Untersuchungen zu Synthese und Reaktivität von Donor-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.) der

Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Melina Klein

aus Bad Honnef

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter:

Prof. Dr. R. Streubel

Zweitgutachter:

Prof. Dr. J. Beck

Tag der Promotion: 03.12.2015

Erscheinungsjahr: 2015

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online/ elektronisch publiziert Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn vorab veröffentlicht bzw. zur Veröffentlichung eingereicht:

- (1) Streubel, R., Klein, M., Schnakenburg, G, Organometallics 2012, 31, 4711-4715.
- (2) Klein, M., Albrecht, C., Schnakenburg, G., Streubel, R., Organometallics 2013, 32, 4938–4943.
- (3) Klein, M., Schnakenburg, G., Espinosa Ferao, A., Tokitoh, N., Streubel, R. *Eur. J. Inorg. Chem.* **2015**, DOI: 10.1002/ejic.201500959.
- (4) Klein, M., Schnakenburg, G., Espinosa Ferao, A., Streubel, R. *Dalton Trans.* **2016**, DOI: 10.1039/C5DT03404C.

Tagungsbeiträge:

- M. Klein, R. Streubel, 4. Deutsch-Österreichischer Mitarbeiter-Workshop, Blaubeuren/Deutschland, September 24.-26. 2010: "Synthesis of oxaphosphirane complexes using conjugated and non-conjugated aldehydes and ketones", (Vortrag).
- M. Klein, R. Streubel, 8th European Workshop on Phosphorus Chemistry, Münster/Deutschland, März 28.-29. 2011: "Functional group tolerance in oxaphosphirane complex synthesis?", (Poster).
- M. Klein, R. Streubel, 5. Deutsch-Österreichischer Mitarbeiter-Workshop, Graz/Österreich, September 23.-25. 2011: "Synthesis of oxaphosphirane complexes bearing functional groups at the ring carbon atom", (Vortrag).
- C. Albrecht, M. Klein, R. Streubel, 9th European Workshop on Phosphorus Chemistry, Rennes/Frankreich, März 22.-24. 2012: "Synthesis, Ti(III)-induced deoxygenation and ring-opening reactions of oxaphosphirane complexes", (Poster).
- M. Klein, R. Streubel, The 13th International Symposium on Inorganic Ring Systems, Victoria/Kanada, Juli 29. bis August 2. 2012: "Probing the Group Tolerance of a Li/Cl Phosphinidenoid Complex Using α–, β- and ω-Substituted Aldehydes", (Poster).

- M. Klein, C. Murcia, R. Streubel, 10th European Workshop on Phosphorus Chemistry, Regensburg/Deustchland, März 18.-20., 2013: "Synthesis, deoxygenation and ringopening reactions of oxaphosphirane complexes", (Poster).
- M. Klein, R. Streubel, 6. Deutsch-Österreichischer Mitarbeiter-Workshop, Bonn/Deutschland, April 5.-7., 2013: "Synthesis, deoxygenation and ring-opening reactions of oxaphosphirane complexes", (Vortrag).
- M. Klein, R. Streubel, UBC, Vancouver/Kanada, August 29, 2013: "Synthesis, deoxygenation and ring-opening reactions of oxaphosphirane complexes" (Vortrag).
- M. Klein, R. Streubel, SFB 813 Workshop, Trier/Deutschland, September 25.-27., 2013:
 "Conversion of oxaphosphirane into phosphaalkene chelate complexes first application of the SET deoxygenation protocol", (Poster).
- M. Klein, R. Streubel, Kolloquium des Instituts f
 ür Anorganische Chemie Bonn, Bonn/Deutschland, Januar 16., 2014: "Synthesis and Reactivity of New Oxaphosphirane Complexes", (Vortrag).
- M. Klein, R. Streubel, 11th European Workshop on Phosphorus Chemistry, Sofia/Bulgarien, März 24.-26., 2014: "Synthesis and Deoxygenation of New Oxaphosphirane Complexes", (Vortrag).
- M. Klein, R. Streubel, 7. Deutsch-Österreichischer Mitarbeiter-Workshop, Freiberg/Deutschland, September 19.-21., 2014: "Synthesis and deoxygenation reactions of new functionalized oxaphosphirane complexes", (Vortrag).
- M. Klein, R. Streubel, SFB 813 International Symposium Chemistry at Spin Centers II, Bad Honnef/Deutschland, September 24.-26., 2014: "SET reduction of oxaphosphiranes – first examples of stereoselective deoxygenation and phosphaalkene chelate complex formation", (Poster).
- M. Klein, R. Streubel, The 14th International Symposium on Inorganic Ring Systems, Regensburg/Deutschland, Juli 26.-31. 2015: "Synthesis, thermolysis and photochemistry of oxaphosphirane complexes", (Poster).

Danksagung

An dieser Stelle möchte ich mich herzlich bei allen bedanken, die mich bei der Anfertigung dieser Arbeit unterstützt haben.

Ganz besonders möchte ich mich bei Herrn Prof. Dr. R. Streubel für die herzliche Aufnahme in seine Arbeitsgruppe und die interessante und herausfordernde Themenstellung bedanken. Außerdem danke ich ihm für die vielen Diskussionen und Ratschläge, die Möglichkeit meine Ergebnisse auf zahlreichen teils internationalen Konferenzen zu präsentieren, sowie für das Ermöglichen des viermonatigen Forschungsaufenthalts in Vancouver/Kanada (University of British Columbia).

Herrn Prof. Dr. J. Beck danke ich für die freundliche Übernahme des Koreferates und das Interesse an dieser Arbeit.

Herrn Prof. Dr. D. Gates danke ich herzlich für die Aufnahme in seine Arbeitsgruppe an der University of British Columbia, Vancouver/Kanada. Darüber hinaus danke ich allen Mitarbeitern der Arbeitsgruppe, insbesondere Spencer Serin für die Messung der Einkristallstruktur und Khatera Hazin für die schöne Zeit und Unterstützung.

Herrn Assoc. Prof. Dr. Arturo Espinosa Ferao danke ich für die die theoretischen Untersuchungen.

Herrn Dr. Gregor Schnakenburg, Frau Charlotte Rödde und Herrn Dr. Sebastian Schwieger danke ich herzlich für die Anfertigung der zahlreichen Einkristallstrukturen und die Hilfsbereitschaft.

Weiterhin danke ich herzlich allen Mitarbeitern der Zentralanalytik der chemischen Institute. Frau Karin Prochnicki danke ich für die Aufnahme zahlreicher NMR-Spektren und für die Durchführung der NMR-Sondermessungen. Ebenso danke ich Frau Hannelore Spitz, Frau Ulrike Weynand und Herrn Claus Schmidt für die Aufnahme der NMR-Spektren. Für die Aufnahme von MS-Spektren danke ich Frau Christine Sondag und Frau Dr. Marianne Engeser und für die Durchführung der Elementaranalysen möchte ich mich bei Frau Anna Martens bedanken.

Natürlich gilt auch ein ganz besonderer Dank der gesamten Streubel-Gruppe. Ganz besonders möchte ich mich bei Dr. Stefan Fankel und Dr. Christian Schulten für die zahlreichen Ratschläge, sowie die Einarbeitung und Unterstützung in der Anfangszeit bedanken. Nicht zu vergessen meine lieben Labor-Kollegen aus 1.013: Andreas Kyri, Dr. Maren Bode und Dr. Carolin Albrecht. Ich danke euch ganz besonders für die Zuverlässigkeit, Hilfsbereitschaft, Motivierung und die zahlreichen fruchtbaren Diskussionen. Danke auch an Cristina Murcia, José Manuel Villalba Franco, Tobias Heurich, Imtiaz Begum, Dr. Vitaly Nesterov, Dr. Paresh Kumar Majhi, Jan Faßbender, Abhishek Koner, sowie den Ehemaligen Christof Grimmling, Dr. Janaina Marinas-Pérez, Eva Schneider, Dr. Aysel Özbolat-Schön, Dr. Susanne Sauerbrey und Dr. Lili Duan.

Bedanken möchte ich mich auch bei meinen ACF-Praktikanten Michael Kremer und Nik Schwarz, sowie den Bachelor-Studenten Niklas Volk, Philip Junker und Hendrik Weisbarth.

Der Rheinischen Friedrich-Wilhelms-Universität Bonn, der Deutschen Forschungsgemeinschaft (DFG), dem Sonderforschungsbereich 813 (SFB), sowie dem Deutschen Akademischen Austauschdienst (DAAD) danke ich für die finanzielle Unterstützung.

Schließlich möchte ich mich noch ganz besonders bei meinem Ehemann Stefan und meiner Familie bedanken, die mich in der ganzen Zeit unterstützt und motiviert haben. Danke, dass ihr mir in schwierigen Zeiten immer Kraft gegeben habt.

"So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das Mögliche getan hat."

Johann Wolfgang von Goethe (1749-1832)

1	Einleitung	1
1.1	Dreigliedrige Heterocyclen	1
1.2	Oxaphosphirane, ihre Komplexe und deren Synthese	5
1.3	Reaktive Intermediate: Phosphinidene, Phosphanide, Phosphinidenoide ur	d
	deren Komplexe	10
1.3.1	Phosphinidene und Phosphiniden-Komplexe	11
1.3.2	Phosphanide	12
1.3.3	Phosphinidenoide und Phosphinidenoid-Komplexe	13
2	Zielsetzung	16
3	Ergebnisse und Diskussion	17
3.1	Zur Frage der Funktionstoleranz in der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Syntl	nese
		17
3.1.1	Reaktionen mit ungesättigten Aldehyden: C=C- vs. C=O-Doppelbindung	18
3.1.2	Reaktionen mit Bicyclo[2.2.1]hept-5-en-2-carbaldehyd	22
3.1.3	Reaktion mit CH-aziden Aldehyden	26
3.1.4	Reaktionen mit CI-substituierten Aldehyden und Ketonen	29
3.2	Untersuchungen zur Synthese von $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen mit	
	Donorgruppen	31
3.2.1	Phosphinidenoid-Komplexe: Struktur und Reaktivität in der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran	-
	Komplex-Synthese	31
3.2.2	Reaktivität der Phosphinidenoid-Komplexe 4-5 gegenüber Lewis-Basen	35
3.2.3	Versuchte Darstellung von ortho-funktionalisierten C-Phenyl-substituierten	
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen	45
3.2.4	Versuchte Darstellung von C-Heteroatom-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-	
	Komplexen	53
3.3	C-Hetaryl-substituierte $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe: Darstellung und	
	Grenzen der Synthesemethode	67
3.4	C-Pyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe	82
3.4.1	P-Bis(trimethylsilyl)methyl-substituierte Komplexe	83
3.4.2	P-Triphenylmethyl-substituierte Komplexe	97
3.4.3	P-Pentamethylcyclopentadienyl-substituierte Komplexe	101
3.5	C,C-Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe	103
3.5.1	P-Bis(trimethylsilyl)methyl-substituierte Komplexe	103

3.5.2	P-Pentamethylcyclopentadienyl-substituierte Komplexe
3.5.3	P-Triphenylmethyl-substituierte Komplexe112
3.6	Reaktionen von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen120
3.6.1	Studie zu thermischen Reaktionen von P-Bis(trimethylsilyl)methyl-substituierten
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen120
3.6.1.	1 C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe
3.6.1.	2 C,C-Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe
3.6.2	Photochemische Reaktionen von P-Bis(trimethylsilyl)methyl-substituierten
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen139
3.6.2.	1 C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe
3.6.2.	2 <i>C</i> , <i>C</i> -Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe
3.6.3	Reaktivität gegenüber d ¹ -Metallkomplexen: SET-Deoxygenierungsreaktionen mit Ti ^{III} -
	Komplexen154
3.6.3.	1 Phosphaalken-Komplexe154
3.6.4	Darstellung von $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen mittels SET-Deoxygenierung von
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen159
3.6.5	Untersuchungen zur Funktionstoleranz der reduktiven SET-Deoxygenierung166
3.6.6	Deoxygenierung von C-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen173
3.6.6.	1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe
3.6.6.	2 P-Triphenylmethyl- und P-Pentamethylcyclopentadienyl-substituierte Komplexe183
3.6.7	Deoxygenierung von <i>C,C</i> -Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen 185
4	Zusammenfassung194
5	Experimenteller Teil202
5.1	Spezielle Arbeitstechniken202
5.1.1	Schmelzpunktbestimmung202
5.1.2	NMR-Spektroskopie
5.1.3	Massenspektrometrie
5.1.4	IR-Spektroskopie
5.1.5	Röntgeneinkristallstrukturanalyse204
5.1.6	Elementaranalyse
5.2	Verwendete Chemikalien204
5.3	Entsorgung205
6	Allgemeine Synthesevorschriften206

6.1	Darstellung der <i>P</i> -CH(SiMe ₃) ₂ -substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe			
	(Methode A)			
6.2	Allgemeine Synthesevorschrift zur Darstellung der P-CPh ₃ -substituierten			
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe (Methode B)207			
6.3	Zur Frage der Funktionstoleranz in der $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex-Synthese			
6.3.1	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo[2,2,1]hept-5-en-2-yl))			
	oxaphosphiran- κP }wolfram(0)} [W(CO) ₅ {Me ₃ Si} ₂ CH-PCH(C ₇ H ₉)-O}] (13)208			
6.3.2	{Pentacarbonyl{2-[1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl]-3-			
	(bicyclo[2.2.1]hept-5-en-2-yl))oxaphosphiran- <i>κP</i> }wolfram(0)}			
	[W(CO) ₅ (C ₅ Me ₅)PCH(C ₇ H ₉)-O}] (14)210			
6.3.3	{Pentacarbonyl{2-[triphenylmethyl]-3-(bicyclo[2.2.1]hept-5-en-2-yl)) oxaphosphiran-			
	кР}wolfram(0)} [W(CO) ₅ (CPh ₃)PCH(C ₇ H ₉)-O}] (15)213			
6.3.4	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-ethylpropyl)oxaphosphiran-			
	кР}wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(CH(CH ₂ CH ₃) ₂)-O}] (16)214			
6.3.5	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(benzyl)oxaphosphiran- <i>kP</i> }wolfram(0)}			
	$[W(CO)_{5}\{Me_{3}Si\}_{2}CH-PCH(CH_{2}(C_{6}H_{5}))-O\}] (17) \dots 216$			
6.3.6	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-chloromethyl)oxaphosphiran-			
	κP }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(CH ₂ CI)-O}] (18)218			
6.3.7	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(3-			
	$chloropropyl) oxaphosphiran- \kappa P wolfram (0) \ [W(CO)_5 \{Me_3Si)_2 CH-PCMe(C_3H_6Cl)-O\}]$			
	(19)218			
6.3.8	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(4-			
	$chloropentyl) oxaphosphiran-\kappa P wolfram (0) \ [W(CO)_5 \{Me_3Si)_2CH-PCMe(C_4H_8CI)-O\}]$			
	(20)			
6.4	Untersuchungen zur Synthese von $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen mit			
	Donorgruppen221			
6.4.1	Reaktivität der Phosphinidenoid-Komplexe 2a-c gegenüber 1,3,4,5-Tetramethyl-			
	imidazol-2-yliden 22			
6.4.1.1	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-tetramethyl-imidazol-2-			
	yliden)phosphino- <i>kP</i>]}wolfram(0)} (23a)			
6.4.1.2	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-			
	yliden)phosphino- <i>κP</i>]}molybdän(0)} (23b)223			
6.4.1.3	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-			
	yliden)phosphino- <i>кP</i>]}chrom(0)} (23c)224			

6.4.2	Reaktivität der Chloro(organo)phosphan-Komplexe 21a,c gegenüber	
	1,3,4,5-Tetramethyl-imidazol-2-yliden 22	224
6.4.2.1	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-	-
	yliden)phosphino- <i>κP</i>]}wolfram(0)} (23a)	225
6.4.2.2	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-	-
	yliden)phosphino- <i>κP</i>]}chrom(0)} (23c)	225
6.4.3	Reaktivität der Dichloro(organo)phosphan-Komplexe 1a,c gegenüber	
	1,3,4,5-Tetramethyl-imidazol-2-yliden 22	226
6.4.4	Reaktivität des Dichloro(organo)phosphan-Komplexes 2a gegenüber	
	1,3,4,5-Tetramethyl-imidazol-2-yliden 22	227
6.4.5	Reaktion von 2a mit 1,3,4,5-Tetramethyl-imidazol-2-yliden 22 in Gegenwart v	von
	Benzaldehyd	228
6.4.6	Reaktivität der Oxaphosphiran-Komplexe 28-30 mit 22	229
6.4.7	Reaktionen von 4a mit 2-(Diphenylphosphino)benzaldehyd	230
6.4.8	Reaktionen von 4a mit 2-(<i>N</i> , <i>N</i> -Dimethylamino)benzaldehyd	230
6.4.9	Reaktionen von 4a mit <i>N,N</i> -Dimethylformamid	231
6.4.10	Reaktionen von 5a mit <i>N,N</i> -Dimethylformamid	233
6.4.11	Reaktionen von 4a mit <i>N,N,N,N</i> -Tetramethylharnstoff	234
6.4.12	Reaktionen von 5a mit <i>N,N,N,N</i> -Tetramethylharnstoff	234
6.5	C-Hetaryl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe	235
6.5.1	Reaktion von 1a mit 2-Furaldehyd	235
6.5.2	Reaktion von 1a mit 2-Thienylaldehyd	236
6.5.3	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(furan-3-yl)oxa-phosphiran-	
	<i>кР</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₄ H ₃ O)-O}] (51)	237
6.5.4	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(thien-3-yl)oxa-phosphiran-	
	<i>кР</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₄ H ₃ S)-O}] (52)	239
6.5.5	Reaktion von 4a mit Imidazol-2-carbaldehyd	240
6.5.6	Reaktion von 4a mit N-Methyl-Imidazol-2-carbaldehyd	241
6.6	C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe	242
6.6.1	P-Bis(trimethylsilyl)methyl-substituierte Komplexe	242
6.6.1.1	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(p-pyridyl)oxa-phosphiran-	
	<i>кР</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₅ H ₄ N)-O}] (56a)	242
6.6.1.2	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(<i>m</i> -pyridyl)oxa-phosphiran-	
	<i>кР</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₅ H ₄ N)-O}] (57a)	244
6.6.1.3	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(o-pyridyl)oxa-phosphiran-	
	<i>кР</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₅ H ₄ N)-O}] (58a)	245

6.6.1.4	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(o-pyridyl)oxaphosphiran-	
	<i>κΡ</i> }molibdän(0)} [Mo(CO) ₅ {Me ₃ Si) ₂ CH-PCH(C ₅ H ₄ N)-O}] (58b)	247
6.6.1.5	${Pentacarbony}{2-[bis(trimethylsilyl)methyl]-3-(o-pyridyl)oxaphosphiran-\kappa F$?}chrom(0)}
	$[Cr(CO)_{5}\{Me_{3}Si)_{2}CH-PCH(C_{5}H_{4}N)-O\}]$ (58c)	249
6.6.1.6	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(methyl)-3-o-pyridyl-oxa-pho	sphiran-
	<i>κΡ</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PCMe(C ₅ H ₄ N)-O}] (59a)	251
6.6.2	P-Triphenylmethyl-substituierte Komplexe	253
6.6.2.1	$\{ {\sf Pentacarbonyl} \{ 2- [triphenylmethyl] - 3 - (o-pyridyl) oxa-phosphiran - \kappa P \} wolfram (or provide the second seco$	m(0)}
	$[W(CO)_5{Ph_3C-PCH(C_5H_4N)-O}]$ (60a)	253
6.6.2.2	${Pentacarbony}{2-[tripheny methyl]-3-(m-pyridyl)oxaphosphiran-\kappa P}wolfram$	m(0)}
	$[W(CO)_{5}{Ph_{3}C-PCH(C_{5}H_{4}N)-O}]$ (61a)	255
6.6.2.3	${Pentacarbony}{2-[tripheny methyl]-3-(p-pyridyl)oxa-phosphiran-\kappa P}wolfrance and the set of the$	m(0)}
	$[W(CO)_5{Ph_3C-PCH(C_5H_4N)-O}]$ (62a)	257
6.6.2.4	Tieftemperatur-NMR-Verfolgung der Li/CI-Phosphinidenoid-Komplexe 5a	(M = W)
	und 5b (M = Mo)	258
6.6.2.5	Reaktion von Li/CI-Phosphinidenoid-Komplex 5a mit o-Pyridinaldehyd in F	Pyridin .261
6.6.3	P-Pentamethylcyclopentadienyl-substituierte Komplexe	262
6.6.3.1	Reaktion von Li/CI-Phosphinidenoid-Komplex 6a mit o-, m-, p-Pyridinaldel	nyd262
6.7	<i>C,C</i> -Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe	263
6.7.1	P-Bis(trimethylsilyl)methyl-substituierte Komplexe	263
6.7.1.1	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(o-pyridyl)oxaphosphiran-	
	<i>κΡ</i> }wolfram(0)} [W(CO) ₅ {Me ₃ Si) ₂ CH-PC(C ₅ H ₄ N) ₂ -O}] (66a)	263
6.7.1.2	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(o-pyridyl)oxaphosphiran-	
	<i>κΡ</i> }molybdän(0)} [Mo(CO) ₅ {Me ₃ Si) ₂ CH-PC(C ₅ H ₄ N) ₂ -O}] (66b)	265
6.7.1.3	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(o-pyridyl)oxaphosphiran-	
	<i>κP</i> }chrom(0)} [Cr(CO) ₅ {Me ₃ Si) ₂ CH-PC(C ₅ H ₄ N) ₂ -O}] (66c)	266
6.7.2	P-Pentamethylcyclopentadienyl-substituierte Komplexe	268
6.7.2.1	Reaktion von 6a mit Di-(<i>o</i> -pyridyl)keton zu 68a und 69a	268
6.7.3	P-Triphenylmethyl-substituierte Komplexe	270
6.7.3.1	{Pentacarbonyl{P-[triphenylmethyl]-7-(o-pyridyl)-8,1,9-oxazaphospha-bicy	clo-[4.3.0]-
	non-2,4,6-en- <i>κP</i> }wolfram(0)} (70a)	270
6.8	Studie zu thermischen Reaktionen von <i>P</i> -Bis(trimethylsilyl)methyl-	
	substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen	272
6.8.1	C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen	272
6.8.1.1	{Tetracarbonyl{2-[bis(trimethylsilyl)methyl]-[trimethylsiloxy]phosphino-	
	<i>кP</i>]methyl}pyridin- <i>к</i> N}wolfram(0)} (71a)	273

6.8.2	C,C-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen	275
6.8.2.1	{Pentacarbonyl{P-[bis(trimethylsilyl)methyl]-7-(o-pyridyl)-8,1,9-oxazaphospha-	
	bicyclo-[4.3.0]-non-2,4,6-en- <i>кP</i> }wolfram(0)} (74a)	276
6.8.2.2	{Pentacarbonyl{P-[bis(trimethylsilyl)methyl]-7-(o-pyridyl)-8,1,9-oxazaphospha-	
	bicyclo-[4.3.0]-non-2,4,6-en- <i>кP</i> }wolfram(0)} (74c)	277
6.8.2.3	Folgeprodukt der Thermolyse von 74a zu 75a	278
6.9	Reaktivität von 66a gegenüber Lewis-Säuren	280
6.9.1	Reaktion von 66a mit LiCI	280
6.9.2	Reaktion von 66a mit ZnCl ₂	281
6.10	Photochemische Reaktionen von P-Bis(trimethylsilyl)methyl-substituierten	1
	$\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen	281
6.10.1	C-Pyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe	281
6.10.1.	1 Photochemische Reaktion von 58c zu 76c	282
6.10.2	C,C-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe	285
6.11	SET Deoxygenierungsreaktionen mit Ti(III)-Komplexen	286
6.11.1	Synthese von Trichlorotris(tetrahydrofuran)titan(III) ^[135]	286
6.11.2	Allgemeine Synthesevorschrift zur Darstellung der E/Z-konfigurierten Phosphaa	alken-
	Komplexe (Methode C)	287
6.11.3	Funktionstoleranz in der Phosphaalken Synthese	287
6.11.3.	1 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(dec-9-en)methylen-phosphan-	
	κP }wolfram(0)} [W(CO) ₅ {(Me ₃ Si) ₂ CH}P=C(H)(CH ₂) ₈ CH=CH ₂ }] (80)	287
6.11.3.	2 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(but-3-en)methylen-phosphan-	
	κP }wolfram(0)} [W(CO) ₅ {(Me ₃ Si) ₂ CH}P=C(H)(CH ₂) ₂ CH=CH ₂ }] (81)	288
6.11.3.	3 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(prop-1-en)oxaphosphiran-	
	<i>кР</i> }pentacarbonylwolfram(0)] (79) mit CpTiCl ₃ /Zn zu 82	289
6.11.3.	4 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(dec-9-en)oxaphosphiran-	
	кР}pentacarbonylwolfram(0)] (77) mit TiCl ₃ (thf) ₃	289
6.11.3.	5 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(but-3-en)oxaphosphiran-	
	<i>кР</i> }pentacarbonylwolfram(0)] (78) mit TiCl ₃ (thf) ₃	290
6.11.3.	6 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(prop-1-en)oxaphosphiran-	
	<i>кР</i> }pentacarbonylwolfram(0)] (79) mit TiCl ₃ (thf) ₃ zu 82	291
6.11.3.	7 Reaktion von {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo [2.2.1] hept	-5-
	en-2-yl))oxaphosphiran- <i>κΡ</i> }wolfram(0)} (13) CpTiCl ₃ /Zn zu 83	292
6.11.4	C-Pyridyl-substituierte Phosphaalken-Komplexe	293
6.11.4.	1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe	293

6.11.4.1.1	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	κP }wolfram(0)} [W(CO) ₅ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)}] (84a)	293
6.11.4.1.2	Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	<i>κP</i> }molybdän(0)} [Mo(CO) ₅ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)}] (84b)	294
6.11.4.1.3	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	<i>κP</i> }chrom(0)} [Cr(CO) ₅ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)}] (84c)	295
6.11.4.1.4	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-methyl-1-(o-pyridyl)methylen-	
	phosphan- κP }wolfram(0)} [W(CO) ₅ {(Me ₃ Si) ₂ CH}P=CMe(C ₅ H ₄ N)}] (85a)	296
6.11.4.1.5	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	$\kappa N, P$ }wolfram(0)} [W(CO) ₄ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)}] (87a)	296
6.11.4.1.6	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	<i>κN,P</i> }molybdän(0)} [Mo(CO) ₄ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)}] (87b)	298
6.11.4.1.7	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan-	
	$\kappa N, P$ chrom(0) [Cr(CO) ₄ {(Me ₃ Si) ₂ CH}P=CH(C ₅ H ₄ N)] (87c)	299
6.11.4.1.8	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-methyl-1-(o-pyridyl)methylen-	
	$phosphan-\kappa N, P \} wolfram(0) \} [W(CO)_4 \{ (Me_3Si)_2CH \} P = CMe(C_5H_4N) \}] (88a) \dots$	299
6.11.4.2 F	P-Triphenylmethyl-substituierte Komplexe	301
6.11.4.2.1	Deoxygenierung von 60a zum <i>N,P</i> -Chelat-Komplex 90a	301
6.11.4.3 F	P-Pentamethylcyclopentadienyl-substituierte Komplexe	301
6.11.4.3.1	Deoxygenierung von 63a zu $\sigma^2 \lambda^3$ -Phosphaalken-Komplex 90a und N,P-Chel	at-
	Komplex 92a	301
6.11.5 C	, C-Dipyridyl-substituierte Phosphaalken-Komplexe	302
6.11.5.1 {I	Pentacarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(o-pyridyl)]methylen-phosphan-	-
ŀ	< <i>P</i> }wolfram(0)} [W(CO) ₅ {(Me ₃ Si) ₂ CH}P=C(C ₅ H ₄ N) ₂ }] (93a)	302
6.11.5.2 {	Tetracarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(o-pyridyl)]methylen-phosphan-	
ŀ	(N, P) wolfram(0)} [W(CO) ₄ {(Me ₃ Si) ₂ CH}P=C(C ₅ H ₄ N) ₂ }] (94a)	304
6.11.5.3 {	Tetracarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(o-pyridyl)]methylen-phosphan-	
ŀ	(N,P) chrom(0)} [Cr(CO) ₄ {(Me ₃ Si) ₂ CH}P=C(C ₅ H ₄ N) ₂ }] (94c)	305
7 Lite	ratur	iniert

Anh	ang	314
Α	Abkürzungsverzeichnis	314
в	Details zu den DFT-Rechnungen von Espinosa	317
	a Reaktivität der Phosphinidenoid-Komplexe gegenüber Lewis-Basen	317
	b <i>C</i> , <i>C</i> -Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe	319
С	Zusätzliche Massespektren der Schmelze von 58a	334
D	Kristallographische Daten	336

1 Einleitung

1.1 Dreigliedrige Heterocyclen

Oxirane (Epoxide) zählen zu den bekanntesten Vertretern der dreigliedrigen Heterocyclen und spielen vor allem in der synthetischen Organischen Chemie eine wichtige Rolle. Mit Nukleophilen, Elektrophilen und Radikalen gehen sie unter hoher Stereo- und Regioselektivität Ringöffnungsreaktionen ein.^[1] Durch ihre hohe Reaktionsbereitschaft sind Oxirane auch in der Industrie vielfach genutzt und finden vor allem in Polymerisationsreaktionen^[2], als Ausgangsmaterial für Medikamente, Lack-, Gieß- und Laminierharze, sowie Klebstoffe Anwendung.^[1a] Großtechnisch werden sie für die Produktion weiterer Rohstoffe wie Ethylenglycol verwendet. Die einfachsten und bekanntesten Vertreter sind hierbei Ethylenoxid^[3] das 1859 erstmals von Wurtz dargestellt wurde und Propylenoxid welches beispielsweise ein Zwischenprodukt in dem von BASF und DOW genutzten HPPO Prozess zur Polyurethansynthese darstellt.^[4]

Wie bei allen kleinen Ringsystemen, d.h. solche mit 3-4 Atomen im Ringsystem, ist die wichtigste Triebkraft dieser Reaktionen der Verlust der Ringspannung.^[1] Der Begriff der Ringspannung setzt sich aus mehreren Faktoren zusammen und wurde schon 1885 von Baeyer in einer Theorie zur Ringschließung von Kohlenstoff-Verbindungen diskutiert.^[5] Unter der Annahme eines gleichseitigen Dreiecks und der daraus resultierenden spitzen Winkel im Dreiring (60°), wurde die erhebliche Abweichung zu dem für Kohlenstoff typischen Tetraeder-Winkel (109.5°) als Begründung aufgeführt.^[5] Wiberg konnte etwa 100 Jahre später anhand einer Elektronendichte-Verteilung im Cyclopropan zeigen, dass die Winkel nicht ganz so spitz sind wie angenommen und tatsächlich 78° betragen.^[6] Die Ausbildung "Bananenbindungen" führt sogenannter auf Grund der nicht optimalen Orbitalüberlappung zu einer Aufweitung der Bindungswinkel und zur Schwächung der Bindung um 19 kcal/mol im Vergleich zu einer normalen C-C-Einfachbindung.^[6b] Ein weiterer Faktor sind zusätzliche Torsionsspannungen, die durch die Anordnung der exocyclischen Substituenten am Ring hervorgerufen werden können.^[7] Die Einführung eines oder sogar mehrerer Heteroatome in das dreigliedrige Ringsystem führen zu einer weiteren Erhöhung der Ringspannung und daraus resultierenden Reaktivität.^[7] Der wichtigste Unterschied zwischen den Kohlenstoff-Derivaten und den höheren Homologen, wie beispielsweise Silicium, ist die Hybridisierungsfähigkeit des Kohlenstoffs und die vergleichsweise starke Ausbildung von σ - und π -Bindungen.^[7] Auch die Elektronegativität der Elemente und die Abnahme der Element-Element-Bindungsstärke der Heteroatome spielen eine wichtige Rolle.^[7] Alle diese Faktoren tragen zu dem großen Interesse an kleinen, gemischten Kohlenstoff-Heteroatom-Ringsystemen bei, verdeutlichen aber auch die Probleme in der Synthese und warum diese in der Literatur nicht so ausführlich beschrieben und untersucht sind. Einige Beispiele sind in Abbildung 1 aufgeführt.

Abbildung 1: Oxirane I^[4], Oxaziridine II^[8], Oxasilirane III^[9], Oxathiirane IV^[10], Oxaborane V^[11] und Oxaphosphirane VI im Vergleich.

Durch Austausch des CR₂-Fragments in I durch ein isolobales Heteroatom-Fragment gelangt man zu den Oxaziridinen II, Oxasiliranen III, Oxathiiranen IV, Oxaboranen V und Oxaphosphiranen VI (Abbildung 1), die im Folgenden kurz vorgestellt werden.

Oxaziridine **II** wurden Mitte der 50er Jahre erstmals von Emmons *et al.* dargestellt und mit ausreichender Genauigkeit als dreigliedrige Heterocyclen, die Kohlenstoff, Sauerstoff und Stickstoff enthalten, identifiziert.^[8a] Auch wenn keine Einkristallstruktur erhalten wurde, konnten neben analytischen Daten vor allem Hydrolyse- und Reduktionsprodukte die Dreiring-Struktur bestätigen. Ungefähr zur selben Zeit berichteten Horner und Jürgens^[8b] und auch Krimm^[12] über erfolgreiche Synthesen der entsprechenden Heterocyclen. Auch den Stickstoff-Analoga wird durch die erhöhte Ringspannung eine vielversprechende Reaktivität und Anwendung, beispielsweise als Nitren-Transfer-Reagenz, zugesagt.^[8c]

Oxasilirane **III** sind auf Grund der schon diskutierten erhöhten Ringspannung nur schwer zugänglich. 1982 wurde von Ando *et al.* das erste Oxasiliran isoliert und der dreigliedrige Heterocyclus durch das Ergebnis der Einkristallstrukturanalyse bestätigt.^[13] Vor allem sperrige Substituenten am Silicium (wie z.B. Mes = 2,4,6-Me₃C₆H₂) und am Ring-Kohlenstoff ermöglichen eine Stabilisierung des Derivats.^[13] Auch Ghadwal *et al.* konnten 2010 ein stabiles Derivat isolieren.^[9] Auch hier wird

eine kinetische Stabilisierung durch einen sperrigen σ -Donor-Liganden (N-heterocyclisches Carben (NHC)) erreicht und ein pentakoordiniertes Oxasiliran gebildet.^[9]

Oxathiirane **IV** konnten 2010 erstmals durch Photolyse in einer Argon-Matrix nachgewiesen werden,^[10] wohin gegen Oxaborane **V** bislang nicht bekannt sind. Rechnungen (MP2/66-31G*//MP2/6-31G* + ZPE Niveau) zu Carbonylierungs-Reaktionen von Boranen zeigen zwar, dass ein energetisches Minimum für die entsprechende Bor-Verbindung **V** vorliegt, die Aktivierungsenergien der einzelnen Reaktionsschritte sind jedoch mit 60 kcal/mol sehr groß, weshalb diese Reaktionen ohne zusätzliche Aktivierung, z.B. durch Säuren oder Basen, unrealistisch sind.^[11]

Auch die entsprechenden Phosphor-Analoga, die Oxaphosphirane **VI**, sind bisher noch unbekannt. Eine mögliche Begründung hierfür lieferte Schoeller durch seine *ab-initio* Rechnungen zu einfachen, symmetrisch substituierten dreigliedrigen Heterocyclen.^[14] Er konnte zeigen, dass dreigliedrige Phosphor-Heterocyclen je nach Substitutionsmuster und bei einem Energieunterschied in der Größenordnung der Raumtemperatur mit ihrem offenen Valenzisomer im Gleichgewicht stehen (s. Schema 1).^[14]

Schema 1: Valenzisomerisierung von symmetrisch substituierten Phosphor-Heterocyclen (E = E' = CH₂ (**A**), NH (**B**), O (**C**), SiH₂ (**D**)).^[14]

Abhängig vom Substituenten E/E['] (Schema 1) liegt das Gleichgewicht entweder auf der Seite des Heterocyclus (VIII) oder auf der Seite der offenen Form (VII['], VII^{''}), wobei die Ylid-Struktur VII^{''} bevorzugt vorliegt und den Charakter eines Wittig-Ylids aufweist.^[14] Tabelle 1 zeigt die berechneten Reaktionsenthalpien in kcal/mol (SCF/CEPA-1-Niveau) in Abhängigkeit des Substituenten E.

	Α	В	С	D
E	CH₂	NH	0	SiH ₂
ΔE [kcal/mol]	-46.8	19.7	79.6	-42.2

Tabelle 1: *Ab-initio* Berechnungen der Reaktionsenthalpie ΔE [kcal/mol] (SCF/CEPA-1-Niveau).^[14]

Eine Stabilisierung der negativen Ladung durch elektronegative Substituenten E, vorhanden im Fall von Stickstoff (**B**) und Sauerstoff (**C**), begünstigt jeweils die offene Form **VII B,C**. Im Fall von Kohlenstoff (**A**) oder Silizium (**D**) wird die geschlossene Form **VIII A,D** bevorzugt.^[14] Obwohl es sich bei den Berechnungen um symmetrische Systeme handelt, kann man anhand des Mittelwertes der Energiewerte für E = Kohlenstoff (**A**, -46.8 kcal/mol) und E = Sauerstoff (**C**, 79.6 kcal/mol) eine Tendenz für das gemischte System ableiten (Δ E (E = O, E' = CH₂) = + 32.8 kcal/mol). Aus dem positiven Vorzeichen der Energiedifferenz kann man schlussfolgern, dass sich das Gleichgewicht für Oxaphosphirane **VI** ebenfalls auf der Seite des offenen Valenzisomers **VI**' befinden sollte (s. Schema 2).

Schema 2: Postulierte Valenzisomerisierung im Oxaphosphiran VI.

Diese berechnete Energiedifferenz für das Stammsystem könnte jedoch durch starke Substituenteneffekte geändert werden. Entsprechende theoretische Studien laufen aktuell, wobei das Endergebnis bisher jedoch noch nicht vorliegt.

1.2 Oxaphosphirane, ihre Komplexe und deren Synthese

Wie in Kapitel 1.1 verdeutlicht, ist bisher kein $\sigma^3 \lambda^3$ -Oxaphosphiran^(*), veranschaulicht durch die Strukturformel **VI** (Schema 2), bekannt. 1978 konnte von Röschenthaler jedoch durch die Reaktion eines Iminophosphans mit Hexafluoroaceton das erste stabile $\sigma^4 \lambda^5$ -Oxaphosphiran **IX** dargestellt und isoliert werden (s. Abbildung 2).^[16]

Abbildung 2: Erstes stabiles $\sigma^4 \lambda^5$ -Oxaphosphiran IX, beschrieben 1978 von Röschenthaler *et al.*^[16]

Eine Stabilisierung von IX wird zum einen durch die geeignete Wahl der Substituenten erreicht. Zum anderen wird das freie Elektronenpaar am Phosphor durch den Stickstoff-Substituenten blockiert und geschützt. Durch diese Blockierung wird die in Kapitel 1.1 beschriebene Valenzisomerisierung unterdrückt. Zusätzlich wird durch sterische Effekte ein Abbau der Ringspannung durch Dimerisierung verhindert. Analog zu IX sind auch die entsprechenden Übergangsmetallkomplexe, bei denen das freie Elektronenpaar des Phosphors nicht durch Oxidation sondern auf Grund einer koordinativen Bindung an ein Metallzentrum geschützt ist, stabil und wurden 1990 erstmals von Mathey et al. dargestellt.^[17] Schema 3 zeigt die Synthese des ersten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes XI durch selektive Epoxidierung der P=C-Doppelbindung des entsprechenden Phosphaalken-Komplexes Х mit meta-Chlorperbenzoesäure (m-CPBA) unter Bildung von meta-Chlorbenzoesäure (*m*-CBA).^[18] Über $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe die eine Koordination des Liganden über das Sauerstoffatom aufweisen, ist nichts bekannt. Daher wird dies im Folgenden auch nicht weiter berücksichtigt. Es liegen jedoch theoretische Untersuchungen zum unterschiedlichen Effekt einer Borankomplexierungen an den beiden Heteroatomen eines Oxaphosphirans vor.^[19]

^(*) Die Präfixe σ und λ wurden zur genaueren Beschreibung der Bindungssituation des Phosphorzentrums eingeführt. σ^n beschreibt hierbei die Koordinationszahl, d.h. die Anzahl n der σ -gebundenen Liganden, wohingegen λ^n die Wertigkeit wieder spiegelt und die π -Bindungen mit einschließt.^[15]

Schema 3: Erste beschriebene Synthese eines $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **XI** von Mathey *et al.*^[17]

Ohne die Koordination des freien Elektronenpaars des Phosphors zum Wolframpentacarbonyl-Fragment wird bevorzugt der Phosphor oxidiert und ein Methylen(oxo)phosphoran gebildet.^[17,20] Die Struktur entspricht dem offenen Valenzisomer (vgl. **VI**[•], Schema 2) und ist ein experimenteller Beleg für die Existenzfähigkeit des Valenzisomers des Oxaphosphirans. Komplex **XI** wurde nach Isolierung als Gemisch zweier Isomere erhalten und konnte über NMR-Spektroskopie und Einkristallstrukturanalyse charakterisiert werden (δ^{31} P: 2.9 und 6.2).^[17]

1994 wurde von Streubel *et al.* eine neue Syntheseroute entwickelt, die im Folgenden als Hochtemperatur-Route bezeichnet wird.^[21] In Schema 4 (Route **i**) ist die für diese Synthese genutzte, thermische Umsetzung des 2*H*-Azaphosphiren-Wolfram-Komplexes **XII** in Gegenwart eines Überschusses Benzaldehyd (20 Äquivalente) dargestellt.^[21]

Schema 4: Thermische Umsetzung von XII mit Benzaldehyd^[21] (i) und Benzophenon^[22] (ii) ("Hochtemperatur-Route").

Der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **XIV** wurde im Gegensatz zur Epoxidierung von Phosphaalkenen (vgl. Schema 3), diastereoselektiv erhalten und konnte als kristalliner Feststoff mit einer Ausbeute von 26% isoliert und vollständig charakterisiert werden (δ^{31} P: 40.4).^[21] Die entsprechende Umsetzung mit dem sterisch anspruchsvolleren Benzophenon zeigte erste Grenzen dieser Route auf (Schema 4, Route **ii**). Der 1,2-Oxaphospholan-Komplex **XVI** wird neben **XV** als Hauptprodukt gebildet (Verhältnis **XVI** zu **XV** ~2:1) und konnte isoliert werden. Der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **XV** konnte jedoch nicht in reiner Form erhalten werden.^[22]

In beiden Reaktionen (Schema 4, Route i und ii) wird als reaktives Intermediat (s. auch Kapitel 1.3) der Phosphiniden-Komplex XIII postuliert.^[22,23] In der Reaktion mit Benzaldehyd (Schema 4, Route i) wird XII selektiv gebildet, dennoch ist die intermediare Bildung eines Nitriliumphosphanylid-Komplexes (vgl. XVIII, Schema 5) als Intermediat nicht ausgeschlossen.^[23] Obwohl in anderen Reaktionen das Auftreten des Komplexes XVIII als Intermediat belegt worden ist (Schema 5),^[24] ist eine Beteiligung von diesem in der Synthese des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes XIV. auf Grund des bisher fehlenden Nachweises entsprechender [3+2]-Cycloadditionsprodukte XX jedoch als unwahrscheinlich anzusehen (Schema 5).^[21,24,25]

Schema 5: Thermische Ringöffnung von XVII in Gegenwart von Benzonitril^[21,24] und Benzaldehyd^[22].

Ein großer Nachteil der Hochtemperatur-Routen zu $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen (Schema 3 und Schema 4) ist jedoch dass die Komplexe nur über mehrere unabhängige, sehr langwierige Syntheseschritte erhalten werden können. Zunächst muss die Synthese des Phosphaalken- **X** oder des Azaphosphiren-Komplexes **XII** erfolgen bevor aus diesen durch Oxidation bzw. mittels Thermolyse der

entsprechende $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex dargestellt werden kann. Die Wahl der Substituenten am Ringkohlenstoff und am Phosphor sowie die Wahl des Metalls im Zielprodukt, sind synthesebedingt stark abhängig von den Ausgangsverbindungen X und XII. Ein weiterer Nachteil einer thermischen Reaktionsführung sind die harschen Bedingungen, was eine geringe Ausbeute bedingt. Ein weiteres Beispiel aus der Literatur verdeutlicht, dass vor allem bei der Synthese von gespannten Ringsystemen hohe Temperaturen auch weitere durch Folgereaktionen bzw. -produkte entstehen können. Schema 6 zeigt die katalysierte, thermische Zersetzung des 7-Phosphanorbornadien-Komplexes XXI in Anwesenheit von Benzophenon.^[26]

Schema 6: Katalysierte thermische Zersetzung von XXI in Anwesenheit von Benzophenon.^[24]

Wie schon im zuvor gezeigten Beispiel von Streubel et al. (Schema 4), wird hier der intermediär gebildete Phosphiniden-Komplex XXII postuliert, der auch in diesem Fall (Schema 6) nicht den entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex bildet.^[26] Zum einen wird (vermutlich) auf Grund des sterisch anspruchsvollen Ketons wieder ein Ringerweiterungsprodukt XXIII gebildet. Zum anderen ist die Zugabe des Kupfer(I)-Salzes, welches eine geringere Reaktionstemperatur ermöglicht, problematisch. So könnte die Lewis-Säure ein Grund für die Umlagerung intermediär gebildeter Verbindungen und der formalen Oxidation des Phosphors unter Verlust des Metallfragments darstellen. Durch Säulenchromatographie konnte XXIII isoliert (Ausbeute: 17-18%) und als Mischung zweier Diastereomere (δ^{31} P: 29.7 und 31.3) charakterisiert werden.[26]

Auf Grund der vorgenannten Limitierungen wurde von Streubel *et al.* im Jahr 2007 eine weitere Syntheseroute, im Folgenden als Tieftemperatur-Route bezeichnet, zur Darstellung von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen entwickelt.^[27] Diese ermöglichte es ausgehend von leicht zugänglichen Ausgangsverbindungen, eine Vielzahl verschiedenster Derivate mit sehr guten Ausbeuten und einer guten Stereoselektivität darzustellen (Schema 7).^[27,28]

Schema 7: $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex-Synthese über einen Phosphinidenoid-Komplex XXVI ("Tieftemperatur-Route").^[27,28]

Schlüsselschritte dieser sehr milden Synthese sind a) die Generierung des Phosphinidenoid-Komplexes XXVI und b) die rasche Reaktion mit dem Carbonylderivat bei tiefer Temperatur (s. auch Kapitel 1.3). XXVI kann ausgehend von den Chloro(organo)phosphan-Komplexen XXIV durch Deprotonierung mit Lithiumdiisopropylamid (LDA) in Anwesenheit von [12]Krone-4 erzeugt werden.^[27,28a] Einen weiteren einfachen Zugang zum Phosphinidenoid-Komplex XXVI eröffnet der Dichloro(organo)phosphan-Komplexen XXV Cl/Li-Austausch an mittels tert-Butyllithium in Gegenwart von [12]Krone-4.^[27,28] Vor allem die Verwendung des Kronenethers führte durch die erhöhte thermische Stabilität des reaktiven Intermediats zu einer vielseitig einsetzbaren Synthesemethode. So konnte der von Streubel et al. über die Hochtemperatur-Route dargestellte und beschriebene $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **XIV** (R = CH(SiMe_{3})_{2}, R' = H, R'' = Ph, vgl. Schema 4) mit einer verbesserten Ausbeute (44%)^[27] über diese Tieftemperatur-Route isoliert werden.

Im Laufe der letzten Jahre wurde eine Vielzahl unterschiedlicher Derivate der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe synthetisiert und isoliert. Zum einen wurde der Substituent am Phosphor variiert. Neben der Bis(trimethylsilyl)methyl-Gruppe (CH(SiMe_{3})_{2}) sind hier die Pentamethylcyclopentadienyl-Gruppe (Cp* = C_{5}Me_{5})^{[28a,29]}

und die Triphenylmethyl-Gruppe (Trt = CPh₃)^[28b] als Substituent am Phosphor zu nennen. Zum anderen sind zahlreiche Derivate mit verschiedenen Alkyl- und Aryl-Substituenten am Ring-Kohlenstoff bekannt.^[28a,29b] Besonders sind hier die Spiro-Verbindungen^[30], Verbindungen mit fluorierten Substituenten^[31] und auch Alkenyl-Substituenten aufzuzählen.^[32] Diese Untersuchungen haben gezeigt, dass besonders die Reaktionsführung bei tiefer Temperatur eine Vielzahl an verschiedenen und auch funktionalisierten Derivaten ermöglicht und von leicht zugänglichen Startmaterialien ausgegangen werden kann. Dadurch gewann die neue Route in den letzten Jahren gegenüber der thermischen Route stark an Bedeutung.

1.3 Reaktive Intermediate: Phosphinidene, Phosphanide, Phosphinidenoide und deren Komplexe

Im vorherigen Abschnitt wurde gezeigt, dass die Synthese der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe häufig über niederkoordinierte, reaktive Phosphor-Spezies verläuft. Neben den häufigsten Oxidationsstufen, +3 und +5, kann Phosphor alle Oxidationsstufen zwischen -3 und +5 annehmen. Daraus resultiert eine Vielzahl verschiedener Bindungsmoden (s. Abbildung 3), die mit dem $\sigma\lambda$ -Präfix-System^[15] unterschieden werden können.

Abbildung 3: Beispiele verschiedener Bindungsmoden des Phosphors und deren Nomenklatur.^[15,33]

1.3.1 Phosphinidene und Phosphiniden-Komplexe

Phosphinidene **XXVIII** zählen zu den "einfachsten" Vertretern der Phosphor-Verbindungen und liegen in bislang allen bekannten Fällen im Grundzustand als Triplett-Spezies vor.^[33,34] Durch den großen Singulett-Triplett-Abstand und die damit einhergehende schwierige Synthese, sind die entsprechenden Singulett-Spezies wenig bis gar nicht untersucht; jedoch wurde vor kurzem über ein stabiles Singulett-Derivat berichtet.^[35] Theoretische Studien^[36] zeigen verschiedene Möglichkeiten der Stabilisierung, wobei beispielsweise für Aminophosphinidene die Wechselwirkung des freien Elektronenpaars des Stickstoffatoms mit dem formal freien p-Orbital des Phosphoratoms stabilisierend wirkt.^[36a] Das *P*-Mes-substituierte Phosphiniden **XXXIV** konnte durch geeignete Abfangreaktionen^[37] und durch Matrix-Isolation mittels zeitaufgelöster EPR-Spektroskopie bei tiefen Temperaturen als Triplett-Phosphiniden nachgewiesen werden (Schema 8).^[38]

Schema 8: Darstellung und Abfangreaktionen von Mesityl-Phosphiniden XXXIV.^[37]

Phosphinidene finden vor allem Anwendung in sogenannten Phosphiniden-Transfer-Reaktionen.^[39] Die Reaktionen in Schema 4 und Schema 6 zählen demnach zu den Phosphiniden-Komplex-Transfer-Reaktionen.

Die entsprechenden Übergangsmetallkomplexe liegen hingegen im Grundzustand als Singulett-Spezies vor.^[34b] Der Singulett-Triplett-Abstand nimmt mit zunehmender π -Rückbindung der Liganden zu. Weiterhin wird die Reaktivität durch die Liganden und das Metall-Atom bestimmt und führt zu nukleophilen (Schrock-artigen) oder elektrophilen (Fischer-artigen) Phosphiniden-Komplexen (Abbildung 4).^[21,40]

Abbildung 4: Schrock-artige^[40b] **XXXVIII** und Fischer-artige^[21,40a,40c] **XXXIX** Phosphiniden-Komplexe.

1.3.2 Phosphanide

Alkalimetall-Phosphor-Verbindungen sind durch ihre hohe Reaktivität von großem Interesse für die Phosphororganische Chemie, da sie als einfach darzustellende Nukleophile Zugang zu vielen neuen Substanzklassen ermöglichen. Kuchen *et al.* beschrieben 1957 die Synthese von Alkalimetall-Phosphaniden **XLI** über die Umsetzung von Diphenylphosphan **XL** mit Natrium oder Kalium in Diethylether (Et₂O) (Schema 9).^[41]

Schema 9: Darstellung von Natrium-Diphenylphosphanid XLI.^[41]

Auch über die Umsetzung von Diphenylchlorphosphan oder Tetraphenyldiphosphan mit Natrium gelangt man zu dem Natrium-Diphenylphosphanid **XLI**.^[41]

Kurze Zeit später wurde von Issleib *et al.* auch die entsprechende Lithium-Verbindung beschrieben.^[42] Durch Umsetzung des Diphenylphosphans **XL** mit Phenyllithium wurde das Lithium-Diphenylphosphanid erhalten, welches ohne weitere Untersuchungen, zunächst durch die Formel [Li{P(C₆H₅)₂}₂]Li beschrieben wurde.^[42]

1984 gelang es Hope und seinen Mitarbeitern durch die Umsetzung in Gegenwart 2 Äquivalenten [12]Krone-4 Lithium-Diphenylphosphanid von das als isolieren.^[43] [12]Krone-4-Addukt Das erstmals zu Ergebnis der Einkristallstrukturanalyse zeigte, dass Lithium durch die Zugabe des Kronenethers 12

von Phosphor separiert vorliegt und keine Wechselwirkungen zwischen Anion und Kation stattfinden.^[43] Das Kation wird von zwei Molekülen [12]Krone-4 in einer Sandwich-Struktur eingeschlossen und ermöglicht das Vorliegen eines separierten Anions, dem Diphenylphosphanid.^[43]

1.3.3 Phosphinidenoide und Phosphinidenoid-Komplexe

Durch Austausch eines organischen Substituenten R durch ein Halogen X gelangt man zu den Alkali(halogeno)phosphaniden **XLII** und den entsprechenden Übergangsmetallkomplexen **XLIV**, die sich als Spezialfall der Phosphanide strukturell sowie formal von den ausführlich in der Literatur beschriebenen Carbenoiden^[44] **XLIII** ableiten lassen (Abbildung 5).

Abbildung 5: Phosphinidenoide XLII, Carbenoide XLIII, Phosphinidenoid-Komplexe XLIV (R = organischer Rest, M⁴ = Alkalimetall, X = Abgangsgruppe (z.B. Halogen), ML_n = Übergangsmetallfragment).

Auf Grund der überraschenden Reaktivität des Dichloro(organo)phosphans **XLV** (Schema 10) mit Magnesium, die nicht zu einem Phosphiniden-Intermediat führt, wurde von Yoshifuji *et al.* 1988 der Begriff "Phosphinidenoid"^[45] vorgeschlagen; die Bildung des Mg/CI-Phosphinidenoids als reaktives Intermediat konnte jedoch nicht nachgewiesen werden.

Schema 10: Bildung des Diphosphens XLVI durch Reduktion mittels Magnesium.^[45]

2007 gelang es dann Özbolat-Schön die Existenz des Li/Cl-Phosphinidenoid-Komplexes **XXVI** NMR-spektroskopisch und durch eine geeignete Abfangreaktion zu beweisen (s. Schema 11).^[27]

Schema 11: Abfangreaktion des Phosphinidenoid-Komplexes XXVI mit Methyliodid.^[27]

Wie schon in Schema 7 dargestellt, wurde der Phosphinidenoid-Komplex XXVI durch Umsetzung des Chloro(organo)phosphan-Komplexes XXIV mit Lithiumdiisopropylamid (LDA) in Anwesenheit von [12]Krone-4 erzeugt und anschließend mit Methyliodid zu XLVII umgesetzt. Die selektive Bildung von XLVII setzt den Li/CI-Phosphinidenoid-Komplex XXVI als Intermediat voraus.

Zusätzlich konnte Özbolat-Schön 2013 die vorgeschlagene Struktur im Fall des *P*-Fluoro-substituierten Phosphinidenoid-Komplexes eindeutia mittels belegen.^[46] Einkristallstrukturanalyse Das entsprechende Fluor-Derivat (Abbildung 6) zeigte deutlich, dass wie im Fall des [12]Krone-4-Adduktes des Lithium-Diphenylphosphanids [Li([12]Krone-4)₂][P(C₆H₅)₂],^[43] Phosphor und Lithium als getrenntes. nicht-kovalent wechselwirkendes lonenpaar im Festkörper vorliegen.^[46] Lithium wird durch [12]Krone-4 zum Phosphor hin abgeschirmt und die freie Koordinationsstelle am Lithium wird durch ein Solvensmolekül, in diesem Fall Et₂O, besetzt. Anhand von Diffusions-NMR-Spektroskopie konnte schließlich auch die Situation in Lösung aufgeklärt werden; d.h. es liegt ein Solvens-separiertes Kontaktionenpaar vor: diese experimentellen Ergebnisse wurden weiterhin durch umfangreiche Rechnungen gestützt und ergänzt.^[46]

Abbildung 6: Molekülstruktur des Li/F-Phosphinidenoid-Komplexes im Festkörper.^[46]

Carbenoide **XLIII**^[47] zeichnen sich durch ihre thermische Labilität und ihr ambiphiles Reaktionsverhalten aus. Durch die formale Abspaltung des Metalls M und der Abgangsgruppe X im Carbenoid **XLIII** (vgl. Abbildung 5) entsteht ein Kohlenstoff-Atom mit Elektronensextett, welches durch das freie Elektronenpaar nukleophile Reaktivität (vgl. **XLIII**⁴) und durch das leere p-Orbital elektrophilen Charakter (vgl. **XLIII**^{47,48}]

Schema 12: Mesomere Grenzformeln der Carbenoide XLIII: Carbanion XLIII^{47,48]}

Auch Phosphinidenoide **XLII** zeigen ein ambiphiles Reaktionsverhalten. So ist z.B. gegenüber Alkylhalogeniden ein nukleophiles Reaktivitätsverhalten zu beobachten (vgl. Schema 11).^[46] Auch die Synthese der dreigliedrigen Ring-Systeme, z.B. der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe (Schema 7), verläuft nach jüngsten Erkenntnissen^[49] nach einem nukleophilen Mechanismus, auch wenn es insgesamt eine "phosphiniden-ähnliche" Reaktion darstellt,^[28a,29b,50] d.h. im Sinne einer formalen [2+1]-Cycloaddition abläuft. Im Unterschied dazu zeigen Li/OR-Phosphinidenoid-Komplexe nur eine reine "phosphanid-ähnliche" Reaktivität mit einem nukleophilen Phosphorzentrum.^[51] Entsprechende Li/NR₂-Phosphinidenoid-Komplexe konnten auf Grund ihrer thermischen Labilität bisher nicht isoliert werden. Erste Untersuchungen weisen allerdings in einem Fall auf eine Phosphor-Lithium-Bindung (¹ $J_{P,Li} = 62.1$ Hz) und somit auf einen nukleophilen Phosphor hin.^[52]

2 Zielsetzung

Im Rahmen dieser Arbeit sollte die Synthese neuartiger Donor-substituierter $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe und deren Reaktivität untersucht werden. Hierbei stellte sich die Frage, ob die etablierte Syntheseroute über Li/Cl-Phosphinidenoid-Komplexe auch für funktionalisierte Derivate anwendbar ist und inwieweit der Reaktionsverlauf durch Donor-Substituenten beeinflusst wird.

Der zweite Teil der Arbeit befasst sich mit der Reaktivitäts-Untersuchung dieser Donor-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe. Schwerpunkte sind die thermische und photochemische Reaktivität sowie SET-Deoxygenierungsreaktionen mit Ti^{III}-Komplexen.

3 Ergebnisse und Diskussion

3.1 Zur Frage der Funktionstoleranz in der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex-Synthese

In Kapitel 1.2 wurden die Vorteile der sogenannten "Tieftemperatur-Route" der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex-Synthese bereits an einigen Beispielen diskutiert. Auf Grund der sehr milden Reaktionsbedingungen und dem schnellen und einfachen Zugang zu den Dichloro(organo)phosphan-Komplexen 1-3, wurde diese Route als bevorzugte Synthesemethode für die Darstellung neuer funktionalisierter $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe herangezogen. Die Generierung der Phosphinidenoid-Komplexe 4-6 erfolgte bei tiefen Temperaturen (-78 °C) ausgehend von den Dichloro(organo)phosphan-Komplexen 1-3 über einen Li/Cl-Austausch mittels tert-Butyllithium in Gegenwart von [12]Krone-4 (Schema 13).

Schema 13: Generierung der Phosphinidenoid-Komplexe 4-6 über die "Tieftemperatur-Route".

Wie schon in der Einleitung beschrieben, beschränkte sich die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese bisher auf einfache, nicht-funktionalisierte Substituenten am Ring-Kohlenstoff, wie beispielsweise Alkyl- und Aryl-Substituenten oder auch Spiro-Oxaphosphiran-Komplexe.^[29b,30,53] Vor kurzem wurde, von Mitarbeitern der Gruppe um Streubel, die ersten Derivate mit fluorierten Substituenten^[31] und eine erste Studie zur Funktionstoleranz bei der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese mit ungesättigten Aldehyden^[32] und Diketonen^[54] durchgeführt.

3.1.1 Reaktionen mit ungesättigten Aldehyden: C=C- vs. C=O-Doppelbindung

Im Rahmen meiner Diplomarbeit im Arbeitskreis Streubel konnte 2012 gezeigt werden, dass bei der Umsetzung des Phosphinidenoid-Komplexes **4a** mit ungesättigten Aldehyden die C=O-Doppelbindung gegenüber der C=C-Doppelbindung bevorzugt wird.^[32] In Schema 14 ist die Synthese der bekannten Derivate gezeigt und nachfolgend die wichtigsten Aspekte noch einmal kurz zusammengestellt.

Schema 14: Synthese der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 7-10 mit ungesättigten Aldehyden.^[32]

In allen Fällen wurden die entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe erhalten. Abbildung 7 zeigt die ³¹P{¹H}-NMR-Spektren der Komplexe **7-10**.

Abbildung 7: ${}^{31}P{}^{1}H$ -NMR-Spektren der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 7-10.
Auch wenn alle Derivate in ähnlich guten Ausbeuten isoliert werden konnten (Tabelle 2), weisen sie doch einige signifikante Unterschiede in ihren Eigenschaften auf. Während **9** und **10** diastereomerenrein erhalten wurden, konnten die anderen Derivate **7a-c** und **8a-c** nur als Mischung dreier Isomere isoliert werden.^[32] Als Grund für das Auftreten der drei Isomere wurde zum einen die unterschiedliche Substitution am Ring-Kohlenstoff, als auch die P-C-Atropisomerie der exocyclischen P-C-Bindung erkannt.^[32] Hierbei kann das Proton der Bis(trimethylsily)methyl-Gruppe am Phosphor entweder in Richtung des Metalls (s-*cis*) oder in die entgegengesetzte Richtung (s-*trans*) orientiert sein (s. auch Kapitel 3.4.1).^[32] Dadurch können zweimal zwei Diastereomere, in der Summe also maximal vier Isomere erhalten werden. In Tabelle 2 sind die ³¹P{¹H}-NMR-Daten der Verbindungen **7-10** aufgeführt.

		δ ³¹ Ρ [ppm]	¹ Ј_{W,Р} [Hz]	Verhältnis	Ausbeute (%)
	а	20.2	290.4	0.05	
7	b	28.5	297.3	1.0	56
	С	33.9	293.5	0.1	
	а	21.3	290.9	0.1	
8	b	29.6	299.2	1.0	58
	С	34.8	294.6	0.2	
9		36.0	301.7	-	51
10)	38.4	304.9	-	52

Tabelle 2: ${}^{31}P{}^{1}H$ -NMR-Daten (C₆D₆) der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **7-10**. [32]

Auf Grund der großen Intensitätsunterschiede werden nicht immer alle denkbaren Isomere beobachtet. Wie im Fall der Komplexe 7a-c und 8a-c, können drei Produkte anhand ihrer chemischen Verschiebung zugeordnet werden, wovon ein Isomer stark bevorzugt gebildet wird. Vergleicht man die Hauptprodukte miteinander, so lässt sich eine Tieffeld-Verschiebung und eine Zunahme der ${}^{1}J_{W,P}$ -Kopplungskonstante beim Übergang der Komplexe mit isolierter Doppelbindung (7a-c, 8a-c) bis hin zu den Komplexen mit einer zum Dreiring konjugierten Doppelbindung in 9 und 10 feststellen. Mit gleicher Tendenz nimmt hier jedoch die Stabilität der Produkte ab. Während 7 sehr stabil ist, ist 10 auf Grund der Position der Doppelbindung sehr reaktiv und die Isolierung problematisch.^[55] Eine 1,4-Addition bzw. eine Umlagerung zu einem $\sigma^{3}\lambda^{3}$ -Oxaphospholen-Komplex, wie sie beispielsweise für C-Acyl- $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe substituierte zu Dioxaphospholen-Komplexen bekannt ist,^[54] konnte für die Derivate **9** und **10** jedoch nicht beobachtet werden.

Als ein Fazit dieser Untersuchungsreihe wurde eine klare Präferenz der 1,2-Addition gegenüber einer möglichen 1,4-Addition in **9** und **10** und eine exzellente π -Selektivität genannt.^[32]

Weitere Untersuchungen zeigten jetzt, dass die Präferenz deutlich von der Rigidität der Carbonyl-Verbindung abhängt. So lieferte die Reaktion des Phosphinidenoid-Komplexes **4a** mit 2-Cyclopentenon nicht den $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex **11**, sondern den bicyclischen $\sigma^3\lambda^3$ -Phosphiran-Komplex **12**, was nun anhand der Röntgeneinkristallstrukturanalyse gezeigt werden konnte (Schema 15).

Schema 15: Reaktion mit Cyclopentenon und Darstellung von Phosphiran-Komplex 12.

Während die chemische Verschiebung im Hochfeldbereich $(\delta^{31}P: -131.5, {}^{1}J_{W,P} = 273.9 \text{ Hz} \text{ und } \delta^{31}P: -138.6, {}^{1}J_{W,P} = 263.6 \text{ Hz})$ schon die Bildung von **12** vermuten ließ,^[55] belegte das Ergebnis der Einkristallstrukturanalyse dies eindeutig (Abbildung 8).

Abbildung 8: Molekülstruktur von 12 (s-*trans*) im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H6A) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D2. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.5238(12), P-C1 1.863(5), P-C5 1.813(5), C1-C5 1.538(6), P-C6 1.819(4), C1-P-C5 49.4(2), P-C1-C5 63.6(2), C1-C5-P 67.0(2).

Auch wenn $\sigma^3 \lambda^3$ -Spiro-Oxaphosphiran-Komplexe bereits bekannt und auch hier prinzipiell denkbar sind,^[30a,30b,56] ist die 1,2-Addition an die C=C-Doppelbindung in diesem Fall bevorzugt. Anhand der mesomeren Grenzstrukturen von 2-Cyclopentenon lässt sich zeigen, dass ein nukleophiler Angriff des freien Elektronenpaars des Phosphors bevorzugt an der stärker elektropositiven Position 4 stattfinden sollte (Abbildung 9).

Abbildung 9: Mesomere Grenzstrukturen von 2-Cyclopentenon.

Erstaunlicherweise wurde diese Reaktivität bei der Synthese der Derivate **9** und **10** nicht beobachtet, obwohl auch hier die Carbonyl-Verbindungen durch analoge mesomere Grenzstrukturen beschrieben werden können. DFT-Rechnungen (SCS-MP2/def2-TZVPPecp Niveau) konnten zeigen, dass die Ringspannung bei $\sigma^{3}\lambda^{3}$ -Spirooxaphosphiran-Komplexen mit abnehmender Ringgröße zunimmt.^[30c] Überraschenderweise liegen sowohl die Ringspannung des [5,3]- (22.8 kcal/mol), als auch des [6,3]-Spirooxaphosphiran-Komplexes (20.1 kcal/mol) energetisch unterhalb des *C,C*-Dimethyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes (23.9 kcal/mol).^[30c] Dennoch würde eine verkürzte C=C-Doppelbindung im Substituenten am Ring-Kohlenstoff in **11** vermutlich die Ringspannung weiter erhöhen und daher den $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **11** energetisch destabilisieren.

Daher ist (bis jetzt) der $\sigma^3 \lambda^3$ -Phosphiran-Komplex **12** das einzige Beispiel, bei dem der Phosphinidenoid-Komplex **4a** nicht π -selektiv mit einem Substrat an der C=O-Doppelbindung reagiert.

3.1.2 Reaktionen mit Bicyclo[2.2.1]hept-5-en-2-carbaldehyd

 $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe Funktionalisierte sind nicht hinsichtlich nur Funktionstoleranz-Untersuchungen von großem Interesse, sondern auch wegen ihrer möglichen Reaktivität und ihren neuen Eigenschaften. Geeignete Derivate mit ungesättigten funktionellen Gruppen könnten somit z.B. in Polymerisationsreaktionen (Bicyclo[2.2.1]hept-2-en) Verwendung finden. Da Norbornen in der Ringöffnungsmetathese-Polymerisation (ROMP) bereits gut etabliert ist,^[39h,57] stellte sich hier die Frage, ob es möglich ist einen C-Norbornyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex darzustellen oder ob in diesem Fall auch die C=C-Doppelbindung vom Phosphinidenoid-Komplex 4a nukleophil angegriffen wird. In Schema 16 ist die Reaktion des Phosphinidenoid-Komplexes 4a mit Bicyclo[2.2.1]hept-5-en-2-carbaldehyd dargestellt.

Schema 16: Synthese des Norbornyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes 13 (Isomerengemisch).

Da die Carbonyl-Verbindung nicht enantiomerenrein eingesetzt wurde, wurde auch der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **13** als Isomeren-Mischung erhalten, zumal auch hier aus den o.g. Gründen weitere Isomere entstehen (Tabelle 3 und Abbildung 10).

Tabelle 3: ³¹P{¹H}-NMR-Daten (CDCl₃) von **13**.

Abbildung 10: ³¹P{¹H}-NMR-Spektrum (CDCl₃) von **13a-d** (**a**'-**d**' entsprechen den ¹⁸³W-Satelliten).

Die chemische Verschiebung und auch die ${}^{1}J_{W,P}$ -Kopplungskonstante liegen bei allen vier Verbindungen sehr nah beieinander und werden daher den isomeren Komplexen **13a-d** zugeordnet. Auf Grund ihrer sehr ähnlichen Eigenschaften konnten **13a-d** nicht säulenchromatographisch voneinander getrennt werden. Da in dieser Reaktion (Schema 16) ausschließlich die $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **13a-d** gebildet werden, kann die exzellente π -Selektivität der Syntheseroute mittels des Phosphinidenoid-Komplexes **4a** mit einem weiteren Beispiel belegt und die Konstitution durch Röntgeneinkristallstrukturanalyse bestätigt werden (Abbildung 11).

Abbildung 11: Molekülstruktur von 13 (s-*cis*) im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H9) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D3.
Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W1-P1 2.4530(10), P1-O1 1.661(3),
C1-O1 1.491(5), P1-C1 1.779(4), P1-C9 1.807(4), C1-C2 1.495(5), C7-C5 1.498(6), C7-C8 1.332(6),
O1-C1-P1 60.30(17), C1-O1-P1 68.48(18), O1-P1-C1 51.22(16).

Die Molekülstruktur von **13** in Abbildung 11 zeigt die s-*cis* Konformation des Bis(trimethylsilyl)methyl-Substituenten, d.h. die C-H9- und P-W-Bindung haben in Bezug auf die P1-C9-Bindung die gleiche Orientierung. Des Weiteren liegt für den Norbornyl-Substituenten im Festkörper bevorzugt die *endo*-Konformation vor. Im Vergleich zu der literaturbekannten Molekülstruktur des *C*-Phenyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Wolfram-Komplexes **XIV**^[21] sind die Bindungslängen und Bindungswinkel des Dreirings in guter Übereinstimmung. Auch die Länge der exocyclischen P-C-Bindung (vgl. **XIV**: 1.794(6) Å)^[21] und der exocyclischen C-C-Bindung und sind lediglich im Vergleich zu einer typischen P-C- oder C-C-Bindung leicht verkürzt.^(*) Betrachtet man die Bindungslängen im Norbornyl-Substituenten, fällt auf, dass auch die C5-C7-Bindung etwas verkürzt ist, die C7-C8-Bindung hingegen entspricht der typischen Länge einer C=C-Doppelbindung.^(*)

Durch Variation des Substituenten am Phosphor konnten auch die entsprechenden CPh₃- und Cp*-substituierten Derivate erhalten werden. Tabelle 4 zeigt einen Vergleich der chemischen Verschiebung und der Kopplungskonstante der Komplexe **13-15** in Abhängigkeit des Substituenten R am Phosphor.

^(*) Im Vgl. mit einer typischen C-C-Einfachbindung: 1.530 Å, C=C-Doppelbindung: 1.316 Å und P-C-Einfachbindung: 1.855 Å.^[58]

	R			δ ³¹ P [ppm]	¹ Ј_{W,Р} [Hz]	Verhältnis
			а	32.6	299.4	0.3
	CH(SiMe ₃) ₂	13	b	32.6	298.9	0.6
(OC)₅W R			С	32.8	299.6	1.0
			d	33.7	298.7	0.3
	Cp*	14	а	23.9	298.1	0.3
			b	25.4	298.4	1.0
			С	25.6	299.3	0.2
			d	26.4	299.2	0.1
	CDh	45	а	8.9	300.4	1.0
			b	9.3	300.4	0.4
	01-113	15	С	9.8	301.6	0.6
			d	10.8	(*)	0.1

Tabelle 4: Vergleich der ³¹P{¹H}-NMR-Daten (**13**: CDCl₃, **14**: C₆D₆, **15**: THF) von **13-15**. ^{(*) 1}J_{W P} auf Grund der Intensität des Signals nicht zu identifizieren.

Überraschenderweise wurde nicht nur das Bis(trimethylsilyl)methyl-substituierte Derivat **13**, sondern auch die Derivate **14** und **15** als Mischung vierer Isomere erhalten. Da im Fall der Komplexe **14** und **15** die Atropisomerie der exocyclischen P-C-Bindung auszuschließen ist, muss die Ursache in den stereogenen Zentren begründet liegen. Neben dem Phosphor sind sowohl der Ring-Kohlenstoff C1, als auch C2 im Norbornyl-Substituenten (vgl. Abbildung 11), stereogene Zentren. Je nach sterischem Anspruch des Phosphor-Substituenten und einer daraus resultierenden gehinderten Rotation, führen die verschiedenen Konfigurationen zur Isomerenbildung. Auch die schon angesprochene *endo*- bzw. *exo*-Isomerie ist hier noch einmal zu betonen, wobei die *endo*-Konformation vermutlich die energetisch günstigere Anordnung darstellt. Da die Separierung der Isomere nicht gelang, war leider keine eineindeutige Zuordnung zur Stereochemie möglich.

Gegenüber dem *C*-Phenyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **XIV** (δ^{31} P: 38.2, ${}^1J_{W,P} = 307.7 \text{ Hz}$)^[28a] ist Komplex **13** leicht in den Hochfeldbereich verschoben. Vergleicht man auch **14** (*P*-Cp*) mit dem entsprechenden *C*-Phenyl-substituierten Derivat (δ^{31} P: 31.6, ${}^1J_{W,P} = 309.0 \text{ Hz}$)^[28a] wird eine Verschiebung der Signale zu höherem Feld um ca. 5-7 ppm und eine um 10 Hz kleinere ${}^1J_{W,P}$ -Kopplungskonstante deutlich. Die gleiche Tendenz wird auch beim Trityl-Derivat **9** beobachtet (*C*-Phenyl-substituierter Komplex : δ^{31} P: 16.0, ${}^1J_{W,P} = 311.5 \text{ Hz}$).^[28b]

3.1.3 Reaktion mit CH-aziden Aldehyden

Neben ungesättigten Substituenten am Ring-Kohlenstoff des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes wurde auch eine erste Untersuchung zur Toleranz von CH-aziden Carbonyl-Verbindungen durchgeführt. Carbonyl-Verbindungen haben generell zwei reaktive Zentren. Zum einen ist der nukleophile Angriff am positivierten Kohlenstoff der Carbonyl-Gruppe, welcher auch den entscheidenden Schritt der Oxaphosphiran-Komplex-Synthese darstellt, zu nennen. Zusätzlich sind sie CH-azide, wenn sich in α -Position zur Carbonyl-Funktion mindestens ein Wasserstoffatom befindet (Schema 17).

Schema 17: Keto-Enol-Tautomerie: Abspaltung eines Protons in α -Position (R, R', R" = H, organischer Rest).

Ketone oder auch Aldehyde mit einer, zur Carbonyl-Gruppe α -ständigen, CH-Gruppe stehen im Gleichgewicht mit ihrer Enol-Form (Keto-Enol-Tautomerie). Die starke Polarisierung der C-O-Bindung durch die höhere Elektronegativität des Sauerstoffs und die Möglichkeit, die negative Ladung über drei Atome zu verteilen (mesomere Grenzstrukturen **XLV**['], **XLV**^{''}, **XLV**^{'''}), begünstigen die Bildung des Enolats **XLV**^{'''}. Durch anschließende Protonierung wird das Enol **XLVI** gebildet. Zwar liegt das Gleichgewicht meist weit auf der Seite des Ketons **XLIV** und Verbindungen des Typs **XLIV** (z.B. R = Alkyl oder Aryl, R['] = H) gehören eher zu den schwachen CH-Säuren (pKs ~ 14-20),^{[59](*)} dennoch besteht die Möglichkeit, dass das Enolat (**XLV**^{'''}) oder Enol (**XLVI**) schneller reagiert und das Gleichgewicht damit auf die rechte Seite verschoben wird. Zusätzlich kann die Lage des Gleichgewichts durch eine Base,

^(*) pKs (Ethylbutyraldehyd) = 19.1, pKs (Phenylacetaldehyd) = 14.9

pKs-Wert wurde mit einem Online-Tool berechnet und können daher als Näherungswerte zum Vergleich herangezogen werden (chemicalize.org bei ChemAxon)^[59]

beispielsweise noch nicht abreagiertes *tert*-Butyllithium, katalysiert, zur Enol-Form **XLVI** hin verschoben werden und dadurch eine andere Reaktivität der Carbonyl-Verbindung hervorrufen. Vor kurzem konnte von Streubel *et al.* gezeigt werden, dass Phosphinidenoid-Komplex **4a** mit Acetylaceton (Pentan-2,4-dion) zu einem *P*-Alkoxyphosphan reagiert. Auch hier wurde die Enol-Form als reaktive Spezies vorgeschlagen, die schließlich zur formalen Insertion eines Phosphiniden-Komplexes in die O-H-Bindung des Enols führte.^[54] Auch bei der Reaktion des Phosphinidenoid-Komplexes **6a** (*P*-Cp^{*}) mit Cyclopentanon wurde eine Enolisierung der Carbonyl-Verbindung in Gegenwart von *tert*-Butyllithium und eine nachfolgende Aldol-Kondensation beobachtet, die zu neuartigen Reaktionsprodukten führte.^[30c,53c] In Schema 18 ist die Reaktion des Phosphinidenoid-Komplexes **4a** mit (schwach) CH-aziden Aldehyden dargestellt.

Schema 18: Reaktion des Phosphinidenoid-Komplexes 4a mit CH-aziden Aldehyden zu 16 und 17.

In beiden Reaktionen wurden sehr selektiv die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **16** bzw. **17** gebildet und im Fall von **16** sogar mit sehr guter Diastereoselektivität. Die NMRspektroskopischen Daten sind in Tabelle 5 wiedergegeben und sind mit den zuvor genannten Derivaten, beispielsweise Komplex **13**, in chemischer Verschiebung und ${}^1J_{W,P}$ -Kopplungskonstante vergleichbar.

		δ ³¹ Ρ [ppm]	¹ Ј_{W,Р} [Hz]	² Ј_{Р,Н} [Hz]	Verhältnis	Ausbeute (%)
16		29.7	299.0	12.4 (d)	-	68
	а	21.7	300.7	m	0.1	
17	b	29.8	300.7	7.5 (d)	1.0	60
	С	31.8	296.0	br	0.2	

Tabelle 5: ³¹P-NMR-Daten der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe 16 und 17(d = Dublett, m = Multiplett, br = verbreitertes Signal).

Zusätzlich konnten beide $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **16** und **17** anhand ihrer Einkristallstruktur eindeutig nachgewiesen werden. Die Molekülstrukturen im Festkörper sind in Abbildung 12 und Abbildung 13 dargestellt und sind mit bereits bekannten Derivaten hinsichtlich Bindungslänge oder Bindungswinkel vergleichbar. Beide Verbindungen kristallisieren bevorzugt in der s-*cis* Konformation.

Abbildung 12: Molekülstruktur von 16 (s-*cis*) im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H7) zur besseren Übersichtlichkeit nicht dargestellt;
Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D4. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4712(8), P-O1 1.672(2), C1-O1 1.482(4), P-C1 1.778(3), P-C7 1.797(3), O1-C1-P 60.93(14), C1-O1-P 68.30(16), O1-P-C1 50.77(12).

Abbildung 13: Molekülstruktur von 17 (s-*cis*) im Einkristall; Fehlordnung in der Orientierung des Phenyl-Rings (gezeigt ist die Hauptlage mit 76%); Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H9A) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D5. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4635(13), P-O1 1.669(4),
C1-O1 1.491(8), P-C1 1.800(7), P-C9 1.807(5), O1-C1-P 60.1(3), C1-O1-P 69.2(3), O1-P-C1 50.8(3).
28

3.1.4 Reaktionen mit CI-substituierten Aldehyden und Ketonen

Als weitere Fragestellung zur Funktionstoleranz der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese wurde eine Untersuchungsreihe zu Chlor-substituierten Aldehyden und Ketonen durchgeführt. In Schema 19 sind die Reaktionen und in Tabelle 6 die NMRspektroskopischen Daten der untersuchten Derivate dargestellt.

Schema 19: Darstellung von *C*-Cl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen **18-20**.

R			δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	Verhältnis	Nebenprodukte %
n = 1 R = H	18	a b	34.9 42.9	305.8 305.2	1.0 0.1	70
n = 3 R = Me	19	a b c d	42.5 42.9 55.9 56.8	296.9 298.2 300.3 300.9	0.6 0.5 1.0 0.7	9
n = 4 R = Me	20	a b c d	41.6 42.1 54.5 56.1	297.3 296.8 299.3 299.9	0.4 0.4 0.9 1.0	10

Die Reaktion von **4a** mit 2-Chloroacetaldehyd erwies sich als sehr problematisch. Im Unterschied zur Umsetzung mit den Ketonen (zu **19** und **20**), mussten drei Äquivalente der Carbonyl-Verbindung eingesetzt werden und selbst unter diesen Bedingungen wurde **18** nur zu einem Anteil von 30% (Integration im ³¹P-NMR-Spektrum) gebildet. 2-Chloroacetaldehyd wurde aus der wässrigen Lösung extrahiert, über Na₂SO₄ getrocknet und destilliert, dennoch wurden, neben

[Bis(trimethylsilyl)methyl-phosphan- κP]pentacarbonylwolframl(0)^[60] (11%), weitere nicht identifizierte Produkte, vorwiegend mit direkter P-H-Bindung, gebildet. Durch den elektronenziehenden Substituenten Chlor in α -Position zur Carbonyl-Gruppe spielt auch hier die CH-Azidität (vgl. Kapitel 3.1.3) eine große Rolle (pKs = 14.1; vgl. pKs(Acetaldehyd) = 16.7).^{[59](*)} Durch eine Deprotonierung in der stärker CH-aziden α -Position zur Carbonyl-Gruppe könnten eine Enolisierung und eventuell eine anschließende Aldol-Kondensation die Folge sein.^[30c,53c] Daraus resultiert eine Vielzahl möglicher Reaktionspfade, die auch durch einen Überschuss des Aldehyds nicht diskriminiert werden konnten.

Der induktive Effekt spielt, auf Grund der größeren Entfernung des Chlor-Substituenten vom Carbonyl-Kohlenstoff, bei der Synthese der Derivate **19** und **20** keine weitere Rolle. Die Reaktion des Phosphinidenoid-Komplexes **4a** mit 5-Chloro-2-pentanon und 6-Chloro-2-hexanon verläuft recht selektiv zum entsprechenden $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **19** und **20**. Nebenprodukte dieser beiden Reaktionen sind hauptsächlich [[{Bis(trimethylsilyl)methyl}chlorophosphan- κP]pentacarbonylwolfram(0)]^[53b] und [[{Bis(trimethylsilyl)methyl}phosphan- κP]pentacarbonylwolframl(0)]^[60] mit einem Anteil von ca. 10% (Integration im ³¹P-NMR-Spektrum). Durch säulenchromatische Aufarbeitung konnte der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **19** erhalten werden, allerdings nur als Isomeren-Gemisch (**19a,b,c,d** im Verhältnis 0.6:0.4:1.0:0.7) und in einer mäßigen Ausbeute (21%).

^(*) pKs-Wert wurde mit einem Online-Tool berechnet und kann daher als N\u00e4herungswert zum Vergleich herangezogen werden (chemicalize.org bei ChemAxon)^[59] 30

3.2 Untersuchungen zur Synthese von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen mit Donorgruppen

3.2.1 Phosphinidenoid-Komplexe: Struktur und Reaktivität in der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex-Synthese

Wichtig im Hinblick die Synthese Donor-funktionalisierten auf von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen. mögliche Wechselwirkung ist die der Phosphinidenoid-Komplexe 4-6 mit diesen Funktionalitäten und einer damit verbundenen Veränderung des koordinationschemischen Verhaltens. Insofern ist es sinnvoll, den Mechanismus der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese und besonders die Bindungssituation des Phosphors im Phosphinidenoid-Komplex etwas genauer zu betrachten.

In Kapitel 1.3.3 wurde die Molekülstruktur des Li/F-Phosphinidenoid-Komplexes^[46] bereits diskutiert (Abbildung 6) und gezeigt, dass im Festkörper das Phosphorhaltige-Anion und das Lithium-Kation als getrenntes nicht wechselwirkendes Ionenpaar vorliegen. Erstmals konnte nun auch die entsprechende Molekülstruktur des Chlorsubstituierten Derivates **4a** erhalten werden (Abbildung 14).^(*)

Abbildung 14: Molekülstruktur von 4a (s-*cis*) im Einkristall; Fehlordnung in einem [12]Krone-4-Molekül (gezeigt ist die Hauptlage mit 60%); Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit;
H-Atome (außer H13A) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D1. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W2-P2 2.589(3), P2-Cl2 2.177(4), P2-C13 1.877(9), P2-Li2 8.8892(2), Cl2-Li2 9.4479(2), W2-P2-C13 107.7(3), Cl2-P2-W2 101.03(12), C13-P2-Cl2 104.1(3).

^(*) Erhalten aus der äquimolaren Reaktion des Chloro(organo)phosphan-Komplexes^[53b] **21a** mit ⁷BuLi und [12]Krone-4 in THF bei -78°C. Die NMR-spektroskopische Charakterisierung von **4a** wurde bereits zuvor beschrieben.^[53b]

Die asymmetrische Einheit setzt sich aus zwei Formeleinheiten von **4a** und einem Lösungsmittel-Molekül (THF) zusammen (Abbildung 15).

Abbildung 15: Asymmetrische Einheit von 4a; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; gezeigt ist jeweils die Hauptlage (links: 60%, rechts: 79%).

Röntgenstrukturanalyse Die zeigt, dass Wechselwirkungen in Form von Wasserstoffbrückenbindungen zwischen Cl1 Cl2 bzw. und der Bis(trimethylsilyl)methyl-Gruppe und im Fall von Cl2 auch mit dem Kronenether vorliegen (Abstände im Bereich von 2.5631(1) Å und 2.8097(1) Å). In zwei der vier Moleküle Kronenether der asymmetrischen Einheit liegen die Atome auf fehlgeordneten Positionen vor. Abbildung 16 zeigt die Haupt- und Nebenlage in Abhängigkeit ihrer Besetzung.

Abbildung 16: Fehlordnung im Kronenether farbcodiert nach Besetzungsfaktoren; Ellipsoide repräsentieren 30% Aufenthaltswahrscheinlichkeit;

links: weiß 100 %, blau 60 %, gelb 40 %; rechts: weiß 100 %, blau 79 %, orange 21 %.

Die Koordinationssphäre am Phosphor ist mit einer Winkelsumme von 312.8° trigonal-pyramidal, sodass das freie Elektronenpaar stereochemisch die Ecke eines Pseudo-Tetraeders einnimmt. In Tabelle 7 sind die Bindungslängen und Bindungswinkel des Li/CI-Phosphinidenoid-Komplexes **4a**, des F-Derivats **4a^F** und des Dichloro(organo)phosphan-Komplexes **1a** vergleichend aufgeführt.

Tabelle 7: Vergleich der Bindungslängen [Å] und Bindungswinkel [°] in 4a, $4a^{F[46]}$ und $1a^{[61]}$.([W] = W(CO)₅, R = CH(SiMe₃)₂).

		$\begin{bmatrix} W \\ B \\ C \\ C$	[W] R CI CI 1a
Bindungslängen [Å]	X = CI	X = F	X = CI
W-P	2.589(3)	2.580(3)	2.4589(7)
P-C	1.877(9)	1.8402(1)	1.804(3)
P-X1	2.177(4) (P2-Cl2) 2.185(3) (P1-Cl1)	1.744(9)	2.0584(9)
P-X2	-	-	2.0598(9)
Bindungswinkel [°]			
W-P-C	107.7(3)	109.297(3)	119.57(9)
W-P-X	101.03(12)	98.892(2)	118.81(4)
C-P-X1	104.1(3)	98.470(3)	106.70(9)
X1-P-X2	-	-	96.96(4)
Σ<Ρ	312.8	306.7	306.9

Verglichen mit dem Dichloro(organo)phosphan-Komplex **1a** sind in **4a** alle Bindungen um 4-6 % verlängert und sind vergleichbar mit den entsprechenden Bindungslängen in **4a**^{F[46]} (Tabelle 7). Sowohl die Phosphor-Wolfram-Bindung ist in **4a** und **4a**^F gleich lang und auch die Phosphor-Kohlenstoff-Bindungslänge weicht nur minimal ab (2% länger in **4a**). Während die Winkelsummen am Phosphor in **1a** und **4a**^F vergleichbar sind, ist diese in **4a** kleiner; Abweichungen werden durch die beiden unterschiedlichen Halogene hervorgerufen.

Wie die Molekülstruktur zeigt (Abbildung 14 und Abbildung 15), liegt auch beim entsprechenden Chlor-Derivat **4a** im Festkörper ein separiertes Ionenpaar vor. Der wesentliche Unterschied ist die Abschirmung des Lithiums, in **4a** wird Lithium durch

zwei Äquivalente Kronenether koordiniert, woraus ein noch größerer P-Li-Abstand resultiert. Während im Fluor-Derivat (Kapitel 1.3.3, Abbildung 6) der P-Li Abstand 5.5048(3) Å beträgt, ist dieser in **4a** um mehr als die Hälfte auf 8.8892(2) Å vergrößert. Auf Grund der strukturellen Ähnlichkeiten kann auch für **4a** in Lösung ein Diffusions-Gleichgewicht zwischen Kontaktionenpaar und einem solvatisierten, separierten lonenpaar angenommen werden.^[46] Diese Betrachtungen spielen eine wichtige Rolle hinsichtlich des Mechanismus der $\sigma^3\lambda^3$ -Oxaphoshiran-Synthese und erlauben die Formulierung eines nukleophilen Angriffs des freien Elektronenpaars am Phosphor an den Kohlenstoff der Carbonyl-Gruppe (Schema 20). Dies kann auch durch quantenchemische Rechnungen von Espinosa gestützt werden; in der Reaktion von **4a** mit einem Phosphit-substituierten Keton zu einer P,C-Käfig-Verbindung ist der nukleophile Angriff des Phosphorzentrums der initiale Schritt.^[49]

Schema 20: Postulierter Mechanismus der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese. (R, R', R" = organischer Rest, M = Übergangsmetall)

Die Koordination des Lithiums am negativ geladenen Sauerstoffatom im ersten Übergangszustand (i) ist wahrscheinlich und erlaubt die räumliche Nähe des Lithiums zum Chlor-Substituenten. Der nachfolgende nukleophile Angriff des Sauerstoffs am Phosphor (ii) und die anschließende Lithiumchlorid- und [12]Krone-4-Eliminierung (iii) resultieren im entsprechenden $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex. Dehnicke *et al.* konnten bereits 1991 zeigen, dass Lithiumsalze mit [12]Krone-4 bevorzugt Komplexe des Typs [Li([12]Krone-4)X] bilden, in denen Lithium fünffach koordiniert vorliegt.^[62]

3.2.2 Reaktivität der Phosphinidenoid-Komplexe 4-5 gegenüber Lewis-Basen

Berücksichtigt man nun diese mechanistische Betrachtung, so stellt sich die Frage, inwieweit eine Donor-Funktionalität insbesondere die Übergangszustände und somit auch den Verlauf der Synthese beeinflusst. Neben der intramolekularen Wechselwirkung, spielt daher auch die intermolekulare Wechselwirkung eine große Rolle, daher wurde zuerst die Reaktivität der Phosphinidenoid-Komplexe **4a-c** gegenüber dem starken σ -Donor Tetramethyl-NHC **22** (1,3,4,5-Tetramethyl-imidazol-2-yliden)^[63] untersucht. Diese Umsetzung ist in Schema 21 dargestellt.

Schema 21: Reaktion der Phosphinidenoid-Komplexe 4a-c mit NHC 22.

Für alle drei Metalle (M = W (**a**), Mo (**b**), Cr (**c**)) und besonders selektiv im Fall des Wolfram-Komplexes **4a**, wurden Produkte mit einer chemischen Verschiebung im Hochfeldbereich des ${}^{31}P{}^{1}H$ -NMR-Spektrums gebildet; die Daten der Produkte **23a-c** sind in Tabelle 8 wiedergegeben.

23	Μ	δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	Nebenprodukte %
а	W	-128.4	100.3	-
b	Мо	-114.2	-	77
С	Cr	-93.2	-	65

 Tabelle 8: ³¹P{¹H}-NMR-Daten (THF) von 23a-c.

Wie aus Tabelle 8 zu entnehmen ist, wurde **23a** quantitativ gebildet, sowohl das Chrom-Derivat **23c**, als auch das Molybdän-Derivat **23b**, jedoch nur zu ca. 30 %, sodass sie leider nicht isoliert werden konnten. Auf Grund der ³¹P{¹H}-NMR-Daten liegt die Vermutung nahe, dass es sich bei der Verbindung um eine zwitterionische Verbindung, d.h. einen Carben-Phosphiniden-Addukt-Komplex handeln könnte. Denkbar ist, dass ein Angriff des stark nukleophilen Carbens **22** an den Phosphor und eine anschließende LiCI-Eliminierung zur Bildung der Komplexe **23a-c** führt. Zum Vergleich wurden entsprechende Derivate ohne Übergangsmetall-Koordination zum Phosphor herangezogen. Arduengo et al. berichteten 1997 über ein "Phosphaalken", welches über die Umsetzung des Carbens 22 mit dem Phenylphosphiniden-Cyclopentamer erhalten wurde.^[64] Die angegebene chemische Hochfeld-Verschiebung von -53.5 ppm im ³¹P-NMR-Spektrum für dieses unkomplexierte Derivat, sowie die chemische Verschiebung des Carben-Kohlenstoffs von 170.0 ppm (vgl. **23a**: $\delta^{13}C{^{1}H}$: 167.7) stützen weiterhin den Vorschlag, dass es sich bei der Reaktion des NHC's 22 mit den Phosphinidenoid-Komplexen 4a-c um die Komplexe 23a-c handelt.^[65] Neben der chemischen Verschiebung und der ${}^{1}\mathcal{J}_{W,P}$ -Kopplungskonstanten, lässt auch ¹³C-Resonanz kleinen die der Bis(trimethylsilyl)methyl-Gruppe am Phosphor ($\delta^{13}C\{^{1}H\}$: 4.5, $^{1}J_{P,C} = 69.5$ Hz) auf eine hohe Elektronendichte am Phosphor schließen. Die daraus resultierende, stark polarisierte P-C-Bindung, legt nahe, dass es sich bei Komplex 23a nicht um einen klassischen Phosphaalken-Komplex (typische ³¹P-Tieffeld-Verschiebung um die +200 ppm)^[66] handelt und **23a** gut durch die mesomere, zwitterionische Grenzformel 23a' beschrieben werden kann (Abbildung 17).

Abbildung 17: Mesomere Grenzformeln von 23a.

Diese Annahmen werden durch die Molekülstruktur im Festkörper (Abbildung 18) weiter gestärkt.

Abbildung 18: Molekülstruktur von 23a im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D6.
Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.6572(7), P-C1 1.837(3), P-C8 1.882(3), C1-N1 1.358(3), C1-N2 1.389(3), C2-C3 1.348(4), W-P-C8 125.09(9), W-P-C1 98.20(8), C8-P-C1 102.40(12).

Die P-C1-Bindung (1.837(3) Å) ist nur minimal kürzer als die P-C8-Bindung (1.882(3) Å), beide Längen weisen eindeutig auf eine P-C-Einfachbindung hin. In Übereinstimmung mit einem stereochemisch aktiven freien Elektronenpaar am Phosphor wurde eine trigonal-pyramidale Koordinationssphäre bestätigt; die Winkelsumme am Phosphor beträgt 325.7° (Abbildung 19).

Abbildung 19: Reduzierte Darstellung von 23a im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome und CO-Gruppen zur Übersichtlichkeit nicht dargestellt

Der heterocyclische Substituent ist planar, die P-W-Bindung steht annähernd senkrecht auf der durch den Substituenten aufgespannten Ebene und die P-C8-Bindung steht etwa 41° aus dieser Ebene heraus. Insgesamt kann von einer

sehr geringen P,C(p π -p π)-Wechselwirkung ausgegangen werden, vergleichbar mit dem von Arduengo *et al.* beschriebenen Derivat.^[64]

Zur Überprüfung der hohen Elektronendichte am Phosphor in **23a** wurden in einer Kooperation (Espinosa) Dichtefunktionaltheorie-(DFT)-Rechnungen (B3LYP/def2-TZVP-Niveau und B3LYP/def2-TZVPP-Niveau) durchgeführt (Details zu den Rechnungen in Anhang B).^[67] Es liegt eine sehr gute Übereinstimmung in der Elektronendichteverteilung und den Bindungslängen der berechneten Struktur **23a**^{calc} mit den Daten der Einkristallstruktur **23a** vor. Der einzige signifikante Unterschied ist eine Abweichung in der Rotation der P-W-Bindung, die vermutlich auf Packungseffekte im Einkristall zurückzuführen ist (C1-P-W-CO-Diederwinkel ist -0.3^o im Vergleich zu -14.0^o in der experimentellen Molekülstruktur).

In Abbildung 20 ist die Superposition der gerechneten Struktur und der Einkristallstruktur ("root-mean-square deviation" (mittlere quadratische Abweichung) rmsd = 0.359 Å für schwere Atome, *cis*-CO-Liganden wurden ausgeschlossen) dargestellt. Wie anhand der Abbildung verdeutlicht wird sind beide Strukturen in sehr guter Übereinstimmung und zeigen hauptsächlich Abweichungen für den *P*-CH(SiMe₃)₂-Substituenten (Abbildung 20).

Abbildung 20: Superposition der experimentellen und gerechneten Molekülstruktur 23a / 23a^{calc} (rmsd = 0.395 Å).^[67]

Abbildung 21 zeigt die Elektronendichteverteilung des höchsten besetzten Molekülorbitals (HOMO) (links) und des höchsten besetzten Molekülorbitals des Imidazol-Fragments (HOMO-4) (rechts) von **23a^{calc}**. Letzteres bestätigt die bereits

genannte, schwache P,C($p\pi$ - $p\pi$)-Wechselwirkung durch die schwache Überlappung der annähernd senkrecht ausgerichteten Orbitale.

Abbildung 21: DFT-Berechnung (B3LYP/def2-TZVP-Niveau) der Elektronendichte mittels Kohn-Sham-Funktion: HOMO und HOMO-4 der berechneten Struktur **23a^{calc}** (MO-Isoflächen, 0.05 au).^[67]

Anhand des HOMOs wird verdeutlicht, dass die hohe Elektronendichte am Phosphor (natürliche Ladung: $q^N = 0.482 \text{ e}$) über das Metallfragment ($q^N = -0.601 \text{ e}$) delokalisiert und somit stabilisiert ist.

Auch der Einfachbindungscharakter der P-C1- und P-C8-Bindungen $(1.830 \text{ Å} - 1.870 \text{ Å})^{[58]}$ konnte anhand der Wiberg-Indizes (WBI) und der Natürlichen Bindungsorbitalanalyse (NBO), sowie der Elektronendichteverteilung ($\rho(r)$) bestätigt werden (Tabelle 9).

Tabelle 9: Quantenchemische Berechnungen (B3LYP/def2-TZVPP-Niveau)zur P-C1- und P-C8-Bindungsordnung in 23a^{calc}.

23a ^{calc}	WBI	NBO	ρ(r) [10 ⁻² e/a ₀ ³]	Elliptizität
P-C1	1.008	1.136	14.45	0.376
P-C8	0.905	0.918	14.37	0.172

Die stärkere Abweichung der Elliptizität der P-C1-Bindung (>0) lässt zusätzlich auf einen π -Anteil schließen, was auch durch die Bindungsdissoziationsenergie (BDE = 50.71 kcal/mol) bestätigt wird. Die negativen NICS-Werte^[68] (NICS = Nucleus Independent Chemical Shift) beschreiben einen klaren aromatischen Charakter des Imidazol-Substituenten (NICS(0) = -11.38 ppm, NICS(1) = -8.49 ppm), vergleichbar mit bereits bekannten Imidazolium-^[69] und Azolium-Salzen.^[70] Dies stützt die Aussage, dass keine Konjugation in der Art einer π -Bindung zum Phosphor, sondern eine Einfachbindung vorliegt.

Einen weiteren Zugang zu Komplex **23a** (und das entsprechende Chrom-Derivat **23c**) konnte auch durch quantitative Umsetzung der Chloro(organo)phosphan-Komplexe **21a**,**c** mit zwei Äquivalenten **22** erhalten werden (Schema 22).

Schema 22: Darstellung von 23a,c durch Umsetzung von 21a,c mit 22.

Ein Äquivalent des NHC's **22** dient dabei als Hilfsbase,^[51a] wobei unter Salzeliminierung ein Phosphinidenoid-Komplex intermediär gebildet wird, der mit einem zweiten Äquivalent **22** die Komplexe **23a**,**c** erhalten werden.

2011 wurde bereits von Streubel et al. über die Bildung von Phosphinidenoid-Komplex-Salzen mit schwach koordinierenden Kationen berichtet.^[51a] In dieser Studie wurde die Reaktion von 21a mit 1,3-Di-tert-butyl-imidazol-2-yliden, im Unterschied zur Umsetzung mit 22, bei -78 °C durchgeführt, und bei tiefen Temperaturen die quantitative Salzbildung beobachtet. Auf Grund des sterischen Anspruchs des schwach koordinierenden Kations (mit den N-^tBu-Substituenten) wurde keine Folgereaktion zu einem 23a vergleichbaren Komplex beobachtet. Die chemische Verschiebung der Salz-Komplexe (δ^{31} P: 217.8, ${}^{1}J_{W,P}$ = 68.7 Hz) ist im Vergleich dazu Tieffeld-verschoben und entspricht der chemischen Verschiebung des Li/Cl-Phosphinidenoid-Komplexes **4a** (δ^{31} P: 212.9, ¹ $J_{W,P} = 67.4$ Hz).^[27] Festzuhalten ist, dass trotz der unterschiedlichen chemischen Verschiebung (bei $^{1}J_{W,P}$ -Kopplungskonstante) veraleichbarer sowohl in dem stabilisierten Phosphinidenoid-Komplex-Salz, als auch in 23a bzw. 23c eine hohe Elektronendichte am Phosphor vorliegt.

Da in der Literatur die Umsetzung des Phenyldichlorophosphans mit einem NHC-Derivat zum entsprechenden Phosphaalken beschrieben ist,^[65] wurde zusätzlich die Reaktivität der Dichloro(organo)phosphan-Komplexe **1a-c** gegenüber dem NHC **22** untersucht. Die entsprechende Umsetzung lieferte leider keinen vereinfachten Zugang zu den Komplexen **23a-c**, da die Bildung von **23a** mit einer Vielzahl anderer Produkte einhergeht. In Schema 23 ist die Reaktion des Wolfram-Derivats **1a** gezeigt.

Schema 23: Umsetzung des Dichloro(organo)phosphan-Komplexes 1a mit 22.

Zwar wurden bei der Umsetzung von **1a** (M = W) sowie **1b** (M = Mo) mit zwei Äquivalenten **22** die Resonanzen der Komplexe **23a,b** im ³¹P-NMR-Spektrum problemlos zugeordnet, die Integration im ³¹P-NMR-Spektrum verdeutlicht jedoch, dass die Produkte nur in sehr geringem Anteil gebildet werden (**23a**: 1%, **23b**: 9% über Integration im ³¹P{¹H}-NMR-Spektrum). Der Chrom-Komplex **23c** konnte bei Verwendung dieser Route (Schema 23) nicht beobachtet werden. In allen Fällen wurde jedoch im ³¹P-NMR-Spektrum ein Signal mit einer Verschiebung von δ^{31} P: -11 (keine ¹*J*_{P,H}-Kopplung) beobachtet, welches im Vergleich zu der von Arduengo *et al.* beschriebenen Verbindung,^[65] dem entsprechenden Phosphiniden-Carben-Addukt zugeordnet werden könnte. Versuche, dieses neue Produkt in einem großen Reaktionsansatz zu reproduzieren und zu isolieren, schlugen leider fehl.

Die Reaktion von **2a** (*P*-CPh₃) lieferte einen ersten Hinweis auf den intermediär gebildeten Phosphinidenoid-Komplex **24a** und ermöglicht einen vereinfachten Zugang zu Abfangreaktionen bei Raumtemperatur (Schema 24).

Schema 24: Reaktionsverlauf von 2a mit 2 Äq. 22 via intermediär beobachteten Phosphinidenoid-Komplex 24a.

Während in dem von Streubel *et al.* beschriebenen Phosphinidenoid-Komplex-Salz die Stabilisierung durch einen sperrigen Substituenten am Stickstoff des Carbens erfolgt, wird in **24a** die Stabilisierung durch den sperrigen Phosphor-Substituenten erreicht. Die erhöhte thermische Stabilität wurde auch schon für den

5a $(R = CPh_3)$ beobachtet,^[28b] Li/CI-Phosphinidenoid-Komplex während 4a $(R = CH(SiMe_3)_2)$ sich bereits bei ca. -40 °C zersetzt.^[27] Die fehlende kinetische Stabilisierung ist daher sicherlich auch der Grund, warum die entsprechende Salzbildung in der Reaktion von 1a mir 22 (Schema 23) nicht beobachtet wurde. Dennoch ist 24a im Vergleich zum literaturbekannten Komplex-Salz mit dem schwach koordinierenden 1,3-Di-*tert*-butylimidazolium Kation^[51a] weniger stabil. Die ³¹P{¹H}-NMR-Verfolgung zeigte nach 24 Stunden eine vollständige Umsetzung von 24a. Leider erfolgte diese nicht wie im Fall von 1a (Schema 23) zum entsprechenden zwitterionischen Komplex **25a** (δ^{31} P (THF): -121.9, ${}^{1}J_{W,P}$ = 132.5 Hz). Stattdessen wurde hauptsächlich 2a (43%) und ein weiteres Produkt gebildet (35%) welches, auf Grund der chemischen Verschiebung und der ${}^{1}J_{W,P}$ -Kopplungskonstante und im Vergleich zu 21a, dem Chloro(organo)phosphan-Komplex 26a zugeordnet werden kann ($\delta^{31}P(THF)$: 72.7, ¹ $J_{W,P}$ = 268.9 Hz, ¹ $J_{P,H}$ = 319.7 Hz). Eine ähnliche Temperatur-abhängige Rückreaktion wurde ebenfalls beim Bis(trimethylsilyl)methylsubstituierten Komplex-Salz beobachtet.^[51a]

Die chemische Verschiebung von **24a** (δ^{31} P (THF): 258.5) und die charakteristische Kopplungskonstante (${}^{1}J_{W,P}$ = 78.2 Hz) sind mit dem Li/CI-Phosphinidenoid-Komplex (R = CPh₃) **5a** (δ^{31} P(THF): 253.5, ${}^{1}J_{W,P}$ = 76.3 Hz) mit einem [Li(thf)_n]-Kation^[28b] in guter Übereinstimmung. Eine vergleichbare Situation wurde auch im Fall des *P*-CI Phosphinidenoid-Komplexes (R = CH(SiMe₃)₂) mit dem 1,3-Di-*tert*-butylimidazolium Kation beobachtet (δ^{31} P (THF-d⁸): 217.8, ${}^{1}J_{W,P}$ = 68.7 Hz im Vergleich zu **4a**: δ^{31} P: 212.9, ${}^{1}J_{W,P}$ = 67.4 Hz).^[27,51a]

Wie diese Untersuchungen zeigen, kann ein sehr guter Donor, wie beispielsweise das NHC **22**, die Reaktivität der Phosphinidenoid-Komplexe deutlich beeinflussen. Neben einer denkbaren Koordination des Donors an das Lithium-Kation, kann eine LiCI-Eliminierung in **1a-c** ermöglicht bzw. stimuliert werden (vgl. Schema 21).

Da die intermediäre Bildung des [1,3-Di-*tert*-butylimidazolium][Chlorophosphinidenoid-Komplexes] **24a** unter Umständen auch einen neuen Zugang zu $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen liefern könnte, wurde versucht, eine Umsetzung mit Benzaldehyd zu erreichen (Schema 25).

Schema 25: Umsetzung von 2a mit dem NHC 22 und Benzaldehyd.

Hierbei zeigte sich, dass der entsprechende $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **27** ($\delta^{31}P(THF)$: 17.2, ${}^1J_{W,P} = 310.2 \text{ Hz})^{[28b]}$ zwar gebildet wird, die Reaktion jedoch eine geringere Selektivität hat. Überraschenderweise konnte durch die Verwendung von zwei Äquivalenten **22**, statt dem erwarteten einen Äquivalent zur Generierung des Phosphinidenoid-Komplexes **24a**, die Bildung von **27** erhöht werden (n = 1: 5%, n = 2: 23%). In beiden Reaktionen wurde jedoch **2a** nicht vollständig umgesetzt (n = 1: 71%, n = 2: 25%) und die Verwendung von mehr als zwei Äquivalenten **22** konnte die Selektivität der Reaktion nicht verbessern. Da hier auch eine Folgereaktion des gebildeten Produktes **27** mit dem Carben **22** denkbar schien, wurde dem weiter nachgegangen. Hierzu wurde die Reaktion der Komplexe **28**-**30**^[21,29b,53a] mit dem NHC **22** untersucht. Überraschenderweise führte diese Umsetzung von **28-30** mit einem Äquivalent **22** in THF in allen Fällen sehr selektiv zu den Komplexen **23a,c** (Schema 26).

Schema 26: Umsetzung der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 28-30 mit dem NHC 22.

Auch durch die Reaktion des sterisch anspruchsvolleren *C,C*-Diphenyl-substituierten Komplexes **30** mit einem Äquivalent NHC **22** in THF konnte **23a** erhalten werden, d.h. das ³¹P{¹H}-NMR-Spektrum zeigte ein einziges Signal bei -128.3 ppm. Da das

Signal-zu-Rausch-Verhältnis jedoch im Vergleich zu den Reaktionen mit **28** oder **29** sehr schlecht war, weist dies auf eine geringe Konzentration hin.

Auch wenn der Mechanismus dieser Reaktion nicht offensichtlich ist, zeigt die hohe Selektivität eine deutliche Triebkraft der Bildung der zwitterionischen Komplexe **23a,c**, d.h. auch Bildung und Stabilität von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen können durch starke Donoren in unvorgesehener Weise beeinflusst werden.

3.2.3 Versuchte Darstellung von *ortho*-funktionalisierten *C*-Phenylsubstituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

Neben Triphenylphosphan, welches eine sehr wichtige Rolle als Ligand in Übergangsmetallkomplexen spielt, kann auch Diphenyl(o-pyridyl)phosphan von speziellem Interesse sein, da zwei unterschiedliche und konkurrierende Donor-Funktionen vorliegen, und dies auch als Chelat-Ligand genutzt werden kann. So könnte die Koordination von Phosphor und Stickstoff an ein Übergangsmetallzentrum neuartige Eigenschaften und Reaktivitäten der Komplexe hervorrufen. Bisher sind allerdings nur wenige Chelat-Komplexe mit Diphenyl(o-pyridyl)phosphan als Ligand bekannt und auch die Umwandlung der einzähnigen Komplexe in den Chelat-Komplex ist kaum untersucht.^[71] Probleme könnten in der zwar besseren σ-Donorallerdings auch schwächeren π -Akzeptor-Fähigkeit des Stickstoffs Fähigkeit. begründet liegen.^[71c] So bindet Diphenyl(o-pyridyl)phosphan als einzähniger Ligand hauptsächlich über den Phosphor; die entsprechenden Übergangsmetallkomplexe bei denen die Koordination ausschließlich über Stickstoff erfolgt sind bisher nicht bekannt.^[71c] Aus den genannten Gründen werden z.B. in einer Ligand-Austausch-Reaktion von $[W(CO)_4(py)_2]$ (py = Pyridin (C₅H₅N)) auch beide Stickstoff-Liganden gegen einen Phosphan-Liganden ausgetauscht; hierbei sind sowohl der cis- als auch *trans*-disubstituierte Wolframtetracarbonyl-Komplex literaturbekannt.^[72] Der der entsprechende monosubstituierte Phosphan-Komplex konnte über diese Synthese-Route nicht erhalten werden. 2003 konnte Yoshifuji schließlich zeigen, dass ausgehend von [W(CO)₅(thf)] der entsprechende monosubstituierte Komplex XLVII durch Ligand-Austausch dargestellt und durch Photolyse in den entsprechenden Chelat-Komplex XLVIII überführt werden kann (Schema 27).^[71d]

Schema 27: Koordinationsmoden von Diphenyl(*o*-pyridyl)phosphan als Ligand: einzähnig (κP in **XLVII**) und als Chelat ($\kappa N, \kappa P$ in **XLVIII**).^[71d]

Obwohl eine Chelatisierung die zu Fünf- oder Sechsringen führt thermodynamisch bevorzugt ist,^[73] wurde in diesem Beispiel ein viergliedriger Chelat-Ring realisiert.

Es existieren nur wenige Beispiele, die zeigen, dass es neben Pyridin noch weitere N-Donoren gibt, die eine Chelatisierung zusammen mit einem P-Liganden zum Übergangsmetall ermöglichen; ein für die folgenden Untersuchungen wichtiges Beispiel ist in Schema 28 gezeigt.

Schema 28: Photochemische Substitution eines CO-Liganden durch einen chelatisierenden N-Donor-Liganden am Übergangsmetall.^[74]

Da *N*,*N*-Dialkylanilin durch den +M-Effekt bevorzugt in *para*-Position substituiert wird, konnte erst durch das Blockieren dieser Position durch eine Methyl-Gruppe das Derivat **XLIX** erhalten werden. Auch in diesem Beispiel konnte gezeigt werden, dass durch Photolyse eine CO-Eliminierung und eine nachfolgende Koordination des Stickstoffs an das Übergangsmetall erfolgt.^[74] Hierbei wird ein thermodynamisch günstiger, fünfgliedriger Chelat-Ring ausgebildet.

Die Beispiele verdeutlichen, genannten dass sowohl 2-(Diphenylphosphino)benzaldehyd^[75] (31) als auch 2-(N,N-Dimethylamino)benzaldehyd^[76] (**32**) von besonders großem Interesse für die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese sind, da ihre zusätzliche Donor-Funktionalität einen Zugang zu $\kappa N, \kappa P$ -Oxaphosphiran-Chelat-Komplexen ermöglichen könnten. In Schema 29 ist die geplante Darstellung der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **33** und **34** sowie die gewünschten Folgereaktionen zu den Sechsring-Chelat-Komplexen dargestellt.

Sowohl der Chelat-Komplex 35, als auch der Komplex 36 könnten durch CO-Eliminierung aus den entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen **33** und **34** zugänglich sein. Beide Chelat-Komplexe sollten einen energetisch günstigen (spannungsfreien) Sechsring bilden, zudem wäre hier der Vergleich der beiden Donor-Funktionalitäten in Hinblick auf die Stabilitäten der Komplexe besonders interessant. Während der Phosphan-Substituent in 35 durch sein freies Elektronenpaar am Phosphor einen σ -Donor-Liganden darstellt und zusätzlich durch leere P-C σ^* -antibindende Orbitale ein guter π -Akzeptor-Ligand ist^[77] und je nach der Summe der Effekte eventuell sogar Elektronendichte von dem Übergangsmetallzentrum aufnehmen könnte, ist der Amin-Substituent in 36 ein σ und π -Donor und würde somit Elektronendichte zum Metall-Fragment hin verschieben. 2011 konnten Streubel et al. am Beispiel eines 2H-1,4,2-Diazaphophol-Komplexes zeigen, dass durch das Vorhandensein zweier Donor-Funktionalitäten (Phosphor und Stickstoff) und auf Grund sterischer Wechselwirkungen eine haptotrope P→N Metall-Verschiebung stattfinden kann. Somit wird unter milden Bedingungen eine Dekomplexierung des Phosphor-Atoms im Heterocyclus

ermöglicht.^[78] Diese Reaktivität wäre auch für die Chelat-Komplexe **35** und **36** denkbar, wie beispielsweise anhand von L gezeigt werden konnte (Schema 28).^[74] Die möglichen haptotropen Verschiebungen des M(CO)₅-Fragmentes (= Dekomplexierung des Oxaphosphiran-Liganden) sind für beide Komplexe in Schema 30 dargestellt.

Schema 30: Denkbare haptotrope Komplex-Verschiebung in $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen **33-34**.

Die Umsetzungen von **4a** mit 2-(Diphenylphosphino)benzaldehyd^[75] (**31**) in Et₂O zeigte, neben vielen Signalen unbekannter Produkte, den für die Selbstreaktion des Li/CI-Phosphinidenoid-Komplexes **4a** typische η^1 -Diphosphen-Komplex.^[79] Durch die Verwendung von THF als Lösungsmittel, konnte die Bildung des η^1 -Diphosphen-Komplexes unterdrückt werden, dennoch konnte sowohl mit einem Äquivalent als auch mit einem Überschuss **31** keine selektive Reaktion beobachtet werden, d.h. 3 Äquivalente der Carbonyl-Verbindung konnten die Selektivität lediglich leicht verbessern. In Schema 31 sind die Reaktionsgleichungen unter Variation der eingesetzten Menge der Carbonyl-Verbindung dargestellt.

Schema 31: Reaktion des Li/CI-Phosphinidenoid-Komplexes 4a mit 31:(a) äquimolar; (b) Überschuss des Aldehyds (n = Äquivalente).

In Abbildung 22 ist das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung der Umsetzung von **4a** mit 3 Äquivalenten **31** gezeigt. Das Spektrum verdeutlicht eine vollständige Umsetzung des Aldehyds **31** (**31**: δ^{31} P: -10.2),^[75] der Komplex **33** wurde jedoch nicht selektiv gebildet.

Abbildung 22: ³¹P{¹H}-NMR-Spektrum der Reaktionslösung von 4a mit 3 Äq. 31.

Die Signale von **e** und **f** bei tieferem Feld können Phosphor-Atomen eines Oxaphosphiran-Rings versuchsweise zugeordnet werden (Tabelle 10). Demnach wären zwei isomere Verbindungen im Verhältnis von **f**:**e** von 1.0:0.3 entstanden. Die Zuordnung des jeweiligen zweiten Signals des Diphenylphosphor-Zentrums stellt sich hingegen als sehr schwierig heraus, da mehrere in Frage kommende Signale vergleichbarer Intensität im Spektrum vorhanden sind. In Tabelle 10 sind die ³¹P-NMR-Daten der in Abbildung 22 zugeordneten Hauptsignale **a-f** aufgeführt.

	Koppiurig		l zu ennittein.	
Signal	δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	Verhältnis	Anteil %
а	-16.5	(*)	0.8	11

Tabelle 10: ³¹P{¹H}-NMR-Daten: Reaktion von **4a** mit 3 Äq. des Aldehyds **31** (vgl. Abbildung 22)(*) Kopplungskonstante nicht zu ermitteln.

а	-16.5	(*)	0.8	11
b	-15.2	(*)	0.4	5
С	-13.5	(*)	0.2	4
d	-12.1	(*)	0.7	11
е	32.7	296.8	0.3	3
f	45.3	311.1	1.0	14

Vergleicht man die Verhältnisse der Signale miteinander, so lässt sich zu den Signalen **e** und **f** kein entsprechendes Signal bei höherem Feld mit ähnlicher Intensität (Integration im ³¹P-NMR-Spektrum) zuordnen. Das variierende Verhältnis der Intensitäten bei verschiedenen Reaktionsdurchführungen spricht zudem dagegen, dass die entsprechenden Signale einem Produkt zugeordnet werden können. Weiterhin machen die beiden Signale **e** und **f** nur einen Anteil von ca. 3% bzw. 11% aus und alle in Tabelle 10 angegeben Signale insgesamt nur einen Anteil von ca. 48%. Vor allem im interessanten Hochfeld-Bereich von ca. -20 bis 0 ppm sind viele sehr breite Signale zu erkennen die in der Summe die Hälfte der gebildeten Produkte ausmachen (ca. 52%). Dies deutet entweder auf zusätzliche starke Wechselwirkungen der verschiedenen Phosphor-Gruppen und eventuell auch polymere Strukturen hin, was auch durch den benötigten Überschuss des Aldehyds **31** zustande kommen kann. Gegen die Anwesenheit eines Chelat-Komplexes spricht, dass ²J_{P,P}-Kopplungen nicht identifiziert werden konnten; die sehr breiten Signale ließen ebenfalls keine weitere diesbezügliche Aussage zu.

Auch die Reaktion des Li/CI-Phosphinidenoid-Komplexes **4a** mit 2-(*N*,*N*-Dimethylamino)benzaldehyd^[76] (**32**) stellte sich als problematisch heraus. Die Reaktion wurde hinsichtlich der Stöchiometrie variiert, d.h. es wurden 1, 3, 5 oder 10 Äquivalenten der Carbonyl-Verbindung hinzugegeben (Schema 32).

Schema 32: Reaktion des Li/CI-Phosphinidenoid-Komplexes 4a mit n Äquivalenten 32 (n = 1, 3, 5, 10).

Abbildung 23 zeigt die ${}^{31}P{}^{1}H$ -NMR-Spektren der in Schema 32 gezeigten Reaktionsgleichung für n = 1, 3, 5 Äquivalente **32**.

Abbildung 23: ³¹P{¹H}-NMR-Spektren der Reaktion des Li/CI-Phosphinidenoid-Komplexes **4a** mit n Äquivalenten **32** (n = 1, 3, 5).

Hier wird zum einen deutlich, dass die Reaktion nicht selektiv verläuft, zum anderen ist das Signal-zu-Rausch-Verhältnis (unter gleichen Reaktionsbedingungen) durch das Auftreten mehrerer verbreiterter Signale sehr schlecht. Ein großer Überschuss (10 Äquivalente) der Carbonyl-Verbindung konnte eine leichte Verbesserung der Selektivität ermöglichen, trotzdem wurde nur eine Mischung mehrerer Produkte erhalten. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung ist in Abbildung 24 gezeigt und die zugeordneten ³¹P{¹H}-NMR-Signale **a-e** in Tabelle 11 aufgeführt.

Abbildung 24: ³¹P{¹H}-NMR-Spektrum: Reaktion von 4a mit 10 Äq. des Aldehyds 32.

Signal	δ ³¹ Ρ [ppm]	Verhältnis	Anteil %
а	38.1	0.5	14
b	43.0	0.2	7
С	53.8	1.0	31
d	64.8	0.4	11
е	65.3	0.1	4

 Tabelle 11: ³¹P{¹H}-NMR-Daten: Reaktion von 4a mit 10 Äq. des Aldehyds 32 (vgl. Abbildung 24).

Interessanterweise zeigte keines der Signale im ³¹P-NMR-Spektrum eine $J_{W,P}$ - oder eine ¹ $J_{P,H}$ -Kopplung. Dies ist vor allem in Hinblick auf das Ziel einer möglichen Dekomplexierung des Oxaphosphiran-Liganden von Bedeutung und lässt insofern erste Rückschlüsse auf die Bildung von einem zu **38** verwandten Komplex zu.

Es war nicht möglich die Reaktionsbedingungen hinsichtlich einer noch selektiveren Reaktion zu optimieren. Abbildung 24 verdeutlicht, dass neben den in Tabelle 11 aufgelisteten Signalen, weitere Produkte mit teils verbreiterten Signalen gebildet werden, die einen Anteil von ca. 33% ausmachen. Erste Untersuchungen haben gezeigt, dass die Selektivität nochmals durch eine wesentlich kürzere Reaktionsdauer verbessert werden kann, allerdings konnte auf Grund von Zersetzung leider keines der Produkte isoliert werden.

3.2.4 Versuchte Darstellung von C-Heteroatom-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

Bislang waren $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe mit direkter Bindung eines Heteroatoms am Ring-Kohlenstoffatom unbekannt. Hierzu wurden im Verlauf dieser Arbeit erste Studien durchgeführt. Konzeptionell ist auch dies von Interesse für das im vorherigen Kapitel beschriebene Konzept einer nachfolgenden Chelat-Bildung; eine Chelatisierung würde hier einen gespannten und (vermutlich) hochreaktiven viergliedrigen Chelat-Ring in einem bicyclischen System erzeugen.

Es wurde daher beschlossen, den Li/CI-Phosphinidenoid-Komplex **4a** mit *N*,*N*-Dimethylformamid (DMF) und *N*,*N*,*N*,*N*-Tetramethylharnstoff (TMH) umzusetzen; Schema 33 zeigt die geplanten Reaktionen und Zielverbindungen, die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **39** und **40**.

Schema 33: Geplante Darstellung der *C*-Heteroatom-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 39 und 40.

Zunächst wurde DMF über Magnesiumsulfat getrocknet, unter Inertbedingungen destilliert (ca. 17-19 mbar, 51 °C) und schließlich über Molsieb (0.4 nm) in einem Schlenk-Gefäß gelagert.^[80] Die erste durchgeführte Testreaktion (66 µmol **4a**) mit DMF zeigte eine gute Umsetzung und vielversprechende Signale im ³¹P{¹H}-NMR-Spektrum. Hierbei bildete sich der gewünschte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex (anhand der charakteristischen Verschiebung und Kopplungskonstante identifiziert) als das Hauptprodukt; in Abbildung 25 ist das zugehörige ³¹P{¹H}-NMR-Spektrum gezeigt.

Abbildung 25: ³¹P{¹H}-NMR-Spektrum der Umsetzung von 66 µmol 4a mit DMF (1:1) in Et₂O.

Das Hauptsignal kann auf Grund der typischen chemischen Verschiebung und der Phosphor-Wolfram-Kopplungskonstante (δ³¹P: 21.6, ${}^{1}J_{W,P} = 299.8 \text{ Hz}$ dem $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **39** zugeordnet werden. Weitere Nebenprodukte, mit teils verbreiterten Signalen bei 99.5 ppm (${}^{1}J_{W,P}$ = 259.6 Hz) oder 292 ppm im ${}^{31}P{}^{1}H{}$ -NMR-Spektrum machen in der Summe allerdings auch hier einen Anteil von 60% aus (NMR-Spektren-Integration). Letzteres und weitere mögliche Nebenprodukte werden im Laufe dieses Kapitels noch genauer diskutiert. Variation des Lösungsmittels und Reaktionsdurchführung in THF statt Et₂O führte zu keiner signifikanten Verbesserung der Selektivität. In Tabelle 12 ist eine Auflistung der unterschiedlichen Reaktionsbedingungen (Lösungsmittel, Äquivalente, Ansatzgröße) in Abhängigkeit der Bildung des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **39** und des entsprechenden Hauptprodukts der jeweiligen Reaktion (in %) dargestellt.
Tabelle 12: Variation der Reaktionsbedingungen der Umsetzung von 4a mit DMF (Äq. = Äquivalente, LM = Lösungsmittel, [12]K4 = [12]Krone-4, ^(*) Zersetzung).
 ^(a) DMF vorgelegt; ^(b) + LiCl; ^(c) T << -90 °C; ^(d) auftauen bis -60 °C und Lösungsmittel entfernt; ^(e) Zugabe von DMF bei -60 °C

	Äa		Äa			Hauptprodukt
Nr.		LM	74. [10]KA	Ansatz	39	δ ³¹ P { ¹ H} [ppm]
			[12]1(4			(¹ J_{W,P} [Hz]) [%]
DMF-1	1	Et ₂ O	0.8	66 µmol	38%	21.6 (299.8) [38%]
DMF-2	1	THF	0.8	66 µmol	15%	97.8 (259.3) [31%]
DMF-3	1	Et ₂ O	0.8	0.85 mmol	-	-23.5 (312.5) [53%]
DMF-4	1	Et ₂ O	0.8	4 x 66 µmol	<15%	(*)
DMF-5	2	THF	0.8	66 µmol	21%	97.8 (259.3) [25%]
DMF-6	2	Et ₂ O	0.8	66 µmol	22%	21.6 (299.8)
DMF-7	10	Et ₂ O	0.8	66 µmol	12%	96.1 (257.4) [25%]
					2%	77.6 (277.5) [23%]
	2		0.0	4 x	18%	98.5 (261.6) [54%]
	Ζ	El ₂ O	0.0	66 µmol	22%	98.7 (258.8) [27%]
					36%	21.6 (299.8) [36%]
DMF-9	2 ^(a)	Et ₂ O	0.8	66 µmol	21%	21.6 (299.8)
DMF-10	2 ^(b)	Et ₂ O	0.8	66 µmol	20%	98.8 (268.7) [51%]
DMF-11	2	Et ₂ O	0.6	66 µmol	43%	21.6 (299.8) [43%]
DMF-12	2	Et ₂ O	0.4	66 µmol	15%	-95.1 (216.6) [25%]
DMF-13	2	Et ₂ O	0.2	66 µmol	14%	21.6 (299.8) [14%]
DMF-14	2	Et ₂ O	0	66 µmol	29%	21.6 (299.8) [29%]
DMF-15	2	Et ₂ O	0	66 µmol	-	-95.4 (217.0) [64%]
DMF-16	2	Et ₂ O	0	66 µmol	-	-95.9 (215.6) [79%]
DMF-17	2	Et ₂ O	0	66 µmol	-	-65.3 (98.5) [12%]
DMF-18	2 ^(c)	Et ₂ O	0	66 µmol	10%	21.6 (299.8) [10%]
DMF-19	2	Et ₂ O	2.0	66 µmol	15%	99.5 (259.5) [33%]
DMF-20	2 ^(c)	Et ₂ O	1.0	66 µmol	29%	98.6 (261.8) [48%]
DMF-21	2 ^(d)	Et ₂ O	1.0	66 µmol	27%	98.2 (256.4) [43%]
DMF-22	2 ^(d)	Et ₂ O	1.0	66 µmol	17%	99.0 (257.7) [33%]
DMF-23	2 ^(d)	Et ₂ O	1.0	0.85 mmol	-	-23.5 (313.1) [42%]
DMF-24	2 ^(e)	Et ₂ O	1.0	0.34 mmol	-	-23.4 (313.6) [11%]

Die hervorgehobenen Reaktionsdurchführungen werden im Weiteren genauer diskutiert. Nach dem vielversprechenden ersten Reaktionsansatz in Et₂O (DMF-1), wurde die Reaktion zwecks Isolierung des Produkts in größerem Maßstab wiederholt (DMF-3); das ³¹P{¹H}-NMR-Spektrum ist in Abbildung 26 gezeigt.

(DMF-3, vgl. Tabelle 12).

Wie das Spektrum der Reaktionslösung (Abbildung 26, unten) zeigt, wurde der gewünschte Komplex **39** unter den gleichen Reaktionsbedingungen nicht gebildet. Stattdessen bildete sich hier ein Produkt, dessen Resonanzsignal weiter ins Hochfeld verschoben ist und eine große Kopplung zwischen Phosphor und Wolfram aufweist. Von der chemischen Verschiebung her, liegt dieses Produkt (δ^{31} P: -23.5, ¹*J*_{W,P} = 316.2 Hz) sowohl im Bereich für z.B. Azaphosphiridin-Komplexe (z.B. **41a**: δ^{31} P: -35 bis -40, vgl. Abbildung 27),^[50e] als auch für einen Diisopropylamidoylphosphan-Komplex (z.B. **41b**: δ^{31} P: -47.9, vgl. Abbildung 27).^[81] Für beide Fälle sollte die erwartete Kopplungskonstante jedoch wesentlich kleiner sein. Das Fehlen einer direkten P-H-Bindung in dem Komplex bei -23 ppm schließt die Bildung eines Aminophosphan-Komplexes^[51c] (**41c** in Abbildung 27) aus und auf Grund der chemischen Verschiebung ist auch ein Chloro(organo)aminophosphan-Komplex (**41d** in Abbildung 27) unwahrscheinlich.^[82] Anhand dieser bekannten Derivate lässt sich somit leider keine endgültige Aussage über die Konstitution des Produkts bei -23.5 ppm ableiten.

Abbildung 27: Vergleich der chemischen Verschiebung und ${}^{1}J_{W,P}$ -Kopplungskonstanten möglicher Nebenprodukte **41a-41d**.^[50e,51c,81,82]

Im Vergleich zur Testreaktion (DMF-1) sind die Reaktionsbedingungen (äquimolare Umsetzung, 0.8 Äquivalente [12]Krone-4, 1.0 Äquivalente ^{*t*}BuLi, -80 °C) exakt die gleichen, wie bei der zuvor genannten Reaktion, der einzige Unterschied ist, dass die Reaktion um den Faktor 13 skaliert wurde. Ein Versuch, das neue Produkt bei δ^{31} P: -23.5 durch Extraktion mit *n*-Pentan (Abbildung 26, oben) zu isolieren, führte zur Bildung eines neuen, unbekannten Produktes mit einem Signal im ³¹P{¹H}-NMR-Spektrum bei δ^{31} P: 66.2 (¹J_{W,P} = 276 Hz). Die Konstitution der beiden Derivate ist nicht bekannt und wurde zunächst nicht weiter verfolgt.

Um die Problematik des größeren Reaktionsansatzes zu vermeiden, wurde als nächstes eine Durchführung mehrerer kleiner Ansätze (DMF-4, vgl. Tabelle 12) durchgeführt, mit dem Ziel die Reaktionsansätze zusammenzuführen und schließlich aufzuarbeiten. Auch in diesem Versuch wurde das Produkt mit der chemischen Verschiebung von δ^{31} P: 21.6 (¹ $J_{W,P}$ = 299.8 Hz) nicht beobachtet.

Anschließende Variation der eingesetzten Stoffmenge des Aldehyds zeigte, dass bei Verwendung von zwei Äquivalenten DMF die Reaktionsbedingungen optimiert werden konnten (DMF-6, vgl. Tabelle 12). Der gewünschte Komplex **39** (δ^{31} P: 21.6, ${}^{1}J_{W,P}$ = 299.8 Hz) wurde beobachtet (Abbildung 28, unten) und schließlich durch weiteres Rühren über Nacht bei Raumtemperatur (Abbildung 28, oben) recht selektiv erhalten.

Abbildung 28: ³¹P{¹H}-NMR-Spektren der Umsetzung von 66 µmol 4a mit DMF (1:2) in Et₂O (DMF-6).

Die Umsetzung mit einem wesentlich größeren Überschuss (10 Äquivalente DMF, DMF-7, vgl. Tabelle 12) zeigte keine weitere Verbesserung und führte zu einer Mischung mehrerer unbekannter Produkte und schließlich zu Zersetzung.

Um die Problematik dieser Reaktion noch weiter zu verdeutlichen, sind in Abbildung 29 weitere ³¹P{¹H}-NMR-Spektren gezeigt. In diesem Fall wurden vier identische Reaktionen parallel durchgeführt, alle entsprechen der Umsetzung von **4a** mit zwei Äquivalenten DMF in Et₂O (DMF-8, vgl. Tabelle 12). Um die äußeren Bedingungen möglichst konstant zu halten, wurden alle Reaktionen in vergleichbaren Gefäßen und im selben Kältebad durchgeführt.

Abbildung 29: ³¹P{¹H}-NMR-Spektren von vier parallel durchgeführten Umsetzungen von 66 μmol **4a** mit DMF (1:2) in Et₂O (DMF-8).

Abbildung 29 zeigt deutlich die Problematik der Reaktion von 4a mit DMF. Alle vier ³¹P{¹H}-NMR-Spektren weisen eine unterschiedliche Zusammensetzung der Produktmischung auf. Eine mögliche Erklärung könnte sein, dass durch energetisch sehr ähnliche Aktivierungsbarrieren in den unterschiedlichen Reaktionspfaden minimale, schwer konstant zu haltende Veränderungen der Reaktionsbedingungen zu einem anderen Produktverhältnis führen können. Zu nennen seien hier verschiedene, kleinere Fehler: verwendete Spritzen (1mL-Spritzen und auch µL-Hamilton-Spritzen), die Temperatur im Reaktionsgefäß, die Rührgeschwindigkeit oder auch die Auftau-Geschwindigkeit in Abhängigkeit von der Raumtemperatur. Die Reaktionslösungen wurden beispielsweise von außen durch ein Ethanolbad mit flüssigem Stickstoff auf -80 °C gekühlt und die entsprechenden Kühlzeiten vor der Zugabe der Reagenzien konstant gehalten. Um den Fehler der Menge des zugegebenen Aldehyds so klein wie möglich zu halten, wurde stets die gleiche Hamilton-Spritze verwendet. Trotzdem führte die Einhaltung all dieser Reaktionsbedingungen zu keinem reproduzierbaren Ergebnis.

Um den Einfluss eines Überschusses an Lithiierungs-Reagenz auszuschließen wurde die Reaktion durch Zugabe des Aldehyds vor der Lithiierung mit ^tBuLi

durchgeführt. Das entsprechende Signal bei δ^{31} P: 21.6 wurde in diesem Fall auch beobachtet (DMF-9, vgl. Tabelle 12), was einen signifikanten Einfluss eines Überschusses des Lithierungs-Reagenzes auf die Produktbildung ausschließt. In dieser Reaktion wurde zudem im selben Verhältnis (Integration im ³¹P{¹H}-NMR-Spektrum) das schon zuvor beobachtete Produkt (Abbildung 25, Abbildung 28, Abbildung 29) mit der chemischen Verschiebung δ^{31} P: 291.8 (¹ $J_{W,P}$ = 251.7 Hz) gebildet und neben weiteren Produkten ein sehr breites Signal 287.6 ppm (Verhältnis 0.8) beobachtet. Die chemische Verschiebung spricht für eine hohe Elektronendichte am Phosphor, auf Grund der großen ${}^{1}J_{WP}$ -Kopplungskonstante sind jedoch zu **4a** verwandte Li/CI-Phosphinidenoid-Komplexe mit DMF-koordinierenden Lithium-Kationen auszuschließen. Allerdings könnte sich hierbei es um einen zwitterionischen Komplex handeln, bei dem die positive Ladung durch den Stickstoff stabilisiert (Abbildung 30, links) ist.

Abbildung 30: Struktur-Vorschlag für das gebildete Nebenprodukt (links) und postuliertes zwitterionische Intermediat der Umsetzung mit Ph₂C=S (rechts).^[83]

Ein vergleichbares zwitterionisches Intermediat wurde auch bei der Umsetzung von **4a** mit Ph₂C=S vorgeschlagen (Abbildung 30, rechts) und auch durch Rechnungen weiter gestützt.^[83] Ob es sich bei dem Produkt bei 291.8 ppm tatsächlich um die zwitterionische Verbindung handelt, konnte leider nicht auf unabhängigem Weg bestätigt werden.

Um weiterhin einen Einfluss durch Ungenauigkeit der Zugabe des Kronenethers ausschließen zu können, wurde, unter ansonsten gleichen Reaktionsbedingungen, jeweils eine Reaktion mit 0.6, 0.4 und 0.2 Äquivalenten und auch ohne Kronenether durchgeführt (DMF-11 bis 14, vgl. Tabelle 12).

Abbildung 31: ³¹P{¹H}-NMR-Spektren der Reaktionslösung von **4a** (66 μmol) mit DMF (1:2) in Abhängigkeit der Menge an [12]Krone-4 in Et₂O (DMF-11 bis 14).

Die ³¹P{¹H}-NMR-Spektren in Abbildung 31 zeigen auch hier deutlich, dass keinerlei klare Tendenz einer Abhängigkeit von der Konzentration von [12]Krone-4 erkennbar ist. Bei Zugabe von 0.6 Äquivalenten erfolgt eine selektive Reaktion, bei Zugabe von 0.4 Äquivalenten wird das Signal bei 21.6 ppm wieder nicht beobachtet und bei 0.2 Äquivalenten wird das entsprechende Produkt wieder recht selektiv gebildet. Erstaunlicherweise ist die Reaktion ohne Kronenether eine der selektivsten. Die versuchte Reproduktion dieses Ergebnisses schlug hingegen wieder fehl, stattdessen wurde das Produkt mit einer chemischen Verschiebung von -95.1 ppm (${}^{1}J_{W,P} = 217.0$ Hz, ${}^{1}J_{P,H} = 305.6$ Hz) als Hauptprodukt gebildet. Auf Grund der chemischen Verschiebung und den beiden Kopplungskonstanten ist es wahrscheinlich, dass es sich bei dem Produkt um den zu **41b** analogen Komplex (Abbildung 27) handelt.

Als letzter Faktor wurde schließlich die Temperatur der Reaktionsdurchführung variiert. Sowohl ein Reaktionsabbruch bei -60 °C durch Entfernen des Lösungsmittels (DMF-21 bis 23, vgl. Tabelle 12), als auch die Zugabe des Aldehyds zum Li/Cl-Phosphinidenoid-Komplex **4a** bei -60 °C (DMF-24, vgl. Tabelle 12) führten zu keinem reproduzierbaren Ergebnis.

Erste Untersuchungen zeigten, dass selbst der Dichloro(organo)phosphan-Komplex **1a** mit DMF ohne Zugabe von Kronenether oder Lithiumbase reagiert. Zusammenfassend kann man sagen, dass eine selektive Darstellung des (vermuteten) $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **39** in komplexer Weise von den Bedingungen abhängt. Daher gelang es im Rahmen dieser Arbeit nicht, eines der Produkte zu isolieren, sei es auf Grund von Zersetzung oder einer nicht steuerbaren Reaktion.

Im Fall von *N,N,N,N*-Tetramethylharnstoff (TMH) und einem weiteren Stickstoff in der Carbonyl-Verbindung, wurde wie zu erwarten auf Grund der geringen Elektrophilie, hauptsächlich der bekannte Diphosphen-Komplex^[79] sowie weitere Produkte mit einer direkten P-H-Bindung gebildet.

Die Komplexität der Reaktionen soll eine genauere Betrachtung des denkbaren Reaktionsablaufes verdeutlichen. In Schema 34 ist der Mechanismus der Reaktion für den Fall der α -Amino-funktionalisierten Aldehyde, wie DMF (R⁺ = H), aber auch TMH (R⁺ = NMe₂) dargestellt, wobei die besonderen Ligand-Eigenschaften des Lösungsmittels/Substrats berücksichtigt sind (vgl. auch Schema 20 in Kapitel 3.2.1).

Schema 34: Postulierter Mechanismus der Reaktion von 4a mit DMF (R' = H) oder TMH (R' = NMe₂).

Wie in Schema 20, so ist auch hier der (vermutete) primäre Schritt der nukleophile Angriff des Phosphorzentrums am Kohlenstoffatom der Carbonyl-Verbindung. Analog würde hier ein Intermediat (**42**) gebildet, welches durch die Koordination des Sauerstoffatoms an Lithium beschrieben werden kann. Die räumliche Nähe zum Cl-Substituenten kann so die Lithiumchlorid-Eliminierung ermöglichen und die Bildung der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **39** oder **40** begünstigen. Im vorliegenden Fall ist jedoch zu berücksichtigen, dass das Stickstoffatom auch ein sehr guter Donor ist, sodass auch evtl. der Komplex **43** als Intermediat denkbar ist. Somit wäre, in Konkurrenz zur Lithiumchlorid-Eliminierung, auch eine Lithiumamid-Eliminierung möglich. Verbindungen des Typs **44** sind für R' = CI (**44a**) bekannt, wie sich die Substitution auf die chemische Verschiebung von **44** mit R' = H (**44b**) oder $R' = NMe_2$ (**44c**) auswirkt, kann nur vermutet werden (Abbildung 32).^[81]

Abbildung 32: Chloroformylphosphan-Komplex 44a und Komplexe 44b,c mit ³¹P{¹H}-NMR Daten.^[81]

Von Nesterov konnte auch gezeigt werden, dass die sogenannten Chloroformylphosphan-Komplexe CO eliminieren können.^[81] Insofern werden unterschiedliche neue Reaktionspfade möglich und somit auch die Produktvielfalt und Komplexität dieser Reaktion deutlicher.

Weiterhin darf in der Diskussion nicht außer Acht gelassen werden, dass auch der *in situ* generierte Phosphinidenoid-Komplex **4a** durch DMF stabilisiert werden kann, was erklärt, warum die Reaktion auch ohne Zugabe von Kronenether durchführbar ist. Zusätzlich besteht die Möglichkeit, dass DMF durch seine Donorfähigkeit Lithium in der Reaktion komplexieren und abschirmen kann. In der Literatur ist dieses komplexe Kation **45** (Abbildung 33) beispielsweise als Gegen-Ion in einer polymeren Kettenstruktur von [WS₄Ag]_n bekannt.^[84] Das Lithium-Ion wird von vier DMF-Molekülen tetraedrisch umgeben (**46**) und die (nötige) Nähe zum Phosphor ist dadurch möglicherweise nicht mehr gegeben (Abbildung 33).

Abbildung 33: Links: bekannte Struktur von [Li(DMF)₄]⁺ (**45**)^[84]; rechts: mögliche Koordination bei der Generierung des Li/Cl-Phosphinidenoid-Komplexes in Anwesenheit von DMF (**46**).

Neben diesen genannten Faktoren kann auch die schwache Elektrophilie des Carbonyl-Kohlenstoffs (in DMF) zur schwer kontrollierbaren Reaktionsführung beigetragen haben.

Die schwach ausgeprägte Elektrophilie des Carbonyl-Kohlenstoffs durch die Donor-Substituenten wird vor allem bei der Reaktion mit *N,N,N,N*-Tetramethylharnstoff (TMH) deutlich. Die Umsetzung des Li/CI-Phosphinidenoid-Komplexes **4a** mit TMH führte hauptsächlich zur Selbstkondensation von **4a** und der Bildung der bekannten Diphosphen-Komplexe^[79] sowie weiterer Produkte mit einer direkten P-H-Bindung. Die Bildung des gewünschten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes **38** konnte auch durch einen 10-fachen Überschuss der Carbonyl-Verbindung nicht erreicht werden. Ein zur Reaktion mit DMF analoger zwitterionischer Komplex (vgl. Abbildung 30) kann auf Grund der Intensität der Signale im ³¹P{¹H}-NMR-Spektrum (δ^{31} P: 325.6 (1%), 329.8 (1%)) nicht mit Sicherheit zugeordnet werden.

Ein Vergleich der chemischen Verschiebung und der Kopplungskonstanten mit literaturbekannten Verbindungen^[51c,85] zeigte, dass es sich bei einem der gebildeten Produkte um den *P*-(Diorgano)aminophosphan-Komplex **41c** (δ^{31} P: 46.7 ¹*J*_{W,P} = 250.3 Hz, ¹*J*_{P,H} = 343.3 Hz, vgl. Abbildung 27) handelt.^[51c]

Auf Grund der geringen Elektrophilie und einer vermutlich längeren benötigten Reaktionszeit des Phosphinidenoid-Komplexes mit der entsprechenden Carbonyl-Verbindung wurden die Reaktionen mit DMF und TMH auch mit dem bis Raumtemperatur stabilen^[28b] *P*-CPh₃ Phosphinidenoid-Komplex **5a**, mit dem Ziel die entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **47** und **48** zu erhalten, durchgeführt. Im Unterschied zur Umsetzung von **4a** (*P*-CH(SiMe₃)₂) muss die Reaktion im Fall des Trityl-Substituenten (*P*-CPh₃) auf Grund der schlechteren Löslichkeit in THF statt Et₂O durchgeführt werden. Die Variation DMF als Lösungsmittel zu verwenden, war nicht möglich. Eine Lithiierung ist auf Grund des Schmelzpunkts von DMF nur oberhalb von -60 °C möglich, was durch die Stabilität des Phosphinidenoid-Komplexes **5a** theoretisch möglich wäre. Dennoch ist der Dichloro(organo)phosphan-Komplex **2a** sehr schlecht in DMF löslich und keine selektive Reaktion zu beobachten. Auch im Fall des wesentlich stabileren Phosphinidenoid-Komplexes **5a**, konnten die gewünschten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **47** oder **48** nicht beobachtet werden. In Schema 35 ist die Umsetzung mit DMF und in Schema 36 die Reaktion mit TMH dargestellt.

Schema 35: Umsetzung von 5a mit n Äquivalenten DMF (n = 1, 2, 10).

Schema 36: Umsetzung von 5a mit 3 Äquivalenten TMH (oben) und Durchführung in TMH als Lösungsmittel (unten).

Ein weiterer Unterschied zu der Reaktion mit Verbindungen des Bis(trimethylsilyl)methyl-Substituenten ist, dass ohne Reaktionspartner oder im Fall desaktivierten Carbonyl-Verbindungen, keine von stark Selbstreaktion des Phosphinidenoid-Komplexes beobachtet wird, was vermutlich auf den sterisch anspruchsvolleren Substituenten zurückzuführen ist.^[28b] Stattdessen wird häufig ein Produkt mit direkter P-H-Bindung und einer chemischen Verschiebung von δ^{31} P: 88.9 (¹*J*_{W,P} = 263.1 Hz, ¹*J*_{P,H} = 300.7 Hz) gebildet, dessen Konstitution bisher nicht geklärt werden konnte und welches unabhängig von Lösungsmittel oder auch Reagenz zu sein scheint.

Beide Reaktionsführungen mit 5a und einem Überschuss des jeweiligen Donors konnten jedoch die Vermutung einer Bildung eines neuen. stabilisierten Phosphinidenoid-Komplexes bestärken. Bei der Umsetzung mit einem großen Überschuss DMF (10 Äquivalente, Schema 35) wurde ein Phosphinidenoid-Komplex $(\delta^{31}P: 256.8 \ (^{1}J_{W,P} = 77.4 \text{ Hz}, 28\%) \text{ im } {}^{31}P\{^{1}H\}-\text{NMR-Spektrum beobachtet}; \text{ ein }$ ähnlicher Komplex entsteht auch in reinem THF (ohne Zugabe von [12]Krone-4) $(\delta^{31}P: 256.7)$ ($^{1}J_{W,P} = 77.6$ Hz). Die sehr gute Übereinstimmung der chemischen Verschiebungen und der Kopplungskonstanten beider Phosphinidenoid-Komplexe mit und ohne [12]Krone-4 lässt sehr stark vermuten, dass eine Stabilisierung hauptsächlich durch den Donor und das Lösungsmittel erfolgt. In nicht koordinierenden Lösungsmitteln, wie beispielsweise Toluol, wird ein 5a vergleichbarer Komplex nicht beobachtet und zusätzlich ist die Selektivität der Reaktion stark herabgesetzt. Dieselbe Reaktivität wird auch für die Reaktion mit TMH beobachtet und bei der Reaktionsführung in TMH als Lösungsmittel wird erneut ein Phosphinidenoid-Komplex (δ^{31} P: 254.8 (${}^{1}J_{WP}$ = 77.1 Hz, 58%) gebildet; die genaue Natur des Gegenions konnte weder in diesem noch in den vorherigen Fällen aus den Reaktionslösungen bestimmt werden.

