken in the design of the probe as well as the 

interpretation of the data because inadequate labels are prone to create artifacts in 

lipid localization, trafficking and targeting to organelles. Furthermore, in membranes 

lipids are organized in domains with other lipids and proteins which are held together 

mainly by non-covalent interactions. These interactions contribute to the subtle 

regulation of membrane domains and the distribution of a lipid species among 

different endomembranes (van Meer et al., 2008). Tags only slightly too bulky, rigid, 

hydrophobic or hydrophilic, charged, basophilic or acidophilic can easily alter the 

behavior of the labeled lipid inside membranes by disturbing this delicate network. 

Furthermore, the fixation of lipids with chemical reagents like aldehydes is not 

achieved to a similar degree as for other biomolecules because lipids often lack 

reactive functionalities. The preservation of the subcellular lipid morphology during 

the preparation of fixed samples for microscopy thus does strongly depend on an 
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appropriate, gentle labeling protocol, as fixation cannot completely abolish lipid 

mobility (Tanaka et al., 2010). 

Recently, click labeling has been introduced as a tool to label lipids for microscopy 

imaging in fixed and living samples. If click labeling is performed in a living sample, 

SPAAC with cyclooctyne-tagged lipids is used to avoid the cytotoxic effects of 

copper(I) ions (Neef and Schultz, 2009; Haberkant et al., 2013). Concerns regarding 

lipid fixation are thus avoided. However, the resulting click-labeled lipid is rather 

strongly altered by the detection reagent and the improvement of labeling sensitivity 

by the synthesis of alternate octynes is laborious. CuAAC provides the possibility to 

introduce lipids or precursors with the smaller terminal alkyne tag into living cells. 

After fixation and subsequent click labeling the lipids can be detected (Jao et al., 

2009; Hofmann et al., 2014). Therewith, an altered metabolism or trafficking of click-

labeled lipids is prevented, but the copper-catalyzed click labeling reaction after 

fixation particularly depends on an optimized, detergent-free protocol to preserve 

lipid and membrane morphology. As the interest in lipid imaging is growing and 

enormous improvements to click labeling have been made in the last years, the 

limitations to both SPAAC and CuAAC will hopefully be overcome in the near future.  

This study focuses on the application of alkyne lipids and azide detection reagents 

for CuAAC in fixed cells. A fundamental obstacle for a sensitive and morphology-

preserving click labeling for microscopy is the fact that the reaction has to take place 

inside an intact biological membrane (Fig. 2). For a sensitive labeling, the azide 

detection reagent as well as the copper catalyst have to penetrate the membrane to 

gain access to the alkyne label (marked with yellow circles in Fig. 2) which for most 

alkyne lipids is buried deeply inside the membrane because of its position at the 

terminus of alkyl chains of e.g. cholesterol (Fig. 2, left) or fatty acids (Fig. 2, right). 

The design of the azide detection reagent can directly influence labeling sensitivity 

and should prevent the mobilization and extraction of the lipid upon click labeling. 

Azido-fluorophores have been used, as well as azido-biotin reporters that enable the 

subsequent detection by a fluorophore-avidin conjugate. The modularity of the latter 

strategy allows the choice from a wide spectrum of fluorophores, which is 

advantageous for co-imaging studies with other cell stains or fluorescent proteins 

whose emission spectrum cannot be altered. 
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Fig. 2: Click labeling of alkyne lipids in biological membranes. 
For fluorescent imaging of alkyne lipids, these need to be click-labeled in the environment of intact 
biological membranes. For CuAAC to take place, the azide detection reagent and the copper 
catalyst have to penetrate into the membrane to enable the reaction with the alkyne label (yellow 
circles), which is typically situated in the innermost part of the membrane. Alkyne-cholesterol 
((25R)-25-ethinyl-26-nor-3β-hydroxycholest-5-en, center) and alkyne-palmitate (16-heptadecynoic 
acid) incorporated into phosphatidylcholine (right) are shown as exemplary alkyne lipids next to and 
to scale to a dipalmitoylphosphatidylcholine (DPPC) bilayer (left). Measures of bilayer thickness are 
given in Angstrom, either including or excluding directly associated water molecules. DPPC bilayer 
modeled by Dr. Jeffrey Klauda, University of Maryland ((Klauda et al., 2010), see Materials and 
Methods (chapter 4.1)). 

It has been shown that the introduction of copper-chelating moieties into the azide 

reporter can greatly enhance the reaction rate of CuAAC, increasing the sensitivity 

for labeling proteins at the cell surface or biomolecules inside the cell (Uttamapinant 

et al., 2012; Bevilacqua et al., 2014). It is worthwhile to test if there is also a 

beneficial effect of copper chelation on the labeling of lipids in membranes. In other 

subcellular environments, the delivery of copper may represent the central issue. It is 

currently not known to which extent copper ions can penetrate into the very 

hydrophobic compartments of the cell, especially into the lipid droplet (LD) core 

(Kuerschner and Thiele, 2014).  

This study aims to contribute to the improvement of click labeling for lipid imaging by 

the optimization of the azide detection reagent (chapter 4.2.1). 
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1.2 Label-free methods and super-resolution techniques in lipid 
imaging 

Different characteristics of lipids can be used for their label-free detection in 

microscopy. Raman imaging observes the inelastic scattering of photons (Fig. 3, see 

figure legend for details). The Raman shift is characteristic for a given vibration of a 

functional group, and the many different chemical bonds of a molecule define its 

unique Raman spectrum. Thus Raman spectroscopy can detect functional groups or 

identify molecules. Strong Raman signals derive from vibrations of chemical bonds 

with large changes in polarizability of the molecule. This accounts for strong peaks of 

multiple bonds in Raman spectra, whereas the vibrations of highly polar bonds 

usually give weak Raman signals. Lipids generally display abundant C-C and C-H 

vibrations of alkyl chains. 

High-resolution lipid imaging is possible with spontaneous Raman scattering 

microscopy. It can precisely identify the different lipid species in the excited area and 

also measure the concentrations of molecules on the microscopic scale, like, for 

instance, of fatty acids with different length and degree of saturation (Wu et al., 2011; 

Hosokawa et al., 2014). However, since spontaneous Raman scattering is a rare 

event, signal intensities are generally weak. 

Lipid imaging is also performed with a variety of advanced Raman spectroscopy 

techniques, including coherent ones like CARS (coherent anti-Stokes Raman 

scattering) and SRS (stimulated Raman scattering). These use two coherent pulse 

lasers for excitation (at ωP and ωs, see Fig. 3), so that the difference in their 

frequencies matches the energy of the desired chemical bond vibration (Ωvib). This 

non-linear excitation leads to a strong amplification of the signal (Yu et al., 2014). 

Coherent Raman techniques are now more widely applied in lipid imaging than 

spontaneous Raman microscopy, because they display greatly enhanced sensitivity. 

However due to the non-linear excitation, special methods have to be employed for 

signal quantification and lipid composition analysis (Day et al., 2011). 
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Fig. 3: The Raman effect – energy diagrams of Raleigh and Raman scattering. 
From the ground state or a ground state with a higher vibrational energy level (Ωvib), incident (laser) 
photons (ωP) excite the chemical bond up to a higher, short-lived virtual energy level. Most of the 
photons scatter elastically without a change in photon energy (Raleigh scattering, left side). For a 
small proportion of the photons however, photon energy is absorbed by the chemical bond or 
vibrational energy absorbed by the photon, leading to the emission of a photon with lower (ωs, 
Stokes scattering) or higher (ωas, anti-Stokes scattering) energy than the incident photon, and 
consequently to the relaxation onto a ground state with a vibrational level that is different from the 
virtual state. This energy difference between incident and emitted photons is called the Raman shift. 
Stokes and anti-Stokes (inelastic) scattering events are detected in different Raman imaging 
techniques. Taken from (Yu et al., 2014). 

Besides the label-free detection of biomolecules, Raman microscopy is also suited to 

track lipid probes (Matthäus et al., 2012). This facilitates the study of spatiotemporal 

dynamics of a biomolecule of interest. Furthermore, if the tag displays a very strong 

Raman effect, the sensitivity of detection can be increased and hence acquisition 

times shortened, which is especially important for live cell imaging. 

The Raman peak of the C-C triple bond stretch of alkynes is very intense and lies in 

an otherwise very silent region regarding the Raman signals of cellular components. 

This, apart from its detection by bioorthogonal labeling, makes the alkyne moiety a 

very promising Raman label as well. This has stimulated the first studies on the 

applicability of alkyne labeled probes, including the lipid precursors propargylcholine 

and 17-octadecynoic acid, in Raman imaging (Yamakoshi et al., 2012; Hong et al., 

2014; Wei et al., 2014).  

 

Polarized light microscopy can provide information about the degree of order inside 

LDs. Already in the 1960s, birefringence was observed in some lipid-rich tissues and 

attributed to cholesterol-containing, but not triglyceride-rich, lipid accumulations 

(Stewart, 1961). Birefringence is a physical property of certain crystal materials, 

where an incident ray of light is split into two beams by polarization, which 

subsequently leads to double refraction. Birefringence can also occur in mesophases 

like liquid crystals, which show a near-order but not a long-range order. In LDs that 
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consist to a very high percentage of cholesterol esters (CE), stiff, rod-like molecules, 

such liquid crystals can form, and they are probably smectic, i.e. CE is orientated in 

concentric layers with the rods orientated along the radii of the spherical droplet 

(Engelman and Hillman, 1976). This leads to an anisotropy (directionally dependent 

property) of the CE-rich LDs in the passage of polarized light. In polarized light 

microscopy, a polarizer is put into the light beam before the specimen, so that 

linearly polarized light passes through the sample. Anisotropic (liquid) crystals refract 

the light and split it into two rays with different polarization, vibrating perpendicular to 

each other. In addition, retardation of one ray compared to the other is observed. By 

using a second polarizer positioned after the specimen, orientated perpendicular to 

the first one, only the delayed (extraordinary) ray is detected. Together with the liquid 

crystal geometry, this setup creates a bright formée cross pattern on birefringent LDs 

whereas LDs with lower CE content remain dark under polarized light (Weller, 1967). 

The threshold between birefringent and non-birefringent LDs probably lies at over 

90 % CE (Kellner-Weibel et al., 2001). 

Polarized light microscopy is applied to detect birefringent LDs, especially in tissues 

and cells that accumulate CE, like macrophages (Kellner-Weibel et al., 2001; Lada et 

al., 2002), or Kupffer cells in steatotic livers (Ioannou et al., 2013). With little 

additional equipment necessary, the method is fast and inexpensive, but also 

provides limited information. It is suited to distinguish between LDs that are very rich 

in CE, and those that contain less CE. A more sophisticated identification of the LD 

composition has recently been described by polarized third-harmonic generation 

(THG) microscopy (Bautista et al., 2014). 

 

Mass spectrometry imaging (MSI) can be used for spatial mapping of biomolecules, 

including lipids on biological surfaces (Gode and Volmer, 2013). Precise information 

about the lipid species is available, but absolute quantification is still limited. MSI 

also offers the opportunity to detect the specific metabolites of lipid probes labeled 

with stable isotopes (Lechene et al., 2006) or potentially with other small tags like 

terminal alkynes. 
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Several super-resolution techniques are currently enlightening fluorescence-based 

imaging of subcellular structures at resolutions unparalleled in conventional light 

microscopy, and they have recently been awarded with the Nobel Prize in Chemistry 

(Mockl et al., 2014). Different strategies were developed to overcome the diffraction 

limit of optical microscopy (Hell, 2009) and have already triggered many applications 

in cell biology, microbiology and neurobiology (reviewed in (Huang et al., 2010; 

Owen and Gaus, 2013)). 

Stimulated emission depletion (STED) microscopy (Klar et al., 2000) uses two laser 

beams to generate very narrow fluorescent focal spots (Fig. 4A). A Gaussian beam 

excites the fluorophore in the sample. A second beam (STED beam, doughnut 

beam), which is sent through a phase plate, is intense around the focal point of the 

excitation laser, but dark within (Fig. 4B). The wavelength of the STED laser is 

slightly longer than that of spontaneous fluorescence. The intense STED laser forces 

the excited fluorophores to return to the ground state under emission of fluorescent 

light at the red-shifted STED laser wavelength (stimulated emission). Thus, emission 

of light with the original wavelength of spontaneous fluorescence is depleted. The 

intensity of the STED laser determines the efficiency of depletion; a saturated 

depletion with high intensities is necessary. The depletion of fluorescence in the 

lateral and axial surrounding creates a focal point with dimensions multiple times 

smaller than the diffraction limit (Fig. 4C). 

Since the publication of the first working setup for STED (Klar et al., 2000), 

considerable improvements have further enhanced the lateral and axial resolution 

and reduced the necessary laser intensity (Vicidomini et al., 2011), making live-cell 

and multi-color imaging feasible (Tonnesen et al., 2011). STED microscopy has 

provided insight into lipid-protein interactions, lipid dynamics and organization of the 

plasma membrane (PM, Sieber et al., 2007; Mueller et al., 2011; Honigmann et al., 

2014; Saka et al., 2014). 
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Fig. 4: The principles of STED microscopy. 
A: Instrumental setup to create small focal points for fluorescence microscopy. B: Measured point-
spread functions for the excitation laser (left) and STED laser (right) in the x-z plane. C: Comparison 
of focal spots of STED and confocal microscopy. Surface plots of an x-z section for a confocal or 
STED setup. In this original setup, the FWHM (full width at half maximum) of the intensity profile 
along the z-axis was reduced from 490 nm to 97 nm. Slightly modified from (Klar et al., 2000). 
Copyright: National Academy of Sciences of the United States of America. 
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1.3 Lipid droplets and lipid droplet heterogeneity 

LDs are the primary intracellular organelles of lipid storage. They are evolutionarily 

highly conserved, and are found in almost all of the diverse mammalian cell types. 

Long regarded passive drops of fat, their dynamic nature and multiple functions have 

begun to be revealed since a few years. 

LDs consist of a hydrophobic core of neutral lipids like triacylglycerols (TAG) and CE, 

which is surrounded by a phospholipid monolayer (Fig. 5). The fatty acid composition 

of the hemimembrane phospholipids is characteristically different from that in other 

biomembranes (Tauchi-Sato et al., 2002), which partially may be due to the action of 

a remodeling machinery at the interface of LDs and the ER (Moessinger et al., 

2011). 

 

Fig. 5: Lipid droplet architecture. 
A phospholipid monolayer (red headgroups, black acyl chains) encloses a hydrophobic core of 
neutral lipids (yellow). Proteins are attached to LDs via different targeting motifs, monotopic hairpins 
(green), lipid anchors (blue), or peripheral binding, e.g. via amphipathic helices (gray). Illustration 
kindly provided by Mario Schöne. 

Unesterified sterols reside in the monolayer (Prattes et al., 2000), but their presence 

in the core has not been excluded so far. There might be internal structures of phase 

separated neutral lipids in the LD core (Czabany et al., 2008), which might influence 

lipolysis, but their existence still has to be confirmed. A variety of proteins localize to 

the LD monolayer. They have been identified by LD proteomic studies in many 

organisms and cell types (Yang et al., 2012) and can be grouped to some extend by 

their function: 
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Perilipins are a family of five related, abundant LD proteins that were shown to 

control LD lipolysis by the recruitment of lipases (PLIN1) or are thought to play 

similar roles in the regulation of LD metabolism (Bickel et al., 2009; Kimmel et al., 

2010). Other proteins serve functions in lipid metabolism (as anabolic or catabolic 

enzymes), are connected to the ubiquitination/ERAD machinery (Klemm et al., 2011; 

Spandl et al., 2011), or control LD characteristics like clustering (Lohmann et al., 

2013), fusion and lipid exchange (Gong et al., 2011), or motility (Welte, 2009). Viral 

proteins may also be present, and LDs are implicated in virus replication (Filipe and 

McLauchlan, 2015). The diversity of proteins attached to LDs is also reflected by the 

fact that there is not a single, universal targeting signal that causes proteins to be 

recruited to LDs. Instead, different targeting motifs are known (see Fig. 5), like 

amphipathic helices, hairpin loops, lipid anchors, or protein-protein interaction 

(Walther and Farese, 2012). The protein decoration of a LD can vary with the 

metabolic state and developmental stage of the cell (Bickel et al., 2009), which 

implies that the recruitment of proteins to LDs is tightly regulated. Membrane 

continuities between LDs and the ER exist, and several proteins are found to 

relocate from the ER to LDs in a regulated fashion (Martin et al., 2005; Wilfling et al., 

2013). Recently, involvement of the Arf1/COPI machinery has been implied in the 

recruitment of proteins to LDs (Soni et al., 2009; Wilfling et al., 2014). 

It is now commonly believed that LDs originate from the accumulation of neutral 

lipids in the ER, most likely by budding from the ER membrane (Ohsaki et al., 2009; 

Pol et al., 2014), but the exact mechanisms of LD biogenesis remain to be 

elucidated. Nascent and mature LDs can grow by local lipid synthesis, although 

fusion events as a cause of LD growth were also reported (Bostrom et al., 2005; 

Gong et al., 2011). The enzymes responsible for the synthesis of neutral lipids and 

phospholipids often show dual localization at the LD and the ER, and many are 

recruited to the LD under lipid loading conditions (Kuerschner et al., 2008; 

Moessinger et al., 2011; Wilfling et al., 2013). Others constitutively localize to the 

ER, notably ACAT (acyl-CoA cholesterol acyltransferase, also known as sterol O-

acyltransferase, SOAT), which esterifies cholesterol (Khelef et al., 1998). 

With its architecture, cell biology and integration into the metabolic network of the 

cell far more complex than previously recognized, LDs can fulfill diverse functions 

inside the cell, besides their classical and important role in the storage of lipids as an 
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energy source. In cooperation with the ER and other organelles, LDs contribute to 

the synthesis of specific lipids and thus provide building blocks for membranes (see 

above). They actively contribute to lipid and energy homeostasis (Konige et al., 

2014) and to the protection of the cell against lipotoxicity (Herms et al., 2013). LDs 

are further involved in temporal protein storage (Li et al., 2012), protein degradation 

pathways (Klemm et al., 2011; Spandl et al., 2011), as well as intracellular signaling 

and trafficking through the interaction with a variety of organelles (Fig. 6, from (Beller 

et al., 2010), see figure legend for details). 

LDs are also very dynamic organelles that can rapidly change their size, composition 

and intracellular localization. Importantly, the LD pool inside an individual cell will not 

react uniformly to external or internal stimuli. Cells have certain subpopulations of 

LDs, each of them characterized by different features. This has been shown for 

differential metabolic activity (Kuerschner et al., 2008), lipid content (Rinia et al., 

2008), protein content (Spandl et al., 2009) and mobility (Jungst et al., 2011). 

The functions of an LD subpopulation presumably are highly dependent on a specific 

set of parameters that characterizes it. Gaining more knowledge about the different 

LD pools and their dynamic features can provide us with fundamental insights in how 

LDs manage to fulfill their various functions in the complex interplay with other 

organelles.  

To this end, a closer look should be taken on the individual LDs inside the 

heterogeneous LD pool, to complement the global view. LD preparations from 

cellular extracts provide us with valuable and distinct information, e.g. about the 

protein or lipid content, but can detect only global changes. Local shifts in lipid or 

protein content might compensate each other globally or might only have a very 

small effect on the global scale. Furthermore, the purification of LDs from cellular 

extracts is challenging, and small LDs, like they presumably occur shortly after their 

biogenesis (Pol et al., 2014), are not reliably obtained in the floating fraction by 

ultracentrifugation (Ohsaki et al., 2014). Recent advances in lipid probes and the 

imaging of lipids will hopefully contribute to the understanding of LD heterogeneity on 

the intracellular and cell-to-cell level. 
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Fig. 6: Putative network of interactions of lipid droplets with other organelles. 
LD biogenesis occurs at the ER (1,3). Membrane bridges to the ER can remain (4) and lipids and 
proteins could be shuttled this way. LDs can also lose connection to the ER and grow by local 
synthesis and presumably fusion (2), and shrink by the action of lipases. Mitochondria associate 
with LDs and the ER (5). The association of LDs with peroxisomes could help to channel fatty acids 
into the latter organelle (6). LDs are found to localize between the ER and the Golgi (at the ERGIC, 
ER/Golgi intermediate compartment), and might interact with COPI/ COPII vesicles, or their 
machinery components (9). LD interaction with early endosomes has been shown in vitro (8). 
Caveolins associate with LDs. They might travel there from the PM by vesicular pathways, or via 
direct membrane contacts of the organelles (7). Abbreviations: CGN, cis-Golgi network, COPI/II, 
coat protein complexes I/II, TGN, trans-Golgi network. Illustration taken from (Beller et al., 2010).  
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1.4 Intracellular cholesterol trafficking and homeostasis 

Cholesterol is an essential constituent of mammalian cells. Its backbone structure 

consists of four condensed rings, rendering this part of the molecule very rigid. 

Through interactions with phospho- and sphingolipids, preferably those with 

saturated acyl chains (Ali et al., 2007) and with large headgroups that shield the 

hydroxy group from water ions (Huang and Feigenson, 1999; DiNitto et al., 2003), it 

regulates the ordering of lipids in the membrane. Thereby it controls membrane 

fluidity and water permeability (Simons and Vaz, 2004) and contributes to the 

establishment of membrane microdomains (van Meer et al., 2008). It has been 

proposed that the differential phospholipid composition of cellular membranes 

contributes to the establishment of cholesterol gradients between organelles by the 

varying cholesterol complexation potential. Excess cholesterol that exceeds this 

threshold and does not interact tightly with its lipid neighbors is thought to be more 

chemically active and displays an enhanced tendency to leave the membrane (Steck 

and Lange, 2010). This likely facilitates the trafficking of cholesterol between 

different membranes, through membrane continuities, spontaneous desorption and 

diffusion or with the help of membrane proteins or cytosolic lipid transfer proteins 

(LTPs). Several LTPs have been shown to bind cholesterol, and to transfer it 

between artificial membranes (Prinz, 2007) but in many cases the capacity and 

relevance of these transport processes for intracellular cholesterol trafficking are not 

established and it is not clear if the binding of the sterol rather serves a function in its 

sensing at different membranes. 

Besides through these non-vesicular transport processes, cholesterol can traffic in 

the cell via vesicular pathways, like the endosomal trafficking pathway that follows 

the endocytosis of lipoproteins and provides cholesterol for cellular needs in addition 

to its endogeneous synthesis (Ikonen, 2008). The question whether vesicular or non-

vesicular pathways prevail in cholesterol trafficking is not yet settled. Only few 

proteins in the complex intracellular cholesterol transport processes have yet been 

assigned defined functions. Information about lipid-protein and especially protein-

protein interactions in the pathways are still very limited, as is the understanding of 

the regulation of the pathways. Nevertheless, several models of intracellular 

cholesterol trafficking have been proposed. In Fig. 7 (from (Mesmin and Maxfield, 
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2009)), an overview of current concepts of cholesterol trafficking via vesicular and 

non-vesicular pathways is displayed (see figure legend for details).  

 

 

Fig. 7: Intracellular cholesterol trafficking. 
Low density lipoprotein (LDL) particles containing free and esterified cholesterol bind to the LDL 
receptor that mediates their endocytosis (1). The particles are transported to sorting endosomes (2). 
The receptor is then recycled via the endosomal recycling compartment (ERC, 4) whereas the lipids 
continue their journey in the vesicular pathway (membrane transport, black arrows) in late 
endosomes and lysosomes (3). Acid lipases (LAL) hydrolyze CE to free cholesterol, which can exit 
the endosomal system by a process that involves the proteins NPC1 and NPC2, and can then take 
a non-vesicular pathway to the PM (5). From endosomal compartments, cholesterol reaches the ER 
on vesicular pathways via the Golgi, or on non-vesicular routes. Excess cholesterol in the ER is 
esterified by ACAT and stored in LDs (8). Membrane contact sites between organelles, like the ER 
and the PM (7), can bypass the secretory pathway through the Golgi (9). Cholesterol in the PM can 
be transported to the ERC in a non-vesicular process (6). The transport from the ERC to the PM 
occurs in vesicular and non-vesicular pathways. Abbreviations: BMP, bis-(monoacylglycerol)-
phosphate; NPC, Niemann-Pick type C protein; SSD, sterol-sensing domain. Taken from (Mesmin 
and Maxfield, 2009).  

Trafficking studies have long been hampered by a lack of suitable cholesterol 

probes, but considerable progress in their development has been made in the last 

years (Maxfield and Wustner, 2012; Windsor et al., 2013; Hofmann et al., 2014), 

which will be of great value for the elucidation of cholesterol trafficking pathways and 

the identification of the proteins involved. 
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Although cholesterol travels quickly between different organelles, it is distributed 

heterogeneously among cellular membranes. It is enriched about 5-10-fold at the 

PM, in comparison to the ER, where cholesterol synthesis takes place (Maxfield and 

van Meer, 2010). This demonstrates that newly synthesized cholesterol is exported 

swiftly out of the ER (Ikonen, 2008). Despite the observation that it undergoes fast 

flip-flop translocation between bilayers (Steck et al., 2002), cholesterol is also 

described to preferentially localize to one leaflet of different biological membranes, 

most notably of the PM (Mondal et al., 2009). Solid methods for a precise 

quantification of the inter-organelle and transbilayer distribution of cholesterol are still 

lacking. 

Cellular cholesterol homeostasis is tightly regulated on multiple levels. The 

cholesterol concentration in the ER governs several regulatory processes (Maxfield 

and van Meer, 2010). Cholesterol synthesis takes place there, including the key step 

catalyzed by HMG-CoA-reductase. If the cholesterol concentration in the ER is high, 

the SREBP (sterol response element-binding protein) pathway is inhibited and genes 

for the synthesis of cholesterol and lipoprotein uptake are down-regulated (Ikonen, 

2008). HMG-CoA-reductase levels are also posttranscriptionally controlled. High 

cholesterol levels lead to the targeting of the enzyme for ERAD, the ER-associated 

proteasomal degradation (Sharpe et al., 2014). Parts of the machinery might be 

located at LDs (Ohsaki et al., 2014). The ER is also the site of cholesterol 

esterification by ACAT, which enables the storage of excess cholesterol as CE in the 

LDs (Buhman et al., 2000). Presumably, an increased cholesterol concentration in 

the ER also leads to higher levels in mitochondria, where this triggers the synthesis 

of 27-hydroxycholesterol and multiple subsequent responses (Mesmin and Maxfield, 

2009). The efflux of lipoprotein-bound cholesterol is a further control level of cellular, 

tissue and whole-body cholesterol homeostasis (Ikonen, 2008).  

 

1.5 Excess cholesterol and the liver 

The liver has a central role in general lipid and cholesterol metabolism. Hepatocytes 

are the main cholesterol-synthesizing cells of the body and the main platform for the 

handling of lipoproteins. This leads to a specialized cholesterol trafficking inside 

hepatocytes, compared to other cell types. Influx and efflux of cholesterol in a variety 
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of lipoproteins, cholesterol synthesis and lipoprotein assembly in the ER, as well as 

esterification of cholesterol and ester hydrolysis have to be carefully controlled by the 

hepatocyte to maintain its own cholesterol homeostasis and to fulfill the multiple 

functions in whole-body lipid homeostasis. 

VLDL (very low density lipoprotein) particles are assembled in the ER of hepatocytes 

for the delivery of lipids to extrahepatic tissues. Its apoprotein (ApoB) is lipidated 

cotranslationally with the help of the microsomal triglyceride transfer protein (MTP) to 

form a primordial lipoprotein particle, which is then further lipidated (Ikonen, 2008; 

Ohsaki et al., 2009), probably with the contribution of LDs that provide the lipids (Ye 

et al., 2009). The VLDL particles are then secreted via the Golgi apparatus and 

supply cholesterol from dietary sources or synthesis in hepatocytes in the forward 

cholesterol transport pathway to peripheral tissues. 

LDL and chylomicron remnants bind to the LDL receptor or via several other 

receptors of the hepatocyte, respectively, and are endocytosed and broken down. 

Hepatocytes also synthesize ApoA1 and can assemble high-density lipoproteins 

(HDL) from it. In the reverse cholesterol transport, hepatocytes receive lipids on HDL 

from peripheral tissues.  

