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Abstract

Statistical Mechanics is considered as one of the most sound and confirmed theories in
modern physics. In this thesis, we explore the possibility to view a large class of models
under the point of view of statistical mechanics. The models are defined for simplicity on
the standard lattice Zd. However, most of the results apply unchanged to very general
lattices. The Hamiltonians considered are of gradient type. Namely, as a function of the
field ϕ, they depend only on all the pair differences ϕ(x)− ϕ(y), where x, y are elements of
the lattice. Under suitable very general assumptions, we show that these models satisfy
certain large deviation principles. The models considered contain in particular the typical
models for Nonlinear Elasticity and Fracture Mechanics. Afterwards, we will concentrate
on more specific models in which we show local properties of the free energy per particle.
These models are sometimes known in the literature as mass-spring models. In particular,
we will consider the space dependent case. For these models, we show the validity of
the Cauchy-Born rule in a neighbourhood of the origin. The methods used to prove the
Cauchy-Born rule are based on the Renormalization Group. We also show a new Finite
Range Decomposition based on discrete Lp-theory.
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Introduction

In many instances, the physically relevant states come as the minimizers of some functional
F . This coincides with the fundamental problem in the Calculus of Variations. More
precisely, given a functional F : X → R̄, where X is a topological space, one seeks to
characterize its minimizers. A typical example is: given a bounded open subset Ω of Rd
and a free energy function g : Ω× Rd × Rd×m 7→ R, find all functions u : Ω 7→ Rm that
(possibly subject to boundary conditions) minimize the free energy integral:

F(u,Ω) :=

ˆ

Ω
g(x,∇u(x))dx.

The free-energy-minimizing approach has been successfully applied to many physical
models. In particular, the above example is typical in Nonlinear Elasticity.

However, it is often unclear how to find the right functional F which should be minimized.

The approach of Statistical Physics is to start by postulating simple local interactions for
particles and to show via some “thermodynamical limit” that with overwhelming high
probability the configuration will be very close to the minimizer of some functional F .
In this way, it “justifies” the choice of the free energy functional F and the minimization
procedure. Moreover, it also allows to determine how likely(or unlikely) particular
configurations are.

In this thesis, we restrict ourselves to the Nonlinear Elasticity setting and very closely
related ones. One of the features, we will be very interested in, is the so-called Cauchy-
Born rule. The Cauchy-Born rule is a basic hypothesis used in the mathematical
formulation of solid mechanics and relates the movement of atoms in a crystal to the
overall deformation of the bulk solid. Namely, it says that in a crystalline solid subject
to a small strain, the positions of the atoms within the crystal lattice follow the overall
strain of the medium. Mathematically, the Cauchy-Born rule is closely related to the
strict convexity of the free energy. The lack of some type of strict convexity gives rise to
the pattern formation.

In Chapter 1, we will show that, if one starts with very general local interaction potentials,
one obtains the physically relevant states concentrate with overwhelming high probability
to the minimizers of the typical functionals considered in Nonlinear Elasticity. This
setting has been considered before by R. Kotecký and S. Luckhaus in an important
paper(cf. [19]). In Chapter 1, we present several extensions of their results, such as
more general local interaction, an homogenization result as well as various technical
improvements in the proof. For a more precise comparison see § 1.1.

In Chapter 2 and Chapter 3, we depart from the fairly general setting of Chapter 1
and consider a class of special local interactions. For these type of local interactions
we show some local properties of the resulting free-energies and the corresponding rate
functions. To do so we need to use the Renormalization Group theory developed by
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Introduction

Brydges et al.. In particular, we generalize some results of S. Adams, R. Kotecký and
S. Müller with non-translation invariant local interactions. We will follow closely their
strategy. However there are many technical problems that cannot be dealt with by
modifying directly their proof. More precisely, a fundamental step is the construction of
the Finite Range Decomposition, for which we need to apply a rather different strategy.
For a more in-depth comparison see the corresponding introductory sections in Chapter 2
and Chapter 3.
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1 Representation Theorems

1.1 Introduction

Recently, R. Kotecký and S. Luckhaus, have shown a remarkable result. They prove
that in a fairly general setting, the limit of large volume equilibrium Gibbs measures for
elasticity type Hamiltonians with clamped boundary conditions. The “zero”-temperature
case was considered by R. Alicandro and M. Cicalese in [3].

Let us now briefly explain the results contained in [19]. The authors begin with the
microscopic description and consider the space of microscopic configurationsX : Zd → Rm.
This includes the case of elasticity where m = d and X(i) denoting the vector of
displacement of the atom labeled by i as well as the case of random interface with
m = 1 and X(i) denoting the height of interface above the lattice site i. For any fixed
Y : Zd → Rm and any finite Λ ⊂ Zd, the Gibbs measure µΛ,Y (dX) on (Rm)Λ under
the boundary conditions Y is defined in terms of a Hamiltonian H with a finite range
interaction U .

Namely, let a finite A ⊂ Zd, a function U : (Rm)A → R be given and let R0 = diam(A)
denote the range of potential U . The function U is also assumed to be invariant under
rigid motions. In addition, natural growth conditions on U are imposed. Using XA to
denote the restriction of X to A for any X : Zd → Rm and any A ⊂ Zd, the Hamiltonian
is defined by

HΛ(X) =
∑

j∈Zd : τj(A)⊂Λ

U(Xτj(A))

with τj(A) = A+ j = {i : i− j ∈ A}. Moreover, they assume that

(A1) There exist constants p > 0 and c ∈ (0,∞) such that

U(XA) ≥ c|∇X(0)|p

for any X ∈ (Rm)Z
d
.

(A2) There exist constants r > 1 and C ∈ (1,∞) such that

U(sXA + (1− s)YA + ZA) ≤ C
(
1 + U(XA) + U(YA) +

∑

i∈A
|Z(i)|r

)

for any s ∈ [0, 1] and any X,Y, Z ∈ (Rm)Z
d
.

They introduce the clamped boundary conditions by considering a fixed configuration Y
in the boundary layer

SR0(Λ) = {i ∈ Λ|dist(i,Zd \ Λ) ≤ R0}

3



1 Representation Theorems

by restricting to the functions X which are contained in the set(whose indicator function
will be denoted by 1lΛ,Y (X),)

{X ∈ (Rm)Λ : |X(i)− Y (i)| < 1 for all i ∈ SR0(Λ)}.

The Gibbs measure on (Rm)Λ is defined by

µΛ,Y (dX) =
exp
{
−βHΛ(X)

}

ZΛ,Y
1lΛ,Y (X)

∏

i∈Λ

dX(i)

with

ZΛ,Y =

ˆ

(Rm)Λ

exp
{
−βHΛ(X)

}
1lΛ,Y (X)

∏

i∈Λ

dX(i).

For any ε ∈ (0, 1), let
Ωε = εZd ∩ Ω ≡ (Zd ∩ 1

εΩ).

Naturally, 1
εΩ and εZd denotes the rescaling of Ω and Zd by 1

ε and ε, respectively.

With the above notation, in [19], the following theorem is proved:
Theorem 1.1.1. Assume that U satisfies the assumptions (A1) and (A2) with r ≥ p > 1,
1
r >

1
p − 1

d and let v ∈W 1,p(Ω). Further, let

Fκ,ε(v) = −εd|Ω|−1 logZΩε(NΩε,r(v, κ)),

and

F+
κ (v) = lim supε→0 Fκ,ε(v) (1.1)

F−κ (v) = lim infε→0 Fκ,ε(v) (1.2)

Then:

(i) limκ→0 F
−
κ (v) ≥ 1

|Ω|
´

ΩW (∇v(x)) dx.

(ii) If v ∈W 1,r(Ω) then limκ→0 F
+
κ (v) ≤ 1

|Ω|
´

ΩW (∇v(x)) dx.

The crucial step in the proof of the Large Deviation statement is based on the possibility
to approximate with partition functions on cells of a triangulation given in terms of Lr-
neighbourhoods of linearizations of a minimiser of the rate functional. An important tool
that allows them to impose a boundary condition on each cell of the triangulation consists
in switching between the corresponding partition function ZΩε(NΩε,r(v, κ)) and the
version ZΩε(NΩε,r(v, 2κ)∩NΩε,R0,∞(Z)) with an additional soft clamp |X(i)− Z(i)| < 1
enforced in the boundary strip of the width R0 > diam(A) with Z ∈ NΩε,r(v, κ) arbitrarily
chosen.

We improve their result in the following manner:

(i) We consider Hamiltonians, where the interaction is not of finite range and is
dependent1 both on the scale ε and the position x. We are also able to give an
homogenisation result.

1for a precise definition see the next section
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1.2 Sobolev Representation Theorems

(ii) By considering a different version of the interpolation argument we are able to
consider “hard” boundary condition instead of the clamped ones. In our opinion
this type of boundary conditions are more in line with the standard theory of
Statistical Mechanics.

(iii) We simplify some of the arguments by relying on the representation formulas, hence
avoiding the triangulation argument.

(iv) We are able to consider more general potentials, which “relax” in SBV.

1.2 Sobolev Representation Theorems

1.2.1 Preliminary results

Let Ω be an open set. We denote by A(Ω) the family of all open sets contained in Ω.
We now recall a well-known result in measure theory due to E. De Giorgi and G. Letta.
The proof can be found in [4].
Theorem 1.2.1. Let X be a metric space and let us denote by A its open sets. Let
µ : A → [0,∞] be an increasing set function such that

(DL1) µ(∅) = 0;

(DL2) A,B ∈ A then µ(A ∪B) ≤ µ(A) + µ(B);

(DL3) A,B ∈ A, such that A ∩B = ∅ then µ(A ∩B) ≥ µ(A) + µ(B)

(DL4) µ(A) = sup {µ(B) : B b A}. Then, the extension of µ to every C ⊂ X given by

µ(C) = inf {µ(A) : A ∈ A, A ⊃ C}

is an outer measure. In particular the restriction of µ to the Borel σ-algebra is a
positive measure.

We recall the well-known integral representation formulas (see [12]).
Theorem 1.2.2. Let 1 ≤ p < ∞ and let F : W 1,p × A(Ω) → [0,+∞] be a functional
satisfying the following conditions:

(i) (locality) F is local, i.e. F (u,A) = F (v,A) if u = v a.e.on A ∈ A(Ω);

(ii) (measure property) for all u ∈W 1,p the set function F (u, ·) is the restriction of a
Borel measure to A(Ω);

(iii) (growth condition) there exists c > 0 and a ∈ L1(Ω) such that

F (u,A) ≤ c
ˆ

A
(a(x) + |Du|p) dx

for all u ∈W 1,p and A ∈ A(Ω);

(iv) (translation invariance in u) F (u+ z,A) = F (u,A) for all z ∈ Rd, u ∈W 1,p and
A ∈ A(Ω);

(v) (lower semicontinuity) for all A ∈ A(Ω) F (·, A) is sequentially lower semicontinuous
with respect to the weak convergence in W 1,p.

5



1 Representation Theorems

Then there exists a Carathéodory function f : Ω×Md×N → [0,+∞) satisfying the growth
condition

0 ≤ f(x,M) ≤ c(a(x) + |M |p)

for all x ∈ Ω and M ∈Md×N , such that

F (u,A) =

ˆ

A

f(x,Du(x)) dx

for all u ∈W 1,p and A ∈ A(Ω).
If in addition it holds

(vi) (translation invariance in x)

F (Mx,B(y, %)) = F (Mx,B(z, %))

for all M ∈Md×N , y, z ∈ Ω, and % > 0 such that B(y, %)∪B(z, %) ⊂ Ω, then f does not
depend on x.

1.2.2 Hypothesis and Main Theorem

For any u ∈ L1
loc(Rd,Rm), let Xu,ε : Zd → Rm and ϕ : εZd → Rm be defined by

Xu,ε(i) =
1

ε

 

εi+Q(ε)
u(y) dy

ϕu,ε(εi) =
1

ε

 

εi+Q(ε)
u(y) dy

(1.3)

for any i ∈ Zd. Here, Q(ε) = [− ε
2 ,

ε
2 ]d and

ffl

denotes the mean value,i.e., for every
f ∈ L1(Rd)

 

A
f(x) dx =

1

|A|

ˆ

A
f(x) dx

Let u ∈W 1,p(Rd), A is an open set and p ≥ 1. Then it is not difficult to prove that

lim
ε↓0

∑

x∈Aε
εd|∇ϕu(x)|p =

ˆ

A
|∇u|p. (1.4)

On the other hand, let

Πε : (Rm)Z
d

0 →W 1,p(Rd) (1.5)

be a canonical interpolation X → v such that v(εi) = εX(i) = εϕ(εi) for any i ∈ Zd.
Here, (Rm)Z

d

0 is the set of functions X : Zd → Rm with finite support. To fix ideas, we
can consider a triangulation of Zd into simplexes with vertices in εZd, and choose v on
each simplex as the linear interpolation of the values εX(i) on the vertices εi.

6



1.2 Sobolev Representation Theorems

Let Ω be an open set with regular boundary. We denote by Ωε = εZd ∩ Ω and by A(Ω)
the set of all open sets contained in Ω with regular boundary. For every set A ∈ A(Ω),
we define

Rξε(A) := {α ∈ εZd [α, α+ εξ] ⊂ A},

where by [x, y] we mean the segment connecting x and y, i.e., {λx+ (1−λ)y : λ ∈ [0, 1]}.
The Hamilton H is defined by

H(ϕ, ε) :=
∑

ξ∈Zd

∑

x∈Rξε(Ω)

fξ,ε(x,∇ξϕ),

where ξ ∈ Zd, and

∇ξϕ(x) :=
ϕ(x+ εξ)− ϕ(x)

|ξ| .

We also define the Hamiltonian taking into account the contribution from the boundary
as

H∞(ϕ,A, ε) :=
∑

ξ∈Zd

∑

x∈Aε
fε,ξ(x,∇ξϕ(x)).

The functions fξ,ε will be specified later.

In order to apply the representation formulas, we shall need to localize. For this reason,
for every ε > 0 and A ⊂ Ω open, set we introduce

H(ϕ,A, ε) :=
∑

ξ∈Zd

∑

x∈Rξε(A)

fξ
(
x,∇ξ,εϕ(x)

)
.

For simplicity of notation, we will also denote

Hξ(ϕ,A, ε) :=
∑

x∈Rξε(A)

fξ,ε
(
x,∇ξϕ(x)

)
.

The localized version of H∞ and Hξ
∞ are defined in the obvious way.

Moreover, let {e1, . . . , ed} be the standard basis of Rd. In this section, the functions fξ,ε
will satisfy the followings

(C1) fξ,ε > 0;

(C2) there exist constants Cξ such that

fξ,ε(x, s+ t) ≤ fξ,ε(x, s) + Cξ(|t|p + 1);

where the constants Cξ satisfy

∑

ξ∈Zd
Cξ < +∞;

7



1 Representation Theorems

(C3) there exists a constant C such that

fei,ε(x, t) ≥ C max(|t|p − 1, 0).

For every A ∈ A(Ω), we define the free-energy as

F (u,A, κ, ε) := −εd log

ˆ

V(u,A,κ,ε)
exp

(
−H(ϕ,A, ε)

)
dϕ

F∞(u,A, κ, ε) := −εd log

ˆ

V∞(u,A,κ,ε)
exp

(
−H∞(ϕ,A, ε)

)
dϕ,

(1.6)

where

V(u,A, κ, ε) =

{
ϕ : Aε → Rm| εd

|A|d
∑

x∈Aε
|u− εϕ|p ≤ κp

}

V∞(u,A, κ, ε) =

{
ϕ : εZd → Rm| εd

|A|d
∑

x∈Aε
|u− εϕ|p ≤ κp, and ϕ(x) = ϕu,ε(x) ∀x 6∈ Aε

}
,

where ϕu,ε is defined in (1.3).

Let us introduce the following notations:

F ′(u,A, κ) := lim inf
ε↓0

F (u,A, κ, ε)

F ′′(u,A, κ) := lim sup
ε↓0

F (u,A, κ, ε)

F ′(u,A) := lim
κ↓0

lim inf
ε↓0

F (u,A, κ, ε) = lim
κ↓0

F ′(u,A, κ)

F ′′(u,A) := lim
κ↓0

lim sup
ε↓0

F (u,A, κ, ε) = lim
κ↓0

F ′′(u,A, κ)

F ′∞(u,A, κ) := lim inf
ε↓0

F∞(u,A, κ, ε)

F ′′∞(u,A, κ) := lim sup
ε↓0

F∞(u,A, κ, ε)

F ′∞(u,A) := lim
κ↓0

lim inf
ε↓0

F∞(u,A, κ, ε) = lim
κ↓0

F ′∞(u,A, κ)

F ′′∞(u,A) := lim
κ↓0

lim sup
ε↓0

F∞(u,A, κ, ε) = lim
κ↓0

F ′′∞(u,A, κ)

(1.7)

One of the main steps will be to show that F ′∞ = F ′ and that F ′′∞ = F ′′. The basic
intuition behind is the so called interpolation lemma, which is well-known in the Γ-
convergence community. Very informally, what it says that if one imposes “closeness” in
Lp(A) to some regular function u, then one can also impose the boundary condition by
“paying a very small price in energy”. More precisely, given a sequence {vn} such that
vn → u in Lp(A), where A is an open set, then there exists a sequence {ṽn}, such that
ṽn → u in Lp(A), ṽn|∂Ω = u|∂Ω and such that

lim inf
n

ˆ

A
|∇ṽn|2 ≤ lim inf

n

ˆ

A
|∇vn|2.

8



1.2 Sobolev Representation Theorems

Remark 1.2.3. (i) The functional F (u,A, κ, ε) is monotonically decreasing in δ, κ >
0, i.e.

F (u,A, κ, ε) ≤ F (u,A, κ+ δ, ε).

This justifies the outer limit in the formulas of (1.7). Moreover, the outer limit in
the formulas in in (1.7) can be substituted with the supremum i.e.,

F ′(u,A) := sup
κ>0

lim inf
ε↓0

F (u,A, κ, ε) = sup
κ>0

F ′(u,A, κ),

F ′′(u,A) := sup
κ>0

lim sup
ε↓0

F (u,A, κ, ε) = sup
κ>0

F ′′(u,A, κ).

(ii) Let A,B be two open sets such that A ∩B = ∅, then from the definitions it is not
difficult to prove that

F ′(u,A) + F ′(u,B) = F ′(u,A ∪B) and F ′′(u,A) + F ′′(u,B) = F ′′(u,A ∪B).

(iii) Whenever the function u is linear and the functions fξ,ε do not depend on ε and the
space variable x, it is well-known that F ′ = F ′′. In Theorem 1.2.18, we are going
to prove a more general result, which contains as a particular case the previous
claim.

Proposition 1.2.4. The maps F ′, F ′′ are lower semicontinuous with respect to the Lp(A)
convergence. Moreover, there exists a sequence {εn} such that

F ′{εn}(u) = F ′′{εn}(u), (1.8)

where

F ′{εn}(u) := lim
κ↓0

lim inf
n→∞

F (u,A, κ, εn) and F ′′{εn}(u) := lim
κ↓0

lim sup
n→∞

F (u,A, κ, εn).

Proof. Using F (v,A, κ, ε) ≥ F (u,A, κ+ δ, ε) where ‖u− v‖Lp(A) < δ, one has that

F ′(v,A, κ) = lim inf
n→∞

F (u,A, κ, εn) ≥ lim inf
n→∞

F (v,A, κ+ δ, εn) = F (u,A, κ+ δ).

Thus,

lim inf
v→u

sup
κ>0

F ′(u,A, κ) ≥ sup
κ>0

F ′(u,A, κ+ δ)

and finally passing also to the supremum in δ one has that F ′ is lower semicontinuous.
The statement for F ′′ follows in a similar fashion.

Fix D a countable dense set in Lp(A) and let U be the set of all balls centered in
the elements of D with radii in [0, 1] ∩ Q. Let us enumerate the balls in U , namely
U := {Bi : i ∈ N}.
Let u1 ∈ B1 be such that F ′(u1, A) ≤ infB1 F

′ + diam(B1). Let {ε(1)
n } be the sequence

such that

F ′(u1, A) = lim
κ↓0

lim
n→∞

F (u1, A, κ, ε
(1)
n ).

9



1 Representation Theorems

In a similar way as for B1, let u2 ∈ B2 be such that F ′
{ε(1)
n }

(u2, A) ≤ infB2 F
′
{ε(1)
n }

+

diam(B2). Moreover, let {ε(2)
n } ⊂ {ε(1)

n } be such that

F ′(u2, A) = lim
κ↓0

lim
n→∞

F (u,A, κ, ε(2)
n ).

By an induction procedure it is possible to produce a sequence {ε(k+1)
n } ⊂ {ε(k)

n } such
that

F ′(uk, A) = lim
κ↓0

lim
n→∞

F (uk, A, κ, ε
(k)
n ),

where uk is chosen such that

F ′{ε(k+1)
n }(uk+1, A) ≤ inf

Bk+1

F ′{ε(k)
n }

+ diam(Bk+1).

By a diagonal argument it is possible to chose a single sequence {εk}, such that all the
above are satisfied. Because the second claim of the Proposition 1.2.4 consists in showing
(1.8) for a particular sequence, one can assume without loss of generality that it satisfies
the above relations.

Let us now show that F ′{εn} = F ′′{εn}. From the definitions it is trivial that F ′{εn} ≤ F
′′
{εn}.

Let us now show the opposite inequality. Fix u. For every i such that u ∈ Bi we have
that2

F ′{εn}(u,A) + diam(Bi) ≥ F ′{εn}(ui, A) = F ′′{εn}(ui, A).

Passing to the limit for i→∞ and using the lower semicontinuity of F ′′{εn}, we have the
desired result.

Fix Ω an open set, ε > 0 and u ∈ W 1,p(Rd) and let ϕu,ε be defined by in (1.3). The
Gibbs measure µΩ,ε,u(ϕ) on (Rm)Ωε under the boundary conditions u is defined as the
Borel measure such that

dµΩ,ε,u(ϕ) =
exp
{
−βH(ϕ,Ω, ε)

}

ZΩ,ε,u
1l(ϕ)

∏

i∈Ωε

dϕ(i),

where 1l is the characteristic function of the set

{ϕ ∈ (Rm)εZ
d

: ϕ(x) = ϕu,ε for all x ∈ εZd \ Ωε}
and

ZΩ,ε,u =

ˆ

(Rm)Ωε

exp
(
−βH(ϕ,Ω, ε)(ϕ)

)
1l(ϕ)

∏

x∈Ωε

dϕ(i).

We are now able to write the main result in this section:
Theorem 1.2.5. Assume the above hypothesis. Then for every infinitesimal sequence
(εn) there exists a subsequence (εnk) and there exists a function W : Ω × Rd×m → R
(depending on {εnk}) such that

F ′{εnk}
(u,A) = F ′′{εnk}

(u,A) =

ˆ

A
W (x,∇u) dx. (1.9)

2by the above construction

10



1.2 Sobolev Representation Theorems

1.2.3 Proofs

The next technical lemma asserts that finite difference quotients along any direction
can be controlled by finite difference quotients along the coordinate directions(see [3,
Lemma 3.6]).
Lemma 1.2.6. Let A ∈ A(Ω) and set Aε = {x ∈ A : dist(x, ∂A) > 2

√
Nε}. Then for

any ξ ∈ Zd and ϕ : Aε → Rm, it holds

∑

x∈Rξε(A)

∣∣∣ϕ(x+ εξ)− ϕ(x)

|ξ|
∣∣∣
p
≤ C

N∑

i=1

∑

x∈Reiε (A)

|∇iϕ(x)|p, (1.10)

where the constant C is independent of ξ.

Proof. Let ξ ∈ Zd. By decomposing it into coordinates, it is not difficult to notice that
it can be written as

ξ =

Nξ∑

k=1

αk(ξ)eik ,

where Nξ ≤ δ|ξ| for some δ depending on the dimension d, and αk(ξ) ∈ {−1, 1}. Denote
by

ξk =
k∑

j=1

αj(ξ)eij ,

hence ξk ≤ |ξ| for all k. Thus,

∇ξu(x) =
1

|ξ|

Nξ∑

k=1

∇αk(ξ)eiu(x+ εξk).

Moreover, by the convexity of the p-norm, we have

∣∣∣∣
1

Nξ

Nξ∑

k=1

∇αk(ξ)eiu(x+ εξk)

∣∣∣∣
p

≤ 1

Nξ

Nξ∑

k=1

∣∣∣∇αk(ξ)eiu(x+ εξk)
∣∣∣
p
.

Finally, by summing over all ξ, exchanging the sums and using the equivalence of the
norms i.e., |ξ| ≤ Nξ ≤ d|ξ| one has the desired result.

Let also us recall a lemma found in [19]:
Lemma 1.2.7 ([19, Lemma A1]). Let a > 0 and Λ ⊂ Ωε be connected (when viewed
as a subgraph of Zd with the set of edges consisting of all pairs of nearest neighbours
(i, j), |i− j| = 1). Then:

(i) We have
ˆ

1l{j},y(X) exp
(
−a
∑

i∈Λ

|∇X(i)|p
)∏

i∈Λ

dX(i) ≤ ω(m)
(
a−m/pc(p,m)

)|Λ|−1
,

where j ∈ Λ and 1l{j},y is the indicator of the set {X ∈ (Rm)Λ | |X(j)− y| < 1}
and ω(m) is the volume of the unit ball in Rm.

11



1 Representation Theorems

(ii) For any v ∈ Lr(Ω,Rm) and ε sufficiently small,

ˆ

NΛ,r(v,κ)
exp
(
−a
∑

i∈Λ

|∇X(i)|p
)∏

i∈Λ

dX(i) ≤ ϑ|Λ|1+m
d
(
a−m/pc(p,m)

)|Λ|−1
, (1.11)

where ϑ = ω(m)κm and c(p,m) =
´

Rm exp
(
−|ξ|p

)
dξ.

Let Gλ be the free-energy (see (1.6) for the definition) induced by the Hamiltonian

H̃λ(ϕ,A, ε) := λ
d∑

i=1

∑

x∈Reiε (A)

|∇iϕ|p.

Lemma 1.2.8. There exists constants Cλ, Dλ, such that it holds

Cλ ≤ Gλ(0, A, κ, ε) ≤ Dλ

Proof. Let us prove now the upper bound, namely

Gλ(0, A, κ, ε) ≤ Dλ. (1.12)

Let us observe that

H̃λ(ϕ,A, ε) ≤ dλ
∑

x∈Aε
|ϕ(x)|p, (1.13)

hence

ˆ

V(0,A,κ,ε)
exp

(
−H̃λ(ϕ,A, ε)

)
≥
ˆ

{ϕ: |εϕ|≤κ}
exp

(
−
∑

x∈Aε
|ϕ(x)|p

)
.

Thus by using the Fubini Theorem, we have that

ˆ

V(0,A,κ,ε)
exp

(
−H̃λ(ϕ,A, ε)

)
≥ exp

(
−ε−dD

)
,

where

D := − log

ˆ

R
exp (tp) .

Using the definition of the free-energy, one has the desired claim.

Let us now turn to the proof of the second inequality, namely there exits a constant Cλ
such that

Cλ ≤ G(0, A, κ, ε). (1.14)

Let us suppose that |A| = 1. By definition, for every ϕ ∈ V(0, A, κ, ε) it holds

∑

x∈Aε
|ϕ(x)|p ≤ κp/ε−d−p.

12



1.2 Sobolev Representation Theorems

Thus, it is immediate that for every ϕ ∈ V(0, A, κ, ε) there exists a x ∈ Aε such that

|ϕ(x)|p ≤ κp/ε−d−p. (1.15)

For ever x ∈ Aε, let us denote with Nx, the set of ϕ ∈ V(0, A, κ, ε) such that (1.15) holds.
Thus

⋃
x∈Aε Nx ⊃ V(0, A, κ, ε).

From Lemma 1.2.7 one has that
ˆ

Nx
exp

(
−Hλ(ϕ,A, ε)

)
≤ κε−d−p exp

(
−(εd − 1)C̃λ

)
. (1.16)

Hence, with simple calculations one has that
ˆ

V(0,A,κ,ε)
exp

(
−H̃λ(ϕ,A, ε)

)
≤
∑

x∈Aε
ε−d−p exp

(
−(εd − 1)C̃λ

)
,

thus because the exponential diverges “faster”, one can find another constant Cλ such
that (1.14) holds.

Lemma 1.2.9. Let {fξ,ε} satisfy our hypothesis. Then there exists a constant D such
that for every κ < 1, one has that

exp
(
−ε−dF (u,A, κ, ε)

)
≤ exp


Dε−d +D

d∑

i=1

∑

x∈Reiε (A)

|∇eiϕu,ε(x)|p

 , (1.17)

where ϕu,ε.

Proof. Given that ‖b− a‖p ≥ 21−p‖a‖p − ‖b‖p one has that there exists a constant C1

such that

H(ϕ,A, κ, ε) ≥ C1

d∑

i=1

∑

x∈Reiε (A)

|∇eiϕ(x)|p ≥ C1

d∑

i=1

∑

x∈Reiε (A)

|∇ψ|p − C1

d∑

i=1

∑

x∈Reiε (A)

|∇ei(ϕu,ε)(x)|p,

where ψ = ϕ− ϕu,ε and ϕu,ε is defined in (1.3). Hence, the estimate (1.17) reduces to
prove that there exists a constant D such that

ˆ

V(0,A,κ,ε)
exp

(
− C

d∑

i=1

∑

x∈Reiε (A)

|∇eiϕ|p
)
≤ exp

(
Dε−d

)
.

The above inequality was proved in Lemma 1.2.8.

Remark 1.2.10. A simple consequence of the reasoning done in Lemma 1.2.9, is that
there exists a constant C such that

A 7→ F ′(u,A) + C(|∇u|Lp(A) + 1) A 7→ F ′′(u,A) + C(|∇u|Lp(A) + 1)

are monotone with respect to the inclusion relation i.e., for every A ⊂ B it holds that

F ′(u,A) + C(|∇u|Lp(A) + 1) ≤ F ′(u,B) + C(|∇u|Lp(B) + 1).

13
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Lemma 1.2.11. Let fξ,ε satisfy our hypothesis and let A be an open set. Then there
exists a constant D > 0, such that

exp
(
−ε−dF (u,A, κ, ε)

)
≥ exp


−Dε−d −

d∑

i=1

∑

x∈Reiε (A)

|∇eiϕu,ε(x)|


 , (1.18)

where ϕu,ε is defined in (1.3).

Proof. Using Lemma 1.2.6, one has that there exists a constant C such that

H(ϕ,A, κ, ε) ≤ C
d∑

i=1

∑

x∈Reiε (A)

|∇eiϕ(x)|p

Given that ‖a+ b‖p ≤ 2p−1‖a‖p + 2p−1‖b‖p−1, there exist a constant C1 such that

H(ϕ,A, ε) ≤ C1

d∑

i=1

∑

x∈Reiε (A)

(|∇eiϕu,ε|p + 1) +

d∑

i=1

∑

x∈Reiε (A)

|∇iψ(x)|p,

where ψ = ϕ − ϕu,ε. Hence, the estimate (1.18) reduces to prove that there exists a
constant D such that

ˆ

V(0,A,κ,ε)
exp

(
− C

d∑

i=1

∑

x∈Reiε (A)

|∇eiϕ|p
)
≤ exp

(
Dε−d

)
.

The above inequality was proved in Lemma 1.2.8.

Lemma 1.2.12 (exponential tightness). Let A be an open set and K ≥ 0. Denote by

MK :=
{
ϕ : H(ϕ,A, ε) ≥ Kε−d|A|

}
.

Then there exist constants D,K0, ε0 such that for every K ≥ K0, ε ≤ ε0 and u ∈ Lp(A)
it holds

ˆ

MK∩V(u,A,κ)
exp

(
−H(ϕ,A, ε)

)
≤ exp

(
− 1

2
Kε−d +Dε−d −D

d∑

i−1

∑

x∈Reiε (A)

|∇eiϕu|p
)

Proof. For every ϕ ∈MK it holds

H(ϕ,A, ε) ≥ K/2ε−d +
1

2
H(ϕ,A, ε).

Hence, by using Lemma 1.2.9, we have the desired result.

We will now proceed to prove the hypothesis of Theorem 1.2.2.

Even though in the next two lemmas a very similar reasoning is used, they cannot be
derived one from the other.

14



1.2 Sobolev Representation Theorems

εξ

x

x+ εξA′

A

Figure 1.1

Lemma 1.2.13 (regularity). Let fξ satisfy the usual hypothesis then

sup
A′bA

F ′′(u,A′) = F ′′(u,A).

Proof. Let us fix A′ b A and N ∈ N (to be chosen later). Let δ = dist(A′, AC), and let
0 < t1, . . . , tN ≤ δ such that ti+1 − ti > δ

2N . Without loss of generality, we may assume
that there exists no x ∈ Aε such that dist(x,AC) = ti. For every i we define

Ai :=
{
x ∈ Aε : dist(x,AC) ≥ ti

}

and

Sξ,εi := {x ∈ (Ai)ε : x+ εξ ∈ A \Ai} .

With the above definitions it holds

Rξε(A) = Rξε(A
′) +Rξε(A \ Ā′) + Sε,ξi ,

thus

Hξ(ϕ,A, ε) ≤ Hξ(ϕ,A \ Āi, ε) +Hξ(ϕ,Ai, ε) +
∑

x∈Sξ,εi

fξ,ε(∇ϕ(x)).

Hence, by using hypothesis (C2) one has that,

H(ϕ,A, ε) ≤ H(ϕ,Ai, ε) +H(ϕ,A \Ai, ε) +
∑

ξ∈Zd

∑

x∈Sξ,εi

Cξ(|∇ξϕ(x)|p + 1).

Let us now estimate the last term in the previous inequality.

We separate the sum into two terms
∑

ξ∈Zd

∑

x∈Sξ,εi

|∇ξϕ(x)|p =
∑

|ξ|≤M

∑

x∈Sξ,εi

|∇ξϕ(x)|p +
∑

|ξ|>M

∑

x∈Sξ,εi

|∇ξϕ(x)|p,
(1.19)

15



1 Representation Theorems

where M ∈ N. From hypothesis (C2) and by taking M sufficiently large, we may also
assume without loss of generality that

∑

|ξ|≥M
Cξ ≤ δ1,

hence using Lemma 1.2.6,

∑

|ξ|≥M

∑

x∈Sξ,εi

|∇ξϕ(x)|p ≤ Cδ1

d∑

k=1

∑

x∈Rekε (A)

|∇ekϕ(x)|p ≤ C̃δ1H(ϕ,A, ε),

where in the last inequality we have used hypothesis (C3).

Let |ξ| < M . If εMN ≤ 2δ, then

Sξ,εi ∩ S
ξ,ε
j = ∅ whenever |i− j| ≥ 2.

Without loss of generality we may assume the above condition as ε→ 0.

Given that

1

N − 2

N−2∑

i=1

∑

|ξ|<M

∑

x∈Sε,ξi

|∇ϕ(x)|p ≤ 2CH(ϕ,A, ε),

there exist 0 < i ≤ N − 2 such that

∑

|ξ|<M

∑

x∈Sξ,εi

|∇ξϕ|p <
2

N − 2
H(ϕ,A, ε). (1.20)

Let us denote by Ni the set of all ϕ ∈ V(u,A, κ, ε) such that (1.20) holds for the first
time, namely for every j ≤ i

∑

|ξ|<M

∑

x∈Sξ,εi

|∇ξϕ|p ≥
2

N − 2
H(ϕ,A, ε) (1.21)

On one side, one has that

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, κ, ε)) ≤

N∑

i=1

ˆ

Ni
exp

(
−H(ϕ,Ai, ε)−H(ϕ,A \ Āi, ε)

)
. (1.22)

On the other side, one has that

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, κ, ε)) ≥

N∑

i=1

ˆ

NKi
exp (−H(ϕ,A, ε)) , (1.23)

where NK
i := Ni \MK . By using (1.21), one has that for every ϕ ∈ NK

i it holds

H(ϕ,A, ε) +H(ϕ,A \ Āi, ε) ≤ H(ϕ,A, ε) ≤ H(ϕ,Ai) +H(ϕ,A \ Āi) +
K

N − 2
,
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and for every ϕ it holds

H(ϕ,A, ε) ≥ H(ϕ,Ai, ε) +H(ϕ,A \ Āi, ε). (1.24)

Hence,

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, ε)) ≥

N∑

i=1

ˆ

NKi
exp

(
−H(ϕ,Ai)−H(ϕ,A \ Āi)−

K

N − 2

)
.