3.3 C-Hetaryl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe: Darstellung und Grenzen der Synthesemethode

Nach dem die α -Donor-Funktionalisierung des Ring-Kohlenstoffs nicht realisiert werden konnte, war die logische Folge einen Substituenten zu finden, bei dem sich das Heteroatom nicht in α - sondern in β - oder γ -Position zum Ring-Kohlenstoff-Atom befindet. Da im Fall der Azaphosphiridin-Wolframkomplexe^[50e] und auch der verwandten *2H*-Azaphosphiren-Komplexe^[86] gezeigt werden konnte, dass die 2-Thienyl- und 2-Furanyl-substituierten Derivate zugänglich gemacht werden können, erschien dies auch für den Fall der $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe als aussichtsreich.

Schema 37: Geplante Darstellung der C-Hetaryl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **49-51**.

Zunächst wurde der *in situ* generierte Phosphinidenoid-Komplex mit 2-Furanyl-Aldehyd in einer äquimolaren Reaktion in Et₂O umgesetzt (Schema 37). Das ³¹P{¹H}-NMR-Spektrum ist in Abbildung 34 (unten) dargestellt und zeigt ein sehr schlechtes Signal-zu-Rausch-Verhältnis und die Bildung verschiedenster Produkte mit Signalen im Bereich von -30 bis -14 ppm, sowie im Bereich von 25 bis 60 ppm. Letztgenannter entspricht der erwarteten chemischen Verschiebung des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes **49**. Da es sich bei 2-Thienyl- und 2-Furanyl-Aldehyd um elektronenreiche aromatische Verbindungen handelt, liegt (auch) in diesen Derivaten ein weniger elektrophiles Carbonyl-Zentrum vor. Wie schon zuvor an zahlreichen Beispielen gezeigt, führt dies meist zu Problemen in der Darstellung der gewünschten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe und somit auch im Fall der Synthese der Komplexe **49-50** (Schema 37, oben).

Abbildung 34: ³¹P{¹H}-NMR-Spektren der Umsetzung von 4a mit 2-Furanylaldehyd.

In der Annahme, dass eine Stabilisierung des Phosphinidenoid-Komplexes durch Verwendung von THF und 2 Äquivalenten [12]Krone-4 erzielt werden kann und insofern auch eine längere Reaktionszeit bei höherer Temperatur möglich wird, könnte dies zusammen die geringe Elektrophilie des Aldehyds kompensieren. Das ³¹P{¹H}-NMR-Spektrum der entsprechenden Umsetzung ist in Abbildung 34 (oben) gezeigt und die ³¹P{¹H}-NMR-Daten der Hauptprodukte sind in Tabelle 13 aufgeführt.

Signal	δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	Verhältnis
а	29.0	243.8	0.3
b	32.2	243.3	0.4
C	33.3	-	0.2
d	34.0	-	1.0

Tabelle 13: ³¹P{¹H}-NMR-Daten der Reaktion von **4a** mit 2-Furanyl-Aldehyd und 2 Äquivalenten [12]Krone-4 in THF.

Es kann hier festgehalten werden, dass die Selektivität durch die Verwendung von 2 Äquivalenten Kronenether verbessert wird, was vermutlich auf eine stärkere Nukleophilie des Phosphinidenoid-Komplexes zurückzuführen ist. Denkbar ist, dass auch in Lösung zwei Moleküle Kronenether an das Lithium-Kation koordinieren (wie auch schon anhand der Einkristallstruktur von **4a** gezeigt werden konnte (vgl. Abbildung 14) und somit ein größerer Phosphor-Lithium-Abstand entsteht; die Formel des denkbaren Phosphinidenoid-Komplexes 53 ist in Abbildung 35 gezeigt.

Abbildung 35: Vermutete doppelte Koordination von [12]Krone-4 an das Li-Kation im Phosphinidenoid-Komplex 53.

Auch wenn die chemische Verschiebung der Signale im ${}^{31}P{}^{1}H{}$ -NMR-Spektrum im erwarteten Bereich liegen, die Phosphor-Wolfram-Kopplungskonstante ist im Fall der Produkte (**a-d**, Tabelle 13) zu klein für den $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **49**.

Auch die Reaktion von **4a** mit 2-Thienylaldehyd zeigte eine vergleichbare, aber leider auch geringe Selektivität (Abbildung 36 und Tabelle 14).

Abbildung 36: ³¹P{¹H}-NMR-Spektren der Umsetzung von 4a mit 2-Thienylaldehyd.

Signal	δ ³¹ P [ppm]	¹ Ј_{W,Р} [Hz]
а	33.2	-
b	60.5	-
С	140.9	281.7

 Tabelle 14: ³¹P{¹H}-NMR-Daten der Reaktion von 4a mit 2-Thienylaldehyd.

Betrachtet man insgesamt diese Reaktionen, so bleibt festzuhalten, dass gerade die Produkte, deren Signal keine Phosphor-Wolfram-Kopplung aufweisen, hinsichtlich einer haptotropen Verschiebung des Metall-Fragments interessant sein können; eine vergleichbare Reaktion war früher bereits im Falle eines *2H*-1,4,2-Diazaphosphol-Komplexes^[78] beobachtet worden. Im vorliegenden Fall konnte jedoch, auf Grund der geringen Selektivität, keines der hier beobachteten Produkte isoliert werden, und so diese Hypothese geprüft werden.

Wird die Position des Heteroatoms im Substituenten variiert, d.h. die Reaktion mit 3-Furanyl- und 3-Thienylaldehyd durchgeführt, werden sehr selektiv die entsprechenden $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe **51** und **52** erhalten (vgl. Schema 37, unten und Abbildung 37).

Beide Derivate sind sich in der chemischen Verschiebung im ${}^{31}P{}^{1}H{}$ -NMR-Spektrum sehr ähnlich und auch die charakteristischen Verschiebungen im ${}^{1}H{}$ - und ${}^{13}C{}^{1}H{}$ -NMR-Spektrum der isolierten Verbindung liegen sehr nahe beieinander, sodass im Vergleich zu den Derivaten **49** und **50** ein Einfluss des Heteroatoms in β -Position zum Heterocyclus schon keine Rolle mehr zu spielen scheint (Tabelle 15).

Tabelle 15: NMR-Daten (CDCl₃) der isolierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **51** und **52** im Vergleich.

	δ ³¹ P [ppm]	δ ¹ Η [pp	om]	δ ¹³ C [ppm]	Ausbeute	
	(¹ <i>J</i> _{W,P} [Hz])	CH(SiMe ₃) ₂	C <i>H</i> PO	CH(SiMe ₃) ₂	CHPO	[%]
51	42.8 (308.6)	1.21 (s)	4.1 (s)	31.7 (18.8)	54.7 (30.6)	59
52	42.2 (308.5)	1.23 (s)	4.31 (s)	32.1 (19.1)	57.7 (28.9)	47

Die Molekülstruktur von **52** konnte durch Einkristallstrukturanalyse bestätigt werden (Abbildung 38). Da Bindungslängen und –winkel mit bekannten Derivaten von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen übereinstimmen, werden diese hier nicht weiter diskutiert.

Abbildung 38: Molekülstruktur von **52** (s-*cis*) im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H1 und H6A) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D7.

Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4584(12), P-O1 1.674(3), C1-O1 1.475(5), P-C1 1.793(4), P-C6 1.795(4), O1-C1-P 60.7(1), C1-O1-P 69.0(1), O1-P-C1 50.2(1).

Im Vergleich zu den Sauerstoff- und Schwefel-haltigen Derivaten, sollte auch die Reaktivität des Li/CI-Phosphinidenoid-Komplexes **4a** gegenüber Stickstoff-haltigen, heteroaromatischen Aldehyden untersucht werden. Daher wurde der Li/CI-

Phosphinidenoid Komplex **4a** mit Imidazol-2-carbaldehyd (R = H) und *N*-Methyl-Imidazol-2-carbaldehyd umgesetzt (Schema 38).

Schema 38: Umsetzung von 4a mit Imidazol-2-carbaldehyd und N-Methyl-Imidazol-2-carbaldehyd.

Bei der Reaktion von **4a** mit Imidazol-2-carbaldehyd wurde hauptsächlich der bekannte Chloro(organo)phosphan-Komplex,^[53b] sowie die bekannten *E*- und *Z*- konfigurierten Diphosphen-Komplexe^[27,53b,79] gebildet; die Zuordnung der Daten zeigt Abbildung 39.

Abbildung 39: ³¹P{¹H}-NMR-Spektrum (Et₂O) der Umsetzung von **4a** mit Imidazol-2-carbaldehyd.

Selektiver verläuft die Reaktion von **4a** mit *N*-Methylimidazol-2-carbaldehyd, wobei jedoch auch hier die Umsetzung mit einem Äquivalent des Aldehyds zur Bildung der Diphosphen-Komplexe führte; auch die Reaktion in Et₂O führte zu einer komplizierteren Produktmischung. Im Unterschied dazu, wurde bei der Umsetzung von **4a** mit 5 Äquivalenten *N*-Methylimidazol-2-carbaldehyd in THF sehr selektiv ein Produkt erhalten. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung ist in Abbildung 40 gezeigt.

Abbildung 40: ³¹P{¹H}-NMR-Spektrum (THF) der Umsetzung von 4a mit 5 Äquivalenten *N*-Methyl-imidazol-2-carbaldehyd zu 54.

Von besonderem Interesse ist, dass das gebildete Produkt keine direkte Phosphor-Wasserstoff-Kopplung und auch keine Phosphor-Wolfram-Kopplung aufweist, was eine haptotrope Verschiebung des Metallpentacarbonyl-Fragments vom Phosphor zum Stickstoff oder auch einen Verlust durch Dissoziation nahelegt. Beides ist intramolekular oder auch eventuell intermolekular möglich. Um die Konstitution weiter zu überprüfen, wurde zunächst ein IR-Spektrum der Reaktionslösung aufgenommen, was in Abbildung 41 dargestellt ist.

Abbildung 41: IR-Spektrum der Reaktionslösung von 4a mit N-Methyl-imidazol-2-carbaldehyd.

Ein Vergleich der Schwingungsbanden des gebildeten Produktes mit den Banden von *N*-Methylimidazol-Wolframpentacarbonyl **55**^[87] könnte zur Aufklärung zur Struktur des gebildeten Produktes **54** beitragen (Tabelle 16).

	Lösungsmittel	v (CO) [cm ⁻¹]
54	THF (ATR)	2059 (m), 1970 (w), 1895 (vs)
/ N	C ₆ H ₆ ^[87]	2078 (m), 1970 (w), 1935 (vs), 1915
	Hexan ^[88a]	2071 (m), 1933 (vs), 1916 (sh)
W(CO) ₅ 55	- (KBr) ^[88b]	2002 (m), 1981 (s), 1917 (v), 1845 (v), 1791 (v)

 Tabelle 16: Vergleich der Carbonyl-Banden von 54 mit 55.

Tabelle 16 zeigt deutlich, dass die Daten der CO-Banden von **55** aus unterschiedlichen Literaturquellen stark voneinander abweichen. Trotz Berücksichtigung der unterschiedlichen Lösungsmittel, liegen die entsprechenden Carbonyl-Banden recht weit auseinander, was einen Vergleich erschwert.

Dennoch sind Ähnlichkeiten zu **54** zu erkennen und auf Grund dieser analytischen Daten erscheint die Annahme einer $P \rightarrow N$ haptotropen Verschiebung des Metallfragments als nicht unwahrscheinlich. Ein <u>erster</u> Vorschlag für die Konstitution des Komplexes **54** ist in Schema 39 dargestellt.

Schema 39: Erster Vorschlag für das Produkt 54 aus der Reaktion von 4a mit *N*-Methyl-imidazol-2carbaldehyd.

Sowohl das Fehlen der Phosphor-Wolfram-Kopplung, die vergleichbaren CO-Banden im IR-Spektrum und auch die geringe Stabilität des Produktes sprechen für diese haptotrope Verschiebung. Unverstanden ist jedoch warum **54** in der Reaktionslösung bei Raumtemperatur stabil ist. Jegliche Versuche **54** durch Filtration aufzuarbeiten, das Lösungsmittel zu wechseln oder das Produkt zu kristallisieren, schlugen leider fehl.

Dennoch konnten zumindest Teile der Konstitution von **54** (δ^{31} P: 91.8, $J_{P,H}$ = 12.3 Hz, 14.5 Hz) mittels NMR-Spektroskopie aufgeklärt werden (Tabelle 17).

			δ ¹ Н [ppm] (<i>J</i> _{Р,Н} [Hz])	δ ¹³ C [ppm] (<i>J</i> _{P,C} [Hz])
	а	SiMe ₃	0.34	1.9 (3.6)
CH(SiMe ₃) ₂	b	SiMe ₃	0.37	2.6 (3.1)
	С	СН	2.16 (15.2)	23.5 (48.0)*
	d	CH	3.25 (11.8)	*
	е	CH ₃	3.54	33.1
N-CH ₃ -	f	СН	6.7	118.3
Imidazol	g	CH	~6.9*	125.1
	h	Cq	-	159.4
CO	i	cis	-	200.8 (2.2)
	j,k	trans	-	201.2 oder 204.8

Tabelle 17: ¹H- und ¹³C-NMR-Daten (THF-d⁸ von **54** aus der Reaktionslösung.(*überlagert oder zu geringe Intensität)

Die NMR-Daten in Tabelle 17 werden im Folgenden diskutiert, um weitere Rückschlüsse auf die Struktur ziehen zu können. Auf Grund des ¹H,³¹P-2D-Korrelationsspektrums (HMBC, Abbildung 42) konnten die Signale **a-d** eindeutig dem Produkt **54** zugeordnet werden.

Abbildung 42: ¹H,³¹P-2D-Korrelationsspektrum (HMBC, über mehrere Bindungen) von 54.

Auf Grund der Korrelation und auf Grund der $J_{P,C}$ -Kopplung der Kohlenstoff-Signale **a** und **b**, kann davon ausgegangen werden, dass die Bis(trimethylsilyl)methyl-Gruppe noch am Phosphor gebunden ist. Die CH-Gruppe (**c**) weist eine $J_{P,H}$ -Kopplung auf, die sich auch im ³¹P-NMR-Spektrum wiederfindet, ebenso wie die $J_{P,H}$ -Kopplung der CH-Gruppe (**d**) (**54**: δ^{31} P: 91.8, $J_{P,H}$ = 12.3 Hz, 14.5 Hz). Das Signal **e** entspricht einer CH₃-Gruppe und kann auf Grund der Verschiebung der Stickstoff-gebundenen Methyl-Gruppe zugeordnet werden. Über dieses Signal und weitere ¹H,¹³C-2D-Korrelationsspektren (HMBC und HMQC) können die Signale **e**-**h** zugeordnet und ein *N*-Methylimidazol-Substituent im Molekül **54** bestätigt werden.

Betrachtet man den Carbonyl-Bereich etwas genauer, so fallen drei Signale auf, die der chemischen Verschiebung her den Carbonyl-Gruppen von der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe entsprechen, aber keines eine typische ² J_{P,C}-Kopplung zu einem *trans*-ständigen CO von ca. 30-40 Hz aufweist (Abbildung 43).

Abbildung 43: Ausschnitt des ¹³C{¹H}-NMR-Spektrums (THF-d⁸) von 54 in Reaktionslösung.

Während das Signal i im ¹H,¹³C-2D-Korrelationsspektrum (HMBC) eine Wechselwirkung über mehrere Bindungen zu der CH-Gruppe bei 3.25 ppm zeigt, zeigt **k** eine Wechselwirkung über mehrere Bindungen zu einem Wasserstoff-Signal bei 1.02 ppm. Dieses wird mit großer Wahrscheinlichkeit nicht **54** zugeordnet und somit entspricht **j** vermutlich dem Signal für die *trans*-ständige CO-Gruppe. Zusammen mit dem IR-Spektrum (Abbildung 41) und einem Vergleich mit **55**^[87] (Tabelle 18) lässt vermuten, dass sich das Metall-Fragment am Stickstoff des *N*-Methylimidazol-Substituenten befindet.

 Tabelle 18: ¹³C{¹H}-NMR von 55

 von Raubenheimer *et al.* (links) und Wang *et al.* (rechts).^[88]

	δ ¹³ C [pp (CDC	m] ^[88a] Cl ₃)	δ	¹³ C [pp (CDC	m] ^[88b] ;I ₃)
	cis-CO	198.6	Cis	s-CO	202.8
W(CO) ₅ 55	trans-CO	202.6	trar	ns-CO	214.8

Leider weichen auch hier die bekannten Literaturdaten voneinander ab, sodass keine endgültige Aussage getroffen werden kann. Während die chemische Verschiebung der *cis*-ständigen CO-Gruppen vergleichbar ist, weichen die chemischen Verschiebungen der *trans*-ständigen CO-Gruppe stark voneinander ab. Die kleine $J_{P,C}$ -Kopplung in **54** von 2.2 Hz spricht allerdings dafür, dass sich das Metallfragment noch im Produkt befindet und vermutlich über mehr als zwei Bindungen mit Phosphor koppelt.

Auf Grund dieser Befunde könnte es sich tatsächlich um ein offenes Valenzisomer des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes handeln und hierbei sind zwei mögliche Koordinationsmoden an das Metallfragment denkbar. Die Koordination an W(CO)₅ könnte, wie bereits diskutiert, am Stickstoff erfolgen oder es wäre eventuell eine *side-on*-Koordination der P=C-Doppelbindung denkbar (Abbildung 44).

Abbildung 44: Weitere Struktur-Vorschläge für Verbindung 54: links: η^1 -Koordination über Stickstoff, rechts: η^2 -Koordination (*side-on*)

Durch protoneninduzierte Umlagerungsreaktionen $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen und haptotrope Verschiebung des W(CO)₅-Fragments konnten bereits zuvor vergleichbare side-on-koordinierte Komplexe zugänglich gemacht werden.[50c,50d,89] Die Verschiebung in den Tieffeld-Bereich (δ^{31} P: 72-144 je nach Substituent) ist in Übereinstimmung mit den bekannten Derivaten, allerdings können auch Unterschiede zu 54 ausgemacht werden. Die von Streubel et al. publizierten Derivate weisen eine $J_{W,P}$ -Kopplung im Wertebereich von 98-144 Hz auf, zusätzlich wird im $^{13}C{^{1}H}-NMR$, typisch für side-on-Komplexe, nur eine CO-Gruppe mit einer $^{2}J_{P,C}$ -Kopplung von ca. 10 Hz zugeordnet und die vCO-Banden im IR-Spektrum liegen im Bereich von ca. 2100-1940 cm⁻¹.^[50c,50d,89] Darüber hinaus zeigten DFT-Rechnungen (B3LYP/aug-TZVP/ECP-60-MWB(W) COSMO und SV(P)/ECP-60-MWB(W) COSMO), dass eine Valenzisomerisierung (ohne vorhergehende Aktivierung) des $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes 28 annähernd thermoneutral (C-Ph) ist $(\Delta_R G_{298} = 14.9 \text{ kJ/mol})$, aber eine relativ hohe Barriere von +123.6 kJ/mol aufweist, die hauptsächlich auf die sperrige P-CH(SiMe₃)₂-Gruppe zurückzuführen ist.^[50c,50d] Daher ist eine reine side-on-Koordination (Abbildung 44, rechts) als unwahrscheinlich anzusehen.

Die erneute Betrachtung des IR-Spektrums (Abbildung 41) unter der Annahme, dass es sich bei der Verbindung **54**, um die in Abbildung 44 (links) dargestellte η^{1} -Koordination über das freie Elektronenpaar des Stickstoffs handelt, bestärkt diesen Vorschlag nochmals. Die mittelstarke Bande bei 1135 cm⁻¹ könnte auf eine P=O-Doppelbindung^[90] und die starke Bande bei 1082 cm⁻¹ könnte auf eine P=C-Doppelbindung^[91] zurückzuführen sein. Alle genannten Gruppen und die zugehörigen Signale **a-j** in den NMR-Spektren (Tabelle 17) können über diesen Struktur-Vorschlag erklärt werden. Dennoch, ist die Struktur zum jetzigen Zeitpunkt nur als Vorschlag anzusehen, da sie ohne zusätzliche Befunde nicht eindeutig geklärt werden konnte. Unsicher ist vor allem die CH-Gruppe (δ^{1} H: 3.25 ppm) der P=C-Doppelbindung, auch wenn sie im ¹H,¹³C-2D-Korrelationsspektrum eine Wechselwirkung zur CO-Gruppe (δ^{13} C: 200.8) und zum quartären Kohlenstoff-Atom des Imidazol-Rings (δ^{13} C: 159.4) zeigt. Die entsprechende Resonanz im ¹³C{¹H}-NMR-Spektrum könnte im Bereich der Lösungsmittel-Signale und des Kronenether-Signals im Bereich um die 70 ppm liegen und von diesen überdeckt sein.

In der Literatur sind nur wenige Beispiele der sogenannten $\sigma^{3}\lambda^{5}$ -Alkyliden(oxo)phosphorane bekannt, da Derivate mit weniger voluminösen Substituenten instabil sind und zur Polymerisation neigen.^[92] Von Appel *et al.* wurde 1984 das erste stabile $\sigma^{3}\lambda^{5}$ -Alkyliden(oxo)phosphoran beschrieben, welches durch Einkristallstrukturanalyse belegt werden konnte (Abbildung 45).^[93]

Abbildung 45: Das erste stabile Alkyliden(oxo)phosphoran von Appel et al.[93]

Die Stabilität dieses Derivats wird durch den sterisch sehr anspruchsvollen Phosphor-Substituenten (2,4,6-Tri-*tert*-butylphenyl-Gruppe) realisiert. Ein Vergleich der ³¹P-NMR-chemischen Verschiebung mit **54** zeigt, dass das bekannte Derivat von Appel mit 153.7 ppm auch deutlich in den Tieffeldbereich verschoben ist.^[93] Dass die Substituenten einen deutlichen Einfluss auf die chemische Verschiebung haben 79 können, zeigt auch ein Vergleich mit einem weiteren Derivat (eine weitere *C*-SiMe₃-Gruppe anstelle der *C*-Ph-Gruppe) hat eine ³¹P-NMR-chemische Verschiebung von 161.1 ppm.^[94] Durch den Donor-Substituenten in **54** und einer vermutlich höheren Elektronendichte am Phosphor könnte eine Hochfeld-Verschiebung denkbar sein. Die ¹³C{¹H}-NMR-chemische Verschiebung der P=C-Doppelbindung liegt in dem stabilen, von Appel beschriebenen Derivat bei 103.8 ppm (¹*J*_{P,C} = 113.2 Hz).^[93] Die fehlende Zuordnung von **54** im ¹³C{¹H}-NMR-Spektrum auf Grund der Intensität eine P=C-Doppelbindung lässt jedoch leider keinen Vergleich zu.

Ein Vergleich der bislang vorgeschlagenen Konstitution von **54** mit diesen wenigen literaturbekannten Derivaten zeigt, dass in Abhängigkeit der Substituenten hochreaktive Phosphor(V)-Verbindungen oder auch stabile Derivate vorliegen können. Insofern gibt dies auch weitere Hinweise, warum **54** nicht stabil ist und daher auch nicht isoliert werden kann. Zusätzlich ist unklar, welchen Einfluss das Metallfragment haben könnte, denn auch **55** gilt als luftstabil, aber vor allem lichtempfindlich und über Zersetzung während der Aufarbeitung wurde berichtet.^[88b] Im vorliegenden Fall von **54** wurde mit verschiedensten Reagenzien wie Methyliodid, Trimethylphosphit, 3,4,5,6-Tetrachloro-1,2-benzochinon oder Trimethylamin-*N*-oxid (wasserfrei) keine Reaktion beobachtet. Eine ausbleibende Oxidation könnte auf einen fünfwertigen Phosphor hinweisen, wobei jedoch auch hier weitere Folgereaktionen unter Spaltung der P=C-Doppelbindung auftreten könnten. Yoshifuji *et al.* beschreiben diese Reaktivität für ein Diphosphenoxid welches sich durch weitere Oxidation und Hydrolyse zu Phosphor- und Phosphinsäure-Derivaten zersetzt.^[95]

Mit einem Überschuss Wasser oder Salzsäure, also Protonen-Donoren, konnte jedoch eine Reaktion von **54** beobachtet werden. In diesen Fällen wurde jedoch auch keine selektive Reaktion beobachtet und Folgeprodukte konnten, auf Grund von Zersetzung, nicht isoliert werden. Erstaunlicherweise haben die ³¹P-NMR-Signale der Folgeprodukte keine direkte P,H-Kopplung (Abbildung 46, Abbildung 47).

Abbildung 46: ³¹P{¹H}-NMR- und ³¹P-NMR-Spektrum der Reaktionslösung von **54** und H₂O (Überschuss).

Abbildung 47: ³¹P{¹H}-NMR- und ³¹P-NMR-Spektrum der Reaktionslösung von **54** mit HCI (Überschuss).

Letztendlich könnte nur eine Isolierung und ggf. die Kristallisation des Produktes Aufschluss über die Konstitution der unbekannten Verbindung **54** geben, was jedoch im Rahmen dieser Arbeit nicht mehr gelang.

3.4 *C*-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe

In Kapitel 3.2.3 wurde bereits an dem Beispiel von Yoshifuji et al. die σ-Donor-Fähigkeit des Pyridin-Substituenten in Diphenyl(o-pyridyl)phosphan diskutiert.^[71d] Durch die hohe Elektronegativität des Stickstoffs, weist der Pyridin-Ring einen π -Elektronenmangel auf und kann daher als π -Akzeptor-Ligand über das freie Elektronenpaar am Stickstoff koordinieren. Dies konnte unter anderem an zahlreichen Beispielen von Pyridin-substituierten Phosphan-Komplexen gezeigt werden, die als N,P-Chelat-Ligand an Übergangsmetalle koordinieren können.^[71c,96]

Daher sind sowohl die ortho-, meta- und para-substituierten Pyridinaldehyde, als auch entsprechende Ketone in großem Interesse für die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese. In Schema 40 sind die geplanten Synthesen und die einzelnen Variationsmöglichkeiten dargestellt.

Schema 40: Variationsmöglichkeiten in der Synthese von C-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphophiran-Komplexen.

Neben den drei verschiedenen Übergangsmetallen Wolfram, Chrom oder Molybdän, ist die Position des Stickstoffs im Pyridyl-Substituenten von entscheidender Bedeutung hinsichtlich einer möglichen N-Chelatisierung bzw. Koordinierung. Die para-Position in LI ist aufgrund der Position des Stickstoffs im Vergleich zu LII und 82

LIII ungünstig und könnte eventuell zu einer haptotropen Verschiebung führen oder auch zur Bildung eines Koordinationspolymers. Eine Wechselwirkung des Pyridin-Stickstoffs in **LII** mit dem Metall-Fragment könnte einen (gespannten) 6-gliedrigen Chelat-Komplex ermöglichen, wohingegen **LIII** einen (wenig gespannten) 5-gliedrigen Chelat-Komplex bilden könnte. Zusätzlich könnte auch die Größe des *C*-Substituenten R' (R' = H, Me) und des *P*-Substituenten R (R = CH(SiMe₃)₂, CPh₃, Cp*) einen entscheidenden Einfluss haben.

3.4.1 *P*-Bis(trimethylsilyl)methyl-substituierte Komplexe

Die Reaktion von **4a** mit *p*-Pyridinaldehyd ist in Schema 41 dargestellt und das entsprechenden ³¹P{¹H}-NMR-Spektrum der Reaktionslösung ist in Abbildung 48 gezeigt.

Schema 41: Darstellung des *p*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **56**.

Abbildung 48: ³¹P{¹H}-NMR-Spektrum (Et₂O) der Umsetzung von **4a** mit einem Äquivalent *p*-Pyridinaldehyd.

Zwar wurde der entsprechende $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **56** (δ^{31} P: 41.6) in der äguimolaren Umsetzung erhalten, allerdings nicht als Hauptprodukt. Mit einem Anteil von 36% wird der bereits bekannte Z-Diphosphen-Komplex (δ^{31} P: 324.4)^[27,53b] als Hauptprodukt gebildet und ist ein Hinweis darauf, dass mehr als ein Äguivalent des Aldehyds für eine quantitative Umsetzung nötig sind. Die Umsetzung mit drei Äquivalenten *p*-Pyridinaldehyd hingegen konnte keine Verbesserung der Produktverhältnisse bewirken: es wurde nur einen Anteil von 7% des Komplexes 56 Diphosphen-Komplexe (Z-Diphosphen-Komplex^[27,53b]: neben 34% der 13%. *E*-Diphosphen-Komplex^[79]: 5% und η^1 -Diphosphen-Komplex^[79]: 16%) in einer unselektiven Reaktion gebildet. Erstaunlicherweise wird in der Reaktion von 4a mit 0.8 Aquivalenten *p*-Pyridinaldehyd kein Diphosphen-Komplex beobachtet, dennoch wird **56** wieder nur zu ca. einem Drittel gebildet (Abbildung 49).

Abbildung 49: ³¹P{¹H}-NMR-Spektrum (Et₂O) der Reaktion von **4a** mit 0.8 Äquivalenten *p*-Pyridinaldehyd.

Wie auch schon in der Reaktion mit DMF diskutiert (Kapitel 3.2.4), kann es sich auf Grund der chemischen Verschiebung und der Kopplungskonstanten auch bei den Verbindungen bei 285.7 ppm und 291.2 ppm um (ähnliche) zwitterionische Verbindungen handeln (vgl. Abbildung 30). Auch hier konnte dies auf Grund von Zersetzung nicht endgültig bestätigt werden. Tatsächlich konnte die Reaktionsführung in Et₂O mit 0.6 Äquivalenten [12]Krone-4 und 3.0 Äquivalenten p-Pyridinaldehyd zu einer deutlich verbesserten Selektivität führen und auch eine verkürzte Reaktionszeit von 5 Minuten, statt 3 Stunden und einem Wechsel des Lösungsmittels auf Toluol führte zu einer Verbesserung (Abbildung 50). 84

Abbildung 50: ³¹P{¹H}-NMR-Spektren der Umsetzung von 4a: oben: 3 Äquivalenten *p*-Pyridinaldehyd und 0.6 Äquivalenten [12]Krone-4 in *n*-Pentan; unten: 1 Äquivalenten *p*-Pyridinaldehyd mit kürzerer Reaktionszeit in Toluol.

Allerdings ist auch hier auffallend, dass das ${}^{31}P{}^{1}H{}$ -NMR-Spektrum der Reaktion von **4a** mit einem Unterschuss Kronenether (Abbildung 50, oben) erst nach Extraktion mit *n*-Pentan scharfe Signale zeigt (Abbildung 51).

Abbildung 51 ³¹P{¹H}-NMR-Spektrum in Et₂O vor Extraktion mit *n*-Pentan.

Die Synthese des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes konnte schließlich soweit optimiert werden, dass 38% des gewünschten Komplexes **56** (Integration im ³¹P{¹H}-NMR-Spektrum) gebildet wurden. Dennoch wurde diese Reaktion auf Grund der geringen Selektivität nicht weiter verfolgt.

Die Synthese des *m*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes ist in Schema 42 dargestellt.

Schema 42: Darstellung des *m*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes 57.

Da es sich bei dem *meta*-Derivat um das mit der geringsten Elektrophilie der Carbonyl-Gruppe handelt, wurde die Umsetzung mit drei Äquivalenten des *m*-Pyridinaldehyds durchgeführt, Abbildung 52 zeigt das ³¹P{¹H}-NMR-Spektrum der Reaktion.

Abbildung 52: ³¹P{¹H}-NMR-Spektrum (Et₂O) der Reaktion von **4a** mit 3 Äquivalenten *m*-Pyridinaldehyd.

Auch in dieser Umsetzung wurden wie im obigen Fall zwitterionische Verbindungen im tiefen Feld beobachtet (293.6 ppm und 286.3 ppm) (vgl. Abbildung 30 und Abbildung 49). Der Komplex **57** (δ^{31} P: 41.6, ${}^{1}J_{W,P}$ = 311.1 Hz) wurde jedoch nur mit einem Anteil von ca. 40% (Integration im 31 P{ 1 H}-NMR-Spektrum) erhalten und konnte daher nicht isoliert werden.

Schließlich wurde die Synthese des *o*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **58a** angestrebt (Schema 43).

Schema 43: Darstellung des o-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **58a**.

Überraschenderweise verlief, im Unterschied zu den *para-* und *meta-*substituierten Pyridinaldehyden, die Synthese durch Umsetzung von Phosphinidenoid-Komplexes **4a** mit 1 Äquivalent *o*-Pyridinaldehyd in Et₂O sehr glatt; das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung ist in Abbildung 53 dargestellt.

Abbildung 53: ³¹P{¹H}-NMR-Spektrum (Et₂O) der Reaktionslösung von **4a** mit 1 Äquivalent *o*-Pyridinaldehyd.

Das Hauptsignal (91%) bei 38.7 ppm kann auf Grund der chemischen Verschiebung der typischen ${}^{1}J_{W,P}$ -Kopplungskonstanten (${}^{1}J_{W,P}$ = 311.1 und Hz) dem $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **58a** zugeordnet werden. Die einzigen Nebenprodukte dieser Reaktion weisen eine chemische Verschiebung von 48.8 ppm (1%) und 29.8 (8%) auf. Durch Extraktion mit *n*-Pentan aus der eingeengten ppm Reaktionsmischung und anschließende Säulenchromatographie konnte der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **58a** isoliert werden. Obwohl der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex 58a mit einer Ausbeute von ca. 58% nach säulenchromatischer Aufarbeitung erhalten wurde, zeigten die NMR-Spektren, dass noch Kronenether im Produkt enthalten war. Dies machte eine Umkristallisation aus n-Pentan bei -80 °C nötig, wodurch 58a als hellgelber Feststoff reiner in 37% erhalten wurde.

Der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **58a** wurde mittels NMR-, IR-Spektroskopie, Massenspektrometrie, Schmelzpunktbestimmung und auch mittels Elementaranalyse vollständig charakterisiert. Es zeigte sich schließlich, dass es sich bei den beiden Signalen im ³¹P{¹H}-NMR-Spektrum (Abbildung 53) um isomere Verbindungen des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **58a** handelt. In Tabelle 19 sind die ³¹P-NMR-Daten der Isomere des $\sigma^3 \lambda^3$ -Oxaphosphiran-Wolframkomplexes **58a** aufgeführt.

Tabelle 19: ³¹P-NMR-Daten (CDCl₃) des $\sigma^3 \lambda^3$ -Oxaphosphiran-Wolframkomplexes(d = Dublett, s = Singulett, m = Multiplett)

	δ ³¹ Ρ [ppm]	¹ Ј _{W,Р} [Hz]	² Ј_{Р,Н} [Hz]	Verhältnis
58a'	32.7	296.9	17.2 (d)	0.1
58a''	41.1	309.5	S	1.0
58a'''	46.3	298.4	m	0.02

Auffällig ist, dass das Hauptsignal im ³¹P-NMR-Spektrum bei 41.1 ppm (**58a**") keine ${}^{2}J_{P,H}$ -Kopplung aufweist und die Phosphor-Wolfram-Kopplungskonstante im Vergleich zu den anderen beiden Isomeren (**58a**' und **58a**'") um ca. 10 Hz größer ist. Vergleicht man die ¹H-NMR- und ¹³C{¹H}-NMR-Daten der beiden Hauptisomere miteinander so werden weitere Unterschiede deutlich (Tabelle 20).

	Verhältnis	$\delta^{31}\mathbf{P}$ [ppm]	δ ¹ Н [ppm] (² <i>J</i> _{Р,Н} [Hz])		δ ¹³ C [ppm] 1 <i>J</i> _{P,C} [Hz]	
		(⁻ J _{P,H} [HZ])	CH(SiMe ₃) ₂	C <i>H</i> PO	CH(SiMe ₃) ₂	CHPO
58a'	0.1	32.7	1.49	4.46	22.1	64.3
		(17.2)	(17.3)	(4.4)	(39.3)	(21.4)
58a"	1.0	41.1	1.27	4.42	32.9	60.1
		(-)	(-)	(3.2)	(18.3)	(27.1)

 Tabelle 20: ¹H- und ¹³C-NMR-Daten (CDCl₃) der beiden Hauptisomere von 58a.

Die ${}^{2}J_{P,H}$ -Kopplungskonstante des Methinprotons der Bis(trimethylsilyl)methyl-Gruppe kann sowohl durch das ${}^{31}P$ -NMR-Spektrum, als auch durch das ${}^{1}H$ -NMR-Spektrum bestätigt werden und damit eindeutig durch die Kopplung des Phosphorkerns dem *P*-Substituenten zugeordnet werden. Das Hauptisomer **58a**⁴ weist keine Kopplung zum *P*-Substituenten auf, hingegen zeigt das Nebenisomer **58a**⁴ ein deutliches Dublett mit einer Aufspaltung von 17.2 Hz. Eine Ähnliche Situation wird im ${}^{13}C$ -NMR-Spektrum beobachtet. Das Kohlenstoff-Atom des *P*-Substituenten ist bei dem Hauptisomer **58a**⁴ um 10 ppm in den Tieffeldbereich verschoben und weist eine nur halb so große ${}^{1}J_{P,C}$ -Kopplungskonstante wie das Nebenisomer **58a**⁴ auf.

Ein Vergleich mit dem bekannten *C*-Phenyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **LIV** zeigt, dass es sich bei diesen beiden Isomeren um Atropisomere handelt, die durch die gehinderte Rotation um die exocyclische P-C-Bindung entstehen. Gestützt wird dies durch die thermische Umwandlung zugunsten eines Isomers auf Grund einer recht niedrigen Energiebarriere (s. hierzu Kapitel 3.6.1). Zur detaillierten Diskussion der Problematik der Atropisomerie sind die zwei Einkristallstrukturen des Komplexes **LIV** und die entsprechenden NMR-Daten geeignet (Tabelle 21).

Image: single						
LIV' s-t	rans ^[53a]		LIV"	S- <i>CiS</i> ^[21,53a]		
δ ³¹ P [ppm] (¹	J _{W,P} [Hz])	$δ^{1}$ H [ppm] $δ^{13}$ C [ppm] (² J _{P,H} [Hz]) ¹ J _{P,C} [Hz]			ppm] [Hz]	
(J P,H [ΠΖ])	CH(SiMe ₃) ₂	C <i>H</i> PO	CH(SiMe ₃) ₂	CHPO	
LIV' s- <i>trans</i> ^[53a]	31.0 (292.3) (17.9)	1.28 (17.2)	4.50 (5.8)	19.1 (39.3)	62.5 (22.3)	
LIV" s- <i>cis</i> ^[21,53a]	38.2 (307.7) (-)	1.28 (-)	4.40 (1.8)	30.5 (18.8)	57.9 (27.5)	

Tabelle 21: ³¹P{¹H}-, ¹H- und ¹³C-NMR-Daten (CDCI₃) der beiden Atropisomere LIV.^[21,53a]

Durch die gehinderte Rotation entlang der exocyclischen P-C-Bindung werden zwei unterschiedliche Orientierungen des Bis(trimethylsilyl)methyl-Substituenten möglich. Die gleichgerichtete Orientierung des der C-H-Bindung des P-Substituenten (H8a in LIV⁴ und H13 in LIV⁴) und der P-W-Bindung relativ zur P-C-Einfachbindung wird als s-*cis* ("single-bond" daher s-*cis*, LIV⁴) und die entgegengesetzte Orientierung als s-*trans* ("single-bond" daher s-*trans*, LIV⁴) bezeichnet.^[32,53a] Anzumerken ist hier, dass zusätzlich zur Atropisomerie auch die Orientierung der Substituenten am Ringkohlenstoff-Atom in LIV⁴ und LIV⁴ unterschiedlich ist, dies spielt aber für die weiteren Betrachtungen keine entscheidende Rolle. Vergleicht man nun die Einkristallstrukturen und die NMR-Daten von LIV⁴ und LIV⁴⁴ miteinander so wird deutlich, dass für die s-*cis* Konfiguration der CH-Gruppe (*P*-CH(SiMe₃)₂) ein Singulett im ¹H-NMR-Spektrum resultiert, wohingegen die s-*trans* Konfiguration durch ein Dublett erkannt werden kann.

Nun kann auch für die Isomere des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **58a** eine s-*cis* Konfiguration für das Hauptisomer **58a**" und die s-*trans* Konfiguration für das Nebenisomer **58a**' festgestellt werden. Die Kristallisation des Hauptisomers **58a**" bestätigte die s-*cis* Konfiguration in der Molekülstruktur (Abbildung 54).

Abbildung 54: Molekülstruktur von 58a" (s-*cis*) im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H1 und H7) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D8.
Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:W-P 2.456(1), P-C7 1.804(5), P-O1 1.676(4), P-C1 1.794(6), O1-C1 1.464(7), C1-C2 1.476(7), O1-P-C1 49.8(2), C1-O1-P 69.3(3), O1-C1-P 60.9(3).

Die Bindungslängen und –Winkel sind in guter Übereinstimmung mit den bereits bekannten Derivaten der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe.

Auf Grund des Befundes, dass die *o*-Pyridyl-substituierten Komplexe als Isomerenmischung erhalten werden und neben dem Hauptisomer ein weiteres, ins Hochfeld verschobene Isomer mit einer ${}^{2}J_{P,H}$ -Kopplung von ca. 17 Hz gebildet wird, können nun auf dieser Basis auch für die beobachteten *m*- und *p*-Pyridylsubstituierten Derivate den s-*trans* Atropisomeren die entsprechenden ³¹P-NMR-Signale zugeordnet werden (vgl. Abbildung 48 und Abbildung 52). In Tabelle 22 sind vergleichend die ³¹P-NMR-Daten der *o*-, *m*- und *p*-Pyridyl-substituierten Komplexe **56**, **57** und **58a** aufgeführt.

Tabelle 22: Vergleich der ³¹P-NMR-Daten (Et2O) der o-, *m*- und *p*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Wolframkomplexe 56, 57 und 58a.

C-Substituent			δ ³¹ P [ppm]	¹ Ј_{W,Р} [Hz]	² Ј_{Р,Н} [Hz]
p_Dyridyl	56'	s-trans	32.5	300.6	17.1 (d)
μ-r yndyr	56"	s-cis	41.6	313.2	-
m-Duridul	57'	s-trans	31.6	297.7	16.8 (d)
III-F yhdyi	57"	s-cis	41.6	311.1	-
o-Pyridyl	58aʻ	s-trans	32.7	296.9	17.2 (d)
o-Pyridyi	58a''	s-cis	38.7	311.1	-

Wie aus Tabelle 22 hervorgeht, wird für alle drei Derivate die s-*cis* und s-*trans* konfigurierten Atropisomere erhalten; die chemische Verschiebung und auch die ${}^{1}J_{W,P}$ -Kopplungskonstante der Derivate sind in sehr guter Übereinstimmung.

Auf Grund der erfolgreichen Synthese des Wolfram-Komplexes **58a**, wurde dann versucht, die *o*-Pyridyl-substituierten Molybdän- und Chrom-Derivate darzustellen und zu isolieren (Schema 44), was auch ohne Probleme gelang.

Schema 44: Darstellung der *o*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Molybdän- und Chromkomplexe **58b** und **58c**.

In Tabelle 23 sind die NMR-Daten der Molybdän- und Chrom-Komplexe **58b** und **58c** aufgeführt und Abbildung 55 zeigt die ³¹P{¹H}-NMR-Spektren der Reaktionslösungen der Umsetzungen der Li/CI-Phosphinidenoid-Komplexe **4a-c** mit einem Äquivalent *o*-Pyridinaldehyd.

Μ			δ ³¹ Ρ [ppm]	² Ј_{Р,Н} [Hz]	Verhältnis
Mo	58b'	s-trans	56.6	15.7 (d)	0.2
	58b"	s-cis	63.9	-	1.0
Cr	58c'	s-trans	86.3	19.5, 5.8 (dd)	0.02
Cr —	58c"	s-cis	90.5	-	1.0

 Tabelle 23: ³¹P-NMR-Daten (Et₂O) der Komplexe 58b und 58c.

Auch im Fall der Molybdän- und Chrom-Komplexe **58b** und **58c** wurden Isomerenmischungen erhalten und auch hier erforderte die Aufreinigung eine zusätzliche Umkristallisation, was somit zu relativ geringen Ausbeuten führte (**58b** (Mo): 20%, **58c** (Cr): 38%). Die NMR-Daten weisen, im Vergleich mit dem Wolfram-Derivat **58a**, jedoch wesentliche Unterschiede auf. Zum einen können auf Grund der Intensität der Signale im ³¹P{¹H}-NMR-Spektrum nur zwei Isomere zugeordnet werden und das Verhältnis der beiden Isomere unterscheidet sich vom Wolfram-Derivat (**58a**':**58a**'' = 1.0:0.1, vgl. Abbildung 53). Neben der erwarteten Tieffeld-Verschiebung des Resonanzsignals beim Übergang von Wolfram zu Molybdän zu Chrom (~ 30 ppm), kann ebenfalls die Aufspaltung des Signals im ³¹P-NMR-Spektrum durch den *P*-Substituenten festgestellt werden (**58b**' und **58c**'). Auch hier unterscheidet sich das Chrom-Derivat **58c**' von den beiden anderen Derivaten, dem ³¹P-NMR-Spektrum ist eine weitere ²J_{P,H}-Kopplung und die Aufspaltung in ein Doppel-Dublett von Dublett zu entnehmen (durch Kopplung zum C*H*P(O)-Proton).

Um den Einfluss weiterer Substituenten am Ringkohlenstoff-Atom zu untersuchen, wurde der Li/Cl-Phosphinidenoid-Komplex mit *o*-Acetylpyridin umgesetzt und so auch der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **59a** sehr selektiv erhalten (Schema 45).

Schema 45: Darstellung des $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes 59a.

Wie auch bei der Umsetzung des Li/CI-Phosphinidenoid-Komplexes **4a** mit *o*-Pyridinaldehyd, wurde hier in der Reaktion mit dem Keton eine Mischung von drei Isomeren erhalten, die auch nur als solche isoliert wurde (Abbildung 56, Tabelle 24).

Abbildung 56: ³¹P{¹H}-NMR-Spektrum der Reaktionslösung (Et₂O) der Umsetzung von 4a mit einem Äquivalent o-Acetylpyridin zu 59a.

Tabelle 24: 31 P-NMR-Daten (C7D8) des $\sigma^3 \lambda^3$ -Oxaphoshpiran-Komplexes**59a**

(dq = Dublett von Quartet	, pseudo-qui = Pseudo-Quintet	i, q = Quartett)
---------------------------	-------------------------------	------------------

	δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	^{2,3} J_{P,H} [Hz]	Verhältnis
59aʻ	45.7	306.4	15.9, 7.3 (dq)	0.1
59a''	48.9	299.8	15.2 (pseudo-qui)	1.0
59a'''	60.6	307.0	9.1 (q)	0.2

Das Resonanzsignal von **59a**' spaltet als Dublett (${}^{2}J_{P,H} = 15.9 \text{ Hz}$) von Quartetts (${}^{3}J_{P,H} = 7.3 \text{ Hz}$) auf, während das zugehörige Signal von **59a**'' durch die annähernd

gleiche ${}^{2}J_{P,H}$ - und ${}^{3}J_{P,H}$ -Kopplung zu einem Pseudo-Quintett aufspaltet. In **59a**^{•••} liegt keine Kopplung zum Phosphor-Substituenten vor. Die ${}^{2}J_{P,H}$ -Kopplung kann der Aufspaltung durch die CH-Gruppe des Phosphor-Substituenten und die ${}^{3}J_{P,H}$ -Kopplung der Aufspaltung durch die CH₃-Gruppe des Substituenten am Ringkohlenstoff-Atom zugeordnet werden (Tabelle 24).

Im Unterschied zum Derivat **58a**⁽ (Singulett), kann im ³¹P-NMR-Spektrum für das Hauptisomer **59a**⁽ eine Kopplung von 16.1 Hz zum Phosphor-Substituenten festgestellt werden. Das Vorhandensein der ²*J*_{P,H}-Kopplung könnte ein erster Hinweis auf die s-*trans* Konfiguration sein. In Tabelle 25 sind die NMR-Daten der beiden Hauptisomere von **58a** und **59a** vergleichend aufgeführt.

Tabelle 25: Vergleich der ³¹P-, ¹H- und ¹³C-NMR-Daten (58a: CDCl₃, 59a: C₇D₈) der beidenHauptisomere 58a'/58a'' und 59a''/59a'''.

(OC) ₅ W, CH(SiMe ₃) ₂ R, O		Ver- hältnis	δ ³¹ P [ppm] (¹ J _{W,P} Hz]) (^{2,3} J _{P,H} [Hz])	δ ¹ Η [ppm] (² J _{Ρ,Η} [Hz])	δ ¹³ C [ppm] ¹ J _{P,C} [Hz]	
	Ň			. ,,	CH(SiMe ₃) ₂	CH(SiMe ₃) ₂
D_U	58aʻ	s-trans	0.1	32.7 (296.9) (17.2)	1.49 (17.3)	22.1 (39.3)
K = N	58a''	s-cis	1.0	41.1 (309.5) (-)	1.27 (-)	32.9 (18.3)
	59a''	s-trans	1.0	48.9 (299.8) (16.1, 15.1)	0.91 (16.1)	25.7 (39.0)
$R = CH_3$	59a'''	s-cis	0.2	60.6 (307.0) (9.1)	1.47 (-)	34.6 (19.9)

Das Vorliegen des s-*trans* konfigurierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **59a** konnte schließlich durch die Einkristallstrukturanalyse bestätigt werden; in Abbildung 57 ist die Molekülstruktur von **59a**" gezeigt.

Abbildung 57: Molekülstruktur von 59a" (s-*trans*) im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H1 und H7) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D9. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:W-P 2.490(1), P-C8 1.802(5), P-O1 1.673(4), P-C1 1.814(5), O1-C1 1.481(6), C1-C2 1.502(7), O1-P-C1 50.06(19), C1-O1-P 69.9(3), O1-C1-P 60.0(2).

Sowohl $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **58a**^(') als auch Komplex **59a**^(') kristallisieren im gleichen Kristallsystem (Monoklin, P2₁/c). Neben der unterschiedlichen Orientierung der CH-Gruppe des Phosphor-Substituenten unterscheidet sich in beiden Molekülstrukturen auch die Konfiguration am Ringkohlenstoff-Atom. Während sich in 58a" der o-Pyidyl-Substituent und das Wolframpentacarbonyl-Fragment auf der gleichen Seite des dreigliedrigen Heterocyclus befinden (Abbildung 54), sind in 59a" der o-Pyridyl-Substituent und das Metallfragment am Ring entgegengesetzt positioniert. Eine mögliche N···H8 Wasserstoffbrückenbindung (3.4623(2) Å) könnte Orientierung begünstigen. Auf Grund sterischer Wechselwirkungen diese unterscheiden sich auch einige Bindungslängen und -Winkel der beiden Derivate. Die W-P-Bindung ist in 59a" verlängert (59a": 2.490(1) Å, 58a" 2.456(1) Å) wohingegen die P-C7-Bindung (1.804(5) Å) in 58a" bzw. die P-C8-Bindung (1.802(5) Å) in **59a**" gleich lang sind. Der W-P-C8/C7-Winkel unterscheidet sich ebenfalls in beiden Derivaten (58a": 121.83°, 59a" 124.35(17)°). Ein weiterer Unterschied der beiden Strukturen ist die Bindungslänge zum o-Pyridyl-Substituenten, auch hier ist die C1-C2-Bindung in 59a" (1.502(7) Å) länger als in 58a" (1.476(7) Å).

3.4.2 P-Triphenylmethyl-substituierte Komplexe

Neben der Substitution am Ringkohlenstoff-Atom wurde auch der Phosphor-Substituent variiert, um den Einfluss des Substituenten auf die Reaktivität untersuchen zu können. Hierzu wurde der sterisch anspruchsvolle Triphenylmethyl-Substituent (CPh₃) genutzt. In einer vergleichenden Studie wurde dann die Umsetzung des Li/CI-Phosphinidenoid-Komplexes **5a** mit *o*-, *m*- und *p*-Pyridinaldehyd untersucht (Abbildung 58).

Abbildung 58: Synthese der *o*-, *m*- und *p*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 60-62a.

Ein wesentlicher Unterschied bei der Synthese der Derivate **60a-62a** im Vergleich zu den *P*-CH(SiMe₃)₂-substituierten Derivaten **58a-c** ist die geringe Löslichkeit des Dichloro(organo)phosphan-Komplexes **5a** in Et₂O, was die Durchführung in THF erforderte. Die Umsetzung von **5a** mit einem Äquivalent *o*-Pyridinaldehyd verlief nicht so selektiv, wie die Umsetzung des Li/CI-Phosphinidenoid-Komplexes **4a**. Unter Variation der eingesetzten Stoffmenge *o*-Pyridinaldehyd wurde zuerst versucht, die richtigen Reaktionsbedingungen zu finden. Bis auf die Stoffmenge des Aldehyds wurden die Reaktionsbedingungen konstant gehalten. Die Reaktion wurde bei -78 °C mit 0.8 Äquivalenten [12]Krone-4 und 1.2 Äquivalenten ^tBuLi durchgeführt und nach Zugabe des Aldehyds über drei Stunden auf Raumtemperatur erwärmt. Neben ersten

Hinweisen auf den $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **60a** werden jedoch hauptsächlich Produkte im Bereich von 110-125 ppm mit einer direkten P-H-Bindung gebildet.

Da die Bildung von **60a** nicht durch einen Überschuss des Aldehyds beeinflusst werden kann, wurde als nächstes das Lösungsmittel variiert. Da zuvor schon gezeigt wurde, dass der Li/CI-Phosphinidenoid-Komplex **5a** bis Raumtemperatur stabil ist,^[28b] wurde versucht die Synthese in Pyridin (Schmelzpunkt: -42 °C) durchzuführen. Die Tieftemperatur-NMR-Reaktionsverfolgung (TT-NMR) konnte anhand des Wolfram-Derivates zeigen, dass die Generierung von **5a** auch in Pyridin möglich, und der gebildete Komplex auch für sehr kurze Zeit bei Raumtemperatur stabil ist (Abbildung 59).

Ab ca. 10 °C beginnt sich der Phosphinidenoid-Komplex **5a** (sehr) langsam zu zersetzen und bei 25 °C wird ein breites Signal im Bereich um die 160 ppm sichtbar; ca. 50% von **5a** haben sich zu diesem Zeitpunkt zersetzt (Integration im ³¹P{¹H}-NMR-Spektrum). Nach 16 Minuten bei dieser Temperatur ist der Anteil von **5a** bereits auf 16% gesunken. Auch für den entsprechenden Molybdän-Komplex **5b** wurde eine vergleichbare Stabilität bis hin zu Raumtemperatur festgestellt, die Generierung des Li/CI-Phosphinidenoid-Komplexes **5b** erfolgte jedoch nicht ganz so selektiv wie im 98

Fall des Wolfram-Derivats (Details zur TT-NMR-Verfolgung von **5b** befinden sich im Experimentellen Teil, Kapitel 6.6.2.4).

Auf Grund der Stabilität des Li/CI-Phosphinidenoid-Komplexes in Pyridin, wurde **5a** mit jeweils einem Äquivalent [12]Krone-4, ^{*t*}BuLi und *o*-Pyridinaldehyd umgesetzt. Doch auch der Wechsel des Lösungsmittels auf Pyridin konnte keine selektive Bildung des Komplexes **60a** ermöglichen. Hauptprodukt der Reaktion ist der bereits erwähnte, aber unbekannte Komplex mit einer Verschiebung bei 90.5 ppm (${}^{1}J_{W,P} = 262.5 \text{ Hz}$) (Abbildung 60).

Abbildung 60: ³¹P{¹H}-NMR-Spektrum der Umsetzung von **5a** mit *o*-Pyridinaldehyd in Pyridin.

Auf Grund der Vermutung, dass weitere, unbekannte Wechselwirkungen des gebildeten Komplexes **60a** zur Zersetzung des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes führen, wurde die Reaktion schließlich mit einer wesentlich verkürzten Reaktionsdauer durchgeführt. Die erfolgreiche Synthese erfolgte durch eine äquimolare Umsetzung in THF, nach 10 Minuten wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in einem nicht koordinierenden Lösungsmittel (Toluol) aufgenommen (Schema 46).

Schema 46: Optimierte Synthese der Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **60-62a**.

Unter diesen Reaktionsbedingungen war es möglich, **5a** sowohl mit *o*-Pyridinaldehyd, als auch mit *m*- und *p*-Pyridinaldehyd zu den entsprechenden Komplexen **60a**, **61a** und **62a** in einer sehr selektiven Reaktion umzusetzen. In Abbildung 61 sind die ³¹P{¹H}-NMR-Spektren nach dem Wechsel des Lösungsmittels (Toluol) gezeigt und in Tabelle 26 sind die ³¹P{¹H}-NMR-Daten (C₆D₆) der isolierten Komplexe aufgeführt.

Abbildung 61: ³¹P{¹H}-NMR-Spektren (Toluol) der σ³λ³-Oxaphosphiran-Wolframkomplexe **60a** (o-Pyridyl), **61a** (*m*-Pyridyl) und **62a** (*p*-Pyridyl) (% durch Integration im NMR-Spektrum).

Tabelle 26: ${}^{31}P{}^{1}H$ -NMR-Daten (C₆D₆) der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **60a**, **61a** und **62a**.

		δ ³¹ P [ppm]	¹ Ј_{W,Р} [Hz]	Isolierte Ausbeute
60a	<i>o</i> -Pyridyl	14.1	311.3	75%
61a	<i>m</i> -Pyridyl	16.1	313.8	47%
62a	<i>p</i> -Pyridyl	15.9	315.0	74%

Ein wesentlicher Unterschied zu den *P*-CH(SiMe₃)₂-substituierten Derivaten **56a-58a** ist, dass Komplexe **60a-62a** mit einer sehr hohen Diastereoselektivität erhalten werden. Die Wechselwirkungen auf Grund der sterisch anspruchsvollen Substituenten am Ringkohlenstoff-Atom und am Phosphor begünstigen die Bildung eines einzigen Diastereomers. Im Vergleich zu **56a-58a** konnten die *P*-CPh₃-substituierten Derivate in guter Ausbeute mit bis zu 75% isoliert werden. Alle drei Derivate haben eine sehr ähnliche chemische Verschiebung; das Signal von **60a** ist um ca. 2 ppm in den Hochfeldbereich verschoben. Die ¹*J*_{W,P}-Kopplungskonstante steigt jeweils um ca. 2 Hz beim Übergang von *o*-, über *m*- zum *p*-Pyridyl-substituierten Derivat an.

3.4.3 P-Pentamethylcyclopentadienyl-substituierte Komplexe

Da bereits durch ältere Studien bekannt war, dass der *P*-Cp*- und *C*-Pyridylsubstituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex in guter Ausbeute (72%) dargestellt werden kann,^[53c] wurde nun versucht, die entsprechende Synthese auch mit *m*-Pyridinaldehyd und *p*-Pyridinaldehyd durchzuführen. Die ³¹P{¹H}-NMR-Daten der durch Reaktion von **6a** mit *o*-, *m*- und *p*-Pyridinaldehyd gebildeten Produkte (Schema 47) sind im Vergleich in Tabelle 27 aufgeführt.

Schema 47: Darstellung der *P*-Cp*-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 63a^[53c], 64a und 65a.

		δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]
63a	<i>o</i> -Pyridyl	31.1	308.0
64a	<i>m</i> -Pyridyl	32.9 (br)	310.3
65a	<i>p</i> -Pyridyl	32.2 (br)	306.1

Tabelle 27: ${}^{31}P{}^{1}H$ -NMR-Daten (THF) der *P*-Cp*- und *C*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **63a**, ${}^{[53c]}$ **64a** und **65a**.

Auch die *P*-Cp*-substituierten Komplexe **63a-65a** konnten diastereomerenrein dargestellt werden. Besonders interessant ist hier, dass im Fall des *m*- (**64a**) und *p*-Pyridyl-substituierten Derivats (**65a**) die zugehörigen ³¹P-{¹H}-NMR-Signale stark verbreitert sind (Halbwertsbreite: FWHM (**64a**) = 40.9 Hz, FWHM (**65a**) = 60.4 Hz, vgl. Abbildung 62), was auf zusätzliche intermolekulare oder intramolekulare Wechselwirkungen hinweisen könnte.

Abbildung 62: ³¹P{¹H}-NMR-Spektrum (THF) der *m*-Pyridyl- und *p*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **64a** und **65a**.

3.5 *C,C*-Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe

3.5.1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe

Wie in Kapitel 3.4 gezeigt wurde, konnten erste Donor-funktionalisierte Komplexe dargestellt, synthetisiert und teilweise in guten Ausbeuten isoliert werden. Da eine Synthese von symmetrisch substituierten Bis-donor-funktionalisierter $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe gerade in Hinblick auf die Folgechemie besonders interessant sein könnte, wurde die Umsetzung mit Di-(*o*-pyridyl)keton studiert.

Auf Grund der schlechten Löslichkeit des Di-(o-pyridyl)ketons in Et₂O, wurde die Umsetzungen in THF durchgeführt, wobei eine Untersuchungsreihe mit variablen Anteilen des Ketons durchgeführt. In Schema 48 ist die Darstellung des *P*-CH(SiMe₃)₂-substituierten Wolfram-Komplexes 66a in Abhängigkeit der verwendeten Äquivalente des Ketons gezeigt; Abbildung 63 die zeigt entsprechenden ³¹P{¹H}-NMR-Spektren der Reaktionslösungen.

Schema 48: Darstellung des *C*,*C*-Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66a** unter Variation der Äquivalente Di-(*o*-pyridyl)keton.

Abbildung 63: ³¹P{¹H}-NMR-Spektren (THF) der Synthese des *C*,*C*-Dipyridyl-substituierten Komplexes **66a** (*P*-CH(SiMe₃)₂) unter Variation der Äquivalente Di-(*o*-pyridyl)keton.

Das untere ³¹P{¹H}-NMR-Spektrum (Abbildung 63, 1) zeigt die äquimolare Umsetzung von **4a** mit Di-(*o*-pyridyl)keton. Das Signal mit der chemischen Verschiebung bei 50.8 ppm wird dem Komplex **66a** zugeordnet, da sowohl der Bereich als auch die Phosphor-Wolfram-Kopplungskonstante typisch für diese Verbindungsklasse sind. Auch die Phosphor-Wasserstoff-Kopplung (²*J*_{P,H} = 16.3 Hz) unterstützt diese Zuordnung. Neben weiteren, nicht zuzuordnenden Signalen, wurde ein weiteres Nebenprodukt bei 46.4 ppm mit einer wesentlich kleineren Phosphor-Wolfram- und einer direkten P,H-Kopplung (¹*J*_{P,H} = 300.5 Hz) gebildet. Ein Vergleich dieser NMR-Daten mit den publizierten Werten (δ^{31} P (THF-d⁸): 46.0, ¹*J*_{W,P} = 244.1 Hz, ¹*J*_{P,H} = 302.5 Hz) legt die Vermutung nahe, dass es sich bei dem gebildeten Nebenprodukt um Verbindung **67** handeln könnte (Abbildung 64).^[97]

Abbildung 64: [Lithium([12]Krone-4)][{Bis(trimethylsilyl)methyl}oxanidophosphan]pentacarbonylwolfram(0) (**67**).^[97]

Der Mechanismus der Reaktion, die zur Bildung dieses Produktes führt, konnte nicht geklärt werden. Es darf jedoch vermutet werden, dass die Kombination der sterischen Ansprüche eine verlangsamte Reaktion begründet. Ein Überschuss der Carbonyl-Verbindung wirkt der Bildung von **67** entgegen (Abbildung 63, 2-4) und durch die Verwendung eines dreifachen Überschusses der Carbonyl-Verbindung (Abbildung 63, 2) konnte schließlich **66a** mit einer sehr guten Selektivität erhalten werden. Überraschenderweise wird bei Reaktionen mit mehr als drei Äquivalenten (Abbildung 63, 3, 4) wieder ein Nebenprodukt mit einer chemischen Verschiebung von δ^{31} P: 43.4 ppm / 43.5 ppm in geringen Anteilen gebildet. Auf Grund der fehlenden ¹*J*_{P,H}-Kopplung, kann jedoch die Bildung von **67** ausgeschlossen werden. Auch die Chrom und Molybdän-Komplexe **66b,c** konnten durch Umsetzung von **4**b,**c** mit drei Äquivalenten Di-(*o*-pyridyl)keton in sehr hoher Selektivität dargestellt werden; in Tabelle 28 sind die ³¹P{¹H}-NMR-Daten der Komplexe zusammen aufgeführt.

	δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	² Ј_{Р,Н} [Hz]
66a	50.8	308.7	16.6
66b	75.9	-	14.3
66c	103.3	-	16.2

Tabelle 28: ³¹P{¹H}-NMR-Daten (THF) der *C*,*C*-Dipyridyl-substituierten Komplexe **66a-c**.

Trotz dieser sehr hohen Selektivität, traten bei der Isolierung der Produkte **66a-c** neue Schwierigkeiten auf, d.h. weder eine Extraktion mit *n*-Pentan, noch eine anschließende Säulenchromatographie bei tiefer Temperatur, führten zur Isolierung von **66a,c,** da weder das Keton, der Kronenether und Lithiumchlorid vollständig abgetrennt werden konnten. Dies könnte auf eine unerwünschte Einflussnahme der beiden N-Donoren zurückzuführen sein. Das die Separierung durch die Koordination der beiden Stickstoffe in den Pyridin-Substituenten erschwert werden kann, zeigt auch sehr schön das Beispiel von Stalke et al. aus dem Jahr 1994 anhand der Bis(2,2'-pyridyl)methan.^[18] Er Lithiierung von konnte, sowohl durch NMRdurch Spektroskopie als auch Einkristallstrukturanalyse, zeigen, dass Bis(2,2'-pyridyl)methylbis(tetrahydrofuran)lithium vorliegt. Dieses zeichnet sich durch ein carbanionisches, nicht koordinierendes Kohlenstoff-Zentrum und ein von beiden Pyridin-Stickstoffatomen und zwei THF-Molekülen koordiniertes Lithium-Kation aus.^[18] Zusätzlich konnte er zeigen, dass bei der Verwendung von Kronenether im Festkörper ein getrenntes Ionenpaar vorliegt (LV), welches in Lösung mit LVI im Gleichgewicht zu stehen scheint (Schema 49).^[18]

Schema 49: Postuliertes Umlagerungsgleichgewicht von LV zu LVI in Lösung von Stalke et al.^[18]

Auf Grund dieser Ergebnisse von Stalke, ist es nun offensichtlich(er), dass auch im vorliegenden Fall der *C,C*-Dipyridyl-substituierten Komplexe ähnliche koordinative Wechselwirkungen entstehen können. Abbildung 65 zeigt eine Auswahl bekannter und denkbarer koordinativer Wechselwirkungen molekularer Spezies in solchen Reaktionslösungen.

Abbildung 65: Auswahl möglicher koordinativer Wechselwirkungen in den Reaktionslösungen von *C,C*-Dipyridyl-substituierten Komplexen

([M] = Übergangsmetallfragment, R = organischer Substituent, z.B. CH(SiMe₃)₂, Cp*, CPh₃).

Zusätzlich zu den Pyridin-Liganden, kann auch [12]Krone-4 und/oder THF an das Lithium-Kation koordinieren. Weitere Untersuchungen hinsichtlich einer möglichen Koordination an Lithiumchlorid (oder auch Zinkchlorid) des Dipyridyl-Liganden werden in Kapitel 3.6.7 beschrieben.

Nur durch anschließende Umkristallisation aus *n*-Pentan konnten die Komplexe **66a,c** in reiner Form erhalten werden; Komplex **66b** konnte nicht isoliert werden. Dieser zusätzliche Reinigungsschritt führt jedoch zu einer erniedrigten Ausbeute (**66a**: 18%; **66c**: 43%). Einkristallstrukturanalyse bestätigte die Molekülstruktur des Chrom-Komplexes **66c** (Abbildung 66).

Abbildung 66: Molekülstruktur von 66c (s-*trans*) im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H12) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D10. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: Cr-P 2.3383(4), P-O1 1.6748(11), C1-O1 1.4658(17), P-C1 1.8066(14), P-O1-C1 69.87(7), C1-P-O1 49.62(6), O1-C1-P 60.50(7). Die Bindungslängen und Bindungswinkel entsprechen den zu erwartenden Werten für $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe. Als Besonderheit fällt hier die eher untypische s-*trans*-Konformation der Bis(trimethylsilyl)methyl-Gruppe auf, welche jedoch auch bereits im Falle des *C,C*-Diphenyl-substituierten Komplexes beobachtet wurde.^[53a] Der Abstand zwischen N1 und H12 ist mit 3.3903(1) Å im Vergleich zu **59a**" (Abbildung 57) verkürzt, auch hier sind intramolekulare Wechselwirkungen durch N1····H12-Wasserstoffbrückenbindung möglich Diese Konformation spiegelt sich auch in den ¹H- und ¹³C-NMR-Daten des Substituenten wieder (Tabelle 29).

	C <i>H</i> (Si	Me ₃) ₂	CH(SiMe ₃) ₂		
	δ ¹ H [ppm]	² Ј_{Р,Н} [Hz]	δ ¹³ C [ppm]	¹ Ј_{Р,С} [Hz]	
66a	1.77	16.3 (d)	25.8	38.4 (d)	
66c	1.53	16.3 (d)	27.1	45.3 (d)	

Tabelle 29: ¹H- und ¹³C{¹H}-NMR Daten (C_6D_6) von **66a** und **66c**.

Typisch für die s-*trans*-Konformation sind sowohl die Aufspaltung des Signals für das CH-Proton als auch für den Kohlenstoff der Bis(trimethylsilyl)methyl-Gruppe als Dublett in den jeweiligen Spektren (vgl. H12 und C12 in Abbildung 66). Im Vergleich dazu, zeigt die entsprechende s-*cis*-Konformation jeweils ein Singulett im ¹H- und ¹³C-NMR-Spektrum (vgl. auch Kapitel 3.4.1). Diese NMR-Daten sind in guter Übereinstimmung mit dem *C*,*C*-Diphenyl-substituierten Wolfram Komplex (vgl. δ^{1} H: 1.31, ²*J*_{P,H} = 15.9 Hz; δ^{13} C: 23.9, ¹*J*_{P,C} = 38.2 Hz).^[53a]

Vergleicht man den Winkel C2-C1-C7 (113.58(12)°) mit dem entsprechenden Winkel in **LV** (130.3(2)°),^[18] so fällt auf, dass der stumpfe Winkel in **66c** um ca. 16° kleiner ist als in der Vergleichsverbindung **LV**. Nichts desto trotz erscheint es als möglich, dass in Lösung eine *N*,*N*-Koordination der Pyridin-Substituenten möglich ist.

Ein weiteres interessantes Merkmal der Molekülstruktur ist, neben dem kurzen Abstand des Stickstoffatoms eines Pyridyl-Substituenten und dem CH-Proton des Phosphor-Substituenten, auch der relativ kurze Abstand zwischen dem Stickstoffatom und dem Metall. Tabelle 30 zeigt den Vergleich dieser Abstände für die mono- und difunktionalisierten Derivate.

Tabelle 30: Vergleich der N-H- und N-M-Abstände [Å] der C,C-Dipyridyl- (66c) undC-Pyridyl- (58a, 59a) substituierten Komplexe.

(OC) ₅ M_CH(SiMe ₃) ₂						
R"	М	R'	R"	N…H [Å]	M-N1 [Å]	M-N2 [Å]
66c	Cr	<i>о</i> -ру	<i>о</i> -ру	3.3903(1)	5.6452(1)	4.1321(1)
58a	W	<i>о</i> -ру	Н	5.5868(4)	4.7131(3)	-
59a	W	<i>о</i> -ру	CH ₃	3.4623(2)	5.7430(2	-

Während das Einführen einer Methyl-Gruppe in **59a**, im Vergleich zu **58a**, in einem wesentlich größeren N-M-Abstand resultiert (vergleichbar mit dem M-N1-Abstand in **66c**), ist vor allem der M-N2-Abstand in **66c** um ca. 0.6 Å kleiner als in **58a**. Dies macht **66c** zu einem interessanten Derivat für weitere Reaktivitätsuntersuchungen.

3.5.2 P-Pentamethylcyclopentadienyl-substituierte Komplexe

Als Teil der vergleichenden Studie wurde auch die Reaktion des *P*-Cp*-substituierten Li/Cl-Phosphinidenoid Komplexes **6a** mit drei Äquivalenten Di-(*o*-pyridyl)keton untersucht (Schema 50).

Schema 50: Geplante Umsetzung von 6a mit drei Äquivalenten Di-(o-pyridyl)keton zu 68a.

Wie das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung in Abbildung 67 zeigt, wurde der entsprechende $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **68a** mit einem Anteil von 75% (Integration der Signale) gebildet.

Abbildung 67: ³¹P{¹H}-NMR-Spektrum (THF) der Reaktionslösung von 6a mit drei Äquivalenten Di-(*o*-pyridyl)keton.

neben Die NMR-Signalintegration dass. 4% zeigt, des Komplexes $[(CO)_5W(Cp^*)P(H)Cl]$ ($\delta^{31}P$: 76.0, ${}^{1}J_{W,P} = 274.7$ Hz, ${}^{1}J_{P,H} = 337.0$ Hz),^[98] weiteren 15% unbekannter Verunreinigungen, eines mit einem sehr breiten Signal bei ca. 134 ppm, 6% einer Nebenverbindung **69a** (δ^{31} P: 171.2, ¹ $J_{W,P}$ = 320.7 Hz) gebildet wurde. Mit dem Ziel den $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **68a** zu isolieren, wurde zunächst das Lösungsmittel unter vermindertem Druck entfernt (~10⁻² mbar) und der Rückstand mit *n*-Pentan extrahiert. Die anschließende ³¹P-NMR-spektroskopische Untersuchung zeigte jedoch, dass der Anteil von 68a zugunsten von 69a auf 48% gesunken und auch der Anteil des Komplexes [(CO)₅W(Cp*)P(H)Cl] auf 11% gestiegen ist (Tabelle 31).

Tabelle 31: "P{ H}-NMR Daten (THF) von 68a und 69a vor und nach der Extraktion mit <i>n</i> -Penta	•NMR Daten (THF) von 68a und 69a vor und nach der Extraktion mit n-Pentan.
---	--

	$\delta^{31}\mathbf{P}$ [ppm] ¹ $J_{W,P}$ [Hz]		Verhältnis (Anteil in Reaktionslösung)		
		,	vor Extraktion	nach Extraktion	
68a	51.9	309.7	1.0 (75%)	1.0 (48%)	
69a	171.2	320.7	0.08 (6%)	0.6 (27%)	
[(CO) ₅ W(Cp*)P(H)CI]	76.0	274.7	0.06 (4%)	0.2 (11%)	
Nebenprodukte	-	-	15%	14%	

Anhand der ³¹P-NMR-Spektren wird ersichtlich, dass mit der Zeit eine Umlagerung des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **68a** in einen neuen Komplex **69a** in der 110

Reaktionslösung erfolgt. Dieses Umlagerungsprodukt weist eine chemische und eine um ca. 10 Hz größere ${}^{1}J_{WP}$ -Verschiebung von 171.2 ppm 31). Kopplungskonstante (Tabelle Durch anschließende auf säulenchromatographische Aufarbeitung konnte leider weder der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **68a** noch das Umlagerungsprodukt **69a** isoliert werden, da weitere, unselektive Zersetzungen der Produkte die Folge war. Auch die bereits vorher für die Derivate 66a-c beschriebene Problematik der Separierung von Lithiumchlorid, Kronenether und nicht umgesetzter Carbonyl-Verbindung, war hier vorhanden und verhinderte eine Kristallisation der gewünschten Produkte. Somit war eine Isolierung von 68a oder 69a in reiner Form unter diesen Bedingungen unmöglich.

Dennoch konnten für **68a** und **69a** ausgewählte, charakteristische ¹H-NMR-Daten aus erhaltenen Rohprodukten zugeordnet werden. Die Daten für **68a** und **69a** sind in Tabelle 32 aufgeführt, welche im Vergleich mit dem im nachfolgenden Kapitel (Kapitel 3.5.3) diskutierten Derivat von Interesse sind.

δ ¹ H [ppm] (Multiplizität)	68a	69a
	7.06 (ddt, CH _{Py}) 7.14 (ddd, CH _{Py}) 7.39 (ddd, CH _{Py}) 7.80 (td, CH _{Py})	5.57 (dddd, CH) 6.29 (ddt, CH) 6.61 (ddt, CH) 6.78 (ddd, CH)
	7.47-7.64 (m, 2H, CH _{Py}) 8.50 (ddd, CH _{Py}) 8.56-64 (m, CH _{Py})	7.20-7.24 (m, CH _{Py}) 8.02 (dt, CH _{Py}) 8.36 (ddd, CH _{Py}) 8.67 (ddd, CH _{Py})

Tabelle 32: Ausgewählte ¹H-NMR-Daten (CDCl₃) der Pyridyl-Substituenten in **68a** und **69a**.

Die chemische Verschiebung des Pyridyl-Substituenten in **68a** liegt im aromatischen Bereich und ist vergleichbar mit den ¹H-NMR-Daten von **66a** und **66c** (vgl. Experimenteller Teil, Kapitel 6.7.1, Seite 263). Im Fall des unbekannten Komplexes **69a** können vier Signale im ¹H-NMR-Spektrum zugeordnet werden, die durch ihre Hochfeld-Verschiebung einem konjugierten, aber nicht aromatischen System zugeordnet werden können.

3.5.3 P-Triphenylmethyl-substituierte Komplexe

Trotz der oben genannten Problematik der Isolierung der *C,C*-Dipyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **66a-c** und **68a** wurde auch die Umsetzung des Phosphinidenoid-Komplexes **4a** mit drei Äquivalenten Di-(*o*-pyridyl)keton durchgeführt. In Abbildung 68 ist das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung gezeigt.

Abbildung 68: ³¹P{¹H}-NMR-Spektrum (THF) der Reaktion von 5a mit drei Äquivalenten Di-(*o*-pyridyl)keton.

Bei dieser Reaktion wird der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex nicht beobachtet, wenngleich das Signal bei 44.9 ppm auf ein entsprechendes Derivat hinweisen könnte. Aber auf Grund der geringen Signalintensität konnte eine Phosphor-Wolfram-Kopplungskonstante nicht erkannt werden. Da vorher (vgl. Kapitel 3.4.2) für die *P*-CPh₃-substituierten Pyridyl-Komplexe **60-62a** gezeigt werden konnte, dass eine verkürzte Reaktionszeit zu einer verbesserten Selektivität führt, wurde auch hier die Reaktion nach zehn Minuten abgebrochen. Dennoch gelang es nicht, weitere Rückschlüsse auf die Bildung eines intermediären $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes zu erhalten. Es wurde eine ähnliche, aber weniger selektive Produktverteilung beobachtet, d.h. der bekannte, primäre Phosphan-Komplex [(CO)₅W(CPh₃)PH₂)]^[28b] (δ^{31} P: -42.3, ¹J_{W,P} = 225.0 Hz, ¹J_{P,H} = 331.2 Hz) gebildet.

Vergleicht man die ³¹P-NMR-Daten des *P*-Cp*-substituierten Umlagerungsproduktes **69a** (δ^{31} P: 171.2, ¹J_{W,P} = 320.7 Hz) mit dem *P*-CPh₃-substituierten Produkt **70a** (δ^{31} P: 171.2, ${}^{1}J_{W,P}$ = 316.4 Hz), so kann auf Grund der sehr ähnlichen chemischen Verschiebung und Kopplungskonstante auf die gleiche Produktklasse geschlossen werden.

Durch Extraktion mit *n*-Pentan und anschließende Säulenchromatographie konnte **70a** als einzige Phosphor-Verbindung isoliert (Abbildung 69), aber leider nicht vollständig vom Kronenether separiert werden (Abbildung 70).

Abbildung 69: ³¹P{¹H}-NMR-Spektrum (CDCI₃) von **70a** (1. Fraktion nach Säulenchromatographie).

Abbildung 70: ¹H-NMR-Spektrum (CDCI₃) von 70a (1. Fraktion nach Säulenchromatographie).

Wie mittels Abbildung 70 erkennbar ist, ist eine Auswertung des ¹H-NMR-Spektrums auf Grund der Intensitätsunterschiede und Anwesenheit von [12]Krone-4 (δ^{1} H: 3.63) erschwert. Eine starke Vergrößerung des aromatischen Verschiebungsbereichs gibt jedoch erste Hinweise auf das gebildete Produkt. Insbesondere die Multipletts im Bereich von ca. 5-6 ppm können durch ein ¹H,³¹P-2D-Korrelationsspektrum dem Produkt (δ^{31} P: 171.2) zugeordnet werden und legen somit die Vermutung nahe, dass ein nicht aromatisches, aber konjugiertes π -System im Komplex **70a** vorliegen muss (vgl. Tabelle 32).

Auf Grund der bekannten hohen Stabilität des Li/CI-Phosphinidenoid-Komplexes 5a^[28b] bei Raumtemperatur und der Tatsache, dass dieser auch ohne die Zugabe von [12]Krone-4 erzeugt werden kann, wurde erneut eine Reaktion unter diesen Bedingungen durchgeführt. Hierdurch entsteht der Komplex 70a mit einem minimal Anteil 56%, kleineren von kann aber durch 1) Extraktion und 2) Säulenchromatographie in reiner Form isoliert werden. In Abbildung 71 ist der aromatische Bereich des Produktes 70a vergrößert dargestellt. Hier erkennt man, vier Doppel-Dubletts im Bereich von ca. 5-6.5 ppm, die jeweils einer sp²-CH-Gruppe zugeordnet werden können.

Abbildung 71: ¹H-NMR-Spektrum (C₆D₆) des isolierten Komplexes **70a**.

Die Abwesenheit des Kronenethers erleichterte die Kristallisation des Produktes, sodass dann auch die Einkristallstruktur von **70a** bestimmt werden konnte (Abbildung 72).

Abbildung 72: Molekülstruktur von 70a im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D11.
Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:W1-P1 2.4799(13), P1-O1 1.632(3), P1-N1 1.712(4), N1-C2 1.418(6), C1-C2 1.346(7), C2-C8 1.442(7), C8-C9 1.345(8), C9-C10 1.437(8), C10-C11 1.325(7), O1-P1-N1 91.01(19), P1-N1-C2 111.6(3), N1-C2-C1 111.2(5), C2-C1-O1 111.9(4), C1-O1-P1, 114.0(3).

Während C2-C8 (1.442(7) Å) und C9-C10 (1.437(8) Å) kürzer als eine C-C-Einfachbindung sind, liegen C1-C2 (1.346(7) Å), C8-C9 (1.345(8) Å) und C10-C11 (1.325(7) Å) nahe an einer typischen C=C-Doppelbindung und bestätigen somit das konjugierte π -System und den Verlust der Aromatizität eines Pyridyl-Substituenten. Auch die Bindungslängen N1-C2 (1.418(6) Å) und N1-C11 (1.404(6) Å) sind im Vergleich zur C-N-Bindung im intakten Pyridyl-Substituenten verlängert (vgl. N2-C3: 1.348(7) Å).

Insofern und auf Grund der Ähnlichkeit der NMR-Daten kann somit, sowohl für **69a** (*P*-Cp^{*}) als auch **70a** (*P*-CPh₃) die Bildung der bicyclischen Ligandstruktur als bestätigt angesehen werden (Schema 51).

Schema 51: Vergleich der Reaktivität und Produktbildung gegenüber drei Äquivalenten Di-(o-pyridyl)keton in Abhängigkeit des *P*-Substituenten.

Um erste Einblicke in den Mechanismus der Reaktion zu erhalten wurden in Kooperation mit Espinosa quantenchemische Rechnungen durchgeführt (B3LYP/def2-TZVP-Niveau, weitere Details zu den Rechnungen in Anhang B).^[99] Ein vereinfachter Modell-Komplex **70^{calc}**, mit einer *P*-Me-Gruppe und nur einem *o*-Pyridyl-Substituenten in 3-Position des Rings (*trans*-ständig zum Phosphor-Substituenten) diente als Ausgangspunkt für die Berechnungen. Zunächst wurde eine haptotrope P→N Metall-Verschiebung zu **70^{calc-N}** und die Bildung eines *N,P*-Chelat-Komplexes **70^{calc-P,N}** in Erwägung gezogen (Schema 52).

Schema 52: Ausgangspunkt für die Berechnungen: 70^{calc} (Mitte) und mögliche haptotrope $P \rightarrow N$ Metall-Verschiebung zu 70^{calc-N} (links) bzw. Bildung eines *N*,*P*-Chelat-Komplexes $70^{calc-P,N}$ (rechts).

Nach den Rechnungen, sind sowohl das Produkt der haptotropen Metallverschiebung **70^{calc-N}**, als auch der Chelat-Komplex **70^{calc-P,N}** instabiler im Vergleich zur Ausgangsverbindung **70^{calc}**. Die Rechnungen zeigen, dass beide Produkte energetisch etwas über dem Modell-Komplex **70^{calc}** liegen (**70^{calc-N}**: 10.41 kcal/mol, **70^{calc-P,N}**: 13.43 kcal/mol). In Schema 53 ist, unter der Annahme, dass zunächst der $\sigma^3 \lambda^3$ -Oxaphophiran-Komplex **70^{calc}** gebildet wird, der postulierte Mechanismus der endocyclischen Bindungsspaltung und nachfolgenden Umlagerung des Ringsystems dargestellt.

Schema 53: Postulierter Mechanismus der endocyclischen Ringöffnung und Ringerweiterung des Model-Komplexes 70^{calc}.

Sowohl der C-O-Bindungsbruch, als auch der P-C-Bindungsbruch wurden in Betracht gezogen. Ein C-O-Bindungsbruch zu dem *side-on* Komplex **70^{calc-1}** ist im Vergleich zum P-C-Bindungsbruch zu **70^{calc-2}** kinetisch bevorzugt und exergonisch. Abbildung 73 zeigt das Energieprofil der Umlagerung unter Berücksichtigung der Übergangszustände (TS1-5) und der in Schema 53 gezeigten (Zwischen-)Produkte.

Abbildung 73: Berechnetes (COSMO_{THF}/DLPNO-CCSD(T)/def2-TZVPPecp) ZPE-korrigiertes Energieprofil für die Umlagerung des Model-Komplexes 70^{calc} zu 70^{calc-5} und zu den alternativen Isomeren 70^{calc-6} - 70^{calc-8}. In grau die relativen Energien der finalen Dipyridyl-substituierten Produkte ausgehend von 70^{calc-b}.

Auf der Grundlage von Rechnungen zu *C*,*C*-Diphenyl-substituierten Systemen^[100] ist anzumerken, dass, neben der Berechnung zu **70^{calc}**, auch die Betrachtung eines *P*-Me Dipyridyl-substituierten Derivats (**70**^{calc-b}) für die energetische Betrachtung von großer Wichtigkeit ist (Abbildung 73; Reaktionspfade in grau). Es konnte gezeigt werden, dass die relativen Energien durch die zweifache Substitution zu einer Stabilisierung der positiven Ladung in den Übergangszuständen des C,C-Diphenylsubstituierten Systems führt und diese energetisch abgesenkt werden (TS1< 30 kcal/mol und TS2< 40 kcal/mol).^[100] Durch die relativ hohe Energiebarriere zum ersten Übergangszustand wird deutlich, warum im Fall der Monopyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe (s. Kapitel 3.4) keine Folgereaktion bei Raumtemperatur beobachtet wurde. Während im Fall der Monopyridyl-substituierten Derivate eine Aktivierung, z.B. durch Wärmezufuhr (s. dazu auch die Studie zu thermischen Reaktionen in Kapitel 3.6.1) nötig ist, kann durch einen erhöhten sterischen Anspruch wie eine doppelte Substitution in Position 3 des Rings oder einen größeren Substituenten am Phosphor (P-CPh3 im Vergleich zu P-Me oder P-CH(SiMe₃)₂) die Energiebarriere abgesenkt werden. Dadurch wird der Reaktionspfad des P-C-Bindungsbruchs zu **70^{calc-2}** und weiteren Folgeprodukten (vgl. Schema 53) begünstigt. Die positive Ladung in 70^{calc-2} ist über den Pyridyl-Substituenten delokalisiert und ermöglicht die Formulierung eines nukleophilen Angriffs des negativ geladenen Phosphors (Löwdin-Analyse $q^L = 0.476 e$; im Vergleich zu $q^{L} = 0.751$ e in **70^{calc}** und $q^{L} = 0.620$ e in **70^{calc-1}**) in ortho-Position des

Pyridyl-Substituenten. Durch eine barrierefreie Rotation um die C-O- und C-C-Bindung wird das minimal exergonische (-3.05 kcal/mol) Produkt **70^{calc-5}** gebildet (Abbildung 73), welches den Komplexen **69a** und **70a** entspricht. Die relativ hohen Übergangszustände (TS3 und TS5), die einer 1,3-H-Verschiebung bzw. einer 1,5-H-Verschiebung entsprechen, sind in guter Übereinstimmung mit den experimentellen Ergebnissen; auch wenn **70^{calc-8}** das energetisch günstigste Produkt ist, wird es in der Reaktion nicht beobachtet.

Abbildung 74 zeigt die berechneten Strukturen der Folgeprodukte des *C,C*-Dipyridylsubstituierten Derivats **70^{calc-b}**; **70^{calc-5b}** (links) und das durch einen N-P-Ringschluss erhaltene Produkt; rechts ist das Produkt eines möglichen P-C-Ringschlusses dargestellt (**70^{calc-7b}**, vgl. Schema 53).

Abbildung 74: Berechnete Strukturen (COSMOTHF/B3LYP-D3/def2-TZVPecp) für die Umlagerungsprodukte ausgehend vom Dipyridyl-substituierten Model-Komplex 70^{calc-b}.

Während die Energiedifferenz der beiden Strukturen **70**^{calc-5} und **70**^{calc-7} 5.61 kcal/mol (vgl. Abbildung 73) beträgt, wird dieser Energieunterschied auch hier durch die *C*,*C*-Dipyridyl-Substitution beeinflusst und beträgt für **70**^{calc-5b} und **70**^{calc-7b} nur noch 1.8 kcal/mol. Hauptsächlich wird dieser Energieunterschied durch die stärkere N-H···H Wasserstoffbrückenbindung in **70**^{calc-7b} (d = 2.101 Å) im Vergleich zu einer C-H···H Wasserstoffbrückenbindung in **70**^{calc-5b} (d = 2.465 Å) verursacht (Abbildung 75).

Abbildung 75: Vergleich der Wasserstoffbrückenbindungen in den Dipyridyl-substituierten Komplexen $70^{calc-5b}$ (d = 2.465 Å) und $70^{calc-7b}$ (d = 2.101 Å).

Ein wichtiger Aspekt, der für die Dipyridyl-substituierten Komplexe in Betracht gezogen werden muss, ist, dass die Rotation um die C-O-Bindung, welche im Fall des Pyridyl-substituierten Derivats **70^{calc}** einen entscheidenden Schritt darstellt (vgl. Schema 53), für das Dipyridyl-substituierte Derivat **70^{calc-b}** und somit für den realen Komplex **70a**, nicht berücksichtigt werden muss.

Die quantenchemischen Rechnungen sind insofern in guter Übereinstimmung mit den experimentellen Beobachtungen der Bildung des Umlagerungsproduktes **70a** für den *P*-CPh₃ Substituenten. Zusätzlich kann für die Komplexe **69a** und **70a** festgehalten werden, dass energetisch die Aufhebung des aromatischen Systems durch den Abbau der Ringspannung in den $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen kompensiert wird.

3.6 Reaktionen von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

3.6.1 Studie zu thermischen Reaktionen von *P*-Bis(trimethylsilyl)methylsubstituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

Wie in Kapitel 3.5 gezeigt wurde, führen sterisch anspruchsvolle C-Substituenten zur Umlagerung und Verlust des aromatischen Systems eines Pyridyl-Substituenten. Jenseits dieser Befunde, sind jedoch die *C*,*C*-Dipyridyl-, aber auch die *C*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe interessante Ausgangsverbindungen für eine Untersuchung de thermisch-induzierten Reaktivität. Hierbei steht die Frage der intramolekularen N-Koordination und eine denkbare P→N Metall-Verschiebung im Mittelpunkt des Interesses.

3.6.1.1 **C-Pyridyl-substituierte** $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

Die nachfolgende Studie umfasst den $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **59a** sowie die Wolfram-, Molybdän- und Chrom-Komplexe **58a-c**. Schema 54 zeigt die geplante Umsetzung; hierbei wurden die Temperatur, die Dauer und das Lösungsmittel in den einzelnen Untersuchungen variiert.

Schema 54: Thermische Untersuchung der *o*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe 58a-c und 59a.

Zunächst wurde für den Wolframkomplex **59a** eine Hochtemperatur-NMR-Verfolgung (HT-NMR) in Toluol durchgeführt. In Abbildung 76 sind die ³¹P{¹H}-NMR-Spektren bei 25 °C, 40 °C, 60 °C und 80 °C gezeigt.

Abbildung 76: ${}^{31}P{}^{1}H$ -NMR-Spektren der thermischen Belastung von **59a** (M = W, R = Me) in Toluol (25-80 °C).

Wie aus Abbildung 76 hervorgeht, ist der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **59a** in Toluol bis 80 °C stabil. Während bei Raumtemperatur (25 °C) ein Verhältnis

Auf Grund der sehr hohen thermischen Stabilität wurde diese thermische Belastungsstudie des Komplexes **59a** in *ortho*-Dichlorbenzol (*o*-DCB) als Lösungsmittel und bei höheren Temperaturen durchgeführt. Bei 100 °C (insgesamt 180 Minuten) konnte keine Veränderung im ³¹P{¹H}-NMR-Spektrum von **59a** beobachtet werden. Auch bei 120 °C ist **59a** über 2 Tage stabil und erst bei 140 °C konnte eine leichte Isomerisierung zum Hauptprodukt **59a**" beobachtet werden. In Abbildung 77 sind die ³¹P{¹H}-NMR-Spektren für den Temperaturbereich150-180 °C gezeigt.

Abbildung 77: ³¹P{¹H}-NMR-Spektren der Thermolyse von **59a** (M = W, R = Me) in *o*-DCB bis 180 °C.

Besonders bemerkenswert ist die hohe thermische Stabilität des $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **59a**, d.h. bis auf wenige kleine Signale (bis etwa 160 °C), findet die (unkontrollierte) Zersetzung des Komplexes erst ab etwa 180 °C statt.

Für den $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex **58a** (M = W, R = H) wird ein vergleichbares Verhalten festgestellt. In *o*-DCB findet bis 100 °C keine Reaktion statt, eine Umwandlung der Isomere in das Hauptisomer **58a**" wird bei 120 °C beobachtet und bei 140 °C setzt schließlich eine unselektive Zersetzung des Komplexes ein. Auch in Pyridin-Lösungen konnten keine selektiven thermischen Reaktionen erzielt werden, wobei sowohl der Wolfram-Komplex **58a**, als aber auch die reaktiveren Molybdän- **58b** und Chrom-Derivate **58c** untersucht wurden. Nachfolgend sind beispielhaft die ³¹P{¹H}-NMR-Spektren der Thermolyse der Molybdän- und Chrom-Komplexe in Pyridin gezeigt (Abbildung 78 - Abbildung 79).

Abbildung 78: ${}^{31}P{}^{1}H$ -NMR-Spektren der Thermolyse von **58b** (M = Mo, R = H) in Pyridin bis 100 °C.

Abbildung 79: ${}^{31}P{}^{1}H$ -NMR-Spektren der Thermolyse von **58c** (M = Cr, R = H) in Pyridin bis 100 °C.

Während jedoch die thermische Stabilität des Chrom-Derivats **58c** vergleichbar zum Wolfram-Komplex **58a** ist, und eine Zersetzung oberhalb von 80 °C in Pyridin erfolgt, ist der Molybdän-Komplex **58b** bereits bei 50 °C instabil. Alle drei Derivate **58a-c** haben jedoch gemeinsam, dass nur Produktmischungen erhalten werden, d.h. es werden insbesondere Verbindungen mit Resonanzsignalen bei ca. 160-180 ppm erhalten (vgl. Abbildung 78 und Abbildung 79).

Da mittels Thermolyse in Lösung für die genannten Verbindungen keine zielführende Umsetzung zu erzielen war, wurden die Schmelzen der Derivate **58a** und **59a** untersucht (Schema 55); d.h. die beiden Wolfram-Komplexe wurden geschmolzen und über unterschiedliche Zeiträume bei verschiedenen Temperaturen gehalten. Der abgekühlte Rückstand wurde anschließend immer in CDCI₃ aufgenommen und einer NMR-spektroskopischen Messung zugeführt.

Schema 55: Thermische Untersuchung der Schmelze der C-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 58a-c und 59a.

Zunächst wurde der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **59a** (Schmelzpunkt 115 °C) für ca. 75 Minuten bis auf 130 °C erhitzt. Das ³¹P{¹H}-NMR-Spektrum der abgekühlten Probe zeigte zu 88% den Komplex **59a**" (δ^{31} P: 51.7, ¹ $J_{W,P}$ = 300.3 Hz) und 4% seiner isomeren Verbindung **59a**"" (δ^{31} P: 62.3, ¹ $J_{W,P}$ = 307.2 Hz). Auch nach einer Stunde bei 130 °C, war **59a** noch stabil. Nach 15 Minuten bei 170 °C, war der Komplex **59a**" noch mit einem Anteil von 73 % vorhanden und es wurden sehr viele Nebenprodukten geringer Intensität in der Reaktionslösung nachgewiesen.

Zum Vergleich wurde auch der Wolframkomplex **58a** geschmolzen (Schmelzpunkt: 130 °C), für 15 Minuten auf 132 °C erwärmt, gelöst und anschließend ein ³¹P{¹H}-NMR-Spektrum aufgenommen. Dieses zeigte den Komplex **58a**" (δ^{31} P: 41.2, ¹J_{W,P} = 309.7 Hz, 96%) neben 4% des Isomers **58a**' (δ^{31} P: 32.8). Erst ab einer Stunde bei 130 °C konnte eine beginnende Umsetzung und nach 15 Minuten bei 170 °C 124

schließlich eine Folgereaktion beobachtet werden. In Abbildung 80 ist das ${}^{31}P{}^{1}H{}$ -NMR-Spektrum gezeigt, welches einen Anteil von ca. 74 % (Integration der ${}^{31}P{}^{1}H{}$ -NMR-Signale) des Produktes **71a** bei 149.6 ppm (${}^{1}J_{W,P}$ = 286.4 Hz) zeigt.

Abbildung 80: ³¹P{¹H}-NMR-Spektrum (CDCl₃) der Untersuchung der Schmelze von **58a** (M = W, R = H) bei 170 °C für 15 Minuten.

Weitere Variationen der Dauer und Temperatur ergaben schließlich die folgenden, besten Bedingungen: Erwärmen auf 150 °C für 2 Stunden. Durch diese Optimierung konnte schließlich der Komplex **71a** mit einem Anteil von 82% (Integration im ³¹P{¹H}-NMR-Spektrum) erzeugt werden.

Da beim Abkühlen der geschmolzenen Verbindung **71a** eine Kristallisation von Wolframhexacarbonyl an der Glaswand im oberen Bereich des Schlenk-Rohrs festgestellt wurde, bedeutet dies, dass ein Teil des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes sich zersetzt haben musste, und dadurch **71a** und auch weitere (unbekannte) Phosphor-Verbindungen gebildet wurden. Durch mehrfache Extraktion mit *n*-Pentan konnte der Komplex **71a** von allen weiteren Nebenprodukten abgetrennt und als gelber Feststoff erhalten werden. Das ³¹P{¹H}-NMR-Spektrum des gelösten klebrig braunen Rückstandes zeigt deutlich ein sehr breites Signal im Bereich von etwa 20-30 ppm und weist somit vermutlich auf polymere Verbindungen hin.

Abbildung 81: ³¹P{¹H}-NMR-Spektrum des Reaktionsrückstands nach Extraktion des Komplexes 71a; eine Verbreiterung bei etwa 30 ppm könnten auf polymere Nebenprodukte hinweisen.

Abbildung 82: EI-MS-Spektrum (Ausschnitt) von 71a.

Das Massenspektrum von **71a** (Abbildung 82) zeigt unter Elektronenstoß-Ionisations-Bedingungen (EI) ein Signal bei m/z 667, welches dem Molekülion zugeordnet wird, sowie Fragmentionen, die durch sequentielle CO-Abspaltung entstehen. Da in dieser Zerfallsreihe nur maximal vier CO-Gruppen abgespaltet werden, liegt die Vermutung nahe, dass in **71a** ein W(CO)₄-Fragment vorhanden sein könnte. Der Basispeak (m/z 553) ist vermutlich dem Fragmention ([M-SiMe₃-C₂H₂N-H]⁺) zuzuordnen, welches durch die Abspaltung einer SiMe₃-Gruppe und einem Zerfall des Pyridin-Substituenten entstanden sein könnte.

Die Vermutung, dass kein Pentacarbonylwolfram-Fragment mehr in **71a** vorliegt, wird auch durch das IR-Spektrum bestärkt (Abbildung 83).

Abbildung 83: IR-Spektrum von 71a.

Im Bereich von 1800-2100 cm⁻¹ sind mehrere Absorptionsbanden vorhanden, die Carbonyl-Schwingungen zugeordnet werden. Das Gesamterscheinungsbild, d.h. die starken Banden bei 2005 cm⁻¹, 1933 cm⁻¹, 1869 cm⁻¹ und 1828 cm⁻¹, lassen Rückschlüsse auf einen Komplex des Typs *cis*-ML₂(CO)₄ mit C_{2v}-Symmetrie zu.^[101]

Auch dem ¹³C{¹H}-NMR-Spektrum können vier unterschiedliche Resonanzsignale entnommen werden, die paarweise *trans*- und *cis*-ständigen CO-Gruppen zugeordnet werden können; die chemischen Verschiebungen sind in Tabelle 33 aufgeführt.

	δ ¹³ C{ ¹ H} [ppm]	² Ј_{Р,С} [Hz]	
	205.5	3.3	cis-CO
710	206.3	11.6	cis-CO
<i>i</i> 1a	212.9	45.9	trans-CO
	213.2	11.2	trans-CO

 Tabelle 33:
 ¹³C{¹H}-NMR-Daten der Carbonyl-Gruppen in 71a.

Auch das ²⁹Si{¹H}DEPT-NMR-Spektrum weist eine Besonderheit auf, die zur Strukturaufklärung von **71a** beiträgt. Neben zwei Resonanzsignalen, die auf Grund ihrer chemischen Verschiebung der Bis(trimethylsilyl)methyl-Gruppe zugeordnet werden können (δ^{29} Si: -0.20, ²*J*_{P,Si} = 12.1 Hz; 0.02, ²*J*_{P,Si} = 2.6 Hz), wird ein weiteres Signal im Tieffeldbereich aufgefunden (δ^{29} Si: 16.46, ²*J*_{P,Si} = 13.4 Hz). Auf Grund der

vorhandenen Kopplung zum Phosphor und einem Vergleich mit ²⁹Si-NMRchemischer Verschiebungen in der Literatur, könnte es sich bei diesem Signal um eine *P*-O-SiMe₃-Gruppe handeln.^[102] Das ¹H- und ¹³C{¹H}-NMR-Spektrum stützen das Vorhandensein zweier magnetisch unterschiedlicher SiMe₃-Gruppen in **71a**.

Im Vergleich zu den NMR-Spektren des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **58a** kann ein weiteres Merkmal der Verbindung **71a** ausgemacht werden. Das ¹H- und ¹³C{¹H}-NMR-Spektrum geben Hinweise auf eine CH₂-Gruppe, mit einer Verschiebung von 55.6 ppm im ¹³C{¹H}-NMR-Spektrum und einer Kopplungskonstanten zu Phosphor von 10.4 Hz. Dem entsprechen zwei unterschiedliche Protonensignale bei 3.73 ppm und 4.08 ppm im ¹H-NMR-Spektrum.

Fügt man alle diese analytischen Daten zusammen, so sollte es sich es sich bei **71a** um den in Schema 56 gezeigten Komplex handeln; ein denkbarer Reaktionsmechanismus ist hier ebenfalls dargestellt.

Schema 56: Postulierter Reaktionsmechanismus zur Bildung des Komplexes 71a.

Man kann annehmen, dass die thermische Anregung zu einer CO-Eliminierung im ersten Schritt führt, welche die Bindung des Donor-Substituenten an das Übergangsmetallatom nach sich zieht. Durch diese Ausbildung eines *N,P*-Chelat-Komplexes kann von einer deutlich erhöhten Ringspannung in **71a**⁴ ausgegangen werden, welche zu einem Ring-C-O-Bindungsbruch und somit zu dem 1,3-dipolaren Intermediat **71a**⁴ führt. Ein vergleichbares 1,3-dipolares Intermediat wurde zuvor für gespannte Azaphosphiridin-Komplexe durch Ring-P-N-Bindungsbruch beobachtet 128

und auch durch DFT-Rechnungen (B3LYP-def2-TZVP) gestützt.^[103] Da im Endprodukt eine Bis(trimethylsilyI)methyl-Gruppe vorhanden ist, erscheint eine intramolekulare H- und SiMe₃-Wanderung als nicht sehr wahrscheinlich, insofern kommt nur ein intermolekularer Gruppentransfer in Betracht. Da die Ausbeute der isolierten Verbindung **71a** bei nur 40% beträgt, liegt die Vermutung nahe, dass ein Teil des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes durch diese Transferreaktionen in neue, zersetzliche Verbindungen überführt wird. So könnten, formal betrachtet, solche Reaktionen zur Bildung von W(CO)₆ und dem Intermediat **72** führen, welches sich durch H- und SiMe₃-Transfer in **73** umwandeln könnte, was jedoch unter diesen Bedingungen thermisch polymerisiert (Schema 57).

Anzumerken ist hier, dass auch schon zuvor in einem anderen Falle einer SiMe₃-Transferreaktion die kurzlebige Phosphor-Spezies nicht nachgewiesen werden konnte.^[104] Darüber hinaus sind Verbindungen des Typs **72** oder **73** bislang nicht bekannt und insofern kann der in Schema 57 gezeigte Mechanismus nur als Vorschlag angesehen werden.

Versuche, den Rückstand der Extraktion mittels Massenspektrometrie zu charakterisieren und somit eventuell weitere Rückschlüsse auf den Mechanismus zu erhalten, stellten sich jedoch als überraschend schwierig heraus. Es wurde hierfür die Elektronenspray-Ionisation (ESI), als auch Matrix-unterstützte Laser-Desorption/Ionisation in Kombination mit Massenspektrometrie mit Flugzeitanalysator (MALDI-TOF) angewendet (Spektren: s. Anhang C). Die unterschiedlichen Messungen ergaben verschiedene m/z-Werte für das Molekülion und gingen nicht über m/z 926 hinaus. Regelmäßige Fragmentierungs-Muster konnten keine Rückschlüsse auf die Verbindungen geben, allerdings wurde mehrfach eine Differenz von m/z 72 festgestellt, die einer Abspaltung einer SiMe₃-Gruppe unter H-Addition entsprechen könnte. Als besonders problematisch erwies es sich auch, das

vermutete Polymer sauber zu isolieren. Entweder enthielten die Proben noch die Verbindung **71a**, was die Auswertung der Fragmentierungs-Muster unnötig erschwerte, oder aber das vermutete Polymer konnte nach wiederholtem Waschen mit *n*-Pentan nicht mehr mittels ³¹P{¹H}-NMR-Spektrometrie gelöst werden. Für die Aufklärung möglicher polymerer Nebenprodukte bedarf es somit weiterer Methoden, wie beispielsweise die Gel-Permeations-Chromatographie, die für die Arbeit leider nicht zur Verfügung stand.

Letztendlich gelang es jedoch, die Konstitution des Komplexes **71a** mittels Einkristall-Strukturanalyse zu klären (Abbildung 84).

Abbildung 84: Molekülstruktur von 71a im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H1A, H1B, H10) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D12. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:W1-P1 2.479(1), P-C10 1.804(4), W-N 2.280(3), P1-O1 1.606(3), P1-C1 1.843(4), W-P-C10 119.20(13), W-P-C1 97.71(14), W-P-O1 123.28(12), N-W-P 75.47(9).

Die Koordination des Stickstoffatoms an das Metall-Fragment zeichnet sich durch eine nur leicht verkürzte W-P-Bindung aus (2.479(1) Å) (vgl. **58a**: W-P 2.4563(15) Å). Die exocyclische P-C10-Bindung (1.804(4) Å) ist in sehr guter Übereinstimmung mit der in **58a** (P-C7 1.804(5) Å). Durch die *N*-Koordination und den spitzen N-W-P-Winkel ist auch der W-P-C1-Winkel relativ klein (97.71(14)°), wohingegen der W-P-C10-Winkel (119.20(13)°) vergleichbar mit dem in **58a** ist (P-C7 121.83(19) Å).

3.6.1.2 *C,C*-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

Wie in Kapitel 3.5.2 und Kapitel 3.5.3 schon anhand der *P*-Cp*- (**69a**) und *P*-CPh₃-(**70a**) substituierten Komplexe gezeigt werden konnte, sind besonders die Derivate in Hinblick auf eine mögliche Donor-Metall-Wechselwirkung von Interesse, die zwei Pyridyl-Substituenten am Ringkohlenstoff-Atom aufweisen. Während im Fall von **70a** kein $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex beobachtet werden konnte, wurde im Fall von **68a** (*P*-Cp*) in Lösung eine Umlagerung zum Ringerweiterungsprodukt **69a** beobachtet (Kapitel 3.5.2 und Kapitel 3.5.3).

Daher wurde beschlossen, auch die Bis(trimethylsilyl)methyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **66a-c** (**a**: M = W, **b**: M = Mo, **c**: M = Cr) hinsichtlich einer thermischen Umwandlung zu untersuchen (Schema 58).

Schema 58: Thermische Reaktion der Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **66a,c**.

Die thermische Belastung von **66a** verlief in Pyridin und THF unter Bildung der gleichen Folgeprodukte, jedoch in einem unterschiedlichen Verhältnis. In Tabelle 34 sind die entsprechenden NMR-Daten der Folgeprodukte aus der Reaktion in THF aufgeführt.

abelle 34: ³¹ P{ ¹ H}-NMR-Dater	(THF) der Folgeprodukte	74a und 75a der Thermolys	se von 66a .
---	-------------------------	---------------------------	---------------------

	δ ³¹ P{ ¹ H} [ppm]	¹ Ј _{W,Р} [Hz]	² Ј_{Р,Н} [Hz]	Produktanteil
74aʻ	176.1	321.4	6.4 (d)	47%
74a''	169.3	319.4	7.3 (dd)	19%
	153.3	328.4	7.5, 15.7 (dd)	24%
75a	144.9	329.6	m	5%
	136.9	323.5	m	3%

Nach 13 Stunden bei 60 °C ist der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **66a** vollständig umgesetzt und es können anhand der ähnlichen chemischen Verschiebung und der

 ${}^{1}J_{W,P}$ -Kopplungskonstanten zwei Folgeprodukte **74a** und **75a** ausgemacht werden, die vermutlich Isomere sind. Die Ähnlichkeit der ³¹P-NMR-chemischen Verschiebung mit den *P*-Cp*- (**69a**) und *P*-CPh₃- (**70a**) substituierten Derivaten (vgl. Kapitel 3.5.2 und Kapitel 3.5.3) lässt vermuten, dass es sich auch bei **74a** um eine analog aufgebaute Verbindung handeln könnte.

Durch Extraktion mit *n*-Pentan und säulenchromatographische Aufarbeitung konnten zwar die Hauptprodukte **74a**' (δ^{31} P: 176.2, ${}^{1}J_{W,P}$ = 322.4 Hz, 92%) und **75a**' (δ^{31} P: 152.0, ${}^{1}J_{W,P}$ = 330.9 Hz, $J_{P,H}$ = 15.0 Hz, 10.5 Hz (dd), 8%) isoliert, aber nicht voneinander separiert werden. Dennoch konnte durch NMR-Spektroskopie das Umlagerungsprodukt **74a**' eindeutig als solches charakterisiert werden (Tabelle 35).

Die Thermolyse in Pyridin (45 °C, insg. 37 Stunden) ergab die gleichen Folgeprodukte, allerdings in einem anderen Verhältnis. Es konnte schließlich gezeigt werden, dass es sich bei **75a** um ein weiteres Folgeprodukt handelt, welches in Pyridin bis zur vollständigen Umsetzung von **74a** führte (Schema 59).

Schema 59: Thermisch bedingte Bildung der Folgeprodukte von 66a zu 74a und weitere Folgereaktion zu 75a.

$(OC)_5W$ R O P 1 O P 1		74a' R = CH(SiMe ₃) ₂	70a R = CPh₃
δ ¹ Η [ppm]	H ¹ -H ⁴	5.61 (dddd, 1H) J _{P,H} = 2.2 Hz J _{H,H} = 7.2 Hz, 6.0 Hz, 1.2 Hz 6.29-6.39 (m, 1H) 6.81-6.92 (m, 2H)	4.84 (dd, 1H) $J_{H,H} = 6.5 \text{ Hz}$ 5.70 (dd, 1H) $J_{H,H} = 5.9 \text{ Hz}, 9.6 \text{ Hz}$ 5.99 (dd, 1H) $J_{P,H} = 4.1 \text{ Hz}$ $J_{H,H} = 7.2 \text{ Hz}$ 6.33 (dd, 1H) $J_{H,H} = 5.1 \text{ Hz}, 6.4 \text{ Hz}$
δ ¹³ C{ ¹ H} [ppm]	C ¹ -C ⁴ C ⁵ -C ⁶	106.0 (d, $J_{P,C} = 5.9 \text{ Hz}$) 118.1 (s) 128.1 (s) 131.4 (s) 137.1 (d, $J_{P,C} = 4.9 \text{ Hz}$) 149.4 (d, $J_{P,C} = 7.9 \text{ Hz}$)	107.6 (d, $J_{P,C} = 2.3 \text{ Hz}$) 118.1 (s) 127.3 (s) 129.5 (d, ${}^{3}J_{P,C} = 7.9 \text{ Hz}$) 132.0 (s) 133.3 (d, $J_{P,C} = 11.6 \text{ Hz}$)

 Tabelle 35: Vergleich der ¹H- und ¹³C{¹H}-NMR-Daten der Umlagerungsprodukte 74a und 70a.

Auch wenn die ¹H-NMR-chemischen Verschiebungen im Fall des *P*-CPh₃substituierten Derivats **70a** weiter in den Hochfeldbereich verschoben sind (vgl. auch Tabelle 32: **69a** (*P*-Cp^{*})), so ist vor allem an den ¹³C-NMR-chemischen Verschiebungen von C¹-C⁴ eine klare konstitutionelle Übereinstimmung der beiden Derivate festzustellen. Die Signale der quartären Kohlenstoffe weichen hingegen wieder leicht voneinander ab, das am weitesten ins Tieffeld verschobene Signal hingegen weist für beide Derivate eine Phosphor-Kohlenstoff-Kopplung auf und kann somit vermutlich C⁶ zugeordnet werden (Tabelle 36).

74aʻ	δ ¹ H [ppm]	δ ¹³ C{ ¹ H} [ppm] (³ J _{P,C} [Hz])	²⁹ Si{ ¹ H}DEPT (² J _{P,Si} [Hz])
SiMe ₃	0.25 (s, 9H) 0.30 (s, 9H)	2.7 (d, 2.9) 2.89 (d, 2.1)	-1.2 (d, 1.7) -1.0 (d, 6.9)
CH(SiMe ₃) ₂	1.92 (s)	44.6 (d) ^(*)	-

Tabelle 36: ¹H-, ¹³C{¹H}- und ²⁹Si{¹H}DEPT-NMR-Daten der *P*-CH(SiMe₃)₂-Gruppe in **74a**⁴.(^(*) Kopplung auf Grund der Intensität nicht zu identifizieren)

Die Betrachtung der *P*-CH(SiMe₃)₂-Gruppe spielt in Hinblick auf das Folgeprodukt **75a** eine wichtige Rolle. In Abbildung 85 ist das ³¹P{¹H}-NMR-Spektrum abgebildet, welches die Bildung von vier sehr ähnlichen Produkten (evtl. Isomere) zeigt. Tabelle 37 fasst die ³¹P{¹H}-NMR-Daten und Verhältnisse der gebildeten Produkte zusammen.

Abbildung 85: ³¹P{¹H}-NMR-Spektrum (THF-d⁸) der Thermolyse von 66a in Pyridin (45 °C, insg. 37 h) zu **75a**.

Tabelle 37: ³¹P{¹H}-NMR-Daten (THF-d⁸) der Komplexe **75a'-75a''''**. (^(*) auf Grund der Breite des Signals nicht zu identifizieren)

	δ ³¹ Ρ{¹H} [ppm]	¹ Ј _{W,P} [Hz]	Verhältnis
75aʻ	156.8	310.1	1.0
75a''	153.3	328.7	0.2
75aʻʻʻ	145.0	329.6	0.2
75a''''	142.2 (br)	(*)	0.2

Die in Tabelle 38 aufgeführten Gruppierungen können für alle vier Derivate in den entsprechenden NMR-Spektren zugeordnet werden, der Übersichtlichkeit halber, werden jedoch nur die Daten für das Hauptisomer **75a**⁴ diskutiert.

75aʻ	δ ¹ H [ppm]	δ ¹³ C{ ¹ H} [ppm] (<i>J</i> _{P,C} [Hz])	²⁹ Si{ ¹ H}DEPT (² J _{P,Si} [Hz])
Si <i>Me</i> ₃	0.22 (s, 9H)	0.9 (d, 2.6)	-0.7 (d, 4.2)
CH ₂ SiMe ₃	1.59 (d, 1H) J _{H,H} = 14.4 Hz, J _{P,H} = 0.9 Hz 2.05 (dd, 1H) J _{H,H} = 14.4 Hz, J _{P,H} = 0.9 Hz	33.0 (d, 21.1)	-
CH	6.47 (d, <i>J</i> _{P,H} = 13.7 Hz)	81.5 (d, 7.1)	-
cis-CO trans-CO	-	198.2 (d, 9.3) 200.9 (d, 26.9)	-

Tabelle 38: Charakteristische ¹H- und ¹³C{¹H}-NMR-Daten (THF-d⁸) von 75a⁴.

Wie anhand der Daten zu erkennen ist, kann bei allen vier Derivaten nur eine SiMe₃-Gruppe beobachtet werden. Nimmt man also die Abspaltung einer Gruppe an, so kann ein P-CH₂SiMe₃-Substituent für alle Isomere gefolgert werden. Sowohl im IRals auch im NMR-Spektrum werden die entsprechenden Banden bzw. Signale einem W(CO)₅-Fragment zugeordnet.

Im Unterschied zu den Umlagerungsprodukten **70a** und **74a**, wird in **75a** eine zusätzliche CH-Gruppe für alle vier Isomere identifiziert. Dem Hauptisomer können ebenfalls zwei intakte Pyridyl-Substituenten zugeordnet werden. Interessanterweise können jedoch zwei CH-Gruppen nicht eindeutig zugeordnet werden, die im Aromatenresonanzbereich liegen (Signale bei ca. 150 ppm und ca. 124 ppm).

Da bisher keine Einkristalle erhalten werden konnten, ist ein erster Strukturvorschlag für die Verbindung **75a** nur auf der Grundlage der oben genannten Daten möglich; dieser ist in Abbildung 86 gezeigt.

Abbildung 86: Unvollständiger Strukturvorschlag für Verbindung 75a (X = unbekannter Substituent).

Die ¹H- und ¹³C{¹H}-NMR-Daten sind teils vergleichbar mit Di-(*o*-pyridyl)methanol,^[105] daher könnte ein Alkoxy-Substituent, wie in Abbildung 86 dargestellt, möglich sein. Die ¹ $J_{W,P}$ -Koppplungskonstante in **75a** (vgl. Tabelle 37) ist vergleichbar mit bekannten *P*-Chloro(alkoxy)phosphan-Komplexen,^[51c] und durch geeignete Heteroatomsubstitution am Phosphor könnte auch die relativ große Kopplung erklärt werden. Eine Koordination eines Pyridyl-Substituenten zum Phosphor ist als unwahrscheinlich zu betrachten; beide Pyridin-Substituenten sind laut ¹H- und ¹³C{¹H}-NMR-Spektren gleich, d.h. auch aromatisch. Eine abschließende Konstitutionsaufklärung gelang leider nicht.

Bei der Durchführung der Thermolyse ohne Lösungsmittel, d.h. in der Schmelze, werden die gleichen Produkte beobachtet, allerdings mit unterschiedlichen Verhältnissen und weniger selektiv. In Tabelle 39 ist eine Übersicht dargestellt.

Tabelle 39: ³¹ P-NMR-Daten (THF) der Produkte 74a/75a, beobachtet unter unterschiedlichsten
Reaktionsbedingungen: in der Schmelze und bei Raumtemperatur in Lösung unter Zusatz einer
Lewis-Säure (LiCl, $ZnCl_2$) (h = Stunde, d = Tag)

Bedingungen	Produkt	δ ³¹ P{ ¹ H} [ppm] (THF)	¹ Ј _{W,Р} [Hz]	Ј_{Р,Н} [Hz]	Anteil
Schmelze 2 h, 150 °C	74a"	169.4	319.4	7.6 (dd)	43%
Schmelze 1 h, 95 °C	75aʻ	158.0	314.2	13.9, 10.7 (dd)	31%
LiCl 1 d, 25 °C	74aʻ	176.1	321.7	6.4 (br, d)	13%
ZnCl ₂ , 2 h, 25 °C	75aʻ	158.9	318.2	14.9 (dd)	53%

Ein Vergleich mit Tabelle 34 und Tabelle 37 zeigt die sehr gute Übereinstimmung der chemischen Verschiebungen und Kopplungskonstanten der unter unterschiedlichsten Bedingungen dargestellten Komplexe **74a** und **75a**.

Erstaunlicherweise können die Umlagerungsprodukte nicht nur durch Erwärmen in der Schmelze, sondern auch durch Aktivierung mittels einer Lewis-Säure wie ZnCl₂ oder LiCI in Lösung gebildet werden (Tabelle 39). Hierzu wurde der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **66a** in THF gelöst, mit einem Äquivalent wasserfreiem LiCI (aus HCI-OEt und ^tBuLi) bzw. wasserfreiem ZnCl₂ versetzt und bei Raumtemperatur gerührt. Bedauerlicherweise konnten jedoch die gewünschten Komplexe über diese Syntheserouten nicht selektiv dargestellt werden; daher bleibt hier nur ein Vergleich der ³¹P-NMR-chemischen Verschiebungen und der Kopplungskonstanten. Dass Spuren von Lithiumchlorid auch unter den Bedingungen der Schmelze zu den erhaltenen Produkten führen, kann ausgeschlossen werden, Säulenchromatographie und Umkristallisation nach Extraktion, denn kann Lithiumchlorid in den isolierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen nicht mehr nachgewiesen werden.

Erste Versuche den $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Chromkomplex **66c** in einer thermischen Reaktion umzusetzen, zeigten, dass ein zu **74a** analoges Produkt **74c** gebildet wird (Schema 60 und Abbildung 87).

Schema 60: Thermolyse des Di-(*o*-Pyridyl)-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **66c**.

Abbildung 87: ³¹P{¹H}-NMR-Spektrum (Pyridin) der Thermolyse von 66c bei 95 °C (1 h).

Die Resonanzsignale von **74c** sind, im Vergleich zum Komplex des höheren Homologen (**74a**), um ca. 60 ppm in den Tieffeldbereich verschoben und können daher dem Komplex **74c** zugeordnet werden.

Im Vergleich zum Wolfram-Komplex **74a** ist der Chrom-Komplex **74c** wesentlich instabiler bzw. reaktiver. Dennoch konnten über das ¹H-NMR-Spektrum der Extraktions-Lösung die für das Umlagerungsprodukt typischen Resonanzsignale zugeordnet werden und somit die Vermutung, dass es sich bei dem Produkt um den gebildeten Komplex **74c** handelt, weiter bestärken. So sind im Bereich von 5.61-5.77 ppm, 6.28-6.41 ppm und 6.75-7.03 ppm die für den Heterocyclus typischen Multipletts des konjugierten π -Systems, neben weiteren Pyridin-Signalen, zu beobachten (vgl. Tabelle 32 und Tabelle 35).

Auch die sehr hohe thermische Stabilität des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66c** und aber auch die Instabilität des gebildeten Umlagerungsproduktes **74c** konnte bestätigt werden. Während nach einer Stunde bei 95 °C noch 88% des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66c** mittels ³¹P{¹H}-NMR-Messung nachgewiesen werden konnte, wurden nach einer weiteren Stunde bei 110 °C immer noch 12% **66c**, neben 16% **74c**⁴, 9% **74c**⁴ und weiteren Signalen, die in der Summe 63% unbekannter Nebenprodukte ausmachen, beobachtet.

3.6.2 Photochemische Reaktionen von *P*-Bis(trimethylsilyl)methylsubstituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

Neben einer thermischen Aktivierung einer CO-Eliminierung, sollte es auch möglich sein, dies photochemisch zu erreichen, d.h. insofern eine Aktivierung und/oder den ersten Schritt für eine Dekomplexierung der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe ermöglichen. Daher wurden photochemischen Reaktionen der C-Pyridyl- und *C,C*-Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe untersucht, die im Folgenden diskutiert werden.

3.6.2.1 C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe

In Schema 61 sind die durchgeführten photochemischen Reaktionen der *C*-Pyridylsubstituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **58a-c** und **59a** schematisch zusammengefasst.

Schema 61: Photochemische Umsetzung der C-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe 58a-c und 59a.

In unterschiedlichen Lösungsmitteln, und unter Variation der Zeitintervalle, wurden die Reaktionslösungen mit einer 150 W Mitteldruck-Quecksilberdampf-UV-Lampe ($\lambda_{max} = 365$ nm) bestrahlt. Die Lampe selbst wurde auf 10 °C gekühlt, die Probe selbst jedoch nicht. Für kleine Ansätze (die Konzentration variierte in den einzelnen Reaktionsdurchführungen) wurden meist Quarz-Glas-NMR-Rohre genutzt, welche an der Lampe befestigt wurden. In einzelnen Fällen wurden spezielle photochemische Reaktoren genutzt.

Zunächst wurde der sterisch anspruchsvollere $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **59a** untersucht, wobei jeweils 20 mg in 0.5 mL THF oder 0.5 mL *o*-DCB für jeweils 20 Minuten bestrahlt und anschließend ein ³¹P-NMR-Spektrum aufgenommen wurde.

Während in THF eine sehr unselektive Reaktion erfolgte, d.h. z.B. der bereits mehrfach erwähnten η^1 -Diphosphen-Komplex^[79] (~13%) beobachtet wurde (δ^{31} P: 444.7 (d, ${}^1J_{P,P} = 514.2 \text{ Hz}$), 391.9 (d, ${}^1J_{P,P} = 514.2 \text{ Hz}$)). Dies weist darauf hin, dass **59a** vollständig zersetzt wird. Im Unterschied dazu, verläuft die Reaktion in *o*-DCB selektiver (Abbildung 88), und der o.g. η^1 -Diphosphen-Komplex wurde nicht beobachtet.

Abbildung 88: ³¹P{¹H}-NMR-Spektrum (*o*-DCB) der Reaktionslösung nach Photolyse von **59a** (nach 20 und 40 Minuten).

Zum einen ist festzuhalten, dass **59a**, im Vergleich zu THF, wesentlich langsamer umgesetzt wird: nach 40 Minuten sind immer noch 28% (Integration des NMR-Spektrum) des Komplexes **59a** in der Reaktionslösung vorhanden. Weiterhin ist ein Signal bei 27.9 ppm ohne ${}^{1}J_{W,P}$ -Kopplungskonstante festzustellen. Interessant, aber ungeklärt, sind zwei weitere Verbindungen im Tieffeldbereich, die eine sehr kleine ${}^{1}J_{W,P}$ -Kopplungskonstante von 78.0 Hz bzw. 121.2 Hz aufweisen. Leider gelang es nicht, eines der Produkte aus der Mischung zu isolieren.

Die photochemische Reaktion des Komplexes **58a** erfolgte in Acetonitril (CH₃CN) und in THF, wobei im Fall von Acetonitril ein Signal beobachtet werden konnte, welches interessant ist, da das Signal (δ^{31} P: 41.5) keine ¹*J*_{W,P}-Kopplungskonstante zeigt; jedoch ist auch hier der Anteil, gemäß ³¹P{¹H}-NMR-Spektren-Integration) nur ca. 16%. Die weitere Bestrahlung für 20 Minuten führte nicht zu einer Optimierung 140

dieser Produktbildung. Dieses Produkt weist mehrere ${}^{n}J_{P,H}$ -Kopplung auf (${}^{1}J_{P,H} = 536.7$ Hz, $J_{P,H} = 9.5$ Hz, 19.4 Hz, ddt), die zusammen mit der chemischen Verschiebung auf eine Phosphor(V)-Verbindung mit einer P,H-Funktion hinweisen.

Die photochemische Reaktion von **58a** in THF verlief vielversprechend; das ³¹P{¹H}-NMR-Spektrum ist in Abbildung 89 gezeigt.

Abbildung 89: ³¹P{¹H}-NMR-Spektrum der Reaktionslösung nach Photolyse (THF, 20 min) von 58a.

Zuerst ist festzuhalten, dass das in Acetonitril beobachtete Hauptprodukt (δ^{31} P: 41.5 ppm) in der THF-Reaktionslösung nicht vorhanden war. Es wurde eine Verbindung **76a** (ca. 48%) gebildet (δ^{31} P: 54.6), welches weder eine ${}^{1}J_{W,P}$ - noch eine ${}^{1}J_{P,H}$ -Kopplungskonstante zeigt. Stattdessen zeigt das Signal von **76a** ein Doppel-Dublett ($J_{P,H} = 15.2$ Hz, 30.5 Hz). Angesichts des recht hohen Anteils von **76a**, wurde diese Reaktion hinsichtlich einer Optimierung weiter untersucht.

Eine verlängerte Bestrahlungsdauer (für 20 Minuten) führte jedoch nur zur Zersetzung von **76a**. Daher wurde im Folgenden die Konzentration der Probe variiert und die Dauer der Bestrahlung verkürzt. Eine Halbierung der Konzentration und Bestrahlung für 20 Minuten führte zu einer selektiveren Umsetzung, und **76a** konnte mit einem Anteil von 51% in der Mischung erhalten werden. Leider verblieb aber auch ca. 17 % des Komplexes **58a** nicht umgesetzt.

In Abbildung 90 ist ein Vergleich der ³¹P{¹H}-NMR-Spektren der photochemischen Reaktionen der *C*-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Wolfram-, Molybdän-

und Chrom-Komplexe **58a-c** gezeigt, und die ³¹P-NMR-chemischen Verschiebungen der gebildeten Produkte sind in Tabelle 40 aufgeführt.

Abbildung 90: ³¹P{¹H}-NMR-Spektren der Reaktionslösungen (THF, 10 min Bestrahlung) der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **58a** (M = W), **58b** (M = Mo) und **58c** (M = Cr).

Tabelle 40: ³¹P-NMR-Daten der in den photochemischen Reaktionen (THF, 10 min) gebildeten Produkte **76a-c** (dd = Dublett von Dublett, dm = Dublett von Multiplett, br = breites Signal).

	М	δ ³¹ P{ ¹ H} [ppm]	Ј _{Р,Н} [Hz]	Verhältnis	Anteil [%]	58a-c [%]
76a	W	54.5	15.4 (dd)	-	17	22
76b	Мо	53.8 54 1	br br 15 2 Hz (dm)	1.0	27	5
76c	Cr	53.0 54.2	br	0.7	30	5

Hier kann festgehalten werden, dass, unabhängig von der Metallsorte, aus den Komplexen **58a-c** photochemisch in THF nach 10 min Verbindungen bilden, die eine ³¹P-NMR-chemische Verschiebung bei ca. 50 ppm aufweisen. Da zusätzlich im Fall des Wolfram-Komplexes keine ¹ $J_{W,P}$ -Kopplung festgestellt werden kann, und die chemischen Verschiebungen von **76a-c** sehr ähnlich sind, liegt es nahe eine Verwandtschaft (ev. auch Identität) der vorliegenden Produkte anzunehmen. Leider

waren die *J*_{P,H}-Kopplungen im Fall der Chrom- und Molybdän-Komplexe nicht gut aufgelöst. Bemerkenswert ist hier auch, dass die Edukte **58b,c** bereits nach 10 Minuten zum einem größeren Anteil umgesetzt waren, und das Chrom-Derivat **58c** dabei den größten Umsatz zeigte. Weitere Versuche, die Reaktionsbedingungen für den Umsatz des Chromkomplexes **58c** zu optimieren, waren nicht erfolgreich. Dennoch zeigen die ³¹P{¹H}-NMR-Spektren der Umsetzungen in Toluol, Et₂O und THF (Abbildung 91), dass die Bildung von **76c** unabhängig vom Lösungsmittel ist, jedoch unterschiedlich schnell und selektiv verläuft.

Abbildung 91: ${}^{31}P{}^{1}H$ -NMR-Spektren der photochemischen Reaktionslösungen von 58c (M = Cr) in Toluol, Et₂O und THF, jeweils 10 min).

Zwecks Isolierung der Verbindung **76c**, wurde die photochemische Reaktion in einem größeren Ansatz, aber etwas verringerter Konzentration in einem Photolyse-Reaktor durchgeführt; das Resultat der Reaktion ist in Abbildung 92 gezeigt.

Abbildung 92: ³¹P{¹H}-NMR-Spektren der photochemischen Reaktion von **58c** (THF, 439 mg/250 mL).

Der Chrom-Komplex **76c** konnte durch säulenchromatographische Aufarbeitung isoliert werden. Die NMR-Daten zeigen jeweils zwei sehr ähnliche Datensätze; Tabelle 41 zeigt die Daten von **76c**". Dies stützt die Vermutung des Vorliegens von Isomeren (**76c**" und **76c**" im Verhältnis 1.0:0.4) weiter.

Tabelle 41: ³¹ P- und charakteristische ¹ ⊢	 ,	¹³ C{ ¹ H}- und ²	⁹ Si{ ¹ H}DEPT-NMR-D	Daten (THF-d ⁸) für 76c ".
---	-----------	--	--	---

δ ³¹ P [ppm] [Verhältnis] (² <i>J</i> _{P,H} [Hz])	δ ¹ Η [ppm] (² <i>J</i> _{P,H} [Hz])	δ ¹³ C{ ¹ H} [ppm] (^{1,3} J _{P,C} [Hz])	δ ²⁹ Si{ ¹ H} [ppm] (² J _{si,c} [Hz])	Zuordnung
54.2 [4.0]	0.18 0.21	2.07 (dd, 1.4) 2.38 (dd, 1.6)	-0.16 (dd, 2.8) -0.02 (dd, 2.7)	SiMe ₃
54.2 [1.0] (6.8, 13.0, 28.0)	1.86 (d, 22.6)	21.6 (d, 58.2)		CH(SiMe ₃) ₂
	3.75 (d, 10.4) 3.49 (d, 6.4)	45.0 (d, 84.3)	-	CH ₂

Während die ¹H- und ¹³C-NMR-chemische Verschiebung der SiMe₃-Gruppe keine Besonderheit aufweisen, erscheinen die Signale im ¹³C- und im ²⁹Si-NMR-Spektrum eine ungewöhnliche Aufspaltung als Doppel-Dublett und die ¹J_{P,C}-Kopplungskonstante der P<u>C</u>H(SiMe₃)₂-Gruppe in **76c**" ist in etwa doppelt so groß. Außerdem wird für **76c**" die Resonanz einer CH₂-Gruppe (${}^{2}J_{H,H} = 14 \text{ Hz}$) beobachtet.

Leider ist eine genaue Analyse/Zuordnung von $J_{P,H}$ -Kopplungen im ³¹P-NMR-Spektrum auf Grund der Breite des Signals bzw. zu geringen Auflösung erschwert; versuchsweise können jedoch Kopplungen des Multipletts (vgl. Abbildung 93 und Tabelle 41) zugeordnet werden.

Abbildung 93: ³¹P-NMR-Signal von 76c".

Leider ist die Frage nach dem Vorhandensein und der Position des $Cr(CO)_5$ -Fragment auch nicht leicht zu beantworten, da im ¹³C{¹H}-NMR-Spektrum die Signale auf Grund geringer Intensität nicht eindeutig identifiziert werden können. Als besser geeignet erweist sich das IR-Spektrum, da hier Absorptionsbanden [cm⁻¹] im Carbonyl-Bereich beobachtet werden (2009 (m), 1908 (vw), 1889 (s) und 1865 (s)), die klar gegen eine Verunreinigung der Verbindung **76c**^{••} durch Cr(CO)₆ sprechen. Es gibt jedoch eine Ähnlichkeit mit den Daten von Cr(CO)₄(Pyridin)₂, die die Banden erklären könnten (Cr(CO)₄(Pyridin)₂: 2010, 1895, 1878, 1832).^[106]

Ein denkbarer Strukturvorschlag, der sich auf die Kombination dieser analytischen Daten stützt, könnte daher folgendermaßen aussehen (Abbildung 94).

Abbildung 94: Strukturvorschlag für 76c".

Hierbei handelt es sich um eine symmetrische Verbindung, die alle vorgeschlagenen Strukturelemente verbindet. Nicht nur das man alle charakteristischen NMR-Daten zuordnen kann, sondern der *N,N*-Chelatring würde die vorgenannte Ähnlichkeit erklären. Des Weiteren könnte eine mittelstarke Bande bei 1215 cm⁻¹ könnte einer P=O-Streckschwingung zugeordnet werden.^[107] Auch das sehr breite Multiplett des Phosphor-Signals (Abbildung 93) und die Aufspaltung der ¹³C- und ²⁹Si-NMR-Signale als Doppel-Dublett könnte so erklärt werden.

Aus der Lösung, die für die NMR-Charakterisierung verwendet wurde, konnten auch Kristalle erhalten und mittels Einkristallstrukturanalyse untersucht werden; die Molekülstruktur ist in Abbildung 95 dargestellt.

Abbildung 95: Molekülstruktur von 76c^{•••} im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome (außer H13[•] und H20[•]), sowie die CH₃-Gruppen an Si1[•]-Si4[•], zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D13. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: Cr[•]-P2[•]2.2979(11), Cr[•]-N1[•]2.154(3), P1[•]-O1[•]1.615(2), P1[•]-O2[•]1.475(3), P2[•]-O1[•]1.677(2), P1[•]-C2[•]1.841(3), P2[•]-C1[•]1.878(3), N1[•]-Cr[•]-P2[•]81.25(8), C1[•]-P2[•]-O1[•]114.24(10), O1[•]-P1[•]-C2[•]94.64(14). Wie an Abbildung 95 zu erkennen ist, entspricht die bestimmte Einkristallstruktur der Molekülverbindung teilweise nicht mit den zuvor diskutierten experimentellen NMR-Daten überein. So ist beispielsweise keine CH₂-Gruppe vorhanden, die auch durch eine geminale ${}^{2}J_{H,H}$ -Kopplung (ca. 14 Hz) als CH₂-Gruppe identifiziert wurde. Weiterhin hat die Molekülstruktur keinen symmetrischen Aufbau, d.h. die Phosphorkerne müssten unterschiedliche Resonanzsignale und ggf. Kopplungen miteinander aufweisen. Einige wenige Kristalle wurden NMR-spektroskopisch vermessen; in Abbildung 96 und Abbildung 97 sind die ${}^{31}P{}^{1}H$ -NMR- und ${}^{1}H$ -NMR-Spektren gezeigt.

Abbildung 96: ³¹P{¹H}-NMR-Spektrum (THF-d⁸) der gelösten Einkristalle 76c⁴

Abbildung 97: ¹H-NMR-Spektren (THF-d⁸) der gelösten Einkristalle (oben) und der zuvor vermessenen Lösung von **76c** (unten).

Wenngleich die ³¹P-NMR-chemische Verschiebung der gelösten Kristalle nur minimal von der vorherigen Lösung von **76c** (**76c**'/**76c**'') abweicht, so werden jetzt drei Signale im ³¹P{¹H}-NMR-Spektrum beobachtet (δ^{31} P: 53.0, 54.1, 56.4). Neben den Signalen für **76c**' und **76c**'' (δ^{31} P: 53.2, 54.2, vgl. Tabelle 40) ist ein weiteres Signal bei 56.4 ppm zu beobachten, welches vermutlich dem kristallisierten Produkt zugeordnet werden kann. Auch im ¹H-NMR-Spektrum ist die charakteristische CH₂-Gruppe nicht mehr vorhanden.

Dennoch kommt dem Ergebnis der Einkristallstrukturanalyse noch eine andere Bedeutung zu, da es möglicherweise einen ersten Hinweis auf den Reaktionsverlauf der photochemischen Reaktion gibt, und somit auch auf die Bildung des Produktes **76c**^{•••}.

Ein hypothetischer Mechanismus ist in Schema 62 gezeigt, der die Bildung des kristallisierten Produkts **76c**^{•••} erklären soll.

Schema 62: Postulierter Mechanismus der photolytischen Reaktion von 76c. $([Cr] = Cr(CO)_4, R = CH(SiMe_3)_2).$

Durch die photochemische Aktivierung ist einerseits eine homolytische C-O-Bindungsspaltung des Ringes denkbar (**76-I**, Schema 62), aber auch die haptotrope $P \rightarrow N$ Metall-Verschiebung in Kombination mit der vorgenannten homolytischen C-O-Bindungsspaltung und somit das Intermediat **76-II** (Schema 62). Komplex **76c**^{***} könnte so durch eine Reaktion beider Intermediate unter M(CO)₆-Eliminierung gebildet werden. Hier könnten jedoch nur theoretische Untersuchungen weiteren Aufschluss ergeben.

Insgesamt liegt die Vermutung nahe, dass die Molekülverbindung in der Struktur **76c**^{•••} einem Nebenprodukt der Photolyse entspricht, aber auf Grund einer geringen Intensität im ³¹P-NMR-Spektrum nicht erkannt wurde. Wie diese Ergebnisse zeigen, können geeignete *C*-Donor-Substituenten die Koordination zum Metallfragment erzwingen, was eindrücklich an der Molekülstruktur **76c**^{•••} abgelesen werden kann, auch wenn diese dem ursprünglich angestrebten *N*,*P*-Chelat-Komplex (unten links in grün gezeigt) nur teilweise entspricht. Der andere Teil der Molekülstruktur (rechts, blau) entspricht wiederum einem offenen, dekomplexierten Oxaphosphiran-Ligandenisomer (Abbildung 98).

Abbildung 98: Formale Zerlegung der Molekülstruktur 76c^{***} in ein *N*,*P*-Chelat-Komplexfragment (links, grün) und dem (offenen) Valenzisomer des freien Oxaphosphirans (rechts, blau).

Sehr ähnlich kann man sich auch der für **76c** (**76c**'/**76c**'') vorgeschlagenen Konstitution nähern (Abbildung 99), d.h. sie als ein formales Dimer des Valenzisomers des dekomplexierten Oxaphosphiran-Liganden betrachten, wobei jedoch in diesem Falle zwei weitere H-Atome unter Bildung von zwei CH₂-Gruppen aufgenommen wurden.

Abbildung 99: Formale symmetrische Zerlegung von **76c**⁴/**76c**⁴; das offene Valenzisomer des dekomplexierten Oxaphosphiran-Liganden nach Aufnahme eines H-Atoms.

3.6.2.2 *C,C*-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

Da bereits die photochemische Reaktion der C-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe sehr interessante Ergebnisse im Hinblick auf intramolekulare Reaktionen liefern konnte, wurde die photochemische Reaktion der *C,C*-Dipyridyl-substituierten Derivate **66a** und **66c** näher untersucht. Die Ergebnisse werden hiernach vorgestellt werden (Schema 63).

Schema 63: Photochemische Reaktion der *C*,*C*-Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe 66a,c.

Zunächst wurde der Wolfram-Komplex **66a** unter den bereits beschriebenen Bedingungen (Kapitel 3.6.2.1) für 3 mal 10 Minuten bestrahlt, wobei auch hier die Lampe auf 10 °C gekühlt wurde, die THF-Lösung der Probe (10 mg/0.5 mL) selbst jedoch nicht. Überraschenderweise wurde in dieser Reaktion von **66a** jedoch dasselbe Produkt (**74a**) wie in der thermischen Reaktion (vgl. Kapitel 3.6.1.2) erhalten; die ³¹P{¹H}-NMR-Spektren sind in Abbildung 100 gezeigt.

Abbildung 100: ³¹P{¹H}-NMR-Spektren der photochemischen Reaktion (THF, 30 min) von **66a**.

Wie aus Abbildung 100 hervorgeht, war **66a** bereits nach 10 Minuten fast vollständig umgesetzt. Die chemische Verschiebung und die ${}^{1}J_{W,P}$ -Kopplungskonstante (δ^{31} P: 176.1, ${}^{1}J_{W,P}$ = 321.7 Hz) stimmen mit dem durch die thermische Reaktion erhaltenen Produkt überein (vgl. **74a**: δ^{31} P: 176.1, ${}^{1}J_{W,P}$ = 321.4 Hz, Kapitel 3.6.1.2) und können somit zweifelsfrei dem Umlagerungsprodukt **74a** zugeordnet werden (Schema 64).

Schema 64: Photochemische Umsetzung von 66a zu 74a.

Wie schon den ³¹P{¹H}-NMR-Spektren in Abbildung 100 zu entnehmen ist, ist der gebildete Komplex **74a** unter den gegebenen Bedingungen recht stabil. Dennoch wird bereits nach ca. 20 Minuten eine leichte Zersetzung beobachtet, die zu einer Produktmischung führt.

Eine ähnliche Reaktivität wurde auch für das Chrom-Derivat **66c** beobachtet. Auch hier kann anhand der ³¹P-NMR-chemischen Verschiebung (δ^{31} P: 229.7) das Produkt

dem Umlagerungsprodukt **74c** (vgl. δ^{31} P: 230.7, Kapitel 3.6.1.2) zugeordnet werden. Im Unterschied zum Wolfram-Komplex, benötigt hier die vollständige Umsetzung jedoch ungefähr doppelt so lange, d.h. erst nach 20 Minuten war **66c** vollständig verbraucht. Zusätzlich erfolgt die Reaktion leider auch nicht so selektiv, da vor allem im Hochfeldbereich des ³¹P{¹H}-NMR-Spektrums zusätzliche Resonanzsignale beobachtet werden. Diese weisen Ähnlichkeit zu denen der Reaktion der *C*-Pyridylsubstituierten Komplexe **58a-c** auf. In Tabelle 42 sind ausgewählte ³¹P-NMR-Daten dieser photochemischen Reaktion aufgeführt.

δ ³¹ P{ ¹ H} [ppm]	Ј_{Р,Н} [Hz]	Verhältnis	Anteil
42.4 (d, <i>J</i> = 37.0 Hz)	m	0.3	4%
42.8 (s)	24.0 (t)	0.7	11%
46.2 (d, <i>J</i> = 23.2 Hz)	13.9 (t)	1.0	16%
47.2 (d, <i>J</i> = 35.3 Hz)	m	0.2	2%
49.7 (s)	m	0.1	2%
55.8 (s)	m	0.1	2%
61.9 (br)	m	0.2	3%
62.9 (d, <i>J</i> = 33.7 Hz)	m	0.2	3%
68.1 (d, <i>J</i> = 21.9 Hz)	m	0.8	13%

 Tabelle 42: Auswahl der ³¹P-NMR-Daten der photochemischen Reaktion von 66c.

Wie aus Tabelle 42 hervorgeht, werden im interessanten Bereich des ³¹P-NMR-Spektrums zwischen 45-50 ppm mehrere Signale beobachtet, die auf Produkte hindeuten, die Ähnlichkeiten mit den für **58a-c** beschriebenen aufweisen. So werden auch hier $J_{P,H}$ -Kopplungen für die Resonanzsignale bei 42.8 ppm und 46.2 ppm gemessen, und die Aufspaltung als Triplett könnte auf eine benachbarte CH₂-Gruppe hinweisen. Bemühungen, weitere Informationen zu erhalten und/oder eine Verbindung zu isolieren, waren nicht erfolgreich.

3.6.3 Reaktivität gegenüber d¹-Metallkomplexen: SET-Deoxygenierungsreaktionen mit Ti^Ⅲ-Komplexen

3.6.3.1 Phosphaalken-Komplexe

Im Jahre 1961 wurde mit Phosphaacetylen (HCP) von Gier et al. zum ersten Mal eine Verbindung mit einer Phosphor-Kohlenstoff-Mehrfachbindung über eine $(p-p)\pi$ -Wechselwirkung zwischen Kohlenstoff und Phosphor beschrieben.^[108] Das im Lichtbogen erzeugte HCP ist gasförmig, sehr reaktiv und nur unterhalb seines Tripelpunkts (-124 ± 2 °C) stabil.^[108] Es dauerte weitere 15 Jahre bis Becker *et al.* über die ersten stabilen Derivate mit einer Phosphor-Kohlenstoff-Doppelbindung berichteten.^[109] Die Phosphaalken-Derivate **LXI** wurden mittels 1,3-Umlagerung einer Trimethylsilyl-Gruppe vom Phosphor zum Sauerstoff in Acylphosphanen LX erhalten (Schema 65).^[109] Sie können in sehr guten Ausbeuten isoliert und unter Ausschluss von Sauerstoff und Feuchtigkeit bei Raumtemperatur längere Zeit gelagert werden.^[109]

Schema 65: Darstellung von Phosphaalkenen LXI durch 1,3-Silyl-Wanderung in Acylphosphanen LX.^[109]

In Analogie zu den Alkenen in der Organischen Chemie wurden $\sigma^2 \lambda^3$ -Phosphaalkene **LXII** auch durch 1,2-Eliminierung aus funktionalisierten Organophosphanen,^[110] durch Kondensationsreaktionen^[110] oder auch in einer zur Phospha-Wittig-Reaktion analogen Synthese^[66b,66c,111] erhalten und somit einfache Zugänge zu Verbindungen mit Kohlenstoff-Phosphor-Doppelbindung geschaffen.^[112]

Seit der ersten Synthese durch Becker wurde die Chemie der $\sigma^2 \lambda^3$ -Phosphaalkene^[112,113] **LXII** und deren Koordinationschemie^[114] (**LXIII-LXVI**) intensivst untersucht. In Abbildung 101 sind Beispiele für $\sigma^2 \lambda^3$ -Phosphaalkene und eine Auswahl der bekannten Bindungssituationen in Phosphaalken-Komplexen dargestellt.

Abbildung 101: Beispiele für (p-p) π -Wechselwirkungen zwischen Phosphor und Kohlenstoff: $\sigma^2 \lambda^3$ -Phosphaalkene **LXII** und Beispiele für Koordinationsmoden von Phosphaalken-Komplexen (R = organischer Rest, [M] = Übergangsmetallfragment).^[33,66b,66c,111a,115]

Im Vergleich zu symmetrisch substituierten Derivaten LXII (R' = R", Abbildung 101) können bei der Synthese unsymmetrisch substituierter $\sigma^2 \lambda^3$ -Phosphaalkene LXII (R' \neq R", Abbildung 101) zwei mögliche Stereoisomere gebildet werden. 1985 konnten Yoshifuji *et al.* zeigen, dass bei sterisch anspruchsvollen Substituenten das *E*-Isomer LXVII' gegenüber dem *Z*-Isomer LXVII'' bevorzugt gebildet wird.^[116] Durch Photolyse mit einer 100 W Mitteldruck-Quecksilberdampf-UV-Lampe kann dieses, wenn auch nicht quantitativ, in das *Z*-Isomer LXVII'' überführt werden (Schema 66).^[116]

Schema 66: Photolytische Isomerisierung des $\sigma^2 \lambda^3$ -Phosphaalkens LXVII.^[116]

Durch anschließende säulenchromatographische Trennung beider Stereoisomere konnte schließlich selektiv das *Z*-Isomer **LXVII**" erhalten und somit eine diastereoselektive Synthese ermöglicht werden.^[116]

Seit 1981 wurde auch die Koordinationschemie der $\sigma^2 \lambda^3$ -Phosphaalkene LXII eingehend untersucht und über entsprechende *end-on* $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **LXIII** (η^1 , Abbildung 101) mit Eisen, z.B. Fe(CO)₄^[94,117], Nickel, z.B. Ni(CO)₃^[118] oder Ni(PMe₃)₂^[119] und auch mit Übergangsmetall-Pentacarbonylen^[66a,114b,120] M(CO)₅ (M Cr. Mo, W) wurde berichtet. Die Synthese in der Folge der = Übergangsmetallkomplexe mittels Photolyse LXIII kann sowohl eines Übergangsmetallhexacarbonyls in Gegenwart des Phosphaalken-Derivates oder durch direkte thermische Umsetzung mit Übergangsmetallkomplexen (z.B. $M(CO)_5(thf), M = Cr, Mo, W \text{ oder } Mo(CO)_4(C_7H_8))^{[66a, 120]}$ erfolgen.