Cholesterol esterification at the ER is catalyzed by two enzymes, ACAT1 and 

ACAT2. Both ACATs are expressed in the liver, but controversial data have been 

published regarding their cellular distribution in this organ. ACAT1, which is 

expressed quite ubiquitously throughout the human body, is present in Kupffer cells 

(Sakashita et al., 2000), the resident macrophages of the liver, and was also found in 

hepatocytes (Chang et al., 2000). In human hepatocytes, ACAT1 is most likely 

present at low constitutive levels, whereas the expression of ACAT2 can be induced 

in this cell type to very high levels under several circumstances, like in the fetal liver 

or in patients with gallstones (Chang et al., 2000; Parini et al., 2004; Chang et al., 

2009). It is hypothesized that the main role of ACAT2 is the esterification of 

cholesterol for export as lipoproteins, whereas ACAT1 primarily esterifies cholesterol 

for intracellular storage in LDs, a more general process that can also take place in 

non-lipoprotein producing cells (Buhman et al., 2000). Data from several studies 

support this hypothesis (Liang et al., 2004; Temel et al., 2007), but so far have not 

explained the mechanisms behind the differential roles of the enzymes. 
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Non-alcoholic fatty liver disease (NAFLD) affects about one in five adults (Chalasani 

et al., 2012) and ranges from simple liver steatosis, over non-alcoholic 

steatohepatitis (NASH) to liver fibrosis, cirrhosis and hepatocellular carcinoma. 

Whereas simple steatosis alone is considered relatively benign and reversible, a 

small proportion of NAFLD patients develop NASH, which proceeds to other 

aggressive, non-reversible inflammatory liver conditions. Advances in the 

understanding of NASH and NAFLD pathogenesis are needed to improve the 

prevention and treatment of these diseases. 

Regarding the progression of NAFLD, different theories exist. The two-hit hypothesis 

states that simple steatosis progresses to NASH upon inflammatory stimuli like 

oxidative stress or proinflammatory cytokines (Day and James, 1998). On the other 

hand, simple steatosis and NASH might be two separate diseases, because recent 

data suggest that steatosis is not a prerequisite for inflammation (multi-parallel 

model, Tilg and Moschen, 2010; Wouters et al., 2008). Lipotoxicity has been 

proposed to contribute to the development of NASH. Free fatty acids and their 

derivatives have been the chief suspect in the search for the hepatotoxic agents 

(Neuschwander-Tetri, 2010), but growing evidence exists that the hepatic 

accumulation of cholesterol may also be cytotoxic (Van Rooyen et al., 2011; Arteel, 

2012). Several intracellular effects of elevated hepatic cholesterol have been 

accounted for its toxicity and for NASH progression (reviewed in (Musso et al., 

2013)), like mitochondrial oxidative injury, ER stress and the generation of toxic 

oxysterols. By the release of inflammatory signals from apoptotic and necrotic 

hepatocytes (Gan et al., 2014), Kupffer cells might be activated, leading to NASH, 

which is characterized by the “ballooning” of hepatocytes (Hubscher, 2006) and 

crown-like structures around them, formed by Kupffer cells incorporating the lipids of 

the dead hepatocytes (Ioannou et al., 2013). 

This study addresses the effects of excess cholesterol on hepatocytes. It seeks to 

investigate the esterification of excess cholesterol and its storage on LDs as a 

protective action against cytotoxicity (chapter 4.2.2). 
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2 Aims of this thesis 

The general aim of this thesis was to contribute to the understanding of lipid 

metabolism, localization and trafficking through the development and application of 

labeled alkyne lipid probes and azide detection reagents. The thesis consists of two 

main sections, which are referred to as “Part I” and “Part II”: 

 

Part I: Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays 

• Development of assays for key enzyme families of lipid metabolism, including 

several acyltransferases and hydrolases 

• Evaluation of the alkyne lipid substrates: Determination of the kinetic 

characteristics of alkyne lipids and comparison to the natural substrates 

 

Part II: Highly sensitive alkyne lipid imaging  

• Synthesis of azide detection reagents of variable length and with or without 

copper chelating potential of the linker, and evaluation of click labeling 

sensitivity with the novel reagents 

• Validation and optimization of the click labeling protocol for epifluorescence 

microscopy and super-resolution imaging using STED 

• Application of the novel click labeling protocol for the imaging of alkyne-

cholesterol to investigate its transport to and storage on LDs in HuH7 cells 
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3 Alkyne lipids as substrates for click chemistry-based 
in vitro enzymatic assays (Part I) 
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Declaration concerning chapter 3 

The following section of the thesis (chapter 3) was previously published as: 

Gaebler, A., R. Milan, L. Straub, D. Hoelper, L. Kuerschner, and C. Thiele (2013). 
Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays. J. 
Lipid Res. 54, 2282-2290. 
 

This publication is cited literally here. Minor modifications were made to enhance the 

intelligibility of the text in the context of the thesis and to include one additional figure 

(Fig. 10). The layout and numbering of the figures were adjusted to fit into the format 

of the thesis, as was the introduction of abbreviations. Synthetic procedures included 

in the supplementary information of the publication were moved to the main text of 

Material and Methods.  

 

Furthermore, the cholesterol oxidase assay (Fig. 14) that was not part of the 

publication given above was included into the chapter. The cholesterol oxidase 

assay was published in: 

Hofmann, K., C. Thiele, H. Schott, A. Gaebler, M. Schoene, Y. Kiver, S. Friedrichs, 
D. Lutjohann, and L. Kuerschner (2014). A novel alkyne cholesterol to trace cellular 
cholesterol metabolism and localization. J. Lipid Res. 55, 583-591. 
 

Literal citations from these two publications, and text added during the preparation of 

this thesis are highlighted in chapter 3 as follows: 

• Original text from (Gaebler et al., 2013) and the supplementary text thereto 

are written in Arial font, without annotation.  

• Text from (Hofmann et al., 2014) is written in Arial font, the paragraphs are 

annotated with a footnote. 

• New	
  text	
  is	
  written	
  in	
  Cambria	
  font.	
  

 
Contributions of the PhD candidate to the published papers given above: 

The experiments cited here in chapter 3 from the publications given above were 

designed and performed by myself, with the exception of alkyne lipid syntheses, 

which were kindly performed by Prof. Christoph Thiele. I thankfully acknowledge 
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assistance in the experiments for the establishment of the CerS assay by Robin 

Milan (Fig. 13B) and contributions to the syntheses by Dominik Hoelper (alkyne-

OOPC) and by Leon Straub (PLpPC). Alkyne-oleoyl-CoA was synthesized by myself. 
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3.1 Materials and Methods (Part I) 

3.1.1. Chemical synthesis of alkyne lipids 

The	
   chemical	
   syntheses	
   of	
   alkyne-­‐oleate	
   (nonadec-­‐9-­‐cis-­‐en-­‐18-­‐ynoic	
   acid),	
   alkyne-­‐palmitate,	
   and	
   all	
  

alkyne-­‐labeled	
  acylglycerols	
  used	
  in	
  this	
  study	
  were	
  described	
  previously	
  (Thiele	
  et	
  al.,	
  2012).	
  

 

Alkyne-sphinganine ((2S,3R)-2-aminooctadec-17-yn-1,3-diol)  

 

Fig.	
  8	
  shows	
  an	
  outline	
  of	
  the	
  synthesis	
  of	
  alkyne-­‐sphinganine	
  (7).	
  

 

Fig. 8: Synthesis of alkyne-sphinganine (7). 
Abbreviations are explained in the main text. 

tert-Butyl-(4S,1'R)-4-(1'-hydroxypentadec-2'-yn-15-(2-tetrahydropyranyloxy)-yl-2,2-dimethyl-3-

oxazolinecarboxylate) (1) was synthesized from 2-tetrahydropyranyloxy (THP)-protected 1-

tetradecyn-14-ol and Garner’s aldehyde according to Kozikowski and colleagues (Kozikowski et al., 

1996). 

 

tert-Butyl-(4S,1'R)-4-(1'-hydroxypentadec-15-(2-tetrahydropyranyloxy)-yl-2,2-dimethyl-3-

oxazolinecarboxylate) (2): 400 mg of (1) were dissolved in 10 ml ethanol (EtOH). After addition of 

40 mg 10 % palladium on carbon, the mixture was stirred for 2 h at 1 bar H2 at RT. 40 ml EtOH were 

added and the catalyst pelleted by centrifugation at 5000 g for 15 min. Evaporation of the solvent 

yielded the product in quantitative yield.  

1H-NMR (400 MHz, deuterated chloroform (CDCl3)): 4.55 (m, 1H, THP C2H), 4.1-3.3 (5 x m, 8H, 
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C4H, C5H2, C1'H, C15'H2, C6H2), 1.8 and 1.68 (2 x m, 2H, THP C3H2), 1.6-1.36 (m, b, 23H, C2'H2, 

C14'H2, THP C4H2, THP C5H2, 5 x methyl-CH3) 1.36-1.1 (m, b, 22H, C3'-13'H2). 

 

tert-Butyl-(4S,1'R)-4-(1'-acetoxypentadec-15-hydroxy)-yl-2,2-dimethyl-3-oxazolinecarboxylate (4): 
370 mg of (2) were dissolved in 5 ml dichloromethane (DCM). After addition of 0.5 ml pyridine (Pyr), 

250 µl acetic anhydride (Ac2O) and 40 mg 4-dimethylaminopyridine (DMAP), the mixture was stirred 

for 30 min at RT. After addition of 20 ml hexane/ethyl acetate 1/1 and 20 ml brine, the organic phase 

was collected and dried to give the acetylated product in high purity and yield. The residue (3) was 

dissolved in a mixture of 6 ml acetone, 2 ml methanol (MeOH) and 30 mg toluenesulfonic acid 

(TsOH). After stirring at RT for 2 h, 20 ml hexane/ethyl acetate 1/1 and 10 ml saturated aqueous 

NaHCO3 were added. The organic layer was separated, evaporated and the residue purified by silica 

gel chromatography (solvent gradient hexane/ethyl acetate 3/1 to 1/1) to give 230 mg pure (4). 

1H-NMR (400 MHz, CDCl3): 5.33 (m, 1H, C1'H), 4.1-3.8 (3 x m, 3H, C4H, C5H2), 3.61 (t, 2H, C15'H2), 

2.04 (s, 3H, acetyl CH3), 1.6-1.38 (m, b, 19H, C2'H2, C14'H2, 5 x methyl-CH3) 1.38-1.1 (m, b, 22H, 

C3'-13'H2). 

 

tert-Butyl-(4S,1'R)-4-(1'-hydroxyhexadec-15-yn)-yl-2,2-dimethyl-3-oxazolinecarboxylate (6): 

a) Pyridinium chlorochromate (PCC) oxidation to the aldehyde: 200 mg of (4) were dissolved in 5 ml 

DCM. After addition of 200 mg powdered molecular sieves (MS 4 Å) and 220 mg PCC, the mixture 

was stirred for 30 min at RT. The solvent was evaporated and the residue extracted with 3 x 10 ml 

hexane/ethyl acetate 3/1. The extracts were evaporated and the aldehyde (5) isolated by silica gel 

chromatography (solvent hexane/ethyl acetate 1/1). 

b) Bestmann-Ohira reaction: the aldehyde was stirred with 140 mg dimethyl (1-diazo-2-

oxopropyl)phosphonate (Bestmann-Ohira reagent) and 200 mg potassium carbonate in 6 ml MeOH 

for 30 min at RT. TLC (thin layer chromatography) control showed formation of the alkyne and a weak 

band of lower mobility. Upon prolonged stirring (3 h at RT, 1h at 45 °C) more than 90 % of the 

material was found in the lower band. After addition 20 ml hexane/ethyl acetate 1/1 and 20 ml brine, 

the organic phase was collected and dried and the residue purified by silica gel chromatography 

(solvent hexane/ethyl acetate 3/1) to give 130 mg pure (6) 

1H-NMR (400 MHz, CDCl3): 4.1-3.4 (m, 4H, C1'H, C4H, C5H2), 2.16 (dt, J = 7.2 Hz, 2.7 Hz, 2H, 

C14'H2), 1.92 (t, J = 2.7 Hz, 1H, C16'H), 1.6-1.37 (m, b, 19H, C2'H2, C13'H2, 5 x methyl-CH3) 1.37-1.1 

(m, b, 20H, C3'-12'H2). 

 

(2S,3R)-2-Aminooctadec-17-yn-1,3-diol (7): 100 mg of (6) were dissolved in 4 ml tetrahydrofurane 

(THF) and 1 ml concentrated HCl and stirred for 2 h at RT. The solvent was evaporated in vacuo, the 

residue dissolved in 10 ml water and the aqueous phase extracted with 10 ml hexane/diethyl ether 

4/1. The aqueous phase was brought to pH 10 by addition of NaOH and extracted with 4 x 5 ml of 
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DCM. The pooled DCM phases were evaporated and the residue purified by silica gel 

chromatography (solvent CHCl3/MeOH/aq. NH3 40/10/1) to give 47 mg pure (7). 

1H-NMR (400 MHz, CD3OD): 3.72 (dd, 1H, C1aH), 3.50 (m, J = 7.2, 1H, C3H), 3.46 (dd, 1H, C1bH), 

2.71 (ddd, 1H, C2H), 2.15 (m, 3H, C16H2, C17H), 1.6-1.45 (m, b, 4H, C4H2, C15H2) 1.45-1.2 (m, b, 

20H, C5-14H2). 

13C-NMR (400 MHz, CDCl3 + 10 % CD3OD): 84.75 ppm (C17), 73.88 (C3), 67.97 (C18), 63.05 (C1), 

55.65 (C2), C4-C16: 33.66, 29.60, 29.54 (large signal), 29.51, 29.41, 29.02, 28.67, 25.95, 18.28. 

 

Dihydroceramides (N-stearoyl-D-erythro-sphinganine, 18:0-dhCer and N-nervonoyl-D-
erythro-sphinganine, 24:1-dhCer) 

The dihydroceramides were synthesized from alkyne-sphinganine and stearic acid or nervonic acid. 

The acid was transformed to the N-hydroxysuccinimide (NHS) ester with N-chlorosuccinimide (NCS) 

and dicyclohexylcarbodiimide (DCC) and alkyne-sphinganine was added to the reaction mix. The 

crude products were purified by preparative TLC. 

ESI-MS for N-stearoyl-D-erythro-sphinganine: calculated for C36H69NO3: 564.6 [M+H]+, 586.5 

[M+Na]+, found: 564.6 [M+H]+, 586.5 [M+Na]+. ESI-MS for N-nervonoyl-D-erythro-sphinganine: 

calculated for C42H79NO3: 668.6 [M+Na]+, found: 668.6 [M+Na]+. 

 

Alkyne-PAPA (1-(16-heptadecynoyl)-2-arachidonyl-sn-glycerol-3-phosphate)  

Alkyne-PAPA was prepared by phosphorylation (Stowell and Widlanski, 1995) of 1-(heptadec-16-

ynoyl)-2-arachidonyl-sn-glycerol, which was synthesized by sequential acylation of protected glycerol 

using the procedure described by Neef and Schultz (Neef and Schultz, 2009) with minor 

modifications. Trimethylphosphite (67 mg, 0.54 mmol) was dissolved in 1.5 ml DCM and reacted with 

124 mg (0.49 mmol) iodine. The mixture was then added dropwise with stirring at 0 °C to a solution of 

282 mg (0.45 mmol) 1-(heptadec-16-ynoyl)-2-arachidonyl-sn-glycerol and 142 µl pyridine in 5 ml 

DCM. After 2 h, the reaction was allowed to come to RT, the solvents were evaporated in vacuo and 

the residue subjected to silica column chromatography (hexane/ethyl acetate 2/1 to 1/1) to obtain the 

protected PA. For deprotection, the material (about 300 mg) was dissolved in 1 ml DCM and treated 

with 300 µl bromotrimethylsilane for 2 h. After drying in vacuo, the residue was stirred with 5 ml CHCl3 

and 400 µl 25 % NH3 for 30 min. After drying in vacuo, the residue was subjected to silica column 

chromatography (CHCl3/MeOH/5 % aq. NH3 65/24/5) to obtain 240 mg of Alkyne-PAPA. 

 

Alkyne-OLPA (1-(nonadec-9-cis-en-18-ynoyl)-sn-glycerol-3-phosphate) 

Alkyne-OLPA was synthesized by selective acylation of sn-glycerol-3-(diethylphosphate) and 

subsequent deprotection. 

sn-glycerol-3-(diethylphosphate): A mixture of 1.24 g (4.9 mmol) iodine and 900 mg (5.4 mmol) 

triethylphosphite in 15 ml DCM was slowly added to a solution of D-isopropylideneglycerol (sn-3-OH; 
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594 mg, 4.5 mmol) and 1.42 ml pyridine in 25 ml DCM. After stirring for 1 h, the pyridinium salt was 

pelleted by centrifugation and the solvent was evaporated in vacuo. The residue was subjected to 

silica column chromatography (hexane/ethyl acetate/EtOH 50/50/3). 1.1 g of the protected 

intermediate were dissolved in 100 ml MeOH followed by addition of 100 µl acetyl chloride. The 

mixture was stirred for 16 h, 100 µl triethylamine were added and the solvent evaporated in vacuo. 

The residue was dissolved in 10 ml ethyl acetate, centrifuged and the supernatant evaporated to 

obtain 900 mg product. 

1H-NMR (400 MHz, CDCl3/CD3OD 2/1): 4.43 (s, 2H, -OH by exchange with MeOD), 4.15 (m, 4H, 

ethyl-CH2), 4.0-3.9 (m, 2H, C2H + C1H), 3.77 (m, 1H, acetyl C1H), 3.52 (m, 2H, C3H2), 1.28 (2 x t, 

6H, ethyl-CH3). 

Alkyne-OLPA: Alkyne-oleic acid (150 mg, 0.5 mmol) was stirred with 2 ml thionylchloride at 65 °C for 

2 h. Excess thionylchloride was evaporated in vacuo and the residue (i. e. the acyl chloride) dissolved 

in 2 ml DCM. This solution was slowly added at -78 °C to a stirred solution of 145 mg (0.6 mmol) sn-

glycerol-3-(diethylphosphate) and 140 µl (1.2 mmol) 2,6-lutidine in 3 ml DCM. After stirring for 2 h 

at -78 °C and 30 min at RT, 100 µl MeOH were added and the solvents evaporated in vacuo. The 

residue was subjected to silica column chromatography (hexane/ethyl acetate/MeOH 50/50/3) to 

obtain 149 mg of the protected alkyne-OLPA. For removal of the ethyl groups, 120 mg were treated 

with 500 µl DCM, 200 µl N,O-bis-trimethylsilylacetamide and 400 µl bromotrimethylsilane for 1 h. After 

removal of all solvent, the residue was dissolved in 5 ml 5 % water in MeOH and stirred for 30 min. 

100 ml 25 % aq. NH3 were added, the solvents removed in vacuo, and the residue subjected to silica 

column chromatography (CHCl3/MeOH/H2O 40/50/10) to obtain 50 mg of alkyne-OLPA. 

1H-NMR (400 MHz, CDCl3/CD3OD 2/1): 5.32 ppm (m, 2H, olefinic CH), 4.64 (s, broad 6H, -OH and 

NH3 by exchange with MeOD), 4.2-3.7 (5 x m, 5H, glycerol CH), 2.33 (t, 2H, C2H2), 2.18 (dt, 2H, 

C17H2), 2.08-1.95 (m, b, 5H, C8,11H2, C19H),  1.62 (m, 2H, C3H2), 1.52 (m, 2H, C16H2), 1.43-1.25 

(m, b, 16H, C4-7,12-15H2). 

 

Alkyne-oleoyl-CoA (nonadec-9-cis-en-18-ynoyl coenzyme A) 
The synthetic procedure was adapted from Kawaguchi and colleagues (Kawaguchi et al., 1981), 

purification from Taylor and colleagues (Taylor et al., 1990). Alkyne-oleate (3 mg) was dissolved in 

100 µl dry THF and a solution of carbonyldiimidazole (1.8 mg) in 100 µl THF was added. After 

incubation at RT for 30 min, the solvent was evaporated and the residue dissolved in 200 µl THF/H2O 

2/1 After the addition of coenzyme A (8.2 mg) in 0.5 ml THF/H2O 2/1, the pH of the reaction mix was 

adjusted to 7.0-7.5 with 1 N NaOH and the reaction was incubated under Ar for 4 h. THF was 

evaporated and 3-(N-morpholino)propansulfonic acid (MOPS) buffer (pH 7.4) added to a 

concentration of 100 mM. The reaction mix was loaded directly on a Sep-Pak C18 column, which had 

been activated with MeOH and equilibrated with MOPS buffer. After application of the reaction mix, 

the column was washed/eluted with 0.5 ml of 100 mM MOPS pH 7.4, 1 ml MeOH/H2O 1/1 and 10 ml 

MeOH, consecutively. Fractions were analyzed by TLC (H2O/n-butanol/acetic acid 30/50/20), and the 

product containing fractions combined and evaporated. Residual alkyne-oleate was removed by 
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extraction: To the methanolic crude product solution the same volume of an aqueous solution of HCl 

(pH 3.5) was added and the aqueous phase extracted three times with 200 µl hexane. Removal of 

alkyne-oleate was monitored by TLC. The aqueous phase was evaporated to yield alkyne-oleoyl-CoA 

(0.6 mg). Yield and purity of the product were determined by click reaction and TLC. 

 

pPC (propargyl-phosphatidylcholine)  

pPC was synthesized by transphosphatidylation of egg yolk phosphatidylcholine: A mixture of 6.72 g 

of propargylcholine bromide and 168 U [µmol/h] phospholipase D (Streptomyces spec.) in 170 ml of 

acetate buffer (100 mM sodium acetate, pH 5.6, 40 mM CaCl2) was added to a solution of 4.8 g egg 

yolk PC in 1.3 l diethylether. After vigorous stirring for 24 h, the organic phase was separated and the 

solvent evaporated. The residue was separated by silica column chromatography (CHCl3/MeOH/H2O 

65/25/2) to yield 3.2 g product. 

1H-NMR (400 MHz, CDCl3): 5.32 (m, 4H, fatty acid olefinic H), 5.19 (m, 1 H, C2H), 4.70 (d, 2H, 

propargyl-CH2) 4.38 (m, 2H, POCH2), 4.35 (m, 1 H, C1H), 4.11 (m, 1H, C1H), 3.98 (m, 4H, C3H2 and 

NCH2), 3.43 (s, 6H, N(CH3)2), 2.92 (t, 1H, propargyl-CCH), 2.27 (m, 4H, fatty acid C2H2), 2.00 (m, 4H, 

fatty acid allylic CH2), 1.55 (m, 4H, fatty acid C3H2), 1.17-1.30 (m, 42H, fatty acid CH2), 0.85 (t, 6H, 

fatty acid CH3). 

 

PLpPC (palmitoyl-lyso-propargyl-PC) 
PLpPC by PLA2 cleavage of pPC: Crotalus atrox snake venom (5 mg) was dissolved in 5 ml buffer 

(0.1 M Tris-HCl, pH 8.0, 20 mM CaCl2) and stirred with a solution of 1.0 g phosphatidyl-

propargylcholine in 40 ml diethyl ether for 2 h at RT. The solvent was evaporated and the residue 

subjected to silica gel chromatography using CHCl3/MeOH/H2O 65/35/8 as a solvent to yield 0.73 g 

product. 

1H-NMR (400 MHz, D2O): 4.35 (d, 2 H, propargyl-CH2) 4.29 (m, 2H, POCH2), 4.14 (m, 1H, C1H), 4.05 

(m, 1H, C1H), 3.97 (m, 2H, C2H2), 3.87 (m, 1H, C3H), 3.75 (m, 2H, NCH2), 3.65 (t, 1H, propargyl-

CCH), 3.25 (s, 6H, N(CH3)2), 2.32 (m, 2H, fatty acid C2H2), 1.55 (m, 2H, fatty acid C3H2), 1.17-1.30 

(m, 25H, fatty acid CH2), 0.82 (t, 3H, fatty acid CH3). 

 

Alkyne-OLPC (1-(nonadec-9-cis-en-18-ynoyl)-sn-glycerol-3-phosphocholine) 

Di-(alkyne-oleoyl)-PC (alkyne-OOPC) was prepared by acylation of sn-3-glycerophosphocholine with 

alkyne-oleate: Alkyne-oleate (200 mg) and 1,1-carbonyldiimidazole (CDI, 133 mg) were dissolved in 

0.5 ml THF. 120 mg of a CdCl2 adduct of sn-3-glycerophosphocholine and 6.69 mg DMAP in 1 ml 

dimethylformamide (DMF) were added. The reaction mixture was incubated in an ultrasound bath for 

4.5 h, then at 40 °C for approximately 48 h. To the reaction mixture 8 ml CHCl3 and 3 ml MeOH were 

added. The solution was washed with H2O and with MeOH/H2O 1/2. The crude product was purified 

over a mixed bed ion exchange column (Amberlite® MB-150 Resin, Supelco) with CHCl3/MeOH/H2O 
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5/4/1, and by chromatography on silica gel with CHCl3/MeOH/H2O (65/25/4) to yield alkyne-OOPC 

(46 mg). 

Alkyne-OLPC: PLA2 cleavage of alkyne-OOPC was performed analogously to the protocol for pPC 

cleavage to PLpPC. 

 

Alkyne-palmitoylethanolamide (N-(16-heptadecynoyl)ethanolamine) and alkyne-
oleoylethanolamide (N-( nonadec-9-cis-en-18-ynoyl)ethanolamine) 

Alkyne-palmitate or alkyne-oleate was reacted with DCC and NCS to yield the NHS-ester, to which 2-

aminoethanol was added without prior isolation of the ester. The crude products were purified by silica 

gel chromatography. 

1H-NMR of alkyne-palmitoylethanolamide (400 MHz, CDCl3): 5.91 (b, 1H, NH), 3.70 (m, 2H, C1’H2), 

3.41 (m, 2H, C2’H2), 2.7-2.5 (b, 1H, OH), 2.16 (2x t, 4H, C2H2 and C15H2), 1.92 (t, 1H, C17H), 1.61 

(m, 2H, C3H2), 1.50 (m, 2H, C14H2), 1.4-1.2 (m, 20H, C4-13H2). 

1H-NMR of alkyne-oleoylethanolamide (400 MHz, CDCl3): 6.00 (b, 1H, NH), 5.32 (m, 2H, C9H and 

10H), 3.70 (m, 2H, C1’H2), 3.40 (m, 2H, C2’H2), 2.8-2.6 (b, 1H, OH), 2.16 (m, 4H, C2H2 and C17H2), 

1.99 (t, 4H, C8H2 and C11H2), 1.92 (t, 1H, C19H), 1.61 (m, 2H, C3H2), 1.50 (m, 2H, C16H2), 1.4-1.2 

(m, 16H, C4-7H2, C12-15H2). 

 

3.1.2 Methods 

E. coli culture and preparation of microsomal fractions 

E. coli (strain RosettaTM 2 pLysS, Merck Millipore) cultured in Luria Broth at 37 °C to an O.D.600 of 1.6 

were harvested by centrifugation at 3000 g for 10 min. Microsomal fractions were prepared according 

to Lewin and colleagues (Lewin et al., 1999), frozen in liquid nitrogen and stored at -80 °C. The 

protein concentration in the microsomes was determined with the BioRad Bradford Assay Kit using 

bovine serum albumin (BSA) as a standard. 

 

Cell culture and preparation of cell lysate 

HuH7 cells were grown in RPMI 1640 (PAN Biotech #P04-17500) supplemented with 10 mM HEPES 

buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 0.1 mM non-essential amino acids, 2 mM 

L-Glutamine, 10 % fetal calf serum (FCS), at 5 % CO2. Cells were washed, scraped into ice-cold 

buffer (20 mM HEPES/NaOH, pH 7.0, 200 mM sucrose) and homogenized in a cooled EMBL cell 

cracker (HGM, Heidelberg, Germany) with 5 double strokes and a maximum clearance of 18 µm. The 

lysate was centrifuged at 500 g for 5 min at 4 °C, the supernatant frozen in liquid nitrogen and stored 

at -80 °C. The protein content of the lysate was determined with the bicinchoninic acid assay kit 

(Pierce) using BSA as a standard. 
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Animals and preparation of tissue microsomal fractions 

Membrane fraction samples were prepared of the brain, liver and kidneys of C57BL/6 wild-type (+/+) 

and CerS2-deficient mice (-/-) (one individual each, littermates, 13 to 14 weeks old) according to the 

protocol described by Imgrund and colleagues (Imgrund et al., 2009), frozen in liquid nitrogen and 

stored at -80 °C. A total lysate of wild-type liver was also prepared. The protein content of the 

microsomal fractions, and of liver lysate was determined with the bicinchoninic assay kit (Pierce) 

using BSA as a standard. 

 

Enzymatic assays 

All assays were performed in 1.5 ml glass	
  vials	
   (CO	
  assay)	
  or	
  plastic	
   reaction	
   reaction	
   tubes	
   (all	
  other	
  

assays) in a total volume of 100 µl. The reaction was started by addition of the pre-warmed reaction 

mix to the enzyme preparation and the tubes were incubated in a heating block (Eppendorf 

Thermomixer comfort) under shaking (1100 rpm). Incubation times and the amount of enzyme 

preparation were optimized for each assay (data not shown) to ensure substrate saturation and 

linearity of the reaction rate with regard to time and enzyme amount. 