By using Lemma 1.2.12, i.e., the fact that there exist K0, ε0 and D such that for every
K > K0 and ε ≤ ε0 one has that

ˆ

MK∩V(u,A,κ,ε)
exp

(
−H(ϕ,A, ε)

)
≤ exp

(
− 1

2
Kε−d|A|+Dε−d|A|

)
,

and by using (1.22), one has that (1.23) can be further estimated as

exp
(
− K

N − 2
−1

2
Kε−d|A|+Dε−d|A|

)
+

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, ε))

≥ exp

(
− K

N − 2

) N∑

i=1

ˆ

Ni
exp

(
−H(ϕ,Ai, ε)−H(ϕ,A \ Āi)

)
.

We also notice that by using (1.24) one has that

N∑

i=1

ˆ

Ni
exp

(
H(ϕ,Ai, ε) +H(ϕ,A \ Āi)

)
≥
ˆ

V(u,A,ε)
exp (−H(ϕ,A, ε)) ,

thus there exists 1 ≤ i0 ≤ N such that
ˆ

Ni0
exp

(
H(ϕ,Ai0 , ε) +H(ϕ,A \ Āi0)

)
≥ 1

N

ˆ

V(u,A,ε)
exp (−H(ϕ,A, ε)) . (1.25)

Without loss of generality, we may assume that i0 = 1. Hence, combining (1.25) with
the previous estimates we have that

exp
(
− K

N − 2
− 1

2
Kε−d|A|+Dε−d|A|

)
+

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, ε))

≥ 1

N
exp

(
− K

N − 2

)
ˆ

N1

exp
(
−H(ϕ,A1, ε)−H(ϕ,A \ Ā1)

)
.

We notice that the variables H(ϕ,A1, κ, ε) and H(ϕ,A \ Ā1, κ, ε) are “independent”,
thus by using the Fubini theorem one has that

ˆ

V(u,A,κ,ε)
exp

(
−H(ϕ,A1, ε)−H(ϕ,A \ Ā1)

)
≥
ˆ

V(u,A1,κ,ε)
exp (−H(ϕ,A1, ε))

×
ˆ

V(u,A\Ā1,κ,ε)
exp

(
−H(ϕ,A \ Ā1)

)
,
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where in the previous inequality we have also used that

V(u,A \ Ā1, κ, ε) ∩ V(u,A1, κ, ε) ⊂ V(u,A, κ, ε).

To summarize, we have proved that for A1

ε−d log
(

exp
(
F (u,A, κ, ε)

)
+ exp

(
− K

N − 2
− 1

2
Kε−d|A|+Dε−d|A|

))

≤ −εd log(
K

N − 2
) + εd log(N) + F (u,A1, κ, ε) + F (u,A \ Ā1, κ, ε).

Finally, to conclude it is enough to pass to the limit in ε, then in N and then in κ,
and use the “almost” monotonicity of the map A 7→ F ′′(u,A)(see Remark 1.2.10 ) and
Lemma 1.2.11 to estimate the term F (u,A \ Ā1, κ, ε).

Lemma 1.2.14. For every open set A and u ∈W 1,p(Rd) it holds

F ′(u,A) = F ′∞(u,A) and F ′(u,A) = F ′∞(u,A)

Proof. Without loss of generality, we may assume that u = 0. Indeed, if it is possible to
change the boundary condition to 0 it is possible to change the boundary condition for
every u ∈W 1,p(A) as this would correspond to a translation in all the formulas, hence
leaving the integrals unchanged.

Let us fix A′ b A. Let δ = dist(A′, AC), and let N =
[

1
3ε

]
0 < t1, . . . , tN ≤ δ such that

ti+1 − ti > δ
2N . For every i we define

Ai :=
{
x ∈ Aε : dist(x,AC) ≥ ti

}

and

Sξ,εi := {x ∈ (Ai)ε : x+ εξ ∈ A \Ai} .

With the above definitions it holds

Rξε(A) = Rξε(A
′) +Rξε(A \ Ā′) + Sε,ξi ,

Thus,

H(ϕ,A, ε) ≤ H(ϕ,Ai, ε) +H(ϕ,A \ Āi, ε) +
∑

ξ∈Zd

∑

x∈Sξ,εi

Cξfξ,ε(x, ϕ(x)/|ξ|)

+
∑

ξ∈Zd
Cξ

∑

x∈Sξ,εi

∣∣∣ϕ(x+ εξ)

|ξ|
∣∣∣
p

+ 1

≤ H∞(ϕ̃, Ai, ε) +H(ϕ,A \ Āi, κ, ε)
∑

ξ∈Zd
Cξ

∑

x∈Sξ,εi

∣∣∣ϕ(x+ εξ)

|ξ|
∣∣∣
p

+ 1,

where ϕ̃ is the function which coincides with ϕ in (Ai)ε and is equal to 0 outside of (Ai)ε.
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It is not difficult to verify that

Sξ,εi ∩ S
ξ,ε
j = ∅ whenever |i− j| ≥ |ξ|. (1.26)

Fix δ2 > 0. Then for every ξ such that ε|ξ| ≥ δ2 it holds

1

N − 1

N−1∑

i=1

∑

x∈Sε,ξi

∣∣∣ϕ(x+ εξ)

|ξ|
∣∣∣
p
≤ 1

N − 1

N−1∑

i=1

∑

x∈Sξ,εi

∣∣∣εϕ(x+ εξ)

δ2

∣∣∣
p
. (1.27)

Let us divide the last term in (1.19) into two terms

1

N − 1

N∑

i=0

∑

|ξ|>M
Cξ

∑

x∈Sξ,εi

∣∣∣ϕ(x+ εξ)− ψ(x+ εξ)

|ξ|
∣∣∣
p

=
1

N − 1

N∑

i=0

∑

ε|ξ|>δ2
Cξ

∑

x∈Sξ,ε

∣∣∣εϕ(x+ εξ)

δ2

∣∣∣
p

+
1

N − 1

N∑

i=0

∑

ε|ξ|≤δ2
Cξ

∑

x∈Sξ,ε

|ϕ(x+ εξ)|p
|ξ|p .

Because of (1.26), it holds

1

N − 1

N∑

i=0

∑

ε|ξ|>δ2
Cξ

∑

x∈Sξ,ε

∣∣∣εϕ(x+ εξ)

δ2

∣∣∣
p
≤ C |ξ|

N − 1

∑

ξ∈Zd
Cξκ

pε−d/|A′|,

where in the last inequality we have used Lemma 1.2.6 and the fact that ϕ ∈ V(0, A, κ, ε).

For the second term

1

N − 1

N∑

i=0

∑

ε|ξ|≤δ2
Cξ

∑

x∈Sξ,ε

|ϕ(x+ εξ)|p
|ξ|p ≤

∑

ξ∈Zd
Cξ

∑

x∈Rξε(A)

|ϕ|p ≤
∑

ξ∈Zd
Cξ

∑

x∈Rξε(A)

|∇ϕ̃|p,

where in the first inequality we have used (1.26) and in the second inequality we have
used the fact that the extension ϕ̃ has null boundary conditions.

Hence there exists there exist 0 < i ≤ N − 2 such that

∑

|ξ|

∑

x∈Sξ,εi

|∇ξϕ|p <
2

N − 2
H(ϕ̃, A, ε).

After this step the proof continues in the same fashion as the proof of Lemma 1.2.13.

Lemma 1.2.15 (subadditivity). Let A′, A,B′, B ⊂ Ω be open sets such that A′ b A and
such that B′ b B. Then for every u ∈W 1,p one has that

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,A).

Proof. The proof of this statement is very similar to Lemma 1.2.13.

19



1 Representation Theorems

Lemma 1.2.16 (locality). Let u, v ∈W 1,p(Ω) such that u ≡ v in A. Then

F ′(u,A) = F ′(v,A) and F ′′(u,A) = F ′′(v,A) (1.28)

Proof. The statement follows from the definitions.

Proof of Theorem 1.2.5.

Let us suppose initially that there exists a sequence for which F (·, ·) = F ′(·, ·) = F ′′(·, ·).
Then to conclude it is enough to notice that F satisfies the conditions of Theorem 1.2.2.
Indeed, in the previous Lemmas we prove that all the conditions (i)-(v) of Theorem 1.2.2
hold.

Corollary 1.2.17. Because of Lemma 1.2.14, the same statement holds true for F∞.
This in particular implies that for the sequence {εnk} in Theorem 1.2.5 there holds a
large deviation principle with rate functional

I(v) =

ˆ

Ω
W (x,∇v) dx− min

v̄∈W 1,p
0 (Ω)+u

ˆ

Ω
W (∇v̄(x))dx. (1.29)

1.2.4 Homogenisation

In this section we will show that if the functions fξ,ε are obtained by rescaling by ε
in the space variable, then a LDP result holds true. This models the case when the
arrangement of the “material points” presents a periodic feature, namely:

(H1) periodicity:

fξ,ε(x, t) = f ξ
(x
ε
, t
)

where the functions f ξ are such that f ξ(x+Mei, t) = f ξ(x, t).

(H2) lower bound on the nearest neighbours:

fei(x, t) ≥ c1(|t|p − 1)

(H3) upper bound

f ξ(x, t) ≤ Cξ(|t|p + 1)

The main objective of this section is to prove the following homogenization result:
Theorem 1.2.18. Let the functions f ξξ,ε satisfy the above conditions. Then there exists
a function fhom such that for every A ⊂ Ω open set it holds

F (u,A) =

{
´

A fhom(∇u) if u ∈W 1,p(Ω;Rd)
+∞ otherwise,

(1.30)

where

fhom(M) :=
1

|A| limε↓0 F
′(Mx,A, κ, ε). (1.31)

20
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Proof. Let (εn) be a sequence of positive numbers converging to 0. From Proposition 1.2.5
we can extract a subsequence (that we do not relabel for simplicity) such that

F ′{εn}(u,A) = F ′′{εn}(u,A) =

ˆ

A
f{εn}(x,∇u) dx.

The theorem is proved if we show that f does not depend on the space variable x and on
the chosen sequence εn. To prove the first claim, by Theorem 1.2.2, it suffices to show
that, if one denotes by

F (u,A) =

ˆ

A
f(x,∇u) dx,

then

F (Mx,B(y, ρ)) = F (Mx,B(z, ρ))

for all M ∈ Rd×m, y, z ∈ Ω and ρ > 0 such that B(y, ρ) ∪ B(z, ρ) ⊂ Ω. We will prove
that

F (Mx,B(y, ρ)) ≤ F (Mx,B(z, ρ)).

The proof of the opposite inequality is analogous.

Let x, y ∈ Rd and let xε = arg min(dist(y, x+ (εM)Zd))
]
. Then xε → y as ε ↓ 0. From

the periodicity hypothesis, one has that

F
(
M,B(x, ρ, κ, ε)

)
= F

(
M,B(xε, ρ, κ, ε)

)
≤ F

(
M,B(y, ρ+ δ, κ, ε)

)

where in the last inequality we have used the monotonicity with respect to the inclusion
relation of A 7→ F (u,A, κ, ε) and δ is such that |y − xε| ≤ δ.
Let us now turn to the independence on the sequence on the chosen sequence. Let us
initially notice that because of the LDP, whenever u = Mx where M is a linear map it
holds

F ′(u,A, κ) = F ′(u,A) and F ′′(u,A, κ) = F ′′(u,A). (1.32)

Because of Theorem 1.2.2, it is enough to show that for every linear map M the following
limit exists and

1

|A| limε↓0 F
′(Mx,A, κ, ε)

The existence of the above limit(and its independence on κ) follows easily by the standard
methods with the help of an approximative subadditivity. A simple proof can be found
in [19, Proposition 1.2].
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1 Representation Theorems

1.3 SBV Representation Theorem

In this section we extend the results of the previous section to more general local
interactions, where the problem relaxes naturally in SBV. The strategy will be very
similar to the one used in § 1.2. However, we will need to use different tools and a
different Representation Theorem. Repeating many of the arguments in the previous
section is thus unavoidable, however we will refer to the previous section often when the
repetition becomes pedantic.

1.3.1 A very short introduction to SBV

Before going into the details of our main Theorem of this section, let us define the
functional spaces BV and SBV. For a general introduction on these spaces see [4].
However, please notice that the definitions given in this section differ slightly from the
ones in [4]. More precisely, in the following, we additionally impose the finiteness of
(n− 1)-Hausdorff measure of the jump set. This technical modification is done in order
to have at our disposal general representation theorems like the ones in the following
section.

Let Ω be an open set. We say that u ∈ L1(Ω) belongs to BV(Ω), if there exists a vector
measure Du = (D1u, . . . ,Dnu) with finite total variation in Ω, such that

ˆ

Ω
u∂iϕdx = −

ˆ

ϕdDiu ∀ϕ ∈ C1
0 (Ω)

Let Du = Dau + Dsu be the Radon-Nikodym decomposition of Du in absolutely
continuous and singular part with respect to the Ln and let ∇u be the density of Dau. It
can be seen that u is approximately differentiable at x and the approximate differential
equals to ∇u(x), i.e.,

lim
ρ↓0

ρ−n
ˆ

Bρ(x)

|u(y)− u(x)− 〈∇u, y − x〉|
|y − x| dy = 0

for Ln- a.e.x ∈ Ω.

For the singular part, it is useful to introduce the upper and lower approximate limits
u+, u−, defined by

u−(x) = inf {t ∈ [−∞,+∞] : {x ∈ Ω : u(x) > t} has density 0 at x}
u+(x) = sup {t ∈ [−∞,+∞] : {x ∈ Ω : u(x) < t} has density 0 at x} .

It is well-known that u+(x) ∈ R for Hd−1- a.e.x ∈ Ω. The jump set Su is defined by

Su := {x ∈: u−(x) < u+(x)} .

We define the jump part Ju of the derivative as the restriction of Dsu to the jump set
Su. We also recall that there exists a Borel map νu : Su → Sd−1 such that

νEt(x) = νu for Hd−1 a.e.x ∈ ∂∗Et ∩ Su

for any t such that Et := {x : u > t}.
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1.3 SBV Representation Theorem

Proposition 1.3.1. Let u ∈ BV(Ω). Then, the jump part of the derivative is absolutely
continuous with respect to Hd−1 and

Ju = (u+ − u−)νuHd−1 Su

Finally, we define the space SBVp(Ω) as the set of functions u ∈ BV(Ω) such that
∇u ∈ Lp(Ω) Dsu = Ju and

Hd−1(Su) < +∞. (1.33)

Note that in [4] the condition (1.33) is not imposed.

1.3.2 Preliminary results

Let us now recall some well-known results, which will be useful in the sequel.
Theorem 1.3.2 ([4, Theorem 4.7]). Let ϕ : [0,+∞)→ [0,+∞], θ : [0,+∞)→ [0,+∞]
be a lower semicontinuous function increasing functions and assume that

lim
t→+∞

ϕ(t)

t
= +∞ and lim

t→0

θ(t)

t
= +∞ (1.34)

Let Ω ⊂ Rn be an open and bounded and let (uh) ⊂ SBV(Ω) such that

sup

{
ˆ

Ω
ϕ(|∇uh|) +

ˆ

Juh

θ(|u+
h − u−h |) dHn−1

}
< +∞. (1.35)

If (uh) weakly* converges in BV(Ω), then u ∈ SBV(Ω), the approximate gradients ∇uh
weakly converge to ∇u ∈ (L1(Ω))N . Djuh weakly* converge to Dju ∈ Ω and

ˆ

Ω
ϕ(|∇u|) dx ≤ lim inf

h→+∞

ˆ

Ω
ϕ(|∇uh|) dx if ϕ is convex

ˆ

Ju

θ(|u+ − u−|) dHn−1 ≤ lim inf
h→+∞

ˆ

Juh

θ(|u+
h − u−h |) dHn−1

if θ is concave.
Theorem 1.3.3 (Compactness SBV [4, Theorem 4.8]). Let ϕ, θ as in Theorem 1.3.2.
Let (uh) in SBV(Ω) satisfy (1.35) and assume in addition that ‖uh‖∞ is uniformly
bounded in h. Then there exists a subsection (uhk) weakly* converging in BV(Ω) to
u ∈ SBV(Ω).

Let

F : SBVp(Ω,Rd)×A(Ω)→ [0,+∞]

such that the followings hold:

(H1) F(u, ·) is the restriction to A(Ω) of a Radon measure,

(H2) F(u,A) = F(v,A) whenever u = v Ln a.e.on A ∈ A(Ω),

(H3) F(·, A) is L1 l.s.c.,
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1 Representation Theorems

(H4) there exists a constant C such that

1

C

(
ˆ

A
|∇u|p dx+

ˆ

S(u)∩A

(
1 + |u+ − u−|

)
dHn−1

)

≤ F(u,A)

≤ C
(
ˆ

A
|∇u|p dx+

ˆ

S(u)∩A

(
1 + |u+ − u−|

)
dHn−1

)
.

(1.36)

Here, Ω is an open bounded set of Rn. As before, A(Ω) is the class of all open subsets
of Ω and SBVp(Ω) is the space of functions u ∈ SBV(Ω) such that ∇u ∈ Lp(Ω) and
Hn−1

(
Ju
)
< +∞. For every u ∈ SBVp(Ω) and A ∈ A(Ω) define

m(u;A) := inf {F(u;A) : w ∈ SBVp(Ω) such that w = u in a neighbourhood of ∂A}

The role of Theorem 1.2.2, will be played by the following result, whose proof can be
founded in [7].
Theorem 1.3.4. Under hypotheses (H1)-(H4), for every u ∈ SBVp(Ω) and A ∈ A(Ω)
there exists a function W1 and W2 such that W1 is quasi-convex, W2 is BV-elliptic and
such that

F(u,A) :=

ˆ

A
W1(x, u,∇u) dx+

ˆ

A∩Su
W2(x, u+, u−, νu) dHn−1.

Moreover, the functions W1 and W2 can be computed via

W1(x0, u0, ) := lim sup
ε→0+

m
(
u0 + ξ(· − x0), Q(x0, ε)

)

εn

W2(x0, a, b, ν) := lim sup
ε→0+

m
(
ux0,a,b,ν , Qν(x0, ε)

)

εn−1

for all x0 ∈ Ω, u0, a, b ∈ Rd, ξ ∈ Rd, ν ∈ Sn−1 and where

ux0,a,b,ν(x) :=

{
a if (x− x0) · ν > 0,

b if (x− x0) · ν ≤ 0.

As ux0,b,a,ν = ux0,a,b,ν Ln a.e. in Qν(x0, ε) = Q−ν(x0, ε), one has that

W2(x0, b, a,−ν) = W2(x0, a, b, ν),

for every x0 ∈ Ω, a, b ∈ Rd and ν ∈ Rd.
Remark 1.3.5. Condition (1.36), can be softened to

1

C

(
ˆ

A
|∇u|p dx+

ˆ

S(u)∩A

(
|u+ − u−|

)
dHn−1

)

≤ F(u,A)

≤ C
(
ˆ

A
|∇u|p dx+

ˆ

S(u)∩A

(
|u+ − u−|

)
dHn−1

)
.

(1.37)

Indeed, let us suppose that F satisfies only (1.37). By the same theorem(Theorem 1.3.4)
it is possible to represent Fcal(u,A) +H(Su ∩A), thus by removing the subtracted part
it is possible to represent F .
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1.3 SBV Representation Theorem

1.3.3 Hypothesis an Main Theorem

Given Theorem 1.3.2, it is natural to impose the following hypothesis.

Let g(1) a monotone convex functions such that there exists a constant C such that

g(1)(t) ≥ C max(tp − 1, 0)

and g(2) be a monotone concave function such that

g(2)(t) ≥ c > 0 and lim
t↑∞

g(1)(t)

t
= +∞.

The typical example we have in mind is when g(1)(t) := tp and g(2)(t) := 1 + tα, where
0 < α < 1 and p > 1.

Let Tε ↑ ∞ be such that εTε ↓ 0. We denote

gε(x) =

{
g(1)(‖x‖) if ‖x‖ < Tε,
1
εg

(2)(ε‖x‖) if ‖x‖ ≥ Tε.

We will also assume that there exists a constant C such that g(1)(Tε) ≤ C
ε g

(2)(Tεε), and
that for every M > 0 there exists a constant CM such that

gε(M |t|) ≤ CMgε(|t|).

The above

Let (fξ,ε) be a family of local interactions such that for every ξ, ε it holds

fξ,ε(x, t) .
(
gε(|t|) + 1

)
(1.38)

and such that for every 1 ≤ j ≤ d it holds

fei,ε(x, t) &
(
gε(|t|)− 1

)
(1.39)

We will assume also that there exists a constant M < +∞ such that
ˆ

R
|t|d−1 exp (−gε(t)) dt ≤M.

Let us now define the Hamiltonians as

H(u,A, ε) =
∑

ξ∈ZN

∑

x∈Rξε(A)

fξ,ε

(
x,
ϕ(x+ εξ)− ϕ(x)

|ξ|
)

and

H∞(ϕ,A, ε) :=
∑

ξ∈Zd

∑

x∈Aε
fε,ξ(x,∇ξϕ(x)).
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Remark 1.3.6. Let u ∈ SBVp(Ω)∩L∞(Ω). Then like in 1.3, there exists an discretized
ϕu,ε such that

‖u‖SBVp . εd
∑

x∈εZd∩Ω

gε(∇ϕu,ε) . ‖u‖SBVp .

Let us discuss very informally the above hypothesis. The function gε will play the
role of ‖ · ‖p in § 1.2 and the conditions on g(1) and g(2) are in order to ensure the
compactness and lower semicontinuity. Given that a discrete function can be interpolated
by continuous functions, it does not make sense to talk about jump set. However, it
makes sense to consider as a jump set, the set of points where the discrete gradient is
bigger that a certain threshold Tε. Indeed, if we were approximating a function with a
jump, it is expected that the gradient would explode(in a neighbourhood of the jump
set) like δ/ε, where δ is the amplitude of the jump and ε is the discretization parameter.
Thus Tε ↑ ∞. Indeed, suppose that the function we are approximating is δχB, where
δ is a small parameter and B is the unit ball. Then the jump set would be the set of
points where the gradient goes like δ

ε . Thus in order to “catch” jumps of order δ one
needs that the limε↓0 Tεε ≤ δ. Thus limε↓0 Tεε = 0.

As in the previous section, one of the main steps will be to show that F ′∞ = F ′ and that
F ′′∞ = F ′′. The basic intuition behind, is again a version of the interpolation lemma. As
before, we will show that if one imposes “closeness” v in Lp(A) to some regular function
u, then one can impose also the boundary condition by “paying a very small price in
energy”. More precisely, given a sequence {vn} such that vn → u in Lp(A), where A is
an open set, then there exists a sequence {ṽn} such that ṽn → u, such that ṽn|∂Ω = u|∂Ω

and

lim inf
n
‖ṽn‖SBVp(A) ≤ lim inf

n
‖vn‖SBVp(A).

Remark 1.3.7. Let f : [0,+∞) → [0,+∞) be a monotone function. Then, it is
immediate to have

f
( 1

N

N∑

i=1

ti) ≤
∑

i

f(ti),

where ti > 0.

Similarly as in § 1.2, for every A ∈ A(Ω), we define the free-energy as

F (u,A, κ, ε) := −εd log

ˆ

V(u,A,κ)
exp

(
−H(ϕ,A, ε)

)
dϕ

F∞(u,A, κ, ε) := −εd log

ˆ

V∞(u,A,κ)
exp

(
−H∞(ϕ,A, ε)

)
dϕ

where

V(u,A, κ) =

{
ϕ : Aε → Rm| εd

|A|d
∑

x∈Aε
|u− εϕ|p ≤ κp

}

V∞(u,A, κ) =

{
ϕ : εZd → Rm| εd

|A|d
∑

x∈Aε
|u− εϕ|p ≤ κp, and ϕ(x) = ϕu,ε(x) ∀x 6∈ Aε

}
,
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1.3 SBV Representation Theorem

where ϕu,ε is defined in (1.3).

Similarly as in § 1.2, let us introduce the following notations:

F ′(u,A, κ) := lim inf
ε↓0

F (u,A, κ, ε)

F ′′(u,A, κ) := lim sup
ε↓0

F (u,A, κ, ε)

F ′(u,A) := lim
κ↓0

lim inf
ε↓0

F (u,A, κ, ε) = lim
κ↓0

F ′(u,A, κ)

F ′′(u,A) := lim
κ↓0

lim sup
ε↓0

F (u,A, κ, ε) = lim
κ↓0

F ′′(u,A, κ)

F ′∞(u,A, κ) := lim inf
ε↓0

F∞(u,A, κ, ε)

F ′′∞(u,A, κ) := lim sup
ε↓0

F∞(u,A, κ, ε)

F ′∞(u,A) := lim
κ↓0

lim inf
ε↓0

F∞(u,A, κ, ε) = lim
κ↓0

F ′∞(u,A, κ)

F ′′∞(u,A) := lim
κ↓0

lim sup
ε↓0

F∞(u,A, κ, ε) = lim
κ↓0

F ′′∞(u,A, κ)

We are now able to write the main result of this section.
Theorem 1.3.8. Assume the previous hypothesis and that u ∈ SBVp ∩ L∞. Then
for every infinitesimal sequence (εn) there exists a subsequence εnk and functions W1 :
Ω× Rd×m → R and W2 : Ω× Rm × Sd−1 → R such that

F (u,A) := F ′nk(u,A) = F ′′nk(u,A) =

ˆ

A
W1(x,∇u) dx+

ˆ

Su

W2(x, u+(x)− u−(x), νu(x)),

where the function W1 is a quasiconvex function and W2 is a BV-elliptic function and
depend on the chosen subsequence {εnk}.

1.3.4 Proofs

The next technical lemma is a version of Lemma 1.2.6, that asserts that finite difference
quotients along any direction can be controlled by finite difference quotients along the
coordinate directions.
Lemma 1.3.9. Let A ⊂ A(Ω) and set Aε =

{
x ∈ A : dist(x,A) > 2

√
Nε
}

. Then there

exists a dimensional constant C := C(N) such that for any ξ ∈ ZN there holds

∑

x∈Reiε (Aε)

gε
(
∇ξu(x)

)
≤ C|ξ|

N∑

i=1

∑

x∈Reiε (A)

gε(∇eiu(x)).

Proof. As in the proof of Lemma 1.2.6, let ξ ∈ Zd. By decomposing it into coordinates,
it is not difficult to notice that it can be written as

ξ =

Nξ∑

k=1

αk(ξ)eik ,

27
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where Nξ ≤ δ|ξ| and αk(ξ) ∈ {−1, 1}. Denote by

ξk =

Nξ∑

j=1

αk(ξ),

hence |ξk| ≤ |ξ| for all k. Thus

∇ξu(x) =
1

|ξ|

Nξ∑

k=1

∇αk(ξ)eiu(x+ εξk)

Moreover, by the monotonicity of gε, we have

gε

( 1

Nξ

Nξ∑

k=1

∇αk(ξ)eiu(x+ εξk)
)
≤

Nξ∑

k=1

gε

(
∇αk(ξ)eiu(x+ εξk)

)

Finally by summing over all ξ, exchanging the sums and using the equivalence of the
norms i.e., |ξ| ≤ Nξ ≤ d|ξ| one has the desired result.

As in the previous section, let Gλ be the free-energy (see (1.6) for the definition) induced
by the Hamiltonian

H̃λ(ϕ,A, ε) := λ

d∑

i=1

∑

x∈Reiε (A)

gε(|∇iϕ|).

In a very similar fashion as in Lemma 1.2.8, one can prove
Lemma 1.3.10. There exists constants Cλ, Dλ, such that it holds

Cλ ≤ Gλ(0, A, κ, ε) ≤ Dλ

The next proof is the analog of Lemma 1.2.9.
Lemma 1.3.11. Let {fξ,ε} satisfy the usual hypothesis. Then there exists a constant
D > 0 and ε0 > 0 such that for every κ < 1 it holds

exp
(
−ε−dF (u,A, κ, ε)

)
≤ exp


Dε−d +D

∑

ξ∈Reiξ (A)

d∑

i=1

gε(∇eiϕu,ε)


 , (1.40)

where ϕu,ε is defined in (1.3).

Proof. Given that gε(|a|) . gε(|a − b|) + gε(|b|) one has that there exist constants C1

such that

H(ϕ,A, κ, ε) ≥ C1

d∑

i=1

∑

x∈Reiε (A)

gε(|∇eiϕ(x)|)

≥ C1

d∑

i=1

∑

x∈Reiε (A)

gε(|∇ψ|)− C1

d∑

i=1

∑

x∈Reiε (A)

gε(|∇eiϕu,ε(x)|)
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where ψ = ϕ − ϕu,ε. Hence the estimate (1.40) reduces to prove that there exists a
constant D such that

ˆ

{‖εϕ‖≤κ}
exp


−C

d∑

i=1

∑

x∈Reiε (A)

gε(|∇eiϕ|)


 ≤ exp

(
Dε−d

)
.

The above inequality was proved in Lemma 1.3.10.

As in Remark 1.2.10, we have the following:
Remark 1.3.12. Let u ∈ L∞ ∩ SBVp, then along the lines of Lemma 1.3.11 one can
easily prove that there exists a constant C such that

A 7→ F ′(u,A) + C(|u|SBVp(A) + 1) A 7→ F ′′(u,A) + C(|u|SBVp(A) + 1)

are monotone with respect to the inclusion relation.
Lemma 1.3.13. Let fξ,ε satisfy our hypothesis and let A be an open set. Then there
exists a constant D > 0 such that

exp
(
−ε−dF (u,A, κ, ε)

)
≥ exp


−Dε−d −

d∑

i=1

∑

x∈Reiε

gε
(
|∇eiϕu,ε(x)|

)



where ϕu,ε is defined in (1.3).

Proof. Using Lemma 1.3.9, one has that there exists a constant C such that

H(ϕ,A, κ, ε) ≤ C
d∑

i=1

∑

x∈Reiε (A)

gε(|∇eiϕ|)

Given that gε(a+ b) ≤ gε(2a) + gε(2b) . gε(a) + gε(b), there exist a constant C1 such
that

H(ϕ,A, ε) ≤ C1

d∑

i=1

∑

x∈Reiε (A)

(gε(|∇eiϕε,u|) + 1) + 2d
∑

x∈Aε
gε(|ψ(x)|),

where ψ = ϕ − ϕu,ε. Hence, the estimate (1.40) reduces to prove that there exists a
constant D such that

ˆ

V(0,A,κ,ε)
exp

(
−C

∑

x∈Aε
gε(|ψ(x)|)

)
≥ (εκ)−d exp

(
Dε−d

)
.

The above inequality was proved in Lemma 1.2.8.
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Lemma 1.3.14 (exponential tightness). Let A be an open set and K ≥ 0. Denote by

MK :=
{
ϕ : H(ϕ,A, ε) ≥ Kε−d|A|

}
.

Then there exists a constant D,K0, ε0 such that for every K ≥ K0, ε ≤ ε0 it holds

ˆ

MK∩V(u,A,κ)
exp

(
−H(ϕ,A, ε)

)
≤ exp

(
− 1

2
Kε−d +Dε−d −D

d∑

i−1

∑

x∈Reiε (A)

gε(|∇eiϕu|)
)

Proof. For every ϕ ∈MK it holds

H(ϕ,A, ε) ≥ K/2ε−d +H(ϕ,A, ε).

Hence, by using Lemma 1.3.13 we have the desired result.

The proof of the following lemma is similar to Lemma 1.2.13.
Lemma 1.3.15 (regularity). Let fξ satisfy the usual hypothesis then

sup
A′bA

F ′′(u,A′) = F ′′(u,A).

Proof. Let us fix A′ b A and N ∈ N (to be chosen later). Let δ = dist(A′, AC), and let
0 < t1, . . . , tN ≤ δ such that ti+1 − ti > δ

2N . Without loss of generality, we may assume
that there exists no x ∈ Aε such that dist(x,AC) = ti. For every i we define

Ai :=
{
x ∈ Aε : dist(x,AC) ≥ ti

}

and

Sξ,εi := {x ∈ (Ai)ε : x+ εξ ∈ A \Ai} .

With the above definitions, it holds

Rξε(A) = Rξε(A
′) +Rξε(A \ Ā′) + Sε,ξi

thus

Hξ(ϕ,A, ε) = Hξ(ϕ,A \ Āi, ε) +Hξ(ϕ,Ai, ε) +
∑

x∈Sξ,εi

fξ,ε(∇ξϕ(x)).

Hence,

H(ϕ,A, ε) = H(ϕ,Ai, ε) +H(ϕ,A \Ai, ε) +
∑

ξ∈Zd

∑

x∈Sξ,εi

Cξ

(
gε
(
|∇ξϕ(x)|

)
+ 1
)

Let us now estimate the last term in the previous inequality.
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We separate the sum into two terms

∑

ξ∈Zd

∑

x∈Sξ,εi

gε(|∇ξϕ(x)|) =
∑

|ξ|≤M

∑

x∈Sξ,εi

gε(|∇ξϕ(x)|) +
∑

|ξ|>M

∑

x∈Sξ,εi

gε(|∇ξϕ(x)|).
(1.41)

Let M ∈ N. From the condition (1.38) and by taking M sufficiently large, we may also
assume without loss of generality that

∑

|ξ|≥M
|ξ|Cξ ≤ δ1.

Hence, by using Lemma 1.3.9 we have that

∑

|ξ|≥M

∑

x∈Sξ,εi

gε(|∇ξϕ(x)|) ≤ Cδ1

d∑

k=1

∑

x∈Rekε (A)

gε(|∇ekϕ(x)|) ≤ C̃δ1H(ϕ,A, ε),

where in the last inequality we have used hypothesis (1.39).

Let |ξ| < M . If εMN ≤ 2δ, then for every

Sξ,εi ∩ S
ξ,ε
j = ∅ whenever |i− j| ≥ 2.

Without loss of generality, we may assume the above condition as ε→ 0.

Given that

1

N − 2

N−2∑

i=1

∑

|ξ|<M

∑

x∈Sε,ξi

gε(|∇ϕ(x)|) ≤ 2CH(ϕ,A, ε)

there exist 0 < i ≤ N − 2 such that

∑

|ξ|<M

∑

x∈Sξ,εi

gε(|∇ξϕ|) <
2

N − 2
H(ϕ,A, ε). (1.42)

Let us denote by Ni the set of all ϕ ∈ V(u,A, κ, ε) such that (1.42) holds for the first
time, namely for every j ≤ i

∑

|ξ|<M

∑

x∈Sξ,εi

gε(|∇ξϕ|) ≥
2

N − 2
H(ϕ,A, ε). (1.43)

On one side, we have that

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, κ, ε)) ≤

N∑

i=1

ˆ

Ni
exp

(
−H(ϕ,Ai, ε)−H(ϕ,A \ Āi, ε)

)
,

on the other side one has that

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, κ, ε)) ≥

N∑

i=1

ˆ

NKi
exp (−H(ϕ,A, ε)) ,
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1 Representation Theorems

where NK
i := Ni \MK . By using (1.43), one has that for every ϕ ∈ NK

i it holds

H(ϕ,A, ε) +H(ϕ,A \ Āi, ε) ≤ H(ϕ,A, ε) ≤ H(ϕ,Ai) +H(ϕ,A \ Āi) +
K

N − 2

and for every ϕ it holds

H(ϕ,A, ε) ≥ H(ϕ,A, ε) +H(ϕ,A \ Āi, ε).