End-on gebundene Phosphaalken-Komplexe **LXIII** (Abbildung 101) wurden 1981 erstmals von Nixon^[66a] und Bickelhaupt^[120] *et al.* beschrieben. Eine Stabilisierung der Komplexe wurde vor allem durch den sterisch anspruchsvollen Mesityl-Substituent (Mes = 2,4,6-Me₃C₆H₂) am Phosphor erreicht und ermöglichte die Isolierung und Charakterisierung der ersten *end-on* gebundenen Komplexe wie beispielsweise des Chrom-Komplexes **LXIX**^[120] oder des Platin-Komplexes **LXX**^[121] (Schema 67).

Schema 67: Darstellung der *end-on* Phosphaalken-Komplexe LXIX und LXX durch Bickelhaupt *et al.*^[120,121]

Mittels Einkristallstrukturanalyse konnte gezeigt werden, dass in beiden Komplexen **LXIX** und **LXX** eine planare, im Vergleich zum freien Phosphaalken leicht verkürzte P=C-Doppelbindung und eine *end-on* Koordination des Metalls vorliegt.

Die Bindungssituation des Platin-Komplexes **LXX** in Lösung wurde anhand der für *side-on* Komplexe charakteristischen Metall-Phosphor-Kopplungskonstante (${}^{1}J_{Pt,P} = 505 \text{ Hz}$) als η^{2} -Koordination beschrieben, konnte zu dem Zeitpunkt allerdings nicht eindeutig geklärt werden.^[121] 1984 konnte zusätzlich eine Festkörper- ${}^{31}P$ -NMR-Studie bekräftigen, dass im Fall des Pt-Komplexes **LXX** eine η^{1} -Koordination im Festkörper vorliegt.^[115a] Weitere NMR-Studien klärten schließlich auch die Koordination in Lösung auf. Es konnte gezeigt werden, dass in Lösung ein dynamisches, Temperatur-abhängiges Gleichgewicht zwischen dem η^{1} -Isomer **LXXI** vorliegt (Schema 68).

Schema 68: Dynamisches Gleichgewicht in Lösung zwischen LXX (η^{1}) und LXXI (η^{2}).^[115a]

Generell ist **LXXI** (η^2) in Lösung energetisch favorisiert, bei Temperaturen unter 0 °C kehrt sich das Gleichgewicht allerdings um und der *end-on* Komplex **LXX** (η^1) wird bevorzugt gebildet.

1985 konnten Yoshifuji *et al.* zeigen, dass die Umsetzung unsymmetrisch substituierter $\sigma^2 \lambda^3$ -Phosphaalkene (vgl. **LXVII**, Schema 66) mit Cr(CO)₅(thf) immer unter Retention der Konfiguration zu den entsprechenden $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen **LXXII**⁴ oder **LXXII**⁴ verläuft.^[116] In Schema 69 ist die entsprechende Umsetzung am Beispiel des *E*-konfigurierten Derivates gezeigt (Route **i**).

Schema 69: Darstellung der *E/Z*-konfigurierten $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **LXXII**[•] und **LXXII**^{••}.^[116]

Analog zum freien $\sigma^2 \lambda^3$ -Phosphaalken **LXVII** (vgl. Schema 66) wurde auch beim $\sigma^2 \lambda^3$ -Phosphaalken-Komplex eine photolytische Isomerisierung beobachtet, wobei die Bestrahlung (100 W Mitteldruck-Quecksilberdampf-UV-Lampe) des *E*-Isomers **LXVII**' in Anwesenheit von Chromhexacarbonyl unter Inversion das entsprechende *Z*-konfigurierte Derivat **LXXII**'' lieferte (Schema 69, Route ii).^[116]

Während die *end-on* Koordination des Phosphors über das freie Elektronenpaar an das Übergangsmetall (**LXIII**: η^1) die weitverbreitetste Koordination darstellt, wurde in den darauf folgenden Jahren auch vermehrt über *side-on* Komplexe (**LXIV**: η^2) oder auch kombinierte Koordinationsmoden bei sterisch weniger anspruchsvollen Substituenten (**LXV**: η^1, η^2) berichtet.^[33,66b,66c,111a,115]

Frühe *ab-initio* Rechnungen (STO/3G) von Schoeller zeigten, dass die geringe Energiedifferenz zwischen dem freien σ -Elektronenpaar am Phosphor und den π -Orbitalen in einer ebenso kleinen Energiedifferenz zwischen den *end-on* und *side-on*-Koordinations-Moden resultiert.^[122] Je nach Elektronegativität und π -Donoroder π -Akzeptorstärke der Substituenten können somit Strukturen des Typs **LXIII** (η^{1}) oder des Typs **LXIV** (η^{2}) realisiert und diese ineinander überführt werden.^[114b,122]

Wie auch schon für $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe ausführlich diskutiert (Kapitel 3.2 bis Kapitel 3.5), spielt auch in Phosphaalken-Komplexen die Wechselwirkung von Donor-Substituenten mit dem Metall eine große Rolle und ermöglicht den Zugang zu neuen interessanten Derivaten mit neuartiger Reaktivität. Jedoch sind Verbindungen, die eine Bindungssituation wie in **LXVI** aufweisen, d.h. durch geeignete Wahl eines Substituenten eine Chelatisierung zum Metall ermöglichen, immer noch sehr selten. 2007 zeigten Gates *et. al.*, dass die Umsetzung des *o*-Pyridyl-substituierten Phosphaalkens **LXXIII** mit (cod)MCl₂ (M = Pd, Pt, cod = 1,5-Cyclooctadien) selektiv zur Bildung des *N,P*-Chelat-Komplexes **LXXIV** führt (Schema 70).^[123]

Schema 70: Darstellung von N,P-Chelat-Komplexen LXXIV durch Gates et al.^[123]

Eine Chelatisierung wie in **LXXIV** wurde zuvor schon bei *o*-Pyridyl-Phosphanen beobachtet.^[124] Reaktionsverfolgung mittels ³¹P-NMR-Spektroskopie lassen erste Rückschlüsse auf den Mechanismus zu und bestätigen eine primäre *end-on* Koordination vom Phosphor und eine anschließende Koordination des Stickstoffs unter CO-Eliminierung zum Metall.^[124a]

3.6.4 Darstellung von $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen mittels SET-Deoxygenierung von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

Wie in Kapitel 3.6.3.1 gezeigt erfolgt die wurde, Darstellung von $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen in erster Linie über die Darstellung des freien $\sigma^2 \lambda^3$ -Phosphaalken-Liganden und einer anschließenden Komplexierungsreaktion. Ein neuer Zugang zu $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen wurde 2012 von Streubel *et al.* $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen beschrieben.^[125] Ausgehend von konnten $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe über eine reduktive Single-Electron-Transfer-Reaktion (SET) mit d¹-konfigurierten Titan^{III}-Verbindungen durch Deoxygenierung erhalten werden.

Dies ist insofern interessant, als da RajanBabu *et al.* erstmals 1989 für Oxirane (Epoxide) zeigen konnten, dass offenschalige Übergangsmetallkomplexe zur selektiven, homolytischen C-O-Bindungsspaltung in Oxiranen genutzt werden können.^[126] Je nach Reaktionsbedingungen können kontrollierte Ringöffnungs-(Route **i**) oder Deoxygenierungsreaktionen (Route **ii**) an Oxiranen durchgeführt werden (s. Schema 71).^[127]

Schema 71: Cp₂Ti^{III}Cl-induzierte Ringöffnung: Reduktion (i) und Deoxygenierung (ii).^[127]

Im ersten Schritt findet eine Koordination des Ringsauerstoffs des Oxirans **LXXV** am Ti^{III}-Reagenz statt. Experimentell konnte gezeigt werden, dass durch eine SET-Reaktion das Kohlenstoff-zentrierte, höher substituierte β -Titanoxylradikal **LXXVI** und nicht die primäre radikalische Spezies **LXXVII**, gebildet wird (Schema 71).^[127] Dies konnte auch durch Rechnungen von Grimme bestätigt werden.^[128] In Anwesenheit

eines Wasserstoff-Atom-Donors und anschließende Protonierung kann so selektiv die Reduktion zum Alkohol **LXXVIII** erfolgen (Schema 71, Route i). Die Umsetzung mit einem weiteren Äquivalent Ti^{III}-Reagenz, in Abwesenheit einer Wasserstoff-Quelle, führt hingegen zum Deoxygenierungs-Produkt **LXXIX** (Schema 71, Route **ii**).^[127] Erste Einschränkungen der Selektivität zeigen sich bei monosubstituierten Oxiranen, wie **LXXV**. Im Fall der Reduktion, auch mit einem Überschuss Wasserstoff-Atom-Donor, wird immer zu einem Drittel das Deoxygenierungs-Produkt **LXXIX** gebildet.^[127] Dies ist vermutlich auf die schnellere Elektronen-Übertragung des noch nicht verbrauchten Ti^{III}-Reagenzes im Vergleich zum H-Transfer zurück zu führen.^[127]

Gansäuer *et al.* entwickelten 1998 einen Reaktionscyclus bei dem nur eine substöchiometrische Menge der katalytisch aktiven Ti^{III}-Spezies zur enantioselektiven Ringöffnung von *meso*-Epoxiden benötigt wird.^[129] Anschließende Protonierung zu den entsprechenden Alkoholen erfolgte mit 2,4,6-Collidin-Hydrochlorid (col·HCl).^[128d,130]

In allen genannten Beispielen wird die reaktive Ti^{III}-Komplex-Spezies **LXXXI** *in situ* generiert. Die Titan^{IV}-Verbindung, beispielsweise Titanocendichlorid **LXXX**, wird durch feines Zinkpulver in THF zur entsprechenden d¹-konfigurierten, aktiven Spezies **LXXXI** reduziert (Schema 72).^[131]

$$2 \operatorname{Cp}_{2}\operatorname{Ti}^{IV}\operatorname{Cl}_{2} \xrightarrow{Zn^{0}, \text{ THF}} 2 [\operatorname{Cp}_{2}\operatorname{Ti}^{III}\operatorname{Cl}_{2}]$$

$$LXXX \qquad LXXXI$$

Schema 72: In situ Darstellung der reaktiven Ti^{III}-Spezies LXXXI (Cp = C₅H₅).^[131]

Bisher wurde kein Einfluss des gebildeten Lewis-sauren ZnCl₂ auf den Mechanismus oder die Ausbeute beobachtet. Die Umsetzung von *in situ* generiertem [Cp₂TiCl] in einer Eintopfreaktion oder die Umsetzung von isoliertem [Cp₂TiCl] lieferten vergleichbare Ausbeuten der Deoxygenierungsreaktionen.^[53c,131]

Schon 1972 wurde von Green *et al.* gezeigt, dass [Cp₂Ti^{III}CI] als Dimer vorliegt (vgl. Schema 73, **LXXXIII**).^[132] Auch Daasbjerg *et al.* konnten anhand von cyclovoltammetrischen Untersuchungen der einzelnen Redox-Prozesse zeigen, dass

in Lösung ein reversibles Gleichgewicht zwischen Monomer LXXXI, Dimer LXXXII und einer halb offenen Dimer-Struktur LXXXII existiert (Schema 73).^[133]

Schema 73: Reversibles Gleichgewicht von $[Cp_2Ti^{III}CI]$ LXXXI in Lösung $(Cp = C_5Me_5)$.^[133]

Ein weiteres, für die radikalische Ringöffnung nutzbares, Titan^{IV}-Reagenz ist Cyclopentadienyltitan(IV)trichlorid (CpTi^{IV}Cl₃) **LXXXIV**, welches auf gleiche Weise mit Zink *in situ* zu [CpTi^{III}Cl₂] und Zinkchlorid reduziert werden kann (Schema 74).^[134]

$$2 \text{ CpTi}^{\text{IV}}\text{Cl}_3 \xrightarrow{\text{Zn}^{(0)}, \text{THF}} 2 [\text{CpTi}^{\text{III}}\text{Cl}_2]$$

$$LXXXIV \xrightarrow{\text{LXXXV}} LXXXV$$

Schema 74: In situ Darstellung von $[CpTi^{III}CI_2]$ (LXXXV) (Cp = C₅H₅).^[134]

Die Struktur der reaktiven Spezies ist in diesem Fall nicht eindeutig geklärt. Vermutlich liegt neben einer dimeren $[CpTi^{III}Cl_2]_2$, auch die tetramere Struktur $[CpTi^{III}Cl_2]_4$ und eine polymere Form $[CpTi^{III}Cl_2]_n$ ($3 \le n \ge \infty$) vor.^[134]

2007 beschrieben Arnold *et al.* die Synthese von TiCl₃(thf)₃, ausgehend von dem Heterodimer Titan(III)chlorid-Aluminum(III)chlorid in THF.^[135] Durch diesen neuen und einfachen Zugang zur Ti^{III}-Verbindung, ist auch Ti^{III}Cl₃(thf)₃ ein interessantes Ti^{III}-Reagenz für radikalische Ringöffnungs-Reaktionen. In der vorliegenden Arbeit wurde die Ti^{III}-Verbindungnach Literatur-Vorschrift dargestellt^[135] und konnte auch kristallisiert werden (s. Anhang D14).^[136]

Die spätere Verwendung von Ti^{III}Cl₃(thf)₃ zur reduktiven Ringöffnung verspricht vor allem Vorteile für die Aufreinigung der gebildeten Produkte. Da die Ti^{III}-Verbindung nicht wie bei den Systemen Cp₂TiCl₂/Zn und CpTiCl₃/Zn *in situ* dargestellt werden muss, ist das einzige Nebenprodukt der Reaktion mit $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen die Bildung der oxidierten Titan-Spezies und die Bildung von beispielsweise Zinkchlorid wird vermieden. So konnte beispielsweise der *C*-Phsubstituierte $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex **28** mit Ti^{III}Cl₃(thf)₃ in einer äquimolaren Reaktion sehr selektiv zum $\sigma^2\lambda^3$ -Phosphaalken-Komplex umgesetzt werden.^[53c] Auch die steigende Lewis-Acidität, die in der Reihe von [Cp₂Ti^{III}Cl]₂ über [CpTi^{III}Cl₂]_n zu [Ti^{III}Cl₃] zunimmt, macht einen Vergleich der Reaktivität der drei Reagenzien interessant. Zusätzlich müssen auch sterische Effekte betrachtet werden, da z.B. keine Reaktion des *C,C*-Diphenyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes **30** mit "[CpTiCl₂]" beobachtet wurde.^[53c] Allerdings spielt hier nicht nur der sterische Anspruch der Substituenten des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes, sondern auch der des Titan-Komplexes eine entscheidende Rolle; im Vergleich zu "[Cp₂Ti^{III}Cl]" ist "[CpTi^{III}Cl₂]" weniger sterisch anspruchsvoll und sollte auf Grund der erhöhten Lewis-Acidität auch eine stabilere Ti-O-Bindung ausbilden.^[137]

Erste Rechnungen für alle drei genannten Titan^{III}-Spezies zur reduktiven Ringöffnung von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen wurden von Krahe und Neese 2009 durchgeführt und zunächst das gleiche Niveau (BP86/def2-TZVP) wie für die entsprechenden Epoxid-Ringöffnungsreaktionen verwendet.^[138] Schema 75 zeigt anhand des Methyl-substituierten Chrom-Komplexes **LXXXVI** die einzelnen Reaktionspfade (homolytische Bindungsspaltung der C-O-, P-O- oder P-C-Bindung) der Ti^{III}-induzierte Ringöffnung und die daraus resultierenden radikalischen Intermediate.

Schema 75: C-O- (a), P-O- (b) und P-C-Bindungsbruch (c) der Ti^{III}-induzierten Ringöffnung des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes LXXXVI.^[138]
Der C-O-Bindungsbruch (**a**) führt zu einem Kohlenstoff-zentrierten Radikal (LXXXVII), der P-O-Bindungsbruch (**b**) zu einem Phosphor-zentrierten Radikal (LXXXVIII) und der P-C-Bindungsbruch (**c**) resultiert in diesem Beispiel in einem Aceton-Addukt eines terminalen Phosphiniden-Komplexes (LXXXIX). Im letzten Fall findet keine Oxidation oder Reduktion statt.^[138] Die Existenz der Verbindung LXXXIX wird auch durch experimentelle Hinweise auf ein entsprechendes Wolfram-Derivat gestützt.^[22]

Im Fall von "[Cp₂Ti^{III}CI]" zeigen die Rechnungen (BP86/def2-TZVP), dass der C-O-Bindungsbruch kinetisch (Aktivierungsenergie: $\Delta E_{C,O}^{\#} = 38.0 \text{ kJ/mol}$) und thermodynamisch (Reaktionsenergie: $\Delta E_{C,O} = -66.4 \text{ kJ/mol}$) begünstigt ist.^[138] Allerdings ist der P-O-Bindungsbruch nicht zu vernachlässigen, da der Übergangszustand ($\Delta E_{P,O}^{\#} = 50.9 \text{ kJ/mol}$) energetisch nur minimal über dem Übergangszustand des C-O-Bindungsbruchs liegt.^[138] Der P-C-Bindungsbruch hingegen, ist sowohl kinetisch, als auch thermodynamisch stark benachteiligt.^[138]

Für "[CpTi^{III}Cl₂]" wurde somit nur der C-O- und der P-O-Bindungsbruch als möglicher Reaktionspfad berechnet. In Tabelle 43 sind die entsprechenden berechneten Energien aufgeführt, $\Delta E^{\#}$ entspricht auch hier der Aktivierungsenergie (in kJ/mol) für den Übergangszustand und somit der Koordination des Sauerstoffs zum "[CpTiCl₂]" wie in **LXXXVI** dargestellt und ΔE der Reaktionsenergie (in kJ/mol) der anschließenden Bindungsspaltung zu **LXXXVII**, **LXXXVIII**, oder **LXXXIX**.

Tabelle 43: Berechneten Energien für C-O- und P-O-Bindungsbruch der SET-Ringöffnung mit $[CpTi^{III}Cl_2]_n des \sigma^3 \lambda^3$ -Oxaphosphiran-KomplexesLXXXVI (BP86/def2-TZVP).^[138]

Bindung	$\Delta E^{\#}$	ΔE
C-0	14.0 kJ/mol	-107.4 kJ/mol
P-0	4.5 kJ/mol	-48.8 kJ/mol

Eine eindeutige Vorhersage des favorisierten Reaktionspfads konnte anhand der Ergebnisse nicht getroffen werden.^[138] Die P-O-Bindungsspaltung, unter Ausbildung eines Phosphor-zentrierten Radikals (vgl. auch XCI in Schema 76) stellt den kinetisch bevorzugten Reaktionspfad ($\Delta E^{\#} = 4.5 \text{ kJ/mol}$) dar, das thermodynamisch begünstigte Produkt ist jedoch **LXXXVII** ($\Delta E = -107.4 \text{ kJ/mol}$).^[138] Rechnungen auf einem höheren Niveau (B3LYP/def2-TZVPP) zeigten schließlich, dass die "[CpTi^{III}Cl₂]" C-O-Bindungsspaltung von mit bei der Reaktion dem 163 $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **LXXXVI** sowohl kinetisch als auch thermodynamisch bevorzugt ist.^[138] Zusätzlich konnte gezeigt werden, dass die Reaktionspfade unabhängig vom koordinierenden Metall (M = Cr, Mo, W) am Phosphor sind.^[138]

Interessanterweise liegen auch die Übergangszustände für C-Ound P-O-Bindungsbruch bei der Betrachtung von TiCl₃ als reaktive Spezies sehr nah beieinander ($\Delta E_{CO}^{\#}$ = 3.5 kJ/mol, $\Delta E_{PO}^{\#}$ = 1.2 kJ/mol, BP86/def2-TZVP) und beide Reaktionen verlaufen exotherm. Hier zeigen Rechnungen auf einem höheren Niveau (B3LYP/def2-TZVPP), dass auch hier der C-O-Bindungsbruch kinetisch $(\Delta E_{C,O}^{\#} = 9.6 \text{ kJ/mol},$ $\Delta E_{P,O}^{\#} = 21.7 \text{ kJ/mol}$ thermodynamisch und $(\Delta E_{C,O} = -75.9 \text{ kJ/mol}, \Delta E_{P,O} = -15.9 \text{ kJ/mol})$ favorisiert ist.^[138]

Im Jahr 2012 konnten Streubel *et al.* an einem ersten Beispiel zeigen, dass diese Methode der selektiven Ringöffnung mittels TiCpCl₃/Zn auch auf die Phosphor-Analoga der Oxirane, auf die $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe, anwendbar ist. Schema 76 zeigt das erste Beispiel einer Darstellung der $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **XCII** mittels Deoxygenierung.^[125]

Schema 76: SET-induzierte Deoxygenierung des $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **XC**.^[125]

Die Umsetzung des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **XC** mit *in situ* generiertem [CpTi^{III}Cl₂]_n führte selektiv zur Deoxygenierung des Heterocyclus und der Bildung des $\sigma^2 \lambda^3$ -Phosphaalken-Komplexes **XCII** (Schema 76).^[125] Enthalpie-Berechnungen (BP86/TZVP), bezogen auf den (separierten) Komplex **XC** und zwei Äquivalente "[CpTi^{III}Cl₂]", haben auch hier gezeigt, dass im ersten Schritt die Koordination von "[CpTi^{III}Cl₂]" zum Ringsauerstoff des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes stattfindet. Allerdings zeigten die Rechnungen (BP86/TZVP) hier, dass durch anschließende homolytische Bindungsspaltung unter Oxidation der Titan-Spezies der Ring unter Ausbildung eines Phosphor-zentrierten Radikals **XCI** geöffnet wird.^[139] Angriff eines

weiteren reduktiven Äquivalents [CpTi^{III}Cl₂] an einem der beiden Chlor-Atome in **XCI** schwächt die C-O-Bindung und führt schließlich zur Abspaltung von "O[TiCpCl₂]₂"^[53c] Ob es sich bei dem Nebenprodukt tatsächlich um das Dimer handelt, konnte bisher experimentell nicht bestätigt werden.

Die Deoxygenierung von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen mit den Systemen CpTiCl₃/Zn und Cp₂TiCl₂/Zn konnte erfolgreich von Streubel *et al.* zur Synthese von C-Alkyl- und C-Aryl-substituierten $\sigma^2 \lambda^3$ -Phosphaalken-Komplexen eingesetzt werden.^[53a,53c,125] Ob C-funktionale Derivate hierfür auch genutzt werden können, war zum Zeitpunkt der vorliegenden Studie nicht bekannt.

3.6.5 Untersuchungen zur Funktionstoleranz der reduktiven SET-Deoxygenierung

In Kapitel 3.1 wurde die Funktionstoleranz in der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex-Synthese bereits ausführlich diskutiert. Hier sollte nun auch zunächst die Funktionstoleranz der Deoxygenierung von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen und somit die Reaktivität von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen mit Alkenyl-Substituenten am Ring-Kohlenstoff gegenüber der *in situ* erzeugten, radikalischen Titan^{III}-Spezies untersucht werden.

Die $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe **77** bis **79** wurden sowohl mit dem System CpTiCl₃/Zn (1:1.1), als auch mit Ti^{III}Cl₃(thf)₃ in THF unter strengem Ausschluss von Luft und Feuchtigkeit umgesetzt. Aus präparativen Gründen wurde, auch in allen weiteren Reaktionen, ein minimaler Überschuss von 1.1 Äquivalenten Zink verwendet. Reaktionen mit Cp₂TiCl₂/Zn wurden im Rahmen dieser Vorstudie nicht durchgeführt, da schon von Albrecht berichtet wurde, dass die Umsetzung von $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen mit Cp₂TiCl₂/Zn wesentlich langsamer ist und unselektiver verläuft als mit CpTiCl₃/Zn.^[125]

In Schema 77 ist die äquimolare Umsetzung von 77 bis 79 mit dem *in situ* aus $CpTiCl_3$ und Zinkpulver erzeugten $[CpTi^{III}Cl_2]_n$ dargestellt, wobei die Komplexe 77 und 78 als Isomerenmischung eingesetzt wurden (Verhältnis im Fall von 77a-c: 1.0:0.1:0.07 und im Falle von 78a-c: 1.0:0.3:0.1).

Schema 77: Umsetzung von 77-79 mit dem System CpTiCl₃/Zn.

Ein Vergleich der ³¹P{¹H}-NMR-spektroskopischen Daten der Komplexe **80a-c** und **81a-c** mit dem literaturbekannten Phenyl-substituierten $\sigma^2 \lambda^3$ -Phosphaalken-Komplex^[125] (δ^{31} P: 219.0 (¹J_{W,P} = 260.0 Hz), 212.0 (¹J_{W,P} = 260.0 Hz)) bestätigt die Bildung der entsprechenden Deoxygenierungs-Produkte **80** und **81** (Tabelle 44), jedoch nicht für **79**, da hier der Komplex **82** gebildet wurde.

		δ ³¹ Ρ [ppm]	¹ Ј _{W,Р} [Hz]	Verhältnis	%	Nebenprodukte %
	а	196.8	255.1	0.1	10	
80	b	201.9	253.9	0.2	17	-
	С	213.4	253.9	1.0	73	
	а	198.8	253.7	0.1	5	
81	b	204.7	254.4	0.2	9	48
	С	215.9	252.8	1.0	38	
82		131.9	266.9	-	41	59

 Tabelle 44: ³¹P{¹H}-NMR-Daten (THF) der Komplexe 80-82.

Die Lage der Resonanzsignale im ³¹P{¹H}-NMR-Spektrum (Tabelle 44) bestätigt, dass im Fall der isolierten Doppelbindung sehr selektiv die entsprechenden $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **80a-c** gebildet werden. Die Produkte werden als Isomerengemische erhalten, wie es auch schon für $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe und literaturbekannten beschrieben die wurde.^[32,53c,125] Grund hierfür ist vermutlich, neben den unterschiedlichen Substituenten am Ringkohlenstoff in 77 bzw. am Kohlenstoff der P=C-Doppelbindung in 80, die auftretende Atropisomerie (relative Orientierung von C-H und P-W der exocyclischen P-C-Bindung) der Bis(trimethylsilyl)methyl-Gruppe (s. auch Kapitel 3.4.1). Während nach drei Tagen Rühren bei Raumtemperatur 77a-c selektiv zu 80a-c reagierte, wurde eine vollständige Umsetzung von 78a-c erst nach 28 Tagen beobachtet. Viele kleinere Signale im ³¹P{¹H}-NMR-Spektrum machten zudem in der Summe einen Anteil von ca. 50% Nebenprodukten aus (durch Integration der ³¹P{¹H}-NMR Resonanz-Signale bestimmt). Hierdurch konnte gezeigt werden, dass Selektivität der Deoxygenierung mit abnehmendem die Abstand der C=C-Doppelbindung zum dreigliedrigen Heterocyclus abnimmt.

Interessanterweise reagierte Komplex **79**, der ein zum Dreiring konjugiertes π -System aufweist, nicht zum $\sigma^2 \lambda^3$ -Phosphaalken-Komplex, sondern bildete ein Produkt mit einer ³¹P{¹H}-NMR-Resonanz bei 132.1 ppm (¹J_{W,P} = 266.6 Hz). Diese

NMR-Daten ähneln denen eines 1,2-Oxaphosphol-4-en-Komplexes^[140] (138.4 ppm, ${}^{1}J_{W,P} = 283$ Hz), der 1984 von Mathey beschrieben wurde (vgl. Syntheseroute in Schema 78).

Schema 78: Thermische Zersetzung von XCIII in Anwesenheit eines α,β -ungesättigten Ketons.^[140]

Auch im Falle von 79 koordiniert (vermutlich) der Oxaphosphiran-Sauerstoff am Titan-Zentrum der Lewis-Säure im Primärschritt, wodurch der Ring aktiviert wird. Auf Grund der erhöhten Reaktivität von 79, wird jedoch vermutlich anstelle der C-O-Bindung die P-C-Bindung heterolytisch gespalten (Schema 79). Ein nukleophiler freien Elektronenpaars Phosphor Terminus Angriff des am am der C=C-Doppelbindung könnte schließlich zum Ringerweiterungsprodukt 82 führen. Dieser Strukturvorschlag konnte im Rahmen dieser Arbeit jedoch nicht endgültig geklärt werden.

Schema 79: Möglicher Mechanismus der Reaktion von 79 mit dem System CpTiCl₃/Zn.

Die Reaktionen mit TiCl₃(thf)₃ führten leider in keinem der o.g. Fälle zum entsprechenden Deoxygenierungs-Produkt, ein Vergleich der chemischen Verschiebungen der gebildeten Produkte mit **82** lässt jedoch vermuten, dass ähnliche Produkte gebildet werden. Tabelle 45 zeigt die ³¹P{¹H}-NMR Daten der Reaktionslösung der Umsetzung von **77-79** mit TiCl₃(thf)₃.

Umsetzung von TiCl ₃ (thf) ₃ mit			δ ³¹ P [ppm]	¹ Ј _{W,Р} [Hz]	Produkt- Verhältnis	%
		а	20.2	285.9	0.03	
	77	b	28.9	300.5	1.0	70
		С	34.0	297.3	0.05	
77			123.9	271.9	0.02	
			114.2	268.8	0.06	8
			102.3	(*)	0.04	
			+ weitere	Produkte		22
		а	21.5	290.7	0.07	
	78	b	30.1	300.3	1.0	85
78		С	35.1	296.5	0.12	
			+ weitere	Produkte		15
70	8	2	132.0	266.0		6%
19			+ weitere	Produkte		94%

 Tabelle 45: ³¹P{¹H}-NMR Daten (THF) der Reaktionsmischungen der Reaktion von 77-79 mit

 TiCl₃(thf)₃. (*) Kopplung nicht zu identifizieren

 $σ^{3}λ^{3}$ -Oxaphosphiran-Komplex **77** zeigte eine nur geringe Reaktivität gegenüber TiCl₃(thf)₃, da, gemäß ³¹P{¹H}-NMR-Verfolgung, auch nach mehr als vier Wochen 70% der Ausgangsverbindung in der Reaktionsmischung vorhanden waren. Neben dem literaturbekannten [{Bis(trimethylsilyl)methyl}chlorophosphan-κ*P*]pentacarbonylwolfram(0)^[53b] und [{Bis(trimethylsilyl)methyl}phosphan-κ*P*]pentacarbonylwolfram(0)^[60] (insgesamt 5%) werden viele weitere Nebenprodukte gebildet, die insgesamt einen Anteil von 22% ausmachen. Zwar sind vor allem die Produkte mit einer chemischen Verschiebung um die 100-125 ppm und ohne direkte P-H-Bindung, im Vergleich zu **82** interessant (vgl. Tabelle 44), konnten aber auf Grund ihres geringen Anteils in der Reaktionsmischung nicht isoliert werden.

Die Umsetzung von Komplex **78** mit TiCl₃(thf)₃ zeigte einen ähnlichen Verlauf, d.h. nach 4 Wochen waren noch ca. 85% Ausgangsverbindung, neben 4% der genannten Phosphan-Komplexe **81a-c** und 11% weiterer, nicht identifizierter Nebenprodukte in der Reaktionslösung vorhanden. Vergleicht man die Reaktion von **79** mit CpTiCl₃/Zn (Tabelle 44, Schema 77) und TiCl₃(thf)₃ (Tabelle 45), so wird vermutlich auch hier

das gleiche Umlagerungsprodukt (δ^{31} P: 132.0, ${}^{1}J_{W,P}$ = 266.0 Hz) gebildet, jedoch wesentlich unselektiver.

Vergleicht man die Reaktivität in Abhängigkeit der verwendeten Ti^{III}-Reagenzien, so kann zu diesem Zeitpunkt schon eine erste Tendenz ausgemacht werden. [Cp₂Ti^{III}Cl]₂ ist das stärkere Reduktionsmittel, führt aber vermutlich auf Grund sterischer Wechselwirkungen zu einer langsameren Reaktionsgeschwindigkeit. Die experimentellen Ergebnisse werden zusätzlich durch die Berechnungen von Krahe und Neese aus dem Jahre 2009 gestützt. Auch hier konnte gezeigt werden, dass mit steigender Lewis-Acidität die Reaktionsgeschwindigkeit zunimmt (die ab).^[138] [Ti^{III}Cl₃] Somit sollte Aktivierungsenergie nimmt eine erhöhte Reaktionsgeschwindigkeit aufweisen. Die Reaktivität des Systems CpTiCl₃/Zn ist hinsichtlich der Deoxygenierung über den SET-Mechanismus am vielversprechendsten; die sterischen Wechselwirkungen scheinen hier gering genug und die reduzierende Wirkung ausreichend zu sein. Daher wurde in den folgenden Untersuchungen hauptsächlich TiCpCl₃/Zn zur Reduktion der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe verwendet.

Dass Norbornyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe interessante Ausgangsverbindungen für mögliche Ringöffnungs-Polymerisations-Reaktionen darstellen, wurde in Kapitel 3.1.2 schon diskutiert. Auch die entsprechenden Deoxygenierungs-Produkte sind hinsichtlich dieser Reaktivität von Interesse, daher wurde der Norbornyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **13a-d** mit dem System CpTiCl₃/Zn umgesetzt (Schema 80). Darüber hinaus sind auch intramolekulare Abfangreaktionen von großem Interesse.

Schema 80: Umsetzungen des Norbornyl-substituierten σ³λ³-Oxaphosphiran-Komplexes **13a-d**; über zwei unterschiedliche Reaktionsführungen (i) und (ii).

Da die einzelnen Isomere des entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **13a-d** nicht voneinander separiert werden konnten, wurde **13a-d** als 170 Isomerenmischung (Verhältnis 0.6:0.3:1.0:0.25) umgesetzt. Während die Reaktion von **13a-d** mit einem Äquivalent der reaktiven Ti^{III}-Spezies nach einer Woche rühren bei Raumtemperatur nur zu einer Umsetzung von max. 38% **83** führt, konnte durch die Verwendung von zwei Äquivalente [CpTi^{III}Cl₂]_n der Anteil des Isomerengemisches **83** in der Reaktionsmischung auf 78% verdoppelt werden (Tabelle 46).

Tabelle 46: ³¹P{¹H}-NMR-Daten (THF) der Umsetzung von 13a-d mit einem oder zwei Äquivalentendes Systems CpTiCl₃/Zn. (*) Kopplung nicht zu identifizieren.

Umsetzung von 13a-d mit x Äquivalenten [CpTi ^{III} Cl ₂] _n		δ ³¹ Ρ [ppm]	¹ <i>Ј</i> _{W,Р} [Hz]	Produkt- Verhältnis	%	Neben- produkte %
	13a-d	31.2 32.0 32.2 32.4	297.1 296.5 (*) (*)	0.5 0.8 0.1 0.04	52	
x = 1	83	190.9 191.8 196.8 197.3 207.5 208.4	(*) (*) (*) 252.1 251.8	0.01 0.01 0.05 0.03 1.0 0.2	38	10
x = 2	13a-d	31.3 32.1 - 32.4	296.9 297.6 - (*)	0.1 0.2 - 0.02	21	1
	83	190.9 191.8 196.8 197.3 207.5 208.4	(*) (*) (*) 250.9 249.1	0.03 0.01 0.03 0.05 1.0 0.2	78	

Auch hier könnte ein Grund für die langsame und damit unselektive Umsetzung von **13a-d** mit einem Äquivalent [CpTi^{III}Cl₂]_n der sterische Anspruch des im Norbornyl-Substituenten oder auch die C=C-Doppelbindung darstellen. Eine mögliche Koordination der Lewis-Säure ZnCl₂ oder auch eine π -Wechselwirkung der Doppelbindung mit der freien Koordinationsstelle am Titan-Reagenz, wie sie beispielsweise bei der Ziegler-Natta-Polymerisation vermutet wird,^[141] könnten zu einer Verlangsamung der Reaktion bzw. zu anderen Reaktionswegen führen und somit erklären, warum mehr als zwei Äquivalente [CpTi^{III}Cl₂]_n für eine vollständige Umsetzung notwendig sind.

Komplexe 83 wurden als Isomerenmischung erhalten. Zusätzlich zu den auch hier denkbaren und schon erwähnten Orientierungsoptionen der Bis(trimethylsilyl)methyl-Gruppe (vgl. Kapitel 3.4.1), ist die Stereochemie in am Norbornyl-Substituenten entscheidend. Vergleicht man die Verhältnisse der einzelnen Signale im ³¹P{¹H}-NMR-Spektrum miteinander, so kann man erkennen, dass die Verhältnisse der einzelnen Isomere bei beiden Reaktionen annähernd gleich sind. In beiden Reaktionen hat das Hauptisomer des $\sigma^2 \lambda^3$ -Phosphaalken-Komplexes eine chemische Verschiebung von δ^{31} P: 207.5 (¹ $J_{W,P}$ = 250.9 Hz). Dies lässt vermuten, dass alle Isomere des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes im ähnlichen Maß mit dem Titan-Reagenz reagieren und nicht ein Isomer, beispielsweise aus sterischen Gründen, deutlich bevorzugt zum Deoxygenierungs-Produkt 83 abreagiert. Daher kann der oben genannte Grund der langsamen Reaktion durch den sterisch anspruchsvollen Substituenten vernachlässigt werden. In beiden Reaktionen wurde [{Bis(trimethylsilyl)methyl}phosphan- κP]-pentacarbonylwolframl(0)^[60] als Nebenprodukt (1%) und bei der Umsetzung mit einem Äquivalent [CpTi^{III}Cl₂]₂ weitere 9% unbekannter Nebenprodukte gebildet. Zusätzlich entstehen im Fall der Reaktionsdurchführung (i) (Schema 80) mehrere isomere Produkte mit einer chemischen Verschiebung um die 100 ppm im ³¹P-NMR-Spektrum. Das Hauptsignal weist eine Verschiebung von 101.1 ppm (${}^{1}J_{W,P} = 265.2 \text{ Hz}, J_{P,H} = m$) und mehrere kleinere Phosphor-Wasserstoff-Kopplungen auf. Die chemische Verschiebung und die ${}^{1}J_{W,P}$ -Kopplungskonstante sind ähnlich zu einem literaturbekannten Hydrolyse-Produkt, welches durch Reaktion eines $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes mit Salzsäure entsteht (δ^{31} P: 124.9 (${}^{1}J_{W,P}$ = 278.0 Hz)).^[53a]

Auf Grund der sehr großen Anzahl an Isomeren wurde auf weiterführende Umsetzungen mit anderen Ti^{III}-Reagenzien sowie auf Versuche, die Produkte zu isolieren, aus Zeitgründen verzichtet.

3.6.6 Deoxygenierung von C-Pyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

3.6.6.1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe

Wie diese ersten Voruntersuchungen zur Toleranz der Deoxygenierung von $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen zeigten, können funktionelle Gruppen die SET-Reaktion mit dem System CpTiCl₃/Zn beeinflussen, wobei jedoch in fast allen Fällen die Deoxygenierungsreaktionen zu den $\sigma^2\lambda^3$ -Phosphaalken-Komplexen führten (Kapitel 3.6.5). Da die C-Pyridyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe neuartige Reaktivitäten zeigten, war hier die Chance eventuell auch eine N-Ti-Wechselwirkung zu erzielen und so mehr über dies Reaktion zu lernen, d.h. die Untersuchung der Reaktivität gegenüber d¹-konfigurierten Titanverbindungen war von großem Interesse. Wie schon in Kapitel 3.4.1 ausführlich beschrieben, wurden die $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe **58a-c** nur als Isomerenmischung isoliert und daher auch so mit der nach literaturbekannten Bedingungen^[125] *in situ* generierten Ti^{III}-Spezies in THF umgesetzt (Schema 81). Komplex **59a** wurde jedoch in isomerenreiner Form eingesetzt.

Schema 81: Umsetzung der Komplexe 58a-c und 59a mit CpTiCl₃/Zn zu 84a-c bzw. 85a.

In allen Reaktionen wurde die Bildung der $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **84a-c** und **85a** beobachtet, die Produkte wurden auch hier als Mischung mehrerer Isomere erhalten (Tabelle 47).

	М	R	δ ³¹ P [ppm]	¹ Ј _{W,P} [Hz]	² Ј_{Р,Н} [Hz]	Verhältnis
			233.3	(*)	(*)	0.01
84a	W	Н	238.6	260.5	14.6, 21.6	0.1
			244.6	269.7	16.1	1.0
91h	Mo	ы	266.7	-	m	0.2
040	64D IVIO	п	271.3	-	18.3	1.0
		r H	291.4	-	m	0.01
84c	Cr		296.7	-	16.4, 21.6	0.02
			304.4	-	6.3, 20.9	1.0
			200.9	260.0	19.4, 30.5	0.9
85a	W	CH_3	213.8	266.8	7.7, 23.4	1.0
		-	215.9	263.9	11.8, 31.1	0.3

Tabelle 47: ³¹P-NMR Daten (THF-d⁸) der Phosphaalken-Komplexe **84a-c** und **85a**. ^(*) auf Grund der Intensität der Signale nicht zu identifizieren

Das Verhältnis der gebildeten Produkte wurde auch hier mittels ³¹P-NMR-Spektroskopie durch Signalintegration bestimmt und zeigt, mit Ausnahme von **85a**, eine deutliche Bevorzugung des Derivates mit dem am weitesten ins tiefe Feld verschobenen Resonanzsignal.

Vergleicht man die NMR-Daten des Wolfram-Komplexes 84a mit den Isomeren des (δ³¹P: 219.0 C-Phenyl-substituierten Derivats $(^{1}J_{WP} = 260.0 \text{ Hz},)$ bekannten ${}^{2}J_{P,H} = 3.1, 20.2 \text{ Hz}), 212.0 ({}^{1}J_{W,P} = 260.0 \text{ Hz}, {}^{2}J_{P,H} = 18.0 \text{ Hz}))^{[125]}$ so fällt auf, dass die C-Pyridyl-substituierten Derivate um ca. 20 ppm ins Tieffeld verschoben sind. Die $^{1}J_{WP}$ -Kopplungskonstanten sind vergleichbar und auch die beiden ²J_{P.H}.Kopplungskonstanten weisen eine diesen von Derivaten bekannte Größenordnung auf, d.h. in beiden Verbindungen zeigt das Hauptisomer im ³¹P-NMR-Spektrum ein Dublett mit 16 Hz bzw. 18 Hz. Das Signal des Nebenisomers bzw., im Fall von 84a das Isomer mit der zweitgrößten Intensität, ist als Doppel-Dublett aufgespalten und auch hier sind die ${}^{2}J_{P,H}$ -Kopplungskonstanten ähnlich. Im Unterschied zum C-Phenyl-substituierten Derivat werden die C-Pyridyl-substituierten Derivate 84a-c und 85a als Mischung von drei Isomeren erhalten. Wie schon zuvor erläutert (Kapitel 3.4.1) kann die Entstehung mehrerer Isomere durch die Atropisomerie und zusätzlich durch die Bildung von E/Z-Isomeren erklärt werden. Da auch für die bekannten P-CH(SiMe₃)₂-substituierten Derivate keine sichere Zuordnung der E/Z-Isomere erfolgen konnte,^[53a,53c,125] ist ein Vergleich und eine Zuordnung für die Komplexe 84a-c und 85a leider nicht möglich.

Die *in situ* Generierung der reaktiven Ti^{III}-Spezies erfolgt wie in Schema 72 und Schema 74 gezeigt in einem 2:1-Verhältnis des Ti^{IV}-Komplexes zu Zink. Schon zuvor wurde jedoch beobachtet, dass die Deoxygenierung sehr selektiv unter äquimolaren Reaktionsbedingungen verläuft (CpTiCl₃: Zn = 1:1) und somit zwei Reduktions-Äquivalente für eine selektive und vollständige Umsetzung nötig sind.^[125] Die Umsetzung mit einem halben Äquivalent Zink verlief unvollständig und ohne Zugabe von Zink wurde keine Reaktion beobachtet.^[53c]

Durch Einkristallstrukturanalyse konnte hier zum ersten Mal die Molekülstruktur einer tetranuklearen Titan-Spezies (**86**) gesichert werden, die in Folge einer Deoxygenierungsreaktion von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen entstand (Abbildung 102).

Abbildung 102: Molekülstruktur von 86 im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D15. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: Ti1-O1 1.794(3), Ti1-Cl3 2.345(7), Ti2-O1 1.799(3), Ti2-O2 1.805(3), Ti2-Cl2 2.2804(13), Ti3-O2 1.801(3), Ti3-Cl1 2.2732(15), O1-Ti-O1 103.7(2), O1-Ti2-O2 104.30(17), O2-Ti3-O2 105.3(2).

Zwar ist diese tetramere Verbindung **86** bereits bekannt gewesen, sie wurde jedoch zuvor durch Hydrolyse von TEMPO-substituierten Titan-Spezies erhalten; auch die Molekülstruktur wurde schon veröffentlicht.^[142] Anhand dieser Molekülstruktur kann jedoch die Vermutung aufgestellt werden, dass im letzten Schritt der Phosphaalken-Komplex-Bildung [CpTi(O)CI] abgespalten wird, welches das Tetramer (n = 4) (und eventuell auch andere Cyclooligomere bildet). Es handelt sich daher nicht, wie zuvor beschrieben, um die Abspaltung von "O[TiCpCl₂]₂".^[53c]

Die Reduktion von 2 Einheiten CpTi^{IV}Cl₃ erfordert formal ein Äquivalent Zn⁰ und generiert [CpTi^{III}Cl₂]₂, welches vermutlich eine C-O-Bindungsspaltung induziert. Das Problem ist, dass der weitere Reaktionsverlauf nicht klar ist, da jetzt die Bildung der tetrameren Spezies [CpTi^{IV}(O)Cl]₄ nachgewiesen wurde. Es ist auch nicht klar, welche Rolle ZnCl₂ in dieser Reaktion spielt.

Eine genauere Betrachtung der ³¹P{¹H}-NMR-Spektren der Reaktionslösung von **84a-c** weist zusätzlich eine Besonderheit auf und lässt auf eine zuvor nicht festgestellte Reaktivität schließen (Abbildung 103).

Abbildung 103: ³¹P{¹H}-NMR Spektren (THF) der Reaktion von 58a-c mit CpTiCl₃/Zn zu 84a-c.

Vergleicht man die ³¹P{¹H}-NMR-Spektren miteinander, so sind im Fall von M = W (**84a**) und M = Cr (**84c**) drei Isomere mit unterschiedlicher Intensität zu erkennen (vgl. Tabelle 47). Betrachtet man das Spektrum der Reaktionslösung des Molybdän-Komplexes **84b**, so wird zum einen deutlich, dass auf Grund der Intensität nur zwei Isomere von **84b** identifiziert werden können und zusätzlich ein weiteres, ins Tieffeld verschobenes Signal sichtbar ist (**87b**). Besonders deutlich wird die Entstehung eines neuen Folgeprodukts bei der Reaktion von **59a**, welches Methylund Pyridyl-Substituenten am Ringkohlenstoff-Atom aufweist. Abbildung 104 zeigt die ³¹P{¹H}-NMR Spektren der Deoxygenierung von **59a** in Abhängigkeit von der Zeit.

Abbildung 104: Ausschnitt der ³¹P{¹H}-NMR-Spektren (THF, r.t.) der Deoxygenierung von **59a** unter Ausbildung eines Folgeprodukts **88a** in Abhängigkeit von der Zeit.

Innerhalb von einem Tag zeigt das ³¹P{¹H}-NMR Spektrum der Reaktionslösung von 85a ein neues Signal im Tieffeldbereich, welches einem Folgeprodukt zugeordnet werden kann. Während nach 5 Stunden) noch der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex **59a** vorliegt (28%), wird neben den Phosphaalken-Komplexen 85a (51%) auch schon 13% der Verbindung 88a gebildet. Das Verhältnis ändert sich bereits nach einem Tag in Reaktionslösung bei Raumtemperatur. Während noch 16% 59a vorhanden sind, hat sich der Anteil von 85a (28%) zu Gunsten von 88a (38%) bereits halbiert. Nach einer Woche war die Umwandlung von 59a und 85a vollständig und der neue Komplex 88a mit einem Anteil von 79% gebildet. Die Bildung des [{Bis(trimethylsilyl)methyl}phosphan- κP]pentacarbonylwolfram(0)^[60] (8%) verhinderte jedoch eine quantitative Umsetzung.

Ein Vergleich der Reaktionsspektren der Komplexe **84a-c** zeigte, dass in allen Fällen in Abhängigkeit von der Metallsorte in unterschiedlicher Zeit neue Folgeprodukte gebildet werden, d.h. es wurden die Komplexe **87a-c** beobachtet. Tabelle 48 gibt zeigt die NMR-Daten der Produkte und die zur Bildung benötigte Zeit.

	М	R	δ ³¹ Ρ [ppm]	¹ Ј _{W,Р} [Hz]	² Ј_{Р,Н} [Hz]	Beginnende Umwandlung	Dauer Gesamt
87a	W	Н	317.8	270.1	14.9, 17.0	24 h	35 d
87b	Мо	Н	335.9	-	16.2, 16.8	3 h	6 m
87c	Cr	Н	370.9	-	br	7 d	7 m ^(*)
88a	W	CH_3	289.9	268.7	18.9, 19.4	5 h	8 d

Tabelle 48: ³¹ P-NMR-Daten (THF-d ⁸) der Folgeprodukte 87a-c und 88a
(h = Stunden, d = Tage, m = Monate). (*) keine vollständige Umsetzung

Wie aus Tabelle 48 deutlich hervorgeht, spielt der sterische Anspruch der Substituenten und die Größe des Metallfragments eine entscheidende Rolle. Im Fall von **88a** erfolgte die Umwandlung bereits nach 5 Stunden, während das Folgeprodukt bei **87a** erst nach 24 Stunden zu beobachten war. Beim Übergang von Wolfram zu Molybdän und auch Chrom war eine deutliche Abnahme der Reaktionsgeschwindigkeit zu beobachten und die Umwandlung zu **87c** erfolgt nie zu 100%; selbst nach 7 Monaten sind noch 7% **84c** in der Reaktionslösung vorhanden. Die Umwandlung des Molybdän-Komplexes **84b** zu **87b** erfolgte zunächst sehr schnell (**84b**: 7%, **87b**: 77%), eine vollständige Umsetzung von **84b** erfolgte jedoch auch hier erst nach 6 Monaten. Leichtes Erwärmen auf 35 °C (in THF) konnte leider keine vollständige Umsetzung erzielen, stattdessen wurde nur unselektive Zersetzung festgestellt.

Überraschenderweise wurde in allen genannten Beispielen sehr selektiv ein einziges Folgeprodukt gebildet und keine Isomerenmischung erhalten. Erste Informationen über die Komplexe **87a-c** und **88a** konnten aus den ¹H-NMR- und ¹³C{¹H}-NMR Spektren erhalten werden. Tabelle 49 zeigt einen Vergleich der charakteristischen NMR-Daten von **84a** und **87a**.

	δ ³¹ P [ppm]	δ ¹ H [ppm] (² J	/ _{Р,Н} [Hz])	δ ¹³ C{ ¹ H} [ppm] (² J _{P,C} [Hz])		
	(¹ <i>J</i> _{W,P} [Hz]) (² <i>J</i> _{P,H} [Hz])	CH(SiMe ₃) ₂	С <i>Н</i> =Р	CH(SiMe ₃) ₂	CH=P	со
84a	244.6 (269.7) (16.1)	1.63 (7.3)	8.61 (19.9)	36.0 (12.2)	161.5 (47.3)	196.7 (10.1) 200.6 (29.9)
87a	317.8 (270.1) (15.1)	2.49 (17.0)	8.13 (14.9)	30.0 (30.0)	151.7 (31.0)	198.3 (11.1) 210.6 (4.8) 212.6 (38.7)

 Tabelle 49: ³¹P-, ¹H- und ¹³C{¹H}-NMR Daten (THF-d⁸) von 84a und 87a im Vergleich.

Komplex **87a** weist im Vergleich zu **84a** eine Tieffeld-Verschiebung von 70 ppm auf, die ${}^{1}J_{W,P}$ und ${}^{2}J_{P,H}$ -Kopplungskonstanten verändern sich nicht wesentlich. Eine deutliche Veränderung lässt sich vor allem an der chemischen Verschiebung der CH-Gruppe des Phosphor-Substituenten im ¹H-NMR-Spektrum beobachten. Das entsprechende Signal ist um ca. 1 ppm in den Tieffeld-Bereich verschoben und auch die ${}^{2}J_{P,H}$ -Kopplungskonstante hat sich um mehr als das doppelte auf 17.0 Hz vergrößert. Die Tendenz kehrt sich bei der CH-Gruppe der C=P-Doppelbindung im ¹H-NMR-Spektrum um. Doch insbesondere im Carbonyl-Bereich im ${}^{13}C{}^{1}H{}$ -Spektrum um die 200 ppm konnten eindeutige Unterschiede im Vergleich zu den Phosphaalken-Komplexen **84a-c** ausgemacht werden. Statt der üblichen 2 Signale für M(CO)₅L Komplexe wie bei **84a**, sind drei Signale zu entnehmen (im Verhältnis 2:1:1). Das kann so gedeutet werden, dass in **88a** ein Signal für die zwei *cis*ständigen CO-Gruppen (δ^{13} C: 198.3), ein Signal für die CO-Gruppe *trans*-ständig zum Stickstoff (δ^{13} C: 210.6) und eines für die *trans*-ständig zum Phosphor (δ^{13} C: 212.6) gebundene CO-Gruppe vorliegt.

Schließlich konnte durch Einkristallstrukturanalyse die Struktur der Komplexe 87a und 88a (Abbildung 105 und Abbildung 106) bestätigt werden.

Abbildung 105: Molekülstruktur von 87a im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H1 und H7) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger
Nummerierung und weiteren Informationen im Anhang D16. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4312(13),
P-C1 1.665(4), P-C7 1.801(5), C1-C2 1.441(6), C2-N 1.366(6), N-W 2.289(3),
C1-P-W 108.09(18), N-W-P 74.29(10), C2-N-W 122.5(3), C2-C1-P 116.7(4).

Abbildung 106: Molekülstruktur von 88a im Einkristall; Ellipsoide repräsentieren 50%
Aufenthaltswahrscheinlichkeit; H-Atome (außer H8a) zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger
Nummerierung und weiteren Informationen im Anhang D17. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4427(6),
P-C1 1.678(3), P-C8 1.802(5), C1-C2 1.459(3),
C2-N 1.369(3), N-W 2.282(2),
C1-P-W 109.51(9), N-W-P 73.53(6),
C2-N-W 123.75(16), C2-C1-P 114.4(1).

Anhand der Molekülstruktur von **87a** und **88a** wird deutlich, dass im Fall der *C*-Pyridyl-substituierten Phosphaalken-Komplexe **84a-c** und **85a** bei Raumtemperatur in Lösung eine CO-Eliminierung unter Ausbildung der *N,P*-Chelat-Komplexe **87a-c** und **88a** erfolgt war (Schema 82).

Durch Koordination des Pyridyl-Stickstoffs und CO-Eliminierung findet ein Liganden-Austausch am Übergangsmetall statt, und die Chelatisierung führt zu einer stark verkürzten W-P-Bindungen in 87a und 88a im Vergleich zu bekannten, terminalen Phosphaalken-Komplexen (*C*,*C*-Dimethyl-substituierter Wolfram-Komplex: W-P 2.4919(11) Å).^[143] Die Bindungslängen der P=C-Doppelbindung und der P-C-Einfachbindung weisen keine signifikanten Abweichungen zu bekannten Bindungslängen in ähnlichen Phosphaalken-Komplexen auf. Bemerkenswert ist auch, dass die Bindungen zum Pyridin-Substituenten (C1-C2, Abbildung 105 und Abbildung 106) leicht verkürzt (C1-C2: **59a**, 1.502(7) Å; **58a**, 1.476(7) Å, vgl. Kapitel 3.4.1). Dieser Effekt wird durch die zusätzliche π -Rückbindung ausgelöst und wurde auch für 2,2'-Bipyridin-Komplexe beschrieben.^[124a] Die in Kapitel 3.6.3.1 beschriebenen N,P-Chelat-Komplexe LXXIV von Gates et al. (Schema 70, Kapitel 3.6.3.1) weisen eine vergleichbare P-C1-Bindungslänge auf (M = Pd: 1.672(4) Å, M = Pt: 1.675(3) Å) und auch eine verkürzte Bindung zum Pyridin-Substituenten wurde bei diesen beobachtet (M = Pt: C10-C17: 1.4685 Å, C2-N: 1.373(5) Å).^[123] Die C1-P-W und C2-C1-P Winkel sind sowohl im Vergleich zum C,C-Dimethylsubstituierten terminalen Phosphaalken-Komplex,^[143] als auch im Vergleich zu den Pt- und Pd-Komplexen^[123] auf Grund der Chelatisierung kleiner.

Die $\sigma^2 \lambda^3$ -Phosphaalken-Komplexe **84a-c**, **85a** und somit die Chelat-Komplexe **87a-c**, **88a** konnten nur über die Umsetzung von CpTiCl₃/Zn selektiv erhalten werden. Überraschenderweise konnte für den $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex **59a** erstmals auch für die Umsetzung mit TiCl₃(thf)₃ eine Umsetzung zum $\sigma^2 \lambda^3$ -Phosphaalken-Komplex **85a** bzw. eine sich sehr schnell daran anschließende Chelatisierung zu **88a** beobachtet werden. Die Reaktion verläuft im Vergleich zu der Reaktion mit CpTiCl₃/Zn sehr schnell, jedoch nicht so selektiv. Neben dem *N*,*P*-Chelat-Komplex **88a** wird ein weiteres Produkt gebildet, welches von den ³¹P-NMR-Daten dem [{Bis(trimethylsilyl)methyl}chlorophosphan- κP]pentacarbonylwolfram(0)

 $(\delta^{31}P (CDCI_3): 53.7, {}^{1}J_{W,P} = 269.6 \text{ Hz}, {}^{1}J_{P,H} = 349.7 \text{ Hz})^{[53b]}$ zugeordnet werden kann (s. Abbildung 107).

Abbildung 107: ³¹P{¹H}-NMR-Spektren (THF) der Umsetzung von 59a mit TiCl₃(thf)₃.

Aus der Umsetzung der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **58a-c** mit TiCl₃(tfh)₃ konnten die entsprechenden Phosphaalken-Komplexe jedoch nicht isoliert werden, statt dessen wurden hauptsächlich Folgeprodukte wie [M(CO)₅RPH₂],^[60] sowie Produkten sehr ähneln (vgl. Abbildung 108 und δ^{31} P: 126.1, ¹J_{W,P} = 275.0 Hz)^[53a], wie sie früher in Reaktionen von $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen mit HCI erhalten wurden.

Abbildung 108: ³¹P{¹H}-NMR-Spektren (THF) nach 4-5 h der Umsetzung von **58a-c** mit TiCl₃(thf)₃. 182

Auch die Umsetzung mit Cp₂TiCl₂/Zn zeigte eine ähnliche Reaktivität, es wurden auch hier sehr unselektiv Mischungen der genannten Folgeprodukte, d.h. den entsprechenden $\sigma^2 \lambda^3$ -Phosphaalken- und den *N*,*P*-Chelat-Komplexen erhalten.

3.6.6.2 *P*-Triphenylmethyl- und *P*-Pentamethylcyclopentadienyl-substituierte Komplexe

In einer vergleichenden Studie wurden auch die *P*-Triphenylmethyl- (**60a**) und *P*-Pentamethylcyclopentadienyl-substituierten (**63a**) $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe mit TiCpCl₃/Zn in THF umgesetzt (Schema 83).

Schema 83: Darstellung der Phosphaalken-Komplexe 89a, 90a und CO-Elimininierungsprodukte 91a, 92a ($R = CPh_3$ und Cp^*).

Der *P*-CPh₃-substituierte Komplex **60a** ist vor allem in Bezug auf die Reaktionsgeschwindigkeit der Deoxygenierung und CO-Eliminierung von Interesse und zeigt im Vergleich zu den P-CH(SiMe₃)₂-substituierten Komplexen 58a und 59a einen entscheidenden Unterschied. Mittels ³¹P{¹H}-NMR-Reaktionsverfolgung konnte gezeigt werden, dass kein $\sigma^2 \lambda^3$ -Phosphaalken-Komplex (**89a**) beobachtet werden kann, sondern nur der entsprechende Chelat-Komplex **91a** (δ^{31} P: 325.5, ${}^{1}J_{W,P}$ = 271.1 Hz). Auf Grund des sterischen Anspruchs der Substituenten scheint eine raschere CO-Eliminierung erzwungen zu werden. Direkt nach Zugabe von 60a zu in situ generiertem [CpTiCl₂]_n in THF färbt sich die Reaktionslösung rot und bereits nach 2 Stunden ist 60a vollständig umgesetzt. Leider hat die Substitution nicht nur einen Einfluss auf die Reaktionsgeschwindigkeit, sondern auch auf die Selektivität der Reaktion. Während der C-Ph substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex (*P*-CPh₃) bereits nach 24 Stunden sehr selektiv zum $\sigma^2 \lambda^3$ -Phosphaalken-Komplex $(\delta^{31}P: 241.4, {}^{1}J_{WP} = 266.4 \text{ Hz})$ reagiert,^[144] wird der Donor-substituierte Chelat-183

Komplex **91a** nach 3 Tagen nur zu einem Anteil von 11% in der Reaktionsmischung erhalten (Integration im NMR-Spektrum) und konnte daher auch nicht isoliert werden.

Ähnlich verhält es sich auch mit der Reaktion des *P*-Cp^{*} substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **63a** mit *in situ* generiertem [CpTiCl₂]_n. Zunächst verläuft die Umsetzung sehr schnell zu dem $\sigma^{2}\lambda^{3}$ -Phosphaalken-Komplex **90a**. Bereits nach 3 Stunden ist **63a** vollständig umgesetzt und 56% **90a** (δ^{31} P: 252.4, ¹*J*_{W,P} = 270.1 Hz) in der Reaktionsmischung vorhanden. Bereits nach 21 Stunden kann durch ³¹P{¹H}-NMR-Verfolgung das CO-Eliminierungsprodukt **92a** (δ^{31} P: 320.6, ¹*J*_{W,P} = 271.0 Hz) beobachtet werden, allerdings ist zu diesem Zeitpunkt auch eine Zersetzung der gebildeten Produkte zu beobachten. Tabelle 50 gibt die Anteile der Komplexe **90a** und **92a** in der Reaktionslösung (Integration im NMR-Spektrum) in Abhängigkeit von der Zeit an.

Tabelle 50: Vergleich von 90a und 92a anhand der ³¹P-NMR-Daten und Anteile in derReaktionslösung in Abhängigkeit der Zeit.

	δ ³¹ Ρ [ppm]	¹ Ј _{W.Р} [Hz]	Ј_{Р.Н} [Hz]	Anteil in Reaktionslösung [%] in Abhängigkeit der Zeit			
		,	-,	3h	21h	51h	21d
90a	252.4	270.1	br	56	13	12	-
92a	320.6	271.0	br	-	1	2	8

Auch hier wird deutlich, dass Vergleich C-Ph-substituierten im zum $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex (*P*-Cp^{*}), welcher über Nacht sehr selektiv das bildet,^[125] entsprechende Deoxygenierungs-Produkt zunächst eine erhöhte. schließlich aber eine unselektivere Reaktivität im Fall des C-Donor-substituierten Komplexes 63a beobachtet wird.

3.6.7 Deoxygenierung von *C,C*-Dipyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

Eine Untersuchung der *C*,*C*-Dipyridyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen mit *in situ* generierten Ti^{III}-Verbindungen war von speziellem Interesse, da hierdurch neue Erkenntnisse über den Verlauf der Deoxygenierungsreaktion erhalten werden könnten. Eingeschränkt wurde die Erwartungen dadurch, dass bereits berichtet wurde, dass der *C*,*C*-Diphenyl-substituierte Komplex **30** nicht mit CpTiCl₃/Zn reagiert.^[53c] Dennoch wurden die Wolfram- und Chrom-Dipyridyl-Komplexe **66a** und **66c** mit dem System CpTiCl₃/Zn umgesetzt (Schema 84).

Schema 84: Reaktion der *C*,*C*-Dipyridyl-substituierten Komplexe 66a,c mit CpTiCl₃/Zn zu 83a,c und Bildung von 94a,c.

Auch hier zeigten sich deutliche Unterschiede in der Selektivität und der Reaktivität der beiden Derivate (Tabelle 51).

Tabelle 51: ³¹P-NMR Daten (THF) der Reaktion von 66a,c mit CpTiCl₃/Zn zu 93a,c und 94a,c(min = Minuten, h = Stunden, d = Tage).

				-				
	Μ	δ ³¹ Ρ [ppm]	¹ Ј _{W,P} [Hz]	² Ј_{Р,Н} [Hz]	lsomeren- Verhältnis	Anteil in F	Reaktionsl (Zeit)	ösung [%]
93a	W	264.8	287.6	17.4	-	93 (25 min)	84 (16 h)	62 (24 d)
94a	W	308.7	273.7	19.8	-	1 (25 min)	11 (16 h)	25 (24 d)
93c	Cr	210.6 211.3 212.3	- - -	m m m	1.0 0.2 0.1	22 (7 d)	-	-
94c	Cr	359.7	-	3.0, 19.8	-	2 (7 d)	-	-

Während das Chrom-Derivat **66c** nur sehr langsam (2% **94c** nach 7 Tagen) umgesetzt werden konnte, führte die Reaktion des Wolfram-Komplexes **66a** mit CpTiCl₃/Zn hauptsächlich zur Bildung der Komplexe **93a** und **94a**. Das Verhältnis der gebildeten Produkte hängt hierbei wesentlich von der Zeit ab (Tabelle 51). Nach 25 Minuten (Zeit zwischen Zugabe des *in situ* generierten Ti^{III}-Reagenzes und der NMR-Messung) zeigte das ³¹P-NMR-Spektrum, dass **93a** als Hauptprodukt der Reaktion gebildet wurde (92%). Neben verbleibenden 3% des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes **66a**, wurden zu diesem Zeitpunkt auch schon 1% des Chelat-Komplexes **94a** gebildet. Zunächst verläuft die Umsetzung zu **94a** recht schnell, nach 16 Stunden ist der Anteil von **94a** bereits auf 11% angestiegen und **66a** wurde vollständig umgesetzt. Nach 24 Tagen allerdings, hatte sich der Anteil nur auf 24% erhöht.

Im Vergleich zum *C,C*-Diphenyl-substituierten Wolfram-Komplex kann bei beiden Derivaten **66a,c** eine Reaktion beobachtet werden. Dass der Chrom-Komplex **66c** im Vergleich zum Wolfram-Komplex **66a** wesentlich langsamer und unselektiver reagiert, kann mit der kürzeren Phosphor-Metall-Bindung und somit einer stärkeren kinetischen Hinderung begründet werden.

Beide Derivate, sowohl der difunktionalisierte Wolfram-Komplex **93a** als auch der Chrom-Komplex **93c**, haben gemeinsam, dass das CO-Eliminierungsprodukt nicht quantitativ gebildet wird. Ein Grund warum keine vollständige Umsetzung von **93a**,c zu **94a**,c erreicht werden konnte, zeigt schließlich das Ergebnis einer Einkristallstrukturanalyse (Abbildung 109).

Abbildung 109: Molekülstruktur von 93a' im Einkristall; Ellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit; H-Atome zur besseren Übersichtlichkeit nicht dargestellt; Darstellung mit vollständiger Nummerierung und weiteren Informationen im Anhang D18.
Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: W-P 2.4772(10), P-C1 1.681(4), P-C12 1.814(4), C1-C2 1.489(5), C1-C7 1.494(5), Zn-N1 2.058(3), Zn-N2 2.066(3), C1-P-W 124.71(14), C1-P-C12 108.13(19), C2-C1-C7 115.3(3), N1-Zn-N2 92.69(13).

Wie anhand der Molekülstruktur zu erkennen ist, wird die Donor-Wechselwirkung des Pyridin-Substituenten mit dem Metallfragment, die vermutlich die CO-Eliminierung induziert, ab einem unbekannten Zeitpunkt der Reaktion durch die Chelatisierung von Zinkchlorid gehemmt. Nach ca. 25 Minuten ist die Deoxygenierung von **66a** zu **93a** vollständig (Tabelle 51) und es liegt eine äquimolare Menge ZnCl₂ in der Reaktionslösung vor, die für eine neue Komplexierung zur Verfügung steht. Zunächst erfolgt die CO-Eliminierung zu **94a** selektiv und im Vergleich zu **87a** und **88a** (Tabelle 48) schneller, aber dennoch wird die Reaktion zum Chelat-Komplex **94a** verlangsamt. Welche koordinationschemischen Prozesse im Detail ablaufen, konnte nicht geklärt werden; eine beobachtete Verbreiterung der ³¹P-NMR-Signale verweist jedoch auf solche. Mit der Abnahme der Konzentration von **93a** in der Reaktionslösung, liegt zu einem bestimmten Zeitpunkt ein Überschuss ZnCl₂ im Verhältnis zu **93a**, was die Koordination der beiden Pyridin-Stickstoffatome zum Zinkchlorid beschleunigt und somit ein Fortschreiten der Reaktion zu **94a** verhindert.

Die in Abbildung 110 gezeigte reduzierte Molekülstruktur von 93a' veranschaulicht, dass der zentrale Chelat-Sechsring eine Wannen-Konformation einnimmt und die

beiden Pyridin-Substituenten relativ zueinander gewinkelt vorliegen (Diederwinkel der durch die beiden Pyridyl-Substituenten aufgespannten Ebenen: 56.4°).

Abbildung 110: Reduzierte Darstellung der Molekülstruktur 93a'.

Tabelle 52 zeigt einen Vergleich der Bindungslängen und –winkel von **93a**' mit dem Chelat-Komplex **87a**, sowie mit ausgewählten Bindungslängen und –winkeln des vergleichbaren, literaturbekannten Chelat-Komplexes **XCV** von Di-(*o*-pyridyl)keton mit Zinkchlorid.^[145]

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} H \\ C^{1} = P \\ W(CO)_{4} \end{array} $
93a'	XCV ^[145]	87a
2.477(1)	-	2.4312(13)
1.681(4)	-	1.665(4)
1.814(4)	-	1.801(5)
1.489(5)	-	1.441(6)
1.494(5)	-	-
124.7(1)	-	108.09(18)
115.3(3)	126.1(2)	-
92.6(1)	93.5(1)	-
116.27(4)	118.1(1)	
121.7(1)	109.8(1)	
2.058(3)	2.043(2)	-
2.066(3)	2.034(3)	-
2.213(1)	2.202(1)	-
2.211(1)	2.215(1)	-
	$\begin{array}{c c} & & & \\ \hline & & \hline \\ \hline & & & \\ \hline \\ \hline$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

 Tabelle 52: Vergleich der Bindungslängen [Å] und Bindungswinkel von 93a'mit XCV^[145] und 87a.

Die beiden Strukturen **93a**['] und **XCV** sind nur teilweise miteinander vergleichbar. Auf Grund der im Vergleich zu Phosphor größeren Elektronegativität des Sauerstoffs und der Koordination des Phosphors zum Übergangsmetall, sowie der zusätzlichen Bindung zum Phosphor-Substituenten (P,C^{Bisyl}) ist der C2-C1-C7-Winkel mit 115.3(3)° im Vergleich zu **XCV** wesentlich kleiner. Auch die Pyridin-Ringe sind in **XCV** nur leicht zueinander gewinkelt (Diederwinkel: 14.1°).^[145] Die Umgebung am Zink-Atom wird in **XCV** als pseudotetraedrisch beschrieben, was durch den relativ großen Cl1-Zn-Cl2 und den zugehörigen kleinen N1-Zn-N2 Winkel deutlich wird (vgl. Tabelle 52).^[145] Da die entsprechenden Winkel in **93a**['] mit 92.6(1)° und 116.27(4)° vergleichbar sind (vgl. Tabelle 52), liegt auch hier eine verzerrt tetraedrische Umgebung am zentralen Zink-Atom vor (durchschnittliche Winkelsumme 323.8°). Auch die Zn-N und Zn-Cl Bindungslängen stimmen mit denen im bekannten Chelat **XCV** überein. Die Bindungen Zn-N1 und Zn-N2, als auch Zn-Cl1 und Zn-Cl2 sind jeweils in Anbetracht des Fehlers gleich lang, was bedeutet, dass die Chelatisierung

^(**) Zum besseren Vergleich bezieht sich die Nummerierung nicht auf die Notation der Einkristallstrukturen, sondern auf die Nummerierung der Atome in den Abbildungen in Tabelle 52.

keinen Einfluss auf die Bindungslängen, aber auf die entsprechenden Winkel hat. Betrachtet man die Packung der Moleküle in der Einkristallstruktur (Abbildung 111) so fallen Wasserstoff-Brückenbindungen zwischen Cl2 und H-C17 auf, die mit ihrer Länge von 2.8520(2) Å kürzer als die Summe der Van-der-Waals-Radien (3.2 Å^[146]) sind und schließlich für die Verzerrung der tetraedrischen Struktur verantwortlich sein können.

Abbildung 111: Packungsdiagramm (Blickrichtung entlang b-Achse) der Einkristallstruktur 93a'

Im Vergleich zu **87a** sind sowohl die W-P- als auch die P-C1-Bindung im Phosphaalken-Komplex **93a**⁴ verlängert und der daraus resultierende Winkel C1-P-W stark aufgeweitet. Sowohl die P-C-Einfachbindungen zum Phosphor-Substituenten (P-C^{Bisyl}) als auch zu den Pyridin-Substituenten (C1-C2 und C1-C7) sind auf Grund des größeren sterischen Anspruchs länger als in **87a**.

An dieser Stelle soll noch einmal auf das Problem der Bildung des Heterodinuklearen Komplexes eingegangen werden. Dass die Resonanzsignale des Phosphaalken-Komplexes **93a** im ³¹P{¹H}-NMR-Spektrum im Vergleich zum Chelat-Komplex **94a** eine starke Verbreiterung (FWHM \approx 20 Hz) zeigen, ist vermutlich auf dynamische Prozesse auf Grund der Chelatisierung zum Metallfragment und/oder auch zusätzlich durch Koordination/Dissoziation des Zinkchlorids zurückzuführen. 190 Insofern kann auch nicht völlig ausgeschlossen werden, dass es sich bei **93a** auch in Lösung um den di-heteronuklearen Komplex **93a**⁴ handelt. Um weitere Einblicke zu bekommen, wurde der Einfluss des Zinkpulvers auf den Reaktionsverlauf untersucht. Daher wurde dieser mittels Variation der eingesetzten Stoffmenge an Zink untersucht und die Reaktion ebenfalls mit TiCl₃(thf)₃ durchgeführt. Während die Reaktion mit TiCl₃(thf)₃ eine Produktmischung, aber keinen Hinweis auf den entsprechenden Phosphaalken- oder Chelat-Komplex lieferte, konnte durch Variation der Stoffmenge des Zinkpulvers ein Einfluss beobachtet werden. Die Verhältnisse der gebildeten Produkte in der Reaktionslösung sind in Tabelle 53 zusammengefasst.

		Anto	eil in Reaktionslösung	
Äq. Zn	Zeit	Phosphaalken- Komplex 93a δ ³¹ P: 264.8 (¹ J _{W,P} = 287.7 Hz)	Chelat-Komplex 94a δ^{31} P: 308.7 (¹ J _{W,P} = 274.3 Hz)	Nebenprodukte
1.0	30 min	17%	2%	81% (34% 66a)
	42 h	11%	32%	57%
1 0	30 min	94%	1%	5%
1.2	16 h	85%	11%	4%
	24 d	62%	24%	14%
2.0	30 min	88%	2%	10%
	19 h	74%	8%	18%

Tabelle 53: Variation der Stoffmenge an Zinkpulver in der Reaktion von 66a mit TiCpCl ₃ /2	Zn.
(min = Minuten, h = Stunden, d = Tage)	

Tabelle 53 zeigt deutlich den Einfluss auf die Reaktionsgeschwindigkeit und Produktverhältnisse bei 1.0, 1.2 und 2.0 Äquivalente Zinkpulver. Vergleicht man die Produktverhältnisse nach 30 Minuten miteinander, so fällt auf, dass bei einer äquimolaren Menge Zink nur 17% des Phosphaalken-Komplexes **93a** gebildet wurden. Im Vergleich dazu, wurden sowohl bei 1.2 Äquivalenten als auch bei 2.0 Äquivalenten ca. 90% des Komplexes **93a** gebildet. Der Anteil des Chelat-Komplexes ist nach 30 Minuten in allen drei Reaktionen annähernd gleich. Auffallend ist, dass im Fall der äquimolaren Umsetzung noch 34% des $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes **66a** in der Lösung vorhanden sind, allerdings nach 42 Stunden bereits verhältnismäßig mehr **94a** (**94a**: 32%, **93a**: 11%) im Vergleich zur Umsetzung mit 1.2 Äquivalenten Zink (**94a**: 24%, **93a**: 62%) gebildet wurde. Allerdings ist der Anteil der gebildeten

Nebenprodukte ebenfalls größer. Ein Überschuss Zink (2.0 Äquivalente) unterdrückte die Chelatisierung zu **94a** nicht wirksam, führte jedoch zu einer noch stärkeren Verbreiterung der Signale (**93a**: FWHM \approx 40 Hz, **94a**: FWHM \approx 20 Hz). Im Vergleich zur Umsetzung mit 1.2 Äquivalenten wird auch hier nach 19 Stunden bereits 8% des Chelat-Komplexes **94a** gebildet und keine selektive Umsetzung erreicht. Eine Separation der beiden Komplexe **93a** und **94a** aus der Reaktionsmischung war nicht möglich, dennoch konnten beide Derivate NMR-spektroskopisch vollständig charakterisiert werden.

Die ${}^{31}P{}^{1}H$ -NMR Daten der *C*,*C*-Dipyridyl-substituierten Komplexe sind im Vergleich zu den *C*-Pyridyl-substituierten Derivate in Tabelle 54 aufgeführt.

Tabelle 54: Vergleich der ${}^{31}P{}^{1}H$ -NMR Daten (THF) der C-Pyridyl- und C,C-Dipyridyl- substituierten $\sigma^{2}\lambda^{3}$ -Phosphaalken-Komplexe (links) und Chelat-Komplexe (rechts)

		R	,CH(SiMe₃)₂ M(CO)₅	-			R P N	,CH(SiMe ₃) ₂ Ι(CO) ₄
	Μ	R	δ ³¹ P [ppm] (¹ J _{W,P} [Hz])			М	R	δ ³¹ P [ppm] (¹ J _{W,P} [Hz])
84a	W	Н	233.3 ^(*) 238.6 (260.5) 244.6 (269.7)		87a	W	Н	317.8 (270.1)
93a	W	<i>o</i> -Py	264.8 (287.6)		94a	W	<i>о</i> -Ру	308.7 (273.7)
				-				
84c	Cr	Н	291.4 296.7 304.4		87c	Cr	н	370.9
93c	Cr	o-Py	210.6 211.3 212.3	-	94c	Cr	o-Py	359.7

(*) auf Grund der Intensität der Signale nicht zu identifizieren (o-Py = ortho-Pyridin).

Vergleicht man die mono- und difunktionalisierten Chelat-Komplexe von Wolfram (87a und 94a) und auch Chrom (87c und 94c), so sind keine Besonderheiten hervorzuheben. Der difunktionalisierte Chrom-Komplex 94c ist um ca. 10 ppm zu höherem Feld verschoben. Auf Grund der Chelatisierung hat der zweite Pyridin-Substituent keinen großen Einfluss auf die chemische Verschiebung.

Überraschenderweise wird für das Wolfram-Derivat **93a** nur eine einzige Phosphor-Resonanz beobachtet, während drei Resonanzen für Chrom-Komplexisomere (**93c**) gefunden werden. Auch die ¹ $J_{W,P}$ -Kopplungskonstante ist im Fall von **93a** um ca. 20-30 Hz größer als in **87a**. Erstaunlich ist auch die chemische Verschiebung des *C,C*-Dipyridyl-substituierten Chrom-Komplexes **93c**. Im Vergleich zu dem entsprechenden mono-funktionalisierten Komplex **84c**, sind die Resonanzen um bis zu 80-90 ppm ins Hochfeld verschoben. Daher kann hier nicht mit ausreichender Sicherheit die Zuordnung des $\sigma^2 \lambda^3$ -Phosphaalken-Komplexes **93c** erfolgen, auch wenn die Entstehung des Folgeproduktes **94c** die zwischenzeitliche Bildung stützt.

Die beiden Dipyridyl-substituierten Komplexe **93a** und **94a** weisen, außer den unterschiedlichen Signalen für die Carbonyl-Gruppen im ¹³C{¹H}-NMR-Spektrum, keine besonderen Unterschiede auf; lediglich die CH-Gruppe der Bis(trimethylsilyl)methyl-Gruppe ist im Fall des Chelat-Komplexes **94a** sowohl im ¹H-als auch im ¹³C{¹H}-NMR-Spektrum minimal zu höherem Feld verschoben und die entsprechenden Phosphor-Kopplungen sind leicht größer (Tabelle 55).

	δ ¹ H [ppm] (² <i>J</i> _{P,H} [Hz])	δ ¹³ C{ ¹ H} [ppm] (<i>J</i> _{P,C} [Hz])				
	CH(SiMe ₃) ₂	CH(SiMe ₃) ₂	C=P	CO		
O-Py CH(SiMe ₃) ₂ W(CO) ₅ 93a	2.94 (18.5)	32.6 (34.8)	164.3 (29.6)	195.7 (8.1) <i>cis</i> 204.3 (31.6) <i>trans</i>		
CH(SiMe ₃) ₂ P W(CO) ₄ 94a	2.80 (20.0)	27.2 (37.9)	164.6 (27.9)	195.9 (9.0) cis 210.3 (4.7) trans 212.9 (39.4) trans		

4 Zusammenfassung

Im Rahmen dieser Arbeit sollten neuartige, Donor-funktionalisierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe mittels der sogenannten Tieftemperatur-Route synthetisiert sowie hinsichtlich ihrer thermischen und photochemischen Reaktivität sowie ihrer Reaktivität gegenüber Ti^{III}-Komplexen untersucht werden.

Von zentraler Bedeutung war die Frage der Steuerung der nukleophilen Reaktivität von Li/CI-Phosphinidenoid-Komplexen gegenüber unterschiedlich funktionalisierten Carbonylderivaten, die zugleich auch potentielle Koordinationszentren für das Lithium-Kation aufweisen können. Es gelang z.B. den sehr thermolabilen Li/CI-

Abbildung 112: Molekülstruktur von 4a.

Phosphinidenoid-Wolframkomplex **4a** (Abbildung 112) mittels Einkristall-Röntgenstrukturanalyse zu charakterisieren. Hier zeigte sich, dass **4a** salzartig aufgebaut ist und ein [Li(12-Krone-4)₂]-Kation aufweist (Kapitel 3.2.1).

Im Falle von Carbonyl-Derivaten, die eine zusätzliche C=C-Bindung aufweisen, konnte gezeigt werden, dass nahezu alle Reaktionen π -selektiv an der C=O-Bindung verlaufen. Es wurde jedoch im Fall der Reaktion von **4a** mit 2-Cyclopenten-on eine Ausnahme gefunden, da hier ausschließlich der Phosphiran-Komplex **12** gebildet wurde (Kapitel 3.1.1).

Im Rahmen diese Teilstudie konnte auch ein Isomerengemisch der *C*-Norbornylsubstituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe **13-15** (**13**: *P*-CH(SiMe_3)₂, **14**: *P*-CPh₃, **15**: *P*-Cp*) dargestellt werden (Kapitel 3.1.2); ein Derivat wurde auch strukturell abgesichert (Abbildung 113).

Abbildung 113: Molekülstruktur von 13.

Weitere umfangreiche Untersuchungen zur Frage der Funktionstoleranz ergaben, dass die Position der funktionellen Gruppe, d.h. Distanz zum angestrebten Ring-Kohlenstoffatom im $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex, hierfür von signifikanter Bedeutung ist. In Heteroatom-substituierten Carbonyl-Derivaten war auch die CH-Azidität ein wichtiger und auch einschränkender Aspekt. Während dies für einfache Derivate wie z.B. die Alkyl- (**16**) und Benzyl-substituierten (**17**) $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe (Kapitel 3.1.3) nicht relevant ist, steigt die Bedeutung für Chlor- und Amin-Substituenten. Es gelang dennoch, den ersten 3-CI-propyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplex **19** zu isolieren der für zukünftige Studien interessant sein dürfte.

Die komplizierte Abhängigkeit der Reaktivität von Li/CI-Phosphinidenoid-Komplexen wurde am Beispiel der Umsetzungen mit DMF deutlich (Kapitel 3.2.4), d.h. die Reaktion war kaum zu kontrollieren. Einerseits stellte die schwache Elektrophilie dieser Carbonyl-Verbindung ein Problem dar, aber auch die (wahrscheinliche) Bildung von Phosphinidenoid-Komplexen mit neuen komplexen Kationen sowie das Auftreten einer konkurrierenden Lithiumdimethylamid-Abspaltung.

In Kapitel 3.3 wurde die Synthese der C-Furan-3-yl- (51) und C-Thien-3-yl-substituierten (52) $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe beschrieben, die beide isoliert und vollständig charakterisiert werden konnten. Konzeptionell von besonderer Bedeutung war die Reaktion von 4a mit N-Methyl-Imidazol-2-carbaldehyd (Kapitel 3.3), da hier eine spätere P→N haptotrope Verschiebung des Metallkomplex-Fragments in Hinblick auf eine Dekomplexierung des Oxaphosphiran-Liganden reizvoll erschien. Überraschenderweise kam es jedoch zur Bildung eines Komplexes 54, der anhand seiner IR- und NMR-spektroskopischen Merkmale als offenes Valenzisomer gedeutet wurde und vermutlich ein $P \rightarrow N$ haptotrop verschobenes Metallkomplex-Fragment aufweist. Auch eine zusätzliche side-on Koordination der P=C-Doppelbindung an das Metall erscheint mit den Daten als vereinbar. In Kapitel 3.2.2 werden weitere Untersuchungen zum Einfluss sehr starker σ -Donoren, d.h. im vorliegenden Fall des 1,3,4,5-Tetramethyl-imidazol-2-ylidens (22), auf den Reaktionsverlauf beschrieben. Hier zeigte sich überraschenderweise ein völlig neuartiges Reaktivitätsmuster: die Reaktion der Phosphinidenoid-Komplexe 4a-c mit zwei Äquivalenten 22 ergab selektiv die zwitterionischen Komplexe **23a-c** (Abbildung 114).

Abbildung 114: Lewis-Struktur von 23a-c (links) und Molekülstruktur von 23a (rechts).

Die Auswertung der Einkristallstruktur-Analyse sowie DFT-Rechnungen von Espinosa zeigten, dass in **23a** eine schwache P,C($p\pi$ - $p\pi$) Wechselwirkung und eine hohe Elektronendichte am Phosphor vorliegen. Formal handelt es sich somit bei diesen Derivaten um ein NHC-Addukt der entsprechenden terminalen Phosphiniden-Komplexe.

Weitere systematische Synthesestudien zeigten, dass sowohl *C*-Pyridyl- als auch *C*,*C*-Dipyridyl-substituierte Komplexe zugänglich gemacht werden können (Schema 85) (Kapitel 3.4 und 3.5).

Schema 85: Übersicht der dargestellten *C*-Pyridyl- und *C*,*C*-Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe.

Wenngleich eine Vielzahl neuartiger Derivate dargestellt werden konnten, erwiesen sich die Chrom- und Molybdänpentacarbonyl-Komplexe (**58b**,**c**) als tendenziell 196

weniger stabil, die Derivate 58a und 59a wurden isoliert und vollständig charakterisiert. Anhand des Ergebnisses der Einkristallstruktur-Analyse konnte die Bildung von Atropisomeren abgesichert werden; diese entstehen auf Grund einer gehinderten Rotation der Bis(trimethylsilyl)methyl-Gruppe um die P-C-Bindung (Kapitel 3.4.1). In diesem Zusammenhang durchgeführte Studien zeigten auch, dass im Fall des P-CPh₃-substituierten Li/CI-Phosphinidenoid-Komplexes 5a die Lithium-Kationenkomplexe in THF oder Pyridin koordinativ variabel zusammengesetzt sein können, aber leider nicht zu einer selektiven Reaktion mit den Carbonylderivaten führen. Zusätzlich trat am Anfang das Problem auf, dass eine raschere Zersetzung der Produkte 60-62a festgestellt wurde. Erst durch eine deutliche Verkürzung der Reaktionszeit konnten diese dann diastereomerenrein erhalten und vollständig charakterisiert werden (Kapitel 3.4.2). Interessanterweise war der sterische Anspruch des Phosphor-Substituenten auch entscheidend für den Reaktionsverlauf. Nur die P-CPh3- und P-Cp*-substituierten Komplexe wurden diastereoselektiv erhalten und nur die ortho-, meta- und auch para-substituierten Komplexe konnten im Fall der P-CPh₃ substituierten Derivate problemlos dargestellt und isoliert werden.

Ebenfalls hochselektiv verlief die Darstellung der $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **66a,c** durch Verwendung von Di(*o*-pyridyl)keton (Schema 86) (Kapitel 3.5), wobei jedoch auch der Einfluß des P-Substituenten auf die Produktbildung klar hervortrat.

Schema 86: Reaktivität der Li/CI-Phosphinidenoid-Komplexe 4-6a gegenüber Di-(o-pyridyl)keton.

Während für CH(SiMe₃)₂ nur die Komplexe **66a,c** beobachtet wurden, war es im Falle von Cp* ein Produktgemisch aus **68a** und **69a**, und im Falle von CPh₃ wurde ausschließlich der Komplex **70a** beobachtet. Die Konstitution des neuartigen bicyclischen P-Liganden in **70a** wurde durch eine Kristallstrukturanalyse bestätigt (Abbildung 115) (Kapitel 3.5.3).

Abbildung 115: Molekülstruktur von 70a.

DFT-Rechnungen von Espinosa zum Reaktionsmechanismus zeigten, dass vermutlich ein endocyclischer P-C-Bindungsbruch eines kurzlebigen Oxaphosphiran-Komplexes den ersten Schritt einer komplizierten Reaktionsabfolge darstellt.

Im zweiten Teil der Arbeit wurde die Reaktivität der Donor-funktionalisierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe untersucht. Ein besonders überraschender Befund war die sehr selektive Reaktion der Komplexe **28-30** mit 1,3,4,5-Tetramethylimidazol-2-yliden (NHC **22**), die erneut zur Ausbildung von **23a-c** führten, d.h. ein formaler Austausch einer side-on gebundenen π -Einheit (Aldehyd) an Phosphor durch einen *end-on* gebundenen σ -Liganden (NHC) hatte stattgefunden (Kapitel 3.2.2).

Dass insbesondere die C-Pyridyl- und C,C-Dipyridyl-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe großes koordinationschemisches Potential aufweisen wurde in thermischen und photochemischen Reaktivitätsstudien aufgezeigt, d.h. es wurde eine Vielzahl neuartiger Produkte wie **71a**, **76c** und auch **74a**,**c** erhalten (Schema 87).

Schema 87: Übersicht der thermischen und photochemischen Folgeprodukte.

Während die C-Pyridyl-substituierten Komplexe 58a-c und 59a in Lösung eine außerordentliche thermische Stabilität aufwiesen (Kapitel 3.6.1.1), konnte durch Reaktionen in der Schmelze ein neuer N,P-Chelat-Komplex (71a) gebildet werden. Unter der Annahme einer primären CO-Eliminierung Koordination und des Donorzentrums zum Metallfragment, führt die erhöhte Ringspannung in dem kurzlebigen

Abbildung 116: Molekülstruktur von 71a.

bicyclischen *N,P*-Chelat-Komplex zu einem C-O-Dreiring-Bindungsbruch und über weitere (unbekannte) Atom-/Atomgruppen-Transfer-Reaktionen zum *N,P*-Chelat-Komplex **71a**. Dessen Konstitution wurde auch durch Einkristallstruktur-Analyse bestätigt (Abbildung 116) (Kapitel 3.6.1.1).

Für die *C*,*C*-Dipyridyl-substituierten Komplexe **66a**,**c** (*P*-CH(SiMe₃)₂) konnte gezeigt werden, dass eine thermische oder photochemische Anregung die Bildung der zu **70a** analogen bicyclischen Komplexe **74a**,**c** ermöglicht (Kapitel 3.6.1.2).

Die photochemische Reaktion der *C*-Pyridyl-substituierten Derivate führte für alle drei Übergangsmetallkomplexe **58a-c** (M = Cr, Mo, W) zu den Verbindungen **76a-c** (Kapitel 3.6.2.1), wobei besonders hervorzuheben ist, dass im Falle der Umsetzung von **58c** das ³¹P-NMR-Resonanzsignal des Produktes keine ¹⁸³W-Satelliten zeigte.

Aus verschiedenen analytischen Befunden wurde ein Konstitutionsvorschlag für **76c** abgeleitet.

Einen ersten tieferen Einblick in die Produktstruktur ergab die Einkristallstruktur-Chrom-Komplexes 76c"" Analyse des (Abbildung 117). Formal kann man dessen Konstitution auch (retrosynthetisch) als ein Pseudo-Dimer eines $\sigma^3 \lambda^3$ -Oxaphosphiran-*N*,*P*-**Chelat-Komplexes** und eines offenen. metallkomplexfreien Strukturisomers (einem Alkyliden(oxo)phosphoran) verstehen.

Abbildung 117: Molekülstruktur 76c ".

In Kapitel 3.6.5 wurden Ergebnisse aus Studien zur Funktionstoleranz der SET-Deoxygenierung von Pyridyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexen mittels *in situ* erzeugten Ti^{III}-Komplexen diskutiert. So konnte z.B. gezeigt werden, dass funktionelle Gruppen wie Alkenyl-Substituenten i.d.R. den Reaktionsverlauf der Phosphaalken-Komplexbildung nicht beeinflussen. Im Fall der Pyridyl-substituierten Derivate wurde jedoch eine neuartige Folgechemie beobachtet, d.h. sowohl die *C*-Pyridyl- (**58a-c**, **59a**) als auch die *C*,*C*-Dipyridyl-substituierten $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexe **66a,c** ergaben nicht nur die entsprechenden Phosphaalken-Komplexe (**84a-c**, **85a** und **93a,c**), sondern auch die *N,P*-Chelat-Komplexe (**87a-c**, **88a** und **94a,c**), die bei Raumtemperatur als Folgeprodukte entstehen (Schema 88) (Kapitel 3.6.6.1 und 3.6.6.2).

Die Reaktionsgeschwindigkeit der Darstellung und Folgereaktion wird hierbei maßgeblich durch den sterischen Anspruch der P-Substituenten beeinflusst. Ein erhöhter sterischer Anspruch am Phosphor (*P*-CPh₃ (**89a**) und *P*-Cp* (**90a**)), aber auch ein erhöhter sterischer Anspruch der Substituenten am Dreiringkohlenstoff-Atom (**66a**,**c**) begünstigen eine hohe Reaktionsgeschwindigkeit und CO-Eliminierung (Kapitel 3.6.6.2).

Durch mehrere Einkristallstruktur-Analysen konnte die Konstitution der verschiedenen Phosphaalkenund *N*,*P*-Chelat-Komplexe bestätigt werden. Zusätzlich ergaben sich auch weitere Einblicke in den Mechanismus der Deoxygenierungsreaktion. So konnte erstmalig ein Titan-haltiges Nebenprodukt der Reaktion kristallisiert werden, d.h. das Tetramer 86 (Abbildung 118), und somit auch die bereits durch DFT-Rechnungen postulierte Bildung [CpTi^{IV}(O)CI]-Spezies einer kurzlebigen indirekt experimentell belegt werden.

Es konnte auch ein weiteres Nebenprodukt, der zweikernige Phosphaalken-Komplex 93a' (Abbildung 119), kristallisiert werden, welcher somit auch die Bildung und Verfügbarkeit von ZnCl₂ anzeigt. Möglicherweise weist dies aber auch auf eine weitere mögliche Einflussnahme hin. Eine Koordination an ZnCl₂, wie sie 93a' aufweist, könnte auch zur Aktivierung der Edukte, der Oxaphosphiran-Komplexe beigetragen

Abbildung 118: Molekülstruktur von 86.

Abbildung 119: Molekülstruktur von 93a'.

haben, da die strukturell sehr ähnlichen *C,C*-Diphenyl-substituierten Oxaphosphiran-Komplexderivate unter gleichen Bedingungen nicht reagieren.

5 Experimenteller Teil

5.1 Spezielle Arbeitstechniken

Alle Synthesen wurden, wenn nicht anders angegeben, unter Ausschluss von Sauerstoff und Feuchtigkeit mit Schlenk- oder Glove Box-Techniken in einer Argonatmosphäre durchgeführt. Das verwendete Schutzgas wurde durch den sogenannten BTS-Katalysator (BASF AG, 100-130 °C), Silica Gel und Posphorpentoxid gereinigt.

Die Verwendung der Schlenk-Technik erfordert das Ausheizen und mehrfache Evakuieren der Glasgeräte. Anschließend wurde mit Argon belüftet.

Verwendete Lösungsmittel wurden nach Standardverfahren getrocknet (Et₂O, THF, Toluol. *n*-Pentan und PE mit Benzophenon über Natrium, Cl-haltige Kohlenwasserstoffe über Calciumhydrid) und in Braunglas-Flaschen über Natriumdraht oder Molsieb gelagert.^[80]

Die meisten Verbindungen wurden säulenchromatographisch bei tiefen Temperaturen (-20 °C) gereinigt. Ein Kryostat und technisches Ethanol als Kühlmedium dienten hierbei zur konstanten Kühlung der Chromatographie-Säule. Als stationäre Phase diente neutrales Silicagel (Merck 60-200) oder Aluminiumoxid (Merck 90 aktiv). In den meisten Fällen wurde Dünnschichtchromatographie zur Ermittlung des Retentions-Faktors durchgeführt.

Tieftemperaturreaktionen wurden mittels Ethanolbad und flüssigem Stickstoff auf die gewünschte Temperatur heruntergekühlt (< 0 °C bis -90 °C).

5.1.1 Schmelzpunktbestimmung

Die Schmelzpunktbestimmung erfolgte an einem Büchi 535 Schmelzpunktgerät. Die angegebenen Werte wurden nicht korrigiert.

5.1.2 NMR-Spektroskopie

Die Aufnahme der NMR-Spektren erfolgte an einem Bruker Avance DMX 300 bzw. DPX 300 (1 H = 300.1 MHz, 7 Li = 116.6 MHz, 11 B = 96.3 MHz, 13 C = 75.5 MHz, 29 Si = 59.6 MHz, 31 P = 121.5 MHz) oder einem Bruker Avance DPX 400 (1 H = 400.1 MHz, 13 C = 100.6 MHz, 29 Si = 79.5 MHz, 31 P = 161.9 MHz, 7 Li = 155.5 MHz) Spektrometer bei 25 °C aufgenommen. Das Signal der Restprotonen des jeweiligen Lösungsmittels (¹H) bzw. das der Kohlenstoffatome des deuterierten Lösungsmittels (¹³C) wurde als interner Standard verwendet. Für die Messung wurden deuterierte Lösungsmittel (C_6D_6 , CDCl₃, THF-d⁸) verwendet und Verschiebungen sind relativ zu Tetramethylsilan (¹H, ¹³C, ²⁹Si), 85% H₃PO₄ (³¹P) = 121.5 MHz) oder LiCl in D₂O (⁷Li) angegeben.

Die ¹³C- und ³¹P-NMR-Spektren sind i.d.R. protonenbreitbandentkoppelt aufgenommen worden (¹³C{¹H}-NMR und ³¹P{¹H}-NMR-Spektren). Die Verschiebungen werden in ppm angegeben, wobei Hochfeldverschiebungen gegenüber dem Standard durch negative und Tieffeldverschiebungen durch positive Vorzeichen gekennzeichnet werden.

Die Signale werden durch folgende Abkürzungen charakterisiert: s = Singulett, d = Dublett, q = Quartett, pseudo-quint = Pseudo-Quintett, m = Multiplett, br = breites Signal.

5.1.3 Massenspektrometrie

Die Massenspektren wurden mit einem Spektrometer des Typs MAT 90, MAT 95 XL der Firma Thermo Finnigan (EI, 70 eV) und an einem micrOTOF-Q Flugzeitspektrometer der Firma Bruker Daltonik (ESI +/-) aufgenommen. In den Versuchsbeschreibungen ist nur eine Auswahl der detektierten Ionen angegeben (Massenzahl, relative Intensität in Prozent). Für Verbindungen von Elementen, die mehrere Isotope besitzen, wird jeweils das Isotop mit der größten relativen Häufigkeit angegeben.

5.1.4 IR-Spektroskopie

Die Infrarot-Spektren wurden an einem Thermo Nicolet 380 Spektrometer gemessen. Die Proben wurden entweder mit KBr gepresst, mit einem dünnen Nujol-Film zwischen KBr-Platten oder mittels einer SMART iTR ATR-Einheit (Thermo Scientific) mit Diamant-Kristall gemessen. Angegeben werden jeweils eine Auswahl der gemessenen Absorptionsbanden und die Intensitäten werden durch folgende Abkürzungen charakterisiert: s = stark, m = mittel, w = schwach, sh = Schulter.

5.1.5 Röntgeneinkristallstrukturanalyse

Die Röntgenstruktur wurde mit einem Nonius KappaCCD oder einem STOE IPDS-2T Diffraktometer bei 123(2) K (Mo K α -Strahlung (λ = 0.71073 Å); Bonn) gemessen. Die Strukturen wurden mittels Patterson-Methode gelöst und verfeinert.^[147] Datenauswertung und Datenverfeinerung erfolgte mit dem Programm Diamond 3.0.

5.1.6 Elementaranalyse

Die Elementaranalyse wurde mit einem Gas-Chromatographen der Firma Elementa (Typ Vario EL) durch das Mikroanalyselabor der Chemischen Institute Bonn durchgeführt.

5.2 Verwendete Chemikalien

Folgende verwendete Chemikalien wurden käuflich erworben und in den meisten Fällen vor der Verwendung gereinigt oder destilliert und über Molsieb gelagert:

- · o-Acetylpyridin (Aldrich)
- Aluminiumoxid Merck 90 neutral (70-230 mesh ASTM, Merck)
- · Aluminiumtrititandodecachlorid
- Bicyclo[2.2.1]hept-5-en-2carbaldehyd (Alfa Aesar)
- · 2-Brompyridin (Acros Organics)
- *tert*-Butyllithium (1.6 M in *n*-Hexan, Aldrich, Acros Organics)
- *tert*-Butyllithium (1.7 M in *n*-Pentan, Aldrich, Acros Organics)
- · 2-Chlor-Acetaldehyd (Alfa Aesar)
- · 5-Chloro-2-pentanon (Alfa Aesar)
- · 6-Chloro-2-hexanon (Sigma Aldrich)
- · Chromhexacarbonyl (Aldrich)
- · 2-Cyclopentenon (Acros Organics)
- · 1,2-Dibrombenzol (Janssen)
- [Dichlorobis(cyclopentadienyl)titan(IV)]
 (Acros Organics)

- *N*,*N*-Dimethylformamid (Fischer Chemicals)
- · Di-(o-pyridyl)keton (Sigma Aldrich)
- · 2-Ethylbutyraldehyd (Acros Organics)
- · 2-Furaldehyd (Alfa Aesar)
- · 3-Furaldehyd (Alfa Aesar)
- · Imidazol-2-carbaldehyd (Alfa Aesar)
- · [12]Krone-4 (Acros Organics)
- N-Methyl-Imidazol-2-carbaldehyd (Alfa Aesar)
- · Molybdänhexacarbonyl (Aldrich)
- · 2-Phenylacetaldehyd (Acros Organics)
- Silicagel Merck 60 (0.063-0.2 mm, pH = 6.5-7.5, Merck)
- *N,N,N,N*-Tetramethylharnstoff
 (Aldrich)
- · 2-Thienyldehyd (Acros Organics)
- · 3-Thienylaldehyd (Acros Organics)

204

- [Trichlorocyclopentadienyltitan(IV)]
 (Acros Organics)
- · Trimethylamin-*N*-oxid·2H₂O
- (Alfa Aesar)
- · o-Pyridinaldehyd (Alfa Aesar, Aldrich)
- · *m*-Pyridinaldehyd (Acros Organics)
- *p*-Pyridinaldehyd
 (Alfa Aesar, Acros Organics)
- · Wolframhexacarbonyl (Aldrich)
- · Zink (Aldrich)
- Zinkchlorid, wasserfrei (Sigma-Aldrich)

Folgende verwendete Verbindungen wurden gemäß Literaturangaben dargestellt:

- · Acetonitril(pentacarbonyl)chrom(0)^[148]
- · Acetonitril(pentacarbonyl)molybdän(0)^[148]
- · Acetonitril(pentacarbonyl)wolfram(0)^[148]
- · Dichloro[bis(trimethylsilyl)methyl]phosphan^[149]
- · Dichloro(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)phosphan^[150]
- · Dichloro(triphenylmethyl)phosphan^[151]
- · {Pentacarbonyl[bis(trimethylsilyl)methyl]dichlorophosphan}chrom(0)^[53a]
- · {Pentacarbonyl[bis(trimethylsilyl)methyl]dichlorophosphan}molybdän(0)^[53a]
- · {Pentacarbonyl[bis(trimethylsilyl)methyl]dichlorophosphan}wolfram(0)^[53a]
- {Pentacarbonyl[1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)dichlorophosphan]wolfram(0)}^[98]
- · {Pentacarbonyl[triphenylmethyl]dichlorophosphan}wolfram(0)^[28b]
- 1,3,4,5-Tetramethyl-imidazol-2-yliden^[63]
- · 2-(Diphenylphosphino)-benzaldehyd^[75]
- · 2-(N,N-Dimethylamino)benzaldehyd^[76]
- Trichlorotris(tetrahydrofuran)titan(III)^[135]

5.3 Entsorgung

Die Entsorgung Chemikalien rechtmäßig der erfolgte nach der Gefahrstoffverordnung. Lösungsmittel, Säulenmaterial und andere verunreinigte Verbrauchsmaterialien, sowie Schwermetallabfälle wurden entsprechend in speziellen Gebinden gesammelt. Alkalimetalle zunächst wurden unter entsprechenden Sicherheitsmaßnahmen mittels Isopropanol in die entsprechenden Salze überführt und anschließend der Entsorgung zugeführt.

6 Allgemeine Synthesevorschriften

6.1 Darstellung der *P*-CH(SiMe₃)₂-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe (Methode A)

Zu einer Lösung von $[M(CO)_5\{(Me_3Si)_2HC\}_2PCl_2]$ (**1a-c**) in Et₂O oder THF und n Äquivalente [12]Krone-4 wird bei -90 °C unter Rühren n Äquivalente einer *tert*-Butyllithium-Lösung (1.6 M *n*-Hexan oder 1.7 M in *n*-Pentan) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden n Äquivalente des entsprechenden Aldehyds oder des entsprechenden Ketons hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL). Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid (\emptyset = 1 cm, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient ein PE/Et₂O-Gemisch (Anteile variieren je nach Derivat). 6.2 Allgemeine Synthesevorschrift zur Darstellung der *P-CPh*₃-substituierten $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe (Methode B)

Zu einer Lösung von $[W(CO)_5{Ph_3C}PCl_2]$ (**2a**) in THF und [12]Krone-4 wird bei -90 °C unter Rühren eine *tert*-Butyllithium-Lösung (1.6 M *n*-Hexan oder 1.7 M in *n*-Pentan) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend wird der entsprechende Aldehyd oder das entsprechende Keton hinzugegeben. Die Reaktionsmischung wird 5-15 Minuten gerührt und das Lösungsmittel unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit Toluol extrahiert (dreimal mit ca. 20 mL). Das Rohprodukt wird anschließend aus *n*-Pentan umkristallisiert oder säulenchromatographisch an Aluminiumoxid ($\emptyset = 1$ cm, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient ein PE/Et₂O-Gemisch (Anteile variieren).

6.3 Zur Frage der Funktionstoleranz in der $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex-Synthese

6.3.1 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo[2.2.1]hept-5-en-2-yl)) oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₇H₉)-O}] (**13**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 1.0 g[W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (1.71 mmol) in 30 mL Et₂O und 0.2 mL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 1.46 mL *tert*-Butyllithium-Lösung (1.4 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser

Temperatur gerührt. Anschließend werden 0.24 mL Bicyclo[2.2.1]hept-5-en-2carboxaldehyd (1.2 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und über eine Filterkanüle abfiltriert. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird aus *n*-Hexan kristallisiert. Das Produkt wurde als hellgelber Feststoff erhalten.

Summenformel:	C ₂₀ H ₂₉ O ₆ PSi ₂ W			
Molare Masse:	636.4 g/mol			
Ausbeute:	0.77 g (71%)			
Schmelzpunkt:	79 °C			
NMR:	Charakterisierung erfolgt anhand der Mischung 13a-d:			
	¹ H-NMR (300.1 MHz, 25 °C, CDCl ₃): [ppm] δ = 0.17-0.30 (m			
	8H, $CH_2^{(7)}$), 1.41-1.57 (m, 8H, $CH_2^{(2)}$), 1.92-2.11 (m, 4H,			
	CH ⁽⁶⁾), 2.90-3.01, 2.62-2.69 (m, 4H, C <i>H</i> P(O)), 2.89-3.02 (m,			
	4H, CH ⁽³⁾), 2.95-3.15 (m, 4H, CH ⁽¹⁾), 6.02-6.07, 6.07-6.16,			
	6.25-6.30, 6.32-6.37 (m, 8H, CH ^(4,5))			

¹³C{¹H}-NMR (75.5 MHz, 25 °C, CDCl₃): [ppm] δ = 1.30-1.63 (m, SiMe₃), 1.97-2.19 (m, SiMe₃), 30.3 (s, CH(SiMe₃)₂), 30.4 (s, CH(SiMe₃)₂), 30.5 (s, CH(SiMe₃)₂), 30.6 (s, CH(SiMe₃)₂); ausgewählte NMR-Daten für **13a**: 31.6 (d, ${}^{3}J_{PC} = 9.7$ Hz, $CH_2^{(2)}$), 41.7 (d, ${}^{3}J_{P,C}$ = 4.3 Hz, $CH^{(6)}$),42.5 (s, $CH^{(3)}$), 45.3 (s, $CH^{(1)}$, 50.3 (s, $CH_2^{(7)}$), 63.9 (d, ${}^{1}J_{P,C} = 30.1$ Hz, CHP(O)), 132.0 (s, CH^(4/5)), 139.3 (s, CH^(4/5)), 195.6 (d, ${}^{2}J_{P,C} = 8.4$ Hz, *cis*-CO), 197.8 (d, ${}^{2}J_{P,C}$ = 33.5 Hz, *trans*-CO); ausgewählte NMR-Daten für **13b**: 29.8 (s, $CH_2^{(2)}$), 41.0 (d, ${}^{3}J_{P,C} = 4.3$ Hz, CH⁽⁶⁾), 42.3 (s, CH⁽³⁾), 45.6 (s, CH⁽¹⁾), 46.1 (s, CH₂⁽⁷⁾), 62.7 (d, ${}^{1}J_{P,C} = 30.6 \text{ Hz}, CHP(O)), 135.6 (s, CH^{(4/5)}), 137.7 (s, CH^{(4/5)}),$ 195.5 (d, ${}^{2}J_{P,C}$ = 8.3 Hz, *cis*-CO), 197.7 (d, ${}^{2}J_{P,C}$ = 33.3 Hz, trans-CO); ausgewählte NMR-Daten für 13c: 30.9 (d. ${}^{3}J_{P,C} = 9.9 \text{ Hz}, \text{ CH}_{2}^{(2)}), 40.6 \text{ (d, }{}^{3}J_{P,C} = 2.9 \text{ Hz}, \text{ CH}^{(6)}), 42.7 \text{ (s,}$ $CH^{(3)}$), 44.8 (d, ² $J_{P,C}$ = 9.9 Hz, $CH^{(1)}$), 49.4 (s, $CH_2^{(7)}$), 62.4 (d, ${}^{1}J_{PC} = 31.5 \text{ Hz}, CHP(O)), 132.7 (s, CH^{(4/5)}), 137.8 (s, CH^{(4/5)}),$ 195.6 (d, ${}^{2}J_{PC} = 8.4$ Hz, *cis*-CO), 197.9 (d, ${}^{2}J_{PC} = 33.7$ Hz, *trans*-CO); ausgewählte NMR-Daten für **13d**: 30.4 (s, $CH_2^{(2)}$), 41.3 (d, ${}^{3}J_{P,C} = 1.9$ Hz, CH⁽⁶⁾), 42.2 (s, CH⁽³⁾), 44.9 (d, ${}^{2}J_{P,C} = 10.0 \text{ Hz}, \text{CH}^{(1)}), 45.3 \text{ (s, CH}_{2}^{(7)}), 64.3 \text{ (d,}$ ${}^{1}J_{PC} = 30.3 \text{ Hz}, CHP(O)), 136.4 (s, CH^{(4/5)}), 137.1 (s, CH^{(4/5)}),$ 195.5 (d, ${}^{2}J_{P,C} = 8.7$ Hz, *cis*-CO), 197.7 (d, ${}^{2}J_{P,C} = 33.6$ Hz, trans-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, CDCl₃) [ppm] δ = -1.63–(-1.94) (m, SiMe₃), -0.14-0.27 (m, SiMe₃)

³¹P-NMR (121.5 MHz, 25 °C, CDCl₃) [ppm] δ = 32.6 (¹J_{W,P} = 298.9 Hz, J_{P,H} = m, **13a**), 32.6 (¹J_{W,P} = 299.4 Hz, J_{P,H} = m, **13b**), 32.8 (¹J_{W,P} = 299.6 Hz, J_{P,H} = 12.0 Hz (d), **13c**), 33.7 (¹J_{W,P} = 298.7 Hz, J_{P,H} = 11.2 Hz (d), **13d**), Verhältnis **13a,b,c,d** [0.6:0.3:1.0:0.25]

MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 636.0 (12) $[M]^{+}$, 514.0 (25) $[M-C_7H_9CHO]^+$, 486.0				
	(100) [M-CO-C ₇ H ₉ CHO] ⁺ , 458.0 (28) [M-2CO-C ₇ H ₉ CHO] ⁺ ,				
	430.0 (24) [M-3CO-C ₇ H ₉ CHO] ⁺ , 402.0 (17)				
	[M-4CO-C ₇ H ₉ CHO] ⁺ , 383.8 (25) [M-5CO-H-3Me-C ₅ H ₆] ⁺ ,				
	374.0 (15) [M-5CO-C ₇ H ₉ CHO] ⁺ , 358.0 (26) [M-5CO-H-Me-				
	C ₇ H ₉ CHO] ⁺ , 339.9 (12) [M-3CO-6Me-C ₇ H ₉ CHO] ⁺ , 129.1 (52)				
	[C₅H ₁₃ Si ₂] ⁺ , 73.0 [SiMe ₃] ⁺				
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2960 (s, CH ₂), 2075 (s, CO), 1995 (s,				
	CO), 1902 (s, CO), 1406 (m, CH ₂), 1335 (m, CH ₂), 1249 (s, SiMa)				
	Silvie ₃)				
EA:	C ₂₀ H ₂₉ N ₂ O ₆ PSi ₂ W (%) ber.: C 37.74, H 4.59, gef.: C 39.73 , H 5.16				
Röntgenstruktur:	MK-410; s. Anhang D3				

6.3.2 {Pentacarbonyl{2-[1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl]-3-(bicyclo[2.2.1]hept-5-en-2-yl))oxaphosphiran- κP }wolfram(0)} [W(CO)₅(C₅Me₅)PCH(C₇H₉)-O}] (**14**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g $[W(CO)_5(Me_5C_5)PCl_2]$ (**3a**) (0.89 mmol) in 13 mL Et₂O und 114.8 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.52 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 0.11 mL Bicyclo[2.2.1]hept-5-en-2-carboxaldehyd (1 Äq) hinzugegeben. Die

Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}, h = 1 \text{ cm}$) bei -20 °C gereinigt. Als Eluent dient PE. Das Produkt wurde als hellgelber Feststoff erhalten.

Summenformel:	$C_{23}H_{25}O_6PW$
Molare Masse:	612.2 g/mol
Ausbeute:	0.41g (65%)
Schmelzpunkt:	61 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 14a-c
	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 14a : 0.75 (d, ³ J _{P,H} = 11.3 Hz, Cp*C ⁽⁸⁾ - <i>Me</i>), 1.19-1.24, 1.94-2.02 (m, 2H, CH ₂ ⁽²⁾), 2.77 (d, ³ J _{H,H} = 10.4 Hz, 1H, C <i>H</i> P(O)), 1.11-1.19, 1.39-1.50 (m, 2H, CH ₂ ⁽⁷⁾), 2.15-2.30 (m, 1H, CH ⁽⁶⁾), 2.65-2.69 (m, 1H, CH ⁽³⁾), 3.13-3.18 (m, 1H, CH ⁽¹⁾), 6.04-6.21 (m, 1H, CH ^(4/5)), 5.93-6.00 (m, 1H, CH ^(4/5)), 14b : 0.77 (d, ³ J _{P,H} = 11.3 Hz, Cp*C ⁽⁸⁾ - <i>Me</i>), 1.58-1.61 (br, 3H, Cp*- <i>Me</i>), 1.66-1.69 (br, m, 6H, Cp*- <i>Me</i>), 1.89-1.93 (br, 3H, Cp*- <i>Me</i>), 0.68-0.79, 1.95-2.07 (m, 2H, CH ₂ ⁽²⁾), 2.82 (d, ³ J _{H,H} = 10.4 Hz, 1H, C <i>H</i> P(O)), 1.11-1.19, 1.39-1.50 (m, 2H, CH ₂ ⁽⁷⁾), 2.15-2.30 (m, 1H, CH ⁽⁶⁾), 2.65-2.69 (m, 1H, CH ⁽³⁾), 3.13-3.18 (m, 1H, CH ⁽¹⁾), 6.04-6.21 (m, 2H, CH ^(4,5)), 14c : 1.21-1.29, 1.47-1.54 (m, 2H, CH ₂ ⁽²⁾), 3.02 (d, ³ J _{H,H} = 10.2 Hz, 1H, C <i>H</i> P(O)), 1.11- 1.19, 1.39-1.50 (m, 2H, CH ₂ ⁽⁷⁾), 2.15-2.30 (m, 1H, CH ⁽⁶⁾), 2.65-2.69 (m, 1H, CH ⁽³⁾), 3.13-3.18 (m, 1H, CH ⁽⁶⁾), 2.65-2.69 (m, 1H, CH ⁽³⁾), 3.13-3.18 (m, 1H, CH ⁽⁶⁾),
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 14a : 10.7- 10.8 (m, Cp*- <i>Me</i>), 11.4-11.5 (m, Cp*- <i>Me</i>), 11.9 (d, $J_{P,C}$ = 2.3 Hz, Cp*- <i>Me</i>), 12.5 (d, $J_{P,C}$ = 0.9 Hz, Cp*- <i>Me</i>), 13.3- 13.6 (m, Cp*C ⁽⁸⁾ - <i>Me</i>), 31.2 (d, ³ $J_{P,C}$ = 8.5 Hz, CH ₂ ⁽²⁾), 41.3 (d,

 ${}^{3}J_{P,C} = 4.2 \text{ Hz}, \text{CH}^{(6)}$), 43.1 (s, CH⁽³⁾), 45.9 (s, CH⁽¹⁾), 50.02 (s, CH₂⁽⁷⁾), 60.9 (d, ${}^{1}J_{P,C} = 20.2 \text{ Hz}, \text{CHP}(O)$), 63.2 (d, ${}^{1}J_{P,C} = 8.4 \text{ Hz}, \text{Cp}^{*}-\text{C}^{(8)}$), 132.1 (s, CH^(4/5)), 139.3 (s, CH^(4/5)), 133.1 (d, $J_{P,C} = 7.1 \text{ Hz}, \text{Cp}^{*}$), 138.7 (d, $J_{P,C} = 1.6 \text{ Hz}, \text{Cp}^{*}$), 141.5 (d,

 $J_{P,C} = 6.1 \text{ Hz}, \text{ Cp}^*$), 146.4 (d, $J_{P,C} = 9.5 \text{ Hz}, \text{ Cp}^*$), 195.1 (d, ${}^{2}J_{P,C} = 8.3 \text{ Hz}, \text{ cis-CO}, 196.4 (d, {}^{2}J_{P,C} = 35.3 \text{ Hz}, \text{ trans-CO}),$ **14b**: 10.6 (d, $J_{P,C}$ = 3.2 Hz, Cp*-*Me*), 11.4 (d, $J_{P,C}$ = 1.3 Hz, Cp*-*M*e), 11.5 (d, $J_{PC} = 2.1$ Hz, Cp*-*M*e), 12.1 (d, $J_{P,C} = 1.5 \text{ Hz}, \text{ Cp}^*-Me$, 13.2 (d, $J_{P,C} = 5.0 \text{ Hz}, \text{ Cp}^*C^{(8)}-Me$), 29.9 (s, $CH_2^{(2)}$), 40.5 (d, ${}^{3}J_{PC} = 2.7$ Hz, $CH^{(6)}$), 42.9 (s, $CH^{(3)}$), 45.6 (d, ${}^{2}J_{P,C}$ = 8.6 Hz, CH⁽¹⁾), 50.04 (s, CH₂⁽⁷⁾), 59.5 (d, ${}^{1}J_{P,C} = 21.5 \text{ Hz}, CHP(O)), 63.4 (d, {}^{1}J_{P,C} = 8.3 \text{ Hz}, Cp^{*}-C^{(8)}),$ 132.9 (s, $CH^{(4/5)}$), 138.0 (s, $CH^{(4/5)}$), 133.1 (d, $J_{P,C}$ = 7.2 Hz, Cp*), 138.7 (d, $J_{P,C}$ = 1.7 Hz, Cp*), 141.5 (d, $J_{P,C}$ = 6.1 Hz, Cp*), 144.2 (d, $J_{P,C}$ = 7.6 Hz, Cp*), 195.1 (d, ${}^{2}J_{P,C}$ = 8.6 Hz, *cis*-CO), 196.5 (d, ${}^{2}J_{PC}$ = 35.6 Hz, *trans*-CO); ausgewählte Daten **14c**: 30.6 (s, $CH_2^{(2)}$), 41.0 (d, ${}^{3}J_{P,C} = 1.5$ Hz, $CH^{(6)}$), 42.4 (s, $CH^{(3)}$), 45.5 (s, $CH^{(1)}$), 45.5 (s, $CH_2^{(7)}$), 59.7 (d, ${}^{1}J_{P,C} = 18.9 \text{ Hz}, CHP(O)), 63.4 (d, {}^{1}J_{P,C} = 8.3 \text{ Hz}, Cp^{*}-C^{(8)}),$ 136.7 (s, CH^(4/5)), 137.5 (s, CH^(4/5)), 194.9 (d, ${}^{2}J_{P,C} = 8.4$ Hz, cis-CO)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆) [ppm] δ = 23.9 (¹J_{W,P} = 298.1 Hz, J_{P,H} = br, **14a**), 25.4 (¹J_{W,P} = 298.4 Hz, J_{P,H} = br, **14b**), 25.6 (¹J_{W,P} = 299.3 Hz, J_{P,H} = br, **14c**), 26.4 (¹J_{W,P} = 299.1 Hz, J_{P,H} = br, **14c**), Verhältnis **14a**,b,c,d [0.3:1.0:0.2:0.1]

MS (EI, 70 eV, ¹⁸⁴W) m/z (%) = 629.9 (10) [M+H₂O]⁺, 612.0 (10) [M]⁺⁺, 574 (5) [M-C₃H₂]⁺, 558.0 (5) [M-C₄H₆]⁺, 528.0 (5) [M-3CO]⁺, 489.9 (40) [M-C₈H₁₀O]⁺, 472.0 (20) [M-5CO]⁺, 452.0 (12) [M-C₈H₁₀-C₄H₆]⁺, 422.0 (5) [M-C₈H₁₀-C₄H₆-2CH₃]⁺, 405.9 (100) [M-3CO-C₈H₁₀O]⁺, 377.9 (20) [M-C₈H₁₀O-4CO]⁺, 345.9 (20) [M-C₅H₆-5CO-4CH₃]⁺, 326.8 (15) [M-C₁₀H₁₅-4CO-C₅H₆]⁺, 298.9 (15) [M-C₁₀H₁₅-4CO-C₅H₆]⁺, 288.1 (5) [M-W(CO)₅]⁺, 269.9 (5) [M-C₁₀H₁₅O-5CO-C₅H₇]⁺, 241.9 (5) [M-W(CO)₅-3CH₃-H]⁺, 201.0 (50) [M-W(CO)₅-C₂H₂O-4CH₃-H]⁺, 166.0 (10) [P-C₁₀H₁₅]⁺, 136.1 (20) [C₁₀H₁₆]⁺, 135.1 (80) [C₁₀H₁₅]⁺, 119.1 (60) [C₁₀H₁₅-CH₃-H]⁺, 105.0 (45) [C₁₀H₁₅-2CH₃]⁺, 91.0 (35)

	[C ₁₀ H ₁₅ -3CH ₃ +H] ⁺ , 66.0 (20) [C ₅ H ₆] ⁺ , 53.0 (5) [C ₄ H ₅] ⁺
IR (ATR):	Auswahl ỹ [cm ⁻¹] = 2974, 2934, 2870 (w, CH, CH ₂), 2074, 1998, 1914 (s, CO), 1638 (w, C=C), 1439 (w, CH, CH ₂), 1383 (w, CH ₃)
EA:	C ₂₀ H ₂₉ N ₂ O ₆ PSi ₂ W (%) ber.: C 45.12, H 4.12, gef.: C 43.78, H 4.21

6.3.3 {Pentacarbonyl{2-[triphenylmethyl]-3-(bicyclo[2.2.1]hept-5-en-2-yl)) σ oxaphosphiran- κP }wolfram(0)} [W(CO)₅(CPh₃)PCH(C₇H₉)-O}] (**15**)

Synthese nach allgemeiner Methode B

Zu einer Lösung von 40.0 mg $[W(CO)_5(CPh_3)PCl_2]$ (**2a**) (59.8 µmol) in 1 mL THF und 9.7 µL [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.037 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden

0.7.12 µL Bicyclo[2.2.1]hept-5-en-2-carboxaldehyd (1 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und NMR-spektroskopisch untersucht.

Summenformel:	$C_{32}H_{25}O_6PW$
Molare Masse:	720.4 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = 8.9
	$({}^{1}J_{W,P} = 300.4 \text{ Hz}, {}^{2}J_{P,H} = 7.5 \text{ Hz}, \mathbf{15a}), 9.3 ({}^{1}J_{W,P} = 300.4 \text{ Hz},$
	$J_{P,H} = br, 15b$), 9.8 (¹ $J_{W,P} = 301.6 Hz$, ² $J_{P,H} = 8.8 Hz$, 15c),
	10.8 $(^{2}J_{P,H} = 7.1 \text{ Hz}, 15d)^{(*)}$
	Verhältnis 15a,b,c,d [1.0:0.4:0.2:0.1]

 $f^{(*)1}\mathcal{J}_{W,P}$ auf Grund der Intensität des Signals nicht zu identifizieren

6.3.4 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-ethylpropyl)oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(CH(CH₂CH₃)₂)-O}] (**16**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.4 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1a**) (0.684 mmol) in 12 mL Et₂O und 88.5 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.51 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise

zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 84.1 μ L 2-Ethylbutyraldehyd (1 Äq.) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE (40 mL). Das Produkt wird zunächst als gelbes Öl erhalten und aus *n*-Pentan bei -80 °C als hellgelbes Pulver umkristallisiert.

Summenformel:	$C_{18}H_{31}O_6PSi_2W$		
Molare Masse:	614.4 g/mol		
Ausbeute:	0.286 g (68%)		
Schmelzpunkt:	81 °C		
NMR:	¹ H-NMR (300.1 MHz, 25 °C, CDCl ₃): [ppm] δ = 0.22 (s, 9H, SiMe ₃), 0.28 (s, 9H, SiMe ₃), 0.95 (t, ² J _{H,H} = 7.5 Hz, 3H, CH ₃), 0.99 (t, ² J _{H,H} = 7.5 Hz, 3H, CH ₃), 1.15 (d, ² J _{P,H} = 1.7 Hz, 1H, C <i>H</i> (SiMe ₃) ₂), 1.37 (m, 1H, C <i>H</i> -CH(P)(O)), 1.62 (m, 4H, CH ₂),		
	2.97 (d, ${}^{2}J_{P,H} = 10.1$ Hz, 1H, CH(P)(O)) ${}^{13}C{}^{1}H{}-NMR$ (75.5 MHz, 25 °C,CDCl ₃): [ppm] $\delta = 1.6$ (d, ${}^{3}J_{P,C} = 4.3$ Hz, SiMe ₃), 2.2 (d, ${}^{3}J_{P,C} = 2.3$ Hz, SiMe ₃), 9.8 (s, CH ₃), 10.7 (s, CH ₃), 21.9 (s, CH ₂), 23.0 (s, CH ₂), 30.9 (d, ${}^{1}J_{P,C} = 17.2$ Hz, CH(SiMe ₃) ₂)), 42.1 (d, ${}^{2}J_{P,C} = 2.7$ Hz, CH-CH(P)(O)), 62.4 (d, ${}^{1}J_{P,C} = 28.7$ Hz, CH(P)(O)), 195.6 (d,		

	${}^{2}J_{P,C}$ = 8.4 Hz, <i>cis</i> -CO), 197.8 (d, ${}^{2}J_{P,C}$ = 33.54 Hz, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, CDCl ₃) [ppm] δ = -1.78 (d, ² J _{P,Si} = 4.7 Hz, SiMe ₃), 0.06 (d, ² J _{P,Si} = 7.9 Hz, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 29.72 (¹ $J_{W,P}$ = 299.0 Hz, ² $J_{P,H}$ = 12.4 Hz)
MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%)= 614.1 (15) [M] ⁺⁺ , 599.1 (5) [M-CH ₃] ⁺ , 571.1 (10) [M-CO-CH ₃] ⁺ , 541.1 (25) [M-SiMe ₃] ⁺ , 514.0 (30) [W(CO) ₅ P(CH(SiMe ₃) ₂] ⁺ , 486.0 (100) [M-2CO-C ₆ H ₁₁] ⁺ , 458.0 (15) [M-3CO-C ₆ H ₁₁]+, 430.0 (20) [M-5CO-C ₆ H ₁₁] ⁺ , 73.1 (100) [SiMe ₃] ⁺
IR (KBr):	Auswahl ỹ [cm ⁻¹] = 2964 (m, CH ₃), 2875 (w, CH ₂), 2073, 1987, 1968, 1907 (s, CO), 1460 (w), 1383 (w), 1247 (m, SiMe ₃), 1108 (m), 1014 (m)
EA:	C ₁₈ H ₃₁ O ₆ PSi ₂ W (%) ber.: C 35.19, H 5.09, gef.: C 35.53, H 5.17
Röntgenstruktur:	GSTR219, Greg1753, MK-129, s. Anhang D4

6.3.5 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(benzyl)oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(CH₂(C₆H₅))-O}] (**17**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (0.854 mmol) in 15 mL Et₂O und 110.5 μ L [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.64 mL *tert*-

Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 99.7 μ L 2-Phenylacetaldehyd (1 Äq.) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE (F1: 20 mL) und PE/Et₂O (F2: bis zu 50:50). Das Produkt wird zunächst als gelbes Öl erhalten und aus n-Pentan bei -80 °C als hellgelbes Pulver umkristallisiert.

Summenformel:	$C_{20}H_{27}O_6PSi_2W$
Molare Masse:	634.4 g/mol
Ausbeute:	0.324 g (60%)
Schmelzpunkt:	98 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 17a-c
	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] <i>δ</i> = 17b : 0.02 (s,
	9H, SiMe ₃), 0.07 (s, 9H, SiMe ₃), 1.10 (s, 1H, C <i>H</i> (SiMe ₃) ₂),
	2.84-3.09 (m, 2H, CH ₂), 3.28 (dd, ^{2,4} J _{H,H} = 5.4 Hz, 7.5 Hz, 1H,
	CH(P)(O)), 7.03-7.08 (m, 1H, CH _{Ar}), 7.09-7.14 (m, 2H, CH _{Ar}),
	7.20-7.26 (m, 2H, CH _{Ar}), ausgewählte Daten 17a : 0.29 (s,
	SiMe ₃), ausgewählte Daten 17a,c : 1.32-1.78 (m, SiMe ₃)
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 17b : 1.1 (d,
	${}^{3}J_{P,C}$ = 4.3 Hz, SiMe ₃), 1.8 (d, ${}^{3}J_{P,C}$ = 2.3 Hz, SiMe ₃), 30.7 (d,

 ${}^{1}J_{P,C} = 16.9$ Hz, *C*H(SiMe₃)₂), 37.9 (d, ${}^{2}J_{P,C} = 3.4$ Hz, CH₂), 60.5 (d, ${}^{1}J_{P,C} = 30.1$ Hz, *C*H(P)(O)), 127.4 (s, CH_{Ar}), 129.1 (s, CH_{Ar}), 129.2 (s, CH_{Ar}), 137.1 (d, ${}^{3}J_{P,C} = 8.2$ Hz, C_{Ar}), 195.9 (d, ${}^{2}J_{P,C} = 8.4$ Hz, *cis*-CO), 196.2 (d, ${}^{2}J_{P,C} = 33.6$ Hz, *trans*-CO), ausgewählte Daten **17a**: 1.4 (s, SiMe₃), ausgewählte Daten **17a,c**: 1.9-2.1 (m, SiMe₃)

²⁹Si-NMR (79.5 MHz, 25 °C, C₆D₆) [ppm] δ = -1.88 (d, ²J_{P,Si} = 4.9 Hz), -0.07 (d, ²J_{P,Si} = 8.1 Hz)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆) [ppm] δ = 21.7 (¹J_{W,P} = 300.7 Hz, ^{2,3}J_{P,H} = m, **17a**), 29.8 (¹J_{W,P} = 300.7 Hz, ^{2,3}J_{P,H} = 7.5 Hz, 16.2 Hz, **17b**), 31.8 (¹J_{W,P} = 296.0 Hz, ^{2,3}J_{P,H} = br, **17c**), Verhältnis **17a:b:c** [0.1:1.0:0.2]

MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 634.1 (3) $[M]^{+}$, 514.0 (40) $[M-H-CO-C_7H_7]^{+}$, 488.0
	(82) [M-2SiMe ₃] ⁺ , 486.0 (100) [M-H-2CO-C ₇ H ₇] ⁺ , 458.0 (25)
	[M-H-3CO-C ₇ H ₇] ⁺ , 430.0 (30) [M-H-4CO-C ₇ H ₇] ⁺ , 402.0 (21)
	[M-H-5CO-C ₇ H ₇] ⁺ , 383.9 (31) [M-2SiMe ₃ -CO-C ₆ H ₅ +H] ⁺ , 358.0
	(31) [M-SiMe ₃ -4CO-C ₇ H ₇] ⁺ , 193.1 (35) [C ₈ H ₈ O- SiMe ₃] ⁺ , 91.0
	(10) [C ₇ H ₇] ⁺ , 73.0 (75) [SiMe ₃] ⁺

IR (KBr): Auswahl \tilde{v} [cm⁻¹] = 2960 (s, CH₂), 2924-2856 (w, CH₃), 2077, 1997, 1930 (s, CO), 1496, 1454 (m, CH₂), 1255 (s, SiMe₃)

EA: C₂₀H₂₇O₆PSi₂W (%) ber.: C 37.86, H 4.29, gef.: C 37.78, H 4.419

Röntgenstruktur: GSTR205, Greg1756, MK-144, s. Anhang D5

6.3.6 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-chloromethyl)oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(CH₂Cl)-O}] (**18**)

Synthese nach allgemeiner Methode A						CH(SiMe	€3)2
Zu	einer	Lösung	von	38.6 mg		₹	
[W(CO) ₅ {	(Me ₃ Si) ₂ HC}	₂ PCl ₂] (1a) (6	6.0 µmol)	in 1.2 mL		Δ_{0}	
Et ₂ O und	l 8.5 µL [12]	Krone-4 (0.8	Äq.) wird b	ei -90 °C	сі—		
unter Rüł	nren 0.05 ml	<i>tert-</i> Butyllithi	um-Lösung	(1.6 M in			
<i>n</i> -Hexan,	1.2 Äq.) trop	ofenweise zug	etropft und	für fünf Mi	nuten bei di	eser Tempera	atur
gerührt.	Anschließen	d werden 13.	1 µL 2-Chl	oroacetalde	ehyd (3 Äq) hinzugegeb	en.
Der Aldel	hyd wurde z	uvor mit Dieth	ylether aus	der wässri	gen Lösung	g extrahiert, ül	ber
Na ₂ SO ₄	getrocknet, a	anschließend	destilliert (86°C) und	über Molsi	eb gelagert. I	Die
Reaktion	smischung	wird über dre	ei Stunden	unter Rü	ihren auf I	Raumtempera	atur
erwärmt u	und anschlie	ßend NMR-sp	ektroskopis	sch untersu	cht.		

Summenformel:	$C_{14}H_{22}CIO_6PSi_2W$
Molare Masse:	592.8 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, Et ₂ O) [ppm] δ = 34.9
	(¹ J _{W,P} = 305.8 Hz, J _{P,H} = 7.1, 17.9 (dd), 18a), 42.9
	(¹ J _{W,P} = 305.2 Hz, J _{P,H} = m, 18b), Verhältnis 18a,b [1.0:0.1]
	Integration im ³¹ P-NMR: 18a,b : 30% + 70% Nebenprodukte

6.3.7 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(3-chloropropyl)oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCMe(C₃H₆Cl)-O}] (**19**)

Synthe	se na	ch allo	geme	iner Me	ethod	le A			((
Zu	ein	er	Lö	sung	١	von	0.5 g		
[W(CO) ₅ {(Me	∋₃Si)₂⊦	IC}₂P	Cl ₂] (1	a) (0	.854	mmol) in		
15 mL	Et ₂ O	und	110.6	3 µL [1	2]Kro	one-4	(0.8 Äq.)		2 /
wird	bei	-90	°C	unter	Rüł	nren	0.64 mL	C	x 3
<i>tert-</i> But	tyllithi	um-Lö	bsung	(1.6	М	in	<i>n</i> -Hexan,		0

CH(SiMe₃)₂

1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 97.4 μL 5-Chloro-2-pentanon (1 Äq) hinzugegeben. Die 218 Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt.

Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (viermal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}, h = 1 \text{ cm}$) bei -20 °C gereinigt. Als Eluent dient PE. Das Produkt wird als gelber Feststoff erhalten.

Summenformel:	C ₁₇ H ₂₈ ClO ₆ PSi ₂ W		
Molare Masse:	634.8 g/mol		
Ausbeute:	0.115 g (21%)		
NMR:	Charakterisierung erfolgt anhand der Mischung 19a-d		
	¹ H-NMR (300.1 MHz, 25 °C, CDCl ₃): [ppm] δ = 0.17-0.29 (m, 72H, SiMe ₃), 1.70-2.0 (m, 16H, CH ₂ ^(1,2)), 3.39-3.73 (m, 8H, CH ₂ ⁽³⁾); ausgewählte Daten 19a : 1.18-1.30 (m, 1H, CH(SiMe ₃) ₂), 1.59 (d, ³ J _{P,H} = 15.4 Hz, 3H, CH ₃); ausgewählte Daten 19b : 1.18-1.30 (m, 1H, CH(SiMe ₃) ₂), 1.66 (d, ³ J _{P,H} = 9.4 Hz, 3H, CH ₃); ausgewählte Daten 19c : 1.26-1.31 (m, 1H, CH(SiMe ₃) ₂), 1.66 (d, ³ J _{P,H} = 9.4 Hz, 3H, CH ₃); ausgewählte Daten 19d : 1.26-1.31 (m, 1H, CH(SiMe ₃) ₂), 1.52 (d, ³ J _{P,H} = 15.8 Hz, 3H, CH ₃)		
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, CDCl ₃): [ppm] δ = 1.9-2.39 (m, SiMe ₃), 30.3 (d, ² J _{P,C} = 1.6 Hz, CH ₂ ⁽¹⁾), 33.1 (d, ² J _{P,C} = 1.6 Hz, CH ₂ ⁽¹⁾), 35.6 (s, CH ₂ ⁽¹⁾), 35.8 (s, CH ₂ ⁽¹⁾), 195.9 (d, ² J _{P,C} = 8.2 Hz, <i>cis</i> -CO), 196.0 (d, ² J _{P,C} = 7.9 Hz, <i>cis</i> -CO), 196.1 (d, ² J _{P,C} = 7.9 Hz, <i>cis</i> -CO), 197.7 (d, ² J _{P,C} = 33.3 Hz, <i>trans</i> -CO), 197.8 (d, ² J _{P,C} = 33.5 Hz, <i>trans</i> -CO); ausgewählte Daten 19a : 22.8 (d, ² J _{P,C} = 8.0 Hz, CH ₃), 27.1 (d, ² J _{P,C} = 39.0 Hz, CH(SiMe ₃) ₂), 27.9 (d, ³ J _{P,C} = 6.5 Hz, CH ₂ ⁽²⁾), 45.29 (s, CH ₂ ⁽³⁾), 65.7 (d, ¹ J _{P,C} = 27.7 Hz, CP(O)); ausgewählte Daten 19b : 19.0 (d, ² J _{P,C} = 2.2 Hz, CH ₃), 27.2 (d, ² J _{P,C} = 38.9 Hz, CH(SiMe ₃) ₂), 28.3 (d, ³ J _{P,C} = 7.8 Hz, CH ₂ ⁽²⁾), 44.7 (s, CH ₂ ⁽³⁾), 65.5 (d, ¹ J _{P,C} = 27.8 Hz, CP(O));		

ausgewählte Daten **19c**: 19.0 (d, ${}^{2}J_{P,C} = 2.2$ Hz, CH₃), 28.04 (d, ${}^{3}J_{P,C} = 6.7$ Hz, CH₂⁽²⁾), 32.8 (d, ${}^{2}J_{P,C} = 17.9$ Hz, CH(SiMe₃)₂), 44.5 (s, CH₂⁽³⁾), 64.8 (d, ${}^{1}J_{P,C} = 29.0$ Hz, CP(O)); ausgewählte Daten **19d**: 21.4 (d, ${}^{2}J_{P,C} = 9.3$ Hz, CH₃), 28.3 (d, ${}^{3}J_{P,C} = 8.7$ Hz, CH₂⁽²⁾), 32.7 (d, ${}^{2}J_{P,C} = 18.3$ Hz, CH(SiMe₃)₂), 44.8 (s, CH₂⁽³⁾), 64.7 (d, ${}^{1}J_{P,C} = 29.7$ Hz, CP(O)) ²⁹Si-NMR (79.5 MHz, 25 °C, CDCl₃) [ppm] δ = **19a**: -1.45 (d, ${}^{2}J_{P,Si} = 5.4$ Hz), 4.12 (s); **19b**: -1.25 (d, ${}^{2}J_{P,Si} = 5.5$ Hz), 3.84 (s); **19c**: -1.08(d, ${}^{2}J_{P,Si} = 6.5$ Hz), 1.37 (d, ${}^{2}J_{P,Si} = 8.3$ Hz); **19d**: -1.00 (d, ${}^{2}J_{P,Si} = 6.7$ Hz), 1.07 (d, ${}^{2}J_{P,Si} = 8.3$ Hz), ³¹P-NMR (121.5 MHz, 25 °C, CDCl₃) [ppm] δ = 44.6 (${}^{1}J_{W,P} = 296.3$ Hz, $J_{P,H} = m$, **19a**), 45.2 (${}^{1}J_{W,P} = 297.7$ Hz, $J_{P,H} = m$, **19b**), 57.2 (${}^{1}J_{W,P} = 299.0$ Hz, $J_{P,H} = m$, **19c**), 58.6 (${}^{1}J_{W,P} = 299.7$ Hz, $J_{P,H} = m$, **19d**), Verhältnis **19a,b,c,d**

$$\begin{split} \text{MS} (\text{EI}, \ 70 \ \text{eV}, \ ^{184}\text{W}) & \text{m/z} \ (\%) = 634.1 \ (0.5) \ [\text{M}]^{\text{+}}, \ 604.1 \ (2.5) \ [\text{M}\text{-}2\text{CH}_3]^{\text{+}}, \ 563.1 \ (0.5) \\ & [\text{M}\text{-}2\text{CO}\text{-}\text{CH}_3]^{\text{+}}, \ 535.0 \ (3.5) \ [\text{M}\text{-}3\text{CO}\text{-}\text{CH}_3]^{\text{+}}, \ 514.0 \ (25) \\ & [\text{M}\text{-}\text{C}_5\text{H}_9\text{CIO}]^{\text{+}}, \ 486.0 \ (100) \ [\text{M}\text{-}\text{CO}\text{-}\text{C}_5\text{H}_9\text{CIO}]^{\text{+}}, \ 458.0 \ (30) \\ & [\text{M}\text{-}3\text{CO}\text{-}\text{C}_5\text{H}_9\text{CIO}]^{\text{+}}, \ 402.0 \ (25) \ [\text{M}\text{-}4\text{CO}\text{-}\text{C}_5\text{H}_9\text{CIO}]^{\text{+}}, \ 73.0 \ (85) \\ & [\text{SiMe}_3]^{\text{+}} \end{split}$$

[0.6:0.4:1.0:0.7]

- IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 2962 (m, CH₃), 2076, 1998, 1929 (s, CO), 1583, 1566 (m, C=C), 1461, 1431 (m, C=N), 1256 (s, SiMe₃)
- **6.3.8** {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(4-chloropentyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCMe(C₄H₈Cl)-O}] (**20**)

bei -90 °C unter Rühren 0.64 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 0.11 mL 6-Chloro-2-hexanon (1 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch untersucht.

Summenformel:	$C_{18}H_{30}CIO_6PSi_2W$			
Molare Masse:	648.9 g/mol			
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, Et ₂ O) [ppm] δ = 41.6			
	$({}^{1}J_{W,P} = 297.3 \text{ Hz}, J_{P,H} = \text{m}, 20a), 42.1 ({}^{1}J_{W,P} = 296.8 \text{ Hz},$			
	$J_{P,H} = m$, 20b), 54.5 (¹ $J_{W,P} = 299.3$ Hz, $J_{P,H} = m$, 20c), 56.1			
	(¹ J _{W,P} = 299.9 Hz, J _{P,H} = m, 20d), Verhältnis 20a,b,c,d			
	[0.4:0.4:0.9:1.0], Integration im ³¹ P-NMR: 20a,b,c,d : 90% +			
	10% Nebenprodukte			

6.4 Untersuchungen zur Synthese von $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen mit Donorgruppen

6.4.1 Reaktivität der Phosphinidenoid-Komplexe **2a-c** gegenüber 1,3,4,5-Tetramethyl-imidazol-2-yliden **22**

6.4.1.1 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-tetramethyl-imidazol-2yliden)phosphino-*κP*]}wolfram(0)} (**23a**)

Zu einer Lösung von 0.3 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (1a) (0.51 mmol) in 9 mL THF und 83.0 µL [12]Krone-4 (1.0 Äq.) wird bei -90 °C unter Rühren 0.30 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten

bei dieser Temperatur gerührt. Anschließend werden 63.7 mg 1,3,4,5-Tetramethylimidazol-2-yliden **22** (1 Äq) in 1 mL THF hinzugetropft.

Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck ($\sim 10^{-2}$ mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (insgesamt 200 mL). Das Lösungsmittel wird unter vermindertem Druck ($\sim 10^{-2}$ mbar) entfernt und das Produkt als gelber Feststoff erhalten.

Summenformel:	$C_{19}H_{31}N_2O_5PSi_2W$				
Molare Masse:	638.4 g/mol				
Ausbeute:	346 mg (63%)				
Schmelzpunkt:	114 °C				
NMR:	¹ H-NMR (300.1 MHz, 25 °C, THF-d ⁸): [ppm] δ = 0.05 (s, 18H,				
	SiMe ₃), 1.14 (d, 1H, ² J _{P,H} = 0.78 Hz, C <i>H</i> (SiMe ₃) ₂), 2.21 (s,				
	6H, CH ₃), 3.81 (s, 6H, N-CH ₃)				
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 1.69 (d, ³ J _{P,C} = 5.96 Hz, SiMe ₃), 4.49 (d, ¹ J _{P,C} = 69.5 Hz, <i>C</i> H(SiMe ₃) ₂), 8.39 (s, CH ₃), 33.75 (d, ⁴ J _{P,C} = 13.4 Hz, N-CH ₃), 125.9 (d, ³ J _{P,C} = 2.8 Hz, C _q), 167.7 (d, ¹ J _{P,C} = 92.6 Hz, C=P), 201.8 (d, ² J _{P,C} = 4.4 Hz, <i>cis</i> -CO), 202.6 (d, ² J _{P,C} = 13.3 Hz, <i>trans</i> -CO)				
	²⁹ Si-NMR (79.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = 1.00 (d, ² J _{P,Si} = 12.1 Hz, SiMe ₃)				
	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = -128.5				

 $({}^{1}J_{W,P} = 100.1 \text{ Hz}, {}^{2}J_{P,Si} = 12.0 \text{ Hz})$

$$\begin{split} \text{MS} \end{tabular}{2} \text{MS} \end{tabular$$

6.4.1.2 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-yliden)phosphino-κP]}molybdän(0)} (23b)

Zu einer Lösung von 30 mg $[Mo(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1b**) (60.3 µmol) in 1 mL THF und 9.8 µL [12]Krone-4 (1.0 Äq.) wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für

fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 7.5 mg 1,3,4,5-Tetramethyl-imidazol-2-yliden 22 (1 Äq) in 1 mL THF hinzugetropft. Die

Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

Summenformel:	$C_{19}H_{31}MoN_2O_5PSi_2$
Molare Masse:	550.6 g/mol
NMR:	$^{31}\text{P}\{^{1}\text{H}\}\text{-NMR}$ (121.5 MHz, 25 °C, THF) [ppm] δ = -114.2.
	Integration im ³¹ P-NMR: 23% + 77% Nebenprodukte

6.4.1.3 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2-yliden)phosphino-κP]}chrom(0)} (23c)

Zu einer Lösung von 30 mg $[Cr(CO)_5{(Me_3Si)_2HC}_2PCI_2]$ (1c) (66.2 µmol) in 1 mL THF und 10.7 µL [12]Krone-4 (1.0 Äq.) wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für

fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 8.2 mg 1,3,4,5-Tetramethyl-imidazol-2-yliden **22** (1 Äq) in 1 mL THF hinzugetropft. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

Summenformel:	$C_{19}H_{31}CrN_2O_5PSi_2W$
Molare Masse:	507.6 g/mol
NMR:	$^{31}P{^{1}H}$ -NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -93.2
	Integration im ³¹ P-NMR: 35% + 65% Nebenprodukte

6.4.2 Reaktivität der Chloro(organo)phosphan-Komplexe **21a**,**c** gegenüber 1,3,4,5-Tetramethyl-imidazol-2-yliden **22**

6.4.2.1 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2yliden)phosphino-*κP*]}wolfram(0)} (**23a**)

Zu einer Lösung von 0.25 g[W(CO)₅{(Me₃Si)₂HC}₂PHCI] (**21a**) (0.45 mmol) in 4 mL THF werden 0.12 g 1,3,4,5-Tetramethylimidazol-2-yliden **22** (0.96 mmol) hinzugegeben und für 12 Stunden bei Raumtemperatur gerührt. Die

grüne Reaktionslösung wird anschließend filtriert, das Lösungsmittel wird unter vermindertem Druck ($\sim 10^{-2}$ mbar) entfernt. Das Rohprodukt wird anschließend aus *n*-Pentan gefällt und mit 2 mL *n*-Pentan bei -20 °C gewaschen. Das Produkt wird als gelber Feststoff erhalten.

