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ABSTRACT

Statistical Mechanics is considered as one of the most sound and confirmed theories in
modern physics. In this thesis, we explore the possibility to view a large class of models
under the point of view of statistical mechanics. The models are defined for simplicity on
the standard lattice Z¢. However, most of the results apply unchanged to very general
lattices. The Hamiltonians considered are of gradient type. Namely, as a function of the
field ¢, they depend only on all the pair differences ¢(x) — ¢(y), where z,y are elements of
the lattice. Under suitable very general assumptions, we show that these models satisfy
certain large deviation principles. The models considered contain in particular the typical
models for Nonlinear Elasticity and Fracture Mechanics. Afterwards, we will concentrate
on more specific models in which we show local properties of the free energy per particle.
These models are sometimes known in the literature as mass-spring models. In particular,
we will consider the space dependent case. For these models, we show the validity of
the Cauchy-Born rule in a neighbourhood of the origin. The methods used to prove the
Cauchy-Born rule are based on the Renormalization Group. We also show a new Finite
Range Decomposition based on discrete LP-theory.
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INTRODUCTION

In many instances, the physically relevant states come as the minimizers of some functional
JF. This coincides with the fundamental problem in the Calculus of Variations. More
precisely, given a functional F : X — R, where X is a topological space, one seeks to
characterize its minimizers. A typical example is: given a bounded open subset  of R?
and a free energy function g : Q x R* x R™>*™ 4 R, find all functions u : Q — R™ that
(possibly subject to boundary conditions) minimize the free energy integral:

F(u, ) ::/Qg(x,Vu(x))dx.

The free-energy-minimizing approach has been successfully applied to many physical
models. In particular, the above example is typical in Nonlinear Elasticity.

However, it is often unclear how to find the right functional F which should be minimized.

The approach of Statistical Physics is to start by postulating simple local interactions for
particles and to show via some “thermodynamical limit” that with overwhelming high
probability the configuration will be very close to the minimizer of some functional F.
In this way, it “justifies” the choice of the free energy functional F and the minimization
procedure. Moreover, it also allows to determine how likely(or unlikely) particular
configurations are.

In this thesis, we restrict ourselves to the Nonlinear Elasticity setting and very closely
related ones. One of the features, we will be very interested in, is the so-called Cauchy-
Born rule. The Cauchy-Born rule is a basic hypothesis used in the mathematical
formulation of solid mechanics and relates the movement of atoms in a crystal to the
overall deformation of the bulk solid. Namely, it says that in a crystalline solid subject
to a small strain, the positions of the atoms within the crystal lattice follow the overall
strain of the medium. Mathematically, the Cauchy-Born rule is closely related to the
strict convexity of the free energy. The lack of some type of strict convexity gives rise to
the pattern formation.

In Chapter 1, we will show that, if one starts with very general local interaction potentials,
one obtains the physically relevant states concentrate with overwhelming high probability
to the minimizers of the typical functionals considered in Nonlinear Elasticity. This
setting has been considered before by R. Kotecky and S. Luckhaus in an important
paper(cf. [19]). In Chapter 1, we present several extensions of their results, such as
more general local interaction, an homogenization result as well as various technical
improvements in the proof. For a more precise comparison see § 1.1.

In Chapter 2 and Chapter 3, we depart from the fairly general setting of Chapter 1
and consider a class of special local interactions. For these type of local interactions
we show some local properties of the resulting free-energies and the corresponding rate
functions. To do so we need to use the Renormalization Group theory developed by
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Brydges et al.. In particular, we generalize some results of S. Adams, R. Kotecky and
S. Miiller with non-translation invariant local interactions. We will follow closely their
strategy. However there are many technical problems that cannot be dealt with by
modifying directly their proof. More precisely, a fundamental step is the construction of
the Finite Range Decomposition, for which we need to apply a rather different strategy.
For a more in-depth comparison see the corresponding introductory sections in Chapter 2
and Chapter 3.



1 REPRESENTATION THEOREMS

1.1 INTRODUCTION

Recently, R. Kotecky and S. Luckhaus, have shown a remarkable result. They prove
that in a fairly general setting, the limit of large volume equilibrium Gibbs measures for
elasticity type Hamiltonians with clamped boundary conditions. The “zero”-temperature
case was considered by R. Alicandro and M. Cicalese in [3].

Let us now briefly explain the results contained in [19]. The authors begin with the
microscopic description and consider the space of microscopic configurations X : Z¢ — R™.
This includes the case of elasticity where m = d and X (i) denoting the vector of
displacement of the atom labeled by ¢ as well as the case of random interface with
m =1 and X (7) denoting the height of interface above the lattice site i. For any fixed
Y : Z% — R™ and any finite A C Z%, the Gibbs measure uy(dX) on (R™)* under
the boundary conditions Y is defined in terms of a Hamiltonian H with a finite range
interaction U.

Namely, let a finite A C Z%, a function U : (R™)? — R be given and let Ry = diam(A)
denote the range of potential U. The function U is also assumed to be invariant under
rigid motions. In addition, natural growth conditions on U are imposed. Using X 4 to
denote the restriction of X to A for any X : Z% — R™ and any A C Z¢, the Hamiltonian
is defined by

Hp(X) = Z U(Xo; )
JEZA: Tj(A)CA

with 7j(A) = A+ j = {i: i — j € A}. Moreover, they assume that
(A1) There exist constants p > 0 and ¢ € (0,00) such that
U(X4) > c|[VX(0)P

for any X € (R™)2".

(A2) There exist constants > 1 and C € (1,00) such that

U(sXa+(1—=s)Ya+Za) <C(1+U(Xa)+UYa)+ Z 1Z(3)]")
€A
for any s € [0,1] and any X,Y, Z € (R™)%".

They introduce the clamped boundary conditions by considering a fixed configuration Y
in the boundary layer

Sr,(A) = {i € A|dist(i, 2%\ A) < Ry}
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by restricting to the functions X which are contained in the set(whose indicator function
will be denoted by 1y (X),)

{X e (R™A:|X(i)—Y(i)| <1forallie Sg,(A)}.

The Gibbs measure on (R™)% is defined by

exp{ —BHA(X) .
pny (dX) = { Z }ﬂA,Y(X ) [T axa)
AY :
€A
with
Zny = / exp{—BHA(X)}ay (X) [ ] dX (i)
(Rm)A 1EA
For any € € (0,1), let
Q. =ez'n0=(znlo).
Naturally, éQ and €Z% denotes the rescaling of Q and Z¢ by % and e, respectively.

With the above notation, in [19], the following theorem is proved:
Theorem 1.1.1. Assume that U satisfies the assumptions (A1) and (A2) withr >p > 1,
1> % — L and let v € WYP(Q). Further, let

Frc(v) = —%Q|  og Zo, (Na. » (v, &),

and
Fi(v) =limsup,_, F:(v)
F(v) =liminf._ g F, (v) (1.2)
Then:
(i) limg—o F |Q\ fQ )) dz.
(ii) Ifv € W”(Q) then lim,_o FF (v ‘Q‘ oW )) dz.

The crucial step in the proof of the Large Dev1at10n statement is based on the possibility
to approximate with partition functions on cells of a triangulation given in terms of L"-
neighbourhoods of linearizations of a minimiser of the rate functional. An important tool
that allows them to impose a boundary condition on each cell of the triangulation consists
in switching between the corresponding partition function Zg_(Nq. (v, k)) and the
version Zo_(Na, »(v,2k) NN, Ry,c0(Z)) with an additional soft clamp | X (¢) — Z(i)| < 1
enforced in the boundary strip of the width Ry > diam(A) with Z € Nq_ (v, k) arbitrarily
chosen.

We improve their result in the following manner:

(i) We consider Hamiltonians, where the interaction is not of finite range and is
dependent! both on the scale € and the position . We are also able to give an
homogenisation result.

Yor a precise definition see the next section
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(i) By considering a different version of the interpolation argument we are able to
consider “hard” boundary condition instead of the clamped ones. In our opinion
this type of boundary conditions are more in line with the standard theory of

Statistical Mechanics.

(i4i) We simplify some of the arguments by relying on the representation formulas, hence
avoiding the triangulation argument.

(iv) We are able to consider more general potentials, which “relax” in SBV.

1.2 SOBOLEV REPRESENTATION THEOREMS

1.2.1 PRELIMINARY RESULTS

Let Q be an open set. We denote by A(£2) the family of all open sets contained in €.
We now recall a well-known result in measure theory due to E. De Giorgi and G. Letta.

The proof can be found in [4].
Theorem 1.2.1. Let X be a metric space and let us denote by A its open sets. Let

w: A—[0,00] be an increasing set function such that
(DL1) p(2) = 0;
(DL2) A,B € A then u(AUB) < pu(A) 4+ w(B);
(DL3) A,B € A, such that AN B =& then p(ANB) > u(A) + u(B)
(DL4) 1(A) =sup{u(B): B € A}. Then, the extension of u to every C C X given by

u(C)=inf{u(A): Ae A, ADC}

is an outer measure. In particular the restriction of u to the Borel o-algebra is a

positive measure.

We recall the well-known integral representation formulas (see [12]).
Theorem 1.2.2. Let 1 < p < oo and let F : WP x A(Q) — [0, +00] be a functional

satisfying the following conditions:
(i) (locality) F is local, i.e. F(u,A) = F(v,A) ifu=v a.e.on A€ A(Q);
(i3) (measure property) for all w € WP the set function F(u,-) is the restriction of a
Borel measure to A(S2);
(iii) (growth condition) there exists ¢ > 0 and a € L*(Q) such that

F(u,A) < c/A(a(m) + |Du|P) dx

for allu € WP and A € A(Q);

(iv) (translation invariance in u) F(u + z, A) = F(u, A) for all z € R?, u € WP and
A e A(Q);

(v) (lower semicontinuity) for all A € A(Q2) F(-, A) is sequentially lower semicontinuous
with respect to the weak convergence in WP,
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Then there exists a Carathéodory function f : Q x MM — [0, +00) satisfying the growth
condition

0 < f(x, M) < cla(z) + |MP)

or all x € Q and M € MN | such that
[

F(u,A):/f(:c,Du(a:))dx
A

for allu € WP and A € A(RQ).
If in addition it holds

(vi) (translation invariance in x)

F(Mz, B(y, 0)) = F(Mz, B(z, 0))

for all M € MPN |y, 2 € Q, and o > 0 such that B(y, 0) UB(z, 0) C Q, then f does not
depend on x.

1.2.2 HYPOTHESIS AND MAIN THEOREM

For any u € Llloc(]Rd7 R™), let Xy, : Z2 — R™ and ¢ : eZ? — R™ be defined by

) 1
Xoe) =2 uly)dy
) €iHQ(e) (1.3)
puce) =21 uly) dy
€ JeitQ(e)
for any i € Z%. Here, Q(¢) = [5,5]? and f denotes the mean value,i.e., for every

f e LY(RY)

][Af(x)dx:@/flf(x)dx

Let u € Whep (]Rd)7 A is an open set and p > 1. Then it is not difficult to prove that

li UV, (z)P = ?,

im Y- V@) = [ [Vl (1.4
T€A:

On the other hand, let
1. : (R™)Z" — whe(RY) (1.5)

be a canonical interpolation X — v such that v(ei) = X (i) = ep(ei) for any i € Z%.
Here, (Rm)ozd is the set of functions X : Z% — R™ with finite support. To fix ideas, we
can consider a triangulation of Z¢ into simplexes with vertices in €Z?, and choose v on
each simplex as the linear interpolation of the values X (i) on the vertices ei.
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Let Q be an open set with regular boundary. We denote by Q. = ¢Z? N Q and by A(Q)
the set of all open sets contained in 2 with regular boundary. For every set A € A(Q2),
we define

RS(A) :={a € ez [o,a + €] C A},

where by [z, y] we mean the segment connecting = and y, i.e., {Az+(1—=X)y: A €[0,1]}.
The Hamilton H is defined by

:Z Z fee(@, Vep),

£€Z e RE(Q)
where ¢ € Z¢, and

p(x + ) — p(x)
€l '

We also define the Hamiltonian taking into account the contribution from the boundary

as
solps Avg) = Y Y fee(, Vep(x).

£ez7d z€AL

Vep(z) =

The functions f¢ . will be specified later.

In order to apply the representation formulas, we shall need to localize. For this reason,
for every € > 0 and A C €2 open, set we introduce

gD,AE Z Z f&xvéaSO ))

§€Z zeRE(A)

For simplicity of notation, we will also denote

He(p, Aje)i= Y fee(x, Vep(a)).

z€RE(A)

The localized version of H, and Hgo are defined in the obvious way.

Moreover, let {e1,...,eq} be the standard basis of R%. In this section, the functions fee
will satisfy the followings
(Cl) b te > 0;

(C2) there exist constants Cg¢ such that
fee(x,s+1t) < feo(z,s)+ Ce(Jt|P +1);

where the constants C¢ satisfy

Z Cg < +o00;
¢ezd
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(C3) there exists a constant C' such that

fe;e(x,t) > Cmax(Jt|’ —1,0).
For every A € A(2), we define the free-energy as

F(u, A k,e) == —¢? log/ exp ( — H(yp, A,a)) dep

V(u,A,kK,E)

(1.6)
Foo(u, A, k,e) := —&? log/ exp < — Hoo (o, A,a)) do,
Voo (u,A,k,€)
where
€d
V(u, A k,e) = qp: Ac = R™| —— Z lu —ep|P < KP
|A’ TEA:
Ed
Voo (u, A, k) = ¢ ¢ : eZ? — R™| TA[ Z lu —ep|P < KP, and p(z) = pyc(x) Vo & Az
TEA:

where ¢, is defined in (1.3).
Let us introduce the following notations:

F'(u, A, k) := liminf F(u, A, K, €)

el
F"(u, A, k) := limsup F(u, A, k, €)
el0
F'(u, A) := limliminf F(u, A, k,€) = lim F’(u, A, k)
k0 el0 0
F"(u, A) := limlimsup F(u, A, k,¢) = lim F" (u, A, k)
k0 <10 k10 (1 7)

Fl (u, A k) := lim&)nf Fyo(u, A, k,¢)
g

F(u, A, k) := limsup Foo(u, 4, k, €)

el0
/ e . . . _ . /
F (u,A) = 1}3101 hr?&)nf Foo(u, A, k,e) = Eﬁ)l F (u, A, k)
F” (u, A) := limlimsup Fio (u, A, k,€) = lim F. (u, A, k)
&0 <10 K10

One of the main steps will be to show that F) = F’ and that F, = F”. The basic
intuition behind is the so called interpolation lemma, which is well-known in the I'-
convergence community. Very informally, what it says that if one imposes “closeness” in
LP(A) to some regular function u, then one can also impose the boundary condition by
“paying a very small price in energy”. More precisely, given a sequence {v,} such that
vp, — u in LP(A), where A is an open set, then there exists a sequence {0, }, such that
O, — win LP(A), Oploa = uloq and such that

liminf/ IV, |? Sliminf/ |V, |2
n A n A
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Remark 1.2.3. (i) The functional F(u, A, K, <) is monotonically decreasing in 0, k >
0, i.e.

F(u,A,k,e) < F(u, A,k + 0,¢).

This justifies the outer limit in the formulas of (1.7). Moreover, the outer limit in
the formulas in in (1.7) can be substituted with the supremum i.e.,

F'(u, A) := supliminf F'(u, A, k,¢) = sup F'(u, A, k),

k>0 &0 k>0
F"(u, A) := suplimsup F(u, A, k,¢) = sup F” (u, A, k).
k>0  £l0 k>0

(ii) Let A, B be two open sets such that AN B = &, then from the definitions it is not
difficult to prove that

F'(u,A) + F'(u,B) = F'(u, AU B) and F"(u, A) + F"(u, B) = F"(u, AU B).

(iii) Whenever the function u is linear and the functions fe . do not depend on e and the
space variable x, it is well-known that F' = F". In Theorem 1.2.18, we are going
to prove a more general result, which contains as a particular case the previous
claim.

Proposition 1.2.4. The maps F', F" are lower semicontinuous with respect to the LP(A)
convergence. Moreover, there exists a sequence {e,} such that

F{len}(u) = Ffen}(’u,), (1.8)
where

Ffen}(u) = limliminf F(u, A, Kk, ep) and F"{e,}(u) := limlimsup F(u, A, k, €,).

kJ0 M—00 k0 n—oo

Proof. Using F'(v, A, k,e) > F(u, A,k + d,¢) where |[u — v[[p(4) < J, one has that

F'(v, A, k) = liminf F(u, A, k,e,) > liminf F(v, A,k + 6,6,) = F(u, A,k + 6).

n—oo n—o0

Thus,

lim inf sup F'(u, A, k) > sup F'(u, A, k + J)
VU >0 k>0

and finally passing also to the supremum in § one has that F’ is lower semicontinuous.
The statement for F” follows in a similar fashion.

Fix 2 a countable dense set in LP(A) and let U be the set of all balls centered in
the elements of 2 with radii in [0,1] N Q. Let us enumerate the balls in ¢, namely
UZ{BZ ZEN}
Let u; € By be such that F'(u;, A) < infp, F' 4+ diam(By). Let {67(11)} be the sequence
such that

F'(u1,A) = lim lim F(up, A, k,e1).

k|0 n—o0
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In a similar way as for Bj, let us € By be such that F{ES)}(UQ,A) < infp, F{’ES)} +
diam(B3). Moreover, let {5%2)} C {z—:g)} be such that
F'(ug, A) = lim lim F(u, A, k,e?).

k|0 n—0oo

By an induction procedure it is possible to produce a sequence {a%kﬂ)} C {57(1]6) } such
that

F’(uk,A) = lim lim F(uk7A’,€7€£lk))’

k|0 n—00
where uy, is chosen such that

Fgeslkﬂ)}(uk-&-la A) < Ei??fl F{/E%k)} + diam(Bj1).
By a diagonal argument it is possible to chose a single sequence {&j}, such that all the
above are satisfied. Because the second claim of the Proposition 1.2.4 consists in showing
(1.8) for a particular sequence, one can assume without loss of generality that it satisfies
the above relations.

Let us now show that F) fen} = Ff’s e From the definitions it is trivial that ngn} < F {’5 e
Let us now show the opposite inequality. Fix u. For every ¢ such that u € B; we have
that?

Passing to the limit for ¢ — oo and using the lower semicontinuity of F ”E .y we have the
desired result. O

Fix © an open set, ¢ > 0 and u € WP(R?) and let ¢, . be defined by in (1.3). The
Gibbs measure pq () on (R™)$% under the boundary conditions u is defined as the
Borel measure such that

exp{—BH (p,Q, ¢
Zﬂ,au

D) T et

1€Qe

dﬂﬁ,é,U(‘P) =

where 1 is the characteristic function of the set
{p e (Rm)ezd : o(x) = e for all z € e29\ Q.}

and

Zosa= [ (=81 92.9)10) TT st

SEEQE

We are now able to write the main result in this section:

Theorem 1.2.5. Assume the above hypothesis. Then for every infinitesimal sequence
(en) there exists a subsequence (en,) and there exists a function W : Q x R¥>*™ — R
(depending on {ey, }) such that

F{’gnk}(u,A) = F”ank}(u’A) = /AW({L‘,VU) dz. (1.9)

Zby the above construction

10
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1.2.3 PROOFS

The next technical lemma asserts that finite difference quotients along any direction
can be controlled by finite difference quotients along the coordinate directions(see [3,
Lemma 3.6]).

Lemma 1.2.6. Let A € A(Q) and set A, = {x € A: dist(z,04) > 2v/Ne}. Then for
any &€ € Z% and ¢ : A, — R™, it holds

3 ‘ (9““'2 ‘ <C’Z 3 Viela (1.10)

sERE(A) i=1 pe R (A)

where the constant C s independent of &.

Proof. Let ¢ € Z%. By decomposing it into coordinates, it is not difficult to notice that
it can be written as

Ne
= a(&eq,
k=1

where N¢ < §|¢| for some ¢ depending on the dimension d, and ay (&) € {—1,1}. Denote
by

k
&= aj(©es,
j=1

hence & < || for all k. Thus,

Ne
vfu |£|Zvak eZ (5U+5£k)

Moreover, by the convexity of the p-norm, we have
Ne

1
\Y% (€)es <$+€§k

P
7\7 — k : : k(g

Finally, by summing over all £, exchanging the sums and using the equivalence of the
norms i.e., |{| < Ng < d|¢| one has the desired result.

O

Let also us recall a lemma found in [19]:

Lemma 1.2.7 ([19, Lemma Al]). Let a > 0 and A C Q. be connected (when viewed
as a subgraph of Z% with the set of edges consisting of all pairs of nearest neighbours
(4,7),]t — 3| =1). Then:

(i) We have
m Al—
/]l{j}y exp CLZ|VX ]p HdX )(a /pc(p,m))‘ | 1,
€A €A

where j € A and 1y, , is the indicator of the set {X € R™AM X (5) —y| < 1}

and w(m) is the volume of the unit ball in R™.

11
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(ii) For anyv € L"(Q2,R™) and ¢ sufficiently small,

/N exp(—a Y [VX(O)P) [T dX (@) < OIAF (a7 Pe(p,m)) 7 (1.11)

,r(vvm) ieA ieA

where ¥ = w(m)s™ and c(p,m) = [ exp(—[¢|P)dE.
Let G* be the free-energy (see (1.6) for the definition) induced by the Hamiltonian

d
HNp, Ae) =AY > Vil
i=1 xcRE1(A)
Lemma 1.2.8. There exists constants Cy, Dy, such that it holds

Cy < GMN0, A, k,e) < D,

Proof. Let us prove now the upper bound, namely

G0, A, k,€) < Dx. (1.12)
Let us observe that
HMp, Aje) <dX > Jp(a)|?, (1.13)
xEA:

hence

exp (—H*(p, A, ¢) Z/ exp (— \so(w)lp)-
/wo,A,m) ( ) (o lepl<n} 2

TEA:

Thus by using the Fubini Theorem, we have that

/V(O,A,,-;,a) exp (—ﬁA(cp,A,e)> > exp (—5_dD) ,

where
D := —log/ exp (tP).
R

Using the definition of the free-energy, one has the desired claim.

Let us now turn to the proof of the second inequality, namely there exits a constant C
such that

Cy < G(0,A,k,¢€). (1.14)

Let us suppose that |A| = 1. By definition, for every ¢ € V(0, A, k, ) it holds

Y le(@)P < wPfemtP.

TEA:

12



1.2 Sobolev Representation Theorems

Thus, it is immediate that for every ¢ € V(0, A, k, ¢) there exists a z € A, such that
lo(z) [P < kP /e~ 0P, (1.15)

For ever = € A, let us denote with A, the set of ¢ € V(0, A, K, €) such that (1.15) holds.
Thus J,ea. No D V(0, A, 5, €).

From Lemma 1.2.7 one has that
/ exp <—HA(<P, A,E)) < ke T Pexp <—(€d - 1)0,\) : (1.16)
Nz

Hence, with simple calculations one has that

fropny? (106 40) £ 3 ety (8- 13).

thus because the exponential diverges “faster”, one can find another constant C'y such
that (1.14) holds. O

Lemma 1.2.9. Let {f¢ .} satisfy our hypothesis. Then there exists a constant D such
that for every k < 1, one has that

d
exp (—a_dF(u,A,/i,a)> <exp [ De ™+ DZ Z Ve, oue(x)P |, (1.17)
=1 zeRgi(A)

where @y ¢.

Proof. Given that [|b — a||P > 217P||a||P — ||b]|P one has that there exists a constant C}
such that

d
H(p, A k,e) > C Z Y Vel \p>012 > Ve - 012 Z Ve (¢ue)(
=1 ze RS (A) =1 zcRZ' (A) i=1 xc R (A

where ¢ = ¢ — @, - and ¢, . is defined in (1.3). Hence, the estimate (1.17) reduces to
prove that there exists a constant D such that

/V(O,A,H,g) P < CZ Z Ve, ‘P‘p> < exp < d> :

i=1 xcREI(A)

The above inequality was proved in Lemma 1.2.8.
O

Remark 1.2.10. A simple consequence of the reasoning done in Lemma 1.2.9, is that
there exists a constant C' such that

A|—>F'(U,A)+C(|Vu]Lp(A)+l) A F"(u, A) + C(IVulppa) + 1)
are monotone with respect to the inclusion relation i.e., for every A C B it holds that

F'(u, A) + C(\Vu|Lp +1) < F'(u,B) + C(]Vu\Lp )+ 1).

13
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1 Representation Theorems

Lemma 1.2.11. Let f¢. satisfy our hypothesis and let A be an open set. Then there
exists a constant D > 0, such that

d
exp (—ade(u,A, /@,5)) >exp | —De - Z Z Ve, oue(z)| ], (1.18)

=1 2RI (A)
where @y s defined in (1.3).

Proof. Using Lemma 1.2.6, one has that there exists a constant C' such that

H(p, A K, ¢) <Cz Z \Vez

i=1 mGReZ

Given that ||a + b|[P < 2P71||a||P + 2P~1||b||P~, there exist a constant C; such that

d
H(p, Aye) < Z > (VepueP+D)+>0 D [Vat(x)P

i=1 zc REI(A) i=1 zc RE1 (A)

where ¢ = ¢ — ¢, .. Hence, the estimate (1.18) reduces to prove that there exists a
constant D such that

/V(O,A,n,s) P ( ¢ ;%;A) |V61¢|p> < exp ( d) '

The above inequality was proved in Lemma 1.2.8.
O

Lemma 1.2.12 (exponential tightness). Let A be an open set and K > 0. Denote by
My = {¢; H(p, Ae) > Ks_d\A|}.

Then there exist constants D, K, eg such that for every K > Ky, € < &g and u € LP(A)
it holds

d
1
/ exp (— H(p, A ¢)) Sexp(— “Ke 4+ De4—D g E |Veigou\p)
MgNV(u,A k) 2 i—1 zeRZi(A)

Proof. For every ¢ € Mg it holds
1
H(p, Ae) > K/2:7¢ + 5H(<p, A e).

Hence, by using Lemma 1.2.9, we have the desired result.

We will now proceed to prove the hypothesis of Theorem 1.2.2.

Even though in the next two lemmas a very similar reasoning is used, they cannot be
derived one from the other.

14



1.2 Sobolev Representation Theorems

Figure 1.1

Lemma 1.2.13 (regularity). Let f¢ satisfy the usual hypothesis then
sup F'(u, A’) = F"(u, A).

A’€A
Proof. Let us fix A’ € A and N € N (to be chosen later). Let § = dist(A4’, A®), and let
0<ty,...,tx <6 such that t;41 —t; > %. Without loss of generality, we may assume

that there exists no z € A, such that dist(z, A®) = t;. For every i we define
A; = {x c A, : dist(m,AC) > ti}
and
Si%i={z € (A a+ef € A\ A}
With the above definitions it holds
RE(A) = RE(A') + RE(A\ A') + 7%,
thus

Hg((paA?E) < Hg(QOaA\Aug) + Hé(SDwA’ng) + Z fﬁ,E(v@(x))
xESf’E

Hence, by using hypothesis (C2) one has that,

H(p,A,e) < H(p, Aje) + H(p, A\ Aiye) + Y Y Cel(|Vep(a)|” +1).
€L peste

Let us now estimate the last term in the previous inequality.