Hence,

ˆ

V(u,A,κ,ε)
exp (−H(ϕ,A, ε)) ≥

N∑

i=1

ˆ

NKi
exp

(
−H(ϕ,Ai)−H(ϕ,A \ Āi)−

K

N − 2

)
.

From now on the proof follows as in Lemma 1.2.13.

Lemma 1.3.16. For every open set A and u ∈W 1,p(Rd) it holds

F ′(u,A) = F ′∞(u,A) and F ′(u,A) = F ′∞(u,A).

Proof. As in Lemma 1.2.14, we may assume without loss of generality u = 0.

Let us fix A′ ⊂⊂ A. Let δ = dist(A′, AC), and let N =
[

1
3ε

]
0 < t1, . . . , tN ≤ δ such that

ti+1 − ti > δ
2N .

For every i we define

Ai :=
{
x ∈ Aε : dist(x,AC) ≥ ti

}

and

Sξ,εi := {x ∈ (Ai)ε : x+ εξ ∈ A \Ai} .

With the above definitions, it holds

Rξε(A) = Rξε(A
′) +Rξε(A \ Ā′) + Sε,ξi

thus,

H(ϕ,A, ε) ≤ H(ϕ,Ai, ε) +H(ϕ,A \ Āi, ε) +
∑

ξ∈Zd

∑

x∈Sξ,εi

Cξfξ,ε(x, ϕ(x)/|ξ|)

+
∑

ξ∈Zd
Cξ

∑

x∈Sξ,εi

gε

(∣∣ϕ(x+ εξ)

|ξ|
∣∣
)

+ 1

≤ H∞(ϕ̃, A, ε) +H(ϕ,A \ Āi, κ, ε)
∑

ξ∈Zd
Cξ

∑

x∈Sξ,εi

gε

(∣∣ϕ(x+ εξ)

|ξ|
))

+ 1,

where ϕ̃ is the function which coincides with ϕ in (A1)ε and is equal to 0 outside of
(A1)ε.
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1.3 SBV Representation Theorem

It is not difficult to verify that

Sξ,εi ∩ S
ξ,ε
j = ∅ whenever |i− j| ≥ |ξ|. (1.44)

Fix δ2 > 0. Then for every ξ such that ε|ξ| ≥ δ2 it holds

1

N − 1

N−1∑

i=1

∑

x∈Sε,ξi

(∣∣ϕ(x+ εξ)

|ξ|
∣∣
)
≤ 1

N − 1

N−1∑

i=1

∑

x∈Sξ,εi

gε

(∣∣εϕ(x+ εξ)

δ2

∣∣
)
. (1.45)

Let us divide the last term in (1.41) into two terms

1

N − 1

N∑

i=0

∑

|ξ|>M
Cξ

∑

x∈Sξ,εi

gε

(∣∣ϕ(x+ εξ)− ψ(x+ εξ)

|ξ|
∣∣
)

=
1

N − 1

N∑

i=0

∑

ε|ξ|>δ2
Cξ

∑

x∈Sξ,ε
gε

(∣∣εϕ(x+ εξ)

δ2

∣∣
)

+
1

N − 1

N∑

i=0

∑

ε|ξ|≤δ2
Cξ

∑

x∈Sξ,ε
gε

( |ϕ(x+ εξ)|
|ξ|

)

Because of (1.44)

1

N − 1

N∑

i=0

∑

ε|ξ|>δ2
Cξ

∑

x∈Sξ,ε
gε

(∣∣εϕ(x+ εξ)

δ2

∣∣
)
≤ C C

N − 1

∑

ξ∈Zd
|ξ|Cξκpε−d/|A′|

where in the last inequality we have used Lemma 1.3.9 and the fact that ϕ ∈ V(0, A, κ, ε).

For the second term

1

N − 1

N∑

i=0

∑

ε|ξ|≤δ2
Cξ

∑

x∈Sξ,ε
gε

( |ϕ(x+ εξ)|
|ξ|

)
≤
∑

ξ∈Zd
Cξ

∑

x∈Rξε(A)

gε(|ϕ|) ≤
∑

ξ∈Zd
Cξ

∑

x∈Rξε(A)

gε(|∇ϕ̃|)

where in the first inequality we have used (1.44) and in the second inequality we have
used the fact that the extension ϕ̃ has null boundary conditions.

Hence, there exists there exist 0 < i ≤ N − 2 such that

∑

|ξ|

∑

x∈Sξ,εi

gε(|∇ξϕ|) <
2

N − 2
H(ϕ̃, A, ε)

After this step the proof continues in the same fashion as the proof of Lemma 1.3.15

Lemma 1.3.17 (subadditivity). Let A′, A,B′, B ⊂ Ω be open sets such that A′ b A and
such that B′ b B. Then for every u ∈W 1,p one has that

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,A)

Proof. The proof of this statement is very similar to Lemma 1.3.15 and Lemma 1.3.16
.
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Lemma 1.3.18 (locality). Let u, v ∈ SBVp(Ω) such that u ≡ v in A. Then

F ′(u,A) = F ′(u, v) and F ′′(u,A) = F ′′(u, v)

Proof. The statement follows from the definitions.

Proof of Theorem 1.3.8. Let us suppose initially that there exists a sequence for which
F (·, ·) = F ′(·, ·) = F ′′(·, ·). Then to conclude it is enough to notice that F satisfies the
conditions of Theorem 1.3.4, which are proved in the previous Lemmas.

Corollary 1.3.19. Because of Lemma 1.3.16, the same statement holds true for F∞.
This in particular implies that for the sequence {εnk} in Theorem 1.3.8 there holds a
large deviation principle with rate functional

I(v) =

ˆ

Ω
W1(x,∇v) dx

ˆ

Ju
W2(x, u+(x)−u−(x)) dHd−1(x)− min

v̄∈W 1,p
0 (Ω)+u

ˆ

Ω
W (∇v̄(x))dx.

(1.46)
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2 Finite Range Decomposition

2.1 Introduction

Recently, there has been some interest in the finite range decompositions of gradient
Gaussian fields on Zd. In particular, in [1], S. Adams, R. Kotecký and S. Müller construct
a finite range decomposition for a family of translation invariant gradient Gaussian fields
on Zd (d ≥ 2) which depends real-analytically on the quadratic from that defines the
Gaussian field: they consider a large torus TdN := (Z/LNZ)d and obtain a finite range
decomposition with estimates that do not depend on N .

More precisely, they show that the discrete Greens function CA : TdN × TdN → Rm of the
(elliptic translation invariant) difference operator A = ∇∗A∇ can be written as a sum
CA =

∑
k CA,k of positive kernels CA,k which are supported in cubes of size ∼ Lk with

natural estimates for their discrete derivatives ∇αCA,k as well as for their derivatives
with respect to A. The above results are obtained by via a careful analysis of the Fourier
multipliers and combinatorics.

We extend their result in the following way: We consider non-translation invariant
Gaussian gradient fields and show a similar result. Namely, we show that the discrete
Green’s function CA(x, y) : TdN×TdN → Rm of the elliptic difference operator A = ∇*A∇,
where A = A(x) is a general elliptic operator (for detailed hypothesis see Section 2.3 ) can
be written as the sum CA =

∑
k CA,k of positive kernels CA,k which are supported in cubes

of size ∼ Lk with natural estimates for their discrete derivatives ∇αCA,k as well as for
their derivatives with respect to A. Due to the general non-translation invariant setting
the techniques used in [1], seem not to apply. In order to overcome these difficulties,
we will use results from the well-known Lp-theory, which are extended to the discrete
setting, and then approach the problem. Although this might not come as a surprise to
the experts in regularity theory, we could not find in the literature suitable results. As
a byproduct we are also able to prove the equivalent results in the continuous setting
which are to our knowledge not known.

2.2 Preliminary Results

In this section we are going to describe briefly the results in [1].

Let L ≥ 3 be a fixed odd integer and consider for any integer N the space

VN = {ϕ : Zd → Rm; ϕ(x+ z) = ϕ(x) for all z ∈ (LNZ)d} =
(
Rm
)TdN
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2 Finite Range Decomposition

of functions on the torus TdN :=
(
Z/LNZ

)d
equipped with with the scalar product

〈ϕ,ψ〉 =
∑

x∈TdN

〈ϕ(x), ψ(x)〉Rm .

Notice that, a function on TdN can be identified with an LN -periodic function on Zd. In
the last section, it will denote the corresponding space of Cm-valued function, equipped
with the usual hermitian product.

Define

ρ(x, y) := inf{|x− y + z| : z ∈ (LNZ)d}

and

ρ∞(x, y) := inf{|x− y + z|∞ : z ∈ (LNZ)d}.

Then, the torus can be represented by the lattice cube TdN = {x ∈ Zd : |x|∞ ≤ 1
2(LN−1)}

of side LN , equipped with the metric ρ or ρ∞.

Gradient Gaussian fields are naturally defined on

XN := {ϕ ∈ VN :
∑

x∈TN
ϕ(x) = 0}. (2.1)

For any set M ⊂ ΛN , we define its closure by

M = {x ∈ ΛN : dist∞(x,M) ≤ 1}, (2.2)

where

dist∞(x,M) := min{ρ∞(x, y) : y ∈M}.

The forward and backward derivatives are defined as

(∇ϕ)rj(x) := ϕr(x+ ej)− ϕr(x),

(∇∗ϕ)rj(x) := ϕr(x− ej)− ϕr(x), r = 1, . . . ,m; j = 1, . . . , d.
(2.3)

Let A : Rm×d → Rm×d be a linear map that is symmetric with respect to the standard
scalar product (·, ·)Rm×d on Rm×d and positive definite, that is, there exists a constant
c0 > 0 such that

(AF,F )Rm×d ≥ c0‖F‖2Rm×d for all F ∈ Rm×d,

with ‖F‖Rm×d = (F, F )
1/2

Rm×d . The corresponding Dirichlet form defines a scalar product
on XN ,

(ϕ,ψ)+ := E(ϕ,ψ) =
∑

x∈TdN

〈A(∇ϕ(x)),∇ψ(x)〉Rm×d , where ϕ,ψ ∈ XN . (2.4)
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2.2 Preliminary Results

Skipping the index N , consider the tripletH− =H =H+ of (finite-dimensional) Hilbert
spaces obtained by equipping the space XN with the norms ‖ · ‖−, ‖ · ‖2, and ‖ · ‖+,

respectively. Here, ‖ · ‖2 denotes the `2-norm ‖ϕ‖2 = 〈ϕ,ϕ〉1/2, ‖ϕ‖+ = (ϕ,ϕ)
1/2
+ , and

‖ · ‖− is the dual norm
‖ϕ‖− = sup

ψ:‖ψ‖+≤1
〈ψ,ϕ〉. (2.5)

One easily checks that ‖ · ‖− is again induced in a unique way by a scalar product (·, ·)−.
The linear map A defines an isometry

A : H+ →H−, ϕ 7→ A ϕ = ∇∗(A∇ϕ).

Indeed, it follows from the Lax-Milgram theorem that for each f ∈H−, the equation

(ϕ, v)+ = 〈f, v〉 for all v ∈H+ (2.6)

has a unique solution ϕ ∈H+. Hence A is a bijection from H+ to H−. Moreover,

‖A ϕ‖− = sup{〈A ϕ, v〉 : ‖v‖+ ≤ 1} = sup{(ϕ, v)+ : ‖v‖+ ≤ 1} = ‖ϕ‖+. (2.7)

Hence, the map A is an isometry from H+ to H−. In view of the symmetry of A , it
follows that

(ϕ,ψ)− = (A −1ϕ,A −1ψ)+ = 〈A −1ϕ,A A −1ψ〉 = 〈A −1ϕ,ψ〉. (2.8)

Consider now the inverse CA = A −1 of the operator A (or the Green function) and the
corresponding bilinear form on XN defined by

GA(ϕ,ψ) = 〈CAϕ,ψ〉 = (ϕ,ψ)−, ϕ, ψ ∈ XN . (2.9)

One writes CA ∈MN , using MN (in analogy with XN ) to denote the space of all
matrix-valued maps on TN with zero mean.

Given that the operator A and its inverse commutes with translations on TN , there
exists a unique kernel CA such that

(CAϕ)(x) =
∑

y∈TN
CA(x− y)ϕ(y). (2.10)

It is easy to see that the function GA,y(·) = CA(· − y) is the unique solution of the
equation

AGA,y =
(
δy −

1

LNd
)
Idm, (2.11)

where Idm is the unit m×m matrix. Notice that for any a ∈ Rm one has:

(AGA,y) =
(
δy −

1

LNd
)
∈ XN .

In [1], among other things, the following result is proved:
Theorem 2.2.1. Let d ≥ 2 and let α be a multiindex. There exist constants Cα(d) and
η(α, d) with the following properties. For each integer N ≥ 1, each k = 1, . . . , N + 1 and
each odd integer L ≥ 16 there exist real-analytic maps A 7→ CA,k from U to MN such
that the following three assertions hold.
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(i) If CA,k denotes the translation invariant operator on induced by CA,k then

CA =
N+1∑

k=1

CA,k. (2.12)

(ii) There exist constant m×m matrices CA,k such that

CA,k(x) = CA,k if ρ∞(x, 0) ≥ 1

2
Lk. (2.13)

(iii) If (A0F, F )Rm×d ≥ c0‖F‖2Rm×d for all F ∈ Rm×d and c0 > 0 then

sup
‖Ȧ‖≤1

∥∥∥
(
∇αDj

ACA0,k(x)(Ȧ, . . . , Ȧ)
∥∥∥ ≤ Cα(d)

(
2

c0

)j
j!L−(k−1)(d−2+|α|)Lη(α,d).

for all x ∈ TdN and all j ≥ 0. Here ∇α =
∏d
i=1∇αii , we use ‖Ȧ‖ to denote the

operator norm of a linear mapping Ȧ : Rm×d → Rm×d, and the j-th derivative with
respect to A in the direction Ȧ is taken at A0.

2.3 Notation and Hypothesis

Let Ā : Td → Lsym(Rm×d) be a C3 function, where Lsym(Rm×d) is the space of linear
maps on Rm×d such that A = A∗ and the associated operator is elliptic, namely there
exists a constant c1, c0 > 0 such that

c1|P |2 ≥ Āα,βi,j P iαP
j
β ≥ c0|P |2 ∀P ∈ Rm×d (2.14)

and there exists an ε0 > 0 (small enough) such that

∑

|γ|≤3

sup
Td
|DγĀα,βi,j | ≤ ε0, (2.15)

where γ is a multi-index.

For every N > 1, we define the function AN : TdN → Lsym(Rm×d) in the following natural
way:

AN (x) = Ā(x/LN ). (2.16)

The condition (2.15), can be expressed in terms of AN as

sup
|γ|≤3

sup
TdN

LN |γ||∇γ(AN )α,βi,j | ≤ ε0. (2.17)

On the other hand, if there exists a AN such that (2.17) holds, then by some elementary
interpolation one can construct a Ā such that (2.16) holds.

Given that we will mainly work for N fixed, if it is clear from the context we will drop
the N -subscript.
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We denote by E ⊂
{
q : TdN → Lsym(Rm×d)

}
such that there exist constants c0, c1 ≥ 0

such that for every x ∈ T dN and F ∈Msym(Rm×d), it holds

c0〈F, F 〉 ≤ 〈q(x)F, F 〉 ≤ c1〈F, F 〉.

The space E , is not a vector space. It will be endowed with the distance induced by the
norm norm

‖q‖E = sup
x∈Td,|β|≤3

‖L|β|N∇βq(x)‖Msym(Rm×d),

where β is a multiindex.

Similarly as before, we introduce the following notations:

XN := {ϕ ∈ VN :
∑

x∈TN
ϕ(x) = 0}, (2.18)

and
A : H+ →H−, ϕ 7→ A ϕ := ∇∗(A∇ϕ).

As in § 2.1, let CA : TdN × TdN → Rm×d such that

A CA,y =
(
δy −

1

LNd
)
.

We will extend Theorem 2.2.1 in the following way:
Theorem 2.3.1. Let d ≥ 3, AN be defined as above. Then there exists ε0 > 0 such that
for every ε < ε0 the operator CA : H− → H+, where ‖A‖E ≤ ε, admits a finite range
decomposition, i.e., there exist positive-definite operators

CA,k : H− →H+, (CA,kϕ)(x) =
∑

y∈TdN

CA,k(x, y)ϕ(y), k = 1, . . . , N + 1, (2.19)

such that

CA =
N+1∑

k=1

CA,k,

and for associated kernel CA,k ∈MN , there exists a constant matrix CA,k such that

CA,k(x, y) = CA,k whenever ρ∞(x, y) ≥ 1

2
Lk for k = 1, . . . , N.

Moreover, if (A0F, F )Rm×d ≥ c0‖F‖2Rm×d for all F ∈ Rm×d and c0 > 0 and if ‖A‖E ≤ 1/2
then

sup
‖Ȧ‖≤1

∥∥∥
(
∇αyDj

ACA0,k(x, y)(Ȧ, . . . , Ȧ)
∥∥∥ ≤ Cα(d)

(
2

c0

)j
j!L−(k−1)(d−2+|α|)Lη(α,d).
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2 Finite Range Decomposition

2.4 Outline

Before going to the discrete setting, we would like to briefly expose the basic idea in the
continuous case.

In what follows, we will use the symbol . to indicate an inequality is valid up to universal
constants depending eventually on the dimensions d,m.

For the sake of simplicity, we take A = A(x) be elliptic with A smooth.

Let B be a ball, ΠB : W 1,2(Rn)→ W 1,2
0 (B) be the projection operator. Moreover, we

define PB := Id−ΠB.

The construction technique is due to Brydges et al. (see [11, 8]) and consists in considering
the operators

TBf :=
1

|B|

ˆ

Td
Πx+Bf dx and RB := Id−TB.

Let r1, . . . , rk > 0 and Br1 , . . . , Brk be the balls of radius rk centered in 0. Whenever it
is clear from the context, we will denote by Rk := RBk .

The operators Ck that appear in the Theorem 2.2.1 and Theorem 2.3.1, will be of the
form

Ck := (R1 . . .Rk−1)C (R′k−1 . . .R
′
1)− (R1 . . .Rk−1Rk)C (R′kR

′
k−1 . . .R

′
1), k = 1, . . . , N,

for a particular choice of {rk}.
Then the proof of the finite range property will follow by abstract reasoning (see § 2.5).

In [15], among other things the authors show:

Theorem 2.4.1. Let Ω be a regular domain and Aα,βi,j ∈ Ck,α(Ω̄) for some α ∈ (0, 1)
such that

Aα,βi,j P
i
αP

j
β > c|P |2, for some c > 0 and every P ∈ Rd×m.

Then there exists a matrix Gy such that

−Dα(Aα,βi,j Dβ(Gy)
j
k) = δi,kδj in Ω

in the sense of distributions and

Gy = 0 on ∂Ω.

Moreover, it holds

|DνG(x, ·)| ≤ C|x− y|2−d−|ν|,

where ν is a multi-index such that |ν| ≤ k.

To simplify the notation we will write ∇*(A∇u) instead of Dα(Ai,jα,βDβu
j).

The above theorem is proven by using the following well-known Lp-estimates.
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2.4 Outline

Lemma 2.4.2. Suppose the same hypothesis as in Theorem 2.4.1 and let p ∈ (1,∞),
q ∈ (1, n).

(i) If f ∈ Lp(Ω,Rm×d), F ∈ Lq(Ω,Rm), then the system

−Dα(Aα,βi,j Dβu
j) = Dαf

α
j + F i in Ω,

with boundary condition

u = 0 on ∂Ω,

has a weak solution in W 1,s(Ω;Rm), where

s = min(p, q∗), q∗ =
nq

n− q ,

and

‖u‖W 1,s ≤ C(‖f‖Lp + ‖F‖Lq).

(ii) If f ∈ Lp,∞, F ∈ Lq,∞ then there exists a weak solution that satisfies

‖u‖Ls∗,∞ + ‖Du‖Ls,∞ ≤ C(‖f‖Lp,∞ + ‖Du‖Lq,∞). (2.20)

Lemma 2.4.3. Suppose the same hypothesis as in Theorem 2.4.1. Let B2r be a ball of
radius 2r centered in 0, p > d and let u be a solution to

∇*(A∇u) = 0 in B2r.

Then

sup
Br

|u| ≤ r−n/qM + r1−n/p‖f‖B2r ,

where

M = ‖Du‖Lq,∞(B2r) + ‖u‖Lq∗,∞(B2r)
.

Proposition 2.4.4. Let B1, . . . , Bk be balls with radii r1, · · · , rk respectively. Then,
there exists a dimensional constant Cd, such that

sup |∇ju| ≤ Ckd max
(
|x− y|, dist(y,BC

1 ), . . . ,dist(y,BC
k )
)2−d+j

,

where u = (PB1 · · ·PBkC(x, ·)) and C(x, y) is the Green’s function and j < d− 2.

Proof. Let us sketch the proof of the above fact. In the discrete case it will be done in
more detail.

The proof will follow by induction.

Let B1 be a ball in generic position of size r1. Given that ∇*(A∇Cx(y)) = 0, if x 6∈ B1

then ΠB1C(x, y) = 0, thus PB1C(x, y) = C(x, y), hence the inequality follows from
Theorem 2.4.1.
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2 Finite Range Decomposition

Let ε := dist(y,BC
1 ) < r1. If |x − y| > ε/2, then by estimating the different terms

ΠB1C(x, y) and C(x, y) separately one has the desired result. Indeed, C(x, y) . |x−y|2−d.
Then by using an appropriate version of Lemma 2.4.3 one has that

|ΠB1C(x, y)| . |x− y|2−dM,

where

M = ‖DΠB1Cx‖Ld/d−2,∞(B1) + ‖ΠB1Cx‖Ld/d−1,∞(B1).

Then by using Lemma 2.4.2 one has that

‖DΠB1Cx‖Ld/(d−2),∞ + ‖ΠB1Cx‖Ld/(d−1),∞ . ‖DCx‖Ld/(d−2),∞ + ‖Cx‖Ld/(d−1),∞ < C̃d,

where C̃d is a constant depending only on the dimension d.

The inductive step is done in a very similar way and the higher derivative estimates
follow similarly.

Let B1, . . . , Bk be k balls centered in 0, with radii r1, . . . , rk respectively and let C(·, ·)
be the Green’s function. We will denote by Ck(x, ·) := Rk · · ·R1C(x, ·).
Let us now give a simple calculation that will be useful in Theorem 2.4.6.
Lemma 2.4.5. Let j > 1 be an integer. Then

1

rd

ˆ r

0
max(α, |r − ρ|)−jρd−1dρ . α1−j

r
.

Indeed, let us denote by I the right hand side of the previous equation. With a change of
variables one has

I =
1

rd

ˆ r−α

0
|r − ρ|−jρd−1dρ+

ˆ r

r−α
α−jρd−1 dρ

=
1

rj

ˆ 1−α
r

0
|1− t|−jtd−1 dt+

ˆ 1

1−α
r

α−jtd−1 dt

=
1

rj

ˆ 1−α
r

0
|1− t|−j dt+

ˆ 1

1−α
r

α−j dt ≤ r−j
(
α1−j

r1−j − 1

)
+
α1−j

r

≤ 2α1−j

r
.

If j = 1, then

I =
1

rd

ˆ r−α

0
|r − ρ|−1ρd−1dρ+

ˆ r

r−α
α−1ρd−1 dρ

=
1

r1

ˆ 1−α
r

0
|1− t|−1td−1 dt+

ˆ 1

1−α
r

α−1td−1 dt

=
1

r1

ˆ 1−α
r

0
|1− t|−1 dt+

ˆ 1

1−α
r

α−1 dt ≤ 1

r

(∣∣ log
(α
r

)∣∣+ 1
)
.
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2.4 Outline

Theorem 2.4.6. Let Ck, Bi, ri as above and such that r1 < · · · < rh < |x−y| < rh+1 <
· · · < rk. Then,

(i) if k − h < d− 2, then it holds

|Ck(x, y)| . 1

rh+1 · · · rk
|x− y|2−d+k−h

k∏

i=h+1

(∣∣∣ log

( |x− y|
ri

) ∣∣∣+ 1

)

|∇jyCk(x, y)| . 1

rh+1 · · · rk
|x− y|2−d+k−j−h,

(ii) if k − h ≥ d− 2, it holds

|Ck(x, y)| . 1

rk−d+3 · · · rk
|log(|x− y|)|

|∇jyCk(x, y)| . 1

rk−d+2−j · · · rk

k∏

i=h+1+j

(∣∣∣ log

( |x− y|
ri

) ∣∣∣+ 1

)
.

Proof. We will prove only (i). The proof of (ii) is very similar.

Let us initially consider the case k = 1. For simplicity we denote Πz := ΠB1+z. With
simple computations, one has

sup |C1(x, y)| ≤ 1

|B|

ˆ

B1+y
sup |(Id−Πz)C(x, ·)|+ sup

∣∣∣∣∣
1

|B|

ˆ

(y+B1)C
ΠzC(x, ·) dz

∣∣∣∣∣ .

(2.21)

Because of the fact that for every t ∈ B1 + z the function ΠzCx is harmonic and has null
boundary condition, one has that the second term in the right hand side of (2.21) is
null. Hence it is enough to prove a bound only on the first term. Given that for every
z ∈ y +B it holds dist(y, z +B1) = r1 − |z − y|. Then, by using Proposition 2.4.4, one
has that

sup |(Id−Πz)C(x, ·)| ≤
{

(r1 − |z − y|)2−d if r1 − |y − z| ≥ |x− y|
|x− y|2−d otherwise.

,

Thus,

sup |C1(x, y)| .
ˆ r1−|y−x|

0
|r1 − ρ|2−dρd−1 dρ+

ˆ r1

r1−|x−y|
|x− y|2−dρd−1 dρ

. |x− y|
3−d

r1
− r2−d

1 +
|x− y|3−d

r1
. |x− y|

3−d

r1
.

(2.22)

Let us now turn to the general case k < d − 2, and let B1, . . . , Bk be balls of radii
r1, . . . , rk centered at the origin. From Proposition 2.4.4, we have that

sup |Pz1+B1 · · ·Pzk+BkC(x, ·)| ≤ max {|x− y|, r1 − |z1 − y|, . . . , rk − |zk − y|}2−d

≤ max {|x− y|}2−d+k ·max {|x− y|, rk − |zk − y|}−1 · · ·max {|x− y|, rk − |zk − y|}−1

=: g(z1, . . . , zk).
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2 Finite Range Decomposition

Thus,

supR1 · · ·RkC(x, ·) ≤
ˆ

B1×···×Bk
g(z1, . . . , zk) dz1 · · · dzk.

From Lemma 2.4.5 we have that
ˆ

B1×···×Bk
g(z1, . . . , zk) dz1 · · · dzk ≤

1

r1 · · · rk
|x− y|2−d+k

∏

i

(| log(|x− y|)|+ log(ri) + 1),

which proves the desired result.

Corollary 2.4.7. Suppose that |x − y| > 1 and let B1, . . . , Bk and such that ri = Li

with L > 1. Then there exists η(j, d) such that

∇jCk(x, y) . Lη(j,d)

Lk(d−2−j) .

Indeed, given that R′k = A RkC one has that

R1 · · ·RkC R′k · · ·R′1 = R1 · · ·Rk ·Rk · · ·R1C

hence by using Theorem 2.4.6, one has the desired result.

2.5 Construction of the finite range decomposition

In this section, we will briefly describe the construction of the finite range decomposition.
Let us stress that main idea in the construction of the finite decomposition goes back to
Brydges et al. (e.g., [11, 8]). Moreover, in this section we will follow closely and adapt
the arguments given in [1].

Let Q be a cube of size l and let us denote for simplicity Πx := ΠQ+x. We define

T (ϕ) :=
1

ld

∑

x∈TdN

Πxϕ, (2.23)

for every ϕ ∈ H+. The following result is the key estimate for construction the finite
range decomposition.
Lemma 2.5.1 ([1, Lemma 3.1]). For any ϕ ∈H+ we have

(i) A (Pxϕ) = const. in Q+ x,

(ii) Pxϕ = ϕ in TN \ (Q+ x),

(iii) Πxϕ = ϕ1lQ+x if ϕ = 0 on (Q+ x) \ (Q+ x).

Proof. (i): For all ψ ∈H+(Q+x), we have that (Pxϕ,ψ)+ = 0 and hence 〈A (Pxϕ), ψ〉 =
0. Taking ψ = δv − δz and for any pair of points v, z ∈ Q + x, we get A (Pxϕ)(v) =
A (Pxϕ)(z). This proves (i).
(ii): This follows from the fact that Πxϕ belongs to H+(Q + x) and hence vanishes
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2.5 Construction of the finite range decomposition

outside Q+ x.
(iii): It suffices to consider the case x = 0 and we write Π for Π0. Let ϕ̃ = ϕ1Q. Then
ϕ̃ ∈H+(Q) and hence Πϕ̃ = ϕ̃. Moreover ϕ− ϕ̃ vanishes in Q. Thus ∇(ϕ− ϕ̃) vanishes
in Q−. Hence (ϕ−ϕ̃, ψ)+ = 0 for all ψ ∈H+(Q) since ∇ψ is supported in Q−. Therefore
Π(ϕ− ϕ̃) = 0 which yields the assertion.

Lemma 2.5.2 ([1, Lemma 3.3]).

(i) ΠxΠy = 0 whenever (Q− + x) ∩ (Q− + y) = ∅,

(ii) Πxϕ = 0 whenever sptϕ ∩ (Q+ x) = ∅.

Proof. (i): For any ϕ,ψ ∈H+, the functions Πxϕ and Πyψ vanish on TN \ (Q+ x) and
TN \ (Q+ y), respectively. Hence, ∇Πxψ and ∇Πyϕ vanish on TN \ (Q− + x) and on
TN \ (Q− + y), respectively. Assuming now that Q− + x and Q− + y are disjoint and
taking into account (2.4) we get

(ψ,ΠxΠyϕ)+ = (Πxψ,Πyϕ)+ =
∑

z∈TN
〈A(∇Πxψ)(z), (∇Πyϕ)(z)〉Rm×d = 0. (2.24)

(ii): For ψ ∈H+(Q+ x) we have A ψ = 0 in TN \ (Q+ x). Thus for any ϕ ∈H+ with
sptϕ ∩ (Q + x) = ∅ we get (ϕ,ψ)+ = 〈ϕ,A ψ〉 = 0. Thus by the definition of Πx, we
have that Πxϕ = 0.

Next, consider the symmetric operator

T =
1

ld

∑

x∈TN
Πx (2.25)

on H+.
Lemma 2.5.3 ([1, Lemma 3.4]). For any ϕ ∈H+ we have

(i) 0 ≤ (Πxϕ,ϕ)+ ≤ 〈1Q−+xA∇ϕ,∇ϕ〉,
(ii) 0 ≤ (T ϕ,ϕ)+ ≤ (ϕ,ϕ)+ and the inequalities are strict if ϕ 6= 0,

(iii) (T ϕ,T ϕ)+ ≤ (T ϕ,ϕ)+ .

Proof. (i): We have (Πxϕ,ϕ)+ = (ϕ,Πxϕ)+ = (Πxϕ,Πxϕ)+ ≥ 0. For the other
inequality we use that ∇Πxϕ is supported in Q− + x. Thus

(Πxϕ,ϕ)+ = 〈A∇Πxϕ,∇ϕ〉 = 〈A∇Πxϕ, 1Q−+x∇ϕ〉. (2.26)

Since A is symmetric and positive definite the expression (F,G)A := 〈AF,G〉 is a scalar
product on functions Zd → Rm×d. Thus the Cauchy-Schwarz inequality yields

〈A∇Πxϕ, 1Q−+x∇ϕ〉 ≤ 〈A∇Πxϕ,∇Πxϕ〉1/2〈A1Q−+x∇ϕ, 1Q−+x∇ϕ〉1/2

= (Πxϕ,Πxϕ)
1/2
+ 〈1Q−+xA∇ϕ,∇ϕ〉1/2. (2.27)

Together with (2.26) this yields the assertion since (Πxϕ,ϕ)+ = (Πxϕ,Πxϕ)+.

(ii): Since
∑

x∈TN 1Q−+x(y) = ld for all y ∈ TN the inequalities follow by summing (i)
over x ∈ TN . If (T ϕ,ϕ)+ = 0 then (Πxϕ,ϕ)+ = 0 for all x ∈ TN and thus Πxϕ = 0 and
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2 Finite Range Decomposition

Pxϕ = ϕ. Lemma 2.5.1 implies that there exist constants cx such that (A ϕ)(y) = cx
for all y ∈ Q+ x. Since l ≥ 3 the cubes Q+ x and Q+ (x+ ei) overlap and this yields
cx = cx+ei for all i = 1, . . . , d. Thus cx is independent of x. Since A ϕ ∈ XN this implies
c = 0. Hence A ϕ = 0 and therefore ϕ = 0.
Now suppose that (T ϕ,ϕ)+ = (ϕ,ϕ)+. This implies that for all x ∈ TN we have
(Πxϕ,ϕ)+ = 〈1Q−+xA∇ϕ,∇ϕ〉. We claim that the last identity implies that ∇ϕ(x) = 0.
Indeed, if 1Q−+x∇ϕ = 0 we are done. Otherwise the identity can only hold if the
inequality in (2.27) is an identity. In particular we must have ∇Πxϕ = λ1Q−+x∇ϕ and
λ = 1. Now Πxϕ vanishes outside Q+ x and in particular at the points x and x + ei.
Thus ∇Πxϕ(x) = 0 and hence ∇ϕ(x) = 0. It follows that ϕ is constant on TN and hence
ϕ = 0 since ϕ has mean zero.

(iii): It follows from (ii) that (ϕ,ψ)∗ := (T ϕ,ψ)+ defines a scalar product on H+. Thus
the Cauchy Schwarz inequality and (ii) yield

(T ϕ,ψ)+ ≤ (T ϕ,ϕ)
1/2
+ (T ψ,ψ)

1/2
+ ≤ (T ϕ,ϕ)

1/2
+ (ψ,ψ)

1/2
+ . (2.28)

Taking ψ = T ϕ we obtain the desired estimate.

Consider the operator T ′ : H− →H− dual with respect to T and defined by

〈T ′ϕ,ψ〉 = 〈ϕ,T ψ〉, ϕ ∈H−, ψ ∈H+. (2.29)

Notice that

T ′ = A T A −1, (T ′ϕ,ψ)− = (ϕ,T ′ψ)−, and (T ′ϕ,ϕ)− = (T A −1ϕ,A −1ϕ)+.
(2.30)

Indeed, for any ϕ ∈H+, we have

〈T ′A ϕ,ψ〉 = 〈A ϕ,T ψ〉 = (ϕ,T ψ)+ = (T ϕ,ψ)+ = 〈A T ϕ,ψ〉, (2.31)

and this yields the first identity in (2.30). Now

(T ′ϕ,ψ)− = 〈A −1A T A −1ϕ,ψ〉 = 〈T A −1ϕ,A A −1ψ〉 = (T A −1ϕ,A −1ψ)+.
(2.32)

Since the last expression is symmetric in ϕ and ψ we get the second identity in (2.30)
and taking ψ = ϕ we obtain the third identity. Similarly, we have Π ′x = AΠxA −1 for
the dual of Πx. Notice that

Π ′xϕ = 0 whenever sptϕ ∩ (Q+ x) = ∅. (2.33)

Indeed, considering any test function ψ ∈ XN , we have 〈Π ′xϕ,ψ〉 = 〈ϕ,Πxψ〉 = 0. We
also consider the operator

R := Id−T and its dual R′ = Id−T ′. (2.34)

hence because of (2.30)

R′ = ARA −1 (2.35)

It follows from Lemma 2.5.3(ii) and (2.30) that

(T ′ϕ,ϕ)− > 0, (R′ϕ,ϕ)− > 0, (T ′ϕ,T ′ϕ)− ≤ (T ′ϕ,ϕ)− for all ϕ ∈H− \ {0}.
(2.36)
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2.5 Construction of the finite range decomposition

Lemma 2.5.4. Let B be a bilinear form on XN . Then the following assertions hold.