Summenformel:	$C_{19}H_{31}N_2O_5PSi_2W$
Molare Masse:	638.4 g/mol
Ausbeute:	346 mg (63%)
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = -128.5
	$({}^{1}J_{W,P} = 100.1 \text{ Hz}, {}^{2}J_{P,Si} = 12.0 \text{ Hz})$ [vgl. Kapitel 6.4.1.1]

6.4.2.2 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-Tetramethyl-imidazol-2yliden)phosphino-*κP*]}chrom(0)} (**23c**)

Zu einer Lösung von 30 mg[Cr(CO)₅{(Me₃Si)₂HC}₂PHCI] (**21c**) (71.6 µmol) in 1 mL THF werden 17.7 mg 1,3,4,5-Tetramethylimidazol-2-yliden **22** (143.2 µmol) hinzugegeben. Die Reaktionsmischung wird für vier Stunden bei

Raumtemperatur gerührt und anschließend NMR-spektroskopisch vermessen.

NMR:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -93.4 [vgl. Kapitel 6.4.1.3] **6.4.3** Reaktivität der Dichloro(organo)phosphan-Komplexe **1**a,**c** gegenüber 1,3,4,5-Tetramethyl-imidazol-2-yliden **22**

Zu einer Lösung von 30 mg $[M(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1a-c**) (M = W: 51.3 µmol, M = Mo: 60.3 µmol, M = Cr: 66.2 µmol) in 1 mL THF werden zwei Äquivalente 1,3,4,5-Tetramethyl-imidazol-2-yliden **22** (M = W: 12.7 mg, M = Mo: 14.9 mg, M = Cr: 16.4 mg) hinzugegeben. Die Reaktionsmischung wird für eine Stunde bei Raumtemperatur gerührt und anschließend NMR-spektroskopisch vermessen.

NMR: M = W: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -11.3, -128.5 (**23a**)^(*) Integration im ³¹P-NMR: 43% + 1% **23a** + 56% Nebenprodukte M = Mo: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -11.8, -113.9 (**23b**) Integration im ³¹P-NMR: 45% + 9% **23b** + 46% Nebenprodukte [vgl. Kapitel 6.4.1.1] M = Cr: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -11.4 Integration im ³¹P-NMR: 28% + 72% Nebenprodukte **6.4.4** Reaktivität des Dichloro(organo)phosphan-Komplexes **2a** gegenüber 1,3,4,5-Tetramethyl-imidazol-2-yliden **22**

Zu einer Lösung von 30 mg $[W(CO)_5(Ph_3C)PCl_2]$ (**2a**) (44.8 µmol) in 1 mL THF werden 11.2 mg 1,3,4,5-Tetramethyl-imidazol-2-yliden **22** in 0.5 mL THF (2 Äq) hinzugetropft. Die Reaktionsmischung wird für 5 Minuten bei Raumtemperatur gerührt und anschließend NMR-spektroskopisch vermessen.

NMR:

Nach 80 Minuten:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -121.9 (¹J_{W,P} = 132.5 Hz, **24a**), 167.3 (¹J_{W,P} = 318.5 Hz, **2a**), 258.5 (¹J_{W,P} = 78.2 Hz, **5a**)

Integration im ³¹P-NMR nach 80 Minuten: 6% **24a** + 41% **2a** + 49% **5a** + 4% Nebenprodukte

Nach 24 Stunden: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = 72.7 (¹J_{W,P} = 269.4 Hz, **25a**), 168.6 (¹J_{W,P} = 319.6 Hz, **2a**) Integration im ³¹P-NMR nach 24 Stunden: 35% **25a** + 43% **2a** + 22% Nebenprodukte **6.4.5** Reaktion von **2a** mit 1,3,4,5-Tetramethyl-imidazol-2-yliden **22** in Gegenwart von Benzaldehyd

Zu einer Lösung von 30 mg $[W(CO)_5(Ph_3C)PCl_2]$ (**2a**) (44.8 µmol) in 1 mL THF werden (**i**) 5.6 mg (1 Äq.), (**ii**) 11.2 mg (2 Äq.), (**iii**) 16.7 mg (3 Äq.) oder (**iiii**) 110.0 mg (20 Äq.) 1,3,4,5-Tetramethyl-imidazol-2-yliden **22** hinzugegeben. Die Reaktionsmischung wird für 5 Minuten bei Raumtemperatur gerührt und anschließend 5.0 µL Benzaldehyd (49.0 µmol) hinzugegeben. Nach einer Stunde wurde die Reaktionslösung NMR-spektroskopisch vermessen.

NMR:

(i):

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -121.8 (1%), -112.4 (2%), 17.3 (¹J_{W,P} = 310.1 Hz, 5%), 72.6 (4%), 100.4 (¹J_{W,P} = 280.0 Hz, 6%), 161.4 (¹J_{W,P} = 317.9 Hz, 10%), 168.6 (¹J_{W,P} = 318.5 Hz, 71%), 195.8 (1%)

(**ii**):

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -112.2 (3%), 17.3 (¹J_{W,P} = 310.2 Hz, 23%), 22.8 (1%), 24.4 (3%), 124.9 (6%), 127.5 (3%), 138.9 (4%), 161.1 (¹J_{W,P} = 318.3 Hz, 30%), 168.6 (¹J_{W,P} = 318.1 Hz, 26%), 195.8 (1%)

(**iii**):

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -113.2 (3%), -39.4 (2%), 19.6 (2%), 21.4 (4%), 23.1 (2%), 43.0 (1%), 80.2 (4%), 89.5 (5%), 100.7 (2%), 123.1 (¹J_{W,P} = 283.6 Hz, 28%), 135.8 (3%), 139.5 (2%), 143.9 (1%), 148.6 (2%), 151.2 (1%), 159.4 (¹J_{W,P} = 317.7 Hz, 38%)

(iiii): ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -166.7 (¹J_{W,P} = 85.4 Hz, 9%), -113.4 (2%), -41.5 (2%), -39.6 (2%), 78.0 (10%), 101.9 (¹J_{W,P} = 354.7 Hz, 55%), 109.6 (8%), 111.2 (7%), 120.1 (2%), 140.6 (2%), 152.8 (1%)

6.4.6 Reaktivität der Oxaphosphiran-Komplexe 28-30 mit 22

Zu einer Lösung von 30 mg $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplex^(*) (**28**: 48.4 µmol, **29**: 61.4 µmol, **30**: 43.1 µmol) in 1 mL THF wird ein Äquivalente 1,3,4,5-Tetramethylimidazol-2-yliden (**28**: 6.0 mg, **29**: 7.6 mg, **30**: 5.3 mg) hinzugegeben. Die Reaktionsmischung wird für eine Stunde bei Raumtemperatur gerührt und anschließend NMR-spektroskopisch vermessen.

NMR:

28:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -128.3 (¹J_{W,P} = 100.3 Hz, **23a**) [vgl. Kapitel 6.4.1.1]

29:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -92.2 (**23c**) [vgl. Kapitel 6.4.1.1]

30: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -128.4 (¹J_{W,P} = 100.3 Hz, **23a**) [vgl. Kapitel 6.4.1.1]

6.4.7 Reaktionen von **4a** mit 2-(Diphenylphosphino)benzaldehyd

Zu einer Lösung von 38.62 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (66 µmol) in 1 mL Et₂O und 8.5 µL [12]Krone-4 (1.0 Äq.) wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 65 mg 2-(Diphenylphosphino)benzaldehyd (3 Äq.) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR:

Zuordnung **a-f** anhand Abbildung 22 ³¹P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -16.5 (**a**, 11%), -15.2 (**b**, 5%), -13.5 (**c**, 4%), -12.1 (**d**, 11%), 32.7 (**e**, ¹J_{W,P} = 296.8 Hz, 3%), 45.3 (**f**, ¹J_{W,P} = 311.1 Hz, 14%) und 52% stark verbreiterte Signale

6.4.8 Reaktionen von 4a mit 2-(N,N-Dimethylamino)benzaldehyd

Zu einer Lösung von 38.62 mg $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1a**) (66 µmol) in 1 mL Et₂O und 8.5 µL [12]Krone-4 (1.0 Äq.) wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 9.2 µL (66 µmol),

27.6 μL (198 μmol), 49.0 μL (330 μmol) oder 92.0 μL (660 μmol)
2-(*N*,*N*-Dimethylamino)benzaldehyd hinzugetropft.

Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR: 1 Äquivalent: ³¹P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -113.1 $({}^{1}J_{WP} = 221.1 \text{ Hz}, 1\%), -29.2 (1\%), -25.4 (3\%), -23.6$ (1%), -2.4 (¹ $J_{W,P}$ = 230.2 Hz, 6%), 54.3 (br, 9%), 57.1 (br, 55%), 64.8 (14%) und 10% teils stark verbreiterte Signale 3 Äquivalente: ³¹P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -26.4 (4%), -2.7 (1%), -2.4 (2%), 54.2 (br, 33%), 56.5 (br, 14%), 64.8 (3%) und 43% teils stark verbreiterte Signale 5 Äquivalente: ³¹P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -29.2 (1%), -26.4 (2%), -23.7 (1%), 43.1 (br, 16%), 53.9 (br, 43%), 64.9 (4%) und 33% teils stark verbreiterte Signale 10 Äquivalente (Zuordnung a-e anhand Abbildung 24): ³¹P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = 38.1 (**a**, 14%), 43.0 (**b**, 7%), 53.8 (**c**, 31%), 64.8 (**d**, 11%), 65.3 (**e**, 4%) und

33% teils stark verbreiterte Signale

6.4.9 Reaktionen von 4a mit N,N-Dimethylformamid

Zu einer Lösung von 38.62 mg $[W(CO)_5{(Me_3Si)_2HC}_2PCI_2]$ (1a) (66 µmol) in 1 mL Et₂O oder THF und [12]Krone-4 wird bei -90 °C unter Rühren 0.04 mL 231

tert-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt.

Anschließend wird *N,N*-Dimethylformamid hinzugetropft. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen. Alle Bedingungen und Variationen sind in der folgenden Tabelle nochmals aufgeführt.

Nr.	Äq. DMF	LM	Äq. [12]K4	Ansatz	39	Hauptprodukt $\delta^{31} P\{^{1}H\} (^{1} J_{W,P}) [\%]$
DMF-1	1	Et ₂ O	0.8	66 µmol	38%	21.6 (299.8 Hz) [38%]
DMF-2	1	THF	0.8	66 µmol	15%	97.8 (259.3 Hz) [31%]
DMF-3	1	Et ₂ O	0.8	0.85 mmol	-	-23.5 (312.5 Hz) [53%]
DMF-4	1	Et ₂ O	0.8	4 x 66 µmol	<15%	(*)
DMF-5	2	THF	0.8	66 µmol	21%	97.8 (259.3 Hz) [25%]
DMF-6	2	Et ₂ O	0.8	66 µmol	22%	21.6 (299.8 Hz)
DMF-7	10	Et ₂ O	0.8	66 µmol	12%	96.1 (257.4 Hz) [25%]
					2%	77.6 (277.5 Hz) [23%]
DME-8	2	Et _o O	0.8	4 x	18%	98.5 (261.6 Hz) [54%]
	2		0.0	66 µmol	22%	98.7 (258.8 Hz) [27%]
					36%	21.6 (299.8 Hz) [36%]
DMF-9	2 ^(a)	Et ₂ O	0.8	66 µmol	21%	21.6 (299.8 Hz)
DMF-10	2 ^(b)	Et ₂ O	0.8	66 µmol	20%	98.8 (268.7 Hz) [51%]
DMF-11	2	Et ₂ O	0.6	66 µmol	43%	21.6 (299.8 Hz) [43%]
DMF-12	2	Et ₂ O	0.4	66 µmol	15%	-95.1 (216.6 Hz) [25%]
DMF-13	2	Et ₂ O	0.2	66 µmol	14%	21.6 (299.8 Hz) [14%]
DMF-14	2	Et ₂ O	0	66 µmol	29%	21.6 (299.8 Hz) [29%]
DMF-15	2	Et ₂ O	0	66 µmol	-	-95.4 (217.0 Hz) [64%]
DMF-16	2	Et ₂ O	0	66 µmol	-	-95.9 (215.6 Hz) [79%]
DMF-17	2	Et ₂ O	0	66 µmol	-	-65.3 (98.5 Hz) [12%]
DMF-18	2 ^(c)	Et ₂ O	0	66 µmol	10%	21.6 (299.8 Hz) [10%]
DMF-19	2	Et ₂ O	2.0	66 µmol	15%	99.5 (259.5 Hz) [33%]
DMF-20	2 ^(c)	Et ₂ O	1.0	66 µmol	29%	98.6 (261.8 Hz) [48%]
DMF-21	2 ^(d)	Et ₂ O	1.0	66 µmol	27%	98.2 (256.4 Hz) [43%]
DMF-22	2 ^(d)	Et ₂ O	1.0	66 µmol	17%	99.0 (257.7 Hz) [33%]
DMF-23	2 ^(d)	Et ₂ O	1.0	0.85 mmol	-	-23.5 (313.1 Hz) [42%]
DMF-24	2 ^(e)	Et ₂ O	1.0	0.34 mmol	-	-23.4 (313.6 Hz) [11%]

Äq. = Äquivalente, LM = Lösungsmittel, [12]K4 = [12]Krone-4,

 $^{(*)}$ Zersetzung $^{(a)}$ DMF vorgelegt; $^{(b)}$ + LiCl; $^{(c)}$ T << -90 °C; $^{(d)}$ auftauen bis -60 °C und

Lösungsmittel entfernt; (e) Zugabe von DMF bei -60 °C

6.4.10 Reaktionen von 5a mit N,N-Dimethylformamid

Zu einer Lösung von 51.0 mg [W(CO)₅(Ph₃C)PCl₂] (**2a**) (76.2 µmol) in 1.5 mL THF und 9.9 µL [12]Krone-4 (60.9 µmol) wird bei -90 °C unter Rühren 0.06 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 7.04 µL (1.2 Äq.), 11.7 µL (2.0 Äq.) oder 58.6 µL (10.0 Äq.) *N,N*-Dimethylformamid hinzugetropft. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR:

1.2 Äquivalente:

³¹P-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -16.5 (¹J_{W,P} = 77.5 Hz, ¹J_{P,H} = 172.0 Hz, 13%), -10.6 (1%) 12.2 (¹J_{W,P} = 232.0 Hz, ¹J_{P,H} = 341.5 Hz, J_{P,H} = 6.8 Hz, 22%), 79.2 (¹J_{W,P} = 253.9 Hz, ¹J_{P,H} = 356.7 Hz, J_{P,H} = 17.5 Hz, 6.8 Hz, 12%), 88.9 (¹J_{W,P} = 263.7 Hz, ¹J_{P,H} = 300.6 Hz, 6.8 Hz, 8%), 101.3 (4%), 109.5 (2%), 122.8 (2%), 126.3 (4%), 128.8 (10%), 137.9 (3%), 138.0 (3%), 145.2 (br, 16%)

2 Äquivalente: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -16.3 (¹J_{W,P} = 77.5 Hz, 2%), 79.2 (¹J_{W,P} = 253.9 Hz, 31%), 88.9 (¹J_{W,P} = 263.7 Hz, 9%), 127.4 (1%), 128.9 (¹J_{W,P} = 283.2 Hz, 32%), 129.9 (2%), 138.4 (¹J_{W,P} = 365.4 Hz, 13%), 145.7 (br, 10%)

10 Äquivalente:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -43.3 (¹J_{W,P} = 223.5 Hz, 13%), 12.2 (¹J_{W,P} = 232.0 Hz, 10%), 88.9 (¹J_{W,P} = 263.7 Hz, 34%), 107.9 (¹J_{W,P} = 333.6 Hz, 12%), 139.6 (1%), 159.7 (2%), 256.8 (¹J_{W,P} = 77.4 Hz, 28%)

6.4.11 Reaktionen von **4a** mit *N*,*N*,*N*,*N*-Tetramethylharnstoff

Zu einer Lösung von 40.0 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (68.4 µmol) in 0.5 mL Et₂O und 11.1 µL [12]Krone-4 (68.4 µmol) wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 24.6 µL N,N,N,N-Tetramethylharnstoff (205.2 µmol) in 0.5 mL Et₂O hinzugetropft. Die gelbe Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt, färbte sich dabei grün und schließlich rot. Anschließend wird die Reaktionsmischung NMR-spektroskopisch vermessen.

NMR:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -172.3 (¹J_{W,P} = 76.3 Hz, 4%), -89.2 (¹J_{W,P} = 164.4 Hz, 6%), -86.7 (¹J_{W,P} = 166.3 Hz, 5%), 47.3 (6%), 191.1 (br, 4%), 195.5 (br, 4%), 325.6 (1%), 329.8 (1%), 390.1 (¹J_{W,P} = 235.6 Hz, 9%), 394.3 (¹J_{W,P} = 233.9 Hz, 11%), 402.7 (br, 8%), 405.2 (br, 7%), 442.9 (br, 10%), 443.2 (br, 5%), 447.1 (br, 9%), 447.6 (br, 5%) und 5% teils stark verbreiterte Signale

6.4.12 Reaktionen von 5a mit N,N,N,N - Tetramethylharnstoff

Zu einer Lösung von 51.0 mg [W(CO)₅(Ph₃C)PCl₂] (**2a**) (76.2 μ mol) in 1.5 mL THF oder TMH und 9.9 μ L [12]Krone-4 (60.9 μ mol) wird bei -90 °C unter Rühren 0.06 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1.2 Äq.) tropfenweise zugetropft und für
fünf Minuten bei dieser Temperatur gerührt. Anschließend werden im Fall der THF-Reaktionslösung 27.4 µL (3 Äquivalente) *N,N,N,N*-Tetramethylharnstoff hinzugetropft. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR:
³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm]
$$\delta$$
 = -43.2 (4%), 88.9
(¹J_{W,P} = 263.7 Hz, 57%), 93.1 (2%), 159.6 (3%), 198.6 (2%), 255.9 (br,
¹J_{W,P} = 76.5 Hz, 32%)
³¹P{¹H}-NMR (121.5 MHz, 25 °C, TMH) [ppm] δ = 77.8 (27%), 79.4
(1%), 79.8 (3%), 157.6 (4%), 167.7 (7%), 254.8 (¹J_{W,P} = 77.1 Hz, 58%)

6.5 *C*-Hetaryl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

6.5.1 Reaktion von 1a mit 2-Furaldehyd

Zu einer Lösung von 38.6 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**)1(66 µmol) und 8.5 µL (0.8 Äq.) [12]Krone-4 in 1 mL Et₂O oder 19.4 µl (2.0 Äq.) [12]Krone-4 in 1 mL THF wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 5.5μ L 2-Furaldehyd (66 µmol) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR:

0.8 Äquivalente [12]Krone-4:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -26.1 (4%), -24.1 (1%), -19.7 (3%), -18.5 (3%), -17.7 (2%), 34.6 (br, 13%), 36.4 (br, 4%), 39.1 (br, 7%), 39.5 (br, 12%), 40.9 (br, 34%), 43.1 (br, 3%), 44.0 (br, 4%), 46.1 (br, 7%), 58.9 (3%) 2.0 Äquivalente [12]Krone-4: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -14.0 (1%), 26.7 (1%), 29.0 (¹J_{W,P} = 243.8 Hz, 9%), 32.2 (¹J_{W,P} = 243.3 Hz, 27%), 33.3 (3%), 34.0 (22%), 34.3 (2%), 36.5 (2%), 41.3 (br, 16%), 43.6 (1%), 71.3 (1%), 82.5 (2%), 84.6 (2%), 125.2 (1%), 129.1 (1%), 136.8 (2%), 142.6 (5%), 148.4 (1%), 148.6 (1%)

6.5.2 Reaktion von 1a mit 2-Thienylaldehyd

Zu einer Lösung von 38.6 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (66 µmol) und 8.5 µL (0.8 Äq.) [12]Krone-4 in 1 mL Et₂O oder 19.4 µl (2.0 Äq.) [12]Krone-4 in 1 mL THF wird bei -90 °C unter Rühren 0.04 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 6.2 µL 2-Thienylaldehyd (66 µmol) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR: 0.8 Äquivalente [12]Krone-4: ${}^{31}P{}^{1}H{}$ -NMR (121.5 MHz, 25 °C, Et₂O) [ppm] δ = -17.5 (2%), -14.9 (2%), -14.7 (5%), -2.0 (1%), -0.6 (1%), 34.0 (br, 30%), 50.0 (br, 34%), 60.4 (br, 15%), 141.9 (1%), 152.4 (2%) + weitere 7% verbreitete Signale 2.0 Äquivalente [12]Krone-4:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF) [ppm] δ = -17.0 (1%), -14.6 (1%), -11.7 (2%), -10.4 (2%), 33.3 (16%), 41.4 (br, 7%), 85.6 (br, 2%), 140.9 (¹J_{W,P} = 281.7 Hz, 29%), 143.5 (2%), 145.9 (2%), 146.9 (2%), 148.4 (2%), 148.9 (3%), 150.3 (4%), 151.1 (2%), 151.5 (9%), 153.6 (3%) + weitere 13% verbreitete Signale

6.5.3 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(furan-3-yl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₄H₃O)-O}] (**51**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (0.854 mmol) in 15 mL Et₂O und 110.6 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.5 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser

Temperatur gerührt. Anschließend werden 73.9 μ L 3-Furaldehyd (1 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL). Das Produkt wird durch Umkristallisation aus *n*-Pentan als hellgelber Feststoff erhalten.

Summenformel:	C ₁₇ H ₂₃ O ₇ PSi ₂ W
Molare Masse:	610.4 g/mol
Ausbeute:	0.310 g (59%)
Schmelzpunkt:	63 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, CDCI ₃): [ppm] δ = 0.28 (s, 9H, SiMe ₃), 0.33 (s, 9H, SiMe ₃), 1.21 (s, 1H, C <i>H</i> (SiMe ₃) ₂), 4.11 (s, 1H, C <i>H</i> (P)(O)), 6.44-6.47 (m, 1H, CH _{Ar}), 7.38-7.40 (m, 1H, CH _{Ar}), 7.42 (t, ⁴ J _{H,H} = 1.7 Hz, 1H, CH _{Ar})
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, CDCl ₃): [ppm] δ = 1.7 (d, ³ J _{P,C} = 4.2 Hz, SiMe ₃), 1.9 (d, ³ J _{P,C} = 2.4 Hz, SiMe ₃), 31.7 (d, ¹ J _{P,C} = 18.8 Hz, <i>C</i> H(SiMe ₃) ₂), 54.7 (d, ¹ J _{P,C} = 30.6 Hz, <i>C</i> H(P)(O)), 108.8 (d, ⁴ J _{P,C} = 1.4 Hz, CH _{Ar}), 120.8 (s, C _{Ar}), 140.5 (d, ³ J _{P,C} = 6.6 Hz, CH _{Ar}), 143.9 (s, CH _{Ar}), 195.0 (d,

	${}^{2}J_{P,C} = 8.3 \text{ Hz}, cis\text{-CO}$, 197.1 (d, ${}^{2}J_{P,C} = 35.8 \text{ Hz}, trans\text{-CO}$) ${}^{29}\text{Si-NMR}$ (79.5 MHz, 25 °C, CDCl ₃) [ppm] $\delta = 0.04$ (d, ${}^{2}J_{P,Si} = 5.4 \text{ Hz}, \text{SiMe}_{3}$), 1.38 (d, ${}^{2}J_{P,Si} = 7.9 \text{ Hz}, \text{SiMe}_{3}$)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 42.8 (¹ $J_{W,P}$ = 308.6 Hz)
MS (EI, 70 eV, ¹⁸⁴ W)	$ \begin{array}{l} m/z\ (\%) = 610.0\ (1.5)\ [M]^{+*},\ 514.0\ (8)\ [M-C_5H_4O_2]^+,\ 486.0\ (22) \\ [M-C_5H_4O_2\text{-}CO]^+,\ 458.0\ (10)\ [M-C_5H_4O_2\text{-}2CO]^+,\ 430.0\ (10) \\ [M-C_5H_4O_2\text{-}3CO]^+,\ 383.8\ (10)\ [M-C_5H_4O_2\text{-}2CO\text{-}SiMe_3\text{-}H]^+, \\ 351.9\ (60)\ [W(CO)_6]^+,\ 295.9\ (40)\ [W(CO)_4]^+,\ 267.9\ (100) \\ [W(CO)_5]^+,\ 239.9\ (40)\ [W(CO)_2]^+,\ 211.9\ (40)\ [W(CO)]^+,\ 183.9 \\ (20)\ [W]^+,\ 73.0\ (50)\ [SiMe_3]^+ \end{array} $
IR (ATR):	Auswahl \tilde{v} [cm ⁻¹] = 2956 (m, CH ₃), 2074, 1990, 1910 (s, CO), 1565, 1504 (m, C=C), 1253 (s, SiMe ₃)
EA:	C ₁₇ H ₂₃ O ₇ PSi ₂ W (%) ber.: C 33.45, H 3.80, gef.: C 32.43, H 4.11

6.5.4 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(thien-3-yl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₄H₃S)-O}] (**52**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (1a) (0.854 mmol) in 15 mL Et₂O und 110.6 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.5 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei

dieser Temperatur gerührt. Anschließend werden 74.8 μ L 3-Thienylaldehyd (1 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL). Das Produkt wird durch Umkristallisation aus *n*-Pentan als gelber Feststoff erhalten.

Summenformel:	$C_{17}H_{23}O_6PSSi_2W$
Molare Masse:	626.4 g/mol
Ausbeute:	0.250 g (47%)
Schmelzpunkt:	82 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, CDCl ₃): [ppm] δ = 0.30 (s, 9H,
	SiMe ₃), 0.35 (s, 9H, SiMe ₃), 1.23 (s, 1H, C <i>H</i> (SiMe ₃) ₂), 4.31
	(s, 1H, C <i>H</i> (P)(O)), 7.12 (dd, ${}^{5}J_{P,H} = 1.2$ Hz, ${}^{3}J_{H,H} = 5.0$ Hz, 1H,
	$CH_{Ar}^{(2)}$), 7.19-7.22 (m, 1H, $CH_{Ar}^{(3)}$), 7.35 (dd, ${}^{4}J_{H,H}$ = 2.92 Hz,
	3.07 Hz, 1H, CH _{Ar} ⁽¹⁾)
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, CDCl ₃): [ppm] δ = 1.7 (d,
	${}^{3}J_{P,C}$ = 4.2 Hz, SiMe ₃), 2.0 (d, ${}^{3}J_{P,C}$ = 2.4 Hz, SiMe ₃), 32.1 (d,
	¹ J _{P,C} = 19.1 Hz, <i>C</i> H(SiMe ₃) ₂), 57.7 (d, ¹ J _{P,C} = 28.9 Hz,
	<i>C</i> H(P)(O)), 122.0 (d, ³ <i>J</i> _{P,C} = 5.8 Hz, CH _{Ar} ⁽³⁾), 125.4 (d,
	${}^{4}J_{P,C} = 1.5 \text{ Hz}, \text{ CH}_{Ar}^{(2)}), 127.1 \text{ (d, } {}^{3}J_{P,C} = 1.0 \text{ Hz}, \text{ CH}_{Ar}^{(1)}),$
	136.7 (s, $C_{Ar}^{(4)}$), 194.9 (d, ${}^{2}J_{P,C}$ = 8.3 Hz, <i>cis</i> -CO), 197.2 (d,
	$^{2}J_{P,C} = 35.9 \text{ Hz}, \text{ trans-CO}$

	²⁹ Si-NMR (79.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 0.04 (d, ² J _{P,Si} = 5.4 Hz, SiMe ₃), 1.40 (d, ² J _{P,Si} = 7.9 Hz, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 42.2 (¹ $J_{W,P}$ = 308.5 Hz)
MS (EI, 70 eV, ¹⁸⁴ W)	$m/z (\%) = 626.0 (2) [M]^{++}, 514.0 (8) [M-C_5H_4OS]^{+}, 486.0 (20)$ $[M-C_5H_4OS-CO]^{+}, 458.0 (10) [M-C_5H_4OS-2CO]^{+}, 430.0 (10)$ $[M-C_5H_4OS-3CO]^{+}, 383.8 (8) [M-C_5H_4OS-2CO-SiMe_3-H],$ $351.9 (60) [W(CO)_6]^{+}, 323.9 [W(CO)_5]^{+}, 295.9 (40) [W(CO)_4]^{+},$ $267.9 (80) [W(CO)_5]^{+}, 239.9 (35) [W(CO)_2]^{+}, 211.9 (30)$ $[W(CO)]^{+}, 183.9 (20) [W]^{+}, 147.1 (100) [C_6H_{19}Si_2]^{+}, 73.0 (50)$ $[SiMe_3]^{+}$
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2955 (m, CH ₃), 2075, 1991, 1904 (s, CO), 1580, 1419 (m, C=C), 1250 (s, SiMe ₃)
EA:	C ₁₇ H ₂₃ O ₆ PSSi ₂ W (%) ber.: C 32.6, H 3.70, S 5.12 gef.: C 31.59, H 3.79, S 5.03
Röntgenstruktur:	GSTR338, 3209, MK-474, s. Anhang D7

6.5.5 Reaktion von 4a mit Imidazol-2-carbaldehyd

Zu einer Lösung von 38.6 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (66 µmol) und 8.5 µL [12]Krone-4 (66 µmol) in 1.2 mL Et₂O wird bei -90 °C unter Rühren 0.05 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Pentan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 6.3 mg Imidazol-2-carbaldehyd (66 µmol) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und anschließend NMR-spektroskopisch vermessen.

NMR: ${}^{31}P{}^{1}H{}-NMR (121.5 \text{ MHz}, 25 \text{ °C}, Et_{2}O) [ppm] \delta = -147.9 \\ (1\%), -131.4 (1\%), -113.1 (2\%), -38.3 (4\%), -36.9 (2\%), 21.6 \\ (2\%), 31.5 (2\%), 32.1 (3\%), 53.8 ({}^{1}J_{W,P} = 270.7 \text{ Hz}, 22\%), \\ 65.9 (3\%), 66.6 (3\%), 77.7 (3\%), 86.5 (1\%), 90.4 (1\%), 117.7 \\ (2\%), 119.4 (2\%), 146.6 (2\%), 324.5 ({}^{1}J_{W,P} = 115.2 \text{ Hz}, 147.6 \\ \text{Hz}, 9\%), 346.9 (1\%), 392.2 ({}^{1}J_{W,P} = 234.5 \text{ Hz}, {}^{1}J_{P,P} = 513.8 \\ \text{Hz}, 17\%), 444.7 ({}^{1}J_{P,P} = 513.8 \text{ Hz}, 17\%)$

6.5.6 Reaktion von 4a mit N-Methyl-Imidazol-2-carbaldehyd

Zu einer Lösung von 50 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (**1a**) (85.4 µmol) und 11.1 µL [12]Krone-4 (68.6 µmol) in 0.4 mL THF-d⁸ wird bei -90 °C unter Rühren 0.07 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 45.5 mg *N*-Methyl-Imidazol-2-carbaldehyd (0.43 mmol) in 0.3 mL THF hinzugetropft. Die Reaktionsmischung wird über drei Stunden unter Rühren bis auf 0 °C erwärmt. Die Reaktionslösung wird filtriert und anschließend NMR-spektroskopisch vermessen.

NMR:

Auswahl der zuzuordnenden NMR-Resonanzen: ¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = 0.34 (s, 9H), 0.37 (s, 9H), 2.16 (d, ²J_{P,H} = 15.2 Hz, 1H, C*H*(SiMe₃)₂), 3.25 (d, ²J_{P,H} = 11.8 Hz, 1H, C*H*=P), 3.54 (s, 3H, N-C*H*₃)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 1.9 (d, ³J_{P,C} = 3.6 Hz, SiMe₃), 2.6 (d, ³J_{P,C} = 3.1 Hz, SiMe₃), 23.5 (d, ¹J_{P,C} = 48.0 Hz, CH(SiMe₃)₂*, 33.1 (s, N-CH₃), - (CH=P)*, 118.3 (s, CH), 125.1 (s, CH), 159.4 (s, C_q), 200.8 (d, ⁵J_{P,C} = 2.2 Hz, *cis*-CO), 201.2 (s, *trans*-CO) *überlagert von Signalen oder zu geringe Intensität

	²⁹ Si-NMR (79.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = -2.4 (d, ² J _{P,C} = 2.0 Hz), 2.15 (d, ² J _{P,C} = 10.1 Hz)
	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = 91.9 (² <i>J</i> _{P,H} = 12.3 Hz, 14.5 Hz (dd), 57%) + 43% kleinere und teils stark verbreiterte Signale
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2955, 2919, 2869 (m, CH, CH ₃), 2059 (m), 1970 (w), 1895 (s, CO), 1686, 1634 (m, C=C), 1480, 1445, 1409 (m, C-N), 1251 (s, SiMe ₃), 1135 (m, P=O), 1082 (s, P=C).

6.6 C-Pyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

- 6.6.1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe
- 6.6.1.1 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*p*-pyridyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₅H₄N)-O}] (**56a**)

Synthese nach allgemeiner Methode A Zu einer Lösung von 38.6 mg [W(CO)₅{(Me₃Si)₂HC}₂PCl₂] (1a) (66 µmol) in 1.2 mL Et₂O und [12]Krone-4 wird bei -90 °C unter Rühren *tert-*Butyllithium-Lösung (1.6 M in *n*-Hexan) wird tropfenweise zugetropft. Anschließend

p-Pyridinaldehyd hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt oder nach 5 Minuten das Das Lösungsmittel unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand mit Toluol Bedingungen aufgenommen. Die der unterschiedlichen Reaktionsdurchführungen sind in der nachfolgenden Tabelle aufgeführt.

	[12]Krone-4	^t BuLi	<i>p</i> -Pyridinaldehyd	Zeit
(1)	8.5 µL (0.8 Äq.)	0.05 ml (1.2 Äq.)	6.2 µL (1 Äq.)	3 Stunden
(2)	8.5 µL (0.8 Äq.)	0.05 ml (1.2 Äq.)	4.9 μL (0.8 Äq.)	3 Stunden
(3)	6.4 µL (0.6 Äq.)	0.04 mL (1 Äq.)	18.7 µL (3 Äq.)	3 Stunden
(4)	8.5 µL (0.8 Äq.)	0.04 mL (1 Äq.)	6.2 μL (1 Äq.)	5 min

Summenformel:	$C_{18}H_{24}NO_6PSi_2W$
Molare Masse:	621.4 g/mol
NMR:	(1)
	³¹ P-NMR (121.5 MHz, 25 °C, Et₂O) [ppm] <i>δ</i> = 56a : 41.6
	(¹ J _{W,P} = 313.2 Hz, 23%)
	weitere Nebenprodukte: -61.2 (1%), -38.3 (1%), 32.5 (3%),
	113.4 (1%), 115.5 (1%), 121.1 (3%), 178.4 (3%), 186.9
	(10%), 285.7 (4%), 324.4 (${}^{1}J_{W,P}$ = 115.7 Hz, 148.0 Hz, 36%),
	347.3 (6%), 392.2 (¹ <i>J</i> _{P,P} = 514 Hz, 4%), 444.7
	(¹ <i>J</i> _{P,P} = 514.7 Hz, 4%)
	(2)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 56a : 41.6
	(¹ J _{W,P} = 313.2 Hz, 30%)
	weitere Nebenprodukte: -18.2 (7%), -17.0 (7%), -16.0 (1%), -
	11.9 (2%), 21.6 (2%), 32.5 (2%), 101.0 (br, 3%), 121.6
	$({}^{1}J_{W,P} = 289.0 \text{ Hz}, 8\%), 285.7 ({}^{1}J_{W,P} = 268.6 \text{ Hz},$
	$J_{\rm P,H}$ = 35.2 Hz, 27%), 291.2 (¹ $J_{\rm W,P}$ = 265.7 Hz, 11%)
	(3)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 56a : 41.6
	(¹ J _{W,P} = 313.2 Hz, 37%)
	weitere Nebenprodukte: -41.2 (br, 21%), -36.7 (1%), -33.7
	(5%), -17.5 (12%), -16.0 (11%), -11.5 (3%), 32.5 (1%), 178.1
	(2%), 186.3 (7%)
	(4)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 56a : 41.6
	(¹ J _{W,P} = 313.2 Hz, 38%)

weitere Nebenprodukte: -26.5 (br, 3%), -20.1 (1%), -18.7 (4%), -17.7 (3%), -13.6 (2%), -12.9 (7%), 32.5 (1%), 35.0 (2%), 35.9 (2%), 44.5 (7%), 51.2 (3%), 54.6 (5%), 55.6 (5%), 156.6 (3%), 177.6 (5%), 185.1 (9%)

6.6.1.2 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*m*-pyridyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₅H₄N)-O}] (**57a**)

Zu einer Lösung von 0.4 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (1a) (0.684 mmol) in 12 mL Et₂O und 88.5 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.51 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden

0.14 mL *m*-Pyridinaldehyd (3 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und NMR-spektroskopisch vermessen.

Summenformel:	$C_{18}H_{24}NO_6PSi_2W$
Molare Masse:	621.4 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, Et ₂ O) [ppm] δ =
	57a : 41.6 (¹ <i>J</i> _{W,P} = 311.1 Hz, 40%),
	weitere Nebenprodukte: -17.5 (1%), -11.9 (2%), 31.6 (7%),
	83.9 (br, 6%), 112.3 (br, 9%), 115.2 (1%), 117.1 (br, 8%),
	122.0 (2%), 286.3 (${}^{1}J_{W,P}$ = 265.6 Hz, $J_{P,H}$ = 35.6 Hz, 13%),
	293.6 (¹ J _{W,P} = 264.3 HZ, 11%)

6.6.1.3 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*o*-pyridyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCH(C₅H₄N)-O}] (**58a**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.4 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (1a) (0.684 mmol) in 12 mL Et₂O und 88.5 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.51 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 65.1 µL *o*-Pyridinaldehyd (1 Äq) hinzugegeben.

Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE (F1: 30 mL), PE/Et₂O (F2: 20 mL, 10% Et₂O). Das Hauptisomer wird nach Umkristallisation aus *n*-Pentan/flüssigem Stickstoff als hellgelber Feststoff erhalten.

Summenformel:	$C_{18}H_{24}NO_6PSi_2W$
Molare Masse:	621.4 g/mol
Ausbeute:	0.158 g (37%)
Schmelzpunkt:	132 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 58a'-58a'''

¹H-NMR (300.1 MHz, 25 °C, CDCl₃): [ppm] δ = ausgewählte Daten **58a**⁴: 1.49 (d, 1H, ²*J*_{P,H} = 17.3 Hz, C*H*(SiMe₃)₂), 4.46 (d, 1H, ²*J*_{P,H} = 4.4 Hz, C*H*(P)(O)), **58a**⁴: 0.31 (s, 9H, SiMe₃), 0.39 (s, 9H, SiMe₃), 1.27 (s, 1H, C*H*(SiMe₃)₂), 4.42 (d, 1H, ²*J*_{P,H} = 3.2 Hz, C*H*(P)(O)), 7.16-29 (m, 2H, H_{Ar}^(3,5)), 7.65 (td, ³*J*_{H,H} = 7.8 Hz, ⁴*J*_{H,H} = 1.5 Hz, 1H, H_{Ar}⁽⁴⁾), 8.58 (d, 1H, ³*J*_{H,H} = 4.2 Hz, H_{Ar}⁽²⁾)

	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, CDCI ₃): [ppm] δ = ausgewählte Daten 58a ⁴ : 22.1 (d, ¹ <i>J</i> _{P,C} = 39.3 Hz, <i>C</i> H(SiMe ₃) ₂), 64.3 (d, ¹ <i>J</i> _{P,C} = 21.4 Hz, <i>C</i> H(P)(O)), 58a ⁴ : 1.5 (d, ³ <i>J</i> _{P,C} = 4.2 Hz, SiMe ₃), 1.9 (d, ³ <i>J</i> _{P,C} = 2.4 Hz, SiMe ₃), 32.9 (d, ¹ <i>J</i> _{P,C} = 18.3 Hz, <i>C</i> H(SiMe ₃) ₂), 60.1 (d, ¹ <i>J</i> _{P,C} = 27.1 Hz, <i>C</i> H(P)(O)), 120.3 (d, ³ <i>J</i> _{P,C} = 3.8 Hz, CH _{Ar} ⁽⁵⁾), 123.1 (d, ⁵ <i>J</i> _{P,C} = 2.3 Hz, CH _{Ar} ⁽³⁾), 136.7 (d, ⁴ <i>J</i> _{P,C} = 1.9 Hz, CH _{Ar} ⁽⁴⁾), 149.9 (d, ⁴ <i>J</i> _{P,C} = 2.1 Hz, CH _{Ar} ⁽²⁾), 155.7 (s, C _{Ar} ⁽¹⁾), 194.9 (d,
	29 Si-NMR (79.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 58a ⁴ : -0.11 (d, ${}^{2}J_{P,Si}$ = 6.9 Hz, SiMe ₃), 0.64 (d, ${}^{2}J_{P,Si}$ = 6.2 Hz, SiMe ₃), 58a ⁴ : 0.04 (d, ${}^{2}J_{P,Si}$ = 5.5 Hz, SiMe ₃), 1.10 (d, ${}^{2}J_{P,Si}$ = 8.0 Hz, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, CDCl ₃) [ppm] δ = 58a ': 32.7 (¹ J _{W,P} = 296.9 Hz, ² J _{P,H} = 17.2 Hz (d)), 58a '': 41.1 (¹ J _{W,P} = 309.5 Hz), 58a ''': 46.3 (¹ J _{W,P} = 298.4 Hz, ^{2,3} J _{P,H} = m), Verhältnis 58a ': 58a ''' [0.1:1.0:0.02]
MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 621.0 (50) $[M]^{++}$, 593.0 (5) $[M-CO]^{+}$, 537.1 (15) $[M-3CO]^{+}$, 486.0 (100) $[M-2CO-C_5H_4N-H]^{+}$, 481.1 (50) $[M-5CO]^{+}$, 430.0 (30) $[M-4CO-C_5H_4N-H]^{+}$, 402.0 (25) $[M-5CO-C_5H_4N]^{+}$, 358.0 (50) $[M-4CO-C_5H_4N-H-SiMe_3]^{+}$, 73.1 (90) $[SiMe_3]^{+}$
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2960, 2922, 2849 (m, CH), 2075 (s, CO), 1992 (s, CO), 1909 (s, CO), 1588, 1570 (m, C=C), 1469, 1434.1 (m, C=N), 1253 (s, SiMe ₃)
EA:	C ₁₈ H ₂₄ NO ₆ PSi ₂ W (%) ber.: C 34.79, H 3.89, N 2.25 gef.: C 34.72, H 3.91, N 2.24
Röntgenstruktur:	GSTR214, Greg1760, MK-154, s. Anhang D8

6.6.1.4 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*o*-pyridyl)oxaphosphiran- κP }molibdän(0)} [Mo(CO)₅{Me₃Si)₂CH-PCH(C₅H₄N)-O}] (**58b**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.4 g $[Mo(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1b**) (0.804 mmol) in 12 mL Et₂O und 104.1 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.60 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur

gerührt. Anschließend werden 153.3 μ L *o*-Pyridinaldehyd (2 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE. Das Produkt wird nach Umkristallisation aus *n*-Pentan bei -80 °C als hellgelber Feststoff erhalten.

Summenformel:	C ₁₈ H ₂₄ MoNO ₆ PSi ₂
Molare Masse:	535.0 g/mol
Ausbeute:	0.084 g (20%)
Schmelzpunkt:	94 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 58b'-58b'''
	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = ausgewählte
	Daten 58b ': 1.43 (d, ² <i>J</i> _{P,H} = 15.1 Hz, 1H, C <i>H</i> (SiMe ₃) ₂), 4.35
	(d, 1H, ² J _{P,H} = 5.3 Hz, C <i>H</i> (P)(O)), 58b '': 0.18 (s, 9H, SiMe ₃),
	0.29 (s, 9H, SiMe ₃), 1.07 (d, ² J _{P,H} = 2.7 Hz, 1H, C <i>H</i> (SiMe ₃) ₂),

4.53 (d, 1H, ${}^{2}J_{P,H}$ = 3.2 Hz, CH(P)(O)), 6.59 (dd, ${}^{3,4}J_{H,H}$ = 6.2 Hz, 1H, CH_{Ar}⁽³⁾), 7.06 (td, ${}^{3}J_{H,H}$ = 7.7 Hz, ${}^{4}J_{H,H}$ = 1.7 Hz, 1H, CH_{Ar}⁽⁴⁾), 7.22 (d, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H, CH_{Ar}⁽⁵⁾), 8.39 (d, ${}^{3}J_{H,H}$ = 4.7 Hz, 1H, CH_{Ar}⁽²⁾)

	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 58b ⁺⁺ : 1.4 (d, ³ J _{P,C} = 3.9 Hz, SiMe ₃), 1.9 (d, ³ J _{P,C} = 1.9 Hz, SiMe ₃), 33.0 (d, ¹ J _{P,C} = 24.5 Hz, CH(SiMe ₃) ₂)), 60.0 (d, ¹ J _{P,C} = 23.5 Hz, CH(P)(O)), 120.4 (d, ³ J _{P,C} = 3.5 Hz, CH _{Ar} ⁽⁵⁾), 123.4 (d, ⁵ J _{P,C} = 1.7 Hz, CH _{Ar} ⁽³⁾), 136.9 (d, ⁴ J _{P,C} = 1.4 Hz, CH _{Ar} ⁽⁴⁾), 150.3 (d, ⁴ J _{P,C} = 1.5 Hz, CH _{Ar} ⁽²⁾), 156.8 (s, C _{Ar} ⁽¹⁾), 204.6 (d, ² J _{P,C} = 11.0 Hz, <i>cis</i> -CO), 208.5 (d, ² J _{P,C} = 36.9 Hz, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 58b ": -0.9 (d, ² J _{P,Si} = 5.3 Hz, SiMe ₃), -0.07 (d, ² J _{P,Si} = 7.7 Hz, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 58b ^(*) : 57.7, 58b ^(*) : 64.7 (<i>J</i> _{P,H} = br), Verhältnis 58b ^(*) : 58b ^(*) [0.1:1.0]
MS (EI, 70 eV, ⁹⁸ Mo)	m/z (%) = 535.0 (1.5) [M] ^{+•} , 507.0 (2.5) [M-CO] ⁺ , 479.1 (8) [M-2CO] ⁺ , 395.1 (20) [M-5CO] ⁺ , 73.1 (100) [SiMe ₃] ⁺
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2959, 2923, 2853 (m, CH), 2076, 2000, 1922 (s, CO), 1588, 1570 (m, C=C), 1468, 1434 (m, C=N), 1254 (s, SiMe ₃)
EA:	C ₁₈ H ₂₄ MoNO ₆ PSi ₂ (%) ber.: C 40.52, H 4.53, N 2.63 gef.: C 41.78, H 4.885, N 3.09

6.6.1.5 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*o*-pyridyl)oxaphosphiran- κP }chrom(0)} [Cr(CO)₅{Me₃Si)₂CH-PCH(C₅H₄N)-O}] (**58c**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.25 g $[Cr(CO)_5{(Me_3Si)_2HC}_2PCI_2]$ (**1c**) (0.55 mmol) in 7.5 mL Et₂O und 71.2 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.41 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt.

Anschließend werden 105.1 μ L *o*-Pyridinaldehyd (2 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL).

Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE. Das Produkt wird nach Umkristallisation aus *n*-Pentan bei -80 °C als dunkelgelber Feststoff erhalten.

Summenformel:	C ₁₈ H ₂₄ CrNO ₆ PSi ₂
Molare Masse:	489.0 g/mol
Ausbeute:	0.101 g (37%)
Schmelzpunkt:	120 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 58c'-58c''

¹H-NMR (300.1 MHz, 25 °C, C₆D₆): [ppm] δ = ausgewählte Daten **58c**⁴: 1.54 (d, ²J_{P,H} = 17.5 Hz, 1H, C*H*(SiMe₃)₂), 4.31 (d, ²J_{P,H} = 5.2 Hz, 1H, C*H*(P)(O)), **58c**⁴: 0.17 (s, 9H, SiMe₃), 0.29 (s, 9H, SiMe₃), 1.10 (d, ²J_{P,H} = 1.2 Hz, 1H, C*H*(SiMe₃)₂), 4.53 (d, ²J_{P,H} = 3.2 Hz, 1H, C*H*(P)(O)), 6.58 (t, ³J_{H,H} = 6.2 Hz, 1H, CH_{Ar}⁽³⁾), 7.06 (td, ³J_{H,H} = 7.73 Hz, ⁴J_{H,H} = 1.5 Hz, 1H, CH_{Ar}⁽⁴⁾), 7.27 (d, ³J_{H,H} = 7.8 Hz, 1H, CH_{Ar}⁽⁵⁾), 8.39 (d, ³J_{H,H} = 4.2 Hz, CH_{Ar}⁽²⁾)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, C₆D₆): [ppm] δ = **58c**^{••}: 1.3 (d, ³*J*_{P,C} = 4.0 Hz, SiMe₃), 1.8 (d, ³*J*_{P,C} = 2.2 Hz, SiMe₃), 33.4

	(d, ${}^{1}J_{P,C} = 23.5 \text{ Hz}$, $CH(SiMe_{3})_{2}$)), 60.1 (d, ${}^{1}J_{P,C} = 24.6 \text{ Hz}$, $CH(P)(O)$), 120.1 (d, ${}^{3}J_{P,C} = 3.9 \text{ Hz}$, $CH_{Ar}^{(5)}$), 122.8 (d, ${}^{5}J_{P,C} = 2.2 \text{ Hz}$, $CH_{Ar}^{(3)}$), 136.3 (d, ${}^{4}J_{P,C} = 1.9 \text{ Hz}$, $CH_{Ar}^{(4)}$), 149.9 (d, ${}^{4}J_{P,C} = 2.0 \text{ Hz}$, $CH_{Ar}^{(2)}$), 156.0 (s, $C_{Ar}^{(1)}$), 213.8 (d, ${}^{2}J_{P,C} = 16.1 \text{ Hz}$, <i>cis</i> -CO), 219.1 (d, ${}^{2}J_{P,C} = 3.6 \text{ Hz}$, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 58c ⁽⁺⁾ : -0.05 (d, ² J _{P,Si} = 5.2 Hz, SiMe ₃), 0.56 (d, ² J _{P,Si} = 8.1 Hz, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 58c ⁴ : 87.2 (² <i>J</i> _{P,H} = 17.8 Hz, 5.0 Hz (dd)), 58c ⁴ : 91.2 (<i>J</i> _{P,H} = br), Verhältnis 58c ⁴ : 58c ⁴ : [0.2:1.0]
MS (EI, 70 eV, ⁵² Cr)	$\begin{aligned} m/z \ (\%) &= 489.0 \ (15) \ [M]^{+*}, \ 377.1 \ (30) \ [M-4CO]^{+}, \ 349.1 \ (100) \\ [M-5CO]^{+}, \ 297.1 \ (15) \ [Cr(CO)_5]^{+}, \ 270.0 \ (20) \\ [M-4CO-C_6H_5NO]^{+}, \ 242.0 \ (30) \ [M-5CO-C_6H_5NO]^{+}, \ 168.0 \ (15) \\ [M-3CO-CH(SiMe_3)_2-C_5H_4N]^{+}, \ 159.0 \ (30) \ [CH(SiMe_3)_2]^{+}, \ 73.1 \\ (30) \ [SiMe_3]^{+} \end{aligned}$
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2957, 2923, 2852 (m, CH), 2068, 2062, 1919 (s, CO), 1588, 1570 (m, C=C), 1468, 1434 (m, C=N), 1254 (s, SiMe ₃)
EA:	C ₁₈ H ₂₄ CrNO ₆ PSi ₂ (%) ber.: C 44.16, H 4.94, N 2.86 gef.: C 45.39, H 5.00, N 3.25

6.6.1.6 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(methyl)-3-o-pyridyl-oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Me₃Si)₂CH-PCMe(C₅H₄N)-O}] (**59a**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.4 g $[W(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1a**) (0.684 mmol) in 12 mL Et₂O und 88.5 µL [12]Krone-4 (0.8 Äq.) wird bei -90 °C unter Rühren 0.51 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden

76.7 µL *o*-Acetylpyridin (1 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan extrahiert (dreimal mit ca. 20 mL). Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1$ cm, h = 2 cm) bei -20 °C gereinigt. Als Eluent dient PE (F1: 20 mL), PE/Et₂O (F2: 20 mL, bis zu 50:50). Das Produkt wird als hellgelber Feststoff erhalten.

Summenformel:	$C_{19}H_{26}NO_6PSi_2W$
Molare Masse:	635.4 g/mol
Ausbeute:	0.197 g (46%)
Schmelzpunkt:	115 °C
NMR:	Charakterisierung erfolgt anhand der Mischung 59a'-59a'''
	¹ H-NMR (300.1 MHz, 25 °C, C ₇ D ₈): [ppm] δ = 59a ": -0.15 (s
	9H, SiMe ₃), 0.21 (s, 9H, SiMe ₃), 0.91 (d, ² J _{P,H} = 16.1 Hz, 1H

9H, SiMe₃), 0.21 (s, 9H, SiMe₃), 0.91 (d, ${}^{2}J_{P,H} = 16.1$ Hz, 1H, $CH(SiMe_{3})_{2}$), 1.97 (d, ${}^{2}J_{P,H} = 14.7$ Hz, 3H, CH₃), 6.47-6.54 (m, 1H, CH_{Ar}⁽³⁾), 6.89-6.98 (m, 1H, CH_{Ar}⁽⁴⁾), 7.15 (d, ${}^{3}J_{H,H} =$ 7.9 Hz, 1H, CH_{Ar}⁽⁵⁾), 8.26 (dt, ${}^{3}J_{H,H} = 4.8$ Hz, ${}^{4}J_{H,H} = 0.86$ Hz, 1H, CH_{Ar}⁽²⁾)

59a^{•••}: 0.19 (s, 9H, SiMe₃), 0.25 (s, 9H, SiMe₃), 1.47 (s, 1H, C*H*(SiMe₃)₂), 1.97 (d, ${}^{2}J_{P,H}$ = 9.6 Hz, 3H, CH₃), 6.54-6.62 (m, 1H, CH_{Ar}⁽³⁾), 7.01-7.08 (m, 1H, CH_{Ar}⁽⁴⁾), 7.27 (d, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H, CH_{Ar}⁽⁵⁾),

8.32 (dt, 1H, ${}^{3}J_{H,H}$ = 4.8 Hz, ${}^{4}J_{H,H}$ = 0.9 Hz, CH_{Ar}⁽²⁾)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, C₇D₈): [ppm] δ = **59a**^{**}: 1.2 (d, ³J_{P,C} = 4.7 Hz, SiMe₃), 1.8 (d, ³J_{P,C} = 3.1 Hz, SiMe₃), 22.9 (d, ²J_{P,C} = 7.2 Hz, CH₃), 25.7 (d, ¹J_{P,C} = 39.0 Hz, CH(SiMe₃)₂), 68.2 (d, ¹J_{P,C} = 25.7 Hz, C(P)(O)), 121.4 (d, ³J_{P,C} = 1.4 Hz, CH_{Ar}⁽⁵⁾), 122.4 (d, ⁵J_{P,C} = 1.0 Hz, CH_{Ar}⁽³⁾), 135.7 (d, ⁴J_{P,C} = 1.2 Hz, CH_{Ar}⁽⁴⁾), 149.7 (d, ⁴J_{P,C} = 1.3 Hz, CH_{Ar}⁽²⁾), 159.9 (s, C_{Ar}⁽¹⁾), 196.1 (d, ²J_{P,C} = 8.1 Hz, *cis*-CO), 196.5 (d, ²J_{P,C} = 33.4 Hz, *trans*-CO)

59a^{••••}: 2.1 (d, ${}^{3}J_{P,C}$ = 4.2 Hz, SiMe₃), 2.1 (d, ${}^{3}J_{P,C}$ = 2.6 Hz, SiMe₃), 21.8 (s, CH₃), 34.6 (d, ${}^{1}J_{P,C}$ = 19.9 Hz, *C*H(SiMe₃)₂), 67.6 (d, ${}^{1}J_{P,C}$ = 26.7 Hz, *C*(P)(O)), 120.4 (d, ${}^{3}J_{P,C}$ = 4.5 Hz, CH_{Ar}⁽⁵⁾), 122.8 (d, ${}^{5}J_{P,C}$ = 2.1 Hz, CH_{Ar}⁽³⁾), 136.3 (d, ${}^{4}J_{P,C}$ = 1.9 Hz, CH_{Ar}⁽⁴⁾), 149.9 (d, ${}^{4}J_{P,C}$ = 2.2 Hz, CH_{Ar}⁽²⁾), 160.3 (d, ${}^{2}J_{P,C}$ = 3.4 Hz C_{Ar}⁽¹⁾), 196.1 (d, ${}^{2}J_{P,C}$ = 8.1 Hz, *cis*-CO), 196.5 (d, ${}^{2}J_{P,C}$ = 33.4 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, C₇D₈) [ppm] δ = **59a**^{••}: -1.77 (d, ²J_{P,Si} = 5.7 Hz, SiMe₃), 3.67 (s, SiMe₃), **59a**^{•••}: -0.94 (d, ²J_{P,Si} = 6.5 Hz, SiMe₃), 1.33 (d, ²J_{P,Si} = 8.4 Hz, SiMe₃)

³¹P-NMR (121.5 MHz, 25 °C, C₇D₈) [ppm] δ = **59a**[']: 45.7 (¹J_{W,P} = 306.4 Hz, ²J_{P,H} = 15.9 Hz, ³J_{P,H} = 7.3 Hz (dq)), **59a**^{''}: 48.9 (¹J_{W,P} = 299.8 Hz, ^{2,3}J_{P,H} = 15.2 Hz (pseudo-qui)), **59a**^{''}: 60.6 (¹J_{W,P} = 307.0 Hz, ³J_{P,H} = 9.1 Hz (q)), Verhältnis **59a**[']:**59a**^{''}:**59a**^{''} [0.1:1.0:0.2]

$$\begin{split} \text{MS (EI, 70 eV, }^{184}\text{W}) & \text{m/z (\%)} = 635.2 \ (25) \ [\text{M}]^{+*}, \ 607.1 \ (5) \ [\text{M-CO}]^{+}, \ 551.2 \ (30) \\ & [\text{M-3CO}]^{+}, \ 514.1 \ (10) \ [\text{WP}(\text{CH}(\text{SiMe}_3)_2]^{+}, \ 495.2 \ (30) \ [\text{M-} 5\text{CO}]^{+}, \ 486.1 \ (100) \ [\text{M-CO-C}_5\text{H}_4\text{N-C}(\text{O})\text{CH}_3]^{+}, \ 484.1 \ (70) \ [\text{M-} \text{SiMe}_3\text{-C}_5\text{H}_4\text{N}]^{+}, \ 458.1 \ (15) \ [\text{M-2CO-C}_5\text{H}_4\text{N-C}(\text{O})\text{CH}_3]^{+}, \ 430.1 \\ & (30) \ [\text{M-3CO-C}_5\text{H}_4\text{N-C}(\text{O})\text{CH}_3]^{+}, \ 402.1 \ (25) \ [\text{M-4CO-C}_5\text{H}_4\text{N-} \text{C}(\text{O})\text{CH}_3]^{+}, \ 358.1 \ (30) \ [\text{M-3CO-C}_5\text{H}_4\text{N-C}(\text{O})\text{CH}_3\text{-SiMe}_3]^{+}, \ 358.1 \ (50) \ [\text{M-3CO-C}_5\text{H}_4\text{N-C}(\text{O})\text{CH}_3\text{-SiMe}_3\text{+H}]^{+}, \end{split}$$

252

	73.1 (80) [SiMe ₃] ⁺
IR (KBr):	Auswahl \tilde{v} [cm ⁻¹] = 2962 (m, CH ₃), 2076, 1998.3, 1929 (s, CO), 1583, 1566 (m, C=C), 1461, 1431 (m, C=N), 1256 (s, SiMe ₃)
EA:	C ₁₉ H ₂₆ NO ₆ PSi ₂ W (%) ber.: C 35.92, H 4.12, N 2.20 gef.: C 36.01, H 4.51, N 2.38
Röntgenstruktur:	GSTR213, Greg1758, MK-150, s. Anhang D9

6.6.2 P-Triphenylmethyl-substituierte Komplexe

6.6.2.1 {Pentacarbonyl{2-[triphenylmethyl]-3-(o-pyridyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Ph₃C-PCH(C₅H₄N)-O}] (**60a**)

Synthese nach allgemeiner Methode B

Zu einer Lösung von 153 mg $[W(CO)_5(Ph_3C)PCl_2]$ (**2a**) (0.229 mmol) in 4 mL THF und 37.1 µL [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.14 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 21.8 µL *o*-Pyridinaldehyd (1 Äq) hinzugegeben. Die

Reaktionsmischung wird 15 Minuten gerührt und anschließend das Lösungsmittel unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit Toluol extrahiert (dreimal mit ca. 10 mL). Das Rohprodukt wird anschließend aus *n*-Pentan umkristallisiert und als hellgelber Feststoff erhalten.

Summenformel:	$C_{30}H_{20}NO_6PW$
Molare Masse:	705.3 g/mol
Ausbeute:	0.121 g (75%)
Schmelzpunkt:	144 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 4.29 (d
	² J _{P,H} = 3.4 Hz, 1H, C <i>H</i> P(O)), 6.52 (m, ³ J _{H,H} = 7.3 Hz,

⁴ J _{H,H} = 4.9 Hz, 1H, CH _{Ar} ⁽³⁾), 6.98-7.09 (m, 4H, CH _{Ar} ⁽⁴⁾ ,
$CH_{Ph}^{(9)}$), 7.09-7.24 (m, 6H, $CH_{Ph}^{(8)}$), 7.27 (d, ${}^{3}J_{H,H}$ = 7.8 Hz,
1H, $CH_{Ar}^{(5)}$), 7.66 (d, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H, $CH_{Ph}^{(7)}$),
8.35 (dm, ^{3,4} J _{H,H} = 4.1 Hz, 1H, CH _{Ar} ⁽²⁾)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, C₆D₆): [ppm] δ = 60.9 (d, ¹J_{P,C} = 23.3 Hz, *C*HP(O)), 67.7 (d, ¹J_{P,C} = 7.3 Hz, *C*Ph₃), 121.7 (d, ³J_{P,C} = 4.17 Hz, CH_{Ar}⁽⁵⁾), 123.2 (d, ⁵J_{P,C} = 1.79 Hz, CH_{Ar}⁽³⁾), 128.1 (d, ⁵J_{P,C} = 1.89 Hz, CH_{Ph}⁽⁹⁾), 129.1 (s, CH_{Ph}⁽⁸⁾), 131.2 (d, ³J_{P,C} = 7.15 Hz, CH_{Ph}⁽⁷⁾), 136.5 (d, ⁴J_{P,C} = 1.49 Hz, CH_{Ar}⁽⁴⁾), 140.2 (d, q, ²J_{P,C} = 2.33 Hz, C_{Ph}⁽⁶⁾), 149.8 (d, ⁴J_{P,C} = 1.86 Hz, CH_{Ar}⁽²⁾), 155.1 (s, C_{Ar}⁽¹⁾), 194.6 (d, ²J_{P,C} = 8.0 Hz, *cis*-CO), 196.1 (d, ²J_{P,C} = 40.8 Hz, *trans*-CO)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆) [ppm] δ = 14.15 (¹J_{W,P} = 311.4 Hz, J_{P,H} = br)

- $$\begin{split} \text{MS (EI, 70 eV, }^{184}\text{W}) & \text{m/z (\%)} = 677.1 \ (2) \ [\text{M-CO]}^+, \ 434.0 \ (1) \ [\text{M-CO-CPh}_3]^+, \ 406.0 \\ & (2) \ [\text{M-2CO-CPh}_3]^+, \ 378.0 \ (2) \ [\text{M-3CO-CPh}_3]^+, \ 352.0 \ (2) \\ & [\text{M-CO-CPh}_3\text{-}\text{C}_2\text{H}_2]^+, \ 243.1 \ (100) \ [\text{CPh}_3]^+, \ 183.1 \ (30) \\ & [\text{Ph}_3\text{COH-C}_6\text{H}_5]^+, \ 165.1 \ (80) \ [\text{CPh}_3\text{-Ph}]^+, \ 91.1 \ (15) \ [\text{C}_7\text{H}_7]^+ \\ \\ & \text{IR (ATR):} & \text{Auswahl } \tilde{\nu} \ [\text{cm}^{-1}] = 3100\text{-}2750 \ (\text{m, CH}), \ 2076 \ (\text{s, CO}), \ 1989 \\ & (\text{w, CO}), \ 1938 \ (\text{vs, CO}), \ 1920 \ (\text{vs, CO}), \ 1586 \ (\text{m, C=C}), \ 1492, \end{split}$$
- EA: C₃₀H₂₀NO₆PW (%) ber.: C 51.09, H 2.86, N 1.99 gef.: C 51.68, H 3.44, N 2.01

1470, 1444 (m, C=N)

6.6.2.2 {Pentacarbonyl{2-[triphenylmethyl]-3-(*m*-pyridyl)oxaphosphiran- κP }wolfram(0)} [W(CO)₅{Ph₃C-PCH(C₅H₄N)-O}] (**61a**)

Synthese nach allgemeiner Methode B

Zu einer Lösung von $0.5 \text{ g} [W(CO)_5(Ph_3C)PCl_2]$ (**2a**) (0.747 mmol) in 15 mL THF und 120.9 µL [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.44 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt.

Anschließend werden 51.6 μ L *m*-Pyridinaldehyd (1 Äq) hinzugegeben. Die Reaktionsmischung wird 15 Minuten gerührt und anschließend das Lösungsmittel unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit Toluol extrahiert (dreimal mit ca. 20 mL). Das Rohprodukt wird anschließend aus *n*-Pentan umkristallisiert und als hellgelber Feststoff erhalten.

Summenformel:	$C_{30}H_{20}NO_6PW$
Molare Masse:	705.3 g/mol
Ausbeute:	0.146 g (47%)
Schmelzpunkt:	145 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 3.98 (d,
	² J _{P,H} = 1.2 Hz, 1H, C <i>H</i> P(O)), 6.59 (dd, ³ J _{H,H} = 7.9 Hz,
	⁴ J _{H,H} = 4.8 Hz, 1H, CH _{Ar} ⁽⁴⁾), 6.94-7.01 (m, 3H, CH _{Ph} ⁽⁹⁾), 7.04-
	7.11 (m, 6H, $CH_{Ph}^{(8)}$), 7.21 (dm, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H, $CH_{Ar}^{(5)}$),
	7.53-7.59 (dm, ³ J _{H,H} = 7.9 Hz, 1H, CH _{Ph} ⁽⁷⁾), 8.35 (m,
	${}^{5}J_{H,H} = 1.6$ Hz, ${}^{4}J_{H,H} = 4.8$ Hz, ${}^{4}J_{P,H} = 4.9$ Hz, 1H, CH _{Ar} ⁽²⁾), 8.59
	(m, 1H, CH _{Ar} ⁽³⁾)
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 58.3 (d,
	${}^{1}J_{P,C} = 24.3 \text{ Hz}, CHP(O)), 67.7 (d, {}^{1}J_{P,C} = 7.6 \text{ Hz}, CPh_{3}),$
	123.3 (d, ${}^{4}J_{P,C}$ = 0.9 Hz, $C_{Ar}{}^{(4)}$), 128.1 (d, ${}^{5}J_{P,C}$ = 1.7 Hz,
	$CH_{Ph}^{(9)}$), 128.9 (s, $CH_{Ph}^{(8)}$), 130.4 (d, ${}^{2}J_{P,C} = 0.6$ Hz, $C_{Ar}^{(1)}$),
	130.9 (d, ${}^{3}J_{P,C}$ = 7.1 Hz, CH _{Ph} ⁽⁷⁾), 133.8 (d, ${}^{3}J_{P,C}$ = 3.9 Hz,
	$CH_{Ar}^{(5)}$), 139.9 (d, ² $J_{P,C}$ = 2.3 Hz, $C_{Ph}^{(6)}$),

148.2 (d, ${}^{3}J_{P,C}$ = 3.7 Hz, CH_{Ar}⁽²⁾), 149.6 (d, ${}^{5}J_{P,C}$ = 1.8 Hz, CH_{Ar}⁽³⁾), 194.2 (d, ${}^{2}J_{P,C}$ = 8.1 Hz, *cis*-CO), 195.7 (d, ${}^{2}J_{P,C}$ = 41.2 Hz, *trans*-CO)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆) [ppm] δ = 16.1 (¹J_{W,P} = 313.8 Hz, J_{P,H} = br)

$$\begin{split} \text{MS (EI, 70 eV, }^{184}\text{W}) & \text{m/z (140 °C) (\%) = 705.0 (0.5) [M]}^{\text{+}\text{*}, 598.0 (4)} \\ & [\text{M-C}_5\text{H}_4\text{NC}(\text{H})\text{O}]^{\text{+}, 514.0 (2) [\text{M-C}_5\text{H}_4\text{NC}(\text{H})\text{O}-3\text{CO}]^{\text{+}, 244.1}} \\ & (40) [\text{CPh}_3\text{H}]^{\text{+}, 243.1 (100) [\text{CPh}_3]^{\text{+}, 214.0 (5)}} \\ & [\text{Ph}_3\text{CPOH-C}_6\text{H}_5]^{\text{+}, 183.0 (5) [\text{Ph}_3\text{COH-C}_6\text{H}_5]^{\text{+}, 165.0 (40)}} \\ & [\text{CPh}_3\text{-}\text{C}_6\text{H}_5]^{\text{+}} \end{split}$$

m/z (120 °C) (%) = 598.0 (0.4) [M-C₅H₄NC(H)O]⁺, 260.1 (15) [CPh₃OH]⁺, 244.1 (100) [CPh₃H]⁺, 243.1 (99) [CPh₃]⁺, 214.0 (100) [Ph₃CPOH-C₆H₅]⁺, 183.0 (60) [Ph₃COH-C₆H₅]⁺, 165.0 (70) [CPh₃-C₆H₅]⁺, 152.0 (12) [M-W(CO)₅-3C₆H₅+H]⁺, 107.0 (60) [C₅H₄NC(H)O]⁺, 106.0 (90) [C₅H₄NC(H)O-H]⁺, 92.0 (70) [C₅H₄NC(H)O-OH]⁺, 78.0 (62) [C₅H₄N]⁺, 65.1 (22) [C₅H₅]⁺, 51.1 (38) [C₄H₃]⁺, 45.1 (42) [C₂H₅O]⁺

- IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 3060-2920 (m, CH), 2076 (s, CO), 1999 (w, CO), 1941 (vs, CO), 1917 (vs, CO), 1593 (m, C=C), 1491, 1445, 1415 (m, C=N)
- EA: C₃₀H₂₀NO₆PW (%) ber.: C 51.09, H 2.86, N 1.99 gef.: C 51.79, H 3.42, N 1.99

6.6.2.3 {Pentacarbonyl{2-[triphenylmethyl]-3-(*p*-pyridyl)oxa-phosphiran- κP }wolfram(0)} [W(CO)₅{Ph₃C-PCH(C₅H₄N)-O}] (**62a**)

Synthese nach allgemeiner Methode B

Zu einer Lösung von 0.5 g [W(CO)₅(Ph₃C)PCl₂] (**2a**) (0.747 mmol) in 15 mL THF und 120.9 μ L [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.44 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend

werden 70.7 µL *p*-Pyridinaldehyd (1 Äq) hinzugegeben. Die Reaktionsmischung wird 15 Minuten gerührt und anschließend das Lösungsmittel unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit Toluol extrahiert (dreimal mit ca. 20 mL). Das Rohprodukt wird anschließend aus *n*-Pentan umkristallisiert und als dunkelgelber Feststoff erhalten.

Summenformel:	$C_{30}H_{20}NO_6PW$
Molare Masse:	705.3 g/mol
Ausbeute:	0.392 g (74%)
Schmelzpunkt:	150 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 3.89 (d, 1H, ² J _{P,H} = 3.2 Hz, C <i>H</i> P(O)), 6.84-6.89 (m, ³ J _{H,H} = 5.69 Hz, 2H, CH _{Ar} ^(2,5)), 6.99-7.03 (m, 3H, CH _{Ph} ⁽⁹⁾), 7.07-7.12 (m, 6H, CH _{Ph} ⁽⁸⁾), 7.54-7.61 (m, 6H, CH _{Ph} ⁽⁷⁾), 8.38-8.42 (m, 2H, CH _{Ar} ^(3,4))
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 59.2 (d, ¹ J _{P,C} = 23.4 Hz, CHP(O)), 68.0 (d, ¹ J _{P,C} = 7.4 Hz, CPh ₃), 121.4 (d, ³ J _{P,C} = 3.4 Hz, CH _{Ar} ^(2,5)), 128.2 (d, ⁵ J _{P,C} = 3.4 Hz, CH _{Ph} ⁽⁹⁾), 129.8 (s, CH _{Ph} ⁽⁸⁾), 131.0 (d, ³ J _{P,C} = 7.1 Hz, CH _{Ph} ⁽⁷⁾), 140.1 (d, ² J _{P,C} = 2.3 Hz, C _{Ph} ⁽⁶⁾), 143.1 (d, ² J _{P,C} = 0.6 Hz, C _{Ar} ⁽¹⁾), 150.3 (d, ⁴ J _{P,C} = 1.4 Hz, CH _{Ar} ^(3,4)), 194.4 (d, ² J _{P,C} = 8.1 Hz, <i>cis</i> -CO), 195.1 (d, ² J _{P,C} = 41.3 Hz, <i>trans</i> -CO)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆) [ppm] δ = 15.9 (¹ $J_{W,P}$ = 315.0 Hz, $J_{P,H}$ = br)

MS (EI, 70 eV, ¹⁸⁴ W)	$m/z (\%) = 705.0 (0.05) [M]^{++}, 598.0 (<1) [M-C_5H_4NC(H)O]^{+},$ 244.1 (60) [CPh ₃ H]^{+}, 243.1 (100) [CPh ₃]^{+}, 239.1 (20) [M-W(CO)_5-HCN-C_3H_2]^{+}, 165.0 (90) [CPh_3-C_6H_5]^{+}, 92.0 (20) [C_5H_4NC(H)O -OH]^{+}, 91.0 (70) [C_5H_4NC(H)O-O]^{+}
IR (ATR):	Auswahl ỹ [cm ⁻¹] = 3032-2924 (m, CH), 2077 (s, CO), 1991 (w, CO), 1941 (vs, CO), 1916 (vs, CO), 1598,1556 (m, C=C), 1492, 1445, 1408 (m, C=N)
EA:	C ₃₀ H ₂₀ NO ₆ PW (%) ber.: C 51.09, H 2.86, N 1.99 gef.: C 51.75, H 3.25, N 1.94

6.6.2.4 Tieftemperatur-NMR-Verfolgung der Li/CI-Phosphinidenoid-Komplexe 5a (M = W) und 5b (M = Mo)

Zu einer Lösung von 40.0 mg $[M(CO)_5(Ph_3C)PCl_2]$ (**2a** (M = W): 0.06 mmol, **2b** (M = Mo: 0.07 mmol) in 0.5 mL Pyridin und einem Äquivalent [12]Krone-4 (**2a** (M = W): 9.7 µL, **2b** (M = Mo: 11.2 µL) in einem Young-NMR-Röhrchen wird bei -40 °C ein Äquivalent *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, **2a** (M = W): 0.04 mL, **2b** (M = Mo: 0.04 mL) zugetropft. Die Temperatur wird bei -40 °C gehalten und die Probe direkt NMR-spektroskopisch vermessen. ³¹P{¹H}-NMR-Messungen erfolgten bei -40 °C, -30 °C, -10 °C, 0 °C, 25 °C und im Fall von **5a** erfolgte eine weitere Messung nach 16 Minuten bei 25 °C.

NMR:

5a (M= W): ³¹ P{ ¹ H}-NMR (121.5 MHz, -40 °C, Pyridin) [ppm] δ = 255.7 (¹ J _{W,P} = 80.7 Hz, 95%), weitere Nebenprodukte: 139.6 (3%), 140.0 (1%), 147.9 (1%)
³¹ P{ ¹ H}-NMR (121.5 MHz, -30 °C, Pyridin) [ppm] δ = 256.1 (¹ J _{W,P} = 80.1 Hz, 95%), weitere Nebenprodukte: 139.7 (3%), 140.4 (1%), 164.9 (1%)
³¹ P{ ¹ H}-NMR (121.5 MHz, -10 °C, Pyridin) [ppm] δ = 257.1 (¹ J _{W,P} = 78.1 Hz, 97%), weitere Nebenprodukte: 252.9 (br, 3%)
³¹ P{ ¹ H}-NMR (121.5 MHz, 0 °C, Pyridin) [ppm] δ = 257.5 (¹ J _{W,P} = 78.6 Hz, 97%), weitere Nebenprodukte: 254.9 (br, 3%)
³¹ P{ ¹ H}-NMR (121.5 MHz, 10 °C, Pyridin) [ppm] δ = 257.9 (¹ J _{W,P} = 79.0 Hz, 94%), weitere Nebenprodukte: 88.6 (1%), 139.7 (br, 1%), 256.8 (br, 4%)
³¹ P{ ¹ H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = 258.6 (¹ J _{W,P} = 78.4 Hz, 52%), weitere Nebenprodukte: 88.4 (2%), 140.1 (4%), 156.9-166.3 (br, 39%), 259.8-260.3 (br, 3%)
³¹ P{ ¹ H}-NMR (121.5 MHz, 25 °C, nach 16 Minuten, Pyridin) [ppm] δ = 258.6 (¹ J _{W,P} = 79.8 Hz, 16%), weitere Nebenprodukte: 89.4 (1%), 96.2 (2%), 108.8 (1%), 139.8 (1%), 140.1 (3%), 156.6-165.8 (br, 76%)
5b (M= Mo): ³¹ Ρ{ ¹ H}-NMR (121.5 MHz, -40 °C, Pyridin) [ppm] δ=

284.8 (65%), weitere Nebenprodukte: 18.9 (1%), 20.3 (2%), 25.4 (1%), 29.8 (1%), 41.9 (1%), 105.7 (1%), 115.9 (1%), 137.7 (1%), 169.7 (2%), 169.9 (1%), 171.4 (12%), 171.9 (2%), 179.3 (5%), 267.7 (br, 3%), 275.2 (br, 1%),

³¹P{¹H}-NMR (121.5 MHz, -30 °C, Pyridin) [ppm] δ = 285.2 (63%), weitere Nebenprodukte: 14.2 (1%), 14.8 (1%), 19.5 (2%), 20.9 (4%), 26.1 (1%), 30.3 (2%), 106.2 (1%), 116.6 (1%), 137.9 (1%), 141.5 (1%), 169.9 (1%), 170.0 (1%), 171.7 (10%), 173.7 (1%), 179.7 (4%), 269.8 (br, 3%), 278.5 (br, 2%),

³¹P{¹H}-NMR (121.5 MHz, -10 °C, Pyridin) [ppm] δ = 285.8 (62%), weitere Nebenprodukte: 6.9 (1%), 10.9 (1%), 14.9 (1%), 15.6 (2%), 20.2 (4%), 20.4 (2%), 22.2 (3%), 27.3 (1%), 31.4 (2%), 107.1 (1%), 124.1 (1%), 138.5 (3%), 141.3 (2%), 170.8 (1%), 273.6 (9%), 279.0 (br, 2%), 284.2 (br, 2%),

³¹P{¹H}-NMR (121.5 MHz, 0 °C, Pyridin) [ppm] δ = 286.1 (60%), weitere Nebenprodukte: 7.2 (1%), 11.1 (1%), 15.2 (2%), 15.9 (1%), 20.3 (3%), 20.9 (2%), 22.8 (3%), 27.9 (1%), 32.0 (2%), 70.6 (1%), 107.7 (1%), 125.1 (br, 2%), 138.8 (2%), 139.5 (1%), 141.2 (2%), 271.1 (1%), 275.8 (br, 9%), 281.0 (br, 2%), 287.2 (br, 3%)

³¹P{¹H}-NMR (121.5 MHz, 10 °C, Pyridin) [ppm] δ = 285.6 (56%), weitere Nebenprodukte: -27.9 (4%), 16.4 (1%), 20.5 (3%), 21.6 (1%), 23.6 (2%), 32.7 (1%), 71.0 (1%), 101.2 (1%), 108.3 (3%), 139.1 (3%), 141.1 (1%), 181.5-188.5 (br, 14%), 278.2 (br, 9%)

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = 287.2 (5%), weitere Nebenprodukte: -56.0 (2%), -28.6-(-25.8) (br, 11%), -23.9-(-20.9) (br, 2%), 71.8 (2%), 62.2 (1%), 74.8 (1%), 100.4 (br, 2%), 109.1 (1%), 139.1 (1%), 139.5 (1%), 140.8 (1%), 171.8 (1%), 180.8-190.6 (br, 65%), 181.8 (br, 1%), 286.24 (br, 3%)

Zu einer Lösung von 40.0 mg [W(CO)₅(Ph₃C)PCl₂] (**2a**) (0.06 mmol) in 1 mL Pyridin und 9.7 μ L [12]Krone-4 (0.06 mmol) werden bei -40 °C 0.04 mL *tert*-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) unter Rühren zugetropft. Nach 5 Minuten werden 5.72 μ L *o*-Pyridinaldehyd (0.06 mmol) und die Reaktionslösung über drei Stunden bis auf Raumtemperatur erwärmt und NMR-spektroskopisch vermessen.

NMR:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = -8.9 (2%), -4.6 (3%), -3.6 (2%), 2.8 (2%), 4.5 (5%), 5.7 (1%), 6.9 (1%), 13.7 (2%), 33.2 (1%), 90.6 (46%), 123.1 (2%), 133.0 (4%), 136.3 (10%), 138.4 (5%), 138.8 (2%), 139.2 (5%), 140.9 (2%), 159.2 (3%), 184.9 (1%), 194.2 (1%)

6.6.3 P-Pentamethylcyclopentadienyl-substituierte Komplexe

6.6.3.1 Reaktion von Li/CI-Phosphinidenoid-Komplex 6a mit o-, m-, p-Pyridinaldehyd

Zu einer Lösung von 40.0 mg [W(CO)₅(Cp*)PCl₂] (3a) (0.07 mmol) in 1 mL THF und 9.2 µL [12]Krone-4 (0.06 mmol) werden bei -90 °C 0.04 mL tert-Butyllithium-Lösung (1.6 M in *n*-Hexan, 1 Äq.) unter Rühren zugetropft. Nach 5 Minuten werden 1 Äquivalent des entsprechenden Aldehyds (o-Pyridinaldehyd: 6.8 µL, 6.7 µL) *m*-Pyridinaldehyd: 4.9 µL, *p*-Pyridinaldehyd: hinzugetropft, die Reaktionslösung über drei Stunden bis auf Raumtemperatur erwärmt und NMRspektroskopisch vermessen.

NMR:

63a:^[53c]

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = 31.1 (¹J_{W,P} = 308.0 Hz)

64a:

³¹P{¹H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = 32.9 (br, ¹J_{W,P} = 310.3 Hz)

65a: ³¹P{¹H}-NMR (121.5 MHz, 25 °C, Pyridin) [ppm] δ = 32.2 (br, ¹J_{W,P} = 306.1 Hz)

6.7 *C*,*C*-Dipyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe

- 6.7.1 *P*-Bis(trimethylsilyl)methyl-substituierte Komplexe
- κP {wolfram(0)} [W(CO)₅{Me₃Si}₂CH-PC(C₅H₄N)₂-O}] (66a)

Synthese nach allgemeiner Methode A

Zu

Temperatur gerührt. Anschließend werden 0.47 g Di-(o-pyridyl)keton (3 Åg) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan und 10% Et₂O extrahiert 20 mL + 2 mL). (zehnmal mit ca. Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}, h = 1 \text{ cm}$) bei -20 °C gereinigt. Als Eluent dient PE. Das Produkt wurde aus n-Pentan umkristallisiert und als hellgelber Feststoff erhalten.

Summenformel:	$C_{23}H_{27}N_2O_6PSi_2W$
Molare Masse:	698.5 g/mol
Ausbeute:	0.108 g (18%)
Schmelzpunkt:	123 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 0.08 (s, 9H,
	SiMe ₃), 0.42 (s, 9H, SiMe ₃), 1.77 (d, ² J _{P,H} = 16.3 Hz, 1H,
	$CH(SiMe_3)_2)$, 6.48 (dd, ^{3,4} $J_{H,H}$ = 4.86 Hz, 7.38 Hz, $CH_{Ar}^{(2)}$), 6.60
	(dd, ${}^{3,4}J_{H,H}$ = 4.90 Hz, 7.42 Hz, 1H, CH _{Ar} ^(2')), 6.94 (td,
	$^{3,4}J_{\rm H,H}$ = 1.70 Hz, 7.76 Hz, 1H, CH _{Ar} ⁽³⁾), 7.01 (td, $^{3,4}J_{\rm H,H}$ =
	1.62 Hz, 7.72 Hz, 1H, $CH_{Ar}^{(3)}$), 7.58 (d, ${}^{3}J_{H,H}$ = 7.86 Hz, 1H,
	$CH_{Ar}^{(4)}$), 7.87 (d, ${}^{3}J_{H,H}$ = 7.95 Hz, 1H, $CH_{Ar}^{(4')}$), 8.30 (d,

$${}^{3}J_{H,H}$$
 = 4.0 Hz, 1H CH_{Ar}⁽¹⁾), 8.49 (d, ${}^{3}J_{H,H}$ = 4.1 Hz, CH_{Ar}⁽¹⁾)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, C₆D₆): [ppm] δ = 1.55 (d, ³J_{P,C} = 4.6 Hz, SiMe₃), 2.0 (d, ³J_{P,C} = 2.9 Hz, SiMe₃), 25.8 (d, ¹J_{P,C} = 38.4 Hz, CH(SiMe₃)₂), 71.0 (d, ¹J_{P,C} = 21.9 Hz, C(P)(O)), 122.5 (d, ⁵J_{P,C} = 0.6 Hz CH_{Ar}⁽²⁾), 123.1 (d, ⁵J_{P,C} = 0.9 Hz CH_{Ar}^(2')), 123.7 (d, ³J_{P,C} = 0.8 Hz, CH_{Ar}^(4')), 124.7 (d, ³J_{P,C} = 3.9 Hz, CH_{Ar}⁽⁴⁾), 135.8 (d, ⁴J_{P,C} = 0.8 Hz, CH_{Ar}⁽³⁾), 136.5 (s, CH_{Ar}^(3')), 149.2 (d, ⁴J_{P,C} = 0.9 Hz, CH_{Ar}⁽¹⁾), 149.3 (s, CH_{Ar}^(1')), 157.3 (s, C_{Ar}⁽⁵⁾), 158.3 (d, ²J_{P,C} = 2.8 Hz, C_{Ar}^(5')), 195.8 (d, ²J_{P,C} = 8.2 Hz, *cis*-CO), 196.6 (d, ²J_{P,C} = 35.1 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, C₆D₆): [ppm] δ = -1.9 (d, ²J_{P,Si} = 6.9 Hz, SiMe₃), 4.0 (s, SiMe₃)

³¹P-NMR (121.5 MHz, 25 °C, C₆D₆): [ppm] δ = 51.5 (¹J_{W,P} = 310.0 Hz, ¹J_{P,C} = 35.7 Hz, ²J_{P,H} = 16.5 Hz)

MS (EI, 70 eV,	m/z (%) = 698.1 (35) [M] ⁺⁺ , 670.1 (5) [M-CO] ⁺ , 660.1 (30) [M-
¹⁸⁴ W)	C ₃ H ₂] ⁺ , 642.1 (20) [M-2CO] ⁺ , 614.1 (50) [M-3CO] ⁺ , 586.1 (5)
	[M-4CO] ⁺ , 576.1 (50) [M-3CO-C ₃ H ₂] ⁺ , 558.1 (80) [M-5CO] ⁺ ,
	484.0-(30) [M-2CH ₃ -(C ₅ H ₄ N) ₂ CO] ⁺ , 458.0 (45) [M-2C ₅ H ₄ N-
	3CO] ⁺ , 456.0 (35) [M-2CH ₃ -CO (C ₅ H ₄ N) ₂ CO] ⁺ , 430.0 (15) [M-
	3CO-(C ₅ H ₄ N) ₂ CO] ⁺ , 402.0 (30) [M-2C ₅ H ₄ N-5CO] ⁺ , 374.1 (65)
	[M-W(CO) ₅] ⁺ , 358.0 (32) [M-CH ₄ -5CO-2C ₅ H ₄ N-CO] ⁺ , 342.0
	(20) [M-CH ₄ -5CO-CH ₄ -(C ₅ H ₄ N) ₂ CO], 297.1 (12) [M-W(CO) ₅ -
	2C ₃ H ₃ +H] ⁺ , 257.1 (20) [M-W(CO) ₅ -C ₅ H ₄ N-C ₃ H ₃] ⁺ , 243.1 (40)
	[M-W(CO) ₅ -C ₄ H ₅ N-C ₃ H ₃ N] ⁺ , 215.0 (30) [M-W(CO) ₅ -
	CH(SiMe ₃)₂] ⁺ , 185.1 (30) [2C₅H₄N-CO+H] ⁺ , 169.1 (75)
	[(C ₅ H ₄ N) ₂ CH] ⁺ , 147.1 (40) [C ₈ H ₇ N ₂ O] ⁺ , 111.1 (10) [C ₄ H ₂ NOP] ⁺
	78.0 (25) [C ₅ H ₄ N] ⁺ , 73.1 (100) [SiMe ₃] ⁺
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 3051, 2985 (m, CH), 2076 (s, CO), 1992 (s
	CO), 1925 (s, CO), 1581, 1565 (m, C=C), 1462.6, 1429 (m,
	C=N), 1255 (m, SiMe ₃)

EA:

C₂₃H₂₇N₂O₆PSi₂W (%) ber.: C 39.55, H 3.90, N 4.01 gef.: C 39.31, H 4.32, N 3.98

6.7.1.2 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(*o*-pyridyl)oxaphosphiran- κP }molybdän(0)} [Mo(CO)₅{Me₃Si)₂CH-PC(C₅H₄N)₂-O}] (**66b**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g $[Mo(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (**1b**) (1.01 mmol) in 15 mL THF und 163.4 µL [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.59 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser

Temperatur gerührt. Anschließend werden 0.56 g Di-(*o*-pyridyl)keton (3 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan und 10% Et₂O unter Lichtausschluss extrahiert (fünfmal mit ca. 20 mL + 2 mL). Das Rohprodukt wird anschließend unter Lichtausschluss säulenchromatographisch an Aluminiumoxid ($\emptyset = 3 \text{ cm}$, h = 2 cm) bei -20 °C gereinigt. PE/Et₂O (F1, F2: 100 mL, bis zu 4% Et₂O; F3: 110 mL, bis zu 10% Et₂O). Auf Grund von Zersetzung konnte das ölige Produkt leider nicht in reiner und kristalliner Form erhalten werden.

Summenformel:	$C_{23}H_{27}MoN_2O_6PSi_2$
Molare Masse:	610.6 g/mol
NMR:	$^{31}\text{P-NMR}$ (121.5 MHz, 25 °C, THF): [ppm] $\delta\!=\!$
	75.8 (² J _{P,H} = 14.8 Hz)

6.7.1.3 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(*o*-pyridyl)oxaphosphiran- κP }chrom(0)} [Cr(CO)₅{Me₃Si)₂CH-PC(C₅H₄N)₂-O}] (**66c**)

Synthese nach allgemeiner Methode A

Zu einer Lösung von 0.5 g $[Cr(CO)_5\{(Me_3Si)_2HC\}_2PCI_2]$ (1c) (1.10 mmol) in 15 mL THF und 177.9 µL [12]Krone-4 (1 Äq.) wird bei -90 °C unter Rühren 0.65 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise

zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 0.6 g Di-(*o*-pyridyl)keton (3 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und der Rückstand wird mit *n*-Pentan gewaschen. Der rötliche Feststoff wird mit *n*-Pentan und 10% Et₂O extrahiert (fünfmal mit ca. 20 mL + 2 mL). Das Rohprodukt wird auf Aluminiumoxid aufgezogen und anschließend säulenchromatographisch an Aluminiumoxid (\emptyset = 3 cm, h = 3 cm) bei -20 °C gereinigt. Als Eluent dient PE/Et₂O (F1: 100 mL, bis zu 8% Et₂O; F2, F3: 250 mL, bis zu 20% Et₂O). Das Produkt wurde als dunkelgelber Feststoff erhalten.

Summenformel:	C ₂₃ H ₂₇ CrN ₂ O ₆ PSi ₂
Molare Masse:	566.6 g/mol
Ausbeute:	0.269 g (43%)
Schmelzpunkt:	115 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C_6D_6): [ppm] δ = 0.06 (s, 9H,
	SiMe ₃), 0.42 (s, 9H, SiMe ₃), 1.53 (d, ² J _{P,H} = 16.3 Hz, 1H,
	C <i>H</i> (SiMe ₃) ₂), 6.45 (dd, ^{3,4} J _{H,H} = 4.9 Hz, 7.0 Hz, 1H, CH _{Ar} ⁽²⁾),
	6.58-6.63 (m, 1H, CH _{Ar} ^(2')), 6.94-7.03 (m, 2H, CH _{Ar} ⁽³⁾ , CH _{Ar} ^(3')),
	7.56 (d, ${}^{3}J_{H,H}$ = 7.7 Hz, 1H, CH _{Ar} ⁽⁴⁾), 7.79 (d, ${}^{3}J_{H,H}$ = 7.9 Hz,
	1H, CH _{Ar} ^(4·)), 8.31 (d, ³ J _{H,H} = 4.1 Hz, 1H, CH _{Ar} ⁽¹⁾), 8.49 (d,
	${}^{3}J_{H,H} = 4.1 \text{ Hz}, 1H, CH_{Ar}^{(1')}$
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] <i>δ</i> = 1.48 (d,
	${}^{3}J_{P,C}$ = 4.4 Hz, SiMe ₃), 2.1 (d, ${}^{3}J_{P,C}$ = 2.7 Hz, SiMe ₃), 27.1 (d,
	¹ J _{P,C} = 45.3 Hz, CH(SiMe ₃) ₂), 70.9 (d, ¹ J _{P,C} = 17.6 Hz,

	$C(P)(O)$), 122.5 (s, $CH_{Ar}^{(2)}$), 123.2 (d, ${}^{5}J_{P,C} = 0.9$ Hz, $CH_{Ar}^{(2')}$), 123.6 (s, $CH_{Ar}^{(4')}$), 124.8 (d, ${}^{2}J_{P,C} = 3.8$ Hz, $CH_{Ar}^{(4)}$), 135.9 (s, $CH_{Ar}^{(3)}$), 136.5 (s, $CH_{Ar}^{(3')}$), 149.2 (s, $CH_{Ar}^{(1)}$, $CH_{Ar}^{(1')}$), 157.7 (s, $C_{Ar}^{(5')}$), 158.2 (d, ${}^{2}J_{P,C} = 2.8$ Hz, $C_{Ar}^{(5)}$), 215.3 (d, ${}^{2}J_{P,C} = 15.2$ Hz, <i>cis</i> -CO), 219.3 (d, ${}^{2}J_{P,C} = 3.5$ Hz, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = -2.2 (d, ² J _{P,Si} = 6.7 Hz, SiMe ₃), 3.8 (s, SiMe ₃)
	³¹ P-NMR (121.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 104.4 (² $J_{P,H}$ = 16.3 Hz)
MS (EI, 70 eV, ⁵² Cr, 180 °C)	$ \begin{array}{l} m/z \ (\%) = 566.1 \ (11) \ [M]^{++}, \ 494.1 \ (2) \ [M-SiMe_3+H]^+, \ 454.1 \ (8) \\ [M-4CO]^+, \ 426.1 \ (90) \ [M-5CO]^+, \ 411.1 \ (10) \ [M-5CO-CH_3]^+, \\ 374.2 \ (55) \ [M-Cr(CO)_5]^+, \ 294.1 \ (50) \ [M-C_{11}H_8N_2O-CH_3^- \\ SiMe_3]^+, \ 269.1 \ (12) \ [M-3CO-CH(SiMe_3)_2-2HCN]^+, \ 242.1 \ (20) \\ [M-3CO-CH(SiMe_3)_2-2HCN-C_2H_3]^+, \ 236.0 \ (30) \ [M-C_{11}H_8N_2O-2SiMe_3]^+, \ 215.1 \ (40) \ [M-Cr(CO)_5-CH(SiMe_3)_2]^+, \ 208.0 \ (30) \\ [M-C_{11}H_8N_2O-2SiMe_3-CO]^+, \ 193.0 \ (10) \ [M-3CO-C_2H_2N-C_2H_2^-C_5H_4N-2SiMe_3]^+, \ 185.1 \ (5) \ [C_{11}H_9N_2O]^+, \ 170.1 \ (25) \ [M-Cr(CO)_5^-CH(SiMe_3)_2^-PO+H]^+, \ 147.1 \ (85) \ [C_{11}H_9N_2O-C_3H_4]^+, \ 145.1 \ (15) \\ [C_8H_5N_2O]^+, \ 129.1 \ (10) \ [M-Cr(CO)_5^-CH(SiMe_3)_2^-PO+H-C_2H_2N-C_2H_2N^-C_2H_4]^+, \ 75.0 \ (40) \ [M-Cr(CO)_5^-CH(SiMe_3)_2^-PO + H-C_2H_2N-C_2H_4]^+, \ 75.0 \ (40) \ [M-Cr(CO)_5^-CH(SiMe_3)_2^-PO + H-C_2H_2N-C_2H_4]^+, \ 73.1 \ (100) \ [SiMe_3]^+, \ 51.9 \ (25) \ [C_3H_2N]^+ \end{array}$
IR (ATR):	Auswahl ỹ [cm ⁻¹] = 3062, 2963 (w, CH), 2069, 1997, 1951, 1918 (s, CO), 1581, 1568 (m, C=C), 1462, 1429 (m, C=N), 1249 (m, SiMe ₃)
EA:	C ₂₃ H ₂₇ CrN ₂ O ₆ PSi ₂ (%) ber.: C 48.75, H 4.80, N 4.94 gef.: C 47.53, H 5.12, N 4.74
Röntgenstruktur:	GSTR363, 3527, MK-522, s. Anhang D10

6.7.2 P-Pentamethylcyclopentadienyl-substituierte Komplexe

6.7.2.1 Reaktion von 6a mit Di-(o-pyridyl)keton zu 68a und 69a

Zu einer Lösung von 0.5 g $[W(CO)_5(Cp^*)PCl_2]$ (3a) (0.891 mmol) und 0.14 mL [12]Krone-4 (0.891 mmol) in 15 mL THF wird bei -90 °C unter Rühren 0.52 mL tert-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 0.49 g Di-(opyridyl)keton (3 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit *n*-Pentan (insgesamt 100 mL). Das extrahiert Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 1 cm) bei -20 °C gereinigt. Als Eluent dienen PE. Die rote Fraktion enthält sowohl $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplex 68a (49%) als auch das Umlagerungsprodukt 69a (27%), neben dem bekannten Chloro(organo)phosphan-Komplex (6%)^[98] und weiteren 18% unbekannter Nebenprodukte. Die Produkte konnten weder voneinander, noch vom Kronenether separiert werden.

674.3 g/mol
Charakterisierung erfolgt anhand der Mischung 68a/69a
¹ H-NMR (300.1 MHz, 25 °C, CDCl ₃): [ppm] δ = ausgewählte
Daten 68a : 7.06 (ddt, 1H, J _{H,H} = 7.5 Hz, 4.9 Hz, 1.3 Hz,
CH_{Py}), 7.14 (ddd, 1H, $J_{H,H}$ = 7.5 Hz, 4.8 Hz, 1.2 Hz, CH_{Py}),
7.39 (ddd, 1H, $J_{H,H}$ = 7.6 Hz, 4.8 Hz, 1.3 Hz, CH _{Py}), 7.80 (td,
1H, <i>J</i> _{H,H} = 7.7 Hz, 1.7 Hz, CH _{Py}), 7.47-7.64 (m, 2H,
überlagert, CH_{Py}), 8.50 (ddd, 1H, $J_{H,H}$ = 4.8 Hz, 1.7 Hz,
0.9 Hz CH _{Py}), 8.56-8.64 (m, 1H, CH _{Py})

ausgewählte Daten **69a**: 5.57 (dddd, $J_{H,H} = 7.3$ Hz, 6.0 Hz, 2.1 Hz, 1.2 Hz, CH), 6.29 (ddt, $J_{H,H} = 9.7$ Hz, 5.9 Hz, 0.9 Hz, CH), 6.61 (ddt, $J_{H,H} = 7.1$ Hz, 5.9 Hz, 1.2 Hz, CH), 6.78 (ddd, $J_{H,H} = 7.5$ Hz, 4.8 Hz, 1.1 Hz, CH), 7.20-7.24 (m, 1H, CH_{Py}), 8.02 (dt, $J_{H,H} = 7.8$ Hz, 1.1 Hz, CH_{Py}), 8.36 (ddd, $J_{H,H} = 4.8$ Hz, 1.9 Hz, 0.9 Hz, 1H, CH_{Py}), 8.67 (ddd, $J_{H,H} = 4.8$ Hz, 1.7 Hz, 1.0 Hz, 1H, CH_{Py})

³¹P-NMR (121.5 MHz, 25 °C, CDCl₃) [ppm] δ = **68a**: 55.9 (¹J_{W,P} = 310.6 Hz, 49%), **69a**: 171.8 (¹J_{W,P} = 321.8 Hz, 27%)

MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 676.0 (1.5) [M+2H] ⁺ , 674.0 (2) [M] ⁺⁺ , 590.1 (1) [M –
	3CO] ⁺ , 538.9 (8) [M –Cp*] ⁺ , 482.9 (5) [M–Cp*-2CO] ⁺ , 454.9
	(5) [M–Cp*-3CO] ⁺ , 426.9 (1) [M-Cp*-4CO] ⁺ , 398.9 (5) [M–
	Cp*-5CO] ⁺ , 215.0 (1) [M-Cp*-W(CO) ₅] ⁺ , 184.1 (15) [M-
	(CO) ₅ WPCp*] ⁺ , 169.1 (100) [C ₁₁ H ₉ N ₂] ⁺ , 156.1 (10) [M-
	(CO) ₅ WPCp*-HCN-H] ⁺ , 136.1 (15) [Cp*-H] ⁺ , 121.1 (22) [Cp*-
	Me+H] ⁺ , 105.0 (10) [Cp*-2Me] ⁺ , 78.0 (10) [C ₅ H ₄ N] ⁺ , 51.0 (8)
	$[C_5H_4N-HCN]^+.$

IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 2917, 2853 (w, CH), 2069 (m, CO), 1978 (w, CO), 1914 (s, CO), 1682, 1583, 1569 (m, C=C), 1466, 1435 (m, C=N), 993 (m, P-N)

6.7.3 P-Triphenylmethyl-substituierte Komplexe

6.7.3.1 {Pentacarbonyl{*P*-[triphenylmethyl]-7-(*o*-pyridyl)-8,1,9-oxazaphospha-bicyclo-[4.3.0]-non-2,4,6-en- κP }wolfram(0)} (**70a**)

Zu einer Lösung von $0.5 \text{ g} [W(CO)_5(Ph_3C)PCl_2]$ (**2a**) (0.747 mmol) in 15 mL THF wird bei -90 °C unter Rühren 0.53 mL *tert*-Butyllithium-Lösung (1.7 M in *n*-Pentan, 1.2 Äq.) tropfenweise zugetropft und für fünf Minuten bei dieser Temperatur gerührt. Anschließend werden 0.41 g Di-(*o*-pyridyl)keton (3 Äq) hinzugegeben. Die Reaktionsmischung wird über drei Stunden unter Rühren auf Raumtemperatur erwärmt und das

Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt. Der Rückstand wird mit *n*-Pentan extrahiert (insgesamt 140 mL). Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 2 \text{ cm}$, h = 4 cm) bei -20 °C gereinigt. Das Rohprodukt wird auf Aluminiumoxid aufgezogen und als Eluent dienen PE und Et₂O (F1,F2: je 250 mL, bis zu 2% Et₂O; F3,F4: je 250 mL, bis zu 5% Et₂O). Das Produkt wurde aus F2-4 als roter Feststoff erhalten.

Summenformel:	$C_{35}H_{23}N_2O_6PW$
Molare Masse:	782.4 g/mol
Ausbeute:	50 mg (9%)
Schmelzpunkt:	106 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 4.84 (dd, 1H,
	$^{3,4}J_{H,H}$ = 6.5 Hz, CH ⁽¹¹⁾), 5.70 (dd, 1H, $^{3}J_{H,H}$ = 5.9 Hz, $^{3}J_{H,H}$ =
	9.6 Hz, $CH^{(10)}$), 5.99 (dd, 1H, ${}^{3}J_{H,H}$ = 7.2 Hz, ${}^{4}J_{P,H}$ = 4.1 Hz,
	$CH^{(8)}$), 6.33 (dd, 1H, ${}^{3}J_{H,H}$ = 5.1 Hz, ${}^{4}J_{H,H}$ = 6.4 Hz, $CH^{(9)}$),
	6.91-6.98 (m, 1H, CH _{Ar} ⁽²⁾), 6.99-7.12 (m, 6H, CH _{Ph}), 7.12-
	7.18 (m, 3H, CH _{Ph}), 7.21 (dm, 1H, ${}^{3,4}J_{H,H}$ = 6.2 Hz, CH _{Ar} ⁽⁴⁾),
	7.74 (dm, 6H, ³ J _{H,H} = 9.9 Hz, CH _{Ph}), 8.21 (d, 1H,
	${}^{3}J_{H,H} = 4.1 \text{ Hz}, \text{ H}_{Ar}^{(1)}$
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, C ₆ D ₆): [ppm] δ = 74.1 (d, ¹ J _{P,C} = 14.3 Hz, CPh ₃), 107.6 (d, ² J _{P,C} = 2.3 Hz, CH ⁽¹¹⁾), 116.0 (s, CH _{Ar} ⁽²⁾), 118.1 (s, CH ⁽⁹⁾), 119.5 (d, ³ J _{P,C} = 2.3 Hz, CH _{Ph}), 127.3 (s, CH ⁽¹⁰⁾), 128.3 (s, CH _{Ph}), 128.4 (s, CH _{Ph}), 129.5 (d, ³ J _{P,C} = 7.9 Hz, CH ⁽⁸⁾), 129.9 (s, CH _{Ar} ⁽⁴⁾), 132.0 (s, C ⁽⁷⁾), 132.4 (d, ² J _{P,C} = 2.4 Hz, C ⁽¹²⁾), 133.3 (d, ^{2,3} J _{P,C} = 11.6 Hz, C ⁽⁶⁾), 135.7 (s, CH _{Ar} ⁽³⁾), 148.9 (s, CH _{Ar} ⁽¹⁾), 151.4 (d, ³ J _{P,C} = 4.17 Hz, C _{Ar} ⁽⁵⁾), 196.1 (d, ² J _{P,C} = 7.8 Hz, <i>cis</i> -CO), 199.2 (d, ² J _{P,C} = 38.2 Hz, <i>trans</i> -CO)
----------------------------------	---
	³¹ P-NMR (121.5 MHz, 25 °C, C ₆ D ₆) [ppm] δ = 171.8 (¹ $J_{W,P}$ = 319.9 Hz)
MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 782.1 (0.2) $[M]^{++}$, 647.1 (0.2) $[M-2CO-HCN-2C_2H_2]^+$, 539.0 (2) $[M-CPh_3]^+$, 511.0 (1) $[M-CO-CPh_3]^+$, 455.0 (4) $[M-3CO-CPh_3]^+$, 399.0 (1) $[M-5CO-CPh_3]^+$, 245.2 (15) $[WPNO]^+$, 243.1 (100) $[CPh_3]^+$; 239.1 (20) $[W(CO)_2]^+$; 228.1 (20) $[WPN]^+$; 165.1 (80) $[CPh_3-Ph]^+$
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2960, 2923 (w, CH), 2076, 1998, 1932 (s, CO), 1629, 1579, 1542, 1524 (m, C=C), 1490, 1467, 1447, 1434, 1423 (m, C=N), 1088, 1062, 1013 (s, P-N)
EA:	C ₃₅ H ₂₃ N ₂ O ₆ P ₂ W (%) ber.: C 53.73, H 2.96, N 3.58 gef.: C 54.64, H 3.82, N 3.55
Röntgenstruktur:	GSTR367, 3664, MK-557, s. Anhang D11

6.8 Studie zu thermischen Reaktionen von *P*-Bis(trimethylsilyl)methylsubstituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

6.8.1 *C*-Pyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

Die thermische Untersuchung der *C*-Pyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **58-59** erfolgt in zwei unterschiedlichen Durchführungs-Varianten (in Lösung (1) und in der Schmelze (2)). In den nachfolgenden Tabellen sind die jeweiligen Reaktionsbedingungen angegeben.

(1)	Einwaage	Gefäß	Lösungsmittel (Menge [mL])	Temperaturen [°C] (Dauer)	Kommentar/ Produkt
58a	25 mg	NMR-Rohr	o-DCB (0.5)	100, 120, 140 (je 20 min)	unselektive Zersetzung bei 140 °C
58a-c	25 mg	NMR-Rohr	Pyridin (0.5)	50 (1 h), 2x 80 (1 h), 2x 100 (1 h)	unselektive Zersetzung ab 50 °C
59a	58 mg	NMR-Rohr	Toluol-d ⁸ (0.5)	25, 40, 60, 80	keine Reaktion
	30 mg	NMR-Rohr	o-DCB (0.5)	je 20 min: 9x 100, 120, 120 (2 d), 140, 150, 160, 180	unselektive Zersetzung bei 180 °C

(2)	Einwaage	Gefäß	Temperaturen [°C] (Dauer)	Kommentar/ Produkt
	30 mg	Schlenk- Rohr	130 (15 min), 130 (60 min), 170 (15 min)	keine Reaktion
58a	30 mg	Schlenk- Rohr	130 (15 min), 130 (60 min), 170 (15 min)	71a
	100 mg	Vakuum- Ampulle	150 (18 h)	71a
59a -	100 mg	Vakuum- Ampulle	120 (insg. 100 min)	keine Reaktion
	100 mg	Vakuum- Ampulle	130 (10 min), 140 (20 min), 150 (5 min), 160 (insg. 17 h)	Produktmischung

6.8.1.1 {Tetracarbonyl{2-[bis(trimethylsilyl)methyl]-[trimethylsiloxy]phosphino- κP]methyl}pyridin- κN }wolfram(0)} (**71a**)

140 mg des entsprechenden $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **58a** werden ohne Lösungsmittel in einem Schlenk-Gefäß oder einer Ampulle, die unter Vakuum abgeschmolzen wird, für zwei Stunden bei 150 °C erhitzt. Aus der Schmelze wird mehrfach mit *n*-Pentan extrahiert (zehnmal mit ca. 10 mL) und anschließend aus *n*-Pentan umkristallisiert. Das Produkt wird als gelber Feststoff erhalten. Zusätzlich zur Charakterisierung von **71a** wurde der Rückstand der Extraktion der Massenspektrometrie zugeführt (die Spektren befinden sich im Anhang C).

Summenformel:	$C_{20}H_{34}NO_5PSi_3W$
Molare Masse:	667.6 g/mol
Ausbeute:	60 mg (40%)
Schmelzpunkt:	195 °C
NMR:	¹ H-NMR (300.1 MHz, 25 °C, THF-d ⁸): [ppm] δ = -0.07 (s, 9H,
	OSiMe ₃), 0.36 (s, 9H, SiMe ₃), 0.40 (s, 9H, SiMe ₃), 1.19 (d, 1H, ${}^{2}J_{P,H} = 1.5$ Hz, CH(SiMe ₃) ₂), 3.73 (dd, 1H, ${}^{2}J_{P,H} = 3.0$ Hz, ${}^{2}J_{H,H} = 15.7$ Hz, CH ₂), 4.08 (dd, 1H, ${}^{2}J_{P,H} = 8.5$ Hz, ${}^{2}J_{H,H} =$ 15.7 Hz, ${}^{4}J_{H,H} = 1.1$ Hz, CH ₂), 7.17 (dd, 1H, ${}^{3,4}J_{H,H} = 6.8$ Hz, H _{Ar}), 7.71 (d, 1H, ${}^{3,4}J_{H,H} = 7.8$ Hz, H _{Ar}), 7.83 (td, 1H, ${}^{3,4}J_{H,H} =$ 7.4 Hz, 1.1 Hz, H _{Ar}), 9.14 (d, 1H, ${}^{3}J_{H,H} = 5.1$ Hz, H _{Ar})
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 1.6 (s, OSiMe ₃), 2.9 (d, ³ J _{P,C} = 4.2 Hz, SiMe ₃), 3.5 (d, ³ J _{P,C} = 1.9 Hz, SiMe ₃), 27.4 (d, ¹ J _{P,C} = 5.4 Hz, CH(SiMe ₃) ₂), 55.6 (d, ¹ J _{P,C} = 10.4 Hz, CH ₂), 123.8 (d, ³ J _{P,C} = 2.2 Hz, CH _{Ar}), 126.4 (d, ⁵ J _{P,C} = 6.5 Hz, CH _{Ar}), 139.0 (s, CH _{Ar}), 156.9 (d, ⁴ J _{P,C} = 4.8 Hz CH _{Ar}), 163.2 (d, ² J _{P,C} = 6.5 Hz, C _{Ar}),

205.5 (d, ${}^{2}J_{P,C}$ = 3.3 Hz, *cis*-CO), 206.3 (d, ${}^{2}J_{P,C}$ = 11.6 Hz, *cis*-CO), 212.9 (d, ${}^{2}J_{P,C}$ = 45.9 Hz, *trans*-CO), 213.2 (d, ${}^{2}J_{P,C}$ = 11.2 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = -0.20 (d, ²J_{P,Si} = 12.1 Hz, SiMe₃), 0.02 (d, ²J_{P,Si} = 2.6 Hz, SiMe₃), 16.46 (d, ²J_{P,Si} = 13.4 Hz, OSiMe₃)

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm] δ =150.3 (¹ $J_{W,P}$ = 287.5 Hz, ² $J_{P,H}$ = 7.5 Hz)

MS (EI, 70 eV, ¹⁸⁴W) m/z (%) = 667.1 (25) $[M]^{++}$, 641.1 (25) $[M-C_2H_2]^{+}$, 639.0 (30) [M-CO]⁺, 611.0 (25) [M-2CO]⁺, 609.0 (20) [M-CO-2CH₃]⁺, 71a 595.0 (10) [M-SiMe₃+H]⁺, 583.0 (25) [M-3CO]⁺, 567.0 (20) [M-CO-SiMe₃+H]⁺, 555.0 (55) [M-4CO]⁺, 553.0 (100) [M-3CO-2CH₃]⁺, 551.0 (80) [M-CO-SiMe₃-CH₃]⁺, 539.0 (29) [M-2CO-SiMe₃+H]⁺, 509.0 (5) [M-3CO-SiMe₃+H]⁺, 481.0 (20) [M-4CO-SiMe₃+H]⁺, 462.0 (15) [M-CO-SiMe₃-CH₃-OSiMe₃]⁺, 431.9 (5) [M-CO-SiMe₃-3CH₃-OSiMe₃]⁺, 387.9 [M-CH(SiMe₃)₂-P-OSiMe₃]⁺, 356.1 (5) [M-2SiMe₃-4CO-HCN- C_2H_2 ⁺, 331.9 (5) [M-2CO-CH(SiMe_3)₂-P-OSiMe_3]⁺, 284.0 (5) [M-W(CO)₄-NCH-4CH₃]⁺, 212.0 (5) [W(CO)]⁺, 165.0 (10) [M-W(CO)₄-NCH-6CH₃-OSiMe₃]⁺, 150.0 (30) [C₇H₇PSi]⁺, 147.0 (60) [C₅H₁₂OPSi]⁺, 93.0 (50) [C₅H₄N-CH₃]⁺, 73.0 (100) [SiMe₃]⁺ Auswahl \tilde{v} [cm⁻¹] = 2960, 2923, 2853 (s, CH₂), 2070 (w, CO), IR (ATR): 2005 (m, CO), 1980 (w, CO), 1933 (m, CO), 1869 (s, CO), 1828 (s, CO) 1600 (w, C=C), 1466, 1440 (w, C=N), 1256 (s, SiMe₃) EA: C₂₀H₃₄NO₅PSi₃W (%) ber.: C 35.98, H 5.13, N 2.10 gef.: C 34.09, H 5.12, N 2.41 Röntgenstruktur: GSTR391, GXray3895f, MK-630F3, s. Anhang D11

6.8.2 *C*,*C*-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexen

Die thermische Untersuchung der *C*,*C*-Dipyridyl-substituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe **66a**,**c** erfolgt in zwei unterschiedlichen Durchführungs-Varianten (in Lösung (1) und in der Schmelze (2)). In den nachfolgenden Tabellen sind die jeweiligen Reaktionsbedingungen angegeben.

(1))	Einwaage	Gefäß	Lösungsmittel (Menge [mL])	Temperaturer (Dauer)	n [°C] Kommentar/ Produkt
66.	-	150 mg	Schlenk-Rohr	THF (1.0)	60 (insg. 13	3 h) 74a/75a
000	a —	75 mg	Schlenk-Rohr	Pyridin (1.5)	45 (insg. 37	′h) 75a
66	С	100 mg	Schlenk-Rohr	Pyridin (2.0)	95 (1 h)	74c
(1	2)	Einwaage	Gefäß	Temperaturer	n [°C] (Dauer)	Kommentar/ Produkt
6	60	30 mg	Schlenk-Rohr	95 (*	1 h)	75a
0	0a	40 mg	Schlenk-Rohr	150 ((2 h)	74a
6	6c	30 mg	Schlenk-Rohr	95 (1 h),	110 (1 h)	keine Reaktion dann Zersetzung

6.8.2.1 {Pentacarbonyl{P-[bis(trimethylsilyl)methyl]-7-(o-pyridyl)-8,1,9oxazaphospha-bicyclo-[4.3.0]-non-2,4,6-en- κP }wolfram(0)} (**74a**)

150 mg des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66a** in 1 mL THF werden bei 60 °C unter Rühren für insgesamt 13 Stunden erhitzt. Nach 2, 4, 6, 8, 11 und 13 Stunden wird ³¹P{¹H}-NMR-Spektrum aufgenommen. ein Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und das Rohprodukt anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1 \text{ cm}$, h = 0.5 cm) bei -20 °C gereinigt. Als Eluent dient PE. Die rote Fraktion F1 enthält 74a zu 92% neben 8% 75a.

Summenformel: Molare Masse:

C23H27N2O6PSi2W

688.5 g/mol

NMR:

¹H-NMR (300.1 MHz, 25 °C, CDCl₃): [ppm] δ = **74a**⁴: 0.25 (s, 9H, SiMe₃), 0.30 (s, 9H, SiMe₃), 1.92 (s, 1H, CH(SiMe₃)₂), 5.61 (dddd, $J_{H,H}$ = 1.2 Hz, 6.0 Hz, 7.2 Hz, $J_{P,H}$ = 2.2 Hz, 1H, CH), 6.29-6.39 (m, 1H, CH), 6.81-6.92 (m, 2H, CH), 7.16-7.21 (m, 1H, CH_{Pv}), 7.54-7.61 (m, 1H, CH_{Pv}), 7.68-7.72 (m, 1H, CH_{Py}), 8.45 (ddd, *J*_{H,H} = 0.9 Hz, 1.7 Hz, 4.8 Hz, CH_{Py})

¹³C{¹H}-NMR (75.5 MHz, 25 °C, CDCl₃): [ppm] δ = **74a**⁴: 2.72 $(d_1^{3}J_{PC} = 2.9 \text{ Hz}, \text{SiMe}_3), 2.89 (d_1^{3}J_{PC} = 2.1 \text{ Hz}, \text{SiMe}_3), 44.6$ (d, J_{PC} auf Grund der Intensität nicht zu identifizieren), 106.0 $(d, {}^{2}J_{P,C} = 5.9 \text{ Hz}, \text{ CH}), 116.1 \text{ (s, CH}_{Pv}), 118.1 \text{ (s, CH)}, 118.7$ (d, ${}^{3}J_{P,C}$ = 1.9 Hz, CH_{Py}), 128.1 (s, CH), 131.4 (d, ${}^{3}J_{P,C} = 12.3$ Hz, CH), 136.2 (s, CH_{Pv}), 137.1 (d, $^{2,3}J_{P,C} = 4.9 \text{ Hz}, C_{q}$, 149.2 (s, CH_{Pv}), 149.4 (d, $^{2,3}J_{P,C} = 7.9$ Hz, C_a), 151.9 (d, $^{3}J_{P,C} = 4.5$ Hz, C_{Pv}), 196.1 (d, ${}^{2}J_{P,C}$ = 8.2 Hz, *cis*-CO), *trans*-CO auf Grund der Intensität nicht zu identifizieren

²⁹Si-NMR (79.5 MHz, 25 °C, CDCl₃) [ppm] δ = -1.2 (d,

 ${}^{2}J_{P,Si}$ = 1.7 Hz), -1.0 (d, ${}^{2}J_{P,Si}$ = 6.9 Hz)

³¹P-NMR (121.5 MHz, 25 °C, CDCl₃) [ppm]
$$\delta$$
 = **74a**⁴: 176.2
(¹J_{W,P} = 321.9 Hz, ²J_{P,H} = 6.4 Hz, 78%), **74a**⁴: 169.1
(¹J_{W,P} = 317.8 Hz, 4%), **75a**⁴: 152.1 (¹J_{W,P} = 330.7 Hz, J_{P,H} = 7.1 Hz, 14.5 Hz, (dd), 11%)

MS (EI, 70 eV, ¹⁸⁴W)
$$m/z$$
 (%) = 660.0 (5) $[M-C_3H_3+H]^+$, 576.1 (10) $[660.0-3CO]^+$,
503.1 (5) $[576.1-SiMe_3]^+$, 458.0 (5) $[M-C_3H_3+H-2SiMe_3-2CO]^+$, 429.1 (5) $[M-C_3H_3+H-2SiMe_3-3CO]^+$, 355.1 (10)
 $[W(CO)_5PH]^+$, 281.1 (5) $[C_{12}H_{20}NOPSi_2]^+$, 276.3 (5)
 $[W(CO)_3]^+$, 239.3 (5) $[W(CO)_2]^+$, 211.2 (10) $[W(CO)]^+$, 183.2
(10) $[W]^+$, 169.1 (85) $[C_{11}H_9N_2]^+$, 137.0 (20) $[C_6H_4NOP]^+$,
125.0 (35) $[C_5H_4NOP]^+$, 110.9 (55) $[C_4H_2NOP]^+$, 96.9 (80)
 $[C_4H_2OP]^+$, 83.9 (65) $[C_3HOP]^+$, 71.1 (75) $[C_2OP]^+$, 57.1 (100)
 $[CNP]^+$

IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 2958 (w, CH), 2070 (m, CO), 1981 (w, CO), 1902 (s, CO), 1589, 1572 (m, C=C), 1468, 1435 (m, C=N), 1249 (SiMe₃), 1096, 1012 (s, PN)

6.8.2.2 {Pentacarbonyl{*P*-[bis(trimethylsilyl)methyl]-7-(*o*-pyridyl)-8,1,9oxazaphospha-bicyclo-[4.3.0]-non-2,4,6-en-*κP*}wolfram(0)} (**74c**)

100 mg des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66c** in 2 mL Pyridin werden bei 95 °C unter Rühren für 1 Stunde erhitzt. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und das Rohprodukt anschließend mit *n*-Pentan extrahiert. Die extrahierte Produktmischung enthält **74c**⁴ zu 32% neben 19% **74c**⁴⁴.

Summenformel:C23H27CrN2O6PSi2Molare Masse:566.6 g/mol

NMR: ¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = **74c**⁴: 0.23 (s, 9H, SiMe₃), 0.30 (s, 9H, SiMe₃), 1.91 (d, ²J_{P,H} = 3.1 Hz, 1H, CH(SiMe₃)₂), 5.69 (ddd, J = 6.8 Hz, 13.6 Hz, 1H, CH), 6.34 (ddd, J = 4.4 Hz, 10.1 Hz, 10.6 Hz, 1H, CH), 6.77-7.00 (m, 2H, CH), 7.48-7.77 (m, 3H, CH_{Py}), 8.32.8.40 (m, 1H, CH_{Py}) ³¹P{¹H}-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 229.6 (32%, **74c**⁴), 224.1 (19%, **74c**⁴⁴), weitere Produkte: 201.0

(20%), 193.9 (7%), 188.5 (5%) + weitere Nebenprodukte

6.8.2.3 Folgeprodukt der Thermolyse von 74a zu 75a

75 mg des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66a** in 1.5 mL Pyridin werden bei 45 °C unter Rühren für insgesamt 37 Stunden erhitzt. Nach 1, 4, 9, 13, 17, 23, 31 und 37 Stunden wird ein ³¹P{¹H}-NMR-Spektrum aufgenommen. Das Lösungsmittel wird unter vermindertem Druck (~10⁻² mbar) entfernt und das Produkt NMR-spektroskopisch vermessen.

NMR: Charakterisierung erfolgt anhand der Mischung **75a'-75a'''**

¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = **75a**⁴: 0.18 (s, 9H, SiMe₃), 1.59 (dd, ²*J*_{P,H} = 0.9 Hz, ²*J*_{H,H} = 14.4 Hz, 1H, C*H*₂(SiMe₃)), 2.05 (dd, ²*J*_{P,H} = 10.7 Hz, ²*J*_{H,H} = 14.4 Hz, 1H, C*H*₂(SiMe₃)), 6.47 (d, *J*_{P,H} = 13.7 Hz, CH), 7.20-7.28 (m, 2H, CH_{Py}), 7.44 (ddd, *J*_{H,H} = 8.0 Hz, 1.1 Hz, 1H, CH_{Py}), 7.55 (ddd, *J*_{H,H} = 7.9 Hz, 1.1 Hz, 1H, CH_{Py}), 7.70-7.78 (m, 2H, CH_{Py}), 8.45-8.57 (m, 2H, CH_{Py})

ausgewählte Daten **75a**^{••}: 0.12 (s, 9H, SiMe₃), 1.63 (dd, ${}^{2}J_{P,H} = 2.4 \text{ Hz}, {}^{2}J_{H,H} = 14.2 \text{ Hz}, 1\text{H}, CH_{2}(\text{SiMe}_{3}))$, 2.12 (dd, ${}^{2}J_{P,H} = 7.4 \text{ Hz}, {}^{2}J_{H,H} = 14.2 \text{ Hz}, 1\text{H}, CH_{2}(\text{SiMe}_{3}))$, 6.39 (d, $J_{P,H} = 14.8 \text{ Hz}, \text{CH})$ ausgewählte Daten **75a**^{•••}: 0.22 (d, $J_{H,H} = 2.9 \text{ Hz}, 9\text{H}, \text{SiMe}_{3})$, 1.92 (d, ${}^{2}J_{P,H} = 3.6 \text{ Hz}, 2\text{H}, CH_{2}(\text{SiMe}_{3}))$, 6.38 (d, $J_{P,H} = 14.3 \text{ Hz}, \text{CH})$

ausgewählte Daten **75a**⁽⁽⁾: 1.72 (d, ${}^{2}J_{P,H}$ = 3.6 Hz, 2H, CH₂(SiMe₃)), 6.51 (d, $J_{P,H}$ = 13.5 Hz, CH)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = **75a**⁴: 0.89 (d, ³*J*_{P,C} = 2.6 Hz, SiMe₃), 33.0 (d, *J*_{P,C} = 21.1 Hz, CH₂(SiMe₃)), 81.5 (d, *J*_{P,C} = 7.1 Hz, CH), 122.8 (s, CH_{Py}), 123.2 (s, CH_{Py}), 123.8 (s, CH_{Py}), 123.9 (s, CH_{Py}), 137.8 (s, CH_{Py}), 138.0 (s, CH_{Py}), 149.6 (s, CH_{Py}), 149.8 (s, CH_{Py}), 160.6 (d, *J*_{P,C} = 2.5 Hz, C_{Py}), 1160.7 (d, *J*_{P,C} = 4.8 Hz, C_{Py}), 198.2 (d, ²*J*_{P,C} = 9.3 Hz, *cis*-CO), 200.9 (d, ²*J*_{P,C} = 26.9 Hz, *trans*-CO)

ausgewählte Daten **75a**^(*): 0.89 (überlagert, SiMe₃), 35.6 (d, $J_{P,C} = 17.8$ Hz, CH₂(SiMe₃)), 83.3 (d, $J_{P,C} = 6.3$ Hz, CH)

ausgewählte Daten **75a**^{•••}: 1.56 (d, ${}^{3}J_{P,C}$ = 2.9 Hz, SiMe₃), 30.3 (d, $J_{P,C}$ = 20.5 Hz, CH₂(SiMe₃)), 82.8 (d, $J_{P,C}$ = 10.2 Hz, CH)

ausgewählte Daten **75a**⁽⁽⁾: 28.6 (d, $J_{P,C}$ = 25.9 Hz, CH₂(SiMe₃)), 80.6 (d, $J_{P,C}$ = 10.0 Hz, CH)

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = **75a**', **75a**'': - 0.7 (d, ²*J*_{P,Si} = 4.2 Hz), **75a**''':-1.2 (d, ²*J*_{P,Si} = 2.9 Hz)

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 156.9 (¹J_{W,P} = 310.7 Hz, 59%, **75a**'),153.3 (¹J_{W,P} = 328.7 Hz, J_{P,H} = 2.4 Hz, 7.5 Hz, 14.8 Hz (ddd), 13%, **75a**''),145.0 $({}^{1}J_{W,P} = 329.6 \text{ Hz}, J_{P,H} = 3.3 \text{ Hz}, 14.2 \text{ Hz} (dd), 13\%, 75a^{\prime\prime\prime}), \\ 142.2 (br, 15\%, 75a^{\prime\prime\prime\prime}) \\ \text{MS (EI, 70 eV, } {}^{184}\text{W}) \qquad \text{m/z (\%)} = 660.0 (5), 632.1 (2), 588.0 (6), 578.1 (8), 576.1 \\ (10), 560.0 (3), 534.0 (2), 504.0 (4), 169.1 (100) [C_{11}H_9N_2]^+, \\ 108.0 (20) [C_6H_6NO]^+, 78.0 (10) [C_5H_4N]^+, 51.0 (8) [C_4H_3]^+ \\ \text{IR (ATR):} \qquad \text{Auswahl } \tilde{v} [\text{cm}^{-1}] = 2958 (\text{w}, \text{CH}), 2070 (\text{m}, \text{CO}), 1981 (\text{w}, \text{CO}), 1902 (\text{s}, \text{CO}), 1589, 1572 (\text{m}, \text{C=C}), 1468, 1435 (\text{m}, \text{C=N}), 1249 (\text{m}, \text{SiMe}_3), 1096, 1012 (\text{m}, \text{PN}) \\ \end{cases}$

6.9 Reaktivität von 66a gegenüber Lewis-Säuren

6.9.1 Reaktion von 66a mit LiCI

25 mg des $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexes **66a** (35.7 µmol) und 1.5 mg LiCl (35.7 µmol, aus einer äquimolaren Umsetzung von HCI-OEt und ^{*t*}BuLi) in 0.5 mL THF-d⁸ werden bei r.t. für 24 Stunden gerührt und anschließend NMR-spektroskopisch vermessen.

NMR: ⁷Li-NMR (116.6 MHz, 25°C, THF-d⁸) [ppm] δ = 0.56 ³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 50.8 (¹J_{W,P} = 308.7 Hz, ²J_{P,H} = 16.5 Hz, 31%, **66a**), 117.8 (br, 9%), 166.2 (¹J_{W,P} = 315.1 Hz, J_{P,H} = m, 8%), 173.4 (4%), 176.1 (¹J_{W,P} = 321.7 Hz, ²J_{P,H} = 6.4 Hz, 13%, **74a**'), 277.3

> $({}^{1}J_{W,P} = 257.7 \text{ Hz}, 4\%) + 31\%$ weitere unbekannte Nebenprodukte

6.9.2 Reaktion von 66a mit ZnCl₂

30 mg des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **66a** (42.8 µmol) und 5.9 mg wasserfreies ZnCl₂ (42.8 µmol) in 0.5 mL THF werden bei r.t. für 2 Stunden gerührt und anschließend NMR-spektroskopisch vermessen.

NMR:
³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm]
$$\delta$$
 = 76.2
(¹J_{W,P} = 322.4 Hz, ²J_{P,H} = 16.4 Hz, 15%), 155.0 (3%), 158.9
(¹J_{W,P} = 318.2 Hz, ²J_{P,H} = 14.9 Hz (dd), 53%, **75a**'), 167.1 (br,
16%) + 13% weitere unbekannte Nebenprodukte

6.10 Photochemische Reaktionen von *P*-Bis(trimethylsilyl)methylsubstituierten $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexen

6.10.1 C-Pyridyl-substituierte $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexe

Die Bestrahlung der Reaktionslösungen erfolgte für 10 Minuten mit einer auf 10 °C gekühlten 150 W Mitteldruck-Quecksilberdampf-UV-Lampe (TQ150, Heraeus Noblelight, Hanau, Germany, breitbandige Emission 200-550 nm, $\lambda_{max} = 365$ nm). Zwischen jeder weiteren Bestrahlung liegen mindesten 10 Minuten. Die nachfolgende Tabelle gibt die einzelnen Variationen (Konzentration, Lösungsmittel, Dauer) der Reaktionsdurchführungen wieder. Bei Verwendung der Quarz-Glas-NMR-

	Einwaage	Gefäß	Lösungsmittel (Menge [mL])	Dauer [min]	Kommentar/ Produkt
	20 mg	Qtz-NMR-Rohr	CH₃CN (0.5)	20 + 20	unselektive Reaktion
58a	20 mg	Qtz-NMR-Rohr	THF (0.5)	20 + 20	76a , dann Zersetzung
	10 mg	Qtz-NMR-Rohr	THF (0.5)	10 + 10	76a (51%)
	380 mg	Photolyse-Reaktor	THF (250)	10	76a (10%)
58b	10 mg	Qtz-NMR-Rohr	THF (0.5)	10	76b (27%)
	10 mg	Qtz-NMR-Rohr	THF (0.5)	10 + 10	76c (50%)
590	10 mg	Qtz-NMR-Rohr	Et ₂ O (0.5)	10 + 10	76c (38%)
500	10 mg	Qtz-NMR-Rohr	Toluol (0.5)	10 + 10	76c (8%)
	430 mg	Photolyse-Reaktor	THF (250)	35	76c (100%)
	20 mg	Qtz-NMR-Rohr	THF (0.5)	20	Produktgemisch
59a	20 mg	Qtz-NMR-Rohr	o-DCB (0.5)	20 + 20	unselektive Reaktion

Rohre wurden diese während der Reaktion an der Lampe befestigt, einzelnen Fällen wurden speziell angefertigte Photolyse-Reaktoren genutzt.

6.10.1.1 Photochemische Reaktion von 58c zu 76c

430 mg des $\sigma^3 \lambda^3$ -Oxaphosphiran-Komplexes **58c** wurden in 250 mL THF gelöst. Unter ständigem Rühren wurde die Reaktionslösung im Photolyse-Reaktor siebenmal für fünf Minuten bestrahlt (insg. 35 Minuten). Gekühlt wurde hierbei nur die Quecksilberdampf-Lampe (10 °C), nicht aber die Reaktionslösung.

Nach vollständiger Umsetzung wurde die Lösung in ein Schlenk-Gefäß überführt, das Lösungsmittel wird unter vermindertem Druck (~ 10^{-2} mbar) entfernt und anschließend das Produkt mit *n*-Pentan extrahiert (6 mal 20 mL). Das Rohprodukt wird anschließend säulenchromatographisch an Aluminiumoxid ($\emptyset = 1$ cm, h = 1 cm) bei -20 °C gereinigt. Als Eluent dient PE und Et₂O (F1: 45 mL PE, bis zu 6% Et₂O; F2: 45 mL PE, bis zu 30% Et₂O; F3: 15 mL Et₂O). Das Produkt wurde aus F2 und F3 als rotes Öl erhalten.

Summenformel: C₃₀H₅₀CrN₂O₆P₂Si₄ 761.0 g/mol Molare Masse: Ausbeute: 45 mg (7%) NMR: Charakterisierung erfolgt anhand der Mischung 76c'-76c" ¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = **76c**⁴: 0.16 (s, 9H, SiMe₃), 0.22 (s, 9H, SiMe₃), 1.59 (d, 1H, ²J_{PH} = 22.7 Hz, $CH(SiMe_3)_2$), 3.85 (dd, 1H, ${}^2J_{PH} = 10.8$ Hz, ${}^2J_{HH} = 14.0$ Hz, CH₂), 3.45 (dd, 1H, ${}^{2}J_{P,H} = 5.8$ Hz, ${}^{2}J_{H,H} = 13.9$ Hz, CH₂) 76c": 0.18 (s, 9H, SiMe₃), 0.21 (s, 9H, SiMe₃), 1.86 (d, 1H, ${}^{2}J_{PH} = 22.6 \text{ Hz}, CH(SiMe_{3})_{2}), 3.75 (dd, 1H, {}^{2}J_{PH} = 10.4 \text{ Hz},$ ${}^{2}J_{H,H} = 14.2 \text{ Hz}, \text{ CH}_{2}$, 3.49 (d, 1H, ${}^{2}J_{P,H} = 6.4 \text{ Hz}, {}^{2}J_{H,H} = 13.9$ Hz, CH_2) **76c**⁺,**76c**⁺:: 7.11-7.19 (m, 2H, CH_{Ar}), 7.52-7.58 (m, 2H, CH_{Ar}), 7.58-7.67 (m, 2H, CH_{Ar}) ,8.41-8.52 (m, 2H, CH_{Ar}) ¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = **76c**⁴: 2.07 (überlagert, SiMe₃), 2.15 (dd, ${}^{3}J_{P,C} = 1.6$ Hz, SiMe₃), 20.3 (d, ${}^{1}J_{P,C} = 59.5 \text{ Hz}, \text{ CH}$, 45.0 (d, ${}^{1}J_{P,C} = 99.3 \text{ Hz}, \text{ CH}_{2}$), 123.7 $(dd, J_{P,C} = 2.0 \text{ Hz}, 12.5 \text{ Hz}, CH_{Ar}), 125.8 (dx, {}^{2}J_{P,C} = 7.9 \text{ Hz},$ CH_{Ar}), 137.7 (dd, $J_{P,C}$ = 2.2 Hz, 30.0 Hz, CH_{Ar}), 150.2 (s, CH_{Ar}), 155.9 (d, ² J_{PC} = 7.9 Hz, C_{Ar}) **76c**": 2.07 (dd, ${}^{3}J_{P,C} = 1.4$ Hz, SiMe₃), 2.38 (dd, ${}^{3}J_{P,C} = 1.6$ Hz, SiMe₃), 21.6 (d, ${}^{1}J_{P,C} = 58.2$ Hz, CH(SiMe₃)₂), 45.0 (d, ${}^{1}J_{P,C} = 84.3 \text{ Hz}, \text{CH}_{2}$, 122.4 (m, CH_{Ar}), 126.3 (m, CH_{Ar}), 136.6 (s, CH_{Ar}), 149.7 (m, CH_{Ar}), 154.5 (m, C_{Ar}) ²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = **76c**⁴: -0.47

> (dd, ${}^{2}J_{P,Si} = 2.4$ Hz, SiMe₃), -0.27 (dd, ${}^{2}J_{P,Si} = 2.8$ Hz, SiMe₃) **76c**": -0.16 (dd, ${}^{2}J_{P,Si} = 2.8$ Hz, SiMe₃), -0.02 (dd, ${}^{2}J_{P,Si} = 2.7$ Hz, SiMe₃),

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 53.2 ($J_{P,H}$ = m, **76c**⁴), 54.2 (² $J_{P,H}$ ~ 6.8 Hz, 13.0 Hz, 28 Hz (ddd), **76c**⁴), Verhältnis **76c**⁴, **76c**⁴ [0.4:1.0]

MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 612.1 (0.3) [M-2CO-Py-CH ₂] ⁺ , 610.2 (0.3) [M-Py-
	SiMe ₃ +H] ⁺ , 595.1 (0.5) [M-4CO-C ₃ H ₃ N] ⁺ , 523.1 (0.5) [M-4CO-
	C ₃ H ₃ N-SiMe ₃ +H] ⁺ , 430.3 (1) [M-Cr(CO) ₄ -C ₂ H ₂ N- C ₃ H ₃ N-
	SiMe ₃] ⁺ , 388.1 (1.3) [M-Cr(CO) ₄ P(O)CH(SiMe ₃) ₂] ⁺ , 372.1 (3)
	[M- Cr(CO) ₄ P(O)-CH(SiMe ₃) ₂ -O] ⁺ , 369.9 (2.5) [Cr(CO) ₄ +
	P(O)CH(SiMe ₃) ₂] ⁺ , 348.0 (1) [M-2CH ₃ -3CO-P(O)CH ₂ Py-
	CH(SiMe ₃) ₂] ⁺ , 316.1 (1) [M-Cr(CO) ₄ -PyCH ₂ -3CH ₃ +H] ⁺ , 300.0
	(3.5) [M-Cr(CO) ₄ -PyCH ₂ -3CH ₃] ⁺ , 297.1 (2) [PyCH=P(O)+
	CH(SiMe ₃) ₂] ⁺ , 285.2 (0.5) [M-Cr(CO) ₄ -PyCH ₂ -4CH ₃] ⁺ , 257.2
	(1.5) [M-Cr(CO) ₄ -PyCH ₂ -4CH ₃ -HCN-H] ⁺ , 239.1 (1) [M-
	Cr(CO) ₄ -P(O)CH ₂ Py-CH(SiMe ₃) ₂ -4CH ₃] ⁺ , 221.0 (3.5)
	[CH ₂ P(O)CHSi(Me ₃) ₂] ⁺ , 147.0 (100) [CH ₂ P(O)CH(SiMe ₃) ₂ -
	2CH ₃] ⁺
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2953, 2899, 2852 (w, CH, CH ₃), 2009 (m,
	CO), 1908 (w, CO), 1889, 1865 (s, CO), 1558, 1569 (w,
	C=C), 1471, 1434 (w, C=N), 1252 (m, SiMe ₃), 1215 (m, P=O)
Röntgenstruktur:	GSTR387, GXray3825f, MK-622-F3, s. Anhang D12 (76c ''')

6.10.2 *C*,*C*-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

Die Bestrahlung der Reaktionslösungen erfolgte für 10 Minuten mit einer auf 10 °C gekühlten 150 W Mitteldruck-Quecksilberdampf-UV-Lampe (TQ150, Heraeus Noblelight, Hanau, Germany, breitbandige Emission 200-550 nm, $\lambda_{max} = 365$ nm). Zwischen jeder weiteren Bestrahlung liegen mindesten 10 Minuten. Die Bedingungen wurden entsprechend der *C*-Pyridyl-substituierten Derivate gewählt (s. auch nachfolgende Tabelle).

	Einwaage	Gefäß	Lösungsmittel (Menge [mL])	Dauer [min]	Kommentar/ Produkt
66a	10 mg	Qtz-NMR-Rohr	THF (0.5)	10 + 10 + 10	74a (74%)
66c	10 mg	Qtz-NMR-Rohr	THF (0.5)	10 + 10 + 10	74c (19%)

6.11 SET Deoxygenierungsreaktionen mit Ti(III)-Komplexen

1) THF -50° C in Toluol (TiCl₃)₃AlCl₃ $\xrightarrow{2)}$ 14h, 70^oC $-AlCl_3$ $\xrightarrow{3}$ TiCl₃(thf)₃

6.11.1 Synthese von Trichlorotris(tetrahydrofuran)titan(III)^[135]

20g Aluminiumtrititandodecachlorid (100 mmol) werden in der Glovebox abgewogen und in 10 mL Toluol gelöst. Bei -50 °C werden 200 mL THF über eine Kanüle und Argon-Überdruck hinzugegeben. Die Reaktionslösung wird für 14 Stunden bei 70 °C unter Rückfluss erhitzt. Beim Abkühlen auf Raumtemperatur fällt das Rohprodukt als hellblauer Feststoff aus. In der Glovebox wird das Rohprodukt über einen Büchner-Trichter abfiltriert, mit *n*-Pentan gewaschen und anschließend unter vermindertem Druck (~10-2 mbar) getrocknet.

Summenformel:	$C_{12}H_{24}CI_3O_3Ti$
Molare Masse:	370.5 g/mol
Ausbeute:	26.7 g (72%)
Röntgenstruktur:	GSTR267, 2374, s. Anhang D14
Literaturbekannte	Ausbeute 30.8 g (82%)
Daten ^[135] :	EA: $C_{12}H_{24}CI_{3}O_{3}Ti$ ber.: C 38.55, H 6.64, gef.: C 38.68, H 6.50
	Atom-Absorption: gefunden Al 0.00%.

6.11.2 Allgemeine Synthesevorschrift zur Darstellung der *E/Z*-konfigurierten Phosphaalken-Komplexe (Methode C)

Eine Lösung des entsprechenden $\sigma^3\lambda^3$ -Oxaphosphiran-Komplexes [M(CO)₅(R'')PC(R,R')O] in THF oder THF-d⁸ wird mit a) CpTiCl₃ (1 Äq.) und Zinkpulver (1.2 Äq); b) Cp₂TiCl₂ (1 Äq.) und Zinkpulver (1.1 Äq.) oder c) TiCl₃(thf)₃ versetzt und bei Raumtemperatur gerührt (Dauer variiert). Anschließend wird die Reaktionslösung der NMR-Spektroskopie zugeführt oder in bestimmten Fällen aufgearbeitet.