 

LPAAT assay 
For the kinetic studies, different concentrations of alkyne-OLPA and 50 µM oleoyl-CoA, or various 

concentrations of PLPA (1-palmitoyl-lysophosphatidic acid, Avanti Polar Lipids #830855) and 50 µM 

alkyne-oleoyl-CoA were incubated with 2.06 µg (protein) E. coli microsomes in LPAAT buffer 

(Moessinger et al., 2011; 60 mM Tris/HCl, pH 7.5, 3 mM MgCl2, 0.6 mg/ml lipid-free BSA (Applichem 

#A0848)) for 5 min at 30°C. For the measurement of the acyl-CoA specificity (Fig. 11D, 5 min 

incubation) and the TLC displayed in the results section (Fig. 11C, 10 min incubation), 4 µM alkyne-

OLPA and 100 µM acyl-CoA were used.  

 

LPCAT assay 

For the kinetic studies, different concentrations of alkyne-OLPC or PLpPC and 150 µM oleoyl-CoA 

were incubated with 5 µg (protein) HuH7 lysate for 15 min at 30 °C in LPCAT buffer (60 mM Tris/HCl, 

pH 7.4, 3 mM MgCl2, 0.6 mg/ml lipid-free BSA). For the TLC that shows the setup of the assay (Fig. 

12B), 20 µM lysophosphatidylcholine, 50 µM oleoyl-CoA and 5 µg (protein) HuH7 lysate were 

incubated for 30 min. 

 

CerS assay 

The kinetic measurements were performed with different concentrations of alkyne-sphinganine, 

50 µM nervonoyl(24:1)-CoA and 5 µg (protein) mouse wild-type liver microsomes. The assay was 

incubated for 20 min at 37 °C in CerS buffer (20 mM HEPES/KOH, pH 7.4, 25 mM KCl, 250 mM 

sucrose, 2 mM MgCl2, 0.34 mg/ml lipid-free BSA; Imgrund et al., 2009). For the TLC that shows the 
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setup of the assay (Fig. 13B), 20 µM alkyne-sphinganine, 50 µM nervonoyl- or stearoyl-CoA and 

20 µg (protein) liver wild-type microsomes were used. For screening various tissues for CerS activity 

(Fig. 13D), 10 µg (protein) brain, kidney or liver microsomes of wild-type or CerS2 -/- mice were 

incubated with 20 µM alkyne-sphinganine and 50 µM acyl-CoA. 

 

Incubation of additional substrates with mouse liver microsomes or lysate 

Alkyne-1-OMAG (1-(nonadec-9-cis-en-18-ynoyl)-monoacylglycerol, 50 µM) was incubated in LPCAT 

buffer for 30 min at 30 °C with oleoyl-CoA or palmitoyl-CoA (100 µM) and mouse liver microsomes 

(50 µg protein). Alkyne-PAPA (50 µM) was incubated with different amounts of mouse total liver 

lysate (0, 2, 10, 50 µg protein) in ammonium acetate buffer (60 mM ammonium acetate, pH 7.0, 

0.6 mg/ml lipid-free BSA) for 30 min at 30°C. Alkyne-palmitoylethanolamide or alkyne-

oleoylethanolamide (50 µM) were incubated in LPCAT buffer at 30 °C with or without the addition of 

mouse liver microsomes (10 µg protein) for different timespans (2 to 30 min). 

 

Lipid extraction, click reaction and TLC 

All assay reactions (except	
   CO	
   assay,	
   see	
   next	
   paragraph) were stopped by the addition of 500 µl 

chloroform/methanol 1/3 (v/v) to the assay mixture. Samples were then incubated for 5 min in an 

ultrasonic bath and 500 µl 1 % acetic acid were added, followed by vortexing and centrifugation at 

14000 g for 2 min. 100 µl of the chloroform phase was transferred to a new 1.5 ml reaction vessel. 

The aqueous phase was again extracted with 200 µl chloroform. The combined organic phases were 

dried in a speed-vac and the click reaction performed as described previously (Thiele et al., 2012): To 

the dried extracts, 7 µl chloroform was added to re-dissolve lipids. Then 30 µl click reaction mix (10 µl 

of 2 mg/ml 3-azido-7-hydroxycoumarin, 250 ul of 10 mM CuTFB (tetrakis(acetonitrile)copper(I) 

fluoroborate in acetonitrile, 850 µl ethanol) were added and the tubes incubated in a heating block 

(Eppendorf Thermomixer comfort) at 43 °C without shaking until all solvent was condensed under the 

lid (3 h). 

After brief centrifugation, addition of 30 µl chloroform and 5 min incubation in an ultrasonic bath, the 

samples were applied onto TLC silica plates (Merck #1.05721.0001). Plates were developed in the 

respective solvent system: (a) for all assays except CerS: first chloroform/methanol/water/acetic acid 

65/25/4/1 for	
  8	
  cm	
  (CO	
  assay)	
  or	
  13	
  cm	
  (others); then hexane/ethyl acetate 1/1 for 18 cm, with gentle 

drying between the two solvents, or (b) for the CerS assay: chloroform/methanol/water 80/10/1 (Kim 

et al., 2012).  
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CO assay2 

Purified cholesterol oxidase from Brevibacterium sp. (Sigma #C8868) was dissolved in phosphate 

buffer (50 mM KH2PO4; pH 7.5; 1 mg/ml lipid-free BSA) and stored in aliquots at -80 °C. Incubation 

time, buffer composition and the amount of enzyme in the assay were optimized to ensure linearity of 

the reaction rate in the kinetic studies. Alkyne-cholesterol was incubated at 25 °C with 2 ng enzyme in 

glass vials containing a total volume of 100 µl phosphate buffer supplemented with 0.1 % (v/v) Triton 

X-100 while shaking (1100 rpm) for 5 min. The reaction was stopped with 500 µl 

choloroform/methanol 3/1 (v/v) and 500 µl 1 % acetic acid, the vials centrifuged (500 g, 5 min) and the 

lower phase transferred to a reaction tube. The aqueous phase was washed with 200 µl chloroform 

and the combined chloroform phases were evaporated. Lipids were redissolved in 7 µl chloroform and 

reacted as above but using a triple-concentrated click reaction mix (15 µl of 44.5 mM 3-azido-7-

hydroxycoumarin, 500 µl of 10 mM CuTFB in acetonitrile, 2 ml ethanol). 

 

Extraction efficiency experiments 

Diluted solutions (0.5 µM) of alkyne-OOPA (1,2-di-(nonadec-9-cis-en-18-ynoyl)-sn-glycero-3-

phosphate), alkyne-18:0-dhCer, alkyne-PC, pPC and	
   alkyne-­‐cholesterol in ethanol were prepared 

freshly, 10, 20 or 40 µl of this solution added to a plastic	
   reaction	
   vessel	
   or	
   glass	
   vial, the solvent 

evaporated and the lipids dissolved in the appropriate assay buffer (see above). After the addition of 

heat-inactivated enzyme preparation the reaction mix was incubated according to the respective 

assay protocol and subjected to extraction, click reaction and TLC. Quantification against alkyne-

oleate was performed as given below, using the same molar amounts of alkyne-oleate as for the 

extracted lipids. 

 

Detection and quantification 
Shortly before fluorescence detection, the dry TLC was soaked for 5 s in 4 % (v/v) N,N-

diisopropylethylamine in hexane and excess solvent was allowed to evaporate in a hood. The system 

used for the imaging of the TLC plates and image quantification was described earlier (Thiele et al., 

2012). Briefly, standard LEDs (10 x 1 W 420 nm LEDs, Roithner Lasertechnik, Vienna, Austria), 

filtered through a colored glass filter (HEBO V01, Hebo Spezialglas) were used for excitation. Images 

were acquired with a Rolera MGI plus EMCCD (charge-coupled device) camera (Decon Science 

Tec), equipped with a 494/20 (channel for detection of the coumarin fluorescence) and 572/28 

(channel for detection and correction of background fluorescence) bandpass emission filter wheel, all 

under control of GelPro analyzer (Media Cybernetics) software. Note that the high sensitivity of the 

EMCCD camera (which is part of our ECL western blot detection system) is not necessary to record 

the images, which typically can be seen already by visual inspection, but its large dynamic range is 

advantageous for image quantification. We also use a system with a much simpler CCD camera with 

                                            

2 This paragraph is cited from (Hofmann et al., 2014). 
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good results. Fluorescent signals were correlated to the lipid amount detected by drying two different 

defined amounts of alkyne-oleate solution in the speed-vac, subjecting them to the click reaction and 

applying them to separate lanes in the TLC. All signals of a TLC were quantified against the weighted 

mean signal of the alkyne-oleate signals. 

 

Statistical analysis and nonlinear regression 

Unless stated otherwise (extraction efficiency measurements), all data are presented as mean values 

± standard deviations (n = 3). Michaelis-Menten kinetics were assessed in three independent 

measurements, a representative graph is shown. For each measurement, the kinetic constants Km 

and Vmax were calculated from the data using nonlinear regression in Microsoft Excel (Kemmer and 

Keller, 2010), and the mean value and standard deviation of these three calculations are given. 
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3.2 Results and Discussion (Part I) 

3.2.1 Assay setup and method of quantification  

The general workflow, as outlined in Fig. 9, consists of the enzymatic reaction using 

alkyne substrate, lipid extraction and reaction of the alkyne moieties with the 

fluorogenic dye 3-azido-7-hydroxycoumarin in a quantitative, copper(I)-catalyzed 

cycloaddition. After separation by TLC, lipids are analyzed by fluorescence 

detection.  

 

Fig. 9: Typical workflow of the click chemistry based enzymatic assay. 
Alkyne lipids were used as substrates in enzymatic assays. After lipid extraction the alkyne moiety 
was quantitatively click-reacted with the fluorogenic dye 3-azido-7-hydroxycoumarin (symbolized as 
a star) to yield fluorescently labeled lipids. These were separated by TLC and analyzed by 
fluorescence detection. 

The high sensitivity and wide linear dynamic range of this procedure regarding the 

click reaction, TLC and imaging were established earlier (Thiele et al., 2012) and are 

comparable to methods using [3H]-labeled lipids. For an accurate quantification of 

the assay products, a reliable and near complete recovery is necessary. To 

determine the efficiency of the lipid extraction protocol, defined amounts of alkyne 

lipids that represent products of the LPAAT, LPCAT or CerS assay were subjected to 

the standard procedures (in vitro enzymatic reaction, extraction, click reaction, 

detection), but using heat-inactivated enzyme preparations. The extraction 

procedure was evaluated by quantification of fluorescent signal against that of 

defined amounts of alkyne-oleate that had not been subjected to assay incubation 

and extraction.  

The	
   recovery	
   rate	
  was	
  measured	
   for	
   every	
   lipid	
  under	
   conditions	
  appropriate	
   for	
   the	
  

respective	
   assay	
   (vessel	
   material,	
   temperature,	
   duration	
   of	
   incubation,	
   extraction	
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protocol). High recovery rates were determined for all tested lipids (Fig.	
   10), with 

good to very good reproducibility. This demonstrates the applicability of the 

extraction protocols for the assays performed in this study, and of the quantification 

method. Thus, an exact correlation of fluorescent signal to the amount of lipid 

produced in the assay is achieved.  

 

Fig.	
  10:	
  Lipid	
  recovery. 
Lipid	
  recovery	
  was	
  determined	
  for	
  every	
  enzymatic	
  assay	
  by	
  subjecting	
  defined	
  amounts	
  of	
  the	
  product	
  
lipid	
   to	
   the	
  standard	
  procedures	
   (in	
  vitro	
   enzymatic	
   reaction	
   in	
  plastic	
  or	
  glass	
  vials,	
   extraction,	
   click	
  
reaction,	
   detection)	
   of	
   the	
   respective	
   assay,	
   but	
   using	
   heat-­‐inactivated	
   enzyme	
   preparations.	
   The	
  
recovery	
  was	
  evaluated	
  by	
  quantification	
  of	
   the	
   fluorescent	
   signal	
  against	
   that	
  of	
  defined	
  amounts	
  of	
  
alkyne	
   lipid	
   that	
   had	
   not	
   been	
   subjected	
   to	
   assay	
   incubation	
   and	
   extraction.	
   Extracted	
   alkyne-­‐
phospholipids	
  and	
  alkyne-­‐dhCer	
  (dark	
  gray	
  columns)	
  were	
  quantified	
  against	
  alkyne-­‐oleate;	
  extracted	
  
alkyne-­‐cholesterol	
   (light	
   gray	
   column,	
   in	
   lieu	
   of	
   the	
   unavailable	
   alkyne-­‐cholestenone)	
  was	
   quantified	
  
against	
   non-­‐extracted	
   alkyne-­‐cholesterol.	
   Columns	
   represent	
  weighted	
  means	
   of	
   three	
   different	
   lipid	
  
concentrations,	
  error	
  bars	
  refer	
  to	
  weighted	
  standard	
  deviations.	
  

 

3.2.2 LPAAT assay with alkyne-OLPA or alkyne-oleoyl-CoA 

In Escherichia coli, the conversion of lysophosphatidic acid (LPA) to phosphatidic 

acid (PA) is catalyzed by the gene product of plsC, 1-acyl-sn-glycero-3-phosphate 

acyltransferase (Coleman, 1992). Its activity has been assessed with [32P]-LPA 

(Coleman, 1990). To the best of our knowledge, kinetic constants have not been 

determined for this enzyme.  
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We established a LPAAT assay with alkyne-OLPA (Fig. 11A), the labeled analogue 

of sn-1-oleoyl-lysophosphatidic acid, using E. coli microsomes (Fig. 11B) and 

determined the constants Vmax and Km for this substrate (Fig. 11C and Table 1).  

 
Fig. 11: LPAAT assay using alkyne-OLPA or alkyne-oleoyl-CoA. 

Alkyne-OLPA (structure in panel A) or alkyne-oleoyl-CoA were used as labeled substrates in a 
LPAAT assay with E. coli microsomes. B: Fluorescent TLC image of the LPAAT assay with alkyne-
OLPA. Product PA was identified using co-migrating synthetic alkyne-OOPA. For assay details, see 
Materials and Methods. C: Michaelis-Menten kinetics measured for alkyne-OLPA (squares) and 
PLPA (triangles). Oleoyl-CoA was the acyl chain donor for alkyne-OLPA, whereas alkyne-oleoyl-
CoA was used to detect enzymatic activity towards PLPA. Line graphs show the reaction rates v 
calculated with the Michaelis-Menten equation using the values for Vmax and Km obtained by 
nonlinear regression fitting. Data are mean ± standard deviation of triplicate determinations. D: Acyl-
CoA specificity of the E. coli LPAAT using alkyne-OLPA. The monounsaturated 18:1-CoA is favored 
over the saturated acyl-CoAs (16:0 and 18:0). 

Conversely, by applying alkyne-oleoyl-CoA as an acyl chain donor, we measured 

Vmax and Km for PLPA. The apparent Km for alkyne-OLPA (0.53 ± 0.18 µM) was 

significantly lower than for PLPA (3.64 ± 0.24 µM). Also, Vmax was apparently 
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increased for alkyne-OLPA compared to PLPA, but the differences did not reach 

statistical significance due to large variations between different enzyme preparations. 

In other organisms, Km had previously been determined for LPAAT enzymes using 

radio-labeled substrates. A similar acyl chain specificity in the acceptor was found in 

Spinacia oleracea (Hares and Frentzen, 1987): With oleoyl-CoA as the donor, a Km 

of 5.3 µM was measured for [14C]-OLPA, and of 3.0 µM for [14C]-PLPA. For the 

human LPAAT-α, a Km of 6.49 µM towards OLPA with [14C]-palmitoyl-CoA as the 

acyl chain donor (Yamashita et al., 2007), and of 6.0 µM with [3H]-oleoyl-CoA 

(Agarwal et al., 2011), respectively was reported. For human LPAAT-β Km values in 

the same range were measured towards OLPA with the acyl-chain donor oleoyl-CoA 

(2.0 µM (Hollenback et al., 2006), and 8.29 µM (Agarwal et al., 2011)). For both 

human isoforms, a preference of OLPA over PLPA as the acceptor was detected as 

well (Hollenback et al., 2006; Agarwal et al., 2011). Compared to palmitate and 

stearate, oleate is preferred by the E. coli enzyme also as the donor acyl-CoA (Fig. 

11D) for the incorporation at the sn-2 position, in accordance with previous findings 

(Weier et al., 1998).  

Our results demonstrate that alkyne-OLPA and alkyne-oleoyl-CoA are good 

substrates for the E. coli LPAAT. They indicate that the bacterial enzyme may have a 

lower Km for lysophosphatidic acids (especially OLPA) than the plant or mammalian 

enzymes investigated so far. 

The two alkyne substrates described above represent the two strategies that are 

available for an acyltransferase assay with alkyne lipids, i.e. labeling of the acyl 

chain acceptor or the acyl chain donor. While the latter is the more general 

approach, enabling the investigation of all acyltransferase reactions with a relatively 

small set of labeled alkyne-acyl-CoAs, it suffers from the limited storage stability of 

acyl-CoAs and the frequent observation of significant amounts of labeled side 

products arising from both enzymatic and non-enzymatic conversion of the acyl-

CoAs. In our experiments, the use of alkyne-oleoyl-CoA led to a few fluorescent 

signals derived from side reactions of the reactive compound including the hydrolysis 

to oleate. The labeled acceptors on the other hand expressed high specificity for the 

enzymatic reactions of interest. They essentially gave one or two strong product 

signals besides the fluorescent educt (Figs. 11B, 12B, 13B), which might be 
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beneficial for automated image analysis. In addition, alkyne labeled acyl acceptors 

show better stability for long-term storage. 

 

3.2.3 LPCAT assay with alkyne-OLPC or PLpPC 

Lysophosphatidylcholine (LPC) is converted to PC by lysophosphatidylcholine 

acyltransferases. In mammals, four isoforms (LPCAT1-4) are known. HuH7 cells 

express LPCAT1 and LPCAT3, but not LPCAT2 (Zhao et al., 2008; Moessinger et 

al., 2011). We synthesized two alkyne-labeled LPC species, i. e. side chain labeled 

alkyne-OLPC and head-group labeled PLpPC (Fig. 12A). Note that, since PLpPC is 

derived by enzymatic head group exchange from egg yolk PC, it containes a mixture 

of fatty acids at sn-1, dominated by palmitate (Schreiner et al., 2006).  

Fig. 12B shows the application of the two substrates in a LPCAT assay on HuH7 

lysate using oleoyl-CoA as the acyl chain donor. The Km value we measured (Fig. 

12C, Table 1) for alkyne-OLPC (2.46 ± 1.62 µM) was very similar to that determined 

for palmitoyl-LPC with [14C]-palmitoyl-CoA for murine recombinant LPCAT1 (2.3 µM, 

Nakanishi et al., 2006). PLpPC had a higher apparent Km (5.46 ± 2.23 µM), which 

might reflect a somewhat stronger effect of the alkyne label when incorporated in the 

headgroup of a phospholipid rather than at the terminus of an acyl chain. However, 

the differences between the Km values for alkyne-OLPC and PLpPC were not 

statistically significant and the differential acyl chains at the sn-1 positions have to be 

taken into account. In addition, we observed a significant difference (P < 0.05) in 

activity (Vmax) for the two substrates, 0.51 ± 0.08 nmol/(mg*min) for alkyne-OLPC 

compared to 0.30 ± 0.07 nmol/(mg*min) for PLpPC. On the basis of these results, 

alkyne-OLPC may be considered as the substrate of first choice for enzymatic 

assays compared to PLpPC. Nevertheless, the latter also displayed near to natural 

kinetic constants and allows for the direct combination of enzyme kinetics with 

microscopic imaging after labeling with propargylcholine (Jao et al., 2009). 
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Fig. 12: LPCAT assay using alkyne-OLPC or PLpPC. 

A: Structures of the substrates alkyne-OLPC (acyl chain-labeled) and PLpPC (headgroup-labeled). 
B: Fluorescent image of a TLC that shows a LPCAT assay using either alkyne-OLPC or PLpPC, 
oleoyl-CoA and HuH7 cell lysate. For simplicity of the labeling of the TLC plate, we use aPC and 
aLPC for fatty acid labeled PC and LPC, respectively, and pPC and LpPC for the headgroup labeled 
analogues.  Products were identified using co-migrating synthetic standards. For assay details, see 
Materials and Methods. C: Michaelis-Menten kinetics measured for alkyne-OLPC (squares) and 
PLpPC (triangles). Line graphs show the reaction rates v calculated with the Michaelis-Menten 
equation using the values for Vmax and Km obtained by nonlinear regression fitting. Data are mean ± 
standard deviation of triplicate determinations. 

 

3.2.4 Ceramide synthase assay with alkyne-sphinganine 

Ceramide synthases catalyze the acyl-CoA dependent synthesis of dihydroceramide 

from sphinganine. The six mammalian isoforms display different tissue distributions 

and acyl chain specificities (Levy and Futerman, 2010). CerS activity has been 

measured with radioactive and NBD-labeled sphinganine analogues (Lahiri et al., 

2007; Kim et al., 2012). We synthesized the new substrate alkyne-sphinganine (Fig. 

13A) and employed it in a CerS-assay on mouse liver microsomes using nervonoyl-

CoA (Fig. 13B). In kinetic measurements in the same system, we determined an 

apparent Km of 2.29 ± 2.08 µM and a Vmax of 0.71 ± 0.38 nmol/(mg*min) for alkyne-
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sphinganine (Fig. 13C, Table 1). In the liver, CerS2 is the dominant isoform with 

activity towards long-chain acyl-CoAs; hence the activity we measured in this assay 

may almost solely be attributed to CerS2 (Laviad et al., 2008). The Km value is in 

agreement with recent studies: using tritiated sphinganine, Lahiri and colleagues 

(Lahiri et al., 2007) reported Km values in the range of 2 to 5 µM for all six (murine or 

human) CerS isoforms, even for those which use multiple acyl-CoAs. That study 

reported a Km of 4.8 ± 0.4 µM for human Cers2 with lignoceroyl (24:0)-CoA. Kim and 

colleagues (Kim et al., 2012) developed a fluorescent assay with NBD-sphinganine 

and nervonoyl-CoA and found Km to be comparable to natural sphinganine 

(3.61 ± 1.86 µM vs. 3.05 ± 0.81 µM, respectively). However, Vmax was elevated for 

the NBD derivative. 

CerS2 is expressed in various tissues besides the liver, with high mRNA levels in the 

kidney and moderate levels in the brain (Levy and Futerman, 2010). Imgrund and 

colleagues (Imgrund et al., 2009) created a CerS2-deficient mouse and measured 

the CerS activity towards tritiated sphinganine and various acyl-CoAs (16:0, 18:0, 

20:0, 22:0, 24:1) in brain and liver microsomes. To demonstrate that alkyne-

sphinganine can be used as a convenient alternative substrate for such applications, 

we performed a similar small screen with brain, liver and kidney microsomes and 

several acyl-CoAs (16:0, 18:0, 18:1 and 24:1). Fig. 13D shows fluorescent images of 

the TLC plates of this pilot study. Like Imgrund and colleagues (Imgrund et al., 2009) 

we observed a strong activity towards 24:1-CoA in the wild-type liver and a weak one 

in the brain. We also measured a strong 24:1-activity in kidney microsomes. For all 

tissues, 24:1-CoA was not converted to dhCer in the CerS2-deficient samples. For 

the acyl-CoAs of shorter chain length, the CerS activity was similar for wild-type and 

-/- mice, reflecting that it was not derived from CerS2, but other isoforms. We 

detected activity towards 16:0-CoA in kidney (moderate) and liver (weak), but not in 

brain. Weak activity was also found for 18:0-CoA in brain and liver, both in wild-type 

and -/- mice. 18:1-CoA was converted to dhCer in kidney and very little in liver. Since 

we show here that alkyne-sphinganine is a useful substrate to screen for CerS 

activity in tissue samples, more detailed quantitative investigations can be carried 

out in the future. 
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Fig. 13: CerS assay using alkyne-sphinganine. 

Alkyne-sphinganine (structure in panel A) was applied in a CerS assay using microsomes from 
mouse tissues. B: Fluorescent TLC image of the assay performed with liver microsomes from a 
C57BL/6 wild-type mouse. Products were identified using co-migrating synthetic standards. For 
assay details, see Materials and Methods. C: Michaelis-Menten kinetics measured for alkyne-
sphinganine (squares). The line graph shows the reaction rate v calculated with the Michaelis-
Menten equation using the values for Vmax and Km obtained by nonlinear regression fitting. Data are 
mean ± standard deviation of triplicate determinations. D: CerS activity towards the acyl-CoAs 16:0, 
18:0, 18:1 and 24:1 was measured in microsomes from brain, kidney and liver from wild-type (+/+) 
or CerS2 knock-out (-/-) mice. The image shown here is slightly overexposed for the two strongest 
signals to enhance the visibility of weaker signals. The setup allows the fast detection of the CerS 
activity profile for various acyl-CoAs in multiple tissues. 
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3.2.5	
   Cholesterol	
  oxidase	
  assay	
  with	
  alkyne-­‐cholesterol	
  

Cholesterol	
  oxidases	
  (CO)	
  catalyze	
  the	
  conversion	
  of	
  cholesterol	
  to	
  cholest-­‐4-­‐en-­‐3-­‐one.	
  

The	
   reaction	
   is	
   applied	
   in	
   assays	
   for	
   the	
   determination	
   of	
   serum	
   cholesterol	
  

(MacLachlan	
  et	
  al.,	
  2000).	
  We	
  investigated	
  alkyne-­‐cholesterol	
  as	
  a	
  substrate	
  for	
  purified	
  

CO	
  from	
  Brevibacterium	
  sp.	
  (Hofmann	
  et	
  al.,	
  2014,	
  Fig.	
  14).	
  	
  

 

Fig.	
  14:	
  CO	
  assay	
  using	
  alkyne-­‐cholesterol.	
  
Cholesterol	
  oxidase	
   converts	
  alkyne-­‐cholesterol	
   (panel	
  A)	
   to	
  alkyne-­‐cholest-­‐4-­‐en-­‐3-­‐one.	
  B:	
  Fluorescent	
  
TLC	
  image	
  of	
  the	
  assay	
  with	
  CO	
  purified	
  from	
  Brevibacterium	
  sp..	
  Alkyne-­‐cholestenone	
  was	
  not	
  available	
  
as	
  a	
  comigrating	
  standard,	
  but	
  the	
  product	
  was	
  identified	
  as	
  the	
  only	
  product	
  band	
  arising	
  in	
  the	
  assay.	
  
Its	
  migration	
  behavior	
  supports	
  this	
  statement.	
  "ori"	
  depicts	
  the	
  origin	
  of	
  the	
  TLC.	
  For	
  assay	
  details,	
  see	
  
Materials	
   and	
  Methods.	
   C:	
  Michaelis-­‐Menten	
   kinetics	
  measured	
   for	
   alkyne-­‐cholesterol.	
   The	
   line	
   graph	
  
shows	
  the	
  reaction	
  rate	
  (v)	
  calculated	
  with	
  the	
  Michaelis-­‐Menten	
  equation	
  using	
  the	
  values	
  for	
  Vmax	
  and	
  
Km	
   obtained	
   by	
   nonlinear	
   regression	
   fitting.	
   Data	
   are	
   mean	
   ±	
   standard	
   deviation	
   of	
   triplicate	
  
determinations. 

In	
  the	
  representative	
  graph	
  shown	
  in	
  Fig.	
  14C,	
  Km	
  was	
  calculated	
  to	
  be	
  19.4	
  μM	
  by	
  non-­‐

linear	
   regression	
   (as	
   stated	
   in	
   Hofmann	
   et	
   al.,	
   2014).	
   For	
   enhanced	
   statistical	
  

significance,	
   the	
   mean	
   value	
   of	
   three	
   independent	
   determinations	
   was	
   additionally	
  

calculated,	
   which	
   gave	
   Km	
  =	
  17.3	
  ±	
  5.1	
  μM	
   and	
   Vmax	
  =	
  21.1	
  ±	
  2.6	
  μmol/(min*mg)	
   (see	
  

also	
   Table	
  1).	
   These	
   values	
   are	
   in	
   accordance	
   with	
   those	
   measured	
   by	
   Xin	
   and	
  

colleagues	
  (Xin	
  et	
  al.,	
  2013)	
  for	
  CO	
  purified	
  from	
  Brevibacterium	
  sp.	
  M201008	
  (as	
  well	
  

as	
   the	
   same	
   enzyme	
   expressed	
   in	
   E.coli).	
   They	
   measured	
   24.3	
  μM	
   and	
  

26.5	
  μmol/(min*mg),	
  (as	
   well	
   as	
   25.4	
  μM	
   and	
   24.2	
  μmol/(min*mg))	
   for	
   unlabeled	
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cholesterol	
  with	
  an	
  indirect	
  read-­‐out	
  from	
  the	
  conversion	
  of	
  a	
  fluorescent	
  substrate	
  by	
  

hydrogen	
  peroxide	
  produced	
  in	
  the	
  enzymatic	
  reaction.	
  Therefore,	
  the	
  affinity	
  of	
  CO	
  to	
  

alkyne-­‐cholesterol	
  appears	
  to	
  be	
  unchanged	
  compared	
  to	
  the	
  natural	
  substrate.	
  