(i) There exists a unique linear operator B : XN → XN such that

〈Bϕ,ψ〉 = B(ϕ,ψ) for all ϕ,ψ ∈ XN . (2.37)

(ii) There exists a unique matrix-valued kernel B ∈MN such that

(Bϕ)(x) =
∑

y∈TN
B(x, y)ϕ(y) for all x ∈ TN , for all ϕ ∈ XN . (2.38)

Moreover for B̃ : TN → Rm×m we have

(Bϕ)(x) =
∑

y∈TN
B̃(x, y)ϕ(y) for all x ∈ TN for all ϕ ∈ XN . (2.39)

if and only if
B̃ − B = C (2.40)

with a constant m×m matrix C.

(iii) If B′ ∈ XN denotes the kernel of the dual operator B′ then

B′(y, x) = B(x, y). (2.41)

Proof. The proof is a simple modification of the arguments in [1, Lemma 3.5].

For two sets M1,M2 ⊂ TN we define

dist∞(M1,M2) := min{ρ∞(x, y) : x ∈M1, y ∈M2}. (2.42)

Lemma 2.5.5. Let B be a bilinear form on XN and let B and B ∈MN be the associated
operator and the associated kernel, respectively. Let n be an integer and suppose that
LN > 2n+ 3. Then the following three statements are equivalent.

(i) B(ϕ,ψ) = 0 whenever dist∞(sptϕ, sptψ) > n.

(ii) There exists an m× d matrix C such that B(x, y) = C whenever ρ∞(x, 0) > n.

(iii) spt Bϕ ⊂ sptϕ+ {−n, . . . , n}d for all ϕ ∈ XN .

Proof. The proof follows by modifying the proof of [1, Lemma 3.6].

For the convenience of the user we sketch it.

The implication (ii) =⇒ (iii) is easy. Set B̃(x, y) = B(x, y) − C. Then B̃(z) = 0 if
ρ∞(z) > n with ρ∞(z) = ρ∞(z, 0) and by Lemma 2.5.4(ii) we have

(Bϕ)(x) =
∑

y∈TN
B̃(x, y)ϕ(y). (2.43)

If x 6∈ sptϕ + {−n, . . . , n}d then either y 6∈ sptϕ or y ∈ sptϕ and ρ∞(x, y, 0) > n. In
either case Bϕ(x) = 0.

The implication (iii) =⇒ (i) is also easy. Suppose that dist∞(sptϕ, sptψ) > n. Then
(iii) implies that dist∞(spt Bϕ, sptψ) > 0, i.e.,, Bϕ and ψ have disjoint support. Thus
B(ϕ,ψ) = 〈Bϕ,ψ〉 = 0.

The implication (i) =⇒ (ii) follows in a similar way by using Lemma 2.5.5
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2 Finite Range Decomposition

Lemma 2.5.6. Suppose that dist∞(sptϕ, sptψ) > l − 1. Then

〈T ϕ,ψ〉 = 0, 〈T ′ϕ,ψ〉 = 0, 〈Rϕ,ψ〉 = 0, 〈R′ϕ,ψ〉 = 0. (2.44)

Proof. The proof follows by modifying the proof of [1, Lemma 3.7]. For the convenience
of the user we sketch it.

It suffices to prove the first identity. The second follows by exchanging ϕ and ψ and the
third and fourth follow since R = Id−T and R′ = Id−T ′. By Lemma 2.5.2 we have

Πxϕ = 0 if sptϕ ∩ (Q+ x) = ∅ (2.45)

and it follows from the definition of Πx that sptΠxϕ ⊂ Q + x. Assume 〈T ϕ,ψ〉 6= 0.
Then there exist x ∈ TN such that 〈Πxϕ,ψ〉 6= 0. Thus sptψ ∩ (Q + x) 6= ∅ and
sptϕ ∩ (Q + x) 6= ∅. Therefore there exist ξ ∈ Q and ζ ∈ Q such that x + ξ ∈ sptϕ,
x+ ζ ∈ sptψ. Thus

x+ ξ − (x+ ζ) = ξ − ζ ∈ {−(l − 1), . . . , l − 1}d . (2.46)

Hence dist∞(sptϕ, sptψ) ≤ l − 1.

Consider now the inverse C = A −1.

The main step toward the decomposition, is to subtract a positive definite operator from
C in such a way that the remnant is positive definite and of finite range. We define

C1 := C −RC R′, which yields C1 = C −R ∗ C ∗ R′. (2.47)

Proposition 2.5.7 ([1, Proposition 3.8]). Both C1 and RC R′ are positive definite and
C1 has finite range, i.e.,

〈C1ϕ,ψ〉 = 0 if dist∞(sptϕ, sptψ) > 2l − 3. (2.48)

In particular, there exists an m×m matrix C such that

C1(z) = C if ρ∞(z, 0) > 2l − 3. (2.49)

Proof. For any ϕ,ψ ∈ XN by using (2.9), one obtains

〈RC R′ϕ,ϕ〉 = (R′ϕ,R′ϕ)− ≥ 0. (2.50)

If R′ϕ = 0, then (2.36) implies that ϕ = 0. Thus RC R′ is positive definite. Furthermore,

〈C1ϕ,ψ〉 = 〈Cϕ,ψ〉 − 〈C R′ϕ,R′ψ〉 = (ϕ,ψ)− − (R′ϕ,R′ψ)−
= (T ′ϕ,ψ)− + (ϕ,T ′ψ)− − (T ′ϕ,T ′ψ)−.

(2.51)

Thus (2.36) implies that C1 is positive definite.

To evaluate the range of the quadratic form 〈C1ϕ,ψ〉, we inspect the terms on the right
hand side of (2.51). For the first (and similarly the second) term, we have

(T ′ϕ,ψ)− =
1

ld

∑

x∈TN
(Π ′xϕ,ψ)− =

1

ld

∑

x∈TN
(Π ′xϕ,Π

′
xψ)−. (2.52)
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2.5 Construction of the finite range decomposition

In view of (2.33), a term in the sum vanishes at x except when the supports of ϕ and
ψ both intersect Q + x. Therefore, the scalar product is zero whenever the distance
of the supports is strictly greater than l − 1. The second term of the bilinear form
G1(ϕ,ψ) := 〈C1ϕ,ψ〉 is the double sum

(T ′ϕ,T ′ψ)− =
1

ld

∑

y∈TN

1

ld

∑

x∈TN
(Π ′yϕ,Π

′
xψ)−. (2.53)

By Lemma 2.5.2 we have Π ′xΠ
′
y = AΠxΠyA −1 = 0 whenever (Q− + x)∩ (Q− + y) = ∅,

i.e., if ρ∞(x, y) > l − 1. Hence the double sum only contains a non-zero contribution if
there exist x and y such that ρ∞(x, y) ≤ l− 1, sptϕ∩Q+x 6= ∅, and sptψ∩Q+ y 6= ∅.
Hence there must exist ξ, ζ ∈ Q such that x+ ξ ∈ sptϕ and y + ζ ∈ sptψ. Hence

dist∞(sptϕ, sptψ) ≤ ρ∞(x+ξ−(y+ζ), 0) ≤ ρ∞(x−y, 0)+ρ∞(ξ−ζ, 0) ≤ l−1+l−2 ≤ 2l−3.
(2.54)

This proves (2.48), and (2.49) follows from Lemma 2.5.5.

We construct a finite range decomposition by an iterated application of Proposition 2.5.7.
Let L ≥ 16 and consider

Qj = {1, . . . , lj − 1}d with lj = b1
8L

jc+ 1 for j = 1, . . . , N. (2.55)

Here bac denotes the integer part of a, i.e., the largest integer not greater than a. In
particular we have

1
8L

j < lj ≤ 1
8L

j + 1. (2.56)

We define Tj ,T ′j , and R′j as before with Q replaced by Qj and set

Ck := (R1 . . .Rk−1)C (R′k−1 . . .R
′
1)− (R1 . . .Rk−1Rk)C (R′kR

′
k−1 . . .R

′
1), k = 1, . . . , N,

(2.57)
and

CN+1 := (R1 . . .RN−1 . . .RN )C (R′NR′N−1 . . .R
′
1). (2.58)

With these definitions, we show that the sequence {Ck}k=1,...,N+1 yields a finite range
decomposition.
Proposition 2.5.8 ([1, Proposition 3.9]). Suppose that L ≥ 16. Then the operators Ck
satisfy

(i) C =
∑N+1

k=1 Ck.

(ii) Ck is positive definite for k = 1, . . . , N + 1.

(iii) For k = 1, . . . , N the range of Ck is bounded by 1
2L

k, i.e.,

〈Ckϕ,ψ〉 = 0 if dist∞(sptϕ, sptψ) > 1
2L

k (2.59)

and there exist m×m matrices Ck such that

Ck(z) = Ck if ρ∞(z, 0) > 1
2L

k. (2.60)
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2 Finite Range Decomposition

Proof. Assertion (i) follows directly from the definition. To prove (ii), set

ϕk := R′k−1 . . .R
′
1ϕ, ψk := R′k−1 . . .R

′
1ψ, k = 1, . . . , N + 1. (2.61)

Inductive application of (2.36) shows that ϕk = 0 implies ϕ = 0. Now, directly
from definitions, 〈CN+1ϕ,ϕ〉 = (ϕN+1, ϕN+1)−. Thus CN+1 is positive definite. For
k = 1, . . . , N we have

〈Ckϕ,ϕ〉 = 〈(C −RkC R′k)ϕk, ϕk〉. (2.62)

Hence by Proposition 2.5.7 we get 〈Ckϕ,ϕ〉 ≥ 0 with equality only holding if ϕk = 0,
which implies ϕ = 0. Thus Ck is positive definite.

(iii): In view of the equation 〈Ckϕ,ψ〉 = 〈(C −RkC R′k)ϕk, ψk〉, Proposition 2.5.7 implies
that

〈Ckϕ,ψ〉 = 0 if dist∞(sptϕk, sptψk) > 2lk − 3. (2.63)

Iterative application of Lemma 2.5.6 and Lemma 2.5.5 yields

sptϕk ⊂ sptϕ+ {−nk, . . . , nk}d, sptψk ⊂ sptψ+ {−nk, . . . , nk}d, nk =

k−1∑

j=1

(lj − 1).

(2.64)
Thus

〈Ckϕ,ψ〉 = 0 if dist∞(sptϕk, sptψk) > −1 + 2
k∑

j=1

(lj − 1). (2.65)

Now since lj − 1 ≤ 1
8L

j and
∑∞

n=0 L
−n ≤ 2 we get 2

∑k
j=1(lj − 1) ≤ 1

2L
k. This finishes

the proof.

2.6 Discrete gradient estimates and Lp-regularity for
elliptic systems

Let us now introduce some of the norms that will be used in the sequel. LetQ = [0, n]d∩Zd,
be a generic cube. For p > 0 denote

‖f‖p,Q =
( 1

|Q|
∑

x∈Qn
|f(x)|p

)1/p
, (2.66)

where |Q| := #Q.

To simplify notation, we will write
∑

Q f :=
∑

i∈Q f(i) and fQ := |Q|−1
∑

Q f .

Additionally, let us define

f#(x) := sup
Q3x

1

|Q|
∑

Q

∣∣f − fQ
∣∣dx and ‖f‖BMO := sup

x∈TdN
|f#(x)|. (2.67)

The Maximal Operator is defined by

Mf(x) := sup
Q3x

1

|Q|
∑

Q

|f |dx (2.68)
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2.6 Discrete gradient estimates and Lp-regularity for elliptic systems

Moreover, let

‖f‖p,∞ = inf

{
α :

1

λ
| {f > λ} |1/p ≤ α, for all λ > 0

}

and

‖f‖p,∞,Q = |Q|−1/p inf

{
α :

1

λ
| {f > λ} ∩Q|1/p ≤ α, for all λ > 0

}
.

We now state a version of Sobolev inequality (see [21, 2]).
Proposition 2.6.1. For every p ≥ 1 and m,M ∈ N there exists a constant C =
C(p,M,m) such that:

(i) If 1 ≤ p ≤ d, 1
p∗ = 1

p − 1
d , and q ≤ p∗, q <∞, then

n
− d
q ‖f‖q ≤ Cn−

d
2 ‖f‖2 + Cn

1− d
p ‖∇f‖p. (2.69)

(ii) If p > d, then

∣∣f(x)− f(y)
∣∣ ≤ Cn1− d

p ‖∇f‖p for all x, y ∈ Qn. (2.70)

(iii) If m ∈ N, 1 ≤ p ≤ d
m , 1

pm
= 1

p − m
d , and q ≤ pm, q <∞, then

n
− d
q ‖f‖q ≤ Cn−

d
2

M−1∑

k=0

‖(n∇)kf‖2 + Cn
− d
p ‖(n∇)Mf‖p. (2.71)

(iv) If M = bd+2
2 c, the integer value of d+2

2 , then

max
x∈Qn

|f(x)| ≤ Cn− d2
M∑

k=0

‖(n∇)kf‖2. (2.72)

Lemma 2.6.2 (Caccioppoli inequality). Let v be such that ∇*(A∇v) = 0 for every
x ∈ QM then

∑

Qm

|∇v(x)|2 ≤ c4
0

(M −m)2

∑

QM

|v − λ|2,

where c0 is the constant defined in (2.14).

Proof. Let 0 ≤ η ≤ 1 be a that |∇η| ≤ 1
M−m and such that η ≡ 1 on Qm and η = 0 on

TdN \ Q̄M . Then
∑

QM

(A∇u · ∇u)η2 =
∑

QM

A∇u · ∇(η2(u− λ))−
∑

QM

A∇u · 2η((u− λ)⊗Dη)

By hypothesis, the first term in the right hand side vanishes. Using the previous formula
and the ellipticity, one has that

∑

QM

|∇u|2η2 ≤ c0

∑

QM

A∇u · 2η((u− λ)⊗Dη) ≤ 1

2

∑

QM

|∇u|2η2 +
c4

0

2

∑

QM

|Dη|2|u− λ|2,

(2.73)
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2 Finite Range Decomposition

from which one has that

∑

Qm

|∇u|2 ≤
∑

QM

|∇u|2η2 ≤ c4
0

(M −m)2

∑

QM

|u− λ|2.

Lemma 2.6.3 (Decay estimates). Let v be such that ∇*(A∇v) = 0 on QM , with
M,M/2 ∈ N and 2m ≤M . Then,

∑

Qm

|u(x)|2 . (m/M)d
∑

QM

|u(x)|2,
∑

Qm

|u− (u)m|2 . (m/M)d+2|
∑

QM

u− (u)M |2.
(2.74)

Proof. From the Caccioppoli’s inequality, one has that

∑

QM/2

|M∇u(x)|2 .
∑

QM

|u(x)|2.

Noticing that if u is a solution then also ∇u is a solution, we have that

∑

QM

‖(M∇)ju‖ .
∑

QM

|u(x)|2,

hence

M−d
k∑

j=0

∑

QM/2

‖(M/2∇)ju‖ .M−d
∑

QM

‖u‖2.

Finally applying the Sobolev, inequality we have that

∑

Qm

‖u‖2 ≤ md max
QM/2

‖u‖2 ≤ (
m

M
)d
∑

QM

‖u‖2. (2.75)

Let us now prove the second inequality. Using the Poincaré inequality and than (2.75),
we have that

∑

QM

|u− (u)m|2 ≤ m2
∑

Qm

|∇u|2 . m2

(
2m

M

)d ∑

QM/2

|∇u|2

.
(m
M

)d+2∑

QM

|u− (u)M |2,

where in the last step we have used the Caccioppoli inequality.
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2.6 Discrete gradient estimates and Lp-regularity for elliptic systems

Lemma 2.6.4. Let p1, p2, q1, q2 ∈ [1,∞], p1 6= p2, q1 6= q2. Let θ ∈ (0, 1) and define p, q
by

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

(2.76)

Suppose that T is a linear operator such that


 1

|Q|
∑

Q

|Tf |qi



1
qi

≤ Ci


 1

|Q|
∑

Q

|f |pi



1
pi

Then

‖Tf‖q,∞,Q ≤ C3‖f‖p,∞,Q,

where C3 depends on θ, C1, C2.

Proof. The proof of this result is well-known (see e.g., [13, Theorem 3.3.1]). For com-
pleteness, we report an adapted elementary proof from [15, Lemma 1]. Let p1 < p2,
q1 < q2 and p is as in (2.76). Assume that ‖Tf‖qi ≤ Ci‖f‖pi with i = 1, 2. Let γ > 0
define

f1 =

{
f if |f | > γ

0 if |f | ≤ γ
(2.77)

and

f2 =

{
0 if |f | > γ

f if |f | ≤ γ.
(2.78)

Given that

1

|Q|
∑

Q

|f1|p1 ≤ p1

p− p1
γp1−p‖f‖pp,∞,Q

we have that

∣∣∣
{
|Tf1| >

α

2

} ∣∣∣ ≤ Aq11

( 2

α

)q1‖f1‖q1p1

≤ Aq11

( 2

α

)q1( p1

p− p1

)q1/p1

γq1−pq1/p1‖f‖pq1/p1

p,∞,Q

= B1α
−q1γq1−pq1/p1

and similarly

∣∣∣
{
|Tf2| ≥

α

2

} ∣∣∣ ≤ B2α
−q2γq2−pq2/p2 . (2.79)

Now

‖Tf‖qq,∞ = sup
α
αq| {|Tf | > α} |
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2 Finite Range Decomposition

and now using the triangular inequality, we have

αq| {|Tf | > α/2} | ≤ αq| {|Tf1| > α/2} |+ αq| {|Tf2| > α/2} |
≤ B1α

−q1γq1−pq1/p1 +B2α
−q2γq2−pq2/p2 .

One can archive the desired result by choosing γ = αβ where β =
( q
q1
− q

q2

)( p
p1
− p

p2

)−1
.

Theorem 2.6.5 (Marcinkiewicz interpolation theorem). Let 0 < p0, p1, q0, q1 ≤ ∞ and
0 < θ < 1 be such that q0 6= q1, and pi ≤ qi for i = 0, 1. Let T be a sublinear operator
which is of weak type (p0, q0) and of weak type (p1, q1). Then T is of strong type (pθ, qθ).

Proof. The proof is well-known.

Remark 2.6.6. Let K : TdN × TdN → Rd×m be such that |K(x, y)| ≤ |x − y|2−d. Then
has that

‖K(x, ·)‖
L

n
n−2 ,∞ ≤ 1, and ‖K(x, ·)‖

L
n
n−2 ,Q,∞ ≤ 1.

Indeed, fix t > 0 then

| {y : |K(x, y)| > t} | ≤ |
{
y : |x− y|2−d > t

}
| = |

{
y : |x− y| < t−(2−d)

}
| ≤ t− d

d−2 .

Let us recall the celebrated Hardy-Littlewood maximal theorem:
Theorem 2.6.7. Let f : TdN → Rm. Then

|Mf |p ≤ |f |p

Theorem 2.6.8 (Fefferman-Stein). Let Q be a cube and let f : Q → Rm such that∑
Q f = 0. Then there exists constants C1, C2 such that

‖Mf‖p,Q ≤ C1‖f#‖p,Q and ‖f#‖p,Q ≤ C2‖Mf‖p,Q. (2.80)

Proof. The proof follows from the classical Fefferman&Stein result after one does a
piecewise linear interpolation of the function f : Q→ Rm.

Corollary 2.6.9. Let T be an linear operator such that for every f : Q→ Rm. Then for
every q > p, there exists a constant C := C(p) such that for every f : Q→ Rm it holds

∑

x∈Q
|Tf#(x)|p ≤

∑

x∈Q
|f(x)|p.

Proof. The map f 7→ (Tf)# is a sublinear and a bounded map from L∞(X )→ L∞(X )
which is of weak type (p, p) and of weak type (∞,∞). Then for every q ≥ p, it holds that
f 7→ (Tf)# is bounded. This implies that f 7→M(Tf) is bounded because Theorem 2.6.8
and hence f 7→ Tf is bounded.

In the next lemma A = A0 is a constant positive definite operator.

Let us now recall a classical result. We also provide a proof for completeness.
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2.6 Discrete gradient estimates and Lp-regularity for elliptic systems

Lemma 2.6.10 ([18, Lemma V.3.1] ). Assume that φ(ρ) is a non-negative, real-valued,
bounded function defined on an interval [r,R] ⊂ R+. Assume further that for all
r ≤ ρ < σ ≤ R we have

φ(ρ) ≤
[
A1(σ − ρ)−α1 +A2(σ − ρ)−α2 +A3

]
+ ϑφ(σ)

for some non-negative constants A1, A2, A3, non-negative exponents α1 ≥ α2, and a
parameter ϑ ∈ [0, 1). Then we have

φ(r) ≤ c(α1, ϑ)
[
A1(R− r)−α1 +A2(R− r)−α2 +A3

]
.

Proof. We proceed by iteration and start by defining a sequence (ρi)i∈N0 via

ρi := r + (1− λi)(R− r)

for some λ ∈ (0, 1). This sequence is increasing, converging to R, and the difference of
two subsequent members is given by

ρi − ρi−1 = (1− λ)λi−1(R− r) .

Applying the assumption inductively with ρ = ρi, σ = ρi−1 and taking into account
α1 > α2, we obtain

φ(r) ≤ A1(1− λ)−α1(R− r)−α1 +A2(1− λ)−α2(R− r)−α2 +A3 + ϑφ(ρ1)

≤ ϑkφ(ρk) + (1− λ)−α1

k−1∑

i=0

ϑiλ−iα1
[
A1(R− r)−α1 +A2(R− r)−α2 +A3

]

for every k ∈ N. If we now choose λ in dependency of ϑ and α1 such that ϑλ−α1 < 1,
then the series on the right-hand side converges. Therefore, passing to the limit k →∞,
we arrive at the conclusion with constant c(α1, ϑ) = (1− λ)−α1(1− ϑλ−α1)−1.

Lemma 2.6.11. Let u be a solution to
{
A0u = ∇* f, in QM ,

u = 0 in TdN \ Q̄M .
(2.81)

The map f 7→ ∇u is a continuous map from L∞ → BMO

Proof. Let m ≤ [M/2] and let u1 be such that

{
∇*(A∇u1) = ∇* f in QM

u1 = 0 in TdN \ Q̄M

and u0 = u− u1. Notice that ∇*(A∇u0) = 0 in QM . We have

∑

QM

|∇u1|2 .
∑

QM

A∇u1 · ∇u1 ≤
∑

QM

f∇u1 ≤ |f |∞Md/2


∑

QM

|∇u1|2



1/2
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from which we have that
∑

QM

|∇u1|2 ≤Md|f |2∞

Given that from Lemma 2.6.3 we have that

∑

Qm

|∇u0 − (∇u0)m|2 .
(m
M

)d+2∑

QM

|∇u0 − (∇u0)M |2

it follows that

∑

Qm

|∇u− (∇u)m|2 ≤
(m
M

)d+2∑

QM

|∇u− (∇u)M |2 +
∑

Qm

|∇u1|2 ≤
(m
M

)d+2
+Md|f |2∞

Finally using Lemma 2.6.10 we have the desired result.

From now on A = A(x), namely depends on the space.

The next lemma is an adaption of [15, Lemma 2] to the discrete case. The original proof
is based on an argument in [20]. We will rather use an argument based on Theorem 2.6.8.

In the continuous case, the analog version of the next lemma can be found in [15,
Lemma 2].
Lemma 2.6.12 (Global estimate). Let p ∈ (1,∞) q ∈ (1, n)

(i) If f : TdN → Rmd, g : TdN → Rm and let u be the solution of

{
−∇*(A∇u) = ∇* f + g in QM

u = 0 in TdN \ Q̄M

Then if

s = min(p, q∗), q∗ =
dq

d− q

we have


∑

QM

|∇u|s



1/s

.


∑

QM

|f |p



1/p

+


∑

QM

|Mg|q



1/q

(ii) and
‖u‖s∗,∞ + ‖∇u‖s,∞ ≤ C (‖f‖p,∞,QM + |g|q,∞,QM )

Proof. Let x0 be the center of the cube QM . For simplicity of notation we will denote
by A0 := A(x0). With simple algebraic manipulations we have

∇*(A0∇u) = ∇*(f + (A0 −A)∇u)
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Let η such that η ≡ 0 in TdN \ Q̄M . Then we have

∇*(A0∇(uη)) = ∇* ((A0 −A)∇(uη)) +G+∇* F

where G = gη + fDη +A(x)∇uDη and F = fη +A(x)uDη.

Let w be defined as
{
∇*(∇w) = −G in QM

w = 0 in TdN \ Q̄M

Hence, from the constant coeficient case one has that


∑

QM

‖M∇w‖r∗



1/r∗

.


∑

QM

‖G‖r



1
r

Denoting with F̃ = F +∇w we have that

∇*(A0∇(uη)) = ∇* (A−A0)∇v) +∇* F̃ in QM .

We will now make a fixed point argument. Fix V and consider the linear operator
T : V 7→ v where v is the solution of

∇*(A0∇v) = ∇* (A−A0)∇V ) +∇* F̃

The operator T is continuous, namely

∑

x∈QM
|∇T (V1 − V2)|s ≤ c sup

x∈QM
|A(x)−A(x0)|s

∑

x∈QM
|∇V1(x)−∇V2(x)|s + c

∑

x∈Q
|F̃ |s

If

sup
x∈QM

|A(x)−A0| ≤
1

2
A(x0) (2.82)

one can apply the fixed point theorem and deduce that the solution coincides with uη,
and that


∑

QM

|(M∇)u|s



1/s

≤ C


∑

QM

|F̃ |s



1/s

.

Finally the condition (2.82) is ensured by (2.17).

For the continuous version of the following lemma see [15, Lemma 4]
Lemma 2.6.13. Let q ∈ (1, d) p > d. Let

T = ‖∇u‖Lq,∞(Q2M ) + ‖u‖Lq∗,∞(Q2M ). (2.83)
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Suppose that u satisfies

−∇*(A∇u) = ∇* f in Q2M (2.84)

Then there exists m0 := m0(p, q) such that if M > m0 then

sup
Qm

|u| .M
− d
q T +M

1− d
p ‖f‖Lp , (2.85)

where m =
[
M/d

]

Proof. Let δ ∈ N such that δ ≤M . Set κ = bMδ c and let ϕ be such that ϕ ≡ 1 in QM ,
ϕ ≡ 0 in TdN \ Q̄M+δ, and such that |∇ϕ| ≤ 1

δ . Then for every p1 > 0 one has that


 1

|QM |
∑

QM

|∇u|p1




1
p1

≤
( |QM+δ|
|QM |

)1/p1


 1

|QM+δ|
∑

QM+δ

|∇(ϕu)|p1




1
p1

With simple calculations one has that

∇*(A∇(ϕu)) =
∑

i,j

∇∗j (ϕ(x)Ai,j(x)∇iu+Ai,j(x)∇iϕ⊗ u(x+ ej))

=
∑

j

∇∗j (ϕfj) +
∑

i,j

Ai,j(x) (∇ju(x)− fj(x))∇iϕ(x) +
∑

i,j

∇∗j (Ai,j∇iϕ⊗ u(x+ ei))

(2.86)

Denote by

f̃j := ϕfj +
∑

i

Ai,j∇iϕ(x)⊗ u(x+ ei)

g :=
∑

i,j

Ai,j(∇ju− fj)∇iϕ(x)

Equation (2.86) can be rewritten as

∇*(A(ϕu)) = ∇* f̃ + g̃

Let s = min(p, t∗). One has that


 1

(M + δ)d

∑

QM+δ

‖f̃‖s



1/s

≤


 1

(M + δ)d

∑

QM+δ

|ϕf |p



1/p

+
∑

i,j


 1

(M + δ)d

∑

QM+δ

Ai,j |∇iϕ|t
∗ |u|t∗




1/t∗

.


 1

(M + δ)d

∑

QM+δ

|ϕf |p



1/p

+


 1

(M + δ)d

∑

QM+δ

|u|t∗



1/t∗
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Using the Sobolev inequality, the last term in the previous equation can be bounded by


 1

(M + δ)d

∑

QMδ

|u|t∗



1
t∗

≤





 1

(M + δ)d

∑

QM+δ

|u|t



1/t

+


 1

(M + δ)

∑

QM+δ

|(M + δ)∇u|t



1/t



In a similar way one has


 1

(M + δ)d

∑

QM+δ

|g|t



1/t

.
(

sup
i,j
|Ai,j |

)1

δ


 1

(M + δ)d

∑

QM+δ

|∇u|t



1/t

+ sup |Ai,j |
1

δ


 1

(M + δ)d

∑

QM+δ

|fj |p


p

Putting together all the previous inequalities and using Lemma 2.6.12, one has that


 1

Md

∑

QM

‖∇u‖s



1
s

.


 1

(M + δ)d

∑

QM+δ

|u|t



1/t

+


 1

(M + δ)

∑

QM+δ

|(M + δ)∇u|t



1/t

+
M + δ

δ


 1

(M + δ)d

∑

QM+δ

|f |p



1
p

.

Applying the previous reasoning κ times, we have that


 1

Md

∑

QM

‖∇u‖tκ



1
tκ

≤ Cκ


 1

(M + kδ)d

∑

QM+kδ

|u|t



1/t

+ Cκ


 1

(M + kδ)

∑

QM+δ

|(M + δ)∇u|t



1/t

+ Cκ


 1

(M + kδ)d

∑

QM+kδ

|f |p



1
p

,

where tκ is given by the recursive equation tj = max(p, t∗j−1) and t1 = t. It can be easily
seen that for every t > 1, it holds that tj ≥ d for some j which depends only on p and q.

Proposition 2.6.14. Let C(x, y) be the Green function,i.e., for every x ∈ TdN one has

∇*(A∇C(x, ·)) = δx

where A satisfies the usual conditions.

Then

|∇αC(x, y)| . |x− y|2−d−|α|.
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2 Finite Range Decomposition

Proof. Let K be the solution of

∇*(∇K) = δx.

It is well-known that the following estimates hold

|(∇αK)(x− y)| . |x− y|2−d−|α|.

From Remark 2.6.6 we have that |(∇αK)(x−y)| d
d+|α|−2

,∞ ≤ Cd,α where Cd,α is a constant

depending only on the dimension d and the multiindex α.

Let us denote with u(y) = C(x, y). Then from the definitions of K and C one has that

∇*(A∇u) = ∇*(∇K(x− ·))

Let |x− y| = R. Without loss of generality we may assume that M > 2m0, where m0 is
the constant in Lemma 2.6.13. Let M = [R2 ] and let QM be a cube such that y ∈ QM
and x 6∈ Q2M . Given that AC(x, ·) = 0 in Q2M , using Lemma 2.6.13 we have that

C(x, y) .M2−dCd ≤ |x− y|2−dCd.

Higher derivative follow in a similar way. For example to estimate ∇iu it is enough to
consider the equation

∇*(A∇∇iu) = ∇*((∇∇iu))−∇*((∇iA)∇u),

and apply the above reasoning, and hence using the global estimate one has that |∇∇u|

Proposition 2.6.15. Let Q1, . . . , Qk be cubes of length l1, · · · , lk respectively such that
y ∈ Qi. Then there exists a dimensional constants Cd,j such that

sup |∇ju| ≤ 2kCd,j max
(
|x− y|, dist(x, T dN \Q1), . . . ,dist(x,TdN \Qk)

)2−d+j
, (2.87)

where u = (PQ1 · · ·PQkC(x, ·)) and C(x, y) is the Green’s function.

Proof. Let Q1 be a cube of size l1 in generic position. Given that ∇*(A∇Cx(y)) = 0, if
x 6∈ Q̄1 then ΠQ1C(x, y) = 0, thus PQ1C(x, y) = C(x, y), hence the inequality follows
from Proposition 2.6.14.

Let ε := dist(y, Q̄C1 ) < l1. If |x − y| > ε/2, then by estimating the different terms
ΠQ1C(x, y) and C(x, y) separately one has the desired result. Indeed, it is immediate
that C(x, y) . |x− y|2−d. On the other side it is not difficult to see that there exits a
cube of size ε touching the boundary such that it does not contain x and such that twice
the cube does not contain x. Then by using Lemma 2.4.3, one has that

|ΠQ1C(x, y)| . |x− y|2−dM,

where

M = ‖DΠQ1Cx‖Ld/d−2,∞(Q1) + ‖ΠQ1Cx‖Ld/d−1,∞(Q1).
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2.6 Discrete gradient estimates and Lp-regularity for elliptic systems

Then by using Lemma 2.6.12 one has that

‖DΠB1Cx‖Ld/(d−2),∞ + ‖ΠB1Cx‖Ld/(d−1),∞ . ‖DCx‖Ld/(d−2),∞ + ‖Cx‖Ld/(d−1),∞

Suppose that |x− y| ≤ ε/2. Then one can find a cube of size bε/2c such that double the
cube is contained in Q1. Finally by using Lemma 2.6.13 we have the desired result.

Let us now prove the inductive step. Let Q1, . . . , Qk be k cubes cetered in 0. If the
maximum in the right hand side of (2.87) is |x− y| or dist(x,Tdn \Q1), then the same
reasoning as above would apply. For simplicity let us suppose that

max
(
|x− y|, dist(x,TdN \ Q̄1), . . . ,dist(x,TdN \ Q̄k)

)
= dist(x,TdN \ Q̄1) =: δ.

From the inductive step we know that

sup |v| . δ2−d sup |∇αv| . δ2−d−|α|,

where v := P2 . . . PkC(x, ·). From the definition we have that u = v − PQ1v, hence
sup |u| = sup |v|+ sup |ΠQ1v|. Thus by using Lemma 2.6.13 and a very similar reasoning
as above we have the desired result.

Let Q1, . . . , Qk be k cubes with radii l1, . . . , lk respectively and let C be the Green’s
function. From now on we fix x and denote with u(y) := (R1 · · ·RkC(x, ·))(y), where for
simplicity we will use Ri = RQi .
The following simple calculation will be repeatedly used in the next theorem.
Remark 2.6.16. Let j > 1 be an integer and Q be a cube of size l. Then

1

|Q|
∑

z∈Q
max(α,dist(z,TdN \ Q̄))−j . α1−j

l (2.88)

and if j = 1 then

1

|Q|
∑

z∈Q
max(α,dist(z,TdN \ Q̄))−j . log(α)

l
. (2.89)

To prove the above calculation, it is enough to view it as a discretization of the Lemma 2.4.5,
hence use a similar process.
Theorem 2.6.17. Let Ck, Qi, ri as above and such that r1 < · · · < rh < |x − y| <
rh + 1 < · · · < rk. Then

(i) if k − h < d− 2

|Ck(x, y)| . 1

rh+1 · · · rk
|x− y|2−d+k−h

k∏

i=h+1

(log (|x− y|) + 1)

|∇jyCk(x, y)| . 1

rh+1 · · · rk
|x− y|2−d+k−j−h

(2.90)
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2 Finite Range Decomposition

(ii) if k − h ≥ d− 2

|Ck(x, y)| . 1

rk−d+3 · · · rk
|log(|x− y|)|

|∇jyCk(x, y)| . 1

rk−d+2−j · · · rk

k∏

i=h+1

(log (|x− y|) + 1)

(2.91)

Proof. We will only prove the first part of (i). The proof of the other parts is similar.