6.11.3 Funktionstoleranz in der Phosphaalken Synthese

$$\label{eq:constraint} \begin{split} & 6.11.3.1 \end{tabular} Pentacarbonyl \end{tabular} is (trimethylsilyl) methyl] -1 - (dec-9-en) methylen-phosphan- \\ & \kappa P \end{tabular} wolfram(0) \end{tabular} \end{tabular} \end{tabular} [W(CO)_5 \end{tabular} (Me_3Si)_2CH \end{tabular} P=C(H)(CH_2)_8CH=CH_2 \end{tabular} \end{tabular} \end{tabular} \end{tabular}$$

Synthese nach allgemeiner Methode C

	77a-c	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [mmol]	1.26	1.26	1.38	-
m [mg / mL]	0.80 g	0.28 g	90.6 mg	10 mL

Zeit: 3 Tage

Summenformel: $C_{23}H_{39}O_5PSi_2W$ Molare Masse:666.5 g/molNMR: ^{31}P -NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 196.8 $(^{1}J_{W,P} = 255.1 \text{ Hz}, J_{P,H} = m, 80a), 201.9 (^{1}J_{W,P} = 253.9 \text{ Hz}, J_{P,H} = m, 80b), 213.4 (^{1}J_{W,P} = 253.9 \text{ Hz}, J_{P,H} = m, 80c)$ Verhältnis 80a,b,c [0.1:0.2:1.0]

MS (EI, 70 eV, ¹⁸⁴ W)	m/z (%) = 666.1 (85) [M] ^{+•} , 638.1 (10) [M-CO] ⁺ , 610.1 (10)
	[M-2CO] ⁺ , 608.1 (10) [M-CO-2CH ₃] ⁺ , 582.1 (25) [M-3CO] ⁺ ,
	580.1 (30) [M-CO-2CH ₃ -C ₂ H ₄] ⁺ , 554.1 (28) [M-4CO] ⁺ , 552.1
	(40) [M-CO-2CH ₃ -2C ₂ H ₄] ⁺ , 526.1 (60) [M-5CO] ⁺ , 524.1 (100)
	[M-CO-2CH ₃ -3C ₂ H ₄] ⁺ , 360.0 (15) [M-5CO-C ₁₁ H ₂₀ -CH ₃ +H ⁺] ⁺ ,
	73.0 (70) [SiMe ₃] ⁺
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2926, 2854 (m, CH, CH ₃), 2071 (s, CO),

1985 (w, CO), 1915 (s, CO), 1640 (w, C=C), 1099 (m, P=C), 1252 (m, SiMe₃)

 $\begin{array}{l} \label{eq:constraint} 6.11.3.2 \end{tabular} \label{eq:constraint} \end{tabular} \end{tabula$

Synthese nach all gemeiner $\ensuremath{\textbf{Methode C}}$

	78a-c	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	83.6	83.6	91.9	-
m [mg / mL]	50 mg	18.3 mg	6.0 mg	0.6 mL

Zeit: 28 Tage

Summenformel:	$C_{17}H_{27}O_5PSi_2W$
Molare Masse:	582.4 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 198.8
	(¹ J _{W,P} = 253.7 Hz, J _{P,H} = m, 81a), 204.7 (¹ J _{W,P} = 254.4 Hz,
	J _{P,H} = m, 81b), 215.9 (¹ J _{W,P} = 252.8 Hz, J _{P,H} = m, 81c)
	Verhältnis 81a,b,c [0.1:0.2:1.0]
	Integration im ³¹ P-NMR: 79a,b,c : 52% + 48% Nebenprodukte

6.11.3.3 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(prop-1-en)oxaphosphiran*κP*}pentacarbonylwolfram(0)] (**79**) mit CpTiCl₃/Zn zu **82**

Reaktion nach allgemeiner Methode C

	79	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	41.8	41.8	83.5	-
m [mg / mL]	24 mg	9.2 mg	5.5 mg	0.7 mL

Zeit: 1 Tag

NMR: ³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 131.9 (¹J_{W,P} = 266.9 Hz, J_{P,H} = m) Integration im ³¹P-NMR: **82**: 41% + 59% Nebenprodukte

6.11.3.4 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(dec-9-en)oxaphosphiran- κP }pentacarbonylwolfram(0)] (77) mit TiCl₃(thf)₃

Reaktion nach allgemeiner Methode C

	77a-c	TiCl ₃ (thf) ₃	THF
Äq.	1	1	-
n [µmol]	73.3	73.3	-
m [mg / mL]	50 mg	27.1 mg	0.6 mL

Zeit: 1 Tag

NMR: ³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 123.9 (¹J_{W,P} = 271.9 Hz, J_{P,H} = m), 114.2 (¹J_{W,P} = 268.8 Hz, J_{P,H} = m), 102.3 (J_{P,H} = m) Integration im ³¹P-NMR: 8% + 70% **77a-c** + 22% Nebenprodukte

6.11.3.5 Reaktion von [{2-[Bis(trimethylsilyl)methyl]-3-(but-3-en)oxaphosphiran- κP }pentacarbonylwolfram(0)] (**78**) mit TiCl₃(thf)₃

Reaktion nach allgemeiner Methode C

	78a-c	TiCl ₃ (thf) ₃	THF
Äq.	1	1	-
n [µmol]	83.6	83.6	-
m [mg / mL]	50 mg	30.9 mg	0.6 mL

Zeit: 35 Tage

NMR: 31 P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = ./. Integration im 31 P-NMR: **78a-c**: 85% + 15% Nebenprodukte

6.11.3.6 Reaktion von [$\{2-[Bis(trimethylsilyl)methyl]-3-(prop-1-en)oxaphosphiran <math>\kappa P$ }pentacarbonylwolfram(0)] (**79**) mit TiCl₃(thf)₃ zu **82**

Reaktion nach allgemeiner Methode C

	79	TiCl ₃ (thf) ₃	THF
Äq.	1	1	-
n [µmol]	68.4	68.4	-
m [mg / mL]	40 mg	25.4 mg	0.7 mL

Zeit: 1 Tag

NMR: ³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 132.0 (¹J_{W,P} = 266.0 Hz, J_{P,H} = m) Integration im ³¹P-NMR: **82**: 6% + 94% Nebenprodukte 6.11.3.7 Reaktion von {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo [2.2.1] hept-5-en-2-yl))oxaphosphiran-*κP*}wolfram(0)} (**13**) CpTiCl₃/Zn zu **83**

Reaktion nach allgemeiner Methode C

(i)	13a-d	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	47.1	47.1	51.9	-
m [mg / mL]	30 mg	10.3 mg	3.4	0.5 mL

Zeit: 1 Woche

(ii)	13a-d	CpTiCl ₃	Zn	THF
Äq.	1	2	2.2	-
n [µmol]	47.1	94.3	103.7	-
m [mg / mL]	30 mg	94.3 mg	6.8	0.5 mL

Zeit: 1 Woche

NMR:

³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = 190.9 (**83a***), 191.8 (**83b***), 196.8 (**83c***), 197.3 (**83d***), 207.5 (¹J_{W,P} = 252.1 Hz, J_{P,H} = m, **83e**), 208.4 (¹J_{W,P} = 251.8 Hz, J_{P,H} = m, **83f**)

(i): Verhältnis 83a,b,c,d,e,f [0.01: 0.01: 0.05: 0.03:1.0:0.2]
 Integration im ³¹P-NMR: 38% + 52% 13a-d
 + 10% Nebenprodukte

(ii): Verhältnis 83a,b,c,d,e,f [0.03: 0.01: 0.03: 0.05:1.0:0.2] Integration im ³¹P-NMR: 78% + 21% 13a-d + 1% Nebenprodukte 6.11.4 C-Pyridyl-substituierte Phosphaalken-Komplexe

- 6.11.4.1 P-Bis(trimethylsilyl)methyl-substituierte Komplexe
- 6.11.4.1.1 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-(*o*-pyridyl)methylen-phosphan- κP }wolfram(0)} [W(CO)₅{(Me₃Si)₂CH}P=CH(C₅H₄N)}] (84a)

Zeit: 6 Stunden

Summenformel:

 $C_{18}H_{24}NO_5PSi_2W$

Molare Masse: 605.4 g/mol

NMR:

605.4 g/mol Charakterisierung erfolgt anhand der Mischung 84a'-84a'''

¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = **84a**^{•••}: 0.33 (s, 18H, SiMe₃), 1.63 (d, ²J_{P,H} = 7.3 Hz, 1H, C*H*(SiMe₃)₂), 7.09-7.20 (m, 2H, CH_{Ar}^(3,4)), 7.60-7.71 (m, 1H, CH_{Ar}⁽⁵⁾), 8.52 (d, ²J_{H,H} = 4.6 Hz, 1H, CH_{Ar}⁽²⁾), 8.61 (d, ²J_{P,H} = 19.9 Hz, 1H, C*H*=P)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = **84a**^{••••}: 1.4 (d, ³*J*_{P,C} = 2.9 Hz, SiMe₃), 36.0 (d, ¹*J*_{P,C} = 12.2 Hz, CH(SiMe₃)₂), 123.5 (s, CH_{Ar}⁽³⁾), 123.7 (s, CH_{Ar}⁽⁴⁾), 137.3 (d, ³*J*_{P,C} = 1.6 Hz, CH_{Ar}⁽⁵⁾), 148.8 (d, ⁴*J*_{P,C} = 3.4 Hz, CH_{Ar}⁽²⁾), 156.9 (d, ²*J*_{P,C} = 2.3 Hz, C_{Ar}⁽¹⁾), 161.5 (d, ¹*J*_{P,C} = 47.3 Hz, *C*=P), 196.7 (d, ²*J*_{P,C} = 10.1 Hz, *cis*-CO), 200.6 (d, ²*J*_{P,C} = 29.9 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = **84a**^{***}: 2.77 (d, ²*J*_{P,Si} = 14.7 Hz)

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 233.3 (84a')*,238.6 (¹J_{W,P} = 260.5 Hz, ²J_{P,H} = 21.6 Hz, 14.6 Hz (dd), 84a''), 244.6 (¹J_{W,P} = 269.7 Hz, ²J_{P,H} = 16.1 Hz, 84a'''), Verhältnis 84a',84a'',84a''' [0.01:0.1:1.0]

 $\begin{array}{ll} \text{MS (EI, 70 eV, }^{184}\text{W}) & \text{m/z (\%)} = 577.0 \ (1) \ [\text{M-CO}]^+, \ 549.0 \ (2) \ [\text{M-2CO}]^+, \ 493.0 \ (2) \\ & [\text{M-4CO}]^+, \ 465.0 \ (2) \ [\text{M-5CO}]^+, \ 351.9 \ (60) \ [\text{M-5CO-SiMe}_3- \\ & C_2H_2\text{N}]^+, \ 325.9 \ (20) \ [\text{M-5CO-SiMe}_3-C_4H_4\text{N}]^+, \ 295.9 \\ & [\text{W(CO)}_4]^+, \ 267.9 \ (85) \ [\text{W(CO)}_3]^+, \ 239.9 \ (30) \ [\text{W(CO)}_2]^+, \ 211.9 \\ & (30) \ [\text{WCO}]^+, \ 183.9 \ (30) \ [\text{W}]^+, \ 147.0 \ (100) \ [\text{C}_4\text{H}_{12}\text{PSi}_2]^+ \\ & \text{IR (ATR):} & \text{Auswahl } \tilde{\nu} \ [\text{cm-1}] = 2955, \ 2901 \ (\text{w, CH, CH}_3), \ 2072, \ 2014, \\ & 1893, \ 1850 \ (\text{s, CO}), \ 1594 \ (\text{w, C=C}), \ 1485, \ 1434 \ (\text{w, C=N}), \\ & 1253 \ (\text{m, SiMe}_3), \ 1097 \ (\text{m, P=C}) \end{array}$

 $\label{eq:constraint} \begin{array}{l} 6.11.4.1.2 \label{eq:constraint} \end{tabular} \label{eq:constraint} \end{tabular} 6.11.4.1.2 \end{tabular} \end{$

Synthese nach allgemeiner Methode C				H CH(SiMe ₃) ₂	
	58b	CpTiCl ₃	Zn	THF	4 Mo(CO) ₅
Äq.	1	1	1.1	-	³ ^N
n [µmol]	46.7	46.7	51.4	-	2
m [mg / mL]	25 mg	10.3 mg	3.4 mg	0.7 mL	
Zoit: 2 Stundon					

Zeit: 3 Stunden

Summenformel:	C ₁₈ H ₂₄ MoNO ₅ PSi ₂
Molare Masse:	517.5 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 266.7
	$({}^{2}J_{P,H} = m, 84b'), 271.3 ({}^{2}J_{P,H} = 18.3 \text{ Hz (d)}, 84b''), \text{Verhältnis}$
	84b ', 84b '' [0.2:1.0]

$\label{eq:constraint} \begin{array}{l} \label{eq:constraint} 6.11.4.1.3 \label{eq:constraint} \end{tabular} \label{eq:constraint} \end{tabular} \label{eq:constraint} \end{tabular} \end{tabular}$

Synthese nach allgemeiner Methode C				HCH(SiMe ₃) ₂	
	58c	CpTiCl ₃	Zn	THF	
Äq.	1	1	1.1	-	3 N
n [µmol]	61.4	61.4	67.5	-	2
m [mg / mL]	30 mg	13.5 mg	4.4 mg	0.7 mL	

Zeit: 7 Stunden

C ₁₈ H ₂₄ CrNO ₅ PSi ₂			
473.5 g/mol			
Charakterisierung erfolgt anhand der Mischung 84c'-84c'''			
¹ H-NMR (300.1 MHz, 25 °C, THF-d ⁸): [ppm] δ = 84c ^{***} : 0.34 (s, 18H, SiMe ₃), 1.52 (d, ² J _{P,H} = 6.3 Hz, 1H, C <i>H</i> (SiMe ₃) ₂), 7.07-7.18 (m, 2H, CH _{Ar} ^(3,4)), 7.61-7.69 (m, 1H, CH _{Ar} ⁽⁵⁾), 8.52 (d, ² J _{H,H} = 3.7 Hz, 1H, CH _{Ar} ⁽²⁾), 8.60 (d, ² J _{P,H} = 20.9 Hz, 1H, C <i>H</i> =P)			
¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 84c ^{•••} : 1.4 (d, ³ <i>J</i> _{P,C} = 2.7 Hz, SiMe ₃), 36.3 (d, ¹ <i>J</i> _{P,C} = 17.0 Hz, CH(SiMe ₃) ₂), 122.6 (d, ^{4/5} <i>J</i> _{P,C} = 6.3 Hz, CH _{Ar} ^(3/4)), 123.2 (d, ³ <i>J</i> _{P,C} = 18.2 Hz, CH _{Ar} ⁽⁵⁾), 137.2 (d, ^{4/5} <i>J</i> _{P,C} = 1.6 Hz, CH _{Ar} ^(3/4)), 148.7 (d, ⁴ <i>J</i> _{P,C} = 3.7 Hz, CH _{Ar} ⁽²⁾), 156.9 (s, CH _{Ar} ⁽¹⁾), 166.6 (d, ¹ <i>J</i> _{P,C} = 39.4 Hz, <i>C</i> =P), 215.9 (d, ² <i>J</i> _{P,C} = 17.8 Hz, <i>cis</i> -CO), 223.1 (d, ² <i>J</i> _{P,C} = 39.0 Hz, <i>trans</i> -CO)			
²⁹ Si-NMR (79.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = 84c : 2.50 (d, ² J _{P,Si} = 14.7 Hz)			
³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 84c ⁴ : 291.4 ($J_{P,H}$ = m), 84c ⁴ : 296.7 ($^{2}J_{P,H}$ = 21.6 Hz, 16.4 Hz (dd)), 84c ⁴ : 304.4 ($^{2}J_{P,H}$ = 20.9 Hz, 6.3 Hz (dd)), Verhältnis 84c ⁴ , 84c ⁴ , 84c ⁴ : [0.01:0.02:1.0]			

MS (EI, 70 eV, ⁵²Cr) m/z (%) = 369.9 (3) [M-SiMe₃-2CH₃]⁺, 353.9 (0.5) [M-CO-C₆H₅N]⁺, 333.0 (1) [M-5CO]⁺, 80.1 (100) [C₅H₅N+H]⁺, 78.0 (85) [C₅H₄N]⁺

6.11.4.1.4 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-1-methyl-1-(*o*-pyridyl)methylenphosphan- κP }wolfram(0)} [W(CO)₅{(Me₃Si)₂CH}P=CMe(C₅H₄N)}] (**85a**)

Zeit: 5 Stunden

Summenformel:	$C_{19}H_{26}NO_5PSi_2W$
Molare Masse:	619.4 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 200.9
	(¹ J _{W,P} = 260.0 Hz, ^{2,3} J _{P,H} = 19.4 Hz, 30.5 Hz (qd), 85a'), 213.8
	(¹ J _{W,P} = 266.8 Hz, ^{2,3} J _{P,H} = 7.7 Hz, 23.4 Hz (qd), 85a ''), 215.9
	(¹ J _{W,P} = 263.9 Hz, ^{2,3} J _{P,H} = 11.8 Hz, 31.1 Hz (qd), 85a '''),
	Verhältnis 85a', 85a'', 85a''' [0.9:1.0:0.3]

6.11.4.1.5 {Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(o-pyridyl)methylen-phosphan- $\kappa N, P$ }wolfram(0)} [W(CO)₄{(Me₃Si)₂CH}P=CH(C₅H₄N)}] (87a)

Synthese	nach	allgemeine	r Methode	C
				-

	58a	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	163.3	163.3	179.6	-
m [mg / mL]	100 mg	35.8 mg	11.8 mg	2 mL

 $\begin{array}{c} H \\ 5 \\ 4 \\ 3 \\ 2 \end{array} \xrightarrow{} 2 \\ \end{array} \begin{array}{c} CH(SiMe_3)_2 \\ W(CO)_4 \\ \end{array}$

Zeit: 35 Tage

Summenformel:	C ₁₇ H ₂₄ NO ₄ PSi ₂ W
Molare Masse:	577.4 g/mol
NMR:	¹ H-NMR (300.1 MHz, 25 °C, THF-d ⁸): [ppm] δ = 0.30 (s, 18H, SiMe ₃), 2.49 (d, ² J _{P,H} = 17.0 Hz, 1H, C <i>H</i> (SiMe ₃) ₂), 6.85-6.96 (m, 1H, CH _{Ar} ⁽³⁾), 7.45-7.55 (m, 1H, CH _{Ar} ⁽⁵⁾), 7.60-7.72 (m, 1H, CH _{Ar} ⁽⁴⁾), 8.13 (d, ² J _{P,H} = 14.9 Hz, 1H, C <i>H</i> =P), 8.96 (d, ² J _{H,H} = 5.3 Hz, 1H, CH _{Ar} ⁽²⁾)
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 1.5 (d, ³ J _{P,C} = 3.6 Hz, SiMe ₃), 30.0 (d, ¹ J _{P,C} = 30.0 Hz, CH(SiMe ₃) ₂), 121.8 (d, ⁵ J _{P,C} = 7.1 Hz, CH _{Ar} ⁽³⁾), 123.9 (d, ³ J _{P,C} = 20.3 Hz, CH _{Ar} ⁽⁵⁾), 138.5 (d, ⁴ J _{P,C} = 1.8 Hz, CH _{Ar} ⁽⁴⁾), 151.7 (d, ¹ J _{P,C} = 31.0 Hz, C=P), 156.5 (d, ⁴ J _{P,C} = 2.0 Hz, CH _{Ar} ⁽²⁾), 166.2 (d, ² J _{P,C} = 10.8 Hz, C _{Ar} ⁽¹⁾), 197.8 (d, ² J _{P,C} = 10.4 Hz, <i>cis</i> -CO), 210.5 (d, ² J _{P,C} = 4.7 Hz, <i>trans</i> -CO), 213.7 (d, ² J _{P,C} = 39.1 Hz, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = 2.85 (d, ² J _{P,Si} = 9.5 Hz)
	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 317.8 (¹ $J_{W,P}$ = 270.1 Hz, ² $J_{P,H}$ = 14.95 Hz, ² $J_{P,H}$ = 17.04 Hz (dd))
IR (ATR):	Auswahl ṽ [cm ⁻¹] = 2959 (m, CH, CH ₃), 2071 (w, CO), 2007, 1929 (m, CO), 1869, 1836 (s, CO), 1602 (w, C=C), 1459, 1435 (w, C=N), 1254 (SiMe ₃), 1094 (m, P=C)
Röntgenstruktur:	GSTR258, 2292, MK-246, s. Anhang C16

Synthese nach allgemeiner Methode C				
	58b	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	163.3	163.3	179.6	-
m [mg / mL]	100 mg	35.8 mg	11.8 mg	2 mL

Zeit: 6 Tage 95%

Summenformel: Molare Masse: NMR:	$\begin{array}{l} C_{17}H_{24}MoNO_4PSi_2 \\ 489.5 g/mol \\ {}^{1}H\text{-}NMR \ (300.1 \ MHz, 25 \ {}^\circC, \ THF\text{-}d^8) \text{: [ppm]} \ \delta = 0.34 \ (s, \ 18H, s, SiMe_3), \ 2.48 \ (d, \ {}^2J_{P,H} = 16.2 \ Hz, \ 1H, \ CH(SiMe_3)_2), \ 6.94\text{-}7.05 \ (m, \ 1H, \ CH_{\mathsf{Ar}}^{(3)}), \ 7.42 \ (d, \ {}^3J_{H,H} = 7.9 \ Hz, \ 1H, \ CH_{\mathsf{Ar}}^{(5)}), \ 7.68 \ (dd, \ 3^{3,4}_{J_{H,H}} = 7.6 \ Hz, \ 1H, \ CH_{\mathsf{Ar}}^{(4)}), \ 7.92 \ (d, \ {}^2J_{P,H} = 16.8 \ Hz, \ 1H, \ CH_{\mathsf{H}}, \ CH_{\mathsf{H}} = P), \ 8.86 \ (d, \ {}^3J_{H,H} = 5.13 \ Hz, \ CH_{\mathsf{Ar}}^{(2)}) \end{array}$
	¹³ C{ ¹ H}-NMR (75.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 1.5 (d, ³ J _{P,C} = 3.5 Hz, SiMe ₃), 31.0 (d, ¹ J _{P,C} = 36.1 Hz, CH(SiMe ₃) ₂), 121.3 (d, ⁵ J _{P,C} = 6.9 Hz, CH _{Ar} ⁽³⁾), 124.2 (d, ³ J _{P,C} = 20.2 Hz, CH _{Ar} ⁽⁵⁾), 138.2 (d, ⁴ J _{P,C} = 1.9 Hz, CH _{Ar} ⁽⁴⁾), 152.9 (d, ¹ J _{P,C} = 23.8 Hz, C=P), 155.7 (s, CH _{Ar} ⁽²⁾), 164.2 (d, ² J _{P,C} = 11.4 Hz, C _{Ar} ⁽¹⁾), 204.5 (d, ² J _{P,C} = 12.9 Hz, <i>cis</i> -CO), 219.6 (d, ² J _{P,C} = 39.1 Hz, <i>trans</i> -CO), 220.7 (d, ² J _{P,C} = 7.8 Hz, <i>trans</i> -CO)
	²⁹ Si-NMR (79.5 MHz, 25 °C, THF-d ⁸) [ppm] δ = 2.44 (d, ² J _{P,Si} = 8.9 Hz)
	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 335.9 (² J _{P,H} = 16.2 Hz, ² J _{P,H} = 16.8 Hz (dd))

Synthese nach	allgemeine	er Methode	C		H CH(SiMe ₃) ₂
	58c	CpTiCl ₃	Zn	THF	5 1 P
Äq.	1	1	1.1	-	⁴ Cr(CO) ₄
n [µmol]	163.3	163.3	179.6	-	$3 \qquad 2$
m [mg / mL]	100 mg	35.8 mg	11.8 mg	2 mL	
Zeit: 7 Monate	93%				
Summenforme	l: C ₁	7H24CrNO4	PSi ₂		
Molare Masse:	44	5.5 g/mol			
NMR:	³¹ F	P-NMR (12	1.5 MHz, 2	5 °C, THF	-d ⁸): [ppm] δ = 370.9
	$(J_{\rm F}$	_{P,H} = br)			
	Δ.	icwahl ỹ [cr	n ⁻¹ 1 - 2055		CH_{-} 2011 1080 (m CO)

IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 2955 (m, CH, CH₃), 2011, 1980 (m, CO), 1910, 1848 (s, CO), 1605 (w, C=C), 1458, 1435 (w, C=N), 1254 (SiMe₃), 1098 (m, P=C)

$$\label{eq:constraint} \begin{split} 6.11.4.1.8 \ & \{\text{Tetracarbonyl}\{[bis(trimethylsilyl)methyl]-1-methyl-1-(o-pyridyl)methylen-phosphan-κN,$P$$ wolfram(0) \ & [W(CO)_4\{(Me_3Si)_2CH\}P=CMe(C_5H_4N)\}] \ (\textbf{88a}) \end{split}$$

Synthese nach allgemeiner Methode C				
	59a	CpTiCl ₃	Zn	THF
Äq.	1	1	1.1	-
n [µmol]	157.4	157.4	173.1	-
m [mg / mL]	100 mg	34.5 mg	11.3 mg	2 mL

Zeit: 6 Tage

Summenformel:	$C_{18}H_{26}NO_4PSi_2W$
Molare Masse:	591.4 g/mol

NMR:

¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = 0.31 (s, 18H, SiMe₃), 2.29 (d, ³*J*_{P,H} = 19.4 Hz, 3H, CH₃), 2.79 (d, ²*J*_{P,H} = 18.9 Hz, 1H, C*H*(SiMe₃)₂), 6.96-7.03 (m, 1H, CH_{Ar}⁽³⁾), 7.59 (dd, ³*J*_{H,H} = 8.21 Hz, ⁴*J*_{H,H} = 2.66 Hz, 1H, CH_{Ar}⁽⁵⁾), 7.73-7.82 (m, 1H, CH_{Ar}⁽⁴⁾), 9.09 (dd, ³*J*_{H,H} = 5.7 Hz, ⁴*J*_{H,H} = 0.9 Hz, 1H, CH_{Ar}⁽²⁾)

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 1.6 (d, ³J_{P,C} = 3.7 Hz, SiMe₃), 17.8 (d, ²J_{P,C} = 9.3 Hz, CH₃), 25.6 (d, ¹J_{P,C} = 39.8 Hz, CH(SiMe₃)₂), 121.5 (d, ³J_{P,C} = 18.4 Hz, CH_{Ar}⁽⁵⁾), 122.3 (d, ⁵J_{P,C} = 7.6 Hz, CH_{Ar}⁽³⁾), 138.4 (d, ⁴J_{P,C} = 2.8 Hz, CH_{Ar}⁽⁴⁾), 157.4 (d, ⁴J_{P,C} = 1.9 Hz, CH_{Ar}⁽²⁾), 159.5 (d, ¹J_{P,C} = 29.3 Hz, C=P), 165.8 (d, ²J_{P,C} = 16.0 Hz, C_{Ar}⁽¹⁾), 198.3 (d, ²J_{P,C} = 11.1 Hz, *cis*-CO), 210.6 (d, ²J_{P,C} = 4.8 Hz, *trans*-CO), 212.6 (d, ²J_{P,C} = 38.7 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 3.81 (d, ²J_{P,Si} = 5.7 Hz)

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 289.9 (¹J_{W,P} = 268.7 Hz, ²J_{P,H} = 18.9 Hz, ³J_{P,H} = 19.4 Hz (dq))

- MS (EI, 70 eV, ¹⁸⁴W) m/z (%) = 591.0 (2) $[M]^{+*}$, 518.0 (25) $[M-SiMe_3]^+$, 462.0 (35) [M-SiMe₃-2CO]⁺, 432.0 (15) $[M-SiMe_3-2CO-2CH_3]^+$, 73.0 (100) $[SiMe_3]^+$
- IR (ATR): Auswahl \tilde{v} [cm⁻¹] = 2956 (w, CH, CH₃), 2072, 2009, 1980, 1921, 1850 (s, CO), 1593 (w, C=C), 1464 (w, C=N), 1253 (m, SiMe₃), 1016 (m, P=C)
- Röntgenstruktur: GSTR268, 2375, MK-247, s. Anhang D17

6.11.4.2 P-Triphenylmethyl-substituierte Komplexe

6.11.4.2.1 Deoxygenierung von 60a zum *N,P*-Chelat-Komplex 90a

	60a	CpTiCl ₃	Zn	THF
Äq.	1	1	1.2	-
n [µmol]	42.5	42.5	50.5	-
m [mg / mL]	30 mg	9.34 mg	3.3 mg	0.5 mL

Synthese nach allgemeiner Methode C

Zeit: 3 Tage

Summenformel:	$C_{29}H_{20}NO_4PW$
Molare Masse:	661.3 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = -42.9
	$({}^{1}J_{W,P} = 222.0 \text{ Hz}, {}^{1}J_{P,H} = 334.1 \text{ Hz}$ (t), 12%), -6.6 ($J_{P,H} = 14.3$
	Hz, 339.8 Hz (dd), 9%), 72.6 ($J_{P,H} = m, 5\%$), 132.8 (${}^{1}J_{W,P} =$
	277.3 Hz, <i>J</i> _{P,H} = m, 7%), 154.5 (br, 10%), 187.4 (<i>J</i> _{P,H} = m,
	5%), 325.5 (${}^{1}J_{W,P}$ = 271.1 Hz, ${}^{2}J_{P,H}$ = 17.5 Hz, 11%, 90a) +
	41% weitere unbekannte Nebenprodukte

- 6.11.4.3 P-Pentamethylcyclopentadienyl-substituierte Komplexe
- 6.11.4.3.1 Deoxygenierung von **63a** zu $\sigma^2 \lambda^3$ -Phosphaalken-Komplex **90a** und *N,P*-Chelat-Komplex **92a**

5	U			
	63a	CpTiCl ₃	Zn	THF
Äq.	1	1	1	-
n [µmol]	50.2	50.2	50.1	-
m [mg / mL]	30 mg	11.0 mg	3.3 mg	0.5 mL

Zeit: 21 Tage

Summenformel:	$C_{21}H_{20}NO_5PW \text{ (90a)}, C_{21}H_{20}NO_5PW \text{ (92a)}$
Molare Masse:	581.2 g/mol (90a), 553.2 g/mol (92a)

NMR:

Nach 3 Stunden:

³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = -8.9 (br, 16%), 114.3 (¹J_{W,P} = 291.4 Hz, J_{P,H} = m, 3%), 125.2 (br, 3%), 126.8 (br, 6%), 127.1 (br, 10%), 252.4 (¹J_{W,P} = 270.1 Hz, J_{P,H} = br, 56%, **90a**) + 6% weitere unbekannte Nebenprodukte

Nach 21 Stunden:

³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = -8.9 (br, 59%), -0.2 (br, 16%), 114.3 (2%), 125.2 (br, 3%), 125.4 (br, 1%), 126.4 (2%), 127.1 (br, 3%), 249.6 (br, ¹*J*_{W,P} = 270.1 Hz, *J*_{P,H} = br, 13%, **90a**), 320.7 (¹*J*_{W,P} = 271.0 Hz, *J*_{P,H} = br, 1%, **92a**)

Nach 21 Tagen:

³¹P-NMR (121.5 MHz, 25 °C, THF): [ppm] δ = -33.0 (br, 15%), -26.8 (br, 9%), -23.6 (1%), -14.8 (2%), -8.9 (br, 39%), -4.2 (2%), -4.6 (2%), 3.8 (br, 3%), 5.4 (br, 3%), 35.6 (2%), 35.8 (1%), 36.8 (3%), 36.9 (3%), 165.9 (3%), 193.2 (4%), 320.7 (¹J_{W,P} = 271.0 Hz, J_{P,H} = br, 8%, **92a**)

6.11.5 C, C-Dipyridyl-substituierte Phosphaalken-Komplexe

6.11.5.1 {Pentacarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(*o*-pyridyl)]methylenphosphan- κP }wolfram(0)} [W(CO)₅{(Me₃Si)₂CH}P=C(C₅H₄N)₂}] (**93a**)

Synthese nach	allgemeiner	Methode	С
---------------	-------------	---------	---

	66a	CpTiCl ₃	Zn	THF-d ⁸
Äq.	1	1	1.2	-
n [µmol]	71.6	71.6	85.6	-
m [mg / mL]	50 mg	15.7 mg	5.6 mg	0.9 mL

Zeit: 60 Stunden 27%

Summenformel:		
Molare Masse:		
NMR:		

$$\begin{split} &C_{23}H_{27}N_2O_5PSi_2W\\ &682.5 \text{ g/mol}\\ ^{1}\text{H-NMR} (300.1 \text{ MHz}, 25 ^{\circ}\text{C}, \text{THF-d}^8): [ppm] \ \delta = 0.11 \text{ (s,}\\ &9\text{H}, \text{SiMe}_3), \ 0.53 \text{ (s, 9H, SiMe}_3), \ 2.94 \text{ (d, }^2J_{\text{P,H}} = 18.5 \text{ Hz,}\\ &1\text{H}, \text{C}H(\text{SiMe}_3)_2), \ 7.67 \text{ (dd, }^{3/4}J_{\text{H,H}} = 7.7 \text{ Hz}, \ 1.8 \text{ Hz}, \ 2\text{H},\\ &CH_{\text{Py}}), \ 7.59 \text{ (d, }^{3/4}J_{\text{H,H}} = 8.0 \text{ Hz}, \ 1\text{H}, \ CH_{\text{Py}}), \ 7.78 \text{ (d, }^{3/4}J_{\text{H,H}} = \\ &7.6 \text{ Hz}, \ 1\text{H}, \ CH_{\text{Py}}), \ 8.11 \text{ (d, }^{3/4}J_{\text{H,H}} = 7.7 \text{ Hz}, \ 1\text{H}, \ CH_{\text{Py}}), \ 8.20 \text{ (d, }^{3/4}J_{\text{H,H}} = 7.6 \text{ Hz}, \ 1\text{H}, \ CH_{\text{Py}}), \ 8.71 \text{ (d, }^{3/4}J_{\text{H,H}} = 4.7 \text{ Hz}, \ 1\text{H},\\ &CH_{\text{Py}}), \ 8.96 \text{ (d, }^{3/4}J_{\text{H,H}} = 4.8 \text{ Hz}, \ 1\text{H}, \ CH_{\text{Py}}) \end{split}$$

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 2.5 (d, ³*J*_{P,C} = 4.6 Hz, SiMe₃), 3.0 (d, ³*J*_{P,C} = 3.3 Hz, SiMe₃), 32.6 (d, ¹*J*_{P,C} = 34.8 Hz, *C*H(SiMe₃)₂), 125.4 (s, *C*H_{Py}), 126.3 (s, *C*H_{Py}), 127.8 (d, ^{3/4/5}*J*_{P,C} = 6.6 Hz, *C*H_{Py}), 129.5 (d, ^{3/4/5}*J*_{P,C} = 9.6 Hz, *C*H_{py}), 141.4 (s, *C*H_{py}), 141.7 (s, *C*H_{py}), 150.7 (s, *C*H_{py}), 151.6 (s, *C*H_{py}), 155.7-155.8 (*C*_q), 158.2 (d, ²*J*_{P,C} = 16.9 Hz, *C*_q), 164.3 (d, ¹*J*_{P,C} = 29.6 Hz, *C*=P), 195.7 (d, ²*J*_{P,C} = 8.1 Hz, *cis*-CO), 204.3 (d, ²*J*_{P,C} = 31.6 Hz, *trans*-CO)

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = -0.31 (d, ²J_{P,Si} = 8.6 Hz), 4.92 (d, ²J_{P,Si} = 2.7 Hz)

³¹P-NMR (121.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 264.6 (¹J_{W,P} = 287.7 Hz, ²J_{P,H} = 18.4 Hz)

IR $(ATR)^{(*)}$: Auswahl \tilde{v} [cm⁻¹] = 2956 (n, CH, CH₃), 2076, 2011 (m, CO), 1920, 1878 (s, CO), 1597 (m, C=C), 1463, 1435 (m, C=N), 1253 (m, SiMe₃), 1064, 1021 (m, P=C)

^(*) Messung aus der Mischung **93a/94a**

Röntgenstruktur: 93a bzw. 93a': GSTR379, 3699f, MK-570, s. Anhang D18

6.11.5.2 {Tetracarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(o-pyridyl)]methylenphosphan- $\kappa N, P$ }wolfram(0)} [W(CO)₄{(Me₃Si)₂CH}P=C(C₅H₄N)₂}] (**94a**)

5	0				
	66a	CpTiCl ₃	Zn	THF-d ⁸	
Äq.	1	1	1.2	-	CH(SiMe ₃) ₂
n [µmol]	71.6	71.6	85.6	-	-W(CO)
m [mg / mL]	50 mg	15.7 mg	5.6 mg	0.9 mL	N N N

Synthese nach allgemeiner Methode C

Zeit: 60 Stunden 32%

Summenformel: Molare Masse: NMR: $C_{22}H_{27}N_2O_4PSi_2W$

654.5 g/mol ¹H-NMR (300.1 MHz, 25 °C, THF-d⁸): [ppm] δ = 0.28 (s, 18H, SiMe₃), 2.80 (d, ²*J*_{P,H} = 20.0 Hz, *J*_{H,H} = 14.5 Hz, 1H, C<u>H</u>(SiMe₃)₂), 7.03 (ddt, ⁴*J*_{P,H} = 2.8 Hz, ^{3/4}*J*_{H,H} = 5.6 Hz, 1.5 Hz, 1H, C*H*_{Py}), 7.12-7.18 (m, 1H, C*H*_{Py}), 7.30-7.35 (m, 1H, C*H*_{Py}), 7.36-7.39 (m, 1H, C*H*_{Py}), 7.62-7.68 (m, 1H, C*H*_{Py}), 7.89-7.94 (m, 1H, C*H*_{Py}), 8.76 (ddd, ⁴*J*_{P,H} = 1.7 Hz, ^{3/4}*J*_{H,H} = 5.2 Hz, 0.8 Hz, 1H, C*H*_{Py}), 9.16 (ddd, ⁵*J*_{P,H} = 1.7 Hz, ^{3/4}*J*_{H,H}

¹³C{¹H}-NMR (75.5 MHz, 25 °C, THF-d⁸): [ppm] δ = 1.8 (d, ³J_{P,C} = 3.6 Hz, SiMe₃), 27.2 (d, ¹J_{P,C} = 37.9 Hz, CH(SiMe₃)₂), 122.3 (d, ³J_{P,C} = 7.2 Hz, CH_{py}), 123.3 (s, CH_{py}), 123.5 (s, CH_{py}), 126.6 (d, ³J_{P,C} = 7.0 Hz, CH_{py}), 137.9 (s, CH_{py}), 138.4 (d, ⁴J_{P,C} = 2.7 Hz, CH_{py}), 151.4 (s, CH_{py}), 157.5 (d, ⁴J_{P,C} = 2.1 Hz, CH_{py}), 155.5 (d, ²J_{P,C} = 2.7 Hz, C_q), 157.6 (d, ²J_{P,C} = 8.8 Hz, C_q), 164.6 (d, ¹J_{P,C} = 27.9 Hz, C=P), 195.9 (d, ²J_{P,C} = 9.0 Hz, *cis*-CO), 210.3 (d, ²J_{P,C} = 4.7 Hz, *trans*-CO), 212.9 (d,

²⁹Si-NMR (79.5 MHz, 25 °C, THF-d⁸) [ppm] δ = 3.58 (d, ²J_{P,Si} = 5.5 Hz)

	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ = 308.5 (¹ $J_{W,P}$ = 274.3 Hz, ² $J_{P,H}$ = 20.0 Hz)
IR (ATR) ^(*) :	Auswahl \tilde{v} [cm ⁻¹] = 2956 (n, CH, CH ₃), 2076, 2011 (m, CO), 1920, 1878 (s, CO), 1597 (m, C=C), 1463, 1435 (m, C=N), 1253 (m, SiMe ₃), 1064, 1021 (m, P=C)
	^(*) Messung aus der Mischung 93a/94a

$$\label{eq:constraint} \begin{split} 6.11.5.3\, & \{\text{Tetracarbonyl}\{[bis(trimethylsilyl)methyl]-1,1-[di-(o-pyridyl)]methylen-phosphan-κN,Pchrom(0)} \, & [Cr(CO)_4\{(Me_3Si)_2CH\}P=C(C_5H_4N)_2\}] \, (\textbf{94c}) \end{split}$$

5	U			
	66c	CpTiCl ₃	Zn	THF-d ⁸
Äq.	1	1	1.2	-
n [µmol]	52.9	52.9	58.2	-
m [mg / mL]	30 mg	11.6 mg	3.8 mg	0.5 mL

Synthese nach allgemeiner Methode C

Zeit: 60 Stunden 32%

Summenformel:	$C_{22}H_{27}CrN_2O_4PW$
Molare Masse:	522.6 g/mol
NMR:	³¹ P-NMR (121.5 MHz, 25 °C, THF-d ⁸): [ppm] δ =
	-137.6 (br, ${}^{1}J_{P,H}$ = 267.2 Hz, 4%), -133.6 (br, 36%), -126.4
	(br, 25%), 28.8 ($J_{P,H}$ = 9.9 Hz, 345.7 Hz (dd), 4%), 41.4
	$(^{1}J_{P,H} = 328.5 \text{ Hz}, 2\%), 43.2 (J_{P,H} = 16.3 \text{ Hz}, 319.6 \text{ Hz} (dd),$
	3%), 157.0 (2%), 180.7 (2%), 210.6 ($J_{P,H} = m, 16\%$), 211.3
	$(J_{P,H} = m, 3\%), 212.3 (J_{P,H} = m, 2\%), 359.7 (J_{P,H} = 3.5 Hz,$
	20.0 Hz (dd), 2%, 94c)

7 Literatur

- ^[1] (a) T. Eicher, S. Hauptmann, *Chemie der Heterocyclen. Struktur, Reaktionen und Synthesen*, Thieme Stuttgart, **1994**; (b) A. K. Yudin, *Aziridines and Epoxides in Organic Synthesis*, Wiley-VCH Weinheim, **2006**.
- [2] (a) P. Kubisa J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 457–468; (b) O. Nuyken, S. Pask Polymers 2013, 5, 361–403; (c) S. Paul, Y. Zhu, C. Romain, R. Brooks, P. K. Saini, C. K. Williams Chem. Commun. 2015, 51, 6459–6479.
- ^[3] A. Wurtz Ann. Chim. Phys. **1859**, 55, 400–478.
- ^[4] V. Russo, R. Tesser, E. Santacesaria, M. Di Serio *Ind. Eng. Chem. Res.* **2013**, *52*, 1168–1178.
- ^[5] A. Baeyer *Ber. Dtsch. Chem. Ges.* **1885**, *18*, 2269–2281.
- ^[6] (a) K. B. Wiberg Angew. Chem. **1986**, 98, 312–322; (b) *ibid. Angew. Chem. Int. Ed.* Engl. **1986**, 25, 312–322.
- ^[7] (a) M. Driess, H. Grützmacher Angew. Chem. **1996**, 108, 900–929; (b) *ibid.* Angew. Chem. Int. Ed. Engl. **1996**, 35, 828–856.
- ^[8] (a) W. D. Emmons *J. Am. Chem. Soc.* **1956**, *78*, 6208–6209; (b) L. Horner, E. Jürgens *Chem. Ber.* **1957**, *90*, 2184–2189; (c) F. A. Davis, A. C. Sheppard *Tetrahedron* **1989**, *45*, 5703–5742.
- ^[9] (a) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel, D. Stalke Angew. Chem. 2010, 122, 4044–4047; (b) *ibid. Angew. Chem. Int. Ed.* 2010, 49, 3952–3955.
- ^[10] P. R. Schreiner, H. P. Reisenauer, J. Romanski, G. Mloston *J. Am. Chem. Soc.* **2010**, *132*, 7240–7241.
- ^[11] M. R. Ibrahim, M. Bühl, R. Knab, P. V. R. Schleyer *J. Comput. Chem.* **1992**, *13*, 423–428.
- ^[12] H. Krimm *Chem. Ber.* **1958**, *91*, 1057–1068.
- ^[13] W. Ando, Y. Hamada, A. Sekiguchi, K. Ueno *Tetrahedron Lett.* **1982**, *23*, 5323–5326.
- ^[14] W. W. Schoeller in *Multiple bonds and low coordination in phosphorus chemistry,* Eds.: M. Regitz, O. J. Scherer, R. Appel, Georg Thieme Verlag, Stuttgart, **1990**, S. 23.
- ^[15] L. D. Quin, *A Guide to Organophosphorus Chemistry*, Wiley New York, **2000**, *S. 8-9*.
- ^[16] G.-V. Röschenthaler, K. Sauerbrey, R. Schmutzler *Chem. Ber.* **1978**, *111*, 3105–3111.
- ^[17] (a) S. Bauer, A. Marinetti, L. Ricard, F. Mathey *Angew. Chem.* **1990**, *102*, 1188– 1189; (b) *ibid. Angew. Chem. Int. Ed. Engl.* **1990**, *29*, 1166–1167.
- ^[18] (a) H. Gornitzka, D. Stalke Angew. Chem. **1994**, *106*, 695–698; (b) *ibid. Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 693–695.
- ^[19] A. Espinosa Ferao, E. de las Heras, R. Streubel *Inorg. Chem.* **2014**, *5*3, 6132–6140.
- ^[20] T. A. van der Knaap, T. C. Klebach, R. Lourens, M. Vos, F. Bickelhaupt *J. Am. Chem. Soc.* **1983**, *105*, 4026–4032.
- ^[21] (a) R. Streubel, A. Kusenberg, J. Jeske, P. G. Jones *Angew. Chem.* **1994**, *106*, 2564–2566; (b) *ibid. Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 2427–2428.
- [22] (a) R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske, P. G. Jones Angew. Chem. 1997, 109, 409–413; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 1997, 36, 378– 381.
- ^[23] R. Streubel, A. Ostrowski *Phosphorus, Sulfur Silicon Relat. Elem.* **1996**, *109*, 153–156.
- ^[24] H. Wilkens, F. Ruthe, P. G. Jones, R. Streubel *Chem. Eur. J.* **1998**, *4*, 1542–1553.
- ^[25] H. Wilkens, Dissertation, Technische Universität Braunschweig, **2000**.
- ^[26] Y. Inubushi, N. H. Tran Huy, L. Ricard, F. Mathey *J. Organomet. Chem.* **1997**, 533, 83–86.
- ^[27] (a) A. Özbolat, G. von Frantzius, J. M. Pérez, M. Nieger, R. Streubel Angew. Chem. 2007, 119, 9488–9491; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 2007, 46, 9327–9330.
- ^[28] (a) R. Streubel, M. Bode, J. M. Pérez, G. Schnakenburg, J. Daniels, M. Nieger, P. G. Jones *Z. Anorg. Allg. Chem.* 2009, 635, 1163–1171; (b) V. Nesterov, G. Schnakenburg, A. Espinosa Ferao, R. Streubel *Inorg. Chem.* 2012, 51, 12343–12349.
- ^[29] (a) M. Bode, J. Daniels, R. Streubel Organometallics 2009, 28, 4636–4638; (b) C. Albrecht, M. Bode, J. M. Pérez, J. Daniels, G. Schnakenburg, R. Streubel Dalton Trans. 2011, 40, 2654–2665.
- [30] (a) J. M. Pérez, M. Klein, A. W. Kyri, G. Schnakenburg, R. Streubel Organometallics 2011, 30, 5636–5640; (b) R. Streubel, E. Schneider, G. Schnakenburg Organometallics 2012, 31, 4707–4710; (c) C. Albrecht, E. Schneider, M. Engeser, G. Schnakenburg, A. Espinosa Ferao, R. Streubel Dalton Trans. 2013, 42, 8897–8906.
- ^[31] C. Murcia-García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel *CrystEngComm* **2015**, *17*, 1769–1772.
- ^[32] R. Streubel, M. Klein, G. Schnakenburg *Organometallics* **2012**, *31*, 4711–4715.
- ^[33] M. Regitz, O. J. Scherer, R. Appel (Eds.) *Multiple bonds and low coordination in phosphorus chemistry*, Georg Thieme Verlag Stuttgart, **1990**.
- ^[34] (a) F. Mathey, N. H. T. Huy, A. Marinetti *Helv. Chim. Acta* 2001, *84*, 2938–2957;
 (b) K. Lammertsma, M. J. M. Vlaar *Eur. J. Org. Chem.* 2002, 1127–1138; (c) F. Mathey *Dalton Trans.* 2007, 1861–1868; (d) H. Aktaş, J. C. Slootweg, K. Lammertsma *Angew. Chem.* 2010, *122*, 2148–2159; (e) *ibid. Angew. Chem. Int. Ed. Engl.* 2010, *49*, 2102–2113.
- ^[35] G. Bertrand, **2015**, *Stable singlet carbenes for the isolation of highly reactive main group species*. Vortrag auf International Conference on Heteroatom Chemistry Caen (Frankreich). Online: http://www.ichac-11.com/programme-detailled/ (15.06.2015).
- ^[36] (a) G. Trinquier J. Am. Chem. Soc. 1982, 104, 6969–6977; (b) F. Mathey in Multiple bonds and low coordination in phosphorus chemistry, Eds.: M. Regitz, O. J. Scherer, R. Appel, Georg Thieme Verlag, Stuttgart, 1990, S. 38; (c) M. T. Nguyen, A. van Keer, L. A. Eriksson, L. G. Vanquickenborne Chem. Phys. Lett. 1996, 254, 307–313; (d) M. T. Nguyen, A. van Keer, L. G. Vanquickenborne J. Org. Chem. 1996, 61, 7077–7084; (e) G. Frison, F. Mathey, A. Sevin J. Organomet. Chem. 1998, 570, 225–234; (f) D. Szieberth, T. Veszpremi, M. T. Nguyen J. Mol. Struct. 2000, 556, 143–149; (g) A. W. Ehlers, E. J. Baerends, K. Lammertsma J. Am. Chem. Soc. 2002, 124, 2831–2838; (h) S. Grigoleit, A. Alijah, A. B. Rozhenko, R. Streubel, W. W. Schoeller J. Organomet. Chem. 2002, 643-644, 223–230; (i) Z. Benkö, R. Streubel, L. Nyulászi Dalton Trans. 2006, 4321–4327; (j) Z. Benkö, D. Gudat, L. Nyulászi C. R. Chimie 2010, 13, 1048–1053.
- ^[37] X. Li, S. I. Weissman, T.-S. Lin, P. P. Gaspar, A. H. Cowley, A. I. Smirnov *J. Am. Chem. Soc.* **1994**, *116*, 7899–7900.

- ^[38] (a) G. Bucher, M. L. G. Borst, A. W. Ehlers, K. Lammertsma, S. Ceola, M. Huber, D. Grote, W. Sander Angew. Chem. 2005, 117, 3353–3357; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 2005, 44, 3289–3293.
- ^[39] (a) E. Niecke, A. Nickloweit-Lüke, R. Rüger Z. Naturforsch. 1981, 1566–1574; (b)
 E. Niecke, R. Streubel, M. Nieger, D. Stalke Angew. Chem. 1989, 101, 1708– 1710; (c) *ibid. Angew. Chem. Int. Ed. Engl.* 1989, 28, 1673–1674; (d) R. Streubel,
 E. Niecke Chem. Ber. 1990, 123, 1245–1251; (e) T. L. Breen, D. W. Stephan J. Am. Chem. Soc. 1995, 117, 11914–11921; (f) R. Waterman, G. L. Hillhouse Organometallics 2003, 22, 5182–5184; (g) L. Weber Eur. J. Inorg. Chem. 2007, 4095–4117; (h) A. Velian, C. C. Cummins J. Am. Chem. Soc. 2012, 134, 13978– 13981.
- [40] (a) A. Marinetti, F. Mathey, J. Fischer, A. Mitschler J. Am. Chem. Soc. 1982, 104, 4484–4485; (b) P. B. Hitchcock, M. F. Lappert, W.-P. Leung J. Chem. Soc., Chem. Commun. 1987, 1282–1283; (c) F. Mercier, B. Deschamps, F. Mathey J. Am. Chem. Soc. 1989, 111, 9098–9100.
- ^[41] W. Kuchen, H. Buchwald *Angew. Chem.* **1957**, *69*, 307–308.
- ^[42] (a) G. Wittig, F. J. Meyer, G. Lange Justus Liebigs Ann. Chem. 1951, 571, 167–201; (b) K. Issleib, A. Tzschach Chem. Ber. 1959, 92, 1118–1126.
- ^[43] H. Hope, M. M. Olmstead, P. P. Power, X. Xiaojie *J. Am. Chem. Soc.* **1984**, *106*, 819–821.
- ^[44] (a) G. Köbrich Angew. Chem. 1972, 84, 557–570; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 1972, 11, 473–485; (c) G. Boche, J. C. W. Lohrenz Chem. Rev. 2001, 101, 697–756.
- ^[45] M. Yoshifuji, T. Sato, N. Inamoto *Chem. Lett.* **1988**, 1735–1738.
- ^[46] R. Streubel, A. Özbolat-Schön, G. von Frantzius, H. Lee, G. Schnakenburg, D. Gudat *Inorg. Chem.* **2013**, *52*, 3313–3325.
- ^[47] (a) M. Braun Angew. Chem. **1998**, 110, 444–465; (b) *ibid. Angew. Chem. Int. Ed.* **1998**, 37, 430–451.
- ^[48] (a) G. Köbrich, A. Akhtar, F. Ansari, W. E. Breckoff, H. Büttner, W. Drischel, R. H. Fischer, K. Flory, H. Fröhlich, W. Goyert et al. *Angew. Chem.* 1967, *79*, 15–27; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 1967, *6*, 41–52.
- ^[49] L. Abdrakhmanova, A. Espinosa Ferao, R. Streubel *Dalton Trans.* **2013**, *4*2, 10510–10514.
- ^[50] (a) A. Özbolat, A. A. Khan, G. von Frantzius, M. Nieger, R. Streubel Angew. Chem. 2007, 119, 2150–2154; (b) A. Özbolat, A. A. Khan, G. von Frantzius, M. Nieger, R. Streubel Angew. Chem. Int. Ed. Engl. 2007, 46, 2104–2107; (c) J. M. Pérez, H. Helten, B. Donnadieu, C. A. Reed, R. Streubel Angew. Chem. 2010, 122, 2670–2674; (d) *ibid. Angew. Chem. Int. Ed.* 2010, 49, 2615–2618; (e) S. Fankel, H. Helten, G. von Frantzius, G. Schnakenburg, J. Daniels, V. Chu, C. Müller, R. Streubel Dalton Trans. 2010, 39, 3472–3481.
- ^[51] (a) L. Duan, V. Nesterov, J. W. Runyon, G. Schnakenburg, A. J. Arduengo III, R. Streubel Aust. J. Chem. 2011, 64, 1583–1586; (b) V. Nesterov, L. Duan, G. Schnakenburg, R. Streubel Eur. J. Inorg. Chem. 2011, 567–572; (c) L. Duan, Dissertation, Universität Bonn, 2011.
- ^[52] L. Duan, G. Schnakenburg, J. Daniels, R. Streubel *Eur. J. Inorg. Chem.* **2012**, 2314–2319.
- ^[53] (a) J. M. Pérez, Dissertation, Universität Bonn, **2010**; (b) A. Özbolat-Schön, Dissertation, Universität Bonn, **2011**; (c) C. Albrecht, Dissertation, Universität Bonn, **2013**.
- ^[54] L. Abdrakhmanova, G. Schnakenburg, A. Espinosa Ferao, R. Streubel *Eur. J. Inorg. Chem.* **2014**, 1727–1734.

- ^[55] M. Klein, Diplomarbeit, Universität Bonn, **2010**.
- ^[56] A. W. Kyri, Bachelorarbeit, Universität Bonn, **2010**.
- ^[57] (a) N. A. Petasis, D. K. Fu *J. Am. Chem. Soc.* **1993**, *115*, 7208–7214; (b) S. R. Ahmed, S. E. Bullock, A. V. Cresce, P. Kofinas *Polymer* **2003**, *44*, 4943–4948; (c) G. Floros, N. Saragas, P. Paraskevopoulou, N. Psaroudakis, S. Koinis, M. Pitsikalis, N. Hadjichristidis, K. Mertis *Polymers* **2012**, *4*, 1657–1673.
- ^[58] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor *J. Chem. Soc., Perkin Trans.* 2 **1987**, S. 1–19.
- ^[59] "Properties Viewer by ChemAxon", zu finden unter: http://www.chemicalize.org/. (12.06.2015).
- ^[60] N. Dufour, A.-M. Caminade, M. Basso-Bert, A. Igau, J.-P. Majoral *Organometallics* **1992**, *11*, 1131–1137.
- ^[61] A. A. Khan, C. Wismach, P. G. Jones, R. Streubel *Dalton Trans.* **2003**, 2483–2487.
- ^[62] F. Gingl, W. Hiller, J. Strähle, H. Borgholte, K. Dehnicke *Z. Anorg. Allg. Chem.* **1991**, *606*, 91–96.
- ^[63] N. Kuhn, T. Kratz *Synthesis* **1993**, 561–562.
- ^[64] A. J. Arduengo III, H. V. R. Dias, J. C. Calabrese *Chem. Lett.* **1997**, 143–144.
- ^[65] A. J. Arduengo III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall, B. Riegel *Inorg. Chem.* **1997**, *36*, 2151–2158.
- ^[66] (a) H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, M. J. Maah, M. J. Taylor J. Chem. Soc., Chem. Commun. **1981**, 199–200; (b) A. Marinetti, F. Mathey Angew. Chem. **1988**, 100, 1435–1437; (c) *ibid. Angew. Chem. Int. Ed. Engl.* **1988**, 27, 1382–1384; (d) A. Marinetti, S. Bauer, L. Ricard, F. Mathey Organometallics **1990**, *9*, 793–798.
- ^[67] M. Klein, G. Schnakenburg, A. Espinosa Ferao, N. Tokitoh, R. Streubel *Eur. J. Inorg. Chem.* **2015**, DOI: 10.1002/ejic.201500959.
- ^[68] (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, Hommes, Nicolaas J. R. van Eikema J. Am. Chem. Soc. 1996, 118, 6317–6318; (b) M. K. Cyrañski, T. M. Krygowski, M. Wisiorowski, N. J. R. van Eikema Hommes, P. v. R. Schleyer Angew. Chem. 1998, 110, 187–190; (c) M. K. Cyrañski, T. M. Krygowski, M. Wisiorowski, Hommes, Nicolaas J. R. van Eikema, P. v. R. Schleyer Angew. Chem. Int. Ed. 1998, 37, 177–180; (d) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer Chem. Rev. 2005, 105, 3842–3888.
- ^[69] H. J. Singh, U. Mukherjee *J. Mol. Model.* **2013**, *19*, 2317–2327.
- ^[70] (a) A. Espinosa Ferao, A. Frontera, R. García, Soler, Miguel, A., A. Tárraga *ARKIVOC* 2005, *ix*, 415–437; (b) A. Schäfer, A. Schäfer, T. Müller *Dalton Trans.* 2010, 39, 9296–9303.
- [71] (a) A. Maisonnet, J. P. Farr, M. M. Olmstead, C. T. Hunt, A. L. Balch *Inorg. Chem.* **1982**, *21*, 3961–3967; (b) T. Suzuki, M. Kita, K. Kashiwabara, J. Fujita *Bull. Chem. Soc. Jpn.* **1990**, *63*, 3434–3442; (c) Z.-Z. Zhang, H. Cheng *Coord. Chem. Rev.* **1996**, *147*, 1–39; (d) K. Nishide, S. Ito, M. Yoshifuji *J. Organomet. Chem.* **2003**, *682*, 79–84.
- ^[72] L. Hirsivaara, M. Haukka, J. Pursiainen *Eur. J. Inorg. Chem.* **2001**, 2001, 2255–2262.
- ^[73] C. Janiak, T. M. Klapötke, R. Alsfasser, *Moderne anorganische Chemie*, Walter de Gruyter Berlin, **2007**.
- ^[74] A. Jayaraman, B. T. Sterenberg *Organometallics* **2014**, *33*, 522–530.
- ^[75] X. Luo, H. Zhang, H. Duan, Q. Liu, L. Zhu, T. Zhang, A. Lei *Org. Lett.* **2007**, *9*, 4571–4574.
- ^[76] A. Gao, Y. Mu, J. Zhang, W. Yao *Eur. J. Inorg. Chem.* **2009**, 3613–3621.

- ^[77] A. G. Orpen, N. G. Connelly *Organometallics* **1990**, *9*, 1206–1210.
- ^[78] H. Helten, G. Schnakenburg, J. Daniels, A. J. Arduengo III, R. Streubel Organometallics **2011**, *30*, 84–91.
- ^[79] H. Lang, O. Orama, G. Huttner *J. Organomet. Chem.* **1985**, *291*, 293–309.
- ^[80] W. L. F. Armarego, D. D. Perrin (Eds.) *Purification of Laboratory Chemicals*, Butterworth Heinemann Oxford, **1996**.
- ^[81] V. Nesterov, T. Heurich, R. Streubel *Pure Appl. Chem.* **2012**, *85*, 829–834.
- ^[82] K. Diemert, W. Kuchen, D. Lorenzen J. Organomet. Chem. **1989**, 378, 17–31.
- ^[83] R. Streubel, J. Faßbender, G. Schnakenburg, A. Espinosa Ferao *Organometallics* **2015**, *34*, 3103–3106.
- ^[84] Y. Liang, S. Lu, Z. Huang, Q. Wu *J. Cluster Sci.* **2002**, *13*, 7–14.
- ^[85] A. Marinetti, F. Mathey Organometallics **1982**, *1*, 1488–1492.
- ^[86] R. Streubel, A. Ostrowski, H. Wilkens, S. Priemer, U. Rohde *Phosphorus, Sulfur Silicon Relat. Elem.* **1997**, *124*, 93–102.
- ^[87] Y. Chen, R. E. Ernhoffer, R. E. Shepherd *Transition Met. Chem.* **1998**, *23*, 375–385.
- ^[88] (a) H. G. Raubenheimer, Y. Stander, E. K. Marais, C. Thompson, G. J. Kruger, S. Cronje, M. Deetlefs *J. Organomet. Chem.* **1999**, *590*, 158–168; (b) P. Wang, H. Liu, Q. Zhao, Y. Chen, B. Liu, B. Zhang, Q. Zheng *Eur. J. Med. Chem.* **2014**, *74*, 199–215.
- ^[89] J. M. Pérez, C. Albrecht, H. Helten, G. Schnakenburg, R. Streubel *Chem. Commun.* **2010**, *46*, 7244–7246.
- ^[90] D. L. Pavia, G. M. Lampman, G. S. Kriz, *Introduction to spectroscopy. A guide for students of organic chemistry*, Harcourt College Publishers Fort Worth, **2001**.
- ^[91] L. C. Thomas, R. A. Chittenden Spectrochim. Acta **1965**, 21, 1905–1914.
- ^[92] T. A. van der Knaap, M. Vos, F. Bickelhaupt *J. Organomet. Chem.* **1983**, *244*, 363–367.
- ^[93] (a) R. Appel, F. Knock, H. Kunze Angew. Chem. **1984**, *96*, 159; (b) R. Appel, F. Knoch, H. Kunze Angew. Chem. Int. Ed. Engl. **1984**, *23*, 157–158.
- ^[94] R. Appel, C. Casser *Tetrahedron Lett.* **1984**, *25*, 4109–4112.
- ^[95] M. Yoshifuji, K. Ando, K. Toyota, I. Shima, N. Inamoto *J. Chem. Soc., Chem. Commun.* **1983**, 419–420.
- ^[96] G. R. Newkome *Chem. Rev.* **1993**, *93*, 2067–2089.
- ^[97] L. Duan, G. Schnakenburg, R. Streubel Organometallics **2011**, 30, 3246–3249.
- ^[98] M. Bode, Dissertation, Universität Bonn, **2009**.
- ^[99] M. Klein, G. Schnakenburg, A. Espinosa Ferao, R. Streubel *Dalton Trans.* **2016**, DOI: 10.1039/C5DT03404C.
- ^[100] C. Murcia-García, G. Schnakenburg, A. Espinosa Ferao, R. Streubel *Manuskript in Vorbereitung*.
- ^[101] F. A. Cotton, C. S. Kraihanzel *J. Am. Chem. Soc.* **1962**, *84*, 4432–4438.
- ^[102] G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa, M. Mägi *Org. Magn. Reson.* **1973**, *5*, 561–566.
- ^[103] J. M. Villalba Franco, T. Sasamori, G. Schnakenburg, A. Espinosa Ferao, R. Streubel *Chem. Commun.* **2015**, *51*, 3878–3881.
- ^[104] (a) E. Schneider, Diplomarbeit, Universität Bonn, **2011**; (b) V. Nesterov, Z.-W. Qu, G. Schnakenburg, S. Grimme, R. Streubel *Chem. Commun.* **2014**, *50*, 12508–12511.
- ^[105] N. Andrade-López, J. G. Alvarado-Rodríguez, S. González-Montiel, M. G. Rodríguez-Méndez, M. E. Páez-Hernández, C. A. Galán-Vidal *Polyhedron* **2007**, *26*, 4825–4832.
- ^[106] W. Ries, I. Bernal, M. Quast, T. A. Albright *Inorg. Chim. Acta* **1984**, *83*, 5–15.

^[107] (a) J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie. Eine Einführung, Thieme Stuttgart, New York, **1988**; (b) Z. Mielke, L. Andrews J. Phys. Chem. **1989**, 93, 2971–2976.

- ^[110] R. Appel in *Multiple bonds and low coordination in phosphorus chemistry,* Eds.: M. Regitz, O. J. Scherer, R. Appel, Georg Thieme Verlag, Stuttgart, **1990**, *S.* 157ff.
- [111] (a) P. Le Floch, A. Marinetti, L. Ricard, F. Mathey J. Am. Chem. Soc. 1990, 112, 2407–2410; (b) P. Le Floch, F. Mathey Synlett 1990, 1990, 171–172; (c) S. Shah, J. D. Protasiewicz Coord. Chem. Rev. 2000, 210, 181–201.
- ^[112] (a) R. Appel, F. Knoll, I. Ruppert *Angew. Chem.* **1981**, *93*, 771–784; (b) *ibid. Angew. Chem. Int. Ed. Engl.* **1981**, *20*, 731–744.
- ^[113] (a) R. Appel, F. Knoll Adv. Inorg. Chem. 1989, 33, 259–361; (b) A. C. Gaumont, J. M. Denis Chem. Rev. 1994, 94, 1413–1439; (c) M. Yoshifuji J. Chem. Soc., Dalton Trans. 1998, 3343–3350; (d) L. Weber Eur. J. Inorg. Chem. 2000, 12, 2425–2441.
- ^[114] (a) O. J. Scherer Angew. Chem. 1985, 97, 905–924; (b) *ibid. Angew. Chem. Int. Ed. Engl.* 1985, 24, 924–943; (c) J. F. Nixon Chem. Rev. 1988, 88, 1327–1362; (d) F. Mathey Acc. Chem. Res. 1992, 25, 90–96; (e) L. Weber Angew. Chem. 1996, 108, 292–310; (f) *ibid. Angew. Chem. Int. Ed. Engl.* 1996, 35, 271–288; (g) *ibid. Angew. Chem.* 2002, 114, 583–592; (h) *ibid. Angew. Chem. Int. Ed.* 2002, 41, 563–572; (i) P. Floch Coord. Chem. Rev. 2006, 250, 627–681.
- [115] (a) T. A. van der Knaap, F. Bickelhaupt, J. G. Kraaykamp, G. van Koten, Bernards, Jan P. C., H. T. Edzes, W. S. Veeman, E. de Boer, E. J. Baerends Organometallics 1984, 3, 1804–1811; (b) R. Appel, C. Casser, F. Knoch J. Organomet. Chem. 1985, 293, 213–217; (c) I.-P. Lorenz, W. Pohl, H. Nöth, M. Schmidt J. Organomet. Chem. 1994, 475, 211–221; (d) K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The carbon copy. From Organophosphorus to Phosphaorganic Chemistry, Wiley Chichester, 1998; (e) F. Mathey Angew. Chem. 2003, 115, 1616–1643; (f) ibid. Angew. Chem. Int. Ed. Engl. 2003, 42, 1578–1604.
- ^[116] M. Yoshifuji, K. Toyota, N. Inamoto *Tetrahedron Lett.* **1985**, *26*, 1727–1730.
- ^[117] (a) R. H. Neilson *Phosphorus Sulfur Rel. Elem.* **1983**, *18*, 43–46; (b) R. Appel, C. Casser, M. Immenkeppel, F. Knoch *Angew. Chem.* **1984**, *96*, 905–906; (c) *ibid. Angew. Chem. Int. Ed. Engl.* **1984**, *23*, 895–896; (d) R. H. Neilson, R. J. Thoma, I. Vickovic, W. H. Watson *Organometallics* **1984**, *3*, 1132–1133.
- ^[118] T. A. van der Knaap, F. Bickelhaupt *Phosphorus, Sulfur Silicon Relat. Elem.* **1983**, *18*, 47–50.
- ^[119] A. H. Cowley, R. A. Jones, C. A. Stewart, A. L. Stuart, J. L. Atwood, W. E. Hunter, H. M. Zhang *J. Am. Chem. Soc.* **1983**, *105*, 3737–3738.
- ^[120] T. C. Klebach, R. Lourens, F. Bickelhaupt, C. H. Stam, A. van Herk J. Organomet. Chem. **1981**, 210, 211–221.
- ^[121] T. A. van der Knaap, F. Bickelhaupt, Van der Poel, H., G. van Koten, C. H. Stam *J. Am. Chem. Soc.* **1982**, *104*, 1756–1757.
- ^[122] W. W. Schoeller, E. Niecke J. Chem. Soc., Chem. Commun. **1982**, 569–570.
- ^[123] J. Dugal-Tessier, G. R. Dake, D. P. Gates *Organometallics* **2007**, *26*, 6481–6486.
- ^[124] (a) A. Breque, C. C. Santini, F. Mathey, J. Fischer, A. Mitschler *Inorg. Chem.* **1984**, 23, 3463–3467; (b) P. Le Floch, F. Mathey *Coord. Chem. Rev.* **1998**, *178-180*, 771–791.
- ^[125] C. Albrecht, L. Shi, J. M. Pérez, M. van Gastel, S. Schwieger, F. Neese, R. Streubel *Chem. Eur. J.* **2012**, *18*, 9780–9783.

^[108] T. E. Gier *J. Am. Chem. Soc.* **1961**, *83*, 1769–1770.

^[109] G. Becker Z. Anorg. Allg. Chem. **1976**, 423, 242–254.

- ^[126] T. V. RajanBabu, W. A. Nugent *J. Am. Chem. Soc.* **1989**, *111*, 4525–4527.
- ^[127] T. V. RajanBabu, W. A. Nugent, M. S. Beattie *J. Am. Chem. Soc.* **1990**, *112*, 6408–6409.
- ^[128] (a) A. Gansäuer, H. Bluhm *Chem. Rev.* 2000, 100, 2771–2788; (b) K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. Barchuk, F. Keller *Angew. Chem.* 2006, 118, 2095–2098; (c) *ibid. Angew. Chem. Int. Ed. Engl.* 2006, 45, 2041–2044; (d) A. Gansäuer, A. Barchuk, F. Keller, M. Schmitt, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, K. Daasbjerg, H. Svith *J. Am. Chem. Soc.* 2007, 129, 1359–1371.
- ^[129] (a) A. Gansäuer, M. Pierobon, H. Bluhm Angew. Chem. **1998**, *110*, 107–109; (b) *ibid. Angew. Chem. Int. Ed.* **1998**, *37*, 101–103; (c) A. Gansäuer, H. Bluhm Chem. Commun. **1998**, 2143–2144; (d) A. Gansäuer, H. Bluhm, M. Pierobon J. Am. Chem. Soc. **1998**, *120*, 12849–12859.
- ^[130] K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. Barchuk in *Topics in Current Chemistry*, Ed.: A. Gansäuer, Springer-Verlag, Berlin/Heidelberg, **2006**.
- ^[131] T. V. RajanBabu, W. A. Nugent *J. Am. Chem. Soc.* **1994**, *116*, 986–997.
- ^[132] M. L. H. Green, C. R. Lucas J. Chem. Soc., Dalton Trans. **1972**, 1000–1003.
- ^[133] (a) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg *J. Am. Chem. Soc.* **2004**, *126*, 7853–7864; (b) J. Larsen, G. H. Hjøllund, T. Skrydstrup, K. Daasbjerg Organometallics **2005**, *24*, 1252–1262.
- ^[134] M. Kilner, G. Parkin J. Organomet. Chem. **1986**, 302, 181–191.
- ^[135] N. A. Jones, S. T. Liddle, C. Wilson, P. L. Arnold *Organometallics* **2007**, *26*, 755–757.
- ^[136] M. Handlovič, D. Mikloš, M. Zikmund Acta Cryst. **1981**, *B*37, 811–814.
- ^[137] (a) A. Gansäuer, B. Rinker, M. Pierobon, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld *Angew. Chem.* 2003, *115*, 3815–3818; (b) *ibid. Angew. Chem. Int. Ed.* 2003, *42*, 3687–3690.
- ^[138] O. Krahe, Diplomarbeit, Universität Bonn, **2009**.
- ^[139] O. Krahe, F. Neese, R. Streubel *Chem. Eur. J.* **2009**, *15*, 2594–2601.
- ^[140] A. Marinetti, F. Mathey Organometallics **1984**, 3, 456–461.
- ^[141] C. Elschenbroich, Organometallchemie, Teubner Wiesbaden, 2008.
- ^[142] (a) A. C. Skapski, P. G. H. Troughton *Acta Cryst.* **1970**, *B26*, 716–722; (b) R. Coutts, R. L. Martin, P. Wailes *J. Inorg. Nucl. Chem.* **1973**, *9*, 49–52; (c) K.-W. Huang, R. M. Waymouth *Dalton Trans.* **2004**, 354–356.
- ^[143] M. Klein, C. Albrecht, G. Schnakenburg, R. Streubel *Organometallics* **2013**, *32*, 4938–4943.
- ^[144] C. Murcia-García, geplante Dissertation, Universität Bonn, **2016**.
- ^[145] E. Katsoulakou, N. Lalioti, C. P. Raptopoulou, A. Terzis, E. Manessi-Zoupa, S. P. Perlepes *Inorg. Chem. Commun.* **2002**, *5*, 719–723.
- ^[146] A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der anorganischen Chemie*, de Gruyter Berlin, **2007**.
- ^[147] (a) G. M. Sheldrick Acta Cryst. 1990, A46, 467–473; (b) G. M. Sheldrick, SHELXL-97, Universität Göttingen, 1997; (c) *ibid. Acta Cryst.* 2008, A64, 112–122; (d) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann J. Appl. Crystallogr. 2009, 42, 339–341.
- ^[148] U. Koelle J. Organomet. Chem. **1977**, 133, 53–58.
- ^[149] M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, H. Goldwhite *J. Chem. Soc., Dalton Trans.* **1980**, 2428–2433.
- ^[150] P. Jutzi, H. Saleske, D. Nadler *J. Organomet. Chem.* **1976**, *118*, C8-C10.

- ^[151] V. Plack, J. R. Goerlich, A. Fischer, H. Thönnessen, P. G. Jones, R. Schmutzler *Z. Anorg. Allg. Chem.* **1995**, *621*, 1080–1092.
- ^[152] ORCA An ab initio, DFT and semiempirical SCF-MO package. Written by F. Neese, Max Planck Institute for Bioinorganic Chemistry, D-45470 Mülheim/Ruhr, 2012. Version 3.0.2. Web page: http://www.cec.mpg.de/forum/portal.php. F. Neese WIREs Comput Mol Sci 2012, 2, 73–78.
- ^[153] (a) C. Lee, W. Yang, R. G. Parr *Phys. Rev. B* **1988**, *37*, 785–789; (b) A. D. Becke *J. Chem. Phys.* **1993**, *98*, 5648–5652.
- ^[154] F. Weigend, R. Ahlrichs *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- ^[155] S. Grimme, J. Antony, S. Ehrlich, H. Krieg *J. Chem. Phys.* **2010**, *132*, 154104– 154119.
- ^[156] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß *Theoret. Chim. Acta* **1990**, 77, 123–141.
- ^[157] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese *J. Chem. Phys.* **2013**, *139*, 134101–134113.
- ^[158] (a) F. Neese, A. Hansen, F. Wennmohs, S. Grimme Acc. Chem. Res. 2009, 42, 641–648; (b) F. Neese, F. Wennmohs, A. Hansen J. Chem. Phys. 2009, 130, 114108–114118.
- ^[159] (a) L. Goerigk, S. Grimme *J. Chem. Theory Comput.* **2011**, *7*, 291–309; (b) *ibid. Phys. Chem. Chem. Phys.* **2011**, *13*, 6670–6688.
- ^[160] K. B. Wiberg *Tetrahedron* **1968**, *24*, 1083–1096.
- ^[161] (a) A. E. Reed, F. Weinhold *J. Chem. Phys.* **1983**, *78*, 4066–4073; (b) A. E. Reed, R. B. Weinstock, F. Weinhold *J. Chem. Phys.* **1985**, *83*, 735.
- ^[162] (a) I. Mayer Chem. Phys. Lett. **1983**, 97, 270–274; (b) *ibid. Int. J. Quantum Chem.* **1984**, 26, 151–154; (c) *ibid. Theoret. Chim. Acta* **1985**, 67, 315–322; (d) I. Mayer in *Modelling of Structure and Properties of Molecules,* Ed.: Z. B. Maksic, John Wiley & sons, Chichester, **1987**; (e) A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, J. Rothery J. Chem. Soc., Dalton Trans. **2001**, 2095–2108.
- ^[163] VMD Visual Molecular Dynamics. W. Humphrey, A. Dalke, K. Schulten J. Mol. Graphics **1996**, *14*, 33–38.
- ^[164] (a) A. Klamt, G. Schüürmann *J. Chem. Soc., Perkin Trans.* 2 **1993**, 799–805; (b) A. Klamt *J. Phys. Chem.* **1995**, *99*, 2224–2235.
- ^[165] (a) S. Grimme *J. Chem. Phys.* **2003**, *118*, 9095–9102; (b) S. Grimme, L. Goerigk, R. F. Fink *WIREs Comput Mol Sci* **2012**, *2*, 886–906.
- ^[166] (a) P.-O. Löwdin J. Chem. Phys. **1950**, *18*, 365–375; (b) *ibid. Adv. Quantum Chem.* **1970**, *5*, 185–199; (c) A. Szabo, N. S. Ostlund, Modern quantum chemistry. Introduction to advanced electronic structure theory, Dover Publications Mineola, New York, **1989**.

Anhang

A Abkürzungsverzeichnis

Å	Ångström (1x10⁻ ¹⁰ m)	DEPT	Distortionless
ATR	Attenuated Total Reflection		Enhancement by Polarization
au	atomic unit	DFT	Dichtefunktionaltheorie
Äq.	Äquivalent	d.h.	das heißt
BDE	Bindungsdissoziations- energie	Di-Py	2,2-Dipyridyl-
ber.	berechnet	DLPNO	domain-based local pair natural orbital
Bisyl	Bis(trimethylsily)methyl- Substituent (CH(SiMe3)2)	DMF	N,N-Dimethylformamid
br	breites Signal	Do	Donor
BSSE	basis set superposion error	E	Heteroelement (O, N, S)
bzw.	beziehungsweise	ΔE	Energiedifferenz / Reaktionsenergie
°C	Grad Celcius	$\Delta E^{\#}$	Aktivierungsenergie
CCSD(T)	coupled cluster single double (Triple)	EA	Elementaranalyse
	deuteriertes Chloroform	ECP	effective core potential
CEPA	coupled electron-pair	EI	Elektronenstoß-Ionisation
OLI / C	approximation	EPR	Electronic paramagnetic
C_6D_6	deuteriertes Benzol	EQI	
C_7D_8	deuteriertes Toluol		Distbylathor
cod	1,5-Cyclooctadien		
col-HCI	Collidin-Hydrochlorid	ev	Elektronenvolt
COSMO	conductor-like screening		
•	model	FVVHM	Full Width at Half Maximum
Ср	Cyclopentadienyl	_	(Halbwertsbreite)
Cp*	1,2,3,4,5-Pentamethyl-	gef.	Gefunden
CSD	Cambridge Structural	GIAO	gauge invariant atomic orbitals
	Database (Kristallstruktur- datenbank)	GPC	Gel-Permeations- Chromatographie
δ	chemische Verschiebung in	h	Höhe / Stunden
٨	thermische Reaktion	ΔH	Bindungsenergie
d	Tage / Dublett	hν	photochemische Reaktion
a		HCP	Phosphaacetylen
<u>ل</u> ع	Darchinesser		

HMBC	Heteronuclear Multiple	ML _n	Übergangsmetallfragment
	Bond Correlation	<i>m</i> -Py	meta-Pyridyl-
HMQC	Heteronuclear Multiple- Quantum Correlation	MS	Massenspektrometrie
НОМО	höchstes besetztes Orbital	m/z	Masse-Ladungs-Quotient
НРРО	Hydrogen Peroxide Propylene Oxide	NBO	Natürlichen Bindungsorbitalanalyse
HT-NMR	Hochtemperatur-NMR	NICS	Nucleus Independent Chemical Shift
Hz	Hertz	NHC	N-heterocyclisches Carben
i.d.R.	in der Regel	NMR	Magnetische Kernresonanz
ⁱ Pr	iso-Propyl-		Spektroskopie
IR	Infrarot	o-DCB	ortho-Dichlorbenzol
ⁿ J _{X,Y}	Kopplungskonstante (von	o.g.	oben genannten
	Element X mit Element Y über n Bindungen) in Hz	<i>о</i> -Ру	ortho-Pyridyl-
к	Kelvin	%	Prozent
KBr	Kaliumbromid	PE	Petrolether
kcal	Kilokalorien	Ph	Phenyl-
I	Ligand	ppm	parts per million
λ	Wellenlänge in nm	pseudo-quint	Pseudo-Quintett
	Lithiumdiisopropylamid	<i>р</i> -Ру	<i>para</i> -Pyridyl-
	Lösungsmittel	Ру	Pyridin
	local pair patural orbital	q	Quartett
	niedrigstes unbesetztes	quint	Quintett
LOIMO	Orbital	Qtz	Quarz
m	Monate / Multiplett /	R	organischer Rest
	medium	ρ(r)	Elektronendichteverteilung
Μ	Metall / Molare Masse [g/mol]	rmsd	root mean square deviation (mittlere quadratische
Mʻ	Alkalimetall		Abweichung)
[M]	Übergangsmetallpenta- carbonylfragment	ROMP	Ringöffnungsmetathese- Polymerisation
MALDI	Matrix-unterstützte Laser-	r.t.	Raumtemperatur
	Desorption/Ionisation	S.	siehe
<i>m</i> -CPBA	meta-Chloro- perbenzoesäure	S	Singulett / strong
<i>m</i> -CBA	<i>meta</i> -Chlorobenzoesäure	SET	Single-electron-transfer
Me	Methyl-	sh	shoulder
Mes	2.4.6-Trimethylbenzol-	Т	Temperatur
min	Minuten	t	Triplett / Zeit
		^t Bu	<i>tert</i> -Butyl-

TEMPO	2,2,6,6-Tetramethyl	UV	Ultra-Violett
	piperidinyloxyl	Х	Halogen / Abgangsgruppe
THF	Tetrahydrofuran	ĩ	Wellenzahl [cm ⁻¹]
THF-d ⁸	deuteriertes Tetrahydrofuran	v	Valenzschwingung
тмн	<i>N,N,N,N</i> -Tetramethyl- harnstoff	vgl.	vergleiche
		VS	very strong
TOF	Time of flight	W	weak
	(Flugzeitanalyse)	WBI	Wiberg-Bindungs-Indizes
Trt	Triphenylmethyl (CPh ₃)	q ^N	natürliche Ladung
TS	Übergangszustand (transition state)	ZPE	Zero-point energy (Nullpunktsenergie)
TT-NMR	Tieftemperatur-NMR		· · · · · · · · · · · · · · · · · · ·

B Details zu den DFT-Rechnungen von Espinosa

a Reaktivität der Phosphinidenoid-Komplexe gegenüber Lewis-Basen

Die Optimierung der Gasphasen-Strukturen wurde mit Hilfe des Programmpakets ORCA^[152], unter Verwendung strenger Konvergenzkriterien, der B3LYP-Funktion^[153] und dem def2-TZVP-Basissatz^[154] und unter Einbeziehung der semi-empirischen Dispersionskorrektur (DFT-D3)^[155] von Grimme durchgeführt. Zur Beschreibung der Wolfram-Atome wurde das Pseudopotential (ECP = effective core potential) [SD(60,MWB)] verwendet.^[156] Die Geometrien wurden mit Hilfe des Basisatzes def2optimiert.^[154] TZVPP und Einzelpunktrechnungen Die adiabatische Dissoziationsenergie D0 für 23a wurden anhand von Coupled-Cluster-Rechnungen vom CCSD(T)-Typ mit Einfach- und Zweifachanregung sowie nicht-iterativer Näherung für Dreifachanregungen und der kürzlich entwickelten DLPNO-Methode berechnet.^[157] wobei auch die Korrektur des Basissatzüberlagerungsfehlers (BSSE = basis set superposion error) berücksichtigt wurde. Zum Vergleich wurde D0 auf einem höheren Niveau über single-reference-Methoden, wie CEPA (Coupled Electron-Pair Approximation) und insbesondere die LPNO-NCEPA/1-Methode in ORCA^[158] sowie PWPB95-D3^[159] berechnet. Die Bindungsdissoziationsenergien (BDE) wurden durch einen zusätzlichen (1+N/2)RT Term zu D0 erhalten, wobei N die Translationsund Rotationsfreiheitsgrade Anzahl der (hier: N=6) nach Bindungsspaltung beschreibt. Die Wiberg-Bindungs-Indizes (WBI)^[160] und die natürlichen Ladungen wurden durch NBO-Analyse erhalten,^[161] wohingegen die Bindungsordnung nach Mayer berechnet wurde (MBO).^[162] NICS-Werte wurden auf unter Berücksichtigung B3LYP/6-311+G**-Niveau der eichinvarianten dem Atomorbital-Näherung (GIAO = gauge invariant atomic orbitals) berechnet. Abbildung 21 wurde mit VMD gezeichnet.^[163]

Kartesische Koordinaten (Å) und Energien (au) für 23a:

E = -2212.190482077443 au (DLNPO-CCSD(T)/def2-TZVPPecp) ZPE = 0.46976875 au

0.002545	1.111624	-0.369546	Н	1.798353	1.499423	2.413193
1.583872	0.293399	0.005266	Н	1.618400	-0.198041	2.868626
2.776161	0.937330	-0.065410	С	-1.430693	-0.234235	3.924681
3.824165	0.071744	0.230238	Н	-1.042448	-0.011047	4.921897
3.265650	-1.134051	0.507201	Н	-1.179266	-1.275598	3.703834
1.889231	-0.981151	0.350169	Н	-2.515427	-0.158582	3.964427
2.941538	2.337743	-0.412965	Si	-2.965528	0.917498	0.498339
3.246343	2.444234	-1.453350	С	-4.103237	0.769542	1.995982
3.691599	2.788431	0.234124	Н	-4.151379	-0.257875	2.362431
1.981676	2.832349	-0.274902	Н	-5.111880	1.047615	1.677590
5.244328	0.502079	0.190589	Н	-3.834094	1.416033	2.830193
5.451792	1.290875	0.917910	С	-3.729900	-0.243122	-0.764894
5.897489	-0.338319	0.416452	Н	-3.665030	-1.281419	-0.432121
5.516223	0.881182	-0.797485	Н	-3.276595	-0.181945	-1.749580
3.890124	-2.433382	0.861343	Н	-4.789302	0.004654	-0.872750
3.749623	-3.175275	0.070748	С	-3.019678	2.694101	-0.103768
4.960730	-2.304694	1.006801	Н	-2.823840	3.390495	0.712865
3.474649	-2.844272	1.784307	Н	-4.008897	2.918528	-0.509862
0.934116	-2.067981	0.440761	Н	-2.288528	2.892746	-0.886414
0.119557	-1.873699	-0.246409	W	-0.108352	0.347083	-2.949892
0.540126	-2.165819	1.453255	С	-0.171021	-0.113406	-4.903833
1.420501	-2.996092	0.153633	С	-1.865444	1.405099	-3.234463
-1.172650	0.392953	0.909137	С	-1.062629	-1.408364	-2.467208
-1.223526	-0.699285	0.889050	С	1.670072	-0.655039	-2.824113
-0.643988	0.919329	2.657849	С	0.943178	2.072833	-3.344353
-1.095337	2.713798	2.988330	0	-0.212166	-0.385759	-6.022366
-0.656645	3.357314	2.222737	0	-2.813127	1.998960	-3.480698
-0.696318	3.025440	3.956882	0	-1.536139	-2.417693	-2.189403
-2.169968	2.892931	2.999898	0	2.674102	-1.216295	-2.774899
1.208821	0.803034	3.008624	0	1.554234	3.019966	-3.561186
1.353755	1.067013	4.060102				
	0.002545 1.583872 2.776161 3.824165 3.265650 1.889231 2.941538 3.246343 3.691599 1.981676 5.244328 5.451792 5.897489 5.516223 3.890124 3.749623 4.960730 3.474649 0.934116 0.119557 0.540126 1.420501 -1.172650 -1.223526 -0.643988 -1.095337 -0.656645 -0.696318 -2.169968 1.208821 1.353755	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

b *C*,*C*-Dipyridyl-substituierte $\sigma^{3}\lambda^{3}$ -Oxaphosphiran-Komplexe

Die Optimierung der Strukturen wurde mit Hilfe des Programmpakets ORCA^[152], unter Verwendung strenger Konvergenzkriterien, der B3LYP^[153] Funktion und def2-Basissatz^[154] TZVP und Einbeziehung unter Grimmes semiempirischer Dispersionskorrektur (DFT-D3)^[155] durchgeführt. Zur Beschreibung der Wolfram-Atome wurde das Pseudopotential (ECP = effective core potential) [SD(60,MWB)] verwendet.^[156] Harmonische Frequenz-Berechnungen stützen die berechneten Strukturen, da für das Minimum keine und für den Übergangszustand (TS) nur eine negative (imaginäre) Frequenz berechnet wurden; Lösungsmitteleffekte (THF) wurden mittels der COSMO-Methode berücksichtigt.^[164] Die Geometrien wurden mit Hilfe des Basissatzes def2-TZVPP und Einzelpunktrechnungen optimiert.^[154] Die adiabatische Dissoziationsenergie D0 für 70^{calc-5} wurden anhand von Coupled-Cluster-Rechnungen vom CCSD(T)-Typ mit Einfach- und Zweifachanregung sowie nicht-iterativer Näherung für Dreifachanregungen und der kürzlich entwickelten DLPNO-Methode berechnet.^[157] Zum Vergleich wurde D0 auf einem höheren Niveau über single-reference-Methoden, wie CEPA (Coupled Electron-Pair Approximation) und insbesondere die LPNO-NCEPA/1-Methode in ORCA berechnet.^[158] Zusätzlich wurde das Møller-Plesset-Verfahren (SCS-MP2)^[165] und die double-hybrid-meta-GGA-Funktion PWPB95-D3^[159] verwendet. Löwdin-Ladungen wurden durch die erhalten;[166] Löwdin-Populations-Analyse Abbildung 74 wurde mit VMD gezeichnet.^[163]

	70 ^{calc}	70 ^{calc-N}	70 ^{calc-P,N [b]}	TS1	70 ^{calc-1}	TS2	70 ^{calc-2}	70 ^{calc (CCrot)}
B3LYP-D3	0.00	8.87	14.50	24.66	-9.95	32.99	24.46	25.87
PWPB95-D3	0.00	17.29	24.96	31.63	-11.03	38.69	30.71	32.09
SCS-MP2	0.00	17.60	23.62	37.03	-13.30	44.75	34.40	35.75
LPNO- NCEPA1	0.00	10.14	22.92	36.19	-11.94	41.95	32.16	33.57
DLPNO- CCSD(T)	0.00	10.41	13.43	36.43	-11.95	42.31	32.68	34.21

Tabelle B 1: Reaktionsenergien für den postulierten Mechanismus ausgehend von **70^{calc [a]}**.

70 ^{calc-3}	70 ^{calc-4}	TS4	70 ^{calc-5}	TS5	70 ^{calc-6}	TS(70 ^{calc-6} →70 ^{calc-7})	70 ^{calc-7}	70 ^{calc-8}	RMSD ^[c]
23.55	22.45	28.28	-4.85	37.16	8.40	67.51	-0.86	-22.56	1.78
29.90	29.04	32.42	-3.50	43.19	8.22	66.44	0.53	-21.59	1.10
36.06	36.09	32.16	-1.03	49.90	9.66	69.18	4.32	-21.25	0.90
33.48	33.38	36.21	-4.12	48.30	6.37	68.97	1.72	-22.64	0.62
34.14	34.27	35.67	-3.05	48.00	7.70	67.26	2.56	-22.06	0.00

Fortsetzung Tabelle B 1.

^[a] ZPE-korrigierte relative Energien (zu **70^{calc}**), in kcal/mol, Basissatz: def2-TZVPP, COSMO(THF) Solvatisierung, Strukturen und Nullpunkt-Korrektur über COSMO_{THF}/B3LYP-D3/def2-TZVPecp.^[b] Stabilste van der Waals-Komplex mit CO. ^[c] Root mean square deviation der 16 Datensets (Umlagerung von **70^{calc}**) im Vergleich zum Referenz-Niveau DLNPO-CCSD(T).

Tabelle B 2: Relative Energien für die Produkte ausgehend von **70^{calc-b}** [a].

	70 ^{calc-b}	70 ^{calc-5b}	70 ^{calc-6b}	70 ^{calc-7b}	70 ^{calc-8b}	RMSD ^[b]	
	10	10	10	10	10	T IIIOD	T IIIOD
B3LYP-D3	0.00	-14.10	3.70	-15.76	-23.90	2.33	1.50
PWPB95-D3	0.00	-12.48	3.63	-13.17	-22.42	1.58	0.94
SCS-MP2	0.00	-8.90	5.27	-8.09	-22.66	0.22	0.72
LPNO-							
NCEPA1	0.00	-10.03	3.24	-8.56	-23.56	0.44	0.51
DLPNO-							
CCSD(T)	0.00	-9.13	4.58	-7.95	-23.13	0.00	0.00

^[a] ZPE-korrigierte relativen Energien (zu **70^{calc-b}**), in kcal/mol, Basissatz: def2-TZVPP, COSMO(THF) Solvatisierung, Strukturen und Nullpunkt-Korrektur über COSMO_{THF}/B3LYP-D3/def2-TZVPecp. ^[b] Root-mean-square-deviation der 16 Daten-Sets (Umlagerung von **70^{calc-b}**) im Vergleich zum Referenz-Niveau DLNPO-CCSD(T). ^[c] Root-mean-square-deviation der 20 Daten-Sets aus Tabelle B 1 und Tabelle B 2. Kartesische Koordinaten (Å) und Energien (au) für alle berechneten Strukturen

E = -1374.36527667845 au ZPE = 0.17966427 au

0	0.003574	0.015325	0.043277	W	2.919919	-0.830594	-2.029224
Ρ	1.670016	0.026349	-0.062718	С	3.981174	-1.537484	-3.617263
С	0.504655	1.386109	-0.000504	0	4.580025	-1.935102	-4.511368
Н	0.404177	1.920267	0.939446	С	2.994954	-2.692318	-1.144140
С	0.180924	2.171628	-1.214277	0	3.043630	-3.727653	-0.658068
Ν	0.628623	3.432676	-1.208411	С	1.143835	-1.349256	-2.952053
С	0.426187	4.171108	-2.299311	0	0.159686	-1.640483	-3.455983
С	-0.226391	3.697546	-3.432679	С	2.869658	1.038197	-2.926703
С	-0.707175	2.395786	-3.420760	0	2.876428	2.059181	-3.439242
С	-0.502954	1.615009	-2.291419	С	4.671178	-0.312957	-1.069076
Н	0.803215	5.187443	-2.268756	0	5.641016	-0.031481	-0.529827
Н	-0.354814	4.338076	-4.294541	Н	3.267776	0.139056	1.718590
Н	-1.229972	1.990834	-4.277696	Н	1.601241	0.187034	2.358535
Н	-0.864818	0.599779	-2.235516	Н	2.311316	-1.349724	1.792917
С	2.261368	-0.272654	1.624607				

0	0.457910	1.652293	2.551618	W	4.535810	3.364351	0.339302
Ρ	1.420269	0.404304	1.912177	С	6.509789	3.203921	0.519292
С	1.563356	2.216458	1.837750	0	7.657824	3.110433	0.619998
Н	2.302153	2.673749	2.483339	С	4.733089	5.420376	0.224469
С	1.227041	2.996747	0.628258	0	4.888576	6.552769	0.166067
Ν	2.229100	3.605965	-0.044307	С	4.514023	3.519306	2.391431
С	1.893717	4.353180	-1.115361	0	4.617711	3.593427	3.532302
С	0.599479	4.504912	-1.569999	С	4.424589	1.312479	0.443586
С	-0.424103	3.855694	-0.891874	0	4.441983	0.166047	0.488112
С	-0.101727	3.099963	0.220333	С	4.812471	3.182784	-1.700435
Н	2.705721	4.844848	-1.629118	0	5.046788	3.068743	-2.815549
Н	0.408781	5.118588	-2.438756	Н	3.411414	-0.492451	2.944652
Н	-1.451909	3.943800	-1.218064	Н	2.770049	0.851640	3.929771
Н	-0.860319	2.590521	0.794880	Н	1.984426	-0.747265	3.954339
С	2.506105	-0.018703	3.329973				

70^{calc-P,N}:

E = -1374.34191277047 au ZPE = 0.17770519 au

1.474910	1.027440	1.825620	W	4.225781	3.031058	1.004718
2.674117	1.934812	2.555674	С	5.944372	2.437321	1.786917
1.029285	2.415507	2.074586	0	6.943870	2.076468	2.255889
0.194655	2.463394	2.763452	С	4.282004	4.666159	2.242123
0.929211	3.261803	0.860443	0	4.365279	5.574639	2.942638
2.076040	3.613302	0.224822	С	4.284725	1.371820	-0.218015
1.969783	4.351701	-0.891318	0	4.373508	0.439304	-0.880864
0.758242	4.780727	-1.407638	С	5.206550	4.100263	-0.388798
-0.411906	4.435490	-0.749815	0	5.782215	4.716508	-1.179532
-0.317078	3.664245	0.399390	Н	3.120658	2.301662	4.869706
2.892944	4.609548	-1.386486	Н	1.729255	1.196300	4.661048
0.746979	5.377116	-2.308921	Н	3.399537	0.613369	4.411717
-1.376304	4.751488	-1.124491	С	0.797147	0.323378	-1.252176
-1.202379	3.358834	0.939901	0	1.259551	1.191968	-1.797603
2.721665	1.460730	4.299185				
	1.474910 2.674117 1.029285 0.194655 0.929211 2.076040 1.969783 0.758242 -0.411906 -0.317078 2.892944 0.746979 -1.376304 -1.202379 2.721665	1.4749101.0274402.6741171.9348121.0292852.4155070.1946552.4633940.9292113.2618032.0760403.6133021.9697834.3517010.7582424.780727-0.4119064.435490-0.3170783.6642452.8929444.6095480.7469795.377116-1.3763044.751488-1.2023793.3588342.7216651.460730	1.4749101.0274401.8256202.6741171.9348122.5556741.0292852.4155072.0745860.1946552.4633942.7634520.9292113.2618030.8604432.0760403.6133020.2248221.9697834.351701-0.8913180.7582424.780727-1.407638-0.4119064.435490-0.749815-0.3170783.6642450.3993902.8929444.609548-1.3864860.7469795.377116-2.308921-1.3763044.751488-1.124491-1.2023793.3588340.9399012.7216651.4607304.299185	1.474910 1.027440 1.825620 W 2.674117 1.934812 2.555674 C 1.029285 2.415507 2.074586 O 0.194655 2.463394 2.763452 C 0.929211 3.261803 0.860443 O 2.076040 3.613302 0.224822 C 1.969783 4.351701 -0.891318 O 0.758242 4.780727 -1.407638 C -0.411906 4.435490 -0.749815 O -0.317078 3.664245 0.399390 H 2.892944 4.609548 -1.386486 H 0.746979 5.377116 -2.308921 H -1.376304 4.751488 -1.124491 C -1.202379 3.358834 0.939901 O 2.721665 1.460730 4.299185 O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TS1(70 ^{calc} →70 ^{calc-1}):	E = -1374.30520499215 au
	ZPE = 0.17764479 au
	υ = -197.00 cm ⁻¹

0	-0.056762	-0.455142	-0.077840	W	2.931525	-1.052714	-2.014835
Ρ	1.440973	-0.108006	-0.203163	С	4.078333	-1.931688	-3.457771
С	1.081067	1.669202	-0.259044	0	4.710532	-2.433617	-4.274513
Н	1.252669	2.253142	0.643066	С	2.847748	-2.833761	-0.964230
С	0.439048	2.395123	-1.284456	0	2.817107	-3.812459	-0.372549
Ν	0.297942	3.731543	-1.044185	С	1.227851	-1.561920	-3.062028
С	-0.233331	4.475525	-1.990898	0	0.279728	-1.831420	-3.644830
С	-0.690729	3.953988	-3.214230	С	3.029213	0.750858	-3.003522
С	-0.582790	2.593315	-3.455544	0	3.081955	1.757096	-3.550340
С	-0.007148	1.799669	-2.480689	С	4.602978	-0.529880	-0.922192
Н	-0.321776	5.536856	-1.789121	0	5.524705	-0.241582	-0.306682
Н	-1.130817	4.617243	-3.946573	Н	3.166504	0.309477	1.461366
Н	-0.938796	2.162243	-4.380865	Н	1.544083	0.219341	2.203534
Н	0.079124	0.733232	-2.609611	Н	2.379780	-1.262419	1.687372
С	2.207736	-0.211547	1.452209				

TS	$\Gamma S2(70^{calc} \rightarrow 70^{calc-2}): E = -1374.29577407424 \text{ au} \\ ZPE = 0.17757991 \text{ au} \\ u = -202.88 \text{ cm}^{-1}$									
0	0.658977	0.542397	-0.267459	W	3.256896	-1.022928	-1.921577			
Ρ	2.379858	0.226280	0.167614	С	4.015649	-2.019905	-3.500733			
С	0.625463	1.841019	-0.248120	0	4.440118	-2.600685	-4.402044			
Н	0.943726	2.384776	0.635553	С	3.302600	-2.746761	-0.791771			
С	0.105610	2.578188	-1.361865	0	3.318781	-3.699585	-0.155502			
Ν	0.055390	3.918464	-1.195654	С	1.341544	-1.483089	-2.515940			
С	-0.409105	4.640023	-2.201252	0	0.272230	-1.736714	-2.843975			
С	-0.847496	4.080408	-3.408714	С	3.185944	0.745607	-2.984131			
С	-0.798623	2.704431	-3.572960	0	3.149706	1.735010	-3.562288			
С	-0.306841	1.931208	-2.532690	С	5.154008	-0.539020	-1.269133			
Н	-0.439623	5.714032	-2.057442	0	6.207149	-0.269350	-0.906908			
Н	-1.215036	4.724282	-4.196104	н	2.999829	-1.264933	1.940277			
Н	-1.129152	2.243400	-4.493749	Н	1.615262	-0.276844	2.436564			
Н	-0.241359	0.856497	-2.607560	н	1.372493	-1.665875	1.342602			
С	2.044456	-0.848634	1.612793							

70^{calc-2}:

E = -1374.31222370385 au ZPE = 0.17868481 au

0	1.217338	0.955048	-0.551775	W	3.659241	-1.222534	-1.693669
Ρ	2.476026	-0.049133	0.306512	С	4.637247	-2.165644	-3.190474
С	1.387147	2.139860	-0.923694	0	5.185198	-2.707424	-4.048630
Н	2.310361	2.665246	-0.678132	С	3.875759	-2.855529	-0.449807
С	0.382912	2.847493	-1.677946	0	3.974665	-3.752903	0.257019
Ν	0.709101	4.120654	-1.973019	С	1.835217	-1.944223	-2.312798
С	-0.164325	4.829083	-2.672880	0	0.803131	-2.327239	-2.636788
С	-1.388975	4.314044	-3.108067	С	3.307305	0.478835	-2.776293
С	-1.719447	3.002176	-2.796818	0	3.034471	1.468282	-3.296459
С	-0.816685	2.245610	-2.066514	С	5.416754	-0.417567	-0.974751
Н	0.112402	5.851117	-2.904419	0	6.380394	0.046649	-0.562399
Н	-2.061503	4.937959	-3.680858	Н	1.779981	-1.969350	1.537348
Н	-2.659426	2.575754	-3.119671	Н	0.571845	-0.691528	1.707644
Н	-1.021221	1.217757	-1.802081	Н	0.614822	-1.696585	0.232701
С	1.218718	-1.204207	0.994557				

70^{calc-2}:

E = -1374.31222370385 au ZPE = 0.17868481 au

0	1.217338	0.955048	-0.551775	W	3.659241	-1.222534	-1.693669
Ρ	2.476026	-0.049133	0.306512	С	4.637247	-2.165644	-3.190474
С	1.387147	2.139860	-0.923694	0	5.185198	-2.707424	-4.048630
Н	2.310361	2.665246	-0.678132	С	3.875759	-2.855529	-0.449807
С	0.382912	2.847493	-1.677946	0	3.974665	-3.752903	0.257019
Ν	0.709101	4.120654	-1.973019	С	1.835217	-1.944223	-2.312798
С	-0.164325	4.829083	-2.672880	0	0.803131	-2.327239	-2.636788
С	-1.388975	4.314044	-3.108067	С	3.307305	0.478835	-2.776293
С	-1.719447	3.002176	-2.796818	0	3.034471	1.468282	-3.296459
С	-0.816685	2.245610	-2.066514	С	5.416754	-0.417567	-0.974751
Н	0.112402	5.851117	-2.904419	0	6.380394	0.046649	-0.562399
Н	-2.061503	4.937959	-3.680858	н	1.779981	-1.969350	1.537348
Н	-2.659426	2.575754	-3.119671	н	0.571845	-0.691528	1.707644
Н	-1.021221	1.217757	-1.802081	н	0.614822	-1.696585	0.232701
С	1.218718	-1.204207	0.994557				

70 ^{calc-2}	C,C-Rotation:	
----------------------	---------------	--

E = -1374.3100379266 au ZPE = 0.17894491 au

0	0.023730	-0.035671	0.035134	W	2.327698	-0.043698	-2.534486
Р	1.841150	0.027515	0.024752	С	2.766906	-0.111611	-4.505047
С	-0.721146	0.970293	0.026610	0	3.008726	-0.162319	-5.631959
Н	-0.277142	1.963856	0.096444	С	3.937820	-1.246616	-2.063010
С	-2.154964	0.858086	-0.080663	0	4.816050	-1.923404	-1.771116
Ν	-2.694318	-0.371321	-0.185596	С	1.129855	-1.714197	-2.663339
С	-4.009168	-0.448060	-0.298788	0	0.453794	-2.639137	-2.710033
С	-4.849087	0.674221	-0.315744	С	0.662425	1.118021	-2.779245
С	-4.288440	1.935202	-0.203679	0	-0.303818	1.743704	-2.803964
С	-2.908331	2.034397	-0.083688	С	3.485783	1.644367	-2.289335
Н	-4.432054	-1.442736	-0.383822	0	4.119897	2.588912	-2.143583
Н	-5.917859	0.543871	-0.417456	Н	3.068060	-1.905833	0.703037
Н	-4.905864	2.823011	-0.212045	Н	1.628613	-1.734217	1.713111
Н	-2.419325	2.995670	0.000564	Н	1.497380	-2.431920	0.075530
С	1.998188	-1.682614	0.688307				

E = -1374.31031878941 au ZPE = 0.17910915 au

0	0.146231	-0.074236	0.596894	W	2.334437	-0.198194	-2.221904
Ρ	1.849863	-0.407019	0.341513	С	2.800764	-0.234303	-4.179684
С	-0.596613	0.950947	0.599030	0	3.061386	-0.273365	-5.302185
Н	-1.638727	0.762669	0.842927	С	3.999933	-1.333822	-1.784365
С	-0.223274	2.309097	0.333770	0	4.923685	-1.967299	-1.540227
Ν	-1.282882	3.153336	0.297877	С	1.201426	-1.903400	-2.459432
С	-1.049378	4.427390	0.046303	0	0.564461	-2.846050	-2.595459
С	0.235919	4.945501	-0.168217	С	0.655007	0.924466	-2.618187
С	1.320938	4.090456	-0.097863	0	-0.291065	1.533622	-2.840260
С	1.095701	2.742488	0.151843	С	3.437766	1.523581	-1.975212
Н	-1.912223	5.083066	0.014444	0	4.052954	2.486216	-1.861981
Н	0.363742	5.998949	-0.376465	Н	2.689841	-2.619469	0.650330
Н	2.328201	4.456810	-0.241366	Н	1.421988	-2.289728	1.838323
Н	1.920303	2.053375	0.226109	Н	0.989686	-2.724944	0.163941
С	1.698100	-2.182224	0.789087				

70^{calc-4}:

70^{calc-3}:

E = -1374.30999553445 au ZPE = 0.17899084 au

0	0.151850	-0.008765	0.679666	W	2.305487	-0.627823	-2.100380
Р	1.862818	-0.285113	0.461173	С	2.718618	-1.023216	-4.025288
С	-0.613554	0.991382	0.528855	Ō	2.948820	-1.269112	-5.129925
Н	-1.642648	0.828663	0.835869	С	3.992258	-1.655412	-1.512173
С	-0.210257	2.278541	0.059971	0	4.927630	-2.234695	-1.186756
Ν	1.090686	2.449557	-0.247503	С	1.191118	-2.353470	-1.988017
С	1.475753	3.656548	-0.640959	0	0.562299	-3.311218	-1.927463
С	0.598558	4.733685	-0.767135	С	0.595316	0.393734	-2.613113
С	-0.744790	4.553788	-0.451942	0	-0.374992	0.947013	-2.876521
С	-1.161649	3.307039	-0.023122	С	3.389025	1.126636	-2.156965
Н	2.525231	3.775473	-0.880843	0	3.993916	2.100251	-2.199442
Н	0.967737	5.690193	-1.111226	Н	2.806331	-2.355136	1.200047
Н	-1.448086	5.370786	-0.539549	Н	1.529759	-1.852541	2.316108
Н	-2.192879	3.117244	0.243193	Н	1.111563	-2.638833	0.772843
С	1.795216	-1.944691	1.261846				

TS4(70^{calc-4}→70^{calc-5}): E = -1374.30669842459 au

		4	2PE = 0.17793	3534 au			
		ι	u = -169.48 cm	ו ⁻¹			
0	-0.108029	-0.148512	0.414287	W	2.250102	-0.598056	-2.277295
Ρ	1.537748	-0.015394	0.102191	С	2.683694	-1.253166	-4.137961
С	-0.997325	0.821983	0.272160	0	2.920249	-1.644062	-5.195296
Н	-1.999610	0.588808	0.597466	С	3.911976	-1.535893	-1.508380
С	-0.504574	2.081136	-0.029648	0	4.833115	-2.057927	-1.068224
Ν	0.825140	2.059080	-0.336406	С	1.138730	-2.308629	-1.974677
С	1.497937	3.218612	-0.442754	0	0.522528	-3.257115	-1.795604
С	0.866691	4.433873	-0.354192	С	0.566414	0.400177	-2.938644
С	-0.521133	4.474216	-0.069311	0	-0.373541	0.957243	-3.279261
С	-1.208646	3.307997	0.111117	С	3.369031	1.111653	-2.579538
Н	2.557070	3.139279	-0.653738	0	3.994016	2.053032	-2.771329
Н	1.422505	5.344926	-0.526695	Н	3.069243	-1.439832	1.313673
Н	-1.024635	5.427228	0.024125	Н	1.658743	-1.066191	2.328057
н	-2.253539	3.296215	0.390900	Н	1.534166	-2.293497	1.043257
С	1.983071	-1.336677	1.322972				

E = -1374.36971495548 au ZPE = 0.17924935 au

70^{calc-5}:

0	-0.164951	-0.044184	-0.338865	W	2.581585	-1.339171	-2.120910
Р	1.471942	-0.114817	-0.270369	С	3.430244	-2.397275	-3.648553
С	-0.655065	1.212380	0.088227	0	3.906833	-2.990721	-4.506212
Н	-1.718225	1.284096	0.223992	С	4.198739	-1.737935	-0.907760
С	0.306384	2.150921	0.157190	0	5.096391	-1.952062	-0.229258
Ν	1.585258	1.609147	-0.160695	С	1.641288	-3.051272	-1.447469
С	2.714760	2.390229	-0.205573	0	1.124632	-4.002264	-1.076048
С	2.652326	3.713520	0.051617	С	0.932303	-0.879253	-3.286018
С	1.381967	4.302547	0.400232	0	0.017871	-0.614025	-3.917670
С	0.255907	3.556360	0.459115	С	3.522872	0.356532	-2.827095
Н	3.634643	1.878601	-0.449319	0	4.050809	1.284180	-3.239771
Н	3.547474	4.314486	0.001112	Н	2.869693	-0.489667	1.646778
Н	1.336975	5.361795	0.617415	Н	1.209552	-0.060602	2.140624
Н	-0.700321	3.989962	0.718290	Н	1.579088	-1.701183	1.536368
С	1.808872	-0.639508	1.437271				

TS	3(70 ^{calc-3} →7() ^{calc-6}): Ε = Ζ	-1374.287440 2PE = 0.17832 J = -92.85 cm ⁻¹)53474 a 2161 au	u		
0	-0.474461	0.788280	-0.786477	W	1.139064	-0.200160	-3.716260
Р	1.155666	0.790745	-1.395758	С	1.046488	-1.040526	-5.565608
С	-0.977711	1.718848	-0.025447	0	0.978471	-1.536030	-6.601859
Н	-2.059363	1.714754	0.046353	С	2.253938	1.391964	-4.416102
С	-0.241438	2.803034	0.444648	0	2.871367	2.281736	-4.790847
Ν	-0.997379	3.924127	0.682631	С	2.871104	-1.224197	-3.277520
С	-0.395750	5.082061	0.681288	0	3.832484	-1.792029	-3.016389
С	0.996614	5.237662	0.432234	С	0.049615	-1.740178	-2.880852
С	1.782221	4.125406	0.302808	0	-0.536545	-2.581862	-2.370729
С	1.186547	2.845627	0.366233	С	-0.585442	0.874640	-4.077797
Н	-1.008448	5.956794	0.871672	0	-1.537264	1.483779	-4.265832
Н	1.424040	6.231118	0.407783	н	3.005567	-0.305939	-0.352421
Н	2.856380	4.212082	0.206539	Н	1.794274	0.074256	0.886975
н	1.792713	2.021233	0.688425	н	1.549926	-1.304151	-0.202459
С	1.936199	-0.287106	-0.132073			-	

70^{calc-6}:

E = -1374.35278864655 au ZPE = 0.1794402 au

0	-0 114229	0 060847	0 106279	W	1 032624	0.313136	-3 231699
ň	1 22207	0.000017	0.750107		0.050107	0.057000	E 044007
Р	1.233007	0.596123	-0.759137	U	0.000107	0.057329	-5.244607
С	-0.911431	1.127282	0.456324	0	0.761946	-0.090058	-6.379212
Н	-1.923776	0.879329	0.736911	С	2.697123	1.493913	-3.506342
С	-0.350884	2.341680	0.363532	0	3.630465	2.142293	-3.658253
Ν	-1.042672	3.531778	0.515647	С	2.243323	-1.350646	-3.124846
С	-0.523585	4.575946	-0.035886	0	2.915302	-2.276715	-3.067887
С	0.698119	4.564654	-0.836043	С	-0.634486	-0.868362	-2.895585
С	1.481557	3.481736	-0.870517	0	-1.557890	-1.510722	-2.693336
С	1.123345	2.301927	-0.023424	С	-0.214879	1.960043	-3.339173
Н	-1.060728	5.513670	0.071016	0	-0.926102	2.851252	-3.435192
Н	0.951152	5.457342	-1.392818	Н	3.526160	0.163146	-0.281562
Н	2.400502	3.469554	-1.441464	Н	2.531466	-0.029945	1.188680
Н	1.755624	2.302723	0.876562	Н	2.543350	-1.293723	-0.072080
С	2.585483	-0.221561	0.117472				

TS5(70^{calc-6}→70^{calc-7}): E = -1374.25219527685 au

		4	2PE = 0.17376	621 au			
		ι	л = -1589.27 с	m ⁻¹			
0	-0.463148	0.243915	-0.308400	W	1.124588	0.119741	-3.481005
Р	0.983339	0.661412	-1.050978	С	1.264485	-0.326416	-5.464710
С	-0.829311	1.181830	0.674895	0	1.347209	-0.578942	-6.581319
Н	-1.543189	0.836153	1.404562	С	2.782423	1.333958	-3.600742
С	-0.181390	2.333111	0.561715	0	3.698999	2.020327	-3.654356
Ν	0.061694	3.445072	1.426551	С	2.326888	-1.495268	-3.025323
С	0.072495	4.627601	0.768576	0	2.993568	-2.389468	-2.767735
С	0.348737	4.730424	-0.594447	С	-0.559580	-1.072546	-3.285864
С	0.892534	3.601781	-1.195957	0	-1.491217	-1.722649	-3.164494
С	0.850584	2.389498	-0.482149	С	-0.086347	1.736524	-3.898228
Н	0.039826	5.516810	1.389039	0	-0.753487	2.639055	-4.124554
Н	0.366758	5.694859	-1.080586	Н	3.205626	0.302761	-0.242731
Н	1.421415	3.680142	-2.137205	Н	2.030813	0.253883	1.097113
Н	1.386475	2.973866	0.899894	Н	2.196556	-1.139112	-0.006818
С	2.221530	-0.052350	0.068414				

7	ncalc.	-7.
	v	•

E = -1374.36150329052 au ZPE = 0.179974 au

0	-0.213009	0.066974	-0.189169	W	1.038848	0.042718	-3.526140
Р	1.045564	0.643225	-1.098782	С	1.035912	-0.412531	-5.510655
С	-0.715040	1.044910	0.707215	0	1.034512	-0.667425	-6.631151
Н	-1.456853	0.689534	1.400957	С	2.745170	1.172117	-3.736174
С	-0.227742	2.280423	0.487879	0	3.696512	1.806039	-3.831424
Ν	-0.533579	3.484370	1.119359	С	2.185450	-1.619019	-3.106516
С	-0.008403	4.668809	0.692606	0	2.821886	-2.540412	-2.864370
С	0.862810	4.744545	-0.346121	С	-0.675343	-1.075907	-3.209303
С	1.257828	3.530790	-1.008221	0	-1.619395	-1.689917	-3.012986
С	0.750359	2.351488	-0.589921	С	-0.112543	1.719305	-3.881507
Н	-0.335621	5.538526	1.244083	0	-0.744619	2.654866	-4.069984
Н	1.257026	5.701019	-0.652021	Н	3.383970	0.664243	-0.563624
Н	1.966475	3.575667	-1.826041	Н	2.400113	0.475548	0.911885
Н	-1.188564	3.489570	1.884390	Н	2.655069	-0.910030	-0.186935
С	2.513802	0.169447	-0.128093				

70^{calc-8}:

E = -1374.40164884963 au ZPE = 0.1808779 au

0	-0.103260	-0.049035	-0.287280	W	2.561087	-1.401925	-2.144882
Ρ	1.538247	-0.133880	-0.246711	С	3.357909	-2.442297	-3.705214
С	-0.666727	1.244063	0.017499	0	3.805767	-3.026560	-4.586701
Н	-1.145336	1.212652	0.999795	С	4.198059	-1.841150	-0.974576
С	0.459084	2.241140	-0.006516	0	5.105781	-2.076826	-0.315460
Ν	0.248890	3.548595	0.103546	С	1.603748	-3.094849	-1.449426
С	1.331521	4.334785	0.070834	0	1.074178	-4.029978	-1.054578
С	2.631344	3.853982	-0.068531	С	0.889318	-0.908811	-3.259898
С	2.836407	2.484657	-0.177182	0	-0.038817	-0.621968	-3.863206
С	1.719502	1.661698	-0.142746	С	3.486917	0.316874	-2.805293
Н	1.152708	5.400353	0.157642	0	3.992986	1.277771	-3.169418
Н	3.462214	4.545423	-0.093406	Н	3.001692	-0.564043	1.609830
Н	3.834920	2.081436	-0.285585	Н	1.376586	-0.114247	2.180702
Н	-1.423236	1.466866	-0.735047	Н	1.687609	-1.751359	1.537085
С	1.930628	-0.692952	1.441271				

70	cal	lc-	b,
10			

E = -1621.01443283695 au ZPE = 0.24806815 au

С	0.028960	-0.000155	-0.018378	Н	0.235239	-2.979212	-3.593757
0	1.487222	0.014865	0.018422	Н	-2.219348	-3.431190	-3.373542
С	-0.604499	1.362285	-0.029039	Н	-3.486714	-2.252071	-1.590368
Ν	-0.022500	2.279296	-0.802044	Р	0.885169	-0.530213	1.474670
С	-0.563174	3.499019	-0.838952	С	1.027526	-2.336349	1.461587
С	-1.698650	3.851244	-0.119674	Н	0.831602	-2.758585	0.478792
С	-2.304106	2.885923	0.674345	Н	2.035341	-2.603736	1.783687
С	-1.747510	1.616167	0.722592	Н	0.316412	-2.735676	2.186752
Н	-0.065016	4.226037	-1.470809	W	1.287843	0.735629	3.570951
Н	-2.092804	4.856463	-0.182409	С	1.712519	1.739343	5.291500
Н	-3.189190	3.118394	1.252119	0	1.964361	2.305540	6.256969
Н	-2.184312	0.833905	1.325379	С	1.360579	-1.052794	4.590263
С	-0.551543	-0.984871	-0.984384	0	1.396485	-2.046964	5.157823
С	0.243778	-1.596585	-1.948966	С	-0.736224	0.868114	3.968228
С	-0.354056	-2.489866	-2.828978	0	-1.854722	0.942506	4.197144
С	-1.714114	-2.741372	-2.711299	С	1.199120	2.542522	2.559191
С	-2.422958	-2.080426	-1.713538	0	1.159735	3.558365	2.038852
Ν	-1.862142	-1.217443	-0.866131	С	3.310806	0.605276	3.159160
Н	1.298944	-1.372443	-2.002428	0	4.429729	0.532863	2.934928

70^{calc-5b}:

E = -1621.02951613828 au ZPE = 0.24860081 au

0	-0.113530	0.114615	-0.306618	Н	-4.224422	3.951353	0.391960
Ρ	1.498899	-0.007474	-0.112834	н	-5.820807	2.056192	0.223767
С	-0.604926	1.430369	-0.092568	н	-4.891457	-0.252292	-0.119406
С	0.411297	2.346001	-0.087965	Н	-2.431548	-0.542207	-0.266634
Ν	1.671432	1.722679	-0.225110	С	1.722869	-0.285826	1.667351
С	2.838949	2.433659	-0.293789	Н	2.776849	-0.148413	1.916241
С	2.829011	3.785050	-0.229967	Н	1.114055	0.409560	2.245678
С	1.575047	4.460996	-0.071220	Н	1.440493	-1.312903	1.902370
С	0.406017	3.773443	0.002657	W	2.640582	-1.520045	-1.694517
Н	3.743954	1.851701	-0.394580	С	3.492996	-2.849836	-2.996335
Н	3.755915	4.334369	-0.294051	0	3.957270	-3.603018	-3.724609
Н	1.563390	5.541481	-0.011316	С	4.239289	-1.653496	-0.403065
Н	-0.548446	4.261403	0.118468	0	5.113700	-1.711694	0.334513
С	-2.029832	1.565300	-0.011446	С	1.713700	-3.081812	-0.712352
Ν	-2.537213	2.805307	0.168920	0	1.198752	-3.944396	-0.164449
С	-3.858672	2.939628	0.245899	С	0.984898	-1.309545	-2.921878
С	-4.756108	1.882052	0.151701	0	0.061167	-1.177101	-3.580188
С	-4.234380	0.604628	-0.037510	С	3.559955	0.044447	-2.686909
С	-2.865013	0.435877	-0.120330	0	4.068212	0.907321	-3.239640

70^{calc-6b}:

E = -1621.0073770927 au ZPE = 0.2483066 au

0	-0.010314	0.018058	0.193323	Н	-4.422451	-0.490515	-0.783078
Р	1.663752	-0.024162	0.099101	Н	-5.437104	1.587900	-1.688764
С	-0.458577	1.321042	0.043010	Н	-4.022797	3.656969	-1.793659
С	0.474045	2.256772	0.362556	Н	-1.671292	3.535891	-0.982738
Ν	0.327197	3.617021	0.196629	С	2.070585	-1.223500	1.386801
С	1.402387	4.330024	0.137011	W	2.534947	-0.295337	-2.227452
С	2.754360	3.792959	0.208484	С	3.194386	-0.521153	-4.141925
С	2.952723	2.515698	0.551141	0	3.565622	-0.649645	-5.221063
С	1.779383	1.652706	0.875197	С	4.378867	0.437821	-1.678003
Н	1.278637	5.400747	0.004951	0	5.414137	0.832647	-1.382741
Н	3.583904	4.458302	0.009385	С	3.173634	-2.194157	-1.749328
Н	3.950193	2.111607	0.663086	0	3.530592	-3.246696	-1.470910
Н	1.729502	1.498991	1.964068	С	0.674297	-1.034651	-2.763675
С	-1.828295	1.457062	-0.451467	0	-0.353977	-1.435008	-3.059548
Ν	-2.586172	0.348465	-0.403410	С	1.872906	1.613913	-2.667238
С	-3.840936	0.423666	-0.839816	0	1.507092	2.663055	-2.942929
С	-4.411424	1.586460	-1.345500	Н	3.153003	-1.216954	1.527488
С	-3.625164	2.730545	-1.399393	Н	1.572023	-0.974276	2.322873
С	-2.315610	2.671937	-0.950810	Н	1.771558	-2.219230	1.059754

331

70^{calc-7b}:

E = -1621.02860527714 au ZPE = 0.24957081 au

0	-0.066555	0.214084	0.032573	Н	3.700276	0.009850	-4.215966
Ρ	-0.023584	0.136619	1.686781	Н	1.826827	0.507608	-5.767107
С	1.211954	0.093504	-0.565827	Н	-0.468087	0.828959	-4.799924
С	2.183277	-0.224535	0.343428	Н	-0.771465	0.640157	-2.339943
Ν	3.514941	-0.473351	0.092854	С	-0.010145	1.884521	2.193122
С	4.369396	-0.828302	1.086286	Н	0.209354	1.928749	3.261600
С	3.954707	-0.946147	2.379336	Н	0.747905	2.438453	1.639198
С	2.585707	-0.684183	2.696727	Н	-0.995090	2.318008	2.017201
С	1.730511	-0.322874	1.705214	W	-1.747059	-1.400651	2.640465
Н	5.389019	-1.009629	0.778896	С	-3.155619	-2.696561	3.337393
Н	4.658086	-1.230251	3.146580	0	-3.948943	-3.429154	3.729566
Н	2.250580	-0.770084	3.721808	С	-2.344619	0.029915	3.998273
Н	3.800761	-0.397619	-0.880681	0	-2.668502	0.828724	4.753209
С	1.316043	0.224589	-1.980406	С	-3.078021	-0.640365	1.250214
Ν	2.555222	0.051760	-2.512447	0	-3.810127	-0.214879	0.480497
С	2.695573	0.156723	-3.832692	С	-1.067077	-2.777915	1.256276
С	1.649780	0.434296	-4.703124	0	-0.668030	-3.524775	0.486694
С	0.377090	0.612229	-4.158413	С	-0.394813	-2.127219	4.015288
С	0.200364	0.509497	-2.793195	0	0.355840	-2.532916	4.780544

ZPE = 0.25044533 au

70^{calc-8b}:

O P -0.096308 0.287645 -0.281024 -1.136792 1.878878 4.208012 н 0.048585 -0.076255 4.092233 1.519754 Н -3.577042 2.329797 С -0.556636 1.660914 -0.229752 Н -4.660034 1.839736 2.491413 C N 0.679911 2.528648 -0.206214 н -3.238394 2.174309 -0.188691 С 1.724721 0.599896 3.852617 -0.258466 -0.393099 1.674588 С Н 1.755933 4.524804 -0.226052 2.789604 -0.360494 1.913873 C C C Н 3.002925 3.909581 -0.141103 1.171884 0.307638 2.298897 3.070240 2.523374 -0.090365 Н 1.363870 -1.410187 1.831677 W 1.874610 1.818799 -0.122866 2.496269 -1.518220 -1.770183 Н С 1.683540 5.605394 -0.271182 3.214137 -2.825804 -3.157421 Н 3.900867 4.511446 -0.118716 0 3.612850 -3.567405 -3.939224 Н С 2.016841 -0.027805 4.024561 3.843186 -2.220632 -0.378358 0 C 0 C Н -1.124238 1.836292 -1.144589 4.593275 -2.604192 0.398656 С -1.453911 1.870443 0.968186 1.109882 -2.906731 -1.123642 Ň -0.872706 1.792019 2.168983 0.343830 -3.671541 -0.750461 -0.748845 С С С 3.247860 1.123954 -1.636067 1.952175 -3.112343 -3.003449 2.205431 3.183676 0 0.357836 -0.308034 -3.839027 С 3.865205 -3.600108 2.293913 1.934828 -0.097594 -2.369905 С 0 -2.810656 2.119801 0.803551 4.624954 0.694098 -2.699514

C Zusätzliche Massespektren der Schmelze von 58a

Abbildung 122: ESI-Massenspektrum nach Extraktion von 71c aus der Schmelze.

Kristallographische Daten

D

1.	{Pentacarbonyl{Lithium[bis([12]Krone-4)][bis(trimethylsilyl)methyl] chlorophosphanid- κP]wolfram (0)} (4a)
2.	{Pentacarbonyl{6-{bis(trimethylsilyl)methyl}-6-phospha-bicyclo[3.1.0]hexan-2-on- <i>κP</i>]wolfram(0)} (12)
3.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo[2.2.1]hept-5-en-2-yl))- oxaphosphiran-κP}wolfram(0)} (13)370
4.	<pre>{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-ethylpropyl)-oxaphosphiran- κP}wolfram(0)} (16)</pre>
5.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(benzyl)-oxaphosphiran- <i>κP</i> }wolfram(0)} (17)
6.	{Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-tetramethyl-2 <i>H</i> -imidazol-2- yliden)phosphino- <i>κP</i>]}wolfram(0)} (23a)387
7.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(thien-3-yl)-oxa-phosphiran- <i>κP</i> }wolfram(0)} (52)
8.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(<i>o</i> -pyridyl)-oxa-phosphiran- <i>κP</i> }wolfram(0)} (58a)
9.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(o-pyridyl)-oxaphosphiran- κ <i>P</i> }wolfram(0) (59a)402
10.	{Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(<i>o</i> -pyridyl)-oxaphosphiran- <i>κP</i> }chrom(0)} (66c)408
11.	<pre>{Pentacarbonyl{P-[triphenylmethyl]-7-(o-pyridyl)-8,1,9-oxazaphospha-bicyclo-[4.3.0]- non-2,4,6-en-kP}wolfram(0)} (70a)414</pre>
12.	{Tetracarbonyl{2-[bis(trimethylsilyl)methyl]-[trimethylsiloxy]phosphino- κP]methyl}pyridine-κN}wolfram(0)} (71a)421
13.	{Tetracarbonyl{2,5-bis(trimethylsilyl)-3-{pyridin- κN }-4-pyridyl-5-oxid-1,2,5-oxadiphospholan- κP^2 }chrom(0)} (76c ⁽⁽⁽⁾⁾)
14.	$\label{eq:trichlorotris} Trichlorotris (tetrahydrofuran) titan (III)^{[135]} (TICI_3 (thf)_3)428$
15.	Cyclotetra[μ -oxo-chloro- π -cyclopentadienyltitan(IV)] ^[142a] (86)436
16.	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(<i>o</i> -pyridyl)methylen-phosphan- <i>κN,P</i> }wolfram(0)} (87a)444
17.	{Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-methyl-1-(<i>o</i> -pyridyl)methylen-phosphan- κ <i>N,P</i> }wolfram(0)} (88a)449
18.	Dichloro{Pentacarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(<i>o</i> -pyridyl)]methylen- phosphan-κP}wolfram(0)- κN,N}-Zink (93a ')455

 {Pentacarbonyl{Lithium[bis([12]Krone-4)][bis(trimethylsilyl)methyl] chlorophosphanid-κP]wolfram (0)} (4a)

Gute Struktur, 04.07.2011

Tabelle D 1.1. Kristalldaten und Strukturverfeinerung von 4a

Identifikationscode	seb117
Gerätetyp	STOE IPDS 2T
Summenformel	$C_{60}H_{110}CI_2Li_2O_{27}P_2Si_4W_2$
Molare Masse	1890.26
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, Cc
Elementarzelle	a = 9.9361(3) Å α = 90°
	$b = 71.067(3) \text{ Å} \beta = 92.730(2)^{\circ}$
	c = 11.6922(3) Å γ = 90°
Elementarzellenvolumen [Å3]	8246.8(5)
Z, Berechnete Dichte [Mg/m ³]	4, 1.522
Absorptionskoeffizient [mm ⁻¹]	3.020
F(000)	3840
Kristallgröße [mm ³]	0.20 x 0.12 x 0.04
Gemessener 20-Bereich [°]	2.77 - 26.00
Indexgrößen	$-12 \le h \le 12, -87 \le k \le 87, -14 \le l \le 14$
Reflexe gemessen / unabhängig	82224 / 15585 [R _{int} = 0.1057]
Vollständigkeit für Θ = 26.00	99.9 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.8884 und 0.6949
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	15585 / 593 / 1090
Goodness-of-fit an F ²	1.046
Endgültige R-Werte [I>2o(I)]	R1 = 0.0503, wR2 = 0.1171
R-Werte (sämtliche Daten)	R1 = 0.0588, wR2 = 0.1205
Absoluter Struktur Parameter	-0.011(7)
Größtes Maximum und Minimum	2.659 und -1.397 e∙Å ⁻³

	X	У	Z	U(eq)
C(1)	-2978(9)	-1475(1)	-1112(8)	32(2)
C(2)	-1507(12)	-1366(2)	-3275(10)	49(3)
C(3)	-188(11)	-1264(2)	-929(11)	49(3)
C(4)	-2731(15)	-1066(2)	-1899(12)	64(4)
C(5)	-2726(12)	-1234(2)	1121(10)	54(3)
C(6)	-5380(12)	-1250(2)	-283(10)	52(3)
C(7)	-4461(10)	-1583(2)	1131(9)	46(3)
C(8)	-4982(10)	-2158(2)	-2399(9)	40(2)
C(9)	-2202(10)	-2137(1)	-1718(8)	36(2)
C(10)	-3398(9)	-1845(1)	-3070(9)	36(2)
C(11)	-5467(10)	-1791(2)	-1514(8)	40(2)
C(12)	-4209(9)	-2079(2)	-54(9)	38(2)
C(13)	3842(10)	920(1)	325(8)	32(2)
C(14)	6600(11)	953(2)	-744(11)	53(3)
C(15)	4029(12)	1031(2)	-2271(9)	50(3)
C(16)	4985(11)	1306(2)	-449(11)	49(3)
C(17)	1340(11)	1160(2)	-511(9)	45(2)
C(18)	2753(12)	1231(1)	1823(9)	44(2)
C(19)	999(10)	891(2)	1426(10)	42(2)
C(20)	4350(11)	285(2)	2876(11)	45(2)
C(21)	3834(13)	247(2)	422(13)	58(3)
C(22)	5800(11)	518(2)	1237(9)	45(2)
C(23)	3758(9)	668(1)	2729(9)	37(2)
C(24)	1842(11)	400(2)	1736(10)	43(2)
C(25)	3119(11)	-2290(2)	3751(13)	35(3)
C(26)	1748(11)	-2378(2)	3812(12)	38(3)
C(27)	948(14)	-2240(2)	5544(9)	39(3)
C(28)	302(13)	-2060(2)	5879(11)	40(3)
C(29)	2102(12)	-1839(2)	6065(10)	40(3)
C(20)	2762(12)	-1696(2)	5317(11)	42(3)
C(31)	4277(11)	-1888(2)	4270(13)	42(3)
C(32)	4210(11)	-2004(2)	3197(13)	41(3)
C(33)	-1759(10)	-1994(2)	2463(10)	48(3)
C(34)	-1068(11)	-2164(2)	2120(10)	48(3)
C(35)	442(10)	-2047(1)	760(8)	36(2)
C(36)	1793(10)	-1960(2)	740(9)	40(2)
C(37)	1410(11)	-1641(1)	1239(8)	38(2)
C(38)	1402(11)	-1523(1)	2304(9)	40(2)
C(39)	-760(10)	-1585(2)	3001(9)	42(2)
C(40)	-1398(11)	-1729(2)	3720(11)	46(3)
C(40)	1214(13)	-131(2)	2606(11)	54(3)
C(42)	875(10)	-282(2)	3414(10)	46(3)
C(43)	-843(11)	-513(2)	3728(11)	55(3)
C(40)	-294(11)	-686(2)	3266(11)	52(3)
C(45)	190(12)	-810(2)	1422(12)	58(3)
C(46)	1419(13)	-713(2)	1074(14)	67(4)
C(47)	2022(12)	-420(2)	186(11)	65(4)
C(48)	2406(11)	-293(2)	1139(10)	56(3)
C(49)	-3262(16)	-72(2)	1394(17)	42(4)
C(50)	-3540(20)	-228(2)	2198(16)	39(4)
<u>\/</u>		-\-/	()	\ '/

Tabelle D 1.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

C(51)	-4114(16)	-496(2)	1090(15)	35(4)
C(52)	-3450(15)	-667(2)	627(15)	32(4)
C(53)	-2575(17)	-549(2)	-1109(14)	46(4)
C(54)	-1341(18)	-442(3)	-1421(16)	44(5)
C(55)	-1749(19)	-125(2)	-834(15)	46(4)
C(56)	-1490(30)	6(3)	155(14)	45(5)
C(57)	1949(12)	-2470(2)	-1492(11)	49(3)
C(58)	2996(11)	-2416(2)	-562(10)	45(2)
C(59)	2460(12)	-2507(2)	475(11)	55(3)
C(60)	1867(18)	-2688(2)	-11(14)	61(5)
C(61)	-3260(20)	-126(3)	2070(20)	32(5)
C(62)	-3970(20)	-294(3)	1580(20)	34(5)
C(63)	-3640(30)	-613(4)	1130(20)	44(7)
C(64)	-3380(20)	-616(4)	-120(20)	54(7)
C(65)	-1580(30)	-529(3)	-1358(17)	33(5)
C(66)	-1710(30)	-318(3)	-1350(20)	54(8)
C(00) C(67)	-1110(30)	-310(3) -47(3)	-220(20)	38(6)
C(07)	-1110(20)	-47(3)	-220(20)	30(0) 47(7)
C(00)	-2200(30)	3(4) 2200/2)	470(20) 2200(40)	47(7) 27(5)
C(69)	2810(60)	-2306(3)	3390(40)	37(3)
C(70)	2160(20)	-2335(6)	4520(40)	35(4)
C(71)	380(50)	-2193(8)	5430(30)	43(6)
C(72)	1110(50)	-2051(4)	6170(30)	39(6)
C(73)	1740(40)	-1740(5)	5800(50)	40(6)
C(74)	3170(40)	-1753(9)	5457(15)	39(7)
C(75)	4320(30)	-1825(6)	3720(50)	40(6)
C(76)	4210(40)	-2036(6)	3760(50)	41(6)
C(77)	1410(60)	-2643(9)	30(20)	60(7)
Cl(1)	-478(2)	-1740(1)	-1653(2)	37(1)
CI(2)	4532(3)	582(1)	-1365(2)	52(1)
Li(1)	1230(20)	-1938(2)	3390(20)	40(4)
Li(2)	-924(19)	-406(3)	1200(20)	56(5)
O(1)	-5654(8)	-2266(1)	-2930(7)	53(2)
O(2)	-1308(8)	-2236(1)	-1778(7)	48(2)
O(3)	-3104(8)	-1775(1)	-3951(6)	51(2)
O(4)	-6394(7)	-1698(1)	-1464(8)	52(2)
O(5)	-4417(8)	-2148(1)	810(7)	59(2)
O(6)	4706(8)	186(1)	3644(8)	56(2)
O(7)	3780(12)	126(1)	-222(10)	86(3)
O(8)	6849(8)	546(2)	991(8)	64(2)
O(9)	3786(9)	789(1)	3397(7)	51(2)
O(10)	715(8)	364(1)	1743(9)	63(2)
O(11)	3010(6)	-2113(1)	3174(6)	39(2)
O(12)	874(6)	-2247(1)	4344(6)	39(2)
O(13)	943(7)	-1899(1)	5381(6)	39(2)
O(14)	3088(6)	-1771(1)	4223(6)	38(2)
O(15)	-1005(7)	-1913(1)	3431(6)	44(2)
O(16)	308(7)	-2125(1)	1853(6)	42(2)
O(17)	1971(7)	-1818(1)	1582(6)	39(2)
O(18)	658(7)	-1611(1)	3154(6)	41(2)
O(19)	1181(8)	-198(1)	1430(8)	58(2)
O(20)	-451(7)	-343(1)	3086(6)	41(2)
O(21)	-661(8)	-690(1)	2079(8)	50(2)
O(22)	949(8)	-553(1)	439(7)	54(2)
- ()	0.000	500(1)		5 · (-)

O(23)	-1873(16)	-78(4)	1209(14)	39(3)
O(24)	-3130(20)	-403(2)	1790(20)	33(4)
O(25)	-2291(12)	-632(2)	1(10)	38(3)
O(26)	-1060(20)	-299(2)	-583(16)	47(4)
O(27)	1512(9)	-2652(1)	-1186(8)	66(2)
O(28)	-2030(20)	-93(6)	1530(20)	37(5)
O(29)	-3090(40)	-452(4)	1680(40)	32(5)
O(30)	-1994(17)	-589(3)	-260(15)	37(4)
O(31)	-950(40)	-244(3)	-380(30)	42(5)
P(1)	-2274(2)	-1711(1)	-658(2)	32(1)
P(2)	3186(3)	680(1)	-74(2)	33(1)
Si(1)	-1829(3)	-1300(1)	-1771(3)	42(1)
Si(2)	-3855(3)	-1385(1)	193(3)	41(1)
Si(3)	4822(3)	1047(1)	-777(2)	38(1)
Si(4)	2256(3)	1049(1)	751(2)	34(1)
W(1)	-3846(1)	-1968(1)	-1600(1)	30(1)
W(2)	3828(1)	455(1)	1604(1)	31(1)

Tabelle D 1.3: Bindungslängen [Å]

C(1)-P(1)	1.881(10)	C(9)-W(1)	2.041(10)	C(19)-Si(4)	1.880(11)
C(1)-Si(1)	1.882(9)	C(10)-O(3)	1.194(13)	C(19)-H(19A)	0.9800
C(1)-Si(2)	1.904(9)	C(10)-W(1)	1.996(11)	C(19)-H(19B)	0.9800
C(1)-H(1A)	1.0000	C(11)-O(4)	1.141(13)	C(19)-H(19C)	0.9800
C(2)-Si(1)	1.863(12)	C(11)-W(1)	2.046(11)	C(20)-O(6)	1.183(13)
C(2)-H(2A)	0.9800	C(12)-O(5)	1.152(13)	C(20)-W(2)	1.964(12)
C(2)-H(2B)	0.9800	C(12)-W(1)	2.021(11)	C(21)-O(7)	1.140(15)
C(2)-H(2C)	0.9800	C(13)-P(2)	1.877(9)	C(21)-W(2)	2.022(12)
C(3)-Si(1)	1.881(11)	C(13)-Si(3)	1.884(10)	C(22)-O(8)	1.112(13)
C(3)-H(3A)	0.9800	C(13)-Si(4)	1.910(9)	C(22)-W(2)	2.075(11)
C(3)-H(3B)	0.9800	C(13)-H(13A)	1.0000	C(23)-O(9)	1.165(12)
C(3)-H(3C)	0.9800	C(14)-Si(3)	1.889(12)	C(23)-W(2)	2.008(11)
C(4)-Si(1)	1.885(12)	C(14)-H(14A)	0.9800	C(24)-O(10)	1.149(13)
C(4)-H(4A)	0.9800	C(14)-H(14B)	0.9800	C(24)-W(2)	2.024(11)
C(4)-H(4B)	0.9800	C(14)-H(14C)	0.9800	C(25)-O(11)	1.428(11)
C(4)-H(4C)	0.9800	C(15)-Si(3)	1.886(12)	C(25)-C(26)	1.504(12)
C(5)-Si(2)	1.864(12)	C(15)-H(15A)	0.9800	C(25)-H(25A)	0.9900
C(5)-H(5A)	0.9800	C(15)-H(15B)	0.9800	C(25)-H(25B)	0.9900
C(5)-H(5B)	0.9800	C(15)-H(15C)	0.9800	C(26)-O(12)	1.436(11)
C(5)-H(5C)	0.9800	C(16)-Si(3)	1.879(12)	C(26)-H(26A)	0.9900
C(6)-Si(2)	1.855(11)	C(16)-H(16A)	0.9800	C(26)-H(26B)	0.9900
C(6)-H(6A)	0.9800	C(16)-H(16B)	0.9800	C(27)-O(12)	1.402(11)
C(6)-H(6B)	0.9800	C(16)-H(16C)	0.9800	C(27)-C(28)	1.490(13)
C(6)-H(6C)	0.9800	C(17)-Si(4)	1.871(11)	C(27)-H(27A)	0.9900
C(7)-Si(2)	1.897(11)	C(17)-H(17A)	0.9800	C(27)-H(27B)	0.9900
C(7)-H(7A)	0.9800	C(17)-H(17B)	0.9800	C(28)-O(13)	1.442(11)
C(7)-H(7B)	0.9800	C(17)-H(17C)	0.9800	C(28)-H(28A)	0.9900
C(7)-H(7C)	0.9800	C(18)-Si(4)	1.855(10)	C(28)-H(28B)	0.9900
C(8)-O(1)	1.177(13)	C(18)-H(18A)	0.9800	C(29)-O(13)	1.437(11)
C(8)-W(1)	1.968(11)	C(18)-H(18B)	0.9800	C(29)-C(30)	1.509(13)
C(9)-O(2)	1.135(12)	C(18)-H(18C)	0.9800	C(29)-H(29A)	0.9900

C(29)-H(29B)	0.9900	C(44)-O(21)	1.418(15)	C(58)-H(58A)	0.9900
C(30)-O(14)	1.436(11)	C(44)-H(44A)	0.9900	C(58)-H(58B)	0.9900
C(30)-H(30A)	0.9900	C(44)-H(44B)	0.9900	C(59)-C(77)	1.50(3)
C(30)-H(30B)	0.9900	C(45)-O(21)	1.447(14)	C(59)-C(60)	1.514(19)
C(31)-O(14)	1.446(11)	C(45)-C(46)	1.478(14)	C(59)-H(59A)	0.9900
C(31)-C(32)	1.498(14)	C(45)-H(45A)	0.9900	C(59)-H(59B)	0.9900
C(31)-H(31A)	0.9900	C(45)-H(45B)	0.9900	C(60)-O(27)	1.425(18)
C(31)-H(31B)	0.9900	C(46)-O(22)	1.426(16)	C(60)-H(60A)	0.9900
C(32)-O(11)	1.421(11)	C(46)-H(46A)	0.9900	C(60)-H(60B)	0.9900
C(32)-H(32A)	0.9900	C(46)-H(46B)	0.9900	C(61)-O(28)	1.413(16)
C(32)-H(32B)	0.9900	C(47)-O(22)	1.465(15)	C(61)-C(62)	1.489(16)
C(33)-O(15)	1.446(13)	C(47)-C(48)	1.467(14)	C(61)-H(61A)	0.9900
C(33)-C(34)	1.457(17)	C(47)-H(47A)	0.9900	C(61)-H(61B)	0.9900
C(33)-H(33A)	0.9900	C(47)-H(47B)	0.9900	C(62)-O(29)	1.42(4)
C(33)-H(33B)	0.9900	C(48)-O(19)	1.448(13)	C(62)-H(62A)	0.9900
C(34)-O(16)	1.443(13)	C(48)-H(48A)	0.9900	C(62)-H(62B)	0.9900
C(34)-H(34A)	0.9900	C(48)-H(48B)	0.9900	C(63)-O(29)	1.408(16)
C(34)-H(34B)	0.9900	C(49)-O(23)	1.408(15)	C(63)-C(64)	1.489(17)
C(35)-O(16)	1.406(12)	C(49)-C(50)	1.489(15)	C(63)-H(63A)	0.9900
C(35)-C(36)	1.478(14)	C(49)-H(49A)	0.9900	C(63)-H(63B)	0.9900
C(35)-H(35A)	0.9900	C(49)-H(49B)	0.9900	C(64)-O(30)	1.411(16)
C(35)-H(35B)	0.9900	C(50)-O(24)	1.406(15)	C(64)-H(64A)	0.9900
C(36)-O(17)	1.418(12)	C(50)-H(50A)	0.9900	C(64)-H(64B)	0.9900
C(36)-H(36A)	0.9900	C(50)-H(50B)	0.9900	C(65)-O(30)	1.434(15)
C(36)-H(36B)	0.9900	C(51)-O(24)	1.404(15)	C(65)-C(66)	1.503(17)
C(37)-O(17)	1.425(12)	C(51)-C(52)	1.501(14)	C(65)-H(65A)	0.9900
C(37)-C(38)	1.503(14)	C(51)-H(51A)	0.9900	C(65)-H(65B)	0.9900
C(37)-H(37A)	0.9900	C(51)-H(51B)	0.9900	C(66)-O(31)	1.431(16)
C(37)-H(37B)	0.9900	C(52)-O(25)	1.415(14)	C(66)-H(66A)	0.9900
C(38)-O(18)	1.412(13)	C(52)-H(52A)	0.9900	C(66)-H(66B)	0.9900
C(38)-H(38A)	0.9900	C(52)-H(52B)	0.9900	C(67)-O(31)	1.421(16)
C(38)-H(38B)	0.9900	C(53)-O(25)	1.442(14)	C(67)-C(68)	1.490(17)
C(39)-O(18)	1.424(12)	C(53)-C(54)	1.502(15)	C(67)-H(67A)	0.9900
C(39)-C(40)	1.484(16)	C(53)-H(53A)	0.9900	C(67)-H(67B)	0.9900
C(39)-H(39A)	0.9900	C(53)-H(53B)	0.9900	C(68)-O(28)	1.428(16)
C(39)-H(39B)	0.9900	C(54)-O(26)	1.429(14)	C(68)-H(68A)	0.9900
C(40)-O(15)	1.411(14)	C(54)-H(54A)	0.9900	C(68)-H(68B)	0.9900
C(40)-H(40A)	0.9900	C(54)-H(54B)	0.9900	C(69)-O(11)	1.425(16)
C(40)-H(40B)	0.9900	C(55)-O(26)	1.436(14)	C(69)-C(70)	1.503(17)
C(41)-O(19)	1.453(16)	C(55)-C(56)	1.495(15)	C(69)-H(69A)	0.9900
C(41)-C(42)	1.477(13)	C(55)-H(55A)	0.9900	C(69)-H(69B)	0.9900
C(41)-H(41A)	0.9900	C(55)-H(55B)	0.9900	C(70)-O(12)	1.429(16)
C(41)-H(41B)	0.9900	C(56)-O(23)	1.433(14)	C(70)-H(70A)	0.9900
C(42)-O(20)	1.422(12)	C(56)-H(56A)	0.9900	C(70)-H(70B)	0.9900
C(42)-H(42A)	0.9900	C(56)-H(56B)	0.9900	C(71)-O(12)	1.430(16)
C(42)-H(42B)	0.9900	C(57)-O(27)	1.416(15)	C(71)-C(72)	1.496(17)
C(43)-C(44)	1.458(13)	C(57)-C(58)	1.519(16)	C(71)-H(71A)	0.9900
C(43)-O(20)	1.482(13)	C(57)-H(57A)	0.9900	C(71)-H(71B)	0.9900
C(43)-H(43A)	0.9900	C(57)-H(57B)	0.9900	C(72)-O(13)	1.418(16)
C(43)-H(43B)	0.9900	C(58)-C(59)	1.495(17)	C(72)-H(72A)	0.9900

C(72)-H(72B)	0.9900	C(76)-H(76B)	0.9900	Li(2)-O(31)	2.17(4)
C(73)-O(13)	1.451(16)	C(77)-O(27)	1.43(2)	Li(2)-O(26)	2.21(3)
C(73)-C(74)	1.500(17)	C(77)-H(77A)	0.9900	Li(2)-O(29)	2.28(5)
C(73)-H(73A)	0.9900	C(77)-H(77B)	0.9900	Li(2)-O(21)	2.28(2)
C(73)-H(73B)	0.9900	CI(1)-P(1)	2.185(3)	Li(2)-O(20)	2.28(3)
C(74)-O(14)	1.447(16)	CI(2)-P(2)	2.177(4)	Li(2)-O(24)	2.33(3)
C(74)-H(74A)	0.9900	Li(1)-O(11)	2.189(19)	Li(2)-O(22)	2.343(19)
C(74)-H(74B)	0.9900	Li(1)-O(15)	2.23(2)	Li(2)-O(30)	2.36(3)
C(75)-O(14)	1.439(16)	Li(1)-O(14)	2.36(2)	Li(2)-O(25)	2.49(3)
C(75)-C(76)	1.505(17)	Li(1)-O(13)	2.37(3)	Li(2)-O(23)	2.52(3)
C(75)-H(75A)	0.9900	Li(1)-O(16)	2.39(2)	Li(2)-O(28)	2.52(4)
C(75)-H(75B)	0.9900	Li(1)-O(18)	2.404(17)	Li(2)-O(19)	2.57(2)
C(76)-O(11)	1.453(16)	Li(1)-O(17)	2.43(2)	P(1)-W(1)	2.611(3)
C(76)-H(76A)	0.9900	Li(1)-O(12)	2.497(19)	P(2)-W(2)	2.589(3)

Tabelle D 1.4: Bindungswinkel [°]