We separate the sum into two terms

Z Z |v§§0(l‘)|p: Z Z |V§90($)|p+ Z Z |V£¢($)‘p’ (1_19)

tezd $€S§’E |§|<M zGSf’E ‘§|>M$€Sf’€

15



1 Representation Theorems

where M € N. From hypothesis (C2) and by taking M sufficiently large, we may also
assume without loss of generality that

Z C§§51;

|€1>M

hence using Lemma 1.2.6,
d ~
SN V@l <Ca Y Y Vo)l < CaH(p, A2,
[E1=M gegte k=1 gzeRZ* (A)

where in the last inequality we have used hypothesis (C3).
Let |£| < M. If eM N < 26, then

Si{,a N S§7E - @ whenever i — j| > 2.

Without loss of generality we may assume the above condition as € — 0.

Given that
N—
Z S Y Vo)l < 2CH(p, Ase),
=1 |€|<Mx65’5'5

there exist 0 < ¢ < N — 2 such that

S Vel <

|§l<M 9065’S €

H{ep, 4,¢). (1.20)

Let us denote by N; the set of all ¢ € V(u, A, k, ) such that (1.20) holds for the first
time, namely for every j <

o> Veol? 2 +

|§l<M xES€ €

H(p, A, ¢) (1.21)
On one side, one has that

N
/V(UAM) exp (—H(p, A, K,¢)) < ;/Niexp (—H(p, Ajye) — H(p, A\ Aj,e)) . (1.22)

On the other side, one has that

/ exp (—H(p, A, k,€)) > Z/ exp (—H(p, A,¢)), (1.23)
V(u,A,k,E)

where N := N; \ Mg. By using (1.21), one has that for every ¢ € N it holds

H(QO,A,€)+H(§O,A\/_1“5) SH(QO,A,&‘) SH(@aAZ)—i_H(SOvA\AZ)_{—ma

16



1.2 Sobolev Representation Theorems

and for every ¢ it holds

H(p, A,e) > H(p, Ai,e) + H(p, A\ A;,¢). (1.24)

Hence,

N
- K
ex , A €)) / ex< JA) — H(p, A Ai_>.
/V(%AJ%‘?) p(~Hlp ; N P H{p, 4i) (¢, AN Aq) N —9

By using Lemma 1.2.12, i.e., the fact that there exist Ky, €9 and D such that for every
K > Ky and ¢ < gg one has that

1
/ exp (— H(p, A,¢)) < exp ( — —Ke A + Ds_d|A\),
MgNV(u,A,k,€) 2
and by using (1.22), one has that (1.23) can be further estimated as
K

exp (— g~y K= Al + De 'A‘)+/V(um)e"p( H(p. A.2))

> exp ( ) Z/ exp (—H(p, Aise) — H(p, A\ A7) .

We also notice that by using (1.24) one has that

N
> [ e (He Ao +HeANA) > [ e (<H(g.A2).

V(u,Ae)
thus there exists 1 < ¢9 < N such that

1

/ exp (H(, Aiy,€) + H(p, A\ Ay)) >
N V(u,Ae)

10

exXp (_H(SO7A75)) . (1.25)

Without loss of generality, we may assume that io = 1. Hence, combining (1.25) with
the previous estimates we have that

K

1 —d —d
exp ( — m — §K5 |A’ + DS ‘A|) + /v(u’A’Hﬁ) €Xp (7‘H(C)0’ A75))

> %exp <—NK_2) /M exp (—H(p, A1, e) — H(p, A\ Ay)).

We notice that the variables H(p, A1, k,¢) and H(p, A\ A1, K, ¢) are “independent”,
thus by using the Fubini theorem one has that

/ exp (~H(p, Ar,e) — H(p, A\ Ap)) > / exp (—H(p, Ar,¢))
V(u,A,k,€)

V(U,Alﬂ'i,E)

x /  exp(—H(p A\ AY))
(u,A\A1,k,€)

17



1 Representation Theorems

where in the previous inequality we have also used that

V(u, A\ Ay, k,e) N V(u, A1, k,€) CV(u, A, k,€).

To summarize, we have proved that for Ay

B K 1 _ .
e~ %log (exp (F(u,A, K, 5)) + exp ( N3~ §K€ d\A[ + De d]A\))

K _
< —¢ Iog(ﬁ) +elog(N) + F(u, Ay, k,e) + Fu, A\ Ay, K, ).
Finally, to conclude it is enough to pass to the limit in €, then in N and then in k,

and use the “almost” monotonicity of the map A — F"(u, A)(see Remark 1.2.10 ) and
Lemma 1.2.11 to estimate the term F(u, A\ A1, K, ¢€). O

Lemma 1.2.14. For every open set A and u € W'P(R?) it holds

F'(u, A) = F._(u, A) and F'(u,A) = F.(u, A)

Proof. Without loss of generality, we may assume that u = 0. Indeed, if it is possible to
change the boundary condition to 0 it is possible to change the boundary condition for
every u € W1P(A) as this would correspond to a translation in all the formulas, hence
leaving the integrals unchanged.

Let us fix A’ € A. Let 6 = dist(A’, AY), and let N = [é] 0<ty,...,ty <9 such that
tiv1 —t; > %. For every i we define

A; = {ac c A, : dist(m,AC) > ti}
and
Si° = {z € (A a+ef € A\ A}
With the above definitions it holds
RE(A) = RE(A) + RE(A\ A) + 57°

Thus,

H(p,Ae) < H(p, Ae) + H(p, A\ Aiye) + Y Y Cefecla, o(x)/I€])
§€de€S§E

Yoy \W\pﬂ

tezd xeS?g

< Hool @, Aiy2) + Hip, A\ Ain) 3 Ce |

¢ezd wESfE

o(x + €f)

‘p+1
€] ’

where ¢ is the function which coincides with ¢ in (4;). and is equal to 0 outside of (4;)-.

18



1.2 Sobolev Representation Theorems

It is not difficult to verify that

Sf’s N Sf.’g =9 whenever |i — j| > [£]. (1.26)

Fix d3 > 0. Then for every £ such that e|£| > Jo it holds

Z Z ‘(p xg‘eﬁ _N_lz Z lsgox—ksﬁ ‘ (1.27)

zesst =1 gesse

Let us divide the last term in (1.19) into two terms

ZZCE 3 ‘90x+e£ (x+s§)‘ N 1

1=0 |¢|>M :rGS&E %

Ce Z ‘5@ ac—l—ef)‘

elé|>02  weSte

o(z + e&)|P
o 3 et

€|€|<d2 zeSEE

Mz

Il
=)

Mz

N 1

Il
=)

A

Because of (1.26), it holds

oY Y oy [HE) <o s i,

=0 g|¢|>d2 xeSE e £ezd

where in the last inequality we have used Lemma 1.2.6 and the fact that ¢ € V(0, A, K, €).

For the second term
o(x +€€)|P -
Z Z Ce Z TEp Z Ce Z P < Z Ce Z VolP,
i=0 ¢|¢|<6y  zeSEe €€Z¢  geRS(A) €€Z?  geRS(A)

where in the first inequality we have used (1.26) and in the second inequality we have
used the fact that the extension ¢ has null boundary conditions.

Hence there exists there exist 0 < ¢ < N — 2 such that

D Vepl <

€] wESE €

H(p, A, e).

After this step the proof continues in the same fashion as the proof of Lemma 1.2.13.
O

Lemma 1.2.15 (subadditivity). Let A", A, B', B C Q be open sets such that A’ € A and
such that B' € B. Then for every u € WP one has that

F"(u, A UB') < F"(u, A) + F"(u, A).

Proof. The proof of this statement is very similar to Lemma 1.2.13.

19



1 Representation Theorems

Lemma 1.2.16 (locality). Let u,v € WHP(Q) such that u =v in A. Then
F'(u, A) = F'(v, A) and F"(u, A) = F"(v, A) (1.28)

Proof. The statement follows from the definitions.

Proof of Theorem 1.2.5.

Let us suppose initially that there exists a sequence for which F(-,-) = F'(-,-) = F"(-,-).
Then to conclude it is enough to notice that F' satisfies the conditions of Theorem 1.2.2.
Indeed, in the previous Lemmas we prove that all the conditions (i)-(v) of Theorem 1.2.2
hold. O

Corollary 1.2.17. Because of Lemma 1.2.14, the same statement holds true for F.
This in particular implies that for the sequence {ey, } in Theorem 1.2.5 there holds a
large deviation principle with rate functional

I(v) = /QW(JJ, Vo)dz — aeW?}g(%Hu /QW(VU(JU))dx. (1.29)

1.2.4 HOMOGENISATION

In this section we will show that if the functions f¢. are obtained by rescaling by e
in the space variable, then a LDP result holds true. This models the case when the
arrangement of the “material points” presents a periodic feature, namely:

(H1) periodicity:
— (T
fé,s(x7t> f (E’t>

where the functions f¢ are such that f&(x + Me;,t) = f&(x,t).

(H2) lower bound on the nearest neighbours:
[, t) Z et = 1)
(H3) upper bound

fé(x,t) < Ce(ltP +1)

The main objective of this section is to prove the following homogenization result:
Theorem 1.2.18. Let the functions fgéa satisfy the above conditions. Then there exists
a function from such that for every A C  open set it holds

Flu )= [JaFron(T0)if ue Whr (@RS (1.30)
’ 400 otherwise,
where
1
Jrhom(M) :== —lim F'(Mz, A, k,€). (1.31)

‘A| el0
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1.2 Sobolev Representation Theorems

Proof. Let (e,,) be a sequence of positive numbers converging to 0. From Proposition 1.2.5
we can extract a subsequence (that we do not relabel for simplicity) such that

F{an}(ua A) = F{;n}(U,A) = /Af{gn}(.’L', VU) dz.

The theorem is proved if we show that f does not depend on the space variable x and on
the chosen sequence g,,. To prove the first claim, by Theorem 1.2.2, it suffices to show
that, if one denotes by

F(u,A):/Af(:U,Vu)dx,
then
F(Mz, B(y, p)) = F(Mz, B(z,p))

for all M € R¥>*™ 4y 2 € Q and p > 0 such that B(y, p) U B(z,p) C Q. We will prove
that

F(Mz,B(y,p)) < F(Mz, B(z, p)).

The proof of the opposite inequality is analogous.
Let z,y € R? and let 2. = arg min(dist(y, z + (¢M)Z?%))]. Then z. — y as ¢ | 0. From
the periodicity hypothesis, one has that
F(M,B($,p, K,€)) = F(M,B(xg,p,m,e)) < F(M,B(y,pqL 5,/{,5))
where in the last inequality we have used the monotonicity with respect to the inclusion

relation of A — F(u, A, k,€) and 0 is such that |y — x| < 4.

Let us now turn to the independence on the sequence on the chosen sequence. Let us
initially notice that because of the LDP, whenever u = Mz where M is a linear map it
holds

F'(u, A, k) = F'(u, A) and F"(u, A, k) = F"(u, A). (1.32)

Because of Theorem 1.2.2, it is enough to show that for every linear map M the following
limit exists and

1
Al 151&1 F'(Mz, A, k,e¢)

The existence of the above limit(and its independence on k) follows easily by the standard
methods with the help of an approximative subadditivity. A simple proof can be found
in [19, Proposition 1.2]. O
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1 Representation Theorems

1.3 SBV REPRESENTATION THEOREM

In this section we extend the results of the previous section to more general local
interactions, where the problem relaxes naturally in SBV. The strategy will be very
similar to the one used in § 1.2. However, we will need to use different tools and a
different Representation Theorem. Repeating many of the arguments in the previous
section is thus unavoidable, however we will refer to the previous section often when the
repetition becomes pedantic.

1.3.1 A wery SHORT INTRODUCTION TO SBV

Before going into the details of our main Theorem of this section, let us define the
functional spaces BV and SBV. For a general introduction on these spaces see [4].
However, please notice that the definitions given in this section differ slightly from the
ones in [4]. More precisely, in the following, we additionally impose the finiteness of
(n — 1)-Hausdorff measure of the jump set. This technical modification is done in order
to have at our disposal general representation theorems like the ones in the following
section.

Let Q be an open set. We say that u € L'(£2) belongs to BV(Q), if there exists a vector
measure Du = (Dyu, ..., D,u) with finite total variation in €, such that

/ udjpdr = — / wdDju Vo € CLH(Q)
Q

Let Du = D% + D*u be the Radon-Nikodym decomposition of Du in absolutely
continuous and singular part with respect to the £" and let Vu be the density of D%u. It
can be seen that u is approximately differentiable at  and the approximate differential
equals to Vu(z), i.e.,

limp™"

lu(y) —u(z) — (Vu,y —z)| .
pl0 /Bp@:) =0

ly — |
for L™ a.e.x € ).

For the singular part, it is useful to introduce the upper and lower approximate limits
Uy, u_, defined by

u_(xz) =1inf{t € [—o0,+00] : {z € Q: u(z) >t} has density 0 at =}
uy(x) =sup{t € [—oo,+00] : {z € Q: u(z) <t} has density 0 at z}.

It is well-known that uy () € R for H¥ !-a.e.x € Q. The jump set S, is defined by
Syi={z e u_(r) <ug(x)}.

We define the jump part Ju of the derivative as the restriction of D®u to the jump set
Su. We also recall that there exists a Borel map v, : S, — 591 such that

vE, () = 1y for H¥ Lae.x € 9*E, N S,

for any ¢ such that F; := {z : u > t}.
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1.3 SBV Representation Theorem

Proposition 1.3.1. Let u € BV(Q). Then, the jump part of the derivative is absolutely
continuous with respect to H~1 and

Ju = (uy —u_),HTILS,

Finally, we define the space SBV,(2) as the set of functions u € BV(£2) such that
Vu € LP(Q) D*u = Ju and

HIL(S,) < +oo. (1.33)

Note that in [4] the condition (1.33) is not imposed.

1.3.2 PRELIMINARY RESULTS

Let us now recall some well-known results, which will be useful in the sequel.
Theorem 1.3.2 ([4, Theorem 4.7]). Let ¢ : [0,+00) — [0, +00], 6 : [0, +00) — [0, +0]
be a lower semicontinuous function increasing functions and assume that

t
lim 0} = 400 and lim —~ = 400 (1.34)
t—+oco ¢ t—0 ¢

Let 2 C R™ be an open and bounded and let (up) C SBV(QY) such that

sup {/Q o(|Vun|) + /J 0l — up |) dH”—l} < t0. (1.35)

If (up) weakly™ converges in BV(QY), then u € SBV(QY), the approximate gradients Vuy,
weakly converge to Vu € (LY(Q))N. Djup, weakly* converge to Dju € Q and

/ o(|Vul)dz < liminf/ o(|Vuy|) dz if ¢ is convex
Q h—+oc0 Jq

/ O(lut —u™|)dH " < liminf/ O(|uf — wy [) dH"

h—400

if 0 is concave.

Theorem 1.3.3 (Compactness SBV [4, Theorem 4.8]). Let ¢, 6 as in Theorem 1.5.2.
Let (up) in SBV(Q) satisfy (1.35) and assume in addition that ||up||ec is uniformly
bounded in h. Then there exists a subsection (up,) weakly* converging in BV(Q) to

u € SBV(Q).
Let
F :SBV,(Q,R%) x A(Q) — [0, +00]

such that the followings hold:

(H1) F(u,-) is the restriction to A(2) of a Radon measure,
(H2) F(u,A) = F(v,A) whenever u =v L™ a.e.on A € A(Q),
(H3) F(-,A)is L' 1s.c.,
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1 Representation Theorems

(H4) there exists a constant C' such that

1</ \Vu|pda:+/ (1+[ut —u7]) d’H"_l)
C\Ja S(u)nA

< F(u, A) (1.36)

§C’(/ |Vu|pd:1:—|—/ (1+ Jut —u7]) d’H"_1>.
A S(u)NA

Here, 2 is an open bounded set of R™. As before, A(2) is the class of all open subsets
of Q and SBV,(Q) is the space of functions v € SBV(Q2) such that Vu € LP(Q2) and
H"(Ju) < 4o0. For every u € SBV,(Q2) and A € A(€) define

m(u; A) == inf {F(u; A) : w € SBV,(Q2) such that w = u in a neighbourhood of 0A}

The role of Theorem 1.2.2, will be played by the following result, whose proof can be
founded in [7].

Theorem 1.3.4. Under hypotheses (H1)-(H4), for every uw € SBV,(Q2) and A € A(Q)
there exists a function W1 and Wy such that W1 is quasi-convex, Wy is BV-elliptic and
such that

Flu, A) := / Wi(x,u, Vu)dx + Wa(z,u™ u™,v,) dH™ L
A ANSy,
Moreover, the functions W1 and Ws can be computed via
+ T ) )
Wi (zo, up, ) := limsup m(uo €0~ 70), Qlxo 8))

n
e—0t €

m (uaro,a,b,ua Ql/ (an 6))
5n71

Wa(zo,a,b,v) := limsup
e—0t

for all zo € Q, ug, a,b € RY, € € R, v e S 1 and where

(z) a if (x —x9) v >0,
Ugg,a,b,v\T) =
0::b, b if (x—x9) -v<O0.

AS Ugy bay = Uggaby L a.e.in Qu(xo,e) = Q—y(x0,€), one has that
WQ(-Q?Oy b7 a, _V) = WQ(x(]v a, b: V)7

for every xg € Q, a,b € R and v € RY.
Remark 1.3.5. Condition (1.36), can be softened to

1(/ yvu\de/ (lu* —u\)d’H"1>
C\Ja S(u)NA

< F(u, A) (1.37)

< C</ |VulP dz + / (Jut —u™|) d’H"1>.
A S(u)nA

Indeed, let us suppose that F satisfies only (1.37). By the same theorem(Theorem 1.5.4)
it is possible to represent Fcal(u, A) + H(S, N A), thus by removing the subtracted part
1t 1s possible to represent F.
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1.3.3 HYPOTHESIS AN MAIN THEOREM

Given Theorem 1.3.2, it is natural to impose the following hypothesis.

Let ¢ a monotone convex functions such that there exists a constant C' such that
g (#) > C max(t? —1,0)
and ¢® be a monotone concave function such that

M (¢
g P ()= e>0 and lim 9-(t) - too.
tToo t

The typical example we have in mind is when g(1)(¢) := t? and g(®(t) := 1 + t*, where
0<a<landp>1.

Let T, 1T oo be such that €7, | 0. We denote

gDy it e < Tz,
a - .
L@ (ellz]) if || > T

We will also assume that there exists a constant C' such that g(1(7.) < gg(z) (T.e), and
that for every M > 0 there exists a constant Cys such that

gs(MM) < CMgs(’t’)'

The above
Let (fec) be a family of local interactions such that for every &, it holds

fee(z,t) < (ge(]t]) +1) (1.38)

and such that for every 1 < j < d it holds
fez,E(w t) (96(“’) - 1) (1-39)
We will assume also that there exists a constant M < +oo such that

/R!t!d_l exp (—ge(t)) dt < M.

Let us now define the Hamiltonians as

Hua =Y Y g A )

EEZN zeRE(A)

and

Hy(p, Ase) i= > > fee(, Vep(x)).

£czd e
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1 Representation Theorems

Remark 1.3.6. Let u € SBV,(2) N L>(Q2). Then like in 1.3, there exists an discretized
Yu,e such that

lullsay, Se Y 9:(Veue) S llullsav, .
rE€eZINQY

Let us discuss very informally the above hypothesis. The function g. will play the
role of || - ||” in § 1.2 and the conditions on g) and ¢(® are in order to ensure the
compactness and lower semicontinuity. Given that a discrete function can be interpolated
by continuous functions, it does not make sense to talk about jump set. However, it
makes sense to consider as a jump set, the set of points where the discrete gradient is
bigger that a certain threshold 7. Indeed, if we were approximating a function with a
jump, it is expected that the gradient would explode(in a neighbourhood of the jump
set) like §/e, where 4 is the amplitude of the jump and ¢ is the discretization parameter.
Thus T; 1 co. Indeed, suppose that the function we are approximating is dxp, where
0 is a small parameter and B is the unit ball. Then the jump set would be the set of
points where the gradient goes like g. Thus in order to “catch” jumps of order § one
needs that the lim. g Tze < §. Thus lim. g T:e = 0.

As in the previous section, one of the main steps will be to show that F/ = F’ and that
F!_ = F". The basic intuition behind, is again a version of the interpolation lemma. As
before, we will show that if one imposes “closeness” v in LP(A) to some regular function
u, then one can impose also the boundary condition by “paying a very small price in
energy”. More precisely, given a sequence {v,} such that v, — u in LP(A), where A is
an open set, then there exists a sequence {0, } such that 0,, — u, such that 0, |50 = u|an
and

lim inf [|9, [[spv,(4) < lim inf [[on[[sBv,(a):

Remark 1.3.7. Let f : [0,+00) — [0,400) be a monotone function. Then, it is
immediate to have

where t; > 0.
Similarly as in § 1.2, for every A € A(Q2), we define the free-energy as

F(u, A, K, ¢e) == —¢? log/ exp < - H(@,A,E)) dp
(u,A,r)
Foo(u, A, K, e) == —¢? log/ exp ( — HOO(QO,A,€>> dp
Voo (u,A,K)

where

V(u,A,m):{gp:AE%Rm] A Z lu — 5g0|p</<;p}

TEA.

— . d m _ P< P
Voo(u, A, k) {@.SZ —R ||A‘dZ|u epP < kP, and p(z) = @u,g(x)vxngE},

TEA:
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1.3 SBV Representation Theorem

where ¢, is defined in (1.3).

Similarly as in § 1.2, let us introduce the following notations:
F'(u, A, k) := limﬁ)an(u, A, K, €)
3

F"(u, A, k) := limsup F(u, A, k, )
el0

F'(u, A) := limliminf F(u, A, k,€) = lim F'(u, A, k)

k0 el0

F"(u, A) :=limlimsup F(u, A, k, &) = hmF”(u A, R)
k0 €10 k0

Fl(u, A k) := lim&)nf Foo(u, A, Kk, €)

F (u, A, k) := limsup Feo(u, 4, k, €)

el0
Fl (u, A) == ;%hr?&)an so(u, A, kye) = E%Féo(u,A,/i)
F (u, A) :=limlimsup Fi (u, A, k,€) = lim F.(u, A, k)
k0 <10 Kl0

We are now able to write the main result of this section.
Theorem 1.3.8. Assume the previous hypothesis and that w € SBV, N L. Then

for every infinitesimal sequence (gy,) there exists a subsequence €, and functions Wy :
QO x R*™ 3R gnd Wy : Q x R™ x §41 5 R such that

F(u,A) := (u A) = F,’l'k(u, A) = /Awl(w,Vu) dx + . Wolz,u™ (z) — u™(z), vu(z)),

where the function W1 is a quasiconvex function and Wy is a BV-elliptic function and
depend on the chosen subsequence {ey, }.

1.3.4 PROOFS

The next technical lemma is a version of Lemma 1.2.6, that asserts that finite difference
quotients along any direction can be controlled by finite difference quotients along the
coordinate directions.

Lemma 1.3.9. Let A C A(QQ) and set A; = {x € A dist(x, A) > 2\/JV5}. Then there

exists a dimensional constant C := C(N) such that for any € € ZV there holds

Z ga(véu <C‘§‘Z Z ga (Ve,u(w

zERE(AL) =1 zcRZI (A

Proof. As in the proof of Lemma 1.2.6, let £ € Z¢. By decomposing it into coordinates,
it is not difficult to notice that it can be written as

Ne
£=> ap©es,
k=1
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1 Representation Theorems

where N¢ < 0]¢| and oy (§) € {—1,1}. Denote by

Ne
&= ar(é)
=1

hence |&x| <[] for all k. Thus
Ne
Vgu ‘§| ZV% (€)e; U $ + Efk)

Moreover, by the monotonicity of g., we have

< Zvak(ﬁ)e x+5§k) ng( ap(&)e; U x+s§k))

Finally by summing over all £, exchanging the sums and using the equivalence of the
norms i.e., |{| < Ng < d|¢| one has the desired result.

O]

As in the previous section, let G* be the free-energy (see (1.6) for the definition) induced
by the Hamiltonian

d
M, A€) Z > ge(IVael).
i=1 ycR% (A)

In a very similar fashion as in Lemma 1.2.8, one can prove
Lemma 1.3.10. There exists constants Cy, Dy, such that it holds

C)\ S G)\(OaAN‘f:E) < D/\

The next proof is the analog of Lemma 1.2.9.
Lemma 1.3.11. Let {f¢.} satisfy the usual hypothesis. Then there exists a constant
D >0 and €9 > 0 such that for every x < 1 it holds

d
exp (—a_dF(u,A, /i,{;‘)) <exp | De ¢+ D Z de(vei%,a) , (1.40)
EeR(A) =1

where @y s defined in (1.3).

Proof. Given that g-(|a|) < g-(Ja — b|) + g=(|b]) one has that there exist constants C;
such that

d
H(p, A, k,e) > C Z > 9:(IVep(@)))
=1 EREZ(A)
d d
>0y g=(Ve) = C1Y" Y (Ve pucl@)])
=1 zec RS (A) i=1 zc RS (A)
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1.3 SBV Representation Theorem

where ¢ = ¢ — ¢, .. Hence the estimate (1.40) reduces to prove that there exists a
constant D such that

-C Vel < D —d .
/{llwnsﬁ}eXp ;mGRZ )9€| vl eXp( e )

The above inequality was proved in Lemma 1.3.10.

As in Remark 1.2.10, we have the following;:
Remark 1.3.12. Let u € L>* N SBV),, then along the lines of Lemma 1.5.11 one can
easily prove that there exists a constant C' such that

A F'(u, A) + C(lulspy,a) +1) A F'(u, A) + C(lulgpy,ay + 1)
are monotone with respect to the inclusion relation.

Lemma 1.3.13. Let f¢. satisfy our hypothesis and let A be an open set. Then there
exists a constant D > 0 such that

d
exp (—g_dF(u, A,/f,e)) >exp [ — Z Z \Ve,@ue )|)
i=1 ze RS

where @, ¢ is defined in (1.3).
Proof. Using Lemma 1.3.9, one has that there exists a constant C such that
d
H(p, A, k,€) Z Y 9=(IVeeD)
i=1 2R (A)

Given that g.(a +b) < g-(2a) + ¢9-(2b) < g=(a) + g:(b), there exist a constant C such
that

H(p,Aje) <C

ga |v31 )+1 +2dzga ‘¢ )‘)
ci(A) €A,

”M:‘

where ¢ = ¢ — ¢, .. Hence, the estimate (1.40) reduces to prove that there exists a
constant D such that

/v o exp( C > ge(jv(x ) > (k) Texp (De*d).

TEA,:

The above inequality was proved in Lemma 1.2.8.
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1 Representation Theorems

Lemma 1.3.14 (exponential tightness). Let A be an open set and K > 0. Denote by
My ={p: Hp,Ae) > K=a]}.
Then there exists a constant D, Ko, g9 such that for every K > Kg, € < g¢ it holds
1 d
/ exp (- Hp.A.0) <exp (1K= + D DY Y gVl
MENV(u,AK) i—1 zeREH(A)
Proof. For every ¢ € My it holds
H(p,Aje) > K/2e %+ H(p, A,e).

Hence, by using Lemma 1.3.13 we have the desired result.