Let us initially consider the case k = 1. For simplicity we denote Πz := ΠQ1+z. With
simple computations one has

sup
y
|u(y)| ≤ 1

|Q|
∑

Q1+y

sup
y
|(Id−Πz)u(y)| (2.92)

Given that for every z ∈ y +Q it holds dist(y, z +Q1) = r1 − |z − y|, it holds

sup |(Id−Πz)u| ≤
{

(r1 − |z − y|)2−d if r1 − |y − z| ≥ |x− y|
|x− y|2−d otherwise

,

The above can be reformulated as sup |(Id−Πz)u| ≤ max(|x−y|, dist(z,TdN \ Q̄)). Hence
using Remark 2.6.16 one immediately has

sup
y
|u1(y)| . |x− y|

3−d

r1
. (2.93)

Let us now turn to the general case k < d− 2. And let Q1, . . . , Qk be balls of radiusis
r1, . . . , rk centered in 0. From Proposition 2.4.4 we have that

sup |Pz1+Q1 · · ·Pzk+QkC(x, ·)| ≤ max {|x− y|, r1 − |z1 − y|, . . . , rk − |zk − y|}2−d

≤ max {|x− y|}2−d+k ·max {|x− y|, rk − |zk − y|}−1 · · ·max {|x− y|, rk − |zk − y|}−1

=: g(z1, . . . , zk).

supR1 · · ·RkC(x, ·) ≤
∑

Q1

· · ·
∑

Qk

g(z1, . . . , zk)

From Remark 2.6.16 we have that

∑

Q1

· · ·
∑

Qk

g(z1, . . . , zk) ≤
1

r1 · · · rk
|x− y|2−d+k

∏

i

(| log(|x− y|)|+ 1)

A direct consequence is the following corrollary:
Corollary 2.6.18. Suppose that |x− y| > 1 and let Q1, . . . , Qk and such that ri = Li

with L > 1. Then there exists η(j, d) such that

|∇jCk(x, y)| . Lη(j,d)

Lk(d−2−j) .
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2.7 Analytic dependence on A

Theorem 2.6.19 (Fixed A). Let

Ck := R1 · · ·RkCR∗k · · ·R∗1 −R1 · · ·Rk+1CR∗k+1 · · ·R∗1. (2.94)

Then

sup
y∈TdN

|∇αC̃k(x, y)| ≤ Lη(d,|α|)L−(k−1)(d−2+|α|)

Proof. We will estimate the two term in right hand side of (2.94) separately. Given that
R∗ = ARA−1, and denoting by Dk = R1 · · ·RkCR∗k · · ·R∗1. one has that

Dk = R1 · · ·RkRk · · ·R1C. (2.95)

Applying Theorem 2.6.17, we obtain that the supremum of Dk is bounded by

d−2∏

j=1

L−k+j
d−2∏

j=1

log(L−k+j) ≤ L−k(d−2)Lη(d).

2.7 Analytic dependence on A

The proof of the analyticity is based on a very elegant argument using complex analysis,
and it is originally found in [1]. In this section, we will make the appropriate modifications.

Let A : TdN → LC(Rm×d), where LC(Rm×d) from Cm×d to Cm×d such that

A = A0 +A1 (2.96)

with A0 and A1 such that for all F,G ∈ Cm×d,

〈A0(x)F,G〉Cm×d = 〈F,A0(x)G〉Cm×d , 〈A0(x)F, F 〉Cm×d ≥ c0|F |2, (2.97)

and
sup
x∈TdN

‖A1(x)‖ ≤ c0

2
. (2.98)

Here, c0 > 0 is a fixed constant and, as before, 〈·, ·〉Cm×d and |·| denote the standard
scalar product and norm on Cm×d and ‖A1‖ is the corresponding operator norm of A1.

As before,
A := ∇∗A∇, (2.99)

hence the sesquilinear form
(ϕ,ψ)A := 〈A∇ϕ,∇ψ〉, (2.100)

where 〈·, ·〉 is the `2-scalar product on XN , defining the adjoint A ∗ by

〈A ϕ,ψ〉 = (ϕ,ψ)A = 〈ϕ,A ∗ψ〉, with A ∗ = ∇∗A∗∇, (2.101)

where A∗ is the adjoint of A. Note that for real, symmetric A the form (·, ·)A is a scalar
product and agrees with (·, ·)+. In the following, we use the previous notation H+ for

the Hilbert space with the scalar product (·, ·)A0 and define ‖ϕ‖A0 := (ϕ,ϕ)
1/2
A0

.

Using <z and z∗ to denote the real part and the complex conjugate of a complex number
z, we summarize the main properties of the sesquilinear form (·, ·)A.
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2 Finite Range Decomposition

Lemma 2.7.1 ([1, Lemma 5.1]). Assume that an operator A satisfies the conditions
(2.96), (2.97), and (2.98).

Then the sesquilinear form (·, ·)A on XN satisfies

<(ϕ,ϕ)A ≥ 1
2‖ϕ‖2A0

, (2.102)

|(ϕ,ψ)A| ≤ 3
2‖ϕ‖A0‖ψ‖A0 , (2.103)

(ψ,ϕ)A = (ϕ,ψ)∗A∗ . (2.104)

Proof. The first claim follows using the definition of the form (·, ·)A and the lower bound

<〈A(x)F, F 〉Cm×d ≥ 〈A0(x)F, F 〉Cm×d −
c0

2
|F |2 ≥ 1

2
〈A0(x)F, F 〉Cm×d (2.105)

implied by (2.97) and (2.98).

Using (2.98), the Cauchy-Schwarz inequality for the scalar product 〈A0F,G〉Cm×d , and
the bound from (2.97), we also get

|〈AF,G〉Cm×d | ≤ 〈A0F,G〉Cm×d +
c0

2
|F ||G| ≤ 〈A0F, F 〉1/2Cm×d〈A0G,G〉1/2Cm×d+

+ 1
2〈A0F, F 〉1/2Cm×d〈A0G,G〉1/2Cm×d ≤

3
2〈A0F, F 〉1/2Cm×d〈A0G,G〉1/2Cm×d

(2.106)
implying the second claim.

The last identity follows from the relation

〈AG,F 〉Cm×d = 〈G,A∗F 〉Cm×d = 〈A∗F,G〉∗Cm×d .

In view of the above Lemma, the complex version of the Lax-Milgram theorem can be
used to ensure the existence of the bounded inverse operator CA = A −1.

In the following, similarly as in the case of the Hilbert space H+, we use H+(Q+ x) to
denote the corresponding Hilbert space (of functions from XN with support in Q+ x)
with the scalar product (·, ·)A0 .

Next, we define an extension of the operators Πx for a general complex A.
Lemma 2.7.2 ([1, Lemma 5.2]). Assume that A satisfies (2.96), (2.97), and (2.98).
Then, for each ϕ ∈ XN , there exists a unique v ∈H+(Q+ x) such that

(v, ψ)A = (ϕ,ψ)A for all ψ ∈H+(Q+ x). (2.107)

Proof. The assertion follows from Lemma 2.7.1 and the Lax-Milgram theorem.

Lemma 2.7.3 ([1, Lemma 5.3]). Assume that A satisfies (2.96), (2.97), and (2.98). For
any ϕ ∈ XN , we set

ΠA,xϕ := v, ΠA := ΠA,0, (2.108)

with v ∈H+(Q+ x) defined by (2.107). Using, as before, τx to denote the translation
by x, 1Q for the characteristic function of a set Q, and D for the open unit disc
D = {w ∈ C : |w| < 1}, we have The map z 7→ ΠA0+zA1ϕ is holomorphic for z in the
open unit disc D.
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Proof. This follows from the complex inverse function theorem. Fix ϕ and consider the
map R from D ×H+(Q) into the dual of H+(Q) given by

R(z, v)(ψ) = (v − ϕ,ψ)A0+zA1 . (2.109)

Then R is complex linear in z and v and hence complex differentiable. By the definition
of ΠA we have R(z, v) = 0 if and only if v = ΠA0+zA1ϕ. Finally the derivative of R
with respect to the second argument is given by the map Lz from H+(Q) into its dual
with Lz(v̇)(ψ) = (v̇, ψ)A0+zA1 . By the Lax-Milgram theorem, Lz is invertible for z ∈ D.
Hence the map z 7→ ΠA0+zA1ϕ is complex differentiable in z.

We define, as before,

TA := l−d
∑

x∈TdN

ΠA,x, RA = Id−TA. (2.110)

Lemma 2.7.4 ([1, Lemma 5.4]). Assume that A satisfies (2.96), (2.97), and (2.98).
Then

‖TAϕ‖A0 ≤ 9‖ϕ‖A0 for all ϕ ∈ XN . (2.111)

Proof. This is an adaptation of the argument from [8] to the complex case. For the
convenience, we include the details. We have

l2d‖TAϕ‖2A0
≤ 2 l2d |(TAϕ, TAϕ)A| ≤ 2

∑

x,y∈TdN

|(ΠA,xϕ,ΠA,yϕ)A|. (2.112)

Set Tx := ∇ΠA,xϕ. Then Tx vanishes outside Q−+x since ΠA,xϕ vanishes outside Q+x.
Thus, in view of (2.100) and (2.103), we get, similarly as in (2.106),

∣∣(ΠA,xϕ,ΠA,yϕ)A
∣∣ =

∣∣〈ATx, Ty〉
∣∣ =

∣∣〈A1lQ−+xTx, 1lQ−+yTy〉
∣∣ =

∣∣〈A1lQ−+yTx, 1lQ−+xTy〉
∣∣ ≤

≤ 3
2〈A01lQ−+yTx, 1lQ−+yTx〉1/2〈A01lQ−+xTy, 1lQ−+xTy〉1/2 ≤

≤ 3
4〈A01lQ−+yTx, 1lQ−+yTx〉+ 3

4〈A01lQ−+xTy, 1lQ−+xTy〉 =

= 3
4〈A01lQ−+yTx, Tx〉+ 3

4〈A01lQ−+xTy, Ty〉.
(2.113)

Now
∑

y∈TdN 1Q+y is the constant function ld and thus

∑

x,y∈TdN

∣∣(ΠA,xϕ,ΠA,yϕ)A
∣∣ ≤ 3

2 l
d
∑

x∈TdN

〈A0Tx, Tx〉 = 3
2 l
d
∑

x∈TdN

(ΠA,xϕ,ΠA,xϕ)A0 ≤

≤ 3ld
∑

x∈TdN

<(ΠA,xϕ,ΠA,xϕ)A = 3ld
∑

x∈TN
<(ϕ,ΠA,xϕ)A =

= 3l2d<(ϕ, TAϕ)A ≤ 9
2 l

2d‖ϕ‖A0‖TAϕ‖A0 .

Combined with (2.112), this yields the assertion.

Lemma 2.7.5 ([1, Lemma 5.4]). Let D = {z ∈ C : |z| < 1}.
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2 Finite Range Decomposition

(i) Suppose that f : D → Cm×m is holomorphic and

sup
z∈D
‖f(z)‖ ≤M. (2.114)

Then the j-th derivative satisfies

‖f (j)(0)‖ ≤Mj! . (2.115)

(ii) Suppose that f : D → Cm×m and g : D → Cm×m are holomorphic and

sup
z∈D
‖f(z)‖ ≤M1, sup

z∈D
‖g(z)‖ ≤M2. (2.116)

Then the function h(t) = f(t)g∗(t) is real-analytic in (−1, 1) and

‖h(j)(0)‖ ≤M1M2j! . (2.117)

Here g∗(t) denotes the adjoint matrix of g(t).

Proof. Assertion (i) follows directly from the Cauchy integral formula. To show (ii),
we note that g(z) =

∑
j ajz

j with aj ∈ Cm×m. Define G(z) :=
∑

j a
∗
jz
j . Then G(z) =

g(z∗)∗. Hence ‖G(z)‖ = ‖g(z∗)‖. Thus H := fG is holomorphic in D and satisfies
supD ‖H‖ ≤ M1M2. Hence H(k)(0) ≤ k!M1M2. For t ∈ (−1, 1) we have H(t) = h(t)
and the assertion follows.

Proof of 2.3.1 . The boundedness follows from the boundedness of the inverse CA = A−1

and Lemma 2.7.4.
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3 Strict convexity of the surface
tension for non-convex and space
dependent potentials

In this chapter, we will extend some new results due to S. Adams, R. Kotecký and
S. Müller in [2]. We will extensively use their general strategy and many of their
results. As usual in the RG theory(which we will denote by RG from now on), there is a
combinatoric part and a analytical part. The combinatoric part will apply unchanged
to our setting. For the analytical part, one needs to find some appropriate norms that
will capture the subtle growth in the RG step. Thus, because of the extra difficulty (due
to the space dependence of the Hamiltonians), we need to find such appropriate norms,
which generalize the ones in [2] and a space of relevant parameters so that we can get
the RG machinery started. Following the general strategy proposed in [2], we will show
the smoothness for the RG step.

Once this is done, the proof will follow by standard arguments.

In [2], a key ingredient in the recipe of the RG technique, is the use of the Finite Range
Decomposition with optimal bounds. Because [2] is not available to the general public
at the present moment when this thesis is being written, in many instances when a
simple citation might be sufficient, we will include also the proof which is contained in
[2]. However, we will try to emphasise when such thing happens.

3.1 Introduction

Let Λ ⊂ Zd and real-valued height variables

x ∈ Λ 7→ ϕ(x) ∈ R.

We will consider the Hamiltonians of the form

HΛ(ϕ) =
∑

x∈Λ

d∑

i=1

W (x,∇iϕ),

where W : Zd × R→ R is a perturbation of a quadratic function, i.e.,

W (x, η) =
1

2
a(x)η2 + V (x, η), with some perturbation V : R→ R.
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3 Strict convexity of the surface tension

t

V (x, t)

Figure 3.1: The graph of a typical function W .

The Gibbs distribution for a given boundary condition Ψ ∈ R∂Λ, where

∂Λ = {z ∈ Zd : |z − x| = 1 for some x ∈ Λ},

at inverse temperature β > 0 is given by

µΨ
Λ,β( dϕ) =

1

ZΛ(β,Ψ)
exp

(
− βHΛ(ϕ)

)∏

x∈Λ

dϕ(x)
∏

x∈∂Λ

δΨ(x)( dϕ(x)),

where the normalisation constant ZΛ(β,Ψ) is the integral of the density and is called the
partition function. As a direct consequence of the theory developed in Chapter 1, one is
interested in linear boundary condition,

Ψu(x) = 〈x,u〉, for some tilt u ∈ Rd,

and in the free energy

σ(u) = lim
Λ↑Zd
− 1

β|Λ| logZΛ(β,Ψ).

Whenever the target space is one-dimensional (i.e., m = 1), it is called surface tension
due to the fact that it appears naturally in the modelling of elastics sheets.

The surface tension σ(u) can also be seen as the price to pay to tilt a totally flat interface.
The existence of the above limit follows and the relation to the Gibbs measure was treated
in Chapter 1. In case of strictly convex potential and no spatial dependence, Funaki
and Spohn show in [17] that σ is convex as a function of the tilt. The simplest strictly
convex potential is the quadratic one with V = 0, which corresponds to a Gaussian
model, also called the gradient free field or harmonic crystal. Notice that, as seen in
Chapter 1 in general the surface tension is only quasi-convex, hence global convexity
is not to be expected. Models with non-quadratic potentials W are sometimes called
anharmonic crystals. Strict convexity of the surface tension for strictly convex W with
0 < c1 ≤W ′′ ≤ c2 <∞, was proved in [14]. Under the assumption of the bounds of the
second derivative of W , a large deviations principle for the rescaled profile with rate
function given in terms of the integrated surface tension has been derived in [14]. Both
papers [16] and [14] use explicitly the conditions on the second derivative of W in their
proof. In particular they rely on the Brascamp-Lieb inequality and on the random walk
representation of Helffer and Sjöstrand, which requires a strictly convex potential W .
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3.2 Preliminary results

3.2 Preliminary results

Our starting point is [2], where the authors consider a Hamiltonian

HΛ =
∑

x∈TdN

d∑

i=1

W (∇iϕ).

The Mayer functions KV,β,u are defined by

KV,β,u(z) := exp
{
−β

d∑

i=1

V
( zi√

β
− ui

)}
− 1. (3.1)

Moreover, given any h > 0, consider the Banach space E of functions K : Rd → R with
the norm

‖K‖h := sup
z∈Rd

∑

|α|≤r0
h|α|

∣∣∂αz K(z)
∣∣e−h−2|z|2 .

In the above formula, the sum is over nonnegative integer multiindices α = (α1, . . . , αd),
αi ∈ N, i = 1, . . . , d, with |α| =

∑d
i=1 αi ≤ r0 ∈ N, and ∂α =

∏d
i=1 ∂

αi
i . Denote by

Bδ(0) ⊂ Rd the ball Bδ(0) = {u | |u| < δ}.
The following is the main result in [2]:
Theorem 3.2.1 (Strict convexity of the surface tension). Let V be such that there exists
δ > 0, ε > 0, h > 0, and β0 < ∞ such that the map Rd ⊃ Bδ(0) 3 u 7→ KV,β,u ∈ E is
C2 and

‖KV,β,u‖h +

d∑

i=1

∥∥∥ ∂

∂ui
KV,β,u

∥∥∥
h

+

d∑

i,j=1

∥∥∥ ∂2

∂ui∂uj
KV,β,u

∥∥∥
h
≤ ε

whenever u ∈ Bδ(0) and β ≥ β0.

Then, the surface tension σβ(u) := − limN→∞ 1
βLdN

logZN,β(u) exists and it is uniformly

strictly convex in u for u ∈ Bδ(0) and any β ≥ β0.

3.3 Hypothesis and Main Results

We will consider a potential V : Td × R → R, where V is sufficiently smooth. The
Hamiltonians we will consider, are defined by

HN (ϕ) :=
∑

x∈TdN

d∑

i=1

W (x/LN ,∇iϕ).

Whenever it is clear from the context we will drop the N and write H instead of HN .

In a similar fashion as in (3.1), we denote

KV,β,u(x, z) = exp
(
− β

d∑

i=1

U(x,
zi
β
, ui)

)
− 1,
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3 Strict convexity of the surface tension

where

U(x, s, t) = V (x, s− t)− V (x,−t)− s ∂2V (x,−t).

Let us recall the definition of the space E ⊂
{
q : TdN → Lsym(Rm×d)

}
, such that there

exists a constant c0, c1 ≥ 0 such that for every x ∈ TdN and every F it holds

c0|F |2 ≤ 〈q(x)F, F 〉 ≤ c1|F |2.

The above space is endowed with the distance induced by the norm

‖q‖E = sup
x∈Td,j≤d,|β|≤3

‖L|β|N∇βi q‖Rd×d ,

where β is a multiindex.

Given q ∈ E , let us define

EqN,u(ϕ) :=
1

2

∑

x∈TdN

d∑

i,j=1

qi,j(x)(∇iϕ(x)− ui)(∇jϕ(x)− uj)

and

EqN (ϕ) :=
1

2

∑

x∈TdN

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x),

where u ∈ Rd.
It is natural to consider the Banach space E which consists of functions K : Rd → R
and the norm is defined by

‖K‖h = sup
z∈Rd

∑

|β|≤2

∑

|α|≤r0
h|α|

∣∣∂αz ∂βxK(x, z)
∣∣e−h−2|z|2

Here, the sum is over non-negative integer multiindices α = (α1, . . . , αd), αi ∈ N where
i = 1, . . . , d.

With the above notations we can prove the analogous of Theorem 3.2.1, namely
Theorem 3.3.1. Let δ > 0, ε > 0, h > 0, and β0 <∞ such that the map Rd ⊃ Bδ(0) 3
u 7→ KV,β,u ∈ E is C2 and

‖KV,β,u‖h +
d∑

i=1

∥∥∥ ∂

∂ui
KV,β,u

∥∥∥
h

+
d∑

i,j=1

∥∥∥ ∂2

∂ui∂uj
KV,β,u

∥∥∥
h
≤ ε

whenever u ∈ Bδ(0) and β ≥ β0.

Then the surface tension σβ(u) := − limN→∞ 1
βLdN

logZN,β(u) exists and it is uniformly

strictly convex in u for u ∈ Bδ(0) and any β ≥ β0.
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3.4 Outline of the Proof and Extension to Bonds

3.4 Outline of the Proof and Extension to Bonds

The strategy of the proof is based on [2] and uses the RG technique of Brydges et al..

Our definitions deviate from [2] by enlarging the space of gradients to the functions on
space of bonds(the precise definitions follow in the subsequent paragraph). This is done
in order to keep track of the space dependence.

Each bond b = (x, y) is directed from y to x. We also write xb = x and yb = y and we
define −b := (y, x). We say that b ∼ b̃, if xb = xb̃. Moreover, we define the translation
with respect to e ∈ Zd as τeb := (x+ e, y+ e), where b = (x, y). Note that each indirected
bond appears twice in (TdN )?. A sequence C = {b1, . . . , bn} is called a chain, if ybi = xbi+1

and in a similar way it is called closed if ybn = xb1 . A plaquette is a closed loop consisting
of four points such that {xbi} consists of four different points. A field η is said to satisfy
the plaquette condition if η(−b) = −η(b) and

∑
P η(b) = 0 for every plaquette P. A

particular example of a field satisfying the plaquette condition is the gradient field. In
our setting, the plaquette condition characterizes being a gradient. Namely, it is not
difficult to see that for the particular type of lattice we are considering, if a field η
satisfies the plaquette conditions then there exists ϕ : TdN → R such that ηx,i = ∇iϕ,
where for simplicity of notation we denote by ηx,i := η(x,x+ei) and by

∂x,i := ∂ηx,i . (3.2)

It will be also convenient to introduce δx,i : TdN → R defined by

δx,i(b) :=

{
1 if b = (x, i)

0 otherwise.

The space of fields over the bonds will be denoted by H, namely H :=
{
η : (TdN )? → R

}
.

Let us denote by (TdN )? the set of all directed bonds b = (x, y) such that |x− y|∞ ≤ 1.
The Hamiltonian H can be naturally extended on H by using the formula, i.e.,

HN (η) :=
∑

x∈TdN

d∑

i=1

|ηx,i|2 + V (ηx,i).

And hence the function exp (−H(ϕ)) is also extended on H.

Let us now consider the Gaussian measure νβ on XN corresponding to the Dirichlet
form βEN (ϕ):

νβ( dϕ) =
1

Z
(0)
N,β

exp
(
−βEN (ϕ)

)
λN ( dϕ),

with

Z
(0)
N,β =

ˆ

XN

exp
(
−βEN (ϕ)

)
λN ( dϕ).
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3 Strict convexity of the surface tension

Because we would like to consider the above as a measure on H, we simply extend it
by saying that the measure is defined on H but concentrated on the space of gradients.
This can be easily done by decomposing H := V ⊕W , where V is the space of gradients
and W , and then extend ν̃ := ν ⊗ δ0.

The partition function can be rewritten as

ZN,β(u) = Z
(0)
N,β exp

(
−β

2L
Nd

d∑

i,j=1

〈q〉i,juiuj
)ˆ

XN

exp
(
−β

∑

x∈TdN

d∑

i=1

V
(
x,∇iϕ(x)− ui

)

+
∑

x∈TdN

d∑

i=1

qi,j∇iϕui
)
νβ( dϕ)

(3.3)
where the last equation was obtained by rescaling the field ϕ by 1√

β
. Denoting by

〈q〉i,j = L−Nd
∑

x∈TdN

qi,j(x)

and by ν( dϕ) = νβ=1( dϕ) and Z
(0)
N = Z

(0)
N,β=1.

The term

∑

x∈Td

d∑

i=1

qi,j(x)ϕi(x)ui,

in (3.3) is harmless and does not change the above limit. Indeed, with simple computations
one has that

d∑

i,j=1

∑

x∈TdN

qi,j(x)∇iϕuj =

d∑

i,j=1

∑

x∈TdN

∇∗i qi,j(x)ujϕ(x).

Because of the hypothesis on q, we have that for every x ∈ TdN and i, j ∈ {1, . . . , d}, it
holds |∇∗i qi,j(x)| ≤ ε0L

−N . Thus, it is immediate to notice that

∣∣∣
d∑

i,j=1

∑

x∈TdN

qi,j∇iϕ(x)uj

∣∣∣ . ε0|u|LNd

L−Nd

∑

x∈TdN

|ϕ(x)|p



1/p

. (3.4)

In a similar way as in Chapter 1, when the boundary conditions are linear one can
restrict by integrating over the factions which are close to the linear function in Lp(notice
that for our case p = 2), namely all the functions ϕ such that the distance in L2 is from
the linear function which defines the boundary is less than every fixed κ. Thus, one can
assume without loss of generality that


L−N(d+2)

∑

x∈TdN

|ϕ(x)|2



1/2

≤ κ,
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3.4 Outline of the Proof and Extension to Bonds

and thus, the limit in the formula of the surface tension does not change.

However, because in Chapter 1 only the Dirichlet boundary conditions are considered
and we have periodic boundary condition, the above claims need to be proven. In the
following paragraph and Proposition, we fix this issue.

In the same spirit of Chapter 1, let us denote by

σN (`, κ) := − 1

LNd
log

ˆ

V(`,κ)
exp

(
−HN (ϕ)

)
dϕ

σ(`, κ) := − lim
N↑∞

1

LNd
log

ˆ

V(`,κ)
exp

(
−HN (ϕ)

)
dϕ,

where

ṼN (`, κ) := {ϕ : TdN → R :
∑

x∈TdN

|L−Nϕ|2 ≤ κLNd}

Moreover, let us denote by σ̃N (`, κ) the same as before but instead of imposing periodic
boundary conditions we impose linear boundary conditions. Namely fix Q := [1, LN ]d

and denote by

σ̃N (`, κ) := − 1

LNd
log

ˆ

Ṽ(`,κ)
exp

(
−HN (ϕ)

)
dϕ

σ̃(`, κ) := − lim
N↑∞

1

LNd
log

ˆ

Ṽ(`,κ)
exp

(
−HN (ϕ)

)
dϕ,

where

VN (`, κ) := {ϕ : Zd → R :
∑

x∈Q
|L−Nϕ|p ≤ κLNd and ϕ(x) = 0 for all x ∈ Zd \ Q̄}

Because the zero boundary conditions are more restrictive than periodic boundary
conditions, it is immediate to see that σ ≤ σ̃.

In the following proposition we prove that the two are equivalent.
Proposition 3.4.1. For any linear boundary condition ` and every κ > 0, it holds

σ̃(`, κ) = σ(`, κ) = σ(`).

Proof. As we already observed in the comments above the statement proposition, we
only need to prove that σ ≥ σ̃.

Let {e1, . . . , ed} be the coordinate directions. Denote by

Yk := {y ∈ TdN : y · e1 = k}.

It is immediate to notice that

TdN =
LN−1⋃

k=0

Yk.
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3 Strict convexity of the surface tension

Hence, we have that

∑

x∈TdN

d∑

i=1

W (x,∇iϕ(x)) =

LN−1∑

k=1

∑

y∈Yk

d∑

i=1

W (y,∇iϕ(y)),

thus for every fixed ϕ, there exists k such that

∑

y∈Yk

d∑

i=1

W (y,∇iϕ(y)) ≤ 1

LN

∑

x∈TdN

d∑

i=1

W (x,∇iϕ(x)). (3.5)

On the other side by using a version of Lemma 1.2.12, it is immediate to notice that
there exists K large enough such that one can restrict oneself to the set

MK := {ϕ :
∑

x∈TdN

W (x,∇ϕ(x)) ≤ KLNd}.
(3.6)

Combining (3.5) and (3.6), one has that there exists k0 such that

∑

y∈Yk0

d∑

i=1

W (y,∇iϕ(x)) ≤ KLNd−N . (3.7)

Let us denote by Nk the set of functions for which equation (3.7) holds for the first time
at k. Namely for every k′ < k, equation (3.7) does not hold.

We denote by H̄k,N the Hamiltonian induced by unfolding the torus TdN at the hyperplane
Yk and extending outside with Dirichlet boundary conditions. Namely,

H̄k,N (ϕ) :=
∑

y∈Yk
W (y, ϕ(y)) +

∑

k′ 6=k

∑

Yk

d∑

i=1

W (y,∇iϕ(x)).

Using the above observations, one has that for every ϕ ∈ Nk

H̄k,N (ϕ) ≥ HN (ϕ)−KLNd/LN .

Hence,

σN (`, κ) ≤ −L−Nd log

[∑

k

ˆ

Nk
exp

(
− H̄k,N

)
dϕ

]
+K/LN .

Moreover notice that

−L−Nd log

[
ˆ

Nk
exp

(
− H̄k,N (ϕ)

)
dϕ

]

corresponds to putting Dirichlet boundary conditions on the faces of the cube orthogonal
to e1 and periodic boundary condition on the other faces.
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3.4 Outline of the Proof and Extension to Bonds

It is immediate to notice that

σ(`, κ) := −L−Nd log

[∑

k

ˆ

Nk
exp

(
− H̄k,N

)
dϕ

]
.

With simple reasoning one has that

−L−Nd max
k

log

[
ˆ

Nk
exp

(
− H̄k,N

)
dϕ

]
≤ −L−Nd log

[∑

k

ˆ

Nk
exp

(
− H̄k,N

)
dϕ

]

≤ −L−Nd max
k

log

[
LN

ˆ

Nk
exp

(
− H̄k,N

)
dϕ

]
,

hence by passing to the limit for N ↑ ∞ one has that

σ(`, κ) = lim
N→∞

−L−Nd max
k

log

ˆ

Nk
exp

(
− H̄k,N (ϕ)

)
.

Finally we by passing to the limit in N and noticing that each of the terms in the
above(after the max) is equal to σ̃1, which corresponds to imposing Dirichlet boundary
condition only on one of the axes. To conclude the proof one has to repeat the argument
for each of the faces via an induction argument.

Let us now continue with the outline of the proof.

Define

ZN,β(u) :=

ˆ

XN

exp
(
−β

∑

x∈TdN

d∑

i=1

V
(
x, 1√

β
∇iϕ(x)− ui

))
ν( dϕ). (3.8)

One obtains that for the finite volume surface tension,

σN,β(u) = − 1

βLNd
logZN,β(u) = − 1

βLNd
logZ

(0)
N + 1

2 |u|
2 − 1

βLNd
logZN,β(u). (3.9)

As in [2], to prove Theorem 3.3.1 we need to show that the surface tension σN,β(u)
in (3.9) is strictly convex in u uniformly in N ∈ N.

Glancing at the formula (3.9), it is immediate to notice that in order to prove the strict
convexity of the surface tension, one only needs to prove that the derivatives of the third
term are sufficiently small.

In statistical mechanics, one of the ways of dealing with the perturbation and evaluating
logZN,β(u) and its derivatives, is to use some version of cluster expansion. Namely, one
expands the integrand as

∏

x∈TdN

(
1 + exp

{
−β

d∑

i=1

V
(
x, 1√

β
∇iϕ(x)− ui

)}
− 1
)

in (3.8) and introduces, for any subset X ⊂ TdN , the function

K(X,ϕ) =
∏

x∈X

(
exp
{
−β

d∑

i=1

V
(
x, 1√

β
∇iϕ(x)− ui

)}
− 1
)
, (3.10)
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3 Strict convexity of the surface tension

which allows to rewrite (3.8) as

ZN,β(u) =

ˆ

XN

∑

X

K(X,ϕ)ν( dϕ). (3.11)

The function K(X,ϕ) depends only on ∇ϕ(x) with x in the set X and its close neigh-
borhood and for a disjoint union X = X1 ∪X2 one has K(X,ϕ) = K(X1, ϕ)K(X2, ϕ).

We write K(X,ϕ) instead of K(X,∇ϕ) to keep the notation more compact and in line
with the literature.

However, the Gaussian measure ν( dϕ) has a slowly decaying correlations and hence
does not allow to separate the integral of K(X,ϕ) into a product of integrals with the
integrands K(X1, ϕ) and K(X2, ϕ), thus the classical methods used when one does a
cluster expansion are not applicable.

As already mentioned the measure ν is extended on the space of functions defined on
bonds1 (see beginning of the section). Because we would like to some extent reformulate
the considered quantities on the space of functions over bonds, one can rewrite the
partition function as function

ZN,β(u) :=

ˆ

XN

exp
(
−β

∑

b∈(TdN )?

Ṽ (ηb)
)
ν( dη). (3.12)

The functions K(X,ϕ) can be rewritten in terms of bonds as

K(X,ϕ) =
∏

b=(x,i):x∈X

(
exp
{
−β

d∑

i=1

Ṽ (ηb)
}
− 1
)
, (3.13)

thus

ZN,β(u) =

ˆ

XN

∑

X

K(X, η)ν( dη). (3.14)

The strategy (and the main idea of the RG) is to perform the integration in steps
corresponding to increasing scales. Similarly as in [2], it is useful to introduce a parameter
q ∈ E that will be useful for fine-tuning so that the final integration will eventually yield
a result with a straightforward bound.

Multiplying and dividing the integrand in (3.11) by exp
{

1
2

∑
x∈TdN

∑d
i,j=1 qi,j(x)∇iϕ(x)∇jϕ(x)

}
,

one gets

ZN,β(u) =
Z

(q)
N

Z
(0)
N

ˆ

XN

exp
{1

2

∑

x∈TdN

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x)
}∑

X

K(X,ϕ)µ( dϕ).

(3.15)
Here, µ is the Gaussian measure on XN with the Green function C (q), the inverse of the
operator A (q) =

∑d
i,j=1∇∗i

(
δi,j + qi,j(x)

)
∇j ,

µ( dϕ) =
1

Z
(q)
N

exp
{
−Eq(ϕ)

}
λN ( dϕ),

1which denoted by H
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3.4 Outline of the Proof and Extension to Bonds

with

Eq(ϕ) = 1
2(A (q)ϕ,ϕ) = 1

2

∑

x∈TdN

d∑

i,j=1

(
δi,j + qi,j(x)

)
∇iϕ(x)∇jϕ(x),

and

Z
(q)
N =

ˆ

XN
exp
{
−Eq(ϕ)

}
λN ( dϕ) =

ˆ

XN
exp
{
−1

2

∑

x∈TdN

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x)
}
ν( dϕ).

One of the main ingredients is the use of a version of the Finite Range Decomposition
(Theorem 2.3.1) which allows (under suitable assumptions on the smallness of q) to
decompose the Gaussian measure µ into a convolution µ( dϕ) = µ1∗· · ·∗µN+1( dϕ), where
µ1, . . . , µN+1 are Gaussian measures with a particular finite range property. Namely, the

covariances of C(q)
k (x, y) of the measures µk, k = 1, . . . , N + 1 vanish for |y − x| ≥ 1

2L
k

with a fixed parameter L with an additional bound on their derivatives with respect to
q of the order L−(k−1)(d−1).

The integral in (3.15) can be symbolically written as

ˆ

XN

(e−H
(q) ◦K(q))(ϕ)µ( dϕ), (3.16)

where

H(q) = −1
2

∑

x∈TdN

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x),

the function K(q) is defined by

K(q)(X,ϕ) := exp
{

1
2

∑

x∈X

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x)
}
K(X,ϕ),

and ◦ is the circle product notation for the sum over subsets X ⊂ TdN ,

(e−H
(q) ◦K(q))(ϕ) =

∑

X⊂TdN

exp
{

1
2

∑

x∈TdN\X

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x)
}
K(q)(X,ϕ).

The typical strategy of in the RG theory is to replace µ in (3.16) by the convolution
µ1∗· · ·∗µN+1( dϕ), and to proceed by integrating first over µ1. A fundamental observation
is that the form of the integral is conserved.

Namely, starting from H0 = H(q) and K0 = K(q), one defines H1 and K1 so that
ˆ

XN

(e−H0 ◦K0)(ϕ+ ξ) dµ1(ξ) = (e−H1 ◦K1)(ϕ).