	
  

Table 1: Kinetic constants obtained by nonlinear regression analysis. 

assay substrate Km (µM)a Vmax (nmol/(min*mg))a 

LPAAT alkyne-OLPA 0.53 ± 0.18 b 6.83 ± 4.39 c 

LPAAT PLPA 3.64 ± 0.24 b 2.05 ±	
  0.21 c 

LPCAT alkyne-OLPC 2.46 ± 1.62 d 0.51 ± 0.08 e 

LPCAT PLpPC 5.46 ± 2.23 d 0.30 ± 0.07 e 

CerS alkyne-sphinganine 2.29 ± 2.08 0.71 ± 0.38 

CO	
   alkyne-­‐cholesterol	
   17.3	
  ±	
  5.1	
   21.1*103	
  ±	
  2.6*103	
  
a Mean values and standard deviations from three independent triplicate determinations. Enzyme 
preparations, acyl chain donors and further assay conditions used are given in the text.  

b P < 0.0001, c	
  P = 0.1327, d P = 0.1325, e P = 0.0267 (These P-values refer to the comparison of 
different substrates in the same enzymatic assay; two-tailed P-values from Student’s unpaired t-
test). 

 

3.2.6 Application of the method in assays for other lipid modifying enzymes 

We utilized mouse liver microsomes or mouse liver lysate to demonstrate the 

principal feasibility of assays with four additional examples of alkyne-labeled 

substrates (Fig. 15). All substrates were converted by one or more enzymes in the 

liver fractions to alkyne-labeled products.  
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Fig. 15: Application of alkyne lipids in assays for other lipid modifying enzymes. 

Four different alkyne lipids were incubated with mouse liver microsomes or lysate (C57BL/6 wild-
type) to test their applicability as substrates in enzymatic assays. A: Alkyne-1-OMAG deacylation 
and acylation. Alkyne-1-OMAG was incubated with liver microsomes in the absence or presence 
of acyl-CoAs as indicated. The data indicate both hydrolysis to oleate in the presence of liver 
microsomes and acylation to DAG if an acyl-CoA is present. B: Alkyne-PAPA deacylation and 
dephosphorylation. Alkyne-PAPA was incubated with different amounts of liver lysate as 
indicated. We observed both release of alkyne-palmitate and dephosphorylation to DAG. C: 
Time course of the hydrolysis of fatty acid ethanolamides by liver microsomes. Alkyne-
oleoylethanolamide and alkyne-palmitoylethanolamide were hydrolyzed upon incubation with the 
microsomes, but not in their absence, to give the alkyne-labeled fatty acids. All panels: Products 
were identified using co-migrating synthetic standards. For assay details, see Materials and 
Methods (chapter 3.1). 

Deacylation of alkyne-1-OMAG (structure depicted in Fig. 15A) by monoacylglycerol 

lipases (MAGL) yielded alkyne-oleate (Fig. 15A, lane 1). Upon addition of oleoyl-CoA 

or palmitoyl-CoA, alkyne-1-OMAG was acylated at the sn-2 position to form 
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diacylglycerol (DAG, Fig. 15A, lane 2+3) by monoacylglycerol acyltransferase 

(MGAT) activities, presumably the murine MGAT1 and lysophosphatidylglycerol 

acyltransferase 1 (Hiramine et al., 2010).  

Alkyne-PAPA (structure depicted in Fig. 15B) was converted to DAG in the presence 

of liver lysate (Fig. 15B), presumably by phosphatidate phosphatases (Donkor et al., 

2007). In parallel, we observed the release of alkyne-palmitate from the sn-1 

position, either by a phospholipase 1 activity acting on the labeled PA, or by a DAG-

lipase (DAGL) activity acting on the released DAG.  

N-oleoylethanolamide and N-palmitoylethanolamide are bioactive lipids that are 

cleaved by the enzymes fatty acid amide hydrolase (FAAH, Ueda et al., 2000) and 

N-acylethanolamine-hydrolyzing acid amidase (NAAA, Tsuboi et al., 2007) yielding 

the corresponding fatty acids. Both the lipids and the enzymes have gained 

increasing interest as therapeutic targets for the control of pain, inflammation or food 

intake (Thabuis et al., 2008; Petrosino et al., 2010). We were able to survey the 

hydrolysis of the fatty acid amides alkyne-oleoylethanolamide and alkyne-

palmitoylethanolamide in a time-course experiment (Fig. 15C) upon incubation with 

mouse liver microsomes. Several enzymatic assays are reported to follow this 

reaction (see (Ueda et al., 2000) for a review and (Huang et al., 2007)). We will 

conduct further studies concerning the kinetic properties of these alkyne labeled 

substrates, which would expand the existing techniques by a very convenient and 

direct assay procedure. 

The various substrates discussed above therefore demonstrate how the scope of the 

assay can be extended to more acyltransferases (MGAT), lipases (MAGL, 

phospholipases A1 and A2) and other hydrolases (PA phosphatase, FAAH). This 

general applicability will prove useful for the kinetic characterization of many 

enzymes in lipid metabolism. 

 

3.2.7 Scope and limitations of the method 

All alkyne lipids that we tested in this pilot study were used as substrates by lipid 

modifying enzymes. No substantial shift in affinity (Km) of the enzymes compared to 

the natural substrates was detected in our kinetic studies. We thus introduce 
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enzymatic assays with alkyne lipids as a reliable and convenient alternative to 

fluorescent or radioactive assays. 

As with the latter two methods, the TLC separation in our assay does not achieve 

species resolution of the lipids. This can however be overcome by a subsequent 

mass-spectrometric analysis (compare (Thiele et al., 2012)). Depending on the 

location of the alkyne label in the molecule, not all reactions can be followed with 

every alkyne lipid. β-oxidation of fatty acids leads to the loss of the label (Thiele et 

al., 2012), as does the headgroup cleavage of pPC to PA by phospholipase D. 

Our studies suggest that the alkyne label does generally not interfere with the affinity 

of enzymes to the substrates, especially if the alkyne label is attached to the 

terminus of the alkyl chain. Such fatty acids of different length and unsaturation are 

synthetically available (Milne et al., 2010; Thiele et al., 2012) and can serve as a 

basis of a versatile toolbox of tailor-made lipid substrates with the acyl chain(s) of 

choice at defined sn-positions, including phospholipids, lysophospholipids, acyl-

CoAs and acylglycerols, using standard chemical and enzymatic procedures. Similar 

to this strategy, alkyne-sphingolipids can be synthesized from alkyne-sphinganine. 

Hence, we expect alkyne lipids to become more and more commercially available in 

the next years, both as substrates for enzymatic assays as well as standards for 

identification after TLC separation. The migration behavior of lipids coupled to the 

coumarin dye is shifted, but, in general, the separation is possible with the same 

solvent mixes as for radio-labeled lipids or slightly adapted versions thereof and the 

retention factors of the substances usually are in the regular order. The adaptation of 

radiolabeled assays to the use of alkyne lipid substrates should therefore be neither 

costly nor overly time-consuming.  

Alkyne lipids are promising substrates for the use in in vitro enzymatic assays, as 

they are inexpensive, versatile, convenient and, as we show here for the first time, 

display the kinetic characteristics of the natural substrates. 
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4 Highly sensitive alkyne lipid imaging (Part II) 
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4.1 Materials and Methods (Part II) 

4.1.1 Materials 

4.1.1.1 Alkyne lipids and azide detection reagents 

The alkyne lipids used in this study and the azide reporter ASBDP (8-(5-azidopentyl)-4,4-difluor-

1,3,5,7-tetramethyl-4-bora-3a,4a-s-indacene-2,6-disulfonic acid disodium salt) were available in the 

lab (Thiele et al., 2012; Hofmann et al., 2014). AP3Btn (# 762024) and azido-TMR (# 760757) were 

obtained from Sigma Aldrich. Like AP3Btn, the azide detection reagents AP6Btn, AP10Btn and 

APpic2Btn contained polyethylene glycol (PEG) moieties as linkers between the azide and the biotin 

reporter. They were synthesized by the formation of an amide bond between the azido-PEG-amine 

linker and CDI-activated biotin (Vundyala et al., 2008). Molecular structures are displayed in Fig. 16. 

 

Fig. 16: Alkyne lipids and azide detection reagents for microscopy. 
Structures of A: Alkyne lipids and B: azide detection reagents used in the microscopy study 
(chapter 4). Abbreviations are explained in the main text. 

 
 
AP6Btn and AP10Btn 

In a 50 ml roundbottom flask, biotin (122 mg, 0.5 mmol, 1 eq) was dissolved under Ar in 3 ml dry DMF 

at 80 °C. Then CDI was added (89 mg, 0.55 mmol, 1 eq) and the mixture stirred at RT for 4 h. A 
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solution of the azido-PEG-amine linker (0.55 mmol, O-(2-aminoethyl)-O′-(2-azidoethyl)pentaethylene 

glycol, Sigma Aldrich #76172, or O-(2-aminoethyl)-O′-(2-azidoethyl)nonaethylene glycol, Sigma 

Aldrich #77787, respectively) in DMF was added and the mixture stirred at RT for 20 h. The solvents 

were evaporated, the reaction mixture was extracted with saturated aqueous sodium hydrogen 

carbonate and the product extracted with chloroform. The crude product was purified by column 

chromatography with CHCl3/MeOH/H2O 65/25/4. 238 mg waxy, nearly white substance (0.41 mmol, 

82 %) resulted for AP6Btn. AP10Btn was obtained as 309 mg (0.41 mmol, 82 %) waxy, nearly white 

solid. 

1H-NMR AP6Btn (400 MHz, CDCl3): 6.65 (t, 1H, amide-NH), 6.19 (s, 1H, NH), 5.26 (s, 1H, NH), 4.48 

and 4.30 (2 x m, 2H), 3.7-3.3 (m, 28H), 3.13 (m, 1H), 2.87-2.91 (dd, 1H), 2.74-2.71 (d, 1H), 2.21 (m, 

2H), 1.8-1.6 (m, 4H), 1.5-1.4 (m, 2H). 

1H-NMR AP10Btn (400 MHz, CDCl3): 6.66 (t, 1H, amide-NH), 5.96 (s, 1H, NH), 5.10 (s, 1H, NH), 4.48 

and 4.30 (2 x m, 2H), 3.7-3.3 (m, 44H), 3.14 (m, 1H), 2.86-2.94 (dd, 1H), 2.73-2.70 (d, 1H), 2.21 (m, 

2H), 1.8-1.6 (m, 4H), 1.5-1.4 (m, 2H). 

 

APpic2Btn 

The picolyl-containing azide 6-azidomethylbenzoic acid (10) was synthesized according to a 

published procedure (Fig. 17, Uttamapinant et al., 2012), with minor changes, and used in the 

synthesis of APpic2Btn (Fig. 18). 

 

Fig. 17: Synthesis of 6-azidomethylbenzoic acid. 
The copper-chelating building block 6-azidomethylbenzoic acid (10) was synthesized according to a 
published protocol (Uttamapinant et al., 2012), with minor changes. Abbreviations are explained in 
the main text. 

 

Methyl-5-(hydroxymethyl)nicotinate (8): NaBH4 (969 mg, 25.5 mmol, 2.5 eq) was added to 2,5-

pyridinedicarboxylic acid methyl ester (2 g, 10.2 mmol, 1 eq) and CaCl2 (anhydrous, 4.528 g, 

40.8 mmol, 4 eq) in anhydrous THF (20 ml) and methanol (40 ml). After 1 h at RT, excess NaBH4 was 

quenched with 60 ml of ice-cold water. The reaction mixture was extracted three times with 80 ml 

chloroform, the combined organic layers dried with MgSO4 and concentrated in vacuo. The residue 
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was purified by column chromatography with CHCl3/MeOH 10/1 supplemented with 0.5 % 

triethylamine to yield 1.6 g white solid (8) (95 %).  

1H-NMR (400 MHz, CDCl3):  9.16 (d, 1H), 8.33 (dd, 1H), 7.41 (d, 1H), 4.85 (s, 2H), 3.95 (s, 3H), 3.1 

(broad, 1H, OH). 

 

Methyl-5-(azidomethyl)nicotinate (9): To a solution of (8) (600 mg, 3.6 mmol, 1 eq) in DCM (80 ml) 

was added p-toluenesulfonyl chloride (TsCl, 1.04 g, 5.4 mmol, 1.5 eq) and triethylamine (2.5 ml, 

18 mmol, 5 eq). The mixture was stirred for 2 h, DCM was removed in vacuo, and the residue 

dissolved in THF (40 ml), and NaN3 was added (2.4 g, 36 mmol, 10 eq). The reaction was stirred for 

three days at RT, after which ethyl acetate and water were added. The aqueous layer was extracted 

with ethyl acetate three times. The combined organic layers were washed with brine, dried over 

Na2SO4, and concentrated in vacuo, and the residue purified by silica chromatography (hexanes/ethyl 

acetate 4/1 to 1/1) to afford 427 mg (9) (61 %) as a white waxy solid, retention factor Rf (in 

hexanes/ethyl acetate 4/1) = 0.2.  

1H-NMR (400 MHz, CDCl3): 9.17 (d, 1H), 8.31 (dd, 1H), 7.45 (d, 1H), 4.56 (s, 2H), 3.94 (s, 3H). 

 

6-azidomethylnicotinic acid (10): To methyl-5-(azidomethyl)nicotinate (9) (427 mg, 2.22 mmol, 1 eq) in 

methanol (10 ml) was added a solution of LiOH in water (1.0 M, 7 ml, 7 mmol, 3.16 eq) and the 

mixture was stirred for 30 min and then neutralized with acetic acid. The concentrated crude product 

was loaded onto a silica column equilibrated with ethyl acetate supplemented with 1 % acetic acid 

and eluted with the same solvent to afford (10) as a yellow solid (326 mg, 1.84 mmol, 83 %).  

1H-NMR (400 MHz, CD3OD): 9.10 (dd, 1H), 8.38 (dd, 1H), 7.58 (dd, 1H), 4.58 (s, 2H). 

 

Mono-protection of diamino-3,6-dioxaoctane (Favre et al., 2012): Diamino-3,6-dioxaoctane (5.92 g, 

5.92 ml, 40 mmol) was dissolved in DCM (400 ml), cooled to 0 ºC and di-tert-butyl dicarbonate 

(Boc2O, 1.31 g, 6 mmol, 0.15 eq) was added. The mixture was stirred for 5 h, warmed to RT and 

stirred for another 16 h. The organic phase was washed with water until complete removal of the 

diamine educt. After drying (MgSO4) and concentration under vacuum, pure 1-Boc-amino-8-amino-

3,6-dioxaoctane (11) (804 mg, 3.2 mmol, 54 % regarding Boc2O) was obtained.  

1H-NMR (400 MHz, CDCl3): 3.5 and 3.6 (m, 8H), 5.1 (br s, 1H), 3.30 (br, 2H), 2.85 (t, 2H), 1.42 (s, 

9H). 

 

Coupling of (11) to biotin (Btn-PEG2-NHBoc, (12)): Biotin (122 mg, 0.5 mmol) was dissolved under Ar 

in 3 ml DMF at 80 ºC. Then CDI was added (214 mg, 1.32 mmol) and the mixture stirred at RT for 4 h. 

To this was added a solution of (11) (124 mg, 0.5 mmol) in 1 ml DMF and the mixture stirred at RT for 
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16 h. The solvent was removed in vacuo and the residue purified by silica gel chromatography 

(chloroform/methanol/water 65/25/4) to yield 174 mg (12) (0.38 mmol, 76 %, Rf = 0.58).  

1H-NMR (400 MHz, CDCl3, for atom labels see Fig. 19): 4.48 (m, 1H, Hb), 4.31 (m, 1H, Ha), 3.7-3.4 

(m, 12H, Hj, Hk, Hl, Hm, Hn, Ho), 3.14 (m, 1H, He), 2.9 (m, 1H, Hc), 2.73 (m, 1H, Hd), 2.22 (t, 2H, Hi), 

1.67 (m, 4H, Hh and Hf), 1.46 (m, 2H, Hg), 1.43 (s, 9H, Boc-H). 

 

 

Fig. 18: Synthesis of APpic2Btn (14). 
Compound (10) was coupled to biotin via a diamino PEG linker in two CDI-activated amide 
formations. Mono-protection of the linker was necessary to prevent the conversion of both amines in 
the first amidation step. Abbreviations are explained in the main text. 

Deprotection and coupling to (10): The mono-protected linker (12) was dissolved in 500 µl dry DCM. 

450 µl trifluoro acetic acid (TFA) was added and the mixture stirred until deprotection to (13) was 

completed (monitored by TLC, 1 h). Solvent and excess TFA were evaporated. 

 

Compound (10) (68 mg, 0.38 mmol, 1 eq) was dissolved in 1 ml DMF. CDI (62 mg, 0.38 mmol, 1 eq) 

was added under Ar atmosphere and the mixture stirred for 4 h. The deprotected linker (13) (142 mg, 

0.38 mmol, 1 eq), dissolved in DMF (1 ml) and triethylamine (105 µl, 0.76 mmol, 2 eq), was slowly 

added to the activated carboxylic acid and the reaction mix stirred over night. The solvents were 
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evaporated and the residue purified over a silica gel column with CHCl3/MeOH 3/1 to yield 80 mg 

APpic2Btn (14) as a colorless semisolid (0.15 mmol, 40 %, Rf = 0.67).  

1H-NMR (400 MHz, CDCl3, for atom labels see Fig. 19): 9.06 (m, 1H, Hp), 8.22 (dd, 1H, Hq), 7.84 (m, 

1H, Hr), 4.50 (s, 2H, Hs), 4.47 (m, 1H, Hb), 4.28 (m, 1H, Ha), [3.7-3.6 (m, 8H) and 3.54 (t, 2H) and 3.38 

(m, 2H): 12H, Hj, Hk, Hl, Hm, Hn, Ho], 3.10 (m, 1H, He), 2.9 (m, 1H, Hc), 2.73 (m, 1H, Hd), 2.17 (t, 2H, 

Hi), 1.62 (m, 4H, Hh and Hf), 1.40 (m, 2H, Hg). 

MS (ESI +): 557.3 ([M+Na]+, calculated: 557.227), 535.3 ([M+H]+, calculated: 535.245). 

 

Fig. 19: APpic2Btn (14), assignment of 1H-NMR signals. 
Small letters designate hydrogen atoms in synthesis products (12) and (14), for use with the 1H-NMR 
peak lists given above. 
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4.1.1.2 Primers and plasmids 

Plasmids used in the colocalization studies were obtained by subcloning the respective templates into 

the parent vector pmRFP1 (Campbell et al., 2002) and therefore confer kanamycin resistance (Table 

2).  

Table 2: List of plasmids and primers. 

name alias primers and template, or source description of coding sequence, 
restriction sites 

mRFP-ER pLK14 Lars Kuerschner  mRFP1 fused to human Sec61 
via a linker 
(LYKYSDLELKLPRVRRQRLAT
LISN) 

mRFP-mito pLK16 Lars Kuerschner MLRAALSTARRGPRLSRLLSA
AATSAVPAPNQQPEV from rat 
alcohol dehydrogenase (ALDH) 
followed by the linker LVPVAT, 
and mRFP1 

mRFP-

ACAT1 

pAG47 SOAT1-mRFP forward: 
GACGGATCCTCAACCGGTCGAAACACGTAACGACAA
GTCC 
SOAT1-mRFP reverse: 
CCTGTACAGCGCTAGCATGGTGGGTGAAGAGAAGAT
G 
template: I.M.A.G.E. EST clone # 4991365 

mRFP1 fused to full length 
ACAT1 (SOAT1) via a linker 
(LYSAS) 
BsrGI, BamHI 

mRFP-

NSDHL 

pAG49 3primer nsdhl: 
GACGGATCCTCAACCGGTCGCTTGACCCTCCGCAGG
TG 
5primer nsdhl: 
CCTGTACAGCGCTAGCATGGAACCAGCAGTTAGCGA
G 
template: pDL247 (containing full length NSDHL) 

mRFP1 fused to full length 
NSDHL via a linker (LYSAS) 
BsrGI, BamHI 

 

 

pLK14 and pLK16 were kindly supplied by Lars Kuerschner (Kuerschner et al., 2005; Hofmann et al., 

2014), pDL247 by Daniel Lohmann. The generation of pAG47 and pAG49 was partially performed by 

Jennifer Zablocki. The sequences of all constructs were verified (GATC Biotech AG, Germany). 

 

4.1.1.3 Other materials 

Delipidated FCS was prepared by solvent extraction as described previously (Thiele et al., 2000).  

The β-cyclodextrin complex of cholesterol was prepared by slowly adding 1.5 ml of a 10 mg/ml 

solution of cholesterol in isopropanol to a warm solution of 1 g β-cyclodextrin in 20 ml H2O under 

vigorous stirring. Aliquots were stored at -80 °C.  

Avasimibe was from Sigma (#PZ0190). CP-113,818 ((-)-N-(2,4-bis(methylthio)-6-methylpyridin-3-yl)-

2-(hexylthio)decanoic amide) was kindly donated by Kai Simons, Max Planck Institute of Molecular 

Cell Biology, Dresden, Germany.   
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4.1.2 Methods 

4.1.2.1 Cell biological methods 

Cell culture 
HuH7 cells (Japanese Collection of Research Bioresources #JCRB0403) were grown in RPMI 1640 

(PAN Biotech #P04-17500) supplemented with 10 mM HEPES, 0.1 mM non-essential amino acids, 

2 mM L-Glutamine, 10 % FCS, at 5 % CO2. A172 cells (ATCC #CRL-1620) and undifferentiated 3T3-

L1 fibroblasts (ATCC #CL-173) were cultured in DMEM (Gibco #31966), with 10 % FCS (Gibco 

#10270).  

 

Differentiation of 3T3-L1 cells 
The murine fibroblast cell line 3T3-L1 was grown to 100 % confluency and at Day0 the growth 

medium was exchanged for differentiation medium I (medium plus 5 µM insulin, 10 µM 

dexamethasone and 0.5 mM 3-isobutyl-1-methylxanthine). On Day3 and Day5, the medium was 

exchanged for differentiation media II (medium plus 5 µM insulin), and on Day7, for standard growth 

medium. Differentiated cells were incubated over night with 10 µM alkyne fatty acids from Day8, 

followed by fixation and microscopy sample preparation (see chapter 4.2.2). Differentiation was kindly 

performed by Mario Lauterbach. 

 

Transfection with plasmid DNA 

Cells seeded on glass coverslips in 24-well plates were grown to 70 % confluency. For each well, 

100 µl transfection mix was prepared: 1 µl of the cholesterol-free transfection reagent (an equimolar 

mixture of N1,N4-dioleyl-N1,N4-di-[2-hydroxy-3-(N-aminopropyl)]diaminobutane and dioleoyl-

phosphatidylethanolamine (Chu et al., 2008; Hofmann et al., 2014)) was diluted in 50 µl Opti-MEM 

(Gibco #31985). In a second reaction tube, 1 µg plasmid DNA was mixed with 50 µl Opti-MEM. After 

5 min, the diluted DNA and transfection reagent were unified and the transfection mix incubated for 

20 min. The cells were washed with pre-warmed Opti-MEM and 100 µl of the transfection mix were 

added. After 2 h, 1 ml normal growth medium was added. Cells were fixed after 24 h. 

 

Lipid delivery to mammalian cells 

Cells were cultured to the desired cell density, the normal culture medium removed and replaced by 

lipid-supplemented medium. Lipid dissolution in the media was achieved by adding an ethanolic lipid 

solution or, in the case of unlabeled cholesterol, the β-cyclodextrin complex, to the cell culture 

medium. Unless otherwise stated, lipids were delivered in full medium (standard growth medium for 

the respective cell line, supplemented with serum, as decribed above under “Cell culture”).  
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For the pulse-chase study in HuH7 (Fig. 34), the pulse medium was RPMI without added FCS, 

supplemented with 1 % lipid-free BSA (Applichem #A0848) and 10 µM alkyne-cholesterol. The chase 

was performed in full medium, without added alkyne lipid.  

For the lipid-loading experiments (Fig. 35 to Fig. 38), HuH7 cells were incubated with unlabeled lipids 

and ACAT inhibitors (avasimibe or CP-113,818), as indicated, in full medium for two days, after which 

the medium was replaced for medium containing the unlabeled lipid and, if indicated, ACAT inhibitor, 

and 10 µM alkyne-cholesterol and the cells incubated for further 17 h, followed by fixation or lipid 

extraction. 

 

4.1.2.2 Molecular biology methods 

Cultivation of E.coli 

E.coli were cultured in LB (Luria Broth) medium (5 g/l yeast extract, 10 g/l NaCl, 10 g/l tryptone) or on 

LB agar plates containing kanamycin (50 µg/ml) at 37 °C with shaking at 180 rpm (liquid medium) or 

without shaking (agar plates). 

 

Preparation of chemical competent E.coli 
E.coli strain DH5-α was grown in 250 ml SOB medium containing 0.5 % yeast extract, 2 % tryptone, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2 and 10 mM MgSO4 at 19 °C to O.D. 0.5. After incubation on 

ice for 10 min, the cells were pelleted by centrifugation (4000 g, 10 min, 4 °C) and resuspended in 

16 ml transformation buffer (10 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES), 250 mM KCl, 

15 mM CaCl2, 55 mM MnCl2, pH 6.7). After centrifugation, the pellet was resuspended again in 

20 mM transformation buffer supplemented with 1.4 ml dimethylsulfoxide (DMSO). Aliquots of 100 µl 

were snap-frozen in liquid nitrogen and stored at -80 °C. 

 

Transformation of E.coli 

Chemical competent E.coli were thawed on ice, mixed with plasmid DNA and incubated on ice for 

5 min. After a heat-shock of 45 s at 42 °C, 0.5 ml LB medium was added and the cells incubated at 

37 °C for 60 min. Bacteria were pelleted, the pellet resuspended in LB medium and the cells were 

plated on LB agar plates supplemented with kanamycin. 

 

DNA preparation from E.coli 

DNA preparation was performed as Mini or Midi preparations according to the protocols provided by 

the manufacturer (Macherey-Nagel, Düren, Germany). DNA concentrations were measured at a 

NanoDrop spectrometer (Peqlab, Erlangen, Germany). 

 



Part II: Materials and Methods 

 
72 

DNA amplification by PCR, agarose gels, restriction digest, ligation 

Polymerase chain reaction (PCR) was performed using the standard protocols to amplify DNA. PCR 

samples were purified on agarose gels, which were prepared with 1 % agarose in TAE buffer (50x 

TAE: 100 ml 0.5 M Na2EDTA pH 8.0, 242 g Tris base, 57.1 ml glacial acetic acid, H2O up to 1000 ml). 

DNA was extracted from the gels according to the protocol of the manufacturer (Qiagen) and digested 

with the appropriate restriction enzymes (New England Biolabs). After purification on agarose gels, 

the digested products were ligated into appropriate digested plasmids. 

 

4.1.2.3 Lipid extraction, ethanolic click reaction and thin layer 
chromatography 

Lipid extracts were generated from HuH7 cells grown in 6 cm-dishes by on-dish extraction. After 

washing the cells with PBS supplemented with 1 % lipid-free BSA, and again with PBS, 1 ml of 

chloroform/methanol 5/1 was added, the dish agitated gently for 30 s and the solvent mixture was 

transferred to a centrifugation tube. The dish was rinsed again with 1 ml isopropanol. To the pooled 

extracts, 500 µl chloroform were added, the solution mixed, and the tube centrifuged (4000 g, 5 min). 

The supernatant was decanted from the cell pellet. After the addition of 4 ml water, the sample was 

mixed and centrifuged again (4000 g, 10 min). The lipid extract was obtained as the lower phase. For 

click labeling of extracted lipids, an appropriate proportion of the lipid extract was transferred to a new 

reaction tube, solvents were evaporated and the lipids redissolved in 10 µl chloroform. 30 µl click 

reaction mix (10 µl of 2 mg/ml 3-azido-7-hydroxycoumarin, 250 µl of 10 mM CuTFB in acetonitrile, 

850 µl ethanol) were added and the tubes incubated at 43 °C for 3 h (see chapter 3.1). After the 

addition of 20 µl chloroform, ultrasonication and thorough mixing, the samples were applied onto TLC 

silica plates and developed with the following solutions: chloroform/methanol/water/acetic acid 

65/25/4/1 for 5 cm, followed by gentle drying of the plates and hexane/ethyl acetate 5/1 for 18 cm. 