The proof of the following lemma is similar to Lemma 1.2.13.
Lemma 1.3.15 (regularity). Let f¢ satisfy the usual hypothesis then

sup F'(u, A’) = F"(u, A).
A'€eA

Proof. Let us fix A’ € A and N € N (to be chosen later). Let ¢ = dist(A4’, AY), and let
0<ty,...,ty <9d such that ¢;41 —; > %. Without loss of generality, we may assume
that there exists no x € A, such that dist(z, A®) = t;. For every i we define
A; = {x c A : dist(:c,AC) > t,-}

and

Si° = {z € (A a+ef € A\ A}
With the above definitions, it holds

RE(A) = RE(A') + RE(AN\ A) + 57

thus

H£(907A75):Hg(sp’A\Awg)_{—Hg(@aAhg)+ Z f&,a(vﬂo(ﬂf))
zeS?s

Hence,

H(p,Ae) = H(p, Ajye) + H(p, A\ Ajye) + > Y Ce (gs(\V»:w(w)!) + 1)
fEdeES§’E

Let us now estimate the last term in the previous inequality.
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1.3 SBV Representation Theorem

We separate the sum into two terms

o > e:(Vep@D =D >0 ge(Vep@+ Y D g:(IVew()))- (1.41)

cezd :):ESf € |ElI<M (L‘ESE € [§]>M zGSf €

Let M € N. From the condition (1.38) and by taking M sufficiently large, we may also
assume without loss of generality that

> ElCe < b

1€§1=M

Hence, by using Lemma 1.3.9 we have that

d
S Y V@) <SS (IVep@)]) < CoH(p, A,2),

[EI>M zeste k=1 ze Rk (A)
where in the last inequality we have used hypothesis (1.39).
Let [£] < M. If eM N < 20, then for every
S’f’s N 5’5’6 =0 whenever |i — j| > 2.

Without loss of generality, we may assume the above condition as € — 0.
Given that

N-2

N —2
=1

[§l<M xeSf’g

there exist 0 < ¢ < N — 2 such that

> g(IVewl) <

|§l<M 1’65’5 €

H(p, A,e). (1.42)

Let us denote by N the set of all ¢ € V(u, A, k, ) such that (1.42) holds for the first
time, namely for every 7 <1

S 9(IVeel) =

|§l<M 1’65’5 €

H(p, A,¢). (1.43)

On one side, we have that

N
/ eXp( SO>A K,y 5 Z/ eXp (PaAu ) H(@,A\Ai,€)),
V(u,A,k,€) i=1

on the other side one has that

exp (p, A k,€)) > / exp (—H(p, A, e
/V(u,A,/f,z—:) ( Z ))
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1 Representation Theorems

where N/ := N; \ M. By using (1.43), one has that for every ¢ € N it holds

and for every ¢ it holds

H(QD,A,zE) > H((,D,A,c?) —|—H((,0,A\/L,€)

Hence,

N
= K
/ exp (—H(p, A,€)) > ) / exp <—H(@, A;) — H(p, A\ A;) — N2> '
V(u,A,k,E) i1 '/\/iK —

From now on the proof follows as in Lemma 1.2.13. O

Lemma 1.3.16. For every open set A and u € WIP(RY) it holds
F'(u, A) = F.(u, A) and F'(u, A) = F._(u, A).

Proof. As in Lemma 1.2.14, we may assume without loss of generality u = 0.
Let us fix A’ CC A. Let 6 = dist(A’, A®), and let N = [3—15] 0<t1,...,ty <9 such that
tig1 — t; > %

For every i we define
A; = {x € A dist(az,AC) > ti}
and
Sifi={z e (A)e: wtef € A\ A}
With the above definitions, it holds
RE(A) = RE(A') + RE(A\ A1) + 57

thus,

H(p,A,e) < H(p, Aj o) + H(p, A\ Aie) + > > Cefecla,o(x)/I€])
¢ezd 1655’5

IS I A (e R

cezd acGSf‘s

< Hoo(@, Aye) + H(p, A\ Aiyrye) S Ce S gs(,‘P(ﬂz"fé))) 41,
gezd xGSf’E

where ¢ is the function which coincides with ¢ in (A41). and is equal to 0 outside of

(A1)
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1.3 SBV Representation Theorem

It is not difficult to verify that
Sf’a N Sf.’e =@  whenever |i —j| > [£]. (1.44)

Fix d2 > 0. Then for every £ such that || > 02 it holds

Z > (\S”gfg )— Z Y. g (w\) (1.45)

zesst =1 peste

Let us divide the last term in (1.41) into two terms

lN r+ef)—Yx+e ep(r+¢€
S S R REC D I C

=0 |E[>M  gegée i=0cle[>  weste

iy o 3 ()

i=0 e|¢|<5y  zeSEe

Because of (1.44)

N
ey Z DI (\”(“‘;jg@l) <05 3l 14
i=0 e|¢|>52

xesf € £ezd

where in the last inequality we have used Lemma 1.3.9 and the fact that ¢ € V(0, A, &, €).

For the second term
1 & lo(x + €€)|
7_12205295( 7 ) D Ce D glleh <D Ce D gV
i=0elg[<d;  weSHe €24 eRE(A) €74 geRE(A)

where in the first inequality we have used (1.44) and in the second inequality we have
used the fact that the extension ¢ has null boundary conditions.

Hence, there exists there exist 0 < ¢ < N — 2 such that

S g(IVewl) <

€| mGSg €

H(p, A e)

After this step the proof continues in the same fashion as the proof of Lemma 1.3.15
O

Lemma 1.3.17 (subadditivity). Let A, A, B', B C Q be open sets such that A’ € A and
such that B' € B. Then for every uw € WP one has that

F"(u, A’ UB') < F"(u, A) + F"(u, A)

Proof. The proof of this statement is very similar to Lemma 1.3.15 and Lemma 1.3.16
O
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1 Representation Theorems

Lemma 1.3.18 (locality). Let u,v € SBV,(Q2) such that wu=wv in A. Then
F'(u, A) = F'(u,v) and F'(u, A) = F"(u,v)

Proof. The statement follows from the definitions.
O

Proof of Theorem 1.3.8. Let us suppose initially that there exists a sequence for which
F(-,-)=F'(-,-) = F"(-,-). Then to conclude it is enough to notice that F' satisfies the
conditions of Theorem 1.3.4, which are proved in the previous Lemmas. ]

Corollary 1.3.19. Because of Lemma 1.3.16, the same statement holds true for F.
This in particular implies that for the sequence {ey, } in Theorem 1.3.8 there holds a
large deviation principle with rate functional

I(v):/Wl(:ﬂ,Vv)dx WQ(l’,U+({E)—’LL7(IL‘))d,Hd_l(fL‘)—7 min /W(Vﬁ(m))dm.
Q Ju veW P (Q)+u JQ
(1.46)
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2 FINITE RANGE DECOMPOSITION

2.1 INTRODUCTION

Recently, there has been some interest in the finite range decompositions of gradient
Gaussian fields on Z¢. In particular, in [1], S. Adams, R. Kotecky and S. Miiller construct
a finite range decomposition for a family of translation invariant gradient Gaussian fields
on Z% (d > 2) which depends real-analytically on the quadratic from that defines the
Gaussian field: they consider a large torus T% := (Z/LNZ)? and obtain a finite range
decomposition with estimates that do not depend on N.

More precisely, they show that the discrete Greens function C4 : ']I'?V X T‘fv — R™ of the
(elliptic translation invariant) difference operator &/ = V*AV can be written as a sum
Ca =), Cay of positive kernels C4 ;, which are supported in cubes of size ~ L* with
natural estimates for their discrete derivatives V*C4 j as well as for their derivatives
with respect to A. The above results are obtained by via a careful analysis of the Fourier
multipliers and combinatorics.

We extend their result in the following way: We consider non-translation invariant
Gaussian gradient fields and show a similar result. Namely, we show that the discrete
Green’s function C4(z,y) : ’]I‘ﬁlv X ’]I‘ﬁlv — R™ of the elliptic difference operator &7 = V" AV,
where A = A(x) is a general elliptic operator (for detailed hypothesis see Section 2.3 ) can
be written as the sum C4 = ), Ca j, of positive kernels Cy4 ;, which are supported in cubes
of size ~ LF with natural estimates for their discrete derivatives V*C Ak as well as for
their derivatives with respect to A. Due to the general non-translation invariant setting
the techniques used in [1], seem not to apply. In order to overcome these difficulties,
we will use results from the well-known LP-theory, which are extended to the discrete
setting, and then approach the problem. Although this might not come as a surprise to
the experts in regularity theory, we could not find in the literature suitable results. As
a byproduct we are also able to prove the equivalent results in the continuous setting
which are to our knowledge not known.

2.2 PRELIMINARY RESULTS

In this section we are going to describe briefly the results in [1].

Let L > 3 be a fixed odd integer and consider for any integer N the space

Vv ={p: 74— R™; p(x 4 z) = ¢p(x) forall z € (LNZ)d} = (Rm)ﬂ“]i\’
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2 Finite Range Decomposition

of functions on the torus ']I‘ﬁlv = (Z/ N Z)d equipped with with the scalar product

() = Y (p(@), (a))rm.

d
zeTy

Notice that, a function on Tﬁl\, can be identified with an L~-periodic function on Z¢. In
the last section, it will denote the corresponding space of C™-valued function, equipped
with the usual hermitian product.

Define
p(y) = inf{lz — y+ 2| = € (IVZ))
and
poo(,y) i=inf{|lz —y + 2| : 2 € (LNZ)?}.

Then, the torus can be represented by the lattice cube T4 = {z € Z¢: |z|,, < 3(LV —1)}
of side LV, equipped with the metric p or pus.

Gradient Gaussian fields are naturally defined on

Xy={peVn: ) ol)=0} (2.1)

z€T N
For any set M C Ay, we define its closure by
M = {x € Ay: distoo(z, M) < 1}, (2.2)
where

distoo(z, M) := min{pec(x,y): y € M }.

The forward and backward derivatives are defined as

(Ve)j(@) == ¢"(z +e;) — " (),
(Vo)i(x) =" (x—ej) —¢"(x), r=1,....m; j=1,...,d.

(2.3)

Let A: R™*4 5 R™*4 he a linear map that is symmetric with respect to the standard
scalar product (-, -)gmxa on R™*? and positive definite, that is, there exists a constant
co > 0 such that

(AF, F)gmxa > co||F||2mxa  for all F € R™*4,

1/2
Rmxd*

with || Flgma = (F, F)
on AfN,

The corresponding Dirichlet form defines a scalar product

(. 0)4 = E(,¥) = Y (A(Vep(2)), Vib(2))gmna,  Where p,9) € Xy, (2.4)

d
z€T%,
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2.2 Preliminary Results

Skipping the index N, consider the triplet H_ = H = H of (finite-dimensional) Hilbert
spaces obtained by equipping the space Xy with the norms || - ||=, || - |l2, and || - ||+,

respectively. Here, || - ||2 denotes the fo-norm |pll2 = (¢, <p>1/2, ol = (‘p’@)iﬂv and
| - ||— is the dual norm

lell- = sup (¥, ). (2.5)
Pillll+ <1
One easily checks that || - || is again induced in a unique way by a scalar product (-,-)_.

The linear map A defines an isometry
g Hy >H_, o—Fdp=V"(AVyp).
Indeed, it follows from the Lax-Milgram theorem that for each f € H_, the equation
(p,v)4 = (f,v) forall veHy (2.6)

has a unique solution ¢ € H. Hence & is a bijection from H to H_. Moreover,

[ ¢l = sup{(p,v) : [|v]l+ <1} = sup{(p,v)4 : [lvfl+ <1} = [l (2.7)

Hence, the map &/ is an isometry from H to H_. In view of the symmetry of &7, it
follows that

(o) = (& o, M) = (Lo, A THp) = (T p,0p). (2.8)

Consider now the inverse ¢4 = o/ ~! of the operator & (or the Green function) and the
corresponding bilinear form on X n defined by

GA((va) = <65A<P7¢> = ((va)*> 0, € XN. (29)

One writes C4 € My, using My (in analogy with X ) to denote the space of all
matrix-valued maps on Ty with zero mean.

Given that the operator &/ and its inverse commutes with translations on Ty, there
exists a unique kernel C4 such that

(Zagp)(x) = > Calz —y)e(y). (2.10)

yeTN

It is easy to see that the function G44(+) = Ca(- — y) is the unique solution of the
equation

ACGay= (6, — LNd)Idm, (2.11)
where Id,, is the unit m x m matrix. Notice that for any a € R™ one has:
1

(Gay) = (0 — LNd) €Xy.

In [1], among other things, the following result is proved:

Theorem 2.2.1. Let d > 2 and let o be a multiindex. There exist constants Cqo(d) and
n(a, d) with the following properties. For each integer N > 1, each k =1,...,N +1 and
each odd integer L > 16 there exist real-analytic maps A — Cay, from U to My such
that the following three assertions hold.
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2 Finite Range Decomposition

(1) If €a . denotes the translation invariant operator on induced by Cy4 j then

N+1

Ca=> Can (2.12)
k=1

(11) There exist constant m x m matrices Cyaj, such that
, 1
Car(®) =Cax if poo(x,0) > iLk- (2.13)

111 ol mxd = CQ mxa JOT @ € and co > 0 then
iii) If (AoF, F)g Fl2 Il F e R™ and 0 th

, . . J
sup |[(VDICapr(@)(As... A)|| < Cald) <2> j L (kD=2 e pofesd),

H C
llAl<1 0

for all z € T4, and all j > 0. Here V* = Hle V%, we use | Al to denote the
operator norm of a linear mapping A: R™*% — R™%4 and the j-th derivative with
respect to A in the direction A is taken at Agy.

2.3 NOTATION AND HYPOTHESIS

Let A:T9 — Lim(R™*9) be a C? function, where Ly (R™*?) is the space of linear
maps on R™*? such that A = A* and the associated operator is elliptic, namely there
exists a constant c1, cy > 0 such that

| P > AXPPLP] > oo| PP P e R™ (2.14)
and there exists an €9 > 0 (small enough) such that

D sup| DALY < <o, (2.15)
i<z T

where v is a multi-index.

For every N > 1, we define the function Ay : T?V — Esym(Rde) in the following natural
way:

An(z) = A(z/LY). (2.16)

The condition (2.15), can be expressed in terms of Ay as

sup sup LV (An)37| < <. (2.17)
[vI<3 T4,

On the other hand, if there exists a Ax such that (2.17) holds, then by some elementary
interpolation one can construct a A such that (2.16) holds.

Given that we will mainly work for N fixed, if it is clear from the context we will drop
the N-subscript.
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2.3 Notation and Hypothesis

We denote by £ C {q : ’]T‘Iiv — ﬁsym(Rde)} such that there exist constants cg,c; > 0
such that for every z € T¢ and F € Mgym(R™*9), it holds

CO<F7F> < <Q($)F7F> < CI<F7F>'

The space &, is not a vector space. It will be endowed with the distance induced by the
norm norm

lalle = sup [ ZPNTPq(@)|lar,, @y,
zeT4,|8|<3

where 3 is a multiindex.
Similarly as before, we introduce the following notations:

Xy={peVn: Y ol)=0} (2.18)

z€T N

and
A Hy —>H_, p— dp:=V"(AVp).

Asin § 2.1, let C4 : T4 x T4 — R™*? such that

1

%CA,Z/ - (5y - W)

We will extend Theorem 2.2.1 in the following way:

Theorem 2.3.1. Let d > 3, Ay be defined as above. Then there exists eg > 0 such that
for every e < gg the operator €4: H_ — H., where ||A|le < e, admits a finite range
decomposition, i.e., there exist positive-definite operators

Cap: Ho = Hy, (Cane)(@) = Y Caplz,y)e(y), k=1,...,N+1, (2.19)

yeTY,
such that
N—+1
Ca= Y Can
k=1

and for associated kernel C4 € My, there exists a constant matriz Cay, such that
1 k
Car(z,y) = Cap whenever po(x,y) > §L fork=1,...,N.

Moreover, if (AgF, F)gmxa > CO||FH§WX¢ for all F € R™*% and cy > 0 and if || Alle < 1/2
then

. . : 2\7
sup || (V5 DACay (@, 9)(A, ., A)|| < Cala) <) j Lk =2 tla]) poted),
[EAES! co
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2 Finite Range Decomposition

2.4 OUTLINE

Before going to the discrete setting, we would like to briefly expose the basic idea in the
continuous case.

In what follows, we will use the symbol < to indicate an inequality is valid up to universal
constants depending eventually on the dimensions d, m.

For the sake of simplicity, we take A = A(x) be elliptic with A smooth.

Let B be a ball, IIg : WH2(R?) — WOI’2(B) be the projection operator. Moreover, we
define PB =1Id — HB.

The construction technique is due to Brydges et al. (see [11, 8]) and consists in considering
the operators

1
ny = / H$+de.1' and %B =1d — QB.
|B| Jra

Let r1,...,7; >0 and B,,,..., B, be the balls of radius 7 centered in 0. Whenever it
is clear from the context, we will denote by %}, := #Zp, .

The operators %}, that appear in the Theorem 2.2.1 and Theorem 2.3.1, will be of the
form

Co = (B ... Be)C( Ry ... R — (R ... R 1R C (R Ry, ... R), k=1,...,N,

for a particular choice of {r}.
Then the proof of the finite range property will follow by abstract reasoning (see § 2.5).

In [15], among other things the authors show:
Theorem 2.4.1. Let Q be a regular domain and Afj}-ﬁ € Ck(Q) for some a € (0,1)
such that

AioffPéPg > ¢|PJ?, for some ¢ > 0 and every P € R¥>™,
Then there exists a matriz Gy such that
—Do (AT Dg(Gy)l) = 0ixd;  in Q
in the sense of distributions and
Gy=0 on 0f2.
Moreover, it holds
|D"G(z,-)| < Clo — yP~*7 1,

where v is a multi-index such that |v| < k.
To simplify the notation we will write V" (AVu) instead of Da(AifBDguj).

The above theorem is proven by using the following well-known LP-estimates.
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2.4 Outline

Lemma 2.4.2. Suppose the same hypothesis as in Theorem 2.4.1 and let p € (1,00),
q € (1,n).

(i) If f € LP(Q,R™*4) F € LI(Q,R™), then the system
—Do(A}Dgu?) = Dof + F' in Q,
with boundary condition
u=20 on 0%,

has a weak solution in W15(Q; R™), where

s = min(p, ¢"), q¢ = ,
and

[ullwrs < C(fllze + 1 Fllza)-

(i) If f € LP°°, F € L then there exists a weak solution that satisfies
[ull 500 + [ Duf[sce < C([[fl|Lree + [|DullLace). (2.20)

Lemma 2.4.3. Suppose the same hypothesis as in Theorem 2.4.1. Let B, be a ball of
radius 2r centered in 0, p > d and let u be a solution to

V' (AVu) =0  in Bo,.
Then

sup [u| < v~V 4P| £ gy,
B

T

where

M = ||Duf|pa.(By,) + 1l Lo 00 (B, )-
Proposition 2.4.4. Let By,..., By be balls with radii r1,--- ,7 respectively. Then,
there exists a dimensional constant Cg, such that

Sup |VJU| S C‘]; max (|:E B y|’ dlSt(ya BIC)7 e adiSt(y; Bl?))2id+j )

where u = (Pp, --- P, C(z,-)) and C(xz,y) is the Green’s function and j < d — 2.
Proof. Let us sketch the proof of the above fact. In the discrete case it will be done in
more detail.

The proof will follow by induction.

Let B; be a ball in generic position of size r1. Given that V' (AVC,(y)) =0, if z ¢ By
then I, C(z,y) = 0, thus Pp,C(x,y) = C(z,y), hence the inequality follows from
Theorem 2.4.1.
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2 Finite Range Decomposition

Let ¢ := dist(y, BY) < r1. If |z — y| > /2, then by estimating the different terms
p,C(z,y) and C(z,y) separately one has the desired result. Indeed, C(z,y) < |z—y[>~%.
Then by using an appropriate version of Lemma 2.4.3 one has that

g, Clz,y)| S o —y[>~"M,
where
M = ||Dllg, Cy || pasa—2.00 g,y + 1, Call Lasa-1.00(p,)-
Then by using Lemma 2.4.2 one has that

| DI g, Ca || pasta-2).00 + 1B, Call fara-1y.00 S 1DCo| pasa-2).00 + [|Call pasa-1y.00 < Ca,

where Cj is a constant depending only on the dimension d.
The inductive step is done in a very similar way and the higher derivative estimates
follow similarly. O

Let By,..., By be k balls centered in 0, with radii r1, ..., rg respectively and let C(-,-)
be the Green’s function. We will denote by Ck(x, ) := %y - - - %1C(x, ).

Let us now give a simple calculation that will be useful in Theorem 2.4.6.
Lemma 2.4.5. Let j > 1 be an integer. Then

1 r ) 1—j5
d/ max(a, |r — p|) 7 p?ldp S
T 0 T

Indeed, let us denote by I the right hand side of the previous equation. With a change of
variables one has

[ A P d-1 " | d-1
I=— Ir—pl‘]p‘dp+/ a’ptdp
r 0 r—o
1 [ . 1 .
= — 11— t]_]td_ldt—l-/ a1l dt
™ Jo 1-2
1 (1= A 1 A (ol 1—j
=5 \1—t]_]dt+/ a=ddt <r (jl_j —1>+O‘r
0 _a
2a177
< .
.
If 7 =1, then

1 T—Q

T
I=— Ir—p_lpd‘ldwr/ a~'pldp
T 0 r—a

1 -2 1
= / 1 —t|1td1dt+/ a1l dt
0 1—

rl

1 -2 1
:1/ ]1—t|1dt+/
T 0 1—

3R

_ 1 «
a~ldt < ;(‘log(;)‘—i—l).

SR
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2.4 Outline
Theorem 2.4.6. Let Cy, B;,r; as above and such thatry < --- <rp < |z—y| <rp+1<

--- < 1. Then,
(i) if k—h < d—2, then it holds

k
1 T —
Culea) £ e~y T (Jog (E2) |41
Thel®" Tk i T

. 1 B i
VCr(@ | € o~y
rh+1rk
(ii) if k —h >d — 2, it holds
1
Ck(z,y)| S —————log(|z —y|)|
Tk—d+3 """ Tk
D e | B (1= IREY
R e Tk ri '

i=h+1+j

Proof. We will prove only (i). The proof of (ii) is very similar.

Let us initially consider the case k = 1. For simplicity we denote II, :=Ilp,4,. With
simple computations, one has

sup |C1(z,y)| <

< — sup |(Id — 11, )C(z, )| 4 sup
‘B’ Bl+y

7,
— IL,C(x,-)dz|.
1Bl Jy+B1)e )

(2.21)

Because of the fact that for every ¢t € By + z the function II,C, is harmonic and has null
boundary condition, one has that the second term in the right hand side of (2.21) is
null. Hence it is enough to prove a bound only on the first term. Given that for every
z € y+ B it holds dist(y, z + B1) = r1 — |z — y|. Then, by using Proposition 2.4.4, one
has that

2—d
L= - f T — — Z > xr —
sup [(Id — I1,)C(z, )| < (m1 \z d?/’) if 7 . ly | > | y|’
|z —y[*~ otherwise.
Thus,
r1—|y—z| 9—d de1 1 o dt
Sup’cl($ay)|§/ ‘T‘l—p‘fpf dp + |x_y|7p, dp
O nele (2.22)
<oyl r2d 2 —y[*? _ |z — y|3*d.

Let us now turn to the general case k < d — 2, and let By,..., By be balls of radii

r1,...,TE centered at the origin. From Proposition 2.4.4, we have that
sup [Py 45, - Poy 5, C(x, )| < max {|z —yl,r1 — 21 =yl oo — |2 —y[} 7
< max {|Je — y[}*" T max {|x — yl,rp — |2 —y[}7 - omax {Jw =yl — [z -y}

=:19(2z1,...,2)-
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2 Finite Range Decomposition

Thus,

SupRl-"'RkC(x,')S/ g(zl,...,zk)dzl"-dzk.
Bl><---><Bk

From Lemma 2.4.5 we have that

/ 9(z1,. .. zp) dzy - day < | — yI* [ (| log(|z — y])| + log(rs) + 1),
B XX By ;

(2

rl...',"k

which proves the desired result.
O

Corollary 2.4.7. Suppose that |v —y| > 1 and let By, ..., By, and such that r; = L
with L > 1. Then there exists n(j,d) such that
i < Ln0,d)
VIC(z,y) S Thd2-5)"
Indeed, given that Z), = o/ %€ one has that

Ry Ty CRy R, =Ry Ry Ky, FNEC

hence by using Theorem 2.4.6, one has the desired result.

2.5 CONSTRUCTION OF THE FINITE RANGE DECOMPOSITION

In this section, we will briefly describe the construction of the finite range decomposition.
Let us stress that main idea in the construction of the finite decomposition goes back to
Brydges et al. (e.g., [11, 8]). Moreover, in this section we will follow closely and adapt
the arguments given in [1].

Let @ be a cube of size [ and let us denote for simplicity IL, := IIg4,. We define

7 () :zlld > I, (2.23)

d
z€T%,

for every ¢ € H4. The following result is the key estimate for construction the finite
range decomposition.
Lemma 2.5.1 ([1, Lemma 3.1]). For any ¢ € H, we have

(i) o (Ppp) = const. in Q + z,
(i) Pop=¢inTy\(Q+ 1),

(iit)  Mpp = @lgre if ¢ =0 on (Q+2)\(Q+2)

Proof. (i): For all ¢ € H4(Q+x), we have that (P, 1)+ = 0 and hence (<7 (Py), 1) =
0. Taking 1) = 0, — J, and for any pair of points v,z € Q + =, we get &7 (Pyp)(v) =
o (Pyp)(z). This proves (i).

(ii): This follows from the fact that IT,¢ belongs to H4(Q + x) and hence vanishes
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2.5 Construction of the finite range decomposition

outside Q) + x.
(iii): It suffices to consider the case x = 0 and we write I for I1y. Let ¢ = plg. Then
® € H4(Q) and hence ITp = ¢. Moreover ¢ — @ vanishes in Q. Thus V(¢ — @) vanishes
in Q_. Hence (¢p—@,v)+ = 0 for all € H(Q) since V4 is supported in Q_. Therefore
II(p — @) = 0 which yields the assertion.

]

Lemma 2.5.2 ([1, Lemma 3.3]).

(i) II.II, =0 whenever (Q—+x)N(Q-+vy) =2,

(ii) Iy =0 whenever spto N (Q +x) = 2.
Proof. (i): For any ¢,v¢ € H, the functions I, and II,2 vanish on Ty \ (Q + z) and
Twn \ (Q +y), respectively. Hence, VII,4 and VII,¢ vanish on Ty \ (Q— + z) and on

Ty \ (Q- + y), respectively. Assuming now that Q_ + = and Q_ + y are disjoint and
taking into account (2.4) we get

(6, L 0T,0)s = (L, D) = S (ANVIL)(E), (VIT0)(2)grea = 0. (2.24)

z€T N

(ii): For ¢ € H(Q + ) we have &/ = 0 in Ty \ (Q + x). Thus for any ¢ € H, with
spt N (Q + ) = @ we get (p,9)+ = (¢, /1) = 0. Thus by the definition of I1,, we
have that 11, = 0. O

Next, consider the symmetric operator
1
7 =15 > o, (2.25)
zeTn

on %+.
Lemma 2.5.3 ([1, Lemma 3.4]). For any ¢ € H. we have

(i) 0< (I, )+ < (1g_+2AVp, Vi),
(i) 0<(Tp,0)+ < (p,p)+ and the inequalities are strict if ¢ # 0,

(iii) (T, T)+ < (To,0)+ -

Proof. (i): We have (IIyp,0)+ = (o, yp)y = (Ipp,IIp)+ > 0. For the other
inequality we use that VI, is supported in Q_ + z. Thus

(e, )+ = (AVIILp, Vo) = (AVII0,19_+2 V). (2.26)

Since A is symmetric and positive definite the expression (F,G)4 := (AF,G) is a scalar
product on functions Z% — R™*?, Thus the Cauchy-Schwarz inequality yields

(AVIT, 0,1 +2V¢) < (AVILp, VIL)Y*(Alg 1.V, 1o +2Ve)'/?
= (L, I19)*(1g_+:AVe, V) /2. (2.27)

Together with (2.26) this yields the assertion since (II,p, p)+ = (I, Hzp)+.