Here, the function K1(X,ϕ) is defined (non-vanishing) only for sets X consisting of
Ld-blocks and H1 is again a quadratic form like H0 but with modified coefficients
qi,j(x) and additional linear terms. Recursively, one can define a sequence of pairs
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3 Strict convexity of the surface tension

(H1,K1), (H2,K2), . . . , (HN ,KN ) with each Hk a quadratic form in ∇ϕ and Kk(X,ϕ)
defined for sets X consisting of Lkd-blocks so that

ˆ

XN

(e−Hk ◦Kk)(ϕ+ ξ) dµk+1(ξ) = (e−Hk+1 ◦Kk+1)(ϕ). (3.17)

The aim is to define of consecutive pairs of functions Hk,Kk so that not only (3.17) is
valid, but also that the form of the quadratic function Hk is conserved, the coarse-grained
dependence of Kk on blocks Ldk is maintained, and, most importantly, the size of the
perturbation Kk in a conveniently chosen norm decreases (variable Kk is irrelevant).

Let F : (TdN )? → R. Notice that the measures {µi} are extended on H. Hence in a
similar way one can perform the integration of F with respect to {µi} by the formula

ˆ

XN

F (η +∇ξ) dµi(ξ)

and show by induction that by performing these operations one obtains always functions
defined on H.

Thus it is not difficult see that if an expression as the one in (3.17) holds, then an similar
one defined on H holds.

Using now sequentially the formula (3.17), we eventually get

ˆ

XN

(e−H0 ◦K0)(ϕ)µ( dϕ) =

ˆ

XN

(e−HN ◦KN )(ϕ)µN+1( dϕ),

thus

ZN,β(u) =
Z

(q)
N

Z
(0)
N

ˆ

XN

(e−HN ◦KN )(ϕ)µN+1( dϕ).

Because that all measures µ1, . . . , µN+1 and the map T k itself will be shown to depend
smoothly on the initial matrix q, thus one can choose the value q = q0 in such a way
that HN = 0. Given that the function KN (X, ·) is defined only for X = ΛN or X = ∅,
one has that

ZN,β(u) =
Z

(q0)
N

Z
(0)
N

ˆ

XN

(
1 +KN (ΛN , ϕ)

)
µN+1( dϕ).

As in [2], one can compute Z
(q0)
N explicitly by Gaussian calculus and its dependence on

u, and show that it depends smoothly u. Moreover, the integral term, as well as its
derivatives with respect to u, can easily be bounded as a consequence of the iterative
bound on KN .

3.5 Definitions

3.5.1 Polymers

We now introduce some standard definitions and notations used in the RG theory.
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3.5 Definitions

For k = 0, 1, 2, . . . , N , one paves the torus ΛN by L(N−k)d disjoint cubes of side length
Lk. These cubes are all translates (L is odd) of {x ∈ ΛN : |x|∞ ≤ 1

2(Lk − 1)} by vectors
in LkZd. Such cubes are called k-blocks or blocks of k-th generation, and use Bk to
denote the set of all k-blocks,

Bk = Bk(ΛN ) = {B : B is a k-block}, k = 0, 1, . . . , N.

Single vertices of the lattice are 0-blocks, the starting generation for the RG transforms,
B0 = ΛN . The only N -block is the torus ΛN itself, BN = {ΛN}.
A union of k-blocks is called a k-polymer. We denote by Pk = Pk(ΛN ) the set of all
k-polymers in ΛN .

As N is fixed through the major this chapter, we often skip ΛN from the notation as
indicated above.

Any subset X ⊂ TdN is said to be connected if for any x, y ∈ X there exist a path
x1 = x, x2, . . . , xn = y such that |xi+1 − xi|∞ = 1, i = 1, . . . , n − 1. We use C(X) to
denote the set of connected components of X. Two connected sets X,Y ⊂ ΛN are said
to be strictly disjoint if their union is not connected. Notice that for any strictly disjoint
X,Y ∈ Pk, we have dist(X,Y ) > Lk.

We use Pc
k to denote the set of all connected k-polymers. Let X ∈ Pk. The set of all

k-blocks in X will be denoted by Bk(X), and the number of the k-blocks of X will be
denoted by |X|k = |Bk(X)|
The closure X of a polymer X ∈ Pk is the smallest polymer Y ∈ Pk+1 of the next
generation such that X ⊂ Y .

A polymer X ∈ Pc
k is called small if |X|k ≤ 2d and we denote Sk = {X ∈ Pc

k : |X|k ≤ 2d}.
Let B ∈ Bk. We define its small set neighbourhood B∗ to be the cube of the side
(2d+1− 1)Lk centered at B. The small set neighbourhood B∗ can be equivalently defined
as the smallest cube for which B ⊂ Y and Y ∈ Sk implies Y ⊂ B∗. We will use X∗ to
denote its small set neighbourhood, X∗ = ∪{B∗ : B ∈ Bk(X)}.
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3.5.2 Polymer Functionals and Translation

Let us now introduce the space M(Pk,X ) of all maps F : Pk ×X → R such that for
all X ∈ Pk the map F (X,ϕ) depends only on values of ϕ on X∗. Namely, for every
ϕ,ψ ∈ X , one has that ϕ

∣∣
X∗ = ψ

∣∣
X∗ =⇒ F (X,ϕ) = F (X,ψ) where ϕ

∣∣
X∗ denotes the

restriction of ϕ to X∗.

The sets M(Sk,X ) and M(Bk,X ) are defined in an analogous way. We also consider the
set M∗(Bk,X ) ⊃M(Bk,X ) of the maps F : Bk ×X → R with F (B,ϕ) depending only
on values of ϕ on the extended set (B∗)∗. For functions from M(Pk,X ), one introduces
the circle product,

F1, F2 ∈M(Pk,X ), (F1 ◦ F2)(X,ϕ) =
∑

Y⊂X
F1(Y, ϕ)F2(X \ Y, ϕ).

Notice, that the product is defined pointwise in the variable ϕ. We often skip it and
write (F1 ◦ F2)(X) =

∑
Y⊂X F1(Y )F2(X \ Y ) instead. Observe that the circle product is

commutative and distributive.

For F ∈M(Bk,X ) and X ∈ Pk, we define

FX(ϕ) :=
∏

B∈Bk(X)

F (B,ϕ).

Extending any F ∈M(Bk,X ) to M(Pk,X ) by taking

F (X,ϕ) := FX(ϕ),

one gets

(F1 + F2)X =
∑

Y⊂X
F Y1 F

X\Y
2 = (F1 ◦ F2)(X).

For every x ∈ TdN and every ϕ ∈ X , we define the translation τx as τxϕ(·) := ϕ(· − x).
Given F ∈M(Pk,X ), we define the translated functional as (τxF )(B,ϕ) := F (B,ϕ, τxϕ).

Similarly as in [2], we introduce the space of ideal Hamiltonians M0(Bk,X ) ⊂M(Bk,X )
defined as the family of all quadratic functions of the form

H(B,ϕ) = λ|B|+ `(ϕ) +Q(ϕ),

where

`(ϕ) =
∑

x∈B

[ d∑

i=1

ai(x)∇iϕ(x) + ci,j(x)∇i∇jϕ
]

(3.18)

and

Q(ϕ,ϕ) =
∑

x∈B

d∑

i,j=1

di,j(x)∇iϕ(x)∇jϕ(x)

with coefficients λ ∈ R, a ∈ Rd, c ∈ Rd×d and d ∈ E . As we will see in the sequel, this
space will consist of the space of the relevant parameters for the RG.

The space M0(Bk,X ) will be endowed with the norm

‖H‖k,0,B = Lkd sup
x∈B
|λ(x)|+ Lkd/2h

∑

|β|≤3

sup
x∈B

d∑

i=i

|ai(x)|+ sup
x∈B

h2|LN |β||
N∑

i,j=1

|∇βdi,j(x)|
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3.5.3 Norms

In order to carefully keep track of the contribution in the integration step when passing
from one scale to the other, one needs to define some appropriate seminorms. If one
restricts oneself to the subspace of H which is composed of all η which are gradient
of some function ϕ, than the seminorms that will be considered in the sequel will be
norms. For this reason and because of the nomenclature in the literature, we will refer
to them as norms with a slight abuse of notation. If one restricts oneself to the subspace
of gradients, the following norms generalize the ones employed in [2].

As in [2], we now introduce the norms ‖ · ‖k,r and ‖ · ‖k+1,r on M(Pk,X ) and M(Bk,X )
(with r = 1, . . . , r0, where r0 is a fixed integer (to be chosen later) and a norm ‖ · ‖k,0
on M0(Bk,X ). For every k ∈ {0, 1, . . . , N} and X ∈ Pk, one introduces the semi-norms
| · |k,X and | · |k+1,X on X . Given ϕ ∈ X , one defines

|ϕ|k,X := max
1≤s≤3

sup
x∈X∗

1

h
Lk(

d−2
2 +s)

∣∣∇sϕ(x)
∣∣

and

|ϕ|k+1,X = max
1≤s≤3

sup
x∈X∗

1

h
L(k+1)(

d−2
2 +s)

∣∣∇sϕ(x)
∣∣,

where
|∇sϕ(x)|2 =

∑

|α|=s
|∇αϕ(x)|2.

Let S be an s-linear map on (TdN )∗. Then it can be expressed as

S(η, . . . , η) =
∑

b1,...,bn

cb1,...,bn

n∏

i=1

ηbi .

Let ei be an element of the canonical basis. We define the translation τeCb1,...,bn :=
Cτeb1,...,τebn . Thus, for every f : (TdN )? × · · · × (T dN )? → R we define

∇if(b1, . . . , bn) := τeif(b1, . . . , bn)− f(b1, . . . , bn).

Moreover, for any s-linear function S on X × · · · ×X , we define

|S|j,X := sup
|ϕ̇|j,X≤1

∣∣S(ϕ̇, . . . , ϕ̇)
∣∣, j = k, k + 1,

|S|x,i,j,X = sup
|ϕ̇|j,X≤1

∣∣S(ηx,i, ϕ̇, . . . , ϕ̇)/ηx,i
∣∣, j = k, k + 1,

(3.19)

and, for any F ∈ Cr(X ), also

|F (ϕ)|j,X,r = sup
x∈TdN

sup
1≤i≤d

r∑

s=1

∑

1≤|β|≤3

L|β|N
1

s!|β|! |∇
βDsF (ϕ)|x,i,j,X

+ sup
x∈TdN

sup
1≤i≤d

r∑

s=0

1

s!
|DsF (ϕ)|j,X ,

(3.20)

where whenever s = 0, we mean

D0F (ϕ) = F (ϕ).
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3 Strict convexity of the surface tension

Remark 3.5.1. Notice that one can find examples of quadratic forms Q defined on H
such that Q = 0 when one restricts oneself to the subspace of fields that are gradients
and such that Π(Q) 6= 0 on the subspace of fields that are gradients. For this reason
one needs to control also parts of the norms in the full space. This is why, differently
from [2], we have in the definition of the norms extra terms like |S|x,i,j,X .

Let us introduce the weighted strong norm |‖F (X)‖|k,X as well as weighted weak norm
‖F (X)‖k,X,r, r = 1, . . . , r0. The strong weight functions are defined by

WX
k (ϕ) := exp

{∑

x∈X
Gk,x(ϕ)

}
,

where

Gk,x(ϕ) =
1

h2

(
|∇ϕ(x)|2 + L2k|∇2ϕ(x)|2 + L4k|∇3ϕ(x)|2

)
.

We define the weighted strong norm by

|‖F (X)‖|k,X := sup
ϕ
|F (X,ϕ)|k,X,r0W−Xk (ϕ).

Notice that in contrast with [2], given any F ∈ M(Bk,X ) the norm |‖F (B)‖|k,B does
depend on B.

Moreover, let Bx ∈ Bk be the k-block containing x and let ∂X denote the boundary,
namely

∂X = {y 6∈ X | ∃z ∈ X such that |y − z|2 = 1}∪{y ∈ X | ∃z 6∈ X such that |y − z|2 = 1}.

The weak weight functions are defined by

wXk (ϕ) := exp
{∑

x∈X
ω
(
2dgk,x(ϕ) +Gk,x(ϕ)

)
+ Lk

∑

x∈∂X
Gk,x(ϕ)

}

with Gk,x(ϕ) as above and

gk,x(ϕ) =
1

h2

4∑

s=2

L(2s−2)k sup
y∈B∗x

|∇sϕ(y)|2.

The weighted weak norm is defined by

‖F (X)‖k,X,r := sup
ϕ
|F (X,ϕ)|k,X,r w−Xk (ϕ), r = 1, . . . , r0.

One also introduces the norm ‖·‖k:k+1,X,r that can be viewed as being “halfway between”
‖·‖k,X,r and ‖·‖k+1,U,r with U = X ∈ Pk+1. Namely,

‖F (X)‖k:k+1,X,r = sup
ϕ
|F (X,ϕ)|k+1,X,r w−Xk:k+1(ϕ), r = 1, . . . , r0.

with

wXk:k+1(ϕ) = exp
{∑

x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + ωGk,x(ϕ)

)
+ 3Lk

∑

x∈∂X
Gk,x(ϕ)

}
,
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where

gk:k+1,x(ϕ) =
1

h2

4∑

s=2

L(2s−2)(k+1) sup
y∈B∗x

|∇sϕ(y)|2.

For any r ≤ r0, one has that

‖F (X)‖k,X,r ≤ |‖F (X)‖|k,X .

Moreover is also easy to show that

‖F (X)‖k:k+1,X,r ≤ ‖F (X)‖k,X,r

whenever ω ≥ 2d−1 (assuring that 2dω(L2 − 1) ≥ L2), and, for any U ∈ Pk+1 ⊂ Pk and
F ∈M(Pk+1,X ) ⊂M(Pk,X ), also

‖F (U)‖k+1,U,r ≤ ‖F (U)‖k:k+1,U,r ≤ ‖F (U)‖k,U,r. (3.21)

As in [2], we introduce the weak norms

‖F‖k,r = sup
X∈Pc

k

‖F (X)‖k,X,rΓk,A(X), r = 1, . . . , r0,

where

Γk,A(X) =

{
A|X| if X ∈ Pc

k \ Sk
1 if X ∈ Sk.

Similarly, one also defines ‖F‖k:k+1,r. When comparing norms with different values of

parameter A, we will denote explicitly ‖F‖(A)
k,r and ‖F‖(A)

k:k+1,r. For F ∈M(Bk,X ), one
defines

‖F‖k,r := sup
B∈Bk

‖F (B)‖k,B,r.

Let us fix k. For simplicity of notations it is convenient to write (H ′,K ′) instead of
(Hk+1,Kk+1). Hence, it becomes

R(e−H ◦K) = e−H
′ ◦K ′.

3.5.4 Projection

Let f : (TdN )∗ → Rm be a function. We denote by T2 the Taylor expansion around zero
up to the second order, namely

T2F (B, η̇) = F (B, 0) +DF (B, 0)(η̇) + 1
2D

2F (B, 0)(η̇, η̇),

where the functions can be represented as

DF (η̇) =
∑

b∈(T dN )?

cbηb
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3 Strict convexity of the surface tension

and

D2F (B, 0)(η̇, η̇) =
∑

b,b′
db,b′ηbηb′ .

Given that our functionals depend on ∇ϕ, it is not difficult to see that

DF (B,ϕ) =
∑

x∈TdN

c̃x,i∇iϕ(x)

and

1

2
D2F (B,ϕ) =

∑

x∈TdN

d̃i,j(x, y)∇iϕ(x)∇jϕ(x).

Let us now define the “projection” on the space of Ideal Hamiltonians.

The elements of di,j(x) in the formula for Q, will be defined by

di,j(x) :=
∑

y∈TdN

d̃i,j(x, y) where x ∈ B.
(3.22)

Notice that with this definition, we have that for every affine function ϕ on B∗ it holds

1

2

∑

x∈B
di,j(x)∇iϕ(x)∇jϕ(x) =

1

2
D2F (B, 0)(ϕ̇, ϕ̇).

and

di,j(x)∇iϕ(x)∇jϕ(x) =
1

2
∂x,iDF (B, 0)(ϕ̇, ϕ̇),

where in the above equation the symbol ∂x,i we mean the derivative with respect to ηb
and b = (x, x+ ei).

The functional ` can be defined in the same way as in [2], namely such that for every
quadratic function it holds

DF (B, 0)(ϕ̇) =
d∑

i=1

ai∇iϕ(x) +
d∑

i,j=1

bi,j∇i∇jϕ(x).

In the following, we will need to apply the projection to functions of the form

F (B,ϕ) =
∑

X∈S
X⊃B

1

|X|F (X,ϕ),

for any F ∈M(S,X ). Hence, we extend the projection Π, by considering test functions
ϕ̇ on (B∗)∗ instead of B∗.

84



3.5 Definitions

We define

H ′(B′, ϕ) :=
∑

B⊂B′
ΠT2

(
(RH)(B,ϕ)−

∑

X∈S
X⊃B

1

|X|(RK)(X,ϕ)
)
. (3.23)

Let us denote by H̃(B,ϕ), the term in the right hand side of sum above, namely

H̃(B,ϕ) = ΠT2

(
(RH)(B,ϕ)−

∑

X∈S
X⊃B

1

|X|(RK)(X,ϕ)
)
.

Denote by Ĩ(B,ϕ) = exp
{
−H̃(B,ϕ)

}
and by J̃ = 1− Ĩ. Moreover, we introduce

K̃ := J̃ ◦ (I − 1) ◦K. (3.24)

For simplicity of notation, it is sometimes convenient to skip the polymer variable X
and use K̃(ϕ, ξ) for the mapping K̃(ϕ, ξ) : P → R defined by K̃(ϕ, ξ)(X) := K̃(X,ϕ, ξ).

Thus,
K̃(ϕ, ξ) = J̃(ϕ) ◦

(
I(ϕ+ ξ)− 1

)
◦K(ϕ+ ξ).

Given that I(ϕ+ ξ) = Ĩ(ϕ) + J̃(ϕ) +
(
I(ϕ+ ξ)− 1

)
, one has that

I(ϕ+ ξ) = Ĩ(ϕ) ◦ J̃(ϕ) ◦
(
I(ϕ+ ξ)− 1

)

and thus

I(ϕ+ ξ) ◦K(ϕ+ ξ) = Ĩ(ϕ) ◦ J̃(ϕ) ◦
(
I − 1

)
(ϕ+ ξ) ◦K(ϕ+ ξ) = Ĩ(ϕ) ◦ K̃(ϕ, ξ).

Hence,
R(I ◦K)(ΛN , ϕ) = (Ĩ ◦ (RK̃))(ΛN , ϕ).

As usual in the RG theory, K ′ is defined by sorting the X-terms according to the

next level closure U . One introduces the factor χ(X,U) = |{B∈B(X) : B∗=U}|
|X| for any

X ∈ S(ΛN ) and χ(X,U) = 1lU=X for X ∈ P(ΛN ) \ S(ΛN ). Then, one has that

(Ĩ ◦ K̃)(ΛN , ϕ, ξ) =
∑

U∈P ′
I ′ΛN\U (ϕ)

[
χ(X,U)

∑

X⊂U
ĨU\X(ϕ)K̃(X,ϕ, ξ)

]
. (3.25)

Where in (3.25), we used the fact that for any X ∈ S(ΛN ) contributing to several U ’s,
one has that

∑
U∈P ′ χ(X,U) = 1 and also that X ⊂ B∗ and thus X ⊂ B∗.

Define

K ′(U,ϕ) =
∑

X⊂U
χ(X,U)ĨU\X(ϕ)

ˆ

X
K̃(X,ϕ, ξ) dµk+1(ξ) (3.26)

for any connected U ∈ P ′. One has that

R(I ◦K)(ΛN , ϕ) = (I ′ ◦K ′)(ΛN , ϕ).

The above transform conserves the factorisation property of the coordinate K, namely if
K factors on the scale k,

X,Y ∈ P, and X ∩ Y = ∅, then K(X ∪ Y, ϕ) = K(X,ϕ)K(Y, ϕ),

then K ′ factors on the scale k + 1.
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Proposition 3.5.2 ([2, Proposition 4.2]). Let k ∈ {0, . . . , N − 1}, Hk ∈ M0(Bk,X ),
and Kk ∈M(Pk,X ) that factors. Let Hk+1 ∈M0(Bk+1,X ) be defined by

Hk+1(B′, ϕ) :=
∑

B∈Bk(B′)

H̃k(B,ϕ), (3.27)

where

H̃k(B,ϕ) := ΠT2

(
(Rk+1Hk)(B,ϕ)−

∑

X∈Sk
X⊃B

1

|X|k
(Rk+1Kk)(X,ϕ)

)
. (3.28)

Let K̃k(ϕ, ξ) :=
(
1− e−H̃k(ϕ)

)
◦
(
e−Hk(ϕ+ξ)− 1

)
◦Kk(ϕ+ ξ), and let Kk+1 ∈M(Pk+1,X )

be defined by

Kk+1(U,ϕ) :=
∑

X∈Pk(U)

χ(X,U) exp
{
−

∑

B∈Bk(U\X)

H̃k(B,ϕ)
} ˆ

X
K̃k(X,ϕ, ξ) dµk+1(ξ)

(3.29)
for any connected U ∈ P ′, with

χ(X,U) :=

{ |{B∈Bk(X) : B∗=U}|
|X| if X ∈ Sk(ΛN ),

1lU=X if X ∈ Pk(ΛN ) \ Sk(ΛN ),

and by the corresponding product over connected components for any non-connected U .
Then Kk+1 ∈M(Pk+1,X ), it factors, and

Rk+1(e−Hk ◦Kk)(ΛN , ϕ) = (e−Hk+1 ◦Kk+1)(ΛN , ϕ).

3.6 Auxiliary Results

The purpose of this section is to give some technical lemmas (without proof), that will
be used in the sequel.
Proposition 3.6.1. Suppose that

‖Dk
1D

l
2F (x, y)(ẋ, . . . , ẋ, ẏ, . . . , ẏ)‖s ≤ C1‖ẋ‖ks+2l‖ẏ‖lY

‖Dk
1D

l
2G(x, y)(ẋ, . . . , ẋ, ẏ, . . . , ẏ)‖s ≤ C1‖ẋ‖ks+2l‖ẏ‖lY

for all 1 ≤ k + l ≤ m. Let H : X × Y → X be defined by H(x, y) = G(F (x, y), y). Then
there exists a constant C3 such that

‖Dk
1D

l
2H(x, y)(ẋ, . . . , ẏ, ẏ, . . . , ẏ)‖s ≤ C3‖ẋ‖ks+2l‖ẏ‖lY

for all 1 ≤ k + l ≤ m.

Proof. A proof of the above claim can be found in [2].
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Proposition 3.6.2 (Implicit Function Theorem with loss of regularity). Let r ∈ N, r ≥ 9
be fixed and let Ξ be a Banach space with a norm ‖·‖ and {Xs}s=r,r−2,r−4,r−6, a sequence
of Banach spaces with norms ‖ · ‖Xs such that Xs ⊂Xs−2 (and ‖x‖Xs ≥ ‖x‖Xs−2 for
each x ∈Xs), s = r, r−2, r−4 . Further, let F : BΞ(ρ1)×BXr(ρ2) ⊂ Ξ×Xr →Xr be
a C3 map such that F (0, 0) = 0, and suppose that, with positive constants C0, C`,j <∞,
and γ ∈ (0, 1/2), the following bounds are valid for each ξ ∈ BΞ(ρ1) and x ∈ BXr(ρ2):

‖F (ξ, 0)‖Xs ≤ C0‖ξ‖,
∥∥∥∂F (ξ,x)

∂x

∣∣∣
x=0

∥∥∥
L(Xs,Xs)

≤ 1− γ,

and ∥∥∥∂
`+jF (ξ,x)

∂`ξ∂jx
(ξ̇, . . . , ξ̇, ẋ, . . . , ẋ)

∥∥∥
Xs−2`

≤ C`,j‖ξ̇‖`‖ẋ‖jXs

for s = r, r − 2, r − 4, r − 6, ` = 0, 1, . . . ,min(3, bs/2c) and j = 0, 1, 2, 3. Then there
exists ρ > 0 and a unique f : BΞ(ρ)→Xr so that

F (ξ,f(ξ)) = f(ξ).

Moreover, f ∈ C1(BΞ(ρ),Xr−2) ∩ C2(BΞ(ρ),Xr−4) ∩ C3(BΞ(ρ),Xr−6) and

‖Df(ξ)(ξ̇)‖Xr−2 ≤ C‖ξ̇‖

and
‖D2f(ξ)(ξ̇, ξ̇)‖Xr−4 ≤ C‖ξ̇‖2

with a constant C depending only on the constants γ, C0, and C`,j.

Proof. The proof of the above claim can be found in [2].

Proposition 3.6.3 (Evaluation of the boundary terms). There exist a constant c < 3
√

2
such that for any v : Z→ R and any m ∈ N, m > 1, one has

v(−m)2 + v(m+ 1)2 ≤ c

2m+ 1

m∑

x=−m
v(x)2 + c(2m+ 1)

m∑

x=−m
∂v(x)2.

Proof. The proof is contained in [2].

Proposition 3.6.4. Let X ∈ Pk and u : U4(X) → R. With the constant c from
Proposition 3.6.3,

(a) Lk
∑

x∈∂X |∇v(x)|2 ≤ 2c
(∑

x∈X |∇v(x)|2 + L2k
∑

x∈U1(X) |∇2v(x)|2
)
,

(b) L3k
∑

x∈∂X |∇2v(x)|2 ≤ 2c
(
L2k

∑
x∈X |∇2v(x)|2 + L4k

∑
x∈U1(X) |∇3v(x)|2

)
, and

(c) L5k
∑

x∈∂X |∇3v(x)|2 ≤ 2c
(
L4k

∑
x∈X |∇3v(x)|2 + L6k

∑
x∈U1(X) |∇4v(x)|2

)

Proof. The proof is contained in [2].
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Proposition 3.6.5. Let u, v : X ∪ ∂X → R and X ∈ Pk. With the constant c from
Proposition 3.6.3 and any η > 0, we get

∣∣∑

x∈X
∇u(x)∇v(x)

∣∣ ≤ η(1 + cd)

2L2k

∑

x∈X∪∂−X
v(x)2 +

Lk

2η

∑

x∈∂−X
|∇u(x)|2 +

cη

2

∑

x∈X
|∇v(x)|2

+
L2k

2η

∑

x∈X∪∂−X
|∇2u(x)|2.

(3.30)

3.7 Properties of the Renormalization Transformation

As in [2], we introduce the maps

T k : M0(Bk,X )×M(Pk,X )× E →M0(Bk+1,X )×M(Pk+1,X ),

k = 0, 1, . . . , N − 1, by T k(Hk,Kk, q) = (Hk+1,Kk+1).

For any q, the origin (H,K) = (0, 0) is a fixed point of the transformation T .

The parameters L, h,A in the definition of the norms will be chosen later. Let Uδ ⊂
M0(B,X )×M(P,X )× E be defined by

Uδ := {(H,K, q) ∈M0(B,X )×M(P,X )× E : ‖H‖0 < δ, ‖K‖r0 < δ, ‖q‖ < δ},

and

Oδ := {(H ′,K ′) ∈M ′0(B,X )×M ′(P,X ) : ‖H ′‖0 < δ, ‖K ′‖r0 < δ}.

For a linear operator L between Banach spaces, we denote by ‖L‖ the standard in-
duced norm. The corresponding norms will be indicated as ‖L‖k,r;k+1,0, or simply
‖L‖r;0(whenever it is clear from the context), for a linear mapping L : M(P,X ) →
M0(B,X ).

In the following, we extend [2, Proposition 4.3].
Proposition 3.7.1 (Linearization of T ). Given the constants h, L, and sufficiently
large A, there exist δ > 0 such that T (Uδ) ⊂ Oδ and T is differentiable on Uδ. The first
derivatives at H = 0 and K = 0 have a triangular form,

DT (0, 0, q)(Ḣ, K̇) =

(
A(q) B(q)

0 C(q)

)(
Ḣ

K̇

)
,

with

(A(q)Ḣ)(B′, ϕ) =
∑

B∈B(B′)

[
Ḣ(B,ϕ) +

∑

x∈B

d∑

i,j=1

∇iḋi,j(x)∇∗jC(q)
k+1(x, x)

]
, (3.31)

(B(q)K̇)(B′, ϕ) = −
∑

B∈B(B′)

ΠT2

∑

X∈S
X⊃B

1

|X|
(ˆ

X
K̇(X,ϕ+ ξ) dµ

(q)
k+1(ξ)

)
, (3.32)
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and

(C(q)K̇)(U,ϕ) =
∑

B:B∗=U

(
1−ΠT2

) ∑

Y ∈S
Y⊃B

1

|Y |
(ˆ

X
K̇(Y, ϕ+ ξ) dµ

(q)
k+1(ξ)

)

+
∑

X∈Pc\S
X=U

ˆ

X
K̇(X,ϕ+ ξ) dµ

(q)
k+1(ξ).

(3.33)

Moreover, there exist constants θ ∈ (0, 1) and M < ∞ such that the following bounds
on the norms of operators A(q), B(q), and C(q) hold independently on N and k and for
‖q‖ < δ:

‖C(q)‖r;r ≤ θ, ‖A(q)−1‖0;0 ≤
1√
θ
, and ‖B(q)‖r;0 ≤M, (3.34)

r = 1, . . . , r0. The operators A(q), B(q), and C(q) are 3-times differentiable with respect
to q and there exists a constant C <∞ such that

‖∂`qA(q)Ḣ‖0 ≤ C‖Ḣ‖0, ‖∂`qB(q)K̇‖0 ≤ C‖K̇‖r, ‖∂`qC(q)K̇‖r−2` ≤ C‖K̇‖r, (3.35)

for any ` = 1, 2, 3 and any r ≥ 2`.

Proof. The bounds in (3.34) and (3.35) are very involved and will be the main purpose
of § 3.9. Here, we only show the validity of the linearization formula, namely the validity
of (3.31), (3.32) and (3.33). Starting from (3.27) and (3.28), one expands the linear and
quadratic terms in Ḣ(B,ϕ+ ξ) into the sum of the terms depending on ϕ, ξ, and the
term proportional to Q̇(ϕ, ξ). Given that the integral of the terms linear in ξ vanishes,
one has that

ˆ

X

∑

x∈B

∑

i,j

ḋi,j(x)∇iξ∇jξ dµq(ξ) =
∑

x∈B

∑

i,j

ḋi,jξ(x+ ei)ξ(x+ ej) + di,j(x)ξ(x)ξ(x)

−
∑

x∈B

∑

i,j

di,j(x)ξ(x+ ei)ξ(x)− di,j(x)ξ(x+ ej)ξ(x)

=
∑

x∈B

∑

i,j

ḋi,j(C(x+ ei, x+ ej)− C(x+ ei, x)− (C(x, x)− C(x, x+ ej)))

=
∑

x∈B

∑

i,j

ḋi,j∇(1)
ei ∇(2) ∗

e2 C(x, x),

where ∇(1) and ∇(2) denotes the derivative on the first variable and on the second
variable, respectively.

The formula (3.32) follows directly from the linearization of the second term on the right
hand side of (3.28). When computing C(q), we first observe that only linear terms in K̃
can contribute. Taking Ḣ = 0 and

H̃(B,ϕ) = −ΠT2

∑

X∈S
X⊃B

1

|X|(RK̇)(X,ϕ)
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3 Strict convexity of the surface tension

and K̃(ϕ, ξ) =
(
1− e−H̃(ϕ)

)
◦K(ϕ+ ξ), one has that

C(q)(K̇)(U,ϕ) =
∑

Y ∈S
χ(Y,U)

ˆ

X
DK̃(0)(K̇)(Y, ϕ, ξ) dµk+1(ξ)

+
∑

X∈Pc\S
X=U

ˆ

X
DK̃(0)(K̇)(X,ϕ, ξ) dµk+1(ξ).

Denoting by

χ(Y, U) =
∑

B∈Y
B∗=U

1

|Y |

and noticing that

DK̃(0)(K̇)(B,ϕ, ξ) = K̇(B,ϕ+ ξ)−De−H̃(0)(K̇)(B,ϕ) for Y = B,

DK̃(0)(K̇)(Y, ϕ, ξ) = K̇(Y, ϕ+ ξ) for Y 6= B,

and

De−H̃(0)(K̇)(B,ϕ) = ΠT2

∑

Y ∈S
Y⊃B

1

|Y |
(
RK̇

)
(Y, ϕ),

one obtains (3.33).

Given the linear dependence of T in H, one has that

T (H,K, q) = (A(q)H +B(q)K,S(H,K, q)), (3.36)

with DS(0, 0, q)(K̇) = C(q)K̇. Given that (0, 0) is a fixed point for each q, namely
T (0, 0, q) = (0, 0), we have that

∂T (0, 0, q)

∂q
= 0

and thus
∂S(0, 0, q)

∂q
= 0.

In order to apply the fixed point theorem, one needs to understand the smoothness of
the nonlinear part S. The proof of the following Proposition, will be given in § 3.9 and
is an extension of [2, Proposition 4.4].
Proposition 3.7.2 (Smoothness of expanding part S). Under the conditions of Propo-
sition 3.7.1 and for any (H,K, q) ∈ Uδ, we have

∥∥∥ ∂`+j1+j2S

∂Hj1∂Kj2∂q`
(Ḣ, . . . , K̇, . . . , q̇, . . . )

∥∥∥
r−2`

≤ C‖Ḣ‖j10 ‖K̇‖j2r ‖q̇‖`.

Here r = 1, . . . , r0 and ` ≤ 2r.
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3.8 Fine tuning of the initial conditions

As in [2], we are going to choose q ∈ E such that the final Ideal Hamiltonian HN+1

vanishes.

We introduce the Banach spaces

Zr =
{
Z = (H0, H1,K1, . . . ,HN−1,KN−1,KN ) : Hk ∈M0(Bk,X ),Kk ∈M(Pk,X )

}

endowed with the norms

‖Z‖Zr = max
k∈{0,...,N−1}

1

ηk
‖Hk‖k,0 ∨ max

k∈{1,...,N}
α

ηk
‖Kk‖k,r

for r = 1, . . . , r0 and with suitable parameters η ∈ (0, 1) and α ≥ 1 to be chosen later.
As in [2], the terms K0 and HN are not present in Z ∈ Zr, as the latter is set to be 0
and the former is singled out as an initial condition for a separate treatment.

Let us define the map

T : Y × E ×Zr → Zr

by

T (K, q, Z) := Z,

where Z is given by

Hk := A−1
k

(
Hk+1 −BkKk

)
,

Kk+1 := CkKk + gk+1(Hk,Kk),

where gk+1(Hk,Kk) := S(Hk,Kk, q) − CkKk is the nonlinear part of the map S and
k = 0, . . . , N − 1, with initial HN = 0 and K0 given by

K0(X,ϕ) := K(q)(X, q) := exp
{

1
2

∑

x∈X

d∑

i,j=1

qi,j(x)∇iϕ(x)∇jϕ(x)
}
K(X,ϕ).

Given K and q, then the 2N -tuple Z is a fixed point of T , namely it holds

T (K, q, Ẑ(K, q)) = Ẑ(K, q). (3.37)

Theorem 3.8.1. Let the constants h, L, A, and δ be chosen so that the Propositions 3.7.1
and Proposition 3.7.2 are valid. Then, there exist constants α and η determining the norm
on Zr and a constant ρ > 0 so that there exists a unique C3-function Ẑ : BY ×E(ρ)→ Zr

solving the equation (3.37) with bounds on derivatives that are uniform in N .