 

4.1.2.4 Aqueous click reaction and sample preparation for microscopy 

Formaldehyde fixation of cells for microscopy 

Cells were washed with PBS containing 1 % delipidated FCS and again with PBS. Then 3.7 % 

formaldehyde in PBS was added and the cells were fixed for at least 17 h at 4 °C. To test the effect of 

the fixation buffer on the labeling (Fig. 25), different fixation buffers were used, based on PBS or click 

buffer (50 mM HEPES/KOH, pH 7.4) by adding different concentrations of calcium chloride. 

 

Click labeling of fixed samples with azide detection reagents 

After fixation, the samples were washed two times with PBS, one time with 155 mM ammonium 

acetate and two times with click buffer. For these and all subsequent wash steps, the samples were 

incubated with the buffer for 10 min while gently agitating. The coverslips were then incubated in a 24-
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well plate on a heated shaker (Thermomix, Eppendorf, Germany) at 43 °C and 300 rpm. The buffer 

was removed and 800 µl of a pre-warmed solution of the azide detection reagent in click buffer was 

added, followed instantly by the injection of 16 µl CuTFB in acetonitrile into the reagent solution. After 

15 min incubation, another 8 µl copper catalyst solution were added. See figure legends in chapter 

4.2 for the concentrations of the reagents and CuTFB catalyst used for click labeling in the individual 

experiments. Samples were incubated under continuous shaking at 300 rpm during the click reaction, 

except for 3T3-L1 adipocytes, which were shaken for 2 min after copper addition only. After another 

15 min, the reagent solution was removed and the samples were washed with click buffer two times. 

Samples with biotinylated azide reagents were then washed sequentially with PBS, PBS 

supplemented with 2 % BSA, and then incubated upside-down on parafilm in a 30 µl drop of 1:120 

streptavidin-Alexa488 (Dianova) in PBS/ 2 % BSA for 60 min, followed by two wash steps with PBS/ 

2 % BSA, whereas these steps were left out for samples with ASBDP. Finally, all samples were 

washed with PBS again six times. 

 

Staining of lipid droplets and nuclei, mounting of samples for microscopy 

LDs were stained by adding LD540 (Spandl et al., 2009) at a concentration of 100 ng/ml in the 

penultimate wash step (10 min incubation). Nuclei were stained by adding 4',6-diamidino-2-

phenylindole (DAPI, 1:1000) in the last wash step and incubating for 20 min. Coverslips were 

mounted with 7 µl (3T3-L1 adipocytes: 15 µl) Mowiol/DABCO (6 g glycerol, 2.4 g mowiol, 6 ml H2O, 

12 ml 0.2 M Tris pH 8.5, 0.1 % 1,4-diazabicyclo[2.2.2]octane). Samples for STED microscopy were 

mounted with 7 µl ProLong Gold (Life Technologies). 

 

4.1.2.5 Microscopy 

Epifluorescence microscopy  

For epifluorescence detection, a Zeiss Observer.Z1 microscope (Carl Zeiss) was used together with a 

CoolSNAP K4 (Photometrics) or OrcaFlash 4.0 (Hamamatsu) camera, a Polychrome V 150 W xenon 

lamp (Till Photonics) and a Plan-Apochromate 63x (1.40 NA) DIC Oil or a Fluar 40x Oil (1.30 NA) 

objective (Zeiss). Optical sectioning was performed using structured illumination with Zeiss ApoTome. 

For brightfield polarized light microscopy, two polarization filters were included in the light path, before 

and after the sample. Image acquisition was performed using the AxioVision or Zen 2012 Blue 

Software (Zeiss). 

 

STED microscopy  

Super-resolution microscopy using stimulated emission depletion (STED) was performed in 

cooperation with Dr. Jan-Gero Schlötel at the Light Microscopy Facility of the DZNE (German Center 

for Neurodegenerative Diseases) on a Leica TCS SP8 microscope equipped with a pulsed white light 
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laser, depleted with a 592 nm STED laser and a 100x oil immersion (1.40 NA) objective. Detection 

and gating were conducted with a Leica high dynamic range detector (HyD).  

LD540 was excited at 534 nm and 0.35 % laser power, emitted light was collected from 544 – 604 nm 

for confocal imaging. Alexa488 was imaged at 488 nm excitation and 498-541 nm emission at 200 

gain; the excitation laser was adjusted to 1 % power in confocal mode and 10 to 20 % power for 

STED mode, whereas the depletion laser was used at 25 to 50 % power. In STED mode, pictures 

where calculated from multiple frame-averages. The pixel size in the STED mode was 20 nm or 

30 nm. Scans were performed with 400 to 600 Hz scanning speed. For sequential scans (Z stacks), 

all Z layers were scanned for one channel before continuing with the next channel.  

To compare confocal and STED images of the same region of interest (ROI), the following routine 

was used: (i) Confocal imaging of LD540, (ii) confocal imaging of Alexa488, (iii) STED-imaging of 

Alexa488, single frame to bleach LD540 and therefore remove anti-Stokes fluorescence due to this 

dye, (iv) STED-imaging of Alexa488, multiple frames for averaging. 

 

Raman microspectroscopy 

Measurements of the Raman spectra of alkyne lipid solutions were performed at the Waseda 

University, Tokyo, Japan in collaboration with Rimi Miyaoka and the group of Professor Haruko 

Takeyama, and Masahiro Ando. Alkyne-oleate (100 mM), alkyne-palmitate (100 mM) and alkyne-

cholesterol (10 mM) were dissolved in ethanol. Homopropargylglycine was prepared as a 30 mM 

solution in DMSO/H2O 2/1. Solutions were dropped on a slide and covered with a coverslip (#1.0), 

followed by sealing with nail polish. Images were acquired at a laboratory-built confocal Raman 

microspectrometer with a 100x (1.40 NA) objective, a spectrometer, a CCD detector and 532 nm laser 

excitation (Hosokawa et al., 2014; Miyaoka et al., 2014). The resolution of the Raman imaging system 

(size of the focus point) was 0.3 µm (lateral) and 2.6 µm (axial), respectively. 

 

4.1.2.6 Image processing and data analysis 

Images were processed using Fiji (Schindelin et al., 2012) or Adobe Photoshop 6.0. Maximum 

intensity projections were calculated from Z-stacks in Fiji or Zeiss AxioVision. The pixel values of the 

maximum image projections are the maximum value over all images in the stack at the particular pixel 

location. Intensity profiles and 3D surface plots were calculated from line and rectangular selections, 

respectively using Fiji. 

For comparing the sensitivity of the different azide detection reagents (Fig. 21 and 23B), all images 

were taken at the same exposure times and post-processed in the same way in Fiji. Images were 

corrected for illumination by dividing pixel values by those of an image displaying illumination 

inhomogeneities of the microscope setup. Cell outlines were marked as ROIs and the mean alkyne 

lipid signal of every cell was measured. Per sample, a total of 50 to 100 cells in six images taken at 

defined positions of the coverslip was used for quantification. 
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In a similar approach, quantification of the influence of lipid loading on alkyne-cholesterol intracellular 

localization (Fig. 38C) used 10 images per sample, taken at defined positions on the coverslip with 

the same exposure times. After marking the cell outlines as ROIs, the signal integral for alkyne-

cholesterol and LD540 was measured for 150 to 180 individual cells per sample, and the number of 

birefringent objects was determined visually for each cell. 

Deconvolution of STED images was performed using the Huygens deconvolution software (SVI 

Scientific Volume Imaging). 

Calculations and statistical analysis were carried out in Microsoft Excel 2011 and Graphpad Prism 6. 

One-way ANOVA (analysis of variance) and Kruskal-Wallis tests were performed to determine if 

values were different from each other with statistical significance. Asterisks refer to P values 

computed for the data: ****, P<0.0001, extremely significant; ***, 0.0001<P<0.001 extremely 

significant; **, 0.001<P<0.01, very significant; *, 0.01<P<0.05, significant; n.s., P>0.05, not significant 

(asterisk scheme and wording from the GraphPad Prism online guide). 

Molecular structures were drawn using ChemDraw (CambridgeSoft Corporation, Version 8.0 Ultra), or 

Chem Doodle (iChemLabs, Version 7.0). To obtain 3D models of molecules, structures were 

energetically optimized in Chem3D (CambridgeSoft Corporation, Version 8.0 Ultra), using the MM2 

force-field protocol to minimize energy. Optimized structures were visualized and intramolecular 

distances measured with PyMOL (Schrödinger, LLC). The DPPC bilayer model was provided by 

Jeffrey Klauda, University of Maryland, as a free download file (323.15 K, 72 lipids, CHARMM36 force 

field simulation, tensionless ensemble (NPT), (Klauda et al., 2010)). 
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4.2 Results (Part II) 

4.2.1 A highly sensitive protocol for alkyne lipid imaging in fixed cells  

4.2.1.1 Increased lipid imaging sensitivity by modulation of the azide 
detection reagent 

Based on the current protocol developed in our lab to click-label alkyne lipids in fixed 

cells for fluorescent imaging (Hofmann et al., 2014), we intended to enhance the 

sensitivity of the method, especially for challenging alkyne lipids that give low signal, 

such as alkyne-cholesterol. 

To this end, a set of different azide detection reagents was successfully synthesized 

in good yields. They were designed to investigate the influence of spacer length and 

intrinsic copper chelation on the sensitivity of the method (see chapter 4.3.1 for 

details and models). The new reagents (AP6Btn, AP10Btn and APpic2Btn) were 

tested, and compared to reagents that were used routinely (AP3Btn and ASBDP). 

A172 cells were incubated with 10 µM alkyne lipid, fixed and subjected to the 

standard click labeling protocol using the various azide reagents (Fig. 20) at a 

relatively low concentration (10 µM) and 200 µM CuTFB (instead of 2 mM) to create 

a challenging setup for the analysis of labeling sensitivity. Please note that in Fig. 20, 

for better visibility of the micrographs with low signal, the pictures of each sample 

and its corresponding control (without alkyne lipid) are adjusted to the same display 

levels (columns), but different reagents (rows) have different contrast settings, so 

these images cannot be compared directly.  

In general, the signal of click-labeled alkyne-oleate (Fig. 20A) was stronger than that 

of the other lipids, so different exposure times were used, 50 ms for alkyne-oleate, 

100 ms for alkyne-cholesterol and propargylcholine (Fig. 20B). Alkyne-oleate 

showed the highest signal-to-noise ratios, whereas alkyne-cholesterol gave the least 

signal, proving itself as the most challenging lipid of those tested. The choice of the 

azide reagent greatly influenced the signal-to-noise ratio. APpic2Btn in general gave 

the brightest staining; a sample with a lower concentration of the reagent (2 µM) was 

therefore included and also gave very bright labeling. The background signal in 

samples with no added alkyne lipid, originating from unspecifically bound azide 

reagent or streptavidin-fluorophore conjugate was generally low. It nevertheless 
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became relevant for samples with very low signal, namely alkyne-cholesterol in 

combination with most reagents. 

 

Fig. 20: Sensitivity of click labeling with different azide detection reagents at 10 µM (or 
2 µM) concentration. 

A172 cells were incubated with medium supplemented with 10 µM alkyne-oleate, alkyne-cholesterol 
or propargylcholine, or in medium without lipid supplementation for 16 h. After fixation, cells were 
click-labeled using 10 µM (or 2 µM) azide detection reagent and 200 µM CuTFB. Epifluorescence 
images were taken with 50 ms (alkyne-oleate, panel A) or 100 ms (alkyne-cholesterol or 
propargylcholine, panel B) exposure. To demonstrate signal-to-noise ratios, the micrographs shown 
here are adjusted to the same display level in every column (control lacking alkyne lipid compared to 
lipid-incubated sample), but not in every row. Color-coding of the samples corresponds to Fig. 21 and 
Fig. 22. 

For the quantitative evaluation of sensitivity, the click labeling signal of all individual 

cells in six images, taken at defined positions of the sample, was measured (Fig. 21). 

Alkyne-oleate (Fig. 21A) was detected very sensitively with 2 or 10 µM APpic2Btn, 

resulting in a signal statistically highly significant above background (compared to 

the signal in control samples lacking alkyne lipid). The use of the other Btn-based 

reagents (AP3Btn, AP6Btn, AP10Btn) as well as the fluorophore ASBDP resulted in 

a much lower signal and hence lower detection sensitivity. 
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Fig. 21: Quantification of signal intensities of alkyne lipids labeled with different azide 
detection reagents. 

Mean signal per cell for the detection of alkyne-oleate (50 ms exposure, panel A), alkyne-cholesterol 
or propargylcholine (100 ms exposure, panel B) and of control samples lacking alkyne lipid, 
determined after click labeling with various azide reporters (compare Fig. 20). For quantification, 
images were taken at six defined positions of every sample and corrected for illumination. Cell 
outlines were marked as ROIs and the mean signal for every individual cell (50-100 cells in six 
images per sample) measured. Data points correspond to the mean signal of single cells. In addition, 
the mean value and the standard deviation for all cells of a sample are given in the graph. Asterisks 
designate levels of statistical significance (one-way ANOVA test). If no level of statistical significance 
is given for a sample and its corresponding control (no lipid), the difference is statistically not 
significant (n.s.). 

Similar trends were detected for alkyne-cholesterol and propargylcholine (Fig. 21B). 

Interestingly, when the concentration of APpic2Btn was reduced from 10 µM to 2 µM, 
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the effect on the labeling of propargylcholine was minor, but for alkyne-oleate and 

alkyne-cholesterol, a significant signal decrease resulted.  

Under the challenging imaging conditions applied here, most of the azide reporters 

apart from APpic2Btn did not show a significant difference in signal between alkyne 

lipid incubated cells and controls (Fig. 21). However, a highly structured intracellular 

staining was visible for all combinations of lipids and reagents, but not for control 

samples lacking alkyne lipids (Fig. 20). To investigate the intracellular localization of 

the alkyne lipid metabolites more closely, images of samples supplemented with 

alkyne-oleate or alkyne-cholesterol were taken using higher exposure times (Fig. 

22). Excellent to very good (alkyne-oleate, Fig. 22A) and excellent to acceptable 

(alkyne-cholesterol, Fig. 22B) signal-to-noise ratios were observed after click labeling 

with 10 µM azide reagent, and with imaging under optimized conditions. Reagents 

with longer PEG-spacers (AP6Btn and AP10Btn) gave lower signal than AP3Btn for 

both lipids, but the effect was stronger for alkyne-cholesterol. Apparently, the effect 

of increasing the spacer length on sensitivity was detrimentral rather than beneficial, 

especially for the detection of challenging lipids (see chapter 4.3.1 for discussion of 

reagent design). On the other hand, the introduction of a picolyl moiety in the 

structure of the reporter, as in APpic2Btn, led to a strong increase in sensitivity, 

compared to that with the similarly sized AP3Btn. This allowed for a much lower 

exposure time necessary to obtain high contrast pictures (see yellow numbers in Fig. 

22). Labeling with ASBDP resulted in nearly the same sensitivity, compared to 

AP3Btn, but a higher background in cellular membranes was visible and membrane-

blebbing was observed occasionally (see ASBDP + alkyne-cholesterol in Fig. 22).  

Morphologically, all reagents stained endomembranes, as expected for cholesterol 

and the metabolites of oleate. For alkyne-oleate, the PM staining, in relation to the 

signal in endomembranes, was more prominent when using AP10Btn and ASBDP, 

but due to a lower total signal with these reagents, a diminished staining of 

endomembranes rather than an enhanced labeling of the PM is likely the reason.
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Fig. 22: Intracellular structures detected with alkyne lipids click-labeled with different azide 
reporters. 

A172 cells were incubated with medium supplemented with 10 µM alkyne-oleate (panel A) or alkyne-
cholesterol (panel B) for 16 h. After fixation, cells were click-labeled using 10 µM (or 2 µM) azide 
detection reagent and 200 µM CuTFB. Maximum intensity projections of Z-stacks acquired with 
structured illumination (ApoTome) are shown. Exposure times were optimized for each combination 
of alkyne lipid and reagent (see yellow numbers). Color-coding of the samples corresponds to Fig. 20 
and Fig. 21. 
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In our lab, the conventional azide reporter AP3Btn is routinely used at 50 µM 

concentration (see (Hofmann et al., 2014)), which is five times higher than in the 

sensitivity screen shown above (10 µM, Fig. 20). Therefore, the sensitivity of click 

labeling was re-examined using an optimized concentration for each detection 

reagent, but otherwise the same conditions (Fig. 23). In this less challenging setup, 

the sensitivity of all reagents was increased. All reporters were used at 50 µM 

concentration, except for the very potent APpic2Btn, which was used at 10 µM or 

2 µM. For all reporters, an exposure time of 400 ms was chosen to achieve optimal 

signal-to-noise ratios (squares in Fig. 23A). However, for labeling with APpic2Btn this 

sometimes led to overexposed images, in which case imaging was performed at 

200 ms exposure (triangles in Fig. 23A).  

Micrographs (Fig. 23A) and their quantitative analysis (Fig. 23B) revealed that a 

sensitive detection of alkyne-oleate (i.e. a mean signal significantly higher than that 

of the control) was achieved with all reagents tested, AP3Btn, APpic2Btn, AP6Btn 

and AP10Btn, under optimized conditions. For propargylcholine detection, AP3Btn, 

APpic2Btn and AP10Btn met this criterion. With alkyne-cholesterol, only APpic2Btn 

led to a signal that was about as strong as for the other lipids and statistically 

significant from controls. Interestingly, AP6Btn gave lower signal than AP10Btn. In 

summary, compared to the standard protocol of our lab for alkyne lipid detection by 

microscopy, the application of APpic2Btn led to a substantial increase in the 

sensitivity of the method, especially in the detection of alkyne-cholesterol. 
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Fig. 23: Sensitivity of click labeling with different azide detection reagents at optimized 
concentrations. 

A172 cells were incubated in medium supplemented with 10 µM alkyne-oleate, alkyne-cholesterol or 
propargylcholine, or in medium without lipid supplementation for 16 h. After fixation, cells were click-
labeled using an optimized concentration (2-50 µM) of each azide detection reagent and 200 µM 
CuTFB. Epifluorescence images (panel A) were taken. Images are shown at the optimal display level 
each; display levels are not matching in neither rows nor columns. Color-coding of the micrographs 
corresponds to the quantification shown in panel B. – Legend continued on next page. 
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Fig. 23:- Legend continued from last page. B: Mean signal per cell for the detection of alkyne-oleate, 
alkyne-cholesterol or propargylcholine, and of control samples lacking alkyne lipid, determined after 
click labeling with given azide reporters. For quantification, images were taken at six defined 
positions of every coverslip sample with 200 ms (triangles) or 400 ms (squares) exposure time and 
corrected for illumination. Cell outlines were marked as ROIs and the mean signal for every individual 
cell (50-120 cells in six images per sample) measured. Data points correspond to the mean signal of 
single cells. In addition, the mean value and the standard deviation for all cells of a sample are given 
in the graph. Asterisks designate levels of statistical significance (one-way ANOVA test). If no level of 
statistical significance is given for a sample and its corresponding control (no lipid), the difference is 
statistically not significant (n.s.).  

 

4.2.1.2 Simultaneous click labeling with two different reagents to validate 
detection with APpic2Btn 

The most promising reagent candidate, APpic2Btn, was further validated by 

comparing the intracellular distribution of alkyne-cholesterol after click labeling with 

this novel reagent or azido-TMR (Fig. 24). For a direct comparison, samples of fixed 

A172 cells fed with alkyne-cholesterol were click-labeled according to the standard 

protocol using equimolar amounts of both reagents simultaneously. After conjugation 

of the Btn-label to streptavidin-Alexa488, the signals deriving from both labels could 

be imaged in parallel at the microscope and the intracellular structures stained were 

compared directly in the same cell. 

 

Fig. 24: Simultaneous click labeling of alkyne-cholesterol with two different reagents, 
APpic2Btn and azido-TMR. 

To directly compare the labeling of alkyne-cholesterol in fixed cells with two different reagents, A172 
cells were fed with 10 µM alkyne-cholesterol for 17 h, fixed, and then simultaneously click-labeled 
with a reagent solution containing both APpic2Btn (5 µM) and azido-TMR (5 µM), and CuTFB 
(200 µM). The resulting staining patterns were compared by multi-channel imaging (structured 
illumination with ApoTome). Signal from APpic2Btn conjugated to streptavidin-Alexa488 is displayed 
in green, signal from azido-TMR in magenta. The nucleus (DAPI) is shown in blue. 

 



Part II: Results 

 
84 

Alkyne-cholesterol was observed in the same intracellular compartments with both, 

chemically very different reagents. Alkyne-cholesterol rings (presumably partially 

around LDs, see chapter 4.2.2) and the nuclear envelope were somewhat more 

prominent with the hydrophilic APpic2Btn, whereas diffuse membrane staining in the 

perinuclear region (presumably, amongst other organelles, ER) was slightly stronger 

with the hydrophobic dye azido-TMR.  

 

4.2.1.3 Influence of the fixation buffer on the click labeling 

To test the effect of the fixation protocol on the click labeling of alkyne lipids in 

biological membranes, A172 cells were incubated with alkyne-cholesterol, fixed in 

HEPES buffer containing different concentrations of calcium ions and subjected to 

standard click labeling (Fig. 25). 

 

Fig. 25: Effect of the fixation buffer on the click labeling of alkyne-cholesterol. 
A172 cells were incubated in medium supplemented with 10 µM alkyne-cholesterol for 17 h, washed 
and fixed in HEPES buffer (50 mM, pH 7.4) containing 4 % formaldehyde and different 
concentrations of CaCl2, or fixed in PBS/formaldehyde, followed by standard click labeling with 10 µM 
APpic2Btn and 200 µM CuTFB. Micrographs were taken in epifluorescence mode.  

Whereas in samples lacking calcium ions in the fixation solution, a prominent 

labeling of membrane structures inside the cell was visible, the addition of calcium 

chloride in increasing concentrations resulted in an increasingly dominant PM 
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staining. PBS/formaldehyde, the standard fixation reagent in this study, could not be 

supplemented with calcium ions, because insoluble calcium phosphate salts would 

have formed. Fixation in PBS or HEPES led to similar staining patterns. However, 

PBS has a physiological and thus substantially higher ionic strength than 50 mM 

HEPES. Hence, the effect of the fixation solution on click labeling was not due to 

ionic strength alone but dependent on the presence of specific ions. Similar effects 

were detected in HuH7 cells (data not shown) pointing to a general influence of 

calcium ions during fixation on the click labeling of alkyne lipids in the PM. 
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4.2.2 Alkyne-cholesterol localization to lipid droplets and associated 
endoplasmic reticulum in HuH7 cells 

Alkyne-cholesterol localizes to a subpopulation of lipid droplets and 
associated endomembranes 

A prominent localization of alkyne-cholesterol around LDs was observed (Fig. 26A) 

after over-night incubation of A172 cells with this lipid and click labeling with the 

new sensitive detection protocol (see chapter 4.2.1). Alkyne-cholesterol (or its 

metabolite alkyne-cholesterol ester, alkyne-CE, Fig. 26C) was incorporated by the 

gliablastoma cell line A172 into ring-like structures that might represent outer parts 

of the LDs or membrane structures wrapped around it. These structures were not 

an artifact due to the use of the new detection reagent, because they were present 

with other detection reagents as well (Fig. 24). The rings appeared to be connected 

to alkyne-cholesterol containing tubular structures.  

Similar observations were made in other cell types, like in the hepatocarcinoma cell 

line HuH7 and in immortalized mouse macrophages (data not shown). This 

indicates that a general pathway targets alkyne-cholesterol to LDs. In many cases, 

a striking heterogeneity of the alkyne-cholesterol signal inside single cells was 

observed (Fig. 26B). Alkyne-cholesterol was not detected around all LDs of a cell, 

some LDs had less or no signal. Some LDs were connected to alkyne-cholesterol 

containing compartments; others had no apparent connection to these tubular 

structures. LDs were sometimes clustered loosely or tightly, or lined up along 

membrane bridges like beads on a string. 

Alkyne-cholesterol was esterified to alkyne-CE to a considerable proportion (21 %) 

by A172 cells (Fig. 26C). In all cell types, the very hydrophobic lipid CE is stored in 

LDs, however, no staining of the LD core was observed with our click labeling 

protocol. This is probably due to limitations of the click labeling in the very 

hydrophobic environment of the LD core. See chapter 4.3.2.1 for a more extensive 

discussion of click labeling in biological systems.  
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Fig. 26: Alkyne-cholesterol localization around lipid droplets in A172 cells. 
The cell culture medium of A172 cells was supplemented with 10 µM alkyne-cholesterol for 17 h, the 
cells fixed and click-labeled with APpic2Btn. LDs were stained with LD540 (displayed in magenta) 
and nuclei with DAPI (blue). Maximum intensity projections of Z-stacks taken under structured 
illumination are shown. A: Alkyne-cholesterol (green) localized to ring-like structures of or near LDs. 
Connections between this ring-like staining around the LDs and other membrane compartments 
positive for alkyne-cholesterol were observed (arrowhead). B: The LD pool of single cells was 
heterogeneously targeted by alkyne-cholesterol. Not all LDs showed the ring-like staining (right 
detail). The intensity of the alkyne-cholesterol signal around LDs and associated membranes varied 
greatly. C: Fluorescent TLC image of click-labeled lipids from A172 cells incubated with alkyne-
cholesterol in full medium for 17 h. Alkyne-cholesterol was metabolized to alkyne-CE (21 % of total 
signal). 
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Neutral alkyne lipid metabolites accumulate in lipid droplets, but most of the 
lipid droplet core is not accessible for click labeling 

To investigate if the click labeling procedure is able to stain the LD core, 

differentiated 3T3-L1 adipocytes were fed with fatty acids of different chain length 

and saturation. Fig. 27A shows a maximum intensity projection of an adipocyte 

incubated with alkyne-palmitate. Note that the Z-stack spanned less than the full 

cell in Z-direction, the Z-fraction most distant to the coverslip was not recorded. 

Consequently, the uppermost parts of the largest LDs are missing in this 

micrograph. They therefore lack the “caps” of alkyne-palmitate signal (green) that is 

surrounding, but not deeply penetrating the LDs (magenta). Also for the other fatty 

acids (Fig. 27B, single Z-slice micrographs), no signal was found inside the LDs, 

although the bona fide LD-resident lipid alkyne-TAG was generated from all of the 

alkyne fatty acids used (Fig. 27C). Thus, like alkyne-CE stored in LDs after alkyne-

cholesterol feeding (Fig. 26), alkyne-TAG cannot be click-labeled (deeply) inside 

the highly hydrophobic environment of the LD core. This represents a general 

limitation of the current click labeling protocol.  

The inability to click-label alkyne lipids deeply inside the LD core does not exclude 

the possibility of staining alkyne lipids localized on the LD surface and to a certain 

depth inside the core. Comparative imaging of different fatty acids in adipocytes 

was performed to shed some light upon the characteristics and limitations of our 

click labeling protocol.  

In a previous study (Thiele et al., 2012), our lab could show that alkyne fatty acids 

are differentially metabolized by adipocytes, depending on the acyl chain length. 

Like in the previous study, the alkyne fatty acids used here, with chain lengths 

between nine and nineteen carbon atoms, were metabolized to TAG (Fig. 27C). 

Incorporation into the membrane constituting phospholipids could be observed for 

alkyne-palmitate and alkyne-oleate, which gave rise to considerable amounts of 

alkyne-labeled phosphatidylethanolamine (PE) and PC. For the C9 alkyne fatty 

acid, however, smaller amounts of these phospholipids were detected, and only 

traces for the C11 and C13 alkyne fatty acids. This striking difference was reflected 

by the differential intracellular localization pattern of the fatty acid metabolites (Fig. 

27B).  
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Fig. 27: Fatty acid metabolites in 3T3-L1 adipocytes. 
3T3-L1 cells were differentiated into adipocytes and incubated with cell culture medium 
supplemented with 10 µM alkyne fatty acids for 17 h from Day 8 of differentiation. A and B: After 
fixation and click labeling (shown in green) with 50 µM AP3Btn and 2 mM CuTFB, samples were 
imaged (structured illumination). LDs were stained with LD540 (magenta), nuclei with DAPI (blue). A: 
Maximum intensity projection of a Z-stack covering most of the Z-extension of an adipocyte fed with 
alkyne-palmitate. Click-labeled fatty acid metabolites cover small and large LDs. B: Micrographs of 
adipocytes (single Z-layer) incubated with various alkyne fatty acids. Display levels of alkyne fatty 
acids are adjusted to the same scale. C: Fluorescent TLC image of similarly prepared samples. 
Lipids were extracted from coverslips and click-reacted with azido-coumarin (3-azido-7-
hydroxycoumarin). Fatty acid metabolites were identified using co-migrating standards. The 
differential metabolism of fatty acids detected by TLC corresponds to a dissimilar staining in 
microscopy. TLC data (panel C) were kindly provided by Mario Lauterbach. 