P(1)-C(1)-Si(1)	118.8(5)	Si(2)-C(6)-H(6C)	109.5
P(1)-C(1)-Si(2)	104.6(4)	H(6A)-C(6)-H(6C)	109.5
Si(1)-C(1)-Si(2)	114.5(5)	H(6B)-C(6)-H(6C)	109.5
P(1)-C(1)-H(1A)	106.0	Si(2)-C(7)-H(7A)	109.5
Si(1)-C(1)-H(1A)	106.0	Si(2)-C(7)-H(7B)	109.5
Si(2)-C(1)-H(1A)	106.0	H(7A)-C(7)-H(7B)	109.5
Si(1)-C(2)-H(2A)	109.5	Si(2)-C(7)-H(7C)	109.5
Si(1)-C(2)-H(2B)	109.5	H(7A)-C(7)-H(7C)	109.5
H(2A)-C(2)-H(2B)	109.5	H(7B)-C(7)-H(7C)	109.5
Si(1)-C(2)-H(2C)	109.5	O(1)-C(8)-W(1)	176.5(9)
H(2A)-C(2)-H(2C)	109.5	O(2)-C(9)-W(1)	178.2(8)
H(2B)-C(2)-H(2C)	109.5	O(3)-C(10)-W(1)	178.5(9)
Si(1)-C(3)-H(3A)	109.5	O(4)-C(11)-W(1)	178.0(10)
Si(1)-C(3)-H(3B)	109.5	O(5)-C(12)-W(1)	177.8(10)
H(3A)-C(3)-H(3B)	109.5	P(2)-C(13)-Si(3)	116.9(5)
Si(1)-C(3)-H(3C)	109.5	P(2)-C(13)-Si(4)	102.7(5)
H(3A)-C(3)-H(3C)	109.5	Si(3)-C(13)-Si(4)	114.0(5)
H(3B)-C(3)-H(3C)	109.5	P(2)-C(13)-H(13A)	107.6
Si(1)-C(4)-H(4A)	109.5	Si(3)-C(13)-H(13A)	107.6
Si(1)-C(4)-H(4B)	109.5	Si(4)-C(13)-H(13A)	107.6
H(4A)-C(4)-H(4B)	109.5	Si(3)-C(14)-H(14A)	109.5
Si(1)-C(4)-H(4C)	109.5	Si(3)-C(14)-H(14B)	109.5
H(4A)-C(4)-H(4C)	109.5	H(14A)-C(14)-H(14B)	109.5
H(4B)-C(4)-H(4C)	109.5	Si(3)-C(14)-H(14C)	109.5
Si(2)-C(5)-H(5A)	109.5	H(14A)-C(14)-H(14C)	109.5
Si(2)-C(5)-H(5B)	109.5	H(14B)-C(14)-H(14C)	109.5
H(5A)-C(5)-H(5B)	109.5	Si(3)-C(15)-H(15A)	109.5
Si(2)-C(5)-H(5C)	109.5	Si(3)-C(15)-H(15B)	109.5
H(5A)-C(5)-H(5C)	109.5	H(15A)-C(15)-H(15B)	109.5
H(5B)-C(5)-H(5C)	109.5	Si(3)-C(15)-H(15C)	109.5
Si(2)-C(6)-H(6A)	109.5	H(15A)-C(15)-H(15C)	109.5
Si(2)-C(6)-H(6B)	109.5	H(15B)-C(15)-H(15C)	109.5
H(6A)-C(6)-H(6B)	109.5	Si(3)-C(16)-H(16A)	109.5
Si(3)-C(16)-H(16B)	109.5	C(27)-C(28)-H(28B)	109.3
---------------------	-----------	---------------------	-----------
H(16A)-C(16)-H(16B)	109.5	H(28A)-C(28)-H(28B)	108.0
Si(3)-C(16)-H(16C)	109.5	O(13)-C(29)-C(30)	103.7(10)
H(16A)-C(16)-H(16C)	109.5	O(13)-C(29)-H(29A)	111.0
H(16B)-C(16)-H(16C)	109.5	C(30)-C(29)-H(29A)	111.0
Si(4)-C(17)-H(17A)	109.5	O(13)-C(29)-H(29B)	111.0
Si(4)-C(17)-H(17B)	109.5	C(30)-C(29)-H(29B)	111.0
H(17A)-C(17)-H(17B)	109.5	H(29A)-C(29)-H(29B)	109.0
Si(4)-C(17)-H(17C)	109.5	O(14)-C(30)-C(29)	113.1(10)
H(17A)-C(17)-H(17C)	109.5	O(14)-C(30)-H(30A)	109.0
H(17B)-C(17)-H(17C)	109.5	C(29)-C(30)-H(30A)	109.0
Si(4)-C(18)-H(18A)	109.5	O(14)-C(30)-H(30B)	109.0
Si(4)-C(18)-H(18B)	109.5	C(29)-C(30)-H(30B)	109.0
H(18A)-C(18)-H(18B)	109.5	H(30A)-C(30)-H(30B)	107.8
Si(4)-C(18)-H(18C)	109.5	O(14)-C(31)-C(32)	106.3(10)
H(18A)-C(18)-H(18C)	109.5	O(14)-C(31)-H(31A)	110.5
H(18B)-C(18)-H(18C)	109.5	C(32)-C(31)-H(31A)	110.5
Si(4)-C(19)-H(19A)	109.5	O(14)-C(31)-H(31B)	110.5
Si(4)-C(19)-H(19B)	109.5	C(32)-C(31)-H(31B)	110.5
H(19A)-C(19)-H(19B)	109.5	H(31A)-C(31)-H(31B)	108.7
Si(4)-C(19)-H(19C)	109.5	O(11)-C(32)-C(31)	108.6(10)
H(19A)-C(19)-H(19C)	109.5	O(11)-C(32)-H(32A)	110.0
H(19B)-C(19)-H(19C)	109.5	C(31)-C(32)-H(32A)	110.0
O(6)-C(20)-W(2)	177.8(9)	O(11)-C(32)-H(32B)	110.0
O(7)-C(21)-W(2)	176.6(14)	C(31)-C(32)-H(32B)	110.0
O(8)-C(22)-W(2)	176.4(12)	H(32A)-C(32)-H(32B)	108.3
O(9)-C(23)-W(2)	176.5(9)	O(15)-C(33)-C(34)	108.2(9)
O(10)-C(24)-W(2)	175.6(11)	O(15)-C(33)-H(33A)	110.1
O(11)-C(25)-C(26)	110.0(9)	C(34)-C(33)-H(33A)	110.1
O(11)-C(25)-H(25A)	109.7	O(15)-C(33)-H(33B)	110.1
C(26)-C(25)-H(25A)	109.7	C(34)-C(33)-H(33B)	110.1
O(11)-C(25)-H(25B)	109.7	H(33A)-C(33)-H(33B)	108.4
C(26)-C(25)-H(25B)	109.7	O(16)-C(34)-C(33)	111.4(9)
H(25A)-C(25)-H(25B)	108.2	O(16)-C(34)-H(34A)	109.4
O(12)-C(26)-C(25)	108.5(9)	C(33)-C(34)-H(34A)	109.4
O(12)-C(26)-H(26A)	110.0	O(16)-C(34)-H(34B)	109.4
C(25)-C(26)-H(26A)	110.0	C(33)-C(34)-H(34B)	109.4
O(12)-C(26)-H(26B)	110.0	H(34A)-C(34)-H(34B)	108.0
C(25)-C(26)-H(26B)	110.0	O(16)-C(35)-C(36)	107.7(8)
H(26A)-C(26)-H(26B)	108.4	O(16)-C(35)-H(35A)	110.2
O(12)-C(27)-C(28)	107.1(10)	C(36)-C(35)-H(35A)	110.2
O(12)-C(27)-H(27A)	110.3	O(16)-C(35)-H(35B)	110.2
C(28)-C(27)-H(27A)	110.3	C(36)-C(35)-H(35B)	110.2
O(12)-C(27)-H(27B)	110.3	H(35A)-C(35)-H(35B)	108.5
C(28)-C(27)-H(27B)	110.3	O(17)-C(36)-C(35)	111.8(8)
H(27A)-C(27)-H(27B)	108.6	O(17)-C(36)-H(36A)	109.3
O(13)-C(28)-C(27)	111.6(10)	C(35)-C(36)-H(36A)	109.3
O(13)-C(28)-H(28A)	109.3	O(17)-C(36)-H(36B)	109.3
C(27)-C(28)-H(28A)	109.3	C(35)-C(36)-H(36B)	109.3
O(13)-C(28)-H(28B)	109.3	H(36A)-C(36)-H(36B)	107.9

O(17)-C(37)-C(38)	106.1(8)	C(46)-C(45)-H(45A)	109.1
O(17)-C(37)-H(37A)	110.5	O(21)-C(45)-H(45B)	109.1
С(38)-С(37)-Н(37А)	110.5	C(46)-C(45)-H(45B)	109.1
O(17)-C(37)-H(37B)	110.5	H(45A)-C(45)-H(45B)	107.8
C(38)-C(37)-H(37B)	110.5	O(22)-C(46)-C(45)	105.2(10)
H(37A)-C(37)-H(37B)	108.7	O(22)-C(46)-H(46A)	110.7
O(18)-C(38)-C(37)	111.0(8)	C(45)-C(46)-H(46A)	110.7
O(18)-C(38)-H(38A)	109.4	O(22)-C(46)-H(46B)	110.7
C(37)-C(38)-H(38A)	109.4	C(45)-C(46)-H(46B)	110.7
O(18)-C(38)-H(38B)	109.4	H(46A)-C(46)-H(46B)	108.8
C(37)-C(38)-H(38B)	109.4	O(22)-C(47)-C(48)	114.0(10)
H(38A)-C(38)-H(38B)	108.0	O(22)-C(47)-H(47A)	108.8
O(18)-C(39)-C(40)	106.8(8)	C(48)-C(47)-H(47A)	108.8
O(18)-C(39)-H(39A)	110.4	O(22)-C(47)-H(47B)	108.8
C(40)-C(39)-H(39A)	110.4	C(48)-C(47)-H(47B)	108.8
O(18)-C(39)-H(39B)	110.4	H(47A)-C(47)-H(47B)	107.6
C(40)-C(39)-H(39B)	110.4	O(19)-C(48)-C(47)	105.9(10)
H(39A)-C(39)-H(39B)	108.6	O(19)-C(48)-H(48A)	110.5
O(15)-C(40)-C(39)	111.8(9)	C(47)-C(48)-H(48A)	110.5
O(15)-C(40)-H(40A)	109.3	O(19)-C(48)-H(48B)	110.6
C(39)-C(40)-H(40A)	109.3	C(47)-C(48)-H(48B)	110.6
O(15)-C(40)-H(40B)	109.3	H(48A)-C(48)-H(48B)	108.7
C(39)-C(40)-H(40B)	109.3	O(23)-C(49)-C(50)	106.8(15)
H(40A)-C(40)-H(40B)	107.9	O(23)-C(49)-H(49A)	110.4
O(19)-C(41)-C(42)	112.0(10)	C(50)-C(49)-H(49A)	110.4
O(19)-C(41)-H(41A)	109.2	O(23)-C(49)-H(49B)	110.4
C(42)-C(41)-H(41A)	109.2	C(50)-C(49)-H(49B)	110.4
O(19)-C(41)-H(41B)	109.2	H(49A)-C(49)-H(49B)	108.6
C(42)-C(41)-H(41B)	109.2	O(24)-C(50)-C(49)	112.2(18)
H(41A)-C(41)-H(41B)	107.9	O(24)-C(50)-H(50A)	109.2
O(20)-C(42)-C(41)	106.6(9)	C(49)-C(50)-H(50A)	109.2
O(20)-C(42)-H(42A)	110.4	O(24)-C(50)-H(50B)	109.2
C(41)-C(42)-H(42A)	110.4	C(49)-C(50)-H(50B)	109.2
O(20)-C(42)-H(42B)	110.4	H(50A)-C(50)-H(50B)	107.9
C(41)-C(42)-H(42B)	110.4	O(24)-C(51)-C(52)	106.5(15)
H(42A)-C(42)-H(42B)	108.6	O(24)-C(51)-H(51A)	110.4
C(44)-C(43)-O(20)	112.7(10)	C(52)-C(51)-H(51A)	110.4
C(44)-C(43)-H(43A)	109.1	O(24)-C(51)-H(51B)	110.4
O(20)-C(43)-H(43A)	109.1	C(52)-C(51)-H(51B)	110.4
C(44)-C(43)-H(43B)	109.1	H(51A)-C(51)-H(51B)	108.6
O(20)-C(43)-H(43B)	109.1	O(25)-C(52)-C(51)	115.2(13)
H(43A)-C(43)-H(43B)	107.8	O(25)-C(52)-H(52A)	108.5
O(21)-C(44)-C(43)	107.3(10)	C(51)-C(52)-H(52A)	108.5
O(21)-C(44)-H(44A)	110.2	O(25)-C(52)-H(52B)	108.5
C(43)-C(44)-H(44A)	110.2	C(51)-C(52)-H(52B)	108.5
O(21)-C(44)-H(44B)	110.2	H(52A)-C(52)-H(52B)	107.5
C(43)-C(44)-H(44B)	110.2	O(25)-C(53)-C(54)	107.3(15)
H(44A)-C(44)-H(44B)	108.5	O(25)-C(53)-H(53A)	110.2
O(21)-C(45)-C(46)	112.4(10)	C(54)-C(53)-H(53A)	110.2
O(21)-C(45)-H(45A)	109.1	O(25)-C(53)-H(53B)	110.2

C(54)-C(53)-H(53B)	110.2	C(62)-C(61)-H(61A)	109.3
H(53A)-C(53)-H(53B)	108.5	O(28)-C(61)-H(61B)	109.3
O(26)-C(54)-C(53)	109.1(17)	C(62)-C(61)-H(61B)	109.3
O(26)-C(54)-H(54A)	109.9	H(61A)-C(61)-H(61B)	108.0
C(53)-C(54)-H(54A)	109.9	O(29)-C(62)-C(61)	109(2)
O(26)-C(54)-H(54B)	109.9	O(29)-C(62)-H(62A)	109.8
C(53)-C(54)-H(54B)	109.9	C(61)-C(62)-H(62A)	109.8
H(54A)-C(54)-H(54B)	108.3	O(29)-C(62)-H(62B)	109.8
O(26)-C(55)-C(56)	108.5(16)	C(61)-C(62)-H(62B)	109.8
O(26)-C(55)-H(55A)	110.0	H(62A)-C(62)-H(62B)	108.3
C(56)-C(55)-H(55A)	110.0	O(29)-C(63)-C(64)	112(3)
O(26)-C(55)-H(55B)	110.0	O(29)-C(63)-H(63A)	109.1
C(56)-C(55)-H(55B)	110.0	C(64)-C(63)-H(63A)	109.1
H(55A)-C(55)-H(55B)	108.4	O(29)-C(63)-H(63B)	109.1
O(23)-C(56)-C(55)	111.5(17)	C(64)-C(63)-H(63B)	109.1
O(23)-C(56)-H(56A)	109.3	H(63A)-C(63)-H(63B)	107.9
C(55)-C(56)-H(56A)	109.3	O(30)-C(64)-C(63)	109(2)
O(23)-C(56)-H(56B)	109.3	O(30)-C(64)-H(64A)	109.9
C(55)-C(56)-H(56B)	109.3	C(63)-C(64)-H(64A)	109.9
H(56A)-C(56)-H(56B)	108.0	O(30)-C(64)-H(64B)	109.9
O(27)-C(57)-C(58)	104.9(10)	C(63)-C(64)-H(64B)	109.9
O(27)-C(57)-H(57A)	110.8	H(64A)-C(64)-H(64B)	108.3
C(58)-C(57)-H(57A)	110.8	O(30)-C(65)-C(66)	105.3(18)
O(27)-C(57)-H(57B)	110.8	O(30)-C(65)-H(65A)	110.7
C(58)-C(57)-H(57B)	110.8	C(66)-C(65)-H(65A)	110.7
H(57A)-C(57)-H(57B)	108.8	O(30)-C(65)-H(65B)	110.7
C(59)-C(58)-C(57)	102.3(9)	C(66)-C(65)-H(65B)	110.7
C(59)-C(58)-H(58A)	111.3	H(65A)-C(65)-H(65B)	108.8
C(57)-C(58)-H(58A)	111.3	O(31)-C(66)-C(65)	109(2)
C(59)-C(58)-H(58B)	111.3	O(31)-C(66)-H(66A)	109.9
C(57)-C(58)-H(58B)	111.3	C(65)-C(66)-H(66A)	109.9
H(58A)-C(58)-H(58B)	109.2	O(31)-C(66)-H(66B)	109.9
C(58)-C(59)-C(77)	105.5(14)	C(65)-C(66)-H(66B)	109.9
C(58)-C(59)-C(60)	102.2(11)	H(66A)-C(66)-H(66B)	108.3
C(77)-C(59)-C(60)	21(3)	O(31)-C(67)-C(68)	114(2)
C(58)-C(59)-H(59A)	111.3	O(31)-C(67)-H(67A)	108.8
C(77)-C(59)-H(59A)	90.8	C(68)-C(67)-H(67A)	108.8
C(60)-C(59)-H(59A)	111.3	O(31)-C(67)-H(67B)	108.8
C(58)-C(59)-H(59B)	111.3	C(68)-C(67)-H(67B)	108.8
C(77)- $C(59)$ - $H(59B)$	126.7	H(67A)-C(67)-H(67B)	107.7
C(60)-C(59)-H(59B)	111.3	O(28)-C(68)-C(67)	104(2)
H(59A)-C(59)-H(59B)	109.2	O(28)-C(68)-H(68A)	110.9
O(27)-C(60)-C(59)	106.4(11)	C(67)-C(68)-H(68A)	110.9
O(27)-C(60)-H(60A)	110.5	O(28)-C(68)-H(68B)	110.9
C(59)- $C(60)$ - $H(60A)$	110.5	C(67)- $C(68)$ - $H(68B)$	110.9
O(27)-C(60)-H(60B)	110.5	H(68A)-C(68)-H(68B)	108.9
C(59)-C(60)-H(60B)	110.5	O(11)-C(69)-C(70)	111(3)
H(60A)-C(60)-H(60B)	108.6	O(11)- $C(69)$ - $H(69A)$	109.5
$\Omega(28)-\Omega(61)-\Omega(62)$	111(2)	C(70)-C(69)-H(69A)	109.5
O(28)-C(61)-H(61A)	109.3	Q(11)-C(69)-H(69B)	109.5

C(70)-C(69)-H(69B)	109.5	O(11)-Li(1)-O(14)	73.4(6)
H(69A)-C(69)-H(69B)	108.1	O(15)-Li(1)-O(14)	135.4(9)
O(12)-C(70)-C(69)	104(3)	O(11)-Li(1)-O(13)	108.5(9)
O(12)-C(70)-H(70A)	111.0	O(15)-Li(1)-O(13)	78.8(7)
C(69)-C(70)-H(70A)	111.0	O(14)-Li(1)-O(13)	70.7(7)
O(12)-C(70)-H(70B)	111.0	O(11)-Li(1)-O(16)	82.9(7)
C(69)-C(70)-H(70B)	111.0	O(15)-Li(1)-O(16)	73.2(7)
H(70A)-C(70)-H(70B)	109.0	O(14)-Li(1)-O(16)	148.6(11)
O(12)-C(71)-C(72)	121(3)	O(13)-Li(1)-O(16)	138.0(9)
O(12)-C(71)-H(71A)	107.0	O(11)-Li(1)-O(18)	136.4(10)
C(72)-C(71)-H(71A)	107.0	O(15)-Li(1)-O(18)	72.3(5)
O(12)-C(71)-H(71B)	107.0	O(14)-Li(1)-O(18)	74.9(6)
C(72)-C(71)-H(71B)	107.0	O(13)-Li(1)-O(18)	88.0(7)
H(71A)-C(71)-H(71B)	106.8	O(16)-Li(1)-O(18)	111.7(9)
O(13)-C(72)-C(71)	96(3)	O(11)-Li(1)-O(17)	79.4(8)
O(13)-C(72)-H(72A)	112.6	O(15)-Li(1)-O(17)	109.4(9)
C(71)-C(72)-H(72A)	112.6	O(14)-Li(1)-O(17)	85.3(7)
O(13)-C(72)-H(72B)	112.6	O(13)-Li(1)-O(17)	150.5(8)
C(71)-C(72)-H(72B)	112.6	O(16)-Li(1)-O(17)	70.1(7)
H(72A)-C(72)-H(72B)	110.1	O(18)-Li(1)-O(17)	68.9(6)
O(13)-C(73)-C(74)	112(3)	O(11)-Li(1)-O(12)	71.5(5)
O(13)-C(73)-H(73A)	109.3	O(15)-Li(1)-O(12)	84.2(7)
O(13)-C(73)-H(73B)	109.3	O(14)-Li(1)-O(12)	112.6(9)
C(74)-C(73)-H(73B)	109.3	O(13)-Li(1)-O(12)	68.8(7)
H(73A)-C(73)-H(73B)	107.9	O(16)-Li(1)-O(12)	77.7(6)
O(14)-C(74)-C(73)	105(3)	O(18)-Li(1)-O(12)	149.9(10)
O(14)-C(74)-H(74A)	110.7	O(17)-Li(1)-O(12)	138.8(9)
C(73)-C(74)-H(74A)	110.7	O(31)-Li(2)-O(26)	12.3(7)
O(14)-C(74)-H(74B)	110.7	O(31)-Li(2)-O(29)	108.2(18)
C(73)-C(74)-H(74B)	110.7	O(26)-Li(2)-O(29)	105.4(16)
H(74A)-C(74)-H(74B)	108.8	O(31)-Li(2)-O(21)	148.3(13)
O(14)-C(75)-C(76)	101(3)	O(26)-Li(2)-O(21)	136.9(11)
O(14)-C(75)-H(75A)	111.6	O(29)-Li(2)-O(21)	81.3(12)
C(76)-C(75)-H(75A)	111.6	O(31)-Li(2)-O(20)	135.5(11)
O(14)-C(75)-H(75B)	111.6	O(26)-Li(2)-O(20)	147.7(11)
C(76)-C(75)-H(75B)	111.6	O(29)-Li(2)-O(20)	86.6(12)
H(75A)-C(75)-H(75B)	109.4	O(21)-Li(2)-O(20)	73.7(8)
O(11)-C(76)-C(75)	115(3)	O(31)-Li(2)-O(24)	105.8(15)
O(11)-C(76)-H(76A)	108.6	O(26)-Li(2)-O(24)	104.9(13)
C(75)-C(76)-H(76A)	108.6	O(29)-Li(2)-O(24)	9.2(9)
O(11)-C(76)-H(76B)	108.6	O(21)-Li(2)-O(24)	87.8(9)
C(75)-C(76)-H(76B)	108.6	O(20)-Li(2)-O(24)	82.3(9)
H(76A)-C(76)-H(76B)	107.5	O(31)-Li(2)-O(22)	83.9(11)
O(27)-C(77)-C(59)	106.8(17)	O(26)-Li(2)-O(22)	79.2(9)
O(27)-C(77)-H(77A)	110.4	O(29)-Li(2)-O(22)	143.8(12)
C(59)-C(77)-H(77A)	110.4	O(21)-Li(2)-O(22)	72.6(7)
O(27)-C(77)-H(77B)	110.4	O(20)-Li(2)-O(22)	108.8(9)
C(59)-C(77)-H(77B)	110.4	O(24)-Li(2)-O(22)	153.0(10)
H(77A)-C(77)-H(77B)	108.6	O(31)-Li(2)-O(30)	72.1(11)
O(11)-Li(1)-O(15)	149.1(9)	O(26)-Li(2)-O(30)	60.2(9)

O(29)-Ii(2)-O(30)	72 5(11)	C(69)-O(11)-Li(1)	114(2)
O(21)-Li(2)-O(30)	82 8(8)	C(25) - O(11) - Li(1)	119 2(8)
O(20)-Li(2)-O(30)	150 8(11)	C(76)-O(11)-Li(1)	113(2)
O(24)-I(2)-O(30)	79 6(9)	C(27)-O(12)-C(70)	82 6(19)
O(22)-I(2)-O(30)	79 6(8)	C(27)-O(12)-C(71)	27(2)
O(31)-I(2)-O(25)	83 2(11)	C(70)-O(12)-C(71)	109(3)
O(26)-I(2)-O(25)	71 7(9)	C(27)-O(12)-C(26)	117 0(9)
O(29) - I(2) - O(25)	63 2(9)	C(70)-O(12)-C(26)	38 9(18)
O(21) - I(2) - O(25)	7/ 3(7)	C(71) - O(12) - C(26)	1/13(3)
O(20) - I(2) - O(25)	138 7(10)	C(27)-O(12)-Li(1)	11/ 2(8)
O(24) - Li(2) - O(25)	71 1(7)	C(20) = O(12) = Li(1)	107 6(18)
O(22) = I(2) = O(25)	85 5(8)	C(71) = O(12) = Li(1)	107.0(10)
O(22) - Li(2) - O(23)	12.2(4)	C(26) O(12) + i(1)	105(3)
O(30)-Li(2)- $O(23)$	12.2(4) 61.6(10)	C(20) - O(12) - Li(1)	79(2)
O(36) + i(2) + O(23)	71 E(9)	C(72) - O(13) - C(29)	70(2)
O(20) + i(2) + O(23)	71.5(8)	C(72) - O(13) - C(28)	34.9(19)
O(23) - Li(2) - O(23)	70.9(10)	C(29)-O(13)-C(28)	100(2)
O(21)-Li(2)- $O(23)$	140.7(11)	C(72) - O(13) - C(73)	109(3)
O(20)- $Li(2)$ - $O(23)$	02.7(0)	C(29) - O(13) - C(73)	34(Z)
O(24)-Li(2)- $O(23)$	00.4(0)	C(28) - O(13) - C(73)	137(2)
O(22)- $Li(2)$ - $O(23)$	130.0(10)	C(72) - O(13) - Li(1)	122(2)
O(30)-LI(2)- $O(23)$	111.1(11)	C(29) - O(13) - Li(1)	110.7(8)
O(25)-Li(2)- $O(25)$	114.1(10)	C(28) - O(13) - Li(1)	112.5(6)
O(31)-Li(2)- $O(28)$	(1,1(1))	C(73)-O(13)-LI(1)	109(2)
O(26)-LI(2)- $O(28)$	80.6(10)	C(30)-O(14)-C(75)	134(3)
O(29)-LI(2)- $O(28)$	70.3(11)	C(30)-O(14)-C(31)	113.4(10)
O(21)-Li(2)-O(28)	138.9(11)	C(75)-O(14)-C(31)	32(2)
O(20)-Li(2)- $O(28)$	75.4(9)	C(30)-O(14)-C(74)	23.6(19)
O(24)-LI(2)-O(28)	61.5(8)	C(75)-O(14)-C(74)	115(3)
O(22)-Li(2)- $O(28)$	144.3(10)	C(31)-O(14)-C(74)	90(2)
O(30)-Li(2)-O(28)	114.5(12)	C(30)-O(14)-Li(1)	110.2(9)
O(25)-Li(2)-O(28)	115.3(11)	C(75)-O(14)-Li(1)	111(2)
O(23)-Li(2)-O(28)	9.8(6)	C(31)-O(14)-Li(1)	110.3(8)
O(31)-Li(2)-O(19)	76.3(10)	C(74)-O(14)-Li(1)	117(2)
O(26)-Li(2)-O(19)	85.3(9)	C(40)-O(15)-C(33)	114.6(8)
O(29)-Li(2)-O(19)	146.4(12)	C(40)-O(15)-Li(1)	111.4(8)
O(21)-Li(2)-O(19)	112.8(9)	C(33)-O(15)-Li(1)	115.6(9)
O(20)-Li(2)-O(19)	69.8(7)	C(35)-O(16)-C(34)	113.8(8)
O(24)-Li(2)-O(19)	137.6(10)	C(35)-O(16)-Li(1)	114.6(8)
O(22)-Li(2)-O(19)	68.8(5)	C(34)-O(16)-Li(1)	106.1(8)
O(30)-Li(2)-O(19)	137.1(10)	C(36)-O(17)-C(37)	113.6(8)
O(25)-Li(2)-O(19)	148.4(10)	C(36)-O(17)-Li(1)	108.8(7)
O(23)-Li(2)-O(19)	76.6(7)	C(37)-O(17)-Li(1)	115.0(7)
O(28)-Li(2)-O(19)	80.5(9)	C(38)-O(18)-C(39)	113.8(8)
C(32)-O(11)-C(69)	131(3)	C(38)-O(18)-Li(1)	112.4(8)
C(32)-O(11)-C(25)	115.3(9)	C(39)-O(18)-Li(1)	111.4(8)
C(69)-O(11)-C(25)	21(2)	C(48)-O(19)-C(41)	113.2(9)
C(32)-O(11)-C(76)	28(2)	C(48)-O(19)-Li(2)	113.2(8)
C(69)-O(11)-C(76)	114(3)	C(41)-O(19)-Li(2)	105.6(8)
C(25)-O(11)-C(76)	94(2)	C(42)-O(20)-C(43)	112.0(8)
C(32)-O(11)-Li(1)	111.6(8)	C(42)-O(20)-Li(2)	117.8(8)

C(43)-O(20)-Li(2)	106.5(8)	C(5)-Si(2)-C(7)	106.7(6)
C(44)-O(21)-C(45)	113.8(9)	C(6)-Si(2)-C(1)	109.4(5)
C(44)-O(21)-Li(2)	116.3(9)	C(5)-Si(2)-C(1)	112.0(5)
C(45)-O(21)-Li(2)	109.8(9)	C(7)-Si(2)-C(1)	112.6(5)
C(46)-O(22)-C(47)	113.3(9)	C(16)-Si(3)-C(13)	111.9(5)
C(46)-O(22)-Li(2)	113.9(9)	C(16)-Si(3)-C(15)	106.1(6)
C(47)-O(22)-Li(2)	112.9(8)	C(13)-Si(3)-C(15)	113.4(5)
C(49)-O(23)-C(56)	114.7(16)	C(16)-Si(3)-C(14)	105.8(5)
C(49)-O(23)-Li(2)	113.6(15)	C(13)-Si(3)-C(14)	109.2(5)
C(56)-O(23)-Li(2)	105.3(15)	C(15)-Si(3)-C(14)	110.2(6)
C(51)-O(24)-C(50)	114.1(19)	C(18)-Si(4)-C(17)	109.9(5)
C(51)-O(24)-Li(2)	117.6(17)	C(18)-Si(4)-C(19)	107.2(5)
C(50)-O(24)-Li(2)	113.7(15)	C(17)-Si(4)-C(19)	106.0(5)
C(52)-O(25)-C(53)	114.1(13)	C(18)-Si(4)-C(13)	108.4(5)
C(52)-O(25)-Li(2)	105.0(11)	C(17)-Si(4)-C(13)	111.9(5)
C(53)-O(25)-Li(2)	108.6(11)	C(19)-Si(4)-C(13)	113.4(4)
C(54)-O(26)-C(55)	113.5(16)	C(8)-W(1)-C(10)	92.1(4)
C(54)-O(26)-Li(2)	113.8(15)	C(8)-W(1)-C(12)	91.9(4)
C(55)-O(26)-Li(2)	119.6(14)	C(10)-W(1)-C(12)	176.0(4)
C(57)-O(27)-C(60)	110.1(10)	C(8)-W(1)-C(9)	90.3(4)
C(57)-O(27)-C(77)	105(2)	C(10)-W(1)-C(9)	89.2(4)
C(60)-O(27)-C(77)	23(3)	C(12)-W(1)-C(9)	90.4(4)
C(61)-O(28)-C(68)	110(2)	C(8)-W(1)-C(11)	90.5(4)
C(61)-O(28)-Li(2)	108(2)	C(10)-W(1)-C(11)	89.1(4)
C(68)-O(28)-Li(2)	110(2)	C(12)-W(1)-C(11)	91.2(4)
C(63)-O(29)-C(62)	113(3)	C(9)-W(1)-C(11)	178.2(4)
C(63)-O(29)-Li(2)	111(3)	C(8)-W(1)-P(1)	176.5(3)
C(62)-O(29)-Li(2)	117(2)	C(10)-W(1)-P(1)	84.6(3)
C(64)-O(30)-C(65)	118(2)	C(12)-W(1)-P(1)	91.5(3)
C(64)-O(30)-Li(2)	113.5(16)	C(9)-W(1)-P(1)	88.6(3)
C(65)-O(30)-Li(2)	109.9(15)	C(11)-W(1)-P(1)	90.5(3)
C(67)-O(31)-C(66)	114(2)	C(20)-W(2)-C(23)	89.0(5)
C(67)-O(31)-Li(2)	114(2)	C(20)-W(2)-C(21)	93.5(5)
C(66)-O(31)-Li(2)	118(2)	C(23)-W(2)-C(21)	177.2(5)
C(1)-P(1)-Cl(1)	103.6(3)	C(20)-W(2)-C(24)	92.8(4)
C(1)-P(1)-W(1)	107.2(3)	C(23)-W(2)-C(24)	91.7(4)
CI(1)-P(1)-W(1)	101.42(11)	C(21)-W(2)-C(24)	86.9(5)
C(13)-P(2)-Cl(2)	104.1(3)	C(20)-W(2)-C(22)	94.2(4)
C(13)-P(2)-W(2)	107.7(3)	C(23)-W(2)-C(22)	92.0(4)
CI(2)-P(2)-W(2)	101.03(12)	C(21)-W(2)-C(22)	89.1(5)
C(2)-Si(1)-C(3)	110.2(6)	C(24)-W(2)-C(22)	172.2(4)
C(2)-Si(1)-C(1)	110.6(5)	C(20)-W(2)-P(2)	179.0(3)
C(3)-Si(1)-C(1)	113.7(5)	C(23)-W(2)-P(2)	90.9(3)
C(2)-Si(1)-C(4)	104.5(6)	C(21)-W(2)-P(2)	86.7(4)
C(3)-Si(1)-C(4)	108.7(6)	C(24)-W(2)-P(2)	88.3(3)
C(1)-Si(1)-C(4)	108.7(5)	C(22)-W(2)-P(2)	84.8(3)
C(6)-Si(2)-C(5)	109.7(5)	•	
C(6)-Si(2)-C(7)	106.2(6)		

Der anisotro	ope Auslenkungs	faktorexpone	nt hat die Form	<u>n: -2π² [h² a*² l</u>	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
C(1)	27(4)	48(5)	20(4)	0(4)	5(3)	2(4)
C(2)	52(7)	49(6)	47(7)	9(5)	8(5)	-9(5)
C(3)	43(6)	53(6)	52(7)	-4(5)	-3(5)	-13(5)
C(4)	86(10)	44(6)	61(8)	19(6)	12(7)	12(6)
C(5)	56(7)	61(7)	42(7)	-12(5)	-8(5)	15(6)
C(6)	49(6)	70(8)	37(6)	-11(5)	-4(5)	21(6)
C(7)	33(5)	81(6)	24(5)	9(4)	3(4)	-1(4)
C(8)	29(4)	53(5)	37(5)	7(4)	1(4)	-2(4)
C(9)	37(4)	39(5)	31(5)	-5(4)	-2(4)	-9(3)
C(10)	19(4)	50(5)	39(5)	-7(4)	-2(4)	-4(4)
C(11)	35(5)	63(6)	20(5)	1(4)	-1(4)	-2(4)
C(12)	19(4)	59(6)	36(4)	-6(4)	-5(4)	1(4)
C(13)	37(5)	31(4)	29(5)	-1(4)	1(4)	4(4)
C(14)	38(6)	76(8)	45(7)	3(6)	8(5)	-1(5)
C(15)	54(7)	65(7)	31(6)	11(5)	6(5)	-4(6)
C(16)	37(6)	60(7)	50(7)	6(5)	7(5)	-2(5)
C(17)	49(6)	44(6)	41(6)	5(5)	-4(5)	11(5)
C(18)	63(7)	40(5)	28(5)	0(4)	2(5)	1(5)
C(19)	32(5)	51(6)	45(6)	5(5)	9(5)	4(4)
C(20)	32(5)	43(5)	60(6)	11(4)	0(4)	-9(4)
C(21)	52(7)	44(6)	77(7)	-18(5)	-4(6)	20(5)
C(22)	40(5)	65(7)	30(5)	11(5)	-2(4)	7(4)
C(23)	27(5)	46(5)	38(5)	0(4)	-1(4)	-2(4)
C(24)	45(4)	43(5)	39(6)	5(4)	-2(4)	1(4)
C(25)	20(5)	40(5)	44(8)	-1(5)	-1(5)	5(4)
C(26)	32(5)	33(5)	47(7)	-8(5)	-5(5)	-2(4)
C(27)	29(7)	52(6)	33(5)	9(5)	-10(5)	-7(5)
C(28)	38(7)	56(7)	27(6)	6(5)	-1(5)	-8(5)
C(29)	41(7)	50(8)	29(6)	-2(5)	-8(5)	-2(5)
C(30)	40(7)	37(8)	50(7)	-6(5)	1(6)	1(5)
C(31)	18(5)	53(8)	57(9)	1(6)	1(5)	-1(5)
C(32)	22(5)	53(7)	47(7)	3(5)	10(5)	-2(4)
C(33)	26(5)	80(8)	38(6)	12(5)	-5(4)	-10(5)
C(34)	34(5)	68(7)	41(6)	13(5)	-10(5)	-16(5)
C(35)	40(6)	45(5)	24(5)	-1(4)	0(4)	2(4)
C(36)	41(5)	48(6)	31(5)	0(4)	4(4)	12(4)
C(37)	43(6)	47(6)	24(5)	6(4)	10(4)	1(4)
C(38)	47(6)	34(5)	38(6)	1(4)	-7(5)	-3(4)
C(39)	34(5)	56(6)	36(6)	-1(5)	-7(4)	20(5)
C(40)	27(5)	69(7)	41(6)	8(5)	10(5)	16(5)
C(41)	53(7)	48(6)	60(8)	4(6)	-14(6)	-9(5)
C(42)	31(6)	66(7)	41(6)	-13(5)	-4(5)	1(4)
C(43)	26(5)	68(8)	68(9)	27(7)	-15(5)	-6(5)
C(44)	37(6)	66(8)	52(7)	6(6)	-15(5)	-13(5)

Tabelle D 1.5: Anisotrope Auslenkungsparameter ($\text{\AA}^2 \times 10^3$).

C(45)	57(7)	54(7)	62(8)	-11(6)	-13(6)	11(6)
C(46)	50(8)	73(9)	78(10)	-7(7)	-1(7)	20(7)
C(47)	32(6)	113(11)	53(8)	-14(7)	19(5)	-1(6)
C(48)	37(6)	86(9)	48(7)	5(6)	21(5)	7(6)
C(49)	42(4)	42(4)	42(4)	0(1)	2(1)	0(1)
C(50)	39(4)	39(4)	39(4)	0(1)	2(1)	0(1)
C(51)	35(4)	35(4)	35(4)	0(1)	2(1)	0(1)
C(52)	32(4)	32(4)	32(4)	0(1)	2(1)	0(1)
C(53)	46(4)	46(4)	46(4)	0(1)	2(1)	0(1)
C(54)	44(5)	44(5)	44(5)	0(1)	2(1)	0(1)
C(55)	46(4)	46(4)	46(4)	0(1)	2(1)	0(1)
C(56)	45(5)	46(5)	45(5)	0(1)	2(1)	0(1)
C(57)	40(6)	58(7)	47(7)	5(5)	-3(5)	5(5)
C(58)	34(5)	51(6)	49(7)	-16(5)	2(5)	2(4)
C(59)	41(6)	79(8)	46(7)	0(6)	15(5)	16(6)
C(60)	50(7)	63(7)	68(7)	10(6)	-6(6)	-9(6)
C(61)	23(11)	42(14)	30(13)	-3(11)	5(9)	6(10)
C(62)	36(13)	49(13)	19(11)	-3(10)	14(10)	-4(11)
C(63)	22(12)	52(16)	59(18)	-24(14)	7(12)	-3(11)
C(65)	39(9)	39(9)	20(8)	0(7)	3(7)	4(8)
C(66)	47(16)	80(20)	31(15)	15(14)	8(13)	10(15)
C(67)	29(12)	53(15)	33(13)	8(12)	-8(11)	0(11)
C(68)	42(15)	47(14)	53(17)	21(13)	0(14)	9(12)
C(69)	29(8)	39(6)	42(9)	-3(7)	1(7)	5(6)
C(70)	33(7)	32(8)	39(7)	-3(6)	-3(6)	-3(6)
C(71)	39(11)	48(8)	43(10)	-1(8)	2(8)	-1(8)
C(72)	37(11)	41(8)	38(9)	3(6)	3(9)	2(8)
C(73)	38(9)	42(9)	42(10)	2(8)	2(8)	2(8)
C(74)	37(8)	39(12)	40(8)	-9(9)	1(8)	-2(8)
C(75)	35(9)	42(8)	44(11)	0(9)	7(8)	2(8)
C(76)	37(9)	45(8)	43(12)	1(9)	9(8)	-4(7)
C(77)	54(10)	62(9)	66(9)	6(7)	0(8)	-7(8)
Cl(1)	29(1)	44(1)	40(1)	-4(1)	6(1)	0(1)
CI(2)	68(2)	54(2)	33(1)	-8(1)	12(1)	8(1)
Li(1)	22(7)	46(8)	53(9)	2(8)	-3(6)	10(7)
Li(2)	33(10)	51(11)	84(17)	-6(10)	22(10)	-2(8)
O(1)	44(4)	69(5)	45(5)	-7(4)	-2(3)	-21(4)
O(2)	43(4)	43(4)	57(5)	-3(3)	3(4)	6(3)
O(3)	41(4)	89(6)	23(4)	6(4)	-1(3)	-15(4)
O(4)	30(4)	73(5)	54(5)	-9(4)	-1(4)	15(4)
O(5)	45(5)	98(7)	31(4)	18(4)	-2(4)	-14(4)
O(6)	43(4)	61(5)	64(6)	32(4)	-9(4)	-8(4)
O(7)	102(8)	68(6)	87(7)	-42(5)	-18(6)	25(5)
O(8)	30(4)	115(8)	48(5)	17(5)	4(4)	-2(4)
O(9)	65(5)	46(4)	40(4)	-6(3)	-8(4)	0(4)
O(10)	33(4)	88(6)	70(6)	1(5)	11(4)	-11(4)
O(11)	25(3)	43(4)	48(4)	5(3)	5(3)	3(3)

O(12)	31(3)	43(4)	43(4)	1(3)	2(3)	3(3)
O(13)	34(3)	56(4)	25(3)	8(3)	-3(3)	-6(3)
O(14)	27(3)	53(4)	34(4)	3(3)	-2(3)	5(3)
O(15)	27(3)	66(5)	37(4)	8(3)	-5(3)	-2(3)
O(16)	42(4)	49(4)	36(4)	7(3)	3(3)	1(3)
O(17)	37(4)	34(3)	44(4)	0(3)	-4(3)	3(3)
O(18)	33(4)	53(4)	36(4)	-2(3)	-9(3)	3(3)
O(19)	27(4)	79(6)	69(6)	16(5)	6(4)	16(4)
O(20)	26(3)	64(5)	32(4)	-1(3)	-4(3)	6(3)
O(21)	39(4)	55(5)	56(5)	4(4)	-10(4)	4(3)
O(22)	36(4)	71(5)	52(5)	9(4)	-3(4)	9(4)
O(23)	38(6)	51(7)	27(9)	10(8)	-7(6)	-5(6)
O(24)	31(5)	34(10)	33(7)	1(7)	-6(5)	1(7)
O(25)	37(3)	38(3)	38(3)	1(1)	1(1)	0(1)
O(26)	38(6)	70(9)	32(8)	-10(7)	-5(6)	9(8)
O(27)	53(5)	81(6)	63(6)	-11(5)	8(4)	-24(4)
O(28)	33(7)	46(7)	33(9)	8(8)	-3(6)	-3(6)
O(29)	29(6)	36(10)	30(7)	0(7)	-4(6)	-2(7)
O(30)	37(4)	37(4)	36(4)	0(1)	1(1)	0(1)
O(31)	35(7)	59(9)	33(8)	4(7)	1(6)	0(7)
P(1)	30(1)	38(1)	29(1)	1(1)	-1(1)	2(1)
P(2)	34(1)	35(1)	30(1)	-2(1)	-5(1)	3(1)
Si(1)	47(2)	42(2)	38(2)	3(1)	4(1)	2(1)
Si(2)	40(2)	53(2)	32(2)	-3(1)	0(1)	14(1)
Si(3)	34(1)	45(2)	36(2)	5(1)	4(1)	-1(1)
Si(4)	36(1)	35(1)	30(1)	0(1)	1(1)	5(1)
W(1)	23(1)	41(1)	26(1)	1(1)	1(1)	-3(1)
W(2)	30(1)	32(1)	32(1)	2(1)	-2(1)	3(1)

Tabelle D 1.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å² x 10^3)

	x	У	Z	U(eq)
H(1A)	-3710	-1502	-1707	38
H(2A)	-2341	-1414	-3652	59
H(2B)	-814	-1464	-3275	59
H(2C)	-1199	-1255	-3688	59
H(3A)	206	-1387	-726	59
H(3B)	-350	-1193	-229	59
H(3C)	435	-1194	-1393	59
H(4A)	-2599	-997	-1180	76
H(4B)	-3696	-1088	-2059	76
H(4C)	-2367	-993	-2525	76
H(5A)	-1909	-1304	1350	64
H(5B)	-3194	-1197	1805	64
H(5C)	-2481	-1121	696	64
H(6A)	-6021	-1334	-689	62
H(6B)	-5125	-1149	-797	62
H(6C)	-5798	-1197	386	62

	0754	4070	1000	<i>F</i> <i>F</i>
H(7A)	-3751	-1678	1232	55
	-5269	-1640	107	55 55
	-4070	-1532	1880	55
H(13A)	4445	906	1030	39
H(14A)	6577	817	-868	63
H(14B)	7048	980	3	63
H(14C)	7097	1013	-1348	63
H(15A)	3452	1141	-2423	60
H(15B)	3486	916	-2341	60
H(15C)	4738	1027	-2826	60
H(16A)	5375	1322	330	58
H(16B)	4092	1364	-511	58
H(16C)	5571	1365	-996	58
H(17A)	1365	1075	-1172	54
H(17B)	1775	1279	-691	54
H(17C)	402	1183	-330	54
H(18A)	3595	1291	1611	52
H(18B)	2883	1173	2580	52
H(18C)	2043	1327	1845	52
H(19A)	1303	864	2218	51
H(19B)	918	773	993	51
H(19C)	120	954	1418	51
H(25A)	3518	-2271	4535	41
H(25B)	3718	-2374	3336	41
H(26A)	1384	-2409	3032	45
H(26B)	1814	-2496	4265	45
H(27A)	1899	-2243	5836	46
H(27B)	468	-2348	5865	46
H(28A)	-663	-2062	5625	48
H(28B)	358	-2048	6724	48
H(29A)	2715	-1946	6246	48
H(29B)	1832	-1781	6790	48
H(30A)	2149	-1588	5197	51
H(30B)	3597	-1650	5719	51
H(31A)	4287	-1971	4953	51
H(31B)	5101	-1810	4308	51
H(32A)	4208	-1920	2519	49
H(32B)	5005	-2087	3181	49
H(33A)	-1814	-1903	1820	58
H(33B)	-2686	-2024	2676	58
H(34A)	-1078	-2257	2747	58
H(34B)	-1552	-2219	1440	58
H(35A)	-264	-1951	602	44
H(35B)	207	-2146	168	44
H(36A)	044 9487	-2050	876	Δ7
H(36B)	1016	-1005	-26	77
$H(37\Delta)$	1910	-1800	-20	41 15
	702	-1000	307	

H(37B)	1963	-1581	660	45
H(38A)	2340	-1502	2603	48
H(38B)	1001	-1398	2116	48
H(39A)	-1052	-1602	2186	51
H(39B)	-1016	-1457	3242	51
H(40A)	-1143	-1705	4535	55
H(40B)	-2390	-1718	3620	55
H(41A)	565	-27	2669	65
H(41B)	2125	-82	2818	65
H(42A)	1521	-388	3370	56
H(42B)	909	-234	4208	56
H(43A)	-524	-500	4539	66
H(43B)	-1839	-522	3706	66
H(44A)	699	-687	3385	63
H(44B)	-666	-797	3654	63
H(45A)	-329	-854	730	70
H(45B)	452	-922	1886	70
H(46A)	1983	-674	1753	80
H(46B)	1958	-796	593	80
H(47A)	1724	-343	-485	79
H(47B)	2827	-492	-25	79
H(48A)	2783	-366	1803	67
H(48B)	3090	-201	906	67
H(49A)	-3792	-88	662	51
H(49B)	-3506	51	1729	51
H(50A)	-3068	-202	2946	47
H(50B)	-4522	-232	2321	47
H(51A)	-4441	-412	457	42
H(51B)	-4889	-532	1544	42
H(52A)	-3194	-752	1275	38
H(52B)	-4117	-735	124	38
H(53A)	-3358	-463	-1084	56
H(53B)	-2788	-649	-1684	56
H(54A)	-564	-529	-1448	53
H(54B)	-1491	-385	-2186	53
H(55A)	-2728	-148	-956	55
H(55B)	-1411	-69	-1540	55
H(56A)	-526	39	215	55
H(56B)	-2014	123	17	55
H(57A)	1188	-2380	-1518	58
H(57B)	2350	-2472	-2251	58
H(58A)	3896	-2466	-728	54
H(58B)	3054	-2277	-469	54
H(59A)	1761	-2428	815	66
H(59B)	3189	-2532	1062	66
H(60A)	2537	-2791	60	73
H(60B)	1062	-2725	403	73

H(61A)	-3845	-14	1964	38
H(61B)	-3067	-144	2899	38
H(62A)	-4789	-319	2005	41
H(62B)	-4236	-272	769	41
H(63A)	-4624	-616	1224	53
H(63B)	-3243	-727	1493	53
H(64A)	-3676	-738	-454	64
H(64B)	-3904	-514	-516	64
H(65A)	-2157	-584	-1980	39
H(65B)	-630	-566	-1468	39
H(66A)	-1369	-265	-2064	64
H(66B)	-2670	-282	-1309	64
H(67A)	-1224	14	-980	46
H(67B)	-278	4	163	46
H(68A)	-2323	141	592	57
H(68B)	-3136	-39	87	57
H(69A)	3682	-2374	3407	44
H(69B)	2220	-2362	2769	44
H(70A)	2065	-2470	4697	42
H(70B)	2697	-2273	5148	42
H(71A)	317	-2309	5888	52
H(71B)	-548	-2146	5281	52
H(72A)	662	-2027	6892	46
H(72B)	2068	-2083	6328	46
H(73A)	1716	-1734	6641	48
H(73B)	1330	-1622	5482	48
H(74A)	3679	-1638	5693	47
H(74B)	3620	-1864	5814	47
H(75A)	5121	-1780	4182	48
H(75B)	4368	-1778	2927	48
H(76A)	5013	-2091	3408	50
H(76B)	4233	-2077	4567	50
H(77A)	1563	-2769	374	73
H(77B)	498	-2599	220	73

Tabelle D 1.7: Torsionswinkel [°]

O(11)-C(25)-C(26)-O(12)	-55.3(15)	O(22)-C(47)-C(48)-O(19)	-56.5(15)
O(12)-C(27)-C(28)-O(13)	-57.4(14)	O(23)-C(49)-C(50)-O(24)	-56(2)
O(13)-C(29)-C(30)-O(14)	-56.7(15)	O(24)-C(51)-C(52)-O(25)	-58(2)
O(14)-C(31)-C(32)-O(11)	-59.7(15)	O(25)-C(53)-C(54)-O(26)	-60(2)
O(15)-C(33)-C(34)-O(16)	-57.1(11)	O(26)-C(55)-C(56)-O(23)	-55(2)
O(16)-C(35)-C(36)-O(17)	-59.6(11)	O(27)-C(57)-C(58)-C(59)	-34.1(11)
O(17)-C(37)-C(38)-O(18)	-57.9(11)	C(57)-C(58)-C(59)-C(77)	14(3)
O(18)-C(39)-C(40)-O(15)	-57.4(12)	C(57)-C(58)-C(59)-C(60)	36.3(12)
O(19)-C(41)-C(42)-O(20)	-60.4(12)	C(58)-C(59)-C(60)-O(27)	-26.7(15)
O(20)-C(43)-C(44)-O(21)	-53.0(12)	C(77)-C(59)-C(60)-O(27)	75(3)
O(21)-C(45)-C(46)-O(22)	-57.4(15)	O(28)-C(61)-C(62)-O(29)	56(4)

$\begin{split} & (23)-C(63)-C(64)-O(30) & 52(4) & (0(18)-L(1)-O(11)-C(76) & 51(3) \\ & (30)-C(65)-C(68)-O(23) & 55(3) & (0(17)-L(1)-O(11)-C(76) & 51(3) \\ & (31)-C(67)-C(68)-O(23) & 55(3) & (0(12)-L(1)-O(11)-C(76) & 51(3) \\ & (0(12)-C(7)-O(12)-O(13) & 63(6) & C(28)-C(27)-O(12)-C(70) & 144(2) \\ & (0(12)-C(7)-C(7)-O(13) & 53(6) & C(28)-C(27)-O(12)-C(26) & 162.9(9) \\ & (0(14)-C(75)-C(76)-O(11) & 57(6) & C(28)-C(27)-O(12)-C(27) & 159(3) \\ & (C69)-C(7)-O(27) & 7.74(3) & C(69)-C(70)-O(12)-C(71) & 156(3) \\ & (C3)-C(22)-O(11)-C(69) & 104(3) & C(69)-C(70)-O(12)-C(71) & 156(3) \\ & (C3)-C(32)-O(11)-C(25) & 86.7(14) & C(69)-C(70)-O(12)-C(27) & 68(5) \\ & (C3)-C(32)-O(11)-C(25) & 58.7(14) & C(69)-C(70)-O(12)-C(27) & 68(5) \\ & (C3)-C(32)-O(11)-C(32) & 108(4) & C(72)-C(71)-O(12)-C(26) & 89(6) \\ & (C70)-C(69)-O(11)-C(76) & 81(5) & C(25)-C(26)-O(12)-C(71) & 45(6) \\ & (C70)-C(69)-O(11)-C(76) & 81(5) & C(25)-C(26)-O(12)-C(71) & 45(13) \\ & (C49)-O(11)-C(76) & 81(5) & C(25)-C(26)-O(12)-C(71) & 45(13) \\ & (C49)-C(11)-C(76) & 47(6) & C(25)-C(26)-O(12)-C(71) & 43(3) \\ & (C26)-C(25)-O(11)-C(76) & 453(3) & O(11)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 56(3) & O(14)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 56(3) & O(14)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 56(3) & O(14)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 56(3) & O(14)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 45.6(10) & O(13)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 45.6(10) & O(13)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 45.6(10) & O(13)-L(1)-O(12)-C(27) & 45.6(12) \\ & (C75)-C(76)-O(11)-C(32) & 45.6(10) & O(13)-L(1)-O(12)-C(70) & 18(2) \\ & (C15)-L(1)-O(11)-C(32) & 23.9(10) & O(11)-L(1)-O(12)-C(71) & 14.2(1) \\ & (C15)-L(1)-O(11)-C(32) & 23.9(10) & O(13)-L(1)-O(12)-C(71) & 14.2(1) \\ & (C15)-L(1)-O(11)-C(32) & 23.9(10) & O(13)-L(1)-O(12)-C(71) & 14.2(1) \\ & (C15)-L(1)-O(11)-C(25) & 15.6(3) & O(17)-L(1)-O(12)-C(71) & 14.2(1) \\ & (C15)-L(1)-O(11)-C(25) & 15.6(3) & O(13)-L(1)-O($				
C(30)-C(65)-C(66)-O(21) 55(3) O(71)-L(1)-O(11)-C(76) 95(3) O(31)-C(67)-C(68)-O(28) 58(3) O(12)-L(1)-O(11)-C(76) -115(3) O(11)-C(68)-C(72)-O(12) 64(5) C(28)-C(27)-O(12)-C(71) -146(2) O(13)-C(73)-C(74)-O(14) 56(6) C(28)-C(27)-O(12)-C(71) -156(3) O(14)-C(75)-C(76)-O(11) 57(6) C(69)-C(70)-O(12)-C(27) -156(3) C(60)-C(59)-C(77)-O(27) 9(6) C(69)-C(70)-O(12)-C(27) -156(3) C(31)-C(32)-O(11)-C(50) -88.7(14) C(69)-C(70)-O(12)-C(27) 68(6) C(31)-C(32)-O(11)-L(76) -44(4) C(72)-C(71)-O(12)-C(27) 68(6) C(31)-C(32)-O(11)-L(76) 44(4) C(72)-C(71)-O(12)-C(27) 68(6) C(70)-C(69)-O(11)-C(22) 198(4) C(72)-C(71)-O(12)-L(1) -61(5) C(70)-C(69)-O(11)-C(76) 81(5) C(25)-C(26)-O(12)-C(70) -52(3) C(26)-C(25)-O(11)-C(76) 153(3) O(11)-L(1)-O(12)-C(27) -93(3) C(26)-C(25)-O(11)-C(76) 153(3) O(11)-L(1)-O(12)-C(27) -91(5) C(26)-C(25)-O(11)-C(76) 153(3) O(11)-L(1)-O(12)-C(27)	O(29)-C(63)-C(64)-O(30)	52(4)	O(18)-Li(1)-O(11)-C(76)	51(3)
C(31)-C(67)-C(68)-C(70)-C(12) 64(5) C(28)-C(27)-O(12)-C(70) 144(2) O(11)-C(69)-C(70)-O(12) 63(6) C(28)-C(27)-O(12)-C(70) 144(2) O(13)-C(73)-C(74)-O(14) 65(6) C(28)-C(27)-O(12)-C(71) -31(5) O(14)-C(75)-C(76)-O(11) 57(6) C(28)-C(27)-O(12)-C(27) -156(3) C(69)-C(70)-O(12)-C(71) -156(3) C(69)-C(70)-O(12)-C(71) -156(3) C(31)-C(32)-O(11)-C(69) -104(3) C(69)-C(70)-O(12)-C(71) -46(3) C(31)-C(32)-O(11)-C(76) -44(4) C(72)-C(71)-O(12)-C(70) 63(6) C(70)-C(69)-O(11)-C(76) -44(4) C(72)-C(71)-O(12)-C(70) 63(6) C(70)-C(69)-O(11)-C(76) 58(4) C(72)-C(71)-O(12)-C(70) 63(6) C(70)-C(69)-O(11)-C(76) 81(5) C(25)-C(26)-O(12)-C(71) -93(3) C(26)-C(25)-O(11)-C(76) 15(3) O(11)-L(1)-O(12)-C(27) -52(3) C(26)-C(25)-O(11)-C(76) 15(3) O(14)-L(1)-O(12)-C(27) -55(12) C(76)-C(71)-O(12)-C(77) 107.9(9) C(26)-C(25)-O(11)-C(69) -169(4) O(13)-L(1)-O(12)-C(27) -55(13) C(26)-C(25)-O(11)-C(O(30)-C(65)-C(66)-O(31)	55(3)	O(17)-Li(1)-O(11)-C(76)	95(3)
C(11)-C(69)-C(70)-C(12) 64(5) C(28)-C(27)-O(12)-C(70) 144(2) O(12)-C(71)-C(72)-O(13) 63(6) C(28)-C(27)-O(12)-C(71) -31(5) O(13)-C(73)-C(74)-O(14) 56(6) C(28)-C(27)-O(12)-C(27) -156(3) O(14)-C(75)-C(76)-O(11) 57(6) C(89)-C(70)-O(12)-C(71) -156(3) C(60)-C(50)-C(77)-O(27) 9(5) C(69)-C(70)-O(12)-C(71) -165(3) C(31)-C(32)-O(11)-C(59) -104(3) C(69)-C(70)-O(12)-C(17) -68(6) C(31)-C(32)-O(11)-C(50) -86.7(14) C(72)-C(71)-O(12)-C(17) 68(6) C(31)-C(32)-O(11)-L(1) 53.5(14) C(72)-C(71)-O(12)-L(1) -46(3) C(70)-C(69)-O(11)-C(32) 108(4) C(72)-C(71)-O(12)-L(1) -51(5) C(70)-C(69)-O(11)-C(76) 81(5) C(25)-C(26)-O(12)-C(70) -52(3) C(26)-C(25)-O(11)-C(76) 153(3) O(11)-L(1)-O(12)-C(27) -82.1(13) C(26)-C(25)-O(11)-L(1) 34.9(15) O(15)-L(1)-O(12)-C(27) -93.(3) C(26)-C(25)-O(11)-L(1) 34.9(15) O(15)-L(1)-O(12)-C(27) -91.5(10) C(75)-C(76)-O(11)-C(25) 1614) O(16)-L(1)-O(12)-C	O(31)-C(67)-C(68)-O(28)	58(3)	O(12)-Li(1)-O(11)-C(76)	-115(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(11)-C(69)-C(70)-O(12)	64(5)	C(28)-C(27)-O(12)-C(70)	144(2)
C(13)-C(73)-C(76)-O(11) 57(6) C(28)-C(27)-O(12)-L(1) 38.1(12) C(58)-C(59)-C(77)-O(27) 9(5) C(69)-C(70)-O(12)-C(27) -159(3) C(60)-C(59)-C(77)-O(27) -74(3) C(69)-C(70)-O(12)-C(27) -156(3) C(31)-C(32)-O(11)-C(56) -86.7(14) C(69)-C(70)-O(12)-L(1) -46(3) C(31)-C(32)-O(11)-C(76) -44(4) C(72)-C(71)-O(12)-L(1) -46(3) C(31)-C(32)-O(11)-C(76) -86.7(14) C(69)-C(70)-O(12)-L(1) -46(3) C(31)-C(32)-O(11)-C(76) 18(4) C(72)-C(71)-O(12)-L(70) 68(6) C(70)-C(69)-O(11)-L(76) 18(5) C(25)-C(26)-O(12)-C(70) -52(3) C(26)-C(25)-O(11)-L(76) 18(5) C(25)-C(26)-O(12)-C(70) -52(3) C(26)-C(25)-O(11)-L(76) 171.8(10) C(25)-C(26)-O(12)-C(71) -93(3) C(26)-C(25)-O(11)-L(76) 153(3) O(11)-L(1)-O(12)-C(27) -91.5(1) C(26)-C(25)-O(11)-L(76) 153(3) O(14)-L(1)-O(12)-C(27) -91.5(1) C(26)-C(25)-O(11)-L(69) -47(6) C(25)-C(26)-O(12)-L(27) -91.5(1) C(76)-C(76)-O(11)-C(69) 153(3) O(14)-L(1)-O(12	O(12)-C(71)-C(72)-O(13)	63(6)	C(28)-C(27)-O(12)-C(71)	-31(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(13)-C(73)-C(74)-O(14)	56(6)	C(28)-C(27)-O(12)-C(26)	162.9(9)
C(58)-C(59)-C(77)-O(27) 9(5) C(69)-C(70)-O(12)-C(27) -159(3) C(60)-C(59)-C(77)-O(27) -74(3) C(69)-C(70)-O(12)-C(26) 44(2) C(31)-C(32)-O(11)-C(25) -86.7(14) C(69)-C(70)-O(12)-C(27) 68(5) C(31)-C(32)-O(11)-C(76) -44(4) C(72)-C(71)-O(12)-C(27) 68(6) C(70)-C(69)-O(11)-C(75) 18(4) C(72)-C(71)-O(12)-L(26) 89(6) C(70)-C(69)-O(11)-C(76) 81(5) C(25)-C(26)-O(12)-C(70) 52(3) C(70)-C(69)-O(11)-L(76) 81(5) C(25)-C(26)-O(12)-C(70) 52(3) C(26)-C(25)-O(11)-C(76) 81(5) C(25)-C(26)-O(12)-C(70) 52(3) C(26)-C(25)-O(11)-C(76) 153(3) O(11)-L(1)-O(12)-C(27) 107.9(9) C(26)-C(25)-O(11)-C(6) -47(6) C(25)-C(26)-O(12)-C(70) 178.9(1) C(26)-C(25)-O(11)-C(7) 149.9(15) O(15)-L(1)-O(12)-C(27) 107.9(9) C(26)-C(25)-O(11)-C(32) 56(3) O(14)-L(1)-O(12)-C(27) 145.6(8) C(75)-C(76)-O(11)-C(32) -161(4) O(16)-L(1)-O(12)-C(27) 155.6(3) C(75)-C(76)-O(11)-C(32) -161(4) O(16)-L(1)-O(12)-C(7)<	O(14)-C(75)-C(76)-O(11)	57(6)	C(28)-C(27)-O(12)-Li(1)	38.1(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(58)-C(59)-C(77)-O(27)	9(5)	C(69)-C(70)-O(12)-C(27)	-159(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(60)-C(59)-C(77)-O(27)	-74(3)	C(69)-C(70)-O(12)-C(71)	-156(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(31)-C(32)-O(11)-C(69)	-104(3)	C(69)-C(70)-O(12)-C(26)	48(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(31)-C(32)-O(11)-C(25)	-86.7(14)	C(69)-C(70)-O(12)-Li(1)	-46(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(31)-C(32)-O(11)-C(76)	-44(4)	C(72)-C(71)-O(12)-C(27)	68(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(31)-C(32)-O(11)-Li(1)	53.5(14)	C(72)-C(71)-O(12)-C(70)	63(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(70)-C(69)-O(11)-C(32)	108(4)	C(72)-C(71)-O(12)-C(26)	89(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(70)-C(69)-O(11)-C(25)	59(4)	C(72)-C(71)-O(12)-Li(1)	-51(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(70)-C(69)-O(11)-C(76)	81(5)	C(25)-C(26)-O(12)-C(27)	-82.1(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(70)-C(69)-O(11)-Li(1)	-50(5)	C(25)-C(26)-O(12)-C(70)	-52(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(25)-O(11)-C(32)	171.8(10)	C(25)-C(26)-O(12)-C(71)	-93(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(25)-O(11)-C(69)	-47(6)	C(25)-C(26)-O(12)-Li(1)	46.7(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(25)-O(11)-C(76)	153(3)	O(11)-Li(1)-O(12)-C(27)	107.9(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)-C(25)-O(11)-Li(1)	34.9(15)	O(15)-Li(1)-O(12)-C(27)	-91.5(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(75)-C(76)-O(11)-C(32)	56(3)	O(14)-Li(1)-O(12)-C(27)	45.6(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(75)-C(76)-O(11)-C(69)	-169(4)	O(13)-Li(1)-O(12)-C(27)	-11.3(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(75)-C(76)-O(11)-C(25)	-161(4)	O(16)-Li(1)-O(12)-C(27)	-165.6(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(75)-C(76)-O(11)-Li(1)	-38(5)	O(18)-Li(1)-O(12)-C(27)	-53(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(15)-Li(1)-O(11)-C(32)	175(2)	O(17)-Li(1)-O(12)-C(27)	155.5(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(14)-Li(1)-O(11)-C(32)	-23.9(10)	O(11)-Li(1)-O(12)-C(70)	18(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(13)-Li(1)-O(11)-C(32)	-86.2(10)	O(15)-Li(1)-O(12)-C(70)	179(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(16)-Li(1)-O(11)-C(32)	135.3(9)	O(14)-Li(1)-O(12)-C(70)	-44(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(18)-Li(1)-O(11)-C(32)	21.0(19)	O(13)-Li(1)-O(12)-C(70)	-101(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(17)-Li(1)-O(11)-C(32)	64.4(10)	O(16)-Li(1)-O(12)-C(70)	105(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(12)-Li(1)-O(11)-C(32)	-145.3(8)	O(18)-Li(1)-O(12)-C(70)	-143(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(15)-Li(1)-O(11)-C(69)	-24(4)	O(17)-Li(1)-O(12)-C(70)	66(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(14)-Li(1)-O(11)-C(69)	138(2)	O(11)-Li(1)-O(12)-C(71)	134(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(13)-Li(1)-O(11)-C(69)	75(3)	O(15)-Li(1)-O(12)-C(71)	-66(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(16)-Li(1)-O(11)-C(69)	-63(2)	O(14)-Li(1)-O(12)-C(71)	71(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(18)-Li(1)-O(11)-C(69)	-177(3)	O(13)-Li(1)-O(12)-C(71)	14(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(17)-Li(1)-O(11)-C(69)	-134(2)	O(16)-Li(1)-O(12)-C(71)	-140(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(12)-Li(1)-O(11)-C(69)	16(2)	O(18)-Li(1)-O(12)-C(71)	-28(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(15)-Li(1)-O(11)-C(25)	-47(3)	O(17)-Li(1)-O(12)-C(71)	-179(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(14)-Li(1)-O(11)-C(25)	114.5(9)	O(11)-Li(1)-O(12)-C(26)	-22.6(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(13)-Li(1)-O(11)-C(25)	52.2(12)	O(15)-Li(1)-O(12)-C(26)	138.1(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(16)-Li(1)-O(11)-C(25)	-86.3(10)	O(14)-Li(1)-O(12)-C(26)	-84.8(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(18)-Li(1)-O(11)-C(25)	159.5(14)	O(13)-Li(1)-O(12)-C(26)	-141.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(17)-Li(1)-O(11)-C(25)	-157.2(9)	O(16)-Li(1)-O(12)-C(26)	64.0(8)
O(15)-Li(1)-O(11)-C(76) $-155(3)$ $O(17)-Li(1)-O(12)-C(26)$ $25.1(16)$ $O(14)-Li(1)-O(11)-C(76)$ $6(3)$ $C(71)-C(72)-O(13)-C(29)$ $-157(3)$ $O(13)-Li(1)-O(11)-C(76)$ $-56(3)$ $C(71)-C(72)-O(13)-C(28)$ $40.9(17)$ $O(16)-Li(1)-O(11)-C(76)$ $165(3)$ $C(71)-C(72)-O(13)-C(73)$ $-172(3)$	O(12)-Li(1)-O(11)-C(25)	-6.9(10)	O(18)-Li(1)-O(12)-C(26)	176.3(19)
O(14)-Li(1)-O(11)-C(76) $6(3)$ $C(71)-C(72)-O(13)-C(29)$ $-157(3)$ $O(13)-Li(1)-O(11)-C(76)$ $-56(3)$ $C(71)-C(72)-O(13)-C(28)$ $40.9(17)$ $O(16)-Li(1)-O(11)-C(76)$ $165(3)$ $C(71)-C(72)-O(13)-C(73)$ $-172(3)$	O(15)-Li(1)-O(11)-C(76)	-155(3)	O(17)-Li(1)-O(12)-C(26)	25.1(16)
O(13)-Li(1)-O(11)-C(76)-56(3)C(71)-C(72)-O(13)-C(28)40.9(17)O(16)-Li(1)-O(11)-C(76)165(3)C(71)-C(72)-O(13)-C(73)-172(3)	O(14)-Li(1)-O(11)-C(76)	6(3)	C(71)-C(72)-O(13)-C(29)	-157(3)
O(16)-Li(1)-O(11)-C(76) 165(3) C(71)-C(72)-O(13)-C(73) -172(3)	O(13)-Li(1)-O(11)-C(76)	-56(3)	C(71)- $C(72)$ - $O(13)$ - $C(28)$	40.9(17)
	O(16)-Li(1)-O(11)-C(76)	165(3)	C(71)-C(72)-O(13)-C(73)	-172(3)

C(71)-C(72)-O(13)-Li(1)	-43(4)	C(32)-C(31)-O(14)-C(75)	-61(4)
C(30)-C(29)-O(13)-C(72)	159(2)	C(32)-C(31)-O(14)-C(74)	156(3)
C(30)-C(29)-O(13)-C(28)	170.3(10)	C(32)-C(31)-O(14)-Li(1)	37.0(13)
C(30)-C(29)-O(13)-C(73)	-46(3)	C(73)-C(74)-O(14)-C(30)	44(3)
C(30)-C(29)-O(13)-Li(1)	39.1(13)	C(73)-C(74)-O(14)-C(75)	-167(3)
C(27)-C(28)-O(13)-C(72)	-66(3)	C(73)-C(74)-O(14)-C(31)	-147(4)
C(27)-C(28)-O(13)-C(29)	-84.9(13)	C(73)-C(74)-O(14)-Li(1)	-34(5)
C(27)-C(28)-O(13)-C(73)	-114(3)	O(11)-Li(1)-O(14)-C(30)	-134.6(8)
C(27)-C(28)-O(13)-Li(1)	48.5(13)	O(15)-Li(1)-O(14)-C(30)	32.0(17)
C(74)-C(73)-O(13)-C(72)	85(5)	O(13)-Li(1)-O(14)-C(30)	-17.5(8)
C(74)-C(73)-O(13)-C(29)	58(3)	O(16)-Li(1)-O(14)-C(30)	-177.2(15)
C(74)-C(73)-O(13)-C(28)	111(4)	O(18)-Li(1)-O(14)-C(30)	75.7(9)
C(74)-C(73)-O(13)-Li(1)	-51(4)	O(17)-Li(1)-O(14)-C(30)	145.1(8)
O(11)-Li(1)-O(13)-C(72)	-42(3)	O(12)-Li(1)-O(14)-C(30)	-73.4(10)
O(15)-Li(1)-O(13)-C(72)	107(3)	O(11)-Li(1)-O(14)-C(75)	25(2)
O(14)-Li(1)-O(13)-C(72)	-106(3)	O(15)-Li(1)-O(14)-C(75)	-168(3)
O(16)-Li(1)-O(13)-C(72)	58(3)	O(13)-Li(1)-O(14)-C(75)	142(2)
O(18)-Li(1)-O(13)-C(72)	179(3)	O(16)-Li(1)-O(14)-C(75)	-17(3)
O(17)-Li(1)-O(13)-C(72)	-144(3)	O(18)-Li(1)-O(14)-C(75)	-124(2)
O(12)-Li(1)-O(13)-C(72)	19(3)	O(17)-Li(1)-O(14)-C(75)	-55(2)
O(11)-Li(1)-O(13)-C(29)	50.6(11)	O(12)-Li(1)-O(14)-C(75)	86(3)
O(15)-Li(1)-O(13)-C(29)	-160.5(8)	O(11)-Li(1)-O(14)-C(31)	-8.6(10)
O(14)-Li(1)-O(13)-C(29)	-13.5(9)	O(15)-Li(1)-O(14)-C(31)	158.0(14)
O(16)-Li(1)-O(13)-C(29)	150.8(12)	O(13)-Li(1)-O(14)-C(31)	108.5(8)
O(18)-Li(1)-O(13)-C(29)	-88.1(9)	O(16)-Li(1)-O(14)-C(31)	-51.2(19)
O(17)-Li(1)-O(13)-C(29)	-51(2)	O(18)-Li(1)-O(14)-C(31)	-158.3(8)
O(12)-Li(1)-O(13)-C(29)	111.5(9)	O(17)-Li(1)-O(14)-C(31)	-88.9(9)
O(11)-Li(1)-O(13)-C(28)	-80.3(10)	O(12)-Li(1)-O(14)-C(31)	52.6(12)
O(15)-Li(1)-O(13)-C(28)	68.6(8)	O(11)-Li(1)-O(14)-C(74)	-110(3)
O(14)-Li(1)-O(13)-C(28)	-144.4(8)	O(15)-Li(1)-O(14)-C(74)	57(3)
O(16)-Li(1)-O(13)-C(28)	19.9(15)	O(13)-Li(1)-O(14)-C(74)	7(3)
O(18)-Li(1)-O(13)-C(28)	141.0(8)	O(16)-Li(1)-O(14)-C(74)	-153(3)
O(17)-Li(1)-O(13)-C(28)	178.4(16)	O(18)-Li(1)-O(14)-C(74)	100(3)
O(12)-Li(1)-O(13)-C(28)	-19.4(8)	O(17)-Li(1)-O(14)-C(74)	170(3)
O(11)-Li(1)-O(13)-C(73)	87(2)	O(12)-Li(1)-O(14)-C(74)	-49(3)
O(15)-Li(1)-O(13)-C(73)	-124(2)	C(39)-C(40)-O(15)-C(33)	-82.8(11)
O(14)-Li(1)-O(13)-C(73)	23(2)	C(39)-C(40)-O(15)-Li(1)	50.9(13)
O(16)-Li(1)-O(13)-C(73)	-173(2)	C(34)-C(33)-O(15)-C(40)	168.2(9)
O(18)-Li(1)-O(13)-C(73)	-52(2)	C(34)-C(33)-O(15)-Li(1)	36.5(11)
O(17)-Li(1)-O(13)-C(73)	-14(3)	O(11)-Li(1)-O(15)-C(40)	177(2)
O(12)-Li(1)-O(13)-C(73)	148(2)	O(14)-Li(1)-O(15)-C(40)	22.6(18)
C(29)-C(30)-O(14)-C(75)	-106(3)	O(13)-Li(1)-O(15)-C(40)	69.7(8)
C(29)-C(30)-O(14)-C(31)	-77.1(15)	O(16)-Li(1)-O(15)-C(40)	-142.0(7)
C(29)-C(30)-O(14)-C(74)	-65(6)	O(18)-Li(1)-O(15)-C(40)	-21.8(9)
C(29)-C(30)-O(14)-Li(1)	47.2(14)	O(17)-Li(1)-O(15)-C(40)	-80.9(10)
C(76)-C(75)-O(14)-C(30)	106(4)	O(12)-Li(1)-O(15)-C(40)	139.1(7)
C(76)-C(75)-O(14)-C(31)	47(2)	O(11)-Li(1)-O(15)-C(33)	-50(3)
C(76)-C(75)-O(14)-C(74)	89(5)	O(14)-Li(1)-O(15)-C(33)	155.8(13)
C(76)-C(75)-O(14)-Li(1)	-48(4)	O(13)-Li(1)-O(15)-C(33)	-157.1(7)
C(32)-C(31)-O(14)-C(30)	161.2(10)	O(16)-Li(1)-O(15)-C(33)	-8.8(9)

O(18)-Li(1)-O(15)-C(33)	111.4(8)	O(15)-Li(1)-O(18)-C(39)	-8.5(9)
O(17)-Li(1)-O(15)-C(33)	52.3(10)	O(14)-Li(1)-O(18)-C(39)	-157.8(7)
O(12)-Li(1)-O(15)-C(33)	-87.7(9)	O(13)-Li(1)-O(18)-C(39)	-87.3(8)
C(36)-C(35)-O(16)-C(34)	162.4(9)	O(16)-Li(1)-O(18)-C(39)	54.6(11)
C(36)-C(35)-O(16)-Li(1)	40.0(10)	O(17)-Li(1)-O(18)-C(39)	111.4(7)
C(33)-C(34)-O(16)-C(35)	-79.3(11)	O(12)-Li(1)-O(18)-C(39)	-49(2)
C(33)-C(34)-O(16)-Li(1)	47.6(10)	C(47)-C(48)-O(19)-C(41)	155.2(10)
O(11)-Li(1)-O(16)-C(35)	-93.6(8)	C(47)-C(48)-O(19)-Li(2)	35.1(13)
O(15)-Li(1)-O(16)-C(35)	106.3(8)	C(42)-C(41)-O(19)-C(48)	-82.1(12)
O(14)-Li(1)-O(16)-C(35)	-52.8(18)	C(42)-C(41)-O(19)-Li(2)	42.4(11)
O(13)-Li(1)-O(16)-C(35)	156.6(11)	O(31)-Li(2)-O(19)-C(48)	-97.7(12)
O(18)-Li(1)-O(16)-C(35)	43.8(12)	O(26)-Li(2)-O(19)-C(48)	-89.3(10)
O(17)-Li(1)-O(16)-C(35)	-12.3(8)	O(29)-Li(2)-O(19)-C(48)	160(3)
O(12)-Li(1)-O(16)-C(35)	-166.2(7)	O(21)-Li(2)-O(19)-C(48)	50.2(13)
O(11)-Li(1)-O(16)-C(34)	139.9(8)	O(20)-Li(2)-O(19)-C(48)	111.6(8)
O(15)-Li(1)-O(16)-C(34)	-20.2(8)	O(24)-Li(2)-O(19)-C(48)	163.7(17)
O(13)-Li(1)-O(16)-C(34)	30.1(14)	O(22)-Li(2)-O(19)-C(48)	-9.0(10)
O(18)-Li(1)-O(16)-C(34)	-82.7(10)	O(30)-Li(2)-O(19)-C(48)	-54.5(18)
O(17)-Li(1)-O(16)-C(34)	-138.8(7)	O(25)-Li(2)-O(19)-C(48)	-47(2)
O(12)-Li(1)-O(16)-C(34)	67.4(7)	O(23)-Li(2)-O(19)-C(48)	-161.3(9)
C(35)-C(36)-O(17)-C(37)	-81.8(10)	O(28)-Li(2)-O(19)-C(48)	-170.5(10)
C(35)-C(36)-O(17)-Li(1)	47.7(10)	O(31)-Li(2)-O(19)-C(41)	137.9(11)
C(38)-C(37)-O(17)-C(36)	167.2(8)	O(26)-Li(2)-O(19)-C(41)	146.4(9)
C(38)-C(37)-O(17)-Li(1)	40.9(11)	O(29)-Li(2)-O(19)-C(41)	36(3)
O(11)-Li(1)-O(17)-C(36)	67.6(8)	O(21)-Li(2)-O(19)-C(41)	-74.2(11)
O(15)-Li(1)-O(17)-C(36)	-81.7(9)	O(20)-Li(2)-O(19)-C(41)	-12.7(8)
O(14)-Li(1)-O(17)-C(36)	141.6(6)	O(24)-Li(2)-O(19)-C(41)	39(2)
O(13)-Li(1)-O(17)-C(36)	176.5(16)	O(22)-Li(2)-O(19)-C(41)	-133.4(8)
O(16)-Li(1)-O(17)-C(36)	-18.6(7)	O(30)-Li(2)-O(19)-C(41)	-178.9(14)
O(18)-Li(1)-O(17)-C(36)	-142.9(7)	O(25)-Li(2)-O(19)-C(41)	-171.2(19)
O(12)-Li(1)-O(17)-C(36)	22.2(15)	O(23)-Li(2)-O(19)-C(41)	74.3(9)
O(11)-Li(1)-O(17)-C(37)	-163.6(7)	O(28)-Li(2)-O(19)-C(41)	65.2(10)
O(15)-Li(1)-O(17)-C(37)	47.0(11)	C(41)-C(42)-O(20)-C(43)	172.0(9)
O(14)-Li(1)-O(17)-C(37)	-89.7(8)	C(41)-C(42)-O(20)-Li(2)	47.9(12)
O(13)-Li(1)-O(17)-C(37)	-55(2)	C(44)-C(43)-O(20)-C(42)	-80.2(11)
O(16)-Li(1)-O(17)-C(37)	110.1(7)	C(44)-C(43)-O(20)-Li(2)	49.9(11)
O(18)-Li(1)-O(17)-C(37)	-14.1(8)	O(31)-Li(2)-O(20)-C(42)	-62(2)
O(12)-Li(1)-O(17)-C(37)	150.9(12)	O(26)-Li(2)-O(20)-C(42)	-61(2)
C(37)-C(38)-O(18)-C(39)	-81.0(11)	O(29)-Li(2)-O(20)-C(42)	-174.8(12)
C(37)-C(38)-O(18)-Li(1)	46.8(11)	O(21)-Li(2)-O(20)-C(42)	103.2(8)
C(40)-C(39)-O(18)-C(38)	163.3(9)	O(24)-Li(2)-O(20)-C(42)	-166.7(9)
C(40)-C(39)-O(18)-Li(1)	34.9(11)	O(22)-Li(2)-O(20)-C(42)	38.6(12)
O(11)-Li(1)-O(18)-C(38)	28.6(19)	O(30)-Li(2)-O(20)-C(42)	141.3(19)
O(15)-Li(1)-O(18)-C(38)	-137.5(7)	O(25)-Li(2)-O(20)-C(42)	143.9(12)
O(14)-Li(1)-O(18)-C(38)	73.1(8)	O(23)-Li(2)-O(20)-C(42)	-97.6(9)
O(13)-Li(1)-O(18)-C(38)	143.6(7)	O(28)-Li(2)-O(20)-C(42)	-104.3(10)
O(16)-Li(1)-O(18)-C(38)	-74.5(10)	O(19)-Li(2)-O(20)-C(42)	-19.2(9)
O(17)-Li(1)-O(18)-C(38)	-17.7(8)	O(31)-Li(2)-O(20)-C(43)	171.2(17)
O(12)-Li(1)-O(18)-C(38)	-177.8(18)	O(26)-Li(2)-O(20)-C(43)	172.2(19)
O(11)-Li(1)-O(18)-C(39)	157.7(14)	O(29)-Li(2)-O(20)-C(43)	58.4(12)
. , . , . , . , . ,	· /		. /

O(21)-Li(2)-O(20)-C(43)	-23.5(7)	O(26)-Li(2)-O(22)-C(47)	69.1(11)
O(24)-Li(2)-O(20)-C(43)	66.5(9)	O(29)-Li(2)-O(22)-C(47)	170(3)
O(22)-Li(2)-O(20)-C(43)	-88.1(9)	O(21)-Li(2)-O(22)-C(47)	-143.9(8)
O(30)-Li(2)-O(20)-C(43)	15(2)	O(20)-Li(2)-O(22)-C(47)	-78.5(11)
O(25)-Li(2)-O(20)-C(43)	17.1(16)	O(24)-Li(2)-O(22)-C(47)	171(3)
O(23)-Li(2)-O(20)-C(43)	135.6(7)	O(30)-Li(2)-O(22)-C(47)	130.4(9)
O(28)-Li(2)-O(20)-C(43)	129.0(9)	O(25)-Li(2)-O(22)-C(47)	141.2(9)
O(19)-Li(2)-O(20)-C(43)	-146.0(6)	O(23)-Li(2)-O(22)-C(47)	21(2)
C(43)-C(44)-O(21)-C(45)	158.3(9)	O(28)-Li(2)-O(22)-C(47)	13(3)
C(43)-C(44)-O(21)-Li(2)	29.2(12)	O(19)-Li(2)-O(22)-C(47)	-20.0(10)
C(46)-C(45)-O(21)-C(44)	-85.1(13)	C(50)-C(49)-O(23)-C(56)	156.0(19)
C(46)-C(45)-O(21)-Li(2)	47.2(13)	C(50)-C(49)-O(23)-Li(2)	34.9(19)
O(31)-Li(2)-O(21)-C(44)	157(2)	C(55)-C(56)-O(23)-C(49)	-80(3)
O(26)-Li(2)-O(21)-C(44)	164.8(15)	C(55)-C(56)-O(23)-Li(2)	46(2)
O(29)-Li(2)-O(21)-C(44)	-91.9(13)	O(31)-Li(2)-O(23)-C(49)	114.2(17)
O(20)-Li(2)-O(21)-C(44)	-2.9(9)	O(26)-Li(2)-O(23)-C(49)	106.2(15)
O(24)-Li(2)-O(21)-C(44)	-85.5(11)	O(29)-Li(2)-O(23)-C(49)	-5.2(18)
O(22)-Li(2)-O(21)-C(44)	113.4(8)	O(21)-Li(2)-O(23)-C(49)	-52(3)
O(30)-Li(2)-O(21)-C(44)	-165.3(9)	O(20)-Li(2)-O(23)-C(49)	-93.4(14)
O(25)-Li(2)-O(21)-C(44)	-156.4(8)	O(24)-Li(2)-O(23)-C(49)	-8.9(15)
O(23)-Li(2)-O(21)-C(44)	-46(2)	O(22)-Li(2)-O(23)-C(49)	157.0(16)
O(28)-Li(2)-O(21)-C(44)	-46(2)	O(30)-Li(2)-O(23)-C(49)	59.9(17)
O(19)-Li(2)-O(21)-C(44)	56.3(12)	O(25)-Li(2)-O(23)-C(49)	47.1(17)
O(31)-Li(2)-O(21)-C(45)	26(3)	O(28)-Li(2)-O(23)-C(49)	-52(6)
O(26)-Li(2)-O(21)-C(45)	33.9(18)	O(19)-Li(2)-O(23)-C(49)	-164.3(14)
O(29)-Li(2)-O(21)-C(45)	137.1(11)	O(31)-Li(2)-O(23)-C(56)	-12.1(16)
O(20)-Li(2)-O(21)-C(45)	-133.9(8)	O(26)-Li(2)-O(23)-C(56)	-20.1(15)
O(24)-Li(2)-O(21)-C(45)	143.6(9)	O(29)-Li(2)-O(23)-C(56)	-131.5(18)
O(22)-Li(2)-O(21)-C(45)	-17.6(9)	O(21)-Li(2)-O(23)-C(56)	-179(2)
O(30)-Li(2)-O(21)-C(45)	63.8(9)	O(20)-Li(2)-O(23)-C(56)	140.2(14)
O(25)-Li(2)-O(21)-C(45)	72.7(8)	O(24)-Li(2)-O(23)-C(56)	-135.2(16)
O(23)-Li(2)-O(21)-C(45)	-176.7(19)	O(22)-Li(2)-O(23)-C(56)	31(2)
O(28)-Li(2)-O(21)-C(45)	-176.8(17)	O(30)-Li(2)-O(23)-C(56)	-66.4(16)
O(19)-Li(2)-O(21)-C(45)	-74.7(11)	O(25)-Li(2)-O(23)-C(56)	-79.2(15)
C(45)-C(46)-O(22)-C(47)	170.0(10)	O(28)-Li(2)-O(23)-C(56)	-178(7)
C(45)-C(46)-O(22)-Li(2)	39.2(14)	O(19)-Li(2)-O(23)-C(56)	69.3(14)
C(48)-C(47)-O(22)-C(46)	-80.8(14)	C(52)-C(51)-O(24)-C(50)	174(2)
C(48)-C(47)-O(22)-Li(2)	50.5(15)	C(52)-C(51)-O(24)-Li(2)	37(2)
O(31)-Li(2)-O(22)-C(46)	-171.4(11)	C(49)-C(50)-O(24)-C(51)	-88(3)
O(26)-Li(2)-O(22)-C(46)	-159.9(10)	C(49)-C(50)-O(24)-Li(2)	50(2)
O(29)-Li(2)-O(22)-C(46)	-59(3)	O(31)-Li(2)-O(24)-C(51)	66(2)
O(21)-Li(2)-O(22)-C(46)	-12.8(11)	O(26)-Li(2)-O(24)-C(51)	53.0(19)
O(20)-Li(2)-O(22)-C(46)	52.5(12)	O(29)-Li(2)-O(24)-C(51)	-41(10)
O(24)-Li(2)-O(22)-C(46)	-58(3)	O(21)-Li(2)-O(24)-C(51)	-85.3(18)
O(30)-Li(2)-O(22)-C(46)	-98.5(11)	O(20)-Li(2)-O(24)-C(51)	-159.1(17)
O(25)-Li(2)-O(22)-C(46)	-87.7(11)	O(22)-Li(2)-O(24)-C(51)	-42(4)
O(23)-Li(2)-O(22)-C(46)	151.7(16)	O(30)-Li(2)-O(24)-C(51)	-2.1(18)
O(28)-Li(2)-O(22)-C(46)	144(2)	O(25)-Li(2)-O(24)-C(51)	-11.2(16)
O(19)-Li(2)-O(22)-C(46)	111.0(9)	O(23)-Li(2)-O(24)-C(51)	115.7(19)
O(31)-Li(2)-O(22)-C(47)	57.6(12)	U(28)-Li(2)-O(24)-C(51)	123(2)

O(19)-Li(2)-O(24)-C(51)	152.5(17)	O(23)-Li(2)-O(26)-C(54)	-147.5(17)
O(31)-Li(2)-O(24)-C(50)	-71(2)	O(28)-Li(2)-O(26)-C(54)	-143.8(17)
O(26)-Li(2)-O(24)-C(50)	-84.1(19)	O(19)-Li(2)-O(26)-C(54)	135.1(16)
O(29)-Li(2)-O(24)-C(50)	-178(12)	O(31)-Li(2)-O(26)-C(55)	-44(6)
O(21)-Li(2)-O(24)-C(50)	137.6(18)	O(29)-Li(2)-O(26)-C(55)	61(2)
O(20)-Li(2)-O(24)-C(50)	63.7(18)	O(21)-Li(2)-O(26)-C(55)	155.1(15)
O(22)-Li(2)-O(24)-C(50)	-180(3)	O(20)-Li(2)-O(26)-C(55)	-47(3)
O(30)-Li(2)-O(24)-C(50)	-139.3(19)	O(24)-Li(2)-O(26)-C(55)	52.0(19)
O(25)-Li(2)-O(24)-C(50)	-148.3(19)	O(22)-Li(2)-O(26)-C(55)	-155.4(17)
O(23)-Li(2)-O(24)-C(50)	-21.5(17)	O(30)-Li(2)-O(26)-C(55)	120.4(19)
O(28)-Li(2)-O(24)-C(50)	-13.9(17)	O(25)-Li(2)-O(26)-C(55)	115.7(18)
O(19)-Li(2)-O(24)-C(50)	15(3)	O(23)-Li(2)-O(26)-C(55)	-8.7(16)
C(51)-C(52)-O(25)-C(53)	-72.2(19)	O(28)-Li(2)-O(26)-C(55)	-5.0(18)
C(51)-C(52)-O(25)-Li(2)	46.6(17)	O(19)-Li(2)-O(26)-C(55)	-86.1(17)
C(54)-C(53)-O(25)-C(52)	154.4(14)	C(58)-C(57)-O(27)-C(60)	17.9(14)
C(54)-C(53)-O(25)-Li(2)	37.7(16)	C(58)-C(57)-O(27)-C(77)	41(3)
O(31)-Li(2)-O(25)-C(52)	-127.6(13)	C(59)-C(60)-O(27)-C(57)	5.5(16)
O(26)-Li(2)-O(25)-C(52)	-131.8(11)	C(59)-C(60)-O(27)-C(77)	-74(3)
O(29)-Li(2)-O(25)-C(52)	-13.1(16)	C(59)-C(77)-O(27)-C(57)	-31(5)
O(21)-Li(2)-O(25)-C(52)	75.0(10)	C(59)-C(77)-O(27)-C(60)	76(3)
O(20)-Li(2)-O(25)-C(52)	34.5(18)	C(62)-C(61)-O(28)-C(68)	81(4)
O(24)-Li(2)-O(25)-C(52)	-18.2(12)	C(62)-C(61)-O(28)-Li(2)	-39(3)
O(22)-Li(2)-O(25)-C(52)	148.1(10)	C(67)-C(68)-O(28)-C(61)	-155(3)
O(30)-Li(2)-O(25)-C(52)	-151(3)	C(67)-C(68)-O(28)-Li(2)	-35(3)
O(23)-Li(2)-O(25)-C(52)	-72.8(13)	O(31)-Li(2)-O(28)-C(61)	131(2)
O(28)-Li(2)-O(25)-C(52)	-62.2(14)	O(26)-Li(2)-O(28)-C(61)	123(2)
O(19)-Li(2)-O(25)-C(52)	-176.9(18)	O(29)-Li(2)-O(28)-C(61)	13(2)
O(31)-Li(2)-O(25)-C(53)	-5.1(14)	O(21)-Li(2)-O(28)-C(61)	-36(3)
O(26)-Li(2)-O(25)-C(53)	-9.4(12)	O(20)-Li(2)-O(28)-C(61)	-78.9(18)
O(29)-Li(2)-O(25)-C(53)	109.3(16)	O(24)-Li(2)-O(28)-C(61)	10.1(18)
O(21)-Li(2)-O(25)-C(53)	-162.6(11)	O(22)-Li(2)-O(28)-C(61)	179(2)
O(20)-Li(2)-O(25)-C(53)	156.9(14)	O(30)-Li(2)-O(28)-C(61)	72(2)
O(24)-Li(2)-O(25)-C(53)	104.2(13)	O(25)-Li(2)-O(28)-C(61)	58(2)
O(22)-Li(2)-O(25)-C(53)	-89.5(11)	O(23)-Li(2)-O(28)-C(61)	144(8)
O(30)-Li(2)-O(25)-C(53)	-29(3)	O(19)-Li(2)-O(28)-C(61)	-150.4(19)
O(23)-Li(2)-O(25)-C(53)	49.6(14)	O(31)-Li(2)-O(28)-C(68)	10(2)
O(28)-Li(2)-O(25)-C(53)	60.3(14)	O(26)-Li(2)-O(28)-C(68)	2(2)
O(19)-Li(2)-O(25)-C(53)	-55(2)	O(29)-Li(2)-O(28)-C(68)	-108(2)
C(53)-C(54)-O(26)-C(55)	-88(2)	O(21)-Li(2)-O(28)-C(68)	-157(2)
C(53)-C(54)-O(26)-Li(2)	53(2)	O(20)-Li(2)-O(28)-C(68)	160(2)
C(56)-C(55)-O(26)-C(54)	174.3(18)	O(24)-Li(2)-O(28)-C(68)	-111(2)
C(56)-C(55)-O(26)-Li(2)	35(2)	O(22)-Li(2)-O(28)-C(68)	58(3)
O(31)-Li(2)-O(26)-C(54)	177(8)	O(30)-Li(2)-O(28)-C(68)	-49(2)
O(29)-Li(2)-O(26)-C(54)	-77.4(18)	O(25)-Li(2)-O(28)-C(68)	-62(2)
O(21)-Li(2)-O(26)-C(54)	16(2)	O(23)-Li(2)-O(28)-C(68)	23(5)
O(20)-Li(2)-O(26)-C(54)	173 9(17)	O(19)-Li(2)-O(28)-C(68)	89(2)
O(24)-Li(2)-O(26)-C(54)	-86.9(17)	C(64)-C(63)-O(29)-C(62)	85(4)
O(22)-Li(2)-O(26)-C(54)	65.7(15)	C(64)- $C(63)$ - $O(29)$ - $Li(2)$	-48(3)
O(30)-Li(2)-O(26)-C(54)	-18.4(14)	C(61)- $C(62)$ - $O(29)$ - $C(63)$	-173(3)
O(25)-Li(2)-O(26)-C(54)	-23.1(15)	C(61)-C(62)-O(29)-Li(2)	-44(3)
(, , , , , , , , , , , , , , , , , , ,	- \ -/	· · · · · · · · · · · · · · · · · · ·	\-/

O(31)-Li(2)-O(29)-C(63)	86(3)	C(65)-C(66)-O(31)-C(67)	-174(3)
O(26)-Li(2)-O(29)-C(63)	74(3)	C(65)-C(66)-O(31)-Li(2)	-37(3)
O(21)-Li(2)-O(29)-C(63)	-63(3)	O(26)-Li(2)-O(31)-C(67)	160(9)
O(20)-Li(2)-O(29)-C(63)	-137(3)	O(29)-Li(2)-O(31)-C(67)	81(2)
O(24)-Li(2)-O(29)-C(63)	162(13)	O(21)-Li(2)-O(31)-C(67)	-175.2(19)
O(22)-Li(2)-O(29)-C(63)	-19(5)	O(20)-Li(2)-O(31)-C(67)	-23(3)
O(30)-Li(2)-O(29)-C(63)	22(3)	O(24)-Li(2)-O(31)-C(67)	72(2)
O(25)-Li(2)-O(29)-C(63)	14(2)	O(22)-Li(2)-O(31)-C(67)	-134(2)
O(23)-Li(2)-O(29)-C(63)	140(3)	O(30)-Li(2)-O(31)-C(67)	145(2)
O(28)-Li(2)-O(29)-C(63)	148(3)	O(25)-Li(2)-O(31)-C(67)	140(2)
O(19)-Li(2)-O(29)-C(63)	179(2)	O(23)-Li(2)-O(31)-C(67)	18.1(19)
O(31)-Li(2)-O(29)-C(62)	-44(3)	O(28)-Li(2)-O(31)-C(67)	21(2)
O(26) - Li(2) - O(29) - C(62)	-57(3)	O(19)-Li(2)-O(31)-C(67)	-64(2)
O(21)-Li(2)-O(29)-C(62)	167(3)	O(26)-Li(2)-O(31)-C(66)	22(5)
O(20)-Li(2)- $O(20)$ -C(62)	93(2)	O(29)-Li(2)- $O(31)$ - $C(66)$	-56(3)
O(24)-Li(2)-O(29)-C(62)	32(9)	O(21)-Li(2)-O(31)-C(66)	47(4)
O(22) - Ii(2) - O(20) - O(62)	-149(2)	O(20)-Li(2)-O(31)-C(66)	-160 4(19)
O(30)-Ii(2)-O(29)-C(62)	-108(3)	O(24)-Li(2)-O(31)-C(66)	-65(3)
O(25) - Li(2) - O(29) - C(62)	-116(3)	O(22) - Li(2) - O(31) - C(66)	89(2)
O(23) - Li(2) - O(23) - C(62)	10(2)	O(22) = I(2) = O(31) = O(00)	8(2)
O(28) - Li(2) - O(29) - C(62)	17(2)	O(25) - Li(2) - O(31) - C(66)	3(2)
O(20) - Ei(2) - O(20) - C(02)	17(2)	O(23)-Li(2)-O(31)-C(66)	3(2)-110(3)
C(63)-C(64)-O(30)-C(65)	-161(2)	O(28) - Li(2) - O(31) - C(66)	-117(3)
C(63)-C(64)-O(30)-Li(2)	-30(3)	O(20) - Li(2) - O(31) - C(66)	150(3)
C(66) C(65) O(30) C(64)	-50(3)	S(1) C(1) P(1) C(0)	20.0(6)
C(66) - C(65) - O(30) - C(64)	00(0) 49(0)	SI(1)-C(1)-F(1)-CI(1) SI(2)-C(1)-F(1)-CI(1)	-20.9(0)
C(00)- $C(05)$ - $O(30)$ - $El(2)$	-40(Z)	SI(2) - C(1) - P(1) - CI(1)	-130.1(3)
O(31)- $Li(2)$ - $O(30)$ - $C(64)$	-112(2)	SI(1)-C(1)-P(1)-VV(1)	-127.7(5)
O(26)-LI(2)- $O(30)$ -C(64)	-115.0(19)	SI(2) - C(1) - P(1) - VV(1)	103.2(4)
O(29)- $LI(2)$ - $O(30)$ - $C(64)$	5(2)	SI(3)-C(13)-P(2)-CI(2)	24.7(6)
O(21)-LI(2)-O(30)-C(64)	88.1(18)	SI(4) - C(13) - P(2) - CI(2)	150.3(3)
O(20)-LI(2)- $O(30)$ -C(64)	52(3)	SI(3)-C(13)-P(2)-W(2)	131.4(4)
O(24)-Li(2)- $O(30)$ -C(64)	-1.0(19)	Si(4)-C(13)-P(2)-W(2)	-103.0(4)
O(22)-Li(2)-O(30)-C(64)	161.6(18)	P(1)-C(1)-Si(1)-C(2)	75.3(7)
O(25)-Li(2)-O(30)-C(64)	43(3)	Si(2)-C(1)-Si(1)-C(2)	-160.2(6)
O(23)-Li(2)-O(30)-C(64)	-63(2)	P(1)-C(1)-Si(1)-C(3)	-49.2(7)
O(28)-Li(2)-O(30)-C(64)	-53(2)	Si(2)-C(1)-Si(1)-C(3)	75.2(7)
O(19)-Li(2)-O(30)-C(64)	-155.9(19)	P(1)-C(1)-Si(1)-C(4)	-170.5(6)
O(31)-Li(2)-O(30)-C(65)	23.4(17)	Si(2)-C(1)-Si(1)-C(4)	-46.0(7)
O(26)-Li(2)-O(30)-C(65)	19.9(14)	P(1)-C(1)-Si(2)-C(6)	-145.0(6)
O(29)-Li(2)-O(30)-C(65)	139.9(18)	Si(1)-C(1)-Si(2)-C(6)	83.3(7)
O(21)-Li(2)-O(30)-C(65)	-137.0(14)	P(1)-C(1)-Si(2)-C(5)	93.1(6)
O(20)-Li(2)-O(30)-C(65)	-174(2)	Si(1)-C(1)-Si(2)-C(5)	-38.6(7)
O(24)-Li(2)-O(30)-C(65)	133.9(16)	P(1)-C(1)-Si(2)-C(7)	-27.2(6)
O(22)-Li(2)-O(30)-C(65)	-63.5(14)	Si(1)-C(1)-Si(2)-C(7)	-158.9(5)
O(25)-Li(2)-O(30)-C(65)	178(100)	P(2)-C(13)-Si(3)-C(16)	163.7(5)
O(23)-Li(2)-O(30)-C(65)	72.0(16)	Si(4)-C(13)-Si(3)-C(16)	44.1(7)
O(28)-Li(2)-O(30)-C(65)	82.0(16)	P(2)-C(13)-Si(3)-C(15)	43.8(7)
O(19)-Li(2)-O(30)-C(65)	-21(2)	Si(4)-C(13)-Si(3)-C(15)	-75.9(7)
C(68)-C(67)-O(31)-C(66)	87(3)	P(2)-C(13)-Si(3)-C(14)	-79.6(7)
C(68)-C(67)-O(31)-Li(2)	-52(3)	Si(4)-C(13)-Si(3)-C(14)	160.8(6)

P(2)-C(13)-Si(4)-C(18)151.4(5)O(9)-C(23)-W(2)-P(2)-121(15)Si(3)-C(13)-Si(4)-C(18)-81.2(6)O(7)-C(21)-W(2)-C(20)71(21)	
Si(3)-C(13)-Si(4)-C(18) -81.2(6) O(7)-C(21)-W(2)-C(20) 71(21)	
P(2)-C(13)-Si(4)-C(17) -87.2(6) O(7)-C(21)-W(2)-C(23) -83(26)	
Si(3)-C(13)-Si(4)-C(17) 40.2(7) O(7)-C(21)-W(2)-C(24) -22(21)	
P(2)-C(13)-Si(4)-C(19) 32.6(6) O(7)-C(21)-W(2)-C(22) 165(21)	
Si(3)-C(13)-Si(4)-C(19) 160.0(5) O(7)-C(21)-W(2)-P(2) -110(21)	
O(1)-C(8)-W(1)-C(10) -9(16) O(10)-C(24)-W(2)-C(20) -114(14)	
O(1)-C(8)-W(1)-C(12) 171(100) O(10)-C(24)-W(2)-C(23) 157(14)	
O(1)-C(8)-W(1)-C(9) -98(16) O(10)-C(24)-W(2)-C(21) -21(14)	
O(1)-C(8)-W(1)-C(11) 80(16) O(10)-C(24)-W(2)-C(22) 38(16)	
O(1)-C(8)-W(1)-P(1) -27(20) O(10)-C(24)-W(2)-P(2) 66(14)	
O(3)-C(10)-W(1)-C(8) -89(40) O(8)-C(22)-W(2)-C(20) 106(18)	
O(3)-C(10)-W(1)-C(12) 85(42) O(8)-C(22)-W(2)-C(23) -165(18)	
O(3)-C(10)-W(1)-C(9) 1(40) O(8)-C(22)-W(2)-C(21) 12(18)	
O(3)-C(10)-W(1)-C(11) -180(100) O(8)-C(22)-W(2)-C(24) -47(21)	
O(3)-C(10)-W(1)-P(1) 89(40) O(8)-C(22)-W(2)-P(2) -74(18)	
O(5)-C(12)-W(1)-C(8) 35(21) C(13)-P(2)-W(2)-C(20) -54(22)	
O(5)-C(12)-W(1)-C(10) -139(19) Cl(2)-P(2)-W(2)-C(20) 55(22)	
O(5)-C(12)-W(1)-C(9) -55(21) C(13)-P(2)-W(2)-C(23) 29.5(4)	
O(5)-C(12)-W(1)-C(11) 126(21) Cl(2)-P(2)-W(2)-C(23) 138.3(3)	
O(5)-C(12)-W(1)-P(1) -144(21) C(13)-P(2)-W(2)-C(21) -151.8(5)	
O(2)-C(9)-W(1)-C(8) -37(29) Cl(2)-P(2)-W(2)-C(21) -43.0(4)	
O(2)-C(9)-W(1)-C(10) -129(29) C(13)-P(2)-W(2)-C(24) 121.2(4)	
O(2)-C(9)-W(1)-C(12) 55(29) Cl(2)-P(2)-W(2)-C(24) -130.0(3)	
O(2)-C(9)-W(1)-C(11) -154(24) C(13)-P(2)-W(2)-C(22) -62.5(5)	
O(2)-C(9)-W(1)-P(1) 146(29) Cl(2)-P(2)-W(2)-C(22) 46.4(4)	
O(4)-C(11)-W(1)-C(8) 30(25) O(28)-Li(2)-O(30)-C(65) 82.0(16)	
O(4)-C(11)-W(1)-C(10) 123(25) O(19)-Li(2)-O(30)-C(65) -21(2)	
O(4)-C(11)-W(1)-C(12) -61(25) C(68)-C(67)-O(31)-C(66) 87(3)	
O(4)-C(11)-W(1)-C(9) 147(21) C(68)-C(67)-O(31)-Li(2) -52(3)	
O(4)-C(11)-W(1)-P(1) -153(25) C(65)-C(66)-O(31)-C(67) -174(3)	
C(1)-P(1)-W(1)-C(8) 75(5) C(65)-C(66)-O(31)-Li(2) -37(3)	
CI(1)-P(1)-W(1)-C(8) -33(5) O(26)-Li(2)-O(31)-C(67) 160(9)	
C(1)-P(1)-W(1)-C(10) 57.8(4) O(29)-Li(2)-O(31)-C(67) 81(2)	
CI(1)-P(1)-W(1)-C(10) -50.5(3) O(21)-Li(2)-O(31)-C(67) -175.2(19))
C(1)-P(1)-W(1)-C(12) -122.5(4) O(20)-Li(2)-O(31)-C(67) -23(3)	
CI(1)-P(1)-W(1)-C(12) 129.2(3) O(24)-Li(2)-O(31)-C(67) 72(2)	
C(1)-P(1)-W(1)-C(9) 147.1(4) O(22)-Li(2)-O(31)-C(67) -134(2)	
CI(1)-P(1)-W(1)-C(9) 38.9(3) O(30)-Li(2)-O(31)-C(67) 145(2)	
C(1)-P(1)-W(1)-C(11) -31.3(4) O(25)-Li(2)-O(31)-C(67) 140(2)	
CI(1)-P(1)-W(1)-C(11) -139.6(3) O(23)-Li(2)-O(31)-C(67) 18.1(19)	
O(6)-C(20)-W(2)-C(23) -74(31) O(28)-Li(2)-O(31)-C(67) 21(2)	
O(6)-C(20)-W(2)-C(21) 107(31) O(19)-Li(2)-O(31)-C(67) -64(2)	
O(6)-C(20)-W(2)-C(24) -166(100) O(26)-Li(2)-O(31)-C(66) 22(5)	
O(6)-C(20)-W(2)-C(22) 17(31) O(29)-Li(2)-O(31)-C(66) -56(3)	
O(6)-C(20)-W(2)-P(2) 9(49) O(21)-Li(2)-O(31)-C(66) 47(4)	
O(9)-C(23)-W(2)-C(20) 58(15) O(20)-Li(2)-O(31)-C(66) -160.4(19))
O(9)-C(23)-W(2)-C(21) -148(14) O(24)-Li(2)-O(31)-C(66) -65(3)	
O(9)-C(23)-W(2)-C(24) 151(15) O(22)-Li(2)-O(31)-C(66) 89(2)	
O(9)-C(23)-W(2)-C(22) -36(15) O(30)-Li(2)-O(31)-C(66) 8(2)	

O(25)-Li(2)-O(31)-C(66)	3(2)	O(5)-C(12)-W(1)-P(1)	-144(21)
O(23)-Li(2)-O(31)-C(66)	-119(3)	O(2)-C(9)-W(1)-C(8)	-37(29)
O(28)-Li(2)-O(31)-C(66)	-117(3)	O(2)-C(9)-W(1)-C(10)	-129(29)
O(19)-Li(2)-O(31)-C(66)	159(3)	O(2)-C(9)-W(1)-C(12)	55(29)
Si(1)-C(1)-P(1)-Cl(1)	-20.9(6)	O(2)-C(9)-W(1)-C(11)	-154(24)
Si(2)-C(1)-P(1)-Cl(1)	-150.1(3)	O(2)-C(9)-W(1)-P(1)	146(29)
Si(1)-C(1)-P(1)-W(1)	-127.7(5)	O(4)-C(11)-W(1)-C(8)	30(25)
Si(2)-C(1)-P(1)-W(1)	103.2(4)	O(4)-C(11)-W(1)-C(10)	123(25)
Si(3)-C(13)-P(2)-Cl(2)	24.7(6)	O(4)-C(11)-W(1)-C(12)	-61(25)
Si(4)-C(13)-P(2)-Cl(2)	150.3(3)	O(4)-C(11)-W(1)-C(9)	147(21)
Si(3)-C(13)-P(2)-W(2)	131.4(4)	O(4)-C(11)-W(1)-P(1)	-153(25)
Si(4)-C(13)-P(2)-W(2)	-103.0(4)	C(1)-P(1)-W(1)-C(8)	75(5)
P(1)-C(1)-Si(1)-C(2)	75.3(7)	CI(1)-P(1)-W(1)-C(8)	-33(5)
Si(2)-C(1)-Si(1)-C(2)	-160.2(6)	C(1)-P(1)-W(1)-C(10)	57.8(4)
P(1)-C(1)-Si(1)-C(3)	-49.2(7)	CI(1)-P(1)-W(1)-C(10)	-50.5(3)
Si(2)-C(1)-Si(1)-C(3)	75.2(7)	C(1)-P(1)-W(1)-C(12)	-122.5(4)
P(1)-C(1)-Si(1)-C(4)	-170.5(6)	CI(1)-P(1)-W(1)-C(12)	129.2(3)
Si(2)-C(1)-Si(1)-C(4)	-46.0(7)	C(1)-P(1)-W(1)-C(9)	147.1(4)
P(1)-C(1)-Si(2)-C(6)	-145.0(6)	CI(1)-P(1)-W(1)-C(9)	38.9(3)
Si(1)-C(1)-Si(2)-C(6)	83.3(7)	C(1)-P(1)-W(1)-C(11)	-31.3(4)
P(1)-C(1)-Si(2)-C(5)	93.1(6)	CI(1)-P(1)-W(1)-C(11)	-139.6(3)
Si(1)-C(1)-Si(2)-C(5)	-38.6(7)	O(6)-C(20)-W(2)-C(23)	-74(31)
P(1)-C(1)-Si(2)-C(7)	-27.2(6)	O(6)-C(20)-W(2)-C(21)	107(31)
Si(1)-C(1)-Si(2)-C(7)	-158.9(5)	O(6)-C(20)-W(2)-C(24)	-166(100)
P(2)-C(13)-Si(3)-C(16)	163.7(5)	O(6)-C(20)-W(2)-C(22)	17(31)
Si(4)-C(13)-Si(3)-C(16)	44.1(7)	O(6)-C(20)-W(2)-P(2)	9(49)
P(2)-C(13)-Si(3)-C(15)	43.8(7)	O(9)-C(23)-W(2)-C(20)	58(15)
Si(4)-C(13)-Si(3)-C(15)	-75.9(7)	O(9)-C(23)-W(2)-C(21)	-148(14)
P(2)-C(13)-Si(3)-C(14)	-79.6(7)	O(9)-C(23)-W(2)-C(24)	151(15)
Si(4)-C(13)-Si(3)-C(14)	160.8(6)	O(9)-C(23)-W(2)-C(22)	-36(15)
P(2)-C(13)-Si(4)-C(18)	151.4(5)	O(9)-C(23)-W(2)-P(2)	-121(15)
Si(3)-C(13)-Si(4)-C(18)	-81.2(6)	O(7)-C(21)-W(2)-C(20)	71(21)
P(2)-C(13)-Si(4)-C(17)	-87.2(6)	O(7)-C(21)-W(2)-C(23)	-83(26)
Si(3)-C(13)-Si(4)-C(17)	40.2(7)	O(7)-C(21)-W(2)-C(24)	-22(21)
P(2)-C(13)-Si(4)-C(19)	32.6(6)	O(7)-C(21)-W(2)-C(22)	165(21)
Si(3)-C(13)-Si(4)-C(19)	160.0(5)	O(7)-C(21)-W(2)-P(2)	-110(21)
O(1)-C(8)-W(1)-C(10)	-9(16)	O(10)-C(24)-W(2)-C(20)	-114(14)
O(1)-C(8)-W(1)-C(12)	171(100)	O(10)-C(24)-W(2)-C(23)	157(14)
O(1)-C(8)-W(1)-C(9)	-98(16)	O(10)-C(24)-W(2)-C(21)	-21(14)
O(1)-C(8)-W(1)-C(11)	80(16)	O(10)-C(24)-W(2)-C(22)	38(16)
O(1)-C(8)-W(1)-P(1)	-27(20)	O(10)-C(24)-W(2)-P(2)	66(14)
O(3)-C(10)-W(1)-C(8)	-89(40)	O(8)-C(22)-W(2)-C(20)	106(18)
O(3)-C(10)-W(1)-C(12)	85(42)	O(8)-C(22)-W(2)-C(23)	-165(18)
O(3)-C(10)-W(1)-C(9)	1(40)	O(8)-C(22)-W(2)-C(21)	12(18)
O(3)-C(10)-W(1)-C(11)	-180(100)	O(8)-C(22)-W(2)-C(24)	-47(21)
O(3)-C(10)-W(1)-P(1)	89(40)	O(8)-C(22)-W(2)-P(2)	-74(18)
O(5)-C(12)-W(1)-C(8)	35(21)	C(13)-P(2)-W(2)-C(20)	-54(22)
O(5)-C(12)-W(1)-C(10)	-139(19)	CI(2)-P(2)-W(2)-C(20)	55(22)
O(5)-C(12)-W(1)-C(9)	-55(21)	C(13)-P(2)-W(2)-C(23)	29.5(4)
O(5)-C(12)-W(1)-C(11)	126(21)	CI(2)-P(2)-W(2)-C(23)	138.3(3)

C(13)-P(2)-W(2)-C(21)	-151.8(5)	O(6)-C(20)-W(2)-C(23)	-74(31)
CI(2)-P(2)-W(2)-C(21)	-43.0(4)	O(6)-C(20)-W(2)-C(21)	107(31)
C(13)-P(2)-W(2)-C(24)	121.2(4)	O(6)-C(20)-W(2)-C(24)	-166(100)
CI(2)-P(2)-W(2)-C(24)	-130.0(3)	O(6)-C(20)-W(2)-C(22)	17(31)
C(13)-P(2)-W(2)-C(22)	-62.5(5)	O(6)-C(20)-W(2)-P(2)	9(49)
CI(2)-P(2)-W(2)-C(22)	46.4(4)	O(9)-C(23)-W(2)-C(20)	58(15)
O(1)-C(8)-W(1)-P(1)	-27(20)	O(9)-C(23)-W(2)-C(21)	-148(14)
O(3)-C(10)-W(1)-C(8)	-89(40)	O(9)-C(23)-W(2)-C(24)	151(15)
O(3)-C(10)-W(1)-C(12)	85(42)	O(9)-C(23)-W(2)-C(22)	-36(15)
O(3)-C(10)-W(1)-C(9)	1(40)	O(9)-C(23)-W(2)-P(2)	-121(15)
O(3)-C(10)-W(1)-C(11)	-180(100)	O(7)-C(21)-W(2)-C(20)	71(21)
O(3)-C(10)-W(1)-P(1)	89(40)	O(7)-C(21)-W(2)-C(23)	-83(26)
O(5)-C(12)-W(1)-C(8)	35(21)	O(7)-C(21)-W(2)-C(24)	-22(21)
O(5)-C(12)-W(1)-C(10)	-139(19)	O(7)-C(21)-W(2)-C(22)	165(21)
O(5)-C(12)-W(1)-C(9)	-55(21)	O(7)-C(21)-W(2)-P(2)	-110(21)
O(5)-C(12)-W(1)-C(11)	126(21)	O(10)-C(24)-W(2)-C(20)	-114(14)
O(5)-C(12)-W(1)-P(1)	-144(21)	O(10)-C(24)-W(2)-C(23)	157(14)
O(2)-C(9)-W(1)-C(8)	-37(29)	O(10)-C(24)-W(2)-C(21)	-21(14)
O(2)-C(9)-W(1)-C(10)	-129(29)	O(10)-C(24)-W(2)-C(22)	38(16)
O(2)-C(9)-W(1)-C(12)	55(29)	O(10)-C(24)-W(2)-P(2)	66(14)
O(2)-C(9)-W(1)-C(11)	-154(24)	O(8)-C(22)-W(2)-C(20)	106(18)
O(2)-C(9)-W(1)-P(1)	146(29)	O(8)-C(22)-W(2)-C(23)	-165(18)
O(4)-C(11)-W(1)-C(8)	30(25)	O(8)-C(22)-W(2)-C(21)	12(18)
O(4)-C(11)-W(1)-C(10)	123(25)	O(8)-C(22)-W(2)-C(24)	-47(21)
O(4)-C(11)-W(1)-C(12)	-61(25)	O(8)-C(22)-W(2)-P(2)	-74(18)
O(4)-C(11)-W(1)-C(9)	147(21)	C(13)-P(2)-W(2)-C(20)	-54(22)
O(4)-C(11)-W(1)-P(1)	-153(25)	CI(2)-P(2)-W(2)-C(20)	55(22)
C(1)-P(1)-W(1)-C(8)	75(5)	C(13)-P(2)-W(2)-C(23)	29.5(4)
CI(1)-P(1)-W(1)-C(8)	-33(5)	CI(2)-P(2)-W(2)-C(23)	138.3(3)
C(1)-P(1)-W(1)-C(10)	57.8(4)	C(13)-P(2)-W(2)-C(21)	-151.8(5)
CI(1)-P(1)-W(1)-C(10)	-50.5(3)	CI(2)-P(2)-W(2)-C(21)	-43.0(4)
C(1)-P(1)-W(1)-C(12)	-122.5(4)	C(13)-P(2)-W(2)-C(24)	121.2(4)
CI(1)-P(1)-W(1)-C(12)	129.2(3)	CI(2)-P(2)-W(2)-C(24)	-130.0(3)
C(1)-P(1)-W(1)-C(9)	147.1(4)	C(13)-P(2)-W(2)-C(22)	-62.5(5)
CI(1)-P(1)-W(1)-C(9)	38.9(3)	CI(2)-P(2)-W(2)-C(22)	46.4(4)
C(1)-P(1)-W(1)-C(11)	-31.3(4)		
CI(1)-P(1)-W(1)-C(11)	-139.6(3)		

 {Pentacarbonyl{6-{bis(trimethylsilyl)methyl}-6-phospha-bicyclo[3.1.0]hexan-2-onκP]wolfram(0)} (12)

Sehr gute Struktur, 14.09.2012

Tabelle F) 2 1 · 1	Cristalldaten	und	Struktury	verfeinerund	ı von	12
		matanuaton	unu	Otraktur	venenierung	, von	

Identifikationscada	CSTP250 2200
	GSTR259, 2290
Geratetyp	
Summenformel	C39 H62 O12 P2 Si4 W2
Molare Masse	1264.89
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c
Elementarzelle	a = 13.9766(2) Å α = 90°
	b = 8.9556(2) Å β = 99.4370(10)°
	$c = 21.3469(4) \text{ Å} \gamma = 90^{\circ}$
Elementarzellenvolumen [Å ³]	2635.80(9)
Z, Berechnete Dichte [Mg/m ³]	2, 1.594
Absorptionskoeffizient [mm ⁻¹]	4.563
F(000)	1252
Kristallgröße [mm ³]	0.26 x 0.20 x 0.08
Gemessener 20-Bereich [°]	2.47 - 28.
Indexgrößen	-18 \leq h \leq 18, -11 \leq k \leq 11, -28 \leq l \leq 28
Reflexe gemessen / unabhängig	37043 / 6343 [R _{int} = 0.0979]
Vollständigkeit für Θ = 28.00	99.7 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.7116 und 0.3833
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	6343 / 60 / 297
Goodness-of-fit an F ²	1.067
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0377, wR2 = 0.0873
R-Werte (sämtliche Daten)	R1 = 0.0498, wR2 = 0.0929
Größtes Maximum und Minimum	1.765 und -1.904 e∙Å ⁻³

	X	У	Z	U(eq)
C(1)	4785(3)	3803(5)	2970(2)	26(1)
C(2)	5666(3)	2919(6)	3209(2)	29(1)
C(3)	6054(4)	3371(6)	3893(2)	33(1)
C(4)	5507(3)	4796(6)	4022(2)	31(1)
C(5)	4665(3)	5000(5)	3468(2)	27(1)
C(6)	2772(3)	4406(5)	2753(2)	26(1)
C(7)	2971(4)	1222(7)	2147(3)	42(1)
C(8)	1026(4)	2765(7)	1896(3)	44(1)
C(9)	2711(5)	3992(7)	1333(2)	47(1)
C(10)	857(4)	4615(6)	3358(3)	38(1)
C(11)	1341(4)	6894(7)	2376(3)	48(1)
C(12)	2480(4)	6858(6)	3703(3)	43(1)
C(13)	3033(4)	67(6)	4729(2)	33(1)
C(14)	4127(4)	216(5)	3711(2)	31(1)
C(15)	4544(4)	2081(6)	4831(2)	35(1)
C(16)	2654(4)	3219(6)	4637(2)	36(1)
C(17)	2083(4)	1104(6)	3601(2)	34(1)
O(1)	6034(3)	2025(5)	2900(2)	44(1)
O(2)	2838(3)	-895(4)	5044(2)	44(1)
O(3)	4575(3)	-614(4)	3474(2)	44(1)
O(4)	5170(3)	2223(5)	5243(2)	44(1)
O(5)	2303(3)	4058(5)	4936(2)	54(1)
O(6)	1360(3)	682(5)	3328(2)	47(1)
Р	3697(1)	3630(1)	3365(1)	24(1)
Si(1)	2359(1)	3095(2)	2051(1)	31(1)
Si(2)	1847(1)	5647(2)	3053(1)	31(1)
W	3355(1)	1698(1)	4160(1)	27(1)
C(19)	260(20)	8730(20)	4793(9)	144(8)
C(18)	420(20)	7900(20)	5411(11)	123(8)
C(20)	-40(30)	10070(20)	5135(13)	136(7)
C(21)	-130(30)	11510(20)	4770(13)	147(8)
C(22)	-550(20)	13030(30)	4827(13)	137(9)

Tabelle D 2.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 2.3: Bindungslängen [Å]

C(1)-C(2)	1.482(6)	C(6)-P	1.819(4)	C(9)-H(9B)	0.9800
C(1)-C(5)	1.538(6)	C(6)-Si(2)	1.895(5)	C(9)-H(9C)	0.9800
C(1)-P	1.863(5)	C(6)-Si(1)	1.916(5)	C(10)-Si(2)	1.867(5)
C(1)-H(1)	1.0000	C(6)-H(6A)	1.0000	C(10)-H(10A)	0.9800
C(2)-O(1)	1.205(6)	C(7)-Si(1)	1.879(6)	C(10)-H(10B)	0.9800
C(2)-C(3)	1.527(6)	C(7)-H(7A)	0.9800	C(10)-H(10C)	0.9800
C(3)-C(4)	1.536(7)	C(7)-H(7B)	0.9800	C(11)-Si(2)	1.871(5)
C(3)-H(3A)	0.9900	C(7)-H(7C)	0.9800	C(11)-H(11A)	0.9800
C(3)-H(3B)	0.9900	C(8)-Si(1)	1.861(5)	C(11)-H(11B)	0.9800
C(4)-C(5)	1.537(6)	C(8)-H(8A)	0.9800	C(11)-H(11C)	0.9800
C(4)-H(4A)	0.9900	C(8)-H(8B)	0.9800	C(12)-Si(2)	1.866(6)
C(4)-H(4B)	0.9900	C(8)-H(8C)	0.9800	C(12)-H(12C)	0.9800
C(5)-P	1.813(5)	C(9)-Si(1)	1.867(5)	C(12)-H(12B)	0.9800
C(5)-H(5)	1.0000	C(9)-H(9A)	0.9800	C(12)-H(12A)	0.9800

Anhang D – Kristallographische Daten

C(13)-O(2)	1.153(6)	C(17)-W	2.042(5)	C(20)-C(21)	1.500(2)
C(13)-W	1.997(5)	P-W	2.5238(12)	C(20)-H(20A)	0.9900
C(14)-O(3)	1.143(6)	C(19)-C(20)	1.499(2)	C(20)-H(20B)	0.9900
C(14)-W	2.046(5)	C(19)-C(18)	1.499(2)	C(21)-C(22)	1.500(2)
C(15)-O(4)	1.142(6)	C(19)-H(19A)	0.9900	C(21)-H(21A)	0.9900
C(15)-W	2.037(5)	C(19)-H(19B)	0.9900	C(21)-H(21B)	0.9900
C(16)-O(5)	1.147(7)	C(18)-H(18A)	0.9800	C(22)-H(22A)	0.9800
C(16)-W	2.043(5)	C(18)-H(18B)	0.9800	C(22)-H(22B)	0.9800
C(17)-O(6)	1.146(6)	C(18)-H(18C)	0.9800	C(22)-H(22C)	0.9800

Tabelle D 2.4: Bindungswinkel [°]

C(2)-C(1)-C(5)	108.2(4)	H(7B)-C(7)-H(7C)	109.5
C(2)-C(1)-P	119.6(3)	Si(1)-C(8)-H(8A)	109.5
C(5)-C(1)-P	63.6(2)	Si(1)-C(8)-H(8B)	109.5
C(2)-C(1)-H(1)	117.7	H(8A)-C(8)-H(8B)	109.5
C(5)-C(1)-H(1)	117.7	Si(1)-C(8)-H(8C)	109.5
P-C(1)-H(1)	117.7	H(8A)-C(8)-H(8C)	109.5
O(1)-C(2)-C(1)	124.9(4)	H(8B)-C(8)-H(8C)	109.5
O(1)-C(2)-C(3)	125.7(4)	Si(1)-C(9)-H(9A)	109.5
C(1)-C(2)-C(3)	109.4(4)	Si(1)-C(9)-H(9B)	109.5
C(2)-C(3)-C(4)	106.4(4)	H(9A)-C(9)-H(9B)	109.5
C(2)-C(3)-H(3A)	110.4	Si(1)-C(9)-H(9C)	109.5
C(4)-C(3)-H(3A)	110.4	H(9A)-C(9)-H(9C)	109.5
C(2)-C(3)-H(3B)	110.4	H(9B)-C(9)-H(9C)	109.5
C(4)-C(3)-H(3B)	110.4	Si(2)-C(10)-H(10A)	109.5
H(3A)-C(3)-H(3B)	108.6	Si(2)-C(10)-H(10B)	109.5
C(3)-C(4)-C(5)	107.5(4)	H(10A)-C(10)-H(10B)	109.5
C(3)-C(4)-H(4A)	110.2	Si(2)-C(10)-H(10C)	109.5
C(5)-C(4)-H(4A)	110.2	H(10A)-C(10)-H(10C)	109.5
C(3)-C(4)-H(4B)	110.2	H(10B)-C(10)-H(10C)	109.5
C(5)-C(4)-H(4B)	110.2	Si(2)-C(11)-H(11A)	109.5
H(4A)-C(4)-H(4B)	108.5	Si(2)-C(11)-H(11B)	109.5
C(4)-C(5)-C(1)	107.1(4)	H(11A)-C(11)-H(11B)	109.5
C(4)-C(5)-P	118.4(3)	Si(2)-C(11)-H(11C)	109.5
C(1)-C(5)-P	67.0(2)	H(11A)-C(11)-H(11C)	109.5
C(4)-C(5)-H(5)	117.8	H(11B)-C(11)-H(11C)	109.5
C(1)-C(5)-H(5)	117.8	Si(2)-C(12)-H(12C)	109.5
P-C(5)-H(5)	117.8	Si(2)-C(12)-H(12B)	109.5
P-C(6)-Si(2)	115.2(2)	H(12C)-C(12)-H(12B)	109.5
P-C(6)-Si(1)	114.6(2)	Si(2)-C(12)-H(12A)	109.5
Si(2)-C(6)-Si(1)	119.2(2)	H(12C)-C(12)-H(12A)	109.5
P-C(6)-H(6A)	101.2	H(12B)-C(12)-H(12A)	109.5
Si(2)-C(6)-H(6A)	101.2	O(2)-C(13)-W	178.3(4)
Si(1)-C(6)-H(6A)	101.2	O(3)-C(14)-W	178.3(4)
Si(1)-C(7)-H(7A)	109.5	O(4)-C(15)-W	173.8(5)
Si(1)-C(7)-H(7B)	109.5	O(5)-C(16)-W	175.8(5)
H(7A)-C(7)-H(7B)	109.5	O(6)-C(17)-W	174.0(4)
Si(1)-C(7)-H(7C)	109.5	C(5)-P-C(6)	104.9(2)
H(7A)-C(7)-H(7C)	109.5	C(5)-P-C(1)	49.4(2)

C(6)-P-C(1)	100.3(2)	C(16)-W-C(14)	176.8(2)
C(5)-P-W	127.05(15)	C(13)-W-P	175.26(14)
C(6)-P-W	123.67(15)	C(15)-W-P	97.71(15)
C(1)-P-W	128.37(15)	C(17)-W-P	91.61(14)
C(8)-Si(1)-C(9)	108.3(3)	C(16)-W-P	92.11(15)
C(8)-Si(1)-C(7)	107.6(3)	C(14)-W-P	87.53(13)
C(9)-Si(1)-C(7)	107.2(3)	C(20)-C(19)-C(18)	88.93(15)
C(8)-Si(1)-C(6)	113.6(2)	C(20)-C(19)-H(19A)	113.8
C(9)-Si(1)-C(6)	106.9(2)	C(18)-C(19)-H(19A)	113.8
C(7)-Si(1)-C(6)	112.9(2)	C(20)-C(19)-H(19B)	113.8
C(12)-Si(2)-C(10)	108.5(3)	C(18)-C(19)-H(19B)	113.8
C(12)-Si(2)-C(11)	107.5(3)	H(19A)-C(19)-H(19B)	111.1
C(10)-Si(2)-C(11)	110.9(3)	C(19)-C(20)-C(21)	116.1(19)
C(12)-Si(2)-C(6)	109.0(2)	C(19)-C(20)-H(20A)	108.3
C(10)-Si(2)-C(6)	114.4(2)	C(21)-C(20)-H(20A)	108.3
C(11)-Si(2)-C(6)	106.4(2)	C(19)-C(20)-H(20B)	108.3
C(13)-W-C(15)	86.3(2)	C(21)-C(20)-H(20B)	108.3
C(13)-W-C(17)	84.5(2)	H(20A)-C(20)-H(20B)	107.4
C(15)-W-C(17)	170.51(19)	C(20)-C(21)-C(22)	138(2)
C(13)-W-C(16)	90.6(2)	C(20)-C(21)-H(21A)	102.7
C(15)-W-C(16)	86.6(2)	C(22)-C(21)-H(21A)	102.7
C(17)-W-C(16)	91.3(2)	C(20)-C(21)-H(21B)	102.7
C(13)-W-C(14)	89.94(19)	C(22)-C(21)-H(21B)	102.7
C(15)-W-C(14)	90.3(2)	H(21A)-C(21)-H(21B)	105.0
C(17)-W-C(14)	91.9(2)		

Γabelle D 2.5: Anisotrope Auslenkungsparameter (Å ² x 10 ³).

Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2$ [h ² a ^{*2} U11 + + 2 h k a* b* U12].						
	U11	U22	U33	U23	U13	U12
C(1)	29(2)	27(2)	22(2)	-1(2)	3(2)	1(2)
C(2)	28(2)	28(2)	31(2)	0(2)	5(2)	0(2)
C(3)	30(2)	41(3)	27(2)	2(2)	1(2)	4(2)
C(4)	31(2)	34(3)	28(2)	-2(2)	0(2)	0(2)
C(5)	30(2)	23(2)	27(2)	0(2)	4(2)	-1(2)
C(6)	25(2)	27(2)	27(2)	4(2)	2(2)	-2(2)
C(7)	50(3)	41(3)	36(3)	-9(2)	6(2)	1(2)
C(8)	38(3)	53(4)	37(3)	-4(2)	0(2)	-12(3)
C(9)	57(3)	56(4)	26(2)	2(2)	3(2)	-15(3)
C(10)	30(2)	36(3)	48(3)	1(2)	7(2)	2(2)
C(11)	39(3)	45(4)	58(4)	18(3)	2(3)	12(2)
C(12)	39(3)	31(3)	58(3)	-7(2)	7(2)	0(2)
C(13)	44(3)	32(3)	26(2)	3(2)	12(2)	3(2)
C(14)	44(3)	25(2)	27(2)	3(2)	11(2)	-1(2)
C(15)	41(3)	32(3)	32(3)	7(2)	9(2)	7(2)
C(16)	42(3)	36(3)	31(2)	3(2)	7(2)	0(2)
C(17)	41(3)	30(3)	29(2)	5(2)	6(2)	0(2)
O(1)	42(2)	42(2)	48(2)	-9(2)	6(2)	12(2)
O(2)	65(3)	35(2)	35(2)	7(2)	16(2)	2(2)

-						
O(3)	56(2)	38(2)	40(2)	3(2)	18(2)	10(2)
O(4)	44(2)	54(3)	32(2)	4(2)	-3(2)	5(2)
O(5)	61(3)	54(3)	47(2)	-5(2)	14(2)	18(2)
O(6)	46(2)	44(2)	48(2)	6(2)	4(2)	-3(2)
Р	26(1)	24(1)	22(1)	1(1)	3(1)	2(1)
Si(1)	32(1)	35(1)	24(1)	0(1)	1(1)	-5(1)
Si(2)	27(1)	27(1)	38(1)	3(1)	3(1)	3(1)
W	34(1)	24(1)	22(1)	3(1)	6(1)	3(1)
C(19)	144(8)	145(8)	144(8)	1(2)	23(2)	0(2)
C(18)	123(8)	123(8)	123(8)	1(2)	21(2)	-1(2)
C(20)	136(7)	137(7)	136(7)	0(2)	23(2)	-1(2)
C(21)	147(8)	148(8)	147(8)	0(2)	24(2)	0(2)
C(22)	137(9)	137(9)	137(9)	0(2)	23(2)	-1(2)

Tabelle D 2.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å ² x 10^4)	0^{3})
--	-----------

	x	У	Z	U(eq)
H(1)	4680	4114	2514	31
H(3A)	6760	3565	3948	40
H(3B)	5937	2568	4190	40
H(4A)	5947	5669	4053	37
H(4B)	5255	4702	4428	37
H(5)	4504	6039	3315	32
H(6A)	3157	5158	2553	32
H(7A)	2776	696	2508	51
H(7B)	3676	1360	2222	51
H(7C)	2781	632	1759	51
H(8A)	687	3721	1814	52
H(8B)	827	2289	2268	52
H(8C)	862	2112	1526	52
H(9A)	3419	3980	1367	56
H(9B)	2480	5027	1303	56
H(9C)	2419	3441	953	56
H(10A)	1140	3947	3703	46
H(10B)	489	4025	3013	46
H(10C)	424	5329	3517	46
H(11A)	909	6316	2057	58
H(11B)	1873	7311	2184	58
H(11C)	975	7708	2532	58
H(12C)	2004	7490	3866	51
H(12B)	2954	7490	3537	51
H(12A)	2815	6231	4046	51
H(19A)	858	8884	4608	173
H(19B)	-266	8313	4474	173
H(18A)	-65	8211	5667	184
H(18B)	1071	8121	5640	184
H(18C)	361	6825	5328	184
H(20A)	442	10217	5526	164

H(20B)	-670	9853	5267	164	-
H(21A)	-441	11188	4341	177	
H(21B)	552	11731	4728	177	
H(22A)	-1028	12991	5115	205	
H(22B)	-867	13372	4407	205	
H(22C)	-31	13731	4995	205	

Tabelle D 2.7: Torsionswinkel [°]

C(5)-C(1)-C(2)-O(1)	-169.9(5)	O(2)-C(13)-W-C(17)	38(16)
P-C(1)-C(2)-O(1)	120.7(5)	O(2)-C(13)-W-C(16)	130(16)
C(5)-C(1)-C(2)-C(3)	7.6(5)	O(2)-C(13)-W-C(14)	-54(16)
P-C(1)-C(2)-C(3)	-61.8(5)	O(2)-C(13)-W-P	4(17)
O(1)-C(2)-C(3)-C(4)	165.8(5)	O(4)-C(15)-W-C(13)	-17(4)
C(1)-C(2)-C(3)-C(4)	-11.7(5)	O(4)-C(15)-W-C(17)	-4(5)
C(2)-C(3)-C(4)-C(5)	11.2(5)	O(4)-C(15)-W-C(16)	73(4)
C(3)-C(4)-C(5)-C(1)	-6.7(5)	O(4)-C(15)-W-C(14)	-107(4)
C(3)-C(4)-C(5)-P	65.8(5)	O(4)-C(15)-W-P	165(4)
C(2)-C(1)-C(5)-C(4)	-0.4(5)	O(6)-C(17)-W-C(13)	3(4)
P-C(1)-C(5)-C(4)	114.2(3)	O(6)-C(17)-W-C(15)	-11(5)
C(2)-C(1)-C(5)-P	-114.6(4)	O(6)-C(17)-W-C(16)	-88(4)
C(4)-C(5)-P-C(6)	171.4(3)	O(6)-C(17)-W-C(14)	92(4)
C(1)-C(5)-P-C(6)	-91.0(3)	O(6)-C(17)-W-P	-180(100)
C(4)-C(5)-P-C(1)	-97.6(4)	O(5)-C(16)-W-C(13)	66(7)
C(4)-C(5)-P-W	14.6(4)	O(5)-C(16)-W-C(15)	-20(7)
C(1)-C(5)-P-W	112.2(2)	O(5)-C(16)-W-C(17)	150(7)
Si(2)-C(6)-P-C(5)	-89.4(3)	O(5)-C(16)-W-C(14)	-35(9)
Si(1)-C(6)-P-C(5)	126.8(2)	O(5)-C(16)-W-P	-118(7)
Si(2)-C(6)-P-C(1)	-139.9(3)	O(3)-C(14)-W-C(13)	-69(15)
Si(1)-C(6)-P-C(1)	76.2(3)	O(3)-C(14)-W-C(15)	17(15)
Si(2)-C(6)-P-W	68.5(3)	O(3)-C(14)-W-C(17)	-154(15)
Si(1)-C(6)-P-W	-75.4(3)	O(3)-C(14)-W-C(16)	31(17)
C(2)-C(1)-P-C(5)	96.9(4)	O(3)-C(14)-W-P	115(15)
C(2)-C(1)-P-C(6)	-162.3(4)	C(5)-P-W-C(13)	-153.5(18)
C(5)-C(1)-P-C(6)	100.8(3)	C(6)-P-W-C(13)	53.6(18)
C(2)-C(1)-P-W	-12.6(4)	C(1)-P-W-C(13)	-89.7(18)
C(5)-C(1)-P-W	-109.5(2)	C(5)-P-W-C(15)	-5.8(2)
P-C(6)-Si(1)-C(8)	124.6(3)	C(6)-P-W-C(15)	-158.7(2)
Si(2)-C(6)-Si(1)-C(8)	-17.7(4)	C(1)-P-W-C(15)	58.0(2)
P-C(6)-Si(1)-C(9)	-116.0(3)	C(5)-P-W-C(17)	172.4(2)
Si(2)-C(6)-Si(1)-C(9)	101.7(3)	C(6)-P-W-C(17)	19.5(2)
P-C(6)-Si(1)-C(7)	1.7(4)	C(1)-P-W-C(17)	-123.8(2)
Si(2)-C(6)-Si(1)-C(7)	-140.6(3)	C(5)-P-W-C(16)	81.0(2)
P-C(6)-Si(2)-C(12)	41.1(3)	C(6)-P-W-C(16)	-71.8(2)
Si(1)-C(6)-Si(2)-C(12)	-176.8(3)	C(1)-P-W-C(16)	144.8(2)
P-C(6)-Si(2)-C(10)	-80.5(3)	C(5)-P-W-C(14)	-95.8(2)
Si(1)-C(6)-Si(2)-C(10)	61.6(3)	C(6)-P-W-C(14)	111.3(2)
P-C(6)-Si(2)-C(11)	156.7(3)	C(1)-P-W-C(14)	-32.0(2)
Si(1)-C(6)-Si(2)-C(11)	-61.2(3)	C(18)-C(19)-C(20)-C(21)	168(4)
O(2)-C(13)-W-C(15)	-144(16)	C(19)-C(20)-C(21)-C(22)	166(4)

3. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(bicyclo[2.2.1]hept-5-en-2-yl))oxaphosphiran-κP}wolfram(0)} (**13**)

Tabelle D 3.1: Kristalldaten und Strukturverfeinerung von 13

Identifikationscode	dq235 0m
Gerätetyp	Bruker APEX-II CCD
Summenformel	C ₂₀ H ₂₈ O ₆ PSi ₂ W
Molare Masse	635.42
Temperatur [K]	90(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Triklin, <i>P</i> Ī
Elementarzelle	a = 9.7821(6) Å α = 99.022(3)°
	b = 11.4412(7) Å β = 92.327(3)°
	$c = 11.5499(8) \text{ Å} \qquad \gamma = 98.902(3)^{\circ}$
Elementarzellenvolumen [Å3]	1258.49(14)
Z, Berechnete Dichte [Mg/m ³]	2, 1.677
Absorptionskoeffizient [mm ⁻¹]	4.779
F(000)	626.0
Kristallgröße [mm ³]	0.2 x 0.1 x 0.1
Gemessener 20-Bereich [°]	3.578 – 60.052
Indexgrößen	-13 \leq h \leq 13, -15 \leq k \leq 16, -23 \leq l \leq 23
Reflexe gemessen / unabhängig	25528 / 7209 [R_{int} = 0.0396, R_{σ} = 0.0396]
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	7209 / 261 / 277
Goodness-of-fit an F ²	0.757
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0305, wR2 = 0.0884
R-Werte (sämtliche Daten)	R1 = 0.0394, wR2 = 0.0990
Größtes Maximum und Minimum	1.44 und -0.96 e∙Å ⁻³

	X	У	Z	U(eq)
W001	7773.2(2)	4739.1(2)	2234.4(2)	15.16(6)
P1	6789.6(10)	6509.5(9)	3064.6(8)	15.11(18)
Si2	4519.0(11)	7873.4(10)	2193.3(10)	18.4(2)
Si1	7837.5(12)	8890.5(10)	2203.7(10)	20.0(2)
01	5559(3)	6343(3)	4002(2)	19.2(5)
O3	4871(3)	3887(3)	771(3)	27.8(7)
O5	10564(3)	5748(3)	3839(3)	34.8(8)
O4	8983(4)	6040(3)	173(3)	34.3(8)
O2	6844(4)	3364(3)	4342(3)	32.6(7)
O6	8724(3)	2383(3)	940(3)	33.1(7)
C20	9589(4)	5384(4)	3251(4)	21.1(8)
C17	8410(4)	3245(4)	1432(4)	22.3(8)
C18	8536(4)	5584(4)	919(4)	21.2(8)
C9	6373(4)	7560(3)	2141(3)	15.7(7)
C16	5911(4)	4181(4)	1302(3)	18.8(7)
C19	7138(4)	3859(4)	3592(4)	20.2(7)
C11	3290(4)	6425(4)	1875(4)	26.6(9)
C2	7548(4)	6808(4)	5562(3)	21.1(7)
C6	8859(4)	7722(4)	6083(4)	27.3(9)
C3	6657(4)	6732(4)	6655(3)	21.7(8)
C1	6809(4)	7188(4)	4562(3)	19.6(7)
C12	4113(5)	8698(4)	3629(4)	24.5(8)
C10	4269(5)	8789(4)	1008(4)	26.7(9)
C7	7406(5)	8724(4)	7411(4)	27.0(9)
C4	7866(5)	6821(4)	7614(4)	27.3(9)
C13	7473(5)	10255(4)	3187(5)	33.8(10)
C5	8599(5)	8045(4)	7394(4)	27.3(9)
C8	6262(5)	7953(4)	7002(4)	29.0(9)
C15	9521(4)	8537(5)	2774(4)	31.8(10)
C14	8052(5)	9203(4)	680(4)	29.6(9)

Tabelle D 3.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 3.3: Bindungslängen [Å]

W1-P1	2.4530(10)	Si2-C10	1.880(4)	C2-C3	1.568(6)
W1-C20	2.057(4)	Si1-C9	1.912(4)	C2-C1	1.495(5)
W1-C17	2.012(4)	Si1-C13	1.873(5)	C6-C5	1.542(6)
W1-C18	2.031(4)	Si1-C15	1.873(5)	C3-C4	1.568(6)
W1-C16	2.037(4)	Si1-C14	1.864(5)	C3-C8	1.505(6)
W1-C19	2.059(4)	O1-C1	1.491(5)	C7-C5	1.498(6)
P1-01	1.661(3)	O3-C16	1.142(5)	C7-C8	1.332(6)
P1-C9	1.807(4)	O5-C20	1.132(5)	C4-C5	1.535(7)
P1-C1	1.779(4)	O4-C18	1.144(5)		
Si2-C9	1.904(4)	O2-C19	1.130(5)		
Si2-C11	1.866(5)	O6-C17	1.150(5)		
Si2-C12	1.864(4)	C2-C6	1.557(6)		

C20-W1-P1	90.48(12)	C15-Si1-C9	111.2(2)
C20-W1-C19	86.44(16)	C14-Si1-C9	108.07(19)
C17-W1-P1	174.09(12)	C14-Si1-C13	110.4(2)
C17-W1-C20	95.33(16)	C14-Si1-C15	107.9(2)
C17-W1-C18	88.26(17)	C1-O1-P1	68.48(18)
C17-W1-C16	88.45(16)	O5-C20-W1	177.9(4)
C17-W1-C19	89.67(17)	O6-C17-W1	177.0(4)
C18-W1-P1	90.67(12)	O4-C18-W1	178.5(4)
C18-W1-C20	90.33(17)	P1-C9-Si2	114.66(19)
C18-W1-C16	90.88(16)	P1-C9-Si1	112.14(19)
C18-W1-C19	175.99(14)	Si2-C9-Si1	118.1(2)
C16-W1-P1	85.76(11)	O3-C16-W1	178.7(4)
C16-W1-C20	176.06(13)	O2-C19-W1	177.1(4)
C16-W1-C19	92.49(16)	C6-C2-C3	102.6(3)
C19-W1-P1	91.74(12)	C1-C2-C6	113.0(4)
O1-P1-W1	118.32(11)	C1-C2-C3	113.2(3)
O1-P1-C9	108.51(16)	C5-C6-C2	104.1(3)
O1-P1-C1	51.22(16)	C4-C3-C2	98.5(3)
C9-P1-W1	120.37(12)	C8-C3-C2	106.5(3)
C1-P1-W1	128.61(14)	C8-C3-C4	99.1(3)
C1-P1-C9	108.89(18)	O1-C1-P1	60.30(17)
C11-Si2-C9	109.36(18)	O1-C1-C2	116.0(3)
C11-Si2-C10	109.5(2)	C2-C1-P1	124.7(3)
C12-Si2-C9	114.40(18)	C8-C7-C5	108.3(4)
C12-Si2-C11	107.8(2)	C5-C4-C3	94.3(3)
C12-Si2-C10	109.3(2)	C7-C5-C6	105.0(4)
C10-Si2-C9	106.41(19)	C7-C5-C4	100.7(4)
C13-Si1-C9	111.85(19)	C4-C5-C6	99.7(4)
C13-Si1-C15	107.4(2)	C7-C8-C3	108.3(4)

Tabelle	D 3.4:	Bindungswinkel	[°	1
---------	--------	----------------	----	---

Tabelle D 3 5: Anisotrope Auslenkungsr	parameter (Å ²	$\times 10^{3}$)

Der anisoti	ope Auslenkungs	faktorexponer	nt hat die Form	ı: -2π² [h² a*² l	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
W1	15.19(8)	14.53(9)	16.64(9)	2.36(6)	2.56(5)	4.97(5)
P1	17.0(4)	14.5(4)	14.3(4)	2.8(3)	1.7(3)	3.6(3)
Si2	20.2(5)	17.3(5)	19.0(5)	2.8(4)	1.7(4)	6.8(4)
Si1	24.2(5)	15.7(5)	19.2(5)	2.9(4)	3.2(4)	-0.2(4)
01	19.9(12)	19.2(14)	19.0(13)	3.6(11)	4.1(10)	3.9(10)
O3	21.7(14)	37.1(19)	21.5(15)	-1.2(13)	-1.5(11)	2.4(12)
O5	20.8(14)	42(2)	38.8(19)	-0.6(16)	-2.5(13)	6.2(14)
04	35.6(18)	38(2)	32.4(17)	13.1(15)	11.2(14)	5.7(15)
02	31.2(17)	37.4(19)	31.7(17)	17.8(15)	0.5(13)	1.8(14)
O6	32.6(17)	24.6(16)	43(2)	-1.4(14)	1.1(14)	13.9(13)
C20	18.1(16)	24(2)	22.6(18)	3.2(15)	4.5(13)	5.9(14)
C17	19.6(17)	21.1(19)	25.5(19)	-0.7(15)	1.2(15)	5.7(14)
C18	23.8(18)	18.6(19)	21.8(18)	2.2(15)	1.7(14)	6.1(14)
C9	19.6(15)	10.9(15)	15.7(16)	0.0(12)	-0.2(12)	1.6(12)
C16	19.3(16)	20.2(19)	17.4(17)	0.8(14)	5.6(13)	6.5(13)
070						

C19	17.5(16)	22.1(19)	21.7(18)	6.0(15)	-1.6(13)	4.3(14)
C11	23.5(19)	27(2)	29(2)	2.2(17)	1.6(16)	5.1(16)
C2	24.6(18)	20.1(19)	19.3(17)	2.8(14)	-1.1(13)	6.8(14)
C6	24.4(19)	33(2)	24.2(19)	4.1(17)	-1.7(15)	5.4(16)
C3	24.6(18)	22.1(19)	18.6(17)	5.9(14)	0.4(14)	2.3(14)
C1	25.0(18)	20.4(18)	13.6(16)	0.5(13)	1.0(13)	6.3(14)
C12	30(2)	22(2)	23.7(19)	1.5(16)	6.4(16)	13.2(16)
C10	33(2)	27(2)	23.2(19)	6.7(17)	1.2(16)	14.2(17)
C7	28.6(19)	24(2)	27(2)	-2.6(16)	-2.9(16)	7.4(16)
C4	34(2)	29(2)	21.2(19)	5.7(16)	-1.1(16)	9.9(17)
C13	41(3)	21(2)	34(2)	-5.3(18)	8(2)	-3.3(18)
C5	29(2)	27(2)	25(2)	3.6(16)	-2.8(15)	5.3(16)
C8	28(2)	31(2)	30(2)	3.6(18)	3.7(16)	10.7(16)
C15	21.7(19)	33(2)	39(2)	9(2)	-0.9(17)	-2.3(17)
C14	38(2)	25(2)	26(2)	7.8(17)	8.3(17)	-1.1(18)

Tabelle D 3.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å² x 10^3)

	X	У	Z	U(eq)
H9	6392	7117	1345	19
H11A	3521	5955	1168	40
H11B	2360	6583	1776	40
H11C	3356	5991	2517	40
H2	7818	6025	5297	25
H6A	9691	7363	5988	33
H6B	8951	8428	5706	33
H3	5911	6043	6595	26
H1	6705	8036	4684	24
H12A	4187	8212	4227	37
H12B	3187	8874	3569	37
H12C	4757	9434	3830	37
H10A	4786	9582	1236	40
H10B	3302	8835	894	40
H10C	4590	8417	289	40
H7	7456	9543	7664	32
H4A	7547	6846	8401	33
H4B	8425	6192	7444	33
H13A	6602	10449	2930	51
H13B	8198	10917	3157	51
H13C	7431	10100	3979	51
H5	9412	8418	7922	33
H8	5371	8138	6942	35
H15A	9430	8354	3553	48
H15B	10237	9218	2792	48
H15C	9758	7859	2268	48
H14A	8295	8513	197	44
H14B	8773	9878	693	44
H14C	7197	9378	365	44

4. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(1-ethylpropyl)-oxaphosphiranκP}wolfram(0)} (**16**)

Ausgezeichnete Struktur, 18.10.2011

Tabelle D 4.1: Kristalldaten und Strukturverfeinerung von 16
--

Identifikationscode	GSTR219. Greg1753
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{18}H_{31}O_6PSi_2W$
Molare Masse	614.43
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Orthorhombisch, $P2_12_12_1$
Elementarzelle	a = 9.3210(2) Å α = 90°
	b = 11.7316(2) Å β = 90°
	$c = 23.0786(4) \text{ Å} \gamma = 90^{\circ}$
Elementarzellenvolumen [Å ³]	2523.65(8)
Z, Berechnete Dichte [Mg/m ³]	4, 1.617
Absorptionskoeffizient [mm ⁻¹]	4.763
F(000)	1216
Kristallgröße [mm ³]	0.36 x 0.17 x 0.05
Gemessener 20-Bereich [°]	2.79 - 28.00
Indexgrößen	$-12 \le h \le 11, \ -15 \le k \le 15, \ -30 \le l \le 29$
Reflexe gemessen / unabhängig	27292 / 6003 [R _{int} = 0.0484]
Vollständigkeit für Θ = 28.00	99.6 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.7967 und 0.2789
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	6003 / 0 / 261
Goodness-of-fit an F ²	1.028
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0223, wR2 = 0.0439
R-Werte (sämtliche Daten)	R1 = 0.0251, wR2 = 0.0444
Extinktionskoeffizient	-0.015(5)
Größtes Maximum und Minimum	1.327 und -1.171 e∙Å⁻³

	X	У	Z	U(eq)
C(1)	2289(3)	-359(2)	9601(1)	20(1)
C(10)	-1262(4)	-1986(3)	8892(2)	31(1)
C(11)	1463(4)	-4226(3)	8338(2)	36(1)
C(12)	1767(4)	-3394(3)	9580(2)	34(1)
C(13)	4357(4)	-3379(3)	8763(2)	37(1)
C(14)	5843(4)	1856(3)	7949(2)	28(1)
C(15)	5536(4)	-590(3)	7978(2)	27(1)
C(16)	5790(3)	749(3)	9035(1)	21(1)
C(17)	3305(4)	2146(3)	8599(2)	25(1)
C(18)	3194(3)	681(3)	7607(2)	25(1)
C(2)	2534(3)	699(2)	9958(1)	20(1)
C(3)	2947(4)	373(3)	10580(2)	26(1)
C(4)	3364(5)	1387(3)	10955(2)	42(1)
C(5)	1223(4)	1504(2)	9914(2)	26(1)
C(6)	-138(4)	1068(3)	10201(2)	39(1)
C(7)	1953(3)	-1678(2)	8530(1)	17(1)
C(8)	-327(3)	254(3)	8387(2)	28(1)
C(9)	-326(4)	-1829(3)	7610(1)	28(1)
O(1)	3589(2)	-1062(2)	9505(1)	21(1)
O(2)	6643(3)	2493(2)	7757(1)	40(1)
O(3)	6109(3)	-1338(2)	7763(1)	45(1)
O(4)	6551(3)	717(2)	9423(1)	33(1)
O(5)	2646(3)	2926(2)	8725(1)	39(1)
O(6)	2515(3)	618(2)	7198(1)	40(1)
Р	2930(1)	-555(1)	8882(1)	16(1)
Si(1)	-4(1)	-1321(1)	8362(1)	19(1)
Si(2)	2366(1)	-3162(1)	8821(1)	24(1)
W	4471(1)	764(1)	8326(1)	18(1)

Tabelle D 4.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 4.3: Bindungslängen [Å]

C(1)-O(1)	1.482(4)	C(6)-H(6B)	0.9800	C(10)-H(10C)	0.9800
C(1)-C(2)	1.508(4)	C(6)-H(6C)	0.9800	C(11)-Si(2)	1.873(3)
C(1)-P	1.778(3)	C(7)-P	1.797(3)	C(11)-H(11A)	0.9800
C(1)-H(1)	1.000	C(7)-Si(2)	1.906(3)	C(11)-H(11B)	0.9800
C(2)-C(3)	1.534(5)	C(7)-Si(1)	1.912(3)	C(11)-H(11C)	0.9800
C(2)-C(5)	1.547(4)	C(7)-H(7)	1.000	C(12)-Si(2)	1.860(4)
C(2)-H(2)	1.000	C(8)-Si(1)	1.874(3)	C(12)-H(12A)	0.9800
C(3)-C(4)	1.521(5)	C(8)-H(8A)	0.9800	C(12)-H(12B)	0.9800
C(3)-H(3A)	0.9900	C(8)-H(8B)	0.9800	C(12)-H(12C)	0.9800
C(3)-H(3B)	0.9900	C(8)-H(8C)	0.9800	C(13)-Si(2)	1.877(4)
C(4)-H(4A)	0.9800	C(9)-Si(1)	1.860(3)	C(13)-H(13A)	0.9800
C(4)-H(4B)	0.9800	C(9)-H(9A)	0.9800	C(13)-H(13B)	0.9800
C(4)-H(4C)	0.9800	C(9)-H(9B)	0.9800	C(13)-H(13C)	0.9800
C(5)-C(6)	1.521(5)	C(9)-H(9C)	0.9800	C(14)-O(2)	1.145(4)
C(5)-H(5A)	0.9900	C(10)-Si(1)	1.865(3)	C(14)-W	2.008(4)
C(5)-H(5B)	0.9900	C(10)-H(10A)	0.9800	C(15)-O(3)	1.140(4)
C(6)-H(6A)	0.9800	C(10)-H(10B)	0.9800	C(15)-W	2.038(3)

Anhang	D –	Kristallographische Date	en
		5 1	

C(16)-O(4)	1.143(4)	C(17)-W	2.051(3)	O(1)-P	1.672(2)
C(16)-W	2.048(3)	C(18)-O(6)	1.141(4)	P-W	2.4712(8)
C(17)-O(5)	1.140(4)	C(18)-W	2.043(3)		

Tabelle D 4.4: Bindungswinkel [°]

O(1)-C(1)-C(2)	114.5(3)	H(8A)-C(8)-H(8B)	109.5
O(1)-C(1)-P	60.93(14)	Si(1)-C(8)-H(8C)	109.5
C(2)-C(1)-P	124.5(2)	H(8A)-C(8)-H(8C)	109.5
O(1)-C(1)-H(1)	115.1	H(8B)-C(8)-H(8C)	109.5
C(2)-C(1)-H(1)	115.1	Si(1)-C(9)-H(9A)	109.5
P-C(1)-H(1)	115.1	Si(1)-C(9)-H(9B)	109.5
C(1)-C(2)-C(3)	110.1(2)	H(9A)-C(9)-H(9B)	109.5
C(1)-C(2)-C(5)	110.2(3)	Si(1)-C(9)-H(9C)	109.5
C(3)-C(2)-C(5)	114.4(3)	H(9A)-C(9)-H(9C)	109.5
C(1)-C(2)-H(2)	107.3	H(9B)-C(9)-H(9C)	109.5
C(3)-C(2)-H(2)	107.3	Si(1)-C(10)-H(10A)	109.5
C(5)-C(2)-H(2)	107.3	Si(1)-C(10)-H(10B)	109.5
C(4)-C(3)-C(2)	113.6(3)	H(10A)-C(10)-H(10B)	109.5
C(4)-C(3)-H(3A)	108.8	Si(1)-C(10)-H(10C)	109.5
C(2)-C(3)-H(3A)	108.8	H(10A)-C(10)-H(10C)	109.5
C(4)-C(3)-H(3B)	108.8	H(10B)-C(10)-H(10C)	109.5
C(2)-C(3)-H(3B)	108.8	Si(2)-C(11)-H(11A)	109.5
H(3A)-C(3)-H(3B)	107.7	Si(2)-C(11)-H(11B)	109.5
C(3)-C(4)-H(4A)	109.5	H(11A)-C(11)-H(11B)	109.5
C(3)-C(4)-H(4B)	109.5	Si(2)-C(11)-H(11C)	109.5
H(4A)-C(4)-H(4B)	109.5	H(11A)-C(11)-H(11C)	109.5
C(3)-C(4)-H(4C)	109.5	H(11B)-C(11)-H(11C)	109.5
H(4A)-C(4)-H(4C)	109.5	Si(2)-C(12)-H(12A)	109.5
H(4B)-C(4)-H(4C)	109.5	Si(2)-C(12)-H(12B)	109.5
C(6)-C(5)-C(2)	115.2(3)	H(12A)-C(12)-H(12B)	109.5
C(6)-C(5)-H(5A)	108.5	Si(2)-C(12)-H(12C)	109.5
C(2)-C(5)-H(5A)	108.5	H(12A)-C(12)-H(12C)	109.5
C(6)-C(5)-H(5B)	108.5	H(12B)-C(12)-H(12C)	109.5
C(2)-C(5)-H(5B)	108.5	Si(2)-C(13)-H(13A)	109.5
H(5A)-C(5)-H(5B)	107.5	Si(2)-C(13)-H(13B)	109.5
C(5)-C(6)-H(6A)	109.5	H(13A)-C(13)-H(13B)	109.5
C(5)-C(6)-H(6B)	109.5	Si(2)-C(13)-H(13C)	109.5
H(6A)-C(6)-H(6B)	109.5	H(13A)-C(13)-H(13C)	109.5
C(5)-C(6)-H(6C)	109.5	H(13B)-C(13)-H(13C)	109.5
H(6A)-C(6)-H(6C)	109.5	O(2)-C(14)-W	177.1(3)
H(6B)-C(6)-H(6C)	109.5	O(3)-C(15)-W	177.4(3)
P-C(7)-Si(2)	114.08(16)	O(4)-C(16)-W	178.0(3)
P-C(7)-Si(1)	114.52(15)	O(5)-C(17)-W	176.9(3)
Si(2)-C(7)-Si(1)	117.65(15)	O(6)-C(18)-W	177.9(3)
P-C(7)-H(7)	102.5	C(1)-O(1)-P	68.30(16)
Si(2)-C(7)-H(7)	102.5	O(1)-P-C(1)	50.77(12)
Si(1)-C(7)-H(7)	102.5	O(1)-P-C(7)	108.35(12)
Si(1)-C(8)-H(8A)	109.5	C(1)-P-C(7)	110.29(14)
Si(1)-C(8)-H(8B)	109.5	O(1)-P-W	117.14(8)

C(1)-P-W	126.83(10)	C(14)-W-C(18)	92.90(13)
C(7)-P-W	121.22(11)	C(15)-W-C(18)	85.80(13)
C(9)-Si(1)-C(10)	112.14(17)	C(14)-W-C(16)	88.20(13)
C(9)-Si(1)-C(8)	108.56(16)	C(15)-W-C(16)	90.89(13)
C(10)-Si(1)-C(8)	106.97(16)	C(18)-W-C(16)	176.53(14)
C(9)-Si(1)-C(7)	105.82(15)	C(14)-W-C(17)	88.08(14)
C(10)-Si(1)-C(7)	112.07(15)	C(15)-W-C(17)	174.45(14)
C(8)-Si(1)-C(7)	111.29(14)	C(18)-W-C(17)	88.78(13)
C(12)-Si(2)-C(11)	109.20(17)	C(16)-W-C(17)	94.54(13)
C(12)-Si(2)-C(13)	110.10(18)	C(14)-W-P	174.02(10)
C(11)-Si(2)-C(13)	108.16(17)	C(15)-W-P	89.99(10)
C(12)-Si(2)-C(7)	113.90(15)	C(18)-W-P	93.06(9)
C(11)-Si(2)-C(7)	107.94(15)	C(16)-W-P	85.88(9)
C(13)-Si(2)-C(7)	107.39(15)	C(17)-W-P	91.55(9)
C(14)-W-C(15)	90.94(14)		

Tabelle D 4.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2 [h^2 a^{*2} U11 + + 2 h k a^* b^* U12]$.						
	U11	U22	U33	U23	U13	U12
C(1)	18(2)	18(1)	24(2)	-2(1)	-1(1)	0(1)
C(2)	24(2)	19(1)	19(2)	1(2)	4(1)	-2(1)
C(3)	30(2)	26(2)	23(2)	0(1)	-3(2)	0(1)
C(4)	58(3)	42(2)	26(2)	-8(2)	-10(2)	-3(2)
C(5)	34(2)	20(2)	24(2)	-3(1)	0(2)	3(1)
C(6)	30(2)	40(2)	46(3)	1(2)	7(2)	13(2)
C(7)	17(2)	16(1)	18(2)	1(1)	-1(1)	0(1)
C(8)	23(2)	25(2)	34(2)	2(2)	-6(2)	5(1)
C(9)	24(2)	33(2)	25(2)	-2(1)	-5(2)	2(2)
C(10)	22(2)	38(2)	32(2)	7(2)	3(2)	-2(2)
C(11)	48(2)	17(1)	42(2)	-2(2)	-9(2)	1(2)
C(12)	34(2)	26(2)	41(2)	12(2)	-10(2)	-5(2)
C(13)	33(2)	28(2)	49(2)	2(2)	-5(2)	11(2)
C(14)	27(2)	34(2)	23(2)	1(2)	-2(2)	-2(2)
C(15)	18(2)	33(2)	31(2)	-6(1)	-2(2)	-10(2)
C(16)	22(2)	17(1)	25(2)	0(1)	2(1)	-4(1)
C(17)	26(2)	25(2)	24(2)	4(1)	-3(2)	-6(2)
C(18)	23(2)	27(2)	24(2)	6(2)	4(1)	-2(2)
O(1)	21(1)	20(1)	22(1)	0(1)	-2(1)	3(1)
O(2)	34(2)	53(2)	34(2)	14(1)	0(1)	-20(1)
O(3)	28(1)	43(2)	63(2)	-20(2)	3(1)	8(1)
O(4)	35(1)	30(1)	34(2)	2(1)	-13(1)	-4(1)
O(5)	48(2)	25(1)	43(2)	1(1)	0(1)	10(1)
O(6)	34(2)	55(2)	31(2)	0(1)	-11(1)	-2(1)
Р	16(1)	15(1)	19(1)	0(1)	0(1)	0(1)
Si(1)	16(1)	21(1)	20(1)	1(1)	0(1)	0(1)
Si(2)	27(1)	15(1)	31(1)	3(1)	-4(1)	3(1)
W	17(1)	19(1)	19(1)	2(1)	0(1)	-3(1)

		. ,			
	X	У	Z	U(eq)	
H(1)	1402	-797	9699	24	
H(2)	3372	1110	9786	24	
H(3A)	2128	-25	10763	32	
H(3B)	3762	-168	10566	32	
H(4A)	4168	1792	10775	63	
H(4B)	3648	1117	11340	63	
H(4C)	2543	1904	10991	63	
H(5A)	1480	2245	10091	31	
H(5B)	1019	1643	9499	31	
H(6A)	-368	309	10051	59	
H(6B)	-932	1591	10117	59	
H(6C)	7	1024	10621	59	
H(7)	2399	-1696	8135	20	
H(8A)	355	640	8130	41	
H(8B)	-198	529	8784	41	
H(8C)	-1308	417	8258	41	
H(9A)	-1328	-1688	7503	41	
H(9B)	-126	-2648	7587	41	
H(9C)	307	-1419	7342	41	
H(10A)	-997	-1754	9285	46	
H(10B)	-1205	-2818	8860	46	
H(10C)	-2243	-1737	8809	46	
H(11A)	1672	-4998	8475	54	
H(11B)	1820	-4138	7941	54	
H(11C)	424	-4098	8344	54	
H(12A)	741	-3224	9612	51	
H(12B)	2307	-2890	9840	51	
H(12C)	1938	-4189	9690	51	
H(13A)	4580	-4190	8814	55	
H(13B)	4842	-2934	9064	55	
H(13C)	4687	-3128	8381	55	

Tabelle D 4 6: Wasserstoffkoordinaten	(x 10 ⁴) und anisotrope	Auslenkungspa	arameter ($Å^2 \times 10^3$)
	(^ 10)	, and amoutope	/ usici illurigope	
Tabelle D 4.7: Torsionswinkel [°]

O(1)-C(1)-C(2)-C(3)	-66.0(3)	O(4)-C(16)-W-C(14)	-85(8)
P-C(1)-C(2)-C(3)	-136.4(3)	O(4)-C(16)-W-C(15)	6(8)
O(1)-C(1)-C(2)-C(5)	166.9(3)	O(4)-C(16)-W-C(18)	24(10)
P-C(1)-C(2)-C(5)	96.4(3)	O(4)-C(16)-W-C(17)	-173(8)
C(1)-C(2)-C(3)-C(4)	174.1(3)	O(4)-C(16)-W-P	96(8)
C(5)-C(2)-C(3)-C(4)	-61.1(4)	O(5)-C(17)-W-C(14)	62(5)
C(1)-C(2)-C(5)-C(6)	68.5(4)	O(5)-C(17)-W-C(15)	-18(6)
C(3)-C(2)-C(5)-C(6)	-56.3(4)	O(5)-C(17)-W-C(18)	-31(5)
C(2)-C(1)-O(1)-P	-117.2(3)	O(5)-C(17)-W-C(16)	150(5)
C(1)-O(1)-P-C(7)	-101.60(18)	O(5)-C(17)-W-P	-124(5)
C(1)-O(1)-P-W	116.82(14)	O(1)-P-W-C(14)	-16.5(10)
C(2)-C(1)-P-O(1)	101.2(3)	C(1)-P-W-C(14)	43.2(10)
O(1)-C(1)-P-C(7)	97.55(16)	C(7)-P-W-C(14)	-152.9(10)
C(2)-C(1)-P-C(7)	-161.2(3)	O(1)-P-W-C(15)	82.43(13)
O(1)-C(1)-P-W	-97.14(14)	C(1)-P-W-C(15)	142.17(16)
C(2)-C(1)-P-W	4.1(3)	C(7)-P-W-C(15)	-53.97(15)
Si(2)-C(7)-P-O(1)	-16.6(2)	O(1)-P-W-C(18)	168.22(12)
Si(1)-C(7)-P-O(1)	123.09(16)	C(1)-P-W-C(18)	-132.04(16)
Si(2)-C(7)-P-C(1)	-70.6(2)	C(7)-P-W-C(18)	31.82(15)
Si(1)-C(7)-P-C(1)	69.1(2)	O(1)-P-W-C(16)	-8.47(12)
Si(2)-C(7)-P-W	123.12(13)	C(1)-P-W-C(16)	51.27(16)
Si(1)-C(7)-P-W	-97.19(16)	C(7)-P-W-C(16)	-144.87(14)
P-C(7)-Si(1)-C(9)	135.68(17)	O(1)-P-W-C(17)	-102.91(12)
Si(2)-C(7)-Si(1)-C(9)	-86.1(2)	C(1)-P-W-C(17)	-43.17(16)
P-C(7)-Si(1)-C(10)	-101.79(19)	C(7)-P-W-C(17)	120.69(15)
Si(2)-C(7)-Si(1)-C(10)	36.4(2)		
P-C(7)-Si(1)-C(8)	17.9(2)		
Si(2)-C(7)-Si(1)-C(8)	156 11(18)		
P-C(7)-Si(2)-C(12)	66 5(2)		
Si(1)-C(7)-Si(2)-C(12)	-71 9(2)		
P-C(7)-Si(2)-C(11)	-172 08(18)		
Si(1)-C(7)-Si(2)-C(11)	49 6(2)		
$P_{-C(7)-Si(2)-C(13)}$	-55 7(2)		
Si(1)-C(7)-Si(2)-C(13)	165 96(19)		
O(2)-C(14)-W-C(15)	-117(6)		
O(2) - O(14) - W - O(13)	157(6)		
O(2) - O(14) - W - O(16)	-26(6)		
O(2) - O(14) - W - O(17)	-20(0) 69(6)		
O(2) - O(14) - W - P	-18(7)		
O(2) - O(14) - W - O(14)	-76(7)		
O(3) - O(15) - W - O(14)	-70(7) 17(7)		
O(3) - O(15) - W - O(16)	164(7)		
O(3) - O(15) - W - O(17)	-104(7)		
O(3) - O(15) - W - O(17)	4(0 <i>)</i>		
O(3) - C(13) - W - P	(7)		
O(0) - O(10) - VV - O(14)	07(0)		
O(0) - O(10) - VV - O(10)	-24(0)		
O(0) - O(10) - VV - O(10)	-42(10)		
U(6) - U(18) - W - U(17)	155(8)		
U(b)-C(18)-W-P	-114(8)		

5. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(benzyl)-oxaphosphiran*κP*}wolfram(0)} (**17**)

Gute Struktur, leichte Fehlordnung, 06.09.2011; Publiziert in ^[32]; CCDC 868282

Tabelle D 5.1: Kristalldaten und Strukturverfeinerung von 17

Identifikationscode	GSTR205, Greg1756
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{20}H_{27}O_6PSi_2W$
Molare Masse	634.42
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Triklin, <i>P</i> Ī
Elementarzelle	$\alpha = 9.1156(9)$ Å $\alpha = 77.712(6)^{\circ}$
	$b = 10.8683(7) \text{ Å}$ $\beta = 81.120(4)^{\circ}$
	$c = 13.3557(13) \text{ Å} v = 88.288(6)^{\circ}$
Elementarzellenvolumen [Å ³]	1277.3(2)
Z. Berechnete Dichte [Ma/m ³]	2. 1.649
Absorptionskoeffizient [mm ⁻¹]	4.708
F(000)	624
Kristallgröße [mm ³]	0.12 x 0.10 x 0.01
Gemessener 20-Bereich [°]	2.73 - 26.99
Indexgrößen	$-11 \le h \le 10, -13 \le k \le 13, -16 \le l \le 16$
Reflexe gemessen / unabhängig	11659 / 5437 [R _{int} = 0.0499]
Vollständigkeit für Θ = 26.99	97.5 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.9544 und 0.6019
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	5437 / 72 / 339
Goodness-of-fit an F ²	0.986
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0369, wR2 = 0.0797
R-Werte (sämtliche Daten)	R1 = 0.0509, wR2 = 0.0839
Extinktionskoeffizient	0.0029(4)
Größtes Maximum und Minimum	1.693 und -2.082 e∙Å⁻³

		V	z	U(ea)
C(1)	6894(9)	7567(6)	8932(6)	32(2)
C(2)	7404(8)	6463(6)	9715(5)	41(2)
C(3)	8087(8)	6872(6)	10545(5)	38(2)
C(4)	7439(10)	6577(9)	11580(6)	44(2)
C(5)	8066(10)	6922(10)	12334(6)	41(2)
C(6)	9333(9)	7584(9)	12095(6)	43(2)
C(7)	9974(10)	7948(8)	11074(7)	55(2)
C(8)	9337(9)	7597(8)	10300(6)	52(2)
C(1S)	7170(30)	7080(20)	8920(20)	32(2)
C(2S)	6540(30)	7691(19)	9752(18)	43(2)
C(3S)	7750(20)	7500(20)	10523(13)	62(8)
C(4S)	7216(18)	7023(18)	11562(15)	49(10)
C(5S)	7970(20)	7262(17)	12328(11)	28(8)
C(6S)	9270(20)	7978(17)	12054(11)	30(6)
C(7S)	9804(17)	8456(17)	11016(13)	54(2)
C(8S)	9050(20)	8217(19)	10250(10)	51(2)
C(9)	5549(5)	8689(4)	7152(4)	31(1)
C(10)	8271(6)	10215(5)	5946(4)	44(1)
C(11)	6742(7)	10969(5)	7909(5)	50(1)
C(12)	5192(6)	11384(5)	6011(5)	50(1)
C(13)	3258(6)	6800(5)	8588(4)	44(1)
C(14)	2246(7)	8941(6)	6999(5)	57(2)
C(15)	3264(7)	9476(6)	8921(5)	56(2)
C(16)	8153(6)	4367(5)	5906(4)	41(1)
C(17)	5428(6)	5666(4)	6304(4)	38(1)
C(18)	6898(6)	4465(5)	8033(4)	43(1)
C(19)	9610(6)	5869(5)	7040(5)	48(1)
C(20)	8062(5)	7058(4)	5351(4)	36(1)
O(1)	8114(4)	8108(3)	8088(3)	49(1)
O(2)	8534(5)	3613(3)	5451(3)	56(1)
O(3)	4286(4)	5619(4)	6072(3)	55(1)
O(4)	6540(5)	3750(3)	8786(3)	59(1)
O(5)	10778(5)	5949(4)	7205(4)	70(1)
O(6)	8375(4)	7775(3)	4598(3)	44(1)
Р	6808(1)	7458(1)	7617(1)	34(1)
Si(1)	6450(2)	10312(1)	6774(1)	34(1)
Si(2)	3595(2)	8492(1)	7927(1)	38(1)
W	7497(1)	5745(1)	6689(1)	35(1)

Tabelle D 5.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

C(1)-O(1)	1.491(8)	C(3S)-C(8S)	1.3900	C(13)-Si(2)	1.874(5)
C(1)-C(2)	1.526(9)	C(4S)-C(5S)	1.3900	C(13)-H(13A)	0.9800
C(1)-P	1.800(7)	C(4S)-H(4S)	0.9500	C(13)-H(13B)	0.9800
C(1)-H(1)	1.000	C(5S)-C(6S)	1.3900	C(13)-H(13C)	0.9800
C(2)-C(3)	1.501(10)	C(5S)-H(5S)	0.9500	C(14)-Si(2)	1.861(6)
C(2)-H(2A)	0.9900	C(6S)-C(7S)	1.3900	C(14)-H(14A)	0.9800
C(2)-H(2B)	0.9900	C(6S)-H(6S)	0.9500	C(14)-H(14B)	0.9800
C(3)-C(8)	1.362(10)	C(7S)-C(8S)	1.3900	C(14)-H(14C)	0.9800
C(3)-C(4)	1.390(10)	C(7S)-H(7S)	0.9500	C(15)-Si(2)	1.859(6)
C(4)-C(5)	1.353(10)	C(8S)-H(8S)	0.9500	C(15)-H(15C)	0.9800
C(4)-H(4)	0.9500	C(9)-P	1.807(5)	C(15)-H(15B)	0.9800
C(5)-C(6)	1.339(11)	C(9)-Si(1)	1.903(5)	C(15)-H(15A)	0.9800
C(5)-H(5)	0.9500	C(9)-Si(2)	1.911(5)	C(16)-O(2)	1.136(6)
C(6)-C(7)	1.376(11)	C(9)-H(9A)	1.0000	C(16)-W	2.027(6)
C(6)-H(6)	0.9500	C(10)-Si(1)	1.861(5)	C(17)-O(3)	1.137(6)
C(7)-C(8)	1.385(11)	C(10)-H(10A)	0.9800	C(17)-W	2.039(6)
C(7)-H(7)	0.9500	C(10)-H(10B)	0.9800	C(18)-O(4)	1.142(6)
C(8)-H(8)	0.9500	C(10)-H(10C)	0.9800	C(18)-W	2.034(5)
C(1S)-C(2S)	1.45(3)	C(11)-Si(1)	1.864(6)	C(19)-O(5)	1.130(7)
C(1S)-O(1)	1.56(3)	C(11)-H(11A)	0.9800	C(19)-W	2.066(6)
C(1S)-P	1.78(3)	C(11)-H(11B)	0.9800	C(20)-O(6)	1.137(6)
C(1S)-H(1S)	1.0000	C(11)-H(11C)	0.9800	C(20)-W	2.041(5)
C(2S)-C(3S)	1.60(3)	C(12)-Si(1)	1.868(5)	O(1)-P	1.669(4)
C(2S)-H(2S1)	0.9900	C(12)-H(12A)	0.9800	P-W	2.4635(13)
C(2S)-H(2S2)	0.9900	C(12)-H(12B)	0.9800		
C(3S)-C(4S)	1.3900	C(12)-H(12C)	0.9800		

Tabelle D 5.3: Bindungslängen [Å]

Tabelle D 5.4: Bindungswinkel [°]

112.8(6)	C(4)-C(5)-H(5)	119.9
60.1(3)	C(5)-C(6)-C(7)	119.7(8)
121.8(5)	C(5)-C(6)-H(6)	120.2
116.5	C(7)-C(6)-H(6)	120.2
116.5	C(6)-C(7)-C(8)	120.2(8)
116.5	C(6)-C(7)-H(7)	119.9
113.0(5)	C(8)-C(7)-H(7)	119.9
109.0	C(3)-C(8)-C(7)	120.2(8)
109.0	C(3)-C(8)-H(8)	119.9
109.0	C(7)-C(8)-H(8)	119.9
109.0	C(2S)-C(1S)-O(1)	106.5(18)
107.8	C(2S)-C(1S)-P	126.6(17)
117.5(7)	O(1)-C(1S)-P	59.4(10)
120.7(7)	C(2S)-C(1S)-H(1S)	116.0
121.7(7)	O(1)-C(1S)-H(1S)	116.0
121.9(7)	P-C(1S)-H(1S)	116.0
119.1	C(1S)-C(2S)-C(3S)	104.8(18)
119.1	C(1S)-C(2S)-H(2S1)	110.8
120.3(7)	C(3S)-C(2S)-H(2S1)	110.8
119.9	C(1S)-C(2S)-H(2S2)	110.8
	$\begin{array}{c} 112.8(6) \\ 60.1(3) \\ 121.8(5) \\ 116.5 \\ 116.5 \\ 116.5 \\ 116.5 \\ 113.0(5) \\ 109.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.$	112.8(6) $C(4)-C(5)-H(5)$ $60.1(3)$ $C(5)-C(6)-C(7)$ $121.8(5)$ $C(5)-C(6)-H(6)$ 116.5 $C(7)-C(6)-H(6)$ 116.5 $C(6)-C(7)-C(8)$ 116.5 $C(6)-C(7)-H(7)$ $113.0(5)$ $C(8)-C(7)-H(7)$ 109.0 $C(3)-C(8)-C(7)$ 109.0 $C(3)-C(8)-H(8)$ 109.0 $C(2S)-C(1S)-O(1)$ 109.0 $C(2S)-C(1S)-O(1)$ 107.8 $C(2S)-C(1S)-P$ $117.5(7)$ $O(1)-C(1S)-P$ $120.7(7)$ $C(2S)-C(1S)-H(1S)$ $121.9(7)$ $P-C(1S)-H(1S)$ 119.1 $C(1S)-C(2S)-C(3S)$ 119.1 $C(1S)-C(2S)-H(2S1)$ $120.3(7)$ $C(1S)-C(2S)-H(2S1)$ 119.9 $C(1S)-C(2S)-H(2S2)$

C(3S)-C(2S)-H(2S2)	110.8	Si(2)-C(14)-H(14A)	109.5
H(2S1)-C(2S)-H(2S2)	108.9	Si(2)-C(14)-H(14B)	109.5
C(4S)-C(3S)-C(8S)	120.0	H(14A)-C(14)-H(14B)	109.5
C(4S)-C(3S)-C(2S)	115.7(15)	Si(2)-C(14)-H(14C)	109.5
C(8S)-C(3S)-C(2S)	119.4(14)	H(14A)-C(14)-H(14C)	109.5
C(5S)-C(4S)-C(3S)	120.0	H(14B)-C(14)-H(14C)	109.5
C(5S)-C(4S)-H(4S)	120.0	Si(2)-C(15)-H(15C)	109.5
C(3S)-C(4S)-H(4S)	120.0	Si(2)-C(15)-H(15B)	109.5
C(4S)-C(5S)-C(6S)	120.0	H(15C)-C(15)-H(15B)	109.5
C(4S)-C(5S)-H(5S)	120.0	Si(2)-C(15)-H(15A)	109.5
C(6S)-C(5S)-H(5S)	120.0	H(15C)-C(15)-H(15A)	109.5
C(5S)-C(6S)-C(7S)	120.0	H(15B)-C(15)-H(15A)	109.5
C(5S)-C(6S)-H(6S)	120.0	O(2)-C(16)-W	178.6(5)
C(7S)-C(6S)-H(6S)	120.0	O(3)-C(17)-W	178.7(5)
C(8S)-C(7S)-C(6S)	120.0	O(4)-C(18)-W	179.0(5)
C(8S)-C(7S)-H(7S)	120.0	O(5)-C(19)-W	178.2(6)
C(6S)-C(7S)-H(7S)	120.0	O(6)-C(20)-W	179.0(4)
C(7S)-C(8S)-C(3S)	120.0	C(1)-O(1)-C(1S)	21.7(7)
C(7S)-C(8S)-H(8S)	120.0	C(1)-O(1)-P	69.2(3)
C(3S)-C(8S)-H(8S)	120.0	C(1S)-O(1)-P	66.9(10)
P-C(9)-Si(1)	112.9(2)	O(1)-P-C(1S)	53.8(10)
P-C(9)-Si(2)	113.2(2)	O(1)-P-C(1)	50.8(3)
Si(1)-C(9)-Si(2)	119.3(2)	C(1S)-P-C(1)	18.6(6)
P-C(9)-H(9A)	102.9	O(1)-P-C(9)	107.9(2)
Si(1)-C(9)-H(9A)	102.9	C(1S)-P-C(9)	123.3(8)
Si(2)-C(9)-H(9A)	102.9	C(1)-P-C(9)	105.3(3)
Si(1)-C(10)-H(10A)	109.5	O(1)-P-W	119.14(15)
Si(1)-C(10)-H(10B)	109.5	C(1S)-P-W	112.7(7)
H(10A)-C(10)-H(10B)	109.5	C(1)-P-W	131.2(2)
Si(1)-C(10)-H(10C)	109.5	C(9)-P-W	121.12(17)
H(10A)-C(10)-H(10C)	109.5	C(10)-Si(1)-C(11)	109.1(3)
H(10B)-C(10)-H(10C)	109.5	C(10)-Si(1)-C(12)	109.4(3)
Si(1)-C(11)-H(11A)	109.5	C(11)-Si(1)-C(12)	108.9(3)
Si(1)-C(11)-H(11B)	109.5	C(10)-Si(1)-C(9)	108.9(2)
H(11A)-C(11)-H(11B)	109.5	C(11)-Si(1)-C(9)	113.4(2)
Si(1)-C(11)-H(11C)	109.5	C(12)-Si(1)-C(9)	107.2(2)
H(11A)-C(11)-H(11C)	109.5	C(15)-Si(2)-C(14)	109.1(3)
H(11B)-C(11)-H(11C)	109.5	C(15)-Si(2)-C(13)	108.7(3)
Si(1)-C(12)-H(12A)	109.5	C(14)-Si(2)-C(13)	108.1(3)
Si(1)-C(12)-H(12B)	109.5	C(15)-Si(2)-C(9)	113.0(3)
H(12A)-C(12)-H(12B)	109.5	C(14)-Si(2)-C(9)	107.9(3)
Si(1)-C(12)-H(12C)	109.5	C(13)-Si(2)-C(9)	109.9(2)
H(12A)-C(12)-H(12C)	109.5	C(16)-W-C(18)	91.8(2)
H(12B)-C(12)-H(12C)	109.5	C(16)-W-C(17)	89.2(2)
Si(2)-C(13)-H(13A)	109.5	C(18)-W-C(17)	90.7(2)
Si(2)-C(13)-H(13B)	109.5	C(16)-W-C(20)	89.4(2)
H(13A)-C(13)-H(13B)	109.5	C(18)-W-C(20)	178.64(19)
Si(2)-C(13)-H(13C)	109.5	C(17)-W-C(20)	88.6(2)
H(13A)-C(13)-H(13C)	109.5	C(16)-W-C(19)	91.0(2)
H(13B)-C(13)-H(13C)	109.5	C(18)-W-C(19)	91.0(2)

Anhang D – Kristallographische Daten

C(17)-W-C(19)	178.3(2)	C(17)-W-P	92.87(14)
C(20)-W-C(19)	89.6(2)	C(20)-W-P	89.31(14)
C(16)-W-P	177.56(14)	C(19)-W-P	86.95(16)
C(18)-W-P	89.51(15)		

Tabelle D 5.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Der anisotro	pe Auslenkungs	faktorexponer	nt hat die Form	n: -2π² [h² a*² l	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
C(1)	41(4)	22(5)	33(3)	-7(3)	-11(3)	10(3)
C(2)	52(4)	39(3)	35(4)	-8(3)	-12(3)	4(3)
C(3)	39(4)	38(4)	42(4)	-11(3)	-18(3)	13(3)
C(4)	59(5)	36(5)	38(5)	-4(3)	-10(4)	-12(4)
C(5)	64(6)	25(4)	35(5)	-7(3)	-9(4)	3(4)
C(6)	43(3)	45(3)	43(3)	-9(2)	-10(2)	0(2)
C(7)	54(2)	58(3)	54(2)	-11(2)	-9(2)	-3(2)
C(8)	51(3)	58(3)	49(2)	-12(2)	-10(2)	-3(2)
C(1S)	42(5)	23(5)	34(4)	-7(4)	-11(4)	10(4)
C(2S)	52(5)	40(4)	36(4)	-7(3)	-11(4)	3(3)
C(3S)	63(8)	62(8)	62(8)	-13(3)	-10(2)	-1(2)
C(4S)	48(10)	49(11)	49(10)	-10(3)	-7(3)	-1(2)
C(5S)	29(8)	28(8)	28(8)	-7(3)	-4(2)	1(2)
C(6S)	30(6)	30(6)	30(6)	-6(2)	-5(2)	0(2)
C(7S)	53(3)	55(3)	53(3)	-11(2)	-9(2)	-1(2)
C(8S)	50(3)	56(3)	48(3)	-12(3)	-10(3)	-3(3)
C(9)	28(3)	39(3)	28(3)	-8(2)	-6(2)	-4(2)
C(10)	37(3)	39(3)	54(4)	-8(2)	-1(3)	-9(2)
C(11)	55(4)	49(3)	51(4)	-23(3)	-7(3)	-16(3)
C(12)	46(4)	44(3)	61(4)	-5(3)	-15(3)	-4(2)
C(13)	31(3)	56(3)	41(3)	-4(2)	-2(2)	-11(2)
C(14)	38(3)	71(4)	57(4)	6(3)	-15(3)	-9(3)
C(15)	44(4)	65(4)	58(4)	-17(3)	7(3)	-3(3)
C(16)	24(3)	44(3)	53(4)	-9(2)	0(2)	-3(2)
C(17)	33(3)	39(3)	40(3)	-7(2)	-3(2)	-7(2)
C(18)	50(4)	41(3)	42(3)	-11(2)	-11(3)	-7(2)
C(19)	39(3)	39(3)	69(4)	-8(3)	-21(3)	4(2)
C(20)	27(3)	38(3)	45(3)	-14(2)	-8(2)	-3(2)
O(1)	43(2)	61(2)	45(2)	-9(2)	-17(2)	-14(2)
O(2)	51(3)	46(2)	70(3)	-18(2)	2(2)	1(2)
O(3)	33(2)	74(3)	58(3)	-11(2)	-16(2)	-9(2)
O(4)	93(4)	38(2)	43(2)	-3(2)	-9(2)	-9(2)
O(5)	40(3)	63(3)	118(4)	-21(2)	-41(3)	5(2)
O(6)	44(2)	49(2)	37(2)	-4(2)	-4(2)	-5(2)
Р	30(1)	39(1)	32(1)	-4(1)	-10(1)	-6(1)
Si(1)	30(1)	36(1)	38(1)	-9(1)	-5(1)	-6(1)
Si(2)	29(1)	45(1)	39(1)	-5(1)	-4(1)	-6(1)
W	29(1)	34(1)	42(1)	-5(1)	-9(1)	-1(1)

	x	у	Z	U(eq)
H(1)	6206	8182	9222	38
H(2A)	6541	5912	10043	50
H(2B)	8138	5963	9344	50
H(4)	6531	6121	11764	53
H(5)	7604	6694	13035	49
H(6)	9789	7801	12627	52
H(7)	10856	8441	10900	66
H(8)	9774	7862	9596	62
H(1S)	7679	6261	9134	39
H(2S1)	5586	7294	10109	51
H(2S2)	6374	8597	9483	51
H(4S)	6331	6533	11749	58
H(5S)	7607	6935	13037	34
H(6S)	9786	8141	12578	36
H(7S)	10688	8946	10829	65
H(8S)	9412	8544	9540	61
H(9A)	5403	8513	6469	38
H(10A)	8134	9819	5373	53
H(10B)	8960	9711	6362	53
H(10C)	8679	11065	5667	53
H(11A)	7291	10360	8364	59
H(11B)	5778	11137	8293	59
H(11C)	7311	11755	7666	59
H(12A)	4255	11479	6458	60
H(12B)	4993	11026	5430	60
H(12C)	5668	12210	5742	60
H(13A)	3974	6537	9069	53
H(13B)	3377	6276	8067	53
H(13C)	2248	6702	8972	53
H(14A)	2443	8449	6457	69
H(14B)	2352	9840	6682	69
H(14C)	1234	8769	7369	69
H(15C)	2242	9351	9283	68
H(15B)	3418	10365	8583	68
H(15A)	3957	9230	9421	68

Tabelle D 5.6: Wasserstoffkoordinaten (x 10) und anisotrop	pe Auslenkungsparameter (A ⁻ x 10 ⁻)
--	---	---

Tabelle D 5.7: Torsionswinkel [°]

O(1)-C(1)-C(2)-C(3)	84.5(7)	C(5)-C(6)-C(7)-C(8)	-2.1(13)
P-C(1)-C(2)-C(3)	152.4(6)	C(4)-C(3)-C(8)-C(7)	4.0(11)
C(1)-C(2)-C(3)-C(8)	-61.6(9)	C(2)-C(3)-C(8)-C(7)	-178.7(7)
C(1)-C(2)-C(3)-C(4)	115.5(8)	C(6)-C(7)-C(8)-C(3)	-1.1(12)
C(8)-C(3)-C(4)-C(5)	-4.1(13)	O(1)-C(1S)-C(2S)-C(3S)	-89.4(18)
C(2)-C(3)-C(4)-C(5)	178.7(8)	P-C(1S)-C(2S)-C(3S)	-153(2)
C(3)-C(4)-C(5)-C(6)	1.1(16)	C(1S)-C(2S)-C(3S)-C(4S)	-129.8(17)
C(4)-C(5)-C(6)-C(7)	2.1(15)	C(1S)-C(2S)-C(3S)-C(8S)	75(2)

C(8S)-C(3S)-C(4S)-C(5S)	0.0	P-C(9)-Si(2)-C(14)	-140.8(3)
C(2S)-C(3S)-C(4S)-C(5S)	-155.3(17)	Si(1)-C(9)-Si(2)-C(14)	82.6(3)
C(3S)-C(4S)-C(5S)-C(6S)	0.0	P-C(9)-Si(2)-C(13)	-23.2(3)
C(4S)-C(5S)-C(6S)-C(7S)	0.0	Si(1)-C(9)-Si(2)-C(13)	-159.8(3)
C(5S)-C(6S)-C(7S)-C(8S)	0.0	O(2)-C(16)-W-C(18)	-167(21)
C(6S)-C(7S)-C(8S)-C(3S)	0.0	O(2)-C(16)-W-C(17)	103(21)
C(4S)-C(3S)-C(8S)-C(7S)	0.0	O(2)-C(16)-W-C(20)	14(21)
C(2S)-C(3S)-C(8S)-C(7S)	154.4(18)	O(2)-C(16)-W-C(19)	-76(21)
C(2)-C(1)-O(1)-C(1S)	35(3)	Q(2)-C(16)-W-P	-44(24)
P-C(1)-O(1)-C(1S)	-80(3)	O(4)-C(18)-W-C(16)	-104(27)
C(2)-C(1)-O(1)-P	114 7(5)	O(4)-C(18)-W-C(17)	-14(27)
C(2S)-C(1S)-O(1)-C(1)	-32(2)	O(4)-C(18)-W-C(20)	48(31)
$P_{-C}(1S) = O(1) = C(1)$	02(2) 02(3)	O(4) - C(18) - W - C(19)	165(27)
C(2S)-C(1S)-O(1)-P	-123 2(10)	O(4)-C(18)-W-P	78(27)
C(1) - O(1) - P - C(1S)	-123.2(13)	O(3) - C(17) - W - C(16)	-40(20)
C(1) = O(1) = C(13)	-23.2(0)	O(3) - O(17) - W - O(10)	122(20)
C(13)-O(1)-F-C(1)	23.2(0)	O(3) - O(17) - W - O(18)	-132(20)
C(1)-O(1)-F-C(9)	90.4(3)	O(3) - C(17) - W - C(20)	50(20)
C(15)-O(1)-P-C(9)	118.6(9)	O(3) - C(17) - W - C(19)	55(23)
C(1)-O(1)-P-W	-121.3(3)	O(3) - C(17) - VV - P	139(20)
C(1S)-O(1)-P-W	-98.0(9)	O(6) - C(20) - VV - C(16)	19(24)
C(2S)-C(1S)-P-O(1)	88(3)	O(6) - C(20) - VV - C(18)	-133(22)
C(2S)-C(1S)-P-C(1)	14.8(18)	O(6)-C(20)-W-C(17)	-71(24)
O(1)-C(1S)-P-C(1)	-74(3)	O(6)-C(20)-W-C(19)	110(24)
C(2S)-C(1S)-P-C(9)	0(3)	O(6)-C(20)-W-P	-163(24)
O(1)-C(1S)-P-C(9)	-88.6(9)	O(5)-C(19)-W-C(16)	67(15)
C(2S)-C(1S)-P-W	-161(2)	O(5)-C(19)-W-C(18)	158(15)
O(1)-C(1S)-P-W	110.3(6)	O(5)-C(19)-W-C(17)	-28(20)
C(2)-C(1)-P-O(1)	-99.7(7)	O(5)-C(19)-W-C(20)	-23(15)
O(1)-C(1)-P-C(1S)	92(3)	O(5)-C(19)-W-P	-112(15)
C(2)-C(1)-P-C(1S)	-8(3)	O(1)-P-W-C(16)	-29(4)
O(1)-C(1)-P-C(9)	-100.9(3)	C(1S)-P-W-C(16)	-89(4)
C(2)-C(1)-P-C(9)	159.4(6)	C(1)-P-W-C(16)	-91(4)
O(1)-C(1)-P-W	96.9(3)	C(9)-P-W-C(16)	110(4)
C(2)-C(1)-P-W	-2.9(8)	O(1)-P-W-C(18)	94.2(2)
Si(1)-C(9)-P-O(1)	25.4(3)	C(1S)-P-W-C(18)	34.2(11)
Si(2)-C(9)-P-O(1)	-114.0(3)	C(1)-P-W-C(18)	32.5(4)
Si(1)-C(9)-P-C(1S)	83.3(12)	C(9)-P-W-C(18)	-127.4(2)
Si(2)-C(9)-P-C(1S)	-56.1(12)	O(1)-P-W-C(17)	-175.1(2)
Si(1)-C(9)-P-C(1)	78.4(4)	C(1S)-P-W-C(17)	124.9(11)
Si(2)-C(9)-P-C(1)	-61.0(4)	C(1)-P-W-C(17)	123.2(4)
Si(1)-C(9)-P-W	-117.1(2)	C(9)-P-W-C(17)	-36.7(2)
Si(2)-C(9)-P-W	103.5(2)	O(1)-P-W-C(20)	-86.5(2)
P-C(9)-Si(1)-C(10)	47.6(3)	C(1S)-P-W-C(20)	-146.5(11)
Si(2)-C(9)-Si(1)-C(10)	-175.7(3)	C(1)-P-W-C(20)	-148.2(4)
P-C(9)-Si(1)-C(11)	-74.0(3)	C(9)-P-W-C(20)	51.9(2)
Si(2)-C(9)-Si(1)-C(11)	62.7(4)	O(1)-P-W-C(19)	3.2(2)
P-C(9)-Si(1)-C(12)	165.8(3)	C(1S)-P-W-C(19)	-56.8(11)
Si(2)-C(9)-Si(1)-C(12)	-57.5(4)	C(1)-P-W-C(19)	-58.5(4)
P-C(9)-Si(2)-C(15)	98.4(3)	C(9)-P-W-C(19)	141.6(2)
Si(1)-C(9)-Si(2)-C(15)	-38.1(4)		- (/

6. {Pentacarbonyl{[bis(trimethylsilyl)methyl]-[2-(1,3,4,5-tetramethyl-2*H*-imidazol-2-yliden)phosphino-*κP*]}wolfram(0)} (**23a**)

Ausgezeichnete Struktur, 23.03.2015, Publiziert in ^[67]; CCDC 1419734

Tabelle D 6.1: Kristalldaten und Strukturverfeinerung von 22a

Identifikationscode	GSTR405 GXrav3960f
Gorätetyp	Bruker X8-KappaApevII
Summenformel	$C_{19}H_{31}N_2O_5PSI_2W$
Molare Masse	638.46
Temperatur [K]	100
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Orthorhombisch, Pbca
Elementarzelle	a = 12.7183(9) Å α = 90°
	b = 17.8026(12) Å β = 90°
	c = 23.1267(17) Å γ = 90°
Elementarzellenvolumen [Å3]	5236.3(6)
Z, Berechnete Dichte [Mg/m ³]	8, 1.620
Absorptionskoeffizient [µ/mm ⁻¹]	4.594
F(000)	2528.0
Kristallgröße [mm ³]	0.25 × 0.1 × 0.08
Gemessener 20-Bereich [°]	5.858 - 55.994
Indexgrößen	-16 ≤ h ≤ 16, -23 ≤ k ≤ 23, -21 ≤ l ≤ 30
Reflexe gemessen / unabhängig	24723 / 6301 [R_{int} = 0.0331, R_{σ} = 0.0296]
Daten / Restraints / Parameter	6301 / 0 / 281
Goodness-of-fit an F ²	1.027
Endgültige R-Werte [I>2o(I)]	R1 = 0.0230, wR2 = 0.0480
R-Werte (sämtliche Daten)	R1 = 0.0331, wR2 = 0.0511
Größtes Maximum und Minimum	0.94 und -1.14 e∙Å⁻³

W-P	2.6572(7)	O5-C19	1.150(3)	Si1-C10	1.873(3)
W-C15	1.992(3)	N1-C1	1.358(3)	Si1-C11	1.882(3)
W-C16	2.044(3)	N1-C2	1.389(3)	Si2-C8	1.894(3)
W-C17	2.045(3)	N1-C4	1.461(4)	Si2-C12	1.878(3)
W-C18	2.047(3)	N2-C1	1.357(3)	Si2-C13	1.879(3)
W-C19	2.040(3)	N2-C3	1.400(3)	Si2-C14	1.872(3)
P-C1	1.837(3)	N2-C7	1.459(4)	O1-C15	1.149(3)
P-C8	1.882(3)	C2-C3	1.348(4)	O2-C16	1.140(4)
Si1-C8	1.904(3)	C2-C5	1.490(4)	O3-C17	1.147(3)
Si1-C9	1.872(3)	C3-C6	1.494(4)	O4-C18	1.142(4)
Si1-C10	1.873(3)	W-P	2.6572(7)	O5-C19	1.150(3)
Si1-C11	1.882(3)	W-C15	1.992(3)	N1-C1	1.358(3)
Si2-C8	1.894(3)	W-C16	2.044(3)	N1-C2	1.389(3)
Si2-C12	1.878(3)	W-C17	2.045(3)	N1-C4	1.461(4)
Si2-C13	1.879(3)	W-C18	2.047(3)	N2-C1	1.357(3)
Si2-C14	1.872(3)	W-C19	2.040(3)	N2-C3	1.400(3)
O1-C15	1.149(3)	P-C1	1.837(3)	N2-C7	1.459(4)
O2-C16	1.140(4)	P-C8	1.882(3)	C2-C3	1.348(4)
O3-C17	1.147(3)	Si1-C8	1.904(3)	C2-C5	1.490(4)
O4-C18	1.142(4)	Si1-C9	1.872(3)	C3-C6	1.494(4)

Tabelle D 6.2: Bindungslängen [Å]

Tabelle D 6.3: Bindungswinkel [°]

C15-W-P	173.69(9)	C13-Si2-C8	112.08(13)
C15-W-C16	92.17(12)	C14-Si2-C8	109.78(13)
C15-W-C17	85.89(11)	C14-Si2-C12	104.14(14)
C15-W-C18	92.70(12)	C14-Si2-C13	111.24(14)
C15-W-C19	85.55(11)	C1-N1-C2	110.8(2)
C16-W-P	82.51(8)	C1-N1-C4	125.0(2)
C16-W-C17	89.64(11)	C2-N1-C4	124.2(2)
C16-W-C18	175.06(11)	C1-N2-C3	110.5(2)
C17-W-P	90.68(8)	C1-N2-C7	125.7(2)
C17-W-C18	91.52(11)	C3-N2-C7	123.7(2)
C18-W-P	92.68(8)	N1-C1-P	122.3(2)
C19-W-P	97.68(8)	N2-C1-P	132.6(2)
C19-W-C16	89.00(11)	N2-C1-N1	105.1(2)
C19-W-C17	171.28(11)	N1-C2-C5	121.8(3)
C19-W-C18	90.58(11)	C3-C2-N1	107.0(2)
C1-P-W	98.20(8)	C3-C2-C5	131.2(3)
C1-P-C8	102.40(12)	N2-C3-C6	122.0(3)
C8-P-W	125.09(9)	C2-C3-N2	106.6(2)
C9-Si1-C8	111.61(13)	C2-C3-C6	131.4(3)
C9-Si1-C10	110.60(16)	P-C8-Si1	109.02(14)
C9-Si1-C11	106.04(16)	P-C8-Si2	112.71(14)
C10-Si1-C8	109.26(14)	Si2-C8-Si1	113.46(13)
C10-Si1-C11	105.58(16)	O1-C15-W	178.5(3)
C11-Si1-C8	113.57(13)	O2-C16-W	178.8(3)
C12-Si2-C8	111.05(13)	O3-C17-W	176.2(2)
C12-Si2-C13	108.26(15)	O4-C18-W	178.9(3)

O5-C19-W

173.1(3)

Tabelle D 6.4: Torsionswinkel [°]

W-P-C1-N1	90.6(2)	C4-N1-C2-C3	178.6(2)
W-P-C1-N2	-87.4(3)	C4-N1-C2-C5	-1.6(4)
W-P-C8-Si1	-178.31(7)	C5-C2-C3-N2	-177.9(3)
W-P-C8-Si2	-51.40(18)	C5-C2-C3-C6	3.4(5)
N1-C2-C3-N2	1.8(3)	C7-N2-C1-P	2.4(4)
N1-C2-C3-C6	-176.9(3)	C7-N2-C1-N1	-175.9(2)
C1-P-C8-Si1	72.24(15)	C7-N2-C3-C2	174.9(2)
C1-P-C8-Si2	-160.84(14)	C7-N2-C3-C6	-6.3(4)
C1-N1-C2-C3	-1.7(3)	C8-P-C1-N1	-140.6(2)
C1-N1-C2-C5	178.0(2)	C8-P-C1-N2	41.3(3)
C1-N2-C3-C2	-1.3(3)	C12-Si2-C8-P	-162.96(15)
C1-N2-C3-C6	177.6(3)	C12-Si2-C8-Si1	-38.4(2)
C2-N1-C1-P	-177.59(18)	C13-Si2-C8-P	-41.73(19)
C2-N1-C1-N2	0.9(3)	C13-Si2-C8-Si1	82.79(17)
C3-N2-C1-P	178.5(2)	C14-Si2-C8-P	82.42(17)
C3-N2-C1-N1	0.2(3)	C14-Si2-C8-Si1	-153.07(15)
C4-N1-C1-P	2.0(4)		
C4-N1-C1-N2	-179.4(2)		

 {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(thien-3-yl)-oxa-phosphiranκP}wolfram(0)} (52)

Sehr gute Struktur, 10.01.2014

Tabelle D 7.1: Kristalldaten und Strukturverfeinerung von 52

Identifikationscode	GSTR338, 3209
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{17}H_{23}O_6PSSi_2W$
Molare Masse	626.41
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c
Elementarzelle	a = 10.6354(6) Å α = 90°
	b = 13.6857(7) Å β = 122.908(2)°
	c = 19.5759(5) Å γ = 90°
Elementarzellenvolumen [Å3]	2392.1(2)
Z, Berechnete Dichte [Mg/m ³]	4, 1.739
Absorptionskoeffizient [mm ⁻¹]	5.111
F(000)	1224
Kristallgröße [mm ³]	0.26 x 0.08 x 0.06
Gemessener 20-Bereich [°]	2.43 - 25.25
Indexgrößen	-11 \leq h \leq 12, -15 \leq k \leq 16, -23 \leq l \leq 23
Reflexe gemessen / unabhängig	15297 / 4257 [R _{int} = 0.0536]
Vollständigkeit für Θ = 25.25	98.1 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.7490 und 0.3500
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	4257 / 7 / 259
Goodness-of-fit an F ²	1.005
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0300, wR2 = 0.0704
R-Werte (sämtliche Daten)	R1 = 0.0367, wR2 = 0.0732
Größtes Maximum und Minimum	1.896 und -2.643 e∙Å ⁻³

	X	y	z	U(eq)	
C(1)	8388(5)	2380(3)	4936(2)	19(1)	
C(2)	7621(5)	2655(3)	5343(2)	20(1)	
C(3)	6789(6)	2061(3)	5492(3)	28(1)	
C(4)	6818(5)	3742(4)	5945(3)	35(1)	
C(5)	7649(5)	3633(4)	5611(3)	30(1)	
C(6)	8672(5)	2274(3)	3529(2)	14(1)	
C(7)	9788(6)	3839(4)	2874(3)	39(1)	
C(8)	11548(5)	3518(3)	4706(3)	30(1)	
C(9)	8477(5)	4471(3)	3838(3)	37(1)	
C(10)	10883(5)	1309(4)	3210(3)	32(1)	
C(11)	11374(5)	1011(3)	4869(3)	31(1)	
C(12)	8698(5)	51(3)	3353(3)	28(1)	
C(13)	2457(5)	2098(3)	2110(3)	22(1)	
C(14)	4564(5)	1033(3)	3576(3)	22(1)	
C(15)	4315(5)	3139(4)	3572(3)	24(1)	
C(16)	4795(5)	3275(4)	2272(3)	25(1)	
C(17)	4891(5)	1158(3)	2198(2)	21(1)	
O(1)	8153(3)	1363(2)	4642(2)	22(1)	
O(2)	1206(4)	2065(3)	1645(2)	41(1)	
O(3)	4502(4)	428(2)	3958(2)	32(1)	
O(4)	4029(4)	3697(2)	3894(2)	36(1)	
O(5)	4860(4)	3926(3)	1922(2)	39(1)	
O(6)	4959(4)	608(2)	1783(2)	32(1)	
Р	7407(1)	2151(1)	3863(1)	15(1)	
S	5999(2)	2666(1)	5939(1)	35(1)	
Si(1)	9641(1)	3517(1)	3748(1)	21(1)	
Si(2)	9930(1)	1157(1)	3766(1)	20(1)	
W	4673(1)	2146(1)	2907(1)	17(1)	

Tabelle D 7.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 7.3: Bindungslängen [Å]

C(1)-C(2)	1.465(6)	C(7)-H(7B)	0.9800	C(12)-Si(2)	1.874(4)
C(1)-O(1)	1.475(5)	C(7)-H(7C)	0.9800	C(12)-H(12A)	0.9800
C(1)-P	1.793(4)	C(8)-Si(1)	1.871(4)	C(12)-H(12B)	0.9800
C(1)-H(1)	1.0000	C(8)-H(8A)	0.9800	C(12)-H(12C)	0.9800
C(2)-C(3)	1.345(7)	C(8)-H(8B)	0.9800	C(13)-O(2)	1.133(5)
C(2)-C(5)	1.433(6)	C(8)-H(8C)	0.9800	C(13)-W	2.000(5)
C(3)-S	1.720(5)	C(9)-Si(1)	1.871(5)	C(14)-O(3)	1.141(5)
C(3)-H(3A)	0.9500	C(9)-H(9A)	0.9800	C(14)-W	2.053(5)
C(4)-C(5)	1.363(7)	C(9)-H(9B)	0.9800	C(15)-O(4)	1.134(6)
C(4)-S	1.707(5)	C(9)-H(9C)	0.9800	C(15)-W	2.055(5)
C(4)-H(4A)	0.9500	C(10)-Si(2)	1.857(5)	C(16)-O(5)	1.151(6)
C(5)-H(5A)	0.9500	C(10)-H(10A)	0.9800	C(16)-W	2.030(5)
C(6)-P	1.795(4)	C(10)-H(10B)	0.9800	C(17)-O(6)	1.140(5)
C(6)-Si(1)	1.913(4)	C(10)-H(10C)	0.9800	C(17)-W	2.038(5)
C(6)-Si(2)	1.915(4)	C(11)-Si(2)	1.859(4)	O(1)-P	1.674(3)
C(6)-H(6A)	1.0000	C(11)-H(11A)	0.9800	P-W	2.4584(12)
C(7)-Si(1)	1.853(5)	C(11)-H(11B)	0.9800		
C(7)-H(7A)	0.9800	C(11)-H(11C)	0.9800		

Tabelle	D	7.4:	Bindunaswinkel	ſ٥	1
				L .	

C(2)-C(1)-O(1)	115.4(4)	Si(2)-C(11)-H(11B)	109.5
C(2)-C(1)-P	122.7(3)	H(11A)-C(11)-H(11B)	109.5
O(1)-C(1)-P	60.72(18)	Si(2)-C(11)-H(11C)	109.5
C(2)-C(1)-H(1)	115.5	H(11A)-C(11)-H(11C)	109.5
O(1)-C(1)-H(1)	115.5	H(11B)-C(11)-H(11C)	109.5
P-C(1)-H(1)	115.5	Si(2)-C(12)-H(12A)	109.5
C(3)-C(2)-C(5)	111.7(4)	Si(2)-C(12)-H(12B)	109.5
C(3)-C(2)-C(1)	126.1(4)	H(12A)-C(12)-H(12B)	109.5
C(5)-C(2)-C(1)	122.2(4)	Si(2)-C(12)-H(12C)	109.5
C(2)-C(3)-S	112.4(4)	H(12A)-C(12)-H(12C)	109.5
C(2)-C(3)-H(3A)	123.8	H(12B)-C(12)-H(12C)	109.5
S-C(3)-H(3A)	123.8	O(2)-C(13)-W	178.4(4)
C(5)-C(4)-S	111.4(4)	O(3)-C(14)-W	178.7(4)
C(5)-C(4)-H(4A)	124.3	O(4)-C(15)-W	175.6(4)
S-C(4)-H(4A)	124.3	O(5)-C(16)-W	178.7(4)
C(4)-C(5)-C(2)	112.8(5)	O(6)-C(17)-W	177.6(4)
C(4)-C(5)-H(5A)	123.6	C(1)-O(1)-P	69.07(19)
C(2)-C(5)-H(5A)	123.6	O(1)-P-C(1)	50.21(16)
P-C(6)-Si(1)	114.9(2)	O(1)-P-C(6)	108.27(17)
P-C(6)-Si(2)	113.6(2)	C(1)-P-C(6)	109.6(2)
Si(1)-C(6)-Si(2)	115.8(2)	O(1)-P-W	118.09(12)
P-C(6)-H(6A)	103.4	C(1)-P-W	125.96(15)
Si(1)-C(6)-H(6A)	103.4	C(6)-P-W	122.25(14)
Si(2)-C(6)-H(6A)	103.4	C(4)-S-C(3)	91.7(2)
Si(1)-C(7)-H(7A)	109.5	C(7)-Si(1)-C(8)	109.6(2)
Si(1)-C(7)-H(7B)	109.5	C(7)-Si(1)-C(9)	108.3(2)
H(7A)-C(7)-H(7B)	109.5	C(8)-Si(1)-C(9)	108.5(2)
Si(1)-C(7)-H(7C)	109.5	C(7)-Si(1)-C(6)	108.1(2)
H(7A)-C(7)-H(7C)	109.5	C(8)-Si(1)-C(6)	112.57(19)
H(7B)-C(7)-H(7C)	109.5	C(9)-Si(1)-C(6)	109.8(2)
Si(1)-C(8)-H(8A)	109.5	C(10)-Si(2)-C(11)	108.8(2)
Si(1)-C(8)-H(8B)	109.5	C(10)-Si(2)-C(12)	108.3(2)
H(8A)-C(8)-H(8B)	109.5	C(11)-Si(2)-C(12)	110.9(2)
Si(1)-C(8)-H(8C)	109.5	C(10)-Si(2)-C(6)	107.5(2)
H(8A)-C(8)-H(8C)	109.5	C(11)-Si(2)-C(6)	113.3(2)
H(8B)-C(8)-H(8C)	109.5	C(12)-Si(2)-C(6)	107.96(19)
Si(1)-C(9)-H(9A)	109.5	C(13)-W-C(16)	89.29(18)
Si(1)-C(9)-H(9B)	109.5	C(13)-W-C(17)	88.21(17)
H(9A)-C(9)-H(9B)	109.5	C(16)-W-C(17)	91.11(18)
Si(1)-C(9)-H(9C)	109.5	C(13)-W-C(14)	91.26(17)
H(9A)-C(9)-H(9C)	109.5	C(16)-W-C(14)	178.30(16)
H(9B)-C(9)-H(9C)	109.5	C(17)-W-C(14)	90.51(17)
Si(2)-C(10)-H(10A)	109.5	C(13)-W-C(15)	88.30(18)
Si(2)-C(10)-H(10B)	109.5	C(16)-W-C(15)	88.84(19)
H(10A)-C(10)-H(10B)	109.5	C(17)-W-C(15)	176.51(17)
Si(2)-C(10)-H(10C)	109.5	C(14)-W-C(15)	89.57(18)
H(10A)-C(10)-H(10C)	109.5	C(13)-W-P	177.89(13)
H(10B)-C(10)-H(10C)	109.5	C(16)-W-P	91.24(13)
Si(2)-C(11)-H(11A)	109.5	C(17)-W-P	89.74(12)

C(14)-W-P	88.28(12)
C(15)-W-P	93.75(13)

Der anisot	rope Auslenkur	ngsfaktorexpo	nent hat die F	orm: -2π² [h² a	a ^{*2} U11 + +	2 h k a* b* U12].
	U11	U22	U33	U23	U13	U12
C(1)	18(2)	17(2)	17(2)	-4(2)	7(2)	-3(2)
C(2)	15(2)	25(3)	14(2)	-1(2)	4(2)	-2(2)
C(3)	32(3)	30(3)	21(2)	1(2)	15(2)	1(2)
C(4)	38(3)	34(3)	31(3)	-9(2)	17(2)	2(2)
C(5)	30(3)	28(3)	30(2)	-6(2)	16(2)	-1(2)
C(6)	16(2)	10(2)	17(2)	-2(2)	9(2)	0(2)
C(7)	49(4)	30(3)	42(3)	9(2)	28(3)	-5(2)
C(8)	26(3)	19(2)	37(3)	-2(2)	13(2)	-4(2)
C(9)	33(3)	16(3)	57(3)	0(2)	21(3)	3(2)
C(10)	35(3)	24(3)	47(3)	-7(2)	29(2)	-3(2)
C(11)	29(3)	19(3)	34(3)	4(2)	9(2)	5(2)
C(12)	35(3)	16(2)	35(2)	-4(2)	21(2)	-2(2)
C(13)	10(3)	37(3)	9(2)	2(2)	-1(2)	0(2)
C(14)	20(2)	22(2)	26(2)	-8(2)	15(2)	-3(2)
C(15)	20(2)	25(2)	24(2)	3(2)	10(2)	2(2)
C(16)	23(2)	25(2)	24(2)	-6(2)	12(2)	-4(2)
C(17)	19(2)	21(2)	22(2)	3(2)	12(2)	-5(2)
O(1)	28(2)	14(2)	23(2)	4(1)	14(1)	4(1)
O(2)	24(2)	68(3)	25(2)	4(2)	9(2)	-1(2)
O(3)	41(2)	23(2)	38(2)	4(1)	26(2)	-3(2)
O(4)	43(2)	32(2)	36(2)	-5(2)	24(2)	11(2)
O(5)	53(2)	30(2)	36(2)	11(2)	26(2)	1(2)
O(6)	38(2)	31(2)	32(2)	-13(2)	23(2)	-10(2)
Р	16(1)	13(1)	16(1)	-1(1)	8(1)	0(1)
S	34(1)	48(1)	32(1)	-1(1)	23(1)	1(1)
Si(1)	20(1)	14(1)	28(1)	3(1)	11(1)	0(1)
Si(2)	20(1)	15(1)	25(1)	0(1)	13(1)	1(1)
W	14(1)	18(1)	16(1)	0(1)	6(1)	-1(1)

Tabelle D 7.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

	X	У	Z	U(eq)
H(1)	9432	2634	5193	23
H(3A)	6652	1384	5364	33
H(4A)	6707	4339	6154	42
H(5A)	8190	4152	5562	36
H(6A)	7995	2263	2923	17
H(7A)	8785	3860	2376	47
H(7B)	10393	3346	2816	47
H(7C)	10265	4480	2969	47
H(8A)	12189	3048	4656	35
H(8B)	11470	3335	5165	35
H(8C)	11986	4173	4799	35
H(9A)	8340	4294	4279	44
H(9B)	7498	4513	3325	44
H(9C)	8984	5104	3958	44
H(10A)	11560	1872	3432	38
H(10B)	10132	1418	2632	38
H(10C)	11458	718	3275	38
H(11A)	10902	1071	5179	38
H(11B)	12139	1518	5043	38
H(11C)	11841	365	4965	38
H(12A)	8054	97	2759	34
H(12B)	8075	13	3580	34
H(12C)	9321	-537	3504	34

Tabelle D 7.6: Wasserstoffkoordinaten (x 10	0 ⁴) und anisotrope A	Auslenkungsparameter	$(Å^2)$	x 10 ³	3)
---	-----------------------------------	----------------------	---------	-------------------	----

Tabelle D 7.7: Torsionswinkel [°]

	- []		
O(1)-C(1)-C(2)-C(3)	2.5(6)	Si(2)-C(6)-P-C(1)	79.1(2)
P-C(1)-C(2)-C(3)	72.7(6)	Si(1)-C(6)-P-W	106.6(2)
O(1)-C(1)-C(2)-C(5)	-175.5(4)	Si(2)-C(6)-P-W	-116.83(18)
P-C(1)-C(2)-C(5)	-105.3(4)	C(5)-C(4)-S-C(3)	0.4(4)
C(5)-C(2)-C(3)-S	1.0(5)	C(2)-C(3)-S-C(4)	-0.8(4)
C(1)-C(2)-C(3)-S	-177.1(3)	P-C(6)-Si(1)-C(7)	-142.5(2)
S-C(4)-C(5)-C(2)	0.1(5)	Si(2)-C(6)-Si(1)-C(7)	81.9(3)
C(3)-C(2)-C(5)-C(4)	-0.7(6)	P-C(6)-Si(1)-C(8)	96.3(3)
C(1)-C(2)-C(5)-C(4)	177.5(4)	Si(2)-C(6)-Si(1)-C(8)	-39.3(3)
C(2)-C(1)-O(1)-P	114.8(4)	P-C(6)-Si(1)-C(9)	-24.6(3)
C(1)-O(1)-P-C(6)	100.7(2)	Si(2)-C(6)-Si(1)-C(9)	-160.2(2)
C(1)-O(1)-P-W	-114.9(2)	P-C(6)-Si(2)-C(10)	169.3(2)
C(2)-C(1)-P-O(1)	-102.9(4)	Si(1)-C(6)-Si(2)-C(10)	-54.5(3)
C(2)-C(1)-P-C(6)	159.2(3)	P-C(6)-Si(2)-C(11)	-70.5(3)
O(1)-C(1)-P-C(6)	-97.8(2)	Si(1)-C(6)-Si(2)-C(11)	65.7(3)
C(2)-C(1)-P-W	-4.1(4)	P-C(6)-Si(2)-C(12)	52.7(3)
O(1)-C(1)-P-W	98.8(2)	Si(1)-C(6)-Si(2)-C(12)	-171.1(2)
Si(1)-C(6)-P-O(1)	-110.8(2)	O(2)-C(13)-W-C(16)	63(14)
Si(2)-C(6)-P-O(1)	25.8(3)	O(2)-C(13)-W-C(17)	-28(14)
Si(1)-C(6)-P-C(1)	-57.5(3)	O(2)-C(13)-W-C(14)	-119(14)
		O(2)-C(13)-W-C(15)	152(14)

O(2)-C(13)-W-P	-41(17)	O(4)-C(15)-W-C(17)	-18(8)
O(5)-C(16)-W-C(13)	91(19)	O(4)-C(15)-W-C(14)	-110(5)
O(5)-C(16)-W-C(17)	179(100)	O(4)-C(15)-W-P	162(5)
O(5)-C(16)-W-C(14)	-18(23)	O(1)-P-W-C(13)	-78(4)
O(5)-C(16)-W-C(15)	2(19)	C(1)-P-W-C(13)	-138(4)
O(5)-C(16)-W-P	-91(19)	C(6)-P-W-C(13)	61(4)
O(6)-C(17)-W-C(13)	4(9)	O(1)-P-W-C(16)	177.52(18)
O(6)-C(17)-W-C(16)	-85(9)	C(1)-P-W-C(16)	118.1(2)
O(6)-C(17)-W-C(14)	95(9)	C(6)-P-W-C(16)	-43.29(19)
O(6)-C(17)-W-C(15)	4(11)	O(1)-P-W-C(17)	-91.37(17)
O(6)-C(17)-W-P	-176(100)	C(1)-P-W-C(17)	-150.8(2)
O(3)-C(14)-W-C(13)	-96(18)	C(6)-P-W-C(17)	47.82(19)
O(3)-C(14)-W-C(16)	13(21)	O(1)-P-W-C(14)	-0.85(17)
O(3)-C(14)-W-C(17)	176(100)	C(1)-P-W-C(14)	-60.3(2)
O(3)-C(14)-W-C(15)	-8(18)	C(6)-P-W-C(14)	138.34(19)
O(3)-C(14)-W-P	86(18)	O(1)-P-W-C(15)	88.61(18)
O(4)-C(15)-W-C(13)	-19(5)	C(1)-P-W-C(15)	29.2(2)
O(4)-C(15)-W-C(16)	71(5)	C(6)-P-W-C(15)	-132.2(2)

8. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-(*o*-pyridyl)-oxa-phosphiran*κP*}wolfram(0)} (**58a**)

Gute Struktur, 21.09.11, Publiziert in ^[143]; CCDC 948175

Tabelle D 8.1: Kristalldaten und Strukturverfeinerung von 58a

Identifikationscode	GSTR214, Greg1760
Gerätetyp	Nonius KappaCCD
Summenformel	C ₁₈ H ₂₄ NO ₆ PSi ₂ W
Molare Masse	621.38
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c
Elementarzelle	a = 10.7024(6) Å α = 90°
	b = 13.3185(11) Å β = 119.949(4)°
	$c = 19.4669(11) \text{ Å} \gamma = 90^{\circ}$
Elementarzellenvolumen [Å3]	2404.3(3)
Z, Berechnete Dichte [Mg/m ³]	4, 1.717
Absorptionskoeffizient [mm ⁻¹]	5.002
F(000)	1216
Kristallgröße [mm ³]	0.10 x 0.08 x 0.01
Gemessener 20-Bereich [°]	1.95 - 28.00
Indexgrößen	$\textbf{-11} \leq h \leq 14, \textbf{-17} \leq k \leq 16, \textbf{-25} \leq l \leq 20$
Reflexe gemessen / unabhängig	16547 / 5693 [R _{int} = 0.0736]
Vollständigkeit für Θ = 28.00	98.1 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.9517 und 0.6346
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	5693 / 0 / 268
Goodness-of-fit an F ²	0.874
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0409, wR2 = 0.0649
R-Werte (sämtliche Daten)	R1 = 0.0974, wR2 = 0.0751
Größtes Maximum und Minimum	3.425 und -1.934 e∙Å⁻³

		V	Z	U(ea)	
W	-1118(1)	-2881(1)	-2996(1)	24(1)	
Р	-232(1)	-2837(1)	-3942(1)	22(1)	
Si(1)	2149(2)	-1355(1)	-3823(1)	28(1)	
Si(2)	2481(2)	-3780(1)	-3853(1)	27(1)	
O(1)	-910(4)	-3621(3)	-4718(2)	29(1)	
O(3)	1176(5)	-4572(3)	-1984(3)	37(1)	
O(4)	-3368(5)	-4602(4)	-4013(3)	37(1)	
O(5)	-3561(5)	-1231(4)	-3926(3)	41(1)	
O(6)	1178(5)	-1213(4)	-1969(3)	42(1)	
N	-3186(5)	-1378(4)	-5522(3)	35(1)	
C(1)	-1299(6)	-2581(4)	-4983(3)	22(1)	
C(2)	-2850(6)	-2347(5)	-5351(3)	26(2)	
C(3)	-3876(6)	-3077(5)	-5501(3)	32(2)	
C(4)	-5296(6)	-2799(6)	-5813(4)	40(2)	
C(5)	-5651(7)	-1811(6)	-5979(4)	42(2)	
C(6)	-4563(7)	-1115(6)	-5826(4)	43(2)	
C(7)	1650(5)	-2651(4)	-3623(3)	21(1)	
C(8)	774(7)	-425(5)	-3913(4)	41(2)	
C(9)	2280(6)	-1318(5)	-4736(4)	32(2)	
C(10)	3890(7)	-1007(5)	-2953(4)	49(2)	
C(11)	2075(7)	-4939(5)	-3468(4)	39(2)	
C(12)	1870(7)	-3906(5)	-4928(4)	41(2)	
C(13)	4469(6)	-3593(5)	-3297(4)	43(2)	
C(15)	335(6)	-3954(5)	-2367(4)	26(2)	
C(16)	-2561(6)	-3984(5)	-3647(4)	25(2)	
C(17)	-2654(6)	-1804(5)	-3609(3)	28(2)	
C(18)	334(6)	-1809(5)	-2345(3)	27(2)	
O(2)	-2203(4)	-2847(4)	-1753(2)	46(1)	
C(14)	-1820(6)	-2873(5)	-2198(3)	28(1)	

Tabelle D 8.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). <u>U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tens</u>ors.

Tabelle D 8.3: Bindungslängen [Å]

_

W-C(15)	2.015(7)	O(1)-C(1)	1.464(7)	C(7)-H(7)	1.0000
W-C(18)	2.023(6)	O(3)-C(15)	1.171(7)	C(8)-H(8A)	0.9800
W-C(14)	2.035(7)	O(4)-C(16)	1.147(7)	C(8)-H(8B)	0.9800
W-C(16)	2.048(7)	O(5)-C(17)	1.144(7)	C(8)-H(8C)	0.9800
W-C(17)	2.055(7)	O(6)-C(18)	1.151(7)	C(9)-H(9A)	0.9800
W-P	2.4563(15)	N-C(6)	1.332(7)	C(9)-H(9B)	0.9800
P-O(1)	1.676(4)	N-C(2)	1.336(8)	C(9)-H(9C)	0.9800
P-C(1)	1.794(6)	C(1)-C(2)	1.476(7)	C(10)-H(10A)	0.9800
P-C(7)	1.804(5)	C(1)-H(1)	1.0000	C(10)-H(10B)	0.9800
Si(1)-C(10)	1.845(6)	C(2)-C(3)	1.384(8)	C(10)-H(10C)	0.9800
Si(1)-C(9)	1.854(6)	C(3)-C(4)	1.376(8)	C(11)-H(11A)	0.9800
Si(1)-C(8)	1.864(6)	C(3)-H(3)	0.9500	C(11)-H(11B)	0.9800
Si(1)-C(7)	1.904(6)	C(4)-C(5)	1.364(10)	C(11)-H(11C)	0.9800
Si(2)-C(11)	1.859(7)	C(4)-H(4)	0.9500	C(12)-H(12A)	0.9800
Si(2)-C(13)	1.860(6)	C(5)-C(6)	1.399(9)	C(12)-H(12B)	0.9800
Si(2)-C(12)	1.861(7)	C(5)-H(5)	0.9500	C(12)-H(12C)	0.9800
Si(2)-C(7)	1.911(6)	C(6)-H(6)	0.9500	C(13)-H(13A)	0.9800

C(13)-H(13B)	0.9800	O(2)-C(14)	1.129(7)
C(13)-H(13C)	0.9800		

Tabelle D 8.4: Bindungswinkel [°]

C(15)-W-C(18)	90.1(2)	C(4)-C(3)-H(3)	120.3
C(15)-W-C(14)	90.4(2)	C(2)-C(3)-H(3)	120.3
C(18)-W-C(14)	88.8(2)	C(5)-C(4)-C(3)	118.7(7)
C(15)-W-C(16)	89.0(2)	C(5)-C(4)-H(4)	120.7
C(18)-W-C(16)	179.0(2)	C(3)-C(4)-H(4)	120.7
C(14)-W-C(16)	91.4(2)	C(4)-C(5)-C(6)	119.0(6)
C(15)-W-C(17)	177.1(2)	C(4)-C(5)-H(5)	120.5
C(18)-W-C(17)	90.7(2)	C(6)-C(5)-H(5)	120.5
C(14)-W-C(17)	86.9(2)	N-C(6)-C(5)	122.6(7)
C(16)-W-C(17)	90.2(2)	N-C(6)-H(6)	118.7
C(15)-W-P	90.20(18)	C(5)-C(6)-H(6)	118.7
C(18)-W-P	89.40(18)	P-C(7)-Si(1)	115.6(3)
C(14)-W-P	178.07(19)	P-C(7)-Si(2)	112.4(3)
C(16)-W-P	90.44(17)	Si(1)-C(7)-Si(2)	117.0(3)
C(17)-W-P	92.56(18)	P-C(7)-H(7)	103.1
O(1)-P-C(1)	49.8(2)	Si(1)-C(7)-H(7)	103.1
O(1)-P-C(7)	107.6(2)	Si(2)-C(7)-H(7)	103.1
C(1)-P-C(7)	109.6(3)	Si(1)-C(8)-H(8A)	109.5
O(1)-P-W	120.35(16)	Si(1)-C(8)-H(8B)	109.5
C(1)-P-W	125.83(19)	H(8A)-C(8)-H(8B)	109.5
C(7)-P-W	121.83(19)	Si(1)-C(8)-H(8C)	109.5
C(10)-Si(1)-C(9)	110.4(3)	H(8A)-C(8)-H(8C)	109.5
C(10)-Si(1)-C(8)	107.9(3)	H(8B)-C(8)-H(8C)	109.5
C(9)-Si(1)-C(8)	109.0(3)	Si(1)-C(9)-H(9A)	109.5
C(10)-Si(1)-C(7)	107.4(3)	Si(1)-C(9)-H(9B)	109.5
C(9)-Si(1)-C(7)	112.6(3)	H(9A)-C(9)-H(9B)	109.5
C(8)-Si(1)-C(7)	109.5(3)	Si(1)-C(9)-H(9C)	109.5
C(11)-Si(2)-C(13)	107.8(3)	H(9A)-C(9)-H(9C)	109.5
C(11)-Si(2)-C(12)	110.8(3)	H(9B)-C(9)-H(9C)	109.5
C(13)-Si(2)-C(12)	108.9(3)	Si(1)-C(10)-H(10A)	109.5
C(11)-Si(2)-C(7)	109.2(3)	Si(1)-C(10)-H(10B)	109.5
C(13)-Si(2)-C(7)	106.8(3)	H(10A)-C(10)-H(10B)	109.5
C(12)-Si(2)-C(7)	113.0(3)	Si(1)-C(10)-H(10C)	109.5
C(1)-O(1)-P	69.3(3)	H(10A)-C(10)-H(10C)	109.5
C(6)-N-C(2)	117.8(6)	H(10B)-C(10)-H(10C)	109.5
O(1)-C(1)-C(2)	115.1(5)	Si(2)-C(11)-H(11A)	109.5
O(1)-C(1)-P	60.9(3)	Si(2)-C(11)-H(11B)	109.5
C(2)-C(1)-P	121.0(4)	H(11A)-C(11)-H(11B)	109.5
O(1)-C(1)-H(1)	116.1	Si(2)-C(11)-H(11C)	109.5
C(2)-C(1)-H(1)	116.1	H(11A)-C(11)-H(11C)	109.5
P-C(1)-H(1)	116.1	H(11B)-C(11)-H(11C)	109.5
N-C(2)-C(3)	122.6(5)	Si(2)-C(12)-H(12A)	109.5
N-C(2)-C(1)	115.0(5)	Si(2)-C(12)-H(12B)	109.5
C(3)-C(2)-C(1)	122.4(6)	H(12A)-C(12)-H(12B)	109.5
C(4)-C(3)-C(2)	119.3(6)	Si(2)-C(12)-H(12C)	109.5

H(12A)-C(12)-H(12C)	109.5	H(13B)-C(13)-H(13C)	109.5
H(12B)-C(12)-H(12C)	109.5	O(3)-C(15)-W	178.3(6)
Si(2)-C(13)-H(13A)	109.5	O(4)-C(16)-W	179.9(6)
Si(2)-C(13)-H(13B)	109.5	O(5)-C(17)-W	175.3(6)
H(13A)-C(13)-H(13B)	109.5	O(6)-C(18)-W	178.8(6)
Si(2)-C(13)-H(13C)	109.5	O(2)-C(14)-W	178.6(7)
H(13A)-C(13)-H(13C)	109.5		

Tabelle D 8.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Der anisotrope	Auslenkung	sfaktorexponer	nt hat die Form	<u>n: -2π² [h² a*² l</u>	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
W	21(1)	29(1)	21(1)	1(1)	11(1)	-1(1)
Р	19(1)	24(1)	21(1)	2(1)	10(1)	2(1)
Si(1)	34(1)	24(1)	31(1)	-1(1)	19(1)	-3(1)
Si(2)	27(1)	24(1)	33(1)	2(1)	16(1)	3(1)
O(1)	31(2)	26(3)	29(2)	-4(2)	13(2)	3(2)
O(3)	32(2)	32(3)	41(3)	9(3)	14(2)	-2(3)
O(4)	33(2)	36(3)	36(3)	-7(2)	13(2)	-8(2)
O(5)	38(3)	36(3)	43(3)	2(2)	14(2)	15(2)
O(6)	37(2)	36(3)	37(3)	-2(3)	6(2)	-10(3)
Ν	32(3)	39(4)	34(3)	11(3)	16(3)	13(3)
C(1)	23(3)	21(4)	22(3)	1(3)	12(3)	1(3)
C(2)	25(3)	32(4)	21(3)	6(3)	11(3)	4(3)
C(3)	35(4)	36(5)	21(3)	-1(3)	11(3)	-2(3)
C(4)	15(3)	59(5)	37(4)	9(4)	5(3)	0(4)
C(5)	22(3)	62(6)	38(4)	20(4)	13(3)	15(4)
C(6)	44(4)	48(5)	41(4)	20(4)	23(4)	16(4)
C(7)	17(3)	25(4)	18(3)	-1(3)	7(2)	-1(3)
C(8)	62(5)	29(4)	46(4)	1(3)	38(4)	0(4)
C(9)	41(4)	23(4)	40(4)	3(3)	27(3)	-3(3)
C(10)	54(4)	39(5)	48(4)	-7(4)	22(4)	-21(4)
C(11)	43(4)	30(4)	52(5)	6(3)	29(4)	5(3)
C(12)	59(4)	29(4)	53(5)	0(4)	40(4)	3(4)
C(13)	40(4)	36(5)	60(5)	14(4)	31(4)	18(3)
C(15)	21(3)	32(4)	25(4)	-5(3)	11(3)	-17(3)
C(16)	20(3)	30(4)	24(3)	12(3)	11(3)	10(3)
C(17)	27(3)	34(5)	24(3)	-4(3)	13(3)	-5(3)
C(18)	25(3)	30(4)	22(3)	6(3)	10(3)	2(3)
O(2)	47(3)	70(4)	30(2)	-4(3)	25(2)	-6(3)
C(14)	26(3)	28(4)	25(3)	-2(3)	8(3)	4(3)

	x	У	Z	U(eq)
H(1)	-780	-2267	-5236	26
H(3)	-3603	-3762	-5389	38
H(4)	-6015	-3286	-5912	49
H(5)	-6623	-1598	-6196	50
H(6)	-4816	-427	-5943	52
H(7)	2119	-2669	-3031	25
H(8A)	959	223	-4084	62
H(8B)	829	-346	-3398	62
H(8C)	-190	-663	-4305	62
H(9A)	2460	-627	-4837	47
H(9B)	1375	-1558	-5186	47
H(9C)	3075	-1749	-4669	47
H(10A)	4105	-303	-2998	73
H(10B)	4654	-1435	-2930	73
H(10C)	3835	-1097	-2469	73
H(11A)	2526	-5517	-3570	59
H(11B)	1029	-5039	-3736	59
H(11C)	2456	-4872	-2897	59
H(12A)	850	-3718	-5241	62
H(12B)	1991	-4603	-5044	62
H(12C)	2445	-3463	-5064	62
H(13A)	4728	-3060	-3550	64
H(13B)	4948	-4219	-3299	64
H(13C)	4776	-3402	-2749	64

Tabelle D 8.6: Wasserstoffkoordinaten (x	10 ⁴)	und anisotrope Auslenkungspa	arameter (Å ²	² x 10 ³	ʻ)
--	-------------------	------------------------------	--------------------------	--------------------------------	----

Tabelle D 8.7: Torsionswinkel [°]

C(15)-W-P-O(1)	87.3(2)	W-P-C(1)-O(1)	-101.9(3)
C(18)-W-P-O(1)	177.4(2)	O(1)-P-C(1)-C(2)	103.4(5)
C(14)-W-P-O(1)	-165(5)	C(7)-P-C(1)-C(2)	-159.7(5)
C(16)-W-P-O(1)	-1.7(2)	W-P-C(1)-C(2)	1.5(6)
C(17)-W-P-O(1)	-91.9(2)	C(6)-N-C(2)-C(3)	2.1(9)
C(15)-W-P-C(1)	147.3(3)	C(6)-N-C(2)-C(1)	-177.4(5)
C(18)-W-P-C(1)	-122.6(3)	O(1)-C(1)-C(2)-N	173.8(5)
C(14)-W-P-C(1)	-105(5)	P-C(1)-C(2)-N	103.9(6)
C(16)-W-P-C(1)	58.3(3)	O(1)-C(1)-C(2)-C(3)	-5.8(8)
C(17)-W-P-C(1)	-31.9(3)	P-C(1)-C(2)-C(3)	-75.6(7)
C(15)-W-P-C(7)	-53.6(3)	N-C(2)-C(3)-C(4)	-2.3(9)
C(18)-W-P-C(7)	36.5(3)	C(1)-C(2)-C(3)-C(4)	177.2(6)
C(14)-W-P-C(7)	54(5)	C(2)-C(3)-C(4)-C(5)	1.2(9)
C(16)-W-P-C(7)	-142.6(3)	C(3)-C(4)-C(5)-C(6)	-0.1(10)
C(17)-W-P-C(7)	127.2(3)	C(2)-N-C(6)-C(5)	-0.9(10)
C(7)-P-O(1)-C(1)	-101.0(3)	C(4)-C(5)-C(6)-N	-0.1(11)
W-P-O(1)-C(1)	113.2(3)	O(1)-P-C(7)-Si(1)	109.7(3)
P-O(1)-C(1)-C(2)	-113.0(5)	C(1)-P-C(7)-Si(1)	57.0(4)
C(7)-P-C(1)-O(1)	96.9(3)	W-P-C(7)-Si(1)	-105.1(3)

O(1)-P-C(7)-Si(2)	-28.3(4)	C(15)-W-C(16)-O(4)	-82(100)
C(1)-P-C(7)-Si(2)	-81.0(3)	C(18)-W-C(16)-O(4)	-72(100)
W-P-C(7)-Si(2)	116.9(2)	C(14)-W-C(16)-O(4)	-172(100)
C(10)-Si(1)-C(7)-P	140.5(4)	C(17)-W-C(16)-O(4)	101(100)
C(9)-Si(1)-C(7)-P	-97.8(4)	P-W-C(16)-O(4)	8(100)
C(8)-Si(1)-C(7)-P	23.6(4)	C(15)-W-C(17)-O(5)	-8(10)
C(10)-Si(1)-C(7)-Si(2)	-83.4(4)	C(18)-W-C(17)-O(5)	-114(7)
C(9)-Si(1)-C(7)-Si(2)	38.3(4)	C(14)-W-C(17)-O(5)	-25(7)
C(8)-Si(1)-C(7)-Si(2)	159.7(3)	C(16)-W-C(17)-O(5)	66(7)
C(11)-Si(2)-C(7)-P	-51.3(4)	P-W-C(17)-O(5)	156(7)
C(13)-Si(2)-C(7)-P	-167.6(3)	C(15)-W-C(18)-O(6)	10(27)
C(12)-Si(2)-C(7)-P	72.6(4)	C(14)-W-C(18)-O(6)	100(27)
C(11)-Si(2)-C(7)-Si(1)	171.3(3)	C(16)-W-C(18)-O(6)	0(37)
C(13)-Si(2)-C(7)-Si(1)	54.9(4)	C(17)-W-C(18)-O(6)	-173(100)
C(12)-Si(2)-C(7)-Si(1)	-64.8(4)	P-W-C(18)-O(6)	-80(27)
C(18)-W-C(15)-O(3)	73(17)	C(15)-W-C(14)-O(2)	123(19)
C(14)-W-C(15)-O(3)	-16(17)	C(18)-W-C(14)-O(2)	32(19)
C(16)-W-C(15)-O(3)	-108(17)	C(16)-W-C(14)-O(2)	-148(19)
C(17)-W-C(15)-O(3)	-33(20)	C(17)-W-C(14)-O(2)	-58(19)
P-W-C(15)-O(3)	162(17)	P-W-C(14)-O(2)	15(23)

9. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3-methyl-3-(o-pyridyl)-oxaphosphiranκP}wolfram(0) (**59a**)

Gute Struktur, 21.09.11, Publiziert in ^[143]; CCDC 948174

Tabelle D 9.1: Kristalldaten und Strukturverfeinerung von 59a

Identifikationscode	GSTR213, Greg1758
Gerätetyp	Nonius KappaCCD
Summenformel	C ₁₉ H ₂₆ NO ₆ PSi ₂ W
Molare Masse	635.41
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, P21/c
Elementarzelle	a = 8.5160(6) Å α = 90°
	b = 17.0713(6) Å β = 105.289(3)°
	c = 17.7988(10) Å γ = 90°
Elementarzellenvolumen [Å ³]	2496.0(2)
Z, Berechnete Dichte [Mg/m ³]	4, 1.691
Absorptionskoeffizient [mm ⁻¹]	4.820
F(000)	1248
Kristallgröße [mm ³]	0.17 x 0.12 x 0.04
Gemessener 20-Bereich [°]	2.39 - 28.00
Indexgrößen	$-11 \le h \le 8$, $-18 \le k \le 22$, $-18 \le l \le 23$
Reflexe gemessen / unabhängig	17670 / 5932 [R _{int} = 0.0775]
Vollständigkeit für Θ = 28.00	98.4 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.8306 und 0.4946
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	5932 / 0 / 278
Goodness-of-fit an F ²	0.846
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0393, wR2 = 0.0618
R-Werte (sämtliche Daten)	R1 = 0.0869, wR2 = 0.0724
Größtes Maximum und Minimum	1.671 und -2.369 e∙Å ⁻³

	X	y	z	U(eq)
W	-3404(1)	-4128(1)	-3662(1)	18(1)
Р	-3092(2)	-2677(1)	-3609(1)	16(1)
Si(1)	-1239(2)	-2284(1)	-1894(1)	20(1)
Si(2)	569(2)	-2162(1)	-3307(1)	19(1)
O(1)	-4748(4)	-2131(2)	-3660(2)	18(1)
O(2)	-3984(5)	-5953(2)	-3777(2)	33(1)
O(3)	-2485(5)	-4199(2)	-5286(2)	32(1)
O(4)	-7217(5)	-3984(2)	-4452(3)	38(1)
O(5)	-4306(6)	-4250(2)	-2044(3)	42(1)
O(6)	335(6)	-4491(2)	-2874(3)	39(1)
Ν	-2826(6)	-1127(2)	-5022(3)	20(1)
C(1)	-4173(7)	-2016(3)	-4368(3)	14(1)
C(2)	-3526(7)	-1209(3)	-4440(3)	18(1)
C(3)	-3719(7)	-601(3)	-3958(3)	23(1)
C(4)	-3112(8)	137(3)	-4083(3)	26(2)
C(5)	-2392(8)	230(3)	-4683(3)	24(2)
C(6)	-2254(7)	-409(3)	-5130(3)	24(1)
C(7)	-5339(7)	-2313(3)	-5096(3)	21(1)
C(8)	-1405(7)	-2166(3)	-2973(3)	16(1)
C(9)	-3304(7)	-2180(3)	-1744(3)	28(2)
C(10)	-335(8)	-3228(3)	-1459(3)	27(2)
C(11)	71(7)	-1473(3)	-1381(3)	28(2)
C(12)	2270(7)	-2709(3)	-2655(3)	28(2)
C(13)	1196(7)	-1115(3)	-3326(3)	29(2)
C(14)	189(7)	-2576(3)	-4301(3)	24(1)
C(15)	-3756(7)	-5286(3)	-3735(3)	21(1)
C(16)	-2850(7)	-4155(3)	-4707(3)	22(1)
C(17)	-5854(8)	-4006(3)	-4188(4)	27(2)
C(18)	-3949(7)	-4176(3)	-2623(4)	26(1)
C(19)	-980(8)	-4336(3)	-3136(4)	26(2)

Tabelle D 9.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 9.3: Bindungslängen [Å]

W-C(15)	1,999(6)	Si(2)-C(8)	1,925(6)	C(5)-C(6)	1.374(7)
W-C(18)	2.024(6)	O(1)-C(1)	1.481(6)	C(5)-H(5)	0.9500
W-C(16)	2.036(6)	O(2)-C(15)	1.153(6)	C(6)-H(6)	0.9500
W-C(17)	2.060(7)	O(3)-C(16)	1.154(6)	C(7)-H(7A)	0.9800
W-C(19)	2.060(7)	O(4)-C(17)	1.132(7)	C(7)-H(7B)	0.9800
W-P	2.4905(13)	O(5)-C(18)	1.156(7)	C(7)-H(7C)	0.9800
P-O(1)	1.673(4)	O(6)-C(19)	1.124(7)	C(8)-H(8)	1.0000
P-C(8)	1.802(5)	N-C(2)	1.333(7)	C(9)-H(9A)	0.9800
P-C(1)	1.814(5)	N-C(6)	1.351(6)	C(9)-H(9B)	0.9800
Si(1)-C(9)	1.856(6)	C(1)-C(7)	1.497(7)	C(9)-H(9C)	0.9800
Si(1)-C(11)	1.859(5)	C(1)-C(2)	1.502(7)	C(10)-H(10A)	0.9800
Si(1)-C(10)	1.865(5)	C(2)-C(3)	1.383(7)	C(10)-H(10B)	0.9800
Si(1)-C(8)	1.898(5)	C(3)-C(4)	1.402(7)	C(10)-H(10C)	0.9800
Si(2)-C(14)	1.853(5)	C(3)-H(3)	0.9500	C(11)-H(11A)	0.9800
Si(2)-C(12)	1.853(6)	C(4)-C(5)	1.373(8)	C(11)-H(11B)	0.9800
Si(2)-C(13)	1.867(5)	C(4)-H(4)	0.9500	C(11)-H(11C)	0.9800

Anhang D – Kristallographische Daten

C(12)-H(12A)	0.9800	W-C(18)	2.024(6)	Si(1)-C(10)	1.865(5)
C(12)-H(12B)	0.9800	W-C(16)	2.036(6)	Si(1)-C(8)	1.898(5)
C(12)-H(12C)	0.9800	W-C(17)	2.060(7)	Si(2)-C(14)	1.853(5)
C(13)-H(13A)	0.9800	W-C(19)	2.060(7)	Si(2)-C(12)	1.853(6)
C(13)-H(13B)	0.9800	W-P	2.4905(13)	Si(2)-C(13)	1.867(5)
C(13)-H(13C)	0.9800	P-O(1)	1.673(4)	Si(2)-C(8)	1.925(6)
C(14)-H(14A)	0.9800	P-C(8)	1.802(5)	O(1)-C(1)	1.481(6)
C(14)-H(14B)	0.9800	P-C(1)	1.814(5)	O(2)-C(15)	1.153(6)
C(14)-H(14C)	0.9800	Si(1)-C(9)	1.856(6)		
W-C(15)	1.999(6)	Si(1)-C(11)	1.859(5)		

Tabelle D 9.4: Bindungswinkel [°]

C(15)-W-C(18)	87.3(2)	C(7)-C(1)-C(2)	114.3(4)
C(15)-W-C(16)	89.2(2)	O(1)-C(1)-P	60.0(2)
C(18)-W-C(16)	176.43(19)	C(7)-C(1)-P	121.6(3)
C(15)-W-C(17)	87.4(2)	C(2)-C(1)-P	120.6(4)
C(18)-W-C(17)	88.3(2)	N-C(2)-C(3)	123.6(5)
C(16)-W-C(17)	92.2(2)	N-C(2)-C(1)	114.3(4)
C(15)-W-C(19)	88.5(2)	C(3)-C(2)-C(1)	122.0(5)
C(18)-W-C(19)	91.2(2)	C(2)-C(3)-C(4)	117.9(5)
C(16)-W-C(19)	88.1(2)	C(2)-C(3)-H(3)	121.1
C(17)-W-C(19)	175.9(2)	C(4)-C(3)-H(3)	121.1
С(15)-W-Р	177.41(17)	C(5)-C(4)-C(3)	119.0(5)
C(18)-W-P	93.05(15)	C(5)-C(4)-H(4)	120.5
C(16)-W-P	90.49(15)	C(3)-C(4)-H(4)	120.5
С(17)-W-Р	90.09(15)	C(4)-C(5)-C(6)	118.9(5)
С(19)-W-Р	94.01(14)	C(4)-C(5)-H(5)	120.6
O(1)-P-C(8)	106.6(2)	C(6)-C(5)-H(5)	120.6
O(1)-P-C(1)	50.06(19)	N-C(6)-C(5)	123.3(5)
C(8)-P-C(1)	109.3(2)	N-C(6)-H(6)	118.3
O(1)-P-W	118.21(13)	C(5)-C(6)-H(6)	118.3
C(8)-P-W	124.35(17)	C(1)-C(7)-H(7A)	109.5
C(1)-P-W	124.23(17)	C(1)-C(7)-H(7B)	109.5
C(9)-Si(1)-C(11)	109.0(3)	H(7A)-C(7)-H(7B)	109.5
C(9)-Si(1)-C(10)	109.0(3)	C(1)-C(7)-H(7C)	109.5
C(11)-Si(1)-C(10)	108.1(3)	H(7A)-C(7)-H(7C)	109.5
C(9)-Si(1)-C(8)	108.4(3)	H(7B)-C(7)-H(7C)	109.5
C(11)-Si(1)-C(8)	107.1(2)	P-C(8)-Si(1)	114.8(3)
C(10)-Si(1)-C(8)	115.1(2)	P-C(8)-Si(2)	115.1(3)
C(14)-Si(2)-C(12)	108.5(3)	Si(1)-C(8)-Si(2)	118.3(3)
C(14)-Si(2)-C(13)	109.1(2)	P-C(8)-H(8)	101.6
C(12)-Si(2)-C(13)	108.3(3)	Si(1)-C(8)-H(8)	101.6
C(14)-Si(2)-C(8)	110.3(3)	Si(2)-C(8)-H(8)	101.6
C(12)-Si(2)-C(8)	114.0(2)	Si(1)-C(9)-H(9A)	109.5
C(13)-Si(2)-C(8)	106.6(2)	Si(1)-C(9)-H(9B)	109.5
C(1)-O(1)-P	69.9(3)	H(9A)-C(9)-H(9B)	109.5
C(2)-N-C(6)	117.2(4)	Si(1)-C(9)-H(9C)	109.5
O(1)-C(1)-C(7)	113.5(4)	H(9A)-C(9)-H(9C)	109.5
O(1)-C(1)-C(2)	113.9(4)	H(9B)-C(9)-H(9C)	109.5

Si(1)-C(10)-H(10A)	109.5	Si(2)-C(13)-H(13A)	109.5
Si(1)-C(10)-H(10B)	109.5	Si(2)-C(13)-H(13B)	109.5
H(10A)-C(10)-H(10B)	109.5	H(13A)-C(13)-H(13B)	109.5
Si(1)-C(10)-H(10C)	109.5	Si(2)-C(13)-H(13C)	109.5
H(10A)-C(10)-H(10C)	109.5	H(13A)-C(13)-H(13C)	109.5
H(10B)-C(10)-H(10C)	109.5	H(13B)-C(13)-H(13C)	109.5
Si(1)-C(11)-H(11A)	109.5	Si(2)-C(14)-H(14A)	109.5
Si(1)-C(11)-H(11B)	109.5	Si(2)-C(14)-H(14B)	109.5
H(11A)-C(11)-H(11B)	109.5	H(14A)-C(14)-H(14B)	109.5
Si(1)-C(11)-H(11C)	109.5	Si(2)-C(14)-H(14C)	109.5
H(11A)-C(11)-H(11C)	109.5	H(14A)-C(14)-H(14C)	109.5
H(11B)-C(11)-H(11C)	109.5	H(14B)-C(14)-H(14C)	109.5
Si(2)-C(12)-H(12A)	109.5	O(2)-C(15)-W	179.0(5)
Si(2)-C(12)-H(12B)	109.5	O(3)-C(16)-W	176.7(5)
H(12A)-C(12)-H(12B)	109.5	O(4)-C(17)-W	175.4(5)
Si(2)-C(12)-H(12C)	109.5	O(5)-C(18)-W	175.5(5)
H(12A)-C(12)-H(12C)	109.5	O(6)-C(19)-W	175.7(5)
H(12B)-C(12)-H(12C)	109.5		

Tabelle D 9.5: Anisotrope Auslenkungsparameter (A ² x 10

Der anisotrop	e Auslenkungs	faktorexponer	nt hat die Form	n: -2π² [h² a*² l	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
W	17(1)	15(1)	22(1)	1(1)	5(1)	0(1)
Р	16(1)	16(1)	18(1)	0(1)	6(1)	0(1)
Si(1)	17(1)	24(1)	18(1)	-1(1)	5(1)	-4(1)
Si(2)	16(1)	22(1)	21(1)	1(1)	7(1)	-1(1)
O(1)	13(2)	22(2)	22(2)	1(2)	6(2)	2(2)
O(2)	23(3)	20(2)	53(3)	2(2)	6(2)	0(2)
O(3)	33(3)	36(2)	31(3)	-4(2)	13(2)	-7(2)
O(4)	22(3)	32(2)	54(3)	1(2)	2(3)	3(2)
O(5)	53(4)	47(3)	33(3)	1(2)	21(3)	-9(2)
O(6)	23(3)	32(2)	56(3)	-3(2)	-1(3)	6(2)
Ν	22(3)	21(2)	21(3)	4(2)	11(2)	2(2)
C(1)	16(3)	18(3)	10(3)	-2(2)	7(3)	3(2)
C(2)	16(3)	18(3)	16(3)	2(2)	-3(3)	2(2)
C(3)	24(4)	23(3)	20(3)	5(2)	1(3)	3(3)
C(4)	31(4)	22(3)	22(4)	-1(3)	0(3)	6(3)
C(5)	31(4)	16(3)	26(4)	4(2)	8(3)	-2(3)
C(6)	17(4)	27(3)	28(4)	5(3)	6(3)	-1(3)
C(7)	18(4)	19(3)	23(4)	2(2)	1(3)	1(2)
C(8)	14(3)	14(3)	18(3)	1(2)	1(3)	0(2)
C(9)	22(4)	40(3)	24(4)	-3(3)	9(3)	-2(3)
C(10)	26(4)	29(3)	25(4)	2(3)	5(3)	-4(3)
C(11)	26(4)	32(3)	29(4)	-8(3)	11(3)	-8(3)
C(12)	18(4)	44(3)	25(4)	3(3)	11(3)	3(3)
C(13)	29(4)	24(3)	33(4)	2(3)	8(3)	-7(3)
C(14)	17(4)	27(3)	28(4)	8(3)	3(3)	2(3)
C(15)	11(4)	33(3)	21(4)	6(3)	5(3)	4(3)

C(16)	13(3)	22(3)	28(4)	-2(3)	-2(3)	0(3)
C(17)	24(4)	22(3)	33(4)	5(3)	4(3)	4(3)
C(18)	22(4)	22(3)	29(4)	-3(3)	2(3)	-1(3)
C(19)	31(4)	16(3)	25(4)	4(2)	-2(3)	1(3)

Tabelle D 9.6: W	asserstoffkoordinaten	(x 10 ⁴) und anisotro	pe Auslenkungsparame	eter (Å ² x 10 ³)
	X	у	Z	U(eq)
H(3)	-4246	-681	-3556	28
H(4)	-3197	567	-3757	31
H(5)	-1995	728	-4786	29
H(6)	-1731	-343	-5536	29
H(7A)	-6407	-2070	-5154	31
H(7B)	-5441	-2883	-5063	31
H(7C)	-4933	-2181	-5546	31
H(8)	-1764	-1609	-3064	19
H(9A)	-3794	-1688	-1979	42
H(9B)	-3225	-2175	-1185	42
H(9C)	-3984	-2621	-1989	42
H(10A)	-367	-3253	-913	41
H(10B)	796	-3262	-1488	41
H(10C)	-960	-3666	-1748	41
H(11A)	1171	-1531	-1448	42
H(11B)	118	-1491	-825	42
H(11C)	-386	-970	-1599	42
H(12A)	2590	-2450	-2146	42
H(12B)	3200	-2719	-2883	42
H(12C)	1921	-3246	-2591	42
H(13A)	2235	-1087	-3463	44
H(13B)	1317	-882	-2810	44
H(13C)	363	-828	-3713	44
H(14A)	4	-3141	-4283	37
H(14B)	1135	-2478	-4504	37
H(14C)	-775	-2326	-4643	37

Tabelle D 9.7: Torsionswinkel [°]

C(15)-W-P-O(1)	30(4)	W-P-C(8)-Si(1)	-64.4(3)
C(18)-W-P-O(1)	-66.8(2)	O(1)-P-C(8)-Si(2)	-138.7(2)
C(16)-W-P-O(1)	113.7(2)	C(1)-P-C(8)-Si(2)	-86.0(3)
C(17)-W-P-O(1)	21.5(2)	W-P-C(8)-Si(2)	78.1(3)
C(19)-W-P-O(1)	-158.2(2)	C(9)-Si(1)-C(8)-P	-43.6(3)
C(15)-W-P-C(8)	170(4)	C(11)-Si(1)-C(8)-P	-161.1(3)
C(18)-W-P-C(8)	72.5(3)	C(10)-Si(1)-C(8)-P	78.7(4)
C(16)-W-P-C(8)	-107.0(3)	C(9)-Si(1)-C(8)-Si(2)	175.1(3)
C(17)-W-P-C(8)	160.8(3)	C(11)-Si(1)-C(8)-Si(2)	57.6(3)
C(19)-W-P-C(8)	-18.9(3)	C(10)-Si(1)-C(8)-Si(2)	-62.6(3)
C(15)-W-P-C(1)	-29(4)	C(14)-Si(2)-C(8)-P	8.1(3)
C(18)-W-P-C(1)	-125.7(3)	C(12)-Si(2)-C(8)-P	-114.2(3)
C(16)-W-P-C(1)	54.8(3)	C(13)-Si(2)-C(8)-P	126.4(3)
C(17)-W-P-C(1)	-37.4(3)	C(14)-Si(2)-C(8)-Si(1)	149.2(3)
C(19)-W-P-C(1)	142.9(3)	C(12)-Si(2)-C(8)-Si(1)	26.9(4)
C(8)-P-O(1)-C(1)	101.6(3)	C(13)-Si(2)-C(8)-Si(1)	-92.5(3)
W-P-O(1)-C(1)	-112.5(2)	C(18)-W-C(15)-O(2)	64(28)
P-O(1)-C(1)-C(7)	114.1(4)	C(16)-W-C(15)-O(2)	-117(28)
P-O(1)-C(1)-C(2)	-112.8(4)	C(17)-W-C(15)-O(2)	-24(28)
C(8)-P-C(1)-O(1)	-95.8(3)	C(19)-W-C(15)-O(2)	155(28)
W-P-C(1)-O(1)	100.1(2)	P-W-C(15)-O(2)	-33(31)
O(1)-P-C(1)-C(7)	-100.7(5)	C(15)-W-C(16)-O(3)	-49(8)
C(8)-P-C(1)-C(7)	163.5(4)	C(18)-W-C(16)-O(3)	-39(11)
W-P-C(1)-C(7)	-0.6(5)	C(17)-W-C(16)-O(3)	-136(8)
O(1)-P-C(1)-C(2)	101.6(5)	C(19)-W-C(16)-O(3)	40(8)
C(8)-P-C(1)-C(2)	5.9(5)	P-W-C(16)-O(3)	134(8)
W-P-C(1)-C(2)	-158.2(3)	C(15)-W-C(17)-O(4)	32(7)
C(6)-N-C(2)-C(3)	1.3(8)	C(18)-W-C(17)-O(4)	-55(7)
C(6)-N-C(2)-C(1)	178.4(5)	C(16)-W-C(17)-O(4)	121(7)
O(1)-C(1)-C(2)-N	172.3(4)	C(19)-W-C(17)-O(4)	28(9)
C(7)-C(1)-C(2)-N	-55.0(6)	P-W-C(17)-O(4)	-148(7)
P-C(1)-C(2)-N	104.2(5)	C(15)-W-C(18)-O(5)	-18(7)
O(1)-C(1)-C(2)-C(3)	-10.5(7)	C(16)-W-C(18)-O(5)	-28(10)
C(7)-C(1)-C(2)-C(3)	122.2(6)	C(17)-W-C(18)-O(5)	70(7)
P-C(1)-C(2)-C(3)	-78.6(6)	C(19)-W-C(18)-O(5)	-106(7)
N-C(2)-C(3)-C(4)	-1.4(9)	P-W-C(18)-O(5)	160(7)
C(1)-C(2)-C(3)-C(4)	-178.3(5)	C(15)-W-C(19)-O(6)	31(8)
C(2)-C(3)-C(4)-C(5)	1.5(8)	C(18)-W-C(19)-O(6)	118(8)
C(3)-C(4)-C(5)-C(6)	-1.6(9)	C(16)-W-C(19)-O(6)	-58(8)
C(2)-N-C(6)-C(5)	-1.3(8)	C(17)-W-C(19)-O(6)	36(10)
C(4)-C(5)-C(6)-N	1.5(9)	P-W-C(19)-O(6)	-149(8)
O(1)-P-C(8)-Si(1)	78.8(3)		
C(1)-P-C(8)-Si(1)	131.5(3)		

10. {Pentacarbonyl{2-[bis(trimethylsilyl)methyl]-3,3-(*o*-pyridyl)-oxaphosphiranκ*P*}chrom(0)} (**66c**)

> 05 C16 C14 02 C22 06 Si2 **C**17 C19 Si1 C21 C18 3 04 C13 С C15 C20 P H12 О3 01 C N2 C2 C3 C7 C11 C8 C5C1 C9

Exzellente Struktur, 06.06.2014, Publiziert in [99]; CCDC 1419691

Tabelle D 10.1: Kristalldaten und Strukturverfeinerung von 66c

Identifikationscode	GSTR363, 3527
Gerätetyp	STOE IPDS 2T
Summenformel	$C_{23}H_{27}CrN_2O_6PSi_2$
Molare Masse	566.62
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Orthorhombisch, Fdd2
Elementarzelle	a = 21.2057(4) Å α = 90.00°
	b = 52.0922(10) Å β = 90.00°
	$c = 9.9308(2) \text{ Å}$ $\gamma = 90.00^{\circ}$
Elementarzellenvolumen [Å3]	10970.1(4)
Z, Berechnete Dichte [Mg/m ³]	16, 1.372
Absorptionskoeffizient [mm ⁻¹]	0.602
F(000)	4704.0
Kristallgröße [mm ³]	0.33 × 0.27 × 0.25
Gemessener 20-Bereich [°]	5.98 - 56°
Indexgrößen	-28 ≤ h ≤ 28, -68 ≤ k ≤ 68, -13 ≤ l ≤ 13
Reflexe gemessen / unabhängig	$48264 / 6609 [R_{int} = 0.0266, R_{\sigma} = 0.0131]$
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	6609 / 12 / 323
Goodness-of-fit an F ²	1.045
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0217, wR2 = 0.0583
R-Werte (sämtliche Daten)	R1 = 0.0225, wR2 = 0.0586
Größtes Maximum und Minimum	0.37 und -0.29 e∙Å ⁻³
Flack-Parameter	0.000(11)

	X	У	Z	U(eq)
Cr	1835.78(9)	2031.15(4)	8466.0(2)	20.26(5)
Р	960.27(15)	1833.66(6)	7478.1(3)	18.15(7)
Si1	-332.31(16)	2055.29(7)	8468.8(4)	19.89(7)
Si2	251.57(18)	1530.77(7)	9774.0(4)	21.53(8)
O1	1102.2(5)	1583.6(2)	6462.3(11)	25.3(2)
O2	2967.7(5)	2247.5(2)	9912.2(13)	34.1(2)
O3	2755.9(6)	1828.5(4)	6369.8(16)	54.2(4)
O4	1720.8(6)	2537.8(3)	6944.5(14)	41.0(3)
O5	1045.0(6)	2282.9(3)	10649.8(13)	37.1(3)
O6	2128.7(7)	1546.3(3)	10013.5(18)	50.7(4)
N1	-84.2(6)	1953.0(3)	4549.6(14)	31.2(3)
N2	1298.8(8)	2176.0(3)	4539.1(19)	45.2(4)
C1	848.7(6)	1799.2(3)	5683.6(14)	21.2(3)
C2	216.2(6)	1747.4(3)	5052.6(14)	23.8(3)
C3	-11.4(8)	1501.9(3)	4957.8(18)	33.6(3)
C4	-580.3(10)	1466.4(5)	4276(2)	46.3(5)
C5	-894.7(9)	1671.9(5)	3761.6(18)	44.6(5)
C6	-635.7(8)	1914.1(4)	3914.1(19)	39.6(4)
C7	1316.0(6)	1916.8(3)	4732.8(14)	23.3(3)
C8	1730.1(7)	1756.3(4)	4116.5(19)	36.4(4)
C9	2143.0(8)	1865.9(5)	3240(2)	52.2(5)
C10	2155.6(8)	2126.5(6)	3000.8(18)	52.5(5)
C11	1723.7(9)	2276.3(4)	3636(3)	51.6(6)
C12	221.0(6)	1764.6(2)	8293.5(14)	18.5(2)
C13	6.8(7)	2343.7(3)	7621.7(18)	29.2(3)
C14	-523.3(8)	2139.8(3)	10245.1(16)	28.5(3)
C15	-1084.8(7)	1959.8(3)	7617.3(18)	30.8(3)
C16	576.9(8)	1666.0(3)	11371.7(16)	30.1(3)
C17	-578.2(8)	1421.6(3)	10063.2(18)	30.1(3)
C18	738.2(8)	1247.7(3)	9276.6(19)	31.3(3)
C19	2540.0(7)	2168.6(3)	9343.2(15)	25.2(3)
C20	2389.9(7)	1901.9(4)	7103.9(17)	32.2(3)
C21	1746.9(7)	2343.8(3)	7470.7(17)	27.6(3)
C22	1326.2(7)	2180.5(3)	9833.1(16)	25.3(3)
C23	1992.5(8)	1726.8(3)	9445.3(18)	31.1(3)

Tabelle D 10.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Cr-P	2.3383(4)	Si2-C12	1.9102(14)	N2-C11	1.374(2)
Cr-C19	1.8713(15)	Si2-C16	1.8680(17)	C1-C2	1.5047(19)
Cr-C20	1.9141(16)	Si2-C17	1.8714(16)	C1-C7	1.4996(19)
Cr-C21	1.9144(16)	Si2-C18	1.8663(16)	C2-C3	1.370(2)
Cr-C22	1.9016(15)	O1-C1	1.4658(17)	C3-C4	1.396(3)
Cr-C23	1.8896(17)	O2-C19	1.1448(19)	C4-C5	1.360(3)
P-01	1.6748(11)	O3-C20	1.131(2)	C5-C6	1.385(3)
P-C1	1.8066(14)	O4-C21	1.139(2)	C7-C8	1.358(2)
P-C12	1.8008(13)	O5-C22	1.139(2)	C8-C9	1.360(3)
Si1-C12	1.9237(13)	O6-C23	1.134(2)	C9-C10	1.379(4)
Si1-C13	1.8660(15)	N1-C2	1.343(2)	C10-C11	1.358(4)
Si1-C14	1.8627(16)	N1-C6	1.344(2)		
Si1-C15	1.8731(16)	N2-C7	1.365(2)		

Tabelle D 10.3: Bindungslängen [Å]

Tabelle D 10.4: Bindungswinkel [°]

C19-Cr-P	175.78(5)	C1-O1-P	69.87(7)
C19-Cr-C20	88.49(7)	C2-N1-C6	117.84(16)
C19-Cr-C21	89.62(6)	C7-N2-C11	116.77(17)
C19-Cr-C22	87.97(6)	O1-C1-P	60.50(7)
C19-Cr-C23	86.63(7)	O1-C1-C2	114.14(12)
C20-Cr-P	92.08(5)	O1-C1-C7	113.75(11)
C20-Cr-C21	89.70(8)	C2-C1-P	123.05(10)
C21-Cr-P	94.56(4)	C7-C1-P	119.61(10)
C22-Cr-P	91.62(4)	C7-C1-C2	113.58(12)
C22-Cr-C20	175.78(7)	N1-C2-C1	115.76(13)
C22-Cr-C21	87.97(7)	N1-C2-C3	123.50(14)
C23-Cr-P	89.22(5)	C3-C2-C1	120.68(14)
C23-Cr-C20	87.74(8)	C2-C3-C4	117.50(18)
C23-Cr-C21	175.52(7)	C5-C4-C3	120.07(18)
C23-Cr-C22	94.35(7)	C4-C5-C6	118.80(16)
O1-P-Cr	116.88(4)	N1-C6-C5	122.27(19)
O1-P-C1	49.62(6)	N2-C7-C1	118.38(13)
O1-P-C12	105.78(6)	C8-C7-N2	124.27(16)
C1-P-Cr	124.16(5)	C8-C7-C1	117.35(15)
C12-P-Cr	126.19(5)	C7-C8-C9	116.48(19)
C12-P-C1	108.04(6)	C8-C9-C10	122.43(18)
C13-Si1-C12	110.98(6)	C11-C10-C9	118.18(17)
C13-Si1-C15	109.79(8)	C10-C11-N2	121.8(2)
C14-Si1-C12	113.85(7)	P-C12-Si1	114.47(7)
C14-Si1-C13	108.69(8)	P-C12-Si2	116.36(7)
C14-Si1-C15	107.76(8)	Si2-C12-Si1	116.94(7)
C15-Si1-C12	105.65(7)	O2-C19-Cr	177.87(15)
C16-Si2-C12	115.20(7)	O3-C20-Cr	174.49(15)
C16-Si2-C17	109.36(8)	O4-C21-Cr	175.17(14)
C17-Si2-C12	106.26(7)	O5-C22-Cr	175.75(14)
C18-Si2-C12	108.59(7)	O6-C23-Cr	175.33(15)
C18-Si2-C16	108.58(8)		
C18-Si2-C17	108.68(7)		

Der anisotre	ope Auslenkungs	faktorexponer	nt hat die Form	<u>: -2π² [h² a*² l</u>	J11 + + 2 h ł	k a* b* U12].
	U11	U22	U33	U23	U13	U12
Cr	15.05(9)	27.52(10)	18.2(1)	1.04(8)	-2.35(8)	1.40(8)
Р	16.11(14)	21.55(14)	16.78(15)	-0.59(13)	-0.79(12)	3.00(12)
Si1	16.79(15)	20.68(16)	22.21(18)	0.81(14)	0.29(15)	2.20(13)
Si2	22.47(17)	21.16(16)	20.95(18)	2.47(14)	0.26(14)	0.54(13)
O1	27.0(5)	25.6(5)	23.4(5)	-4.3(4)	-0.6(4)	7.0(4)
02	23.5(5)	48.1(7)	30.7(6)	3.2(5)	-7.8(5)	-4.7(5)
O3	26.8(6)	94.6(12)	41.3(8)	-23.6(8)	1.4(6)	10.0(7)
O4	38.3(6)	43.0(7)	41.8(7)	15.2(6)	-15.1(5)	-7.8(5)
O5	27.7(5)	50.0(7)	33.7(7)	-10.8(5)	3.4(5)	2.7(5)
O6	38.0(7)	45.4(7)	68.7(10)	23.6(7)	-17.2(7)	2.6(6)
N1	23.0(6)	43.7(7)	26.9(7)	-4.1(6)	-1.5(5)	2.5(5)
N2	34.8(8)	46.3(9)	54.6(11)	22.9(8)	14.1(7)	5.3(7)
C1	18.5(6)	27.2(6)	17.9(6)	-1.8(5)	-0.5(5)	2.2(5)
C2	19.7(6)	36.2(7)	15.5(6)	-2.7(5)	2.1(5)	-4.0(5)
C3	35.9(8)	39.7(8)	25.2(8)	3.7(7)	1.9(6)	-10.2(7)
C4	44.0(9)	59.8(12)	35.0(9)	-0.7(9)	1.1(8)	-29.2(9)
C5	26.8(8)	82.0(15)	25.1(9)	-2.8(9)	-4.7(6)	-16.8(8)
C6	24.9(7)	65.6(12)	28.4(8)	0.1(8)	-1.2(6)	3.1(8)
C7	15.7(6)	39.5(8)	14.7(6)	-3.0(5)	-0.3(5)	0.8(5)
C8	19.3(7)	48.4(10)	41.5(10)	-26.5(8)	2.4(6)	0.9(6)
C9	21.0(7)	93.7(12)	42.0(11)	-35.4(9)	9.8(7)	-2.0(8)
C10	23.2(8)	113.7(14)	20.7(8)	12.7(10)	0.2(6)	-14.7(10)
C11	34.8(9)	59.4(12)	60.5(14)	36.9(11)	6.8(9)	-4.5(8)
C12	17.8(5)	19.0(5)	18.6(6)	-0.3(5)	-0.9(5)	1.0(4)
C13	25.7(7)	24.6(6)	37.2(9)	7.8(6)	4.3(6)	5.3(5)
C14	29.4(7)	28.4(7)	27.6(8)	-5.5(6)	4.0(6)	4.0(6)
C15	19.9(7)	37.4(8)	35.0(9)	-3.9(7)	-4.9(6)	3.2(6)
C16	31.4(8)	37.8(8)	21.2(7)	3.5(6)	-0.8(6)	0.5(6)
C17	28.8(7)	28.8(7)	32.7(8)	3.5(6)	3.5(6)	-5.4(6)
C18	30.4(8)	21.9(7)	41.5(9)	1.8(6)	-3.8(7)	3.5(6)
C19	19.2(6)	34.4(7)	22.2(7)	2.3(6)	-2.1(5)	0.0(5)
C20	18.9(6)	49.7(10)	28.1(8)	-6.2(7)	-2.2(5)	2.1(6)
C21	20.9(6)	36.6(7)	25.3(7)	4.1(6)	-5.8(6)	-4.2(5)
C22	18.9(6)	33.5(7)	23.4(6)	-1.9(5)	-2.4(5)	-1.1(5)
C23	23.1(7)	35.2(7)	35.2(9)	5.6(6)	-7.1(6)	1.7(6)

Tabelle D 10.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

	x	У	Z	U(eq)
H3	210	1361	5342	40
H4	-748	1298	4170	56
H5	-1285	1650	3306	54
H6	-855	2058	3557	48
H8	1731	1577	4288	44
H9	2433	1759	2776	63
H10	2458	2199	2408	63
H11	1715	2455	3452	62
H12	0	1660	7593	22
H13A	81	2305	6669	44
H13B	407	2390	8053	44
H13C	-289	2487	7699	44
H14A	-136	2188	10719	43
H14B	-715	1991	10693	43
H14C	-820	2284	10258	43
H15A	-1287	1822	8129	46
H15B	-993	1900	6703	46
H15C	-1369	2108	7575	46
H16A	325	1815	11646	45
H16B	1015	1719	11228	45
H16C	561	1535	12079	45
H17A	-742	1342	9239	45
H17B	-841	1569	10305	45
H17C	-586	1296	10797	45
H18A	1180	1300	9186	47
H18B	586	1180	8415	47
H18C	704	1114	9969	47

Toballa D 10 6: Wassarataffkaardinatan	$(\times 10^4)$ und onio strong	Auglankungeneremeter	ر ^{Å 2}	103
Tabelle D 10.6: Wasserstoffkoordinaten	i (x 10) und anisotrope	Ausienkungsparameter	(A X	10)

Tabelle D 10.7: Torsionswinkel [°]

Cr-P-01-C1	-113.28(7)	P-C1-C7-C8	104.54(15)
Cr-P-C1-O1	98.07(7)	O1-P-C1-C2	101.11(14)
Cr-P-C1-C2	-160.83(10)	O1-P-C1-C7	-102.17(13)
Cr-P-C1-C7	-4.10(14)	O1-P-C12-Si1	-139.27(7)
Cr-P-C12-Si1	78.64(8)	O1-P-C12-Si2	79.37(8)
Cr-P-C12-Si2	-62.71(9)	O1-C1-C2-N1	167.99(12)
P-Cr-C19-O2	-16(5)	O1-C1-C2-C3	-14.91(19)
P-Cr-C20-O3	-159(2)	O1-C1-C7-N2	-143.95(14)
P-Cr-C21-O4	162.4(18)	O1-C1-C7-C8	36.17(18)
P-Cr-C22-O5	-145(2)	N1-C2-C3-C4	1.3(2)
P-Cr-C23-O6	138(2)	N2-C7-C8-C9	-1.0(3)
P-01-C1-C2	-115.66(11)	C1-P-C12-Si1	-87.29(8)
P-01-C1-C7	111.79(11)	C1-P-C12-Si2	131.35(8)
P-C1-C2-N1	98.60(15)	C1-C2-C3-C4	-175.55(15)
P-C1-C2-C3	-84.30(17)	C1-C7-C8-C9	178.90(15)
P-C1-C7-N2	-75.58(17)	C2-N1-C6-C5	-0.4(3)

C2-C1-C7-N2	83.23(18)	C19-Cr-C20-O3	17(2)
C2-C1-C7-C8	-96.64(16)	C19-Cr-C21-O4	-17.1(19)
C2-C3-C4-C5	-1.5(3)	C19-Cr-C22-O5	39(2)
C3-C4-C5-C6	0.8(3)	C19-Cr-C23-O6	-43(2)
C4-C5-C6-N1	0.1(3)	C20-Cr-P-O1	22.09(7)
C6-N1-C2-C1	176.62(14)	C20-Cr-P-C1	-35.66(8)
C6-N1-C2-C3	-0.4(2)	C20-Cr-P-C12	160.56(8)
C7-N2-C11-C10	-2.3(3)	C20-Cr-C19-O2	-114(5)
C7-C1-C2-N1	-59.38(17)	C20-Cr-C21-O4	-105.6(19)
C7-C1-C2-C3	117.72(16)	C20-Cr-C22-O5	6(3)
C7-C8-C9-C10	1.4(3)	C20-Cr-C23-O6	45(2)
C8-C9-C10-C11	-2.2(3)	C21-Cr-P-O1	111.96(7)
C9-C10-C11-N2	2.7(3)	C21-Cr-P-C1	54.21(8)
C11-N2-C7-C1	-178.46(17)	C21-Cr-P-C12	-109.57(7)
C11-N2-C7-C8	1.4(3)	C21-Cr-C19-O2	156(5)
C12-P-O1-C1	100.50(8)	C21-Cr-C20-O3	107(2)
C12-P-C1-O1	-95.65(8)	C21-Cr-C22-O5	-51(2)
C12-P-C1-C2	5.46(14)	C21-Cr-C23-O6	-10(3)
C12-P-C1-C7	162.19(11)	C22-Cr-P-O1	-159.95(7)
C13-Si1-C12-P	4.26(10)	C22-Cr-P-C1	142.30(7)
C13-Si1-C12-Si2	145.38(8)	C22-Cr-P-C12	-21.48(7)
C14-Si1-C12-P	-118.75(9)	C22-Cr-C19-O2	68(5)
C14-Si1-C12-Si2	22.37(10)	C22-Cr-C20-O3	50(3)
C15-Si1-C12-P	123.20(8)	C22-Cr-C21-O4	70.9(19)
C15-Si1-C12-Si2	-95.67(9)	C22-Cr-C23-O6	-131(2)
C16-Si2-C12-P	75.43(10)	C23-Cr-P-O1	-65.63(7)
C16-Si2-C12-Si1	-64.96(10)	C23-Cr-P-C1	-123.37(8)
C17-Si2-C12-P	-163.31(8)	C23-Cr-P-C12	72.84(8)
C17-Si2-C12-Si1	56.30(9)	C23-Cr-C19-O2	-26(5)
C18-Si2-C12-P	-46.56(10)	C23-Cr-C20-O3	-70(2)
C18-Si2-C12-Si1	173.05(8)	C23-Cr-C21-O4	-50(2)
C19-Cr-P-O1	-75.5(7)	C23-Cr-C22-O5	125(2)
C19-Cr-P-C1	-133.2(7)		
C19-Cr-P-C12	63.0(7)		

11. {Pentacarbonyl{*P*-[triphenylmethyl]-7-(*o*-pyridyl)-8,1,9-oxazaphospha-bicyclo-[4.3.0]-non-2,4,6-en-*κP*}wolfram(0)} (**70a**)

Sehr gute Struktur, 29.08.2014, Publiziert in ^[99]; CCDC 1419690

Tabelle D 11.1: Kristalldaten und Strukturverfeinerung von 70a

Identifikationscode	GSTR367, 3664				
Gerätetyp	Nonius KappaCCD				
Summenformel	$C_{35}H_{24}N_2O_6PW$				
Molare Masse	783.38				
Temperatur [K]	123(2)				
Wellenlänge [Å]	0.71073				
Kristallsystem, Raumgruppe	Triklin, <i>P</i> Ī				
Elementarzelle	a = 8.8558(2) Å α = 61.0439(8)°				
	b = 19.9290(4) Å β = 87.8491(8)°				
	$c = 19.9303(4) \text{ Å}$ $\gamma = 84.3858(11)^{\circ}$				
Elementarzellenvolumen [Å ³]	3062.77(11)				
Z, Berechnete Dichte [Mg/m ³]	4, 1.699				
Absorptionskoeffizient [µ/mm ⁻¹]	3.874				
F(000)	1540.0				
Kristallgröße [mm ³]	0.16 × 0.08 × 0.04				
Gemessener 20-Bereich [°]	4.108 - 55.998				
Indexgrößen	-11 ≤ h ≤ 11, -26 ≤ k ≤ 26, -26 ≤ l ≤ 26				
Reflexe gemessen / unabhängig	$103405 / 14790 [R_{int} = 0.1177, R_{\sigma} = 0.0959]$				
Daten / Restraints / Parameter	14790 / 0 / 811				
Goodness-of-fit an F ²	0.935				
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0386, wR2 = 0.0779				
R-Werte (sämtliche Daten)	R1 = 0.0794, wR2 = 0.0874				
Größtes Maximum und Minimum	2.00 und -1.87 e·Å⁻³				
W1-P1	2.4799(13)	C14-C15	1.388(7)	N2'-C7'	1.337(6)
---------	------------	----------	------------	-----------	----------
W1-C31	2.024(6)	C15-C16	1.384(8)	C1'-C2'	1.358(7)
W1-C32	2.044(6)	C16-C17	1.385(8)	C1'-C3'	1.429(7)
W1-C33	2.058(6)	C17-C18	1.387(7)	C2'-C8'	1.446(7)
W1-C34	2.030(6)	C19-C20	1.394(7)	C3'-C4'	1.402(7)
W1-C35	2.050(6)	C19-C24	1.408(7)	C4'-C5'	1.375(7)
P1-O1	1.632(3)	C20-C21	1.376(7)	C5'-C6'	1.383(8)
P1-N1	1.712(4)	C21-C22	1.384(7)	C6'-C7'	1.387(8)
P1-C12	1.943(5)	C22-C23	1.378(8)	C8'-C9'	1.351(7)
O1-C1	1.415(6)	C23-C24	1.373(7)	C9'-C10'	1.422(8)
O2-C31	1.136(6)	C25-C26	1.390(7)	C10'-C11'	1.350(7)
O3-C32	1.150(6)	C25-C30	1.404(7)	C12'-C13'	1.555(7)
O4-C33	1.130(7)	C26-C27	1.390(7)	C12'-C19'	1.550(7)
O5-C34	1.151(6)	C27-C28	1.380(8)	C12'-C25'	1.537(7)
O6-C35	1.143(7)	C28-C29	1.383(8)	C13'-C14'	1.384(7)
N1-C2	1.418(6)	C29-C30	1.393(7)	C13'-C18'	1.393(7)
N1-C11	1.404(6)	W1'-P1'	2.4783(13)	C14'-C15'	1.382(7)
N2-C3	1.348(7)	W1'-C31'	2.010(5)	C15'-C16'	1.399(8)
N2-C7	1.341(7)	W1'-C32'	2.041(6)	C16'-C17'	1.364(8)
C1-C2	1.346(7)	W1'-C33'	2.048(6)	C17'-C18'	1.405(7)
C1-C3	1.445(7)	W1'-C34'	2.027(6)	C19'-C20'	1.396(7)
C2-C8	1.442(7)	W1'-C35'	2.066(6)	C19'-C24'	1.387(7)
C3-C4	1.392(7)	P1'-O1'	1.634(3)	C20'-C21'	1.375(7)
C4-C5	1.381(7)	P1'-N1'	1.728(4)	C21'-C22'	1.373(8)
C5-C6	1.381(8)	P1'-C12'	1.931(5)	C22'-C23'	1.375(8)
C6-C7	1.365(8)	O1'-C1'	1.421(6)	C23'-C24'	1.386(7)
C8-C9	1.345(8)	O2'-C31'	1.150(6)	C25'-C26'	1.390(7)
C9-C10	1.437(8)	O3'-C32'	1.162(7)	C25'-C30'	1.390(7)
C10-C11	1.325(7)	O4'-C33'	1.140(6)	C26'-C27'	1.398(7)
C12-C13	1.548(7)	O5'-C34'	1.149(7)	C27'-C28'	1.372(8)
C12-C19	1.535(7)	O6'-C35'	1.129(6)	C28'-C29'	1.383(8)
C12-C25	1.536(7)	N1'-C2'	1.421(6)	C29'-C30'	1.384(8)
C13-C14	1.396(7)	N1'-C11'	1.389(6)		
C13-C18	1.397(7)	N2'-C3'	1.349(7)		

Tabelle D 11.2: Bindungslängen [Å]

Tabelle D 11.3: Bindungswinkel [°]

C31-W1-P1	171.99(16)	C34-W1-C35	91.7(2)
C31-W1-C32	90.9(2)	C35-W1-P1	97.02(15)
C31-W1-C33	87.0(2)	C35-W1-C33	177.6(2)
C31-W1-C34	88.4(2)	O1-P1-W1	108.71(13)
C31-W1-C35	90.7(2)	O1-P1-N1	91.01(19)
C32-W1-P1	86.80(15)	O1-P1-C12	104.14(19)
C32-W1-C33	89.0(2)	N1-P1-W1	116.81(14)
C32-W1-C35	90.3(2)	N1-P1-C12	104.4(2)
C33-W1-P1	85.28(15)	C12-P1-W1	125.67(16)
C34-W1-P1	93.59(15)	C1-O1-P1	114.0(3)
C34-W1-C32	177.8(2)	C2-N1-P1	111.6(3)
C34-W1-C33	89.0(2)	C11-N1-P1	127.5(4)

C11 N1 C2	100.0(4)	02 022 14/4	470 4(5)
C11-N1-C2	120.9(4)	03-032-001	178.4(5)
C7-N2-C3	117.6(5)		178.1(5)
	115.2(4)	05-034-001	178.5(5)
02-01-01	111.9(4)		177.0(5)
C2-C1-C3	132.8(5)	C31'-W1'-P1'	172.82(16)
N1-C2-C8	117.1(5)	C31'-W1'-C32'	90.0(2)
C1-C2-N1	111.2(5)	C31'-W1'-C33'	89.1(2)
C1-C2-C8	131.7(5)	C31'-W1'-C34'	89.3(2)
N2-C3-C1	116.8(5)	C31'-W1'-C35'	89.3(2)
N2-C3-C4	121.9(5)	C32'-W1'-P1'	96.29(15)
C4-C3-C1	121.2(5)	C32'-W1'-C33'	93.4(2)
C5-C4-C3	118.8(5)	C32'-W1'-C35'	89.5(2)
C6-C5-C4	119.3(6)	C33'-W1'-P1'	93.94(15)
C7-C6-C5	118.4(5)	C33'-W1'-C35'	176.7(2)
N2-C7-C6	123.9(6)	C34'-W1'-P1'	84.46(15)
C9-C8-C2	120.3(5)	C34'-W1'-C32'	179.2(2)
C8-C9-C10	120.6(5)	C34'-W1'-C33'	86.2(2)
C11-C10-C9	120.6(5)	C34'-W1'-C35'	90.8(2)
C10-C11-N1	120.4(5)	C35'-W1'-P1'	87.31(15)
C13-C12-P1	107.9(3)	O1'-P1'-W1'	109.41(13)
C19-C12-P1	109.3(3)	O1'-P1'-N1'	91.30(19)
C19-C12-C13	112.1(4)	O1'-P1'-C12'	103.8(2)
C19-C12-C25	109.3(4)	N1'-P1'-W1'	115.02(15)
C25-C12-P1	106.8(3)	N1'-P1'-C12'	103.8(2)
C25-C12-C13	111.3(4)	C12'-P1'-W1'	127.23(16)
C14-C13-C12	122.3(5)	C1'-O1'-P1'	114.4(3)
C14-C13-C18	117.6(5)	C2'-N1'-P1'	111.1(3)
C18-C13-C12	120.2(5)	C11'-N1'-P1'	127.2(4)
C15-C14-C13	121.3(5)	C11'-N1'-C2'	121.7(4)
C16-C15-C14	120.2(5)	C7'-N2'-C3'	119.1(5)
C15-C16-C17	119.5(5)	O1'-C1'-C3'	115.4(4)
C16-C17-C18	120.2(5)	C2'-C1'-O1'	111.4(4)
C17-C18-C13	121.3(5)	C2'-C1'-C3'	133.1(5)
C20-C19-C12	122.8(4)	N1'-C2'-C8'	116.9(4)
C20-C19-C24	116.4(5)	C1'-C2'-N1'	111.8(4)
C24-C19-C12	120.6(4)	C1'-C2'-C8'	131.3(5)
C21-C20-C19	121.6(5)	N2'-C3'-C1'	117.4(5)
C20-C21-C22	120.4(5)	N2'-C3'-C4'	121.0(5)
C23-C22-C21	119.4(5)	C4'-C3'-C1'	121.5(5)
C24-C23-C22	120.0(5)	C5'-C4'-C3'	119.3(5)
C23-C24-C19	122.1(5)	C4'-C5'-C6'	119.4(5)
C26-C25-C12	122.0(4)	C5'-C6'-C7'	118.6(5)
C26-C25-C30	117.3(5)	N2'-C7'-C6'	122.5(5)
C30-C25-C12	120.6(4)	C9'-C8'-C2'	119.6(5)
C27-C26-C25	121.4(5)	C8'-C9'-C10'	121.7(5)
C28-C27-C26	120.1(5)	C11'-C10'-C9'	120.0(5)
C27-C28-C29	120.1(5)	C10'-C11'-N1'	120.1(5)
C28-C29-C30	119.4(5)	C13'-C12'-P1'	107.4(3)
C29-C30-C25	121.6(5)	C19'-C12'-P1'	107.1(3)
O2-C31-W1	178.7(5)	C19'-C12'-C13'	113.2(4)
	-		

C25'-C12'-P1'	108.1(3)	C21'-C22'-C23'	119.3(5)
C25'-C12'-C13'	108.6(4)	C22'-C23'-C24'	120.5(5)
C25'-C12'-C19'	112.2(4)	C23'-C24'-C19'	121.2(5)
C14'-C13'-C12'	119.5(4)	C26'-C25'-C12'	120.9(5)
C14'-C13'-C18'	117.8(5)	C30'-C25'-C12'	120.9(4)
C18'-C13'-C12'	122.3(5)	C30'-C25'-C26'	118.1(5)
C15'-C14'-C13'	122.5(5)	C25'-C26'-C27'	120.1(5)
C14'-C15'-C16'	119.3(5)	C28'-C27'-C26'	120.9(5)
C17'-C16'-C15'	119.1(5)	C27'-C28'-C29'	119.3(5)
C16'-C17'-C18'	121.4(5)	C28'-C29'-C30'	120.0(6)
C13'-C18'-C17'	119.9(5)	C29'-C30'-C25'	121.4(5)
C20'-C19'-C12'	122.3(5)	O2'-C31'-W1'	178.8(5)
C24'-C19'-C12'	120.6(5)	O3'-C32'-W1'	176.4(5)
C24'-C19'-C20'	117.0(5)	O4'-C33'-W1'	177.0(5)
C21'-C20'-C19'	121.8(5)	O5'-C34'-W1'	177.8(5)
C22'-C21'-C20'	120.2(5)	O6'-C35'-W1'	178.2(6)

Tabelle D 11.4: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2$ [h ² a ^{*2} U11 + + 2 h k a* b* U12].						
	U11	U22	U33	U23	U13	U12
W1	0.02070	0.02064	0.02351	-0.00287	0.00233	-0.01071
P1	0.01834	0.02030	0.02068	-0.00469	0.00192	-0.00870
01	0.02287	0.02503	0.02012	-0.01023	0.00551	-0.01191
O2	0.04395	0.04646	0.05395	0.00596	0.00293	-0.03532
O3	0.02831	0.03602	0.05115	-0.00841	-0.00383	-0.02349
O4	0.05162	0.03103	0.03218	-0.00418	-0.00177	-0.00424
O5	0.02587	0.04959	0.05291	-0.01002	0.00360	-0.02124
O6	0.05609	0.03873	0.02594	-0.00498	0.00837	-0.01083
N1	0.01853	0.01910	0.02144	-0.00003	-0.00164	-0.00714
N2	0.03481	0.03018	0.02866	-0.00936	0.00465	-0.01468
C1	0.02807	0.02014	0.02109	-0.00296	0.00194	-0.01008
C2	0.02532	0.01537	0.02633	-0.00213	0.00397	-0.00936
C3	0.02722	0.01769	0.02665	-0.00259	0.00465	-0.00784
C4	0.02527	0.02619	0.02279	-0.00121	0.00035	-0.00742
C5	0.02173	0.02561	0.04006	-0.00025	0.00238	-0.00808
C6	0.03047	0.02718	0.03604	-0.00622	0.01273	-0.01041
C7	0.04289	0.02631	0.02891	-0.00760	0.01343	-0.01175
C8	0.03945	0.02376	0.02064	-0.00635	0.00205	-0.00638
C9	0.03815	0.02455	0.02769	-0.00122	-0.00707	-0.00796
C10	0.03027	0.02222	0.03190	-0.00078	-0.01012	-0.01245
C11	0.02491	0.02329	0.02829	-0.00443	0.00285	-0.01252
C12	0.01885	0.02181	0.01984	-0.00272	0.00071	-0.01143
C13	0.02223	0.01287	0.02398	-0.00497	0.00663	-0.00621
C14	0.02372	0.01875	0.02344	-0.00081	0.00015	-0.01059
C15	0.01846	0.02534	0.02758	0.00085	0.00184	-0.01015
C16	0.03035	0.02718	0.03026	-0.00691	0.00883	-0.01312
C17	0.03585	0.02451	0.02147	-0.00672	0.00382	-0.00901

C18	0.02308	0.02468	0.02403	-0.00572	0.00096	-0.00967
C19	0.02143	0.01857	0.01831	-0.00647	0.00169	-0.00354
C20	0.02111	0.02445	0.02777	-0.00425	0.00194	-0.00983
C21	0.03359	0.01950	0.03387	-0.00837	0.00185	-0.01005
C22	0.02913	0.03029	0.02717	-0.01539	0.00171	-0.00584
C23	0.02082	0.02900	0.02314	-0.00668	0.00233	-0.00570
C24	0.02226	0.02038	0.02433	-0.00095	-0.00103	-0.00592
C25	0.01758	0.02556	0.02305	-0.00212	0.00449	-0.01440
C26	0.02313	0.02296	0.02651	-0.00422	0.00246	-0.01038
C27	0.03410	0.02897	0.02341	-0.00374	0.00032	-0.00936
C28	0.03111	0.03720	0.02518	-0.00205	-0.00324	-0.01435
C29	0.02498	0.03010	0.03142	-0.00261	-0.00436	-0.01790
C30	0.02410	0.02313	0.02533	-0.00718	0.00611	-0.01123
C31	0.02714	0.03426	0.03326	-0.00254	-0.00006	-0.01702
C32	0.03748	0.02148	0.02486	0.00506	0.00020	-0.00943
C33	0.03160	0.03401	0.03320	-0.00931	0.00537	-0.02163
C34	0.02698	0.02582	0.03092	-0.00072	0.00675	-0.01157
C35	0.02589	0.04190	0.03053	-0.01043	0.00907	-0.02199
W1'	0.02161	0.02077	0.02342	-0.00289	0.00155	-0.00950
P1'	0.01916	0.02155	0.02315	-0.00105	0.00098	-0.00996
O1'	0.01965	0.02345	0.02142	0.00050	0.00160	-0.00768
O2'	0.04002	0.02885	0.03816	-0.00614	0.00339	-0.01626
O3'	0.06358	0.03528	0.02876	-0.01165	-0.00367	-0.01073
O4'	0.02281	0.04284	0.05587	-0.00188	0.00461	-0.01564
O5'	0.06581	0.03771	0.02784	-0.00047	-0.00180	-0.01497
O6'	0.02755	0.05528	0.09517	0.00622	0.00788	-0.04191
N1'	0.01872	0.01877	0.02283	0.00160	0.00136	-0.00837
N2'	0.02446	0.02689	0.03105	0.00316	0.00208	-0.01167
C1'	0.02331	0.01875	0.02198	-0.00147	0.00143	-0.00696
C2'	0.02575	0.02141	0.02677	-0.00575	0.00183	-0.01154
C3'	0.02556	0.02259	0.02630	-0.00425	0.00430	-0.01343
C4'	0.02160	0.02742	0.02986	0.00045	0.00116	-0.01137
C5'	0.03015	0.03424	0.03943	-0.00463	0.00966	-0.01725
C6'	0.02846	0.03975	0.04611	-0.01270	0.01798	-0.02576
C7'	0.03619	0.03157	0.02754	-0.00828	0.01088	-0.01477
C8'	0.03093	0.02712	0.01958	-0.00241	0.00129	-0.00632
C9'	0.03420	0.02618	0.02636	0.00475	-0.00520	-0.00602
C10'	0.02382	0.03368	0.03200	0.00371	-0.00184	-0.01357
C11'	0.02392	0.03048	0.02688	-0.00534	0.00424	-0.01417
C12'	0.01956	0.01946	0.02416	0.00008	0.00046	-0.00826
C13'	0.02092	0.02683	0.02323	0.00017	0.00028	-0.01063
C14'	0.02939	0.02911	0.03013	-0.00399	0.00387	-0.01429
C15'	0.02266	0.04232	0.03642	-0.00616	0.00581	-0.01523
C16'	0.02304	0.05146	0.03969	0.00509	0.00566	-0.02100
C17'	0.03308	0.03747	0.03947	0.00467	0.00062	-0.02053
C18'	0.02581	0.02960	0.03364	0.00082	-0.00122	-0.01390
C19'	0.02231	0.02396	0.02823	-0.00333	0.00410	-0.01562