The proof of the above statement will be given in § 3.9.
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3.9 Proofs

In the following lemma, we extend [2, Lemma 5.1].
Lemma 3.9.1. Let ω ≥ 1 + 18

√
2, N ∈ N, N ≥ 1, and L ∈ N odd, L ≥ 3. Given

k ∈ {0, . . . , N − 1}, let K ∈ M(Pk,X ), and let F ∈ M(Bk,X ). Then, the norms ‖ ·
‖k,X,r, ‖ · ‖k:k+1,X,r, r ∈ {1, . . . , r0}, and |‖·‖|k,X , X ∈ Pk, satisfy the following conditions:

(i) ‖K(X)‖k,X,r ≤
∏
Y ∈C(X) ‖K(Y )‖k,Y,r,

(iia) ‖FXK(Y )‖k,X∪Y,r ≤
∏
B∈Bk(X) |‖F‖|k‖K(Y )‖k,Y,r

(iib) ‖FXK(Y )‖k:k+1,X∪Y,r ≤
∏
B∈Bk(X) |‖F‖|k‖K(Y )‖k:k+1,Y,r for X,Y ∈ Pk disjoint,

(iii) |‖1l(B)‖|k,B = 1 for B ∈ Bk,

(iv) There exist a constant h0 = h0(d, ω) depending only on the dimension d and value
of the parameter ω, such that for any h ≥ L(d+η(d))/2h0 and X ∈ Pk, we have

‖(Rk+1K)(X)‖k:k+1,X,r ≤ 2|X|k‖K(X)‖k,X,r.

Proof. (i) For every F1, F2 ∈M(Pk,X ) and X1, X2 ∈ Pk (not necessarily disjoint), we
have that

|F1(X1)(ϕ)F2(X2)(ϕ)|k,X1∪X2,r ≤ |F1(X1)(ϕ)|k,X1,r|F2(X2)(ϕ)|k,X2,r. (3.38)

Indeed, let us remind the discrete product rule

∇i(fg) = ∇if Si g + Si f∇ig,
where

(Si f)(x) := 1
2f(x) + 1

2f(x+ ei).

The operations Si commute with all discrete derivatives. Using multiindex notation

∇α :=
d∏

i=1

∇αii and Sα :=
d∏

i=1

Sαii ,

we get the Leibniz rule

∇γ(fg) =
∑

α+β=γ

cα,β
(
Sα∇βf

)(
Sβ∇αg

)
,

with suitable constants cα,β. Hence,

∇α(F1(X1, ϕ)F (X2, ϕ)) =
∑

γ1+γ2=α

cγ1,γ2(Sγ1 ∇γ2F (X,ϕ))(Sγ2 ∇γ2F2(X,ϕ)).

Moreover, given that the Taylor series of the product is the product of the Taylor series,
one has that

|F1(X1)(ϕ)F2(X2)(ϕ)|k,X1∪X2,r ≤
∑

γ1+γ2=β

| Sγ1 ∇γ1F1(X1)(ϕ)|k,X1∪X2,r| Sγ2 ∇γ2F2(X2)(ϕ)|k,X1∪X2,r

≤
( ∑

γ1≤β
|∇γ1F1(X1)(ϕ)|k,X1∪X2,r

)( ∑

γ2≤β
|∇γ2F2(X2)(ϕ)|k,X1∪X2,r

)
.

(3.39)
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Given that for any ϕ̇ ∈ XN , one has that |ϕ̇|k,X1
≤ |ϕ̇|k,X1∪X2

, then

sup
|ϕ̇|k,X1∪X2

≤1
|DsF1(X1)(ϕ)(ϕ̇, . . . , ϕ̇)| ≤ sup

|ϕ̇|k,X1
≤1
|DsF1(X1)(ϕ)(ϕ̇, . . . , ϕ̇)|.

Hence, given that wXk (τxϕ) = wXk (ϕ) for every ϕ, one has that

|F1(X1)(ϕ)|k,X1∪X2,r ≤ |F1(X1)(ϕ)|k,X1,r

and similarly for F2, thus (3.38).

Iterating (3.38), we can use it for K(X,ϕ) =
∏
Y ∈C(X)K(Y )(ϕ), hence

|K(X,ϕ)|k,X,r ≤
∏

Y ∈C(X)

|K(Y )(ϕ)|k,Y,r.

To conclude, it suffices to observe that

wXk (ϕ) =
∏

Y ∈C(X)

wYk (ϕ).

In the above formula, we use the fact that the partition X = ∪Y ∈C(X)Y splits both X
and its boundary ∂X into disjoint components: Y1, Y2 ∈ C(X), Y1 6= Y2 implies that
dist(Y1, Y2) > Lk and thus Y1 ∩ Y2 = ∅, ∂Y1 ∩ ∂Y2 = ∅, and ∂X = ∪Y ∈C(X)∂Y .

(iia) Using (iterated) (3.38) for
∏
B∈Bk(X) F (B)(ϕ)K(Y )(ϕ) , we have

|(FXK(Y )
)
(ϕ)|k,X∪Y,r ≤

∏

B∈Bk(X)

|F (B)(ϕ)|k,B,r|K(Y )(ϕ)|k,Y,r.

The right hand side in the above formula can be bounded by

∏

B∈Bk(X)

|‖F (B)‖|k,B‖K(Y )‖k,Y,r
∏

B∈Bk(X)

WB
k (ϕ)wYk (ϕ).

Thus, in order to conclude the proof of (ii), it is enough to verify that

∏

B∈Bk(X)

WB
k (ϕ)wYk (ϕ) ≤ wX∪Yk (ϕ). (3.40)

Using the definitions of the strong and weak functions, we have that (3.40) is satisfied if

Lk
∑

x∈∂Y
Gk,x(ϕ) ≤

∑

x∈X

(
2dωgk,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
+ Lk

∑

x∈∂(X∪Y )

Gk,x(ϕ). (3.41)

Indeed, it suffices to notice that each y ∈ ∂Y \ ∂(X ∪ Y ) is necessarily contained in ∂B
for some B ∈ Bk(X) (a block on the boundary of X touching Y ). Thus, it suffices to
show that for each such B one has

Lk
∑

x∈∂B
Gk,x(ϕ) ≤

∑

x∈B

(
2dωgk,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
. (3.42)
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Applying Proposition 3.6.4 (a), we have

h2Lk
∑

x∈∂B
Gk,x(ϕ) ≤ 2c

(∑

x∈B
|∇ϕ(x)|2 + L2k

∑

x∈U1(B)

|∇2ϕ(x)|2
)

+ Lk
∑

x∈∂B

3∑

s=2

L(2s−2)k|∇sϕ(x)|2

≤ h22c
∑

x∈B
Gk,x(ϕ) + h22cLk

∑

z∈∂B
gk,z(ϕ),

where z is any point z ∈ B. Given that the size of the set ∂B is at most (Lk + 2)d −
(Lk − 2)d ≤ 2dL(d−1)k once 2 ≤ L, one gets the desired bound once

2c ≤ ω − 1.

Given that c < 3
√

2, the above condition is satisfied with the choice of ω.

(iib) The proof is similar, with (3.41) replaced by

3Lk
∑

x∈∂Y
Gk,x(ϕ) ≤

∑

x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
+ 3Lk

∑

x∈∂(X∪Y )

Gk,x(ϕ)

(3.43)
that, in its turn, needs (3.42) in a slightly stronger version,

3Lk
∑

x∈∂B
Gk,x(ϕ) ≤

∑

x∈B

(
(2dω − 1)gk:k+1,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
.

The above is true whenever
6c ≤ ω − 1.

The claim (iii) follows immediately from the definition.

(iv) The integration and the differentiation implicitly contained in the norm ‖(Rk+1K)(X)‖k:k+1,X,r

can be interchanged. Namely, recalling the definition (3.19), we have

∣∣∇αDs

ˆ

K(ϕ+ ξ) dµk+1(ξ)
∣∣k+1,X ≤

ˆ

|∇αDsK(ϕ+ ξ)|k+1,X dµk+1(ξ).

It follows directly from the definition that

|ϕ̇|k,X ≤ L−
d
2 |ϕ̇|k+1,X , (3.44)

we get
|∇αDsK(X,ϕ+ ξ)|k+1,X ≤ |∇αDsK(X,ϕ+ ξ)|k,X .

(For s = 0 this is trivial since |∇αK(X,ϕ+ ξ)|k,X = |∇αK(X,ϕ+ ξ)| actually does not
depend on k.) Thus,

‖(Rk+1K)(X)‖k:k+1,X,r ≤
∑

|α|≤3

sup
ϕ

ˆ

|∇αK(X,ϕ+ ξ)|k,X,rw−Xk:k+1(ϕ) dµk+1(ξ).

Evaluating now the integrand |K(X,ϕ+ ξ)|k,X,r above by ‖K(X)‖k,X,rwXk (ϕ+ ξ), the
proof of the needed bound amounts to showing that

ˆ

XN

wXk (ϕ+ ξ) dµk+1(ξ) ≤ 2|X|wXk:k+1(ϕ). (3.45)

94



3.9 Proofs

To conclude it is enough to apply Lemma 3.9.2

The next lemma is contained in [2, Lemma 5.2].
Lemma 3.9.2 ([2, Lemma 5.2]). Let ω ≥ 1 + 6

√
2. There exist a constant h0 = h0(d, ω)

such that for any N ≥ 1, L odd, L ≥ 5, h ≥ L(d+η(d))/2h0, k ∈ {0, . . . , N − 1},
K ∈M(Pk,X ), and any X ∈ Pk, we have

ˆ

XN

wXk (ϕ+ ξ) dµk+1(ξ) ≤ 2|X|kwXk:k+1(ϕ). (3.46)

Proof. We follow the original proof and prove the bound (3.46) in three steps:

(1) Expanding the terms (∇ϕ(x) +∇ξ(x))2 in
∑

x∈X Gk,x(ϕ+ ξ) and using the Cauchy’s
inequality (a + b)2 ≤ 2a2 + 2b2 for the remaining terms (those that are preceded by
a power in L that allows to absorb the resulting pre-factors while passing to the next
scale), we have

h2
∑

x∈X
Gk,x(ϕ+ ξ) ≤

∑

x∈X

(
|∇ϕ(x)|2 + |∇ξ(x)|2

)
+ 2
∣∣∑

x∈X
∇ϕ(x)∇ξ(x)

∣∣

+ 2
∑

x∈X

(
L2k|∇2ϕ(x)|2 + L2k|∇2ξ(x)|2 + L4k|∇3ϕ(x)|2 + L4k|∇3ξ(x)|2

)
.

(3.47)

The other terms in wXk (ϕ+ ξ), can be estimated by

gk,x(ϕ+ ξ) ≤ 2gk,x(ϕ) + 2gk,x(ξ)

and
LkGk,x(ϕ+ ξ) ≤ 2LkGk,x(ϕ) + 2LkGk,x(ξ).

(2) In view of Proposition 3.6.5, we bound the mixed term 2
∣∣∑

x∈X ∇ϕ(x)∇ξ(x)
∣∣ by

L2k
∑

x∈X∪∂−X
|∇2ϕ(x)|2 + Lk

∑

x∈∂−X
|∇ϕ(x)|2 +

1 + cd

L2k

∑

x∈X∪∂−X
ξ(x)2 + c

∑

x∈X
|∇ξ(x)|2.

(3.48)

The sum over X in the first term above will be estimated by the regulator gk:k+1,x(ϕ) of
the next generation. Namely, combining, for any x ∈ X, its terms with the corresponding
ϕ-terms on the second line in (3.47), we have

3L2k|∇2ϕ(x)|2 + 2L4k|∇3ϕ(x)|2 ≤ 3L−2L2(k+1)|∇2ϕ(x)|2 + 2L−4L4(k+1)|∇3ϕ(x)|2

≤ 3L−2h2gk:k+1,x(ϕ),

where we are assuming that
2L−2 ≤ 3. (3.49)

The remaining sum over ∂−X \ X, together with the second term in (3.48), will be
absorbed into the sum

∑
x∈∂X Gk,x(ϕ). Collecting now all the ϕ-terms in logwk(ϕ+ ξ)

with expanded mixed term, we get
∑

x∈X
2d+1ωgk,x(ϕ) +

∑

x∈X
ωGk,x(ϕ) + 3ωL−2

∑

x∈X
gk:k+1,x(ϕ) + 3Lk

∑

x∈∂X
Gk,x(ϕ).
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This is bounded by

logwXk:k+1(ϕ) =
∑

x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + ωGk,x(ϕ)

)
+ 3Lk

∑

x∈∂X
Gk,x(ϕ)

once
(3 + 2d+1)ω ≤ (2dω − 1)L2. (3.50)

This condition, including also (3.49), are satisfied once L ≥ 5.

Turning now to the ξ-terms in h2 logwk(ϕ+ ξ) with expanded mixed term, we get the
bound

∑

x∈X
h22d+1ωgk,x(ξ) +

∑

x∈X
ω
(
(1 + c)|∇ξ(x)|2 + 2L2k|∇2ξ(x)|2 + 2L4k|∇3ξ(x)|2

)

+ ω(1 + cd)L−2k
∑

x∈X∪∂−X
ξ(x)2 + 2Lk

∑

x∈∂X
h2Gk,x(ξ).

Bounding the last term with the help of Proposition 3.6.4, one gets

∑

x∈X
h22d+1ωgk,x(ξ) +

∑

x∈U1(X)

(
ω(1 + cd)L−2kξ(x)2 + (ω(1 + c) + 4c)|∇ξ(x)|2

+ (2ω + 8c)L2k|∇2ξ(x)|2 + (2ω + 8c)L4k|∇3ξ(x)|2 + 4cL6k|∇4ξ(x)|2
)
.

Finally, the term gk,x(ξ) containing l∞-norm of ∇sξ, s = 2, 3, 4, is bounded with the
help of the Sobolev inequality from Proposition 2.6.1. Taking B∗ for the Bn with
n = (2d+1 − 1)Lk, one gets

‖∇sξ‖2l∞(B∗) ≤ C2(2d+1 − 1)2 1

Lkd

M∑

l=0

L2lk
∑

x∈B∗
|∇l∇sξ|2(x),

where M = bd+2
2 c is the integer value of d+2

2 and in computing the pre-factor we took

into account that 2bd+2
2 c − d ≤ 2. Notice that the constant C depends (also through M)

only on the dimension d. Thus, we have that

∑

x∈X
h22d+1ωgk,x(ξ) ≤ 2d+1ω

∑

x∈X

4∑

s=2

L(2s−2)kC2(2d+1 − 1)2 1

Lkd

M∑

l=0

L2lk
∑

y∈B∗x
|∇l∇sξ|2(x)

≤ 2d+1ω2d+1C2(2d+1 − 1)d+23L−2k
M+4∑

l=2

L2lk
∑

y∈X∗
|∇lξ|2(x),

where in the last inequality we took into account that each point y ∈ X∗ may occur in
B∗x for at most (2d+1 − 1)dLdk points x ∈ X.

Thus we have shown that, if one supposes (3.49), (3.50), then it holds

∣∣∣
ˆ

XN

wXk (ϕ+ξ) dµk+1(ξ)
∣∣∣ ≤ wXk:k+1(ϕ)

ˆ

XN

exp
(
h−2 C

L2k

∑

x∈X∗

M+4∑

l=0

L2lk|∇lξ(x)|2
)

dµk+1(ξ)

(3.51)
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with the constant

C = max{ω(1 + cd), ω(1 + c) + 4c, 2(ω + 8c) + 32d+1ωC2(2d+1 − 1)d+2}

that depends on ω is chosen and the dimension d.

(3) What remains is to bound the Gaussian integral in (3.51) by 2|X|. Let ηX∗ be a
cut-off function such that spt ηX∗ ⊂ (X∗)∗, ηX∗ = 1 on X∗, and

∣∣∇lηX∗
∣∣ ≤ ΘL−lk.

Then the integral in (3.51) is bounded by

ˆ

XN

exp
(1

2
κ(Bkξ, ξ)

)
dµk+1(ξ),

where κ = 2Ch−2 and

(Bkξ, ξ) =
1

L2k

∑

x∈ΛN

M+4∑

l=0

L2lk
∣∣ηX∗(x)(∇lξ)(x)

∣∣2. (3.52)

Thus,

Bk = B(0)

k +
M+4∑

l=1

B(l)

k

with

B(l)

k ξ =
1

L2k
(∇l)∗η2

X∗∇lξ, l = 1, . . . ,M + 4, and B(0)

k ξ =
1

L2k
Π(η2

X∗ξ),

where Π : VN → XN is the projection (Πϕ)(x) = ϕ(x)− 1
|ΛN |

∑
y∈ΛN

ϕ(y).

A formal Gaussian calculation with respect to the measure µk+1 with the covariance
operator Ck+1 yields

ˆ

XN

exp
(1

2
κ(Bkξ, ξ)

)
dµk+1(ξ) =

(det(C−1
k+1 − κBk)

det(C−1
k+1)

)− 1
2

= det
(

Id−κC
1
2
k+1BkC

1
2
k+1

)− 1
2
.

In order to justify the above formula, one derives a bound on the spectrum σ(C
1
2
k+1BkC

1
2
k+1).

The next lemma is contained in [2].

Lemma 3.9.3 ([2, Lemma 5.3]).

(i) The operators C
1
2
k+1BkC

1
2
k+1 are symmetric and positive definite.

There exist constants M0 and M1 that depend only on the dimension d such that for any
N and any k = 1, . . . , N,

(ii) supσ(C
1
2
k+1BkC

1
2
k+1) ≤M0L

d+η(d) and

(iii) Tr
(
C

1
2
k+1BkC

1
2
k+1

)
≤M1|X|kLη(d).
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3 Strict convexity of the surface tension

Postponing momentarily the proof of the Lemma, we observe that for κ < 1
2M0Ld+η(d)

the eigenvalues λj , j = 1, . . . , LNd− 1 of κC
1
2
k+1BkC

1
2
k+1 lie between 0 and 1

2 . The formal
Gaussian calculation is thus justified and

log det
(

Id− κC
1
2
k+1BkC

1
2
k+1

)
≥
∑

i

log(1− λi) ≥
∑

i

−2λi = −2Tr
(
κC

1
2
k+1BkC

1
2
k+1

)

≥ −2M1L
η(d)κ|X|k = −4CM1L

η(d)h−2|X|k.
Hence

det
(

Id− κC
1
2
k+1BkC

1
2
k+1

)− 1
2 ≤ e

4CM1|X|k
h2 (3.53)

and the Lemma 3.9.2 follows with h0(d, ω)2 = 4C max
(
M0,M1

log 2
5d

)
.

3.9.1 Smoothness

Let us now proceed by proving Proposition 3.7.2, which asserts the smoothness of the
renormalization map

S : M0(B,X )×M(Pc,X )× Rd×dsym →M((P ′)c,X ).

To simplify notation, we denote by B = Bk, P = Pk, and P ′ = Pk+1 where k fixed. Let
us recall the explicit formula (3.29) for Kk+1 = K ′,

K ′(U,ϕ) =
∑

X∈P(U)

χ(X,U)ĨU\X(ϕ)

ˆ

X

(
J̃(ϕ) ◦ L(ϕ+ ξ)

)
(X) dµk+1(ξ)

with Ĩ = e−H̃ , J̃ = 1− Ĩ, L = (I − 1) ◦K, and I = e−H .

As in [2], we split the map S into a composition of a series of maps and prove the
smoothness of each of them. Namely,

S0 : (M(B,X ), |‖·‖|k)× (M(B,X ), |‖·‖|k)× (M(Pc,X ), ‖ · ‖(A)
k:k+1,r)→ (M((P ′)c,X ), ‖ · ‖(A

′)
k+1,r),

E : (M0(B,X ), ‖ · ‖k,0)→ (M(B,X ), |‖·‖|k),
S1 : (M(Pc,X ), ‖ · ‖(A)

k,r )× E , ‖ · ‖)→ (M(Pc,X ), ‖ · ‖(A)
k:k+1,r),

S2 : (M0(B,X ), ‖ · ‖k,0)× (M(Pc,X ), ‖ · ‖(A)
k,r )× (E , ‖ · ‖)→ (M0(B,X ), ‖ · ‖k,0), and

S3 : (M(B,X ), |‖·‖|k)× (M(Pc,X ), ‖ · ‖(A)
k,r )→ (M(Pc,X ), ‖ · ‖(A)

k,r )

which are defined by

S0(Ĩ , J̃ , L̃)(U,ϕ) =
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)ĨU\(X1∪X2)(ϕ)J̃X1(ϕ)L̃(X2, ϕ),

E(H̃) = exp{−H̃} = Ĩ ,

S1(L, q)(X,ϕ) = (R(q)L)(X,ϕ) =

ˆ

X
L(X,ϕ+ ξ) dµ

(q)
k+1(ξ)), X ∈ Pc,

S2(H,K, q)(B,ϕ) = ΠT2

(
(R(q)H)(B,ϕ)−

∑

X∈S
X⊃B

1
|X|(R

(q)K)(X,ϕ)
)
, and

S3(I,K) = (I − 1) ◦K.

(3.54)
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Hence,

S(H,K, q) = S0

(
E(S2(H,K, q)), 1− E(S2(H,K, q)), S1(S3(E(H),K), q)

)
.

In the next subsections, we will show that all maps considered are smooth and that they
satisfy certain bounds, hence showing that the map S is smooth.

In the next proposition, we extend [2, Proposition 5.6].
Proposition 3.9.4. Let S1 : M(Pc,X )×E →M((P)c,X ) be the map defined in (3.54),
restricted to Bρ1 × Bρ2. Then, there exist a constant h0 = h0(d, ω) depending only on
the dimension d and value of the parameter ω, such that for any h ≥ L(d+η(d))/2h0 and
X ∈ Pk, one has that

‖S1(L, q)‖(A/2)
k:k+1,r ≤ 22d‖L‖(A)

k,r .

Moreover,

‖Dj
LD

l
qS1(L, q)(L̇, . . . , L̇, q̇, . . . , q̇)‖A/2k:k+1,r−2l ≤ C‖L̇‖j‖q‖l, for r = 1, . . . , r0 and 2l ≤ r

for all (L, q) ∈ Bρ1 ×Bρ2.

Proof. The first part of the statement and the smoothness with respect to K are
immediate consequences of the definitions and Lemma 3.9.1. Thus, we will only show
the smoothness with respect to q. Fix X and ϕ. With simple calculations, one has that

∂qS1(K, q)|t=0 =
1

2

ˆ

X
Tr
[
D2
ξK(X,ϕ+ ξ) ∂qC

q
k+1(q̇)

]
dµq(ξ),

where the symbol Tr is used to denote the usual trace operator. Using the finite range
decomposition, one has that ‖∂qCqk+1(q̇)‖ ≤ CLη̃(d)‖q̇‖.
Moreover, it is immediate to notice that |∇αDs

ϕK(X,ϕ + ξ)|k+1,X ≤ |∇αDs
ϕK(X,ϕ +

ξ)|k,X , thus

||∂qS1(K, q)(X)||k:k+1,X,r−2 ≤ sup
|ϕ|k,X≤1

ˆ

X

∣∣∣Tr
(
D2
ξK(X,ϕ+ ξ)∂qC

q(q̇)
)∣∣∣
k,X,r−2

wk:k+1,X(ϕ) dµq(ξ),

hence the right hand side of the previous formula can be estimated from above by

Cr(r − 1)

ˆ

X

∣∣∣K(X,ϕ)
∣∣∣
k,X,r

Lη̃(d)|q̇|2 ≤ ‖K‖k,X,r‖q̇‖2
ˆ

X
wXk (ϕ+ ξ)wk:k+1(ϕ)−X dµqk(ξ)

≤ Cr(r − 1)2|X|kLη̃(d)/h2‖K‖k,X,r.

From which we get the bound on the first derivative.

For the second and the third derivative, the calculations are similar.

In the next lemma, we extend [2, Lemma 5.7].
Lemma 3.9.5. The linear map F (B, ·) 7→ ΠT2F (B, ·) is bounded, i.e., there exists
C > 0 so that for any F ∈M∗(B,X ) one has

‖ΠT2F (B)‖k,0 ≤ C‖F (B)‖k,B.
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3 Strict convexity of the surface tension

Proof. Let F ∈ M∗(B,X ) and let H(B,ϕ) = ΠT2F (B,ϕ) = H(B, 0) + `(ϕ̇) + Q(ϕ̇).
Then

Ldk|λ| = |H(B, 0)| = |F (B, 0)| ≤ ‖F (B)‖k,B.
Let ϕ̇ be affine on (B∗)∗ (∗-neighbourhood of B∗), i.e.,

ϕ̇ =
d∑

i=1

ηiπi,

where η = (ηi)i=1,...,d ∈ Rd, and πi is the coordinate projection πi(x) = xi for x ∈ Zd.
Then ∇iϕ̇ = ηi and ∇αϕ̇ = 0 on B∗ if |α| ≥ 2.

Hence by the definition of the norms and the definition of the “projection” operator, one
has that,

|
d∑

i,j=1

di,j(x)ηiηj | =
∣∣∣
d∑

i=1

D2F (B, 0)(ηx,i, ϕ̇)
∣∣∣ ≤

∑

i

1

2
|D2F (B, 0)|x,i,k,B|ϕ̇|k,B|ηi|

=
1

2
|D2F (B, 0)|k,Bh−2 max

i∈{1,...,d}
|ηi|2Ldk.

This implies

sup
η
h2
|∑d

i,j=1 di,j(x)ηiηj |
maxi∈{1,...,d} |ηi|2

≤ 1

2
|D2F (B, 0)|k,B,

thus

h2
d∑

i,j=1

|di,j | ≤
d(d+ 1)

2

1

2
|D2F (B, 0)|k,B.

In a similar way, one has that

Ldk
d∑

i=1

aiηi = `(ϕ̇) = DF (B, 0)(ϕ̇) ≤ |DF (B, 0)|k,Bh−1 max
i∈{1,...,d}

|ηi|L
dk
2 ,

thus

hL
dk
2

d∑

i=1

|ai| ≤ |DF (B, 0)|k,B,

which proves the desired claim.

In the next lemma, we extend [2, Lemma 5.8].
Lemma 3.9.6. There exists δ > 0 such that the mapping S2 is smooth in

Uδ :=
{

(H,K, q) ∈M0(B,X )×M(P,X )× E , ‖H‖k,0 < δ, ‖K‖(A)
k,r < δ, ‖q‖E < δ

}

uniformly in k = 1, . . . , N and the derivatives up the order 3 are uniformly bounded in
Uδ i.e.,

‖Di
HD

j
KD

l
qS2(Ḣ, . . . , Ḣ, K̇, . . . , K̇, q̇, . . . , q̇)‖k,0,B ≤

C

h2
Lη̃(d)δ‖Ḣ‖jk,0,B‖K̇‖

j
k,r‖q̇‖lE

j, k, l ∈ {1, 2, 3} with j + k + l = 3 and r ≥ 2l + 3.
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Proof. Given that the map S2 is linear in H and K it is immediate to notice that
D2
HS2 = 0, D2

KS2 = 0 and DHDKS2(H,K, q) = 0.

Let us define

R(B,ϕ) :=
∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
K(X,ϕ+ ξ) dµqk(ξ)

From the definitions one has that

DϕR(X, 0) =
∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
DϕK(X,ϕ+ ξ)

∣∣
ϕ=0

(ϕ̇) dµq(ξ),

D2
ϕR(X, 0) =

∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
D2
ϕK(X,ϕ+ ξ)

∣∣
ϕ=0

(ϕ̇, ϕ̇) dµq(ξ),

and

LN |β|∇βDϕR(X, 0) =
∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
LN |β|∇βDϕK(X,ϕ+ ξ)

∣∣
ϕ=0

(ϕ̇) dµq(ξ),

LN |β|∇βD2
ϕR(X, 0) =

∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
LN |β|∇βD2

ϕK(X,ϕ+ ξ)
∣∣
ϕ=0

(ϕ̇, ϕ̇) dµq(ξ).

Let us estimate only the second term. The first one follows in a similar fashion. For
every ϕ such that |ϕ|k,X ≤ 1, one has that

1

2

∣∣∣D2
ϕR(B,ϕ+ ξ)

∣∣∣
k,X,r

≤ 1

2

∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
|K|k,X,r dµq(ξ)

≤ 1

2

∑

X∈Sk,X⊃B

1

|X|k

ˆ

X
|K|k,X,rwXk (ξ) dµq(ξ).

Recall that
´

X wXk (ξ) dµq(ξ) ≤ 2|X|k and that | {X ∈ Sk : X ⊃ B} | ≤ (3d− 1)2d . Hence
it is enough to use Lemma 3.9.5 to obtain the desired result.

Let us now turn to the estimates with respect to q. Let

F (B,ϕ) =

ˆ

X
F (B,ϕ+ ξ) dµq(t)(ξ),

where the map t 7→ q(t) ∈ E is a C3.

We need estimate

‖ d
l

dtl

∣∣∣
t=0

ΠT2F (B)‖k,0, l = 1, 2, 3

Due to similarity in the calculations, we will estimate only the first derivative.

d

dt

ˆ

X
F (B,ϕ+ ξ) dµq(t)(ξ)

∣∣∣
t=0

=
1

2

ˆ

X

(
Tr[D2

ξF (B,ϕ+ ξ)Ċq(t)
k+1]

)
dµq(t)(ξ)
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3 Strict convexity of the surface tension

Finally, using the Finite Range Decomposition property (cf. Theorem 2.3.1), one has
that

‖Dl
qΠT2F (B)(q)(q̇, . . . , q̇)‖k,0 ≤

C

h2
Lη̃(d)‖F (B)‖k,B,r

whenever r ≥ 2l + 3 and l ≤ 3 uniformly for ‖q‖E ≤ 1/2.

The following lemma is a contained in [2, Proposition 5.8].
Lemma 3.9.7 ([2, Proposition 5.8]). Consider the map

S0 : M(B,X )×M(B,X )×M(P,X )→M((P ′)c,X )

defined in (3.54), restricted to Bρ1(1)×Bρ1 ×Bρ2 ⊂M(B,X )×M(B,X )×M(Pc,X )

with the balls Bρ1 and Bρ2 defined in terms of norms |‖·‖|k and ‖ · ‖(A)
k:k+1,r, and the target

space M((P ′)c,X ) equipped with the norm ‖ · ‖(A)
k+1,r. For any A ≥ 3 and ρ1, ρ2 such that

ρ1 <
1
2A
−1, and ρ2 <

1
2A
−2d ,

the map S0 is smooth and, for any j1, j2, j3 ∈ N, j1, j2, j3 ≤ r0, satisfies the bound

1

j1!

1

j2!

1

j3!

∥∥∥Dj1
1 D

j2
2 D

j3
3 S0(Ĩ , J̃ , L̃)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J,

˙̃
L, . . . ,

˙̃
L)
∥∥∥

(A/3)

k+1,r
≤

≤ (2A)j1+j2
(
2A2d

)j2 |‖İ‖|j1k |‖J̇‖|
j2
k ‖

˙̃
L‖j3k:k+1,r. (3.55)

1

j1!

1

j2!

1

j3!

∥∥Dj1
1 D

j2
2 D

j3
3 S0(Ĩ , J̃ , K̃)

∥∥A/3
k+1,r

≤ (2A)j1+j2(A2d)j3 ||| ˙̃I|||j1 ||| ˙̃J |||j2k |||̇̃K|||k:k+1,r

Proof. Pick U ∈ Pc
k+1. Then

‖S0(Ĩ , J̃ , L̃)(U)‖k+1,U,r ≤
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)|‖Ĩ‖||U\(X1∪X2)|
k |‖J̃‖||X1|

k

(
‖L̃‖k:k+1,r

)|C(X2)
A2d|C(X2)|A−|X2|

≤
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)2|U\(X1∪X2)|(1

2
A−1

)|X1| ∏

Y ∈C(X2)

‖L̃(Y )‖k:k+1,Y,r

≤ 2|U |
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)2−|X1|−|X2|−|C(X2)|A−|X1|−|X2| =: 2|U |kk(A,U).

Thus

‖S0(Ĩ , J̃ , L̃)‖(A/3)

k+1,r = sup
U∈Pc

k+1

2|U |k‖S0(Ĩ , J̃ , L̃)(U)‖k+1,U,rΓA/3(U)

≤ sup
U∈Pc

k+1

2(Ld+1)|U |k+1
(A

3

)|U |k+1k(A,U).
(3.56)

For any c > 1 we have limA→∞ 2(Ld+1)|U |k+1
(
A
3

)(1−c)|U |k+1 = 0, and by an adaption of

[10, Lemma 6.17] we get the claim, i.e. limA→∞ ‖S0(Ĩ , J̃ , L̃)‖(A/3)

k+1,r = 0.
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1

j1!

1

j2!

1

j3!
Dj1

1 D
j2
2 D

j3
3 S0(Ĩ , J̃ , L̃)(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J,

˙̃
L, . . . ,

˙̃
L) =

=
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1∪X2, U)
∑

Y1∈P(U\(X1∪X2)),|Y1|=j1
Y2∈P(X1),|Y2|=j2
J⊂C(X2),|J |=j3

Ĩ(U\(X1∪X2))\Y1(
˙̃
I)Y1 J̃X1\Y2(

˙̃
J)Y2

∏

Z∈C(X2)\I
L̃(Z)

∏

Z∈I

˙̃
L(Z)

(3.57)

Applying Lemma 3.9.1 (iia) and (i) as well as the obvious bounds (3.21) and χ(X1 ∪
X2, U) ≤ 1, we get

1

j1!

1

j2!

1

j3!

∥∥∥Dj1
1 D

j2
2 D

j3
3 S0(Ĩ , J̃ , L̃)(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J,

˙̃
L, . . . ,

˙̃
L)
∥∥∥
k+1,U,r

≤

≤
∑

X1,X2∈P(U)
X1∩X2=∅

(|U\(X1∪X2)|
j1

)(|X1|
j2

)(|C(X2)|
j3

)
|‖Ĩ‖||U\(X1∪X2)|−j1

k |‖ ˙̃
I‖|

j1

k |‖J̃‖|
|X1|−j2
k |‖ ˙̃

J‖|
j2
×

× (‖L̃‖(A)
k:k+1,r)

|C(X2)|−j3(‖ ˙̃
L‖(A)

k:k+1,r)
j3

∏

Z∈C(X2)

ΓA(Z)−1. (3.58)

Hence,

1

j1!

1

j2!

1

j3!

∥∥∥Dj1
1 D

j2
2 D

j3
3 S0(Ĩ , J̃ , L̃)(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J,

˙̃
L, . . . ,

˙̃
L)
∥∥∥
k+1,U,r

≤

≤ 3|U |kA−|U |k
(

A

1−A|‖Ĩ‖|k

)j1 |‖ ˙̃
I‖|

j1

k

(
A

1−A|‖J̃‖|k

)j2 |‖ ˙̃
J‖|

j2(
A2d

1−A2d‖L̃‖(A)
k:k+1,r

)j3(‖ ˙̃
L‖(A)

k:k+1,r)
j3

(3.59)

which proves the desired claim.

3.9.2 Contraction

Here we prove the contraction property from Proposition 3.7.1.

We need to show that the following holds:
Lemma 3.9.8. Let θ < 1 and ω ≥ 2(d222d+1 + 1). There exist constants h0 = h0(d, ω),
L0 = L0(d, ω), and A0 = A0(d, ω) such that

‖C(q)‖r = sup
‖K‖k,r≤1

‖C(q)K‖k+1,r ≤ θ.

for any ‖q‖E ≤ 1
2 , any k = 1, . . . , N , r = 1, . . . , r0, and any L ≥ L0, A ≥ A0 and

h ≥ L d+η(d)
2 h0.

Proof. The proof will be divided in several lemmas. In Lemma 3.9.10, we will estimate
the first term on the right had side of (3.33), and in Lemma 3.9.9, we will estimate the
last term on the right had side of (3.33).
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The next lemma is a generalization of [2, Lemma 5.11].
Lemma 3.9.9. Let L ≥ 2d + 1 and ω ≥ 18

√
2 + 1. There exist a constant h0 =

h0(d, ω) and a function εd : R+ → R+ depending only on the dimension d such that
limA→∞ εd(A) = 0 and

‖F‖k+1,r ≤ εd(A)‖K‖k,r
for any K ∈M(Pk,X ) and any h ≥ h0. Here, the function F ∈M(Pk+1,X ) is defined
by

F (U,ϕ) :=
∑

X∈Pc
k\Sk

X=U

ˆ

X
K(X,ϕ+ ξ) dµk+1(ξ).