(ii): Since > e, 1o +2(y) = 14 for all y € Ty the inequalities follow by summing (i)
over z € Tn. If (T, ¢)+ =0 then (IIyp,p)4+ =0 for all x € Ty and thus IT,p = 0 and
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2 Finite Range Decomposition

P,y = ¢. Lemma 2.5.1 implies that there exist constants ¢, such that (&7¢)(y) = ¢z
for all y € @ + x. Since [ > 3 the cubes @ + x and @ + (x + ¢;) overlap and this yields
Cz = Cpqe; foralli=1,...,d. Thus ¢, is independent of x. Since &7y € X this implies
¢ = 0. Hence /¢ = 0 and therefore ¢ = 0.

Now suppose that (T, ¢)+ = (p,¢)+. This implies that for all x € Ty we have
(IIzp,0)+ = (1g_+2AV e, V). We claim that the last identity implies that Vo(z) = 0.
Indeed, if 1g_4+,Ve = 0 we are done. Otherwise the identity can only hold if the
inequality in (2.27) is an identity. In particular we must have VII,¢ = Alg_4,V¢ and
A = 1. Now Il,¢ vanishes outside () + = and in particular at the points  and x + e;.
Thus VII;¢(xz) = 0 and hence V(x) = 0. It follows that ¢ is constant on T and hence
¢ = 0 since ¢ has mean zero.

(iii): It follows from (ii) that (¢, ). := (T ¢, )+ defines a scalar product on H. Thus
the Cauchy Schwarz inequality and (ii) yield

(70, 0)s < (Te.0){ (T, 0) 1 < (F0,0) 2w, 0)). (2:28)
Taking ¥ = 7 ¢ we obtain the desired estimate. O

Consider the operator .7': H_ — H_ dual with respect to .7 and defined by
(T'p,0) = (p, TV), peMH_,PeH,. (2.29)
Notice that

T'=d T, (T'o)- = (0, T)-, and (T'p,0)- = (T o,/ ).
(2.30)
Indeed, for any ¢ € H 4, we have

(T'd o) = (oo, TY) = (¢, T)4 = (T, )4 = (A T, ), (2.31)
and this yields the first identity in (2.30). Now

(T, 0)- = (" A T o) = (T o, A ™) = (T o, 0 ) .
(2.32)
Since the last expression is symmetric in ¢ and 1 we get the second identity in (2.30)
and taking v = ¢ we obtain the third identity. Similarly, we have IT., = &/ I,/ ~! for
the dual of IT,. Notice that

II'o =0 whenever spto N (Q+z) = 2. (2.33)

Indeed, considering any test function ¢ € Xy, we have (II,p, ) = (¢, [I,1)) = 0. We
also consider the operator

Z:=1d—7 anditsdual Z' =1d - 7" (2.34)
hence because of (2.30)
R = AR (2.35)

It follows from Lemma 2.5.3(ii) and (2.30) that

(T'p,0)- >0, (Z'o.p)- >0, (T'0,T'p)- <(T'p,p)_ forall e H_\{0}.
(2.36)
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2.5 Construction of the finite range decomposition

Lemma 2.5.4. Let B be a bilinear form on X . Then the following assertions hold.

(i) There exists a unique linear operator B: X n — XN such that
(Bp, ) = B(p, ) for all ¢,1p € Xy. (2.37)
(i) There exists a unique matriz-valued kernel B € My such that
(Bo)(x) = Z B(z,y)p(y) forall z €Ty, foral ¢ Xy. (2.38)
yeTN
Moreover for B: Ty — R™™ we have
(By)(x) = Z B(z,y)p(y) forall € Ty forall ¢ € Xy. (2.39)

yeTN

if and only if

B-B=C (2.40)
with a constant m X m matriz C'.

(iii) If B' € X denotes the kernel of the dual operator %' then
B(y,x) = B(z,y). (2.41)
Proof. The proof is a simple modification of the arguments in [1, Lemma 3.5]. O

For two sets M7, My C Ty we define
disteo (M7, My) := min{peo(x,y): © € M,y € Ms}. (2.42)

Lemma 2.5.5. Let B be a bilinear form on X n and let Z and B € My be the associated
operator and the associated kernel, respectively. Let n be an integer and suppose that
LN > 2n + 3. Then the following three statements are equivalent.

(i) B(p,) =0 whenever diste(Spt ¢, spt) > n.
(ii)  There exists an m x d matriz C' such that B(z,y) = C  whenever pso(x,0) > n.
(iii) sptBo Cspto+{—n,...,n}? forall p € Xy.

Proof. The proof follows by modifying the proof of [1, Lemma 3.6].

For the convenience of the user we sketch it.

The implication (ii) = (iii) is easy. Set B(z,y) = B(z,y) — C. Then B(z) = 0 if
Poo(2) > n with pso(2) = poo(2,0) and by Lemma 2.5.4(ii) we have

(Be)(x) = > Blx,y)e(y). (2.43)

yeTN
If 2 & spto+{—n,...,n}? then either y & spty or y € spt and pso(x,y,0) > n. In
either case Zy(x) = 0.

The implication (iiil) = (i) is also easy. Suppose that dist(spt ¢,spt1) > n. Then
(iii) implies that diste (spt B, spt ) > 0, i.e.,, By and 1 have disjoint support. Thus
B(p,v) = (Bp,) = 0.

The implication (i) = (ii) follows in a similar way by using Lemma 2.5.5 O
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2 Finite Range Decomposition

Lemma 2.5.6. Suppose that disteo(spt @, spt) >1—1. Then

(Tp,b) =0, (T'p,p) =0, (Rp,b)=0, (Z¢,)=0. (2.44)

Proof. The proof follows by modifying the proof of [1, Lemma 3.7]. For the convenience
of the user we sketch it.

It suffices to prove the first identity. The second follows by exchanging ¢ and 1 and the
third and fourth follow since Z =1d — .7 and #' = 1d — .7’. By Lemma 2.5.2 we have

IIp=0 if sptoN(Q+z)=92 (2.45)

and it follows from the definition of II, that spt Il C Q + x. Assume (T, 1) # 0.
Then there exist x € Ty such that (IT,p,v%) # 0. Thus spty N (Q + x) # & and
spt o N (Q + z) # &. Therefore there exist £ € Q and ¢ € @ such that x + £ € sptyp,
x + ¢ € sptp. Thus

c4+E—(z+)=€6—Ce{-(1-1),...,1 -1} (2.46)
Hence disto (spt ¢, spt ) <1 — 1. O

Consider now the inverse € = & 1.

The main step toward the decomposition, is to subtract a positive definite operator from
% in such a way that the remnant is positive definite and of finite range. We define

€ =% — AECR', which yields C; =C - R*Cx*R. (2.47)

Proposition 2.5.7 ([1, Proposition 3.8]). Both €1 and Z€ %' are positive definite and
@1 has finite range, i.e.,

(G1p,) =0 if disteo(sptp,sptp) > 2] — 3. (2.48)
In particular, there exists an m x m matrixz C such that
Ci(z) =C if poo(z,0) > 20— 3. (2.49)
Proof. For any ¢,1 € Xy by using (2.9), one obtains
(RCR ¢, 0) = (H' 0, %) > 0. (2.50)
If #'¢ = 0, then (2.36) implies that ¢ = 0. Thus Z€ %’ is positive definite. Furthermore,

<<51§07 ¢> = <<5907 ¢> - <<€%I¢)%/w> = (9071/})— - (*@190"@/1/])—
= (T'p. )~ + (0, TP)- = (T, T'P) .

Thus (2.36) implies that ] is positive definite.

(2.51)

To evaluate the range of the quadratic form (%1¢, 1), we inspect the terms on the right
hand side of (2.51). For the first (and similarly the second) term, we have

(F'0 ) =30 Y (Mg ) = 33 3 (Mg, ) (25)

z€T N €T N

48



2.5 Construction of the finite range decomposition

In view of (2.33), a term in the sum vanishes at = except when the supports of ¢ and
1) both intersect @) + x. Therefore, the scalar product is zero whenever the distance
of the supports is strictly greater than [ — 1. The second term of the bilinear form
Gi(p, ) = (G119, 1)) is the double sum

1 1
(T, T"0) = Y 7 D (e II4)-. (2.53)

yeT N x€T N

By Lemma 2.5.2 we have II}IT) = &/ IT, 11,/ ="' = 0 whenever (Q_ +z)N(Q- +y) = 2,
i.e., if poo(z,y) > [ — 1. Hence the double sum only contains a non-zero contribution if
there exist « and y such that poo(z,y) <1—1,spteNQ+2x # &, and spt Y NQ +y # .
Hence there must exist &, € Q) such that x + & € spt ¢ and y + ¢ € spt . Hence

distoo (spt @, Pt ¥) < oo (2+E—=(y+(), 0) < poo(@=Y, 0)+poo(§—C,0) < I—141-2 < 213
(2.54)
This proves (2.48), and (2.49) follows from Lemma 2.5.5. O

We construct a finite range decomposition by an iterated application of Proposition 2.5.7.
Let L > 16 and consider

Qj={l,....0; -1} withl; = [{L7|+1 forj=1,...,N. (2.55)

Here |a| denotes the integer part of a, i.e., the largest integer not greater than a. In
particular we have ' ‘
L <l < gL +1. (2.56)

We define 7, 7/, and % as before with Q replaced by Q; and set
cgk = (%1 . -%kfl)cg(%]/gfl . %1) - (%1 . %kflgk)cg(%l/c%l/cfl . %1), k= 1, e 7]\7,
(2.57)

and

Cnir = (B1 ... BN ... BNC(BNR ... R). (2.58)

With these definitions, we show that the sequence {%}r=1,.. n+1 yields a finite range
decomposition.

Proposition 2.5.8 ([1, Proposition 3.9]). Suppose that L > 16. Then the operators €},
satisfy

‘ N
(i) € =0\ G
(ii) €k is positive definite for k=1,..., N + 1.
(iii) For k=1,...,N the range of €} is bounded by %Lk, i.€e.,
(Grp, ) =0 if disteo(spt ,spte) > %Lk (2.59)
and there exist m x m matrices C}, such that

Ci(2) = C) if poo(2,0) > SLF. (2.60)
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2 Finite Range Decomposition

Proof. Assertion (i) follows directly from the definition. To prove (ii), set
(pk = %}271..%1()07 wk = %}271.%11#7 k: 17...7N+1. (261)

Inductive application of (2.36) shows that ¢p = 0 implies ¢ = 0. Now, directly
from definitions, (€n+19,9) = (eN+1,©N+1)—. Thus En41 is positive definite. For
k=1,...,N we have
(Crp ) = (€ — BLCRL)prs ) (2.62)

Hence by Proposition 2.5.7 we get (%1, ) > 0 with equality only holding if ¢5 = 0,
which implies ¢ = 0. Thus %} is positive definite.
(iii): In view of the equation (€%, ) = (€ — ZxC %)) 0k, Vi), Proposition 2.5.7 implies
that

(Crp, ) =0 if disteo(spt vk, sptvy) > 2l — 3. (2.63)
Iterative application of Lemma 2.5.6 and Lemma 2.5.5 yields

k—1

spt pp C spto + {—np, ..., e}, sptepp Cspt)+ {—ng, ..., np}%,  np = Z(lj —1).
j=1
(2.64)
Thus
k
(Grp, 1) = 0 if distoo(spt p, spt ) > —1+2 (I — 1). (2.65)
j=1

Now since [; — 1 < %Lj and Y 2 L7 < 2 we get 22?21(@ -1)< %Lk. This finishes
the proof. ]

2.6 DISCRETE GRADIENT ESTIMATES AND LP-REGULARITY FOR
ELLIPTIC SYSTEMS

Let us now introduce some of the norms that will be used in the sequel. Let Q = [0, n]?NZ<,
be a generic cube. For p > 0 denote

o= (g7 X @)™ (2.66)

CEGQn

I1f

where |Q| := #Q.
To simplify notation, we will write ZQ f= ZieQ f@@) and fo :=|Q|™! ZQ f.
Additionally, let us define

1
fAa@)=suwp — > |f = foldz  and  ||f[syo = sup [f#(2)l.  (267)
an |Q| Q £E€T7V
The Maximal Operator is defined by
1
Mf(x) :==sup — fldz
() := sup |QZQ:| | (2.68)
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Moreover, let

1
| flp,00 :inf{a: X|{f > AHYP < a, for all A > O}

and
1
e = Q1 int fas 147> 2 NQIP <. foran a0,

We now state a version of Sobolev inequality (see [21, 2]).
Proposition 2.6.1. For every p > 1 and m, M € N there exists a constant C =
C(p, M,m) such that:

(i) If 1 <p<d, 3z =4 — g, and g <p*, g < oo, then

T p
_d _d 1—4
noa|fllg < Cn72| flla + Cn 2 |V flp. (2.69)
(i1) If p > d, then
_d
|[f(2) = f@)| <On' 2|V fl,  foralley € Q. (2.70)
(iii) If m € N, 1§p§%, Ii:%—%, and ¢ < pm, g < 00, then
_d _a M-l k _d M
n"al|flly < Cn72 Y ([(nV)* flla + Cn” 2 ||(nV)M £l (2.71)
k=0

(iv) If M = |452|, the integer value of %52, then

:L’EQTL

M
max |/ ()] < Cn~2 Y | (nV)* . (2.72)
k=0

Lemma 2.6.2 (Caccioppoli inequality). Let v be such that V' (AVv) = 0 for every
T € Qus then

DoIVe@)P < s Yol AP,

Qm M

where cq is the constant defined in (2.14).

Proof. Let 0 <n <1 be a that |Vn| < Mim and such that n =1 on @,, and n =0 on
T4 \ Q. Then

Z(AVU -Vu)n® = Z AVu-V(n*(u—N)) — Z AVu - 2n((u — \) @ Dn)
Qum Qum Qum

By hypothesis, the first term in the right hand side vanishes. Using the previous formula
and the ellipticity, one has that

1 ck
2 9 2 9 0 2 2
> [Vuln* <o AVU-QU((U—A)®D77)§§§ [Vul™n +5§ | Dn|*|u — A7,
Qm Qm Qm Qm
(2.73)
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2 Finite Range Decomposition

from which one has that

Do IVuP <Y VuPy? < Z [ — AP,

Qm Qm Qm

O

Lemma 2.6.3 (Decay estimates). Let v be such that V' (AVv) = 0 on Quy, with
M,M/2 € N and 2m < M. Then,

Z lu(@)? < (m/M)*Y_ [u(x)|?

Qm

Z!u— Jml® S (/MY " w— (u) .

Qum

(2.74)

Proof. From the Caccioppoli’s inequality, one has that

Y MVu(@)? £ ful))?

Q2 Qm

Noticing that if u is a solution then also Vu is a solution, we have that

DIV ull £ fulz))?

Qm Qum

hence
k .
MY [(M/29 Y ul| S MY ul.
J=0Qnr/2 Qm

Finally applying the Sobolev, inequality we have that

2 2 « m.q 2
>l < m? énaXIIuII (37 > ful?. (2.75)

Qm Qm

Let us now prove the second inequality. Using the Poincaré inequality and than (2.75),
we have that

> = (u m\2<m22vu|2<m< ) > [Vul
Qm

Qm Q)2
d+2
<(3) Xl ot
where in the last step we have used the Caccioppoli inequality. ]
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2.6 Discrete gradient estimates and LP-regularity for elliptic systems

Lemma 2.6.4. Let p1,p2,q1,q2 € [1,00], p1 # p2, 1 # g2 Let 6 € (0,1) and define p, q

by
1 0 1-06 1 0 1-06

=—+ , -=—+4 (2.76)
p D1 p2 q q1 q2

Suppose that T is a linear operator such that

1 1

a4 Pi

1 1
E T qi <Cz' E pi
@145 i - @145 d

Then

1T fllg.00@ < Csll fllpoc.@>
where C3 depends on 0, Cy, Cs.

Proof. The proof of this result is well-known (see e.g., [13, Theorem 3.3.1]). For com-
pleteness, we report an adapted elementary proof from [15, Lemma 1]. Let p; < po,
q1 < ¢2 and p is as in (2.76). Assume that [|[T'f||, < Cil|fllp;, with ¢ = 1,2. Let v >0

define
if >
= / ? 71> (2.77)
0 if [f] <~
and
0 if >
o= 11> (2.78)
f if |f| <7~.
Given that

1 D1 _
@Z LAl < H’Ypl PILAI o
Q

we have that

{irn> 2 < ar Gy

2.4 p1 \@/pr /
< AP ()" (G2 )" sl

= Bia 9y0 —pq1/p1

and similarly

‘ {|Tf2\ > %} ’ < Bya~tynPR/p2, (2.79)

Now

ITfl[§ 00 =supa?[{|Tf] > a}|
(03
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2 Finite Range Decomposition

and now using the triangular inequality, we have
A {ITf] > af2} | < T HI > a/2} |+ o {|T fo| > a/2} ]
< Bla—q17q1—p¢h/m _‘_Bza—qmytn—pqz/pg.

One can archive the desired result by choosing v = a” where § = (ql1 - q%) (p% - p%)_l.
O

Theorem 2.6.5 (Marcinkiewicz interpolation theorem). Let 0 < po,p1,q0,q1 < 00 and
0 < 6 <1 be such that qo # q1, and p; < q; for i =0,1. Let T be a sublinear operator
which is of weak type (po, qo) and of weak type (p1,q1). Then T is of strong type (po, qo)-

Proof. The proof is well-known. O
Remark 2.6.6. Let K : T4, x T4 — R¥™ be such that |K (z,y)| < |z —y|?>~%. Then
has that

1K (, )] <1,  and [|K(z,)|

n
Ln=2 o0 —

<1

n
Ln=2 7Q700 -

Indeed, fixt > 0 then

d

Hy: 1K@yl > < {y: lo—oP > th 1= {y: lz—yl <@ D} <,

Let us recall the celebrated Hardy-Littlewood maximal theorem:
Theorem 2.6.7. Let f : T?\, — R™. Then

(Ml <|flp

Theorem 2.6.8 (Fefferman-Stein). Let @ be a cube and let f : Q — R™ such that
ZQ f =0. Then there exists constants Cy,Cs such that

IMSlpe < CilfFllpe  and — [f7lpq < CoM{llpe- (2.80)
Proof. The proof follows from the classical Fefferman&Stein result after one does a

piecewise linear interpolation of the function f: @ — R™.
O

Corollary 2.6.9. Let T be an linear operator such that for every f : Q — R™. Then for
every q > p, there exists a constant C := C(p) such that for every f: @Q — R™ it holds

SITHF@)P <D If @)
zEQ z€Q

Proof. The map f — (Tf)* is a sublinear and a bounded map from L®(X) — L>®(X)
which is of weak type (p,p) and of weak type (0o, 00). Then for every ¢ > p, it holds that
f+ (Tf)# is bounded. This implies that f +— M (T f) is bounded because Theorem 2.6.8
and hence f — T'f is bounded. O

In the next lemma A = Ag is a constant positive definite operator.

Let us now recall a classical result. We also provide a proof for completeness.
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2.6 Discrete gradient estimates and LP-regularity for elliptic systems

Lemma 2.6.10 ([18, Lemma V.3.1] ). Assume that ¢(p) is a non-negative, real-valued,
bounded function defined on an interval [r,R] C RY. Assume further that for all
r<p<o <R we have

d(p) < [Ar(o — p)™ + Ag(o — p) ™% + As] + 96(0)

for some non-negative constants Ay, As, Az, non-negative exponents aq > «s, and a
parameter ¥ € [0,1). Then we have

¢(7') < c(al, 19) [Al(R - T)_al + AQ(R - T)_a2 + A3] .
Proof. We proceed by iteration and start by defining a sequence (p;)ien, via
pi=r+1=\)R-7)

for some A € (0,1). This sequence is increasing, converging to R, and the difference of
two subsequent members is given by

Pi — Pi—1 = (1 — )\))\i_l(R — 7“) .

Applying the assumption inductively with p = p;, 0 = p;—1 and taking into account
a1 > «ig, we obtain

o(r) <A (1=XN)"""R—71)" "+ As(1 = A) 2 (R—1r)"* 4+ A3+ 9¢(p1)

k—1
< 9F(pr) + (1= A) 7Y NN [A (R — 7)™ 4 Ag(R— 7)™ + Ag]
=0

for every k € N. If we now choose A in dependency of ¥ and a; such that 9A™* < 1,
then the series on the right-hand side converges. Therefore, passing to the limit £ — oo,
we arrive at the conclusion with constant c(ay,d) = (1 — A)~*1(1 — 9 A1)~ L O

Lemma 2.6.11. Let u be a solution to

u=0 in T4\ Q-
The map f — Vu is a continuous map from L* — BMO
Proof. Let m < [M/2] and let u; be such that

V' (AVu) =V  f inQu
Uy = 0 in T(]iv \ QM

and ug = u — uy. Notice that V" (AVug) =0 in Qpr. We have

1/2

S IV P Y AVu - Vuy €3 fVur < |l MY [ D [V
Qm Qum Qum Qm
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2 Finite Range Decomposition

from which we have that

> IV < MO
Qm

Given that from Lemma 2.6.3 we have that

190 = (Va5 () 32 V00 — (Vo)
Qm Qum

it follows that

m M m

Finally using Lemma 2.6.10 we have the desired result.

From now on A = A(z), namely depends on the space.

The next lemma is an adaption of [15, Lemma 2] to the discrete case. The original proof
is based on an argument in [20]. We will rather use an argument based on Theorem 2.6.8.

In the continuous case, the analog version of the next lemma can be found in [15,
Lemma 2].
Lemma 2.6.12 (Global estimate). Let p € (1,00) q € (1,n)

Q) If f: T4 — R™4, g : T4, — R™ and let u be the solution of

{—V*(Avu) =V'f4+g inQu

u=0 in T4\ Qum
Then if
s = min(p, ¢) oo da
=min(p,q"), " =g
we have
1/s 1/p 1/q
Sovul | S DCIP | (D] Mg
Qum Qm Qm
(ii) and

[ells#,00 + [1Vtlls,00 < C ([ fllpoo.@ar + 19lg,00,01r)

Proof. Let x¢ be the center of the cube @Q;s. For simplicity of notation we will denote
by Ap := A(xp). With simple algebraic manipulations we have

V' (AgVu) = V' (f + (Ag — A)Vu)
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2.6 Discrete gradient estimates and LP-regularity for elliptic systems

Let 7 such that n = 0 in T4 \ Qps. Then we have
V' (AoV(un)) = V" ((Ag — A)V(un)) + G+ V' F

where G = gn+ fDn+ A(z)VuDn and F = fn+ A(x)uDn.
Let w be defined as

V' (Vw) = -G in Qu
w=0 in T4\ Qum

Hence, from the constant coeficient case one has that

1/r* 1

> IMVw|” s 2lelr

Qm Qum

Denoting with F = F + Vw we have that

V'(AoV(un)) =V (A= A4)Vv)+ V' F  in Q.

We will now make a fixed point argument. Fix V and consider the linear operator
T :V +— v where v is the solution of

Vi(AVu) =V (A—A)VV)+V F
The operator 1" is continuous, namely

D IVT(Vi = W)° < ¢ sup |A(x) — A(o)|® Y [VVi(2) = VVa(@)® + ¢ Y |F|°
TEQ N r€Qm TEQ N TEQ

If

1
sup |A(x) — Ap| < §A(x0) (2.82)
TEQM

one can apply the fixed point theorem and deduce that the solution coincides with un,
and that

1/s 1/s
DMVl <O YOIFP
Qm QM
Finally the condition (2.82) is ensured by (2.17). O

For the continuous version of the following lemma see [15, Lemma 4]
Lemma 2.6.13. Let g € (1,d) p > d. Let

T= ||quLq’°°(Q2M) + HUHLLZ*»OO(QQM)' (2'83)
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2 Finite Range Decomposition

Suppose that u satisfies
—V(AVW) =V f  inQay (2.84)
Then there exists mo := mo(p,q) such that if M > mg then

d d
sup |u| S M aT + M "7 | fl|r», (2.85)

where m = [M/d]

Proof. Let 6 € N such that 6 < M. Set x = L%j and let ¢ be such that ¢ =1 in Qjy,
¢ =0in T% \ Qar4s, and such that [Vi| < . Then for every p; > 0 one has that

1 1 " ’QM+6|)1/pl )P "
(QMQZ;V“ ) < (e G, 2 [Viewl

With simple calculations one has that

V' (AV(pu)) Zv* (2)Viu + A j(2)Vip @ u(z + €5))
_ZV (f5) +ZA’J ) fi(x +ZV (AijVip @ u(z +e;))
(2.86)

Denote by
fj = (pfj + Z Am-Vicp(:n) X u(a: + 61')

9=y Ai;(Vju— f;)Vip(x)

?:7.]‘

Equation (2.86) can be rewritten as

Let s = min(p,t*). One has that

1/s 1/p
((M+5d > fs) < (<M+5d > SOf”)

Qrys Qrrys

Qrrys

1/p 1 1/¢*

Qnr+s Qr+s

2

1/t
1 * *
+Z ( M +0)d > AijlVigl “t)
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2.6 Discrete gradient estimates and LP-regularity for elliptic systems

Using the Sobolev inequality, the last term in the previous equation can be bounded by

L 1/t 1/t
1 - 1 ‘ 1 .
< (M +0)V
arsr S )= (s S )+ (s 3 0o
Qs Qurr+s Qurr+s
In a similar way one has
1/t 1/t

| =

1 t < . - t

Qnr+s ’] Qrys
p

1
+sup |4; 4|5 (M+6d > Al

Qnrs

Putting together all the previous inequalities and using Lemma 2.6.12, one has that

o 1/t 1/t
1 . 1
WZHVUH < (M+5 I +0)e Z Jul* + (M +9) Z (M +6)Vul*
Qum Qrrts Qrrts
1
M+5 1 o\
T Grrey 3 2. Ml
Qrts

Applying the previous reasoning x times, we have that

i 1/t

1 tr 1 t 1 t
a2Vl | = G| G 2 1)+ O | gy 2 I+ OV

Qm QM 4ks M+6
P

o

QM +ks

where t,; is given by the recursive equation t; = max(p, t;ll) and t; = t. It can be easily
seen that for every ¢t > 1, it holds that ¢; > d for some j which depends only on p and q.

O]

Proposition 2.6.14. Let C(x,y) be the Green function,i.e., for every x € ']I“]i\, one has
V' (AVC(z,-) = b,

where A satisfies the usual conditions.

Then

IVC(a,y)| S o —y[> 4ol
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2 Finite Range Decomposition

Proof. Let K be the solution of
V' (VK) = 4,.
It is well-known that the following estimates hold

(VOE) (@ = )| S |z —ymolel,

From Remark 2.6.6 we have that |(V*K)(z—y)| L < Cg,o where Cy , is a constant
d+|a|—2"
depending only on the dimension d and the multiindex «.

Let us denote with u(y) = C(x,y). Then from the definitions of K and C one has that

V' (AVu) = V' (VK (z — -))

Let |x — y| = R. Without loss of generality we may assume that M > 2mg, where myg is
the constant in Lemma 2.6.13. Let M = [g] and let Q3s be a cube such that y € Qs
and x & Qapr. Given that AC(x,-) = 0 in Q2ar, using Lemma 2.6.13 we have that

Clz,y) S M*7C,; < |z — y[*~9Cy.