C20'	0.02493	0.02881	0.02936	0.00143	-0.00074	-0.01292
C21'	0.04293	0.02437	0.02647	-0.00338	0.00293	-0.01184
C22'	0.03614	0.03099	0.02948	-0.01255	0.00912	-0.01444
C23'	0.01887	0.03807	0.03618	-0.00905	0.00160	-0.01566
C24'	0.02615	0.02963	0.03004	-0.00329	0.00282	-0.01335
C25'	0.01959	0.02187	0.03032	-0.00364	0.00016	-0.01286
C26'	0.02545	0.02757	0.02925	-0.00501	-0.00120	-0.01598
C27'	0.02777	0.03145	0.04278	0.00426	-0.01037	-0.01685
C28'	0.04285	0.03701	0.02974	-0.00051	-0.00912	-0.01039
C29'	0.03809	0.04007	0.02945	0.00043	-0.00148	-0.01575
C30'	0.02955	0.02978	0.03528	0.00556	-0.00502	-0.01590
C31'	0.02922	0.02892	0.02610	-0.00801	0.00263	-0.01391
C32'	0.02961	0.01841	0.03832	-0.00223	-0.00422	-0.01152
C33'	0.03247	0.02309	0.02921	-0.00661	-0.00005	-0.00787
C34'	0.03762	0.02494	0.03230	-0.00687	0.00499	-0.01737
C35'	0.03454	0.02599	0.04538	-0.00615	0.00312	-0.01968

Tabelle D 11.5: Torsionswinkel [°]

W1-P1-O1-C1	-124.1(3)	C3-C1-C2-N1	179.0(5)
W1-P1-N1-C2	116.6(3)	C3-C1-C2-C8	-0.6(10)
W1-P1-N1-C11	-65.1(4)	C3-C4-C5-C6	-1.2(8)
P1-01-C1-C2	4.3(5)	C4-C5-C6-C7	1.5(8)
P1-O1-C1-C3	-175.2(3)	C5-C6-C7-N2	-0.8(8)
P1-N1-C2-C1	-3.4(5)	C7-N2-C3-C1	-179.0(4)
P1-N1-C2-C8	176.2(4)	C7-N2-C3-C4	0.4(7)
P1-N1-C11-C10	-175.2(4)	C8-C9-C10-C11	-0.5(8)
P1-C12-C13-C14	110.3(5)	C9-C10-C11-N1	-1.6(8)
P1-C12-C13-C18	-69.2(5)	C11-N1-C2-C1	178.1(4)
P1-C12-C19-C20	137.9(4)	C11-N1-C2-C8	-2.2(6)
P1-C12-C19-C24	-47.3(6)	C12-P1-O1-C1	99.8(3)
P1-C12-C25-C26	138.4(4)	C12-P1-N1-C2	-99.9(3)
P1-C12-C25-C30	-45.8(5)	C12-P1-N1-C11	78.4(4)
O1-P1-N1-C2	5.0(3)	C12-C13-C14-C15	-178.7(4)
O1-P1-N1-C11	-176.7(4)	C12-C13-C18-C17	177.3(4)
O1-C1-C2-N1	-0.4(6)	C12-C19-C20-C21	174.6(5)
O1-C1-C2-C8	180.0(5)	C12-C19-C24-C23	-176.3(5)
O1-C1-C3-N2	175.6(4)	C12-C25-C26-C27	174.6(5)
O1-C1-C3-C4	-3.9(7)	C12-C25-C30-C29	-176.6(5)
N1-P1-O1-C1	-5.3(3)	C13-C12-C19-C20	18.4(7)
N1-C2-C8-C9	0.1(7)	C13-C12-C19-C24	-166.9(5)
N2-C3-C4-C5	0.3(8)	C13-C12-C25-C26	-104.1(5)
C1-C2-C8-C9	179.7(5)	C13-C12-C25-C30	71.7(5)
C1-C3-C4-C5	179.7(5)	C13-C14-C15-C16	0.8(8)
C2-N1-C11-C10	3.0(7)	C14-C13-C18-C17	-2.2(7)
C2-C1-C3-N2	-3.8(8)	C14-C15-C16-C17	-1.1(8)
C2-C1-C3-C4	176.7(5)	C15-C16-C17-C18	-0.3(8)
C2-C8-C9-C10	1.2(8)	C16-C17-C18-C13	1.9(8)
C3-N2-C7-C6	-0.2(8)	C18-C13-C14-C15	0.8(7)

C19-C12-C13-C14	-129.3(5)	C3'-C1'-C2'-N1'	-177.9(5)
C19-C12-C13-C18	51.2(6)	C3'-C1'-C2'-C8'	4.3(10)
C19-C12-C25-C26	20.3(6)	C3'-C4'-C5'-C6'	0.8(9)
C19-C12-C25-C30	-163.9(4)	C4'-C5'-C6'-C7'	-1.6(9)
C19-C20-C21-C22	2.0(8)	C5'-C6'-C7'-N2'	0.6(9)
C20-C19-C24-C23	-1.2(8)	C7'-N2'-C3'-C1'	174.2(5)
C20-C21-C22-C23	-2.1(9)	C7'-N2'-C3'-C4'	-1.9(8)
C21-C22-C23-C24	0.5(8)	C8'-C9'-C10'-C11'	-0.4(9)
C22-C23-C24-C19	1.2(8)	C9'-C10'-C11'-N1'	-1.0(8)
C24-C19-C20-C21	-0.3(8)	C11'-N1'-C2'-C1'	-178.7(5)
C25-C12-C13-C14	-6.5(6)	C11'-N1'-C2'-C8'	-0.5(7)
C25-C12-C13-C18	174.0(4)	C12'-P1'-O1'-C1'	102.6(3)
C25-C12-C19-C20	-105.5(5)	C12'-P1'-N1'-C2'	-103.0(4)
C25-C12-C19-C24	69.2(6)	C12'-P1'-N1'-C11'	74.9(5)
C25-C26-C27-C28	2.2(8)	C12'-C13'-C14'-C15'	-174.2(5)
C26-C25-C30-C29	-0.5(7)	C12'-C13'-C18'-C17'	174.0(5)
C26-C27-C28-C29	-1.2(8)	C12'-C19'-C20'-C21'	176.1(5)
C27-C28-C29-C30	-0.7(8)	C12'-C19'-C24'-C23'	-177.4(5)
C28-C29-C30-C25	1.5(8)	C12'-C25'-C26'-C27'	-179.2(5)
C30-C25-C26-C27	-1.4(7)	C12'-C25'-C30'-C29'	178.8(5)
W1'-P1'-O1'-C1'	-119.1(3)	C13'-C12'-C19'-C20'	49.5(7)
W1'-P1'-N1'-C2'	113.6(3)	C13'-C12'-C19'-C24'	-132.9(5)
W1'-P1'-N1'-C11'	-68.4(4)	C13'-C12'-C25'-C26'	-157.5(5)
P1'-O1'-C1'-C2'	2.0(5)	C13'-C12'-C25'-C30'	24.9(6)
P1'-01'-C1'-C3'	179.7(4)	C13'-C14'-C15'-C16'	0.9(9)
P1'-N1'-C2'-C1'	-0.6(5)	C14'-C13'-C18'-C17'	1.6(8)
P1'-N1'-C2'-C8'	177.5(4)	C14'-C15'-C16'-C17'	-0.3(9)
P1'-N1'-C11'-C10'	-176.3(4)	C15'-C16'-C17'-C18'	0.4(9)
P1'-C12'-C13'-C14'	-56.4(6)	C16'-C17'-C18'-C13'	-1.1(9)
P1'-C12'-C13'-C18'	131.2(5)	C18'-C13'-C14'-C15'	-1.5(9)
P1'-C12'-C19'-C20'	-68.7(5)	C19'-C12'-C13'-C14'	-174.4(5)
P1'-C12'-C19'-C24'	108.9(5)	C19'-C12'-C13'-C18'	13.2(7)
P1'-C12'-C25'-C26'	-41.3(6)	C19'-C12'-C25'-C26'	76.6(6)
P1'-C12'-C25'-C30'	141.2(4)	C19'-C12'-C25'-C30'	-100.9(6)
O1'-P1'-N1'-C2'	1.5(4)	C19'-C20'-C21'-C22'	1.5(8)
O1'-P1'-N1'-C11'	179.4(4)	C20'-C19'-C24'-C23'	0.3(8)
O1'-C1'-C2'-N1'	-0.8(6)	C20'-C21'-C22'-C23'	0.0(8)
O1'-C1'-C2'-C8'	-178.6(5)	C21'-C22'-C23'-C24'	-1.3(8)
01'-C1'-C3'-N2'	179.3(4)	C22'-C23'-C24'-C19'	1.2(8)
01'-C1'-C3'-C4'	-4.6(7)	C24'-C19'-C20'-C21'	-1.6(8)
N1'-P1'-O1'-C1'	-2 0(3)	C25'-C12'-C13'-C14'	60 3(6)
N1'-C2'-C8'-C9'	-0.8(8)	C25'-C12'-C13'-C18'	-112 0(6)
N2'-C3'-C4'-C5'	1 0(8)	C25'-C12'-C19'-C20'	172 8(5)
C1'-C2'-C8'-C9'	176.9(6)	C25'-C12'-C19'-C24'	-9.6(7)
C1'-C3'-C4'-C5'	-175 0(5)	C25'-C26'-C27'-C28'	0.7(8)
C2'-N1'-C11'-C10'	1 4(8)	C26'-C25'-C30'-C29'	1 1(8)
C2'-C1'-C3'-N2'	-3 7(9)	C26'-C27'-C28'-C29'	0.8(9)
C2'-C1'-C3'-C4'	172 5(6)	C27'-C28'-C29'-C30'	-1 2(9)
C2'-C8'-C9'-C10'	1.3(9)	C28'-C29'-C30'-C25'	0.3(9)
C3'-N2'-C7'-C6'	1 1(8)	C30'-C25'-C26'-C27'	-1 6(8)
	(0)		1.0(0)

12. {Tetracarbonyl{2-[bis(trimethylsilyl)methyl]-[trimethylsiloxy]phosphinoκP]methyl}pyridine-κN}wolfram(0)} (**71a**)

Sehr gute Struktur, 19.01.2015

Tahelle D	12 1.	Kristalldaten	und	Strukturve	rfeinerung	von	71a
	12.1.	Mistalluateri	unu	Sliukluive	memerung	VOIT	<i>i</i> 1a

Identifikationscode	GSTR391, 3895f
Gerätetyp	Bruker X8-KappaApexII
Summenformel	$C_{20}H_{34}NO_5PSi_3W$
Molare Masse	667.57
Temperatur [K]	100
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Triklin, <i>P</i> 1
Elementarzelle	a = 8.8432(7) Å α = 104.154(3)°
	b = 9.3561(8) Å β = 90.818(3)°
	$c = 18.6315(16) \text{ Å}$ $\gamma = 110.283(3)^{\circ}$
Elementarzellenvolumen [Å ³]	1393.7(2)
Z, Berechnete Dichte [Mg/m ³]	2, 1.591
Absorptionskoeffizient [µ/mm ⁻¹]	4.359
F(000)	664.0
Kristallgröße [mm ³]	0.18 × 0.16 × 0.08
Gemessener 20-Bereich [°]	5.514 - 51.998
Indexgrößen	-10 ≤ h ≤ 10, -11 ≤ k ≤ 11, -22 ≤ l ≤ 22
Reflexe gemessen / unabhängig	$37809 / 5471 [R_{int} = 0.0646, R_{\sigma} = 0.0422]$
Daten / Restraints / Parameter	5471 / 0 / 289
Goodness-of-fit an F ²	1.045
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0287, wR2 = 0.0597
R-Werte (sämtliche Daten)	R1 = 0.0384, wR2 = 0.0624
Größtes Maximum und Minimum	1.25 und -1.58 e∙Å ⁻³

W-P	2.4793(11)	O3-C18	1.164(5)	Si1-C9	1.855(5)
W-N	2.280(3)	O4-C19	1.160(6)	Si2-C10	1.921(4)
W-C17	1.988(4)	O5-C20	1.150(5)	Si2-C11	1.867(5)
W-C18	1.957(4)	N-C2	1.354(5)	Si2-C12	1.866(4)
W-C19	2.017(5)	N-C6	1.357(5)	Si2-C13	1.881(5)
W-C20	2.028(5)	C1-C2	1.503(6)	Si3-C10	1.909(4)
P-01	1.606(3)	C2-C3	1.390(6)	Si3-C14	1.867(5)
P-C1	1.843(4)	C3-C4	1.381(6)	Si3-C15	1.869(4)
P-C10	1.804(4)	C4-C5	1.379(6)	Si3-C16	1.862(5)
Si1-O1	1.664(3)	C5-C6	1.380(6)	O2-C17	1.156(5)
Si1-C7	1.854(5)	W-P	2.4793(11)	O3-C18	1.164(5)
Si1-C8	1.842(5)	W-N	2.280(3)	O4-C19	1.160(6)
Si1-C9	1.855(5)	W-C17	1.988(4)	O5-C20	1.150(5)
Si2-C10	1.921(4)	W-C18	1.957(4)	N-C2	1.354(5)
Si2-C11	1.867(5)	W-C19	2.017(5)	N-C6	1.357(5)
Si2-C12	1.866(4)	W-C20	2.028(5)	C1-C2	1.503(6)
Si2-C13	1.881(5)	P-01	1.606(3)	C2-C3	1.390(6)
Si3-C10	1.909(4)	P-C1	1.843(4)	C3-C4	1.381(6)
Si3-C14	1.867(5)	P-C10	1.804(4)	C4-C5	1.379(6)
Si3-C15	1.869(4)	Si1-O1	1.664(3)	C5-C6	1.380(6)
Si3-C16	1.862(5)	Si1-C7	1.854(5)		
O2-C17	1.156(5)	Si1-C8	1.842(5)		

Tabelle D 12.2: Bindungslängen [Å]

Tabelle D 12.3: Bindungswinkel [°]

N-W-P	75.47(9)	C7-Si1-C9	109.8(3)
C17-W-P	168.82(12)	C8-Si1-C7	110.2(3)
C17-W-N	93.74(14)	C8-Si1-C9	112.3(3)
C17-W-C19	92.44(17)	C11-Si2-C10	113.56(19)
C17-W-C20	90.09(17)	C11-Si2-C13	108.4(2)
C18-W-P	99.13(13)	C12-Si2-C10	107.4(2)
C18-W-N	174.11(15)	C12-Si2-C11	105.7(2)
C18-W-C17	91.53(17)	C12-Si2-C13	111.0(2)
C18-W-C19	82.92(18)	C13-Si2-C10	110.67(19)
C18-W-C20	85.96(17)	C14-Si3-C10	109.65(19)
C19-W-P	85.57(13)	C14-Si3-C15	106.5(2)
C19-W-N	94.20(15)	C15-Si3-C10	110.09(18)
C19-W-C20	168.65(17)	C16-Si3-C10	111.83(19)
C20-W-P	94.01(13)	C16-Si3-C14	109.2(2)
C20-W-N	96.67(14)	C16-Si3-C15	109.5(2)
O1-P-W	123.28(12)	P-O1-Si1	148.7(2)
O1-P-C1	102.87(18)	C2-N-W	121.3(3)
O1-P-C10	102.00(17)	C2-N-C6	117.4(4)
C1-P-W	97.71(14)	C6-N-W	121.3(3)
C10-P-W	119.20(13)	C2-C1-P	109.4(3)
C10-P-C1	110.20(18)	N-C2-C1	117.1(3)
01-Si1-C7	111.2(2)	N-C2-C3	122.1(4)
O1-Si1-C8	107.79(19)	C3-C2-C1	120.9(4)
O1-Si1-C9	105.5(2)	C4-C3-C2	119.6(4)

C5-C4-C3	118.7(4)	Si3-C10-Si2	114.4(2)
C4-C5-C6	119.2(4)	O2-C17-W	179.1(4)
N-C6-C5	123.0(4)	O3-C18-W	177.9(4)
P-C10-Si2	110.2(2)	O4-C19-W	171.7(4)
P-C10-Si3	119.1(2)	O5-C20-W	171.9(4)
Tabelle D 12.4: Torsior	nswinkel [°]		
W-P-O1-Si1	59.0(4)	C1-P-C10-Si3	-21.9(3)
W-P-C1-C2	-44.7(3)	C1-C2-C3-C4	-177.8(4)
W-P-C10-Si2	91.29(19)	C2-N-C6-C5	-0.5(6)
W-P-C10-Si3	-133.58(17)	C2-C3-C4-C5	-0.9(7)
W-N-C2-C1	-3.4(5)	C3-C4-C5-C6	0.1(7)
W-N-C2-C3	177.7(3)	C4-C5-C6-N	0.6(7)
W-N-C6-C5	-178.6(3)	C6-N-C2-C1	178.6(4)
P-C1-C2-N	35.4(5)	C6-N-C2-C3	-0.3(6)
P-C1-C2-C3	-145.7(3)	C7-Si1-O1-P	-36.6(5)
01-P-C1-C2	82.1(3)	C8-Si1-O1-P	84.2(4)
01-P-C10-Si2	-48.3(2)	C9-Si1-O1-P	-155.6(4)
01-P-C10-Si3	86.8(2)	C10-P-O1-Si1	-163.6(4)
N-C2-C3-C4	1.0(6)	C10-P-C1-C2	-169.7(3)
C1-P-O1-Si1	-49.4(4)		
C1-P-C10-Si2	-157.0(2)		

13. {Tetracarbonyl{2,5-bis(trimethylsilyl)-3-{pyridin-*κN*}-4-pyridyl-5-oxid-1,2,5oxadiphospholan-*κP*²}chrom(0)} (**76c**^(*))

Gute Struktur (B3), 19.12.2014

Tabelle D 13.1: Kristalldaten und Strukturverfeinerung von 76c""

Identifikationscode	GSTR387, 3825f		
Gerätetyp	Bruker X8-KappaApexII		
Summenformel	$C_{65}H_{108}Cr_2N_4O_{12}P_4Si_8$		
Molare Masse	1590.15		
Temperatur [K]	100		
Wellenlänge [Å]	0.71073		
Kristallsystem, Raumgruppe	Triklin, <i>P</i> 1		
Elementarzelle	a = 13.5682(12) Å α = 88.435(2)°		
	b = 16.8850(14) Å β = 75.035(2)°		
	$c = 20.5834(18) \text{ Å}$ $\gamma = 67.810(2)^{\circ}$		
Elementarzellenvolumen [Å3]	4205.3(6)		
Z, Berechnete Dichte [Mg/m ³]	2, 1.256		
Absorptionskoeffizient [µ/mm ⁻¹]	0.502		
F(000)	1684.0		
Kristallgröße [mm ³]	0.1 × 0.04 × 0.03		
Gemessener 20-Bereich [°]	5.04 - 55.996		
Indexgrößen	-17 ≤ h ≤ 17, -15 ≤ k ≤ 22, -26 ≤ l ≤ 27		
Reflexe gemessen / unabhängig	49827 / 19706 [$R_{int} = 0.0618$, $R_{\sigma} = 0.1011$]		
Daten / Restraints / Parameter	19706 / 62 / 882		
Goodness-of-fit an F ²	1.027		
Endgültige R-Werte [I>2o(I)]	R1 = 0.0581, wR2 = 0.1354		
R-Werte (sämtliche Daten)	R1 = 0.1184, wR2 = 0.1630		
Größtes Maximum und Minimum	0.68 und -0.66 e∙Å ⁻³		

Cr-P2	2.3351(10)	Si4-C24	1.864(4)	Cr'-C29'	1.844(4)
Cr-N1	2.169(3)	Si4-C25	1.860(4)	Cr'-C30'	1.881(4)
Cr-C27	1.863(4)	Si4-C26	1.863(4)	P1'-O1'	1.615(2)
Cr-C28	1.893(5)	O3-C27	1.156(4)	P1'-O2'	1.475(3)
Cr-C29	1.836(4)	O4-C28	1.156(5)	P1'-C2'	1.841(3)
Cr-C30	1.886(4)	O5-C29	1.168(4)	P1'-C13'	1.782(3)
P1-O1	1.626(3)	O6-C30	1.147(4)	P2'-O1'	1.677(2)
P1-O2	1.476(2)	N1-C3	1.359(4)	P2'-C1'	1.878(3)
P1-C2	1.843(3)	N1-C4	1.359(4)	P2'-C20'	1.819(4)
P1-C13	1.787(4)	N2-C8	1.329(4)	Si1'-C13'	1.924(3)
P2-O1	1.671(3)	N2-C12	1.353(4)	Si1'-C14'	1.862(4)
P2-C1	1.868(3)	C1-C2	1.573(5)	Si1'-C15'	1.865(4)
P2-C20	1.825(3)	C1-C3	1.504(5)	Si1'-C16'	1.882(4)
Si1-C13	1.927(4)	C2-C8	1.509(5)	Si2'-C13'	1.919(4)
Si1-C14	1.864(5)	C3-C7	1.383(5)	Si2'-C17'	1.862(4)
Si1-C15	1.853(5)	C4-C5	1.371(5)	Si2'-C18'	1.855(4)
Si1-C16	1.856(5)	C5-C6	1.379(5)	Si2'-C19'	1.867(4)
Si2-C13	1.921(4)	C6-C7	1.394(5)	Si3'-C20'	1.916(4)
Si2-C17	1.869(4)	C8-C9	1.392(5)	Si3'-C21'	1.881(5)
Si2-C18	1.868(4)	C9-C10	1.382(5)	Si3'-C22'	1.864(5)
Si2-C19	1.866(4)	C10-C11	1.372(5)	Si3'-C23'	1.877(5)
Si3-C20	1.922(4)	C11-C12	1.374(5)	Si4'-C20'	1.917(4)
Si3-C21	1.877(4)	Cr'-P2'	2.2979(11)	Si4'-C24'	1.859(5)
Si3-C22	1.872(4)	Cr'-N1'	2.154(3)	Si4'-C25'	1.853(5)
Si3-C23	1.866(4)	Cr'-C27'	1.853(4)	Si4'-C26'	1.877(4)
Si4-C20	1.909(4)	Cr'-C28'	1.906(4)	O3'-C27'	1.164(5)

Tabelle D 13.2: Bindungslängen [Å]

Tabelle D 13.3: Bindungswinkel [°]

N1-Cr-P2	79.97(8)	C13-P1-C2	111.73(17)
C27-Cr-P2	172.74(12)	O1-P2-Cr	113.82(9)
C27-Cr-N1	93.94(13)	O1-P2-C1	95.52(14)
C27-Cr-C28	85.38(17)	O1-P2-C20	101.30(15)
C27-Cr-C30	87.30(16)	C1-P2-Cr	102.02(11)
C28-Cr-P2	98.71(12)	C20-P2-Cr	132.03(12)
C28-Cr-N1	92.26(14)	C20-P2-C1	106.12(15)
C29-Cr-P2	97.43(12)	C14-Si1-C13	111.3(2)
C29-Cr-N1	177.17(14)	C15-Si1-C13	108.3(2)
C29-Cr-C27	88.74(16)	C15-Si1-C14	110.4(2)
C29-Cr-C28	87.02(18)	C15-Si1-C16	106.3(3)
C29-Cr-C30	88.55(17)	C16-Si1-C13	113.81(18)
C30-Cr-P2	89.03(11)	C16-Si1-C14	106.7(2)
C30-Cr-N1	92.50(13)	C17-Si2-C13	108.97(17)
C30-Cr-C28	171.53(15)	C18-Si2-C13	110.23(19)
O1-P1-C2	94.74(14)	C18-Si2-C17	110.5(2)
O1-P1-C13	105.90(15)	C19-Si2-C13	111.36(18)
O2-P1-O1	112.81(14)	C19-Si2-C17	111.5(2)
O2-P1-C2	113.64(14)	C19-Si2-C18	104.2(2)
O2-P1-C13	115.83(17)	C21-Si3-C20	113.60(18)

C22-Si3-C20	107.44(19)	C4-N1-Cr	120.1(2)
C22-Si3-C21	105.7(2)	C8-N2-C12	116.2(3)
C23-Si3-C20	114.00(17)	C2-C1-P2	107.3(2)
C23-Si3-C21	105.6(2)	C3-C1-P2	111.1(2)
C23-Si3-C22	110.2(2)	C3-C1-C2	111.7(3)
C24-Si4-C20	108.44(17)	C1-C2-P1	103.5(2)
C25-Si4-C20	112.16(17)	C8-C2-P1	117.7(2)
C25-Si4-C24	107.3(2)	C8-C2-C1	111.2(3)
C25-Si4-C26	105.8(2)	N1-C3-C1	117.4(3)
C26-Si4-C20	111.31(18)	N1-C3-C7	122.4(3)
C26-Si4-C24	111.7(2)	C7-C3-C1	120.2(3)
P1-O1-P2	118.57(14)	N1-C4-C5	123.7(3)
C3-N1-Cr	123.4(2)	C4-C5-C6	119.7(3)
C3-N1-C4	116.5(3)		

Tabelle D 13.4: Torsionswinkel [°]

Cr-P2-O1-P1	118.59(13)	C1-C2-C8-N2	-117.3(3)
Cr-P2-C1-C2	-96.5(2)	C1-C2-C8-C9	60.3(4)
Cr-P2-C1-C3	25.8(2)	C1-C3-C7-C6	-178.6(3)
Cr-P2-C20-Si3	-74.1(2)	C2-P1-O1-P2	-34.14(18)
Cr-P2-C20-Si4	63.6(2)	C2-P1-C13-Si1	92.9(2)
Cr-N1-C3-C1	2.2(4)	C2-P1-C13-Si2	-138.13(18)
Cr-N1-C3-C7	-177.3(3)	C2-C1-C3-N1	99.7(3)
Cr-N1-C4-C5	176.6(3)	C2-C1-C3-C7	-80.8(4)
P1-C2-C8-N2	123.5(3)	C2-C8-C9-C10	-177.5(3)
P1-C2-C8-C9	-58.8(4)	C3-N1-C4-C5	-0.6(5)
P2-C1-C2-P1	-39.9(2)	C3-C1-C2-P1	-161.8(2)
P2-C1-C2-C8	-167.2(2)	C3-C1-C2-C8	70.9(3)
P2-C1-C3-N1	-20.0(4)	C4-N1-C3-C1	179.3(3)
P2-C1-C3-C7	159.5(3)	C4-N1-C3-C7	-0.2(5)
O1-P1-C2-C1	43.7(2)	C4-C5-C6-C7	0.1(5)
O1-P1-C2-C8	166.8(3)	C5-C6-C7-C3	-0.8(5)
O1-P1-C13-Si1	-165.21(17)	C8-N2-C12-C11	0.5(5)
O1-P1-C13-Si2	-36.2(2)	C8-C9-C10-C11	0.1(6)
O1-P2-C1-C2	19.3(2)	C9-C10-C11-C12	0.1(6)
O1-P2-C1-C3	141.6(2)	C10-C11-C12-N2	-0.4(6)
O1-P2-C20-Si3	148.58(19)	C12-N2-C8-C2	177.3(3)
O1-P2-C20-Si4	-73.7(2)	C12-N2-C8-C9	-0.3(5)
O2-P1-O1-P2	83.98(19)	C13-P1-O1-P2	-148.34(17)
O2-P1-C2-C1	-73.8(2)	C13-P1-C2-C1	152.9(2)
O2-P1-C2-C8	49.4(3)	C13-P1-C2-C8	-84.0(3)
O2-P1-C13-Si1	-39.4(2)	C20-P2-O1-P1	-94.84(18)
O2-P1-C13-Si2	89.6(2)	C20-P2-C1-C2	122.7(2)
N1-C3-C7-C6	0.9(5)	C20-P2-C1-C3	-114.9(2)
N1-C4-C5-C6	0.6(6)	Cr'-P2'-O1'-P1'	121.90(13)
N2-C8-C9-C10	0.0(6)	Cr'-P2'-C1'-C2'	-99.3(2)
C1-P2-O1-P1	12.85(19)	Cr'-P2'-C1'-C3'	21.8(2)
C1-P2-C20-Si3	49.4(2)	Cr'-P2'-C20'-Si3'	65.4(2)
C1-P2-C20-Si4	-172.86(18)	Cr'-P2'-C20'-Si4'	-75.1(2)

82.43(18) -73.1(3) 52.9(3) 94.9(2) -34.6(2) -0.8(5) -0.2(6) -0.1(5) 15.18(19) -170.71(18) 48.7(3) -127.4(3) 51.5(4) 179.6(3)

Cr'-N1'-C3'-C1'	4.1(4)	O2'-P1'-O1'-P2'
Cr'-N1'-C3'-C7'	-175.5(2)	O2'-P1'-C2'-C1'
Cr'-N1'-C4'-C5'	176.1(3)	O2'-P1'-C2'-C8'
P1'-C2'-C8'-N2'	111.5(3)	O2'-P1'-C13'-Si1'
P1'-C2'-C8'-C9'	-69.6(4)	O2'-P1'-C13'-Si2'
P2'-C1'-C2'-P1'	-38.6(3)	N1'-C3'-C7'-C6'
P2'-C1'-C2'-C8'	-165.7(2)	N1'-C4'-C5'-C6'
P2'-C1'-C3'-N1'	-18.1(4)	N2'-C8'-C9'-C10'
P2'-C1'-C3'-C7'	161.6(3)	C1'-P2'-O1'-P1'
O1'-P1'-C2'-C1'	44.4(2)	C1'-P2'-C20'-Si3'
O1'-P1'-C2'-C8'	170.4(2)	C1'-P2'-C20'-Si4'
O1'-P1'-C13'-Si1'	-31.9(2)	C1'-C2'-C8'-N2'
O1'-P1'-C13'-Si2'	-161.28(16)	C1'-C2'-C8'-C9'
O1'-P2'-C1'-C2'	17.2(2)	C1'-C3'-C7'-C6'
O1'-P2'-C1'-C3'	138.3(2)	
O1'-P2'-C20'-Si3'	-70.7(2)	
O1'-P2'-C20'-Si4'	148.7(2)	

14. Trichlorotris(tetrahydrofuran)titan(III)^[135] (TICl₃(thf)₃)

Exzellente Struktur (A4), 31.10.2012

Tabelle D 14.1: Kristalldaten und Strukturverfeinerung von TICl₃(thf)₃

Identifikationscode	GSTR267, 2374		
Gerätetyp	Nonius KappaCCD		
Summenformel	$C_{12}H_{24}CI_3O_3Ti$		
Molare Masse	370.56		
Temperatur [K]	123(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c		
Elementarzelle	a = 17.0990(4) Å α = 90°		
	b = 12.4321(3) Å β = 91.7370(10)°		
	c = 15.6131(4) Å γ = 90°		
Elementarzellenvolumen [Å ³]	3317.45(14)		
Z, Berechnete Dichte [Mg/m ³]	8, 1.484		
Absorptionskoeffizient [mm ⁻¹]	0.999		
F(000)	1544		
Kristallgröße [mm ³]	0.27 x 0.15 x 0.11		
Gemessener 20-Bereich [°]	2.84 - 28.00		
Indexgrößen	-22 $\leq h \leq$ 22, -16 $\leq k \leq$ 16, -20 $\leq l \leq$ 20		
Reflexe gemessen / unabhängig	52875 / 7983 [R _{int} = 0.0815]		
Vollständigkeit für Θ = 28.00	99.6 %		
Absorptionskorrektur	Semi-empirisch (from equivalents)		
Max. und min. Transmission	0.8980 und 0.7741		
Strukturverfeinerung	Vollmatrix least-squares an F ²		
Daten / Restraints / Parameter	7983 / 0 / 343		
Goodness-of-fit an F ²	1.054		
Endgültige R-Werte [I>2o(I)]	R1 = 0.0347, wR2 = 0.0805		
R-Werte (sämtliche Daten)	R1 = 0.0506, wR2 = 0.0872		
Größtes Maximum und Minimum	0.448 und -0.450 e∙Å ⁻³		

	X	у	Z	U(eq)
C(1)	4603(1)	3609(2)	4466(2)	37(1)
C(2)	4213(1)	4280(2)	3755(2)	32(1)
C(3)	4701(1)	4089(2)	2971(1)	31(1)
C(4)	5442(1)	3574(2)	4223(1)	33(1)
C(5)	5792(2)	4220(2)	935(1)	35(1)
C(6)	6087(2)	5269(2)	600(2)	39(1)
C(7)	6195(1)	5935(2)	1412(2)	32(1)
C(8)	6496(1)	5117(2)	2065(1)	30(1)
C(9)	7643(1)	1169(2)	2169(1)	30(1)
C(10)	8187(1)	1069(2)	1433(2)	29(1)
C(11)	7624(1)	1063(2)	658(1)	31(1)
C(12)	7032(1)	1909(2)	895(1)	27(1)
C(13)	218(1)	3828(2)	3951(1)	25(1)
C(14)	-578(1)	3762(2)	4350(1)	26(1)
C(15)	-754(1)	2561(2)	4324(1)	29(1)
C(16)	-449(1)	2240(2)	3459(1)	29(1)
C(17)	2810(1)	2929(2)	1728(2)	33(1)
C(18)	3137(1)	2712(2)	854(1)	30(1)
C(19)	2971(1)	1525(2)	731(1)	29(1)
C(20)	2161(1)	1415(2)	1083(1)	32(1)
C(21)	1329(2)	976(2)	4166(1)	33(1)
C(22)	1014(2)	-120(2)	4382(2)	42(1)
C(23)	1250(2)	-790(2)	3617(2)	36(1)
C(24)	1110(1)	-25(2)	2873(1)	28(1)
CI(1)	7252(1)	3439(1)	3366(1)	28(1)
CI(2)	6111(1)	1127(1)	3490(1)	31(1)
CI(3)	5132(1)	2013(1)	1683(1)	28(1)
CI(4)	297(1)	1724(1)	1544(1)	27(1)
CI(5)	1024(1)	4247(1)	1846(1)	29(1)
CI(6)	2090(1)	3183(1)	3613(1)	25(1)
O(1)	5409(1)	3520(1)	3289(1)	26(1)
O(2)	6226(1)	4064(1)	1750(1)	24(1)
O(3)	7002(1)	1859(1)	1830(1)	25(1)
O(4)	257(1)	2898(1)	3368(1)	23(1)
O(5)	2132(1)	2202(1)	1784(1)	25(1)
O(6)	1251(1)	1055(1)	3229(1)	24(1)
Ti(1)	6193(1)	2633(1)	2577(1)	21(1)
Ti(2)	1172(1)	2578(1)	2538(1)	20(1)

Tabelle D 14.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

C(1)-C(4)	1.497(3)	C(10)-C(11)	1.522(3)	C(19)-H(19A)	0.9900
C(1)-C(2)	1.526(3)	C(10)-H(10A)	0.9900	C(19)-H(19B)	0.9900
C(1)-H(1A)	0.9900	C(10)-H(10B)	0.9900	C(20)-O(5)	1.470(2)
C(1)-H(1B)	0.9900	C(11)-C(12)	1.514(3)	C(20)-H(20A)	0.9900
C(2)-C(3)	1.522(3)	C(11)-H(11A)	0.9900	C(20)-H(20B)	0.9900
C(2)-H(2A)	0.9900	C(11)-H(11B)	0.9900	C(21)-O(6)	1.468(2)
C(2)-H(2B)	0.9900	C(12)-O(3)	1.464(2)	C(21)-C(22)	1.507(3)
C(3)-O(1)	1.474(2)	C(12)-H(12A)	0.9900	C(21)-H(21A)	0.9900
C(3)-H(3A)	0.9900	C(12)-H(12B)	0.9900	C(21)-H(21B)	0.9900
C(3)-H(3B)	0.9900	C(13)-O(4)	1.474(2)	C(22)-C(23)	1.520(3)
C(4)-O(1)	1.459(3)	C(13)-C(14)	1.516(3)	C(22)-H(22A)	0.9900
C(4)-H(4A)	0.9900	C(13)-H(13A)	0.9900	C(22)-H(22B)	0.9900
C(4)-H(4B)	0.9900	C(13)-H(13B)	0.9900	C(23)-C(24)	1.514(3)
C(5)-O(2)	1.467(3)	C(14)-C(15)	1.523(3)	C(23)-H(23A)	0.9900
C(5)-C(6)	1.498(3)	C(14)-H(14A)	0.9900	C(23)-H(23B)	0.9900
C(5)-H(5A)	0.9900	C(14)-H(14B)	0.9900	C(24)-O(6)	1.470(2)
C(5)-H(5B)	0.9900	C(15)-C(16)	1.517(3)	C(24)-H(24A)	0.9900
C(6)-C(7)	1.520(3)	C(15)-H(15A)	0.9900	C(24)-H(24B)	0.9900
C(6)-H(6A)	0.9900	C(15)-H(15B)	0.9900	CI(1)-Ti(1)	2.3795(6)
C(6)-H(6B)	0.9900	C(16)-O(4)	1.468(2)	CI(2)-Ti(1)	2.3602(6)
C(7)-C(8)	1.519(3)	C(16)-H(16A)	0.9900	CI(3)-Ti(1)	2.3843(6)
C(7)-H(7A)	0.9900	C(16)-H(16B)	0.9900	Cl(4)-Ti(2)	2.3745(6)
C(7)-H(7B)	0.9900	C(17)-O(5)	1.475(2)	CI(5)-Ti(2)	2.3498(6)
C(8)-O(2)	1.468(2)	C(17)-C(18)	1.514(3)	Cl(6)-Ti(2)	2.3838(6)
C(8)-H(8A)	0.9900	C(17)-H(17A)	0.9900	O(1)-Ti(1)	2.0839(14)
C(8)-H(8B)	0.9900	C(17)-H(17B)	0.9900	O(2)-Ti(1)	2.1994(14)
C(9)-O(3)	1.477(2)	C(18)-C(19)	1.514(3)	O(3)-Ti(1)	2.0726(14)
C(9)-C(10)	1.506(3)	C(18)-H(18A)	0.9900	O(4)-Ti(2)	2.1001(14)
C(9)-H(9A)	0.9900	C(18)-H(18B)	0.9900	O(5)-Ti(2)	2.1022(14)
C(9)-H(9B)	0.9900	C(19)-C(20)	1.512(3)	O(6)-Ti(2)	2.1810(14)

Tabelle D 14.3: Bindungslängen [Å]

Tabelle D 14.4: Bindungswinkel [°]

C(4)-C(1)-C(2)	103.45(18)	C(2)-C(3)-H(3A)	110.6
C(4)-C(1)-H(1A)	111.1	O(1)-C(3)-H(3B)	110.6
C(2)-C(1)-H(1A)	111.1	C(2)-C(3)-H(3B)	110.6
C(4)-C(1)-H(1B)	111.1	H(3A)-C(3)-H(3B)	108.8
C(2)-C(1)-H(1B)	111.1	O(1)-C(4)-C(1)	104.25(18)
H(1A)-C(1)-H(1B)	109.0	O(1)-C(4)-H(4A)	110.9
C(3)-C(2)-C(1)	105.15(17)	C(1)-C(4)-H(4A)	110.9
C(3)-C(2)-H(2A)	110.7	O(1)-C(4)-H(4B)	110.9
C(1)-C(2)-H(2A)	110.7	C(1)-C(4)-H(4B)	110.9
C(3)-C(2)-H(2B)	110.7	H(4A)-C(4)-H(4B)	108.9
C(1)-C(2)-H(2B)	110.7	O(2)-C(5)-C(6)	104.58(18)
H(2A)-C(2)-H(2B)	108.8	O(2)-C(5)-H(5A)	110.8
O(1)-C(3)-C(2)	105.60(17)	C(6)-C(5)-H(5A)	110.8
O(1)-C(3)-H(3A)	110.6	O(2)-C(5)-H(5B)	110.8

C(6)-C(5)-H(5B)	110.8	C(13)-C(14)-C(15)	102.82(16)
H(5A)-C(5)-H(5B)	108.9	C(13)-C(14)-H(14A)	111.2
C(5)-C(6)-C(7)	102.49(18)	C(15)-C(14)-H(14A)	111.2
C(5)-C(6)-H(6A)	111.3	C(13)-C(14)-H(14B)	111.2
C(7)-C(6)-H(6A)	111.3	C(15)-C(14)-H(14B)	111.2
C(5)-C(6)-H(6B)	111.3	H(14A)-C(14)-H(14B)	109.1
C(7)-C(6)-H(6B)	111.3	C(16)-C(15)-C(14)	102.03(16)
H(6A)-C(6)-H(6B)	109.2	C(16)-C(15)-H(15A)	111.4
C(8)-C(7)-C(6)	103.04(17)	C(14)-C(15)-H(15A)	111.4
C(8)-C(7)-H(7A)	111.2	C(16)-C(15)-H(15B)	111.4
C(6)-C(7)-H(7A)	111.2	C(14)-C(15)-H(15B)	111.4
C(8)-C(7)-H(7B)	111.2	H(15A)-C(15)-H(15B)	109.2
C(6)-C(7)-H(7B)	111.2	O(4)-C(16)-C(15)	104.22(16)
H(7A)-C(7)-H(7B)	109.1	O(4)-C(16)-H(16A)	110.9
O(2)-C(8)-C(7)	105.94(17)	C(15)-C(16)-H(16A)	110.9
O(2)-C(8)-H(8A)	110.5	O(4)-C(16)-H(16B)	110.9
C(7)-C(8)-H(8A)	110.5	C(15)-C(16)-H(16B)	110.9
O(2)-C(8)-H(8B)	110.5	H(16A)-C(16)-H(16B)	108.9
C(7)-C(8)-H(8B)	110.5	O(5)-C(17)-C(18)	104.84(17)
H(8A)-C(8)-H(8B)	108.7	O(5)-C(17)-H(17A)	110.8
O(3)-C(9)-C(10)	104.06(17)	C(18)-C(17)-H(17A)	110.8
O(3)-C(9)-H(9A)	110.9	O(5)-C(17)-H(17B)	110.8
C(10)-C(9)-H(9A)	110.9	C(18)-C(17)-H(17B)	110.8
O(3)-C(9)-H(9B)	110.9	H(17A)-C(17)-H(17B)	108.9
C(10)-C(9)-H(9B)	110.9	C(17)-C(18)-C(19)	102.42(17)
H(9A)-C(9)-H(9B)	109.0	C(17)-C(18)-H(18A)	111.3
C(9)-C(10)-C(11)	102.57(17)	C(19)-C(18)-H(18A)	111.3
C(9)-C(10)-H(10A)	111.3	C(17)-C(18)-H(18B)	111.3
C(11)-C(10)-H(10A)	111.3	C(19)-C(18)-H(18B)	111.3
C(9)-C(10)-H(10B)	111.3	H(18A)-C(18)-H(18B)	109.2
C(11)-C(10)-H(10B)	111.3	C(20)-C(19)-C(18)	102.24(17)
H(10A)-C(10)-H(10B)	109.2	C(20)-C(19)-H(19A)	111.3
C(12)-C(11)-C(10)	102.32(17)	C(18)-C(19)-H(19A)	111.3
C(12)-C(11)-H(11A)	111.3	C(20)-C(19)-H(19B)	111.3
C(10)-C(11)-H(11A)	111.3	C(18)-C(19)-H(19B)	111.3
C(12)-C(11)-H(11B)	111.3	H(19A)-C(19)-H(19B)	109.2
C(10)-C(11)-H(11B)	111.3	O(5)-C(20)-C(19)	105.15(17)
H(11A)-C(11)-H(11B)	109.2	O(5)-C(20)-H(20A)	110.7
O(3)-C(12)-C(11)	104.99(16)	C(19)-C(20)-H(20A)	110.7
O(3)-C(12)-H(12A)	110.7	O(5)-C(20)-H(20B)	110.7
C(11)-C(12)-H(12A)	110.7	C(19)-C(20)-H(20B)	110.7
O(3)-C(12)-H(12B)	110.7	H(20A)-C(20)-H(20B)	108.8
C(11)-C(12)-H(12B)	110.7	O(6)-C(21)-C(22)	105.15(17)
H(12A)-C(12)-H(12B)	108.8	O(6)-C(21)-H(21A)	110.7
O(4)-C(13)-C(14)	105.60(15)	C(22)-C(21)-H(21A)	110.7
O(4)-C(13)-H(13A)	110.6	O(6)-C(21)-H(21B)	110.7
C(14)-C(13)-H(13A)	110.6	C(22)-C(21)-H(21B)	110.7
O(4)-C(13)-H(13B)	110.6	H(21A)-C(21)-H(21B)	108.8
C(14)-C(13)-H(13B)	110.6	C(21)-C(22)-C(23)	102.38(19)
H(13A)-C(13)-H(13B)	108.8	C(21)-C(22)-H(22A)	111.3

C(23)-C(22)-H(22A)	111.3	C(24)-O(6)-Ti(2)	126.82(12)
C(21)-C(22)-H(22B)	111.3	O(3)-Ti(1)-O(1)	175.71(6)
C(23)-C(22)-H(22B)	111.3	O(3)-Ti(1)-O(2)	90.93(6)
H(22A)-C(22)-H(22B)	109.2	O(1)-Ti(1)-O(2)	85.02(5)
C(24)-C(23)-C(22)	102.62(18)	O(3)-Ti(1)-Cl(2)	91.38(4)
C(24)-C(23)-H(23A)	111.2	O(1)-Ti(1)-Cl(2)	92.69(4)
C(22)-C(23)-H(23A)	111.2	O(2)-Ti(1)-Cl(2)	177.62(4)
C(24)-C(23)-H(23B)	111.2	O(3)-Ti(1)-Cl(1)	88.70(4)
C(22)-C(23)-H(23B)	111.2	O(1)-Ti(1)-Cl(1)	89.60(4)
H(23A)-C(23)-H(23B)	109.2	O(2)-Ti(1)-Cl(1)	86.07(4)
O(6)-C(24)-C(23)	105.29(17)	CI(2)-Ti(1)-CI(1)	94.57(2)
O(6)-C(24)-H(24A)	110.7	O(3)-Ti(1)-Cl(3)	91.62(4)
C(23)-C(24)-H(24A)	110.7	O(1)-Ti(1)-Cl(3)	89.60(4)
O(6)-C(24)-H(24B)	110.7	O(2)-Ti(1)-Cl(3)	87.13(4)
C(23)-C(24)-H(24B)	110.7	CI(2)-Ti(1)-CI(3)	92.22(2)
H(24A)-C(24)-H(24B)	108.8	Cl(1)-Ti(1)-Cl(3)	173.19(2)
C(4)-O(1)-C(3)	108.78(15)	O(4)-Ti(2)-O(5)	175.77(6)
C(4)-O(1)-Ti(1)	123.41(12)	O(4)-Ti(2)-O(6)	84.00(5)
C(3)-O(1)-Ti(1)	127.52(12)	O(5)-Ti(2)-O(6)	92.65(6)
C(5)-O(2)-C(8)	108.57(15)	O(4)-Ti(2)-Cl(5)	92.56(4)
C(5)-O(2)-Ti(1)	126.58(12)	O(5)-Ti(2)-Cl(5)	90.79(4)
C(8)-O(2)-Ti(1)	122.51(12)	O(6)-Ti(2)-Cl(5)	176.56(4)
C(12)-O(3)-C(9)	109.50(15)	O(4)-Ti(2)-Cl(4)	91.23(4)
C(12)-O(3)-Ti(1)	125.90(11)	O(5)-Ti(2)-Cl(4)	91.23(4)
C(9)-O(3)-Ti(1)	124.60(12)	O(6)-Ti(2)-Cl(4)	87.93(4)
C(16)-O(4)-C(13)	108.96(14)	CI(5)-Ti(2)-CI(4)	92.11(2)
C(16)-O(4)-Ti(2)	125.74(11)	O(4)-Ti(2)-Cl(6)	89.59(4)
C(13)-O(4)-Ti(2)	125.30(11)	O(5)-Ti(2)-Cl(6)	87.50(4)
C(20)-O(5)-C(17)	108.66(15)	O(6)-Ti(2)-Cl(6)	84.06(4)
C(20)-O(5)-Ti(2)	127.54(12)	CI(5)-Ti(2)-CI(6)	95.99(2)
C(17)-O(5)-Ti(2)	121.71(12)	CI(4)-Ti(2)-CI(6)	171.82(2)
C(21)-O(6)-C(24)	108.89(15)		
C(21)-O(6)-Ti(2)	123.58(11)		

Tabelle D 14.5: Anisotrope Auslenkungsparameter (Å 2 x 10 3).

Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2$ [h ² a ^{*2} U11 + + 2 h k a* b* U12].						
	U11	U22	U33	U23	U13	U12
C(1)	41(1)	39(1)	31(1)	-1(1)	8(1)	-1(1)
C(2)	28(1)	32(1)	36(1)	1(1)	9(1)	3(1)
C(3)	28(1)	35(1)	30(1)	0(1)	-1(1)	11(1)
C(4)	38(1)	38(1)	23(1)	-5(1)	0(1)	7(1)
C(5)	50(1)	27(1)	28(1)	3(1)	-11(1)	0(1)
C(6)	56(2)	30(1)	30(1)	7(1)	-7(1)	-4(1)
C(7)	38(1)	22(1)	34(1)	4(1)	1(1)	-3(1)
C(8)	37(1)	23(1)	31(1)	-1(1)	-4(1)	-5(1)
C(9)	26(1)	33(1)	29(1)	0(1)	-4(1)	11(1)
C(10)	25(1)	25(1)	38(1)	1(1)	3(1)	2(1)
C(11)	34(1)	30(1)	28(1)	-2(1)	9(1)	0(1)
C(12)	29(1)	31(1)	21(1)	1(1)	0(1)	1(1)

C(13)	29(1)	21(1)	25(1)	-5(1)	3(1)	-2(1)
C(14)	29(1)	26(1)	25(1)	0(1)	4(1)	1(1)
C(15)	27(1)	29(1)	31(1)	3(1)	8(1)	-3(1)
C(16)	25(1)	26(1)	36(1)	-4(1)	6(1)	-8(1)
C(17)	24(1)	32(1)	43(1)	-7(1)	6(1)	-8(1)
C(18)	24(1)	36(1)	31(1)	6(1)	5(1)	-1(1)
C(19)	30(1)	35(1)	23(1)	0(1)	5(1)	3(1)
C(20)	37(1)	32(1)	27(1)	-10(1)	8(1)	-6(1)
C(21)	48(1)	27(1)	24(1)	2(1)	-3(1)	-2(1)
C(22)	64(2)	31(1)	31(1)	6(1)	3(1)	-8(1)
C(23)	48(1)	21(1)	38(1)	4(1)	0(1)	-1(1)
C(24)	35(1)	19(1)	30(1)	-4(1)	4(1)	-1(1)
CI(1)	27(1)	29(1)	28(1)	-2(1)	-6(1)	-1(1)
CI(2)	35(1)	26(1)	31(1)	6(1)	1(1)	0(1)
CI(3)	27(1)	26(1)	32(1)	-4(1)	-6(1)	-1(1)
CI(4)	25(1)	28(1)	26(1)	-3(1)	-3(1)	-3(1)
CI(5)	32(1)	23(1)	30(1)	5(1)	1(1)	0(1)
Cl(6)	25(1)	24(1)	26(1)	-3(1)	-2(1)	-2(1)
O(1)	25(1)	31(1)	22(1)	-1(1)	0(1)	7(1)
O(2)	29(1)	20(1)	22(1)	1(1)	-4(1)	-2(1)
O(3)	25(1)	30(1)	21(1)	-2(1)	-2(1)	9(1)
O(4)	22(1)	21(1)	27(1)	-4(1)	5(1)	-4(1)
O(5)	23(1)	28(1)	26(1)	-5(1)	5(1)	-4(1)
O(6)	32(1)	18(1)	23(1)	0(1)	-1(1)	-4(1)
Ti(1)	21(1)	20(1)	21(1)	-1(1)	-1(1)	1(1)
Ti(2)	20(1)	19(1)	21(1)	0(1)	0(1)	-1(1)

Tabelle D 14.6: Wasserstoffkoordinaten	$(x \ 10^4)$) und anisotrope Ausle	enkungsparameter	· (Ų	x 10	3)
				· · ·		

	x	У	Z	U(eq)
H(1A)	4546	3955	5032	44
H(1B)	4376	2877	4484	44
H(2A)	3666	4044	3646	38
H(2B)	4213	5052	3911	38
H(3A)	4409	3645	2543	37
H(3B)	4842	4780	2702	37
H(4A)	5724	4227	4423	40
H(4B)	5708	2932	4470	40
H(5A)	5222	4255	1025	42
H(5B)	5899	3627	531	42
H(6A)	5701	5604	197	47
H(6B)	6589	5.174	309	47
H(7A)	6580	6519	1334	38
H(7B)	5693	6251	1586	38
H(8A)	7075	5136	2112	36
H(8B)	6285	5268	2636	36
H(9A)	7443	456	2340	36
H(9B)	7911	1509	2671	36

H(10A)	8493	394	1470	35
H(10B)	8551	1687	1413	35
H(11A)	7894	1261	128	37
H(11B)	7375	349	579	37
H(12A)	7201	2630	706	33
H(12B)	6513	1748	627	33
H(13A)	270	4510	3629	30
H(13B)	640	3791	4398	30
H(14A)	-975	4174	4012	32
H(14B)	-558	4034	4946	32
H(15A)	-475	2175	4797	34
H(15B)	-1323	2421	4356	34
H(16A)	-319	1.463	3447	35
H(16B)	-839	2397	2995	35
H(17A)	3205	2770	2187	39
H(17B)	2646	3689	1778	39
H(18A)	3705	2862	849	36
H(18B)	2866	3148	405	36
H(19A)	2977	1322	118	35
H(19B)	3355	1078	1058	35
H(20A)	1756	1577	634	38
H(20B)	2075	678	1299	38
H(21A)	1022	1547	4443	39
H(21B)	1884	1043	4359	39
H(22A)	438	-104	4.433	50
H(22B)	1256	-398	4922	50
H(23A)	1807	-1006	3669	43
H(23B)	921	-1442	3555	43
H(24A)	1475	-179	2408	33
H(24B)	567	-90	2643	33

Tabelle D 14.7: Torsionswinkel [°]

28.6(2)	O(6)-C(21)-C(22)-C(23)	33.8(2)
-10.7(2)	C(21)-C(22)-C(23)-C(24)	-39.4(2)
-36.0(2)	C(22)-C(23)-C(24)-O(6)	30.7(2)
-37.3(2)	C(1)-C(4)-O(1)-C(3)	30.4(2)
37.5(2)	C(1)-C(4)-O(1)-Ti(1)	-143.86(14)
-24.1(2)	C(2)-C(3)-O(1)-C(4)	-12.0(2)
-34.7(2)	C(2)-C(3)-O(1)-Ti(1)	161.92(13)
40.6(2)	C(6)-C(5)-O(2)-C(8)	22.9(2)
-31.2(2)	C(6)-C(5)-O(2)-Ti(1)	-174.31(14)
27.6(2)	C(7)-C(8)-O(2)-C(5)	1.1(2)
-39.5(2)	C(7)-C(8)-O(2)-Ti(1)	-162.60(13)
37.0(2)	C(11)-C(12)-O(3)-C(9)	10.0(2)
-33.3(2)	C(11)-C(12)-O(3)-Ti(1)	-170.21(13)
40.7(2)	C(10)-C(9)-O(3)-C(12)	15.6(2)
-33.3(2)	C(10)-C(9)-O(3)-Ti(1)	-164.16(13)
	28.6(2) -10.7(2) -36.0(2) -37.3(2) 37.5(2) -24.1(2) -34.7(2) 40.6(2) -31.2(2) 27.6(2) -39.5(2) 37.0(2) -33.3(2) 40.7(2) -33.3(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C(15)-C(16)-O(4)-C(13)	-20.4(2)	C(8)-O(2)-Ti(1)-Cl(2)	77.0(10)
C(15)-C(16)-O(4)-Ti(2)	160.02(13)	C(5)-O(2)-Ti(1)-Cl(1)	170.84(16)
C(14)-C(13)-O(4)-C(16)	-4.6(2)	C(8)-O(2)-Ti(1)-Cl(1)	-28.53(14)
C(14)-C(13)-O(4)-Ti(2)	174.94(12)	C(5)-O(2)-Ti(1)-Cl(3)	-9.37(16)
C(19)-C(20)-O(5)-C(17)	12.9(2)	C(8)-O(2)-Ti(1)-Cl(3)	151.26(14)
C(19)-C(20)-O(5)-Ti(2)	176.52(13)	C(16)-O(4)-Ti(2)-O(5)	-95.3(7)
C(18)-C(17)-O(5)-C(20)	12.8(2)	C(13)-O(4)-Ti(2)-O(5)	85.2(7)
C(18)-C(17)-O(5)-Ti(2)	-151.94(13)	C(16)-O(4)-Ti(2)-O(6)	-57.68(15)
C(22)-C(21)-O(6)-C(24)	-15.1(2)	C(13)-O(4)-Ti(2)-O(6)	122.84(15)
C(22)-C(21)-O(6)-Ti(2)	155.82(15)	C(16)-O(4)-Ti(2)-Cl(5)	122.28(15)
C(23)-C(24)-O(6)-C(21)	-10.0(2)	C(13)-O(4)-Ti(2)-Cl(5)	-57.20(14)
C(23)-C(24)-O(6)-Ti(2)	179.49(13)	C(16)-O(4)-Ti(2)-Cl(4)	30.11(15)
C(12)-O(3)-Ti(1)-O(1)	-58.1(8)	C(13)-O(4)-Ti(2)-Cl(4)	-149.37(14)
C(9)-O(3)-Ti(1)-O(1)	121.6(7)	C(16)-O(4)-Ti(2)-Cl(6)	-141.75(15)
C(12)-O(3)-Ti(1)-O(2)	-38.77(15)	C(13)-O(4)-Ti(2)-Cl(6)	38.77(14)
C(9)-O(3)-Ti(1)-O(2)	140.95(15)	C(20)-O(5)-Ti(2)-O(4)	109.8(7)
C(12)-O(3)-Ti(1)-Cl(2)	140.65(15)	C(17)-O(5)-Ti(2)-O(4)	-88.6(7)
C(9)-O(3)-Ti(1)-Cl(2)	-39.64(15)	C(20)-O(5)-Ti(2)-O(6)	72.31(16)
C(12)-O(3)-Ti(1)-Cl(1)	-124.81(15)	C(17)-O(5)-Ti(2)-O(6)	-126.03(15)
C(9)-O(3)-Ti(1)-Cl(1)	54.90(15)	C(20)-O(5)-Ti(2)-Cl(5)	-107.80(16)
C(12)-O(3)-Ti(1)-Cl(3)	48.39(15)	C(17)-O(5)-Ti(2)-Cl(5)	53.86(15)
C(9)-O(3)-Ti(1)-Cl(3)	-131.90(15)	C(20)-O(5)-Ti(2)-Cl(4)	-15.67(16)
C(4)-O(1)-Ti(1)-O(3)	-116.5(7)	C(17)-O(5)-Ti(2)-Cl(4)	145.99(15)
C(3)-O(1)-Ti(1)-O(3)	70.3(8)	C(20)-O(5)-Ti(2)-Cl(6)	156.24(16)
C(4)-O(1)-Ti(1)-O(2)	-135.88(16)	C(17)-O(5)-Ti(2)-Cl(6)	-42.10(15)
C(3)-O(1)-Ti(1)-O(2)	50.96(16)	C(21)-O(6)-Ti(2)-O(4)	-53.06(15)
C(4)-O(1)-Ti(1)-Cl(2)	44.76(15)	C(24)-O(6)-Ti(2)-O(4)	116.20(15)
C(3)-O(1)-Ti(1)-Cl(2)	-128.40(16)	C(21)-O(6)-Ti(2)-O(5)	124.36(15)
C(4)-O(1)-Ti(1)-Cl(1)	-49.79(15)	C(24)-O(6)-Ti(2)-O(5)	-66.39(15)
C(3)-O(1)-Ti(1)-Cl(1)	137.05(16)	C(21)-O(6)-Ti(2)-Cl(5)	-53.8(7)
C(4)-O(1)-Ti(1)-Cl(3)	136.97(15)	C(24)-O(6)-Ti(2)-Cl(5)	115.5(7)
C(3)-O(1)-Ti(1)-Cl(3)	-36.19(16)	C(21)-O(6)-Ti(2)-Cl(4)	-144.51(15)
C(5)-O(2)-Ti(1)-O(3)	82.21(17)	C(24)-O(6)-Ti(2)-Cl(4)	24.75(15)
C(8)-O(2)-Ti(1)-O(3)	-117.17(15)	C(21)-O(6)-Ti(2)-Cl(6)	37.15(15)
C(5)-O(2)-Ti(1)-O(1)	-99.22(17)	C(24)-O(6)-Ti(2)-Cl(6)	-153.59(15)
C(8)-O(2)-Ti(1)-O(1)	61.41(15)		
C(5)-O(2)-Ti(1)-Cl(2)	-83.6(10)		

15. Cyclotetra[μ -oxo-chloro- π -cyclopentadienyltitan(IV)]^[142a] (**86**) Sehr gute Struktur, 25.01.2013

Tabelle D 15.1: Kristalldaten und Strukturverfeinerung von 86

Identifikationscode	GSTR278, 2477
Gerätetyp	Bruker X8-KappaApexII
Summenformel	$C_{20}H_{20}CI_4O_4Ti_4$
Molare Masse	657.76
Temperatur [K]	100(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Orthorhombisch, Cmc2 ₁
Elementarzelle	a = 15.2445(9) Å α = 90°
	b = 11.5828(6) Å β = 90°
	c = 14.4451(8) Å γ <u>=</u> 90°
Elementarzellenvolumen [Å3]	2550.6(2)
Z, Berechnete Dichte [Mg/m ³]	4, 1.713
Absorptionskoeffizient [mm ⁻¹]	1.650
F(000)	1312
Kristallgröße [mm ³]	0.06 x 0.04 x 0.03
Gemessener 20-Bereich [°]	3.58 - 27.99
Indexgrößen	$-19 \le h \le 20, -15 \le k \le 15, -19 \le l \le 18$
Reflexe gemessen / unabhängig	18629 / 3169 [R _{int} = 0.0612]
Vollständigkeit für Θ = 27.99	99.5 %
Absorptionskorrektur	Empirisch
Max. und min. Transmission	0.9522 und 0.9075
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	3169 / 62 / 166
Goodness-of-fit an F ²	1.093
Endgültige R-Werte [I>2o(I)]	R1 = 0.0390, wR2 = 0.0927
R-Werte (sämtliche Daten)	R1 = 0.0434, wR2 = 0.0943
Absoluter Struktur Parameter	0.07(4)
Größtes Maximum und Minimum	1.620 und -1.073 e∙Å ⁻³

	X	У	Z	U(eq)	
Ti(1)	10000	3991(1)	4639(1)	17(1)	
Ti(2)	8376(1)	2063(1)	5503(1)	15(1)	
Ti(3)	10000	-102(1)	5337(1)	17(1)	
CI(1)	10000	-1307(1)	6579(1)	24(1)	
CI(2)	7474(1)	1613(1)	4297(1)	38(1)	
CI(3)	10000	5453(1)	5704(1)	21(1)	
O(1)	9074(2)	3146(3)	4999(2)	35(1)	
O(2)	9061(2)	795(2)	5571(2)	32(1)	
C(4)	8470(3)	2359(4)	7105(3)	29(1)	
C(5)	8199(3)	3411(4)	6712(3)	28(1)	
C(6)	7360(3)	3233(4)	6323(3)	30(1)	
C(7)	7124(3)	2076(4)	6479(3)	34(1)	
C(8)	7792(4)	1531(4)	6957(3)	33(1)	
C(1)	10450(4)	3623(4)	3113(3)	35(1)	
C(2)	10755(5)	4708(5)	3332(4)	50(1)	
C(3)	10000	5393(7)	3468(5)	47(2)	
C(9C)	9506(5)	-1475(6)	4260(5)	24(2)	
C(10)	9513(5)	-382(6)	3817(5)	30(2)	
C(11)	10399(6)	-15(5)	3740(4)	28(2)	
C(12)	10939(5)	-883(6)	4136(5)	26(2)	
C(13)	10387(6)	-1785(5)	4458(4)	18(2)	

Tabelle D 15.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 15.3: Bindungslängen [Å]

Ti(1)-O(1)	1.794(3)	Ti(3)-C(9C)	2.348(6)	C(2)-H(2)	0.9500
Ti(1)-O(1)#1	1.795(3)	Ti(3)-C(9C)#1	2.348(6)	C(3)-C(2)#1	1.411(8)
Ti(1)-Cl(3)	2.2875(15)	Ti(3)-C(11)	2.388(6)	C(3)-H(3)	0.9500
Ti(1)-C(3)	2.345(7)	Ti(3)-C(11)#1	2.388(8)	C(9C)-C(10)	1.4200
Ti(1)-C(1)#1	2.347(5)	Ti(3)-C(13)#1	2.400(7)	C(9C)-C(13)	1.4200
Ti(1)-C(1)	2.347(5)	Ti(3)-C(13)	2.400(6)	C(9C)-H(9)	0.9500
Ti(1)-C(2)#1	2.363(5)	Ti(3)-C(12)#1	2.424(9)	C(10)-C(11)	1.4200
Ti(1)-C(2)	2.363(5)	C(4)-C(5)	1.407(7)	C(10)-H(10)	0.9500
Ti(2)-O(1)	1.799(3)	C(4)-C(8)	1.427(7)	C(11)-C(12)	1.4200
Ti(2)-O(2)	1.805(3)	C(4)-H(4)	0.9500	C(11)-H(11)	0.9500
Ti(2)-Cl(2)	2.2804(13)	C(5)-C(6)	1.412(6)	C(12)-C(13)	1.4200
Ti(2)-C(4)	2.343(4)	C(5)-H(5)	0.9500	C(12)-H(12)	0.9500
Ti(2)-C(5)	2.358(4)	C(6)-C(7)	1.406(7)	C(13)-H(13)	0.9500
Ti(2)-C(8)	2.363(4)	C(6)-H(6)	0.9500		
Ti(2)-C(7)	2.373(5)	C(7)-C(8)	1.383(7)		
Ti(2)-C(6)	2.374(4)	C(7)-H(7)	0.9500		
Ti(3)-O(2)#1	1.801(3)	C(8)-H(8)	0.9500		
Ti(3)-O(2)	1.801(3)	C(1)-C(1)#1	1.371(11)		
Ti(3)-Cl(1)	2.2732(15)	C(1)-C(2)	1.377(8)		
Ti(3)-C(10)#1	2.340(6)	C(1)-H(1)	0.9500		
Ti(3)-C(10)	2.340(6)	C(2)-C(3)	1.412(8)		

O(1)-Ti(1)-O(1)#1	103.7(2)	O(1)-Ti(2)-C(6)	100.97(17)
O(1)-Ti(1)-Cl(3)	102.08(11)	O(2)-Ti(2)-C(6)	144.57(17)
O(1)#1-Ti(1)-Cl(3)	102.08(11)	Cl(2)-Ti(2)-C(6)	96.78(12)
O(1)-Ti(1)-C(3)	125.92(13)	C(4)-Ti(2)-C(6)	57.61(17)
O(1)#1-Ti(1)-C(3)	125.92(13)	C(5)-Ti(2)-C(6)	34.72(15)
CI(3)-Ti(1)-C(3)	88.4(2)	C(8)-Ti(2)-C(6)	57.32(17)
O(1)-Ti(1)-C(1)#1	86.73(17)	C(7)-Ti(2)-C(6)	34.47(17)
O(1)#1-Ti(1)-C(1)#1	113.74(17)	O(2)#1-Ti(3)-O(2)	105.3(2)
CI(3)-Ti(1)-C(1)#1	139.97(14)	O(2)#1-Ti(3)-Cl(1)	101.86(11)
C(3)-Ti(1)-C(1)#1	56.5(2)	O(2)-Ti(3)-Cl(1)	101.86(11)
O(1)-Ti(1)-C(1)	113.74(17)	O(2)#1-Ti(3)-C(10)#1	90.2(2)
O(1)#1-Ti(1)-C(1)	86.73(17)	O(2)-Ti(3)-C(10)#1	120.6(2)
CI(3)-Ti(1)-C(1)	139.97(14)	CI(1)-Ti(3)-C(10)#1	130.98(16)
C(3)-Ti(1)-C(1)	56.5(2)	O(2)#1-Ti(3)-C(10)	120.6(2)
C(1)#1-Ti(1)-C(1)	34.0(3)	O(2)-Ti(3)-C(10)	90.2(2)
O(1)-Ti(1)-C(2)#1	92.3(2)	CI(1)-Ti(3)-C(10)	130.98(19)
O(1)#1-Ti(1)-C(2)#1	143.75(19)	C(10)#1-Ti(3)-C(10)	37.0(4)
CI(3)-Ti(1)-C(2)#1	106.08(15)	O(2)#1-Ti(3)-C(9C)	140.4(2)
C(3)-Ti(1)-C(2)#1	34.9(2)	O(2)-Ti(3)-C(9C)	105.1(2)
C(1)#1-Ti(1)-C(2)#1	34.00(19)	CI(1)-Ti(3)-C(9C)	96.14(18)
C(1)-Ti(1)-C(2)#1	57.0(2)	C(10)#1-Ti(3)-C(9C)	52.2(3)
O(1)-Ti(1)-C(2)	143.75(19)	C(10)-Ti(3)-C(9C)	35.26(9)
O(1)#1-Ti(1)-C(2)	92.3(2)	O(2)#1-Ti(3)-C(9C)#1	105.1(2)
CI(3)-Ti(1)-C(2)	106.08(15)	O(2)-Ti(3)-C(9C)#1	140.4(2)
C(3)-Ti(1)-C(2)	34.9(2)	CI(1)-Ti(3)-C(9C)#1	96.13(18)
C(1)#1-Ti(1)-C(2)	57.0(2)	C(10)#1-Ti(3)-C(9C)#1	35.26(15)
C(1)-Ti(1)-C(2)	34.00(19)	C(10)-Ti(3)-C(9C)#1	52.2(3)
C(2)#1-Ti(1)-C(2)	58.3(3)	C(9C)-Ti(3)-C(9C)#1	37.4(4)
O(1)-Ti(2)-O(2)	104.30(17)	O(2)#1-Ti(3)-C(11)	87.4(2)
O(1)-Ti(2)-Cl(2)	101.93(12)	O(2)-Ti(3)-C(11)	111.1(2)
O(2)-Ti(2)-Cl(2)	101.78(11)	CI(1)-Ti(3)-C(11)	142.06(17)
O(1)-Ti(2)-C(4)	105.19(16)	C(10)#1-Ti(3)-C(11)	11.09(13)
O(2)-Ti(2)-C(4)	91.71(16)	C(10)-Ti(3)-C(11)	34.94(8)
CI(2)-Ti(2)-C(4)	145.58(14)	C(9C)-Ti(3)-C(11)	58.04(9)
O(1)-Ti(2)-C(5)	84.63(15)	C(9C)#1-Ti(3)-C(11)	46.16(17)
O(2)-Ti(2)-C(5)	124.40(16)	O(2)#1-Ti(3)-C(11)#1	111.1(2)
CI(2)-Ti(2)-C(5)	130.41(12)	O(2)-Ti(3)-C(11)#1	87.4(2)
C(4)-Ti(2)-C(5)	34.83(17)	Cl(1)-Ti(3)-C(11)#1	142.06(16)
O(1)-Ti(2)-C(8)	139.92(16)	C(10)#1-Ti(3)-C(11)#1	34.94(11)
O(2)-Ti(2)-C(8)	87.55(17)	C(10)-Ti(3)-C(11)#1	11.08(15)
CI(2)-Ti(2)-C(8)	113.07(14)	C(9C)-Ti(3)-C(11)#1	46.16(12)
C(4)-Ti(2)-C(8)	35.30(17)	C(9C)#1-Ti(3)-C(11)#1	58.04(16)
C(5)-Ti(2)-C(8)	58.10(16)	C(11)-Ti(3)-C(11)#1	29.5(4)
O(1)-Ti(2)-C(7)	135.43(17)	O(2)#1-Ti(3)-C(13)#1	139.8(2)
O(2)-Ti(2)-C(7)	115.98(17)	O(2)-Ti(3)-C(13)#1	111.9(2)
CI(2)-Ti(2)-C(7)	88.29(13)	CI(1)-Ti(3)-C(13)#1	85.36(17)
C(4)-Ti(2)-C(7)	57.45(18)	C(10)#1-Ti(3)-C(13)#1	58.0(2)
C(5)-Ti(2)-C(7)	57.58(16)	C(10)-Ti(3)-C(13)#1	46.64(12)
C(8)-Ti(2)-C(7)	33.95(18)	C(9C)-Ti(3)-C(13)#1	11.69(16)

C(9C)#1-Ti(3)-C(13)#1	34.78(10)	C(7)-C(8)-C(4)	107.6(4)
C(11)-Ti(3)-C(13)#1	65.54(19)	C(7)-C(8)-Ti(2)	73.5(3)
C(11)#1-Ti(3)-C(13)#1	57.36(13)	C(4)-C(8)-Ti(2)	71.6(2)
O(2)#1-Ti(3)-C(13)	111.9(2)	C(7)-C(8)-H(8)	126.2
O(2)-Ti(3)-C(13)	139.8(2)	C(4)-C(8)-H(8)	126.2
CI(1)-Ti(3)-C(13)	85.36(15)	Ti(2)-C(8)-H(8)	120.5
C(10)#1-Ti(3)-C(13)	46.63(8)	C(1)#1-C(1)-C(2)	109.7(4)
C(10)-Ti(3)-C(13)	57.97(9)	C(1)#1-C(1)-Ti(1)	73.01(13)
C(9C)-Ti(3)-C(13)	34.78(7)	C(2)-C(1)-Ti(1)	73.6(3)
C(9C)#1-Ti(3)-C(13)	11.7(2)	C(1)#1-C(1)-H(1)	125.1
C(11)-Ti(3)-C(13)	57.36(9)	C(2)-C(1)-H(1)	125.1
C(11)#1-Ti(3)-C(13)	65.54(19)	Ti(1)-C(1)-H(1)	119.9
C(13)#1-Ti(3)-C(13)	28.5(4)	C(1)-C(2)-C(3)	105.6(6)
O(2)#1-Ti(3)-C(12)#1	145.0(2)	C(1)-C(2)-Ti(1)	72.4(3)
O(2)-Ti(3)-C(12)#1	83.1(2)	C(3)-C(2)-Ti(1)	71.9(4)
CI(1)-Ti(3)-C(12)#1	109.6(2)	C(1)-C(2)-H(2)	127.2
C(10)#1-Ti(3)-C(12)#1	57.6(2)	C(3)-C(2)-H(2)	127.2
C(10)-Ti(3)-C(12)#1	24.4(2)	Ti(1)-C(2)-H(2)	120.5
C(9C)-Ti(3)-C(12)#1	23.7(2)	C(2)#1-C(3)-C(2)	109.2(7)
C(9C)#1-Ti(3)-C(12)#1	57.5(2)	C(2)#1-C(3)-Ti(1)	73.2(4)
C(11)-Ti(3)-C(12)#1	58.3(3)	C(2)-C(3)-Ti(1)	73.2(4)
C(11)#1-Ti(3)-C(12)#1	34.3(2)	C(2)#1-C(3)-H(3)	125.4
C(13)#1-Ti(3)-C(12)#1	34.24(18)	C(2)-C(3)-H(3)	125.4
C(13)-Ti(3)-C(12)#1	57.6(3)	Ti(1)-C(3)-H(3)	119.9
Ti(1)-O(1)-Ti(2)	164.3(3)	C(10)-C(9C)-C(13)	108.0
Ti(3)-O(2)-Ti(2)	156.8(2)	C(10)-C(9C)-Ti(3)	72.1(2)
C(5)-C(4)-C(8)	108.0(4)	C(13)-C(9C)-Ti(3)	74.6(3)
C(5)-C(4)-Ti(2)	73.2(2)	C(10)-C(9C)-H(9)	126.0
C(8)-C(4)-Ti(2)	73.1(2)	C(13)-C(9C)-H(9)	126.0
C(5)-C(4)-H(4)	126.0	Ti(3)-C(9C)-H(9)	119.2
C(8)-C(4)-H(4)	126.0	C(11)-C(10)-C(9C)	108.0
Ti(2)-C(4)-H(4)	119.6	C(11)-C(10)-Ti(3)	74.3(3)
C(4)-C(5)-C(6)	107.5(4)	C(9C)-C(10)-Ti(3)	72.7(2)
C(4)-C(5)-Ti(2)	72.0(2)	C(11)-C(10)-H(10)	126.0
C(6)-C(5)-Ti(2)	73.3(2)	C(9C)-C(10)-H(10)	126.0
C(4)-C(5)-H(5)	126.3	Ti(3)-C(10)-H(10)	118.9
C(6)-C(5)-H(5)	126.3	C(10)-C(11)-C(12)	108.0
Ti(2)-C(5)-H(5)	120.3	C(10)-C(11)-Ti(3)	70.7(3)
C(7)-C(6)-C(5)	107.9(4)	C(12)-C(11)-Ti(3)	74.2(2)
C(7)-C(6)-Ti(2)	72.7(3)	C(10)-C(11)-H(11)	126.0
C(5)-C(6)-Ti(2)	72.0(2)	C(12)-C(11)-H(11)	126.0
C(7)-C(6)-H(6)	126.1	Ti(3)-C(11)-H(11)	120.8
C(5)-C(6)-H(6)	126.1	C(11)-C(12)-C(13)	108.0
Ti(2)-C(6)-H(6)	121.0	C(11)-C(12)-Ti(3)	71.4(2)
C(8)-C(7)-C(6)	109.1(4)	C(13)-C(12)-Ti(3)	72.0(2)
C(8)-C(7)-Ti(2)	72.6(3)	C(11)-C(12)-H(12)	126.0
C(6)-C(7)-Ti(2)	72.8(3)	C(13)-C(12)-H(12)	126.0
C(8)-C(7)-H(7)	125.5	Ti(3)-C(12)-H(12)	122.3
C(6)-C(7)-H(7)	125.5	C(9C)-C(13)-C(12)	108.0
Ti(2)-C(7)-H(7)	120.8	C(9C)-C(13)-Ti(3)	70.6(3)

C(12)-C(13)-Ti(3)	73.8(3)	C(12)-C(13)-H(13)	126.0
C(9C)-C(13)-H(13)	126.0	Ti(3)-C(13)-H(13)	121.3

Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2$ [h ² a ^{*2} U11 + + 2 h k a [*] b [*] U12].						
	U11	U22	U33	U23	U13	U12
Ti(1)	27(1)	13(1)	12(1)	1(1)	0	0
Ti(2)	17(1)	15(1)	15(1)	0(1)	-1(1)	-1(1)
Ti(3)	27(1)	11(1)	12(1)	-1(1)	0	0
CI(1)	36(1)	20(1)	17(1)	6(1)	0	0
CI(2)	26(1)	54(1)	35(1)	-20(1)	-14(1)	11(1)
CI(3)	30(1)	17(1)	17(1)	-5(1)	0	0
O(1)	51(2)	30(2)	25(2)	-5(1)	14(2)	-20(2)
O(2)	35(2)	30(1)	30(2)	2(1)	-8(2)	9(1)
C(4)	33(3)	40(2)	14(2)	-2(2)	3(2)	-5(2)
C(5)	31(3)	30(2)	24(2)	-11(2)	5(2)	-5(2)
C(6)	25(2)	34(2)	32(2)	-12(2)	4(2)	9(2)
C(7)	18(2)	47(3)	39(3)	-9(2)	11(2)	-9(2)
C(8)	46(3)	32(2)	21(2)	-1(2)	14(2)	-9(2)
C(1)	44(3)	47(2)	16(2)	3(2)	5(2)	10(2)
C(2)	50(2)	58(2)	42(2)	7(2)	2(2)	-19(2)
C(3)	66(3)	36(2)	38(2)	11(2)	0	0
C(9C)	20(5)	25(5)	27(5)	-3(4)	-4(4)	3(5)
C(10)	48(5)	26(5)	15(4)	-3(3)	-11(4)	1(4)
C(11)	46(5)	22(4)	16(4)	4(3)	-3(4)	3(4)
C(12)	36(4)	23(3)	19(4)	-6(3)	9(3)	-1(4)
C(13)	28(4)	11(3)	16(4)	-3(3)	9(3)	-6(3)

Tabelle D 15.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Tabelle D 15.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å² x 10^3)

v	V	7	[](oa)
^	y	2	0(eq)
9011	2223	7414	35
8521	4113	6709	34
7017	3796	6010	36
6590	1725	6288	41
7798	747	7151	40
10808	2972	2983	42
11349	4946	3380	60
10000	6189	3626	56
9000	-1922	4401	29
9012	32	3608	36
10595	687	3470	34
11561	-863	4178	31
10575	-2475	4753	22
	x 9011 8521 7017 6590 7798 10808 11349 10000 9000 9012 10595 11561 10575	xy9011222385214113701737966590172577987471080829721134949461000061899000-19229012321059568711561-86310575-2475	xyz901122237414852141136709701737966010659017256288779874771511080829722983113494946338010000618936269000-19224401901232360810595687347011561-863417810575-24754753

Tabelle D 15.7: T	Forsionswinkel [°]
-------------------	--------------------

O(1)#1-Ti(1)-O(1)-Ti(2)	6.7(9)	CI(2)-Ti(2)-C(5)-C(4)	132.3(3)
Cl(3)-Ti(1)-O(1)-Ti(2)	-99.2(7)	C(8)-Ti(2)-C(5)-C(4)	37.9(3)
C(3)-Ti(1)-O(1)-Ti(2)	163.9(7)	C(7)-Ti(2)-C(5)-C(4)	78.3(3)
C(1)#1-Ti(1)-O(1)-Ti(2)	120.3(8)	C(6)-Ti(2)-C(5)-C(4)	115.3(4)
C(1)-Ti(1)-O(1)-Ti(2)	99.1(8)	O(1)-Ti(2)-C(5)-C(6)	118.1(3)
C(2)#1-Ti(1)-O(1)-Ti(2)	153.9(8)	O(2)-Ti(2)-C(5)-C(6)	-138.2(3)
C(2)-Ti(1)-O(1)-Ti(2)	120.4(8)	Cl(2)-Ti(2)-C(5)-C(6)	17.0(4)
O(2)-Ti(2)-O(1)-Ti(1)	-27.0(8)	C(4)-Ti(2)-C(5)-C(6)	-115.3(4)
Cl(2)-Ti(2)-O(1)-Ti(1)	-132.7(7)	C(8)-Ti(2)-C(5)-C(6)	-77.4(3)
C(4)-Ti(2)-O(1)-Ti(1)	68.8(8)	C(7)-Ti(2)-C(5)-C(6)	-37.0(3)
C(5)-Ti(2)-O(1)-Ti(1)	97.1(8)	C(4)-C(5)-C(6)-C(7)	0.0(5)
C(8)-Ti(2)-O(1)-Ti(1)	76.5(8)	Ti(2)-C(5)-C(6)-C(7)	64.4(3)
C(7)-Ti(2)-O(1)-Ti(1)	127.5(7)	C(4)-C(5)-C(6)-Ti(2)	-64.3(3)
C(6)-Ti(2)-O(1)-Ti(1)	127.9(7)	O(1)-Ti(2)-C(6)-C(7)	-179.5(3)
O(2)#1-Ti(3)-O(2)-Ti(2)	50.5(6)	O(2)-Ti(2)-C(6)-C(7)	-44.5(4)
Cl(1)-Ti(3)-O(2)-Ti(2)	156.4(5)	Cl(2)-Ti(2)-C(6)-C(7)	76.9(3)
C(10)#1-Ti(3)-O(2)-Ti(2)	-49.1(6)	C(4)-Ti(2)-C(6)-C(7)	-78.4(3)
C(10)-Ti(3)-O(2)-Ti(2)	-71.4(6)	C(5)-Ti(2)-C(6)-C(7)	-116.0(4)
C(9C)-Ti(3)-O(2)-Ti(2)	-103.8(5)	C(8)-Ti(2)-C(6)-C(7)	-36.2(3)
C(9C)#1-Ti(3)-O(2)-Ti(2)	-88.4(6)	O(1)-Ti(2)-C(6)-C(5)	-63.4(3)
C(11)-Ti(3)-O(2)-Ti(2)	-42.7(6)	O(2)-Ti(2)-C(6)-C(5)	71.5(4)
C(11)#1-Ti(3)-O(2)-Ti(2)	-60.7(5)	Cl(2)-Ti(2)-C(6)-C(5)	-167.0(3)
C(13)#1-Ti(3)-O(2)-Ti(2)	-113.8(5)	C(4)-Ti(2)-C(6)-C(5)	37.7(3)
C(13)-Ti(3)-O(2)-Ti(2)	-106.7(5)	C(8)-Ti(2)-C(6)-C(5)	79.8(3)
C(12)#1-Ti(3)-O(2)-Ti(2)	-94.9(6)	C(7)-Ti(2)-C(6)-C(5)	116.0(4)
O(1)-Ti(2)-O(2)-Ti(3)	-13.3(6)	C(5)-C(6)-C(7)-C(8)	0.1(5)
Cl(2)-Ti(2)-O(2)-Ti(3)	92.4(5)	Ti(2)-C(6)-C(7)-C(8)	64.0(3)
C(4)-Ti(2)-O(2)-Ti(3)	-119.5(5)	C(5)-C(6)-C(7)-Ti(2)	-63.9(3)
C(5)-Ti(2)-O(2)-Ti(3)	-106.6(5)	O(1)-Ti(2)-C(7)-C(8)	-116.4(3)
C(8)-Ti(2)-O(2)-Ti(3)	-154.5(5)	O(2)-Ti(2)-C(7)-C(8)	36.0(3)
C(7)-Ti(2)-O(2)-Ti(3)	-173.7(5)	Cl(2)-Ti(2)-C(7)-C(8)	138.3(3)
C(6)-Ti(2)-O(2)-Ti(3)	-147.5(5)	C(4)-Ti(2)-C(7)-C(8)	-38.2(3)
O(1)-Ti(2)-C(4)-C(5)	55.9(3)	C(5)-Ti(2)-C(7)-C(8)	-79.8(3)
O(2)-Ti(2)-C(4)-C(5)	161.3(3)	C(6)-Ti(2)-C(7)-C(8)	-117.1(4)
CI(2)-Ti(2)-C(4)-C(5)	-84.9(3)	O(1)-Ti(2)-C(7)-C(6)	0.7(4)
C(8)-Ti(2)-C(4)-C(5)	-115.4(4)	O(2)-Ti(2)-C(7)-C(6)	153.1(3)
C(7)-Ti(2)-C(4)-C(5)	-78.7(3)	CI(2)-Ti(2)-C(7)-C(6)	-104.6(3)
C(6)-Ti(2)-C(4)-C(5)	-37.6(3)	C(4)-Ti(2)-C(7)-C(6)	78.9(3)
O(1)-Ti(2)-C(4)-C(8)	171.3(3)	C(5)-Ti(2)-C(7)-C(6)	37.3(3)
O(2)-Ti(2)-C(4)-C(8)	-83.3(3)	C(8)-Ti(2)-C(7)-C(6)	117.1(4)
CI(2)-Ti(2)-C(4)-C(8)	30.5(4)	C(6)-C(7)-C(8)-C(4)	-0.2(5)
C(5)-Ti(2)-C(4)-C(8)	115.4(4)	Ti(2)-C(7)-C(8)-C(4)	63.9(3)
C(7)-Ti(2)-C(4)-C(8)	36.7(3)	C(6)-C(7)-C(8)-Ti(2)	-64.1(3)
C(6)-Ti(2)-C(4)-C(8)	77.8(3)	C(5)-C(4)-C(8)-C(7)	0.2(5)
C(8)-C(4)-C(5)-C(6)	-0.1(5)	Ti(2)-C(4)-C(8)-C(7)	-65.1(3)
Ti(2)-C(4)-C(5)-C(6)	65.2(3)	C(5)-C(4)-C(8)-Ti(2)	65.4(3)
C(8)-C(4)-C(5)-Ti(2)	-65.3(3)	O(1)-Ti(2)-C(8)-C(7)	102.5(4)
O(1)-Ti(2)-C(5)-C(4)	-126.6(3)	O(2)-Ti(2)-C(8)-C(7)	-148.1(3)
O(2)-Ti(2)-C(5)-C(4)	-22.9(4)	Cl(2)-Ti(2)-C(8)-C(7)	-46.3(3)

C(4)-Ti(2)-C(8)-C(7)	115.5(4)	C(2)#1-Ti(1)-C(3)-C(2)	-116.8(7)
C(5)-Ti(2)-C(8)-C(7)	78.1(3)	O(2)#1-Ti(3)-C(9C)-C(10)	-70.9(4)
C(6)-Ti(2)-C(8)-C(7)	36.8(3)	O(2)-Ti(3)-C(9C)-C(10)	68.0(2)
O(1)-Ti(2)-C(8)-C(4)	-13.0(5)	CI(1)-Ti(3)-C(9C)-C(10)	172.1(2)
O(2)-Ti(2)-C(8)-C(4)	96.4(3)	C(10)#1-Ti(3)-C(9C)-C(10)	-49.2(4)
CI(2)-Ti(2)-C(8)-C(4)	-161.8(3)	C(9C)#1-Ti(3)-C(9C)-C(10)	-95.8(3)
C(5)-Ti(2)-C(8)-C(4)	-37.4(3)	C(11)-Ti(3)-C(9C)-C(10)	-37.70(8)
C(7)-Ti(2)-C(8)-C(4)	-115.5(4)	C(11)#1-Ti(3)-C(9C)-C(10)	-3.1(6)
C(6)-Ti(2)-C(8)-C(4)	-78.7(3)	C(13)#1-Ti(3)-C(9C)-C(10)	-165.0(18)
O(1)-Ti(1)-C(1)-C(1)#1	40.18(14)	C(13)-Ti(3)-C(9C)-C(10)	-115.21(12)
O(1)#1-Ti(1)-C(1)-C(1)#1	143.73(13)	C(12)#1-Ti(3)-C(9C)-C(10)	45.5(6)
Cl(3)-Ti(1)-C(1)-C(1)#1	-111.33(17)	O(2)#1-Ti(3)-C(9C)-C(13)	44.3(4)
C(3)-Ti(1)-C(1)-C(1)#1	-78.35(14)	O(2)-Ti(3)-C(9C)-C(13)	-176.8(3)
C(2)#1-Ti(1)-C(1)-C(1)#1	-36.3(2)	CI(1)-Ti(3)-C(9C)-C(13)	-72.7(2)
C(2)-Ti(1)-C(1)-C(1)#1	-117.3(3)	C(10)#1-Ti(3)-C(9C)-C(13)	66.0(3)
O(1)-Ti(1)-C(1)-C(2)	157.4(4)	C(10)-Ti(3)-C(9C)-C(13)	115.21(12)
O(1)#1-Ti(1)-C(1)-C(2)	-99.0(4)	C(9C)#1-Ti(3)-C(9C)-C(13)	19.4(3)
CI(3)-Ti(1)-C(1)-C(2)	5.9(4)	C(11)-Ti(3)-C(9C)-C(13)	77.52(15)
C(3)-Ti(1)-C(1)-C(2)	38.9(3)	C(11)#1-Ti(3)-C(9C)-C(13)	112.1(5)
C(1)#1-Ti(1)-C(1)-C(2)	117.3(3)	C(13)#1-Ti(3)-C(9C)-C(13)	-49.8(18)
C(2)#1-Ti(1)-C(1)-C(2)	80.9(5)	C(12)#1-Ti(3)-C(9C)-C(13)	160.7(5)
C(1)#1-C(1)-C(2)-C(3)	-0.1(5)	C(13)-C(9C)-C(10)-C(11)	0.0
Ti(1)-C(1)-C(2)-C(3)	-64.7(4)	Ti(3)-C(9C)-C(10)-C(11)	66.5(3)
C(1)#1-C(1)-C(2)-Ti(1)	64.59(16)	C(13)-C(9C)-C(10)-Ti(3)	-66.5(3)
O(1)-Ti(1)-C(2)-C(1)	-36.4(5)	O(2)#1-Ti(3)-C(10)-C(11)	20.5(3)
O(1)#1-Ti(1)-C(2)-C(1)	80.7(3)	O(2)-Ti(3)-C(10)-C(11)	128.5(2)
Cl(3)-Ti(1)-C(2)-C(1)	-176.0(3)	Cl(1)-Ti(3)-C(10)-C(11)	-125.5(3)
C(3)-Ti(1)-C(2)-C(1)	-113.7(5)	C(10)#1-Ti(3)-C(10)-C(11)	-18.6
C(1)#1-Ti(1)-C(2)-C(1)	-36.3(3)	C(9C)-Ti(3)-C(10)-C(11)	-115.06(12)
C(2)#1-Ti(1)-C(2)-C(1)	-76.8(4)	C(9C)#1-Ti(3)-C(10)-C(11)	-65.1(4)
O(1)-Ti(1)-C(2)-C(3)	77.2(5)	C(11)#1-Ti(3)-C(10)-C(11)	53(2)
O(1)#1-Ti(1)-C(2)-C(3)	-165.6(4)	C(13)#1-Ti(3)-C(10)-C(11)	-110.9(5)
Cl(3)-Ti(1)-C(2)-C(3)	-62.4(4)	C(13)-Ti(3)-C(10)-C(11)	-77.56(15)
C(1)#1-Ti(1)-C(2)-C(3)	77.4(4)	C(12)#1-Ti(3)-C(10)-C(11)	-158.8(5)
C(1)-Ti(1)-C(2)-C(3)	113.7(5)	O(2)#1-Ti(3)-C(10)-C(9C)	135.6(3)
C(2)#1-Ti(1)-C(2)-C(3)	36.9(4)	O(2)-Ti(3)-C(10)-C(9C)	-116.4(2)
C(1)-C(2)-C(3)-C(2)#1	0.1(8)	Cl(1)-Ti(3)-C(10)-C(9C)	-10.4(3)
Ti(1)-C(2)-C(3)-C(2)#1	-64.9(5)	C(10)#1-Ti(3)-C(10)-C(9C)	96.46(11)
C(1)-C(2)-C(3)-Ti(1)	65.0(4)	C(9C)#1-Ti(3)-C(10)-C(9C)	49.9(4)
O(1)-Ti(1)-C(3)-C(2)#1	-17.8(5)	C(11)-Ti(3)-C(10)-C(9C)	115.06(12)
O(1)#1-Ti(1)-C(3)-C(2)#1	134.6(3)	C(11)#1-Ti(3)-C(10)-C(9C)	168(2)
Cl(3)-Ti(1)-C(3)-C(2)#1	-121.6(4)	C(13)#1-Ti(3)-C(10)-C(9C)	4.1(5)
C(1)#1-Ti(1)-C(3)-C(2)#1	37.9(4)	C(13)-Ti(3)-C(10)-C(9C)	37.50(8)
C(1)-Ti(1)-C(3)-C(2)#1	78.9(4)	C(12)#1-Ti(3)-C(10)-C(9C)	-43.8(6)
C(2)-Ti(1)-C(3)-C(2)#1	116.8(7)	C(9C)-C(10)-C(11)-C(12)	0.0
O(1)-Ti(1)-C(3)-C(2)	-134.6(3)	Ti(3)-C(10)-C(11)-C(12)	65.4(2)
O(1)#1-Ti(1)-C(3)-C(2)	17.8(5)	C(9C)-C(10)-C(11)-Ti(3)	-65.4(2)
CI(3)-Ti(1)-C(3)-C(2)	121.6(4)	O(2)#1-Ti(3)-C(11)-C(10)	-162.4(3)
C(1)#1-Ti(1)-C(3)-C(2)	-78.9(4)	O(2)-Ti(3)-C(11)-C(10)	-57.0(3)
C(1)-Ti(1)-C(3)-C(2)	-37.9(4)	Cl(1)-Ti(3)-C(11)-C(10)	91.5(4)

C(10)#1-Ti(3)-C(11)-C(10)	93.1(19)	C(10)-Ti(3)-C(12)-C(13)	-79.35(15)
C(9C)-Ti(3)-C(11)-C(10)	38.05(11)	C(9C)-Ti(3)-C(12)-C(13)	-37.30(9)
C(9C)#1-Ti(3)-C(11)-C(10)	83.7(5)	C(9C)#1-Ti(3)-C(12)-C(13)	-10.5(6)
C(11)#1-Ti(3)-C(11)-C(10)	-18.2	C(11)-Ti(3)-C(12)-C(13)	-116.88(14)
C(13)#1-Ti(3)-C(11)-C(10)	48.2(4)	C(11)#1-Ti(3)-C(12)-C(13)	-92.4(2)
C(13)-Ti(3)-C(11)-C(10)	79.46(15)	C(13)#1-Ti(3)-C(12)-C(13)	-23.4(2)
C(12)#1-Ti(3)-C(11)-C(10)	10.11(18)	C(12)#1-Ti(3)-C(12)-C(13)	-57.74(14)
O(2)#1-Ti(3)-C(11)-C(12)	81.6(2)	C(10)-C(9C)-C(13)-C(12)	0.0
O(2)-Ti(3)-C(11)-C(12)	-173.0(3)	Ti(3)-C(9C)-C(13)-C(12)	-64.8(2)
Cl(1)-Ti(3)-C(11)-C(12)	-24.5(4)	C(10)-C(9C)-C(13)-Ti(3)	64.8(2)
C(10)#1-Ti(3)-C(11)-C(12)	-22.9(19)	C(11)-C(12)-C(13)-C(9C)	0.0
C(10)-Ti(3)-C(11)-C(12)	-116.03(11)	Ti(3)-C(12)-C(13)-C(9C)	62.8(3)
C(9C)-Ti(3)-C(11)-C(12)	-77.98(13)	C(11)-C(12)-C(13)-Ti(3)	-62.8(3)
C(9C)#1-Ti(3)-C(11)-C(12)	-32.3(5)	O(2)#1-Ti(3)-C(13)-C(9C)	-151.3(3)
C(11)#1-Ti(3)-C(11)-C(12)	-134.25(11)	O(2)-Ti(3)-C(13)-C(9C)	4.9(4)
C(13)#1-Ti(3)-C(11)-C(12)	-67.8(4)	Cl(1)-Ti(3)-C(13)-C(9C)	107.8(2)
C(13)-Ti(3)-C(11)-C(12)	-36.58(10)	C(10)#1-Ti(3)-C(13)-C(9C)	-83.2(5)
C(12)#1-Ti(3)-C(11)-C(12)	-105.9(2)	C(10)-Ti(3)-C(13)-C(9C)	-38.03(11)
C(10)-C(11)-C(12)-C(13)	0.0	C(9C)#1-Ti(3)-C(13)-C(9C)	-95.1(18)
Ti(3)-C(11)-C(12)-C(13)	63.1(3)	C(11)-Ti(3)-C(13)-C(9C)	-79.65(15)
C(10)-C(11)-C(12)-Ti(3)	-63.1(3)	C(11)#1-Ti(3)-C(13)-C(9C)	-47.2(4)
O(2)#1-Ti(3)-C(12)-C(11)	-95.5(3)	C(13)#1-Ti(3)-C(13)-C(9C)	18. Sep
O(2)-Ti(3)-C(12)-C(11)	11.4(4)	C(12)#1-Ti(3)-C(13)-C(9C)	-9.04(18)
Cl(1)-Ti(3)-C(12)-C(11)	164.3(2)	O(2)#1-Ti(3)-C(13)-C(12)	-35.0(3)
C(10)#1-Ti(3)-C(12)-C(11)	10.4(6)	O(2)-Ti(3)-C(13)-C(12)	121.2(4)
C(10)-Ti(3)-C(12)-C(11)	37.53(9)	Cl(1)-Ti(3)-C(13)-C(12)	-135.9(2)
C(9C)-Ti(3)-C(12)-C(11)	79.58(15)	C(10)#1-Ti(3)-C(13)-C(12)	33.1(5)
C(9C)#1-Ti(3)-C(12)-C(11)	106.3(6)	C(10)-Ti(3)-C(13)-C(12)	78.29(14)
C(11)#1-Ti(3)-C(12)-C(11)	24.5(2)	C(9C)-Ti(3)-C(13)-C(12)	116.32(11)
C(13)#1-Ti(3)-C(12)-C(11)	93.4(2)	C(9C)#1-Ti(3)-C(13)-C(12)	21.2(18)
C(13)-Ti(3)-C(12)-C(11)	116.88(14)	C(11)-Ti(3)-C(13)-C(12)	36.67(10)
C(12)#1-Ti(3)-C(12)-C(11)	59.14(14)	C(11)#1-Ti(3)-C(13)-C(12)	69.1(4)
O(2)#1-Ti(3)-C(12)-C(13)	147.6(3)	C(13)#1-Ti(3)-C(13)-C(12)	135.26(11)
O(2)-Ti(3)-C(12)-C(13)	-105.5(4)	C(12)#1-Ti(3)-C(13)-C(12)	107.3(2)
Cl(1)-Ti(3)-C(12)-C(13)	47.4(2)		
C(10)#1-Ti(3)-C(12)-C(13)	-106.5(6)		

16. {Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-(*o*-pyridyl)methylen-phosphanκN,*P*}wolfram(0)} (**87a**)

Sehr gute Struktur, 14.09.2012, Publiziert in ^[143]; CCDC 948177

Tabelle D 16.1: Kristalldaten und Strukturverfeinerung von 87a

l de atificatione e e de	CCTD050 0000
Identifikationscode	GS1R258, 2292
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{17}H_{24}NO_4PSi_2W$
Molare Masse	577.37
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c
Elementarzelle	a = 8.5399(3) Å α = 90°
	b = 15.7396(6) Å β = 116.7230(10)°
	$c = 18.9053(6) \text{ Å} \gamma = 90^{\circ}$
Elementarzellenvolumen [Å ³]	2269.73(14)
Z, Berechnete Dichte [Mg/m ³]	4, 1.690
Absorptionskoeffizient [mm ⁻¹]	5.285
F(000)	1128
Kristallgröße [mm ³]	0.20 x 0.12 x 0.04
Gemessener 20-Bereich [°]	2.59 - 28.00
Indexgrößen	$-11 \le h \le 11, -20 \le k \le 20, -21 \le l \le 24$
Reflexe gemessen / unabhängig	28022 / 5461 [R _{int} = 0.0844]
Vollständigkeit für Θ = 28.00	99.6 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.8164 und 0.4179
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	5461 / 2 / 241
Goodness-of-fit an F ²	0.940
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0365, wR2 = 0.0609
R-Werte (sämtliche Daten)	R1 = 0.0723, wR2 = 0.0688
Größtes Maximum und Minimum	2.582 und -2.495 e∙Å⁻³

	x	У	Z	U(eq)
W	1306(1)	-3423(1)	-3586(1)	22(1)
Р	3624(2)	-4481(1)	-3063(1)	23(1)
Si(1)	5884(2)	-4755(1)	-1292(1)	28(1)
Si(2)	2781(2)	-6113(1)	-2411(1)	31(1)
O(1)	-1396(5)	-4847(3)	-4620(2)	54(1)
O(2)	-265(5)	-3560(2)	-2380(2)	49(1)
O(3)	-1491(5)	-2023(3)	-4540(2)	53(1)
O(4)	3355(5)	-1978(2)	-2347(2)	42(1)
Ν	2670(5)	-3372(2)	-4387(2)	21(1)
C(1)	4691(6)	-4466(3)	-3615(3)	25(1)
C(2)	4076(6)	-3872(3)	-4264(3)	25(1)
C(3)	4876(7)	-3820(3)	-4773(3)	30(1)
C(4)	4240(7)	-3272(3)	-5404(3)	35(1)
C(5)	2825(7)	-2776(3)	-5529(3)	33(1)
C(6)	2093(7)	-2840(3)	-5016(3)	29(1)
C(7)	4495(6)	-5276(3)	-2299(3)	26(1)
C(8)	7230(9)	-3896(4)	-1432(3)	62(2)
C(9)	7414(7)	-5563(3)	-620(3)	41(1)
C(10)	4449(8)	-4300(4)	-892(3)	53(2)
C(11)	839(7)	-5684(3)	-2327(4)	48(2)
C(12)	3804(7)	-6954(3)	-1644(3)	36(1)
C(13)	2036(7)	-6573(3)	-3423(3)	43(1)
C(14)	-406(7)	-4334(4)	-4270(3)	35(1)
C(15)	287(7)	-3529(3)	-2845(3)	31(1)
C(16)	-449(7)	-2538(3)	-4190(3)	32(1)
C(17)	2714(7)	-2499(3)	-2817(3)	29(1)

Tabelle D 16.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 16.3: Bindungslängen [Å]

W-C(15)	1.961(5)	O(2)-C(15)	1.169(5)	C(8)-H(8B)	0.9800
W-C(16)	1.988(6)	O(3)-C(16)	1.165(6)	C(8)-H(8C)	0.9800
W-C(17)	2.025(6)	O(4)-C(17)	1.151(6)	C(9)-H(9A)	0.9800
W-C(14)	2.041(6)	N-C(6)	1.353(6)	C(9)-H(9B)	0.9800
W-N	2.289(3)	N-C(2)	1.366(6)	C(9)-H(9C)	0.9800
W-P	2.4312(13)	C(1)-C(2)	1.441(6)	C(10)-H(10A)	0.9800
P-C(1)	1.665(4)	C(1)-H(1)	0.9500	C(10)-H(10B)	0.9800
P-C(7)	1.801(5)	C(2)-C(3)	1.410(6)	C(10)-H(10C)	0.9800
Si(1)-C(10)	1.850(5)	C(3)-C(4)	1.371(7)	C(11)-H(11A)	0.9800
Si(1)-C(9)	1.856(5)	C(3)-H(3)	0.9500	C(11)-H(11B)	0.9800
Si(1)-C(8)	1.868(5)	C(4)-C(5)	1.368(7)	C(11)-H(11C)	0.9800
Si(1)-C(7)	1.915(5)	C(4)-H(4)	0.9500	C(12)-H(12A)	0.9800
Si(2)-C(11)	1.862(5)	C(5)-C(6)	1.374(6)	C(12)-H(12B)	0.9800
Si(2)-C(12)	1.865(5)	C(5)-H(5)	0.9500	C(12)-H(12C)	0.9800
Si(2)-C(13)	1.869(5)	C(6)-H(6)	0.9500	C(13)-H(13A)	0.9800
Si(2)-C(7)	1.909(5)	C(7)-H(7)	1.0000	C(13)-H(13B)	0.9800
O(1)-C(14)	1.141(6)	C(8)-H(8A)	0.9800	C(13)-H(13C)	0.9800

Tabelle D 16.4:	Bindungswinkel	[°]
-----------------	----------------	-----

C(15)-W-C(16)	90,49(19)	N-C(6)-H(6)	117.8
C(15)-W-C(17)	81.9(2)	C(5)-C(6)-H(6)	117.8
C(16)-W-C(17)	87.7(2)	P-C(7)-Si(2)	111.8(2)
C(15)-W-C(14)	88.4(2)	P-C(7)-Si(1)	110.4(3)
C(16)-W-C(14)	89.4(2)	Si(2)-C(7)-Si(1)	120.5(2)
C(17)-W-C(14)	169.79(19)	P-C(7)-H(7)	104.1
C(15)-W-N	175.36(17)	Si(2)-C(7)-H(7)	104.1
C(16)-W-N	94.13(16)	Si(1)-C(7)-H(7)	104.1
C(17)-W-N	97.79(16)	Si(1)-C(8)-H(8A)	109.5
C(14)-W-N	92.18(17)	Si(1)-C(8)-H(8B)	109.5
C(15)-W-P	101.11(14)	H(8A)-C(8)-H(8B)	109.5
C(16)-W-P	168.34(13)	Si(1)-C(8)-H(8C)	109.5
C(17)-W-P	95.01(15)	H(8A)-C(8)-H(8C)	109.5
C(14)-W-P	89.79(15)	H(8B)-C(8)-H(8C)	109.5
N-W-P	74.29(10)	Si(1)-C(9)-H(9A)	109.5
C(1)-P-C(7)	111 6(2)	Si(1)-C(9)-H(9B)	109.5
C(1)-P-W	108 09(18)	H(9A)-C(9)-H(9B)	109.5
C(7)-P-W	140 29(16)	Si(1)-C(9)-H(9C)	109.5
C(10)-Si(1)-C(9)	112 2(2)	H(9A)-C(9)-H(9C)	109.5
C(10)-Si(1)-C(8)	109 9(3)	H(9B)-C(9)-H(9C)	109.5
C(9)-Si(1)-C(8)	107 7(3)	Si(1)-C(10)-H(10A)	109.5
C(10)-Si(1)-C(7)	110 1(2)	Si(1) - C(10) - H(10B)	109.5
$C(9)_{Si}(1)_{C(7)}$	108.5(2)	H(10A)-C(10)-H(10B)	109.5
C(8)-Si(1)-C(7)	108.3(2)	$S_{i}(1) - C(10) - H(10C)$	109.5
C(11)-S(2)-C(12)	108.4(2)	H(10A) - C(10) - H(10C)	109.5
C(11)-S(2)-C(12)	108.8(2)	H(10R) - C(10) - H(10C)	109.5
C(12)-S(2)-C(13)	110.0(3)	$S_{1}(2) - C(11) - H(11A)$	109.5
C(12)-S(2)-C(13)	110.2(2)	$S_{1}(2) - C(11) - H(11R)$	109.5
C(12)-S(2)-C(7)	109 6(2)	H(11A) - C(11) - H(11B)	109.5
C(12)-S(2)-C(7)	105.0(2)	$S_{1}(2) - C(11) - H(11C)$	109.5
C(6)-N-C(2)	116 8(4)	H(11A)-C(11)-H(11C)	109.5
C(6) - N - O(2)	120 7(3)	H(11R)-C(11)-H(11C)	109.5
$C(0) = N \cdot W$	120.7(3)	F(110) - C(11) - F(110)	109.5
C(2) = C(1) = D	122.3(3)	$S_1(2) - C_1(12) - H_1(12R)$	109.5
C(2) = C(1) = H(1)	121.6	H(12A) - C(12) - H(12B)	109.5
P(1) = P(1)	121.0	F(12A) - C(12) - F(12B)	109.5
$P = C(1) = \Gamma(1)$	121.0	H(12A) C(12) H(12C)	109.5
N - C(2) - C(3)	120.7(4)	H(12R) - C(12) - H(12C)	109.5
C(2) C(2) C(1)	121.0(5)	F(12D) - C(12) - F(12C)	109.5
C(3)-C(2)-C(1)	121.0(5)	$S_{1}(2) = C(13) = H(13R)$	109.5
C(4) - C(3) - C(2)	120.4(5)	$S(2) - C(13) - \Pi(13D)$	109.5
$C(4) - C(3) - \Pi(3)$	119.0	$\Pi(13A) - G(13) - \Pi(13B)$	109.5
$C(2) - C(3) - \Pi(3)$	119.0	$S(2) - C(13) - \Pi(13C)$	109.5
C(5) - C(4) - U(3)	120 6	н(ток)-С(то)-П(тоС) Н(138)_С(13) Ц(13С)	109.5
$C(3) - C(4) - \Pi(4)$	120.0	$\Box(130) = U(13) = \Pi(13U)$	176 1/5
$C(3)-C(4)-\Pi(4)$	120.0 119.0(5)	O(1) - O(14) - VV	176 6(5)
C(4) - C(5) - C(6)	110.9(0)	O(2) = O(16) W	170.0(3)
	120.5	O(3) - O(10) - VV	171 4(4)
	120.0	0(4)-0(17)-VV	171.4(4)
IN-U(0)-U(3)	124.3(3)		

Der anisotrope	Auslenkungs	sfaktorexponer	nt hat die Form	n: -2π² [h² a*² l	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
W	24(1)	20(1)	25(1)	1(1)	13(1)	1(1)
Р	27(1)	20(1)	26(1)	0(1)	15(1)	-1(1)
Si(1)	36(1)	24(1)	26(1)	1(1)	17(1)	-2(1)
Si(2)	27(1)	21(1)	43(1)	6(1)	15(1)	0(1)
O(1)	30(2)	43(3)	82(3)	-23(2)	19(2)	-11(2)
O(2)	62(3)	48(3)	61(3)	15(2)	50(2)	14(2)
O(3)	55(3)	58(3)	52(3)	27(2)	31(2)	29(2)
O(4)	52(3)	38(2)	43(2)	-18(2)	27(2)	-13(2)
Ν	22(2)	20(2)	19(2)	-1(2)	7(2)	0(2)
C(1)	23(3)	23(3)	32(3)	-1(2)	14(2)	0(2)
C(2)	28(3)	23(3)	26(3)	-8(2)	13(3)	-8(2)
C(3)	34(3)	33(3)	30(3)	-5(2)	20(3)	-6(3)
C(4)	45(4)	44(4)	28(3)	-4(3)	26(3)	-12(3)
C(5)	41(4)	35(3)	24(3)	2(2)	15(3)	-9(3)
C(6)	31(3)	24(3)	25(3)	-2(2)	7(3)	-7(2)
C(7)	26(3)	23(3)	31(3)	6(2)	15(2)	4(2)
C(8)	89(6)	56(4)	40(4)	-11(3)	28(4)	-46(4)
C(9)	40(4)	40(4)	40(3)	2(3)	15(3)	1(3)
C(10)	55(4)	68(5)	37(3)	0(3)	23(3)	22(4)
C(11)	38(4)	28(3)	87(5)	12(3)	37(4)	0(3)
C(12)	34(3)	28(3)	48(3)	7(3)	20(3)	-7(3)
C(13)	36(3)	27(3)	51(4)	1(3)	5(3)	-9(3)
C(14)	27(3)	32(3)	47(3)	-5(3)	19(3)	4(3)
C(15)	37(3)	23(3)	44(3)	11(2)	27(3)	10(2)
C(16)	36(3)	35(3)	31(3)	4(3)	19(3)	5(3)
C(17)	33(3)	33(3)	29(3)	2(3)	21(3)	2(3)

Tabelle D 16.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Tabelle D 16.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å² x 10^3)

	x	У	Z	U(eq)
H(1)	5658	-4831	-3507	30
H(3)	5861	-4167	-4677	36
H(4)	4773	-3238	-5749	42
H(5)	2355	-2393	-5963	40
H(6)	1117	-2487	-5108	34
H(7)	5366	-5590	-2417	31
H(8A)	7969	-3631	-920	93
H(8B)	6453	-3468	-1797	93
H(8C)	7974	-4140	-1651	93
H(9A)	6743	-6017	-526	61
H(9B)	8194	-5296	-115	61
H(9C)	8114	-5.804	-864	61
H(10A)	3609	-3908	-1280	79
H(10B)	5166	-3992	-401	79
H(10C)	3813	-4758	-782	79

Annang D – Kristallographische Date	Kristallographische Daten
-------------------------------------	---------------------------

H(11A)	1227	-5393	-1817	72
H(11B)	51	-6152	-2361	72
H(11C)	218	-5281	-2759	72
H(12A)	3039	-7454	-1788	54
H(12B)	3967	-6737	-1129	54
H(12C)	4945	-7112	-1612	54
H(13A)	1314	-6156	-3821	65
H(13B)	1343	-7087	-3474	65
H(13C)	3059	-6719	-3504	65

Tabelle D 16.7: Torsionswinkel [°]

C(15)-W-P-C(1)	-178.6(2)	W-P-C(7)-Si(2)	59.5(4)
C(16)-W-P-C(1)	7.3(8)	C(1)-P-C(7)-Si(1)	104.6(3)
C(17)-W-P-C(1)	-95.9(2)	W-P-C(7)-Si(1)	-77.5(3)
C(14)-W-P-C(1)	93.1(2)	C(11)-Si(2)-C(7)-P	-62.1(3)
N-W-P-C(1)	0.8(2)	C(12)-Si(2)-C(7)-P	176.2(2)
C(15)-W-P-C(7)	3.5(3)	C(13)-Si(2)-C(7)-P	57.4(3)
C(16)-W-P-C(7)	-170.6(8)	C(11)-Si(2)-C(7)-Si(1)	70.0(4)
C(17)-W-P-C(7)	86.2(3)	C(12)-Si(2)-C(7)-Si(1)	-51.7(3)
C(14)-W-P-C(7)	-84.8(3)	C(13)-Si(2)-C(7)-Si(1)	-170.5(3)
N-W-P-C(7)	-177.1(3)	C(10)-Si(1)-C(7)-P	78.8(3)
C(15)-W-N-C(6)	-174(2)	C(9)-Si(1)-C(7)-P	-158.0(3)
C(16)-W-N-C(6)	-0.5(4)	C(8)-Si(1)-C(7)-P	-41.4(4)
C(17)-W-N-C(6)	-88.8(4)	C(10)-Si(1)-C(7)-Si(2)	-53.9(4)
C(14)-W-N-C(6)	89.0(4)	C(9)-Si(1)-C(7)-Si(2)	69.3(3)
P-W-N-C(6)	178.2(4)	C(8)-Si(1)-C(7)-Si(2)	-174.1(3)
C(15)-W-N-C(2)	6(2)	C(15)-W-C(14)-O(1)	-2(7)
C(16)-W-N-C(2)	-179.9(4)	C(16)-W-C(14)-O(1)	-93(7)
C(17)-W-N-C(2)	91.8(4)	C(17)-W-C(14)-O(1)	-19(8)
C(14)-W-N-C(2)	-90.4(4)	N-W-C(14)-O(1)	173(7)
P-W-N-C(2)	-1.3(3)	P-W-C(14)-O(1)	99(7)
C(7)-P-C(1)-C(2)	178.1(4)	C(16)-W-C(15)-O(2)	-88(8)
W-P-C(1)-C(2)	-0.5(4)	C(17)-W-C(15)-O(2)	0(8)
C(6)-N-C(2)-C(3)	0.5(7)	C(14)-W-C(15)-O(2)	-177(100)
W-N-C(2)-C(3)	180.0(3)	N-W-C(15)-O(2)	86(8)
C(6)-N-C(2)-C(1)	-178.1(4)	P-W-C(15)-O(2)	93(8)
W-N-C(2)-C(1)	1.4(6)	C(15)-W-C(16)-O(3)	-21(37)
P-C(1)-C(2)-N	-0.5(6)	C(17)-W-C(16)-O(3)	-103(37)
P-C(1)-C(2)-C(3)	-179.0(4)	C(14)-W-C(16)-O(3)	67(37)
N-C(2)-C(3)-C(4)	-0.7(7)	N-W-C(16)-O(3)	159(37)
C(1)-C(2)-C(3)-C(4)	177.8(5)	P-W-C(16)-O(3)	153(36)
C(2)-C(3)-C(4)-C(5)	0.3(8)	C(15)-W-C(17)-O(4)	-17(3)
C(3)-C(4)-C(5)-C(6)	0.3(8)	C(16)-W-C(17)-O(4)	74(3)
C(2)-N-C(6)-C(5)	0.1(7)	C(14)-W-C(17)-O(4)	0(4)
W-N-C(6)-C(5)	-179.4(4)	N-W-C(17)-O(4)	167(3)
C(4)-C(5)-C(6)-N	-0.5(8)	P-W-C(17)-O(4)	-118(3)
C(1)-P-C(7)-Si(2)	-118.4(3)		

17. {Tetracarbonyl{[bis(trimethylsilyl)methyl]-1-methyl-1-(*o*-pyridyl)methylenphosphan-*κN,P*}wolfram(0)} (**88a**)

Sehr gute Struktur, 31.10.2012, Publiziert in ^[143]; CCDC 948178

Tabelle D 17.1: Kristalldaten und Strukturverfeinerung von 88a

Identifikationscode	GSTR268, 2375
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{18}H_{26}NO_4PSi_2W$
Molare Masse	591.40
Temperatur [K]	123(2)
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Monoklin, <i>P</i> 2 ₁ /c
Elementarzelle	a = 8.6208(2) Å α = 90°
	b = 15.8306(3) Å β = 115.1240(10)°
	c = 18.7955(3) Å γ = 90°
Elementarzellenvolumen [Å3]	2322.39(8)
Z, Berechnete Dichte [Mg/m ³]	4, 1.691
Absorptionskoeffizient [mm ⁻¹]	5.168
F(000)	1160
Kristallgröße [mm ³]	0.36 x 0.16 x 0.07
Gemessener 20-Bereich [°]	2.69 - 28.00.
Indexgrößen	$-11 \le h \le 10, -20 \le k \le 20, -24 \le l \le 24$
Reflexe gemessen / unabhängig	27566 / 5583 [R _{int} = 0.0473]
Vollständigkeit für Θ = 28.00	99.4 %
Absorptionskorrektur	Semi-empirisch (from equivalents)
Max. und min. Transmission	0.7137 und 0.2577
Strukturverfeinerung	Vollmatrix least-squares an F ²
Daten / Restraints / Parameter	5583 / 4 / 251
Goodness-of-fit an F ²	1.065
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0228, wR2 = 0.0542
R-Werte (sämtliche Daten)	R1 = 0.0261, wR2 = 0.0553
Größtes Maximum und Minimum	1.015 und -2.066 e∙Å⁻³

	X	У	Z	U(eq)	
W	6845(1)	-3296(1)	-3557(1)	14(1)	
Р	5359(1)	-4329(1)	-3103(1)	14(1)	
Si(1)	6646(1)	-4637(1)	-1335(1)	19(1)	
Si(2)	7201(1)	-6020(1)	-2529(1)	20(1)	
O(1)	7997(3)	-1886(2)	-4413(2)	45(1)	
O(2)	7398(3)	-4655(2)	-4678(1)	37(1)	
O(3)	7090(3)	-1868(1)	-2332(1)	35(1)	
O(4)	10636(2)	-3547(1)	-2325(1)	29(1)	
N	3996(3)	-3163(1)	-4360(1)	16(1)	
C(1)	3244(3)	-4273(2)	-3668(1)	16(1)	
C(2)	2744(3)	-3638(2)	-4287(1)	16(1)	
C(3)	1011(3)	-3517(2)	-4803(2)	23(1)	
C(4)	545(4)	-2925(2)	-5395(2)	28(1)	
C(5)	1817(4)	-2450(2)	-5471(2)	26(1)	
C(6)	3494(3)	-2589(2)	-4946(1)	20(1)	
C(7)	1864(3)	-4804(2)	-3595(2)	25(1)	
C(8)	5918(3)	-5128(2)	-2352(1)	15(1)	
C(9)	9305(4)	-5677(2)	-2489(2)	34(1)	
C(10)	7568(4)	-6871(2)	-1790(2)	27(1)	
C(11)	5839(5)	-6427(2)	-3533(2)	35(1)	
C(12)	6238(4)	-5406(2)	-687(2)	35(1)	
C(13)	8944(4)	-4343(2)	-927(2)	38(1)	
C(14)	5340(5)	-3676(2)	-1416(2)	40(1)	
C(15)	7579(4)	-2407(2)	-4099(2)	25(1)	
C(16)	7149(3)	-4176(2)	-4284(2)	22(1)	
C(17)	6897(3)	-2385(2)	-2790(2)	21(1)	
C(18)	9241(3)	-3469(2)	-2793(2)	19(1)	

Tabelle D 17.2: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å x 10^3). U(eq) wird berechnet als Drittel der Spur des orthogonalen Uij-Tensors.

Tabelle D 17.3: Bindungslängen [Å]

W-C(18)	1.971(3)	O(3)-C(17)	1.149(3)	C(9)-H(9A)	0.9800
W-C(15)	1.993(3)	O(4)-C(18)	1.157(3)	C(9)-H(9B)	0.9800
W-C(17)	2.025(3)	N-C(6)	1.349(3)	C(9)-H(9C)	0.9800
W-C(16)	2.045(3)	N-C(2)	1.369(3)	C(10)-H(10A)	0.9800
W-N	2.282(2)	C(1)-C(2)	1.459(3)	C(10)-H(10B)	0.9800
W-P	2.4427(6)	C(1)-C(7)	1.510(3)	C(10)-H(10C)	0.9800
P-C(1)	1.678(3)	C(2)-C(3)	1.407(4)	C(11)-H(11A)	0.9800
P-C(8)	1.802(2)	C(3)-C(4)	1.377(4)	C(11)-H(11B)	0.9800
Si(1)-C(13)	1.855(3)	C(3)-H(3A)	0.9500	C(11)-H(11C)	0.9800
Si(1)-C(12)	1.858(3)	C(4)-C(5)	1.386(4)	C(12)-H(12A)	0.9800
Si(1)-C(14)	1.860(3)	C(4)-H(4A)	0.9500	C(12)-H(12B)	0.9800
Si(1)-C(8)	1.906(2)	C(5)-C(6)	1.379(4)	C(12)-H(12C)	0.9800
Si(2)-C(10)	1.864(3)	C(5)-H(5A)	0.9500	C(13)-H(13A)	0.9800
Si(2)-C(9)	1.864(3)	C(6)-H(6A)	0.9500	C(13)-H(13B)	0.9800
Si(2)-C(11)	1.864(3)	C(7)-H(7A)	0.9800	C(13)-H(13C)	0.9800
Si(2)-C(8)	1.908(2)	C(7)-H(7B)	0.9800	C(14)-H(14A)	0.9800
O(1)-C(15)	1.158(3)	C(7)-H(7C)	0.9800	C(14)-H(14B)	0.9800
O(2)-C(16)	1.143(3)	C(8)-H(8A)	1.0000	C(14)-H(14C)	0.9800

_
Tabelle D 17.4: Bindungswinkel [°]

C(18)-W-C(15)	90.46(11)	N-C(6)-H(6A)	117 7
C(18)-W-C(17)	83 17(11)	C(5)-C(6)-H(6A)	117.7
C(15) - W - C(17)	86 81(12)	C(1)-C(7)-H(7A)	109.5
C(18)-W-C(16)	90.01(11)	C(1)-C(7)-H(7B)	109.5
C(15)-W-C(16)	88 87(12)	H(7A)-C(7)-H(7B)	109.5
C(17)-W-C(16)	171 89(10)	C(1)-C(7)-H(7C)	109.5
C(18)-W-N	174 62(9)	H(7A)-C(7)-H(7C)	109.5
C(15)-W-N	94.71(10)	H(7B)-C(7)-H(7C)	109.5
C(17)-W-N	95.60(9)	P-C(8)-Si(1)	111.33(13)
C(16)-W-N	91.59(9)	P-C(8)-Si(2)	111.40(12)
C(18)-W-P	101.32(8)	Si(1)-C(8)-Si(2)	120.55(13)
C(15)-W-P	168.22(8)	P-C(8)-H(8A)	103.8
C(17)-W-P	94.86(7)	Si(1)-C(8)-H(8A)	103.8
C(16)-W-P	90.76(8)	Si(2)-C(8)-H(8A)	103.8
N-W-P	73.53(6)	Si(2)-C(9)-H(9A)	109.5
C(1)-P-C(8)	112.93(12)	Si(2)-C(9)-H(9B)	109.5
C(1)-P-W	109.51(9)	H(9A)-C(9)-H(9B)	109.5
C(8)-P-W	137.54(8)	Si(2)-C(9)-H(9C)	109.5
C(13)-Si(1)-C(12)	111.08(15)	H(9A)-C(9)-H(9C)	109.5
C(13)-Si(1)-C(14)	109.39(17)	H(9B)-C(9)-H(9C)	109.5
C(12)-Si(1)-C(14)	108.25(16)	Si(2)-C(10)-H(10A)	109.5
C(13)-Si(1)-C(8)	110.83(13)	Si(2)-C(10)-H(10B)	109.5
C(12)-Si(1)-C(8)	108.48(13)	H(10A)-C(10)-H(10B)	109.5
C(14)-Si(1)-C(8)	108.76(12)	Si(2)-C(10)-H(10C)	109.5
C(10)-Si(2)-C(9)	109.03(14)	H(10A)-C(10)-H(10C)	109.5
C(10)-Si(2)-C(11)	109.89(15)	H(10B)-C(10)-H(10C)	109.5
C(9)-Si(2)-C(11)	108.98(15)	Si(2)-C(11)-H(11A)	109.5
C(10)-Si(2)-C(8)	109.40(12)	Si(2)-C(11)-H(11B)	109.5
C(9)-Si(2)-C(8)	113.81(13)	H(11A)-C(11)-H(11B)	109.5
C(11)-Si(2)-C(8)	105.66(13)	Si(2)-C(11)-H(11C)	109.5
C(6)-N-C(2)	117.2(2)	H(11A)-C(11)-H(11C)	109.5
C(6)-N-W	119.01(18)	H(11B)-C(11)-H(11C)	109.5
C(2)-N-W	123.75(16)	Si(1)-C(12)-H(12A)	109.5
C(2)-C(1)-C(7)	118.7(2)	Si(1)-C(12)-H(12B)	109.5
C(2)-C(1)-P	114.49(18)	H(12A)-C(12)-H(12B)	109.5
C(7)-C(1)-P	126.83(19)	Si(1)-C(12)-H(12C)	109.5
N-C(2)-C(3)	120.5(2)	H(12A)-C(12)-H(12C)	109.5
N-C(2)-C(1)	118.7(2)	H(12B)-C(12)-H(12C)	109.5
C(3)-C(2)-C(1)	120.7(2)	Si(1)-C(13)-H(13A)	109.5
C(4)-C(3)-C(2)	120.6(3)	Si(1)-C(13)-H(13B)	109.5
C(4)-C(3)-H(3A)	119.7	H(13A)-C(13)-H(13B)	109.5
C(2)-C(3)-H(3A)	119.7	Si(1)-C(13)-H(13C)	109.5
C(3)-C(4)-C(5)	118.7(3)	H(13A)-C(13)-H(13C)	109.5
C(3)-C(4)-H(4A)	120.7	H(13B)-C(13)-H(13C)	109.5
C(5)-C(4)-H(4A)	120.7	Si(1)-C(14)-H(14A)	109.5
C(6)-C(5)-C(4)	118.4(3)	Si(1)-C(14)-H(14B)	109.5
C(6)-C(5)-H(5A)	120.8	H(14A)-C(14)-H(14B)	109.5
C(4)-C(5)-H(5A)	120.8	Si(1)-C(14)-H(14C)	109.5
N-C(6)-C(5)	124.5(3)	H(14A)-C(14)-H(14C)	109.5

Anhang D – Kristallographische Daten

H(14B)-C(14)-H(14C)	109.5	O(3)-C(17)-W	173.6(2)
O(1)-C(15)-W	179.5(3)	O(4)-C(18)-W	177.2(2)
O(2)-C(16)-W	176.8(2)		

Tabelle D 17.5: Anisotrope Auslenkungsparameter ($Å^2 x 10^3$).

Der anisotro	pe Auslenkungs	faktorexponer	nt hat die Form	<u>n: -2π² [h² a*² l</u>	J11 + + 2 h	k a* b* U12].
	U11	U22	U33	U23	U13	U12
W	12(1)	16(1)	14(1)	1(1)	6(1)	0(1)
Р	12(1)	15(1)	14(1)	0(1)	5(1)	0(1)
Si(1)	21(1)	21(1)	14(1)	1(1)	6(1)	2(1)
Si(2)	23(1)	16(1)	27(1)	3(1)	16(1)	3(1)
O(1)	32(1)	54(2)	41(1)	22(1)	10(1)	-9(1)
O(2)	31(1)	48(1)	34(1)	-14(1)	15(1)	4(1)
O(3)	31(1)	32(1)	41(1)	-16(1)	14(1)	-3(1)
O(4)	17(1)	39(1)	25(1)	-2(1)	4(1)	0(1)
Ν	15(1)	19(1)	13(1)	-1(1)	6(1)	3(1)
C(1)	15(1)	16(1)	18(1)	-3(1)	7(1)	1(1)
C(2)	15(1)	18(1)	14(1)	-5(1)	5(1)	2(1)
C(3)	17(1)	25(1)	22(1)	-5(1)	4(1)	0(1)
C(4)	20(1)	34(2)	20(1)	-1(1)	0(1)	6(1)
C(5)	27(2)	30(2)	17(1)	4(1)	7(1)	9(1)
C(6)	24(1)	21(1)	17(1)	3(1)	11(1)	6(1)
C(7)	14(1)	28(2)	29(2)	3(1)	7(1)	-2(1)
C(8)	14(1)	17(1)	17(1)	0(1)	8(1)	0(1)
C(9)	29(2)	29(2)	58(2)	10(1)	31(2)	8(1)
C(10)	28(2)	23(1)	35(2)	7(1)	17(1)	6(1)
C(11)	57(2)	24(2)	29(2)	-4(1)	24(2)	1(2)
C(12)	43(2)	39(2)	29(2)	6(1)	22(1)	0(1)
C(13)	31(2)	53(2)	23(1)	-4(1)	6(1)	-15(2)
C(14)	54(2)	38(2)	24(2)	-5(1)	13(2)	17(2)
C(15)	18(1)	33(2)	23(1)	7(1)	7(1)	-5(1)
C(16)	15(1)	30(1)	20(1)	-4(1)	8(1)	0(1)
C(17)	16(1)	23(1)	23(1)	-1(1)	8(1)	-1(1)
C(18)	16(1)	20(1)	21(1)	0(1)	9(1)	-2(1)

	x	У	Z	U(eq)
H(3A)	153	-3846	-4742	27
H(4A)	-625	-2845	-5745	33
H(5A)	1539	-2039	-5874	31
H(6A)	4355	-2257	-5000	24
H(7A)	1237	-5114	-4086	37
H(7B)	1070	-4438	-3489	37
H(7C)	2390	-5207	-3162	37
H(8A)	4796	-5398	-2450	19
H(9A)	9116	-5260	-2903	52
H(9B)	9908	-6167	-2568	52
H(9C)	9996	-5424	-1975	52
H(10A)	8361	-6.668	-1269	41
H(10B)	8061	-7366	-1930	41
H(10C)	6476	-7026	-1781	41
H(11A)	4673	-6524	-3585	52
H(11B)	6317	-6959	-3617	52
H(11C)	5812	-6012	-3925	52
H(12A)	5015	-5545	-911	52
H(12B)	6583	-5158	-164	52
H(12C)	6901	-5922	-644	52
H(13A)	9641	-4854	-845	56
H(13B)	9267	-4050	-425	56
H(13C)	9139	-3969	-1297	56
H(14A)	5578	-3252	-1736	60
H(14B)	5632	-3447	-890	60
H(14C)	4121	-3824	-1664	60

Tabelle D 17.6: Wasserstoffkoordinaten (x 10^4) und anisotrope Auslenkungsparameter (Å² x 10^3)

Tabelle D 17.7: Torsionswinkel [°]

178.54(12)	C(17)-W-N-C(2)	-93.2(2)
-3.2(4)	C(16)-W-N-C(2)	90.5(2)
94.55(12)	P-W-N-C(2)	0.22(17)
-91.30(12)	C(8)-P-C(1)-C(2)	-179.46(17)
0.14(10)	W-P-C(1)-C(2)	-0.5(2)
-2.83(14)	C(8)-P-C(1)-C(7)	0.4(3)
175.4(4)	W-P-C(1)-C(7)	179.4(2)
-86.82(14)	C(6)-N-C(2)-C(3)	-0.6(3)
87.33(14)	W-N-C(2)-C(3)	179.66(18)
178.77(13)	C(6)-N-C(2)-C(1)	179.2(2)
163.5(9)	W-N-C(2)-C(1)	-0.6(3)
-0.2(2)	C(7)-C(1)-C(2)-N	-179.2(2)
87.05(19)	P-C(1)-C(2)-N	0.7(3)
-89.2(2)	C(7)-C(1)-C(2)-C(3)	0.5(3)
-179.52(19)	P-C(1)-C(2)-C(3)	-179.58(19)
-16.8(10)	N-C(2)-C(3)-C(4)	0.7(4)
179.5(2)	C(1)-C(2)-C(3)-C(4)	-179.0(2)
	$\begin{array}{c} 178.54(12) \\ -3.2(4) \\ 94.55(12) \\ -91.30(12) \\ 0.14(10) \\ -2.83(14) \\ 175.4(4) \\ -86.82(14) \\ 87.33(14) \\ 178.77(13) \\ 163.5(9) \\ -0.2(2) \\ 87.05(19) \\ -89.2(2) \\ -179.52(19) \\ -16.8(10) \\ 179.5(2) \end{array}$	178.54(12) $C(17)-W-N-C(2)$ $-3.2(4)$ $C(16)-W-N-C(2)$ $94.55(12)$ $P-W-N-C(2)$ $-91.30(12)$ $C(8)-P-C(1)-C(2)$ $0.14(10)$ $W-P-C(1)-C(2)$ $-2.83(14)$ $C(8)-P-C(1)-C(7)$ $175.4(4)$ $W-P-C(1)-C(7)$ $175.4(4)$ $W-P-C(1)-C(7)$ $-86.82(14)$ $C(6)-N-C(2)-C(3)$ $87.33(14)$ $W-N-C(2)-C(3)$ $178.77(13)$ $C(6)-N-C(2)-C(1)$ $163.5(9)$ $W-N-C(2)-C(1)$ $-0.2(2)$ $C(7)-C(1)-C(2)-N$ $87.05(19)$ $P-C(1)-C(2)-N$ $-89.2(2)$ $C(7)-C(1)-C(2)-C(3)$ $-179.52(19)$ $P-C(1)-C(2)-C(3)$ $-16.8(10)$ $N-C(2)-C(3)-C(4)$

C(2)-C(3)-C(4)-C(5)	-0.2(4)	C(18)-W-C(15)-O(1)	-126(39)
C(3)-C(4)-C(5)-C(6)	-0.3(4)	C(17)-W-C(15)-O(1)	-43(39)
C(2)-N-C(6)-C(5)	0.0(4)	C(16)-W-C(15)-O(1)	144(39)
W-N-C(6)-C(5)	179.8(2)	N-W-C(15)-O(1)	53(39)
C(4)-C(5)-C(6)-N	0.5(4)	P-W-C(15)-O(1)	56(39)
C(1)-P-C(8)-Si(1)	-108.92(14)	C(18)-W-C(16)-O(2)	-32(4)
W-P-C(8)-Si(1)	72.49(15)	C(15)-W-C(16)-O(2)	58(4)
C(1)-P-C(8)-Si(2)	113.43(14)	C(17)-W-C(16)-O(2)	0(5)
W-P-C(8)-Si(2)	-65.17(17)	N-W-C(16)-O(2)	153(4)
C(13)-Si(1)-C(8)-P	-83.49(17)	P-W-C(16)-O(2)	-134(4)
C(12)-Si(1)-C(8)-P	154.31(15)	C(18)-W-C(17)-O(3)	23(2)
C(14)-Si(1)-C(8)-P	36.79(19)	C(15)-W-C(17)-O(3)	-68(2)
C(13)-Si(1)-C(8)-Si(2)	49.77(19)	C(16)-W-C(17)-O(3)	-10(3)
C(12)-Si(1)-C(8)-Si(2)	-72.43(18)	N-W-C(17)-O(3)	-163(2)
C(14)-Si(1)-C(8)-Si(2)	170.05(17)	P-W-C(17)-O(3)	124(2)
C(10)-Si(2)-C(8)-P	-174.89(14)	C(15)-W-C(18)-O(4)	95(5)
C(9)-Si(2)-C(8)-P	62.88(18)	C(17)-W-C(18)-O(4)	8(5)
C(11)-Si(2)-C(8)-P	-56.64(17)	C(16)-W-C(18)-O(4)	-176(100)
C(10)-Si(2)-C(8)-Si(1)	51.87(18)	N-W-C(18)-O(4)	-69(5)
C(9)-Si(2)-C(8)-Si(1)	-70.35(19)	P-W-C(18)-O(4)	-85(5)
C(11)-Si(2)-C(8)-Si(1)	170.12(15)		

18. Dichloro{Pentacarbonyl{[bis(trimethylsilyl)methyl]-1,1-[di-(*o*-pyridyl)]methylenphosphan-κP}wolfram(0)- κN,N}-Zink (**93a**⁺)

Sehr gute Struktur, 23.09.2014, Publiziert in ^[99]; CCDC 1419692

Tabelle D	18 1.	Kristalldaten	und	Strukturve	rfeinerung	von	93a'
	10.1.	randatori	unu	Oliuktuive	noniorung	1011	J JU

Identifikationscode	GSTR379, 3699f
Gerätetyp	Nonius KappaCCD
Summenformel	$C_{23}H_{27}Cl_2N_2O_5PSi_2WZn$
Molare Masse	818.74
Temperatur [K]	100
Wellenlänge [Å]	0.71073
Kristallsystem, Raumgruppe	Triklin, <i>P</i> 1
Elementarzelle	a = 8.7858(8) Å α = 77.250(3)°
	b = 10.8025(10) Å β = 86.378(4)°
	$c = 17.9022(15) \text{ Å}$ $\gamma = 66.964(3)^{\circ}$
Elementarzellenvolumen [Å ³]	1524.5(2)
Z, Berechnete Dichte [Mg/m ³]	2, 1.784
Absorptionskoeffizient [µ/mm ⁻¹]	4.897
F(000)	800.0
Kristallgröße [mm ³]	0.05 × 0.03 × 0.02
Gemessener 20-Bereich [°]	7.36 - 56
Indexgrößen	-11 ≤ h ≤ 9, -14 ≤ k ≤ 14, -23 ≤ l ≤ 21
Reflexe gemessen / unabhängig	19463 / 7275 [$R_{int} = 0.0344$, $R_{\sigma} = 0.0488$]
Daten / Restraints / Parameter	7275 / 0 / 335
Goodness-of-fit an F ²	1.045
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0309, wR2 = 0.0638
R-Werte (sämtliche Daten)	R1 = 0.0423, wR2 = 0.0672
Größtes Maximum und Minimum	1.27 und -1.18 e·Å⁻³

W-P	2.4772(10)	N1-C6	1.347(5)	Si1-C13	1.853(5)
W-C19	2.006(4)	N2-C7	1.357(5)	Si1-C14	1.855(4)
W-C20	2.055(4)	N2-C11	1.346(5)	Si1-C15	1.873(4)
W-C21	2.072(4)	C1-C2	1.489(5)	Si2-C12	1.910(4)
W-C22	2.048(4)	C1-C7	1.494(5)	Si2-C16	1.877(4)
W-C23	2.023(4)	C2-C3	1.399(6)	Si2-C17	1.864(4)
Zn-Cl1	2.2137(11)	C3-C4	1.389(6)	Si2-C18	1.870(4)
Zn-Cl2	2.2116(11)	C4-C5	1.370(6)	O1-C19	1.146(5)
Zn-N1	2.058(3)	C5-C6	1.388(6)	O2-C20	1.137(5)
Zn-N2	2.066(3)	C7-C8	1.399(5)	O3-C21	1.130(5)
P-C1	1.681(4)	C8-C9	1.387(6)	O4-C22	1.139(5)
P-C12	1.814(4)	C9-C10	1.381(6)	O5-C23	1.155(5)
Si1-C12	1.927(4)	C10-C11	1.379(6)	N1-C2	1.349(5)
Si1-C13	1.853(5)	W-P	2.4772(10)	N1-C6	1.347(5)
Si1-C14	1.855(4)	W-C19	2.006(4)	N2-C7	1.357(5)
Si1-C15	1.873(4)	W-C20	2.055(4)	N2-C11	1.346(5)
Si2-C12	1.910(4)	W-C21	2.072(4)	C1-C2	1.489(5)
Si2-C16	1.877(4)	W-C22	2.048(4)	C1-C7	1.494(5)
Si2-C17	1.864(4)	W-C23	2.023(4)	C2-C3	1.399(6)
Si2-C18	1.870(4)	Zn-Cl1	2.2137(11)	C3-C4	1.389(6)
O1-C19	1.146(5)	Zn-Cl2	2.2116(11)	C4-C5	1.370(6)
O2-C20	1.137(5)	Zn-N1	2.058(3)	C5-C6	1.388(6)
O3-C21	1.130(5)	Zn-N2	2.066(3)	C7-C8	1.399(5)
O4-C22	1.139(5)	P-C1	1.681(4)	C8-C9	1.387(6)
O5-C23	1.155(5)	P-C12	1.814(4)	C9-C10	1.381(6)
N1-C2	1.349(5)	Si1-C12	1.927(4)	C10-C11	1.379(6)

Tabelle D 18.2: Bindungslängen [Å]

Tabelle D 18.3: Bindungswinkel [°]

C19-W-P	175.96(13)	N2-Zn-Cl2	112.76(9)
C19-W-C20	87.57(17)	C1-P-W	124.71(14)
C19-W-C21	88.39(16)	C1-P-C12	108.13(19)
C19-W-C22	85.74(17)	C12-P-W	126.81(13)
C19-W-C23	87.33(16)	C13-Si1-C12	110.69(18)
C20-W-P	96.47(11)	C13-Si1-C14	107.4(2)
C20-W-C21	87.88(16)	C13-Si1-C15	109.5(2)
C21-W-P	91.73(11)	C14-Si1-C12	113.9(2)
C22-W-P	90.24(12)	C14-Si1-C15	108.8(2)
C22-W-C20	171.39(16)	C15-Si1-C12	106.47(19)
C22-W-C21	86.52(17)	C16-Si2-C12	114.08(19)
C23-W-P	92.63(11)	C17-Si2-C12	106.63(19)
C23-W-C20	90.63(16)	C17-Si2-C16	112.8(2)
C23-W-C21	175.52(16)	C17-Si2-C18	108.2(2)
C23-W-C22	94.46(17)	C18-Si2-C12	106.94(19)
Cl2-Zn-Cl1	116.27(4)	C18-Si2-C16	107.9(2)
N1-Zn-Cl1	121.72(10)	C2-N1-Zn	117.8(3)
N1-Zn-Cl2	104.00(10)	C6-N1-Zn	121.7(3)
N1-Zn-N2	92.69(13)	C6-N1-C2	118.7(4)
N2-Zn-Cl1	107.14(9)	C7-N2-Zn	117.8(2)

C11-N2-Zn	123.5(3)
C11-N2-C7	118.6(3)
C2-C1-P	124.2(3)
C2-C1-C7	115.3(3)
C7-C1-P	120.3(3)
N1-C2-C1	116.4(3)
N1-C2-C3	121.3(4)
C3-C2-C1	122.2(4)
C4-C3-C2	118.7(4)
C5-C4-C3	120.0(4)
C4-C5-C6	118.3(4)
N1-C6-C5	122.7(4)
N2-C7-C1	117.3(3)
N2-C7-C8	121.0(3)

C8-C7-C1	121.7(4)
C9-C8-C7	119.5(4)
C10-C9-C8	118.9(4)
C11-C10-C9	119.1(4)
N2-C11-C10	122.8(4)
P-C12-Si1	113.8(2)
P-C12-Si2	116.5(2)
Si2-C12-Si1	115.96(19)
O1-C19-W	178.0(4)
O2-C20-W	173.4(4)
O3-C21-W	175.9(3)
O4-C22-W	173.5(4)
O5-C23-W	175.7(3)

Tabelle D 18.4: Torsionswinkel [°]

W D C1 C2	162 7(2)	N2 C7 C9 C0	2 4(6)
W B C1 C7	-103.7(3)	N2-C7-C6-C9	2.4(0)
	10.1(4)		99.4(<i>Z</i>)
W-P-C12-SIT	-07.2(2)		-121.0(2)
W-P-C12-512	51.8(3)		177.1(4)
Zn-N1-G2-C1	17.5(4)	C1-C7-C8-C9	-179.7(4)
Zn-N1-C2-C3	-162.2(3)	C2-N1-C6-C5	0.7(6)
Zn-N1-C6-C5	165.2(3)	C2-C1-C7-N2	56.3(5)
Zn-N2-C7-C1	3.7(4)	C2-C1-C7-C8	-121.7(4)
Zn-N2-C7-C8	-178.3(3)	C2-C3-C4-C5	0.1(6)
Zn-N2-C11-C10	176.3(3)	C3-C4-C5-C6	3.2(6)
CI1-Zn-N1-C2	-85.3(3)	C4-C5-C6-N1	-3.7(6)
Cl1-Zn-N1-C6	110.2(3)	C6-N1-C2-C1	-177.5(3)
Cl1-Zn-N2-C7	86.3(3)	C6-N1-C2-C3	2.9(5)
Cl1-Zn-N2-C11	-89.9(3)	C7-N2-C11-C10	0.1(6)
Cl2-Zn-N1-C2	141.1(3)	C7-C1-C2-N1	-69.9(4)
Cl2-Zn-N1-C6	-23.5(3)	C7-C1-C2-C3	109.8(4)
Cl2-Zn-N2-C7	-144.5(2)	C7-C8-C9-C10	-1.1(6)
Cl2-Zn-N2-C11	39.2(3)	C8-C9-C10-C11	-0.6(6)
P-W-C19-O1	0(12)	C9-C10-C11-N2	1.2(6)
P-W-C20-O2	147(3)	C11-N2-C7-C1	-179.8(3)
P-W-C21-O3	175(5)	C11-N2-C7-C8	-1.8(5)
P-W-C22-O4	-144(4)	C12-P-C1-C2	9.8(4)
P-W-C23-O5	170(5)	C12-P-C1-C7	-176.4(3)
P-C1-C2-N1	104.3(4)	C13-Si1-C12-P	-14.9(3)
P-C1-C2-C3	-76.0(5)	C13-Si1-C12-Si2	-154.1(2)
P-C1-C7-N2	-118.0(3)	C14-Si1-C12-P	106.2(2)
P-C1-C7-C8	64.0(5)	C14-Si1-C12-Si2	-33.0(3)
N1-Zn-N2-C7	-38.1(3)	C15-Si1-C12-P	-133.9(2)
N1-Zn-N2-C11	145.6(3)	C15-Si1-C12-Si2	86.9(2)
N1-C2-C3-C4	-3.3(6)	C16-Si2-C12-P	-74.1(3)
N2-Zn-N1-C2	26.8(3)	C16-Si2-C12-Si1	64.0(3)
N2-Zn-N1-C6	-137.8(3)	C17-Si2-C12-P	51.1(3)

C17-Si2-C12-Si1	-170.8(2)	C21-W-C19-O1	92(11)
C18-Si2-C12-P	166.7(2)	C21-W-C20-O2	55(3)
C18-Si2-C12-Si1	-55.2(3)	C21-W-C22-O4	-52(4)
C19-W-P-C1	118.5(17)	C21-W-C23-O5	3(6)
C19-W-P-C12	-53.8(17)	C22-W-P-C1	113.4(2)
C19-W-C20-O2	-33(3)	C22-W-P-C12	-58.9(2)
C19-W-C21-O3	-1(5)	C22-W-C19-O1	5(11)
C19-W-C22-O4	37(4)	C22-W-C20-O2	6(4)
C19-W-C23-O5	-14(5)	C22-W-C21-O3	85(5)
C20-W-P-C1	-61.2(2)	C22-W-C23-O5	-99(5)
C20-W-P-C12	126.5(2)	C23-W-P-C1	-152.1(2)
C20-W-C19-O1	180(100)	C23-W-P-C12	35.5(2)
C20-W-C21-O3	-89(5)	C23-W-C19-O1	-89(11)
C20-W-C22-O4	-2(4)	C23-W-C20-O2	-121(3)
C20-W-C23-O5	74(5)	C23-W-C21-O3	-18(7)
C21-W-P-C1	26.9(2)	C23-W-C22-O4	124(4)
C21-W-P-C12	-145.5(2)		