Whereas the phospholipid metabolites of alkyne-palmitate and alkyne-oleate gave 

a distinct labeling of the PM, this organelle was much less prominently stained with 

the shorter fatty acids C9 and C13. For the C13 fatty acid, which is not incorporated 

into phospholipids, the signal intensity was generally much lower, indicating that 

the neutral lipids that it was incorporated into were packed into the inaccessible 

part of the LDs. The C11 fatty acid however, almost solely converted to neutral 

lipids like the C13 fatty acid (see Fig. 27C), gave a ring-like labeling around the LDs 
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like alkyne-oleate or -palmitate. This demonstrates that the neutral lipids in the 

outermost parts of the LD core probably are accessible to our click labeling 

protocol. 

Besides the insight into the characteristics of our click labeling method, imaging 

data from fatty acid metabolites in adipocytes will be a valuable contribution to the 

exploration of the striking dependence of fatty acid metabolism and trafficking on 

chain length in adipocytes (Thiele et al., 2012). 

 

A label-free detection of alkyne lipids could enable their imaging inside the LD core. 

Raman microspectroscopy and other Raman-based microscopy techniques have 

been used to identify the intracellular localization of alkyne labeled probes (see 

chapter 1.2). In collaboration with the group of Prof. Takeyama at Waseda 

University, we tested the feasibility of Raman microspectroscopy with alkyne lipids 

for this purpose. In a pilot experiment, the spectral properties of solutions of 

different alkyne probes, namely alkyne-cholesterol, two alkyne fatty acids, and 

homopropargylglycine, a reagent used to biosynthetically label proteins with alkyne 

groups (Beatty et al., 2006), were measured under the Raman microscope to 

assess their suitablility for imaging in a complex biological environment. 

The tested alkyne probe solutions all showed an intense peak originating from the 

alkyne triple bond stretching vibration at about 2120 cm-1, (Fig. 28A), in an 

otherwise very silent region of the Raman spectrum of mammalian cells (Fig. 28B). 

This is a promising starting point for further experiments in fixed or living cells, 

which will focus on the detection of alkyne lipids in the LD core (see 

chapter 4.3.2.1). 
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Fig. 28: Raman spectra of alkyne lipid solutions. 
A: Raman spectra acquired from solutions of alkyne lipids at the Raman microspectroscope. The 
intense peak of the alkyne triple bond stretch (~2120 cm-1) is highlighted in yellow. B: Raman 
spectrum of PC12 cells. The alkyne peak (yellow) lies within a silent region of the Raman spectrum of 
mammalian cells. C: Raman spectra from solutions containing palmitoleate and alkyne-oleate in 
different ratios. Sample compositions are given in panel D. D: Plot of the calculated relative amounts 
of alkyne-oleate in the alkyne-oleate/palmitoleate mixtures (blue triangles), and relative amounts 
estimated from the Raman peak intensities measured for the alkyne peak at ~ 2120 cm-1 versus the 
alkene double bond stretch at ~ 1650cm-1 (red circles). Data and figure used with kind permission of 
Prof. Haruko Takeyama and Rimi Miyaoka, Waseda University, Tokyo, Japan; layout slightly 
modified. 
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An additional benefit of spontaneous Raman microspectroscopy is demonstrated in 

Fig. 28C and D. Because of the linearity of signal to the amount of molecules that 

produce it, relative signal intensities can provide quantitative information about the 

relative lipid contents in the focus point of the Raman spectroscope’s laser. Fig. 28C 

shows the spectra of six different mixtures of palmitoleate and alkyne-oleate. The 

alkene peak intensity, like the relative content of C=C double bonds, did not vary 

with different ratios of the two fatty acids, whereas the alkyne peak intensity strongly 

correlated with it. The quantification of the peaks against each other (Fig. 28D) 

yielded alkyne-oleate contents determined from the relative peak intensities that 

were very similar to the actual composition of the mixture. 

 

Colocalization studies with mRFP-tagged marker proteins – Alkyne-cholesterol 
at the site of its esterification 

Click labeling with APpic2Btn allows the sensitive detection of alkyne-cholesterol, 

even with a low concentration of the copper catalyst CuTFB (see chapter 4.2.1). This 

enabled the preservation of mRFP1 fluorescence during sample preparation and 

thus co-imaging of alkyne-cholesterol and mRFP1-tagged proteins to investigate the 

nature of the alkyne-cholesterol positive membrane organelle associated with the 

rings around the LD (Fig. 29 and 30). Further experiments in our lab showed that the 

fluorescence of tdTomato, a member of the mFruit family (Shaner et al., 2004), 

which is based on mRFP1, was also satisfyingly preserved during click labeling. 

GFP, EGFP and YFP appeared to be more sensitive towards copper ions (Kristina 

Hofmann and Lars Kuerschner, unpublished data), pointing to an interaction of 

copper with specific amino acids or the structure of the fluorescent proteins that can 

lead to disruption of fluorescence. 

Fusion proteins of mRFP1 and organelle specific proteins were overexpressed in 

HuH7 cells. Alkyne-cholesterol was fed to the transfected cells and click-labeled after 

fixation with APpic2Btn (10 µM) and CuTFB (200 µM) for co-imaging of alkyne-

cholesterol and mRFP1-tagged organelle markers for the ER and mitochondria (Fig. 

29).  
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Fig. 29: Simultaneous imaging of alkyne-cholesterol and marker proteins for the 
endoplasmic reticulum and mitochondria. 

Co-imaging of mRFP-fusion proteins and alkyne-cholesterol using the novel click labeling protocol 
with a reduced copper concentration. HuH7 cells were transfected with mRFP-tagged organelle 
marker proteins for the ER (Sec61, panel A) or mitochondria (ALDH signaling sequence, panel B) 
and then incubated in full medium containing 10 µM alkyne-cholesterol. After click labeling with 
10 µM APpic2Btn and 200 µM CuTFB, imaging was performed using structured illumination. Alkyne-
cholesterol is shown in green, mRFP-fusion proteins are in magenta, LDs (LD540) in blue and nuclei 
(DAPI) in cyan. A: Overlap between the ER marker protein and alkyne-cholesterol was observed. B: 
Alkyne-cholesterol localized to mitochondria. Interestingly, the staining was not homogeneous among 
rod-shaped mitochondria (main pictures) and was not present in bean-shaped mitochondria (inset 
pictures, scale bars displayed in main pictures apply). 

A prominent staining of alkyne-cholesterol was apparent in the ER (Fig. 29A), an 

organelle that is described as cholesterol-poor (van Meer et al., 2008). Thus, 

exogenous alkyne-cholesterol, administered to the cell in a nutrient-saturated 

situation (full medium), did not distribute among the cellular membranes with the 

ratios one could expect from the static cholesterol levels described for these 

organelles (see chapter 1.4). Rather there appears to be some targeting of alkyne-

cholesterol towards its storage in LDs under these conditions.  

Alkyne-cholesterol colocalized with mitochondria (Fig. 29B), sometimes adjacent to 

LDs. Interestingly, alkyne-cholesterol was only found in mitochondria of elongated 

(rod-like) shape but not in bean-shaped mitochondria, which are associated with 

mitochondrial stress (Friedman and Nunnari, 2014). 
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A colocalization of the ER-marker Sec61 (Fig. 29A) and alkyne-cholesterol in the 

vicinity of LDs was rarely observed. Sec61, with its function in the membrane 

translocation of proteins (Osborne et al., 2005), may not be the perfect marker for 

this specific subdomain of the ER (Lynes and Simmen, 2011). Therefore, ACAT1 

was included as a more specific marker for this subcompartment (Fig. 30A), and the 

colocalization of alkyne-cholesterol with mRFP-ACAT1 in direct contact to the LDs 

implies that the structures stained here could be sites of cholesterol esterification.  

With probably nine transmembrane domains (Chang et al., 2009), mRFP-ACAT1 

localizes to the ER, but not LDs. This might indicate that the rings around LDs, 

positive for alkyne-cholesterol and mRFP-ACAT1, are not part of the droplet 

(hemimembrane and outer part of the core), but rather ER wrapped around it. 

Nevertheless, it has to be stressed that the overexpression of mRFP-ACAT1 and the 

loading with large amounts of unlabeled cholesterol could have led to an 

unphysiological response of the cell, depositing a lot of this protein near the LD. With 

lower endogeneous levels of ACAT and lower cholesterol levels the vicinity of LDs is 

likely to be less crowded with the enzyme. Subsequently, the question arises 

whether alkyne-cholesterol in these rings was localized directly on the LDs or in 

associated membranes. This question was addressed with super-resolution 

microscopy (see below). 

Co-imaging of alkyne-cholesterol was performed with overexpressed and mRFP1-

tagged NSDHL (NAD(P) dependent steroid dehydrogenase-like protein, Fig. 30B), 

an enzyme in post-squalene cholesterol biosynthesis that is also known as “sterol-4-

α-carboxylate 3-dehydrogenase, decarboxylating” and described to localize to the 

ER as well as LDs (Caldas and Herman, 2003; Ohashi et al., 2003). In our studies in 

HuH7 cells, mRFP-NSDHL was found in these two organelles as well, and to some 

extent a colocalization with alkyne-cholesterol was observed. However the alkyne-

cholesterol signal in the NSDHL-positive LD rings appeared to be less prominent 

than for ACAT1-positive rings. This points to a preferential targeting of alkyne-

cholesterol to an ACAT1-adjacent subpopulation of LDs. Furthermore, membrane 

connections to NSDHL-positive rings seemed sparser than for ACAT1-positive rings, 

which suggests a differential degree of embedding of the two LD populations into the 

ER network. Colocalization of alkyne-cholesterol with NSDHL in rings around LDs 
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could indicate a localization of the lipid at the LD or associated ER, but, again, 

details could not be resolved at the resolution of light-microscopy. 

 

Fig. 30: Simultaneous imaging of ACAT1 and alkyne-cholesterol in rings around lipid 
droplets and associated membranes. 

HuH7 cells were pre-incubated with unlabeled cholesterol (50 µM in β-cyclodextrin complex) for two 
days, transfected with mRFP-ACAT1 or mRFP-NSDHL and then incubated in full medium containing 
10 µM alkyne-cholesterol. Alkyne-cholesterol is shown in green, mRFP-fusion proteins are in 
magenta, LDs (LD540) in blue and nuclei (DAPI) in cyan. A: Overexpressed mRFP-ACAT1 localized 
to an ER-like network in HuH7 cells and to rings around the LDs. Alkyne-cholesterol was found in the 
same compartments and colocalized with ACAT1 in ring-like structures on LDs and to associated 
membranes. B: mRFP-NSDHL was observed on LDs and the ER. It colocalized with alkyne-
cholesterol to a lesser extent than ACAT1. 

 

Alkyne lipids can be imaged in super-resolution using STED microscopy 

The interpretation of the intracellular structures stained with alkyne-cholesterol would 

greatly benefit from more precise information about their morphology. Many of the 

structural characteristics, like the thickness of the ring-like staining or the 

ultrastructure of the tubular organelles, are close to or smaller than the resolution 

limit of conventional fluorescent light microscopy (~200 nm) and thus cannot be 

elucidated with this technique. To overcome this limitation, we tested the feasibility of 

imaging alkyne-lipids, click-labeled with our novel protocol, at super-resolution using 
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STED. STED imaging was performed with Dr. Jan-Gero Schlötel, group of Prof. 

Thorsten Lang. 

Figure 31 shows that alkyne-cholesterol in fixed A172 cells, click-labeled with 

APpic2Btn, could be detected with a good signal-to-noise ratio at the STED 

microscope. Detail regions of the cell in panel A were imaged with confocal and 

STED settings so that the resolution of the two techniques could be directly 

compared. Although the confocal images appeared to have a slightly better signal-to-

noise ratio, the contrast in the STED images was good.  

For quantification of resolution, signal intensity profiles were plotted for ROIs in a 

micrograph (Fig. 31B and C). The calculation of the FWHM (orange arrows) for a 

peak in ROI 1 demonstrated that the thickness of the alkyne-cholesterol signal 

around the LD was judged by confocal microscopy to be about 400 nm, whereas 

STED revealed that a 200 nm thick ring is observed for this particular droplet. This is 

well above the resolution limit of the STED method and thus can be considered a 

fairly accurate measure. Hence, some of the click-labeled alkyne-cholesterol rings 

are much thicker than a LD monolayer or a single membrane bilayer (see chapter 

4.3.2.2 for a broader discussion). Thinner structures were also observed. ROI 2 cut 

through a structure identified as a single signal peak in the confocal profile, but 

separated into two different features at the higher STED resolution (green arrows). A 

thin ring rim of about 100 nm was identified (corresponding to a width of 3 to 4 

pixels). 
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Fig. 31: Super-resolution imaging of alkyne-cholesterol by STED microscopy. 
Alkyne-cholesterol was imaged with STED at very high resolution after click labeling with 10 µM 
APpic2Btn and 200 µM CuTFB and conjugation to streptavidin-Alexa488. A: Confocal micrograph of 
click-labeled alkyne-cholesterol (green) in an A172 cell, detail images (red and yellow boxes, alkyne-
cholesterol in gray) were acquired in confocal mode and STED mode. B: Detail region of the cell in 
panel A displayed using a pseudo-color look-up table (FireLUT). Numbered yellow lines depict ROIs 
used for signal profiles in panel C. C: Signal intensity profiles of ROIs. Orange arrows indicate the 
different FWHM values as a measure of the width of the ring-shaped alkyne-cholesterol signal cut by 
ROI 1. Profile 2 shows a cut through a thinner ring structure (green arrows), which was separated 
from a second structure with the STED method, but not with confocal microscopy. 
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STED super-resolution detects alkyne-cholesterol positive membrane contacts 
between LDs and ER 

With STED as a super-resolution technique at hand, detailed insight into the 

structure of the alkyne-cholesterol signal could be provided. Alkyne-cholesterol was 

detected in tubular organelles near alkyne-cholesterol positive LDs (Fig. 32). These 

endomembranes were undulating around LDs in the perinuclear region (Fig. 32B) 

and tubules stretched out between the perinuclear and the peripheral regions of the 

cell (Fig. 32C).  

The tubular structures (green arrowheads in Fig. 32B) in the perinuclear region 

appeared as a dense network of stretched out and curved structures and were found 

close to LDs bearing a ring-shaped alkyne-cholesterol signal (orange arrowheads). 

In many cells, alkyne-cholesterol positive tubular structures were found that connect 

the periphery with the perinuclear region. Often, several LDs were found at one end 

(Fig. 32 C) or both ends, or along their trajectory (Fig. 33). 

An important prerequisite to identify LDs at the STED microscope was the feasibility 

of co-imaging with the dye LD540. The LD dye itself could not be imaged at STED 

resolution with the laser setup of the microscope used here, but it was possible to 

acquire images with good contrast in confocal mode (Fig. 32B and C, LD540 

(magenta) overlayed with the alkyne-cholesterol in STED mode (gray)). Because 

LD540 was excited by the STED laser, a pre-bleaching step was used between 

acquisition in confocal and in STED mode. This way, LD540 did not cause significant 

bleed-through signal in the STED acquisition of the alkyne-cholesterol signal. 

Fig. 32D to F demonstrates the presence of a lumen inside the stretched out tubule 

of Fig. 32C. A pseudo-color image (FireLUT, panel D) displayed low alkyne-

cholesterol signal (blue to red) in the center of the tubule, flanked by high signal 

(yellow to white) on both sides. The signal intensity of this image was plotted on the 

Z-axis, resulting in a 3D Surface plot (Fig. 32D) in which the lumen was now more 

easily visible as “valley” between two ridges of higher signal. Panel F shows a signal 

intensity profile of a ROI cutting through the tubular structure (see yellow line in Fig. 

32D). From the distance between the two maxima in the ROI profile, the width of the 

tubule was estimated to be around 130 nm. 
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Fig. 32: Structural characteristics of alkyne-cholesterol positive membranes around lipid 
droplets.  

A: HuH7 cell fed with alkyne-cholesterol (green) and labeled as described before with APpic2Btn, 
confocal image, LDs stained with LD540 (magenta). B and C: Details of the same cell, single Z-layer. 
Alkyne-cholesterol (gray) was imaged with STED microscopy. Overlay image with confocal signal 
from LD540 (magenta). Alkyne-cholesterol localized to ring-like structures around LDs (orange 
arrowheads) and to tubular organelles in their proximity (green arrowheads). D: FireLUT image of the 
stretched out tubule from the micrograph in panel C. The yellow line marks the ROI used for creating 
the signal profile in panel F. E: 3D surface plot (displaying the signal intensity on the Z-axis) of the 
image in panel D. The morphology of the organelle strongly resembled the ER. The lumen of the 
tubular organelle is visible as a dark “valley” between the two bright ridges of the ER leaflets. F: 
Signal profile of the ROI designated in panel D. A thickness of the tubule of around 130 nm was 
measured. 
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Taken together, the tubular organelles strongly resembled the ER in morphology. ER 

undulating near and partially wrapped around LDs could contribute to the 

appearance of alkyne-cholesterol rings around LDs. On the other hand, the more 

prominent rings around LDs (Fig. 31) were far too thick for a lipid bilayer or even an 

ER tubule and showed no sign of an ultrastructure. They are thus likely to consist of 

the LD hemimembrane and outer parts of the core.  

 

Direct connections between alkyne-cholesterol in the ER tubules and the alkyne-

cholesterol localized around LDs were visible (Fig. 33). Along bundles of ER tubules 

stretched out from the perinuclear region to the periphery, clusters of large and 

smaller LDs were observed (Fig. 33A). 

When alkyne-cholesterol was imaged in STED resolution (Fig. 33B, green) and the 

signal overlayed with LD540 indicating LDs (confocal acquisition, magenta), several 

contacts between the two organelles were obvious. In a deconvoluted version of the 

image (Fig. 33C), the direct connections became even more apparent. The LD 

surface was either directly associated with the ER tubule (orange arrowheads), or 

connected to it via membrane bridges (green arrowheads). Occasionally, also 

membrane connections between two LDs were observed (blue arrowhead). Care 

has to be taken in the interpretation of deconvoluted images because the 

deconvolution algorithm could produce artifacts. The structures highlighted in 

panel C were therefore double-checked, they were also present in the unprocessed 

image (Fig. 33B), but with lower contrast. The LDs in Fig. 33B ranged from larger 

LDs with diameters over 1 µm to very small ones (200 to 300 nm) that are about the 

same size as early LDs directly after biogenesis (Kassan et al., 2013; Pol et al., 

2014), and appeared to be fully stained by alkyne-cholesterol (see chapter 4.3.2.2 

for a broader discussion).  
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Fig. 33: Alkyne-cholesterol positive membrane contacts between LDs and the ER. 
A Confocal image of a HuH7 cell fed with 10 µM alkyne-cholesterol (shown in green) and labeled as 
described before with APpic2Btn, LDs stained with LD540 (magenta), maximum intensity projection 
of a Z-stack. B: Detail micrograph (maximum intensity projection of Z-stack) of the cell using STED 
microscopy for alkyne-cholesterol (green). Overlay image with confocal signal from LD540 
(magenta). C: Deconvoluted version of the STED signal from alkyne-cholesterol in panel B. LDs were 
connected to ER tubules directly (orange arrowheads), or via membrane bridges (green arrowheads), 
or membrane bridges appeared to connect LDs with each other (blue arrowhead). 
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Trafficking of exogenous alkyne-cholesterol to the ER and LDs  

Microscopy imaging at different time points after the entry of a lipid into the cell 

provides valuable insight into lipid trafficking. Using a sensitivity-optimized click 

labeling protocol with elevated concentrations of APpic2Btn (50 µM) and CuTFB 

(2 mM), it was possible to image low concentrations of alkyne-cholesterol in very 

good contrast. This enabled pulse-chase imaging studies with short pulse times (Fig. 

34). The early trafficking steps of exogenous cholesterol on its way to the ER and 

subsequently the LD were of particular interest, and the pulse-time was accordingly 

chosen. The images shown here were taken using a 60 min pulse, but additional 

experiments showed that a pulse-time of 30 min was also sufficient. After the pulse 

with 10 µM alkyne-cholesterol in delipidated medium, the samples were chase-

incubated in full medium, fixed, click-labeled and prepared for microscopy. With the 

higher concentrations of the reagents, the unspecific background (when no alkyne 

lipid was added) was slightly elevated, but still low compared to alkyne-cholesterol 

derived signal in all samples. 

After pulse-incubation, alkyne-cholesterol was detected quite prominently at the PM 

and in vesicular structures with diameters of about 1 µm. From the Z-stacks on 

which the maximum intensity projection images shown here are based, it was 

evident that the vesicles were indeed spherical. Some of the vesicles (see for 

instance detail for “no chase” in Fig. 34B) had short or longer tubular appendages, 

whereas others did not. Latter vesicles appeared in large quantities after 10 to 

30 min chase time, together with irregularly shaped, alkyne-cholesterol positive 

vesicular structures. When comparing cells at zero and 30 min post-pulse, the 

majority of vesicles were found at a more perinuclear position for the later timepoint. 

Size and morphology of the vesicles suggest that they were endosomal 

compartments (see chapter 4.3.2.3). 
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Fig. 34: Pulse-chase analysis of the intracellular localization of alkyne-cholesterol in HuH7 
cells.  

A: Micrographs of HuH7 cells pulse-labeled with 10 µM alkyne-cholesterol in serum-free medium 
supplemented with 1 % lipid-free BSA for 60 min, followed by different chase times in full medium, as 
indicated. For enhanced detection sensitivity, click labeling was performed with 50 µM APpic2Btn 
and 2 mM CuTFB. Alkyne-cholesterol is displayed in green, LDs (LD540) in magenta, nuclei (DAPI) 
in blue. Maximum intensity projections of Z-stacks covering the whole cell, taken at the 
epifluorescence microscope under structured illumination. Two images with the same magnification 
are shown next to each other for each timepoint. B: Detail regions from panel A (white frames in A).  

While the intensity of the alkyne-cholesterol signal at the PM and in vesicles 

decreased with chase time, a concomitant signal increase was detected in a tubular 

network, presumably the ER, throughout the cells and in rings around LDs. Alkyne-
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cholesterol signal around LDs was occasionally detected directly after the pulse, but 

only around small, peripheral LDs and with low intensities. The ring-like signal 

around the LDs became much more intense after 30 to 60 min chase. Alkyne-

cholesterol localized to small LDs first, later it was also found around larger LDs. 

Whereas without the addition of alkyne-cholesterol and without chase, a 

subpopulation of LDs was often found at the cell periphery, after 30 min chase the 

LDs in many cells were located at a more perinuclear position.  

Taken together, this preliminary pulse-chase study indicates that exogenous alkyne-

cholesterol is taken up by HuH7 cells under nutrient-saturated conditions, at least 

partially traffics to endosomal compartments and is loaded onto LDs for storage. 

 

Alkyne-cholesterol localization to lipid droplets is influenced by lipid loading 

To test the effect of the metabolic state of hepatocytes, and especially of neutral 

lipids stored in their LDs, on alkyne-cholesterol localization, HuH7 cells were loaded 

with unlabeled fatty acid or cholesterol to induce the formation of TAG-rich or CE-rich 

LDs, respectively. We first validated if with our feeding scheme CE-rich LDs can be 

distinguished from LDs containing less CE (Fig. 35).  

For that purpose, polarized light microscopy was used (see chapter 1.2), which can 

identify the birefringent properties of LDs whose core contains a very high proportion 

of CE. These anisotropic LDs, recognizable from formée cross-shaped signals, were 

very rarely present under normal growth conditions or oleate feeding, but many of 

them formed upon loading of the cells with cholesterol (Fig. 35A). Thus, the lipid 

loading protocol was suited to distinguish between two classes of LDs with different 

CE content. Different proportions of the LD pool of single cholesterol-loaded cells 

were birefringent, ranging from cells with only isotropic LDs over a mixed population 

(like shown in Fig. 35A) to cells with predominantly anisotropic LDs. Alkyne-

cholesterol localized to both CE-rich and CE-poor LDs to a certain extent in this first 

experiment. This targeting was investigated in detail in further detail (see Figs. 36, 37 

and 38). 
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Fig. 35: Birefringent lipid droplets in HuH7 cells after loading with cholesterol. 
HuH7 cells were incubated in full medium supplemented with no additional lipid, 50 µM oleate or 
200 µM cholesterol (as β-cyclodextrin complex) for two days, followed by 17 h incubation with 
unlabeled lipid and 10 µM alkyne-cholesterol. After fixation and standard click labeling (10 µM 
APpic2Btn, 200 µM CuTFB) cells were imaged with structured illumination for fluorescently labeled 
alkyne-cholesterol (green), LDs (magenta) and nuclei (DAPI). In addition, polarized light microscopy 
was used to distinguish isotropic and anisotropic LDs. CE-rich anisotropic LDs could be identified by 
a bright formée cross whereas isotropic LDs were dark. A: Many birefringent LDs were found after 
loading with cholesterol, but not after incubation in standard growth medium or after oleate feeding. 
B: Enlarged detail with many birefringent LDs from cholesterol-loaded HuH7 cells as shown in 
panel A. LD540 (shown in FireLUT as a single channel, 2nd picture from the right, but in magenta in 
the merge) stained LDs as spherical objects, but unlike in unloaded or fatty acid-loaded cells, the 
staining was not solid but less intense in the center of the droplets.  

Besides the formée cross, anisotropic LDs were characterized by a specific staining 

pattern with LD540 (Fig. 35B). Unlike TAG-rich LDs after oleate loading (see Fig. 

35A) which always showed a bright LD540 signal throughout the droplet, CE-rich 

LDs were not stained uniformly, but rather the staining was less effective in the 

center of the core. This is probably due to the higher degree of ordering in CE-rich 



Part II: Results 

 
106 

LDs. LipidToxGreenTM, a dye of proprietary structure, stains CE-rich LDs much less 

efficiently, and also with decreasing efficiency towards the center of the LDs, as 

detected by Bautista and colleagues in macrophages (Bautista et al., 2014). The 

authors of the study attributed this phenomenon to the distinct physical properties of 

CE- and TAG-rich LDs, which they investigated in detail with THG imaging.  

 

After the validation of the setup, we tested if the loading of HuH7 hepatocytes with 

fatty acids or cholesterol changed their lipid metabolism. Lipid extracts from lipid-

loaded and alkyne-cholesterol-fed cells were click-labeled with azido-coumarin and 

separated by TLC (Fig. 36). The section of the TLC displaying unlabeled TAG and 

CE (Fig. 36A) gives a static view of the neutral lipids accumulated within LDs. 

Without the addition of unlabeled lipids and without alkyne-cholesterol, small 

amounts of both CE and TAG were detected in the extract. Alkyne-cholesterol 

feeding shifted that profile to slightly more CE and less TAG. Oleate loading, to a 

greater extent than incubation with palmitate, promoted the biosynthesis of TAG. 

When cholesterol was fed, the CE content increased and TAG was almost 

completely absent, as judged by the semiquantitative method of sulfuric acid 

charring (Fig. 36A). The addition of an ACAT inhibitor (avasimibe or CP-113,818) 

almost completely abolished CE accumulation and also greatly reduced TAG 

formation.  

Alkyne-cholesterol and its esters, labeled with azido-coumarin, were detected on a 

different section of the TLC plate under UV light (Fig. 36B and C). The uptake of 

alkyne-cholesterol, which can be estimated from the overall fluorescent signal, was 

similar for all lipid feeding regimes within the limited accuracy available from this 

single experiment. A moderate increase in the overall signal might be present after 

cholesterol loading. The co-incubation with the inhibitor CP-113,818 or avasimibe led 

to decreased levels of unesterified alkyne-cholesterol in cells without lipid loading, 

but higher levels of alkyne-cholesterol were detected in cells pre-loaded with 

cholesterol. These trends need statistical solidification from repeated experiments.  

The degree of esterification of alkyne-cholesterol might depend on the feeding 

regime, but no quantitative conclusions can be drawn from the single experiment 
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displayed here (Fig. 36B and C). Both inhibitors almost completely prevented alkyne-

cholesterol esterification.  

 

Fig. 36: Altered neutral lipid profile in lipid-loaded HuH7 cells. 
A: Section of a TLC plate from lipid extracts of HuH7 cells, displaying neutral lipids. Cells were pre-
loaded with unlabeled lipids and, if indicated, ACAT inhibitor avasimibe or CP 113,818 (1 µM) for 2 d, 
then for another 17 h with the addition of 10 µM alkyne-cholesterol. Lipids were detected by charring 
with sulfuric acid. Loading with oleate, more than with palmitate led to a strong increase in TAG. 
More CE was detected after cholesterol loading. Cells incubated with ACAT inhibitors avasimibe or 
CP-113,818 did not accumulate significant amounts of CE or TAG. B: Fluorescent image of the same 
TLC, different section displaying alkyne-cholesterol and alkyne-CE under UV irradiation. C: Signal 
intensities of fluorescent TLC given in B. Inhibitors effectively prevented the esterification of alkyne-
cholesterol.  