Higher derivative follow in a similar way. For example to estimate V;u it is enough to
consider the equation

V' (AVV,u) = V' ((VVu)) — V' ((V;4)Va),

and apply the above reasoning, and hence using the global estimate one has that |VVu|
O

Proposition 2.6.15. Let Q1,...,Q be cubes of length l1,--- , 1 respectively such that
y € Q;. Then there exists a dimensional constants Cy; such that

A 2—d+j
sup |V/u| < 2°C, j max (|:c —y|, dist(z, T4\ Q1), .. ., dist(z, T4 \ Qk)) T(287)

where u = (Pg, --- P, C(x,-)) and C(x,y) is the Green’s function.

k

Proof. Let Q1 be a cube of size [; in generic position. Given that V*(AVC,(y)) = 0, if
x & Q1 then Ilg, C(z,y) = 0, thus Py, C(x,y) = C(z,y), hence the inequality follows
from Proposition 2.6.14.

Let ¢ := dist(y, Q) < 1. If | — y| > £/2, then by estimating the different terms
IIg,C(z,y) and C(z,y) separately one has the desired result. Indeed, it is immediate
that C(z,y) < |z —y/?>~%. On the other side it is not difficult to see that there exits a
cube of size € touching the boundary such that it does not contain x and such that twice
the cube does not contain x. Then by using Lemma 2.4.3, one has that

g, C(z,y)| < lx —y|*~ "M,
where

M = HDHQlcm”Ld/deoo(Ql) + HHQICxHLd/d—l,oo(QI)-
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2.6 Discrete gradient estimates and LP-regularity for elliptic systems

Then by using Lemma 2.6.12 one has that

| DB, Cr | pasca-2),00 + 1B, O || pasca—1y,00 S ([DCol| pasa—2y.00 + |Crl pasa—1),00

Suppose that | — y| < e/2. Then one can find a cube of size |¢/2] such that double the
cube is contained in ();. Finally by using Lemma 2.6.13 we have the desired result.

Let us now prove the inductive step. Let Q1,...,Q be k cubes cetered in 0. If the
maximum in the right hand side of (2.87) is |z — y| or dist(x, T¢ \ Q1), then the same
reasoning as above would apply. For simplicity let us suppose that

nmew—MNMM%T%\Qﬁpnﬁmu%T%\QH>:dﬁﬂ%T%\QQ::&
From the inductive step we know that
sup |v| < 6274 sup |V¥| < §2=d=lal

where v := P5...P,C(z,-). From the definition we have that © = v — Pg,v, hence
sup |u| = sup |v| +sup |[Ilg,v|. Thus by using Lemma 2.6.13 and a very similar reasoning
as above we have the desired result. O

Let Q1,...,Qk be k cubes with radii [y, ...,[; respectively and let C be the Green’s
function. From now on we fix  and denote with u(y) := (%1 - - - ZxC(x,-))(y), where for
simplicity we will use R; = R, .

The following simple calculation will be repeatedly used in the next theorem.
Remark 2.6.16. Let j > 1 be an integer and Q be a cube of size . Then

1 R
@ Z max(c, dist(z, T4 \ Q)77 < ozl (2.88)
z2€Q
and if j =1 then
1 ~ |
@ Z max(a, dist(z, T% \ Q)7 < ogl(a)‘ (2.89)
z€Q

To prove the above calculation, it is enough to view it as a discretization of the Lemma 2.4.5,
hence use a similar process.

Theorem 2.6.17. Let Cy,Q;,7; as above and such that ri < --- < rp < |z —y| <
rp+1<---<ri. Then

() ifk—h<d—2

k
1 ek
Crle )| S -———|o =y~ [T Qog(lz—yl) +1)
h+1 k i—ha1 (2.90)
1

VI Cr(z,y)| S |w — y|Pdthmah

Th+1"Tk
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2 Finite Range Decomposition

(i) ifk—h>d—2

1
Cha )| § ————— [log(|w — )|
k—d+3 Tk
‘ ) k (2.91)
ik ) § —————— ] Gog(lz—yh+1)

Th—d+2-j Tk , 7y

Proof. We will only prove the first part of (i). The proof of the other parts is similar.

Let us initially consider the case k = 1. For simplicity we denote II, := Ilg, .. With
simple computations one has

sup [u(y) |Q‘ > sup |(Id — I1:)u(y) (2.92)

Qity

Given that for every z € y + @ it holds dist(y, z + Q1) = 1 — |z — y|, it holds

(ri—lz—y)*¢ i ri—ly—z[>|z—y
|2—d

9

sup [(Id — I, )u| < {

lx —y otherwise

The above can be reformulated as sup |(Id —I1, )u| < max(|z — y|, dist(z, T% \ Q)). Hence
using Remark 2.6.16 one immediately has

_13-d
sup [u ()] < 12=Y (2.93)

Y ™

Let us now turn to the general case k < d — 2. And let Q)1,...,Q be balls of radiusis

r1,...,TE centered in 0. From Proposition 2.4.4 we have that
—d
Sup [Py 4@y« Pryru Ol )| < max{|z —yl,r — 21 —yl, . mp — |21 — yl}
< max {|z — |}~ max {|z — yl, vk — |25 —y[} o max{Jo —yl,rp — [z -yl

=:19(z1,...,2)-

supRq - RiC(z <Z Zg Z1yeees 2
Q1 Qk

From Remark 2.6.16 we have that

S Y g mn) < o = g T (g — ul)| + 1)

Q1 Qk i

A direct consequence is the following corrollary:
Corollary 2.6.18. Suppose that |z —y| > 1 and let Q1,...,Qy and such that r; = L
with L > 1. Then there exists n(j,d) such that

Ln(,d)

V2 Cy(z, y)| < TRa2 )"
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2.7 Analytic dependence on A

Theorem 2.6.19 (Fixed A). Let
Ch:=Ri1-- RCRy - R —Ri- - Rpy1CRpyy -+ - RY. (2.94)
Then

sup |VeCy(z,y)| < L1dlel) [=(k=1)(d=2+al)
yeT,

Proof. We will estimate the two term in right hand side of (2.94) separately. Given that
R* = ARA™!, and denoting by D, = Ry - - RiCRj ---Rj. one has that

Dy =Ri- RyRi-RiC. (2.95)

Applying Theorem 2.6.17, we obtain that the supremum of Dy, is bounded by

d—2 d—2
H 1, k+i H log(L~F+7) < LF(d=2) rn(d)
j=1 j=1

2.7 ANALYTIC DEPENDENCE ON A

The proof of the analyticity is based on a very elegant argument using complex analysis,
and it is originally found in [1]. In this section, we will make the appropriate modifications.

Let A : T4 — Lo(R™*9), where Lc(R™*?) from C™*9 to C™*? such that

A=Ag+ Ay (2.96)
with Ag and A; such that for all F,G € C™*¢,
<A0($)F, G>(Cm><d - <F, A0($)G>(Cm><d, <A0($)F, F>(C7n><d Z CO|F|2, (297)
and

€0

sup 141 ()] < 5

d
z€T%,

(2.98)

Here, ¢p > 0 is a fixed constant and, as before, (-,-)cmxa and |-| denote the standard
scalar product and norm on C™*? and ||A;|| is the corresponding operator norm of Aj.

As before,

o = VAV, (2.99)
hence the sesquilinear form
() a = (AVp, Vi), (2.100)
where (-, ) is the fy-scalar product on X y, defining the adjoint &7* by
(o, ) = (p,0)a = (@, F"Y), with & =V A*V, (2.101)

where A* is the adjoint of A. Note that for real, symmetric A the form (-,-)4 is a scalar

product and agrees with (-,-)4. In the following, we use the previous notation H for
1/2

Ag -

Using $z and z* to denote the real part and the complex conjugate of a complex number
z, we summarize the main properties of the sesquilinear form (-, ) 4.

the Hilbert space with the scalar product (-,-) 4, and define ||¢|| 4, := (¢, ¢)
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2 Finite Range Decomposition

Lemma 2.7.1 ([1, Lemma 5.1]). Assume that an operator A satisfies the conditions
(2.96), (2.97), and (2.98).

Then the sesquilinear form (-,-)4 on X N satisfies

Rip.9)a = llell, (2.102)
(. 9)al < Sllell a1 45, (2.103)

Proof. The first claim follows using the definition of the form (-,-) 4 and the lower bound

1
%<A(ZL’)F, F>(Cm><d Z <A0(I')F, F>(Cm><d - %‘FP > §<A0(.’IJ)F, F>(Cm><d (2105)

implied by (2.97) and (2.98).

Using (2.98), the Cauchy-Schwarz inequality for the scalar product (AgF, G)cmxa, and
the bound from (2.97), we also get

(AF, G)omxa| < (AoF, G)pmxa + CZ—O\FHG\ < (AoF, F)L2 (AoG, GY 2, o+

Cmxd

+ LA, F)2, (oG, GY 2, < 3(AF, PV, . (A0G, GV Y2

Cmxd Cmxd Cmxd Cmxd

(2.106)
implying the second claim.
The last identity follows from the relation
<AG, F>C'm><d == <G, A*F>(cm><d == <A*F, G>*Cm><d.
O

In view of the above Lemma, the complex version of the Lax-Milgram theorem can be
used to ensure the existence of the bounded inverse operator €4 = &7 ~!.

In the following, similarly as in the case of the Hilbert space H., we use H(Q + ) to
denote the corresponding Hilbert space (of functions from X n with support in @ + )
with the scalar product (-,-) 4,

Next, we define an extension of the operators I, for a general complex A.
Lemma 2.7.2 ([1, Lemma 5.2]). Assume that A satisfies (2.96), (2.97), and (2.98).
Then, for each ¢ € X, there exists a unique v € H4(Q + x) such that

(v,9)a = (@, ¥)a for all ¥ € Hi(Q + ). (2.107)
Proof. The assertion follows from Lemma 2.7.1 and the Lax-Milgram theorem. O

Lemma 2.7.3 ([1, Lemma 5.3]). Assume that A satisfies (2.96), (2.97), and (2.98). For
any ¢ € Xy, we set
Hagp =v, II4:=I4y, (2.108)

with v € H4(Q + x) defined by (2.107). Using, as before, T, to denote the translation
by x, 1g for the characteristic function of a set QQ, and D for the open unit disc
D ={w e C: |w| < 1}, we have The map z > II5, 4.4, is holomorphic for z in the
open unit disc D.
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2.7 Analytic dependence on A

Proof. This follows from the complex inverse function theorem. Fix ¢ and consider the
map R from D x H1(Q) into the dual of H1(Q) given by

R(z,0)(¥) = (v — ¢, ¥) ag+24, - (2.109)

Then R is complex linear in z and v and hence complex differentiable. By the definition
of IT4 we have R(z,v) = 0 if and only if v = II4,4,4,¢. Finally the derivative of R
with respect to the second argument is given by the map L. from H™(Q) into its dual
with L,(9)(¢) = (0,%)Ag+24,- By the Lax-Milgram theorem, L, is invertible for z € D.
Hence the map z +— Il 4,4 .4, is complex differentiable in z. ]

We define, as before,

Ta=0"Y" Iye, Za=1d-— Ty (2.110)

d
x€T4,

Lemma 2.7.4 ([1, Lemma 5.4]). Assume that A satisfies (2.96), (2.97), and (2.98).
Then
[Taellay < 9ellay forall € Xy. (2.111)

Proof. This is an adaptation of the argument from [8] to the complex case. For the
convenience, we include the details. We have

P Tagll%, < 20 |(Tae, Taw)al <2 > |[(Tawe, Tayp)al- (2.112)

myET%

Set T, := VII 5 ;. Then T}, vanishes outside QQ— 4 x since I14 ;¢ vanishes outside @ +x.
Thus, in view of (2.100) and (2.103), we get, similarly as in (2.106),

(a2, Tayp)a| = [(AT:, Ty)| = [(Alg_ 42T, g_+yTy)| = [(Allg_1yTe, g 12Ty)| <
%(AO]IQ—erTJH ﬂQ-+yTx>l/2<A0]lQ—+xTya ﬂQ-+xTy>1/2 <
$(Aollg_+y T, lg_sy T} + (Aollg_+0Ty, lg_saTy) =
1 (Aol 1y T, To) + 3{Aollg_+aTy, Ty).

VANV

(2.113)
Now Eye?}iv ¢,y is the constant function [ and thus

Z |(ITapp, Mayp)a] < 31 Z (AT, Ty) = 31 Z (Hazp, Hazp)a, <

ngT% xET% mET%
< 31 R(Iape, Haap)a =311 > R(p, Hamp)a =
z€TY, z€TN

= 31%R(p, Tap)a < 2290l a0 | Tagel| ao-

Combined with (2.112), this yields the assertion. O
Lemma 2.7.5 ([1, Lemma 5.4]). Let D ={z € C: |z| < 1}.
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2 Finite Range Decomposition

(i) Suppose that f: D — C™*"™ 4s holomorphic and

sup | £(2)]| < M. (2.114)
zeD
Then the j-th derivative satisfies
179 )] < Mj! . (2.115)
(ii) Suppose that f: D — C™ ™ and g: D — C"™*™ are holomorphic and
sup | f(2)|| < My, sup [[g(z)]| < Ma. (2.116)
zeD ze€D
Then the function h(t) = f(t)g*(t) is real-analytic in (—1,1) and
|RD(0)]| < M Mag! . (2.117)

Here g*(t) denotes the adjoint matriz of g(t).

Proof. Assertion (i) follows directly from the Cauchy integral formula. To show (ii),
we note that g(z) =3, a;jz’ with a; € C™ ™. Define G(z) := > a;zj. Then G(z) =

g(z*)". Hence |G(2)]| = |lg(z*)||. Thus H := fG is holomorphic in D and satisfies
supp ||H|| < MiM,. Hence H®)(0) < k! M M,. For t € (—1,1) we have H(t) = h(t)
and the assertion follows. O

Proof of 2.3.1 . The boundedness follows from the boundedness of the inverse C4 = A~*
and Lemma 2.7.4.

O
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3 STRICT CONVEXITY OF THE SURFACE
TENSION FOR NON-CONVEX AND SPACE
DEPENDENT POTENTIALS

In this chapter, we will extend some new results due to S. Adams, R. Kotecky and
S. Miiller in [2]. We will extensively use their general strategy and many of their
results. As usual in the RG theory(which we will denote by RG from now on), there is a
combinatoric part and a analytical part. The combinatoric part will apply unchanged
to our setting. For the analytical part, one needs to find some appropriate norms that
will capture the subtle growth in the RG step. Thus, because of the extra difficulty (due
to the space dependence of the Hamiltonians), we need to find such appropriate norms,
which generalize the ones in [2] and a space of relevant parameters so that we can get
the RG machinery started. Following the general strategy proposed in [2], we will show
the smoothness for the RG step.

Once this is done, the proof will follow by standard arguments.

In [2], a key ingredient in the recipe of the RG technique, is the use of the Finite Range
Decomposition with optimal bounds. Because [2] is not available to the general public
at the present moment when this thesis is being written, in many instances when a
simple citation might be sufficient, we will include also the proof which is contained in
[2]. However, we will try to emphasise when such thing happens.

3.1 INTRODUCTION

Let A C Z% and real-valued height variables

reN— px)eR.

We will consider the Hamiltonians of the form

d
Ha(p) =YY W(z, Vi),

zeA i=1

where W : Z% x R — R is a perturbation of a quadratic function, i.e.,

1
W(xz,n) = §a(x)772 +V(z,n), with some perturbation V: R — R.

67



3 Strict convexity of the surface tension

Vix,t)

Figure 3.1: The graph of a typical function W.

The Gibbs distribution for a given boundary condition ¥ € R?}, where
ON={z €7 |z— x| =1 for some x € A},

at inverse temperature 5 > 0 is given by

is(de) = e (= BHA()) IT a¢(a) TJ Guco (et

where the normalisation constant Zx (3, ¥) is the integral of the density and is called the
partition function. As a direct consequence of the theory developed in Chapter 1, one is
interested in linear boundary condition,

W, (z) = (z,u), for some tilt u € RY,

and in the free energy
1

o(u) = lim ———log Z v).
Whenever the target space is one-dimensional (i.e., m = 1), it is called surface tension
due to the fact that it appears naturally in the modelling of elastics sheets.

The surface tension o(u) can also be seen as the price to pay to tilt a totally flat interface.
The existence of the above limit follows and the relation to the Gibbs measure was treated
in Chapter 1. In case of strictly convex potential and no spatial dependence, Funaki
and Spohn show in [17] that o is convex as a function of the tilt. The simplest strictly
convex potential is the quadratic one with V' = 0, which corresponds to a Gaussian
model, also called the gradient free field or harmonic crystal. Notice that, as seen in
Chapter 1 in general the surface tension is only quasi-convex, hence global convexity
is not to be expected. Models with non-quadratic potentials W are sometimes called
anharmonic crystals. Strict convexity of the surface tension for strictly convex W with
0<c; <W"” < ¢y < oo, was proved in [14]. Under the assumption of the bounds of the
second derivative of W, a large deviations principle for the rescaled profile with rate
function given in terms of the integrated surface tension has been derived in [14]. Both
papers [16] and [14] use explicitly the conditions on the second derivative of W in their
proof. In particular they rely on the Brascamp-Lieb inequality and on the random walk
representation of Helffer and Sjostrand, which requires a strictly convex potential W.
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3.2 Preliminary results

3.2 PRELIMINARY RESULTS

Our starting point is [2], where the authors consider a Hamiltonian

d
Hp = Z ZW(VW)-

zeTd; i=1

The Mayer functions Ky, g, are defined by

Ky pu(z) = exp{— BZV zz —w)} -1 (3.1)

Moreover, given any h > 0, consider the Banach space E of functions K : R? — R with
the norm
HKHh = sup Z h\a\‘aaK ‘ —h— 2|z|2
zeR4 |oe|<ro
In the above formula, the sum is over nonnegative integer multiindices o = (avy, ..., aq),
a; € Nji =1,....d, with |af = Z?Zlozi <17y € N, and 0% = Hl 105, Denote by
B;(0) € RY the ball B5(0) = {u | |u| < §}.

The following is the main result in [2]:

Theorem 3.2.1 (Strict convexity of the surface tension). Let V' be such that there exists
§>0,e>0, h>0, and By < oo such that the map R? D Bs(0) > uw— Kyg, € E is
C? and

1 Kv,5

d
0
aur vl 2 g, Kvoal, <
‘h_’_;H@ui Vibu Z auzau] Kvpu h_5

whenever u € Bs(0) and > fo.

Then, the surface tension og(u) := —limy_ o0 BL% log Zn g(u) exists and it is uniformly
strictly convex in w for u € Bs(0) and any 8 > Bo.

3.3 HYPOTHESIS AND MAIN RESULTS

We will consider a potential V : T x R — R, where V is sufficiently smooth. The
Hamiltonians we will consider, are defined by

d
= Z Z VV(x/LN7 Vip).

z€TY, 1=1
Whenever it is clear from the context we will drop the N and write H instead of Hy.

In a similar fashion as in (3.1), we denote

Kvgu(mz—exp( ﬂZU ) 1,
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3 Strict convexity of the surface tension

where

U(z,s,t) =V(zx,s —t) — V(z,—t) — sV (x,—1).

Let us recall the definition of the space & C {q : ’]I‘ﬁlv — Esym(Rde)}, such that there
exists a constant cg, c; > 0 such that for every = € ’H“Ji\, and every F' it holds

co| F|* < (q(a)F, F) < 1| F|*.

The above space is endowed with the distance induced by the norm

lgle = sup LNV g||paxa,
z€Te,j<d,|8|<3

where 3 is a multiindex.

Given q € &, let us define

d
8.0 =5 30 D a4y @)(Vipla) — u)(Vyp(a) — uj)

€T, ij=1
and
1 d
E@) =5 D D €;(@)Vip(@)Vie(@),
zeTd, i,j=1
where u € RY.

It is natural to consider the Banach space E which consists of functions K : R¢ — R
and the norm is defined by

HKHh: sup Z Z h|0‘\‘agagK(m’z)le_h—2|z|2

d
2€RY g1<2 ol <rg

Here, the sum is over non-negative integer multiindices a = (a1, ..., aq), a; € N where
i=1,...,d

With the above notations we can prove the analogous of Theorem 3.2.1, namely
Theorem 3.3.1. Let 6 >0, & >0, h > 0, and By < 0o such that the map R > Bs(0) >
u— Kyg, € E is C? and

NG SN
K | vl + 2 g Kronll, <
H V.B,u ‘h + ; auz V.B,u h + ’i;l 8uzau] V.B,u h €
whenever u € Bs(0) and 5 > fo.
Then the surface tension og(u) := — limpy_o0 BL% log Zn g(u) exists and it is uniformly

strictly convex in u for u € Bs(0) and any 8 > Bo.
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3.4 Outline of the Proof and Extension to Bonds

3.4 OUTLINE OF THE PROOF AND EXTENSION TO BONDS

The strategy of the proof is based on [2] and uses the RG technique of Brydges et al..

Our definitions deviate from [2] by enlarging the space of gradients to the functions on
space of bonds(the precise definitions follow in the subsequent paragraph). This is done
in order to keep track of the space dependence.

Each bond b = (x,y) is directed from y to . We also write z, = x and y, = y and we
define —b := (y,x). We say that b ~ b, if zp = xj. Moreover, we define the translation
with respect to e € Z% as 7.b := (x+e,y +e), where b = (x,y). Note that each indirected
bond appears twice in (T4,)*. A sequence C' = {by,...,b,} is called a chain, if y,, = Th s
and in a similar way it is called closed if yp,, = xp,. A plaquette is a closed loop consisting
of four points such that {x,} consists of four different points. A field 7 is said to satisfy
the plaquette condition if n(—b) = —n(b) and } 5 7(b) = 0 for every plaquette P. A
particular example of a field satisfying the plaquette condition is the gradient field. In
our setting, the plaquette condition characterizes being a gradient. Namely, it is not
difficult to see that for the particular type of lattice we are considering, if a field
satisfies the plaquette conditions then there exists ¢ : ’]I“]iv — R such that 7,; = V;p,
where for simplicity of notation we denote by 7y; := 14 z4e,) and by

Dy = Oy, .- (3.2)

)

It will be also convenient to introduce ¢, ; : ']T?l\, — R defined by

b i(5) = {1 if b= (,19)

0 otherwise.

The space of fields over the bonds will be denoted by H, namely H := {77 : (’IF?’V)* — R}.

Let us denote by (T%)* the set of all directed bonds b = (z,y) such that |z — y|s < 1.
The Hamiltonian H can be naturally extended on H by using the formula, i.e.,

d
HN(”) = Z Z ‘77$,i‘2 + V(nz,i)'

zeTd, i=1

And hence the function exp (—H(p)) is also extended on H.

Let us now consider the Gaussian measure vg on Xy corresponding to the Dirichlet
form BEN(p):

vp(dep) = % exp(—BEn () v (dy),
A

with
ZZ(\?,)ﬁ:/X exp(—BEn(p)) An (dy).
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3 Strict convexity of the surface tension

Because we would like to consider the above as a measure on H, we simply extend it
by saying that the measure is defined on H but concentrated on the space of gradients.
This can be easily done by decomposing H := V & W, where V is the space of gradients
and W, and then extend 7 := v ® dy.

The partition function can be rewritten as

d d
Zns(w) = Zy)s exp(—5LN 3 (q); juiuy) /X exp(=F Y D V(. Vip(r) - ui)

i,j=1 zeTd, i=1

d
+ ) 4 Vieu)vp(dp)

veTd, i=1
(3.3)
where the last equation was obtained by rescaling the field ¢ by ﬁ Denoting by

(@i =L Y ai;(@)
xGT%
and by v(dy) = vg=1(dy) and Z](\(f)) = ZJ(\?,)B=1‘
The term

d
Z Z qz’,j(x)%‘(w)uu

z€T? i=1

in (3.3) is harmless and does not change the above limit. Indeed, with simple computations
one has that

d d
Y a @) Vieu; = Y Y Vig(x)uex).

ij=1zeTd i.j=1zeTd

Because of the hypothesis on q, we have that for every x € ']I‘ﬁlv and i,7 € {1,...,d}, it
holds |Vg; ;(z)| < eoL ™. Thus, it is immediate to notice that

1/p

d
’ Z Z q; ;Vip(r)u; §€0\U|LNd L—Nd Z lo(z) P . (3.4)

iJ=1x€T% xET%

In a similar way as in Chapter 1, when the boundary conditions are linear one can
restrict by integrating over the factions which are close to the linear function in LP(notice
that for our case p = 2), namely all the functions ¢ such that the distance in L? is from
the linear function which defines the boundary is less than every fixed k. Thus, one can
assume without loss of generality that

1/2
LfN(d+2) Z ‘QD(CC)|2 < K,

d
z€Ty
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3.4 Outline of the Proof and Extension to Bonds
and thus, the limit in the formula of the surface tension does not change.

However, because in Chapter 1 only the Dirichlet boundary conditions are considered
and we have periodic boundary condition, the above claims need to be proven. In the
following paragraph and Proposition, we fix this issue.

In the same spirit of Chapter 1, let us denote by
1
oN(l,R) = —— log/ exp (— Hy(p)) de
LNd V(tr) ( )
1
o(l,k) :=— lim log/ exp (— Hn(p)) de,
) oo LNd V(er) ( (¥)

where

Un(lr)={p:T% =R : > |L V> < kLN

d
z€T%,

Moreover, let us denote by dn (¢, <) the same as before but instead of imposing periodic
boundary conditions we impose linear boundary conditions. Namely fix Q := [1, L'V]?
and denote by

_ 1
oN(l, k) = ~INd log /]}(Z o exp ( - HN(‘P)) de
N o1
)= o v o -t

where

VNl k) ={p: 2 >R : Z IL NP < kLN and ¢(z) = 0 for all z € Z%\ Q}
zeQ

Because the zero boundary conditions are more restrictive than periodic boundary
conditions, it is immediate to see that o < 5.

In the following proposition we prove that the two are equivalent.
Proposition 3.4.1. For any linear boundary condition £ and every k > 0, it holds

o(l,k) =0(l,k) =0c(l).

Proof. As we already observed in the comments above the statement proposition, we
only need to prove that o > 4.

Let {e1,...,eq} be the coordinate directions. Denote by
Vii={yeT%: y-e =k}

It is immediate to notice that

LN -1
T = |J %
k=0
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3 Strict convexity of the surface tension

Hence, we have that

LN -1 d
ZZW”W =2 2D Wi Viely
zer =1 k=1 y€Yy i=1

thus for every fixed ¢, there exists k such that

d
> Wiy, Vie(y)) LN

yeYy 1=1

W(x, Vip(z (3.5)

”.M:“

On the other side by using a version of Lemma 1.2.12, it is immediate to notice that
there exists K large enough such that one can restrict oneself to the set

={p: QC;T; W (z, Veo(z)) < KLV} (3.6)

Combining (3.5) and (3.6), one has that there exists ko such that

d
YD Wy Vip(x) < KLV (3.7)

yEYkO =1

Let us denote by N, the set of functions for which equation (3.7) holds for the first time
at k. Namely for every k' < k, equation (3.7) does not hold.