Proof. For any X ⊂ U , because of (3.20), we have that

sup
ϕ
|(Rk+1K)(X,ϕ)|k+1,U,rw−Uk+1 ≤ sup

ϕ
|(Rk+1K)(X,ϕ)|k+1,X,rw−Xk:k+1. (3.60)

Indeed, by noticing that

|(Rk+1K)(X,ϕ)|k+1,U,r ≤ |(Rk+1K)(X,ϕ)|k+1,X,r

and that
w−Uk+1(ϕ) ≤ w−Xk:k+1,

one has that
∑

x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + ωGk,x(ϕ)

)
+ 3Lk

∑

x∈∂X
Gk,x(ϕ)

≤
∑

x∈U
ω
(
2dgk+1,x(ϕ) +Gk+1,x(ϕ)

)
+ Lk+1

∑

x∈∂U
Gk+1,x(ϕ). (3.61)

Where in the above formula we have used that gk:k+1,x(ϕ) ≤ gk+1,x(ϕ), Gk,x(ϕ) ≤
Gk+1,x(ϕ), and that any x ∈ ∂X \ ∂U is necessarily contained in ∂B for some B ∈
Bk(U \X). For each such B one has that

3Lk
∑

x∈∂B
Gk,x(ϕ) ≤

∑

x∈B
ω
(
2dgk+1,x(ϕ) +Gk+1,x(ϕ)

)

whenever ω ≥ 6c+ 1.

Combining (3.60) with the bound from Lemma 3.9.1 (iv), one has that

Γk+1,A(U)‖F (U)‖k+1,U,r ≤
≤ A|U |k+1

∑

X∈Pc
k\Sk

X=U

2|X|k‖K(X)‖k,X,r ≤ ‖K‖k,r sup
Y ∈Pck+1

{
A|Y |k+1

∑

X∈Pc
k\Sk

X=Y

(A2 )−|X|k
}
.

(3.62)

To conclude it is enough to use [10, Lemma 6.18], which asserts that, whenever L ≥ 2d+1,
one has that

lim
A→∞

sup
Y ∈Pck+1

{
A|Y |k+1

∑

X∈Pc
k\Sk

X=Y

(A2 )−|X|k
}

= 0.
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The following lemma is contained [2, Lemma 5.13].
Lemma 3.9.10. Let L ≥ 7, ω ≥ 2(d222d+1 + 1), h ≥ h0 (with h0 = h0(ω, d) from
Lemma 3.9.1(iv)), and K ∈M(Pk,X ) with G ∈M(Pk+1,X ) defined by

G(U,ϕ) :=
∑

B∈Bk(U)

B∗=U

(
1−ΠT2

) ∑

X∈Sk,
X⊃B

1

|X|k
(Rk+1K)(X,ϕ).

Then
‖G‖k+1,r ≤ 2d+2d(3d − 1)2d

(
5L−

d
2 + 2d+3L

d
2
−2 + 9L−1

)
‖K‖k,r. (3.63)

Proof. It is not difficult to see that the sum vanishes U /∈ Sk+1. Thus, the norms in (3.63)
contain only the contributions of small sets and do not depend on A according to the defi-
nition of the factor Γj,A(X), j = k, k+1. Defining R(B,ϕ) :=

∑
X∈Sk
X⊃B

1
|X|k (Rk+1K)(X,ϕ)

and replacing 1−ΠT2 by (1− T2) + (T2 −ΠT2), we trivially have

G1(U,ϕ) :=
∑

B∈Bk(U)

B∗=U

(1− T2)R(B,ϕ),

G2(U,ϕ) :=
∑

B∈Bk(U)

B∗=U

(T2 −ΠT2)R(B,ϕ), (3.64)

and G(U,ϕ) = G1(U,ϕ) +G2(U,ϕ).

We will evaluate them separately in Lemma 3.9.12 and Lemma 3.9.13.

The following proof is a generalization of [10, Lemma 6.8] and [2, Lemma 5.14].
Lemma 3.9.11. Let F ∈M(Pk,X ), X ∈ Pk, r = 1, . . . , r0, and j = k, k + 1. Then

|F (X,ϕ)− T2F (X,ϕ)|j,X,r ≤ (1 + |ϕ|j,X)3 sup
t∈(0,1)

r∑

s=3

1

s!
|DsF (X, tϕ)|j,X . (3.65)

Proof. Let us denote by f(ϕ) = (1−T2)F (X,ϕ) and fx,i,s,β(ϕ) = ∇βDsF (X,ϕ)(δx,i, ϕ̇, . . . , ϕ̇)
for any s ≥ 1. The terms on the left hand side of (3.65) can be rewritten via Taylor
reminders as

f(ϕ) =

ˆ 1

0

(1− t)2

2
D3F (X, tϕ)(ϕ,ϕ, ϕ) dt,

∇βDf(ϕ)(ϕ̇) = ∇β
ˆ 1

0
(1− t)∇βD3F (X, tϕ)(ϕ̇, ϕ, ϕ) dt,

∇βDf(ϕ)(δx,i) = ∇β
ˆ 1

0
(1− t)∇βD3F (X, tϕ)(δx,i, ϕ, ϕ) dt,

1

2
∇βD2f(ϕ)(δx,i, ϕ̇) =

ˆ 1

0
D3F (X, tϕ)(ϕ̇, ϕ̇, ϕ) dt,
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3 Strict convexity of the surface tension

and, for s ≥ 3,
1

s!
Dsf(ϕ)(ϕ̇, . . . , ϕ̇) =

1

s!
DsF (X,ϕ)(ϕ̇, . . . , ϕ̇).

1

s!
Dsf(ϕ)(δx,i, . . . , ϕ̇) =

1

s!
DsF (X,ϕ)(δx,i, ϕ̇, . . . , ϕ̇).

To conclude it is sufficient to sum the above equations and use

|∇βDs+mF (X, tϕ)(ϕ̇, . . . , ϕ̇, ϕ, . . . , ϕ)| ≤ |∇βDs+mF (X, tϕ)|j,X |ϕ̇|sj,X |ϕ|mj,X ,

|∇βDs+mF (X, tϕ)(δx,i, ϕ̇, . . . , ϕ̇, ϕ, . . . , ϕ)| ≤ |∇βDs+mF (X, tϕ)|j,X |ϕ̇|s−1
j,X |ϕ|mj,X ,

as well as the fact that

|ϕ|3j,X
ˆ 1

0

(1− t)2

2
dt+ |ϕ|2j,X

ˆ 1

0
(1− t) dt+

1

2
|ϕ|j,X +

1

3!
=

1

3!
(1 + |ϕ|j,X)3.

The following lemma is a generalization of [2, Lemma 5.15]
Lemma 3.9.12. Let K ∈ M(Sk,X ), X ∈ Sk, B ∈ Bk(X), and U = B∗. Assume also
that L ≥ 7, ω ≥ 2(d222d+1 + 1), and h ≥ h0. Then

sup
ϕ
|(Rk+1K)(X,ϕ)− T2(Rk+1K)(X,ϕ)|k+1,X,rw−Uk+1(ϕ) ≤ 5L−

3d
2 2|X|k‖K(X)‖k,X,r.

(3.66)
Moreover, one also has

‖G1(U)‖k+1,U,r ≤ 5 2d+2d(3d − 1)2dL−
d
2 ‖K‖k,r, (3.67)

where G1 is defined in (3.65).

Proof. By using Lemma 3.9.11, for any ϕ ∈ X one has that

∣∣(Rk+1K)(X,ϕ)− T2(Rk+1K)(X,ϕ)
∣∣k+1,X,r

≤ (1 + |ϕ|k+1,X)3 sup
t∈(0,1)

r∑

s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X .

(3.68)

Moreover, interchanging differentiation and integration, one gets

r∑

s=3

1

s!

∣∣Ds(Rk+1K)(X, tϕ)
∣∣k+1,X ≤

r∑

s=3

1

s!
sup
ϕ̇6=0

ˆ

X
dµk+1(ξ)

∣∣∣D
sK(X, tϕ+ ξ)(ϕ̇, . . . , ϕ̇)

|ϕ̇|sk+1,X

∣∣∣

=

r∑

s=3

1

s!
sup
ϕ̇6=0

ˆ

X
dµk+1(ξ)

∣∣∣D
sK(X, tϕ+ ξ)(ϕ̇, . . . , ϕ̇)

|ϕ̇|sk,X
|ϕ̇|sk,X
|ϕ̇|sk+1,X

∣∣∣

≤ L− 3d
2

ˆ

X
dµk+1(ξ) |K(X, tϕ+ ξ)|k,X,r,

(3.69)

where in the last inequality we used (3.44). Given that

|K(X, tϕ+ ξ)|k,X,r ≤ ‖K(X)‖k,X,rwXk (tϕ+ ξ)
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and (3.46), one has that

r∑

s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X ≤ 2|X|kL−

3d
2 ‖K(X)‖k,X,r

wXk:k+1(ϕ)

wUk+1(ϕ)
wUk+1(ϕ), (3.70)

where in the above inequality, one uses fact that wXk:k+1(tϕ) is monotone in t.

Bounding (1 + |ϕ|k+1,X)3 via

(1 + u)3 ≤ 5eu
2
, (3.71)

it is not difficult to show that

|ϕ|2k+1,X ≤ log
wUk+1(ϕ)

wXk:k+1(ϕ)
. (3.72)

Indeed, notice that

log
wUk+1(ϕ)

wXk:k+1(ϕ)
≥

∑

x∈U\X

(
(2dω − 1)gk+1,x(ϕ) + ωGk+1,x(ϕ)

)
+
∑

x∈U
gk:k+1,x(ϕ)

+ Lk(L− 3)
∑

x∈∂U
Gk+1,x(ϕ)− 3Lk

∑

x∈∂X\∂U
Gk,x(ϕ)

≥
∑

x∈U\X
(2dω − 1)gk+1,x(ϕ) + Lk(L− 3)

∑

x∈∂U
Gk+1,x(ϕ).

(3.73)

To verify the last inequality, we show that

3Lk
∑

x∈∂X\∂U
Gk,x(ϕ) ≤

∑

x∈U
gk:k+1,x(ϕ) +

∑

x∈U\X
ωGk+1,x(ϕ)

in analogy with (3.43). Indeed, arguing that any x ∈ ∂X \ ∂U is contained in ∂B for
B ∈ Bk(U \X), and applying again Proposition 3.6.4 (a), we have

h2Lk
∑

x∈∂B
Gk,x(ϕ) ≤ 2c

(∑

x∈B
|∇ϕ(x)|2+L2k

∑

x∈U1(B)

|∇2ϕ(x)|2
)
+Lk

∑

x∈∂B

3∑

s=2

L(2s−2)k|∇sϕ(x)|2

≤ h22c
∑

x∈B
Gk,x(ϕ) + h22cLk

∑

x∈∂B
L−2gk:k+1,z(ϕ), (3.74)

where z is any point z ∈ B. Using |∂B| ≤ 2dL(d−1)k, we get the desired bound once
ω ≥ 18

√
2 and L ≥ 5 (when 6c ≤ ω and 6cL−2 ≤ 1).

In view of (3.73) and using that |ϕ|2k+1,X ≤ |ϕ|2k+1,U , it suffices to show that

|ϕ|2k+1,U ≤
∑

x∈U\X
(2dω − 1)gk+1,x(ϕ) + Lk(L− 3)

∑

x∈∂U
Gk+1,x(ϕ). (3.75)

Given that,

h2|ϕ|2k+1,U ≤
∑

1≤s≤3

L(k+1)(d−2+2s) max
x∈U∗

|∇sϕ(x)|2
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3 Strict convexity of the surface tension

and applying [10, Lemma 6.20], one has

L(k+1)d max
x∈U∗

|∇ϕ(x)|2 ≤ 2L(k+1)d

|∂U |
∑

x∈∂U
|∇ϕ(x)|2 + 2L(k+1)d(diamU∗)2 max

x∈U∗
|∇2ϕ(x)|2.

Given that |∂U | ≥ 2dL(k+1)(d−1), the first term above is covered by the second term on
the right hand side of (3.75) once L ≥ 7,

2L(k+1)d

|∂U | ≤ 2L(k+1)d

2dL(k+1)(d−1)
=

1

d
Lk+1 ≤ Lk(L− 3).

Given that diam(U∗) ≤ d2dLk+1, the second term is bounded by

d222d+1L(k+1)(d+2) max
x∈U∗

|∇2ϕ(x)|2

and will be treated together with the remaining terms maxx∈U∗ |∇sϕ(x)|2, s = 2, 3,
contained in |ϕ|2k+1,U .

Given that the number of (k + 1)-blocks in U is at most 2d, one has that

max
x∈U∗

|∇sϕ(x)|2 ≤ 2d
∑

B∈Bk+1(U)

max
x∈B∗

|∇sϕ(x)|2,

hence

(d222d+1L(k+1)(d+2) + L(k+1)(d+2)) max
x∈U∗

|∇2ϕ(x)|2 ≤ 2d(d222d+1 + 1)L(k+1)(d+2)×

×
∑

B∈Bk+1(U)

max
x∈B∗

|∇2ϕ(x)|2

and
L(k+1)(d+4) max

x∈U∗
|∇3ϕ(x)|2 ≤ 2dL(k+1)(d+4)

∑

B∈Bk+1(U)

max
x∈B∗

|∇3ϕ(x)|2.

Each of the terms on the right hand sides of the above formula will be bounded by the
corresponding term in

h2
∑

x∈B\X
(2dω − 1)gk+1,x(ϕ) = (2dω − 1)

∑

x∈B\X

4∑

s=2

L(2s−2)(k+1) sup
y∈B∗x

|∇sϕ(y)|2.

Indeed, given that gk+1,x(ϕ) is constant over each (k + 1)-block B ⊂ U , and the volume
of B \X is at least Lkd(Ld − 2d) = L(k+1)d(1− ( 2

L)d)since the number of k-blocks in X
is at most 2d, while B consists of Ld of them, one needs

2d(d222d+1 + 1)L(k+1)(d+2) ≤ (2dω − 1)L(k+1)d(1− ( 2
L)d)L2(k+1)

and
2dL(k+1)(d+4) ≤ (2dω − 1)L(k+1)d(1− ( 2

L)d)L4(k+1).

These conditions are satisfied if ω ≥ 2(d222d+1 + 1).
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Combining (3.70), (3.71), and (3.72), we have that

(1 + |ϕ|k+1,X)3
r∑

s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X ≤ 5L−

3d
2 2|X|k‖K(X)‖k,X,r wUk+1(ϕ),

for any ϕ ∈ X and any t ∈ (0, 1), which proves of the inequality (3.66).

To prove (3.67), one uses that |Bk(U)| ≤ (2L)d and the obvious bound

|{X ∈ Sk | X ⊃ B}| ≤ (3d − 1)2d .

Hence,

‖G1(U)‖k+1,U,r ≤ 5L−
3d
2

∑

B∈Bk(U)

B∗=U

∑

X∈Sk
X⊃B

1

|X|k
2|X|k‖K(X)‖k,X,r ≤

≤ 5L−
3d
2 (2L)d(3d − 1)2d‖K‖k,r22d ≤ 5 2d+2d(3d − 1)2dL−

d
2 ‖K‖k,r. (3.76)

By using the above, we have the following which is adapted from [2, 5.16].
Lemma 3.9.13. Let K ∈ M(Sk,X ), U = B∗, and assume that L ≥ 7 and ω ≥
2(d222d+1 + 1). For G2 defined in (3.64) we have

‖G2(U)‖k+1,U,r ≤ 22d+d+1(3d − 1)2d
(
(2d+2 − 1)L

d
2
−2 + (8L−1 + 2L−2)

)
‖K‖k,r.

Proof. Given that G2(U,ϕ) =
∑

B∈Bk(U)

B∗=U
(T2−ΠT2)R(B,ϕ) with R ∈M∗(Bk,X ) defined

by

R(B,ϕ) :=
∑

X∈Sk
X⊃B

1

|X|k
(Rk+1K)(X,ϕ),

one has that the polynomial ΠT2R(B,ϕ) = λ|B| + `(ϕ) + Q(ϕ,ϕ) is characterised by
taking a unique linear function `(ϕ) of the form (3.18), `(ϕ) =

∑
x∈(B∗)∗

[∑d
i=1 ai∇iϕ(x)+

∑d
i,j=1 ci,j ∇i∇jϕ(x)

]
, Regularization by noise for transport and kinetic equations that

agrees with DR(B, 0)(ϕ) on all quadratic functions ϕ on (B∗)∗ and a unique quadratic
function Q(ϕ,ϕ) of the form (3.71),

Q(ϕ,ϕ) =
∑

x∈(B∗)∗

d∑

i,j=1

di,j ∇iϕ(x)∇jϕ(x),

that agrees with 1
2D

2R(B, 0)(ϕ,ϕ) on all affine functions ϕ on (B∗)∗.

Observing that

D(Rk+1K)(X, 0)(ϕ) =

ˆ

X
dµk+1(ξ)DK(X, ξ)(ϕ)

D2(Rk+1K)(X, 0)(ϕ,ϕ) =

ˆ

X
dµk+1(ξ)D2K(X, ξ)(ϕ,ϕ),
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and introducing, similarly as above,

ΠT2Rξ(B,ϕ) = λξ|B|+ `ξ(ϕ) +Qξ(ϕ,ϕ),

the uniqueness implies that `(ϕ) =
´

X dµk+1(ξ) `ξ(ϕ) andQ(ϕ,ϕ) =
´

X dµk+1(ξ)Qξ(ϕ,ϕ).

Given that G2(B,ϕ) = (T2 −ΠT2)R(B,ϕ) is a polynomial of second order, we have

|G2(B,ϕ)|k+1,U,r = |G2(B,ϕ)|k+1,U,2.

Let us initially evaluate separately the absolute value of the linear and quadratic terms
P1(ϕ) and P2(ϕ) in G2(B,ϕ).

Observing that for any affine function ϕ1 and any quadratic function ϕ2 on (B∗)∗ we
have P1(ϕ− ϕ1 − ϕ2) = P1(ϕ), we get

∣∣P1(ϕ)
∣∣ =

∣∣
ˆ

X
dµk+1(ξ)

(
DRξ(B, 0)(ϕ− ϕ1 − ϕ2)− `ξ(ϕ− ϕ1 − ϕ2)

)∣∣ ≤

≤ (2d+2 − 1)
∑

X∈Sk
X⊃B

1

|X|k
‖K(X)‖k,X,r|ϕ− ϕ1 − ϕ2|k,B∗

ˆ

X
dµk+1(ξ)wXk (ξ) ≤

≤ 22d(3d − 1)2d(2d+2 − 1)‖K‖k,r|ϕ− ϕ1 − ϕ2|k,B∗ . (3.77)

Here, we first used the inequalities

|`ξ(ϕ)| ≤ (2d+2 − 2)
∑

X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|k,B∗ (3.78)

and

|DRξ(B, 0)(ϕ)| ≤
∑

X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|k,X

combined with the bounds |K(X, ξ)|k,X,r ≤ ‖K(X)‖k,X,rwXk (ξ) and |ϕ|k,X ≤ |ϕ|k,B∗ , and

then the bounds
´

X dµk+1(ξ)wXk (ξ) ≤ 2|X|k , and, as in (3.76), |{X ∈ Sk | X ⊃ B}| ≤
(3d − 1)2d .

To verify (3.78), we first observe that for every quadratic ϕ̃ one has that

P1(ϕ) = D(RK)(X, 0)(ϕ− ϕ̃)

where ϕ̃ is the projection of ϕ on the subspace of all the ϕ which are quadratic. Thus by
using the Poincaré inequalities,

inf
ϕ1 affine

|ϕ− ϕ1|k,B∗ ≤
1

h
Lk( d

2
+1) sup

x∈(B∗)∗
|∇2ϕ(x)| ≤ L−( d

2
+1)|ϕ|k+1,B∗ (3.79)

and

inf
ϕ1 affine,

ϕ2 quadratic

|ϕ− ϕ1 − ϕ2|k,B∗ ≤
1

h
Lk( d

2
+2) sup

x∈(B∗)∗
|∇3ϕ(x)| ≤ L−( d

2
+2)|ϕ|k+1,B∗ ,
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we get ∣∣P1(ϕ)
∣∣ ≤ L−( d

2
+2)22d(3d − 1)2d(2d+2 − 1)‖K‖k,r|ϕ|k+1,B∗ . (3.80)

A similar claim follows for the quadratic part.

Moreover applying (3.79), one gets

|P2(ϕ,ϕ)| ≤
(
4L−(d+1) + L−(d+2)

)
22d+1(3d − 1)2d‖K‖k,r|ϕ|2k+1,B∗ . (3.81)

By combining (3.80) and (3.81), one gets

|
(
T2 −ΠT2

)
R(B,ϕ)| ≤

≤ 22d(3d−1)2d
(
(2d+2−1)L−( d

2
+2) +(8L−(d+1) +2L−(d+2))|ϕ|k+1,B∗

)|ϕ|k+1,B∗‖K‖k,r.
(3.82)

For the first and second the derivatives, notice that

D
(
P1(ϕ) + P2(ϕ,ϕ)

)
(ϕ̇) = P1(ϕ̇) + 2P2(ϕ, ϕ̇)

and
D2
(
P1(ϕ) + P2(ϕ,ϕ)

)
(ϕ̇, ϕ̇) = 2P2(ϕ̇, ϕ̇)

hence, by (3.80) and (3.81) one has that

∣∣D
(
P1(ϕ) + P2(ϕ,ϕ)

)∣∣k+1,B∗ ≤
≤ 22d(3d − 1)2d

(
(2d+2 − 1)L−( d

2
+2) + (16L−(d+1) + 4L−(d+2))|ϕ|k+1,B∗

)
‖K‖k,r. (3.83)

Using (3.81), one has that

∣∣D2
(
P1(ϕ) + P2(ϕ,ϕ)

)∣∣k+1,B∗ ≤ 22d(3d − 1)2d(8L−(d+1) + 2L−(d+2))‖K‖k,r.

Combining last two inequalities with (3.82), one has that

|(T2 −ΠT2

)
R(B,ϕ)|k+1,B∗,r ≤

≤ 22d(3d−1)2d
(
(2d+2−1)L−( d

2
+2)+(8L−(d+1)+2L−(d+2))(1+|ϕ|k+1,B∗)

)
(1+|ϕ|k+1,B∗)‖K‖k,r.

(3.84)

With (1 + u)2 ≤ 2eu
2

and (3.72), we get

‖G2(U)‖k+1,U,r ≤ 22d+1(3d−1)2d(2L)d
(
(2d+2−1)L−( d

2
+2)+(8L−(d+1)+2L−(d+2))

)
‖K‖k,r

which gives the desired bound.

Lemma 3.9.8 is then proven by combining the claims of Lemma 3.9.9 and Lemma 3.9.10.

We next lemma is generalizes in [2, Lemma 5.17].
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3 Strict convexity of the surface tension

Lemma 3.9.14. Let θ < 1 and ω ≥ 2(d222d+1 + 1). There exist constants h0 = h0(d, ω),
L0 = L0(d, ω), and A0 = A0(d, ω) such that

‖A(q)−1‖0;0 ≤
1√
θ

and
‖B(q)‖r;0 ≤M

for any ‖q‖ ≤ 1
2 , any k = 1, . . . , N , r = 1, . . . , r0, and any L ≥ L0, A ≥ A0 and

h ≥ L d+η(d)
2 h0.

Proof. When expressed in the coordinates λ̇, ȧ, ċ, ḋ of Ḣ, the linear map A according to

(3.31) keeps ȧ, ċ, and ḋ unchanged and only shifts λ̇ by
∑

x∈B
∑d

i,j=1 ḋi,j∇2
i∇1∗

j C
(q)
k+1(x, x).

Hence, A−1 only makes the opposite shift and thus

‖A−1Ḣ‖k,0 = Ldk|λ̇|+L dk
2 h

d∑

i=1

|ȧi|+L
(d−2)

2
kh

d∑

i,j=1

|ċi,j |+h2
d∑

i,j=1

|ḋi,j |+Ldk
d∑

i,j=1

|ḋi,j |
∣∣∇2

i∇1∗
j C(q)

k+1(x, x)
∣∣.

Using
d∑

i,j=1

|ḋi,j | ≤
1

h2
‖Ḣ‖k,0, (3.85)

we get

‖A−1Ḣ‖k,0 ≤ (1 + c2,0L
d+η(d)h−2)‖Ḣ‖k+1,0

using that maxdi,j=1

∣∣∇2
i∇1∗

j C
(q)
k+1(x, x)

∣∣ ≤ c2,0L
−(k−1)dLη(d) according to Theorem 2.3.1.

For the second bound, According to Lemma 3.9.5,

‖BK‖k+1,0 ≤
∑

B∈Bk(B′)

∥∥ΠT2

∑

X∈Sk,
X⊃B

1

|X|k
(Rk+1K)(X)

∥∥
k+1,0

≤

≤
∑

B∈Bk(B′)

C
∑

X∈Sk,
X⊃B

1

|X|k
‖(Rk+1K)(X)‖k:k+1,X,r ≤

∑

B∈Bk(B′)

∑

X∈Sk,
X⊃B

C2|X|k

|X|k
‖K(X)‖k,X,r ≤

≤
∑

B∈Bk(B′)

∑

X∈Sk,
X⊃B

C2|X|k

|X|k
A−|X|k‖Kk‖k ≤ CLdS

( 2

A

)
‖Kk‖k, (3.86)

for any B′ ∈ Bk+1 and A > 2. This implies ‖B(q)‖ ≤M <∞.

The following proof is an adaptation of the proof contained in [2].

Proof of the strict Convexity. Once we have proved all the analogues bounds, we can
finally give a proof of the strict convexity, by following [2].

Chose all parameters according to Proposition 3.7.1, Proposition 3.7.2 and define the
renormalization mapping K ∈ E. According to Theorem 3.8.1, there exists a unique C3
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3.9 Proofs

mapping h̃ : BE(ε)× E and a unique λ̂ : BE(ε)→ R such that h̃(K) is quadratic and λ̂

is the constant part of H0 for all K ∈ E with ‖K‖h ≤ ε and HN = H
h̃(K)
N = 0.

With simple calculations we have that

σN,β(u) =
1

2
|u|2 − 1

βLdN
logZ(q)

N + λ̂(Ku, q) +
1

βLdN
log
(ˆ

XN

(
1 +KN (ΛN , ϕ)

)
µ(q)

N+1( dϕ)
)
,

(3.87)

We will show that the derivatives with respect to u up to the third order are independent
of N . To do so we will consider the different terms in (3.87) independently.

For the first term it is sufficient to differentiate the kernel Cq of the covariance with
respect to q = q(u) which in turn gives the smoothness with respect to the tilt. Indeed,
using standard Gaussian calculus one has that the first term is

− 1

LdN
log

(
Z

(q)
N

Z(0)

)
=

1

2LdN
log
(

det Cq
)
.

Then, using the smoothness of the kernel Cq with respect to q given by the Finite Range
decomposition one has the desired result.

The second term, is a C3 function of the tilt via the dependence of Ku. Taking into
account

‖Kq
N‖N,r ≤ α−1ηN‖Ẑ(τ(u), h̃(τ(u)))‖Zr ≤ C0α

−1ηN

for all u ∈ Bδ(0) and from Proposition 3.7.2, the chain rule

∂αuK
q
N (u̇, . . . , u̇)r−α ≤ C|u̇|α

we finally obtain the desired result.

Proof of Theorem 3.8.1. The proof is basically contained in [2].

(i) Let us estimate norm of K0 in terms of the norm of the initial perturbation and
the tuning parameter q. Recall that

K0(X,ϕ) = exp

(
1

2

∑

x∈X

d∑

i=1

qi,j(x)∇iϕ(x)∇jϕ(x)

) ∏

x∈X
K(x,∇ϕ)

and

|K0(X,ϕ)|0,X ≤ ‖K‖|X|h exp

(
[

1

h2
+

1

2
‖q‖]

∑

x∈X
|∇ϕ(x)|

)

Moreover, observe that

|DsK0(X,ϕ)|0,X ≤ ‖K‖|X|h sup
|(∇iϕ)|≤1

|DsK0(ϕ̇, . . . , ϕ̇)|
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With simple computations, one has that

DK0(X,ϕ)(ϕ̇) = exp

(
1

2

∑

x∈X
〈q∇ϕ,∇ϕ〉K(y,∇ϕ(y))

)[∑

x∈X

∏

y∈X\{x}
〈∇K(ϕ)(x), ϕ̇(x)〉

+
∏

x∈X
K(x,∇ϕ(x))

∑

x∈X
〈q∇ϕ(x),∇ϕ̇(x)〉

]
.

In a very similar way, one has that

|DsK0(X,ϕ)|0,X ≤ exp
(

(h−2 +
1

2
‖q‖
)
‖K‖|X|h (ds|X|s

+ Pols(h, |X|, ‖q‖, |X|1/2
∑

x∈TdN

d∑

i=1

|∇iϕ(x)|2))

)

(3.88)

where Pols denotes a polynomial of order s in the arguments. Let h̃ be such
that

1

h2
+

1

2
‖q‖2 ≤ 1

2

1

h̃2
(3.89)

The first volume term which comes without
∑

x∈X |ηb|2 is taken care by ‖K‖h.
If ‖K‖h ≤ 1/A, we get the norm ‖K0‖0,r ≤ ε1 sufficiently small where ε1 =
ε1(‖K‖h, ‖q‖). Having the norm ‖K0‖0,r ≤ ε1 small the statement follows with
the remaining parts.

(ii) T (K, q, 0) = Z̄ with H̄k = 0, K̄k+1 = 0 for k = 1, . . . , N − 1 and H̄0 = −A1B1K0

and K̄1 = C0K0 + g1(0,K0). Hence,

‖T (K, q, 0)‖Zr ≤
( 1√

θ
M‖K0‖r ∨

α

η
(θ‖K‖r + |g1(0,K0)|)

)
.

From Proposition 3.7.2, we have that g1(0, 0) = 0 and that |g1(0,K0)| ≤ cε1 ≤
c‖K‖h‖q‖. Hence,

‖T (K, q, 0)‖Zr ≤ c‖K‖r‖q‖
(

(
1√
θ
M) ∨ α

η
(θ + 1)

)
.

(iii) Let us estimate the operator norm of the Jacobian of the mapping F : Zr → Zr,
where F : Z 7→ Z̄ and Z̄ = T (K, q, Z). We compute

∂H̄k

∂Hj
=

{
0 k = N − 1 or j 6= k + 1 for all j = 0, . . . , N − 1

A−1
k j = k + 1

∂H̄k

∂Kj
=

{
A−1
k j = k + 1

0 otherwise
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for k, j = 0, . . . , N − 1 and

∂H̄k

∂Hj
=

{
0 j 6= k
∂gk+1(Hk,Kk)

∂Hk
j = k

∂H̄k

∂Kj
=

{
0 j = k + 1

Ck +
∂gk+1(Hk,Kk)

∂Kk
j = k

Writing Z̄ = (H̄0, H̄1, . . . , H̄N−1, K̄1, . . . , K̄N ) and estimating the norm of the
image ¯̄Z = DF (0)(Z̄) with ‖Z̄‖Zr ≤ 1, we have that the vector ¯̄ZZr is

¯̄ZZr =
(
A−1

0 H̄1 −A−1
0 B0K̄0;A−1

1 H̄2 −A−1
1 B1K̄; . . . ,AN−2H̄N−1 −A−1

N−2BN−2K̄N−2;

−A−1
N−1BN−1K̄N−1; H̄0

∂g1(H0,K0)

∂H0

∣∣Z = 0 + (C0 +
g1(H0,K0)

∂K0
)K̄1; . . .

. . . ; H̄N−1
∂gN (HN−1,KN−1)

∂HN−1

∣∣
Z=0

+ (CN−1 +
∂gN−1(HN−1,KN−1)

∂KN−1

∣∣
Z=0

)K̄N

)
.

From Proposition 3.7.2, one has that

‖DHkgk+1(Hk,Kk)
∣∣
Z=0

(Ḣk)‖r ≤ ε̄‖Ḣk‖o and ‖DKkgk+1(Hk,Kk)
∣∣∣
Z=0

(K̇k)‖ ≤ ε̄‖K̇k‖r

Given that ‖Z̄‖Zr ≤ 1, we have that ‖H̄k‖k,0 ≤ ηk for k = 0, . . . , N − 1 and

‖K̄k‖k,r ≤ ηk

α for k = 1, . . . , N . Hence,

‖ ¯̄Hk‖k,0 ≤ ‖A−1
k ‖ηk+1 + ‖A−1

k ‖‖Bk‖
ηk

α
≤ ηk√

θ
(η +

M

α
), k = 0, . . . , N − 2

‖ ¯̄HN‖N−1,0 ≤ ‖A−1
N−1‖‖BN−1‖ ≤

ηN−1M

α
√
θ

‖ ¯̄Kk‖k,r ≤ ηk−1ε̄+
ηκ

α

(
‖Ck−1‖+ ε̄

)
≤ ηk−1(ε̄+

η

α
(θ + ε̄)) k = 1, . . . , N,

thus

‖ ¯̄Z‖Zr
( 1√

θ
(η +

M

α
)
)
∨
(α
η

(ε̄
η

α
(θ + ε̄))

)
.

Choosing the parameters η and α such that η + M
α ≤ θ3/2, we have that

‖DF (0)‖L(Zs,Zs) =
∥∥∥T (K, q, Z)

Z

∣∣∣
Z=0

∥∥∥
L(Zs,Zs)

≤ (
α

η
+ 1)ε̄+ θ ≤ 1

(iv) The bounds for the derivatives with respect to Hk and Kk for the first component
follow immediately from the linearity, i.e., H̄k = A−1

k+1(Hk+1−BkKk), whereas the
second component one uses Proposition 3.7.2. Let us now check the bounds for the
derivatives with respect to the two parameters q and initial perturbation K ∈ E.
The images Z̄ = T (K, q, Z) depend on the initial perturbation K only through the
coordinates H̄0 = A−1

1 (H1−B0K0) and K̄1 = C0K0 + g1(H0,K0). Let us estimate
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3 Strict convexity of the surface tension

the norm ‖ ∂l

∂K(K0)(K̇,...,K̇)
‖0,X,r for l = 1, 2, 3. We only sketch the first derivative

here as the second and the third follow analogously. Pick X ⊂ Λ, then

∂

∂K
K0(X,ϕ) = exp

(
1

2

∑
〈q∇ϕ,∇ϕ〉

)∑ ∏

y∈X\{x}
K(y,∇ϕ(y))K̇(x,∇ϕ(x)).

Proceeding as above, we have that

∂

∂K
K0(X,ϕ) ≤ |X|‖K‖|X|−1

h ‖K̇‖h exp

(
(

1

h2
+

1

2
‖q‖)

∑

x

|∇ϕ(x)|2
)

and for the derivative, one has an extra volume factor

|D ∂

∂K
K0(X,ϕ)(K̇)|0,X ≤ exp

(
(

1

h2
+

1

2
‖q‖)

∑

x

|∇ϕ(x)|2
)

×
(
d|X|+ h‖q‖|X|1/2

∑

x

|∇ϕ(x)|2
)
|X|‖K‖|X|−1

h ‖K̇‖h.

Hence, we have a similar estimate to (3.88) and thus the bounds for the deriva-
tives with respect to the perturbation K. The derivatives with respect to q
for the linear parts are bounded by Proposition 3.7.1 whereas the derivatives of
exp

(
1
2

∑
x 〈q∇ϕ,∇ϕ〉

)
gives only polynomials in q which are taken care of by

the condition (3.89) above for the weight function for the norm. The derivatives
with respect to q for the nonlinear part are taken care in the nonlinear parts
we differentiate Gaussian expectations with the respect to the parameter q of its
covariance operator. This follows due to the well-known formula

d

dq
ECq [F (X)] =

1

2
ECq [TrD2F (X)Ċq].

The differentiability of the solution map Ẑ and the bounds follow with Proposi-
tion 3.8.1.
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