The alterations in lipid metabolism of lipid-loaded HuH7 were correlated to their 

appearance in fluorescence microscopy. To this end, the same conditions as for the 

preparation of lipid extracts for TLC were applied for the microscopy study, i.e. two 
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days of lipid pre-loading, continued for another 17 h under the addition of alkyne-

cholesterol (Fig. 37). 

Palmitate loading of HuH7 resulted in the formation of blistery lipid accumulations 

with diameters of about 1-2 µm (Fig. 37A), presumably lysosomes, dilated ER or 

autophagosomes (Park et al., 2014). These structures did not accumulate significant 

amounts of LD540, but incorporated alkyne-cholesterol. LDs (LD540-positive 

structures) were rarely formed in cells with such large lipid accumulations. 

The TAG-rich LDs of oleate-loaded HuH7 were larger than LDs of cholesterol-fed 

cells, and they appeared to be more clustered, often in large groups that partially 

encircle the nucleus. In many cells, alkyne-cholesterol localized to almost all LDs, 

with the occasional exception of peripheral, less clustered ones. The staining 

patterns on the oleate-induced LDs was ring-like, segmented or confined to a sector 

of the droplet surface, frequently to regions were multiple droplets were in contact 

with each other, i.e. the center of a cluster.  

Cholesterol loading led to the formation of smaller, more uniformly sized and less 

clustered LDs than oleate pre-treatment. Alkyne-cholesterol localized to a significant 

proportion of LDs, but not all of them, in the majority of cells, and it also localized to 

peripheral LDs. The staining was almost exclusively full-ring shaped and quite 

heterogeneous in signal intensity.  

The incubation of the cells with the ACAT inhibitor CP-113,818 almost completely 

abolished the formation of LDs (Fig. 37B), as expected from the minimal content of 

neutral lipids and esterified alkyne-cholesterol on the TLC (Fig. 36). The alkyne-

cholesterol signal in the microscopy samples was considerable lower if either 

inhibitor was applied, and located at elongated structures that sometimes showed a 

faint LD540 signal. They resembled those found at earlier time points of the pulse-

chase study, indicating that the lipid was stored in some vesicular organelle, like for 

instance a dilated form of the ERC (Hao et al., 2002), when esterification and thus 

deposition on LDs was hampered. After cholesterol loading and concomitant 

incubation with an inhibitor large, round alkyne-cholesterol positive vesicles were 

observed, similar to those detected after palmitate loading. This may point to the 

formation of lysosomes/ autophagosomes, but further experiments are needed to 

validate this finding. 
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Fig. 37: Effects of lipid loading on lipid droplet size and clustering, as well as on alkyne-
cholesterol localization in HuH7 cells. 

HuH7 Cells were pre-loaded with unlabeled lipids and, if indicated, ACAT inhibitor CP 113,818 
(1 µM) for 2 d, then for another 17 h with the addition of 10 µM alkyne-cholesterol (same conditions 
as for the TLC in Fig. 36). – Legend continued on next page. 
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Fig. 37: - Legend continued from last page. - Standard click labeling (10 µM APpic2Btn, 200 µM 
CuTFB), epifluorescence images with optical sectioning using structured illumination for alkyne-
cholesterol (green), LDs (magenta) and nuclei (DAPI). A: Palmitate feeding led to the formation of 
alkyne-cholesterol positive lipid accumulations that were not stained prominently with the LD dye 
LD540. Oleate loading produced large, clustered LDs whereas LDs after cholesterol loading were 
smaller and less clustered. After both oleate and cholesterol feeding, alkyne-cholesterol localized 
around LDs, but the structure and intracellular heterogeneity of the staining were different. B: CP-
113,818 greatly reduced the signal intensity of click-labeled alkyne-cholesterol. LD formation was 
inhibited to a greater extent without lipid loading than with added cholesterol. 

While it can be concluded from the TLC data (Fig. 36) that LDs in cholesterol-loaded 

cells were CE-enriched on a global scale, the individual CE-content may be 

assessed by polarized light microscopy (Fig. 38A). The same hepatocyte that is 

shown in Fig. 37A was used for this quantitative study that determined the 

birefringent (A – anisotropic) or non-birefringent (I – isotropic) behavior of every LD 

in correlation with the signal intensity of a ring-like alkyne-cholesterol staining around 

the LDs (Fig. 38B). 60 of the 195 LDs of the cell were visually identified as 

anisotropic. 27 were classified as having a prominent alkyne-cholesterol ring, 64 had 

moderate rings, and alkyne-cholesterol did not localize to 104 LDs. The proportion of 

anisotropic LDs varied with the signal intensity of the alkyne-cholesterol rings. More 

anisotropic LDs were found in the fraction with moderate alkyne-cholesterol staining 

than in the LD population with no or very strong alkyne-cholesterol signal. 

Additional to the visual evaluation of subcellular morphology (Fig. 37), the effects of 

lipid loading were also assessed in a single-cell quantitative approach (Fig. 38C). As 

a measure of the amount of cholesterol in the individual cells, particularly in the ER 

and on the surface of LDs (on its way to be stored in the latter organelle), the signal 

intensity of alkyne-cholesterol per cell was included in the quantification. LD540 

intensity per cell served as a measure of LD and hence neutral lipid content. 

Anisotropic LDs per cell were counted to estimate the amount of LDs highly enriched 

in CE. For the evaluation of statistical significance, a Kruskal-Wallis test was 

performed. In contrast to the ANOVA tests performed with data sets in chapter 

4.2.1.1, in which justifiably a Gaussian distribution could be assumed, the more 

skewed dispersion of the data presented here in Fig. 38 is met better by the Chi-

squared distribution that underlies the Kruskal-Wallis analysis. 
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Fig. 38: Analysis of the localization of alkyne-cholesterol to birefringent and non-
birefringent lipid droplets and quantitative analysis of lipid loading effects. 

A: Single Z-layer epifluorescence image of a HuH7 cell, taken under structured illumination. Cells 
were fed with unlabeled cholesterol (200 µM) and alkyne-cholesterol (10 µM, click-labeled, displayed 
in green). LDs were stained with LD540 (magenta) and their birefringence was visualized with 
polarized light. B: Quantification of the localization of alkyne-cholesterol to LDs of the hepatocyte in 
panel A. All individual LDs were scored visually as isotropic (I) or anisotropic (A), and as bearing no (-
), moderate (+) or prominent (++) ring staining. 195 LDs were identified and analyzed in that single 
cell. The relative amount of anisotropic LDs was higher for LDs with moderate alkyne-cholesterol 
rings than for those with no alkyne-cholesterol or high alkyne-cholesterol signal. C: Quantification of 
the effect of lipid pre-loading on the signal intensity of alkyne-cholesterol and LD540, and on the 
number of birefringent LDs per cell. A total of 130 to 180 cells per sample were analyzed from 
epifluorescence images at 10 defined positions (same samples as in Fig. 37). Data points represent 
individual cells. In addition, the mean value and the standard deviation for all cells of a sample are 
given in the graph. Asterisks designate levels of statistical significance (Kruskal-Wallis test). If 
indicated, CP-113,818 was used as an ACAT inhibitor. 
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Whereas upon oleate feeding, the alkyne-cholesterol signal visible in microscopy 

was not significantly altered, cholesterol loading of HuH7 hepatocytes led to a 

significant increase in alkyne-cholesterol signal per cell, which was efficiently 

impeded by the addition of an ACAT inhibitor (CP-113,818, Fig. 38C). The neutral 

lipid content inside LDs (LD540, Fig. 38C) on the other hand was not altered 

significantly through pre-loading with neither oleate nor cholesterol. A caveat to the 

interpretation of the LD540 signal is its non-uniform staining of CE-rich LDs, which 

might lead to a slight underrepresentation of neutral lipid content in cholesterol-fed 

samples (see Fig. 35B). CP-113,818 diminished the storage of neutral lipids inside 

LDs. As expected from the outcome of the pilot experiment (Fig. 35A), only 

cholesterol-loaded samples displayed significant amounts of birefringent LDs. The 

addition of an ACAT inhibitor greatly, but not completely prevented the formation of 

anisotropic LDs. 

 

Taken together, the loading of HuH7 hepatocytes with oleate or cholesterol led to 

distinct changes in the lipid profile, in LD morphological parameters like size and 

clustering, and affected the localization of alkyne-cholesterol to LDs. Cholesterol 

loading induced the formation of birefringent LDs highly enriched in CE, and alkyne-

cholesterol displayed preferential targeting to these LDs to some degree. On a per-

cell scale, cholesterol-loaded hepatocytes had higher amounts of alkyne-cholesterol 

present on LDs and in membrane compartments around them than oleate-loaded 

cells, but both displayed a similar overall amount of esterified neutral lipids in LDs. 

These results indicate a metabolic switch of hepatocytes due to cholesterol loading. 
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4.3 Discussion (Part II) 

4.3.1 Highly sensitive imaging of alkyne lipids in biological membranes 

Designing azide detection reagents for high click labeling sensitivity 

As described above (chapter 1.1.4, Fig. 2), click labeling in biomembranes highly 

depends on an azide reporter that is able to penetrate the membrane so that the 

azide moiety can approach the alkyne in its central, hydrophobic part, as well as on 

the simultaneous delivery of Cu(I) to the center of reaction. This is of particular 

importance for the click labeling of rigid molecules like alkyne-cholesterol which 

cannot bend out of the membrane like it may be possible for alkyne fatty acids. Thus 

the characteristics of the azide detection reagent are likely to have a direct influence 

on labeling sensitivity. 

AP3Btn, a biotin reporter connected to the azide moiety through a PEG spacer, is 

applied routinely in our laboratory for alkyne lipid imaging. With a set of novel azide 

detection reagents that have the same fundamental structure, but an altered spacer 

length or the additional capability to chelate copper, two questions were addressed 

in this study: First, what is the optimal length of the spacer component? Second, 

does our click labeling protocol benefit from copper chelation by the azide reporter? 

Fig. 39 shows a DPPC bilayer as a model biomembrane, next to the reagents tested, 

each click-reacted to alkyne-cholesterol. The conjugates are displayed to scale to 

each other and the membrane. The hydroxyl group of cholesterol has been lined up 

with the bilayer surface to give a realistic approximation of the possible orientation of 

the conjugates inside the bilayer, under the assumption that they are in a stretched 

conformation3. In the ASBDP conjugate, the sulfonated BDP dye is situated inside 

the membrane, a potentially unfavourable position with regard to membrane 

ultrastructure, which might contribute to the occasional occurrence of membrane 

blebs with this detection reagent (Fig. 22). These artifacts might derive from a 

                                            

3 In principal, multiple orientations of the reactions during click labeling are possible, leading to 
different conformations of the click-conjugates. These are discussed below (Fig. 40). Regardless of 
the conformation, the azide reporter’s spacer length determines how deep the reporting moiety (the 
dye or biotin) will be buried inside the membrane after the click reaction. 
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diffusion and local accumulation of the free or click-conjugated dye reporter inside 

the membrane and the induction of membrane rupture. 

 

Fig. 39: Models of the various azide reporters used in this study, after click reaction with 
alkyne-cholesterol.  

Structures are displayed in optimized conformation (assuming a trans orientation during click), to 
scale to a DPPC bilayer (left side) and with correct orientation in relation to the membrane (hydroxyl 
moiety of cholesterol at the bilayer surface). Lengths of the click-conjugates are given in Angstrom. 
Unlike the other reagents, APpic2Btn features a copper-chelating picolyl moiety in its spacer 
component. 

If the biotin-based conjugates are in a stretched conformation, the biotin reporter 

does not have to penetrate the membrane, only the flexible PEG spacer that carries 

the azide is found there. The PEG linker has a much smaller cross-section than 

sulfonated BDP (ASBDP) or other dye molecules, and it does not carry a charge, so 

it is likely to be much less disturbing to the membrane structure compared to dyes or 

biotin, coupled directly to the azide without a spacer. Hence the use of a spacer was 
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generally beneficial for membrane morphology. The length of the spacer however is 

critical for detection sensitivity.  

AP3Btn gave significantly higher signal than AP6Btn and AP10Btn (Fig. 23). The 

biotin moiety in the AP3Btn conjugate with alkyne-cholesterol is situated just outside 

the membrane (Fig. 39), still within the “hydration sphere” of the DPPC bilayer model 

that consists of water molecules that are directly interacting with the phospholipid 

headgroups and are of functional importance for biological membranes (Fitter et al., 

1999; Nagle and Tristram-Nagle, 2000). In the AP6Btn conjugate, the biotin is able to 

move more freely, because itself and part of the PEG linker is situated outside of the 

bilayer. This also holds true for AP10Btn conjugated to alkyne-cholesterol, but here 

the spacer outside the membrane is longer. A beneficial influence of a longer portion 

of the spacer outside the bilayer on labeling sensitivity was anticipated, because of 

less sterical hindrance and more flexibility in streptavidin binding. Upon binding to 

streptavidin, biotin is buried quite deeply within an open barrel of the protein, which is 

then covered by a surface loop (Hendrickson et al., 1989; Freitag et al., 1997). 

Hence, a certain sterical requirement was expected. 

However, the results obtained were contradictory to this expectation. They show that 

streptavidin binding is equally efficient just above the bilayer surface. Interestingly, 

detection with AP10Btn was more sensitive than with AP6Btn (Fig. 23), hence there 

seems to be no linear relationship of length and sensitivity. This might be due to 

overlaying effects, like the formation of an unfavourable (coiled) conformation of the 

detection reagent. If this is the main effect hampering the contact of azide and alkyne 

in the membrane, one could postulate that AP3Btn has the most favourable 

conformation for the click reaction, AP10Btn a less efficient one, and AP6Btn the 

least suitable 3D structure to enter the membrane and position the azide moiety for 

the click reaction to take part. 

When using streptavidin as a means to detect biotin reporters, the tetrameric nature 

of this protein has to be considered as well. Due to its D2 (tetrahedron-like) symmetry 

(Freitag et al., 1997), two binding pockets can be simultaneously faced towards the 

bilayer. If two biotin moieties are appropriately positioned, one molecule of 

streptavidin could bind both of them, possibly complicating quantification. This could 

potentially be overcome by the use of monovalent forms of streptavidin (Lim et al., 

2013). 
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Highly sensitive imaging of alkyne-cholesterol with APpic2Btn 

Other than the extension of the PEG spacer, which did not have a beneficial effect 

on click labeling sensitivity, the introduction of a copper-chelating picolyl moiety led 

to a strong increase in sensitivity for all lipids tested (Figs. 20 and 21). The Ting lab, 

who first described the use of picolyl as a copper-chelator for CuAAC, reported a 1.8 

to 2.7-fold increase in average signal intensity of RNA or proteins labeled with alkyne 

precursors (Uttamapinant et al., 2012).  

The work presented here demonstrates that the acceleration of CuAAC also 

improves click labeling of lipids in biological membranes, with about 1.3 to 2.1-fold 

signal increase (Figs. 21 and 23, mean signal per cell, APpic2Btn compared to 

AP3Btn). Furthermore, a comparative study with another, simultaneously added 

azide reporter shows that subcellular morphologies were preserved and the same 

compartments were stained (Fig. 24). Taken together, with the boost in sensitivity 

and the expected intracellular staining, click labeling with the novel azide detection 

reagent APpic2Btn provided us with a new tool for the imaging of alkyne-cholesterol, 

especially for critical applications, where low amounts of the alkyne lipid have to be 

detected (see for instance Fig. 34). Recently, other groups have also used picolyl-

containing biotin-azide reporters (Jiang et al., 2014) or other, multidentate chelators 

(Bevilacqua et al., 2014) for the highly sensitive labeling of alkyne bearing 

biomolecules, and a further development of chelators can be expected. A copper ion 

that is bound very tightly to the azide reporter, and shielded by it to prevent the 

generation of reactive oxygen species (see (McKay and Finn, 2014)), can be 

introduced as a complex into living cells (Bevilacqua et al., 2014), which will 

hopefully pave the way for CuAAC application in live cell imaging. 

The concentration of APpic2Btn had a differential effect on click labeling sensitivity 

for different lipids (Fig. 21). For propargylcholine, whose alkyne label is integrated 

into the headgroup of phosphatidylcholine and therefore is presented at the surface 

of the bilayer, no significant effect of an increase of the APpic2Btn concentration 

from 2 to 10 µM was observed (Fig. 21B). However, the same increase in 

concentration greatly improved the imaging of alkyne-oleate (Fig. 21A), and 

especially alkyne-cholesterol (Fig. 21B). For the lowest concentration of APpic2Btn 

tested (2 µM), this points to a saturated detection of propargylcholine-tagged PC, but 

not of alkyne-cholesterol metabolites, presumably due to differences in accessibility 
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of the alkyne moiety for its azide reaction partner, which diffuses more easily in the 

buffer than inside the membrane. Additionally, by complexation of Cu(I), APpic2Btn 

directly facilitates the access of the catalyst to the membrane. Thus, the delivery of 

Cu(I) to the central part of the membrane may also contribute to the increased 

imaging sensitivity at higher concentrations of APpic2Btn.  

This again highlights that click reactions do not proceed as unhindered inside the 

membrane as outside of it. Depending on the label position, the optimal labeling 

conditions like reagent concentrations can differ.  

 

Sterical and topological aspects of click labeling in biological membranes 

Alkyne lipids can be incorporated into both leaflets of biological membranes. Given 

that it has access to the respective cellular compartment, the azide reporter can 

approach the membrane from both sides as well (designated with (1) and (2) in Fig. 

40). Thus, the reactants for the click reaction can be situated in the same leaflet (cis, 

(c) in Fig. 40) or are approaching each other from different sides of the membrane 

(trans, (a) or (b)). The resulting conjugate of a trans orientation spans the bilayer in 

an altogether stretched conformation. Alkyne lipids incorporated into leaflet (1) are 

clicked in trans with azide reagents attacking from side (2) and vice versa. A cis-

attack presumably leads to a looped conformation of the conjugate that occupies 

only one leaflet of the bilayer. It is however not clear if the transition of a looped (cis) 

conformation to a stretched (trans) conformation, e.g. by flipflop of the cholesterol 

component, is possible. 

These topological aspects of labeling become relevant in the case of limited 

accessibility of the reactants to cellular compartments, so that only one leaflet can be 

approached. Furthermore, the sterical characteristics of some conjugate 

conformations might lead to processes unfavourable for imaging. Hypothetically, the 

space requirement of the cis conjugate may be larger than that of the trans 

conjugate, resulting in a more efficient breaking of the interactions inside the 

membrane and possibly the extraction of the conjugate from the bilayer, or its 

mobilization inside the membrane. This would render an azide reagent that 

preferentially reacts in a cis conformation less suitable than another leading to a 

trans conjugate. 
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Fig. 40: Sterical and topological aspects of click labeling in biological membranes with 
APpic2Btn. 

Structure models of cholesterol, click-labeled with AP3Btn. The azide reporter can presumably 
approach the alkyne label from the same (c, cis orientation) or opposite (a, b, trans orientation) side 
of the bilayer, leading to a looped or stretched out conformation of the click conjugate, respectively. If 
only one side of a bilayer (1 or 2, e.g. cytoplasmic and exofacial leaflet of the PM) is accessible for 
the azide reporter, the feasibility of click reaction from cis or trans could determine in which leaflet the 
alkyne lipids are clicked. Distances given in Angstrom. 

At the moment, the sterical requirements of the click reaction inside the membrane 

are elusive. Certainly, a distinct spatial arrangement of the reactants is necessary in 

CuAAC (Fig. 1), but it is not known which consequences this has for the reagents 

used here in the complex environment of biological membranes. From the 

experiments conducted so far, the exact topological orientation of the reaction 

partners during click labeling cannot be unequivocally determined, although some 

results may indicate a trans conformation (see below). The interactions of the 

reagents with each other and with the bilayer will be important for the future fine-

tuning of azide reporters, and molecular modeling studies of structures in the 

appropriate environment should be involved in their design. Additionally, 

experimental studies could address this question by measuring the distance of two 

fluorophores attached to both ends of a click conjugate with Förster resonance 

energy transfer (FRET).  
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Calcium concentration affects accessibility of alkyne-cholesterol for click 
labeling in the plasma membrane 

Several glycoproteins, like integrins (Campbell and Humphries, 2011) and cadherins 

(Leckband and Prakasam, 2006) as well as polysaccharides like 

glycosaminoglycans (Chevalier et al., 2004) at the cell surface are known to bind 

calcium ions, and calcium binding can result in conformational changes (Gabriel and 

Carr, 1989). At low micromolar concentrations, calcium ions influence the clustering 

of membrane proteins in the PM via electrostatic effects (Zilly et al., 2011). The 

addition of calcium ions to the fixation buffer may therefore lead to the fixation of the 

PM and its associated biomolecules in an altered conformation that may produce 

less (or more) hindrance for the approaching azide reporters than without the use of 

calcium ions.  

Most of the PM cholesterol has recently been reported to reside in the cytoplasmic 

leaflet (Hayashi et al., 2002; Mondal et al., 2009). If these measurements hold true4, 

the increased detection of alkyne-cholesterol at the PM after fixation in calcium-

containing buffers (Fig. 25) could be explained by a facilitated attack of the azide 

reporter in trans, i.e. from the exofacial leaflet of the PM (see Fig. 40)5. A trans 

orientation is further supported by the observation that the longer reagents AP6Btn 

and AP10Btn give higher signal in the PM in relation to endomembranes than the 

shorter ones, AP3Btn and APpic2Btn (Fig. 22). Because of its glycolipids and 

extracellular matrix components, the exofacial side of the PM is probably more 

crowded than the cytoplasmic side or many endomembranes. Hence, if lipids in the 

                                            

4 This statement is based on the microscopy of fluorescent sterols in the PM, quenched with either 
membrane-permeant or -impermeant substances. Conversely, the raft hypothesis, which is based on 
the finding that cholesterol has a higher affinity to interact with sphingolipids than with PC, originally 
postulated that most of the cholesterol should likely be found in the exofacial leaflet, where the 
majority of the sphingolipids is situated (Simons and Ikonen, 1997; Simons and Vaz, 2004; van Meer, 
2011). Early freeze-fracture measurements found more cholesterol in the exofacial leaflet (Fisher, 
1976). Reliable determination methods and solid numbers for the distribution of cholesterol between 
the two leaflets of the PM are still lacking. The quantification may depend strongly on the cell type and 
sample preparations used. The implications of this distribution pattern on PM organization remain to 
be elucidated.  
5  In living cells, cholesterol is able to flip-flop very fast between leaflets (Steck et al., 2002). 
Apparently, its transbilayer gradient is nevertheless maintained by strong interactions of cholesterol 
with neighbouring lipids (Steck et al., 2002) or active transport mechanisms (van Meer, 2011). Since it 
is not clear if lipid interactions (which would presumably persist after fixation) or active processes 
(which would stop during fixation) prevail, it is not clear if flip-flop does take place in fixed cells, 
leveling out the differential transbilayer distribution. Click-labeled and streptavidin-conjugated alkyne-
cholesterol is unlikely to flip-flop. 



Part II: Discussion 

 
120 

(cytoplasmic leaflet of the) PM are to be imaged, an azide reporter with a long 

spacer should be used. Since cholesterol in endomembranes was the primary 

interest of this study, generally no calcium was used during fixation, and thus alkyne-

cholesterol in the PM was underrepresented in click labeling.  

 

This also leads to the general conclusion that the click labeling and subsequent 

imaging of alkyne lipids will always be biased, at least to some extent. Depending on 

the structure of the azide reporter that may include hydrophobic or hydrophilic, acidic 

or basic, small or bulky moieties, lipids may be preferentially labeled in some 

organelles. This biased labeling is acceptable as long as the experimenter is aware 

of it. If quantitative statements are to be drawn from the relative amounts in different 

organelles, corrections based on the accessibility of the lipid in the respective 

organelle may be necessary. Further research will hopefully come up with even 

better azide reporters for the highly sensitive labeling of lipids in all biological 

membranes. Label-free techniques like Raman microscopy (see chapter 4.3.2.1) 

could be applied for the unbiased determination of the distribution of alkyne lipids 

between membranes and thereby also aid in evaluation of new azide detection 

reagents. 
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4.3.2 Alkyne-cholesterol on its way into the lipid droplet 

4.3.2.1 Click labeling of lipids in and on lipid droplets 

In different cell lines and with different alkyne lipid probes, prominent rings around 

LDs were detected, but alkyne lipids inside the core of LDs could not be click-labeled 

with our protocol for fluorescence microscopy (Fig. 26, Fig. 27), except for very small 

LDs, which were fully stained (Fig. 33). The neutral lipids TAG and CE occur almost 

exclusively in LDs, as their solubility in lipid bilayers is limited (Ohsaki et al., 2009). 

Thus, because considerable amounts of alkyne-labeled TAG and CE were detected 

by TLC, but the LD core was not stained, a limited accessibility of the core to click 

labeling is evident.  

LDs can grow to a diameter of several microns, and their cores (see Fig. 5) are the 

most hydrophobic compartments inside cells, which makes it very challenging to 

label the intact organelle with reasonably hydrophilic reagents. If the click labeling 

protocol used in this study was to be optimized for the labeling of alkyne lipids inside 

the core, both the azide reporter and the copper catalyst would have to be modified 

to become more hydrophobic. In the case of the azide reporter, this could be 

achieved by the use of unsulfonated, hydrophobic dyes and of alkyl chains instead of 

PEG as spacer components. However, these substitutions would evoke a substantial 

increase in non-specific partitioning of the reporter into the LD and other hydrophobic 

organelles and therefore probably greatly enhance background staining. 

The copper catalyst 6  could be modified to become more hydrophobic as well. 

However, it will be tough to maintain the delicate balance between reactivity and 

stability of the complex of copper with its ligands, in addition to achieving a balanced 

hydrophobicity that allows the dissolution in water, but also the partitioning into LDs. 

Pursuing the successful strategy of copper chelation by the azide reagent, the 
                                            

6 CuTFB, the copper catalyst used in this study, is tetrakis(acetonitrile)copper(I) fluoroborate, in which 
the Cu(I) ion is coordinated comparatively strongly by four acetonitrile molecules, but only weakly by 
the tetrafluoroborate anion. The solvatation of copper(I) by acetonitrile is used to prevent 
disproportionation to Cu(II) and Cu(0) (Kamau and Jordan, 2001). This also abolishes the need for 
reducing agents like ascorbic acid and additional copper ligands, because in solutions containing 
some acetonitrile, the acetonitrile-coordinated Cu(I) is moderately stable. In the aqueous solutions (2-
3 % acetonitrile) used and under the aerobic conditions present in our click labeling procedure, we 
observed a slow disproportionation (blue color of Cu(II) visible after click labeling). 
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potential of a tetradentate chelator (Bevilacqua et al., 2014) could be compared to 

the bidentate picolylazide in the efficiency to transfer the catalyst to the center of 

reaction. Alternatively, additional ligands could be used to complex Cu(I). Such 

ligands have already been applied in various labeling conditions to accelerate 

CuAAC or to shield excess catalyst from oxidation (reviewed in (McKay and Finn, 

2014)). Many of them, like the tris-triazole TBTA are also quite hydrophobic, which 

makes them good vehicles inside LDs but hard to dissolve in aqueous solutions. The 

use of SPAAC instead of CuAAC (see chapter 1.1.2) would potentially abolish the 

need for a copper catalyst. However the general problem of balancing the 

hydrophobicity of the azide reporter between LD access and reasonable background 

staining would still persist. Hence, probably all modifications that would enable the 

click labeling of alkyne lipids inside LDs would render the method less suitable for 

general purposes because of unspecific partitioning of the reagents into hydrophobic 

compartments. Thus such modifications will likely be desirable for specialized 

applications only.  

 

In cooperation with the group of Prof. Takeyama at the Waseda University, it was 

demonstrated that the alkyne moiety was sensitively detected by a Raman 

microspectroscopy setup in solutions of our alkyne probes, without the need of 

additional click labeling. The alkyne peak lies in a silent region of the cellular Raman 

spectrum (Fig. 28). In the future we aim at expanding the scope of alkyne lipid 

imaging by their label-free detection inside LDs. 

Linear (spontaneous) Raman microspectroscopy has been applied to identify LDs 

and their individual lipid composition (Schie et al., 2013; Hosokawa et al., 2014; 

Majzner et al., 2014). Coherent techniques are used for the same purpose (Rinia et 

al., 2008), and also to follow LD motion and fusion, and the interaction with other 

organelles (Nan et al., 2006; Jungst et al., 2011; Dou et al., 2012; Jungst et al., 

2013). The feasibility of imaging alkyne probes with Raman and CARS microscopy 

has been demonstrated recently (see chapter 1.2). As a next step, experiments 

performed by our collaboration partners will evaluate the sensitivity of the detection 

of the alkyne label inside LDs of fixed cells using alkyne-cholesterol as a probe. It is 

then intended to use spontaneous Raman microspectroscopy to measure the levels 

of alkyne-cholesterol and its esters in individual LDs of a heterogenic LD pool (see 
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chapter 4.3.2.4). Further information on the LD lipid content, like the degree of fatty 

acid saturation, will presumably enable a high-content analysis of single LDs. Raman 

microscopy will also be of great value for the elucidation of the differential 

metabolization and trafficking of fatty acids in adipocytes (see Fig. 27).  