We denote by Hj, y the Hamiltonian induced by unfolding the torus ’JI“}V at the hyperplane
Y, and extending outside with Dirichlet boundary conditions. Namely,

d
Hin(p) =Y Wy, o)+ Y>> Wy, Vip(x))

nag Kk Y i=1
Using the above observations, one has that for every ¢ € N

Hin(p) > Hy(p) — KLV /LN,
Hence,
on(l k) < —L~ Ndlog[Z/ exp(—Hk,N)dgo]—i—K/LN.
kN
Moreover notice that
—p N log {/N exp ( — FIk’N(np)) dgp]
k

corresponds to putting Dirichlet boundary conditions on the faces of the cube orthogonal
to e; and periodic boundary condition on the other faces.
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3.4 Outline of the Proof and Extension to Bonds

It is immediate to notice that

o(l,k) == —L Nlog [Z/ exp (— Hy,n) dcp} .

i Nk

With simple reasoning one has that

IN

—L M maxlog [/ exp ( — ﬁk,N) dcp]
k Ny

—L_Ndlog {2/ exp(—ﬁk,N) d(p]
kN

< —L MM maxlog [LN/ exp ( — Hka) dgo} ,
k N,
hence by passing to the limit for IV 1 oo one has that

o(l,k) = lim —L N ml?xlog/N exp (— Hi,n(p)).
k

N—oo

Finally we by passing to the limit in N and noticing that each of the terms in the
above(after the max) is equal to ', which corresponds to imposing Dirichlet boundary
condition only on one of the axes. To conclude the proof one has to repeat the argument
for each of the faces via an induction argument.

O]

Let us now continue with the outline of the proof.
Define

Zn.5(uw) ::/X exp(—B Y _ Zv () —u;) )v(dy). (3.8)

ace'I[‘d i=1

One obtains that for the finite volume surface tension,
1 1
ong(u) = —mlogZNﬁ(u) BLNd logZ( %|u’2_ WlogzNﬁ(u). (3.9)

As in [2], to prove Theorem 3.3.1 we need to show that the surface tension on g(u)
in (3.9) is strictly convex in w uniformly in N € N.

Glancing at the formula (3.9), it is immediate to notice that in order to prove the strict
convexity of the surface tension, one only needs to prove that the derivatives of the third
term are sufficiently small.

In statistical mechanics, one of the ways of dealing with the perturbation and evaluating
log Zn g(w) and its derivatives, is to use some version of cluster expansion. Namely, one
expands the integrand as

H (1+exp{ BZV L Vzga( ) — )}—1)

me’]I‘d

in (3.8) and introduces, for any subset X C T%, the function

K(X, ) H (exp{— BZV (z) —wi)} — 1), (3.10)

zeX
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3 Strict convexity of the surface tension

which allows to rewrite (3.8) as

Znplw) = [ S KX g(dg) (3.11)
N X

The function K (X, ¢) depends only on V(x) with x in the set X and its close neigh-
borhood and for a disjoint union X = X; U X5 one has K(X, ¢) = K(X1, ) K (X2, ¢).

We write K (X, ¢) instead of K (X, V) to keep the notation more compact and in line
with the literature.

However, the Gaussian measure v(dy) has a slowly decaying correlations and hence
does not allow to separate the integral of K (X, ) into a product of integrals with the
integrands K (X7, ¢) and K(Xa2,¢), thus the classical methods used when one does a
cluster expansion are not applicable.

As already mentioned the measure v is extended on the space of functions defined on
bonds' (see beginning of the section). Because we would like to some extent reformulate
the considered quantities on the space of functions over bonds, one can rewrite the
partition function as function

Zyp(u) = /X exp(—8 S Vm)v(dn). (3.12)

be(T)*

The functions K (X, ) can be rewritten in terms of bonds as

d
KX,9)= ] (exp{-8)_V(m)}-1), (3.13)
=1

b=(z,i):xeX
thus

Znp(u) = . > K (X, n)v(dn). (3.14)
N X

The strategy (and the main idea of the RG) is to perform the integration in steps
corresponding to increasing scales. Similarly as in [2], it is useful to introduce a parameter

q € & that will be useful for fine-tuning so that the final integration will eventually yield
a result with a straightforward bound.

Multiplying and dividing the integrand in (3.11) by exp{% ZIGT% 2?,1:1 q; j(2)Vip(x)Vip(x)},
one gets

(q) d
Zvpw) = 25 [ ew{5 3 au@Vie@) Ve 3 KXol dp).
2N XN weTd, ij=1 X

(3.15)
Here, p is the Gaussian measure on Xy with the Green function %@ | the inverse of the
operator .7 (1) = ch‘l,jzl Vi (0ij + q: j(2))V;,

p(de) = %exp{—c‘?q(w)}kzv(dw,
ZN

Lwhich denoted by H
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3.4 Outline of the Proof and Extension to Bonds

with .
Eq(0) = 3( Do, 0) =5 > " (61 + () Vig(x) Vo),
2eTd, i1

and

d
Z](\?) = /XN exp{—é’q(go)})\N(dgp) = /X exp{—% Z Z qi,j(x)vi@(x)vj‘p(x)}’/( dep).

N z€T4, i,j=1

One of the main ingredients is the use of a version of the Finite Range Decomposition
(Theorem 2.3.1) which allows (under suitable assumptions on the smallness of q) to
decompose the Gaussian measure p into a convolution p(dy) = py*- - -*xpun41(de), where
U1, ..., in+1 are Gaussian measures with a particular finite range property. Namely, the
covariances of C,Eq) (z,y) of the measures g, k= 1,...,N + 1 vanish for |y — x| > $LF

with a fixed parameter L with an additional bound on their derivatives with respect to
q of the order L~ (—1(d=1)

The integral in (3.15) can be symbolically written as

/X (@ o K@) (p)u(dp), (3.16)

where d
HD =1 Z Z q; ;(z)Vip(z)Vp(x),
xE']T‘fV i,5=1

the function K@ is defined by

d
K9D(X,0) = exp{5 > 3 a;;(2)Vigp(@)Vy0(a) K (X, 0),
reX i,j=1

and o is the circle product notation for the sum over subsets X C Tﬁl\,,

d
(e—H<q> o K(Q))(S@) = Z exp{% Z Z qi’j(x)vigo(x)vj'(p(l)}K(q)(X, 80)'

XCTY, z€TE\X 6,j=1

The typical strategy of in the RG theory is to replace p in (3.16) by the convolution
w1 -kpun+1(de), and to proceed by integrating first over p;. A fundamental observation
is that the form of the integral is conserved.

Namely, starting from Hy = H@ and Ky = K9, one defines H; and K so that
/x (e 0 Ko)(p + &) dur(§) = (e 0 K1) ().
N

Here, the function Kj(X, ) is defined (non-vanishing) only for sets X consisting of
L%blocks and H; is again a quadratic form like Hy but with modified coefficients
q;; (z) and additional linear terms. Recursively, one can define a sequence of pairs
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3 Strict convexity of the surface tension

(Hi, K1), (Hs, K3),...,(Hn, Ky) with each Hy a quadratic form in Vg and K (X, ¢)
defined for sets X consisting of L*-blocks so that

[ €K+ ) dn (§) = (T 0 i) o) (3.17)

The aim is to define of consecutive pairs of functions Hy, K} so that not only (3.17) is
valid, but also that the form of the quadratic function Hy is conserved, the coarse-grained
dependence of K}, on blocks L% is maintained, and, most importantly, the size of the
perturbation K} in a conveniently chosen norm decreases (variable K, is irrelevant).

Let F : (T4,)* — R. Notice that the measures {y;} are extended on H. Hence in a
similar way one can perform the integration of F' with respect to {yu;} by the formula

/ F(n+ VE) dui(€)
XN

and show by induction that by performing these operations one obtains always functions

defined on H.

Thus it is not difficult see that if an expression as the one in (3.17) holds, then an similar
one defined on H holds.

Using now sequentially the formula (3.17), we eventually get

/ (710 o o) ()u( dp) = / (7% 0 K) (@) ins1(d),
XN

XN
thus
40
Zuslu) = 25 [ (@ 0 K (s (dp)
ZN XN
Because that all measures p1, ..., un+1 and the map T itself will be shown to depend

smoothly on the initial matrix q, thus one can choose the value g = g, in such a way
that Hy = 0. Given that the function K (X, ) is defined only for X = Ay or X = &,

one has that
Z(qO)

Znpw) = 25 [ (14 K )) v (d)
VAN

As in [2], one can compute Z](\?O) explicitly by Gaussian calculus and its dependence on

u, and show that it depends smoothly w. Moreover, the integral term, as well as its
derivatives with respect to u, can easily be bounded as a consequence of the iterative
bound on K.

3.5 DEFINITIONS

3.5.1 POLYMERS

We now introduce some standard definitions and notations used in the RG theory.
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3.5 Definitions

For k=0,1,2,..., N, one paves the torus Ay by L= digjoint cubes of side length
LF. These cubes are all translates (L is odd) of {z € Ay: [z] < 3(L* — 1)} by vectors
in L*Z%. Such cubes are called k-blocks or blocks of k-th generation, and use By to
denote the set of all k-blocks,

By = Bi(An) = {B: B is a k-block}, k=0,1,...,N.

Single vertices of the lattice are 0-blocks, the starting generation for the RG transforms,
By = An. The only N-block is the torus Ay itself, By = {An}.

A union of k-blocks is called a k-polymer. We denote by Pr, = Pr(An) the set of all
k-polymers in Ay.

As N is fixed through the major this chapter, we often skip Ay from the notation as
indicated above.

Any subset X C ']Tﬁlv is said to be connected if for any x,y € X there exist a path
Tl = T,T2,...,&y, = y such that |z;;1 — x|, =1,i=1,...,n—1. We use C(X) to
denote the set of connected components of X. Two connected sets X,Y C Ay are said
to be strictly disjoint if their union is not connected. Notice that for any strictly disjoint
X,Y € Py, we have dist(X,Y) > LF.

We use P; to denote the set of all connected k-polymers. Let X € Pj. The set of all
k-blocks in X will be denoted by B (X ), and the number of the k-blocks of X will be
denoted by |X|, = |Bk(X)|

The closure X of a polymer X € Py, is the smallest polymer Y € Py of the next
generation such that X C Y.

A polymer X € Pf is called small if | X|, < 2¢ and we denote S, = {X € P¢: | X[, < 2%}

Let B € By. We define its small set neighbourhood B* to be the cube of the side
(291 —1)LF centered at B. The small set neighbourhood B* can be equivalently defined
as the smallest cube for which B C Y and Y € §;, implies Y C B*. We will use X* to
denote its small set neighbourhood, X* = U{B*: B € Bi(X)}.
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3 Strict convexity of the surface tension

3.5.2 POLYMER FUNCTIONALS AND TRANSLATION

Let us now introduce the space M (P, X) of all maps F : P, x X — R such that for
all X € P the map F(X,¢) depends only on values of ¢ on X*. Namely, for every
v,y € X, one has that <p|X* = w‘X* = F(X,¢) = F(X,v) where @!X* denotes the
restriction of ¢ to X™.

The sets M (Sk, X) and M (B, X) are defined in an analogous way. We also consider the
set M*(By, X) D M (B, X) of the maps F': By, x X — R with F(B, ¢) depending only
on values of ¢ on the extended set (B*)*. For functions from M (Py, X'), one introduces
the circle product,

Py, Fy € M(Py, X), (FioFo)(X,0) = Y Fi(Y,0)Fo(X \ Y, ).
YCX

Notice, that the product is defined pointwise in the variable ¢. We often skip it and
write (F1 o F3)(X) =Y ycx F1(Y)Fo(X \ Y) instead. Observe that the circle product is
commutative and distributive.

For F € M(Bg, X) and X € Py, we define
F¥e)= ][] FB
BeB(X)
Extending any F' € M (B, X) to M(Py, X) by taking
F(X, ) = F*(p),
one gets

(F+R)Y =Y FEY =(FoR)X).
YCX

For every = € T4, and every ¢ € X, we define the translation 7, as 7,¢(-) == ¢(- — z).
Given F' € M(Py, X), we define the translated functional as (7, F)(B, ) := F(B, ¢, Tz ).

Similarly as in [2], we introduce the space of ideal Hamiltonians My (B, X) C M (B, X)
defined as the family of all quadratic functions of the form

H(B,¢) = A|B|+ () + Q(p),

where

d
Z Zal x) + ¢ij(2)ViVp) (3.18)

zeB i=1

d
- Z Z d; j(z) Vip(z) Vjp(x)

z€Bi,j=1

with coefficients A € R,a € R% ¢ € R¥*% and d € £. As we will see in the sequel, this
space will consist of the space of the relevant parameters for the RG.

The space My(By, X') will be endowed with the norm

and

HHHkOB—Lkdsup|/\ )| + LF4/2p, Z sugZ\aZ \+suph2]LN"8‘| Z VA, ()|
181<3 7€ i.j=1
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3.5 Definitions

3.5.3 NORMS

In order to carefully keep track of the contribution in the integration step when passing
from one scale to the other, one needs to define some appropriate seminorms. If one
restricts oneself to the subspace of H which is composed of all n which are gradient
of some function ¢, than the seminorms that will be considered in the sequel will be
norms. For this reason and because of the nomenclature in the literature, we will refer
to them as norms with a slight abuse of notation. If one restricts oneself to the subspace
of gradients, the following norms generalize the ones employed in [2].

As in [2], we now introduce the norms || - ||, and || - ||x41, on M (Py, X) and M (By, X)
(with » =1,...,79, where rq is a fixed integer (to be chosen later) and a norm || - ||z 0
on My(By, X). For every k € {0,1,..., N} and X € Py, one introduces the semi-norms
| |px and |- |41 x on X. Given ¢ € X, one defines

1 =2
l¢lp x == max sup —L 2 +S)‘ngo(x)|

1<5<3 pe X+
and ) s
_ E+1)(Z5=+s) | s
— max sup - L 2 Vip(x
|80|k+1,X 1§S§3w6)1()* ‘ o( )‘7
where

Vi) = > [V(x)[*.

|a|=s
Let S be an s-linear map on (T%)*. Then it can be expressed as

n
S(n,...,m) = Z Chy,...bn H b, -
i=1

b17~~~7bn

Let e; be an element of the canonical basis. We define the translation 7.Cy, ., =
Croby....moby - Thus, for every f: (T4)* x -+ x (T4)* — R we define

Vif(bl, PPN ,bn) = Teif(bb .. ,bn) - f(bl, ‘e ,bn)

Moreover, for any s-linear function .S on X x --- x X, we define

Bl = 1S(p,,9)|,  G=kk+1,
¢j7X§1
y . ‘ _ (3.19)
|SI"% = sup |S(ais @y @) /Ml T =k k1,
[l x <1
and, for any F' € C"(X), also
,
; ]- 7.7 '7X
|F()P = sup sup > > LN VD F(p)| ™"
€T, 1<i<d .27 1 S 5)<s s!| B!
=IPI= (3.20)

T
1 X
+sup sup S —|DUF ()|,
veTd, 1<i<d (= 5

where whenever s = 0, we mean

DF(p) = F(p).
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3 Strict convexity of the surface tension

Remark 3.5.1. Notice that one can find examples of quadratic forms Q defined on H
such that Q = 0 when one restricts oneself to the subspace of fields that are gradients
and such that 11(Q) # 0 on the subspace of fields that are gradients. For this reason
one needs to control also parts of the norms in the full space. This is why, differently
from [2], we have in the definition of the norms extra terms like |S|*"7

Let us introduce the weighted strong norm ||| F(X)]||, x as well as weighted weak norm
| F(X)||k,xr r=1,...,79. The strong weight functions are defined by

W¥(e) = exp{ 3" Gral) ],

zeX

where 1
2
Gra(p) = 75 (Vo) + L [V2p(@)]” + L¥|Vip(2) ).

We define the weighted strong norm by
k,X, —
IECO, x == sup | F(X, )" W ().
©

Notice that in contrast with [2], given any F' € M (B, X') the norm ||F(B)|||, p does
depend on B.

Moreover, let B, € By be the k-block containing = and let 0X denote the boundary,
namely

0X ={y ¢ X | 3z € X such that |y — z|, = 1}U{y € X | 32 ¢ X such that |y — 2|, = 1}.

The weak weight functions are defined by

0 () = exp{ D w(2191,0(9) + Gral@)) + L' 3 Grule) }

zeX z€0X

with G}, () as above and

4
1 S— S
Gha() = 75 D L% sup [Vop(y)]”
s=2 yeB;

The weighted weak norm is defined by

1F(X) [k, x0 = sup |F(X, ) [T wi X (), v =1, ro.
®p

One also introduces the norm ||-||5.x+1,x,» that can be viewed as being “halfway between”
|-k xr and ||| k41,0, With U = X € Ppy1. Namely,

I1E' (X)) kb1, = sup [ F(X, p) [ w;;ﬁrl(‘ﬂ), r=1,...,r0.
©
with
Whpt1(9) = eXp{ Z (2% — D) grpt1,0(9) + WG () + 3L" Z Gk,z(¢)}7

zeX z€0X
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3.5 Definitions

where
1 4

gk:k+1,:p(§0) = ﬁ ZL(2372)(/€+1) sup |V590(y)|2'
5=2 yeB;

For any r < rg, one has that
IE (X)) Ik, xr < WE Xk x-
Moreover is also easy to show that

| E (X)) [k:kr1,x < [[F(X)

k,X,r

whenever w > 2971 (assuring that 29w (L% — 1) > L?), and, for any U € Pj,1 C Py and
F e M(Pgy1,X) C M(Py, X), also

IEW k1,00 < 1FO)[kkr,00 < [FO) k- (3.21)
As in [2], we introduce the weak norms

[Ellkr = sup [[F(X)]|kxrTra(X), m=1,...,70,
XePg

where

AXL i X e P\ Sy

T a(X) =
kA(X) {1 if X €8,

Similarly, one also defines ||F'||5:k+1,-- When comparing norms with different values of

parameter A, we will denote explicitly HFH;‘? and HF||,(:2+1 ,- For I' € M(By, X), one
defines

[ENlkr = sup [|[F(B)]lk.5.-
BeBy

Let us fix k. For simplicity of notations it is convenient to write (H’, K') instead of
(Hg+1, Ki+1). Hence, it becomes

Re oK)= oK'

3.5.4 PROJECTION

Let f: (T%)* — R™ be a function. We denote by T the Taylor expansion around zero
up to the second order, namely

TyF(B,7) = F(B,0) + DF(B,0)(i) + 3 D*F(B,0)(1,7),
where the functions can be represented as

DF(m) = Y cm

be(TH)*
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3 Strict convexity of the surface tension

and

D?F(B,0)(ih,n) =Y _ dyyymony-
b,b

Given that our functionals depend on Vi, it is not difficult to see that

DF(B,p) = Y &iVip()
$€T%
and

%DQF(B,QD) = Z di j(2,y)Vip(x)Vo(x).

d
z€Tg,

Let us now define the “projection” on the space of Ideal Hamiltonians.

The elements of d; j(x) in the formula for @, will be defined by

di,j(x) = Z Ji,j(:r,y) where x € B.

(3.22)
yeT,

Notice that with this definition, we have that for every affine function ¢ on B* it holds
1 ..
3 3 (@) Vipla)Vsp(e) = 3 D*F(B,0)(5,9).
$€B

and

1 .
dij(2)Vip(@)V;p(2) = 50::DF (B, 0)(#,9),
where in the above equation the symbol 9, ; we mean the derivative with respect to n,
and b = (z,z + ¢;).

The functional ¢ can be defined in the same way as in [2], namely such that for every
quadratic function it holds

Zaz 290 Z buv VJQO( )
i,7=1

In the following, we will need to apply the projection to functions of the form

Z ’X’FX@

XeS
XDB

for any F' € M (S, X). Hence, we extend the projection II, by considering test functions
¢ on (B*)* instead of B*.
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3.5 Definitions

We define
T Y IL(RMB.o) - ¥ EBEOXe). (329
T

Let us denote by H (B, ¥), the term in the right hand side of sum above, namely

(RE)(X.0)).

(B, ) = UTy(RH)(B.¢) = >

XeS
XDOB

\Xl

Denote by I(B, ) = exp{—ﬁ(B, ¢)} and by J =1 — I. Moreover, we introduce
K:=Jo(I-1)oK. (3.24)

For simplicity of notation, it is sometimes convenient to skip the polymer variable X
and use K (p,€) for the mapping K(p,&) : P — R defined by K (¢, &)(X) := K(X,¢,§).

Thus, ) 3
K(p,&) = J(p)o (I(p+&) —1) o K(p+¢).

Given that I(¢ +&) = I(p) + J(p) + (I(¢ + &) — 1), one has that
I(p+&=1(p)od(p)o(I(p+8) —1)
and thus
o+ oK(p+&=1(p)od(p)o(I-1)(p+E)oK(p+&) =I(p)o K(p&).

Hence,

R(I o K)(An,¢) = (I o (RK))(An, ).

As usual in the RG theory, K’ is defined by sorting the X-terms according to the
|{BeB(X): B*
| X1

next level closure U. One introduces the factor x(X,U) = =0l for any
X € S(An) and x(X,U) = 1;;_x for X € P(An) \ S(An). Then, one has that

(To K)(An,0,8) = 3 V(o) (X, 0) 3 MY (@)K(X,0,6)].  (3.25)
Uep! XcU

Where in (3.25), we used the fact that for any X € S(Ay) contributing to several U’s,
one has that Y. x(X,U) =1 and also that X C B* and thus X C B*.

Define

K'(Usp) = 3 XX () [ R0 dirn (€ (3.26)
XcU X

for any connected U € P’. One has that
R(Io K)(An,p) = (I'o K')(AN, ).
The above transform conserves the factorisation property of the coordinate K, namely if
K factors on the scale k,
X,YeP,and XNY =g, then K(XUY,p) = K(X,p)K(Y,¢),
then K’ factors on the scale k + 1.
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3 Strict convexity of the surface tension

Proposition 3.5.2 ([2, Proposition 4.2]). Let k € {0,...,N — 1}, H, € My(B, X),
and Ky € M(Py, X) that factors. Let Hi11 € Mo(Byy1,X) be defined by

Hy1(B,9) = > Hi(B,p), (3.27)
BEBk(B’)
where
~ 1
Hy(B, ¢) =T, ((Rk+1Hk)(37¢) - Y W(Rk+1Kk)(Xa <P))- (3.28)
XeSk k
XDB

Let Ki(p,€) := (1—e Hrl@)) o (e HrleHE) — 1) o Ky (0 + &), and let Kj11 € M(Pyi1, X)
be defined by

Ken(Ug):i= Y x(X,U)exp{— > Hk(B,w)}/ K (X, 9,8) dpr+1(8)
XeP,(U) BeBL(U\X) x
(3.29)
for any connected U € P’, with

{BeBy(X): BF=U}| .
MXUVZ{ T 9 € S,
HU:Y ZfX c Pk(AN) \Sk(AN),

and by the corresponding product over connected components for any non-connected U.
Then Kiy1 € M (Prs1, X), it factors, and

Ry 1(e M o Ky)(An, ) = (e 41 0 Kyiq) (Aw, ).

3.6 AUXILIARY RESULTS

The purpose of this section is to give some technical lemmas (without proof), that will
be used in the sequel.
Proposition 3.6.1. Suppose that

IDYDYF (2, y) (&, ey s )lls < Crll& ] Syallglls

foralll1<k+1<m. Let H: X XY — X be defined by H(z,y) = G(F(x,y),y). Then
there exists a constant C3 such that

forall1<k+1<m.

Proof. A proof of the above claim can be found in [2]. O
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3.6 Auxiliary Results

Proposition 3.6.2 (Implicit Function Theorem with loss of regularity). Letr € N,r > 9
be fized and let 2 be a Banach space with a norm ||| and {X s}s=rr—2,—4,r—6, a Sequence
of Banach spaces with norms || « || x, such that X5 C Xs_9 (and ||z|x, > |x||x, , for
eachx € X;), s=r,r—2,7r—4 . Further, let F: Bg(p1) X Bx,(p2) CEx X, = X, be
a C3 map such that F(0,0) = 0, and suppose that, with positive constants Cy, Cp; < o0,
and v € (0,1/2), the following bounds are valid for each £ € Bz(p1) and € Bx (p2):

H OF (&, x)
ox

<1-
:c:OHL(XS,XS) - ™

and

Ha”jF(f,w
0EdIx
fors =mr,r—2,r—4,r—6, £ =0,1,...,min(3, |s/2|) and j = 0,1,2,3. Then there

exists p > 0 and a unique f: B=(p) — X, so that

F(& £(8)=f(&).
Moreover, f € C'(Bz(p), Xr-2) N C*(Bz(p), X,—4) N C*(Bz(p), Xr—¢) and

IDF(E€)(E)llx,— < ClE|

Ernbomn@)| < Cyllélel,

s—20

and

ID2£ ()& E)llx,—. < ClEN?

with a constant C depending only on the constants v, Co, and Cy ;.

Proof. The proof of the above claim can be found in [2]. O

Proposition 3.6.3 (Evaluation of the boundary terms). There exist a constant ¢ < 3v/2
such that for any v: Z — R and any m € N, m > 1, one has

m

_2m+1 Z +c2m+1 Zav

= r=—m

v(—m)? 4+ v(m + 1)?

Proof. The proof is contained in [2]. O

Proposition 3.6.4. Let X € Py and u : Uy(X) — R. With the constant ¢ from
Proposition 3.6.3,

(a) I* S peox IVo(@)? < 26( Lpex V0@ + L ¥y, (x) [V20(@)),
(0) I Feox V20(@)2 < 26( 13 e [V20(@)2 + L% 3y, ) | V30(2) ), and
(¢) I Seox [V30(@)2 < 26( L% X [V30(@) P + L 5, ) IV 0 (@) )

Proof. The proof is contained in [2].
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3 Strict convexity of the surface tension

Proposition 3.6.5. Let u,v : X UJX — R and X € P,. With the constant ¢ from
Proposition 3.6.3 and any n > 0, we get

n(1+cd L* cn
) Vu(2)Vo(z)] < (2L%> > @)+ o > Vul@)P + 5 > Vo))
zeX reXUO~—X N r€d— X zeX

LQk
+ = S V)
reXUO—X
(3.30)

3.7 PROPERTIES OF THE RENORMALIZATION TRANSFORMATION

As in [2], we introduce the maps
T: M()(Bk,)() X M(Pk,)(> X & — Mg(8k+1,X) X M(Pk+1,X),

k= 07 17 .- '7N - 17 by Tk'(Hk7Kk'7q) = (Hk+17Kk+1)'
For any g, the origin (H, K) = (0,0) is a fixed point of the transformation T'.
The parameters L, h, A in the definition of the norms will be chosen later. Let Us C
My(B,X) x M(P,X) x € be defined by
Us .= {(H,K,q) € My(B,X) x M(P,X) xE: ||Hl|o <0, | K| <9,lql <},

and

Os :=={(H'",K') € My(B, X) x M'(P, X): [|[H'|o < 6, | K[|, <0}

For a linear operator L between Banach spaces, we denote by || L|| the standard in-
duced norm. The corresponding norms will be indicated as ||L||; k1,0, or simply
|L||;.0(whenever it is clear from the context), for a linear mapping L : M(P,X) —
My(B, X).

In the following, we extend [2, Proposition 4.3].

Proposition 3.7.1 (Linearization of T'). Given the constants h, L, and sufficiently
large A, there exist 6 > 0 such that T'(Us) C Os and T is differentiable on Us. The first
derwatives at H =0 and K = 0 have a triangular form,

. AD B@\ /g
with

d
(ADI)B¢)= Y [HBp)+ Y Y Vidij@ViGd @ o), (331)
BeB(B’) z€Bi,j=1

BIRB.e) =~ ¥ 1Y ([ Kxergauli©). 632
)

BeB(B’ XeS
XDOB
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3.7 Properties of the Renormalization Transformation

and

YDOB
' (3.33)
+Z(/mxw@w&@
xepo\s’ ¥
X=U

Moreover, there exist constants 6 € (0,1) and M < oo such that the following bounds
on the norms of operators AD B@ and CD hold independently on N and k and for
lqll <o:

-1
IC@ 1 < 6, ] A D o0 <

1
7 (3.34)
r=1,...,r9. The operators A9 B and CD are 3-times differentiable with respect
to q and there exists a constant C < oo such that

|04 AD H]lg < Cll o, [0LBD Ko < CIK s, |0LCDK]|y—o0 < CIK e (3.35)
for any £ =1,2,3 and any r > 24.