It has been suggested that the surface or the surrounding of adipocyte LDs contains 

considerable amounts of free cholesterol (Prattes et al., 2000). Changes in the 

Raman spectrum of deuterated cholesterol inside LDs can indicate its esterification, 

as it has been shown in macrophages (Matthäus et al., 2012). A combined 

application of the deuterated and the alkyne-labeled probe could correlate the 

localization of alkyne-cholesterol inside the LD with the distribution of esterified and 

unesterified cholesterol inside this organelle. Nevertheless, a very high resolution of 

the Raman microscope would be necessary to answer this question. 

Coherent Raman microscopy could potentially be used to follow the entry of alkyne-

cholesterol into the cell and to observe its trafficking into the LD in living cells in a 

very non-interfering set-up. Thereby it could contribute to the clarification of 

trafficking pathways. 

The crystallinity of CEs inside LDs is thought to affect the rate of their hydrolysis 

(Adelman et al., 1984). Crystalline substances give sharper peaks in Raman spectra 

than amorphous materials. Raman microscopy can identify cholesterol crystals in 

atherosclerotic plaques (Adelman et al., 1984; Suhalim et al., 2012), but it also 

serves as a measure for crystalline ordering of lipids inside membranes (Percot and 

Lafleur, 2001) and has the potential to identify liquid crystals (Lee et al., 2013). 

Raman microscopy could thus also provide information about the ordering of lipids 

inside LDs and be a valuable tool to investigate the lipid mobilization from LDs of 

different degrees of order and chemical composition. 

 

4.3.2.2 A super-resolved view on alkyne-cholesterol at the interface of 
lipid droplets and the endoplasmic reticulum 

If fed to cells under lipid-saturated conditions (in full medium), alkyne-cholesterol was 

esterified to a considerable proportion and thus stored in LDs (Fig. 26C). As click 

labeling was unable to detect alkyne lipids deeply inside the hydrophobic core (Fig. 

27), consequently a ring-like labeling of LDs with alkyne-cholesterol was observed 
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(Fig. 26A). Additionally, alkyne-cholesterol positive membrane structures appeared 

to be connected to these rings. 

Co-localization studies with mRFP1-tagged marker proteins in HuH7 cells suggested 

that these ring-associated membrane tubules, as well as the rings themselves, could 

be a subcompartment of the ER (Fig. 29). This subdomain was characterized by the 

colocalization of alkyne-cholesterol and overexpressed ACAT1-mRFP1 near or 

around LDs (Fig. 30) and therefore probably represents the site of alkyne-cholesterol 

esterification. The enhanced concentration of cholesterol in the ER then triggers its 

esterification at the putative esterification subcompartment. Cholesterol is an 

allosterical activator of ACAT1 and could therefore directly stimulate its conversion 

into the storage form CE. Interestingly, ACAT2 seems to be less responsive to 

cholesterol-dependent allosteric activation than ACAT1 (Liu et al., 2005). In contrast 

to this, ACAT2, but not ACAT1, is transcriptionally upregulated by cholesterol in 

HuH7 cells (Pramfalk et al., 2007). These findings support the notion that the 

functions of these two enzymes are non-redundant. ACAT2 probably is involved 

mainly in pathways that direct cholesterol to its export rather than to its internal 

storage in LDs. It is therefore reasonable to assume that the two enzymes are 

differentially regulated. In further experiments it would be interesting to compare the 

intracellular localization of mRFP1-tagged ACAT1 and ACAT2 in hepatocytes and 

the targeting of alkyne-cholesterol to them. The preferential colocolization of the lipid 

with one of the isoforms after the application of different stimuli could provide insight 

into a possible regulatory switch between these two ways of maintaining hepatocyte, 

liver and whole body cholesterol homeostasis. Additional proteins are likely involved 

in the inititation, construction and regulation of the putative esterification sites in the 

ER, but the underlying mechanisms of these processes are largely unknown. 

The relative contributions of other regulatory responses besides esterification to the 

cholesterol levels in the ER, like the transcriptional down-regulation of cholesterol 

synthesis, or the efflux as lipoproteins, were not investigated in this study so far. 

Most probably, several responses are simultaneously triggered in hepatocytes to 

cope with the large flux of cholesterol that this specific cell type encounters. This 

might however be dependent on the source of cholesterol and thus the pathway of 

its entry (Sniderman et al., 2013) and presumably, on the amount of cholesterol to be 

detoxified.  
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Due to the diffraction limit, conventional light microscopy cannot separate structures 

that are less than about 200 nm apart. The structures observed at the LD-ER 

interface fall within this size category and thus using the conventional light 

microscope we were not able to elucidate if the rings around the LDs displayed a 

thickness that corresponds to that of a LD monolayer (2 nm, Chaban and Khandelia, 

2014), an ER tubule (60 – 100 nm, Park and Blackstone, 2010), or another larger 

membrane structure.  

The higher resolution of STED microscopy allowed a closer look at these sites, as 

well as the determination of the ring thickness and the observation of enlightening 

substructural detail. We were able to enhance the lateral resolution to about 50 nm, 

as judged from the FWHM of the thinnest structures observed (Fig. 32F). Typical ring 

thicknesses of alkyne-cholesterol on LDs were in the range between 100 and 

200 nm (Fig. 31B and C), which excludes that the rings exclusively consist of 

cholesterol in the phospholipid monolayer. Since in the rings themselves, no 

ultrastructural details suggested the presence of an ER lumen or the like, it could be 

concluded that the click-labeled alkyne-cholesterol rings observed around LDs 

represented the LD monolayer and outer shells of the core. Although most of the 

cholesterol in the hydrophobic core is in its esterified form, CE, the presence of 

shells of unesterified cholesterol on LDs was reported in adipocytes (Prattes et al., 

2000). In yeast LDs, sterol esters were measured to localize to their outermost shells 

(Czabany et al., 2008). If the same segregation of lipids should be present in 

mammalian LDs, the finite depth of the CE-rich shell of LDs could also contribute to 

our finding of the ring-like staining. 

Conversely to the solid staining within the rings, ultrastructural detail was visible in 

the structures associated with them (Fig. 32). The tubular structures undulated 

around LDs, or stretched from the perinuclear region to peripheral regions. They 

displayed a lumen of about 130 nm width, which is slightly larger than the average 

diameter of a typical smooth ER tubule (Park and Blackstone, 2010).  

According to a now widely accepted model, membrane contact sites are present 

between the ER and LDs during their formation and are formed again after 

recruitment of LDs to the ER. They have been observed in electron microscopy 
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(Jacquier et al., 2011; Wilfling et al., 2013) and may be a way of bulk lipid transport 

and the translocation of several proteins between the ER and LDs. 

This notion is supported by our studies with alkyne-cholesterol in super-resolution. 

We observed small and larger LDs closely attached to an ER tubule, and detected 

membrane bridges between the ER and larger LDs (Fig. 33). In future experiments, 

colocalization studies of these structures with ACAT, but also other proteins that 

were described to be involved in the formation and control of ER-LD membrane 

contact sites, like Cideb (Ye et al., 2009), Rab18 (Ozeki et al., 2005), seipin 

(Szymanski et al., 2007), or the Arf1/COPI machinery (Wilfling et al., 2014), will be of 

great value to understand the prerequisites and mechanisms of the formation of CE-

rich LDs, not only in hepatocytes. Imaging is feasible in super-resolution for both the 

lipid probe and the tagged protein with two-color STED techniques (Tonnesen et al., 

2011). 

During LD biogenesis, neutral lipids accumulate between the ER leaflets. Globular 

structures within the ER form due to phase separation and they curve the ER 

membrane (Zanghellini et al., 2010; Kassan et al., 2013). Further growth of the ER-

attached globule is probably achieved by synthesis of lipids at the ER-LD interface 

and transport via membrane bridges or a pore and it eventually leads to the 

formation of nascent LDs with a diameter of about 250 nm, ready to detach from the 

ER (Kassan et al., 2013; Pol et al., 2014). In the case of HuH7 and other hepatic 

cells, globular lipid accumulations smaller than ~ 200 nm could thus represent 

lipoproteins, particularly VLDL (~50 nm diameter (Otvos et al., 1992)), or primordial 

LDs during their biogenesis. With the STED microscope used here, STED imaging of 

the LD dye LD540 was not possible due to wavelength requirements not met by the 

dye. Therefore, LD540-positive structures smaller than 200 nm were not reliably 

detectable with this dye. However, we were able to identify small globular structures 

positive for alkyne-cholesterol, which could be indicative of developing LDs or 

lipoproteins (Fig. 33B, C). Notably, these, and also the smallest of LD540-positive 

LDs up to a size of about 200 to 300 nm were fully stained by click-labeled alkyne-

cholesterol. Apparently, the catalyst and azide reagent were able to fully penetrate 

into these small LDs. The maximum size of fully stained LDs nicely correlates with 

the maximum thickness of click-labeled alkyne-cholesterol (ester) rings on larger 

LDs.  
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Large LDs could stay associated with the ER (Fig. 33) to enable a further deposition 

of CE on them or to provide material for the assembly of lipoproteins (Ohsaki et al., 

2009). Efflux studies are needed to clarify if cholesterol is removed from the ER by 

storage in cytoplasmic LDs or by export as lipoproteins. 

 

Fluorescent cholesterol probes have recently been used in STED microscopy to 

study the spatiotemporal dynamics of PM organization in living cells (Honigmann et 

al., 2014). By using live-cell STED, the fluorophore position and orientation of the 

attached fluorophore was found to influence the lateral diffusion of BDP-cholesterol 

in the PM (Solanko et al., 2013). Also, the concept of bioorthogonal labeling has 

found its way into the imaging of molecular probes in STED (Erdmann et al., 2014; 

Saka et al., 2014). 

To our knowledge, the work presented here is the first study that directly visualizes a 

minimal-perturbed analogue of cholesterol, alkyne-cholesterol, in super-resolution 

using click labeling and STED microscopy. A direct correlation of LDs with the 

alkyne-cholesterol signal was possible by imaging of LD540 in confocal mode 

followed by its bleaching and subsequent STED imaging of alkyne-cholesterol. 

Thereby we were able to image alkyne-cholesterol on its way into LDs. 

STED microscopy highly benefits from a bright fluorescent staining of the sample to 

achieve a good signal-to-noise ratio. A plethora of excellent azide coupled 

fluorescent dyes is available through facile synthesis or commercial sources, and 

they can be click-reacted to the alkyne lipid of interest in a modular fashion. Hence, 

the design and implementation of click-based STED imaging of lipids is quite 

straightforward nowadays, once access to a STED microscope is available. A 

stunning complexity of lipid microdomains in cellular membranes and intracellular 

lipid trafficking pathways awaits its revelation. STED and other super-resolution 

techniques could become substantial contributors in that quest. 
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4.3.2.3 Trafficking of exogenous alkyne-cholesterol in hepatocytes 
towards its storage in lipid droplets 

In a pulse-chase study (Fig. 34), the trafficking of exogenous alkyne-cholesterol to 

LDs was investigated. Vesicles of different shape were observed, especially in the 

first 30 min after exchanging the alkyne-cholesterol containing medium to standard 

growth medium. Regarding their size and morphological appearance, they 

resembled different stages of endosomes, although this preliminary study could not 

unequivocally identify them. For this purpose, colocalization studies of the structures 

with organelle marker proteins are necessary in future experiments. Nevertheless, 

the morphological appearance of the early vesicles (spherical with tubular 

appendages) matches the shape of early or sorting endosomes, whereas the 

subsequently observed large, spherical vesicles might represent late endosomes or 

lysosomes. The size of the vesicles (~ 1 µm) is within the range of typical hepatocyte 

lysosomes, but slightly above average (Carpentier et al., 1979). In macrophages, the 

fluorescent sterol dehydroergosterol (DHE), when loaded onto the PM, was 

transported to recycling endosomes, but not late endosomes and lysosomes, 

identified by colocalization with marker proteins (Wustner et al., 2005). 

Of course, the observation of vesicles does not exclude the interplay with non-

vesicular pathways. Alkyne-cholesterol could be present in vesicles and still traffic to 

the ER and LDs on strictly non-vesicular pathways, or non-vesicular pathways could 

be involved in the transfer of alkyne-cholesterol to or from vesicles. This has been 

observed in yeast mutant strains, in which sterol trafficking from the PM to the ER 

can occur without the key proteins involved in vesicular trafficking (Li and Prinz, 

2004). Also in macrophage foam cells, pulse-chase data suggest the prevalence of 

non-vesicular pathways for the transport of DHE to LDs (Wustner et al., 2005). 

Because of the long pulse time (60 min), early events were not visible in the 

preliminary study presented here. The rare occurrence of alkyne-cholesterol in rings 

around LDs at early chase timepoints might indicate that a significant proportion of 

cholesterol took a slow vesicular route from the PM to the ER. Poorly characterized 

non-vesicular transport processes distribute cholesterol among endomembranes 

within a few minutes (Hao et al., 2002; Lange et al., 2014). The delayed deposition 

on LDs might also be explained by a relatively slow upregulation of the esterification 

machinery (Chang et al., 2009). 
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The nature of the early trafficking events involved in the targeting of alkyne-

cholesterol to LDs remains to be elucidated by further studies. Shorter pulse times in 

pulse-chase studies of fixed cells, or live-cell tracking of alkyne-cholesterol with 

Raman microscopy should be used for this purpose. The results should be 

correlated with metabolic pulse-chase studies to determine at which time point CE is 

formed. 

Compared to other cell types, the possibility of uptake and assembly of lipoproteins 

in hepatocytes adds a further level of complexity to cholesterol trafficking (see 

chapters 1.4 and 1.5). Exogenous cholesterol in these cells will be taken up by 

different receptors, depending on the lipoprotein that it is packed in, and these entry 

points also partially determine its further trafficking (Ikonen, 2008; Sniderman et al., 

2013). Studies on the uptake and endocytosis of alkyne-cholesterol loaded LDL and 

HDL are planned and will help to investigate how cholesterol from different 

exogenous sources is targeted by hepatocytes towards internal storage, metabolism 

or re-secretion. Loading of the PM at 4 °C with alkyne-cholesterol (delivered as a β-

cyclodextrin complex or in ethanolic solution) could be used to investigate non-

vesicular trafficking from the PM (Hao et al., 2002).  

An interesting observation during the chase was the movement of LDs from the 

periphery to perinuclear regions upon their growth, which was observed indirectly in 

the pulse-chase study (Fig. 34). This motion has been reported before in adipocytes 

(Nagayama et al., 2007), and is thought to be a general phenomenon in LD 

biogenesis caused by the movement of LDs between specialized ER subdomains 

(Kassan et al., 2013; Pol et al., 2014). The preferential localization of alkyne-

cholesterol rings on perinuclear LDs (Fig. 37) could therefore result from the 

translocation of LDs to the ER subcompartment that harbours ACAT to enable the 

deposition of CE on LDs. The underlying mechanisms and regulation of this 

recruitment are still elusive, but an increased cholesterol concentration at 

membranes like the ER or the PM that activates ACAT if it surpasses a certain 

threshold (Xu and Tabas, 1991) might also stimulate the recruitment of LDs. 
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4.3.2.4 Esterification of exogenous alkyne-cholesterol and lipid droplet 
heterogeneity in hepatocytes 

Cells need to adjust to a variety of conditions, including the lack or excess of 

nutrients, to maintain homeostatic conditions. LDs are important contributors to lipid 

homeostasis. To fulfill its diverse functions, the LD pool is split up into several 

dynamic populations with different lipid and protein composition, size, intracellular 

localization and motion, as well as clustering and connection to organelles (see 

chapter 1.3). The presence of LD subpopulations in adipocytes, and the differential 

incorporation of nutrients into different LDs of the same adipocyte have been 

reported (Kuerschner et al., 2008; Rinia et al., 2008), which demonstrates that LD 

subpopulations may react differently to external or internal stimuli. Hepatocytes play 

a pivotal role in whole body cholesterol metabolism and circulation. A disturbed 

cholesterol homeostasis in these cells is associated with severe diseases of the liver 

like NAFLD (Musso et al., 2013) or hepatitis C virus infection (Loizides-Mangold et 

al., 2014). Besides the synthesis of cholesterol and many ways of influx into and 

efflux from the hepatocyte, the storage of esterified cholesterol in LDs likely 

contributes to hepatic cholesterol homeostasis.  

This study investigated the cholesterol esterification and storage in LDs in response 

to lipid pre-loading of hepatocytes with fatty acids or cholesterol, and the contribution 

of individual LDs to that response. To that end, alkyne-cholesterol was applied as a 

probe. Administered in the cell culture medium, it was taken up by HuH7 cells and 

trafficked to the ER (Fig. 29 and Fig. 34). It thus served in this study as a general 

means to raise the cholesterol concentration in that organelle, like it would be the 

case after increased influx of cholesterol from lipoproteins, but also after increased 

synthesis due to an upregulation of the cholesterol synthetic machinery. Intracellular 

esterification of cholesterol, regardless from which source, and regardless if it 

ultimately leads to export or internal storage, happens upon the action of ER-residing 

ACAT enzymes.  

To generate LDs rich in TAG or CE, HuH7 hepatocarcinoma cells were pre-loaded 

with unlabeled fatty acids or cholesterol, and this loading was then continued upon 

the further addition of alkyne-cholesterol. After the establishment of a feeding setup 

that gave distinct neutral lipid profiles (Fig. 35, Fig. 36), microscopy was used to 

investigate morphological parameters of LDs and the localization of alkyne-
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cholesterol to them. Alkyne-cholesterol localized to LDs upon both feeding regimes, 

pre-loading with oleate or cholesterol. However, the LDs appeared morphologically 

different (Fig. 37) and the quantification of the micrographs (Fig. 38C) suggested 

further differences between HuH7 cells with TAG-rich and CE-rich LDs. Although the 

amount of neutral lipid stored in LDs was similar for both feeding regimes (Fig. 36A 

and Fig. 38C), more alkyne-cholesterol was detected in HuH7 cells fed with 

cholesterol than with oleate (Fig. 37 and 38C). As our labeling protocol for 

microscopy was able to detect alkyne-cholesterol only in membranes but not inside 

the LD core (see chapter 4.3.2.1), the stronger signal inside endomembranes could 

be due to a saturated esterification machinery leading to transiently increased levels 

of labeled and unlabeled cholesterol at the ER. Cholesterol pre-loading could 

presumably lead to upregulation of the responsible isoform of ACAT. However, the 

observed effects might be strongly overlayed by lipid efflux. Hence, the 

determination of ACAT enzymatic activities (compare chapter 3), ACAT1 and ACAT2 

mRNA and/or protein levels, and of lipid efflux are essential in future experiments. 

The addition of an ACAT inhibitor effectively prevented alkyne-cholesterol 

esterification (Fig. 36B and C). Intracellularly, alkyne-cholesterol was detected with 

low signal intensity at vesicular structures (Fig. 37). Presumably, most of it was not 

transferred to the ER under these conditions, but remained in the PM, where it was 

underrepresented in our microscopic studies (see chapter 4.3.1). If this holds true in 

repeated experiments, it would indicate a strong regulation of the alkyne-cholesterol 

concentration at the ER depending on the activity of ACAT enzymes and argue 

against a solely passive distribution of sterols to endomembranes in response to a 

rise of their concentration at the PM. However, the phenotype observed with the 

inhibitor might also be derived from secondary effects in stressed or apoptotic HuH7. 

In the liver, hepatocytes residing in different zones of the hepatic acini (with different 

distances to the blood vessel) have distinct metabolic functions. Additional to that 

zonal organization, a cell-to-cell heterogeneity has been suggested by Herms and 

colleagues to play a role in the reduction of hepatic lipotoxicity (Herms et al., 2013). 

They showed that upon loading with oleate, the LD accumulation in hepatocytes was 

heterogenous and the cell population displayed a positive skewed distribution 

regarding this parameter. Because the few high-lipid hepatocytes provided lipids to 

other cells and accumulated far more reactive oxygen species than the bulk of the 
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population, the authors hypothesized that the reversible establishment of a high-lipid 

subpopulation helped to reduce lipotoxicity in the general population and 

simultaneously maintain lipid homeostasis. Interestingly, in the work presented here, 

the cell-to-cell heterogeneity of the HuH7 population also appeared to be dependent 

on the feeding conditions. Preliminary calculations of skewness coefficients and the 

robust coefficients of variation (as a measure of the average deviation of an 

individual cell from the median of the population, see (Herms et al., 2013)) with the 

data in Fig. 38C indicated that these might be worthwile statistic tools to assess the 

cell-to-cell heterogeneity of the alkyne-cholesterol signal in our system. The 

calculations were not included in this thesis because they have to be repeated with 

data from multiple, independent experiments before conclusions can be drawn. 

Regardless of its diagnostic value, the high heterogeneity of the HuH7 population 

has implications for the microscopy observations of single cells. Although the 

micrographs presented here show the typical appearance of the population to the 

best knowledge of the experimenter, in future experiments, the observation of 

morphological parameters in individual cells should be more randomized, like it has 

been done for the quantitative measurements. Future experiments that investigate 

mechanisms of hepatocytes against cholesterol cytotoxicity should be performed in 

primary hepatocytes instead of the hepatocarcinoma cell line HuH7. Additionally a 

more physiological cell culture system should be tested, like the three-dimensional in 

vitro co-culturing of hepatocytes with other cell types of the liver, like Kupffer cells, 

stellate cells and endothelial cells (Kostadinova et al., 2013). 

Inside single cells, the LD-to-LD heterogeneity was assessed. The heterogeneous 

localization of alkyne-cholesterol to the LDs of a single HuH7 cell after cholesterol 

loading (Fig. 38A and B) suggested the presence of LD subpopulations under these 

conditions. It indicated that preferentially the CE-rich LDs acquired further (alkyne-

labeled) CE. Thus, a specialized role of CE-rich LDs in the detoxification of excess 

cholesterol is imaginable. However, this interesting finding needs further verification. 

The determination of the LD proteome of fatty acid-loaded versus cholesterol-loaded 

cells, like it has been performed for steroidogenic cells (Khor et al., 2014), could help 

identify proteins localizing specifically to CE-rich or TAG-rich LDs in hepatocytes. 

Alternatively to analyzing the bulk metabolism of a cell population altered by lipid 

loading, individual LDs can be sorted by flow cytometry, into an isotropic and an 
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anisotropic population, as demonstrated by Kellner-Weibel and colleagues in rat 

hepatoma cells (Kellner-Weibel et al., 2001).  

Among the highly CE-enriched anisotropic LDs inside a single HuH7 cell, a 

significant proportion did not bear an alkyne-cholesterol ring, which could be due to a 

low general or an altered metabolic activity, e.g. these LDs could have been 

providing lipids for export in lipoproteins. Colocalization studies with ACAT1 and 

ACAT2 could give more insight into that. In addition, Raman microscopy could 

provide a more precise knowledge about the neutral lipid composition of individual 

LDs (Rinia et al., 2008; Hosokawa et al., 2014).  

To exclude the possibility of a significant contribution of alkyne-cholesterol, in 

addition to unlabeled fatty acid or cholesterol, to the LD core composition, shorter 

incubation times with alkyne-cholesterol should be included in the investigations. The 

preliminary experiment shown here, which correlates the alkyne-cholesterol signal of 

LDs with their anisotropy for a single cell (Fig. 38A and B), should be repeated and 

expanded to several cells of a sample. Subsequently, the obtained data should be 

subjected to automated image analysis rather than to visual screening. Using such a 

refined experimental setup, the differential targeting of alkyne-cholesterol to LDs with 

different lipid composition could be assessed. Moreover, further parameters like LD 

protein decoration, size and clustering could be determined in order to identify the 

characteristics of the putative LD subpopulation responsible for cholesterol 

detoxification. 

Taken together, the heterogenic accumulation of free cholesterol and CEs in 

hepatocytes on a cell-to-cell and an intracellular level, although it cannot be 

concluded unequivocally from the preliminary data presented here, is an appealing 

hypothesis as a hepatic organizational principle, and a protective measure to 

optimally maintain homeostatic conditions and cope with lipotoxicity simultaneously. 

Prospective studies will address the many aspects of this hypothesis in further detail. 
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5 Conclusion and Outlook 

Bioorthogonal labeling is a promising strategy in lipid biology because it allows the 

detection of lipid probes with a small and thus comparatively non-interfering label, 

subsequent to the metabolic or trafficking events that the probe was subjected to. 

Using CuAAC, currently one of the most successful reactions out of the click 

chemistry concept, alkyne lipids can be click-labeled with azide-bearing reporters 

under physiological conditions to enable their detection. Alternatively, a label-free 

detection of alkyne lipids by its strong Raman peak is feasible, and thus able to 

complement the click labeling based detection. An important asset of bioorthogonal 

labeling is its modularity. Hence, alkyne lipids can be used as versatile probes in a 

variety of different applications, given that the azide detection reagent is adjusted to 

the needs of the respective application.  

The alkyne-labeled lysophospholipids, sphinganine or cholesterol tested in this 

thesis demonstrated that the small alkyne group, attached to the ω-end of the 

hydrocarbon chain or to the headgroup, did not interfere with the substrate affinity of 

various enzymes of lipid metabolism. These results suggest a general suitability of 

alkyne lipids as substrates for enzymatic assays. Due to the facile synthesis and 

increasing commercial availability of alkyne lipids, a versatile toolbox of alkyne-

labeled substrates is now at hand and provides a fast, convenient and sensitive 

alternative to radiolabeled or fluorescent dye-tagged substrates. 

Whereas for the in vitro enzymatic assays, a previously established, fluorogenic click 

labeling protocol with quantitative labeling yield was utilized, the labeling of alkyne 

lipids for microscopy poses different challenges. There, the click reaction has to take 

place in intracellular structures like biological membranes or LDs. Whereas in the 

highly hydrophobic environment of the LD core click labeling could not be 

established so far, this study shows that the sensitivity of the detection of alkyne 

lipids in membranes could be significantly increased by the use of a copper-chelating 

azide reporter, APpic2Btn.  

A better understanding of the sterical and topological arrangement of the reactants 

during the click labeling could help to design further improved azide detection 

reagents. This could be achieved by molecular modeling of the reaction site, in 
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combination with the experimental determination of the conformations of the 

resulting click-conjugates, for instance by using FRET between two fluorophores 

attached to both ends of the conjugate. Knowledge about the sterical arrangement 

during and after click labeling could then be used to elucidate which conformation 

favors a fast and efficient click reaction as well as most effectively prevents the 

mobilization of the click-labeled lipid, and thus stimulate the design of the appropriate 

azide reagents that lead to that favorable conformation. To further enhance the click 

labeling sensitivity, and to circumvent copper toxicity and thereby allow click labeling 

in living systems, multidentate azide reporters should be tested. 

The increased sensitivity with the novel reagent APpic2Btn was particularly 

beneficial in the investigation of the intracellular localization of alkyne-cholesterol. 

This study demonstrated that exogenously applied alkyne-cholesterol trafficked to 

intracellular membranes in HuH7 cells, including mitochondria and the ER. Additional 

to that, alkyne-cholesterol was detected at the surface of LDs. Using STED 

microscopy, it could be verified that the staining derived from the click labeling of 

alkyne-cholesterol in the outer shells of the LD core, additional to the monolayer. 

Furthermore alkyne-cholesterol containing ER was found in close proximity, and very 

likely in direct contact via membrane bridges, to the LD. The colocalization of alkyne-

cholesterol at the LD-ER interface with overexpressed ACAT1 strongly suggests that 

this constitutes the site of cholesterol esterification. 

To investigate of the storage of excess cholesterol in hepatocyte LDs as a response 

to the cytotoxic accumulation of cholesterol, HuH7 cells were pre-loaded with fatty 

acids or cholesterol. In the pilot experiments performed so far, the esterification and 

subcellular localization of subsequently administered alkyne-cholesterol was 

influenced by lipid loading, suggesting a metabolic switch of hepatocytes towards 

cholesterol storage and export as lipoproteins after cholesterol loading. This needs 

to be confirmed in the future in repeated experiments and by the determination of 

ACAT enzymatic activities. Furthermore, the contribution of the two isoforms, ACAT1 

and ACAT2, to storage and export of excess cholesterol and thus to cholesterol 

homeostasis in hepatocytes will be addressed. Future studies will also investigate 

the role of heterogeneity at the cell-to-cell level and regarding individual LDs inside 

single cells for cholesterol detoxification. 
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