Proof. The bounds in (3.34) and (3.35) are very involved and will be the main purpose
of § 3.9. Here, we only show the validity of the linearization formula, namely the validity
of (3.31), (3.32) and (3.33). Starting from (3.27) and (3.28), one expands the linear and
quadratic terms in H(B, ¢ + &) into the sum of the terms depending on ¢, £, and the
term proportional to Q(y,£). Given that the integral of the terms linear in ¢ vanishes,
one has that

| S @) 956 a6) = 30 dutlo+ o +)) + diy@@)éla)

z€B 1,] z€B 1,]

=2 dig@)é(e + ei)é(x) — di(2)é(x + ¢)é ()

zEB 4,j

=YY dij(Clz+eiz+e;)—Clz+e,n)— (Cla,z) — Cla,z +¢)))

zeB 1,j
=YY di;VIIVD*C(a, ),

z€B 1,

where V() and V@ denotes the derivative on the first variable and on the second
variable, respectively.

The formula (3.32) follows directly from the linearization of the second term on the right
hand side of (3.28). When computing C'9, we first observe that only linear terms in K
can contribute. Taking H = 0 and

H(B, ) = —IIT, Z RK (X, )

XGS
XDOB
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3 Strict convexity of the surface tension
and K (¢, &) = (1- e_H(@)) o K(¢ + &), one has that
cl) = SoA0) [ DROEIY0.6) s ()

/ DE(0)(K)(X. ¢,€) dppss (€).

Denoting by

and noticing that
DK(0)(K)(B,¢,€) = K(B, ¢+ &) — De " O(K)(B,p) for Y = B,

DE(0)(K)(Y,¢,6) = K(Y,p+¢) for Y # B,

and
De "ONK) (B, ) =TT, ) % (RK)( ©),
e
YOB
one obtains (3.33). ]

Given the linear dependence of T in H, one has that
T(H,K,q) = (A9H + BYK S(H,K,q)), (3.36)

with DS(0,0,q)(K) = CDK. Given that (0,0) is a fixed point for each g, namely
T(0,0,q) = (0,0), we have that

aT(0,0,q)
el St e V|
dq
and thus
05(0,0.9) _,
0q -

In order to apply the fixed point theorem, one needs to understand the smoothness of
the nonlinear part S. The proof of the following Proposition, will be given in § 3.9 and
is an extension of [2, Proposition 4.4].

Proposition 3.7.2 (Smoothness of expanding part S). Under the conditions of Propo-
sition 3.7.1 and for any (H, K, q) € Us, we have

oltiitiz g

|t e s, < CUEIRIEIZa).

r—20

Herer =1,...,r9 and £ < 2r.
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3.8 Fine tuning of the initial conditions

3.8 FINE TUNING OF THE INITIAL CONDITIONS

As in [2], we are going to choose g € £ such that the final Ideal Hamiltonian Hpy 1
vanishes.

We introduce the Banach spaces
Z,={Z = (Ho,H1,K1,...,Hv_1,Kn_1,KN): Hy € Mo(B, X), Kj, € M (P, X)}

endowed with the norms

1 «
Z = max —I|H V. max —||K
12] 2. re @y [ Hll,0 pe X R [prenipes
for r =1,...,r9 and with suitable parameters n € (0,1) and « > 1 to be chosen later.

As in [2], the terms Ky and Hpy are not present in Z € Z,, as the latter is set to be 0
and the former is singled out as an initial condition for a separate treatment.

Let us define the map

T:YXEXZ, — Z,

T(K7 q? Z) = 7?

where Z is given by

Hy, = AN (Hps1 — BiKy),
Kpy1 = CrKy + gry1(Hy, Ki),

where gg+1(Hy, Ki) := S(Hy, Ky, q) — C K}, is the nonlinear part of the map S and
k=0,...,N —1, with initial Hy = 0 and Kj given by

d
Ko(X, ) == K'7(X,q) := eXp{% > qi,j(w)VM(w)VﬂP(w)}K(X, ).
zeX i,j=1

Given K and g, then the 2N-tuple Z is a fixed point of T, namely it holds

~ ~

T(K,q,Z(K,q)) = Z(K,q). (3.37)

Theorem 3.8.1. Let the constants h, L, A, and § be chosen so that the Propositions 3.7.1
and Proposition 3.7.2 are valid. Then, there exist constants o and n determining the norm
on Z, and a constant p > 0 so that there exists a unique C>-function 7 Byxs(p) = Z,
solving the equation (3.37) with bounds on derivatives that are uniform in N.

The proof of the above statement will be given in § 3.9.
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3 Strict convexity of the surface tension

3.9 PROOFS

In the following lemma, we extend [2, Lemma 5.1].

Lemma 3.9.1. Let w > 1+ 182, N e N, N > 1, and L € N odd, L > 3. Given

ke{0,...,N —1}, let K € M(Py,X), and let F € M(By,X). Then, the norms || -

16X 1 Nk, € {1,y mo}, and |||y x, X € Py, satisfy the following conditions:
(1) 1KX)exr < Tyeco) KOk

(iia) | F*¥ KV )llkxover < e, IF MK ) ey,

(iib) |FXK(Y)kni1,x0vr < Hpes, o) WE MK O lknsr,y,r for XY € Py, disjoint,

(i) VBl =1 for B € B,

(iv) There exist a constant hg = ho(d,w) depending only on the dimension d and value
of the parameter w, such that for any h > L)/ 2h and X € Py, we have

I(Rps 1 ) (X) ek, x,r < 2500 K (X)), x0-

Proof. (i) For every Fy, Fy € M(Py, X) and X1, X2 € Py (not necessarily disjoint), we
have that

|FL(X1) () Fa(Xa) (0) |14 < | Fy (X0) ()]0 | o (Xa) () P2 (3.38)

Indeed, let us remind the discrete product rule

Vi(fg) = VifSig+Si fVig,
where
(Si f)(2) = 3.f(2) + 5 f(z +ei).
The operations S; commute with all discrete derivatives. Using multiindex notation

d d
Ve = HV;“ and S®:= l_ISf”7
=1

i=1
we get the Leibniz rule
V(fg)= Y cap(S*VPf)(SPVy),
a+B=y
with suitable constants cq g. Hence,

va(Fl(le SD)F(X% 90)) = Z 071,’72(571 V,YQF(X7 90))(572 V’72F2(X7 90))
Y1+y2=a

Moreover, given that the Taylor series of the product is the product of the Taylor series,
one has that

|F1L(X1) () Fa(Xa) (i) |15 < Z | SV, Fy(X1) ()| X19X2 972 72 By (X ) () | P W2

M+v2=>8
< < Z |V71F1(X1)(90)|k7X1UX2’T> < Z |V’72F2(X2)((p)|k,X1uX2,r>'
n<p 72<B

(3.39)
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3.9 Proofs

Given that for any ¢ € Xy, one has that [¢], v, < |4, x,0x,, then

sup  [D*F1(X1)(@) (@, @) < sup [DPFI(X1)(9) (@, 9)]
121k, x,0x, <1 @k, x, <1

Hence, given that wjl (1) = wiX () for every ¢, one has that

|F1(X1)(<p)|k’X1UX2’T < |F1(X1)(Sp)|k’X1:7'

and similarly for Fb, thus (3.38).
Iterating (3.38), we can use it for K (X, ¢) = [[ycc(x) K(Y)(¢), hence

KX, )" < I 1E@) (@)
YeC(X)

To conclude, it suffices to observe that

- 11 W

YeC(X

In the above formula, we use the fact that the partition X = Uy¢e(x)Y splits both X
and its boundary 90X into disjoint components Y1,Ys € C(X), Y7 # Y, implies that
dist(Y1,Y2) > L* and thus Y1 NY; = @, Y1 N 0Y2 = &, and 9X = Uyec(x)0Y .

(iia) Using (iterated) (3.38) for [[pep, (x) F(B)(¢)K(Y)(p) , we have

E,XUY,r

|(FYE(Y))(9)] < II 1F®B @K (e)

BGBk(X)

The right hand side in the above formula can be bounded by

II IE®B)slE Y II Wi (e).

BeB(X) BeB(X)

Thus, in order to conclude the proof of (ii), it is enough to verify that

[T Wlew! (o) <wi(e). (3.40)
BeB(X)

Using the definitions of the strong and weak functions, we have that (3.40) is satisfied if

L 3 Grale) < (2"Mwgrale) + (@ —1)Gra(0)) + LF Y Gralp). (341)

z€edY zeX z€J(XUY)

Indeed, it suffices to notice that each y € 9Y \ (X UY) is necessarily contained in 0B
for some B € Bi(X) (a block on the boundary of X touching Y'). Thus, it suffices to
show that for each such B one has

LF Y Grale) ) (2%gkale) + (w — 1)Gra(p)).- (3.42)

z€OB r€B
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3 Strict convexity of the surface tension

Applying Proposition 3.6.4 (a), we have

h2Lk Z ka((p) < QC(Z |V§0(1¢)|2+L2k Z ‘VZ +Lk Z ZL(QS 2k|vs

r€dB zeB z€U1(B) rx€0B s=2
< h*2c Z Gr(p) + h?2cLF Z 9.2 ()
reB z€0B

where z is any point z € B. Given that the size of the set OB is at most (L* + 2)¢
(LF —2)? < 2¢L(@=Dk onee 2 < L, one gets the desired bound once

2ce<w—1.
Given that ¢ < 3v/2, the above condition is satisfied with the choice of w.
(iib) The proof is similar, with (3.41) replaced by
BLE Y Gral(9) < ) (2% = Dgrksra(9) + (@ = DGralp)) +3L5 D Gralp)

z€dY rxeX z€d(XUY)
(3.43)
that, in its turn, needs (3.42) in a slightly stronger version,

BLE Y Grale) <) (2% — Dgktra(9) + (w = 1)Gra(p))-
r€0B zeB

The above is true whenever
6c<w—1.

The claim (iii) follows immediately from the definition.

()

(iv) The integration and the differentiation implicitly contained in the norm ||(Ry41K)(X)||k:k+1,xr

can be interchanged. Namely, recalling the definition (3.19), we have

(0% S k le (0% S
VoD [ Ko+ 9@ < [ 19D+ O dps(6)
It follows directly from the definition that

. _4a, .
@l x < L7210l xo (3.44)

we get
IVOD K (X, o + &) < |VOD*K(X, o + )],

(For s = 0 this is trivial since [VOK (X, ¢ + )| = [V*K (X, ¢ + €)| actually does not
depend on k.) Thus,

(R4 K) (X) k1, < sup / IVOK(X, ¢+ &))" wi, | (0) dpges (6).
laj<3 ¥

Evaluating now the integrand | K (X, ¢ + &)|"*" above by || K (X)||x.x,wi (¢ + €), the
proof of the needed bound amounts to showing that

/X Wi (o1 &) duras (6) < 2¥ w1 (). (3.45)
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3.9 Proofs

To conclude it is enough to apply Lemma 3.9.2
O

The next lemma is contained in [2, Lemma 5.2].

Lemma 3.9.2 ([2, Lemma 5.2]). Let w > 1+ 6v/2. There exist a constant hg = ho(d,w)
such that for any N > 1, L odd, L > 5, h > LWHd)/2p, | ¢ {0,...,N — 1},
K € M(Py, X), and any X € Py, we have

/X Wl (4 &) dpui (€) < ¥kl 1 (). (3.46)

Proof. We follow the original proof and prove the bound (3.46) in three steps:

(1) Expanding the terms (V(z) + VE(2))? in Y-, ¢ y Gra(p + &) and using the Cauchy’s
inequality (a + b)? < 2a? + 2b? for the remaining terms (those that are preceded by
a power in L that allows to absorb the resulting pre-factors while passing to the next
scale), we have

Y Grale+6) <Y (Vo) + [VE@)2) +2| S V()
reX zeX rzeX
—i—QZ(sz’VZ ( )’ +L2k’v2§ )‘ +L4k‘v3 ( )‘2+L4k‘vgf($)’2>.

zeX
(3.47)

The other terms in w?(g& + &), can be estimated by

Ire(P +&) < 20k2(0) + 20k,2(8)
and

LEGr (o +€) < 2LFGy 1 () + 2LFGr 1 (9).

(2) In view of Proposition 3.6.5, we bound the mixed term 2|} . V(z)VE(z)| by

Y Vel Y Vet ot e e Y Ve@)P

reXUO~ X r€0~X reEXUO~ X zeX
(3.48)

The sum over X in the first term above will be estimated by the regulator gy.x+1.2(¢) of
the next generation. Namely, combining, for any x € X, its terms with the corresponding
-terms on the second line in (3.47), we have

3L2k‘v2@(x)‘2 + 2L4klv390($)‘2 < 3L_2L2(k+1)‘v2(p(1‘)’2 + 2L_4L4(k+1)]V3<p(x)\2
< 3L_2h2.gk‘:k:+l,x(90)7

where we are assuming that
2L72 < 3. (3.49)

The remaining sum over 0~ X \ X, together with the second term in (3.48), will be
absorbed into the sum )5y G (). Collecting now all the o-terms in logwy (¢ + &)
with expanded mixed term, we get

> 2 wgr (@) + Y wGha(p) + 3wl grar1a(p) +3LF Y Graly)

zeX zeX zeX r€0X
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3 Strict convexity of the surface tension

This is bounded by

log wig1(9) = > (2% = Dgrarr12(9) + wGra(9)) +3LF Y~ Gralep)
reX z€0X

once
(3+ 2% hw < (24w — 1) L2 (3.50)
This condition, including also (3.49), are satisfied once L > 5.

Turning now to the &-terms in h? logwy, (¢ + &) with expanded mixed term, we get the
bound

2 2
D 2 wge (9 + > w((1+ )| VE@)? + 2LV (x)|” + 2L |VP¢(2)[7)
rxeX zeX

twl+ed)L™ N f@)?+2L8 Y BAGh.(9).

reXUO~ X z€0X

Bounding the last term with the help of Proposition 3.6.4, one gets

>R lwg (O + ) (w(l 4 ed)LE(r)? + (w(l + ) + 40)| V()]

zeX €U (X)
+ (2w + 8e) LV () + (2w + 8¢) L¥| V3¢ (2)]* + 4eL¥ Ve (2)]?).

Finally, the term g ,(£) containing [.-norm of V*¢, s = 2, 3,4, is bounded with the
help of the Sobolev inequality from Proposition 2.6.1. Taking B* for the B, with
n = (241 — 1)LF, one gets

I8l ) < CP" ~ LdeL“Zwlw?(x),

xeB*

where M = L%J is the integer value of d+2 and in computing the pre-factor we took

into account that 2| %42 | — d < 2. Notice that the constant C' depends (also through M)
only on the dimension d. Thus, we have that

4
Z h22d+lwgk,$(§) S 2d+1w Z ZL(2S—2)kc2(2d+1 Lkd ZL2lk Z |v vs€|

zeX zeX 5=2 yeB}

M+4
S 2d+1w2d+102(2d+1 d+23L 2k Z L21k Z ‘vl§|
yeX*

where in the last inequality we took into account that each point y € X* may occur in
B for at most (297! — 1)4L% points x € X.
Thus we have shown that, if one supposes (3.49), (3.50), then it holds

M+4

| /X i (P dma (O] < Wi (9) /X o (h ‘oo Y Y v )I2) g (€)

zeX* =0
(3.51)
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with the constant
C = max{w(l + cd),w(l + ¢) + 4¢, 2(w + 8¢) + 3241?24+ — 1)d+2}

that depends on w is chosen and the dimension d.

(3) What remains is to bound the Gaussian integral in (3.51) by 2XI. Let nx- be a
cut-off function such that spt nx- C (X*)*,nx~ =1 on X*, and

< OL .

|V
Then the integral in (3.51) is bounded by

/ exp (5 (86 ) Ay (©),
XN

where » = 2Ch~2 and

M+4

1 2
(B, = 135 D D L Iix-(@)(V')()]” (3.52)
zeAy =0
Thus,
M+4
By =B+ > B
=1
with

1

i} 1
L2k (VO n%-Vi, 1=1,...,M +4, and B¢ = — I (n%.£),

B¢ = 1,2k
where IT: YV — Xy is the projection (I[T¢)(x) = p(z) — ﬁ > yeny PY)-

A formal Gaussian calculation with respect to the measure py; with the covariance
operator 641 yields

1 1o\ —2
- 67, 860, )

1 det(G ) — 2B\ -E
[, o (A ) dne©) = ( oty ) e

1 1
In order to justify the above formula, one derives a bound on the spectrum o (%’ 1%’ ;)-

The next lemma is contained in [2].

Lemma 3.9.3 (2, Lemma 5.3]).

1 1
(i) The operators Gl B, are symmetric and positive definite.

There exist constants My and My that depend only on the dimension d such that for any
N and any k=1,..., N,

1 1
(ii) sup o (62 BuE2,) < MoL1D and

1 1
(iii) Te(%2, 5162, ) < MiIX[RL7.
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3 Strict convexity of the surface tension

Postponing momentarily the proof of the Lemma, we observe that for s < W
1
the eigenvalues \;, j =1,... ,LNd 1 of %%k+1<@k‘5k2+1 lie between 0 and % The formal

Gaussian calculation is thus justified and
1 1
log det (1d — %%M%kfggﬂ) > Z log(1 — A;) > Z —oN; = —m(%fgkﬂﬁk%gﬂ)

> 2M1L77 )t X |, = —AC M L"Dh 72| X | .

Hence
1 \—3 _ A0MXy
det (1d HCE PG, ) Te e (3.53)
and the Lemma 3.9.2 follows with ho(d,w)? = 4C max (Mo, My 1°g2). O

3.9.1 SMOOTHNESS

Let us now proceed by proving Proposition 3.7.2, which asserts the smoothness of the
renormalization map

S: My(B,X) x M(P¢, X) x REXd — M((P)°, X).

sym

To simplify notation, we denote by B = By, P = Py, and P’ = Py, 1 where k fixed. Let
us recall the explicit formula (3.29) for K11 = K,

KU = Y (X0 () / (F(9) 0 Lip + ) (X) dugpa (€)
XeP(U) X
Withff:e’g7 J=1-1, L=(-1)oK,and I =e ¥

As in [2], we split the map S into a composition of a series of maps and prove the
smoothness of each of them. Namely,

Sot (M(B, &), [l l,) x (M(B. ), [[ll,) x (M(P, ), || - [I3)1.,) = M), 2,11 - 1§17,
E : (Mo(B, &), || - [lr0) = (M(B, ), Il
Sus (M(PS,2), || 52)) % &1 1) = (P, ), |- 151
Sot (Mo(B, ), || r0) % (M(PS, ), ||+ |\2) % (&, |) = (Mo(B, &), ||  [Ir0). and
Syt (M(B, ), |Ill) x (M(P<, ), || - |I5)) = (M (Pe, 2. 1| |11)
which are defined by
So(I, L) (U, 0) = > x(X1 U Xy, U)IVNEX) () X (0) L (X, ),

X1,X9€P(U)
X|NXo=2

E(H) = exp{~H} =1,

SULa)(X.0) = (ROD(X.9) = [ LXpr Q@)X e, (@350
S2(H, K, q)(B,¢) = T3 (RVH)(B,¢) — Y q(ROK)(X,¢)), and
XeS
XDB

S3(I,K) = (I -1)oK.
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Hence,

S(H,K,q) = So(E(S2(H,K,q)),1— E(S2(H,K,q)),S1(S3(E(H),K),q)).

In the next subsections, we will show that all maps considered are smooth and that they
satisfy certain bounds, hence showing that the map S is smooth.

In the next proposition, we extend [2, Proposition 5.6].

Proposition 3.9.4. Let S;: M(P°,X) xE — M((P)¢, X) be the map defined in (3.54),
restricted to By, x B,,. Then, there exist a constant hg = ho(d,w) depending only on
the dimension d and value of the parameter w, such that for any h > LWT1@)/2p and
X € Py, one has that

A/2 d A
IS1 L@l < 22 1L)Y.

Moreover,

j ; ;. -\ 1A/2 -
| DL DS (Ly@) (Lo, Loty @)y o < CIEP NGl forr =170 and

for all (L,q) € By, x B,,.

Proof. The first part of the statement and the smoothness with respect to K are
immediate consequences of the definitions and Lemma 3.9.1. Thus, we will only show
the smoothness with respect to q. Fix X and . With simple calculations, one has that

051 (K.a)limo = 5 | TH[DEK(X,0+€) 0,00, (@)] an?(9)

where the symbol Tr is used to denote the usual trace operator. Using the finite range
decomposition, one has that [|9,CY (g < CLD|q].

Moreover, it is immediate to notice that [V*DSK (X, ¢ 4 &)[F* < VDK (X, ¢ +
€)|FX, thus
X,r—2

110gS1(K, @) (X)|[kstr1.xr2 < sup /
lolp,x<1JX

hence the right hand side of the previous formula can be estimated from above by

kXr
ertr=1) [ Ko LR < K ol [ e+ Qi (o)X i)

< Cr(r—1)2X kL1 /p2|| K

Ik, x -

From which we get the bound on the first derivative.

For the second and the third derivative, the calculations are similar. ]

In the next lemma, we extend [2, Lemma 5.7].
Lemma 3.9.5. The linear map F(B,-) — IITy2F(B,-) is bounded, i.e., there exists
C > 0 so that for any F € M*(B,X) one has

N2 F(B)lko < C||[F(B)|lk,5-
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3 Strict convexity of the surface tension

Proof. Let F € M*(B,X) and let H(B,y) = UTLF(B,p) = H(B,0) + £(¢) + Q(¢).
Then
L™\ = |H(B,0)| = |F(B,0)| < |F(B)|k,5.

Let ¢ be affine on (B*)* (x-neighbourhood of B*), i.e

d
$=> nimi,
i=1

where ) = (1;)i=1,..4 € R?, and m; is the coordinate projection 7;(z) = x; for x € Z4.
Then V;¢ = n; and V¥p = 0 on B* if |a] > 2.

Hence by the definition of the norms and the definition of the “projection” operator, one
has that,

z,i,k,B | .
|90|k,B|77z'|

d
' dust@mn =[S DFE.0 00| < 3 M2 R(B.0)

4,j=1 =1 %

1
_ §|D2F(B,O)|k’3h_2 ' max }|m12Ldk.

1€ 17"'7

This implies

1
hg‘z,] 1 73( )77177]‘ *|D2F(370)|k’3
i max;eqy . ay nil® T 2

thus

d—I— dd+1)1 k,B
W’ Z |dij| < 5| D?F(B,0)]
i,7=1

In a similar way, one has that

d
L% 3 aimi = (g) = DF(B,0)(9) < [DF(B,0)[**h~" max_||L%,

geeey

thus

d
hL's Y |a;| < |IDF(B,0)|"P,
i=1
which proves the desired claim. O

In the next lemma, we extend [2, Lemma 5.8].
Lemma 3.9.6. There exists 0 > 0 such that the mapping Sa is smooth in

Us = {(H, K, q) € Mo(B,X) x M(P,X) x & |H|lxo < 0, IK]|{}) <9, llalls <o}

uniformly in k =1,..., N and the derivatives up the order 3 are uniformly bounded in
Us i.e.,

||D3{D%(DEISZ(H7 s 7H’Ka oo 7K,q7 s 7Q)||k,0,B S ﬁLn(d)(;HHH.]i,O’B||K|"]7g7quH£9

gk, 1 €{1,2,3} withj+k+1=3 andr > 20+ 3.
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Proof. Given that the map S9 is linear in H and K it is immediate to notice that
D?%.Sy =0, D%.Sy =0 and Dy Dk S2(H, K, q) = 0.

Let us define

R(B,p):= Y );yk/)(K(X"ﬁ@d“Z(@

XeS,,XDOB

From the definitions one has that

1 .
DAX0 = 3 oo [ DoKX+ 9] ,y() aut(©)
XesSp xoB Ik JX
1 -
D2R(X,00= Y X\/DiK(X,soJrf)\wO(so,sO)du"(f),
Xesp,xoB Ik JX
and
1 .
IYIVIDR0) = Y [ IYIID R (e )] () ).
XeS,,xoB Ik
1 -
LNPIVEDRR(X,00= Y / LYV DK (X, 0+ €)] o (&, ) du? ().
XS, X [ Xk J 2 7
1, X DB

Let us estimate only the second term. The first one follows in a similar fashion. For
every ¢ such that |¢|; x < 1, one has that

1 kXr 1 .
i‘Di 780‘1‘5)’ Si Z |k/ | K| dud(€)
1
2

XeS,, XD

XM

/r xS (€) dpid (€).

Xe

Recall that [, wi (€) dp?(€) < 21Xlk and that | {X € S, : X D B}| < (3¢—1)2". Hence
it is enough to use Lemma 3.9.5 to obtain the desired result.

Let us now turn to the estimates with respect to q. Let
F(B.9) = [ F(Bo+9) dut(c)

where the map t +— q(t) € £ is a C3.

We need estimate

|| HT2F(B)||1¢,0, 1=1,2,3

dt’

Due to similarity in the calculations, we will estimate only the first derivative.

d 1
S [ FBerout@| =3 [ (MDEFE.e+ 9c) auie)

t=0
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3 Strict convexity of the surface tension

Finally, using the Finite Range Decomposition property (cf. Theorem 2.3.1), one has
that

L C .
| DT (B)(@)(@ -, @)lko < 55 L7 F(B)

whenever r > 2] 4 3 and [ < 3 uniformly for ||g|ls < 1/2.

The following lemma is a contained in [2, Proposition 5.8].
Lemma 3.9.7 ([2, Proposition 5.8]). Consider the map

So: M(B,X) x M(B,X) x M(P,X) — M((P)¢, X)

defined in (3.54), restricted to By, (1) x By, x By, C M(B,X) x M(B,X) x M(P¢, X)
with the balls B,, and B,, defined in terms of norms |||-|||, and || - H,(;QH ., and the target

space M((P')¢, X) equipped with the norm || - H,(ﬁl - For any A>3 and p1, p2 such that
p1 < %A_l, and pa < %A_2d,

the map Sp is smooth and, for any ji,jo,j3 € N, j1, jo, j3 < ro, satisfies the bound

L Ss s (A
777H DI DI DI Sy(T, T, L)( ,I,J,...,J,L,...,L)H <
Jl J2 JS k+1r

< AV (A% ) 2| I I DI e (3.55)
1 1 1 A3 )
| PEDEDE S LK) < AP (A PP T R

Proof. Pick U € P;;_;. Then

IS [U\(X1UX5) 1X1|,, ~ C(X3) 4od _
1oL LD (W llksrwr < S X U X, O 70 (1 ) €O 221600 g1

X1,X9€P(U)

X10X2=Z

1, _\x =
< Y XU DN A T T s,y
X1,X9€P(U) YeC(X2)
X1NXo=2

<oVl N (0 U X, 0)2 Pl g X=Xl olUli (4, ).

X1,X0€P(U)

X1NXo=0
Thus
1So(Z, T, DI, = sup 2VW|ISo(T, T, D)(U) k1,05 ass(U)
k+1
3.56
< sup Q(Ld+1)\U|k+1(é)'mk-ﬂk(A’U)_ ( )
Uers,, 3

For any ¢ > 1 we have lim _,o 2L+ DIUlk+1 (%)(I_C”Ulk+1 = 0, and by an adaption of

[10, Lemma 6.17] we get the claim, i.e. lima_q ||So(Z, J, E)Hg:_/ffr =0.
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3.9 Proofs

1 1 1 i SO

—— = DI DD T L)), . I J,.... J.L,...,L) =

J1! ja! 3!

= Y x(XiUXx,,U) > AR (O (e T
X1, X2€P(U) Y1€P(U\(X1UX2)),|Y1|=51 ZeC(X2)\T
X1NXz=2 Y2€P(X1),|Ya|=32

JCC(X2),| T =73

Applying Lemma 3.9.1 (iia) and (i) as well as the obvious bounds (3.21) and x(X; U
Xo,U) <1, we get

1 1 1 ;. X L -
777“ DI DI DI Sy (T, JL)(U)(I,...,I,J,...,J,L,...,L)Hk L S
1-J2-J3 + r
< 3D (ROl () el gy Fy g R 5
X)l(,XQXEP(U)
1NXo=02
~ _
< (I, e L, 2 T Ta@) ™ (3.58)
ZeC(X2)
Hence,
1 1 1 S o PO S
TTTH DI DI DI So(T, T, L) (U)(T,. ..,I,J,...,J,L,...,L)Hk <
1-J2-J3 +1,U,r
. . . 7 d . -
< 3lUL 4=1U, A\ T A \i2 2 A? BT s
=3 () H‘k(l—Amek) 171 (1—A2d||LH£‘?‘,2+1,T) (el )
(3.59)
which proves the desired claim. O

3.9.2 CONTRACTION

Here we prove the contraction property from Proposition 3.7.1.

We need to show that the following holds:

Lemma 3.9.8. Let 0 < 1 and w > 2(d?224*1 +1). There exist constants hg = ho(d,w),

Ly = Lo(d,w), and Ay = Ao(d,w) such that

ICD), = sup [COK]s1, <06.

K‘Ik,rsl

for any ||lq|le < %, any k =1,....N, r =1,...,19, and any L > Lo, A > Ay and
d+n(d)

h>L ho.

Proof. The proof will be divided in several lemmas. In Lemma 3.9.10, we will estimate
the first term on the right had side of (3.33), and in Lemma 3.9.9, we will estimate the
last term on the right had side of (3.33). O
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3 Strict convexity of the surface tension

The next lemma is a generalization of [2, Lemma 5.11].
Lemma 3.9.9. Let L > 29+ 1 and w > 18V2 + 1. There exist a constant hy =
ho(d,w) and a function €4 : Ry — Ry depending only on the dimension d such that
limg 00 e4(A) =0 and

[F Nkt < €a(A)K g,
for any K € M (Py,X) and any h > hg. Here, the function F' € M (Pyy1,X) is defined
by

- ¥ / K(X, 0+ &) dugs (€).

XEPC\Sk
X=U

Proof. For any X C U, because of (3.20), we have that
sup | (R KX, )7 0y < sup [(Renn )X, @™ gy (3:60)
©

Indeed, by noticing that

[(Rye1 )X, )07 < Ry ) (X, )
and that
one has that

Z ((de — D) gkkt1,0(0) + wGr () + 3L Z G (#)

zeX r€0X

<Y w(2gh12(9) + Grrra(9) + LMY Grira(e). (3.61)
zeU xcoU

Where in the above formula we have used that gr.it12(¢) < grt1.2(9), Gra(e) <
Gr+12(p), and that any x € 0X \ OU is necessarily contained in 0B for some B €
By (U \ X). For each such B one has that

3Lk Z Gk,x(@) S Z w(2d9k+1,x(§0) + GkJrl,m(SO))
r€dB reB
whenever w > 6¢ + 1.

Combining (3.60) with the bound from Lemma 3.9.1 (iv), one has that

P aAO)IFO) k1,00 <

<AV ST KX e < Kl sup {aMee 3T ()7

XEP\S, YePin XEPI\S,
X=U X=Y
(3.62)

To conclude it is enough to use [10, Lemma 6.18], which asserts that, whenever L > 2¢+1,

one has that
i swp {4Vl 3 (4)¥k) o

k+1 XePi\Sy
X=Y
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3.9 Proofs

The following lemma is contained [2, Lemma 5.13].
Lemma 3.9.10. Let L > 7, w > 2(d?22#1 £ 1), h > hy (with hg = ho(w,d) from
Lemma 3.9.1(iv)), and K € M(Py, X) with G € M (Pyy1,X) defined by

1
GUp) = Y (1-1T) Y W(Rk—HK)(Xv ).
BeBL(U) XeSy, k
BF=U XDOB
Then ] . . .
1Glpg1,r <2902 (3% — 1)* (5072 + 2973022 4 9L7Y) || K |5, (3.63)

Proof. 1t is not difficult to see that the sum vanishes U ¢ Si.1. Thus, the norms in (3.63)

contain only the contributions of small sets and do not depend on A according to the defi-

nition of the factor I'j 4(X), j = k, k+1. Defining R(B, ¢) := 3" xes, 1z (Bi1K)(X, 9)
XDB

and replacing 1 — IIT, by (1 — T3) + (Tp — IIT3), we trivially have
G1(U,p) == Z (1 -T3)R(B,¢),

BB, (U)
B*=U

Go(U,p):= Y (T —TTy)R(B, ), (3.64)
BEBy(U)
B*=U

and G(Uv 90) = Gl(Uv 30) + GQ(Uv (70)

We will evaluate them separately in Lemma 3.9.12 and Lemma 3.9.13.

The following proof is a generalization of [10, Lemma 6.8] and [2, Lemma 5.14].
Lemma 3.9.11. Let F € M(Py, X), X € P, r=1,...,10, and j = k,k+ 1. Then

s
|F(X,0) = ToF(X, )" < (1+ el )* Szépl)z SIDF(X t)". (3.65)
te(0,1) g—3 °*

Proof. Let us denote by f(¢) = (1-T2)F(X, ) and f. ;s 5(p) = VPDSF(X,0) (00, @y - - -, §)
for any s > 1. The terms on the left hand side of (3.65) can be rewritten via Taylor
reminders as

11 2
flp) :/0 (1275)D3F(X7 to) (., ) dt,

VEDf(p)(¢) = V° / (1 - )V D3F(X, 1) (¢, ),

1
VD f(9)(6ni) = V7 /O (1= VA D3 (X, 1) (Bus 0, ) dt,

1 . 1 o
VD (o) (6 ) = /0 D3F (X, t0) (4, . 0) dt,
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3 Strict convexity of the surface tension

and, for s > 3,
1 ) ) 1 ; )
G @)@, ) = DX, 0)(§, -, f)-

1 ) 1 , ,
;Dsf((p>(5l‘,27 790) = ;D F<X7 @)(513,17@7 790)

To conclude it is sufficient to sum the above equations and use

. . ,X | .
VD ME(X, t0) (5,1 fr 01 9] < [VED (X, 1) P[5 Lo

VD (X, 40) (s @000 )| < [VPDT (X, 10) [ [413 x lelix

as well as the fact that

3 L(1—1t)? 2 1
el | 5 dt+lelx (1—t)dt+ |¢IJX+3' (L lelx)™

The following lemma is a generalization of [2, Lemma 5.15]

Lemma 3.9.12. Let K € M(S;, X), X € Si, B € Bp(X), and U = B*. Assume also

that L > 7, w > 2(d?*2%*1 +-1), and h > hg. Then

sup | (Ri41 K)(X, ) — To(Rit ) (X, ) |70 Y () < 5L 72Xk K (X)
©

(3.66)
Moreover, one also has
d d__d
GO k1,0 < 5272737 = 1> L2 | K |, (3.67)
where G1 is defined in (3.65).
Proof. By using Lemma 3.9.11, for any ¢ € X one has that
k+1,X,
|(Ri1 K)(X, ) — To(Ries 1K) (X, ¢)| '
T
1 (3.68)
< (1 lelppr,x)® sup Z 1 D* (R K) (X, tep) |0
’ 71) —3 S
Moreover, interchanging differentiation and integration, one gets
T . .
k+1,X DK (X, tp+ s
> IDS R K)(X,to)|" " < Z *sup |t ) ( L SICIERT)
s! s! |6l
s=3 s=3 ©#£0 14 k+1,X
DSK(X,t<p+§)(gb,... ) 1@l x
j sup de+1 E ‘
3 5" ¢#0 |‘P|k,X |‘P|k+1X
<r¥ / Qi (€) [ (X, o+ €) [P,
x
(3.69)

where in the last inequality we used (3.44). Given that

K (X, b + )15 < | K (X) |k, x,wf (t +€)
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3.9 Proofs

and (3.46), one has that

r X
1 _3d Wiep41(#)
D GIP" RenK) (X )7 < 2R K (X) o 55 5wk (0), - (370)

s=3 W1

where in the above inequality, one uses fact that wy,,  (t¢) is monotone in ¢.

Bounding (1 + |g0|k+1’X)3 via

(1+u)® < 5e*’, (3.71)
it is not difficult to show that
U
w4 ()
lolp iy x < log —H—. (3.72)
LY Witk 41 (9)

Indeed, notice that

wi1 ()
—HEE > N (2% = Dgra1.2(9) + wGhr12(9) T D Grikt1,2(0)
Wik (9) 2EU\X wev

+IML=3) Y Grpaa(p) =3LF Y Graly) (3.73)
zedU 2€dX\OU

2 Z (2% — 1) grt1.2(¢) + LF(L = 3) Z Grr1,2(9)-
zeU\X xedlU

log

To verify the last inequality, we show that

3Lk Z Gk,x(go)ézgk:kﬂ,x(so)—i- Z WG t1,2(¢)

z€dX\oU xeU zeU\X

in analogy with (3.43). Indeed, arguing that any x € 0X \ 9U is contained in dB for
B € Bi(U \ X), and applying again Proposition 3.6.4 (a), we have

3
RPLF Y Grale) <20 IVo@)P+L Y [V2(@)?)+LF Y Y LK vep(a)?

x€0B z€B z€U1(B) z€0B s=2

< h?2¢ Z Gro(p) + h?2cL” Z L %geks1,2(0),  (3.74)
zeB z€0B

where z is any point z € B. Using |0B| < 2¢L4=D* we get the desired bound once
w>18y/2and L > 5 (when 6¢ < w and 6¢L72 < 1).

In view of (3.73) and using that |gp|,2€+17X < |g0|i+1’U, it suffices to show that

oo < Y (2% = Dgrsra(@) + LFL=3) 3 Grira(e). (3.75)
zeU\X xeolU

Given that,

2 k d— 2
h2|30|k+1,U < Z L( +1)(d—2+2s) gé%}i |VS§0(1,‘)|
1<s<3
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3 Strict convexity of the surface tension

and applying [10, Lemma 6.20], one has

max [V(x)|” S >~ Vo) + 2L% ) (diamU*)? max [V ()|
s Ve@)l < T 2 Ve anll”)* g V(@)

L(k+1)d

Given that [0U| > 2dL*F+D(@=1) | the first term above is covered by the second term on
the right hand side of (3.75) once L > 7,

2L(k+1)d 2L(k+1)d 1 )
_ +1 k
|oU | S Sapm@n — gb SEE=3).

Given that diam(U*) < d2?LF*!, the second term is bounded by

292041 1 (k+1)(d+2) 1o« 2

2
max [Vp(z)]

and will be treated together with the remaining terms max,cp- |Vop(x)[?, s = 2,3,
contained in |gp|i+1 U

Given that the number of (k + 1)-blocks in U is at most 2%, one has that

max [Vop(x)|? <27 Y max |Voe(x),

zeU* reB*

hence

(d222d+1L(k+1)(d+2) + L(k+1)(d+2)) max sto(x”? < Qd(d222d+1 + 1)L(k+1)(d+2)><

xcU*
X EE: 2’
xGB*’ ( ”
BeBy4+1(U)

2

and
BeBrp (U) " C

L (k1) (d+4)

max
zeU*

Each of the terms on the right hand sides of the above formula will be bounded by the
corresponding term in

4
Ry (2% = Dgeria(e) = Qw—1) Y Y LEED sup [Vip(y)*.
2€B\X 2€B\X s=2 yeB;

Indeed, given that gy1,.(p) is constant over each (k + 1)-block B C U, and the volume
of B\ X is at least LF4 (L4 — 24) = [(k+1)d(1 — (%)%)since the number of k-blocks in X
is at most 2¢, while B consists of L¢ of them, one needs

2d(d222d+1 + 1)L(l€+1)(d+2) S (2dw _ 1)L(k+1)d(1 _ (%)d)L2(k+1)

and

These conditions are satisfied if w > 2(d222¢+1 4 1),

%)d)L4(k+1).
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3.9 Proofs

Combining (3.70), (3.71), and (3.72), we have that

1

(1+ |¢|k+1,x) *l Ry K) (X, )P0 < 5L 5 2500 K () g xr w0f (),

s!
=3

for any ¢ € X and any t € (0, 1), which proves of the inequality (3.66).
To prove (3.67), one uses that |Bg(U)| < (2L)? and the obvious bound

{X €S| X > BY <3 —1)

Hence,

IGLO)ksr0y <5L75 Y Z| X1 || K (X) |ljxr <

BeBE(U) XeSy
BF=U XDB

<B5L7F(2L)4(3% — 1) K [,2% < 524230 — 1)* L8| K|, (3.76)
OJ

By using the above, we have the following which is adapted from [2, 5.16].
Lemma 3.9.13. Let K € M(S;, X), U = B*, and assume that L > 7 and w >
2(d?2?%+1 1 1). For Gy defined in (3.64) we have

d d_ _ —
|Go(U) 1,0 < 22HHF1 (37— 1)2 (2472 = 1)L2 72 4 (8L + 2072)) || K .

Proof. Given that Ga(U, ) = pes,w) (T2 —IIT2) R(B, ) with R € M* (B, X) defined
by B*=U

1

R(B7 SD) = Z 7(Rk+1K)<X7 90)7

XeSy ‘ |k
XDOB

one has that the polynomial IIToR(B, ¢) = A B| + £(¢) + Q(¢, ¢) is characterised by
taking a unique linear function £(¢) of the form (3.18), £(¢) = >, ¢ () [Z?:l a; Vip(x)+

ZZ j=1Cij Vingo(x)], Regularization by noise for transport and kinetic equations that
agrees with DR(B,0)(¢) on all quadratic functions ¢ on (B*)* and a unique quadratic
function Q(¢, ¢) of the form (3.71),

= > Zd,]vzso je(x),

CEG B* *ZJ 1

that agrees with £D%R(B,0)(¢,¢) on all affine functions ¢ on (B*)*.
Observing that

D(Rpr K)(X,0) () = /X ik (€) DE(X,€)(9)

DRy K) (X, 0) (i, 0) = /X duis1(6) DK (X, €) (1, 0),
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3 Strict convexity of the surface tension

and introducing, similarly as above,
ITyRe(B, @) = Ae| Bl + Le(p) + Qelp, ©),

the uniqueness implies that £(p) = [5 dur1(8) le(p) and Q(v, ¢) = [5 durt1(£) Qe(p, ¥).
Given that Gao(B, ) = (To — HTQ)R(B, ¢) is a polynomial of second order, we have

(G2 (B, @) = |Ga(B, )Y,

Let us initially evaluate separately the absolute value of the linear and quadratic terms
Pi(p) and Pa(p) in Ga(B, ).

Observing that for any affine function ¢ and any quadratic function 2 on (B*)* we
have Py (¢ — p1 — p2) = Pi(p), we get

|Pi(p)| = \/X dpk41(8) (DRg(Bﬂ)(sO — o1 —p2) = Lle(p — o1 — ¢2))| <

<@y Y |X, IRl ele = 1= ol [ dmera(€ui ©) <

XeSy
XDB

d d
<22 (31 = )T 2T — DK ksl — 01— 2l p-. (3.77)

Here, we first used the inequalities

lle(p)] < (272 —2) Y |X, KO gl e (3.78)

Xesy,
XDOB

and

[DRe(B,0)(p)| < ) ‘X| (X 6)[M ol x

XES),
X>OB

combined with the bounds |K (X, &) < || K(X) X(€) and lolk x < loly g and
then the bounds [, dugi1(wi (€) < 21k, and, as in (3.76), |{X € S, | X D B}| <
(3¢ — 1)

To verify (3.78), we first observe that for every quadratic ¢ one has that

Pi(¢) = D(RK)(X,0)(p — ©)

where ¢ is the projection of ¢ on the subspace of all the ¢ which are quadratic. Thus by
using the Poincaré inequalities,

: | 2
L o=@l pe < 5 LM )x:(%lg)* V(@) < LG ol p (379)

and

. 1 pa
inf lo =1 — @alp g < ELk(ﬁz) sup [V3p(z)| < L~ )|90|k+1 B*»

@1 affine, ) %
@9 quadratic {L’G(B )
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we get
d
[Pup)] < LG22 3 = 1)@ — DIIK sl - (3.80)
A similar claim follows for the quadratic part.
Moreover applying (3.79), one gets
[Pa(p )| < (4L7 4 L2231 )X K ol 1 e (3.81)

By combining (3.80) and (3.81), one gets

|(T> — IT2) R(B, ¢)| <
<2237 - 1) (242 1)L~ G+ 4 8L~ 2L @2 o) oY @l e I K

k,r-
(3.82)

For the first and second the derivatives, notice that

D(Pi(p) + P, 9)) (¢) = Pr(¢) + 2P2(, &)
and
D? (Pl((p) + PZ(QO’ 90))(807 30) = 2P2(¢7 90)
hence, by (3.80) and (3.81) one has that

)) ‘k—i—l,B* <

|D(Pi(¢) + Pa(p, ¢
<22(3¢ — 1) (272 — 1)L+ 4 (16L7D 4 4L~ D)ol Ly p ) [K gy (3.83)
Using (3.81), one has that

k+1,B*

|D2(Pi () + Pa(, )] < 2%(3% — 1) 8L~V 4 2L+ K |,

Combining last two inequalities with (3.82), one has that

(T, — ITy) R(B, )| 7

< 22(30-1) (M- 1) LD+ SL D420 D) (1t g ) (LIl o) KKl
(3.84)

<

With (1 4+ u)? < 2e*” and (3.72), we get

1G2(U) 41,0, < 221 (37-1)% (2L) (2442 -1) L~ +2) (8L~ (1) 4 2L~ (+2)) | K

‘k,r

which gives the desired bound.
Lemma 3.9.8 is then proven by combining the claims of Lemma 3.9.9 and Lemma 3.9.10.

O]

We next lemma is generalizes in [2, Lemma 5.17].
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3 Strict convexity of the surface tension

Lemma 3.9.14. Let § < 1 and w > 2(d?2%*1 +1). There exist constants hg = ho(d,w),
Lo = Lo(d,w), and Ay = Ao(d,w) such that

A g0 <
\f

and
HB<q)HT;0 <M

for any |lq| < %, any k =1,...,.N, r = 1,...,19, and any L > Lo, A > Ay and
d+n(d)

h> L% h.

Proof. When expressed in the coordinates A, a,é,d of H, the linear map A according to
(3.31) keeps @, &, and d unchanged and only shifts A by Y 2cB S ds JVQVl*Cli‘i)l( x).
Hence, A~! only makes the opposite shift and thus

7,7=1

— . ) .
IA= Hljo = > Fh Z |€i,j|+h? Z d;.j|+L%* Z ;|| V2V (o, 2)|.
i=1 7] 1 7] 1 ,] 1
Using
d ] 1 ]

> ldijl < w5l Hllko, (3.85)

i,j=1
we get

IA™ Hllio < (1 + 2oL Dh72) || H 110

using that maxﬁjzl‘v2vl*clgl(x z)| < o oL~ =04 n(d) according to Theorem 2.3.1.

For the second bound, According to Lemma 3.9.5,

1
IBKps10 < Y. 0T > m(Rk—HK)(X)Hk+LOS

BeBs) XSy

|X
< Z CZ‘X,1|kH(Rk+1K)(X)Hk:k+1,X,rS Z Z CE(‘ [ K(X)

BEBy.(B') X5y

C21 Xl
< XY S AT < OIS () K. (356)
BEB(B)) XESg.
for any B’ € By1 and A > 2. This implies || BY|| < M < oo. O

The following proof is an adaptation of the proof contained in [2].

Proof of the strict Convexity. Once we have proved all the analogues bounds, we can
finally give a proof of the strict convexity, by following [2].

Chose all parameters according to Proposition 3.7.1, Proposition 3.7.2 and define the
renormalization mapping K € E. According to Theorem 3.8.1, there exists a unique C?
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3.9 Proofs

mapping & : Bg(e) x € and a unique X : Bg(e) — R such that h(K) is quadratic and A
is the constant part of Hy for all K € E with ||K||;, <eand Hy = Hy mE) _ =0.

With simple calculations we have that

_ 1 2 (9) 1 / ()
O'N,,B(u) = 2‘u| 5LdN log Z" + )‘( .q) + ﬂLdN log ( . (1 + Kn(An, @))MN-H
(3.87)

We will show that the derivatives with respect to v up to the third order are independent
of N. To do so we will consider the different terms in (3.87) independently.

For the first term it is sufficient to differentiate the kernel C? of the covariance with
respect to ¢ = q(u) which in turn gives the smoothness with respect to the tilt. Indeed,
using standard Gaussian calculus one has that the first term is

(9)
1 Z 1
~TaN log (Z(0)> = 57N log (detC).

Then, using the smoothness of the kernel C? with respect to g given by the Finite Range
decomposition one has the desired result.

The second term, is a C? function of the tilt via the dependence of K,. Taking into
account

1K lny < 0V |20 (), h(r(@)lz, < Coa™'n™
for all u € B5(0) and from Proposition 3.7.2, the chain rule
OOK (..., 0)p—q < Cla|®
we finally obtain the desired result. O

Proof of Theorem 3.8.1. The proof is basically contained in [2].

(i) Let us estimate norm of K in terms of the norm of the initial perturbation and
the tuning parameter g. Recall that

Ko(X, ) —exp< ZZq” Vj@(w)) I K. V)
zeX i=1 reX
and

X
|Ko(X, )% < | K| exp (| ( HqH 3 Velx )

zeX

Moreover, observe that

X . .
ID*Ko(X,0)%% < IK|X sup  [D*Ko(,..., )]
[(Vip)|<1
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3 Strict convexity of the surface tension

With simple computations, one has that

DKy(X, ¢)(¢) = exp <; > <qV%V<P>K(y,VsO(y))> [Z I (VE(p) (), ¢(2))

zeX zeX yeX\{z}

+ [[ K, Vo) > <qV<p(w),V¢(x)>]-

zeX rzeX

In a very similar way, one has that

9 1 X
D Ko(X, )" < exp (072 + S llgl) 15 @) x

d
+ Poly(h, X1, [l IX[V2 > ) !W(@W))

z€Td, i=1
(3.88)
where Pol; denotes a polynomial of order s in the arguments. Let h be such
that
1 1, .9 11
4= p—— :
gl <5 (3:89)

The first volume term which comes without >,y |m|* is taken care by || K||p.
If |K||n < 1/A, we get the norm |[[Kollo, < &1 sufficiently small where ¢; =
e1(|[K][n, llqll). Having the norm |[Kollo, < €1 small the statement follows with
the remaining parts.

(ii) T(K,q,O) = 7 with ﬁk =0, KkJrl =0fork=1,...,N—1and ﬁo =—-A1B1 K
and K1 = CoKy + 91(0, Ko). Hence,

1
IT(K, 0,0z, < (=MIKoll- v @Kl +19:(0, Ko)]))-

a
Vo U
From Proposition 3.7.2, we have that ¢1(0,0) = 0 and that |g1(0, Ko)| < ce1 <
c| Kllnllqll Hence,

IT(K,q,0)1z < c|K].llal ((%M) vo@+).

(iii) Let us estimate the operator norm of the Jacobian of the mapping F': Z, — Z,,
where F': Z — Z and Z =T (K, q,Z). We compute

OH, |0 k=N-1lorj#k+1forallj=0,...,N—1
O0H; | A" j=k+1
8ﬁk_{Ak1 j=k+1

oK; o otherwise
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(i)

3.9 Proofs

for k,j=0,...,N —1 and

aﬁk_{o j#k

THJ‘ - agk+é(;;l:ka) j=k

OH, {0 j=k+1
aK C. + 39k+1(Hk,Kk) j=k

Writing Z = (H,, ﬁl, . ,EQV_I,Kl, ..., Ky) and estimating the norm of the
image Z = DF(0)(Z) with || Z||z. <1, we have that the vector Zz, is

Zyg, = (AEIEH — Ay'BoKo; A7 Hy — AT'B1K; ..., Ay oHy_1 — Ay yBy 2Ky _o;

_ — — 0g1(Ho, Ko) 91(Ho, Ko) | -
AV By Kn_q:Hy 222"V 7 — T VK.
N B K Ho—=—50 | 0+ (Co+ 0K, VK1
— Ogn(Hn-1,Kn-1) Ogn—1(Hn-1,KNn_1) —
i Hyo Cy_ K )
N-1 OHN 1 }Zzo""( N-1t OK N 1 ‘Zzo N

From Proposition 3.7.2; one has that

1D, 9141 (His Ki) | 5o (Hi) |l < €] Hillo and HDKkgk—&-l(HkaKk)‘ZZO(Kk)H < &l K ll»

Given that ||Z|z < 1, we have that ||Hy|xo < #* for k = 0,...,N — 1 and
| K llir < % for k=1,..., N. Hence,

M
¥z ( + ) k=0, N =2

n"
w1 A Bl
«

%\3

NflM
Vo

K glley <0 le+ L (||ck Wl +8) <P lE+ Z(9+5))k 1,....N,

1Hyllv-10 < IARE [ [By-1]l <

thus

1212, (J5n+2) v (20 +2)

Choosing the parameters 7 and « such that n + % < 03/2, we have that

K q, 7
M’ H ( + 1)5 + 60 <1
Z Z=011L(Zs,Z5) n

IDF(0)lc(z,,2,) = |
The bounds for the derivatives with respect to Hy and K} for the first component
follow immediately from the linearity, i.e., Hy = Ak+1(Hk+1 — By K}), whereas the
second component one uses Proposition 3.7.2. Let us now check the bounds for the
derivatives with respect to the two parameters g and initial perturbation K € E.
The images Z = T (K, q, Z) depend on the initial perturbation K only through the
coordinates Hy = Afl(Hl — ByoKy) and K1 = CoKq + g1(Ho, Ko). Let us estimate
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m for [ = 1,2,3. We only sketch the first derivative

here as the second and the thlrd follow analogously. Pick X C A, then

the norm ||

‘9K()(X,so)—exp(;qu,w)z I K Vew)K (s Vo).

K
9 yeX\{z}

Proceeding as above, we have that

0 1,7 1 1
o K0(X ) < XK K exp ((,12 +5llah > \w<m>12>

and for the derivative, one has an extra volume factor

< ||Q|| Z Vo(x )

x (drxr +huqurl/22 Vio(@) ) IX K

0
|D6K

Ko(X, ¢)(K)|*

Hence, we have a similar estimate to (3.88) and thus the bounds for the deriva-
tives with respect to the perturbation K. The derivatives with respect to gq
for the linear parts are bounded by Proposition 3.7.1 whereas the derivatives of
exp (% Dow <chp,Vg0>) gives only polynomials in ¢ which are taken care of by
the condition (3.89) above for the weight function for the norm. The derivatives
with respect to g for the nonlinear part are taken care in the nonlinear parts
we differentiate Gaussian expectations with the respect to the parameter q of its
covariance operator. This follows due to the well-known formula
d

agFer PO = %Ecq [TeD*F(X)C).

The differentiability of the solution map Z and the bounds follow with Proposi-
tion 3.8.1.
O
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